-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathspectra_predictor.py
260 lines (206 loc) · 8.26 KB
/
spectra_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""Helpers for generating spectra prediction from trained models."""
import abc
import feature_map_constants as fmap_constants
import feature_utils
import mass_spec_constants as ms_constants
import molecule_predictors
import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem
import six
import tensorflow as tf
_DEFAULT_HPARAMS = {
"radius": 2,
"mass_power": 1.0,
"gate_bidirectional_predictions": True,
"include_atom_mass": True,
"init_bias": "default",
"reverse_prediction": True,
"max_mass_spec_peak_loc": 1000,
"num_hidden_units": 2000,
"use_counting_fp": True,
"max_atoms": 100,
"intensity_power": 0.5,
"max_prediction_above_molecule_mass": 5,
"fp_length": 4096,
"bidirectional_prediction": True,
"resnet_bottleneck_factor": 0.5,
"max_atom_type": 100,
"hidden_layer_activation": "relu",
"init_weights": "default",
"num_hidden_layers": 7
}
_DEFAULT_HPARAMS_STR = ",".join(
"{}={}".format(k, v) for k, v in six.iteritems(_DEFAULT_HPARAMS))
PREDICTED_SPECTRA_PROP_NAME = "PREDICTED SPECTRUM"
# Predictions from the model are normalized by default.
# This factor is used to rescale the predictions so the highest intensity has
# this value.
SCALE_FACTOR_FOR_LARGEST_INTENSITY = 999.
def fingerprints_to_use(hparams):
"""Given tf.HParams, return a ms_constants.CircularFingerprintKey."""
if hparams.use_counting_fp:
key = fmap_constants.COUNTING_CIRCULAR_FP_BASENAME
else:
key = fmap_constants.CIRCULAR_FP_BASENAME
return ms_constants.CircularFingerprintKey(key, hparams.fp_length,
hparams.radius)
def get_mol_weights_from_mol_list(mol_list):
"""Given a list of rdkit.Mols, return weights for each mol."""
return np.array([Chem.rdMolDescriptors.CalcExactMolWt(m) for m in mol_list])
def get_mol_list_from_sdf(sdf_fname):
"""Reads a sdf file and returns a list of molecules.
Note: rdkit's Chem.SDMolSupplier only accepts filenames as inputs. As such
this code only supports local filesystem name environments.
Args:
sdf_fname: Path to sdf file.
Returns:
List of rdkit.Mol objects.
Raises:
ValueError if a molblock in the SDF cannot be parsed.
"""
suppl = Chem.SDMolSupplier(sdf_fname)
mols = []
for idx, mol in enumerate(suppl):
if mol is not None:
mols.append(mol)
else:
fail_sdf_block = suppl.GetItemText(idx)
raise ValueError("Unable to parse the following mol block %s" %
fail_sdf_block)
return mols
def update_mols_with_spectra(mol_list, spectra_array):
"""Writes a predicted spectrum for each RDKit.mol object.
Args:
mol_list: List of rdkit.Mol objects.
spectra_array: np.array of spectra.
Returns:
Updated list of rdkit.Mol objects where each molecule contains a predicted
spectrum.
"""
if len(mol_list) != np.shape(spectra_array)[0]:
raise ValueError("Number of mols in mol list %d is not equal to number of "
"spectra found %d." %
(len(mol_list), np.shape(spectra_array)[0]))
for mol, spectrum in zip(mol_list, spectra_array):
spec_array_text = feature_utils.convert_spectrum_array_to_string(spectrum)
mol.SetProp(PREDICTED_SPECTRA_PROP_NAME, spec_array_text)
return mol_list
def write_rdkit_mols_to_sdf(mol_list, out_sdf_name):
"""Writes a series of rdkit.Mol to SDF.
Args:
mol_list: List of rdkit.Mol objects.
out_sdf_name: Output file path for molecules.
"""
writer = AllChem.SDWriter(out_sdf_name)
for mol in mol_list:
writer.write(mol)
writer.close()
class SpectraPredictor(object):
"""Helper for generating a computational graph for making predictions."""
__metaclass__ = abc.ABCMeta
def __init__(self, hparams_str=""):
"""Sets up graph, session, and input and output ops for prediction.
Args:
hparams_str (str): String containing hyperparameter settings.
"""
self._prediction_helper = molecule_predictors.get_prediction_helper("mlp")
self._hparams = self._prediction_helper.get_default_hparams()
self._hparams.parse(hparams_str)
self._fingerprint_key = fingerprints_to_use(self._hparams)
self.fingerprint_input_key = str(self._fingerprint_key)
self.molecular_weight_key = fmap_constants.MOLECULE_WEIGHT
self._graph = tf.Graph()
self._sess = tf.Session(graph=self._graph)
with self._graph.as_default():
(self._placeholder_dict, self._predict_op) = self._setup_prediction_op()
assert set(self._placeholder_dict) == set(
[self.fingerprint_input_key, self.molecular_weight_key])
@abc.abstractmethod
def _setup_prediction_op(self):
"""Sets up prediction operation.
Returns:
placeholder_dict: Dict with self.fingerprint_input_key and
self.molecular_weight_key as keys and values which are tf.placeholder
for predicted spectra.
predict_op: tf.Tensor for predicted spectra.
"""
def make_spectra_prediction(self, fingerprint_array, molecule_weight_array):
"""Makes spectra prediction.
Args:
fingerprint_array (np.array): Contains molcule fingerprints.
molecule_weight_array (np.array): Contains molecular weights. Should have
same batch dimension as fingerprint_array.
Returns:
np.array of predictions.
"""
molecule_weight_array = np.reshape(molecule_weight_array, (-1, 1))
with self._graph.as_default():
prediction = self._sess.run(
self._predict_op,
feed_dict={
self._placeholder_dict[self.fingerprint_input_key]:
fingerprint_array,
self._placeholder_dict[self.molecular_weight_key]:
molecule_weight_array
})
prediction = prediction / np.max(
prediction, axis=1, keepdims=True) * SCALE_FACTOR_FOR_LARGEST_INTENSITY
return prediction
def get_fingerprints_from_mol_list(self, mol_list):
"""Converts a list of rdkit.Mol objects into circular fingerprints.
Args:
mol_list: List of rdkit.Mol objects.
Returns:
np.array of fingerprints for prediction.
"""
fingerprints = [
feature_utils.make_circular_fingerprint(mol, self._fingerprint_key)
for mol in mol_list
]
return np.array(fingerprints)
def get_inputs_for_model_from_mol_list(self, mol_list):
"""Grabs fingerprints and molecular weights for the prediction model."""
fingerprints = self.get_fingerprints_from_mol_list(mol_list)
weights = get_mol_weights_from_mol_list(mol_list)
return fingerprints, weights
class NeimsSpectraPredictor(SpectraPredictor):
"""Helper for making spectra predictions using the trained NEIMS model."""
def __init__(self, model_checkpoint_dir, hparams_str=_DEFAULT_HPARAMS_STR):
"""Initializes the predictor with the weights and hyperparameters.
Args:
model_checkpoint_dir (str): Path to checkpoint weights.
hparams_str (str): String that contains hyperparameters for model.
"""
super(NeimsSpectraPredictor, self).__init__(hparams_str)
self.restore_from_checkpoint(model_checkpoint_dir)
def _setup_prediction_op(self):
"""Sets up prediction operation and inputs for model."""
fp_length = self._hparams.fp_length
fingerprint_input_op = tf.placeholder(tf.float32, (None, fp_length))
mol_weight_input_op = tf.placeholder(tf.float32, (None, 1))
feature_dict = {
self.fingerprint_input_key: fingerprint_input_op,
self.molecular_weight_key: mol_weight_input_op
}
predict_op, _ = self._prediction_helper.make_prediction_ops(
feature_dict,
self._hparams,
mode=tf.estimator.ModeKeys.PREDICT,
reuse=False)
return feature_dict, predict_op
def restore_from_checkpoint(self, model_checkpoint_dir):
"""Restores model parameters from checkpoint directory.
Args:
model_checkpoint_dir (str): filepath directory to weights. If empty, model
will be initialized with random weights.
"""
with self._graph.as_default():
if model_checkpoint_dir:
saver = tf.train.Saver()
saver.restore(self._sess,
tf.train.latest_checkpoint(model_checkpoint_dir))
else:
tf.logging.warn("No model checkpoint directory given,"
" reinitializing model.")
self._sess.run(tf.global_variables_initializer())