-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
93 lines (71 loc) · 3.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
import json
import os
import numpy as np
import wandb
from omegaconf import OmegaConf
import src.loader as loader_module
import src.model as model_module
import src.trainer as trainer_module
from src.utils import EarlyStopping, check_path, set_seed
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", "--m", default="DeepFM", type=str,
help="사용할 모델을 설정할 수 있습니다. (기본값 DeepFM)")
parser.add_argument("--epochs", "--e", default=1, type=int,
help="모델 훈련을 반복할 epochs수를 지정할 수 있습니다. (기본값 1)")
parser.add_argument("--run", "--r", type=str,
help="WandB run 이름을 설정할 수 있습니다.")
parser.add_argument("--device", "--d", default="cuda", type=str,
choices=["cuda", "cpu"], help="device를 설정할 수 있습니다. (기본값 cuda)")
args = parser.parse_args()
config = "config/config_baseline.yaml"
config_args = OmegaConf.create(vars(args))
config_yaml = OmegaConf.load(config) if config else OmegaConf.create()
for key in config_args.keys():
if config_args[key] is not None:
config_yaml[key] = config_args[key]
args = config_yaml
args_str = f"{args.model_name}_{args.run}"
checkpoint = args_str + ".pt"
args.checkpoint_path = os.path.join(args.output_path, checkpoint)
wandb.init(
project=args.wandb_project,
name=args_str,
entity="remember-us",
config={
"model": args.model_name,
"epochs": args.epochs,
"test_user": os.path.basename(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
},
)
# Artifacts에 폴더 내 파일 모두 업로드
wandb.run.log_code("./")
set_seed(args.seed)
check_path(args.output_path)
print("------------------------ LOAD DATA ------------------------")
train_loader, valid_loader, test_loader, seen_items, _, _, features = getattr(loader_module, args.model_name)(args).load_data()
print(f"--------------------- INIT {args.model_name} ----------------------")
model = getattr(model_module, args.model_name)(**args.model_args[args.model_name])
if args.model_name not in ("EASE", "EASER"):
model.to(args.device)
print(f"-------------------- {args.model_name} TRAINING --------------------")
trainer = getattr(trainer_module, args.model_name)(model, train_loader, valid_loader, test_loader, seen_items, args)
early_stopping = EarlyStopping(args.checkpoint_path, patience=10, verbose=True)
for epoch in range(args.epochs):
trainer.train(epoch)
scores = trainer.valid(epoch)
early_stopping(np.array(scores[-1:]), trainer.model)
if early_stopping.early_stop:
print("Early stopping")
break
print(f"---------------------- {args.model_name} TEST ----------------------")
trainer.load(args.checkpoint_path)
_ = trainer.test(0)
wandb.log({
"features": features,
"params": json.dumps(OmegaConf.to_container(args.model_args[args.model_name]))
})
wandb.finish()
if __name__ == "__main__":
main()