-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun.py
35 lines (28 loc) · 1.15 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# coding: UTF-8
import time
import torch
import numpy as np
from train_eval import train_and_test
from utils import build_dataset, build_iterator, get_time_dif, set_random_state
from importlib import import_module
import argparse
parser = argparse.ArgumentParser(description='Text Classification')
parser.add_argument('--model', type=str, required=True, help='choose a model in ../models', default = 'Bert')
args = parser.parse_args()
if __name__ == '__main__':
dataset = './dataset' # 数据集
model_name = args.model
x = import_module('models.' + model_name)
config = x.Config(dataset)
set_random_state(seed = 1126)
start_time = time.time()
print("Loading data...")
train_data, dev_data, test_data = build_dataset(config)
train_iter = build_iterator(train_data, config)
test_iter = build_iterator(test_data, config)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# train
model = x.Model(config).to(config.device)
df_history = train_and_test(config, model, train_iter, test_iter, test_iter)
df_history.to_csv("training_results.csv",index=None)