forked from jayleicn/singularity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.sh
105 lines (94 loc) · 3.07 KB
/
pretrain.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/bin/bash
#SBATCH --partition=XXX # please specify your partition
#SBATCH --nodes=1
#SBATCH --gres=gpu:3 # number of GPUs
#SBATCH --ntasks-per-node=3
#SBATCH --cpus-per-task=16
#SBATCH --job-name=sl_pt
#SBATCH --time=144:00:00
#SBATCH --mem=500G
# can add MASTER_PORT to control port for distributed training
exp_name=$1 # note we added ${corpus} prefix automatically
corpus=$2 # coco_vg, 4m, ...
exp_dir=${SL_EXP_DIR}
ngpus=$3 # number of GPUs to use, only used if ${mode} == local
mode=$4
if [[ ${corpus} != "coco_vg" ]] && [[ ${corpus} != "coco" ]] && \
[[ ${corpus} != "webvid_cc3m" ]] && [[ ${corpus} != "cc3m" ]] && \
[[ ${corpus} != "webvid" ]] && [[ ${corpus} != "webvid_14m" ]]; then
echo "Does not support corpus ${corpus}"
exit 1
fi
if [[ ${mode} != "slurm" ]] && [[ ${mode} != "local" ]]; then
echo "Got mode=${mode}, supported mode: [slurm, local]."
exit 1
fi
output_dir=${exp_dir}/pt_${corpus}/${corpus}_${exp_name}
config_path=./configs/pretrain.yaml
echo "output dir >> ${output_dir}"
### save code copy
project_dir=$PWD
if [ -d ${output_dir} ]; then
echo "Dir ${output_dir} already exist. Exit."
exit 1
fi
mkdir -p ${output_dir}
cd ..
code_dir=${output_dir}/code
project_dirname=singularity
rsync -ar ${project_dirname} ${code_dir} --exclude='*.out' # --exclude='.git'
cd ${code_dir}/${project_dirname}
echo "Copied source files to '${PWD}' and launch from this dir"
############### ======> Your training scripts [START]
if [[ ${mode} == "slurm" ]]; then
# slurm job, started with
# sbatch THIS_SCRIPT ... slurm ...
master_node=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
all_nodes=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
echo "All nodes used: ${all_nodes}"
echo "Master node ${master_node}"
# prepend MASTER_PORT=XXX when launching
dist_url="tcp://$master_node:${MASTER_PORT:-40000}" # default port 40000
echo "dist_url: ${dist_url}"
echo "PYTHONPATH: ${PYTHONPATH}"
which_python=$(which python)
echo "which python ${which_python}"
export PYTHONPATH=${PYTHONPATH}:${which_python}
export PYTHONPATH=${PYTHONPATH}:.
echo "PYTHONPATH: ${PYTHONPATH}"
srun \
--output=${output_dir}/slurm%j.out \
--error=${output_dir}/slurm%j.err \
python \
tasks/pretrain.py \
${config_path} \
output_dir=${output_dir} \
train_corpus=${corpus} \
wandb.project=sb_pt_${corpus} \
wandb.enable=True \
dist_url=${dist_url} \
${@:5}
elif [[ ${mode} == "local" ]]; then
# bash THIS_SCRIPT ... local ...
rdzv_endpoint="${HOSTNAME}:${MASTER_PORT:-40000}"
echo "rdzv_endpoint: ${rdzv_endpoint}"
PYTHONPATH=.:${PYTHONPATH} \
torchrun --nnodes=1 \
--nproc_per_node=${ngpus} \
--rdzv_backend=c10d \
--rdzv_endpoint=${rdzv_endpoint} \
tasks/pretrain.py \
${config_path} \
output_dir=${output_dir} \
train_corpus=${corpus} \
wandb.project=sb_pt_${corpus} \
wandb.enable=True \
${@:5}
else
echo "mode expects one of [local, slurm], got ${mode}."
fi
############### ======> Your training scripts [END]
### cd back
echo "Finish at dir: ${PWD}, cd back to project dir ${project_dir}"
echo "output dir >> ${output_dir}"
cd ${project_dir}