From 7269d80b1c1077921944754487783a29e8fc354e Mon Sep 17 00:00:00 2001 From: Varun Agrawal Date: Tue, 20 Aug 2024 15:57:36 -0400 Subject: [PATCH 1/4] improvements to GaussianConditional and GaussianBayesNet --- gtsam/linear/GaussianBayesNet.cpp | 20 +++++++++++++++++++ gtsam/linear/GaussianBayesNet.h | 14 +++++++++++++ gtsam/linear/GaussianConditional.cpp | 10 ++++++++-- gtsam/linear/VectorValues.h | 5 +++++ gtsam/linear/linear.i | 5 +++++ .../linear/tests/testGaussianConditional.cpp | 3 +++ 6 files changed, 55 insertions(+), 2 deletions(-) diff --git a/gtsam/linear/GaussianBayesNet.cpp b/gtsam/linear/GaussianBayesNet.cpp index b04878ac5d..861e19cc9e 100644 --- a/gtsam/linear/GaussianBayesNet.cpp +++ b/gtsam/linear/GaussianBayesNet.cpp @@ -243,5 +243,25 @@ namespace gtsam { } /* ************************************************************************* */ + double GaussianBayesNet::logNormalizationConstant() const { + /* + normalization constant = 1.0 / sqrt((2*pi)^n*det(Sigma)) + logConstant = -0.5 * n*log(2*pi) - 0.5 * log det(Sigma) + + log det(Sigma)) = -2.0 * logDeterminant() + thus, logConstant = -0.5*n*log(2*pi) + logDeterminant() + + BayesNet logConstant = sum(-0.5*n_i*log(2*pi) + logDeterminant_i()) + = sum(-0.5*n_i*log(2*pi)) + sum(logDeterminant_i()) + = sum(-0.5*n_i*log(2*pi)) + bn->logDeterminant() + */ + double logNormConst = 0.0; + for (const sharedConditional& cg : *this) { + logNormConst += cg->logNormalizationConstant(); + } + return logNormConst; + } + + /* ************************************************************************* */ } // namespace gtsam diff --git a/gtsam/linear/GaussianBayesNet.h b/gtsam/linear/GaussianBayesNet.h index 19781d1e6d..ea1cb8603c 100644 --- a/gtsam/linear/GaussianBayesNet.h +++ b/gtsam/linear/GaussianBayesNet.h @@ -82,6 +82,12 @@ namespace gtsam { /** Check equality */ bool equals(const This& bn, double tol = 1e-9) const; + /// Check exact equality. + friend bool operator==(const GaussianBayesNet& lhs, + const GaussianBayesNet& rhs) { + return lhs.isEqual(rhs); + } + /// print graph void print( const std::string& s = "", @@ -228,6 +234,14 @@ namespace gtsam { * @return The determinant */ double logDeterminant() const; + /** + * @brief Get the log of the normalization constant corresponding to the + * joint Gaussian density represented by this Bayes net. + * + * @return double + */ + double logNormalizationConstant() const; + /** * Backsubstitute with a different RHS vector than the one stored in this BayesNet. * gy=inv(R*inv(Sigma))*gx diff --git a/gtsam/linear/GaussianConditional.cpp b/gtsam/linear/GaussianConditional.cpp index 0112835aa4..f986eed02f 100644 --- a/gtsam/linear/GaussianConditional.cpp +++ b/gtsam/linear/GaussianConditional.cpp @@ -121,6 +121,7 @@ namespace gtsam { const auto mean = solve({}); // solve for mean. mean.print(" mean", formatter); } + cout << " logNormalizationConstant: " << logNormalizationConstant() << std::endl; if (model_) model_->print(" Noise model: "); else @@ -184,8 +185,13 @@ namespace gtsam { double GaussianConditional::logNormalizationConstant() const { constexpr double log2pi = 1.8378770664093454835606594728112; size_t n = d().size(); - // log det(Sigma)) = - 2.0 * logDeterminant() - return - 0.5 * n * log2pi + logDeterminant(); + // Sigma = (R'R)^{-1}, det(Sigma) = det((R'R)^{-1}) = det(R'R)^{-1} + // log det(Sigma) = -log(det(R'R)) = -2*log(det(R)) + // Hence, log det(Sigma)) = -2.0 * logDeterminant() + // which gives log = -0.5*n*log(2*pi) - 0.5*(-2.0 * logDeterminant()) + // = -0.5*n*log(2*pi) + (0.5*2.0 * logDeterminant()) + // = -0.5*n*log(2*pi) + logDeterminant() + return -0.5 * n * log2pi + logDeterminant(); } /* ************************************************************************* */ diff --git a/gtsam/linear/VectorValues.h b/gtsam/linear/VectorValues.h index 7fbd43ffc6..99ee4eb839 100644 --- a/gtsam/linear/VectorValues.h +++ b/gtsam/linear/VectorValues.h @@ -263,6 +263,11 @@ namespace gtsam { /** equals required by Testable for unit testing */ bool equals(const VectorValues& x, double tol = 1e-9) const; + /// Check exact equality. + friend bool operator==(const VectorValues& lhs, const VectorValues& rhs) { + return lhs.equals(rhs); + } + /// @{ /// @name Advanced Interface /// @{ diff --git a/gtsam/linear/linear.i b/gtsam/linear/linear.i index 4b0963b8db..3a629f349e 100644 --- a/gtsam/linear/linear.i +++ b/gtsam/linear/linear.i @@ -510,12 +510,17 @@ virtual class GaussianConditional : gtsam::JacobianFactor { GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S, size_t name2, gtsam::Matrix T, const gtsam::noiseModel::Diagonal* sigmas); + GaussianConditional(const vector> terms, + size_t nrFrontals, gtsam::Vector d, + const gtsam::noiseModel::Diagonal* sigmas); // Constructors with no noise model GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R); GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S); GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S, size_t name2, gtsam::Matrix T); + GaussianConditional(const gtsam::KeyVector& keys, size_t nrFrontals, + const gtsam::VerticalBlockMatrix& augmentedMatrix); // Named constructors static gtsam::GaussianConditional FromMeanAndStddev(gtsam::Key key, diff --git a/gtsam/linear/tests/testGaussianConditional.cpp b/gtsam/linear/tests/testGaussianConditional.cpp index a4a7220128..dcd8218894 100644 --- a/gtsam/linear/tests/testGaussianConditional.cpp +++ b/gtsam/linear/tests/testGaussianConditional.cpp @@ -516,6 +516,7 @@ TEST(GaussianConditional, Print) { " d = [ 20 40 ]\n" " mean: 1 elements\n" " x0: 20 40\n" + " logNormalizationConstant: -4.0351\n" "isotropic dim=2 sigma=3\n"; EXPECT(assert_print_equal(expected, conditional, "GaussianConditional")); @@ -530,6 +531,7 @@ TEST(GaussianConditional, Print) { " S[x1] = [ -1 -2 ]\n" " [ -3 -4 ]\n" " d = [ 20 40 ]\n" + " logNormalizationConstant: -4.0351\n" "isotropic dim=2 sigma=3\n"; EXPECT(assert_print_equal(expected1, conditional1, "GaussianConditional")); @@ -545,6 +547,7 @@ TEST(GaussianConditional, Print) { " S[y1] = [ -5 -6 ]\n" " [ -7 -8 ]\n" " d = [ 20 40 ]\n" + " logNormalizationConstant: -4.0351\n" "isotropic dim=2 sigma=3\n"; EXPECT(assert_print_equal(expected2, conditional2, "GaussianConditional")); } From 8d54c4abe0fea13334fb2f6927639e53b250fae9 Mon Sep 17 00:00:00 2001 From: Varun Agrawal Date: Tue, 20 Aug 2024 16:40:13 -0400 Subject: [PATCH 2/4] update VectorValues::== docstring --- gtsam/linear/VectorValues.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/gtsam/linear/VectorValues.h b/gtsam/linear/VectorValues.h index 99ee4eb839..2fa50b7f6f 100644 --- a/gtsam/linear/VectorValues.h +++ b/gtsam/linear/VectorValues.h @@ -263,7 +263,7 @@ namespace gtsam { /** equals required by Testable for unit testing */ bool equals(const VectorValues& x, double tol = 1e-9) const; - /// Check exact equality. + /// Check equality. friend bool operator==(const VectorValues& lhs, const VectorValues& rhs) { return lhs.equals(rhs); } From a78ffe19e81d6ae41b385535046d1bd5cbfcf938 Mon Sep 17 00:00:00 2001 From: Varun Agrawal Date: Tue, 20 Aug 2024 16:45:19 -0400 Subject: [PATCH 3/4] update unit test to also check for GaussianBayesNet::logNormalizationConstant --- gtsam/linear/tests/testGaussianBayesNet.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/gtsam/linear/tests/testGaussianBayesNet.cpp b/gtsam/linear/tests/testGaussianBayesNet.cpp index 966b70915c..99453ee4ef 100644 --- a/gtsam/linear/tests/testGaussianBayesNet.cpp +++ b/gtsam/linear/tests/testGaussianBayesNet.cpp @@ -80,6 +80,8 @@ TEST(GaussianBayesNet, Evaluate1) { smallBayesNet.at(0)->logNormalizationConstant() + smallBayesNet.at(1)->logNormalizationConstant(), 1e-9); + EXPECT_DOUBLES_EQUAL(log(constant), smallBayesNet.logNormalizationConstant(), + 1e-9); const double actual = smallBayesNet.evaluate(mean); EXPECT_DOUBLES_EQUAL(constant, actual, 1e-9); } From 910300b810cb32dcabf02e6286918f2442de6fec Mon Sep 17 00:00:00 2001 From: Varun Agrawal Date: Tue, 20 Aug 2024 17:43:48 -0400 Subject: [PATCH 4/4] fix test --- gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp b/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp index 93081d3090..751e84d915 100644 --- a/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp +++ b/gtsam/hybrid/tests/testHybridNonlinearFactorGraph.cpp @@ -680,12 +680,14 @@ conditional 0: Hybrid P( x0 | x1 m0) R = [ 10.0499 ] S[x1] = [ -0.0995037 ] d = [ -9.85087 ] + logNormalizationConstant: 1.38862 No noise model 1 Leaf p(x0 | x1) R = [ 10.0499 ] S[x1] = [ -0.0995037 ] d = [ -9.95037 ] + logNormalizationConstant: 1.38862 No noise model conditional 1: Hybrid P( x1 | x2 m0 m1) @@ -696,12 +698,14 @@ conditional 1: Hybrid P( x1 | x2 m0 m1) R = [ 10.099 ] S[x2] = [ -0.0990196 ] d = [ -9.99901 ] + logNormalizationConstant: 1.3935 No noise model 0 1 Leaf p(x1 | x2) R = [ 10.099 ] S[x2] = [ -0.0990196 ] d = [ -9.90098 ] + logNormalizationConstant: 1.3935 No noise model 1 Choice(m0) @@ -709,12 +713,14 @@ conditional 1: Hybrid P( x1 | x2 m0 m1) R = [ 10.099 ] S[x2] = [ -0.0990196 ] d = [ -10.098 ] + logNormalizationConstant: 1.3935 No noise model 1 1 Leaf p(x1 | x2) R = [ 10.099 ] S[x2] = [ -0.0990196 ] d = [ -10 ] + logNormalizationConstant: 1.3935 No noise model conditional 2: Hybrid P( x2 | m0 m1) @@ -726,6 +732,7 @@ conditional 2: Hybrid P( x2 | m0 m1) d = [ -10.1489 ] mean: 1 elements x2: -1.0099 + logNormalizationConstant: 1.38857 No noise model 0 1 Leaf p(x2) @@ -733,6 +740,7 @@ conditional 2: Hybrid P( x2 | m0 m1) d = [ -10.1479 ] mean: 1 elements x2: -1.0098 + logNormalizationConstant: 1.38857 No noise model 1 Choice(m0) @@ -741,6 +749,7 @@ conditional 2: Hybrid P( x2 | m0 m1) d = [ -10.0504 ] mean: 1 elements x2: -1.0001 + logNormalizationConstant: 1.38857 No noise model 1 1 Leaf p(x2) @@ -748,6 +757,7 @@ conditional 2: Hybrid P( x2 | m0 m1) d = [ -10.0494 ] mean: 1 elements x2: -1 + logNormalizationConstant: 1.38857 No noise model )";