-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmprocess.cpp
4096 lines (3975 loc) · 119 KB
/
mprocess.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (C) 2003-2004 Ronald C Beavis, all rights reserved
X! tandem
This software is a component of the X! proteomics software
development project
Use of this software governed by the Artistic license, as reproduced here:
The Artistic License for all X! software, binaries and documentation
Preamble
The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.
Definitions
"Package" refers to the collection of files distributed by the Copyright
Holder, and derivatives of that collection of files created through
textual modification.
"Standard Version" refers to such a Package if it has not been modified,
or has been modified in accordance with the wishes of the Copyright
Holder as specified below.
"Copyright Holder" is whoever is named in the copyright or copyrights
for the package.
"You" is you, if you're thinking about copying or distributing this Package.
"Reasonable copying fee" is whatever you can justify on the basis of
media cost, duplication charges, time of people involved, and so on.
(You will not be required to justify it to the Copyright Holder, but
only to the computing community at large as a market that must bear
the fee.)
"Freely Available" means that no fee is charged for the item itself,
though there may be fees involved in handling the item. It also means
that recipients of the item may redistribute it under the same
conditions they received it.
1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that
you duplicate all of the original copyright notices and associated
disclaimers.
2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A
Package modified in such a way shall still be considered the Standard
Version.
3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:
a. place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet
or an equivalent medium, or placing the modifications on a major
archive site such as uunet.uu.net, or by allowing the Copyright Holder
to include your modifications in the Standard Version of the Package.
b. use the modified Package only within your corporation or organization.
c. rename any non-standard executables so the names do not conflict
with standard executables, which must also be provided, and provide
a separate manual page for each non-standard executable that clearly
documents how it differs from the Standard Version.
d. make other distribution arrangements with the Copyright Holder.
4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:
a. distribute a Standard Version of the executables and library files,
together with instructions (in the manual page or equivalent) on
where to get the Standard Version.
b. accompany the distribution with the machine-readable source of the
Package with your modifications.
c. give non-standard executables non-standard names, and clearly
document the differences in manual pages (or equivalent), together
with instructions on where to get the Standard Version.
d. make other distribution arrangements with the Copyright Holder.
5. You may charge a reasonable copying fee for any distribution of
this Package. You may charge any fee you choose for support of
this Package. You may not charge a fee for this Package itself.
However, you may distribute this Package in aggregate with other
(possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you do not a
dvertise this Package as a product of your own. You may embed this
Package's interpreter within an executable of yours (by linking);
this shall be construed as a mere form of aggregation, provided that
the complete Standard Version of the interpreter is so embedded.
6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whomever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing
a binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you
do not represent such an executable image as a Standard Version of
this Package.
7. C subroutines (or comparably compiled subroutines in other languages)
supplied by you and linked into this Package in order to emulate
subroutines and variables of the language defined by this Package
shall not be considered part of this Package, but are the equivalent
of input as in Paragraph 6, provided these subroutines do not change
the language in any way that would cause it to fail the regression
tests for the language.
8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.
9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.
10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The End
*/
// File version: 2004-02-01
// File version: 2004-03-01
// File version: 2004-03-01
// File version: 2004-07-12
// File version: 2004-10-05
// File version: 2004-11-01
// File version: 2005-01-01
/*
Modified 2010 Insilicos LLC for MapReduce X!Tandem
*/
/*
* the process object coordinates the function of tandem. it contains the information
* loaded from the input XML file in the m_xmlValues object and performance
* information in the m_xmlPerformance object. The mass spectra to be analyzed are
* in the m_vSpectra vector container. A set of input parameters are used to
* initialize constants that are used in processing the mass spectra.
* NOTE: see tandem.cpp for an example of how to use an mprocess class
* NOTE: mprocess uses cout to report errors. This may not be appropriate for
* many applications. Feel free to change this to a more appropriate mechanism
*/
#include "stdafx.h"
#include <algorithm>
#include <set>
#include "msequence.h"
#include "msequencecollection.h"
#include "msequenceserver.h"
#include "msequtilities.h"
#include "mspectrum.h"
#include "loadmspectrum.h"
#include "xmlparameter.h"
#include "mscore.h"
#include "mprocess.h"
#include "saxbiomlhandler.h"
#include "saxsaphandler.h"
#include "saxmodhandler.h"
#include "xmltaxonomy.h"
#include "mbiomlreport.h"
#include "mrefine.h"
#ifdef HAVE_MULTINODE_TANDEM // support for Hadoop and/or MPI?
#include "mapreducehelper.h"
#endif
// #define TANDEM_EXACT 1
/*
* global less than operators to be used in sort operations
*/
bool lessThanSequence(const msequence &_l,const msequence &_r);
bool lessThanSequenceUid(const msequence &_l,const msequence &_r);
bool lessThanSequenceDes(const msequence &_l,const msequence &_r);
bool lessThanSpectrum(const mspectrum &_l,const mspectrum &_r);
bool lessThanOrder(const mspectrum &l,const mspectrum &r);
bool lessThanMass(const mi &_l,const mi &_r);
bool lessThanSequence(const msequence &_l,const msequence &_r)
{
return _l.m_dExpect < _r.m_dExpect;
}
bool lessThanSequenceUid(const msequence &_l,const msequence &_r)
{
return _l.m_tUid < _r.m_tUid;
}
bool lessThanSequenceDes(const msequence &_l,const msequence &_r)
{
return _l.m_strDes.size() < _r.m_strDes.size();
}
bool lessThanSpectrum(const mspectrum &_l,const mspectrum &_r)
{
return _l.m_dProteinExpect < _r.m_dProteinExpect;
}
bool lessThanSpectrumSequence(const mspectrum &_l,const mspectrum &_r)
{
if(_l.m_vseqBest.empty())
return false;
if(_r.m_vseqBest.empty())
return true;
return _l.m_dExpect < _r.m_dExpect;
}
bool lessThanOrder(const mspectrum &_l,const mspectrum &_r)
{
if(_l.m_vseqBest.empty())
return false;
if(_r.m_vseqBest.empty())
return true;
return _l.m_vseqBest[0].m_vDomains[0].m_lS < _r.m_vseqBest[0].m_vDomains[0].m_lS;
}
bool lessThanMass(const mi &_l,const mi &_r)
{
return _l.m_fM < _r.m_fM;
}
mprocess::mprocess(void)
{
m_iCurrentRound = 1;
m_lReversed = -1;
m_tMissedCleaves = 1;
/*
* record the process start time
*/
time_t tValue;
time(&tValue);
struct tm *tmValue = localtime(&tValue);
char pLine[256];
strftime(pLine, 255,"%Y:%m:%d:%H:%M:%S",tmValue);
string strKey;
string strValue;
strKey = "process, start time";
strValue = pLine;
m_xmlPerformance.set(strKey,strValue);
/*
* record the version of the software
*/
strKey = "process, version";
#ifdef X_P3
strValue = "x! p3 ";
#else
strValue = "x! tandem ";
#endif
strValue += VERSION;
m_xmlPerformance.set(strKey,strValue);
m_tProteinCount = 0;
m_tPeptideCount = 0;
m_tTotalResidues = 0;
m_tPeptideScoredCount = 0;
m_tMinResidues = 0;
m_lThread = 0;
m_lThreads = 1;
m_tValid = 0;
m_tUnique = 0;
m_tSpectraTotal = 0;
m_bUn = false;
m_tSeqSize = 4096*4;
m_pSeq = new char[m_tSeqSize];
m_lStartMax = 100000000;
m_dThreshold = 1000.0;
m_tRefineInput = 0;
m_tRefinePartial = 0;
m_tRefineUnanticipated = 0;
m_tRefineNterminal = 0;
m_tRefineCterminal = 0;
m_tRefinePam = 0;
m_tRefineModels = 0;
m_tContrasted = 0;
m_bUseHomologManagement = false;
m_pScore = NULL;
m_lCStartMax = 50;
m_bCrcCheck = false;
m_bRefineCterm = false;
m_semiState.activate(false);
m_tActive = 0;
m_bReversedOnly = false;
m_bSaps = false;
m_bAnnotation = false;
m_bPermute = false; // bpratt 9-7-2010
m_bPermuteHigh = false; // bpratt 9-7-2010
m_pRefine = NULL; // bpratt 9-7-2010
m_dRefineTime = 0; // bpratt 9-7-2010
}
mprocess::~mprocess(void)
{
if(m_pSeq != NULL)
delete m_pSeq;
if(m_pScore != NULL)
delete m_pScore;
if(m_lThread == 0 || m_lThread == 0xFFFFFFFF) {
m_prcLog.log("X! Tandem exiting");
m_prcLog.close();
}
long a = 0;
}
/*
* add spectra is used to load spectra into the m_vSpectra vector
*/
bool mprocess::add_spectra(vector<mspectrum> &_v)
{
size_t a = 0;
// changed from m_vSpectra.resize(m_vSpectra.size() + _v.size()+1) in 2006.02.01
m_vSpectra.reserve(m_vSpectra.size() + _v.size()+1);
size_t c = 0;
while(a < _v.size()) {
m_vSpectra.push_back(_v[a]);
if(c == 1000) {
cout << ".";
cout.flush();
c = 0;
}
c++;
a++;
}
return true;
}
/*
* clean_sequences is used to maintain the m_mapSequences container. If a sequence
* has been removed from the m_vSpectra list of sequences, then that sequence is
* subsequently deleted from the m_mapSequences collection
*/
bool mprocess::clean_sequences(void)
{
map<size_t,long> mapValue;
map<size_t,long>::iterator itMap;
size_t a = 0;
size_t b = 0;
size_t tLength = m_vSpectra.size();
size_t tBest = 0;
while(a < tLength) {
b = 0;
tBest = m_vSpectra[a].m_vseqBest.size();
while(b < tBest) {
mapValue[m_vSpectra[a].m_vseqBest[b].m_tUid] = 1;
b++;
}
a++;
}
SEQMAP::iterator itValue = m_mapSequences.begin();
while(itValue != m_mapSequences.end()) {
itMap = mapValue.find((*itValue).first);
if(itMap == mapValue.end()) {
m_mapSequences.erase(itValue);
itValue = m_mapSequences.begin();
}
else {
itValue++;
}
}
return true;
}
/*
* clear is used to reset any vector or map object necessary to reset the mprocess object
*/
bool mprocess::clear(void)
{
m_vSpectra.clear();
if (m_pScore != NULL)
m_pScore->clear();
return true;
}
/*
* create_rollback is used to create a vector of mspectrum objects that serves as
* the record of values to be used by the rollback method.
*/
bool mprocess::create_rollback(vector<mspectrum>& _v)
{
_v.clear();
size_t a = 0;
const size_t tSize = m_vSpectra.size();
mspectrum spTemp;
double dExpect = 0;
_v.reserve(tSize);
while(a < tSize) {
_v.push_back(spTemp);
_v.back() *= m_vSpectra[a];
m_vSpectra[a].m_hHyper.model();
m_vSpectra[a].m_hHyper.set_protein_factor(1.0);
dExpect = (double)m_vSpectra[a].m_hHyper.expect_protein(m_pScore->hconvert(m_vSpectra[a].m_fHyper));
_v.back().m_dExpect = dExpect;
a++;
}
return true;
}
/*
* create_score takes an msequence object and a start and an end sequence position
* and saves that msequence, its mdomain and scoring in the spectrum that has just
* been scored. equivalent msequence objects (based on their hyper score)
* are stored sequentially in a vector in the mspectrum object
*/
bool mprocess::create_score(const msequence &_s,const size_t _v,const size_t _w,const long _m,bool _p)
{
long lIonCount = 0;
float fScore = -1.0;
float fHyper = -1.0;
size_t a = 0;
size_t b = 0;
size_t c = 0;
bool bOk = false;
bool bDom = false;
long lCount = 0;
bool bIonCheck = false;
bool bMassCheck = false;
/*
* score each mspectrum identified as a candidate in the m_pScore->m_State object
*/
while(lCount < m_pScore->m_State.m_lEqualsS) {
a = m_pScore->m_State.m_plEqualsS[lCount];
lCount++;
lIonCount = 0;
/*
* this check is needed to keep tandem consistent whether running on
* single-threaded, multi-threaded or on a cluster. otherwise, when
* there are multiple spectra matching a sequence (which is more common
* the fewer mprocess objects there are) one can cause others to score
* more permutation sequences.
*/
if (!_p && m_vSpectra[a].m_hHyper.m_ulCount >= 400)
continue;
fScore = 1.0;
fHyper = 1.0;
m_pScore->m_lMaxCharge = (long)(m_vSpectra[a].m_fZ+0.1);
/*
* in versions prior to 2004.03.01, spectra with m_bActive == false were
* rejected at this point, to save time & because of a problem with
* multiple recording of the same sequence. starting with 2004.03.01,
* the later problem has been corrected, and because of point mutation
* analysis, it has become important to reexamine all sequences.
*/
fScore = m_pScore->score(a);
fHyper = m_pScore->m_fHyper;
/*
* If the convolution score is greater than 2.0, record information in the ion-type histograms
*/
if(fScore > 2.0) {
m_tPeptideScoredCount++;
lIonCount = m_pScore->m_plCount[mscore::S_B] + m_pScore->m_plCount[mscore::S_Y];
lIonCount += m_pScore->m_plCount[mscore::S_C] + m_pScore->m_plCount[mscore::S_Z];
lIonCount += m_pScore->m_plCount[mscore::S_A] + m_pScore->m_plCount[mscore::S_X];
m_vSpectra[a].m_hHyper.add(m_pScore->hconvert(fHyper));
m_vSpectra[a].m_hConvolute.add(log10(m_pScore->hconvert(fScore)));
m_vSpectra[a].m_chBCount.add(m_pScore->m_plCount[mscore::S_A] +
m_pScore->m_plCount[mscore::S_B] +
m_pScore->m_plCount[mscore::S_C]);
m_vSpectra[a].m_chYCount.add(m_pScore->m_plCount[mscore::S_X] +
m_pScore->m_plCount[mscore::S_Y] +
m_pScore->m_plCount[mscore::S_Z]);
}
/*
* this check is must be outside the above conditional to keep tandem
* consistent whether running on single-threaded, multi-threaded or on
* a cluster. otherwise, when there are multiple spectra matching a
* sequence (which is more common the fewer mprocess objects there are)
* one can cause others to score differently from how they would score
* alone.
*/
if (m_vSpectra[a].m_hHyper.m_ulCount < 400) {
if(m_bCrcCheck && _p) {
m_bPermute = true;
}
else if(m_vSpectra[a].m_dMH > 3000.0) {
m_bPermuteHigh = true;
}
}
bIonCheck = false;
if(lIonCount > m_lIonCount) {
// if( (m_pScore->m_plCount[mscore::S_A] || m_pScore->m_plCount[mscore::S_B] || m_pScore->m_plCount[mscore::S_C]) &&
// (m_pScore->m_plCount[mscore::S_X] || m_pScore->m_plCount[mscore::S_Y] || m_pScore->m_plCount[mscore::S_Z])) {
bIonCheck = true;
// }
}
bMassCheck = m_errValues.check(m_vSpectra[a].m_dMH,m_pScore->seq_mh());
if(!_p) {
bMassCheck = false;
}
/*
* if the same score has been recorded for another peptide in the same msequence object,
* add a domain to that object, but do not update the entire object
*/
if(bMassCheck && bIonCheck && fHyper == m_vSpectra[a].m_fHyper && m_vSpectra[a].m_tCurrentSequence == _s.m_tUid) {
vector<maa> vAa;
mdomain domValue;
domValue.m_vAa.clear();
double dDelta = 0.0;
if(m_pScore->get_aa(vAa,_v,dDelta)) {
b = 0;
while(b < vAa.size()) {
domValue.m_vAa.push_back(vAa[b]);
b++;
}
}
if(fabs(dDelta) > 2.5) {
domValue.m_fScore = fScore;
domValue.m_fHyper = fHyper;
domValue.m_dMH = m_pScore->seq_mh();
// m_fDelta was changed to m_dDelta in 2006.02.01
domValue.m_dDelta = m_vSpectra[a].m_dMH - m_pScore->seq_mh();
domValue.m_lE = _w;
domValue.m_lS = _v;
domValue.m_lMissedCleaves = _m;
domValue.m_bUn = m_bUn;
unsigned long lType = 1;
unsigned long sType = 1;
while(lType < m_pScore->m_lType+1) {
domValue.m_mapScore[lType] = m_pScore->m_pfScore[sType];
domValue.m_mapCount[lType] = m_pScore->m_plCount[sType];
lType *= 2;
sType++;
}
b = 0;
bOk = true;
while(bOk && b < m_vSpectra[a].m_vseqBest.back().m_vDomains.size()) {
if(domValue == m_vSpectra[a].m_vseqBest.back().m_vDomains[b]){
bOk = false;
}
b++;
}
if(bOk) {
m_vSpectra[a].m_vseqBest.back().m_vDomains.push_back(domValue);
}
}
}
/*
* if the same hyper score has been recorded for a different msequence object, retain that
* object and add the new msequence to the back of the m_vseqBest vector
*/
else if(bMassCheck && bIonCheck && fHyper == m_vSpectra[a].m_fHyper) {
vector<maa> vAa;
msequence seqValue;
mdomain domValue;
domValue.m_vAa.clear();
double dDelta = 0.0;
if(m_pScore->get_aa(vAa,_v,dDelta)) {
b = 0;
while(b < vAa.size()) {
domValue.m_vAa.push_back(vAa[b]);
b++;
}
}
if(fabs(dDelta) > 2.5) {
domValue.m_fScore = fScore;
domValue.m_fHyper = fHyper;
domValue.m_dMH = m_pScore->seq_mh();
// m_fDelta was changed to m_dDelta in 2006.02.01
domValue.m_dDelta = m_vSpectra[a].m_dMH - m_pScore->seq_mh();
domValue.m_lE = _w;
domValue.m_lS = _v;
domValue.m_lMissedCleaves = _m;
domValue.m_bUn = m_bUn;
unsigned long lType = 1;
unsigned long sType = 1;
while(lType < m_pScore->m_lType+1) {
domValue.m_mapScore[lType] = m_pScore->m_pfScore[sType];
domValue.m_mapCount[lType] = m_pScore->m_plCount[sType];
lType *= 2;
sType++;
}
seqValue = _s;
seqValue.m_strSeq = " ";
m_mapSequences.insert(SEQMAP::value_type(_s.m_tUid,_s.m_strSeq));
seqValue.m_vDomains.clear();
seqValue.m_vDomains.push_back(domValue);
seqValue.format_description();
bOk = true;
b = 0;
while(bOk && b < m_vSpectra[a].m_vseqBest.size()) {
if(m_vSpectra[a].m_vseqBest[b].m_tUid == _s.m_tUid) {
c = 0;
bDom = true;
while(bDom && c < m_vSpectra[a].m_vseqBest[b].m_vDomains.size()) {
if(m_vSpectra[a].m_vseqBest[b].m_vDomains[c] == domValue) {
bDom = false;
bOk = false;
}
c++;
}
if(bDom) {
m_vSpectra[a].m_vseqBest[b].m_vDomains.push_back(domValue);
bOk = false;
}
}
b++;
}
if(bOk) {
m_vSpectra[a].m_tCurrentSequence = _s.m_tUid;
seqValue.m_iRound = m_iCurrentRound;
m_vSpectra[a].m_vseqBest.push_back(seqValue);
}
}
}
/*
* if the hyper score is the best found so far for the mspectrum, delete the old msequence
* objects and record this one.
*/
else if(bMassCheck && bIonCheck && fHyper > m_vSpectra[a].m_fHyper && lIonCount > m_lIonCount) {
vector<maa> vAa;
msequence seqValue;
mdomain domValue;
domValue.m_vAa.clear();
double dDelta = 0.0;
if(m_pScore->get_aa(vAa,_v,dDelta)) {
b = 0;
while(b < vAa.size()) {
domValue.m_vAa.push_back(vAa[b]);
b++;
}
}
if(fabs(dDelta) > 2.5) {
m_vSpectra[a].m_fScoreNext = m_vSpectra[a].m_fScore;
m_vSpectra[a].m_fHyperNext = m_vSpectra[a].m_fHyper;
m_vSpectra[a].m_fScore = fScore;
m_vSpectra[a].m_fHyper = fHyper;
domValue.m_fScore = fScore;
domValue.m_fHyper = fHyper;
domValue.m_lE = _w;
domValue.m_lS = _v;
domValue.m_lMissedCleaves = _m;
domValue.m_dMH = m_pScore->seq_mh();
// m_fDelta was changed to m_dDelta in 2006.02.01
domValue.m_dDelta = m_vSpectra[a].m_dMH - m_pScore->seq_mh();
domValue.m_bUn = m_bUn;
unsigned long lType = 1;
unsigned long sType = 1;
while(lType < m_pScore->m_lType+1) {
domValue.m_mapScore[lType] = m_pScore->m_pfScore[sType];
domValue.m_mapCount[lType] = m_pScore->m_plCount[sType];
lType *= 2;
sType++;
}
seqValue = _s;
seqValue.m_strSeq = " ";
m_mapSequences.insert(SEQMAP::value_type(_s.m_tUid,_s.m_strSeq));
seqValue.m_vDomains.clear();
seqValue.m_vDomains.push_back(domValue);
seqValue.format_description();
m_vSpectra[a].m_tCurrentSequence = _s.m_tUid;
m_vSpectra[a].m_vseqBest.clear();
seqValue.m_iRound = m_iCurrentRound;
m_vSpectra[a].m_vseqBest.push_back(seqValue);
}
}
else if (fScore > 2.0 && fHyper > m_vSpectra[a].m_fHyperNext)
{
m_vSpectra[a].m_fScoreNext = fScore;
m_vSpectra[a].m_fHyperNext = fHyper;
}
}
return true;
}
//
// This method is used to perform an inner product between two mass spectra. The fragment
// ion mass accuracy is used to set the binning for the two vectors
//
__inline__ double mprocess::dot(const size_t _f,const size_t _s,const float _r,const bool _t)
{
float fValue = 0.0;
vector<mi>::iterator itA = m_vSpectra[_f].m_vMI.begin();
vector<mi>::iterator itB = m_vSpectra[_s].m_vMI.begin();
vector<mi>::const_iterator itAEnd = m_vSpectra[_f].m_vMI.end();
vector<mi>::const_iterator itBEnd = m_vSpectra[_s].m_vMI.end();
// if _t == true, then the mass error, _r, is given in Daltons
if(_t) {
while(itA != itAEnd) {
while(itB != itBEnd) {
if(fabs(itB->m_fM - itA->m_fM) <= _r) {
fValue += itB->m_fI*itA->m_fI;
}
if(itB->m_fM > itA->m_fM) {
break;
}
itB++;
}
itA++;
}
}
// deal with the case where _r is in ppm
else {
const float fRes = (float)(_r/1.0e6);
float fW = fRes;
while(itA != itAEnd) {
fW = itA->m_fM * fRes;
while(itB != itBEnd) {
if(fabs(itB->m_fM - itA->m_fM) <= fW) {
fValue += itB->m_fI*itA->m_fI;
}
if(itB->m_fM > itA->m_fM) {
break;
}
itB++;
}
itA++;
}
}
return (double)fValue;
}
/*
* expect_protein is used to assign the expectation value for a protein, if more
* than one peptide has been found for that protein. the expectation values for
* the peptides are combined with a simple Bayesian model for the probability of
* having two peptides from the same protein having the best score in different
* spectra.
*/
double mprocess::expect_protein(const unsigned long _c,const unsigned long _t,
const unsigned long _n,const double _d)
{
double dValue = _d+log10((double)m_tProteinCount);
if(_c == 1 && _d < 0.0) {
return _d;
}
else if(_c == 1) {
return 1.0;
}
if(_c == 0) {
return 1.0;
}
double dN = _n;
double dK = _c;
double dV = _t;
unsigned long a = 0;
while(a < _c) {
dValue += log10((dV - a)/(dK - a));
a++;
}
dValue -= log10(dV);
dValue -= (dK-1.0)*log10(dN);
double dP = dN/(double)m_tPeptideCount;
if(dP >= 1.0)
dP = 0.9999999;
double dLog = dK*log10(dP)+(dV-dK)*log10(1.0-dP);
dValue += dLog;
return dValue;
}
/*
* get_peptide_count returns the total number of peptides that have been scored
*/
size_t mprocess::get_peptide_count()
{
return m_tPeptideCount;
}
/*
* get_protein_count returns the total number of proteins that have been scored
*/
size_t mprocess::get_protein_count()
{
return m_tProteinCount;
}
/*
* get_reversed returns the number of significant reverse peptide sequences
*/
long mprocess::get_reversed()
{
return m_lReversed;
}
/*
* get_thread returns the thread number for the object
*/
unsigned long mprocess::get_thread()
{
return m_lThread;
}
/*
* get_threads returns the total number of threads currently in use
*/
unsigned long mprocess::get_threads()
{
return m_lThreads;
}
/*
* get_threshold returns the current value of the expectation value threshold
*/
double mprocess::get_threshold()
{
return m_dThreshold;
}
/*
* get_total_residues returns the total number of residues that have been processed
*/
size_t mprocess::get_total_residues()
{
return m_tTotalResidues;
}
/*
* get_valid returns the number of unique models
*/
size_t mprocess::get_unique()
{
return m_tUnique;
}
/*
* get_valid returns the number of valid models
*/
size_t mprocess::get_valid()
{
return m_tValid;
}
/*
* load takes a path name to the input XML parameter file and uses that file name
* to initialize an XmlParameters object
*/
bool mprocess::load(const char *_f,mprocess *_p)
{
/*
* check the string
*/
if(_f == NULL)
return false;
string strFile = _f;
/*
* load the m_xmlValues object
*/
bool bReturn = m_xmlValues.load(strFile);
if(!bReturn) {
cout << "The input parameter file \"" << strFile.c_str() << "\" could not be located.\nCheck the file path name and try again.\n";
return false;
}
/*
* check for the specification of a default parameter list
*/
string strValue;
string strKey = "list path, default parameters";
if(m_xmlValues.get(strKey,strValue)) {
/*
* if there is a default parameter list, load it and then reload the input list
* the input list will over ride all settings in the default list
*/
m_xmlValues.load(strValue);
m_xmlValues.load(strFile);
strKey = "list path, default parameters";
m_xmlValues.get(strKey,strValue);
}
/*
* if a parameter list was found, load the msequenceServer object with the taxonomy information
*/
if(bReturn) {
bReturn = taxonomy();
}
/*
* if the msequenceServer object was loaded, create the scoring object
*/
if (bReturn) {
m_pScore = mscoremanager::create_mscore(m_xmlValues);
if (m_pScore != NULL) {
bReturn = m_pScore->load_param(m_xmlValues);
}
else {
bReturn = false;
}
}
/*
* if the scoring object was loaded, load parameters
*/
if (bReturn) {
bReturn = (m_specCondition.load(m_xmlValues));
}
/*
* if the msequenceServer object was loaded, obtain the tandem MS spectra to analyze
*/
if(bReturn) {
bReturn = spectra();
strKey = "spectrum, check all charges";
m_xmlValues.get(strKey,strValue);
if(bReturn && strValue == "yes") {
charge();
cout << "#";
}
}
if(bReturn) {
bReturn = load_saps(_p);
}
if(bReturn) {
bReturn = load_annotation(_p);
}
/*
* load the msequenceutilities object in the m_pScore member class with the amino acid
* modification information
*/
if(bReturn) {
bReturn = modify();
}
return bReturn;
}
/*
* charge adds additional charge states to the vector of spectra, generating
* +1, +2 and +3 charge states
*/
bool mprocess::charge(void)
{
size_t a = 0;
size_t tLength = m_vSpectra.size();
while(a < tLength) {
if(m_vSpectra[a].m_tId > 100000000) {
return true;
}
a++;
}
a = 0;
size_t tTest = 0;
int iZ = 1;
double dProton = 1.007276;
double dMH = 0.0;
while(a < tLength) {
tTest = m_vSpectra[a].m_tId + 100000000;
iZ = (int)(m_vSpectra[a].m_fZ+0.5);
if(iZ == 2) {
m_vSpectra.push_back(m_vSpectra[a]);
m_vSpectra.back().m_fZ = 3.0;
dMH = dProton + ((m_vSpectra[a].m_dMH - dProton)/m_vSpectra[a].m_fZ);
m_vSpectra.back().m_dMH = dProton + ((dMH - dProton)*m_vSpectra.back().m_fZ);
m_vSpectra.back().m_tId = tTest;
m_vSpectra.push_back(m_vSpectra[a]);
m_vSpectra.back().m_fZ = 1.0;
dMH = dProton + ((m_vSpectra[a].m_dMH - dProton)/m_vSpectra[a].m_fZ);
m_vSpectra.back().m_dMH = dProton + ((dMH - dProton)*m_vSpectra.back().m_fZ);
m_vSpectra.back().m_tId = tTest + 100000000;
}
else if(iZ == 3) {
m_vSpectra.push_back(m_vSpectra[a]);
m_vSpectra.back().m_fZ = 2.0;
dMH = dProton + ((m_vSpectra[a].m_dMH - dProton)/m_vSpectra[a].m_fZ);
m_vSpectra.back().m_dMH = dProton + ((dMH - dProton)*m_vSpectra.back().m_fZ);
m_vSpectra.back().m_tId = tTest;
m_vSpectra.push_back(m_vSpectra[a]);
m_vSpectra.back().m_fZ = 1.0;
dMH = dProton + ((m_vSpectra[a].m_dMH - dProton)/m_vSpectra[a].m_fZ);
m_vSpectra.back().m_dMH = dProton + ((dMH - dProton)*m_vSpectra.back().m_fZ);
m_vSpectra.back().m_tId = tTest + 100000000;
}
else if(iZ == 1) {
m_vSpectra.push_back(m_vSpectra[a]);
m_vSpectra.back().m_fZ = 2.0;
dMH = dProton + ((m_vSpectra[a].m_dMH - dProton)/m_vSpectra[a].m_fZ);
m_vSpectra.back().m_dMH = dProton + ((dMH - dProton)*m_vSpectra.back().m_fZ);
m_vSpectra.back().m_tId = tTest;
m_vSpectra.push_back(m_vSpectra[a]);
m_vSpectra.back().m_fZ = 3.0;
dMH = dProton + ((m_vSpectra[a].m_dMH - dProton)/m_vSpectra[a].m_fZ);
m_vSpectra.back().m_dMH = dProton + ((dMH - dProton)*m_vSpectra.back().m_fZ);
m_vSpectra.back().m_tId = tTest + 100000000;
}
a++;
}
return true;
}
/*
* load_best_vector loads the m_vseqBest vector with a list of sequences
* that correspond to assigned, valid peptide models. spectra that have
* produced valid models are marked as inactive, so that they are
* not reassigned the same peptides again.
*/
bool mprocess::load_best_vector(void)
{
string strKey = "refine, maximum valid expectation value";
string strValue;
m_xmlValues.get(strKey,strValue);
double dMaxExpect = 0.01;
if(strValue.size() > 0) {
dMaxExpect = atof(strValue.c_str());
}
size_t a = 0;
while(a < m_vSpectra.size()) {
m_vSpectra[a].m_hHyper.model();
m_vSpectra[a].m_hHyper.set_protein_factor(1.0);
a++;
}
a = 0;
double dExpect = 1.0;
while(a < m_vSpectra.size()) {
dExpect = (double)m_vSpectra[a].m_hHyper.expect_protein(m_pScore->hconvert(m_vSpectra[a].m_fHyper));
if(dExpect <= dMaxExpect) {
m_vSpectra[a].m_bActive = false;
}
a++;
}
return !m_vseqBest.empty();
}