forked from sebastianruder/learn-to-select-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
470 lines (417 loc) · 21 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Utility methods for loading and processing data.
"""
import os
import codecs
from collections import Counter
import itertools
import operator
import numpy as np
import scipy.sparse
from sklearn.feature_extraction.text import TfidfVectorizer
from constants import NEG_ID, POS_ID
from simpletagger import read_conll_file
from constants import SENTIMENT, POS, POS_BILSTM, PARSING, \
SENTIMENT_TRG_DOMAINS, POS_PARSING_TRG_DOMAINS
from bist_parser.bmstparser.src.utils import read_conll
class Vocab:
"""
The vocabulary class. Stores the word-to-id mapping.
"""
def __init__(self, max_vocab_size, vocab_path):
self.max_vocab_size = max_vocab_size
self.vocab_path = vocab_path
self.size = 0
self.word2id = {}
self.id2word = {}
def load(self):
"""
Loads the vocabulary from the vocabulary path.
"""
assert self.size == 0, 'Vocabulary has already been loaded or built.'
print('Reading vocabulary from %s...' % self.vocab_path)
with codecs.open(self.vocab_path, 'r', encoding='utf-8') as f:
for i, line in enumerate(f):
if i >= self.max_vocab_size:
print('Vocab in file is larger than max vocab size. '
'Only using top %d words.' % self.max_vocab_size)
break
word, idx = line.split('\t')
self.word2id[word] = int(idx.strip())
self.size = len(self.word2id)
self.id2word = {index: word for word, index in self.word2id.items()}
assert self.size <= self.max_vocab_size, \
'Loaded vocab is of size %d., max vocab size is %d.' % (
self.size, self.max_vocab_size)
def create(self, texts, lowercase=True):
"""
Creates the vocabulary and stores it at the vocabulary path.
:param texts: a list of lists of tokens
:param lowercase: lowercase the input texts
"""
assert self.size == 0, 'Vocabulary has already been loaded or built.'
print('Building the vocabulary...')
if lowercase:
print('Lower-casing the input texts...')
texts = [[word.lower() for word in text] for text in texts]
word_counts = Counter(itertools.chain(*texts))
# get the n most common words
most_common = word_counts.most_common(n=self.max_vocab_size)
# construct the word to index mapping
self.word2id = {word: index for index, (word, count)
in enumerate(most_common)}
self.id2word = {index: word for word, index in self.word2id.items()}
print('Writing vocabulary to %s...' % self.vocab_path)
with codecs.open(self.vocab_path, 'w', encoding='utf-8') as f:
for word, index in sorted(self.word2id.items(),
key=operator.itemgetter(1)):
f.write('%s\t%d\n' % (word, index))
self.size = len(self.word2id)
def get_all_docs(domain_data_pairs, unlabeled=True):
"""
Return all labeled and undocumented documents of multiple domains.
:param domain_data_pairs: a list of (domain, (labeled_reviews, labels,
unlabeled_reviews)) tuples as obtained by
domain2data.items()
:param unlabeled: whether unlabeled documents should be incorporated
:return: a list containing the documents from all domains, the corresponding
labels, and a list containing the domain of each example
"""
docs, labels, domains = [], [], []
for domain, (labeled_docs, doc_labels, unlabeled_docs) in domain_data_pairs:
length_of_docs = 0
if not scipy.sparse.issparse(labeled_docs):
# if the labeled documents are not a sparse matrix, i.e.
# a tf-idf matrix, we can just flatten them into one array
docs += labeled_docs
length_of_docs += len(labeled_docs)
if unlabeled:
# if specified, we add the unlabeled documents
docs += unlabeled_docs
length_of_docs += len(labeled_docs)
else:
# if it is a sparse matrix, we just append the docs as a list and
# then stack the list in the end
docs.append(labeled_docs)
length_of_docs += labeled_docs.shape[0]
if unlabeled and unlabeled_docs is not None:
docs.append(unlabeled_docs)
length_of_docs += unlabeled_docs.shape[0]
labels.append(doc_labels)
# we just add the corresponding domain for each document so that we can
# later see where the docs came from
domains += [domain] * length_of_docs
if scipy.sparse.issparse(labeled_docs):
# finally, if the matrix was sparse, we can stack the documents together
docs = scipy.sparse.vstack(docs)
return docs, np.hstack(labels), domains
def get_tfidf_data(domain2data, vocab):
"""
Transform the tokenized documents of each domain into a tf-idf matrix.
:param domain2data: the mapping of domains to a (tokenized_reviews, labels,
tokenized_unlabeled_reviews) tuple
:param vocab: the Vocabulary class
:return: a mapping of domains to a (labeled_tfidf_matrix, labels,
unlabeled_tfidf_matrix) tuple where both tfidf matrices are
scipy.sparse.csr.csr_matrix with shape (num_examples, vocab_size)
"""
domain2tfidf_data = {}
for domain, (labeled_examples, labels, unlabeled_examples) in domain2data.items():
# apply the vectorizer to the already tokenized and pre-processed input
vectorizer = TfidfVectorizer(vocabulary=vocab.word2id,
tokenizer=lambda x: x,
preprocessor=lambda x: x)
# fit the vectorizer to both labeled and unlabeled examples but keep
# the transformed examples separate
vectorizer.fit(labeled_examples + unlabeled_examples)
tfidf_labeled_examples = vectorizer.transform(labeled_examples)
# note: we cap unlabeled examples at 100k (only relevant for the books
# domain in the large-scale setting)
unlabeled_examples = unlabeled_examples[:100000]
tfidf_unlabeled_examples = vectorizer.transform(unlabeled_examples) \
if len(unlabeled_examples) != 0 else None
assert isinstance(tfidf_labeled_examples, scipy.sparse.csr.csr_matrix),\
'The input is not a sparse matrix.'
assert isinstance(labels, np.ndarray), 'Labels are not a numpy array.'
domain2tfidf_data[domain] = [tfidf_labeled_examples, labels,
tfidf_unlabeled_examples]
return domain2tfidf_data
def log_to_file(log_file, run_dict, trg_domain, args):
"""
Log the results of experiment runs to a file.
:param log_file: the file used for logging
:param run_dict: a dictionary mapping a method name to a list of
(val_accuracy, test_accuracy) tuples or a list
of (val_accuracy, test_accuracy, best_feature_weight)
tuples for the bayes-opt method
:param trg_domain: the target domain
:param args: the arguments used as input to the script
"""
with open(log_file, 'a') as f:
for method, scores in run_dict.items():
best_feature_weights = ''
if len(scores) == 0:
continue
if method.startswith('bayes-opt'):
val_accuracies, test_accuracies, best_feature_weights = \
zip(*scores)
else:
val_accuracies, test_accuracies = zip(*scores)
mean_val, std_val = np.mean(val_accuracies), np.std(val_accuracies)
mean_test, std_test = np.mean(test_accuracies),\
np.std(test_accuracies)
# target domain. method. feature_sets. # all other params
f.write('%s\t%s\t%s\t%.4f (+-%.4f)\t%.4f (+-%.4f)\t[%s]\t[%s]\t%s\t'
'%s\n'
% (trg_domain, method, ' '.join(args.feature_sets),
mean_val, std_val, mean_test, std_test,
', '.join(['%.4f' % v for v in val_accuracies]),
', '.join(['%.4f' % t for t in test_accuracies]),
str(list(best_feature_weights)),
' '.join(['%s=%s' % (arg, str(getattr(args, arg)))
for arg in vars(args)])))
def read_feature_weights_file(feature_weights_path):
"""
Reads a manually created file containing the learned feature weights for
some task, trg domain, and feature set and returns them.
The file format is this (note that ~ is used as delimiter to avoid clash
with other delimiters in the feature sets):
books~similarity diversity~[0.0, -0.66, -0.66, 0.66, 0.66, -0.66, 0.66, 0.0, 0.0, -0.66, 0.66, 0.66]
...
:param feature_weights_path: the path to the feature weights file
:return: a generator of tuples (feature_weights_domain, feature_set, feature_weights)
"""
print('Reading feature weights from %s...' % feature_weights_path)
with open(feature_weights_path, 'r') as f:
for line in f:
feature_weights_domain, feature_set, feature_weights =\
line.split('~')
feature_weights = feature_weights.strip('[]\n')
feature_weights = feature_weights.split(', ')
feature_weights = [float(f) for f in feature_weights]
print('Feature weights domain: %s. Feature set: %s. '
'Feature weights: %s' %
(feature_weights_domain, feature_set, str(feature_weights)))
yield feature_weights_domain, feature_set, feature_weights
def task2read_data_func(task):
"""Returns the read data method for each task."""
if task == SENTIMENT:
return read_processed
if task in [POS, POS_BILSTM]:
return read_tagging_data
if task == PARSING:
return read_parsing_data
raise ValueError(
'No data reading function available for task %s.' % task)
# =============== sentiment data functions =======
def read_processed(dir_path):
"""
Reads the processed files in the processed_acl directory.
:param dir_path: the directory containing the processed_acl folder
:return: a dictionary that maps domains to a tuple of
(labeled_reviews,labels, unlabeled_reviews); labeled_reviews is
a list of reviews where each review is a list of (unordered)
ngrams; labels is a numpy array of label ids of shape (num_labels);
unlabeled_reviews has the same format as labeled_reviews
"""
domains_path = os.path.join(dir_path, 'processed_acl')
assert os.path.exists(domains_path), ('Error: %s does not exist.' %
domains_path)
domains = os.listdir(domains_path)
assert set(domains) == set(SENTIMENT_TRG_DOMAINS)
domain2data = {domain: [[], [], None] for domain in domains}
for domain in domains:
print('Processing %s...' % domain)
# file names are positive.review, negative.review, and unlabeled.review
# positive and negative each contain 2k examples;
# unlabeled contains ~4k examples
splits = ['positive', 'negative', 'unlabeled']
for split in splits:
print('Processing %s/%s...' % (domain, split), end='')
file_path = os.path.join(domains_path, domain, '%s.review' % split)
assert os.path.exists(file_path), '%s does not exist.' % file_path
reviews = []
with open(file_path, encoding='utf-8') as f:
for line in f:
# get the pre-processed features; these are a white-space
# separated list of unigram/bigram occurrence counts in
# the document, e.g. "must:1", "still_has:1"
features = line.split(' ')[:-1]
# convert the features to a sequence (note: order does not
# matter here); we do this to be able to later use the
# same post-processing as for data from other sources
review = []
for feature in features:
ngram, count = feature.split(':')
for _ in range(int(count)):
review.append(ngram)
# add the review to the reviews
reviews.append(review)
# the domain2data dict maps a domain to a tuple of
# (reviews, labels, unlabeled_reviews)
if split == 'unlabeled':
# add the unlabeled reviews at the third position of the tuple
domain2data[domain][2] = reviews
else:
# add labels with the same polarity as the file
domain2data[domain][0] += reviews
domain2data[domain][1] += [sentiment2id(split)] * len(reviews)
print(' Processed %d reviews.' % len(reviews))
domain2data[domain][1] = np.array(domain2data[domain][1])
return domain2data
def sentiment2id(sentiment):
"""
Maps a sentiment to a label id.
:param sentiment: the sentiment; one of [positive, pos, negative, neg]
:return: the id of the specified sentiment
"""
if sentiment in ['positive', 'pos']:
return POS_ID
if sentiment in ['negative', 'neg']:
return NEG_ID
raise ValueError('%s is not a valid sentiment.' % sentiment)
# =============== tagging data functions ======
def read_tagging_data(dir_path, top_k_unlabeled=2000):
"""
Reads the CoNLL tagging files in the gweb_sancl/pos directory. Outputs the
documents as list of lists with tokens and lists of corresponding tags.
The domains are reviews, answer, emails, newsblogs, weblogs, wsj and
the corresponding files are called gweb-{domain}-{dev|test}.conll in folder
gweb_sancl/pos/{domain}
:param dir_path: the path to the directory gweb_sancl
:param top_k_unlabeled: only use the top k unlabeled examples
:return: a dictionary that maps domains to a tuple of (labeled_examples,
labels, unlabeled_examples); labeled_examples is a list of
sentences where each sentence is a list of tokens; labels
is a list of tags for each sentence; unlabeled_examples has the
same format as labeled_examples
"""
domains_path = os.path.join(dir_path, 'pos')
assert os.path.exists(domains_path), ('Error: %s does not exist.' %
domains_path)
domains = [d for d in os.listdir(domains_path)]
print(domains)
assert set(domains) == set(POS_PARSING_TRG_DOMAINS)
domain2data = {domain: [[], [], None] for domain in domains}
for domain in domains:
print('Processing %s...' % domain)
# file names are pos/{domain}/gweb-{domain}-{dev|test}.conll
splits = ['dev', 'test', 'unlabeled']
for split in splits:
print('Processing %s/%s...' % (domain, split), end='')
if split == 'unlabeled':
file_path = os.path.join(dir_path, 'unlabeled',
'gweb-%s.unlabeled.txt' % (domain))
assert os.path.exists(file_path), ('%s does not exist.' %
file_path)
unlabeled_data = []
print(file_path)
with open(file_path,'rb') as f:
for line in f:
line = line.decode('utf-8','ignore').strip().split()
unlabeled_data.append(line)
# add the unlabeled reviews at the third position of the tuple
print('Read %s number of unlabeled sentences'
% len(unlabeled_data))
unlabeled_data = unlabeled_data[:top_k_unlabeled]
print('Took top {} documents '.format(top_k_unlabeled))
domain2data[domain][2] = unlabeled_data
else:
file_path = os.path.join(domains_path, domain,
'gweb-%s-%s.conll' % (domain, split))
assert os.path.exists(file_path), ('%s does not exist.' %
file_path)
data = list(read_conll_file(file_path))
words = [words for words, tags in data]
tags = [tags for words, tags in data]
domain2data[domain][0] += words
domain2data[domain][1] += tags
print(' Processed %d sentences.' % len(data))
domain2data[domain][1] = np.array(domain2data[domain][1])
return domain2data
# =============== parsing data functions ======
def read_parsing_data(dir_path, top_k_unlabeled=2000):
"""
Reads the CoNLL parsing files in the gweb_sancl/pos directory
:param dir_path: The gweb_sancl directory path.
:param top_k_unlabeled: only use the top k unlabeled examples
:return: a dictionary that maps domains to a tuple of (
labeled_conll_entries, pseudo_labels, unlabeled_conll_entries);
labeled_conll_entries is a list of CoNLLEntry containing the
word forms, annotations, and target labels to be used for
parsing; since each CoNLLEntry already contains the target label,
pseudo_labels only contains pseudo-labels; unlabeled_conll_entries
are used as unlabeled data
"""
domains_path = os.path.join(dir_path, 'parse')
assert os.path.exists(domains_path), ('Error: %s does not exist.' %
domains_path)
domains = [d for d in os.listdir(domains_path)]
print(domains)
assert set(domains) == set(POS_PARSING_TRG_DOMAINS)
domain2data = {domain: [[], [], None] for domain in domains}
for domain in domains:
print('Processing %s...' % domain)
# file names are pos/{domain}/gweb-{domain}-{dev|test}.conll
splits = ['dev', 'test', 'unlabeled']
for split in splits:
print('Processing %s/%s...' % (domain, split), end='')
if split == 'unlabeled':
file_path = os.path.join(dir_path, 'unlabeled',
'gweb-%s.unlabeled.txt' % (domain))
assert os.path.exists(file_path), ('%s does not exist.' %
file_path)
unlabeled_data = []
with open(file_path,'rb') as f:
for line in f:
line = line.decode('utf-8','ignore').strip().split()
unlabeled_data.append(line)
# add the unlabeled reviews at the third position of the tuple
print('Read %s number of unlabeled sentences' % len(unlabeled_data))
unlabeled_data = unlabeled_data[:top_k_unlabeled]
print('Took top {} documents '.format(top_k_unlabeled))
domain2data[domain][2] = unlabeled_data
else:
if domain == 'wsj' and split == 'test':
file_path = os.path.join(domains_path, domain,
'ontonotes-%s-%s.conll'
% (domain, split))
else:
file_path = os.path.join(domains_path, domain,
'gweb-%s-%s.conll'
% (domain, split))
assert os.path.exists(file_path), ('%s does not exist.' %
file_path)
with open(file_path, 'r') as conll_file_path:
data = list(read_conll(conll_file_path))
domain2data[domain][0] += data
# add pseudo-labels since the model doesn't use explicit
# labels for training
domain2data[domain][1] += [0] * len(data)
domain2data[domain][1] = np.array(domain2data[domain][1])
return domain2data
def read_parsing_evaluation(evaluation_file_path):
"""
Read the labeled attachment score, unlabeled attachment score, and label
accuracy score from a file produced by the parsing evaluation perl
script. The beginning of the file looks like this:
Labeled attachment score: 6995 / 9615 * 100 = 72.75 %
Unlabeled attachment score: 7472 / 9615 * 100 = 77.71 %
Label accuracy score: 8038 / 9615 * 100 = 83.60 %
...
:param evaluation_file_path: the path of the evaluation file produced by the perl script
:return: the labeled attachment score, the unlabeled attachment score, and the label accuracy score
"""
try:
with open(evaluation_file_path, 'r') as f:
lines = f.readlines()
las = float(lines[0].split('=')[1].strip('% \n'))
uas = float(lines[1].split('=')[1].strip('% \n'))
acc = float(lines[2].split('=')[1].strip('% \n'))
except Exception:
las = 0.0
uas = 0.0
acc = 0.0
return las, uas, acc