-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
59 lines (41 loc) · 2.19 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
import os
from omegaconf import OmegaConf
import src.loader as loader_module
import src.model as model_module
import src.trainer as trainer_module
from src.utils import check_path, save_recommendations, set_seed
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", "--m", default="DeepFM", type=str,
help="사용할 모델을 설정할 수 있습니다. (기본값 DeepFM)")
parser.add_argument("--run", "--r", type=str,
help="불러올 .pt 파일의 모델명 뒤 run명을 설정할 수 있습니다.")
parser.add_argument("--device", "--d", default="cuda", type=str,
choices=["cuda", "cpu"], help="device를 설정할 수 있습니다. (기본값 cuda)")
args = parser.parse_args()
config = "config/config_baseline.yaml"
config_args = OmegaConf.create(vars(args))
config_yaml = OmegaConf.load(config) if config else OmegaConf.create()
for key in config_args.keys():
if config_args[key] is not None:
config_yaml[key] = config_args[key]
args = config_yaml
args_str = f"{args.model_name}_{args.run}"
checkpoint_path = os.path.join(args.output_path, args_str + ".pt")
output_filename = os.path.join(args.output_path, args_str + ".csv")
set_seed(args.seed)
check_path(args.output_path)
print("----------------------- LOAD DATA -----------------------")
_, _, submission_loader, seen_items, idx_to_user, idx_to_item, _ = getattr(loader_module, args.model_name)(args).load_data()
print(f"--------------------- INIT {args.model_name} ----------------------")
model = getattr(model_module, args.model_name)(**args.model_args[args.model_name])
if args.model_name not in ("EASE", "EASER"):
model.to(args.device)
print(f"-------------------- {args.model_name} PREDICT --------------------")
trainer = getattr(trainer_module, args.model_name)(model, None, None, submission_loader, seen_items, args)
trainer.load(checkpoint_path)
recommendations = trainer.submission(0)
save_recommendations(recommendations, idx_to_user, idx_to_item, output_filename)
if __name__ == "__main__":
main()