-
-
Notifications
You must be signed in to change notification settings - Fork 179
/
Copy pathbitset.go
1736 lines (1516 loc) · 46.3 KB
/
bitset.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Package bitset implements bitsets, a mapping
between non-negative integers and boolean values. It should be more
efficient than map[uint] bool.
It provides methods for setting, clearing, flipping, and testing
individual integers.
But it also provides set intersection, union, difference,
complement, and symmetric operations, as well as tests to
check whether any, all, or no bits are set, and querying a
bitset's current length and number of positive bits.
BitSets are expanded to the size of the largest set bit; the
memory allocation is approximately Max bits, where Max is
the largest set bit. BitSets are never shrunk. On creation,
a hint can be given for the number of bits that will be used.
Many of the methods, including Set,Clear, and Flip, return
a BitSet pointer, which allows for chaining.
Example use:
import "bitset"
var b BitSet
b.Set(10).Set(11)
if b.Test(1000) {
b.Clear(1000)
}
if B.Intersection(bitset.New(100).Set(10)).Count() > 1 {
fmt.Println("Intersection works.")
}
As an alternative to BitSets, one should check out the 'big' package,
which provides a (less set-theoretical) view of bitsets.
*/
package bitset
import (
"bytes"
"encoding/base64"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"math/bits"
"strconv"
)
// the wordSize of a bit set
const wordSize = 64
// the wordSize of a bit set in bytes
const wordBytes = wordSize / 8
// wordMask is wordSize-1, used for bit indexing in a word
const wordMask = wordSize - 1
// log2WordSize is lg(wordSize)
const log2WordSize = 6
// allBits has every bit set
const allBits uint64 = 0xffffffffffffffff
// default binary BigEndian
var binaryOrder binary.ByteOrder = binary.BigEndian
// default json encoding base64.URLEncoding
var base64Encoding = base64.URLEncoding
// Base64StdEncoding Marshal/Unmarshal BitSet with base64.StdEncoding(Default: base64.URLEncoding)
func Base64StdEncoding() { base64Encoding = base64.StdEncoding }
// LittleEndian sets Marshal/Unmarshal Binary as Little Endian (Default: binary.BigEndian)
func LittleEndian() { binaryOrder = binary.LittleEndian }
// BigEndian sets Marshal/Unmarshal Binary as Big Endian (Default: binary.BigEndian)
func BigEndian() { binaryOrder = binary.BigEndian }
// BinaryOrder returns the current binary order, see also LittleEndian()
// and BigEndian() to change the order.
func BinaryOrder() binary.ByteOrder { return binaryOrder }
// A BitSet is a set of bits. The zero value of a BitSet is an empty set of length 0.
type BitSet struct {
length uint
set []uint64
}
// Error is used to distinguish errors (panics) generated in this package.
type Error string
// safeSet will fixup b.set to be non-nil and return the field value
func (b *BitSet) safeSet() []uint64 {
if b.set == nil {
b.set = make([]uint64, wordsNeeded(0))
}
return b.set
}
// SetBitsetFrom fills the bitset with an array of integers without creating a new BitSet instance
func (b *BitSet) SetBitsetFrom(buf []uint64) {
b.length = uint(len(buf)) * 64
b.set = buf
}
// From is a constructor used to create a BitSet from an array of words
func From(buf []uint64) *BitSet {
return FromWithLength(uint(len(buf))*64, buf)
}
// FromWithLength constructs from an array of words and length in bits.
// This function is for advanced users, most users should prefer
// the From function.
// As a user of FromWithLength, you are responsible for ensuring
// that the length is correct: your slice should have length at
// least (length+63)/64 in 64-bit words.
func FromWithLength(length uint, set []uint64) *BitSet {
if len(set) < wordsNeeded(length) {
panic("BitSet.FromWithLength: slice is too short")
}
return &BitSet{length, set}
}
// Bytes returns the bitset as array of 64-bit words, giving direct access to the internal representation.
// It is not a copy, so changes to the returned slice will affect the bitset.
// It is meant for advanced users.
//
// Deprecated: Bytes is deprecated. Use [BitSet.Words] instead.
func (b *BitSet) Bytes() []uint64 {
return b.set
}
// Words returns the bitset as array of 64-bit words, giving direct access to the internal representation.
// It is not a copy, so changes to the returned slice will affect the bitset.
// It is meant for advanced users.
func (b *BitSet) Words() []uint64 {
return b.set
}
// wordsNeeded calculates the number of words needed for i bits
func wordsNeeded(i uint) int {
if i > (Cap() - wordMask) {
return int(Cap() >> log2WordSize)
}
return int((i + wordMask) >> log2WordSize)
}
// wordsNeededUnbound calculates the number of words needed for i bits, possibly exceeding the capacity.
// This function is useful if you know that the capacity cannot be exceeded (e.g., you have an existing BitSet).
func wordsNeededUnbound(i uint) int {
return (int(i) + wordMask) >> log2WordSize
}
// wordsIndex calculates the index of words in a `uint64`
func wordsIndex(i uint) uint {
return i & wordMask
}
// New creates a new BitSet with a hint that length bits will be required.
// The memory usage is at least length/8 bytes.
// In case of allocation failure, the function will return a BitSet with zero
// capacity.
func New(length uint) (bset *BitSet) {
defer func() {
if r := recover(); r != nil {
bset = &BitSet{
0,
make([]uint64, 0),
}
}
}()
bset = &BitSet{
length,
make([]uint64, wordsNeeded(length)),
}
return bset
}
// MustNew creates a new BitSet with the given length bits.
// It panics if length exceeds the possible capacity or by a lack of memory.
func MustNew(length uint) (bset *BitSet) {
if length >= Cap() {
panic("You are exceeding the capacity")
}
return &BitSet{
length,
make([]uint64, wordsNeeded(length)), // may panic on lack of memory
}
}
// Cap returns the total possible capacity, or number of bits
// that can be stored in the BitSet theoretically. Under 32-bit system,
// it is 4294967295 and under 64-bit system, it is 18446744073709551615.
// Note that this is further limited by the maximum allocation size in Go,
// and your available memory, as any Go data structure.
func Cap() uint {
return ^uint(0)
}
// Len returns the number of bits in the BitSet.
// Note that it differ from Count function.
func (b *BitSet) Len() uint {
return b.length
}
// extendSet adds additional words to incorporate new bits if needed
func (b *BitSet) extendSet(i uint) {
if i >= Cap() {
panic("You are exceeding the capacity")
}
nsize := wordsNeeded(i + 1)
if b.set == nil {
b.set = make([]uint64, nsize)
} else if cap(b.set) >= nsize {
b.set = b.set[:nsize] // fast resize
} else if len(b.set) < nsize {
newset := make([]uint64, nsize, 2*nsize) // increase capacity 2x
copy(newset, b.set)
b.set = newset
}
b.length = i + 1
}
// Test whether bit i is set.
func (b *BitSet) Test(i uint) bool {
if i >= b.length {
return false
}
return b.set[i>>log2WordSize]&(1<<wordsIndex(i)) != 0
}
// GetWord64AtBit retrieves bits i through i+63 as a single uint64 value
func (b *BitSet) GetWord64AtBit(i uint) uint64 {
firstWordIndex := int(i >> log2WordSize)
subWordIndex := wordsIndex(i)
// The word that the index falls within, shifted so the index is at bit 0
var firstWord, secondWord uint64
if firstWordIndex < len(b.set) {
firstWord = b.set[firstWordIndex] >> subWordIndex
}
// The next word, masked to only include the necessary bits and shifted to cover the
// top of the word
if (firstWordIndex + 1) < len(b.set) {
secondWord = b.set[firstWordIndex+1] << uint64(wordSize-subWordIndex)
}
return firstWord | secondWord
}
// Set bit i to 1, the capacity of the bitset is automatically
// increased accordingly.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
// The memory usage is at least slightly over i/8 bytes.
func (b *BitSet) Set(i uint) *BitSet {
if i >= b.length { // if we need more bits, make 'em
b.extendSet(i)
}
b.set[i>>log2WordSize] |= 1 << wordsIndex(i)
return b
}
// Clear bit i to 0. This never cause a memory allocation. It is always safe.
func (b *BitSet) Clear(i uint) *BitSet {
if i >= b.length {
return b
}
b.set[i>>log2WordSize] &^= 1 << wordsIndex(i)
return b
}
// SetTo sets bit i to value.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) SetTo(i uint, value bool) *BitSet {
if value {
return b.Set(i)
}
return b.Clear(i)
}
// Flip bit at i.
// Warning: using a very large value for 'i'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) Flip(i uint) *BitSet {
if i >= b.length {
return b.Set(i)
}
b.set[i>>log2WordSize] ^= 1 << wordsIndex(i)
return b
}
// FlipRange bit in [start, end).
// Warning: using a very large value for 'end'
// may lead to a memory shortage and a panic: the caller is responsible
// for providing sensible parameters in line with their memory capacity.
func (b *BitSet) FlipRange(start, end uint) *BitSet {
if start >= end {
return b
}
if end-1 >= b.length { // if we need more bits, make 'em
b.extendSet(end - 1)
}
startWord := int(start >> log2WordSize)
endWord := int(end >> log2WordSize)
// b.set[startWord] ^= ^(^uint64(0) << wordsIndex(start))
// e.g:
// start = 71,
// startWord = 1
// wordsIndex(start) = 71 % 64 = 7
// (^uint64(0) << 7) = 0b111111....11110000000
//
// mask = ^(^uint64(0) << 7) = 0b000000....00001111111
//
// flips the first 7 bits in b.set[1] and
// in the range loop, the b.set[1] gets again flipped
// so the two expressions flip results in a flip
// in b.set[1] from [7,63]
//
// handle startWord special, get's reflipped in range loop
b.set[startWord] ^= ^(^uint64(0) << wordsIndex(start))
for idx := range b.set[startWord:endWord] {
b.set[startWord+idx] = ^b.set[startWord+idx]
}
// handle endWord special
// e.g.
// end = 135
// endWord = 2
//
// wordsIndex(-7) = 57
// see the golang spec:
// "For unsigned integer values, the operations +, -, *, and << are computed
// modulo 2n, where n is the bit width of the unsigned integer's type."
//
// mask = ^uint64(0) >> 57 = 0b00000....0001111111
//
// flips in b.set[2] from [0,7]
//
// is end at word boundary?
if idx := wordsIndex(-end); idx != 0 {
b.set[endWord] ^= ^uint64(0) >> wordsIndex(idx)
}
return b
}
// Shrink shrinks BitSet so that the provided value is the last possible
// set value. It clears all bits > the provided index and reduces the size
// and length of the set.
//
// Note that the parameter value is not the new length in bits: it is the
// maximal value that can be stored in the bitset after the function call.
// The new length in bits is the parameter value + 1. Thus it is not possible
// to use this function to set the length to 0, the minimal value of the length
// after this function call is 1.
//
// A new slice is allocated to store the new bits, so you may see an increase in
// memory usage until the GC runs. Normally this should not be a problem, but if you
// have an extremely large BitSet its important to understand that the old BitSet will
// remain in memory until the GC frees it.
// If you are memory constrained, this function may cause a panic.
func (b *BitSet) Shrink(lastbitindex uint) *BitSet {
length := lastbitindex + 1
idx := wordsNeeded(length)
if idx > len(b.set) {
return b
}
shrunk := make([]uint64, idx)
copy(shrunk, b.set[:idx])
b.set = shrunk
b.length = length
lastWordUsedBits := length % 64
if lastWordUsedBits != 0 {
b.set[idx-1] &= allBits >> uint64(64-wordsIndex(lastWordUsedBits))
}
return b
}
// Compact shrinks BitSet to so that we preserve all set bits, while minimizing
// memory usage. Compact calls Shrink.
// A new slice is allocated to store the new bits, so you may see an increase in
// memory usage until the GC runs. Normally this should not be a problem, but if you
// have an extremely large BitSet its important to understand that the old BitSet will
// remain in memory until the GC frees it.
// If you are memory constrained, this function may cause a panic.
func (b *BitSet) Compact() *BitSet {
idx := len(b.set) - 1
for ; idx >= 0 && b.set[idx] == 0; idx-- {
}
newlength := uint((idx + 1) << log2WordSize)
if newlength >= b.length {
return b // nothing to do
}
if newlength > 0 {
return b.Shrink(newlength - 1)
}
// We preserve one word
return b.Shrink(63)
}
// InsertAt takes an index which indicates where a bit should be
// inserted. Then it shifts all the bits in the set to the left by 1, starting
// from the given index position, and sets the index position to 0.
//
// Depending on the size of your BitSet, and where you are inserting the new entry,
// this method could be extremely slow and in some cases might cause the entire BitSet
// to be recopied.
func (b *BitSet) InsertAt(idx uint) *BitSet {
insertAtElement := idx >> log2WordSize
// if length of set is a multiple of wordSize we need to allocate more space first
if b.isLenExactMultiple() {
b.set = append(b.set, uint64(0))
}
var i uint
for i = uint(len(b.set) - 1); i > insertAtElement; i-- {
// all elements above the position where we want to insert can simply by shifted
b.set[i] <<= 1
// we take the most significant bit of the previous element and set it as
// the least significant bit of the current element
b.set[i] |= (b.set[i-1] & 0x8000000000000000) >> 63
}
// generate a mask to extract the data that we need to shift left
// within the element where we insert a bit
dataMask := uint64(1)<<uint64(wordsIndex(idx)) - 1
// extract that data that we'll shift
data := b.set[i] & (^dataMask)
// set the positions of the data mask to 0 in the element where we insert
b.set[i] &= dataMask
// shift data mask to the left and insert its data to the slice element
b.set[i] |= data << 1
// add 1 to length of BitSet
b.length++
return b
}
// String creates a string representation of the BitSet. It is only intended for
// human-readable output and not for serialization.
func (b *BitSet) String() string {
// follows code from https://github.com/RoaringBitmap/roaring
var buffer bytes.Buffer
start := []byte("{")
buffer.Write(start)
counter := 0
i, e := b.NextSet(0)
for e {
counter = counter + 1
// to avoid exhausting the memory
if counter > 0x40000 {
buffer.WriteString("...")
break
}
buffer.WriteString(strconv.FormatInt(int64(i), 10))
i, e = b.NextSet(i + 1)
if e {
buffer.WriteString(",")
}
}
buffer.WriteString("}")
return buffer.String()
}
// DeleteAt deletes the bit at the given index position from
// within the bitset
// All the bits residing on the left of the deleted bit get
// shifted right by 1
// The running time of this operation may potentially be
// relatively slow, O(length)
func (b *BitSet) DeleteAt(i uint) *BitSet {
// the index of the slice element where we'll delete a bit
deleteAtElement := i >> log2WordSize
// generate a mask for the data that needs to be shifted right
// within that slice element that gets modified
dataMask := ^((uint64(1) << wordsIndex(i)) - 1)
// extract the data that we'll shift right from the slice element
data := b.set[deleteAtElement] & dataMask
// set the masked area to 0 while leaving the rest as it is
b.set[deleteAtElement] &= ^dataMask
// shift the previously extracted data to the right and then
// set it in the previously masked area
b.set[deleteAtElement] |= (data >> 1) & dataMask
// loop over all the consecutive slice elements to copy each
// lowest bit into the highest position of the previous element,
// then shift the entire content to the right by 1
for i := int(deleteAtElement) + 1; i < len(b.set); i++ {
b.set[i-1] |= (b.set[i] & 1) << 63
b.set[i] >>= 1
}
b.length = b.length - 1
return b
}
// AppendTo appends all set bits to buf and returns the (maybe extended) buf.
// In case of allocation failure, the function will panic.
//
// See also [BitSet.AsSlice] and [BitSet.NextSetMany].
func (b *BitSet) AppendTo(buf []uint) []uint {
// In theory, we could overflow uint, but in practice, we will not.
for idx, word := range b.set {
for word != 0 {
// In theory idx<<log2WordSize could overflow, but it will not overflow
// in practice.
buf = append(buf, uint(idx<<log2WordSize+bits.TrailingZeros64(word)))
// clear the rightmost set bit
word &= word - 1
}
}
return buf
}
// AsSlice returns all set bits as slice.
// It panics if the capacity of buf is < b.Count()
//
// See also [BitSet.AppendTo] and [BitSet.NextSetMany].
func (b *BitSet) AsSlice(buf []uint) []uint {
buf = buf[:cap(buf)] // len = cap
size := 0
for idx, word := range b.set {
for ; word != 0; size++ {
// panics if capacity of buf is exceeded.
// In theory idx<<log2WordSize could overflow, but it will not overflow
// in practice.
buf[size] = uint(idx<<log2WordSize + bits.TrailingZeros64(word))
// clear the rightmost set bit
word &= word - 1
}
}
buf = buf[:size]
return buf
}
// NextSet returns the next bit set from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no set bit found)
// for i,e := v.NextSet(0); e; i,e = v.NextSet(i + 1) {...}
//
// Users concerned with performance may want to use NextSetMany to
// retrieve several values at once.
func (b *BitSet) NextSet(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
// process first (partial) word
word := b.set[x] >> wordsIndex(i)
if word != 0 {
return i + uint(bits.TrailingZeros64(word)), true
}
// process the following full words until next bit is set
// x < len(b.set), no out-of-bounds panic in following slice expression
x++
for idx, word := range b.set[x:] {
if word != 0 {
return uint((x+idx)<<log2WordSize + bits.TrailingZeros64(word)), true
}
}
return 0, false
}
// NextSetMany returns many next bit sets from the specified index,
// including possibly the current index and up to cap(buffer).
// If the returned slice has len zero, then no more set bits were found
//
// buffer := make([]uint, 256) // this should be reused
// j := uint(0)
// j, buffer = bitmap.NextSetMany(j, buffer)
// for ; len(buffer) > 0; j, buffer = bitmap.NextSetMany(j,buffer) {
// for k := range buffer {
// do something with buffer[k]
// }
// j += 1
// }
//
// It is possible to retrieve all set bits as follow:
//
// indices := make([]uint, bitmap.Count())
// bitmap.NextSetMany(0, indices)
//
// It is also possible to retrieve all set bits with [BitSet.AppendTo]
// or [BitSet.AsSlice].
//
// However if Count() is large, it might be preferable to
// use several calls to NextSetMany for memory reasons.
func (b *BitSet) NextSetMany(i uint, buffer []uint) (uint, []uint) {
// In theory, we could overflow uint, but in practice, we will not.
capacity := cap(buffer)
result := buffer[:capacity]
x := int(i >> log2WordSize)
if x >= len(b.set) || capacity == 0 {
return 0, result[:0]
}
// process first (partial) word
word := b.set[x] >> wordsIndex(i)
size := 0
for word != 0 {
result[size] = i + uint(bits.TrailingZeros64(word))
size++
if size == capacity {
return result[size-1], result[:size]
}
// clear the rightmost set bit
word &= word - 1
}
// process the following full words
// x < len(b.set), no out-of-bounds panic in following slice expression
x++
for idx, word := range b.set[x:] {
for word != 0 {
result[size] = uint((x+idx)<<log2WordSize + bits.TrailingZeros64(word))
size++
if size == capacity {
return result[size-1], result[:size]
}
// clear the rightmost set bit
word &= word - 1
}
}
if size > 0 {
return result[size-1], result[:size]
}
return 0, result[:0]
}
// NextClear returns the next clear bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no bit found i.e. all bits are set)
func (b *BitSet) NextClear(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
// process first (maybe partial) word
word := b.set[x]
word = word >> wordsIndex(i)
wordAll := allBits >> wordsIndex(i)
index := i + uint(bits.TrailingZeros64(^word))
if word != wordAll && index < b.length {
return index, true
}
// process the following full words until next bit is cleared
// x < len(b.set), no out-of-bounds panic in following slice expression
x++
for idx, word := range b.set[x:] {
if word != allBits {
index = uint((x+idx)*wordSize + bits.TrailingZeros64(^word))
if index < b.length {
return index, true
}
}
}
return 0, false
}
// PreviousSet returns the previous set bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no bit found i.e. all bits are clear)
func (b *BitSet) PreviousSet(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
word := b.set[x]
// Clear the bits above the index
word = word & ((1 << (wordsIndex(i) + 1)) - 1)
if word != 0 {
return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
}
for x--; x >= 0; x-- {
word = b.set[x]
if word != 0 {
return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
}
}
return 0, false
}
// PreviousClear returns the previous clear bit from the specified index,
// including possibly the current index
// along with an error code (true = valid, false = no clear bit found i.e. all bits are set)
func (b *BitSet) PreviousClear(i uint) (uint, bool) {
x := int(i >> log2WordSize)
if x >= len(b.set) {
return 0, false
}
word := b.set[x]
// Flip all bits and find the highest one bit
word = ^word
// Clear the bits above the index
word = word & ((1 << (wordsIndex(i) + 1)) - 1)
if word != 0 {
return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
}
for x--; x >= 0; x-- {
word = b.set[x]
word = ^word
if word != 0 {
return uint(x<<log2WordSize+bits.Len64(word)) - 1, true
}
}
return 0, false
}
// ClearAll clears the entire BitSet.
// It does not free the memory.
func (b *BitSet) ClearAll() *BitSet {
if b != nil && b.set != nil {
for i := range b.set {
b.set[i] = 0
}
}
return b
}
// SetAll sets the entire BitSet
func (b *BitSet) SetAll() *BitSet {
if b != nil && b.set != nil {
for i := range b.set {
b.set[i] = allBits
}
b.cleanLastWord()
}
return b
}
// wordCount returns the number of words used in a bit set
func (b *BitSet) wordCount() int {
return wordsNeededUnbound(b.length)
}
// Clone this BitSet, returning a new BitSet that has the same bits set.
// In case of allocation failure, the function will return an empty BitSet.
func (b *BitSet) Clone() *BitSet {
c := New(b.length)
if b.set != nil { // Clone should not modify current object
copy(c.set, b.set)
}
return c
}
// Copy into a destination BitSet using the Go array copy semantics:
// the number of bits copied is the minimum of the number of bits in the current
// BitSet (Len()) and the destination Bitset.
// We return the number of bits copied in the destination BitSet.
func (b *BitSet) Copy(c *BitSet) (count uint) {
if c == nil {
return
}
if b.set != nil { // Copy should not modify current object
copy(c.set, b.set)
}
count = c.length
if b.length < c.length {
count = b.length
}
// Cleaning the last word is needed to keep the invariant that other functions, such as Count, require
// that any bits in the last word that would exceed the length of the bitmask are set to 0.
c.cleanLastWord()
return
}
// CopyFull copies into a destination BitSet such that the destination is
// identical to the source after the operation, allocating memory if necessary.
func (b *BitSet) CopyFull(c *BitSet) {
if c == nil {
return
}
c.length = b.length
if len(b.set) == 0 {
if c.set != nil {
c.set = c.set[:0]
}
} else {
if cap(c.set) < len(b.set) {
c.set = make([]uint64, len(b.set))
} else {
c.set = c.set[:len(b.set)]
}
copy(c.set, b.set)
}
}
// Count (number of set bits).
// Also known as "popcount" or "population count".
func (b *BitSet) Count() uint {
if b != nil && b.set != nil {
return uint(popcntSlice(b.set))
}
return 0
}
// Equal tests the equivalence of two BitSets.
// False if they are of different sizes, otherwise true
// only if all the same bits are set
func (b *BitSet) Equal(c *BitSet) bool {
if c == nil || b == nil {
return c == b
}
if b.length != c.length {
return false
}
if b.length == 0 { // if they have both length == 0, then could have nil set
return true
}
wn := b.wordCount()
// bounds check elimination
if wn <= 0 {
return true
}
_ = b.set[wn-1]
_ = c.set[wn-1]
for p := 0; p < wn; p++ {
if c.set[p] != b.set[p] {
return false
}
}
return true
}
func panicIfNull(b *BitSet) {
if b == nil {
panic(Error("BitSet must not be null"))
}
}
// Difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) Difference(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
result = b.Clone() // clone b (in case b is bigger than compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
for i := 0; i < l; i++ {
result.set[i] = b.set[i] &^ compare.set[i]
}
return
}
// DifferenceCardinality computes the cardinality of the difference
func (b *BitSet) DifferenceCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
cnt := uint64(0)
cnt += popcntMaskSlice(b.set[:l], compare.set[:l])
cnt += popcntSlice(b.set[l:])
return uint(cnt)
}
// InPlaceDifference computes the difference of base set and other set
// This is the BitSet equivalent of &^ (and not)
func (b *BitSet) InPlaceDifference(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
if l <= 0 {
return
}
// bounds check elimination
data, cmpData := b.set, compare.set
_ = data[l-1]
_ = cmpData[l-1]
for i := 0; i < l; i++ {
data[i] &^= cmpData[i]
}
}
// Convenience function: return two bitsets ordered by
// increasing length. Note: neither can be nil
func sortByLength(a *BitSet, b *BitSet) (ap *BitSet, bp *BitSet) {
if a.length <= b.length {
ap, bp = a, b
} else {
ap, bp = b, a
}
return
}
// Intersection of base set and other set
// This is the BitSet equivalent of & (and)
// In case of allocation failure, the function will return an empty BitSet.
func (b *BitSet) Intersection(compare *BitSet) (result *BitSet) {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
result = New(b.length)
for i, word := range b.set {
result.set[i] = word & compare.set[i]
}
return
}
// IntersectionCardinality computes the cardinality of the intersection
func (b *BitSet) IntersectionCardinality(compare *BitSet) uint {
panicIfNull(b)
panicIfNull(compare)
b, compare = sortByLength(b, compare)
cnt := popcntAndSlice(b.set, compare.set)
return uint(cnt)
}
// InPlaceIntersection destructively computes the intersection of
// base set and the compare set.
// This is the BitSet equivalent of & (and)
func (b *BitSet) InPlaceIntersection(compare *BitSet) {
panicIfNull(b)
panicIfNull(compare)
l := compare.wordCount()
if l > b.wordCount() {
l = b.wordCount()
}
if l > 0 {
// bounds check elimination
data, cmpData := b.set, compare.set
_ = data[l-1]
_ = cmpData[l-1]
for i := 0; i < l; i++ {
data[i] &= cmpData[i]
}
}
if l >= 0 {
for i := l; i < len(b.set); i++ {
b.set[i] = 0
}
}
if compare.length > 0 {
if compare.length-1 >= b.length {
b.extendSet(compare.length - 1)
}
}
}
// Union of base set and other set