-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtdigest_test.go
838 lines (686 loc) · 20.9 KB
/
tdigest_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
package tdigest
import (
"fmt"
"math"
"math/rand"
"sort"
"testing"
rng "github.com/leesper/go_rng"
"gonum.org/v1/gonum/stat"
)
func uncheckedNew(options ...tdigestOption) *TDigest {
t, _ := New(options...)
return t
}
// Test of tdigest internals and accuracy. Note no t.Parallel():
// during tests the default random seed is consistent, but varying
// concurrency scheduling mixes up the random values used in each test.
// Since there's a random number call inside tdigest this breaks repeatability
// for all tests. So, no test concurrency here.
func TestTInternals(t *testing.T) {
tdigest := uncheckedNew()
if !math.IsNaN(tdigest.Quantile(0.1)) {
t.Errorf("Quantile() on an empty digest should return NaN. Got: %.4f", tdigest.Quantile(0.1))
}
if !math.IsNaN(tdigest.CDF(1)) {
t.Errorf("CDF() on an empty digest should return NaN. Got: %.4f", tdigest.CDF(1))
}
_ = tdigest.Add(0.4)
if tdigest.Quantile(0.1) != 0.4 {
t.Errorf("Quantile() on a single-sample digest should return the samples's mean. Got %.4f", tdigest.Quantile(0.1))
}
if tdigest.CDF(0.3) != 0 {
t.Errorf("CDF(x) on digest with a single centroid should return 0 if x < mean")
}
if tdigest.CDF(0.5) != 1 {
t.Errorf("CDF(x) on digest with a single centroid should return 1 if x >= mean")
}
_ = tdigest.Add(0.5)
if tdigest.summary.Len() != 2 {
t.Errorf("Expected size 2, got %d", tdigest.summary.Len())
}
err := tdigest.AddWeighted(0, 0)
if err == nil {
t.Errorf("Expected AddWeighted() to error out with input (0,0)")
}
}
func closeEnough(a float64, b float64) bool {
const EPS = 0.000001
if (a-b < EPS) && (b-a < EPS) {
return true
}
return false
}
func assertDifferenceSmallerThan(tdigest *TDigest, p float64, m float64, t *testing.T) {
tp := tdigest.Quantile(p)
if math.Abs(tp-p) >= m {
t.Errorf("T-Digest.Quantile(%.4f) = %.4f. Diff (%.4f) >= %.4f", p, tp, math.Abs(tp-p), m)
}
}
func TestUniformDistribution(t *testing.T) {
tdigest := uncheckedNew()
for i := 0; i < 100000; i++ {
_ = tdigest.Add(rand.Float64())
}
assertDifferenceSmallerThan(tdigest, 0.5, 0.02, t)
assertDifferenceSmallerThan(tdigest, 0.1, 0.01, t)
assertDifferenceSmallerThan(tdigest, 0.9, 0.01, t)
assertDifferenceSmallerThan(tdigest, 0.01, 0.005, t)
assertDifferenceSmallerThan(tdigest, 0.99, 0.005, t)
assertDifferenceSmallerThan(tdigest, 0.001, 0.001, t)
assertDifferenceSmallerThan(tdigest, 0.999, 0.001, t)
}
// Asserts quantile p is no greater than absolute m off from "true"
// fractional quantile for supplied data. So m must be scaled
// appropriately for source data range.
func assertDifferenceFromQuantile(data []float64, tdigest *TDigest, p float64, m float64, t *testing.T) {
q := quantile(p, data)
tp := tdigest.Quantile(p)
if math.Abs(tp-q) >= m {
t.Fatalf("T-Digest.Quantile(%.4f) = %.4f vs actual %.4f. Diff (%.4f) >= %.4f", p, tp, q, math.Abs(tp-q), m)
}
}
func TestSequentialInsertion(t *testing.T) {
tdigest := uncheckedNew()
data := make([]float64, 10000)
for i := 0; i < len(data); i++ {
data[i] = float64(i)
}
for i := 0; i < len(data); i++ {
_ = tdigest.Add(data[i])
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.001, 1.0+0.001*float64(i), t)
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.01, 1.0+0.005*float64(i), t)
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.05, 1.0+0.01*float64(i), t)
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.25, 1.0+0.03*float64(i), t)
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.5, 1.0+0.03*float64(i), t)
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.75, 1.0+0.03*float64(i), t)
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.95, 1.0+0.01*float64(i), t)
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.99, 1.0+0.005*float64(i), t)
assertDifferenceFromQuantile(data[:i+1], tdigest, 0.999, 1.0+0.001*float64(i), t)
}
}
func TestNonSequentialInsertion(t *testing.T) {
tdigest := uncheckedNew()
// Not quite a uniform distribution, but close.
data := make([]float64, 1000)
for i := 0; i < len(data); i++ {
tmp := (i * 1627) % len(data)
data[i] = float64(tmp)
}
sorted := make([]float64, 0, len(data))
for i := 0; i < len(data); i++ {
_ = tdigest.Add(data[i])
sorted = append(sorted, data[i])
// Estimated quantiles are all over the place for low counts, which is
// OK given that something like P99 is not very meaningful when there are
// 25 samples. To account for this, increase the error tolerance for
// smaller counts.
if i == 0 {
continue
}
max := float64(len(data))
fac := 1.0 + max/float64(i)
sort.Float64s(sorted)
assertDifferenceFromQuantile(sorted, tdigest, 0.001, fac+0.001*max, t)
assertDifferenceFromQuantile(sorted, tdigest, 0.01, fac+0.005*max, t)
assertDifferenceFromQuantile(sorted, tdigest, 0.05, fac+0.01*max, t)
assertDifferenceFromQuantile(sorted, tdigest, 0.25, fac+0.01*max, t)
assertDifferenceFromQuantile(sorted, tdigest, 0.5, fac+0.02*max, t)
assertDifferenceFromQuantile(sorted, tdigest, 0.75, fac+0.01*max, t)
assertDifferenceFromQuantile(sorted, tdigest, 0.95, fac+0.01*max, t)
assertDifferenceFromQuantile(sorted, tdigest, 0.99, fac+0.005*max, t)
assertDifferenceFromQuantile(sorted, tdigest, 0.999, fac+0.001*max, t)
}
}
func TestSingletonInACrowd(t *testing.T) {
tdigest := uncheckedNew()
for i := 0; i < 10000; i++ {
_ = tdigest.Add(10)
}
_ = tdigest.Add(20)
_ = tdigest.Compress()
for _, q := range []float64{0, 0.5, 0.8, 0.9, 0.99, 0.999} {
if q == 0.999 {
// Test for 0.999 disabled since it doesn't
// pass in the reference implementation
continue
}
result := tdigest.Quantile(q)
if !closeEnough(result, 10) {
t.Errorf("Expected Quantile(%.3f) = 10, but got %.4f (size=%d)", q, result, tdigest.summary.Len())
}
}
result := tdigest.Quantile(1)
if result != 20 {
t.Errorf("Expected Quantile(1) = 20, but got %.4f (size=%d)", result, tdigest.summary.Len())
}
}
func TestRespectBounds(t *testing.T) {
tdigest := uncheckedNew(Compression(10))
data := []float64{0, 279, 2, 281}
for _, f := range data {
_ = tdigest.Add(f)
}
quantiles := []float64{0.01, 0.25, 0.5, 0.75, 0.999}
for _, q := range quantiles {
result := tdigest.Quantile(q)
if result < 0 {
t.Errorf("q(%.3f) = %.4f < 0", q, result)
}
if tdigest.Quantile(q) > 281 {
t.Errorf("q(%.3f) = %.4f > 281", q, result)
}
}
}
func TestWeights(t *testing.T) {
tdigest := uncheckedNew(Compression(10))
// Create data slice with repeats matching weights we gave to tdigest
data := []float64{}
for i := 0; i < 100; i++ {
_ = tdigest.AddWeighted(float64(i), uint64(i))
for j := 0; j < i; j++ {
data = append(data, float64(i))
}
}
assertDifferenceFromQuantile(data, tdigest, 0.001, 1.0+0.001*100.0, t)
assertDifferenceFromQuantile(data, tdigest, 0.01, 1.0+0.005*100.0, t)
assertDifferenceFromQuantile(data, tdigest, 0.05, 1.0+0.01*100.0, t)
assertDifferenceFromQuantile(data, tdigest, 0.25, 1.0+0.01*100.0, t)
assertDifferenceFromQuantile(data, tdigest, 0.5, 1.0+0.02*100.0, t)
assertDifferenceFromQuantile(data, tdigest, 0.75, 1.0+0.01*100.0, t)
assertDifferenceFromQuantile(data, tdigest, 0.95, 1.0+0.01*100.0, t)
assertDifferenceFromQuantile(data, tdigest, 0.99, 1.0+0.005*100.0, t)
assertDifferenceFromQuantile(data, tdigest, 0.999, 1.0+0.001*100.0, t)
}
func TestIntegers(t *testing.T) {
tdigest := uncheckedNew()
_ = tdigest.Add(1)
_ = tdigest.Add(2)
_ = tdigest.Add(3)
if tdigest.Quantile(0.5) != 2 {
t.Errorf("Expected p(0.5) = 2, Got %.2f instead", tdigest.Quantile(0.5))
}
tdigest = uncheckedNew()
for _, i := range []float64{1, 2, 2, 2, 2, 2, 2, 2, 3} {
_ = tdigest.Add(i)
}
if tdigest.Quantile(0.5) != 2 {
t.Errorf("Expected p(0.5) = 2, Got %.2f instead", tdigest.Quantile(0.5))
}
var tot uint64
tdigest.ForEachCentroid(func(mean float64, count uint64) bool {
tot += count
return true
})
if tot != 9 {
t.Errorf("Expected the centroid count to be 9, Got %d instead", tot)
}
}
func cdf(x float64, data []float64) float64 {
var n1, n2 int
for i := 0; i < len(data); i++ {
if data[i] < x {
n1++
}
if data[i] <= x {
n2++
}
}
return float64(n1+n2) / 2.0 / float64(len(data))
}
func quantile(q float64, data []float64) float64 {
if len(data) == 0 {
return math.NaN()
}
if q == 1 || len(data) == 1 {
return data[len(data)-1]
}
index := q * (float64(len(data)) - 1)
return data[int(index)+1]*(index-float64(int(index))) + data[int(index)]*(float64(int(index)+1)-index)
}
func TestMergeNormal(t *testing.T) {
testMerge(t, false)
}
func TestMergeDescructive(t *testing.T) {
testMerge(t, true)
}
func testMerge(t *testing.T, destructive bool) {
if testing.Short() {
t.Skipf("Skipping merge test. Short flag is on")
}
const numItems = 100000
for _, numSubs := range []int{2, 5, 10, 20, 50, 100} {
data := make([]float64, numItems)
subs := make([]*TDigest, numSubs)
for i := 0; i < numSubs; i++ {
subs[i] = uncheckedNew()
}
dist := uncheckedNew()
for i := 0; i < numItems; i++ {
num := rand.Float64()
data[i] = num
_ = dist.Add(num)
_ = subs[i%numSubs].Add(num)
}
_ = dist.Compress()
dist2 := uncheckedNew()
for i := 0; i < numSubs; i++ {
if destructive {
_ = dist2.MergeDestructive(subs[i])
} else {
_ = dist2.Merge(subs[i])
}
}
if dist.Count() != dist2.Count() {
t.Errorf("Expected the number of centroids to be the same. %d != %d", dist.Count(), dist2.Count())
}
if dist2.Count() != numItems {
t.Errorf("Items shouldn't have disappeared. %d != %d", dist2.Count(), numItems)
}
sort.Float64s(data)
for _, q := range []float64{0.001, 0.01, 0.1, 0.2, 0.3, 0.5} {
z := quantile(q, data)
p1 := dist.Quantile(q)
p2 := dist2.Quantile(q)
e1 := p1 - z
e2 := p2 - z
if math.Abs(e2)/q >= 0.3 {
t.Errorf("rel >= 0.3: parts=%3d q=%.3f e1=%.4f e2=%.4f rel=%.3f real=%.3f",
numSubs, q, e1, e2, math.Abs(e2)/q, z-q)
}
if math.Abs(e2) >= 0.015 {
t.Errorf("e2 >= 0.015: parts=%3d q=%.3f e1=%.4f e2=%.4f rel=%.3f real=%.3f",
numSubs, q, e1, e2, math.Abs(e2)/q, z-q)
}
z = cdf(q, data)
e1 = dist.CDF(q) - z
e2 = dist2.CDF(q) - z
if math.Abs(e2)/q > 0.3 {
t.Errorf("CDF e2 < 0.015: parts=%3d q=%.3f e1=%.4f e2=%.4f rel=%.3f",
numSubs, q, e1, e2, math.Abs(e2)/q)
}
if math.Abs(e2) >= 0.015 {
t.Errorf("CDF e2 < 0.015: parts=%3d q=%.3f e1=%.4f e2=%.4f rel=%.3f",
numSubs, q, e1, e2, math.Abs(e2)/q)
}
}
}
}
func TestCompressDoesntChangeCount(t *testing.T) {
tdigest := uncheckedNew()
for i := 0; i < 1000; i++ {
_ = tdigest.Add(rand.Float64())
}
initialCount := tdigest.Count()
err := tdigest.Compress()
if err != nil {
t.Errorf("Compress() triggered an unexpected error: %s", err)
}
if tdigest.Count() != initialCount {
t.Errorf("Compress() should not change count. Wanted %d, got %d", initialCount, tdigest.Count())
}
}
func TestGammaDistribution(t *testing.T) {
const numItems = 100000
digest := uncheckedNew()
gammaRNG := rng.NewGammaGenerator(0xDEADBEE)
data := make([]float64, numItems)
for i := 0; i < numItems; i++ {
data[i] = gammaRNG.Gamma(0.1, 0.1)
_ = digest.Add(data[i])
}
sort.Float64s(data)
softErrors := 0
for _, q := range []float64{0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999} {
ix := float64(len(data))*q - 0.5
index := int(math.Floor(ix))
p := ix - float64(index)
realQuantile := data[index]*(1-p) + data[index+1]*p
// estimated cdf of real quantile(x)
if math.Abs(digest.CDF(realQuantile)-q) > 0.005 {
t.Errorf("Error in estimated CDF too high")
}
// real cdf of estimated quantile(x)
error := math.Abs(q - cdf(digest.Quantile(q), data))
if error > 0.005 {
softErrors++
}
if error > 0.012 {
t.Errorf("Error in estimated Quantile too high")
}
}
if softErrors >= 3 {
t.Errorf("Too many soft errors")
}
// Issue #17, verify that we are hitting the extreme CDF case
// XXX Maybe test this properly instead of having a hardcoded value
extreme := digest.CDF(0.71875)
if !closeEnough(extreme, 1) {
t.Errorf("Expected something close to 1 but got %.4f instead", extreme)
}
}
func shouldPanic(f func(), t *testing.T, message string) {
defer func() {
tryRecover := recover()
if tryRecover == nil {
t.Errorf(message)
}
}()
f()
}
func TestPanic(t *testing.T) {
tdigest := uncheckedNew()
shouldPanic(func() {
tdigest.Quantile(-42)
}, t, "Quantile < 0 should panic!")
shouldPanic(func() {
tdigest.Quantile(42)
}, t, "Quantile > 1 should panic!")
}
func TestForEachCentroid(t *testing.T) {
tdigest := uncheckedNew(Compression(10))
for i := 0; i < 100; i++ {
_ = tdigest.Add(float64(i))
}
// Iterate limited number.
means := []float64{}
tdigest.ForEachCentroid(func(mean float64, count uint64) bool {
means = append(means, mean)
return len(means) != 3
})
if len(means) != 3 {
t.Errorf("ForEachCentroid handled incorrect number of data items")
}
// Iterate all datapoints.
means = []float64{}
tdigest.ForEachCentroid(func(mean float64, count uint64) bool {
means = append(means, mean)
return true
})
if len(means) != tdigest.summary.Len() {
t.Errorf("ForEachCentroid did not handle all data")
}
}
func TestQuantilesDontOverflow(t *testing.T) {
tdigest := uncheckedNew(Compression(100))
// Add slightly more than math.MaxUint32 samples uniformly in the range
// [0, 1). This would overflow a uint32-based implementation.
tdigest.Add(1)
for i := 0; i < 1024; i++ {
tdigest.AddWeighted(float64(i)/1024, 4194304)
}
assertDifferenceSmallerThan(tdigest, 0.5, .02, t)
}
func TestCDFInsideLastCentroid(t *testing.T) {
// values pulled from a live digest. sorry it's a lot!
td := &TDigest{
summary: &summary{
means: []float64{2120.75048828125, 2260.3844299316406, 3900.490264892578, 3937.495807647705, 5390.479816436768, 10450.335285186768, 14152.897296905518, 16442.676349639893, 24303.143146514893, 56961.87361526489, 63891.24959182739, 73982.55232620239, 86477.50447463989, 110746.62556838989, 175479.7388496399, 300492.3404121399, 440452.5279121399, 515611.7700996399, 535827.0025215149, 546241.6822090149, 556965.3648262024, 569791.2124824524, 587320.6870918274, 603969.4175605774, 613751.6177558899, 624708.7593574524, 635060.0718574524, 641924.2007637024, 650656.4302558899, 660653.1714668274, 671380.9009590149, 687094.3667793274, 716595.8824043274, 740870.9800605774, 760276.2437324524, 768857.5786933899, 775021.0025215149, 787686.0337715149, 801473.4624824524, 815225.1255683899, 832358.6997871399, 852438.4751777649, 866134.2935371399, 1.10661549666214e+06, 1.1212118980293274e+06, 1.2230108433418274e+06, 1.5446490620918274e+06, 4.306712312091827e+06, 5.487582562091827e+06, 6.306383562091827e+06, 7.089308312091827e+06, 7.520797593341827e+06},
counts: []uint64{0x1, 0x1, 0x1, 0x1, 0x1, 0x2, 0x1, 0x4, 0x5, 0x6, 0x3, 0x3, 0x4, 0x11, 0x23, 0x2f, 0x1e, 0x1b, 0x36, 0x31, 0x33, 0x4e, 0x5f, 0x61, 0x48, 0x2e, 0x26, 0x28, 0x2a, 0x31, 0x39, 0x51, 0x32, 0x2b, 0x12, 0x8, 0xb, 0xa, 0x11, 0xa, 0x11, 0x9, 0x7, 0x1, 0x1, 0x1, 0x3, 0x2, 0x1, 0x1, 0x1, 0x1},
},
compression: 5,
count: 1250,
rng: globalRNG{},
}
if cdf := td.CDF(7.144560976650238e+06); cdf > 1 {
t.Fatalf("invalid: %v", cdf)
}
}
func TestTrimmedMean(t *testing.T) {
tests := []struct {
p1, p2 float64
}{
{0, 1},
{0.1, 0.9},
{0.2, 0.8},
{0.25, 0.75},
{0, 0.5},
{0.5, 1},
{0.1, 0.7},
{0.3, 0.9},
}
for _, size := range []int{100, 1000, 10000} {
for _, test := range tests {
td := uncheckedNew(Compression(100))
data := make([]float64, 0, size)
for i := 0; i < size; i++ {
f := rand.Float64()
data = append(data, f)
err := td.Add(f)
if err != nil {
t.Fatal(err)
}
}
got := td.TrimmedMean(test.p1, test.p2)
wanted := trimmedMean(data, test.p1, test.p2)
if math.Abs(got-wanted) > 0.01 {
t.Fatalf("got %f, wanted %f (size=%d p1=%f p2=%f)",
got, wanted, size, test.p1, test.p2)
}
for i := 0; i < 10; i++ {
err := td.Add(float64(i * 100))
if err != nil {
t.Fatal(err)
}
}
mean := td.TrimmedMean(0.1, 0.999)
if mean < 0 {
t.Fatalf("mean < 0")
}
}
}
}
func TestTrimmedMeanCornerCases(t *testing.T) {
td := uncheckedNew(Compression(100))
mean := td.TrimmedMean(0, 1)
if mean != 0 {
t.Fatalf("got %f, wanted 0", mean)
}
x := 1.0
err := td.Add(x)
if err != nil {
t.Fatal(err)
}
mean = td.TrimmedMean(0, 1)
if mean != 1 {
t.Fatalf("got %f, wanted %f", mean, x)
}
err = td.Add(1000)
if err != nil {
t.Fatal(err)
}
mean = td.TrimmedMean(0, 1)
wanted := 500.5
if !closeEnough(mean, wanted) {
t.Fatalf("got %f, wanted %f", mean, wanted)
}
}
func trimmedMean(ff []float64, p1, p2 float64) float64 {
sort.Float64s(ff)
x1 := stat.Quantile(p1, stat.Empirical, ff, nil)
x2 := stat.Quantile(p2, stat.Empirical, ff, nil)
var sum float64
var count int
for _, f := range ff {
if f >= x1 && f <= x2 {
sum += f
count++
}
}
return sum / float64(count)
}
func TestClone(t *testing.T) {
seed := func(td *TDigest) {
for i := 0; i < 100; i++ {
err := td.Add(rand.Float64())
if err != nil {
t.Fatal(err)
}
}
}
td := uncheckedNew(Compression(42))
seed(td)
clone := td.Clone()
// Clone behaves like td.
if clone.Compression() != td.Compression() {
t.Fatalf("got %f, wanted %f", clone.Compression(), td.Compression())
}
cloneCount := clone.Count()
if cloneCount != td.Count() {
t.Fatalf("got %d, wanted %d", cloneCount, td.Count())
}
cloneQuantile := clone.Quantile(1)
if cloneQuantile != td.Quantile(1) {
t.Fatalf("got %f, wanted %f", cloneQuantile, td.Quantile(1))
}
seed(td)
if td.Count() == clone.Count() {
t.Fatal("seed does not work")
}
// Clone is not changed after td is changed.
if clone.Count() != cloneCount {
t.Fatalf("got %d, wanted %d", clone.Count(), cloneCount)
}
if clone.Quantile(1) != cloneQuantile {
t.Fatalf("got %f, wanted %f", clone.Quantile(1), cloneQuantile)
}
// Clone is fully functional.
err := clone.Add(1)
if err != nil {
t.Fatal(err)
}
}
var compressions = []float64{1, 10, 20, 30, 50, 100}
func BenchmarkTDigestAddOnce(b *testing.B) {
for _, compression := range compressions {
compression := compression
b.Run(fmt.Sprintf("compression=%.0f", compression), func(b *testing.B) {
benchmarkAddOnce(b, compression)
})
}
}
func benchmarkAddOnce(b *testing.B, compression float64) {
t := uncheckedNew(Compression(compression))
data := make([]float64, b.N)
for n := 0; n < b.N; n++ {
data[n] = rand.Float64()
}
b.ReportAllocs()
b.ResetTimer()
for n := 0; n < b.N; n++ {
err := t.Add(data[n])
if err != nil {
b.Error(err)
}
}
b.StopTimer()
}
func BenchmarkTDigestAddMulti(b *testing.B) {
for _, compression := range compressions {
compression := compression
for _, n := range []int{10, 100, 1000, 10000} {
n := n
name := fmt.Sprintf("compression=%.0f n=%d", compression, n)
b.Run(name, func(b *testing.B) {
benchmarkAddMulti(b, compression, n)
})
}
}
}
func benchmarkAddMulti(b *testing.B, compression float64, times int) {
data := make([]float64, times)
for i := 0; i < times; i++ {
data[i] = rand.Float64()
}
b.ReportAllocs()
b.ResetTimer()
for n := 0; n < b.N; n++ {
t := uncheckedNew(Compression(compression))
for i := 0; i < times; i++ {
err := t.AddWeighted(data[i], 1)
if err != nil {
b.Error(err)
}
}
}
b.StopTimer()
}
func BenchmarkTDigestMerge(b *testing.B) {
for _, compression := range compressions {
compression := compression
for _, n := range []int{1, 10, 100} {
name := fmt.Sprintf("compression=%.0f n=%d", compression, n)
b.Run(name, func(b *testing.B) {
benchmarkMerge(b, compression, n)
})
}
}
}
func benchmarkMerge(b *testing.B, compression float64, times int) {
ts := make([]*TDigest, times)
for i := 0; i < times; i++ {
ts[i] = randomTDigest(compression)
}
b.ReportAllocs()
b.ResetTimer()
for n := 0; n < b.N; n++ {
dst := uncheckedNew(Compression(compression))
for i := 0; i < times; i++ {
err := dst.Merge(ts[i])
if err != nil {
b.Fatal(err)
}
}
err := dst.Compress()
if err != nil {
b.Fatal(err)
}
}
}
func randomTDigest(compression float64) *TDigest {
t := uncheckedNew(Compression(compression))
n := 20 * int(compression)
for i := 0; i < n; i++ {
err := t.Add(rand.Float64())
if err != nil {
panic(err)
}
}
return t
}
// Pathological ordered-input case.
func BenchmarkAddOrdered(b *testing.B) {
t, _ := New(Compression(100))
for n := 0; n < b.N; n++ {
err := t.Add(float64(n))
if err != nil {
b.Error(err)
}
}
}
func BenchmarkMerge(b *testing.B) {
b.ReportAllocs()
t, _ := New(Compression(100))
for n := 0; n < 1000; n++ {
t.AddWeighted(rand.Float64(), uint64(rand.Intn(100)))
}
dest, _ := New(Compression(100))
b.ResetTimer()
for n := 0; n < b.N; n++ {
dest.Merge(t)
}
}
func BenchmarkMergeDestructive(b *testing.B) {
b.ReportAllocs()
t, _ := New(Compression(100))
for n := 0; n < 1000; n++ {
t.AddWeighted(rand.Float64(), uint64(rand.Intn(100)))
}
dest, _ := New(Compression(100))
b.ResetTimer()
// After the first iteration, t's summary is scrambled, which means it's
// mostly useless, but we can still merge it.
for n := 0; n < b.N; n++ {
dest.MergeDestructive(t)
}
}