-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils_filters.py
207 lines (160 loc) · 6.66 KB
/
utils_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import pandas as pd
# https://towardsdatascience.com/outlier-detection-with-hampel-filter-85ddf523c73d
class TickRule:
def __init__(self, price: float=None, prev_price: float=None, side: int=0, prev_side: int=0):
self.price = price
self.prev_price = prev_price
self.side = side
self.prev_side = prev_side
def update(self, next_price: float) -> int:
self.prev_price = self.price
self.price = next_price
self.prev_side = self.side
self.side = tick_rule(self.price, self.prev_price, self.prev_side)
return self.side
def tick_rule(price: float, prev_price: float, prev_side: int=0) -> int:
try:
diff = price - prev_price
except:
diff = 0.0
if diff > 0.0:
side = 1
elif diff < 0.0:
side = -1
elif diff == 0.0:
side = prev_side
else:
side = 0
return side
def mad_filter_df(df: pd.DataFrame, col: str='price', value_winlen: int=7,
devations_winlen: int=333, k: int=22) -> pd.DataFrame:
df[col+'_median'] = df[col].rolling(value_winlen, min_periods=value_winlen, center=False).median()
df[col+'_median_diff'] = abs(df[col] - df[col+'_median'])
df[col+'_median_diff_median'] = df[col+'_median_diff'].rolling(devations_winlen, min_periods=value_winlen, center=False).median()
df.loc[df[col+'_median_diff_median'] < 0.005, col+'_median_diff_median'] = 0.005 # enforce lower bound
df.loc[df[col+'_median_diff_median'] > 0.05, col+'_median_diff_median'] = 0.05 # enforce max bound
df['mad_outlier'] = abs(df[col] - df[col+'_median']) > (df[col+'_median_diff_median'] * k)
df = df.dropna()
print(df.mad_outlier.value_counts() / df.shape[0])
return df
class MADFilter:
def __init__(self, value_winlen: int=7, deviation_winlen: int=333, k: int=22) -> float:
self.value_winlen = value_winlen
self.deviation_winlen = deviation_winlen
self.k = k
self.values = []
self.deviations = []
self.status = 'mad_warmup'
def update(self, next_value) -> float:
self.values.append(next_value)
self.values = self.values[-self.value_winlen:] # only keep winlen
self.value_median = np.median(self.values)
self.abs_diff = abs(next_value - self.value_median)
self.deviations.append(self.abs_diff)
self.deviations = self.deviations[-self.deviation_winlen:] # only keep winlen
self.deviations_median = np.median(self.deviations)
self.deviations_median = 0.005 if self.deviations_median < 0.005 else self.deviations_median # enforce lower limit
self.deviations_median = 0.05 if self.deviations_median > 0.05 else self.deviations_median # enforce upper limit
# final tick status logic
if len(self.values) < (self.deviation_winlen / 3):
self.status = 'mad_warmup'
elif abs(self.abs_diff) > (self.deviations_median * self.k):
self.status = 'mad_outlier'
else:
self.status = 'mad_clean'
class JMAFilter:
def __init__(self, winlen: int=10, power: int=1, phase: float=0.0):
self.state = None
self.winlen = winlen
self.power = power
self.phase = phase
def update(self, next_value: float) -> float:
if self.state is None:
self.state = jma_starting_state(next_value)
self.state = jma_filter_update(
value=next_value,
state=self.state,
winlen=self.winlen,
power=self.power,
phase=self.phase,
)
return self.state['jma']
def jma_starting_state(start_value: float) -> dict:
return {
'e0': start_value,
'e1': 0.0,
'e2': 0.0,
'jma': start_value,
}
def jma_filter_update(value: float, state: dict, winlen: int, power: float, phase: float) -> dict:
if phase < -100:
phase_ratio = 0.5
elif phase > 100:
phase_ratio = 2.5
else:
phase_ratio = phase / (100 + 1.5)
beta = 0.45 * (winlen - 1) / (0.45 * (winlen - 1) + 2)
alpha = pow(beta, power)
e0_next = (1 - alpha) * value + alpha * state['e0']
e1_next = (value - e0_next) * (1 - beta) + beta * state['e1']
e2_next = (e0_next + phase_ratio * e1_next - state['jma']) * pow(1 - alpha, 2) + pow(alpha, 2) * state['e2']
jma_next = e2_next + state['jma']
state_next = {
'e0': e0_next,
'e1': e1_next,
'e2': e2_next,
'jma': jma_next,
}
return state_next
def jma_rolling_filter(series: pd.Series, winlen: int, power: float, phase: float) -> list:
jma = []
state = jma_starting_state(start_value=series.values[0])
for value in series:
state = jma_filter_update(value, state, winlen, power, phase)
jma.append(state['jma'])
jma[0:(winlen-1)] = [None] * (winlen-1)
return jma
def jma_expanding_filter(series: pd.Series, winlen: int, power: float, phase: float) -> list:
if winlen < 1:
raise ValueError('winlen parameter must be >= 1')
running_jma = jma_rolling_filter(series, winlen, power, phase)
expanding_jma = []
for winlen_exp in list(range(1, winlen)):
jma = jma_rolling_filter(series[0:winlen_exp], winlen_exp, power, phase)
expanding_jma.append(jma[winlen_exp-1])
running_jma[0:(winlen-1)] = expanding_jma
return running_jma
def jma_filter_df(df: pd.DataFrame, col: str, winlen: int, power: float, phase: float=0, expand: bool=False) -> pd.DataFrame:
if expand:
df.loc[:, col+'_jma'] = jma_expanding_filter(df[col], winlen, power, phase)
else:
df.loc[:, col+'_jma'] = jma_rolling_filter(df[col], winlen, power, phase)
return df
def rema_filter_update(series_last: float, rema_last: float, winlen: int=14, lamb: float=0.5) -> float:
# regularized ema
alpha = 2 / (winlen + 1)
rema = (rema_last + alpha * (series_last - rema_last) +
lamb * (2 * rema_last - rema[2])) / (lamb + 1)
return rema
def rema_filter(series: pd.Series, winlen: int, lamb: float) -> list:
rema_next = series.values[0]
rema = []
for value in series:
rema_next = rema_filter_update(
series_last=value, rema_last=rema_next, winlen=winlen, lamb=lamb
)
rema.append(rema_next)
return rema
def supersmoother(x: list, n: int=10) -> np.ndarray:
from math import exp, cos, radians
assert (n > 0) and (n < len(x))
a = exp(-1.414 * 3.14159 / n)
b = cos(radians(1.414 * 180 / n))
c2 = b
c3 = -a * a
c1 = 1 - c2 - c3
ss = np.zeros(len(x))
for i in range(3, len(x)):
ss[i] = c1 * (x[i] + x[i-1]) / 2 + c2 * ss[i-1] + c3 * ss[i-2]
return ss