-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVisionBERT.py
529 lines (427 loc) · 17.2 KB
/
VisionBERT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import os
from typing import Dict
from datasets import Dataset
import torch
from sklearn.metrics import confusion_matrix, precision_recall_fscore_support, accuracy_score
from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelForSequenceClassification, DataCollatorWithPadding
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from torch.nn import CrossEntropyLoss
import pickle
os.environ['OMP_NUM_THREADS'] = '7'
class WeightedTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs: bool = False, num_items_in_batch: int = None):
"""
Custom loss computation with sample weights
"""
labels = inputs.get("labels")
weights = inputs.get("weight")
# Forward pass
outputs = model(**{k: v for k, v in inputs.items()
if k not in ["weight", "labels"]})
logits = outputs.get("logits")
# Add labels back to outputs
outputs["labels"] = labels
# Compute weighted loss
if weights is not None:
weights = weights.to(logits.device)
loss_fct = CrossEntropyLoss(reduction='none')
loss = loss_fct(logits.view(-1, self.model.config.num_labels),
labels.view(-1))
# Adjust weights if num_items_in_batch is provided
if num_items_in_batch:
weights = weights[:num_items_in_batch]
loss = (loss * weights.view(-1)).mean()
else:
loss_fct = CrossEntropyLoss(label_smoothing=0.1)
loss = loss_fct(logits.view(-1, self.model.config.num_labels),
labels.view(-1))
outputs["loss"] = loss
return (loss, outputs) if return_outputs else loss
def create_feature_vector(df):
"""Create numerical feature vector for clustering with sample size weighting, handling missing/unseen labels."""
# Initialize LabelEncoders
le_gender = LabelEncoder()
le_risk = LabelEncoder()
# Fit and transform while handling missing values
gender_encoded = le_gender.fit(df['Gender'].unique()).transform(df['Gender'].fillna('Unknown'))
risk_encoded = le_risk.fit(df['RiskFactor'].unique()).transform(df['RiskFactor'].fillna('Unknown'))
# Create age groups numerical representation with a default for missing values
age_map = {
'12-17 years': 0,
'18-39 years': 1,
'40-64 years': 2,
'65-79 years': 3,
'80 years and older': 4 # Include all possible labels, even if missing
}
# Use `.get()` with a default value for missing/unseen age groups
age_encoded = df['Age'].map(lambda x: age_map.get(x, -1))
# Combine features
features = np.column_stack([
age_encoded,
gender_encoded,
risk_encoded,
df['Sample_Size'].values # Add sample size as a feature
])
# Scale features
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
return features_scaled, scaler
def weighted_kmeans(X, sample_weights, n_clusters, max_iter=300, random_state=42):
"""Custom K-means implementation that considers sample weights"""
n_samples = X.shape[0]
# Initialize centroids randomly from the weighted distribution
rng = np.random.RandomState(random_state)
weighted_indices = rng.choice(n_samples, size=n_clusters, p=sample_weights / sample_weights.sum())
centroids = X[weighted_indices]
for _ in range(max_iter):
# Assign points to nearest centroid
distances = np.sqrt(((X[:, np.newaxis] - centroids) ** 2).sum(axis=2))
labels = np.argmin(distances, axis=1)
# Update centroids using weighted means
new_centroids = np.zeros_like(centroids)
for k in range(n_clusters):
mask = labels == k
if mask.any():
weights_k = sample_weights[mask]
new_centroids[k] = np.average(X[mask], axis=0, weights=weights_k)
# Check for convergence
if np.allclose(centroids, new_centroids):
break
centroids = new_centroids
return labels, centroids
def prepare_data(file_path='data/Vision_Survey_Cleaned.csv'):
"""Load and prepare the vision health dataset with sample-size-aware clustering."""
print("\nLoading and preparing data...")
df = pd.read_csv(file_path)
# Filter data
vision_cat = ['Best-corrected visual acuity']
df = df[df['Question'].isin(vision_cat)].copy()
df = df[df["RiskFactor"] != "All participants"]
df = df[df["RiskFactorResponse"] != "Total"]
# Reset index after filtering
df = df.reset_index(drop=True)
# Create feature vectors for clustering
features_scaled, scaler = create_feature_vector(df)
# Normalize sample sizes for weights
sample_weights = df['Sample_Size'].values
sample_weights = sample_weights / sample_weights.sum()
# Apply weighted clustering
n_clusters = min(5, len(df))
clusters, centroids = weighted_kmeans(
features_scaled,
sample_weights,
n_clusters=n_clusters
)
# Add clusters as a column
df['cluster'] = clusters
# Calculate cluster importance based on total sample size in each cluster
cluster_total_samples = df.groupby('cluster')['Sample_Size'].sum()
cluster_weights = cluster_total_samples / cluster_total_samples.sum()
# Enhanced feature engineering with clustering information
df['doc'] = df.apply(
lambda x: f"""
Patient Demographics:
- Age Category: {x['Age']}
- Gender: {x['Gender']}
Risk Factors:
- {x['RiskFactor']}: {x['RiskFactorResponse']}
Additional Information:
- Sample Size: {x['Sample_Size']}
- Cluster Profile: {x['cluster']} (Weight: {cluster_weights.get(x['cluster'], 0):.3f})
""".strip(),
axis=1
)
# Encode labels
le = LabelEncoder()
df['labels'] = le.fit_transform(df['Response'].astype(str))
# Combine sample size weights with cluster importance
df['weight'] = df.apply(
lambda x: (x['Sample_Size'] / df['Sample_Size'].sum()) *
cluster_weights.get(x['cluster'], 0),
axis=1
)
# Create train and test splits with stratification
train_df, test_df = train_test_split(
df,
test_size=0.2,
stratify=df['labels'],
random_state=42
)
# Convert to dict format
train_data = {
'doc': train_df['doc'].tolist(),
'labels': train_df['labels'].tolist(),
'weight': train_df['weight'].tolist()
}
test_data = {
'doc': test_df['doc'].tolist(),
'labels': test_df['labels'].tolist(),
'weight': test_df['weight'].tolist()
}
# Convert to datasets
train_dataset = Dataset.from_dict(train_data)
test_dataset = Dataset.from_dict(test_data)
dataset_dict = {
'train': train_dataset,
'test': test_dataset
}
# Print detailed dataset statistics
print("\nDataset Summary:")
print(f"Training samples: {len(train_dataset)}")
print(f"Test samples: {len(test_dataset)}")
print("\nCluster Distribution:")
for i in range(n_clusters):
cluster_mask = df['cluster'] == i
cluster_samples = df[cluster_mask]['Sample_Size'].sum()
print(f"\nCluster {i} (Total samples: {cluster_samples:,}, Weight: {cluster_weights.get(i, 0):.3f}):")
print("Most common characteristics:")
for col in ['Age', 'Gender', 'RiskFactor']:
values = df[col][cluster_mask].value_counts().head(3)
samples = df[cluster_mask].groupby(col)['Sample_Size'].sum().sort_values(ascending=False).head(3)
print(f"{col}:")
for val, count in values.items():
sample_count = samples.get(val, 0) # Use .get() for safety
print(f" - {val}: {count} groups ({sample_count:,} individuals)")
print("\nLabel Distribution:")
for label, idx in zip(le.classes_, range(len(le.classes_))):
count = (df['labels'] == idx).sum()
total_size = df[df['labels'] == idx]['Sample_Size'].sum()
print(f"{label}: {count} groups, {total_size:,} individuals")
return dataset_dict, le
def main():
# Setup
output_dir = "models/vision-classifier"
os.makedirs(output_dir, exist_ok=True)
# Load the dataset
dataset_dict, label_encoder = prepare_data()
# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
# Define tokenization function within main to have access to tokenizer
def tokenize_function(examples):
"""Tokenize the input texts and maintain the correct column names"""
tokenized = tokenizer(
examples["doc"],
truncation=True,
padding='max_length',
max_length=128,
return_tensors=None
)
# Keep the additional columns
tokenized['labels'] = examples['labels']
tokenized['weight'] = examples['weight']
return tokenized
# Tokenize the datasets
tokenized_datasets = {}
for split, dataset in dataset_dict.items():
tokenized_datasets[split] = dataset.map(
tokenize_function,
batched=True,
remove_columns=['doc']
)
# Print sample to verify
print("\nSample tokenized data:", tokenized_datasets["train"][0])
# Initialize the model
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert-base-uncased",
num_labels=len(label_encoder.classes_),
id2label={i: label for i, label in enumerate(label_encoder.classes_)},
label2id={label: i for i, label in enumerate(label_encoder.classes_)},
)
# Data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Check device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"\nTraining on device: {device}")
# Move model to device
model.to(device)
# Set up training arguments
training_args = TrainingArguments(
output_dir=output_dir,
learning_rate=3e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=7,
weight_decay=0.01,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
remove_unused_columns=False,
push_to_hub=True,
)
# Create the Trainer
trainer = WeightedTrainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
data_collator=data_collator,
)
# Train the model
print("\nStarting training...")
trainer.train()
# Save the model
print("\nSaving model...")
trainer.save_model(output_dir=os.path.join(output_dir, "model"))
# Save the tokenizer
tokenizer.save_pretrained(os.path.join(output_dir, "tokenizer"))
# Save the label encoder
label_encoder_path = os.path.join(output_dir, "label_encoder.pkl")
with open(label_encoder_path, 'wb') as f:
pickle.dump(label_encoder, f)
return trainer, model, tokenizer, label_encoder
def evaluate_model(model, eval_dataset, tokenizer, label_encoder, device) -> Dict:
"""
Evaluate model performance using multiple metrics
"""
model.eval()
all_predictions = []
all_labels = []
# Process each example in evaluation dataset
for item in eval_dataset:
# Tokenize input
inputs = tokenizer(
item['doc'],
truncation=True,
padding=True,
return_tensors="pt"
)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Get predictions
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.argmax(outputs.logits, dim=1)
all_predictions.extend(predictions.cpu().numpy())
all_labels.append(item['labels'])
# Calculate metrics
accuracy = accuracy_score(all_labels, all_predictions)
precision, recall, f1, support = precision_recall_fscore_support(
all_labels,
all_predictions,
average='weighted'
)
# Calculate per-class metrics
per_class_precision, per_class_recall, per_class_f1, _ = precision_recall_fscore_support(
all_labels,
all_predictions,
average=None
)
# Create confusion matrix
conf_matrix = confusion_matrix(all_labels, all_predictions)
# Combine metrics
metrics = {
'accuracy': accuracy,
'weighted_precision': precision,
'weighted_recall': recall,
'weighted_f1': f1,
'confusion_matrix': conf_matrix,
'per_class_metrics': {
label: {
'precision': p,
'recall': r,
'f1': f
} for label, p, r, f in zip(
label_encoder.classes_,
per_class_precision,
per_class_recall,
per_class_f1
)
}
}
return metrics
def print_evaluation_report(metrics: Dict, label_encoder):
"""
Print formatted evaluation report
"""
print("\n" + "=" * 50)
print("MODEL EVALUATION REPORT")
print("=" * 50)
print("\nOverall Metrics:")
print(f"Accuracy: {metrics['accuracy']:.4f}")
print(f"Weighted Precision: {metrics['weighted_precision']:.4f}")
print(f"Weighted Recall: {metrics['weighted_recall']:.4f}")
print(f"Weighted F1-Score: {metrics['weighted_f1']:.4f}")
print("\nPer-Class Metrics:")
print("-" * 50)
print(f"{'Class':<30} {'Precision':>10} {'Recall':>10} {'F1-Score':>10}")
print("-" * 50)
for label, class_metrics in metrics['per_class_metrics'].items():
print(
f"{label:<30} {class_metrics['precision']:>10.4f} {class_metrics['recall']:>10.4f} {class_metrics['f1']:>10.4f}")
print("\nConfusion Matrix:")
print("-" * 50)
conf_matrix = metrics['confusion_matrix']
print(conf_matrix)
if __name__ == "__main__":
output_dir = "models/vision-classifier"
model_path = os.path.join(output_dir, "model")
tokenizer_path = os.path.join(output_dir, "tokenizer")
if os.path.exists(model_path):
print("\nLoading pre-trained model...")
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
label_encoder_path = os.path.join(output_dir, "label_encoder.pkl")
if os.path.exists(label_encoder_path):
with open(label_encoder_path, 'rb') as f:
label_encoder = pickle.load(f)
else:
print("Warning: Label encoder not found. Running full training...")
trainer, model, tokenizer, label_encoder = main()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Model loaded successfully and moved to {device}")
# Load test dataset for evaluation
dataset_dict, _ = prepare_data()
# Run evaluation
print("\nEvaluating model performance...")
eval_metrics = evaluate_model(
model,
dataset_dict['test'],
tokenizer,
label_encoder,
device
)
# Print evaluation report
print_evaluation_report(eval_metrics, label_encoder)
except Exception as e:
print(f"Error loading model: {e}")
print("Running full training instead...")
trainer, model, tokenizer, label_encoder = main()
else:
print("\nNo pre-trained model found. Running training...")
trainer, model, tokenizer, label_encoder = main()
def predict_vision_status(text, model, tokenizer, label_encoder):
"""Make prediction using the loaded/trained model"""
inputs = tokenizer(
text,
truncation=True,
padding=True,
return_tensors="pt"
)
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# Apply softmax to get probabilities
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
# Convert to numpy array
probabilities = probabilities.cpu().numpy()[0]
# Create list of (label, probability) tuples
predictions = []
for idx, prob in enumerate(probabilities):
label = label_encoder.inverse_transform([idx])[0]
predictions.append((label, float(prob)))
# Sort by probability in descending order
predictions.sort(key=lambda x: x[1], reverse=True)
return predictions
example_text = "Age: 40-64 years, Gender: Female, Diabetes: No"
predictions = predict_vision_status(example_text, model, tokenizer, label_encoder)
print(f"\nPredictions for: {example_text}")
print("\nLabel Confidence Scores:")
print("-" * 50)
for label, confidence in predictions:
print(f"{label:<30} {confidence:.2%}")