diff --git a/example_descriptions/models/unet2d_multi_tensor/rdf.yaml b/example_descriptions/models/unet2d_multi_tensor/rdf.yaml new file mode 100644 index 000000000..e463a7fe5 --- /dev/null +++ b/example_descriptions/models/unet2d_multi_tensor/rdf.yaml @@ -0,0 +1,73 @@ +authors: + - { name: Constantin Pape, github_user: constantinpape } +cite: + - { text: training library, doi: "10.5281/zenodo.5108853" } + - { text: architecture, doi: "10.1007/978-3-319-24574-4_28" } +covers: [cover.jpg] +dependencies: conda:environment.yaml +description: Multi tensor +documentation: documentation.md +format_version: 0.4.0 +git_repo: https://github.com/constantinpape/torch-em.git +inputs: + - axes: bcyx + data_range: [-.inf, .inf] + data_type: float32 + name: input0 + preprocessing: + - kwargs: { axes: cyx, mode: per_sample } + name: zero_mean_unit_variance + shape: + min: [1, 1, 32, 32] + step: [0, 0, 16, 16] + - axes: bcyx + data_range: [-.inf, .inf] + data_type: float32 + name: input1 + preprocessing: + - kwargs: { axes: cyx, mode: per_sample } + name: zero_mean_unit_variance + shape: + min: [1, 1, 32, 32] + step: [0, 0, 16, 16] +license: CC-BY-4.0 +links: [ilastik/ilastik] +name: Multi-tensor +outputs: + - axes: bcyx + data_range: [-.inf, .inf] + data_type: float32 + name: output0 + shape: + offset: [0, 0, 0, 0] + reference_tensor: input0 + scale: [1, 1, 1, 1] + - axes: bcyx + data_range: [-.inf, .inf] + data_type: float32 + name: output1 + shape: + offset: [0, 0, 0, 0] + reference_tensor: input1 + scale: [1, 1, 1, 1] +tags: [segmentation] +test_inputs: [test_input_0.npy, test_input_1.npy] +test_outputs: [test_output_0.npy, test_output_1.npy] +timestamp: "2021-09-13T15:55:34.193995" +type: model +weights: + onnx: + opset_version: 12 + sha256: 9b5bd88a3d29cf9979b30c03b4d5af12fdfa1d7193f5d2f2cc3942ffcf71ce3c + source: weights.onnx + parent: pytorch_state_dict + torchscript: + sha256: 097bb5062df1fe48a5e7473ea2f6025c77d334a9e3f92af79fc3d6d530c01720 + source: weights-torchscript.pt + parent: pytorch_state_dict + pytorch_state_dict: + architecture: multi_tensor_unet.py:MultiTensorUNet + architecture_sha256: 5e3d36b5187b85d5c935f2efde7cafe293dbffa413618f49a0744bf1be75c22b + kwargs: { depth: 3, in_channels: 2, initial_features: 16, out_channels: 2 } + sha256: c498522b3f2b02429b41fe9dbcb722ce0d7ad4cae7fcf8059cee27857ae49b00 + source: weights.pt