-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathAccAltProj.m
182 lines (162 loc) · 5.43 KB
/
AccAltProj.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function [ L, S ] = AccAltProj( D, r, para )
% [ L, S ] = AccAltProj( D, r, para )
%
% Inputs:
% D : Observed matrix. Sum of underlying low rank matrix and underlying
% sparse matrix.
% r : Target rank of underlying low rank matrix.
% params : parameters for the algorithm
% .max_iter : Maximum number of iterations. (default 50)
% .tol : Desired Frobenius norm error. (default 1e-5)
% .beta_init : Parameter for thresholding at initialization. (default
% 4*beta)
% .beta : Parameter for thresholding. (default 1/(2*nthroot(m*n,4)))
% .gamma : Parameter for desired convergence rate. Value should between 0
% and 1. Turn this parameter bigger will slow the convergence
% speed but tolerate harder problem, such as higher p, r or mu.
% (default 0.5)
% .trimming : Determine whether using trimming step. (default false)
% .mu : Incoherence of underlying low rank matrix. Input can be in format
% of .mu = mu_max, or .mu = [mu_U, mu_V]. (default 5)
%
% Outputs:
% L : Estimated low rank component of D.
% S : Estimated sparse component of D.
%
%
% Please cite the paper "Accelerated Alternating Projections for Robust
% Principal Component Analysis" if you find this code helpful
%
%
% Warning: We found this code runs very slow on AMD CPUs with earlier
% versions of Matlab. For best experience, please use the code on Intel CPU
% based computer, and update Matlab to the latest version.
%
%
% By
% HanQin Cai , Jian-Feng Cai, Ke Wei
if exist('.\PROPACK', 'dir')==7
addpath PROPACK;
propack_exist = true;
else
propack_exist = false;
disp("PROPACK is not correctly installed, this may slow down the initialisation step.");
disp("If you wish to continue anyway, press any key.");
disp("If you are using Linux/Mac and have PROPACK installed but still seeing this message,");
disp("you should replace line 40-50 to be 'propack_exist = true;'.");
pause;
end
[m,n] = size(D);
norm_of_D = norm(D, 'fro');
%% Default/Inputed parameters
max_iter = 100;
tol = 1e-5;
beta = 1/(2*nthroot(m*n,4));
beta_init = 4*beta;
gamma = 0.7;
mu = 5;
trimming = false;
if isfield(para,'beta_init')
beta_init = para.beta_init;
fprintf('beta_init = %f set.\n', beta_init);
else
fprintf('using default beta_init = %f.\n', beta_init);
end
if isfield(para,'beta')
beta = para.beta;
fprintf('beta = %f set.\n', beta);
else
fprintf('using default beta = %f.\n', beta);
end
if isfield(para,'gamma')
gamma = para.gamma;
fprintf('gamma = %f set.\n', tol);
else
fprintf('using default gamma = %f.\n', gamma);
end
if isfield(para,'mu')
mu = para.mu;
fprintf('mu = [%f,%f] set.\n', mu(1), mu(end));
else
fprintf('using default mu = [%f,%f].\n', mu, mu);
end
if isfield(para,'trimming')
trimming = para.trimming;
if trimming
fprintf('trimming = true set.\n');
else
fprintf('trimming = false set.\n');
end
else
fprintf('using default trimming = False.\n');
end
if isfield(para,'max_iter')
max_iter = para.max_iter;
fprintf('max_iter = %d set.\n', max_iter);
else
fprintf('using default max_iter = %d.\n', max_iter);
end
if isfield(para,'tol')
tol= para.tol;
fprintf('tol = %e set.\n', tol);
else
fprintf('using default tol = %e.\n', tol);
end
err = -1*ones(max_iter,1);
timer = -1*ones(max_iter,1);
tic;
%%Initilization
if propack_exist
zeta = beta_init * lansvd(D,1);
else
zeta = beta_init * svds(D,1);
end
% When S is sparse enough, we may store S as a sparse matrix. This can save
% some memory and computing when problem size is large.
S = wthresh( D ,'h',zeta);
if propack_exist
[U,Sigma,V] = lansvd(D - S, r, 'L');
else
[U,Sigma,V] = svds(D - S, r);
end
L = U * Sigma * V';
zeta = beta * Sigma(1,1);
S = wthresh( D - L ,'h',zeta);
init_timer = toc;
init_err = norm(D-L-S,'fro')/norm_of_D;
fprintf('Init: error: %e, timer: %f \n', init_err, init_timer);
%% Main Alogorithm
for t = 1 : max_iter
tic;
%% Trim
if trimming
[U, V] = trim( U, Sigma(1:r,1:r), V, mu(1), mu(end) );
end
%% update L
Z = D - S;
% These 2 QR can be computed parallelly
[Q1,R1] = qr(Z' * U - V * ((Z * V)' * U), 0);
[Q2,R2] = qr(Z * V - U * ( U' * Z * V), 0);
M = [ U'*Z*V, R1' ;
R2 , zeros(size(R2)); ];
[U_of_M, Sigma, V_of_M] = svd(M,'econ');
% These 2 matrices multiplications can be computed parallelly
U = [U, Q2] * U_of_M(:,1:r);
V = [V, Q1] * V_of_M(:,1:r);
L = U * Sigma(1:r,1:r) * V';
%% update S
zeta = beta * (Sigma(r+1,r+1) + (gamma^t)*Sigma(1,1));
S = wthresh( D - L ,'h',zeta);
%% Stop Condition
err(t) = norm (D - L - S,'fro')/norm_of_D;
timer(t) = toc;
if err(t) < tol
fprintf('Total %d iteration, final error: %e, total time without init: %f , with init: %f\n======================================\n', t, err(t), sum(timer(timer>0)),sum(timer(timer>0))+init_timer);
return;
else
fprintf('Iteration %d: error: %e, timer: %f \n', t, err(t), timer(t));
end
end
fprintf('Maximum iterations reached, final error: %e.\n======================================\n', err(t));
end