-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodelf.R
210 lines (183 loc) · 6.31 KB
/
modelf.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#### LIBRARY IMPORT ####
library(rJava)
library(rjags) # install.packages(pkgs = c("rjags","coda", "runjags"),repos = "http://cran.fhcrc.org/")
library(runjags)
library(coda)
library(mcmcplots)
library(sqldf)
library(XLConnect) # install.packages("XLConnect", dependencies=TRUE) to avoid xlxs issue
library(dplyr)
library(data.table)
library(ggplot2)
library(reshape2)
library(gridExtra)
library(scales)
library(grid)
library(vegan)
# CHECK INPUTS -----------------
args = commandArgs(trailingOnly=TRUE)
if (exists("choice"))
args <- choice
if (length(args) > 0)
{
if (!exists("run_dic"))
run_dic <- TRUE
if (any(args == "--run_dic"))
run_dic <- TRUE
if (any(args == "--no_dic"))
run_dic <- FALSE
if (!exists("use_wish"))
use_wish <- TRUE
if (any(args == "--use_wish"))
use_wish <- TRUE
if (any(args == "--no_wish"))
use_wish <- FALSE
norm_mean <- 0
norm_sd <- 1
if (any(args == "--mean_0"))
{
norm_mean <- 0
norm_sd <- 1
}
if (any(args == "--no_mean_0"))
{
norm_mean <- 500
norm_sd <- 100
}
args <- args[!grepl("--", args)]
} else {
if (!exists("run_dic"))
run_dic <- TRUE
if (!exists("use_wish"))
use_wish <- TRUE
if (!exists("norm_mean"))
{
norm_mean <- 0
norm_sd <- 1
}
}
#### DATA IMPORT ####
read.file <- function(basefile, terroot, ttrroot)
{
terfile <- paste0(terroot, ".R")
ttrfile <- paste0(ttrroot, ".R")
base <- readChar(basefile, file.info(basefile)$size)
ter <- readChar(terfile, file.info(terfile)$size)
ttr <- readChar(ttrfile, file.info(ttrfile)$size)
sprintf(base, ter, ttr)
}
# NAME MODELS ---------------
ter.0 <- "ter.one"
ter.models <- c("ter.species", "ter.species.mean", "ter.species.mean.e",
"ter.species.mean.t", "ter.species.mean.et")
if (use_wish)
{
ttr.0 <- c("ttr.wish.one", "ttr.wish.onev")
ttr.models <- c("ttr.wish.species", "ttr.wish.speciesv") #, "ttr.wish.species.mean")
} else {
ttr.0 <- "ttr.one"
ttr.models <- c("ttr.species", "ttr.species.mean", "ttr.species.mean.t")
}
# BUILD MODELS ----------------
models<- list()
# Null model
for (ttr in ttr.0)
models[[ttr]] <- read.file("base.R", ter.0, ttr)
# Models with null TTR
for (ter in ter.models)
for (ttr in ttr.0)
models[[paste(ter, ttr, sep="_")]] <- read.file("base.ter.R", ter, ttr)
# Models with null TER
for (ttr in ttr.models)
models[[ttr]] <- read.file("base.ttr.R", ter.0, ttr)
# Models with species-specific TER and TTR
for (ter in ter.models)
for (ttr in ttr.models)
models[[paste(ter, ttr, sep="_")]] <- read.file("base.ter.ttr.R", ter, ttr)
# CREATING NEW DATABASE -------------
db <- dbConnect(SQLite())
# IMPORTING EXCEL DATA ---------------
wb <- loadWorkbook("data.xlsx")
setMissingValue(wb, value = "NA")
Tables <- readWorksheet(wb, sheet = getSheets(wb))
names(Tables) <- c("PLOT", "SPECIES", "TRAIT") # Change the names of the data frames
str(Tables) # structure of Tables
names(Tables) # Names of the elements of Tables
# INSERTING TABLES INTO DATABASE ---------------
with(Tables, {
dbWriteTable(conn = db, name = "PLOT", value = PLOT,
row.names = FALSE, overwrite = TRUE)
dbWriteTable(conn = db, name = "SPECIES", value = SPECIES,
row.names = FALSE, overwrite = TRUE)
dbWriteTable(conn = db, name = "TRAIT", value = TRAIT,
row.names = FALSE, overwrite = TRUE)
})
## individual species plot wise ----------------
tree <- dbGetQuery(db,"SELECT PLOT_TRAIT, TRAIT.SPECIES_TRAIT, PLOT.NH4, PLOT.P,
PLOT.K, PLOT.SALINITY, PLOT.SILT, PLOT.PH, PLOT.URP,
PLOT.HH, TRAIT.HEIGHT, TRAIT.SLA, TRAIT.WD, TRAIT.SC
FROM PLOT JOIN TRAIT ON PLOT.PLOT_PLOT = TRAIT.PLOT_TRAIT
WHERE TRAIT.SLA IS NOT NULL AND TRAIT.WD IS NOT NULL AND
TRAIT.SC IS NOT NULL AND
SPECIES_TRAIT IN ('AMUR','BAEN',
'GEWA','GORAN','KAKRA','KEORA',
'POSUR','SINGRA','SUNDRI')")
n <- length(tree[,1]) # Sample size
f <- factor(tree$SPECIES_TRAIT)
species <- as.integer(f)
ns <- max(species)
HEIGHT <- (tree$HEIGHT - mean(tree$HEIGHT)) / sd(tree$HEIGHT)
SLA <- (tree$SLA - mean(tree$SLA)) / sd(tree$SLA)
WD <- (tree$WD - mean(tree$WD)) / sd(tree$WD)
SC <- (tree$SC - mean(tree$SC)) / sd(tree$SC)
traits <- as.matrix(cbind(HEIGHT,SLA,WD,SC)) * norm_sd + norm_mean
nt <- ncol(traits) # Number of traits to be considered
NH4 <- (tree$NH4 - mean(tree$NH4)) / sd(tree$NH4)
P <- (tree$P - mean(tree$P)) / sd(tree$P)
K <- (tree$K - mean(tree$K)) / sd(tree$K)
SALINITY <- (tree$SALINITY - mean(tree$SALINITY)) / sd(tree$SALINITY)
SILT <- (tree$SILT - mean(tree$SILT)) / sd(tree$SILT)
PH <- (tree$PH - mean(tree$PH)) / sd(tree$PH)
URP <- (tree$URP - mean(tree$URP)) / sd(tree$URP)
HH <- (tree$HH - mean(tree$HH)) / sd(tree$HH)
envir <- as.matrix(cbind(NH4, P, K, SALINITY, SILT, PH, URP, HH)) * norm_sd +
norm_mean
ne <- ncol(envir) + 1
# RUN MODELS IN JAGS -----------------
# Do we want to do something specific? Or test everything?
if ((length(args) == 0) && (exists("model")))
args <- as.character(model)
if (length(args) > 0)
{
print(paste("I'm going to run", length(args), "model(s)."))
print(paste("I", (if (run_dic) "will" else "won't"), "run DIC."))
for (arg in args)
{
model.num <- as.integer(arg)
print(paste0("Running model ", arg, ": ", names(models)[model.num]))
cat(models[[model.num]])
init <- run.jags(models[[model.num]], n.chains=2,
burnin=4000, sample=10000,
modules=c("glm","dic"))
extend <- extend.jags(init, sample=20000)
if (run_dic)
{
# DIC
dic <- extract(extend, what='dic') # DIC, pD
print(dic)
write.csv(data.frame(model=arg,
name=names(models)[model.num],
dic=sum(dic$deviance+dic$penalty)),
paste0(arg, ".csv"))
}
s <- add.summary(extend)
}
} else {
print("Testing all models!")
for (name in names(models))
{
print(name)
run.jags(models[[name]], n.chains = 2, adapt = 2, burnin = 2, sample = 2,
modules = c("glm", "dic"))
}
}