forked from amazon-science/iwslt-autodub-task
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing_scripts.py
146 lines (124 loc) · 5.14 KB
/
preprocessing_scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import numpy
from matplotlib import pyplot as plt
from scipy import stats
class Bin:
def __init__(self, durations_freq, n=200):
list_durations = []
for key in durations_freq.keys():
for _ in range(durations_freq[key]):
list_durations.append(key)
durations = numpy.array(list_durations)
bins = stats.mstats.mquantiles(durations, [i/n for i in range(0, n + 1)])
self.bins = numpy.array(bins)
def find_bin(self, speech_durations, plot=False):
assigned_bins = []
if plot:
plt.ylabel("# times this duration is observed in our data")
plt.xlabel("Durations")
plt.hist(speech_durations, self.bins, edgecolor="k")
plt.show()
ind_bins = numpy.digitize(speech_durations, self.bins)
for ind in ind_bins:
assigned_bins.append('<bin{}>'.format(ind))
return assigned_bins
def load_tsv(path):
dict_audio = {}
for i, split in enumerate(["train", "dev", "test"]):
with open(os.path.join(path, "covost_v2.en_de.{}.tsv".format(split))) as f:
lines = f.readlines()
dict_audio[split] = {}
for line in lines:
fields = line.split("\t")
name = fields[0].split(".")[0]
# dict_audio[split][name] = fields[1].strip('\"')
# fields[1] -> English, fields[2] -> German
dict_audio[split][name] = [fields[1].strip('\"'), fields[2].strip('\"')]
return dict_audio["train"], dict_audio["dev"], dict_audio["test"]
def get_speech_durations(tier, duration_freq=None, count_jsons_with_silences=0, return_durations=False, return_text=False):
sampling_rate = 22050
hop_length = 256
sil_phones = ["sil", "sp", "spn", '']
phones = []
# print("We consider as silence everything that has silent phonemes for > {} frames".format(silence_duration))
# 26 frames
end_of_word_sec = []
pause_durations = []
text = []
counter_dur = 0
durations_list = []
for i, k in enumerate(tier['tiers']['words']['entries']):
s, e, p = k[0], k[1], k[2]
end_of_word_sec.append(e)
if return_text:
text.append(p)
for i, k in enumerate(tier['tiers']['phones']['entries']):
s, e, p = k[0], k[1], k[2]
# Trim leading silences
if phones == []:
if p in sil_phones:
continue
phone_duration = (int(np.round(e * sampling_rate / hop_length) - np.round(s * sampling_rate / hop_length)))
if p in sil_phones:
if e - s >= 0.3 and return_durations:
if phones[-1] != '[pause]':
phones.append('[pause]')
if counter_dur > 0:
durations_list.append(counter_dur)
counter_dur = 0
pause_durations.append(str(int(np.round(e * sampling_rate / hop_length) - np.round(s * sampling_rate / hop_length))))
else:
phones.append('sp')
if return_durations:
phones.append(str(phone_duration))
counter_dur += phone_duration
else:
phones.append(p)
if return_durations:
phones.append(str(phone_duration))
counter_dur += phone_duration
if e in end_of_word_sec:
phones.append('<eow>')
if counter_dur != 0:
durations_list.append(counter_dur)
# trim trailing silences
for i in range(5):
if phones[-1] == '[pause]' and return_durations:
pause_durations = pause_durations[:-1]
if phones[-1] in ['[pause]', 'sp']:
phones = phones[:-1]
if len(durations_list) > 1 and return_durations:
count_jsons_with_silences += 1
if return_durations:
for duration in durations_list:
duration_freq[duration] += 1
if not pause_durations:
pause_durations = [str(0)]
return phones, duration_freq, count_jsons_with_silences, durations_list, pause_durations, " ".join(text)
def add_noise_to_durations(durations, sd, upsampling):
noise = np.random.normal(0, sd, upsampling * len(durations))
noisy_durations = []
k = 0
for duration in durations:
noisy_duration_temp = []
for i in range(upsampling):
noisy = duration + noise[k + i] * duration
noisy_duration_temp.append(noisy)
# print(noisy)
noisy_durations.append(noisy_duration_temp)
k += upsampling
return noisy_durations