基于 text2vec 封装函数提供 API 服务
- python 3.8+
分组 | 配置项 | 说明 |
---|---|---|
模型参数 | MODEL | 需要调用的模型名称 默认 paraphrase-multilingual-mpnet-base-v2 小模型 paraphrase-multilingual-MiniLM-L12-v2 |
模型参数 | MODELS_PATH | 所有模型的存储位置 |
模型参数 | MODELS_TRAIN | 是否支持个性话模型,默认 False |
├── README.md -- 项目说明
├── run.py -- 程序运行文件
├── run.sh -- 容器运行脚本
├── /requirements.txt -- 项目使用到的依赖包
├── /config.py -- 项目配置文件
├── /init_model.py -- 构建镜像中预加载模型脚本
├── /Dockerfile -- 项目镜像构建文件
# 初始化打包
nohup docker build . -f ./Dockerfile -t wuhanchu/text2vec_service:latest &
# 持续更新
docker build . -f ./Dockerfile.continue -t wuhanchu/text2vec_service:1.3.9
docker push wuhanchu/text2vec_service:1.3.9
python run.py
or
docker-compose -f ./compose/ai_service.yml -f ./consumer/dataknown/ai_service.yml -p dataknown --env-file ./env/dataknown_test.env up -d text2vec_service
torch
text2vec
- Method: POST
- Url: /semantic_search
- Body:
{
"sentences1": ["sentence1", "sentence2", "sentence3"],
"sentences2": ["sentence1", "sentence2", "sentence3"]
}
- Response:
{
"result": [
[
{ "corpus_id": 0, "score": 0.9476608037948608 },
{ "corpus_id": 1, "score": 0.9476608037948608 },
{ "corpus_id": 2, "score": 0.9476608037948608 }
],
[
{ "corpus_id": 0, "score": 0.9476608037948608 },
{ "corpus_id": 1, "score": 0.9476608037948608 },
{ "corpus_id": 2, "score": 0.9476608037948608 }
],
[
{ "corpus_id": 0, "score": 0.9476608037948608 },
{ "corpus_id": 1, "score": 0.9476608037948608 },
{ "corpus_id": 2, "score": 0.9476608037948608 }
]
]
}
- Method: POST
- Url: /cos_sim
- Body:
{
"sentences1": ["sentence1", "sentence2", "sentence3"],
"sentences2": ["sentence1", "sentence2", "sentence3"]
}
- Response:
{
"result": [
[0, 1, 1],
[0, 1, 1],
[0, 1, 1]
]
}
- Method: POST
- Url: /computing_embeddings
- Body:
{
"sentences": ["sentence1", "sentence2", "sentence3"]
}
- Response:
{
"result": [
[0, 1, 1],
[0, 1, 1],
[0, 1, 1]
]
}