- Linux or macOS with Python ≥ 3.8
- CUDA>=11.7, lower CUDA versions may result in not successfully built on detectron2
pip install -r requirements.txt
pip3 install virtualenv
python3 -m virtualenv kmax_deeplab --python=python3
source kmax_deeplab/bin/activate
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -r requirements.txt
unzip detectron2.zip
cd detectron2
pip install -e .
-
Download the checkpoint.
-
Dataset preperation and structure for evaluation as below. You need to download 'relabeled_COCO_val' and json file and download the images from COCO dataset.
-
Convert the downloaded panoptic segmentations to instances by using the following script.
pip install git+https://github.com/cocodataset/panopticapi.git
python prepare_coco_panoptic_semseg.py
This script will automatically detect your DETECTRON2_DATASETS path, the default is "./datasets/coco".
If you want to change your folder path, please export your dataset path using the script as below.
export DETECTRON2_DATASETS=YOUR_DATA_PATH
- Prepare the dataset structure.
datasets
└── coco
├── panoptic_semseg_val2017 # converted semantic segmentation masks
├── val2017 # original COCO dataset val set images
- Use the script below to evaluate the model.
export DETECTRON2_DATASETS=YOUR_DATA_PATH
python3 train_net.py --num-gpus 8 --dist-url tcp://127.0.0.1:9999 \
--config-file configs/coco/instance_segmentation/kmax_convnext_large.yaml \
--eval-only MODEL.WEIGHTS YOUR_MODEL_PATH
Need to set up your environment variables to run the training script below.
export DETECTRON2_DATASETS=YOUR_DATASET_PATH
python3 train_net.py --num-gpus 8 --num-machines $WORKER_NUM \
--machine-rank $WORKER_ID --dist-url tcp://$WORKER_0_HOST:$port \
--config-file configs/coco/instance_segmentation/kmax_convnext_large.yaml
COCO-val | relabeled COCO-val | COCONut-val | |||
---|---|---|---|---|---|
backbone | training set | mIoU | mIoU | mIoU | model |
Swin-L | COCO | 67.1 | 70.9 | 68.1 | download |
COCONut-S | 66.1 | 71.9 | 69.9 | download | |
COCONut-B | 67.4 | 72.4 | 71.3 | download |