-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
169 lines (133 loc) · 5.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""Helper functions for graph extraction."""
import numpy as np
import scipy.sparse as ssp
import torch
from torch_geometric.data import Data
from torch_geometric.utils import (
negative_sampling, add_self_loops, to_undirected,
coalesce, remove_self_loops, scatter
)
def neighbors(fringe, A, outgoing=True):
if outgoing:
res = set(A[list(fringe)].indices)
else:
res = set(A[:, list(fringe)].indices)
return res
def k_hop_subgraph(src, dst, A, node_features=None, node_pos=None, y=1, hops=None):
nodes = [src, dst]
dists = [0, 0]
visited = set([src, dst])
fringe = set([src, dst])
for dist in range(1, hops+1):
fringe = neighbors(fringe, A)
fringe = fringe - visited
visited = visited.union(fringe)
if len(fringe) == 0:
break
nodes = nodes + list(fringe)
dists = dists + [dist] * len(fringe)
# Create subgraph and add target link
subgraph = A[nodes, :][:, nodes]
subgraph[0, 1] = 1
subgraph[1, 0] = 1
if node_features is not None:
node_features = node_features[nodes]
# Create data obj
subgraph = ssp.triu(subgraph) # make graph directed before line graph generations
u, v, _ = ssp.find(subgraph)
edge_index = torch.stack([torch.tensor(u).long(), torch.tensor(v).long()], 0)
src_edges = (edge_index == 0).any(dim=0).int()
dst_edges = (edge_index == 1).any(dim=0).int()
num_nodes = len(nodes)
y = torch.tensor([y])
edge_attr = node_features[edge_index[1]] - node_features[edge_index[0]]
edge_attr /= 0.01
edge_attr = torch.cat((edge_attr, src_edges.unsqueeze(1), dst_edges.unsqueeze(1)), dim=-1)
data = Data(x=node_features, edge_index=edge_index, edge_attr=edge_attr, num_nodes=num_nodes, y=y)
data_line_graph = gen_line_graph(data.clone())
if data_line_graph.is_directed():
data_line_graph.edge_index = to_undirected(data_line_graph.edge_index)
if data_line_graph.x.shape[0] == 1: # add self loop to graphs of originally 2 nodes / 1 edge
data_line_graph.edge_index = torch.tensor([[0], [0]])
assert data_line_graph.x.shape[0] == data_line_graph.edge_index.unique().shape[0]
return data_line_graph
def gen_line_graph(data):
N = data.num_nodes
edge_index, edge_attr = data.edge_index, data.edge_attr
edge_index_orig, edge_attr_orig = coalesce(edge_index, edge_attr, N)
edge_index = to_undirected(edge_index_orig)
row, col = edge_index
# Compute node indices
mask = row < col
row, col = row[mask], col[mask]
i = torch.arange(row.size(0), dtype=torch.long, device=row.device)
(row, col), i = coalesce(
torch.stack([
torch.cat([row, col], dim=0),
torch.cat([col, row], dim=0)
], dim=0),
torch.cat([i, i], dim=0),
N,
)
# Compute new edge indices according to `i`.
count = scatter(torch.ones_like(row), row, dim=0,
dim_size=data.num_nodes, reduce='sum')
joints = torch.split(i, count.tolist())
def generate_grid(x):
row = x.view(-1, 1).repeat(1, x.numel()).view(-1)
col = x.repeat(x.numel())
return torch.stack([row, col], dim=0)
joints = [generate_grid(joint) for joint in joints]
joints = torch.cat(joints, dim=1)
joints, _ = remove_self_loops(joints)
N = row.size(0) // 2
joints = coalesce(joints, num_nodes=N)
edge_index = joints.sort(dim=0)[0].unique(dim=1)
data.x = edge_attr_orig
data.edge_index = edge_index
data.num_nodes = edge_attr_orig.size(0)
data.edge_attr = None
assert data.x.shape[0] == data.num_nodes
return data
def get_pos_neg_edges(split, split_edge, edge_index, num_nodes, percent=100):
if 'edge' in split_edge['train']:
pos_edge = split_edge[split]['edge'].t()
if 'edge_neg' in split_edge['train']:
# use presampled negative training edges for ogbl-vessel
neg_edge = split_edge[split]['edge_neg'].t()
else:
new_edge_index, _ = add_self_loops(edge_index)
neg_edge = negative_sampling(
new_edge_index, num_nodes=num_nodes,
num_neg_samples=pos_edge.size(1))
# subsample for pos_edge
np.random.seed(123)
num_pos = pos_edge.size(1)
perm = np.random.permutation(num_pos)
perm = perm[:int(percent / 100 * num_pos)]
pos_edge = pos_edge[:, perm]
# subsample for neg_edge
np.random.seed(123)
num_neg = neg_edge.size(1)
perm = np.random.permutation(num_neg)
perm = perm[:int(percent / 100 * num_neg)]
neg_edge = neg_edge[:, perm]
elif 'source_node' in split_edge['train']:
source = split_edge[split]['source_node']
target = split_edge[split]['target_node']
if split == 'train':
target_neg = torch.randint(0, num_nodes, [target.size(0), 1],
dtype=torch.long)
else:
target_neg = split_edge[split]['target_node_neg']
# subsample
np.random.seed(123)
num_source = source.size(0)
perm = np.random.permutation(num_source)
perm = perm[:int(percent / 100 * num_source)]
source, target, target_neg = source[perm], target[perm], target_neg[perm, :]
pos_edge = torch.stack([source, target])
neg_per_target = target_neg.size(1)
neg_edge = torch.stack([source.repeat_interleave(neg_per_target),
target_neg.view(-1)])
return pos_edge, neg_edge