forked from tensorflow/minigo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsymmetries.py
129 lines (104 loc) · 3.38 KB
/
symmetries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import random
import go
import numpy as np
import tensorflow as tf
"""
Allowable symmetries:
identity [12][34]
rot90 [24][13]
rot180 [43][21]
rot270 [31][42]
flip [13][24]
fliprot90 [34][12]
fliprot180 [42][31]
fliprot270 [21][43]
"""
INVERSES = {
'identity': 'identity',
'rot90': 'rot270',
'rot180': 'rot180',
'rot270': 'rot90',
'flip': 'flip',
'fliprot90': 'fliprot90',
'fliprot180': 'fliprot180',
'fliprot270': 'fliprot270',
}
IMPLS = {
'identity': lambda x: x,
'rot90': np.rot90,
'rot180': functools.partial(np.rot90, k=2),
'rot270': functools.partial(np.rot90, k=3),
'flip': lambda x: np.rot90(np.fliplr(x)),
'fliprot90': np.flipud,
'fliprot180': lambda x: np.rot90(np.flipud(x)),
'fliprot270': np.fliplr,
}
assert set(IMPLS.keys()) == set(INVERSES.keys())
# A symmetry is just a string describing the transformation.
SYMMETRIES = list(INVERSES.keys())
def invert_symmetry(s):
return INVERSES[s]
def apply_symmetry_feat(sym, features):
return IMPLS[sym](features)
def apply_symmetry_pi(s, pi):
pi = np.copy(pi)
# rotate all moves except for the pass move at end
pi[:-1] = IMPLS[s](pi[:-1].reshape([go.N, go.N])).ravel()
return pi
def randomize_symmetries_feat(features):
symmetries_used = [random.choice(SYMMETRIES) for _ in features]
return symmetries_used, [apply_symmetry_feat(s, f)
for s, f in zip(symmetries_used, features)]
def invert_symmetries_pi(symmetries, pis):
return [apply_symmetry_pi(invert_symmetry(s), pi)
for s, pi in zip(symmetries, pis)]
def rotate_train(x, pi):
sym = tf.random_uniform(
[],
minval=0,
maxval=len(SYMMETRIES),
dtype=tf.int32,
seed=123)
def rotate(tensor):
# flipLeftRight
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 1) > 0,
tf.reverse(tensor, axis=[0]),
tensor)
# flipUpDown
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 2) > 0,
tf.reverse(tensor, axis=[1]),
tensor)
# flipDiagonal
tensor = tf.where(
tf.bitwise.bitwise_and(sym, 4) > 0,
tf.transpose(tensor, perm=[1, 0, 2]),
tensor)
return tensor
squares = go.N * go.N
tf.assert_equal(pi.shape.as_list(), [squares + 1])
x_shape = x.shape.as_list()
tf.assert_equal(x_shape, [go.N, go.N, x_shape[2]])
pi_move = tf.slice(pi, [0], [squares], name="slice_moves")
pi_pass = tf.slice(pi, [squares], [1], name="slice_pass")
# Add a final dim so that x and pi have same shape: [N,N,num_features].
pi_n_by_n = tf.reshape(pi_move, [go.N, go.N, 1])
pi_rot = tf.concat(
[tf.reshape(rotate(pi_n_by_n), [squares]), pi_pass],
axis=0)
return rotate(x), pi_rot