forked from sebastianruder/learn-to-select-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstants.py
39 lines (35 loc) · 1.39 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
"""
Constants that are shared across files.
"""
NEG_ID = 0 # the negative sentiment id
POS_ID = 1 # the positive sentiment id
NEU_ID = 2 # the neutral sentiment id
# feature-related constants
FEATURE_SETS = ['similarity', 'topic_similarity', 'word_embedding_similarity',
'diversity']
SIMILARITY_FUNCTIONS = ['jensen-shannon', 'renyi', 'cosine', 'euclidean',
'variational', 'bhattacharyya']
DIVERSITY_FEATURES = ['num_word_types', 'type_token_ratio', 'entropy',
'simpsons_index', 'quadratic_entropy', 'renyi_entropy']
# task-related constants
POS = 'pos'
POS_BILSTM = 'pos_bilstm'
SENTIMENT = 'sentiment'
PARSING = 'parsing'
TASKS = [POS, POS_BILSTM, SENTIMENT, PARSING]
POS_PARSING_TRG_DOMAINS = ['answers', 'emails', 'newsgroups', 'reviews', 'weblogs', 'wsj']
SENTIMENT_TRG_DOMAINS = ['books', 'dvd', 'electronics', 'kitchen']
TASK2TRAIN_EXAMPLES = {
POS: 2000, POS_BILSTM: 2000, SENTIMENT: 1600, PARSING: 2000
}
TASK2DOMAINS = {
POS: POS_PARSING_TRG_DOMAINS, POS_BILSTM: POS_PARSING_TRG_DOMAINS,
SENTIMENT: SENTIMENT_TRG_DOMAINS, PARSING: POS_PARSING_TRG_DOMAINS
}
# method-related constants
BAYES_OPT = 'bayes-opt'
RANDOM = 'random'
MOST_SIMILAR_DOMAIN = 'most-similar-domain'
MOST_SIMILAR_EXAMPLES = 'most-similar-examples'
ALL_SOURCE_DATA = 'all-source-data'
BASELINES = [RANDOM, MOST_SIMILAR_DOMAIN, MOST_SIMILAR_EXAMPLES, ALL_SOURCE_DATA]