-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
417 lines (350 loc) · 15 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
from flask import Flask, render_template, jsonify, request
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
import joblib
import os
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
# Ensure data directory exists
os.makedirs('data', exist_ok=True)
os.makedirs('models', exist_ok=True)
def load_data():
"""Load player statistics from CSV file"""
try:
csv_path = os.path.join('data', 'player_stats.csv')
if not os.path.exists(csv_path):
logger.error(f"Data file not found: {csv_path}")
return None
df = pd.read_csv(csv_path)
logger.info(f"Successfully loaded {len(df)} players from data file")
return df
except Exception as e:
logger.error(f"Error loading data: {str(e)}")
return None
# Initialize model and scaler
model = None
scaler = None
feature_columns = ['Goals', 'Assists', 'Passes_Completed', 'Pass_Accuracy', 'Shot_Accuracy', 'Tackles_Won']
def init_model():
"""Initialize and train the ML model"""
global model, scaler
try:
model_path = os.path.join('models', 'model.joblib')
scaler_path = os.path.join('models', 'scaler.joblib')
if os.path.exists(model_path) and os.path.exists(scaler_path):
model = joblib.load(model_path)
scaler = joblib.load(scaler_path)
logger.info("Loaded existing model and scaler")
else:
logger.info("Training new model...")
df = load_data()
if df is not None:
# Prepare features and target
X = df[feature_columns]
y = df['Rating']
# Initialize and fit scaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Train model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_scaled, y)
# Save model and scaler
joblib.dump(model, model_path)
joblib.dump(scaler, scaler_path)
logger.info("Model trained and saved successfully")
else:
logger.error("Could not train model: no data available")
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/players')
def get_players():
try:
club = request.args.get('club')
logger.info(f"Getting players with club filter: {club}")
df = load_data()
if df is None:
return jsonify({'error': 'Could not load player data'}), 500
if club and club.lower() != 'all':
df = df[df['Club'] == club]
players = df.to_dict('records')
logger.info(f"Returning {len(players)} players")
return jsonify(players)
except Exception as e:
logger.error(f"Error in get_players: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/team-stats/<team>')
def get_team_stats(team):
try:
logger.info(f"Getting team stats for: {team}")
df = load_data()
if df is None:
return jsonify({'error': 'Could not load player data'}), 500
team_df = df[df['Club'] == team]
if team_df.empty:
return jsonify({'error': 'Team not found'}), 404
# Calculate team statistics
team_stats = {
'average_rating': round(float(team_df['Rating'].mean()), 1),
'total_goals': int(team_df['Goals'].sum()),
'total_assists': int(team_df['Assists'].sum()),
'avg_pass_accuracy': round(float(team_df['Pass_Accuracy'].mean()), 1),
'avg_shot_accuracy': round(float(team_df['Shot_Accuracy'].mean()), 1),
'total_tackles': int(team_df['Tackles_Won'].sum()),
'player_count': len(team_df),
'top_scorer': {
'name': team_df.loc[team_df['Goals'].idxmax(), 'Player_Name'],
'goals': int(team_df['Goals'].max())
},
'top_assister': {
'name': team_df.loc[team_df['Assists'].idxmax(), 'Player_Name'],
'assists': int(team_df['Assists'].max())
},
'highest_rated': {
'name': team_df.loc[team_df['Rating'].idxmax(), 'Player_Name'],
'rating': float(team_df['Rating'].max())
}
}
# Get ML predictions for team performance
if model is not None and scaler is not None:
team_features = team_df[feature_columns].mean()
scaled_features = scaler.transform([team_features])
predicted_rating = float(model.predict(scaled_features)[0])
team_stats['predicted_team_rating'] = round(predicted_rating, 1)
# Calculate feature importance for the team
feature_importance = dict(zip(feature_columns, model.feature_importances_))
team_stats['feature_importance'] = feature_importance
# Get performance insights
strengths = []
weaknesses = []
for feature in feature_columns:
team_avg = team_df[feature].mean()
league_avg = df[feature].mean()
diff_percent = ((team_avg - league_avg) / league_avg) * 100
if diff_percent > 10:
strengths.append({
'feature': feature.replace('_', ' '),
'value': round(team_avg, 1),
'diff': round(diff_percent, 1)
})
elif diff_percent < -10:
weaknesses.append({
'feature': feature.replace('_', ' '),
'value': round(team_avg, 1),
'diff': round(abs(diff_percent), 1)
})
team_stats['strengths'] = strengths
team_stats['weaknesses'] = weaknesses
logger.info(f"Successfully generated team stats for {team}")
return jsonify(team_stats)
except Exception as e:
logger.error(f"Error in get_team_stats: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/player/<name>')
def get_player(name):
try:
logger.info(f"Getting player details for: {name}")
df = load_data()
if df is None:
return jsonify({'error': 'Could not load player data'}), 500
player_df = df[df['Player_Name'] == name]
if player_df.empty:
return jsonify({'error': 'Player not found'}), 404
player = player_df.iloc[0].to_dict()
# Get ML prediction for player
if model is not None and scaler is not None:
player_features = [player[col] for col in feature_columns]
scaled_features = scaler.transform([player_features])
predicted_rating = float(model.predict(scaled_features)[0])
player['predicted_rating'] = round(predicted_rating, 1)
logger.info(f"Successfully retrieved player details for {name}")
return jsonify(player)
except Exception as e:
logger.error(f"Error in get_player: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/api/feature-importance')
def get_feature_importance():
try:
logger.info("Getting feature importance")
if model is None:
init_model() # Initialize model if not already done
if model is None: # If still None after initialization
return jsonify({'error': 'Could not initialize model'}), 500
importance = dict(zip(feature_columns, model.feature_importances_))
logger.info("Successfully retrieved feature importance")
return jsonify(importance)
except Exception as e:
logger.error(f"Error in get_feature_importance: {str(e)}")
return jsonify({'error': str(e)}), 500
def normalize_team_name(team_name):
"""Normalize team names to match dataset"""
team_mapping = {
# Top 4 teams variations
'Man City': 'Manchester City',
'City': 'Manchester City',
'Man United': 'Manchester United',
'United': 'Manchester United',
'Liverpool FC': 'Liverpool',
'Arsenal FC': 'Arsenal'
}
# First try exact match
if team_name in team_mapping:
return team_mapping[team_name]
# Try case-insensitive match
lower_name = team_name.lower()
for key, value in team_mapping.items():
if key.lower() == lower_name:
return value
# If no match found, return original name
return team_name
def get_teams_and_players():
"""Return only top 4 teams"""
top_teams = [
'Manchester City',
'Arsenal',
'Manchester United',
'Liverpool'
]
teams_data = []
for team in top_teams:
team_data = {
'name': team,
'logo': f'/static/images/{team.lower().replace(" ", "-")}.png'
}
teams_data.append(team_data)
return jsonify(teams_data)
@app.route('/get_teams_and_players')
def teams_and_players_route():
return get_teams_and_players()
@app.route('/get_team_details/<team_name>')
def get_team_details_route(team_name):
try:
# Normalize team name
normalized_team_name = normalize_team_name(team_name)
logger.info(f"Fetching details for team: {normalized_team_name}")
# Load data
df = load_data()
if df is None:
return jsonify({'error': 'Could not load player data'}), 500
# Validate team is in top 4
top_teams = [
'Manchester City',
'Arsenal',
'Manchester United',
'Liverpool'
]
if normalized_team_name not in top_teams:
return jsonify({'error': f'Team {normalized_team_name} not in top 4'}), 404
# Filter players for the team
team_players = df[df['Club'] == normalized_team_name]
if team_players.empty:
return jsonify({'error': f'No players found for team {normalized_team_name}'}), 404
# Prepare player details with safe type conversion
players_data = []
for _, player in team_players.iterrows():
try:
player_stats = player.to_dict()
# Convert NumPy types to Python native types
player_details = {
'name': str(player_stats['Player_Name']),
'position': str(player_stats['Position']),
'predicted_rating': float(predict_player_rating(player_stats)),
'form': calculate_form(player_stats),
'injury_status': get_injury_status(player_stats),
'goals': int(player_stats['Goals']),
'assists': int(player_stats['Assists']),
'pass_accuracy': float(player_stats['Pass_Accuracy']),
'shot_accuracy': float(player_stats['Shot_Accuracy'])
}
players_data.append(player_details)
except Exception as player_error:
logger.error(f"Error processing player: {player_error}")
# Calculate team statistics with safe type conversion
team_stats = {
'total_goals': int(team_players['Goals'].sum()),
'total_assists': int(team_players['Assists'].sum()),
'avg_pass_accuracy': float(team_players['Pass_Accuracy'].mean()),
'avg_shot_accuracy': float(team_players['Shot_Accuracy'].mean()),
'total_tackles': int(team_players['Tackles_Won'].sum()),
'total_passes': int(team_players['Passes_Completed'].sum())
}
# Team details
team_details = {
'team_name': normalized_team_name,
'team_rating': float(team_players['Rating'].mean()),
'team_form': calculate_team_form(players_data),
'formation': get_recommended_formation(players_data),
'team_stats': team_stats,
'players': players_data
}
logger.info(f"Successfully retrieved details for team {normalized_team_name}")
return jsonify(team_details)
except Exception as e:
logger.error(f"Error in get_team_details: {str(e)}")
return jsonify({'error': str(e)}), 500
def calculate_form(player_stats):
"""Calculate player form based on statistics"""
# Simple form calculation based on goals, assists, and accuracy
form_score = (
player_stats['Goals'] * 3 + # Weight goals heavily
player_stats['Assists'] * 2 + # Weight assists moderately
player_stats['Pass_Accuracy'] / 20 + # Consider pass accuracy
player_stats['Shot_Accuracy'] / 20 # Consider shot accuracy
)
# Convert to 1-5 star rating
stars = min(5, max(1, round(form_score / 5)))
return '⭐' * stars
def get_injury_status(player_stats):
"""Simulate injury status based on player statistics"""
# Use total involvement (goals + assists + tackles) as a proxy for fitness
total_involvement = player_stats['Goals'] + player_stats['Assists'] + player_stats['Tackles_Won']
if total_involvement > 10:
return 'Fit'
elif total_involvement > 5:
return 'Light Training'
else:
return 'Recovering'
def get_recommended_formation(players):
"""Recommend team formation based on player statistics"""
# Simple formation recommendation based on team strengths
attackers = len([p for p in players if p['goals'] > 5])
midfielders = len([p for p in players if p['assists'] > 5])
if attackers >= 3:
return '4-3-3'
elif midfielders >= 4:
return '4-4-2'
else:
return '5-3-2'
def calculate_team_form(players):
"""Calculate overall team form"""
total_stars = sum(len(p['form']) for p in players)
avg_stars = total_stars / len(players)
return '⭐' * round(avg_stars)
def predict_player_rating(player_stats):
"""Predict player rating using the ML model"""
if model is None or scaler is None:
return 75 # Default rating if model not initialized
features = np.array([[
player_stats['Goals'],
player_stats['Assists'],
player_stats['Passes_Completed'],
player_stats['Pass_Accuracy'],
player_stats['Shot_Accuracy'],
player_stats['Tackles_Won']
]])
scaled_features = scaler.transform(features)
rating = model.predict(scaled_features)[0]
return round(float(rating), 1)
if __name__ == '__main__':
# Initialize model when starting the server
init_model()
# Get port from environment variable for Docker support
port = int(os.environ.get('PORT', 5002))
app.run(host='0.0.0.0', port=port, debug=True)