- Python 3.10
-
Create a virtual environment:
python3.10 -m venv venv
-
Activate the virtual environment:
-
On Windows:
venv\Scripts\activate
-
On macOS/Linux:
source venv/bin/activate
-
-
Install the required packages:
pip install -r requirements.txt
- Data Structuring: Organizing the healthcare dataset into a suitable format for analysis and modeling.
- Data Cleaning: Handling missing values, correcting inconsistencies, and preparing the data for use.
- Data Mining and Visualization: Extracting insights from the data using visualizations and exploratory data analysis techniques.
- Model Training: Developing and evaluating machine learning models to forecast healthcare-related outcomes.
- Pandas DataFrame operation:
- Pandas Documentation: https://pandas.pydata.org/docs/
- DataFrame Indexing: https://pandas.pydata.org/docs/user_guide/indexing.html
- Matplotlib for data visualization:
- Matplotlib Documentation: https://matplotlib.org/stable/contents.html
- Creating subplots: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html
- NumPy for numerical operations:
- NumPy Documentation: https://numpy.org/doc/stable/
- NumPy arrange function: https://numpy.org/doc/stable/reference/generated/numpy.arange.html
- Data visualization techniques:
- Grouped bar charts: https://matplotlib.org/stable/gallery/lines_bars_and_markers/barchart.html
- Customizing plots: https://matplotlib.org/stable/tutorials/introductory/customizing.html
- scikit-learn Documentation:
- Model Evaluation:
- Classification metrics: https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
- accuracy_score: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
- classification_report: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
- Data Splitting:
- Joblib for model persistence:
- Joblib documentation: https://joblib.readthedocs.io/en/latest/
- Persisting scikit-learn models: https://scikit-learn.org/stable/model_persistence.html
- IPython Display:
- IPython display module: https://ipython.readthedocs.io/en/stable/api/generated/IPython.display.html
- Feature Engineering:
- Pandas get_dummies for one-hot encoding: https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html
- Python Standard Library:
- Exception handling: https://docs.python.org/3/tutorial/errors.html
- ** Transformers **:
- Transformers Documentation: https://huggingface.co/docs/transformers/index
- Tokenizer: https://huggingface.co/transformers/main_classes/tokenizer.html
- Trainer: https://huggingface.co/transformers/main_classes/trainer.html
[1] https://pandas.pydata.org/docs/ [2] https://pandas.pydata.org/docs/user_guide/indexing.html
Note
Dataset: National Health and Nutrition Examination Survey (NHANES) – Vision and Eye Health Surveillance This dataset is sourced from Centers for Disease Control and Prevention. Vision Classification model: https://huggingface.co/Quexoo/vision-classifier