We introduce the environment set up for evaluation and training for object detection on COCONut. More details refer to DETA repo.
- Linux or macOS with Python ≥ 3.7
pip install -r requirements.txt
tested on torch==1.13.0+cu11.7
pip3 install virtualenv
python3 -m virtualenv deta --python=python3
source deta/bin/activate
pip install torch==1.13.1 torchvision==0.14.1
git clone https://github.com/jozhang97/DETA.git
pip install -r requirements.txt
# Compiling CUDA operators
cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py
- Prepare dataset, the dataset structure should be as follow:
datasets
└── coco
├── annotations
│ └── instances_val2017.json # relabeled_coco_val.json
├── val2017 # original COCO dataset val set images
- Use the script below to evaluate the model.
GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 8 ./configs/deta_swin_ft.sh \
--eval --coco_path YOUR_COCO_DATASET_PATH \ # for example, ./datasets/coco
--resume YOUR_MODEL_CHECKPOINT
Need to set up your environment variables to run the training script below.
MASTER_ADDR=$WORKER_0_HOST_IP NODE_RANK=$NODE_ID GPUS_PER_NODE=8 \
./tools/run_dist_launch.sh 16 ./configs/deta_swin_ft.sh \
--coco_path YOUR_COCO_DATASET_PATH
COCO-val | relabeled COCO-val | COCONut-val | |||
---|---|---|---|---|---|
backbone | training set | AP_box | AP_box | AP_box | model |
Swin-L | COCO | 59.1 | 58.6 | 56.1 | download |
COCONut-S | 54.5 | 61.3 | 58.9 | download | |
COCONut-B | 59.3 | 62.2 | 60.1 | download |