-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault_arguments.py
67 lines (58 loc) · 2.22 KB
/
default_arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from dataclasses import dataclass, field
from typing import Optional, List
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
name: str = field(
default="beomi/gemma-ko-2b",
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
batch_size: int = field(
default=4,
metadata={"help": "train batch size"},
)
learning_rate: float = field(
default=2e-5,
metadata={"help": "train learning rate"},
)
max_seq_length: int = field(
default=1024,
metadata={"help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded."},
)
num_epochs: int = field(
default=1,
metadata={"help": "train epochs"},
)
weight_decay: float = field(
default=0.01,
metadata={"help": "train weight decay"},
)
logging_steps: int = field(
default=1,
metadata={"help": "logging per steps"},
)
save_total_limit: int = field(default=2, metadata={"help": "save limit in training"})
output_dir: str = field(
default="experiments/default",
metadata={"help": "fine tuned model saved directory path"},
)
csv_output_path: str = field(
default="outputs/output.csv",
metadata={"help": "inference csv output path"},
)
@dataclass
class PeftArguments:
"""
Arguments pertaining for LoRA
"""
r: int = field(default=8, metadata={"help": "LoRA에서 사용하는 저차원 공간의 랭크(rank)를 지정합니다"})
lora_alpha: int = field(default=16, metadata={"help": "LoRA의 스케일링 계수를 설정합니다"})
target_modules: list[str] = field(default_factory=lambda: ["query", "value"], metadata={"help": "LoRA에서 사용하는 저차원 공간의 랭크(rank)를 지정합니다"})
lora_dropout: float = field(default=0.1, metadata={"help": "LoRA의 드롭아웃 확률을 설정합니다"})