-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday-21.R
173 lines (145 loc) Β· 5.61 KB
/
day-21.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Create a two-dimensional matrix of the number of parallel universes in which
# a player is at a position <row> with <column - 1> number of points
create_player <- function(init_pos, pos_max, points_win) {
states <- matrix(rep(0, pos_max * (pos_max + points_win)), nrow = pos_max)
rownames(states) <- 1:10
colnames(states) <- seq(0, pos_max + points_win - 1)
states[init_pos, 1] <- 1
states
}
# For each universe with <position>-<score> state (two-dimensional matrix of
# states), expand to a new set of universes in which the three dice rolled all
# possible sums, taking into account that different dice results create
# different number of universes. Return the new universes counts as a new
# matrix.
play <- function(states, dice, pos_max) {
new_states <- states
new_states[] <- 0
# detect which states are present in the matrix
present_states <- which(states > 0, arr.ind = TRUE)
for (i in seq_len(nrow(present_states))) {
# extract at which positions of the game have how many players scored
# how many points
coord <- present_states[i, , drop = FALSE]
pos <- as.integer(coord[, 1])
score <- as.integer(coord[, 2]) - 1
count <- states[coord]
# compute the new positions starting from the current position in
# all parallel universes
new_pos <- (pos + as.integer(names(dice))) %% pos_max
new_pos[new_pos == 0] <- pos_max
# compute the new score for players who move to a given new position
# (knowing the started from the same score before the universes branch out
new_score <- score + new_pos
# compute how many of such players are, given how likely are the sums of the
# three dice rolls
new_count <- count * as.integer(dice)
# update the state matrix -
new_states[cbind(new_pos, new_score + 1)] <-
new_states[cbind(new_pos, new_score + 1)] +
new_count
}
new_states
}
part_2_game <- function(p1_pos, p2_pos, debug = FALSE) {
pos_max <- 10
points_win <- 21
# sum up all possible combinations of three die rolls
comb <- as.matrix(expand.grid(1:3, 1:3, 1:3))
dice <- table(rowSums(comb))
# create initial state matrices for counting all parallel universes -- at the
# beginning, each matrix has only one non-zero value, which is the row
# position corresponding to the initial position and the first column
# (representing zero score)
player1 <- create_player(init_pos = p1_pos, pos_max, points_win)
player2 <- create_player(init_pos = p2_pos, pos_max, points_win)
# which columns of the state matrix represent winning situations (i.e. states
# in which a player at whatever position of the board has at least 21 points)
win_states <- (points_win + 1):ncol(player1)
wins1 <- wins2 <- 0
while (TRUE) {
# player 1
# calculate the number of universes surviving after player 2 played their
# round (at the beginning this is 1)
universes <- sum(player2)
if (debug) {
cat(sprintf("turn %i\n", turn))
cat(sprintf("player 1 universes %s\n", universes))
cat("universes / sum(player1)", universes / sum(player1), "\n")
}
# let the player 1 play the game, taking into account the change in the
# number of universes that happened between their last round and the number
# of universes in which player 2 has not won in their round of the game
player1 <- play(player1 * universes / sum(player1), dice, pos_max)
# count the number of universes in which player 1 won
win_count <- sum(player1[, win_states])
wins1 <- wins1 + win_count
player1[, win_states] <- 0
if (debug) {
cat("player 1 wins in", win_count, "universes\n")
cat("player 1 has", sum(player1[, -win_states]), "universes alive\n")
}
if (all(player1[, -win_states] == 0)) break
# player 2 -- same procedure as the one for player 1 above
universes <- sum(player1)
if (debug) {
cat(sprintf("turn %i\n", turn))
cat(sprintf("player 2 universes %s\n", universes))
cat("universes / sum(player2)", universes / sum(player2), "\n")
}
player2 <- play(player2 * universes / sum(player2), dice, pos_max)
win_count <- sum(player2[, win_states])
wins2 <- wins2 + win_count
player2[, win_states] <- 0
if (debug) {
cat("player 2 wins in", win_count, "universes\n")
cat("player 2 has", sum(player2[, -win_states]), "universes alive\n")
}
if (all(player2[, -win_states] == 0)) break
}
max(wins1, wins2)
}
# Hard-coded ugly solution to game in part 1 -- not worth improving, given that
# part 2 is a completely different beast
part_1_game <- function(pos_p1, pos_p2, debug = FALSE) {
p1 <- p2 <- 0
pos_max <- 10
die <- 1
die_max <- 100
die_counter <- 0
while (TRUE) {
# p1
die_add <- 0
for (i in 1:3) {
if (debug) cat(die, " ")
die_add <- die_add + die
die <- die + 1
if (die > die_max) die <- 1
die_counter <- die_counter + 1
}
p1_shift <- die_add %% pos_max
if (debug) cat("die add ", die_add, "\n")
pos_p1 <- (pos_p1 + p1_shift) %% pos_max
if (pos_p1 == 0) pos_p1 <- 10
p1 <- p1 + pos_p1
if (p1 >= 1000) break
# p2
die_add <- 0
for (i in 1:3) {
if (debug) cat(die, " ")
die_add <- die_add + die
die <- die + 1
if (die > die_max) die <- 1
die_counter <- die_counter + 1
}
p2_shift <- die_add %% pos_max
if (debug) cat("die add ", die_add, "\n")
pos_p2 <- (pos_p2 + p2_shift) %% pos_max
if (pos_p2 == 0) pos_p2 <- 10
p2 <- p2 + pos_p2
if (p2 >= 1000) break
if (debug) cat("p1 ", p1, "-", pos_p1, " ", "p2 ", p2, "-", pos_p2, "\n")
}
if (debug) cat(p1, " vs ", p2, "\n")
min(p1, p2) * die_counter
}