https://leetcode-cn.com/problems/number-of-provinces/
连通性问题显然可以用并查集
class UnionFind:
# 构造函数传入totalNodes为总节点数
def __init__(self, totalNodes):
# parents[i]表示i的根,初始i的根为其自身
self.parents = [i for i in range(totalNodes)]
# 连通分量数
self.count = totalNodes
# 树的“重量”
self.size = [1] * totalNodes
# 合并连通区域是通过find来操作的, 即看这两个节点是不是在一个连通区域内.
def union(self, node1, node2):
root1 = self.find(node1)
root2 = self.find(node2)
# 不连通才合并
if root1 != root2:
# 小树合并到大树
if self.size[root1] > self.size[root2]:
self.parents[root2] = root1
self.size[root1] += self.size[root2]
else:
self.parents[root1] = root2
self.size[root2] += self.size[root1]
# 连通分量数减一
self.count -= 1
#
# 查找最终的根
def find(self, node):
while self.parents[node] != node:
self.parents[node] = self.parents[self.parents[node]]
node = self.parents[node]
return node
# 判断两个点是否连通
def isConnected(self, node1, node2):
return self.find(node1) == self.find(node2)
# 返回连通分量个数
def count(self):
return self.count
class Solution:
def findCircleNum(self, isConnected: List[List[int]]) -> int:
n = len(isConnected)
uf = UnionFind(n) #一共n个节点
for i in range(n): #只需要遍历上三角矩阵
for j in range(i+1, n):
if isConnected[i][j]:
uf.union(i, j)
return uf.count #返回连通分量个数