-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_handler.py
218 lines (187 loc) · 11 KB
/
data_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import pickle
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from rdkit import Chem
from AttentiveFP import save_smiles_dicts, get_smiles_array
from utils import create_sent, tokenize, load_vocab
class DataHandler:
def __init__(self, raw_filename, contact_map_file, args):
self.args = args
self.data_df, self.smile_feature_dict = self.load_smile(raw_filename)
def get_cm_dict(contact_map_file):
cm_dict = {}
max_num = 0
data = pickle.load(open(contact_map_file, 'rb')) # dataframe(PDB-ID, seqs, contact_map)
for index, row in data.iterrows():
seq = row['seqs'][:self.max_len]
cm = row['contact_map'][0][:self.max_len, :self.max_len]
cm_dict[seq] = cm
mn = np.max(np.sum(cm, axis=1))
if max_num < mn:
max_num = mn
return cm_dict, max_num
# for protein structure
self.input_size = self.args.nonspecial_vocab_size
self.max_len = self.args.max_seq_len
self.enc_lib = np.eye(self.input_size)
# contact_map_dict: {seq: array(amino_num, amino_num), seq: array(amino_num, amino_num), ...}, eq.{seq: array([[True, False, ...],[True, False, ...],...]), ...}
self.contact_map_dict, self.max_neighbor_num = get_cm_dict(contact_map_file)
#print(self.data_df, self.smile_feature_dict)
def get_init(self, seq_list):
mat = []
for seq in seq_list:
seq = list(map(lambda ch: ord(ch) - ord('A'), seq[:self.max_len]))
# enc: array, (max_seq_len, no_special_tokens_vocab_size)
enc = self.enc_lib[seq]
if enc.shape[0] < self.max_len:
enc = np.pad(enc, ((0, self.max_len - enc.shape[0]), (0, 0)), 'constant')
# print(enc.shape)
mat.append(enc)
# mat: [array(max_seq_len, no_special_tokens_vocab_size), array(max_seq_len, no_special_tokens_vocab_size), ...]
mat = np.stack(mat, 0)
# mat: array(batch_size, max_seq_len, no_special_tokens_vocab_size)
mat = mat.astype(np.float32)
return mat
def get_degree_list(self, seq_list):
mat = []
uu = 0
for seq in seq_list:
seq = seq[:self.max_len]
# contact_map_dict: {seq: array(amino_num, amino_num), seq: array(amino_num, amino_num), ...}, eq.{seq: array([[True, False, ...],[True, False, ...],...]), ...}
if seq in self.contact_map_dict:
cm = self.contact_map_dict[seq]
uu += 1
else:
# print('Sequence not found, ', seq)
cm = np.zeros(self.max_len, self.max_neighbor_num)
##
degree_list = []
for i in range(len(seq)):
tmp = np.array(np.where(cm[i] > 0.5)[0])
tmp = np.pad(tmp, (0, self.max_neighbor_num - tmp.shape[0]), 'constant', constant_values=(-1, -1))
degree_list.append(tmp)
##
degree_list = np.stack(degree_list, 0)
degree_list = np.pad(degree_list, ((0, self.max_len - degree_list.shape[0]), (0, 0)), 'constant',
constant_values=(-1, -1))
mat.append(degree_list)
mat = np.stack(mat, 0)
return mat
def get_amino_mask(self, seq_list):
mat = []
for seq in seq_list:
mask = np.ones(min(len(seq), self.max_len), dtype=int)
mask = np.pad(mask, (0, self.max_len - len(mask)), 'constant')
mat.append(mask)
mat = np.stack(mat, 0)
# print('mask', mat)
return mat
def get_pro_structure(self, seq_list):
# f1 = cal_mem()
amino_list = self.get_init(seq_list)
# f2 = cal_mem()
# print('Get Pro Structure Index {}-{} costs: {}MB'.format('f2', 'f1', round(f1-f2, 4)))
amino_degree_list = self.get_degree_list(seq_list)
# f3 = cal_mem()
# print('Get Pro Structure Index {}-{} costs: {}MB'.format('f2', 'f3', round(f2 - f3, 4)))
amino_mask = self.get_amino_mask(seq_list)
# f4 = cal_mem()
# print('Get Pro Structure Index {}-{} costs: {}MB'.format('f3', 'f4', round(f3 - f4, 4)))
return amino_list, amino_degree_list, amino_mask
def load_smile(self, raw_filename):
# raw_filename : "./PPI/drug/tasks/DTI/pdbbind/pafnucy_total_rdkit-smiles-v1.csv"
feature_filename = raw_filename.replace('.csv', '.pickle')
filename = raw_filename.replace('.csv', '')
# smiles_tasks_df : df : ["unnamed", "PDB-ID", "seq", "SMILES", "rdkit_smiles", "Affinity-Value", "set"]
smiles_tasks_df = pd.read_csv(raw_filename) # main file
# smilesList : array(['CC[C@@H](CSC[C@H](NC(=O)...', 'CC(C)Cc1ccccc1...', ...]), 13464
smilesList = smiles_tasks_df[ self.args.SMILES].values
print("number of all smiles: ", len(smilesList))
atom_num_dist = []
remained_smiles = []
canonical_smiles_list = []
for smiles in smilesList:
try:
mol = Chem.MolFromSmiles(smiles) # input : smiles seqs, output : molecule obeject
atom_num_dist.append(len(mol.GetAtoms())) # list : get atoms obeject num from molecule obeject
remained_smiles.append(smiles) # list : smiles without transformation error
canonical_smiles_list.append(Chem.MolToSmiles(mol, isomericSmiles=True)) # canonical smiles without transformation error
except:
print("the smile \"%s\" has transformation error in the first test" % smiles)
pass
print("number of successfully processed smiles after the first test: ", len(remained_smiles))
"----------------------the first test----------------------"
smiles_tasks_df = smiles_tasks_df[smiles_tasks_df[ self.args.SMILES].isin(remained_smiles)] # df(13464) : include smiles without transformation error
smiles_tasks_df[ self.args.SMILES] = remained_smiles
# smilesList : array(['CC[C@@H](CSC[C@H](NC(=O)...', 'CC(C)Cc1ccccc1...', ...]), 13464
smilesList = remained_smiles # update valid smile
# feature_dicts(dict) :
# {smiles_to_atom_info, smiles_to_atom_mask, smiles_to_atom_neighbors, "smiles_to_bond_info", "smiles_to_bond_neighbors", "smiles_to_rdkit_list"}
if os.path.isfile(feature_filename): # get smile feature dict
# if False:
feature_dicts = pickle.load(open(feature_filename, "rb"))
else:
# smilesList : array(['CC[C@@H](CSC[C@H](NC(=O)...', 'CC(C)Cc1ccccc1...', ...]), 13464
# filename : "./PPI/drug/tasks/DTI/pdbbind/pafnucy_total_rdkit-smiles-v1"
feature_dicts = save_smiles_dicts(smilesList, filename)
"----------------------the second test----------------------"
# remained_df : array(['CC[C@@H](CSC[C@H](NC(=O)...', 'CC(C)Cc1ccccc1...', ...]) : include smiles without transformation error and second test error, 13435
remained_df = smiles_tasks_df[smiles_tasks_df[ self.args.SMILES].isin(feature_dicts['smiles_to_atom_mask'].keys())]
print("number of successfully processed smiles after the second test: ", len(remained_df))
return remained_df, feature_dicts
class ProteinDataset(Dataset):
def __init__(self, dataset, data_handler, args, shuffle=False):
super(ProteinDataset, self).__init__()
if shuffle:
dataset = dataset.sample(frac=1, random_state=args.seed).reset_index(drop=True)
self.dataset = dataset
self.data_handler = data_handler
self.args = args
self.vocab = load_vocab(args.vocab_path)
def __len__(self):
return len(self.dataset)
def __getitem__(self, item):
data_entry = self.dataset.iloc[item]
smiles_list = [data_entry[self.args.SMILES]] #.values
pro_seqs = [data_entry.seq] #.values
y_val = [data_entry[self.args.TASK]] #.values
y_val = torch.tensor(y_val)
# Generate seq, struc, drug inputs
x_atom, x_bonds, x_atom_index, x_bond_index, x_mask, smiles_to_rdkit_list = get_smiles_array(
smiles_list, self.data_handler.smile_feature_dict)
amino_list, amino_degree_list, amino_mask = self.data_handler.get_pro_structure(pro_seqs)
# Tokenize seq sentence
sents = create_sent(pro_seqs)
tokenized_sent = tokenize(sents, self.vocab, self.args.max_seq_len)
# print(tokenized_sent.shape, [e.shape for e in [amino_list, amino_degree_list, amino_mask]])
return y_val, tokenized_sent, (x_atom, x_bonds, x_atom_index, x_bond_index, x_mask), (amino_list, amino_degree_list, amino_mask)
def prepare_data(args):
data_handler = DataHandler(args.input_file, args.contact_map_file, args)
train_df = data_handler.data_df[data_handler.data_df["set"].str.contains('train')]
valid_df = data_handler.data_df[data_handler.data_df["set"].str.contains('valid')]
test_test_df = data_handler.data_df[data_handler.data_df["set"].str.contains('test')]
test_casf2013_df = data_handler.data_df[data_handler.data_df["set"].str.contains('casf2013')]
test_astex_df = data_handler.data_df[data_handler.data_df["set"].str.contains('astex')]
if args.sampling:
train_df, valid_df, test_test_df, test_casf2013_df, test_astex_df = \
train_df.iloc[:500], valid_df.iloc[:200], test_test_df.iloc[:200], test_casf2013_df.iloc[:200], test_astex_df.iloc[:200]
print("train_df_nums: %d, valid_df_nums: %d, core2016_df_nums: %d, casf2013_df_nums: %d, astex_df_nums: %d"
% (len(train_df), len(valid_df), len(test_test_df), len(test_casf2013_df), len(test_astex_df)))
x_atom, x_bonds, _, _, _, _ = get_smiles_array([data_handler.data_df[args.SMILES][1]], data_handler.smile_feature_dict)
num_atom_features = x_atom.shape[-1] # 39
num_bond_features = x_bonds.shape[-1] # 10
train_set = ProteinDataset(train_df, data_handler, args, shuffle=True)
valid_set = ProteinDataset(valid_df, data_handler, args)
test_test_set = ProteinDataset(test_test_df, data_handler, args)
test_casf2013_set = ProteinDataset(test_casf2013_df, data_handler, args)
test_astex_set = ProteinDataset(test_astex_df, data_handler, args)
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False, num_workers=os.cpu_count()//2)
valid_loader = DataLoader(valid_set, batch_size=args.batch_size, shuffle=False, num_workers=os.cpu_count()//2)
test_test_loader = DataLoader(test_test_set, batch_size=args.batch_size, shuffle=False, num_workers=os.cpu_count()//2)
test_casf2013_loader = DataLoader(test_casf2013_set, batch_size=args.batch_size, shuffle=False, num_workers=os.cpu_count()//2)
test_astex_loader = DataLoader(test_astex_set, batch_size=args.batch_size, shuffle=False, num_workers=os.cpu_count()//2)
loader_pack = train_loader, valid_loader, test_test_loader, test_casf2013_loader, test_astex_loader
return loader_pack, num_atom_features, num_bond_features