Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can't Computing target noise counts per gene for MCKP estimator #365

Open
Deroline10 opened this issue Jun 10, 2024 · 1 comment
Open

Can't Computing target noise counts per gene for MCKP estimator #365

Deroline10 opened this issue Jun 10, 2024 · 1 comment

Comments

@Deroline10
Copy link

Deroline10 commented Jun 10, 2024

(clean_cellbender) derry@PC-20231102INBT:/mnt/d/cellranger$ cellbender remove-background --cuda --input raw_feature_bc_matrix.h5 --output test_output.h5 --epochs 10
cellbender:remove-background: Command:
cellbender remove-background --cuda --input raw_feature_bc_matrix.h5 --output test_output.h5 --epochs 10
cellbender:remove-background: CellBender 0.3.0
cellbender:remove-background: (Workflow hash 504ba9439b)
cellbender:remove-background: 2024-06-10 10:09:21
cellbender:remove-background: Running remove-background
cellbender:remove-background: Loading data from raw_feature_bc_matrix.h5
cellbender:remove-background: CellRanger v3 format
cellbender:remove-background: Features in dataset: 33696 Gene Expression
cellbender:remove-background: Trimming features for inference.
cellbender:remove-background: 25615 features have nonzero counts.
cellbender:remove-background: Prior on counts for cells is 1964
cellbender:remove-background: Prior on counts for empty droplets is 66
cellbender:remove-background: Excluding 8574 features that are estimated to have <= 0.1 background counts in cells.
cellbender:remove-background: Including 17041 features in the analysis.
cellbender:remove-background: Trimming barcodes for inference.
cellbender:remove-background: Excluding barcodes with counts below 33
cellbender:remove-background: Using 5926 probable cell barcodes, plus an additional 12999 barcodes, and 63533 empty droplets.
cellbender:remove-background: Largest surely-empty droplet has 72 UMI counts.
cellbender:remove-background: Attempting to unpack tarball "ckpt.tar.gz" to /tmp/tmp_h3larh4
cellbender:remove-background: Successfully unpacked tarball to /tmp/tmp_h3larh4
/tmp/tmp_h3larh4/75bc50b6be_train.loaderstate
/tmp/tmp_h3larh4/75bc50b6be_test.loaderstate
/tmp/tmp_h3larh4/75bc50b6be_random.pyro
/tmp/tmp_h3larh4/75bc50b6be_optim.torch
/tmp/tmp_h3larh4/posterior.h5
/tmp/tmp_h3larh4/75bc50b6be_optim.pyro
/tmp/tmp_h3larh4/75bc50b6be_args.npy
/tmp/tmp_h3larh4/75bc50b6be_random.cuda
/tmp/tmp_h3larh4/75bc50b6be_params.pyro
/tmp/tmp_h3larh4/75bc50b6be_model.torch
cellbender:remove-background: Workflow hash does not match that of checkpoint.
cellbender:remove-background: No checkpoint loaded.
cellbender:remove-background: Running inference...
cellbender:remove-background: [epoch 001] average training loss: 3500.7271
cellbender:remove-background: [epoch 002] average training loss: 2679.1638 (36.4 seconds per epoch)
cellbender:remove-background: Will not checkpoint due to projected run completion in under 7.0 min
cellbender:remove-background: [epoch 003] average training loss: 2639.3804
cellbender:remove-background: [epoch 004] average training loss: 2630.4355
cellbender:remove-background: [epoch 005] average training loss: 2620.5316
cellbender:remove-background: [epoch 005] average test loss: 2615.8788
cellbender:remove-background: [epoch 006] average training loss: 2604.2858
cellbender:remove-background: [epoch 007] average training loss: 2582.9639
cellbender:remove-background: [epoch 008] average training loss: 2578.5009
cellbender:remove-background: [epoch 009] average training loss: 2571.8616
cellbender:remove-background: [epoch 010] average training loss: 2569.8371
cellbender:remove-background: [epoch 010] average test loss: 2571.3370
cellbender:remove-background: Saving a checkpoint...
cellbender:remove-background: Saved checkpoint as /mnt/d/cellranger/ckpt.tar.gz
cellbender:remove-background: 2024-06-10 10:18:59
cellbender:remove-background: Inference procedure complete.
cellbender:remove-background: Attempting to unpack tarball "ckpt.tar.gz" to /tmp/tmplylrvm7q
cellbender:remove-background: Successfully unpacked tarball to /tmp/tmplylrvm7q
/tmp/tmplylrvm7q/504ba9439b_args.npy
/tmp/tmplylrvm7q/504ba9439b_optim.torch
/tmp/tmplylrvm7q/504ba9439b_train.loaderstate
/tmp/tmplylrvm7q/504ba9439b_random.cuda
/tmp/tmplylrvm7q/504ba9439b_params.pyro
/tmp/tmplylrvm7q/504ba9439b_optim.pyro
/tmp/tmplylrvm7q/504ba9439b_model.torch
/tmp/tmplylrvm7q/504ba9439b_random.pyro
/tmp/tmplylrvm7q/504ba9439b_test.loaderstate
cellbender:remove-background: Posterior not currently included in checkpoint.
cellbender:remove-background: Computing posterior noise count probabilities in mini-batches.
cellbender:remove-background: Working on chunk (1/99)
cellbender:remove-background: [0.09 mins per chunk]
cellbender:remove-background: Working on chunk (2/99)
cellbender:remove-background: Working on chunk (3/99)
......
cellbender:remove-background: Working on chunk (96/99)
cellbender:remove-background: Working on chunk (97/99)
cellbender:remove-background: Working on chunk (98/99)
cellbender:remove-background: Working on chunk (99/99)
cellbender:remove-background: Writing full posterior to test_output_posterior.h5
cellbender:remove-background: Succeeded in writing posterior to file test_output_posterior.h5
cellbender:remove-background: Added posterior object to checkpoint file.
cellbender:remove-background: 2024-06-10 10:32:51

cellbender:remove-background: Saved summary plots as test_output.pdf
cellbender:remove-background: Saved cell barcodes in test_output_cell_barcodes.csv
cellbender:remove-background: ****Computing target noise counts per gene for MCKP estimator
Traceback (most recent call last):
File "/home/derry/miniconda3/envs/clean_cellbender/bin/cellbender", line 10, in
sys.exit(main())
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/base_cli.py", line 118, in main
cli_dict[args.tool].run(args)
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/remove_background/cli.py", line 185, in run
return main(args)
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/remove_background/cli.py", line 230, in main
posterior = run_remove_background(args)
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/remove_background/run.py", line 133, in run_remove_background
file_name=file_name,
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/remove_background/run.py", line 237, in compute_output_denoised_counts_reports_metrics
per_gene=True,
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/remove_background/posterior.py", line 1579, in compute_mean_target_removal_as_function
device=device,
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/remove_background/estimation.py", line 147, in estimate_noise
device=device)
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/remove_background/estimation.py", line 822, in apply_function_dense_chunks
s = fun(dense_tensor, **kwargs)
File "/home/derry/miniconda3/envs/clean_cellbender/lib/python3.7/site-packages/cellbender/remove_background/estimation.py", line 143, in _torch_mean
return torch.matmul(x.exp(), c.t())
RuntimeError: CUDA error: unknown error

@Deroline
Copy link

Issue
While working on a project that involved intensive computation, I encountered a persistent issue: RuntimeError: CUDA error: unknown error. This error occurred when I was using an NVIDIA GeForce 1060 6G GPU, which seemed inadequate for the tasks I was running.

Solution
To address the problem, I decided to upgrade my hardware. I opted to rent a server equipped with a more powerful GPU, specifically the NVIDIA GeForce 3090 24G. This change provided a significant improvement in performance.

Here is my workflow, I hope it will be helpful to everyone.

Step 1: Create the Environment
#First, create a new Conda environment named CB with Python 3.7:
conda create -n CB python=3.7
Step 2: Activate the Environment
#Activate the newly created Conda environment:
conda activate CB
Step 3: Install CUDA 11.7
#Install CUDA Toolkit version 11.7 from the Conda-Forge channel:
conda install -c conda-forge cudatoolkit=11.7
Step 4: Install CUDA-Related Components
#Install PyTorch and related libraries that are compatible with CUDA 11.7. This step ensures that you have the necessary components to leverage GPU acceleration:
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
Step 5: Verify the Installation
#Verify that CUDA is available in your PyTorch installation by running the following command. It should return True, indicating that CUDA is properly set up:
python -c "import torch; print(torch.cuda.is_available())"
Step 6: Install CellBender
#Install CellBender to complete the setup:
pip install cellbender
Step 7: Ensure HTML Report Generation Capability
#To ensure that you can generate HTML reports, install the necessary Python package:
pip install lxml_html_clean

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants