-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatchTransectData.R
47 lines (26 loc) · 1.35 KB
/
matchTransectData.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
library(lubridate)
library(plyr)
library(dplyr)
library(rgdal)
library(stringr)
rm(list=ls())
## Pemba Ward shapefile
PembaWard <- readOGR(paste("output/GIS/PembaWard_NBS2012",sep=""), paste("PembaWard_NBS2012",sep=""))
## Transect data
transects <- read.csv("data/TransectData2013_2014.csv")[,-1]
## Find and delete duplicated records
duplicates<-transects[which(duplicated(transects) | duplicated(transects[nrow(transects):1,])[nrow(transects):1]),]
if(nrow(duplicates)>0){transects <- transects[-which(duplicated(transects)),]}
## Any villages with multiple records for different transects on the same day?
which(duplicated(transects[,c(1:4)])) #none
## Match district names between datasets
studyDist <- match(unique(transects$District),unique(PembaWard$District_N))
unique(transects$District)[which(is.na(studyDist))]
transects$District[which(transects$District=="Chakechake")] <- "Chake Chake"
## Match ward names between datasets
studyWard <- match(unique(paste(transects$District,transects$Ward)),unique(paste(PembaWard$District_N,PembaWard$Ward_Name)))
unique(paste(transects$District,transects$Ward))[which(is.na(studyWard))]
## Get correct amalgamated district_ward name
transects$DW <- paste(transects$District,transects$Ward,sep="_")
## Save cleaned transect data
write.csv(transects,paste("output/transects_cleaned.csv",sep=""),row.names = F)