+
+
+
+
+
+
\ No newline at end of file
diff --git a/Likunlin_final/analyse_text/tests.py b/Likunlin_final/analyse_text/tests.py
new file mode 100644
index 00000000000000..7ce503c2dd97ba
--- /dev/null
+++ b/Likunlin_final/analyse_text/tests.py
@@ -0,0 +1,3 @@
+from django.test import TestCase
+
+# Create your tests here.
diff --git a/Likunlin_final/analyse_text/views.py b/Likunlin_final/analyse_text/views.py
new file mode 100644
index 00000000000000..e40c6ca8d467f3
--- /dev/null
+++ b/Likunlin_final/analyse_text/views.py
@@ -0,0 +1,27 @@
+from django.shortcuts import render
+# -*- coding: utf-8 -*-
+from django.shortcuts import render
+from django.http import HttpResponse
+import json
+import sys
+sys.path =['/home/xd/projects/pytorch-pretrained-BERT'] + sys.path
+from likunlin_final import analyze_text,modify_text
+
+text = []
+def home(request):
+ return render(request, 'home.html')
+
+
+def analyse(request):
+ global text
+ text = request.GET['text']
+ text = [text]
+ print("xiaofang")
+ suggestions,tokens,avg_gap = analyze_text(text)
+ return HttpResponse(json.dumps({"tokens":tokens,"suggestions":suggestions,"avg_gap":avg_gap}))
+
+def modify(request):
+ global text
+ index = request.GET['index']
+ text,new_tokens,suggestions = modify_text(int(index),text)
+ return HttpResponse(json.dumps({"tokens":new_tokens,"suggestions":suggestions}))
diff --git a/Likunlin_final/manage.py b/Likunlin_final/manage.py
new file mode 100755
index 00000000000000..30c456de702310
--- /dev/null
+++ b/Likunlin_final/manage.py
@@ -0,0 +1,21 @@
+#!/usr/bin/env python
+"""Django's command-line utility for administrative tasks."""
+import os
+import sys
+
+
+def main():
+ os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Likunlin_final.settings')
+ try:
+ from django.core.management import execute_from_command_line
+ except ImportError as exc:
+ raise ImportError(
+ "Couldn't import Django. Are you sure it's installed and "
+ "available on your PYTHONPATH environment variable? Did you "
+ "forget to activate a virtual environment?"
+ ) from exc
+ execute_from_command_line(sys.argv)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/MANIFEST.in b/MANIFEST.in
new file mode 100644
index 00000000000000..1aba38f67a2211
--- /dev/null
+++ b/MANIFEST.in
@@ -0,0 +1 @@
+include LICENSE
diff --git a/README.md b/README.md
index eb337d8253f465..4e7d3bb1090bb4 100644
--- a/README.md
+++ b/README.md
@@ -1,5 +1,7 @@
# PyTorch Pretrained Bert
+[![CircleCI](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT.svg?style=svg)](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT)
+
This repository contains an op-for-op PyTorch reimplementation of [Google's TensorFlow repository for the BERT model](https://github.com/google-research/bert) that was released together with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
This implementation is provided with [Google's pre-trained models](https://github.com/google-research/bert), examples, notebooks and a command-line interface to load any pre-trained TensorFlow checkpoint for BERT is also provided.
@@ -14,12 +16,12 @@ This implementation is provided with [Google's pre-trained models](https://githu
| [Doc](#doc) | Detailed documentation |
| [Examples](#examples) | Detailed examples on how to fine-tune Bert |
| [Notebooks](#notebooks) | Introduction on the provided Jupyter Notebooks |
-| [TPU](#tup) | Notes on TPU support and pretraining scripts |
+| [TPU](#tpu) | Notes on TPU support and pretraining scripts |
| [Command-line interface](#Command-line-interface) | Convert a TensorFlow checkpoint in a PyTorch dump |
## Installation
-This repo was tested on Python 3.5+ and PyTorch 0.4.1
+This repo was tested on Python 3.5+ and PyTorch 0.4.1/1.0.0
### With pip
@@ -46,13 +48,15 @@ python -m pytest -sv tests/
This package comprises the following classes that can be imported in Python and are detailed in the [Doc](#doc) section of this readme:
-- Six PyTorch models (`torch.nn.Module`) for Bert with pre-trained weights (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file):
- - [`BertModel`](./pytorch_pretrained_bert/modeling.py#L535) - raw BERT Transformer model (**fully pre-trained**),
- - [`BertForMaskedLM`](./pytorch_pretrained_bert/modeling.py#L689) - BERT Transformer with the pre-trained masked language modeling head on top (**fully pre-trained**),
- - [`BertForNextSentencePrediction`](./pytorch_pretrained_bert/modeling.py#L750) - BERT Transformer with the pre-trained next sentence prediction classifier on top (**fully pre-trained**),
- - [`BertForPreTraining`](./pytorch_pretrained_bert/modeling.py#L618) - BERT Transformer with masked language modeling head and next sentence prediction classifier on top (**fully pre-trained**),
- - [`BertForSequenceClassification`](./pytorch_pretrained_bert/modeling.py#L812) - BERT Transformer with a sequence classification head on top (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**),
- - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L877) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**).
+- Eight PyTorch models (`torch.nn.Module`) for Bert with pre-trained weights (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file):
+ - [`BertModel`](./pytorch_pretrained_bert/modeling.py#L537) - raw BERT Transformer model (**fully pre-trained**),
+ - [`BertForMaskedLM`](./pytorch_pretrained_bert/modeling.py#L691) - BERT Transformer with the pre-trained masked language modeling head on top (**fully pre-trained**),
+ - [`BertForNextSentencePrediction`](./pytorch_pretrained_bert/modeling.py#L752) - BERT Transformer with the pre-trained next sentence prediction classifier on top (**fully pre-trained**),
+ - [`BertForPreTraining`](./pytorch_pretrained_bert/modeling.py#L620) - BERT Transformer with masked language modeling head and next sentence prediction classifier on top (**fully pre-trained**),
+ - [`BertForSequenceClassification`](./pytorch_pretrained_bert/modeling.py#L814) - BERT Transformer with a sequence classification head on top (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**),
+ - [`BertForMultipleChoice`](./pytorch_pretrained_bert/modeling.py#L880) - BERT Transformer with a multiple choice head on top (used for task like Swag) (BERT Transformer is **pre-trained**, the multiple choice classification head **is only initialized and has to be trained**),
+ - [`BertForTokenClassification`](./pytorch_pretrained_bert/modeling.py#L949) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**),
+ - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L1015) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**).
- Three tokenizers (in the [`tokenization.py`](./pytorch_pretrained_bert/tokenization.py) file):
- `BasicTokenizer` - basic tokenization (punctuation splitting, lower casing, etc.),
@@ -63,15 +67,17 @@ This package comprises the following classes that can be imported in Python and
- `BertAdam` - Bert version of Adam algorithm with weight decay fix, warmup and linear decay of the learning rate.
- A configuration class (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file):
- - `BertConfig` - Configuration class to store the configuration of a `BertModel` with utilisities to read and write from JSON configuration files.
+ - `BertConfig` - Configuration class to store the configuration of a `BertModel` with utilities to read and write from JSON configuration files.
The repository further comprises:
-- Three examples on how to use Bert (in the [`examples` folder](./examples)):
+- Five examples on how to use Bert (in the [`examples` folder](./examples)):
- [`extract_features.py`](./examples/extract_features.py) - Show how to extract hidden states from an instance of `BertModel`,
- [`run_classifier.py`](./examples/run_classifier.py) - Show how to fine-tune an instance of `BertForSequenceClassification` on GLUE's MRPC task,
- [`run_squad.py`](./examples/run_squad.py) - Show how to fine-tune an instance of `BertForQuestionAnswering` on SQuAD v1.0 task.
-
+ - [`run_swag.py`](./examples/run_swag.py) - Show how to fine-tune an instance of `BertForMultipleChoice` on Swag task.
+ - [`run_lm_finetuning.py`](./examples/run_lm_finetuning.py) - Show how to fine-tune an instance of `BertForPretraining' on a target text corpus.
+
These examples are detailed in the [Examples](#examples) section of this readme.
- Three notebooks that were used to check that the TensorFlow and PyTorch models behave identically (in the [`notebooks` folder](./notebooks)):
@@ -153,7 +159,7 @@ Here is a detailed documentation of the classes in the package and how to use th
| Sub-section | Description |
|-|-|
| [Loading Google AI's pre-trained weigths](#Loading-Google-AIs-pre-trained-weigths-and-PyTorch-dump) | How to load Google AI's pre-trained weight or a PyTorch saved instance |
-| [PyTorch models](#PyTorch-models) | API of the six PyTorch model classes: `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification` or `BertForQuestionAnswering` |
+| [PyTorch models](#PyTorch-models) | API of the eight PyTorch model classes: `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification`, `BertForMultipleChoice` or `BertForQuestionAnswering` |
| [Tokenizer: `BertTokenizer`](#Tokenizer-BertTokenizer) | API of the `BertTokenizer` class|
| [Optimizer: `BertAdam`](#Optimizer-BertAdam) | API of the `BertAdam` class |
@@ -162,12 +168,12 @@ Here is a detailed documentation of the classes in the package and how to use th
To load one of Google AI's pre-trained models or a PyTorch saved model (an instance of `BertForPreTraining` saved with `torch.save()`), the PyTorch model classes and the tokenizer can be instantiated as
```python
-model = BERT_CLASS.from_pretrain(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None)
+model = BERT_CLASS.from_pretrained(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None)
```
where
-- `BERT_CLASS` is either the `BertTokenizer` class (to load the vocabulary) or one of the six PyTorch model classes (to load the pre-trained weights): `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification` or `BertForQuestionAnswering`, and
+- `BERT_CLASS` is either the `BertTokenizer` class (to load the vocabulary) or one of the eight PyTorch model classes (to load the pre-trained weights): `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification`, `BertForTokenClassification`, `BertForMultipleChoice` or `BertForQuestionAnswering`, and
- `PRE_TRAINED_MODEL_NAME_OR_PATH` is either:
- the shortcut name of a Google AI's pre-trained model selected in the list:
@@ -175,19 +181,26 @@ where
- `bert-base-uncased`: 12-layer, 768-hidden, 12-heads, 110M parameters
- `bert-large-uncased`: 24-layer, 1024-hidden, 16-heads, 340M parameters
- `bert-base-cased`: 12-layer, 768-hidden, 12-heads , 110M parameters
- - `bert-base-multilingual`: 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
+ - `bert-large-cased`: 24-layer, 1024-hidden, 16-heads, 340M parameters
+ - `bert-base-multilingual-uncased`: (Orig, not recommended) 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
+ - `bert-base-multilingual-cased`: **(New, recommended)** 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
- `bert-base-chinese`: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
- a path or url to a pretrained model archive containing:
-
- - `bert_config.json` a configuration file for the model, and
- - `pytorch_model.bin` a PyTorch dump of a pre-trained instance `BertForPreTraining` (saved with the usual `torch.save()`)
+
+ - `bert_config.json` a configuration file for the model, and
+ - `pytorch_model.bin` a PyTorch dump of a pre-trained instance `BertForPreTraining` (saved with the usual `torch.save()`)
If `PRE_TRAINED_MODEL_NAME_OR_PATH` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links [here](pytorch_pretrained_bert/modeling.py)) and stored in a cache folder to avoid future download (the cache folder can be found at `~/.pytorch_pretrained_bert/`).
-- `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example `cache_dir='./pretrained_model_{}'.format(args.local_rank)` (see the section on distributed training for more information)
+- `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example `cache_dir='./pretrained_model_{}'.format(args.local_rank)` (see the section on distributed training for more information).
+
+`Uncased` means that the text has been lowercased before WordPiece tokenization, e.g., `John Smith` becomes `john smith`. The Uncased model also strips out any accent markers. `Cased` means that the true case and accent markers are preserved. Typically, the Uncased model is better unless you know that case information is important for your task (e.g., Named Entity Recognition or Part-of-Speech tagging). For information about the Multilingual and Chinese model, see the [Multilingual README](https://github.com/google-research/bert/blob/master/multilingual.md) or the original TensorFlow repository.
+
+**When using an `uncased model`, make sure to pass `--do_lower_case` to the example training scripts (or pass `do_lower_case=True` to FullTokenizer if you're using your own script and loading the tokenizer your-self.).**
Example:
```python
+tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
```
@@ -200,8 +213,8 @@ model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
The inputs and output are **identical to the TensorFlow model inputs and outputs**.
We detail them here. This model takes as *inputs*:
-
-- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`), and
+[`modeling.py`](./pytorch_pretrained_bert/modeling.py)
+- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts [`extract_features.py`](./examples/extract_features.py), [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py)), and
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if some input sequence lengths are smaller than the max input sequence length of the current batch. It's the mask that we typically use for attention when a batch has varying length sentences.
- `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
@@ -215,7 +228,7 @@ This model *outputs* a tuple composed of:
- `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper).
-An example on how to use this class is given in the `extract_features.py` script which can be used to extract the hidden states of the model for a given input.
+An example on how to use this class is given in the [`extract_features.py`](./examples/extract_features.py) script which can be used to extract the hidden states of the model for a given input.
#### 2. `BertForPreTraining`
@@ -236,6 +249,9 @@ An example on how to use this class is given in the `extract_features.py` script
- the masked language modeling logits, and
- the next sentence classification logits.
+
+An example on how to use this class is given in the [`run_lm_finetuning.py`](./examples/run_lm_finetuning.py) script which can be used to fine-tune the BERT language model on your specific different text corpus. This should improve model performance, if the language style is different from the original BERT training corpus (Wiki + BookCorpus).
+
#### 3. `BertForMaskedLM`
@@ -269,15 +285,31 @@ An example on how to use this class is given in the `extract_features.py` script
The sequence-level classifier is a linear layer that takes as input the last hidden state of the first character in the input sequence (see Figures 3a and 3b in the BERT paper).
-An example on how to use this class is given in the `run_classifier.py` script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task.
+An example on how to use this class is given in the [`run_classifier.py`](./examples/run_classifier.py) script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task.
+
+#### 6. `BertForMultipleChoice`
+
+`BertForMultipleChoice` is a fine-tuning model that includes `BertModel` and a linear layer on top of the `BertModel`.
+
+The linear layer outputs a single value for each choice of a multiple choice problem, then all the outputs corresponding to an instance are passed through a softmax to get the model choice.
+
+This implementation is largely inspired by the work of OpenAI in [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) and the answer of Jacob Devlin in the following [issue](https://github.com/google-research/bert/issues/38).
+
+An example on how to use this class is given in the [`run_swag.py`](./examples/run_swag.py) script which can be used to fine-tune a multiple choice classifier using BERT, for example for the Swag task.
+
+#### 7. `BertForTokenClassification`
+
+`BertForTokenClassification` is a fine-tuning model that includes `BertModel` and a token-level classifier on top of the `BertModel`.
-#### 6. `BertForQuestionAnswering`
+The token-level classifier is a linear layer that takes as input the last hidden state of the sequence.
+
+#### 8. `BertForQuestionAnswering`
`BertForQuestionAnswering` is a fine-tuning model that includes `BertModel` with a token-level classifiers on top of the full sequence of last hidden states.
The token-level classifier takes as input the full sequence of the last hidden state and compute several (e.g. two) scores for each tokens that can for example respectively be the score that a given token is a `start_span` and a `end_span` token (see Figures 3c and 3d in the BERT paper).
-An example on how to use this class is given in the `run_squad.py` script which can be used to fine-tune a token classifier using BERT, for example for the SQuAD task.
+An example on how to use this class is given in the [`run_squad.py`](./examples/run_squad.py) script which can be used to fine-tune a token classifier using BERT, for example for the SQuAD task.
### Tokenizer: `BertTokenizer`
@@ -313,7 +345,7 @@ The optimizer accepts the following arguments:
- `b1` : Adams b1. Default : `0.9`
- `b2` : Adams b2. Default : `0.999`
- `e` : Adams epsilon. Default : `1e-6`
-- `weight_decay_rate:` Weight decay. Default : `0.01`
+- `weight_decay:` Weight decay. Default : `0.01`
- `max_grad_norm` : Maximum norm for the gradients (`-1` means no clipping). Default : `1.0`
## Examples
@@ -321,22 +353,23 @@ The optimizer accepts the following arguments:
| Sub-section | Description |
|-|-|
| [Training large models: introduction, tools and examples](#Training-large-models-introduction,-tools-and-examples) | How to use gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training to train Bert models |
-| [Fine-tuning with BERT: running the examples](#Fine-tuning-with-BERT-running-the-examples) | Running the examples in [`./examples`](./examples/): `extract_classif.py`, `run_classifier.py` and `run_squad.py` |
+| [Fine-tuning with BERT: running the examples](#Fine-tuning-with-BERT-running-the-examples) | Running the examples in [`./examples`](./examples/): `extract_classif.py`, `run_classifier.py`, `run_squad.py` and `run_lm_finetuning.py` |
| [Fine-tuning BERT-large on GPUs](#Fine-tuning-BERT-large-on-GPUs) | How to fine tune `BERT large`|
### Training large models: introduction, tools and examples
BERT-base and BERT-large are respectively 110M and 340M parameters models and it can be difficult to fine-tune them on a single GPU with the recommended batch size for good performance (in most case a batch size of 32).
-To help with fine-tuning these models, we have included five techniques that you can activate in the fine-tuning scripts `run_classifier.py` and `run_squad.py`: gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month.
+To help with fine-tuning these models, we have included several techniques that you can activate in the fine-tuning scripts [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py): gradient-accumulation, multi-gpu training, distributed training and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month.
Here is how to use these techniques in our scripts:
- **Gradient Accumulation**: Gradient accumulation can be used by supplying a integer greater than 1 to the `--gradient_accumulation_steps` argument. The batch at each step will be divided by this integer and gradient will be accumulated over `gradient_accumulation_steps` steps.
- **Multi-GPU**: Multi-GPU is automatically activated when several GPUs are detected and the batches are splitted over the GPUs.
- **Distributed training**: Distributed training can be activated by supplying an integer greater or equal to 0 to the `--local_rank` argument (see below).
-- **Optimize on CPU**: The Adam optimizer stores 2 moving average of the weights of the model. If you keep them on GPU 1 (typical behavior), your first GPU will have to store 3-times the size of the model. This is not optimal for large models like `BERT-large` and means your batch size is a lot lower than it could be. This option will perform the optimization and store the averages on the CPU/RAM to free more room on the GPU(s). As the most computational intensive operation is usually the backward pass, this doesn't have a significant impact on the training time. Activate this option with `--optimize_on_cpu` on the `run_squad.py` script.
-- **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scaling` flag (see the previously linked documentation for details on loss scaling). If the loss scaling is too high (`Nan` in the gradients) it will be automatically scaled down until the value is acceptable. The default loss scaling is 128 which behaved nicely in our tests.
+- **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scale` flag (see the previously linked documentation for details on loss scaling). The loss scale can be zero in which case the scale is dynamically adjusted or a positive power of two in which case the scaling is static.
+
+To use 16-bits training and distributed training, you need to install NVIDIA's apex extension [as detailed here](https://github.com/nvidia/apex). You will find more information regarding the internals of `apex` and how to use `apex` in [the doc and the associated repository](https://github.com/nvidia/apex). The results of the tests performed on pytorch-BERT by the NVIDIA team (and my trials at reproducing them) can be consulted in [the relevant PR of the present repository](https://github.com/huggingface/pytorch-pretrained-BERT/pull/116).
Note: To use *Distributed Training*, you will need to run one training script on each of your machines. This can be done for example by running the following command on each server (see [the above mentioned blog post]((https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255)) for more details):
```bash
@@ -346,16 +379,22 @@ Where `$THIS_MACHINE_INDEX` is an sequential index assigned to each of your mach
### Fine-tuning with BERT: running the examples
-We showcase the same examples as [the original implementation](https://github.com/google-research/bert/): fine-tuning a sequence-level classifier on the MRPC classification corpus and a token-level classifier on the question answering dataset SQuAD.
+We showcase several fine-tuning examples based on (and extended from) [the original implementation](https://github.com/google-research/bert/):
+
+- a *sequence-level classifier* on the MRPC classification corpus,
+- a *token-level classifier* on the question answering dataset SQuAD, and
+- a *sequence-level multiple-choice classifier* on the SWAG classification corpus.
+- a *BERT language model* on another target corpus
+
+#### MRPC
+
+This example code fine-tunes BERT on the Microsoft Research Paraphrase
+Corpus (MRPC) corpus and runs in less than 10 minutes on a single K-80 and in 27 seconds (!) on single tesla V100 16GB with apex installed.
-Before running these examples you should download the
+Before running this example you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
-and unpack it to some directory `$GLUE_DIR`. Please also download the `BERT-Base`
-checkpoint, unzip it to some directory `$BERT_BASE_DIR`, and convert it to its PyTorch version as explained in the previous section.
-
-This example code fine-tunes `BERT-Base` on the Microsoft Research Paraphrase
-Corpus (MRPC) corpus and runs in less than 10 minutes on a single K-80.
+and unpack it to some directory `$GLUE_DIR`.
```shell
export GLUE_DIR=/path/to/glue
@@ -364,6 +403,7 @@ python run_classifier.py \
--task_name MRPC \
--do_train \
--do_eval \
+ --do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--bert_model bert-base-uncased \
--max_seq_length 128 \
@@ -375,7 +415,29 @@ python run_classifier.py \
Our test ran on a few seeds with [the original implementation hyper-parameters](https://github.com/google-research/bert#sentence-and-sentence-pair-classification-tasks) gave evaluation results between 84% and 88%.
-The second example fine-tunes `BERT-Base` on the SQuAD question answering task.
+**Fast run with apex and 16 bit precision: fine-tuning on MRPC in 27 seconds!**
+First install apex as indicated [here](https://github.com/NVIDIA/apex).
+Then run
+```shell
+export GLUE_DIR=/path/to/glue
+
+python run_classifier.py \
+ --task_name MRPC \
+ --do_train \
+ --do_eval \
+ --do_lower_case \
+ --data_dir $GLUE_DIR/MRPC/ \
+ --bert_model bert-base-uncased \
+ --max_seq_length 128 \
+ --train_batch_size 32 \
+ --learning_rate 2e-5 \
+ --num_train_epochs 3.0 \
+ --output_dir /tmp/mrpc_output/
+```
+
+#### SQuAD
+
+This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB.
The data for SQuAD can be downloaded with the following links and should be saved in a `$SQUAD_DIR` directory.
@@ -390,6 +452,7 @@ python run_squad.py \
--bert_model bert-base-uncased \
--do_train \
--do_predict \
+ --do_lower_case \
--train_file $SQUAD_DIR/train-v1.1.json \
--predict_file $SQUAD_DIR/dev-v1.1.json \
--train_batch_size 12 \
@@ -405,6 +468,54 @@ Training with the previous hyper-parameters gave us the following results:
{"f1": 88.52381567990474, "exact_match": 81.22043519394512}
```
+#### SWAG
+
+The data for SWAG can be downloaded by cloning the following [repository](https://github.com/rowanz/swagaf)
+
+```shell
+export SWAG_DIR=/path/to/SWAG
+
+python run_swag.py \
+ --bert_model bert-base-uncased \
+ --do_train \
+ --do_lower_case \
+ --do_eval \
+ --data_dir $SWAG_DIR/data \
+ --train_batch_size 16 \
+ --learning_rate 2e-5 \
+ --num_train_epochs 3.0 \
+ --max_seq_length 80 \
+ --output_dir /tmp/swag_output/ \
+ --gradient_accumulation_steps 4
+```
+
+Training with the previous hyper-parameters on a single GPU gave us the following results:
+```
+eval_accuracy = 0.8062081375587323
+eval_loss = 0.5966546792367169
+global_step = 13788
+loss = 0.06423990014260186
+```
+
+#### LM Fine-tuning
+
+The data should be a text file in the same format as [sample_text.txt](./samples/sample_text.txt) (one sentence per line, docs separated by empty line).
+You can download an [exemplary training corpus](https://ext-bert-sample.obs.eu-de.otc.t-systems.com/small_wiki_sentence_corpus.txt) generated from wikipedia articles and splitted into ~500k sentences with spaCy.
+Training one epoch on this corpus takes about 1:20h on 4 x NVIDIA Tesla P100 with `train_batch_size=200` and `max_seq_length=128`:
+
+
+```shell
+python run_lm_finetuning.py \
+ --bert_model bert-base-cased \
+ --do_train \
+ --train_file samples/sample_text.txt \
+ --output_dir models \
+ --num_train_epochs 5.0 \
+ --learning_rate 3e-5 \
+ --train_batch_size 32 \
+ --max_seq_length 128
+```
+
## Fine-tuning BERT-large on GPUs
The options we list above allow to fine-tune BERT-large rather easily on GPU(s) instead of the TPU used by the original implementation.
@@ -424,6 +535,7 @@ python ./run_squad.py \
--bert_model bert-large-uncased \
--do_train \
--do_predict \
+ --do_lower_case \
--train_file $SQUAD_TRAIN \
--predict_file $SQUAD_EVAL \
--learning_rate 3e-5 \
@@ -432,8 +544,7 @@ python ./run_squad.py \
--doc_stride 128 \
--output_dir $OUTPUT_DIR \
--train_batch_size 24 \
- --gradient_accumulation_steps 2 \
- --optimize_on_cpu
+ --gradient_accumulation_steps 2
```
If you have a recent GPU (starting from NVIDIA Volta series), you should try **16-bit fine-tuning** (FP16).
@@ -444,6 +555,7 @@ python ./run_squad.py \
--bert_model bert-large-uncased \
--do_train \
--do_predict \
+ --do_lower_case \
--train_file $SQUAD_TRAIN \
--predict_file $SQUAD_EVAL \
--learning_rate 3e-5 \
@@ -479,7 +591,7 @@ A command-line interface is provided to convert a TensorFlow checkpoint in a PyT
You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the [`./pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py`](convert_tf_checkpoint_to_pytorch.py) script.
-This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using `torch.load()` (see examples in `extract_features.py`, `run_classifier.py` and `run_squad.py`).
+This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using `torch.load()` (see examples in [`extract_features.py`](./examples/extract_features.py), [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`]((./examples/run_squad.py))).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too.
diff --git a/Untitled.ipynb b/Untitled.ipynb
new file mode 100644
index 00000000000000..6701ee5f62e8e7
--- /dev/null
+++ b/Untitled.ipynb
@@ -0,0 +1,1003 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2\n",
+ "\n",
+ "from IPython.core.interactiveshell import InteractiveShell\n",
+ "InteractiveShell.ast_node_interactivity = 'all'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Warning: apex was installed without --cpp_ext. Falling back to Python flatten and unflatten.\n",
+ "Warning: apex was installed without --cuda_ext. Fused syncbn kernels will be unavailable. Python fallbacks will be used instead.\n",
+ "Warning: apex was installed without --cuda_ext. FusedAdam will be unavailable.\n",
+ "Warning: apex was installed without --cuda_ext. FusedLayerNorm will be unavailable.\n",
+ "Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# import seaborn as sns\n",
+ "import os\n",
+ "import json\n",
+ "\n",
+ "import numpy as np\n",
+ "import math\n",
+ "import matplotlib\n",
+ "import matplotlib.pyplot as plt\n",
+ "from pylab import rcParams\n",
+ "\n",
+ "import torch\n",
+ "import torch.nn.functional as F\n",
+ "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig\n",
+ "from examples.extract_features import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/10/2019 08:14:45 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file /nas/pretrain-bert/pretrain-pytorch/bert-base-uncased-vocab.txt\n",
+ "06/10/2019 08:14:45 - INFO - pytorch_pretrained_bert.modeling - loading archive file /nas/pretrain-bert/pretrain-pytorch/bert-base-uncased/\n",
+ "06/10/2019 08:14:45 - INFO - pytorch_pretrained_bert.modeling - Model config {\n",
+ " \"attention_probs_dropout_prob\": 0.1,\n",
+ " \"hidden_act\": \"gelu\",\n",
+ " \"hidden_dropout_prob\": 0.1,\n",
+ " \"hidden_size\": 768,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"intermediate_size\": 3072,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"num_attention_heads\": 12,\n",
+ " \"num_hidden_layers\": 12,\n",
+ " \"type_vocab_size\": 2,\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "class Args:\n",
+ " def __init__(self):\n",
+ " pass\n",
+ " \n",
+ "args = Args()\n",
+ "args.no_cuda = True\n",
+ "\n",
+ "CONFIG_NAME = 'bert_config.json'\n",
+ "# BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n",
+ "BERT_DIR = '/nas/pretrain-bert/pretrain-pytorch/bert-base-uncased/'\n",
+ "config_file = os.path.join(BERT_DIR, CONFIG_NAME)\n",
+ "config = BertConfig.from_json_file(config_file)\n",
+ "\n",
+ "# tokenizer = BertTokenizer.from_pretrained(os.path.join(BERT_DIR, 'vocab.txt'))\n",
+ "tokenizer = BertTokenizer.from_pretrained('/nas/pretrain-bert/pretrain-pytorch/bert-base-uncased-vocab.txt')\n",
+ "model = BertForPreTraining.from_pretrained(BERT_DIR)\n",
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() and not args.no_cuda else \"cpu\")\n",
+ "_ = model.to(device)\n",
+ "_ = model.eval()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import re\n",
+ "def convert_text_to_examples(text):\n",
+ " examples = []\n",
+ " unique_id = 0\n",
+ " if True:\n",
+ " for line in text:\n",
+ " line = line.strip()\n",
+ " text_a = None\n",
+ " text_b = None\n",
+ " m = re.match(r\"^(.*) \\|\\|\\| (.*)$\", line)\n",
+ " if m is None:\n",
+ " text_a = line\n",
+ " else:\n",
+ " text_a = m.group(1)\n",
+ " text_b = m.group(2)\n",
+ " examples.append(\n",
+ " InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))\n",
+ " unique_id += 1\n",
+ " return examples\n",
+ "\n",
+ "def convert_examples_to_features(examples, tokenizer, append_special_tokens=True, replace_mask=True, print_info=False):\n",
+ " features = []\n",
+ " for (ex_index, example) in enumerate(examples):\n",
+ " tokens_a = tokenizer.tokenize(example.text_a)\n",
+ " tokens_b = None\n",
+ " if example.text_b:\n",
+ " tokens_b = tokenizer.tokenize(example.text_b)\n",
+ "\n",
+ " tokens = []\n",
+ " input_type_ids = []\n",
+ " if append_special_tokens:\n",
+ " tokens.append(\"[CLS]\")\n",
+ " input_type_ids.append(0)\n",
+ " for token in tokens_a:\n",
+ " if replace_mask and token == '_': # XD\n",
+ " token = \"[MASK]\"\n",
+ " tokens.append(token)\n",
+ " input_type_ids.append(0)\n",
+ " if append_special_tokens:\n",
+ " tokens.append(\"[SEP]\")\n",
+ " input_type_ids.append(0)\n",
+ "\n",
+ " if tokens_b:\n",
+ " for token in tokens_b:\n",
+ " if replace_mask and token == '_': # XD\n",
+ " token = \"[MASK]\"\n",
+ " tokens.append(token)\n",
+ " input_type_ids.append(1)\n",
+ " if append_special_tokens:\n",
+ " tokens.append(\"[SEP]\")\n",
+ " input_type_ids.append(1)\n",
+ "\n",
+ " input_ids = tokenizer.convert_tokens_to_ids(tokens)\n",
+ " input_mask = [1] * len(input_ids)\n",
+ "\n",
+ " if ex_index < 5:\n",
+ "# logger.info(\"*** Example ***\")\n",
+ "# logger.info(\"unique_id: %s\" % (example.unique_id))\n",
+ " logger.info(\"tokens: %s\" % \" \".join([str(x) for x in tokens]))\n",
+ "# logger.info(\"input_ids: %s\" % \" \".join([str(x) for x in input_ids]))\n",
+ "# logger.info(\"input_mask: %s\" % \" \".join([str(x) for x in input_mask]))\n",
+ "# logger.info(\n",
+ "# \"input_type_ids: %s\" % \" \".join([str(x) for x in input_type_ids]))\n",
+ " \n",
+ " features.append(\n",
+ " InputFeatures(\n",
+ " unique_id=example.unique_id,\n",
+ " tokens=tokens,\n",
+ " input_ids=input_ids,\n",
+ " input_mask=input_mask,\n",
+ " input_type_ids=input_type_ids))\n",
+ " return features\n",
+ "\n",
+ "def copy_and_mask_feature(feature, masked_tokens=None):\n",
+ " import copy\n",
+ " tokens = feature.tokens\n",
+ " masked_positions = [tokens.index(t) for t in masked_tokens if t in tokens] \\\n",
+ " if masked_tokens is not None else range(len(tokens))\n",
+ " assert len(masked_positions) > 0\n",
+ " masked_feature_copies = []\n",
+ " for masked_pos in masked_positions:\n",
+ " feature_copy = copy.deepcopy(feature)\n",
+ " feature_copy.input_ids[masked_pos] = tokenizer.vocab[\"[MASK]\"]\n",
+ " masked_feature_copies.append(feature_copy)\n",
+ " return masked_feature_copies, masked_positions\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def show_lm_probs(tokens, input_ids, probs, topk=5, firstk=20):\n",
+ " def print_pair(token, prob, end_str='', hit_mark=' '):\n",
+ " if i < firstk:\n",
+ " # token = token.replace('', '').replace('\\n', '/n')\n",
+ " print('{}{: >3} | {: <12}'.format(hit_mark, int(round(prob*100)), token), end=end_str)\n",
+ " \n",
+ " ret = None\n",
+ " for i in range(len(tokens)):\n",
+ " ind_ = input_ids[i].item() if input_ids is not None else tokenizer.vocab[tokens[i]]\n",
+ " prob_ = probs[i][ind_].item()\n",
+ " print_pair(tokens[i], prob_, end_str='\\t')\n",
+ " values, indices = probs[i].topk(topk)\n",
+ " top_pairs = []\n",
+ " for j in range(topk):\n",
+ " ind, prob = indices[j].item(), values[j].item()\n",
+ " hit_mark = '*' if ind == ind_ else ' '\n",
+ " token = tokenizer.ids_to_tokens[ind]\n",
+ " print_pair(token, prob, hit_mark=hit_mark, end_str='' if j < topk - 1 else '\\n')\n",
+ " top_pairs.append((token, prob))\n",
+ " if tokens[i] == \"[MASK]\":\n",
+ " ret = top_pairs\n",
+ " return ret"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import colored\n",
+ "from colored import stylize\n",
+ "\n",
+ "def show_abnormals(tokens, probs, show_suggestions=False):\n",
+ " def gap2color(gap):\n",
+ " if gap <= 5:\n",
+ " return 'yellow_1'\n",
+ " elif gap <= 10:\n",
+ " return 'orange_1'\n",
+ " else:\n",
+ " return 'red_1'\n",
+ " \n",
+ " def print_token(token, suggestion, gap):\n",
+ " if gap == 0:\n",
+ " print(stylize(token + ' ', colored.fg('white') + colored.bg('black')), end='')\n",
+ " else:\n",
+ " print(stylize(token, colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n",
+ " if show_suggestions and gap > 5:\n",
+ " print(stylize('/' + suggestion + ' ', colored.fg('green' if gap > 10 else 'cyan') + colored.bg('black')), end='')\n",
+ " else:\n",
+ " print(stylize(' ', colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n",
+ " # print('/' + suggestion, end=' ')\n",
+ " # print('%.2f' % gap, end=' ')\n",
+ " \n",
+ " avg_gap = 0.\n",
+ " for i in range(1, len(tokens) - 1): # skip first [CLS] and last [SEP]\n",
+ " ind_ = tokenizer.vocab[tokens[i]]\n",
+ " prob_ = probs[i][ind_].item()\n",
+ " top_prob = probs[i].max().item()\n",
+ " top_ind = probs[i].argmax().item()\n",
+ " gap = math.log(top_prob) - math.log(prob_)\n",
+ " suggestion = tokenizer.ids_to_tokens[top_ind]\n",
+ " print_token(tokens[i], suggestion, gap)\n",
+ " avg_gap += gap\n",
+ " avg_gap /= (len(tokens) - 2)\n",
+ " print()\n",
+ " print(avg_gap)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "analyzed_cache = {}\n",
+ "\n",
+ "def analyze_text(text, masked_tokens=None, show_suggestions=False, show_firstk_probs=20):\n",
+ " if text[0] in analyzed_cache:\n",
+ " features, mlm_probs = analyzed_cache[text[0]]\n",
+ " given_mask = \"[MASK]\" in features[0].tokens\n",
+ " tokens = features[0].tokens\n",
+ " else:\n",
+ " examples = convert_text_to_examples(text)\n",
+ " features = convert_examples_to_features(examples, tokenizer, print_info=False)\n",
+ " given_mask = \"[MASK]\" in features[0].tokens\n",
+ " if not given_mask or masked_tokens is not None:\n",
+ " assert len(features) == 1\n",
+ " features, masked_positions = copy_and_mask_feature(features[0], masked_tokens=masked_tokens)\n",
+ "\n",
+ " input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n",
+ " input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long)\n",
+ " input_ids = input_ids.to(device)\n",
+ " input_type_ids = input_type_ids.to(device)\n",
+ "\n",
+ " mlm_logits, _ = model(input_ids, input_type_ids)\n",
+ " mlm_probs = F.softmax(mlm_logits, dim=-1)\n",
+ "\n",
+ " tokens = features[0].tokens\n",
+ " if not given_mask or masked_tokens is not None:\n",
+ " bsz, seq_len, vocab_size = mlm_probs.size()\n",
+ " assert bsz == len(masked_positions)\n",
+ " # reduced_mlm_probs = torch.Tensor(1, seq_len, vocab_size)\n",
+ " # for i in range(seq_len):\n",
+ " # reduced_mlm_probs[0, i] = mlm_probs[i, i]\n",
+ " reduced_mlm_probs = torch.Tensor(1, len(masked_positions), vocab_size)\n",
+ " for i, pos in enumerate(masked_positions):\n",
+ " reduced_mlm_probs[0, i] = mlm_probs[i, pos]\n",
+ " mlm_probs = reduced_mlm_probs\n",
+ " tokens = [tokens[i] for i in masked_positions]\n",
+ " \n",
+ " analyzed_cache[text[0]] = (features, mlm_probs)\n",
+ " \n",
+ " top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=show_firstk_probs)\n",
+ " if not given_mask:\n",
+ " show_abnormals(tokens, mlm_probs[0], show_suggestions=show_suggestions)\n",
+ " return top_pairs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " 0 | [CLS] \t 3 | . 1 | the 1 | , 1 | ) 1 | \" \n",
+ " 100 | \" \t*100 | \" 0 | ' 0 | and 0 | so 0 | did \n",
+ " 100 | is \t*100 | is 0 | was 0 | does 0 | isn 0 | has \n",
+ " 97 | tom \t* 97 | tom 2 | he 0 | thomas 0 | you 0 | she \n",
+ " 100 | taller \t*100 | taller 0 | tall 0 | shorter 0 | height 0 | tallest \n",
+ " 100 | than \t*100 | than 0 | then 0 | as 0 | that 0 | to \n",
+ " 100 | mary \t*100 | mary 0 | tom 0 | you 0 | barbara 0 | maria \n",
+ " 100 | ? \t*100 | ? 0 | . 0 | ! 0 | ... 0 | - \n",
+ " 100 | \" \t*100 | \" 0 | ' 0 | ! 0 | * 0 | ) \n",
+ " 100 | \" \t*100 | \" 0 | no 0 | ' 0 | oh 0 | that \n",
+ " 100 | no \t*100 | no 0 | yes 0 | nope 0 | yeah 0 | oh \n",
+ " 100 | , \t*100 | , 0 | . 0 | ; 0 | - 0 | no \n",
+ " 0 | [MASK] \t 80 | tom 10 | he 4 | mary 2 | she 1 | thomas \n",
+ " 100 | is \t*100 | is 0 | was 0 | does 0 | has 0 | no \n",
+ " 100 | taller \t*100 | taller 0 | shorter 0 | tall 0 | larger 0 | smaller \n",
+ " 100 | . \t*100 | . 0 | ; 0 | , 0 | ! 0 | ) \n",
+ " 100 | \" \t*100 | \" 0 | ' 0 | . 0 | ! 0 | ; \n",
+ " 0 | [SEP] \t 86 | . 4 | , 3 | he 2 | \" 1 | she \n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[('tom', 0.7961671352386475),\n",
+ " ('he', 0.09765198826789856),\n",
+ " ('mary', 0.04068772494792938),\n",
+ " ('she', 0.022535543888807297),\n",
+ " ('thomas', 0.0058586327359080315)]"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "text = [\"_ was the greatest physicist who developed theory of relativity.\"]\n",
+ "text = [\"The trophy doesn't fit into the brown suitcase because the _ is too large.\"] # relational adj\n",
+ "text = ['\"Is Tom taller than Mary?\" \"No, _ is taller.\"'] # yes/no\n",
+ "text = [ \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.\"] # compare \n",
+ "text = ['John is taller/shorter than Mary because/although _ is older/younger.'] # causality\n",
+ "text = [\"Jennifer is older than James . Jennifer younger than Robert . _ is the oldest.\"] # transitive inference\n",
+ "\n",
+ "analyze_text(text, show_firstk_probs=100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def words2heads(attns, tokens, words):\n",
+ " positions = [tokens.index(word) for word in words]\n",
+ "\n",
+ " for layer in range(config.num_hidden_layers):\n",
+ " for head in range(config.num_attention_heads):\n",
+ " for pos_indices in [(0, 1), (1, 0)]:\n",
+ " from_pos, to_pos = positions[pos_indices[0]], positions[pos_indices[1]]\n",
+ " if attns[layer][head][from_pos].max(0)[1].item() == to_pos:\n",
+ " print('Layer %d, head %d: %s -> %s' % (layer, head, tokens[from_pos], tokens[to_pos]), end='\\t')\n",
+ " print(attns[layer][head][from_pos].topk(5)[0].data)\n",
+ "\n",
+ "def head2words(attns, tokens, layer, head):\n",
+ " for from_pos in range(len(tokens)):\n",
+ " to_pos = attns[layer][head][from_pos].max(0)[1].item()\n",
+ " from_word, to_word = tokens[from_pos], tokens[to_pos]\n",
+ " if from_word.isalpha() and to_word.isalpha():\n",
+ " print('%s @ %d -> %s @ %d' % (from_word, from_pos, to_word, to_pos), end='\\t')\n",
+ " print(attns[layer][head][from_pos].topk(5)[0].data)\n",
+ " \n",
+ "special_tokens = ['[CLS]', '[SEP]']\n",
+ "\n",
+ "def get_salient_heads(attns, tokens, attn_thld=0.5):\n",
+ " for layer in range(config.num_hidden_layers):\n",
+ " for head in range(config.num_attention_heads):\n",
+ " pos_pairs = []\n",
+ " for from_pos in range(1, len(tokens) - 1): # skip [CLS] and [SEP]\n",
+ " top_attn, to_pos = attns[layer][head][from_pos].max(0)\n",
+ " top_attn, to_pos = top_attn.item(), to_pos.item()\n",
+ " from_word, to_word = tokens[from_pos], tokens[to_pos]\n",
+ "# if from_word.isalpha() and to_word.isalpha() and top_attn >= attn_thld:\n",
+ " if abs(from_pos - to_pos) <= 1:\n",
+ "# print('Layer %d, head %d: %s @ %d -> %s @ %d' % (layer, head, from_word, from_pos, to_word, to_pos), end='\\t')\n",
+ "# print(attns[layer][head][from_pos].topk(5)[0].data)\n",
+ " pos_pairs.append((from_pos, to_pos))\n",
+ " \n",
+ " ratio = len(pos_pairs) / (len(tokens) - 2)\n",
+ " if ratio > 0.5:\n",
+ " print(ratio)\n",
+ " for from_pos, to_pos in pos_pairs:\n",
+ " print('Layer %d, head %d: %s @ %d -> %s @ %d' % (layer, head, tokens[from_pos], from_pos, tokens[to_pos], to_pos), end='\\t')\n",
+ " print(attns[layer][head][from_pos].topk(5)[0].data)\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "01/10/2019 21:46:20 - INFO - examples.extract_features - tokens: [CLS] jim laughed because he was so happy . [SEP]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "jim @ 1 -> jim @ 1\ttensor([0.7248, 0.0842, 0.0656, 0.0407, 0.0319], device='cuda:0')\n"
+ ]
+ }
+ ],
+ "source": [
+ "# text, words = [\"The trophy doesn't fit into the brown suitcase because the it is too large.\"], ['fit', 'large']\n",
+ "# text, words = [\"Mary couldn't beat John in the match because he was too strong.\"], ['beat', 'strong']\n",
+ "text, words = [\"John is taller than Mary because he is older.\"], ['taller', 'older']\n",
+ "# text, words = [\"The red ball is heavier than the blue ball because the red ball is bigger.\"], ['heavier', 'bigger']\n",
+ "text, words = [\"Jim laughed because he was so happy.\"], ['cried', 'sad']\n",
+ "# text, words = [\"Jim ate the cake quickly because he was so hungry.\"], ['ate', 'hungry']\n",
+ "# text, words = [\"Jim drank the juice quickly because he was so thirsty.\"], ['drank', 'thirsty']\n",
+ "# text, words = [\"Tom's drawing hangs high. It is above Susan's drawing\"], ['high', 'above']\n",
+ "# text, words = [\"Tom's drawing hangs low. It is below Susan's drawing\"], ['low', 'below']\n",
+ "# text, words = [\"John is taller than Mary . Mary is shorter than John.\"], ['taller', 'shorter']\n",
+ "# text, words = [\"The drawing is above the cabinet. The cabinet is below the drawing\"], ['above', 'below']\n",
+ "# text, words = [\"Jim is very thin . He is not fat.\"], ['thin', 'fat']\n",
+ "\n",
+ "features = convert_examples_to_features(convert_text_to_examples(text), tokenizer, print_info=False)\n",
+ "input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long).to(device)\n",
+ "input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long).to(device)\n",
+ "mlm_logits, _ = model(input_ids, input_type_ids)\n",
+ "mlm_probs = F.softmax(mlm_logits, dim=-1)\n",
+ "tokens = features[0].tokens\n",
+ "# top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=100)\n",
+ "\n",
+ "attn_name = 'enc_self_attns'\n",
+ "hypo = {attn_name: [model.bert.encoder.layer[i].attention.self.attention_probs[0] for i in range(config.num_hidden_layers)]}\n",
+ "key_labels = query_labels = tokens\n",
+ "labels_dict = {attn_name: (key_labels, query_labels)}\n",
+ "result_tuple = (hypo, config.num_attention_heads, labels_dict)\n",
+ "# plot_layer_attn(result_tuple, attn_name=attn_name, layer=10, heads=None)\n",
+ "\n",
+ "attns = hypo[attn_name]\n",
+ " \n",
+ "# words2heads(attns, tokens, words)\n",
+ "head2words(attns, tokens, 2, 10)\n",
+ "# get_salient_heads(attns, tokens, attn_thld=0.0)"
+ ]
+ },
+ {
+ "cell_type": "raw",
+ "metadata": {},
+ "source": [
+ "0,2\t-1\n",
+ "0,3\t-1\n",
+ "0,10\t+1 动宾\n",
+ "1,1\t+1 动介\n",
+ "1,4\t-1\n",
+ "1,11\t0\n",
+ "2,0\t+1**\n",
+ "2,6\t0**\n",
+ "2,9\t+1**\n",
+ "3,5\t-1\n",
+ "7,4\t-1\n",
+ "11,8\t0\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "head_size = config.hidden_size // config.num_attention_heads\n",
+ "layer = 1\n",
+ "head = 1 # 2, 3, 10\n",
+ "wq = model.bert.encoder.layer[layer].attention.self.query.weight.data.view(-1, config.num_attention_heads, head_size).permute(1, 0, 2)\n",
+ "wk = model.bert.encoder.layer[layer].attention.self.key.weight.data.view(-1, config.num_attention_heads, head_size).permute(1, 0, 2)\n",
+ "\n",
+ "wqk = torch.bmm(wq, wk.transpose(-1, -2))\n",
+ "# (wqk * wqk.transpose(-1, -2)).sum((1, 2)) / (wqk * wqk).sum((1, 2))\n",
+ "# plt.imshow(wqk[head]*wqk[head])\n",
+ "# plt.show()\n",
+ "\n",
+ "# q = torch.matmul(pos_emb, wq)\n",
+ "# k = torch.matmul(pos_emb_prev, wk)\n",
+ "# (q * k).sum((-2, -1))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pos_emb = model.bert.embeddings.position_embeddings.weight.data\n",
+ "pos_emb_prev = torch.zeros_like(pos_emb)\n",
+ "pos_emb_next = torch.zeros_like(pos_emb)\n",
+ "pos_emb_prev[1:] = pos_emb[:-1]\n",
+ "pos_emb_next[:-1] = pos_emb[1:]\n",
+ "pos_emb, pos_emb_prev, pos_emb_next = pos_emb[1:-1], pos_emb_prev[1:-1], pos_emb_next[1:-1]\n",
+ "\n",
+ "# pos_q = torch.matmul(pos_emb, wk[head])\n",
+ "# plt.imshow(pos_q[:32])\n",
+ "# plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.',\n",
+ " 'Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.']"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "text = [\n",
+ " # same / different\n",
+ " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.\",\n",
+ " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.\",\n",
+ " \"Tom has yellow hair. Mary has black hair. John has black hair. Mary and _ have the same hair color.\",\n",
+ " # because / although\n",
+ " \"John is taller/shorter than Mary because/although _ is older/younger.\",\n",
+ " \"The red ball is heavier/lighter than the blue ball because/although the _ ball is bigger/smaller.\",\n",
+ " \"Charles did a lot better/worse than his good friend Nancy on the test because/although _ had/hadn't studied so hard.\",\n",
+ " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n",
+ " \"John thought that he would arrive earlier than Susan, but/and indeed _ was the first to arrive.\",\n",
+ " # reverse\n",
+ " \"John came then Mary came. They left in reverse order. _ left then _ left.\",\n",
+ " \"John came after Mary. They left in reverse order. _ left after _ .\",\n",
+ " \"John came first, then came Mary. They left in reverse order: _ left first, then left _ .\",\n",
+ " # compare sentences with same / opposite meaning, 2nd order\n",
+ " \"Though John is tall, Tom is taller than John. So John is _ than Tom.\",\n",
+ " \"Tom is taller than John. So _ is shorter than _.\",\n",
+ " # WSC-style: before /after\n",
+ " # \"Mary came before/after John. _ was late/early .\",\n",
+ " # yes / no, 2nd order\n",
+ " \"Was Tom taller than Susan? Yes, _ was taller.\",\n",
+ " # right / wrong, epistemic modality, 2nd order\n",
+ " \"John said/thought that the red ball was heavier than the blue ball. He was wrong. The _ ball was heavier\",\n",
+ " \"John was wrong in saying/thinking that the red ball was heavier than the blue ball. The _ ball was heavier\",\n",
+ " \"John said the rain was about to stop. Mary said the rain would continue. Later the rain stopped. _ was wrong/right.\",\n",
+ " \n",
+ " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n",
+ " \"John thanked Mary because _ had given help to _ . \",\n",
+ " \"John felt vindicated/crushed when his longtime rival Mary revealed that _ was the winner of the competition.\",\n",
+ " \"John couldn't see the stage with Mary in front of him because _ is so short/tall.\",\n",
+ " \"Although they ran at about the same speed, John beat Sally because _ had such a bad start.\",\n",
+ " \"The fish ate the worm. The _ was hungry/tasty.\",\n",
+ " \n",
+ " \"John beat Mary. _ won the game/e winner.\",\n",
+ "]\n",
+ "text"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open('WSC_switched_label.json') as f:\n",
+ " examples = json.load(f)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open('WSC_child_problem.json') as f:\n",
+ " cexamples = json.load(f)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for ce in cexamples:\n",
+ " for s in ce['sentences']:\n",
+ " for a in s['answer0'] + s['answer1']:\n",
+ " a = a.lower()\n",
+ "# if a not in tokenizer.vocab:\n",
+ "# ce\n",
+ "# print(a, 'not in vocab!!!')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for ce in cexamples:\n",
+ " if len(ce['sentences']) > 0:\n",
+ " e = examples[ce['index']]\n",
+ " assert ce['index'] == e['index']\n",
+ " e['score'] = all([s['score'] for s in ce['sentences']])\n",
+ " assert len(set([s['adjacent_ref'] for s in ce['sentences']])) == 1, 'adjcent_refs are different!'\n",
+ " e['adjacent_ref'] = ce['sentences'][0]['adjacent_ref']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from collections import defaultdict\n",
+ "\n",
+ "groups = defaultdict(list)\n",
+ "for e in examples:\n",
+ " if 'score' in e:\n",
+ " index = e['index']\n",
+ " if index < 252:\n",
+ " if index % 2 == 1:\n",
+ " index -= 1\n",
+ " elif index in [252, 253, 254]:\n",
+ " index = 252\n",
+ " else:\n",
+ " if index % 2 == 0:\n",
+ " index -= 1\n",
+ " groups[index].append(e)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[(2,\n",
+ " \"The trophy doesn't fit into the brown suitcase because [it] is too large.\",\n",
+ " 'fit into:large/small'),\n",
+ " (4,\n",
+ " 'Joan made sure to thank Susan for all the help [she] had recieved.',\n",
+ " 'thank:receive/give'),\n",
+ " (10,\n",
+ " 'The delivery truck zoomed by the school bus because [it] was going so fast.',\n",
+ " 'zoom by:fast/slow'),\n",
+ " (12,\n",
+ " 'Frank felt vindicated when his longtime rival Bill revealed that [he] was the winner of the competition.',\n",
+ " 'vindicated/crushed:be the winner'),\n",
+ " (16,\n",
+ " 'The large ball crashed right through the table because [it] was made of steel.',\n",
+ " 'crash through:[hard]/[soft]'),\n",
+ " (18,\n",
+ " \"John couldn't see the stage with Billy in front of him because [he] is so short.\",\n",
+ " '[block]:short/tall'),\n",
+ " (20,\n",
+ " 'Tom threw his schoolbag down to Ray after [he] reached the top of the stairs.',\n",
+ " 'down to:top/bottom'),\n",
+ " (22,\n",
+ " 'Although they ran at about the same speed, Sue beat Sally because [she] had such a good start.',\n",
+ " 'beat:good/bad'),\n",
+ " (26,\n",
+ " \"Sam's drawing was hung just above Tina's and [it] did look much better with another one below it.\",\n",
+ " 'above/below'),\n",
+ " (28,\n",
+ " 'Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.',\n",
+ " 'better/worse:study hard'),\n",
+ " (30,\n",
+ " 'The firemen arrived after the police because [they] were coming from so far away.',\n",
+ " 'after/before:far away'),\n",
+ " (32,\n",
+ " \"Frank was upset with Tom because the toaster [he] had bought from him didn't work.\",\n",
+ " 'be upset with:buy from not work/sell not work'),\n",
+ " (36,\n",
+ " 'The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.',\n",
+ " 'above/below:moved first'),\n",
+ " (38,\n",
+ " 'Pete envies Martin although [he] is very successful.',\n",
+ " 'although/because'),\n",
+ " (42,\n",
+ " 'I poured water from the bottle into the cup until [it] was empty.',\n",
+ " 'pour:empty/full'),\n",
+ " (46,\n",
+ " \"Sid explained his theory to Mark but [he] couldn't convince him.\",\n",
+ " 'explain:convince/understand'),\n",
+ " (48,\n",
+ " \"Susan knew that Ann's son had been in a car accident, so [she] told her about it.\",\n",
+ " '?know tell:so/because'),\n",
+ " (50,\n",
+ " \"Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.\",\n",
+ " 'beat:younger/older'),\n",
+ " (64,\n",
+ " 'In the middle of the outdoor concert, the rain started falling, but [it] continued until 10.',\n",
+ " 'but/and'),\n",
+ " (68,\n",
+ " 'Ann asked Mary what time the library closes, because [she] had forgotten.',\n",
+ " 'because/but'),\n",
+ " (84,\n",
+ " 'If the con artist has succeeded in fooling Sam, [he] would have gotten a lot of money.',\n",
+ " 'fool:get/lose'),\n",
+ " (92,\n",
+ " 'Alice tried frantically to stop her daughter from chatting at the party, leaving us to wonder why [she] was behaving so strangely.',\n",
+ " '?stop normal/stop abnormal:strange'),\n",
+ " (98,\n",
+ " \"I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] in.\",\n",
+ " 'put ... into filled with ... :get in/get out'),\n",
+ " (100,\n",
+ " 'The dog chased the cat, which ran up a tree. [It] waited at the bottom.',\n",
+ " 'up:at the bottom/at the top'),\n",
+ " (106,\n",
+ " 'John was doing research in the library when he heard a man humming and whistling. [He] was very annoyed.',\n",
+ " 'hear ... humming and whistling:annoyed/annoying'),\n",
+ " (108,\n",
+ " 'John was jogging through the park when he saw a man juggling watermelons. [He] was very impressed.',\n",
+ " 'see ... juggling watermelons:impressed/impressive'),\n",
+ " (132,\n",
+ " 'Jane knocked on the door, and Susan answered it. [She] invited her to come out.',\n",
+ " 'visit:invite come out/invite come in'),\n",
+ " (150,\n",
+ " 'Jackson was greatly influenced by Arnold, though [he] lived two centuries later.',\n",
+ " 'influence:later/earlier'),\n",
+ " (160,\n",
+ " 'The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was too hard to pronounce.',\n",
+ " 'change:hard/easy'),\n",
+ " (166,\n",
+ " 'Fred is the only man still alive who remembers my great-grandfather. [He] is a remarkable man.',\n",
+ " 'alive:is/was'),\n",
+ " (170,\n",
+ " \"In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were defeated within weeks.\",\n",
+ " 'better equipped and large:defeated/victorious'),\n",
+ " (186,\n",
+ " 'When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the minority.',\n",
+ " 'be full of:minority/majority'),\n",
+ " (188,\n",
+ " 'Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make more of [them] .',\n",
+ " 'like over:more/fewer'),\n",
+ " (190,\n",
+ " 'We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply not enough of [them] .',\n",
+ " 'place on all:not enough/too many'),\n",
+ " (196,\n",
+ " \"Steve follows Fred's example in everything. [He] admires him hugely.\",\n",
+ " 'follow:admire/influence'),\n",
+ " (198,\n",
+ " \"The table won't fit through the doorway because [it] is too wide.\",\n",
+ " 'fit through:wide/narrow'),\n",
+ " (200,\n",
+ " 'Grace was happy to trade me her sweater for my jacket. She thinks [it] looks dowdy on her.',\n",
+ " 'trade:dowdy/great'),\n",
+ " (202,\n",
+ " 'John hired Bill to take care of [him] .',\n",
+ " 'hire/hire oneself to:take care of'),\n",
+ " (204,\n",
+ " 'John promised Bill to leave, so an hour later [he] left.',\n",
+ " 'promise/order'),\n",
+ " (210,\n",
+ " \"Jane knocked on Susan's door but [she] did not get an answer.\",\n",
+ " 'knock:get an answer/answer'),\n",
+ " (212,\n",
+ " 'Joe paid the detective after [he] received the final report on the case.',\n",
+ " 'pay:receive/deliver'),\n",
+ " (226,\n",
+ " 'Bill passed the half-empty plate to John because [he] was full.',\n",
+ " 'pass the plate:full/hungry'),\n",
+ " (252,\n",
+ " 'George got free tickets to the play, but he gave them to Eric, even though [he] was particularly eager to see it.',\n",
+ " 'even though/because/not'),\n",
+ " (255,\n",
+ " \"Jane gave Joan candy because [she] wasn't hungry.\",\n",
+ " 'give:not hungry/hungry'),\n",
+ " (259,\n",
+ " 'James asked Robert for a favor but [he] was refused.',\n",
+ " 'ask for a favor:refuse/be refused`'),\n",
+ " (261,\n",
+ " 'Kirilov ceded the presidency to Shatov because [he] was less popular.',\n",
+ " 'cede:less popular/more popular'),\n",
+ " (263,\n",
+ " 'Emma did not pass the ball to Janie although [she] saw that she was open.',\n",
+ " 'not pass although:see open/open')]"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "def filter_dict(d, keys=['index', 'sentence', 'correct_answer', 'relational_word', 'is_associative', 'score']):\n",
+ " return {k: d[k] for k in d if k in keys}\n",
+ "\n",
+ "# ([[filter_dict(e) for e in eg] for eg in groups.values() if eg[0]['relational_word'] != 'none' and all([e['score'] for e in eg])])# / len([eg for eg in groups.values() if eg[0]['relational_word'] != 'none'])\n",
+ "# [(index, eg[0]['relational_word'], all([e['score'] for e in eg])) for index, eg in groups.items() if eg[0]['relational_word'] != 'none']\n",
+ "# len([filter_dict(e) for e in examples if 'score' in e and not e['score'] and e['adjacent_ref']])\n",
+ "# for e in examples:\n",
+ "# if e['index'] % 2 == 0:\n",
+ "# print(e['sentence'])\n",
+ "[(eg[0]['index'], eg[0]['sentence'], eg[0]['relational_word']) for index, eg in groups.items() if '/' in eg[0]['relational_word']]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "179"
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sum(['because' in e['sentence'] for e in examples]) + \\\n",
+ "sum(['so ' in e['sentence'] for e in examples]) + \\\n",
+ "sum(['but ' in e['sentence'] for e in examples]) + \\\n",
+ "sum(['though' in e['sentence'] for e in examples])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# with open('WSC_switched_label.json', 'w') as f:\n",
+ "# json.dump(examples, f)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "vis_attn_topk = 3\n",
+ "\n",
+ "def has_chinese_label(labels):\n",
+ " labels = [label.split('->')[0].strip() for label in labels]\n",
+ " r = sum([len(label) > 1 for label in labels if label not in ['BOS', 'EOS']]) * 1. / (len(labels) - 1)\n",
+ " return 0 < r < 0.5 # r == 0 means empty query labels used in self attention\n",
+ "\n",
+ "def _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col, color='b'):\n",
+ " assert len(query_labels) == attn.size(0)\n",
+ " assert len(key_labels) == attn.size(1)\n",
+ "\n",
+ " ax1.set_xlim([-1, 1])\n",
+ " ax1.set_xticks([])\n",
+ " ax2 = ax1.twinx()\n",
+ " nlabels = max(len(key_labels), len(query_labels))\n",
+ " pos = range(nlabels)\n",
+ " \n",
+ " if 'self' in attn_name and col < ncols - 1:\n",
+ " query_labels = ['' for _ in query_labels]\n",
+ "\n",
+ " for ax, labels in [(ax1, key_labels), (ax2, query_labels)]:\n",
+ " ax.set_yticks(pos)\n",
+ " if has_chinese_label(labels):\n",
+ " ax.set_yticklabels(labels, fontproperties=zhfont)\n",
+ " else:\n",
+ " ax.set_yticklabels(labels)\n",
+ " ax.set_ylim([nlabels - 1, 0])\n",
+ " ax.tick_params(width=0, labelsize='xx-large')\n",
+ "\n",
+ " for spine in ax.spines.values():\n",
+ " spine.set_visible(False)\n",
+ "\n",
+ "# mask, attn = filter_attn(attn)\n",
+ " for qi in range(attn.size(0)):\n",
+ "# if not mask[qi]:\n",
+ "# continue\n",
+ "# for ki in range(attn.size(1)):\n",
+ " for ki in attn[qi].topk(vis_attn_topk)[1]:\n",
+ " a = attn[qi, ki]\n",
+ " ax1.plot((-1, 1), (ki, qi), color, alpha=a)\n",
+ "# print(attn.mean(dim=0).topk(5)[0])\n",
+ "# ax1.barh(pos, attn.mean(dim=0).data.cpu().numpy())\n",
+ "\n",
+ "def plot_layer_attn(result_tuple, attn_name='dec_self_attns', layer=0, heads=None):\n",
+ " hypo, nheads, labels_dict = result_tuple\n",
+ " key_labels, query_labels = labels_dict[attn_name]\n",
+ " if heads is None:\n",
+ " heads = range(nheads)\n",
+ " else:\n",
+ " nheads = len(heads)\n",
+ " \n",
+ " stride = 2 if attn_name == 'dec_enc_attns' else 1\n",
+ " nlabels = max(len(key_labels), len(query_labels))\n",
+ " rcParams['figure.figsize'] = 20, int(round(nlabels * stride * nheads / 8 * 1.0))\n",
+ " \n",
+ " rows = nheads // ncols * stride\n",
+ " fig, axes = plt.subplots(rows, ncols)\n",
+ " \n",
+ " # for head in range(nheads):\n",
+ " for head_i, head in enumerate(heads):\n",
+ " row, col = head_i * stride // ncols, head_i * stride % ncols\n",
+ " ax1 = axes[row, col]\n",
+ " attn = hypo[attn_name][layer][head]\n",
+ " _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col)\n",
+ " if attn_name == 'dec_enc_attns':\n",
+ " col = col + 1\n",
+ " axes[row, col].axis('off') # next subfig acts as blank place holder\n",
+ " # plt.suptitle('%s with %d heads, Layer %d' % (attn_name, nheads, layer), fontsize=20)\n",
+ " plt.show() \n",
+ " \n",
+ "ncols = 4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{\n",
+ " \"attention_probs_dropout_prob\": 0.1,\n",
+ " \"hidden_act\": \"gelu\",\n",
+ " \"hidden_dropout_prob\": 0.1,\n",
+ " \"hidden_size\": 768,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"intermediate_size\": 3072,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"num_attention_heads\": 12,\n",
+ " \"num_hidden_layers\": 12,\n",
+ " \"type_vocab_size\": 2,\n",
+ " \"vocab_size\": 30522\n",
+ "}"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "config.num"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Untitled1.ipynb b/Untitled1.ipynb
new file mode 100644
index 00000000000000..0a6ceec8cab0b2
--- /dev/null
+++ b/Untitled1.ipynb
@@ -0,0 +1,2971 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2\n",
+ "\n",
+ "from IPython.core.interactiveshell import InteractiveShell\n",
+ "InteractiveShell.ast_node_interactivity = 'all'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import json\n",
+ "import itertools\n",
+ "from itertools import product, permutations\n",
+ "from random import sample"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "from torch.utils.data import DataLoader, RandomSampler, SequentialSampler"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Warning: apex was installed without --cpp_ext. Falling back to Python flatten and unflatten.\n",
+ "Warning: apex was installed without --cuda_ext. Fused syncbn kernels will be unavailable. Python fallbacks will be used instead.\n",
+ "Warning: apex was installed without --cuda_ext. FusedAdam will be unavailable.\n",
+ "Warning: apex was installed without --cuda_ext. FusedLayerNorm will be unavailable.\n",
+ "Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from pytorch_pretrained_bert.tokenization import BertTokenizer\n",
+ "from pytorch_pretrained_bert.modeling import BertForPreTraining, BertForMaskedLM, BertConfig\n",
+ "from pytorch_pretrained_bert.optimization import BertAdam\n",
+ "from run_child_finetuning import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 14:55:34 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file /nas/pretrain-bert/pretrain-pytorch/bert-base-uncased-vocab.txt\n"
+ ]
+ }
+ ],
+ "source": [
+ "BERT_DIR = '/nas/pretrain-bert/pretrain-pytorch/bert-base-uncased'\n",
+ "tokenizer = BertTokenizer.from_pretrained('/nas/pretrain-bert/pretrain-pytorch/bert-base-uncased-vocab.txt')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def assert_in_bert_vocab(tokens):\n",
+ " for token in tokens:\n",
+ " if isinstance(token, str): # entities\n",
+ " assert token.lower() in tokenizer.vocab, token + '->' + str(tokenizer.tokenize(token))\n",
+ " elif isinstance(token, tuple): # relations\n",
+ " assert len(token) == 2, str(token)\n",
+ " for rel in token:\n",
+ " rel = rel.split('..')[0]\n",
+ " assert rel in tokenizer.vocab, rel + '->' + str(tokenizer.tokenize(rel))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "19"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fruits = ['apple', 'banana', 'pear', 'orange', 'peach', 'berry', 'plum', 'pinapple', 'melon', 'cherry', 'grape', 'lemon',\n",
+ " 'papaya', 'durian', 'kiwi', 'mongo', 'date', 'jujube', 'watermelon']\n",
+ "len(fruits)\n",
+ "# http://www.manythings.org/vocabulary/lists/e/words.php?f=fruit"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "16"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "animals = ['dog', 'cat', 'pig', 'chicken', 'hen', 'cock', 'duck', 'goose', 'monkey', 'tiger', 'bird', 'bear', 'lion', 'bee', 'ant', 'elephant']\n",
+ "len(animals)\n",
+ "# see more at http://www.manythings.org/vocabulary/lists/a/words.php?f=animals_1\n",
+ "# http://www.manythings.org/vocabulary/lists/a/\n",
+ "# especially http://www.manythings.org/vocabulary/lists/a/words.php?f=classroom_1 things in classroom"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "3"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "3"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "male_names = ['James', 'John', 'Robert', ]#'Michael', 'David', 'Paul', 'Jeff', 'Daniel', 'Charles', 'Thomas']\n",
+ "female_names = ['Mary', 'Linda', 'Jennifer', ]#'Maria', 'Susan', 'Lisa', 'Sandra', 'Barbara', 'Patricia', 'Elizabeth']\n",
+ "len(male_names)\n",
+ "len(female_names)\n",
+ "people_names = (male_names, female_names)\n",
+ "assert_in_bert_vocab(male_names)\n",
+ "assert_in_bert_vocab(female_names)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "spatial_relations = (\n",
+ " ('above', 'below'), \n",
+ " ('in front of/in the front', 'behind/in the back'), \n",
+ " ('on the left..side of', 'on the right..side of')\n",
+ ")\n",
+ "people_adj_relations = (\n",
+ " ('taller..than', 'shorter..than'), \n",
+ "# ('thinner..than', 'fatter..than'), # fatter not in BERT vocab\n",
+ " ('younger..than', 'older..than'), \n",
+ "# ('stronger..than', 'weaker..than'), \n",
+ "# ('faster..than', 'slower..than'),\n",
+ "# ('richer..than', 'poorer..than')\n",
+ ")\n",
+ "animal_adj_relations = (\n",
+ " ('thinner..than', 'fatter..than'), \n",
+ " ('younger..than', 'older..than'), \n",
+ " ('stronger..than', 'weaker..than'), \n",
+ " ('faster..than', 'slower..than')\n",
+ ")\n",
+ "object_adj_relations = (\n",
+ " ('bigger..than', 'smaller..than'), \n",
+ " ('heavier..than', 'lighter..than'), \n",
+ " ('better..than', 'worse..than')\n",
+ ")\n",
+ "assert_in_bert_vocab(people_adj_relations)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "rel2entypes = {\n",
+ "# spatial_relations: [fruits, animals, people_names],\n",
+ " people_adj_relations: [people_names],\n",
+ "# animal_adj_relations: [animals],\n",
+ "# object_adj_relations: [fruits, animals]\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "twoent_A_template = 'is {dt} {ent0} {rel} {dt} {ent1}'\n",
+ "twoent_B_template = '{dt} {ent} is {pred}'\n",
+ "twoent_template = '\"{A}?\" \"{conj} {B}.\"'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def reverse(l):\n",
+ " return list(reversed(l)) if isinstance(l, list) else tuple(reversed(l))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def mask(ent_str):\n",
+ " tokens = ent_str.strip().split()\n",
+ " if len(tokens) == 1:\n",
+ " return '[%s]' % tokens[0]\n",
+ " elif len(tokens) == 2:\n",
+ " assert tokens[0] == 'the', ent_str\n",
+ " return '%s [%s]' % (tokens[0], tokens[1])\n",
+ " else:\n",
+ " assert False, ent_str"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_conj(join_type, A, B):\n",
+ " if join_type == 'no':\n",
+ " return 'no,'\n",
+ " return 'yes,'\n",
+ " assert join_type == 'yes'\n",
+ " subB = B.split('is')[0].split()[-1]\n",
+ " w0, w1, w2 = A.split()[: 3]\n",
+ " assert w0 == 'Is'\n",
+ " subA = w1 if w1 != 'the' else w2\n",
+ " if subA == subB and 'not' not in B: # B is repeating A\n",
+ " return 'Yes,'\n",
+ " else:\n",
+ " return 'Yes, in other words,'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 134,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def make_sentences(A_template, B_template, join_template,\n",
+ " index=-1, orig_sentence='', entities=[\"John\", \"Mary\"], entity_substitutes=None, determiner=\"\", \n",
+ " relations=[],\n",
+ " packed_relations=[\"rel/~rel\", \"rev_rel/~rev_rel\"], packed_relation_substitutes=None, relation_suffix=\"\",\n",
+ " packed_predicates=[\"pred0/~pred0\", \"pred1/~pred1\"], predicate_substitutes=None,\n",
+ " predicate_dichotomy=True, reverse_causal=False):\n",
+ "# assert entities[0].lower() in tokenizer.vocab , entities[0]\n",
+ "# assert entities[1].lower() in tokenizer.vocab , entities[1]\n",
+ " determiner = 'the' if entities[0].islower() else ''\n",
+ " relations, predicates = ([r.replace('..', ' ') for r in relations], [r.split('..')[0] for r in relations]) \\\n",
+ " if '..' in relations[0] else ([r.split('/')[0] for r in relations], [r.split('/')[-1] for r in relations])\n",
+ " neg_predicates = ['not ' + p for p in predicates]\n",
+ " As = [A_template.format(dt=determiner, ent0=ent0, ent1=ent1, rel=rel, rel_suffix=relation_suffix) \n",
+ " for ent0, ent1, rel in [entities + relations[:1], reverse(entities) + reverse(relations)[:1]]]\n",
+ " negAs = [A_template.format(dt=determiner, ent0=ent0, ent1=ent1, rel=rel, rel_suffix=relation_suffix) \n",
+ " for ent0, ent1, rel in [entities + reverse(relations)[:1], reverse(entities) + relations[:1]]]\n",
+ " \n",
+ " Bs = [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, predicates)]\n",
+ " negBs = [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, neg_predicates)]\n",
+ " if predicate_dichotomy:\n",
+ " Bs += [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, reversed(neg_predicates))]\n",
+ " negBs += [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, reversed(predicates))]\n",
+ " \n",
+ " def form_sentences(sentence_template, join_type, As, Bs):\n",
+ " return [\" \".join(sentence_template.format(A=A, B=B, conj=get_conj(join_type, A, B)).split()) for A, B in itertools.product(As, Bs)]\n",
+ " \n",
+ " yes_sentences = []\n",
+ " for A, B in [(As, Bs), (negAs, negBs)]:\n",
+ " yes_sentences += form_sentences(join_template, 'yes', A, B)\n",
+ "# yes_sentences = list(itertools.chain.from_iterable([form_sentences(join_template, 'yes', A, B) for A, B in [(As, Bs), (negAs, negBs)]]))\n",
+ "\n",
+ " no_sentences = []\n",
+ " for A, B in [(As, negBs), (negAs, Bs)]:\n",
+ " no_sentences += form_sentences(join_template, 'no', A, B)\n",
+ " \n",
+ " return yes_sentences + no_sentences\n",
+ " \n",
+ "# make_sentences(\n",
+ "# twoent_A_template, twoent_B_template, twoent_template, entities=['apple', 'banana'], determiner='', relations=['taller..than', 'shorter..than'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 180,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "NameError",
+ "evalue": "name 'make_sentences' is not defined",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;31m# yes_sent, no_sent = make_sentences(twoent_A_template, twoent_B_template, twoent_template, entities=list(ent_pair), relations=rel)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;31m# sentences += (yes_sent + no_sent)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0msentences\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mmake_sentences\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtwoent_A_template\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtwoent_B_template\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtwoent_template\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mentities\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ment_pair\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrelations\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msentences\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0msentence_groups\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msentences\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mNameError\u001b[0m: name 'make_sentences' is not defined"
+ ]
+ }
+ ],
+ "source": [
+ "sentence_groups = []\n",
+ "for relations, entity_types in rel2entypes.items():\n",
+ " sentences = []\n",
+ " ent_pairs = []\n",
+ " for entities in entity_types:\n",
+ " if isinstance(entities, list):\n",
+ " ent_pairs += permutations(entities, 2)\n",
+ " else:\n",
+ " assert isinstance(entities, tuple) and len(entities) == 2 # people_names\n",
+ " ent_pairs += product(entities[0], entities[1])\n",
+ " ent_pairs += product(entities[1], entities[0])\n",
+ " for (rel, ent_pair) in product(relations, ent_pairs):\n",
+ "# yes_sent, no_sent = make_sentences(twoent_A_template, twoent_B_template, twoent_template, entities=list(ent_pair), relations=rel)\n",
+ "# sentences += (yes_sent + no_sent)\n",
+ " sentences += make_sentences(twoent_A_template, twoent_B_template, twoent_template, entities=list(ent_pair), relations=rel)\n",
+ " sample(sentences, 20)\n",
+ " sentence_groups.append(sentences)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 115,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "4"
+ ]
+ },
+ "execution_count": 115,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[78432, 38400, 32768, 59232]"
+ ]
+ },
+ "execution_count": 115,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(sentence_groups)\n",
+ "[len(sg) for sg in sentence_groups]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def comparative2superlative(comparative_form, structured=False):\n",
+ " assert comparative_form.endswith('er'), comparative_form\n",
+ " superlative_form = 'the ' + comparative_form[:-2] + 'est' \\\n",
+ " if not structured else 'the ' + comparative_form + ' st'\n",
+ " return superlative_form"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def make_relational_atoms(relational_template, entities, relations):\n",
+ " neg_relations = [\"isn't \" + r for r in relations]\n",
+ " relations = [\"is \" + r for r in relations]\n",
+ " atoms = [relational_template.format(ent0=ent0, ent1=ent1, rel=rel) \n",
+ " for ent0, ent1, rel in [entities + relations[:1], reverse(entities) + reverse(relations)[:1]]]\n",
+ " atoms += [relational_template.format(ent0=ent0, ent1=ent1, rel=rel) \n",
+ " for ent0, ent1, rel in [entities + reverse(neg_relations)[:1], reverse(entities) + neg_relations[:1]]]\n",
+ " return atoms"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['John is taller than Mary . Mary is taller than Susan . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| is Susan shorter than John ? [yes] .',\n",
+ " \"Mary isn't taller than John . Mary is taller than Susan . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . John is taller than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"John is taller than Mary . Susan isn't taller than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary is shorter than John . Mary isn't shorter than Susan . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Mary is taller than Susan . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary is taller than Susan . John isn't shorter than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| is John taller than Susan ? [yes] .',\n",
+ " 'Mary is taller than Susan . John is taller than Mary . ||| is Susan shorter than John ? [yes] .',\n",
+ " \"Mary isn't shorter than Susan . John isn't shorter than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Susan is shorter than Mary . John isn't shorter than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Mary is taller than Susan . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Susan is shorter than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary is shorter than John . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Susan isn't taller than Mary . Mary isn't taller than John . ||| is John taller than Susan ? [yes] .\",\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| is Susan taller than John ? [no] .']"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "['John is taller than Mary . Mary is taller than Susan . ||| who is the tallest ? [John] .',\n",
+ " 'John is taller than Mary . Mary is taller than Susan . ||| who is the shortest ? [Susan] .',\n",
+ " 'John is taller than Mary . Mary is taller than Susan . ||| is John taller than Susan ? [yes] .',\n",
+ " 'John is taller than Mary . Mary is taller than Susan . ||| is John shorter than Susan ? [no] .',\n",
+ " 'John is taller than Mary . Mary is taller than Susan . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'John is taller than Mary . Mary is taller than Susan . ||| is Susan taller than John ? [no] .',\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| who is the tallest ? [John] .',\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| who is the shortest ? [Susan] .',\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| is John taller than Susan ? [yes] .',\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| is John shorter than Susan ? [no] .',\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'John is taller than Mary . Susan is shorter than Mary . ||| is Susan taller than John ? [no] .',\n",
+ " \"John is taller than Mary . Mary isn't shorter than Susan . ||| who is the tallest ? [John] .\",\n",
+ " \"John is taller than Mary . Mary isn't shorter than Susan . ||| who is the shortest ? [Susan] .\",\n",
+ " \"John is taller than Mary . Mary isn't shorter than Susan . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"John is taller than Mary . Mary isn't shorter than Susan . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"John is taller than Mary . Mary isn't shorter than Susan . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"John is taller than Mary . Mary isn't shorter than Susan . ||| is Susan taller than John ? [no] .\",\n",
+ " \"John is taller than Mary . Susan isn't taller than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"John is taller than Mary . Susan isn't taller than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"John is taller than Mary . Susan isn't taller than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"John is taller than Mary . Susan isn't taller than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"John is taller than Mary . Susan isn't taller than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"John is taller than Mary . Susan isn't taller than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " 'Mary is shorter than John . Mary is taller than Susan . ||| who is the tallest ? [John] .',\n",
+ " 'Mary is shorter than John . Mary is taller than Susan . ||| who is the shortest ? [Susan] .',\n",
+ " 'Mary is shorter than John . Mary is taller than Susan . ||| is John taller than Susan ? [yes] .',\n",
+ " 'Mary is shorter than John . Mary is taller than Susan . ||| is John shorter than Susan ? [no] .',\n",
+ " 'Mary is shorter than John . Mary is taller than Susan . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'Mary is shorter than John . Mary is taller than Susan . ||| is Susan taller than John ? [no] .',\n",
+ " 'Mary is shorter than John . Susan is shorter than Mary . ||| who is the tallest ? [John] .',\n",
+ " 'Mary is shorter than John . Susan is shorter than Mary . ||| who is the shortest ? [Susan] .',\n",
+ " 'Mary is shorter than John . Susan is shorter than Mary . ||| is John taller than Susan ? [yes] .',\n",
+ " 'Mary is shorter than John . Susan is shorter than Mary . ||| is John shorter than Susan ? [no] .',\n",
+ " 'Mary is shorter than John . Susan is shorter than Mary . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'Mary is shorter than John . Susan is shorter than Mary . ||| is Susan taller than John ? [no] .',\n",
+ " \"Mary is shorter than John . Mary isn't shorter than Susan . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary is shorter than John . Mary isn't shorter than Susan . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary is shorter than John . Mary isn't shorter than Susan . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary is shorter than John . Mary isn't shorter than Susan . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary is shorter than John . Mary isn't shorter than Susan . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary is shorter than John . Mary isn't shorter than Susan . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary is shorter than John . Susan isn't taller than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Mary is taller than Susan . ||| who is the tallest ? [John] .\",\n",
+ " \"John isn't shorter than Mary . Mary is taller than Susan . ||| who is the shortest ? [Susan] .\",\n",
+ " \"John isn't shorter than Mary . Mary is taller than Susan . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Mary is taller than Susan . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Mary is taller than Susan . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Mary is taller than Susan . ||| is Susan taller than John ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Susan is shorter than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"John isn't shorter than Mary . Susan is shorter than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"John isn't shorter than Mary . Susan is shorter than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Susan is shorter than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Susan is shorter than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Susan is shorter than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Mary isn't shorter than Susan . ||| who is the tallest ? [John] .\",\n",
+ " \"John isn't shorter than Mary . Mary isn't shorter than Susan . ||| who is the shortest ? [Susan] .\",\n",
+ " \"John isn't shorter than Mary . Mary isn't shorter than Susan . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Mary isn't shorter than Susan . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Mary isn't shorter than Susan . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Mary isn't shorter than Susan . ||| is Susan taller than John ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Susan isn't taller than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"John isn't shorter than Mary . Susan isn't taller than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"John isn't shorter than Mary . Susan isn't taller than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Susan isn't taller than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"John isn't shorter than Mary . Susan isn't taller than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"John isn't shorter than Mary . Susan isn't taller than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't taller than John . Mary is taller than Susan . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary isn't taller than John . Mary is taller than Susan . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary isn't taller than John . Mary is taller than Susan . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Mary is taller than Susan . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary isn't taller than John . Mary is taller than Susan . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Mary is taller than Susan . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't taller than John . Susan is shorter than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary isn't taller than John . Susan is shorter than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary isn't taller than John . Susan is shorter than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Susan is shorter than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary isn't taller than John . Susan is shorter than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Susan is shorter than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't taller than John . Mary isn't shorter than Susan . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary isn't taller than John . Mary isn't shorter than Susan . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary isn't taller than John . Mary isn't shorter than Susan . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Mary isn't shorter than Susan . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary isn't taller than John . Mary isn't shorter than Susan . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Mary isn't shorter than Susan . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't taller than John . Susan isn't taller than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary isn't taller than John . Susan isn't taller than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary isn't taller than John . Susan isn't taller than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Susan isn't taller than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary isn't taller than John . Susan isn't taller than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary isn't taller than John . Susan isn't taller than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " 'Mary is taller than Susan . John is taller than Mary . ||| who is the tallest ? [John] .',\n",
+ " 'Mary is taller than Susan . John is taller than Mary . ||| who is the shortest ? [Susan] .',\n",
+ " 'Mary is taller than Susan . John is taller than Mary . ||| is John taller than Susan ? [yes] .',\n",
+ " 'Mary is taller than Susan . John is taller than Mary . ||| is John shorter than Susan ? [no] .',\n",
+ " 'Mary is taller than Susan . John is taller than Mary . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'Mary is taller than Susan . John is taller than Mary . ||| is Susan taller than John ? [no] .',\n",
+ " 'Mary is taller than Susan . Mary is shorter than John . ||| who is the tallest ? [John] .',\n",
+ " 'Mary is taller than Susan . Mary is shorter than John . ||| who is the shortest ? [Susan] .',\n",
+ " 'Mary is taller than Susan . Mary is shorter than John . ||| is John taller than Susan ? [yes] .',\n",
+ " 'Mary is taller than Susan . Mary is shorter than John . ||| is John shorter than Susan ? [no] .',\n",
+ " 'Mary is taller than Susan . Mary is shorter than John . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'Mary is taller than Susan . Mary is shorter than John . ||| is Susan taller than John ? [no] .',\n",
+ " \"Mary is taller than Susan . John isn't shorter than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary is taller than Susan . John isn't shorter than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary is taller than Susan . John isn't shorter than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary is taller than Susan . John isn't shorter than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary is taller than Susan . John isn't shorter than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary is taller than Susan . John isn't shorter than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary is taller than Susan . Mary isn't taller than John . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary is taller than Susan . Mary isn't taller than John . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary is taller than Susan . Mary isn't taller than John . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary is taller than Susan . Mary isn't taller than John . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary is taller than Susan . Mary isn't taller than John . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary is taller than Susan . Mary isn't taller than John . ||| is Susan taller than John ? [no] .\",\n",
+ " 'Susan is shorter than Mary . John is taller than Mary . ||| who is the tallest ? [John] .',\n",
+ " 'Susan is shorter than Mary . John is taller than Mary . ||| who is the shortest ? [Susan] .',\n",
+ " 'Susan is shorter than Mary . John is taller than Mary . ||| is John taller than Susan ? [yes] .',\n",
+ " 'Susan is shorter than Mary . John is taller than Mary . ||| is John shorter than Susan ? [no] .',\n",
+ " 'Susan is shorter than Mary . John is taller than Mary . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'Susan is shorter than Mary . John is taller than Mary . ||| is Susan taller than John ? [no] .',\n",
+ " 'Susan is shorter than Mary . Mary is shorter than John . ||| who is the tallest ? [John] .',\n",
+ " 'Susan is shorter than Mary . Mary is shorter than John . ||| who is the shortest ? [Susan] .',\n",
+ " 'Susan is shorter than Mary . Mary is shorter than John . ||| is John taller than Susan ? [yes] .',\n",
+ " 'Susan is shorter than Mary . Mary is shorter than John . ||| is John shorter than Susan ? [no] .',\n",
+ " 'Susan is shorter than Mary . Mary is shorter than John . ||| is Susan shorter than John ? [yes] .',\n",
+ " 'Susan is shorter than Mary . Mary is shorter than John . ||| is Susan taller than John ? [no] .',\n",
+ " \"Susan is shorter than Mary . John isn't shorter than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Susan is shorter than Mary . John isn't shorter than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Susan is shorter than Mary . John isn't shorter than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Susan is shorter than Mary . John isn't shorter than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Susan is shorter than Mary . John isn't shorter than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Susan is shorter than Mary . John isn't shorter than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Susan is shorter than Mary . Mary isn't taller than John . ||| who is the tallest ? [John] .\",\n",
+ " \"Susan is shorter than Mary . Mary isn't taller than John . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Susan is shorter than Mary . Mary isn't taller than John . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Susan is shorter than Mary . Mary isn't taller than John . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Susan is shorter than Mary . Mary isn't taller than John . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Susan is shorter than Mary . Mary isn't taller than John . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . John is taller than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary isn't shorter than Susan . John is taller than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary isn't shorter than Susan . John is taller than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't shorter than Susan . John is taller than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . John is taller than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary isn't shorter than Susan . John is taller than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary is shorter than John . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary is shorter than John . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary is shorter than John . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary is shorter than John . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary is shorter than John . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary is shorter than John . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . John isn't shorter than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary isn't shorter than Susan . John isn't shorter than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary isn't shorter than Susan . John isn't shorter than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't shorter than Susan . John isn't shorter than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . John isn't shorter than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary isn't shorter than Susan . John isn't shorter than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary isn't taller than John . ||| who is the tallest ? [John] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary isn't taller than John . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary isn't taller than John . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary isn't taller than John . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary isn't taller than John . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Mary isn't shorter than Susan . Mary isn't taller than John . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Susan isn't taller than Mary . John is taller than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Susan isn't taller than Mary . John is taller than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Susan isn't taller than Mary . John is taller than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . John is taller than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Susan isn't taller than Mary . John is taller than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . John is taller than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Susan isn't taller than Mary . Mary is shorter than John . ||| who is the tallest ? [John] .\",\n",
+ " \"Susan isn't taller than Mary . Mary is shorter than John . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Susan isn't taller than Mary . Mary is shorter than John . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . Mary is shorter than John . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Susan isn't taller than Mary . Mary is shorter than John . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . Mary is shorter than John . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Susan isn't taller than Mary . John isn't shorter than Mary . ||| who is the tallest ? [John] .\",\n",
+ " \"Susan isn't taller than Mary . John isn't shorter than Mary . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Susan isn't taller than Mary . John isn't shorter than Mary . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . John isn't shorter than Mary . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Susan isn't taller than Mary . John isn't shorter than Mary . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . John isn't shorter than Mary . ||| is Susan taller than John ? [no] .\",\n",
+ " \"Susan isn't taller than Mary . Mary isn't taller than John . ||| who is the tallest ? [John] .\",\n",
+ " \"Susan isn't taller than Mary . Mary isn't taller than John . ||| who is the shortest ? [Susan] .\",\n",
+ " \"Susan isn't taller than Mary . Mary isn't taller than John . ||| is John taller than Susan ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . Mary isn't taller than John . ||| is John shorter than Susan ? [no] .\",\n",
+ " \"Susan isn't taller than Mary . Mary isn't taller than John . ||| is Susan shorter than John ? [yes] .\",\n",
+ " \"Susan isn't taller than Mary . Mary isn't taller than John . ||| is Susan taller than John ? [no] .\"]"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "transitive_P_template = '{ent0} {rel} {ent1} .'\n",
+ "transitive_wh_QA_template = '{which} is {pred} ? {ent} .'\n",
+ "transitive_yesno_QA_template = 'is {ent0} {rel} {ent1} ? {ans} .'\n",
+ "\n",
+ "def make_transitive(P_template, wh_QA_template, yesno_QA_template, join_template,\n",
+ " index=-1, orig_sentence='', entities=[\"John\", \"Mary\", \"Susan\"], entity_substitutes=None, determiner=\"\", \n",
+ " relations=('taller..than', 'shorter..than'), maybe=True, structured=False,\n",
+ " packed_predicates=[\"pred0/~pred0\", \"pred1/~pred1\"], predicate_substitutes=None,\n",
+ " predicate_dichotomy=True, reverse_causal=False):\n",
+ " if entities[0].islower():\n",
+ " entities = ['the ' + e for e in entities]\n",
+ "# print('relations =', relations)\n",
+ " relations, predicates = ([r.replace('..', ' ') for r in relations], [r.split('..')[0] for r in relations]) \\\n",
+ " if '..' in relations[0] else ([r.split('/')[0] for r in relations], [r.split('/')[-1] for r in relations])\n",
+ "# print('relations =', relations, 'predicates =', predicates)\n",
+ " predicates = [comparative2superlative(p, structured=structured) for p in predicates]\n",
+ " \n",
+ " P0_entities, P1_entities = ([entities[0], entities[1]], [entities[1], entities[2]]) \\\n",
+ " if not maybe else ([entities[0], entities[1]], [entities[0], entities[2]])\n",
+ " P0 = make_relational_atoms(P_template, P0_entities, relations)\n",
+ " P1 = make_relational_atoms(P_template, P1_entities, relations)\n",
+ " \n",
+ " wh_pronoun = 'which' if entities[0].startswith('the') else 'who'\n",
+ " wh_QA = [wh_QA_template.format(which=wh_pronoun, pred=pred, ent=ent) \n",
+ " for pred, ent in [(predicates[0], mask(entities[0])), (predicates[-1], mask(entities[-1] if not maybe else 'unknown'))]]\n",
+ " \n",
+ " def _maybe(s):\n",
+ " return s if not maybe else 'maybe'\n",
+ " yesno_entities = (entities[0], entities[-1]) if not maybe else (entities[1], entities[-1])\n",
+ " yesno_QA = [yesno_QA_template.format(ent0=ent0, ent1=ent1, rel=rel, ans=ans) \n",
+ " for ent0, ent1, rel, ans in [\n",
+ " (yesno_entities[0], yesno_entities[-1], relations[0], mask(_maybe('yes'))), \n",
+ " (yesno_entities[0], yesno_entities[-1], relations[-1], mask(_maybe('no'))),\n",
+ " (yesno_entities[-1], yesno_entities[0], relations[-1], mask(_maybe('yes'))),\n",
+ " (yesno_entities[-1], yesno_entities[0], relations[0], mask(_maybe('no')))]]\n",
+ " \n",
+ " Ps = [(p0, p1) for p0, p1 in list(product(P0, P1)) + list(product(P1, P0))]\n",
+ " QAs = wh_QA + yesno_QA\n",
+ " \n",
+ " def get_rel(atom):\n",
+ " for rel in relations:\n",
+ "# assert rel.startswith('is')\n",
+ " rel = rel.split()[0] # \"taller than\" -> \"taller\"\n",
+ " if rel in atom:\n",
+ " return rel\n",
+ " assert False\n",
+ " sentences = [p0 + ' ' + p1 + ' ||| ' + qas for (p0, p1), qas in product(Ps, QAs)\n",
+ " if not structured or get_rel(p0) == get_rel(p1) == get_rel(qas)]\n",
+ "# sentences = [s.replace('er st ', 'est ') for s in sentences]\n",
+ " return sentences\n",
+ "\n",
+ "sentences = make_transitive(transitive_P_template, transitive_wh_QA_template, transitive_yesno_QA_template, None, maybe=False, structured=False)\n",
+ "# len(sentences)\n",
+ "sample(sentences, 20)\n",
+ "sentences"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'a . . . b . . . c'"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "ename": "TypeError",
+ "evalue": "object of type 'NoneType' has no len()",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;34m'a'\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' .'\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' '\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m'b'\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' .'\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' '\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;31mTypeError\u001b[0m: object of type 'NoneType' has no len()"
+ ]
+ }
+ ],
+ "source": [
+ "'a' + ' .'*random.randint(0, 10) + ' ' + 'b' + ' .'*random.randint(0, 10) + ' ' + 'c'\n",
+ "len(None)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['James is older than Jennifer . Jennifer is older than John . ||| is James older than John ? [yes] .',\n",
+ " \"James is younger than Jennifer . James isn't younger than Linda . ||| who is the younger st ? [Linda] .\",\n",
+ " \"Linda is shorter than Mary . Linda isn't shorter than Robert . ||| is Mary shorter than Robert ? [no] .\",\n",
+ " 'Linda is shorter than Robert . John is shorter than Linda . ||| who is the shorter st ? [John] .',\n",
+ " 'Mary is older than Robert . John is older than Mary . ||| is Robert older than John ? [no] .',\n",
+ " \"Jennifer isn't younger than Robert . James is younger than Robert . ||| is Jennifer younger than James ? [no] .\",\n",
+ " \"Mary is shorter than Jennifer . Mary isn't shorter than John . ||| who is the shorter st ? [John] .\",\n",
+ " \"Linda isn't taller than Robert . Linda is taller than John . ||| who is the taller st ? [Robert] .\",\n",
+ " \"Robert isn't younger than Mary . Mary isn't younger than Linda . ||| is Robert younger than Linda ? [no] .\",\n",
+ " \"Jennifer isn't taller than Linda . Mary isn't taller than Jennifer . ||| who is the taller st ? [Linda] .\",\n",
+ " \"Mary isn't older than Linda . John isn't older than Mary . ||| is John older than Linda ? [no] .\",\n",
+ " \"Linda is taller than Robert . John isn't taller than Robert . ||| is John taller than Linda ? [no] .\",\n",
+ " \"Robert isn't older than Jennifer . James is older than Jennifer . ||| is Robert older than James ? [no] .\",\n",
+ " \"Linda isn't older than Jennifer . Jennifer isn't older than James . ||| is Linda older than James ? [no] .\",\n",
+ " \"Jennifer is shorter than Robert . John isn't shorter than Robert . ||| is Jennifer shorter than John ? [yes] .\",\n",
+ " 'James is older than Mary . Jennifer is older than James . ||| is Mary older than Jennifer ? [no] .',\n",
+ " 'Jennifer is taller than John . John is taller than Robert . ||| is Jennifer taller than Robert ? [yes] .',\n",
+ " \"John is younger than Linda . Mary isn't younger than Linda . ||| who is the younger st ? [John] .\",\n",
+ " \"Jennifer is younger than Mary . Jennifer isn't younger than John . ||| who is the younger st ? [John] .\",\n",
+ " \"Robert is younger than John . Linda isn't younger than John . ||| is Linda younger than Robert ? [no] .\"]"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "num_sent = 11520 -> 11520\n"
+ ]
+ }
+ ],
+ "source": [
+ "sentence_groups = []\n",
+ "maybe = False\n",
+ "for relations, entity_types in rel2entypes.items():\n",
+ " sentences = []\n",
+ " ent_tuples = []\n",
+ " for entities in entity_types:\n",
+ " if isinstance(entities, list):\n",
+ " ent_tuples += permutations(entities, 3)\n",
+ " else:\n",
+ " assert isinstance(entities, tuple) and len(entities) == 2 # people_names\n",
+ " ent_tuples += permutations(entities[0] + entities[1], 3)\n",
+ " for (rel, ent_tuple) in product(relations, ent_tuples):\n",
+ " sentences += make_transitive(transitive_P_template, transitive_wh_QA_template, transitive_yesno_QA_template, None, \n",
+ " entities=list(ent_tuple), relations=rel, maybe=False, structured=True)\n",
+ " if maybe:\n",
+ " sentences += make_transitive(transitive_P_template, transitive_wh_QA_template, transitive_yesno_QA_template, None, \n",
+ " entities=list(ent_tuple), relations=rel, maybe=True, structured=True)\n",
+ " sample(sentences, 20)\n",
+ " print('num_sent =', len(sentences), '->', len(set(sentences)))\n",
+ " sentence_groups.append(sentences)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 247,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "_StoreAction(option_strings=['--max_seq_length'], dest='max_seq_length', nargs=None, const=None, default=128, type=, choices=None, help='The maximum total input sequence length after WordPiece tokenization. \\nSequences longer than this will be truncated, and sequences shorter \\nthan this will be padded.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreTrueAction(option_strings=['--do_train'], dest='do_train', nargs=0, const=True, default=False, type=None, choices=None, help='Whether to run training.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreTrueAction(option_strings=['--do_eval'], dest='do_eval', nargs=0, const=True, default=False, type=None, choices=None, help='Whether to run eval on the dev set.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreAction(option_strings=['--train_batch_size'], dest='train_batch_size', nargs=None, const=None, default=32, type=, choices=None, help='Total batch size for training.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreAction(option_strings=['--eval_batch_size'], dest='eval_batch_size', nargs=None, const=None, default=32, type=, choices=None, help='Total batch size for eval.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreAction(option_strings=['--learning_rate'], dest='learning_rate', nargs=None, const=None, default=3e-05, type=, choices=None, help='The initial learning rate for Adam.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreAction(option_strings=['--num_train_epochs'], dest='num_train_epochs', nargs=None, const=None, default=3.0, type=, choices=None, help='Total number of training epochs to perform.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreAction(option_strings=['--warmup_proportion'], dest='warmup_proportion', nargs=None, const=None, default=0.1, type=, choices=None, help='Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreTrueAction(option_strings=['--no_cuda'], dest='no_cuda', nargs=0, const=True, default=False, type=None, choices=None, help='Whether not to use CUDA when available', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreTrueAction(option_strings=['--do_lower_case'], dest='do_lower_case', nargs=0, const=True, default=False, type=None, choices=None, help='Whether to lower case the input text. True for uncased models, False for cased models.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreAction(option_strings=['--seed'], dest='seed', nargs=None, const=None, default=42, type=, choices=None, help='random seed for initialization', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "_StoreAction(option_strings=['--gradient_accumulation_steps'], dest='gradient_accumulation_steps', nargs=None, const=None, default=1, type=, choices=None, help='Number of updates steps to accumualte before performing a backward/update pass.', metavar=None)"
+ ]
+ },
+ "execution_count": 247,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Namespace(do_eval=True, do_lower_case=True, do_train=True, eval_batch_size=128, gradient_accumulation_steps=1, learning_rate=0.0001, max_seq_length=128, no_cuda=False, num_train_epochs=100, seed=42, train_batch_size=32, warmup_proportion=0.1)\n"
+ ]
+ }
+ ],
+ "source": [
+ "import argparse\n",
+ "parser = argparse.ArgumentParser()\n",
+ "\n",
+ "parser.add_argument(\"--max_seq_length\",\n",
+ " default=128,\n",
+ " type=int,\n",
+ " help=\"The maximum total input sequence length after WordPiece tokenization. \\n\"\n",
+ " \"Sequences longer than this will be truncated, and sequences shorter \\n\"\n",
+ " \"than this will be padded.\")\n",
+ "parser.add_argument(\"--do_train\",\n",
+ " action='store_true',\n",
+ " help=\"Whether to run training.\")\n",
+ "parser.add_argument(\"--do_eval\",\n",
+ " action='store_true',\n",
+ " help=\"Whether to run eval on the dev set.\")\n",
+ "parser.add_argument(\"--train_batch_size\",\n",
+ " default=32,\n",
+ " type=int,\n",
+ " help=\"Total batch size for training.\")\n",
+ "parser.add_argument(\"--eval_batch_size\",\n",
+ " default=32,\n",
+ " type=int,\n",
+ " help=\"Total batch size for eval.\")\n",
+ "parser.add_argument(\"--learning_rate\",\n",
+ " default=3e-5,\n",
+ " type=float,\n",
+ " help=\"The initial learning rate for Adam.\")\n",
+ "parser.add_argument(\"--num_train_epochs\",\n",
+ " default=3.0,\n",
+ " type=float,\n",
+ " help=\"Total number of training epochs to perform.\")\n",
+ "parser.add_argument(\"--warmup_proportion\",\n",
+ " default=0.1,\n",
+ " type=float,\n",
+ " help=\"Proportion of training to perform linear learning rate warmup for. \"\n",
+ " \"E.g., 0.1 = 10%% of training.\")\n",
+ "parser.add_argument(\"--no_cuda\",\n",
+ " action='store_true',\n",
+ " help=\"Whether not to use CUDA when available\")\n",
+ "parser.add_argument(\"--do_lower_case\",\n",
+ " action='store_true',\n",
+ " help=\"Whether to lower case the input text. True for uncased models, False for cased models.\")\n",
+ "parser.add_argument('--seed',\n",
+ " type=int,\n",
+ " default=42,\n",
+ " help=\"random seed for initialization\")\n",
+ "parser.add_argument('--gradient_accumulation_steps',\n",
+ " type=int,\n",
+ " default=1,\n",
+ " help=\"Number of updates steps to accumualte before performing a backward/update pass.\")\n",
+ "parser.add_argument(\"--dev_percent\",\n",
+ " default=0.5,\n",
+ " type=float)\n",
+ "# args = parser.parse_args(['--output_dir', '/home'])\n",
+ "args = parser.parse_args([])\n",
+ "args.do_lower_case = True\n",
+ "args.do_train = True\n",
+ "args.do_eval = True\n",
+ "args.eval_batch_size = 128\n",
+ "args.learning_rate = 1e-4\n",
+ "args.num_train_epochs = 100\n",
+ "print(args)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 243,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "num_train_steps = 10800\n"
+ ]
+ }
+ ],
+ "source": [
+ "child_dataset = CHILDDataset(tokenizer, sentence_groups[0], dev_percent=0.5)\n",
+ "train_features = child_dataset.get_train_features()\n",
+ "num_train_steps = int(\n",
+ " len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)\n",
+ "print('num_train_steps =', num_train_steps)\n",
+ "eval_features = child_dataset.get_dev_features()\n",
+ "\n",
+ "train_dataset = child_dataset.build_dataset(train_features)\n",
+ "eval_dataset = child_dataset.build_dataset(eval_features)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 250,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:05:44 - INFO - run_child_finetuning - device: cuda n_gpu: 1\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 250,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() and not args.no_cuda else \"cpu\")\n",
+ "n_gpu = torch.cuda.device_count()\n",
+ "logger.info(\"device: {} n_gpu: {}\".format(\n",
+ " device, n_gpu))\n",
+ "\n",
+ "args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)\n",
+ "\n",
+ "random.seed(args.seed)\n",
+ "np.random.seed(args.seed)\n",
+ "torch.manual_seed(args.seed)\n",
+ "if n_gpu > 0:\n",
+ " torch.cuda.manual_seed_all(args.seed)\n",
+ "\n",
+ "# Prepare model\n",
+ "# model = BertForMaskedLM.from_pretrained(BERT_DIR)\n",
+ "CONFIG_NAME = 'bert_config_small.json'\n",
+ "config = BertConfig(os.path.join(BERT_DIR, CONFIG_NAME))\n",
+ "model = BertForMaskedLM(config)\n",
+ "_ = model.to(device)\n",
+ "if n_gpu > 1:\n",
+ " model = torch.nn.DataParallel(model)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 252,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Prepare optimizer\n",
+ "param_optimizer = list(model.named_parameters())\n",
+ "no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']\n",
+ "optimizer_grouped_parameters = [\n",
+ " {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},\n",
+ " {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}\n",
+ " ]\n",
+ "optimizer = BertAdam(optimizer_grouped_parameters,\n",
+ " lr=args.learning_rate,\n",
+ " warmup=args.warmup_proportion,\n",
+ " t_total=num_train_steps)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 253,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 0%| | 0/100 [00:00, ?it/s]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 0, lr = 0.000000\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:10:32 - INFO - run_child_finetuning - Epoch 1\n",
+ "06/09/2019 10:10:32 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:11:00 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:11:00 - INFO - run_child_finetuning - eval_accuracy = 0.3390625\n",
+ "06/09/2019 10:11:00 - INFO - run_child_finetuning - eval_loss = 9.694811651441785\n",
+ "06/09/2019 10:11:00 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:11:28 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:11:28 - INFO - run_child_finetuning - eval_accuracy = 0.32760416666666664\n",
+ "06/09/2019 10:11:28 - INFO - run_child_finetuning - eval_loss = 9.699780379401313\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 1%| | 1/100 [01:06<1:49:31, 66.37s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:11:39 - INFO - run_child_finetuning - Epoch 2\n",
+ "06/09/2019 10:11:39 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:12:07 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:12:07 - INFO - run_child_finetuning - eval_accuracy = 0.3390625\n",
+ "06/09/2019 10:12:07 - INFO - run_child_finetuning - eval_loss = 7.738626289367676\n",
+ "06/09/2019 10:12:07 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:12:34 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:12:34 - INFO - run_child_finetuning - eval_accuracy = 0.32760416666666664\n",
+ "06/09/2019 10:12:35 - INFO - run_child_finetuning - eval_loss = 7.746824651294284\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 2%|▏ | 2/100 [02:13<1:48:35, 66.49s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 1000, lr = 0.000093\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:12:45 - INFO - run_child_finetuning - Epoch 3\n",
+ "06/09/2019 10:12:45 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:13:13 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:13:13 - INFO - run_child_finetuning - eval_accuracy = 0.3390625\n",
+ "06/09/2019 10:13:13 - INFO - run_child_finetuning - eval_loss = 3.257909724447462\n",
+ "06/09/2019 10:13:13 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:13:40 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:13:40 - INFO - run_child_finetuning - eval_accuracy = 0.32760416666666664\n",
+ "06/09/2019 10:13:40 - INFO - run_child_finetuning - eval_loss = 3.2719171391593087\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 3%|▎ | 3/100 [03:19<1:47:13, 66.32s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:13:51 - INFO - run_child_finetuning - Epoch 4\n",
+ "06/09/2019 10:13:51 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:14:19 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:14:19 - INFO - run_child_finetuning - eval_accuracy = 0.3390625\n",
+ "06/09/2019 10:14:19 - INFO - run_child_finetuning - eval_loss = 2.0499441080623204\n",
+ "06/09/2019 10:14:19 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:14:46 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:14:46 - INFO - run_child_finetuning - eval_accuracy = 0.32760416666666664\n",
+ "06/09/2019 10:14:46 - INFO - run_child_finetuning - eval_loss = 2.066389168633355\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 4%|▍ | 4/100 [04:24<1:45:55, 66.20s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:14:57 - INFO - run_child_finetuning - Epoch 5\n",
+ "06/09/2019 10:14:57 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:15:25 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:15:25 - INFO - run_child_finetuning - eval_accuracy = 0.3390625\n",
+ "06/09/2019 10:15:25 - INFO - run_child_finetuning - eval_loss = 1.707436407936944\n",
+ "06/09/2019 10:15:25 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:15:52 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:15:52 - INFO - run_child_finetuning - eval_accuracy = 0.32760416666666664\n",
+ "06/09/2019 10:15:52 - INFO - run_child_finetuning - eval_loss = 1.7236953417460124\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 5%|▌ | 5/100 [05:30<1:44:41, 66.12s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 2000, lr = 0.000081\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:16:03 - INFO - run_child_finetuning - Epoch 6\n",
+ "06/09/2019 10:16:03 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:16:31 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:16:31 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:16:31 - INFO - run_child_finetuning - eval_loss = 1.4861090461413065\n",
+ "06/09/2019 10:16:31 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:16:59 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:16:59 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:16:59 - INFO - run_child_finetuning - eval_loss = 1.500312285953098\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 6%|▌ | 6/100 [06:37<1:44:00, 66.38s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:17:10 - INFO - run_child_finetuning - Epoch 7\n",
+ "06/09/2019 10:17:10 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:17:38 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:17:38 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:17:38 - INFO - run_child_finetuning - eval_loss = 1.414702398247189\n",
+ "06/09/2019 10:17:38 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:18:05 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:18:05 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:18:05 - INFO - run_child_finetuning - eval_loss = 1.4278037812974718\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 7%|▋ | 7/100 [07:44<1:42:47, 66.31s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:18:16 - INFO - run_child_finetuning - Epoch 8\n",
+ "06/09/2019 10:18:16 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:18:44 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:18:44 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:18:44 - INFO - run_child_finetuning - eval_loss = 1.3849829329384697\n",
+ "06/09/2019 10:18:44 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:19:11 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:19:11 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:19:11 - INFO - run_child_finetuning - eval_loss = 1.3974607268969217\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 8%|▊ | 8/100 [08:50<1:41:30, 66.20s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 3000, lr = 0.000072\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:19:22 - INFO - run_child_finetuning - Epoch 9\n",
+ "06/09/2019 10:19:22 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:19:50 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:19:50 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:19:50 - INFO - run_child_finetuning - eval_loss = 1.369037503666348\n",
+ "06/09/2019 10:19:50 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:20:17 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:20:17 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:20:17 - INFO - run_child_finetuning - eval_loss = 1.3817288875579834\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 9%|▉ | 9/100 [09:56<1:40:18, 66.14s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:20:28 - INFO - run_child_finetuning - Epoch 10\n",
+ "06/09/2019 10:20:28 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:20:56 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:20:56 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:20:56 - INFO - run_child_finetuning - eval_loss = 1.3590228782759772\n",
+ "06/09/2019 10:20:56 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:21:24 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:21:24 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:21:24 - INFO - run_child_finetuning - eval_loss = 1.3718345721562704\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 10%|█ | 10/100 [11:02<1:39:22, 66.25s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:21:34 - INFO - run_child_finetuning - Epoch 11\n",
+ "06/09/2019 10:21:34 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:22:02 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:22:02 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:22:02 - INFO - run_child_finetuning - eval_loss = 1.352443257967631\n",
+ "06/09/2019 10:22:02 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:22:30 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:22:30 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:22:30 - INFO - run_child_finetuning - eval_loss = 1.3645663738250733\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 11%|█ | 11/100 [12:08<1:38:12, 66.21s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 4000, lr = 0.000063\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:22:40 - INFO - run_child_finetuning - Epoch 12\n",
+ "06/09/2019 10:22:40 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:23:08 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:23:08 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:23:08 - INFO - run_child_finetuning - eval_loss = 1.3473159684075249\n",
+ "06/09/2019 10:23:08 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:23:36 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:23:36 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:23:36 - INFO - run_child_finetuning - eval_loss = 1.3603505068355137\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 12%|█▏ | 12/100 [13:14<1:37:00, 66.14s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:23:46 - INFO - run_child_finetuning - Epoch 13\n",
+ "06/09/2019 10:23:46 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:24:14 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:24:14 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:24:14 - INFO - run_child_finetuning - eval_loss = 1.3420454674296909\n",
+ "06/09/2019 10:24:14 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:24:42 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:24:42 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:24:42 - INFO - run_child_finetuning - eval_loss = 1.3549408475557962\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 13%|█▎ | 13/100 [14:20<1:35:45, 66.04s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 5000, lr = 0.000054\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:24:52 - INFO - run_child_finetuning - Epoch 14\n",
+ "06/09/2019 10:24:52 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:25:20 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:25:20 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:25:20 - INFO - run_child_finetuning - eval_loss = 1.3357309381167093\n",
+ "06/09/2019 10:25:20 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:25:48 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:25:48 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:25:48 - INFO - run_child_finetuning - eval_loss = 1.3490168280071682\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 14%|█▍ | 14/100 [15:26<1:34:36, 66.01s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:25:58 - INFO - run_child_finetuning - Epoch 15\n",
+ "06/09/2019 10:25:58 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:26:26 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:26:26 - INFO - run_child_finetuning - eval_accuracy = 0.4223090277777778\n",
+ "06/09/2019 10:26:26 - INFO - run_child_finetuning - eval_loss = 1.3257557378874885\n",
+ "06/09/2019 10:26:26 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:26:54 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:26:54 - INFO - run_child_finetuning - eval_accuracy = 0.4110243055555556\n",
+ "06/09/2019 10:26:54 - INFO - run_child_finetuning - eval_loss = 1.3387107451756795\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 15%|█▌ | 15/100 [16:32<1:33:27, 65.98s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:27:04 - INFO - run_child_finetuning - Epoch 16\n",
+ "06/09/2019 10:27:04 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:27:32 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:27:32 - INFO - run_child_finetuning - eval_accuracy = 0.4435763888888889\n",
+ "06/09/2019 10:27:32 - INFO - run_child_finetuning - eval_loss = 1.3156095531251695\n",
+ "06/09/2019 10:27:32 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:28:00 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:28:00 - INFO - run_child_finetuning - eval_accuracy = 0.4318576388888889\n",
+ "06/09/2019 10:28:00 - INFO - run_child_finetuning - eval_loss = 1.328736596637302\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 16%|█▌ | 16/100 [17:38<1:32:21, 65.97s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 6000, lr = 0.000044\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:28:10 - INFO - run_child_finetuning - Epoch 17\n",
+ "06/09/2019 10:28:10 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:28:38 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:28:38 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:28:38 - INFO - run_child_finetuning - eval_loss = 1.3007791850301955\n",
+ "06/09/2019 10:28:38 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:29:06 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:29:06 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:29:06 - INFO - run_child_finetuning - eval_loss = 1.314843883779314\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 17%|█▋ | 17/100 [18:44<1:31:17, 65.99s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:29:17 - INFO - run_child_finetuning - Epoch 18\n",
+ "06/09/2019 10:29:17 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:29:45 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:29:45 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:29:45 - INFO - run_child_finetuning - eval_loss = 1.2931998319096036\n",
+ "06/09/2019 10:29:45 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:30:12 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:30:12 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:30:12 - INFO - run_child_finetuning - eval_loss = 1.3075149999724494\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 18%|█▊ | 18/100 [19:51<1:30:30, 66.23s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:30:23 - INFO - run_child_finetuning - Epoch 19\n",
+ "06/09/2019 10:30:23 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:30:51 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:30:51 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:30:51 - INFO - run_child_finetuning - eval_loss = 1.2879919780625237\n",
+ "06/09/2019 10:30:51 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:31:18 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:31:18 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:31:18 - INFO - run_child_finetuning - eval_loss = 1.30219263765547\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 19%|█▉ | 19/100 [20:57<1:29:20, 66.18s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 7000, lr = 0.000035\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:31:27 - INFO - run_child_finetuning - Epoch 20\n",
+ "06/09/2019 10:31:27 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:31:55 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:31:55 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:31:55 - INFO - run_child_finetuning - eval_loss = 1.2851258847448561\n",
+ "06/09/2019 10:31:55 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:32:24 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:32:24 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:32:24 - INFO - run_child_finetuning - eval_loss = 1.2990937895245023\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 20%|██ | 20/100 [22:02<1:27:51, 65.89s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:32:32 - INFO - run_child_finetuning - Epoch 21\n",
+ "06/09/2019 10:32:32 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:33:00 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:33:00 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:33:00 - INFO - run_child_finetuning - eval_loss = 1.282910199960073\n",
+ "06/09/2019 10:33:00 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:33:28 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:33:28 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:33:28 - INFO - run_child_finetuning - eval_loss = 1.296793986691369\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 21%|██ | 21/100 [23:06<1:26:04, 65.38s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:33:36 - INFO - run_child_finetuning - Epoch 22\n",
+ "06/09/2019 10:33:36 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:34:04 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:34:04 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:34:04 - INFO - run_child_finetuning - eval_loss = 1.281203603744507\n",
+ "06/09/2019 10:34:04 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:34:32 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:34:32 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:34:32 - INFO - run_child_finetuning - eval_loss = 1.2950837108823987\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 22%|██▏ | 22/100 [24:10<1:24:31, 65.02s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 8000, lr = 0.000026\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:34:41 - INFO - run_child_finetuning - Epoch 23\n",
+ "06/09/2019 10:34:41 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:35:08 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:35:08 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:35:08 - INFO - run_child_finetuning - eval_loss = 1.2800932976934645\n",
+ "06/09/2019 10:35:08 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:35:36 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:35:36 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:35:36 - INFO - run_child_finetuning - eval_loss = 1.2938868072297838\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 23%|██▎ | 23/100 [25:14<1:23:07, 64.77s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:35:45 - INFO - run_child_finetuning - Epoch 24\n",
+ "06/09/2019 10:35:45 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:36:13 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:36:13 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:36:13 - INFO - run_child_finetuning - eval_loss = 1.2789997299512228\n",
+ "06/09/2019 10:36:13 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:36:41 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:36:41 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:36:41 - INFO - run_child_finetuning - eval_loss = 1.2929178635279337\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 24%|██▍ | 24/100 [26:19<1:22:02, 64.77s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:36:51 - INFO - run_child_finetuning - Epoch 25\n",
+ "06/09/2019 10:36:51 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:37:19 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:37:19 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:37:19 - INFO - run_child_finetuning - eval_loss = 1.2782557209332783\n",
+ "06/09/2019 10:37:19 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:37:47 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:37:47 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:37:47 - INFO - run_child_finetuning - eval_loss = 1.2921040852864583\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 25%|██▌ | 25/100 [27:25<1:21:25, 65.14s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 9000, lr = 0.000017\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:37:57 - INFO - run_child_finetuning - Epoch 26\n",
+ "06/09/2019 10:37:57 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:38:25 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:38:25 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:38:25 - INFO - run_child_finetuning - eval_loss = 1.2780342843797472\n",
+ "06/09/2019 10:38:25 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:38:53 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:38:53 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:38:53 - INFO - run_child_finetuning - eval_loss = 1.2919086231125725\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 26%|██▌ | 26/100 [28:31<1:20:44, 65.46s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:39:04 - INFO - run_child_finetuning - Epoch 27\n",
+ "06/09/2019 10:39:04 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:39:31 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:39:31 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:39:31 - INFO - run_child_finetuning - eval_loss = 1.2777638885709974\n",
+ "06/09/2019 10:39:31 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:39:59 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:39:59 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:39:59 - INFO - run_child_finetuning - eval_loss = 1.291655433177948\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 27%|██▋ | 27/100 [29:37<1:19:49, 65.62s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 10000, lr = 0.000007\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:40:10 - INFO - run_child_finetuning - Epoch 28\n",
+ "06/09/2019 10:40:10 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:40:38 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:40:38 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:40:38 - INFO - run_child_finetuning - eval_loss = 1.277630979484982\n",
+ "06/09/2019 10:40:38 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:41:06 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:41:06 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:41:06 - INFO - run_child_finetuning - eval_loss = 1.2915024439493814\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 28%|██▊ | 28/100 [30:44<1:19:02, 65.87s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:41:16 - INFO - run_child_finetuning - Epoch 29\n",
+ "06/09/2019 10:41:16 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:41:44 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:41:44 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:41:44 - INFO - run_child_finetuning - eval_loss = 1.2776025176048278\n",
+ "06/09/2019 10:41:44 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:42:12 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:42:12 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:42:12 - INFO - run_child_finetuning - eval_loss = 1.291484334733751\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 29%|██▉ | 29/100 [31:50<1:18:11, 66.08s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:42:23 - INFO - run_child_finetuning - Epoch 30\n",
+ "06/09/2019 10:42:23 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:42:51 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:42:51 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:42:51 - INFO - run_child_finetuning - eval_loss = 1.2775944696532355\n",
+ "06/09/2019 10:42:51 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:43:19 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:43:19 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:43:19 - INFO - run_child_finetuning - eval_loss = 1.291474199295044\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 30%|███ | 30/100 [32:57<1:17:20, 66.29s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 11000, lr = -0.000002\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:43:30 - INFO - run_child_finetuning - Epoch 31\n",
+ "06/09/2019 10:43:30 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:43:58 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:43:58 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:43:58 - INFO - run_child_finetuning - eval_loss = 1.2775861925548977\n",
+ "06/09/2019 10:43:58 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:44:25 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:44:25 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:44:25 - INFO - run_child_finetuning - eval_loss = 1.2914685328801474\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 31%|███ | 31/100 [34:03<1:16:15, 66.31s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:44:36 - INFO - run_child_finetuning - Epoch 32\n",
+ "06/09/2019 10:44:36 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:45:04 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:45:04 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:45:04 - INFO - run_child_finetuning - eval_loss = 1.2775551716486613\n",
+ "06/09/2019 10:45:04 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:45:32 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:45:32 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:45:32 - INFO - run_child_finetuning - eval_loss = 1.291435596677992\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 32%|███▏ | 32/100 [35:10<1:15:10, 66.34s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:45:42 - INFO - run_child_finetuning - Epoch 33\n",
+ "06/09/2019 10:45:42 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:46:10 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:46:10 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:46:10 - INFO - run_child_finetuning - eval_loss = 1.2774020512898763\n",
+ "06/09/2019 10:46:10 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:46:37 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:46:37 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:46:37 - INFO - run_child_finetuning - eval_loss = 1.2912689606348673\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 33%|███▎ | 33/100 [36:15<1:13:49, 66.11s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 12000, lr = -0.000011\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:46:47 - INFO - run_child_finetuning - Epoch 34\n",
+ "06/09/2019 10:46:47 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:47:14 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:47:14 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:47:14 - INFO - run_child_finetuning - eval_loss = 1.2771676964230008\n",
+ "06/09/2019 10:47:14 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:47:42 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:47:42 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:47:42 - INFO - run_child_finetuning - eval_loss = 1.2910632411638896\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 34%|███▍ | 34/100 [37:20<1:12:16, 65.70s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:47:54 - INFO - run_child_finetuning - Epoch 35\n",
+ "06/09/2019 10:47:54 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:48:21 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:48:21 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:48:21 - INFO - run_child_finetuning - eval_loss = 1.2766649497879876\n",
+ "06/09/2019 10:48:22 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:48:49 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:48:49 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:48:49 - INFO - run_child_finetuning - eval_loss = 1.290544174777137\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 35%|███▌ | 35/100 [38:27<1:11:39, 66.14s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:48:58 - INFO - run_child_finetuning - Epoch 36\n",
+ "06/09/2019 10:48:58 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:49:26 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:49:26 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:49:26 - INFO - run_child_finetuning - eval_loss = 1.276163759496477\n",
+ "06/09/2019 10:49:26 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:49:53 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:49:53 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:49:53 - INFO - run_child_finetuning - eval_loss = 1.2901054302851358\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 36%|███▌ | 36/100 [39:32<1:09:55, 65.56s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 13000, lr = -0.000020\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:50:02 - INFO - run_child_finetuning - Epoch 37\n",
+ "06/09/2019 10:50:02 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:50:30 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:50:30 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:50:30 - INFO - run_child_finetuning - eval_loss = 1.275437773598565\n",
+ "06/09/2019 10:50:30 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:50:58 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:50:58 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:50:58 - INFO - run_child_finetuning - eval_loss = 1.2893267750740052\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 37%|███▋ | 37/100 [40:36<1:08:23, 65.14s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:51:06 - INFO - run_child_finetuning - Epoch 38\n",
+ "06/09/2019 10:51:06 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:51:34 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:51:34 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:51:34 - INFO - run_child_finetuning - eval_loss = 1.2746005985471938\n",
+ "06/09/2019 10:51:34 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:52:02 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:52:02 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:52:02 - INFO - run_child_finetuning - eval_loss = 1.2885264688067966\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 38%|███▊ | 38/100 [41:40<1:07:01, 64.87s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 14000, lr = -0.000030\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:52:10 - INFO - run_child_finetuning - Epoch 39\n",
+ "06/09/2019 10:52:10 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:52:38 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:52:38 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:52:38 - INFO - run_child_finetuning - eval_loss = 1.2734754257731968\n",
+ "06/09/2019 10:52:38 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:53:06 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:53:06 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:53:06 - INFO - run_child_finetuning - eval_loss = 1.28737782769733\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 39%|███▉ | 39/100 [42:44<1:05:48, 64.74s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:53:18 - INFO - run_child_finetuning - Epoch 40\n",
+ "06/09/2019 10:53:18 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:53:46 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:53:46 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 10:53:46 - INFO - run_child_finetuning - eval_loss = 1.2718001670307584\n",
+ "06/09/2019 10:53:46 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:54:14 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:54:14 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 10:54:14 - INFO - run_child_finetuning - eval_loss = 1.2856513102849325\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 40%|████ | 40/100 [43:52<1:05:42, 65.71s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:54:25 - INFO - run_child_finetuning - Epoch 41\n",
+ "06/09/2019 10:54:25 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:54:53 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:54:53 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:54:53 - INFO - run_child_finetuning - eval_loss = 1.2708097603585986\n",
+ "06/09/2019 10:54:53 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:55:21 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:55:21 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:55:21 - INFO - run_child_finetuning - eval_loss = 1.284542813565996\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 41%|████ | 41/100 [44:59<1:04:51, 65.96s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 15000, lr = -0.000039\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:55:31 - INFO - run_child_finetuning - Epoch 42\n",
+ "06/09/2019 10:55:31 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:55:59 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:55:59 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:55:59 - INFO - run_child_finetuning - eval_loss = 1.2693544705708821\n",
+ "06/09/2019 10:55:59 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:56:27 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:56:27 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:56:27 - INFO - run_child_finetuning - eval_loss = 1.2828620976871914\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 42%|████▏ | 42/100 [46:05<1:03:44, 65.93s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:56:36 - INFO - run_child_finetuning - Epoch 43\n",
+ "06/09/2019 10:56:36 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:57:03 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:57:03 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 10:57:03 - INFO - run_child_finetuning - eval_loss = 1.2677685194545323\n",
+ "06/09/2019 10:57:03 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:57:31 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:57:31 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 10:57:31 - INFO - run_child_finetuning - eval_loss = 1.2817622078789606\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 43%|████▎ | 43/100 [47:09<1:02:12, 65.49s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:57:41 - INFO - run_child_finetuning - Epoch 44\n",
+ "06/09/2019 10:57:41 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:58:09 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:58:09 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 10:58:09 - INFO - run_child_finetuning - eval_loss = 1.2655644430054558\n",
+ "06/09/2019 10:58:09 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:58:37 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:58:37 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 10:58:37 - INFO - run_child_finetuning - eval_loss = 1.2792559107144674\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 44%|████▍ | 44/100 [48:15<1:01:08, 65.51s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 16000, lr = -0.000048\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 10:58:47 - INFO - run_child_finetuning - Epoch 45\n",
+ "06/09/2019 10:58:47 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 10:59:15 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:59:15 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 10:59:15 - INFO - run_child_finetuning - eval_loss = 1.2655728247430589\n",
+ "06/09/2019 10:59:15 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 10:59:43 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 10:59:43 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 10:59:43 - INFO - run_child_finetuning - eval_loss = 1.2796800454457602\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 45%|████▌ | 45/100 [49:21<1:00:09, 65.63s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 10:59:53 - INFO - run_child_finetuning - Epoch 46\n",
+ "06/09/2019 10:59:53 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:00:21 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:00:21 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 11:00:21 - INFO - run_child_finetuning - eval_loss = 1.2633930643399556\n",
+ "06/09/2019 11:00:21 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:00:49 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:00:49 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 11:00:49 - INFO - run_child_finetuning - eval_loss = 1.2771886467933655\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 46%|████▌ | 46/100 [50:27<59:10, 65.74s/it] \u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:00:59 - INFO - run_child_finetuning - Epoch 47\n",
+ "06/09/2019 11:00:59 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:01:27 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:01:27 - INFO - run_child_finetuning - eval_accuracy = 0.45078125\n",
+ "06/09/2019 11:01:27 - INFO - run_child_finetuning - eval_loss = 1.2638664881388346\n",
+ "06/09/2019 11:01:27 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:01:55 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:01:55 - INFO - run_child_finetuning - eval_accuracy = 0.4381076388888889\n",
+ "06/09/2019 11:01:55 - INFO - run_child_finetuning - eval_loss = 1.2772795226838853\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 47%|████▋ | 47/100 [51:33<58:08, 65.82s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 17000, lr = -0.000057\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:02:05 - INFO - run_child_finetuning - Epoch 48\n",
+ "06/09/2019 11:02:05 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:02:33 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:02:33 - INFO - run_child_finetuning - eval_accuracy = 0.45199652777777777\n",
+ "06/09/2019 11:02:33 - INFO - run_child_finetuning - eval_loss = 1.2638536400265163\n",
+ "06/09/2019 11:02:33 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:03:00 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:03:00 - INFO - run_child_finetuning - eval_accuracy = 0.4368923611111111\n",
+ "06/09/2019 11:03:00 - INFO - run_child_finetuning - eval_loss = 1.2784057392014399\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 48%|████▊ | 48/100 [52:39<57:02, 65.81s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:03:11 - INFO - run_child_finetuning - Epoch 49\n",
+ "06/09/2019 11:03:11 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:03:38 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:03:38 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 11:03:38 - INFO - run_child_finetuning - eval_loss = 1.2610097911622788\n",
+ "06/09/2019 11:03:38 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:04:06 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:04:06 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 11:04:06 - INFO - run_child_finetuning - eval_loss = 1.2743374122513664\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 49%|████▉ | 49/100 [53:44<55:55, 65.80s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:04:16 - INFO - run_child_finetuning - Epoch 50\n",
+ "06/09/2019 11:04:16 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:04:44 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:04:44 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 11:04:44 - INFO - run_child_finetuning - eval_loss = 1.2613953351974487\n",
+ "06/09/2019 11:04:44 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:05:11 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:05:11 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 11:05:11 - INFO - run_child_finetuning - eval_loss = 1.2759553485446506\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 50%|█████ | 50/100 [54:49<54:39, 65.59s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 18000, lr = -0.000067\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:05:22 - INFO - run_child_finetuning - Epoch 51\n",
+ "06/09/2019 11:05:22 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:05:49 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:05:49 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 11:05:49 - INFO - run_child_finetuning - eval_loss = 1.2582731948958503\n",
+ "06/09/2019 11:05:49 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:06:17 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:06:17 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 11:06:17 - INFO - run_child_finetuning - eval_loss = 1.271828391816881\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 51%|█████ | 51/100 [55:55<53:39, 65.69s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:06:28 - INFO - run_child_finetuning - Epoch 52\n",
+ "06/09/2019 11:06:28 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:06:56 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:06:56 - INFO - run_child_finetuning - eval_accuracy = 0.4513888888888889\n",
+ "06/09/2019 11:06:56 - INFO - run_child_finetuning - eval_loss = 1.2580342027876112\n",
+ "06/09/2019 11:06:56 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:07:24 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:07:24 - INFO - run_child_finetuning - eval_accuracy = 0.4375\n",
+ "06/09/2019 11:07:24 - INFO - run_child_finetuning - eval_loss = 1.2725122107399836\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 52%|█████▏ | 52/100 [57:03<52:55, 66.15s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 19000, lr = -0.000076\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:07:35 - INFO - run_child_finetuning - Epoch 53\n",
+ "06/09/2019 11:07:35 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:08:03 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:08:03 - INFO - run_child_finetuning - eval_accuracy = 0.45078125\n",
+ "06/09/2019 11:08:03 - INFO - run_child_finetuning - eval_loss = 1.2580892933739556\n",
+ "06/09/2019 11:08:03 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:08:31 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:08:31 - INFO - run_child_finetuning - eval_accuracy = 0.4381076388888889\n",
+ "06/09/2019 11:08:31 - INFO - run_child_finetuning - eval_loss = 1.2724553810225592\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 53%|█████▎ | 53/100 [58:09<51:53, 66.24s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:08:42 - INFO - run_child_finetuning - Epoch 54\n",
+ "06/09/2019 11:08:42 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:09:10 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:09:10 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 11:09:10 - INFO - run_child_finetuning - eval_loss = 1.2563159465789795\n",
+ "06/09/2019 11:09:10 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:09:37 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:09:37 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 11:09:37 - INFO - run_child_finetuning - eval_loss = 1.2693641344706217\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 54%|█████▍ | 54/100 [59:16<50:51, 66.34s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:09:48 - INFO - run_child_finetuning - Epoch 55\n",
+ "06/09/2019 11:09:48 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:10:16 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:10:16 - INFO - run_child_finetuning - eval_accuracy = 0.45069444444444445\n",
+ "06/09/2019 11:10:16 - INFO - run_child_finetuning - eval_loss = 1.2571652372678122\n",
+ "06/09/2019 11:10:16 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:10:43 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:10:43 - INFO - run_child_finetuning - eval_accuracy = 0.43819444444444444\n",
+ "06/09/2019 11:10:43 - INFO - run_child_finetuning - eval_loss = 1.2704107642173768\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 55%|█████▌ | 55/100 [1:00:22<49:40, 66.22s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 20000, lr = -0.000085\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:10:54 - INFO - run_child_finetuning - Epoch 56\n",
+ "06/09/2019 11:10:54 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:11:22 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:11:22 - INFO - run_child_finetuning - eval_accuracy = 0.45078125\n",
+ "06/09/2019 11:11:22 - INFO - run_child_finetuning - eval_loss = 1.2557978232701619\n",
+ "06/09/2019 11:11:22 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:11:49 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:11:49 - INFO - run_child_finetuning - eval_accuracy = 0.4381076388888889\n",
+ "06/09/2019 11:11:49 - INFO - run_child_finetuning - eval_loss = 1.2688145054711235\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 56%|█████▌ | 56/100 [1:01:27<48:30, 66.15s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:12:00 - INFO - run_child_finetuning - Epoch 57\n",
+ "06/09/2019 11:12:00 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:12:28 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:12:28 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 11:12:28 - INFO - run_child_finetuning - eval_loss = 1.2567673405011495\n",
+ "06/09/2019 11:12:28 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:12:56 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:12:56 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 11:12:56 - INFO - run_child_finetuning - eval_loss = 1.2707869211832683\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 57%|█████▋ | 57/100 [1:02:34<47:29, 66.27s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:13:06 - INFO - run_child_finetuning - Epoch 58\n",
+ "06/09/2019 11:13:06 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:13:34 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:13:34 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 11:13:34 - INFO - run_child_finetuning - eval_loss = 1.2552655418713887\n",
+ "06/09/2019 11:13:34 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:14:02 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:14:02 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 11:14:02 - INFO - run_child_finetuning - eval_loss = 1.2685243950949774\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 58%|█████▊ | 58/100 [1:03:40<46:18, 66.16s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 21000, lr = -0.000094\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:14:10 - INFO - run_child_finetuning - Epoch 59\n",
+ "06/09/2019 11:14:10 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:14:38 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:14:38 - INFO - run_child_finetuning - eval_accuracy = 0.45078125\n",
+ "06/09/2019 11:14:38 - INFO - run_child_finetuning - eval_loss = 1.2543529285324944\n",
+ "06/09/2019 11:14:38 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:15:06 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:15:06 - INFO - run_child_finetuning - eval_accuracy = 0.4381076388888889\n",
+ "06/09/2019 11:15:06 - INFO - run_child_finetuning - eval_loss = 1.2681733555263943\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 59%|█████▉ | 59/100 [1:04:44<44:49, 65.59s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:15:16 - INFO - run_child_finetuning - Epoch 60\n",
+ "06/09/2019 11:15:16 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:15:44 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:15:44 - INFO - run_child_finetuning - eval_accuracy = 0.4513888888888889\n",
+ "06/09/2019 11:15:44 - INFO - run_child_finetuning - eval_loss = 1.2541927046246\n",
+ "06/09/2019 11:15:44 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:16:12 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:16:12 - INFO - run_child_finetuning - eval_accuracy = 0.4375\n",
+ "06/09/2019 11:16:12 - INFO - run_child_finetuning - eval_loss = 1.267860644393497\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 60%|██████ | 60/100 [1:05:50<43:49, 65.73s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:16:23 - INFO - run_child_finetuning - Epoch 61\n",
+ "06/09/2019 11:16:23 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:16:51 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:16:51 - INFO - run_child_finetuning - eval_accuracy = 0.4513020833333333\n",
+ "06/09/2019 11:16:51 - INFO - run_child_finetuning - eval_loss = 1.2536385284529792\n",
+ "06/09/2019 11:16:51 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:17:19 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:17:19 - INFO - run_child_finetuning - eval_accuracy = 0.43758680555555557\n",
+ "06/09/2019 11:17:19 - INFO - run_child_finetuning - eval_loss = 1.2662296599811977\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 61%|██████ | 61/100 [1:06:57<42:56, 66.08s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 22000, lr = -0.000104\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:17:31 - INFO - run_child_finetuning - Epoch 62\n",
+ "06/09/2019 11:17:31 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:17:59 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:17:59 - INFO - run_child_finetuning - eval_accuracy = 0.4519097222222222\n",
+ "06/09/2019 11:17:59 - INFO - run_child_finetuning - eval_loss = 1.2535286770926581\n",
+ "06/09/2019 11:17:59 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:18:27 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:18:27 - INFO - run_child_finetuning - eval_accuracy = 0.43697916666666664\n",
+ "06/09/2019 11:18:27 - INFO - run_child_finetuning - eval_loss = 1.267613332801395\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 62%|██████▏ | 62/100 [1:08:05<42:13, 66.66s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:18:37 - INFO - run_child_finetuning - Epoch 63\n",
+ "06/09/2019 11:18:37 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:19:05 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:19:05 - INFO - run_child_finetuning - eval_accuracy = 0.4515625\n",
+ "06/09/2019 11:19:05 - INFO - run_child_finetuning - eval_loss = 1.2538655002911885\n",
+ "06/09/2019 11:19:05 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:19:33 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:19:33 - INFO - run_child_finetuning - eval_accuracy = 0.43732638888888886\n",
+ "06/09/2019 11:19:33 - INFO - run_child_finetuning - eval_loss = 1.2682664235432943\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 63%|██████▎ | 63/100 [1:09:11<40:59, 66.47s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 23000, lr = -0.000113\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:19:42 - INFO - run_child_finetuning - Epoch 64\n",
+ "06/09/2019 11:19:42 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:20:09 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:20:09 - INFO - run_child_finetuning - eval_accuracy = 0.44991319444444444\n",
+ "06/09/2019 11:20:09 - INFO - run_child_finetuning - eval_loss = 1.2541112303733826\n",
+ "06/09/2019 11:20:09 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:20:37 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:20:37 - INFO - run_child_finetuning - eval_accuracy = 0.43897569444444445\n",
+ "06/09/2019 11:20:37 - INFO - run_child_finetuning - eval_loss = 1.267833666006724\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 64%|██████▍ | 64/100 [1:10:15<39:27, 65.76s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:20:46 - INFO - run_child_finetuning - Epoch 65\n",
+ "06/09/2019 11:20:46 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:21:14 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:21:14 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 11:21:14 - INFO - run_child_finetuning - eval_loss = 1.2567384481430053\n",
+ "06/09/2019 11:21:14 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:21:42 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:21:42 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 11:21:42 - INFO - run_child_finetuning - eval_loss = 1.2706474079026115\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 65%|██████▌ | 65/100 [1:11:20<38:10, 65.44s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:21:52 - INFO - run_child_finetuning - Epoch 66\n",
+ "06/09/2019 11:21:52 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:22:20 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:22:20 - INFO - run_child_finetuning - eval_accuracy = 0.45078125\n",
+ "06/09/2019 11:22:20 - INFO - run_child_finetuning - eval_loss = 1.253372961945004\n",
+ "06/09/2019 11:22:20 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:22:48 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:22:48 - INFO - run_child_finetuning - eval_accuracy = 0.4381076388888889\n",
+ "06/09/2019 11:22:48 - INFO - run_child_finetuning - eval_loss = 1.267328475581275\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 66%|██████▌ | 66/100 [1:12:26<37:10, 65.61s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 24000, lr = -0.000122\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:22:58 - INFO - run_child_finetuning - Epoch 67\n",
+ "06/09/2019 11:22:58 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:23:27 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:23:27 - INFO - run_child_finetuning - eval_accuracy = 0.45078125\n",
+ "06/09/2019 11:23:27 - INFO - run_child_finetuning - eval_loss = 1.2558889269828797\n",
+ "06/09/2019 11:23:27 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:23:55 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:23:55 - INFO - run_child_finetuning - eval_accuracy = 0.4381076388888889\n",
+ "06/09/2019 11:23:55 - INFO - run_child_finetuning - eval_loss = 1.2680187635951572\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 67%|██████▋ | 67/100 [1:13:33<36:17, 65.97s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:24:05 - INFO - run_child_finetuning - Epoch 68\n",
+ "06/09/2019 11:24:05 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:24:33 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:24:33 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 11:24:33 - INFO - run_child_finetuning - eval_loss = 1.2534217052989536\n",
+ "06/09/2019 11:24:33 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:25:01 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:25:01 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 11:25:01 - INFO - run_child_finetuning - eval_loss = 1.267832002374861\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 68%|██████▊ | 68/100 [1:14:39<35:12, 66.03s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:25:12 - INFO - run_child_finetuning - Epoch 69\n",
+ "06/09/2019 11:25:12 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:25:40 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:25:40 - INFO - run_child_finetuning - eval_accuracy = 0.4515625\n",
+ "06/09/2019 11:25:40 - INFO - run_child_finetuning - eval_loss = 1.2543478224012587\n",
+ "06/09/2019 11:25:40 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:26:08 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:26:08 - INFO - run_child_finetuning - eval_accuracy = 0.43732638888888886\n",
+ "06/09/2019 11:26:08 - INFO - run_child_finetuning - eval_loss = 1.2676605025927226\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 69%|██████▉ | 69/100 [1:15:46<34:13, 66.25s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 25000, lr = -0.000131\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:26:20 - INFO - run_child_finetuning - Epoch 70\n",
+ "06/09/2019 11:26:20 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:26:48 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:26:48 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 11:26:48 - INFO - run_child_finetuning - eval_loss = 1.256232378217909\n",
+ "06/09/2019 11:26:48 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:27:16 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:27:16 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 11:27:16 - INFO - run_child_finetuning - eval_loss = 1.2710346884197659\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 70%|███████ | 70/100 [1:16:54<33:23, 66.77s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:27:28 - INFO - run_child_finetuning - Epoch 71\n",
+ "06/09/2019 11:27:28 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:27:56 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:27:56 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 11:27:56 - INFO - run_child_finetuning - eval_loss = 1.254373996787601\n",
+ "06/09/2019 11:27:56 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:28:24 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:28:24 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 11:28:24 - INFO - run_child_finetuning - eval_loss = 1.268411025736067\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 71%|███████ | 71/100 [1:18:02<32:27, 67.14s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:28:34 - INFO - run_child_finetuning - Epoch 72\n",
+ "06/09/2019 11:28:34 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:29:02 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:29:02 - INFO - run_child_finetuning - eval_accuracy = 0.44973958333333336\n",
+ "06/09/2019 11:29:02 - INFO - run_child_finetuning - eval_loss = 1.2569880644480387\n",
+ "06/09/2019 11:29:02 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:29:30 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:29:30 - INFO - run_child_finetuning - eval_accuracy = 0.43914930555555554\n",
+ "06/09/2019 11:29:30 - INFO - run_child_finetuning - eval_loss = 1.2723949763509963\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 72%|███████▏ | 72/100 [1:19:08<31:12, 66.86s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 26000, lr = -0.000141\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:29:40 - INFO - run_child_finetuning - Epoch 73\n",
+ "06/09/2019 11:29:40 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:30:08 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:30:08 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 11:30:08 - INFO - run_child_finetuning - eval_loss = 1.2545752935939365\n",
+ "06/09/2019 11:30:08 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:30:36 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:30:36 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 11:30:36 - INFO - run_child_finetuning - eval_loss = 1.269049670961168\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 73%|███████▎ | 73/100 [1:20:14<29:58, 66.62s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:30:46 - INFO - run_child_finetuning - Epoch 74\n",
+ "06/09/2019 11:30:46 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:31:14 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:31:14 - INFO - run_child_finetuning - eval_accuracy = 0.4509548611111111\n",
+ "06/09/2019 11:31:14 - INFO - run_child_finetuning - eval_loss = 1.2558313740624323\n",
+ "06/09/2019 11:31:14 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:31:42 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:31:42 - INFO - run_child_finetuning - eval_accuracy = 0.4379340277777778\n",
+ "06/09/2019 11:31:42 - INFO - run_child_finetuning - eval_loss = 1.2702598147922093\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 74%|███████▍ | 74/100 [1:21:20<28:47, 66.45s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:31:52 - INFO - run_child_finetuning - Epoch 75\n",
+ "06/09/2019 11:31:52 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:32:20 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:32:20 - INFO - run_child_finetuning - eval_accuracy = 0.45069444444444445\n",
+ "06/09/2019 11:32:20 - INFO - run_child_finetuning - eval_loss = 1.25285046365526\n",
+ "06/09/2019 11:32:20 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:32:48 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:32:48 - INFO - run_child_finetuning - eval_accuracy = 0.43819444444444444\n",
+ "06/09/2019 11:32:48 - INFO - run_child_finetuning - eval_loss = 1.2665512853198582\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 75%|███████▌ | 75/100 [1:22:26<27:37, 66.32s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 27000, lr = -0.000150\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:32:58 - INFO - run_child_finetuning - Epoch 76\n",
+ "06/09/2019 11:32:58 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:33:26 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:33:26 - INFO - run_child_finetuning - eval_accuracy = 0.4599826388888889\n",
+ "06/09/2019 11:33:26 - INFO - run_child_finetuning - eval_loss = 1.2468693004714118\n",
+ "06/09/2019 11:33:26 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:35:11 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:35:39 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:35:39 - INFO - run_child_finetuning - eval_accuracy = 0.4732638888888889\n",
+ "06/09/2019 11:35:39 - INFO - run_child_finetuning - eval_loss = 1.2132148491011725\n",
+ "06/09/2019 11:35:39 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:36:06 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:36:06 - INFO - run_child_finetuning - eval_accuracy = 0.46206597222222223\n",
+ "06/09/2019 11:36:06 - INFO - run_child_finetuning - eval_loss = 1.2266984952820672\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 78%|███████▊ | 78/100 [1:25:44<24:15, 66.17s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:36:17 - INFO - run_child_finetuning - Epoch 79\n",
+ "06/09/2019 11:36:17 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:36:44 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:36:44 - INFO - run_child_finetuning - eval_accuracy = 0.4810763888888889\n",
+ "06/09/2019 11:36:44 - INFO - run_child_finetuning - eval_loss = 1.1860122005144755\n",
+ "06/09/2019 11:36:44 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:37:12 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:37:12 - INFO - run_child_finetuning - eval_accuracy = 0.46848958333333335\n",
+ "06/09/2019 11:37:12 - INFO - run_child_finetuning - eval_loss = 1.1959241694874234\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 79%|███████▉ | 79/100 [1:26:50<23:08, 66.12s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:37:22 - INFO - run_child_finetuning - Epoch 80\n",
+ "06/09/2019 11:37:22 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:37:50 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:37:50 - INFO - run_child_finetuning - eval_accuracy = 0.49288194444444444\n",
+ "06/09/2019 11:37:50 - INFO - run_child_finetuning - eval_loss = 1.1808326456281875\n",
+ "06/09/2019 11:37:50 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:38:18 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:38:18 - INFO - run_child_finetuning - eval_accuracy = 0.4830729166666667\n",
+ "06/09/2019 11:38:18 - INFO - run_child_finetuning - eval_loss = 1.1921248899565802\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 80%|████████ | 80/100 [1:27:56<21:59, 65.98s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 29000, lr = -0.000169\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:38:28 - INFO - run_child_finetuning - Epoch 81\n",
+ "06/09/2019 11:38:28 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:38:56 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:38:56 - INFO - run_child_finetuning - eval_accuracy = 0.5042534722222223\n",
+ "06/09/2019 11:38:56 - INFO - run_child_finetuning - eval_loss = 1.1616202606095207\n",
+ "06/09/2019 11:38:56 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:39:24 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:39:24 - INFO - run_child_finetuning - eval_accuracy = 0.4915798611111111\n",
+ "06/09/2019 11:39:24 - INFO - run_child_finetuning - eval_loss = 1.1748484041955736\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 81%|████████ | 81/100 [1:29:02<20:53, 65.97s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:39:34 - INFO - run_child_finetuning - Epoch 82\n",
+ "06/09/2019 11:39:34 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:40:02 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:40:02 - INFO - run_child_finetuning - eval_accuracy = 0.5051215277777777\n",
+ "06/09/2019 11:40:02 - INFO - run_child_finetuning - eval_loss = 1.1368214580747815\n",
+ "06/09/2019 11:40:02 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:40:30 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:40:30 - INFO - run_child_finetuning - eval_accuracy = 0.49105902777777777\n",
+ "06/09/2019 11:40:30 - INFO - run_child_finetuning - eval_loss = 1.152006494998932\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 82%|████████▏ | 82/100 [1:30:08<19:48, 66.01s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:40:40 - INFO - run_child_finetuning - Epoch 83\n",
+ "06/09/2019 11:40:40 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:41:08 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:41:08 - INFO - run_child_finetuning - eval_accuracy = 0.5098090277777778\n",
+ "06/09/2019 11:41:08 - INFO - run_child_finetuning - eval_loss = 1.0961747805277506\n",
+ "06/09/2019 11:41:08 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:41:36 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:41:36 - INFO - run_child_finetuning - eval_accuracy = 0.5002604166666667\n",
+ "06/09/2019 11:41:36 - INFO - run_child_finetuning - eval_loss = 1.1076407035191853\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 83%|████████▎ | 83/100 [1:31:14<18:42, 66.02s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 30000, lr = -0.000178\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:41:47 - INFO - run_child_finetuning - Epoch 84\n",
+ "06/09/2019 11:41:47 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:42:14 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:42:14 - INFO - run_child_finetuning - eval_accuracy = 0.5082465277777778\n",
+ "06/09/2019 11:42:14 - INFO - run_child_finetuning - eval_loss = 1.076478154791726\n",
+ "06/09/2019 11:42:14 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:42:42 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:42:42 - INFO - run_child_finetuning - eval_accuracy = 0.4957465277777778\n",
+ "06/09/2019 11:42:42 - INFO - run_child_finetuning - eval_loss = 1.0900266740057203\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 84%|████████▍ | 84/100 [1:32:20<17:36, 66.05s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:42:53 - INFO - run_child_finetuning - Epoch 85\n",
+ "06/09/2019 11:42:53 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:43:20 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:43:20 - INFO - run_child_finetuning - eval_accuracy = 0.5261284722222223\n",
+ "06/09/2019 11:43:20 - INFO - run_child_finetuning - eval_loss = 1.04820695983039\n",
+ "06/09/2019 11:43:21 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:43:48 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:43:48 - INFO - run_child_finetuning - eval_accuracy = 0.5151041666666667\n",
+ "06/09/2019 11:43:48 - INFO - run_child_finetuning - eval_loss = 1.0613130741649204\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 85%|████████▌ | 85/100 [1:33:26<16:31, 66.07s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:43:58 - INFO - run_child_finetuning - Epoch 86\n",
+ "06/09/2019 11:43:58 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:44:26 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:44:26 - INFO - run_child_finetuning - eval_accuracy = 0.5272569444444445\n",
+ "06/09/2019 11:44:26 - INFO - run_child_finetuning - eval_loss = 1.0183378650082482\n",
+ "06/09/2019 11:44:26 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:44:54 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:44:54 - INFO - run_child_finetuning - eval_accuracy = 0.5131076388888889\n",
+ "06/09/2019 11:44:54 - INFO - run_child_finetuning - eval_loss = 1.0315876146157583\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 86%|████████▌ | 86/100 [1:34:32<15:23, 65.96s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 31000, lr = -0.000187\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:45:05 - INFO - run_child_finetuning - Epoch 87\n",
+ "06/09/2019 11:45:05 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:45:33 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:45:33 - INFO - run_child_finetuning - eval_accuracy = 0.5419270833333333\n",
+ "06/09/2019 11:45:33 - INFO - run_child_finetuning - eval_loss = 0.9918538702858819\n",
+ "06/09/2019 11:45:33 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:46:01 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:46:01 - INFO - run_child_finetuning - eval_accuracy = 0.5289930555555555\n",
+ "06/09/2019 11:46:01 - INFO - run_child_finetuning - eval_loss = 1.0008921066919962\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 87%|████████▋ | 87/100 [1:35:39<14:19, 66.13s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:46:11 - INFO - run_child_finetuning - Epoch 88\n",
+ "06/09/2019 11:46:11 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:46:39 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:46:39 - INFO - run_child_finetuning - eval_accuracy = 0.5427083333333333\n",
+ "06/09/2019 11:46:39 - INFO - run_child_finetuning - eval_loss = 0.9888957500457763\n",
+ "06/09/2019 11:46:39 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:47:07 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:47:07 - INFO - run_child_finetuning - eval_accuracy = 0.5352430555555555\n",
+ "06/09/2019 11:47:07 - INFO - run_child_finetuning - eval_loss = 1.0018013291888768\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 88%|████████▊ | 88/100 [1:36:45<13:14, 66.23s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 32000, lr = -0.000196\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:47:17 - INFO - run_child_finetuning - Epoch 89\n",
+ "06/09/2019 11:47:17 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:47:45 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:47:45 - INFO - run_child_finetuning - eval_accuracy = 0.56171875\n",
+ "06/09/2019 11:47:45 - INFO - run_child_finetuning - eval_loss = 0.9563338147269355\n",
+ "06/09/2019 11:47:45 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:48:13 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:48:13 - INFO - run_child_finetuning - eval_accuracy = 0.5494791666666666\n",
+ "06/09/2019 11:48:13 - INFO - run_child_finetuning - eval_loss = 0.9669986453321245\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 89%|████████▉ | 89/100 [1:37:51<12:08, 66.23s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:48:24 - INFO - run_child_finetuning - Epoch 90\n",
+ "06/09/2019 11:48:24 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:48:51 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:48:51 - INFO - run_child_finetuning - eval_accuracy = 0.5645833333333333\n",
+ "06/09/2019 11:48:51 - INFO - run_child_finetuning - eval_loss = 0.9435959888829125\n",
+ "06/09/2019 11:48:52 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:49:19 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:49:19 - INFO - run_child_finetuning - eval_accuracy = 0.5533854166666666\n",
+ "06/09/2019 11:49:19 - INFO - run_child_finetuning - eval_loss = 0.9578184756967757\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 90%|█████████ | 90/100 [1:38:57<11:01, 66.16s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:49:30 - INFO - run_child_finetuning - Epoch 91\n",
+ "06/09/2019 11:49:30 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:49:57 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:49:57 - INFO - run_child_finetuning - eval_accuracy = 0.5693576388888889\n",
+ "06/09/2019 11:49:57 - INFO - run_child_finetuning - eval_loss = 0.928356761402554\n",
+ "06/09/2019 11:49:57 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:50:25 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:50:25 - INFO - run_child_finetuning - eval_accuracy = 0.5584201388888889\n",
+ "06/09/2019 11:50:25 - INFO - run_child_finetuning - eval_loss = 0.9383055541250441\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 91%|█████████ | 91/100 [1:40:04<09:55, 66.18s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 33000, lr = -0.000206\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:50:36 - INFO - run_child_finetuning - Epoch 92\n",
+ "06/09/2019 11:50:36 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:51:04 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:51:04 - INFO - run_child_finetuning - eval_accuracy = 0.5755208333333334\n",
+ "06/09/2019 11:51:04 - INFO - run_child_finetuning - eval_loss = 0.9096341941091749\n",
+ "06/09/2019 11:51:04 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:51:32 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:51:32 - INFO - run_child_finetuning - eval_accuracy = 0.56328125\n",
+ "06/09/2019 11:51:32 - INFO - run_child_finetuning - eval_loss = 0.9205585459868113\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 92%|█████████▏| 92/100 [1:41:10<08:49, 66.14s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:51:43 - INFO - run_child_finetuning - Epoch 93\n",
+ "06/09/2019 11:51:43 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:52:11 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:52:11 - INFO - run_child_finetuning - eval_accuracy = 0.58046875\n",
+ "06/09/2019 11:52:11 - INFO - run_child_finetuning - eval_loss = 0.900900975200865\n",
+ "06/09/2019 11:52:11 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:52:38 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:52:38 - INFO - run_child_finetuning - eval_accuracy = 0.5693576388888889\n",
+ "06/09/2019 11:52:38 - INFO - run_child_finetuning - eval_loss = 0.9142036868466271\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 93%|█████████▎| 93/100 [1:42:16<07:44, 66.33s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:52:47 - INFO - run_child_finetuning - Epoch 94\n",
+ "06/09/2019 11:52:47 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:53:15 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:53:15 - INFO - run_child_finetuning - eval_accuracy = 0.5886284722222223\n",
+ "06/09/2019 11:53:15 - INFO - run_child_finetuning - eval_loss = 0.8851869417561425\n",
+ "06/09/2019 11:53:15 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:53:43 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:53:43 - INFO - run_child_finetuning - eval_accuracy = 0.5755208333333334\n",
+ "06/09/2019 11:53:43 - INFO - run_child_finetuning - eval_loss = 0.8926095426082611\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 94%|█████████▍| 94/100 [1:43:21<06:34, 65.73s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 34000, lr = -0.000215\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:53:54 - INFO - run_child_finetuning - Epoch 95\n",
+ "06/09/2019 11:53:54 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:54:21 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:54:21 - INFO - run_child_finetuning - eval_accuracy = 0.5769965277777778\n",
+ "06/09/2019 11:54:21 - INFO - run_child_finetuning - eval_loss = 0.8847115721967486\n",
+ "06/09/2019 11:54:21 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:54:49 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:54:49 - INFO - run_child_finetuning - eval_accuracy = 0.5650173611111111\n",
+ "06/09/2019 11:54:49 - INFO - run_child_finetuning - eval_loss = 0.8932965106434292\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 95%|█████████▌| 95/100 [1:44:27<05:29, 65.95s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:54:59 - INFO - run_child_finetuning - Epoch 96\n",
+ "06/09/2019 11:54:59 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:55:27 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:55:27 - INFO - run_child_finetuning - eval_accuracy = 0.5789930555555556\n",
+ "06/09/2019 11:55:27 - INFO - run_child_finetuning - eval_loss = 0.8607717480924394\n",
+ "06/09/2019 11:55:27 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:55:54 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:55:54 - INFO - run_child_finetuning - eval_accuracy = 0.5701388888888889\n",
+ "06/09/2019 11:55:54 - INFO - run_child_finetuning - eval_loss = 0.8688309980763329\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 96%|█████████▌| 96/100 [1:45:32<04:22, 65.74s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:56:05 - INFO - run_child_finetuning - Epoch 97\n",
+ "06/09/2019 11:56:05 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:56:33 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:56:33 - INFO - run_child_finetuning - eval_accuracy = 0.6397569444444444\n",
+ "06/09/2019 11:56:33 - INFO - run_child_finetuning - eval_loss = 0.7840271459685432\n",
+ "06/09/2019 11:56:33 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:57:00 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:57:00 - INFO - run_child_finetuning - eval_accuracy = 0.6365451388888889\n",
+ "06/09/2019 11:57:00 - INFO - run_child_finetuning - eval_loss = 0.7873119976785448\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 97%|█████████▋| 97/100 [1:46:38<03:17, 65.81s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "global_step 35000, lr = -0.000224\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "06/09/2019 11:57:11 - INFO - run_child_finetuning - Epoch 98\n",
+ "06/09/2019 11:57:11 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:57:38 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:57:38 - INFO - run_child_finetuning - eval_accuracy = 0.6711805555555556\n",
+ "06/09/2019 11:57:38 - INFO - run_child_finetuning - eval_loss = 0.7093107594384087\n",
+ "06/09/2019 11:57:38 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:58:06 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:58:06 - INFO - run_child_finetuning - eval_accuracy = 0.6711805555555556\n",
+ "06/09/2019 11:58:06 - INFO - run_child_finetuning - eval_loss = 0.7124807761775123\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 98%|█████████▊| 98/100 [1:47:44<02:11, 65.84s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:58:17 - INFO - run_child_finetuning - Epoch 99\n",
+ "06/09/2019 11:58:17 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:58:44 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:58:44 - INFO - run_child_finetuning - eval_accuracy = 0.7196180555555556\n",
+ "06/09/2019 11:58:44 - INFO - run_child_finetuning - eval_loss = 0.6273805638154347\n",
+ "06/09/2019 11:58:44 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 11:59:12 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:59:12 - INFO - run_child_finetuning - eval_accuracy = 0.7190972222222223\n",
+ "06/09/2019 11:59:12 - INFO - run_child_finetuning - eval_loss = 0.630940580368042\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 99%|█████████▉| 99/100 [1:48:50<01:05, 65.88s/it]\u001b[A\u001b[A\u001b[A\u001b[A06/09/2019 11:59:23 - INFO - run_child_finetuning - Epoch 100\n",
+ "06/09/2019 11:59:23 - INFO - run_child_finetuning - Evaluating on train set...\n",
+ "06/09/2019 11:59:50 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 11:59:50 - INFO - run_child_finetuning - eval_accuracy = 0.7444444444444445\n",
+ "06/09/2019 11:59:50 - INFO - run_child_finetuning - eval_loss = 0.545815435383055\n",
+ "06/09/2019 11:59:50 - INFO - run_child_finetuning - Evaluating on valid set...\n",
+ "06/09/2019 12:00:18 - INFO - run_child_finetuning - ***** Eval results *****\n",
+ "06/09/2019 12:00:18 - INFO - run_child_finetuning - eval_accuracy = 0.7447916666666666\n",
+ "06/09/2019 12:00:18 - INFO - run_child_finetuning - eval_loss = 0.5425901783837213\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Epoch: 100%|██████████| 100/100 [1:49:57<00:00, 65.99s/it]\u001b[A\u001b[A\u001b[A\u001b[A"
+ ]
+ }
+ ],
+ "source": [
+ "# train_sampler = RandomSampler(train_dataset)\n",
+ "# train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)\n",
+ "# eval_sampler = SequentialSampler(eval_dataset)\n",
+ "# eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)\n",
+ "\n",
+ "logger.info(\"Epoch 0\")\n",
+ "logger.info(\"Evaluating on train set...\")\n",
+ "validate(model, train_dataset, device)\n",
+ "logger.info(\"Evaluating on valid set...\")\n",
+ "validate(model, eval_dataset, device)\n",
+ "\n",
+ "global_step = 0\n",
+ "for epoch in trange(int(args.num_train_epochs), desc=\"Epoch\"):\n",
+ " _ = model.train()\n",
+ " tr_loss = 0\n",
+ " nb_tr_examples, nb_tr_steps = 0, 0\n",
+ "# for step, batch in enumerate(tqdm(train_dataloader, desc=\"Iteration\")):\n",
+ " for step, batch_idx in enumerate(get_batch_index(len(train_dataset), args.train_batch_size, randomized=True)):\n",
+ " batch = tuple(t[batch_idx] for t in train_dataset.tensors)\n",
+ " batch = tuple(t.to(device) for t in batch)\n",
+ " input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch\n",
+ " loss = model(input_ids, segment_ids, input_mask, lm_label_ids)\n",
+ " if n_gpu > 1:\n",
+ " loss = loss.mean() # mean() to average on multi-gpu.\n",
+ " if args.gradient_accumulation_steps > 1:\n",
+ " loss = loss / args.gradient_accumulation_steps\n",
+ " loss.backward()\n",
+ " tr_loss += loss.item()\n",
+ " nb_tr_examples += input_ids.size(0)\n",
+ " nb_tr_steps += 1\n",
+ " if (step + 1) % args.gradient_accumulation_steps == 0:\n",
+ " # modify learning rate with special warm up BERT uses\n",
+ " lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_steps, args.warmup_proportion)\n",
+ " if global_step % 1000 == 0:\n",
+ " print('global_step %d, lr = %f' % (global_step, lr_this_step))\n",
+ " for param_group in optimizer.param_groups:\n",
+ " param_group['lr'] = lr_this_step\n",
+ " optimizer.step()\n",
+ " optimizer.zero_grad()\n",
+ " global_step += 1\n",
+ "\n",
+ " if args.do_eval:\n",
+ " logger.info(\"Epoch %d\" % (epoch + 1))\n",
+ " logger.info(\"Evaluating on train set...\")\n",
+ " validate(model, train_dataset, device)\n",
+ " logger.info(\"Evaluating on valid set...\")\n",
+ " validate(model, eval_dataset, device)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Untitled3.ipynb b/Untitled3.ipynb
new file mode 100644
index 00000000000000..eee4c4c8357630
--- /dev/null
+++ b/Untitled3.ipynb
@@ -0,0 +1,804 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2\n",
+ "\n",
+ "from IPython.core.interactiveshell import InteractiveShell\n",
+ "InteractiveShell.ast_node_interactivity = 'all'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import json\n",
+ "import itertools\n",
+ "from itertools import product, chain\n",
+ "\n",
+ "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "01/24/2019 22:16:56 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/vocab.txt\n"
+ ]
+ }
+ ],
+ "source": [
+ "CONFIG_NAME = 'bert_config.json'\n",
+ "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n",
+ "tokenizer = BertTokenizer.from_pretrained(os.path.join(BERT_DIR, 'vocab.txt'))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def reverse(l):\n",
+ " return list(reversed(l))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def mask(ent_str):\n",
+ " tokens = ent_str.strip().split()\n",
+ " if len(tokens) == 1:\n",
+ " return '[%s]' % tokens[0]\n",
+ " elif len(tokens) == 2:\n",
+ " assert tokens[0] == 'the', ent_str\n",
+ " return '%s [%s]' % (tokens[0], tokens[1])\n",
+ " else:\n",
+ " assert False, ent_str"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "A_template = \"{dt} {ent0} {rel} {dt} {ent1} {rel_suffix}\"\n",
+ "B_template = \"{dt} {ent} {pred}\"\n",
+ "\n",
+ "causal_templates = [[\"{A} because {B}.\"],# \"{B} so {A}.\"], \n",
+ " [\"{A} so {B}.\"],# \"{B} because {A}.\"]\n",
+ " ]\n",
+ "turning_templates = [[\"{A} although {B}.\"],# \"{B} but {A}.\"], \n",
+ " [\"{A} but {B}.\"],# \"{B} although {A}.\"]\n",
+ " ]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def make_sentences(A_template, B_template, causal_templates, turning_templates,\n",
+ " index=-1, orig_sentence='', entities=[\"John\", \"Mary\"], entity_substitutes=None, determiner=\"\", \n",
+ " packed_relations=[\"rel/~rel\", \"rev_rel/~rev_rel\"], packed_relation_substitutes=None, relation_suffix=\"\",\n",
+ " packed_predicates=[\"pred0/~pred0\", \"pred1/~pred1\"], predicate_substitutes=None,\n",
+ " predicate_dichotomy=True, reverse_causal=False):\n",
+ " assert entities[0].lower() in tokenizer.vocab , entities[0]\n",
+ " assert entities[1].lower() in tokenizer.vocab , entities[1]\n",
+ " \n",
+ " relations, neg_relations = zip(*[rel.split(\"/\") for rel in packed_relations])\n",
+ " relations, neg_relations = list(relations), list(neg_relations)\n",
+ " predicates, neg_predicates = zip(*[pred.split(\"/\") for pred in packed_predicates])\n",
+ " predicates, neg_predicates = list(predicates), list(neg_predicates)\n",
+ " \n",
+ " As = [A_template.format(dt=determiner, ent0=ent0, ent1=ent1, rel=rel, rel_suffix=relation_suffix) \n",
+ " for ent0, ent1, rel in [entities + relations[:1], reverse(entities) + reverse(relations)[:1]]]\n",
+ " negAs = [A_template.format(dt=determiner, ent0=ent0, ent1=ent1, rel=rel, rel_suffix=relation_suffix) \n",
+ " for ent0, ent1, rel in [entities + neg_relations[:1], reverse(entities) + reverse(neg_relations)[:1]]]\n",
+ "\n",
+ " Bs = [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, predicates)]\n",
+ " negBs = [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, neg_predicates)]\n",
+ " if predicate_dichotomy:\n",
+ " Bs += [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, reversed(neg_predicates))]\n",
+ " negBs += [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, reversed(predicates))]\n",
+ "\n",
+ " def form_sentences(sentence_template, As, Bs):\n",
+ " return [\" \".join(sentence_template.format(A=A, B=B).split()) for A, B in product(As, Bs)]\n",
+ "\n",
+ " causal_sentences = []\n",
+ " for causal_template in causal_templates[int(reverse_causal)]:\n",
+ " for A, B in [(As, Bs), (negAs, negBs)]:\n",
+ " causal_sentences.extend(form_sentences(causal_template, A, B))\n",
+ "\n",
+ " turning_sentences = []\n",
+ " for turning_template in turning_templates[int(reverse_causal)]:\n",
+ " for A, B in [(As, negBs), (negAs, Bs)]:\n",
+ " turning_sentences.extend(form_sentences(turning_template, A, B))\n",
+ " \n",
+ " sentences = causal_sentences + turning_sentences\n",
+ " substituted_sentences = sentences\n",
+ " \n",
+ " if packed_relation_substitutes is not None:\n",
+ " packed_relation_substitutes = list(itertools.product(packed_relations[:1] + packed_relation_substitutes[0], \n",
+ " packed_relations[1:] + packed_relation_substitutes[1]))\n",
+ " substituted_sentences = []\n",
+ " for packed_sub_relations in packed_relation_substitutes:\n",
+ " sub_relations, sub_neg_relations = zip(*[rel.split(\"/\") for rel in packed_sub_relations])\n",
+ " substituted_sentences += [sent.replace(relations[0], sub_relations[0]).replace(relations[1], sub_relations[1])\n",
+ " .replace(neg_relations[0], sub_neg_relations[0]).replace(neg_relations[1], sub_neg_relations[1]) \n",
+ " for sent in sentences]\n",
+ " substituted_sentences = list(set(substituted_sentences))\n",
+ " \n",
+ " if entity_substitutes is not None:\n",
+ " for sub in entity_substitutes:\n",
+ " for ent in sub:\n",
+ " assert ent.lower() in tokenizer.vocab , ent + \" not in BERT vocab\"\n",
+ " assert len(set(chain.from_iterable(entity_substitutes))) == 4, entity_substitutes\n",
+ " assert len(set(chain.from_iterable(entity_substitutes)).union(set(entities))) == 6 \n",
+ " \n",
+ " entity_substitutes = list(itertools.product(entities[:1] + entity_substitutes[0], entities[1:] + entity_substitutes[1]))\n",
+ " substituted_sentences = [sent.replace(entities[0], sub[0]).replace(entities[1], sub[1]) \n",
+ " for sent in substituted_sentences for sub in entity_substitutes]\n",
+ " return causal_sentences, turning_sentences, substituted_sentences"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "frames = \\\n",
+ "[\n",
+ " {\n",
+ " \"index\": 2,\n",
+ " \"orig_sentence\": \"The trophy doesn't fit into the brown suitcase because [it] is too large/small.\",\n",
+ " \"entities\": [\"trophy\", \"suitcase\"],\n",
+ " \"entitity_substitutes\": [[\"ball\", \"toy\"], [\"bag\", \"box\"]],\n",
+ " \"determiner\": \"the\",\n",
+ " \"packed_relations\": [\"doesn't fit into/can fit into\", \"doesn't hold/can hold\"],\n",
+ " \"packed_relation_substitutes\": [[\"can't be put into/can be put into\"], [\"doesn't have enough room for/has enough room for\"]],\n",
+ " \"relation_suffix\": \"\",\n",
+ " \"packed_predicates\": [\"is large/isn't large\", \"is small/isn't small\"],\n",
+ " \"predicate_dichotomy\": True,\n",
+ " \"reverse_causal\": False\n",
+ " },\n",
+ " {\n",
+ " \"index\": 4,\n",
+ " \"orig_sentence\": \"Joan made sure to thank Susan for all the help [she] had recieved/given.\",\n",
+ " \"entities\": [\"John\", \"Susan\"],\n",
+ " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n",
+ " \"determiner\": \"\",\n",
+ " \"packed_relations\": [\"thanked/didn't thank\", \"took good care of/didn't good care of\"],\n",
+ " \"packed_relation_substitutes\": [[\"felt grateful to/didn't feel grateful to\"], [\"was appreciated by/wasn't appreciated by\"]],\n",
+ " \"relation_suffix\": \"\",\n",
+ " \"packed_predicates\": [\"had received a lot of help/hadn't received a lot of help\", \"had given a lot of help/hadn't given a lot of help\"],\n",
+ " \"predicate_dichotomy\": False,\n",
+ " \"reverse_causal\": False\n",
+ " },\n",
+ " {\n",
+ " \"index\": 4000,\n",
+ " \"orig_sentence\": \"John gave a lot of money to Susan because [he] was very rich/poor.\",\n",
+ " \"entities\": [\"John\", \"Susan\"],\n",
+ " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n",
+ " \"determiner\": \"\",\n",
+ " \"packed_relations\": [\"gave a lot of money to/didn't give a lot of money to\", \"received a lot of money from/didn't receive a lot of money from\"],\n",
+ " \"packed_relation_substitutes\": [[\"subsidized/didn't subsidize\"], [\"borrowed a lot of money from/didn't borrow any money from\"]],\n",
+ " \"relation_suffix\": \"\",\n",
+ " \"packed_predicates\": [\"was rich/wasn't rich\", \"was poor/wasn't poor\"],\n",
+ " \"predicate_dichotomy\": True,\n",
+ " \"reverse_causal\": False\n",
+ " },\n",
+ " {\n",
+ " \"index\": 10,\n",
+ " \"orig_sentence\": \"The delivery truck zoomed by the school bus because [it] was going so fast/slow.\",\n",
+ " \"entities\": [\"truck\", \"bus\"],\n",
+ " \"entity_substitutes\": [[\"car\", \"ambulance\"], [\"bicycle\", \"tram\"]],\n",
+ " \"determiner\": \"the\",\n",
+ " \"packed_relations\": [\"overtook/couldn't overtake\", \"fell far behind/didn't fall far behind\"],\n",
+ " \"packed_relation_substitutes\": [[\"zoomed by/didn't pass\"], [\"was left behind/wasn't left far behind\"]],\n",
+ " \"relation_suffix\": \"\",\n",
+ " \"packed_predicates\": [\"was going fast/wasn't going fast\", \"was going slow/wasn't going slow\"],\n",
+ " \"predicate_dichotomy\": True,\n",
+ " \"reverse_causal\": False\n",
+ " },\n",
+ " {\n",
+ " \"index\": 12,\n",
+ " \"orig_sentence\": \"Frank felt vindicated/crushed when his longtime rival Bill revealed that [he] was the winner of the competition.\",\n",
+ " \"entities\": [\"John\", \"Susan\"],\n",
+ " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n",
+ " \"determiner\": \"\",\n",
+ " \"packed_relations\": [\"beat/didn't beat\", \"lost to/didn't lose to\"],\n",
+ " \"relation_suffix\": \"in the game\",\n",
+ " \"packed_predicates\": [\"was happy/wasn't happy\", \"was sad/wasn't sad\"],\n",
+ " \"packed_relation_substitutes\": None,\n",
+ " \"predicate_dichotomy\": True,\n",
+ " \"reverse_causal\": True\n",
+ " },\n",
+ " {\n",
+ " \"index\": 16,\n",
+ " \"orig_sentence\": \"The large ball crashed right through the table because [it] was made of steel/styrofoam.\",\n",
+ " \"entities\": [\"ball\", \"board\"],\n",
+ " \"substitutes\": [[\"bullet\", \"arrow\"], [\"shield\", \"disk\"]],\n",
+ " \"determiner\": \"the\",\n",
+ " \"relations\": [\"crashed right through\", \"failed to block\"],\n",
+ " \"neg_relations\": [\"didn't crash through\", \"blocked\"],\n",
+ " \"relation_suffix\": \"\",\n",
+ " \"predicates\": [\"was hard\", \"was soft\"],\n",
+ " \"neg_predicates\": [\"wasn't hard\", \"wasn't soft\"],\n",
+ " \"predicate_dichotomy\": True,\n",
+ " \"reverse_causal\": False\n",
+ " },\n",
+ "]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "causal_sentences, turning_sentences, substituted_sentences = \\\n",
+ " make_sentences(A_template, B_template, causal_templates, turning_templates, **frames[-1])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['John beat Susan in the game so [John] was happy.',\n",
+ " 'John beat Susan in the game so [Susan] was sad.',\n",
+ " \"John beat Susan in the game so [John] wasn't sad.\",\n",
+ " \"John beat Susan in the game so [Susan] wasn't happy.\",\n",
+ " 'Susan lost to John in the game so [John] was happy.',\n",
+ " 'Susan lost to John in the game so [Susan] was sad.',\n",
+ " \"Susan lost to John in the game so [John] wasn't sad.\",\n",
+ " \"Susan lost to John in the game so [Susan] wasn't happy.\",\n",
+ " \"John didn't beat Susan in the game so [John] wasn't happy.\",\n",
+ " \"John didn't beat Susan in the game so [Susan] wasn't sad.\",\n",
+ " \"John didn't beat Susan in the game so [John] was sad.\",\n",
+ " \"John didn't beat Susan in the game so [Susan] was happy.\",\n",
+ " \"Susan didn't lose to John in the game so [John] wasn't happy.\",\n",
+ " \"Susan didn't lose to John in the game so [Susan] wasn't sad.\",\n",
+ " \"Susan didn't lose to John in the game so [John] was sad.\",\n",
+ " \"Susan didn't lose to John in the game so [Susan] was happy.\",\n",
+ " \"John beat Susan in the game but [John] wasn't happy.\",\n",
+ " \"John beat Susan in the game but [Susan] wasn't sad.\",\n",
+ " 'John beat Susan in the game but [John] was sad.',\n",
+ " 'John beat Susan in the game but [Susan] was happy.',\n",
+ " \"Susan lost to John in the game but [John] wasn't happy.\",\n",
+ " \"Susan lost to John in the game but [Susan] wasn't sad.\",\n",
+ " 'Susan lost to John in the game but [John] was sad.',\n",
+ " 'Susan lost to John in the game but [Susan] was happy.',\n",
+ " \"John didn't beat Susan in the game but [John] was happy.\",\n",
+ " \"John didn't beat Susan in the game but [Susan] was sad.\",\n",
+ " \"John didn't beat Susan in the game but [John] wasn't sad.\",\n",
+ " \"John didn't beat Susan in the game but [Susan] wasn't happy.\",\n",
+ " \"Susan didn't lose to John in the game but [John] was happy.\",\n",
+ " \"Susan didn't lose to John in the game but [Susan] was sad.\",\n",
+ " \"Susan didn't lose to John in the game but [John] wasn't sad.\",\n",
+ " \"Susan didn't lose to John in the game but [Susan] wasn't happy.\"]"
+ ]
+ },
+ "execution_count": 76,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "['John beat Susan in the game so [John] was happy.',\n",
+ " 'John beat Mary in the game so [John] was happy.',\n",
+ " 'John beat Linda in the game so [John] was happy.',\n",
+ " 'David beat Susan in the game so [David] was happy.',\n",
+ " 'David beat Mary in the game so [David] was happy.',\n",
+ " 'David beat Linda in the game so [David] was happy.',\n",
+ " 'Michael beat Susan in the game so [Michael] was happy.',\n",
+ " 'Michael beat Mary in the game so [Michael] was happy.',\n",
+ " 'Michael beat Linda in the game so [Michael] was happy.',\n",
+ " 'John beat Susan in the game so [Susan] was sad.',\n",
+ " 'John beat Mary in the game so [Mary] was sad.',\n",
+ " 'John beat Linda in the game so [Linda] was sad.',\n",
+ " 'David beat Susan in the game so [Susan] was sad.',\n",
+ " 'David beat Mary in the game so [Mary] was sad.',\n",
+ " 'David beat Linda in the game so [Linda] was sad.',\n",
+ " 'Michael beat Susan in the game so [Susan] was sad.',\n",
+ " 'Michael beat Mary in the game so [Mary] was sad.',\n",
+ " 'Michael beat Linda in the game so [Linda] was sad.',\n",
+ " \"John beat Susan in the game so [John] wasn't sad.\",\n",
+ " \"John beat Mary in the game so [John] wasn't sad.\",\n",
+ " \"John beat Linda in the game so [John] wasn't sad.\",\n",
+ " \"David beat Susan in the game so [David] wasn't sad.\",\n",
+ " \"David beat Mary in the game so [David] wasn't sad.\",\n",
+ " \"David beat Linda in the game so [David] wasn't sad.\",\n",
+ " \"Michael beat Susan in the game so [Michael] wasn't sad.\",\n",
+ " \"Michael beat Mary in the game so [Michael] wasn't sad.\",\n",
+ " \"Michael beat Linda in the game so [Michael] wasn't sad.\",\n",
+ " \"John beat Susan in the game so [Susan] wasn't happy.\",\n",
+ " \"John beat Mary in the game so [Mary] wasn't happy.\",\n",
+ " \"John beat Linda in the game so [Linda] wasn't happy.\",\n",
+ " \"David beat Susan in the game so [Susan] wasn't happy.\",\n",
+ " \"David beat Mary in the game so [Mary] wasn't happy.\",\n",
+ " \"David beat Linda in the game so [Linda] wasn't happy.\",\n",
+ " \"Michael beat Susan in the game so [Susan] wasn't happy.\",\n",
+ " \"Michael beat Mary in the game so [Mary] wasn't happy.\",\n",
+ " \"Michael beat Linda in the game so [Linda] wasn't happy.\",\n",
+ " 'Susan lost to John in the game so [John] was happy.',\n",
+ " 'Mary lost to John in the game so [John] was happy.',\n",
+ " 'Linda lost to John in the game so [John] was happy.',\n",
+ " 'Susan lost to David in the game so [David] was happy.',\n",
+ " 'Mary lost to David in the game so [David] was happy.',\n",
+ " 'Linda lost to David in the game so [David] was happy.',\n",
+ " 'Susan lost to Michael in the game so [Michael] was happy.',\n",
+ " 'Mary lost to Michael in the game so [Michael] was happy.',\n",
+ " 'Linda lost to Michael in the game so [Michael] was happy.',\n",
+ " 'Susan lost to John in the game so [Susan] was sad.',\n",
+ " 'Mary lost to John in the game so [Mary] was sad.',\n",
+ " 'Linda lost to John in the game so [Linda] was sad.',\n",
+ " 'Susan lost to David in the game so [Susan] was sad.',\n",
+ " 'Mary lost to David in the game so [Mary] was sad.',\n",
+ " 'Linda lost to David in the game so [Linda] was sad.',\n",
+ " 'Susan lost to Michael in the game so [Susan] was sad.',\n",
+ " 'Mary lost to Michael in the game so [Mary] was sad.',\n",
+ " 'Linda lost to Michael in the game so [Linda] was sad.',\n",
+ " \"Susan lost to John in the game so [John] wasn't sad.\",\n",
+ " \"Mary lost to John in the game so [John] wasn't sad.\",\n",
+ " \"Linda lost to John in the game so [John] wasn't sad.\",\n",
+ " \"Susan lost to David in the game so [David] wasn't sad.\",\n",
+ " \"Mary lost to David in the game so [David] wasn't sad.\",\n",
+ " \"Linda lost to David in the game so [David] wasn't sad.\",\n",
+ " \"Susan lost to Michael in the game so [Michael] wasn't sad.\",\n",
+ " \"Mary lost to Michael in the game so [Michael] wasn't sad.\",\n",
+ " \"Linda lost to Michael in the game so [Michael] wasn't sad.\",\n",
+ " \"Susan lost to John in the game so [Susan] wasn't happy.\",\n",
+ " \"Mary lost to John in the game so [Mary] wasn't happy.\",\n",
+ " \"Linda lost to John in the game so [Linda] wasn't happy.\",\n",
+ " \"Susan lost to David in the game so [Susan] wasn't happy.\",\n",
+ " \"Mary lost to David in the game so [Mary] wasn't happy.\",\n",
+ " \"Linda lost to David in the game so [Linda] wasn't happy.\",\n",
+ " \"Susan lost to Michael in the game so [Susan] wasn't happy.\",\n",
+ " \"Mary lost to Michael in the game so [Mary] wasn't happy.\",\n",
+ " \"Linda lost to Michael in the game so [Linda] wasn't happy.\",\n",
+ " \"John didn't beat Susan in the game so [John] wasn't happy.\",\n",
+ " \"John didn't beat Mary in the game so [John] wasn't happy.\",\n",
+ " \"John didn't beat Linda in the game so [John] wasn't happy.\",\n",
+ " \"David didn't beat Susan in the game so [David] wasn't happy.\",\n",
+ " \"David didn't beat Mary in the game so [David] wasn't happy.\",\n",
+ " \"David didn't beat Linda in the game so [David] wasn't happy.\",\n",
+ " \"Michael didn't beat Susan in the game so [Michael] wasn't happy.\",\n",
+ " \"Michael didn't beat Mary in the game so [Michael] wasn't happy.\",\n",
+ " \"Michael didn't beat Linda in the game so [Michael] wasn't happy.\",\n",
+ " \"John didn't beat Susan in the game so [Susan] wasn't sad.\",\n",
+ " \"John didn't beat Mary in the game so [Mary] wasn't sad.\",\n",
+ " \"John didn't beat Linda in the game so [Linda] wasn't sad.\",\n",
+ " \"David didn't beat Susan in the game so [Susan] wasn't sad.\",\n",
+ " \"David didn't beat Mary in the game so [Mary] wasn't sad.\",\n",
+ " \"David didn't beat Linda in the game so [Linda] wasn't sad.\",\n",
+ " \"Michael didn't beat Susan in the game so [Susan] wasn't sad.\",\n",
+ " \"Michael didn't beat Mary in the game so [Mary] wasn't sad.\",\n",
+ " \"Michael didn't beat Linda in the game so [Linda] wasn't sad.\",\n",
+ " \"John didn't beat Susan in the game so [John] was sad.\",\n",
+ " \"John didn't beat Mary in the game so [John] was sad.\",\n",
+ " \"John didn't beat Linda in the game so [John] was sad.\",\n",
+ " \"David didn't beat Susan in the game so [David] was sad.\",\n",
+ " \"David didn't beat Mary in the game so [David] was sad.\",\n",
+ " \"David didn't beat Linda in the game so [David] was sad.\",\n",
+ " \"Michael didn't beat Susan in the game so [Michael] was sad.\",\n",
+ " \"Michael didn't beat Mary in the game so [Michael] was sad.\",\n",
+ " \"Michael didn't beat Linda in the game so [Michael] was sad.\",\n",
+ " \"John didn't beat Susan in the game so [Susan] was happy.\",\n",
+ " \"John didn't beat Mary in the game so [Mary] was happy.\",\n",
+ " \"John didn't beat Linda in the game so [Linda] was happy.\",\n",
+ " \"David didn't beat Susan in the game so [Susan] was happy.\",\n",
+ " \"David didn't beat Mary in the game so [Mary] was happy.\",\n",
+ " \"David didn't beat Linda in the game so [Linda] was happy.\",\n",
+ " \"Michael didn't beat Susan in the game so [Susan] was happy.\",\n",
+ " \"Michael didn't beat Mary in the game so [Mary] was happy.\",\n",
+ " \"Michael didn't beat Linda in the game so [Linda] was happy.\",\n",
+ " \"Susan didn't lose to John in the game so [John] wasn't happy.\",\n",
+ " \"Mary didn't lose to John in the game so [John] wasn't happy.\",\n",
+ " \"Linda didn't lose to John in the game so [John] wasn't happy.\",\n",
+ " \"Susan didn't lose to David in the game so [David] wasn't happy.\",\n",
+ " \"Mary didn't lose to David in the game so [David] wasn't happy.\",\n",
+ " \"Linda didn't lose to David in the game so [David] wasn't happy.\",\n",
+ " \"Susan didn't lose to Michael in the game so [Michael] wasn't happy.\",\n",
+ " \"Mary didn't lose to Michael in the game so [Michael] wasn't happy.\",\n",
+ " \"Linda didn't lose to Michael in the game so [Michael] wasn't happy.\",\n",
+ " \"Susan didn't lose to John in the game so [Susan] wasn't sad.\",\n",
+ " \"Mary didn't lose to John in the game so [Mary] wasn't sad.\",\n",
+ " \"Linda didn't lose to John in the game so [Linda] wasn't sad.\",\n",
+ " \"Susan didn't lose to David in the game so [Susan] wasn't sad.\",\n",
+ " \"Mary didn't lose to David in the game so [Mary] wasn't sad.\",\n",
+ " \"Linda didn't lose to David in the game so [Linda] wasn't sad.\",\n",
+ " \"Susan didn't lose to Michael in the game so [Susan] wasn't sad.\",\n",
+ " \"Mary didn't lose to Michael in the game so [Mary] wasn't sad.\",\n",
+ " \"Linda didn't lose to Michael in the game so [Linda] wasn't sad.\",\n",
+ " \"Susan didn't lose to John in the game so [John] was sad.\",\n",
+ " \"Mary didn't lose to John in the game so [John] was sad.\",\n",
+ " \"Linda didn't lose to John in the game so [John] was sad.\",\n",
+ " \"Susan didn't lose to David in the game so [David] was sad.\",\n",
+ " \"Mary didn't lose to David in the game so [David] was sad.\",\n",
+ " \"Linda didn't lose to David in the game so [David] was sad.\",\n",
+ " \"Susan didn't lose to Michael in the game so [Michael] was sad.\",\n",
+ " \"Mary didn't lose to Michael in the game so [Michael] was sad.\",\n",
+ " \"Linda didn't lose to Michael in the game so [Michael] was sad.\",\n",
+ " \"Susan didn't lose to John in the game so [Susan] was happy.\",\n",
+ " \"Mary didn't lose to John in the game so [Mary] was happy.\",\n",
+ " \"Linda didn't lose to John in the game so [Linda] was happy.\",\n",
+ " \"Susan didn't lose to David in the game so [Susan] was happy.\",\n",
+ " \"Mary didn't lose to David in the game so [Mary] was happy.\",\n",
+ " \"Linda didn't lose to David in the game so [Linda] was happy.\",\n",
+ " \"Susan didn't lose to Michael in the game so [Susan] was happy.\",\n",
+ " \"Mary didn't lose to Michael in the game so [Mary] was happy.\",\n",
+ " \"Linda didn't lose to Michael in the game so [Linda] was happy.\",\n",
+ " \"John beat Susan in the game but [John] wasn't happy.\",\n",
+ " \"John beat Mary in the game but [John] wasn't happy.\",\n",
+ " \"John beat Linda in the game but [John] wasn't happy.\",\n",
+ " \"David beat Susan in the game but [David] wasn't happy.\",\n",
+ " \"David beat Mary in the game but [David] wasn't happy.\",\n",
+ " \"David beat Linda in the game but [David] wasn't happy.\",\n",
+ " \"Michael beat Susan in the game but [Michael] wasn't happy.\",\n",
+ " \"Michael beat Mary in the game but [Michael] wasn't happy.\",\n",
+ " \"Michael beat Linda in the game but [Michael] wasn't happy.\",\n",
+ " \"John beat Susan in the game but [Susan] wasn't sad.\",\n",
+ " \"John beat Mary in the game but [Mary] wasn't sad.\",\n",
+ " \"John beat Linda in the game but [Linda] wasn't sad.\",\n",
+ " \"David beat Susan in the game but [Susan] wasn't sad.\",\n",
+ " \"David beat Mary in the game but [Mary] wasn't sad.\",\n",
+ " \"David beat Linda in the game but [Linda] wasn't sad.\",\n",
+ " \"Michael beat Susan in the game but [Susan] wasn't sad.\",\n",
+ " \"Michael beat Mary in the game but [Mary] wasn't sad.\",\n",
+ " \"Michael beat Linda in the game but [Linda] wasn't sad.\",\n",
+ " 'John beat Susan in the game but [John] was sad.',\n",
+ " 'John beat Mary in the game but [John] was sad.',\n",
+ " 'John beat Linda in the game but [John] was sad.',\n",
+ " 'David beat Susan in the game but [David] was sad.',\n",
+ " 'David beat Mary in the game but [David] was sad.',\n",
+ " 'David beat Linda in the game but [David] was sad.',\n",
+ " 'Michael beat Susan in the game but [Michael] was sad.',\n",
+ " 'Michael beat Mary in the game but [Michael] was sad.',\n",
+ " 'Michael beat Linda in the game but [Michael] was sad.',\n",
+ " 'John beat Susan in the game but [Susan] was happy.',\n",
+ " 'John beat Mary in the game but [Mary] was happy.',\n",
+ " 'John beat Linda in the game but [Linda] was happy.',\n",
+ " 'David beat Susan in the game but [Susan] was happy.',\n",
+ " 'David beat Mary in the game but [Mary] was happy.',\n",
+ " 'David beat Linda in the game but [Linda] was happy.',\n",
+ " 'Michael beat Susan in the game but [Susan] was happy.',\n",
+ " 'Michael beat Mary in the game but [Mary] was happy.',\n",
+ " 'Michael beat Linda in the game but [Linda] was happy.',\n",
+ " \"Susan lost to John in the game but [John] wasn't happy.\",\n",
+ " \"Mary lost to John in the game but [John] wasn't happy.\",\n",
+ " \"Linda lost to John in the game but [John] wasn't happy.\",\n",
+ " \"Susan lost to David in the game but [David] wasn't happy.\",\n",
+ " \"Mary lost to David in the game but [David] wasn't happy.\",\n",
+ " \"Linda lost to David in the game but [David] wasn't happy.\",\n",
+ " \"Susan lost to Michael in the game but [Michael] wasn't happy.\",\n",
+ " \"Mary lost to Michael in the game but [Michael] wasn't happy.\",\n",
+ " \"Linda lost to Michael in the game but [Michael] wasn't happy.\",\n",
+ " \"Susan lost to John in the game but [Susan] wasn't sad.\",\n",
+ " \"Mary lost to John in the game but [Mary] wasn't sad.\",\n",
+ " \"Linda lost to John in the game but [Linda] wasn't sad.\",\n",
+ " \"Susan lost to David in the game but [Susan] wasn't sad.\",\n",
+ " \"Mary lost to David in the game but [Mary] wasn't sad.\",\n",
+ " \"Linda lost to David in the game but [Linda] wasn't sad.\",\n",
+ " \"Susan lost to Michael in the game but [Susan] wasn't sad.\",\n",
+ " \"Mary lost to Michael in the game but [Mary] wasn't sad.\",\n",
+ " \"Linda lost to Michael in the game but [Linda] wasn't sad.\",\n",
+ " 'Susan lost to John in the game but [John] was sad.',\n",
+ " 'Mary lost to John in the game but [John] was sad.',\n",
+ " 'Linda lost to John in the game but [John] was sad.',\n",
+ " 'Susan lost to David in the game but [David] was sad.',\n",
+ " 'Mary lost to David in the game but [David] was sad.',\n",
+ " 'Linda lost to David in the game but [David] was sad.',\n",
+ " 'Susan lost to Michael in the game but [Michael] was sad.',\n",
+ " 'Mary lost to Michael in the game but [Michael] was sad.',\n",
+ " 'Linda lost to Michael in the game but [Michael] was sad.',\n",
+ " 'Susan lost to John in the game but [Susan] was happy.',\n",
+ " 'Mary lost to John in the game but [Mary] was happy.',\n",
+ " 'Linda lost to John in the game but [Linda] was happy.',\n",
+ " 'Susan lost to David in the game but [Susan] was happy.',\n",
+ " 'Mary lost to David in the game but [Mary] was happy.',\n",
+ " 'Linda lost to David in the game but [Linda] was happy.',\n",
+ " 'Susan lost to Michael in the game but [Susan] was happy.',\n",
+ " 'Mary lost to Michael in the game but [Mary] was happy.',\n",
+ " 'Linda lost to Michael in the game but [Linda] was happy.',\n",
+ " \"John didn't beat Susan in the game but [John] was happy.\",\n",
+ " \"John didn't beat Mary in the game but [John] was happy.\",\n",
+ " \"John didn't beat Linda in the game but [John] was happy.\",\n",
+ " \"David didn't beat Susan in the game but [David] was happy.\",\n",
+ " \"David didn't beat Mary in the game but [David] was happy.\",\n",
+ " \"David didn't beat Linda in the game but [David] was happy.\",\n",
+ " \"Michael didn't beat Susan in the game but [Michael] was happy.\",\n",
+ " \"Michael didn't beat Mary in the game but [Michael] was happy.\",\n",
+ " \"Michael didn't beat Linda in the game but [Michael] was happy.\",\n",
+ " \"John didn't beat Susan in the game but [Susan] was sad.\",\n",
+ " \"John didn't beat Mary in the game but [Mary] was sad.\",\n",
+ " \"John didn't beat Linda in the game but [Linda] was sad.\",\n",
+ " \"David didn't beat Susan in the game but [Susan] was sad.\",\n",
+ " \"David didn't beat Mary in the game but [Mary] was sad.\",\n",
+ " \"David didn't beat Linda in the game but [Linda] was sad.\",\n",
+ " \"Michael didn't beat Susan in the game but [Susan] was sad.\",\n",
+ " \"Michael didn't beat Mary in the game but [Mary] was sad.\",\n",
+ " \"Michael didn't beat Linda in the game but [Linda] was sad.\",\n",
+ " \"John didn't beat Susan in the game but [John] wasn't sad.\",\n",
+ " \"John didn't beat Mary in the game but [John] wasn't sad.\",\n",
+ " \"John didn't beat Linda in the game but [John] wasn't sad.\",\n",
+ " \"David didn't beat Susan in the game but [David] wasn't sad.\",\n",
+ " \"David didn't beat Mary in the game but [David] wasn't sad.\",\n",
+ " \"David didn't beat Linda in the game but [David] wasn't sad.\",\n",
+ " \"Michael didn't beat Susan in the game but [Michael] wasn't sad.\",\n",
+ " \"Michael didn't beat Mary in the game but [Michael] wasn't sad.\",\n",
+ " \"Michael didn't beat Linda in the game but [Michael] wasn't sad.\",\n",
+ " \"John didn't beat Susan in the game but [Susan] wasn't happy.\",\n",
+ " \"John didn't beat Mary in the game but [Mary] wasn't happy.\",\n",
+ " \"John didn't beat Linda in the game but [Linda] wasn't happy.\",\n",
+ " \"David didn't beat Susan in the game but [Susan] wasn't happy.\",\n",
+ " \"David didn't beat Mary in the game but [Mary] wasn't happy.\",\n",
+ " \"David didn't beat Linda in the game but [Linda] wasn't happy.\",\n",
+ " \"Michael didn't beat Susan in the game but [Susan] wasn't happy.\",\n",
+ " \"Michael didn't beat Mary in the game but [Mary] wasn't happy.\",\n",
+ " \"Michael didn't beat Linda in the game but [Linda] wasn't happy.\",\n",
+ " \"Susan didn't lose to John in the game but [John] was happy.\",\n",
+ " \"Mary didn't lose to John in the game but [John] was happy.\",\n",
+ " \"Linda didn't lose to John in the game but [John] was happy.\",\n",
+ " \"Susan didn't lose to David in the game but [David] was happy.\",\n",
+ " \"Mary didn't lose to David in the game but [David] was happy.\",\n",
+ " \"Linda didn't lose to David in the game but [David] was happy.\",\n",
+ " \"Susan didn't lose to Michael in the game but [Michael] was happy.\",\n",
+ " \"Mary didn't lose to Michael in the game but [Michael] was happy.\",\n",
+ " \"Linda didn't lose to Michael in the game but [Michael] was happy.\",\n",
+ " \"Susan didn't lose to John in the game but [Susan] was sad.\",\n",
+ " \"Mary didn't lose to John in the game but [Mary] was sad.\",\n",
+ " \"Linda didn't lose to John in the game but [Linda] was sad.\",\n",
+ " \"Susan didn't lose to David in the game but [Susan] was sad.\",\n",
+ " \"Mary didn't lose to David in the game but [Mary] was sad.\",\n",
+ " \"Linda didn't lose to David in the game but [Linda] was sad.\",\n",
+ " \"Susan didn't lose to Michael in the game but [Susan] was sad.\",\n",
+ " \"Mary didn't lose to Michael in the game but [Mary] was sad.\",\n",
+ " \"Linda didn't lose to Michael in the game but [Linda] was sad.\",\n",
+ " \"Susan didn't lose to John in the game but [John] wasn't sad.\",\n",
+ " \"Mary didn't lose to John in the game but [John] wasn't sad.\",\n",
+ " \"Linda didn't lose to John in the game but [John] wasn't sad.\",\n",
+ " \"Susan didn't lose to David in the game but [David] wasn't sad.\",\n",
+ " \"Mary didn't lose to David in the game but [David] wasn't sad.\",\n",
+ " \"Linda didn't lose to David in the game but [David] wasn't sad.\",\n",
+ " \"Susan didn't lose to Michael in the game but [Michael] wasn't sad.\",\n",
+ " \"Mary didn't lose to Michael in the game but [Michael] wasn't sad.\",\n",
+ " \"Linda didn't lose to Michael in the game but [Michael] wasn't sad.\",\n",
+ " \"Susan didn't lose to John in the game but [Susan] wasn't happy.\",\n",
+ " \"Mary didn't lose to John in the game but [Mary] wasn't happy.\",\n",
+ " \"Linda didn't lose to John in the game but [Linda] wasn't happy.\",\n",
+ " \"Susan didn't lose to David in the game but [Susan] wasn't happy.\",\n",
+ " \"Mary didn't lose to David in the game but [Mary] wasn't happy.\",\n",
+ " \"Linda didn't lose to David in the game but [Linda] wasn't happy.\",\n",
+ " \"Susan didn't lose to Michael in the game but [Susan] wasn't happy.\",\n",
+ " \"Mary didn't lose to Michael in the game but [Mary] wasn't happy.\",\n",
+ " \"Linda didn't lose to Michael in the game but [Linda] wasn't happy.\"]"
+ ]
+ },
+ "execution_count": 76,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "causal_sentences\n",
+ "turning_sentences\n",
+ "# substituted_sentences"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "examples = [(2,\n",
+ " \"The trophy doesn't fit into the brown suitcase because [it] is too large.\",\n",
+ " 'fit into:large/small'),\n",
+ " (4,\n",
+ " 'Joan made sure to thank Susan for all the help [she] had recieved.',\n",
+ " 'thank:receive/give'),\n",
+ " (10,\n",
+ " 'The delivery truck zoomed by the school bus because [it] was going so fast.',\n",
+ " 'zoom by:fast/slow'),\n",
+ " (12,\n",
+ " 'Frank felt vindicated when his longtime rival Bill revealed that [he] was the winner of the competition.',\n",
+ " 'vindicated/crushed:be the winner'),\n",
+ " (16,\n",
+ " 'The large ball crashed right through the table because [it] was made of steel.',\n",
+ " 'crash through:[hard]/[soft]'),\n",
+ " (18,\n",
+ " \"John couldn't see the stage with Billy in front of him because [he] is so short.\",\n",
+ " '[block]:short/tall'),\n",
+ " (20,\n",
+ " 'Tom threw his schoolbag down to Ray after [he] reached the top of the stairs.',\n",
+ " 'down to:top/bottom'),\n",
+ " (22,\n",
+ " 'Although they ran at about the same speed, Sue beat Sally because [she] had such a good start.',\n",
+ " 'beat:good/bad'),\n",
+ " (26,\n",
+ " \"Sam's drawing was hung just above Tina's and [it] did look much better with another one below it.\",\n",
+ " 'above/below'),\n",
+ " (28,\n",
+ " 'Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.',\n",
+ " 'better/worse:study hard'),\n",
+ " (30,\n",
+ " 'The firemen arrived after the police because [they] were coming from so far away.',\n",
+ " 'after/before:far away'),\n",
+ " (32,\n",
+ " \"Frank was upset with Tom because the toaster [he] had bought from him didn't work.\",\n",
+ " 'be upset with:buy from not work/sell not work'),\n",
+ " (36,\n",
+ " 'The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.',\n",
+ " 'above/below:moved first'),\n",
+ " (38,\n",
+ " 'Pete envies Martin although [he] is very successful.',\n",
+ " 'although/because'),\n",
+ " (42,\n",
+ " 'I poured water from the bottle into the cup until [it] was empty.',\n",
+ " 'pour:empty/full'),\n",
+ " (46,\n",
+ " \"Sid explained his theory to Mark but [he] couldn't convince him.\",\n",
+ " 'explain:convince/understand'),\n",
+ " (48,\n",
+ " \"Susan knew that Ann's son had been in a car accident, so [she] told her about it.\",\n",
+ " '?know tell:so/because'),\n",
+ " (50,\n",
+ " \"Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.\",\n",
+ " 'beat:younger/older'),\n",
+ " (64,\n",
+ " 'In the middle of the outdoor concert, the rain started falling, but [it] continued until 10.',\n",
+ " 'but/and'),\n",
+ " (68,\n",
+ " 'Ann asked Mary what time the library closes, because [she] had forgotten.',\n",
+ " 'because/but'),\n",
+ " (84,\n",
+ " 'If the con artist has succeeded in fooling Sam, [he] would have gotten a lot of money.',\n",
+ " 'fool:get/lose'),\n",
+ " (92,\n",
+ " 'Alice tried frantically to stop her daughter from chatting at the party, leaving us to wonder why [she] was behaving so strangely.',\n",
+ " '?stop normal/stop abnormal:strange'),\n",
+ " (98,\n",
+ " \"I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] in.\",\n",
+ " 'put ... into filled with ... :get in/get out'),\n",
+ " (100,\n",
+ " 'The dog chased the cat, which ran up a tree. [It] waited at the bottom.',\n",
+ " 'up:at the bottom/at the top'),\n",
+ " (106,\n",
+ " 'John was doing research in the library when he heard a man humming and whistling. [He] was very annoyed.',\n",
+ " 'hear ... humming and whistling:annoyed/annoying'),\n",
+ " (108,\n",
+ " 'John was jogging through the park when he saw a man juggling watermelons. [He] was very impressed.',\n",
+ " 'see ... juggling watermelons:impressed/impressive'),\n",
+ " (132,\n",
+ " 'Jane knocked on the door, and Susan answered it. [She] invited her to come out.',\n",
+ " 'visit:invite come out/invite come in'),\n",
+ " (150,\n",
+ " 'Jackson was greatly influenced by Arnold, though [he] lived two centuries later.',\n",
+ " 'influence:later/earlier'),\n",
+ " (160,\n",
+ " 'The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was too hard to pronounce.',\n",
+ " 'change:hard/easy'),\n",
+ " (166,\n",
+ " 'Fred is the only man still alive who remembers my great-grandfather. [He] is a remarkable man.',\n",
+ " 'alive:is/was'),\n",
+ " (170,\n",
+ " \"In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were defeated within weeks.\",\n",
+ " 'better equipped and large:defeated/victorious'),\n",
+ " (186,\n",
+ " 'When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the minority.',\n",
+ " 'be full of:minority/majority'),\n",
+ " (188,\n",
+ " 'Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make more of [them] .',\n",
+ " 'like over:more/fewer'),\n",
+ " (190,\n",
+ " 'We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply not enough of [them] .',\n",
+ " 'place on all:not enough/too many'),\n",
+ " (196,\n",
+ " \"Steve follows Fred's example in everything. [He] admires him hugely.\",\n",
+ " 'follow:admire/influence'),\n",
+ " (198,\n",
+ " \"The table won't fit through the doorway because [it] is too wide.\",\n",
+ " 'fit through:wide/narrow'),\n",
+ " (200,\n",
+ " 'Grace was happy to trade me her sweater for my jacket. She thinks [it] looks dowdy on her.',\n",
+ " 'trade:dowdy/great'),\n",
+ " (202,\n",
+ " 'John hired Bill to take care of [him] .',\n",
+ " 'hire/hire oneself to:take care of'),\n",
+ " (204,\n",
+ " 'John promised Bill to leave, so an hour later [he] left.',\n",
+ " 'promise/order'),\n",
+ " (210,\n",
+ " \"Jane knocked on Susan's door but [she] did not get an answer.\",\n",
+ " 'knock:get an answer/answer'),\n",
+ " (212,\n",
+ " 'Joe paid the detective after [he] received the final report on the case.',\n",
+ " 'pay:receive/deliver'),\n",
+ " (226,\n",
+ " 'Bill passed the half-empty plate to John because [he] was full.',\n",
+ " 'pass the plate:full/hungry'),\n",
+ " (252,\n",
+ " 'George got free tickets to the play, but he gave them to Eric, even though [he] was particularly eager to see it.',\n",
+ " 'even though/because/not'),\n",
+ " (255,\n",
+ " \"Jane gave Joan candy because [she] wasn't hungry.\",\n",
+ " 'give:not hungry/hungry'),\n",
+ " (259,\n",
+ " 'James asked Robert for a favor but [he] was refused.',\n",
+ " 'ask for a favor:refuse/be refused`'),\n",
+ " (261,\n",
+ " 'Kirilov ceded the presidency to Shatov because [he] was less popular.',\n",
+ " 'cede:less popular/more popular'),\n",
+ " (263,\n",
+ " 'Emma did not pass the ball to Janie although [she] saw that she was open.',\n",
+ " 'not pass although:see open/open')]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "47"
+ ]
+ },
+ "execution_count": 77,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(examples)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Untitled_likunlin-Copy1.ipynb b/Untitled_likunlin-Copy1.ipynb
new file mode 100644
index 00000000000000..a48277551d3723
--- /dev/null
+++ b/Untitled_likunlin-Copy1.ipynb
@@ -0,0 +1,827 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2\n",
+ "\n",
+ "from IPython.core.interactiveshell import InteractiveShell\n",
+ "InteractiveShell.ast_node_interactivity = 'all'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "/home/xd/projects/pytorch-pretrained-BERT/pytorch_pretrained_bert/__init__.py\n"
+ ]
+ }
+ ],
+ "source": [
+ "import os\n",
+ "import json\n",
+ "\n",
+ "import numpy as np\n",
+ "import math\n",
+ "import matplotlib\n",
+ "import matplotlib.pyplot as plt\n",
+ "from pylab import rcParams\n",
+ "\n",
+ "import torch\n",
+ "import torch.nn.functional as F\n",
+ "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig\n",
+ "from examples.extract_features import *\n",
+ "\n",
+ "import pytorch_pretrained_bert\n",
+ "print(pytorch_pretrained_bert.__file__)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "01/03/2019 16:37:32 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at /home/xd/.pytorch_pretrained_bert/26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084\n",
+ "01/03/2019 16:37:32 - INFO - pytorch_pretrained_bert.modeling - loading archive file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/\n",
+ "01/03/2019 16:37:32 - INFO - pytorch_pretrained_bert.modeling - Model config {\n",
+ " \"attention_probs_dropout_prob\": 0.1,\n",
+ " \"hidden_act\": \"gelu\",\n",
+ " \"hidden_dropout_prob\": 0.1,\n",
+ " \"hidden_size\": 768,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"intermediate_size\": 3072,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"num_attention_heads\": 12,\n",
+ " \"num_hidden_layers\": 12,\n",
+ " \"type_vocab_size\": 2,\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "class Args:\n",
+ " def __init__(self):\n",
+ " pass\n",
+ " \n",
+ "args = Args()\n",
+ "args.no_cuda = False\n",
+ "\n",
+ "CONFIG_NAME = 'bert_config.json'\n",
+ "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n",
+ "config_file = os.path.join(BERT_DIR, CONFIG_NAME)\n",
+ "config = BertConfig.from_json_file(config_file)\n",
+ "\n",
+ "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
+ "model = BertForPreTraining.from_pretrained(BERT_DIR)\n",
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() and not args.no_cuda else \"cpu\")\n",
+ "_ = model.to(device)\n",
+ "_ = model.eval()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import re\n",
+ "def convert_text_to_examples(text):\n",
+ " examples = []\n",
+ " unique_id = 0\n",
+ " if True:\n",
+ " for line in text:\n",
+ " line = line.strip()\n",
+ " text_a = None\n",
+ " text_b = None\n",
+ " m = re.match(r\"^(.*) \\|\\|\\| (.*)$\", line)\n",
+ " if m is None:\n",
+ " text_a = line\n",
+ " else:\n",
+ " text_a = m.group(1)\n",
+ " text_b = m.group(2)\n",
+ " examples.append(\n",
+ " InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))\n",
+ " unique_id += 1\n",
+ " return examples\n",
+ "\n",
+ "def convert_examples_to_features(examples, tokenizer, append_special_tokens=True, replace_mask=True, print_info=False):\n",
+ " features = []\n",
+ " for (ex_index, example) in enumerate(examples):\n",
+ " tokens_a = tokenizer.tokenize(example.text_a)\n",
+ " tokens_b = None\n",
+ " if example.text_b:\n",
+ " tokens_b = tokenizer.tokenize(example.text_b)\n",
+ "\n",
+ " tokens = []\n",
+ " input_type_ids = []\n",
+ " if append_special_tokens:\n",
+ " tokens.append(\"[CLS]\")\n",
+ " input_type_ids.append(0)\n",
+ " for token in tokens_a:\n",
+ " if replace_mask and token == '_': # XD\n",
+ " token = \"[MASK]\"\n",
+ " tokens.append(token)\n",
+ " input_type_ids.append(0)\n",
+ " if append_special_tokens:\n",
+ " tokens.append(\"[SEP]\")\n",
+ " input_type_ids.append(0)\n",
+ "\n",
+ " if tokens_b:\n",
+ " for token in tokens_b:\n",
+ " if replace_mask and token == '_': # XD\n",
+ " token = \"[MASK]\"\n",
+ " tokens.append(token)\n",
+ " input_type_ids.append(1)\n",
+ " if append_special_tokens:\n",
+ " tokens.append(\"[SEP]\")\n",
+ " input_type_ids.append(1)\n",
+ "\n",
+ " input_ids = tokenizer.convert_tokens_to_ids(tokens)\n",
+ " input_mask = [1] * len(input_ids)\n",
+ "\n",
+ " if ex_index < 5:\n",
+ "# logger.info(\"*** Example ***\")\n",
+ "# logger.info(\"unique_id: %s\" % (example.unique_id))\n",
+ " logger.info(\"tokens: %s\" % \" \".join([str(x) for x in tokens]))\n",
+ "# logger.info(\"input_ids: %s\" % \" \".join([str(x) for x in input_ids]))\n",
+ "# logger.info(\"input_mask: %s\" % \" \".join([str(x) for x in input_mask]))\n",
+ "# logger.info(\n",
+ "# \"input_type_ids: %s\" % \" \".join([str(x) for x in input_type_ids]))\n",
+ " \n",
+ " features.append(\n",
+ " InputFeatures(\n",
+ " unique_id=example.unique_id,\n",
+ " tokens=tokens,\n",
+ " input_ids=input_ids,\n",
+ " input_mask=input_mask,\n",
+ " input_type_ids=input_type_ids))\n",
+ " return features\n",
+ "\n",
+ "def copy_and_mask_feature(feature, masked_tokens=None):\n",
+ " import copy\n",
+ " tokens = feature.tokens\n",
+ " masked_positions = [tokens.index(t) for t in masked_tokens if t in tokens] \\\n",
+ " if masked_tokens is not None else range(len(tokens))\n",
+ " assert len(masked_positions) > 0\n",
+ " masked_feature_copies = []\n",
+ " for masked_pos in masked_positions:\n",
+ " feature_copy = copy.deepcopy(feature)\n",
+ " feature_copy.input_ids[masked_pos] = tokenizer.vocab[\"[MASK]\"]\n",
+ " masked_feature_copies.append(feature_copy)\n",
+ " return masked_feature_copies, masked_positions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def show_lm_probs(tokens, input_ids, probs, topk=5, firstk=20):\n",
+ " def print_pair(token, prob, end_str='', hit_mark=' '):\n",
+ " if i < firstk:\n",
+ " # token = token.replace('', '').replace('\\n', '/n')\n",
+ " print('{}{: >3} | {: <12}'.format(hit_mark, int(round(prob*100)), token), end=end_str)\n",
+ " \n",
+ " ret = None\n",
+ " for i in range(len(tokens)):\n",
+ " ind_ = input_ids[i].item() if input_ids is not None else tokenizer.vocab[tokens[i]]\n",
+ " prob_ = probs[i][ind_].item()\n",
+ " print_pair(tokens[i], prob_, end_str='\\t')\n",
+ " values, indices = probs[i].topk(topk)\n",
+ " top_pairs = []\n",
+ " for j in range(topk):\n",
+ " ind, prob = indices[j].item(), values[j].item()\n",
+ " hit_mark = '*' if ind == ind_ else ' '\n",
+ " token = tokenizer.ids_to_tokens[ind]\n",
+ " print_pair(token, prob, hit_mark=hit_mark, end_str='' if j < topk - 1 else '\\n')\n",
+ " top_pairs.append((token, prob))\n",
+ " if tokens[i] == \"[MASK]\":\n",
+ " ret = top_pairs\n",
+ " return ret"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import colored\n",
+ "from colored import stylize\n",
+ "\n",
+ "def show_abnormals(tokens, probs, show_suggestions=False):\n",
+ " def gap2color(gap):\n",
+ " if gap <= 5:\n",
+ " return 'yellow_1'\n",
+ " elif gap <= 10:\n",
+ " return 'orange_1'\n",
+ " else:\n",
+ " return 'red_1'\n",
+ " \n",
+ " def print_token(token, suggestion, gap):\n",
+ " if gap == 0:\n",
+ " print(stylize(token + ' ', colored.fg('white') + colored.bg('black')), end='')\n",
+ " else:\n",
+ " print(stylize(token, colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n",
+ " if show_suggestions and gap > 5:\n",
+ " print(stylize('/' + suggestion + ' ', colored.fg('green' if gap > 10 else 'cyan') + colored.bg('black')), end='')\n",
+ " else:\n",
+ " print(stylize(' ', colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n",
+ " # print('/' + suggestion, end=' ')\n",
+ " # print('%.2f' % gap, end=' ')\n",
+ " \n",
+ " avg_gap = 0.\n",
+ " for i in range(1, len(tokens) - 1): # skip first [CLS] and last [SEP]\n",
+ " ind_ = tokenizer.vocab[tokens[i]]\n",
+ " prob_ = probs[i][ind_].item()\n",
+ " top_prob = probs[i].max().item()\n",
+ " top_ind = probs[i].argmax().item()\n",
+ " gap = math.log(top_prob) - math.log(prob_)\n",
+ " suggestion = tokenizer.ids_to_tokens[top_ind]\n",
+ " print_token(tokens[i], suggestion, gap)\n",
+ " avg_gap += gap\n",
+ " avg_gap /= (len(tokens) - 2)\n",
+ " print()\n",
+ " print(avg_gap)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "analyzed_cache = {}\n",
+ "\n",
+ "def analyze_text(text, masked_tokens=None, show_suggestions=False, show_firstk_probs=20):\n",
+ " if text[0] in analyzed_cache:\n",
+ " features, mlm_probs = analyzed_cache[text[0]]\n",
+ " given_mask = \"[MASK]\" in features[0].tokens\n",
+ " tokens = features[0].tokens\n",
+ " else:\n",
+ " examples = convert_text_to_examples(text)\n",
+ " features = convert_examples_to_features(examples, tokenizer, print_info=False)\n",
+ " given_mask = \"[MASK]\" in features[0].tokens\n",
+ " if not given_mask or masked_tokens is not None:\n",
+ " assert len(features) == 1\n",
+ " features, masked_positions = copy_and_mask_feature(features[0], masked_tokens=masked_tokens)\n",
+ "\n",
+ " input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n",
+ " input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long)\n",
+ " input_ids = input_ids.to(device)\n",
+ " input_type_ids = input_type_ids.to(device)\n",
+ "\n",
+ " mlm_logits, _ = model(input_ids, input_type_ids)\n",
+ " mlm_probs = F.softmax(mlm_logits, dim=-1)\n",
+ "\n",
+ " tokens = features[0].tokens\n",
+ " if not given_mask or masked_tokens is not None:\n",
+ " bsz, seq_len, vocab_size = mlm_probs.size()\n",
+ " assert bsz == len(masked_positions)\n",
+ " # reduced_mlm_probs = torch.Tensor(1, seq_len, vocab_size)\n",
+ " # for i in range(seq_len):\n",
+ " # reduced_mlm_probs[0, i] = mlm_probs[i, i]\n",
+ " reduced_mlm_probs = torch.Tensor(1, len(masked_positions), vocab_size)\n",
+ " for i, pos in enumerate(masked_positions):\n",
+ " reduced_mlm_probs[0, i] = mlm_probs[i, pos]\n",
+ " mlm_probs = reduced_mlm_probs\n",
+ " tokens = [tokens[i] for i in masked_positions]\n",
+ " \n",
+ " analyzed_cache[text[0]] = (features, mlm_probs)\n",
+ " \n",
+ " top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=show_firstk_probs)\n",
+ " if not given_mask:\n",
+ " show_abnormals(tokens, mlm_probs[0], show_suggestions=show_suggestions)\n",
+ " return top_pairs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "01/03/2019 17:13:21 - INFO - examples.extract_features - tokens: [CLS] what ingredients account for the marvelous function of a dream ? [SEP]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " 0 | [CLS] \t 3 | . 1 | the 1 | , 1 | ) 1 | \" \n",
+ " 35 | what \t* 35 | what 25 | do 9 | can 7 | could 5 | would \n",
+ " 0 | ingredients \t 51 | could 23 | would 13 | can 8 | might 2 | may \n",
+ " 0 | account \t 32 | were 26 | are 7 | remained 6 | existed 6 | exist \n",
+ " 100 | for \t*100 | for 0 | to 0 | of 0 | up 0 | all \n",
+ " 98 | the \t* 98 | the 2 | this 0 | a 0 | that 0 | such \n",
+ " 0 | marvelous \t 5 | biological 5 | normal 4 | cognitive 2 | specific 2 | physiological\n",
+ " 0 | function \t 21 | ##ness 8 | beauty 5 | quality 5 | nature 4 | power \n",
+ " 91 | of \t* 91 | of 8 | in 0 | within 0 | as 0 | during \n",
+ " 14 | a \t 55 | the 16 | this * 14 | a 4 | my 3 | his \n",
+ " 0 | dream \t 3 | heart 3 | plant 3 | soul 2 | brain 2 | body \n",
+ " 98 | ? \t* 98 | ? 2 | . 0 | ; 0 | ! 0 | | \n",
+ " 0 | [SEP] \t 13 | what 12 | \" 7 | they 4 | and 4 | ' \n",
+ "\u001b[38;5;15m\u001b[48;5;0mwhat \u001b[0m\u001b[38;5;196m\u001b[48;5;0mingredients\u001b[0m\u001b[38;5;196m\u001b[48;5;0m \u001b[0m\u001b[38;5;226m\u001b[48;5;0maccount\u001b[0m\u001b[38;5;226m\u001b[48;5;0m \u001b[0m\u001b[38;5;15m\u001b[48;5;0mfor \u001b[0m\u001b[38;5;15m\u001b[48;5;0mthe \u001b[0m\u001b[38;5;214m\u001b[48;5;0mmarvelous\u001b[0m\u001b[38;5;214m\u001b[48;5;0m \u001b[0m\u001b[38;5;214m\u001b[48;5;0mfunction\u001b[0m\u001b[38;5;214m\u001b[48;5;0m \u001b[0m\u001b[38;5;15m\u001b[48;5;0mof \u001b[0m\u001b[38;5;226m\u001b[48;5;0ma\u001b[0m\u001b[38;5;226m\u001b[48;5;0m \u001b[0m\u001b[38;5;226m\u001b[48;5;0mdream\u001b[0m\u001b[38;5;226m\u001b[48;5;0m \u001b[0m\u001b[38;5;15m\u001b[48;5;0m? \u001b[0m\n",
+ "3.421217077676471\n"
+ ]
+ }
+ ],
+ "source": [
+ "# text = [\"Who was Jim Henson? Jim Henson _ a puppeteer.\"]\n",
+ "text = [\"What ingredients account for the marvelous function of a dream?\"]\n",
+ "# text = [\"Last week I went to the theatre. I had a very good seat. The play was very interesting. But I didn't enjoy it. A young man and a young woman were sitting behind me. They were talking loudly. I got very angry. I couldn't hear a word. I turned round. I looked at the man angrily. They didn't pay any attention.In the end, I couldn't bear it. I turned round again. 'I can't hear a word!' I said angrily. 'It's none of your business,' the young man said rudely. 'This is a private conversation!'\"]\n",
+ "# text = [\"After the outbreak of the disease, the Ministry of Agriculture and rural areas immediately sent a supervision team to the local. Local Emergency Response Mechanism has been activated in accordance with the requirements, to take blockade, culling, harmless treatment, disinfection and other treatment measures to all disease and culling of pigs for harmless treatment. At the same time, all live pigs and their products are prohibited from transferring out of the blockade area, and live pigs are not allowed to be transported into the blockade area. At present, all the above measures have been implemented.\"]\n",
+ "# text = [\"Early critics of Emily Dickinson's poetry mistook for simplemindedness the surface of artlessness that in fact she constructed with such innocence.\"]\n",
+ "analyze_text(text, show_firstk_probs=100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "01/03/2019 17:10:45 - INFO - examples.extract_features - tokens: [CLS] the trophy doesn ' t fit into the brown suitcase because the [MASK] is too large . [SEP]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " 0 | [CLS] \t 2 | . 1 | ) 1 | the 1 | , 1 | \" \n",
+ " 100 | the \t*100 | the 0 | his 0 | a 0 | its 0 | her \n",
+ " 97 | trophy \t* 97 | trophy 0 | cup 0 | prize 0 | trophies 0 | competition \n",
+ " 100 | doesn \t*100 | doesn 0 | can 0 | does 0 | won 0 | didn \n",
+ " 100 | ' \t*100 | ' 0 | t 0 | \" 0 | = 0 | ` \n",
+ " 100 | t \t*100 | t 0 | not 0 | s 0 | n 0 | to \n",
+ " 100 | fit \t*100 | fit 0 | fits 0 | sit 0 | get 0 | fitting \n",
+ " 100 | into \t*100 | into 0 | in 0 | inside 0 | onto 0 | within \n",
+ " 100 | the \t*100 | the 0 | her 0 | his 0 | a 0 | my \n",
+ " 100 | brown \t*100 | brown 0 | black 0 | green 0 | blue 0 | plastic \n",
+ " 95 | suitcase \t* 95 | suitcase 3 | bag 1 | luggage 0 | backpack 0 | trunk \n",
+ " 100 | because \t*100 | because 0 | as 0 | since 0 | due 0 | . \n",
+ " 100 | the \t*100 | the 0 | its 0 | his 0 | it 0 | her \n",
+ " 0 | [MASK] \t 21 | suitcase 19 | bag 6 | box 2 | luggage 2 | case \n",
+ " 99 | is \t* 99 | is 1 | was 0 | being 0 | has 0 | it \n",
+ " 100 | too \t*100 | too 0 | very 0 | extra 0 | overly 0 | more \n",
+ " 87 | large \t* 87 | large 11 | big 1 | small 1 | huge 0 | larger \n",
+ " 100 | . \t*100 | . 0 | ; 0 | , 0 | ! 0 | ' \n",
+ " 0 | [SEP] \t 35 | . 8 | ) 5 | , 4 | ( 3 | it \n"
+ ]
+ }
+ ],
+ "source": [
+ "text = [\"The trophy doesn't fit into the brown suitcase because the _ is too large.\"]\n",
+ "# text = [\"Mary beat John in the match because _ was very strong.\"]\n",
+ "features = convert_examples_to_features(convert_text_to_examples(text), tokenizer, print_info=False)\n",
+ "input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long).to(device)\n",
+ "input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long).to(device)\n",
+ "mlm_logits, _ = model(input_ids, input_type_ids)\n",
+ "mlm_probs = F.softmax(mlm_logits, dim=-1)\n",
+ "tokens = features[0].tokens\n",
+ "top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.',\n",
+ " 'Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.']"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "text = [\n",
+ " # same / different\n",
+ " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.\",\n",
+ " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.\",\n",
+ " \"Tom has yellow hair. Mary has black hair. John has black hair. Mary and _ have the same hair color.\",\n",
+ " # because / although\n",
+ " \"John is taller/shorter than Mary because/although _ is older/younger.\",\n",
+ " \"The red ball is heavier/lighter than the blue ball because/although the _ ball is bigger/smaller.\",\n",
+ " \"Charles did a lot better/worse than his good friend Nancy on the test because/although _ had/hadn't studied so hard.\",\n",
+ " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n",
+ " \"John thought that he would arrive earlier than Susan, but/and indeed _ was the first to arrive.\",\n",
+ " # reverse\n",
+ " \"John came then Mary came. They left in reverse order. _ left then _ left.\",\n",
+ " \"John came after Mary. They left in reverse order. _ left after _ .\",\n",
+ " \"John came first, then came Mary. They left in reverse order: _ left first, then left _ .\",\n",
+ " # compare\n",
+ " \"Though John is tall, Tom is taller than John. So John is _ than Tom.\",\n",
+ " \"Tom is taller than John. So _ is shorter than _.\",\n",
+ " # WSC-style: before /after\n",
+ " \"Mary came before/after John. _ was late/early .\",\n",
+ " # yes / no\n",
+ " \"Was Tom taller than Susan? Yes, _ was taller.\",\n",
+ " # right / wrong, epistemic modality\n",
+ " \"John said the rain was about to stop. Mary said the rain would continue. Later the rain stopped. _ was wrong.\",\n",
+ " \n",
+ " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n",
+ " \"John thanked Mary because _ had given help to _ . \",\n",
+ " \"John felt vindicated/crushed when his longtime rival Mary revealed that _ was the winner of the competition.\",\n",
+ " \"John couldn't see the stage with Mary in front of him because _ is so short/tall.\",\n",
+ " \"Although they ran at about the same speed, John beat Sally because _ had such a bad start.\",\n",
+ " \"The fish ate the worm. The _ was hungry/tasty.\",\n",
+ " \n",
+ " \"John beat Mary. _ won the game/e winner.\",\n",
+ "]\n",
+ "text"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "config"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open('WSC_switched_label.json') as f:\n",
+ " examples = json.load(f)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open('WSC_child_problem.json') as f:\n",
+ " cexamples = json.load(f)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for ce in cexamples:\n",
+ " for s in ce['sentences']:\n",
+ " for a in s['answer0'] + s['answer1']:\n",
+ " a = a.lower()\n",
+ " if a not in tokenizer.vocab:\n",
+ " ce\n",
+ " print(a, 'not in vocab!!!')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for ce in cexamples:\n",
+ " if len(ce['sentences']) > 0:\n",
+ " e = examples[ce['index']]\n",
+ " assert ce['index'] == e['index']\n",
+ " e['score'] = all([s['score'] for s in ce['sentences']])\n",
+ " assert len(set([s['adjacent_ref'] for s in ce['sentences']])) == 1, 'adjcent_refs are different!'\n",
+ " e['adjacent_ref'] = ce['sentences'][0]['adjacent_ref']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from collections import defaultdict\n",
+ "\n",
+ "groups = defaultdict(list)\n",
+ "for e in examples:\n",
+ " if 'score' in e:\n",
+ " index = e['index']\n",
+ " if index < 252:\n",
+ " if index % 2 == 1:\n",
+ " index -= 1\n",
+ " elif index in [252, 253, 254]:\n",
+ " index = 252\n",
+ " else:\n",
+ " if index % 2 == 0:\n",
+ " index -= 1\n",
+ " groups[index].append(e)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[(2, 'fit into:large/small', False),\n",
+ " (4, 'thank:receive/give', False),\n",
+ " (6, 'call:successful available', True),\n",
+ " (8, 'ask:repeat answer', False),\n",
+ " (10, 'zoom by:fast/slow', False),\n",
+ " (12, 'vindicated/crushed:be the winner', False),\n",
+ " (14, 'lift:weak heavy', False),\n",
+ " (16, 'crash through:[hard]/[soft]', False),\n",
+ " (18, '[block]:short/tall', False),\n",
+ " (20, 'down to:top/bottom', False),\n",
+ " (22, 'beat:good/bad', False),\n",
+ " (24, 'roll off:anchored level', False),\n",
+ " (26, 'above/below', False),\n",
+ " (28, 'better/worse:study hard', False),\n",
+ " (30, 'after/before:far away', False),\n",
+ " (32, 'be upset with:buy from not work/sell not work', True),\n",
+ " (34, '?yell at comfort:upset', False),\n",
+ " (36, 'above/below:moved first', False),\n",
+ " (38, 'although/because', False),\n",
+ " (40, 'bully:punish rescue', False),\n",
+ " (42, 'pour:empty/full', False),\n",
+ " (44, 'know:nosy indiscreet', False),\n",
+ " (46, 'explain:convince/understand', True),\n",
+ " (48, '?know tell:so/because', True),\n",
+ " (50, 'beat:younger/older', False),\n",
+ " (56, 'clog:cleaned removed', True),\n",
+ " (58, '?immediately follow:short delayed', False),\n",
+ " (60, '?between:see see around', True),\n",
+ " (64, 'but/and', False),\n",
+ " (66, 'clean:put in the trash put in the drawer', False),\n",
+ " (68, 'because/but', False),\n",
+ " (70, 'out of:handy lighter', False),\n",
+ " (72, 'put:tall high', False),\n",
+ " (74, 'show:good famous', True),\n",
+ " (76, 'pay for:generous grateful', False),\n",
+ " (78, 'but', False),\n",
+ " (80, 'if', False),\n",
+ " (82, 'if', False),\n",
+ " (84, 'fool:get/lose', False),\n",
+ " (88, 'wait:impatient cautious', False),\n",
+ " (90, 'give birth:woman baby', True),\n",
+ " (92, '?stop normal/stop abnormal:strange', False),\n",
+ " (96, 'eat:hungry tasty', False),\n",
+ " (98, 'put ... into filled with ... :get in/get out', False),\n",
+ " (100, 'up:at the bottom/at the top', False),\n",
+ " (102, 'crash through:removed repaired', False),\n",
+ " (104, 'stab:taken to the police station taken to the hospital', False),\n",
+ " (106, 'hear ... humming and whistling:annoyed/annoying', True),\n",
+ " (108, 'see ... juggling watermelons:impressed/impressive', True),\n",
+ " (114, 'tell lies: truthful skeptical', True),\n",
+ " (130, 'but:disappointed', True),\n",
+ " (132, 'visit:invite come out/invite come in', True),\n",
+ " (134, 'take classes from:eager known to speak it fluently', False),\n",
+ " (138, 'cover:out gone', True),\n",
+ " (144, 'tuck:work sleep', True),\n",
+ " (150, 'influence:later/earlier', False),\n",
+ " (152, 'can not cut:thick small', False),\n",
+ " (154, 'attack:kill guard', False),\n",
+ " (156, 'attack:bold nervous', False),\n",
+ " (160, 'change:hard:easy', False),\n",
+ " (166, 'alive:is/was', False),\n",
+ " (168, 'infant:twelve years old twelve months old', False),\n",
+ " (170, 'better equipped and large:defeated/victorious', False),\n",
+ " (178, 'interview:persistent cooperative', False),\n",
+ " (186, 'be full of:minority/majority', False),\n",
+ " (188, 'like over:more/fewer', False),\n",
+ " (190, 'place on all:not enough/too many', True),\n",
+ " (192, 'stick:leave have', True),\n",
+ " (196, 'follow:admire/influence', True),\n",
+ " (198, 'fit through:wide/narrow', False),\n",
+ " (200, 'trade:dowdy/great', False),\n",
+ " (202, 'hire/hire oneself to:take care of', True),\n",
+ " (204, 'promise/order', False),\n",
+ " (208, 'mother:education place', True),\n",
+ " (210, 'knock:get an answer/answer', True),\n",
+ " (212, 'pay:receive/deliver', False),\n",
+ " (218, '?', False),\n",
+ " (220, 'say check:move take', False),\n",
+ " (222, '?', False),\n",
+ " (224, 'give a life:drive alone walk', False),\n",
+ " (226, 'pass the plate:full/hungry', False),\n",
+ " (228, 'pass:turn over turn next', False),\n",
+ " (232, 'stretch pat', True),\n",
+ " (234, 'accept share', False),\n",
+ " (236, 'speak:break silence break concentration', False),\n",
+ " (240, 'carry:leg ache leg dangle', True),\n",
+ " (242, 'carry:in arms in bassinet', False),\n",
+ " (244, 'hold:against chest against will', True),\n",
+ " (250, 'stop', False),\n",
+ " (252, 'even though/because/not', False),\n",
+ " (255, 'give:not hungry/hungry', False),\n",
+ " (259, 'ask for a favor:refuse/be refused`', False),\n",
+ " (261, 'cede:less popular/more popular', False),\n",
+ " (263, 'not pass although:see open/open', True),\n",
+ " (271, 'suspect regret', True)]"
+ ]
+ },
+ "execution_count": 62,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "def filter_dict(d, keys=['index', 'sentence', 'correct_answer', 'relational_word', 'is_associative', 'score']):\n",
+ " return {k: d[k] for k in d if k in keys}\n",
+ "\n",
+ "# ([[filter_dict(e) for e in eg] for eg in groups.values() if eg[0]['relational_word'] != 'none' and all([e['score'] for e in eg])])# / len([eg for eg in groups.values() if eg[0]['relational_word'] != 'none'])\n",
+ "[(index, eg[0]['relational_word'], all([e['score'] for e in eg])) for index, eg in groups.items() if eg[0]['relational_word'] != 'none']\n",
+ "# len([filter_dict(e) for e in examples if 'score' in e and not e['score'] and e['adjacent_ref']])\n",
+ "# for e in examples:\n",
+ "# if e['index'] % 2 == 0:\n",
+ "# print(e['sentence'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "179"
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sum(['because' in e['sentence'] for e in examples]) + \\\n",
+ "sum(['so ' in e['sentence'] for e in examples]) + \\\n",
+ "sum(['but ' in e['sentence'] for e in examples]) + \\\n",
+ "sum(['though' in e['sentence'] for e in examples])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# with open('WSC_switched_label.json', 'w') as f:\n",
+ "# json.dump(examples, f)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "vis_attn_topk = 3\n",
+ "\n",
+ "def has_chinese_label(labels):\n",
+ " labels = [label.split('->')[0].strip() for label in labels]\n",
+ " r = sum([len(label) > 1 for label in labels if label not in ['BOS', 'EOS']]) * 1. / (len(labels) - 1)\n",
+ " return 0 < r < 0.5 # r == 0 means empty query labels used in self attention\n",
+ "\n",
+ "def _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col, color='b'):\n",
+ " assert len(query_labels) == attn.size(0)\n",
+ " assert len(key_labels) == attn.size(1)\n",
+ "\n",
+ " ax1.set_xlim([-1, 1])\n",
+ " ax1.set_xticks([])\n",
+ " ax2 = ax1.twinx()\n",
+ " nlabels = max(len(key_labels), len(query_labels))\n",
+ " pos = range(nlabels)\n",
+ " \n",
+ " if 'self' in attn_name and col < ncols - 1:\n",
+ " query_labels = ['' for _ in query_labels]\n",
+ "\n",
+ " for ax, labels in [(ax1, key_labels), (ax2, query_labels)]:\n",
+ " ax.set_yticks(pos)\n",
+ " if has_chinese_label(labels):\n",
+ " ax.set_yticklabels(labels, fontproperties=zhfont)\n",
+ " else:\n",
+ " ax.set_yticklabels(labels)\n",
+ " ax.set_ylim([nlabels - 1, 0])\n",
+ " ax.tick_params(width=0, labelsize='xx-large')\n",
+ "\n",
+ " for spine in ax.spines.values():\n",
+ " spine.set_visible(False)\n",
+ "\n",
+ "# mask, attn = filter_attn(attn)\n",
+ " for qi in range(attn.size(0)):\n",
+ "# if not mask[qi]:\n",
+ "# continue\n",
+ "# for ki in range(attn.size(1)):\n",
+ " for ki in attn[qi].topk(vis_attn_topk)[1]:\n",
+ " a = attn[qi, ki]\n",
+ " ax1.plot((-1, 1), (ki, qi), color, alpha=a)\n",
+ "# print(attn.mean(dim=0).topk(5)[0])\n",
+ "# ax1.barh(pos, attn.mean(dim=0).data.cpu().numpy())\n",
+ "\n",
+ "def plot_layer_attn(result_tuple, attn_name='dec_self_attns', layer=0, heads=None):\n",
+ " hypo, nheads, labels_dict = result_tuple\n",
+ " key_labels, query_labels = labels_dict[attn_name]\n",
+ " if heads is None:\n",
+ " heads = range(nheads)\n",
+ " else:\n",
+ " nheads = len(heads)\n",
+ " \n",
+ " stride = 2 if attn_name == 'dec_enc_attns' else 1\n",
+ " nlabels = max(len(key_labels), len(query_labels))\n",
+ " rcParams['figure.figsize'] = 20, int(round(nlabels * stride * nheads / 8 * 1.0))\n",
+ " \n",
+ " rows = nheads // ncols * stride\n",
+ " fig, axes = plt.subplots(rows, ncols)\n",
+ " \n",
+ " # for head in range(nheads):\n",
+ " for head_i, head in enumerate(heads):\n",
+ " row, col = head_i * stride // ncols, head_i * stride % ncols\n",
+ " ax1 = axes[row, col]\n",
+ " attn = hypo[attn_name][layer][head]\n",
+ " _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col)\n",
+ " if attn_name == 'dec_enc_attns':\n",
+ " col = col + 1\n",
+ " axes[row, col].axis('off') # next subfig acts as blank place holder\n",
+ " # plt.suptitle('%s with %d heads, Layer %d' % (attn_name, nheads, layer), fontsize=20)\n",
+ " plt.show() \n",
+ " \n",
+ "ncols = 4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABREAAASVCAYAAAA7VJllAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmYa1d1Jb6OVKNqnqveZL/BfvbzCMaGQMAQMJN/QIcfQxgaks4ADSSdkHRCOiS4M3STTkhCIAmkm8YEMCEMJsFMZjI4BBOwjcE27/lNfnNVvRoklUqz7uk/Vm2fI5WqSle6UklVZ33f/apKJd17de+5++yz9l57K601HBwcHBwcHBwcHBwcHBwcHBwcHBzWQmizT8DBwcHBwcHBwcHBwcHBwcHBwcGhueFIRAcHBwcHBwcHBwcHBwcHBwcHB4d14UhEBwcHBwcHBwcHBwcHBwcHBwcHh3XhSEQHBwcHBwcHBwcHBwcHBwcHBweHdeFIRAcHBwcHBwcHBwcHBwcHBwcHB4d14UhEBwcHBwcHBwcHBwcHBwcHBwcHh3XR1CSiUuo2pZS2trbNPieBUuqsdV7/utnn4+DgUD84W+Tg4NAMcLbIwcGhWeDskYODQ6vB2a1g0NQkooX/uLIV7BeVUgeUUn+nlDqmlEoppRJKqQeVUn+ilJq03ieD5cB6B1FKdSul/uvKPqJKqaWVff+jUuqFJW//1ZVzmgvoOzo4ODQ/nC1ycHBoBjhb5ODg0Cxw9sjBwaHV4OxWDWga5nU9aK0/VvqaUuqVAD4KYBnAxwA8AiAM4EkA3grglQAur/QYKyz0NwHcAOAfAXwIgAZwAMAtAH4OwJetc7pz5XN/XM13cnBwaD04W+Tg4NAMcLbIwcGhWeDskYODQ6vB2a3a0BIkYimUUteDN/ZHAF6otZ4v+f/vAHiHz93+BwBPBfDrWuv3ljnm5OqPODg4bGc4W+Tg4NAMcLbIwcGhWeDskYODQ6vB2S1/aEkSEcAfguf+mtIbDABa60UAv+Nzn5KK+q1y/9RaT/vcn4ODw9aHs0UODg7NAGeLHBwcmgXOHjk4OLQanN3ygVapifgElFLdAF4A4F6t9bEAd31y5ecblFLhAPfr4OCwBeFskYODQzPA2SIHB4dmgbNHDg4OrQZnt/yj5UhEkNHtAPBQwPv9HIAfA/gNAGdXil3+F6XUwaAO8IpXQL/3vdCnTkEXCtCA29zmtmbcPA86kYCenoY+fhz6V37lXe8CgPe/H/o974EG0bK2CE1wjd3mNrf53971Ltqij30M+qUvhQbRsrbozjuhv/Ut6NlZaK03//q6zW1uW3vL5aCTSeholM/s299Oe/Tnfw4Ng5a0R3/2Z9D/8A/Q990H/ZOfcK02Ows9Pw8di0EvLUEvL0OnUtCZDHQ+T18RTXBf3Oa27b55HvSPfgT9lrdAozq0pN3aTLSinLl/5Wc8yJ1qrTNKqWcB+E0ArwHw6pUNSql7AfyC1vp4Lce4/nrge98DFheBpz0NuOIKYHIS6Oqq+fQdHByqhNZAOg0sL5stleLrnsf/JRJ876WXAjfe+MRHW9YWOTg4tCY8jz8//Wn6EStoWVv0pCcBR44ADz0EjI0B+/YB/f0bf87BwaG+KBSAbBbI5cxPvbI8D4WA9nZjj/btK/poS9qj5z4XOHqU3zOZBDIZYGkJiET4XTs6zHtDIUCp4r9Lt3C4+G/7/Q4ODsEhmwXm5oCPfQwYHq56Ny1ptzYTrUgiys3tC3rHWusogN8H8PtKqTEATwPw8wBeDuDzSqknaa0z1e7/t34L+PjH6Szffz8QjZJE3LULmJgAenvdJOPgUG9ks8WE4fKycYTDYaCnh89joUDysKODDiQA3Hwz0GcsT8vaIgcHh9ZDOg3EV6zOzp3Af/kvT/yrZW3Rnj20qefP0yd68EFgaop+USQSyFdwcHDYAJ5XTBZms8YvUoo+UCRi/KG2NiCfB86d43tuuaVody1pj667jsRhOk37CvDvXI4bwO/f2cnvL4Sq/VOuoy6TC6XU+iSjbA4ODpWhUODzmssBd9zBn29+c9W7a0m7tZloRRLxGIAsgOvqeRCt9UUAnwdv7scAvA7ATQDurXafXV3Aa1/LifjIEUa42tuZ9XThAomL0VFG4dta8c44ODQZCgVGlBMJQxiKM6gUn8XRURKHPT18RuNxYGaGzmN7O/fR08PP9BVPLS1rixwcHFoHnkc/IZOhmgFgUFLsElrYFoVCDKDu3EnicHqa/tDCAsnEiQmn1nBwCBJakwC0CcN83vy/rY3PnGTftbWtTnDQGrj3Xi7gga3hG4XDwNVXM5Bx+jRw1VVcjwlRkc3SBmeztFsdHYZUlOujlNmESPS84q1Q4HXPrEEZbEQyuqxGh+0Orc2zqBTwjW8AZ84AL3vZqqxoP2hJu7WZaDmqSmudUkrdDeBFSqn9DUoB/R54k3fWuqPubg7yL3wBePxxYGCAk5DWfADm5gyRODjonGcHh0qhNRfapbJkQVcXnyshDCORYkdseRk4fpyf6ezkAnZhgY70wEC547W2LXJwcGh+5PNmof6P/8hsPQDYu9e8p9VtUWenITMOHCBxeOYMF/ILC1RsjIwUywkdHBwqQz5fnGVYKkvu6ODaRLIMK8mGO3IEOHECGB9f/b9Wtkd9fbRBjz3GLMvdu2mfOjoMAVhKvqZSJFrlfYDJ4gRMJqdkItp+ZzmCUX7P5/lzrazG9UjGcNgRjQ5bE+ITeR6fq6NHgW9/m5nEz3lO9fttZbu1WWg5EnEFt4EddO5QSr1Ia71g/1MpNQjgHVrrd1S6Q6XU9QAuaK1nSl5XAF688udPajrrFUQiwIteBHz5y8x4am8nYTEwwElpepoLhXicE/vAACc2NyE4OBhkMsWEYTJpHLe2NhKFQ0PMcolE1s7uTaX4HCYSfBZ37uT7T53i/i69dN3F621oYVvk4ODQvBCZTjgMfPe7jLYfOAAcPlz27behhW1RTw8XB8vLxm7PznJ7/HHWkh4Z4eaUGg4O5eF5q+sYlsqSe3pMlmG4il6hc3PMiJ6YAHbsWPNtt6FF7dHUFNdfFy7QDg0PG8JOpNyFAt+bz5tNamdLdqJkKGpt3i8QMlEIv/VsmsikS0nGUrKxFKXy6bWk1A4OrQCpX5/LcdxGIuRKPvEJ1lN+9asD4UluQ4varc1AS7piWuv7lVJvBHA7gMdW0kEfARAG01BfDeAigNKb/Bal1AJW42MAngfgj5VSXwLwbwDmAIyBevWnAvik1jqwjj29vcALXgDcfTcwP89JZ2yMmVJDQ5zAFhZIIqbTfE9/PwlF50A7bDfk86tlySK/kclkbMxkGXZ2brzPTIYL1FiMDtXUFJ3FbJaLVq1JIK6XDbwVbJGDg0NzQeTLnkff4MIF4EMfAi6/nPburrtWf6bVbZFS9Ivicdr33l7Km/v7SVosLJiakEND3KohQBwctgq0NpmF2Sw3m6wSWbJkGEpt51qQTgPf/Cb3dfPNwA9+sNa5ta49UorBmkSCwWQpdSOEmxCJnmeIRcAQerkcy1VJyaquLm7hsMkstElBOaadqWiTe5J1GA6vfw/XIhnlvEqJTIFrCuPQ7MjlaHu0NgR9JgN85CMc3697XVF5l6rRynZrM9CydJTW+hNKqQcAvB3ASwC8GUABwGMA3r+yleI31tjdfQA+DaAbwPNX3jcGIAngUQC/CuADQZ4/wOzC5z6XE/L8PIkQrfkg7NnDyPvyMiey7m7+vbjI/w8O8jUHh60GrUkY2lmGIucDOO4HBw1h2N3tz8HJ5YCLF/ksKUU5zugoHaV0mgSiUpQLVkJGbgVb5ODg0Bywa2VJEPHP/oz+wa/+KvDBD6792Va3RW1t/M5S/7GzkyRiJEJbH4txPshkmIEwPMy5wGXTOGwHlNYxlPrOgCGY7CzDoIkfzwO+8x2uSX7mZ1bVQVyFVrZHbW0M2jzyCH3CAwdM6Smti0k2IQWF/JPAs9hyIRSF1BViFygmFaVWpaCUVNzoflaSWViOYCyt1eiawjg0CzyPPlA+zzEnZLzWwJ13suzJK17BhI+g0Mp2q9FoCRJRKTUKAFrrOft1rfURAG/a6PNa69vAFNWN8EcrWyXnNAQy0zWZzcFBRvO+9S12J7zsMk46p07xoZiY4OvpNCedSIS/nzvHv0Xq7Iy3Q6sinV4tSxYnRpzikREjS642+6RQYEbL3IoVGR5m9qJk9qZSfO5CobUlzHMrHx4dHS16fSvYIgcHh82DFAoX+XJ3N197//tps/7rf2W2tGCr2qLubpN53tZmpH4TE5wD5ucNyXjxIsnEkRGSjS5bxmGrQGTJNmkofpFS9E96e02WYSOycn/0IxJq11/PRAcbc3NzGBsbG91K67T+fn7PkyeZDb5rl/EXCwVDpgmBKL/LJnUSQyHT9TmR4CaEiBCK9v0rzVa0Sb1SUtGvzauE7LOPXa5eo2sK49AISCMjoJh4B1je5d//HbjpJuCnfqr6Y2xlfqkRaAkSEUwdhVKqXWud3+jNDcKPYQphnq5lR8PDwE//NB+KY8eAQ4foFBw/ziypyy5jBF5qJfb2cpOMKlvqHIRcwcGhXpCaV7YsWSQWoRAJw4kJk2UYRCF9z+MzMjfHYw0O8rmy9728zCL+bW0kENd6jsbGxuTXtq1oixwcHBqPUvmyZEB/5jPA/fcDr3oV8OQnF39mK9siO+uwv7/49e5u2vNEwkj0ZmYodx4d3Tg7ysGh2SCyZJswtKWn7e0MoNrdkhuNs2dJIu7aBVx77WoiaMUeXdxq67SpKWYRzs7StkhJqVDIEHxCAIq8WUg6kRED/MzgIK9bOs1NFDeSvShEiXxe9ivZj3K8QqEyGXS1sOXT68E1hXGoB8QfKhRM9q49rk+dYkmXXbuAl7605gDKluaX6g2lyz3hTQKl1D4AdrPur+smOWGl1E8DkGppUa31GpVBirDuuU9PA9//PieWQ4foPM/M0Hk4cIALi7k5vpbPc0IaHDTRLYBO9sAAP+PgsJnwvNWyZDt6KRI12bq6gnUctKZkeXaWz0tfHwnK0hqHiQRT4tvbSSCWc9BPnDiBEydOPPH3LbfcEtrKtsjBwaExkFo/StE2if158EHg3e8mefjrv26Ixe1ii7JZ2uaurvL+TCpFfyifNwv6XI7XaXQ0mPpIDg71gF3HUH4XhMMmu1B+bjahEo+zfrvWwPOfzzWGwLZHt9xyyy1o7XVa2fPOZIBHHyWpcdllRlIZChkyT/62yT4h+AoF2il5zc4cTadNlqL8XwhFacxS9kR1ccaifcX9yqDriY2awshWCtcUZnsik+Emz0FpQkc8DnzgA/QNfvEXgUsuWXNX6476LcgvbQqamkTcgtjwYku0b3kZuOIKdop9/HHTJXZ0lL9L10LPo5RndJROdSxGQ+2kzg6NhHTNsgnDVMo4Nh0dhiwUWXI9x2UsRrI9m+WxJifLL0SXlkggdnZyMvIR4W/1OKkz/A4Om4hy8mVZ7M3MAL/3e7SX73wnyy6sgy1riyTw1NdXPjtcAkXSHKu93XRvjEToF63XGMvBod4oFFbXMRS/SJpy2KRhs/nruRzrts/MAM961rqLdmAL26LFReCxx2iLLr3UlFkQIlFrQ3ABq8lEO9AhpFlbm9mH1hwfkqUoEunOTkMoVlLv0D5usxKLpVhLPl2a5VgOGzWEabbv6lAehYJRY0gzotL7ls8DH/sY65S+/OUbypjdXW8AHInYWFR0sU+dYtQrnQb27WPk69QpEh6jo5zAQiE+UDMzpsbb2Bi3dJqy50yG7+vrY8aikzo7BIVsdnUdQzsia2cYSqHvRiCR4DORSnESmphYW94Wi7G2aFcXHWOfKfGtPkE5w+/gsEmw5cudncWlFTIZ4LbbaJt+53eAq67acHdb1hZpzcwDranMWGsRnc2ytEs2SzK2rc0EVHt76TcFURrDwWE9CBFkd0sWwkgy0GzScDNkyX6gNbsvP/ooJczXXbchkbVlbRHAJI8zZ4AdOyhz1rqYBCwUjFRXCJByZKI0UBGpsxCStg9qE4riWwuhWCrvXPPLlMigSzP+aq2v2GisRzCWqx8psLMa15NROzQeEkzNZo2sfy27+JWvAF/7GvD0pwO33rrhnN7ko3lrwJGIjUXFF/vECeDoUU4ge/ZwITE7yyYr3d2UN0t35myWUuiFBRrI8XGSidksHelEgg9qJMLsRCfzcfCDQmG1LDmb5f+UKi9LbjRSKT4Dy8ucWMbHOdbXcoqiUS7SIxESiFU4EK0+QTnD7+CwCbDly93dxQtHrSnVuece4Jd+iR1QKwhubGlbVCiQSGxrW7/eoRCOi4u8tgMDXFQuLPBnfz/JxGYnbhxaA0IE2aSh3Vm3ra2YMGwGWbJfHDsGfO97VEQ97WkV+XYt9g1XYUNbdOwY/ce9e4GhoeJOzfKe0teAYtmuXbtQyEQhGSU70R4rMmdIl1qA40oIRT8B8I1k0EHXV2w0ymU1lpNRl8NGJKPLagwW+bxRrEkt6LWu78MPA5/8JOsgvupVfPY2gLtTDYAjERuLii+21pysTp6kczI1BVxzDSeR48dpFC+5pFjmlE6zg1gsxklocpJSZ8/ja/E4H9r2djrY60X2HbYntKZRL5UlCzo7i2XJ3d2bO4YyGWYeyiJzbIyNitab6BcW+Jz09gK7d1d9/q0+QTnD7+DQQEjJh3zeFAsvtVNf+xrwoQ+RPHzd6yqubbzlbVEmw7koEtmYyMjnqc6QbPShIao4olH+f3CQc0Qjutk6bB2ILNmuY2jLkkvrGLa6b33xInDvvbRVz3gG1xIVYMvbomSSCR4AVWGRSDFpqJQhBW15s6CUTJT/FwprS51t5POGUJRamiL/XC+Laz20qgy6FmxEMq6V1bgewWiPAYe1Ib6QlHLZiAifmQE+/GHek5/7OSo0K4C7Cw2AIxEbC18X2/NYg+PsWU4co6MkEkMhEonxOCd2qc8hWF5mxqJkZU1NmYjZ8jKd6XTaSJ0HBpzUZ7tCitfbsmTbiSmVJTdLFkcux8zcxUWO49FRbhs57tKYqK+PBGINk32rT1DO8Ds4NAjryZcFjz0G/MmfMDj4a79Ge1YhtoUtSiQ4Xw0MVEYAJhLs4qw1icOeHgaQYjHOE0ND3Fqd7HEIHlK7zs4yLJUl26ThViOkk0kSiIuLzEC89NKKP7otbNHcHGvV9/fTjxS/2M5WE3KqVN4ssMnEch2dJeNQ6maWG2OFgiEURR0kAapyTSkqxVaTQVcL+e7rNYTx0xSmNMtxOyKbZVBQa/pC0jBuLaRSwEc+Qh7kJS8Bbryx4mu3RUdlc8GRiI2F74vtecDhw6ZJxNAQa5N0djKb6uxZThYHDqzOWojH+Z5UihljU1Oc9AA+xLEYI/Ra8//iaDtsTRQKxRmGiYRxVJRaTRhuZNw3A4UCI+Tz8/x7eJjZh5WQm7Oz/OzAAOU5NTo+rT5BOcPv4NAArCdfFkSjwO//Pu3xb/4msH+/L/u0LWyR1vRZlKIfU8n1KRRIHCYSXFBLoGlujq+FwwzErlf6wmFrQ+vV3ZJLZck2YVgqNd1qKBQoYT55kmuNK690DedWvUlz7TU9zbrbU1PmfzaRKHUSy8mbBWuRiXbdxPWkzvZ+hFDMZPiaZHl1ddWeKLLVZdDVYqOmMEJAlsN2agojgdRCwRDdG40TrYE772Rd1mc+E3j2s00ZtwqwRa5cc8ORiI1FVRe7UGBh44UFOjh9fcxIjERIAh47xonmkktYC64Ui4skE7NZSjinpgxZKPWGYjEjsxKp81aLrm4naL26jmE6bf7f1bValtzMk5XnkTi8eJG/Dw1xrFcaaZUGRIODLIodwHdt4qtVEZzhd3CoIyqRLwOcg//0TznHv/WtwA03+F7wbRtblMvR55GyGpUilaL9z+fp2wwN0R+am+M82d5OMlGCrA5bF/l8ceMTIWkA0+HbJg2b2S+qB378Y3Y/3bOHJGJvr6+Pt/rV8mWLTpygPdq9mwGKUjJQxo4QSeXkzcBqYq40U61Q4DiVBitrSZ0FnkciUQhFkVbbhGIQ43o7yqCrxXZuCpPJcFPKX4bsd74DfPWrTJK65RYS9j6wzUdcY+BIxMai6oudy3GREY/T6HR1kUjs6TGTWSzGzKy9e1dPVFqThJme5mQ0MEAyUeoLidQ5FqPDrZSROjdjRppDMTKZ1bJkebTb21dnGbYKQaw1yfOLF80CcGLC35i8cIH7GB4ujhjXiFafoJzhd3CoE0Rmtp58WXDHHcBddwGveAXwvOdVRWRtK1uUSnHr7fVHtnoeA6rxOOe/0VEGYpNJzi+ZDO/V6KhTZGwVeF6xJNmuOafU6jqGreIX1QunTwMPPsig8nXX+V60A9vMFsXj7NasNdUt/f1rE4kbyZuB1WRi6fv8SJ3tfQqhmE6brEYhFNdrZuEXpTLoUmJxu8igq0UtTWE2agizGbatUDBlXKRuZ6X3/Phx4FOf4hz9ghcABw/6PrwbXQ2AIxEbi5oudjbLCGEyyYezvR24+mrTsVDkzR0dZO7LOcKeR4d5dpb7GB5mAxbbGc9mKa+ypc7S1dkZ/c1HPl+cYbi8XOxUlBKGrVrvMhrlOM1m+T0mJipuNACAY/f8ee5ndLQqh3g9tPqT4Ay/g0MdIDV/JPNjPef9e98D3v9+4ClPYcHwKm3UtrNFEkwdGPCfhZHJMANR5pWREd6jpSW+nsvR5xkd9SWdcthkiCzZJg0lcwswHZI7Oows2cEgGqU9SqWYoLBvX1X+/razRdPT3ETl1dXFdZaQZLa8txJ5s7xPiLhymXyyH2nus5HU2f5cNmsIRTlPu9Nz0Flt69VX3M4y6FoQdFMYm4AMYo0vxHU2a/wgP/Y2GgU++lHOyc99LtUZVdjrVrdFLQFHIjYWNV/sdJoZieIgKQVcdRWdaYAP3fHjnFz27Fl7UZLPmxpxgCFZ7Ae1UOD+YjHuz0mdGw/PWy1LlnonABc5tizZT6SnWbG0RPlxOs3vMznpW1IDrYFz5zh2x8eLu5gHhBa/yo5EdHAIEpXKlwVnzwL//b8zkPfmN3O+rnJe3Xa2yPNo28Ph6iTIUl8xGuU9Gh5mMFZrEpTz87yPPT30jZwao/mQz6/uliwIh1dnGba6X1RPZDLAffeRRD94ELj88qqDz61+lauyRWfO0GaMjtJfDYfXJhIBQ/wI+bfmyWxAJsq+/EidbdiEonzeJhTrtc7bqL6ik0HXjiCbwpTLclwL0j3c8ziW/Ga65nLAJz7BxkVPfzpw001VlxlxI6cBcCRiYxHIxU4mSSQCZvI4dIh1fuS1EyfoIA8NMaK41mSQyzGKNj9PwzA+zq3USIjUOZmkQejtZX0551wHi3S6WJacSpkJtqNjdZbhVorcJZMkD6Wr+MSEIcf9QGs6dUtL3IePLqd+0OoTlDP8Dg4BwY98GaBdv+02ymvf+lYu2mvIetuWtiib5VzZ3V39tcvlSJxIwGp0lIST1rw3Cwu8p/39zFisttupQ22QrCs7y9CuH1dax3Ar+UX1htZsXHD2LGv7HThA375KbEtblE5TCp5OM2A9MVFM/pUjEiuRN9vvtWX45cg1ycSVTMdQyBCKlUAagEkgDDASVL+ZZNVgvfqKTgZdHwTVFEbGryQ3tbVxfVrNmPniF4EHHiCn8ZSnMLhaJdwoaQAcidhYBHaxEwngJz/hA1wo8OE9dIgRdcH0NMmU9eTNgnSacuhYjA++kC+lxjqbNV2dPY+Ty8AASUVn2P0hl1stS5ZoYDi8mjDcqguYdJrk4dISx974OMnvasaTRIUTCUpL7OchYLT6aHeG38EhAPiRLwN03N/3Pi7c3/hG4ElPqtlObVtblEjw+vf317bIXVoiYag1CRTp1lwokExcXOT7BgaM/NmhPhDJpU0ail8kmVsiSW5vd7LkWnHkCHD0KDNx9+8Hdu2qaXfb1hYtLNCPDYVoz8fGijsrlyMSK5U3CyolEyU70c529NNVXLLJ0mmT4SvZ9X4aY9SC9WTQgCMWG4mNSEapuam1yT4EzP3ZqF6j4MEHga99jdzDjTdSZVnDfXUjogFwJOIGUEr1aK2XA9pdoBc7HgcOH+YDK1GkgweLpZuJBOXN2SyjjJOT6+8zmWQduUSCxmBysjyh43mmq3MuRyMxMMDNOdir4XmrCcNslv9TqliW3NOzPWoxZbOU1EejnEjGxrhAqzaLwPOAU6c4hnfurCmaXgk2ZYIK0B45w+/gUAP8ypcFd90F/NM/sdvgc5/LYEeNC6Bta4tElgwY4q9aFApUZEgmvC1jzuf5v1iM89PQEDeX8VYbtDayZCENJQsK4HNlZxk6WXKwmJ4GHnqIv+/bt75qqUJsa1t0/jwDDpEIfdmBAUMkhsPFsmQblcqbBTaZuJ68tFTqLN3H/dgtybJPp82aJRwu7vTcKGwkg3b1FRsLzzM+UChk5stqmsJMTwP//M8c/zfeyOBqd3dNTWGafqYImF/aFDT9Y6aU+nmllFZKvVAp9YdKqbNKqWWl1FeUUntW3vNWpdRRpVRaKfUDpdQN1ucvUUq9Tyn1iFIqsbLdq5R6UZlj3bOy/4NKqS8qpeIAvqCUetPKOTyjzGduXvnfL9X1QpRBfz9w2WWmq2BPD0nFmRnznt5esvmDg0y3P3q02EkrRSTCrMX9+/ngnj7NSGU8Xvy+UIj7vOQSYMcOHn9hgXUMpJ7ddoXWlKtdvMjr8cgjTM8+coSSkWSS92X3buCKK2gsDx3itdwOxdzzeWa9Hj3KRdnoqCG/q534CwVe61SKkfR6EYi33347lFJw9sjBYfuiUDANrbq6aLMrITceeQT4zGc4Jz/zmbR51ZIizhaZ0ioSpKsF4TCz4CcmeH/PnzfZiaLOuPRS+lnz88DJkyQMXBy+cki3znicMvLpafpJsRh9xrY2ZsSNjDCALaoEaRDnCMTgkEiwLFI+T59p587qCURnizg2JyY4VpNJjulUymQAinS5XFZdOGxIRmmWsh5EqhwKmY7N5QiacJhrs+5ukodC+tiS5Y0gqqiREVNiqK2N9nZ+nuu9WKy4Vnu9INJvyUbu7DTZyHJt83n7SbAqAAAgAElEQVReQ2nsISSqs9PBQsqJFAr0gXp7TaBHxlxvL3mKwUFm546O8ufgIO28JMxkMsDdd/O+XX45bb+oHhcXOVcsLDDhJB7ncZNJkylb7f11/FLtaCUhwP8AkAbwvwDsAPCbAP5ZKXUHgDcA+DsAEQC/A+BOpdR+rXUOwI0AngfgTgCPAxgE8Hrw5t2itf56yXEiAL4G4G4AvwXAA/ApAH+5cpzvlLz/jQCSAP5poy/wjW8AT34yH5qgaglKzcPjx03Dk8ce42QxNcX3tLWRbJyZISn48MMkCtdrVtHXR2InGiXhc+IEH/gdO1bLoiMRbrkcH/p4nPKgzk4ai60udc5mV2cZyoQuE7A4wtXWidgK8DxOBnNz/H1oiIuEWqUR+TwzEDMZErPSrbweSKWe+LWl7dFXvkInTJxXBweHyiBNHJTiHFdp4CMWAz70IT53u3cziHLunP/ji3zogQeeeKmlbdG3vuXjy6+BTIZbUJkxnkcfJpk0KgvbZ8tkzMJZ/r9euZjtCCE3ZLPJEZsMEBLAzUONQ6FAAjGR4MI+n6dfVi0OH37i15a2RadOkVCtdiy2tTEwJEGmcJjEWzjM1woFQxZ6XvHcIRl0kj1YibxZPmNnepXLTFTKEDzyPEr2rx+pcyhk1nuSiZ9O0y9OJk02WleX/4Ya1UK+q9yzUhm03aFd3u9k0NVDMlOl9qHfjt4yPmUd7HnAF77AufQpTyFXsX//+g1h1iLa5b5++MPA29/u62u1tN3aTLQSnVEA8CytdR4AlFJh8CYMAbhKUkKVUosA3g/gRQD+BcAXtdaftneklPprAA8C+G0ApTd5CMCfa63/R8ln7gTwKqXUr2mtMyuvRQC8AsCdWuuSXL3VeOABsumXXUZHVwqCRyL8WS25NDpqMrGGh2lMjx3jw7Zzp3nfxAQJvWPHWE9x1y5DNK4FqQ+0sMCo8dGjJCunplZnzLW3m0iDdHWemaFz0t9vIlitDHEO7E1qhijFezk6agjDrq7NPd9mgNYcP7OzvH79/RyLQRDp+TzHvXQj99vF2Q8uXgS+//0n/mxpe5TJGAkCYMhE2ZwUxMGhGFKrTRaCfjKj8nlmIGazwAtfSBsYiVR+TKk5JJIyrTmHr6ClbVEQ6OzkfRFSr1ZCKhSiv9LVRT9mYYH+Tl+fye4ZH+f9kP/H4/xMJfd1q0EygOzNXrzLNRM55UaNJBzqB62ZFJBMmiB/rcoNi4BsaVuUTDLRYteu6oPbkn21uEhybW6uciJR5MzyPs/beM0khHxpk4y1ZM5CGgoZI5uQ+pXaTinD1N3NY8sclcnwe0uQTWTPjXre16o9acugRWpb+n4ng14bco+zWXPvg6iN+e1v85nbv58ZiHv3VibrX6spzOc/D3z9675JxJa2W5uJVqJ0/rfc4BV8B7zJHy/RlAuTux8AtNZJ+YdSqgtAD6iVvwfAq9c41t+Wee3/AngtgJfBsMIvB9AH4PZKvsBP/RQjXdEoJ6lCgROMMOrt7cWkotQDqAQiwTlzxnRXPnGCr9ndjXp6gKuvphTnzBk6vvv3r//AKsVU9qEhnu/MDKW5Q0MkE0sj/+KADwyYtH4pTt7by9dbQbIrsmS7W7It0+7qorMghGEk4hxjG1KvamaGTkpvL8dpUPc+lyOBmM9TCl6vxZvn8Vn67neLFkYtbY9e/GIjZ7EzRgRSh0QcTj9FuR0cthpEhql1dYXlP/xhPl//+T8D11zD4F65uT2X45xpb3ZWu2SB/PCHRQv/lrZFN9+80Tsqg+eZmoUDA8HsE+A9j0a5b/GFSoNViQR9o2yW42NsrDV8nGohmYWSzWRnhoRCxY1P/NZgc6gvTp7kfbviCo7TfftqIwPOnCl6HlraFu3cSeXV+fNcR1X7DI+Omgy9dJprH0nwEOlxKFSeSAQMyS5dySvxv8qRidKludxnJWvQDgBIgzA/XZ3l2EIWAsVBL1kz2YRio+2BXBsbpbUVbf+3lFTc7r6vNNrxPCMjD+KaHDnCZirj43z2LrvMH4ldGjD8wQ+AT30KuO4636fS0nZrM9FKJOKpkr+jKz9Pr/H6MAAopToAvBNMFb2k5L3lVPQLWutomde/sXIOb4C5yW8EcGblfxvipps4WV+4wEl33z46u3Y6uNSLEUi9JSEW13t4d+ww9eampmj8Tp3iRLR3r3lfOEw58+ws///wwyQSN5KBhkJ82EdG+NmLF+lcS/2acpNOOalzIsHvMTDAYzaLgc5kVmcZimMsLetHRgxp6OQ3a2NpiZmrmQzH7c6dwWYJZrMkED2PdarqtWBLpSjVOX6c4/TKK5/4V0vbI4lEi/MnkAwScSot+XZRpNqvk+ng0Kqwuy9HIv4XQN/6Frebb2btWwnyCTFpE4Z2Vnt3NxeeModK5vaPf8w5+xJjPVraFgWFUIhzjMiQgwoqKWXKkczN0e8RGajYwN5e/j8eZ52wM2f4t92cpVXheau7JdsdYtvb+V2lAYrzi5oX8/NUInV00LZMTdVGIC4u0h5Zz1pL26L+fo7t+XluUqbAr80PhRgwP3eOz4s0a+rtpc0QIjEcLs4cLN2HLW+utMFEKZkotRjXIsPWkzpL5rDfNVpnp1njZbOGTIzFuHV0GEJxs+yFk0FvDJGs53L83kGue+fmWAexp4f8Q61KstOngb/4C/pX73iH74+3tN3aTLTSMrDg83V5xP8KwJtBTfu/AlhY+cwvgMxvKVJlXoPWWiulbgfwe0qpcQAdAH4GwLu11mv0HCpGezuzAMNhTr4nT5J8m5gw3bwAs3iXBUY8zvcDfJBLZdC2E7BnD43fhQusuxQOs5mH5/FBtTE+vlrevGPHxt8jHKbzMTpKomh+nnKe8XFGNssZGZE6j4zQyY9GSUTOz2+O1DmfX00YSiRKFovj44YwbPWFQKOwvMzMw2SS12zPHt7fIJHJkEDUmgRivSTjFy/y2YjHOTavvtos8rFF7JFkkYgNEXJQxrsdpZaouF1A285UdPUVHbYSJBO9UDDFwv0uHE6eBD76UQYMn/pUzsOzs6YouKCzk3OxEIZrNWo5fRr46ldJIA4PP/Fyy9uioNDezvkgnTYL46DQ0UH/SPyxs2dJLvb3m0XlwAD/jkbpE506xUDp6Giw51IvSGMHmzS0F9Nyfe0sQ4fWQDpNwi8cNsqiWnyzVAq4/36OBStJoeVt0eAg7XQ8TjtdKBiS3A86O2mj5+fpP0WjJkNXiESRNgvZV+o/2fJmIbcqLQUgZKIt390os65U6iy+n1+psw35zv393KcQivE4N7EpXV2bG5heSwZdSixuFxm03CutDSkcFDIZyo6VYiOVoaHKuIe1EI8Df/InvAfveEdVdq3l7dZmoZVIxGrxGgD/oLV+q/2iUuoXq9jX7QD+AMDrAHSB3a0/4mcHkQjJvBMn+JDOzvKBmpw02VTSoc7ODMxmTaZiMsmJSeqQtLUVS6CFSDxzhpN7KMSImOcxA9GeQCIRdop8/HE6xUtLlcsb2ttJVI6Pk7Scnjb1P0ZGyhtVpfiA9/fzu9hS554eTuBBZ5V53mpZsk2EdHfzuEIYVtpp08EgnSZ5uLTE8bhzJ69p0NcxneZYVYpjux7krucx83BmxjhO4+N8Tn74w5p33zT2SBxUcRTLOXB2lFpQWjBfpCv2Pp0M2qGVIfKdauXL2Sztx7vfzX1dfTXnyLExM18PDvqrh7ywAPzzP9PhfulLgU98orrvZqFpbFGQ6O422T/9/cEv7qSepQRPl5dJEkpZF8lclFrSi4v0PQYGSCo0Uwa3nXUkPwVS91MyDKvJSHJoDnge8NBDvN9jYxy/ExPV7y+fJ4GYywFPexrXDjWiqWzR0JCpsdrezudXVGF+MDjItcfyMu2QXR+xUiIRKJY3i69W6bMotRH9kIlrSZ3FH6y2pqn4kn19Zp+pFNcNsnYQQrEZAhSV1FfcajJo6eAt5HHQ2aJas7FjNEq/qKeHvES1yGaB//k/Odf+9m8XKTQagaayW5uBJnJn6oYCDGsMAFBKHQTwH/zuSGv9uFLqm2DKaReA72qtH/O7n8FBZv2dP0+jmUhwEh4ZKcouKIJEc6QOkqQZC7FYKoPu6KCB/uEPKaHavZukoueR+beNWzhMYrO/v1jeXCmb39nJjLBkkgulc+dIjk5NcTJey5AK6ZnPG6nzuXM8d5E6V7MASKeLMwyTSSNL7uig0RobM3UMXfZU9chmea+jUV7HyUmO4XpE5aTodSjE8RZEF85yxzh8mD8nJuj0tbcD114bmFPTVPZIJDIS6a7kvtk1rwS2BLpUBm3X2BFSthWdK4ftASkeXql8uVBYXccwmwX+4R9oG1/7Ws73UjKkGruVTLIxSzgMvPzlgQVPmsoWBQWlmNUZj3P+36hMSzVoa+P8sLxMMvHcOfpmduAsFCK5ODjIBY5I+YaG6jdHrgfJJLdJQ7tbssgthTB0ftHWweHDfB7Gxnh/16rJWgk8jxmNsRj9oqGhQE6xqWyRUnxGpc5pb68hVvzKm8fHufYqFPi5+Xm+JpmCdrOV9YjEauXN9udLycS1mq/Y16Gc1Bkw/ly140g+39NjCNt0muvhRMIQWJL53CzYqL6i/C5oJRm0lG4B6nfdv/99JmlcfjmfqwMHqj+O1sDf/i3t2y/8AnDjjcGeawVoKru1GdgOJOLnAPyCUmoZ7JizD8B/BvATAE+qYn8fBvDRld/fVO1JjY7yYZUMvHyek0sqRee0ko5cQsIJpMaSZCuOjlKOee+9ZOeVomw5GmXh0VIZqBBrx47xody5kynGlRo9ybJMJEiQnj5tyMT1Cp23tRkCVbo6X7xYLHVei8CRjAN7k3RzqeEwMWGyDJtpMmpl5PO8t4uLHB9jYxxv9Vp4LC9zPLW1kUCsR5RyZoaTWzjM2odnzvBZuuaaQOs5Np09kvo5EuGuxikUKbMtgy4lFsX5BFbXVnQLVofNRiXyZXmPTRjaWe3SbOvrX+cc9p/+E6PtUrKkGuTzwOc+Rxv46lcH2jSk6WxRUJAmNNIMrV4lL0S5sLBAv2p5mb6M7Ze1tZE0kMZ0QigOD9cnWx8wXb1t0rBUlhyJmCzDZsqOdAgW585xGxrivZ6YqO15OHaM+ztwgMkJAaHpbFE4bIjEVMqop+Jxf/JmUbJcuGA63EajfPbF17KDuDbBV2obapE3C0rJxPU6Oduwpc62X1eL1FlgNw3zPEMoJpMmi9MmFJuNiKukvuJaMuhmIBZFrVcomGzQegS5Tp0CvvMd8gpSk7WWIMSnPsXuzi94AXDrrcGdpw80nd1qNLaD6/DroA795aBO/TB4c65EdTf5MwD+BtSsf7LakwqF+AAVCkZ2Iw/ymTPVLTrCYZIdNuGxdy+zEWMxHi+fJ0F4/ryJBNj1FUXefOoUHYWlJRKDfkib3l7uOxbjcU6e5H537FifjLGlzum06YgYjXLSlowCW5YsxIRdiF4Iw66uzTfOWw3SUXx+npPj0BAdpHouQhIJEogdHSQQgz5WoUDycHaWC/TLL6dken6ejvLYWKCHa0p7JESiSF1qfW5sWbNAnE8hF+2op/1+cUq3Wo0Zh+aFyJeBYilVJlNMGEqHZsBkUUjzk+5ujt0HHgDuuQd45jNJIIr8tVp8+cucR1/yEs7hAaIpbVFQ6Ow03a7r2QhKMg57ejhnTE/TVynNNmxv5/0TYuLiRQbhRkZMXcVqIbVts1lutsROZMl2HUPnF20PxOP096Xeam/v2mqnSnD2LEnEyUl2Ug0QTWmL2tvp40rZgsFBkynnR94s5SuiUdqlpSU+j3amu5BMpcqQcs9qqbw5HK6u+YtS/slEUaLY2YlBSJ3t/UuCjJCudvNRuxN0UF2Cg0Y1MujNqq+YyZj7V9pjIUjE48AXv8g11p49nC/37Kl+f/feSxLx+uuBN7xh0xIRmtJuNRJK23m3DhtCKdUJ4AKAr2itX+Pz46sudirFBYLnGWltJkOHUGQvtRrJfB549FHu94or6Og+8ggngt27i42ZTGzd3TTY09N0vqWTtF9ozQl4eprfqa+PZOJGk6/ItWMxZohJs45wmPsYGuJPIQyr6ZrpUDk8j/fx4kU6LgMDJLrrndm5tERSvbOT2bRBLwSXl+lkp1Kc0HbvpqN89CjH6eWXrzmumsJ1qcEerbJFko0INK6WoZ2tKL8LnAzaoREQ+bI4+JIBIUX1AbOwkblGsrhKMTMD3HYbAytveAMXOn6y+Uvxne8A3/0uCcmnPnXNtzXFUxGkLQoKWtOHkABlve2H1iQGYzHTwKKnp/x7UynOp+k059GRkcqk14XC6ixDceNDoeIahh0dzi/arsjlgPvuo12bmOA42Leveh9qYYF1ELu6gJtuWrOkwpa0RYkESZDeXj6jqRTnDQkkVfKMaW26NXd08O+JCTOP2MShEInA+rX1JPCrtX95c+l+bBluJWSiDSmVIF3ba5U6r3WOdqdnz+N16ew0hGKr2TqbVJTsRUG96yuKctHzTHObes2P+TzwT//EufGGG3ica6+tvv/B4cPAH/8xEzx+7/cYxCuDprBFflAjv7Qp2A6ZiEHj5wAMAfi/Qeysu5sPwsxMcRv1fJ4PXDpdmbx5PbS1UZ75yCPAY4/x90iEv6fTrJkoEXspAhxdaUIeCjEN//x5ZoHt3+9PCqGU6QQ3N8fveeQIo3JTU8YRyWZXy5JlQgqHTbFUyZTq7ORkPjDgJMr1hNamk3YuRydqYiL45jflEIvR6erq4v0POtI0Pc0GR21tlCwPDHBRd/Ikx+u+fS3hlARmj6TWixB6jZC4+ZVB2xJoJ4N2qBaexzlmYYELxFyu2IHu6jKNTyKRyjIeMhngfe/jmHz1q/lzbKx6x/zRR0kgXn31ugRiMyFQ3ygIKEV/ammJ/s1ahF6Qxxse5jw5N8d5MxKhD1RqT6UJXiLB9164QJ9vdNRkrkqXVJs0FL9IMn8iEUMaOlmyA8B59Ec/4niRRIFdu6ofH4kEa6WHQlz816OhXcAI1Bb19tIvSSRMY6y2NtqUSuXNStF3ltr04bBptGITgEKOVZKRGIS8WfYjahS7rl+l5JX4cfWQOtvnKF2CBwaKCUVREQihWC85btCoRAZd+v5a6ytKdqdd97ne88Y3v8m1/1OfyuPv3Vv9GvLCBeAv/5L3+M1vXpNAbFU0nQ+1EVwmYoVQSv0MgIMAbgNwDsAN2v/FK/t+ydZbWOBkZC+U5+fN5FOLJAqg4Xj0UR7v0CEuon7yEx7z6quLJ8FcztRXTCQo95yf53svuYRG3JZBV2qECgUagTNnOAF3dBQbE6W4T8kwFFly6feIRnleWvP9AwP1XyBsN8TjNPyZDO/R5GTjrvHiIolrSXkP0iEoFCjJuXiRRMHBgxz78TiJ9lDIdA1bB5sa5QrAHq35XrvQdzOQdHaHQNnshgClxGIrOI8OjYWdXZhMcu4QKX1PD7PUJMuwu9v/GNIa+OAHge99D3jTmzhfi0y1Gpw9y8j9zp3AK16x4XO4ZW1RUBBfRhqHNAJac06RusFDQ+uPh1iMga1UynQwtf2qtrbiDMNGZYs7tB6OHWMwdM8ezuUjI9V3Y85k2Nk5GmWwdYOSClvWFsk6LZPh9ezsNMGofJ5/V7JGi8fpe/b2ksjp7i4mQoQQFIlypYSe1FIEqpM3l35XOW41mXC2zyb7EP+sHjYrlzNkoqhZOjoModgMfmy1KJVBl2Yr+pFBy3XSmtenEXLwhx8GvvpVrqlERXjwYHX7WlpiBuK5c8Bb3gL81E+te/4tMzsGxC9tChyJWCGUUvcAeAaA+wH8J631o1XsZs2L7XmMWtvdBCUr8eJFTjZByJtTKRKJ4bAhEh99lIb2mmvWdrC1Jvl3+DAN0dgYDZAMH4mIC7EokSApRG9nGKZSppFMOs3P7N5NcrKvr/LvVyiYrs75PM9hYICOuiMSqsfyslnMdHbS+ax2MVwNFhY41np7OS6CvJeJBMdwOs3xJoXBUykS6skkM3VHRjbc1WY7y/egNnu0ruEXIrFZSTk5P5tYFIgM2iYX3WJ7+0Cy6u3NzmqXcSH1wYLIqrn7buCOO4CXvQx40pM4p1W7aF9cBD7+ce7jda+rKPN/S9uioBCPm1IcjbRp+bxpztDZScKgo4Ov21mGIgcUnyYUos8nwbtmtMMOzYeLF1kHfXzc1Hfdu7e6OVBKIZ0/zxqI+/ZtuJ8tbYs8j8+y5/E5FpJfGmxJXfqNntWZGVMLP5ViMNsuZVAtkRiUvLl0f0D1slrx02Q/9Q72Sn3jdJo2FTBy3a6urZGt7VcGLetwyQ5tFLE6MwN88pMMPOzfz/O47rrq7kEuB7znPcCDD9IvevGLN9xPy3j9AfFLmwJHIjYW617sXM7ImgcHjbx5cNDU2enqolNZiyGUDMSODhImQiR2dJBIXG9RlU4zyplMcpE0Omqi/JK1KL/LpCGdLqWws51lWCiQsFpcpFGTffqZYLQ2Eux02tQ/clJnf0ilOP4SCd6z8fH6dY9cCyJ57+sjwRfksS9coHy5vZ21QYUYzeUosV9Y4ERXYQ2zlpmg1sC6tmgz6iPWitLairYUpLQT9FZwJB3oRJcShrJwkALs0kFXCrUXCiYKHwQeewz40z+lzO/lL+cxdu6szklPp0kgptN0lAcHK/pYCzyd66IhTqgQdOFwY4NicuzFRfo6kn0kAVORJdtZhkrx/YuL/OzAQHlJtIODjWSS2dCRCAP92SyJv2r8YK1ZG/rkSUqhDx6saPxteVtUKJCoVYrXWNYquRzXIYApMbAWPI9qLGlmkU5zX3bASLL4/BKJco62LLpW/00kzkD1ZKItdQZM/dZ6klmFgiEUpSyOdB+2G6i1Okpl0HKvABOkAiovzRIEUin6MgDwtKcxi/Cqq6qbe7UGPvQhZjS+6EVUZ6zXpHUFrW6LWgKORGwsNrzYqRQzEkMhOo4iuRoaoiGcneXfExO1SUuXlpiR1d1tiMSHH6aBvfba9bMfPI/dci9cMMSf1DRMp4vrLUgdi+5u081MMhbtTlCpFPcXj/O1ycnqsi4zGS4UlpZoeLq7TW2rViBCNgOZDMeVLLDGxrhgafT1mp2lczYwwEV4UMfP50l8z83xObr88uJi1idOcHG3Ywfrflbo1LT6aNrQFgmRGJQj2miUyqDFsQacDLoVUdr0JJk0tZAA0xRMNluWXNp9OSgyJhoF3vUu7vNtb+Nxpqb81Q0WFArApz/NrJ9XvYo2sEK02JO5Cg1zQrNZBsnE/6gHtC7ulpzLmYVzoUDfJJfjGJ2cXL+ZSqFAxUYsxr+Hhri1sjzPoT4oFIB//3f6cwcO0JfesaPiQMQqnD5Nv2lwkEHXCsspbQtblM3yuWxvL/aVS+XN3d1r+03pNGWZvb0muDU5WfxsC5EogVw/RGKQ8mZ7n+JD+W2+Imi01FngeYZQlHW11OPu7t56CSeFghmLoVBx45l6d4PWGvjsZzm+n/c8zl+7dhnll1/8y7+wvMsNNwCvfW3FKo9Wt0UtAUciNhYVXeylJRIeXV0kVCS6NTTEh3N6mkZwcLA2sicaZRZFby+dhGSSRKJSzEi0nQat+X9bljwzwwWPUpRL7NxpMgztyTOTIUkojVukJgNgihQLuVgomFT/zk4uyKpxggoFOlGxGI1oW5uROjsHnMjnSdxJzabRUY6nzbg+09N0yoaGeM+DciZEvpzJUL68a5f5n9aMBp85w+996aW+Fv+tPkFVZIvEERWHsdWIxFKUFv4W6Q9Q7Mw6GfTmI5stJgylkyBAG2UThusVB5eglsh4gnKYCwVmID7+OPBbv8UF5eAgbVg1+NKXWJP11lsZ2POBVh+lDXVCl5c5Jvr7gyGTpfmTTRoKwuHyWYapFH28fJ7nMTS0/rjM5Tg/isx5eJhjzQU+HAQ//jF95yuvpN/b31/s7/jB9DSzENvbmYHow6ZtG1uUStF37u5efX1knRMOmzr35bC4SAXM0BDnOFEA2X5HLURi0PJmQRBkItB4qbPA8zgHCKEo18fu9NzKvl8mw03UGJI00ahu0N/5DgMaN9/M+xuJMAuxmn3edx/rTe/eDfzH/8iyChWihe9g68CRiI1FRRdbOuJGo5yABgZILHoeJ5u2NjqgsRiN3eRk9WnZCwt0FgYHmaElRGI6TWIQoNOdTBbXPxSyMBymw5FO8zwqkaDaGSVCLtodWDs7aXhiMe5rcJAR1fUi9usdK5nktUyluD/p6twCHebqgkKB42d+ntdneJjZh5sllbpwgeNweHjDot2+cP48pTgdHSTJS8ePNPjp6iKB6DPNvtUnqIoNv90hcCsQiaUora1YKoMulUJvte/fDCgUVsuSJXtLJF82YViJ7ZbMg6Dly4I77mAtxF/+ZS7W29urD4Dcdx/wr/8KPP3p3Hyi1UdkQ51QaXiiNf0AP/fL8+irlNYxBLgfmyzcSKrnefRLRAFgd2VeC5kM5+7lZdojad7jbNL2xunTLMmyb58Zj/v3V0fGLC4yuSCbZUajT5+s1UeiL1uUSNCW9PWt9i8rkTdrTT81m+WzHIsxqaOUlKyFSASClzfLuduNPmohE8tJncXnqjekW7FkKUp2pN3puVXsa6Fggq1SB3KjGpqlUmibEqqmG/Tx48wcvOoqrtuTSdZBrMb/OnqUdRC7uoA3vAG4/npfY6xF7lprw5GIjUXFFzufNx2I+/roKMZifNAHBzkhJRJG3jw+XlGNgLK4cMHURBwfJ6Hz2GM0SJddxtfsOoalk6HWdGJmZvj/Awf8GwwxfjaxmM9zgp6fp+EYHWU22chIdann2awpWq41DdPgIM+5VSaJWuB5vJZzc7zeg4O8t5uVxi8OVDTKe1ttI4JS5POcfObnSUxefvlqZ2R+nmPW89jBcGzM92FafcT4Mvyl9Xm2MkRuY5OLdo2Z0tqKLrPZH6TIt00Yiupp8GEAACAASURBVLwIMPVzbVmyX/tcL/my4L77gA98ALjlFuBnfoZzy86d1R3n8GHgrruYQXTrrVWdzrayRUFAfIuOjrX9JpEl21mGdoChNMOw2jEmxGA2S1+kEjWAZDJKJ+fR0eqCrA6tj8VF4P77OQZGRzmu9+6tTq6/vEwyMh5nYHXPHt/z/bazRdEo5zApm2SjEnlzPs9gdns7bdHSEv1Wu1yVnVFYSiRWKke161wH6ccFSSbK98zlGit1to+fzRpCUYhXu9NzM/q/QoRKGbFafJ716ituJINeXGRwdWiIdRBnZrj+qqBR5SrMzADvfjfnuNe8hvvzySu0ui1qCTgSsbHwdbEzGU5QmYwhEqNRQwB1dNDYirx5YIBOxHrGVgrR27JkcWKnp5lNeOWVnGROnqSRuPpq7nsjLC6yvhzAiGi1si5BNms6O587xy2f57WYmuI52TUWK13Me56ROudyNLbSiGUrEgJa897MzprrNzFRXd2uIM/p3Dneg/Hxqki8spBan9ksHekdO1a/Jx4HTp3i2Nq1q+rsoVafoHzZItuJ3Q5EYinsSLmQi2vJoLfj9VkPmcxqWXJpOQt7q9UGS1fGoOXLgrNngT/8Qy6yf+VXaHPGxqoL4p0/z+6Fk5Osg1jld99WtigoiBqip4eLk9I6hqWy5NIswyAXtVpzLoxGud/h4cpIweVl+m6ZjOn8XEutbIfWQibDgEZbG2XHs7P0p0ZHq9vX0aMcT1IfuooA87azRVoz8UKyCctds43kzYkESZPBQSO1LQ3wl6tRXQ2RWA95s+y79HxqsZGlUmcpDdFI38omFOU8bEKxGdaLEjD1PKO4CJpwLSUVy8mg83n6Mskk8JKXkBgfH2dGtF8sL7NUzLlzbFb3jGdUVdas1W1RS8CRiI2F74u9vEznUms6lb29JIQKBSPJ1ZqZVdFosbxZZMM2YWgv4Do6ijMMFxeZlTg5yYy/bJZ1VtJp4NChykjBTIbFmJeXSVTt3h1sDarTp7mIS6f5Xfv6jJRbIn1CLFaShi7XN5nke3t7aay2itQ5FqNzks3ymtTakCcISC3CpSWOtWqiVOVw7hzrk3V2Ur5cblGfSvE98TiPvWNH1aUAWn2C8m2LgqqDs1WwngzaluNsJxl0Pr9alizXJRRaLUsOMgva84yUpx7yZYD7v+02znO/+7v8fr291QVBYjF2L+zoYCfmGhp9tPrIargTKtku8/O8pzbZLF1DbdKwUbYulyOJk07znEZHK5ufRLEhDVtGRzc3SOhQf2gN/OAH9KOuv54EopRm8YtCgQTixYv0x/bsqVrZtC1tkefxufU8PnvlssA2kjdfvGj8UinlNDFRbHtsIlGO4ZdIBOojb7bPMUgyUTLCbfKzUVJnG7mcIRQlo1Mkw/VQO2wEWd/ncsa3aiSpWUoqfulLtCG33mpKdFx3nf+AWz4PvPe9LKv2ohexvEuVtV1b3Ra1BByJ2FhUdbFjMUaqwmGSZt3dJAxzORKJ4ixGo8weTCZN2rwdxbEJw56e8s7pqVPMSNy1i/KsXI5EYjLJDMVKCB8hiaanOVkeOBCsQ5vPkxiTSbu3l9dFCvHbtbS6uoobt6y1aBWps9SelKY2vb2tufiXyKYskCYmmkPu5HkcG4kEMwCHh2vfZy7HyWthgQ7cgQNrO3GPP06yfGSEx6+w42A5tOCoKEJVtmir10esBRLlt4lFWwpS2g26GaLYtUDqzdqbXdtWbK9s9awtlMsZSXS9HHqtgb/+a+BHPwJ++7f5nZRiIMIvyZTJkEBMJtltsEY72OpPYV2dUJGo2VmG4heJtL6jg3NHLbLkILG0xPlMawY1K6ndKNmM8/P8fr295js5bD0cOcKg+tVXcwznclQA+Q2Kak0F0ews1wU7dlSXybiCbWuL8nmuSaT0Urk5wZY3d3SYOUT+d/Ysf05M8Dnu7FwdoAqKSKyXvNnef5BkIlDsVzVa6lx6HkIoSsZ6W5shFKvtUVAphNDUmmNks5NeHngAuOceEn59fVxjHTpUnLBSSX1FrYHbbzf1oZ/xDCaEVIlWt0UtgZYlEZVSPw/gwwBu0Vp/bZNPp1JUHeWKxTj5dHSYroLnz/P1UIhOYzZL47awYKJYElH0Q+KdOMGo2CWXMCqWzzMqkEhQMlFp1kU0yn1pTWlpEISRjWyWROXCAidBkcWW1lcs7eppS6C7u4sXDZ5HB15I2nDYdHVuhsXFRkileE1krIyP+y8eXy94HknqZJIEdTVdt0sRj9OZzmbpQK9VBNzzDIHY28vrUqPcvuiKtqA9qtrwC5EoEexmGFvNCulubROLpTJom1xs5uxOuxnW8rJxYgE6zaWy5EZ8F6kFJLa6mvqJleLznwc+8xng9a8Hrr2W12Jqyr8D73nApz/NBeMrX8ls/RqxbW3Rqh3p1d2SZaEM8Bmzswzb2/n/pSVDejcLCgUSCTKXj45W3lAoGqVf5Hn0XdbKjnJoTUxPM7i/Zw/9qPl52pFqAsVnzjDgHArRL9q5syYbuq1tUTbLe9HezkD1WtdxLXlzJkNFTSRiVGdSaqnoJMsQiULa+SESAeOTBC1vFtgKlqDIxGaQOtvnIoSiBFGllEpXV/BqC8mEFH9ns33Gc+eAT32K66+bbmIi0yWXMBixkQy6tL7iF78IfO5zJCCf9SxmMtYwJjccZS1on5oOzq2oAkqpEIA/APBDrfXn6n88PmDLy5zw83mz6FxaMpO/SFUlU3FxkQsdn11nsXcvDeOpU3yAx8aAa64BHnmE9eYkUrYRBgcZJT12jNv4eFWFmtdERwf3Nz5OGfaFC4wETkyYroWAWWjaxKI0pJH92MSidG+Wrs4LC7yWPT38Ts0oE8pk6AjG4xwXkuXXLASPjKd0mlmuldTY3Ahnz3KfnZ2cbNYrkH/2LEnwSIT3sNZ6nc2ERtujUMg4BfIsN8s4azZIxqYdmbYdYLsBiLy/tHHLZlxbkSUvLxubacuSIxHOC0IY1jvyXg6NkC8LHn4Y+OxnWdz7pptM06ZqjvnVrzKD6IUvDIRAbCo02hZJ8NSuY2gX+Je5XUjDcr6HSNLSaUMsNgMkMJpM0q85f54+zdDQ+j5UKMSxOTBA3yUapZ84OMjXWz0DersjkWAjxKEhEn6nT/P3agjE2VmOLa25j8nJrTOXN9oWAbQzg4NcL0Sja/uZ3d20M8vLfDa7u01G2cgI70l3N9cc0gDKLnchMmTxIcRPCIUMaVfpOqutzQSGpeZ1kGNAfCA5r0Kh9nI44TA3IVPFj9oMqbOt8hOSTwKuy8um0YkQitVeW6nPKAq7ZsgwX14GvvAFzjXPfCYbsg4Omlr0Mk5tlJKKEuT7wQ+AO+/k+vCGG5iwtJXnqs2wT/WAIxGrQwjAuwB8BEDgNz+bpaMgdQyTSVNsN5vl5NPXxwe1r880R+nrM5H0kRFOOjMzJFDGxip3MpRiMdRCgZmE4TCdz6uuAn7yExoKz1s768tGRwdl0GfPkuRLJIKXN3d1kfhcXqajffYsMyknJzmJi9Ht6jKTuixA7S6hsZj5/tIhtLubjns6zck8keD/BgZ4PTfb4crl6AguLhoyeS0pxWYhnyfZl8lUHy23kcsx+1C6Ol922fqTjZCrUg4gqCYuTYS62qNS2A5saWTRYWOIA2yjtLaiLQuutwxabKE4vamUOb7YTuk8GYnUp3C3X9jy5dJs8qAxNwf83d9xwf7615sFXjWBkO9/nxlET30qA2xbEHWzRZ63uluyneHS3m7KtHR0+HtOuru5z0SC97WZ5s9IhAurxUXOY8kk572NamhKAHhoiGN2cZE+ztDQxkSkQ3Minwceeoj27qqrmFTQ2VlZUL8U0Sh98nye/v3U1JbLVm2oXyTo7jbZzW1ta/u78j9Zf+TzfNYlgWF+3pSUWljgPbbvjzy/hQI3If+qIRJFziw+SD3kzaVkol0Wp1qI3ZeMcjsLfTOkzhJgjURMzcJ02vhX9lq0Uj9KMh0LBX6feqot/KBQAO66i37Yz/4sgxnhMNf360Hut8zPWjPJ6I47yFs8/enMamxr474rkUG3KDbFPgWNrTVltCAKheLGJ8vLpsaCUibjQyId0rHYlucODpp6flqbOgSRCEmbmRlTH29srLKHMBRia/bDh/mAHzzIye3QIRKJx47x3CspeKoUz6O/Hzh+nFkde/cG11BD0NNDQikep3N06hQJtqmp1dmYoZC5poJ8vjhbUbIQ5f3SxCYe533q7DRSg0Y7X4UCidL5ef49MsJ722xOYC7H+5DL1VSs+wnEYiQQ83lOVpOT679fskgBI2N2i6faYTurIoXZQpN7w1EaPbcj7OIYC2kmJK5NLPqpg2R3SxZZskDqNI2OmiBKMz0vjZQvAzzO+9/Pcf62t5mC99UEIo4eBb71Lc6lP/3TwZ/rVoIU07dJw1JZstSekjqGtYwDaaomc3sz1A+2EQpxju/pISE4Pc3zrSSzsK2N8+TwMD8rTfhGRpqn1InDxtCavnMqBTzlKfT/CoXq1D3JJBf9+TzXDyMjzamwaVX09RUTiWsR/qEQn2MhmvJ546eeOcP1y+SkyRidmCh+Xm0iEaiNSBRCTgKZkpUYNOpBJgLGF5Jgk2ziKzU6q00pUzJL/JZ02qjiJFlFCMXS7y+fyWbNvpolSx4A7r2XSTsvfjGDb9I3we85zs0Bf//3/H7Pex4TmHbsKM5YlAxWoLwM2mHzsBUuf7tS6t1KqfNKqZRS6ttKqSfbb1BKtSmlflsp9ahSKq2UmlNK3aGU2lPyvmeuvH7Set9nlFIHrfdcCmCF5sMblVJ6ZbtnoxPVmg7q7CzrBjz8MPDgg8zsO3eOBqa/n07BlVcCT34yf+7ebaRTvb0mJTqfp9OrNZ3B7m4+zImEOWZbGx/I4WG+98yZ4iyX9RAKccHT3c1zFOn0oUNcRJ08SUekUgwMMPuip4dk4smTxY0HgkJ/P8/7kktMNqV0jF4PEhmcmGCHu0OHSEru2mXq92WzvN6JBDMeH3mERWVPnNh4/0HA8+g8HjlC4zs4SLK3GaPI0sgkl+O9qIVA1Jpj7cc/Nl2/NiIQl5ZInkuR+ZGRYCQAG5SRbRl7VCts4lAme4dgIA69lFcYGuKz3ttrJLSZDO2QlK5YWjIF9mWM5nIkvi5cMAGcI0c4D0SjPMbEBIM6V13F+eaSS0zgqpkcNM+jo5rLrS5KXy989KO0YW96E69VNstr43dBMj1N2c/UFDsOBnXeG8zlLWOLJIAXi3F+m57m/BaL8Tu2tXFel4ZY4+N8HiTzMIjrGQ5zTEnR+mZEVxezk4aG6G9ImY5K0NFBX3DPHtqQ2VmO7Xi8rqfsEBAef5zPxuWX0xYmErTdfsm/bJa+dz7P56e/P5j61DbJXwYtY4uCwuAgn7lodOM1V1eXCVzE47yW4+P8nBD+kpFYCqllWEq02GVn/EAIN88rruEcNOS8lTLHCsKHlIQPId1ExWd3VW40bEWHlNuS7PdolOuUhQWjOsznad+zWY6h3t7mIhAPHyZ38eQnc5xOT3Ne9mtHkkngb/6G3/M5zzFrbztQLqVq2ttNsFCC7KJIkdrHQn5XynFY2Hb2KShshcYqD4EFND8CoB/A2wC0A3iK1vqoUkoB+CyAWwHcDuB+ADtX3pcE8CSt9cWVfb4PwCEA9wC4AOBSAL+ysv+rtNazSqkeAP//yvHuBfD3K6c0o7X+6nrn/Jd/CS319vr6jPxYtkoXJoWCmWgkmiET0NISjWV392rSJpWiE+J5NGKVRttzOZKI+TxJNUnVPnGCjv7UFB3TSqE1F7UzMzSsl166sTSnWmjNBfbsLM+/v59Gr9qoq6SoixRaFvHLy/yfZPGMjAQr/dOax5mf5/fo66u80PpmIJslUaE1Fz213N9slmMtHud1vfTSjZ+VdJoLLK05CfX11d7YJ53m83X2LHDrrWsWEG8Je5RMBtfMQOyQjPNmIp62OuzaipmMkSOLJFlkThIgsTvVN6vtKAchdiQi34isgnvvJYl4663A85/P+aqvz38GfTwO/OM/8h783M8F17xjZobk5t13t7Ytmp6GtmXJUr9QfjY6gySR4LPT7M3Ucjn6X+Lv+W2esrzMz2cytAWjo8XKDIfmwfw8g9WTk/TBT56kf++3pmqhwIB6MmnmgV27ap+zo1FmbL/zna1tixBwp3jP4zPmeZUFnyTRRAJlEliZnOS9k3IE5QLyUtfQbpBik4h+7ajWxRmJ9fTr6tHJ2UZpV2dpxNIMWdji20gmqtR27O7mvW6G2oc25uaAT3yChN9LX8rEjs5OJgj5bejzvvdRoXHLLbRD111X+ffVenXjFtnvf/tvwHvf66uxSqvYp6bDViARTwC4TmudWHn9OgAPAPi01vrVSqlXAfgkgJdprf/F+vz1AH4A4M+11u9YeS2itU6WHOdyAD8GcJvW+n+uvNYGssgf0Vr/fKXn/MEPQktLdokADg+b7JJyKc1rQeomyu0ThwDg66lUcXRLkM+TSEynTXZWJcfMZk0txMsuM6TQyZMk6CSC4AfxOLPLRBYdtLzZhufREZub4/GGhjipB2GgCwVTw2RurlhW3tdnumN3dVWXkh6Lcb+5nJG314t0DQKZDAlEgPe1FplMLMYMqkKB46sSGWEux+MXCry/XV0kjv06DKWEcS7He9zRAbzgBWs6yy1hj4IkEcXZBLZk3ZKmhIxNKb2QTJpuyUIcSvRWbI90crRrKzZ74WpbviwS1kaMrccfB/7X/2LWz1vfykh7OMyAmZ/jZ7PAJz/JOeHVrw5ujltcBH75l0kk3n9/a9uiaBS6o8PIkjcbWhvZen9/89uyeJzjQZpj+D3npSXjXwgZ2cz+xXZDKgV873u05095ivGZ9+/3Z7+1pr++tMR9dXSQhKwlwymb5dj5yEeopnr/+1vbFiFgEhHgmmtujr5RpfXKxe9UirbI83ivolG+Pj5ePggoRKJN+tVCJMr517N7s416k4kidbbl35shdS4HqcmbSpnrDRT7cJs9P2YyrF2YywGvex1LVS0tAdde62/O0Br42MeAf/s34OabmYR09dX+m8CWwvOAP/gD4NvfBr79bV8kYqvYp6ZDE7hsNeP/yI0HAK31Q0qprwN4sWL3m9cAOAfg35RSo9bnzgI4CuC51mefuPFKqV4AnQAWABwBcGOtJ/qmN9FAzM0ZqY7UMuzt5dbXZ+okbNTNSRaQwsj39RnCRhqzdHWtLgC/Zw9TpxcW+NCNj1dGpk1OsitcPE5yqLOT8piTJ42s5rLLKjf6O3bQETp+nPtMpymlq5dB37WLE+LsLInUWIyTemnB4lohGZ+SJQCYbCG7RopkBa2VWWPLcaemeJ7NVqupFOk0F+BCKleb7STy5fl5jpMrrqgsg8fzOLGNjPDYIuev9P5qzfsnGV3hsMleXVrifZDOY2ugJexRUNlQAqlbIgSiIxKDRTZr6hjKJgGktjba+Kmp8lntIo+xG7fI/ZLOjvbWLPdNGr60t5syHo3A0hLwf/4Pbciv/ZppprVzp78Ft+cBX/oSP//KVwbXiXl5GfiN3+Dc8Ld/u+5bW8IWBSGlDBJ2fcRksvmz8/r7+czPz9OnW16mX1Pp8yKBznic+zhzht+5mZUO2wWeB/zoR7T1111nMker8ZPPnaNt6+riZycmqicQ83kSWokEO6pevAi88Y3rfqQlbFE90NbGZJH5eZL9w8Mbz7FCGC0vc32wsGDqI87McF8TE6vHgPxdGtSVGoQSYPR7/vLZenRvtiFZgkImFgrBkol2bXvxhzIZUz6mnt9tLUhH53yeNlsae0lDFVFAydpRuIFGy5u1Br78Zc4Tr3wln/9YjGt4v0Gnu+8mgXjTTfSL9u6tnUDUGnjPe6ggee1rfX9829qnWrEVSMQja7x2C4AxAAfBtNOLa3z+iap+SqkpAO8G8BIAQyXvm6v5TMGHbfdubtksH0ipaRWNmjpVkYjJurCLr9rGIxIpTtNeWjJp2r29/KxkK5YW0B4e5rlMT9NpHBvb+CHu6iKZ8+ijrIlw6BCPtXcvjd7p0zyPgwcrN8Tt7Xz/+fN0cqR7c9Akh0BIpbExSqqlOcn4eHBNN7q7SdTu2EEjK9JzkdaGQpy4lpbMZ6SGh0jFYzEuYCRaXE0n0EZDinWHQiQQq130Z7Os2xaL0VHav7/y+yK1ReXZqaTZjNRas0l56bLW08N9zc3x2VorAmyhpexRUJD7I0SiEFzNQki1EiSz2d6klo8025LGJ5HIxs9ZKMT32O+ToIZsqVTx+0szFht9H235sp9SH7XC84APfIA2+53v5HVKpXi9/Trt3/gGA2zPfz4X/UEgnQbe8haqAt7zHnZ5Xgfb0hYFAQn0CYndbJKyUrS1ca5cXqY/c+4cfYahocqeXaVMmR1pKHfqlKlD2Uz1uLYTDh+mLbr+etrpxUXTYMcPxM+VRllDQ9WR4yKplTqc3/gG1xA/+7PAjesvj7e1LRJySIiXSgInUgdWmp/NzdEXHR01RGK5RplCwgVJJMo+xG+ot7xZyES7qUaQZOJaXZ0B/83qaoHdME+ShgThsGn+WSiYuo7S9yAcLk42qjf+/d9ZVuo5z+G4fPhh2qLxcX/7eeAB4HOfMz0HxsYYAK8VH/wg607feisTtnxiW9unWrAVSMSNoACcBDXp5ZAGgBW2+W5woPwlgEcAJAB4AP4KdWhC09HBCWF01DRJke6AuRx/7+gwkQqBSNXEeEgdDCGfhoaMAVKKZFU0yonLNsBCds3MMMqVTG5MpEUiJBJ/8hNuhw7R4EpkVJqlXHGFv65gO3fSgT1+nCTlnj3+jZMftLebY1y4YAq5T0zwfgQxUbW10cgOD5vaidKyXuqa2B2h5+f53ZeX+dmdO/lZKRTbzAuZ5WUSiG1tJBCrXXQsLhrZ/OWX+xsDMzO8zkLEDg2tHSGziRqRgYbDpm6cXctSal4ODQVCbjetPaoVdiFvuXaORFwfkvlqE4biVAK08ZJpZAeWaoVImYUQl0VHaUdo+/2lxGI9IDJtyZBslHxZ8NnPslnWL/4ig0Dnz/O6+80Av/9+4Ic/5ML62muDObdcjhmIDz4I/PEfA8997saf2QBb1hYFASl8L/NxK9R67ekxmUsSiJQi/pUgFKLPMTDAuVgaNg0McD/NIPvbLjh3jtvevfTdT5zgffTrF8ditGOieOnu9l9WwfO4HpHAd18fcM89rGf2nOcAz3ymv/2VwZa3RZEI51jJKKuk0aBkRbe10U84fZpJFpLZuBYh2dZmVAdAeSLRLyEn5VAKhfp2b7ZR2sk5aDIRKO7qbPs/9ZQ6S5ZhoWD8nPXmF2n6FYkUN4pJJjk/hUKVqRerxalTzBy84grgmmuYHd3RAezb528/J08Ct9/OtfeTn8zvs39/7ef3iU+w7vQznwm8/e118Rm3vH2qFluBRDy4xmsJkDU+BuBmAN/SWufKvFdwDYCrAfyC1vp2+x9KqWEUM8iB182QlPfhYTPRSMRPiCfJRmxr42vSqUuKsUq9vWzWpLpLB0vJeCwlEsNhLpYWFzkpZTJMmV8v26q3l9mDhw8zY+yKK7gfKdAsROChQ/4c7/5+1kU4cYKS2KWlyppo1IKuLjppyaTJhrx4kdeg0ij+RlDKNNJJp42MPRotlh+KxKS3l/cykzFZAYBxAO3mCM3g1CcSdG46Oni/qpGGa82J6uxZLoSuuMJfivziIq+TEIiRyOrszXzeTLpC1LS3G5Km3JgX8re3t+Js0C1hj6qFyDAEEuBwIDKZYsJQMl8Bk4E+PGye8UY933a9RIE41UIu2lFzeb9NLtZ6n8Wx9jxTs6uReOAB4K67gGc/G3jGMzgfhEKV1WG1cfw48M1vMsr+rGcFc26eB/zu7wL/+q/8+dKXVvSxbW2LgkBvr/HDapVbNQpSe623l4HR6WnTWKzSZzQc5j4GB+kXRqP0IYeGuDmbXl/E4/SvR0a4yD51yjSp8+OTijpE1g2hEH3MSqE1/fB4nDaop4d+0De/CXz/+5QjPv/5Fe3K2SLwOZSEEfHnK4GsU44cIRGzfz+f76UlzpPlgts2kWiXmAmHi5uw+F3jiDKhEfJmQTkyUV4L8hjSzKtU6hxkqZdMxuy3mhr50nSlu9vUjJYamskk9yuEYhCNPeNx4Itf5HzwvOdx/KXTXKv7WevNzwN/93ecR5/9bJ7XlVfW7uPedRfw938P3HAD1SNVliZz9qlKbAUS8ZeUUn+ttV4GniiI+VwAn9Fae0qpTwD4/wC8A8Af2R9c6bgzorWeAyBL39LCwG8EMAXgMXlNa11QSqWxOlU1EITDdN4GB2kwEwlTOzGZpBGRLpEdHVzcxWKmuHYux6wsiUBLQ49Uiu8pR44NDfF9MzMkckZH1ydN+vu5SDp6lJljBw/yvHbs4Pk/9hjTna+6yp+RsOXNZ8+S8KmnvFkQifA4S0s89unTzM7csSPYxYMY95ERkl4nT/JnWxujMwcPFk8qMknIBJFK8bwEHR3FxOJGEa2gEY/zPnV2Vk/4ZjJ0juJxkrf79vn7DokEF0qRiHEsRleqVti15CSzqqODz1ZPz/oTeDrNiU/uV4XYcvbID2wnVf7erkSikNb2ZmcGSJMkCSQ0m2RQnGobdraikH72++1MRT9OtxCUjZYvC6angf/9v7lQe/3raZNzOcps/Izd2Vk6tZOTwItfHMyiQ2vgD/8Q+MpXgLe9DXjNayr+6La2RUEgFOI8IQXvW6nhSFcXSScpkyNZiX5krCKTHhriXCiE4vDw6oC0QzDI5YCHHqLtveYaXvNkkr6on8BKNkv/sq2NNlXsWSW2VboEx2K0893dXA90dDCQ8c1v8txe+tKK7aOzRSsYHOQ1jUZ5Lyq9px0dXKMcPcoSVDIeFhaMNLcUQiRKZr88r7USiY2WN9vHtclEOf8gj21LnQsFb9Lv4QAAIABJREFUPjey1RIwldIonmeapdRqP23CUBRrUkdRGvPY5dD8nnc+D3z+89z3S15Ce3DxIhOG/KgzUingb/6G+/vZn+U1uPLK2ppuAsyG/qu/4r7e9a6aavg6+1QltkJ3ZmnNfTvYmvtXwUKWT9FaH1m5wf8E4BUAvgjg62Dq6V4ALwNwh9b6tpVOOQ8DGAfw12Br7qcC+A8AFgGc0Vo/2zr+twHcAOBdYHHNWa31NzY47ZouttZ0ZkX2LBGm3l4SXaGQkWbGYvxMe7vpzJXL0chEIlzklFusFQokEpNJ7ncjefPcHDMvhoaKm6pcvEhiqLfXf8RCsLTEfedyJNj8RFBrRTRKmXMmQ6d7x47gCqx7nmmuIx2EOzpMdK2vzzhsa31eOgYLsZhbiY3IpGITi/Uqjh6LMXNTZPHVLPwXFkg4a00HyW/WTzrNKH17O79nPs+FUi7HayPXRTqiRyKVjcVcjvdfOrKWeQZKJ4mfR2vZo7oaftvB4/lt7QWnPJM2YSiktTyTQhaWyuVbGeVk0DLfABvLoDdbvgzw+H/0R5xTb7uN5zA7y8XekA/3bmkJ+PjHef6vf30w84XWwF/8BSVAb3wjpTrOFjUekr3e37/5HTKrgXTRzfw/9r4zTLKyTPs5lVPn6jTTPdM9DMMEBpQgQZEgioAEWRQEAyquYZdVvzXsuusa1riGdV3125X1wk/FsOaAuigiKyBZJjA5d46V8wnfj3se31PVFc6pqq6u01P3ddXV3dVVJ77nee/3flIG9qenp7rz4NpsySS+HwxaJ0LTCtA0RESHwyiF4HRCCOzogCBsFIpCdOgQeExXl+joa+ReJZPYvyxjnursFBzyqadQz2zjRjgzinDLli0yAFXFGknTwHnNcOdQCNyUm3HG4xgn/f3F12o8R2vaUsdeYbpzNWAxkiP2GgV9J2ei+ouJeuhTnYnMpTpzIEg2KzIKG3Gd9IIi32e9oGjk2O+/H+Vdrr8e9mfnTswf27YZHy+KAgFx/37YDElCnf9166o/NyLUaPzgByFofvKTRcs8VDxCC9qnpsNqEBGvIaLLiOj1BEX3SSJ6t6ZpT+k+ayOitxPRm4hoC0EtHiei3xHRlzVN23Pyc6cR8thfREROInqMiN5LyGWngpu/jYi+QkTnEZGPEOb65/+XQN0utqZhsmdBkcUSRcHE0tWF3/1+GKx0GoYsGgUJtNmEUKVv2sLeCk4PdTgqpzfPzCD9OBjMr2+wsIC6iT4fvJbVRNrIMtKb2fs9Otq4KBVNwzWYnsb1bW+HoFRtNAJvb3YW96a9HRM/X1tOX+ZmOJySa2QxylFPemGRF/Mc9aQXFmudxEIhRGz6/ZgMzE7emoYxMzEh0uPNXldZxjZUFWN3cVGIpoXCjZkxo6ogaaqK+13iWpUiy1axR8tu+Jm4rjYhkUmhXjBk5w2RSC/iFxezP1Wg73zIL32jHX2UIpPylUhf5mP9j/8AIX3ve1GHdWICc9XgoPHxmsuhLk84DKJs1hlSCnffTfTFLxLdfDPRP/xDyxatFDQN3KlYkzorgTNWJAkcsVoBMJkEj0ynRW1vIzXeWiiPQ4cgGm7dCvtz+DDeN9NcTtOwjXgcC2tOxa9USzGdhv3KZmH/OjvzOdnu3UTf+x4EgNtvL8lLW7bIIGRZrMWCQXMcYXISz2BnJ7YTi+F55gycQpQTElmIq0VI1NcrbHQjtkaKiXpuo2mVU525QRw31Vwp5zEfBztsifCM83qpGK/YtYvot79F87aLLsLzn0qhS7zRwBRNAy/6wx+IbrpJlEPYurW267BrF8q6dHbCATw6WvRjZkREq9inpoNlRUSLYtkudiol6h7Oz+MB9fvxsHPTEkYmA+Evl4PQIstChCQSwiKRCLnv6SnfUWxyEiH2/f1Ia2WEQqiP6PFASKx2oTg1hbRZDumvV1SgEXDk4MwMJsquLhA8o+fCkaF8zf1+CLPlmn5Eo/iOLMPYd3SIaFOj++RUXhYWM5n8+mt6UdGM0LGwAGE1EAChNDthp9PwSsViuI7c3dsMFEWkQHu92FZbG7bH4k01RELTcJ8M1Aa16DLyz2iI4dfXzWHSZbUFOEe16l8s0OsLXvPLipFKy43CouVsj9jB4XLlRyw2aozcfz/Rt79N9KpXIf14ehp2c+1a4/dR0xCdc+QIiHIJQmsa3/420ac+RXTVVWik0rJFKwuuZeZyWVswY/EilcKYCgar52XxOLaVzYLj9fZaK+W7mTA7izTmtWuxyB4fx3gbHTV3TScmRJPAZBJcb2iotE3NZsHz02nYvGKO6wMHIAYEg0S33VY2Qrtli0wgkwGfdrvNNbuRZay3HA7ci8VF3OvBwdJlqFgAKyb01UNI1AuVjUpvLtw/n0e9m68UA2dgcJSfPtWZG+ZxqrfH0xz164lED4V0Wqz7OQvE44G9mJmBw2BoCOnHY2OwK5s2mRunv/0t0Q9/SHTFFYIXPe95tXHkAweI3v9+zFn/9E+IiiwBq9siS6AlIjYWDbnY8Tge+HQaaTiyDHLX0wMhyuOB8QiFRKdgIhGtyAaGvUuhELbR1QWjwtGNhThxAmLfmjUQlxiRCEKiucZLtem18bhI0RgehsjTSHCq9/w8JolgEEStnEGMxbAwzWRABLlxihHo69JwfYu2Noi51ZB+7vKtj1bUd2AtlgZdOAmzmNreXp6YlsLCAmq6EEEMLuU5LXX8fOxHjuDa9vVhbHZ2QryulbjMz2Oc9fZWFKqtPkE1xBYxsWRS1+xCoqouFQz1pQL4+dCnJbdgHPr0ZSJRd0hPxony04UKG77UCwcOQKR7/vNRa5Brx/X2mhOJHnwQ3Zhf8hJsqx74+c8ReXjJJUSf+UzFmsBN+jQZhmVIKHfEZAetlRGPQ3xQVQgP1dY45CjNhQU8x34/5nWrX59GIpkkevxxPOfnn4/rOTkJfmOGI83Pg/v39Aj+Pjxc3H7mcqKDN2cmBQJLx8CxYyjT4PcjyrpCWaGWLTIJTh/nKC2jSCSwtujsxH0bH4d9Wr++9PylFxILx0Q9hESilUtvZjRaTCxMdeaSLpy6vBIZFkbBda3TabEWzGaJfvYzHPcb3oC16549sEVmOinv2EH0n/+JyMUXvhDrte3ba3PAHT9O9L73wXa9//1o7FTm3lrdFlkCLRGxsWjYxWaxxW4HseBuYFzIlzvScrfNrq6lBl8fAj07C/GIu1X6fMJzoU+DPnoUnx0ehpjIiMUQDm23w5BU662WZeyDG8SMjjZ+osrlMHkvLsKA9fUtrWuSSIjaki4XiJcZglCITEY019E0Ueja769tgpTlpfUV9XVSOErR58O+w2FRn8fMflUVZHRyEpPI5s3GiupyMWJ9J9tQCGOSRUxNEw19agGLCNzUqAKsPkE1zBaxkKgXeJshvZcFrcK0ZIbbvTQtuVnFTyuAn2VNK56+rE8VYmFRX1+xsLZiLc97OAwvts+HgtySJOpMmUlFfvZZeNvPOQfe9nrggQeI3vMeeOy/8AVD84bVR6WlSGgshrHZ3t480SXVQlHAY7iuWjBYfbF7TcNztbiI7ba1YXvN1jCq2aAoKKeQyRBdeCHmxiNHMN+sX298O9GoqJ/odoODrlmz1AGhKKLjuCRhHLe1FZ+TJyaIvvUt/O/WWw05jlu2qApEoyLt3IzIMjeH765ZI+pnZrNwqJdygjdCSGQBm6ixmQWFx8D8oVGRifE4OCR33uYMCyvwRg7S+P73EXl4ww1wRhw6hHM57zzjvP3ECaLPfQ7j8qaboAls3FhbX4OpKQiI0SjRu95F9OIXV5x/LXDVrY+WiNhYNPRix2KYUAIB/K6qeOhiMRAMvvWahs8MDVXuVnv8uOhSyBGNDK75MDkJY7ppU77RiMchJEoShMRaOi5PT8PQOZ0wTiuRXpTJwLCFw6KLod+PiT0WE+/Vs4thYaozp5/Uc0FTmAadTuOcuC7l+vX5NRYrTSzpNNG+fbj/a9ZA+C13PfRdbVnU4Q6D2awQkG02HGOlmp1GkEjgHAMBw55/q09QDbVFTOg4rZmo8UKivlN3Yd1QHl96wbCVllw/cPdl9s4btVWFadCcLkWUX4/ITBq0LCMCcWwMQuLgIBbLkgT7ZHRcHj1K9KMfoZv8jTfWx8b/8Y+Iijz9dKIvfalli5oRqor512bDvGuFBWIlpFJwNssyBKXu7urts6pCSAyF8HdHB7bXsqfFsWsXHM7nnANec/QoePWGDcYF2FQKi31OT19chACgTztWVXDHWAx/BwK4N6Xu8+ws0Te/iTHxqlcZzvSw+tOwYrZocRF8t7vbuJCvaYhA5IhTVcX40TTMa4FA6WYryy0krnR6M6MRYmImgxfXYrfZSqc6NzMefpjoySeJXvpSRB3u2oV10ebNGEv63gmlrmEoRPTpT+Oev+Ut4FYDA+aiGAuxsIDIw5kZone8Aw5bA2s+q9siS6AlIjYWDb3YXIuPm3REo6JgsqKATLAgFQ7DKKxdC/JRavJRVZCLeBzbDAZFjQVOheZowVgMQuLgoDA+uRwMk6aha3Mt4l8iAeKUzUIAHRysflu1IJmEuHriBMhcfz+EzZ6e5Z00EgncN32qM3uh64nJSYilHg+2n0qJCFYiEbHFUYv6Dqvz80hfliSMhe7u4vvQ153jbTudoqOyy4XzPXECY6atTYiatXaHzGQgSrvduHcGCYbVJ6iGG/7C+ohEy/d8KMrStGRON5GkpXUMmznlxMpYju7Lhd2g9WnQNtvSiMXC/d17L9FvfkP09rejaPjsrKgnZdR2zs2hZmFXF1L86hFt9eyzRG99K4TML30JP1u2qDmRy4HfcPOu1QCO8o9E8NwEg7WdmyxDGIlE8HdXV23i5GrEiROo7Xz66RDpZmawYB4ezq9jXg65nCgRMzQEe+b3Cz6saYLrq6pImy0n6i4uEn3jG+B6r3wl+KxBEbhli6rdsSaEfDMRvNkshESfD2JNKgXhhusllio/pW+GslxCItHKpzcz9GJivZqvcHaFquJ+FfKbwlRnPT9pNhw6hDIq27cTXXklbNGRIwga6e4Wa3y+l7ym159zOo0IxPl5OEPn5rAm3L69+usdjaKJyrFjECWvvNKwbmB1W2QJtETExmJFFu6RCIyWyyWIr56gsGd9bAwPLNf7YU9lILA0ciQSgaGw2yG86NOTczkY1t27QYjWrhVCj92O/R05gmN6/vMNpY6WPb+jR0F6OjvhvW2kgZZlkLZQSNRPc7sFiaslhdkoslncD+4e6fHgWtSa6qxpEBDDYVH/kVGYZsxFhInEBDM3h+MKBovXwtRHhnE9Dn0KqZ5EZTKYRJxOHMfcHM6v1i6osgyB1GbD/TIx0Vl9gloRw8/e73rWR+Qi1nrBUC9y67t0cxmG1RA91OzQpy9zwe7lAEc86IXFwjRorq341FPoeHzVVRD/YjHMY93dxm11IoEUP01Dl1Kji/1y2L+f6E1vwjF85SumO95bfTRbkoRypHxb2+pK2c1kRLMUvx/O0FqyHHI5bC8Ww3a6u+ubnWFVhEKopdrbi7ph8ThERW7cZwSqisV/JgMRkrv9Dg/j+sbj4IWKAo7e2Vl5rEajiEAMh5HSuGmTKSeb1e/qitoiRcE9JAJvNvrc8XosGMQcwl3Y9UJPsRJSLCTabEv3VVhXsBY0Q3qz/lhqFRM1Dc9cNiuyK8qtO5mj5HLGujo3GqGQcIrecgvObdcurNu3bMn/bGHfBEmCfXC5iO65B1lnb3ubaNhqpptzIZJJog9+kGjvXqLXv57oZS8rHYhSBE1wZVc/WiJiY7EiFzuTAZngEHkuDF7oZeY0lFgMhoEjSCQJQiLXTmFjyRFcudzS1AkiGM29e7G/0VEYGTZAsRgWTrIMI9XXZyxUuhRmZkDAnE6ETddjYVcOPNkvLGBS6OrCOTgcmMAnJ3GuPh8iShqRbs3pKpEI7onDgXvW0WF+EcBpEtGoqPlYCdksRIPFRQjI4TC+u2aNSBdl8YhfRPkiT7GJWJYhIGoaPO1zc/jc4GDtdVumpnAvBwdNLwStPkGtiC2qR6OVTGZpWjKPJYdD2DaOjrV63TIrQp++bKbze73AEQB6cXF8HE1KRkaI/s//wTFxl3l9/d5yyOXQtXBhATXCaqnxwzh2jOiNb8Q4/cpXMH+ZHLMtW7RCiEREY5LVFGHHzVJCIdjm7u7aORWLk4kE7DQ3+muGRXSjkckQPfYYrsMFF+C9I0fw3I+OGhtLmgbbEY3CpsVi2O7wsGiaIsvg052dxhbyiQQitWdnia69luiMM0xHo1r9bq64LWLR3eGAKGj0+ZiaAhcaGsJaa24Oay1eezA3KhxbjRIS9enNxfbVSOibrxCZExM5805VRQkvMzassJGc3Y61x0rNH7kcOq8nk3CK+v0QEFkALLcuymaFoPjjHxM98ghKHwwNwR6ddVb1QUKZDNFHPoIMjVtvRQSiUZ52Ela3RZZAS0RsLFbsYicSwmvOYcnt7UuJhaqCOCoK/s/CVDQqosX8fvyP6/Dp05v7+/MnB1lGZ6dsVtRV4P3EYkTPPCNIEBcCZs+GvmmLEU9oMim8smvXmjY4hqBpWEDOzeEadXTgnIs1CVhcFCJrWxuOp9qGMmbBXZ2TSSECd3QYq7WiaYhKjcWQHtHTY3y/c3O4B5y+7PWK+kiLiyL12uUStZICgdIRYpqGVHHuOsedwqsQ/ZZsd2YGY6W/v6pi8lafoFbMFrEnmFNlygmJ+vqY/NI3/ilMS15NEUFWBEeFKgruRTUOoeVAMon6h+k00Qc+gLlmbAzjkG1JpTRoTUPXwoMHkeJXS40fxvQ00R134Pi+/GXMkVWM4Sa4wjXBsiSUaxQ7HMvvuFwJsKCRTmOOrEejlFRKCBwuF7a5EjWtVwqqigjEWAzdRQMBOMATCWTSGI3amZzEdVy7Fn9z0ztFAd9mjmWUc6bTiEaanESk9hlnVFUqpmWL6oBMBusMj8d45JWiYE6z2yHiaBrmF0lCkAPXF/f7lz7DnHK83EKifl+SVHyebSTMiIlcmiWXE87RWoRQTcO29MLqSqQ6//KXRAcOoAHKunXI7JueRnCPUQHwwQchRF5yCRrCHTmCMbh+vVjHmzkvWSb6xCfQsf7GG4le8hLYRpOwui2yBFoiYmOxohc7EhHiYDyOB7WjY+mEoqogJLlcvvCUTotIN04X9HoF0eAO0MXSm597DvveunXp/3btwiLq9NMxwXG0ItdfIBIh4ywqlirOryjwzi4s4NjNFKcuB+48ODuLYw4Elp5nMagqSPjMDI6tq6s+jUCMglOdubEO1zUMBIpP3qoqCO3goHECo6pEhw/jPNvaMBlxXTomDCwUEuH+cgqqPg2a0y44iow7iw8NiYjavr7a61DNz2NbNSxgrD5BrXjaDtdHJBKRqYXdktlxQYSxoY8ybBaBqgWgUenLZqFpRP/2b5hn/v7vUd9rYUGUWnC5iqdBcwo0v7jo+OWXE517bu3HtbCACMT5eaIvfrF4yQeDsPpTYGkSmslgvtTPb6sNsRicgJqGhWVHR+22Nx4XadMsUK6W+pLlsG8fxJ7t28EF2dk8MGCcby0sILI6GAT/PnFCOIsdDtwjM9cylyP67nfhsL3iCjgzTKQN6tGyRXUCBwJwDUsjSKUgAre3I3som8Waxe3G/UwkME8XS29mca9YE5R6C4nNlN5MlC8mFmu+ksuBm2oarmW91296/tHIVOdnniF66CGiF72I6PzzEaSxbx/WfiMjxraxezcyKLZvR4mYPXsw/kZGhOhKJGpiV+KGikL0+c/juK6+WtijKq6F1W2RJdASERuLFb3YXPuQm3Bw05XOzqWCHItm2SwMQuGEk8mICMVUCu9xCrTbjag7PQnJZGBcNA1Cop5syzIMUTwO76c+dVYfLs0dsBh6o1SYBj07C2JltyNipJbmG9GoiFrzekH2OGrSKBQFxzQ3h2vQ0wMRslELbY78jERwTe120dWZPUSqChKZTMK7bdQLlUzi3oZCuOccuaiPFPN6S08CXENTX2ORU+ujUVFTkzsxG+xYWhJcL6azs6Z6nFafoFbc8CcSeGWzePbTaTFGXC6MGRYNVyIltgXj0NcHarZ79fOfE/3wh0SvfS1SYpJJ2PP29qVR1ty1Uv/SNDjBHnwQ6T0vfWnt3RajUaI774TD6/OfR2fWGgSUli1aYcTjgis1Y9H8ekBRIF4lEiKCsB6L6WhUNJTgZn2rVYydmgLXXb8emRrpNCJ/AgGkIRtBLIbvtLWBK+/Zg/fXrKmuFraiEH3/+3ACX3IJIpDMpNEWoGWL6ohIBM9bR4fxNcfCAtZuvE6Jx8F3OXuMGyMWS28uJySy0FYvIbGZ0pv1x6QXE4lwrWQZx7fc3KZYqjNnRtQbExN47jdsILr+esxfO3bApp95prHzHB8n+uxnEdhx110oX+ZwgCfxMSuKWMNzUIDdLtbt+iw+TUNGxv33E112Gfja1q1Vz6lWt0WWQEtEbCxW/GLnciBtLhcIWyiEB7pYoWu9kNjWVnqRw9uMRoXHOpsFEdm4Ed+VJExee/Zgf1u35hsPRcFCLRIBuSpVa0pVhZjIhokj2YiEl8jjEVF16bRIbzZDjBIJeIhTKdG5t9ZOwLmc6MAnSSCBfX2NnUCTSUFOJAlEoq0Nx5VOI+rPyHkqCkTHPXtwDzZsQKSlzyea81RDRDnV+NgxcT8nJiC4cjoVC0sc/WF0Yk8k6taUxeoTVENtkb77tj4tWVFEKiA3JCqWbtNCc6JZ05cZu3ZBpLvwQqK//EvMCRMTsLdG54MjR0C2h4eJrrkmP1qRU5D0UYuVtplMovD4nj1En/oU0UUXmXdKFaCJrnhVWHFeVCs0TThoV3udv2QS/EWWca5dXfWplxYOgzsqCuaDnh5TDT2aHvE40vM6OhDJrGkQAxXFeB3UdBrlFOx2XJ/DhzHWNm+urlmNqhL99KewRRdeSLRtG/hoDffT6iO/6WzR4iLue3e38XJEExPgXMPDmJMWF8F9g0HwZm5qSLSUbzVSSNTvrxnSmxmaJhr0sWO0UdljvH+9E7Peqc7xOGqfut2IHnS5IAByHUMjJRAiEaJPfxrH9773Ibo6mcT3S2kFqpovKPK5cRDQvfeiZMzFF0NAPPPMmq57E4yk1Y+WiNhYNMXFTqdF+o3dDmPA9VMKweQ4k4G3tNJih2sETUzAqEgSxLe+PrH9ffuwvy1b8icvVRURbaedZrymod7TweIiL/Q0DaJRIoFJuDCduhhSKYhY8TiOr6+v/t0EuSkNi7j9/ZjgGxnBw8W3Fxdxr4hARsstrrlGHTfGWVjAteECuvWYaJNJiL/clGZ6Gvezuzs/DZrD5LkbNAuLPOEXngNfc5cLXtoa76fVJ6hls0WqulQw1N8rTktmEZgjumy2/PIFLTQ3uMA4EZ63ZhN+5+eJPvQh2I0PfhDP/fS0cCoZOd6FBdQJa2sjuu02IWowwS+MHCDKFxT5d0YmQ/Q3f0P0xBNEH/0ovO2lSkuYQMsWNQFkGdyHnSGrGVw7m+tB9vTUJxWZtxsKiYY1PT3Wj+6UZTRSUVWIdS4XohJDIUQlGhkvsgzOFY2CLy4uwr5U0fyEiMCNf/lLRB+dcw44HDcHrAEtW1RnaJqI1DVakzSXQ5QYZ4VpGjKhZBljx+HAWIzHi6c3s3jVKCFRn95cbJ+NBK8nFQXH4nKJmt2Fac6NQL1TnRWF6Ac/wLr4Na+BfZ2YwJrrtNNgAyohk4FzdmaG6D3vgSA4NQVbZDRTjDtc89r9Jz/B65xzkMZ89tk1B+1Y3RZZApYXESVJuoOI7iGiUU3Tjpn8rkZE92qa9tplOLRiaJqLHYuJ9BtFwd9eb+n6cJGI6PRllCCn02iywUIZd3aWJBicnh54PvUeWFWFyLiwgC51Q0PVnR93B2UDNTUFQ2mzIWKOU2bYA2Kz4fOzszhXux2Raj09yztppFI4tmgU5IDr4jRqosrl4A0Ph0Uqlt0uujo7HCKKjFNPWeTTNNSxPO20+h1vNosIRIcD5HpuDvdlcHBpVIIs56dAc0QUkfAesrDodIKISRK2VYfIzyVnfCraomJ1DFlYIhIRz3rRsHCsmGm00kJzoJnTl4lwbB//OOz5hz+MhRM7TIJBY00wkkl4xnM5pEKXI7Sl0qAZPO/9wz8Q/f73+Hn11ZhP63Dtij4pFrJHTcOLagXPQ4HA6oqiK4VMBnM014nu7q5PVgWnTkci+LurC69mSHk0C02DUDc/T3TeeXC2RqOipqGRRbssE+3ciWuyfr3gZQMDxuvlFeI3vyF66inUMnv+8+uWnt6yRcsARcH4IcJ9MvIcxGKY/7q78ezIMkQfDlpgrlUqvZnnsGKC1XIIiSud3syiVjaL8/J680s96R3cK8F3VFU0YiGqPtX5wQfR8fiaayD6xeMosdDdjSxAI8fx1a/CHr397bBBBw5ArB4dNX9eRIg+/K//QmDRpZfCxvX0iKxCXqObRMUVhIXsUtPC4v69FqpFICAabnAR5mRS1H0oBBfSjsdhbI00o/B4IBLOzWFf3NgjmYRR2LMHk9w552D77IHasgUeV071WL/e/Pm5XHjxYnFoCILXnj0gb4mEEAhlGdeB05YHB2EQG+H99nohasbjEBPHxnBNBgdrqtdnCNks0pEVBWHjPh+uQTgs0olZJGBDns2CzPCEU89j5O5yREjDiEYhSHHzg0JwGqxeEMhk8oXF+Xlsd24O93r9eggJrTp71YFFZH5x/UoiPL8+n6jfoydh5WCzCVLK6SwswLSExOZCYfpyM9Yu0zSib34Ttu1d78KCKZOBM4tLN1SCLBP9+MeYJ269tbJHXJJwPQoj61lQzGaJ/vmfiX73O6K3vhXRSIoiFm/NUFy+hdrh9WKhl0jUVjPTKnC7EdUbiYA3JJPgVbV2W7bbIa5F+SMkAAAgAElEQVR1dUE4W1zE9lkQsdKzcvQo+AenHOdy4Hpeb+WSKpomFvlc6qenB9vjBjfV4A9/QIfoLVvQTbWrq7Hpmi2Yg92OsT8/LxxhlZ6BtjY8j4uLgsPz2FlcFOsfzgZJJsG5Ob3Z4RDzV+H8xOKh3gFcKzjKjtObORKyEc86Z1WoKtYahZlM+kwZ/Tk30r7bbDguvcOS061ZTKx0rfbuhYB4zjkQEBUF5RFcLuPdj3/8YzhFXv1qfGfnTtFIpRo88ADRPffAmXHttVij9faKACB9tgsH/qz2edVKWA2RiHYichJRRjN5MlaN/qkXFEVE3bW3Q0jLZPB7KUIRi2Gy8fmMLcb032Mhhz2vx46hDqLXCw9GICCK/9rtMG4zMxAAq/VwFIKbh8zNCaO0sIDzZgGEJ0y90WpUul4kAoKZTuN4BgfNXWej4Ig/VYXR9nrzI8rSadyzXA4TDIvOnBZ+xhn1vR6ahvuSTuN4OP2CayNVC66LGQ7jHFQ1v+OvPg3aZMffYpGIq8oWcXdt/UvfSZuvGUca1hp5I8uiLg53a25FJDYP9OnLHk/zphg+9BBI6fXXE910E575yUmMp7VrKxNQTSO67z5ExF9/vTHvfKXtffrT6H765jcT3XILbKfNtjQNujAVulpbRGQpe9RUvKhWcAM75lWnCnI5iBzpNOaGnp76cYRMBttmcbanxxq1JxcW0AF1cBCOWiLwrnQaC/BycyZ3552YgJC4aRO48/g4xtbQUHWL6SeegDPj9NOJLrhAcO46oWWLlhHpNARAj8dY92xVzXfM22wQCiMRCMd6sV+f3sy8mMhYRCJRfSMHG5XezJk0uZwImKh0HvrmK0QrF5lItDTV2W6HzS1mF+fnib7zHThVb74Zx3zoENbCZ55pbJ35hz+gvMullxL9xV9AQFRVpB5Xw/8ffRSNWU4/HVxrYACZbXpwZ2x9/wOXS6zNy9wvI5GIVrFLTYsmXQYYh6ZpChEpFT/YwhLY7ZhEWBhsaxOpzYW1nBjcJCWRgBE1Sj64ccL0NESyri7UJ+zrQ3RgLAbjNzmJl8+HSVKWQZoUBU1aaoXNBpEqm4UB1DQY0I0bYZjYYHEqNHvY+XqxoLhcHhHumBwK4VodPoxrNzhYn5pDRDi3Y8dw7v39uPccscfiUGcnSK4k4TieeQb3aGgIhr7emJxEhNPatRh3U1O4zkaIUjmEQvi5caMgTIqSH60YjYrPcZFffX1Fo5OjlW0RR5jpBUN9J3S3WzRXqtRtu1rY7aLZChODVkRic6DZ05cZR44gCnH7dqIbb8R7Cwuw64ODxo77kUcgIL74xbULiEToNvjd7xLdfjvR614n5g4iEVXAtRU5apFRWFvRzELNyvbIyrDZRFfUVMpYkfrVAKcTzxg315uYAM+rh9jHEY+cXTAzY640wUoglUJjp0AAEX9EWLAnkziXUryCs0E4opXLxqxZAy6sacZtWSF27ICAODpK9IIXYC5vhNDdskX1gceDNUIkAt5a6d7ZbOD4ExMYe9wcMpsF5+VmaPzZ9nbB/WQZY5d5WaWIRD1vqxVc2ob5IEcl1hO81tM00cDRCPSO7pWMTCQS/ECf9cCdpPV8IZMh+vnPcY7XXovjnJvDa3jYmA3duxc8Zts2RCHu34/tbt9enYD4pz+hruLICNErXoG5oliwEGd4tLUJR3Y6LZq5ckZMNY7tll2qHU26FDAOSZLukCRJkyRpRPfehZIk3S9JUlSSpIQkSY9IknR1mW1cIUnSk5IkpSVJOi5J0l1FPqNJkvQtI5+1ElwuEYWWzYq0ZU4/LoZAAK9UStSsMbqv4WHsIxQSJHPTJhg1pxNiT18f9s0NNWQZQuOuXfl1psxC00A8DxzABHLWWfB6xOMgpZomjFUwCMFswwYcc28vCFcuh21MTmLBevw4vss1I+sR2CtJEM+2bBHE+cABCH96YacaJBKI/uSi3Bxd6PHgHIeHcf25Vtf0NNJxenuJLr8c9yccxnlPTYkOb7Vgbg6TQW8v9js7KzpX17L44G7hHR35HlcWz/v6IChv2YIxODyM8UgE4WFsDNd93z6c7+wsxgoLjoWwki1iEjkxgYjfXbvwc2IC18zthli8YQNE9s2bidatw3NRrK5hPcCEVF9vh6g+z1QL1YGb5GSzsI36mknNhliM6EtfggPkrW/FcSYSeGY7O42lXu/ejQYI27djkV0r/t//Q62fG24gestbhAedwWnQHg9sUmcnXoEA3pMk2HyOSgqFROkNboxVClayR6sNnBLH9+lUQlsbuJPXK7iSXhivBV4v5mmOKJ6awtycSNRn+/WCqgon9dlng3Mkk+A6HR3F05AzGXDJuTl8z+PB2AkGcb5cH7q/v7oIz717iX71K8zjF12E8cl8px7Q10IuRMsW1Q9+v3BSGOHfHLUYj2PuIMLfDgd4rlIgofh8ImsnGsUYZDGKBT099HURC7dVCzi9mUXKwjrD1YI5TSqFbQcC1aXys5jIGQMspK4EX7XZxFre6cSxcGmnXA7PfTQKsc7vx7N69Chs9dq1lbc/OYk6iIODRHfeiXXC4iJEv2qcOHv3En3qU3CM3HQTxGvWAcrB4cD94lqy7KDiTMe5OfzO9UMroWWXasdqSGe+g3SFMSVJeiERPUBE80T0n0SUIqI3EtEWIrpV07T/1n1XI6LdRNRPRHcT0QQR3UJELyaiKzVNe6Caz5ZB017saBRGmj1b4TCMY7muxNyl1+0W4qNRxOMQZYhAiljQGBgQNRCzWeFtOHwYhqyvD0WgOzrMefgjERC0bBaTZH8/jCmnu87OwjhxRGI5sIHW12zgyZPToPXRirWm9HBNv9lZTFDd3bhORrfLk+b8PMLXORqTa9fxYlUPWcZn5+eF0Mv74y6UkQiOjTt7t7WZFxgiEdzXjg5MKNxJe2CgtnprySSul89nrHB5ITjNQR+xmMlAWHz8caIPf7hyY5VmtkWf/jRp7K3kBS+/VjpNlVNF2Bvd6ti8MlAUsfh3uZq7qYGqEv30p7Alr3oVnnluzuBwGKujNj+P9JqeHiyyax1vf/wj0fe/DxGB04eK2Voj4DpRHJnBXWyffproG98w1sygWe3RiRPNy4tqgaaBH3HGxqkYTZ1MYpwqimjWVs/rEIth+7IMPtjV1Rx1Wg8cAN/cuhX2RFHAMyUJIp7etmSzOI90WjQgtNshjjociNRJJmHL2MlgFsePoxNzXx9SmF0uLMTrMacqCkSBRx8l+tjHrG2LqInXaIXgMkzcgKISJifx+aEhcPlcDmPU5SrusFdVcHFZFusZzlYqxhGXK7WZj6Ue6c3ccJMI51TP5lf6NOeV6uSsh6LgHj/+OByjV1xBdO65OKbdu2Fvzjqr8tiJRlGORZaJ3v9+nNdzz2HMVJOpceQI0Qc/iLngtttgt7dtq81uq6pYi8/OIsLxq18131ilie1S02I1iohPENE2ItqiadqJk5/pIKKdROQionWapuVOvq8RkUpE52ua9szJ99xEdIKIHtI07dW6/Rj+bBk07cXmOj5EovhzJCIEolJgIdHlKi84FkMuh0i3TAbf5YjAoaGl3hFZBlHZuxfGZmQExo/ruZSKjuJtplL4Xn9/cc/JwgIi/SQJ0VdmiRqHWevFRX3NDH1txQp1HMruY2ZGdBkOBnE+xbalr2fHQtjMDITSzZvxs9S9iscRfZfJQGws1SGbi36Hw6LALy8UjAic3OXZ6wWx5jSorq7qC4YTgShMTWFMDgzUbyI/cIDof/4HY+3NbzYkIjatLfqv/yKNU1mq6fC23NB32W4JiY1HLgd7wxHizX7dH30UnUavvBILd00T4kJPT+XxHYuh3o/bjTTmWh0/zzxD9K1vwda+5jV4xqoVEIthbg6LA7eb6CtfMbxwb0p7tFpFRCKMv3hcRPGeilBVcIR4HM9Bd3d9hT5Nw0I3HMa84feDQ6xUd+ypKThg160TDvGpKZz/8LA4d27ol0yKiKhAAOdw9CjOa2QE129mRvBXs5icRCpjZyfRi14kakrW6izUNAgCzzyD4wsGid73PmvbImriNVohNA1rAVmGoFPpfsoynOBOJ9ZXkiTE6ba20mueVEoI3D6fEMlK7a+Qu9ULtXRvVhQR7MFz8XLWWWwWMfHYMaIf/hDlEK68Eu9NTOB53bKlcr35XI7oX/8VZRT+9m+xnnr2WfCOs84yfw0nJog+8AHY5je+Efdiy5b6laQIhdDAbmaG6N57qxIRm9UuNS0sXxNRD0mSBojofCL6Gg8AIiJN0yKSJP0HEX3i5P8f1X3tcb6pJz+bkSTpMSIqKO9p+rOWgs2GB5k7Nre3g9DE43iV6rbH4h2TODNCotMJgWp+Ht/1ePB9Lhytr73ncCDFrKcHYk48jmNcXMQkyEXM+bjTaQiUiYTYTzkveE8PyOehQ9j+wAAIn9Fz4TBrvk6all8Qlgsi68+9sHFLpX05HJj8e3txbrOzOPe+PrzHnkN9PTunE9cmm8X5jIyUJxuTkyCwLheud7maK5IkuiNz/UiuIenzia7fxZDN4j7zvclkRNfkWgREFlq5u2O9Ju9Dh9CwYc0apARUQrPbojvvFJ5KruficjWPWMSEsdVopbFgjy5HGFuhY+fTTyMK8Y47iN7wBrwXCsEO9fVVFm9SKaJ770WE++2312Z/iCBG/vKXKP/wmc/AxnF5iHrg6FGiX/yC6LLLUNzcCJrZHq1bZ+wcrApuWOb3W+N5Wi6k0+B6uZxovFLP+Yajc0Mh0WU1GGxsZH0kgrIgW7bAnkiSEFBPOw3Hoyii1Ep3N4TG9nZRyuPwYfC5jRsxXsbG8IwMDZl39k1Pw8Gyfj3Ry1+OffT21j4Ojx2DE2NuDuP6pptwvkbQzLbISuCyR3NzWAf09pZ/nhwOzIfT06I7s88H7s2BIMX4uteL73JpEK6JzDUSC8E1FJlX1ouvVdu9OZPBi+u9L3eDTOasXCuReWyjxcRIBGnMfX1EV18t0tcnJkRZolyueMMcIlzfr38dz/pb34r1I5cU27zZvO2enSX60IfwvTe/WQTs1FNA/NjHMLbf9S7z32/ZpeqwqkREIho5+XNvkf/tOflzlPIHwfEinw0R0VlF3jfzWcvB4QAhYCHK5xNNKOz20unD3GSBazZ1dho3MFz7zuuFkXE4QHCOH8c+e3vzP79mDd4/cABEbMsW0RyDU5ZZrOvogGgWDBoz3h4PoljGxjDRxmKCyJmFJGFSdrmEEKdPg+af8Xj+5/XRiqU86S4XSGVfH67TgQOoGdnRAQ+824174Pfj2oyP4xjWry9NQmUZ5HdhAcRk0yZz5JvF0GBQFH2enMSEzc1i9HVT9B3jiECEnE58v1qoqkj5LhWhWQ0OHCD63/8F6br2WsPjYeTkz6a1RVzPRZaF4M3d3VZaTGQi1mq00jjouy/zwqHZMT1NdPfdRKOjEACJcA7cjb2SgKgoRD/5CWz9LbfULiA+9RTRe96D7vWf+hSuoc9Xv+fp0CEIlMEgFu4mIrpGTv5sWnu0WsG17ZLJ5oz6bhQ8HjhBw2FwhFQKXKOUg9osbDbM0Z2d4IDhMJ7rzk7sZ7mvOzfrc7vhgJUkvDc9DTvU3S24kabhvDs68o/rxAnw75ER2ODJSdioagTE+Xmi730P22EBkflhtZiaQmrk1BQ43bnngpP395va7sjJny1bVCPsdoz5+XkhDJbjRn4/7hs7+rmJItd65yYWhXA68T1eGzqdWIc0WkjkbbOIyU1Eis2vzGdUVdQdbiRv5EYrejGxUc1XZBmORk0juu46nL8sY73Y2Ql+wkEELCRy/UnGz36GKOObbkJJloMHsV7dssV8JHkoBAExnSa662QVwLVra1vv6bGwQPSJT+DnO95BdP75VW1m5OTPll0yAQssE5YdpUrBFjM3Zj5rSXg8MDaplIiuUxQYD7u9tLDFBpqFxK4uc8aSi9tOT2NySybhkbXbl3bo7e/HtvfvR22GM88UAqf+ON1uiErJpIhSrETEuF5gWxsiPnbvhrekHgWoubOpXoyV5fwU6FhMpJXbbEujFR0OfJ5Tld1uEIdwWEzuXDcnHAYJ5XThUuceiyF9OZvFYtxIod1S4PvV1QXCEQ4LgtPWhnswPY2Ja906HC830BkYqG2CnZvDOfT31y+Vaf9+oocfxjldffWyR5KsiC1iAsEprCwmulwrK9bpO/8xGSVqCYnLgXRaFFBfzlSfeiKdJvriF2FD7rpLdClkh0SlVB0ilCeYmEB08Zo1tR3Pc88R/c3fwH5+7nOwFfUUY/ftw/EODKDzdAOi2lrcqE7w+yEecQbFqWq7JAncwO8HL+AayPVIr2Ww87mrC/sIhcCpurrM81Kj0DRE6WSzWMA6nXhvfBz/b2sDF1NVkaVReL7T0+BLg4MQFxcWwMP7+sw/6+EwOqnabLBtnDVSbUr9wgIiD48dw/G/+MW4Z9ksrnUD6lC2bFEJOJ0Y1yycV1qrBIOYO2dm4MRnIZJLJfH6qhCcrcbpzbIs1n3F1hbLKSTqoxILuzdzPfNcDvv1+VbWIVooJjaik/Pvfoe17w03iDT1Q4dwTTZvFmJxYVdnLl/zxBNEv/41yh9ceaXIfBseXroer4R4nOjDH8bYfPe7cX96ekqXyTKLuTmif/kX2Pm3va0+DfFM4JS3S6tNRDx68ueWIv/bUvCZFkrA7xfCIUeRhcMgwcXID4Mj4MLh6oRETm1dWMDfY2NYOG3btjRChEP3d++Gwezrw/e5kzJ3w+PGLLEYFovsiWtvLx/W3t0t0psPHsTEum5d/ck/Czh6csfFf1lYDIWEcJjLiVTo9nZcYyYC0ajoVnjwoIjIKyzkrcfEBIgh17ioV2i5JIn07kxGeOC5M/amTZjcFxfx/97e2tIMFhdBbnp6zDXcKYd9+4geeQTbvOoq09u1nC1yOjEWOTKRHQlO58otegu7NRd2bD5VF+P1gqriPnP6n1XSLTWN6J57YO/e+15BbOfmMHcNDlaee/74R0Rwv+hFINa14PBheMC7uiBs+nz1Ldy+axfRAw/A1l9/fVW20nL2aDXBZsMcz521S5X5OFXgckG0j0Yxd4+P4xkuVz7FLBwOCO7d3RBHFhbATXt66t/g5dAhnMe2beIcuNxMezu4NJfrKWYTQiGION3d4LKJBN5jrmoG8TgERFlGFBGncVYTZR2NQlA4cAD27KKL4LRnpzWnRZpEyxbVGR4Pxkk0Kko7lYIkYV0wPo4xOjgohMTZWYzjchFi+vRmDmQoVeddn9a7nEIipzdztpemCT7TLByxUWLirl1waF5wAQJgiCAChkKIcNavNbmMEUcqyjLW1F//OjjRLbfgPh85AtvFmWNGkUoRffSjcKD87d+KdSEfV62YnkYTlcVFpEhfeGFNm2vZpSpggXgD49A0bYaIniSiWyVJ+rPOLUlSGxG9lYimT/6/hTJgryURSC+RIF2RiGhyUAzcYEVR8GArpbT3MvsOBhHNsW4d9vfss+I4GGyEXS6Qr6kpGMjBQVHjwe/H32ecgXo0vb0wklNTiDA7fFhErxWD24305oEB7GPPHpHut5xwuUQqHtfw4DRvrvnIEaNzcxACudP1yAj+Pz0NApvNwpAXQpZxPkePgrg+73n1ExAL4XaDGAcCovtgMon9j43hPGspOs9CcXt7/c5hzx6IDMEg0Utfal6YtKotkiSMNyaKHJWcywnhrtHgujf6DuhEK3c8qwWcYqlpuN9WERCJiO6/H5ExN98MG00kmhQYSdnbuxcOgm3baiaeND6OmkFOJ9GXvgQbxOlT9cCf/gQBcXQUkQXVOFusao9WE3hMcJRMC5izh4ZwXRYWsNgsxceqBQuW69aJ7JRjx8AZ6gHe3tCQiGaenYUTkgjcua8Pr2ICYjwOHhQIYBvZLPim2720nE8lpFIQEJNJole+UmQUmI0eSiZR2/Xb3wZPfv7ziV77WvyMRPB/drSbRcsWLQ8CAQi68TjuTzm4XBANk0mR+cRBIFweqhw4vdnpFBlUslz8s/rmeMvB2TidOZEQ60S/v/Hpy0bBTWH4mshy+TW1GUxPEz34ILLpLroI7yWTIo15cLD495j3RyJwzvb3E73+9bimu3ZhLXDGGeYbp37yk7Af73ynECtPP70+wunEBJq+hEKohf3CF9a2vZZdqg6rLRKRiOjdRPQ7InpMkqT/S0RpQovu9YQW3S36ZgAcuh6NwpBw/RauZ1OugYrLhYUcF7nu6jJfz8Xvx6LJ4YBn5LHHYBT9fmxzdhbGd+1aCISHDkH4KdWyntOI+/vhqWLhaWZGdL5jr69+8SdJIJ+c3vzcczgus6TMCDgqiFOVuQuZ3y/qRvI1V5T8aMVEAuezsADxdmAgP4K0pwcTiMeDv/fvB1k97bTSE0s9wREHw8Mg2qEQoiW5K7imlfbSl0MqJRqy1OOeaBru8VNP4ZpdcUVNAqdlbRHX6HQ6MU441ZkjExsNmy2/PmKxNOcWjEHTYDs4fVlvV6yA/ftR6+vcc4muuQbv5XKwfUYibiYmkKozNET0spfVdiyzsxAQcznUZuRmEfWKhn7iCTRG2LgR5RRqrOtmWXu0WsDF7DnLo2W7RMRgPI65fHIS18ZMkz4j8HjwzCcSiEzk6JxgsPo5PpEAX2hvxyKbm8ccOiSc0OW2nclAgHS54ADWNByXJIGXmTn/TAZ2MRSCc4W5VKU6eXpks3Da79iB+X7rVqLzzhPnsLiIc+7srNlh27JFy4CODnCkcBhzRTlnWkeH6M7s9WK8tLVhDEQiokZ7KejTmxMJfKetrTiHL+Rr9XyuOXOLqDGNU+oBfcNAvi683qv22qRS6MLu94MXsUh58CD2tXFj+e/H40Rf/jLu3zvfiWd8507YtG3bYA9Kpa4XQlGIPvtZCJB33QX7mM2inmI97s+JE0T/8R+wdbfdhvIKdULLLpnEqhMRNU17RJKkS4noo0T0d0RkJ6I/EdErNE375YoenMXgdIr6hA6HENr0HZzLfbe7Gw/54iKERLN1KRwOECuPB4up++6D6OXxwFCuWydSKbxeiI07dqCodblFHHt4e3tB6FlQnJ3Fi5uhtLeL7Xd14ffDh0EQ+/rKpwkbBTeuSSRgrLm2B3sVS3nT7Hb8X59KMjGBzw4NYQLIZkWR8X37cNy8z+5uFMutV1HzckilRG3GNWtwjskkfg8GMZZiMdwDFgH8/sqTaTaLSEyXy7zHvhg0DWPoT3/C9i65pLbrsxpskSTheVFVUYRZlkV0bCOPo7DGTktINA+rpi8zwmEQ3b4+dBiXJDy3s7Oi82il7//kJ7DtN9xQmygXDkNADIdBaNkZY8R2GcGjj2Le27wZYmetY3w12KPVgEBAOGeXK/rfiggEMP9zbbdEAvyg3vX2OPMhFoPgNzGB/QaD5sR/RQHflCQsjufnweGmp3Eu27eXt6+yDMc0dym12/HdbBbOcTPzqywT/fCHsIM33iiaInJpHyPnsns3Ot2n0xAcXvACUU+NSDSqaW+vvQFVyxYtD7jmKNcCrdSdvK9PNJIcHhYdn9kpNzBQefywcMfNLfk5LkS9hUTmMooiSkKxs9lM9+aVRKGYWG0nZ1XF+jiVIrr1VmEzjx3DWquSeJfLgcNEIqhb2NOD6MVkEo4EHhPc5ZrLcJXq6vzFL4K7vOUtomzF5s31ca4eOUL0ta9hnrjlFqLLLqt9m4yWXTIPSbN4TpgkSW8mov8iomFN08ZX+ngqwJIXOxYDsenogOFIpeC18HoriyyyjMmMqDohkfe/fz+iEZ1OLKhGR5d+Lh4HEZIkEDiztVpkWYhZ8TiMocMhBEX2xo6PIyXa5wPZMktyZVlEG3J6NHfx9PurW9hz+nJXl0ip0TTcN66r+NhjmBja2+FZGhoSYf/cDbreE24uB6Jss+Ge2e0guqkUCAqfq6KIpjLcLYzrcRYjMYqCe6BpomN3LVBVeM127sQEevHF+QS6CJZcqVPBFnFHNyaCTmdju40yCWVyqGl46esltlAcTAKJ8LxbofuyHrKMjsdjY+j0x3ZuYQE2u7+/vM1Pp5Gel0yik3MtzbISCRDkw4cham7ejHHp99fneXjoITgzzjyT6CUvqTi2i/7XQvbIkryoFmQyGEPsKGwhH6kUhBBZhtDa3b18DVE4g0OW8fwGg8Y42M6d4CAbNuDz3DE2kYBtKmdfNA22I5mEY9zvF03oenrM2SZVhYB4+DDqpfb1wdYZEWBVFfUOn3gCnHd4GOUdCp0x0Sg4ZCBQsWFVyxY1ARQFDnabDeOg3LPDTv72dnHfZRlrCqcT48kIt1JVcPhMRqwNi32vHlF3mYwQtDyepQKZpon06lLdm5sRLCYypzV6jR5+mOjJJ7E23rYN7y0uYt28Zg3Sm8vt85578P0770SGx8ICAk8GBmCfGIqC68qlhQq7Omsa0Ve/ikyP176W6JxzsN7bsKE+gR4HDhB985s4vhtuQKmpMve24pWzkF1qWlhsGVEUawiGf3GlD2S1IhAQ0YcdHZggOIKOIxRLweFYGpFoNJw5mUSqcSIhIkd27oRQyHVu9AY2EEA6M4tBZ55pLpLM4RAd/LixTCQCcre4KOr5caTcsWM4ltHRyp1Auf5YMikW8txJ2eerrQD/5CSub08PjD6Do8jSaRjydeuQEs7e8qNHcT6dnWKy4iLJ/LOW0HNFwYKfSHSH5oLc3d35RN1uF12lOTWCU7MDAbzPn9c0jAtuoFAPAXHHDqTD9/aiu2IFAbEUVr0tsttFRCCLUo0UE7nRCqc1txqtVIbV05cZ3/0uoqnf8Q4hIHLzLH3UeDEoCtHPfgb78+pX1yYgptPowrx/P9EXvgBPfS5XHwFR09AobNcu1B+79NKaNrfq7ZFV4XYLTsALsRYEvF44ObmzcjIJflNL7eRikCTwubY2wfPY0drTU5r/HDmCNPq4cRYAACAASURBVMGBAZGh43SK71ayL2Nj4Dnr1+OcWDT1+83ZJk1DCuPhw0QvfznsYjyObVQSEI8ehWM5FIJQ9JKXIAKyELEYPuP3G+t4XwItW9RA2O3g2Myhy6W0e72iISYHMjgc+M78vLGOz0TgZh0doiajouC5KpwT9RGJLJQZBa87VVXUmC12XlzjjwUvfffmZgZHJvL1MRKZeOgQBMCzzhICYjYLm8AZe+Vw3334/g03QEBMpWDbAoGlwTrM/zUN8xeLijYbxsx3vgMB8aabEIhx4gRsUj0ExD17wAHDYaLrrkPX6DqIwy27VCMsG4l4svDljUT0ASI6omnai1b4kIzAmhebYCwiERGZR4S/OUKxkgimKCAiqlq59l06DZEoFsP++vowiUkS3nvsMVFfYWho6bZSKSzCFAVCYq0pQ6qKiZG7PCuK6Gq1sID/DwyAEOqNWjaLyTSREIXU3W6RhlxrbQhNg4AYDsNI9/Ut/f/4OIit14toGSbh6TS86FxUuaNDdFLm7mZEoq4KRyu63cYmY00DUU4mRdp5KoX7GgiU7/7G4NossRiusccj6rikUjjfWrtcckrS/v04prPPXnodS+DPU/qpbIu4kzOTNKezMV7fwvosrYjE4rB6+jLj0Ufh4X75y5GuQ4Rnd2ICY6DQoVSIX/8aDp9rrhGNWKpBLod0n0ceQdHwyy4TkRe1dmJWVTSM2bcPqYQXX2z4q3lnbkF7ZFleVAs0LX/+bdmt4shkIGZks5jvg8HlEwSYp3L2TEcHxBTen6piYfzoo3j/BS8AH5YkCIuqisidcsc3MwMn7sAAoqdlGVzJZkMkoJn589e/Rg3Dyy4TXZPZ0V0KExPg0DMz4OIXXli6WyrXj/R6wTENjNGWLWoipFIYy15v5cjYiQnMb8PDwqkRiWDdY7aJTjqNNRPXdC/GOwoj7sqBHaHZLD5rJpNCL8Y1e3pzIVhMJCouJoZCyK7o6kJqLwt8e/bg+p99dnlnwhNPIArxoouIXvc67GvnToyDs8+uzBfZoS/LRD/+MUTEq64CRzt0COPm9NNrvw47dxL96EcYj1deiYhLA+vnknfagnapaWFlEfFGIvoWET1ORH+padrhFT4kI7DmxT6JTAaGiWsSahpIi6KAjFQy6qoKo8efL1x05XIgNuGwqG/Fher1iEQg/KRS8JRwE5HCY2VjuG1b7TVcGJommphEo9j+7CyErt5eok2bYMiTSRFO7/EI4bBeEQcsEEajEL0KPT3ZLEK/WWDcuLE4sU0mIUTG47gfAwO4Nxxlxo1b9B0T2QOoj1osnJinprDvwUFsT5axH4fDfMFwVRX1Vubncd+HhkB2allMyDJSBrlD9bZtpprM6EXEU94WNVpMZPLSEhJLI5fDsytJWERYwRNfDGNjRP/8z1jovve94jymp3F+a9eWJ5SPP45OoxddVFsHP1Ul+ru/g9D3wQ/CG55KCTtYCxSF6Fe/AvG++GKIEyZQuHC3mj2yNC+qBbKMuc3trn+U3WoCpx2HQqJu23LWk5RlOIgjEcxjzG8XFlA3MBBA0zV+7tmZy5GFpRAOw6nb1QXnKos32Wxxh3g5PPggbNtFFxFdcIEQ+0pFC87PQzw8cQLHf/75aAZTap5OpcBtPR7jKa3UskVNB6453tZW/pnJ5bCmcLtFpD8R0qIzmdLdxcttj8tCcfBE4RgyIiTKMsaipglHqFl+x3yR+alV0psZejGR64HnchDtuDwL39uJCTzjp51WPiDi0CGif/s38Kq77oJ9278fduLMM82tmX/9a9RUfOEL0Sl5/35RF7bWNe/TTyNaMhZDnfqrrjLsDC8nIlrNLjUtLCsiWhSWv9jcACQQEA0XmNhxWmw56IXEjg5sQ5YxUS2eDCju6alcEDoUItq7F+RrzRpsq7d3aSTgrl043q1ba0thK4VEAkTryBGIdrIMYfO004S4We/FO0f5xWLYRyFpDIdhxBUFx9HfX3mbsRiIcCoF0rhmTb4wq6pCVOSfLJJyJ1+OVozHcQw9PZjENA2ioixju9VOKrEYSI6qCiLBXcPNLuJzOQiIJ07gODdtKp7KUwZWl6nqbou4Dg1H3XIn5+US9PRFuvm51xOtUxWrJX2ZCAT5wx+GLf/oR/Oj4BcXEZVUbmG0fz/S/TZvJnrFK6o/Dk2DkPmjHyES8fbbYfu5+VgtkGWQ5KNHkb78/Oeb3oRF7+6fYXleVAtSKbwCgdqjWVc7uOED85RgcHm7sWYy4FpTU5hbOOX4kkuEWBiNgpcEg+UX7YkEUgx9PvAySQLvjUTA48yU3vnjH1E39ZxziC6/HBzU6SweLRiJIOLo4EHwpnPPhUhQjodxCRynE/zRxHzaskVNCC4j1NVVvrlFLIb73t0t1kuqKjqGmxwLfxYAmYsEAkvXQ6WERE3DOMzl8H49HKGyLOoxWtGpqhcTf/Ur2JObbhIpy7EYusV3d2NNUwpzc0Sf/jTux3vfC1s2OQkOMjJibi30v/+Lsi7nnQdutGcP1p6bN4t6idWW7HjsMaLf/AZj94ILICCaaM5idVtkCbRExMZiVVzsSESIgHY7DHM4LJphVFqwqio+zwvdeBzvdXWBhBklhfPzMKLckcztBhnTE/FcDkIid6iqoabLn6FpmBi5xiHX9lAUiInhMIzymjUw0tyYpR6phJxOU6x4t6bhf2NjIKqbN5tf4IbDIMyZjDiHUp51Wc6PVsxkQKinp3G+IyM453gcnx0crH7BzanQXi/GiCyLVAsWFTs7Sxdz1iObJXrmGZxnVxc8cZXqhhSB1SeoZbNFXC+FRWbu5LwcQpbeu8zbP5WFRH36stttbVFC0+Ap37WL6O//HtHURLAz3Niq3KJ9aoroe9/DZ1796uqdF5pG9K//SvSNb6Dw+NvfDvvLqVq1jOtcDrUax8ZQk2z79qo207JFFkc0KjjVqWi3zCIeh5ioaZj3lyMdPJkEH2Lh4cABiIXbtoFbtbfj+T18GLZ2ZKT0MWSzEPHsdtgxhwMLfk4pNlLehfH001hYb9tGdPXVEASIYOf0wkgyiVpne/diTJ19NhwUleaETAbH5XCAT5scjy1b1ITQNDwvuRzWQOXGwMwMnq+1a4VzPpuFuOh2m6tvxxGAnNmkaZi3C9dC3FCEhUTOouAoxnqWYbFyejMRrsmTT0K8e+ELIa5xV+odO/CZs84qzXcSCaLPfAb3+P3vx/2MRIT4uHmz8WN54gmIkdu2EX3gA7BxmQz+9nphO2VZ3NtyXZ0L8Yc/4BzTaditl73MnKOFrG+LLIGWiNhYrIqLraowOlyUWpKEgOR2L00tLgRPaIcOwUBw96hqJoqZGTQ4CQQwOakqjKL+GGQZ9bDicaRvVFPkVVWFaMih9TabSFPmaB+uU3jsGPYbDIr6gnxt2tura3WvKBAJk0lM8PrmH9ksom4iEXgLN2yo3tOmaYjymZ7GZN7eDgGw0jGn0yDa7LHMZHCfw2Fso7s7v7YidzSshFwOgkAxUssd4bg+p90uujoXm0QzGZDw+Xlcv3XrMPaqIBJWn6CW3RbpxUQmEMsRNcJCov5+n4pC4mpJX2b87GeI/Hvd6yCwEeG+Tk7ifq9dW/r+RiJE996L8Xb77bVFC959Nzow33or0fveBxJOBAGxlvGVyRD95Cews1ddZY68F6BliywO5lR2e2X+1AKgKOAXiQREEaNdlSshnQZnyWZF87twGByS63On0/hfMol7tmFDaWFGUbC4lmXUB3O7se2xMZH1YZR/7N5N9ItfYDs33ig6WOud75kMsix27sS42roVUUJGbGAuB3tks4FrVTGHtGxRk4IjaVUVz0opkUlVIZZrWn6NzkQC64L2dnOpriwkcjaTLGOsFjrgOJMlk8FnOYtiubqyWzW9eXyc6Ac/gM259lqxvjx8GBl627aVzs6QZaIvfhERh+98Jxwa2SzqqjoccDQYfeZ37UJ2xsgIskXGxjCHnXHG0vFR2NXZbsf+Su3rd79DqYZcDvbrpS+tqiSZ1W2RJdASERuLVXOxczmIhi6XMFjcRIQ7fBWCC4nPzOD7Ph9IFHc9rnahNzkJAxYMYtJJJrE9fXqzosDTEokgzNtIiq+iCOGQvWJ2uzi/crU5olEYdUUBSfR4RJdBTcMkyoJisVohxY7l+HEcx9BQ/kIjFIJ4pyiYFAw2BqkIVYWXe3YW2+7qgphYjCznchBOJQmTisMhIoZYbOZoRU53JcpPg/Z4lm5bUbANTcO+y0UTJZO4xrzI51RnFj9TKUQghkJYGAwOYiKu0hNp9QmqYbZIVUUnN+6aV89upKd6fURO+5FlXNdSHQuthF27iD7/edT7estbxPnMzcEZNDhYuoRBJoNi4/E4BMTu7uqP4zvfgaf9uutAlDnKs9ZOzOk0BNL5eUQT1Vh83OJ3e/XwolqQzWLMer3VORlPVSSTEBNlWXRGrkYUyGYhFqbTIqvG74eT8okn8Pe554oGfwcOgMuuW4f05GL3TNOQnZJIgGsEArAfY2NCpDFqRw4cQPOC9euJbr5ZHGswCFsoy7CbzzwDG3j66aitanTxLcsQEIkgIFY5R7dsURNDljHn2GwYN6Wek3QatfUCgfy10uIixjKvtYyCBUJJEs5OjuTnccZZTZom1gPLDRY3rZLeHI/DOep2E912G9ZLmgY7dPAgbNG6dcX5n6Yhm+Kxx4je+EbYBk0TmXpnnWV8DX7gANGHPoS15sc/Dvs7PY21X7m1NY8DfVq5PtVZ0xBl/cwz+H3jRjiQq+RwVrdFlkBLRGwsVtXFTqeFaMgTSiyG99va8ieBWAxGhjtZ9vdjgmJhMZPB39UWFz9xAmITpxAvLECsGBgQ3mlVRb2GUAikT188mCHL+cIhkah7VSwMvxxyORDISAQpBCMjeJ+bsnDRYYcD16u9vXg6rixDoMtmQTpZtNU0CIvj47humzcvz+JDUTBJzc9jn8Eg7h8bflXF8eVyIoWZxT8iXGc9WVGU/NqK6XR+5Bg3KnC5QJS5+7XRa5/LLU11djgwySYSon7maafV5IG0+gTVcFukqhjDnNrgctWPuLGQqK+PeCoIifwsrYb0ZcbcHAS77m40MOFzisfxv87O0vVtVZXohz/EIv3mm6sqU/Bn/Pzn2P/llxN99rPCAeLz1RZRm0hAQAyHUadxdLT6bZ2E1Uf3quJFtSCRwDhra1veWn+rDVxrOxrFXN/TY3xBzHwhmcTc0dEheFguh4gYVUUXY7ZFySSieZivyDI4WGE05NgYhJd164TNmpoS2SRGhZJjx4i+/33wrltvxffjcdhCnw8d3Z98EuNn3Tocq5kUaUUBP2euVcPYa9miJkc2i/WRy4U5thQ3CoUwdvv68tccs7MY7/o1gBHohUQijFVVFc+UomDcud3GuzbXA1ZJb1YU2ID5eaLXvEaU5kqnEXXMJayIindy/tWvkN3xilcggpEI69OpKUQPGrUXx48T/eM/wt598pOYr44fh91Yv974+RSmOksS0W9/i2AfhwPBMpdfXlNQTJPeydWFlojYWKy6ix2Pw4i0twviwamlnZ34OTMD0uNyYeIp5hmNRGAM/X7TdQ/+jKNHMcEND4OwzczA8AaDYp+qCsK1sIDF29AQiGIigWPkLsQulxAOa12YT05C6PN44FlhcsupuNEofrJHrK1NEFlFEanR69YJkTWTQfpyNArjvWHD8k+4nOqyuAiD39eHazs1hXHAx8eesUymdORisW3raytmMqITc38/xpI+FdrIuaoqjmtiAuk9uRyOZ+1aTLY1ClhWn6BWzBZxjRwe705nfcTEYo1WVrOQmM3iOVkt6ctEOKePfxx2/CMfEQRSlvEccwf5UvfyN79BXaCrrqq6viARET3wAAqOn38+0b//u0jFYvtTLeJxiJyxGNENN2CuqgOsPrJXHS+qFtyFWNOWp87fagfzhmwWXKSnp7RdVBTwzngc17m9HdxLP3fs2IHtnXeeKB/Dta8lSWQyhMPgRYqCbQSDEGGmpsBfBgbw3cVFvHp7jUcITkwQffe72P/tt4sa5Owsf/xx/D0wAPGwmHO8HNhJrCg41hr5rtVH7Clhi1IpjE+fL78sUiEmJ/FMDQ2J9Z0sY7zY7RgvZmyUXki02URkI5cj4H0U1khcblghvfnBB5F2fO21ommKpqHEQTqNVGSXK7/5Cl+/p58m+trXEH14xx2iqdOBA7AXRh2ZU1OofWi3g6e53ViHdnUh8rma+UpVcfz33Ydt+f0YV5dearrZZSGsbossgZaI2FisuovNkYSqKrozczfemRnhqeVaMuWMTDSKyc3nK99xs9yxHD4sBMKeHiFgBgI4Bj6+Xbsg7PX0iPBrt1ukKtcz3ZIIi8bDhyGerF+/1LuiaSCzHKXINSTCYQgEW7eKa7K4COPP4d7V1HisBZymHA7j5XSiaQ2HnIdCGBPBYPWC8OIiJjmvF/eFu7QxOA1aH7VYbGxFoxAQ43EhLq1fDwLf2VlT5KbVJ6gVt0XcyZmJm9NZO3kr1miFhcRmJIbVYDWmLxPhvL72NaKHHyZ617uInvc88f7UFMbK2rWlbfNTTxH9/vcoNH7JJdUfx2OPEd11F2zaf/4nxlIqBRtTS6R3JAIBMZ1GPTOzi/0ysPrdX3Fb1Exgccvlqn7+PJXBnDQchl3s7s7nk6oqHLdEouxJ4fxw5Ag42+bN+WL/+Di+OzKSbw9UFbwlFBJ1mjnVmQg8dHISx2KknA4RnCnf/jb289rXwhbNz2M/+/eDI3V3QzzkTBczUFVRXqivry4ppC1bZBHEYnhxBlQxyDKiaZ1OzL3MM9JpjD2fz3yzSuYvmYxYjykKxrZ+7dVoIZFIpDdzDe9mwd69RL/+NcopvPjF4v3jx2FTzjhjacovi4lHjqBB3egoeJXDAeF2507Yom3bjPHHhQU0uEuniT7xCexvzx7YjK1bq79HsowIyYMHRXmvCy4QZbFqiA61ui2yBJroMWnBipAkGKJIBBOSx4PJZWFB1GsZHTVmkNvbsT2uG2i2wLgkgbApCqIS7XYs1EIhEK9IBNtkb7HHg8g6nw9GcDkjedraiM48E6T02DGQ2NFRsU++jm1t4pj37MHiNRBAurbPB2IciYD0Llf6ciVwJ8LxcRBQVRWpy243jq+trfoFEIupwWA+QVEUkQKdyWAijEbxP0kSgiKLi4kEPHeaBi+914vjTqXwPY5s6ujIj0BooTHgWigsJqbTtYuJ3C1eUYTN4YZHHKVoZazG9GXGQw9BQLzhBiEgEsHmZTJY5JaaRw4dgoC4aRPRi15U/THs2AGiPTpK9KUvYSwmEthvLbZ2cREpzLJM9Bd/YVxEaOHUA9ddTiYx7uvZmfRUgCTBQej3g/fNz+MZ7u6G7eQyJ34/5v5iNmVhAVxtcDBfQAyH8f2+vqX2gOvMuVzgRoqC1/w8+MX0NP5nND0vFEIEotOJFGaXC5xwxw5w7bY21AvbtKm6RTanpmazdRMQW7AQ2towH0WjoolJIRwOjA3OQGI+7vHg2YlEYJ+Mcn29gKjvvKwo4P2xGI6DHaM2m0g3bkSmBQtWHMTRDOnNc3NI8x0ayuc2kQgExP7+4jUDOdLzq19FAM+dd+I9WUY2nsMB8dHI+UWjqIGYSBB99KMYE889h+uzaVP1vDqXQ51XTod2uZD9MTKC48xmRZq507ny96KFpWhFIpaAJEl3ENE9RDSqadqxOm121V7sZBIej1RKpJF0dGBi4CLVRg1APA5j5fVW16lQVUWq7/AwDFMoJASvwUG8fD6IjZOT+HvjRvP7qgZTUyCZLhf2WVgHMp2GUSVC1ByTvR07QGJ7exE63tmJ67MSQkI8Dg8lp15PTQkhee3a6oltOo375PFgoqq0jVwuv7Yik5NwGNGabjeuFwvFnEquaSJagD2i3HXOYD2ghk1np4ot4k7OXCe0WtJQrNEKkfU7NnP6ss0mGlKtFhw5Au/2li1E7363uEfpNGwLpwgWw8wMFtvBINEtt1QfQbB/P9Gb3wxCfs89IN4cwVzYSdIM5uchIBIR3XSTuVplBtGyRasQsZhoFrKanvVGIxoFV4nFREZKV1fpeT6VQoqw2430P772mQz4otdbuvZXNouIGpsNC2EWHWdnse9t24zxtWiU6Fvfwv2//Xa8d//9cED39uK4tm2rflxoGsSJVAr2qNpa5EXQskUWgqZBMM/lsGYrNTbn5jAmed3E4JJDfX2VnR3sKGbx0OkUdaztdrzPJaX03ZvZAUzUODvYLOnN6TQikRUFdoCvfS6H9aDDgYYoxY4vlSL6l3/BfXvf+2A3VBVRjZEI0p+NZPwlk6gNPTaGWtWbN4sAl23bqm+ImskgM2NqCmtGTYPzeMsW8RlVFbUTiSp3dS5ARVu0TDbklEIrErGFmsCeVo48ZILFpESSROqIUUGQi1pz4xEzrd1VFcatqwtC3ZNPio7F/f04jlQKP30+0VxjfBzfrbaugxkMDsJ4HzoEYzw8LGrmpFIQEDnt1u3GtZ2awiRw7rmY6CMReAenpyEocKfnRniTuXObxyOapvj98G5xisTBg6LJjVHkciDbDgfO1ch9cDrx4v1oGkThPXtwjV0ujKPubrzvdOZHKw4NYTLjCM9wWEQoVDs5tlAduGszi4mcrmtWTNR7sPXRh8XeswJWa/oyIxZD1F9nJ9Hb3ibujarCHjidpVOmYjEIdF4v0StfWb2AePw49h0IwHPf3Q27QQQ7UO31npnB8TmdiEAs1RCmhRYK4feLBmycpdGCOSQSuH4+n3BOcT3eYlBVLM55QcuLVU0D55Gk0nW6OANG0xDJ7PHALnENOEkSJXTK3c9kEk6RTAZR2Tt3gscSoU7YeefV7jhm8aenp64CYgsWA6f7z82JWp3FBJpgEByEa87zZ7q7McctLGB9Vey7XPOOI/u83qWNFony05mTSdg+/rvREYmczszRxKra+PRmTSP6n/8Bx3nVq/LXI4cP43pu2VKcyyoKeMzsLNE73ykyH8bHEVAzOor7UIkLZzJEH/sY+NEHPoD9cYPKM86ofo2UShH94AcYd6edJgRJvYBIhGNzucCfeE3AdcC5lnprXlxZtCIRS0CSJDsROYkoo9XvIq2ai80erLk5GKyODhgqniza24XRTSZFF2czhCWZhAF1u8tHMqqq6KicSgnvkcsF4ydJME4sNIXDOHa7HeKdx4N04ePHMYkaDfGuFbKMCJxwGIvL/n4QVbtd1IM4dgziVyAAD5BeJMxmRQ3FZBLvuVxCUFwOEUyWQZQlSRwjEcZBIoFzSCYhbuZyIj27Uiogd3PWNIis1U7Ys7Ood+nz4RqoqjhOfbQie7a4S7DHg89kszh+RamY6txIj/spZ4s0TYiJTOjMdoxkwbBYfUSrNFpRFGHTVlv6MhHO77OfhUPlH/8xP8JnZgbnvmZN8fPOZom+8x2I/7fdVn2E3/Q0io1nMkRf/zrqmHHnSL+/+kXL5CTRT34C23LzzdVF1RtEyxatUuRyggO1xB7jSKVEgz+ex71ePNcLC4KzFtbpfu45PLfPe15+rWkWSoaHi0fvaBp4UTyOZivMNTkKsbsbdmB+HhyEG0kUOlnTadi0mRlw1ulp3P8NG4guu6x42qJZLCzgOLu6lsUmtWyRBSHLGJuckl9MWMpmIUJ5veDojFwO49XlWur85+wJotL8hUU6jkjk9xIJ/OT0Zn1EYmHn4eXESnVvfvxxokcfJbriCkQNMqanYWtGRvLvA0PTiO69l+iRR4he/3qiiy7C+1wiizPZVBWfJcpvRsiQZWSHPPss0XveQ3TxxVgnT02Bp3Hgi1kkEugyHQrBxoVCOJ7zzjP2fX1jRiJRFqmaNdoy2ZBTCi0RsbGw/MXmVNHZWTzIgQCEIxaJ+P9EiCxhgxuLgSBxLUKjYCHR5crfnqIIcTKdxnsOh+iozPvI5UAMFQXprHycnDYry/DGdnZigjx6FEStlIdnOTA9jdRbbgizbRuOd98+kL01azBhlDserm0SjeKasNedU3RriaZhqCqE1mwWx8PpC9EovJhdXfldsOfnRde/ri5MOsVSHjQN1yCbLf0ZI5iaEhGI7e3Y3uhocdIvy0JQ5J/6jmZcf1HTMGY6O/HSCVkWkKDKwhK2SFXxDDOJ42hFoyjXaKXZhcTVnL7M+P730ZXvzjvz6/1Eo7CH3d3FI9FVFQLd0aOI8KumqQAR9vHGN8J+fe1rcCAlkxhzPp954Zpx4gSKhbe14fiWuUFGE49iQ7CELVopJJOYowKB1edEqDc4qyCTEWV0CsVXboASi+EzwSDm+PFxpPpt2CCaoRCBg504AVtUauE8Pi5ERhb6OGPD681vohSPiw7SHg/27/PB5nzrW1i0Dw6CwwwNoTTM2rXVNRssRCgE28qN5ZYBLVtkUWQyGMNuN8ZwMW4UiWDsBoP583Iyie+2tWFcce1mrk3t8ZRfv7CQqE8d1qc3Oxx4jm02EbnYSCGx0enNx46hVuCWLUQvf7l4P5lEkATXxC+G3/wG2Q8vfzkimYlwL3bswL3Vpz+zMMt8mK+pqhJ97nMQMf/qr4iuvBJr/qNHsd6vlm/FYkT//d+wgWefjTXbyAgaQ5m9lwZSna1uiywBCyV1NRaSJN0hSZImSdLIyb+/fvLvfkmSvilJUliSpJgkSd+TJKkO/sHmRzSKiJGJCTyso6NLO9RxgxBVFd3viPCe04n39F12K4EjyrJZRLuFwzA8Y2P5HuU1a0C42OPL4M7BNhsIIguOHg8IHxffnpoSdREXFyFGlUp5qTf8frFgTaVQm+tPf8KxbtkCUltp0nI4cO4jI5hchoZEI5ajRyFITkzg+lfrN5iYwDGtXSuEvnQa18vnyycVNhtSyLduxaQTieAYxseX3v/5eRCYYLB6AXFiAmJxZycEy0wG3rJSxNvhwKKspwfns2ED+2MeSgAAIABJREFUIpD6+vAdrxcvux3jbO9edH/duxcLikbiVLZF3N2dSWg2i2eEiUMlMKHQP8ssHrKY2GzQNJwjL4R9vtUpID79NATEyy/PFxCzWdgUr7d0KYvf/x5R3FdeWT2hjUaJ3v52kOMvfxkCIneB93iqFxCPHiX66U9hi171quUVEB9+ePm2XQynsi1aKfDzz9GxLSxFLgd+yI7h7m7wuWLRmxxtNTiIeWB6GumBe/aAD2zYID4ry4hMdLtLN0PiRoJ9fUJAVBRs1+FY+r1AADZrYADbZ+f1Zz5D9Mtfwm6cdRbRddcRnXMOvl8PATESgc1joafe2L+//tssh5Ytqi/cboyLTAZjpRhYlF9YEBGGRLBRbW1YX4RCwlZ5vfhfpfULC3MsJhLh2eS1kaKIGrF6Ttco/sbZMHyMRvlnNYhEiH71K9ioK68U76sqgk3s9nwnhx5/+hPEx3PPJbr+evG9ffvw++bN+feCoyv1EaCyDD706KNwsF55JY7p2DGMj1L1YI2c13e/i7HxghdgzT00VJ2ASCRSnb1ecDVVxZhMpaBTGEHLhtSOlohoHvcRkZuI/p6IvkZEf0FE/7aiR7TMSCRAslg8WbcORqxUeg0LNLmcSLMlwgRkt4PIsDepEjgaJ5FAFNyxYyKybe1avLq6ynvo3W4YT02DMc1m8b7NBiLX24vjHBvDtjZtwkS4e7fx46wWXPS7uxvGOpmE8Z6bI9q+vXQtsHKw22Hs163Dea9bhwk+GsU13LsX+4xEjC9KZmbgPRoYEItiRcFxOp2lUwntdpD1LVtwLizITU3h++Ew7m1XV/XpWidOYJs9PdhOMgmB2EwtTSKRCt7Xh+9v2IDX5s0Y714vJvHf/ra641wGnDK2iMVEtxuEI5sVnu5K4KLd+s/qoxKbCZzGI8uiplYzR0tWi6kporvvxnPFjQOIRMF/my0/nVCPZ57B67zz8tN8zCCZJPrrv8bi/QtfwHZ4rnG5qndmHDxI9POfwx7efPPy1VXVNKKvfIXommuWZ/tV4JSxRSsBnnMTiZU9jmaDLIua0ZkMeA/XYq5kNz0e8EefDw6NWAyOcf33Jidhk4eGSkdmTU6Ca3BqIWdWKAr4UikHUHu7aL7ykY8QPfAA0ZlnEr3pTei6LEk4xnoIfrEY9hMI1CclmpHNgivfdx/RP/1T/bZbI1q2qEr4fBgjyaSoCVwIrpvIjSoZfj+ex+lp/B0ImHPEFRMSiTAXt7XheeCa9ishJPIxMp/M5eq/b1km+sUvsN3rrsvPujl2DOd++unFr+vx42gINzJC9IY3CHt1+DDmjU2bSmcBsphos2Ebv/0t+Mt112GfBw+Ci27cWB0fXVxEmYZMBg7j48fhHLn44tr5LWcoeb0YK88+S3TXXbVtk1o2xDBajVXM42FN097Ff0h4Av5akqS/0jQtunKHVX+kUkI8cjpBuPQpxeXgdsPIplIwhC4XvtfRIZpYFNajYWQyIlWZPT7s6crlxKRiJqTc64UYtHcvhMQtW4Qh7uiAcZ2eFoWvN2+GZ3XXLhC75SiqGw4jgs7nw8S8dy/O7XnPw/8PHsQiuxYvNHcdbm/HxJRIiLTnSATXPxAQnylGeEMhTALd3aIxAHeMVlUQ5Ur3wukEEe/txXWemYH4Z7dD5DQr+DGOHsUk2dcnxtbatfUhyjabiEjkVGauV9kkOGVsEYNJnKLkp/u6XKXHoFUarejPx4j33qpIp4n+/d/xPP3VX+Xb1sVFUdagmC06coTowQdBZi+9tLr9ZzLoAL17N6J/LrwQ8wzPVZXqt5bC3r3ooDo4iDSiaoXIUuAFiyyj2+LddxNde21991EDTjlb1EjY7bAJiQTGabVjdLVAVcFfWOhg/lKNzRwfx3c3bBCp0MGg2P7gYPFnOZUCh/H5wGEYi4vGOtaeOEH0xz8SPfQQ9vmmNxFdcAH2uW8fjqFUWqkZxOMiW6Qap3Qh2KmfSICPP/ggGkBs3Fj7tuuEli2qAe3t4FfRqEhF1sNux9ienISAz01XcjmM10gEY8OIkF+IQocvP892O9ZBXNpBliFacjpuI1ObeV8ctaev5Vgrfvc7rKtuuCHfefD/2fvu+EjLav/zzkwyM5mZ9L4lW8k2dikiSK+KUkQQC4KKHUGvqIhesaBe5HKtKCpW9FquIoiiAhZWFhaXBRa2ZGvKZpNs6iTT61t+f3w5v+edlnmnJJts3u/nM5/dTDLvPG95znOe7znneyYnsWdqb8++V5qcRFCxuhoN4nhvOzIimuEYaer24IPIhr78cqK3vAXXeu9enG9nZ3HnOT6O4xKh6mTPHtihc88tf4XNP/4Bn64Mds60IQZxnG5TZhTfS/v5KSKyElGRSb5zD4kEMtV6euAMtbYiipGL9MsF7qwVCqV24OJFilPmuXzP68X3Dg9jAeOunNy9uKkJC5aigNgqtLTH5YIhjMdBEOozk+x2fI/bjXEkkzjnUAjd8QopwTaCqSkQiJyuv3s3xrVuHVK916/Htd6/H4t1OcCEYXs7rsOKFVj043GMZd8+kHJ8/kQ4/5ERoX3JmJwUznYh0Ua7HenwHR14zlhf0+stPKrX3Y1ntK0N5+Hz4TkptsHCdGBh9cbG4rOfZgDHvS3KBe7yV1kpuhfrdS3Todd60T9n+k7Axwqs/ROPYy4dzwSipkF7cHiY6MMfTiX7uSMjN0FIx/g4svyam0GeFbNpUBSiT38aouV33omMH27MxeRtMdi9GxvpxYvRJbpcBCKX3PMzGwwSvfWtRD/+MaLtv/51eb6nDFiwtmi2wI0JCpFzON7A5CFLs7hc8Gdqa4uzmd3d8GU2boS/19CAtaSnBwELjyf75juZhK/Esj783aEQfLuamtxNS0ZHoef65z8jo9rpRDDlHe+AX6RpODfWmi6lGoa16lh7sRjo/fMjR+CPBgKwv489BhL0nHOIvvjF4sdZZpi2qETU1sLWTE1l3/twYN3rFU0UuQFmSwvs0+Rkcd9tswmSTu+rcXmzyyVITlXN7tfNNPTlzazNV+r379oFSaYzzkiVVEgkYI/c7tRgBSMWA4GYSMCOsN0JBmHD6uqwt82HRx9FufGFF0Kj2mqFfUwkECAoJpFmZITot7/FdbrkEpxfdTUCwOVMzNE0ZFDefTfG+r10C1A4TBtiEGYmYuHoT/t56pV/5329vCyD0JmagpFk0q7YaAHrI/p8MGjcYbmiAu+PjuJ3bIglCYuTy4V/szmF3GDF5xPNPAoZn8eDdPCDB0Ek6jUiuLyZxYOtVhjzvj4Y+BNPLI+wOS+8LpfoeFZdDWKPN58uFzIg+/rwe+7QV6xOVzokSTShaWvDQsSaOcPDeFksImN00SLx2VAI46muLq4EmTtOrlghnoOBATx7bW3GyncOHMBnODt2bAzPay7dolIwPIznrb5+Zo5fAo5bW2QU3JmNOznHYqKTczrJxBmMLPbNYPvD4tKzCX335VJ0+OYLnniC6PnnEeVeu1a8z9IIlZXZN+2hEMTC7XaQdMVcJ1Ul+sIXkDlz++0o1eHsbCLYsmLu/44dRFu2gEy47LLSneNsmxFJwjrw5jcjsPSNbxC9//2lfU+ZseBt0WyASwZDIeFPLQRoGs6ZJVhYg7kUezk2hhLBxYtF45PqatjhHTtgF1pbRYdnhqrCL1MU+JI83xMJHDMXYTc1RbRtGz7Lfm5NDUiDs8/GOU5Nwf4tXw4faXJS+B6FBvGjUfixdjsCL4V8lonDcBhEJPvn7DMSYaO+dy9s3rXXzqnAl2mLSoQk4ZljvU8uYWaoquiYzFVKvHdhbUWfD/uJYjqA22yiaQaTiozKSqERGwphHHb77GckEomGfZyVmD5WoxgZgV/CTUYYmoaKNFWFrUk/tqoioDg8DHkWllRIJuEnVFYiOJJvTP/8J9FPf4pOzh/+MP6+uxtzf80a0eeAr7GRuT40RPTQQ7B1r30tNOWrqpCNWM4GYYkEsg//8Q+is84i+uxny5Kpb9oQgzBJxMKRKy44b905RYGzwdlg9fVYNMoRKbBYhB5fMAijG4mIcuV4HNHf5mbj+l+80ZyaEk5XIURibS3KhLu7YaDTjay+vDkSAVF19Ci6W514YmHdpdMxPg5Hs6IC1zsahRPb0ZGd9Fi1Cn/f34808FWryiOynQ6HA6+WFtwTbi4Ti+H9nh44A04nrrnDYSw9Ph2qivMhwndxB2m/Hwvh4cOC2Mx2nqxrOTSEqFxdHe5NfX1qB8RyQNMwJr8fm4JcGm3HEMedLSoW3LVZlgWhmI1MZM0dRUm1Gdxohf8/G4jH4QAd7+XLjP370Znv1FOJXv/61N+Nj+P6Z9vsJpMQC4/FiN7+9uIalWga0T33IPvn5ptxHCKxQXa7i7v+27dDw3b1anRDLDbglos4ZOzYgY16LEb0+9+nCq7PEZi2aBbA1QSBgCgZPN4RDmMNZp1YzpIq9ZhdXfD1OjtTfzcxAZ9k+XLYaNY85OBmfz/m4fLlwhdUVfiLkgTiUT93QyHYiQMHsB69+tWw+1u2EJ18MjJ/iOBXJRLwh5lkrKvDeCYmQMo0NGBs+daoeFzoVRslEDkjm1+aJtYmDuxLEvy3b30Lwd93vYvo/PPnHJlt2qIywGLB8zY+jv1AY6PQo+amKkuX4nmYmEhNNPB48Hd+P+ZqMXum6YhELm+ORkV5s9N5bIjEUsubIxFkAbrd8Iv0Yx8agq1ftSrzGmoa/KmuLmQxc1BW02BrZBkZ1vn28c8+i0YqJ50EmRerFQkak5Nij0UkMj6NkIn9/ci25nN67jmM44ILSts/p8PvR2B4506iq69OLeUuEaYNMQiTRFzAUFUQWRMTMIC1tXA4yhklUBQYeRZ25m5dbje+K5HAiyM6RlFRAeKI9frq6gojPRsaMLa+PpCJ6YKxXN48Po6x82LKGYnFRDpGR3GtZRnXwmZD2XI+Mq65Gderuxslx4sWgTCbqYWyogJOAkfoEwksZKOjggBdtQoLeCHlf6yjKMuCQGRw+c/UlOiW6PGATOTv0DQsmCMjcODr6rDY1dZirOWEpomSKc7INTG3wVnO+sxEWRbvcVdmzkjUayGmN1qZSSeUszwUBWPjZjHHM6amkLnS0oJSGf35+v24HtmkETQNxN/YGDIQm5uL+/777kOpzjvfie8ngvMuy8V3v966FVmVa9eiVKdQEjIfccj44x+RddjYiP9v2FD4WE0cP2DdTu7gXm7tzbmCaBR+UjIJn7S5uTwbUFnGptNiwSZbP28DAXxnYyO+j31kbgAXj4MUXLw4Ncg5NgY/adEi4dfEYmjYsns35vWmTei2fOAAsmbWrEHggb83EsmUcrDbcUzOKhwdFYROrmAyZ0TabDiH6eySooiAfiwGm8QETVUVrrfeJh06RHTvvfjcRz86p6RdTMwAbDbss3ifyJ2SWSuRO51zBZt+L1Nfj7nr9Wb6+0bBvlo2IpEzY2020QjG6RRlxrPpU3F5M/uVPI/yjUFVoUEYi0GmRG/fgkFUH+RKYNi8GVICl1yCTGZGfz98qtWr81eKvfQSqho6O1GdUVGBfe7Ro7AdnNnI58ialdORiT09RH/6E56Fyy+Hn6RpIBCLbZ6ZDQMDRHfcgUSPm24iuuaa8mssmsgPk0RcgOCyCSZ0PB4Y+XJFCGRZRDNjMbxns8GocGSUFxSHAwYvGIQhKiSKwMfkjERufmEUzc0w+keOgEzU61AQYTwtLViYxsdFVJiJxEIINBa4DbwiycoRcKOEbVUVCMfDhwW5tXLlzJQ/Hj0qMiTZUW1owPcS4Z75fLjmnEnIpc3TLZpeL56HpqbszxqXUPB1Hh1F2XltLe7DoUO4hqtW4b3+foxv6dLyOgyahsU7FML3lrOboYmZhyRhXjGZyISinkzUSyjwszMbRCKXXBMtjPJlIpzzffdhc/vpT6dukuNx2BGXK/um+Kmn4JReeGGmfTaKn/8cJT9XX41IuyThe5PJ4u6BpmFcL7+MdeDCC40/K0aJQ/7bb30LXU9PO43oV79KdepNLFw4nXh+IxHYtONp8xSPiwYnNhs20eXscr53L67bKaek+iHJJHwfp1Ns2rlLvNsNX0RfAcHw+eArcAZhMgmS8qWXYPvWrMH8dbsRBH7sMdiyK67A3Gct2Fw2kAjHXbIEZN/EBDbOTCbqN+bJJHwkiwX+bbbngv1zJg6JhB/HxGE2bNsG3bHqamRzL1tm+JKbmMew2/FMjI9jTra0pK6ZnBE4OYnnlJ8fScLzyXrihZbU8zGsVjyzXD2Sfgx9eXMkIjIfZ5tIJCq8vHnrVpBhr31taoBUUbDfqazM7vfs2oWKhJNOQnCV4fXCRrW25g+47tsHDcGlS0HGORywQ3192J/mmt/ZyETOWj54EJ3aWbd661bYpIsuKq6sPRd27oSmdTIJ8vP884+vNXA+wSQRFxj8fhj1RAIOw5Il5YkOsEPLDQKIhH5hVZVogMCEYU2NMPLV1UI/o7a2MGPAkTJ9aXMhm8K2NhjsoSF8b0cW2VTWyRkZgcEcHhalzfnKibgk9uhR0SFv6VJc92I6l61cifFweTP/XC6MjeH+tLSkOrScEbB8udDHYPFv1qfkCHZ1dWZ5IHc6rK3N/7yxHidrsoyMIB1eUdC9sL4eZKrLhYWunI6CqmJRj0SM6zOamJuwWIRWTjIJm5dMCjKRuwDqHVMua54JfUR9+XIuzdfjEb/5DbKob745VXJAVTG/rdbsmb47d0JH5+STseEvBg89RPTNbxK97nVwlCUJz0AshjWp0CwuTYN+0J49GFe+DtGFkIZ6JBIgPH/xC5Cf9923MEpXTRiH2y06oZbTBzhWSCbhS0SjsAn19cXrlOZCfz/839WrU4ODXHlAhMy/bJIKmiYqIwYHQRpaLCD13G7cg927YbOiUWz+Tz9dEI49PShbXLIEG3+rVQRRWEcuH7ixRCAgCIOqKthPmw3nRpQaqOfxM8mS7p+7XNMHszUN437kEZzTBz84J6VdTMwAWLPZZsOzIstYm9L3WNyheXQUzzf7Nrw/m5jAc15MQJ6z/JhIzJbRqC9vjsdTKwxm288yWt586BBsxcaNSBDRo7cX13n9+szPDgxAv3DpUqIbbxS2KhrFMT0e7NOmQ28v0Ve+gnn8hS/ABkSjIAEdjuz6i+lIJxN37SL6299gP6+4guiZZ2BvLrigOOmrXHjiCaJvfxvP43/+J3zDheJLz0WYJOICQSgEAx+Nwkh0dJSurZdICMeEO3jZ7TAYVVWZCw03WmFCiR1fiwWk4tSUaORRiONotWZmJBZSkr14MQz+yAgWKL22B6OyEn/HEa6+PkSaN23K7cCzY9rTg/NtbET2YanEFEfGu7uhM9bent3xLRQ+HxzTurrUxZ7Litxu8czwPaupwQISDsOxZVLRYhGOtcWC++J2F3buVivOtb8f17KpCc5IXx/OV98VsRxQVWSlRqO4pjU15Tu2iWMHJhMVRZCJnJlIhPuud9Q4S1Ff7lwK0suXy6kJM9fx7LMg3S69FNk4enAX+La2zOt8+DBK/lasgBNaDB5/HI7y2WfjX4tFZOFwSWghUFU4yfv3Q9fszDOz/12xxCHD5yO6/npkO952GxzlcnYyNHF8wGLB5i8UwjNdzmy92YQsCzLUYoGP4PGUP4gzNYVNdnNzZpbNxITQv073HaNR+CBVVaiCkGVR8jc1Bb9uaoro739HYHXRIjRH0DdhGxiArmtzM5ojVVTgOF4v1p6GhsLOt7pa+NJeL3yiSATXbskSIUnDGYd6/7y+Prt/ng3JJDK5n30W9vv662dGk9vE3IKmZWo2V1cjWcDvxzOr92O4amtoCHND/+w7nfhsIIDnr5ikFT2RyBl+2f5GX94cDIoEltkmmfKVN09OggxrbUUWnR7j47BHS5dmzjWfDwHFqiqU8LKtUhRkFlosqc1Cs2FoCFl8Lhc6qtfUYJ4fOIDPdXYWlsgjSQiq/u1vsD2cgej349zKFXDQNKIHHkC35xUrIKfQ2Xn8SwHNdUjabPZFNzHrFzsaBTkWDsNpaGkpratfLCYyDmUZ7zkcomubkc0O68o4HJmlGD4fDGMxBI6qwpljfcdCtR17e2HAOzpg3HMhGIRTyFGfU07JJMc0TWQLEsFpPeGE8upNqiq+Y3wc41i5svjjh8M4J85O5edDluEs22zY7Od7bjQNzwZ3eo5E4OTW1sLw19QY3xDLMojaQIBo3TqM7bnnMNZly0D0NTWVx0HgsvZ4HJsAA47yfF+6FqzhVxQ4x5xtaLWKlx6qin9Leb705ct2+8IoX2YMDBB9+cuY97fdlnp9QyEhEZFuOycmiH79a9iKt7+9OJv29NNEH/sYyn3uuw9rjarie7k5RSFroKKgDLG7Gx0A0wnRUolDRm8vGqgcPoxS5uuuM+TQm7ZoAYO1+jye+WVfFAVreyiEn7mKYSY2/PE4ynG5sYneB4lEMN9qajIDyMkk/DwiZOfoA0/79yPzcGQEdn7JEnQ3XbIk9RgjI7BnHg8aIFRViQZzqpqZNVgoZBljmZyEP51eksw65C5XYeRAMAgd2wMHQAy84Q2GAi+mLZrnkGXsGzVNZOvrpV5Y1z2bhjEnIjQ3Z/rQXA5diu6+puG7maTLBV7rWU/V5Tp22WqqCltHJEqzf/MbXOPrr0+tMIjFUIHhdmPPo/ch4nGir38dduO221Jt1YEDuC8bNky/dx4bQ1BSUYjuugt7OrZl4TD0nQuteHjxRegzrlgBDcSnn4bNO/NMEKHlKCuPxaDd+NRTsN/veY+hKrT5bovmBUwScXYxaxc7HkfmYSAAY8vloYVOZk1LJQ4VBcdgx8TpLE6LgPVY3O7UkjJuwuJwFBfxVFVReltbW1i5mqZhkzg5CYM4XQQlkQDptGcPFqkzzhDZe6oKo757NxavjRuRxThTEZOJCTjBFguIxEIJ2Hgcn6+ogGHmxZZLsWUZhF2hjq4sY1PMgse8kFZVYYweT25nIplER9JQCGXj1dXI6LRYcC3Hx/FsMzFeaCQ/fZxHjuCeLl5seBGd7wvUgjf83MmZbZrdnvqM68uai3m2Fmr5MhHs+xe/iGt8552p2dqyjGh4ZWVmJ9NwGNp/ilJ81ssLL6B0euVKoh/9CDZY02BLNK3wTsyyjOYuhw+jfPnkk/F+uYhDxrPPgjTUNGT/nHOO4bXVtEULGJqGtVDTSgsQzxb0Uig8H2tqZk7TSlVhE0IhlBfrA9eKAh9FkuDz6e2CqsIfjMeRgagn0PbsQXflSATvr1uHrJimplRiZWIC9qyyUtgzJmISCfx9KYFlDiT7/Vi/wmHhP7e2wp8phlgeHib6zncwzne8A9fNYAb9HH/68mLB2iLe6yWTItMw25xUFDwXRCAS0//m6FEchzNiGdzBnAjPZrH+EJNy+YhEIszPaBTf5fEcu4x+ls7RNAQje3vRCEQfcNA07BnjcVS46e2CqhLdfz9+/+EPpzZXGxqCb7JsWfYqOsbUFAjEYBCVGZyN3d0N4jdd4sEItm1D2fIJJyDI8O9/Q+rh9NNxfH0gvtj7PTmJ8XZ1oUz6jW80vJ+e77ZoXsAkEWcXM36xWVh5akp0zmpsLGwCc/ldOIx/uaxPTxyWY0Ps98OwpjuQXCLNUdVCwY1jkkkcu5DyQVWFLgR3t5rOqGoaFswXXsB5nHUWnMIXXwSJ2NqKjJXZKIuNxbAYsJafUdJSlrEAaRqMfroDzM1Fiin9Gx7GdWlrw3FjMVHyrG8uwZ2ZmfBNJHANo1EQsNXVODdNgzPPfxcO4/qHw3ivtbVw7Y1kEgSiLOOaFVBqMd8XKNPwv4JkEo6bqmaPvBdKJKoqnu+FWL5MJBqC7NlD9JnPYM7qfzc8jGuu72RKhPd+9zvYnbe9LbUkyii6utDJuLUVukGc5RgOY467XIVtJJJJdBocGCC6+OJM7SKi8pA2v/0tiM8lS5C1dMIJBZEqpi1a4FAU+CwVFXO33FTTBHmoqvDtamtnfmO/fz/m78aNmTZlcBBjWrYs1cfhShK/H7IpHATxepF109UF3/DCC5G9wxUXmoZzqqnBZ3/5S7x3/fXCN5mcxN9zWXGh4GqPcBi+SywGH581JCsq8B2BAPz0+nqMyajPvm8f0Q9+gP+/5z0ojywgGG/aonmIRAI+kKbhXue738kk1mlufKRfA2UZ84qlofS/487hdntpZa5MJObSG0wfayiEz7hcx9Yf274dwYezzwbRpr82/f3Yz3R2Zu47H3yQ6Mkn4RfpdZj9fmGL1qzJ/b2hENFnP4trf+ed8C+IcJ+GhuB36PWqjeDpp1EZtm4dNKeffx6yCqeeKo5PJKSBiAonE/v6UM0yPo4A63nnFTTO+W6L5gVMEnF2MWMXW1Ew0bxe/FxfDyNt1EFTVZFtyKnsrIXBxGG5I9yqCiMoSZkR9EAAi5qeXCoEmoaMxEQCxyiEBOP07lAIBj0fCTg1JTQg2FiuWkX0qlfNbnmRvrzZ7cYY8glm9/fDCe3oSL1GwaAoQy5Uw1HTsFjFYrm7ficSglCMRPCe3Y7x9vbi502bsCHq7sbzvWpV9mMFAiL66XSCtDQiNJ9M4vwVBWn3BRKl832BMg2/DnoNIJsNr4qKzEYr+Wxgevflhahl98c/Qv/rhhvQlU+PqSnY5ebmVMKexfsPHiS66qpU4tEoenqw6XW70UWUuxNGo6KRWCH2OB5HM4HhYTjJeie9XGuhphF99at4nXMOiM/m5oKDdKYtMvH/K0am67B7rBAKiaCxw1Gc3EwxGB5GMKOjI3VjSwRbNDwsKhn0OHoUftSiRSBJAgEQAHv34lxOOQW2TW9PFAXkHZdRPvEE3nvHOwRhwj5PdXVhzXDYP9cH9n0+2KHFizOJHCLYPA4Es+5ivkzVp58G8dnYSPS+92HDXqD/bdqieQRVFXrNNpvQfDeCWAzPu8M+BSv5AAAgAElEQVSRSXqFw8g6rK3NnFvhMD5XXV1agkUhRCKXNycSQkZrtjO2BwfRUXn5cmTtEYnGL34/bEtLS2Y35qeeIvq//0PA4tprxfuJBNHLL+O+bdqU+xpEo2ie0tdH9LnPIZhCBNvQ0wPblK0DdC5oGgIpO3bgey++GP8/eBBVY/osST0KJROff57onnvwd+9+N6Rp2tqMj5Pmvy2aFzBJxNlF2S+2qoLsGR/H/2trjWtOKIogDmMxIf7KGYD6jJyZAotqV1amRtC5k7MsFx+t1hOJHk9hUV9FgVGPxbB5zBfdHx0l+v73cR8uvRTaEMeqrMjrRXYhl+jkIgGHhuDQLlqU6tDG43AAHI7isoG8XpCQjY3GSoNlGeMYG8PCIctYjFpasNBZrSAV8t0/3hQkEvjetrbcmYWJhGjYsnRpUZuu+b5AmYY/Day3I8uiVJU7OfPvpyMSmYTkUqCFVL7M2LUL3ZBf8xpkBOqvFevzejyZ3Zg5qn3++Qi+FIrBQTiaRBDfXrwY/4/HYcPt9sLmeCQCInRiAg7/qlXlt+exGEqTHnwQUfavfa1o7SbTFpkgIqy7XIExU+XBhYD1kVmbrLZ29gjOYBDEX00NsmPS9cV6e+FTdHSkfs7rhT1pbET24IsvIttH0+CTrF8Pe5Dr+nq9RD/5Cc77uuuQqWix4FpMTuI7jZQNsn/O0j96/zwaxTrV0JDfN43F4JdGo1jPGhoyCUxNQyf7J55ABc673oVzL4LoNW3RPEE8jpckYU4Wk/AQDuM55yaKekxM4Hfc0VyPyUl8trGx8ConPQohEonEftdmmzn91WwIhSBr4HBA57miQpQ3KwoCHTYbCD79mLq6oOm8YQPRhz6UKjW1ezfOZdOm3NcwmUQmX1cX0e23Q0+QCLZx3z7YjjVrjPs2moYGKrt3w6ZecAH+v2cPjsNSL9N9nhvNEGUnEzUN8jE/+hG4jBtvhL0tYi86323RvIBJIs4uynaxuWR3bAzORHU1Jlw+B427U7IYNxEMGmccFpP1VypiMYyHMx4ZHG3VNDg0xRh8JiPjcSx0hXQGSyZBJCaTcARzffbIEWhBcJQ9HocjtmnTsRM615c3t7amNkshEh3AmptTI4WKAiKOCFHoQq+534/nsqamsNLicBjRrGQSC4aq4tpHo3DyObswX0METYMTz2LnNTX4rH5exOMgECUJBGKRz/x8X6BMw58F7NRJEp4fvfYOO6npc0Jfvszl0AsR4+PQQayvR8RbvwFVFAQtLJbMEqfdu7F53bSJ6JJLCv/esTE4mqEQMvlWrsT7ySTsH69v+cCuUDhM9PDDCGxcdhkyB8qNiQlsJrZtw7X66EdL6iJp2iITRARbFAhgflVXH7tAZiwmArgVFViHZ7N7dDKJoISqQq9ab4s0DVk5ySRshT5AHQzid5WV8GV27cI6sHat0C9btCi3n51IoGnCyAiyl7mRnMcDu1JZmT1rkCHLQs6HM9orKlID+5OTGCeXTRtFOAy7E4/jOI2NOG48DtLzpZfQDOGqq+BnFem7mrZojkNRRDYry62UYie4s3pNTWZ1weAgvm/JklSSj6uVZBnkUCkVG9wB2SiRmEhg/nCDtZnOiFYUBAonJhBU0AcQOFklEECmnf76DQ0hsNjYSPTJT6b6lb292Kd1dmYGZPXHvuceBFI+9jFRBh2LgVS02RAQKaRa8bHHQD6ecQZKsvfvh91YuVIQlEagJxMlSTRfURSQh3/5C2zuW9+KPVqRpe/z3RbNCyzAYqv5D58PBjiRgNFZunR6By2ZFI5JIoH3OCrMGirHEg6HIDe5jJAIhqWmBqSU34/xFrrYSRI+5/enCusbQUUFDFlXFzQO165NJTllGQtAVxeOee65cBZ37ECaeCyGyEwhxGW54HBAq+LIETi0oRAMvd2OazExkVlqoGkgAljHsNANbSSCe+VyFUYghkK4ZkRYiKqq4Mi3t2OBZCKYdT65i6PHkzlGSRL6QOPjyBD1+/FzayvObWAAn1u6dHZKqkzMH7BDww52RQXsZzKJ+W61wkbxc6cvX3Y6F2b5MhHWle98B3P1Ix/JnFcTE7im6Y1Ujhwh+vvfEShIL302Ap8PEXqfj+iHPxQEImfxWK2518Zs8dNQCBk54TAEvNM7rZYD+/ejLGlkBKTnlVfiOVuImasmyguLBetvMCh0pWcTiQTmYiyGuVdfX3i3z1KhaciMicWgSZ1ui0ZHReMHvb2OxbA5P3wYvkMigYDmq18N2zU5ic1sLgJRllGuODqKpgmrVomqjv37cR06O7OXHXNgX++f19XBdunH7/Ph3hZTCupyiWdjYgIkRSIBgmN4GOTh2WcXLvtgYn5AL9kiSbjP5fBXamqEJqvNJsguSQJBODiI/aq+FFWSsPcYHcWz2NJSPJHJxKGqCv9tOvDeNxjEy+mcGbkuxlNPYX5ddllmBvLYGMbAexEmQwMBZCDa7ahW0BOIY2M4HkstZIOmEd17LwjED3xAEIiyjL0sEWyR0fuvKMgOPHQIsiunn4497ksvYeynnVbYNZEk3DcmE5nY/trXsBc891xU9LW3Z5bDm5hbMDMRZxclXexgUDhAXGqaq5QhHhep28kk3rPbRURzrm12mSjikmz9QpBIiJLnUjQ0AgEYqqqqwsTHYzGQhZIEYs5ux73YswcOZ1ubIL/4XPbsgbFuakK0p5TuwaVichKkHBE28cEgxpqenchkrdEyZD3YWc7WcXU6BAJYiCwWpMc7nbimgQAWJyYjubsqawpxhhiXUVRXZ49CyrJwVFgbrbkZZEOJjvJ8j3KZhn8acKmJ1SoipMmk0HThchR9J8OFSgJpGjJZnnmG6OMfF5o7jEAA2cHpZXSTkyjxcbsRoS80gzMcRsl0Tw/R974H+0Ek9I/YPuht0XQdlf1+EIixGNGb3lSw/o4hbN4MrUi7Hed+8smwmSWuDaYtMpECzmSbjUwbIqyzPh++12IRQb5j4fP09sImrFmTGQQIhRC44KAiI5lEmd7Onbhmy5djo9zcjHM6ehTnk6ukTlWRvdzdjaDAunXi/dFRXBsOStXX455wYJ/9c4cDflmu5k+BAHw0t7v0jbWmwaf99rcxhre+FedbX1/y3sC0RXMQHOzM1jyuHOCO47KM/YPetw4EQMo3NGRKK3GpfVVV6c80ZySyzqCRMXNFHmf7llsCYt8+oscfh29y7rmpvwuHUYVRWwtCj31OWca8HB4m+sQnsA/Sf2bXLtii9euz30NNQ0D18cfR0Omaa8T7+/dj/7d2rfE9sCxD57qvD7qMp5wCG7p1K3ykc88t3fcdHSX60pdw3KuvhqTN4sWFN8pMw3y3RfMCJok4uyjqYkcimGRcDtHcnGmMOcrExKEsC60LLlWeCxo504GjWVZrZilOLCaiRqVEtjlC73QWJmwdicDp4tKcvj5sjJcvh8OYrkmhaYjaHDiAxWn1ajitxyrCG49jQevuxvNz5pmpzmIkggiXx1P4Yi7LWPAkCYuK0efM5wOBWFmJhcnhwCLi82EByTUO7k7IhGIyie92uQShmO4IT03hu8JhRPDa24tqYKDHfF+gTMOfB7KMf/XPkqLAFulJqtks05uL2LyZ6Oc/RybLVVel/i6RwAbc4UjdtEciINGSSTQeKDQ4FI8jQv/yy+gEfc45eJ+DDZxxbrFMTxwyJidBICoKnFhuylJOPPAA0a23YsPwq1+B4ODmPSXCtEUmMsDBtpqamQtwsM/G9jBXhcBsYWIC63xbW6bAvyyDXKyogN/G866nBx3YJybgy513ntBUTSZRuVBRgfdybdr/9Cf4V5deirJEfn9iAjawoQHHOnIEvghnGno8IrA/nd8UDMJGuVy5s48Kwa5dKBt0OEAycEfe+nqMtQQ/1bRFcwiaBn8lmcScdDpnbh+oKHjeiZA8obcBIyNY8xctygwWBgKi0qzUzvKsZ10IkRiPY1/AVQvlCrqMj6MhSmsr5ph+PKqKOagoCLryfJNlzMudO4luugkSL/pz27kTnz3ppNxz9Je/hC/zpjchYKm3cxMTSKAwakOSSWhDHzkCeYYTT4Q/t2ULjnHBBaU/TwcPEn3lK3hOb7gBpOmiRULCrAT/aL7bonmBOZaPZkKPeBzkYSCAjWx7OyYWTypNQ3YVE4eczu10wiBXVc2v7BirFRu/YBBGXU8WOhypJWrFivFydDwcxvUzunmtqkJ5yhNP4H60tiKas3Jl9vIWSUI3QKsVxvvQIRjk5ubZL+8hwvPjdsPw22wgN1etwoKeTGJxYSeyEKgqyEdNwzUxuqBMToIAcDgQpbPbUfbg82EDMB2RyYShy4W/jUYFoXj0KF5VVYJQTCQwj5Ytw/UfH4dTw2UU02kUmVi4sFphcxQltWRG04R+HTuhC7UctacHTuvGjSj/1YPlESyWVE0bWUbX43AYGTCFEojJJCL0O3aIrsYMXgerqkRnbUauOT4+jiwiSUKZcbnLZ1SV6POfR3nRRRdhk1BdXTYC0YSJrHC5sCaGw6VvztPB2ovBIOYYS4wcy0B1NIoKEI8Hvlk6hoYwbtZkPXoUWtb79mHc114rCEAinNfICP4/XXXFE0/gGOefn/p57kRvt8P/UFXcE9bN5gz2fDrP3M3W6SxPBuKTTxL97ncgRW+8EffN4RCZjsEgbHJDw9xPPDCRG8mkaMjDJPFMguULJiaQYKH3q5ua4N+PjuK50/tK7KP7fKVrSttsqVrW+dZXScL3Wa2YZ+Ewrhv7D8UiFiN69FHMq8suy/QNDx+GvVq3LpUMfPRREIVvehN+x+XNRCDb4nEQebkIxIcfBoH4utelEohDQ7gv3MndCOJxHItLsdeuxV7vmWfAQ5x3Xun2YetWNOKrqUFVSX09gqtutyhz1msmmph7MEnEOYhkUpRAWCwgOhoahFYXk4YsjssRJpdrZrUdZgOVlTgH7iSnX1BcLhiVUAjGq9iIETttoRB+NiJAHgiACHQ6xX1ZsSJ/I5uVK/G3/f2IaCsKCN7ZJK5Y4FiWUbLC2j979kCLjDu0NTUVNiYmCRIJPKNGo9cTE4jCVVUhA7GyEguV1wuSr9AsINY0aWnBuTChODKCzEvWRFy3Ds+Q2y1KlIaGcA5tbcVpbpo4fqHXR1RVPOdcvsyZ4KyVyERjGUpT5w1Yt6e+nuiDH8ye3ZdIZAYXHn8cc++KKwovGVZVojvugCP7uc8h84fBpYF6bcp892JkBJH2igpkC5RYPpOBSITofe+DntD734+SHS5rXCjPiYljA86sCYfhT5XSBZWhaSCZAgFBinHzkGMJVcXmW9OQvZO+ufV6cR3a2jD+v/8d2TXJJMoCX/Oa1ExpImyY43F8Jpdvs3kzgqGveQ2aDagqrvXoKD7PmU1cDcTkhKJgTFNTokttNvIkGoW/5HAU7p9lu0b/939E//oXgj5vexvGxmWcjY1Y17xe+LiBAOxhsU0NTRwbcKM31nB2Omfv/lVU4HmZnMSzzUkJViv8+qNH8XylN8qor8ec8Xrhx5dCTjGRKMv4vxEikZsfseSRohRf3qxp8HGCQaK3vCV7Z+rRUSQF6QOozzwDSYXzzkODOSbRNA3XbWoKe85cAaEnniD63/9FefEHPiDOW99tftEiY+cQjULfdXwc8gyrV2PcW7bgupx/fmlVddwN/he/QLINy9ksXSrOT+97cwdu0w7NPSzocmZJkh4goncRUYWmafIsfOW0F1uWMWknJ/FzQ4MwtpxxGI2KdG12SkrtrjUXEQiIrtN6B1XT4OAwGVeK8xqJwNDb7TDmua7h4CBIQE0TpGEigcWys9OYYTtyBNEnm02Ic89WefPRoyDSFi0SJdzxOLKIBgawKJxySuFlmV4vrl9Dg/FMh9FRkS1w8sk4fxYKLmSRM4LxcZCIioLztljgNHOGYlUVxn/0KOaVw4GF3WCZe1ln3FyzRSYEuGMmR631mz29MLS+/Pl4J4kUBSLY3d0g9To6Un/PEhw1NanZzVu3IvuHxbkLgaYRffnLiLbfeivRu94lMg3jcWyc7HbjZMnQELR+HA6iN7+5MHkLIxgexiZi926iu+4ieu978UzMwLNh2iITOREKwV/JJvNR6HH8fsx9pxNze640Juvqwjp+8smZmTaxGORnNA1z/tAh2IlVqxBQbGkR5csMvx/+Q3197uqMf/8bTRM2bUJDEvbPuTKivh7Hnc4/j0RAEnLZub7SKBaDb1RRgTGWsoGOxYjuvx/X6eKLkanEFR3ZiJJEQvh3nGFmMMhq2qJjiEQC95p9lWM1P1m/nDXLGUwutrRkVmRx8kxlZemEOZEobTZCJBIJX44zOIlg5wrNjNy2DbbhwgtTy5GJcH927oRN2LBBjGv/fjSmW7sWMi081znYsG8fghknnJD9O7dsgazLqacSffrTYk6HQvisywWNWCM2JBxGsyWfDwTiihWwh//8J67lJZeUFpCSZWhY/+MfkNW6/HKMq6MjdyMwJhOJCiITi3qCjoHNmddYEJmIkiSdQkRXEtEDmqYdPsbDyYCqwpHgDpZ1dVi0k0k4MmzQOFrCxOHxDI9HdKLTOy+SlNqxuZQoKUeFAwF8V7qTlEwihXxqSnSsczph7Px+kHDd3YjS5Fukli6FYe/txXfV14PAa2oqf6mRHhMTGGtTU+pibreDsONOir29cKqNPldcylRTY3z8w8PQlaypQdmPzYbxDQ/jPpaTQJyawrEXLYIjr6oYr9+PRXliAt9fXY2/SSaRldTbi4WsvX1mOlvOdVtkIhXJJAgqIji36U45l8wwcciZibKMn406sPMNDz0E5/T9788kEBUF6xbrfjH27oVzvWFDcQTiN78JAvG97yV65zsFgcj3iLPYjeDIEeiYeTzIQCy3xMSuXSAQfT6iX/8aZcwzRCAWDdMWLQy4XLBHodD0wdJciETwHMsy/IZcWXPHCoODIBBXrMgkEFUVpOHu3TgHmw0b7VWrQCi63Zl+RywG/6CqKjeBuH07Mn+WL0cgmf0Jlt1ZvtwYEVJVBf9kchK+CWclWiwgEG220glEr5fou9+Fn3XddQgYM4GY67iVlSAt6upwbuPj8KkaG8sfbCEybVGpYK1mRRHP4bHM2nK7RdWYzSYSFOrqQLKPj2OM+qAGNx3yeoVGYilgOZpCMhKZfLNaReKOLBsvbz58GD7O2rWZBCLr5Gta6p5xeBiNUFpbUbWgv2/JJPYkVVXws/TlzYznn0cjlg0biG67TZxDPI79a2UlyEcjz0MwCKmDUAja0EuX4v+bN+PzF15YGoEYDBLdfTfs8ZvfjIakqgqpqemSWLicmclEvg6lPOOmzSkPFgSJSESnENEXiOhfRHT4mI5EB02D8zA+DkPldGJToyiIyBCJRh4u19yJ+s4GJAnXgskqveNiseCa+HxisSl2Y8bl334/nCSOBPv90A2UZRj3RAKOc0cHFqTGRtynw4dh5FeuzP9dixZh7N3dIlI9OorFqhyRt3RwV7SamuzR+akpONOVlTiHri4Y83y6O5EIntuqKuPlf4ODiLbV14tyo6kpOPI1NZldFEsBlwu43UIM3WIRpTmKIkqyfD78PetxOp343aFDeOba28tO2M9JW2QiFax1yOXLLKXA3f/04LIL1kpkMpEJRSYYjxe88ALRX/8Kh/KsszJ/zxqpzc3Cpg0OosRn6VJEsguBpkFH8Oc/RwnezTeL4/LmqRCd3N5eor/8Bbbg6qvL3xjn8ceJ3v1uHP+JJ5ABIElzcv02bdECADeAYn1Eo4R5LIb1MZGA/WpqKk9JdDnh98OvaGwEiahHPI7ywBdfhN9x0kno+mm1imzEjo5Uv0tREExk8k6PZBK+z4svYo4vW4bGAtwchYk/bn5i1J+zWPD3bjcIu4EBfE99fekEYl8fJCeSSaJbboH9zUcg6uFwwIfijMmREfhLPN4ywrRFRYD9lERC6OHPFV+julp0bbdaRUfo5mahj9jenjpPqqpwLsGgkAEoFkwKFkIkEgn/zuUSmZ1Gypv9fvhFTU3I9k3H0BBssD5ZIxjE/KyogF+j32uoKmybJEEHkc+FKxGJQMb9z//A9n3mM8LHUBTsXzUNQQ4jGeg+HwjEWAz6sO3t2Jtu3ozjXXxxaXN+eBhyLqOjwhZpGgIuRtYVvp+cMVoGMtG0OWXAQiER5xQ0DQZndBSLs8WCyWm14me7HRsQzn5bqLDZYLhDIVwX/YLCWWR+PwxzoeL8erDh9vvhIIVCcOScTpBbU1P4m46O1EWkpQXGdWAA7y9blv+72tpwvw8ehFFsb8f4YzGQleXaaEajosFIuu4Yl81XVIio94YNIDd7ejCejo7shjmRwGft9kxdk1w4cgTn29gILR6LBdd6YADPfbojXwo4as4EYLbjsqZdbS0WIS69CAaFkC9vJnw+jLuc98bE3AbrWqlqqtB3tkYrDL1+C5fN22ypZCJnJs5nDA8T/fjHCJpcd13m7zmzubFRrF1TU2ikUluL8hgjOkN6lZXf/AaO9hVXEN1+u7BLqirKzF0uYzbk4EEQAE1NEC8vZ4BA04h+8AM48xs3YtxsXxfyOm7i2MNmE1rT8fj0mYTc5CAWw+caGmYmK79U5CoNlGVsrrduhY+9cSPRa18LH1GWQSBKEjavelvEjVQUBcSZ1YrvCIfhfyYSCEA8+SQ25tddJza/qgq/g0jolxcKhwM+5YEDuE+yjH+L3bi/+CLRT3+K8/6P/xBZqEYJRD2qqrDpDwaRKXb0qNBpnGvE8kKBLGOOqirWl7kmayVJIpOVs1g5oNrUhLmp101k1NRgrk1OCv3gUsZgtabqVhslEhVF+HGRCPYIVVXZbacsoykKEcpz0/28YFDoEvK+KZkk+v73cdyPfzzzOvT0wPasWyf8FL1OYk8PZFLa2tC4jeehpsHPicUQwDTi40xOgkCUZTS7Y335zZtxnIsuKm2P3dWFsRJB/ob38suXF+6DZSMTNc1svnKscNzLVEqS9EUi+tErP26WJEl75fVu3Z81SJL0v5Ik+SRJCkqS9FtJkjIKGSRJWi5J0i8kSRqRJCkuSdJBSZJulyTJ8HUMBlHW1dUlSr4405A1VNra8J658YDBdjiE4K0elZVwsBIJ0SSlWDgcuAd79uDV0ABSkLvipROIjPZ23K/RUZBiRtDSAuMeCiE61dwsyMhgsLTzIML1GBjA88OZeAxuhsKZQuxMVlYiBb+9Hb/v6sI114MzZFkk2YjB7uvDgtbSIgjEYBAak04nFpFyGf6xMZF5mYtATIfFAsJx8WLck2XLMA+5+7Pfj/n63HMYM+veFYO5ZotMZCKZFJ3b0x1Gzmhl5yUd/LwxAWaxCPslSZiX0Sjm0XxELAbdHo6apzvK8Tg2BS6XkDiIRkXn46uvnt5h1DTxYvz5z0T33IOsxzvvFPZK0+DYExkvNdq7l+ixxxAQuOaa8hKIskz0yU+C5HzDG5DpOJcJRNMWLTxww6FIJLsNSiZFthlrPre1zU0CUdNAFCaTqGyoqIBN3ruX6Fe/QpMCq5XoqqtQNldTg88cPozPLF+eGRScnIS9qq7GGjAwAP+MG+mFQigd7OxE51M9eTY5ieM2NBQ/3xUFPkxNDXwlhwP+zMhIYX6HpsHO3X8/iL/bbhOa0G53aZmNHg984ZYWjImvEUt+FAPTFhUGTROltkRY/+ZqQ02LRVQ2eb3Cb3K78SxNTQm5LoYkCSKeJb5KAcvNaFphvhcTjhYLxlpRgWvO/qEe//wn5urrX59Zhs2Bi8pKkS2taWgq0teHDunpCSgjI7AFS5akVntZLDiXw4eR1VddTfTFL6ZKSh0+DGJy+XJj0gPj42i4pKqo9GhpgS3717+wVzvvvNyyDkaweTOIw+pqaFrzs1oMgagHk4m8L+cAv5E2H6bNKR/meV6EITxMRIuJ6L1EdBcR7Xvl/WeJ6PxX/v8XIuolos8QUScR3UJECSK6gQ8iSdIqIvo3EYWJ6D4iGnvl83cT0Qoi+mC+gfzhDyAlLBZMyoYGOGtWKyZtOQik4xGaBgdOUWAs08m8cBhOTClakYEAosyJBBaBwUFEelgfr7d3+s+HwyCajhwx3l3Ybke6en+/EK/t6xOEcjHOnqLAqVMUlE+nj5u7AdbX53b8bDac+6FDOEZ9vYi0Kwo2x+kEYzb09+M6NjfjXHt6sAgzwdnRgffKgYkJOPvcKbK7u7TjsQNht+Nce3rQhZHLe17/+qIOO2dskYlUpJcv53LK9SQi6yEy0klE/tliEVpZrN/H5FIpXQhnE5pG9JOfIBPxU5/KdCpVVWh4sXSCoqBxSSAAfcBsGkfZHD6+bv/8J9EXvgD9xP/+79RrxUSI0Q6Ku3Yhg2jpUmQ0lpPYCwbR5OUf/0DGz+c/LzJSZ4JA1Dfz+d3viK6/vqjDmLZoAcLtFtp7vMFUFLwXCgnNaY9nbnfC7O4Gcbd+Pcba0wP/y+fDJrizE/Zm5UphTwYGcN4dHalVLZoG/6GvT9hkLg2trcXfjoygNLqpCbZMT0AyEVJXV7xWJAdoVRXj567JgQCOPziI4+fLBpJlol/+kujZZ6E3dt11qZIc5SCa+BmprsbYWC8xEECjhCJg2iKD4KYfmpbZ5G2ughvzeL2Ysw0NeIYaG3Euo6Mgy/T2xmrF342NifL5UsBEor5rsxHopWpcLvhunCXM1YO7diF4ccYZIMbSwfvK9euFr/Loo5CFedOb0AxKj2AQn6mrg7+SjpERov/6L9z7z30ulSgcHsY1a283Vik2PAx964oK2DWWe9qyBXP6nHOM72fToWnQg/7tb1GO/dGP4hmw2UCalquyi8lEfSfn557LLrWjg2lzyoTjnkTUNG2XJEnbCA/L3zVN+xf/ThIr6jOapn0s7f1bJEm6WdO0wCtv30tEQSI6WdM0/yvv3S9J0hARfUKSpG9pmsYPYlYEApjczW59kWAAACAASURBVM1wUOaykzaXwCUYrOnj8aQ6Qy4XjAeXhhdinDQNhpTLMzo74UwfPozjtrYau0/cvGN4WCyA+VBbC4Hd7m68OjtxDn4/Fp3GxsLPZXQUjkZ7e+Znw2Fx/abTGvF4MK6BAbxCITyvyaSxMWkaHPLhYVy/FStwv+JxOMM2m2g0Uw6MjeHZqK0t3dnQw+nEq6kJ452cBEl86FBxJOJcskUmBPTly0Y6GurLmtOd0VxEIn+OS2uYTLRa4cDN9bXgiSeQhfPWtyJjOR1eL86L5RqIsOkeHCS67LLU5gXTEYeMbdvQZXDDBjRU0d8TduI5syofduyAU7x8OcZSzpLygQHoBx08SHTvvchQkuXiCUS91k+ul6Zho3HXXTivYkhE0xYtTFgsQiImFMKzysFrjwfk0Fy3RWNj8M/Y5/r97/FefT2ygKuqQAq2t4s5ODKCTXFbG/wEzuYKh0E8Hj0KG9PRIbSR+TqMjaFbqduNTB19oDoYFD5VsRmbHICRZewN9LauuhrnwwQMN17JtkaFwyiPPHgQgZLXvlaUpBvN1k4fF69zuV4s+bFrF8qwiyERTVuUH6qKeynL8BkcjvkTgCTCM1Jbizno84mGmC0tSHoYH8/UILXb8RmfD/59qQ19SiUS2T+02TDXAgHs1TZvBil2xhmZnx0bw9xdulRkC27bhkzhs87K1IdOJpFYYrdn78Ts9SKwqihY/9vbRfad34/9SUODMY35wUFUiTidIBBranCOzzyDcZ95ZvHNLhMJNHt5+mloKb7znbCxFRW4VjMRXGV7/b3vEf3sZ5BzyAXT5pQPxz2JaBDfS/v5KSL6DyLqIKLdkiTVEdGlRPR1IqqQJElPVTxGRJ8gogtJsNlZcf3188vwzzUkkzDcdnumToymYbFRFCw8RhaIRAKOj9WKjn0rV8JRGxvDgsClH3V1xu7b6tVw4Lj7shEikT/X1QUC8cQThTaPqmZ2VZ4Ow8M4//b2zIh1IiFIvZYWYw7lunUw/Hv3YoE69dT8USlNQ9dWqxWLEC+E8TiI0uXLRTOXUqFpGF99Pb7HqEZjqfD5ZvTws2KLTAAc2ZckbLSM2meLJbc+4nREIhFsEzuz/P1zmUzcvx8Zb696FdGll2b+ngmJujqxwd62DTbtrLNAOhohDhk7dxJ97GOwFd/9bmrAI5EQTa6M2JDnnkO3xNWrMfZyrr8vvABSIRaDM3722WKTl239SScDeROuf2UDC4fzM7JvHwjWsTFoKc0gTFt0HKKiAuvx0BDmVm2tyOCf6wiHITfDjQOOHoWfdtFF8AGiURCMtbXCb5qaQnCVswrHxuBrsU0KheA7rF6dubmdmkKpX0UF5rqeKIxG4Rc5ncXrhWkaxpNIwLfKVknDTV7CYaFHWFOT2lBwbAxSE14vuteffDLGl4tAzEcO5ioLtFqFLbLbcR337YPtet3rirsGBrFgbVEiIaqGHI75q83tdOK5CgTwXHo8eIY4S9HpzNzreDw4f78f512qBEm2ZitGoCcSrVaMc3wcWs+VlfAt0udYLIZkCtZnJ8L+8Je/RMLI29+eKTXFzTw3bswcWyAAAjEcRinz4sXinAIBHNvtzmwwlQ39/aiMrK4Ggeh24/u3bYN9Oe00BFSKgd+PTMn9+1GhccklCLba7SAQZ2qdmZyEX/TCC0TnnluWQy5Ym1MI5oHbMCvoT/t56pV/uWhrNRFJRPTJV17ZkDfp1yQQS0NFBRyiSASGSL+gcInF1BSMGEe6csHng8FWFDifzc1wNCcm4JxxhGdqCsapri6/8ZMkOKIHDqC8hgnIfKipAXm4Zw8iuieeiMgV62Jw9+bpzsfrFU1A0h1ajnRbLIV1gZYkLDKtrTj+kSN4LxdZp2kgDkZGQABwx+pkUpRVr1xZPgJxaAiZAM3NxgnbciBbWWYZMSu2aKFD00Rkn21JIZkaemeUS1fTf8/6frmOa7OJzEQWSWfh8bmibzQ5iaYmLS1E73tf5riSSdgGh0PMi/37Ec1euxbBGP1mNN95HTgAvcXmZmTV6DcV3GiAReTz4Zln4FCuXQtHtpwE7SOPEH3gA7guf/4z7B2T0aqKTV8+gpD1ljhrkf+f/mJoGjYg3/gGNl4//SmI3RmEaYuOI2gaNqB+P+ZSVRXmV3393LE300GWMad37YIP4fGAuOcyQZZyqayEz0KEzTV3OOWNv9UqqjF8Pvx/0aJMAjEQQHMkIhCIer+KGz9UVhavF8b61PE4/LZ8DUpcLvzN5CTGzVmJAwPIviEiuvVW+K4+n7Avfn8mQZgOvb5YZaX4v/6V3rhgcJDopZfw/nnniWs+Q1hwtogrJLjiweGYm0HGQuB2i+xnq1UEMbj7d7bu0vX1ws9oaSmdhOJrmCsIPN3n9Gv5li34/8UXiw72PDZVBalnsWBPKEnYX95/P/ZPH/hA5vf292Ourl6dmdUciUATemwMGoi8tyLCtenpwfevXJlfE7Cnh+hPf8J1vfZaEaR94QWM4aSTkOhRDAYGME6fD4Te+vV4z+EAgThTHMgLL6ChXSAASZkbbsj/GQNYcDanGJgkIpBLblVK+/cHRPRQjr/tK+uITGSF04lFKBwWmRkMiwWOns8HY6yP1DI0TWj1VVWBsGPNG68XhpW7GdtsIAGnpvCqrc2fhm2xgJTct0+UKBvJJPR4EH3avRtO8oYNcGwnJ/Hi7s3ZNFACASwu1dXZCT7WMmxtLcyIR6Ni4V6zBotPXx++L31BUFWQoGNjWIBYKFiW8TlFwQJXDg0XTcP9C4UwtlJEf+cgTFs0w1AU0dXQaEZbNvAmLZs+IlFmx+Zcx2Dnk7s4M7F5rMlEWQaBmEwSfeQjmcQdb4KJhN0ZGiL661+xkeXMFKPn0N9P9KEPYaPxwx+mBgYUBY4061VOB00jeuopaJhu3Eh0wQXFX8ds2YPf/jbRV7+KzOwf/Qh21+tNzUDkTTkLoWcjBwsZk98P/aMnn4RO0Ve+MiuBE9MWHSfQk4d2u+iUylqIemH+uYhQCNpau3aBsD/zTDRU0dvuo0dxfkuW4O8nJ0WlyerVouSYfRAm4hoaMm1KJIIMxHgcuoLptsjrFU0jirUtExPwsYx2v+aAlcsldByffBL2tq2N6D3vwZj6+7F2OJ1Cf5eJQNZ8zEYQGoWi4D4cPoyxn3barHRoXlC2KB7Hi7U552JzrmJRUyN0WG02zOHmZvj0o6PY96RrTTc24nder/GmjtNBTyQSFU4kbtmCpIpLL0XmXzgMYtTphJ/E+qudnTi/UAi+lMWCIGm6nJTXC9+ptTWz2isex3rf30/0n/+JCjGGoiBIoqog7Ox2kUWcrRP1gQNo+tbcjIZT7NO9/DL2q+vXZ5erMYKXXya6+26c71134TsGBnCuy5bNDAGuqkQ//jH8sOZmXOMyBlYXlM0pFguFRDTQr2da9PIxNE37R+nDMVEKWBw8FMrU8OE0+UAARl1P4MXjMKKBQKpW39GjIAkbGjKjqTYbSComEuvq8i/oVitIt717EY1asyaz/DobXK5UIvHEE/HdTicW0MHBzEzDaBTjdzpFyrwePp9wVAsh8BIJ0T2cu4x2dqIkenAQC+SqVVggVBUliF4v/ob1OBQFGYjJJK51ORxNVcXCFIkIfaN5BtMWHUNwaVCh5cu5wI1WOKJdDJFIhM9VVsK2MJnIGQjHagPxm98gAHDzzdltCzcUaG7Guft8yNCrroZgeCEZAyMjRB98RYL6Bz9ItcOsd8v3bLoNhKahwUlXF9Epp+Qua+HmJPleeiQScOJ//3uiN74RWo18byoqcP+KIQjzYdcudH4eG0OZ97vfXbaSINMWHefgkttEAs9nU1PqOsyVHbFYebuVlwvxODRNN2+GD3T22USXX57pS4yNYRPudoug6dAQbNGGDZkkaTQKEs7tzqwWicVAWAYColspg8k7VRV2rxh4vbjudXXw+9jeT6c9qM8w0jSirVuhVdveDq1al0toz3HTh2xrUikIBom2b8e1OeEEEA5lIgdMW0S416zPzBn38yFLuBBIEp77iQnRNMVmg23iZI50bXPeh01MwO8oR+KAvkkekfG53NMDvb2NG7G3s1hER3e2K0wI1tdjbt9/P8Z9662Z5xaNQmfd48lszCLLaCq3fz98gFNOEb/TNBB/sRj2XWwTJUmUa+sDBF1dRI8/DntxzTUiANPVhaSX1atxTsXgiSdQObJkCRrLWa3YJ7rdqKqbCQJxYgLf9dxzWBc++9mCm8CYNqcMWCgkYuiVfw0Ul2ZC07RxSZL+QUTvekUo84D+95IkVRNRXNO0HP1uTZQTkgSD6/fDqUkv32XNxFAIht3lggE/cACGt7MTCxaXxPr9+DmXAbJaMzMS82Uv2WyCSDxwANEjIyRaVRUi7Lt2iYzE6moY59FROMjRKMaqKKJRyZIlmc5GNIqNvdtdWKaBosAplyR8Dy8AkoQFiLshdnVBl4NJ2HXrBNmgqshajMWwMBYrOp4+roEBnFc23cd5AtMWHQOUWr48HbgkmfVy0mGktFn/t5WVIjORCUV9qcxsYOtWdEd+/euRaaIHNyXgUkCXCyTFww/jd9dcU1jAwOtFeU8ohA7QnMXM38X6ZS7X9M6oqqKZy759iEaffrrIOM3WnCQd05UX+/3I9Nm6FUTipz8t7jmXpZcbqkr0i18QfetbsMM//CHuRRk3laYtOk4Rj2N+xuN4PnNluzkcsDGRyNzqFp9MIpi6YwfOw2YDUaZv3BGPY9yTkwhWOp3YtHNlSV0dqh/Sz1uW8XvOgEr/3gcfhJ917bVCd4zh9YoGc0aCO9mak7D0DDe4CQQyP6cvL7bbU7MGVRWyBi++iAYqb34zgrvsC8+UvuWRI8g2Yr3r9EYYJWJB2yJNw/OcSGC9qaqaHxqlxcJiEaQgE4kuF55dvx/nn56tx5qJrItfjj0F2zuuJslHdk1OCuL+/PMFCWmxiD3nwYOwLYsX4/f/+78g+9773ky9QkWBv2KxCEKSoaoIVL70EgK56U2L+vthR5YvT90LcQMZvbbp7t0IrnZ0EF11lbBdBw9in7lsGSorCoWqEj3wAILHp55KdNttsMlHj8I3XLp0Zkjw7duhD+nzIfh8ww1FJaksaJtTLhzHZioFLxAY489IklRLRFEieq7AY9xEaP/9oiRJPyaivURUS0TriegaItpARIfLNWAT08NqFU4YE4V6sIhvOAyibXwcf7NmDX7HJbGBAJyhfF19rVaRkejzwWjny+yrrESkdu9eLBTr1hmL9jscIBJ370aJ8Lp1QqdxagpOaDSKDbLFkl1rQpZFJmEhZW8s9K0oyPTL5sh4PCA3DxzAgmqxQNicCURNQ6lLOIyxlaNUSlHgxMbjWJznevnVNDBt0SyjXOXL00HfsbnQRivZYLFgrKoqmokkk7NDJh45AsdwzRpsUIlSSTdFSc1S1jSiP/4RdvHaa43pwDICAaKbboLNuf9+BHj0YE0ol0tsoLO9EgnYot5eole/GjaTu84SZTYnKaS8uKcH53XkCEpn3vIW3IuZJBB9PqI77kBZ9nnnoZS5zJt2ItMWHXdIJkX1AfssLtf0Nkdf2VFdfWwzn1QV/tILL2Az2t6O576hAfM6FoNfEYnAx2FJhfp6+CR2OwKN8Tg2sOl+ITet0zRkCuk37YpC9NBD2ABfdVVmVpDPh++vrYWPVkxzkkBAXOf6+uylxdOVFweDKNnr7UWwhjswNzTgPkajCIzX1ZXezVZ/XXbuBGnR2IgAzQyULy9YW8Rav5qGNdVuP/6yD7OBswu583hDA17RKPyBJUsy19aaGqz1U1Mi+79U8HdwaXOuuZdIED36KMZ9xRX4fg5IMpHI+n/Ll8NO/etfILyuvDJ7me2hQzjfDRtSz0XToHP67LNEN94I3UU9RkaQVNLWNn3yiyTh+596CpmGV14p/Me+PgQiFi+GdnWhz1wsRvT1ryMT8LLLoJnt9eLe1dTguOV+jhUFgeaf/hTn/dWvonlfkdU6C9bmlBMLgkTUNK1HkqSbCeKXPyIiKxHdWMQxTiGiO4joaiL6MEFo8xAR3UlEI2UdtIm8sNtTGxKkk3oVFYi0TE2h9LazU5QXDgzAmWttNU6ycaMUnw+v2tr8RKLdLjIS9+/H5tbIwme3i9Lmri6QkfX1ogPqjh1YpNhx1oOJQKLC9UNY6Lu5efpxahquX1UVFgxuSFNVBWczGIQTUI5sQVnGBj6RwMJkpDR8rsK0RbMLLl/m6P5MZdro9RFzNVohKoxIJMJxeMOaTOJ8ODNxJs4lHEaXT7cb5B6X/DAkCY6ipgnb8re/YX6+/vVCysAIIhGiW26BM3vvvbBlTM5xCXM0KsjUXM1JOANxYIDowgvRmTRXc5JC8eyzoovio48SveY1M08g7thBdPvt2FjdeitKKtOzMsoB0xYdP5BlEIHhMJ732loE2ozYGUkC2RYMYs6VI8OnUHBp3vbtOI+2NjRDGhyEvVm0COSeogiduLo6kHLV1SAM7Xb4PZOTIB6zBTMmJoS+tN6/UVU0Gzh8GHZs5UqsG0wG+v3wIx0OId2QjnzNScJh3Kfm5vxB62wYHoadDASgHXvKKbhfyaRobCXLOEevVzReKUUOIxDAPQkG4ceuWTMzBNdCtEVcHZFM4vngZ2shgcvvOTmjrg5zd3AQc5n16fVoaBBNMNMDAcXCCJH4t79hnNdcI/Yg7PNxVZvPh2zDlhaip5+Gz3D66dk7lw8NYZ4uW5a6T9I0op/9DJUgb3kLiD89pqawx6qrg92bDs89h2ZUnZ2wa3xeg4P4XUsLMhwLndNeL3Qae3tRRXL55aJSrrY2U9eyHBgfR/bhCy+AOPzQh0CMFnv/F6LNmQlIWr5WPibKCfNizwACAThPNTViMfB6EeVh7ZraWhhdScKGNxxGlLuQrBmGpsGQJ5P4TiPZheEwshE5O9GoY5dMIhsxHIYD19iIKNTEBDaxNhuc/pYWYUwnJkTTkUIixtzZur5++ig26xRFo8iYtNuxAWBnyGrFIlKMo5yOZBL3iwXTZ2IzXSTme6z4uLZFM1m+PB2mE7XmcXFZczHjURQQiZqG+c46fOWApqHzb1cXSna5A6B+nIEAbGtDA2zE9u0QGT/jDOjSZEO2zMFYjOgTn0Ak/M47M7ULmfxlaYpcnYuTSWz+BwdBOqxfX55rQYTGCjffDCf/979HdgETiJzNWE6oKiLs992HzdEXvwhC1EDQybRFCxSqKrIIiUAcVlcX92yyNqLbPTPZ2rlw5AjRtm3wWzjjsLkZ2W+9vdDea2kRJY5OJ84vGETgoL4e88Xnm35zHQyCiPN48DdMEMoytMK6umDDTjwx9XOxmCg/bmoqPHuQCPfH68X4szW/y4e9e6EVW1mJwMuyZakEYnogmb9P0+CjZmsymA/9/bgHNhuyqAzqjZm2yAB4fdM03LtyNByczwgG8fJ4hKb9+DjsQTbd80QCJKPdXtx8ygXObk6fzy++CD/nnHOyZxSGQpgrdXVIFOnpgQzJkiXIJKyshP3gLEC/H/u6hgbs6/T47W/he1x2GUqg9fM2HIYtcDrxPdPZnC1b4J+tXw8SkzMmR0chy1Jfj6ZzhVa29PYSffnLGMunPoXrMTwsGpNm088uFf/+N0jLQACly1dcAZufx6bNd1s0L2CSiLML82LPANiRliQ40IcPI2rtdsNAV1TACeS/SyRAcpWSJadpOGYige80QtYFg8hGdDpBJBqNOsoyHNxgEAumqmLxaW7GGLxeLAQtLXAqvV4svIU0HQkG8TmPZ/rMzFgMBGI8TnTSSYKElWUY+v5+kA+nnVZ62WUigQ2GomBTMAsdAAvBfF+gjltbxOLk7KDP5oaYv1/Tcj//nFFXCgkly5jr7PCWQmqxC/DII3i9852QJ0hHIiGaOLW0IMv7kUewyb/00tzNStKhKCDInn4aJbuXX55KDKoq7l9FxfRZUfE4vn9kBE5yujNeLFQV3QXvuQfk5i9/ibWCr/dMEIheL4TB//1vZFN+4hNwkg3aUNMWLTCoKtbsQADPpNudGkQtFoEA5md6w7qZwOgonnf21U48EZlHsRh+190NX2LjRtgc/YZRlrFRr6gQpYMHD8LeL1uWqUUYiSDzp7Iyc/O5dSsqPs48E690/UGvF99TbFfYSASEiMNR3DG2bCH69a9xbT7yEfhcXM7tdOZe3xQFWZmhEMbf2Ggs4C3L0D4cGIC/+apXFdR0x7RF04DXNm6a5nDM/DybL5iawrWpq8NzPTKC53zRouwkaziM57u6urz66Ewk2myYqwMDkDlYtQq+SjpUFbqCsgwb5vMRfe1rCBh86lO4x6EQ/o4DIC+/jONv2pRqsx99FIHECy9EsEBvKxIJ7AOJULWRKxFF09CIascOHP/ii8VxxsagjVhdjaBroeT19u04N7cbEivLlglN/MbGzMakpUKWoQX9q1/h2DfdhAxsg4115rstmhcwScTZhXmxZwiyDMfz8GEY0fb21Lby8TgMvaKAwCvHoqNpICXjcZBvRrLkfD44u0xwGnUgFIXo+eeRXbl+fWqXrlhMLLiyjA1+IfpZ7LTnc3KjUUTkZBkZMvpryBodmobNdmUlNgDFlh4nEiAkNQ0E4hzsHDnfF6jj0hbpy5ePVXkQd2vm8rZsKAeRSCQar7DTW1FhbJOavuzv2oXI+ZlnQtuGSHQF5Q354CC+q7UVzujDDyPgoO/ErG9Oku1FhMzDRx9Fye7b3546DtaxtVim13KLRon+8AdkL73hDXDwy4FYDI7qQw+BTP3GN0TH7JkiEJ9/nugzn8Facsst6PxcYDaZaYsWCFhGxO/HvGQ5kXJ1cFcUEIlWa/k09dIxNYXMw54ePONr14oOntwQYN8+ob/H9lT/OnwY12HxYlwHPtby5am2iDPCR0bwb0dHaqnxs8+CRDzttMzACTeYIyq+E3M0KvRjW1oKIxBVFXbo738HafCBD2DTb4RATB/DxAQ+U10NkiaXbfH7QRRw5UtnZ8Gkp2mLciAex0uS4JuUa84eL9A00biooUF0+JUkzPNsz+zkpCjbL2eSAftUsRgILKcTvkq2+dbTAzuxbh1sz3//N8Z0++0ie5cbxMViokLu5JNTx/zPfxJ997uQTPnEJ1LtDdvEWAzfk2uvqWkou969G7bz/PPF73w+fEdlJTIQuWGTET9D0+Cz/eQn2Nd97nNIUuES7ubmgjsj58XICILNu3YhQ/y66+DnFbCnnO+2aF5gQWgimjj+4fPBOMfjINn0XfVkGdEkjsaWq6xRkkQ3sWBQdBCdDrW1MMLd3RjvCScYGw+XTjc347uGhhChI4JDsmgR0umjUSzA2Ro85Dru2BiuTVNT7rGEw4hsqSq6cOkbm4yPg0Csr0f6fiiEhXXfPvxcaHQqFkMGIjv9C73Uw0R+HKvy5WzgzSuTcNmctOn0EwsBN1rhzEQ+/2xkIhOH+g7FXN7y3e/Ctrzxjdjkp5OM3MyptRXX+fHHYcve+tbUcuPprrmmwcF+9FGUCacTiOxoE8FJns4WPfQQyI4rr0zt5lwKxscxpu3bib70JaL/+A+8P1MEoqoiyv7DH8J+f/Wr2Li73QtDWN9EYQiH4WvIstDAK3eWtdWKuRcOY76Xc2MeCoG027MHtvGEE/Cy20VJrqZh/nEw9OjRTFs0NQXyoK0Nn+nvh991wglC91a/OeZMx0WLUoOR27eDQNy0KZNAZEKD5XCKIRDjcdiUYrIY43Fs2F9+GVlJb3kLPh8O49pVVRknoZxOnPvUFGwmky7pRERfHzbslZXYtJdDjsaEqIxgGYxj6ZvMZUhSZsfm5mbM34mJ7CRVXR3WZ9ZBLVfTOZtNVDokk5h/2WwtNxJZtAg26DvfwXsf+Ujq/GHd2SNHsFft7Eydv88+CxmTk06CDrLe3mga9lPhMD6Xi0BUVaK//hXVbq95DXQDGcEgshNtNtgTl0sEZFjfORcUBT7KY4/huLfeKhpYcWPScpaUE0HH8b/+C0kB73sfgtvLls3JZJIFD5NENDGvoapwfoaHsaCwoCt3Mk0mEbWWZYiwsiOWraNzMZAkOPOsS8SlRdOBSb6+PpCJq1ZN71Qkk4IEveACfKa3F+e+ZIlweJua4DCyVlBr6/RGV1FAIEgSFujpOgK+9BL+f+qpqec3OYlFvrZWELduN4jcvj4smoEAxIaNLPDRKMZusSA7YbZLUU3MP+jLl+dKhF/faIUo+9ySpFSNxFK+ixutxOO4FpzNx41R9MShHokEHF9NI/rgB+GgpmcPxmI4/tKlmNu//jXm8tveVpim7Pe+B62fd75TZDsyNA1j5kDMdLbooYfwt298Y2GNXKbD/v3oRD0+jvLlK68UWdUzQSBOTCD7cPt2lIJ/9KOwoceiqYWJuY1oFBtPzvBvbp7ZzZTdju9iSYFiNub67MGpKWySd+6EH7Z8OfyD6mphr7mR0t69mOOnnio6sutfiQT8iVWr4Ov19eEYK1Zk97smJ3HcpqbUa7ZzJ9GTT4K0v/TS7J9LJIpvTMKabTbb9L5VNvh8COoMDMDGXnihsI+FEogMi0V0cJ6YgN/ncuE9TYN/NzgIQuDUU83AbTmgaViPEwnR2K1cJNfxCoslk0isq4MNqarKnOOSlKoTX2i273R45hnMkze8IbufE49jH+Z2Y+/zq1+hyuzd7wbZlx4k5qZPq1dj3gWDsEn796PiobMT2Yvpc/vIEZz/smW5JaoUBcHZ7m5IsLz61eJ3kQhsnaZh/8g+Bmdpc9M+Lt/WIxKBrMuOHURXX030rnfhOP392O+2tRlvTGoEySTR979P9OCD8DdvvBHrRUeHOXfmKszbYmLeIholOnAAxmzRIpGRwpmBVVUwwKoKI8QRHNbI4Y5o5UBNjSAoNS01Uy8bmpsxjiNH4AivWJH971QVzp2q4vy4McvBPNjsxQAAIABJREFUgyBHWb8oFsNiytpIIyP4XEND9gWQOzgryvTaW4EAFhCrFc6lPgrm88HR9Xhg8PULkM2GxXJ0FOe4Z0/+VPRIBMezWnG/5gIZZGJuI7378lzSF9ITeNkaqRTSsTmb1mD6iwlJVYUzpiiirLuyEnPSYhFZOpIE/R2vF9HlbDZIlvF7ux125ZFH4Ahfc01hzuPPf070ox/BEb311sxzZZ2o6Tpo+/1ocJJI4DjZOjcWg82bia6/Ht/92GOQimACkQjXrpyZI9u2oXFNOIx/L7kE321G2U3oEY9jjY3HMXezZY/NFFwuzP1QSPg2jHS9wWyvaBS+w65dqEiQZWQKnn46NvpcSqd/9ffDLp11Vmolif57OZja1oZqjGAQgYRsfkUkAlvl8aRKr+zfj3m+YgUE+tPntt+P8dfWFjcnubrDYik8i/HIERCI0SikDU48MZVA1DdnKAZ2O6R+/H48WyMjIEKIQOxyoN1EaZBl+OSqivXDbjevq1HYbCASvV6QZ3V1QhbA4ch8/q1W+CLj45jv5SC19u6F7TrtNMwJruzS+2yHDuHf1ashOfDssyAcTz8df6OvNolGkU1YUyP8rEgEwYx77sF+5447Mu3N6CjmaGtrbokqbi7X14eAQ7rU1ZNP4m8uuihTooL9QG4wxf4hEWzYl74EO3vLLUSvfS3Opb8f9mjRouIak+bC0aPovrxvH3yiK67AmperlN3E3IBJIpqYlxgfR9RFkqARoRda9XhgAHt74XQtX55qnD0eGM1gUDQlKAeqqzGeSASLSz5NobY2jGNoCAtjekdBTcPvYjH8jqPDkgSH3GIBmehwwAFkR9puh2M9NibKEFtaUp3ZiQlsTpqbc0edfT5EqCsrsTDpS5sCATi8LhfIzVwOUksLxtXdjcVh8eLsm/9wWGwQzKiTiXzQly9XVMxdJ91qxRhZSD0beFOuJwHzNSchSs0WZIKQXzzX+bs5W1E/hiefhON71VVoXpAN4+MYU1MTyLa+PjiTHR3Gr8HDDxN985tofnLHHZn3KRYTXUZz2eLJSWQgKgoIzHLp7/zsZ0Qf/zgykh58EPZJTyAa1Zg0AkVBlP0nP8Ga9I1v4Dq6XGbGtQmBZBJrbzSKeVxfP70+aLnA2YN6e+T3Y613OgVBmE1GnTulJxIY96FDIOtY/uT886cveZuYgG1pa8tOIBKh2iSRgL8xOQnfprk5u8h+MonNt92eait6erDhXrIEWq7pBF84DL/Q7S5Oz5m1uYnwvYX4MTt3Ev34x7jXt98u9B71Gdrl8Iu4emZ0FBrXkgSyZPnyubmGziewX5JMCl3fY6HLPN9RWQnCzeeD/WluRlLE6ChI8PTn1OEQ0lKVlfmTOKbD+Di0AxcvRjdmScr04TiAsWoVCMdHHsEc0jde4WoUbohis6VqjI6OQoe6oYHoYx/L9AF8PiSK1NZm7zZPhGP/4Q/YO73udamd5RMJ+GyRCDIQcxF+kiS0aDkY3dODbsjJJHQJN23C7/v7Yd8XLy6scWc+/OtfRHffjf9/5CPY0zc3F6btb+LYwNyqm5hXUFWQgyMjIOk6OzNJsGRSCEnnKv2pqUGUy++HcS3XQu/xpGYk5mvgsngxjPPwMMbAOodEIAFDIUSh0svcJAnO9MgInOn0CJzFgs/5/bgWAwMwyE4nFqdwGOedK7NhchJ6PE4nCET9NQ6Hsbg5HHA880WJXC4Ig/f1CR2NlSvFghwKwUGorMRiaRKIJqbDXCxfzgY9IZhIiLLl9OxBotSyZ31zEi6jTX9l2+xle4+1GXmDz6Tr4cMov9m4EWXB2eDzYUPU1ISo/Msvw1HORThmw+OPE335y9DY+spXMm0FZ5JytkY2jI+DiJQkomuvLU+mgaIQff7zKOW+5BKiBx6A7dY0jIlJ13JtqkdHUb68Yweu94c+BNvqdpv2zgQgy1ivWYqgtlb4E6XCSPZgtmAFa61yprc+c5A3yLEYNqqKgvV93z7M6XXroGWVbyMYjaIRgMeDz2SD349XUxPGwxIq2QKSmga/iCi1E/PAADbczc2QLkhfN2Ix+ISsN1koWB5G03DORtclTQNpwSV8t9wCvzGdQCyXj5pMwg4dPYrgyQknwAcbGsJ5p2eemjCGZBLPkKZhLTNLwktDVZVI9rDZMPdHRzFHswUOqqthj3y+6f2J6RCLoSzY4SC67DLhr7DutCwLyaWmJsybBx5AduENN2SvNunuhj088URhE4aG0GCuuhr+kdOJYzkc+H8kgs9VVeWWu4rHUZkxMoKxrl0rfifLRE89hb3WeecZ0yzkTMstW4juvRd+1l13IeDC8lvxOH4uV9OtRAKZ13/4A+zQe94D+1PuLEcTMwfTfTUxbxCNIrodDoN86+jIXhbX3y+y8RQFhi99QeGmKD4fnNPa2vKlTLMwfiiEnzlDMRc6OkT3U6sVji+Lh9fXZzemqgqScdkyONLDw3gvvVFLTQ0WppERLFyVlfg7LnvOhvFxOPUuFzqI6SNk0ShI3MpKLJxGHVurFYvh2Bjuz549IBI1Dc6sw4H7ZUZtTUyHdI2hY1XmYLS8OP3vbTa8OAM6vXOxPoswHdkygIxs9njTryi4duPjiIDX1UEHMZeDOjUFGzA6ioj26tXQ2zGKp58m+uxnEYT42tcyN9XskNtsuRs4jIzAwayoQAZiORzLSITove8l+stf0PH07rsxBi4DLzeB+MwzuA7JJDYO55yD++HxmGU6JkRHZL2/UEh37nzk4HTZg2wb9B2L04nCYFB09pUkzNlgUFRcWCwIVHZ14f2mJgjwG9ErVRRk4BEh2yXbOScS8G+qqvDq7cW/uY4/Ngb71d4ubM7ICEi6mho0ScgWeJ6cxN9nIyjygf0xRQGBaDSzWFWJfvMbbPhPOQWbaPbRZoJAnJqCDms0isAuExS1taJ8lBuvmCSYMaiqqIqwWrGWmXa9PPB4cF0DAaz9Hg+eUaczu89QXw9/xevNrL7KB02DzEEwCBuhT7DgbL1YDEEShwP28Gtfg0256absQYOBAewxV60SFXBeL8p2LRb4Ay0t+O5oFMePRkHYWa1Iksl2DtEo7NnEBPSbV68Wv1NV+F5eL6QhjDa21DRUe/ziFwgu3H47rrksYzyJBIIcpWR56jE4iEDuoUOQp7noIlxjrs4wMT9gkogm5gXGxpBibbGgdDfbZjISAUFls4Fcq6gQzrnVml1Lo7palOyUMwLL5UfctTnfsZcvT00Xj8VgrHNF8Scm4Phy8xS7HdlFqooFQP9dTKgODGAxqK7OXTI0OgqCz+MBgahfGGMxOPA2W2omYSFobhblzc8/L/QPly41HS8TucFOlqLMbPlyrnLifOXF+uzB9NJiPUmoqqnaOulIF+MuljjMBiYLfvIT2MRbbhHkmX7u8YaYS1z+/GfYmTe8wfh3v/gi0Sc/CSf43nszs8G5kQJ3g82GoSGUCVVVgUAsR/T76FF0lN69m+h//gckKo+n3ASi/P/Yu+74tqqz/R7JlmR5z+xBFiEDCIQAZZQdNoRQRqCsAmX2o7SlUAqltFBWgY+ySoFCm7ILlBGglECAsgIJmSbbdhxvy9rrSrrfH0/e71zJ98qSLA8len4//xLLV3ece8573vd5VwSRjs8+C+fO7bdD/hUW5jsw54E55/FA9+CGbOXl0mjUNidJ9qMHJgG5G6weQZjq/LPZQOJ1d0MmqCq+X1KCe//mG5B05eVIqZs8OfVz19djDObM0ScFuKQLEcjJhgbcg1EGBNfDrqqScqWri+jFF3H+c87pLW+iURzDTRrS1UO4vrSiJC8Pk4hAgOjPf0Y65PHHI72a65P5fDgmmwTi5s0gem02OIO0ZKnZjHv3+zEWLS2Qt5WVeb0sGTgSVwhZeziP7KKiAmvC6cR8DAax3saN6z03TSasYSYSa2tTl0Vffgn5ctRR+hHOQsA+C4dx7ccfxx5//fX6pQ96elDyqa4O51NVOCpuvRVr/4475HWEkE7xFSvwjPvtpz+ffD6il16CrFuwALKQoaooUdPWhtqMqTaei0QQEbh0KUpPXHutbNTX0IDzTpyYPXLvgw+I7r4b+9PNN8MetVhgC+adF7mFPImYx7BGNAriqr0dSuqee+oLVq83vqYek1+lpdh8PB5sRokbSmEhjmGyMVteFiJsCkLg3E6n/vUZQkD59vtBrk2dimfVg8uF4yorpXHOG+rWrVBK99orfoPlumjsnePuzVrFvbUV3y0vJ9p333iSMByWBbgnTepfCqndjiiB1laMOadC5ZXVPPTARcqJ+pe+nG70IKOv9OJ0DHImBoy+YzLJ1ELt37NFOL3yCjy/l12GdcxjywSjEFC+IxHIwldewZgvWJD6uK9bByV09Gh0ZE5UPLlRAJGUkYlobERaUVkZvNSZ1CdLxKpVIBBdLijhxx2HzweCQGxrI7rhBqSBn3km0pe5yc1gNcfIY3hCVaETOByYd1arTFvu6UmeXqxtjMTkIH+mbZzUX0Qi2Jd9PsiHcBg/lZUw0n0+aXTb7UiZS9Q5+kJzM3SAyZNxTj10dsLgHjUKx6sqjGY9B2YwCALMbpcEmdOJjvAmEwjERP1OVSHvYjEQDumOHROIoVDvDtDJ0N0NB0NbG7rVH3ooPmcCUYjkXerTQTgMYqK1FeO4//7Gstxuh0Hf04M56vfj3RhFiu+uiEYx37hOXlFR3ik0UBAC67mzE+uZuzF3dOhH2XE0cXe3zDLrC9u2EX3+Ocop7LOP/jEdHVgXY8dCprS2opah3j0Eg6hXX1wM+UaEdX377TjHbbfp15Xevh3/cpZWINC7Fv1LL+FcCxfGk4SqCpm8fTsISKNmnYnweIj+8AcEj5x7LuSkEJAbjY3YC7SNSfuDUAhO5TfeQCT0NddA9trtuEY+Ey33kCcR8xi28PuRvuz3Q1gmdgBmeDwQnFZr76YcQkiS0OPRj2axWiHsfb7kkTGZgJULl0t2GksWhVRUhPvllKHElGOu21Nc3PtvY8ZA6WSP84wZeB6OLBICYfWxmExvrqrCT3MzxrqqCpuoVpgrCqJAYzF8v7+eIocDCsGMGTgXd2+ePDl7tTby2DWgTV82ShPKNHqQKJ4ITKf+YKbgRisckcj3r8VAkIdEcE688w7SRg45BJ9xrR9FkRHQHg9k0JIlGPtFi1L3QG/ZQnTVVZBzf/6zvgLv88mSCnrvc+tWpBpXVYG8zIY8fucdoosvxjnffx8KLFE8gZitKJKPPkK0QTSKVOmDD5adVfNe9l0bLIuMogY9Hux/0SjmQlkZ5ABH5TIZqNe9OB1nRSZQFKxNvx9ylwhroqICc1dRsG8vW4Z1brEQHXQQaqSmm5XgckHfqKmJj6TRwucDKcj1q0Oh3k3yGNEodJqCAmnUe70w9iMRovPO089ecTgg46qrM1v/XV2QmdXVqcupbdsQ9RONgoSYPh2fM3GbTQLR4UD6ciiE98SERjKYTHie4mI8X1sbZHVVVd7IV1WpkwgBnWS41mTelcBzsqsL67qiQhLdejaD3Y535PFgXSdbmy4X9IPaWuhGeuAU47IyRPpt2ADCbcqU3sfGYpBtRFjbJhO+/7vfIcL3lluQmcAZICzTm5qwXidNQrAH62ORCNYiE4ihEGpDjx4df90VK3CPs2cbB6AkoqUFxGZHByIqjzgCn4dCOBcRntFi6d29OV00NkIv2roV8nj+fLzLykrYrnkSPjeRJxFThBDiNiL6DRFNVVV18xDfzi6P9nYoqmYzDD4jb5LLBTLMZjP2ZBQUQAhz1JvehsJFfJlIzKaxx0ovE4l69RdjMRChqopUk61b4cmaPl16zyMRKPGFhcbNBUaNwv1v2ABibsYMGVk0cqRU9seOxbkcDkQmOZ34++zZ8fcWieBeIhEooKl62o3Q1YXrlpXJLmulpSA+v/sOm4le97U8JHYHWcReWK4zVFgII5YJQY7UyTR6UJtiPNhgIpHTArX3zP9yp2bt5/1BSwvSmCdPhvKrvSZ3bfb7IXctFhBhHR3wdhtFCSWiuRnpwYWFIBD1Oihz1DE3aUjExo1oxlJbCwKxv/JGVdER+aabEF394ouSZIhGpWKcDUNQUYj+93+JFi9GVNadd0JBjsUg43ZFY3N3kEWMvpqT8N8TIQSMMr8fx5SVyY7L2tqDQ7HnhcPQeXw+2ZHcapXpwDxn/X6kLX/zDX6fN49o7tzM9KRwGFHBNht0O73njkbjazh7PNBZ9DJFuJFKNIpj2Gh/4QXc97nn6jcWcLlwXHl5ZpF2XV04f1VV6pHSX3+NjvAVFYjWZlmUbQJRVaUz2W6HTpluPVmbDfoY1w33+6F3ZiMqfCAw0LKIo/ZjMdm4I6+nDh4KCjCHu7tl7cmuLuM08vJyyBqudaq3/0YiyHgQguiUU/SdIbEYbCSTCUTfJ5+AADvsMCnvtbrMli2QpzNm4N4UBZF+mzejziA3puM9w2SCTdTaCvKQZYLdLvWyhgY4dYVAvcbEMldr1kh7kR2kfWHtWtyXEGh6x02tgkFcjyjeaaPt3pyuQ+vdd4n++EesmbvuwjN6vXgOPT0xj94YrrrWbkMiCiEuIaIyVVUfHOp7ycMY0SiEcEcHFK1p04w9xE4nFE0OhU6meFmt8YX89c5ZUiKLnFdUZNfos9l6RyRq77elBcJ73DgokdOnI7V4wwYYpHY7NhpVhdBN9qz89+++w4Y3fjzIRa3CbzJBgLe34xq1tfA4JdZG445ckyb1PyKoowMKQHl5vBetqAh1Lhsa8D49HlxvV60vk5dFgFHEYDgsDW6LBeuQ05mJBj96MFvQkp0mk1TI9NYy3382iMRgEKlzFgvR1VcbRw25XFiL69ZBaT7qKOPaqYno6ACBqChETz+t/71gEH83Sklfvx5RgqNHo4Nxf9d/JIKU4iefRPHxv/xFkgXZJhB37MC11q0DaXH11ZKU4Wiz4Yi8LAIGqjmJokCfKCgAAVNePvTp7NxN2efDGiCSjQLYcGWEw+jKvmoVjt17b+hkFRWZEYiqihR/RQERabT2Wlqks4Frmxk5Th0O6HUjRuCewmFE7PT0wODWq2/m80HPKC7OrISNw4FzcAftvsBNG15/HXrWVVdJMk5RZCQq19LuD8JhkJXt7SABE2tbpwMhoKtyVGJnJ4z/mprsd5UfrrJIVeXeZTJlt05lHunBasWaczohs8JhzPOxY/U7I1dX4+9dXZAPibrWBx9gTi9YYNxosqlJyso330Sq8OmnS2cvZ7mYzTLNevx4rJtoFM1X1qxB1PG8efK8nCXW0wM7q6Kid4qzxQJZ8+qr+F2PQPzuO5nJNWdOauO4dCl0wpEj0eSFictAAHaYyQQCUauDMXHIuhM7v5IhGCS6/37Ivn32IbrxRoxlIIAxMhrzXRHDVb71F7sNiUhElxDRWCLapV7grgSfDwIxEIAw1dsYGA4HPDclJfoFdvVgt0P4eb3xBcwZQkCRdjolkZhNZUG7AToc2GTMZmxyHg82B1YsCwtBHq5bB5Kvrg73zoX5+0JNDRTIb77BNcaP733Mpk3Y8PbeG/fS2op/q6qwOW7bhncxcWL/vc9tbZI81ashYjKBOCwrwybGm+Iuusns0rKoP+nFiiKbpxQX6zcpySUYRUmyXOHah3pyThuRmKlhqaog0drbQXIZdR7ldMHWVjQ7mDcPCqmiQO5wtKIenE7U/OvpAVGnlzIXDuP8HMGRiFWr0AF6/HhEBPSX2HO7UWts6VIo77fdJudOtgnEDz6AIk4Eb/shh4AUKCgwTtkeRtjlZdFQNCcJh7EeuN5oOtFq2QaTIJyqzPWRi4qgj+hFBUej2IO/+QbfnTIFMqGiQpKQwWD6kcKbNmFcZs0yJt96eqAPMYFYXq5PBBJBl+vpwTHcyfWVV6BvLFyoX3eMO8+zPpYuuMZ2WVlq+kkkQvT3v6Pm2oEHEl14oZSl2SYQu7tRtiIUQuS1Uap4urBY4NxxuzF2zc3Q5bhjd5Yw7GSRomCeqyrmS74cxdBDa8fZ7ViL3d36GRNmM4jEjg7YXNpjVq2C4/Lgg2Hj6MHphE4UjUKuTJhAdNFFcs5r9TivF1lblZWwSVUV9f+++oro8stRNzYRoRAiFC0W/YZUra24bmkp0ckny+flaOUtW4hWroTedMABfY+dqhL94x9wsuy9N0g93pd8PtmYdI899HUjdtBrHWtGNvK2bUhfbmyEzPvBD+BsFSI7QSk5iGEn37KB3YlEzGMYo61Ndv6dPTu5ctbdjeNLSyGsU1ViOHWWlUC9jskmk6zB43Ilr2GYCSwWnLOnBz9EklBMNPAtFhCJX3+NDW///VMXvFyce84cjNXq1RhXqxWCf+NGpE+PHSvrZ3R24p7YQPD7sTn1t05hayvGvKrKuNs0o6YGG+TmzSBPR4/O18sYThio5iSc8seRh/1NYx1KpNpR2WyWypgRQccRi4kdlFPFu+9Cfpxzjqy9lYhAALLO4YChO3kyagOxsqgoIEWYTNQqjT4fomp27CB65BFEFCdCGwGulzb4zTeImJ40CR2g+xvh0tQEhXXTJtQeu+AC+bdsEojhMLzsL7wAUuTuu0FK+P2Yx9kgBfIwRl/pxUbNSZjE57IleuRgps7DSAR7nd+POcaRaoM9D1QV98A/LD+KijAvk9WX3bABhq/XC/3qwAPjU844Rc/v7y0PkqG9HQbluHHGpGAoJGsbejy4T6Na2OEwyAGbDXpDLIZIv6YmRB7r1SuLRKA/ckmYdN+L2w1ZWVKSWnqwz4dyChs34p5OOkleMxyWctGowVSqYJ2uvh7v94gjBsYBy9Gq3d0yGrOmZtfLGonFZD06s1k6EfIYHigrk+nlVivWpN2ubx9ZrdLm4hqKra0o2bLHHpBvelAU2CGRCNFbb2HNX3llb72BI87Xr8ffpk3DenziCaKPPyY6/3yiE07QP/+GDVj/06dLpzHLgeZmon/+E8909tm4b65b63ZjDX71FWTpwQf3LT/CYZRb+eQTomOPhd7Gc9rrhdwsLAShmkw3EgL3bJTerKpIvX7gAcii+++HTqntW7CryYvdGUPqIxdCXCSEUIUQxwshbhdCNAshfEKI94QQ43cec7UQYpMQIiiE+FoIsb/m+xOEEH8SQqwTQnh3/nwihDgh4ToNRHQIEU3YeT1VCKEmHHO6EOJjIYR753lWCiGu1bltuxDiISFEhxDCL4R4Rwih4+/MIxVEo4g+3LwZQnLOnOTKT2cnlMzy8vQIRIbJBKU+GoXg1IPZjPNHo9icso3CQmxqXi82EZvNmFwzmaCkcag8p8glQygka4VMmgTyMBwGkRgIQNHcvh3CnDcvIWAo1NUhEnDTJtxjunV0tFBVkAvcUa0vApHB6c21tUhrqq/H/Q8knnnmGRJC0Lvvvku33norjR07loqLi2n+/PnU1NRERESPPPIITZ06lWw2G+1qsogjdhQF8ycQkClfnILf3S3JdY9HpiUoilQkrFYoPSUlWM8VFbJ5T0UFPispwTHaWjaBgGwslIsEIkcMaglEXlfJZJQ2Oq6vY4yiN41QXw+P8wEHoIaPHqJRyFS3G8plbS083lpPu80mIzBCIdmVMhQi+slPIMPuuw810hIRi0lCRU/B//JLXHfaNFy3vwTi118THXkk5MZrr8UTiJFIfI3N/mD7dnjXX3iB6Ic/RAp3WRnGpKgIczxTUiAvizC/mGTxeiXJzfv/jh14x5yqxgYi1yxjYqa8HLKnthb7DzulRo7EZ1VVOKakBO+NU5LTRTSK+2tpkXX2Ro/OeqRWUnA0DJN1HR1Ye8XFePbx47G/G9Xc27YN83npUozdqaciKlivZhVH2Hq9+k6TRPh8yKooL8da14OqwnBmAsdshpGvd6/cHE4Imdnw5pvQI+fPl/W9Er/T1YX/V1en75TxeGRTO6PUai06OlBzbOtWoksvjZer2SQQQyE0e1i/HnP7yCOzRyDqyaLy8mK64IL5FAo1USRC9Ic/PEKTJ+86sojrhEaj2Pvy6cvDE5WV0iEtBNabkR7FOifvI2+9BTvw+OON197mzZCf//kP5sTVV+sHVHD90UiEaOpU3M8//gEH7oIFRGec0fs7sRhIf0VBEAc34GRSrqFBRiCee668bmEh/t/RgcyN0lJ0du9LljmdRDffDF3roovQFZnntMeD/cJiMY5A1AM721RVNgsMBFBf8a67YMP99a8IVGluxjoabmWq8hxU/zFcIhHvJKIgEd1DRKOJ6GdE9C8hxHNEdAERPUZEdiL6JRG9JoSYrKqqQkQHENExRPQaETUQUQURnU9EbwshjlVV9YOd57+OiO4moioi+mnixYUQPyeie4lo9c7jHEQ0k4hOI6I/JRz+9M6/305EI4noeiJaTESH9fWQ27YN36LEQwGvF8I3FAIhOGIEhJ0ROCS9vByCiBXCTBAI4PtMZughGJQGSrbfWygEQzQQwEbF3nctWFFWVWxOW7ZgE5w2zdjYjkRgRHDNQx6jUaOgZD77LDYermvU2Rn/fa7NaLXCW8eFw9NVclUV3+f6OUS9r9UXSkqweW/fjnNNmDBw6c0eD/694YZfkdVqo6uuuoHa2lroscf+SCeddBqdccYievnlv9E551xJW7f66bnnbtmTclgWsbHGBnuy6EFtFKFRc5JkKcrJwJ0OmaxKhSQfLkg14jCV80SjydO1tWnNqVyjpwce4IoKKLFGcpVl6qef4tpHHGHsXCGSnZzDYaLf/hapc7/5DSLxOLJae89MMpSU9L6HL75AKs6ee6LLa38dNm++iQ6DI0aADJkyRd5TJIIx5u63/cEHHxDdey/G6/e/RxQApzwxIaCt4ZkufD78+8tfQhZdcw1k0SOP/JFOPvk0WrhwEb344t/o3HOvpI8/9tOyZbkti1avjm+WZNScRFt/UO//JlNyMn4gwE0/fD45z3muJ9PP7FyUAAAgAElEQVRlsoVoVOoQ3FGZCfuiIuzj3DjFCO3t6OzJDc/mzMFeG43CuDQCR8X01f00EkEmhaKA5Nq+Xf+4jg6sV0XBGp04EfqI0bF+PwjEHTsQVbR+PeRIVVXv+1ZV2WCuqgrfSQd+P+SkzYZzJRtPIhCHixdj3v7wh5BJfE+hEH4KCzNr6KJFdzfWTyQCh3BdXfrPlgysP/7855BFl156A7W3t9CTT/6RFi48jU49dRG98srf6IQTrqSentzXizZtkvYF2wUD7cDOI3OUlspa8X4/ZEti12JGSQlk9fPPQ2aeey5kpd77bW2FXPzkE/x7xRWwY/SObWjAOuEuxs8/D+ftccchglBPp928GbJuyhTIAT5vLIa/LVkCR8UZZ+Cc2ut2dMBZWlGBkgVOZ/KyKU1NRHfcAf3q5z+HjOR74sakVitkM9ckTwesv65fD32orQ0O1kWLZI37qirYoMnKh2QLqgoH8jnnpPW13YKDGggMFxIxSkSHq6oaISISQpiJ6OdEVElEM1VV9e38vIeIHiaiE4joDSJaoqrqK9oTCSEeIqKVRHQDEX1ARKSq6us7X5JVVdXFCcdPJKI/ENHHRHScqqohzd/0zLXtqqou0BzTRUQPCCFmqKq6PtlDdnfLNNrdsB5AHNrbIXwtFniN+ypO3d4ua+qlGtGWDEVFEGZcj0bP+2KzSSXdKJImE0QisvPghAlQSJ1OzAvtfXR14fp1dRDykydjg9m8GaRionc0FpMbak1N/KbCxq3DgWfX61bY3o6/jxqFa3Z3Y5MJhfB7qsZ3LIZN2OfD9zKpO8TgLpHbtoFE5WiSgYruMJvN9MYbH1PBzoeNRqP06KP3kcvVQ4sXr6O1a4uppoboueduuZFyWBZxkXAhMA8HuzkJR5tEo8Z18oYjEonDbIwREyR91UfUXj/ZdSMR1EGMRFCLx8hJ4nbj58svcezChX3LYa5R+Yc/4HvXXYcuhXp1G/1+fJ4Y+aSqIC3XroW3+rDD+p/K9/DDIPbmzsWza0tDZItADIVQjPxf/wJpetttUPTdbvy9tDS7zQbMZjO9/Xa8LHr44fvI6eyh++9fR48+WkwOBxFRbsuiYLB3oyQ9onA4gQlyrxfr1m7P/vs3AnfyDQYlcVhQgOszcZgKHA6Q+Nyc7uCDoWOkOtaFhbhWKGTcrI4IETeBADIijGSR1wsdKBDAecaMMT6WOwVXVuIYjsLbbz/8GH1HUfCddCNhgkGMldWaWgr0N9+gEUJVFaJ+tFGL2SIQVRX60JYtkK9z52bWICZVmM1meuklKYtisSg98QT0oldfXUfNzcXU3p77epHTifczcmS+FEUuwGTCOuvqkiUWnE59m0MIyKLWVkTr6tVQJILd0tQEom77dhCBepHNRLCRWlowX+rqiP79bzgwv/c9oh/9SH8ONTdDnowb17uE1caNIBDr6qCPJcoIhwPEpt2OkjMmk0xvttt7y7Zvv4VeZLUS/e53sBsZPT2491Qak/aFJUugG5WWoqzLPvvAvg8GMTZGY51ttLTgPjZuTJtE3C04qIHAcCER/8Ivbyf+S3iB/+CXp/mciGgyEZGqqn7+gxDCRkTFRCSI6CMiOjvFa59BGIffal/ezvPrJWo8lvD7Ms09JX2Be+0lPa2RiFSCdidEIvD2OZ0IbZ46NXn4NEe0CYFj9ZpyZIqaGiiXqgoCT0+I1tZCQIdC8NL3l+xQVXiky8vhaWeisqcHxgh3hXY6oRyOHy+VQ06/4uLke+4p71lVQQKWl4No086raBTeaouF6Mwz8d3WVij1HGHJqQBTp8rOqnV1UO47OmT3w+Li5M8Xi8naFxMn9o9A1GLMGGzsHR1QGCZPzi7xxGN85ZWX0ahRUiwee+wh9Oij99Hhh59HmzcX08iRRIcfTnTddbkti7JVcD0TaGvZ2GyDY3hnimxFG6YCbaFqo2ukEpH4t79BmbrmGuw5egiHIWPWr8f7OOss/YYoetf/3e+gyN5wA9F550mvdkEBZJcQ8Y4XrXxXVaQHbd0K8vCwfvpOw2GkVD/3HJ7hkUfiZZ+iQCb1l0BsaMDzbtxIdNllSG3i9FFumpGtlDeWsVdccRnV1sqbPvroQ+jhh++jsWPPozvuKKYJE/6fOM1pWaTtWJkL4PTqsjLsiRy5NJDgjvU+H+ZdSQnmXXGxvvGYDC4Xamlt2gQZfMopIMUzXR9uN2SXng7V0IDzHnqofpMTIsifLVvwTLW10D+MjE4un1FXB13w88+hTx19NCJ/jO6PS9SkS7QFg9A5Jk3S7+6qharCwfDuuyAzr7gi3vHMpK/F0j8CMRgEweF2o072PvsM3B7K7+Hqqy+jyZPlRU444RB64on76NRTz6NgsJjGjEHjiKuuym1ZNHs2HPFOJ8a5pmb3s9FyDRYL5j8HPXDjzET7YNMmlFQ45BBkYvl8vUm8aBQya/16HD9/PmSLHgIByJ6qKthin3yCsiYHHYSMCJMJ96XV07jD+ZgxveXh2rVE778Pu+n006UuxTLH5YLDpLgYNQ1ZhhQV4Vk4MIBTo995h+jPfwZZeeut8YEjXBqkshI2ZqYEos8HHeSDD7CP/+pXeB9bt+LvU6b0v6Z+KohGkaL+/PP4//nnp32K3YKDGggMF/MtMWmCE0GaDD6vIiISQliI6NeEcNNEFSWFSi1ERMTc/JoUj0+8V07iMuh7KcEKH3eUa23F75l4R3MRHg/qZ4VCIDHGjEl+PNfUc7kgAPVq8/QH3GiFa7wZpcqWlsq0pf4W5OeaSWPHSuXEbI5vtmK1yhD1RKW3shIK7ZYtMiJRCGygekpPNApvVE8PvGmjR+O4NWtALM6aBQOFOzMzgcgoKcH9tLXhmIoKY298NCpTtMeMye7mYTJhcy0rQ1Ti2rUYh/7UbNTDBM3OjhQJsKBm83iaNQvGwU6FPadl0VAhGISyw+nLwy3CiGhwiUMtzGZZW8aIkOorIvHTT1HT7MQT9WsU8nc7OpCK3N4OJTlVAvHBBxFlc+mliLIhwnpgxxjffyQCZVYrK2Mxovfewx5w4IGIfOoPHA4oi59+CuX1l7+MHw8mEAsK+kfwvf020nSsVpCUhxwCGcc1zQaqcUaiLFq/HrKopWU8XX890Y9//P+GUl4WDQI4yiUSwbjX1AxsBHUoJIlDJuptNkkepksc+f0gn9avh9zdf3+kw/X3GUpKpPGu3fMdDugoI0YYE4hE0PEcDjxPba0xgRiJQA+xWKALrlhBtGwZopmPPVb/O36/jNJJl0AMhSAnCwr6JhAVBfW/vv4ahOl558XLnEAAelZ/CUROZYxE8P7Gj8/8XOlgQsILNJkgi+z28TRmDHSznc+b07LIZgPpwo0rduyAXZCYJZTH8ILVincUi8HWaW+HLcNr1uGA7jFqFJwNXi/esdUaHxjR0ACicflyrK8FC3QvR9Eoak6bTCgj8PXXaFoycybRL36BucJN3JhIdLtBrpWV9e4G/e23cK5OmCAJRC43xHWlP/wQ5znqqHgZwnX+AwHo1+Ew0csvo7zL3Lm4H+3xXV2yMalR06pUsHEjyMnWVugiixbJDs9C4Nx9BZ1kA9u3Ez3+ON7b5MlwnmcQJLFbcFADgeFCIhplyRt9ztP+QSK6gsDMfkrIE48S0cVEtCibN5jGPSUFE1eseHFNAu72NpyjcvqDHTtk+vLee/et0KkqhIPHAwVuoMKhzWZZK8Pn0xd6QkDwO53YCCoqMjNKOzrw/bq63s9vNsM46OwEQVhZaVy8u6ZGesy2bsXvXi/uS1u7MRJBupLbDbKQozhtNryDNWuI/vtffGfsWChPeigsxN+7u2XK0ciR8UpVNIpIwVAIxw5Uag0bUJs3w1M4cmRmDXaMYN75Yj0ebOyrV+Pz2bPNRhEzOSuLBhNcdDkWG57py0NFHCZC27E5GZGojUhkNDai5uleeyEVxghcR2vLFjRd2X9/42O1eOopnP+ccxCJp70f7qrt92PtcIo8IxpFysuWLTCyjQjOVLFlC6Kqt2/Hff3gB/F/zwaBGAyiQPjrr2OM/vAHkBxeLxT1RAMk22BZ1NyMmkb/+Q8+v/hiM/3kJ7pfycuiAUAwiH0vHMYcr63tfy07Pagq9k+fD+soEsHastlkCZxM5nIoBD2Aa0/OmIH1l63yLBxxzI22ioqko9JuN04FJIJBy1kQI0ca1zNTVVkfeuRIGPD//jecqNqOx4nPzU7ZdJ2NioL7Mpv7JhDdbjgXGhogd487Lv5+mEDkyPtMoKp45g0boIsedtjApi8ngmVROAzZu20bPp8wwWzkgMppWcRdqLlhk88H/ToT8j6PwUFxsWz45nJhrdXVYc6+8QZk98kny6jkcBjvt7AQ+kp3N4ITPvwQEXSXXGK87jdtgoybORNr8t57EdTAkXhEUpdj5+qmTbinadPi5cPy5XCGTJ6MqHCeX1zixu9HpF80SnTMMcb1+YuKcJ277oKD5ZRTQO5p94yODvyUl8NOy7SG96uvQuZVVCB9eO+9ZWp3UZFMj9br3pwthELQKV97De9ywQLophnaFrsNB5Vt5Lo4PJeI/qaq6tXaD4UQP9I51ogV3rTz39lEtDSL95YUQshupUxO+XxQDDIlqYYjIhF4LBwOkGJTp/a9CXNKrNcLz1FiyHm2wUWUg0Hcm54QMpkgeFmpqKhITyg6nRCyHMmnByFkUXEupmskEEeMwKbCNT723DM+dTgchuHg80HAJ9ZAtFoh6LdsgdE/Y0by5xECZGVREbx827djgy4pwTtuasI1x44d+OZBVivut6kJhoXHg00/G8RUNIoxWbMG75kjM1NIy85ZWTTQ4PRlIsyf4aKEDxfiMPH6rHzFYsZKbOIxPh/qApaWEl15pfH+4fMRffcd6nbNmAGvdip4/nmc/+STkdarN04cgVhSAvnF0YmcWtPYiFpE++yT2jWN8OmniPQxmZDCctBB8X/PBoG4dSuKkG/bhvTlK67A9TweGWU5EESSFtEo0d//TvTYYxjDM84guueeviP4KS+LsgJO+We9oLo6+6SxqsrGKJyqLATmVmUliIxMo7UjEexjK1bA4Jo6FSlnA9GczGrFugsEsOZWr8b8nTvXWN4HAiDInU7oIhMmGMvfri5ZX6uhAet+wgSi007TH59IBPqW2ZxaHcPE77a34zsjRiSXIVyDy+2GjJgzJ/7vfj/GpT8EYiAAoqG7G8+8zz5DYx+0t0M3YsKXKCUZmLOyiCNjS0qg93d3411wWaNdxUbblVBWJvVNbpz50UeQMWeeGW+bVFdjTnd1QdauWoXovdpaoquuMrYnduzAXJg4Ed+/807YqbfeGr8ehMAcCQYR/U0EO007bz7/HIEce+4JZ0iiLFMU3H8wCF0tmezu6kLGxNatIECPOQbf43r4bW04pqICOkQmuq7XC5Jy2TJkktx8M8a8pQVjUlaGoA5+DpNJkqjZrG28YQN00vXrEfF4/vmQi0Ogv+esfMsWhok5lzGilMC+CiH2JKLTdY71ElGFEEIk5Jm/SujI8xshxH8Ti1oa5KRnDVwYVksmclqIUZ2+XIHHA4M1HIaXxsjLrEUsBnLI58Px2U5XNQJ7sXw+Y+PTbMZ7cbnwnlJVxrn7cnFx8pqO3D1wyhQZ/VBebqx8VlfDWO/pgXLDCIVgOAQCEKx6pKXXK+siBgLwck+f3nfEZ3ExNon2djyT3Y7ni0YhzAerYZAQUKjLyrBprl2LEPb+Es719XgPJSWImGKPewrIeVk0ENCmL3OtlqHEcCQOE2EyyTSWZLUPmUiMRlH7xuGAJ9yojAB7wz/6COT4Kaektr+8+SaKZR95JDoy630nFoPsNJmwdoSQNQPffBOK9/HHw6HRHzz3HNG112Ktv/xy77QVJhC5QUe6UFVELdx5J2Td448j9ToalfVzmSQdaNxzD2T7QQcR/fSncNzcc09KX83Lon5AUWTzDpMJOgjP6WyAo7I5co8dAXa7/OnPtWIx6F3Ll+Ma48djDg10cfviYpn94HIhVdqIdI3F4FRobYUs2mMP4/Xq8eB8lZUwgv/1LxjtCxfqE5SxmOwqnNhgri9Eo9BtOOIxmcNr3TrIXYsFjpXElG0mEG22zB2cbW1w+DAha5QtMtDYuhXPWV4OMjqNDqs5L4u4WZHbjbnY0YE9lj/PZRttV0RlJeRQczOilbduhe6SWKrJZJJE4mefEf3zn1ir11xjbNu5XHBiVFfjGr/7HY697Tb9yGBVxfXDYWSIaOXAxx+jNu3MmdCNEmU+E4g+H9ERR8C2MXIsb91KdPvtkDm33gpZwenN0SjmrtOJc6Rih+uhvh7n7uwEyXr2zop/jY1YFzU1vRsSCQEZytk1HJWYKbxelJf58EM86zHHwLk6WI1bdJDz8q2/yHUS8XUiulgI4SN0w5lERFcSUT0RJfgEaTkRHU9EDwohviSimKqqL6iq2iCEuJmI7iKir4QQLxJRNxHN2PljUG0luygowELgaDenEwuzomLgai4NJJqbIVysVhBZqUSnRaP4TjAIgT8QHvNk4BRzro+oN+YWC96Hx4OfvlJKwmGMBXccNHqPHo9MSbbboaA4ndJwTfT4RiJQZsaPR0RgaysM58pKGXkwZ44+CevzgRyzWkFYqioU4vp6eMT6qj1ZWIhnaW3Fd8xm1Aocio7jlZVI1eau1XV16RcKVhQ8CxE2yAMOwIZfVQVCO0XsMrIoGxhO6cu5QBwmIjGt2eh+hUC67apVqFGYrLZhYyOK/peXwwBPhQhbupToN78BkXb33foKoKpCphCBNOB7VRSkm3R0QElm50hhYfqKZCyGlN5770UB/7//PT46WFVxPVXNnED0+0EevvUWIrbuvBN7sqJANnMpkoGMpA0GUVydCKTwr3+NsSsuBhGbIvKyKAMwUczvmhtxZIMk4LQ0Jg7ZmCouxo/Nlh2ZtGULuqY7nYiiO/bYzI3GdMF1v5qbIYeS6RE7dkAHqa6GXDCqN8d1CYuKMG7//Cf25bPO0pdfqgonYDSKtZvOWo3FQCjEYhi7ZDXwli1DJMzo0SAdtM5L1FKWEcuZOBxiMdncobwc8migMzwSoaq0s/s7nmfqVJC3aWKXkEUmE/aboiIpI4JB6VBKLN+Rx9BBCMiVhgZkLXAtcz1YLHiXL7+Mf2+8sTfZyAiFEAFXVIT3fsst+P5vf2sc7LJtG847dap0spjN0KtWroSj5eije8v+aBQkY08PSheMGCEdy4lE4ldfQS8qLYWTkestFhXhWlu24Dxjx2a2F6gqxuexxyBTH3kExKeiYIxDIdiDRgEcWiIx0/RmVcV4vfkmCNMxY7AHHHrokPeT2CXkW3+Q6yTidUQUIHS3uZiIviOiHxPRXtT7Bd5HRFOI6IdEdC2BPX6BiEhV1buFEFuJ6HpCkcwIEW0moqcG/hHiUVgI5YvruXDHKfaGD3coClJse3ogcKZMSU2R4xp/XFNvMDo6JYIL1LKSYEQQckdlvx/PZpTSwXUCieBBNjKcQyEoa0VF0jDmdHeOelRVSdKxspvoLd+4EceWlmLT1CNhg0FsbAUFUPT5nmbNgtK6YQPO31cX7HAYBlF1Ncajq0sa2YMNTm/evh2ee68X8y6V9KH2dijqLS34fdIk1D/LIPVol5NFmUJRMKeJhi59OReJw0SYTFLxMpIdq1cjMueQQ0CuGaGrCxF2QqB+YCry9Ysv0Kxk1iyiBx4wVtb8ftxjcbFUbgMB1M1xOIhOPRWyJhKRc8NsTp3sCwSQov3qq0QXXkh0//29Oz73l0DcuBHP2tiIa112Gc7DNerM5uwRSkb48kvUXfz2W/x+/fWIFs1ASc7LojQQi8koIyK857Ky/qcrcmaD3y8zBbgRDxOH2UJzM9ZrRwd0xRNOyKi4fL/g8cTXKQ6F9J1HLhciJW02OC2T6U9tbTIN7sUXoQOfc47x2PX04LpVVek5rlinikSgfxutuViM6JVXUJ909mzICe29ZINA9PsRRepw4B3Onj34qbNeL2RiZyd+nzYtIwKRaBeTRVYr0l25hrrbLSNNCwvxb67pGbsieA2NHAkZw+W0EuF2o6ZeVxf0IiMnbCwmbaO6OkT9RaP4d8QI/e/s2IHzcrd51lPeew/BFwccoK+zxWIgPzs6iL73PVm+JLHUjRDQ6Z5+GvbOr38dT2aqKmSaomAcSksxZ9OJdHe7oZN8+ikIu1/9SjZxaWjAfUycmBo3wXI83fRmhwM67urVsF8PPhiRmdOnp/YMA4xdSr5lAjHMIyV3NaQ92IGAVIwKC6EcDUXEVypwu6EcRiJQflJVOiIRCKRwGFFkQ02WBoNS2Car+eJ2471wjRQtVFVGVU6YkFxRbmmBUB89urdQVVUo3aEQxsVux+YSDGLzYgXW64WgdbthQLA3SotQCNF6QmDTSVRwYzFsbg4HyDSj2lvBIMhR7sBlNkPZDwYxFrW1Q6dIOZ3wVKkqxsCo/mQwCCW5owMKR10dnnfMmJSJglxXFbMu+LkxwFCkL+8KpKEeVBUywmTqPS87OpBGU1OD2jSFhfrpz8Eg0eLFIBrOOw9e8b6wahWKco8fT/Tkk8akIzcN0BrMPh8ihtxukGCJaX5MJrJHOhnx19EB0uCbb6Cw/+Qn8c/XXwKRi4Tfcw+U47vukk1f/H4ZOZnNdNZEuFzoev3WWzKyae7ctMqZ5PpMHxIlVFVBBrjdkgQvL++f00NRZMQhO1IKC3Fuuz37EdkdHSAPm5sxRw88sHfh/sGAooAEV1XcQyiEdZ5IxobDuF+vF3M8WbRiSwvki90O4s5kQu0rowwVTnsuK0vPCc3GdiiE+zHS1UIhyMJVq1Cf7Kyz4tcnR2RHo7jnTLr5trZC1qkqHMEp1D/NKmIx6OKcPTNlStqpgruNLAqHITsURdYx5f3MYtk19I9cRDRK9NJLCMA54wwQeYqCQAPt2o5EiJ55BqTeggWICGTCLXEP2LIFNs6YMUT33Qcb6Xe/MyYdu7tha9XUyGNiMezx9fUgwg4/vPf3VBV1EhsbQTJOmaJ/jKIQ/eUvuPfvfQ/lTrR7CzcmdbvxPDU10GW4Zm1xcd+OibVrkYXicCB9+cwzZbT59u0Yo4kTM9vTIhHco8lkfB+xGOpF/uc/uIfaWjhUDj/c2K5LQH4FDgLyJOLgIuPB9vlAJnKR5qqq7Hqy+4vt2yH4iorgIUi1ADmHREcig9cSPhV4vZIgNFIGVRWkVTSKqEHtxrNjB4TtmDHGCq1WeR01KrnX2uXCJhAM4ns1NZJs9XiQwqyqMISjURgS2nQ/RcGmFoslb0KiqiCCu7qwQSTW4AkE8K5NJrwvvmdOfenpwWcjRw5dmHk4jGf1erHxcKcwvk9OpfL7ZbfNsWPTrr+Z6xtUVgX/UKQv76rEYSK0KSw8j8NhKLEOB4jE2tr4js08DrEYPO0rV6IpSmITEj1s3IjC3FVVRH/9q7HCFgpBHmmbBng8IBB9PjQ9MEoNUlXpkVZVyE4mQRn19VBcu7pgvJ9ySu9z9IdA9Pkwhu++C6X+jjvwzEwGDHQHZlVFzab774d8X7gQhCl3oE8DuT7rB1UJ5ffrcmGv5AyATEgfIhmV7/fj/0SYN3Y73mOm500GpxOk3ZYtWHv774+I4aFo9qCqiJ7t7obhW14OueNyyYZ02uMaG1HiJlmkpMOBH6sVKWyRCBwgRrLI78fxdnt6dZFVFdF2gQB0KqN119ODxlLNzVijRx7Z+zz9IRBjMZSU2bwZc3HevMHXhXt6ZNfZUaPwfjIg1HcrWcTv3evF7xaL3Mc4zTmPwcXSpSD6Tz4ZDlOuzV9UBCKR9YQlS4ieegpZHNddJzvAc0d21kU6OrAuqqqgh2zfDnJt5kz963s80F1KS2ELCwG58OabWN+HHgp5rUegLV+OY/bdFyWV9OD3w9m5ciVI0osuitebuK8ANybVysxIBPOVS2Tp6emxGNELL6De64gRSNfme+nslLXwJ0zon8ON63lzAxrtM7S0QG9lW3OPPRBRetBBaa2pXJdFOYE8iTi46NdgqyoEQ0+PVH6rqoZ2o1IUhHk7nTBkp0xJXZENh2VIdLJovaEARwDGYlDqjAzUWAzvgwgklMkEQdvVhfFI5sXt6cE1tIRgMjQ3w1M9YgQIPCJ8f+VKCPP99sOmUF8PpXjPPWW3ss2b8e/kyX2Ps6rKKL1x42RUo98vPVDjx+sryn6/rCtUVzc06c1EeAYeL7sd85I7hXOdydJSGDjjx2dEyOf6BpU1wa8oMDy03viBwu5CHCYisSj1X/4Cj/VPfxrfrCQWw78sr5Ytk97qk0/u+zqNjUQXX4w95ZlnjMsacMRVYaGMjHc6QSCGw0Snn55aJDoTgZEIfmcycelSogsuwLlfeql311P+HlFv8jEVfPcd0S9+AYfC1VfjmTlVyOvF/djtA+eoa21FjcnPPoOcvuYaRH9nSGbl+goYNCXU78c8jUSwV1ZUZObwCAZlxCHPXZtNRhwOVAkHnw+GZn09rrHvviDkhlIH3LIF0f977RXvNAiHsZZsNozJtm0gESdNgswyWrM+H9aH2Yz6oD4f0aJFxmmD4TB0LnYIpiMLOjvxHqurjXWwpiYQiIEAorNnzYr/O+vlHM2a7rv3+1HXrKcH+tmsWYNbX09R8P7a27F/T5vWr3rku6UsikSgV2qzMNihx6nOeQw81q+HvjN3LmoJMjo6IKdGjID8WbUKabrjxyPDgff5YBAywW6HTPD5kEZrtaIu4KZNSOk1qrEYDMIZUFAAkrGgAHPiX/+CrXv00dBlmEDTEonffgu5PnOmcQO6jg6Qei0tKLvC9RRZXnDDKp8PASx6gRFMfCsK9g1terPTCWfqF18gZfjGGyHTOPiipweyYezY7MgodiYTyTrgH3yACERVhTyvrcX7nDYt7dPnuizKCeRJxMFFVgZbVWW3pVgMyk9/PHbaBgEAACAASURBVOmZwukEKROJQDD3VUdPi1AIQpXTTodTVCWDC61zV2Yj5TQSwViwN6W1FYI2WRFbnw+bVWlpaqHZfj82EK6NWFSE+/v2W2wE2jp+kQg203AYnjiOdpw0KT3v9qZNMoR/xAgQiBYLNt5kinIkgmsGAhi3dDskZhMuF56DmxJwcWybTXYqy/Decn2D6rcsGqz05d2VOEwEE4nLlqGxyIIFiPZLBBOJGzfiuClTUEuwr3ne1gavdiiECES9kgh8H14v3jkb3g4HCMRoFN7xvpozJUJLJj77LNFNNyFq4KWXekcz9odA5CLh994LBfvuuyVBGY0iioA7MA/EfhqL4ZkeewzXuegilJ8oKoKszMuigUEwiD06HMZ75X0gVahqPHHIERRa4nAgnSehELINVq/GvcyahT1/qB2vXV1wYo4erR+Zw2nd4TAiJysrEfljNFaKAj0jGiX65BPIlXPOMY5o5gZzJhNkTjrrp7sbcqyy0jhb5NtvEX1UUgKiP/E+uCs962XpEogtLXivRCAmBqsJDoPJlUgEDuN0m9LpYLeWRX6/rK3K9aCZLLJah6Y+9O6Cjg7UTR01CjpI4jzeuhU6Tnk59v+CAqkHaOF2w24oKZGdld99l2jNGqKf/QzySw+RCAjESASy0GbDd199FQEN8+cjHZfB9a5NJjg1V6+GvcblVBKxYQPR73+P8990E4hGbrbCaGyE3ZVKY1JObzaZ8Kxr1yKrxeUiuvZaOII5ipIjG+vqjJ05/UEkAjvtrbewT9fVQSZXVYEMTie6XINcl0U5gbxIy0FoOwe6XPjx+fB7RcXAp7RwvYWmJmyUM2emR04FgyAQhUCY8lB2bk0GNpK5iLKRp7qgAAKvtRUbWV1d8igcRYHyzWnpfYE97VYriFqfD+O/aRO8NByBqL2f6dOxKXz4IRTTvfZKPz1m6lSMwaZNICSmTUPEaF/zq6AA1+zpgREQDA5dejMTXU4nfjeboTSMG5d2+nIeGmjTl63W7L/bPHHYGyYTFMnFixF9dOqpxse1tqJ7aE0Nonj6Mgy7u4kuvxyK4lNPGROIbDSbTFKedHQg9cRkQnHyFOvVxIFTWm69Fd3/jjmG6Ikneq/RWEzWoEqXQPR4EHXw/vtIKfr972XJB20H5mw01dDD5s3w8q9bh7pxP/4x5Hdp6fCtc5zrYNkfCmFfqq5OfR9UVcg4TlXmYvZ2u/wZaOeYosB4XbECesCeeyLVdagi/LUIBHBvpaXGqXd2O8bvk0/w/3nzjNcWpxMqCiJ0udmBEYEYi0FuEaXvqOzpwXovL9cnEFUVtbheeQU6zzXX9D5OSyCmUmMs8btr1oCkqKzEuAymDAgGIY8cDry/adOGTymhXAbXPXW74yP1WV8ym/H3oSg7sCsjGAQBZbMRnXiivizYYw+se26Kctdd+jZAWRlk7YoVkPeffQaC7+qrjQlEVYWdFApBFtpsuKd//hMy7eSTezcC4TmwYYOM0N5/f/3zf/IJ6iZXV0NHYpnIUYic1cfOgFRqwtps2BM9Huhazz2H895zj6ybzecNhzMq+ZQS/H6id97BeLMs4hTmAw/MR/EOd+RJxByGySS9qE4nhIHHA8UojaLsaSEchtBzuUCWaTv8poJAAN4SkwmG6nCvGWKxgCgNBCBwk0VMcppsRYWxcRuLxXvO+zKCOarPbJbHBwJQPrnDst4YFhbivkMhHJ+pIK6pwbWYDEx1Tgkh63a2t4P0rK0dvK7bkQg87K2tUNoOOADRiJxyMhwjX3MF2vTlbEbg5InD5PB4EMFWVUV06aXGY+P3g2g0m5ES3JeTxu1GakxHB9Hjj4Oo0AN3HiWCwSkEFOTXXoMMWrgwvg5rOvD5iH70I9QpuvJKkG3RKPYbRZE1DzMlENetI7rhBtzvT39K9MMfSlnGEWYD1YE5HAYx+7e/Qf7dfDOU44IC7NN5JTn7UBToRGy4V1am1hwnFsNc4B8u/s71DQerWRQ3OVu+HPcxcSLmTCYE/UAgGkVKoBBwaCRbM+vXQw+ZNy/5vstNzr78Ev8//XTjuomqCgJRUaBXpBPh5XJB5rHTXe/Znn+e6OOP4aC95BL9JnRcBy9dAtHnQ/qy04ko8ZkzBy9TQ1UR/djQgN8nT4bDN7/PZg8sb4JBGdVWXIx9OBzGHC8owJzKk4n9h6qChPJ4iM4+OzkZv2QJ7JHzz09ek9Xrxfm++AJRgpdcAsemEbZtw7uePBlyxe+HA6K7G9kieg1SiGAXcST3vHm91yFnTixeDHLy5pt721DRKGzqUAgOj3RsLLcbdaG//BINS372M1mCy+fDeYkwVtl2MqgqyNm338Za2Xdf6STef3/ooUOVwZZH6sinMw8uBnSwFQWeFo4UqahInoabLpxOEIjRKIRlumHNPh+iF7mrUy4ZT9yFTa97YzQKpSwahQCORmGw6KUasaI8cmTfRFYsBqM3EpGRfO3tiDAsK4PHhhsblJfL98ydobneIhcLnjEjPdLW5YLCyZtyUxPOx8WCU0U0insIBLDB1tYO7ObQ2QmvoKLIAsmhkIxC2bYN9zRhAu4lQ+S62p22LOKUvkhEEur9lS154jA1RKNIvdm6FYrkmDG9i1HzcU8/jfV/0UXwbut1bGb4/URXXAHC4qGH0GDECFz/jet+NTej1o/dDgIxUwfBjh1Q/teuhRf88svjn4fTnKNRyK905p2qwsP+wAOQXffcE19viDswWyySGM0mVqwguvNOyM4TToAxYrNBZvcjfTkRub5isqYXcW0y1oHKyrDnJHuv0ahMU+bGZdzBkutiDmaX+c2bQTK5XMhoOOig1OqLDibWroWDbs6c5HWfV6/G88yYASeoUZ1Rlwu6zRdfQOc48UTjumBEUs+trEzPuPV44BAtLta/70AADQXWryc6/niUjNCTsT4f/p8ugdjcDNJACKQtplMCqL/w+ZBR4vHAETVlyoA4U/OySINYDOPNzgxOMQ2HZUMxqzVPlvQHn38OuXH00cllxj/+gcjA446D46OqSr+TfU8PnI7LliEC8PTTkTVgtAe0tIAMHDMG0Xo+H0qWuFz4rlFWR3Mz0aefQi4eeqjMxuC5oCjIyli6FPUJr722t82sKLBnuDEp25wmU9971ooVqK/o9aKxzDHHyEARRYHNZrEMTLCP0wndcdMmjNv06RjH0lKkL5eW9t29OQXkuizKCeQjEXchFBZCIIXDsrud2w0yMRUvvBFUFUbQ9u1QAmfPTj/1wuvF9wsLIZRyrTZIaamM9tRGeXIDD0WBELfbsXlwzTCt8HW5YKyk0lmbuwaGwyDCLBYI2fp6vM9995Xn5/qYHAHZ3IxrjRkDRbmiAt/77jt4s1Ihb3t6sIkUF8siugUFIDHWr8d5UlV8zGbcC89JTm/Odhp7KIRNqasL833CBIyLquLdcNTBrFmIUmTv4cSJeY9wX8hm+nKeOEwfr7yC9Xv55ZjX0Sh+EonEN97AvD71VBiJ3LGZqPcYh8OIylu7FgRlMgIxEICiynWeGhvRbbCsDARipl7qVauIzjoL6/Dll4mOPTb+7/x8XIg8FsM6t1j6lj8uF7oofvQRlPDf/ja+U6zXK6OSs51K6PEQ/elPRK+/jiiDBx6AZz0azacvDwS4GzBHh5WVJSdpI5F44pBIliXhqKHBRlMTjOGuLji8TjoJa324Yft2EIiTJycnEBsbsc9OnAgj0euVKZ7a/ZabGXz5JXScY45JTgZweZnS0vTkjtcrOzjr3XdXF9ZseztqyOqlLjKBKASunaoOFI0ifXnbNuh/BxwweDKAu7VyU7zp09OvWZtHZuDu5EVFkE8OB/5fUgIZpCiYT4WFkDl5PSg9bNsGmZmsGQkRoopfew3E/WWXQX41NUHejBkjjwsGQbR/9hmiwE85BQ4Np1M/ldfhwLqqroad5HaDQPT5oBeNG6d/P21taB5SVYUIwIIC6SglwvfvvBNk5qJFcLLq6W/btmF9T5wo5Ym21qLefIrF0DTvmWdgFz3wAJzNRJiH27Yh2KWqKv1Mw74Qi0HOv/8+fj/mGOhzO3bgHubNk9wA63zs1MuvjeGJfCTi4GJQBzsYhJALhSAc0vXaEuG7GzZAOI4YAaGSrtfM44GgtVr73xZ+KBGJYBzY2CDCJuRywVDUGqhOJwRgRQWODwYlKZdK9BsTwNXVUJa3b8d7qK7GZpmohLtceMd+P0LoR46MjxT1eEBCFBWBAEy2MXR3YxMpLcUGqxXebW0g6ioqEF2Q7gYTCEBJ56jNfnQB/H+oKpSCrVvlhmo24zmKijDnEkkv/k5zM0iEKVPSVupzfUtLWRb1t/tynjTsH5Yvh0f66KORhsuIRKT3mghe83ffRdrjKafERyZzp0j+LBpFd+KlS5HOcsopxtcPhWTEs80GYmDJEiiZZ5yReXOHJUvQFbm6Gop3YtdTIpneYjJBvrHhxYolpzknYvVqpC93dYEoXbRIPjtHh0SjA0MYffghIh57eojOOw/XjkRkJMoARODn+mrKWC/id+nxyCZz5eX6MooNdr8fc5pIdqcsLh660iocgbdjB/SKefNQk2o4ykiXC/KouhqOTKN77O5GhFBpKci4ggKsWZdL1h3lov3bt8OgbmpCFMqhhxpfPxCQ+3o6qd1+P4hKm02/jMzWrZCx0SjKKeiVdGDiOV0C0euVkaXTpqXngO0vXC6QIoGA7Ew7wBlAw3DWpoUBs9HYcaWNkuYU53AYx1gs+BmOa3+4welElkFZGZovGdmVGzbAgThyJOohlpTgXWzciHNMmwbbOBaD3vDBB4hCPPZY1EJ1ubC/VFfH2wheL4IziotBzLvdaOwSDhOdeaZx9HhXF3SEkhLodNp9JxKBTXLnnTjuf/6H6Pvf732OUAhkn6oi1TgxKIXJyEQisbsbY7BiBSKtr79e6m8cENPTg3lZW5vdDI22NjhVm5sx5vPmwYGtKPj/5Mm9v6Oq8URimnIzv4oGAXkScXAxJIPt94OUUhQIh8rK1Ay/nh4IYFUFyZJJ6qfLBeXYZkutKcdwRyiEzaOoSCqmtbW9PduxGMaPCIp0ezsE4KhRfQtCtxvvi7tTNTbKJiqzZ+t/PxTCptjTA0VRrxg5d9MuKcGmp3eeri48U1mZca2cjg7Mi7IyeADTJYWjUYyH3497SberohZ+v6zRWVkJArGzE59XV/dd78ftlt0JJ0xIy0Of6xtUn7KoP+nLeeIwO2hpgQI8bhzRjTfGrzVWsITAun7hBSiUixbp1/AiwjqLxRCh9+abINoWLTK+vqLEF4jfsAFE5YgRSPXLhIBTVRjsN9+MdMgXX9QvjRGNYu4xgZh4X5GITAnjGomxGDpSP/QQjIZ77onvGhuJQH4PRAfmzk5cb9kykBA33QT5Ewr1LjmRZeT6ysqotILXC7kfi2Fu6hG0oZCMOOSO3larTFUeypIqPT0gD7dtgz4xd+7g1sdLF+Ew7tdkSl7w3utFtImigEDUNoFRFBjkVivGv6UFzo/NmxEJffTRya/f2Ynr1tamvpYCAXzPYpHlTbRYvhzd6CsrkTKol2KcKYHINc/MZrzfgehsqodIBPOqtRX79tSpg9ZIbreTRemCSy6wPcaEOtf/FQJzNd26v7sTIhHoOx4P9BejYIS2NjQiUVXoG9rUYkVBpF8sBnuouRm1Fd9/X9YHNJt7Z4UVFmJfWbcOcmDmTBmBGIuhGZSRHeF0gqS0WhGFl0j+rV2Lhm8mE9Gvf41AjUQEg1jbfTUmTSQSly+HwzgQAHl4wgnx49nYKEtt1dbKvZOb6GUa/BOJgDT95BPscyeeiHFatw7BKIcd1ncwiTa6Mg0OIb96BgF5EnFwMaSD7fVCceW0tMpKfQHENfWam6WXJZNoE6cTBKLdDoJmuCrH6cLnw6bickHYjh6tf1wkgvHu6sIYjB7dt9HCkXp2OzairVvxM2IEInWMlIrOTtRlLChAiHplpf54d3dDYa+o6F0PpKMDfy8vN34mRlcXIhuLi3FfmRhjPT24XmFh+unNnKLT1ITnnDIFc7S5GX8fOzb1KEdFwRi7XCBt99gjpY0q1zeopLIoGoWykk76cp44zC4CARCIfj/+1TMCYzEYqosXwxg5/3xjYzEWwzu6914o4FddFV9/MBGcusdK5Pr1ULDHjEGx8EwitxQFEZBPP41zPPGE/t6SjEBkqKqMTCTC/nb77agzdMwxIEq1BEY4LFMRS0uz59CKxeBh/9OfcC8//jEiEbRk5QCnLub6KktLL/L5IKsjERhhFRXxczEYlBGHkQg+KyqSEYdD7cjkyLQNG7Bfz5mDGl3DuUa0qhJ98w3GPVl36FAInUY7O9GURE+PCATwEwwiWnHtWqT3nnii8fWjUegnQkDnSvUdhkLQpwoLoUNpdSJVRTT0v/4F/eGqq7BWE8GOFK6Tmcqexo1nGhvhzDzggMwjttNFVxd0PO6oOnHioOreu5Us6g98Pll+gUtccLkOzjKwWoe3XBgqvPsuogAXLDCuOej1gjTbsQMRhQcd1PsYlwsBGn4/1uuSJTjuV7+KH3cOfBACASP19VhfM2eCyHz5Zayxs84yjpD2eNDx3WSCfpKYFfjBB0QPP4xAk1/9CvKqoCBe3gQCsPO4e3FfOlgshrn0zDPQESdOhI6kHbNQCOdUFDirtXZTJIJ5GotBfqVbQ3XbNuhG3d3Y577/fURBdnQg8vCAA1InJzm9mbNvUpDDuS6LcgI5mliaRyYoKYHg4hp6LS34vbJSCsxQCOSQxwNiZ9KkzBQQhwNe0JISCKZdhUAkgvBiz3ayyDWuc+H3x4+xEdjTbrFAUd60CUro6NFIgTESmg4H3mVdHd4Z116prOytbFdXQxBv24YIvMmTZZfVnh58J5Vi3zU18JLV16PWz6xZ6ZMKHBHb1gbyL9X0ZrcbBpjPJzuEd3VhrOx2kKjp3EthISKHOL3Z54NRke1uZLmCcBhygLuSJjPY8sThwEBViZ58EsrWDTcYE4NuN9Grr2LMTzklebSJyQSi6/nnUfPrssuMj+UutRx5s3o1vMkTJuA6mXil3W50i166FJ7wW2/V3xdSIRCJZJfmggJ42W+6CTLshhuQ3qQ9N3dgLijAnpSt/aihAalH334Lhfimm/AO3G7ZpTNXy3cMNwQC0FsURe69NhvWSiAgiUM2NNhRarcPD/0jGAQRt2YN7m/vvdGFcgCaW2QdmzZhbc2aZUwgRiI4rrMT+6dROl9REc61bBmiUebOjY+KSUQshv1dVaEjpEoghsOQn2Zz72yHSAQRy59/DtLgggv012kmBKLHg0hMjwd6RTLdLZsIhUAedndDxs2apU+K5jE8UFyMte924ycQkPUTo1FZRiQcBpmY30eAVatgdxx8sDGByE1JmpqIzj0XMkYP5eX4eeMN6Dff+x7RL3/ZW+8wm2E7tbcTff01fp8+HfvRK69gPzrrLGP9y++H3qOqREceGW9bqCoIvpdfhjPpxhuxZ7EexEQid0suKACBmAq53N1NdNttGLOTT0YDFe1+4/VijISArZ/o7OTSXX6/rIudihwMBIjeew9jVVmJJn9FRRjjaBQR6sm6Y+uBIyp5XDJIb85jAJDVVyCE+EgI8VGKxx4hhFCFEJdm8x4GCkKIZ3beb06LciEgNMeNgwff7wdxwmmsK1fis+nToQhmski7ukDIlJaC0NmVFrqiYLwqKkDucbSJHrxeKAKjRkHgsddRD1pPe10d0hMbG+FJTqaEOp2IROKx5nR1TqfmkHYt6upwbHc3jODWVhxbXZ1et8CqKnjiAgGQDFxnKh3YbJiLdjvmX1ubTL1MBBspK1bg/7NnY442NeFZampAKFosREcccQQdccQRKd3DRx99REIIevvtJ2n6dLzP9euhMAxHDJQsYmM8FILyYEQgco097bznent5AjE7ePddEA5nnQVZrIdgEAqsz4conr46uD77LIjJBQugTBq9K1XFHqCqmAMrVkD5mzQJDVsyMWaamuB9//hjKPe33dY/ApERiyGq8YoroKQ+8ww6InI0B5EklywWyMls7EeKgrE87zw4Y269FSnUxcWQ8zYb5GlBQWay6Mknn+z/TQ4CBkMv4miyzk5JJI0YgbnS2Ym51daG98w178aPxzHZJIwzhaLAmPr737FPTpuGeXPIIblBILa3QxcZN85YxqgqdInmZuhF3BVeD+EwiNSvvsJ+ra3fqgcuxVNVlXpUlqJAnzKZMA+0+5jPh2YCn3+OaOiLL9aXaeGwdDykSiA2NkJWhsN4vzNmDM6e2NqKOcblbObMMSYQ8/Jo+IAdTeXlkGddXdg/2IHL0auBQHxk9e6K1lY0SttjD5RU0IOqSlk7fz6aqhnpLIoCPWvpUthal19uHIBgtYLs7ezEHuRyIYW5qAhEpRGBGAzi/IoCApHr6RNBTtxzDwjE446DXsSyhmVWNAqHRGMj5F+qdU0//xyybeNGpEb/4hfx2V4OB2R2YWHymvDsSLbb8Qxut/E8VFU4hv73fzGuhx5KdPXV+M6HH+IcJ56YPoGovZeCAqwP1hUHA3luyxgDKmiFECYiupWIvlVV9fWBvFYe6cFkgtArK4PiwaRJXV3/Osd1dkJ5Ky/v3ZQj18FFwIkQkSMEhKPX29s7Hw6D2LLZoMT6fFAEuLacFqoqm42MHAmh39KCa0ydanw/Hg8MqOJieOR4rLmJjtMpIxITN9FRoyCAv/0W73qffZJ3WjRCRQXIvLVrsWnPnp2+YWQ2436cTozZ9u0YM+15ursxLqEQ5tWkSXj+jRvx3BMnxm/OiYjFYnT77bfTvvvuS6effrrhcaWl8OBv3YpN2+3GtYY6BW6g0Vf6cj7icPBQXw/ldN48KMF6iEaRhtfaijpi06ZhjnLH5kS8+ioM5/nziW65BZ9xs5VEcDRXcTEi/L74Auc//vjMCJnlyxEZGA4jteXww/WP4+6EZnNqRKXDgTpHn3+Oe7vlFtwzN2MJhXAMEdZ1ttIJ16whuuMOyIjjjkNUZUkJrqWqkEPJrpWqLNrdoSjYEwIBzImKCsxXjwc6hqrKVHs2uIeTTOK6T19/jWeYNAmG7yDVpssKfD48Q3k5ZIARtm+XztVJk4wNce7O+eGH2GdPPBFywWi9OJ3YlyorU9crIhHpAKyri5cl7e2IxnY4iC69FDJWD+Gw1Nfs9r7nVSSCaJ+mJmSRzJ07OASx3w/HqsuFsZ86NX05l5dHQ4+iIuhdHg/siWAQ+4jFgjmoKHJOms04dlfXSRPh9xO99Rb28uOPN16Tb7+N+ntz5xIddZSxXaCqSC/+618h2664QvYPqK7uff7WVsjDiRNld+WaGtRANCLsw2GQnn4/CESt7Hc6Uf9w0yaQfaefHn9NJswcDllabOLEvnWjSARlYp5/Hk6a22+HUy0Wk3UF2SmXTqAPR8N6vZinienNbjfqbNfXw5674ALsG8uW4VpTp+KdZGPecjqzNipxMPf+PLclMdDeGhMR/YaIniWi3Xqghys4so672lZVYcFzmHc6C7O9HZ40jtIbTgp9f6GqqK0RDseny9rt2CCCQSlQYzGZRsMFwEtKpEfJZIpXsrloL0cgtrdDEZ80yfh+fD6kJNts8OokbgJMJPb0yDTlxKYMnPLFqROZoqwMqVlr1kCRnj07MxK6ogLP09aGseZuaJs3YzyLixH5WFKCDb27O/X05VgsRr/97W/pwgsv7FNRLiiAUtHWBuNo7dpdO73ZKH05TxwOPhwOokcfhRJ2ySXG4/3++4iAO/BARCrb7bLRCiuKjPfeQ22gQw8F+cXFwvn9aq/BjXSKikDOffMNommOPTazd//Pf0I5Hz0aUZNGTpF0CcSvv0baj8eDKMAFC+T9cRSjzyefhRXO/iiwfj/ezcsvQ1Y/8ACijXw+yNiCAuyZfd1/OrJodwQ3HvD54rsyMklbUADjhztrDzeZpKowDDmldcwYpMwOVlONbIGJMbMZTkYjQ7O9HfuxyYRonooK43OuXAkjf9Ik1G+NRECMcFkCLbxe6aBNde/l2mWqKpsgMDZsIHrsMTzPz36m3w2USKaRcjOpvsAdq71eyOI99xz4Oamqsia02YxrZjq/8vJoeMBkwv7BKc4OB+ZfaSnmYmGh7OTMEbJW69BHWg8GYjHIjWAQDkkjgv7LL5GaPGECMh/GjTM+55dfIntgxAhEA5pMMiuLI0QZPT1Ya1VV+P211/CuFi40JhAjERBoLhccp9rGpI2N0MmcTugxBx+sfw63G/dkteJZ+tIt2tsRzbh2LUjJa66R0Ycmk2y45PWCAB01Kj1ZZTb3Tm+226GPvfce5O/8+dCLWlrwzlQVzVMmTEj9OqlgiNOb89zWTuREyHceA4Pubii7RCB+qquxQTHx5HZDkJaU9C1oWlux6VVV9Z1Wl4vgdKnRo+MVy6IiWXzWbMZG39kpowq1RmtZGTYNtxuKNnuZ/H78zvWEpk5NLnADAUTBWCzJo+QKCuKJxIoK3F8sJmv/7b+/9HSZzemlM2tRUiKJRI5IzIR0s9lACra3IzqWo1onTcImqiggFYNBbMojRw6cwj5yJJ5ryxbcy7hxmY/PcIRe92X+nDHcDPRdGZEICmsrCrqEJlOUV6+G4ThrljTahZDdlzm1/JNPUKR7v/2I7rtPGtX8XrVEIpPJFgu87KtWgTw44oj05wE3cPn976EgP/ecccHxdAjEWAxe9ieegJx49NHeEVKRCMgbLg2hfTZ24KSrbH76KdFdd0E+n3UW0ZVX4v309ODcNpvssplHZohGZb1mrkPH+xUR9gG7PbOO4IOFhgasTy6v8f3vY57mItatw3vYf3/jMefa2sEgdKNkut9338GpMGoUCESOeFcUGLVap3UwiHMXFaXeII2dt9EoiAGtY/Gzz5DiWFcHw1pr0GuRLoHY0ABZXFgIJ00m2Rzpwu2G5LubogAAIABJREFUs9nvlzWh8803dh1YrZhHXi90dI5KtNlk12aOTPT58PtwdKZkE59+Chvl+OON1+6mTUR/+xv0oeOO6904Uov6ejhUi4uJ7r4b483lfNj2ZWeVzwebo6QE4/7OOwjcOOQQHF9a2vs6sRh0r+5uHKeViytW4Jo2G3SKKVP077GnB8EUxcUykpB1daMxuvNOyL/bbuvd6V5RQF76fLBjWDdKF5zeXFCAIIu334a9NnUqykNUVMBZVF8PPuCww4zr6PYXHK0ZjUoHer526OCiT1VaCDFBCPEnIcQ6IYR3588nQogkpZCJhBATiWhn30S6cGfOtaqXVy6EuEYIsUUIERJCfCuEOFLnmAohxENCiOadx20RQtwuhLAmHKebuy6EuGjn9ScmfH6CEGKlECIohGgQQvxCCHGx3rE7US2E+LsQwimE8AghXhRCVCUbi+GGWAzESH09BNm++0oDz2KBAjZqFDanri4IMp9P/1wcoedwSM/Grobubii0Ro0/SkpkzUOHAxtLVVVvxZvrUXIatMuFf4uL4R3q7AQxkIxADAZBIBYUQHnsS2AWFOBehMCmFApB8Pt8eFeVlSDoqqqwwXR2pj8+jOJikA5CQLH2eDI7TygEY8DhgLE/ciTm5Nq1jXTxxdfSiSfOpO99r4SmTi2hww8/jN55552k52toaKDCnVr2s88+S0IIEkLo1gV6+OGHafLkyWS1Wmnfffel5cs/pJkzsTE2NUF57+pyUq7LIu68qyiYp1rCKl/fcGjwj39gbV92mbEc3bAByunIkUgN4UhnhtY7+/XXRD//OWTKQw/1JiW1RCJHBBUU4PyrVoE8OPLI9OdBKITow9//nujssxEZYEQgKgrutaCgb1nW1YXzPv440iCfe643gRgOQ6aaTDC8Cgogm4uKsLcxcR4KGdde1cLhAAl7/fVQhJ96ClFMO3Y00uWXX0sHHzyTJk8uoTFjBl4Wffjhh72OcTpzXxbFYth36uthCDqdkEmlpZg3Y8fip7Jy+BKIra2ITlmyBGvpuOOQ5parBGJDA/bgqVON0699PuyJPh90ozFjjB2a3EG+vBwR1kzQcZZGLCZ1TEWBzmWxyMifvqCquF9FgXHM80RVUULhmWcgK375S2MSIhjEj8XSN4EYiSD6cOVKzNGjjhp4AjEaBZnx7bf4/6xZqJdbWEjU2NhI1157Lc2cOZNKSkqopKSEDjts8OVR3k7LDoSQ8s9kgkx0OqWD0GKBvq0l4UMh4/rsuYyNG5ERsc8+iPTVQ0cH0Z//jPE44QSsdaO9oqUFNQJjMTg6WdcSAnZGcTFkEdtoGzbIKNAlSyDnzjkHThMOutFCVeG0aGtDuQRtNOQ77yC9eORIoj/+0ZhAdDhgV5eUwB40m2UGSWIdQEVBiYabbsKzPPVUbwIxGITNHwqBAK2tlenNmSAaxTM++yz0suOOw5hYLIhIrK+H3jl//sARiFpox0dRUlsHeW6rFzKSmalwtgcQ0TFE9BoRNRBRBRGdT0RvCyGOVVX1A4PvdRLRhYRwz0+I6Imdnye2K7iCiEp2/j1MRNcR0b+EEBNUVe0hIto5mB8Q0RwieoqIVhLR4UR0y87PTknhOXpBCHEUEb1JRI1EdBsRqUT0YyJyJ/na20S0lYhuIqI9ieianff9w0zuYbARDMIj7PVCGGpr6Wlhs0Eg+f0Qkh0dUqnjmitMILpcUNyMlLNcBtdfKiszfj7e8Dkac/RoY8HJKQvaZiaNjRjDGTPwXSOEwyAZiFIvrksE4VpVBWG/Zg2+t8ceslaIECAko1Gcn4/PBEVF2OzXrJFdm5PVKtRCVWFsNDRgnPbbD/fR2gqF/aOPltNXX/2HFi5cQJMnTySn00mLFy+mk046id5//306OnHn3Ina2lp69tln6cILL6TDDjuMLr/8ciIiGpGQ//P444+T1+ulyy+/nCwWCz344IN02mmnUWNjI02dWknt7UTffBOiq646mgjrPmdl0Zo1st4TE095DB2WL0c9GTZGGxt7H9PRAUKupATkhM8HhVgP330HpbK2FukyXV340QN3IDWZcB/btqEw//jx+veRDE4n0f/8DwjMa64B6dfWZnxd9hz3lWa8ciVSjvx+FOo+9tjeDg8mAbgRgtNpfN1oVKbKFhb2nv9cL+npp6F4n3020Rln4Nj164nefHM5LV36H5o/fwGNHz+R3G4nvf46ZNHixe/TIYdIWRQM4t/GRqJAoJb++Mdn6Wc/u5DmzTuMzj0XsqimZgQ1Nsqxeuihx8nn89IPfnA5FRZa6K9/fZBOPfU0+u9/G6m8HKxOfX2Izj8/92URp5iWlMhmKEJg3BINtOEGpxMOs5YW6EyzZmFvDgYRyZeLcLkwx6uqoP+sXdv7GI5q4ai9WMzYcOvpQX0uIkQS6ckUjgC0WGQDuqoqyLy+oKogHcNh2Rmd7/G11/As++8P2cr6UyKCQRxfWNh3LUO3G2PCdS7LymRGz0DB5cK4hcNYI+XlmHMs///97+X09tv/oaOPXkBnnjmRPB4nvfUW5NETT7xPBx0k5RGTtWvXEvn9tXTHHc/SzTdfSPvtdxideSbkUXX1CFq7FnsBEdEDDzxOfr+XTj8d8mjx4gfplFNOo/fegzzq7iZ6770QUd5OyyoKC6EP+HxYF1zHjut0Wq3xac7cuV5vT8tFdHcT/fvfsEW//339Y3w+NGsLhUAgjhtnTOi7XHACejxE999PvRp8FBRAZ2prw3hv2CDt3f/+F/byaadJ26usDPLAYsG+paqIRN++HfYLl6TiBnBvvAHn7y9+YVy7tKsL1+d6hdoyLUQy6s5shm30m9+AtFu4ELpRol3ItfPNZth52rJbqtq7/E1faGqCY6ajA9lnJ5yA72/eDLLXakX69mA70NiO2bEDWTcPPtjnV/LcVjwykpmpkIhLVFV9JeEGHyI87A2EAegFVVV9QojnCAO9VVXVxQbnH0FEe6mq6t157g93nvtcInp05zE/IqL9iOjnqqr+cednjwohWonoOiHEyaqqvpXCsyTiXiLyEtHBqqp27Lz+U0S0Mcl3PlVV9Tr+RWCFXyOEuFpV1WQvaMjR1QVlRwgQVqkQRXY7frxeKINtbRBClZUQIh4PlJrBSOMYbAQCEEhFRcnJPSIZ4WIy9a2ExmIyjfS77/DZrFnJa9ooCjxJsRi8V+lGZKgq3hV3OUz8vskE791332Ez2HPP1NOIEmGzydTmNWvo/yP5ksHjwYbNtTqmTsU9ctSQohAdeuiJdMklZ8alif/kJz+hOXPm0D333GNIIhYXF9OiRYvowgsvpEmTJtH555+ve1x7ezvV19dTyc4iJ0ceeSTNmTOHnn/+ebrkkquopYXotdeeosbGFUREv8hlWWQ2Q/FhMsVk2j1q6wxHNDejXuCUKTCy9eB2o2OzxQKDuKzMuFxAYyOajJSVoe5OsnWsqjIq77PPYJTOm4dyBOmioQFpvm1t8PCfeKLxsakSiNEoIphefBHGwd1391ZOuZs0G1B9RRFx/bVIJD6Vmg2vlhakSa9ejX3y6qtx7VgMRkg4THTUUSfS2WefGWeoXXTRT+ikk+bQ44/fE0ci/h975x0fWVn9/3NnMjPp2WQLu8n23pfO0gQpIiJlLfAFBRVQv8AXRcWGCqJgAXsBBBF+SLNSBcQF6SBlC8v2nt1septMb/f3x5vjvTOZlmSSTZac1ysvlmTm3uc+93nOc87nnPM5diktLZOzz75AvvKVT8mUKTNlxYr0uqitrVlWrtwoZWXooqOPfr+cccYh8uijD8gpp1wu998v8vDDd0p7+8jXRRqE02BTJMLvXK78OTKHWnw+QBjtbrl0KWfWSC8rDYfJ/CkpycwZqA3mFHQrL89sS/r96LZ4HBqATHaAx8P1mpr49/jx+fOXKqXAmDGWY+7zAVzu20eWzNFHZwZVFEB0u3PbVXv2YEOrHs5l1wxUolHu2dHBsy1YkF7vH3/8h+QDH/hY0u8+8YkvyMc/fojcdddNSSCiXUpLy+RDH7pAvvWtT8nkyTPlzDPT66P29mZ59NGNUlqKPjryyPfLxz9+iDz00AMyfvzl8tZbItu33yky6qcNipSVYVdr9ZKWOGunWi11Dof5iUQsgHGkSiRCYNXlEvnwh9Prg1iMDMS2NgKLkyb1BgZVgkEAxOZmsgEXL07/ufJyzqM1a5jnjg58r7lzRc46K3kcVVWMs6uL+V+3DuB9yRJ8KBGucfPNBGjPPFPkkksy29otLRaF0+TJvXWWHUh8/nkCqyJUfaQDWdvb0YElJWQ02teDUt/kCySGwwC6r7/O2rvwQp4xHqdEe/161unRR+8f/t/ubjIy77iDd5IHiDiKbSVLv3RmTvPMNM2A7aLFIlImIoaIPCci5+X6fh7yR53kd++3xjAMr4jYTZizRMQvIr9N+e5NArp7loj0aaINw5govLzbdJLfvX+bYRj3CShsOrkl5f+fF5Evisg0EVnXlzEMlSQSRGA1ujF/ft9BqPJyFERPD0r1zTdRHvPnH5gAojacKSpKr8ztoqU0bjfGbzhs8ZSkSjzOZx0OjN/ubiJW2ZRuLMb7i8WSI0n5SixG9Cga5eDUrpdK4qzicHAobNiAIzF/fv9T0T0eHKt33uFwWbAgvaMRj+OI7d3LnC1aZGV8KieIwwGwEY+XSlsbRnVVVUgSCb+Ypiknnnii/OlPf+rfQG1y4YUX/hdAFBE5+OCDpbKyUlat2i6zZzNvGzc+KmVlZeL3+0e0LlqyxCpnsDfZUDBxFFAcGvH7MXxqa+k0nG6/hcMizz7Lfn3/+3Fc6+rSv6O9ezGQKyuJfNfWZn6fpsn9KytFnnkGIO4jH4Heoq/y4osYlUVFlOwcdVTmz+YLILa0kE351luUhn7jG+k72/f08AylpX3XjVr+ooDiX/9KOZDbTYT/nHOYu3DYop6An8pCKkOhkPj9fikrM+XUU9FFdkoKHZP+TsuRtFTJLpr58+lPXygLF1q6aNq0g6WiolKefnq7PP00urKi4sDQRZddhqPl9+Po2Xk6tcxdgV/97/7qTBoMsh7feYfxnXEG5/dwLbPuiyQS2HXTp3PepgOrTBNbZNo0691kqooIBqEeKCuD4zVT6Z5KSwt7Yvz4/J3QtjZ0Zk2NpTsbGqCGiMfRqdn0mQYfiouzv8NolGzoUEjkiCMAEHM1cxuoNDUx19XVPMOUKdns0N76yDRNOe009JEdMNH3qr9TfVRd3RtY0ez1iy++UI480tJHs2YdLKWllbJy5XZZvhxw5P/9v0dFRv20QROtEAoGOfPa23mXZWUWH7K9UWIoBJiimYkjTf75T/yUj30sffMS02Sfb91K+e7EiQRy0p0N0Si2xLZtULwcd1z2e2uzzNZW/JP581nj6a49dizA5IsvsmcXLrT2UVsbAN/OnSKf/zznRSZpauLz1dXZG5Mqd/bf/oZf9f3v96a/MU2r+WRlJbojnQ2YL5C4aRNZlD09NAk75RSrm/iLL4IJLFmCzxcMEsQpLu57p/j+SCiEzfaLX+BPn3UW7zqXjGJbvaRfOjMniGgYhltEvi0iF717MbsUgoEhXcFUp4jYIYfpIrLTNM1Q0s1Ns9EwjC4RyRB7yCrT3/1vukKEbMUJqePVgpthybcRDKIA/H7AsGnT+p/mrvw1ra3JXZq0I/NwzBjojyQSAFXasTrXc2kpzUEHoTS9XuY71dlRsDEQ4MAwDByQsrLk7s6pY9m5E6Ng5sy+dz2ORgEQYzEyeLSLqwKYIsn3dTo5MDdsIDMwU+Q7H3G7OVjeeYfrpQLOHR2AlUrKPnMmc5ZI4Ah0drLepkzRko2I3HnnDXLPPfdIQ0PyNjQKULsxzebRx+Pa/bladu3qkIoKAM6vfGWXzJgxQ9atWzfidZEdXFIjQsmbRSzDdLTceXAkkcDJ7uqCdy8dgJhIYLx1dtLgpKIC6oh0xl5rK4ZqNAqAOHWqRTadjuMyGORn5Ur00gc+gAGsndvzlfvuE/nCF9i/f/kLOjOTRCJc3+XKDlS//DIAQDgMAXo641u73ZsmeqI/Tr3yS23fDvi6ZQsR/auvtrLPleDe3n05EonIDTegi3bvHlxd1NMD/2M0Wi1btnTI1VeLfPrTIscdd2DoIsPg3CwuZu0qyKw/0ShnhD1j2uHoDS4Opo6KRMhMWbsW/bhgAWBSf8/G4SibN2MTLFuW+bn27mU/aEM55c5OlUgEvqymJpHzz88NIHZ18Z26OiuzOJet09HBvhwzxtKd69eTmeTxUDKYjV86XwCxs5Psm2AQcGD27MFda8GgxQ1aVUUGVC5nfKj0UTQq8txzBIocjmopLe2Q665jHdx44y6RUT9t0KWkhPXq9bIXQyHWie5Dp5O9E4slg4kez8jx0d58E8Dvfe/Db00nTz0l8tprNC6pq8PeSQc2xuMAeatWiVx6KVmN2aSpCXvI58MuWLAAKoTubotf3i4Oh8XpO2cOVDAijP+GG9jP112Hr5dJ9u2zGpNmq3rbu1fk2mvRD+edx/Ok6q5EAp+vpye/PgUOR7L9b7fLfD4ap6xbh397/vkWx+Pu3cy/YWCb6nsqKuKZtdqurGxwkhJiMSpUbroJwPR977OaCOYjo9hWL+mXzsxHpfxCqO2+VUReEpEOEYmLyGdE5II8vp9L4hl+39+Tz8zw3ULFrgs93kGTlhaUoMMBAJKJIDtficdRHOEwzmZ5uZVe7/MBKo4ZM7KzmJTnMRzmUMqVYdDTw7PbS2l0Xnp6kjsOtrUxV3v3MkeHHMI70c9qSZ2KAojBII55ugMym0QiHCaJBM+i4zMM7tvVxb1NM9lIdbk4ONevx7FYuLDvGT72ay1ZwrWUbLe6mgO2uRlj5+CDrbKgUMhaYwcdlNxB7KqrrpLbbrtN/vd/L5OlS48Tj6dGSkqc8uijd8kDD9zfvwHaxOl0SiLBO6qv52A3TZHqalOOOqpf63rE6CLDSCYnVoNC+VdGAcXCyyOPYJx96lMWd06qrFzJfjj+ePbNmDHpdVJXFwBiZyflHFqK6HQmc+jYu5/6fET7Ozooo543LzkrNdd7TiQwkn/yEzIk77knc+m0nfA6G4AYi8FvdNddOM833ZQelFQyeS2F7a9zFAwCOjz4IAb8zTfjlMTjXD8QsPSjvQuj6qLLLrtMjjvuOKmpqRGn0yl33XWX3H9/YXRRKES2wb33MhaPR+S440z5ylf6tQeHvS5SQFdLzePvXrG4mL9pgEMpGLRDqYqen3ZwcaASjxMEe+st9sysWWTZDnYZ61DLvn3YJdOnc+amE212VlHBXFRXp+c7jsUoJd6xg6yQZcuy39vn46e8nHnVLCCXK3MGVVeXlYGsOuf557lvbS2Zj5nsXQUpYzGr4VIm2bYN26W4GCe1v1zR+Yhp8g5270Y/zpmTf6PCwdZHhuGUl18Wefxx1sD8+Qpwmv1tpjjs9dFwFoeDvaIZ8gS8k88ozRRWPRkMoiM9nv2XyZ2P7NlDp+G5c8n4TSdvvklw9eCDAfUrK9ODb6YJ9+Hzz1PN8IlPZL93VxeZh5s2AQwuX47v7HQy193dvXX/9u3oiPnzGXN3N9//yU8Y1003ZQ5mmCa6t7MTwG/ixMxje+YZruV00tVZ7RQNEjscvOtduxhrXV3++kq/r3a/YQC6Pvkk1zzlFGxQtSfffBMgc/x4sjrtQSfDYC0WFaFntYKjUNmwpgmw+YMfMPfLlon8/OcAmX300UaxrWTp13jzMbPOF5F7TNO8IumqhnFJHt8tVK+onSJynGEYxXbE9t20zTHv/l2lU5LTRVVS3TRFXeek+ezcNL8bMaLdl5ubUWLz5w+89CIWs8CdKVOsyG9NDffQzDYFziorRyaY2NyMQTtpUu4sg3DY4qqxHywOB/PT3c21KiqYn7Y2wCmPBwBRjV/7/FVXW0DO7t18f+rU/JuT2MdWX891pk5N35l1zBgLBDbN5Mi/2w2QuGED4N/Chf0v2SoqIoK/YYPIq6/yuzFjOFinTbPWiXYkczoBVVJB0wceeEAuuugiueUWMr+9Xg76++67M+cY8onGB4OAtnv3cnDW1fHM9kjajBkz5KWXXpIDWReNAoqDL2vWACIefzzGTzp58014+Q47DEDd40kPXvj9Ipdfzt757W8xeu3icFjGptNpcfg8+ST65cMftkBHe8fmbO82GKRpykMPkRX3059mNhLzBRCbmuieunYtJUxf/Wp6nRMO88xOJ7q1v+fMf/6DIdrYSBn3FVdY55o2FIvHmXMtGVNRXfTb3yZXodx5Z2F00Zo1GMqtrZSWXnIJ2ZjadETkwNVFDgfnj2YhagdJt9vicY3bzF39ezzO2g7ZYvr9LYM2TQJor7/OHpkyBfAwE8A2ksXr5YyvqcmcMdjdzT6pqMAW9HjSlxwnEiJ//ztn/amnZuciFOFddXVhn6huKynhvSvVQur+1q6p5eXYS4kENAQrV1JO99nPZrZV8gUQIxGc6MZGbMFDDx3c8mWfjyxo5YSePbtv9xssfaQBpccfB0ifPh0gZsECkV/+MvmzM2bMkM2bN08/0PTRcBaPh/XS08O6DofZM/b1r2B8NMrfAwF0occz/Hy0nh7OvepqKiPSyY4dZDnPmkWTEuWJTxXTJED45JNc69JLs+v/QABgbM0axnHkkVQlNDaii6qqrLlT36S+njNi0iSCDF1dVGM8/DBB2W9/O3swY+9eqzFpprMlHIby5pFH8KO++11L9+rzxOOMbc8ertufpBO161tbAWh37bIaySjFlNdL+XJnJ3bmsmWZ15Dbzfi0KVAhyptffJHA9Zo1vP9bbsF+7advOoptFUDyUSFxSUEiDcOYJyLn5PqiaZpxEQmJyABz4OQxocvNZSm//+q7/33U9rutIjLfMIz/xscMw6gS0GX72BrlXZJLwzAm2D47TgqDQu8XCQTYYM3NGL5LlhQGQNToxtSpvcvutKNVXR2KorMT5ajg1EiRjg6rY3KuTAPlNnQ603dt1g6hkQhKubGRqHZxMaCAPWPHMKyMxe5url1fz/xNntz3DFLN5hMBpMuURaj3LS7m0NSufSrFxQDQ8TiRtWg0/XXyEe2I2tEBmFpbCwGyAhz19ayZsjKieekOQKfTKaZtQVFOv1n+9a+HRYRrZxKn0ynFxcXSmdLu0zQBRER4n7t2WY1hFi/u7QCdeeaZ4qN95HtCFymgqIaoZrPF41bpoWYGjUp+0tIicvvt7M0LL0zvZG/bRtnY3LlkpBhGeiMzHKaUePNmIt+HH977M/oOTRN91NYGYbnfT6ZQagMFHY+CM+nGf8YZGMo33ogzOVAA8fnnKc/Zto3mKd/+dnrDMBBg3C5X/wNVXV0Y4ldeydl4++3wLVZUWByLPT0EVWpr0QdaFqbgVaouEhHZvHmzPPzwwznvn0kXJRLwromQITphAlkUN93UGxgWOfB1kcPBGnC7WZOqa4qKLADI6bQCGm4373DMGIsjU4T35vVaZ093N2soEkm/xnfuJDP12We5xllnwYd1IAKI0SiBCqUeSaeLAgHsibIy5j4eT8/JapqATWvWkCWjmSvZ7t3ezl4eO9b6vdLmKGerXbTBX1kZ3wmHcSRXriRb5vLLswOIfj/2bGlpZru4o0Pk3//Ghl66lGykwQIQ43FAkVWrWI8LF/LT1/sNhj7atMnqqm2aBDK+8hUrMytVzjzzTJFRP23IxTDQd2PH8u/OTs64VN3mcrFvPB7Wnd+Pbsx0zg+1xOPoj3gcfZvOpmhrE7n1Vnyi009nz2QC3O+7j4DGMceIfO5z2QGsSIRAyiuvMHfHHms1KlH6mEAAW8DrxWfYt4/Pjx+PrjNN9stf/oLeuP767ABifT1n0cSJmc+W+noqTB55ROSCCwATU4M3Tidj0g7xs2b1HUAUYd5ffJFAdEOD1QRG/dudO0WeeIJ5eP/7SYTJZX9poFebZPb09G+9rV1LY66PfQy9/OMfYyOtWDEgPuJRbKsAkk8m4sMi8hnDMPzvDmym8MAbhRbUueQNETnFMIyrRWSviLSYpvlsH8d5p9DF5qeGYcwXkTUicryAJD+e0r3mDhH5ioisNAzjdwLj8GffvXdq4v3XROQpEXnVMAxt0/1ZAf2tlsKhzUMizc1kIDqdACCFKLnR9OhYDKc3W3ae242C0wy99nYru64/Sm0oxedj/pRzLJuYJsBgIkEEKpMiLS62Isz79jE3hx2Wfg6VY1JT4aNRHFi7cZ2PBIMcPE4ngG8uY1SBRBHGqvxiKqWlAIkbNzKuBQv6Viam5eHaMOCUUzhItMv3uHE4KJFI9sNUROScc86Ru+66S8rKyuSQQw6RHTt2yK233ioLFy6Q1atXS0cHz5+JlP2II46QlStXyk9+8hOZPHmyVFZOkIMPPum/5OHRKHM2bVrmebvkkkvkzjvvlFWrVr3ndJGCUSrpMhTtWYqj0lsiEQxBw7BArFRpbsaYnjQJB9bvZ02nOm7RKE7dqlVk1B1/fOb7Kjiwbx+RftOkaUgmviF7aYv9XW7YQFlQWxtGejZ+oXwAxGhU5Fe/EvnjH9EtN91kce6kXkuBH80O7quYJobnz36GDrr4Yn70HcTj6N9oFL1nz/qLxaxMDqdT5Oyzz5G77+6tixYsQBflErsuqqubLF1dE2TVqpPktdf4+1ln8U4VQEsn7xVdpFnRGriIRFhLml2o2dLaHEeEOXO5OGOcTutv2kQnEEi+flERZ/qbb1rk9qedlrlD8YEgpgmdQjhM8CGdLopEOLsVtG9r45xOF5j85z+Zv0MOwQHPRoESj3MthwMbIHWNK6+bAh3Fxfy7vR0wYOxYwJLf/Ab74oILMmd067P6/dy3tDQ9QGGaVvlySQmZRQOlAMomnZ04/qGQ1VW2vyX4mWyj/ugjj2eybN48QeLxk8T3bluA009njWQ71y+55BImDJDkAAAgAElEQVS54oorVsmon7ZfRMF4v58fbTpkB8+UMgKOcX60M3m2s2Yo5Lnn8AvOPDN9GW4wCMCVSJAN29HBvkm3R//+d3iEly0jAzFb889EArvm2WeZi1NPhe9WxenEL2lstLpgb9uG7qypQdeFQgBba9bAG3jKKfhTqRUMer/6ev5eW5u55Pjpp6FX8Xj47/Ll6T/X2sq8lZbm5/Olk4YGqkq0McyHP8zYTROd+cYbYAsTJlC+3Bdu/oGUN2/fTun2o4/ynq+5Bl0/ZkxByqNHsa0CSD5H1lUiEhSRjwiI5yYR+byILJD8JvoyoevL9cJDPy8ifZpo0zTDhmGcLCLft41jr4jc8O6P/bPbDMM4V0RuFJGfiEi9iPxM6IBzV8pnVxqGcfa7n/2eiOwTkV+LSFTobpNEdjlcJR5ns2lr+HnzChM5jUQAELXBSL6pyB4Pyj0YRNG3tlpgYl8bgwyFhEIo0eLi7KS2Kp2dfGfcuOzzHI1y8Gzdyme1iUomcbk4WFpaiPT3NfNB09mLijhM+qJkNRPS7+fgsGeblpeTEbV5Mz/z5+dXFubz8fmeHoybOXOYY9MEWF27lrFOm4azlgsY+MUvfiElJSXy97//Xe666y6ZP3++/O53v5ONGzfK6tWrZcIE1po2xUk1eG+99Va5/PLL5brrrpNAICBHHXWC3HLLSdLVxd8nTWKM2cTj8cgzzzwj1dXVv5X3uC6yg4X2RggaaRzt9Jwspily991k3H75y+kN254eDODSUngKvd7krCqVRIJsvZdeEvnOd3Dyct27sRFjTISIbi5dlwokPvMMmZPl5QAG2bqeKoAoktk5aWigfPmdd0T+53+Yk3T6NJFAl2gGUX/4WRsbMUZffZUA2zXXJJdAKd+RSHreSeWXUiDqhz/8hXg8JfLII+l1US5RXXTttddJMBiQqqoT5JRTTpL/+R/e67x5uSPs7zVdpGCiAoIK6GqGtL20S38UVFSg0ONhLZqm9S6bm1kXe/awvg45BEBbsyf0+gea7NgBKLdgQXou03gcANE0ORsbG9n76Zze556jrG/ePJzqTNyoIlyvvZ19PWFC5rn1eHg/2gClo4O9P348TvhvfsMauPLK9Jm6KokEdk0iYWVTpkokQrluUxN68dBDB6+jbTTK3Dc3Y1MvW5Z9vvKRXLZRLrn11lvl0ksvl2996zqJRAIyefIJcscdJ0kiQXaV2537HPegsEb9tP0omsWrGXPd3fhhVVXJ+8wwrCzvcNgCE12u/QMmrl9PRvQRR6QvTY7HqRhobYVGRYGoqVN7f/af/4RTefZs7JVszZVMkwSJJ56wMiDT2TWlpdgFXV3oj9dfZ/7e9z700ve+R4D2C18AQNTOzh0dyYkgiQRJE34/Pl46ADQUotPwP/6BbrjuuvTVbpqg0dnJ2CZPts68oqL83mEkgl33yiusmwsuAETU63d2kp3Y04PdtGxZ/9eG8h0rB2628ubGRihyHniAeb7ySmhzxo61OJILIKPYVgHESE2BHxURwzB+JSKXikjFu2mrhZKCT7bfT4ZYMIhCnTKlMBssHAZAVH6F/jbWELFKUGIxrlNdPbDrFVJiMQxlw8ivE7Pfz+FQWZmdtDYe53Bav54DYP58Dr3Kyszvp6UF5akHVmlp/hk3fj9OkNvNOuhvRFu5VUpKevMwauS8ogJnIZNRmUiwdhTQnDMnGRCNxwFS1q1j3AcfzPUKIZEIjkAkwjqzd1NTLrhQyOJi0kyIyZP7PGdDYmaNJF2kkgomiowCiiIYa3/8I/x7Z53V+++RCEZTdzelvQqS1NYm6wzTFPn+9wEbv/QlGrNkEy2deeQRnIQVK1jz+ax3bbRy550iX/saBuaf/4wBnO07CiBm6pr77LN0GRShtPiUU9JfK7UDc18d+0SC0tTbbmPtXX45AKq9K7k2UHG5ejtbmZ5PASiR/nUHrq+nAc7zz3PPCy6wuH360Wn4PamL7O9AwcTUebMDimrqKuDo85FhsXWrxVOs55BmLNqbDGnmo77vkazLWlvJmqmtTQ/AmSZ2kc+HXdTayhzOnNlbb7z6Kvu5rk7k5JM5S7Ot3/Z27NWxY3MHpk0TsK2tjbN84kTAht//Hn1w5ZXZdZECiMr5nE7ntbezDsJhSrozNbkqhGizw1gMW33q1P2/jrq6ACxefZX5OfFEgGDN2Ozj+IYMfhokfXRAOcSBAOenCPslkz+RSLD+YzErW3EwOUDt0tLCGV1bi22UjibhvvtEXn4ZW6eykmdaurS3/njhBZpsTJokctFFVH5lsxm2bePesRh2weLFmT+rgOMLL2A/HXYYwOGttzJ/3/wm+kOlp4e9pd3j43H8olAIHZkucLBrF0Hh3bsZ/2c+k94e0Sanfj++lb36Ss+tXEDi1q0ElTs7AW9POy3ZL9++Hd5op5Py7kxVK/0R5e9U2i99511dVOr8/vc84yc+QTn3+PG86+Hoo40kGQydOUIavg+OGIbhFBGHaZpR2+8OEpELReSFAhvKBZemJiKaRUUor4FGM1VCIZSZYVBiMQDOARGxDi9VqgqUVVcP3UGVThIJK2stHwAxGsWY9Xiyl7mYJsDuunUcjMuXM5fKO5iutLutjXmprsawVDDP6cwNuPb0EJHyePjuQLImtLubGt72NVVdjYG9fTuHr3K12aWri+zDYBCDf9as5EM8EMCBjkYhqtexOxxEDgcKgLvdGOetrVbGaE0Nz6OdVnt6GF9JCVHKvjatGQwZ6brILqkZivZyQ/vftfz5vSDbtlFec/DBRLtTJZGAp7CtTeSjH7XmbOLE3gDiL34BgHjppbkBRBGMzYceYr2fey772N6xOZskEmTt3XILmZF33509sKHNMBR0SX2/kQhG/gMPAF7cdFNmEMDegbmysu96bds2SLg3bMAI/vrXk7sfZitfziZ2QEnBpljM+l22a7S2ivzhD5C9ezw4Ch/5iJUhNRwy3kaKLtL50vlXvkT7O7BnKCr1gtdL1tmmTfzt4INxCNOds1pCrYClvQzaXlKdz7sfLhIIkP1bUUEWYjppaOCcnDKFs1P5sFNtpFWryEKcNAk6hVR9lSqaGTVmTH6VLdpgRTOsnnmGJirTp9MIKdvZbQcQy8p67y3TxJHesIH9f8IJg9d1OxRCH2l367lz+0fJUEjx+ymZfO455uq440ROOonxFaq7eSFkpOij4SilpZwzXi/7ORRiz6QCaw4H+zEeZ6+Hw1aZ82Bl5Iownsce495nnJEesP7XvwAQTz8dHbR7N35Iqv544w34mQ86iCDs4sXZx15fDzgZjYp88pMkemQTvx9dYZoAmDt2kC03bhxVDqkgW0UF86jJCo2NVmPSVL1lmtgEP/sZ7+ynP00uqbaLVghGIlwrVWcp9UemjMRAgMzLNWsY+6WXok9VYjEyLXfsYC6PPdbi0SyUfaIBCr+ftWkYNMv5zW9YpytWoN8nT+bewyXpaKTIUOrMYXJM7DcZLyL/MQzjXhHZJSJThLrxUiFFdVhKPI5B0tqKApk3r3CKPhhESTscKJZCgXzqCGrX4u5uDFXtsLc/DJaGBg6xKVNyA6WJBBEzh4PITzZDedMmFHRdHd0JdQ5LSpjfoqJkpdjZyVgqKy0+MI1c9fRYWRbpxOvluyUlfLcQSl6daeVI1FJnEQ4djajt2GFxRsVigIuNjVaJTirQqkBpURHfKy0lwuR0cqAnEhjXA3XEtAmF280Yd+7kMHS7MeKVy7K2dv9nAdhkROqiXKLzm9rp2c5ddqB3eu7uxjgaOxaC73TP+e9/s05PPZV9o2Uwqfr3zjsxts47DyMrl+zcCYBYWkrJsBqcmTgP7eL3Ewl/6iky+G64IbuezgUg7tlDNuPGjRjtX/xiZr0WCiV3QuzLPg2Hmac//hGdeuONZDrax6PNNrRLfX8CZXZ+KW0ypIZ76nN5vSL33ivyt7/x/ytW8D4083GYAVAjRhflAnTtEo1yLq9dy2cWLwZALC5m7YZCFuho11v2M1WzUO38iuGw9Xd7pqL+ezhJPM7zG0bmzpqtrWTnTZjAczQ1oYtSg5/r1wNCKU/WpEnZ7VC/H3umrCw/jmwtNVfu5PvvByg48ki4TLPdSxtHiKQHEMNh+BtbWnBUDzlkcN6VaZKtpNUus2b1ziwfaolEOG+efpo1f/jhZCFVV2fO6N3PMmL00XAUp5N3q2dee7u1BzNxkSqYGApZPMSF3h+mCZjl9xPcTBdUWL0a++Xww2nmsX49SQGpvOfr1sEbOG4c15o3L7uOaWzERohE0CW5aIyCQfaMYQB2PvQQdtGiRXSDz3Svmhr8s9WrOetnzOj92WAQ0PCf/4RG4dprM3Ph+/1W08wZM9IHIpS7XM8ptS1Mkyzuf/yD93riifzY36uWL3u9AKXabEtt90ICiS4X7/yuu8g+bGuji/ZVV5FQ4nTy9+EQWB2BMmQ6c5iZOEMuPSLykoDOThCRiIi8LiLfNU3z1f05sEzi8wFShUJkUaUjoe+v+P2AOUVFAIiDEYFSp62ykgiN18t9taviUCmM5mbmcuLE/AzatjaM2okTs49x82ai87W1RHDsc1hailL3+y0Ho7sb57q8nDm3H+pVVSh15ZNMva89q3PKlMICYkoIbE/J17EddBDPsXcvYyorI6IfjTKO6dOTxxqP84zK75YKdk6bxtiVf3P+/IEZsYkEc+bzMYemaWXWKoH5MOTmHHG6qK+ixk0qoGhvzHKgAYrxOFl8gQBNUNKtu1WrMDIPP5zMoH37+FxqtPqBBwAjP/xhsupyzdGOHWQsVlRA9m2/nj1TNF1GaEMDQOU772DgfvazVlZpuvvmAhCffppuhU4nmZTZmiAEApxvbnd6YvJs8tZbNCTZs4d5+uIXk7Op7ZnI+ZYv5xIFExXIUnDJ5eK/f/4z7y4QwEi+6CKCJzpXwyiQoTLidJG+Ay2ltwO6IjiZq1bhGM+ZAxCl60KBQXvHecOwMh3t70ffmTpAIlZQxA4qhkLW5+2g4v5+3xs3ci4eemh6p727G/1TVYVDvmMHIF4qP/OWLTR/Gj8eO2fcuOxnajiMLaN0NrkkFsNGMwz01513An6efDKl/9n2rB1ATBeAaGsDjIxGAQ/tWTiFFL+feerpAUyYM2fgVT0DkXicjK4nnsAWW7JE5EMfsoLiw5j7c8Tpo+Eo2hTE57MaFlVVpU8UUTBR9VkwyO88nsKtkddeAxA7+eTkCgGV3bsBmGbMoKx140bWaGqzqy1bOPOrqylJnjIl/fVUWlspQQ6FKJXN1TwrHAZADIXItn7gAQDEww+nhFk5mzXgaRfNfI9EsGVSQb/t2wEN9+wBzPzUpzKfD11d+Fxud+4EHz139Fzzesn43LqVoMmKFb2B2K1bCay43QSz7X9X21zt9YHa6IkEpdQ/+hG+2WGHAQIvXcoclpTs3yrFA0CGTGeOciIOrQxoshsbMepcLoCWQpZh+nwAiKqghiqCHouhHHt6UEyVlRxsg2lod3YSXU8X0Uon3d18p6Ym+5xv3QqHxKRJOMnpDlvTlP828nA6UaAlJRxk6Z45HufzhsEhqYpbn6GsjENhsOYrGOQAcruTgUQRnveNN1iPM2YQ/bM3ZBHBcd69m/c8aVL2LmkNDazv6mq41/r6TKZplW0oiXokwr7p7OT/6+oYRwHW90iHuYaN4rcDinYOsgMBUHzwQQzOz31O5Jhjev99+3aRhx9m/591Fg58IsE6teuPxx6DK+f97xf5yU9yG/LbthEtHzMGpztT6ZxyxTmd1jyvWUM03+cTueeeZL5Ce9Mc++8yAYjhMOP9y18wEH/8Y/ZfOlF+wmgUh6cvQH9PD12eH3mEufvmNwGK7BKLoctjsfyzofojWkb5j3+QfdjdjfNx8cU4OMpXVMAzdgTvEBEZBF2kHF8bNwIsh8PYNcuXZz+DtBul/ogkBz/ydaC1nMxeCq3icPQGFodCx+3ZQwB61qz0vH/BIHqjuJjP1NfjOM+cmezQ7drFfq6pQaeNGZN5T4vw7K2tzN348bnP9Xgc2yaRYH5uu42MwQsuIHvU6cxshymAaBjJXFsivNvNm5mDsrJkILmQos0T9u5l/LNnp2+MMFRimuyBxx7jPehZo7qowNmHo7poBEgkwrkUj+N/VFRk35fRKDpUzy6PZ2A+x44dnNWLFhFYS5WODmwFl4uAaXMza3fRouS9X18v8q1vobM+9jHAwyVLMo+tvZ2S50BA5LLLcgOI0Sh8r11dAF133kk25PnnU2XmcOB/KU1DTY1VZaad7bWBVCBgVd6ZJvvxl7/kd9ddR2AnkzQ3owPLyki66Ms59PLLIitX8t4+8AH0nn1+olH81l270OPHHpu9fFjPxf7Y5qYJfcIPfkBgb8ECkW98g3NEy+hLSpiTAoCII10XjQh5r2cijgiJxTDu2tpQQHPnFjZLsKcHA9PjQUENZQlOURFGvWbdKaCoZLSFNq59PgzU8vL8AMRQyAKgcgGIr7/ONU84IbOS18h6UxNzXlODkZ7p0FODuauLg2rMGA7ClhauU1c3uA5ISQnXVyBVswj27eMZNDpZW9sbQGxt5TMaPcwFCihwsnUrB/XChfkdlgo+eL2WUeTxMEafj/lbtIjDsqUFw+Ogg/Y/J9GoIKkZivbSCXuGov53pMjrrwMgnnJKegCxpYVsngkTKJHp6GCNTpqUvO6ffRYj86ijiNzm2hNbtwIg1tTgeGfbd1r2kkjw78cfF7nkEsppVq60OvWppJZBK4Co/HB22bWL8uUtW+is93//l/lsSSTQ+/E4+zLfjB3TZH5uvhkdeeGFZE2mGsGFKF/ORxIJxvP73xMUWbSITAPtaD+Msw8PKNm5E8eoowP74qST8muepRkcRUXJgKKWhuULKOrfdZ3pteygYiSS/PlUfsVCinIVjx9PwC9VolHmrKiIv3d04PTW1iY7cw0NlOSPGUMJc3FxdjsqkcBeMQzeQ651n0jgMGt2jxLsX3UVQcpIhN8rp7FdYjHGnA5ADIXIsmlthVdt2bLBsXO7utC/ygmdrhHNUIk2gnjkEWzN2lqAk7lzrWDQQMGgURmZ4nazHzUrMRzGTs4EHtkpIyIRvqOdnPu6frq6sIsmTEAvp0ooJPLb33Kvq65ibK2t6G+7D9bYiF3kckENUl7OOZsNQPzVr/IHEONxmqh0dhIIuOkmrvHVrxIUDIXQh21t6NV4nM+OG8f+0s72M2Ywr04nNk40SnXKM8/Ae/id72TOzjZNghFdXXymL/5eUxN24N69VuAgNYDW0UH5ss8HtceiRbmvr5yLagPmO5633oJa5pVXCGD8+tdkQmsjGK0K8fv5icUs/3NUhq+MZiIOrfR5srV8ORwG4CtkhyQRi5uwuLhvEY7BEi17Ue7A6urCZYxox2m32yqhzSaxGAeVw4Fjn+nz27YBGIwfT6ZQLqMxFIKgNxzGSc8nGh4O4wT7fBY58lBy6yhBcCQC+NHTw7uZMwewrr2dw3LCBKvU2evl2SZP7tu6amkBeKio4FDLNp9+v5Vd5PFwv44O3pvTyWFl5xeJRjlcw2EcobFj+z2HI/1oGxGKf6R2et63j/LdKVOItKauYZ+PLDXDoFTHMFj3Y8YkG5SvvUYH0gULyMjJBcRv2oTTOH480fJ8mhdoOecttwB4HXooGZS5wAF7aUsqgPjEE3SQdrsxHI87LvO1YjGLf7UvHZhbWjDsX3gB5+Fb3+rd5X0wypfTiWkCWt1+O+fB7Nlknx5+OPo6GrVApUEAEUd10buydy97pqWFfbR8OeeSAnimaa3Xvr6DTJ2ei4r6n5VhBxUVzBdJBjPVge/vuo1EmBOHg/lI1UWJBGtWS721M3NlZbK92dICL6HHQ2DE4UC/ZcoYMU2c/2gUfZQrs0QBxGiUQN/99xMIufLKZF1kBz30WZQmxuHozfXW0gKAGIsBHk6blv/c5SuxGNlVTU3Y0nPnDl6Tlnxk507OgS1bsHHOPBO9bu/cOkgNM0Z10QgTzdCPRtnbuZqYmSY6RYMgLhffy0f/xWKUA/t82D2piRmJBHbIxo3s+xkzoDEoLU0GuNrbqTYIhQh6FhXhS2UC49raACZ9PoKMc+dmH2ciIfLSS/jGNTXwUDud2Bj2BiydnfgbEyYQuGhtxdbQ8ubUxqSvvSbywx/ync99jjnIdA7FYmQ0BwIEJPLNZo5GyfZ78UWrYc3ixVZAXnXmli3oxeJi7LNUyopckm9G4tatPPMTTwBifvnL2KZ63rndjMF+jWDQ4ihOx2mbp4x0XTQiZBREHFrp02QrIbPbjeJKzfQaqHR2co+yMqKzw8kpDwYZXzjM81dXD4zHLhYDQDTN/PgeTRODUDODMn1+2zYUcU0NAGKu64bDfEf5+RIJ3ms+qdu7dnGoadfjoZREgsNg40bGevDBgJgizNWWLYCMkyZZUaTa2swEwbmkrc0qO0rXZS0Y5H7aQW7MGOsda0fmdN0kdbxtbRhOHg/z2Q+DeqQfUCNO8Y8UQDEYBEAMBES+973ezmQ0CkjX0UGmYHU1+9rlYv+oMbV2LZw9U6eSkZOLvmL9ekpoJ04U+fjH8wMQdTxf+Qr8QytWiPzud7m/q8CH05msu0IhypAeegin9Yc/zA5GalaDZmjnYywmElz/17/GkP3f/yUTIfW7Q1W+vH49AO/atei8Sy/lLLBH612uZCBLM88KtG7f87qopQUHbe9e3vORRwIopzo3mlGo70ABwL5KJkBRf/ob3Estg9axivQug85n7FrK2t1NJnPqHlC+4J4ei6h/+3b+NnOmtac6Owl6OBx0SU0k2NfZbFLNZhw7Nrc+MU0AxFAI7sqnngLQvOyy9GP2eq3sFc1AVIdT514z8TZvZpxHHllYCiCVtjZsumgU0DWfAPVgSWMjXGNr1/LMp59OeaJmwvYXQO+DvOd10UgVvx/wS4S1k8vfMk2ri7Nm2Lvd2XXfU0+xJ1es6M1FaprYRS+8ALh27LGcrYEA4L+CcV6vyDXXoF+uvBJdNHVq5v4Azc0id9zB9z71KcDIXM/16qsAeJEIdDO1tQRYU20ZbZwUibD3g0HoYFwu7B97JrraLMXF2FsnnZR5H2rCi/LM50u7oGXi7e3c/4MftN6jBn1jMWio6ust7v7+VmYoBVE6ILGhgQqRP/+ZMVx+OcCp08l8aUfwTEki0ajFbVta2q/y5pGui0aEjIKIQyt5TXYsBmDT3g4YMndu4UsiNFurvLzwTTkKKX4/BqxGyeycE/lKIoHC1GzOfL7f3o5hPWFC5sN0yxYOjJoaFHEuQzkaxdhMJMhUcbutEtxcGTJNTcyDZtNUVg4dSXd3N4Z4IAAgMm6cRZCuY04kSFOvr+fZlizJH8TIJB0dGBzFxVzP7bYyIsNh9oSWJjY04Ehqlmk+h67Px3dEeM99BBlG+gE1ohX/cAUUTZPmJ6tXU8prj1rr3x9+GGNvxQoc96YmjKq6uuQo8cUXs8fuvjs3GL9mDc1LamtFPvrR/PdedzeNPv79b5EvfYlIey5+LDVENaqtjVl27KDUZ8cOsgMuuyy7TutPB+adO+HTWbsWUOCb32TeUiUYRH8bRmby+IHKzp04Jy+9xHv69Kdp5mIYyfOTqbuvPSNogBnl71ld1NVFBuj27ZwThx1m8eZlk1QwcSDvQBurFBpQTB2rHVhUUSDUDiza77dlC87w4sXpeQu1HG/yZHRMQwM6Yfp0y+7RzuLRqMg55/DfqqrsmTFer1WJkCv4rRmLPT3osNWryZi86KLMdm8sZtETOBy9AcRgkOBuWxv2wLJlhc9A1oBwezv6a+7cwQtU5JKODgJIr72GPXTqqYAUTqfFxzkYZfJp5D2riw4E0SYc4bDla+RaM8o/q2ee253+vF27FqqPY44hoJEqzz4L1+qpp4p85CP4Eg0N7Cu1fwIByn/37BG5+mruWV1NpUY62bePLEKvl0DjsmW55+CNN/C/6+vxaZYto5okE/1RLMZ4tCmXaaLzyssZt89HYPW55+BR/OpXmS/tOp8q2p/AMNBd+STPBIMAtG+9hT969tnpE01aW0Wef57PH3YY8zbQ8ykVSOzooGz8D3/g95dcIvKFLzAnwSC/83jyy15VfmmtNOtjefNI10UjQkY5EYeZ9PSQgRWJEAnWbK9CSlsb0ZmKCgDE4cw5UFaGEvX5ANEaG1EkNTX5O4b79qG8Jk/OD0D0+XgPVVXpFbgSdK9fzyFx1FH5Ze5s384hPWuWBQBWVGC06/3SvYt9+/jM2LEY7vr5dGWEhZRYDEdZy92XLGEM0SjvQjkSTZNDtKyM8SlP2kBBxJoaooYbNpCdMHmyxd1WU8P9ursx5CMRooR1dfmDSOXlvIemJn60I+Vw3g+jgtjBQntjFnWw7RyKQ/k+n3gCQ+7883sDiCIYcNu34+DNnMkeCoXYN2qs795Ndl15OeWxuQDEN9/EQJ06Fd6bfPfd7t2Qke/YQQnRJz9pZVdlc97tGS3KYfnoo2QdlpbS+XD58uz31pLEfDswRyI4A3fdxT2++12ybFK/p1lK2t15MJp0NTVhIP/zn4zl0ktpRON2J2capgI6IlbGhvJLKSikvxvVPfmJ34+zt3Ej83b44WTH52sTKLir869rvj/vwOGw7mvnctVyPwW5+vt+dVxquygQbS+FDoeTP+9yAW7t2AEgmA5AbGuz+LzGjrV4l8ePt+yeQIDsoHCY4EQsltn5VQkE2INlZflVz+g4/vY37Iizz4YrK9tc6Zx0dBBQray0Pt/cjE6Mx3GUp07NPYa+ilYJmSZ6fLC5qTOJzwd48MIL/P9JJ4mcdprVVE75anNliI3KqIigp6qrLQ7htjbskGxntGaUqc4Lh/mvUneIsF+ee469ktrwTETk7bdF/vpXuqWvWMG9GxoI7qv9Ew6L3HADdsvVVzMej4eM5XSyZ3U+MIwAACAASURBVA+UCD4fumvp0tzPv2YNZ8qqVejO007DFssWgCgq4vk3bWKshx7K83d1QXP1k5+QrHD55SLnncd8qT/r9SZnR3d0MFceT/4Vc+vXw2UdCMDVeNJJ6b+3aRPP5fHQEfuggwqjE5Qbu6eHoOqttzKWc88FMJ00yQoYO53MVb4BHYfDAh9DIauqZH/Tro2KJaMg4jCSvXtRkB4P0Y/BiGq2tBCNqKraf4ZPX0VL3crLUbpdXRww5eVkomVTtMrfl6v0RiUSwfguLk7PaaMlMlu3AmQdckju9xSPcyBFoxyididfOXyU79A+Rk2V93ox7NVw10YrXi9jHAyF2tbGM4bDgHczZlj3cbkwNLq6iJhpCcS0aQCNGzaQAbFgwcCbl5SXA6SvWsW6Peoo5kI5iDo7mc/+3svl4vna23meUKjf5c2jsp8ktTGLPUvR3phlsAHFDRswhI86Kn3HwbVrcW4PPZSfUIg1V15u6ZCmJkqYTZMS2WxdT0Uou3nlFQzO00/Pn/LhP/+xeGkefhjjU4Q5UhAkXXmw/l5BxmCQzMDHHsM5+OEPc3e/1Q7MJSX5AZ5vv43zsGsXRv2Xv5ye+2iwy5e7ukT++EfmSwSH4JOfRB8r4bxmYuQCLvVzLpeVwRCLDSpX2QEh4TBnwdtvs5aWLAEo6k/Ayg7oKpg40HegesblSgYU9R0roOh09h/c1nHbx6iBOwUV29qYp/Jy7JTu7uSMRZ8PG6qyEh0TiaB7SkutDMNQSORPf8LOOPdc5tswOB8z6VHltPZ48uMEbG9nX//pTziZn/0szQZySSTCeBRYTSQY08aN2B6VleijQlMABQJc3+u1OKH7WhlTCAmHacywciX/PvpogNeaGt5/KGTpmFGHe1T6KsXFrJ2enmQe9mxBGgWI4nHWZCjEPo3FyJKtrKS8NlV37NlDUG7qVLL543F8j+Jiq+Q5FiObb9Mmzv+yMsa1dGn6gOfOndhifj98oIccktv2W7+ewNTzz/PcF19MQCPX97xeq2qwqsqybf78Z4LAEyZQnbJ4sfWd8nKrQ7bbbSUztLWhs/KhF/N6Cd5u2oQOv+ii9ElHkQh24p49+DrHHMO70iqegeqHaBS76Kc/Zfwf+hAVInPnWo2wRHif/a2e07Jnv59308/y5lEZBBktZx5aSTvZ0SiGiXZ2mj17cMoOmppQdtXVydxbI00SCZRvdzf/X1GRHkzr6iJzsboawzef6+7bx79TO6SKYLS+8w5Ab2UlRL7ZHGa95o4dGJ8zZmQ2aoNBPlNWhrI1TYx8LalOzUbSTmAOB89XqHcZiXCAt7Yylnnz0vMIKcC5dSsHw5IlltMeiQCoxOPMUX8cPC2r0APIMJj3oiLeTXs7c1tbm92p6Yv4/WQxiORV3jxCd89/5YBX/HZAUY+5wQIUOzroFFhRAXdOqmO5axeZNjNmEGnX/W0YrGGHgzV98cX89847ezcJSZUXXyTSPWsWjQ7yBc3++ldKjevq+Pfs2cl/t/NnqSGbDkDcupWS7V27cP4/97ns51Y8zn6OxxlrLiPQ7ydD8q9/JQj0jW+k73ItMrjly4EAIIdmZJ1+ushnPoOOUPDGXhbbH9HrKOjdx9LDA14XRaMi69YBjEUi7I0jjigsx502OrET0BfKDtM9la55ykAAxXQSixEkCIXI0HQ4ksugg0GCf6WlzKPLRQBbg5wKbD/4IPbTxz+OPvP70RmZzvNYjKCtw8HeyPVMnZ2ULv/lL4zliiu4fy5RgMLlYlzd3fz/5s1cc8YM7JFCgmeJBE54fT3XnTUrO9frYEksBn3Ck0+i7w4+mOzziRMZo4KrAy3RH4Ac8LrovSYKdsXj7NN8qUdiMXTN3/8OuPTJT/beM52dgIMOh8jXv87Zrft4yRJ8kEQCgOqVV8jmmz0b32Pu3PSUCtu2wT8YCpGVd/jhucGrrVvZU//6l8VZmKuaQoR52buX70ydir7s7ob+4ZVXCHBddll6Gi3lgdUApPLH5vLNTRO77+mnmZuTT8YuSvdO2tqwE4NBAtf26hjlbO7v+ZNI8G5vugm9eMwxgIeHHsrfg0Erw7+kpDBnnL282e1mPWaZq5Gui0aEvOczEQ3D+LSI3CUip5qmuXKo7+/1EkmIRjFMcmWe9FcaG3F0a2oG7x5DJQqcaUZeT49VDqzla34/oGlZWf7GXmsrSm/ixN4GaCKBE9PQwL1nzcpdZqik5X4/EbVsUfGSEqvDoGFwuPj9jCVd1o3TybNqRmK+xLvZpLGRUstEAkM8E1dmLGZlICp3UjBolS+43WQGbthAZsDChflH6zUtXonTy8stvsiSEqLvGzZgPC9aVNgsAG0wtL/Km/e3LjrQJFOGomYHFQpQjMWINEejcL+krsm2NiLG48ZZnHmqa7Tru9eLsdncTAZiNgDRNOEwXLuWz73vffll4ZomBt+NN2Lw3Xdfeh2m86LZPfbMxKIiiyT8xz9Gp91+O4COzm8mndHTw7/tXVUzyQsvcP22NjL+/vd/M1NLDFb5cjQKSfk996BnTzgBsHTq1N6AUz7Zh9nE4UB/KhCgpYhDxGPWS4aLLkokOEPeeAMna/p0Mn3727Arm+h7VEBXM/tcroEDUnZQUgFFe4aiXVcN9F7r11ucV3a7wDT5/Z49PGddHXPa0oLTPmWKlT30yCM46mefTYC2vR39lQlATCTYqyJ8Ltde6O6GA+3xx9lPV16ZOyArwviUr031gc8n8vLLzO3y5ckdpQshXi9B/kAAcHTWrKHPFk4kyGJ/7DHexdy5nBeaqaVr9UDMPhwuuui9Km43e9PnwyfRrMRctndREUGC1laRE0+0/ARdn+EwQcJwmPLkqirsn44OQLeyMnTWLbcAyH3mM2QUbt6M3ZQOQNy0CZ1imjQ3szdkySS7dhHIWLkSXfSd7+TXuLKzE3+wrMxqpqRdo71ekauugi6mvd1KELLrDQ14vvUW+3fJktw6sKWFSoj6esZ49tn49KmiFXOrVzO+007rfWaqjrB3Wc5HTBM/7Ac/wBdbsoSO2yeeyDMFg/yoz1bIgK6WN4dCFkg5kPLmUd0ycHnPg4j7UzSyOZjly5ox1tWFgtof0dPBEqcTxVhZiZJWQK2khIPI7cagzAcg6OpCKY0d2/vQicdx2FtbmcPaWg6wXNGi3btxnPPtrlVeznNs3syzTZ6c/XsuFwpVQdT+lu4Eg9yzqwuHYe7czGWRSvqbSDC+mhorK7Kzk+9rev78+RwymzYBJGY7TLTMsbuba5eW8uzKu9bUxIE9ZYoFGkSjhS8lKirCuero4HmCQYDc0dT5kS2pgKKCinZA0Q4q9kXuu49s4yuv7J3x7PcTrXW5IAvXEiG/n73j8bDG/u//KMH51a8AyDNJIoGxu349IPry5eiNXDouHGZ8Dz4Iwfivf53duHY4mCMti1Mgxe+ntPjJJ7n3jTdaxqlhWHNrH4+WtDidjDWbwdfeDofQM8+QcfDjHyeXAdklFkNnaWbjQKkTVBIJovx/+AN659BDKTFX8nbNKNPGKIUE+RwOdJoCTFoOVgggaySJaRLQ+s9/OBMmTcIRGooAqB3QtZepF+odpAKKyuWqPwMBFHftwtGcO7d38NE0yZpxuVjLJSXoomiUeR0zBl30xBNk85x6Kmfwnj1WM7d0Yprs23g8mds1k3i96KGXX2Zvfe5z+dEwKIDodjP2RAI9uG0b41u8uLD2bTyOTlaOssWL0zvsgyla/aKg7pQpIhdcgG2lAR7NhB6lQhiVwRKllCoutiiliovRCZnspS1bAMgOO4xsQA2OBQJ85+67semvuMIKaOzahR6qrWVN3303tsC551Jt8fbbjGPGjN73W7cOnmKXi3suXJjbp967Fw6/l17iO9dem18wo73dakyqnKsPPCDyu9+hd7/0JewjhwOd0daGTzFunKXTQyF8xJISbKhsdmcsRmD1+efRfx/9KHZiOrsvHAZ0bWhgbMuXZ/Zf+gokvv46Nt9//sM7+N3vKBdXGpxAAL3sdrM+BqvJYXFxcnlzScnQNRodlWQZBRH3g0SjFmgzbhy8KoPhIGjJXHc3EdRs3fRGsrhcPF8kggG9fj3zuXhxfgBiIGBxk6UCcbEYZLsaSRo/HkM11/vau5d5r63N3/BMJLhPIMChmg/wqA6nktbmy4kmYjVE2bULZT9vXubSYE29b2mxUvcVwNNGJwrkKpBYUoKxu3GjBSSmczD8fovLTLko9dDz+zloAwEO56lTed516/hZtKgwWZh2MQwO9ZISnnnvXt57ofmVRmX/iB0wFEnmUNRSw3w7Pb/4IlmBZ5yBEWqXaJSocTAIcFdRwe/a21lbVVXorC99CUfx5pvhtsokiQQk+lu2EJE/5BD2e64xtreLfOITGJbf/jZk1/noRZ0PBU82beK7DQ2AnhdfnHxvvaa9dFyj0i5XdrDTNMmy+eUvMYIvu0zkwgszAxKBAMCkYaAXCgHymyZzdPvtgAdz51KufdhhFkAajVrZloPZrEABJDtZvd5zf3YfHwqpr6fLbFsbeviMM8j0GGpRMNEO6CrfYaHegR0wFLGCGgpUi+Tf6bmjA0DtoIN6z5dpMq/BIM6fcpc1NlpOuWEAIO7bR8n+okXYBso92N5uPb+dX7Gzk/WZT7O7jg6c9s2b4Y09//z8bN9gkPlXuyIQwKHt7KQEetEibAWfrzDZyO3tzGU4jC02ffrQg/jbt3N+bN+O/XHJJYCuqosiEYt24r2gF0Zl/4vLhU7Wvdbaiv5I9Tva2wnE1dZSKSFicQBHIvAFrlpFlcHChZypW7eyx5Re5S9/oYLjjDOgVHj7bda4Auh2WbWKzOaKCvy+GTNy+12NjSLf+x5+xAc/SDl1PkkJra34BZWVVlLDjTfCO3jCCdCu9PRYdp7b3RtI1GQMpxPdFQ5zHbe7N/C5ezd6oLWVZKMPfShzwLSlBUA0FKI6JBcljogVWM8GJG7cCN/100/ja//4xwQzNMlD9bPDwdiKiiwaoUzVKQOVoiLegd/PeRCL5SxvHpVBkFEQcYiluxsDKhZDWebD1dcfUYBIm4rkE10Z6eJyMa81NSji7m4LfMqkdJWE3O3une4djZIO7vXyniorUaC5or0NDRwWEyfmD9zGYryvaNTqNub355ddU1bGAeD3cyDkE5Hp6WEd+nyMcc6czA5ANMqB5/czl+k6IGuJuQKJVVWMQ3kVN23iZ8ECyxgPBvlsNMq9J0xIJkpvaOCwdrnYK0rU7nJxmK5bB/iycGH6ku+BSmkpRkJzMz/BYO4M1FEZeWIHC/sCKO7eTcfghQvJMrSLaZKt19gocs456GDTxMgzDNZRPI7B+dprIt//Ptw2mSQWw8HfsQPjcPFi1meurJ+tWymp2bePzsYf/Wh+c6JgmcfDuB98UORnP2MP/v73Fu9NqujeSCTQvdGopQcyyZ49lMa89RbXveaazB1V7eXLHk/2TIi+yNtvU0b+zjtkWF9/PQ6BnRNSQZ2hzArUkiBtmBEKWXxnBxpo0NzMXmhowBk85RTOpf2tb+2ArnZC1tL+Qr+DTICiOniZAMVQiDVcWopTmirK1VVXZ2UUNjRwXSXxX7mSM/V974PuQBuv6Hlv7wit3aDtWdWGYTWmSSdNTeiQpib40U49Nb93qw6qx4N9sG8foIEIpe3aTEAb1Pn9/Q/4RSKAdsoJvXDh0AcP9+0j83DdOuyo88+3miGIWLrINPcf3cGovLdFudu7u63zWGlKIhECgi4XAKD9rDQMdPzLL2PvHH201eTJ72e/uVyUJD/wAJyGl1yCrxIKodtS/ZTXXydLb8IEy6dO12DELnv2UEK9ezfNXD73ufx0eUsLP1VV2Anr1ol897v4MV/6EnzXhsGZvWcPZ9rkyVYzSg30hEJ8Zvp05qy42Oro7HbzEw4D2v3nP9hdF11EYDOdaJfmtWvRgx/8YN+yprW5mL0qRwS/7+ab4aWuqBD51rd4Hwoaq02itqLHY31XKXEGE0g0DJ5Xy5tjsdzVLqNSWBk9fixxGobxXRG5VETGichbInK5aZpr9QOGYZSJyLdE5DwRmSIi7SLyiIhcY5pmR64b1NfzU1KCMixU+VWqKAm0z0eZylCXYOwv2bcPRTJzJgovEEBpt7Sg3Kqrkzl9TBNjUYQDKLUEb/VqDrYpU/j+2LG5I1XaYUszFvORWIzDLBrlXmVljD0YRLnnAwpWVFh8gvbmB6miJToNDRxUixdnB5h7elhLiQRjywbWKZDY1WUBicXFjG3OHDKoNm8mSuj1ckgWFXF/eyTT62U+wmHmcfLk3oeC201ntnXrODwXLhycdV5UhEHS2claCoWSwc5BkkHXRaOSXtIBiqZpAUj6d7+fkuDKSrLmUtfnSy+x3k880Yqsd3SgVw46CF1z3XVEz7/2NUpCMkksRkS+vl7k2GMxJJV/NJu88AIZiC4X3RGPPDK/OVAAsagIHfTd70I4ftxxRNzz6bqqHZjLyrI3YrjvPpE77mA/X3MNTQIyGZvRqEXwXqjy5e3bKcl57TX0+9VXE+lX/ZnaOKWoaP+AWlr+qiBOKGSBWIMMIgy6LursxFHasYO1cvzx2EfDDSRV8E5BHAUTB6uBhR1QVOoFdfRErHdvGDiPpklwLVUXtbdbVCx61nd0sEcnTuQse/FFOPeOOIJ93trKGps0ybI/XC5rL5umtRe1zNHeBE3Xq4JcO3cCIIZCONuHHJLfHGggoriYa739Nnu2upqx2nWAVmIob1tfz+imJtZgIoFzP2XK0O719nbAk9dfZ+xnnw2vm4Immn2oDrndYX+PyKhdNIxEK5C0qVl7O/vx2Wex/z/+8d5ZdevX06Rs6VKqM0Ssap9Jk9i/K1fSWG75chqpNDRw7RkzelcdvfwyGYBTp/JTVZW+1Nku27fDXa38hWefnd/zqm+njTrvvZeA6qRJBCDtAJ/TiZ/Q2GjxyXo86LP6emzAmTOTz7ixY5mLtjbOxH/8g3k9+mgCLpmSPEIh5qGxkQz05cv7R2ugQKLSxPzylwTJHQ7ew5VXWrafZh9Go9lpaoYCSBRJLm/2ellHfSxvHtUt/ZRRENGSG0UkISI/FZFiEblaRB42DGOOaZoxwzA8IvKMiCwSkd+LyEYRmSsiV4jI0YZhHGWaZijbDerrLWLmwULKEwmr/LOuLj+H70CQ1laUx4QJVuS4tBSj1+dDKTY18f/V1SiYtjbLqbc7YuEwkW4t/VEC3Fz8GprmXlOTOxKmEo3yvjQjQMG00lKr0Uo2UFDFMKxGM93dPGOqwu7oANgIhRjfzJmZr6s8hK2tKOhp0/JTynYgsbub65SUsA6nTMHZaW4GVNSMURXNxmxv557z52efc5cLY+Sdd+BenDdvcEr2DYOxOhxWV7RLLy38fWwy6LpoVHKLHVC0N2aJRCD77ujACE1do+vWAYosWwYXkAi6xOtlj5aU0ODksccwzi64IPMY7E0O3v9+nFvtSppN7r0XQ3n2bMqC8i0H1e6eLheZw1/7Gve+6ioLkMwm8TiGrzZFymT4btgAILl1K9kGV1+dPZgRCFgBkpqagXN/7duHo7JyJY7P5z9PlqZ9Xu0cdcOFk1BBmfZ2skP/9CcAoEGUQddFd9/N2XLYYWSiDndeN+2orOtDO1AOJsCsusjlSuZyjUTYp21tcGSlAvY9PVZmp9okoRBncHk5e+n113FCly4lO8jrtWyIbBUcfj/nujYfU5DTDnQHg+jDO+7ApvnqV7F/U3lT04kdQIzFoBro6kKnZQKZPR6+Ewjkz1caDKKHNPA5d27mwMdgiNcLTcWLL/JMp57Kj33udV770bl90KWnB7tu9WqAhkGUUbtoGIry0Xm9rOG1a6EqqKtL/lxDA3qgro5sNocD/bV3Lzpk+nQCn8oL/eUvs7Z277a46O3y3HMEPubNA8hzuXJnrq9ZQxAjGqXj87HH5veM+/Zh72kiyde+ht48+WR0Wjo9WVqKfuzqYn7a29E1U6age4PB5O9pYOD++wE6Z87ENszWKKq5mYB1JEJWtlax9VeCQZHf/pbAajiMzfflLydzEUci6HalucjlFyq/drbGe4WQoiILxP7HPwBB+yCjuqWfMoyOov0upogcY5pmTETEMIyNIvKQiHxARJ4QkS+KyKHvfuZN/ZJhGM+JyGMi8mkRuS3bDebMGdzGJvE4CjcUyt2U40CS7m6M6DFjepckKyGwlrp0dXEgqEIbPz7ZYAwGARAjEQ4nzabJVS7b0cF1Nc09H4lErCYlU6f2Nly1JFt5fnIZ3Q4Hn+vs5HtjxvCdaJQU+uZmDrZDDsm+NhTYDAQsQLQvit8wrMPT67WyNqJRIngdHcyz3chobwdAjMe536RJ+TlkRUV0B3vnHZypRKLwe8zvJ0Nh1y721hBQAwy6LhqVvomdu+zRR4moX3QR4Jw6dw4HBvG//oVBrOXJ8ThgvHLj3HILpToXXUS330wSCsGF09KCUV5bm5v3NJGA5+dnPwN0vOee/M4B5ftTgv4HHhD5+c9Z63ffDcBg79Kcbm9GoxZPYUWFxYtjNxyDQQzUBx9EV998M2XD2Z5Hs5YLUb7c2cnzPPYYz3HBBfzYSxZTsw+HE6i1eTPv9LHHmMt8M7oGIIOuixYvRocXF1slScMNKEkVO5hjb4oy2GCiSDKgqJQf06Zho4RC/M3ptM5xjwd9ZBgWTYjTyfm7di1O1/z58CCGw+iqkpLMmf2xGPaWNrbTZ1X9aHcqn3yS/TZxIjyqY8Zgm+jn7fyKqldM0+K4KilhPKtW8bfly3M31ykrswKwlZXZeVj37mWOHA7s86Fo3KMSChHEWLmS8R5zDFnQ9sC/6qJEYnCzXvsipsncNjaSGarlmRMmDP6tZdQuGpbicHBOr18PyD9tGv9fUcF67e4GnCouJnCqOmLbNta2Uh7deisg/pVXAiBu2oS9o9UcIqy/lSvRXUuXsu7ica6R7cx47jnKcYuLyRzM1LDNLtpXQPsXNDZCdeL1Ah6eeWb2/VhTw2ffeIN/T53Kfzs6mBOtNDNN6Fyeegrdd8wxBFdT/Vn7uN55x2o0c9JJA6N0CofJOvzFL/DFPvxhnm/evGSKGj2fi4rQzfnaYmofDxaQ6PcDQD/1FOdhP6pURnVLP2UYm2lDLnfoAnpXnn/3v9rs/XwReVNEdhmGYYcRXhMRv4icLDkW0WACiFoSGw4T6XivNIEIBFDsZWXZ+SU1m7CiAqd82zarxFkd40AAYzUW44AJBPhMLtCoqwsArKKCwzMfIy8cBkA0zeQmJXbRdvYKJObzTp1ODGc7V8m2bTzT9OkW/1Em8Xp5Fh1XfzNZFUjYswdDvaKCw37yZJR8fT2gXG0t69br5R1On973LABtorNhA5mWicTAnYFEgjnctQtwOBZj/PPmDQk9wKDrolHpn6xZA4BzwgkWSKiGUUsLnZgrK3EGVQ+0tlpr8p57iMavWEFEPJOuCAS4Vmcn11K6hWzGUTBIRt3DD9P05Oab8wPA7ABiMIiR/O9/U4p9/fUWCKkd+NShtUs4bGVNV1RYOsZuOL7+OuTcjY1k/V1xRfZMY3v5cjry9r6I3w8w+uc/E7z58IfhQrLrdi1bV16g4dKsIB7HabrnHpwRj4fxf/KT6fnvCiyDrotOPdVag8o5GA5bQJ3+DEexg4magWfPTBxM8XpxsidMsNaBAv3BIOe+aXKmqjQ3M7fTppF99+STZLyceSZ7tKmJPZypwVoiAYAowt7JtD8SCfbbE0/g6F91FbpL95jOlWa1qCj4KcLnN2ygFLqmhvLlfHSA8mR5vejRdDqzpwdbwe/nOWbPLkxzpnwkGiVj68knuf9hhzH/qSCczpHqov2ZCW2azFlXF/aadq0uKmL9HHHEkDQ/GrWLhqn09LDXJ0zgbA+F2Hsa/Lv1Vtb61VdbYJc2/Zw1Czv7Rz9iDV1/PTpVq8HmzbOatSUSdGBev541N348vtGCBZmrM0yTc//nP2d8v/xl7pJn/Z42yBw3zgqITJ5MFuOsWTkv8d9S71gMPaS+Q3W11WjFMMic27kTXX3OOex1n8+qpku95ssvo6tnzCADsb9nTTwO3+FNN/E+3vc+gNalS62zzOm09LTyPfZHVw4GkLhvH7r0+eeZy0mTsOuy8YtnkFHd0k8ZBREt2W3/H9M0Ow2sKIUM5olIiYi0Zvj+4MfhMohGnKNRgJ9cZbcHimgqvMtFVD0f8E6dlSlTUNA+Hz9OJynkhkEZov4ulSsxVXp6AMQUAMtnDKEQ3zGM3GXCmqLt93N45AOwaRe01av5zkEHcRBnAyDs5cslJayjPnJK/Fc0e0jLD8eOtcbkcKDoYzGrDHnSJO43kKYl2uVs40YruplaTpGPRKMcRnv3AgpptuqcOYPTvCWDjFhddCBLczNZdNOm0TnYnoETDltk4itWWKCC14sumTCBv//852QVfuc7mde6zweA6PXiXI4dy/4sK8v8neZmOh2uXk2Tkiuu6Js+NE0AiW98Ax1w9dWUstivodmY9oxEEZyFUChzB+auLp77qacwem+/nXKlbFKo8uVIROShh0T++Efm86SToCJIzRbXUkzNxBwOWXAdHZSi338/wGttLcDzuedmzlAYBBkSXaRAidudDDRpV2Q7oLi/eCmziY4/kUgGyQZrLUWjZOK43WRx6nwoT+bu3fxuxgz+PxRiPzU3o4uam8monjwZfeV0WsGyurr0gJVpkqUSj+NUZ3quUIhMnzfegF/x4ostW8L+HlU02y4aRVdo1+GXX2bMc+cSJNTM5nycT82U0c7w6vTG4wAWygm9aNHQ7SUNpDz+OHt7wQI4YFPBN23gY9dF+2O9qx3X1cV7b25GDwWDvM8jj2T+ctnIBZRRu2gYSjyObROPY6+oHi8pYe3cdhsBiyuvxO8SwcbZs4e95/OJ3HADOuW667BzkSB2KQAAIABJREFUtm/neosWWRnqhkEwbds2ypAnTACImz07c4JFPC7ym98Q0Jg1C7AsH79Au9n39LDWf/hDQM0PfADbKB8/rLubZ/R4oOno7iYoXF1tJbX84x/oucpKwMPDDkvuvt7ejv+m+rKxkc9Ho3Al5gNkZnq+f/4TW3HLFnzen//c6qQtgt4Jh63qEuXEHcheLwSQGI/j573yCmeg14sOPe88MtX76beO6pZ+yjAwlYeNxDP83rD991URuTbD57oKPqI8JBrFKIrF2EgDydYYSRKPo6BFAKDyidJqIxXNCnK7Ueh79qCYnU6UUCDAZydOzH5dv5/oUXGxZaznkmCQw8npZNz5RHSUE0h5frI51Bo927WLQ6iujkM227rQsupAgEO9trZ/B4VGq71e5lg5QYqKLDDFNJknn88qc66uLkwpjMNBg5VNmyg/Vp7JfMTvtwjo29p4/oMOAhjWQ38IZUTqogNZIhEaqTgcGMP2fRuLkf0XCGDIqFMaCll8OC+8QIT92GPpxJxJV3i9In/7G9dasYL9o1HsTN9Zvx4S8/Z2AKczzsjvmRRAjMeJ1P/qV6z5u+/OXOpjNwI14ykSQUel6hjTBDj82c/Y75dcIvKZz2Q38lLLl/OhcUgn8Tj3/sMf2NNHHEEHxnnz0s+BGrRu9/4HqDZsAPR8/HHm4aijRL7+dQDQQW7olE6GXBfZgaZMgKKeg8OhvNMuuobswJiWZxcqk8w04RmMROBcTbUh9uyxGsxpFnEoZDWY6+khSDFuHF3lXS5ArUAge9Owri7WY01N5j3c0YEe2b4dp/jss3PbODpn0ShgQHs7AUbDQF+OHcv4NWNROaIVUM4EspWUWNyNRUU48Vu3WpzQ06cPTbDANCk7fPRRq/nBhRdm1kWaCe3xDH0mdDzOPCkVjd+PPeTz8bfqakDrmTMtnuihHF6G34/aRftRnnsOgPnMM5MD7S4Xds+WLVAl1Nail9xu9qHbzRq/9lrsG616aG4moWHyZKu6LBDAxtqxgwqJyZMJekyenDkI4PcDkj37LODct76VH1d9IoE/5PMxll/+kvt/85s8Rz7nTWsrz1Bayn4vKmL/dHSgl9rbCW42NLCXTj89OQnFMNDPTU18dsIEdL52bD/llP5Xib36KqDtW28BQv7+99iM9ucyTXS9dl4uKSkcT2x/gcSeHoDct94iSKY9C044gaD0ALGPUd3STxkFEfOXbSJSbZrmyv09EJVIBLBIu8kNJRn0/hQFyqJRFHS+WSqdnSjF8eMtw9bvRyEpYNTYyHXnzMluYAaDHGhuN4dAPg5CIICBX1QEuNWX7JqyMqtpQVVV+vv5fHBm9fRwsB55pFVmWFSU3pjv7mYuRZjL/vJo+nxW6WFxMQec/X6VlazTrVsZX2UlDkJnJ85NSUn2cvR8xTDgd9qyxWpYk6l0IZHAWO7oYEydnRxoEydibIwdOzzKGdPIsNNFB7KYpshdd2HwffnLvekNnnoKg/ass6wyei37c7vRE9deC3/dj37EGo1ELG4zXWNdXQCIkQglQVVV/LukJLMuWrkSbsWKChr+LFuW/zNpufD110POffLJdGLORZugZc1er5UhmQo87NvHs772GoDkt7/NPjTNzE0VdDyJRP/Ll02T8pY77mD/L1iA83Doob0/qzx2Ivu/cUo0yvu7914MZe3Oet55gA3DDSyzyaDqotTMNTugqGWvdkBxuOhrJcnXrDLd74UY444dOJYLFvQ+rxsb0SO1tcl/a2ri3qWlBAzGjAFAFMHhbWkBAMi093t6LI7BTPty924CLZ2dIp/6FF228wmSJhJcOxbDPmho4Ow94ojkbtD2DE8te1dJ7Qat+rK8HD28ahX2V2kpOnKo+MK3bgX82LkTG/Ozn8XhTd3LqdmHQ1m+r3q3q4v3nEhYFTrhMGMaO5azra6OdTIcmkylkVG7aIhl/XoA8iOOSOYtFMGmWLkSu+Lss1lb6m+EQqwlDahefz12lc+HfhszxkoAiEbJ2GtoEDntNAC1rVstOz2dNDVxzXXruP/nP58/gKj0Sv/+N8GWadP6VgLd0IAOHDMGkFP3+vjxXPfBB8mmrKjAdpsxAx+kszOZKkmruOrrmctQCNDviCP6F/x45x0LVJ00iZLs887rfa1YDP82keAM03NMM+sLIX0BEvfsoYHOhg2ce04n83DYYQQ0KisLM6YcMqpbMsgoiJi/PCAiNxqGcaFpmn+0/8EwDKeIVA1lm+9wGABROW/2Q4bCfpPGRqv7dL7AqbZ+r6y0yno7O+E403Rzv98y9vXf6ToUhkIcdEVFKLN8FKvPx+HpdnM49lUZK8+P8iPaCcMTCdbCnj0YnwsXWpl9brfl8GtWoAjrprERA7ukhIOyPzwXgQBjikb5vnYvS5WeHsbn9WLIK8GwclLu3s3YCtG0xDBwvJ1O5jyRSE77j0SsQ1tBVhEOef0ZpkayyrDSRQe6PPMM0duPfASjxS4vv0zm6/HHU3an0tHBnmhspJPf/PkQi5eVWYaT/oiwFh96iLX7sY+xv0MhdFOmfXn77Vx78WK69OZbvq8A4tq1gHvaZfrcc/MDquJx9kwi0RtAjMcZy223oUevvprnsRuJym9kv5ffb1FIVFf3z4levZpy8w0b0C833MB7SX2m1OzD/QnQtbVZXZZbWij3uvpqK6tjOGRG5pAh1UUKEJWUJAN0wSA/ww1Q1GYjOtZweGBgYmsrtkddXe+S/I4O1tDYsZxhKm1tFr/zQw+xZz/5SZzYUAjHzO0GWAsGrTFro5NgkDO+tDSzw7ZmDfrI6cRhX7o0v7IyBRC1KYPfz9m9YEFvKoV0ZdB2YFEzZ/TzRUXMyY4dPMPcuQSHh2Jd7Nkj8sgj6KIxY6CGOPro3vfWskV7JvRQjC8SATTs6kLviljcZ1pJYhjYkePGWbbacOUmfVdG7aIhlJYWbKOpU2kEYpdNmyghXrQIoMrhYA3V11uNL37wA/brDTdYFEebNrHG5s61gq1/+xtBydNPx0/ZuJFr1dWxdrV8WvXFpk1cU7MjP/5xq4w6myjVwb59VAJs3EiG3lVX5edfqx/j9xMwSK2u2r4d/sG9e6kuOPdc67qVlew79VFVOjoIxPb0YMssXZp7HKmycydl3A89hI6/9looJlKfSTmxo1HeV1lZsp86mECinR5HhPusXw942NTE+VVczHqaOZNA0BBw09tlVLdkkFEQMX/5mYicISL/zzCMD4nIK0KK6ywR+aiIfFtE7h6KgYRCKDvlvOkvd91IlLY2DNrx4/OPQESjfE8bqYhgOK9dizNy6KEYoD09KP7qapSWZslpV9WSEg61HTu4xsyZ+RlVPT1Epzye/Euv04nTCZCoWQHl5YxxyxaU/6RJvcek3Bvasbm62mrCEwxiIObbCdkuWqoZiXC/1C7XKlp2rvN/6KHcy+9nPFVVRDC3bOGQVWOjEDJ7NtdraOCg0s7QGm2PxfhvVZVVUj3MjWSVYaOLDnTZuhVj+OCDMUjtsn494OKSJRiFKn4/a6ypiQ53tbV0ZNZghD37MJHA2P373/ndOeewrwMB9E464zUeF7nmGsjKTz+dkt18u9ElEui6e+4BcKur498LFuT3fXsHZi2nUQNw61aM940b4UL7+td7NxNTvh/NRtQGRloSna2baibZsgUA4/XX0UNf/7rIBz+YXs9q9qGCEvsrWLB2LY7KU08xnuOOgyfz6KOT+WNHgOw3XaRAV3GxBdJFoxagqN1s93eWqX2suv7C4b532w0EyCaprCQoYRcNUlZUJAcTgkFsGBEaAzgcIv/zP3zONK0S58mTLbBTCfVF+LeW4KXjBDZNutH/9a/svfPPxwbJx+lWALG+3ipvVK6zfERBN3uQRdeBz4d+bm9Hn86ezfN1dTG2weLWbG2FH+7NNwFdP/IRyu3S2RUKgIoMTTdytdm6ulhLIrzXykrOq7Y25s/tZn1UV/MM1dUjxscYtYuGSEIh1nlpKY3f7GdVYyPn8cSJ8A/r30IhbKKaGjoBt7bCwVxXhx7ZvBk7YOlS9kMohF5paQHMmzGDPe3xACY5HHw+ErGSGF59FTqFRAJb6pRT0Ee5JBbDp37jDcYWjxNgPe20/OYjHManikQALO2lxn4/TWfWrkVHfv7z2GvRqKUny8u5p8+HHigu5vPr1zNfxx9vcRTmuxebm+E5vPdevvvFL9IZO10Wtp6bpsn1U/W3vsNUPuyBSiqQ6PORNb5mjRUUrKoCPJ4wAfBwMBvUZpFR3ZJBRkHEPMU0zZBhGCeLyFeETj0rRCQkEHLeLyLPDsU4AgGMLoeDDMSh6ig3HMTr5eCpqso/Y027pjocFgF0Swtp7uXlgFraTEMNJhH+rY1XOjutroWdnfx39uz8lLnXC4hVUsLhMlDlq4TFXi9gphr4y5ZlbvzhcDBnXV0WWbCun76mgmsEOxSy0u0zARgdHQCIsZhVeqCHkWFYHIlVVUQeN20izX/evMKVG02fzvO+8QaG8axZlrPkcnGfgw4aMUayiAwfXXSgS3c32YPjxsGnZ3c49+6FmHrqVAxVlVgMZ6yxkey+qqr/z96Zx8lZVXn/VHf1vqS709k66c6+kA0IBpCwSIgIqEFAESOouLz4qoPLOMKI4zJu6CAzrqPjoOMQQIMgihiBgIgQICQYErLvve/VVV1dez3P+8eX896nqquqq5LO0qHO59OfpKurnrrPfe4995zfOed3AOvS8dd0dVHuVlaGw1leznrVTBqNChcUmD1z88189yc/CWiXrU5RwPKrXxV56SUMZOUjyka046Lbje4sKGD/BgIAmffdx/1+61uUEKVz0NVo1GYPto0eypWOo62NsuWnn+bzn/wkPJKpzkTlqLNtw6l2ojP8IhGAnLVrzfnz3veaTInCwlOnI3S2cqroIieg6OQjVC49zf472V1uNZMyVSfnTOsxHsepdLlwsp1rRKtSSkpwtpwVCq2trLuNG/m+97/f2And3fytocGAXDpPGmzQTswVFQb4LCw0lAb33Uep3fz5lCxOnpwdDYFy723fzndMnEiZ3rFW1BQUcD0Nsp9zDteORgEUvV4TRBBJXwadq3i97O3nnuMaV1xB1/FUOk3Xp3a5P56Z0IEA9ppWXYjwLBsaGENXF3ZaQQFnlGaWa8B9LFEknSq66HQX2wYUGxri/HKukcFBbKaiIs5j3c+2TaAgHCZDt6+PQOiMGfxfK4PmzDFB1Acf5PWrr+Z9O3ZwnfnzzT4tLUWnh0LoogcfBKi75BLonJJ5R1NJNIrf8etfExCZO1fkX/81+27jSomlST1qT9k2OvtPf+K+L72UcbndZDv29pqAhgi2UyyG7bhzJzpl7lx4b9Vv1UYrmc4wr5eg9X/9F/d24400ZEsFvlkWYF0sxjXLytJf2wkkiowukNjSQhB43z6+RzM5Cwvx25YuTSwNP9GS1y3pxWVrbVFeToQc02Rr1NbtRqmOkaypUZFgEEWtnYOzVSbd3RxIkyejsDs7OYyqq+EosyyUdnEx70l1XdvmgHv1VQ6rM84gejbS/A8McO3ycpzE0XIOu7sZSzBIRoJm3GUS28awPnKEw2rRotwA6FjMRLAVlEzViVXENGoZGODeZ8xI7VhoB9biYgxYy+LwDIW4r5G42TJJOGwME8vi344Os34UPDwGI/nULjIcWfKKP4PE45SAHDoE0OYsHfR4MFjLy0XWrEk0lDs72WN33MHe+OUv05fStLRAtl9RAQdiRYXJ8quo4HqWZcp/29oAAXbuFLnrLqL82YplARzecQffcdttgJbZ6tGhIfZUcXFil+gtW0S++U3uZfVqot3ZBCa0hFG7L+fivPf2ki3wxz+ig6+/ngyoVGCocqlps4KTkeHX1YWDsm4dTsCsWaybK65A/2hG1TEY5XldlEY04zwSMfyXCpSdiOyvTKJrU8eVCUzcvh3dsmxZYiMB5RG0LBxO55ne2oqt8OKL2Arve5/hBfN6CcjW1aXO/Lcs/q6dmAsKTOa+CNf7xS/IAr7oIrp6jh+f3Zkdj3MWb9nCNRcu5Lw/VgdxaIjxDA5yT3PnJgYHYzF0jmb6OEuh9b40eOMEFjPty2AQ4OHpp01G8ZVXpg+C6vcdr0xo20a/a8ZhNMp3VVVhY5WXsya0+U5pKc56WRlzUFSUmsInB8nrotNcNm7Elli1KpHeJRol8621VeQf/zERhGtuxi76/e+xqb7wBao3tInJtm3Y42efja5et469es012Ou7d7OvFywYbl9Eo3Cx/uUv+EJnnIF/c+65I/tokQhZwz/4AeO49loa52WbVODxmE7vzqQej4d73b8f+++aaxIzrGMxQz81darRfS0tVCfE48yvk2dSQf+iotQd0UMhdPL3v49+v+Ya5jkdl2M4bAILCsZmI5o1WFBwbPorGiWzfvNmzprSUmwjt5tnXV4OVU+2TUtTyFjXRWNC8pmIY0T8fpScKquTafyeaIlEjMLNJRrh9QJU1dWhoNrbccBraylPFEEpFxamVsoqto3zV1uLQR2Pm9IhJ8+gU/r7uXZlJYfEaDiu4TBGso5lwQKun83njhzhkGlq4jORSHaHhmYMKLgxbhz3ne5+urtNo5bGxszzWl7O33w+DN6aGu5p505KGxYuzL25wuAg8+Mcr2agRCIcVuEw8zCWMn7ycmJl3TrW4C23JAKIwSClxy4XBqczc2ZgAIPyK1/BSLznnvQA4uHDgGDV1QCI5eWGm7O83KzNwkL0zyuvUIY4NAQgddllxpAbSR/GYnAU3nMP6/6nP03kb8wk6pRq6Y3ux8FBjNU//IH5+dGPyPoZyah0li+XlWXWJcni9wPe/va33NPq1TRwSEd/oKWZ2qzgRJ6Z+szWrqVhimXRVXLNGuZJu9SfbCDrdBdnyatyYSqPYjicyLV3orNT9bvTZSaqtLQAIM6enQggamAwGsXZdJ7nAwOA7Rs3orOuv94AiKEQf6uoSL13bNtwujqb0LndJlDywx9y1r/znZzZFRXZZyDu3MlPZSVcak7+xqMRbYbQ2soYzzgj9TXdbsYYCHAfzvGqrtDnEAoxbyKsISeoWFTEe555hozwQIBsoXe+M/29WBZrTjOhRzP70LaNDaWZlgUFpiS5upp7aW4GvLUsXlc/IhQy3WDTBYbzkhcRqp9eegmQzgkg2ja0KIcOUbXhBBC9Xtbe738PZdGnP23oXyIR9ElDA7bJ4cNk9FoWGfrTpnFNnw/9lwwg+nxUPuzcKbJypWmQeeaZrOtIBEAw1RmrfIs//Sk67utfx67KVrq60IGVlYamyrIoqd6wgX30jncAZibbOG43vlFnJ7q2thZO5127SGY54wz2r7PpSFER+rqvj72uGeWxGJzKd93F/l65kiqYZP5ulXgcfaDVWKWluflCWoGigZdcgUSPhwDSq69yBk+aRJZmLIb9XFjI2BcsyNtGY0Hyj2gMiM+HgVRSgoI82fw+J1KUU08kt3LgYBBlVVHBwdPSAigwfrzpYNrZiTLMlB5uWRxiwSBRkupqA6z5fKbJSU2NUcR9fRwuyk90rEaZbQOAHjzI/2fP5nDVhik6hlQyMMDacblM+bLfbzij0mXiWRbXHhzk96oqPptunjRTVMcyfXp20byyMsbm9fK8ams5QHfsIPq4cOHIJU7xOPfZ14dhoAd0SQnOksfD/5cvx+Dft48I2KJFb6y9lJfs5KWXcA5XrYKjTiUexxD2+XDKnSXKoRCG8le+wp75+c+HdytU2b+fEpf6eqLFZWWAg/E4+ip5TT72mMhHPsL7H3mE/aHRYM2wUzAx2Rjs7qZs6OWXMWjvuCN7YN6yuBcdV0kJ+ueppzBYBwboLvixj/E3zehJt6ciEfa5s3xZ+RFF0uvJUAjg9r770C+rVjEf6botpmqccqICBqEQz2vtWhyC6mrm6IYbOGe0FCidY5OX4ycuVyKg6Oz0HImYLLTi4hMLKOq4khuFuN2s9z17AKeSM0paWtAb06cn7ulIhDP/2Wc5l6+91jj18Th2j9udnltK6UpSceEdPEi5omURYKmrQzdoubPLldiYxSmhEA52Rwe23LnnHjuNyMAA53kwiPOtmSzppLSU+VVaBh2jjjc5c9HZDVoboLz8MjpwcBAb4pprsK1Sieoi1dMlJaOji9T2GxjgX+UpGzeOc0m5Zbu7ASc8Hr63oYF5Uv4xy+IZHg0XbV7eWDIwQJbcxIkAVU5RHtBrriGbUEUzpTUr75ZbCKaJsAZ37WLdLVmCLlu/nnW5ejX2TkcHa3jq1OEUVq2tlB339RGcs23AvDe/mWs6m27p3tb9PjhIpcn69ezhb35zeKOqdKI0Ecoxrz5eRwfNS9rbKaNevTozLZP6pm1tIn/7G/c9fz7Z5vG4KfMeP97szfJy7mlwELvmmWdEvv1twNlzzkE3Jze5UbFtk33ocnGto61m1HnUBkzZVsK9/DLroKAAkHDxYuZRX9OsdL2+cmfn5dSVfDnziZWcJ9vrRcmUlmIIvpFAD9vGMQ8GORyydX6VV6KggKYhzc0oqYkTUVoFBabMOVNJqyo+n4/vT+YcjMUwzvx+U+KrZbTV1Rhso1Gis2cPY6itJYPIOd5wmO8vK0ucH8viMOvv57Bqako8MDQbaNy4xAwG2+aA0g59FRW8J51hrl2eOzpYm42NidkS2Uo4jJHidnOfkQjRRZcrfel1OGyicpbF/Y8fz312dTEvRUU845oa8yy6u8norKxkPRylMz/Wj7a84k8hbW0Ypk1NlPw618b69YDb73hHYmMDy8JQvu029txPfkJmSirZvRuAcvJkiL9LStBvmpmXvBd/+EMabpxzDhmIyU0Hkrs8ixgOxRdfBDQcGgJIvPrq7PVRLGY4SysrzZ767ncxeBcsgHjcmdFo28ZZTj6n/H7GoUTZznl1Nlpxji8eB5D7n/8hGHD++WQ5pANn9TParOBEZh+2t9OAZ906w2V0000QwrvdiSWMx4GGJK+LjlG05Fl5M0XMszrR3buVMy8UgidKG44413JnJ/txypREnWDbOJSPPcaeu+YaHDP9W3s7121sTH2mDg6yfquqhjvAmzaxF+vqRD70IealstKc9xrUiMfNHCr/qMcDX2AwCMgwf/6xzWksBqDZ2YnenDs3Pe9ssmg2dEFB9uCZbQPG/e53fGdjI3QECuymKoMWMetJXz8WicUYtwKHet2aGn6qqkxH27Y2QOZQyPBxT55smn6J8HzHjRv1AEteF52GEo1if/j9UKo4kxZeeIEsxBUr+JtzP+3aBfXIjh1UDbz73eZve/dSGbRoEWt73TrW9DXXYBdpVVNT03Buw23bAM/cbjiiVRdefPHw9RyN4ivofmlrwx46eBBOx09/OvtSXm1KqRRZEyZw/b/8Bf1WVoZ9uHhxdnqluRkA1rL4nDNQFAqlb2r1hz+I3H038zt/Pvfztrel/85YDN1rWaZh32icafG4CRyn0iORCM9qyxZ8tYoK9P/ixTzbPXv4/OzZrAOnb6sB12yqbdLIWNdFY0LysfBTWDwejD4Fgd5o5Zfa2r2hIXsA0bY5mGwb4/rQIX4mT0ZJuVwo5kAA4zcTgNjcjLE2bVrqpiVuN4eIdj9WPp7GxmMHEJUr5MgRU6KTKnNAM4C0k1VxcWL58sSJfC55LNXVxhitqeEQ0I7J8TjzUlOT2fD1+wFZQyHmsrHx6J12JfJWEnAt1965k4Ny4ULGoiBnf39il9i6OvZHVxf3UFiIUeGM4qkoYe+uXXBNLV78xuIXzUtqCQYB7UpLIQV3ruUXX8QQXrFieGfUtjZ4E5ubRf7jP9IDiK+9RpnLtGlEqbXEXktunIZsNCryuc9hgF97LZ2YU+mq5E7PCkD87Gfw48yYAcH23LnZz0Mkgi5wuYyT/eCDJgPpM5/B+E4GCp2d9jQLMFX5cvJ+1N8VeLBtkb/+VeS//xtHePFiMjw1gzyVpMo+PN7Aj20DrKxdS2aSCFmSN90E6OvMZDoZYFReshcn4OzMUHQC0voMj7cdpiXYW7cylrPOSgTnPR7Oubq64UGFri6yhQYG0DEKIIrgxAWD2AOpnOZgkL1aVpYIINo21AuPPooe+cAHOPMrKhIDhs7sQyeguH07AFx5OVlI6bins5WeHoDSaBSbY/r03MvxKiuxI4LBkW3LPXvIAD9yBJviH/6BzCntLu/MVtTmU6qLSkpMswJnaWK2Eo0afkMN6hQXY3dqIxSdS5+PM6izk+8aPx67sa6Ov3V28j6l4XkjJSTk5dhkwwYCeddemwgg7t1LhcCCBXCuOvd1ZyfA46uvkol/3XXmbx0d7OOmJvyV3/6WvfHe97Juh4b4vuJivi8QMPt0wwZskYYGgoq7drEfLroo9f5yUkasXy9y552871vfErn88uznIBRCB8Ri6JzqaoDIRx7BHznnHMNzPJLE49Cd7NmDDps5c/jnSkv5DuVxraoCkPvmN8lAnDhR5Gtfoyojnf9i26asu6AAfTGagVWl23ECfiLMx+bNjFebd61eTdD54EHGH4nw/JcsSc2lqzpT9Wbedjo1JZ+JeGIl68nu60MJV1aOblOOsSJaElxfnxtnTl8fxuHEiUQ6mptRYGecgRJSzrzq6vRcWiJ8tq9veKQ/nWhmgJJYa0ZdNpyFyeL1crhopuScOZlBLuXE0ahQZyfrpbExM9G5NhwJBIxBXFKCgZmpzEg5IXt6OOSnTx+9bsra/bmggPkLBjESiopwPnw+3qP8IHV1pgO3x2O4ferrRzaSPR5AytJSDrIcO52P9SMtr/gdoll/W7eK3H57Yobd7t040QsXilx1VeLn+vsB1bZuFfnOdyDVTyVbt2I4zZhBxFmz04aGWMtOR9brBYh65hmRf/onsgmz1f89PWREbt7M99x+u6EDUMAx07WCQROQqKoiSPDNb2IMnnceXDvpyohMtc5RAAAgAElEQVRVNBNJS+60fHkkWgLLYtw//zn6b+ZMnIQLLshsQGpzCs0GOt7OcTBIJsDatWSg1tSY5i6TJyeCTycIPMzrouMkmtmqJakipov28QQU9+7FYV282HQXtm3DbVdVRemuc10pZ+iRIzhs55+f+LfOTs7pVPaU8gUXFfF3vW4sRiDjpZcoE7z2Ws7nsrLE96WSaNSUr02YwHjUrnCWPGe7N8JhrtXXh101b97R2VcqgQAOdlVVavtKG0Hs3o2dkY7fzCka0NVmOfqaimZmOrtBJ9+/VmUMDBie3NJSk3GYXHHS3W0a2RUWGn658nJT8mxZzNVIgeFRkLwuOs1k61Yy7S64wHAZipjKhOpqGng4QbBAgGYlGzYAHn7844lg92uvYd+PGwcvYUmJoYgJhwnYaslrMMhrbjfn7iOPEFj58IcJ4lVXw2WYaV1r05df/xq9+bWvsUeU3mIkHeT3ow8KCgx1wZ//TIZdXR1VJbNmZTefg4NUc/T3c3/LlvFaby9+S7IvNTCAn/LznwOC1tbSbfl978NWLClJrdOjUebOtnlPScnxs0OUyubIEebk4EFTnvymN+FHHzrEcw8E+H3p0tTJOcmizQWPAkgc67poTEgeRDyxktVk9/aioKurT25b85MlPh/ZPdXV8E1kK34/c1ddbVLhGxsxNl0uFGpXF8ZVJmBQeTgmTkTZZRIt5/V6iaBNnMj39Peb5iW1tdllUmqJTns7RuO8eZmBzuTP7trFOKZMGV6+nEqUYL23lwMmmVsplQwMYLBGIgCco9U0xinRqOHwKSvj+159lTlRp0pJh3t6cCps22Rm5BJp83oxWIqLARJz4Gga67syr/gd8thjZNutWZMYnW5vh7R6yhSIvp0AVThMKcxzz2GUOiPtTnn5ZZHnnycYcOWVXCMex0HU6LDq+MOHKfk5dAhQc82a7O/h+ecpawmHAQ/f9S5eVxJsZ6dnJ4eifrezA3NRESVKv/wl4/vc54iy59LUyu9nz2aiQ1DZvZvsyc2bAeI+8hGeQybdollA2qzgePPYtbSI3H8/To/Ph4F8440Ay8q1lly+eIKCf3lddAJEm2MkA4oKFI8WeN3ZSfZeY2Ni1rNSmxQUUMLmLEmLxSin37YNHePkLFOOxOLi1BzN8Tj2jojJ0hdh//7kJwB373oXWYTaRTNTwzQRzu+NG7EXFi/mbNXMZM1QVAoG7fKZaf+2t6MTbRsnfjS4pkXQU5aVWNbb1UXW5SuvALxdcQVZTpnsKdVFmjXjBCac/Jv6r5N+QgNKSvkQifB6ebkBDpMDMOEwz7S1lf+Xl2PzNTQwl34/z0CrSurqcg6SHq3kddFpJO3t2EUzZhCY0DXt9wMgBoMELZ18hZbFWb5uHbro8583eysSwZbXJIFHH8W+uP56wze/Ywfvc5a3er0i//ZvgIZXXMG5++yz/H3Vqsx2e2srdtGOHZzVX/wi+ykcNt3L1eZJpVP6+5kH9ZH27CGoHAzSjf3SS7MH5o8coarF5SIo42y819HBNadNM3u1o0Pke98jOFRUJPJ//6/Ipz5lkkN0n48bZzJELQvfLho1vPfHM7AaCnHubNrEWKqryco8+2yebWsrf/f5TE+CbBJznHKUQOJY10VjQvIg4omVESe7uxtDbdy40TOUxpJogw7lgMz2/iMRFG5JCaBSRwcHn/JnaRcwtxsnNVN34Y4OlN1IRLvKMeTzEQlKJv5VBR+LcT+1temzcXp7yWqJRHjuM2dmr/g1zd7vx5icOjV9oxURk+0XCjEfZWWMsaQk/eeiUcA8j4f3z5jBAXE8RLtDHjpE1EpLb/r7meO5cxlHTw9GR01N+hKtbMTnw8AoLCQ6NlLG1Osy1ndmXvG/Ljt20Cjk3HMTI+ZeL9lmJSVw/Tgj7ZZF9H39eozkm29Ofe2NGzGu5s+Hs0Ydac0wqagwuuillyj7iccBqy68MLvxx+OU99xzD/ruzjvTly+nAhRFGI/yiu7dS/bh4cMY7J/9bHYRYx2Lli9rKVImALG5mQj7X//KPv7AB+hyOhIA52xWcDzBOu22eO+9jLGggOd4440YyS6X4dNTMLO4+IRXDuR10QkWBY0UGBIxZfTH0nHb70dfVFXhiOk6isexD+JxbAPVUQpiPvII2S0rV5Ix5xxnSwv/pqIbsW1snlgMx06dYe3A7PGQ8bN4Me9TjuFM6/vAAcqXXS50arpAeCZAUTm2AgH0kXJCz52b9fmclWi2tNttOFhfeIH7XLWKDKeRvk/XgOqibOw2yzLN4Pr6Es+DceOwc8rLhwcjtNOtNgWsrwc8VNqWoSGeWTTKuVVXN7rzlYXkddFpIkNDBrxas8YAdbGYyPe/j33w2c8Oz8D7zW+gX7nwQoKrziYZr72Gjhs3TuSJJ/j3+utZ97bNXvd6sZc0I8/jEfnGN9B/N9yAXty4Edviqqsylw8//TS2TCQCRU1yINiyABN1/2pmoo63sxPfTDli//hHQMSGBrgbR0oyUYnHydDbu5c9e9FFw/0nbSJaWEjw4kc/gtLFsrCLbrwRHVhfn6jH+/t5VhMmoCdCIV7X7MPjJT093NP27eibadPIEJ03z3BabttmKv+WLs2+eU0qOQogcazrojEheRDxxErGye7sZMPV1qKc3mgAYjTKweRy5QaiaRMRy0Kh9vZC1KoktfE4wKBtM6/pDPzeXjIga2sxzDKJbRNh8fsxqtNlDCqH38AA4ygv5/p6UEUiHI49PRwq8+dnBgCTpb+fMRcWMubCQsMfkny4RqMc0IGAaQRTWWmyNBWETD7cenuNI6Ld/Y7H2tRGNf39jFVLL2tqODg9HpyTeNwApZMnj46R7Pdj4GinuCwyR8f67swrfkHffvWrrKV/+RezlsJhDOhAAADRCaLZNobp/feLfPSjZOmlkmefJZtl0SIcUpeLzypg5+zE/NvfEmWeNo3If6bmIU7p7CTr8O9/J1voC1/IHtxXHkGfzwAhv/gFzQOmTKF02dmdeiQJhxPLl0tK2KupSqh7eviu9et53w03wIdUXp6+0YpIYvbh8WycMjQEMLN2LcGM8eMZ3w03mCi6M6tIs49OEs9YXhedRNF95CxjLyhI7PScjcRiBBJiscTSX9umQmFoCLtGHW4t4//rX+n2ft55OPvOPdPRweemTk3tbPf24nTW1xvdt3u3yE9/ylr+5CfRSdkEYKNRnMrmZvTl8uXZNztR+gMnqNjWxk9JCeBhrtkr2Up/P+DASy9xbxdfTPAkExWMiMlM1eDBSLQFto2doaXKmgWlHIVamu3MWtTv6ekhQ3JoiOekXJBqpwSD2EfhsKF6yZZHfJQlr4tOA7EsbJKuLspmNUHCtmmutGkT1QLJ/M8bNmAbLV5MBp0zsH/oEH6a203VRH09oJ7qpcOH+b6ZM81eP3IEIHJwEGqXhQuxGYaGACknTGD/JOukcBgQ7re/Za/84z8y1nTnczzOZ9RecbvReRq8aGkRefJJ7v+yyyjtzjZQ6PMR4PF4GP9ZZ6X/bH8/vNpqe7773dx3UxNj6+nhs/X15hqazDI0hJ1SWsqcHo9Apm3jr27ezPMqLMS+fdObOBu0J8G2bcanXbKEpJPR8BlzBBLHui4aE5JvrHKKSEcHCqSuLvvoxukkzoj5jBm5OWM9PRhdPT0o7HnzDAiokfZ4PDOA6PGYEmpninm6sba2orQnT86cpaPNCaqqAPC023ZFhWmAYllE8xobs1e0OoaBAYzPpqZEYvhAwESxNTvI2UU6+eAtK+N9gQBzX1pqMhwHB3n/9OnHJ6odDALmeL2mG2xDA/8qb+Phw6bUsq+PeVJuktGQykoOu9de4wBcsuT4ZVrm5dSQaBRDMxaDLF/XtmXBhTUwgJGbvL//8z8BEK+7jkh8stg2HELbtmEwXnKJ2dfBIPtMAUTbJnPw29+mact992VPYfDsswCfkQiR+iuvzA1U05LqwkJKjL73PfbWe98LOFpRYYzqbJxj1TlO0n7NvFRA0OcDmHvoIf5+3XXwPzrBhuRGKwq+xmIm+/B4ZfsdPsz4fvc75mbpUsq2rrjCOETxOHOu4GFpab5JwRtZnBksyYBiJJLYlTtTye6OHeiHc85JzCDRYGVTkzmT9JrbtuFUz51LECEeNzrA42EN19enBhC1GsFZLvvcc6z/SZNEbr0V26Wzk/WdKQPR4wFY8PkYy/z5uYFYzu7GXi/ULH4/TvGsWaYJlbN5y7FKJIKefuIJbJwzz8RpT9XAzilOAFeffboxWRbX9nhM0zrtCl1Tgy2W7rPBIPqouRndWlrKGpg8mc+Ew7zu97PWSksBVY6FJzIveREB9Gprw6ZwVlj96U/s89WrhwOIr7yCLTN9Ov86AcTeXgN0bd+OL3bddUbPpeo2v2ULZ29ZGddraACkLCgQufpqdIVSsDg5l5ubaXS3Zw/B2w98gOBLJnuhsBB9pTzV+/Zx3YoK7rm5mcDu6tXZ22ciAKcvvcT1L700PT1XNIpNeffdYAErVoh86UucBc4x1tVho/X3m+zjcJh7HxxEH9TVjX6SRzCIjbhlC3qsuhp6i7POMnp+cJBnq81AlyyBjmM0A73JjfveaIlWp6LkQcSTLBpFGBhAWY9kwJyOoll9kQhAWi4p2Nq1rr0dZbpgQWLKdE8Pr0+cmL7c1esFwKysHDliomCndo3OtqGIdhGurmasmzdjcE+ezEExUtTbKUquHg7z+WSC88pK7snn4/dAgH81JT/dYVpZacp7uro4+JVIOLlU+1hFm8H09ZnMyNpaDkbn81eAsauL57d4seEDOnx4dIHEigpAg+3bcc4WL87tueRlbMl992Hk3Xor+0jlySfZX1deOTygcP/9lA6/9a1kMKbKlHvySZzgN70psSRZeWrKyjCswmEyfdatI4PoBz/IriQ/GuW9996Lw/6tb+Fo5+Jch8MYywMDdG9++mmM5LvuIlquhppmBikImJxVqAGKaBRjUjObVQoKTPblQw9BbB4IUBL84Q8nzrtTnEBiPG6yco5H9qFlAciuXQuI4nZTJnXjjegD5/siETMfJSXHLxMyL2NTkgFFZ6dnBRSdnZ6dXKjd3YBvzqBFdzcOY6pg5Z49lA5Ony7ysY+x1zSDLRIxDUhSZQP6/fxUVvJj2wDnf/4z+/+WWxhfZydjnDQptX6xbTgTlQ7k3HOxtbLpUJossRjzoJzQy5Zxz5ZlQDsF7pyNWXKVeJxyyMcewwZZsgRwQAFazYJO99lk3tNU7/F60a0+H+MvLMT2qq1NnTnlFI+H86e7m++ZONGULOtcBALYZ16vsS1LSw0IcoI5WfNyGsmePQCCZ52VyMn68stk7J5/PkG15M986Uus0e9+NzEAHwgAynV2klHd1ESDJt07Hg/AU12dSf547DHskpkzCZRWVoo89RQ21MqVRheWlprmQSUl8A3efTd74pOfxP5qasp+H0SjgHjxOHtwyxa+45pr0EfZglaxGD7e/v3s3wsvTB1UsSx4Ie+8E1v03HPhk5w2zehyp41RXMxe93jQ7yUlXKOsjHOgt5e/5QJ0ZpLubp77jh2MpamJTMx588ycBoP8/cAB9NzixZxjThtuNME+J5CoNmleTp7kTeCTKAqe+Xwomly6EJ9OomUaU6bklv2lhpSWQC9alJjFqZ2HM5V2aNetsrJErqFUopwVodDIvIOpxLb5/JEjhgi7vBwnIRbLDPCp9PWZkgAtbUolWuLtcuGA1NRk5/AWFnLwBQKMb+bM0e3mF4txv3rPxcU8M2f2kgjf39XF8ykq4tkqn9uECaZE3e0+Np6NZCkrIyNh2zbAxEWLRq/zdF5OHfnb3+h+/I53YByqbNrEcz//fJ69Ux59FMDu/PPpxJzswMbjOOH79lHucu655m+RiMmk1WzaNWvg3/rylym3ycbQam+HyHz7drJmbr01sSw6GwkG2V9PPomhHomIfOITgGaqI5xgoRps+qN/j0aJPouwR1JlKUejOB6/+AWG/oUX0nFZqSZGEuU+VK7B0TRGfT6Rhx8GGG5u5gy+9VYyMcePN+/TEmpn5tFx7nCal9NAnBmIIomAopY9u92ccfv2cU47aVQGBjjjamuHB5c1Y7a2Fj5WZxZ1MGgoTpzrWCUUMh2Wa2rY/7/4BcDBJZdQvqh8YLbNuFLZDpEITnZnJzbWokXooqMBEPv6EjmhndUoTrDQWfKsgYVsOz3bNuN99FGCy7NnA77Ons3fYzF0QiAw3K7SDFPNJEzOhI7FTJny4CDvLypi/rVUeaTgdEcHemhwkM9On04QyzmfGnwdHOSZzJplKjZUR2nQWMTwdGrw5QR0is/LGJa+PuyChgbK+lX276fR2ty50Ls411BzM81KSkpE/vVfE2kH4nHoEfbvRyfNnWuyCEXw+/bvZ7/Nns06vuce9ui558I3XVhIkHNwkOw3p07TPdbXRyXFk08CYH30o+iQXKq7fD78s85O6GEGBvAFVq7ETwuFuMeRfDSvF/tSm0qdeebwMdg29ue3voUtd8YZ6PPLLuO90SjYQHc3z8IppaXMnzYRdTaTrK7mPoqLjz4j2bIAhTdvZj7cbu7jTW9KfLaRCMHyvXu5nzlzOAP0LHJWj4x2sFWBRPUJ80DiyZM8iHiSRAGlwUGMtFTG3htB+vsB+9TYylY0YrRnD4p98eJEQ3twEGVeVZUe7AsEiP6UlGCMZVJEsZjpSjxtWu4K2udjrEqAO3cuil47EavxWVPDmFN1UGxtNfeUjiTd7+e74nEMe+3ONZISVw6iri7er8DjaJUOBQI8ay1ZrqpifMmZfuGw4SJxuzlANT1fS5sHBnjW8bhxlkaTAqCkhIN/+3bKmxcuzL6xRF5OfTl8WORXv8LgufZa8/revWSkLVhAOYlTnn6aSPvSpQCIyYBZLEb0/NAhjG8nMBmL4dhrE6O9ewEAOzrgF3KOIZP85S8AjpZF+fPKlVwz2z2qGYEHD0KMvn07WdD//M+ZOWCTAUXNtAkEMOJra4eDapbFnP33fwN8Llki8vWv828249WsIxHTrGC0nN/9+zHYf/97nsuyZSKf+QzdoJ160rbR986mCXknPC9HKwrkaCMzBeE3b8YWaGoynHZabVBRMTwbur2dLOri4uF8rS4X56zbzZkYi7EXVU9Eozjcypvn9ULp0NxMg4PLLmPdd3WxzydPTg2Y9/WRoRIO47RPncq5mSvdSSTCfuzt5V4XLcqc/Z8OUHR2y04GFG0bZ/f3v8fmbmggaLJoUeJe1mcTDHLPmhWuukiBQdUR2qBOq2FEmIOJE7GdsgmIB4OMqa2NZ1NZib0xZcrwBhCa2ShiyqGd73FWcCR3gw6HE+dQ7+NYmgDl5fSScBjwrrhY5O1vN2urpweO1Lo6MpSd66WjAwAxEsGOmD8/8Zr79gHcd3Vx9r/jHea6kQi2kNvN58JhOjBv3gw1w4c+ZMA2j4dmJKkq9Q4fxi46dIhxr1iRe18BTUbZssVkRX7wg/hpGkCIRLCfVDek8hcPHiQQ7XajS1P5Ja+8Av3Mxo3o9h/9iExH514uKqL6q7ube1cdH40aMLOmxmRG6zMZN87oJWeTmGxkaEhk61bGNzjItS67DJvXGciIx3luu3bxXdOn82yTfWLNulf9mQcST0/JN1Y5sWKLsOCbm0323WilHo81GRwEGKuuTs8VkUpsG0W/dSuG2llnJWZxBoMo39JSDLpUB0kohPFaWEgEJVNmSSzG90WjKP1csiXjcQ631lZDEJ6qNDgc5rBQsKG21ihl7VgdjZry5WQZGsIh0C7LNTX8Gwjw+crK9GXiXi/Xj0SYr6lTmeOBAcYybtzROc62zbX7+hiDs2Q5+XCLRjE0PB7ep92ukw8GNaajUdZNWxvXd5Ixj5ZEowAtgQCRwiSgf6xDCW9Ixe/3i3zlK/z/q181DmtHB6WBEyfiTDsNnhdfFPnUp3Dy7757eAl9NIrx3dwMsOcsgVXewYIC9Mazz5LxV1xMae/y5SOPORKBbPv++3Ewv/lNHOFcAETdN/fdJ/LAAxiFn/40nZBz2dvO8uXSUtPkwclf+PLLdFw+cIDsgltuoemD09hLZ/A5G6cUFhoOOWcG5NFIPA4Iu3Ytz7O4GIfmxhuZU6c4ee1ExgR4eOqOLDt5Q+oiy2KvDA4CZCt/cSSCQ1tczLnjPLe7u6Ex8PsJRCxcmLguu7sBmrSqw1l+a9vmfJ04EZ33ox+hnz76UQJnlsU5HI3ynmRQUIn1d+4kO2fxYr6ntDT3TqBa3mhZOKLpujhnO5eanai6qKAAgO6Pf2TM48ej75Yvz/w9GoStrjYgrGYfhsMGONSMP83orKnJPguzv5/zoqeH37VkOTlYqTaU18s4Kit5T64Oueo0J7ioOtXJR6mg4jEEj/O6aAyKbWPDHDwID7T6Y4EA5cl+P03bnDZ2Xx9N3To6AOWTg3CtrSJ/+AP7/NxzoQhxdpvfuZP9tHAh3/Ov/8qeuOUWqGQsC3qRtjYqO6ZPHz7u9euxyUpLaUzX1MT/1a6rqOAn3X5XOrHNm6kKcbv5rlWrhvsoGlSMRPi9qAid53KxnzZtYv4mTaLiIlkX7NtH8PdPf0IXfe5z8EFnAvq0GquhwexhTQwpKOAZRKOJPpXqcNtOT0PhlI4O7n/nTp7LzJlkHc6ZkzhvlsX9KXdvQwO27kjJP5qRqHpmtEWBxBSlzWNdF40JyYOIJ1ZsywKwCQRQ1Llk351Ook07Sko4HHIxHltbIastL8c5dYKwmqGYqZNgOAyA6HKhKDMp8WiUccbjAIi5kIX39xOx0fLnmTNHVqLOLnvFxcZpd7sTu/E536+gmvJlJBv+2n21ujrx+zW7sr+fz8yYkRhN0m6rJSW5lW5HoybDVEFNzTRNfh7xOI5PXx+/jx8PgJhpnhTgjEQwFlpa+H3OnNHP6I3FyEb0+4mWOgDcsX5AveEUv2VhcO7eLXLHHaakVpt9FBWR2ePcY9u2UX5bX48xvWBB4hqOROji29EBT6ITkNLMYG0WdN99AHdz59KBeaQO8CKs7dtuw8B7//sx1nPlu4rHMXC/9z102apVlAnluldCIZMJM25cImhg2wDuP/0pczZlCt0bL7sssZlEPG4AwmSd7+Q8S3V/RwMkDgzQofH++3EWpkyhXDNVwxwRAx4q59lol1AfJzn1R5hZ3nC6SIRMjtZWwDt1zqNR9FMwyHmv5XPFxeiSBx7gXL3ySj7ntF18Ps5SDdQ5JRpl/Uej7IH9+8kSLiszARJtQhcKpeY1DIdNVtHUqSbrKFcAMRjELvJ6sQnmzj26Euh0ok3n/vAHmgFUVcHhdtFF2ZUjWhb2iGWh5zRjVBvRiABMKHCY7b3H4zyDlhZD0zJtGnZlKrDW7+dZx+OcSbW1uWUWZTMeJ6iYDMA6QcUcgih5XTQG5eWXAewuucRUUcRiIj/8IcHAz3wG+1rF5yMD8cgRGpckdzMfGCDY0dKCDXD55YmZwfv2sbbnzycL8OtfR7/cdpvI2Wfznhde4PrLlyd+twg65O67oY85+2xsNBH03pQp7F2fj/2qiRDJiSIKZP7pT9hvs2eTETgSPZJtM1btrj40RGBycBBQbcmSxL3S1kaG5bp17ONPfILxZlPNZlnMfziMzi0vT9Q3lsX8WRY2qjNLursbfZEquULLzDdvZnxFRYz9nHOGJ7lo1eT27dxjfT1nTy70axrkOV5Aogaok4DEsa6LxoTkQcQTKPG42EeOGFDpjcq1Fo0aHsMZM3JTKl1d8E2UlGAUOkFY5cmz7fSdmKNRDGjL4mDKZABGIoBsljWcm2ak+9u/n7GWl3NQ5vqsfT4iPlrqrRF/FY2Ih8OmI2o6gNOyMNhFeJ/LhZHc0mK6VqdL/Q8EOCTLy0fOwBwaAjz0+UzJ8vjxqQ9LPfx6evh/bW3m5jfJ4gQSKyoMNcC8eaMPzMfjPAuvl+u/XlIx1g+oN5zif/hhHMubb8ZYFmH/PPAAa2fNmkTne+9egLDycrhrnHwvIujx3/2ONXzFFawNFS0dVtLrb3xD5N//nUzF//3f7ED5J58kW7KggCj9ihWmpC5bIE3LFR95BKPv9tsTuY6yEdtmfrTML7mj6KFDZB4+9xz7+IMfJOtAu0+LJDZl0cixAonJ2YfpssI1m0qbvGSS3bsBhh99lGd87rlE/VeuTB2Z12YUOobj1f35OEleF40xaWvDgZ050zjItk2mx9AQ9Crl5QbU7u/HCfV6TbazU1dps7GysuEcWiKmGqCmRuT557lWYyNBjdpavrunh/fU1w8/63t7ARoiEZzkSZPYM2VluZ3ZLS3YVAUF3GO6xkpHK/390Eq8+CK23WWXoevd7sQghJY8pwpUaFMaLelWPaVNampqcuNEDQRMybIGc7XLciodMzSE3afZ3rW1uZeJH60omOgEFlU0M9zJsZhCD+d10RiT5mZso3nzOLdF2Kv33guQd/PNifzOgQDNTvbvp2rjkksSgbdQCK7lQ4e43qpVievkyBGyE2fMQN9973vsqS9/2QRWX36Z65955vBKgYMHeW9zM7bGW9+KzzFhwvByZ02EUCBeqaLCYfTEX/7C61ddRfZgLhm4loUO37QJHXjxxYmB4f5+GuD94hfM54c/jL7NtvJQ+W39fgDB+vrU5dGxmGmC6azeUn+sqsr4RH4/fI+vvMLfa2vJOly6NLUv3NlJIMbjwe5bujS3qsHk+1FO2dGiyXJKCiBxrOuiMSGnFRuGy+VaICK7ROTjtm3/7PXXikXEIyLlIjLZtu2u119/h4g8KiJvFZFXROQ2EblcRGaJSLGI7BSRf7dte23Sd8wSkW+IyCUiUi8iA69//nbbtl/NNL7Dh1FejY1v3K6v2t3YsnIHEPv7KQd0uzm4nI64RtGVxyfVdWMxojrxOFGnTABiOMwhZdsmRT4b6ezkO2Ix7i+XzkLLF/gAACAASURBVGAqgQAR64oK7qWwkHvT7qdaolxYyIGUKV1fhO+vqjKlxQr0VVaS7ZAJHC0vZ74CAb4veR4UoOzrw3hQMve6utTOhW3z/d3dxqCeNCl3I1k7Enq9HIbTpmGc7NsHaJtr05tMoh3Hdu4EWIpGR45Wnuq66I0mf/87AOLFFxsAUTvj9fdTGuh0yo8cEfn4xw1Z+KxZiWs0EMDw9ngoi501K/H7gkETeb35Zr77Ix8hIj2SzguHMazXrcNou/NOjMNcAcRnnoG/sbsbY/9Tn8qNikGEexgYYK9WVCQGBDo7RX75S5HHH0eHfPSjZPglNwJI7vSsryvAqPM0EnDnzGRw/q4Si4ls2AB4uHkzz+vqqylZdgK8yZ+JRk0HVeVfHCsyMDBy0CSvi04t8fkAuevqTFMPEUBAvx/7UPdZSQn7Y/169MKKFcYm8HqNPujs5LVUnGFeL/qouprS3qeewjn/wAe4vvIyB4PoQKeOsG24nHfv5vU3v5nvzBVAHBzk7FRO6NmzRzerzu8nK+nZZ/l95Uo6wDv1lXZ61xJvzSRSMFHtGA24RqPMT0NDYpZPNqJ2jpYsa4frpqb0+zUY5DORCHMzaVJulS+jIQoOJjdHSMev6AQVbXvkQHteF51aMjhIJl5dHWCcyuOPAyC+/e2JAGI4DJ3KwYNwOZ95ZiKoFIvRGGXfPs7eVasSv6+rC101aRLBjF/9irP5jjvMvti6FQBx4cLhlR2PPUYwtrKSfydOZL9OmpQ6M66khL07OIjNpskXv/41+nbpUhqppaKYyiTRKNVwhw/jCyxfbppkxWIAhz/5Cd95/fUi//RPuYFv4TD+lMtlMpD7+7mPZOzA7eb59fWZzswuF/o6EuEzvb0kQuzaha0zezbg4axZqX3Hvj7Aw+5urnP++blXDCaLs5RdZPTtLAUPLYu5G8mnzOui0ZHTCkS0bXu3y+XqEpG3iMjPXn95ubAgrNdf/83rr18iIlER2SgiC0XkBhH5rYj8l4iUisi1InKvy+Uqtm37FyIiLperSESeEJFKEflPEWkRkUkicrGInCEiGRfFwYNEEnp7+XmjiW2TKRgIYJi1t2f/WZ+PTBeXC0O6r8+UwIqYSPv48amvG48b3r+mJg6ydBIOEzV2uRhnR8fI4wuFiLx5vRxws2YZ7sZcpK8Po7OoyGQUaOe/nTsxwisqTEfjnh7Dq5NJbJt7am5GuTY1ccBmmgen+HyGh7CoiP8PDHC/8TjXqq01xORtbamv0dvLMygv59DXroTHIj4fz6ykhLlobye7Y7QN8MJCjKCdO+FtySSnui56I0lXF5HxGTPIRlN5+mmMwLe9LTGC3NnJ87UsAMTGxkTHz+8XeeghjLOrrx5elhwKmf3xgQ9gFN95J5w9IxlhR45gcO7dS5T9U58ygFu2AKLHA3j4xBPc8z33wBubq2j5sgL2GnTRUqVHHuH397yHeU0F3KuTrlmJCipGIpwDLhc6I9t7SwUkapbWAw/wrKdNoyzquuvSBxOUe075zkpLxwZ4qF1zn3gCR2/TJhyuzJ/J66JTRaJRnLPi4sSyt+5u1vHEiYmZKqEQXK1eLwGQKVPIXtTsXS1TDodx8nQ963WHhkwn31/9ipK0yy9nbyiXV1cX76uvTwTdQiHA+J4edOCZZ/I9sRhnazbZePE4OratDf2xaNHoUo6Ew4CiGzbw//PPB/hIle3j5P5TfjGPh/vr7zd2zMSJjLGqinnR7ORsJBbjeTQ3o9+Ki3HYp01LH7QOh/l+Lb2cMOHoO6uOtiR3GBcxa29oiLnbtYufI0dE/vM/M18vr4tOHYnFCKLG43CF6jN+5RWaEC1fzl5yvv873+FZX3MNfK1z5yZSldxzD/bx6tXDAcSBAXRBdTXf++STZP995jMmoLBzJ9efOxd9oxIIEIDdsAHw60tfwg7zegmqZAIBXS6+s7gYu+3JJ7E5PvAB+A9zBcY8HoIVfj92lTZoCoUIqv7gB+znK64AHE0XwEwl8bgJQBcVMU4NsAaD+E+lpcN1b3ExmYLqk9XU8LxaWtCPnZ3otHPO4SddNqTPBx2NcvgvW4YvNVpVGQUFxgYUGV2bKxQiA/2JJ/j36aczvz+vi0ZHTrtyZpfLtU5ELrRtu+H1378oIh8XkWYR2Wbb9idef32TiERt217hcrlKRCRm23bccR2XiGwQkWm2bc9//bUzRWSriFxv2/aDuY5t506xR5P7ZaxJTw8KbsKE3Mp7fT46WVkWAGLyZ30+fqqrUzuN2sgmGEyM8qeSUAgjsKAAEG+kaLkCo62t/N7URFQs14NJS7EHB7kHzTaIxzmstDRS70cbNVRXj6yIg0HGp+WIdXW58+sowffQkDnoNNpVW5sZsPP7efYK9B0PI3lw0BjhHR2Mce7cYy8Dsm2uqwe7CAf15ZePnCp/KusieYOU7YTD8O14PACC6sBu2UIpy7nnJpb39vVRdtLXRwnz9OlEkDULxeeDYy8UAkBMji5HIqyVffswUvv7iUprmVAmWb+esRYVUf584YWmzDcbbj7bJqvge99jz33wgyIf+1juGT/pypcDAcC6X/+a+7/ySrIsc2lopM67ZidqabIaqVryPJLRqhyM999PdkI0ikNw0008z3Q6UQFMZ/bjqdqd1Am6NjdjHD/xBCCUZXHWvO1tIl/8Yl4XjQWxbTKiPR4cdLVVvF6c65qaxOYB0SgAYns7dk9dHUEBpw3Z3w8IqAE8Nee1SYvXy1594AGus2ZNor7zeHiPs9TP7eb1l1/GET3zTNaanv3ZAoj9/ejBcBhbaubM0XMaYzGCyuvXo6vOOgsgJFW5n1N0TjwedHkkYkqVlXolWScNDaEnMtksQ0M47O3tjG3cOGMLptNlWqauVR41NeYZnGoSixk7qK8PoOfAARMsrqoCLLnxxrwuGiuyYQNn6OrVJiP60CEy/JqaKL3VfW5Z2BUbN1K1MWsWz1vtqVgMmpYtWwDP3vnOxO8KBAAILYvg42uvkQG4Zo1Z7/v2EbSYMYNggPP1L3+ZvfWRj/AZzdpuaMiuPLi1lfEdOgQo9q53oTOrqnLjY927l3ssLoZOa+JE7unhh+HMbm6Gp/+f/gm9WViIzzOS3lOexXDYBDWTdayCgkVF2J2p9MTgIP7PgQNkkAcCzM/06YCdjY3paatee435KSwEIJ4///jZRvG4qf44FoDS7yeQ+vTTAIdKvbV8ucidd455XTQm5BQ1n49J/ioi73G5XPNs294rIMh/FZEjAlosLperSkSWich3RURs2/7/Cfqvp7NWikiBsCi+5XK5qm3b9onI64UOcoXL5Vpv27Y/l4Elczu8kUQjrdOnpy65SSdeLwddfb3IpZcOjzj5/SjFadNSR7htG8WoBngm8HJoiMNGy5BHMpT9fhR1NMqznTcv9w6F+r3NzRiRZ5zBPVoWB4LPx4HV1GSc+XgcI3hwkHsfN46fVPw+7e3MvbOURjlCkrnN0ol2do1EjEE9bx7jzDRHgYDJdJw6lTEcz0ZCWrLQ1MRhGwxi7BzNM9ES7kDAOE3l5RzuORj5p6wueiOIbRMZbmsT+cd/NPrhwAEAxLlzMQRVfD6yBbu6MAgbGxPL2DweItnRKKU8yXxesRhr7q9/JZOxuppsMWdEPZWEQnzfww9DEn7nnRin2h04GwCxvR3Q84UX0EV33EETmFwlFjNd3rV8ORqF+/F//xc9cPHFgJOpuiWOdG3l2NKyYW204nIllj6LpAYUo1Hm9N57yfAsL6dc6P3vH15S7pRU4GEuvGYnQpQrUudg3z5Awyef5Jyxbc6HT34SAHf+/JwM8LwuOsly8CAAzMKFBkAMBDj7y8vRNyrxOPqgrQ27p7KS4JvT4VXOq/HjDZCvJaeBANmNHR3sXcsiq3nxYvN5r9cEX+vqzB7Zvh1nuaaGQEZlpWkQVVExsmMZjaJjlYLlrLNGj17EtgE3H32UuZw3D9oJbZKVbjxeL7prcJBrFBRwX+PGASY4dYGWPKtuEjG2Vnl5YjZ0by/Pr6+Pa06ezHPMZGdqZcngIJ+prWV+ThUOVi0H1B8FDg8d4qe312RMXnEFGbXpOLXTSF4XnWR57TX2+bnnGgCxr49M0nHj2FO6J2yb1zdupOpg5kyTrSvC/vr1rwmQrFwJvYtTolHOL4+HAGx3N9mHK1ea9xw+DIA4bRognNoDjzxCc5dx48jwW7KE9wYCvHckfyISMWdoQQFN1S69lL3t8xmqh5F8oWgUkOrIEYDLCy7Ar9iwAbtr50506wMPiLzlLYxfS/8DAdOkLR0fczDIvisuTu9juN3Me2en0ftOaW5mDrduNdy1F1zA8wqHTQNLpw8dDhMQ2LuX3+fN43w6Gp8pF9F50MSMXHSfx4Od+/zznAWBALp82TKe7cUX50Tbk9dFxyinK4goIvIWl8t1UEQuEJHPCMjyHS6Xa6KwIAr1va+jyJ8WEOh5MpyQs0ZEfLZtH3a5XN8VkS+IyI0ul+tFEVkvIvfZtt1yfG9r7Irfj2NeVZUbgNjfj+KORonEJwOIoRBKsbQ0dTRKy4kHB0c27Px+AEQF7DIZyloarVGhRYty61TllO5u5qaoiAhZaSnj9Xo5VMrLh3cWKyxkLsaNQ6EODHAg1tRgjLpc/H7kCIdEfT33r4q7spLr+/3m/alECcYHBrjnsjIOGS1xSTdHoRD35PPxHo0WHu8Iu3KFaLl8aysH5MKF2Wdj6aGvvD+lpRxIRwk45HXRSZSnnkJ/XHedcZ67uuAFmzyZ7EBdk8EgTvbBgyJ33WUyltUY6esDQLRtIvHJ+92yWDe/+hVR8yVLyCJK1eTAKYcOEbXev58o+yc+gUGlGTIjdcWMxzHgf/pTxvYP/4ChfDRGYDBonOXaWvbu449TotTZCcD58Y8DZOUiloWhrBnUzntyAomqTxREcwKKfX10tF63Did2+nRKmlavZt+nM0Jtm7nUrs+aeXiys30ULEz+97XXcHg2bDDNx846S+QLX6AMdfr0o87myuuikyg9PeiWqVNN9nIkwv53u3H0dA1bFhyqhw7BU1ZRwdnrtH+iUXSZZvar6NoeGODzjzyCHvvYxwB6tCtwKMR7KiqM7RSJ4JR1d7POFi9mTD4f/5aXjwwgdnVxn7EY12hsHB1wzLbh9Pr97wFWGxvRc2eckXovK/fZwABgq4gpVS4r40e7Xid/XukXRHgWbrcB/lSHdXYyjlCI686ZA6iRyc7QLEhnh/tsA7nHS1Q/BoMGNFTbRzkdm5u5d7ebtbtiBQGqo7V5Ja+LTqp0dZG51dQEyCTC8//xj1nnn/ucybq1bZH/+R/Oo+uuI3BVWGhA+0gEO2fLFgIOq1cn7ifLAkDct4+gSGEh1RbOYEZrK3bapEmMp6CAPXvnnfA6n3ceZ31VFTotFBrZnxMBGHvkEfygBQvIPtRAjfIIBgKGM9Bp7zmlr49mnkND2EALF6Inv/lNeBFnzMD+Wr06UdcpDUAkYuhb3G7TId62mfdo1AQ1RtIFWn02MGD08Y4dgIfd3fgrF1/M8ykvN0BjSQn+oQYvysqYn127DH9/cvPO4y25AImdnYDYL7yAjRQKMQ/nnMP6OO+8zFnfGSSvi45RTsdyZpeIdAu16D8QkRdFZI6IdAiklu8XFsXnRaTWtm2/y+X6goh8R0TuE5HHRaRHRGIicpWIfFZEZtq2fdjxHfNFZLWIrBKQ67iIXGvb9uMjDO/0muwsJBRCiRcXY1Rmu8l7ezmYhoZQFE1NiYdTNEqUvbAQ4zjVdVtaMIQaGjIbPIODhrOnqSmzIvd4UL7BIN87e/bRpXxravrgIMp96lTmSrOASkt5PRvwKxLhPoNBfh8a4v+lpRwOqZr4RKMYsyUlw8t0/H4OTgUUqqs5jLRkWTuelZYmXlsdG4+H5zFhQmK3sBMlQ0PcQzxOhlZxMQd/uuekh3kgwNyrw1RennHs2aTK53XRSZK9e+HvWbpU5NZbWceDgyL33cczff/7jcEUifCeTZswXNUxbWjgvd3dxgC+7rrhAQvtFP6Vr2BwX3UVwNtIBtmjj2KIlpXx7wUXGL6pbADEPXv43K5dZBR85jNk4+XqlDrLl4uL2e8vvmg6LGq2zznn5A6+afahlkmmGps2PFD+ROfrW7eSAfnEE1znoot4dhddlNjdObljs5ZNazanGvQnAzxMBRiqWBbn3JNP8tPdzZo77zw4pS69lHNmBOAzr4tOYQkEcDa1zKqggPW+fz/rU4OHIoaSYPt2MnXq63mP086wLBzveByn2HmuaYO5DRsACubOJXPV2enZ6zVdO6dMYV/09uKIxuOA1k1NhtfVsnhvaWn68zAUAijweNAf8+aNHifxgQOAAQcOYFOsXk3WSfJ+CAYNcKi2UHm56ajsdifqg1zsNp3z5mZsn1iMazY1cU5k0i2WZbKedC51PCdaotHEDMNQyOijggLmrrWVAIZmSjY2AsLMn59VJUleF53CEgphA9k252hZGXv+xz/Gnrj1Vp6zinINv/3tgMdeLwHSigqu9eCD6Kqzz6aEOdmX2LuXYO6f/oSP8+UvJwZWu7oACmtr0XduN02cvvIVw019ww3sG21M2tSUuTHp0BDft2ULNsIll2AfpVu7uj+VDsmZtLF7NxyRpaXYHL29It/+NvbIxIlUuKxZM3KSgYL1Sk/jbCxXWppb0Ne2yXx89VV84HCYsbzpTSS0FBVxTz09vHfCBGNXKYepdp6fOhUbORd6sdGWWMzwzur5Ytvo2o0b+Tl4kLmbMIHzculSfLqGhoxjH+u6aEzIaQciioi4XK6HROQ8YVF8yrbtptdf3ygifxeRs0WkwLbt819//e8i4rVt+y1J1/m2iNwuSYsi6T2Nr19zr23bF4wwtNNvsjNILIbit20iI9kaTd3dKMhQCKWYnH0Rj3PAWJZxsJKlrQ2FP2nS8LJDp3i9AE1lZYnZesmiJTqdnbw3S4MqpWj5ciyGEiwvx3iLRnHia2qOjsuvvd1EaaZMwfDLdNgqcFZRwfd6PDgX4bCJ1NXVpZ7fQMA0eSku5nDSRjdaXnUyI+wKJIbDPLPycsAh55hiMdPpWhtX5FCynBUckddFJ14U0Cst5V91oB94gL+tWWOyeuJxMgGffhrOxPPOMwGCkhJTDlhaCoCYymBRY/cvfyGb8etfz7z2g0FKYB59FMPv2982TYayARBDIZGf/xxnoLqaEuyVKzNn5KWT5PLlgwdFfvYzHINp08hguuSS3K+r96LG4UjZfwokFhTwufXrKVnesQPH5LrreG7TpiUCcQoeOjnMtKRTsxuzKQcfLXHyGDoJxFU0y/SFFwANn3qKNVlSQibHZZeRSaAgQ5ZnZl4XnaISjxOcCIfRLcpbeOgQ59PMmYln9IYNgHkXXggA2NeHXeJ8T1cXAI/aDk7p7oYndNs2Oil/6EOJDm4gwOcLC3HcYzEc5YMH+f3Nb+bfeDwxg0/Xte5lp7PX1mayZmfOHDn7OltpbyfzcPt29Nzb306gxalbh4YMcKgZdJWVBjgsLja6yNmBPVt9YNvYNs3NzG0oBIgxdy5zr9xeIsyJZjFqptHgoKnkKC/HnjpRNAqWlZhhGAoZOgmXizNNbbfmZkBtBQ5nzMB+nDcvZ/7qvC46RcW2sWVaW+EjnDSJ1x54gEy7m24ymYkiVGzccw+BrPe8hz0+Ywa2kfIjHzgAqHjJJcOrzI4cIQD43HMEIP/5nxP1WG8vNlNlJedeURHlzj/5Cfvka18jOy4a5bujUfZeuvWoQcc//QndOncuQZvZs7MLaGgjOctiLNu3M1fTpvHzgx8AmlZVYed99KO5B0ricRPkUB7UXCiStOx71y7GumAB2erJzf1E2Ou9vezn8eO5l23b0Ne1tZRd51IZeDxFK1UOHTLAoTZInT7dcHCqPz95clbA61jXRWNCTsdyZhHSTq8VkZvFpKvq69eLSKOI/Lvj9bgkLTiXyzVBRD6S9Fq1iARs247pa7Ztt7hcrh4RqR3NGxjrYllk2sXjKIFsAcTOThxHywL0aWgYnp3S04PSmTw59XU7O1GeEyZkBhAHBgAJlI8onaPc3W2yBpqaOEiPJrtOswS0DKmpiYOrp4f7qK8/uuh9JMKB7fVyHxMmcN3eXoxCJV1PlrIyjPADB4wDX1bGgTluXOaDTYEZjQ663XzPpEmnBtdYRYUZ/8SJzPmePRy6yhkVDhtjOluy+KOQvC46gRKPY4QGg4CD5eXsuz/+kX127bUGQLQska9+FQDxC1/AWO7txYAtKUF//eEPrKXrrksNyO/bJ3LjjUTc/+M/aMqSSfbvZ1yHDwM83nIL+y5bAPHllwEdW1vho/rIRzAQnes9W3GWL/f3i9x9N+DW+PEin/88GZW5ZsvYNrrZyT2YbddlBUAeeoiAxuzZgMBXX52oF7XTs7Pk2dmwpaDAgIfHOws6OcPQGZPVzEqXy3BlPv44mReBAOvp0ksBgC+4AN2bDNKMsuR10QmWnTtxaJctM2dwezv7btq0RJ3yt7/hIC5fTjZgc7Mh/1fxevmsszJApaMD7rKWFkr3kksL1SYoK+OcDoXIsunqAvybP5/3ezzYFNrx0wnOx2Kcm4WF/LtvH/c3fjwZIqPBpdXXh77etImz+eqr2SfFxYnAnAZeXS5DlZNM/RKNJlIZZBvYjEbRsS0tzFNpKfZoXV1ic5miIhMA0eCFdi5W/sXycsZ2PHnGtDGDM8MwEjF/Ly5mHGVl6Jf2dgL1WlXjdqNvFywYnYZ0WUheF51geeEF/IS3vtWAR089hd5529sSAcSnngJAPP98mqft3AngNWUK6/rBB/GzzjoLzudkMKq1lUYsO3fCkfipTyXaEgMDnIdlZeztcBhb7G9/I+Pxi18kcBCJYCspPUK66o7+fgIOBw6giy68kLHOmJE9lZFmBB4+DBAZDrPnN2yApqagALqZf/iHo0sg0cYpRUXmPlRXKEdzKhsuEiE5ZPNm9Hd5OVmRs2fzt3SZeOqT7diBzWFZjPuqqxKDQCeT2iUeZ3wbNwI29/Ux7sWLCWhNnWq4uRsajltlW14XHYOcziCiiMgCEbnL8fozAlLsfI+IyCMi8nWXy3W/iPxFRBpE5BahJbezEHaliPyny+X6rYjsFVp+v+P17/ny6N7C2Jb2dsNdka1B0tZGhKWoCOU/YcLwz/b1cd0JE1IbZT09GMV1dZkj4trVsLISYz6VItUSnb4+jNSlS4++q3AshlPg95tOiF4vRm1d3dFdVwFV7Qzd2AhgpqTEfj+HtWZP1taaORscNCXLfj/jmTkzO04M22b+urtxOMrL+exod1w+VnGSoNfVMU9eL2ursJDxjlCyPBqS10UnUH7zGxyjj3+cfS1CtPvAAcpDlcvHtkX+7d/IBvzEJ4i0t7WxT8aNIyL6xz9idF17bep98eKLlASFQgBfTqLwZNEsgO98h732s59RYiOSHYDo84l8//uMt7ER3sbFiw0AnovYtinfUa7HDRu4x1tuATA9GidSHWnNAMwGgLRtjOO1axlDPI5TcdNNGJHpDFwF6AoLDYG5ggXatEVBvdEykjOVJWs2pIKGBQXoxg0byDh87jkM/vHjAXdWrSILVd+fTbbmKEheF51AaWnh7J0zx3BT9faaAKeTGH/TJojily4lq+fgQc5qZxBUQcCKCs5ypxw+TBDD5xP5P/+HveMUJdYvKjJBtS1bWMcXXICutG3DlRiP897BQQOWKR1BJGI685aWAjzl0qE9nQwOivz5zyLPPsv+WbUKHtCyMtN1VLOmCwoAGWpqUvMKapMYzZ7MNvtwcBA7raODa9TVGf4//bzySSvAqlQNbjeAQG+vAeZqa40dEo+PXnVGJJKYYegsS3a7eS7V1cxdaSlztn8/QNL+/Xy+pATAcMECAIkTHPzN66ITKAcOQKmweLHhI3z1VWhali0DqFd54QXKm888E4qU3btZt3PmsPbXrUPPLF5sssSc0twMh2FrK3bYe96TuPcGB7HJ3G7O+oMHCRb29gLQ6fvDYfSaZWG3pUqEsCwAqKeeYi+uWAHwVFU1MjVVKtHy5aIi/n/nneyVNWsIrI7U/T2VxOPoA9WpTlqI4mIDLuqe1H3o8aCjX32Vv0+eDCDrpGbq6MCGKysbDpb29vJZ9Q+XLeOZuVwEMZXvPvksOd4SiZAxunEjNvTgIGM/5xxToqw8kfX1/J6pom4UJK+LjkFO13LmAhHpFdDeObZtH3j99UoR8Qgoct3rHXTE5XK5ReRfROSDIjJZRA6JyI9FxC8iv5TX01NdLtdMEfmiUNc+VaiD3yciPxWRe+yRJ/P0m+wU0tVlOgKnaniSSpqbcf4rKvhcVdVwHkONPtfWpo6+9PdjuI8bx+GWzmjs68OgrqriwEl+n20Dgh48yO8zZ6Z+X7bi93N/kQjAlWbIVFczhqO5bjDIATs0xHWmT08NqipgoFF7zdZRR3/8eMagpL+Zuigq91tXF9fRjpFqrNfUnNwS5lQSixnAU7M4Ghs5rI7RYc82VT6vi06QvPQSmTiXX47RJ0LHwKeewkC59FLz3h//mJLgm24S+exnMcaUI+bQISLR9fUi11yT2nh96CHKiCdMoAQnU7ORoSGRb3yDEt3zzqOUWQEEBRC14Uiy2DZA1F13sX5vugkj2+1GV+aa3aINAvr6iNz/+c/s2Xe/mzk7GmMtOQswG4c9FAIQve8+jPXqau5rzRr0fzI/YiqJx9E9+r1qROvK1zJDZ7lztgGDbMqS9ZpOPsbOTviSnngCYMiyWFOXX87PkiXm+lr+OArcaHlddIrJwADgeH09zrg2Ozt0CPtkxgzz3ldfRTcsWIAz39KCzpg1y+zveJzXXa7hVRM7d4r8+7+zlj73Ocq+nBKJcGYXFAD2aaODceMIZGjwT+k9tAux6ialBnC5sGWOHOGaEyaYKeMfNAAAIABJREFUJnT6czRnaiiEjtuwgTFccAGZUcrRp1yChYWMWRvIpdrLqotyyYS2beZHG4goz3a60knt7Op2G30ZCuH0h0LoPwUPnZ2eRRKDH9naSvF4YoZhKJTYjKCkxICFpaXmHAkEeM5arh6Pc2bMn8+PBlNHWfK66BSTgQHO2dpakeuvZ902N2NTTJ2KztA18/e/w7M8dy7AXns7e+OMM9gn69YBaC1YwF4866xEG2TfPqo6/H6AxEsuSRxLIEBQLR4n6PrnP9OUZMIE6GTUjgqF8G9EWKepgppKNdPejs475xwD/Dc05KaLwmFArSNHyPp77DH8hiuvBAidNYu9nsoWTCeaHawVT2Vl6YH6eNwEQpubKTs+fJj9vWABAUcNiid/rqXFcJe6XOhLLVsuLTWNPwMB9KbqNG2yUld3/BuqBINU0bzwAv8Gg+hHbYoydSr6MxAwXe6nTTvm7O2xrovGhJyWIOIpLKf9ZHs8OFK1tZlLiZ1y+DDRUeXgKyoa3ixlaIisu8rK4V2aRVCIR46YjLp0B0hPDxGa6urUB83QEEa2z8dY5s07+tIOLV9ub8fo1rLiqqr0RnA212xvZ44LCzk4nBkNqUQzGFpaTEOUxsbELtThMAd/WVnqzCafD2MiFOI9kyebwygeN81UamtPbnq8SijEgaRdbl0uQxTv8zF+zUo7SjkF7vKY5LTSRa2tGKHTp4vcfjt74+BBjMxZsyjv03X5q1/hdF9zDUTf/f2siUmTMOAef5z18a53DTdibJuy3699jcjugw9mbtq0Zw9GdUsLGY8f/rDZ95q5lw5A7Owkc/H55zGub78dvWjb7L1cM0eCQa75+9+TZRmLEdn+0IdS69RsJB43zQqyyT5sa6Nk+be/xdidP59y8He+M7G5RKpGK8nfqRQMyU0SnBxlyV2e9fVkQHGksuRk0NAphw4Z4PDVV3ltzhyAkMsvxwlwAgnHoWQ5r4tOIQmHybBwu3GQ3G723v79rPHZs82z372bpiGzZpEBrEG6KVNMhoie+VrZ4cw4ef55GiCNH4+eSba5tNmZlvy+8gpn9axZZKXo/orFsH0KC1NTI4RCBHm1Ad3s2egMZ7MXZ0ZeNhKNUr745z9je5x5JnygxcXoYw10Kr/hSAFX1Qv6uZH0YyRiSpbDYewaZ6OUTBIOM1/6bAMBwzNZWZl6nE5AUfWLUxdoBYkzu1C7t6qUlLCGFDRM5nv1+Thz9uzBHrZtwB5tjKJAw3GUvC46hUS5oIeGqJqormb/f+c7rL3bbjOJA7t2UVI8dSq8zuEw66ihAZ2wbh3vW7aMNbxoUWJZ7+bNAIeFhVzf2YFZhPX81FOs6eXLCeS+8AJA4+23G39CEySUYzXZBotGoaB5/nl8lSuu4LPKZZ2rLdPTQ7nv3/7G+Pr60ENf/CIgqfJGR6OMpbp6ZPA9FmM8lsUeHYn3MBwG+Nu0ifGUldGsJlNDGJVgkPOhsBBdf+gQ+uuMM/BfVR/39/MM6uqMrdXdjR6cODH7su9sxecjsL9xI+B0NMq9nH8+gaJ58/j+7m7WU1UVa238+ET77xj01VjXRWNC8iDiiZXTerK1YUimEuFkOXAApTdpEsojFjMdA1W0OUZJiclSccrgINcoL8c4TuecaYakcns4xbIwupqbUbpz5hwb6azyBXZ1cS+TJnH4pCq9yVb8fq4ZCjFXyZ0ZnaLcQX19PBeXyxjjoRB/EzElQQUFvC8UQpnrgTI0xNwHAmb+U2WBKkBXVHT0DWeOVZRIPBAwpUPKA6QNDdRJ8/sxllIREmcpY/2AOm10UTCI8RsKAe7V1GCI3X8/Tt373mf0ycMPAzZefjmlKqEQ66G6msj2hg3sq9WrhzuS0SjlPffey9//67/SlxLbNgDjXXexX+68k0i5SiYA0bIMwbhlEQm/9lruU8GAXHSIbRNEePhhfoJBsgA++tHU0e1sr5lt9qFtA6qsXUsZk8tFqeKNNxJhT/U5Bf6cYJ+WKDqzjNLpPyeQmHxNbYbgbM6i73NmLTpfT76f3bsBmx9/nOwLEUpRL78czqnZsw2HnGZxHceS5bwuOkXEtilB8/lMll80atbI3Llmvx88yD5vaKDRQTyOHVNZiQ5S6e3l3NIKDf2eP/wBHTNrFl1Ck8/lWAzdpuD4tm38f9kyzj4V5QhOByD29ACAxmLoi6lTDWDn3Ge6X3SdZ9qbmzYZntrp03EqFczQ5nI1NdlxvTqzD1UXZQLovV5Tam5Z2FJNTYAP2e7NWIxrDAww7vHjR+aRdoqCiWqvhEKGv9FZIu3MMEzXHbu/H320e7dpRlBfD3C4YEH2wfxRkrwuOoVk/XrWxbXXss9CIWySvj6CDuoHHTwo8i//wp771rdYd6++is0/cSJ6yu0GXPN4uJbTdnj8cZHvfpd98J3vDA/QRyIAfxqs/f732Tuf/CRj030TCODjFBZyjWRg68ABgqD9/dhTb3mL6TTc2Ji5kipZbBs+vv/9XzIPe3sBDe+4g/tMlkDA+E2Vlamz9zQIEIkYjvlMQZW+PsDX7dv5TEMDNtGcOcZOKSzkOaSz+cJhANXXXuP5LV0KgJgqAN7Xh56pr0dPxuMmyDRp0rEHNnt7AYY3bmQ8lsX6efObKTVfsMA0Mx0Y4HsnTOC+nVnfyq2tevAoZazrojEheRDxxMppO9nKX6F8htkoo717Ae2mTkWR+P0oHKdjHovh3BcUDM9OFAHkUv6g2bPTK9rOTg6/urrh4KDXS8QtEOBvc+YcGz+Mz8fBrQfmlCmm2+bRSDxOxLynh/ucPj39YRmPc8D293NYFBWZDM/kzsQeD3NeUGBKhHw+rlFSwvcpJ9LEiSNnGSo4WVp63DksEkSdIOUFUhLxVBmkCiS2tWHAT5+e6FDlIGP9gDotdJFti/zwhxi8t91GdHNoCMDKtgGq1Dh5/HEi3itWkIlYUMA60Ajus8+iu97xjuF7dWCAUuK//lXk05+m1Cfdfvb7ASqfeILv+sY3EnlnMgGIBw/y/tdeI2L7z//M3lSOrVzpD0IhsjHvu4/9fv75cKbNn5/9NZJFwTE18NLp3EAAoGPtWkAILae64YbsuIU0Y0c7Njs5D0fSz8nZhMllycmchsmdVZPFsoimP/44z7W1lfe96U1kHL71rRjCzsYyOvZMczRKktdFp4js2YNNs2QJ4I1lsfbD4cSGFS0t8LeOH08Jf1ERe9+yEu0Yvx/bpabGZNhEoyL/8z/oq2XL4DFNDmbE43xOO3Rqk5blyxOd30wAojZO6e9H78ybN9xxVjBRQTwF6tXxdTq/to2z/NBDBGzr6wEPtVxRgcNcOF61mYnI8Ixkp1iWKVlWLuqpUwEecinl0+6q2jRFBPAwmwqMWCwxwzAUSmwMVVRkMg3VfkmXidPVZYDDnh5emzLFAIcjVaccR8nrolNEtm4laLdiBQENy4LuZedOGp1o6XBbG1l3JSWGakUbQtXXA7CVlpLx19rKWtfP2jaVHffeC+j31a8OD0zGYmT69fQAYj34IGv1a19LtEOGhtALbjfXcp7xwSCA6CuvML6rr8ZnbG423cRzKTUOhUT++79pHtPczDi++EU6wI+U7ezzmQYp48YZnRONMk7bNrov1bVsmzNh82aCRoWFzOfy5cPtokjE0EW53VzT2ehKdUAshp2rXYwz6UHVF/X1huO2u5trZ6qqSSft7aaj8p49vNbYiG5fsYIxKVjZ0cHcFxdzr5Mnp7flRgFIHOu6aExIHkQ8sXJaTnYsBoBo2yjzbBy83bs5vBobMeZ6e40xpmJZhqssOTtRxJQIFRUB/KVSNLZtCLnHj08kAI/FMNzb2zkk583LnsMx3X0dPMhPURHOwKRJx5Ym7vFwyEWjXGvq1NROrjZJGBhgHBUVhu8w06EYiRguisJCDuLOTg7Kmhrma/z47CNUQ0Ncq6Li6DpN5yLJJctaij3SgRONcs9HjvD/WbOOKlo/1g+o00IX/fGPRMnXrCELLBoV+fWvcXzf9z6z3597DvDvzDPJ8CstZZ2HQuz/TZvQIVdeORzwOXQIzsDDh4m2f+hD6UGhnTuJ8Le3QxL+wQ8m7h0FmJIBxEhE5Je/xCCvrISn6G1vM13Ei4tza1xk23AP/fznGP6LF8PhuGxZ9tdIFuVI02YF6bLqmpsBLR9+GGd70SIA2CuvzI3jxhnV1/LEkfgWnWCh/qTKLnTyGDrf78xO1IypJ5/kp6eH71+xgmdz2WXmvEjmPjvOXZaTJa+LTgHp7AQka2rCKbVtdIbPZzi19H3338/v738/Z5ZmZjg7kEYigI0lJYaTeXAQIGDHDrJ5r7tu+DmrgJnXyxkXCGCLLF6cuB4jEROccDYh0/JptelmzsyOY0z1gzq+yvVaUkIG0e9+Z7gYL7mEcr3aWuyMXClj9LsUsEynF8JhU7IciXCfWrKci2NqWcyn18ucVFWZigufj3t0gpGWxXcrWBgMovtFGKeChVqarDaiZkorICtisrE7OgzHoWbxNDUBGs6bl75L6wmWvC46BaStDbto5kyoQlwughbPPIOtdNFFvK+nh0BlLAaA2NDAZ5ubWaN/+xt2x7vehV9TUIAN5Xazvu++mwzDs88WufXW4QCiZRF4PXCAs3TXLqogvvCFxP2iDY1KSvAhdW9q4OGxx9hDF11E9qHPx37Q9+eS9PHMM2Rdbt/O/d5xB5ngueiDUIgxWBb7t7DQVD/p76k+8+qrZKoPDDCv55xD9mOmQIZmWjsbRbW0YGuGw/jQS5bwva2tzEmmpqKxGM/d7TbZ134/PpFWy2US28YmVuDwyBFenzsX4FAbdYlw9rS3A1JalqERGz8+u2D4MQKJY10XjQk5Xbsz5+UEiW2juGKx7AHEnTs5AGbMQAE6uwc739fdzXUnTRp+3VCIQ83txkBOByC2t6PsJ0xI5Mro7SUTMhplDDNmHFu2iNfLfel3LVhwbCBaNMqhqt2P58wZftBo05S+PkNIW1ubyHkxkhQXM79+PwaqprbX1+O45FqaXFHBYar8SsdIjDtMLIt7DQSMA6GEx9k67JqdKcIaOnDAHKh5GTuyYwdZLeedRyaYbdMQpbsbo1cBxC1bKPebP5+sxdJS9mswyLN/7TX26+WXD19DL74IGBmP4/ivXJlaT9g24OXdd2Mg/fKXGNtOUQAxuZnG1q0Y8IcPi1x1FSXT48ZhWMdirO1couxbtoj86Ec4m42NIt/+Nk77sZTRjtSswLIoqVm71nRXveIKwENtLJGtqNHs5DcrKRmu40fqlqyZhem4DFO9NxBg/I8/ThbH4CBzf8kl3M+llyaCuckly8fSYCIvY1f8fs7/mhrT2KSjg/NZu4WKYHf85jesqRtu4GzXxmf19eaM1wCqksy7XNhJP/wh+u2978WhTrYx1G5qacF+KC0l+zg5wyUcxoZKBhCHhrADfD5sCWf25EiigGFJCeP3eHCaH3mEc7aqij20atWxcXA5s5KLi1Pr44EB7l/LubUJTF1d7rpocNB0rNbO2E57tKyMvyuNSijE/KoUFRkdrsBhujEoYKilhvv3o8f37GGNFRZi715wwbHbmHk5PWVoCNCtuppgl8vFWfbMM+w9BRAHBqioCIWofmhoYK23tLCWX3yRtf7udwMaxWIGQPR44E3ctQu76brrhgOItm068D79NOv585+HCiaZx7OlhX3h9MMGBmi+tmcPOvTmm/FVOjvRo9qBOVu7/9AhqlWeeIJ9/KUvkZF5NJz3ykeqTToLC9ExqQK9PT1kHb72mvE3L70UezSbsTupW/btw14MBHheF1+cmHVcX894PJ70XZfdbvRgX5+pzqusBKT0+fiuZHtTE382bsTOUz9x8WIy4d/8ZpPFqGXT7e3/j73zDo+rutb+nlHvxepy701uGAwGAw7YEAIxSRx6IOFCEkJuOvdCkhsSUkhPIPlSSIMQSighgAOx6c0ONi64yk2yZVm9jDSaXs73x49195nRjKQZjWTpZtbzzCN7yjn7nLP3u9d6V0PPtlp1ynKsDVxEN5PsnQQ0oUtKgiX5SJIyLGlqwhifOHFwMA4GAdK2NhShyZNRlFNS+hM4nZ1sbiUl/Y/r9erOydOnR+9q2tiI4mXuEu3xoJhJk5aamuGl3rrdbIDHj3MdNTUDe4GGIu3tjN0wuK/hdSAlFVlSltPTMTSKimInQgMBNuSOjtCITpeLMUi3s1gkL4/f2e3Rm0bEKpFSluPpTisiG6lhQCQdPMhYhxOJmpTRk85OInKqq2lWYrHg8T58GKJvxgy+t38/HvKqKiIQc3LAADFwjx1DEbrggv6G3WOP0Qxl0iRIwXnzIs/l3l7SeF5+GbLprrsi1ycLJxD7+iD7/vY3jPx778Xgl5SZQEB3cx+KHDpEp8MtW1Asb7uNtJ/hOEdEeRMyL1yJ6+vT6dLHjnHeW2+F5IgnNSacPJQIIyHrlOrfLVmiCs2EoVnMqc2RjPfeXoysTZuYQ243z2/NGl5nnaVxRsYiEUNKaYwba53pkzI64veDJSkp1KOyWNhP29vRX0S3sdlwNFitEIh5ecz1piaMNvN6aW3luNXVrIPaWvBOKYzpefP66y2SdbFrF3O6spIUuXCiSQjEtDT9WTAI6XbiBOebOzc0a2MoYibc6uvBw/37ITOuuQaD10zW+/1DK00gIjVRJRonPPowGIRgaGjQ3ZMnTwa/4yHbJDpHHDlFReCA3891SoShx6PxWtKxc3M1aRgLLvh86La1texl8pxmzIDQnTZNY7DFoqO0RyniOSljXIJBCESPh1qDGRnYXI8/DgH4oQ/xvb4+dJbubv5Oncr8PXwYDDlyBJti/XqdmTR7NnO7vh4Csbub8iRnndW/BqK5DvL27czdu+7CvjCLlBbKyiIKOyVFZwBs2sRxLrkEvUgpvbZLSrRzZTBpayOD5IEH+P+VV9KBejhBA1LPND2d43i9kLfBoMblw4chDyVFe8ECyp/EU2v/5Elq2vb0oJusWKGj+bxejYV5eWBrV5fGn0iSkcFxJLpasgC9Xn4rY9yzB+Jwyxaed2oqUadXXskYzEEmfj9zpbmZ+SdRohUVwyP/zI0IRYdOytiRJImYlLilrU3X/RuMiJPC3h0dbEaTJ+uCuBUVocDQ08MmV1jY37Pj80H6BINsSJFIpGAQAszh0OSaKNhSd2j69OF1qpM04IYGNsLS0sjFbGMRt5sNx27nfk6ZEroJuFyQJ5JSk5urC9LGeh3iLZLOWAUFPEcZf18fBsWxY5qIHeq1WSwYDtIJubAwPuCXdEank+ceS8ryUMQczn/wIIr7ggVjJi0oKVHE54N8CwRIGc7IAFu2bSM1RFJ26+pI4S0oUOq3v2UeBoPM+S1bUHiWLiU9xiyGQSOUu+9W6pxzMN5LSyPP/z178G63thLteN11/ddiJALx1VeV+tGPWIPXXIM3NytLG6hKsYaGMs9PniRt+cUXOcaNNxI9GUv6c7iYa/tFij6sq4M4fOop1ufixRRsv+ii+JwGfr8mCKxWTZya66xJ5LG5dqE5LTmaSNdTiRZUin3oxReJONyyhfOXlRFRcdFF1JAy33tzSpGQmampOkIgGXn47ymGgZHucpGalpHB+m1q0qlbSrGHPvooc+faa7VOcvIkn0u6slLoFQ6HdqC++SbGeEkJ5GN5eeQMgWPHMNwNAzJz/vz+5JJEyZkJxJ4eHBAuF2tgxozYiD2JpOzp4e+WLZCH2dlg28UX68gWr1eXKPD79ToWMjHSWhIsihZ9KI7cxkbWaG4uulhVVXx6hxjhUlNa6k93dHCu8LTkggL2B+nwHEtzBxm/RBwePcp5pbzO3LnoquFYJAa1+b6YsTEp/57yxhtgyiWXgBeNjdT+mzQJ54PVynz79rf53te/rusS1tWhB9fXQ/585COs7aYmHBKlpZBiP/wh8/PjH4c8nDWr/5p95RX0G8kK+fKX+xP53d2MIScHW8dqRY966inGPWsWUYtFRbpRpdut02EHk95eOkD/+tfg6dlnk7q8YsXw7rFgqMXCNaWlsSb7+sCIN9/UeJqfT9ThkiWxZZOItLfjoJLIy7PP1k1LpWSCxwOeZmQwFsGi1laeezQHg2SN9fWBLzk5nOOllyB+9+8HCzMzIT9XruRveDShw8EcaW9nTAUFYFasUd8DiZlIVCqJcWNJkiRiUuISmw0DuLBw8OitQAAg7OpCuauuZgNxudgMzMa5w8FnOTn9FWWpYej3o+hG8rKIR93lYrMpKAAIDx5EyS0sZNOMB9BlDDYbr+ZmwFeuKV7ANAwIjaYmXSRYvGSGwbg7O7kmiZYrLo6PsDQM3aFYFO6Kiv73IzeX+9TYyPl9PjaY8FSeaGK1cu+7u/n9UAqPi4SnLKemshlnZSXeWE9JYQ7Onk1qxr59w49OTcrIyl/+gqL7uc9hUB8/Ts26adOIQlSKefvJTzJXf/tbHVXT3k6ETFubLvxsFrebSLrHH8cA/va3URQjpQ0++CBdBsvKaHRQU9N/rFK3S5prtLdDtr3yCkryj3+si5R7PLoMQF7e4NElHR141zdsYF18+MN4iCM1oIpFpFmCUqHRh4EARsqDD5LSkpZGIfLrriOaM95zud1aOZTOqvJ/c1djiSaM1mxgILFaIRo2bYI8fOcdjjd5MsbVRRdBvESKYjRHY0qJBiEmpTabue5iMiro30eOHWNNz5nDHud2815mJoaxxcK+/eijrO2rr9YRhx0d7HHV1Zo0dzrZ63Nz2T+ffBKie+5cooql1nH4/H/3XeZ0fj7pipFq/IrxK+lqfj842tzMeGtqoqfAmSUQ0ISh1AXz+3HkbN/O/L/kEmqghjvk0tNZ49IQRdaV1FGUkgBCKprrsMr7IuLEbWvj/+aU5XjE5eJe2O26uVxqKs9Nxi4NT7Ky+jdO8HoxyF2uwfVLhwOdVEibYJBnvngxc0lIlUhiLpsgGCRkYpJQ/PeVgwdpPLJ0KXOop4fsi+xsMioyMlhL3/sepPV//ZcuudLejgPi4EH2wQ99iO8eOQKmTJuGnvG73zE3P/IRdJQ5c/rPsb/+FQIxJYXow0su6Y9XnZ2stbw8iK5gEJ3otddYX+vX6zIoLhc6XiCAbTSYbu52K/XHP5LZ0dHBca66SqmPfjT28kxm8fsZSzCoSxTIdbW1gb+7d7O2KyvRLZcujc+parNxLIlSP/10noEZE6T7cyCgo8u9XnCqrAyCtr194MjH/HzmyXPPQRq++y57UFqaLhO0dGn/bBhzynJvL2MpK8PmHqkSC0kicWxKkkRMSszicEB65eQM3pDC7ye9pqeHKK/KSkCqpwelybwheDyAfkZG/1DzYBBly+PByxEJqAIBlEqPB8U8N5fN5/hxAGjOnKF1BY0kojj39fGSCLvJk4cXueZwYHS4XCi/kyZpJVu6LPv93JPKSpT8eI3U3l6em8fD/Zs4ceBoJauV+5idrRumOBy6qPhgUVIpKdwbMTYGu08+H8d3u/l/RgbnTnRdxUjjLC1lYzxwgMiSxYuT9YbGorz+OormZZcRcdjZqdTTT2NYX3YZc7a9XalPf5r59Ic/sKaUYv0++ywK34UXEm1mlo4OiMN//Uupb3xDqZtv5njh86Cnh8Lcr78OafnNb0aOPjETiBYLHvZf/AJF77Of5VyyhlwuXmlpg0cW9/URBfjEE5zjwgtRkONN2xORaLtgUEcHWSys3SefpCbkiRMoi5//PKlMsXYBNRu9Qh6aI5HCG6CEi6QSD1WBPHoUEmbjRhwEhgEh85//SS2nOXMi32tJV5aoo4FSls2RkuHNEJKE4v9d6exkflVUoAeIkzMlRRt8Xi9lEST1TyITnU5wqqBA74t+P8699HT219/8ho7gq1ZRbkEp9CLznBJi/+BBXWsrEoHlcmkDMysLrDtyhPcmTtSphNHE59PEoXQmlii9PXvAQpcLY/eyywYuZSAd1lNTQ2utKhUa8SvkvOgBqam663RDA+NIS2PskybF7hiWbqqiF0n9roICdBwhDOU1GOakpzNWaVYTTh709OiMh4YG3isqwlifO3dozWvCxUwYKhXa4Emwy0woJiOm/29KZycOMqmT5/FAIDqd1CEsKGBO/PjHrNfPf15H5LnddD7evZu04csvZ57U1jKPZ85U6r77SJM+/XSlLr2UuTV7dqhuHgiQvfHQQ6zJX/0KWy1c2tvBufx81u3x49RN7eggYu/979fRblIvUWqBDlQyy++HwPzxjyG3Fiygsd355zPueLOXzA3erFbGlprKXl9bC3l44gTrfckSovWys9HTpLP9UPWyvj6ez/Hj4MnixdzngbAnJYXj+/2aTLRaub+9vXwWTrzabOi5mzfrGosFBewfq1axnzkc4JOZQPT5dMqy18vzmDYNonI06hVaraHlbJJE4qmXZHfm0ZVxf7O9Xkiv1FS8QgMZST4fSrDdTqRKeTnvSQRfZaVWavx+3rdYeN8MDkIgOhycM5LB7vejmIlSHAyisDkcGL0zZ8ZXyFvSdURx7usDqHNz2SjjLQ4eCOApamvjGJMnYzhIJEJvr+4COGHC8FIThfR1Otn0KypiS7nxerXC7vOFplsWFg5uKLvd/CYzM3Idp/CUZYn8Gu0NQrpa7t+PorBkyYBKy3hXx8cdFtXXU8tmzhzSY9xuFFZJERSv6ic+wXy/7z4dIed2E0HX3Ez03GmnhR770CFd/+c3v9GNWnJzQ+f3rl1K3X47a/RLX8LDHckwMxOIjY14/3fu5Lxf/aomNg2D9SnpKAMVnna7qZ/40EOsp3PPZcwTJ6IADqf2qDmKRaImDx8m6vPppzn3aacRdbhmzdAURkkhDu+Y7PXq9O6MDPBvKGnJckwhHaI1uNm7F9Jw0yZdO3fJEqIN16wBa6OdT4xvs5IaS82xcDJRqVEhFJNYNMridmOEZWTgjLBYIBTdbnQGX4xUAAAgAElEQVQNifR77DEMzA9/mMhjpZhjdXX8Zvp0bRhJOm5+PtHTDQ04BxYt4v2SklCj3W4nqrqlhSjCs86KPKdlb83I4FxHjmCw5+RgoEaL7PF6ddZFXx/vZWSw5+fnQzr84x98Pn8+kZKCa7GIOBXMZKJE1yjFmF0urrOtjXtVUMA6Di+FE00k4lnqGMq/7XbuT1YWemJZGf+OF0ul2Z2MsbMToqG2lvErxTnmzo2v7mQsYiYUzVHcI0woJrFolMXjwcHn86EHZWWBH3v2EIG4cCHP/557cMB+8pMQdUrx/sMPU4Nw1SoiEFNScKZ3d4NPv/0tEcaXX853urrAOLMDsaNDqS9+kZIy552n1M9/HpnUb22FRCws5PebNvGboiJSlwUj5ZjNzRxn6tToOodhgEN33w0GL1gAGTZzJtgcicgcqvh84EQwqJtGOZ3ocjt26LJbp50G4We2FyTwRGoWFhREvwa3GyfnkSPg3ezZZKjEY1+KE0ZK9xgGtmp3N6Um3noLG8cwwM+zzw6tsVhSorNmPB4wyuvVKcuGwTVXVcWWYZZIkTI3Ug4jiox3LBoXkiQRR1fG9c0OBDDkDWPwTsxeLyDrdKIEl5TouoR+PwAkgCqdCAMBCETzcQ0D0rK3F6UxUrqNdDL2+/l9W5tudT97duzRMnJeu12n66SloSyLMm8mQGOVnh48TV6vDgG329mcJWW5qIhxx0tSKsWxWls1ASi1lOIZt9PJ8XJzAe7ubjZQ8dwXFAx8XIlklILjgYA+ppAt2dkjk7Ici0hx9n37MK6WLYv6DMb7BjWusMhuJ+JPKf5mZeF1bm+HyKuoYI7dfDOK2K9+hUdYKdbZAw9gzH/oQ6RnmOXVVyHHMjNJO5w3DywRj7NSzIv776cWY1UVdYHmz488ViEQDUOpRx4hGjIjA+//ZZfp+R0Msob8fh31EkkCAZTk++9HsV6xgrTlSZP4TX5+/GvGnC4ohuUrr0C4bt3KuC+7DONE0q4HOpaZNDSrFuY6XikpOq0x3jFLtKSkPm/frolDada1YgXE4YUXhqb0mOsjSlqyOWXZTKQOB4sidY6WMQ+VNB2iJLFoFCUYxPB1Oplj2dnoKD09RGXk5/Odv/0NLLrsMgxbkcZG8GzqVG1oS33pYBC8cDqVuukm1rjTSZaCOZqloYEoErebMURbm0IgZmaiX0jq7JQpuraWWdxuTRw6nbyXlYXeUFjIcXbtUuqZZ9Atpk2DPJSO1MORQAAMl1qJOTncE0m5DgR0tsaECTp6OZxENAyMXzNZ6PXqz1NT+VwyPEpLh+YMHao0NoJHdXU6Fbq6GtJwzpxT07zNHFltxiJxkiSx6H9lXGGRYZBdUV+PQ7G6mqyBF18k8nn1ar7zu98RbXjttXxP5IknIBbPPpvvW63M3+PHwbH77kNvuuUWyMjGRnCjulof4+23cYy2tSn1sY8R+RhpLTU3Q6oXFYEvGzag/6xcSaS16NmGAWHV1YVdMXFi9LX5xhs4lnftgoC88krdJOTcc2OvTyoSDIIbPh9rJCuL69u2DYI1EAD7Tj+dCMmB1o/LBd5LyYKcHP19n4/jHTzI5zNmsFfEW27LLD4fx33+ed3QVMplrVzJa+rU0LF0dOha8cEgY2tu5tlImnRVVWLGN1wZApE43rFoXEiSRBxdGbc32zDYWNxuFNCBQMTjQYnyePDOiNLU3o5SVV6uf28YgJvbzftmQ9owdOOSiRMjk4E+n66XkZ3NJifpzOZOdrFcp8OBQRAIaFKrtZXPJ02Kf2OSaEnpnFVVpbthSQ2eCROGr9B6vTo9JyUF4I9URylW6e3lGqThgzSXcTo5T2EhxFu080hEp7m+mURfDYcsTbSIErN3L9e0bFlEwmO8b1DjBouCQaV+8hMUoq99DcVnwwb+v24dyqPHg9d91y6lfvYzFEileF86B69b1z8C8YEH8KDPmoVCLZ32srL0nOzupgD5W2+RAvuNb0SPDJbmIAcPas/4hRcSOWnGr0BARzdHm/+GAcH5+9+jyC9YoNR//Af4K1HKw1HmzKmEDodOWW5uxkkiBkekOkLhEYZmNcJcH1CuVWosmtOWhyMuFyTKiy9SCLyri3u4ahXE4fveN3D9IzOpaU5BFvIw0WKOxDR3ijaTisOQJBaNouzfTxbBkiUQUM3N6DBVVbosxrPP8r2LLgp1Wths7C1lZbpkS28vv29uJnIxK4t0+4ICPsvP1zpHIADGHTzIOjrzzOjRf0LIie4mNaFnzQrFDadTE4dSSkRqUhcW6ujHgwdJOzx+HHxYt44IyEQQUFIjUUj9kyfBPIdDd26dOJE1Lh3cJV1XohgFZzwevcZSU3UNw/R0PpNMCinLMtz1LnqqpCqLnlRZyf0ZazWWhVAMxz5zw6phSBKLRlG2bkUvOf98cOb113Fcrl4NKaiULn1y+eVKXX+9Xq/PPovT7bTTSPu1WMCAfft0yRSvl8yLiRPRZUpKILqUYv78/vfUH8zMJMLxqqsirychBTMyIOL278fx+6EPhRKSUpKqrw8sjVYua/duyMPXXgN3v/AFxiZRkqefHv+6luZPUrKhro6U5aYmMGTRIu5ZLMEpwSC4I6UOcnLA0f37Od/kyYnBCcPAcSURhydOgImVlUSqX3TRwBmEbrfuxi0ldpxOnv+CBWMvfdhcqzrCNY13LBoXkqyJmJQhSVMTgFJdPbDh6nIRgej1sqmJIdfbq2ssmH8v0XfSidAsJ0+yqVVWRgZsrxcglu5Uzc2A8/z58dUpFGVaPNQTJuA56+yEoJw8OX6yq7MTQA8EuCdpadxTw8BAmDBh4FTGoYjPhzHS3Y1CIIZKooA/NxdDxG7nGtLTIX49Hp6jdI4uKgolWQyDZywKvITR5+ePvU1JKe5dVRXPav9+UheWLRudmh9J6S9PPYVie+ONOAakBth552EQ+3x4v3fsIG1YCES3m2jF48f7pzAHg0rdeScpPhdcAJmYkcFvJMVWKZwht9/OvP7a1yDVIhnNUsvL4SCS6PHHUYJ/8hOILbP4fCjJFgtKY6R59c47pBEdPMg13303DhmHg98VFcU/H83Rh4cOcY82bGB9rljBda5erddmpLRks5jTdc3RfWLsK5UY8tDpxEjauJE0zr4+MPN970M5Pu+8odUekogcSfOT+mwjWb/QXLvMTCiKMZ9AQjEpIygnT/KaNo313dnJnjthgq4DuGkT+4YY9iIej64lLQSix4NzdccOyPBJk6iXmp7OnpqdrQnE3l5IAymWv3Bh5HRYw9ARiJISmJJCtGBFhS7LIsShNDTJzdVReWan2fHjlDSorQV3rr+eNMFErBfBIuk0Kg3mJBJ8yhRdb8vcaEVKoNjt/E5qq2Zl6Vrbgq2SYtzZqaOBwq8xVgkEcEzV1oLR4kidMYPnPmuWLhEx1morC85IV1nBQ8FrcyR2sqbr2JXjx3GkzZkDzuzfz16+cKGONnzqKQjEtWs1gWgYRKe9+CLElbzv8TCXDx+GYCwqgqgrLCQiLT9fpwa3tZERsmMHpN2VV5IiHSkq+ORJ3Yl52zbm29q1RD+avy+lsqQkVaSss6NHlfr+9/X4vvUtSpS88w5r/JxzIMnikWAQO0XqNR84QKMRh4NAmLVruV/x1GiXjK2MDNLM9+/nPkyfjl43lIZWA417/37mwubN7A9WK2TnBz+IoykQ0CUsHA4dWWjWNXp72StOnGB/qKpibLIXid03liQ1NbQURlJ3Gn1JmsVJGVTa2wGYsrKBo/CcTozuYBCDXb7rdrOJZGeHknsSmVZQ0D+yR0LfpU5NuHg8eKykbkNKCpvH5MmxKz6SwiO1K0pLOYZ0eRaPWDwA5fGw2dtsusaahMlPmMDmNNwovECA+9DZyTmKi7lniSa9rFYUcyES5flK0xeXi82mvZ3vyOfmlOVJk3SNkbEM+BYLYzWMUCJxLJKe/5dlxw4UxvPOgxzcu5f0mUWL8DYHg0QJvvEGf6XWj9MJkXfsGASTuYmKy0Wq4LPP8veHP9SGd1oazgxJK/z1r5kH/+//RU/ZE8LsrbeU+ulPUbA/+lFSgMIdA4N1YK6t1TWIKipIE7rwQtabwzG89GXD0MW3X36Z1O0dOzjm5ZeT0j1rliYLhWg0RxlKxMpAKblijJo7qsZrjNpsjHXjRqXefJOxFxXR8XHtWkjPjIzB12WklGVzLcbRNJaThOL4lN5e1ueECZBFdjuGcV6ejqZ59VX2ijPP5CUixrTFor8rdZH/8Q8My6VLiTS2WNhDMzK0cXn8OAZtIABpUF3NHh8+PySTwmbj2B4P+sv06ey7EpHo9+v9vLIycr2utjbSlnfsAMfWr8chMhzyzSyCE11d6Hvi/CwvR4/Lz9eOx74+3YhJnBHSgC8zU9d7NHd8lvrV4rDJzh6evuX1QmLU1kK0SKOaWbNIVZ4xI/TYUk+7r294JSdGUsI7PZsjOoVQTHZ6HnvS20tH3eJiSLSmJlKWKyvBEKuVPfPPf4ZY+9SneJbBoFL//Cc4NW8e2QZWq05dffll9tn589GnMjJw4GZkMM8tFoiq734XfUn24Asv7I8LhgEhdfw4JF9nJzi0bl3/oBCnk+8ZBg6acL2puRnd6uGHGcuXv0zk45EjjKeoCGyKN0tMGpJIBtLRo9yTmTMpizNt2vDXb2MjEZQSET5jBlgXj5PB52M/2LyZ2rw9Pdz/ZctIKT/jjNCoRinxICWlpHFVaip7RUsLOJWayriys8GB9HSehdTFlw71Y0mESPT7E16aISlDkGQ68yBisVhyDMNwJOhw4+5m9/QArAUFurNgJOnrQ9lUCiATUjAQ4PdWKxucGGtOJ0pqTk7/Tn6S2jNhAh6pcHG7iaA5dgzPc0kJinWs4CaFw91uwKeggPHYbAC+EEnxbEyGQQr08eO6Q1ZBAQrvhAn8e7iGazDIxtzeriMcy8tHPjXY7dZpRpHueVcXBozLxYZfXh6qvPv93GNJgR7roC9pB2VlGHrvPbdRH/W/Gxa1tuLtFjKtpQVicNIkpT7yEebNt79N7bEvfEGpj3+c3/X1kZp78iTk4+mn67nX0oLXfNcuPNqf/rSuTZiSAm51dnK+t9+GrPra16JHCUs5hp//nEiiadNQvmtq+n/X6WTtROrA3NBAatCrr4INN9yAsm0YYPBw05cDAe7nE0/wamvjPl59NSlFeXmR05LNnZIHW6d+v07nlrqH8WBcW5tSL7yAEfT224y9ogIy+KKLcFCZoyQHarRibtqgVOSUZXNK36kUc8SnjGmwbtXvSRKLRlh8Pow1pXRkx5EjrOWZM5lPW7aQXrd0KfPULK2t4MqkSdq4q6ujzunJkzg/PvxhXQzfamW/CQbBqhMndDfTvDz21PD5IBF39fW6ZEpZGd/r7dX1SPPzMbrz8yPPKZsNgmLzZtbKhRfyGqgzaiwSCKAbNDXxkqZSpaW6drZkLohItLDUJ8vO5jfRosJ7etCLnE5wqLgYzE1Pj83QdLkgDGtreV4SWTh7NsThtGmDd7W22wdvmjXWxEwoCnYOkVBMYtEIizRs6u7WJOAPfsBz+u//Zm2/8QZlXZYtU+qOO3heUlt5+3bsqksvxSZTSjsva2uJ7P/85znuvn2cT1JZ77sP5+OUKehW5eVgQ7gdYBjg0GuvoTsXFIBxy5b1X3s9Pbq78dSpoZF+NptSv/gFulEwSNTkF74ABrz5JtF1s2eH6gSxiJSV2bcPgq+rC5xbvJhjDidCUKStDcKvsxPMXbSI+y8d7/1+7RweSAdxuXh2mzfrmrxZWei3Z5/NeAfSD71e7FqpcXv8uI76LijgmZaW6vvY2QkGS23+tjbGXF6eOEdSIkWcRyZ8P+WWZYKxaUzKuCURLRbLOqXU35VSVxiG8XjYZ9OUUnVKqbsNw/jqe+/dpJT6jFJqrlLKp5R6XSl1h2EYe02/+6ZS6k6l1GlKqU8qpT6slCpVSs1TSh1QSn3dMIzvhp0rRynVopR62jCM6wYZ9ri62U4nxm1Wlu5oGUl6e/G+W61sEqIsCZHm8bBZiSEvqcfp6f0j/Do6UKqLijhnpDFt3Qr4VVZCHsba5ETA2+nUYea5uaEFfXNyOH88YOl0sim1tADIVVUosYlIWVaKcXZ3a1DPy+M+JkrJH4qIlz8vj+coir/Tqbu8CqmgFEpGUVHoHOjp4f/xpJ6PttTX46mtqMBItFj0BpXEosSLxwNBaLORsmKx4IXOyVHqmmuYNz//OWnIN91ECqBSYNETT7A+zj4bb7vMrz17qBPU3a3Un/6EUisEoqTzbd0KgdjXRxrz5ZdHx5ZgkEide+9lvJ/4BEpuOIkvUTHS4MCscLe3M5bnnkN5vuoqSM7sbH7jcGgHRzyRxYYBNj/0EBEIfj8Fta+9lr+iMJoj8mKNzJNUOGl2kp4eu0Lf0KAbo+zcyXvTpmnicOHCgZ+DudGKUv27LEu0zUDHUOrUE4lmiaHTcxKLRlBkDXV3Y7BlZ0MsBYNE56Sn40DdtIkIHnPzJKVYxw0N6ABS4+vIEYxjux3nx7nncjxxCJaVsfa3buXvjBkYmWlpHCMSgXjiBCSA08m+LI7K1FRd33CgmsUOB9fw6quM5dxzlbr44sTV8zMM8PzYMXQ8r5d7WVISeg5JS87M1C/BPommlnqI4eva5eI5eTzcq+Ji/pqjo5XS5RUilViw20nrPHiQsUrJmTlzIA4nTYoNJ8R5JCTmeJRonZ6lDITpHiaxaITlhReIlvvgB5mLP/sZdsuXv4zNsm0bDtJ586jfnJ7OennmGfChuprowblzOV5dHc7a5maw6JpreL+2lrUwbx7YcOedEIKXXILjRBwM4fgQDOJwefZZ1vgZZ1BOJlId6bY2bESxt2Sdu1wQh7/8JTrd+vVK3XYb3zlxAoeNYeDQmTIl9nsozt9t27iXQo4tX46ukYh12t0NedjSAs4tXBg5otHhCC1vYyYC7Xb2gM2bdZmw/Hyue+VK6vLGYqM2NPBcpRZ3YSEYKVkx5oZ3hoE97vdDLkpvAIkWH0u6klLa8WEiEqOyAuMUm8akjOd05ueVUt1KqWuUUo+HffYeDKqHlFLKYrH8XCn1OaXUo0qp3yulCpRStyqlNlssltMNwzgY9vs/Kx7sXUqpYsMwai0Wyxal1MeUUt8N++5HlFK5Sqn7E3BNY0bEa5GWFrmLn4jNhqdcQqnNANjdjfJUWhoahdbaqht+mI8rdTPE4x4uLS06pW3+fF6x1KcIBCCuzF2FBTwl7djtZlzl5bFHyPn9EE1HjrCRSnMXUWQTIT09mpjNzuY+nQoPd06Ovp/SZEXqi0nEpdRf6enhdfIkioSQiXl5OlUpWqOKsSLTpvFMDx5EQTrrrJCPk1iUQDEMiLWTJ6l1mJ0NCWa1Eq2TkYGC+cADEG633srvuruJQHS5MIAnTdIE4saNKMgFBRjKixbpFGalwK3f/AZP+9SpeOVnzow+xhMnqL/4zjt4rb/+9ci1eKSgtjR+EqK/t5drevJJxvHhD5OGUlTEb7q7dYOXgQz/aOL1UufwoYcgT7OzUcSvvpq5HB5hGE80cCDAeYTAy8wcOnkozWc2beJVW8v7CxYo9aUvkSY1WNdDEas1NF1ZIiotFh3BNJgIVsnvxoKYyUIzoSikos+HUXf66SE/S2JRguXoUaIy5s9nLR49yjyT9NV9+5jDs2YR3WOeP34/Br5E5CvFM/vpT/neV77CcQ2Dc/j9kGonThAZk56OwS/px5GMt74+9qRjx5jvonMIcWjuBhpJvF46sm/ahP5zxhlcRyyNAwaSQADd6tAhdDjD4BqnTOF+ZmTo5ieZmQMb8OY1LanLsubNjQtKS0N1CtG/zLX/pF5rair3sK6OMTY28n5xMYb63Lk6Yiseyc7W9XJHuvbqSIk5+tBMKJqjRY8e7ReBn8SiBMvevbzOOIPU4N/9jrX1qU9BsO3Zo9SPfsRnX/2qbkT01FN8b8YM/VKKZ3bbbejnX/0q9aGVYi309vK9XbvQdQwDPcfr5bV6dX8C0enE2bttG8ETN9ygyUqzGAbrzGYDo8TG9PloDPOTn2DnrFlDJOX8+cy3d97RJSVWrYrPbqirg4Q8dIg5PW8ee2i8tRTDxW7nOTQ0cP+XLtXR6pEkJwcM7O3VmX/79pGFsXs32FZSgkNn5UruRSxOWolub24GgyTwpKZG68cS8CGd7DMywKriYl0qq7SU+97WRqCN1PUdKyKR0l4ve+yCBQN+PYlNCZJxSyIahuG1WCxPKKWut1gshYZh2EwfX62UetcwjH0Wi2WFUurzSqnPG4Zxr3zBYrH8WSm1Xyn1LaXUVWGHb1RKvd8IDdP8k1LqPovFssIwjLdN79+glDqhlHo5YRd3iiUQQIlVCkM8GmB1deFpycgglNpM6DkcurOgkFwCZtJYw3xcCWnPzQ1tOy/j2bePzSwri3D7WJQ6qU1j7spnTicW8tJqRQGP1fMuBYH37weEq6oAsOLixBmkfX0o4C4XivaUKfHX/0iEeL1sPB0dPEdR2sPJUosFJSE/H4VBGuxIZ8SsLK5J0pTGoki0Wno6/96xI5RETGJRYuXFFzGK169HAX3sMdbulVeybh99FA/1Bz5A+o7Fwjz829/AlvPP53tSJuG3v+V7NTUcS7DD6QRbnE6Iq3fewbt/xx3R52IggJL8m9+gZN1+O+nAkQxDv595I6nIaWngw+OPcwynkyi7G2/UEUoSoWsYmowfighx1tJCcfXHHkPxmzKF65GU5UTU2QsGGaekEYvCOZTf7d4NobtxI0q2xcLe8bWvYTBEKl8xlOMKoWkYukZiLIq23BNz5+SxJsePswfu2EFa04EDzLGTJ/V3kliUWGlvJwq9uprX8ePsX1On6ojEDRtYZ+vW9ceBpibm5pQpzKmtW4lALCjAaJcSMTYbhExuLjrVyZMQhosXh9YKlDnt8fCbQ4cgFQIBDNWFC9E7htpgaPNmoqB7esDHdesGLlszmBgG69DlArOPHYOokNIm06ejY+Xng7HRUpIHE6lp6vWiU9rt3PvSUhwx0Y4pkYtZWRjVe/eyjlpb+byyEkM9WtOaeCU3N1T3Gc9itXLP9+8Hz3fvZh56POyhIkksSqy0tlKzcMoU5ujTTxMh/ZGPgBOHD0P2VVQQgZidzTN58knm+qJFrLtZs9BF3n0XvUgpSLslS/h3UxO4V1amOzvPnQteHTiADvO+9/VvsrF/PzUYbTY+v/zyyEEe4lRwOMA0KdvwzDNEUNbXQ5Ledx8OFKXQo15/HZtz7lyIuVj2d5+Ptb5lCzpSVha1Is84I3GZUC4XdurRo6yRBQsY61ACSNrbGdurr3IflcL2Xr8eW0PqUcYibjfPvbVVN6qaNYv9oakJzBedUHBRamaLTSYNRjs6uPcTJvDcbTYwdyxgWXs7GLRzJ6+9e5lbR45E/00SmxIn45ZEfE8eVkrdrGBz/6CUUhaLZZFSaoFS6r/e+85VSimvUupJi8Vi5s49Sql/KaUuiHDc34RNAKWU+qtS6ueKh/72e+earJRarZT6nmEYYT0rx6eIh8jnG7gbcUcHCzc7mwhE8/e8Xj7PzNQ1JQyDxe719q+p0NfHppKV1T/cu7sbYGhsRIk/55yhRx9KjSC7nU0qJyc0LTAY1J3D4klftttRpg4fBpAnTADwJeIgEeJy6aK3EhV6quoISsqyw6G7IVZUsPFIalA0sVrZvMxkYl8fzyMtTdekGyvpPlIrpaeHsQaDjG/RIjbiCJLEogTIoUOQhMuWQRI+9xxr9NJLMW6ffRZF8/zzlbrrLuZVaysEYmoqyquQ2oZBpM9993GsP/xBG9fShW/XLlJ5XC7Spy+7LPrYamspKF5bixf89tujG5per+6knJ/PWP7+d2qgdXWRav3JT4J3IkNNXw7vlBwMYhA8/DCpToEAOHndddQtSlTki3RGlXIF5tSXaOL3Q5xs3MjY2tp4PitXcv0XXhi/R9sceWhulCLNX2KVsUQkdnQwN3fu5O+uXeCQUszhmhqlbr5ZG35hksSiBIjTiUGSn48x2NLC3iWNSI4dY01XVmLIh6/Xzk7WtJRyee45pf7yF/bwO+7QupE0TQoEWCtOJwbo9OlgmzhdfT50KJsNnaWhgd9WVbGewmtLRxPDgIh+5hmON2MGJSEkOikWkU7JLhd/3W6uubmZta4U45ozB6xLVLO3QIB7YLezTsvKNLZLKnOkTrFNTeB3bS2/Vwq9b/ly7rdkWCjFsUWvGW5TkZQUxudwcK/GqsM0ktjtkEf79/Pat489LBjUNUHXrSNCKoIksSgB4nKh+2RnU4Zlyxb21FWriB5saEAfKihAn8nL4zdPPMEaP+ccnldVFd955RV0mfx8GstJ1kVXF8EcPh+fHzxIk7ibbqLOot2O7mWOUnY4wJI33uDYn/tc1LmgPB5w0+fTmSKvvsq59uwBZx98EL1A9t+GBq7XYkGfiZSlFk1sNhxu27eDS6Wl6HixpgEPJF4v6+PQITBm5kzweyAHsGHo7tqbN0OcKgUG33gj+3tJic7sikUXsdl0WS6LhWdVVRUadFJWxnckwlBEyESfTzdiEX3UZuNVVKT7CUgjwtESKRW2ezfzZedO9mXJhpk+nSyWxYuHdLgkNiVAxjuJ+LqC9b1GvTcJ3vu3oZR65L3/z1FKpb/3vYhisVisYQ/xaPh3DMPotVgsTyqlrrRYLF8wDMOrCE+1KKUeGO6FjBVpbmahVldH92a3tbGA8/LwCJnBWOr6iFdYwK+7m01twoRQBcrpBEDFSy0Gr8+HR+fIEcB/yRK8w0MxiKUGmRQTl0Ky5nFKp0KPR3vDhgLUgQDgKQ1N2trwMp95Zuy1cgYSjwcDQtKFpa7iqTBs/X6ek8ulU5YlDcli0bUQU1MH31BSU9kcCwqYE93dofesqCjxXaWHKn6/Timw28+aKjUAACAASURBVHVtjaIiXTdzgPufxKJhis1GF+SSEgiSLVtQzs45B+Xy5Zepy7NiBYXEU1JQhP7+d+bd+9/Pui4o4Fledx3E1ec+R11FcxSPy0XK9IMPovT96EehhJ5Z3G7Shh56iGN/5ztEzUVb6263Xg/Z2Sjsf/gDZOiiRfx+4UL9fSkL4PP1T182N9uQvyIeD4bEQw9xn3JzSVe+5hqwNFFYIdFFQh5GqyVmvv633mJsL7/Mc83MxABYu5Y0qHijqKUmmtS+CU9ZlrRmUSpjlVNBJLpc7KdCFu7cyVyRBjWzZzO3lyzhNXv2oM6WJBYNUwIBiHmLBYPEZmM/Li7WBtiTT/L/K67o/zzcbnSDvDxef/4zEdYLFlC/VaJfXC7WfksLzzwjA2KgqIj3pCmHRHpJ9+WuLq1/DZQqZxbDACeefhqioKpKqc98hjENVfcRolCIQyHclELnEuI0NRWsmzo1sXpLMKidkEqBI4WFoam2kpon5QAaG3WNQ4lYnDYNh++cOf3LwYizRAhSt5vfCO7Fq59kZHBMl2t4xxlJ8flwiptJw4YGjYfV1WDQnDnsYdLQMKkXjZwYhlLPP49OceWVPI+HHiIN98orwaU77wSDvvUt1pvTqZuvvP/9rEkpf/Tww+g+VVX8TpwHfX3YXPv348i1WolsXLkSoq+7G2ySIAmpFbthA1h3+ulkPIRHKIo4HNhcFgv6iThl33qLcf3yl/zevJa3bwf7Sko491BLN9XXExV76JAuPbF8OXtnomy0QIDjHzgA3kyZAvkXLcVaSrhs3oxu29TEvZg/H303PADF42Fv6OzkugeyPwIBnbLsdIIvkybhfIoUdCM2sc3Gv8PHbC4ZIRke6ek8w5QU5pjPx9jCswoTJdK8TKKd9+wBm0T3q6gAfy6/nL1m8WL2zRjGksSmBMgY3MaGLoZhBC0Wy6NKqS9ZLJZKRR76VUqp1w3DkIduUUo5lVLrBjpU2P9dUb73R8WDv1Qp9Tel1PVKqc2GYRyO8xLGlHR0AFqlpdGNvOZmNpn8fBTYcEVICrGaU296e3Vqszn82e2mPkVqKpuKfF+i+2w2AHDhQrzFQwF/h0N3vMrIYPMJB9GuLt0xevr0odXV8HgATEk76uri9+JhT5Rn2edDKRByrbycazgVdXQ8Hu6n18vmJU0hwj14WVncb4miGopynJaGMebxcK0Oh94AE0nGDibSZEdqZSrFZilE5yAK8v9KEouGJ4GAUr/6FQbWbbfhrd68GQP3zDNJb/7v/wYLfvYz1vSJExjEeXlEQkijHocDw762Vql77qHhiYjPhyJ7111EGX34wxw3WnTz1q1K3X23joa89daBjWKHQ0fC7NsH+Xj4MErsD38IAWr+rccDNkr6sqTMC2kY3i05JUWnLEsDmRkzSAe+7LLEdH0XMYzQ2mEDkYd9fRgaGzfy1+XiuVxwASnb55wzPIwM77JsLupvFolElOjEeFMlR6o+oijG5gjDgwe1YjxxIsrwddfxd8EC9qeUlKE/1yQWDV/272dOL1vGvGts5DlMnIh+8thjGHZXXtnfcRYM8v2UFAy1e+7BADrnHKJ6hED0etnrDxxgvVRWcj63m0hBIQozM/mbk8P3AwG+O2MGWDSUeSFRk4cO4cj9+McxqqP91jC0s0WINGmSphQ4JfOys1PXaU5LwygWJ3SijEtzbeVgUNdWDtc1UlL4bl0dz/DwYcaenq47Ks+cObCz02plP8jICMVAj4fXcAjFnBxd5iLWCKNEi2GwrwlZKPdLGtAUFXHPVq1Cz505k/mWkTGwEyn0HEksGq5s3ozOsmYNz+W3v8UuuPlm7JE77wQT7rqL9+128KmvD1LO4WDNTJlCLdaXXmKN3nKLJhA9HvSVv/4VnWfBAgjJsjLq0Le1QSZWV/P9ri50r0OHmNNXXQV2RQs8kZJRUqPxs58lMnvCBIjEj30s1BFjt5O+3N3NWJcsGRznvF5wdvt27FCpR7h4cWhd/uFKMAhJuXcv+FhVBYkViTwNBPieRBx2dYFRixcTvX7mmdFJV+lYL5Hqbjc2tFlXdbuxZWVfyM1lzQ7FZiwuZvzt7aHNq0TM2SaC/S6XLmE1YQLn7egYehBONJFSPHv24LzbvZv56HaHNra66ird4KqykvmWlRWfzpvEpsTIuCYR35OHlVJfUTz8rUqpKSq0eOURpdTFSqk9hmG0DvNcrym69txgsVialVKzlVI/HuYxx4T09gImBQXR08tOnkThLS4GBMMVROl4XFyslTSXC+DMzuZ9EY9H146YMUPXCzt8GKU0GGRDLC8fuLGLiMvFhurzAXxlZdGVe5sNsDV3A4skEtEo3nWlUABdLhSs6urhg6eIeJI6O/l/SQkbyGh7q4NBHVkYCPCMc3N5fgMBdW6ujuCLhcjIyMCjJJtZezv3eurUkWsYIx4+ma9KMVfKyxn7MMiOJBbFKX/9KwrpLbewnv75T8jktWtRKL7wBebEL3/JXKyvxwNeWIgyJkTcyZNE4rndpDivXq3PEQigQH/nO8zzu+/GSx9Jenro/vyPf4A/996LkhzNeDJ3YK6rI/Jo1y4UzG98gzTr8DUhKf0pKShJUlhcKU2ApaTof7/zDpGTL73E+VavhsQ4/fTER7aYu5mmpupUYbN0dTGWjRuJJvD5wK3LL4c4XLFi+ClDQhwKKThYl2WlQhutyP2LVYSIjDeiUaSlJZQw3L0bg0ApnvnixUp9+tMYITU1KOby3GMhDiNIEovilIYGntvMmexrhw8z/6dORXf461+Z11dfHdkB2dKimyL98Ifs65deSgkD0YECAfQfaUonhGBtLd/3+ThfRQUE4okTvKxW3i8pYX8cbH60tJBquGsXx7niCsjMcKyQovoSYShRj0rpDAOpY5iZyRxuaMDxFwyCw9Om6RS8wdboUEVwtbtbN6eSxmxm8Xgg52tr+evzoVvMns1znDpVG8qxrCkxpNPTQwlFr5dzmiOzh3LNFktofcTRbChns0EUmqMMpU54ZqaO6pk5E+d6SYkuMSPEYZySxKI45ehRSL2FC5nDP/gB8+zWW5mHd97JM7zrLvSlnh4IRJeLenpS0qmsDL1n3z5I4UsuYW0oxbp6/XVqtXZ2KnXttZQaSUkhYu7kSXSMKVNY62+9RYZBMIhOtGDBwIEULS3o9Q4HTVMef5x1/F//xXnC18CxYziNrVZ0HCEuo0lXF8Th7t06s+yCC5jHgleJcKwaBhi8Zw/3vKQkchkJr5c9f/NmmqPY7ayh5cv5/hlnDN22kXI4mZk8x+5uHbTR0qLr5ZaUoGvGUqNQ6uw2NkIGRrvPUvc6PZ2519oKcVlezp4lwTVSnmMoYrdDrgppuGcPZKRS4MzcudQnnzULLKqs1HXzhThMkAMmiU3DlHFPIhqGsdNisRxQhKHOUOSvP2H6yiNKqc8qpb5rsVhuDs9Vt1gspYZhtA/xXIbFYrlfKfU/ijbfLqXUY8O/ilMrLhegkJ0dvWFJQ4MOK1+0qD8ou1y6tqBEMXq9bB7p6aFAK4a2UgBEWhpAJnUhiosBq/x8gG0gsJAC4x6PTpWN5A2LJX1Z6u10dXENaWmMRSIcS0vZUBPh2QoGAc/2dv5dVMTYRrs2YHjKsnRPHmq9C7Ny3NcXe7piVhakbl4ec+3oUV0kPRE1NyRtrKeHuaCUnu8FBbF1+Y4mSSyKT/71LzqDrl2LIfPQQ8yfdeuYB7feylz49a95//Bh0ntKSogklIiZt99W6vOfZ/1s2BDaFdDrpXj4I4/w/o9+xBoOF8MgBfonP2Eu33CDUtdfzxyMZkRJZ9C6Oo7/r38xb7/4RciDtLTQ+oV+P/ji8zEHJaInUrdktxsS4C9/AX8LCogiWr+euStRMYmKaJFUQEmlTU8PxfrmZp7Vxo2QmsEgJOvHPgZxuGTJ8KOPwlOWrVbGEctxU1J0vcR4xxMrkdjXhyFjTkuWhg2pqRiCH/0oxGFNTWhtJ0m9HCZx+L+SxKL4RJqVlJYyr48e1el3YgQHgzgqIhXk7+3V6ba/+x3fvfJKSEJJVQsGwYgdO1j/s2Yxz7u7dRaHNHiTmtBuN2OSetKDEYhdXThA/vUv9rZLL8WwzshgXUltPiEOJcJXuqzLvpuVFVoqoLUV489mY65WVUF0ilEXjhfDEYdD42RmZn/HsNPJs6qtRXcMBLgvNTVg/JQpeu1LF2ePh/fiwcxwQtHc6VmyNVJTBy/3II1dhKxNhO4RLh4P98YcZdjczGeSgbN6tY4wrKoKjfKW60xE3bgkFsUnNhvO1PJyiP9f/hL99YtfZP78z//gcLjzTp5hVxcEot+PsyAnB9LQ56OOdFcXesP8+aRCi7PtgQeIbiwsVOrHP9ZNA7dtw2ZavJjjNzXR5bm5GTyT1F0h6MNFgjZOnKD0wxNPcL6bb0ZPMweVKMX827YNJ0BpKWRntMhGiTZ+5x0djDJ3rq4laLFwjxJV97Clhb29qwvcX7UqlHRzOhnLW2/x1+3m/q9YAXG4bNnw1nl6uq7D++674E1BgXY0xWsvpqVxv9rawNqBiEC5pxMnQiy3telMP2k8GYkc9fnAIklJ3r1b2/9KsddJM6vZs7mvovtJLVkhgxMduZ3EpuHLuCcR35OHlVLfVuSvP2cYRrd8YBjGZovF8lOl1JeUUnMtFsuzSimbgnG+WCm1Wyn18RjO9YBS6puKYpyPGIbRk4gLOFXi8wHy0rQj0iKtrweoy8oi1yX0+zVZKFGMElknKblyXL+fYwUCbESBAEpyby+bSlGRTvWorIwOGj4fm6x0kSouBsAifb+zkw0wNZVzRvMCud1sEjabbsRSWooy29rKeaZP77/5xSOGwbna2rgn+fncp9EsUquUrt9mTlnOyYkvqik1ld/29XHMoXSIDJeiIjal1laeg9sdPfpgIDEMxiDEoYTj5+aySUlDlxGQJBbFII2NSv3xjygP69ZRi0cpogtbW4nSys6mOUpJCVEUmzahOF1+Od/t6iJC78c/xsv7yCOhToumJqW+/GUU6iuuIF06kkLX0oKn/6238K7fey9KmhB1kcTvR+l9+GGlXnuNsd50E+PPzNSdjEX1kPRlq5Wos2jp8o2NHPOJJ/j+3LlEErz//dowHmrpgKGIGMRCupmbCdTVcc83bUIBVAri4zOfgTicOzcxyt1QU5aHKikpHEsiEuORaKnNfj9pyObmJ4cP6+csivGSJaRUzZ2rxyPfEdIw3mjJIUgSi2IQjwcDLSuL9X/8OGt3xgye96OP8p2rrw5tLCDi8+nGHS+8wHfWr4cMrKxkfre24gCpr8dptnQpuFZYqAvZT5gAPh08yPdlPKmpzJVoeo5S7L0bN4JFSkEUnXcev+3sZD+VaGelOE9urjbSIuGi16vJAI8HzJozBwyWtSHkWSJEsle8Xvb88nKtS/T2cl9qa3WtvsJConzmzo2uw8q9EzIxEBhaVHM0MUcgKhVKKIaXf4hEKGZl8T2pnTscx0swyL0wE4aiYyvF/Zs/H4fbvHlgt9XKs/T79XGys3W00QhIEotiEJ8P56HVSlO4Rx5hH775Zgjfu+4Cn+64A2xobyfCTymcFsXFYNmxYxB/GRk66m/OHP7vdkNAbtwIDv3gB7pR3LvvotfMn898+ec/iazLziZFOiuLOTt1amTM8PvR1R58EB3G7da6V6SIt54eGrPYbNiYixdHXpceDzrI9u1gRE4OhF5NDeMJBpnDiSKcOjs5X2sr5zrzTJwTFgtjfvtt7svOnVxzYSGYu3IlwTaJWEtOp25UFQiwX+Tm6gjF4TptpQlPV5feBwaS1FRwVhqNFRVhI7e1MTfb2kLrGO7fr+0vyWK89FLuj3Svdjp1cIeMKTt7ZBwsESSJTcOQ/2skYt57/w4RwzC+bLFY3lFK3aqU+rpSyqqUalJKvamU+m0sJzIMo8FisbyklFqjlLp/eMM+tRIIoBgqRVREJDA6ehSFt7KSDSUcmA0jtAufGF2trQC6uehqIMBGKKk6LS0oP6mpKDdKAWSFhdEjIv1+wNvhYIMtLAxtRBB+fSdPAnR5eVxjOKgbBlFEnZ26m2phIYq81E9zu/l/pN/HI1Kk3etlY5oyJT7CLV6JlLKclxd/bQmzZGTolG9Jg4xVsrOZS04nz8ft5jlGq4MkIqlPQhxKI4i8PBTp/PxRSQ9PYtEQxeUihSYrS6lPfYrowd5eorXcbt6TGkCVlSgkL73EOvzgB5m3x45Ru+eppzDYf/WrUCXolVeoFxgMklp48cX9xxEMooD/6lf8/0tfggSUCLRoxnFbGwToc88xlo98hAglSSmR+ScRhlLXJjsbEjtS99AtW4g6fOUVfrNmDfXxpDabeUyJKqPg9erjSurPgQMYFxs3YkwohfJ3221EjEZrQhOPiGEvRN1wjHuzmOsjDqfRiqQx7dqFcbVzJ9FYovQWF0MWXnqprsFUWMg5hcSUyCWrVZMGo1APLYlFQxTDwOgJBJQ67TSMNodDR7M98gjYdNVV6DSRft/YSJrf9u3oSuvXaz3l2DH2sG3bmDfnnYdBKoRgZyf7XVERf/fsYb5Mngz2ud0DE4gejy4t4HAwH885B6zp6uI70kmzsBDMzcgYeE309KCfiS43YQLXNWGCJuIkSjgR0YdSa9rtZo2UlrLnd3ay9mprIWmV4jNpuGVuRjCQmJswCeb4/YkhQAWzJNUwnFA0RyjKvZISMA5HbJkbnZ2hhOGBA7osS04OuvS11/Ks5s8HnyTCXKL2ZUw5ObFHeccpSSyKQV54gbXwoQ9Brm3bphtIfO97PPMvfQmsammBqEtNhagrLsah9frrYMLUqZCPdjt4VliIXXPbbUSIXXUV/5Y5IPNq1izm6C9+wViWL4ewa23lXFOnRtbv7XYcsPffD2ZecolSt98OeRlJ6upI2U5NpexLVVX/73R0gKt79jCPq6txOs+ZoyOBlYo/ACJcenvZDxobwclly4jG7OxET33rLXQAwwB/LrsM4nDu3MSlTnd3g3c2G9hVWsq9kfRvp5N73dHBe8Mp/1RSAu62tg6tJn1KCuOpq6MG9uHDzNFDh8AX0SXnzweLamqYu5WVOutNxq+U7kItjoxRliQ2DUMs/TtRJ2UwsVgs/1BKLVZKTY6xNfeYudliGDmdKKqRSKxDh1Aiq6ujR5t0dgIEZWX6GG1tHLe8XNfJCAYBHFGUpYlGRQWe/o4OwLK4OLJSGAjoVFmlMNTz86ODncvFRunz6fTl8ON1dfHy+QCxCRN0OHdjI969jAw23ni7iZrFbmfDd7sBWKl3NFoinm8pVpuezjMbiejHnh7ucSSyJJZjeL3aU9bzns8mL093ZJRU0p4e3Y3bauV5FRTw3RFSkEeeAhiCjFcsMgwUzd27aWxSV4dSdsklrNcbbwRbfv97sGfnTqJrpk3DM5+aCrn1yU+SPnL77XjlBaN8Pmoa/uUvRDl+//u6iLhZjhxBKd+7FyXwv/8brBDCJ9y4lO6oDz5I6pDXS3TgDTfoiGtJSRZsMndflvRlM5Y6nTQ9eOghnDbS8VUICzF2hWBLxHyWCMlAQNfg27MHEmLTJggPq5VaSBddBJkZzbETjwipJpEwZnIt0WJOjRkKcdfTo8lCSU2Wej0ZGSjES5fqKENz9JPUbzRHHJrrG44QcZjEomHKwYPoOjU1PKOWFtZecTE1EJuaIAWnT4/8+6YmsKqujtqHq1ahf6Smsle1teGMzcrCUDaXUujuZu/KzETnkIYq0oXb6YxMIEqDDmlo1NMDVq5ezdglHTkzM3Lh/Egi0ZINDRwvNRXDddIk3RTEHGmXCIPd5+Oa5ToLC8FYiTiUtVdVxfXNnZu4bBCfT2NgIiO7RQIBTSaaI6yFUAwEeIbStC5cXC7uw759upahOO1TUiA2hCycPz+UABByRXBeKc4pNQ5HqHldEouGKTt3sqbPPps5ev/96CbXXENjlM2byQJYs4Z9+sknWedXXIHO29aGbrV1K7/79KfBpaIiCObnnyfq0O+n1vT69frchw+jT1VUaPJ+wgQIzNJScCEtDQIxXDcKBsme+MEPwM8zzyTScfnyyNfp90M8HT2qU7bNdRUNA/3snXfAzpQU5vjy5egi0uncMJjPibBjnE50QTnf3Llg8dat3PdDh/jelCnc25Ur0UkTWU6mtRX72O3WNeMrKiI7OsQulqZW+fnxO0Q8HuZTTk5kG9zjAY8lwvDdd9njJBBlxgy4hPnzeZYLFmhC0OvVxKHsHxkZOlV5hLLCxgQWhcswsGlMSpJEjFEsFss0RbHN7xuG8bUYfz5mbnZzM6RdVVX/2j6GAVicPAkoSAHecJEIvoICTb51denUZCHeDANQ7u7W0WKZmRxXCMWeHt1MxCxCEknjhNzcwYmpjg6OmZrK+M0eGgnbttk4Xk4Om6REM3Z3s1EK+VhdPXxly+lkU3U4dHpOtI5cIyFuN+f2+XRdi+zskY3KCwZ5phZL/F0IDYPnFAhwv+T52Gy6OYFISgrnEeJwFKJ8TvkGNZ6x6NlnUX6vvRaceOMNFLKaGqX+4z9Yg7/5DUSNKHAzZ+p03j17UKqbmoggvPJKfezGRop279tHdOAXvtDfCeD1KvWHP9AAJS+PdOe1a0PTX1NTdZdkId2eeYYaQjYbSv5nPqOVyEhzzu0Gu5TqX3vz+HGIw7/9DUxcuJCow/e/n+8Fg7q5iYxnuPPaTB76/dRle+klIh86O1HmzjmHe3HBBYkx1s0i9zdRKcuxnFfSLs3i9WKYC1m4a5eu12OxMOeELFy8mMiH8ChQuR6ZK3Jd8hoFSWLRMES6Qk6ejAOhoUE3TnviCaII160LrbFqltZWpb79bfSliy9mnrS2smdNnYru09rKnnv66aGRjD097GkSQa8Uv6mq0kayNDbxeHQNQ6cTsuGVV8CimTOJhJ0zh/091mgOjwencmOjzpCYNIlxCA6GlzsYLhb5/YzdbudYfX3cw0OHtO4wZQrXNGdOYhy5kcR8bRKtOBLrVs7j82nnSUqKjgTPy+P+myMM6+v5TCnm47x5GOfz5mmS2SxCGsoxldL1DRNZr3IASWLRMOTkSTBn2jTw5t57IWc++1lKurz4IjWR160Dp556CpvoiiuYPzYbztTaWt77+MchxVJSWEP33EMk3aRJSv3nf6JzyZw4dgw9y+3WwQ6rVil1/vn8u6EBvWTq1NB91DDQIb71Lebs7NlKffObkJzRMMJmQ+fr6dFRauY60O++S+ShZJGddhq4mpOjM6n8ft1sY7jr1eNh7IcOcT1ZWdiR27Zx3UpxXStXUjNy4sThnS9cHA6dshwM6nJe0mhtMBE9U8pwhTuqhyo2G3pgSQl/pYbhnj3MKcGt8nL93GbMYD6JE72tTXe393p1lolS2lmSnT0qutEpx6JwGSY2jUlJkohDFIvFslAptUxRZHOBUmqWYRhNMR5mTNzszk5dFDWctDMMjO+WFjaySNE7SgG6LS26q61SmlTMz9fGp2FgLNfX8xspzCq1xk6e5HelpaFdoc2pqcGgTgEcyGMRCKCE9fQwBknRlg5lkjIkadBSe0gpFLuGBhT67GzGN9wUYwkP7+1l0y0r476MAsGlgkHt+RHFX7w+o6BIKqW4p729uklLPBIM6s6MFgtzRSI3fD7mxMSJusnEKMop26DGOxbt3UvjkhUrUFA3bMAoet/78Jrv20cKzVlnodRu3YpCvXYtz/j11yEQLRbqlJ19tj72Cy+gwFosRBVecEH/dbxzp1Lf/S7r/ZJLIBkLC7WBJ00uZGsMBlGS778f0nLhQsa5bFn0axT8cjp1qoZEzr75JhGSr78OLlx8MY1JRJE2NxYRo3a4c9swUOjsdlJxXn2Vl90OJqxeTcTheeclvmOodEoOT1kepZTe/x2D389etHu3jjSUwvNKgc/mCMOamv64ZSYKzWSoRJ6OInFoliQWxSl9feBLXh4YVFcHXkybhsPg4EEwYtGi0N9JRPKBAzRp6uujVuIZZ+iuu/n5zDGnEzJuxgxd8kUp1l5jo3Z4FhdDBmZk8JnNpiOQJV1PHLKvvUbU4pQpOEoilZoZithsOmXZMBjf5MmheoqQXoki2CQyu7ub629p4a/UtxYCZfbs0S/zMhpkolK61M7evfpVV6eJkcJC5qNEGM6bF7mRj0RTejy69q65AUx6+uhh7HuSxKI4xeHAqZiWptSFF0L45eaSavzYY+DRFVeAM3V1Sj39NM6OK65gnXR2oss0NNC45PLL2d+k0eHdd7P/rV7NZzU12p5qbCSa+fBh9rFJk0ilrqhA1z5xAltv6tTQNbF1K7rUli3YgZ/9LE7ggQIUjhyBnBOHpThV2tqIOty7V5dyWL4cHBD9x+PhpZQmqoYjfj/E4b59kKhdXazLzk7WzcKF6JdnntnfVh6uGAbnkSAaqxUdpLIyvtRkCbgRHC0oGLozSWo/7t5NMy6pY2ixMLdqajRpWFPTP1JRAjuysnSGnzTlyshgfx2oFNUIyZghEROETWNS/q/URBwNWa+U+oZS6phS6rrxOgHsdsA6Pz9y1N/evXw+Y0b0uleBAApsSoom/lwugCgrK7TD09GjGGwpKZA9c+YAKFJDqK9Pt4oXcTh0TTup4TMYGDqdOoKwspJr8/u5lq4u/p2ezmeSCivS3s5YDIMxmhvBxCM+H0p5d7duLFNSMjokl6QsS90bCRkfpQK1ISJdJKUTpDlVYSji9TIPOjsxNGS+VVWhVKem8mxdLjb+wsL4PXDjTMYtFnV2EmFYXQ159tRT/Hv1aroO7tlD7cKzzsJQ3rkTRe6CCzRp+JnPMAf+9jcdJe3xQEw+9hjf/5//4bjmOWe30+HwqafAgZ//HKM/GGSOSgSiOR15yxadpjh1KgXNV60aeD0FApoAkPTlvj7O+9BDKPIlJSjcV10V6jwxk22JSK8z4/ZdlgAAIABJREFUDDzqL73Ea/Nm7lVhIaTh2rUoySOBD5FSlkfSMA+Xzs7QtOSdO3W0V04OCvFNNxHhsHQpxkw07BAiVJ6PUjqKMlEdlcepjFss8vu1bjJ3LusyPR1i7p//hEC84AJNIEr9ZJuN1+HDlDVISQFvTj9d60VOJ4ZYZiZ4lJ8fGlUiNbe6u1mL1dXoRW1t2hBMTQU7MjP5rLmZcdXXo9985jM4MmLd74JBjtXQwLkkY2PSpFDSztwUKhHRh8Ggjm45cgSHjNUK9syaxTOYMePU6CpK6bFICrLXqzFruOu7r49IHnNastSqTE0lTf7CC9nPlixhf5PuyJFKakh9Q4lUt1gYu/zm30AHiiTjFouCQbqpezzoRb//Pc/w1lt5/5lnKONy1VWQXhs2gAHr16Pj1NfjNO3sBIsuvJD3enrAtT/+kT3vs59ljc2bp+dVc7NSf/oTeDZtGnrBmWcy5202bKPs7NBu5wcOQEpu2gR+fe5zSl1/PRgyUDPMrVsZV0WF1jtqayEPpT7+woWQh+YSVIEAmCgNkYYbDBEMgu/PPYfN29io6/gtXUpGyIoVkYn74YrYh83Nujv71Knck+Hoe1Yr483K4rkLkZeXF3qvXC7wR0jD3bt153ZJS169mojn888Hm6LpbIbB8Xw+5p7ollJrdfJkfc0uF3MuI+PfEp/GLTYNJslIxNGVU3qzpU5gZqbuMCUSDAImHR0oMrL4I0lrK1F2FRU6ZLmlBQCsqNBRPDt2oDAWFBCOLhtMMAhoOxya1JPx2WwATno67w+lzkV7O+dPS2PcUqi8p0enQEvKslncbrxPfX18NnXq8BRY6VLd2cn/J0xgIxxpo1maj0i9idFKWR6q2O3MkaHU63C7dWMUIUKlrpOkRoenNUlXbakLUlQ0vCLDQ5Txvg2OOhb5fHitW1spCv7CCzyvq69W6hvfoCnBXXdRpPqll1Duli4lOs4wUFrvvhtj/c9/1iklDQ146w8eJKLvE5/QBLZg0csvEzHU1YUifuONmmCUVFdzJ83du2nosmcPGHXttSi9BQUDrylJK7FYmKeNjRCHf/8763PJEsa4dm3oWjBHH0p9wOEoyW1tujHK1q0ct7yc8150EeTpSEbZSBMYpUYnZdntZr6YuyVL0zCrFYJiyRIIoUWLdFryQGImDuVapH6kkMxjhDxMYlGsJzQgEDs6wJj2dubsrFmk2b3zDlEyK1eynm02XefXagVrnn4aHeWLX+R3Ugi/oYH5OHGibhJQVsZ8CwYxordsYb+SlGEz8WO1ap0lLY1jPv00WJSfD5mwcmXs69ft1inLPh/nkMYt5mOZyX+JahvOPHe5dKmA+nqOVVwMkTF3LsTFWNBTwsXc8CkWDPP5cJ4fOKBJw+PH9edTpoSmJc+YwXOWsjPS6MRMEEpGjURLKqWb2mRkjFhNsXgkiUVxyKuvsm+tXcueXV9PVOGBA5RdWb2a9OMDB6hpWFlJBHJGBlj13e8yL77yFYif9nZ0mH/8g6i/Zct09sacOZoc279fqZ/9DB19zRo6eJtLUzU16eaPViv48aMf0YguN5cyMuvWQTRF6lgv0t0Nrtrt7L/Tp4O/O3aAr2IjLl7cP9jA7QYrxa4Zzlx3uyEON2zg2iX6WrB++fKRi37u64Osa29nHUsD0ZHITpNMmN5e9qNjx3Q9wyNHdAZFdbWOLly0iKjnzExwqKVFZ+yZxdyYU2pSCgHrdIJJRUXYwSkpOmpRnB5KjVqU9HjHonEhSRJxdOWU3WyfDyCxWPrXtAgEAPSuLpSa6urox+nu1vULc3P5bXMzQFJZyXGdTlLmjh9n8zEXzA0GATWXS9dj9HhQ0j0eXYh8KEAu3aV7e3WjFZtNd4cqKgKgw4lBwwAgxRM+aVJoNFCsEgxijMjmUFQEcI60YheespyaqlOWx5KnxzA0oVtQ0F8Rdzo1cSipCjk5usahRKG6XGyM2dmRSUKnUzfKycjg2Y9E05j3ZAzd4bhk1LHoj38khfeWW1DgJAXwnnuokXjbbfx/0yYUnjPOQLFzu4m6eeIJFNYf/EAb588/Tz2ytDQIyNNO0xGAUp/lJz/hvLNmUS9IUv+sVk12SUTZ0aPUHtqyBeXpuut05GG4R9csEqUk2LNrFx1dN29mbB/4AOThggX9fyuRL0oNL/qwsZF79/zzGCSGAUlw8cW8ampGjvQazZTlYJDnZI4wPHhQRwhWV0MYSlrywoWh+8lAjVYiEYeSpmwmDQ1DX+cYwNpTP4LhyahjUX09xtTs2cwbhwMyZ+dOsGLePAxaqTOVmqodWC+8gKFfXk5DpTlzdEflI0fAicWLmXM9PehJYtTV1uqU6eXLcbqKk0wizNLTeU86gW7dyudr10ImxFrvsKsLPUkacphTlsNFsEgioePVYfr6iJjatUuvzcJCvR4nTx4zBPygEk4mmglfw0CPNHdLPnRI43lxsU5HXrAA0nSgchF2uy7TohTzUjI55JlkZXGMsabnvSdjb0SxyahjkUTELV2KzfSvf+Hk7O0lc+LMMyEH9+1jf588mVTj1FTw4b77wJxPfQpdxe2GPPzTn5g7N97I++3tEPbSOG7DBhycmZkQlKefrueTpNnm5WEfdXWRufHAA6zb669Hp8nLYzwDlSs6dIj6hunp4O3x41xLIIAtunw5uln4XPb7mffBIL+VQIJYxeEAQ59/nlIyLhc4fsEFOFSXLh25jsCSstzUxPNMSdEpy4kmKw0DjH/33dBahuZmpEuWsDeJM3WgmtcdHexflZXov0IaSnCHlMgyN+f0+/mdOMI6O/lciEiJbpdglxGOnB7vWDQuJEkijq6ckpsdDEIg+nz9o+38fhTn3l6UnYE6cDqdgFReHqAgZJzXqwnEEyc0IVlTg1EvEghAIHo8kACZmTriTGo4hHcgHGgsx4/rTscWC9ci5FFRUWQl1eHgXrhcfG/SpPgVZcPgOtvaOHd+vo7OHEmRTlduN/8/lSnLQxWpg5SSwvwxE4eyoUjTnIEiFu12rjsvLzJBKMaapJNmZfGcR0BJGO8b1Khi0WuvodR+4AP8/8QJPOmPPgrZdsstpJY+/zyG+MqVkIgdHRCLb7+NZ/7mm4nw8XohE598EqXoe99j/ni9umjzM8/QdMXvp4vztdeGEnRS/yo1lTX8hz9AEOTk8N1LLtERigOlyfv9usbXpk2kWTc2ggVXX63URz8aWVmTelbBoE6bi0WZku6FEnF44ADvzZlDOtMll/DvkTQ0pRPxSHZZbm0NjTDcvTtUMZZ0ZCEOh1K7SKKspE6lEIeiDpnrGw6U4jxGiMQkFsUgnZ1EwFRUQGx1daG/vPsu60g6b0o2hJTJkGZMO3dCCF10EcavYRBJdOQIx1y0iP2tu5vf5eToiJCeHqJwzjordL92uTh+RgaY8M9/QmZarUQWrV0bW3S9OHcbGlgraWng5sSJkcuKmDsVx5vCa7Ppjsp1dVxTbi4YdNppkLRjkPQakkh0Zmcn13fokL5WKZGQmcm1mrsll5XFds0+H2SPz6cdYampOhrUvGcopYneRKRcJ0jG6RP+XxlVLOroQP8pL2d9b9hAg6TiYiL+Fi1S6mtfY8975RWw44MfZF78/veQhTNmQCouX848uPdejlldTbOTigpspcpKCL/6ejrOb9/O8b7yldA9s72dPTc/H+y77z6lfv1r1vPVV0NW+nzsjVOnRnfU+3wQovX1moRvbWWMYhtG2qsls0rKCUhtvViku5tzb95MJGZ3N2uopoZMlzVrRjb62efDNm5u5joyM7F5y8oSd96+PshYM2nY3s5nqak4LiTKcOZMbRPn5Q2NwPT5SHF3OLD3JRpbiMNo9qbXq5v0paWx9xUVhTpPgkF4ANHDRiiaerxj0biQJIk4unJK0nak9mB4p2KfD4XYbgdozDUowsXnAxDT0nTtqPZ2AEY8WwcP8h2/H2+z2bvk96PQer38PhDgt1Yrm1UsHXXb29mYHA5+K1FCEyZE9/JKIeu2Nl33KN56FxJZ19qqOxlWVIxsEfBIKcuj2OVq2GL2yHk8OpQ9P18Th0O9jp4e7nthYfSNR5rp2Gy6Y1lRUUI3qvG+QY0aFtXXk24zdy64sHcvkXGvv46C+rGPUVPnuef47nnnQQrV1kLAtbZSJ/G881CET5yg/s+RI3Qf/NSnwBefD4WztZW053ffRbG+4w6cBWYRQ8xuxxv/9NNg0Uc/iqJstWqjfiDj3e0GQ594gs6JHg8e/euug8iLNqfN6YKxkG6GgbIo0VD19by/eDGNadaswagYaUwIT1lOVG1Ah4PrM3dLlno9qakY5hJhuGQJkRXxnDMQ0B1M5fdDIQ7DZYwQiUksGqK43RiXGRkYdXV17EUnTpA9MWuWTukzr3ubjaigEydYY3PmYAD7fOBWSwtG28KFul7dhAkcp7ERssDjwZgLX5+ypxsGkTIvvsjaOussnC5S7mUo4nLplGW/X0cKDdR4TLBTKfbHWIzc9nZNprW0cKzcXPB27lyudxRKi4yIeL2Qhea0ZKmdLRk98+fzzBcsAIviwV2/XzdGkUhQj4f7WFQU+Zjmuo1jjFBMYtEQxeNR6uGHeY7z5vHvM87QTtFZs5S68072wDffJIrvAx/gdz/8IY6Q972P30yfzlq/7TZw7NxzydBQivVZVMSa3LiRLIu2NnSjj30stDxQaytrOjsbHeOee3CyXHqpUrffDhY1N+saidGwoquL30vjstxciNHTToPYGoh4lKhbaZwy1H21tZVr27yZiGApi1VdjX27Zg14NJJrw27XKcuGwX2XlOXhiDSAEbJw9272LqFvpkzhGiXKcM6c/oETgQA2kZR9ilSaR2rqO526y3tnJ9cxffrQ7SeXSzcplYjSsrL+xGMgwHjEeZWRkVByd7xj0biQJIk4ujLqN7ulhcVsrj2oFOCwYwdgsWjRwOm8Uog7EEDxTk3Vac0FBSjIJ09qo3vSJBQqc3c/iUDMz9fd7yQFeaig7vWyOTQ2ApBVVYx7sEgzKS7s9QJk1dXxG9m9vbomZFYW5GGiu5maJRDQYeRjOWU5kgSD3K+eHp0WJulalZXxN5sxDIy6QCC6km0eg0Q8GobuEpYAkmWM3/1BZVSwyG6nW7JSeNC3baNgdX29Uj/9KR70O+4gnfnECVJMamrwul93HcrmffcRQVNcTF2d73+f97/zHeoU+v2sR4uFWj1//COff/GLKN3h68TnY1xPPsn3vV6U5BtuwPDv69Mp0dGUXb+fMT/8MGRldjYe7muvxXiOJlLTylxna7B1HAhQ92jjRiIdpcnQihWkN55/PjgUKwEQqyQ6ZVkUYyELd+7E8y1G8ZQpoRGGCxYML9ranKYs9cWkC+tQnkM0ESIxabjHLaOCRdIZva0NPaCpSafhbd7Mur3mmv57Q0MDdcP6+uhqmpqqMyaktuG55+oGLL297M8+H4aeRJVVVfUvni8G2zvvULe1r4/6ZZdd1r8D5kDS2ck429sZV3k55OFABKSkTwuRPtQaVU1NkIa1tbo5SEUF11dVpTNBxlOTs2CQ/ceclmyuHVZWFpqWPGsWuBEIaByMBXuFAPR4NN5J04H0dPYzt5t7OFgWhRCKEkmqlE67Hs1GVu/JOHniUWVUsMgw0B/q63E6PvIIpPTateg1VVX83bGDLIz583G8dnRADp44Qe3n8nLWuMUCgXjiBBkdt9zC/Nm3T0ce/+Mf6M1ZWczfiy8ObYLZ3Aw2btmi1O9+h023ahWRkIsXs+67urD5Jk6Mvt+9/jpO2dZWTW4tXz5wJHIwyHglwjEra/B5axhc7+bNvI4e5X2JuJaag/PnQ8COlG4k5ayamsBvqQNYWRl7M0mluK6TJ3U68u7d4JGUeioqCq1jWFMTW0CMy4X+GwyCL6mpoQEqSunstuxs3m9vRzeOxaFlt/PKzcU5bBjcl0jPVRwpwSCfp6cn5HmNdywaF5IkEUdXRvVmd3UB5NLgQ8TjIZTd42FzGMxLIhGH5eWAYl8foOnzaQ+7gFheHh4L2WB8Pt0lrLAQcJK01aEqNz6fVvC8XjaImTM53kCGm/xOulRNmRI/4SeFZp1OrqG8fGQ6d4mEpyxnZgLoI1W7I1Hi92vi0G7XdXykvmFuLu9L+ne8G4V0wLVYBp8H5u/b7fxfxjMMw3+8b1AjjkXBIPUIDx6EXNu+HQ+p14sivGYNdQyfeQYFViJ87r+fFJs5c0iBljny5z+jeC9fDpEoHdgdDs7x059itK9dS+OWcFwzDL779NOQf3Y7JNxNN+H4CAT0nJXucuHS3U0K9kMPga1VVdQHWr9+cDwQI0+Iq4HmntdLRMGmTXj0bTZwZ9Uq7tPZZ+vo7QQpXFElGNRNX5SKL2VZaoeZ05L37NH1dYqKNFkoL7OBE68IcShjV0pHG0oqsyiuw+08q9QpIxKTWDSAOBysn+3bcUBOmcJ8KCtjD9qwgXV85ZWsS6+XeSlRxn/5C/vv1VfrqHbDAHMk3XjqVNZ3Wxu/F8dZbi7nyMwMrZMsZTfefpvIw95eSMx16xjfUMTv1ynL0pBj4kSwbDCyXaIPBYsGc8SdOAFpePAgY7VaueYZM7RuKd1BCwrGPnnY1RVKGNbW6hIJ2dmQhZKSPG9edCe7GRsHupeShizRPWYHhhCH4fest5fjxqKniJPK5wstMSGE4ig0sBnjT35QGRUbbetW9vfFiynhkpWl1BVXkEFRWEgk4vbtkIiLFrHnHz4Msej1kokhJZzq6oiStljQmy67jO/s28ecrqvjt6WlzOO0NPQeSSUW0mrDBnSvY8c459e/jnNEylD19bHWIzk3AgHIrr/+lfMVF+OYPeusgRuuKMVY3W7GkZk5MHYZBtcixOHJk7w/bx5kbGGhLi8wezbvj1SZJ68X/G1p0VkwkrIci27U0xNaw3DPHu2cycgAg8ykYXX18PFVSpN1delSUvn50bPbxPatro7tfnZ367IWvb3gXGnpwB28BR9TUjjXMJwg4x2LxoUkScTRlVG72X19KH55ebqLqVIs6B07WKxLlgzuWejtBWiKilBmpMOfRCbm5nL8jg4WvDlVx+NBQbPb8VQXF3O+oSoyDgfHPXaMv8XFAOlQmqB0dDDOYFBHAMQDvG43APr/2fvu8Liqa/s9kkYzqqPeLMmSLFuWm2yDwXYgGAgmlFCcvARCCQkhIZC8Fx4hhCS/FNJIIe2Fl+Q9IAnwQiihkwRTAzFgiqtky91IlqyukTS93d8fy4tzNZoqjcrY2t8330hT7r1z7z3r7LP23muPjOC4S0txLibDSdY01fXK51N6IDO9ZNnrVdl+jDilp6sFBbV9aMwOFFFR1InslyRlLNvx+TCx2Ww4v3l5mDzHcQzJPkFNOhY9+igc00suwRguLsbY+frXQYJ9//sgBfv6oC9WVwdS8Te/QSnwH/6A68SsxcOHoYn4+c9jPPj9CHDccw+IyOJilNycdtrYY/H5EIn/05+wv1WroJPY0ID3vV7siw5VMEbt2iVy//34PS4XiMxPfQrOfbSxGZx9GK4kxG6HduRzz0FjzW7HsZx1FojRD34Q32cZNBeGk2WhSpZjzdgbHoZTvHWrIg37+vAetYn0WobV1YnBVGYY6olDah+yXDnU7wzXaCUem0YicRaL9BvT6eJarUpn7uhRZOBkZcFXMZtFHn4Y+H/RRSobhpmqmzeDxJ87V+TGG1Xn9f5++ERmM+5fBiC6u7GoJaFHMjAQgN/AoEQggIzsp57CmKirA3kYKYNZbw4HFvWdnRifFguOoaws+r1HLOIiLZwOq98P3KX+n8OBsV9Xh+Osq4N/x6Ac9dNmiC7fKHO58Dt271akYXc33ktNhc+q1zEcT9MX/XnVB4lIGno8KnubnUmjZX6y/DA1dXTJaTzH5PNh31NIKM5iURR77z3oJtfWoopheBhlxb/4Be6JH/xAaf+uXIn5f9MmvJ+fL/Ktb6ks53/8A5mDdXXwjT7wAdxTLS1Y5x04gGt+xhm4D6xW+BHUvmdG5J13Ynyw+RwrODwe+F0eDwik4MDeyAj2s2kTxlV6ush55wHPoiU8sMuvz6caBoUad34/tr1pE34rG3csWwbt2lWrQIi1tuKztbVjm6kl0oaHgb39/Th/BQVYY8aSpefx4Dh37lRahuzcbjDgOrLpydKlicug1MthsRGnvrlgejp8zXCyYn4/AnAGQ+Qs1FD77e9XJOvICPYR7VzpMTMtDfP1OOaWZMeipLBZEnFqbUpOtssFYKIjy8FntwPwAwE4v9EcE5cLzlZGBqIrXi+Ar70dk0ltLQi9Q4cw0OvrFeD19wP4AwEAo96JjmSBACa6gQEsBHp64PBUV8emf+V247czCyCS8G8k83jw261WOHHFxYioTYaTHFyybDSqUsqZGtF3uxVx6HDgNbNZLSaipfGzGYXROD4HWX8cw8OYZOLZjscDMtHhwPUdR/nVDL0yMdukYtGWLRD4PuUU5QjMnQsHddkyRNz/8Q9cuwsugFN73XUg+j73OWQaWq0gIu+5B9f2hz9ECa8ItvnCCyAXBwagZXjDDWMdR01DCfTvfw9caGxEqc/KleozbjewkU1/OMZ9PpAIDzyA35OeDrLzssuAn9GwgGL8kbIPrVb8jo0bUWrp8cApPeccEIdr1uB7zC4RUYvAyQpkxFuy7PViAUKycNs2VVokgkU6ycIVK0BCJJL8DNVRmcRhLDqN/D6/MxGbJiLxhMci6ptarZhXGISjXMrevSDbTCaMdaMRGclmMzJ3KBRvNmOcP/00xuPy5SLXXgtfpLkZAUWTCf5QRQXIu5QULOj37MH3y8vhqwwOYmyUlqrsjX37QFweOoTPbdiAfUQby1yMtbVhEW0wgDSsro69IoLZaeEy5jwelPDu2YPjpDzN/PkYswwQ6+VJuCCcggy3mCwQwLndtUtpGR46pMZleTnKkZlpuGBBYjOVfD7cK9T5YuCFpGG8uM25KSNjfKWRNGZC8h4gtusJxQTNJyc8FkWy4WFUMWRmYjwfPAgC8X//F9fl+9/HGmv3bvg6p50G2ZX77sMY/MY38LnnnsN27HY0UDv9dOCI2Yzgx5NP4lovWgR8a27GeuYDH1D60M3N2N6mTcCSr30Nvg3HMptXahp8N722aXs7JBj27AEm+v0YVx/9aGyNzdxuJUFDzNWb1ws/4vXXoWHLLLaVK1XTvaws4FVLC7ZXVQXibSLriXAWCKhAlM2mEkrKy8OvLwMB4DUzDLdvB4FIQr+4WJGFTU04f4mUxmJQTL+21CemUBKLQTf2KOA8GWxOJ8jT3NzYrrH+OPr6lByX04m1dDSSV5+9zQaH8WhkSvJjUVLYLIk4tTbpJ9vng9NE4WdOCDYbFsIiAOJoYOX3AzBSUgCUDgcA3WqFg7x4Md5jpKu+HoPc4cCk0tYG0F+yJDZQ93hABgwOqgWhwwGgqaqKXnLNzl+dnSpaEg/Q0Xy+0WnehYXYzmRkAno8AG5qXcz0kmWnUxGHLLPOyFDZfPGStS6XcpAnEjV0OLCdzMz4RdxdLtxzLhfu32BB/QiW7BPUpGARy1Zvvx1jZ+5cXJvGRkTQ6+pA/D3/PDDp4ouBUR//OBytH/8YmYa9vRAVf+01OI0/+IHKQO7vx+defBG48//+H3Am2LZuFfnd77CgrKzEds84Y7QTQskAfQfm/n6ULP/lLziOqioc54c/DCyM5f7QE3HBelnd3aoxyltv4bPl5SAozz0X+JyaOnrhJ6IWo5NBHgaXLOtLfvWmacB2Zhhu347FiMeD94uKQBSSNGxqUrpzibSJEofhtjdRInGaGq2ckFjETC0Sh8yus1iUdIrdDjKQeswU+X/5ZcwXV1yB+Z0BO5cLAYeWFozFDRsw773wAsbtvHmKOKysxJjculVlWi9dijmETdeKizG/HTki8sQTGC/MfDz99Oj3qc+H7Mb2diWlQs2vWMkvauYRi/QEvtMJgpUdlf1+nJeGBpAWNTUKi0jS+v2T0qgsbtM04LOeMGxtVb5JTs7okuRFi+LT9IrVqPXsdiuspkYqF74TaXZis2H7E5F/0RuDW5xb9MGiBASoTkgsisV8PgQQBgdxrrdtA748/jhw7LvfxVy6bx+w4aSTRP77v4E9H/wgms8FAvCfHn8cY/Mzn8F90dgI3HvkEXy+uBiB1eXLsW5rbwcpWVcHrPrxjxGgzc5G8PVLXxrtv1utwCyjEfsxmXD8LS0gD7u7VXAxOxtYsWZNbPqdTieejcbR2u5OJ0q4N21CprbTCSw65RT4gCedhGPUNJCbO3cqma1ly6KXTY/H3G5Vskyd7IqK0GvCgYHROoY7dqhM7YwM+Kh60jDezu2xWCCgsg1ZIk6NyWiJKazs8vlUQkgwZnGNXloaH+Hp86ngFytF9PIekYzavfQxY8niPmbJjkVJYTOWRDQYDCtF5CIR+aOmaYen+XASZZN6sgMB1UCEwC+CCWrrVgDCSSfFFgHo6lKdlLu6QED6/fg+9X/278dn6+tVs4uhIZBweXmxZZzYbFi0j4yoZivUJjOZQEJEI6ccDkyMDgf2W10dPxHn9wPk+vpUV62SksQ7yaFKlhkVmokly3a7Ig4J4llZijicKOHJqH1OzsS2NTKCSTMnZ3yZpw4HJkdmX+Tnq8j/li1b5KmnnpJrrrlGampq+JVkn6AmjEUkTPSNKlwuZAwODaHkd3AQDtN3v4vx9MtfgvxzuVDm3NcHAnFoCHo8556LBeG//ztw54tfRIZiSgr28cwzKL1xuZAhdM01Y8fovn0gAt56C47lpz4FfR79AozRV69XkffbtyPr8O9/x9g8/XQ44suWKXIi2j1K4o9RXy7IDh9GtuFzz2E/IiAk1q/Hb168eLRTpF/gcXE3WVnQkUqWBwaw2Nm+XWUZDg7ivYwMOMT65icVFZNHntH5pI6hyPgJuH3pAAAgAElEQVQ6KkfaPq/bRM71ZBOJIfDohMEiZrBbrfBrOD6ysxVZwywXvx+LXrsdxJ/BgMXfiy/i7yuvHF2e198PKYWjR0Eunn46MOLJJ7G/1auxneFhYJnPB79qcBAZbQys9vRg/8XF2PfTT2NRbDSiNPHcc6NnlVGOprMTv4N+TUlJfKVk1GElFqWkYK5kR2VmGlksijjkudIfy+Agfm9GBs7ZZOmMRTK7Hces1zLs78d7RiMyJvVlyYnQDgtn7O7udqvMImp46TVqfT4VTIpUPh7JNE3Jv0yG3iRLnjnfiCgyMdrxnshYFK89/zxIwvx8ZAuuW4fy3K4uBEJbW5EAcuaZwJM77gAhddll0GMdGhK5+WYQbevXIyja1YWAgsEAuZX9+7FGu+Ya+OlvvYXgwMqV2O/Pfw4fRwRZgzfdhPWc3np6QBJmZakg8LvvYu53OoFr8+bBd/P5sO1oUgwsp/V4VDZcWhqwaPNmEJ2U2bJYQEiuWQPfUe/fseHI0BB+T1MT1qiJtqEhVbIsAj+yokJlfbtcwB89aUh9xpQUYJG+LFkv85VoY8KNXkNf34Az3vWQ3a70YXNyRvMFTBLweDBPxBPUcLvhT6am4jqnpIBIjEfvlThFWYgo+DRhLDpOeaiE2kwmET8rIv8rImdqmvbKNB9OomxST3Z7OwZ/VZWKElitcHSZCh5LScTAABxlsxnRqCNH8L1Vq5ARSALR74djy05ybjf2n5uL18MRcCxZ7u/Hd9LSMCHk5GBStNnw/5w5kQEmEACgdXWpkud4xfhZJtTTo0Ss9eVHiTKfT6WVMzV7JpYsk1xhyRIBm81wLJbEli5p2mgB8YlMtNS/yssbP/kbasF0//13y3XXXScvv/yyrFu3jh+dQVdtXBYXFoUiDPXGcfo//4MF8+mn4zwuWoSod1YWNH1efRXX+tJLgUvXXINz/PDDiNT+9a/IOszKAlnI8uUjR1ACvXkzPnfbbUrPkNbRIXL33SAJcnPheF900dgydZY+Mhr+0ktwrHfuxH43bECX1oIC4Br1PWPJGuKCMi0NZCaJw7178fqSJSAR1q+HYxlqGyzfYJe6RJOH+jJrfRaK349Fjr5bclsbvpOSgoWNvvHJZHY8pOn1DemqJJI4DLZE6SNOJpF4991j8Oi4xiKvV+kb2mzqGlGEPyVltP6lyQTs7ugAIVhZqZolvfACxjQzEGmHDoncdRf29YUvYFF89CjGr82GMVtejtfMZuBHWxvG0dKl8D1EkBnncABXXn0VWZApKSgjXLcOi9FwY4aZdW1t8MFSUlTJcrwlevrsQ6MRcyyJQy52i4oUcUiNNL05HDgOr3dsYG2yjQ0j9IQhCU8R+Lh6wpCVMJN9TMyI0eN8enr0BgD6RifxaMvq982SzkSWPIbaDwNY+sASCcXguehEw6LxWnMzSEQSiE1NuL8PHUKTlIMHMe7Xrwcu3X47iLx//3fgRnOzyFe/itduvBHBzZ07VZbzq68C184/HxUTBgNIuT17UDn2yisIrHq9CKhefjmOQZ+Zq2nYltWK4/T5QB7Sd1mwAASl3Q7/ICsLfl60DECfT5XTpqfj+2++CeJw5068XlyMbMO1azGeg++z3l4EMvv6sE5ctkyRp4kyamx3dioN2LIyBG46O0frGO7dq+ac8nJFGC5bhuOfbJzketLhUJVsXFMmoprN71eJI+npo7OgvV7cJ+np8QeNHQ4lEebx4DzF0uNAb4GACt5wvg+D/YkgEY9HHiqhNkOUTCZuBoMhS9M0+3Qfx3RZdzec3bIy5WQMDAD0TCaAfyzEmN2OxT8ddpcLDlt9PRbSfj8mPJcLk4fVqqLcdjs+U10d2lFmJGJwEECQkYGJwGLBvg4fxutVVdHJwOFhOJVuNyagysr4u4VarThvLHEqK0s8+Lvdo4GeaeXTWQYUbCRVSBwycyEnB9cmN3fyomjMPmXn5IlE2i0W3FuMUo7nmLOz4RyxdKuzE+ckHjsesEhPFpIQobHkk8LMvF4bN4JAXLEC12HuXES+jUYQgK+8gs9+9KMopaE+4sMP4x649VZkATY1gUhkF9U//xkOcFqayH/8B0g+fUlxfz+yGJ95Bvu66irsIzt7bKSSmlU9PdBffPRRfL+uDtkAl1wC54gl+7wfop0rEojNzSAxN25EUMdgQEbmN78JncM5c0Jvg5ktzISbYFe6iMfJbL62NhVF37oVGaBc6JaX4zpecQWely6NXypgIscZTBzqG6NMZtCFDXuoZzZeo9YQicTptGTEI7cb+Ds4qDLERZRuIedpoxH/8zVqJvX0YMFZWIhrYDKpZkWXXz6aQHz3XZF778X8cfPNCCIywyQQwMK8shLjeWgIPoPLhQV4XZ3aVl+fytx94w2MpbVrUYqYm4vxE2pMe72qZNnpxG+ZPx9YEe9ikKVf1PA6eBAL3p4evF9ejkynhobwizeXC7/D7cb5LSmZ3LHPypeWFtX8ZM8edc3z8rAw/9CHVGnyZEgkhDKfD+fB41GkgdGomvPEGuCh7iDnCTaTiJVMZOMJpxPHM1mZoDymjAxFRHu92K/TqbIpxxvcSkYsmqh1dyNQmZEBrKmuBglz4AD8mb17EZw4/3yMha98Bd/73vdwr//f/4n89rfAhR/+ENnM27fDN92/HzhZUQGcob4qu/zu3o0qEKsVkizEvqqq0YEJnw/+ADH3zTeBHxkZyMBeuRL33OuvY79z5+L1SOsYVl2xa/22bdhuayver6wEGbp2LQKqocaB1Qos7uxUiSyxaOPHYy4Xzn93txrvAwPA45074dPZj92xOTkIBH/2syrLMF4SbLzm8SjikLIJ6enAx0SvKVNTEUR3OrEW6u9XvrDRiHuouxv3SjSpMb1lZiofnPqIbLYSqzGT1e9XVQckO6d7XX0i4tu0ZSIaDIYsEfmWiHxMROaIiENE9onInSKySES+HeJrn9Y07Y8Gg+GPIvIpEakWkZ+KyLkiYtU0rfbYtueIyA9E5DwRyRORAwI2+Zea7gcbDIZXRKReRE4Tkf8SkXUi4hWRh0Xky5qmuYKO+WoR+bqI1IjIYRG549jf39Y0LZalwqSc7MFBOGEFBXCAReDQ7tiBQbtyZWzOqMeDSefIEXwvL08JZxcVwTHduxeTS1GRagtPJ9BkwgQZ7CgThNj91GKBc5+RobQMe3owSVZXR06/9vkA7v39+NzcufE7lMPDOF63G78zXn2HaKZpCuxJyDFCNFO6F7JknOQd9aRyc3F99A0mpsK8XtUgZSLXwu/HbzIYYu+ibbfb5fbbb5dHH31UOjo6JDMzU+bPny833XSzbNu2S3784++G+tpxg0XBGYbBhKGeLAx3T+zdi/KbykolvPzII7i3fvxjkFRGIxzZO+6AkPiFFyJz8PBhEIhHjqB051OfAqHf2goycc8eOMhf+AJe54LWZgPB+MgjwIWLLgKByA5zwQSi243F/SOPgFAIBBDlv+oqlM4YDBiz7NxtsUR3SlwuaPi89BIevb1wjtauRfbS2WdHdjKDycPJ6Jrp98NJZlkyFxjU68nOhkOsL0vmPDJVptc31BOHJA+nkoib7kYr4fDo5ptvll27dsl3v3vc4ZEmggVFby98AasV45XBrNzc0eVZfIS6Pg4Hsn1SUlTTj7feUtIJ7JqsaWju9PjjWMTecAO+8/bbOA5qOtfUYMG/fz/2n5OjGnEVF+M73d3Icty8GVh08sloGJWZqbIgg4/VZlNdlgMBbJMly+O5371eYOnevTheBr+qq5Ft2NAQuQkLdalJFo2j2VhMNjysyEI+W614Lz0dx6lvflJWNrXj3+tVxCHHr76j8kT9In2ZObPAY8V8BnknM7Crt2AsysjIlHnz5suNN94se/fukjvuOD6xKFHmdKoGKG1twCyjEfMwtZ97e+ELdXaiGV1pKfSjMzLQaOXNNzEWrrkGlRlbtwK3RkYQFGhowBhZsgT3Z0sLSMfnn0fQ46yzRG65BbjldgMP9Gsmtxtrxe3bgWMGA47h5JMxDtPSgMmvvYYxcdJJyEqMZG43/LbNm0Gctrfj9fp6lXHIBi+hzGZTnYvT0/H7FyxI7D1vtQLTt2xBsKWzE/jZ14f309KAm0uXKsKwpmZq10VMQqH8lYiS32FJ+GRbIADccbmwP/rFPT24B+fMib9kenBQVeUxE3U8MlQiivjVB+CPnZeos8YJykMl1KYzE/G/ReRyEfmtiOwUkVwRaRKRNSLyBxGpFJFrReSHIrL72HdeD9rG30WkVXBCzSIiBoOh8NjnykTkLhE5KCIXisjPRWSeiHwxaBsZIvKCiLwiIreIyGoR+byI9IrI/+OHjl24P4nINhG5TURyROTHItIR6w/uiPmTsZvdDvDLyoJj0dGBSWnPHrxWV4f/o5nbDbDv71ft6j0egITZjAlw9268X1amFnudnZh4zGaASVcXtkfRc2YRpKVhm3l5mKRYJtPRobQM8/OVBkUoGxxUGkHFxQCz4eHYM8UcDgCf0wmgIXBR82+ixrR9CtpSONhkUqK102k+H67n8DDuG+pJcZGWlYVrY7MpTYypNJ678eh46I2EZFdXbJ0rv/zlG+TJJx+Uq676gixcuFRstmHZtWu7vPjiG/Lxj39aDh8+Ig89dI9ceeXXpbKyUdLTRW6//apXgzaTVFjE0rBQZcl60jCWxdvQEEqPmXnl84Hc6+tDCc5LL2EMnHGGyNVXwxn97GdF/vM/Rf7wB5RAMwuooQH33u23oxFBXh5eb2rCdgcHgTd/+xsW/zYbSmouuwyO7/Aw7nE9gehyoaT4scfgLObmgsy89FJgnQhwaHhYRTTpcIcylwvO8SuvIDJvs+F+Xb0anaXXrlVEuNsdGvep7xIIKMIzUQ6h04mFeXMzHrt345yJYB/19VhYLFmCRXqwY8xmDpNpvPdIHoqo+y5UQ5epNhKJE9VHFImfSAyHR88/DzzasOGIPPbYPfLRj35dcnMb5Q9/uOoqSWLfaNMmzMt2u2rskZuL8UyNWy6+aW536PHp92NRaLcjqDoygsVoVxcW6jk58D3Y5OCtt7AovuwyYOKOHdhOYSEwKStL5J//BG4UFqogKRu1DAygScs//oHXli5FRlFZGY7B6cQ2uABkyTLLBlmyPGeOWthTczQWow52aysWxCzDq6nBwnfePBV08ftxvMFG30TfnTMrC6/HcyyhzOsFoblnj3p0duI9gwHnc8UK4P6CBaObAdImegzRjKQeG6PoOxeTOGT2oMORuP3qM8NjJRO5oB8ampwutMF2ww03yGOPPSif/vQXZNGipTIyMiw7d26XN954QzZs+LTs3Qssuvzyr0tJSaP86lfJjUWJNE2Dn2K1YswHAvCDtm5F4LKrC/f2xReDKHzoIeDHbbdhzHznO7jOn/wkxsjixfBjnnwSWHH++VjDuN0YP0YjgrM/+xl8r1NPRQXEqlUgxzweBFD0QfqWFmyzrQ3rr2XLQB6S4NM0Va2QnQ2/IVyVmKbB13jlFQRre3uBlUuWiJx3HgK1JSWRz5nLhWM6cABjorERj0Q0m/T7gZP/+hdwf+9e+DmpqRh31dXw4UgaLlw49dqvmjaaOCQ2mM3A5enQzmcwzu0G9vT3Y44uLMT16u5WzcZitbw8FUAXUbzCeH4bcdNmwz3X3Y2xdfHFMX39hOOhEm3TmYk4KCJ/1jTtxjDvh61F1zHA/6tp2ueC3vuJ4CJ8TNO0vx57zSAifxWRS0VkmaZpO4+9/oqInCEiN2ma9kvdNp4QkbWappUc+98oIu0iYjv2fcex1xtEpFlE0mJhgDs6EhvlcrtVB63KShUR37cPkwyjSNGMehMOBxaVVVWYhFJSAPp2OwB3ZASp5OxKyMkxMxMRsZQUHNPgIMCGJcvUOwwW6+7oAGiWl0ePkB85gv1nZmL/8ZQdO534PTYbzlVRUWIFqgn61A+kJtN0p1aL4NxR45AOMEkSZnfMJGOzi5yciZEq1OeMltmoaSKLF+fLRz7ySfnmN+9636lnpoDPJ/Lkk3fLT396nfzsZy9Lff06cTpFLrsMUa5kxaKDB0ULzjAcz3jw+dBB8NAhLFgzMpDJ094O0e72dpz/FSvw/8GD6Lp8/vkgHjdtgrN77bU4hs5OkIrd3XA8P/UpVRpqNsNBfeghLIZXroSDXVcHrOH4I4HY3Q0i8qmncP/PnYtMpPXrR+OH16s0ErOzQ2OLzQbC8JVX4PCz1Pm001AeePLJsWESj1O/cJwITvj9OPfNzSAOd+7EOSZxVV4OJ56PBQsmRtBPxEjMkTwUUdl+4+moPNnGRiuJatoSjZT3enFfn3FGvqxZ80m56KK7pL8fDjabfg0MiHR13S0dHddJbe3Lkp29TnbsUBH3ZMSj++4TjdUOxcUYV+PtQr5rlwoemc2qsuLDH1bi/3Y7ghf79+P1D30Ii8vDh1UDE4cD2zh4EFm81dVYWI6M4DoVFoIQe/JJ+DG1tZBQqK/HvW234/izsnBfezzYTkeHCpTNmYPxGe/49/lwrPv2wS9zOlVwoKEBeBjL4pe6VwwY5uaG7sgZqwUC+I3UXtyzB+ePBGphIY6Pj/r6qZNICDZ9x89g4pAaW1OV/cg5QR9QirSY9nhwf5lMk+e/UeKmqSlfzjrrk3LNNXe93ziRjY2GhkRaWu6WzZuvkzPPfFmKi9fJQw8lNxZJAjMRN22Cr9Dfj/NVVgYCccMG5ZdfcAGCoa+9Bhy6/nqRBx+EvEJFBcqdNQ3+8EsvIdFjwQIEK61WzAcLFoB4++Y3UW1QXQ35mPPPV9nJPh8I+sxM7HvnTugoHj4MvD3zTPhh+gxFVlkcPYrvnnrqWKyihMvrr4Oc6+8HFi1fjuDu6tWxdUT3ehVm+P3wJRcvHr+8lKbhuClLsWWL6ubMRlJNTej83NQE4nAyOrfHeqxstkntSINBSV9lZMwc30jTgAsOh2ok1dcHHI+3eoWSGwymm82hs/Cp08+EIf2D/Qx6elS2JLH08cdjykQ84XioRNt0ZiJaReRUg8FQrWla2zi38d8hXrtIRPbzwomIaJqmGQyGnwou3kcEjDMtICK/D9rGP0XkYoPBkKNp2oiInCQipSLyC164Y9vdYzAY/iFgmKNaOD2s8RgdyfJyALzRCAd1YAB6Ok1N0Vl9lwtO6JEjcPDWrwcQHD2KCS83F6BrteLvVatU5g6br8ybh99ls+E1hwNgUFqqSpb1xtJntxtk4Ny54R1eTRvdKayhAYuMWJ07jwf7cjpx/PX1OKZEOIeBgAL+1FTVxWomAL7brZw9EofM3GQ0a6YaOxFyop/IuaTOI7Uy9HpEFDr3+0VycvJk27bN0tnZJhUV1e+TrCR4KDrf2IhIbJi4S1JhUV1dLJ+Kbv/3f8CLxkaMsS1bQATedhvGbk0NHtdcA7x54gmQBTfdhHF9663ICDx4EM7zSy/BCb7jDhCPdjuu1TvvYOHf3g7n8o47gHEiYwnEt99Gp8IXX8R7p5+OTqwf/ODYse9w4D5h4yC9k9zfjxLFjRvhTPt8OPaPfQz6hqedFjvRzWwXatnE0vky1DZYlszHjh1qjOfmgui44AKcu5Urp06vJ9Ix60uVRWY2cRhsiWi0Qie4pwdOc1+fcnxZzkZ9IRERjydPNm3aLF1dbZKdXS2lpbiOc+cCx3ftErnnHpFvfAPXOowlDR5dfnliAm5tbRgLJSUYy62t8EkuvRTjQQTn/H/+B2P7xhuBJW+9hXli5Upg1aFDuNadnZhL164FAT8wgHu4v1/kvvtAQubmogz6jDPwHWarmc3wWViy3NWF75aXA9+KiuK7n9xukIZ79mC/rO5gNvGCBbGfw0BAZR6mpSFonJcXfxbI4CBIWr2WIQnJjAyQtldeqZqf6HUop8OY/c0HCUM2RpnuoC+Dlnppi3D4aLfjnsjJif+4g/VG2bRI/z99ME0DFmVktInFUv1+xVBDA54tFmTlX3st1g9hLGmwKFF24ADOS38/zmlxMQjE9euVRvr69cCi1lYES9etgz/0zjvwL774RbzHYEFvL75z2WXApoEBjLfrr0c2dFYWMO1b38L97HYDyzQNQQ6nE37M9u0qm+y88+DTBmf6dXXhsx4PiMD6evWexwM/7/XX8RtHRhRxePXVaCIVq8SU34/ft2sXtltdDUIvXokqZpyTNNy+HeeHwdqqKvhrK1bAD1y4cGolEoJNv35kWS+1/riOnG4t5VBmMGDOy8hQ68vUVHABGRnxZUcz6/3gQSWrRX+LJOHQkJLbYpYmm7iyaoX7rasDb1FRERfXcsLxUIm26SQRbxaR+0XksMFg2CkiG0XkIU3T3oljGwdCvFYjIs+HeH3XsefaoNd7NE1zBr3GAooCERk5tk0R1MoHW6jXJtUCASym/X4sLIxGOKp798I5XbYs8uJM00A4HjqEwVhYCDKQYqkjI5iEyPSnpcHZZip6Xx8mtKwsOMt0ao1GkIf5+aEX1x6PcvQLCyN3dnI6QZKyWcvcubGntFPId3AQ2y8pwXlJRBq4z4djYskyCafpyu6hOZ2KOHQdU1BghqjFMvVp+eM1NlphhkSoSYkls6FIQf3/mqacbWa3UBicpeZo+nGnXH/9VfKhD9XI0qVLZf369fKJT3xCTj75ZBFRDg27aYexEw6L3nwTBFtREbBg+3Y4gzfeCBwpLsb53rABuPDMMyD4br4ZY/IPf4Az95e/gBTxeEQ+8xk80tOBEyQE9+2DI/yjH2FRT9zgwsvtRkkhP5uXh6Ygl14KbAu+/1kWRpF6ZuB0dqqOyu++i89VVmIxfPbZcELZvCEWmwh5aLPhnLJT8rZtqkGC0QgC4WMfU+U3tbXRs1imwkIRhykpmBOSgTjUW2qqWtiHOq+BABYrJAT1z3qS0OEYqzVqsWCMlJSABCoqwmP37jvlRz+6Spqba2TJkqWyZs16+fjHPyGnnHKyGAzQEb3nHtzXZWVhDz1p8CgR5M3goOoiarHg70OHsDAngbhvH7KmRSClYDZj8Z2SglI7LvTfe0+RaitWYFwND+P7r76K7WZlIdNnzRpgm55AFIEPtXu36kQ5Zw4WyPFk3rECpLUV+wwE8P3GRgSK587Fb4h1PHFxZrWqbeXnx3b+GXBmp+TduxHQEMH+580DGUEtw6nWDgtn7OTJjEMRtfCcCUL8emNghZUQXCiHIhPZoID+MbP1bTZFBIYjCZ3BI1pUxVB+Pu5VkoWNjXfKN795lTz0kPKNzj5b+UaUEpozJyJJnDRYlAgbHIQv0t+PucFiAbH1gQ/gfa8Xf//85/js176GcfyZz+D63XoryL2XX4YvQuLmssvwvYEBBD4efRSfoTzLRz6C7xmNGK+HDyuJmSefBFnD9dCKFfC9gtdgmqaIuNxc+Dx5ebjP3nkHxOE772D7WVmQgjjpJBCIsWhI6/fDCgqHA/PYsmWxNenwehFM2bFDHeuhQ+r92lr8Pna2nzcPPlxZWWLKosdrfr8iDrl+TE3F2iQzMz6/crrNaMQang1nhoaQjDR/Pt7TNPxGNuvUk4L6/6n16HTimbr8RUWqhNtiUSQi9SBzc7F/YlZe3rixfJaHmqBNG4moadpjBoPhXwJG9kMi8hkRudlgMHxH07TbY9xMiOkwbvNHeG9GDunOTgzQykoMqkOHEPkqKcHCMpLzZrMBgNkJl01FiotBLB49qkgxpxPbqqxUBGJPj9Il5EI8KwsAHVyyrLfhYRCfmgZgD5c6zpKYri4ASl1d7N2f/H4s2Pr7sZ+CAhx3IrTGXC4AnsejNCqysqZG2DaUsXkLiUMeV1YWHLp4JvSZZPpSR5aBUFNSTxIGm15TyGzGPc3/OdEVFoZ2Iq66aoOce+5p8vTTT8sLL7wg9957r9x5553yne98R771rW/FeugnFBa1t6Pkht07d++GQ3fNNTjfZWVwYn/wA5TB/P73Ir/6FfTFzjwTHQNtNmTxvPMOnNBvflNFvHfsEPnd7/BcXi7y9a8jCq/HNpbyPvwwMhyHh7GAvf12ZB/yPggeB9QAQxYq8ObBB0EcNjfjMwsWgAw9+2zVOTBego7kIbVHI2WW+HwgC0gWbt0KTCfxVFeHSPry5cjAnD9fHQs1faZz0R6qozIXwJPdUXmyzO1WZGBXlyop1pOEfX1jdUVTUzGfFhcrIXn+T6KwqAhYpP8uy50vvXSDXHfdafLss8CjP/7xXvnFL2bxKJyxMYDbDdzZtw9jZ/VqPEQQ8PjTn3ANbrgBY37nTvgIp5yC8fPaa8C1mhrMFSYTMlja2tCMqbUVn//IRzD+srNHE4goNcezx4PFTkMD5uNY/YShIVUOTH8pPx/HOH++8sPikUHQk0t+PwijgoLwC2rqLJIw3LUL55P3alkZMgs/+lGVBTndQVS9UWvL7Va+Qmoqrkd6+vT5bLEayUT6Om638vdIBlqt8I86O3Ft6QsG+0YMVuTl4V5duFBpk+sX4OGCzGecsUGuvHLWN4rVvF6Rp59W3X6zskC+L1+uGkkuWSLy05/iXvz+95Hx96c/YV30i19gvXX//fCVqqrgP+XlgaB/7z34N88/j21ffz18g8JClEMbjVi37d2LR1eXqrRYuxbj3mCATxVcpeB0oiS5uxvbXLAAmYavvw6fxOfD/XL22ahKq6/HHJ+ejvEf6xx/5AjwengYx33qqeFLYTUNOEjCcMcO+JoMCBQWgny8+GLgY0GB0hLMzVW/c7r8DxJkJA5FlA49icNkM79flRcPDWG+Y1IS5z27PTQWsXdDXh6CYJTQYICLusgMiogAC/V4lZ+fuGq6WR5q4jat06mmaT0ico+I3GMwGDJE5G8i8q1jKZ/j1aY4JCILQ7zeqHs/Xjt87Hl+iPei9KlKrLEjEkXH9+9XZc2LFoUHy0AAn2tvB4g1NqosHosFTmJ3N0C4qgqDeWQEIF1ejgF94ACAIi0N++AOYXkAACAASURBVGeX5UgOJEvw+vow8CNlFI6MYJJ0ubDdqqrYHD6WGPX24jfRYZpo1Emfcu73q7Ll6SpZ5mKAxKHPpzL3SksBxjPZQY6UPci/9Ytqln1QuzEtTZUdkSDkYioSuZOdrdLlw5VtlZSUyLXXXivXXnutOJ1OOf/88+X222+XW265RQzj90COSyxyOER+8xtgxMKFWPRu3YpFpQjuxZdfRnOVf/s3dCG84QbVaOUTn8Ci/L/+C9f8ppsgNJ6SggX773+P7+fliXz5y3AQ9QtmTYOze//9yAxKTQXBeOWVcNDtdhXhDb7WxLV9+yD+/eKLwDURkHNf/Sq2NXeu0lYhGRbrbeDzwZlipDm4oycdY32GYXOzahRRWIhFxyWXKNLQYlFjhfpdJA+ny0EORxwy43CmEoeUTIiUOciMfP13RIBDpaUgc1atwnNJicooLC6Gk5uSorJA9F3Pg5sZ6btP689XWdksHsVigYBakBYVwX/Ytw+lyevW4Xw/9ZTIs88Cq664AmNteBiL5MZG4NLWrbj+S5aA9Bsexlzz4IPAIpMJ4/H00/EegycGA76/dy+e2bCtujp26ZT+fpCGra0qu6+kBEGDhQvxN3VUo5W5BpvdDtLJ68WxlZSM9dd6e0eXJbe2qozK7Gyco6uugn/Z2Bh7UHcqjZjrdqsgZFoaFq2sQJiJRj20SJmDAwOqKZ9evzg9HdcnKwvzVUmJIgW52J6IxiVt1jeK3Z5/Hv5EZyfG6XvvqdLv1FRg1C9/ibXNjTciM3rrVmQQ/ud/gmD7yU+wrluzBmXNR4/i+7/4BcqfNU3k05+GLuK2bbjPzzwT47utTeTvf8cx5OTgvjj7bDyzeq2qamyFz9GjIDMHBlTmYksL/i4tFbnoIpCQDQ0qs5flt7GuOXp6VCl1bi7wrbJy9GcGB1VZMrMMee+bzcDnK69UOoalpfjO0aMYM3Y78Le8PLIW+mSa16sao7BxiNEIH46BjJlqbJ4SLnNweBhr0GBJJwaxKbGwfLlak/KRk6MyrYeGRuOb3a5Ku41GBKooPxYpOSkRNstDTcymhXIwGAypIpKtadr7/Wo1TXMaDIY9gvbWuQLxSBGRML2gwtrTInKLwWC4VNO0x4/tzyAiXzn2/lPjOOR3RaRHRD5rMBj+K0jQ8txxbG9cxugjHYQ9ezAxzJkTWePBasVnnU4MznnzFDiYTNjG4CC2M3cu9sGJq6wMTmZrKz5TVATnm5NiJPN4MIk6nfheeXnoY/T7cQx0whcsiE1bQdNwTD09qhlHWdnEo+KcBPQly7m50xM1osA1rxcXErm5mJQS4SRO1FheHKqkWP9/KC1BEoEmk8rs1JOEeiHk8S4EqL0xOIjzmJ+vL4f1i81mE4uus09GRoY0NDTIK6+8IsPDw5J9zBsZjL9N5HGHRZoGR/bQIZSNHDwIJ/jcczH+iouhF/avf6Esp6IC0fKKCryeno7OzDt3IoJ8882IsPf2orz52Wdx3a++GgtXffmf3Y6MwwceUN1Sv/AF1ZnZ6VQ6X8GOh9eLTKONG0E89vTgfjrlFDil55yjSkOZ/RFv9iHveRKPJhO+a7WO1jHctk11STWb4QxffTVKcJYvBw7z2Dm2WIKmz+6bDtM3RtFHivVk2HSaz6c0ByORhHTuaQYDyJHiYpz/5csVMUhykBq/4QhSEoUMzgWXL+ubGOlJV73N4lF8tm8fCN/sbGTd7NkDPFm/HmPxj3+EJMJpp4EA3LwZ12/tWswJbMRis6E5UmUlsG3rVmRI2+0oIfz4x3Htu7qAL8XF+PvgQdxP6emqxDiWZhdHj6pGAn19eG3OHCz4GxoUUefzqQyWeDq4O52Y79xuJTOTmQm/ZsuW0aRhby++k5aG3/DhD6uyZDbsm4nm9SrikMQ8ZUqCAzfTYazUiVZeHIxFIrif6efX1ipfLydHySDk5OA3stnPRHykUDaLRfHZli3AjcOHgfNsSFJaqqpp7rsP5b9nnilyyy0Y21//OjRVn3kGEipuN/Bm7Vps78UXUW0xOAjJgO99D/7UCy9gP+vWgXz8179AvBmNwKzVq+HTjIzgmFjZpc/i0jT4RE8/jTWYywUcmDtXlU/X1GA/Xq8ikEym2NdZg4MgD7u6gEGnnIJ72u3G79NrGba34zspKSCRzjlHybXU16v72+fD9rZswTGbTOpcT0cFlsejiENmSZpMGL9MgJhOo7RTKGJQ/z8D2Xqj5qDFgjW8nhjk69Rw7O5GVmJeHl7PyVHNVtvaVC8F+j+UUaipwXcCAVXinJ09uR3oZ3moxNh03do5ItJhMBgeF5HtIjIgIitE5LMi8pKmad0Gg+EdAQt8m8FgyBOkjG7WNC0ag/tjEfmEiDxoMBjYWvsCETlPRO7SNK053oPVNM1rMBi+JiL3isgmg8Fwn4hkC9p07xCRlfFuM16z2zEpZWdjUdPaisFaXQ3SLZT5fIhIHT0KwG9qwoC1WjHpcDHk9WLSKC/Hex0dqjtiayuAgWn4tbWxLRSpkSCCbYfrvkxw8XqVKGoszt/QEI7L7QZIV1VNrNMfRVvZyEHfHWuqJwC/fzS4sxyS+hCTHZkJPpZIuoNsThJszEhKS1Pag/rMQf4dzdLSlLjuRDpqp6bi+1Yrzinvx5GREZkzZ45ceuml0tTUJAUFBbJ161a5++675ayzzpLS0lI5+eSTxWAwyI9+9COxWq2SkZEhl19+ee2JiEXPPIPSwOJiLD63bIGzW1YGbLrzToznX/4S7z3yCBzB225DV+X77sP9++Uvw3HOzRX57W9F/vpXOBAXXADntapKXevDh9HA5bHHMD4XL4Y24oUXqqiuzQZHjmS0CP5/4w1E5jduBNaYzSAT1q/Hgj1f5xqwQQszCGPN8mP5XCCA8bBvHxxiZhoePozPGQxYpJ9zDkiq5ctBGIQaB8zw49iazpLl4GPh8fAxVWa3hycG+ffg4NhgRXq6IgKXLFF/60nCwsLY8IjnITVVkYZ8pjGrkPNrqGtmMKjuz/r3x4NHn/nMZy6TE9A3IolnMGB+2LULwdQLLwQe3HUX3r/kElzjbdsQzDzpJNwn776L65aRoTSzHn0U+Jaaim2ddRae2RCOhP7evSpgsWgRFueRFq/MPiZxODSE4547F+RlQ8PoZgL6jr3U8Y0Fi7hgczrx+aGh0aXJ1EkTwW9esQJk4eLFWKTP5CwZkdGNUfTdjNPTp5Y49HhUd9xQjUkGB+FnhJI6YDlxVRXIkeDS4ry88FhEjV2/XxHE2dmjNaQT5RvOYlHs1tGBpnC7d+P8W61YT1VWYg3R0QH8Oe88vP+NbwAzvvMd3Ce//CXIsPp64M2CBXjtz3/G+6tWIdh5wQW4h154AWRLcTEqMphIsXYtggAkX1jyziow6tUdPIjjfeIJHFtWFvZx2mnYBhtoiowmdqgnGsu8z2YnbW24nwsL8VseeACkITsxiyhNxE98AqTh4sWhgzFcB/f04LgsFiU/MdUBTJdLVaqxdNdsVqXKU+Ub+XzRswfZtERvKSk41txczI/19aOTU/iIh5TNzcW6f/dutY6lxJTRCIyrr0eQLC9vLBGtaQiqcc2Xnh6eO0iAzfJQCbDpIhEdIvIbQQ36BSJiFpE2EblDcPJF07QDBoPhRgFz+78ikioin5YoaaCapvUbDIa1IvJDEblawCYfFAho/mK8B6xp2h+Ope5/7dhxcpvLRWTReLcbi7ndGJgmE8Cd0fPaWmQVhrLeXixmvV44K4wmdXdjAjGZEPl2ODAplJVh4LJLVlGRapleVITJsLAw+rFqGiYtdv+qrg7tmLLJitWKz82fH1sE32ZTHZfNZqWrMF7jBOlwKIedk8BUTkper5oAGO2jeK3Fgkk+kcfDjJlI2YMkVIItuDlJMDHIcsZEWEoKnGSm0cfbtU1vRiO+PzKCB65zpnzxi1+UF154QZ599llxuVxSXV0tX/va1+TWW28VEZF58+bJXXfdJT/72c/kuuuuEz9m4zPkBMOinTtBBKalYfxRy5BBjO99D/foT38K53doCFH2efNErrsOi+gLL0Q31kAAjvDDD2PsrV8PB7KkBNdb05Ax+MADyCBMS0O242WXYeHLRZam4Vr6fCrC/o9/gDR86SXVJOq006BldtZZY4MNzPajFkusi1GfD2QCuyQ3NwM/6VCWleH8XH45AjjLlkUusQnOYtNnQk4lFpEY0xOH+o7KiXaOAwGVUR5cUsy/e3pUiaXe6ACXlICI0ZcW8++JLqz1Zcj6TuA8Dykp6hFclhzJqPvDay0yPjwSkQflBPONbDbgkcOB8bpjB3Dm4otx3/z615gzrrwSvkZ7OxbnVVVKE7qgAOORmTq//jX+PvVUdPAsLFTNIvbuVVrQzGxnCWm44KXfj+2SOGQny7o6bH/BgtDaTpyDiUWxjDePRzUbOHAAvhUb54ngeBctAv4tWoRzMYmLs4SZpo0mDjlWSBoy2J3I/dlso7UHQ2UShsIiZtXk5YFA0hODfJ5oAJi/nQEr3ismkyI0JhJM19ssFsVmdjsy+XbsUIROcTHWZ5mZ8Ava2+HfvP46Pnfhhag+2LgR67TKSpB3IyPAmhtuwJpv9WqULldVqaYVf/0rsC89HfhSVIRAxMKFwJbUVCUjxdLhOXOAD5s2IbDKtVdVlciXvoRAS6j1ndutMIQZvtGM2oqvvorfzYQSapNnZyOYd+218ImWLo3cuV3TVHXc0BDwt6QEYyxR93osxmYhLLulv8gGIJmZiQ1icH/hiEG+HgqLWD2Xm4v7MDh7MDcX12Eix+vzhW7a5PUiuMIsapNJNVKNVs3HihD6hIOD+C2J0kAMslkeKgFm0EKxBLMWsxkMhqdEZKGmabHUpMd9sn0+FT2ursZE0NMDNr+mZuzn3W5MSn19AImGBuUoDw6qlPL58wHMfr8qzdmxA4vzefMwMdlsAIXS0th0cNxuTE5OJ7ZZVhbaYertxaSiaQAWipNHMqdTlR2xPCcvb/wOmderuiyLANymWujW41H6hpxgTSaVcRgLqRrK6GBGKzEONn1zklC6g/x7OkoWXS6co8zMiU8o1N/Iyhr/OZYZKHY7mVjU14fGJ0ePwiHYvBkZLGvXwmH47W+xqP74x0EMVlaKfPvbaFbyxBNwYm+7Dbj1yCNwuoeHUS7zuc/BKaQm5lNPIfOwrQ04ctll0FukhAIJRL8fuGa1omTxxRdBOLrdwIbTT1dljMXF4aUUSNpFy47t70dm4datyGLasQP7p2B0UxMeLEuO0Dl39IXQRo9Jva7gVFmojsp64nC8zqbHE1l3sLcX91ZwlJz6UcGEYPDzZOB1cIZhqCzDQCAx10hPIk4AV2ccFonEhUdxYZHPh2zBjg7MBdu3wze6/HJoif3ud1h4XHIJsCktDRqJLpfShJ43D4u/557Dtvr7sSi96iqMW4cDGDIwgCDByAjut5oapYVoNI6dP7xekHitrfDD3G5V6tzQEDnbLxAYraUaKfvQZkPAoqUFGd+7dgFP2UCkoQH4vGgRHuGkZGaikTh0u1Ug02DAWGdH5fH8Fp9PaXGFIwet1tANAXJzx2YLBpOE0yV3w4xVEhsWy7RmlM7Iu2yysMjvR/byxo2K1CkoAEmWmQlfwe1GduBjj+G+vvlmkMnPP49765xzkHn3wAN4kFT8xjcQ0OjshP80OIj333sPeLJmDZ5ZjTV3rsqQb2tTgbk9e+CvWa3AvvJy3CMnn4zAbKgkDHYS9vtVNVE4H8DhAA5t3YpmMNu3Y1/p6TiuhQsVWdjUFHvndq8Xa76uLvxGsxnHXlo6ddVh1Cwlccjs58xMPMzm8flGlKkKRQrq/2dptN6yssZmC+pLiym9lejgCjkEPkZGlG+UlTUaEw0GzJ2FhThPbGSYkaFkGCKZ1wvfcHAQv6msbFzXfEZi0WRYnGu/xO57lkSMzQwGg0lEPJruhBkMhsUisk1E7tE07foYNhPXydY01WikqgoRqv5+RLCrq8d+9uhR1dGzthYTD3UQmFpsNmNbdJrS0vDc1obBetJJAKH2dgBneXn4Tsp6Y4m0wRBauFcEv+PwYVV2MXdudMfL7cZic2hIaRGNN3VdH0marpJltr0fGlI6ZxkZijiMpjMSnD0YiiQMLqERUeRLJJJwpoqP00ZG4ITFm2Ifyqj/MQGty2mboKYai7xeZBm+/TbG3zvvAF/WrQMmPfQQHNqKCjiSH/4wiLvf/AY4c8UViDq/+iqExHt7gTOf/zwcS6cTi+7HHwe56HSCiLvySmQoiqgsYY7Tjg7oJ77yCgg9vx/O5bnnQm9o/nxVrhGKdNZnH5K00zs2TicyCPTdkjs61AJ/wQIQhStX4jFvXvzjhwQmx+tUlyxPhDhkN71o5cXDw2O/m5kZuqRYTw4WFEzNedCTheHKkvVahjR9KfJEjzMBROK0OssJwKOYsUjTsEhtbQVu79wJP+eKK0TeegsZ0CUlkEpgRtD8+Sq4WVoK7GpthV5iTw98qQ98AI+UFNW8bmAAf5tMGOtstsQyUhKILhdwsLUVVR7Mim5owAK6piayf6EPIoTKhPZ6QY7quyW3tyv8mjMHpMWKFcDTurrp1+CK10igkjgUUbqyJA7DGf26UOSgniTUN0qiscQuFCnIZ4tl+vUVoxnnEqsV56OwcHq04eQEwiIR+B+PPALfgHrby5Zh/ty+HQkcdXUgDOvrRb74ReBURwd8iIsuwti+9VZ8vrISAdPLL8f919ICDOrsRNBS00QuvRSdmJ1OvJ6dDQyjPuazz8JX279fYdGqVcAHpxOfWbAAPlgon8XlUprQlCKi+f3YLjUMd+4E6el0YvwWFIAQXbcO+2xsjF+j3mbD7+rrAy7k5cG31GuZT6bpG2o6nTjnKSmjicNIx+HxRC4t1leb6S01NTwpqH9MxTqNmrr6AAsDvenpsXV37+rCOZwzB9+x2cBHUNM/2n3BtT+bpsWSbBRkxx2JmKC1X2KPaZZEjM0MBsNqQS36X0TkqKBDzuePvb1C07SDMWwmrpPd0YEBVF4OcnBwEKA8Z87ozzkcSmcnPx8TRCCgOviaTMrRKizEIq+9XU0QVivAf9EiDPD2doBIRUX0kpdAAIA/MKCiYcHOCwnOo0ex/aoqgEIk83qVxpXBgMVAUdH4nDlG1ViynJamMtqmYlJyOBRxyNIARpMYNdYvJCKRhJGak4TTHZwuLbVEG7uq0rGYyG/itny+yBpEEWw6ScQpwyJNE7n3XjjK+fkg1CoqUBb3xhsgBs89F+PfZkMTlZYWvN7QgHLm4WF0XG5pAT78x38ggzEQQAT/gQdATJpM0PxhJ1ARRYqnpQFnnnsO5cpbt+LY6uqw//XrsYB2OJRWmcUSXm+QC1Vm1u7fr8hCkhR0miorsW0KfDc1jb9ENlTJ8lR2Myb5pScOU1IUaZiSgmPr7x+bORhMEoZqTpKfHz5zkH9PZQmS3oI7JQcHW/RkYSyEHpvLJOLaTZBInO6F+0TxKGa/6NAhZN75fBijpaUin/wkcOH550HmL1mC8V1fj3mwuxsLlvnzgflPPIHAQ3Y2FuzV1cAKrxcYZbOpzu4lJfCnzGa1UE5Px7XfswePw4dxL+XkgDRk2XQs8xOxSJ8J3dExmjCkLI0I/LR583DM8+YBk6qqko80FFFash6P+n3sZm8y4TexOUk4cpDPoRoCsDlJuMzBvLypl62ZbPN4gN0pKfh98XTyTpCdMFjU2grfqLlZaXY3NeFe3r0bfpLHA9/iIx8BLr35JtYdF1wATLnjDgROc3LQrXnVKtybZjMqMjo78b/Hg+u5YQOCEizvzckBJrz1FnyuTZvw2ZISBHLXrsUxdXfDX9M0lEjPnTv291DvNRBQY7C7G0Th9u14bmlRyQ+UdMjNxRqVmoqxJJ2MOenHtPA6O3Euib3l5ROqForZ/H4la8XqNGZ1kzjUNLWWi5Q9yO/rzWwOTQrq/58uLPJ6Rwdb9HhK6Q5iZ35+7P6b368Si9igi9ngXi/ur2ikqN2Oe5BNYWORVNPZcYTssASt/RJ7TLMkYmxmMBgqReTXIrJaRIoEXXteE5FvxCGSGfPJZplXQQGi6MPDiPDoS+SYtt7WprpZWSwYpHR2LRaAX0cHBrDNptKM58zBPlJTVeertjYAyJw50fXn3G6VKRmufNlmUx2aCwrg/EZyeP1+9dtFlC7ReJxkdszSlyxnZU1+qQc7YZE4dLlwrcxm7J+ZUXqiMFpzknAk4VTrpU23+f04p4zaTeS3BwIqcp+fH7ezPZ0k4pRh0T//KfLzn+Mc7d2L8bhuHRbsu3cj63D/fjiTH/oQ9Hp8PpQoNzWJ3H03yLmCAjjAH/0o3n/0UZQsHzkC3LjySpGPfWy0bILHg32++CL0E3fvxnHMn499XXQR/mZ5KXGPDlvwvUFR+s5OFUXfvh1RdcoJ5OaqpicrVoDMJIampY1fg4sSAxznU1myrNc3ZHOS/n7MA8RafXnxwEDo5iSRMgdLShDkmUlkRrSy5GDScDzG7LFEXEc9qRunTffCfaJ4FBMW9fdDa8tqBZlYVAT5hEcfBcYsWQJCzWxGcIGdbysr8dozz+BzqanIwlm/Hv5Bfz+ejx7F3LxokcqSKCnBa04niPPDh7FvNo0rKFDEYTwlw8Si/n5gHDMZd+9W2btmM7a7aBGCx/pyxcxMzFkzvRFKsLEhiMeDc2q1wkd0OPCsL5mzWlXQUG8kyCKVF5NAOxHN7cZ5MxpxD01xhvsJgUV9fZBwefVVpa+9YgXOe2cnCER2ab7qKmBHf7+SOvnNb1DBYTaDUPzc5zAeDh7Efb9zJ9YrZ58t7zdIWrUK67TeXuDF/v143rkT19xkQlXEhRdiP8SKLVuALQUFIBaD13VMMOnvVzIMzc3YLtdhRiMwiGXJRUX4vM2Gv5uaIusahjOPR5Us03erqADuTrYv4fMp4tBux8PpxOtut9IjJFEYqjmJwaCak4QjCXNyZg5O6zvG82Gzqff1XeHz8/EbJoIbzJbNycE1pdntar/sQRDOhoZwf4iAl4ikKx5kx93KOEFrv8Qe0yyJOKUW08nmRJSVBcfWZgNw6wfh0JDqEFhSAufZ4QD4paWpKKvVionB5cL/Hg8GYmUlJqFAABHttDQQiHS6ow3UwUEQk8wsDJ6Y/H6839MDAI3UoVkEx9HXp/SxmNESL/hyQrTbMRmkpKiS5clYsJMI9HjGRnI0TRGXzGygUfMoUonxTC8vni7zeDChk5SdiPn9uF7smhgHmZDsE1RULDp4EJmELKfJzkbJ37PPAn+WL4dDe/rpwKiWFpFTTkFp4TPPQJ8wPx+lOStX4jw/8wwi7y4XHM9PfhJOL+/1QADO69/+hizF9nZck5UrUaJ4+ukgCPTXndqimja2fNlmA0m4ZQuyDHfsAFkmgjG2eLFy7JcvV3o9HNPMNBtv58/gkmWO60Qv6EiIM1uwu1s9mEnY14c5Ivgep4MXKmuQzxPpjD4VNt6y5ETslwLr00gkzuArE5NFxSKnE3jy3nvwUwoLEUT485/x2ooVSnolLw/zQ3Y27t1//hNZOCYT8KO2FvjR0QEykEGCqioQkRSILyrCeNm2DeQe9RXLykDuNTTEt3B2u+GzNTfj0dqKxRHvydpa4BG1DGtqcE/Z7TgmrxdzHjOVZqoxiEoikEGKvj68xswdt3tsEDQjI3LmYH7+xJuTnAhms2H+ysxUWBhPl+8JWLJfmahY5HYjOPrkk8CErCz4DpTvyMsDRs2bB7w5dAj37bp18H/uuQfX5Oqr8VpuLnCB2dGaBmy5+GJFFjY1gQT8299AXOobbS5bBqxobBwtnWCzATP7+4FXJBZFgCV798Iv2rYNvtt776l7o7ZWVV4sW4bjMRqVdv7AAHBz2bKxlXGx2MiIKllmEJ8ly4k0TVOk+vCwkqjo7VUBDDYDCV5zGY1jicFgknCizUkm2/Q4zGf6GCbTaMJwsgIvAwPYd2npaF6BEmuUBwlXOcRtdHYqObYYJaiSHYuSwmZJxKm1qCfb4cAElJYGsHO5ANQs//X5MCl1dGAg1dYC+JxOPFsscMSoV8VFeE0NBm12NrZ14AC2pScQfT4QiJGImUAA+x4cxOeqq8cCDzUWmVY/Z074BZamKWD3+QDMpaXxO8lMR2c6/kRLlvXNScKVGHs8KnputyvdNjrB1IqYKc1Jjifjtc7OnrigOUkoZu7GaMl+BSNi0ciIyFe/iky9vj6Mx5NOghNrNGIhnZIC4e8tWzDOrrkG437jRvx/+eVY6D/1FBzulhZs5yMfQdODBQtw/QIBlOOwJLG7G9teswalymedhbHs86nSEhp1VtLSgEcHDqiy5G3bEFWn01RbqzIMly/Hgj04SKHXFeWiK15yKNElyx5P+I7FdIj7+lRJIKf0lBSlJVNcjOdgLcLi4plNSISySGXJwYThBBuWxGSJ1Efk9kTi2tZxjUWBAEjA5mbgCxfkDz8MX+Okk3Bv67WSS0qw2H31Vfz/wQ8i83DPHixGGHBtaMDinET64CCCJz098J26uzGWa2qwqG5oiK1cj1Uiu3aBgGxpATZxjJaUgLAkabhw4dhx6HTCN2JVSX7+1JT2RTKWo0VqTMIMUEomEAMtFuBRYeHYxSufkw2LZqpRrkUEPjXnI5FJ90GPayzSNFRb3HuvIjWWLUOyh8ejdAlPOw2Y4nKhgcm+fZB0sdtF/u3fRL7yFUXidXfjO8uXw0fJz0cQ4cAB4JfDgTXX7t3YBysx1qzBdWTzCZaMigB73ngD13j1ajxTx3DHDuASEx3y8+ETkTBcsmSspv3AAHzB7m74WUuXIjEknnuIiSKdnfDbUlOB2+Xl42uWGAhgO6FKivX/M7tQrxefkwMcKiwE/k9Fc5LJNo9nbFkyJWe4LtXj7VTNJZqGa+7xhJbeYMZnIID1QFZW6Cqinh6MCo6VSgAAIABJREFUs/x83Osx+OVJdPWS12ZJxKm1iCfb40EKPDWpfD4VgRJRpS9uNxbxBQUYgHqhUrL+LF0zmZC5MzSEgVlSgn243XjdaMSE4/eDEIwE5i4XPutyYTvBQqdeLxzvgQFsp6YmMiFptWJS8njwubKy+IEtuGTZbMY2ImUwBjcnCaU9GK682GBQzVlI3DI7oKho5mfsHE82PKyI54mWPrhccOQyMmJOl0/2qxwWiwIBkR/+EOTfwAAwYv58iIgXFqqxajZjYj/jDJBRzz2H72/YgBKd554T+dOfMMbnzkXJ8oYNGDMuF5zSF17Aw2rF9tauRbfCD30IY4odmDVttBQBNdG2bgUxsHs3HGTiQEHB6I6AJ58cucM89blIBqWnx08exluyzI53oToW60lCLgb1lpGhSoiLivDbmEFIbC4pmdlR8lgtUllyvDqGk3mMJJ6nQR/xuMUiEZCHb7yBRbXFgqzkZ57BnL1qFTCJGrmZmcjSefVV+DirVyMQ4XIBK3p68HmLBeSd0ajm8x07sC9Kj1RUwEdasiS6FlN//2gdw9ZWJZGQlYWACRutLFs2uqok2Nxu4K7LBfzIz4+rhGvcxvLiSN2L9R05acwiyc3F4lyv91xUpIIVM0nq4EQwnw8+Unq6ynCjfyuiAtsJtuMai958U+SnP8X4Tk8H2dfdDcxgl+TVq3GuS0rgC9x7L+bz884TueUWvLZxI4jF/HzM1WvXKr16EUi4vPii0kKsrARenXkm8MPvx1rMZlPzvQhe/+c/RV5+GZjkduNYBwfxPiUSGhtVFUZNTfh5ZngYflV7O9aSixejpDoev8LjAfnT1QXMzswEcVhSEt430jcnCdegJBQWUeYoI0M1ZWIlWFGRCqZORyf1RBrle/SEIecbEZwDfTb3RKWfJmpeL+bl9HTMq8HHwm7VTidwKTd37Bre78d91NurunRH+U3JjkVJYbMk4tRa2JPt94Pcs9vhQIoA4C0WJc7b0wNwZBaQCJy21FSACLV02L3W7cb3GYkpLVVdl2trAaTvvQcgrq6OHAVmOnFKCj4b7NT29WHbgQBAIpQ+Im1kBBOKy4V9lpVF11/Um6apRin6kuWMjNgalMTanIT/szxnZETpODBrzWI5/sS5k8U4kYrEXYoc0ux23FPZ2TFFRpP9iofFor/8ReRXv1KNkMrLkdVXVIRxWlEBvCkuBka9+y7G8nnnITr+t7/hwZLla66BdqLLhaYoGzeKvP66yiQ9+2wQh2vWAA8oBu/1YrwZDMDHlhYcxzvvgBBg0yWzGQt9ZhkuW6a0Y5lNGM7YFZQlqenp8S92Q5UsGwwqwzpU92L+H6ohQKTmJOxObzaP7ajMBinJbNHKkhOhYzhZNo2NVmbYmYjbwmJRRwfworkZfk1dHQjC1FQsvLOzVWOsvj6RzZsxTzc1IRBBDVQ2NZs/X2WZ9PRggdzVBZzx+bC4XrkS1RNpaZgHghczTicCF3rSsKcH71FfetEiPBoalC8UrZzU6wVmOBwqcyQRpbtcoEXrXhyuOUm48mKLBQv0tDTVHIYYajJNSensrEUxpxOPrCxFnFCPk3Mefd0EWbJf8bBY9N57It/+NojE1FRUcVFmgF3SFywAZqSlQbalrQ2k4k03YRv0W1wuZFBXVGAu7+8XeeklBEr6+jBely5F1iKboJAAY7KJxwOfjM1P3nkH5ctdXbjWGRnAIpYlL1miSo+JbeHIQIcDmHvoEH4rdV/juU+Gh4G9/f245woK4Eump4cmBfVkYTzNSRi84P3NajR2l2ZFWrIGVPXyEHwwc09EJbHo8XkmBmxsNtyr+fnhA/puN36b34/rFjz/eb0YUyMjGBdRyt+THYuSwmZJxKm1kCdb0zAwKHZvNGIxnJuLhTxLjwsLVUSBWidWq9KWKSjAw+/HREIihI1PurrU4DObsU+DAaRguMiMvnw5OxvpyPpFuduNCY3iwtx2KHM4cAx2OyaS0tLYO3kFAirteWRElQWR9AuXPWgwRO5azHLFYGeXOhpDQzhuEfwuEofjSb+ftcQby6uoXzJRo0YHu2ZHsGSfoEJi0TvviNx8M4IWBgPO6eHDCnuysoA7ixYpZ/cDH4Dz/NxzIPkyMlCyfNZZcJK3bwcR8NpryvFdvx4ZQqtXj16EGo24ptu2ocS5pQVZhgd1Pceqq+EUn3oqHHE6twwgcHEUqTNlMHloNMaeleFwgDSgIHhPD85Ff7/qajwwMLYhgNEYmhQMbk4Sqrs9G6MEE4eToa84VTZdOoaTZYnWR4yDSDwusWhoSOTvf0cWYk4OMLm5Gc8nnaQ6k/b0AC+sViyaP/hBnK/+fjwXFiopl/Z2LIxJHObmggwoLcUiu6QE/gkXMSkpwD/i0K5d+D7HYUWFIgwXLQJJSV+KgUviS7h7wudTWX7shhmroL3XGzlzkI9IzUkiaRAGYxFxkx2VNU1lbvMxazPLRkZUxYb+HgwEVIlntHs0DjsusWh4WOQ730EGdCCAzEC7XTU0mT8ffonfD5Jx3z7gyWc/izGxZw/GCvWci4tVOfOhQ/AfWCackYFy6HPOwdpreFjJNbS2gmzcuxeZXfv3qyQJas+feSaqQxYvVpVgbBTCoGu4cep2A+f27sX/DIjEIjPg96umVwcP4jcxm5qSWySI9BbcnCRc9+LgYw4EVDKJ06mwSE8cJmMQw+0eTRharWq9y34HetIwmSQgenqARxUV4dfQmqZkivRVljSXC/eX34+5O0L1YhJe/eSzWRJxai3kye7sxKO3F6C/ciVAd88egEh6Opxb6uv5fMrRNZtVeU5KCl5jxmB6Oj5XUIBF7dAQSMCMDDjTzCoMN6G4XIi+ud2qPI6grGmIKnR2yvst3MOJjLtc+OzwMI6/pATHxG2FKynm/+yeRX0Hkwm/mxG/SA1K4nGKnM7RHZVFAFAkDpM9Bf54NTbSofMwESMx7/dHjegl+wQ1Bou6ukSuu07k7bfhoBmNWIiTQKQul8mEsbJwoWpc0NcHLLnySpB7FABvacG2ysuhY3buucg41DdS2bcPRGNzM5537sRYp/zCihXILKqvB1lZXDw2QqnXIIyUWaFp2LZ+cc/MQWa2htMd5LO+jIbHkJsbmhTUaxDGky17vBGHkXQMRWZOWfJEbZqIxCQ9W+/bGCzyeBCUeO45RfC/9x4WycSdkRHgy+Ag8GXNGoVNJhN8nfx8ZD23tmJc+3wg6isrscieNw9jPisLPgkJw0OHVMdk+gK5uaoMkM1PQmnoUi6FWBQuOMFmSPoKEosF9w2zT6KVF+tL2Ghmc+TGJHl58ZW3kTh0u9ViNiVFlQueqF2Qk8U4r7HUM9T7JBOjSXDEYMcdFvl8InfeiYYoTiewx+vFeMjLA1loMoF8a22FH3TZZQhaUE+6qQl48dJLIps2AVscDmDOvHloSLdqFUjFkhI0ZGluRuZiVxdIk23bVPUFm5osWaKavtXX43t6H5ha8fTnwhFrPh+Oafdu/LbaWmybQWNmiIXLIOzvB75SG95oVFnMkRqTMIswVn8mEFAdlV0ulflP399sTi7fgcSrHtOZtMIgvp4wzM5Ort8XbIEAyG82Mot03b1e3FtsKKYPrNlsGBNGI+77MHNQEp+p5LFZEnFqbczJ7uuDw9rZiQll5UoAMnULKf5KvS23W4FLYeHoCUPTMOF4PACbkRGAts0GErGiApNCezuAd+7c8A5gfz+OKS0Ng11fvmy3w6F3OABsoZqriOBYOzpUBy6ScfwtJAmDjQswfoaLfUarSKYmAkztdkUckqTMzlaT3WxkPTnMZsP9lpMz8WsWCCgNmfz8sBNdsk9Qo7DI5RK54QalNUaNH3Z5p86VCBbh2dlwan0+ZP6cfTYw5oUX4AhrGqLz552HjMSaGlwXpxNEIZufbN2q9FozM1VGz8qVyFIsL1f6OJo2NirJ0iwugMKV0LndyOqmpsrgII5XTw729o7Fo5QU4CzLiPW6OtRlKSpKTGZyIKBIQ31zDRKHyeQ8RtIxnOllyRO1aWi0kuxncBQWaRqylh95BOPW58NYXbJEybDs2oUxnJcHrMjPx3kiUTY4iEVxS4sKpNbUICBRWAgsCgQQMHnvPfhEO3fiewzALlig8KixEaWAke5VfZkosSjUNaM+VHs7Fo3MiB4eHk0WkrCj0e+LlDmYl5cYLKJGLM+/CDCIxOFMLJebtfDGJoDUDA9levI70v0bxY4rLBIRefBBkdtvx5rIYlFBorIyEBiHD4M8LCqCFnRJiWoquXAhxvXbbyNDcWgIY7ShAdmC5eW4JtnZaBTFBmnvvou1XFqayjCsqgJxeNZZ2K/djkCt1YrARlOTul6aBp+OzV6YcBFsPh9w7913sZ3sbPg0fv9owpBrI71lZuIe4XyXnY01Zm0tgjT01SY6v5MI1Wvfs3FmZmbyJHdQA1sfDKJfK4LfoicMGVA63oy8QGamkh2KZHa7khHLyVH4NTCAsWex4J4LgVXJjkVJYbMk4tTaqJM9PIzIT1sbwHf+fFXWbDJhgtFnoqSlqZLlUBPCwAC2mZWFgZeZiQmprw8TQ04OHFejEZNSqG34/RjgVis+r++mxNJmdk8tL8dngjMHXS4szPv78b28PDjuzKAJzhbU/y2CCYvp6UZjYiNMTJUmcciMJJZLJaJJx6xNvWmaKpVIxOTLEjNqU4W495J9gnofizRN5Ac/EPn1r4EbHBPZ2apbGsdgSorq0Hf66Rgvb7+NbEIRLLZPPRXOdGMjmhVs3oyoenMz8EcE25k/f3S3ZDoU1G/iWHU4lHi//roSc2w2RQqGyhzs7laksD6jy2yOnj3IzA19l+VE4gOJQ+rp8dwkE3F4vJUlJ8ISqY8oEpVITIK7JKKN8otaWkTuvhuLaOpbNTXB32hvx7jOzMSCurJS+QgOB/ynzk5sh3M6Oyr39gKn9u1TJXf0RyoqVNOTpUuRHRRPhh0JGKcTeERMCu6WSb8oEMB+TSZ1DJEyB6diUenzKeKQJYc8xvE0mpq1mWUsv83JiXxv67XDU1NxD5yoneLfeEPk+uuBKxkZqulSXR3O5b59wJ4zz1SB0vJyVWGxc6fSA6ysVDg2PIwgx549qou7CHyfwkKQhKecAl8qNxdrqvx8Fcg4eBByL6mpkJOpqFDH7PXi8yxh9nhAXulJwaEhBE+YrJKZCb+HEg6RyoqzsvCdnh5gbloafLfy8sQResRSh0NptRLnozXOnCmmb1TFuYABGaNxNLazwudEMasV86Dex45kJLU9Hlx7rtM7O8FJVFQovU+dJTsWJYXNkohTa++fbGbkHDqEyaWwEIPB7QaYM8JDgVyWLIdbkNhsKnXe7VYg29OjugazO1J1deiFsNOJScXpxP4KChQxODio3svNBSkZ7FSmpKgJKjUV2ygvx/GTKAznjLjdoycMpqcnolSGwuKcRJkpwMmRzWlmLbmN5WHUlZro4t3jwT3DJjpBluwT1PtY9PDDIl/6Esa4z6fKXkggpqerDIXiYkzWnZ2q8crJJ0O/p7YWBMCePdDqaW1V2TR0oFma3NCAbRuNGI82G7afna1eIylIfZS+Pvzf3Y0HF+ThmpMwi5vkIB1dEoThSkOCuyyPYyEV0UIRh/oy5ZlMHJ4oZcmJMF7fRJHOEYjEZD/L72NRZyeCGTt2qIYQixcDR3p64A8tWgTCj4vlgQHVjK6iAtiSnY0s57174WMdPqzGc2EhFvyNjVioz52L/WRlRe6kHpwpyMVhX58K4FKGQW8MwqSnw9coLERwtqRELSSzsqZnrHi9SuOQ58doVM1RThTS/0Qw3sPM6I92bYPJxBgb5Rw3WHTkiMjHPobgJ9chLC89cgTn5NRTVQZgSgow6vBhfLa6Gs2f6uux1mtpAfl38CDGGzOnCwsRtLjkEmCC2Qx8yMxUFV+Uk/L5QB7u3o33GxtV2afVCiyizIHXO/Yak6iyWpU/t2wZjlFPEoa6zi4XfD7KQmRnK38qETjh8aiMQ/qN6emKOJzJsglMOtAHjJg1yfWInjCcLryfSdbZiXNUWRk7Kex0KjkhzquHD+N819aOadhygp/hqbFZEnFqTRMBWG7ZgoV2YSGAfXhYMewETk4w0cpTPB6Ae2rqaF2T7m4MKosFAzY9HQvpUB2Me3tBYhoMmBiYMuzzYTsjIxi0NTXYXrDu4PCwKgfMzcV+okVW9MK4JPY4YUx0UmJ50NAQjj0QwHGypDo7e9ZBPh6NDpXJNLaD+HiMmSUk1XSW7BOUJoKy4gsvBH4wO4YlTyYTxlFqKhxYpxOEXVoaGhtQDmHPHiz62SnbYkFmYWMjsnpOPRWYIqL0l1wuOF1Hj6rs65EROMFdXXh9YGAsqZaaqkqKSQzqMwdLSxXhy8UPNYOimb7LMiUVEiWboNc3DCYOZ3IA40QuS56oTaE+YrKfeU0EC9+f/Uzk+eeV9lh5OXDFZEJ5cXU1sGNoSPkMbEbkcGBBsXs3FvPUjJ43D1hUX48gBnX8iGlsEqInCfWNSfh3MGEuosqL8/NxHMEZhCYT5g9mUBQUTH9TNuq5kcgQGd0YZdYvOn6NGT2UB4pm+rWCiPL5j3d9VodD5NJLofcsos6X04n/ly5FcMPnU80eDQb4RHPm4POUSOjowOfS0vB+YyOeV68GTqWkIJOxpwfbz88HxrW2AncyMlSzzO3bgUeFhaM16plwwmZTRUVjMwk9HmBjby982aVLgafR5m2rFevHgQF8tqgIuJyIRoZMHnE41D1G/zNcCfZ0m77bPR8jI+r9rKyxZcmzmDrW/H4lrVZZGZ9GLzt4p6XhXj54EP8vXDhKriHZsSgpbJZEnFrT/H50QGV0KyMDQMoyZYtFZQHGAqCBAADe7VYL9JQULMKzsrD9o0exr9LS0GDW14fJy2LBpGI24/NDQ/iuiMri0X9f01QjAo8H+ysri97cgs1SWLJM0nSiXabYqXdoSGU2sQzSYpmN/pwoRmI6KysxnctsNmwzO3vUAjDZ7yStvx+ZOOx8bDCo0jXqgjFIYDSqpkwsFRbB+42NmLzr6qCPWFEBYpDBB2YUMnuwt1cJcOsJu+xstfguLYVjQZKwsBDv5eaG76RMHS8GUmIpwdN3dKYWFMnDCZ1cbXTGIc+vvlR5ptlsWXLijURiovQRwxCJSY9Ffr/Iz38ucv/9wNqiIrWQZNM2rxfjhs1E3G5gSVcX/jcYkI1QW4vP19UpSRhqD3Z1qW61/f3wFagzrTeTKXx5cW6uytImFgV/3+VS2SgsVU5EUGs8Rq1GEoe8f/TE4axfdOKYywX/KB6fOw4yMdnvJE3TRK64QuTRR4Ed9IEMBiRRVFUpHWZmE6ang9hg0wgREIULFmDs19YCi9LTsd5KS8Ma0GbD57q6VONJEdVsyWIBBlKWKjsblR+1tQqHjEZcR1atBc8zQ0MI8nZ04HNsKBVpPvL74a8dPQo8Nhpx/GVlEyslZpMWEocMsumJw5nmGzkcowlDBrBEVLNB/VyRDKXWM8UcDtxjFgvm/HiMzX44Rpkd3Nj4/jhKdixKCpslEafQNE20d96BaLjHo6JEtbVYNFMfQD8x0wEM18G4qwsTUUqK6oo1MKAW5IOD2Ca7MOt1CD0eRAK8XkwO7K7sdiONnvqKNTVjo+fDw5hkXC68V1YW3Umm88KSH04cE0lTZ8np0JBaXKSnq65gE+3WO2vJaSMjuDcslsREM6nHYbG87yQk9QTl84m2fDlKbGh0lkmisQO6y6XGaEUFFucVFQh0mEwgBtvalFyA260IORJOBQWqtLi8XBH75eVwogsLlYh/ZqYqNdaTfGywFOz8Uo9M39Ag2jWfjJJlEkYkD0Vmbkfl2bLkqTMuNhOljxiCSEz2q6P9/vciP/kJcJvdg0tLgQV+v9L2YhaVwaCaulVUYAGSkwP8OXAApCH1FDkGiSGUMmCwoqBgLFkYLluQ/hexKHjB6/HA53I4lJ5ucCf5qTB2oWdHZT1xaDLFXJo6a8epjYzgvohXZ1PfPCiMRnCy31XaLbegGzPHTGrqWE1SNokjplss0HiurUUmYkkJxh67x7PjbiCA7w4N4Tw2NGAbmZkg9sxmpX/Y2Aj82L4dGdZlZdA/JDZR85BrqWDyym4HUXnoEMZ7YyNIzUi+kdOJpBRmcufkwEcrKhq//6JpKrCvx2RKVoUiPqfLvN7RhKHVquRyUlJGlyTn58+uLxNhfX0YD/oKyFiNzWp4bx09irXEggUiBkPSY1FS2CyJOIX22muiPfYYwHnBAkw6dXUAJqMxNFHIxajeWK7MaA4zhTIyVEOUoiKVth4qVbivDwOOKfaZmRiQPT2IWImoDAD9d+12EJcOB5xRfflgKAsuWeaEOZGJg+VMQ0OqvMBsVsRhIrLPZi25jVmy7Ao+USdF0zC2/H7cZ2lpyT1BLV0qWnPz6NfoEJOEy8zEAjszE68z4qc36nwVFSHYwAV5eblyptk5ldu22YBxGRmKpBweVt1HKYPA8mLqygXvOxBQWl5cIEcjD4mpiSpZJnGob4A1E4nDSGXJs4Th5FuiG60EEYlJfcXuuUe0r3xFZY9nZwMD3G7l65jNSts5I0ORYXrjuTWbgTkMXBQUYJu5ucAonresrNjHp75zbagsLOpGM6DLIMlUjiXiIR//n703j5Lsqs58vxsRmRE5zzVXaSqNaEIIyWAZj7TtZ7+228vDwwZjuRd2P9NgwHgELInRdGMbT3Rj2kY8sA02NGB5mQYMmElCaEYSGkoq1ZxVlVU5RmTGfN4fO7fOiZv33hgyMzJu5Pdb664YMqa8wz77fGcPgI3IVuGQEMD6RzrmNnueuotwPkE91rbo3e+Gectb7ONkUuyNCqa9vfJ4zx7r2wwNrc1ySiRsplV/v629PjYmcyhjJIVZF1wvvFCOh87ZDhwQn+jrXxeR5NprpTu9+mErK3KrUYiuHSsUpFGLNru77DIREKPKS83Oing4P28XWrRxZiu48z7dD265qo1qlLkeqlXZ5yoWzs7aQBTAHi/dhoY6x5/rJoyRKMJKRaJ8W4lELZXkWJ4+LRrGxRcDF14Yb1sUFygitpGrr4bp6xPx8MAB25HJP/i4tbLcyahGyiQS4iRqcVydAOZytoOV1nEbH6/9/GrVpi/39dkVJk0N0k5dU1O1E3L9Pl19q1cMvFKx6TOAHYBbDfV2Q+C16G46HY+iu2RrqFSsyN7qiqGbkqqdgMtl4I1vjPcA5XlYY/h1MUJtTjpdu+lk1N20hqA6heWytWFArWClf9eJeCKxdiLi1vhxbZsfNxW6kfRaNz1X37MeJ1b/L/9n6v2tRn9X0PDeSb9zO+Ger63gP6YqWt91V/fYIrU9mYwVE92IlUwmfNPC/IAV+jRDA7DdVYHGU3hVeHcXHfz+VKFgo1XS6fZOkDVS241+Vh9xI5tBke5Dy39o3eBmcCPZ9fwzBvjTP+0eW5RIyPU8Pi7zNW1usnu3jZZ2uxa729KSrdOWyVh7pFFXN91kbcaBAzL3WlyU79qzR+rl33+/HJdbbpHv1lRgLb+gDSuVclnqKD75pBzbiy4S4THM99V699PT8ju1s/SuXa3Np1TcXF6Wz9NFM52j+ee67SabrY0wXFiw44EuPLl1DDmnbB/FogiJmUxtp/FmMEY0kCeflFIlP/qj8bZFcaEDy5Z2L8mkFPceGBAjtrhYO1nXuhZqbHXg8df20uLI7qRkedmu2GezYrTHxmqNtgqFlYqt7VOtygWnXW137qxNS9auU7mc/F1r+4Q5p7oKrrVTVHhodnVBB8xcTgYmTSHS4sH9/Z1ZdJd0DjoZzeetM+ei4qC7uaKh2z3XfU9QN+C4ohNOvZ5TKRshqPbIf6tRODp50Am5v4lEkIAIWOdM63O5NQjd1NqgZh06oXd/exhhQl8rjqz/s/TzOqGhSJRgCFA07BQ0PV/vu/iPoXuu1Tu+3YA2ldOxXf0G7Zqstkef1wVJtSWFgk2VU3/J86y4oQKif7EiCrU1bq1UxZ3Qa11nf0TQZuGOUa4t1AUgCoekEXTc1YU8/7jtj1wPi2QH1tbQjTOplHRcvuoqiRDUDKexMYlsHh62pV7cW/WDcjkp76LNKAG5JrVz8oteJP5oIiHZXqdOie3SMi/f+IaUk9q9W9KXMxk5Rq59cxcqqlURHR9/XOzRvn0SuRjW+GR52aYsV6s2QntionkfQevbLy9bvziVsna8XnPNzaJQsGKhCocafKLp6ZdcYtOTt7rZ1Xant9dmT87Py3FpFs8TbeK666RxLWkPjERsI5UKjNtUxL/p82rsXDTCMJOxIdc6gFWrcvFMTMjANTYmq0kuWoC8p0dWvvr75bVHjojBnZyUwUcn8+WyDDLakUvrmQWJgdWq/e3rSVk2RgRQFVhVOBwasit+FA5JPTQ6Q8sCaKMdneRpqYAg06f1QlXAD3rcDSmEjz0Gs2+f2ISobW5u7XsHBmRFfnhYHF0tybBjhzije/fKY51863WtzVO0E6rWEurttbWWtCmKO9F368JqFGNUJJF7fNeTsuxO1vVccSPFt6LOGesYxg9XjHKbE6jIFdT1F6g9nv77vmMc6yN9/DjMjh22y6ne6qaP3VQzJZUSe7SyIvti506xS2Nj8nx/v9gjtQONNFdz676pLVI/RmswaWkL7cS52VEr5bLN7NCIw1TKCqqd1oyAdCYqPOvYVq3KGF8uW8EryC9Sm6MiddBtN9iir34V5pZbxJ7k8+G3unjgorbi5EmxVUNDdnEkn5fnbrjB+pG7domYp2mc5bKkL2ezwPXXi4gJ2DlhIlHbsdgYERsffVQ+e8cOEVAmJtb+X8bIXG562gaMaMpysw2fSiUrHGqmmTbH1FIT7USDatxahhqRrun6bi3DrahRSxpDS6Xt3bs+AXp1HsGj3AYoIraXhna2rjoFCYynT0vkYD4vr9UmJZo3SNi+AAAgAElEQVRaODkp4cAaTdTba52EHTskEjKRkIYq587J+y64wK5aVasiOJ47JwPP2Ji8L8hJ1sFEQ9d7e8URaebir1atU760ZB13N1WAK+tE0Tp5/tqh9eqI5nJ4vhi/m17iFwmbIO4DVEO2qFCwKS+nT9v7zzxjVw3PnrWCv5JIiN3YsUNs0q5d4iiPjsq2d6+Udejvt8dNo6/dCXGpVFuLLKixCrBWoNF0vmYn1240qg6NbkmJdtc4C4v+cMXCToiG3I74BV3//bDoHBUNNXIsSBxscsyL+9FvyBZVKjLBdkXGxUVJG5yetv5IMmn3u0bsDA1JqqDWJtOoR73VCb+OJcDaBk2aDlcui2+l5Wg2i1LJNkdxzxkVDukXEcVt6uUKhP5bPzpuZLNybo2OrhUImxxftoUt0khkv7h46JA0Msnnbc3CbFb8z717bU3FqSl5rq9P0o5nZyUNc3gY+IEfkNeWSraeoGaCKCdPSsflhQWxQ9ddtzZwBLDNN6en5fem0yIc7tzZ3MKHlooIKyfVruAOXZB2BcPFRWvv1S673ZK5wBIfqlXRJjxPgprWOcbF3RbFAoqI7WVdO3tpScS9QkEM4+ysFRGXlqxwqKLj3JxM+qtVuwKjTnhPjwwm+/fbdKGVFetMTE7KQON3kt0041LJ1uZoZiDRlaPFRTsApFJWOORK0fbDFYGiRMKw6MGoyEF1lrSQ+AYVvI/7GdqyLTp3TuzNrl3WHuTz8vzJkzZV5uRJcWBnZuTx0pKNTtT9Pzwsn6Pb7t2yTU3JpH9qSmxROh3sUKiorBOkVrosu+nriluPth34BSm/YOgXDcnm0og4GFZvMihy0H9fReoNmnxta1t04oSdaKuPk83K392JbzZrhUddhH3+B6wei8FBGR+05plmP1Qq8vmjo2KXNiP9TSMgtSSMm36twiH9ou2HKwKGCYRhtigqctAtB6I+vc4h1kHcz9CWbdH585JSPD9va7pqQMaePXIdV6tiT06dkuPT3w888YS8bmICuOIK20leBUetP9/XJ8fo0CGxY+Pjkra8f/9au5DLyXfMzMh3jozIb/DXyI8in7fBK7o4m8lY4bAdvlE+v7ZbslsWx98teavSp8nGoR3Ch4YkCGEdxN0WxQKKiO2l5Z1dKMiEXMXCpSUb3q5Rhm4Y+9mz8npA/lYsAs8+K4MKIAbXGBkkZmdFYKlUbJdjDU3XzS2KqxGHExO2c2s9NIVRU0uNkUFAuxg2kmZE4okW33ZFwaDHfjQyrZH04kbQc1A7Cq+TuJ+tLdmiXE5sy8iIXPuFgo141ihQ7UyoETuA2Ct1SM+fl4n/9LR8lpZaOH1aHG43YsLz5LNdkVEjHKemZKFj1y5xkBst3K2CkCscqsjTDuGQaclbh7vvw8TBqPTieuJgo8dKI4fcGqLrIO5nSEu2aGVFohCXlsSeDw7acioDA3ac0DRNl1LJRjOePy9+ydKSXUjV7Ihczto0rX2mkYtB0Yx6v9FjakxtR2UtwaA1Hykcdi/uOBQlEAZRL7W4lej0bFbOwXWWDYr72dqSLSoUgIcfFr9mcFDshNqXPXvsQmg6LXZleFj8p29+U15z1VWSEaZzJE2XLpftAu1zz8lcrbdXSlLt2lVbv1oDQRYW5Dj29Uk01/79jTUWNKZWONTxyRUON3MBU+vvu6KhLvbo4r8rGHLO2L3Mzsrx9/doaBKeHW2AIuI68TyvB8AlABaMMdN1Xt7Szq5UbC0LHZzUuBsjF9r4uLy2XJaivtmsTRs8f16igoyRxzt2yPsXF2XirvWE1Pl106iXluSCzmbtKlo6bWuWaV1Gv+iotTuKRRvOD8h7VThstWMu6RyiREF9HDQp14ixKJFwM8QcrU2j5+s66LgBarNtUbksdqSnRxYQtKOfLmTohEdTcPr7bVOb3l655tUx1sgfnaxop8hiURzm8+fl1q3PqCnVp0/bIt5u05CJCdtdcNcusYv6eOdOER3dDq0q4Gx2MwKmJbeHRsTBqOjBevUHN+P3qkDVjWk7Tdijpm1RtSoC4pkzMiFXW97TYxc9tY501Ge4zZ3UpykWxefRUi0aiehGMrrp1EE1rPv71wqM+lhFBs+zpRoSidpmMbQD8ca1PWGpxWHpxY0IhJuBMSJAAevK1ujIM3czbZExEoF46JC9hvN5sQ26yKn1uHM5ERTn54GHHhJb9X3fJ6KYCnfa3C6REJvz6KNSuz6RkNRnN9U5nxc7dOpUbZdlN5W3pye4EYzaSR2HtHGLLpioj7xZY9/iYm2E4eKi/bvWmnW7JTMDY/tgjJzTxaII4S3WHK575jY5ZyIBUERcJ57nXQjgOQAfMcb8Sp2XtzRAnTkjk+pUSgYMFVhSKZkkayejbFYExEpFBpq+Pim8m82K83rBBTJo5HK2gGk6LYOc28nLXZFyU5aTSbmo/XUa3S2XW1t0V6MWJydlMAgSHRmG3ln4m5OECYWtNifZSocgmxURanh4XQXxO85Z3mxbND0t17RGNmuUjzZEqVbFbujiQi4n58jgoFzvbuMUPQd0Iq+r3r29a6Mg/CnL6lyfPVtbr9G/zc+v/qPOfzowsDZ1Wh19fW5iovXzk2nJm0OQOOgXCoOoFzm41cKt/vZ1CokdZ4uApuxR07bo5EnxbXQynEzazs3a3TlskchtnKI2J5GQ5+bnxbYkEjalud75oRN5V2D0C40a0ejasVTKTvbHx4NFx8FB2olOI0oY1Nt1NifZMsplm63RYgTQtrNFx4+L0Kc+UbUqYuzEhEQBZjLyXKkkc6Ann5SIxf37ge/5HlsSRudZPT1iUx5/XLLHPA+47DLgyitrm5ZkszZl2Rjb3K6vL7heo95qJ+VCwS5iJJO1ZRzcCEc30rFVW6TltTTSUBtTAVb0VFs4Ntb+5iyk8yiX5drq7ZVo3hZsYyMi4oVofM5EAmCv2w5nfl42XSVURyOVEqFweFj+phPqdFpWq+bmJPw9mZTHExMyiBw5Io5tT48o/KOj9uKsVKwwqFGHOqDoa3SFyGV5WX7bwoI4y1qzUQUjXeVaWbGrZX509Us3v8ionanpUK+fsOYk7uOgNBoVf1IpWwNznc1JtoSBAfkfl5bk/Oc5VZ/5eblux8flHNEO7CoMViryd73utfvy2Jg8p5GDeo5Uq/KcNlTRCBxFV8fdLstuI4p0WmzalVfW/k43+mN52drFc+fWio733GObwrikUuKMu5GMQZt2lY5KS24l1XU70WpzEleQ1ZIGQUJhp5NI2P+X50hjLCzYUi3ugqqOS1ECYqWytlFTpSKLtEtL8prR0eYiX3SCPTW19ru0MUqhIJN+jW7USb6KjMeP28ZyLp4nYo4/XdqfTr3Z3aG3A/704kabkwBWCNTGX+tsTrJlaBTcyoptxEHCWVy0NQrVFs3NiQ3Zt09skdqbgQHg7rvl+r/xRmlyqXOt3l6xIeWyCJJPPSXn2yWXAC94gbVnxogvc+qUfGcyacu5uDbPX65H/SGd36mAqGOlMVZkXFgQPyloDqANXoIERr0PrE1LVv9PF2cuuKA2LZkQP6mUjKlnzsg5pNmWpLNgJGJ7aWpnLy/LirtG9ekkY2BABMShIRkIjh8XB1XDvo8dsxP+AwdkkDpzRgx7MikT5PFx6yRr5y0V99Jp+Y6w1SBjRCxU4VAHIy1KPjISLSZpxFJQ92l3CxvEglKn3ee2q0NdrzmJPg665DXtISrFOA6T8kbR5j7JZGPRJgHEYEoQScO2qFAQp1WLextj649pJGGpVCsO9vbKftXX6AQLsB2XAXnOTd/T+pl67TfSZdmtb6jntlvfMOrYqoAQFMnoblqOwWVkRBz4HTtqIxtVeNy9e8Oa+MSSzW5O0k2okN3iIkzc90bDtqhYlAn23JxNGdYoxJGRtV1Mn/8CJ/rQtUXqwxgjn6WLHq1SLtuyDO4x1SjJqM/Wibw/itEf2Ri0CJtOR9doHBpqvH51N1IvtXgjmpN0E0tLcv4ODzd9PcT9DGvYFpXLwAMPiIioKcPnz8u1dtlltY1UVlaA735XfKhbbpHbYtEGT3ge8Mwz8ppCQeZt11xjxcBi0foiWu9QsyjCjk+5bIVDFfG0xIMutkRRLNpyNP5oRv9z2sxK62pqWvfoqERfah3rHTvkuxutX02INmX0C+UNwDOsDVBEbC8N7+xSSULeZ2etM+p5Mqjv2yeTeE1frlZl0qqRN729stIzMGBVfM8TYz45KYOOpixryqFbByNoUDJGLmR1utUZHxoS570FZ6Mu9VKn3ZRpF11NjYps1JpEcWG9zUn8wmCrzUm6iWJRzulMpqXV0LjvsYZsUbVq66lq2YSBATvxKhRsMwOdpA8OipOoUYaauhwlHgal+kXVfwoSDjcyLcwfIbe0JLb09Gm5PXPGRjaqc3/+/NqJqJaLCNp0ErBjRzwieJWo5iTu/SA2sjlJN7HORitx32MN2SJjJLvi6FEZw4eGbI3m0VEbEeNHx0nARjMvLsqiarVqsytaXXwsl8UOalkG/R6dSG+0X6QNwvxCo3tfm9e5JBLBNRr9YmO7OtJvBK69iao9GJZeHCUMdkJ68VahKbmJhPj3TRD3PdbwHO3pp4EHH5TzrK9PIgSHhqTDso5lqZT4T2fOiDB44402u0I7rh89KtGHy8viF1x7rY260nqH587Je8bGREzxZ4MppdLaclK9vVY4XG+ARS5XG2GozU/0u3RupZklpZL83X/9ackbfxSj/zZOtohsDtWqaCHGSAmAJhZt4m6LYgFFxPbS8MT91CmZmLpFu8fH5SLq67OT2ExGHMCzZ8WQa32v8+ftpHZ83E5Ug1KWBwaCRbVKxQqHi4vyeo3cGhmRAXOrV2E1jdIvMvofhw1iQVGNrujYjkEsKnqw0eYkYdGDHISj0fNEha8miPsA1ZAtOntWHEdN+9ZGBTpx1vNSBUOtrap1dlKp2ghYN6o1KGVZxcOgyZuKhu6k0G2M0uqEL6pbcjN1DMtl2V9hNRrdSAIXXeAJawqjWzvSfhoRB1tpTsIakPVZR33EbWOLnnrKLmikUjKGj48H11XWzsduJHQuJ+Khdo4fH2+t/lapZIVDtRduR+WtPterVflfg6IZXdExrClMWDSj3g8SazcaHR82ujmJ3ifRaFNE9ZMbZFvYojNnpBzKwoLsn9lZ8SGvusoKhKWSNH8qFoEbbhARUUvB9PWJn/Cd78j1OD4OXHedjPvVqk1Zzmbl9Tt3ingYdN0VClY41EACzdjSskOtUCzWioXz89Z3SSZt/ULdomrQakBIVFRjUBCENsoKS53u62P9xO1AoSBifH+/+MINEndbFAsoIraXhnb2zIxEGGqUDyAi4IEDMiAcOyYO4tCQGN6FBTGmBw6IQZ6ZkfeNjsrg09srRlzrFQLWMfAbYC2svLAgTqZO/DVNeXAwfquzWrg4SmR0B2AXra8UFdUYJj6ttzlJvejBrZ6odAuLizZ1pwmHK2ZXwRrq2qJsVmyJe54nErKvNKVOJ3PptE111vqF/u6nOrluJmVZhUN9rTtBbGUiqIJhWLdkf8ONjbZ1xohD7kYwquioz01P2y6ZLoODwZGM7mO3TIWfRsTBsIidTm5O0k3osWgyCirue7+uLcrlpNHA4qL4Nb29IqqPjweXXtExVm1RPi/XXakktmp8vDkhTNOhtcaha+c0oiiO14B2kVVRMSiycXl57ft6eqJrNGpTmLB9slnNSbo1vXir0DnD0FDDUWwxvApqqGuLVlaAb3xDBMJMRq6RgQERELU5yuysiB6Dg8DNN1sRNp2Wsf2RR2zq83XXSXZZoWB9glJJ3rN7t8z9XF9H5zMqHGoEuxsU0axvpOV9XMFQS7h4ni31oM1PWiwBFIn6lWFio9Zy9JNIREczrrcpDOkM5uflmpmaqm0EG0HcbVEsoIjYXuru7MVFSdlZWBCjmkzKQKKrWMeOySCSyYiTV63K39NpmfCXSmLwd+2S51yBLCxluVSyacrZrDynNYZGRrZPLZ1yOTp1WgczYG06pU4m/KKfDmAqwLjNScJEwu2cRrMVGGM7+bqNhuoQ9yMUaYtKJXGCPU/2iZ6bOol2o0AGBuTvuuCg79cIIE3pC0pZ9qfSu8XtXeHQjThsBlco84tk/ui5TrrmVlZqhcag7ezZtXVjk0lxsnbutKnSO3bY5/SxLnz4m7/EsTlJt6FjShPjQAeduS0RaYsqFakVduKE9UcGB6Wxkl9A9C9clMti2wsFsVHj441HVWkEjW4qHGp9Q7ccQzejGSlR3afVF3UXaQDZ1wMDdnMfa8MYFafqRQ52mo3eDhgjx9cYmbg3MB7E/QhF2qJqVeogPvCA7ItcTs7pF7zALpRqjXqta6g+fz4PPPaYLBL29wNXXy1NLxcX5TnNHJuYkDmdlo8BbPkpFQ61EZcb1NDoWG2M/D4VC2dn7TEG5LPcTska9d0JaM3tsNqMehsUoRzWFMa97ZT/kwQzPS3HV5sW1SHutigWUERsL5E7O58Hnn1WJo8qIO7fL4PR3JyIhOpE6erg6KiIf4WCDfXNZOxgowKXdjd236/Coa40ZzJWOGyygGnXoCk0YdGDmuKhq2I6kOXz9jWaIqTOgzrB6jyHRTRu56YwW41G9Pb0bJtVrlBbZIwdrMfGbIreykptXUMtheCKTioSqnioz6kw4tbodL/PTVUGWhMO/SnJfsGw0bTkTiIqcrBcljFBBUX3vm5nzshxA2on4GNj4TUa9f5mRBuQ+rRQHzHuRynSLzpyBHjySbEn2rxtamptdJQbfVitysR4ZUVszehoY1kUKkLqBlhbpsLhdiWq9qAKjdmsvc1mbUr18rLc1yZ87uamT4c1h2kinZZsMJWKXEup1NquvwF0tS06fBj4ylfknC4Wxf+54gqxDdWqCIiJhNQ13LdPzu9yWezXsWNiR666Srounz8vflYuJ/tWx2GNkK5WawMYjKkNBNGGLPXI561YqF2T3aZP/rTkdpQq2Gy0KUxUQ5iwevr16jSyKczWUanINZZM2usrAh6lNkARsb2E7uxKRQao48fFwPX0ABdeKHUwdKBRZ00Nf6UiBjGTkclfOl3biUsbRqjju7JihUONqOvvt8JhkzXhYodOvOulGPtxhY+oFGPXoGnHa39EY6NNYaJqNXIQ2xwKBZn46H6uQ9yPQKgtmp0VR1NF795eOV81nU/Pe41Q1hRlFT784iFgBUEVRYKEQ3/USeSPj6hjqJ+1mWnJ66VdzUk06sBNnQ5KpT5/fu33ZDLhTWF0m5ri6v1m0KSQ2GFnd9NE2qIHHxTbrFExO3eKsKR+jS766TWl4lUi0VjqnUa3aJd5wEYVaYOAbqadzUm0mVlUVGMut/a7ksnoGo1xbAoTJwoFG3VXR2TqWls0Nwd8/vPSCKVYlEWJK66Q27k5sVUjI9I8ZXhY/J/Dh2VLJIDLL5fIw/PnZcwtl8W/0pTlRMLO6ZaXbUOSZNLOB+o1hNTIaxUL5+ZqFxGHh2sFwziWp9ootJ5+VAp1vaYwYXUa2RRm81heFr91ZERqiUewTc/s9kIRsb0E7mxjRDx8+mnbLfaSSySs/fRpKyBqkdmeHpueo6lpWhtDmx/oBH952QqHKlrpav7ISPc4yP7owSCRMGhSrgXXo0TCzRoM1GGIqtUY1hSmXp3GdjWF6TayWRvlWydcPu4DVKAtWlmRATqRsFGIroDY27u2C6qKHdowRaMRVQBRgT2oo7Jb37DeRD8uacnraU7iioHtbE5SKjXWFMbfiCGRqG0K40Yyuk1i2tEUpttootFKV9qiQkHSBk+fljTksTFg716bXqd1CtWeqHjoeda/CdtvlYotzaALh8mkrW/YLcJ4HJuTVKs2ojGsXqPWMfYzMBAtNg4Pd/9i+WaRzco1MzISeey70hYVi8CXvyz2qFCQ8+zSS8UWaefYAwckAhGQ6OnDh+VcPnhQ7NbcnAiInmdTlkdGassoaXBHKmXncVE115eWapufaB17QN7rCoZ1jhsJoF5TGL0Nq6cfJjCyKcz6OHdONI3duyMDPuJui2IBRcT2ErizZ2akVoY2MbjsMlucd3HRilo6cU+lbDcsXSnp6bFRQ7mcFQ41vWdoSAaRJptHbDnanCSsa3GzzUn8jzs9rdEtohwW0RjW2cxtChMkMgY11tnuaA2gSmX7OcuVitRBzOclwkwFRF3J1mYGOoHXa84VCf0py60Ih52cltxqc5JGxMGtFj/rYYyMSfWawiwurn2v1ukN23bvljGt0+1xu2mwPmKHnzl1WXPFGAM8+qh0Yx4YkHNk/345R7Tju0Y653K2JIuWeAmy21qOxG1Yl0pZ4TBuE+x6wqBrc13CmpP473c6blOYoBqNmkbtR0uWREU1bucIrTCMkTmFRrSF7J+477XAOdp99wFf/KIIdUNDMkfr77f1Da+9VuzTsWNSkqpUknTLXbtsc6KeHjveJRK25JQGd2h2R5hfvrKytluy2rGenlrBcHSUYnk7USE4KrIxrClMve7TWk+fWIyRuUq5LNddyNgdd1sUCygitpc1O3tpSTp1HTkijsvBg+LYnj8vA8zgoO0+lUrJ4N3XZ8VBNTr5vAzwKoAkEvLakZHOTfPQRgtR0YP+xgGAjXqKEgm3W3OSUql+VKOucrokk7Vd3YJEx+3W2axaFQctkZDrZ7s4y2fOiEg0Pi6Oizo/GqEzNGRFMo0yVPEQsFGHbnMUHV7c+ob+RiqdkJbs/w1h94Ngc5JaVlassBgW2Xj27Nr9mUqFRzK6kY7bbeFDr6OIxb+us0VHj8rEHZAInwsvlOidREIm3VqDTyP1BwetwOjidlTW883tqNyJ16ZrP6MEwiDYnKSWcjm687Te99siXXh3tyDhsVsyeRqlVJL9lU6HRpfH/ewKtEWf/KQ0vBwclLTkREIiM3fuBF78Ypl7Pfus2JmJCYnO1yjnwUEpSzU8bJujaER/Om19bX99VzcleW7OilDql7qiISP9Ox9/U5gw0TGsKUxU9+nt2BSmVJIMzkxGrq8A4m6LYgFFxPZSs7OLReChh4DHH5cB5qKLxHmZmbFderUGiXa204lpOl3rIFWr8npN4xka2lpnsZHowSBjqUJEVPRgJwqicaBatQNVVAfqoOOiA1VQVKM+7qZBrFSSSUY6LU5gAHEfoGps0eIicOqUHMeBAevUqO1R4UZtSjIZLCa6kYP+OojA1qQlu2JgmDgYFT1YL4qQNE+lIikpYTUaVYDUKFiX8fHopjC7dnVXU5gG6iPG/T+tufoWFoCvflUWNC6+WCbtk5M2tUybdWhTDi27oLiNUXQs0/qGWy0cNlJ7MCy9OEoYbKVzPRGMEd8nSGB0nwuKJMpkgsVF93G3NYVRf3FwMHBBp6tsUTYL/P3fA9/+thzHSy+1CzqXXSblpA4fFl8pnRY7pYudk5MiKCaTcn5ptpAu2vf3y9+0CZQrGGaz9jfoAoluDXbJJjHFTZ8Oq9MY1RQmqvt0b2/3+EWAXDczM3Kdud3MV+mi/7RzoYjYXp7f2dUq8J3vAPffLxf3/v02AkpXHTTqcHDQ1hsrlWwDCE1jVuFwYGDzDYTbnCRKJPQT1ZzEfdxNBi6uBDWF8T9upimM+zhOTWH0/x4YCCwmHpP/IpTnbVGxKJHQxogd0ZXy/n67GKGioQqG7qZRMW4dLX39ZqYlr7c5ST1xMC7nabeiNZ+iajSGNYXp61sbxejfJifjs/ChQmJIZGvcz9TnLUO5LALioUNSF/oFL5DSCtWqFXUAOb7aSVRrI2pzFF3ccIXDdlzL9SIHm2lO4n+OtmjrKRajazRqV2o/2hQmrEajpk/HaXHcLfnis0dxP1Ofv0IrFeCznwXuukv+x4sukmM0MSG2KZez9mhiQo5jKiWLXNpYRRd/XOHQTUvWJijqp6TTtSnJY2PbL9qV1EebwkRFNTbaFCboNk4i9Zkzci3u3bsmhT/utigWdLSI6Hne7QBuc57qMcYESFTtxfO8gwAOOU+9yxjz1gbe+vzOPnQI+MpX5P6ePTLgaMHe0VFbwzCZrF1ZB+RCUeFwI1c5/c1JgqIHg9Jo6jUn0Y10D/6mMEGiY9ggFqemMEtLtpj4O995O+644w73z3G2RwaQ43P0qDjDg4NigzxP7g8MBKfluhNaN0LGrYvoind+wbARgS6OzUnI1lAsrm0K40+lPnMmuCnM1NTaKEZ/k5hOiSTS8z6ZBO64o/tsESCdmO+9V/b7i18sxyeXkwm3MVY87OuzacramdnzbJpyT8/GRjI3IhD68TcnCWtUQrqHoKYwQRGOYU1hojpPd1JTmGpVIoaTSeBP/qQ7bdE99wAf+pAcswMHZF62a5fcZrNyDCcnZevtlef7+60t0uwcrd2pwqHO45JJeY+KhWNjnTPWkPij9fSjGsKsrATP6bUpTFS9xk4pK1OtSlqz50kdUse/j/QAulBf2hLiIu28avX2+dPd87wfBvDbAK4GMAngPICnAXzVGHO787rbUXui+HmNMeZ/rb72TgCvdv5WBnAKwL8CuM0Yc3b1+dOrv2kSwJ82+8+cOiWdvrJZcZJnZmRAmZqSAWlw0EYlGmOLr+7aJWJGQFRUJG5zkqjowajmJL29MsDFsTkJ2XiSSTlPQ1J9AYQ3hdHHCwsywQ9rChMkLrqiYzsGscFB+Z1u17uPfvSjeNWrXvUqdIE9mpkRxzaRkP+xt7d2suJP2XVFQL3u1b4o/vpb/sm8Wy+x1eYkGrUct+YkZOPp7RXncd++8NdUq3KeuxGMbir1c88Bd98t14Cf4eHopjC7dkn0yWafe4mEFbS60RYdPSoT94EB4Lrr5FaLp2cyMtnu7bVjiu6TdFq2ViJ2NqI5ifpAQdGEZHuhtciHhyUyJoyVlfDu0wsLMikOKuXQ2xtdo3F4uD0ZSYmEfE82axdnus0WfeQj0ihlzxPcWosAACAASURBVB7xN4eGxPacOiXztH37bN15Ff80Inp5WeZvuZz9TG0upoLh0BBtBNk83KjDgFTf5ymVohvCzM833hTGf9uOpjCJhCz4njwpJXJ27Gj6I7pKX2o3sRARjTEfcx97nvc6AH8O4CEAfwngHID9AG4E8PsAbg/4mDcDOBPw/D0Bz70aQBXAAICXAfh1AD/oed71xpi8MSYL4GOe512IJg/ywgLwL/8ig9PoqExsJiZEQBwasgXDtRabRhyGCSbVanT0YCPNSbSo73ZvTkI2FncQi8LfFMYvOs7OBg9iyWRjUY3rOYe1wPrCgl1BfuUrX4lXvvKVH7Oviac9ymaBEyfE0dXahyMjtZNiVyz0RyJWq8FNT3QCrgsTzTQncSfg27k5CdlYEgkZZycmJEU2jOXl6KYwTz0lwrv/PO7pWdsUJujxelPTksnaBb9usUWLi8AXviD79YUvlOfOnLHlWtJpm42hdj+dDs9wCGtO4n8uCFcM1BqKfoGQfhFZD+qbRE143ZrnQVGNR4/WbwoTVqdxeHj92UG9vbY2O9A9tmh5GXj/+yUqWoM6tJHKjh0iHmozk0JBhAsVYfRYZDLymgsusKnJzMYinUhPj2xDQ+Gv0Xr6YanTs7O1579LVFMYvV3vtaHX29yczAGjglv8dJO+tBXEzqx5npcC8HYA9wN4iT/81PO8nSFv/awx5pkGv+bvnc/9oOd55wC8HsBPA/h4Cz8bgAw4//AP0nVQB/PRUYliGBy0KwYjI7YwvKY553LBImG95iR6gbI5CelUdBAbHg5/jQ5iYQ1hzp+PbgpTL6oxahBLJsVhDBbj42mPymXg6adFRBwetgXi3ciaoIhDf1ROM81JXIGQzUlIJ9LfL808Lr44/DXlcnRTmMceA/7t34IjiSYmoiMad+8WXyDqmggbu+NqiyoVWVg9exa46SaxCbmcrQmt9qe/39bUVRFQF0n9AmG95iTqG7E5CelUUikbtRaGMbbRUFDq9MyMdA0OqmEd1hTGvV8vvVabPepv0ftxtUXGAP/tvwGf/7z1G9Np2Rc7d4ptLpXEb3LLOI2OSuSpHq9ms8UI6WQSCVvTMwq3KYz/Vudp/rIygA1miqrXWK+28diYfNfMTOuZCXG1W1tJ7ERESIjnKIBvBuWvG2OC1OD18kXIQY6YWtTnz/4M+NKXZMC54AKps7FzpzweHJQLxRhR02dm1r7fbU6ikYpsTkK2A40OYoVCeFRjNivXVZBD3dNTP6pRhcZCoaY2USzt0SOPyDY5aScNQG1dQ02f1Of9dsUVA13hkc1JSDeTSlnRLwxjZBIfVqNxehp46CFZwffT31+/KYxel9VqjfAVS1v0uc8BDz8s3U5VQB0aspMGtUPLy7ahnB+3oZNmUbA5Cel2tH7x4KDYijDcpjBBNRrPnAlvClOv+7RO1nO5mgigWNqi970P+OAHZb9eeaWteTg8bOusujUMx8bqL/oQsl3QRmYjI+GvCWsKo7czMzLH8o/zWrokqk7j1JSkNZ89G11OIoJY2q2tJI4i4lkAywB+3PO89xpjpht835jneZMBz88aY0KS7J7n4OrtuUZ/ZBAf+pCEw19zjdzqivvycm19HY0UdO/r46D6cYSQYDxvrfhYqVixUQsPa1qK+9g/iD3wgNx+8IPA61///NOxtEef/ayIFJq+XCjYyB43nTiqi7HbHZkQspZ6YqM2hTl7VsRFvX/mjGzf/KY41f5xX2s3/sRPiAi3Sixt0Yc/LLaor09EjVJJ/j93IcJNI/aXPGBWBSGNEyY6VqsyH8lm5da9f/YscPiwPPaP9/esJuz90R8B73zn80/H0hbddpvYmBtukHnaxRfLXG1sTHyloSFrb5aXbW1WQkjr+LPRjLGN0/J5uZ/Pi1/gztOC5h46v/vt327pp8TSbm0lsRMRjTFVz/PeCeDdAJ7zPO8eAHcD+Aqk6GVAsCwA4Nshz18E4IjvuQnP8yqwOeu3QU6sf1nPbz90iC3HCYkrb37zHbcDuO31r7fXcVzt0dvfTltESCcwNRVdpzEIzxNb9LnPxd8WfepTtEWExBW1Re98Z/xt0fIybREh25W42q2tJHYiIgAYY97jed4zAH4DwPcC+AEAfwDgvOd5rzPG/EPA214N6YTj53QDzz0D4NeNMUHvJ4RsY2iPCCGdAG0RIaQToC0ihMQN2q3miKWICADGmH8C8E+e56UBXAvgJwC8CcDfeZ53yhjzVd9b7m6i8OWPQrrnlCAnxjPGBFXiIYQQ2iNCSGdAW0QI6QRoiwghcYN2q3FiKyIqxpgCgPsA3Od53jcgRSp/GYD/IDfDl4OKahJCSBS0R4SQToC2iBDSCdAWEULiBu1WfRL1XxIr7l29ba0vDyGEbBy0R4SQToC2iBDSCdAWEULiBu1WALETET3P6/c87/tC/vyTq7dPtOv3EEK2L7RHhJBOgLaIENIJ0BYRQuIG7VbzxDGduR/A1zzPexjA5wAcBpAGcCOAVwCYAfCnAe/7Kc/zzgQ8/5gx5uHN+rGEkK6G9ogQ0gnQFhFCOgHaIkJI3KDdapI4iojzAP4zgB8H8PMAdgNIAjgO4G8BvMcYczzgfe8L+bz3Aujqg0wI2TRojwghnQBtESGkE6AtIoTEDdqtJvE6uSmM53m3A7gNwBQAGGPObekPWsXzvASAcQD7ATwI4F3GmLdu7a8ihGwmtEeEkE6AtogQ0gnQFhFC4gbt1sYQl0jEGQDwPK+nQ7raXAzg0Fb/CELIlkB7RAjpBGiLCCGdAG0RISRu0G6tg06PRLwYskOVL5kO+MGe5/UB+F7nqeeMMc9u1e8hhGw+tEeEkE6AtogQ0gnQFhFC4gbt1sbQ0SIiIYQQQgghhBBCCCFk60ls9Q8ghBBCCCGEEEIIIYR0NhQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJB0tInqed7vnecbZUlv9mxTP8044v+sbW/17CCGbB20RIaQToC0ihHQKtEeEkLhBu7UxdLSI6PCq1a3iPul53kHP8/6H53nPeJ634nle1vO8hzzPe5fnebuc1+nJcjDqSzzP6/M877dXP2Pe87yl1c/+uOd5P+Z7+etWf9O5DfofCSGdD20RIaQToC0ihHQKtEeEkLhBu7UOOkZ5jcIY8zH/c57n/RyAjwLIAfgYgMcBJAG8EMBrAfwcgMsa/Y5VFforAF4E4OMA/gaAAXAQwMsB/D8A/o/zmz69+r53tvI/EULiB20RIaQToC0ihHQKtEeEkLhBu7U+YiEi+vE873rIgf0OgB8zxpz3/f13Afxekx/70wBuBvAGY8yfBXznrrVvIYRsZ2iLCCGdAG0RIaRToD0ihMQN2q3miKWICODtkN/+Cv8BBgBjzByA323yMzUU9atBfzTGnG7y8wgh3Q9tESGkE6AtIoR0CrRHhJC4QbvVBHGpifg8nuf1AfhRAF83xjyzgR/93OrtL3uel9zAzyWEdCG0RYSQToC2iBDSKdAeEULiBu1W88QxEvEggF4Aj2zw534GwKMA3gjgFZ7nfRXAPQD+jzHmqY34gr17YUZGgBe9CLj6amDvXmBsDBgdBUZGgL4+oKdHtt7e2vvJrjrtCNlajAEqFaBcrt38zxkjr3/ta2/DX/3VHfjEJ2CWl4Fbb4WHGNsiSD0OQkgHYEz4Vq1aOwQAf/AHt+Hd774Df/zHMJ/5DPD1r8fbFj3yiPhF+/fTzyFkq2nEL6pW7etf97rb8Bd/cQc+8AGY3/gNeKtPx9Ie3X47zMAAcOmlwI4dQH8/kE4DiUTt5nlrn0vELiSHkO7j5Eng618HXv/6521RM8TSbm0lcRQRh1dvFzfyQ40xBc/zXgbgtwC8AsAvrG7wPO/rAG41xjy7nu/4zd8E7roLeOopYG4OuOwyYHISGB4GMhlgaEiExHQaGByU57zVyyCRCBYX3fuplH09IduVajXc+XWf9+N5cg2lUnLtJZNy3WWz9jU7d4qDuUpsbREhpD24QmDYFoTn2cmqez+16rXddRfwH//j8y+PrS3avRs4fRo4ehTYs0dsLyFkYzGmMb8oyB6pX9TbK3MUfazPAcA119S8JZb26NZbgQceEHtdKIiImErJnCydtv+rK6K6BAmLQQIkIWTjyWaBJ58EDhxo+SNiabe2kjiKiHpwhzb6g40x8wDeBuBtnudNAfgeAL8C4GcA3OV53guNMYVWP/9NbwJuuEGc/+lp4NQpGaA0CtEYGbjktwBLS/K8CovJpDyfzQKlUvBgHyYwurdcMSNxJcz5dR3jIAcvmZRNHULXCU6l7N+VahVYXJStWpX3ABI9vGfP8y+LrS0ihKyPKFEwSiBUQdAvEPq3MBYW5Payy4A3vOH5p2Nri3bskP1w9qyIiRMTsojKyTYhjeEunIb5RUELp4mE9Yv84qD6RamIWWKxKNcsALz4xTV/iqU9OnBA9snRo/K/l0p2TuZ58jiTkX3V2yvPVatrt0olfI4WFsXIqEZCWqdSAb7yFbnmfvAHW/6YWNqtrSSOIuIzAIoArtvMLzHGzAC4C3JwPwbglwDcBODrrX5mKiUndyYDPPqoiIhnzgArK8DFFwOXXAIMDNjBK5GQC2NpyUZDpdMSuTg+LqtkmYwMWqWSDOilkmz5vLwvyHFIJhuLaiSkXbir5GGr5Y2skvf3W8fX3RqdkKp4v7Ag39ffL+UGikX5+wUX1HxWbG0RISScqLTiRqIHwwTC9U4Ol5eBL39Z7r/97TJerxJrWzQ5Kftmdla2UkkWV5neTLYzQWVXghZSg+yR6wdpZoXfL1qPPTIGuP9+uVaBNRHEsbRHnieLxNWq+IA9PbK/Ewl5rqdH9vfcnLw+nRZBMZMJnjPpuBG2lUqNRzVqZgyFRkLWcu+9wPnzwMteJr5Di8TSbm0lsZOKjDErnud9AcCPe553SZtCQO+FHOS96/2gZBK4+Wa5HR8HrroKOHZMVr7On5dUyUsvtZGJKoBopJRGIs7MyOd5nggdw8Ny4UxMiBCpQodfYHSFxmJRBEx1Alw8r77Q2NPDaAFSn0qlfgRh2Cq5roa3skreLLmcOIflsjiFO3aIkzg9ba8RTWcB4m+LCNlutBo9CFghMJlsPnpwo377e94jixwAsGuX+7f426LRUevfLC/LmDA0xPRm0p1o9GBUanG5vPZ9WnYlmRT/ZGAg2C/abHv09NMShTg1tfZvcbZHyaT4firgqoCo9xMJmW8BMn+an5f7PT02c0wXd9y5WxRRQmNUVCPTpwkBnn0WOHQIuPJKCchqlTjbra0idiLiKrdDOuj8ved5P26MmXX/6HneKIDfM8b8XqMf6Hne9QCmjTFnfM97AP6v1YdPrOtXr9LTI81VPE9SeF78YhEvnntOLoTpaYlKvOoqGy6vop/nyar9wIAMECsrknJ57py8D7CDnLsNRQTnahSYX2DU+8vL4StmqVT99GlGE3QnG7FKro6X6/xuxCp5M6ysyPVXLMo5u3On/CZAJrRnztjHAdyOGNsiQrqFesJgWMTHetOL28UnPgF84xvAddcBR44EvuR2xNgWJRJWSCwWZSxZXJT7Q0OdcQwIaYRG/KIge6QLp27ZFb9f1An+9NmzwBNPSD3TiYnQl92OmNqjvj4J8pidtQvHOoZUKhKlmE6LvUomxYfUudjiok0P17TnejQSWdhIVCPTp8l2Y24O+Na3RBd50Ys25CNvR0zt1lYQSxHRGPOA53mvBnAngKdXw0EfB5CEhKH+AoAZAP6D/Bue581iLR8D8CMA3ul53ucA3A3gHIApSL76zQA+YYzZsI49vb3AC18IPPywDFQXXCCRBcePixj49NOS7nzwoE1zVkFxeVkGKkBqB+3aJQq8Ot2LizLInThhHZXe3rXCokZxadShkxoVSKUSLjQWixLJFbRyyqYw8aPeKnkjzUmCVsnVCe6EY10oyACUz8vvmpqS36uUyxIhrCUEgugGW0RIp7Pe5iRql4KEwjjw0EPAhz4kWQy9vcBnP7v2Nd1gi5JJYGxMfCJNH8znxRa7PgshW4EuuNfzi6LKrrgLp36/KA5izsqKpDH390uN989/Pvh1cbdHg4NyPBcXbZmpfF7GjL4+uX/2rNwfGZGFjkpF9o+Wk1paspk0Wtu+VRqJatzI9GlGNZJOp1AAvvpVsZ/f930b4x/E3W61m9i6ZMaYf/A870EAbwLwfwP4LwAqAJ4G8Jerm583hnzctwB8EkAfgP+w+ropAMsAvgvgdQD+50b+fkAGlGuvBb7zHXGa9+yRVb3xcYmAOnVKVvuOHweuuALYt08M+diYTCRKJQmlP3FCNq3ftn+/pERXqyLsqaioEYuKpkHrNjgY7cS4g2EYxkSnT4c1hdFJXr306Tg4WZ1OvfSZZlbJ/Sk0nbBKXo9iUa6b5WX5vWGF/I8fl31x2WXRzlM32CJCtoKtak4SJ2ZmpP7hrl3A7/4u8Gd/Fv7abrBFyaT4MXNz4isMDNhocaY3k80irDmJ6xfVWzh1xUE3grBTFk7XS6Ui3YvLZeCmm+qLYnG2R4mE2JtyWURBFQuzWbFHmt21tCRp3f398vfBQdmqVXnfyorMw7JZ+UxXUNzoc2Kz06cZ1Ug6BWMkAnFpCfj+7w8P9Gjts+Nrt9qNZ8KW8DsAz/NuB3AbZIfDGHMu8g1txPO8MYgy/SCAY8aYWxp4W+DOzuWAxx6Ti+HAARmMpqdFWFxZkdWulRUZmK65RiYT5bIMFMPDMhgtLYkwog1YMhlxxEdH10ZXabSibto0IpGQ71BRUbtGbwYqLIZFNZZKjTWFCRIat2u0gr85SZBYWG+VPMgBbrY5SadSLttrJJGQ83t4OPj/OndOhPm9eyVC8fbbb8cdd9yBmdVipJOTkx2zNzbSFhGyUWxEc5KobTtQKkkH5mefBf74j4EXvGB72CIdy+bm5FiPjMiiT7Eovg3Tm0mj+MuuhC2i1mtOEuQTtbPsSifw6KPAM8/IPOTgQXnOtUdTU1NTMZ+nrTkLlpdlfmWMzDEGB62QqCnNuZytVTswIH6lK+QZYwXFfF7GQY1o1MYsnWbP6kU16ubHXdwLawizna4Zsjk8/rgsaFxzDXD99YHXT+QV1YX60pYQF7llBgA8z+sxxgQkzG4Jj8IWwjy2ng8aGJD6h088IU1WLrpI0pvHxkRMHB6WwWdmRpT3iQlJhR4ft072wABw4YVinOfnZTtzRlbIenutoDg4KO8bH7ffn8/XiorT0yKgACLK+dOg66U9N0Ij6dPVanT69HZqChPVnESf74TmJJ2I1rBRJ29kRLYwRyaflyjgoaG1RcOn7BOpbrRFhNQjzs1J4sYHPgB897vAb/2W+Agu3WyLNLprdFR8mYUF8VnyeZmwa/fmbh+7SDQaOVUvgtCP2qCwsivtak4SJ06elLrt+/fLHMXPqj2a6bZ5Wn+/2JtCQc6pbNYGbywsyILz2JjMrRYX5e+5nPiPQ0M2Ul4FQ2Pks7SO4vKy/F07Pff1dYbIxqYwpFM5fRp45BHJ3rz66nWfJ12tL202nR6JeDEAt9fOl0yH/GDP824BoIk188aY+xt4W+RvX1iQWohLSyIIalrz3JxEJeqK6vHjMljt3i0pBYOD8p5q1dZvGxy04sn8vLy+WrWO+ehoeBSWMTYNWrdczg4EfX1rm7Zs1aCn6dNREY1RTWHqCY2bnZ67Ec1JolbKO8EZ2SqqVXv+VqtyntabeFarcg2Wy1JCQF97+PBhHD58+PnXvfzlL090sy0i25ONaE6y3aMHN4ovflG6Mf/ETwC/+Zvb0xZpHa+FBRnLxsdtNoUx4udsVrYE2Vo2ojlJmG8Uh7IrncTCAnDPPeIXv+Qltdeca49e/vKXvxzxnqcF/u5KReZRxlifemREzr/ZWVuzVdOfFxZEHNQml0HlchRXUNRAAFdQ7IZzNSyqsVKx95k+TRohmxXfyBjgR34kMo25XiRit+lLW0JHi4hdSN2dPTcHHD4sF8r+/SIUzs/LCvzsrIiF6bQY3SefFHHvwguB7/keCYlfWBCnO5mUAU2LkVerVlBcWBDjnUzKQDg6Gh2ZBcjrl5ZsbcXFRRn8ADH0bhr08LCs3nXSpLFcDhYX3ceNNIUJS58O+l/rNSfR5/1oFEZY+gxXyaMxxp6rlYpEGYyONhZBe+KErCxffHHdGhtx3/s0/NuMsJTiVtKL49icJE488wzwuteJHXrPe7a3LdKMhMVF23gFsKVYmN4cL+o1J9Hnw8qu1POLKCpsLMUi8O1vy/V2003SBTWCuF+FobaoUJB90Nsr56jniV3W7K/lZZmbjY3JuVgsig+az9u5lltaKgjNsMrnbZZVb68VFLs58rrV9GmAUY3bhXJZGqmcOSONVPbvj3w5j3gboIjYXhra2efPA0eOiEC4d69cKEtLMkgVCpLWXCjIYJ7LSYfnQgG4/HIRE3t77UoYIAPXyIgtSK4iy9ycDH7lsh0Qx8YaTxPSQdXddCUtlbKRXyos9va2sMfaiEY9+MVFv+io0YPu5k/R04FLu/FpUxiukm8u2aw9pzMZOZ8b7Yi3uCgC/tSUXHd1iPsARcPfJWxEcxJGD3YOi4vAa18r4/f73hecOugj7kepri3StLjFRRkjx8bk3FxeFpuvk/RunmTHgaDmJEERhX7c5iRRfhHtUXupViVt8PhxSRu86KK6xyDuRyjSFuVyYnP6+2X+o/VaEwl5fn5enhsft35nPi/zsWJR5gGN1povlWwdRa1br529+/o2pqxUHGlEaGwlqpH2pfO5/34Jnrr+einvUmfBiEezDVBEbC8N7+yZGRm483lgxw6pkVgoyCAFiAh49qw4VwcOyGsfflgM6NVXy4qhioma6tzba7uHqbHU1GUVFItFG1k4NtZ4BJd+1vJyraiYzVqDnsmsTYPuNMHMbU4StlKuq4TlsuwvN7VGV9PceiLqDPf0yD6ISp/mJKg1lpdtN8/eXjl3m0lzK5WAp56SY1CvG/MqcR+gaPhjAJuTbC+qVeCtbwXuuw+47TbgpS9tKLIq7keyri3S814jErXOs+fZdGemN28u9fwiTU30o/5PWAQhowc7l8OHpSbr/v0yaW9gLtDVtsgYsTXlsu0arynLiYQ8PzsrNkkzwZSVFbvArfar0QXuSsWmPGsGmHYD7+vr/ACNdrOepjBMn+5MDh+WiOh9+4AXv7ihayfutigWUERsL03t7NOnZVtZkajDCy6Q58+ft92Zp6dFJJyYkCKjjzwiXYtSKVHrX/QiGfizWbsapoOepjq7qBijKdSADJYqKDY66CnVqvw+V1hcWZG/aUMYV1gcGNi8yW3QKrnfKW50ldy/Wu5fxdLIiag6jY00hQmr2UgBQMjn5XwtFGS/+LuRN8qzz4qYfvnlDZ/jcT8CNPxbyEY0JwlKK6Y4GG8++lHgzjuBX/kV4Od/nrbIRcVzFRLTaVkU9Txb/7ZYtHWheR00hrtwGhVB6MdtThIVRcjjEE9mZoCHHhJ/6rrrRKBvgLgf7bq2SGseJpMSFLC8LPfV5hhj05t7eyUq0Q2WyOVsqZ1MRmxYMyJgpWIjFAsF+T5tnKiCIq+5xmg1qpHp0+3l/Hng61+Xc/ulL5V5XgPwCLQBiojtpemdfeqUDObFogw2F1wgF9LsrK3BsbIiXZ0BqaHU3w/ce680iMhkgBtvFCcgmbSh9bmcvF5FvKDV+3xeBsO5OZsa3dcnF3CzkV4uxeLa+orqpLq1HHXTNOww/M1JwlbKO605SVhTGL/oGPS7VUzcyqYwW0mxKOflyor8n9p5vJWB++xZuc727xcxvkHiPkDR8G8STC8mrXDvvRKF+JKXAG9+c906iC5xPysatkU6qSsUxIfQSbjipjcPD2/flD+lEb+okeYkQX5RN/sX251cDnjwQZkDXHedZEM1yLawRfm82BltfJLLia1xa7O66c1jY7XzGGPk/dr0r7+/tXIM1aoVFPN52/glk5HflsnQZ1gvblSj2whmk7f5jQAAIABJREFUvenTjGpsjHwe+NrX5Fp5yUsaKjWl8MxvAxQR20vTO9sY4ORJ2wFsYECExEzGpiEnEjIIHTsmrxseloiqXA64+255fnBQ6iVecYUNu19cFEe8UhHhSbuIBRm2YtEKitmsPJdOW0Gxlegvl6A0aDXQqZT8f/398j06GG+X5iRhTWHc+2FNYep1n47LPlDKZTkHczn5/7TmZqv/w/IycOiQfM6FFzb11hjttUBo+FsgKq24lfRiN5KQbF9OnQL+638VO/Sud0lDtSbOibifPU3ZIs0WcCfyruCqtRMrFfFn+vs38qd2Bv6FUzYnIRtFuSylkc6eBa68UuYbTZwP28YWLS3JYsbQkDzOZsWndm2Rm96szSddu66ZWktLthzD8HBrAr0xtYKillVyBUVe15sDm8JsDtWqdIU/cUIyKy+5pCmhfZvutfZCEbG9tLSzjZGah/PzclH19UkdxL4+GZzOnZPBanhYBo9nnpHHBw6IA3DqFPDNb0pHo7ExCQe+5BL72boiViiIwdJIwLBVfK1BND8v7zPGppKOjjbeKTGo4Lbe185mKihmsza92vPkO/T7tLu0imLbcZXcbQoTlT7tv9xVbK2XPr3VzkelIuebCtjDw/U7itejWpU6iMaI6N7kORP3AYqG32E96cVhKcWMHiSNUCgAb3iDOMrvfKfUNKYtinixU3d4eVkWlPr77WQesJPzQkEWO4eGtn4MaxQ2JyFbhTHSuODIEZk/HDzYdAmjuJ9dTUVFay3W4WG5JrNZ8ZtdW6R1FHO54PRmQN6rcx2d36zHZmm0toqK2vwxnbZpz3Gxh93ERjaFSSa7X2h87DHgiSekodNVVzW9INiFe6TzoIjYXlre2dWqRBRqo5KeHhnk+/vlsUZnaT2g554T0bC/XxpFjI5K3be775bX7twJfO/3SpFSJZ+XgSyXk8/UEPuotOVKxQqKCwvyOxMJWVEbGpLP8DvFra6SA/LbVPRcWLB1BV3xUzcWWK9Fax/VS58OWjFzu0y3symMOmqLi/J4cFDO5Y0QiTVy99JLW4qkjfsAtW0Mf5gg6EYSBsH0YrLZGAP89/8OfPGLwJveBPzAD7Q0bsX9LGwpQ0OFRO2YOji41o53WnpzvcYkYenFboO2sAjC7bZwSjae48elDNLwsMwb3FIBDbKtbFGxKPYllRLbUyrZeZi/huTKisy9gtKbFa23uLxsa9e3WqbH/zu1MYtmLbmCIm1H58CmMMKJE8ADD8i8/rrrmio1pcTdFsUCiojtZV07u1IR4WNlxda+2L/fDlZuevP4uAxETz8t4uCePVIvMZGQlcZvfUsGvwMHJDLRrXmiq2KaEqQh+rq6Fub8uinPWutDV9VGRmTgTKfDV8pbWSXXGo9aY1E7UQP2d7vbVk8i4kCrTWESifpCY6NNYYyxQnG1Kg5aM53C6zE3Bxw9CuzaJVsLxH2A6grDH5ZSzOYkJA7cdRfwF38B/NRPAb/0Sw0XDPcT97O1JVuk134iIWNFPm8XLl3akd4c1JwkSCz0E9acxP8c7RHZbObmJPLHGBEQ6Rc1xvKyzMn6+2V+o9F/mczaRY166c1KqWSbWyaTMn9ab8ko97NVUFQ/vrfXCoqbEQxANp5ubgqzuCjZk+UycMMNol+08JvibotiAUXE9rLunV0ui/jhpqbu22cFvlJJOhmVSnYV68gRUfV7esQ5mJwUB/eRR4D775eB6rLLpAHL4KB1ftX5np2VAUdTqYeGasUcvxCotysrNhVZw+mHh20K8mYMVm56tm7aRAaw9ZO0ll5YDUgSjdsUJkxobKQpjF9oTKVs451yWY7X2Fhz3evqUSyKkN7XJ+k6LQ6YcR+gOtrwszkJ6Xa++11poHLllcDv/I4s5NEWNYdOlJJJmXQXCjK2+6N8dFGqULD1nxsd99UfiqpBWK85SVQNQkK2mnwe+M535Bo5eFDmFC3659vOFhlj/dXBQfFll5dln/b3r40sV1ukqc9B6c1KoSB2rViU4zEysrGLIOWyFRSLRXmup8cKigy6iDdaO3cj0qfbFdVYKomAODcHXHONBDq1OP+Luy2KBRQR28uG7OxSSYRErYtTqcigrwV9/enN4+MyaH33u3KrXZ5V6Hv4YeDRR8WgXHopcO21MlC5q+SVigyMxaJNVx4fb7ypRTYrg6E6+kBtXcONFIn8lMsyyLvCov4Gz5P/RUVFTYOm0LAxqBgdJTTqebyyYp2xTEbC1wcHwyMaW3FwjJFGKoWC1EFcx3kX9zNkywz/RjcncaMJCYkDc3PSSMUY4O1vl/F4HRO2uJ/5687QAMQG6IR7dDS4lpsubOqCpjaZi4oiDLJH9VKL2ZyExIVqVfz/c+dkHrF//7qEqm1pizR7y/MkYjCVkvlXoVDbDNJlZUXsFSD2KqqMxcqKLd/U2xu8ULJeKhUrKOr8KJm0gmKTtTFJTOikpjDGSGDTiROymHHBBbWNipok7rYoFlBEbC8btrMLBUltrlSs8Z+aEmFOnd+lJXEMjLHRXNPTcoGmUlKsdM8embwUiyImPvWUPH7hC4Gbblo7cESlOjfqNGttkPl5uQ+I0zI2JoPpRg+OQRQKtaKi/j+A7Bt/GvRmipzbneVl6QSoTVMGBuw5qUJj0GTO84KjGv1Co3teTk9LrdALL2w5dfD5r1/Xu7eeDTf862lOEpVWzOhB0k2Uy8Dv/z7w+OPA294mq+3++llNEverY122yK2P6HniWxSLNsvALwrm8/KaUkkmx65gwuYkZLvxzDMyJxgfB/buban2mEvcr4yWbVGhYJunZDJiK5aWrC0KEuEqFcn0KhbF7x0ZibYtuZzMVXShfWRkc+Ym1WqtoKhlI1xBkTZwe7HepjD+RjBBQuOhQ5IlNjUl5dfcMmstwDO0DVBErIPneQPGmFz9VzZEwztba+xEFeHO5YCTJ+2FmM/LxTc5aR1fwHYQGx0VR6Fclot1fl4Gocsvt470woLUS3zqKRkobrxRipr6UxuMEfFnYUG+V2sfNiu4FQpWUNS040zGCoqbUb8oCP1/tA6f22BGf5MrKg4NMRVpvRSLcuxXVuT8Gh0Nn0y7TWGiohqjmsIUi9KpfGpKRERXbGwhdWdLBqgNtEdNd0St16Ak+PcyvZgQl7/+a+CTnwRe8xrgh35o3ZN2YJvZoiC/yC2fUSrJuFKt1tZBdpuTaBZGpSKT4vFxeR3HdLKdOH1aRMTeXhEQW6w95rKtbJGfbNZGH+oC9tKS2KShoeC5kZve3NMjtijKH3VLNlWrtgHmZtUyNMbWeXTr8WcyYjszGfpwRFhPU5jz56XEWiYjmoQGOK0jfbrjz8oN1pe2hI4XET3P+xUAHwbw4wBeCuBXAYwB+AaA1xhjjnme91oAbwCwH8BjAH7dGPPA6vsvAPBmAD8E4ILVj30IwLuNMZ/zfde/AzgI4IcB/CmAWwA8COAfAPxPALcYY77pe8/3A/j31d/yv+r8OwZY2604yCnWqLja71q7Sl4oiCPQ3y8XXD4vBZHdiYkxItJpDQ4VGdWBqFYlbHj/fnuhnjsnnZyPHJEB8eabpcV60IWsUX3aOVrrDmpKdKNoMeG5OftZvb0iLo2Nye9o52BVqaxNg87n5W+atqCiotYq4WBaHz3OuZycT6Oj4mBtxL7TpjB+cXFlRZoMVaviLPvPY7cpTFT69Ec+ciduvfVWIP726HnDH5VW3Ex6cVAkISHE8rWvAe96l4iHr361LGi0KlzdeWd32aJGmpNUKsER6RrlkEyKzdbJu+dJNEPYRNef3syMA7JdWFqSaOhyWXz/3btbP/+7zRa1igqC2gxQmyJp9GBUc0eNkNbMsaj0Zv0unZ8YYyMZN3MhxBiZ76mgqBHgrqDIMg6kHn5RMZuVOoilEnDJJeIXBZ3/jaZPGwN4Xn0Rscv0pS0hTiLiQwDyAD4OYA+A34Ic0L8H8Murr+kH8LsA5gBcYowpeZ73swDeAeDTAI4AGAXwSgBXA3i5MeZLznf9O4BrAeQAfAHAvQCqAP4JwDSAjxpjft33+/4WwC8A2G2MWYz6Xz71KZjrr4+usRNVayfMOGezEpGYTstrslm5CKemal+3vCyh854nq119fSKwPPOMpJMODMgKgFuD4ORJEROnp0XseclLwptRuKJbuWzTgluJ2iuXJSJQOz0bY6PVxsY2TnRqlmJxbRq0dl1MJtemQbOOiKVSEfFQJ3dah7IdTsdzz8mxuuwycXSCuk276dNu4yKXf/zHO/He994KxNwe/fmfw+zda1NT/KvYQWIgBUJCWmd6GviTPxFR61WvknGslfFBF0o+85k78f73x98WHTsGo2VZ/Ghzkno1CN19A8hzlYqdlEc1L1Bfo1IRH2ijuqAS0qmUStJIZXlZxMMdO9ZVewwf+tCd+LVfi78tWlmBWW9kXakkczCtJ6i+lZZMGh4OjxpsNr1Z37O0ZMsBadfndvjVrqCottcVFBnZTepRqQD33CNj8MGDYovGxlpPnwaA978feMc7mhIRY223tpI4NXOvAHiZMaYMAJ7nJSEK8BiAF2hIqOd5cwD+EqIs/zOAfzXGfNL9IM/z/hxy0vwOgC+hljEA7zPGvNv3nk8D+HnP815vjCmsPtcP4GcBfLqRA3zkiDis3//9Yuhdx3g9g9bgoIT+njxpB56ZGbnIdu60r+vvl5XG8+cl0nBoSF571VXyuqefBh58UCK1Lr5Yft/evcDP/ZyIMHffDXzuc3KRv/Sl0jXJJZkUkW9kxKYGz86KI6/NSxpd6UylJJpyYsLWYZybk887d06+a2TEfl+7Vr80knNyUh4bIwOoKyoeO2aNWzq9Ng16s9IOOpVq1aaIAzZys10Oxrlz8v0qmgFyHOudi/706cVFqRu6SqztUTYLPPusDNYavaMFwPv6bDQPIWT95PPA3/yNRKH8zM+E18jyo1kLpZK9VQf68ceff1msbZF2Aw2qQdisDVLxsFq1/sjcnGxq6/ykUiIyLi1JdHyp1L5JOCHtxhjx9bWOuvqmraANF//1X+1TiLEtqlbFVq9HSOzpkffn82KzNYNsaMjOEcKExGRS5haa2VUs1k9vVjs3OCjvUzs2NLT5wRbptGyjozbjR2veA+JHah3F7TbvIY3x2GMSXKLNYbVWfSMpzEHp0x/9qIiSTRJru7WVxOmy/pAe4FW+CTnIf+fLKddw0EsAwBizrH/wPC8DYACSK//vEIU3iA8EPPe3AH4RwE8B+MfV534GwBCAOxv5B374h0WE+Na3gFtusULURjA0JGnMp0/L/fFxEQurVVlpVFIpEQE1IqxQsGLdTTcBhw+LGHnunERtaVr0RRdJHbknn5Tf/5nPSArES19aK1QCNtV3YMBG7i0tyabFgJtJ/U0mZQKgqxNLS7bT8+ysGBo1PqOj7V398jz5X/r7Zf8DNjxbHYaFBRF1FTcNenhYBv9ujOzS1I6FBdkng4NyfNrpTOTzUgdxeHhtZG49dCLb1ye//+Mfr4mWibU9es1rJDJKJ/DVqp1Ay2+T5/U67u9vT8MjQroNY4B3vEMmlG99K3D11TL2+22+1vPThQttKKWkUra8wuc+V3M9xtoWuf7JRpBI2AlFKiV+gy5mjo8HT0zcdOalJXk905tJN3L0qPhkw8MytrdSk1Ubb+TzwP/+35LNtEqsbZGKf4XC+vydvj6x4/m8tTeambWwIDZmeDh4rqJZOum02KyzZxurD6+LIUND8h0LCzIP0eO82XMMXZgfGZH/XQVF/S3qa/b1had0k+3F0aMyP5uclHM3yC+KQkuZ6HX0pS8Bn/60lItpkljbra0kTiLiUd/j+dXbYyHPjwOA53m9AN4KCUm9wPfaoGDYWWPMfMDzX179Db8Me5BfDeD46t/qct11Yszvu09qI117rUT8bdSK9+ioDO5nz4ohn5gQIdEYiVRUPE8c60xGnOUzZ2x686WXiij41FPAo4+K4HjwoAwOngdceaWIi489Bnz728AnPiF/f8lL5DP9aOServQvLMj36cpc2EAaRiIh/9vIiERCZrO2juL8vPzGoSErKG7FYKWipru6q5Fsup07JyKOvl73hUbpxVmw0cLP8/MiuvX3y7Fo94SsWpXo30RibdRsMxgD/OM/ioD+whcC//ZvAGJujyYn5f+am7NRiBddJKJFLifRBbmc2A8VwJNJKyjqLZ1BQqL5p3+SKP5XvAK44goZJz1PrrWwEgqJhFyXmj3gdpn/xjdkbL7iCuCuuwDE3BZtNFpuQeu5qpDoRiSG+VzaVXVxUcYvpjeTbuL8efE7tVGg1kdvFM28yefl/n33SUDBFVfInAAxt0XJpIh3hYKNSGwVjQzM58WOV6t2bqDzgKgsqkxG5l+6AFIoiB9dT2Tp6ZHjWijYklBLSzZ4ox1oDfHhYRnnVFDU/1sX5zXrhWw/5uaAJ56wATja3KxVHn9c0pgvvxx485ubfnus7dZWEicRMaBiTuTzamrfD+C/APgfkGKZs6vvuRWi/PpZCfowY4zxPO9OAG/xPG8HgF5IMc0/MsYE9BsK+EGeFA1Np6UL0SOPiHG/8sqNE43Gx2WwOndO7k9N2dTmvXtrB6C+PhEMNb1ZI8WGh4EXvUjSco8dk4v9kktspF0yKYLolVcCDz0kKdDPPitp0TffHNxh1xX/tKuzCn+agt1sfSgVDIeGJCoyl7OCov52/Z9GR7e2PmFPj434VPxp0CdPAseP29drzUDd4pAOoMegVJL9PTW1dYLoqVPiwF1yyfr23de+JkV/b7lFjtkqsbZHnmfPRXXwtPC3Xi/yPeKM5nJWXDxzxoodKkC6wiLTAAkRHn4Y+PCHJcr/llvkuYWF2k7ynif2fmDARnOETey/+13gC1+QaMacXR+PtS3aDNxoRG2apanN8/NWyA1CRUdNCywW21syhZDNYGVFIgY1s2dkpH7zDsXt0GuM+HZHjwIf/KAIiFdcIR3n0QW2SH3FQkG2VucNiYT4Q2pDNBBDa6driZ+o0gnJpPjQms1VKtVPb1bSaREh83mxeefPy+eMjrbXJ9eAkaEhCSrQ80iz07R2pNbnJt1PoSDagZZMGxgI1g0aZXoaePvbxa697W0tCdOxt1tbRQxkiXXzCgD/nzHmte6Tnuf95xY+604AfwjglwBkACQAfKSZD0gkJCowmZQB/cgRmZhffvnGpTdPTtoCvZOTIhTqxH/fvlrnWdObNcS+WBRxIZWS9OUdOyQq8ckn5TMuu6y2rtzNN0tE5X33SXTEk0+KwHjjjeEDlab/lko25D6blQFkZKT10HuNGti7VwYpTXk+cUI2jYgbHW3cedpMdODUdHCN4PNHLCr9/WvToDtlYqN1UNRZ2rGjfaueQSwsyL7bsUOcl1Z5/HFJ17niCuBnfxb42MfW/dM6xh5pLR3tsKeRiYOD9thp571MxoqO1arYLI1WzOVsDRx9vT8NuhvT9QkJQtOST54Ebr9dJn0/9mNiIzMZGZszGSsYNrr6fvIk8KlPyYLZf/pPwN/93bp/asfYos0gkaitj9jbK/ZO/YKoqB6mN5NuolIR39wYGcczGbtQWI9CQcb6alVsVX+/CFLvfrdM2t/yFuCf/3ndP7GjbFEqJfuqWJTHrYpbvb020lwXhrTuqz8iMcpH0iaNs7ONpzcrmYwEgGjwxsyMrWPYbnum2SwDA7b+5MqK+JDZrNhsV1Ck39h9GCOLq8WiZD/19bVWUkHJZoE//EMJgnjXu9b3WS3QUXZrK9gOImIFqO3S43ne5QB+utkPMsYc8TzvK5CQ0wyAe4wxTzf7OSrcJRIibs3MSITBnj0bl968c6eNSNy5U+oOTU9LdN7+/bXf4Xk2Um92Vuoqjo9bse/66+W9hw+LWHjhhfIZauD7+oCXvUxed++9Epn42GMSzXj99eGTJA2711TnxUUZIN0ux63WN9SBaPducYJ04nDqlGzptDhAo6Odk67kRlbu3SvPlct23yws2OMDyDHUTmy6tVu4KxREQMrn5byenFzfitJGUCrJea7Hv1VOnQLuvFOu1Ve/esMiQTvKHvX22lVxddqyWdmHQ0PBtkjPO/c4+9Og5+asAJ5I1EYrDgwwDZp0D5qWrJvWNXzHO8QuvvGNMonbvbt1QX1+XkTDwUHgF39xw66fjrJFm4E/IlEbnel4Wk9IyWRkXy8syDHo79/68Y2QZnnmGVv/XEsM1bNDxaKM55WK+D6Dg3It5HLAHXdYGzc+viE/seNskdrYYlH2VauCW3+/jBGa1qz7M6jZStQx0chCLcvQaHqz+zv6+uT4LS5KUEhfnwiYW1X2SeeYbqSriopal1ub/VFQ7A6eekrmsfv3y7GdnGxd81Dh8NQpWcw4eHBjf2sDdJzdajfbQUT8DIBbPc/LQTrmXAzg/wXwBIAXtvB5Hwbw0dX7vx71wig0vVUd2/l5iTRYWpKop42IlNu1S5znM2dkArNnj1xsx45JjTj/hdvXJ+85d05WGt1Bas8e+b2HDomYePasRE+6UV7Dw8DLXw7ccIN0R7rnHknZvukm4AUvCBcE/anO2olZU52Hh9cXfp9Oi5C6c6c4PioonjkjglxPjxUUO63JiaZWufUm83lbX3JxUQTeEyfs693aisPDm+MglEpyjJaX5bhqQeet3nfGSJqNMSJ2t/p7FheBv/5r2Xe/+qsbOnHsOHukjm02ax3KbNamNzdy/qRS9hpW/GnQZ8/aNGhN33TToNvZEImQVqhUahufFIv2nNaJ5tAQ8KEPyXj+pjdJneHJydYnoYWCRECXy8Ctt27oolfH2aKNxvOskGiMnZgaY8dQ12YFoemf2azYMe3eTHtF4sDJkzJpHxuTcbde7bFSSc7zclnO8aEha7sqFeC975XPfMtbJOhhg+hIW9TTYyPLgdZsuDaa1EyvdFr2YzIpnz80ZFN76/nQ2r1ZAwu0e3OjPr7niS+rv2dpSeZAOs/aqpJJapfVNhcKVlBcXpa/p9P2NZ2SgUWaY3oaeO45SdHX3gWtRvkaA3zgAxLV+Gu/Jn0ZtoCOtFvtZDuIiG+A5KH/DCRP/UnIwbkSrR3kTwH4K0jO+ifW88O07l0iIYODpg08/LDUcduxYz2fbsW/Eyfk4t27V9KZT5wQoeXAgbWOcDJZm95cKMiglUrJxX711RI5eeiQRBzu2ydijfs5ExPAT/6kfOf/z953x0lSVmuf6jjTk9POzmY2sqSFVSTKBXQRI2JGUeBy9WLmfnoVMYDoT1Hv9UY/EfVTUTFcXRX0ghIEFFjisrAsy0ZmJ+3kzt3VXVXv98ezx7e6p0NVdZjumX5+v/7tzkyH6qq3znvOc85zzsMPEz3wAPofnHkm5NCFNkmz1Jn7gLDUuRyTjL1eGLC+PmzkTChOTYHkYDKkqyt/JdZ8g+WlPG1YCJld5AcTaUTYdM3ViqV8L03D+WLpAffQrJXzNDGBY1u1yvnmpKpE3/8+1t7VV5d9emhN2qPWVln12tmJ9c9kvlnebAd+Px5cqSDEXBl00NRiOFsG3cg+NzCfYDmbmTQ0TWf/m7SPZckcgP3pT0T33APJ8cknZwbhdmEYGOo0NUX03vfanzBfBDVpi8oNHrTC1YiKIqtfeB8r1vKCVQJeb6a8udHDq4FaRiiEooG2Nrm/5kuIapokyVltYF7fQhB9+9vw+6+5huj008t6qDVri3w+SSRy/1q74EEiiQRiJY9HJjh8Ppxrbutkpf0O7ymzs4jHuA2UVXC7Bh7+wgkSVjbNpz9vbqHT1ZVJKCaT+M5mQrGRzKkPRKNoedbWBk6B25c5xfbtRHffDa7hTW+at1ihZu1WtaAIZhoasARFUfxENEZEfxRCXGbz5XNOtmFI2cDYGG6EZBI/9/eDTCzVoBsGBnYkkyD9DANEot9PtHp1fiOcTMrpzixvZmgahqmMjcGQb9yYezozEfo+PvIIAqHeXqJzzsHnWj127hPIfUV4knE5s2aGIUmTUAjBIldIdnXVX+WBrstsJT+SSfyNs5HZMuhCRtgwQPhEIvi5rQ3nppbOSTwOcrujA8S2ExgG0W23gfR++9uxVvOcl5qgt0qwR3Nska5j/QsBIpGnlKqqlD2X27nkwMUshdY0/M0sd2FysdGTrIFKwTwlmf9lcE89cx/DXHbhwAHIlzdvJvrYx6RcxwmEIPrDH4gef5zokkvQHiQPFpwtqgS4GtG8Z0UisDt2GrvrOnwETZO2qZHsaKDWkEpBCeR2I7HvdqOoIHsP13XcAyzbDQRy96P77W+RXH3Tm5BczeML1MSdUAlbpKq45/1+57FHJILzzf42k4lE8M9jMby/VVtkGEhoqCrisEIDowqBbRrLiLnYoNbsWjotCUVzdSgTivUwfHIxQtPAAaTTkBy7XCjOcHq9Hn2U6Mtfhurx+uvzKjdrbPUWR4n80rygQSLahKIoVxAaYF4khLjH5stznmxdxwauqiDl3G7cZEePYrM5/vjSe93pOohEVUWVFv/s84HQy3cz67qUNre0zN2kgkGiffvghCxdCtIzV6ZOCDxvxw5sVsuXE519tr0qL55mzFMpeapzuSeNsdSJJdWaJjdWnmpXj5tVKiUJRa40ZcLG3IeSH36/JFfDYfyfp13X2vfXdfTaIILM3im5+Yc/oJLowguJXv/6gt+zJjaoEuxRTlvEMnUeuuJ2476LRnEPVKN/TiqVKYPmpu5EuB7Z/RVrichuoD7Ae66ZNGRXiKtDvF5JGlohz8Nhoo98BO/zxS/CsV2yxPn6fPRRorvuwlTniy4q+NQFaYsqAV2XFUCMcBg2rq3Nup/FVYyJBNZJvSUZG1jYMAwMhUskZFujgYHMykLDkNVdXP2Vr/p/xw6ir34ViYzrriuYzFvQtiiZhA1xSiSyP80JUqLM92H5LleNWgUXDHg89uTN2eBhl4kEjrEc6q9KQdMkocgDcLwXxIgkAAAgAElEQVReSSg2+m7XDp5+WrZAc7mgqHDKaezfT/TpT8Oe3XRTwUEqNbhqC6NEfmle0CARLUJRlAuJaBMR3UhEI0T0MmH/5OV9vqbBgGsa+o2wVPTwYWxa69bJKb5OoeuQuWoaiETDgNTB4wGRWMjocv897uVofq5h4H35vdavz3+sug7n5vHHsVmuXYteBnYmKmlaJrHl84HcqMRmx1LhYFBOHyaS/RzmY8JZucDyUnO1YjSK3wshAy4OhletKj9hWy4MDuL6bNjgvGfYY48R/eIXkCC+611F+5LO6wZVBnuU97lM1jc1Sem7pskKXafyZqcQQjrXTC5yVS0RHHqzDLpYVW0DiwuGkSlJTqelLJnlaWbS0Glw+PnPo/Lni1+Eg9vV5by38d69RD/7GSoa3/nOout5wdqickMIOY3eTCSGQrAp7e32rpmqwlYSNeTNDdQODh1Cz+/ly7HeOflNJPfTZBL/Z/IwX6LkwAEQhytWIGhvby/40QveFjGR2NTkLHGQTssWTVzRbt5z4nFcn+Zme35WKoWqRMOwL2/O9V7BIOwb91mvlQGUuaDrklBUVfyOJeTNzfUboy0EHDqEAo+1a3HPtLY6n6A8MUH0yU9ijd90U9GerHUTBZSJX5oXNEhEi1AU5QEiOoeIniKivxdC7HHwNnlPNvfc4EmCR47InoaDgzDoS5aATCwl482Taw0DxKGu42eXCz8XMrbJpNykurrmbiqxGIxFOIxs2MaN+UmndBq9H596ChvW5s3omWilHwiDqwFCIbwH9zaqZKVgPC4JRSYyWlpkH7l6DyIMAxWww8P4nqkUzqXPJ6UuPLCFHYv5JmxmZrCGly7Fwwn27YNUZ+lSTGK2MHFwvp3lB6g0e1TQ8EejuJ95GqmiyArdZLJy8marYAmWWQbN8hZep+ZqxXq/LxuwBiHmTkvmamsiacuYNMwnS7aL224juv12og9+EL3CAoHik3/zYWyM6Hvfw37/939vqaJiQduicoNlzdwfkQg/h0IIQO2qG3QdPk86jYC1Vit3GlgcmJhAq6ElS2Qv86VLMyfgCoHfBwKF9/DJSQTtLhfkg8uXF/34BW+L+DwahnMiMR6HreHzz33xGZwo5d7QVmEYMjZpbsYeVIqPlkzK+Ip7+Jdj6GclwRW2TChyCwsmy3NJ9RuoDKaniZ54ArZoyRIpY3Zy/uNxJDNGRog+8xlImYus7bq5ymXil+YFDRKxuih4srmRO5EkEoUAuTc5iZ+bmyFvLjXLdOQI/s9E4uAgbuzVqwsH3MXkzULgJj98GD8fdxwcj3xGI5kkevJJVHAQoQrs9NPtb1S82bHUmcmuSm54yaQkFONx/I437s7O6lZrlQOJhKy29PlkJQ0PuTE/mLAx96jkRzWrFVUVxHVzMypgnWxOR49iypfXS3TllUQrV1p6Wd1sUHlQ0BZxL9JcMj+zvLm9vXayvOl0pgw6FpMyaLc7s1qxpaX2JPkN2AdX8JurDLNlyWbSsBKk944dRDfeSPTqVxNdfrmU6zixReEw0Xe+g/f4wAcsJ9UWtC2qBPIRiZw4szs1khUL8bgcztaQNzdQbcRiRLt3y7Yzug7/m3vJsXInECi+PuNxBOtjY6iuPv54SzZtUdgiJhK5ktPuvsIJWSHgizDRZX6faFTGWXZ9ai6ucLuREC/VR4vHZR9YHohRD4lZw5DEOV8vl0sSik1NDUKxUkgk0AfR50Nslk4jmeFkLeo6khhPPkn00Y8SXXBB7SdXFwsaJGJ1UfRks/SKK38GB/G7Vavw+xdfhCFfu9Z51RURNqcjR7DJcI9Enui7enXxTYv76uWSNxPBYO/bJ6cYbtpUmPiMRCBx3rMHTvjWrUSnnWbf4LDUmRsYc/astbWyVVNc/m8ePuL3S0LRaqPk+YCqyuylx5O7yjQbLHllmXs0KgkbrlIzPypB2AiB/hiqivXlZHOKREAghkKYfso9Oyyg3jeooraIpzWzhNlsE8zyZibnag3s6Jtl0ImE/LvPN1cGXStTxhuYCx5CZiYN2eaYZcn8qAaJMzoKp3ZggOhzn8Oa6+111o8plUIF4uws0T/8g632JQveFlUCLGk3rxMhcP41zVmrkoa8uYH5gqYRPfss1vCKFdjrOjpgG3Vd9hO24ovpOtFXvoKg/Z//GS2HLNrTRWOLWBZO5IxI5ApmrxevFyJz0AoR/K9Uau6kbCswy5u5t2Ep4ERJOIxjb26uTo/scsFcicuVpOZeoE6uYQO5YRhIrsZiKAxSVTmg1C6EILr1VqI77yR697uJ3vxmywU69W6L6gINErG6sHSyNQ0Pt1sSidzH0OcDkRgMotph/XrnwVIigeEqXm8mkajrIBKLVfGpKqoSDSM/UTYxAaKHj3/16sKGemYGDeUPHsTnv+IVRCedZP87stSZp8uy1Lm9vfKbnqZJQjEcxrF4vZJQrJWpZ0x8xuNykIZTKZZhYMNgUjEcltWZRDD6TChyv5ZSN+zRUayvNWucSQc5aH/pJaK3vY3o1FNtBY01cAVLgiVblErBkeWJ3ubzU0vyZqswjLkyaK7+5v6fZhl0rfYAXejg9h5m0tAsS2YpMhOG2cFXNZBMEl17LfbAr30Na8VpsGYY6IG4bx+qGTdssPXyRWGLyv6hefojsiRQ1xH42PUXGvLmBqoNIdBHNRRCy6NgUPayc7uxp1n1bYQg+u53iX7/e6KrrsKAuYZflBtc6UaUfyhNIagq/JDmZlyn7P6I7GOl04gb7CY1zPLmpibYs1J9ND6mSATvz6qvelJ2sOqPZc/c/93vl30Ua92XrWXs3g1u4eSTpex/yRJn73XnnYjTzj8fSrGuLssvrXdbVBdokIjVheWTzc3fPR5JJKZSIOJaW9GzbnAQRu/4451nmWIxvFdTE2Sc5uErK1cWrzDSdRB/3L8j1yaVToMU5GnTGzcWJ33Gx4kefhjH1t6OfombNjlzxpNJOdVZCEloVUNurOtw7IJB/GsYkrDr7Jwf4oVJzmgUn809Dssd6JgH4PCDCRuXC2uWSUW7De0jEaypnh7L8uMMGAbRz39OtHMn0cUXE51xhu17qN43KMu2KJHAvePx4BxlO4vJpCQaa0nebBXpdGa1YjyeWaXEpCL/Wy+Z93qCuY9hOp0pS3a7505Lnm9SRgiir3+d6IEHIGXmBJ/ThuF33YXk2RvegMSZTSwaW1T2Dy5AJM7M4O9dXc4C5Gi0IW9uoDoYGoKvvHy5VIUsW+asH/Dvfw8S8eKLEbTbbAm06GxRqURiNCpJQpbbZldHc/VfW5sz/4MLKlyu8sibifC9mUwkwlqr1yn1ZkKRk5VmQrEev9N8YXiY6Lnn0MqsvV1OhndyDh9/nOjmmzEz4SMfgfrSxv1V77aoLtAgEasLW6XyPGjF65VEoqqCNGlrw6awdy+et3YtblQniETQxzAQyCQSUyn8bIVcYWmrx4NAKtcmNTuLKspkEse6bl1x5/zIEfRVmJjA+559NoyTE3CFAG/IXi+MHE+grTQMA5/NVYq6Lkm8zs7KBxpMaPKmzwReNUlMJnT5wXJZInk9zI9cDpOmYR253SCknRz/H/9IdP/9CNjPP99R8F/vG5Rt2U4sJichZ69TJow1rXblzXaQSwbNW6XXO7e/YiNrbR0sSzaThmZZsrmHYbVkyXZxxx1og/C+9xFt2wYbxo3D7eKxx4j+8AdIBl/7WkeHs2hsUSWQqz8ikUyQEiHwdrIOUympRmhra1Q2N1B+zM4SPf+8rFRLp6HOcCIdfOIJyJi3bCH6xCccVdEuSlvEwzy4356dc8YkoaLAl+BCA/NewoOfWJrsJKnB8mZdly2eygGOq7hPdltb9WKqSoD7hyYSsve7zydlz40kcn6Ew0iGdnUhvo9G4Rc5mU1w8CBaxHR1YbjT6tW29+B6t0V1gQaJWF3YLpXXNNkrgwjkXjKJjGNHB4zcvn1wJHp7IW92ssGEQmig3NqK9zYMSVquWGGtwbsVebOuQz46PAxjvGEDZNmFIATRgQMwTsEgCMhzzkGm1Qm4twdPY+SquGr292C59ewsvhP3wWxrg9Hs7CyfPIDJy3AY/6/0BGs7MPdZYSKah+MQYfMxk4ptbVg/kQgIRCeb05NPEm3fjk3uda+znd1i1PsGZdsWxWK4X5qacvcPNMubuRdpvTqS2eAgwSyDVlX591wy6PmulqsFmGXJ/OCkAVFmdSFLlGsdzz9P9KlPYQDYtddiPXR3OyOI9u8n+slPYMsuu8zx/VLvK23enVAmEnMlR2ZncS93dzu7PoaBfS2dxhqplXYmDdQ/4nFU67hcSPirKvxiJwTioUNE11+PoP9zn0M84WC91/vKdmyLdB2+jxMiMZ1GPOD342EYc1t0sB9vGM4LDgwD8UYiUT55M4P7ZMfjeE9u7VHPtk7TJKHIKiqPR1Yo1pvqppJIp6EeFALzDEIhrAEb8uO/YWoKk5hTKRCImzY56i9cxyuvftAgEasL2ydb12HIzCXuR44giF22TN6gIyMgV0qRN8/OQkbc3o731nV8ViIhSctiMAwQiYXkzUQgG158ERtnby/IxGJGwjAweOWxx/D916xBZWJvr/3vyuBG6NEojB83C672ZOVYTBKKTE60tkpC0clmxaSOeQBGZ2ftB+rmilF+8DlhWfratTLbHghYd1QOHCC67TZUHl5yCRxvh5VO9b5B2bZFmgYHkSf05Tvv9S5vtgo+H2YZNEthXK65MuiFeh7MYCmyucqQwbJkM2lYbwHG7CzRhz+M9f+Nb+A7trRY2xuzMT4O2WBPD9HVV5e0PursLM5BTTihuQatEGENz87i96UE3WwnuFddLSTxGqhPcBJ65074RiefLH1uJ73HpqeRGNF1TGJevtzx+lzUtoiJRLfbflKJB34w8ZZr0AonJIhKkw5zEUU55c2MVArvzeeBe6DXO3RdEoocj7jdklBczEO0hEBxxswMkqu8zzkp0EgkiD77WRQaffzjRKecYq2IKQfq3RbVBRokYnXh6GRrGgyYucR9aAhOxMAANgEiBO5798KIH3ecs0q96WmiyUk4y/392LSGhiRpaXWARSQimzvnkzcLAUNx+DC+F0uyixkdTSPatQtGS1VBmp5xhrNAjqHrOGaWZHIfo/koy08kcO5mZ+X0t0AA576ry5pzEo3iPTRNZhzreZNTVQTdPH2wvV0GfR6PrK7kisVc621iAlO+3G6iSy8FCVmCvKzeNyhHtkhV5WQ7lnfkAkvnNQ1rt5ank5cT3CjdTCyaZdDZxGItSnWtQtczycJUSn5Xl2vutOR6r0rVNGTH9+0j+uY3sabdbiSx7DrKkQhskWEQ/eM/OqscMmFR2qJyI19/RCI5hMzjwV7qlPxuyJsbKAXmCbMHDsCOnHqq3JOXLbO/pySTCNqHhlCB6LDqh7HobZGmwQ9wQiSa1UJsi7LJXPatFKU0tUc6DdJH06TKp5xIJnGcqZRUpjhRDtUiuA8mE7/cDsNMKNZbgrQU7NsH+fFJJ8HXU1XE8k6Gkt18M2L7978f7aZKKBJaRFdg/lC3JKKiKFcS0Q+IaJsQ4t55PhyrcHyyuW+U2y2dhKEhOBH9/fJG0zTc0DMzIO82bLCfUZyYkK/v68PnDg+DmFq6VJKWxZBKoSyZy+/zbVKJhJRkd3TAibFSCaiqRE89RfTMM/iMk09GFqSUKkIhEPhzJo0lxvNVUaWqklBkmW9TkyQUs79rPI7nptM43q6uhbFxGwbWiKaBNHa78V3N1YpcTUokJ6XyQ1Ew4SsSkQRiKaQzZW1QdWiPHNsizsTyNLt8jjJXSyQSst9lPZNmTmDuJ8nkIjdhJ5LScJZBO2nMXg3wNEMzacgkvqLknpa80HDrrWiD8KlPoWdYKoX90e53TaWIfvADJOuuvtp5L2MTFq0tKjeYSMzuj0gk92KfD/uv0/uUZYmpVEPe3IB1MGnBE3ePHpWJUPbN7ZJWhoGg/Ykn0JqhVP+ZGraIiGRSzeOxR8iybXC74Q9w3/R8PahZNuyUSBRCFiv4/c5bNhQCF0VomrSd9VzQkA0zsc+9s1nS3ty88FvbTEwgDl+xAgPmgkFwB04KB77/fQx2eutbiS680FpRUQEUfWUd2qeawwJ09SsPRVFcRPQFInpGCPHbanymxyOJRM6Ur1wJGfP4OH6/ZAmed8IJRKOjqPDbuROki50s05IlUpbscskJuMPDcFwMw1p2wOeDYzMzI2W6uTap5mYEZUePIrv65JNoorpyZeENze+HnHnLFkicn30WcufTTiPautUZ6cfNjVtaZFk+Vyhyfz478tlS4feDJO7vx/VnQnF8HOeLN+WmJum4eL0IbheChIAxOoqN2jyMh68TB+G6LqfQcX/FiQk4L3ffjXO3bRuunduNzX4hbO7VtkdNTZnDMVyu3PcaE/BeL+6h2Vn8vJAcyGJQFNgLc2Cm65nVipGIHODAzzdXK1b7fAmRe1oygwMjJg3rUZZsFw8+CALxkkuQHQ+HnfWtFYLo17+GPXv3u8tCINYU5sM3KicUBY9cRKLfj8RTKIRHR4ezde9yYe3w/Z9O106P4gZqD1zdzkMWiZCc7+1FknhyEuvHSVXrj36EnorvfS985oWQcGbMpy3i68R99Kzu4dwGJRaTvnyu6mhW3/B0ZE6U2wX3emV588RE+VVLXJ1n/oymJqzZhdDiRVHkdxQC9ysTivE4/m4mFOtdkWFGPA5VYHs7YrPJSfisTgjE//1fDJg77zw8lixZ2H5lvftKjIbb4gwuIrqBiH5ERFW5+FzWrmlykqXLhd4lLhduXsMAaUckmyvv3Qtybc0aPNcqli7F+01OgnDp7ESmYWQEm4AQxQei8DH29srefEeP4udcmwdXOR44AAJ0YgJVicWkXi0tyFps3Uq0YwecomefRVb1lFOcVz/5fPiO3d2SSBwflz2N2tqqW1nF5GBfn2xiPDGBa5xM4nhXrMB1rnZPx0oiFILTvGRJYTKc+6+YKwxVlejHP8a/Z5yBczgxgfdzu2WVKVfK1qm8rKr2iJ0iHprBw4nyBcFNTTjvHHwzObaQHYRC4HVnXsupVCaxyBXcRDiv2cRiOQkHsyyZSUOzLNnnk1MJF4Is2S4GB4n+7d+QnLvySpDhXEFqF/fcQ/TCC5jCvGlT2Q+1FlB136jccLlwT7Dywwy2e5yoKqWavaUF91Q4jDXV2rqwSJwGSgPvCboOe8+B+bPPguRZswa+jN9vvc2QGXffjSnz27bhUc3keJUwr7bI65U+kqJYJ8x4wnYiIXsi6rpMcJjfv7VVEomlVDRzz+aZGfgelZA3s//Cif7xcfy8kBIo7BtzCykzocitqfx+STrWszJH14mefhrf+dRTsYd5PNaVimY89RTR//t/RCeeiEStE4VHHaLufSWiBolYV3C58DAMGWC63SAMFQWVg0LI6obWVtzcTMqFQpA3W+1TMDCAzzl6VJbNr1iBKgomLfv7rb0XVyBNT2Pz6OzMvUn5fAjW+vshX336aZBia9cWN7idnUQXXwwy8ZFHiP7yF0idzzgD1ZhOg18mUbl6IBzGZsuOf3v7/FRXGQY2og0bpKMRDqM3BRNqnZ31PSU3ncZwn0DAWdXOQw9h4NC2bahQXbYM72mWQQ8P4zOIsP6YVGRHahFsZrbBQzKIZMPpQCD/PcpDCaJRBEbp9OKUN+cDy4A5GGSJjFkGPTYmn8+DbcwyaCv3uGHMnZbMewnLkjmg8Hobaz8WI7rpJpzf669HsMb7gV089RTRX/+KSsYzzyz/sTZQPrjdkkjMpZwwDNgyHh7lFD4fgq5wGGsrnW7Imxc7NA12R9Nkwsnnw56wZw9+f9JJ8D+JEHDbXS87d2Ko0ymnoCK63gmNWgX7SEwkWo29AgG5Drj/N5PJ2e+fXZHoFF4vEvXBoBxm2NVV3nXB6pSWFnnM8biMoxbaGuRp252d8LWYTAwGZWsMJhTrzdfavRvX7/TT8Z00DYVAdmPNl15Cj+lly4guvxz7YSOZVj+oU2ohA15FUW5WFGVUUZSEoigPKYqy1fwERVE8iqJ8SlGUPYqiJBVFmVIU5XZFUVZlPe+Vx35/2PS8XyuKssn0nDVExOKuKxRFEcceD1T4exKRzEwJIfv3EIFg6e0FuTUyIitJPB4QaOvWwenYuRMbhBUoiqxqGx2F00yEm727G4SgObAtBp8P5GBzMwyoudomGz09CLa4+vHxx/F5VrBkCdGb30z0lrfg2O+9l+j220GulQqWz65Ygc0wGsXx8fmpdItRXcd5GBnB5tvRgT4Uq1eDaN2yhWj9emz+4TDRoUMoNz94EK/j6bH1ACFQBSQEvp9dR/npp0EibtoEZ7mvTw63WLqUaONGope/HKXzL385fu7uxnk9eBD3ykMPQSr/wgs455FIZk+7HFg09oh737lcsvdfofXPDmRHB9bhzIycctdAJlgi09uL+3vzZiSENm6ETWZ50PAwptzv2oWK5KEh3Ofc7DuVkpPfx8dhr6em5AAp7q+6ZAnsWl+fbIBeb05tuSEE0b/+K87Z9ddLJYCTCb0HDxLdeScSPq97XflIoiJ7eV3Yonw+wHyD7Vqu42PyPpHAnlDq53R24v2SSTnsoIHFBR7uFwphzbW0YF0wETU4iPt93TqpAOjutm+nBwcxWX75cqIPflAqBUpFkTVbF7aoEmA/iav8rYDbKhkG/FFuv5PrHPt8IOHS6dJtkaJgf+vqwvFOTFTGR3O54GcMDODYo1Hss7z2FyJ8PnznpUsRB7e345qyQm98HPe31TUynxgcRMy7caP0RZ30upyZIfrKV2CDrr4a685JgjYbPD/ABhatfSoVC2Gwyi5CA80fEVE7EX2EiLxE9HIhxH5FURQi2k5EryeiHxLRU0S0/Njz4kR0mhBi8th7/hcRnUBEDxDRGBGtIaIPHHv/E4UQE4qitBDRW4993l+I6NZjhzQuhLinyGGX5WRziTwRNhdzv4zJSRj+jg44CeZgJRpFoKmqIGVWrLD2eYaBSi1VRZ9ClnGxLLSz034DVJ4ezD0XCxmfcBiBciyGYHf9enu9NA4eRGXi7CwM+NlnW//uxWAYUuqcTuN68DCPcmbVDAObjXmyY2dn4c/gwRac9UqlJJHDlZXlcB4rBSY9Vq2yXyJ/+DDRD3+I671tG9ZYV5f117NDxr0V+frOzoKwuemmvA3E68IejY+XzxZxs3ccszVZFAdM6TSckMUsby4FLHviIUORSKYkmaUzra14sITS663f6uRq4be/Jfr5z9Ev7MILYQf4PNrB1BTRT38Ku/ue95Svan1khOhLXyL6zW/q2xY98AAJTkz6/bmHmswXDEM2ys91TOZKmnL0IE6nsc6EaMibFwuYKOJhZbmGMUxPQ1HU3w+fZnwc683u5NJgEBOY02kkRpwOQDAjEkE/s1//muj3v69vW0QVHPKUTMLv8futE788sINbmOg6fP5cezf7AX5/6deUKHN6M7f9qRS4PVM8LlVvra21sw9UEpomrzMTth6PrFCstb6Rs7MorOjrQ3HG2Jjs3W8HqgpbNDxM9NGPIs5btqx0vzQaJfrkJ4luucXWYJV6sU81h4VAIh4ioi1CiOix328hoqeJ6FdCiHcqivIOIvoFEV0ihLjD9PpTiehJIvoXIcR1x34XEELEsz5nIxE9R0Q3CiG+eux3HgKL/CMhxJU2DrtsJ9swYHyYQDQTidPTyGy0tYH0MxtiXYczMjkJEmnTJmtEkq6DSEyn8Z7s3E5O4tHePpe0LIZUSlbHsXy00PcdGkIGxOUCkcj9H63AMECg7tgBI7N6NdFZZ4GULBd4qnMiITOJHR2lBY3cfyk7O+2E/OPJzcGgrKZraZHZn1oaeBGLYZ12duJa2cHkJCapNjcTvf71MvtXKkZGMDlM14k+9KG8znJd2KNykYhEWJdMJPLQGivBL09Cj8dln9GFJmepFHiwDQ894aFbRPi9puHBU5TZLnMlLj+syqAXG557DhnyM88k+vCHsU95PAi67SAWQ09WTSN63/vKF4hNTRF98Yu4vgVIxLqwRQ8/TCKRQNDIAyI4eHK78wfN1UIxIjEUwn7a1laeXsTm6c1+v/OhCQ3UNnjfTCYzhy9kX+t4nOj557G2jj8evj0REvd27gtVhc0YGsKE+dWrcc85vbcOHSL63e+I7r8fdm7zZqIf/KC+bRFVeFI8E4lNTdZ9nUgEr+H2T4YhFWnZiMexppqaypPUEALxApOT5ZY3Z4OHRyaTsiXTQhoQWQy6LglFjtHYn25unv8YTVWJHn4Yx3TWWTJ+HxiwVxFtGKiGfvxxog98AHZtYMA5Ycp8SDJJ9IUvoG/s/ffbIhHrxT7VHBaCYOl7fOGJiIQQuxRFuY+IXqdg+s1lRDRCRI8oimLO2w0T0X4iepXptX+78IqitBKRn4hmiOhFIjq9ot/CJlyuuX17eNpsTw/+HRsD8Weecux2gzjs6IATsHOn/LkQ3G68z+AgMgerVsGg9fXhvcfH8fkrVlh3eFnePDsLR5zlGbk2KZcLTk9fH6oS9+7FZ3I5tZXzdcIJeP6zz2IC9M9/jp/PPLM8JdQcmHPPvUgEhCVPdbRTbSUEHLNgEMaxuRkbeClZKT6+5cthbJlQHB7Ggz+js3N+KyB0HevM67VfMRqPI2hXFKKLLsL3tTIAqBgiEVSz9vQQveY1BZ9aF/bIbtawGHgDJ8La9fmsOzyqKmWZ89VftJbBlefZfQw9Hkm+cg9D/tcMDlZ5aAtXvaRSuP+5EpR7LGZXwSw2TEwgCbFhAzLl8TiSTX199gKodBqDC1wuomuusTfYrBCCQQx6MQyir32t4FPrwhaddRb28tlZmYhIJmFTeD17vZmEIj+qBV3Hv7mufyCAa8IDpsoxnKu1FesuGsW5WEjDBxY7uHo/lcJ64R5gudazrnrkb14AACAASURBVMPfbWlB1U8ohHti6VJ7+6QQRP/934gHrr0WQbuTAV26jr6u27fDj/b50A7moovQc7oA6sIWVRp+P+7nZNI6kdjSAv+I+yOyrDkXkRgIyH7KLlfpfjzLm/1+2Die3lypAYQ8PFJV8XkzM3KA1UIaFpkPbrdslWEYklCMxbAX8DVlQrGafpoQ4As0DX0QeYK4kyEoP/4xCMR3vAP8Q75hq8Wg6zJRrutEX/86EsAf/7jtt2rYJ4dYCG7Ji3l+t42I+ohoE6HsdDLP64/wfxRFGSCim4nojUSULX6cKvlIywzuk8GZciYTFQWOicuF6qnBQRBwZidl6VJktvbuxU23atXcqsVseDx43uAgspmrVuHG7+nBe+ciLYvBLGcOBhFMFJI3BwLoDTY2BhL0iScwpa7YsZu/w9ataEz91FMwigcOYCrUK15RnqyX1yvls9GonKJsVerMFYPpNM5Db2/5N+2mJmR+BgawETChODqKBzcD7uqqfiZweBjfff16e0G7pkE2GIkQveENCMSWLCk9cxqPE913H+6vbduKTq1blPbI48G6T6dxT7N03opj4PfL4QKhkJTfLlYiS9PmTktm8EAbM2lY7Dy5XNIxNX+GeWgL96jl55uHtgQCtSepqRRSKaIvfxnn/AtfkJOr7VZgCEH0m9/Alr3zneUjEKNRos9+FhUAN96IJFgB1IUtcrmwD7W0yGERvFY5QEilZP9Vr5f+NqmUyUQmFytlM8wD7XL5Nh0duIdCIRxDORIhgYCc3jwzA5u4GALphQohQI7E4zLRVmgYGRF8U1VFApz72zKpYwc//jHRo49icMGWLfD/7AT+wSBUGHfcAaXHwAASI2ecgTXa3V3UR60LW1RpcMUpE4lWlAC8f0ejsspQ03IPWiHCc1nlwZ9XKtgHmJnB3tPWVtkBUCyPTSRgU6en4ddzpfpiAPthZmKYB7PEYpnVy01NlU+q7d2L/XnLFtzzTvekP/0JduRVr4L9aG+3F2Myia5pMuno8RB961tQGl55JSY820TDPjnEQiARi0EhosMETXouJImIjrHNfyIslH8joueJKEpEBhH9O9XoEBqPR0rZ3O5MIrGzE/+OjGAC0urVmQ5LSwsIuYMHQf6FwwhKCgWMXi8IuyNHQCSuXo1j6OrCZ42O4m+rVtkzaq2t2DimpmRPx3zSL0VB74SeHjhZhw7hNZs2FSV4/gafDxUQW7YgI7J7N4ZnnHoq0cteVp4ggHt7tLfLzZDJupYW/N68IXJ1oKrKSWnVCBq4IrS/X/Zkmp3FOR0fx7EwoVhpcoenXnNQaRUctB85ggnd3d3Fe21aQSpF9MADuH4XXGC/N2MOLFh75PfD/ug61j5X5lgJVnJNb+7oWPjyZs6kmklD7jDCJCxP5+RqrHLA48H5NVegq2omsTgxIY+FZdBmYnEhXptvf5to3z4QiL29CF5Y9m0H99+PPeWii0AAlAPJJNENN4CYvO467F0loqZsEe+Hk5Oy6qatDeuSe3zysCAzecj3EI41s1qxXGuUCUtO2GbvgexvsarCPBCjFHi9sIusauCp9os1wVKvYPLQMKQtLbYvjozAH1qzBvZndBT3RzHVUDbuuQe+0bZtCNy9Xut+0Ysvourw/vsRtL/sZahkPPNM+LGJBNZnGZQrNWWLKolsItEKAcTXLJmUCgQmEnPZuNZWqWYqV1LD40HVWSgEe1RIOVYucNVdLIbPnZyU98BiSWwSyV6pzc0yGcGSZ26fxf2vK9GiZmxMcgj9/fiZkwd2sGsXpsJv2YI4jSXyVsCSZU2T7UX8fqy/W24BOfnWtyJRUgEsGvtkFwuBRNyU53dRAmt8gIj+jogeFEIUmnt0MhGdRERXCSF+aP6DoijdlMkg11QjSTORyI4uG/aODvxuaEgaAbPz4naDOOzokBNpN20qLO/1+yWReOSIJCc7OzOrH1etsrfBeL2okJyZKS5v5uM48URsLPv3YxrvihVwuqx+biBAdP75kGLs2AGZ83PPYVrvli3lkxCxcc8ldW5qwu/ZQejtnb9BE14vPr+3Fw4KE4rT0zjPTD50dSHAK+dmpaoIkLmC0A7+/GfIa175ShDMnCktBek0pjMHg0TnnGO5r+KitkdNTQiWiLA2kkncY1bXSWsrnEOuvmlrWziZZyZAzKQhyySJZHDJlYbVli/6/bIqlI/XLINmR57BfZeYXMzVz6ue8Mc/Et11FyoHzzwz097Zwc6dRA8+iID7nHPKc2zpNCok9+1DEH/WWZZeVne2yOdDAml6Wg6z6u6WyQkOnFl5wT6P2y3vF34eI7ta0emexdWP5kRt9t+ZSAwGsUeWY3AZTzJlefPMDIjEWh6K1gCQSuG6cdVYa6u16xYKwbfu6YHfMTaG9WW3NcuzzxJ95zvwZS+7TA5sKARNg/3avp1ozx48/w1vIHrzm2V/6tlZ7A02ZKZ1Z4sqCSYSmQiyQiQ2N+PaxOO4/znWM/fDN6O1VcYZVlUhVo6b+6dzoUEl5c0M9jOiUewL4+P4eTG2eeC1w+c8lZIVirOzeJgJxVJJ3mgUMXFXF9ogTE1h3S1ZYs/fO3IEfRBXrCB697tloYyVIYysSCCSqide8z/5CWzVRRehv6JDH7RhnxxiIbCi/3Bs0g0R/a0h5quI6C4hhEFEPyOiNiK6LvuFCsD6dg7nshsDX0FEA+bfCSF0AvNsY95r5cDlvOxYE8l/iRCIr1oFY/PSS7lHyPf3owrP60UFxeCgrELJhaYmGIN0GgQlf157O36fTOI9zM681e/S04PAQVWxWXCvtXzo64MUeWAAx/LEE3C07aCjA73uLrsM7/Pww0Q/+hHOhflclgqWOq9ejc+cmkLT7EOH8Pf+/tqRcrrduA7r1sEJXbdOyrYOHEBW6dAhnGszGeIEQmC9KArOjZ3vv2sXSMSTTwYh7vfbH4CQDU2D/Gd8HISyjeEui9oesYNjrtZh+ZZV+HxYdx6PJNzrcf5XOg3ijZ3t0VHc76EQ/ubz4X7q6wPxvWQJHHQrVSrVAE/a7utDYubEE2EH1q/H8fr9+C5DQ5C67NqFypXhYVlRXS/Yvx89w047jeiKK2DjDENW2FvF4cOQ6qxbh8C7HHZc1+F879xJ9P73Y1K0RdSlLXK5sOa6u7H3Hz2K+98s3fL7MytzeUo5Vylyco6lz7ouqzficbwvk/h2bAuTh/l8ApcLa8blwj1g1/8phEBAVm3MzspkTQO1B1Z0RCL4ua0Ntt4KgaiqSBYEArAjs7NYq7299giBoSH0TF2+nOhDH8JrA4H8NmlmBj7vO9+JhEU4jKmp//M/6DHGPhBP0eUJuhZRl7aokjBLjZPJ4naIhzUaBvwKt1vatlyvVRSsO48H6zBX3OcUzc2yVdD0tJwoX0nw9xkYkOqusbHyxB/1DPYjly5F/NjejjUSDOL8TEzg+jvZizQNxTkeD3yjWExWH9shpYNBDKpragLRx1Wt+ewZ9wFnkt0wZPsHv18SiL/9LWzWOecguVoCYdqwTw6xEKYz82juHxJGc3+U0Mjy5UKIF4+N5v4lEb2NiP6XiO4jXLjjiOgSIrpdCHHjsUk5u4loCRH9J2E09xlE9GYimiWiISHE+abPf4iIXkZENxCaa04IIe4vctgVPdncXJRvpOwMVTwOosbjQVCYy6ExDFQkjo/DMG3aVNhYRKOoPGxqyuyFGIsh8+Dzza1+tIp0GhsUS3isVIQEg3DA4nEY1PXrnWXsR0YwSGNsDIH9WWfhvcoVFAaDMOzmDGEigX9Z6jyfw00KQQgcezCIRzqN79HejnPV2Wn/eo+OYrM77jh7lT+Dg0Q/+AHW3rZtOLbly0sjYQwDEveDB0GanHhizuuebwphvdijitqidBrBEMtumJCye/9wBRwPEKkFci0XuG+buY8hb60uV2YPQ59vYU1E5l5dLIVm2R4Rrpe5WrFWCFIzwmGij3xEDh/weBAU2QySaWoKUp3WVpB95ajOEILoP/6D6N57IdN5xztyrp0Fa4tSKVSEahr2Fd4bzFWJ+MzM3xPJ/oleL64pVy5yVaOZCMyWQRfrr8gTz/Pdx7oO8keI8kv+hMCaVVXYEq5KamD+wZVi3BuYg16rMAwklRMJDFIRAr54W5u9xGgoRPTpT8uJzFwxmO0LC4E2Ptu3o/pQ09Cn7C1vwfCE7HuAk3o8ST0HFqwtqhR4gAaTisV8JJbG89pie5dvX2V7oevl96GEwFqLxWTyt1ptTnRdVloSYU02bKGEpskKxVQKv/N6ZYVisbiYB6lMTMAmtLQgodfUZE8plkqhPcyRI5gK39mJdZKrXZlhwHbymmaFQa41e889SK6edhreP0f7q6LRRh3ap5rDQiARX0dE5xPR+wiM7hNE9E9CiCdNz3UR0QeJ6O+JaDOBLR4movuJ6FtCiD3HnreOoGM/l4i8RLSDiP6ZoGWnrIt/IhH9XyJ6OREFCGWuf/t7HlT8ZHOzUa5MzHZ0EwkQLy4XiMR8BOHEBEgUlwvVXYX6FkQiIN1aWjKnM8fjMBweD4hEJ2SeEHDGYzFZYVZskzIMfEf+7PXrnU+jPXQIFWnT0zCcZ5+Nqk4nMAxsuDyJlrPT/H00DX8Lh2XmhftC1UJlYi6Yp0hzxpwIx8yEYrGMVSSCtdbTAzLQKmZmINUJBIguvRROxdKlpZGvQmDgzosvonT/1FPzrrd8znK92KOK2yKesOr1ysEITq5NKoV7QojakDezo5M9LZkI96l5SvJ8yJLnG9wE3EwscoKECHY8WwY9X46/YRB9/vOoovzmN4nWrgVpxQPDrCIex0RnVUWm3Wqfn0IQguh73yP63e8Q1L/vfXnX0oK2RYYBWx+LYa2YfQCuWOBqHJYt8+/NvRJz3Y9MJjKxaHaHC8mgWfVRiEjUNOyJPOG03MF1IiGlilar3BqoDHQd10NVZf8yJ1PuDx0CabhpE67p6CjWzcCA9fdKp2HTDh9GcL1ihazMNT/nz38Gefjii7DFr30tJMsrVuR+Xx4SaK6IzYEFbYsqBV2XE5WtrBtzf1SXSyZq8/kahiHjikokY1lKy3LnahZAcNwUi+FcVHroSz2C7RPbKCLpj3NlfzYOHYJt2LwZ8fvYGNbPwID1vUwIon/9V7QK+9jHEDu3tMxty1BMspyNhx8m+tKXEKPdcENee2SHRKwX+1RzqFsSsU5R8ZPNk4uIpDOdnVVPJiFrVhQQifkypYkEZGqxGByLQjLTYBBZira2zEmUiQTIPJcLr3fal4NlgSx3tkIkxGIwguEwMh8bNzojIITAedixA4TXypUgE60Sk5wJDIVghFtbC1frCSEdNpZntbXVRx+keFxWKJorK5lQzD7/moZrxL05rZIJiQSC9ngcEnQhsJEU6uVZDEKg98eePbgvtm4tuF7r3UWpiuFnKbPbLSW8Tpp8sxOcSmENVctJNJMRTBiaZSEeT+a0ZJZPNpAJXZdVikwumgme5ubMoS3VIop/9COin/0Mcr2LL0Y1oa4jYWTVFmka3mdkhOiqq+wlQgrh9ttxbNzrp8B9U+8rzpIt4n6ALheknbn2kuyJjW43fsfVDZxYNVcomu9XJgfN5KLZRc6uVszlX2UfEx9zd3f5yXJNg5+g643pzfMBw5CSO/O0VCd7ACfuly9HsM2tfJYts+73CYFkyF//SvSJT6DFC1eDEyFBcscdmLQcDMInv/RS2JhCxA8nipubiw5TWBS2qBJgItHtLr7/cUzBEl8h5EC7fAQPFzEQIZYod1KDkyaplKwKrKYvxC0EEgl8N5762/DHMsE2iwlF9s/Zdvn92LOeeAJFGaeeip8jEcS8dnyzn/4UiYrLL0ePaE6I8N7Je7N5X87ek7Px9NMyOXLjjQV71TeufBXQIBGri6qcbA58Czm6qgoiUQgQJvkMg2EgI3H0KIzypk35g5mZGTlZecCk/uf+iNzvzumksGx5s5VNSghkc7nn4HHHwUlzsrHoOkimJ56AAV6/HjLnfFlZJgODQby2udl+L4lkUsoFiGQz4VqVOpuRTEpCkY+/qUmSfYEArkskAgLR6nfSdQTtR46AQOQmwk6rTRl79qAH5sAA+iAWOZ5636CqYovYYWG5IJOATslwJqDc7so01da0zOEnuWTJZtKwIZ1xDu4ZaZ4IzRWdbndmtWJLS/mv9Y4dcEJf8xr00+FqBjtT3YWAk7xrF6TGJ51UnmP73e+Ivv99onPPhdS6CDm0aGxRKgWiN53OlDebkS11ZkkUV+xwUoADF656yJcAKCSDNgc/TDBmv0c6jeCaJ9CX22Zwe5FksiFvrhZ46BT3suMA3Ol5j8Xge7S1ofInEoE/3dNjb0Dc7bejh+Hll4MYJILt3L0bduovf8Hxnn02yMOtW4v7wokEjqWpCQRikecvGltUCWgaYjMrRKKmYZ34/dgf2DaxHcoFXZdKKB66WU4wuRmNyum91VZiqKoczMmD0RrJldxgKb3Zlqkq/Jn2dgwd5ZYi7e32FBb330/0rW+hzdSb3oT1ylWM2ZJlc3/jQnj+eaLPfhbr6oYbivaqr3dbVBdokIjVRdVONo9D5+a7uYhEHrRiGMh8FjK0k5MYpqEoIHzyZSOnpvDo7s7sm6CqcljL6tXOK02EACnFk42tyJuJYCD37wcJ2dYGMtROvyszUin0inj6aZzjE05Azwjz+3HmNp2WY+xLqa7hkv1IBI6A14vNsbW1PgKGVEoSitxsPBrFddm4EUS2FWJXCKLf/Abn/9JLUZHiciFbX8p54EEx3d0gEC047vW+QVXNFrGUglssaBoCLqfOpVne3NrqnFA3jMwehvlkyfyoVq+fxQp2YM3ToM0N532+uf0Vnd7zIyMYGrB8OeQ2LJnlCgqr+POf8XjVq4j+7u+cHUs27rkHvRm3biX6p3+ydDyLyhYJgX08FsOemm/gBNsarkB0uTL7K5kJRXMPT5Y8F1pbZkKRX8/HYK5U5IA+lQKR6PXaH9ZjFWZ5c3t7eaaxNpAJbtWQSOD/nMAsZW/QNExRJkIfRMOAdJCHV1jFn/9M9J//SfTqV2M4VDxO9NhjSEgcPAif5vWvJ7rkkoLVOxlIJnGv+Xy4zyys20VliyoBJhI9nuLJLCZ/WlpwjdjWFarm4ljC5apcwiGZlD1hu7rmp+iBixjSadjdXEqoBiQ4MfLQQzhvW7fifAWDWF9r1li3c889B7nxSScRXXMNbFF3N9aoVclyNg4eJLruOtwTn/884sYFntCoCzRIxOqiqic7uz8i0VwjkE6DSNQ02a8gH5JJyHqjUQRf+Yif8XFsIL29eDBSKRCJug4isZSNJR5H0KcoME5W32tiAmSipkF2tmaN8000kUBV4nPP4WcewsGNbH0+WXFXLnB1IzdWryepM0PT4CQ/84wchMKbfGdnYanqgw9iyMAFFyBjr6ogEEsJmF56CcfS2oqNs4hch1HvG1RVbRGTdT6frAIqhQSyK2/m6mwzaWiWJXMlkrnKsIH5h2HMlUFz31WWD2bLoIsFuskkKg+np0HW9fYiSeZ2Ww6UiQiB/69+BbnPpZeWhxj6619Bah5/POSI5v2zABalLSombzYjl9TZHGjnIxTZLhSyUywlZB+LycXs/oocvFus6HIEs7yZ74sGygMeaGEYWBPlGBLFrXJCIQTcgYDsPbZ8ufX98fnnUZlzwglEV14JyfK998Jerl0L+7Rtmz0VkKrCRno8MllrAYvSFpUb7KtYIRK5sICVWcX6IxJlEokdHZWxRboO+5xKwQ5V6nOKIR7H/aVpOJdW+rQvVuzejanuW7fiPA0O4tz19WE9ccV1U1N+QnFkhOgzn8Ee95nPYJ0FAng/q5LlbAwNYVCUYRBdfz3ibAuEZr3borpAg0SsLqp+sjlgzzdohQjG9aWXYOxXrSpcoWcYaNg8NiYr+nI572NjMD79/Zkl0Ok0DBOTeKU4uZoGJyeVkkNKrBimdBpZjaNHYRA3bSqtl144DJnIzp34/C1bMHK+HM31C4HL9mMxScq0t9d+6b5hYIK2rkMSHo+DdOaekSxV7erKzJQ+9xzRL3+J83v++XCe+vqcV5QSEQ0Pg0D0eDDly4Ykut43qKrbokQC17ypSfaQcjKx2Yx88maWJZtJQ4bbnUkW+nyNvjn1hHRakor8L2e3Xa65MmgzISwE0de/TvTAA0Rf/jL69PAewo6yFQwOEv3wh9jDrriiPFWqTz5JdPPN2IM/9SnYIovrst5Xr2NblE6DAE6ncf8X28e5cjBb6my+ftzkPft5TCjmq3rMHrTC5KJZCp1IZBKJ5h6L5bJBDXlzeZFKwc7oOtZKrinHTjE0BB9k3TpUHU5NgRxfutR61dToKOxFOg179PjjWFfnnYeBTKecYn9tcdsAtxt20cb6WbS2qNxgIpF9lHzghKrbLfsjalrh/oj8/uEw1nSl+hfWgryZjyMWk1Oqm5sbw6iyMTyMGGvdOlT5hUKoQuzpwfrjPoqcfOcq7KYmeU3DYVQLJhKQHbMSj/u6OvGTJiZg36JREImnnmr5utW7LaoLNEjE6qLqJ5srcDgzlW+ioK6DSFRVNCwtJqGamoIElIhow4a5kyy5F2Ekgj4I5t5FmoYgLJWC01MKCWSWN/NETaub1OwsyKxEAse4bp39DY77HcXjMKB794JAbWmBxPnEEyvvwHOfE94gvV451bkWg4ehIQTu69ZlyoYNA+uFCUV2hNrbcX5/9Susl7e/HRnO9nZ7E1SzcfQoJOmKAkd72TJbjlS9b1DzYovMMjCeRui0ET0jmYQ9Yoeb7RwR3je7j2FDlrzwkC2D5nVGhGvOxOIDDxD94Aeo1rnsMlnVbadifGYGQ52amzHwpBxSreefJ/riF0EkfPrT9qqQaJHbIiFwTaLRwvLm7Nfkkjpz+xcGk47mymXujZptS7j6sBAhaBiyT7LPl7n/5ZJBl4JkEvtpQ97sDJys4LZAgUB5z+HsLPzFJUvgC8ViIMQ5gWoFExNIYuzfLxP2F1+M/qx2pNBmaBqOQ1FAINrcLxe1LSo3OAFajEhMpeT0+qYmmbQoZkdSKdgIr7eyw+rM8uZyq7PsgBMs3A6HKyQXu08YCqFHdFcX0emnY10cPYrzk62GSKclocjJefa7b74ZRUbXX4/15HYjZnNK1s7OgkCcmiL65CeR9LUhSa93W1QXaJCI1cW8nGzuj8jOaSEi8cgRGIfly3M3LTfDLG9etmyuNFgIZDdiMbyf2WHWdRCJTFraaR6dC1zNRmRP3szHMTQEQ7dhw9zx87mgaZK8ZKKLM/5jYxhBPzqKc3jWWXjfSlc7mbNtXOnFUudaCSBCIWwyS5ZgzeQDy7ZnZ7Emf/ELfId3vxt/7+vD5uT0nE5OgkDUdRC9K1Y0nOVqgOWpXNnDvRKt3q9CZPYwTKVktU8kIvsk9vY2ZMmLGULMlUHv2UP0H/+B+/1jH8P6UFU4zlYTCIkE0Xe/i/f7x3+03PqgIA4cwLTB1lYQiKtX205mNWwR4ZpMT+M69vZatynZUme2TdnrIR+haJ70zERisb0kFsP+xlPJzT0Ws2XQ2ROh7YBli5rWkDdbhabBbvBwwkDA+TDAfEgm0Q6hqQkyZsOAv+j1ogqxmC0aHSX69a/RAzEUgjLjssuIXvnK0qaAaxoCdiLcQw6qxhq2qMxQVVyXYv4Mt/poa8N1Y3tSTDqqqrIIo9Q4rBDM8mazvHU+wNWb0Sh+5l7ItVh0UWmkUkSPPIL/n3021svYGH7mScr5wLYyFCL69rehprjmGrRj8XhKG6QaiYCMPHIE/lr23AELqHdbVBdokIjVxbydbF2Xcgyi/Blzw8BNG4shsCqWERUCFYwjI7jBjz8+M1NgGCDokkkQNWYn1i5pWQxmeXNrq71NKhIhevFFbCq9vSD9chk/w8gcDsIy6lxBw0svwThPTYH0OvvsotOkygZVlZukEAhW2tvnN4hIp0E6+/3WSdVkElU/MzPo6zM5ie/W1yfla3YnXs/MgEBUVazXlSsdkaz1vkHNmy3SNCm1I8J18Ply32/mKcmFZMnsYPNwgUpNb26gPjEzQ/TBD2KN3Hgjfjc0hLXY1SVlimYZdLZN0HWi227DnnXlleWx5UeOoEm4242M+9q1DVtUCrLlzXb6cHGy1Tw1Mlvq/LcDFpmEonlKMxOLxYjESAQBWEtLZnDE0mizFJrddE7+msnFYt/PLG/mgWyLMVguBl3H9UilZKsNv7/8RIdhQDaYSkEB4fOh6iedhs+db88SAkH69u0YmDI8jDVw/fWQLTNR7HTP03X4qoYBH9hhAq5hiyoAJhL9/sLrgycvm/sjFhu0QgTbEIvh/UtRhlkBD4icT3kzQ9dlSyiu2K5kRWatgW3KzAzRmWdib5iawvlYurQwAchJNU3DRPjf/IbobW/D+0xNwa/q6EDs2dxsj0xMJOAX7dsHv+3MMx21B1skV3F+0SARq4t5Pdmcbfd6YTwKEYlDQ7I3ixXJ6MwMbnghQBCZS6B1He+nquj3ZK4Q4M9i0rKU3oRE+PxQCJuUXXkzV04ePoxzsm4dMjGKIjNX4TD+zyRlsfcWAudlxw4c1/LlIBMHBkr7nlah67J8X9Nk/5NqZ92EQB/KeBw9KK1sKLpO9OMfg4y94go49fE4zjvLIxIJPJczm8WmYIdCRE89hddt3Ahi26Ecsd43qHm1RaoKB6SpSQ41YLtkJg15e+LA3Ewa5lu/3OtH13Gf1nqP0AYqC01Dn579+1GJuGaNtB3t7VgvZhm0ebAGy6ADAUxNfvZZore+FX1ZS8XRo0Sf+xzWOROIDtdqwxaZ38wkb/b77VdUZUudmRzMljpnP988mEUImRgpFMCHw1hzbW2Fr725ryL/n8HVk2ZyMRca8ubcMAw55ZaHNZXaYqMQ9u9HkL15M3yWYBCPvr7cSd54nOjuuxGkDw/D1It7TwAAIABJREFUx+nvl8mMSy7B8Tc1Oa/6MQwck6bJKn6HaNiiCiGZxP1fiEjUNBn7tLRI21Rs0AoR1lA8LoeVVRKqChs93/JmRjqN2CCRkMNmWloWPpm4bx/ispNOQjFFNIpCnM7O/EU9vNdx5f6jjxJ961tEr3oV7NHkJK5na6u0q8w1mAnFfOc2lUJrl127iK6+mujcc62pA3NggV+92kCDRKwu5v1kcyUPD1rJRyQyoRYOw2GxMiVSVVFpFomAfFy7Vgb6LBvmKdBmokeITNKyHBKxREJuUt3d9japRALGdXYWzvayZbLJeiAAJ85ullbX0ffq8cexUa9dC5lzKT397IDlfaGQdJZbW7FRVCOYGB9HifyqVdaurxCYMPjkk8iyH3ccrkdPT2a/TlWVTjhLE5qa5KRnszMUjeL94nFJEBfr/VkA9b5BzastYrI/mUTQG43CeWhuzpyKyoSh3Ww1y5tVFQ5LpRqHN1D7+M53EIBfdx1kf4kEbElb21z5FvftNMugk0lULj/2GGz2hRdmkotO1tXMDBqPRyJE/+f/IPFWgpSs3ld2RWyRU3mzGTxkxUwsezyFE3CcAFFVfDaTkPzIXi9sB9vb7R1j9tCWbBl0thSaX8P9hjnQW6zge52DXCYPK5lcPXoUSepVq5BQTibxO27BYcbQEOzW3XfjODdvhi/kdkPGfMEFqNKJx+W0aCcQAgRiOg3/qkTpdsMWVRBMJBaajptMYr1wJS3bh2KDVoiwlhIJ3AeVJvZ0Hfuwqs6/vJmRSiGWUFVZcLFQW0BMTKCgYsUKopNPxp4wOoo1kz1gkivvs3sI798Pwu/44+FfTU7i91x8w6/lNZlMSvKRCcWmJvlcXSf66lfha73nPUR/93fW2jvkQb3borpAg0SsLub9ZLMxYCNgnj6Y67kjI3LEu5VGzUKALBwehvE9/njpGKfTyJ4aBqRgZvKKSctIBJ9jhbQshlLkzUREhw4hG6KqIJ1OOqn0JvrpNKYBP/UU/n/88SjVrmQvkmykUrimLHVuagKZWOqk3HyIxdD3q7PTugTwr38l+uMfsYmcc45s8ltoDabTklDk/ng+Hz7X5yN64QVsYmvW4H1KJKvrfYOqmi3ibLh5WjI7I9wTsb0dv2O5XbkaXcfjUt7c3t7okbjY8OCDcEovuQQBt67DefZ6re8xu3YR3X47JslfeKHsl0YkZY9mGXSxIDwchlRnYoLo2mtRmV1iBX7DFuUBD4lIpXD/Ow1U7Uidza/h5COrQIgykyQul0yoqCpsn43G8RkoJIPmY+aEMQd0PIRtMQ0WMAe1POQrEKi8MiMSQSK5sxN+H/dBVBTZe0wIqFa2b0fC0+OBzbn0Urxm717Yjk2b0EfVnBB2sq6FgI+sqiAQna49Exq2qILgtWsYhYnESAR2gIdbsE2wMrCJE2eBQHmGhhUDy5s9HvjkteCjJZOwyTysj2W5CwWxGFpttbQg/lQUxFiaBlvESXveu8z7Hlflj42BOGxvJ/rKV3ANNa14SwZVlYNZmFDkKupvfxs+29vfjsrGgYGS9qZ6t0V1gQaJWF3UxMlmh5g3lHyDVohw04+NySqwpUutfcbsLHoMCoHgi8uRUymQjIoCQsm8YfBE51AIAZ7T6XLZx8/yZg4crZT1z87iWPm7hEIwuBs3lt67kQib1JNPIkAlQibo9NOru1GZJdpmqTM7HuWArmMdEMHxtfK+e/YQ/fznIG0vvRRrgrNbVh19TcM1CwYRRO7ejYBuwwasu3XrSg4a6n2Dqmjgbh58kk5nypKzJyVz1tfnA0HDxEy5CO2GvHlx4qWXiD7+cew/X/sa1tr0NNan1amjQ0OY5rxsGaQ6vHeYJdCxGNYtk0RutyQUmVzk1yUSRDfcgGP7yEcw5KW7u+S13rBFhd5cYA+PRJzJm7PfK1vqzNWJua6hOUnLVY2pVOZa4UrrcBh/6+ws3yAPJhPN5CKDJ5p7PDJInu9KoEqDyUPDwHkPBKpDoKZSaIXgdsPX83iQREgk4FOn00R33YXKw7Ex+NqXXEL0xjfKBMPRoxi81NICe+Zy4Zq2tDj7Diz7TybtDSMsgnpfQTURoxUCE4lcAJDLj2Xfnoc+Elnvj0iExKuqYm2VgVguClWFjTYMKSWuBbB6i/tRdnSUf8hStaHrkCAnkyjQaG7GuQ+H4RcFAnMly5z44nUTjYJAjMWQpHW78f/+fnt2hAnFeJzohz8kuv9+ote+luh1r4P6rMS1V++2qC5Q9ySioihXEtEPiOg4IcRLNl8riOinQojLK3BouVAzJ5sz47yhFCISieDYzMzA2bDaz09VQSCxJJqJG1VFRaLbDVlHtkM/Ogryp6dnblm1U1iRN/NGlkzimLq65GY2PY3S7WQSMpTjjitPQ+BIBKXbL7wAI711K9Gpp1a/XxFPdU4kZGa7vb30DXNwENdy/XprjsHICNH3vw/H+sorpcxm2TJnGcpUChLyiQnZ44Tl6DyYxWGj+Tkb1GK0RYYxd1oyB6os4zP3McwV7KTTUnbscsnpzeUk+7jpOA9xWayT+BYLYjFM9IvH0a+nu1sOmurqsuboBoOQQvt8RB/4QGH7xYGdWQbN/VqJJFF0662QM37oQ7DzPT1lWYc5neU6skdV8YvicezjRDjvpdoXq1JnXZ/rW/FruVKRCH+PRvHcnp7K+QBmQjGdhs/D8mZOIGbLoOsdqRSuPw8XLGUAiV0IgcRoNAoCMRCA3zc9DYLivvuI/vQn7E0nnwzJ8rnnZh4fB+2hENHXvw4bxjJQp5VbMzOwUdltX0pEwxZVAaziIMpPJKbTWDcs0yeSFWVW1n4kIlVc1SDODANrspbkzUQ41xwf6TrOZUdHbVRMOsGuXYixTz8dCbVkEu2mWlth/82SZa937lrRNKKbbkJs/8UvIjabmZGDVJzgttuIfvELovPOQ+V1ZyfOs88nZc+VmBRfR3apZtGYXblI4fHIHgcsq+GMda4NiavAeHrbsmXFDbzfD6foyBFUdEQikGQEAujDMDSEx6pVmeTCsmX4rOlpfFY5hpA0N4OYmp7GI5mE0VMU2QeDyYuenrnykJ4eGLbDhyG7npqaO0DGCdraiF79apCHjz4KKcuuXUSveAUq8aolM+LKmVRKygsiETgg3BfE7oY+M4MAZWDAmpMaChH95Cd47nveI0mf/n5nG7amEe3cievKFaRLl+Jnlj3PzMhG87wJNib65ga3QjCThuyUEuG8NTVl9jG0sma8XjhnqiodBpY7lKsyV1FwbXl688xMfTuCDeSHEET/8i+o3Pna10Agqiquu1WJVjKJoU66TvTe9xa3X+YeP9zn1jAkqRgOE/3Xf6Ei+tJLsb+Nj2M9su2tRsXHYkYgALs0OYlHW5v0AZyAyTaz1FnT5k5nzuVb8WubmiSZx4OmgkH4RVwVUu79yEwOspQ3HMY6DYXg+5h9wOyhLbUQ2FtFOo17kJU3bW3VT9AODuL8btiAc51Mos/hffchEPf5IN17y1uQbM2GpoE4PHoUQXtvL74TV/M7QTAoB0vVStVXA9bBEtBkEo9cVcReL+5vLopgm8R2qphdaW1FDMCJjUrfNy4X1jYPgkylakPezEUVLS0yLjp6FPdyvcULg4MgEDduxLnWdfghPLAnnZbJsHwtzr79bbRluPZatIYaH5fnwgl+9Ss8LrgAQ+t6e7G2ueVGKISH1yt9rPleEw1ILIRKRDcReYlIFTa/TL1W/5QLLM0hwk3JPXRyDVphTE6iqqu9HUSgVYcyGITDpOuoSOzvh9M6PAyDsXLlXPJyYgJkXUeHNdLSKkIhbFI81VBV5UQuKwMYwmF8l1gMjv6GDeXbYI8eRa+K4WEcy5lnQgZcbcedB1OEw9hYuKec1f5JXIUaCOB6Fzt+VSX67nexTj7wAWwUU1Ny4rJd6DqGIQSDIDHb2kAgmjOqnGGcncXzUinpMHR14bMLbFa5KhEXlC0y9zHkIJe/FfdGMVcZlrJGObMuBNYMVyfyhNNygqXuDXnzwsQvfgEJ8jXXEL35zbBlk5NYn319xdepriOZcfgw0fvehyFYpcAwiP7t32DX3/UuVCB6PFiHXB1FJKtvzTJoi85yvuqferFHVfWLhIC9D4dhX/r6yhMIFpI6Fxpil/0eqorALJ2W/Xy5h2IlA1ZVxTkhwn7p8WRKoRlcVWkmF2uNWOR7i/t/85CJamNqCgqWgQEQIr//PVq1TE3Bf770UqLXvz7/gDchUEl9332orD7vPPgsLpfzoTjcD7utraTBcvnQsEVVhGFkThXPNSAzEsHzWH3B97OV/ois4OD+itUib2pV3kwkY6NIBD+3tNRHX9nZWaje+vqITjsN13R0VLZU4KrmQrb8179Gf+h3vQtJj9FRrCE7rabMuOsukJJnnEH07nfjWmf3qtd1WVSgqvidxyMJxQKxt5VKxHqxSzWLuicRS0EtBu7VBmfRedCKFSJxehpkV1sbyD+rDmQqBWIpFEK/w3Xr4OiNjMCA5XqvqSlJWi5fXh5nlbMvQ0P4ritWyOpHqxACFZaDg3gdT/stF44cIXr4YQS/PT1EZ58NCfV8IB6HI8H96lpaCvcGEQKOs6qi8rSY42EYCNoPHkTQvmIF5PNNTdZ7cGa/3zPPoNqMqyCXLClOFsXjklBMJvG7lhZJKGZ937KGTfNti1iWbCYNzbJkDmQLyZJLhWHAUXC54Bwkk7I6p9zOa0PevDDx9NOYenzeeZD/KYqUSPX2Fl9HQhDdeSf61V56KZztUiAE0S23EN17L5qFX3AB9k2zLUomZV9FlkGzW+b1ykpFJhdzrNOyUziLIXAvt7zZDG5Iz+Qby5yZgLNCZE9Pw/61tUkS0jzp2Wqlt93j5h5gzc2Ziozs3orm/opMJprJxfmAruO6plJyH5mvCt94nOi553Adn3sO/b7icSSF3/lOyPaK7aPbt6Mi+h3vQODOw/Da2pxde04Mt7SUPMwpHxq2qMow+025iERdl4NLmHjme9iKDeG+8kxEVqvyzjBke6nmZqzXWvLRdF22SFEU3JNtbbV1jAxVRTypKFC5KQqOnWNxK4UaDz9M9M1vwrf66EcRl6sqYiwnRTQPPIDk6qmnIu5rays+B0HXZV9bVcXadLszCUXTeq5oaqtBIgI1uNztQVGUKxVFEYqirDH97kxFUf6kKEpYUZSYoigPK4ry2gLvcaGiKE8oipJUFGVQUZSP5niOUBTlJ1aemw/MotcS2Olj55ANoNlBzEZPDwxHJAISrdBzzfD5INFdtQoG6JlnZBaDycRsTru3F1WL4TCq80rhvA0DBNHICJzM447DsXBlgp335sEwL385NuYXX8T3MffBKgWrVsFpfO1rcV3uvJPof/4HmZ9qIxAAmbdyJZwIvlYjI3IKshljY3jOqlXWgvY//AGk4xvfiPL4iQmsSR7GYwdCQDI4PS0JxHw9MHN9z+XLMezgxBPxf54avns3+hqNjmJCYi7Uky1KpaSs9+hRXLPpaZm1bm6GY7FkCQj23l7ZfL9SGVeXC0QtS5t5+mAymVkJUw6wvLmtDYH6zIycuNtAfWJigujmm2F3rr0W15gnTVqdzP3IIyAQzzuvPATibbeBQHzTm0Ag8iRnM5qasKeuXImky5YtIBpWrMDekkjA1u7bhz3mhRew73KVUz7Ukz2aDwQC2CO8XiTruGdyOeB2w5Y1Ncmq01RKJkasvL67Gz4T9yXjylQe6sMS5FSqvMfd1YVzwwPmzD0bPR58r+ZmPIfbVygKnpdK4XVMhnPLC6s+olMYBvazYBDnh3uqzReBqKpEP/0pguSvf53oz38GafiVr+DnbduK76OPPAIC8dxz4QvyQBinQ8d4zfC5KTfGx/P/rV5sUaXXaSXA5CFXJWbbAiZZ0mmZHOe2BFw1XQjc7sflklWJ1YDLhX2R29BMTsphl7UAtpUDAzi/4TD86Fwx0XxCCPg08TjR5s34HZNxXV3WCMQXX0Q7ls2b0c+ZCy16e50RiI8/TvTv/473e+97cf6sxHs8tK63V1Z3+3ywbZOTcnbD4KC146gXu1TLqPtKRCWrMaaiKOcQ0X1ENEVE3yGiBBFdRUSbiehdQohfml4riGg3EfUT0XeJaISI3klE5xHRq4UQ9zl5bj7853+SOP98EGm1lq0wD1rhqW9EhR0dJuQCARBqdr5TMIigSNMgF/P74YS0t4O0yMbsLAxES0tu6XMhcEk/SxgDATlcg0jKm71ebFp2q56EABFz8CDO4Zo19io0i8EwQGA99hiM5Zo1qEwstR9jKccTjeK8sdSZpTGJBM5Dby+C4GJ49FGi//1fOMqveQ3OYzKJDcKJ/GjPHqzJ5ctlo3juUeYU3DNzdpbowQdRUfDznxcfrFLLtmj3bmTceVoyVxkWkzNUA1wNySRiPC5lzpWwm5omnWOWkTZQX0iliL7wBZD8X/sa7IemgWjz+eZKZHJh3z5U/mzaBBl0qffBHXdA/nPBBUgGNTU57xukaZKcicfx/337II/87W+tDTOoVXs0NDS/1T9caRONwv5Vog+XEHKYCidrrVQTptM4Nrc7cwAYy6bNFeP8fuWy4dxHlMj6cAX+nuap0AxFmSuFLvU4uQ0GE6lMcM7XHhYKIWnwm98gmF21iugNbyB65SulDLm/v/jxHTpE9I1vwK/+xCdwHnn4mBO/KJHAsfn95R1YwWTE4CC+8y231Lctmp0lMd9ryCn4WnCv1WxEo7AXLL3l9gvcdqEYDANriKj68t1UCvcTV0M6lfJXEqkUzg9fg/mWYfP13b2b6KWXiE45BXGpx4M4i+cNFLuO4+NQdQQCSNK6XCDs2tut+VXZePZZ9HZdvZrogx/EvWblOAqBB9slEviu3/gG0c9+Zn+wSq3apVrGQiQRHyeiE4losxDiyLHndBDRs0TkI6JVQoj0sd8LIjKI6HQhxNPHfucnoiNE9KAQ4h2mz7H83Hy49VYSMzMgV175SjgYtbRRcc8zdqCLTWwmkhWCTU0wCnYMQTqNDEcwiCxEV5ec8pRrKnMoJEnLVausEQqcndY0HGNXV24nLJmUm5R5KrMdpFKoDJmcxCa3aRNIrHJB0zB05cknpVT4jDOcB6blADun3Lx8dBTn7+STi1+fvXvRX2PzZmTaedhJb6+z87ZvH5zZ5cvloIIlS8p3j91/P0iBlSuJrrvOEolYs7ZoZISEufl/rSGRkKQekZTSO63CKAYhYCuSSZBOtSpLaSA3brkFfcM+9SlMHRRCDgHr6yt+LcfGUDnU14fePKWSSH/6E97vrLPQO8jjKW2IRzaeeQZVSr29RP/yL5YD95q0R/NNIjLYBxBCVuNVAlyVyG1j3O7cU50ZPOzM48Fen72GchGK3IuRh+Y5BUsh2X9yMmDNLIMWYi6xmC2FtgLuHcmVVzzFc75s9oEDGJbyyCPYq1auRPXxq14lg26rQ+KmplCx6PcTXX89vlc8LgcL2EUyCb/K5yuPDeKEBlfVjo3B3rW0EH3jG/Vti+JxEqqKc5RDHlnz0DSss1xEIrdwYemtokiiyeq9x+0OWMlRzfut1uXNDB4GkkrhnmUFT7VgHvQ1NoZWCuvWISYjguIoGoUtKlapHYsRfeYz+D5f/Sr8jbEx3BdLl9q/N/btI/rc5xCXfexjsmVVuWYKDA8Tff7zuAYOScSatEu1jDqaK1QciqIsJaLTiej7vACIiIQQIUVRbiGirxz7+yOmlz3GF/XYc1VFUXYQ0bocH2HnuXNw1VWoJtu5k+h3v4Oc9hWvyE2YzQfsTmwmQjZi5Ur0F3zpJRCJVntmeL2oyhwaAvkTjSKzMTuLz8sub2YHemQEz8+e6mwG97dLp2Gg+vsLG/KmJjxnZgaPZBLHYsdI+nyQwbLM7OmnQWgdd1x5yBqPh+hlL8M5e/JJBJL79mFzOP30+RkQwb0o0mlkmOJxnMfRUVyv7CnXjLExyLOXLSN629vglAaDsq+IXRw6hDUxMIDPZDl0ORxAIYjuuQdVPyefTHT11cVfU+u2aPlyK8+aPwghicPmZjnplodPVAK9vbjvIxHpaFd7kmcD9nH33UR/+Qv66lx8MX4XCmFv6ukpXrkTCqHBd18fhjqVWuXwwAOYNnjuudjzXS7sJeUi7HfsQDLj5JOJPvxha6+pZXu0cqW171AN6LokfAIB+z6AVWT3F2RCkcm/bKiqJIIKVZJxtSNXPBLJIVilJI2iUdhfJjJLXcvmakUmFxnZvRWzfU+uOGlpwfkIBOYnGaZpuNe3b0eLgeZmVB1u2gQ/cMMGPI8VMD09xX2beByT5X0+VP0sW4Zz39fnjMBVVZAGnZ3Y35yuZZ5yze16WOExNoZ4ZtMm2DorqGVbxAN44nE8VLW+psHyEKdUSlauMrifeSSC68gJWbcb67NYwQiRHLAYDuNRzV7SLG9mFRRPb641H62pSU4XDgalGiJHX/WywlzpToTP378fJN1JJ+F38TjOX3t7cQJR11HRd/Qo0Q034H3GxnAdnBRnDA4S3XgjzsPHPiaHmpXr+g0O4jiFIPryl+2/vpbtUi1jQZGIRLTm2L8v5PjbnmP/HkeZiyCXen6WiE7J8Xs7z50Drxcy1HXrQAAdPoxS4bVr0VzUSWlwOcFl7ZzF4Ox4MSKxrQ2EnplItLPpcq+9F1+UkuXpablpmMHTk4eHJZFodrqTSZCHqopjYOfLCph44oazqZS1ZvzZ6O2FoTx0CMc5NUW0cWP5rq/fT3TOOeid9fjjIO/27EEPr61b52dTDQZx/k4/HccXDiMYm56WU535OoXDqKJpbiZ6z3vwu8lJvM6J9PjIEUio+/tlVWZ/f3mcGyEgt/7jHxG0X3WVZZJ8zbF/a9IW1Tp42iBXPHCD/GQSj0r1uuIeZuEw1jQPtGigNrFvH6aXnnYaSEQiOajEigRTVTHUKZUiev/7SycQd+wg+u//hnToqquwjjs7y0dyPPQQ0c9+hir0a66xFZSsOfZvwx4VgNuNYCkYhA+gqvAJyk0i8N7EgTsPYuGhVkwmcqDm92NvC4XwyFWRyMfPVUiGgffiXowss3NCKLa2wq8Ih5FkbWsrzQbzcTK4QpHJRT4f5nOUTsu+4lwtXq0hD2ZMT6NVwZ13wtdcsQKDBi64ABWJPh98fCLZCoVbqxQCB+0jIwiGV6yQcnInFfipFI7V44Ff5YSA5KmofC1YDh0I4Lv+7ncgFK64wpbtXHPs35q0Rdyeh++bWAz3i98/P+vNLthWcf9A8x7h8Ug/yuPBWjVPbOaWA4Xg8eD88IRijsmqBbZFMzOIG7hYodbABRaxGGz2xIRsaVKuGI0rSVlFyEMQiYieegr/P+002f9yeloSmsXe99ZbUcX40Y8iKTIxgffo77fvz4yNoULQ70d7Bm4xU64KzQMHiG66Ccd1ww3kdAjpmmP/1qRdqlXUgUmsOPK1ic1lFu08NydcLjipPG33wAEQIMPDyFyedFJ5JbB2wRlgdua4b415OmAutLaCPBwclESiHUPZ0QFjt28fHDOeEOh2zzV42aTlmjWy1D2RwGt6evJXwRVDezuM3fQ0SN7OTvublMcD4rC/H+Tos8/i/+vXly8gaW1Fs+6tW9FbkAnF009HEFut7HwiISsPuXqU+yMyGcOETFMTZH6pFNE//AO+Aw+LcZLdGh3F+e3rA3mbTuP+KoezJwSChfvvxzm+/PKKO5FVtUW1Dh5OoKpYLz6flLFxL8dKgKWnkYgcXFBt6U4DxREOI+Pc1QXJDZMxwSBsbLF91DCIfvlLBCKXX158MmAx7NqF6YUbN6LXjxBYN+Wy9/feKysQ3//+qlTHLFp7xFUj09MIgLq7yx+o8noVQpKGTJ5xNSGTfjw8gSWJ4XDxNiY8qMrvl4QiD1dIJmVfRu6lWAwc+HEP6XTauY+VDa6IMvssnLxmeSCTq4GAPFdcwVmO/oqFIAQStdu3oy+yYaCVzFveguF6QhA9/zz+3bRJEjOTk/h/sf7VQhB997soLvjwh3GPm1t62N170mmsXfaFrbye91YmDplU8vvhz5nl4rt3Q0kyMAACsQpyzarbIp8P64yr+jQNv/P5arcNDMPrxfVMpzOJJSJcK02TlcVcAc3T5K3YAq8X9z4TiU6nhTuFz4f92pzs6eqqTR+tpQX3cDQKuzk+jp87OpzHE2zPmdznlhhcibpzJ67vGWdIEnl6Gn+zotC64w74G299K9H558uWVd3d9pNHU1MgEA0Dfhrbk/Z22187J/buJfrSl7Cuv/AFcANVxKL1kRgLjUQ8fOzfzTn+tjnrOfMG7ifhdkvybXgYTsqRIyCaTjihun0UzDA33c0la85ngAIBEHpMJK5ZYy/Q93qR8RgexusHB7E5bNgw1+C0tMBYHDqEjEt3N4xTV1d5MmN+P8io6WlZ2ehkk+rogJN55Ai+z8wMrm85JeydnWjc/7KXoSfPX/4CZ/SMM1CxUsmN1TDwvTyeubI0zsTx4IpQCD0QBwdRNdTfjw0mlXJG/I2P457haeGJBDbIckgGDAONwh96CNfvXe+yfXx1YYtqHV6vnPrJxCE3mVeUyhEpPJHQ54OTPDMjf25g/mEYkPvNzIC44/0hGJQ97YrtAXfdJafCr19f2vHs3YuBLitXEn384zgGq8MoikEIHOuddyKZYaMa2oyGPbIJbvg+NQU/QFXLL2/O9q2YSGP/S9Mk4efxyNYO0ai0UVY/hwlFJhe4ss9sS/lR6H26uqS8mQc1VCK5xi0s0ml8bx54Y5ZCcxDNx1ZIBu0EqRSSiNu3w1a0tIA4vOSSzJYghw/jnGzaJIPsmRmZ1Cx2LHfeCbXDW95C9OpXy+Fifr/9PY4HSikKyMtChJd5IAFPf+YWIlz9n33szzyD87FqFSarOrBxdWOLmLz3eGQyU9cl8V7LZCL7KkwkmtdRS4uc7s7JNrc7U4X+TSkbAAAgAElEQVRm5f2zKxKrCW4TYq70q0V5M5Fsj8Ny8kgEtq211d6QGr4+LFnO1ff20CHERps3y8nLPPClt7f4td2xA0qxc84huuwy2IXZWRy73WscCoHYi0ZBJLJdsTIR2gqeew69Gtvb0WvRyjDPAqgbu1RLWFAkohBiXFGUJ4joXYqi3CiEGCYiUhSljYj+kYiOEtET83mMZrS2SiPQ2opN+aWXkNEcHERgc/zx82MUcxGJ7LwVMnjNzZJIPPz/2fvu+LjKK+0zfTTqsmQVN9mWuzEYTCfBkEBCAgRIDwFSCCRZkhC+FALZTTb5kk2ym28/UjbZfEkgbSEFTAgt9F4M2MYFF2Rbsiyrz2h6ue3749mz753RlHvvjKQZeZ7fTz9bo5l777z3vec973POec5h/N+sk7FwIci3vXsxHtEoNk/6TABFgXFzufB3hwNZnKUsc2RdxnAYm9NUCoSV2ftht2Mc2tqQNbd3L4z8ypWlvd7589FV9OhRouefRyRp2zaI+3N5TakxOIjFqacn9+LkdGJxf+klZHW87W0gPnfvhoOzaJF5wnxiAgtIYyNI+HDYekOcTCgKNM1efFE0RjDfsbuybFE5w+sV+kTs1HOGihkxfqvndrngDHFZWjmWzhxv+O1vYdtuvBF2lAiOajIJ22LEUX75ZTjKp55a3LUcPkz0ne/Axn3pS3itpqY0tkjTiO69F40LzjgDm3Yr5EjVHlmDw4Fg13SVN3OpLusiMkGpJ/V448ilzqwDyJqxZitXODOJM7v1x06l0s+dq3u0vrw5ECi+vFkPRcF348ARVzAw9PM/Xxk0UTqh6HAYJ4BHR5GNc//9uO9LlhB98YtEF1ww1VcZHYU/t2CBkKyJRmGPGhsLj8vWrUR33AFf46MfFb4tl56agaKAQCTKTSDy2hmLicY0dns6cZhrnF55BeOyfDkaUFnZm1SiLWLCUE++K0p6pnA5gp9xLm1mu2W3w4ZEo5hr3I2aq9D4uxk5fm0tjsMZiTMN1kbl8uaGhtmt5ssHu12UX4dCsBFM5OZq5perZDmbbWY9/s5O7DmJhJ6uEWme3l6i225D4s4NNwiNYLe7cDZ1JmIxlBaPjoLgY/mJUmnVb9sG+Yd589CAqquruONVol0qB8wpEvG/8UUieoKIXrLZbD8jogShRfcSQotuaTYvLhNer3BuampgYCYnBZnY14dNUj6SZjrA+oicMs2LqJEFxuuFAevrwwZryRLzJFF9PYhDnw+k2zPPQKi+rk6U02gaDNvChSDOjhzBuUotXssNFiYmYBAbG60tUrW1KNk+dgzRoldewTgtXFja7IaFC4k++EGUyb/wAtEDD4gS+iIjNWmYnMSYtLcXJla2bgUpt3kz0bvehc9yN+xwGHPKaBezyUlEw+vqsNhNTuL/pehSLctEf/wj7s0556DDYhEkfkXZonKGXh/R5xMdK1kgfDqdeIcje/ZNOWchzGW8+CLRXXehiQo3UuEOtjU1hRvv7N+PzL41a0AKFINjx6DF4/PBkeVs2VJkZWgaSgaffJLorW9FNnSR60TVHllEUxNs0Ph46cubWYcsV6UHl6npS5I5YzEcFkSb1XMzYajfrOoJRQ50u1zp18blzVxenUoVV9bImYecGenz5Se0+PpzlUEzqShJ6e/PzFbk42sa5GDuuYfouefw+9lnI4h40knZryMSgY/b2CgqMVh7jPUD8+HgQWRS9/Qgg5kIY8AkjxmoanpHev1+gYnJeBzjq2kYg9pa2EyPp/B9e/55NLFatcpSZUYmKs4WMXnDGXvcDZ0TK/J1WJ9NcPax/nkmwndheQMOGNjtgpg30miFSMgscNOO2Qiysv795KSwReVa3kwkfMr6erGf5YYnLBGRrWQ5n5ZtPC72RdyJmW0CJ3Lkw/g4svqamohuvhnnGhrC38wSf8kk/KL+fvhFra2YI/Pnl+aevPQS0f/9v9h7fvWrxROIOlScXZptzDkSUdO0520227lE9C0iupmIHES0nYgu1jTtwVm9uBxwucCmBwL4vasLxsTvR6bXrl2IEKxZAx3FmTKM+kYrTBwaabRChIVr6VIQiayRaNYpcjqRXdjQAKNx770wjpxx1tQkImv6MuolS0rfeIHLm/1+LFRc2mT2XthsiFi3tkL/8eBBEJOrVpV+8V2+HPdg715k3dxzD8bmrLOmdr42i1QKmpQ+H8YlH958E0TmqlXY9CsKFs2ODiwq0Sh+HxrC/eRIYraxDYWg91FTg5L/QAD32kpDlkxIEsqtd+wgOvdckJ3FZAFXoi0qV3AGIhOJXu9UInE6NXk448flwsads2+ms9teFVMxOIjo84oVRJ/9LF7TNNwPh6NwIGF4WGh5vfe9xa2l4+NE//zP+P+tt4qMlELEgRGoKmzR88+jvPGKK4qf31V7VBy83vTy5kTCmg+QDUYqPbgkmcm+2lqsWePj+GyxxLWeUCRKJxSZiNMTikzCNTVhDY9G8T6zWl+qKuy6vpTW6nzPVsqsz1ZUVZGZRYRrfvJJZNgdPoxx/MAHULKcz7eRZfhwLhcC/awdPjaGvxfaeI+PI4O5oQEbbY8HY6iq5rUmmSxQFNEMUJbTiUMi3Je6OqyXRn0bTYMO5OOPwx9/3/uKD6BVsi3SE9CcVMHzi4memdQHNAJupsIEPd8/nw/zJBoVMlBchWa00QoRnldNw1zjLtAzjWzlzc3N5e2jcdOjhgahHc+lw7yHzVaynAlVxb5I05CowvfX78f9LSSpEI/DFqVS8GkaG7HGpVLYo5nJvJdlkJF79xJ9+ctIXEmlsHaWIhHq2WfRvG7RIjRp6ews/piMSrZLswWbpmmzfQ1FwWazfZKIfklEizj9tIyRd7BVVZTN+nxwbjiyMjyMDXNtLciTRYtmbqGSZVyblUiVJIHYk2WUa5tdXDQNi0JfHzZURCB4Vq+e+t5UCkSiouBcZklLo+DyZl4AiiGaRkdBEHNZb3f39JDEsowo+6uvwplYuRLlcVY2vJqGa47HQQzmW6RHRiAY3tKCRiouF+ZyMgmynMeO7zOXjNntIruQF7BoFBmCDgcyA5g46OwsfsxSKXRp3b0bzWre9raCWZFTnr65ZIvKFZlaUVz65nBM3/OeCUURjZ98Pti0cts0zEUkEihf9vvhRHIjFG6o1dqa3xaHw0T/+Z/4//XXF1fyNDmJEp1gkOib34Sd0jTYuWI32IpC9JvfwNa9611EF19ccH5l/WsF2aOKs0Usb+ByFZ53RmE2A4hI6N/F41jLa2unh8RgXVrOviKaSihyNjDrgRaqKmDSgUtqOTA0E0FyTUMW8b33Ej34IGzD0qUgDjdvxnXoyaLMa9I0bJLDYeh4cwCYiYC2tvy+bjwO4nBkBNquixcLkqemxtx80jTMAUmCTeNx1Zewcva+eVkWyOI88wx8rssvL3h/jitbxNlimXIEmd3VywGsf6mqogKOCDYkHBalyfxeWU7PXDSCaDS9WmS2IEmCQCvn8mYGj3ckAn9GlkVyhJE98+7dSOo4+WShtx+JgAhsasofXFUUkH47d8Kn2bAB82FiAp8zo1+oKET/9m/Yq3/+80Qnnog5MX9+afzzxx9H1+ilS+ELFkhgKfj0VZBdKlvMhUzELoLh98/2hRQLjqSEQtgYe73IWuNuRrEYsrVeeQUR0PXrC2eBlQL6smZ2ULPp+GSDyyUyEvv74SwZzbiLxWBQJQnG9AMfQEbdjh1wttatS1/g3G6RkXjkCEi56YiIcQaSvnuz1UVq/nwY6UOHcM1jYyDmSpHNoofTiQVm/Xo0otm+HUTgunVEp51mbpxGRrAwLF6cn0CMRCDQ63ZD64dLwhMJONl6R9lmw7yoq8O9DQaxkHGJotuN8n6bDZG2YBCfa28vftORSEBj7cABlDeee65lB2jO2KJyhdsNR4WJZodDRNk5Q3G6US1vnnloGspX+vsRMWcCkTNtWHIiFzhIkEggmFHMpiISQamO3w/R8OZmrI3NzcXPAVkm+tWvsMZddhnRO95R1OGq9mia0NiItW98HEExLk0rBnq/qlClB8PpxBro92O9JMJ1cXllqWySwyEyBLlEWJLE88cZWI2NQh+NSa1M/5C7AMdi+D9rPM6E/dQ0aGndcw9kEWw2SAVcfjl8I30pdLYyaF5zjh6FD7J8ufBnEwkhrZLPn1IUoh/+EP7e178OP4p19lir0sz3GRrCtXg8ouGC2w0fsqbGevYPN3R68UXoxl5ySVGk2Jy0RZwdzLqlDP7daOfzmYDNlu4rMWHPDZtYh5NL2zOr0IygtlaUNvP5ZgMul+jeHAqJxpjl5qNllizX1MCXTKXwTPv9hbVVBwbws3y5IBCZRPV68xOImkb0619jP/jpT4NATCbxWbMNUDSN6Kc/BYH4yU+i0WcwCE6jFATigw8iuLpyJTrYl4j7mJN2aSZRsZmINpttIRFdRkS3ENEhTdPOmeVLMgLDg82OmMsFZ4A7hBLB2A8M4D2trXB+SlHOmQ/c0U/f5YtJxHwdmxmKAiIxmUR6c77Sm0RCdER2uWDI2Aglk8imGxwESbhu3dRjyTI2m6kU3jNdGh2qinvCwsTFljYFAiCy4nFk1y1fPn0OSCwGncLdu3HNJ50Eo18o9T8aRXlyczNKo3NBkrAZHh3Fpr2rC4shCx8bma9c9jw+LlL1zz4b1ytJWDCLdVJiMYiaHz6MDfsZZxieL/8z4+e6LSo3cKaFpokyZu6c6PHMbCOqZBJzlAjzupxLZyoZ995L9POfE33sY9DjIoKdHxsT2WC5oKrQUNy/n+jKK0UjFitIJFDuc+gQMom6u/GakQYKhSBJyJTcswcBs/POM/zRtNW3Au1RxdoiRUFgjCUV5s0rPqhlxq9icEm/JGH94ooRJgnMNBUxe61MKPJGmLMSuQmMvryZyUNVFRlyM0GyxONoTrRlC3zDpiZk+F56aX5pF722Iv/f74cPNH8+ZBX4fo+MYIwLVUb88peQd7n+esi7cLdtrr4wgmQS32lwEOPJGUNM9BZLlqgqyrtfew0+1zveYXj+HLe2iJ8Ffu70mcWcmVgO4IxEzv7lucra5PX1Yv7oy7TN2LVwGDagrm72faJYDGSizYY92mxfD1G6pqZ+fmSOMVdnKYogBPX+bTAIqa+WFqJNm4SkwvAwztHVld8W3H8/0e23IwP76qtxHtZB7Ow0bkc0Dfu9++5DR+dLLsG+rb6+eG6Cm8vddRf2+9dfD9trwB7lfEcF2qWyRSWTiJcR0e+J6GUiuk7TtIOzfElGYGqwuauS3Q4HgfVW4nEYkkgEmnrJJB541g+cLqgqDBM7pvyaGSLxyBFc/4IFUyMkqZQoTXM6RXlO5nETCZSS9PfDeC5bNrVhiKLg78kkzjWd4xKJiPs0b15xi5SqgmwdGICT3dMjsm6mA7wI7d+P6960CSno2RweRcH7iJAtmWuB0TQY/L170cFv9Wrc22PHhLak0Q2NJCHzNhAAqRqJYH4sXow5XwxhFA4jsjUwAGf+lFNMzRM9iTjnbVG5gUX4OUOGCPNClovLvrACfXlzTY15Pasq8mP3bohnn3YaMv/YUWYNsLa2/M7uww+jwdS73010+unWr0OSkAW5eze0ftavF0LyxWa8JxJEP/sZyIkrr8TG3QQyN+6VZo8q2hYRiS7F3H2y2EAG+1VmyCBVxTUoCvxFm01I0bDW2XQ2f8gkFCUJzwc38ODGfE4nyMNSdbjOh8FBEIcPPYT1YtUq6Itu3mztHnHzAo8HGuWahp/RUTzDnZ2i0Ve2MugHHgCJeOmlRB//uJBxYR3EXPdGn70Zj+P9waBoVtDWVrr7qijI1Ny5E+N0/vmm1rPj3hZxFmJmZjEnYJRDNhwHYokEkaiqsGN2e7ofzAS6mfJsTUvPRp7JwG426Mub6+undz+YC5yII8vpAZ5C46ppsKOhEO6Dz4e9s6rCryGCzj2PcSCA97a15c8AfPVVSCmcfjrRl76EaxgZgR3r6DC3j73zTvxccgmqzkZHMa8Mkn15v/sf/wgS8aSTEERub7cW0Ej7Q+XZpbJFxZKIFQrTgy1JMAqaBlLN4xF6Bex4TExg8yFJyA5bu3b69MFYSFjvjHIJhZHFUVVBJEajiJI0Nwvtx2hUCHUX6vIXi4Fs42Yc8+Yhw0TvmPK5YrHspGUpkUrhPsgyzlPsIhWJgLALh8V3m84I2tgYylb6+uDwn3465pHeMe3rg+O6YkX++fXIIxC/vegiLG6qCgJRVXEfjDpRioJIeDgsxIKHh0U3Rk0T6f9mN/HBIDIQR0ZwnSecYLqEvNJpooo3/LIsOgvysxGLYd7MVHkcgzeDsRhsY2NjeWwWKh1+P0pXamqIfvxj8ZxzN8OWlvwZgK+8QvS3vyHD+F3vsn4drPWzdSvR5z6H4wWDwv4Ug3gc362/H07yqaeaPkTVFpUBkklBbJeivNmMX8XgTDlVxbPBXZ315ZalLnXOBt4wRyIg8rhaY+FC+KzTqRenaXhOt2yB/I3TCYmSK64A8VdM9+hdu+Drbdgg1pxQSFRY1NcLApgovQx6xw5oj512GoIidruQw6itnRr4YqKHf1g6qKYG16AoWGdKqfcmy2g89cYbkHZ561tNH6Jqi0jMf5Yl4I7O/Pt0P39GoKrwn4hEIyN+Zj2edB+fiS+zRGIoJHQJZyJoUOh6JifxzHk8M1ferChT7a8VMllVsRcKh/H/AwdgB84+W+xt43EQePX1+bsxHz6MZnALFxJ9+9sYj0AAPk1rq7nqvfvuQ2Dk7W9HSTTv0YrVqtc0yGE9+CB8oo9+1HSwpNJtUUWgSiLOLCwNtqLA+LH2ls+H18bHYfC5ZKS/Hzp3RMjOW716eognXgz1At5micSBAbEJ4+Mw+WbUSLCDGg5jMXS7EWnWk4V8rmgURs2MxoNZcCYA61kWK7KvadDeOXwY47NsGYjX6cxyGhxEdGtoCKTamWeCNPT7Qch2dgrdjWx49VWiv/4VjjI3BBgZweLW0WG85I+7jQUCyIz0+eCo19VhkVMUoZkoy3Bu2IkvNOZ+PwjEQAAZiGvW5F9wc6DSF6g5YfiTSdhFrxdzgPV4uNR5pjrZ66+nWt5cGsgyNtu9vUS33YbSYSKM8cQE7m8+4r+3FzqIPT3IiLY6FzQNJN/TT0Pr54ILYDtYaqQYexyJEP3oRwiyXHstou0WULVFZQLukluK8mYrjVaIsDZy4Fnvg7B4PxMC+syoUvsUsiwIMs6IZLvMXe6dTvhspSIUYzFkHW/ZAr+ppQUZfxdfXBq5nzffxL1du1b4mJKEZ9frTfeLMsugDx8m+sY34D9985sgDWUZtsznE34Rd6rWN5yx2+En+3wiiSAcFo3nSgVJQjbRm28ia/uMMywdpmqLdGD9UCIxz/Ulz4W67k43mEhk/UKbDc9RMon5xcSf1UYrTCRy9/hyKOnWlzc3N0+fbqPRkmWzUBTsjfbuxR5/xQqMLeuj2u2wM7ls6sQE0c03433f+x7GIBYT5KMZW/nYY/BfzjqL6KabcAxNK74Ts6qiPPqJJ0CSvu99hStOsqDSbVFFoEoiziwsDzZHUdjp4OyHWAzkCkd7fD5ksPX14YFbsQI/pY4CZS6MZhxe7kK9fz82UUuWoFTVCuEWCsGJs9kEmbhkCSIsbEQ1DURiJAIiywJhZAqlLG8mgkN54AA2Bo2NyEqcjoYxehw6hMzEiQksMu3tIDGXL8+9OB08iAYly5cjamS3YxwCAYyD0YwdTSN6/XXM6/Xrcb+GhzGOmansTBqFQhgnbtCSqR3CGB+HBkg0isykZcvy66nlQaUvUHPG8HN5FwuFc6mzzSY0E2cSrOUpSdXy5mLw85+jjOXmm1FWR4R7OzaG8Wxryz2uo6PoCt/cDOLPqg1mrZ+HHoLWz+WXIwjB+krFbAiCQZCj4+PQ+Vm3zvKhKn12zRlbxNCXN7e2Fjf/OHvJjA2RZZyfN8qZvhWTG/pOy6Xa4Mbj8FM5a47JCUnCnE8m04M+RKLLs5XO0keOgDj8+99x7nXr8Jyee27pSIuhIfjUixejmoJIbNoVJb/2mN9P9JWvYKy/+13cj2QSfiJn0SeTIiDG5BJ3uNXPnUgEY+jzlTYgzo2n+vqgj3bKKZYPVbVFmQfURIMSJu45O5glC6ZTZqAQFAX7JrtdEGqc7aZP6mBSnDMrjYLLpPl45UAkyjKeSy63LlV5c7aS5VI31xkZQXOozk7YI67gSyRwnq6u3Pv9RALNnIaHIc2yZAmulyv6zEhNPf880Q9+gCqxW27BXjGVMl8KnQlFge/33HOQUrj4YpRFW+AHKt0WVQSqJOLMoujBDodhNDwekQXBJSzBoHBaVRUC7YODeO/q1SBMSrVQZWu0UohI5KhUMCi0HWIxfJ+2Nuvaf5OTMIo+H4zk6CjGZuVKQSRpGsYiFMJ5LBJHhiFJ2ByWqryZCItHby+OuWQJFpDpdDw0DdGue+/FvDv5ZJS3ZMtE5E17YyPRpz6FOReP477U1eUXL8885549WNRWr8ZCOTQkBMvzLSSpFO5vOCxEoxsbBZE0PAwNxFQKJcxLlhi/riyo9AVqzhh+fTdALstRFFFabLHTdtHg7s3V8mbzeOopRMkvuwwlMgy/H5vt1tbcjnIkggYlqgpyrhjb+1//RXT33dhYX3ll9gwvK/D70W06FCL67GeLa/ZCVVtUluDyZu7cbXUeWmm0QiQ2ynZ7bsK7VKXOnEGnz2piW5z5vnAYY8Mlk/qMHSKcnwnFXP6NqkLLecsWVD84ndhwXnEFqlFKiXAYPklzc/qx/X48v+3tudeYRAJlg8eOgUBculQ0wWFNukRCEMXcGMXtFs0smLThDCpu4lcqJBII/g4OEr33vSjVLgJVW5QD+sYrTNrrM4O5zHU2Ao5MJDoceHa50sfpTC9t5cxas41WWMOTCHawHHwhTcM1RaN43opZ00tVslwI0SgqxWprkSnMTSaPHsX+Zt48kIjZegmoKtH3vw+JqFtuwX5O02CbOBBilOzctg1l0CtXotEc8xJtbcUluEgS0U9+AjmKiy5C1Udbm2USttJtUUWgSiLOLEoy2Jx55XSmR5mTSZA5qRQe5LY2vG/XLmRv+HwoxVi8uDQLFTugrFHHr2U6vCwMOzkJY8Wt491uEc3lbDWrbdv9fkEe2mzIinM44PRxyRsbTNZ9mM6GJXw+v7905c1EMLK9vSAUfb6p5dulxuAgFqdYjGjfPji+PT0oc+ZIeDSKTbskYdPe1IR5MTgoImNG59u+fcga7ekByceR/s5O49m0vFHhZhdOJ37fsgXz8qKLcE1Fiv5W+gI1pww/Z8A4nSKaLklCM3G6SlYKgYltLuObreuoJPT1EX3hC7AB3/++cCC5U2FjY25HVZKQaTwyggzEri7r1/HXv2JzfcEFRNddh3NLEuxbMULxY2MgEONxohtuQHCvSFRtUZlCVZGhEYvB72lttRb4s6KPSCQ0tR0OrNf5GndkljobFf3Xl94yeVjoO8ZioukK66VxdqQkpX9ft1sQiuEwNLL++lf4Bq2tIPgvvti0prEhpFJoMOJwgFzj8efyv4aG3IQeb9pfeQVE4oYNGKvxcYwXZxryD2eoZZZCE+FzTCByWZ9ZUjkbYjFIu4yOoiP82rXFHY+qtqggeH5zAgaX+zMBZeS5mw5weT0TidzIh7OJ9e8zq49IJCo0iLCGz2YZtx7xeHrWthkfLVvJ8nQRwYoCAjGZRIkvBy5SKezRbDaR1cyBa72u5e23oxvzpz4FGSci+CLRaP5ASCbeeAMN7hYuRDYj9zRobi5uL5pKwS/asQMyFOeemz9YbACVbosqAlUScWZRssHmzs1s+PTZgFxCarOJMtLRUXSVDATw+/r1IGaKRbZGK3oikaOnkiTEbLMZ6eFhUTprdeM3Po6flhZEz/btw/kXLUonTo8dwzW1tFgnLc0gGsW4c0ZAKYgEvx8lzokExmvZstKXCYRCKGtubcWCkUpBi2PbNiyea9ei7OVPf8L9++QnUerDxLAk5U+tz0RvL7SDurtBIIyMYJ63t1sfs1gMWQR33YXxeec7MVYlINIrfYGac4ZfkjBf3G5B8iSTmLcez+x1COQofLW8uTCiUTQuiceJfvpTsUHnzG6PJ/emnTv57d2L0uPVq61fx6OPoqTm7LOJbrxRdIVvbCzOfg8Pw1GWZaLPfx52qASo9Nk052xRJsJhQeZZLW9m4sHs5juVEhqe3LW50Hm4/JIoe6mzpsH34IYfHg9smxmSU5KEXlpdXfqGN5NQ7OtDZ+OnnsJrJ56IkuVzzpm+8kiuiohG0XiNr09R4ENy84Bc43nHHQhcfuQjqODgRmAshWC0tJMJS6cTn9Nv2fRdoM1mh4XDuEa/H/ayyGxoRtUWGYA+K5Gzf4lmn0xkItHpxDMdiQgtfv2zrb9Gs8fXd4AuFyJRX95cV4dryzXuM1GynA07dsB/2LRJVNLxXktVsdey22GT2d/kfglPPYVKsYsvRld4ItwHv98c+XfwIAIizc2oFHE44JexVr1VJBJoXLd3L/QPTz8dxyvSZ690W1QRqJKIM4uSDjbr3qjq1M2NJCHKwF3xOCV4cBCOUSQCgnH9+uJLe3kx1EdgolEYKFkWpdeFOkaPjMAgNTVZbyAyMoIxaW2FoTt0CK81NiJrj43S8LAwoKUgUwtBkkCS8oJciuxBRQHpNjiI77ViRenKtGUZJKzTCedSv9jH44iuv/46FjZZRubQySfj7+PjcFDb2413Ce/rg6D3woVodDIxgWOY7RSWiYMHUZLo8SB70uXCMWtqREaTRSet0heoOWn4EwnMR/2GNh4Xr82mHo++vLlctIHKCZqG0phXXoHWDmsEahrWMlVF9nCujcejj6Ir/DvfCaFvq3juORB9GzeisQvrl9XWFmeLjh6FBqLdDntZTFJd4UQAACAASURBVJZkBqq2qAKQSgn96qYm8z6A1UYrRCLo7HYbbwaUWerMm2VuksLN9Xw+67aMJW64vLm+Xnw3zry5+24EL51OaKNefDF0l7nkebrsaF8fNuiZftXIiAjeZgZINQ3f5f770bH0vPMgg+DxCA1IfSOVQuAmUixTZLeLeaDPVswkFvWl0NnmSjCIzKRwGPrVS5eaHp5cqNoiE+Dni7PYHA5BUnHQgMnEmYIkwVZx4yN9ozh9dZmVRitE6URiY2P5BFQLlTdzYCMzuDITpdl9fSDYVq6E7WNMTMA3yZZoEYvh+2zfTvQf/wFi7tZbhX7iyAh8YqMVeUePQp/a40GGdV0djpFNq94MYjEc7+BBBDM2bixZsk2ZzKy5jSqJmAM2m+1jRHQ7ES3VNK2vRIct+WBzR2AWiM0s8wqFYGg0DYRZUxP+39+PtOREAtl469dbJ7Z4QdFfD0dczTrLY2OiTETfHMUMhoZgPNvb8Z1HR2Gg7HYYYS7DHR0F4dXYOP1dj4mEFg5rWs6bV5oFKBRCkxrWpFixovisq0OHsDitXJnbmN93HzJ/WltB/J1yCha4YBD33ajw99GjWCB5HrIofWNjceLh+/cjA7G5mejCC/F8zJ8v5AAkSZRTWdBpmbEFqlJsUTmAy+t4s8ZNn/TNV2ZTj6da3pwbd92FzJjPfAYligx27PM1qdq2Ddqtp54qusJbwWuvwaFdtYroH/9RZJGyvqpV9PWhi6HXCwIxX4d7C6jaogpBZnmzWR/Aqj4iEWxgKCSCukbB/h3rV6sq5nFDQ+myu+Nx+BtMkj3yCEqWR0fxrFx2GRqh1deLDEVu7sfkZikJxfFxBDU7O0VXeCLYApbeqa/Ha/qszHgc8kG33YZsyVtvhU+uaRg7h8O4ZlgqhetwOODX5SOONU0QikwuMph0ZmJxchJ2NpEguvpqVOqUEFVbZPaEmiiJ5bnMWveZDVlmyndJpXBNehkBtzt97lpttEIkspA5oFouRCJRenlzU5PQrpyJkuVsCASIXn4Ze5eNG8V5ualqY2Nue97Xh6ZOLS1E/+t/YS9UV4fPcRdnIwGp0VEEVBUFGYhtbdhncza21YzScBjHO3KE6JprsI9saSmZjnnBOzRNNuS4QjUXosLBJbLBIB5IRUkX8G5ogOEfH0fmXSQCY7R0KUqpDh5Extljj8GZWLfOvDAqb9RHR+GYcMlZfb1waowaGXaWhoehjbdokXlj3dGBc46M4Fjz5+Na9u1DFubChdDb46wWbku/YMH0LgxcxuLxYGFgIdxiiYSGBqS4Dwxg0QgEQOZZzbAcG8MCv3Bh7mvbvh0ZQ+9/P0qKXnoJWUCPP46I17nnGjvX8DAIxLY2EIi8gNfWFkcg7t5N9Je/4B6//e0glDo6sOg1NuKHycRAAI51bS3GskrsVC5Y1J91uljcv6YG9zseLyr7tGhwhDsUwk8qBdtUTk70bOC119D06LzzoIfDSCSw+a6ry00gHjqEgEZPD4gGq2O5Zw/Rv/4rSINbbsFxQiFsGIppzvLmm8gEqKtDafS8edaPVUVlw27HWsflzazrZ3TN4e7zVjo219TAzwmHMa+NzmkmELmqhJt+6Esaiy1LrKmB73LXXURPP43vt2kTpA3OOiv9+CxXweQLZ05xR2g9oWjFFsRi8Ivr6+EnMjib0+fDGsLrCQet7HYQxLffjiDEN74hxjwaxTGMVmbIMo5ltxvT0cyWEZaZrciZsL//PX6/6irhK5dLWenxCJsN85kz3bicmDMBufQ5lZo5MpGDA0wker1CX5r/ps+KNWuLXC48X+EwfsrJB+JA8+goqrx8PpB0nE08k0gmsdfy+aCpymPE9sHjyR3cDASI/uVf8PfvfAdjHgzCzrpcUyvMciEQQEfnRALH6+gQzS7b263bjslJHG9kBDqNy5djzzdbjRCrsIZqJmIO2Gw2BxG5iCiplW6QpnWwuUMSl6xkPtzRaHrHYO7Yl0pBX6+3FwvCsmXQkzLi2MoyjEEkggWFyR+jHZtzIRCA7kxtrbUuxJqGDLdoFOQgE5qHDoG4amiAo+fxgFzlLsJWSEsrmI7yZiI4tgcO4J5wh2qjjisRHOIDB3BNuUpc+voQyV6yBJFshwMO0Pbt6JSYSGAOnHkmsiJzjefYGEqim5sRYZMk3Ae3GwuV1fuwYwe0iBYsQMdGjwfHy6XNyFHRcBhzxOPB9y+gXTeTEfeKs0WzDdafcrkE+aSqooszZynOJqJR/Bzv5c2jo2gw0tKCMmJedxQFNoJ15LLdr7ExaP00NBBde631AEBvLzb9ra3oOlhbi3WBAz9WHeW9e4l+9jMQh1/4wvQ0f6CqLapIcKYZN+sx4wNYbbRCBJsTicAGcjZdNjB5KEmY/z5fui3NLHW2UnYpywg+3nMPAn9uNwKQF16IoIBR3TTOlmRSUd8chklFI/ZeUdBIRVGwaWfCRFXhTyYSuE96PTtujBKPI1tHkhCM4BJoHsPaWmPjw3aPCMco1bowNASCkwgl1m1t5sugDaBqi4o5eUZWop6gZ5JRr8M33eRvMonnyu3G3OckFf15rTZa4eNHIjh+Pls0U9CXLGsanl2WWmhpmVkfTdOQgRgKYS+lH5/hYVxnZ2f2a0omUUlx9CgIRN7LjY9jX+31wp6z/mOueRQOI6A6MiK6MbNWfUeHNW1fIux9v/Md7FOvuw777sbG4uRissBIJuJ02JDjClUScWYx7YPNoqqZnZsZqorNEb+nrU2QTIkENj2HD8OorFgBo5GNfFFVGIBwGL/X18MIMGmoX/ysEomTkyIStHixeYdZVZGdl0ggq44zLMfGsGm02fD9WlpEVkBtLQzaTERmp6u8mQjf5eBBjEF3tzFyVFVRAqyqIFizLU7j40S/+AWM/XXXiU378DDGubMT537hBby3rQ2ZBPqIPhHm4PbtOM4pp4hrttlwDKvjsHUr9IiWLsVmxOnEYmek7EpV4dCwKLHDgXmdg+Apk7ipZcx5w59KiaYqbMNkWXRxLoeIp768ua6uPK5pJpFKocxmcJDoxz8G8c9ggoX1fDMRjcIWpVKiK7wVDAwg0u7zwbFtboZ9UpTiNg47d4Lg7OhAE5Vp3CRVbVGFgv2xaBRraWursbWvGH1EIvhtsVh2nU9Fwd8484nJw2z+A5fRZhJ3hQiFQIDob39DBvHEBORkLruM6KKLcD1c3myzwa8026FTTyhyh2MmE/MRivv2we9ctw7PK4/F0aO45rY2YadrasQmOpXCpr2vDzakpwevJ5MiI96ID6IosHuqWnRn0jQcPYpMb48HjRU4GzqzDFqvr8hzS08uGiCJqraoBODmRkzO6degmSYTmUh0ufAssF/MKEYfkUhUG3g8JSeRDEHfmZ5tqj6TOZHAs8+SYDPlo+3dC3ty0knpVWXBIGxUa2v2qkFNQ5OSl1+GhuGmTXg9GsXel5NWWCbGZsNrmdmg8Ths2qFDCLCeeCJsUyQCO2i2YpExMgIbGY9Duqa9XZy/xKh0W1QRqJKIOZBZK2+z2e4gomuIqIOI/o2ILiEiBxE9SESf0TTNb+CwMzLYqRSMDFF6VqAeiQQyQLgbld55jUSglzgwAMdn9WpkJ7LobygEA6Sq+CzrRjCyNVqxquUTCsEB8npBRJkllxQF3yOZBBHJC0A8DoeRMxW7u3EuPWk5UyUesVh61kupFqlUCqV0Y2O4TytX5i9hGhiAQ9/Tk30xj8WI/vM/MZbXXy/KjbkcuLU1XSfowAGiF1/EuC5YgE6nHR2YO6+9hu+5aRPu6fAwFvHOTuuO8/PPE/397yC/3/pWkW5vJVrGZHwsht9ra6c0L5o17Z9KskWzjXgcNsDnE8+zJMH+ud3WI6mlhKqK0mavt7xKe6Yb//7veGa/+U2iM84Qr3OZU66GXLKMbOhjx4g+8QkEiaxgZAS6ZURwbNvbYc9SKdg3q5pvr76KrJ9Fi1CSadXhNoiqLapwRCLwAbh81UhGbbFEYigE+1hfj2dMVYUMBMtCsByEEWR2dXY4phIc+/Yh6/DJJ/HeU08luuIKSKBknkeWsQYrCp4fq89QNkJRn6HI1zc4CG2uhQux1sfjsAMsezJ/fu5mKv/2b/B1vvpVfBc+bzQqms8UgqqKSqESdCb9H/T3E/3ud7iGT3yicLAlswyax4wI90ifrZjFH6/aohKByS29JmJmBiATjfysTZffwFmINhv8f7YNmddqRR+RCM9aLIbjTvNa+T/gbOpMbdVsRKiiwD6nUmIvMJ0+2tAQKqq6u6ETyEgmsVeqrc3dRPO3v4We7Mc/Dn1oIlz30NDUJiiSBBsbjwt9+NpavP6tbyE7/Gtfg01jPdimJusB28FBou9+F+PO1Sd1daWrxMuAaU3EEtmQ4wrHaQFVUXiAiA4R0deIaBUR3UBEKSK6ajYvSg/W3QoEYPgyOzcT4fdFiwQBFI8Lsei6OqLTTgPptHs3MioOHACJ19AA4+vz5SYonU4YIY5eEVnX8mlowHUODCBDsrvbXLTL4cDn+/txjMWLxQJ44omiu3EohOy7hQvxe3+/texHK/D5cM/Gx/HDWZ3FLlJuNyLqLBK+fTvIvKVLp36vyUkQiO3t2QlEWUaX41AIjigTiLEYPltfnx5Jstkwnj090Bp7+WWiP/0JTjjPz5NPxr0cHcUi195ujUDUNOgoPfEE0dq10GhUFDj9VkkizjTgjQxLBbhcyNZ8+9utHbfEsGyLIpHpvbByAZekcCMDfqZSKYwBa3zNNpxO0YmTmwrN9fLmRx8leuAB6KquXy/mZCqFcfB6RXawHpqGJiq9vUTvfS8cWivz2e+Ho8wR99pakJKJBGwZZ7KaxdatRHfeCTt77bW43ul63p59FtlbZYCy94vKGaz5OTYGYjufWD7DZhN61JwFaAYNDSIoHI+LY7F/ZJaYdDimdpdl8uH557Gx3bcP/s6llyLzMF9TD6cTfgKvvSz9Yva6OJOrpkZkcUmS0DN0OGBz33hDBFmDQdFIQpLgF+aSWPnDH1B5cc01gkBk6Qwudy4ETYPNk2X44aVakw4exPU1NRF97GPGdDCZIMzMftOTi1zGzu+XJIyfPhA0i5gTtkivf8iaiA6HyJDjzsBMJiqKsSxgK2BNREXBOVkqhucIk8tMNJp9Rlk7lO2QGQkms8jWZblQNidLqoRCWMtTqekrbw6H0ZypuRkJPAwOMrBdzIZHH4Wdfec7id79bvE5bqTS1pY+N1wufC9OPGI+4Be/wL7/pptg06JR/I2ThqzgyBFoINpsOG5dHe5zqQlETUMGZ5Ed5+eEDZkJzPFtyrTgOU3TbuRfbHgib7DZbP+gaVpo9i4rHU4nnJHJSfzU1U0lhzjzjbs1jY7CgLW1wbg0NYGQ6evDxujZZ2HYTjstf1t4XuB4cWNDa5VIZIHrI0cEkWiGbGIi8cgREIlLlsBJs9sh5trYCJJtxw5ksTFp2deH987EZt7pBInGJeLJJO5fKc7d2op7efgwsjrHx0UZNxEWkIEB0XwkE7xp7+8n+sAHhOMvSZg3XIqdDQ4HtIXWrEHzlS1bsHhfcIEgcpjAtpKBqWloCvTssyCFzzxTlECWokEKP0ctLbg3v/oVOsGWCYlYEbZoNpGt0QoR5qyq4jnL3DDNFmprYZc44juXy5vffBNZzRs3En34w+J1lsngBkjZ8MwzCEycd156lN4MQiE4tOEwMhEXLsSmP5GAHbQ67s8+S3T33QigfOIT05fpqmkoT7z33rIhEau2qEi4XMjEZ7mZZLJwebPepzIb8ORqEb9flOoWo//J4EYRExNY7++7D8/0woVEn/0smh8ZzTbiUjuXS2RrFtMVmolOXhNCIfhDu3bhHD09ePb5nMPDQvYnm7/6+ON43i+8ML2jPFcwGNHeZQIxlcrfgd4s9u1Do5q2NhCIxWR48bgRYa4NDqLM8fBh/PT2Ys7ef39JLr1YzClbZLdjTuhLbplA1Jfe8t95z1VqMtHjwfrIWYfRaHpnZbZFTCSaPbfPl04kltL30WumcsDF7TY3RiytwI0xR0dLX94sSdhfOJ3pnZiJRJChoyO7jd65E+Tfxo3wPfiznN3c3p57jXC7saePx4l+8ANkVXNQJJnEMbxe603henuJvv99jNWNN2IMa2qKa57J4KAGE+lvvIHg9Le/XdRh55QNmU6Uwdap4vAfGb8/TURfIKIlRLRr5i8nN+x2PKQcPWFR3Eyj6XYjQy0YhJM2MABn0u0WZdHnnAMDc/AgMtr6+5E90taW+9wcmdJ3f7PbxWtmnN7aWhB6/f2C3DPjSLpcIiPxyBF8nonI1lZs2Pftgw5FV5fISORzlUqbJh9sNtwvXqRGRkpX3ux0giCdPx+ZdDt3YlFZvhxjomkgZ7MtqE89hQYob3sb0Qkn4DXuxk2EYxZaiDnq9453YA4cOIAFb9EizC0rehiaRvTgg8hyPPVUkNvxeLrOZ6kQi4FAPHgQ5VdlAsu2aDa0Z2YTPh+cIe7sSSQ6bGpaernzbKOxUZQ357LZlYxQCGXM8+cjA1CfHRMICG24bPZ9xw4872ecgY27lXGJx9HAJRAg+qd/QrZ2Mol5MG+e9cj4o4+CMDnlFGQgTteakUzC0X/+eWQclAkqxi8qZ9hsmINeLzaNQ0OFA2x6n8qoDUsk8ByoKo7PtkaSiiOxNA0E/z33gOxXVTyr73kPgnxcGptMmtNyq6nB+0Mh+KRWyps1DeflDERunjA+Dl/opJNwDm4ow2V+uZoX7NqFpkknngh9aLZF2SQ08l2T34/ram4uTeCTr+0vf8G1X3ONdR+Sdbv7+sTPkSMiQ5ubM6xfj8B0mWBO2iLWmWcyTFFECbOeTOQqMH1mYinAAdlEQpyHdVX116g/t1nU1qY3wCv2eeDO1pw5y5mcxYyJ1wvfxe/HT6nKmzUN+7J4HOSd3g5HIhgT7hKdiaNH0cxp0SJoTPPemiWZWloKj6WmQSLmtdcQdDj/fARRJifx/Yzs87Jh3z5cW0MDMhDtdlyLFQKRS9D1xKFew3X7duxX29vNHzsDc9KGTAeqJKJ59Gf8Hvjvf3MkGM8uOHricAgiMVvnZiK8r7YW5Nm+fXg4589H5IMXimXLQDq98QacxPZ2bMKyGQQubeGy5syIlRmnlwgOS3d3OpFoxuF1u1GizBmJixeLxcTrRcZcXx9K2kIh/H10FK+ZzX4sBlzePDFR2vJmIhxn0yaMQX8/MoJqa1FanG3TvnMnyoRPOgmNShhjY3AkOzoKL8ipFKJrsoxMwYYGjPWjjyJC5ffj/Bs3Gh9jVcWGfds2aC1u3IjFct680muqjI4S/fSnuB8f/SjOVyaoKFs0m3C5MGdSKZF5yGUz0ahwhsuBrLPbYaNjMZF9M1fKm1UVGYCBANEPf5hOIMZiQqMtmy3q60OpzrJlRJdcYu1eJZPQ5Onrg37ZunVCF8jlMlbulwkOZtx/PwjEj398+mQwAgHoRx44QHT11elZnLOMqi0qITgrmStECpU3G/WpWOOPN/n19fiXyaJgEOcxm+mXTMJP2LJF+BRXXIGS5a4u8T59E4NEwlxXZ24WyOXNqRTGJd/31TSch7OMWUOS5UoGB4XuN/uwmibO4fHgd7YP/DM4iMyari6ir3xFPO/ZmnnlQyCA68ql/WoF27fjPixeTHTVVeZ85HgctrG/HxmG/f3whYkw/osXw/9ZuhSB9tFRrE8LFyIgXSaYs7bIbsd85WeIyXief5xhp9f702cmFgsm9vg5ZkJRP8f0JdZWzllfL54/m81aUEOfmUZkrGTZDBwOJCuEQrjWUpQ3HzqE52nt2vT9tCThGfN6swc4g0HoObvd6KSs1/0PBGCLjfg1v/sd0UMPQSLmyisxdgcPCgKW/VAz++Bdu4j+z/9BUPimmzAvWc7KSIa2nizkLFyG0ymySe12kIcvvYRs8g9+0Pg15sCctSGlxhzYlsw4lByvl8H2Mzfq6vCwBYMgQ5qbpxo81kXQNDg1zPJziRdHvLq7EfE4dAhk4xNPwIlYt25qhlM2fUTWzLBCJNbUTCUSzUSrPB5c68CAIBJ5AbbbsUHl8ub9+0WZG5dRz5R+mtMJApf1+EpZ3my347v4fCjHicdBKtbUpI/lkSPIKOjuRiYBG/1QCAu8kVR+WYZTG4+DKGxowDxLJJDZ6HbD8L/0ErIdTzsNUe18m3BFwXXt2kW0eTMIyUgE11PqDl+9vSi7VFWUYq1dW9rjF4mKtEWzBY8Hc4dLmFlSwecTBJaZRgLTDZ8PNnMulTf/5jewB1/8YnrmCmuPut3Zn+GJCegMNjfDQbRC0skyGiDs3YuSmlNOwXyYnBTErdl7z1IPjzyCjKurrpq+jNb+fmROBgJEX/4yMgXKCFVbVGJkljcnEtiMZfMB9D5VNn1EzhqSZdFdVe/L2GyY/6yJlUvvOhOjoyD2778ffkF3NzaLF1yQ3S/jjCnO+JNl+AOSZKwEk8ub3W74RdnKm7lBDEtYcEM/Jg69XhxndBRB2gUL0jftTBo2NiJIytlMrEsXDoPIt9shhcDkn6LgnE6nMZ+Utci5mUEpsHUrul4vXw4iIN89lGVRbcM/IyPi7x0d8He6u/HT1SXmXjIJ/ysaRYXLggWluf4SYc7bIi5n5nmpz0okEmSjfu7yHqzYAJc+Q5Az5Ph6+O9chcYaimZRV4fnjDu0G9l3laJk2SzY9nB5s9VgwPg4AoNdXdjTMjhT2mbL3kgllSL63vdgS779bfEeWUYAyu3O3YBFj7/8BT8XXYTgpKYJqar16zGm4bBo6tLQUHgvum0b0W234TvddBOO4XJhH5vtfmQShoruKdYHm/Sl/DwG992HxKYTTkAzmRLsk+e8DSkVqiTicQSvV4hI+/0i4izLMEKRiCiBZtHtiQn8LRpF5IU3sQ4HnIfubhBub74Jh2TpUuhU6Z0oPZGoF+K1SiR6vVOJRDOb65oaOD1Hj+Jn0aL088+bJ8qb+/uFTlBfn2jMMhNgx97jwf0aGcG9KUXEWlGwSJx4IjYUfX1Er7yCcV24EHOEBbk//GFx3xIJXIvPV1hgV1FAGITDyGRsbsZrIyOYP/Pn4993vxuL0wsvoEHK9u3YkK9alb1j45//DCLgwgtBXLPDX2qB3q1biX7/ezwL11+fXwS+isqAXh+RnyMur8jUTSwHuFyiuQBHvCu1vPmFF4j++Ec4qu94h3ids6BYziETsRieQ5sNmcBW7o+qwqHdto3o05+GhIKmiaBZc7N58k/T0CzqqafQDf5DH5q++7JtG7INXC5sFk48cXrOU0V5IVt5c2tr9meAg7x6zWkuzZUkvMYNXLKBfT+/XxCJ2TZjmoaA3z33ED33HF475xyiyy/HOm/0GeANoZ7okCRRcpiPfPB68R4ub/Z48H624UT4vbYWdj7zO0ciCII3NU1d18fHcU2sIcadb4kwlrfdhjG69VZcRzQqGmPZ7cb8s2AQn8tsSFcMnn+e6OGHkVX5wQ+m3zsmI/SE4cCAyDJqaIDvd/rp+DefT82NHxQFm/ZcTR6qmF4wScbkSzI5NeOQ9RT5PVyJUWxWHvtMqor5YLdP1Ucspnu8zYbngqW46utzE+LZSpZLQZYaBZc3BwL4SSbNBSTjcci01NeDsNNjchL3jPdKemga0U9+gr33l76EDDx+naWmcmm56vHQQ+jofO658I1sNqw1HLTi4EtdnbgfXLnT0JB9nF96ieg//gN25ItfxLG4OQ3v+zMJQ31Zsj7LMB8JHA4Lvf6zzkJSyUzd9yqAKol4nIEjAYEASCQiYXyZiGGDb7PBCHHjlWPHYOjYEPDx1q5F5HPvXlEC0dODTBO3O73Rij4yVUx3QY8Hzg47REuWmCPXamsRIRkcxM/Chenn93hEeTOXvHi9omvzTBINNTVwaCcm8GN2kcoGdiBXrMC4zZ+PSNjBg8hAfP553JOrrkqPtI+OCqHxfFBVbDSCQTiara14bWQEx80U+e3oQPkTn/uRR6DNcdZZosuWJEEo/M03QTyuXo15XF9fGoFehqZhYX3gAcyxT3zCuqBwFeWFTMKQAwJckpNM4me6GmJYgd0Ou6wvb2bh/0rB4CCyAFeuJPrMZ9L/Fg7j2W5pmeoAyjKe+clJlAlb2bBqGrKJX3gBUfYLLsDrwSCOn4ssyQdVFV1Z3/522K7pIhAfegibhQULQFzoMxWqOD7A5c3j41iDGxqy+wCsjyhJsGNMGtTWwqYVmqN6IjEQSH8mEwk0MduyBQRcfT2I8/e8pzgNKiY69KXO+oZX+Z5NpxO2YXBQlDvX1wtJmGyQZfg6bjf8H/2YhMNCQyzz82xHDh5EJvBJJwnic3ISx21qwpjnI2k4w8pomWEhaBoCGU88ARLife9LL0tmHzkaxftZ1mfzZpFl2NxszH6Nj8PPd7kQyCi1dEwV5uFwCK1E3mNlzj8mw/W2oVgykQlzbrLidKbPB5azstpohbOOuRorM/stM2ONNSFnQ9ta371ZX95cyEdTVSRNaBoqtfT+Dzd+qq/Pvt+8807sla6+Or0rOjdpmj+/8Pmfeoro5z9HBdiNN2LMebwbG9MrC7laQ0/u6gMhPO7PPAO9+5UrQSCGw0Lbm7PhM8uSPR4RODJKAo6OgkCcmEBCyaZN5aNrfjyhSiIeh+B0cyak2tpAouVy1mpqEK3lCHUsJpqRMDweOFUrViCteP9+OJqrVoFQ5IWOFxR9oxUrHZuJ4AwtXSqcpcWLzTk19fUoFxoaghO6YEH6+W02HL+xEU4nl9tpGs5V6uYd+ZCtvDlXaVMhcHZpV5f4Dh4PyL7hYaIf/QiE8Sc+ka4TNDqK+5SrOxhD04h278Z51q4VG4zxcSxu7e25HfzFizHXenvRIexvf8M92rSJ6MkncZ8vuwzzbGICc7CUBJ8kEf3XfyEL8aSTkIV5vDUhmetwODD/ixZi9wAAIABJREFUuIyOHS0u/9FH68sJXN4cCony5pm0QVYRjxN961uwVV//evqzn0yKDXVmhremoVSyr4/o/e+HbTALTUOU/bHHoPXDHVTZhlrp9KooECB/9VUEM9797ukhEFWV6Ne/RsbXhg0gLqrBjOMXLhfW3kAANiCbD8BNCeJxQR5y+a5ROBxY9/WZNffdB93PSAT+3Fe+gnL6UgZb8pU6c3aRLItS5czmHrKMZzkfgahp8OUkCYSbfuxYe4y7M2fij3/EBvmjH0Vwk0hkydTUiGPx9bEOm56oiUZx74xUchgBBzwffBB+fDhM9M//DF+Lx7SzE4Tf0qUIQHR1WdtsDwyAQG1owNjNlLRPFYXBzw6XOKdS6Rm0DCZp9GQ9v8/KGma3Yx+l1xXWzws+l9VGK3oiMRQSFXJcssxl29NZsmwGDQ2icmxsrHB58549+G6nnJL+PkXB/sblyp4g8eST6Ar/9rcTXXqpeJ0DFI2NhX3DrVvRYG79eqHrGosJHcVciRm8PtTXi/sSieC7v/gi0e23o0Ls05/G3lpRRPMufWObYnQ6Dx9GkkcyifLl9evL4/4fj6iSiMcRWDA6GMSD3dEhFh02PLkeRC6r4azEkREcq60t3RDU1qJT7sqVIJJ27wYhtGYNIp5GGq2YMQYuVzqRuGiRufKQxkaRITc0lC4CzmhpQeOO/fuxOEQi+MySJTMbic0sbx4exrWZIRISCRCm9fUgJfXQNCwCNhuIOlVFifPKlfh/IoHPFHIe9+7FeK5cKbRy/H7R+KRQFqfNBpJw+XIQ0s89R/S1r+H1z3wGxx0fx/cu5aY6HEYH5t5eLM7vfGd5lbZWUTowYcgReY5+smh4IiEyqMsJXN7MjpskpUeByw2aBkf1yBE0NNHbHFWFw+p0Zt+0P/MMspnPP190hTeLu+8GAXLRRaIJSSyGH5/P/PMty0S//CWu6/LLEQGfDsTjyNx88UXYouuuqwYzqoBN4k6bmd2bYzHRZdznw3vM+lMMhwOE0V13oSLA5UK52xVXzMyGTV/qHI2K4LWm4XUm4fTknaLAt52cFMRiJgYG8J7ly9N9N9YAs9uza4g9/TRIxPPPxxgwOKuLS/74OjhDkQlFvZ9dW2udQNQ0+FZ9fdhIP/wwfKS2NqH3u3Qp0VveAn978eLiiV4mXoeGcJ41a8p3vTnewVm9+kYU2aQB+PnSd3q2SiYyqTQ2Bj9//vz0arZsVWhmv1NdHezd8LAI/M1kybIZeDzGypsHBiCntXz51L3YxISQVMj83J496Aq/YUN6V/hkUgRBClVm7dyJxlA9PSKwm0wKHUQjOoqc+e3x4Hp//3sQexs3IgFlYgL3bsECYadLsW7s2IEMSpcLDfYys8mrmFnYNC5Er2ImMGuDHYmIkgtur87ORTQKAoWjHoUcBBae9vuFU5tLj258XGSl1dUhM40XmcwoGaelW1kYFAUkYiKBrEqzZSITEzCgzc25S3M0TZSHBIMgLFeunJ3NHUeqkkkRNTLS7Yqj8KtWTR3/Z55Bx+TNm9H0ZHJSEKcuFzYPHR35z3HgAMZo2TLRrS8cxrU2NJgvR4zFkI2zaxci6nV1mD9nnokFsFSLx9AQyIHxcRCoZ51V0Pmu9GXruDf8moYNHm+6eS5pmtiw+nzlu2GKx4WObbmWN2/ZghLAj398asc8v19kU2Ve+65d0D498UTrpcIPPADbsXkz0Q034BjJpNBQM7uRT6XwXd54A99l82bz12QE4+PQPTx4kOgjHwFZWYDsrNqi4xCyjOqAcBgbtMZG+HZss7jJihkiMRaDlMiWLSD+GxqIzjsP2balXG8LIZkUGZWsl8WZfayHyCSC/po0DTYxHhfd1tmf9Pvhz7S3wz/Rw+9HYKa9feqz9sYbRN/4Bsizf/onQVqqqrC/uXxA1msLh3GveIPOJEihIFUoJMqRWSqIm8UMDmKczjwTPgtXzZQSsgzSIhBA0Ly7u+AcqNqiMgHPPU0TGWDZ7p1eRoDIWIOjbEgmsXZlI6FUVZCIZvwpJjk5ySQaNb5PLQeEw3iGnc708uZgELqBLS2ostKPNVeatLRMTYg5dgwJFU1NCMpyIERRsIchKpxpfOAAiMP2dhyjvh7jPDQkMpez7cH184R/WIrsgQdQNXLCCQjW8r500aLSZSwrCsq3X3sN93/zZtikPPO00m1RRaBKIs4sZnywOT1ZkvAw5+qoy5sr1sQxkoEjSVg0YjE4dm1tuQ3G0BDIRE5JX70axipT/NmqEC8RjMyRI7ieBQvMbxJHR+FMzpuXX/MvEEC23bFjINU2bCiNto1ZaBrGMxQSWpf5iITBQRCly5ZNvd49e5B1sGEDNHXYMCcSSHsfH8eis2LF1KgZ49AhbHwXLwZJSQRnfmRE6C6aQTiMssFAAJvptjaUJe7fj4VvwwZkvRZb0rl/P7rGKgrIgXXrDEXvK32Bqhp+EuV/Dke6XeTXuXtzuUY6uauxopRfefPu3SiTOeMMon/8x/QxjEZFQ6TMbO4jR/DcL1hAdM011rJBn3qK6Mc/htbPl74kyqr8fhFBN3NPEwkIhff2ppczlhoHD4JADIWQdf2Wtxhq5FWms9MwqrbIAhIJ2Cgm47mbcGZ5M5MI+XD0KIjDhx/GMVevBnl93nk4xuQkfLtitZhzgbO/OXOP/UCvV2T5sU+oz7IiEqSH3mdMJvEMEYkSyJ07cZx169LfG4sJncnMIOfQEGxYYyO6oDJZqGmwYaqK1/L5q8kkgqhM9OqbQHAw3eXCsY4cAVnIlTV+v3jfggUiu3DPHrz3/PNxj6bjnsTjCObE4/DnCgWQ/xtVW1Rm0BOE+bL3uEw4U2PQDDhZpb5+KqGtKCIzMt985etgkkqvjaooeK5ZJ7pc/TI9kknsYVQV1+xygQyz2YjOPjt9z5ZKIduypmbqHjQUAoEYiyGLUL+fGhmB/ezszE/a9ffjGHV1OEZzM65reBjj3dkpriez8Ym+W7K++dXdd0NO4S1vIfrUp7DPnJgQWolcPVcMEglovu7bB2LyrLMMdYSvgNlR+aiSiDOLGRvsREKkUrtceJALld5KEj6jaeYefM40U1V8LtcGTdOQwr1nDz4zbx6IIL2xLJZIZEcsGkVExmzDjeFhLIJtbflLZVMpEIkHDmBczzhj9rrUJRIYf+4ymu0+h0Ig+Vpbkampx9GjKOPt6kLGkD7SfuyYWPx6e8V9W7EifXN75AjIuK4uZJvabGJBdDoL6yhmIhiEtkYkQnTllTju8DDmcl0d9Mj27MGxN26EKLGViNcLL0BzrKEBIvHd3YaPU+kLVNXw/zdkGc+Qy5Vu8xRFEIzlRM5lgoMJySTmbkPD7Efp/X6if/gHjNuPfpRukzj45PFMtZmBALL9vF6U6lgZ95deQinwCScQ3XKL2KBPTIjMeTPjE4uhsUl/P9HHPobAxXTg5ZeJfvhDjMuNN4LsMEAgElVt0XEFztJTVcxtnw9r7cQE/j5v3lR9LaLs3T23bsX6t3Ur1tLNm5H5u2ZN+nsTCazJHk/pNu+cCc4/TBhwNmUhLUd9h0/+fvrSTS5vTiZByjkcyGzOtPHclKWzM/18kQjRV78Kn+cHP0gn0bjjdW1tfqIllYKtczrTGxIqCnzh3l6RYTg8LPzetjYEe7nxyaJFQhPyT3+C73nhhdi4TweCQQSBNA0VKCYC8lVbVIZgYo4lo/KVLfNzxfr1ZrXrAgHsv7JJLTExmI1I5A7Shbosc2avw5HeEbqcwdIt8TieXUVBBrGeaNU0BC1UdWo2oSRB67S3F/9ykgYRjhsMTu1TkImhIdgzhwMBkfZ2oXXP98vtTr8HROkkrj6jlfWmH3kEkivXXCMCWvPmCfurKLDlTU3WqmWCQZzj6FF8740bYasNoAJmRuWjSiLOLKZ9sFMpYawcDjy4dXXGDa2igESTJBhoo5s4Lq/lsuj583NvgFQVhNaePbjOJUvgqHDqdimIxIEBOIEdHeZ1844dw6a8oyO/88Tlza++it/PPNNQdGRakK+8WZYRwXE6UX6tH9PJSXTncruJrr8+fbM/MoL709EhtOIGB+H0EsHJ7erC4rRnD+75hg04L6fXa9rUjNNC8PtBICaT6A7d3g4H2+EQOp587S++iG7NXi829xs2GCuHV1Wi+++H1tGiRci66OoytchV+gJVNfw6JJOweVwqx2Ahf6ez/PUxubzZZhMR79mALMNZ7e0FgajvJszaY5qGjbLeFsXjRP/v/8Ghve46a3qnr7+OEp3ly1GCyF1f/X7YpJYWc7YoEiG67TbYn2uvBQlRanADmTvuQIDn85/HmJmI3ldt0XGAVArkFTcp4EZLDFkGYZVMwpdiHyDTn4pG0Yzj3nuxns+bB3H+iy/OHwjlbqFer/WyWVUVpCGX5drtsK0+n7EO0pnQl9lp2lTiY/t2+CLr1mGt1/sHw8MYr8y1X5aJvvlNBEa/9a10UjWZxLV7vfmfUQ6W8PUMDIjS5P5+0RimpgbZhQsW4Id1vfWNWWw20fSttxf36vTTzY2TUYyOwl/kZnsmAzlVW1TGYKKOibx8ayGXQ7PtMKpBqGmY95IE26J/RvhZ1etN60uW+fVC2oyplNhr1tdXBpFIRLRtG/ZK69fjR29zJibgb7S3p++dNQ1+1DPPEN10E7IXGZxFXV+f318aHye6+WbY3e9+F/ZOlrHHCwZF12Uef30DlGx7cFWF/NPTT0Pq4kMfAu+QSGANYV+Z5SVCIXzG58PaYdQHGxoievxxHHv9+vRGnQZQIbOislElEWcW0zbYsiwiQJzqbTVKo2kgaJJJPPRmSnVjMWwSZRmfmzcvNxEoy9CbefNN/N7dDSNRU2NNzyfzOxw9CuM1f37+8uRsnx0chPHr6ir8/QMBGPhIBF22Vq82f72lAnfL0pc3HzyIebFyZfrilEhg0x4KYdOuH6PJSXyvefOmfv9EAhmYfr8gWRYsQDdjux3jNzyMhb5Qen0mxsawmVYURLZaW0WEPrNUizE6iozCI0ewEJ5+Ou5BrnmXTBL94Q+ItJ94ItEFF2COmCzdqPQFqmr4M8BldPrSOSLMY87yK2U30umAvry5tnZmGz8xfvYzkGJf+xqaMegRDMIWZW4uFIXod7/D5vqaa7AWmMX+/YjSd3biX47K81pmtqwmGASBOD6OToNr15q/pkJQFGRe/v3vsJ/XXpu/e30OVG3RHIYsi8w3ll3INY/ZdwuFMIe48Z2mIfj3178iqyORAKl2xRVEb32r8bUvGoWfk6uDcTYoSjpxSCSyu/N9FyvgpiZc6jw2Bj+ws1MEqbmDajAofBy99pimQQrhySeJvvhFjA9DloUuWy5yLZGAz/X66yAOmRwgwjgvXCgyDLu7cY/0Pq6+KzVvz1QVGrFHjyLgefLJJRisLGCSs7FxKslhEFVbVOZgIo8zDfXdw7OBiUfOYszWqCUTHNBgeSz9PNJnOrKmHmdHmvHB9UTibMhJmcXICEjEjg7YI1XFddfViX1zY+PUxJU//xlSUx/5CNF73ytelySQbC4Xjpmr+s/vhy82MUF0663Ct2IprJYWsU4YIYkVBT7eiy9i/bjiCpG4lKviUVVxr8JhXFNdXbpebTa8+SbKvpNJJIf09Jjbx1Pl26KKQJVEnFmUfLA5c5CdlIYGGKJSlLOFw3CYWITeKJnHqduTk6KMI9dmliMV+/fD4SJCFsnq1cL5LYZIPHZMlCeb0eTj0utYDE5foeYpqRSIxKEhlPqeeursdQ5LJLBw8GI9OYnvoBc7VhR00zp0CJt2vdB4PA7irq4uv9Heuxeb35oaNGJZtgz3anQU4zZ/vrko9vAwCES7HWWDLS14TdOwSBZyaAcGQCaOjOCzZ54pmrswJieR5Tg4iNKtU0/FJsKC7lqlL1BVw58Bbqhis2FO621OIiEyFcuxgYkemgbbnUjMfHnzk09Ca+fyy5HZrAfbJXYg9df717/Cwb7iCpBpZnH4MJoeNDYS/e//LRzxcBj3tL7enC3y+9FVOhQi+uxnEYApNaJRjNXrr6MT/BVXpIuvm0DVFs1BsJxCKiWy9QyWt1M8jk28oiBz7aGHRJflt70Nm9EVK6xdVySCuevzTRX+Z3Bwka+fCOdmfcNSie3ngqriGd69G7ZgzRrY82gUdtxuF52SM32cv/wFQcYPfSi9GRTbVZtNVPdwOTSTb3198FliMXxm8WL4IEuWoPHJggXmfA1Zxjl/+1v4spdcAvvIGYqlsuuqCh98ZAS+VmbFiglUbVGFILPxSqF1hwl6PemXb47E40ICoa4O7+djpFI4v8cDW2B1r5RI4Jl2u3PbonJANIq9CUtfEYnMPZcLY+XxTO3G/Oyz8EP0zeGIMHZDQxjPrq70DvV6LcNwGP4QN2Q54QS8l+UvamvN7YslCQGW115DA5WLL8aeKhqF71Von8yallwxw7qJ+nmkafAFd+zAta5fD+LTQmVKpduiikCVRJxZlGywVVVknWmaEDAtNXEVi4nuUs3N5o6fTIJQSqVgrFpbsztQTHYlk3BkjhwRpbfLluGcxXyvY8dExNmgOPT/XNeRI7iuRYsKb0JVFcZ13z6c56yzZicTiEg4t3v3wkneuDG9++zf/kb0yitTo9qyLDSCurpyk7eTk/iurJE0MYHxYZ2NlhZz0cGjR+EoezwgEJua4IwrCsbSzKajtxdRskBA3IeFC3GO22/HnH7Xu6CvMW+e5blV6QtU1fBnAWfNOJ1TN+zxOJ4Pn2/2AgRmoC9vbmiY/o374cNEX/gC7Pb3vpdu6xUFkXaHA+uA3q489xyyo849FwSHWRw7hgi72030ne+IYAmXX+YjO7JhbAyOezxO9LnPYfNfaoyMoIHK4CAatbzlLVMzNkygaovmELipUzIpAhqF9AEzEQ4T3XcfslhGRrBRfP/7iS66qDR+IpPzdXXCx5Ek0VFZkvCa2y2Iw5kMvqRSaKRityODmDOeiHB97GOuXp1+Xc89B13Sc8+FLdOPeTgMYnZ0VJQmDwyI71pXB7KwuVlUZhTbLTkWQ2B1dBQN73p60ptfMPnjdlsnFCUJZGswCFunl5+wgKotqjDwfDKSlUiULh3AZa+5PqNPROH3ccksP1tWOkHrwcEKJivLDYoCAjGVwl5EL4sTiSDjTlUR6NDvMffuhaTCqlXpXeGJ4KOwPj2Ts3xPiESA41/+Bfuhr39daDmnUiAg3e7cGYzZkEoR/fu/w65ecw00WYNBfIf6enP7Pa6YicUwJzgjU1FAnB46hGOuXIlAjMV+A5VuiyoCVRJxZlH0YHM0dHIShqe21rpgqVFw52abzfxGR9NgLPx+fD5beSyR6P7kdMIo7dmDzaHHA0OydGlx33F4GERXc/NUAe184I7PkgRjZiQTYP9+6PDU1sJwmyEuSwWOLHM5t9eLzTV3Bnv4YZTpXHCB+Axnbspyfn3AcBg6kB4P0aZNWIz8fnznsTHcq1NOMR5x7+tDVmRdHQjEhgbcL0maqg9i5vvv3YtmBZyle+gQFqP3vAdzoAgCkajyF6iq4c8BSRLly3rijTMVNQ3O3mw3LzECWYYNkOXpLW+ORKDll0gQ/fSnUxtasUYSl80w3ngDpTonnJDeFd4oxsdBIKZSIBC7uvA6awNzFr1RDA2hhFmW8X0WLzZ3PUawbx90iWQZZdKrV5vXasxA1RbNAbBeYCKR3pnYzDNx6BAapTz2mCgDu/BCbFC9XqFDalVvWo9gED9MArAYv8cjiMMi5rRlaBr8x2g0XdOPN9ojI7ANrPnd2Iix2b8fXeR7eiCHkEpBXqGvD/Ithw9jTDkLa/Hi9LLkpib4mLIMX6vYoE04DALR70dzuZ4e8TdVFSXPmYSiUe06Iqxnu3bhe61ebS4rKQeqtqgCkZmVaITYYy1DIjH39J/RNMwrvx9zta4OxJBevoBtRrF2goMXXu/sJW7kwo4d2M9w1ZMek5MiuMoJGXV1eP/NN+P/3/sevhOXgPv98HsaGsReOrPxiaYhA3H7dnSXZx1FWYaPY7NhD2TUTiQSaFa3bx86MJ97LuxTKCQ4CCuQJIxBIoE5sm0bjtnVhcSPRYusH5sq3xZVBKok4szC8mBrGpyiyUkYgpoabNSmO7uEwZqL3KnXLLEjSTCW8bhoX59JUvEixovRxAQipGNj+Mz69XDcrEatRkeF7sSCBcaPI8twJlUV5zei4TMwAAOuqnDOenpm1qE+cgSLTU8PxpO7Zw8PI0Nh7VqU6ujHYHwcC0N7e+6sy2gUGYwOBxZFngfxOBYnvsceD8ql9CXU2dDbS3TnnVgoPvYxsYCmUnBoi21mIUlwxP/8Zyx2F1+MBZBLr4tApS9QVcOfB4mEsLN6R4uzhGw2PCOVIOg93eXNmoZN9yuvoIvpunXpf2ctnKamdLty9CjRr38NZ1bfFd4oJicRYQ8G0fyAMwZlGbbP4QA5Z/QeHT0KAtFuR3dkgx0ATeHZZyGS3tyM8qTOTlxjkZlhFTAL8+K4tkXcpZgbjXg85oIUioIMunvuQZaIx4Pg4OWXC5mSeFz4ACx8b4VIZGKANQ79fqyxra04rtc7+1nafX3wRVaunLppj0ZBItbVYQxCIYxfOAwCUZaRrTk8DF+GSFRW9PTgZ+nSqRtwfTMJHodiEAzCNkYiyFTOlw3NBJAkCVKGic58OnOBAMhWmw1ka4l05aq2qILBWYb6Bhv5oG9qRJQeUGByW1Vh25go09uIbI1WrCIaxXlYa7Uc0NeHZIZVq9Ilo4hgR4eHsS9paRHlzbIMmZNQCH5Va6sYy0QCdqa+XjSsdDjSfRxVJfrXf0WyyOc+JxJFeP8ny+aqu6JR+HWHDhF95jPIpmQuwuebGjC2At6XhsOwdQsXYt9cpE2qdFtUEaiSiDMLS4Mdi8HASBKMcHNz8U6KFbDWoSTBiFmJ+IRCcGY1Dd9Dr7XICwpROsE4PIxoaSCA92/YYD27b2wMZGJDAwyV0Q2mJIFIJEK5h5GsyNFRkKChEEjLNWtmJt1+chKLV3u72AirKhzGO+5AlOeGG9LJUC7VaWrKvSgkEiAKVBUEIhMCLPDrdOK+RKOI6kciIIt7erITr/v2Ef3xj3jPNdfgeKOj2JyY1VPMBkUh2rIF2YjLl+OYvb2CkD7ttKKilpW+QFUNfx7wxp6zDvV2grXKuDlApSCREJpepSxvvvNOot/8Bg7me96T/rdUCnaFg16MyUmiX/wCdvS668w/h5EISnyGh9GFedUqvM5aaLzxN0poHD4MrR+vFwRiCTJy0qBpRH/6E8Zq9WpE8xsaSkIgElVtUUWCCTnObna7zUklTE4SPfAA9ETHxrD2XnYZpDqyle8rCp5F3mizPE0hH0jT8BkmDrmLKpdZ88bXbOOi6cD4OMoDOzunNmeSZVRacFllXx82xjt3olN1KgUd5cWLsZHt7kYmzLx5+bO4NQ0+bTKZ3pnUKvx+EIjJJNHVV+MajELTBKHIWWJcpup2C6JmaAjZlT4fCMQS7ieqtqjCwXOIG6kU6pRMJLKok0n83+0W+tGsRZpMinJpffM6VYVtstuLXwsjEZyntnZ29sh6BALYe8yfP7UREmsaEmGfxpJe4+PIPDx0iOiWW4SGIZOzo6MYo87O7AEgbgr12GNEn/xkuj/GWvXt7cZtVCiE6xkcBCG5aZPgI7xeSzqFUzA4CC1tmw37ZNbAb2mxlrCkQ6XboopAlUScWZga7EQCDysb3+bm2d+0cnlyIgFDZEXzhZ3ZSER0EGRDwQsYdwHTn3dgAGQiN+1Yv96aEZuYEI1DFi0yHo1PJpHhZ7eDSDQSORsfx4IwOgone9kyUXI3HUilQOB5vSDvePEPBtEFVJIgqt7YiLFzu/G9hobwmVzkbCoFAjGVAoHIZKii4LOaJiJjROJ+9fVhvJYtSy8j370bAuZdXURXXYVzj43h3ra2Fk+2xuPo9vrmm0jlP/VUUWb1yis4v90O3aJTTrG0+an0Bapq+AuAHWN2evXgxgEu1+w7q2agL2/2+Yp/zl57DdmAmzejbCYzIs7ZPPPni78lEkS//CWu41OfMt1xjxIJZB4ePAhH+8QT8bqmYb2UZXOyG2++iRLshgYQiBb1d3JCkoh+8hOip5+GhMQHPoA509JSsozQqi2qMDB5qKqi06/RTJwDB5B1+MQTmFunnIKmPGecYWw+TU7CH2B9Uo9nKknA2UOxmMiQZDuYqdGof+6ammauOiYTXJpbV4dKC76+UAh+yPbt+Je7tRNh7Pftw/V/8pPIslmwAMdwOATBW1+fm0jx+7EWlMI/Hx1FoFdRUJlRTDY0B+VTqXS9tMFB+GytrfChS1whU7VFcwTcBIVIEFmZYPKL5xc/IzabyC7k8lrW72f74PUKe6UoOFax+ohECJRy+fRsBTWSSWQCOp2wKfp9EZcUh8NT5V1+/Wv4CddcQ3T66bCn9fX4HFdo5ZKa0jSiX/0KGX0f+hC6OTP8fox/Zif6fJichOzK6CjRTTcheSeRwP7Z48Gxir1XLDlVX489osslsq6DQcwLrxf7VQvrSqXboopAlUScWRgabNZzYoF/bpteTqVzkYggAZuarG2GolGQbLIMI8GbKtZHzNZQRZZByu3fj3Hq7IQjZDbtORBAVLq2FpFno9efSAhR7iVLjEXO/H6Uyo2Owvi2tqLUt9TlzZqGTLtEApk5bHSTSWzaAwFs2lm7R1VhvEMhvG/BguzjIEnQQIzHsWFh4li/sHV0ZF+w43Hcq8lJnHflSvx+770YvyuvxOeYVDbbkCUbJiawGE9MEL373chC9HjSSxuDQaKXXsK1eDwgGTdsMHVPyuhptISq4TcAWRYd9DLndyoltBNnOwPHDDQNzxqToI2N1uz3yAgymufNQyOSTDKV1zC9Ppiqiq7wV189tcSnECQJju2uXURf/jIcbQaTA2Yyot54g+iS6WPIAAAgAElEQVTnP8d3uPHG4hshZCIUgrj53r0gD88/XwQES1hSXrVFFYJUCsQU6z/7fMbIblnG5nLLFlQUeL1E73gHSpatNMLgsjguv21sxDUxcZhMCn00Jg6zkY0MrlJRlKIaBFmGLAttv6Ym+Fv9/cgw9vvxuiTB3qxahTHr7gYZ+/jjyLLZvDnd73Y48L3y2ZNAAONlpDNpIQwNgUC02yHvUMpsaM563b0bPltHh5C64Z8S7S+qtmgOITMrkbN4mWDkMlunM70pC5fYc9Yy2wNu0sn7Jj2RyERksUQiy7dwxdxMBzVUlWjrVnzX007Dd2Q9VkWB7xUIwO6yFrLDAfLvD39AA6wPfAD+DOs8ss/W1pY7I/rOO/FzySVE114rxjAcxl6IKx+MYGICGtOTk/Cz1qyB/ZiYwL3MbI5nFpqGMXrjDdiiBQswBkuXikAMf+dQCGPK+rXH0R6tInBck4g2m+0OIrqGiFyapskzcMq8g80io9EoDCtHIcqJPNQjHhfC2mY7NzO4/IyP09YGYyHLIjKVudniBerQIWSRSBKcwrVrzUWCJydBJNbUgEg0I0Y9MADH0igBGQiI6FMqhXOuWmWua2ghDA/jhzsEEmGs/vAHkItXXSXEuXnc+/sxv9asyZ7irijINgqH0eFZvwiNjWGuGik9HhpC5tCePfg5+WQQiC6XiJI1NRUloktEyDS44w58v/e/H+SA14vxyPYcjY2hc1p/PzYBp52GeWTgnpb0qSw3W1SFQCqFH49n6uY4kYD94dKdSkIx5c2pFKLTQ0Mon8nMro7FYF+56x4RnML770cm8Hveg4CEGSgKxL23bhWbfkYkAltUX298DXj9dQRXOjrQibXUUhNHj0LcfGICpd5r104LgUhUtUVlD+5cLMtCBsHI8+b3E/3tb/iZmMBm6/LLid75zuIbCCiKaDjncGD+M1FQU2P8GhnsU7Du4nRrQLPGV18f1vDeXuEzEmHt7+6GbfL5ELjV26l774UMw/veB1+EEY1iTFIpPKusH6kvKyQSnUkbGor3444exbV4PCAQS1EmqEcqBZI1HEZQtbNTlDyrKt7jdIqS5yLsU9UWzUEwaciZidyciTU38wUX9CQkZ8YyMUYknq9S6iNy5qMs4/mcCd+Mk1927YJNWrNGVHaxXeXqjNra9KqvF15AV/hzzkEwk8czGoWPFQhAfitXZvJ998GXedvb0BCOPx+PI9jr8xkPSoyMgECMx4m++lXsGVmWxukEgViM/yJJCIgNDODYbOuWLs2+B1VVoautaRi7xkZD+3VLtmgWbE5FYxZ6p808bDbbyUR0KRHdoWla3yxfzhQoCjZcvKFraiq9+P10gJsOTE7C6bJSymK3i/LVsTEYzLo6EemQ5alRUjbIK1fCIdq/Hw7kwAAizatXG8tE4QxKjlobzSz0+eDMDw7iswsXFr5XvHEcHIRRjEahxdPdjWMVi2gUDnVLS7r22EMPofzp0kvTu/ux/gg7jZOT4neGqqKzWCiELD09gchkt9ESns5OlA3t2IFFY9UqLFLRKI7f0FA8gbh9O3THmpoQyePyZb3uZiba2kBoDA5iIX/iCXQIO+us9PEqFcrdFlUxFW43bHQyiWdE/6x7vaL0rxSaPjMJJj6DQSGSbYRI0zSU//b2En3zm1MJRFnGMT2e9OO9+CIIxHPOMU8g8jm3bkXZoZ5AZDvCxIcRvPoq0e23w+bfcEPpZUJ27oQ4usOBcu/2dsyjXMGM2UDVFk0/ZBnkIUu0GNXq2ruX6O67sdmSZWTcfvnLCHIVO38kKV3f0G4XvueSJdbJSbsd8zsQEJk2pbSHrPXMP/39sMnRKDa569fDT+nuxvdoaIDdPnYM16bfgL/0EtFvfwtbpC/7IxJ+AxHGh0vOmURxOITN4Y6zxaCvD9IrdXUgEIv1gzLBvqYsY4y42R2TxYoiOj3HYuJvnKE4E/uQqi0qX7Bmob5Zit2enkWYC3Y7nicmIe12IRNTX4/XEgkhj+B0ivMUYzs4MBoKwbY1NJQ2qKFvKKMv5+ZkCdZU5cCD3S4qt1jCi3HgAJqtrV4NX0Rv35n85GzGcHiqvXnsMRCIZ52V/vlUCntqt7twg0vG4CAqPRSF6NZb8R0kSQSa5s0rzh5Eo7jeQABJKW43rnfp0tzrot0uMr3DYQRuYjH8XgxPUrU5pcFxQSIS0clE9A0ieoqI+mb1SnRQVWy2uJy0ocEww142cLthWPx+GAarQqheL8i4yUlRIsJZZEwk6uFwiIXmhBNA+OzdCwPe1weC0UjJcEMDsgmPHEHpCxv+Qqirg1N67BgMr5EmLY2NeM/gIJztVArnDAZxvVYXOUXBd/Z4cB2Ml17CD2sC6sGZQp2dGIOJCUSg9BocO3fivq5fnx7FikTw2fp6Y+V/mkb01FMQzz3vPBAABw+iU2ltLSJ2xeiQaRoWpkceAYl8+eUi/d2oQ75gATIXDx0C2fHgg/jOZ59tTtjcAMrSFlWRH16v0AfjyDmjpgZ/i8fNdVUtBzgcsEXsmEkS7EG+Nejhh4n+/neiD38YOmx6sD4aB8MY+/bhM2vXim6BRsFaP08/jXO+613ib6kU1k/uOm0EL76ITXtPD9FnP1t6TcvHHiP62c9Art50kygFzRfMmCVUbdE0QVFEowHu5K7XEcwGScIaueX/s/fl8XGV1fvnzkxmJpnJ3jRpuqRLSje2UgRL2VRWESkIsogoILKJorgAAip8Za2ion7dWb6ioED5CQjIjpRCWyi2lJY2bdMkzZ6ZTGZf7ry/P54e3zt37mTuLClJO8/nk0/azMzd5t7znvOcc56zEs9LRQUSXMuXp67r+SAWk8QhVxOxFM2UKTLgHByUMif5wGrFNplIzLdDhWVjdu6Ubck+n9zHtGmwPfX1uMZz58KH0oNlWxob5bVvayO691585ppr0nVcQyE8s3V1CFpDIXx3brdMkPh8ow9bMYu2NqK//AXX7OKLi9uZQgT/bdMm+JaHHmq8fW3LurbijO8Xq1USimMYm5Rs0TiDvmWZtVuJ8PdYDPeDmfZjlqZKJHCf+Xx41qqq0olEju3ymR6vhaJIuSYuVMgnxhJCkqj8w9W7fG52O56Vjg4kMA4/PP2aDA/jmk2eLJ+j/n4MLqmrQ9WfNs5NJqUE1syZsEUjI3KAk8UC3cX77gMhd911cruqis8qCmyfmevY3o5jsVoxqX7qVDnsRVFARBby/A8NwTeKx5G84bVxzhxzxUe8trjdkhzm7pM8OzZLNqcI2F9IxHEFLrVmQ+pywdka6/aPsQJnKIaH8eN259capii4Di4XHNqBATmN2qjEnbNaySQWpsMOg2O4aRO0FrZvR3Zn9uzRjajbDcOvJRLNlL9XVcmWmu5ucxWFnDnp7MQxV1Xh3+vXozovHz3Azk4Y+7lz5Xl++CGIsAULiE46KfX98bi8tiyO29gIh3N4GAt6Tw/eM39+agafhXV5MEA2CEH0wgtEb7yBhe6MM3CMdjvOeXgY19xmy6+FJ5Eg+vvfUT24ZAkICp7Olo++2ezZyIpt2QICduVKkIjLlhV/YmsJEweKgns+HJZEovY1PZE4zsiiUcHOtt2OdcnjgR0yqubeuhUVgUuWQB5BD9Yi0lYh9fTgGW1uxlCnXK/NX/+KiurPfhafZyQSsB+sG2wGr71G9MgjsItXXFFcvSQhQE4+8QQC9quvhjM/TgnEEsYAXGUTiUi7oE866DE4iHa0p57C/TxjBlraTjyxsArZaBTHwhqMRJIM4y4Shs2G53NwEM9/JJJ/1QnL23BiOdsAIa4W1FYZ9vbKdsfJk6WO4axZ8LPKynB+GzbgGTbqGmACsK5OPucDA2jVq6nBUCb988+VeJwMqqlBoBoMwq7ZbCACqqrwwxV8+lZnM9i8mejRR3F+X/pS4YSkHrt3g6R0uZBoN9Odw2QPV9gzoRiJyGp7u33MCcUSPiJwhV08LgelcLeS9t52OFIJNa3O4WjQPifcfVdRITs9uLqRqx95QEu+sFjwnPp8siIx23FqCUP+t3Z7fA58zooideMdDqz9+mMOh+FbVVZK3zEUgi1KJFD1p4/9Bgex/6YmaVPtdpxLfz/s5IoViNFuuEHGrELgdVVF7Gbme2lrQ+dEeTnsYlOTHIBKVDiB2NGBQpLychSSeL04p9mzc/fBbDbY9MpKmdBhWYnxNjtif8A+r4moKMoPCWyzHhcT0fGE3vcmIlpBRKcTkZWI/klEVwohPLptzSKiHxHRSURUS0S7iOiPRHSPECJJWSAECa7iUlU8UGwY9gUwORoOS4KskAd6ZASEFQ9eqa9PN2RCSPFeraPq9UKbYmAAi9TChXDORzueUAhZb6sVRKLZ78XjkdOXM0031iMYBPnH5Nn27VhEW1pyqzoYGsJ2mpslydXbS/T738PwX3ppeotydzd+NzenE7N+PzQQe3uxGM6fL1+Lx0EIWK1YnLIFGEKAyHz7bbRhnXYarn8wiO+FK3S2bZPaiq2t5q97MAgdoZ07oRF12GG497jMvVCwvsnatdhuayvR0qX/bRfP+c4eT7aISto/eSEel8NU9PepqsKGsObZRISqwinj6c1ap8znk+0yv/xl+jPGwttaAn9kBFPhLRaiyy/PPbn0//4f2g5POAGkHx8L668JYb5t8oUXQPAdfDAGTBUzaReNYrjM6tWwReefL0XRi92eaICSLfqIIYQkD4XA915ennmNFAJry8qVRK+/jv8vXYoq+iVL8vObeHgGJzPYL+JjGe14GKoqK3dYozpf/zQehx9mtcqhZkLgudUShh0dsjrS7YbvxT+Z2quTSQwJiUTwPOuriWMx+CpOJxKkRLguN94I3+POO9M7DMJhfM5o2E08Dp+ISdGpU3E++jZPrszKZo82biR67DH4YBddZKwFli94wN7u3fAtFy4snPDTEopMqlgsskJRY0tLtmgCgr9f/m75Ps62RuoHr+QyoIfJea5A5IQbPwt8LMVYp9muEaUOkuPp0lrikCkRrQ4qXw8j+ykEihgGBiA7oZWT4n339EhJBT7XH/8YNuzmm0Hya+HzSVuj97PicfgZd92FmHbFilQb2d8PW2dGq54IyYwVK3BdbrwRcSNrNyaT+H8hmpLvv48YqqEBcWBfH9YUnsZcKKJRXK9oFN9RdfV/zzvjnTjObM6ExgStfcsJTxDRNCK6lIhuJ6LNe/7+JuFmISJ6hoh2ENENRDSPiL5GRDEi+m+thaIorUS0moiCRPQrIurf8/k7iWg2EV2e7UC6u2EAHA48UMVuo/qooShyepLfD0OZ7+RmIhjPigpkQ7xeZBuam1OvG5OHyaTMnBHBkB97LAzqxo3IEm3ditbcTOK0FRVwXLl9ZuZMc9nbujrsf3AQx2KmYo2nQnd04HMLF+Lf7e2yvTmbgY1E4ChWVsp9+v2ohnE6iS68MD0A4ImMnN3So68PC9D06ThGbgPItTw+mQQBsH49StdPPBGfDYdxDE4njllREDR1dODH60V5ezYytr8fE5h9Poiit7RInZVitQRZrSBSFy7Eebz7Lu6hmhqiL385r02OG1sUCOR1/CUQnJVAAPew/hlKJGRr8ES171zlMzCAgJ9lGH70Izy7d96J5197D7HTabHg+QsEEJA/8ABsEj8vudx3L7+MZ/zjH8czHgzi79wyzetLODz6doRAK/Vzz6Ea+oILYDuLBa8XTviOHbC5xxwjbZzNNnbPmqqiqvLyrE+7IcaNLZrIEAL3UjiMf3MQnIm0iUYxDXjlShA9bjdkNM44I7NfYmb/LLXAxCGThtmqIPXgyh2nEwmB3l74UvmsqWVl8D82boTvOzQE38rvl69Pn47nhUlD7ozIhp07YQ/mz0+3s0JIW8RaYDyUqbOT6JZb0gnE0YZn8eeJJMHIfhFX7mk10qLR1IolPd59F0NdWlpgL8xOkjcDVUUXztAQktFz5hSnMoe17RwOSRxx0p3b4Pv7S7ZookFbcUeUPmU5G7hSUXvvm61SdbnkMJKKCjx/wSD+73LJ9udEonAikQdHeb24TysqZBcbQztYyGxlJRHW/f5+xAl6ApEoXVJBCGgY/uc/6FbQE4jhMI7T5TIuhujoQDdIYyOGqHCy0mqVUmB1deYIxA0bIO3Q0IBqxtpaGcuqamEEYjIJsnPrVlSQH3IIZgg4nfh/sZK4DgdiSR70OjQE4vKII0b9WMnmFAn7PIkohNigKMpbhJvlBSHEq/yaIlfXN4QQ1+r+/jVFUa4WQuzJX9AviMhPRIuFEHvUWei3iqLsJqLrFEX5mRCCb0RDKIr57MBEBi8A/EAX0qpts4FQcruRzWlvh8HjzDaRLHnnbJjWaZo8meiTnwTZtmkThmfU16cKTGtRXi6JxPZ2OHpmyIBJk2B0PZ5U53U0aEnLri4Y1poaLErc3pypJTeZxOcsFpCRRFiE//xnBBNf+Uq64z8yIoehGGW+29vhnM+ahX17vfgOIxG5mGciH7VQVYjCv/++1EBUFGynvx+LEhOIRDiHmTPxtw8/RCtxXx+IVKPjbGtDdRJXN1VVYQHRToItJux2ZBhbW9F+tGZNfiTieLJFJeQPFgrnYFHrcJeV4dmMxWTr10SDUXvzU0/B4bzmGgSmegwPwznmtt1kEkTJ4CCGHOUqBfDmmyAQDzkEk4211ziXqYtCoFX0lVfgVJ53XnE1K3ftIrr7bhAj110Hm6WtxB8rDA5imuOWLfkF7iVbVDi46o8Hb1RUZF4b+/qQVHv6adwrs2fjfjnxxNxJJG6Z1lY+WiySNMymvTgaOClrt4PUHBoy396cSMCP0VYZcltdLAbfYeFC+BezZiEhnE+FXF8ftjttmnHQ7vGA5GpslATfH/8In+qqq2BTtGD9SpvN2NeLRrFNhwMViJEIEgOcYOH2TK7KY1/JqNX57bdxD7S2IplRzKmx0SgI22AQdkg/8MoshMD59feDIOzrw+/+/tQfrxfv5W6gZLJkiyYCzLYs5wIm3bhaVVXNVSW6XFIChafDh8OpRCITjbnaCr2OIROlwaDUFeREH7cl54rBQZBkzc2IFfXgzry6OvmsP/UU9NvPOguxqRaJxOjDULq6iH7wA1yru+7CmjM8LOOqQAC+mxnf4513MNBl6lSi66/HZ4SQ3X9aGYhcEYshCdzTA3s7axaOvbwc/x4LKQTubFu1CgM8RyMRSzaneNjnSUST+LXu/68R0TeIqIWINiqKUktEpxDRT4ioTFEU7eP9LBFdR0SfJMlmGyLfRX0iQpsZ8Xjym9yshdsNx7u3F4Y7GASZyCSTVh9RTyQqChzO5mYEfR98AG2spiaQiXqizulMJxLNtJs0NsosDg8syAajfR1yCILDjRtle7N+gevpweLEJeHJJNpjenpQtaOvamAtw0zDRrq60Fbc1ITsvqIgaHA4QGqGw9BczBbwJBKYkLxlC7QYjz4af4/FsNDZbJkrGSsqUPnHE87WrsWCoz3/tWtxng0NECLnc6uuLr6mkBZc0TpvHtoVxxB7xRaNBdm6P6GiAs8ED03Qwu3GPRmPG1crThS43bAVL7wAQvDUU6FLqLdFwaCUZeBn8NlnYdOWL8cznQveeQeZ+oMOglaQ1uYEAlIDMdvzLgRI/zfeQDv0uecWVy/nnXeI7rkH3/8998DpD4dBmBZ7QIIWa9eiqioaJfr2t8duP7SXbNFEQywmdQZtNjwnRmSQEAhmVq7EPUiEqruzzkILbi73IhNdTBwSwcdwuXD/FbOajZOyQmCd9fvhx8ViuMe5Gm1gIJUw7OqSLYhVVfBrli7F74YG2YVTSHt/IIBEZ02NsexLKCS1z9hne+YZ2KPly9OHOgmBz1gsxsl97WTSSZPk+3iqvdcrNSYZTBpqW4DjcWgsv/QSiNRzzy3uuuD3wz9JJmE3M+lVs39qRApqSUOjSu2aGti2hgacQ2Mj9lNbC9tf6PCfLCjZogJh1LJcTG1LJiOZvOP20tHucx7qEwpJLXOrFf8PBmEvOLYbbdAKtyVrCUN9WzITpTU1eF6SSWw/X58gHIZ9r6xEHKlHLAaCr6JC+gNr1qAA4qij0qfCs5YhEZ4x/XH196P12WIhuu02STLa7SiS2bULfzOjVb96NdGvf4348bvfxXVnAjEWkwRrPvD74TP6/Vjv6upQAe5yIZ4bq8GDoRCkQQYG0N1WBJRsjglM0PCm6Nil+793z29+HOcS+uu/vefHCKWxCzqUlcG5YCKxurow7RfW4vP7sb3ubhhn1kq0WLB4JJPGC6PFAiM2YwZIqi1bMC1q+nSiRYtSg1KeiKUl98xUkDY1Yf99fXI0fTZo97VrF47v0ENRcbdrF5zVefNkoDIyAkPZ0CAzTv/6F7QtTjsN79WCW5HLyvAZPXp78dmGBiyG2sWLp6nZ7ZIsyJTliscxBKGtDcdx5JHy7729uB5cHZAJigKyt74epOb27Tj2uXMRiL3yCrLsF16I44nF4BSMVXVvMgkSdedOSXKOJVlJJVs0IWCxpA5a0TtcLEzPg1Ymqgh9by/Rb34Dm/KFL8CWV1fL84nHYY+cTvlcvP02nNSjjsraUpKGTZtAyM2cCX0eLTkSieCZLy/P/gwmk6jKXr0axMGZZxaXQHzmGRCds2aB6LRapR7rWBH0qgoN2MceQ8D+ve8ZV4UWESVbpAG3cCYS+L65WlePSEQS7zt3Yr08/3y0LOdSkZtISOIwGsXfeP3lNXmsoPWleILqe+/BHxkakrInRDiOlhZ0HXBbstEgISb4uBU4V8Tj6FSw2+EP6LfPgwDsdpnAXbtWSiJcdFH6NrmS1O1O3x5PJuXOEn3FeV2dnBLKw1a02+AW4GQS5OFLL8HPXL4cr2vldwrBwAD8NyHgX+3YAcJSSwryv3n6thZWK3y/xkZcVx4ip/0x0sZkfWDW3RzjNa5ki/IEVx3y984almNF5nAspiX0RmuR5iEt2mpgiwX3FlfycsKG/QH94BN9W7LDISsMje7Lyko8t35/fpN9VRWyBEJAi91Iq58lFXhg5PbtaB1ubU2fCk8kCbzJk9OTUl4v0U03YW25447UgiQmS6urcd6Dg6PrRL/2GjTz580j+s53pO/q9eKaZ+pUM4P+ftg5IYhOPhnn0dWFa9zSMnb3XE8PKhDjcdj6uXOLstmSzTGBEokIqBn+ruh+/4aIHs/w3p1FPaJ9BNrJzSzYX0iVhsWCANLplA5pKAQnz+02V/5utYKImjkTpehtbTB0s2enauzY7enkXrbglUmwri4ppmvmfHlf7e1yX/PmwRnfvh0L1rx52H9HB4w8VxuuXQsDeuSRMKBacHYrmQTBqTfiAwNoO66tTa+OCAbxvXGm2eORArb6RSoaJXr4YRz7mWdCe4wI33dvr9RSNJt9dzhAaLKDfOed+DcTAj4fFtxCFrxsiESw7/5+XLtFi/ZKVVnJFk0QWK14brltTe/46Sc2j5UDNVYIh6GDaLcT3XornFRO4FRW4hn1euUUUyLY03/+E3ZUPxU+G9raiG6/HXbipptSn+tYDM+83Z7dnqoqtBjXrSP6zGeIPv3p4hGIySRaI595BgTpN78pJ5dWVo5dgmFwEO1LmzaBrLnqqjFPZhCVbBERYQ0LhfCMWyzwM4wq/3p6QBw++ywq5ubORZXHJz9pvlIwHpcTlXnYiN0uE7DFbH8d7RhYn3nHDqzpPMSI1/7Zs1HxxvrFZmxbRYVslWXJBLMQAknFRAJ+gdE6PDAgqycVBcf+05/iGK+9Nt0GsEyLkYYlE5KKknkyKdu9UEi2N+slFoQAofzGG/DPTjtNyl0oiqwGG80+CSFbFvWk4Pbt+H4CAVmtpYXLJYnA2bNTScHGRvw7V91yvg9Yq66Qaq4cULJFOUDfsswSBYW0LOcCbu/nFudYTN7rRqiowPEGg3iG7HZ5DkwU+v34m90u71dtNaWZQTAMux12PBCQLcC54IMPEHsuWWJcwODx4Ji562pwEORfdTVah/WEvN+P4zAqiPD7oeM6PIwKxJkz5WuqKgtW5s6V1Y/9/YiN9MntF16Ab3TQQUTf+pY8Dq8X645mKEnO2LEDds7lQpwWjaJCsqoKBOJY3HfJJL6L99+HHT/uOONCmTxRsjkmsL+QiIVO3NrB2xBCvFj44exfUBQYNNbkU1Up1p8PbDYsJlVVMP7sWPn9MCBWa2prcybY7XBIW1tBFu3YAcd57lw52KSsLJVInD49+4KjKNCZ6OxEteS0aeYCvrIyVLbwxMLp07EIVVaiavL99+V5t7bi3NraoLFzwAEIlvVgPaPJk9MXLo8HOmeVlaiw016raFQOB2Cx8/p6/N/rxfXmkvdwGMNcuruJzj5bCgWrKghEIRBo5BMAORxoG+zvx3anTcP1cbsLK7nPBq8X1zwUwv0wc2bRSKCSLdqHYLfDzrA+ojbY5AEHWiJxbzjwxYAQmDbc2QnnlyuobDY5vZXPmat0+vogZdDUBDuQy/PS2QkHuaoKmj/aSiWeGM2T90a7homEFC0/66z09sVCEA5Dh3DdOlSVXXSRTGbwELCxwNq1IEMiEZCHp55atKqfki0aBTxtnQkflyudMBEC69MTT6D6y2JBIHPmmUg6mXneuT06HJathtz2W14+tokrIbBGa9uSd++WlT21tUhoHnssSKgZM/Dc89TlbDqJerhc2HYohGtjtmq3sxPP2pw5xr4UazfzIIChIUw/dbvTK5qJZBWd3Z7uFzGBKAS2l+36a4etcHszE6bPPIPKbCYQtdPlufqqsxO+2NAQfvTtxf39klBmcPUf62rPmwe729CQWkFYbJukqlKHM9MQmjxRskVFwFi3LOcKrsblysFk0nhoCdtXnw8kGH8mGMRvvtdiMXnvFVr9yrIMwSAIvFxsUVcXbJFRZTlvr7paxke33y6rCPVyDqy5Wl6e/honcnfvhl+k7TLjAhFVlc5LL4YAACAASURBVFr13LbN9sTtlhXSTz+NTrElS1AJyc+uzwd7XIim/HvvQXO2qQlJs+Fh+IM1NYhjx8LvDYWw9nZ0oHDnyCNztnclm1ME7C8kIs9HNKFSlw4hxICiKC8S0Zf2CGV+qH1dUZQqIooKIaIFHuc+DZ5mx5Oba2vzJ2ZsNlkZMG2aHOLS2QlyqarKHJFIBEO/eDHIok2bQB7t2IFqmtmzsS8mEjs7sb9s7Th8XB0dWHBmzDBXMafdV0cHtlFZCZ3ENWtwbEwg9vVhOufkyRheoD/PQACOrZFeoM8Hw19RgXJ8raOcSEj9Qu0AFCJsx27HtR4YwPf55JP493nn4ZoR4br39sqpZPm0XvX0oBUpGETFT1MTrkFPD74rM8NrckUyiQV7505czwMPTL8GBaJki/YxcMtaJJJOFPLAAy2ROBGwciXaXi65JFXTkLVeBwYQMFdVwU74/WgfdjrR9pzL897XB0e5rIzohz9M1fRJJrEfouwVM7EYWq83b4YtOu64nE55VAwOEv3P/8AmX3EFWnVYJ65QmY5MSCSgn7RyJZJSN99MtGBByRaNNViGIBJJnXSsve6hECZ+r1wJn6CmhuiLX4RmKLevjQae6MxDBIjw7FRWjj7duVD4fKmE4a5dUv+O9ZlPOgm/W1pwbyeTspqJdc8cDtgAnt6cS3tyZaUM3jNpEWrh8WBN5so5PZjUdLmkHu3tt8vgXa9Nzd8v67HpXxsayn0yqba9ORDAMTCB2NqK7f3xj+mVhEND+LzQhLM8bbSxEYlTfWtxXR2uu9+P72jmzL2TnOIJ1rymFbmyvmSLCoC2ZZmrAMeyZTlX8LFoj5O7xrRahpGI1EYsL4f9SSSkHeY2ZyFSqxvzvf+dTqmLykTmaPD5UPk2aZJxy2wiIYcwVVfj/H76U6wRN92UPhVeVWUcpa+gi8WQCGlrw+Rk/UCowUFci8mTU5MkNhu25fPBFkWjRK++isFeS5diUB2vL2yv3O78OgRVFV1w27fDzi1bJgcx1dYa6/kXA319IC2Hh5GsW7Qor4RGyeYUAfsLibiOwBjfoChKDRGFiejtHLdxJWH89zuKovyBiD4gohoiWkREnyOiA4movVgHvK/C5YKRGx4ubHIzi+Xy4sNEGeu+BAJw5svKzGvPuN3IZsybh6q/DRvQQrNwIZy1lhYEkZ2dCOqyCYRbrSAPmXycMcNc5RwTiUxATp2Kv1VUgNSKx2G433gDi8eFF6Zn2mMxWUmod6IDARhgux0Eotb4sp6jEFicjJyQsjI4uB0dRPffj+1deqnMkvE2uJw/H9H3LVtASjgcRFdfDQJxaAgt14EAnOg1a7CQ5zr5NRMiEQRWPT1YUA84YEwmrJZs0T4GrgoJhXAP6QNTqxWvc9vrWFXPFgsbN6Ka76ijiM45J/11louor4cN6e1FJVY4jKnwuTwzHg+Iw3gcJF1jo3xNCDjCySRs2GjESiQCofC2NlQILl1q/hiyoa0Nznw0iraigw+WE2Brasbm++zrw/CUDz5A+/LFF5sjp3JEyRZpIETqxGOnM50s6eoCcfjcc3je589Hpdvxx48exAiRShxysM/VZKwDVkxEo7KDYudOrG3Dw3iNk5xHHCF1DBsbjf0ko6F12unNXq+c3myW/ORJoH6/JAiMEA7j+XO7U9v4GMkkfD4e7JRMImjfuRNBu/4zTF4SpZOX2smkbNuMwESjtlJQO8G4uxvPLQ94Wb1afra6WpKBCxZIYrShAfusq4Mfy/6tnggKh2Gfw2Hce01No13l4oDvXa0u3RgQAyVblCOEkFWHH0XLci7QTvBmP4in2rNuod0uB9YRyWnNRJJcdDrl8BYi6YtoJ6DnivJyafuNBuUxYjHISjkcSKwa7WtwEL8nTcLr99+Pz1x+eToJyLqJqgpbqn3OVZXo7rsRg37rW1JfnuH1wo7V1hofr6LIYab33w+dwk99CgQi7ycQgI2qqDCn3a9HJIIJzH19qG48+GAke4aGYMumTs19m9mgqojJP9xD133sY7DxeSbdSjanCNgvSEQhxHZFUa4miF/+noisRHRxHts4jIhuIqKziOgqgtDmNiL6ERH1FvWg92E4HHCWmEisqcmPaOL2Qe1CMmUKjOPgIJy5qips32o1v8DU1GCqMOsFvvMOtL4WLZJE4u7dWASyTWC2WpF9YvKxpcVclY7VKvfV0YGAxeUCiRgIYIHp7SX66lfTg/ZkEs6sxZJeRRcO43wsFhh+7XXn8ngm/0YLinw+BFOJBFq3uALA4cA2OEOWT4C9ahWyZs3NCJ5dLtle1NCAxWnqVCwkH3yARWzu3MKCeY8H34/XC8fc7CCdXFGyRfsmeNAKO7t6e8YT1LmSYyyHIhSCoSFU70yZgsm/RjbT65Ui/oqCauFduzA8QksCZsPICCoQ/X4Qifos/ciIrPQbzRaFQkT33Qc7ecklRIcfbv4YsmH1aoihV1fjWKdNg63gSvpiTsVlvPUW0S9+gXO/4go4/yVbNHbQEnzcKqfVMBUCFWVPPIHWcpsNxO5ZZ8nK+0zbZdKQt812gonDYmp1dnenVhn29MgKt4YGVIrMmoW1bfr03Co3jIbWWSyp05t7ehA8m12HuVtkZEQSqlqoKtZ4RUFCz4hkZdKPg/A//Qnf0Ve/igSpHkzgulyp22MCkbtkenoyTy8eGDAeTjJpEq6HEHI43hFH4Fq3tOA1M/ZCP2mW9d4CAfijRCAkCplybRZj2L6cgpItMg9t9R7RR9+ybATtMfK/Gaxrz8UdLCnAtpClAYJBWR3ncKQmYS0WeU9q95UvmcjyA0wk6pMaQqBzKxZDgtLoORgehu/HEgj//Cf0cT/7WWN96OFhKcGg9QeFIPr5z1EkccUVSFBpEQgg/qqsHJ38EwLyMm+8gW2ccYZMbIRC2EZ5efYY1gg+H/QVQyFse+ZMGT81NEi9/mIiGESnIFf+L1qUOfFlBiWbUxwoQltHX8JYo3SxNVBVGNJ4vDBNKdba0Ja1q6p0CtnB4wxvrujuhvPm94P8XLQIxt/vB+FkpkIkFkOgrShwKM06Y8kkgsqeHjik06YRPfoojOmyZVLzYt486aD29WExbGpKdcwjEeh5JRLI4OhL97mCk4fUZILHg+xWNIoWLq4S5HYXLqfPVfg/mST6xz9AIi5aBFLCapXZPa4sZQghW4+J0Hre3Jzbd8wBA18zJihNkDzjLNebM0q2aAzAEwWdTuMKa9Y9G2uts3yQSGAQxI4dcGJbWtLfwxMNeaDR88/jeT3+eDnwgFucR0M4DI2fjg606S5alPq6VqdoNDsSCOBYe3tRBanP9ucLISDT8OCDsK033IDzYgIx38TXaIjHsb+nn4Ydu/JKkCcm9lOyRXmCycNkUlbCcDAeCCAIfPJJ+AD19QgITz89c+DFrbLaikZumy0vL04VlxAI1rSEYUcH1l4iPC9cXchtycWYGM7VRIqSTujFYiDXEgk8G2YrW3hoSCyW/kxt3Qq/YuFC4+1xsrimBj/PPkv0u99hmNKll6bvp78flaSsXagdVNLVhf+Hw+nnVlGR3lKsH05SWwu78Je/oHLy9NPhY7F2rN0O+5HrABMmR3p7sd2KCkjv7A1ZDG37cg6VsiVbNEbQtyzbbIW18hYLTHpryTymFfg4tYNP9BV3/H7tYJRYDD4AV4MTyWQPk4fa68BVmaqaWsWbK3jSOg/vZHz4Ifwi1mXXIxKBHXG7sU688w70Dz/2MUxA1j87oRDsTWVlavwoBCRZnn0WHRVnn228H6dzdJmlZBITmF9/Hfbw3HPl8BZVxX5YVz7X+6enBxWIFgvRCScgXuzshB1vbMwtkWwWvb2QqfF6kZRpbTVFfk50WzQhUCIR9y5KF1sHdiKjUThG+baPsvC0PgsVCsFRjEax7UwtumaOc9cuVL6Fw9JxVBTpUGZDNApnn9uczSxyHCyoKq7P5s3IiJ1yCkjEgQE4l9psvdeLhUl7LWMxEIjRKCoQ9dfZ58Pn2CHPhIEBTPdSVaIvf1m20/D0xMFBWcmXS2aUpztv3gwR99NOk0QwD3XJdL0iEQQcPB2Rp1hnQziM4IFF4pua8GPyuCf6AlWyRWMEJiUy6UaFQvJ5Hk/VA//7v6gAvvFGPIN6sEQCZ6/XrQPpf+SRGOoUjyNoFgLOcaaKpFgMQ1Q+/JDoe9+DPdIiEoE9cjpHJyN8Pgx/GRpCxn7hwvzPXQtVhSP/wguoSP/61/E9eTyytbrYlaQ9PWhfbmtDlds55+Q0zb5ki3IEDzPhDgYejkGE9XblSqJ//Qv34oEHourwmGOMvw9VlROVo3vUj2y2VOKwEITDUr9w5078HhmR+5k+PZU05Fa6sQATidzWrEUyiWeEg/9MU42Ntun1SgLSbsfz0N4OP8moLS4ex3vsdgTCr76K6eUzZqBylysGtVWErHHJNllR8NnqajzTU6fiWrI/x2ShGV8iGoX8yq5dRMuXp1ZBhsNyInW2qmojtLdDc8ztRuUr692NleZdge3LJVtURBi1LPP3/1Edj17HUFuVqyULjQaoZNomk5Cs52ixwI7EYvAl+Hy5WpBITnDWDrTTEpr5kolMJLrduPf7+tCSPH061gI9uApcUVCB19EBH2raNPg5RkOdenpwnk1Nqc/WQw8RPfYY1psvfSn1Nf6c1Zre/qyFqkLa5a23iD73OXSK8Xa8XqwhZWUYDJNrMmLrVnRnVFVhaJ3LJdejKVOKOhn5v+eydSvitHhcyoqZTIpNdFs0IVAiEfcuShc7A/x+LBo8lTBXJ5gXW16EtGBx/qEhSRblWiXHUFVkpLZskW2LTU1wXs1kYHgaX1kZPjPaIhuLIdB2OmHwn38eQf7RR2N4AV+jcBjH4/Fgu/Pnp+oEJhLIjAUCcG71GZxgEA63yzX6ItDTg0oZqxUEova9XPXJ7QXaac7ZMDyMNqS+PjjgS5fi3D2e7ASiFn19CMITCVzblpbMC63HI8XJORuY4wCVib5AlWzRGEEr1K0fyKB9XYjUtsmPEi+/DImEs85CK6AerD1GhOdkxw5MZJ8zB7aIz4HbE2MxOShCe/6JBIL99euJrr0WtkyLeBy2uqxs9HXA4wGBODICzVQjkfN8wFIRGzZgWNX550tyhOUrit3St2oVnP5kEpXdRxwBciOH+6Jki0wiHsezx22iFRVywvqbb6Jlef16fMcnnIAALJOAPg9L4grAsjJJHOZLMicSqK7XVhn29cnXGxtBFHJbMusl703oB63oEQjgeeHJ7WZ8APbRVBXfy7ZtUphf31Lc14fr0t+PfXGFYVkZrge3SHKlYEMDgt6GBumnTZ6MYwsE4P9UVeU3WIAI98BDD4FIOPtsVCvpkUgg6aGq8LPM+J/JJPy/vj74mAccILfF7aFMKhUrGVWE9uWSLSoCVFVW1hHlRsoV+zi0hCEfDxHuPT1hWEjygidLc/U2D2wTQk4Y5vfxMCgmEq3W1PWSt6UdNGP22rFWKw/uXLcOz+vHP268Jg8MyM6vQIDo+uvx9zvvTB0Sx8fV04PfU6ak2u7HH0d8dcop6ELQXkvumBIi/XNaxOOQQnn3Xfgun/mMfC0alUUZPOTG5UJiI9v3JgRiyI0bYWOPPx7H0N6Oc546tfiazYEAina8Xqwh06ZhPznIVk10WzQhUCIR9y5KF3sUhEIICm227EL6RuAsFAv16sGl4JzdYu2KfBCPI0PC1Xc1NdDiMhL/1iMYhNPrdCK7ZbQwCQFCLBJBZV1XFyoAa2sR3OgnFcZiyDwNDSHAWLBAEno8xerQQ9MnGkejINPs9vSsmBadnSANHA7oFGoXR68XDjJn9BMJXJN4XOp2ZNpuVxcIxHgcAfQBB+CYPB58h7mItRNhO9u345wqKrA9bWWlqsLZ9/lwbaurpaB5jpjoC1TJFo0huDrJZjN2epJJSTTqJzrvbezcSfSNb8DO3HGHsU30enE+kybBlvz+93iuvvIV40qrYBA/ViueMZsN5/yzn4E0u+IKZLK1UFWZOBiNROvvx3YiEaJrroG9KwZ6ezHcpaeH6GtfQ0UgT1skKj6BGIvB9j3/PNaNSy+VA7tyvB9KtigLmPTjwLCiAvftyAi0q558Er7B5MnQjjrttPQq2FhMtipz54PdDtKwoiJ3X0IIrJNawrCzUxJEVVXpbcljMQU8HzCRmGltjscRXMfjuI767gYm5rVag1x9uG0bAsh4XFYdacGDAKZNw9r92mv4Lq+7Tg5a05IOgYDUQdQeL08vrazMvwMmGETg39+PlsEFCzK/l8mJSCR7e3M8Dgkdn08SxvptaVtHtVVX+a4lebYv61GyRQXgo2xZ1mtxctsrUer9xYThWCU/tW3JFgue0bKy1OozJhL5uIiM730mQbl6mqscs4Gro1evxnaPO87YjwsE5IBQhwPDnLq7MYjNKBYcGIDN0EtNPfssOkGOO47om99M12vt60Nc1NSUubI9FsNQqY0bUeSh9a/YHvMUaEWRk5l5snym9SuRQFv0rl0oUDnySBxTezvOZfr0/HQVR0N3t4x/6+qkFn6Oa+xEt0UTAiUSce+idLGzIBaD8VaU/II27ZAVo8WCM97cwqpv+80V0ShacN99Fwb5wAPRZpythcnvR8WBywVnWL/4sU5fSwuM+O9+h+O87DJ5/HV1WFSEgNFNJOCctrdje3PmICjxeJAd11dKJhLYD5fhZwoI2tvRquN2Y3HSBgTcBm2k7TE8jGtitxtXE27cSPTXv2K7l16K4yuEQNTC4wHJG4lAX2z2bCykXV0yi+l2gxTJswJhoi9QJVs0xojHpR6WUWVSIiGJxo+KHAgEQMTFYkS//KWxMxgK4VlmO/m73+HYL7989HbjeBz2QQjYuQcfJHrxRWj9nHFG6nvZLieTsGuZnvueHhCIySSITyN9onyweTMI1GQS+oeLFsmqSKLRnex8sHs32pfb2+Hsn3467GrJFhUXqor7l8kRbi/esQNVhy++iNcOPRRVuEcdlXrvRaOSOGRyjwevlJfntj4FAultyTwp2G5HlZyWNGS5lPEKbaCvRTSKgLW3F9e5qwt2IBgEadrfj9/aqiYibMfhkJ0Xs2fDL9G2F1dVSX/D7UbQ3tmJYVCzZ6cfI1eKatvVieB/jYzALuU7oMTvhzb08DDRBRdAp8sMtO3NVVXpa0MoBN8oGk3vKjECEyX6qjWzJE+Rpy+P4zvWFPa6X6Ql7/ZWy7K2hdioLVlPGO7tCkhtVWI8jh+XKzWuYv1ZrojUEop6cGWn9vpmez7Wr0dBwqGHwh7rt83txQ4H7NPdd6Nq8cYbjYc6jYwgLqmtTfWbXnsN5N/hh+Oz+mvNWvWj6cxHIkT33IPK5csuAxnJSCRgjxUF29BuPxKRg/JY51qLUAiTnQcH0SGxaBGu5c6duPbTpxd3wFMigbitvx//nzQJxzVa+/YomOi2aEKgRCLuXZQutgkkEjKgrK7OfeouLxaZMng8JXVoSE77mjy5sCqTYBBTsDZvhmN41FHIio+2+Pp8WITcbtmGQ4QFo60NgWt9PdFvfysndbLB7uuTk63tdji0jY1wliMRHMd//gPD+8lPpgfbXFavqjDQmc69rQ1i4bW1IBC1Qa7fj2NgMs4IoVBqdVF5Ob6b114jeuYZkKRf+hK2ywuazYbzLjTTqaoI2rq6cBzV1bIqyuHA9SqAvJnoC1TJFu0FRCJykIqRLYjH8Z6yssKmi+cDITAVed06OKBGmoLsgHLlzP33w/ZccomxVpkeySTs3J//DI3Bc89F+7MeXi9s3Gh6g52dGKJis4FALNYEwNdfRwvQ5MkgJZqb8b1wS+ZopGY+eO012HSbDYTqokWw4yVbVDxwpW80KmUFbDZUwa5ciXZ1hwME7plnSgJKiFTikIkyFvjPpHOqRzyO+1VbZcgDwjhppyUMm5vHh6zBaBACgbC2rbivD/8eGpL/Zr1GhqrCvk2aBD+kuTlVc5B/fD58fvZs2SqtrUjmLgKLBdfvnnswNfv66xHg6sGt60xMMoJBEH8VFflX0AwPwxYGAuigMNOBokWm9mavF0PzLBYkpHNJcGvJKCJzrc5jMH25ZItMYm+2LI/WlswkoZY4HC/g4+VkS01N6vXh+5cJRCYUs22Pq6gzxYjt7Yih5s5FLCIEYgfetxBIkiQSsGf/939ETz2FzoxTT03fXiQiu6O0SYE1a5AAWbQIg+b0vs/wMH70xKMWwSAkYnbuJLrqKshBaa8Py9Bk6rzjDhAeKMOdY14vfLZoFKTkjBk43x078LeWlsIKcPTw+9G+HArJgaG1tbJyMg9MdFs0ITCOzEUJJQBMInm9MKCVlblpGNpscrEwcoosFtm+GwzCAe7shMHKR4+RCMd38slYdFatQqDY1obFIZM2X3U1HL++PhB6zc0w6Lt2Sa3FBx+Ecb300tSMT2MjttnejvOcN0+K5DqdMtNWUYHgRatNJIScpNjYmNlx3LIFk6AbGkD0ab8DLuOvqBhdC4M1p4aGcBwVFdBfW7MGk1TPPRf7D4fxfbNQejECKqsVzn00itagwUEc6wEHgAAptrZZCSXowVMEIxHjtuWyMpnUYLu0t/DIIwjCr7rKmEDklh4eCPD446igO+88cwQiEc7ppZdQ8XX88bCRiUSqM8saitXVmc9/506i++4DiXPttcUR8BYC9u2RR2Cnb7gBzitXwxebQIxGif7wB1yPefNAINbWYh9783vfl8HC+0yMOJ247o8/Dj3hwUEQUFdeiWCvslJ+hn+4lZBJw2ytndxupiUMu7pkZU9NDdahY46BLzBjxt5PGGQDS5Bo24v7+tKHk7D+oxa1tQiMm5tRtWM0ydhuH729mfczZQp8Eq4C9nqxfYsFPkQyidf//GfIt1xyiTGBmElOgquqnc78K2iGhkAgRqOQdsmnGtpmw3PPWuDxOH7zBOaDDsr9HuH1o6xMElRMohu1Omvbl82S4yUUBm0bulavr5gty2baku32wtvf9wa0pOrwsOzA4nvVasVzwslavvczrdl8ztw2zu/VXn+PB7FPYyOqi1UVPsrICIgtq1UmPSdPhm/z1FMYLmdEIDKRx4kUxoYNIP/mzEHyUu8DcLLD7c5MII6MQHtx9274RdohdaoKmy7E6NJdVite9/vlUJlQCEUxZWU4r/p6XK8dO/B75sz8NWSNsHs3qj4VBcficODaFrPKsYSxQakSce+idLFzgBBSu668PFXnxsxnWf8ok/FkXR8h4Bhy621DQ2FO/tAQslhdXTDQVVUIUrXVhvr3DwzAWWZdyNZWaDVt2ACizWgqWDSKrLXfj+w9t0Vv3QoicvZsGOFt23COc+fCQPMQlEmTMk+52rgRgVdzMzLt2iqZUAgOv9OJhdbMdyKEHMzS2QnB31NPxWfZsee252I5NaEQvgNVxaLU3Y3jrq/HtZgypdS2U8LYg9tuWP/QCNwuyRVTY41164huvhm6f9/5jvFzwJo5dXVwKF9/HSTgsmXm9/PPfxL98Y/IZF9xhZze7HbjXINB7MPlymyLtm7F4JGqKjjKeeiXpoHbt19/HZXaV12F6x6NwhZZrcVLZhDB5q1YAXt0+unQteWESRG+7/3eFnFLZjgsq6o6O6F1+PLLeLYOPxxVhx//OD4TiWCNYMKRyRQmDjOtDSMjkizktmSWyHA6QRRqqwxHa/nfG+D12ogU5B8eHKQF+0JMBPKgEm17MU9gHm3QCkMI7CcQkC2AVqts33W7kczgbcRieBaZSGAC4e23YQ9OOQVDoIwGVwUC+LfbLV+PROD7OBz5+xn9/SAQk0l0ZhSjGjocRpKzuxs+3CGHFG8NMGp1tlpxbblCtNDp4Trs97bICGPVsqwlJbXbJ8L9ra8wnMhEMXcqORzwBbTXLpHA2k0Eu2VGs1F77YiwPVXFgC2bDd1kvA9VRSzKQ5sGB0GidXRA/3DxYlRE6/fJFYuxGGIpLlzYuhXEYWMjKhH1hBzr93PHlJGt8nohwTIwAB3Fgw+WryWTOMZEAjbabJIyEkGBxzvvwBaddhp81lgMBGIiAY3WfAeT6pFIoAV7YEBKVPD06SLsY6LbogmBEom4d1G62HkgEJAEX02N+YWQ9RFH0/Rg54qdWa7Qq64uLIj0euEUBoP4dyAAkvDAA401bvr7YaRDIbzn/feJXnkF7VbHHmt83N3d+Hd5OT7vdsts0YwZqHYhwsLw4YcgDrVl4plaed59F1UbLS1oPdQ6mby42e2yGtIMhoYwRKC3FwH0wQdj/0wUOxy43sUiELmqgttE43Gcu9sNUtXrxXesreDMERN9gSrZor2IREK2LRsFbVwNlUyO/cTm3l4MDmlogL6g0fHwJD+XC/Zk5UpkuT/7WfPP6KuvonrwiCOIvv1t2NhkEnYoGpUJnPLyzETLpk1o/Z00CS3MxSBkRkbgfG/eTHThhUSf+xzOKRIBaVFWJqufCoUQsOO/+x3O87LLQCw5HMXbB+3ntojJQxbPX7sW69cHH+Can3wyyMOpU2W1Id9/VqskDo204KJRkJE7d0rikHUyLRZsU0sY5rImFgrWETUiBbmSsL8fPoUePK1YTwryNOPJk81N7WRo/ahs4O4PRYE/19aGczn44PTugGgU5+D14pj6+ohuvRVE2/e/b7y/YBD2lgNS3s7QkKwGysfP6OnBcDurFQRiNq1CM1BVVD319iKIbmnBcRcrSGdwUp2HA1ks2McYVMTu17ZID6OWZbPDPYygrzDUtyXrtQz3NfDANrbXWmKU728iWWlptsCBdRfXrsXzccwx6UlNltnq60OsEo/DBjU2YiCbkRyJxwN/Q6tnuGuX7Hq46670OCyRQGzHZJrRvTI4CPLR50MSeP781PPhwZb19eaTBMkkCMRNm3BMhx2GNaC8HOtfMgkCMc94KQ1+P/YVjcp102bDmlqkxMZEt0UTAiUSce+ixbw/6wAAIABJREFUdLHzRDgMg5nr5GZuG8iUhRNCthVYLHJqIO+roSF/o+nzoUybqxq2bIFD39AAolBbUROJIAOWSMCAvvgijPjy5caZ9r4+OTTEbkfwu24dnNFDDsH2tZ8TAkHzpk1YWJYuNV703n4bWoWtrUTnn5/q1PMk57IytFqbdYTa2+F8C4G26Bkz4NCz7mVjY/EIxEQC1zwYlNMYWWtNu1j39srgpaUl85TsUTDRF6iSLdrL4PaxTNpTQkjtH5drbNqMYjGib30LAfF998F+6JFMInDnyYgPPQTn8cILzdvdt95C5d1BB0EsXH++Ph+q8hwO2AOjTPl//oMp0FOmgEDMVKmYC7q6iG67DbbnG9+QVZVjQSBGIiBAX3sNleiXXCKHcuRC0JjAfmmLolGsp0xMv/QSKl89HlRRnHkmElaKIolDIjnIiKU2GKwTrG1L7u6WlT319SAKeVrujBljJ4kRi6USgUYVhAMDxsNJGhqMNQe1FYXFJo/0flQ2xOMIdD/4AOfw8Y8b62sJgSQG+2N33QUS8I47jP2yaFR2rvB3G4thXzYbPpvPs93ZCTvocOA5LlY19MaNuHdbWxE8BwK4V8vKYCOKSUjHYpI85wqrYkx11mG/tEUpGxCyXZYnZ3PVYS7XmElCLXHIYMKFycLx3pZcTIyM4NqyPIxWx5Fb+Ilg43Kp9Hz/fdiaAw+EX2SkD9nVhfXF5YItSibx20jSKRCA3amqkvaip0dWLN55Z/qwSzNa9b29IBDDYaLvfS91oBN31UWjOCazdj4eR9K3qwu+ysc+Brs0MIB4qroaMlDFGgDY1YX2ZYcD5xmN4lj5uhcJ+8kT8dGipIlYwoQADyYYHk4dKJINNhsMJOtl6BdaLXnIlQzc5jswIAefcNtOLuBAkYPlE05AFmrLFlSnTJ0Kg+1yIWBhcfG//hWZpUxVP8PDWEC0ZeqhEBatigpsL5lMPV6ebrZoEfbx3ntYfLTaYm+8QfSvf2Hfn/98qjGPxRDQ2Gy5VVusXw/dsdpa6DqyJkh5ORZjbaa20MUjGMSCp6rYTzSKbU+enE5ANDVhYW9rQ5atvx9VicUUCi6hBC3sdtyb0ahxuw23O4dC+DHSUCwEQqCFt62N6Ec/MiYQieS0vmQSz259PSQVzNq///yH6N574XR+73vpjrCqwp5wKy/r/mhJgbVrkXhoaUHVZDGy3xs2wHEvK0PlwAEH4O+coLLbizcRd9cukKjd3UTnnEP0qU9hDaqqKg4Zuj+DNZsSCdzLzz+PtSuRIDrySKybixaBTPL58BkmZcrL8W8hcN9t2iTbkjs6ZCVLRQUIw0MOwe+WluJoQAmB4MyoelD7w8etRXm5JAKXLDGuJCzGQLJ8YORHjYayMkmM1NVJe6f3ATwe2J3aWqJbbsHfbrrJ2B5oq73ZL4rH4S9arflfm/Z2DE5wu0EgFqMaOhAAgZhIINHCJERlJY7f78e5G01vzhXa6ct2u6zyYYKKq7BYG24it7x+lOCJwkz2aSsDsyFbWzJre+4LbcmFwuXC8xGPwyZyVSZrSwohCXNu6c6G7m4kCg44APaenwmOG61WkJeqClt7552yndiIQOTBnU6nLF4YHISETCJhTCAKAds/mlZ9Vxf2qaqwgy0tqZ/3eHDedXXmCcRgEANUhofRws0dbGVlckhWVVW63EU+iMfRFcf69HV12L/bXbC8VAkfEUqViHsXpYtdIFQVxltVYdjMZEa4XJ0zgpneo8+kc6DBwwUmTcovkAgEEKDY7XKK37Zt0MVQVZxDbS2IrYcfxiJyxhnQNNSTWqEQyLzKSknI9fcjQK6rg0hvdzccxZYWLH6JBMhQngrJOhQjI9jnrFnQBnvlFTi0Z52VTkD29uLzTU3mnaIXXwQpOXs2KhDZ8WettYoKHCfrMdXV5U8WDAzIKbKTJuF7UxQsxtkW06EhfBfRKIjd2bNNOR4Tfbkr2aKPAELI9sJMJGEiIYcCFCvzS4QqrV/8guiCCzDUwwiBAJ7PsjLYomgUumNmp5h++CEIyqYmtB3qCTN2dFVVDi0ZGcF+HA7YtbfewuCE1lZoFRajauqFF4h+8xs83zfdJFsRWYPW4ch/qJb+/F54ATqQLhfR178Om5tM4hqO0UCN/cIWJRL4voJBVO0/+yyqGSoqiE46CT81NTKIt9vxWnk51rCOjtS2ZA6QbDZULmrbkvOZCMlC9kYtxdpKQq6U0aKuLnt78VhVJxcTrDOdTR9xeBidEQ0NSGYMDeHv9fXSB9BqL997Lwjj73wHuol6vyiZhO3iNl1FkZPlFUXqL+aKtjbYwbo6tDAXg0geGkIFps0Gf8soqcAabIkErke+iQetVhy3f+rB/jEP4NBWueWBcX6HZkXOflGuLctCpFcY8hAmov2jLblQcBU6Vxxz1SdfO+764MEro5Gufj/R6tVIDhxxhLRb/B2xnuXAAJ7DBx/E+6+8EkkrI1vEFezNzTgGnw8tzB4PEpja6kHG4CBsWCat+vZ2EIg2G7o79MPtPB74jTU15uUQBgcRpyUS0IbmxHIohLXSYsF6GAzimldU5O8njYzA7kWjiDktFuynri514EwRMdFt0YRAiUQ0CUVRfkhEPyCiuUKItjw3U7rYRUAyCSc0FpM6d2Y+k0iYG7Sid4C5tYjbZBoacm9jCgYRxNhsMMplZTCm69ahhdjpxCJRWYnAORjEgjB1qjy/eByLU1mZzNoMDaHar7oa7c9WKxaizk4srtOnS4FdbXm8EKiW6ewEAdnVJas4tAtuIgECUQgQA2bOO5Eg+tvfcFyHH0509tnSEfL5ZKsxZ/RVVZbgu925LVLa9uXqanze48F1Nnu8fAw7dmBbDgcykqNNnaaPcIEq2aKJjWQSzhPrsRkhHoe90VaOFIIPPyS67jpMT731VmOnmlsMrVZMG9y9G9NHp083t4+dO1EtVF0NR9losh5PNaytTa2wCYelM//MMwiuL7+8OFU4Dz0ETcfFi0FCMEkRDGKfTmdx2otDIRCVb7yB63zFFbArigJbMobT4PdpW6SquLbd3UTPPYe2Zb8fxN8pp6AVlu8TpxP/9niwtjFh2NcnKykmT04lDKdNy06YsF7yaO3FHk8qGUCE71xLChr9TJo0pvfGXgf7UZnIj2gUPofdjufcYpFBeiwmq3V7erCNv/6VaNUqou9+F+9n/4H9IpaBSCbxN4tFTkQVAtc+H0Js82ZUYk+ejCRoMXQKd+8GMely4VxGs+08IIbbm3kyrFlwJ4bFkp1IYegnB+fR6rxP26L/vimHlmU9YaiVINAStkwYjvdEwXhBMAh7UVkpJy4nEvK+ZQKdk7FG1zUeR0JKVSFtYvQ8cgIqmUSxxTPPwC868UQcg92emlzo78cz29SE7YVCIP26upBgXbQofR8+H3yjmhpjv2nbNqK778Z5sA6jFsPDqTGQGezaBamV8nKcC+83EMCaabOhKIXXJr8fRCBPlje7ZgmBc9+xA3Zo7lzZks7au2OEfepJKpJ9Kzr2m3ZmRVEuIaIqIcTPPupjKaEwWCwIQrmijQehjLb4WixYoFU1c7uNvh2Ht2e3g8wbGQHZ1dkJI5pL4OlyoTJw1y4E2zNnYh/V1ZhcunIlDPdJJ8H5nT0bQdPu3QjinU4EMIoCw6soWDjeew+LxuLF0sF0u6HX1NGBISn19QiUtEZfUXA8b72F9yxYAJ1E7XVRVewzmTRPyAWDaENsb8f05U98Ql6j4WEsqDzchWG1wtEfGZFVSWaCbm37cnMzjnNoCItirgL3VisWt8ZGEC4bN+I6t7YWTmToUbJF+zcsFjiX0SicYKP7q6wM93MsJic55gufDzqA9fVoL86kDcsV16++Cjv1+c+bJxC7u0FOVlQQ/fCHxo7wyIgkCfTnXF6O/T75JGzRl75U+HMXjWJwzOrVIJsuu0zaSB7W5XQaH2uu2LkT7cu9vRhGdfLJsqKTKy7HI8azLUomYePXr0fg9vbbuE8PPxxBD0/yZYKxpwdrXmcnAhQirDWzZuEzs2ZhXdSSQZyQzNZezFqlWlRWSiJw7lzjSsJiVLdONDCJZ+RnJZNYX4VA2xy/zkk/rxfPTUcHvrtXXgGBeNFF8E+IJGmoKPguuVXX5ZI+3OAgfudLIG7YQPT44/ArLrqo8IpwIUAe7t4N0njBguw2QVFwj9ntuCbc3pwtqZRM4pokk7lPX2Yyy6jVeayr4sazLWIYtSxzu6v+db6G+rZkHvphZoJwCZlRUYHrGwzKac1Wq7xn2W+KxXDt9c+wEHjOw2EUUGR6Tpg4e/99JFc/9SnEadw6zVJSbreMcerqpI93663wp266yZhA5OGbLpexL7J5M9E99+C1738/vbiBCzN4urEZbNyIApaGBshscYeE34/YzeHAeqn1O9kWeb2IUaursydW4nHIdw0NYV8tLTKhN3Vq8Ya0TARMBPuWD/YbEpGILiGiaUS0T32B+ysUBUbMZoPhU9XsgvhWq8wgGukjEmUmEomwUFVUwEEdGsLC0dBg3kljnSUmElk4eds27Ofaa/F70yY4nAccgPPr6oKRV1XZTuz3I7hyOlGBqHeUXS4YfW5t1jt/yaScYHnWWSALtm3Dgjl7No6jr0/qc5gJ6Pv7MYHZ5yP64hcxbZFItoWHwzgmo5Yg/j4dDlzbvj58n0aLlBBYxAYH5WAG7UKa7/RFInzHS5YgEN21C457ayuuexFRskX7OfQkoVGg63DIgJADkFyhqmiBGRkh+ulPM7fjcevcxo1wlk84AQLjZjA4iAw7EdEPfmDcmhIK4fl3uYyd+Weewc+yZbBHHARXVeUXaHm9RD/+MdpdL72U6DOfkTbB75cTHgvNgguB6rj778ex3nYbEjYjI1IPaZyTSOPOFjGx9/zzuCfa2xEcnXIK0dFHS33eJ56QVehEeKZmzCA69liss83NsiKtv5/onXfQAt3XJ/82MJA6sIBI6iI3NCCQOvJI4/biMWpN3yeQSR9x5058X/Pnp18/RUHwHY3iPe+9R/TYY0hGLl8u31dZKduXWaaGW3WZQGRd5HySL+++i2RGSwuGSRVaCZ5IwM/yeOBnsX9lFg4HrovPhx/Wvc4khZHvYAktrNZUf5m3W2CrczaMO1vE0FcR8jVg0jAcTm9Lttmk711qSy4+OIng98O/4GeCtafZNlit8t7VPsvbt2MNWLgws1xLMAg709WFNubDDoO8SzIpta2dTvgrkYgkE6uqcD/ccQdIwO9+F3GFHtGojGOM/CbWl548GdWMepLR78c+XS5zeu7JJJKqW7dibTvmmNQusY4OnM+sWZl90smTYcuGh3H8mXwcnw92Lx5HLFtZiUQfT2AudnHGBMC4tW+FYH8iEUvYB8ETeH0+kE+1taM7OPpBK0bQZtL1Cz9nzINBBCBdXTDsZqcLl5fDQL/zjhTR3bQJehRHHYX3DA0hkN+4UbahcOtPeTn2/c47OJYlS4yN8cgItr1ggcwutbRgEVBVZNnffx/7Pe44fIarOEZGcE42m/lgads2tA3abNAKmTEDf+cKp0jE3FABpxPXd2hIigRrF6l4HIFjKIRjbGiQOlP19cUpjbdYcK0aGlA1sWULAs9iTicroQR+FtnBNSLLnE7c65EIgsdcCbUHH0Qwft11xjo8RAiAQiHYiFWr0Ip7zDHmtj88jMrDUAgZd6NhLdEobJDDYayR+MQT0OU56ihU8VksOKZAADagujo3MqC9HWReMAjH+2Mfk6+NjMghDoUOUQoGiX79azjlhx1GdM01+D7ZqR/DNp19EkKAZHriCRCzfj8Cq2XLYNsHBzHgQlFwnd1uBCa1tVinYzGsYevWYU0YHk7fh9MpicDFi43biz+q4ST7ErSDVrjdk1vBp03LHLRHo3LC8t//jna6c85Jf191tWyB5q4QnkzKw1ryCVLffpvo6adhKy+4oPA280gEflwoBP8h0zCrbODhMoEAthWPp7c359O+nA3cpqsdhBOLpQ5iGedJkryhb1nmFm8iWf3KMNIx3Fevy3gCD5zRD1TiKk++T+NxPDdMMg4MIGZpbk4dTqJFIgH/w+Mh+u1v8d5vfxt+jJZct1hky25lJdaPZJLoJz9BQuKaa7CGGW2/vx/Hx91lWqxbBw3radMw0VnvrwSD8GdYpzAbYjGil18GkXfIIVj/tF1inZ0yPh2N8OYkG7c3x+Op7c1CYB1ub5dFLrEY9lteLnUiS9g38JG6SoqifFlRFKEoyimKotyqKEqXoihBRVGeVxRlxp73XK0oyjZFUSKKoqxTFGWJ5vMtiqLcpyjKJkVRAnt+/q0oyqm6/bQT0TIiatmzP6EoitC9Z7miKK8rijKyZzvrFUW5xuCwKxRF+YWiKP2KooQURXlWUZQMZqiEvQGnE0aMnUiesJgJNptcBDKBHTC9xhHD5QJRVlUlDXA4bO54eUre4CD0nebPJzr+ePl6fT2IvWXLYOTb2pDR2b4dhvvdd/H3JUuMCb5wGAtfRQUMNg9zaW+HE/rooyAQTz4Z+1UU2d68aBEWtvfek0NfsuHtt4n+8Ac48l//eiqB6PFggc9Fq4MX1aoqLJR9fVioAgHoakQiyGRNmoSFKRZDYFhI0P7AAw+Qoij03HPP0S233ELTpk2jhgYXXX/9yeRydZDfT3Tjjb+iWbPmktPppJItKqEY4Oc3EjGefscTm4nwXOciYbxqFbRJP/1ptH8agQX8+/owBGnWLAx1MhMABQIgDj0etOrMmpX+nngc2+fpuFoIQfTIIyAQjz8eVT9sd3nYlKIgCWHUTmqEdevgcBOhCkBLIPp8smKhUAKxrQ0BxZo1aHe8/nrYIbZ1xbZFLpeLTj75ZOro6CAiol/96lc0d+6+YYuSSaJ//5voK18hOv10ol/9CmujzYbv6403UDW/ejXWrTVrkERjfarHH8d9/tprCA4bG9FyduWVqIz91a/w+quvYltPPIGg8LbbEOCdey5kNxYtArlYIhCLA/Yrkkn4LTt3ItidNs34/cmk7DD405/gj3znO7gHentT/TUhZKsu68ey75fvAKN//xsE4oIFSGYUSiCyrxaNoisjXwKRwe3NTKBykpU1duNxHHM+yaZM0NqiW2+9hVpb4Rd99rMn086dHRQOE/385/uOLSLC9QyH4dcPD0tdynhcEqgWC9YoTmKwf8vVnyUCce+hvFyuFdp4jQlDux3vUVWQXn4/KvwqK0fvthgcxHt/8xs5zIR9MSbXmaz3+WCTmND85S/hf11yibHvlUzKtt7GxnRS7c03iX7+c/hU3/++8YDN4eHU6c+jwe+HbevrQ4L4sMPkPerxgPRzuUwPlSQiXL+GBtkZxhqVGzbA1jc0IEYNBHAtq6pg+8cTgVjioArHRzpYRVGULxPR/US0nogiRPQIETUT0XVE9D4R/YWILtrzngoi+h4ReYlojhAirijK2UR0GxGtJKJ2IqohoguJ6EAiOlEI8dKe/SwnoruIqI6Ivsn7F0L8ec/r3yaie4hoAxH9jYg8RLSIiOYLIU7Y854fEkQt39nz+j+IqImIvkVE7wghstZueL0kXK79sox3r4AnNycSsvU4E3jQCrdtGMFoYrMRwmEY0XhcZqIybZM1gXbvRlBTXo5hJnPmpB+vqiK71dcHsmznTpzfwQeDADQi5WIxONw2mxy+wn9vayP6xz+w4J15JiaR6c93YEA6T7EYFoLWVuPzEQITX199FVn2L35ROu9aQremJn/tCw4O+vvlRNepU+UizBOjC205euCBB+jiiy+mxYsXk9PppPPOO4+6u7vpJz/5CR144IH0+c9fQH/600N03HEXU19fiJ5++uYATWBbFI2WBquMF6iqnMacKfjl93Dwki1I6ewk+ta30D53112ZA+LBQTzz//gHnMhLLzWXOIhE0C68Ywd0Flm6QH/MHo9sU9Ta0GSS6C9/QQLihBNgA43OSQg4wDxkZrT25mefBfkwaxZIvbo6+drwMLZhdhBXJgiB/fzf/8F5v/Za7I+HarAWUiF46KEH6KtfvZgOPRS26JxzzqOenm762c9+QosWHUjnnnsBPfzwQ3TWWRfT88+HaM2aiW2LFEXaIm3rH+sYszC+04mf8nJcY+3filV5VULxkUjg+VOU0SVnIhHYuC1bYDuWLMF3rG3RtdtlVVwyKTtLIhHZWphPq21PD/ym2lqQl4WSQJEI/CzW7y52+69We49bjMdCY6+t7QFatepiqqtbTFark2bNOo9CoW7atOknVFNzIM2adQFt3/4QzZ59MSUSIdq4cWLbok2bSLCOIV9Tuz210rBkZ8YfOFFhtRqv7zyB3OsFgagoKNLIFJf4fFjTH3wQklDXXw+CzQgsbVVdjXjnb38DgXj22USf+5zxsQwMwKY1NKT7fG++SfTnPyPuuuqq9NcjEZyH3W6uA25gAAkSIUAgTp6ceuy9vbhm06fnd2+z/MjAgBxM2dqKIo/eXhxvbW2qPzaWUFX4lcuXZx+ssr9xUGOB8dLOrBLRsUKIBBGRoihWIvo2EdUS0SIhRHDP371E9EsiOpVwAf8phHhMuyFFUX5BuCG+S0QvEREJIZ7c8yU5+EvTvH8mEd1BRK8T0UlCiKjmNaObsFMIcabmPYNEdK+iKAuFEB+MdpJMzthsCNgqKkq6OsWE1QoCb3gYGSdVzawBxu2DPD3TyHhqW3IyDWMhgqM7fToMOwvrTppkvJh1dcHYvvkmjvWSS/D/XbuwDe3EQc5ULV6M8vPHHpN6iu+9h8Bdm6FSVZBtFguyW9q7VwgsJLt3o+rCKAM3NIRjb2qCUHxXF/YXCKBaUqtPGI9jauLGjRA8X748tXrT45FVAYW0AFutCCyCQTwrVVWSWLTbpUZksWC1Wun1118n256NqqpKK1asIK/XS48/vonWrXNRXx/R00/ffD1NYFtUwvgBBypc5WBE+HGAHA7LKfGZEA6jCq+sjOiGGzITiH4/nOXnnsOze8EF5p7VeBxDRLZtI/rmN40JRNZBFSKdOFBVOOfr16NK8pRTMjvCioJnvqxMtjfrB7OoKoY5PfssEiNf/3pqMoO1eyorC5uwGggQ/e//Eq1di0EdV10F2zM4KFt8ijll12q10osvptqie++FLbrllk3061+79lTd7xu2yGaTEhX19VI/1+ksVfZMZPj98AlGIxC5yqutDc/q4sXSFjFxw63O2lZarc+RSRIiG3bvht9UXw8frNB7jae+l5Vl1+nOF/pBgUbSO8WEoljplFNeJ4sFtkgIlTZtWkGxmJdOP30TEblICKKNGye2LRICcRlrbI6R9mMJRQYnV1l7We/HcFViby+ezYULpean/g7iBMDKlYh/rroqM4EYCOB5r6kBifj3vyPOOvpoJEdVNf25ZHmn+vr0+P+VV0BCLlxIdPnl6QVH0Sj8GR7Yls1WtbeDUHO50N2mjYcHBxFjVlYWZvcURepGqiqulcsl/9/YWFjiNhf09aGzxetN1dE1gf2CgxoLjBcT+Xv+8vZgFeELfJi/PM3fiYjmEBEJIUL8gqIoTiJyEZFCRK8S0bkm930W4Tr8SPvl7dm+UbXO/+r+/5rmmEb9AmfMgJELhUBy+XwwMCyUXHKWCwdnu0dGYNxVNfMUZb0+otF7uCVHCOMFR/u+ujoYy/5+GDO/P3U6oNeLjPfrr+NvX/yinHC1axdKyqdPh1HnVpXJk7FArl8Pwuwb34BQ7+bN2NasWVhwystTJylrF65wGJUzPT2oNKqsxP60kyo9HiwENTWSmJw+Hf/+8ENk72bPxrZHRjBIYPduVBAdfbS8LjwhmXWJCiHJ/X5kAYWQREV7O56fqVPRHlRsB/2yyy77b9BORLRs2TJasWIFLV36BfrgAxfNnk10/vlEP/jBxLZFhVZLlVBcOBxwLBOJzCLsDgfsFFflGH2HQkCLp7sbRGKm1sFYDHbh5ZexvS9/GZXL2aCqaLP54APYomOPNX7f8DDOYdKkVEc4Hke14IYNmP58wgnZ90kk9RR9PlmR6XLBFqxYgbbBs87CVGe2CazHSgQ7XMgkwK1bsR+vF1OeTztNahK5XMXV0WMi8qtfvYxcLmmLjj12Gd177wqqqvoCrVjhosWL0ZLb2jqxbdGOHbi2r78Om8/tZ3PmIHm1YIGUt2BisRTcTwx0dMBPmDMHz4hRwjYeh7168EE8s9ddB59CD67g6evDs8z+NA8ziMdlNbCZ+0MItPitWYPhOaedVpj/nUwisdLTg/t1/vyxIRC105ftdpzHyAheY9K9WHjgAVRV3X77ZfTVr8qL+uSTy+jMM1fQ1Vd/gW6+2fXfoRWPPjqxbZHZYWIljE+EQjJhqLcBnZ3wrz7xCfgDySTep5+u3d2NROG2bZDYOO00431Fo/BFpk8HUfaPf2AY2BlnQOIkEoFvwIS01SoHrjU2prchP/UUtnH00URf+1p6QjIWA/HX1AS/KpttWb8eevutrdC+1/qLPDRzzpzCCMRYDL5gIIDET0sLiNqeHtjkuXP3jo58PI7CnLVrcX3PPz/nTewXHNRYYLy4Yrt0/2dJ7I4Mf68jIlIUxU5ENxHKTfU94Wbb9ebu+b3R5Pv1x+rVHtNosFqlE8w6JuwE+f0wCkwommlZKyEzqqpguLkiMVNG2OyglUwTm/Ww2xG4czl8Zyec2vJyEGCvvIL9XXyxnMZls8mpzZ2dsiy+uhqfW78e53HwwXBOJ01CNWJPj/xMTQ1ItRkzUoP2YBDO+cAA0XnnwbFNJODcd3TgWFkrpKoqXaC3uhqLw9atqBLYuhXty0w8LFwo36uqIBC57ThfokoIELFDQ1gQpk3DNervx3fkduM7CIWKn+Fq0ags47rggrhcM+jww3H99nz/E9oWlTD+oJ3GXFFhbGfs9tSpznqbtXIlyJhLL8WAFCNwpfBLL8GZPOeczOLiWgiBQSJvv43ta3VA+vvBAAAgAElEQVRctfD7YR/0FYOxGPSFNm+GLeKBTmZhs8Gu8HTlnh4Ij3d1oVrgpJNSj9XrTbWj+UAI6PE9/DDs7h13wPHmJNVYTmDW2qJEgujf/4YtGhmZQT/+MRzlPcHPhLZFs2ZBQ2r7drRxrVoF275lC9a3F1+UU23nzpVdHFVVkljkNaGE8QOPBwRiYyP8Fh6yok3GCoHA+JlnkAj4wheMCUR+Lw9ei0Tgi9jt2HZ1tZSz8XphJ0arzEsmMYF5/Xq0+J14YmH3TyIBvc7hYdjSmTPH5n7UtnaXl8tzrKuDTeJBB8V+Hlp0C4TbDVs0deqM/+rO7cGEtkUlTGyw/EEwiLVBOzhk0yaQh/PmwVb4/VJnmqtOh4aw/vzrX0hwZqpmU1XEVFYrtvnii9CFP+oo6OxaLHgWeWge+3Ver9TRZPBwuSeeQFfXlVem2654HMfG3XajEYiqCu3fHTuwXh51VOr7e3rkQKqpU/O3E14vfDlVRVzEBSaxGL6Hqiqs4w7H2EoAdHbCl+3vx3d7wgl5dZzsFxzUWGC8kIhqjn/n2/5nRHQFgZl9g9AnrhLRxUR0QTEPMIdjMgWLReozCSFbNplUZEF9/inpcOSOigoY3eHhzJObFQV/40lbmTLYuRCJRLLCcGBAakWsWwcje845ctgJw2rF37Ztw2I3YwYIvQ0b4IwfeKDUsnC74ahyBq2jA9WCvb04vrlzcR5+PyoGfT4MLZgzB5+32fD5jg4Eak4nqpAyaVaUlUF0/pVXkJmuqEAb4wEHyPeoKoKBZBKLXL66n/E4SIFwGMfT2Ihtd3djcZo6FdfV48EixtObi/V8WPes3h4PWsY//BB/P+ggKy1YYPiRCW+LShgfUJTUacyZiC+nE2tGJCLb2oggLfCHP0Dr5+yzM+/H50PWdts2OFxG7ch6CEH0xz8igXD++WhDNgInxioqUo8/EsGAi+3bkaVfujT7Po3A7c0dHUT/8z+wFzfckDpAJZmEbYjHYUPzrcwZGSG67z4M8Vi6FERlebmsEne7Cx/QMhrYFr3/PtHNN+M4iIiuvtpKF15o+JEJa4sUBRUTN92Eyoa//Q0kkcWC5FgohIqxNWuQVJozB785WLBYZIKWicW9UQFRgjHCYSQd3W7p6xj5UMPDSHo89xxsUSa7JYQcrlRfD9+GE5asYWe14nlnIpGnduuhqhjGs3EjBvAcd1xhhFs4jG2FwzKYHgtoW7n1XUtG05urq4vX4sy2KJmUx0FE5HRaM/l6E9YWlTBxoShYEzjJ53Yjbli/Hs/MIYfImI87GfheHh5GIuORR+ATXX55Zp3mgQHYkSlTMPDrvvtQbHHddfKZq6yUpJq2CKKqStpAIaAN/c9/wg595SvpsUwigdhKUZDIHO2ZjkQkobZkSbpvt3s37OakSfkPehICBTG7duEaHnIIfg8OwjdyuRCDcsdlfz9iuWLPggiHkdB+7z0QlZ/+NIpa8owF9zsOqlgYLyRivjifiB4SQlyt/aOiKJcavDcTK7xtz++DiOjlIh6baWgJQw4OQyEYwWBQBpecgR9P043GOxwOGDAmEmtq0ivktPoyRhoW2vexBo2Z74CHm7S1IfjZupXo1FMzVwgR4Xt2u+GorV6N+2D+/PRWQ16Itm/HfXHqqcgw8RTn5maQfuEw2qaNSMv6eiwq0SgqPUbDqlXQHFuwAK0/AwNYJKdMwSI3NIR7txACcWQEZCERAsSqKhxbby+23dQkWxIbGqQkQCxW2H61SCRwDbduleX+RKYyW/uELSrho4XFIif8RaOZq3mZbAyH8Ux4vRh00twMRzZTUBwKwaFeswa6fpmqCfV45BE8/5/9rLFYOBGO1+/HMWu1d4JBVJp1dEAD9vDDze0zE1avJrr3XtiHb3wDiYZgEM8oV1ly9Xm+1dCbN6MtfGQE7cunnIJtDw7CLhQyLMosIhGiu++GFEVNDYKam24yJVA+YW2RzYaE2QEHIDhYuRKVBg0NGCYWiYD8fvNNPCtTp6L6gDWruruRhCKSAZuWWCymZmUJxlBVJN8sFnw32qBO60PFYgja//IXBLtXXZXZboXD+IzLhX8HAki08mRUHlLAOoScZNQPdEokiB59FMnTU05BwqUQ+Hwg+YkQTOs7OYoBffvyaH6O243XR0ZwDYrZ3hyL4Ycn0xKZCtgnrC0qYWLCakUCifWjN2zAfbt0aar9ZymAcBivb9tG9Pvfw4f69rczF5TwkLZJk/Dsr1iBGE2vP22xYN0ZGkKcVVWFGEYIWaH48MMg/U46CclVvf3j4gyi7ASiz0f0wgvw8T7xidSYTwisi14v7KQZ6RojRKOIj3w+bKO1FefR0wPfr7oaxS6KIm2Rx4N4kSeYFwPbt8MH6O8HYXnMMeamVI8B9nv7NtFJRJV07KuiKPOIyKgIOUBENYqiKLo+8yeI6G4i+oGiKKv0opYZetLHDIoCA1heDmIkGpVkIhsTLaFY0gbKjrIyXEvOUBtNbmaRXVUdvdLQzKAVLQIB6Al2dED0/+CDZVCkr5QYGMAxHHYYDOT27cgmZSL4HA45eMRuJ/r4x2GwV62CbhkRSuONWhWDQbx3zhzcY6w9qDfEySR0OlatQjXiBRfgvLduxfENDsoKz/r6/II0HiLj8eCaTJ2K8wkGsUhYrViw9M5zVRWuAU9vrqkpfJHatAkOeH09znfzZtMf3edsUQkfDWw2PEdcdWJk43mdCIXgvN12mySdMpFbTJD/619w/pYvN1eB8//+H4Y6nXCCsaPL2/b5cKzV1fLvfj9ajnt7QYKZqXrMBCFAKj30EMiJG2+EDWBxcyYa2I7lk1Tg1qK//hXO8J13gqCKxWCfiGAb9oam6A9+gHM64wwMi9myxfRHJ7QtYn21ww7D/bJ2LdagF17AWvbpT8P/2b4d69DLL+OnqQmfWbgQa4HfLyvWGNxmxcSi213q8ig2tm/HfbtwofEzaLHAtr3/PuQNmpsx4T2TL8uVb04nfg8Pp8oIOJ3wQ3p6pC51bW1qa7Oi4LMPP4zjO/10+GOFoK8PZKnTSXTQQWNT+RqP4/zZ3ptJXvPUVp9PVkJVVhZWbRmJyIoq1ngziQlti0qYmHA64ZNs3IjYYPFi464Bux0x3wcfYGhaRQXRd78rJ8Dr7/NQCM9VZSViuttvx5p0yy2ZyfpIBL/Ly6X2fjRK9NvfIq46/XTEVfrnk5OWyWSqtr4RenqwBlqtKChpaJCvCYFj9fmQcG1szH79jODxIB5KJlFMwl1inZ04x4aG9PiR5SaGh2Wyp5DOMb+f6K23UJhTVgafdP78j1Tjfb+3bxOdgnqSiC5WFCVImIYzm4iuJKLNRLRY9961RHQKEf1MUZS3iSgphHhECNGuKMr3iehOIlqjKMqjRDRERAv3/Jy4d07FGA6HrKaLxWTL89CQnFDrcuGnlGXPDIsl1bFKJNIXFa0+os2WedCKWSIxkUDFz6uvgpD68pfxt4EBkHZVVVLfgqc619cjY5RIIFB2OPB+7aJAhHthYAAGesoUOMvsYG7eDOLxkEOQAXvxRVR3cPYpHMbixAK/RNhnT49sRybCwvDwwwhejzsOwRuf78KFKGnfsAHncsQR+d1/sRj2zdPKOIvl8+H+djjSB8Vowa9z5UEkkl59kA2RCBZCIjxf8+eDOHC7cwrc93lbVMLeg14f0eh+5omEP/85yO9bbkF1jhGEgI7qk0/iGbvgAnOB4AsvgLRbtixze08yCfvFQ620OkQ//zme46v+P3vXHSdVea7fMzM7O7OFrSzLsrAsvQiCQMQOyjUao9HYYizYYiwxei03xZtYEhOjJtdEYyfYYo1dQVQQokZRKYp0YXvfnd3p7ZT7x8Prd2b2nNnZYXZhYd7fb3+wszPnfOfM+Z63P+/VZEYHkJTIMgIO77+PrPO114oARX4+7kV9Pa4znhc2WXG7sd6NG3G9V12Fex8MikExyQ5tSFW6uzHhkQjX9MAD4DRyOAS1QhIy5LGIp2laLKh8nzsXUy/ffhuUGlOnoop23jzskdpa6L133kFrWHExEnBz5kAP8sRcjwf3uK1NnIfb0vVt0Bl+xdSkpQX7vaoqNpmgF0mCvv3b32Az/Pa3sZXLepFlfL9ZWdjbLpcIkvF3xHQsnZ04N9sS+tbmnBzwbdbXYwDT7Phd0E+prcVPYSFsu3Tb3lytJMvG7ct9icUCLOYCBLZ3+4NdmiZaPYmwhhSwb8hjUUaGpni9aLkdPdq8dZd9jSVLoBt+9zvYD0xvpShiCnw0CozJzgam3HEH/LLbbzfuVNK3PY8di8/zILbHHkMw7KyzMLglHBa8jJIkAoiKggrERPiyYwe6M4YNA7ervpBC03APPB5gZLwfmYyw7Vhfj2NPmwY85eITWcb9NSvgYN/b78e9TqW9WVWh3zdswDHGjYNeLy/f50nAgx7fhnoQ8XoiChKm21xCRNuI6KdENJV6f4H3EtEEIrqQiK4lRI+fJyLSNO1PkiTtJqIbCCSZMhF9Q0RLBv4SkhduZSgqAiBxyzMbSllZokIxM321t0iSqFDgyc2FhbHGWTKDVpINJG7ejAqKUaPQUpyVhZ/KSnxfPT2Ct8Prxb8uFwB79GgEs5qbAbqqKgJ+ioLXJAkBATbstm2D089tfqWlCCJu3ozKxpISVCCxYuSAHRHW1NQkJjxnZWGKalsb2hfnz4+9tkgERuX06VjLli1QlKNGJf99cPuyJImp1Ey0zspWv0YzsVhwrV4v7mlbW3LtzZqGa969W1T5TpgABzUFp+CgwqKMDLzE8yMa7YM1axA4Oe20xG3CHR1o47PbUU2YTCvuRx8hW37YYaiEM8I5TcOe46mo/J6uLqL77sOevPZatJykKj4f0Z/+hKqCc84BJ6P+Xsgy7lNhIc4f2DMvrz9VyV9/jRZpn4/oyivFoAWuZuPAxUAZrDwp9u67EZwgQkXEscem5LgfMFhkswkHbsECBJDfew/P/COP4Jk/+mjoyunT8f6aGgSCP/gA783PR9Bozhw4QDYbHCCPRwQWW1uhC/icXKnIgcV08zkdiOLxwGEtLk7Mt+VyIVjvdoPX1IxDkIcPWiz4cblEV0k8FlqtsI/cbuBRJAKboKAA3+0TT+D1c87Zuwm8qgo7q70d6540Kf2Y0J/25b6Eiws4eJ5se7OiYA3KHvatflYf6uWAwaKMDB3x+6HTy8pg0zPtS7wEAkSPPoqkxvXXY8hXJCK6vKJR0cLPvIThMNFtt2Fv/e535smS7m6ct6QE+45pnx54AP7SBRegMIOD9Ry0ZB5/WU4cbNM08CRv2gS/a8GC2PeqKmwJnw9/5+KQ/kgohLV6PMB0bl/mwXYWC3y3ZDAlNze2vZl1a1/S1QXuw5YWfC9HHokgotl9H2Q56PFN2s8rJQ80GZCbrSiiQjEYxGs2m5j0nC5OlANJmPTVZutNwK2qIgPc14Q/TTNuf25qAtmuxQLlxENR9BIOAxjr6wGmhYUo0y4vh6HLx2xpAfAWF+Nvra1QbPoW34YGDC7QNFQMMUcUr7OuDm3Vra04xrHHGnNrNTcj47NiBQD7wgtjB6jwul0uwauoaeAT6erCMSdNSmxwahrW0d2N4EhlJQxdVUUAMBjEvUiC+6uXRCKiBaCgwFxJ+XzI4DF/WkUF7ktpadIZ/6Feq5IB/iEgioL9YLP1xvHdu4EtkycjKy7LwIP4BBIbytxSXF3d93nXrUPgbvJk8PCZJaV6eoAHeq7Z9nYEEEMhBB/j+Vj7Iy0tCDS0tRH97Ge9ORxlWbQZ80RWnw/3jDnx+sLwl17CIA/mQqqqAka53bh3TmfvZFM6pakJ39/HHyPIddNNSGT0Y8LqAY9F7GgxH3EggKrEVXsYhI45BtWjPPk3Lw/7ZedOPMtffonnkcn1mXSen1lNEzYBBxb9frxOhM/Ft0FnuKmFRCLoSrDZ0Nprdm/CYeDKp5+ihfmYY8RQlHjx+fB9M2UJT0LtK2gXCgkbwG4HNUFTEwKIe9PCzC3YXAljVvW9N6JvX3Y40veMqapobXY4zNub9RWQTCvQzzUc8FiUkf1bFAVFE5GI0AmhEDBbXxygKKgIfPNNosWLUaEcDuP9+uB9NArbiScN3347PnvXXebJEuYkHTZM+DGRCNE996Ca7oILQFOi34PME9vRgX9HjDBPhMoyBlLV1SGBdvjhsbioKAgg+v0I8qXCF9jZiYSJpsEOZB+2pwc2XnY2gpP9TS5omgiwcpelEabLMnTKtm34/njq/ejRSSdWhjoWDQnJBBEHVwb8ZnP2ljmi2EDTBxQzrTqQSARgxm148QpGUUQlhJkYBRIDAVS1tLbCyefhHPHClXAuF5TO7t1w8I8+uvd31NoKQ1pVoVhGjBCZtZoatB3n5oIsXJIQYNRnanjqcUODOM6YMXBa9aX4mzZBsVosRJddBodAL/EBRL2B2dyMtdjtUDpGHCRm7cuyjGuMRhHISyZDZSY8XCEYRABAr6Q4O9fYiGvhlvKRI5ManqKXob6LMsA/RIQdS71h6/Ohwi8SQWa7qAh7irnDGMsUBYM5Nm0iOv98VBX2JZs3i7ae22835/ryeoF1+fkCi1paEEBUVVRDV1amft1bt4JziAik5dOmxf49GgV+E/VuM+ZKMyLBnRovPT3A6U2bQNfw05/i3jF+MJfY3mBRIlEU4Pb99+P3K64AT2UKwxAOGiziNjMe7uByoUX/449xz048ES3O4TC+R4cDetDpxPO0bh2Gefh8IuA1Zw6GncXjv6LgfR6PCC4yvxVPAdUHFnNyDk7bStOAGX4/ArNmeKFpmB7/8stITp5/Pl5XFNHdwcLDDux2QZUwfHjyAS12op9+Gsc6/3zYTMyJ2V8JBMSAhqlTU2sLTCR7276crHB7s9WKfaHHTFk2DqL0U4b6DsjYRUNcNmxA0nHePFF95/FAHwwbJnDmjTfAg3jiifDT2A+JRLAHsrLEkCIeqPanP0En3HWXeTI2GMT5c3JE4C0YRABxxw4Mlzv0UBw/PpjvconuNMaArKxY3AsEMIylsxPBw3i7SFHghwWDCLj1d9iTqsIXbWzE+qZNE5je0QGbKzcXPtPeVGFzezNTL+httOZmcCG73fjOxo4FfpeX9wsXhzoWDQnJBBEHVwb1ZqsqgCQQwA+33vIkaKdzn/MJ7HORZYAiV67pnbdoVCiTRMDFgUSe8Pzoo2inuuSS3m3AeunogEKyWODgaBrKxXNyYKTGG3E7dsAw5lZnSUKlxXPPAYQvvhjKp7ERAD1qlCijb2nBMXg62I4dqHrUNCjDKVPAq7FsmSCvD4WggDjbFgrhXvEQFaNnx+dD5igcxnH0QQS3G+uQJKyNs2yhEJSupglDPx3i9QolVVqKPbBjB+4NT3HMz8f1pdCqM9QVVAb4h5CEQtjHjNm33YaAyD33xHINBgLAoJwc4NGyZWjpPOkkTLftS775BgM9SksRSDRzuINBGNc5OSLIVl8PnjObDUa5WZtiMrJmDYJrZWVEv/lN72mC0SgMbubbMQouKAr2vyyLJBrj+FdfIYAYDCJ4t3ChcCK4OrmwcGCGJRABI2+9Fa1CRx2FgHBFRd+VkyZyUGGRqgrdzDxSjY0ITm3YAD1+6qkImHu9cAo5aFJQIAaDrV9P9MUX0GkWC3TgnDn4nJnjFYmISkUOLMoy/ma1xk6CNgteH2hSU4ME4KRJiVvmli9HguH449Gqz3tR0/CdciCRqXpsNtxfIuBRf3R0Tw/oWLq6MGiguhoYEInEYlYy0t2NIKnFgg6RVIKQiSSd7cvJSCSCZ1fTYINlZ8Ne41bK7Oy98gsOKizKyP4lNTXQrZMnx3ZjKQqwhDF63TrYUFOnEt15p0i6apoIJBJhT3LRxf/9H/yX3/4Wx7fZeuvqSATvycqCzSJJ8ImYpuTqq+EThsN43W4XWNTdDdzjKcaKIvScxYJj9vSAFzocRldG/NBNWUYAkP2v/mJVKASs83rho40fL6i7WlrgOxUVpS+JwnYcc7ba7fhuamtxfysrBT1GCrg71LFoSEgmiDi4ss9uNo+y54AiZ3+dTsGjeLAGFFUVAB6NAtC5IoEVClHfHHnMHfPmm2izOvlklMebideLTBKT1ublwYHhoSc8YZTb6Hw+vB6JiHX6fGjFKytDOT5XA6mqmJg1cqTIwpWXxxqooRCCl7t2YQBMRwcU0/nnA8A7OvBTUIC19PQkxw0mywhG8OTmCROgiHt6sMZRo8T99PlwDpsN60s3QXkkggAlT4xkBy87Gw6PEb9SkjLUFVQG+IeQMH5rGiqvnn6a6JprECyJf18ggH+3bCF6/nlkvc2mKuuloQGtyzk5MKzN6AS4gjs7WwRbdu9GRaTTiQBiqkampmHNL7wAh/2Xv+zd0sPnTxRA1B9P396cm4tJ0y+/DAP1ppuEIR4Ox1Y2DoQzHw4TPfggONoKC3Gvjj5a6OEMFiX5AV17MztYkgS98+KLCBKWlUEHz5iBYLLfj8/m5YkAsabBYVm3Dj+trXjPhAkIJs6ZY0xFol8HB9Q5uOjziTbo7Oze/IoHUht0RwfueUUFnFYz+fJLTFOfNAkOdbye50Qs4xeRmLbe12CBeOnqIlq6FHtt8WJgUUcHjsWOf25ucpypLS14lnJy8BylmxpooNqX+xJub/b7cW4OeKfB/jrosCgj+4e4XPBjysqMOy7CYWBLZyewKD8f3KzxCQVVFZygzc3ApMceg592662otjbSPYoiON5HjsRe9niI/vhHvH7ddbHrCoWw/7KzRdW7EU8gBxMbGlBxn52NhHC8fRaNwg6LRlG51x9OaCJgJA9vmzxZ2HCyjI65cBj3tr+VjX0J82pv24Yfu10MgcnNhZ12kFZFDwnJBBEHV/aLm82tE8yjyIEyp1NUbBxIhm4ywhxYPMRg2DAoA3ZWLJa+ef4++wztOrNmIeNk5hAyFyK39jqdIIjXtyB2dsZmqtxuGJllZXB0V68GJ8bUqTCU441bbudpakJwrqrKuCoiGARB/RdfIFs/bx6OOW4cnoHOTvBuqCr+3p+gW0sLlJLLhcBhdTUUA3+eBwLxlOiBeOZYMbpcuH5uXx41qt/ty/Ey1BXUfoFFGUleVBXDTn7/ewz+uOkm82nJW7fC8B0zBlVufTmHbW1Et9yC/995pxjiFC9cqceTiiUJTvaDD2JvXX99alymRMDD++/HFN4TTsB05HjMDYdjJyUnm/gKh4FjDz0EQ/vEE4kuv1xgYiAAjDWiaUiXrF2L9vCGBvAhXX45sJ2rgfZCDlosYgeL274sFujiTZuQYGtowB44+2w4Rh4Pvmfm2issFC1lmgadxQHFujqcY/RoUaFYWdm3/lNV0QbNgUXmqiaC3tEHFvcieLxPhYcX8MROs2tgB9rpxP42I8TnaiEiURlXWto/B7K9HQFETUNnBldD87TTYBDHdTqxDrMBU5oGnGhoAM7wQJ50yWC1L5sJVz96vVhHTg72QhqucQg+yTGSsYuGoIRCCLBlZWHwhtlz3NpKdOONeP9f/2pOtyLLwK2eHqInn0TH1y23oH2YhXUPEfZwRwc+x8Ua3d2gY+nsJLrhht7UUESi9TkahW9nho1bt4LnsaAAXRP5+bEdcpEI8EqW4Wf1x7dRVRRZNDVBH02bJvxJDqSqakqUT0mJzwffua4O93HkSOD+yJGwQ/cCF4c6Fg0JGerTmTOSgnDW0+GAw8QZGr8fWdyuLhjYXKGY7uqw/VF4crPPhx9uZ7NYRJsyt3sYSUMD0VNPISN/2WXmwMeTlRmc7XY4J/p7zJMG8/PxntparGXUKBy3thbE5KWlUChGRrYk4TvkaWJGuYLOTrT8uFxE//3fCBxu3oxWv507oUxKS/GccCUHBw6SEacT19DVBUeKM+6aJlq58/JiA4vpknBYDHvJzcW1eDxQsg5Heh2CjGRkMIQHllRVgb/PbM94PKA4yMkh+vGP+8ZvlwutPdEoApRmAURVFfxkXCG9eTOSEKWlCBSkOjHP44HBvW0b+NJ++MPe1xcK4fxMRdCfyvktW9COFAiAZuKEEwRucvVYdnb/j5uMuN1Ef/4z0auvIiB1//2osuQpwAdbwi6dYrXiOeEpmtzePHMmnLa1a1F1+uc/o135rLPQosXBxLY26MFhwwR1R0UFKnw7OtAe/cUXRK+/jgrgsjIEFOfMgb402oMWiwgQskSjIqDo9UIvcdWjxdK7DXp/H4Yny0ge2GyoLjTDokAA7X+yjOFBifCBpwGHQjheSUn/AojNzXD4rVbwjumroS0WfHc8pZinn3I3jl4UBU57ZydsrgkT0mufDHb7crxEImLiLA/Gc7txX/LyBo7CISMZGQhRVeC0oiDIZ2bbKwr0QGcnAoKjRpkf0+1GgO+FF4AF116LQg+9WK3AFaaLCoVwTLsduuMPfwDe/OIX0D1ma+IhRkZ2mqoiwLZ1K6oLjz0Wr/MkZ5tNcCCqKnSSWWLESIJB2EZeL2yT6mph//h8uC6rFX9LNzWHpsHe27QJv8+ciXvg9QrKtaGYXDvYJFOJOLiy39/saFSQLzMvhN0uAoqDbfDsC+H2JKtVTG6WZdEOE+9kejyo3pFltN9xoC3+fTyV2O1GBaLdjso/M6NNUZAd4mo9hwPZpg8+IJo4ES3T7e14vapKOKOaBucoFML6eVJhVZX4/mpq0FJHhEpGPX9IRwcqDJqbcQ0zZkA5trTgGRgzpu9hMy0tuM7cXGTmamtxXJ5CrShYWypTwxKJpokBL5oGh5CdzJISOGhdXfiuCgr2it9oqKu3/R6LMiIkEkGgv60NhnBJiXH7WTgMXsLOTqIrrxStgGZBCY8HnIOdnaiSmzDB+H08UU+WxRCqjRtReV1RgSnM/W2fYWlsBP9idzcqGY88svd7Ug0gKgrRs88igFdVhSqEwkIEN6xWXBfzpBUUpNdo1TSid/ekY7oAACAASURBVN+FM9HTA5y94AKs3eFIawXaQY9FTD2iKLEtZkR4fc0aBAI9HiTtzjwTOi0YxHfj8+G9eXnGFWpuNxzVdevgdKkqniNueZ48uf/B4GAwll+RpxETiQ4EfWBxf0p8bduG+zZ9ujm/oKLAWf/ySyQp9FU88RIO4374/aICsT/OMCdxHQ4kCRJVQ4fDYkCA04lqJMbHcBi2j9cLLNybwVBGsq/al4lwX3ngEA+N4D2in97MHRsZaoWMDAXZsgVVbLNnm/MwaxoSsO++C7vo2GOFXxsvTLH0zDNIQl1xBTo/eFBX/J51uYAljNWdnaBsCAbhD5oN1vT7gaFOJ/ZcKCRmFRABK1avhn10yCEIYup5ZGUZa62pwZomTepfAqC9HV1akoTuMz2fbXc37oHDkTJnfELp7sa9dblQcThmjLj+UaNElyTTZ6WIk0Mdi4aEZIKIgytD6mbLstjMPJUwK0u0PB/IpOGRCACeCM6C3W48aCUSQYVLfT3Rz34GMDaa2EwEwGxvx3s5gGhWHs4Bx0hEDEN56y0olUMOgaGcnQ3Dr7ER/x87Fufs6MB3xpwSkQiUrCTBkd60CbxRxcXI2JeW9j6/1ysGuWgaFMyYMTBCnU783wjYw2Ex+Xj48NhqgIYGVHVIEhRiug10vx9r9ngQaBgxQrQojhwZyxnJJMYOR8pKaqgrqCGFRQezaBrRX/6CASl33EH0ne+Itjw9l62qopVvyxZwIB56KPZ+OAx8iE8ABYPg+KmvRyBx+nTzNTDVQ2EhjvX550hCjB0L3Eu1euXLLzHx0G5HwGHixN7vCQZxfrsd+zpZ57azE/dt2za0L196qbgHwSCuOxIR7TPplNZWVHWuWYP7+utfi8qHNLQvx0sGi/aIUXszSyiEPbRsGf5/1FFEZ5wB3SbLeMbcbhzDbhetzvEB60AAz+26ddClkQj07KxZCChOn55aslVVocP0bdDMD0gkBoLo26D3BY91YyN0eXV1Yqf9738HR/QVVyBoaybsDHu9uJ7CQtHem8z11dTA4c/Lwx5Pphqa25u50mb8eHzvmzZhPdOmJR4S01/Rty/bbKJLZDCEEyVMy5OdbW7vBAL4LqxWPGMpdCFlsCgjgyZNTeic4uGQZvLyy0RLlqDC/KqrgP/BIDBUj9WRCIoQXngB7dEXXkh0+umiEEHTgE2MS1xVPmwYbJPaWnAgEkHnjx1rvJ5gEP4g+x+SJIaA5eYCi957Dz7oEUcgSWV0jF278N6qKtFh1VfAT1XBY9vcDKycOlUkUTQNPqrbDV3Tz2nIfQpj7NatwKEZM3AvQyHYYGVl4nyBgOh8KSpKqTp/qGPRkJBMEHFwZcjebEURLc+hkJhGzBWKg83pMhiiKKL6hic36x0UVYUjvXYt0bnnYuogS3wg0e+H8b1rFxzuOXMSV8F1dOAzw4fj/n7wAX7GjQMRv80G0OUBKxyYzM2FsVpSElshEA6LNuivvoKzftFFxtl+rorg6py6OgQmgkEcs6AA69JXPxLhXrW24rV4zkHm/ggGxTTsMWNQJr+3z42q4vrr63FfqqvFdXAlpJFi9fvFgAau7OqHDPWnfchi0cEmy5ahuvD882HUEsUOIOA9/OabSDJ873to1+V9FQoBtxwO4RRGIqj+274d7TZz5pif3+fDXsnPx7k+/pjon/8Ehlx9deoBsXffJXr4YSQTfvMb42EsgQD2MfPXJYsVn3+OtmFFgdNw9NHib7IMwz8aBVZZrcDkvLz0YNELL6DqQVXRBnX66aLVdoDalzNYpBOj6c168fmQkHv/ffx+/PFwLvPz8RmvF85LOCxakwsLjQMqkQiconXrUJkbDOJZnTkTe2rmzL1rD5Xl2DZorhYjwtry8mIDiwPditrTAwdw+HDzqmUitH4//DC6Ja691jwYyPyRPT14T1ERdLZZIjZedu5EpXFxMTgQ+zN1mQj3s7YWdkAwCNtmxozUq6qNhFu0NS1tw0uSFlkWdDbJtk5Ho7gvioL70J+KUMpgUUYGSbxeok8+wZ79znfMceKTT5DQmzMHdgbvP68Xz/iwYWICcXMzuHRXrULiY/Fi7B2ucA+H8VmHA/9vawPmjhghAog2GzoeKiqg62222LWFQrA/7Hb4cPq/eb1IbKxdi/MtXIjjxEsgICoQx43DObgSX5LMg4mBAHw5nw/+V3V1bDVyczPeU1yc/sRqWxuuy+dD0qa6GvdBkmADGmEuc3BHo/h7PyukhzoWDQnJBBEHVw6Im62qYsozTwK1WESFotN54AQUmQcsEhEGFXNYrFgBZ+S440DcHu8c8sRmDnJt3QrlM2dO4jbenh78FBUBNFesAKnuYYcRnXZaLK+i0wmDPhJBcDAUghEcrwBkGdn6Dz9E2f8VVxgblMx9mJsbm9FXFLRSb9uG99hsyNZPm4Z70dwsgnajRsUqMJ5EbbOh6keSEExtb8c5Jk9OvU3e7Ub1YSAARV5ZiQBsJIJ70Fc1QTSKtaXQ3jzUn/ADAosOdNm2DQNUZs9GFaIeVxmHrVZURv3rX8CWc87pjUWBgKhc1DRU/23YIKYDmwlTO/CwqQ8+QBXz9OngZUzFIdY0tB6++iow7aabjB1Vvx/Y4XAk32rMOPfGGzBSb7oJmMMSDsMo5cnOWVkwagMB4FNBQepBvm++Qdvml1+iJfuWW3DPmId1AAdoZLDIQKJR4/ZmFpcLwa4PP0Rw5+STMfVSTyrPrc6ahu+vsNA8qCLL2K/r1hGtX499w3pyzhzs4f4GuYyEB2JwYJGdYSKcTz8JOsVqMkMJh2FjZGejG8IsMLh2LbBq5kxUOptVkGga9rjLJXhW9feHA4lm+3HLFmDRiBFw9vsZ7PpWvvkGz0BWFgLKRk57qsL8g0xhMFiVo/rKx1TOrapi6ApPGE/y8xksysiASzQKn0hRUFFulsjcuRNJ0pEjQSui92m4hd9qxfPd1gab5K23kIi96iqhMxRFTGMOh7Gn3W5gRnk5/Jm77wYG/frXwCRZFryrPBU+HEbgjItA4vdUTQ2Sq3Y70SmnoDIvXnw+BCyzshBA1OM7J9BUVRS7MH62tcFXslhQfainfIhGUdUZjWLte0Hz1EsiEejD3bvhQ8+bJ/zqnBz4bIl0FHO2+v39bm8e6lg0JCQTRBxcOeButqYJLptAQICXPqC4L1pu0imaJiYsOhwAwrVriZ5/HjwUl15q3pYcjaL1Z8sWAOWcOYkzPD4fglp5eQiAvfUWqmrmz4eTo3eEPB4oJA7iBgIw/IqKUEbPgTm/HxWTtbXIbI0bh+9l9OjY76anB8fgjI/Z9ezYgeqL9nYo54kTca6yst7X5nIJ3o8RI2LP19YG5Wu1IpBYWGh+X+JFlqFwm5vxnUyciGO3t+N4FRXJV2Uw35vfD2MkyemsQ11BHXBYdKBJTw9ahW02VNUZBSCiUezF555D0GzxYmMs4spFRSF69FFk56+8Elw/ZhKJYF9wG/GKFQi6zJqF4VGp8OSEQqB/WLsWhvpllxnvNR5w5XAkjwttbWhf3rkTWHnxxbHGqd8vDP94QzQSAZ5qGu5zf1pnIhFMwn78cWDnL36B+6rn2Rtg6o8MFplIovZmluZmtLutW4fv/rTToCf5+TZqdeaEU6IKu127xKTnzk6sYdIkMZgl1Snm8cLBOD2/Iid3ifAs6wOL/QgIxVzP11/DCZ4xw3x/7NqF57+kBNU/RtXFLMEgEn6aJhKm8cKVNfHr/eorfGejRqGjIpVBNJqGAGJTE75Pux3XV16On72xW/dl+zIPGUpH5WMK7c0ZLMrIgIqmCUydP9/cPujoILr5ZuzB3//euLU4EhHddStWIClx/PGYphy//2VZYGptLf4dOxb2xr33Yh233BJbuKBpIqinKLDpbDbgYvzxN20C3dPw4Qi0ZWWJKcwsXi/OnZ0tKhCNhAe2cCKmrg72UUEBklp6eyQUAgYSxdI+pUPq6vBdhcMIXE6aBH2rp7tKFhe5i60f7c1DHYuGhGSCiIMrB/TN1jQAEgcU2QB0OsW0paE8iZIN9bo6tKwVFsIJTjTlq6UF07UkCcTiZpNPiXDv2toA8MOHgwh+40aiY44hWrTIGGxlGRmelhYAa1UV/i9JUHBuN7hAPB6i885DdYDXC6WRmyt4CXt6RLtyMtUSoRCy96tXQ8mdeCJ4Djlwydwafj+Mz5IS4/UHAqjeCAQQ1Bwzpm+l0tkJxR2JYP1jxsBg8HpxTSNHpvac6dubi4v7VFJDXUEd0Fg01EVRkNHeuhVBNzNy7tZWcI/ZbEQ/+UniKhpFQVv06tXgVD39dPP3yrLYC0VFRG+/jbbqefMQqExlf7lcGEC1ezdw8/vfN36f14u96HQmP+3500+JHngA/7/mGvAI6YUz2Q6HOa+iquJ93Pqdn983Fq1fj+rDmhpcz803A7+DwUGdvpzBokQH10RQJRFn1O7daGXbuhXJsB/+EE4qO3uaJlpvQyHR6swBqETnr68XFYrssFVXi4CiGbdgqqIookqRA4vciidJsW3QTFOQ6Fn/5hvo2ClTzLsoOjtR+RuJoALRiMeLJRKBfcDUK2aBAE0TiWn+Htatg200diwGFaXSxSDLSOy6XLA7xo0THSM9PdD/5eWpBf/3VfuyquJ+KgowJzs7PQn8frY3Z7AoIwMq33wD+3/6dNj+RhIIwH5qaCD61a+AsWb41tWFCsSXXkJXxq9/bayzOSDY1gb8KCxEQcWDDwIrfvUrcxwLhxE8kyT4J3pcUVVUVe7cCZ1wzDHYt243/sZDtdxu4JPDgfclk8T1eJBw8fvhG06cGHttXi9sSJtNTJZOhwQCKH5pagKWHn44rr2lBdc2alRqlBH9bG8e6lg0JCStQURJklYTEWmatiCJ9y4gog+I6Ceapj2etkUMkEiS9AQRLSaiLE3T5BQPc1ApqFBI8CjKe+4Yt3Xl5Oxf0waTldpaOKuyDAN25kxz4O3pgXIIh6HEKivNjbpoVJB8l5URvfIK0ebN4DY79lhzoGRiXxZFgfPtdiPYuWYNfr/kEhjLLG43zsffRTgMQE4G2Jk7w+PBurdtg0NQUYE2p+pqOBzsIPQVCOCqjbY2rGHyZGPjPRKBou3sxLonT4aB3tyMdQwfLqo7FixYQEREq1ev7vN6Vq9eTQsXLqTHHnuMFi++/Fu+NHYQTWSfKagMFh34smQJjNobbzSvFvR4iB55BIGNc86BkagftKIXbiF+/XW0yZx3nrkzqKow1LhC6PXXwR931FFEP/5xao5pbS04GP1+BBrmzjW/pkAAa0umpSYaJXrySQQ4J0zA/dInarjKOBTqTdFgJn4/frg11EhP+XwI7r74InDvt79FwMnrhW5wOkVFaKpYdPnll/e9WEgGi5KQvtqbifC8cJtsXR109llnYUhRPK+VvtU5JwcOpFlHgl5aW0WFYk0NXquoEAHFZBJpqQhX2+rboNku40ozPb8i2zVtbQiwVlbG2hB6CQbhRNfXI5A+b17iKpm2Nuyx0tLE1C5EIpBosSBZsGwZnOHzzkstQBcKoeonEMBx9IkXWcbaXC7YQsXFyScyiPZd+zKfV5JgOyWyrVPBo0cffYzOOedyCofxXCSowt2njnsa8ChjF+3H0tGBar1Ro+B7GYmioHX5iy+QUFywwNxHk2UkSO+/H8f74x8TJw5aW4Gb5eXQE/fdB0z83/81t1cURVRcFxRg37AOikbBv9jSgg6P2bPF5zipqWn4aW6GXVFdnVxisrUVQU6bDTjHnL9WK87tcsF3dDoFf+PeiqbBR9u4Eb/PnIlzt7ZCX3Lhyt74/v1ob04bFmViW+YyoGEcSZIsRPRbItqoadprA3mujOx/4nCI6VNcNh4IALi6ugDW3PY8mGTTqYrXC8deVeHYl5UJgzEeFEMhVCD6/SD9HT1alJbHOwiqiiCcJCHo9uKLGHhw0kng1jITnw/3MScHATRNw+8eD1qPli3DGi+/vHeFUkEBlNuOHfgeJk1KzgEKBjEghrkzSkpQnfD11zjWZ58hcDp+PPjOkglKWixQNIWFyDJu2IAAod65aGmBI6OqUKKjR0MpceB1zJjE7cuqqtIdd9xBs2bNotMTlGBlZeG6urtF9UaS7c0ZyUha5KOPgDOnnGIeQIxEMNyku5voRz/C/olGBU9qPMa88gp4Ar/3PQxnCYfx3vhqW03DvlJV7MeXXiL697/R3nn22akFN774Au0+ublEd91lPrHQ7RYTE5Ophm5pIfrzn4EL3/8+2hr1OKwoImtdUJAcvhEJfeTx4P7GtzevWoWKys5OnPOaa4APPT34uz4AYyTJYlFG0ivczsztnkbtzZKECpfbbkMlxcsvw1GcOBHP/6RJeJ/DAUdSUUSrc3MzjllQIJxFIykvx94+5RQ8n+vXI6D41lsYjlRSgmDi3LnQo+kKRDGRP1OOMBWNPrDY0CBa9jgY1dSE6hmzKmdFwT7ctQs8Yoceau4kahr2jdebuAJRL5KEn9WriVauxPdz9tmpOaJsG6kqHNz4AKbNBpvJasV7XS4xOTSRDcBdOIoyuO3LigIsV9XUz5sMHkkSnulgEHany4Xfh4LdnpEDQ4JB8A3n5wMDjETTkID94gskVufPN9fFmgZMefhhHO+mm6AbzIKInIwsLYWP8uij0AvXXmt+DkUB3mkaPpeVJVqNOzpw/mAQhSLx3SZc6V5XB90yYgQqpvvSB+zXtbUBX6dNE+uTZei+piYxQCVdE5jdbtDUdHZCX3AiqaYGGMV0V3t7LubPzc6GzdXejt8HeqhY7BoysS2Wga4FsxDRrUT0JBEd1Df6YBeeDFdUBKDmCsXubvxkZcF5y81NX0l1OiUahdPe0QG+rcMOE1yJshzbtqYoyJh3dgJIq6rwuiSJjDoDKbf9yjIA/YUXYIyfeio+ayaBAI7vcAheCUkCSH/4ISqHxo2DcnK5ehPCc3Y/Lw/X5vP17WS7XFBMPAGZQTs7GzxJdjuyUD4flF4wCOU8alRyimP4cKxn2zZUYVZW4rWdO6GgCgvhxNntOL7Ph/eXl/cd5FNVlW6//XZavHhxn467JIl2ZpcLWbSSktR4lzKSkf5IQwMc8ilTwFloJKqKISoNDcCiceOwJ6xW7LlwOPZZXbYME0yPOw5txJIkWjwtlli85eri/HzwLH76KYZN/OAH/Tf+NA1Z/iVLsMZbbjHmgePMciiE/ZxM4uHjj9FGZLWiAioeK6NR7F1VTWny+rcZbg6wRCJY3113Eb33HnDor38FvnFyjCsX+zLy+4NFGUmvWK34frhyy6y9WZKQ/JszB/r0tddQ3XLooahM5Io8qxXPSVERnoOeHujlri4x1TmRPVNcDKqSRYsQWNu4EQHFVatAsD9sGGyNOXOACens3mDu6pwc0U7NAzW4w2HjRuBJfj6SG1whzFWLublES5cieXjWWWhbS9Tu6nLhp7jYnOIkXjQNA51WrULg7+yzUwusdnSgVd1uR9WP2TqZM9ViwZ4PhZCwKC01tgH2Rfsy4zfzfTqdqSc6+4NHTieuz+2G3c42e0YyMpCiKEi2EAEPzZ71t94iWr4cSc//+q/E3QyffYZugqoqcCba7dDjPExILz4fnvn8fGDiY4+h0OF//gf7wSgpq6rAUEURAUQirL2jA/iuquBgZFqpeOnuxnlzc5Pj0PX5UCEZDCJZW1UVi7GSBP0UCEA3FRYK3tZUg3vMl8u8/0ceiXN3d6My3WrF7+nGCacT3xnrFO40GSTu2Uxsa48MwYbSjAx10WfrZVkEFHkqsc0m2mz3h8CNpsFpr60F19aUKTCAuWrH54OiYK6tzz5Dtd6sWchUsVgsAFx9ILGrC8pn2DBUINbXg4tp1izz9YRCUELZ2cjuMGhGInD8v/4ajj8HEJub8ZkpU+Cgs3KLRpH98nrFxFIjInRFwTG8XihRo9L3UAiAPnw4HGynExVCa9fivhxyiPGksXhxOuGoMSm9xwMFNHUqHJ1gEJk5Wcbx+mqF2hvJycE1dXbifufnD6qSyshBJsEgWn7tdrTHmDmj774Lg+2oo5Bl5qCb1YrPsnOZlYVM95IlCIhcc414drOzBYcWV1L7fMIQ/uc/YbSfdhoqovv7zCsKBo0sX47Awn//tzGWM4ZyoKIvQzMSQdBixQrgzI039sasUEjwOQ4fnnrgxWKBke31Apsfegj37PrrwQspSTDw49uXM7J/C7d8RqOCfN6svdlqRTvckUciePz222hdP+IIojPOEM8e8wzm5eFZ7umB7nK78WwUFvYdHM/PBx/WMccAC776Cnvwk0+wj51O2AVz5kCfDsSwHotFDI3xeGAzTJ4sOBY9HujDlha8f+1a7PEjjkArXqIAotsNPTpsWKzdkkg0DXv9449RmWnGo9qX1NfDHhk2DPeur0Q1D8/hqkxucy4sjG1v1rcvD9YQQVnGM6ZpeG7t9sG1SWw2BDSYu5apX4b6AMWM7L+yeTOwZ+5cc4z5/HNQmxxyCNGZZ8YOODE63h/+APz+4x9F5wMXuPA0ZSLYE9z2+/nnRE8/DRy+5hrsP5tNBPU5AMldYbKMdejxZtcuJGTy8kBX5XTis1ZrbDCvvR0FDMXF8LkYf818kOZmdHLZbPCh4qu8uQJRltG5xQUksiwqqPtrK3V0QAewnzZnDu5JYyPwPi8PRSQDRV1mtSJA6/HAfo1EcL+GIlXaUJU+YV+SpCpJku6XJGmzJEm+PT8fSpJ0ch+fG0tE0T2/LpYkSdvzs9rgvT+TJGmXJElhSZI2SpK00OA9hZIk/U2SpMY979slSdIdkiRlx71vtck5Lt5z/rFxr58sSdIGSZJCkiTVSpJ0syRJlxi9d4+USJL0tCRJPZIkeSVJekGSpDTN2Tv4hKs3Ro4EsJWWAnA9Hhiq9fUwWoNBYdANtrz7LgJzhxyCYBYPUuEpUcOGQfF0dCBLtXMnDG+jkns2tJjvwueD0nnpJVQWnXNO4gBiOAxjlttu+XgeD5zczZtRNXTGGbiXY8eiatDjQVCOW8m58tHphEFfWCj+ppdgEMa3z4fzjR7dO4DY1YXvqKAAAQNWivPnQ+mHw6jm+PBDOPd9CWf9uD3HZsP1fvllHV1xxbV00knT6bDD8mj06Dw65phjaPny5QmPV1tbS1l7IjJPPvkkSZJEkiR9yw2klwceeIDGjx9P2dnZNGvWLPrwww9oxAgoQ68Xir2jo4cyWJSRdIqmYbJwQwOIvc0muH/2GRzq6dNhsMUbinY79ks4DFqBBx5A9c4NN/Tet1y9EgzG8gByAPHMM3tPhE9GAgG0+y5fDhz65S/NA4jd3YKPta8gXFMTJr+uWIHj3nln7wAit9plZe1dAJGlthbtSn/5C4KWjz8OXsjdu+voyiuvpfnzp9PYsXk0YsTAY9EHH3zQ6z0uVwaLUpWsLPyoKvSVqpq/125H+/E994AS4PPP8Vw/8wx0q16ys6Erq6uxj5nvuKYGz7ui9L02pxO69KqrMAzpuuuw37/6Cnv65z/Hv598gv2Wbqmvhw4eNw4YU1ICW2LmTCQvDj8c92zlSiQiZ82CXbJ2LXDn66+R7Ovuhq3h9+MeOJ2w9ZINIL75JvBu/nwMgmKHPdF3pRdVRWfD7t2wc2bNSr7TJTtbBAyZdqenRwxWCAZFNetgBBC5ZToUElWk3L5cV1dH1157LU2fPp3y8vIoL29g8Wj27Fm0bt0HlJ8vqr7D4YyflpH0S309dP+ECebT3nfvRlVhRQXoWhLRD9TWIhHkcBD96U+xhQi5udjHfr8YpNLejj3+yScIIM6di6RoTg7eoygimC/LIujIAS19smfDBtDDjBiBhAi35dpsOE4kgn9bW/FTWAi/mCc1qyr0jd4X5iFRO3bg/XPn9rYLAwHYlqoKH46HxtntYgAT0+HISbDiRaPQge+9h/UuXIhEm6YhSOp2A2+rqgY+oMdUCyUlWEt7O7C5789lYltxkhJmJvP1ziOiRUT0KhHVElEhEV1ARG9LkvRfmqatNPlcB4Gs8Uki+pCIHt3zelvc+64korw9f48Q0fVE9LokSVWapnUTEe25mSuJaDYRLSGiDUR0LBH9Zs9rpyZxHb1EkqTjiehNIqojotsIpLo/JSJPgo+9TUS7iehXRDSZiH62Z90XprKGjAixWsV0YFUVzq3PhwCOxSKMOSPer4GQL75A1qi6GkHEqqrexuKwYVj7F1/AyD/kEAC52fqYb6ezEwD7yiv4/3nn9T3RsK0Nn9cHEJubif7xD9yvSy5BoJPFbseauQz/vfdg9M+cGavcystxzzs6cHwOKrICHTu2N+cEczkGAgLEifDeujpkoyorURW5ezeM+VWrEISdPr0375miwNFqasLajj4a3/XmzRgQs3Hj5/Tpp+/TWWedQdXVY6mnp4eeeeYZOuWUU+i9996jE044wfC+DR8+nJ588klavHgxHXPMMXTFFVcQEdGIuFHZDz/8MPl8PrriiivIbrfTfffdRz/4wQ+orq6OioqKyG4nevvtMF1zzQlE2PdDFotCoVRWmZGBkldfFVOTJ082/n6++Qa8hsw343DAmItGY9+naQgC/uUvqIS+7jrsLaPghSSJibPZ2eCA27EDyYyjj+7/c9LRgcx+czO4WBctElNh49fY3Q1MY/64ROf68EME8LKyMLhh9uzYa+eW6EBAVAVGIv1bu16iUQyiefxx3Jff/AYUEx4PnJAVKz6n1avfp9NPP4PGjgUWPf88sOjtt9+jhQsFFnHAIxQiys8fTo8//iRdfvliOuqoY+iyy4BFZWUjKBQSa37oIWDRJZcAix54AFi0fTuwSNOIVq4M0wUXDH0s2peSbHszS24u2mkXLcJeXLUKz+Z3v4uAu15HWq1wUAsLe7c65+cLB7Iv4fbbWbPwLG3fLgazrFuH9U+bhiDj7Nn9GwRiJF1dgoPLzGlva0NF/hD+EQAAIABJREFU8OTJRD/7Gd7Ldg3zK3Z24r080KWgAO/3+4WzbiaqCkzcuBEdFYsWCXuK6RiM+KX1Eo3CdujpgU1ixsWaSBwOQVvjcMDG6egA1vDQlcFoX2YeT00T1EB6+fzzz+n999+nM84QeDSYttHnnxP9859hooyflpE0Sk8PAmTDhyOIaCRdXbA5nE7YHMOHm/PjtbWB/kRVie6+O3YIG5EIzvt8opiBCBj/5psIlF15pQhQWq2wqyRJJKTa2vDaiBEieaoo8CN374ZNduSRsfhns+F3WRbJl7Iy+E+McVlZopiBu8L8fmBcKAQf1Wgol8cjCk9GjeqNV0xpo6rCppJlvM8oENvYiAAid7fNnIn1M/UT0131McU97eJw4J599RUCyvfc0+dHMrGtWEkJM5MJIi7TNO1fcQv8G+Fi/4dwA3qJpml+SZKeJdzo3ZqmPWNy/BFENFXTNN+eY3+w59jnEdGDe95zGREdRkQ3aZr25z2vPShJUgsRXS9J0vc1TXsriWuJl3uIyEdER2ia1r7n/EuIaEeCz3ykadr1/IuEHfszSZKu0TQt0ReUkX6IxSL4VpgAnNuefT7BA8NtzwORBd61C4qjvBw8HKNGmSun7m44+UVFUBIMwkYSDgvC/zfewPVccEFvYl29RKNQBBZLLAfg1q2ohnA6UV5vRn5eUIB1BYOoCMjJwe96Y3TkSCiSpib8SJKoEo1XJrIMhRGJIOun5x6xWhG4rK9H9quyEgbA2LGo0tyxA05KVRWcH6cT92PHDtybigpUQHCVFE9Jnj37e/TDH55FU6YI5fzzn/+cZs+eTXfffbepoZybm0s//vGPafHixTRu3Di64IILDN/X1tZGW7dupbw9fWcLFy6k2bNn07PPPkfHHXc1vfwy0YoVS6izcz0R0c0ZLMpIOmTTJqInnoBhecYZxu9pawOlQmEhWmDih33oZedOVCmVl6NiKRElBFdhRSJo2W1sBBYdfnj/r+Obb5DZj0RQTWk2PVFVgZfRKK4n0frCYdybVatgsP78573blPh44TCM7GSmOieSTZvAkfTNNwhe3HwzMI6DsDYb0YIF36Ozzz6LCgpE0Omaa35O8+fPpr/85e6YIKJecnNz6dxzf0yXX76YqqvH0XnnmWPRxo0Ci447biHNnz+bXnzxOTriiKvpgQeIVq5cQm53Bov2VvrT3sxSVISW9u9+VwwtWrUK1SUnnBCr+/WtzpGIaHX2eESrc25ucklRiwVJwqlTic4/H07p+vVIYD75JALfEyYgoHjYYeZBQDMJBmH35OWZB91cLuwPdto5UEoEXOJODVnGe7dswR7PzsZ6+Tp4r/JEaLatFAVY9/XXuJfHHRd7b4xoYYyuY9MmOLpTp/YOFvRHnE6cy+cTCVaXC468zZbccJhUhSknFAXn5qqhePne975HZ511Vsxrg2EbPfjgc2S1Xk1r1xI1Ni4hyvhpGUmTRCKo3HM40J5rtM9DIQQQAwEkM4YPN9+PPT3oZPB6EUBkrvp4ycrCPqurw/7+6CNwzC9cSHTppbH7z2IR1YiSBP9UloFtrANCIVRst7ejuGTGDOPzWixIUPT0AFOHD8f+1/tedjuO7fMhmdTejvPMmmWcPOrsBFbl5MCvSuQnWyy4bh78oh8ayr7YF1/ApyssRHKHq/8aGqDP8vLg7+2LQZTd3eD+XrUq6Y9kYluxkhJm9hlE1DTt22YJSZIcRJRLGJ29mojO7evzScjTfJP3nG+jJEkeItKHVE4jIj8R/T3us3cTorunEVG/brQkSeWEL+9hvsl7zt8pSdI/CVFYI3kw7vc1RHQdEVUR0ab+rCEjyYmeALykBKDMAcVAAH93OERAMR0A1t5O9PzzAMvDD8e/ZgZ5RwdK1MvKwJ/k8eA1I0J/WRbVe8uX498LLkDmxkyYj4cIxjC39Hz8MZyXUaNQwWTmPMsysnVZWXCKd+1CsCAchqPAXI7cnr1rF+7tIYcYE/6GwwggahoCFUYZJ30gsbERCqywEAb9uHGixWj3bihGJsXVK0Nuk87KQguV359DO3eiOqGyMkROp580TaMFCxbQCy+8YH4Dk5QLL7zwWyOZiGjWrFmUlzeMXnxxF335JdavKG9Qbm4u+f3+IY1F+wPXaEbwfP/5z8gg//KXxkkKnw9OtdMJqoLCQvMpd7W1yMCWlWHCrMMhgiTxoqowMLltsLEROJJoIryZ/Oc/mGJbVASj3owonM9ps+EaElViNTRgqnNjIyojf/Sj3tiuKMAJTq7sTfY7ECC6/360cw8fjkDswj3NJ9xGmJ3NreY5306TttlCpKrAooULgUX6/cWGO7/G7UJWa+99yEmdiy66kEpLBRYdfjiw6Mknd9ETT+A+l5S8QW730Mei/UWSmd4cL+XlRFdfjRbnf/0LNsO77yIZcOSRvZ9Xu11MqeSpzi0t2A/ME52s/SJJSDyOH4+hJk1Nojrx+efxU1UlBrNUVCQOVCoKHFOLBRWDRtceCoFGwO9HhTMPSDFbn8+HJGRVFZ71UEhUKno8SCZypW5WFjBuzRpcy2mnwVE1EosF6413solwT7/+Gv8/9NC9r8wkAq4EAqKisrpaDD0IhYAX6XacObnD+J2o4jFHB3yhUIj8/oG1jSorZ5HDATyaOxfVuUuXvkGU8dMykgbRNNj5kQj4Vo2efVVFxVldHdFPfwo/yMwuCgRgX7W1Ed1xB4oXEglzfS5bBjw96SS0SZvx5vLU+XAYWMDc1D09wLNAALaEWWJG02DndHcDp0eMEFWB3C7N57Zacc0NDXgf8xDGH6+1FThbUJA8By0fnysso1FcU00NMFXT4KNNmQIMDgax7mgUazGj4RlI8fsx+Oztt7GOY49Fgq0vycS2eklKmNlnEFGSJDsR/S8RXbTnYHpJB0tdncFr3USk78UeS0Q1mqbFNDxpmtYiSVIPESUIwZjK2D3/7jT4m9FrLPHrZZa3DN/GIAhXIDqdMF7DYRFM5PYZh0O0PafCx+D3g/vCakVLn8MBJ99IWEk4nZiylZsLg6+rC86ynuuLS91dLqJ33sHvF18MpWHWmqMo+IyqwmHhkvnXX4fjfsghaIM24/mRZXFfSkrw+alTsd6GBgQMuW3J70eAc+TI2OpPvWPO77Fa8b5E/EIWC+5bYyOcBU2D85udDeN+2DBkjZqbcawjj8S9UhQ4Vn4/qhTKy3EsiyVCb7zxe3riiaeopSV2G0pp6G2v0qUmW1ow6Y2oiDo6XHTTTZj2NmtWLVVXV9OmTZsyWJSRvRJZRkVPOIzMuFEAkafCBwIITOTliaB/vDQ3w0DOyUEAsbQUx45GBWk3C7f/ejzAus5OtOlMmtR7ymAi0TS0QD/zDAzLX//aPJmhKIITrqgoMXasWoUJiNxKbMQTG4kAS4l6cw/1Vz76CPeutZXo3HMRIMnLw/X5fLiPzEuE9tcI/fWvv6cnn3yKGhoGHoseeYQoEimixkYX3Xor0UUXEc2bl8GidAu3N3MgMVmy+bFjiW66CZ0BL76IYUbLl4NX9LDDeu9XiwV7QD/VmW2GvLy+K3TjRZIQuK+sRKKhvR0ViuvWoS341VehR7lCsbq695p27YLOnzbNeG+y015Tg66H8nJz7jHuaIhEsCa+FodDtJ0RYX/5/cChri5wQ9fUIGmoquBY5ErFYcNwbzi4GV+RSARbads2YOmMGeadI/0Rnr7MCepoFPeppATXwu3fpaXpO184jOtiXui+ICUSidDvf/97euqpp6iubuDwyOtF5e3y5UQWSxGVlrrogQeAv3fcUUuU8dMykgbZsQP7auZMc3viiSdQGXf++eiqKi42DjaGw7AhamowTXnevMTn5krx994j+vRTcOGaBRBZfD7gGFdWEwH/PvgAGHHyyeZFKJomOGjLywU22u2iKjAcBhYEg2hfDoeB00VFwjZhkWUxTHP48NSHT1qtuKZPPoENUlaGgpqiIuBtVxfwlumuBrt9ORxGheirr8KuPPRQ+ML6YaaJJBPb6iUpYWYyIZb7CL3dDxHRR0TkIiKFiC4hoh8n8fm+xIxmOlXNp5l8Nl15wnSvNyN7IdnZ+CkuhsHKFYo89p2r3HjSbl/CTrvfD+DPyjInh/V6wZWhaZioyMFCux0GJjvpigLFwtO23nkHx7v0UgTwzFpzOOgoy3if3Q7F8MwzqBhYsAAVEGbKLRoF0EsS1sPXIEkA/awsHL+tDZktSULQr7JSKLbGRrzmcOB6urpwv/Ut1YnEYgGRb2MjFJGq4j7t2AHgP+wwKOmaGjhgW7dCSVVU4Bz61oTrr7+eHn74Ybryyqto8uSjSZaLKTfXSqtXL6UXXni278X0IVar9dsA7yef4B6glUKjU1NipshgUUbM5ZFH4PDecotxkoIDdM3NqMopLoaRaoRFnZ1Et9+Oz9x6q8gI8xRmdoLZ2fZ6US391FPAqKuvRnIhHBZtLH3hpSxjmNPKlcC/a681/4yiAI9VNXEAMRQievRR8EMecggIzI2M4GAQxr7VunfT+FwutGAvW4YK6aeeEgFLWcZ9UhRRCc/CWHTVVVfRvHlHk9NZTFlZVnrppaX0/PPpwaLubnDdvvQSvtecHKKFCzW65pqUDpnBoiSFCef7097MMnUqSPvXr8f3dv/9qBQ8+2wE2Y2EaVsiEWEzeL3QPTzVub9xoLIyVM+cdBL2yYYNcLiXL0fFRlERAopz5iBx0NoK3V5VZV6599RTGOzE1CsFBcZBM1XF8QIB6PBEU6m51TsrC3uQCNPPx48X98Hthu2kfz876/n5IshWWws7prAQ2JEOQn/99GXuduGBeJKE3+124G97O9ZVWJgaXzdPeI1GRXdNstegx6Ojjz6aiouLyWq10tKlS+nZZ/cej1TVSi+/LOh3jjoKnTCTJmlUnFpYLoNHGTGU1lZ0KI0ZI6gR4oVx7LvfBYbl5BjjDCdqN22CjXP88YnP7fNhL7/4IoJ155wDSoVw2Dypw1PKGZMUBQmZ//wHvx93HJnuEU0DZnk88HniK/k4qSXLwLeaGmDO7NlioGcwKOYFhMMIXioKjpcIexOJqsIX27QJGHTMMdANPL26tRW22rBh+I4Gs31ZluF3v/YafMrx40GrYVSR2YdkYluxktJ6k1FR5xHRU5qmxZiukiRdlsRn0zVPt4aIjpYkyaGP2O4p2yzc83eWbootF2UZF/c7R12N4taT9mKtGdlHwoTThYViImAggGBVdzcAhgOKRlUrmoasRkMDuI2ysmCMxw8AIRIZmkAAFXTx4J+VBSPb5xOTmzs6MFk0Jwdtg/wZI44fTUNwLxrFGhwO+tapbG9H+1Ii3rJIRLT5GVULSBLAPxhEQFKSBCdiIADlM3o0FFx9Pe5bOIx/+1Maz+eqrEQgceNGHJ+5I5nDsbwcXG6fforrZvL1ggJxrueee44uuugievBBVH4zj+LLLy9JYg19L3jDBijOUAgK6fjjUY2of1aqq6vpo48+ogwWZWRvZOVKtBCfdRYMNCN5/33wiS1ahH2SnW08wbinB5WHgQCq6eJ5UR0O/C0UgtMfCMDQfOIJ4MTPfy5IyznoGA4LPhwj8fmI7roLLS4/+hGq98y2mCwDuzTNvFqACFhz770Imp57LgIvRi2VTCxut+N4qfDhahoc4nvuAdZcfTXRZZeJ4GYohNd58l/8mhmL/v53YFE0ylWd6cGif/8bQZtAgOjEE5FwWrQoNmiTwaKBFX17M1d7JOMsSRL0x6xZCLS89hr2yowZ2O9mXFx2OypHSkrwLLndcNasVtHqnEpgrLAQrXQLF+KZ3rgRFYpr1gBj7HbYCIcfbl6ls2IFuh9OOgnvycoy5h7TNNg5Xi+uI5lW4mAQfI4tLXDaDzlErJslHBYt0B4P7ktTk/h7Rwe+p3HjEKzd2wAiT0LmVkK9DVBQgL/zsD+HA/ZLdzfWFg7jfvZnDVztqGli0mt/bKx4PGJZsmTv8IipF559FonsWbPwDE+YgKnheqmurqbt27ePzeBRRlIVvx+DMZj6yEjWr0el99y5KPSwWIwpFVQV9sTateCv/f73E++pUAi48vTT4EM+/3wUafj9TFvSe09zFXVODnwaWUaiZcsWBEGPO07sbYcjVn+oKgKDPh98MTNaCFkW/IclJfCbOKDJE6K5a6ynR3SApdqZ0dWFe9bTg+PMnSvOF4nATguH4QfqB3wOtGga7u3rr2MNZWXo5DvyyJR5aTOxrTRIMmpOobhIpCRJk4no9L4+qGmaIklSiIhSLKj9Vt4kopOI6Coi+j/d6zfv+fcN3Ws7iegUSZJGaprWsme9BYTosn5tLZIkbSCi8yRJulVHPllK6YlCZ2Qfip5jSFFEQNHtBjjabKLlmTPZK1ci83L88aJyceTI3scOhTCdqrsbzoIR/5ck4Rx5eTBwN29GdU1FBRzC+MyUnuPHYoHCYH4Nbj1euhSG8uWXJy7Z5sEtViuUjpnj09mJ4xUXQ0lwRU9bGxRbaSmubd06BACnT0+doJzboPnejxkjgh2yLKoUFy2CstiyBQpj+3Y4Fah8tJKmCewuLibKzd1OH374GhFB8Y8bZ6zUrFYrORwO6u7ujnk9FMJ5iBBAPOssVHialeefeuqp9M477xBlsCgjKcquXUR//StadS65xPg969Yh2zp3rpjYbmQo+XxEv/sd9vtvf2vMrcpVLcEg8K+xEVhChKqf+KAGv5eDjvH40dKCc7a3o1LwuOPMr5WHKxCZVwxi0jDal3NzERA1Ih/XNOBHMCgGUqRS8dPYiKrNTz+FU3zbbWKolVn7crzEY1FWFlF7+3Z65x1gkdud+LNGWBSJCFLwNWuITj8dumLKFGOHIINFAy/69uZoVFQlJvvZY48lmj8f3+ubb6JK+PDDiX74Q3NdarHg2S4sFI6hywV7I5VWZ73k5qKK7Kij8IyvX4917dyJoNzy5WgLO+ww4JPDgeTao4/C1vn+92GnGHGPaRocULcbaywp6Xt/+v1IZnR2Ev34xwLr4oU7TjjxqmmCwmb9evxbVATM+vRTrDu+DTrZahluHyQyrwYsKMD34nYLzkKmVHC5gJHJtDdrGs4lyyIgmUpVTzweERFt376dXnvttaQ+G49HqooAOMck8/Mx1Xb6dPNnbw8e5VEGjzKSgsgy9rLViko7I91ZVwcO6bFj0WKsKAgmxb9X08BpvHo1bPozz0wc1I9G4WP94x84x2WXoQKRCH4AF6UMGyYwjbGZK8ZlGXq7pgY6+4gjBF8icyo7ncLXq63FMUePNm859njgC4XDqBivrBQ8iayLcnOhG5qasI6xY1NLosgy0ZdfwufKyYHu0vu2XG1tt8POtNnwGR4imo7KbyPRNCSrX3sNFaq5uaDsOPzwvR7ikoltpUGS+dpfI6JLJEnyEybLjCNc8FbCCOq+5HMiWiRJ0k1E1EhE7ZqmJT8/B7KEMMXmz5IkTSGijUR0DCGS/Fbc9JrHiOhGInpfkqRHiCiHiH6y59zxIaH/IaJ3iOgTSZJ4TPdPCNHfIkpftDkj+1CsVmFMcqWd3y8y21YrAlDvv0/0ne8AmIJBgHG8ERyJoC2ovR2OblWVuaFssQD8t21DQKC4GI6hUWUjr5OHqIRCMEJzc5GZe+45rP/KKwVnhpGEQlAoVis+b6SIZRkKx++HMTxlCgKdnZ34vbgYx6ipwfUWF+N++HyxbdHJCGfbGhuhaI49VlQmtbbimlpaoBTLy0XlwsiR+MzmzTBmS0uJTjrpdHrmmaWUm5tLs2fPpt27d9NDDz1E06ZNpQ0bNnxLJGzWNjZv3jx6//336d5776WRIyupo6OMXK7jafNm/P2oo1ABxZwfRnLZZZfRkiVLaP369Rksyki/xedDew07ZUYG0O7dcOwnTAAnK2NB/DMZChH94Q/YJ7/+tflzTySCIdu2IdPudCIAaNQuxLyz3Cqjnxy7ZQvOKUkIJJpVCxDB2GW/1CyAGAwSPfww8HHmTAQ1jYKlPJAlEhFtjP0VRcG1P/AA1nLLLah84vuaqH05Xk4//XRaurQ3Fk2dCiziwIAZn5MeiyoqKqm2tow+/fR42r4dfz/vPKL//d/YFvR4yWDR4Ai3N7PDxNViyQaw7XZU8B13HFp2V6yADXHssWJQkpnwcxiNCq4urxfBqsJC7INUKe/sdnz+9NOxj2tqkLzYsAGVKDYb8AFtq3CsucrOKJDa3Y015ucnVyHs8SCZ4XaLFulkha+5pQU2ydFHw3bw+4GxbNt1dIj35+bGBhZzcnrfO+aQ5YCe2TVIEu4/D1cpLBTUOdnZOG9f7c0crNQ00UWTqvSFR30J49E999xLslxJGzeWEdHx32L2yScj4ZLIYb/sssvommuuWU8ZPy0jKcimTdi/8+YZB6q7u2F75OSAs1hRsLfiE2yahmDgO+/guT333MRJF1VF4PDhh4EnV10V2x3C2OH1wibKzRV+FicPgkH4jy4X/IiJE7EO/jwPlQqFgJ21tfi/GX0ED1rZvRvnOOwwYfNwRTzz9rpcuG+FhViLovQ/oNfcjMIYvx9rnzVLYLyiYC0+H/CsokLggKaJBJssJ88hnKzs2oXuwO3bcR8WLsS9GDs29VZtnWRiW2mQZL7u64koSEQ/JEQ8txHRT4loKiV3o68iTH25nXDRa4ioXzda07SwJEknENHvdOtoJKLf7/nRv/cbSZLOIaI7ieheIqonor8QJuAsjXvv+5Ik/WDPe+8gomYiup+IooTpNjFklxkZ+mKxAHyYND8QQAXaG28AHCsrkZGaOLG3oRyNwshub0fGnHkFzSQcxvvffhvZposvFpU5BQXmitLvh2Gcmwti3mXLcK6LLzZuZ2RhxWaz4fNGBrDfH8uZwQ7MiBFQdmx0l5Yi4BAMwpEYPx5Bv/p6KL5ksj/d3Wg3DoUQIBw/PpaXcdcurGP0aNx3vTEgSXh91CjBl3jSSfdROOyk1157hZYuXUpTpkyhRx55hLZu3UobNmyg6dNxvo0b8V3FfzcPPfQQXX311fSb39xKoVCAKiuPo+uvP56OPx5k4RUV5i0FLNnZ2bRy5UoqKir6O2WwKCP9EE0D/15HB9psjLLPHR2YqlpaCh7EQADGY7yDGY3iWDt2YKDDoYcmPjdPXl26FEa4WQCRRR9I5OFKa9aA4628HETl5eXmn49EsP8tFhi2RnhRU4P70NqKKqQzzzR3tl0uMZAlleEFW7eiCmzrVhiit9wSWwnWV/tyvNx3333kdDrplVeMsaioCEGM7u7YwQ8s8ViUl3ccff/7x9Pll4P8PRkjOYNFgys2W2rtzSxOJ57xRYtgb6xejQDdiSeibS5R0DorS7Q6e70I1rW1icRfKq3OtbU41qRJwJiZM/GzeDEqE//9b+x3HiLy17/CwTfiFeNWXqcTe7Sv/dPTA0c/EMD5zFq8zaS7GwlGiwUO77BhwNdhw3AveL9FIiKgyDywLS34m9Uqgooc/LPZercvm4k+kNjTI67bZottb+YBB/z9MF2EomAN2dl73xLYFx71JQ899BBdfPHVdMstt1I0GqCKiuNo6dLjKRzG1HGjivR4ycZNy/hpGem31NTADpgyxdgGD4eJ/vhH7GHmfs7ONg7AvfACAk/HHAOqlUSUCpqGc//tb6iivu46Y5oomw17IBjE/mU6lZIS7PP33oNeOOEE+C2aJpJONpsIJHq9wFYiVPMZJRmjUfheXV3AjcmTe2O7xQKsaWgAxhQVAXMCAcHXmkxSIhSCj1pXh7WceGIsNVcggACiLKOwI76Djs+jqrHBxP7qxnhpakLl4Vdf4VhHHIGincpKXGcaZkURZWJbaREpvgQ+I0SSJP2NiC4nonxN08zIJlORzM3ez6SzE606ubkoe9+5E6BVUSEcaTYwN2yA4V5ZCScv0dQrLm1ftgzK4sILxXS/nh5RUaMPCrpcUAgFBXj9lVcA8LNno2ImkZMQDEKZmfGEMVdRZyeuJT5op78fNTVQ2mPGwJF1u4XSZsL3MWPMDd9oFBm01lbcv0mTYqsteHoYT2+srobiTaQYZBnVojt24PhVVZhOFu94RSJQwB4PggTjx2OdmganY9kyfIdlZVBMnAnUcy8mKYNC0J3BogNH/vlPVML97GdoC4wXvx9YFI2i6icSARbF860qClp61q7FMJMFCxKfV9PQJvTYY9iHV12FYxpV4sSLLMOQfOUVGHUzZhD94heJA1wcQLRagZHxxqSmoRpr6VJg4A03YC8bSTgcW83Y32qdUAjDX554Ap//1a8wZZ2vW9++bLfHTn/dW9E0wZFmt8NI52Nv2ICKyK++QjD34otRTeV0Jve9xEkGiwZRuPpCVfFs95PM/Vtpb8e++vRT6PtTTkGAMdlnnNvp/H78zq3OyQTZOzqgTysqjAN4kQgqYevq0P2wcyeeVXZQx41De/PcubAL3G4xcTpRopMINgZTsyxenDiZYSTNzVhPTg7wSJ+MVVV8P/FD6liYP0zPr+h2i/bl3FwxwIornvsKznKVtKr2rrgOBBAMIELAISsL52LnO9VnJ51SX4/E1fr1uO5TTkE1lcORuBLaRAZtcMkA4dGQwqIDQVwuUAqNGAFfJ140DdzFn30G22P0aGDHyJG99+abbwrqhcsvB74len5ranBst5voxhtR5ZZIurqA20VF8CGampAMys4GduuDbKoKW81iEZWD33wDDK2qQoAwHqPcbnR7RKPwXcywkbvJmPIqNxfnkyTgm6JgLyfCl927sedlGTQF06fH3ivm8c/Kwj1PhkKDg4mcOLXZ+hdM7OpCgo0r4WfNwrqKi3HP+knjkRmiFCcDgZkHdRBRkiQrEVk0TYvqXhtBiEiv1TTtpDSf8uC92fuhBAKYkBoOQ+HwBMDJkwGEzKMYiSAA5fEg+DZxYmLDV1XBgfT22zjWxRdDyXCbjNUKZcEcGcOGCa7GYcMAlE8JC1oTAAAgAElEQVQ8gUq9E0/ETyKnkp0JLq2Pf68sI5sUCMDJKC83V6zcxux2A7THjoUS7+yE8uMS+sJC3Iv447S3Q1HKMhRPVVXse/x+VAJoGoyGaBRBvfx8HK8v55mDhLt24XcmUtcHRHmydEODGKKzahUqL4qLQcRbXY3XS0pSbiNKq4LKYNGBLZ9/Ds7CE06AsWq0R5cuxd649FJgAA9V0htheq6fSy+Fw9eXfPYZ0eOP41g33oiAeTCINSSqfiLCfrvvPiREFi1C0DKRUx0Ox05NjseHQAA8W598AofhuuvMW34Z17iyur+Z7bVrwXfY2IgKsBtuiD2Xvn05Nze1CsdkhKkgJAn4+OijgqLhoovwTGRn47tIMaiQwaJ9IFxpwgGhVKsj6utR7cUDBc44AwHlZJ/3aBT62u2G7cEVOnr+Lr34/eCYystD8N6I2/Dee7FHf/EL6Fi/H057VxcSm+vXQ59Go9ibM2Yg8DR5cmKnva0Nto2mwS5KVM0cL5oGx7ehAdgybZoxFvUVSNRLOIyfQADX4vPBzgsGxXv0bdD5+cbTshUldniU/rtjihqvF3t8+HDge5qqaVKW9nZMEP/oI6zn5JPRYu904md/sIuIBh2PhiQWDVUJhaALs7Jglxvt56eewjCNSy8Fxrjd2EPxtsv776Oi8JBDiH7yE/gTifRpbS3RnXdi7//qV2Kgk5lEo9gzfj/O39IC26q4GLaRkS3F3IXMgSjLopOLqxN5kGZDA3wvhwOBM7NEbSiERIqqApM5aaMoWCN32EkSMCv+nvp8WHdrqxiopa/W5AClz4fX+wrEGol+LVw1megYXi8KPNasEYPJpkzBPR01Cvc7BTlog4iDiZkHexCxnIjWEtEzRFRLRKMJfePFRLRA07RP0nzKg/dm72ciyzBmm5qgnFQVRuDEibGZdE1DAKCuTrTqlJeLCsV4x0/TUNr+9tswci+5RBhjiiJaWKxWgLTPB6WgqsLB/cc/kJ076yxBMGxmcPr9UKoOB9YW/z6fD9eoaVA4ZqX9XKno88FQtlqhJHNyRCCQp0x3d8PIrqhARaIkwRDfuRNORn4+qg/1SpADkS4XnJyKCnFfXC4otLw848CkkQSDyNjV1WGtkybhu9MrzC1bUPlVW4uA5kknicErhYXmwYskJd2OewaLDlBpaUHwrayM6P/+z5jD51//AifQuediT3m9vVt3NQ1TCZcvR5vO2Wf3fe5PP0UAsaICbc/8zMuy4Ocxa91zu8FBtH072o1POgk4Y+ZchkII+mVlGfOK7tqF4ERHByYfnn66Oa55PMCi7OzEHKVm677nHjgeVVVoY46fOhsMAjstFmNDO91SVwcHZ9UqnG/xYrSw2u34jvcyqJDBon0kXHnBPIl708K1fTuCOt98AxvjzDNR6Zfsc8GVr1xZZ7GIKnu2UWQZOKOqaF02crKffhoVkhdfjAA3Dy2Jtx3q6hAA2LQJDrDNBoybMwc/48fHrr25GTaXzQa7qD+OoaKAiqCzE07lhAmJ74uyp8bC7PtQVWF3GWFgNBrbBu3x4DUi3FeuUmR+RYdDcD1LUmwFdiSC74O/Fw4kDjTmmInbjXbP997DtZx4ohgmmJ0NPNpfsIho0PFoyGLRUBNVRaLP60UA0Sho9t574Co8+WTYDO3teF98y/PHHxPdfTf8gCuugL2TqCK6tpbojjuwH3/7W/OBTiyyDLuFA3MffohjTJyIwHuivez3w/axWOB/5OSIic0WC362b4cfVFaGazA7ns8He9JmwzUa2ZKyLPDLaoWvY7Phb9u2IVnFNBDxOOr3I+mqKPAXE3XbJSN6HmGrVVCCsIRC+I65HXzuXARQs7Kgb8aM2Suu2IM5iDhomHmwBxFziehRApFlGRFFiOgzIrpN07SPBuCUB+/N3o9E04hefhmTqM45B0ZpfT0Md31mnFtgm5uRbSothfEXjSKgxi0wdruY9LxqFTIqM2bACI830mUZypPBtKMDyigvD+99+mm87+KLUS2XKKvOWXOjAGKy7ctEUBg8zKW4WLQeu90IQDocInvGrTsNDfh39Ghcd00NzlldjfupXwu3LweDUAzMv6iXnh68Jycncat0vHi9+I6amnB9U6bgHCtWoGWQJ4mVlODapkxJmwGfbsc9g0UHoEQi4B9sawO/mNG095UrkYH9r/9CVrizE/sgfuDCc88h2Hjaaahg68vR+89/EEAcM4bo5pt7G9WRCH6ys3vjVEMDBqf09GD9RxyB/SvLcDLj9w9Pfs7K6l0NrWlIqjz5JHDqhhvMh8BoGhzxUAjrNaumMvvsO+8Q3XUX1nLJJWjFjK9S9npx3TxYYiArglwufAevvgpM+8EPiL77XVxXUZFI2OylZLBoH0q62pv5WBs3Yp83NaET4Oyz4Vj1R4JB7F2fD7/n5gJP6uvx+vTpxsOJVq5EpfN3v4vkaksL9k98xWAgIDhPefDL5s2oUtyyRQw9mD0bjqHTCToHpxPH7Y9zGg6jctLng9ObTPuzpon2vnhbQj99mXkQk5FQSLRAe734UVX8LStLBBM5IVxaGjvR227HMTo78Zni4r5bv9MpwSDaPd9+G+tasADBGaZwyM3d/+wiokHHoyGNRUNJNm8GHs2ebVyR/OWXGEI3axZ4gtva8JyOHBmrs9evh61SVQWqlrKyxPhSW4sOBVkGv2JfA50UBb6UpgHTPvwQFdGTJqFiPFGQKxRCAFGWcR59oFRRUDyxYwf0xoQJCAyaSXc31uFwAAMT2Q2KAhuHOzmIgM0uF3zBuXNjKye5yKO9XfiL/WwdTijxwURJAufusmXA9dmziebPF75xoonV/ZCDOYg4aJh5UAcR94FkbvZ+IB98gGDfokUAru3bYdzGZ2W2bYMzXVoK5TF8eKwSYL4wvx/KYvVqAOOsWSinN2sV5MqFSATAbbUiy/7mm1CQP/1pbKbNKKvORixXR8Yfv6kJa+PKSTNHORqFIpPl3tfH52logGKpqhIKKRSCkl+3DsrmsMMQGIhXPD4fjs/ty4mq/zweZMGcTgQ++uNcM6/KypVQ8GVlaPWcMwcOA09u5kBiGoz3oa6gMlg0wKJpRH/5C9ps7rijdzUcEQIGr7yC/XPqqcADSerNl/P662jrWbQIgbG+Al8ffYSqxXHjUIFo1qrL/Dl67quNG5HVz87G1OeJE8X1BAL4V//+QAB7127vnczw+dC+vHYtrv/aa83bdFQVlczRKHCiP9P3WlrgcPz732hLuu223tUFsox1qurAti8T4bqfeYbo2WeBP2ecgUqKvDxxz5nKYm+msu6RDBbtB5Ku9mYiPKOffAJs6OpCV8PZZyMh1t81catzUxOc0BkzBFewXjZtglM9YwYGD7W34/PxDmswCH1rswEjuHpN/3e2Db76CutvaMDar74aNleyz7zPh3XJMu5BX4PP9GIUSOTpy1br3rcUM5+qvmLR7xdT6e12OMPDh8N+5GCdLAPnw2EEco06SNIp0SgqfV59FWs84ghUgRcU4BocjrS2V2ewKCN9SlMTsKG62jih2NhI9Mtfwo6/8048tzygUY8dW7agknDkSGBLUZFxkQJLbS3eTwSbbOzYxOtUVWAm6+s1a4Cl8+fjnDzMyeh8wSB8EYsF12m1CjorTUMl965dwNHp03tzX7NoGrDY7QZe9GewiM+HZPKuXcDO+fPhW+mF6a54wvPIkenjhY6/jkgEeu2tt3A906YheU4EPCwtRQAzDYlVoqGPRUNC/p+9846P66zy/jMajTTSqFqW3GS5l7jEJbaJTQpxCikkkLKUBNgQSCgBll1KgLCUpS4svNRleWlLCAmQAE5PSOwkTnfsJI6juMuWZNnq0vR6733/+HLe585ommRJtpw5n48+ljUztzxzn1N/53cKScTxlcJin2B59VVahlatwpE6cADltWhRsnE6cAB0XUODblnJ5MBaFgnABx+kOiVtek6nbnm2O2nSdtTTw+s7d+LkTZtGC5O0S9uPb3eGvV4Ufjq0kt8Pos+yqGplS9qFw1T3HA4Mb6bKUyBAxbCkBKNbVMT/W1sJ3sVILlqkzydIyIGBoe3L2cTvx6BJ0jIfYxKJkBR+6inNlzJrFuszbx7XVlvLfezdi9GcO3d4fExpZKIbqIIuGmN54AHQh+99Lz+pcvgw6LxZsxi8JO1ukycno5mkpWfDBlCBuRy8J57guPPnw4GYraIsiUGl2C9yrpkzGayQ2nJoWXqQg8eDDvH52K81NcnO7b59DIDp7wc5+ba3ZS9myHCC2tr8q+CmyVCAH/2I3z/5SZJ1qWsk7csykXWsWgljMaX+/Gf4LX0+HOSbbqJ4IVMLhQTd69V8jMdZ1CjoopNERrO9WSmemS1b8C/8fhLx4iMMR/r7QeyUlOggsaqKPetyEdTfcgs+zre/rVF3DQ3JxdBIhGNJEk58nEz7+rXXQDb6fCTR4nGu4fTTKfCtWJE5md/XR5KguJjE5nCKCiLSyaEUutU0Of8oJO7TiiAN+/rwfxIJdKPDwU9FheZWFN6w0tKhOn80xDTxie66i2tavhy6jKlTOW9xsR72N4pS0EUFySo+H4mkmhql1q1L35X0hS9gS//zP9kf/f34BfZ45uBBih01Ndj9ykrijEzP88GDUJs4nSQQc02EN032jSDonnqKPbtxIzrUMLgXl2uobgoG8e+cTmINmWAslFZ79xIbTZnC6zLFObVbzDSJ50Ih3Q2Xr3R2AqwYGOBzy5dzPnuBS9qXhV8xNZ4cLbEsYu+//Y37EXqpykr8II+H7yMdOv44ZKLrogkhhSTi+EphsU+gtLYS3M2cSbtwVxcVntmzk5Xn4cPw+02ZovmEUiH0IpZFVeWxx0AgSpthKKR/pB1ZWp4dDhS8YYAYam4mOLjySt1qV1ExlFPQNDXpt8eTzFEk1aq+Ppz7xsbsjrLfj4F0uXAqcwXVwSCJw3AYZzwW09OPu7qouJWVgVqoqcGBjkT4vaFheFXuQADkQklJMvoxVeJxuFA2b2adV62C38fp5PsTHpJp00AnSXvR3r04KvX1JFpG6ERPdANV0EVjKHv2gABctQqHNfX57+vTU+FvvFEnlVIReE8/zWCTVasI8nPt00cfpW3wtNOU+tSnMlMY2MU02XN33gnf4urVXHsmJLVpst/s7c326eZSVPn970lKfPrTGs2YTqJRgoSiIhzlfIPpAwcICl59FcL1L395aDvQeLUvGwZJ41/8Aj28fj2tVbNn6yE2Hk+yTpZri0SGTm8ephR00Ukko9neLBKJ0Kr/8MM8y2efTWu8fRpots/u2oUuWLZMt7kFAtqv+O53eYa/+132iAw7sxdOo1H0ltOpE3/Zppk3N5PAmjIFDtDSUvSiDGbxejnW0qUkFFeu1EmCI0fY35WVBL/Hk/SLxVgDp3N47cvDEctifRIJ1sPt5rxer/b/hH5GhjkppZMKQuOSirQa6bVs367Un/7EOs6bp9R73oMOloExZWX52YYRSEEXFSSjiM9uWdjs1Gc9FsOOt7bSWdDUBFDB7SaOEBGkYmkp/oXHw97J9Ezv3YsfVlpKl0IqGi9VpL1XuAVfeIE9esEFybGiDGUSPlGl2OeHD6P3585N1v+9vRRGLAvQhRSDZGClPZEoHWXxeO4uLrtEo1A5tbSgP9etQ49LkVY4Evv7idNKS4mJx0gfqP37QdS3tHAf73gHcV17O9daV6dBJqOsmye6LpoQUkgijq8UFvsESX8/AV5ZGe3CiYSGeM+cqd935AitxQ0NOOiC6Eun3CyLNsMnniDwvvbaoe+zLI2CCYV0pbqoiNa7zk4QOhs36uDW6+UzbndycN7fz3EqK5MNWTzOdYfDXHM2OL8cZ3CQtZgyJb/ANZHA+L3yCp875xw+K3LsGAYvGuUeq6tBZY50eEkoRNKyuBiDYzfEpsmwm0ceYa0WL2ZIQW0t92YYGj3a1sZ1SyvEsmVcW3s7jorbzedHgHKY6AaqoIvGSAYHlbr5Zp7Zn/xkaHU1FCKBGImgiyorceZKSpKD9h07qMQvWgQqMJeT99BDoOCWLlXq4x/PH80XiTDw5PnnoQC46abcifWBARIKFRXJqCi/nwEiO3bQOnPzzdlRdjIYSrgU80noR6NK/fKXcA1WVZFcvfTSoTpPAgDT5DpHk+NHxLLQ///93wQOsvYrV3JvhqEnL2fSyZEI1ymk7SNIIhR00Ukoo9neLOLzUbTcsoXjXXAB/kOmPWaaoAGjUZJx9j0gbbVf+xrP7mc/CzIwENDE/XLN8Tg6yulkLyUS2Tn0du4kcGxsBGWduvcsC/9rxw5+ZGjBggWa0H/ePIohx4OUk/ZlpfBbRhl1p5TSCQDLGsovm4rUVkqjv4VfcXAQ3ykW4xobGvBRZHBLRUX+1/366xSD9u/n+3vXu0jQSsHH5UqmohgDKeiigqQVy2Kv9/biG6Si3oT+5bnn0EXr1hFXCEpO9kB3NzbfMEAslpXhN2VCsTU30xLt8eBH5UIgWha+TTTKvmxuZk+ef356HyIQ0BQswSBxRWkpCUTRj5aFjpXXTjtt6P3HYhzH5eLejh7l79On50+90tpKASEWo1V42TK9bvE4vpYUN6JRgBRj1b7c3q7Upk3Yn5oa7NTatcSqXi96aPZs1kOKbg7H6CD4/yETXRdNCCkkEcdXCot9AiQcJmgPBgnaq6upTMlUX1GgnZ1U7CdPRnGHQijYdIbDNBnO8uyzusUoV5Afi6HkjxwBtRIKEbQvX46S9Xi08gwGCSxdLl7zevWwAan+OxzDa18WtGIwqNuz8wlsentxSmMxjI5lYRzFAMh6yJRGj4d183gwviOtcIXDJAGLinQicdcukiXd3fztssu4jv5+1lMSMfZA3DBANezdi7FqasLAGgbIiHgcg59u6EUWmegGqqCLxkAMAx7B3buZxJxK2p1I0Grc0QEaeuZM9pdhsFdEFzU3Qxbe1ESQn82JFOTfpk20CX7kI/knzPr6mMDc0gJa6IIL+Gy2irDPx16TqnlJiUYZff/76Krrr4e0P5t+EVqGTJPl08lLL4E+PHwYDsnPfjY9Afd4tC9v306rZnMzOujmmymuCFpbhhXkg0QTvkZJzgyzvbmgi05SGe32ZpHeXvb7M8+wfy69FBR+qq09cIAE3eLFQ/eJZaGjtm7l2V28GN8kHkdv1dezt+2TSaur9TCmTDpm+3al7r0XGpHrrsudFLcszrttG4VB8SGWLWMAwBlnDNs2J01fLilh7TMNWhmpmCb73DA0yjHdsUMhzV+dyT8zDNbg6FGu2+Vi3ZXSKGZpg66qGlqUOHyY5OHOnRRj/umfQKvG4xzP4eAzY9XGbZOCLipIWjlwgDhi6dL0SMA77iCmev/7QVn397NvGhq0/zMwAALR58MPcLuJhzK1+Qq/c1UVCcdcCUSlNFhj71500dy5DFDJpLuFnsrn4/rKyviMvD8axR8cHESPzZvHZxyOoX5JLMb5+/t1Z1c+ezYYBFhx9Cjxz7p16f2i/n7uy+FgLWpruYbR9I96etD/27ahcy65hCFOUixRilg1tUNNbOUoJhMnui6aEFJIIo6vFBZ7nMUwCNrb2pjWOWsWAbPfTwJRjFNPDw5YTQ1KfnAQZ8zeMmw/5t13oyTXrsXg5aoUJRJU1VpacJTdblpM6uo4l1SJ3W7No5hI8JpMYK6r03xaQvgrRiuXsZFJYAIfT3dfqRKLYfR7ezHUCxfixEajOK2WRfDsdOrpy4KgrK3V7T01Nfx/JM57JELitbWVtsVjx0BAXnopzkgwyBpYFveUbZprLAZP24EDepL0/PkcW3hD5s/P26BOdANV0EVjIL/6FbrhM58hIWcXywKds3MnQd7y5TqRNmmSDsqlTXfyZBKJuQoDd9+NTlm1iuRdvgmoQ4doGQoGud41azT9QllZ+v0qCcTycq4rGuXn4YdBQTY00F6UbeKhfQKzcITlkkAAlMJdd+GAfuUrcESmirRmS6KjomL025f37GFYzPPPc78f/jDFDMNgbUyT77KsbHjntrc3u1zoszx1ZkEXncQyFu3NIkeOEHi//DLPy9vfrtS553IeoRmZORNEYKrceSd79n3vU+qqq9jbx45h/yxLI+sSCfZ7bS3PZnFxZh3z3HOaG/rd787/XqXlWobBHTkCaqmlhdenTyeZuHo1Ply2fRWPo5McDs3bqJRu3ZYC7PGITLZ3OPJrkQ4G0Uvl5dl5v6RTRdDTppk8uEUSi1IciUahc3n5ZfTolVeSTC4qYi0NA78wGxJ6lKWgiwoyRHp6KC7MmEGhM1Uef5yC3IUXYk/DYT5TVaWTYX4/BdquLuy/FAczUU1t2wYVTG0t/k0+Q6kGBvh55RV8s5Ur8atySXc3sUV1NQAF0Tn9/SQQTROdKN1bwo8og1ZE+vrQwS4Xei5XMdiyiNFeeYX/n346nSup6yEAEhncJ4OeZJp8URHnPB4d4fMBjtm6lXu64AJ0kcNBjCXglVmzcseqUniT63qD0rxMCCkkEcdXCos9jmJZVOtfekmpa66hVae3Fwd1xgw9NGBggPdUVJCYkoEndg4OkUQCIv+dO+G9uvDC3GSwhoFh2L4djrPp05W64Ybk9pZgEMMpzqlSKNpAgJ/aWq65tJTXhZ9w8uTc07piMc3BOGVKZq4zuxw7RruRJAobG5PPEYuRSPT7uU63G2NeXk71LhLhPoWgvbiY9c7n3HY5ckR/h5WVJF82bOBepOVAEqz5VtMiEQz7oUMYuwULCPiPHmV982xvnugGqqCLRlmefpqk3NveRktrqjzxBG2IGzdSmZUhBXZ+0/Z2Wm7Ky2nBycZ5ZlkkAh5/nGLGu9+dP33Aiy+CGvR4lPr3f9dTCqXVzuEYmgQTmgWPR+s8r5dW6FdeAfny8Y9n3+OGwT3H49xzPgnPzZtZi74+Eh4335y+aCPty5bFcUe7fbm9Xamf/xzeyaoqdPg//RN6JxRCJ8qgieOp7I+gvbmgiyaA2NubjyMwSisHDpAQ3LcPv+Wtb9WJv3TTT594gmFE55/PforHsfnSTiv79NAhXquv1/QqmQp1W7eyN5YsUeqd78wfReLz0fJmmvhfdgSN+GY7doCgMU1svSQUFyzQ62jnJcw0fVkGrYw0kWgYekCLILHzPY7fj56QbpJs5+jt1Z0n0jEi1Dg+H4ieTZtI2jqdSr3pTdgUQY+Wlmrk4mgPbMkhBV1UkCQJhejYKiujjTlVLzQ3022xdCm+j1L44sXFOrYJh/FTWlrgTGxoYJ9nopp65hkKfQ0NSn3iEyADc+1Tr1fHaYYB+jBbMVSkv584pbhYcxcWF6M729rY60uWDPWLDEMXlhwOkqM+nx54JVQomXyJwUG4Gvv6iL3WrUvvTwndlRRopk7FVwkGOX5ZmR4eMxJUYjis1N//zlyARAI/8LLL0D2dnfw4nRSz8uHwta+PJBOdTq5rmDZzouuiCSGFJOL4SmGxx1HEqT3vPAL3cBgnu7ISo6IUhmPHDhzOVatIIBYVYZxSFVYsBuR+zx4SiGefnVspmiYO36OP4igvXUqLT2qAa5ra+RU0TUcH/0pFuqQEhS9E/VOmcC/ZnPVQiAqUw5GdeNj+/n37WJeammS0pl0sS/OFFBfj1EtS1DAwnrEYbQsOB9cQj+vWg1wBRk8Pbcs7d2IYzz1XD02ordUogNrakU1tVIq1bW7GwJaUkCiV9qQ5c4YOaUiRiW6gCrpoFKWtTal/+ReqrP/1X0MdsV27QNGtXAlaRJDETif7QZzIW2/l/d/8ZjLnaKqYplK33YZz/uY3K3XFFenbV1JFBkH95jc4yLfeOvRzhoGOKS5GT1mWplOwD3xqbgYd6Pczffq889irmRw9+wTmSZNy66LublqtN2+mui6BRjqRIVZj0b7c0wPCdNMm9MR113G/FRWaWF0p9ORoJS4NgzUXFFgOHVfQRRNExqq9WSmOuWsXRc5du7D3H/sYOsceQDc3g+RZsoSAXDoJTFNPN5XJpPE4z3VvL/bS40FfVFfr/WtZ7NEnn6RQe9VV+Qd7PT0U9EpLQWZnK0AEAhQrtm/nHhIJ9vrq1fhuc+Zw3lzTl2WoyXDW3rI0Z1lREdc7ku9OBuNVVuYuqHq9JApcLmxESQmB/333gfY0DHSuIA9lUILQupSUJE+DrqrKPkl7lKSgiwry/8UwSHRHIhT/U5/5o0dpM66pwdZ7PPhB0SiJMZeLffcf/0H89PnP0y0UCOAfpYtNHn8czuTGRvid58zJvVd9PhKU27dzDRs3Zve/RHp7uYfKSny/QID919GBXzR9OtebSR9KYam7mzWaPFnHlJFI+kSiYaD/mpvZ42ecoYvAqeL3cy1Cd2XvQAuHuVa3W3e+GUb+Ra54nLV++GH00tq1+KENDaxDayv3UFfHdzFSn0zWSJKJw0BMTnRdNCHkDZ9EdDgc1yulfquUutCyrMfG+HRv7MUeR3ntNabTnX46KETLIjmWSFCZLy5G0W3fzu9r1miEzPTpQ6u3kYhSt9+OoTnrLN6fDqloF9MEvXLXXSjyc89FyWYzKAItHxjQZL2SVGxupupUV4fDXV2tCdsztR729mKEpkzJrsQti0RIayuKet685IEJdonFMJzRKNcnxMJNTTrYTSQ4XiLB30tLuafBQa41ExGy10tVa9s2rvctb2Hd3G7Os3Mn38X8+Rim0QjCBgZY264ujaoUdOPChRnXbdQNVEEXTUwJh5X65Cdx2H7606H8PG1tSv3v//K8vv/9PE99fZpjVCbl3XorTt03vpE87ClVEgmmzG/fzv5461vz4xQ0DJzrhx+mCJJterMgoiVwjUbZr0Kn8Je/kKyYNo1WoVmzeJ9wb6VeSyTCPpO9n00XmSZt39//PnrlYx/T65buvX4/7xvt9mWfjwnTd97J2l11lVIf/CBOvmFwv/ZhBaM9tMGy0OgP81IAACAASURBVHnhMOeoqsp4joIumkAylu3NloUte/55fKDBQfyda67BZh47ptTnPofv8J3vsF/6+thDU6fqooEkEOvqNMJPWmQF7StT2Z96ikTBmjXwlOabQGxrw5+qrob/cDjrEIlAb7JjB628oRDXs3o1wezy5Zl1m7Q158uPmEhw/5L4Pd4hOVKQqarKTYMj7c2RCIjMRx5B77z5zaA9p0zhXkIhvi+nk+uzD24R/agU9ysJRfl3lBHbBV1UkP8vr75K7LNmje78EvH5SCCGQgyQa2jQifO6OnSTYSj17W8TD/zrv3Kcvj6SjqmDSZTCt7ntNuKXf/7noUMZ04nEFTt3ogPz6S5TisRfZyf6S8ASPT3oJIeDwkauGFE6ugwD/zD1vJJIFFqG7m7WwucjObp6dXo9Z1nEM319fHbmzPSFlVAI/6KsDB/GXuQS9F86NPdzz1HMGBigsHvllZzDMPi+ZVDgrFkjH66Zej+STFRKIyZz6OGcumicdcspKWNAN16QgpxYaW8nyG1qQrk5HCi2SATjUlyM4tyxA6fqjDN0oNzQMNTohMMYpiNHqFAtWZKZyFfEsmgxuv12nLhrrsHxyybFxVxDZyfXJTxpsRiO5LRpmoy2q0sjb4Rc2B689/XpCVj2gQ3pxOcjwRoMYujnz89cyff5OLfDgdHzeFDsra0EBTNnaiTQzJn8rb0dYzJpEtfZ04MxDARYR5eLe9myhYDEsqhaXnABxzJNTbI8Y4aedB0OjxyFaJfaWhLDPT0EXv39rLcQLC9enJ9TUZA3nshEwY4OgvJUvdDfD3q5upp2YyleRKM4wcXF7KmvfU3/my2BGI8zJGrXLpKH55zDcXIFtaGQUt/7HgH3lVeSlMv2mZISzaPqdLJHystx8H/4Q4KDc86Bv0gC4bIyvS/tiINAgHsrKUEHZNNFhw+DknrpJdpzvvKV9CTsshaS0BjN6cuRCAWo3/2Oa3/rWxlWM2MGrwv3qww8GOngqFzicOh2RL8fh72ycuzOV5DxEZnWLEGRaY5ee3NbG8/K298OP+qTTyp1zz0UJpYuRW8UFdE2WFGhB7hVV+sEohQ46up04lC6ICor0XEyROAPf8BmSgtbPvdgmvgbnZ0kwRYtGv69u90kC08/Hb26bx/X8corBNkuF4nE1atBYtrb/CR5KNzSmc5tb48uKsrMEztckcKwz6d5GzOJy8XE5Tvu4HtZuRJub+mkiUbRRUolI6Hd7uQumXBYcytKO7Rp8lpJiU4oSnJxLAZRFeSNJW1tPGcLFgxNIMbjDDzp68PnaWjgWR4c1O3+lgXlwrZt+BkbNqAzysrSJxDvuQdKh9NOU+raa7HXuRKIwSA0NPv3c50bN+Y3yKSzkximtpY4yLIoiLS3o0vzSZ6FQoAxioo0FVSqlJZqehOhYPJ4QCBnGjYVixGrhsPogGx0V5I4FH+mrEzz4IptKi7GB7Qs/MdNm4gB58yB0mXhQo41OMh3Ho+j19N1841UBB1ZXKyvLZHIO5lYkDGUgqkoyCklg4M4tpWVGJLiYpJpvb0YKiGj3rEDpbhmDcGyz5eeoysQIJjs6SGpNXcuCjKbcpS2ot/9DuV7000YtlxiGFy/YWAk3W7N0+FwAFmvqMD42IexiIPodGIUgkGuoaaGQCDb+Q4dwtCXloIGyPR+08Roer0YGjsXiUxqbm3FiM6YwVq6XCREJMEohLozZnCc/n54F/ftg9sjGsXpv/hi7QCHw7xPWpdqarg3OVe66t1Ipb4e4yxt2t3dPCddXTjv6cjpC/LGlr/8hcT3hz40lDA8HKaIYFm0v5aX42DJoKTyct7zjW/wjP37v5PAzyTRqFL/8z/QKbztbSTZampyO2rd3ZyjowP+swsvzH1fwtMq7bRlZSQOf/hD9M/NN+Nw2503p1PTLciAJa9Xo4SyJTvjcVqsf/EL3vv1r5MIyfR+e/tydfXooAATCarrv/wl+v6ss0BBLligXw8Gk4cVjCavXSZxu9GlXq8uDI1DW2JBxliE4ykeJ/A73vbmvj6C0qlTddB+/vkULx96CB3Q1weaVqb/9vVh+8Wu9vejZ2prNSez7GsR2XNbtuA/nHUWqJvDh7WNzpTojsexrYOD+AyZ2vByiX36sscDJ+Cb3sT/9+7VPIovvcQan3YaxeJVq7QeEp5BmZSaep2xGK/lao8ershgg4EB9rMMZ7GLZZE8+eMf8f8WLlTqox/lu5UiuD2QzkYjoRTfn/BdyvoFgxqp6PPxLIjIABhJLOY6fkEKYpfBQZLf9fVDeQUtC77C3bsZwrZokaZPKC7G97csfJ0nnoAH+eKL0W1O59CEpAyX27QJP/2qq3jOcxUVAwH0YmcnemHDhvye8aNHudZJk4gJIhHu1ecjtpk3T/tAmTgGvV78MpeLzzidupXYfg2Cbnz2Wc6zfDmUEZmS/D4f16cUsVc+KEBJ2AoXttutbVMioXX2/fcTd02bhi5asYL3x+PEd4OD6Jj584fPfZ+v2JOJ8bhuwR7tCdMFyV8Ky16QU0YiEdrPDAPD4/FoBVdejvKLxXAu43GcSpcLpSsThe3i89GGODiIEZs2jQRiLkf/mWdogZs0CWWbg1tPKaXJtE1Tc3G0temJfvaqmrTODQ6iVKdP5768XqphsZhG/cnnU41jXx/Vt2iUY2fjDbG3L9fVaaJvuzidOpF45IhOYpaUgCSSpF9TE8q+ooL2gXvvxZlevJj2nFmz9HoMDODoulxD+RxnzdIoR0lajpbMmMGatraSDG5p4VyrVpF0Hmei8oKcpLJzp1K//jUonKuvTn7NMECzDQzQViNtgQMD7JWaGvbVt75F8H3LLZn5/pTCIf3Zz3gWr75a0xnkcpz27YNfMR4H1ZduMmKqmCbXmUiw7+JxkNj33sve+OpXM6MDZdhAOMwxlCIYzZbof/VVru3AAVB/n/98ZqS3vX1ZJtkfbzLNNEmI/Pd/o09OP501k6mMMtAgEtHtgOOtAwQNKpxLQnUx2i3UBRlfEQ6/eFy3OI8EWREOU5CrrByamCst5bmeNo3iQ2srLc1nnAEdwsKFnK+/n2e8poZgMBDg8+kGAtx1F4HlpZdCNxKL4Y8I0k1ane30AuEwez0aJamXD+dYOrFPXy4rS94DkjAUNNKhQ/h7O3agw37/e4L8M87gp64ueWKzaWpeZKeTtRuL5JnwOff3a/5pSVTu2oX/2NJCkuKzn6W46nBwbe3t6MqaGtZwJAlO0WN2vZxIJE+CHhiguCXvT+VXzNWKXZA3psRiINbKynSiyS533UXh9dprSdwppYECU6fyrN12Gwm+q67C3+nuZm9Om5a8Hy2LQu3DDzO05bLL2Fe5gAWDg/gzg4PowHz8IqWIbfr78U+mTydm27OH15Yu1QlO4RiUicT2NZAup/LyZLSeZelEogyT2b6d/V5TQ7EmUyeHZZEM7e9n3Rsbh6cXKivZ80JJI3rv2DEStK+/zrq+970UpeQaeno05+KMGeij8ShuCppfZglIQrGQTBx/KXAi6p74i5VS65VSH1JKTVZK7VBKfcyyrJ2293qUUrcqpd6llJqplOpTSt2jlPqiZVn9eZzujb3YYyiGgYN46BBB+9y5KLaDBwm6Fi3CKdyxA+d49WqcXLsCtDujAwMkEEMhEoh1dVS3slVYLIsR9/fdR1LuYx/LrxIkiADL0k5tayvnnjIlMxw9keA6TRPD0dfHOkglT1AzUl3yeAh+Dx3CKJeXsy7ZrlEqZg4HBjzXNFXhgQwEeL8dUdjejoIfGID3sLeXdXrLWzT/iTjTg4PcQ7ZpkKZJci8Uwhina3E4XjEMnPlnn8WBmDYNIvPGxjHl/inoopNcentB41VVKfXjHycHVJZFa81LL+EEr1zJ3wcHeVYnT8YJ+8//xNn+1KdwEDNJMKjUT37C/nn3uwn68yHmf+YZ2oFqa0E55oOkFeoA2YvBIINiXnsNlO5HP5q7wi+8OEIPkSnBHwyydnfeyfu+9CV0QSaJxdAr0r58vG29gvYRVMTcuUyXPussrW/ica7TNLnv1InVJ0KiUQJ9pdDnNTUFXXQqyEinNxsGiadEgmA4NXi8+266M97zHgp1/f38f+tW9NcVV4DiMwydJJJEdeqk8UQCdNzevUpdcolOAohIm+7gIJ8vLmb/W5YOtpctG1nRL5/py9k+e/SoTii2tfH3piYSHWvW4GvF4zpAHY9CgRRspGh69918l5MnM/n97LP1c5BI6O9F9n9FhW47HwuRVkpJDgcCejCNy5XMr+jxKOV2F3TRG1nEpg4OwrucGlts3YpP8pa3YGsdDuxrby/+RnU13R2/+x1x10c/yrG8XvaEnb7IsuCG3rwZ3+T883kGc/EQdnWBWozHSTrOmZPffR05wh5taODn4EH8nMpKKK5Sk+qSlC8p4bosi6RcIMB9CjVV6mck/nvlFX5fvhyQhVLsR6WS/ZBYDN9QhpiMNJFnWbpAGwqRmJVBM6LrnU50jQzPDAT0UJkTSbMiXI7CdfuPZOJwOBHHQ7ecklJIIuqHaIdSylRK3amUciulPqOU8imlFliWlXA4HKVKqSeVUkuVUr9SSu1WSi1USt2slNqnlHqTZVmRbOfq6FBWeTnBX4HXaPTEskjcvfgifF+rV/P3ri6UdlMTSvvllzFIK1dikLq6SG5Nm5b8ffT2kkCMx3GwPR6SYdmSbaZJRezppzn+hz6UXyUoHtdtJHV1GNTOTj19ubw8+zQq08S4dXZyfbNnJ7dFyfTQYBAnurUVBTt/PoYpk6Nsb18WFGe+FR7Lwqj5/dzD5Mn87ZVXQGf19XH+yy8HMSAIgM5OPmcYnK+xMbcjL/cfCJBszTUte6QSj2NQH32U9fzOd8bUWR5zXaQKzvKIJR4HHdLaShIslcPwqad4Tt7yFlp+ldLIPAm2fvhDknwf+Uj29mKfj3N0dcFj2NSkW80yiWXhiN9+O/vrC1/Ir5ghgaxhkHhsbsbhj0bhvlm/Xre6ZJJYjCSFUppDLN3Qka1baVnu6iIx+slPZuc3DQZ1e1CuifT5SHMzycMXX0TXfPjDOMoSjMuwgliMc6UmU060HD3K8JmnnlLqT38q6KJTRezE9vmiKvbtY88tWTJ0nz/9NAOKzj2X6fEOB8FmZyc28/HHGcJSUqLUO95BUG0YvMftTvaLYjGSj4cOYbvXrs1+XcEg/lZrK5+ZNAm0UD5T5NOti7Qvj0Z7cU+Pbnnet481b2ggmXjmmRQUxqtY0N6Ov7ljBz7gNddAnSO+jyChZbiN+ITCS1lcDAJqNFuuM4kUp+2JxYEBEiqHDin13e8WdNEbWfbs4Tk4/XTNISyyezddDIsWMRVe+O2OHtXDHx96SKmf/xy+5X/7N577nh5svp1qyTDghn76aXTWhg0cIxv/n1LoonvvZa9ceWXuhKNSeuik18vxKytB5vn9xChz52ZO4kci3ENpqR6QVF+fWQd6vQwt6ekBGLFuXbKvJ3pQgCHSvuxwsN7HS+00MABS9Lnn0DMXX4x/KoXjRIJ469gxdNDs2bnnA4yneL0kiO+5R6m//nVYScTx0C2npJxEbvEJF0sptcGyrIRSSjkcjt1Kqb8ppS5SSj2olPoXpdTqf7xnu3zI4XA8oZS6Tyl1vVLqf7KdQAy/z6f568rLR3062htOnn2WYPCcc3QCUZJxtbVUuHbuREEuX47SE1RQXV2yo9zVhUOnFFV7p1NXWzNJJAKP1q5dVMTe/e78HFBJIEprS0+PJhaeMSOZ9yFTi5PPx3sqKrhO4Vayt+MIOtDnwwhOm8ZrR47oKll5uXZCo1EMk5CrD9dIOBwkVjo6WM+2NgKVgwc518UX46zLRDOlCGgSCQINqSgNDGjUViYpKuJckkgVNOdoiWXx/QYCXO+11+Lsj7GMuS4qyMjlF7/AWf7Sl4YmEJubSSAuX44uUEpznZaUsE9/8QsSiO9/f/YE4sAASbyBAaVuvBEnu7Q0u6OYSNCWu2UL+vDjH88vuDQMEhGmia77859JUs2axfTlGTN0S28mLsBwmPt0OtnHTmfyoJWiIs7xne8QLMybB3p8xYrM1zXa7cuHD7M+jz+Ozv30p0GL2tdICi8ygfZkaduTybsPPEBBxrLyb8M6ntOqgi4aN5H25tShK5me+aNH8SHSEfnv2UMBYskSUNNSrBPusSVL+Nzq1eisv/2NQSwXX6yDchGhimlvT0ZXZ5PycgqRwSABsbT/BQL4ZPlOUs/WvjxSqa+no+Atb+Gadu7Ef9u8WanHHkM3rF5Ny/NIBr/kI/39FHsef5zv4/LLsQf2rhhBBZkm34cdgVRVpZMT4uuO9QA4h4PvraKCaz5yhNbqQEAPWBhDKeiik1g6O0kgNjUNTSB2duoJzJ/7HM+OZRHzOBz47E8+CQ/i2rVMYjYMzdlqBwckEhQAt21DF61bxzHSIfvsIr5ZdTUt0vkUVgUV6Pejv0wTMIHDAaI6V2zkdrM39u3j98bG9MVS0yQx+dpr6Jp16wBapOq6oiKOEwyy1qEQenbmzONDTgvycMsW1v2ss0B2NjbqQlYwqDvkJk1iPaSl+ETzpba2kvx85BFs1Qh0UUG3jFAKSUQtv5QH6B/y5D/+FVrY9yiltiulDjscDrvqeF4pFVRKna9yPEQNDXoSUiiEcvH7dXVREoonul1qIsnu3SiOZcuo3iqFEmxt1aS1r72Go7VkCUm0UIjAXDheRDo64OJwuZR617s4TllZdnTbwIDm0rrqKhzwfCQWw0AKN017O45yfX0ycbA9kWg3EpbFPfn93MfcuTxPMgyhqorrP3qUwNnh4P6Fn1H4OmQtBgY02XogwH3PnDlyglyBlP/97wS8kydT+TvzTM577BjXNnkyznQsprkfJdlgb//MhlKSSdGStDTNoeTLwxUhHpeWcCGTnzYt+/CLUZIx10UFGZk89hgE09dcM7QF+cgRgsKZM/VUeOFBFDL93/8eR/bqqxkckkl6e0kgBgK09EhSLlsbYCCg1Le/jbP87nejw/KxJUKLYFk891//OgmICy9kCIMk2Nxu9mMkMrSt1+/XrTt23h6Z2BwKsXb/9V96MIsMeMgksRjHVOr4pxJ3dVHoue8+7uOmm5S67rpk/SZ7XtowPZ6Tg3MwHCbp/Mgj2AmPhwTIJZdgz8ZYCrponMXezmwfupIaqHm9+Dl1dUN5l7u60AWTJ8MxKvtMKE+mTuW58vnwCzZsIIl2xx20Ej75JO20K1aw33/3O2z2u96VnbtVxDTRId3dJBUWLkS/+Hxct0x9r67OzO1qb18WrtXR8o0TCY5tWazRJZfguwUCrMNLL4Hy3bwZ32PlSgqfS5Ycf5tzIABS5uGHWaeLLsJ3LC/XvlhtLesuSOhME5NLS/FJhGdNWhrHKqg3DPzJXbt4HoqKSLKuWDEuiKSCLjpJJRCA77SmZugQyUAAjmGllLr1Vu3LDw7yfNfXs9/+z/8hjrvlFva50CjV1yfTi/zoR3SVXXcd+zKRyM5Vb1mAGF54gb1yxRX5FQZNk2c9EEC/9vcTs1RVoQfyAf8Eg7ozo64ufRzT26tbwGfN0lz90pqbupfjcfae18vaNDWNfL/HYiQOH3kEe/CmN1HMmDSJ4/t8XHNXF99HSQmD5qqrNWpedNR480SbJojJv/wFYEdRET75NddkL0xnkIJuGaEUkohaWu3/sSxrwIHmkhTSIqVUmVKqJ8Pn8wBG86B7PJojQRKKklSUaqtMxDzRGf6TWY4epfowYwZOmBiaI0dQbvPnUwHq6sKJnTEDg9PTgzK0Oz1tbQT4ZWWQx0YivMduwFKlrQ1Ukc+n1PXXo4DzkWgUw+J08tPayr+zZg3lHJRknEyhcjpRntKKXVurofHiaHq9BJudndxHQwNrYQ/ChauouprjBgIYzN7e5MmxRUXDd94HBzFKL77IGl5yCY6mTBaUc+7fz3c4bRrrbA/oxeD29HCvgQDfV6b2LkkkHj3KZ+wDaoYjsZhunbQsPblynNHC46KLCjI8OXgQZM+KFUp94APJrw0OEoDbp8IrxXMbi7FH77mHn0sugZ8sk3R10e4ci9HmW1mpBxVlQyR94xs4ev/6r7Qv5iOJhHZyW1ooiCQSHOPss5PfKy000lrndnNdg4MabVhdnXyNRUXolC9/GUfvjDNoaZo7N/t1jVb7stcLsvzPf+Za3/UuvrvUdiJpO1IKHXwy0I10dpLE2LpVT3583/tAmI414sgmBV10gsTp1NMvY7Hk9uZYDPtZVjZ0+mkwSCHANEFLy7MiRcbaWo2Odru1Xpk7F+qD3btBJf7wh/gklsW1XHstdjyXxGIUbn0+rk3Q2lJIqanB3x0cRPdIQbe6Wgf30lItNni0AlR7YlJQPaJbBGV35pkMD4hGuQ/hUXz6aa5lxQr02OmnD88viEZBYN97L7rm7LNJ1NoLnjU16P/WVtbjHzyDWaWoCB9PuCiPHcNXGk0dFgqRFN6zh/OUl7MGS5ZkL/COshR00UkoiQRJQKeTYWT2mDWRUOq738Uv+epXddErEtEJqoMHQSnOm4e+Kinh/fG4jhmUYv98//sg9m64gW4P4Y3P1G2RSJAke/11YqALL8xvXxiGRvrV1elkYlMTHIr5xEODg9xHaSk6UHwM0XHxOAjoffvYT+eem4zgTB20ohT+jLQvL1zI2sRiw49PDIPC5P33c8zTT6eobefNrqoilt69G/07bRrJVNGXEhumoubHOmfh9yv14IP40h0d6Mx3vpPrnzFjxIWmgm4ZoRSSiFqMDH932P59Tin15QzvGxzuCR0OjUCUtklp/7KPW5f3FBKKWrxeOL88HipS4mSKUzptGgqmowPnWJxhmTZnJ59taYHrp6qKFkOZUNXQkHnNd+4k6eh0wqe1dGl+yisS0cikaBSFaG9fTidFRZzHMFDW3d38W18/NJgsLcV47d3LZ1as0Oi+TCKJBLcbY1JWlsx7I4lvSWxnus9gkKD3mWdY67PPBh3q8bDuMn160iTNExKJ6Nb+VCkt5dq9Xq6vvZ3PZkNjybSzvj49zS2XSDI/GMQgy76Ulp0TIOOuiwqSXfx+AvPKSgJte1IrEkEXJRIkqKQQIPu7vJyWtTvuwFH84Acz76GODirtSpHIkyl/tbWZE2nNzaCOioq4xlQkQCaJxzUH4oMP0iY7Zw7ty5n2jVAkRKO6zT8WSz+B2TBAdv/sZ3zuc58jaM6GbjYM1iyROL725XCYgS233YYtvewy0Iep9yWIbMMgEDnRdtayQHQ89hj/GgY6+dxzCZpGigw/DinoohMoEqhJN4Jpspf27uV3GRgnYhgE7Z2dSn3taxqhKNQpwnNobxOUSaCGwfN15pm0FD70kFLf+x4+wNvelt+zFwyCUovFkqeVpor4tPE49t3rZd+XlrLnS0r08JTRQgNLMtayMvMqytAAaR+WKc6JBAm0HTtImGzbhm+wdCmvr1qVOZlmGCQy/vIXfLMzzqCYkTrhXvjOXC6uU64hX0nX3pxPy2Y26eoiiXD4MNc2ZQror7lzRxcZmqcUdNFJKLt2YWPXrUtOZlkW7cnNzfCxil9iGDyjLhf/fv3r2OWvfpX4wuvleLW1+nihELpo/354pJcsQS/V1WVGFYZCdEK1tbE/16/Pn9qlpUV3XLS0oBeWL8+fKqm7m71eUaEnTkuMX1wM0GHbNq5x4ULitNRCiR08UlTEnh4YQG8KX7wgqoXDNpdYFjrsnnu4xnnz8ItSu6sSCeItaTcXOop0vlFxcTJq3unMTL91PNLSAt/hY4/pdfvkJ6ENqqk5br+toFtGKIUkYv5yQClVa1nWY2NxcEEgikIUXqZQCIdPHEBxvk6GNqsTJdEoQXsshgIU5y0apXJSUUFw29pKBUgq9b29fMZe3dq3j2mDkyYx1Vmmz9nfYxfLwiG8/34+c+21+VemhDMskeD3RIJEZT5tIMIv1tnJdU2bNtRoDAxwP5EIkHNB2whKKN01SrXM6UxuX66o4F7lGZSkYlERz6jHo5Gy0ShomSee4Pe1a2nRsaN9BBV44ADGqbGRwS4+HwlCIQdPFUEveDwYNOFUykYkLuTKMvE6tdVLxDD0vRmGRkme6ERCHjKmuqggyWJZBOa9vbTj2qeAmyYot95eChDyDJsme6u4mNabX/8aJ1u4ydJJaytTmF0unG63m/1UU5MZifP440r99Kfogy99Kf/21lgMfdHXB1LvwAHa+T7wgdyoH5dL86aWlKR35HfvVuorX+Hf887j2mpq+Fw0mj44Ho325XgcB/mXv0SvnHsu7eCpaC0pHEQi7PWKivEZTJBJQiGQTlu2oOPdbvjaNmygkHK8XJBjKAVdNA5ib28+eBC7uXjx0Knwv/gFyedPflK3Hdu5x6qq2Beybx0O9l0sloz48/nwJc47jwLsiy+CJl6/HqqGdLa6vx/ET1ERQXs+aFmXC/9n0iTO2dXFcUpL+fto7EnTROfYeaJz8SybZjLXV3ExrZbLloEGPnBAIxR37mQdFy8mQbh6Nb6PZdFu96c/cV+LF1MYSofmjET05FVBaw4O8pMNgZ4q0t7c14d+j0Ry80qniiRR9uzBrimFb7hwIcc6GSbUZ5CCLhpnOXQIe7V48VDap7/9Df/kne8EPS8iBf5wmEJHTY0u0ArIwuPRYIFAAKRiayt67bTTOIZMBU8nfX3QxvT3Y0OXL89PlyQSPPuhkOZkrK4maZmPP2KaIIEF8W3Xk2Vl3MuWLXoa9UUXZY//nE6OdeQI1yN0V7L/hFsyFsvsVynFewRh3tZGTHTzzaxL6l7u69PnmzmT6xNASWqniUgqKtEwkgd8jlQEMblpE3bN6aTIddFFepDYOOVCCrolgxSSiPnLnUqpbzocjvdZlvV7+wsOh8OplKoezTHfpaX81NaiICSZ09+vnSxBho03F8GJFAnau7txHyhfXwAAIABJREFU5mS6lmVhZAT63dKCohSHzedDgdfWasf79ddph54yRSMQo1GOmU4ZG4ZSd98Nt8acOUwzbGzMz0GT6ayhEOeQyVb5IksCAQIBp5PrtScQJbDo6uLeVqzAQEkiw+vVPIliAGQasiAhZdiKXRyO5Nb7SETzKAaDHKO5mcE20SiImUsvTd9GLFxj5eUcxzBYY+EJ7evTAxnSicvF9+n3Y4CPHOEea2vTG7UpU/hepLXZDnOPxVhPaZeSlq4JNOBoXHXRG13+8AeC6E98AmdZxLJA7x04gC6wt+gODvLctbSAxFu+nGmDmRyegwdJBno8Sn3qU5o8O1MyzbJANt51F/vuc5/Lv61MEoivvAKaWimmTa9fn9/nBWGp1NDW30iE+73tNvbyD34AGtmud2Ix9qZ9+qgg8EfavmyaoA7+539Ac65aBXIh3eCReFzrL7GjJyoo7ugAvf3ss6xdUxN8maLDKypO+oJGQReNkzid2MnubooFqYj8TZsInK+5Rg91Uoq9HovpxFRxsU4gGobed2L/enuV+u1v2Sc33ojtfOc7QSv//e/4P+edB7eYIN2OHgUl5PGg64ZbALAszWEt3KSSRKuo4NpHMuBIEqQOR/5t0eJDWhY/qbqhqIiE2sKFcM+2temE4u238yNDZWIxfNBbbgHBl3osw9BFTJcruYBZXa1RmvbCVS4pKiLR4Pfz3R89yv9zfSeBAAjX/fvRRR4PiehZs/gOJgC9UkEXjaP09fG8TJ1KPGSXZ5/Fbzr7bHSHiN+PvonFoF8pKSGBWFurqaZcLo3483qV+ta3iG3+9V/xv7q62CeZYoX2dpKXsRhFxHnz8tNH8Tj+mter6YxmzSJOy5dbuqMD/2jKlKH6+dAh/Ei/H79kzZrc+8nr5ZiWRUIvXReW6DTRc6nJ0kOHSB7u3cu63nADQI/Uc0ejeohMRQX3LjahslInEu1xZKoUF2On4nF+RK8N17/yevGt778fPVpXRxfLOecQM2bi0R1DKeiWDFJIIuYvP1BKXaaU+p3D4bhUKfWsAuI6Tyl1tVLqS0qp/x2LE0vrRU2NntaWOhBDEIonEk0xHvLgg1TIr7giGYJ97Bhr4nZjCBoaqFRI23B/P+sjztjOnUwfnTkTDkRpZ62tTZ/YC4UgF9+/n2rzOedkhnen+6y0WcsgFfsEvlwi37PbjXGStubiYhTsgQP8v6kJxS/XVFTE/UgC1TD4v6CI4nGcy2yDY0TsSFkhKr7/fox+YyPtTvPm8bpcm1K6VToc5tlcupRrOXYM53vmTJwQ0+ReioqyO8yVlXw/vb2sSTDIPaRLANbXczwZtlJXp5OZ9gTpCWpZPh45YbrojSYvvogzfOGFJMjt8txzvH722XoqvFI8Y5EIDtmPfwwq2D7cIFX27FHq5z9nbwoC0efT3LipEotx3KefJkH30Y/mr0uiUfbs3XczPGH+fNqX8+UPFS6z4mL2biymJzY//zzIgiNHSGT8278NRQq43bptT/SUtC8Lwnk4Imifn/4U3bxgAe3g69cPdVwlWRmNsl5VVSdm75smCdzNm0EHCO3E2rXoUo+HazvJA3aRgi4aJ5GJnPX1BO12HqoXXiBxf9ZZdEeIyPAU4TJ1OvXgDdkPMthPKWzlb3/L7x/8oNYLHg9B3AUXwOm3ZQuDRy66iMC+p4fjLlky/AKAJPqky6GoiOc/kUDXiP9SWkrwWFmZe2+IjjHNkQ1lSUUjZvqsw4HPNWsWvNzPPIMuf/JJPjt7Nt/P4cOsz8yZOkEp6EOhi0n13YVzVobRZKNxSSdSgOrpoWBcU5P+GMeOoYeOHOF8U6dyP5J4nACdGSIFXTROEolgw6RoYJd9+/BPFi9O7ryQ4mUoBLdhIqHUd76DjhG0tGVpGqn+fhKIfX0UORcs4DlO5bO3S3MzurC0FCT/9On5gQNiMeLGri78A48HXZbKnZxtPY4eZc83Nib7bYEArcudneypjRv1wMxMyU1BNA4OapCH6KR0e9HlYu3icf5fUsLn77mHTpjKSgoeZ5891OcRmq9jx/iumpqGIs1dLhKLMkCvsjK7Tiwp0XFqNJrM55tN9u2jGPb449zL8uVc9+mnsw7ZunLGWAq6JYNMvPD5BIllWRGHw3G+UurTikk9VyqlIgpCzjuUUlvG4zpcLj0QQ9piQyFdsSwu1gnFk4EcfjRFJmy9+c0EXCJ+Pwkoy8IRqqvTMG3DQEE6nVoxbt/OlM45c3C4YzHWrrIyvZPV20s7Ym8vTvTy5emRe+kkGNRcFmVlGMx8p9iJYQ0EuLbJk7XiDoVAL8l1L1qUPgB3OLgnp5P3ynRGlwtjMZzqvmWR8HjgAQzOjBkgOGfP1uhEab0vLdVtRC5XMj+PTG/t6CDRMmsW6ynoSAkiMomgMSsrWZ+ODt6fbiphTQ3rd+gQ19zUxN9OJProeOVk0UWnuhw7RhvN3LmgEO3Py549DA9askRPhVcKnezzkSD/yU/YI7femtmRfe01WhAbGnQCcWAAJyzdHhgchP9w3z7oF97xjvyf40iEz/3f/8ueufxy0Nz5OmX2YL62VgfXnZ1K/cd/oBdmzSIJsWZN5uPIxGZBa8p+H24BbNcu1vjll1nnr3+dpEY6J1sGJlkW53e7x3//BwLQPjz+ODqytpYhOytX6oTxiUpsjlQKumh8JJEASVJcTDDtcmHH43E6Kn7wA5Bxdj0l3GP24HPyZO23hEL8vaKCz3R0UCh1uaA1SOen1Naid976VgoRt93GcS+/nLbB4SQQJZEmVCKpib7iYq6hrg4fT6hXenu1D5xOd0WjulDodo98P9n5EXPd15EjtC2/+CJ7+PvfZ1+/+ioIxfvuI/laX0/B4LTT8Jvc7uztwWVlnF+GLg6X47CkBN+qv5/1i0ZZT8vCf9yzh7+XlvJczZzJOYUfdiLRJhV00fiIaWJzDYPiqX1/dXfjn0yaBPrW3m0gVEQ/+Qn7+Zvf1EOX+vt1F5jLhV//zW/yvs9/nmKnJLmkyyj1ml54ged50iQ6ESZPzq/TKxqlAHnoEM/9lCn4dfn6IwKKKC4mvpDPSQvxrl1c79q13IfDwWdCIY3cs0skgj6JRpPbl6VN2D5oxS4lJZyzuxvE+LZt7OsrrlDq/PPT+6ChEDFYKERc1NSU2R8sKdFUYX5/bl3kdHLfqS3Oqd9dIoFftGkT6+V241Ofcw7fhQy3PJH5jIJuySwOy7JO9DW8kWTMFlvaUkIh3aYpAytOVNA0mrJ3L4igxYupTIgiEufa50Ox1dZi2JxO1qCzE2U8fTpK8LnnIAxfuBBya0kyut0YsNQ1amnBsbYsAr7GRiq1+QTefj/JBCEATq1QZRO5rkgEoyjoPMvSrUOWhVFqbMz93cq0saNHUf6nnTY8pXzoECjQlhbuRYLf1PPG4zilHR064dDQwDlTq+0C1Xe7NYKyvZ3neMaM/NozTRMHRBLokydzHmlZlomr0SjfgxjKUaisT+DdpJQaQ110Kkg0SvtMdzdOr30gx9GjFBWmTEnmEBRH+fBh0HDV1TjCmZC1wpU4YwZcP6Wlemq7DDywS1sbiTKvF5TfmWfmfz/hMITUt93Gfvv4x/OfJm9Zml/LzlVkWejSb32La7rhBqU+9rHcesWy0I39/azd1KnDC1ZlivSTT7JON97IZL50OllaI+Nx9IPHM/6BcXs7a//881zHokUkXObO1UnNqqrjqrAXdNEpLrt3s8eWLk1G93Z3gyQuKaHgYSf+7+ri2Xe5NOewBPyRCDpOEkZtbeiGsjL2cS4ETjRKcHzgAOgfGXp25ZX5JRNHOn1ZeKUDAf4v6JTyco4ZjWp0ZknJ8fu8lsXxHI70PkNvr0Z1u90kUy+9dGjA7vOh759/nsKRZbFea9bQ2bJ4cfY1k8naHs/IpyEHAnzPLS0UMZTieZk7VyNORUceRyGjoItOcWlu1sNK7BzMwaBSX/wivsK3v508abi/H131s5+RcPva1zRnayCgCwO1tbz+zW9iK2+5BbDHsWP8f9q0ocm9WAw+9o4OEvMLFmjEci6JRNiPBw6wHxcuJBbJV2/093Ptbndyd1l/P0nNgQHiszVrkmM/QRg7HMmovoEB7tXp1F0J9s8kErw33f4MBonRNm9GZ513Hvoonb4wTfzYri505cyZw0NdBoN8D/mssZwvHuceBJXY369blvv7Wb9LLiHZWlzMdY2UxuIfMtF10YSQQhJxfGVcFltIa4VnyrJ0q0iuCbsno3R2QpQ/eTItNnYj0tKC8fD7tVMmClaSS/X1KNInn0TBLllCa45Axp1ODRe3y44dcI7V1jLds6oKo5lPhWpgQLcZNzaSxMw3eI3HuWcZvCKGJBgkYSr3Onu2dsCzfZ8CtRdeROH5mTQp970cO0aioLkZg3HRRSQf0t2LZWlErKCLHA7d3qmUdlLLyzG8fj8BSGmpTiS2tREM2Ae95JJoFIPo8/F/CcplyrLTyWuStGxqOu5kwgTaQWmloPgziGUxQGXLFhB2dtSzzwdysKiIqex2B83rBd3xox/xjH3jG5mnk27bxkCTOXNI6EkCUYLL1GfzlVcY7lJaCrIxdZpeNvF6QR8++SSO+2c+k/m6UsUwuK54nD0l93vsGAnNp54Cmf35zxOM5mp9s09fliA/03T2VDl2jPt44AHe//73K/We92R2MiMRXUSQQtp4iWEwxXXzZtCfJSW0WG/YgB5NJHR75ihQkBR00Sks7e0gU+zJHqXw777wBT3hVOhVXC7NHSxJ6vp6naiTieQlJXr66O238yx+4AO5ESaBAAnERAJfqq6OJOef/0yxcfp06AxWrUrvl9jbl93ukRX0EgntayQS3KckFMvKRrdQkC6R6PfDM/b3v/P3iy4CFZ4pqBZec+FZ3LcP/3LXLnyX8nKKsmecwfCWdDrB50OfVVQMj/bBsnTL8uHDfH/TpqG3p09n/UQHF3RRQRdlk44O0LVz5iTzQxsG/k5zMwOYli3Tr4VC6K///m9Qb7feqjsVYjGezdJSdFt7OwlIpUhIzpxJ8jEUIhZK9RMCAXhgfT7OOXUqezAfxG44TKKvvZ3zrFiRfyJNEH/SCSbDHBMJ9vSePdzT2rUabZkqiYSeSO92E6N5veztxsbMgz0TCfSQ6LhoFD/jkUf4ff166Heqqzl26nGkUyYaJaZubBy+vpT8Qmnp8IoasRjI+fvug/rBMBg4eNll0GFJ63N19fCpbdLIRNdFE0IKScTxlXFfbGkZER5FcYbsCcWTme/E74csXymlPvKRZCetpwdnrLsbA7N2rXaCgkH+XlVFUL55M5DpFSuolotjZVk4VHZFa1ko5M2bcdwvuojXUweaZJLOThKILhfBvh0dkEvCYZJhDgeGSdqCW1sxdsXFHLOhQXNgOByZK/lSKSsu1vwgiYSekJap0tPfzxrs2ME1bNwIn0YmJzMS0ckGj0e3LIvIJGR7YlscV2nbLinRJMZtbRyrqSn3mhuGrtQLT6IY4tT2dL8fh6a0lGMXKu4FSZX774dj733vU+q66/Tfo1GQgwMDoN9kqJNSPP8HDtDGphSV9ExTwZ9+mqEoCxfCZ1hSwjETCZzY1L388MMkz5qamHKcLx2CUlzT976Hg3r11dzTcIoZ/f3oidpazWd4xx1wHikFgvLaa9mzoRB/y0QVEI1qBFFlJfcdj7N2LlfmfT4wQIv03Xdz3He+U6nrr8/MESbDChIJjuvxjJ+N8/l0y/LAAN/V+ecTNCUS3K9QkoxiUrOgi05RGRggIK2vTy4cGAY65tVXlfr3f8evkfbmeBzfJxJh39qnHEtrrPDw7dun1B//iI9y/fW5A8LeXpJRxcUkoezvtywS53fdhQ80bx7FWkk25GpfHonE4/gyg4Mc1+3G5xtt7izT1FNQH3qIIDgSgXft6qsz62TTRC8KEjq1RTgWI/GyYweFIknuLl9OQnHFiuTEidfLeYUbOpvE4+j/PXs0L+aiRSSApMBeVja8Ym0eUtBFp6j4fHRy1dYSa8nelanwjz4KB+LGjfozhoEv/9Of8ix+9rPwtiql0XBKEYO1tsKRWFJConHaNPSf10s8kZoY7OkB4W+aJKLKy3UhIZ97efxxjr1kCZx7+SbQDUNz8E+apPd+ZyfF4UAAXb1yZe5jCrK6/x8jORoachd4TZNrsCwG2DzwAPezciWFDOmaEV3rdqNzEgliH6GbmjUrfyRhOpFYLhN3t11iMYrYmzYBhHG7Nc94TQ3HKSrCLxJ6jVGQia6LJoQUkojjKyd0sS2LQE6SOcKv4HbrhOLJxIESi2kuwhtvTIbOh8MMRzl0iGTR2rU6KIvHMU7SKvfIIxi/NWuAdyulCXQlUScSj8Nts3Mnx9ywgXVqaMgPVt3SQrKvspKW4eFAsQU9INddXIyB2beP+50yBcfc7hybpq5M2RNihoFRCwRQyqktg4mETlxUVGhjEghgmJ99lmfj7LNxCjIZCdPkOIEA5580Kfc9C1JWJj3Lc9nXx3UsXsz9tLby3qam9C2SkpQQlKMMZpCpzGLg7CgMucf2dgz8rFkjTiROdANVUPxpZPduHN3Vq2m5sU8VvuMOHOH3vndoQH/gAEjBWAz0Yuq0QpEtWwiyly1T6qabeC4lMEzlfTFN0Ir33ktA+ZnPDE+fPPIIzn1JCZ/NxlOYKpGIHgQ1aRLXuX+/Ul/5CpX2s84ieWFPlErA7HQmX6dlaTSyyzV0MEIsxl4uLU12ukMhKCxuv53PXn45diDTEBhJUoTDenDSeA0aO3wYvbltm0ZoXXABuszv1xX2qqpRDdhFCrroFJRIhL1WWoq+kD1jWRQVHn4Y+oALL9SfMQyexd5e9snUqdovkn0oPIi7d6OLpk4F1ZvruTxyBD1XWUmSK9PeMgxQJps2ERwvX07hVgYoDKd9OZPYE5JOJ8eMxXSrs2XpQXqjgGhRiQSow7/+leOvXQutjr1lM1Wi0WQkdC6aB8MgwN6xg2Ts4CD3tmQJ9mj1avSHcBtmKkR4vSQOpRNm8mR80cZGPicoUCm2OJ28Z5SKGgVddApKPM6etiw46e17/557oEK46qrkoqtSJNt+/GNahj/xCQAZIkLXNHUqvv53v4teuvVWPV1cYoJUIMahQ3RBlJcTo8l+zwdJ2NmJH2YYoPbmzcs/aRWPg8aMx9FnVVXsqZdfJvarrKRTy15gzib9/XSvKMUezQfVJ8Pk7r2Xzy9ahH6dO3fo+2S4VChETGwYXHe6zruRiPh1kj9IlZ4eCi4PPoheamqCembjRs2L7XTyvdXUjHqxd6LrogkhhSTi+MpJtdj2hGIiwd9kGlt5+YkleDdNpe68E6fquutQlPbXdu0i0dfYCDeYOMBS3TJNFOVDDzFIZf16pS6+GGMhBL/19ckOpt8P/2FbG9wMp52Ggkx9XzoxDGDafX0o6YULh5eQFeJrGb5imhilY8dw7hYuzGwgDUNX94uKcFzFYNTXZ/6caeoEhsNBJXzrVgzkunUY/GwTAWXqtGHo6v9wK0iWpROK/f0k94qKuF+PByNUVESyTyaQhUJ8f5I8lSnLqevt8/F9WJY2UvbBNG1trJkce5gy0Q3USaWLTgYZGKC1uKQEHkS7Q/fgg/BZve1t7A27tLbSguP1kmSzt/nY5aGHcPxWrYJ3rLhYI2hTW9QiEYYlbNvGOT/wgeFNYP7Zz0hqnXYaLY/DQS8Gg9yLy0UCMZEgafHrX7PPP/959GO6vR6Pc/6SEj2hz+fj32zTlyMRPiuDBP76V6V+8xu+k40bQWzOnp35mqVF0zC0DRtryo5EAtuyeTOBQGkpAdb557Pe0n4o1A4ez5hdU0EXnWJimgTe0ShJOHuC57772BtXXknyzy49PdjQ8nL8CI9H050IIs7jAf32l7+AQnvf+7InkCyLAsLRo/gTufj7RGIxgvVNm/Ct1q0DRWznlx2JxOMcWyl0TKrtNgz0l6AThVtrJBPPTZPkyZ//zNouXgyFgt0fTRXpuhAk9EimG1sW/t+OHeiYnh6+wwULSCbOn4/NkMKTZZHc2L2b76moSLecTpqkp9JLF5JwpMfjHDsex9fLB8WVQwq66BQTy+I57O0l1rI/Iy+8QKfD+vXwNNvt2+CgUj/8IT7MTTeBkrO/NjhIcrCtDfqYujpamCdN0h1ZZWVDueplWFFDA+cNh3me0/FIp8revQAkysu1nc5XJK5SiuJpWRkFmx070EdLllDsyUc3GgbH8vm4Fpmkng0ZaFno7b/9jYLO9Okk5E4/PbN+kaExg4Osz5w5x8UxmFYCAT3RWibKv/Yaev/pp/n/mWfy/a9YoSc8K6WprZTSVByj6CNNdF00IaSQRBxfOWkXOx7XCUW7gyYJxfEeq/7wwzhvl102dIDAwYNUoerrmeCUSjQeDOJAP/QQicZzzyUQdTi08aqtTU6QdXURJAcCVJinTmUtJk/OXR0KBkkghkIo6aam/O9TuDWCQT1huK8PxR+L4eTPmpXbMCUSOLx2NKO0L2cT4dN47DEC+XXrgJhnq6QJT1ooxDNSVzc6iB/L4rvZuxeDPW0a31lfH/fR2KinJbpcfC+5+D1lQmUgwDU2NGhEQDiMAyNJymHew0Q3UCetLjoRYhgk2/bswfG1V3VfeIGWkQ0bKETYpa9Pqa9+lWS/tBWmimWRPHz4YfbXP/8zz1wkolvK7K06fX3wCx0+rNSHPoQOzFeOHGHQyeHDIAOGk3xUiusJBtlvtbU4yF/9KonSK64A0ZjP0AWhWZACRUVF7v0VCKCzb7sNtMDatbRHCQF7OpGiQjSqCwpjbau8Xojcn3iC36dMISARhIbPxxoWFWmU9xgnNAu66BSTAwdI7px2WnLQvm0bLX9vepNSn/tc8nMVDOI3uFz4IaWleh8K2t/tpgB7772857rrsu/LRALfpr8fv2bOnPyfZUHCBAL4GEL4f845BL/DTViZJvcg6MNcwwIti3MPDnIdRUXsxZqa3LrIskAX/fGP+AizZ0PbsGyZ5pRODdzlfkXnjRLHoLIs9LogFNvb+duUKSQJGxt1YF5eToJzwQLWR3SjZemOo9Q1syy+30CA99gneI9ACrroFJP9+9FHS5cmxzYHD0KvMmsW3Rf2Zz0SAYG4ZctQWhhJEFZU8Cz/6Ec8y1/8IjFZPK6nHU+dqveZJPQPHAA9eMYZerJ4XV12XSAFv9dfJ2688MLhIW/9fnwSiavicSaxHz3Kud/0pvz1WTjMfo7HiUcmTybWCwYzczcfPEjycP9+rv/tb+f+pZswFfAjFFEdHfxeV8d5xoq+TPTP9u34yi0tfL+XXILfOGWKHn5qmnpAn1y3UHEopQevjIJMdF00IaSQRBxfmRCLnUjohGI0yt+kojpajlE2efFFnNwzzxwaQPf2oqTKypR661uTE4FeL85QdTWtJ6+/rkfFK4WS7ulBudkrUPv2KfX733OPN9yAEg8E0vNwpEpPj56UvHjx8PgPpeU4GuVzbjcGsreXa1y4MH/OCuEeCQa5brvxTSemiVP6yCMkLWbPpnVZpnRlUuJ+P4bbsjCaYxEgR6MkQaJR1kEg/04nDvLUqdmvMZ0Eg6xrIsHzIZyNkQgJEocDZ2gYE6snuoGaELpovORXv4Jz77OfJSEksm8fLbWLFiVPhVeKZ+qrXyXp/cUvpp+WbFkcd8sWWoCFPzAWA2VXUpKclGtpIYEYCpEkWL06/3t4/HEQiE4nXIVvfnP+n7VPYBZOmh/8gGufMQOE5fr1+R9LONmqqthv2XSRZVGx/ulP0aULFyr1L//CembTLTKswDTRnWM5MEyQQY89hn0yTRAA55+vEwuSPFRKJw/HiYuxoItOIenspF1v5kwSRCItLXrYwDe+kWyrEglQaPE4CSTxGySxJZx4zc0k6hcuRJ9lS7hLO3UoxPuHgyC0T192u7HVXi9+3RNPoKMuuoiCZT7t/TKMxeFIPywgl0Sj+C1+f+5W5z17SB7u2YOv8a53JesiGbRSVKT/Jj6zYeji+1jpou5u+MX+/ncQP0L5ct55FLlmz9at1NI+ng8aMhjEF3Q4dMJhBFLQRaeQ9PSQGJoxA3sn0tvL5OSSErow7Ak004THftMm+EJvuil5nxw9yv5tb8dfaWqiu6GiQvMNpnLVR6P4UJ2ddHKcdhrPqsvFs5ptr/n9dJG0t6Mb168fnv7o6+OnrIxrOngQcIpSFI0XLsx/r/f1kUAtLka323VfMIiOq6zU13f0KOu4cye+1Nvehl8nrws/on3QSjhMTBMM4ns1NbFOQq0w0mFWmaSrC71+773Ymfnz+d7PP5/nIxBI7kbJxFcrHP+iW6Wz7jhkouuiCSGFJOL4yoRbbPtADPuEXSFTHe2JlwcOkNBbsICA265EIhHa3OJxlKk9YRcOY2BKSgim9+2jCiKBbySCspMpYKL0n3sOJT1lCglE00Th1dRkrywZBtWkjg7OuXjx8KdUdXZqjorBQYIEy8IJbGzM3zAJzF4GM0yalNlICiT+wQdZj8ZGHPn58/XEQ0kQpnJF9vVpNENd3di1u0tCY88eztvYiNGRVoL6ep6LkhLdypwP+sg0uQefj2uvr+cZjkYxupZFIjHPZ3qiG6gJp4vGSp56iiEFl18O8k2ks5PkYl3d0KnwiQTV95deoo3HTiYuIpQMTz/N69dcw54WJG9REftVdNy2bQxmqaykwp+tfdcukQjT6//+d/Tmpz41PDS0fQJzdTU68VvfYq+8//3wruUbUEr7stBjeDzZk3svv0zy8NVXSY585CME7DJ0Kd3nhOMnFuN9Hs/Y6aJ4nO9l82YKG2VlJIM3btQcb1KFlwmxVVXjzi1c0EWniPj92OeammRahL4+igpFRXCH2QsPMu3X62X/p74WCPAcb99OAm/5ctqKsz2jPp9OUC1bNjzUYK7py93d+HHPP89+uewyir3pitORoOunAAAgAElEQVSGgX02zdEZxiKtzjLVWYYcVVXhy/3xj+j0mhr09XnnpV8nGbQiaGtBQo9l145lkQjZvRvbJFxifX0kNtrauL/KShI+a9fyXQ/neuztzSOkqCnoolNEQiFaf8vKtE1Winjj1lvZx9/+9tDpw3/4A1zOF1+c3OIswywTCWKdX/0KffXZz+oBi52d6A47V73Px9CWQACgQ2OjHhY5eXL2RNORI+xnr5c9sXx5/okpuR6/n71QWoov0NcHGnHt2vz5Vg0D/eL3sz9nzBiqV6QQqRT777776IIpLWUtN25MD3KQ7iyHg+9EdMPMmcSCIqaZzB9/PHrUskhsbtqk+fM3bECPL1qETo3FtJ4tLR0aU2YSw+AzlnXcqMSJrosmhBSSiOMrE3qxJXiThKJM2LUnFI9HMXV1EQzX1tLGZ1c4hoFS7e4mOWg3XFLdSiRwkltbSQjIIAF53enUhLKmCaJx61ac9fe+V0/KkonOmUT49Pr7UYzD5ZkIhbgPaa9pbUXZ1tRQ1RrOsfr6MKglJRg2l4v7dTqHGqmWFu758GESaJdeilGVdifT1DyJiQTrUFaGYfN6eV9t7fCSpcORRAJHQYatCH+l8BYK748McAmHk5Gywq+Ry1BFIqx/PK5RqYbB92AYnCuP72CiG6gJrYtGS9raQL3Nng23jzgsfj9DSZSikm5HJFsWgfzWrQz6sHP9iJgm/KrbtqGvLr+c59k00RuWxTPsdPL7ffcxgXj+fNBG+RCEy/V/73s8u5deStvQcCbuSXHAsth///VfVPwXL2awzJIl+R8rEqH67XBoFF44zJqmJub37weF8Mwz6KIbb2SNiot14UoSiXYRHl+lMrf+jIYMDFCMeuIJdNK0abplWTjIgkF0o2nqlvTxpv34hxR00Skg8TjJ9KIi7LLookgEndDZSdA+a1by59ra8G+amoZOhA8GOe4LL6Cvli1DX5WUZE4idndTwCst5TryHQRkH3bicuW2w21tIJ1ffRXf58orSdCLTozFuPaiIo41mol52b+DgyQaHn5Yo32uuoqgPR8/IhTSwwmP1//NJMJrtmcP1+zxEKgvXMg1Cnqrt1cnGffuRS9VVoLcOuMMdHk+Abm9vbm0FP9oGIF8QRedAmIYFBMjEWye+MOGAZ3CK69Q6Eylb7nvPtqYN2xQ6stfTt6zQiu0ezeJxiVLlPr0p/U+6+nh+W5o0DpHhqA4HNjf2lqOU1SUve0+kWC/HDzI76efjm+V7/4UzsJwmHMePUpnW0kJcWWqDs4m4TD7MpGg8JitW21ggLbl55/nXIIuzpWsHBjAB5RBSo2N6fesJBJFZw1XX4XDFFQ3beJ81dX4nZdfjh8nideBAU2fUFMzfD9N/FFp13a5RoRKnOi6aEJIIYk4vnLKLLYMxJAx7wJBloTicCsdgQAQeNNU6sMfTm5TtiwMyf79tCbbA1upbvn9BHzHjuGMinEzTf5mGASCLhdO2Z13UvE/6ywUYCCA45Ta6pwqPT0kO8XYTZs2PAXp9RK0l5RwHR0dGMJ585KnT+eSRIL7CoVwfKdM0UpW+BEFDt7RAfJwzx7e+9a3ws2WqpTt1XWvlwBZpqZ6PBjTsUDYCG+SnfhbJqsmEiQ9YzGCJBmc4/FgKE1TT3kWuH5xMc+gEP2mE0E7Dg6yDtJOLoZ45sychnuiG6hTRheNVEIh2n4DARJa4tzFYgwu6O2lmGHfl5aFnrr/ftrcUgcbKMXz85vfgLJ7+9s1j6Jwfsbj7CWXC730y18SxK5fD4own2qtZeHM/fKXPO8f/GDygKl8RCYwK4Xu/PGPubaPfYz7yjdwFLRTNDp0+rKgkmQia0cH6/fII+ja668HFZW6T+NxPc3Z7daTRO3DCkZbF8kAicceA71gWdiRCy6gfco+lEnQlqWl2KrxmgKdQQq6aIKLZRGkBgIk+sT2mCZB+/btcK6uWpX8ud5eujcmT06eGK+U5ufbupUW/DVr8HXEP3A6hya9W1tppa6u5jryTYonErqgN9x24z17SCYeOICuffvbSV4qxflLSsYmOef1ErA//LCe1LpxI2sprc65kNDC9zoWxYP+ftampYXrmzqV4k5Tk74uoXSIRnl2ysvxSxMJPYBi506eA7cbfbZmDeuby86MsL25oItOAXn1VWz1mjUkh0R+9SvoED7ykeSp8ErRYv/Nb/Jsfec7yXtCJi1v386eW7mS4q3YzYEB9qOdq/7AAYqMlZWcq6xMDxiqr89s/30+dGlnJ3t44cLkPZNLYjHuXcAYzc1c/5w50MsMg/IoqX155szMeygSAW356KPs5zVrKPbkigmlI04Sq7NmZQfAyGeEIzbfROLRo5rXOxgEQfqOdyj1lrfo71AoI8Jhfioruf7j6RIxTXxBASwVFw/LFkx0XTQhpJBEHF85JRdbKtCCUhRotVQicvGxxOME3V1dBO32arpl4QC/9BIOUCovlyjpRx9Fgf3TP+kko2XxWjRKks3txlD99rcoxbe/nSpbIIAS9niSDaZdEgkNRzcMnCpJPOW7RtJKaxhcayiEwzdv3vCC0FBIJ0anTEk/QTke554ee4yqYVkZlbyzzsru8ArHhs/HOaS1QIacjJaIIy6JAWlL9HiGPiuGoTkSJXHY2anbAtIdU/iABM2UKbEdi+GYRCK8LlVHGWqTBXU50Q3UKamL8hXLwuF99lkcXuH7MU2l/vQngrdrrx06hfMPf1DqjjtAF95889DnKR5nkvFrr6GL7G3OMgm9ulqT3n/3u+zPq68GDZ3PHguHQUlu3Yozd8MNPKvDSSAKT82xYxCbv/wy5OBf/vLwWqETCa0TZZ+liiB/77hDqXvuYU++5z0QrmfjnI1G2Yeik2RYwXCc+HwkFqPyv3kziAGPh7YpSSjY78Pr5TuWNsixQkIOUwq6aIJLayt2Z/78ZB/k17+mYHHTTegcuwiqp6wMn8duN+NxXn/0UXgNZSiUnZsskdATMaUlurMTn2LRovyRHzJIKVP7cj4ig0z+9CeC4tmz4WyUZOJoSjjMmt5/P9d93nno3+pq3XURjxOwVlfzIwkL4RpUinstLdX+7mjwjJkmCM3du9GZxcUM+UodsCMcjPG47gYqKiIZU1SkOZ/lva+/rgezBAJ858uWgVBcuTJzwTSRwD+KxfJuby7oogkubW0kzhYsSC5MPPAAcdoVVzAczi47dughK9//fvLzFI2iVx5/HH20bh2+kySXJP6qrCSmEl2wcydxx8aNPOM9PbxWX58+MSUDiFpaOGZtreaVzTd2CYXQwxI/tbcTA6xbNzyQh719uaqKmDZd0jORIPn64INc8+rVxKUej6YmyJQsHRzku4rH0dnTpmkwT64CqyQSZUBVOpGp3Js20VFTVKSHYi1Zotc0HtfJQ6cTfSkdbEqNDr2L2CsZIpPn8Sa6LpoQUkgijq+8IRZbEorhsObGsicU7QrAsnAcX3+dwPK005KP1dwMrL6piSSY/bOBAMmlBx7AUL373VSdRAQ+LxOWOzowgtEoAfvixXrYSlkZCb10xiYY5LOCqKmowEnLN5g1TRxCGUoSCvHZBQuGN4hF7kmQjNOnp78Gvx9+tGeeYb3OO4+ffCrJ4TDrIQNISku101lTc/zGIB7XyEHL4j4qKnJXxKTdOBIhcWgYrGlNTXrjbpoaKSuJbeEskoSi3emXoTyWxX0PDvJ9NzZmbA+d6AbqDaGLMsndd1NVv/FGAkiRRx5h31x66dBBKZs28Zmzz6YNJ9WRjUaV+vnPCcavvZaEvUgwyD6qqMBB7O5W6utfx2H96EdBu+Ujhw/TcnzsGFxiF1+Ms5wvBYJlaU6wv/4V/tmyMvjWrrhieIWC1PbldMWJQIBz3H4763PVVax5pmKNXRIJ9F00qnnLRpMQvLcXhPtTT3EfjY3YmPXrk4s60SjrFYvxnVdVDS9hOw5S0EUTWPr60BlTp4J2EXnoIQoSl19OocAu4TCfkYFu9kBQeJ3vv5+21nPP5blO3duC8ojFOJbfT/IuXy5W+7TkfNqXs4lch2EQuN5/P+uydCnchPZ1OZ5zPPooSCi/n33+znemHxgjrc7SriwDBQUNYy92SgeHfdDKcCUS4TvYu5dzVlTwvS5YkKyLhOpBOCdTKR3icRKJTic+arrvfP9+1nj7dp10XLwY9NOqVUP5L6Vrw+/Pq725oIsmsAwOUlCbPJkEszw/27dTbF27Fg5Dux1+/XUGo0yerNR//meybZdk2v33ww199tkURCSOEK56t5v4yzSxx4cOEcsJaKSnh2PV16f3M+JxCr9CzVJdzfHsg6lyideLX9bTQzLSMNgXdmqJfCQU4vOJBDo9HTLQNKGYuPde4o7Fi+mgE90rOryoaGihNR4neTg4iF6aNUv7I1JwdTpz+0qCHk9NJIZCxI/33MN91Nbia6bOIRAO/WBQX6d90KaAUZTKPVwvH0kdvOJynfIFjQkhhSTi+MobbrGl3UKqpkrpaXHl5VSntm4lGE6dJnrgAAatqgon2F7disVwuDZtQrm8971UbEW8XhwfGZDS3AyKyOPBIZ82DUe8u3vosBW79PTwI7xeLheKNF/kYCJBFa6rC6VfXEwSbM6c4SXk7O3LYiBTlXIkooPiRILq2Xnncf+5jKBhsF7BoE4YCg+RwNSFE3EkrTvhMMe2tywPtw1IqvTBIAnURAKnYdIk1iOTCFJWkpeCapK2aUHKStIiGGS9pE1/xoy0aM+JbqDecLpI5JVXlPrCF0jyffGLyY7yvfeCyEudCv/oo0r95CegNm65ZShyIxxmQMjhw1Tp163TrwmCze3mOdq7l8EliQTOdz5oG8vCsfvNb9g3N9wAgnk4fDOmyR5/6SValw8fBt10yy3DK2bY25elCJCqi2Ixpf78Z1DfPh9J0uuvpxiUK+EpVBnSciMon9FoYbYsUD6bN/McOBwEzhdcMHTKYjyu0aNOp04ejtXU1eOQk++KhidvWF0UDtM66PGQMJNn66WXmMC8Zg06InXAXFsbSR3RASJSJPjrX0HkXHghScRMEgpxrnAYdIkd2Z9Njqd92S72RKTTybHEFm/ZAsea30/y4uqrh4cGsp/jqaeUuusu7Pvy5RSs7f5iJpEBeL29euBcQ4OeYG8/x0gSib29JD8OHeIY06eTUEhFT0mXhd1/ylR4jcXQ8y4X/lqm67EsbMCOHfx0dvL3+fNJIK1enexXhUL4W0phLzIUUgq6aIJKNKqBBxs2aN/80CEGqfw/9s48TK6yyv+net87SSfpTmffE7KQkASQEEggEGSRyCZuKDq4gArjIDoyoo4L6rj9ZkQFVBQHQSEaEEUkkQQSCJBAAiH7vvS+1r7f3x+fnHlvVVd1Ld1pUrHP8/STdHXVrVu37vt9z/me7zlnzBgSn/Zkwf794FNxMXhlT0Bof7xHH6WabPly/Ba7gq2x0fSqDwTYl1tbWe+zZ3Pft7WZXn+J4q7ubojMYNBUKgwf3rM/bG/W1gbZuXcv+FpTgx+YqjQ40XFaWrh2Y8b09HUsC7xfvZoE8vjxkIfx4hm9Pm4361yP09rKeer06kRxqw5aSaf0V3G8oIDzfvJJ/EyfDxxauZL9w47vSg663fxeWZk8wRsOx5Kh/ZEEVlWiCNe5F58w17EoJ2yQRBxY+6e+2KGQIRSDQUr+nnsOsL7mmtjNSZ0bhwNysbbW/C0ahRR8/HFA5CMfiS3BU3VheTmbyYsvkgkbM0bk5psBPc2AFRbimMaDWzhMFkazwpr1qKlJn/gKBHD2Dx0ygxSmTeu9hC+ReTxstpaFUxdPaIVCbP5r13K+8+dDyurAEHXQk4Gt243TqRm8qiozRVaE14XDPCcaTX/KlvYr9HjMOSQrWU7XolFKDHTYgWbeR4xIjwixLL4XJRR1M9JenuXlbKBtbUY1WVhIcBWXoc/1DeqfEotaW0U+8xnu8//3/4xztm8farnJkxlOYr8/N26kREcnCcb3TPV4IOWOH6c3ob1vmd6fSsxv3Mj71tTQ4yydoN3rReG4cSMk5oc/bBpWp6v+CYdZNw88QGA+ahTvf8EF6b3efhwtX9bJy3aLRFCG338/Tum559JjceZMXqt9DpOdt665aDTWeVblcqrWGMksEKB0fe1anPeKCpzjZct6Bgrq+Hq9ZvhVPGlwitmpe2bp2T8lFkUilBpr438NkA8dIslRX0/LBXuSIBg0QzTq63uq6Lq7mTB85AjKkfj2L3br6sKPEiFg1B6AqXoQ9kf5sn4W7StYVJTYr/L5UIf/7W88d8kSyunSCe4ti8SQlkhPngx5OHt2euenJcORCEF0KAQuJCt1tvtLvVk0yne8c6cZHDdlCt9BvG+nFRX2YQjp9BvXxFVRUXoTlrW3uBKKhw/z+NixEIoLFpgKEC1vrqxMSFIOYlEOmmVRstrdDWZo9U1HB0lGhwMlon3dHTvG3yIRSpntSRARCOcHH6Q0+corY9u16DAgJcO09YLPx76sgxTVDx82rGeyVKeVHzyIP1FVxZodOTL9ZINl4Q+8/TaYWVFB26wZMzLb77XdldvNGq6v74mLe/ea5E5tLQTd/Pm9v48mDgoKOE+3m+9m/PjefT/7dOPejh+N4hf98Y+UjxcV0edw5cqerXyiUXw/p5NjV1TE4l9v56JEYnV1//hRaaoScx2LcsIGScSBtcGLfcL27EFVM2oU5TpaJlJWZhpK+/2Jp2qpqrC0lKDdnnHS/htFRRBLTz1FObRmnwsLTXY5P5/NJh4E3W6T7ampMc5hJgSix8N5Hj2KEzdlSmbNfUVMH8X2djaM+vrYTFw0Sobv2WfZ/GfMoAwznpjQRurxQKtKPr+f48d/Pp3YrEogVTKFQmxkyfroaAZN+xLqYJZMpk6nui5Hj7Kh1dYaxVBtbfpTbdV02qtOsRThfEtLjXqyrY3HJkyIcaJyfYP6p8OiUAgS8PBhSD+d8N7SgrM7ZEjPqfBbtuA8jxkj8vnP91SIOJ2Qgi0tDISyB6iRCFimCt4//hHcmjkTkiCdZML+/RCYLS3g15Il3P9Dh6avhg4GSaL8+Mes3w98gIEyqSb+xZuuByXW4rFi3TqRn/6UAHnWLPoeLVoUewwlIEpKYrPb9mEFmmxI9HctLUwXR1taIA43bOD8x49HEXH22T2xPBIBUzwefq+oiB0ScwrbIBbloO3ZAz6ccYbBgs5OWgtEo/RLtSfGQiHu57Y2sGrMmFjfxeUSefhhfJdrrkHFmMyamlBEl5biG5WWxjaxT6Tw0Mme6ktkW74ciYADqpYpLk69nrU8e+1a1uPy5RATyTBsxw4UUHv34je9732s+XRwQ5XQgYBRQNuxIr7UuaLCJHR664/o9fKd79nD8auq8NmmTOmJRXY1tvpQmSZQfD6uW3FxzxLlVNbWhkJ182YSbJrAVoXisGHcb+pn27B6EIty0FQNe+aZJp7y+yEHGxtJZthVhi0tKBDdbnyqM8+M9UfUL9q2jbV33XVm7dl71dfVca89/zxr4OKLSdJq7BMIcK/Fxw7BIOfc0cH9V1LCuqyr670qyW7hMBj46qv8f9IkMCJJ+6Kk5vGY8udRo3rGIMeO0UJh+3bW4ZVXIoxJZy1Ho6y/xkZDHqYrlrD3EIw3t5vEzFNPcewhQxCeXHVVz+unlSfd3ZxPWRlkYCZVZJqA0XYw/ZWQjURiCdO4z5rrWJQTNkgiDqwNXmwhk/nAA4DJLbcARtq/TptKBwJkQubNi1WB7N5tSvo+8YlYhaKW/GrQ/rvf4bAtW0bZnsMBmDU18f/4yVGWxbkpaVRbC3iqAjHdkp3GRlMiNHEipEGmPbTCYTJPPl/P8mXLQsHwzDNs5uPGsTFNnpz8eEqQ6WfQ/owOBxtIso0znkjUcim/n8+kwY+WDLvdRl2gyr6TMbnQsgiWurtxOlQhNWpU4kEz6ZiqoDwePoOI6UHU1sbnmD79/zbZXN+g/umw6Cc/IRD9yldM6wS3GywKh3tOhX/7bcp3Ro5kavLYsbH3cmcnjnJnJ30NZ8wwf1PCPRplbd1/P47yhReihEy1JiyL9f3rX3NOd9xhegYNG5b+mjp2jABg3Tru3f/8TzNEJl2zLNZWMEigYO97I0Kg+ZOfcL0mTEB5uHRpckfR5zODWPLyDJFvWQQLyZIN4TCvLSjoPSFhWTjsa9eCkw4HZObFF4ORifqEud18RssCs/qjGfgA2iAW5Zg1NJDMGD8+Nmj/ylfMmrWX2+qAi64u1uCoUbE+hduNX9TURNB+5pmJ31dLWA8fxkeaNaunD6QKD/v05v4oX7YsMCQUYg1mc5y2NgLyl16COLjiCkq2ldA8dAjycNs2cPK668DcdNeyVstEoyaZmAzHgkH8D6fTKKerqsCP/HzzupYWCA+tSBkzhr2ivr7nsbVSwt4zui9tHLxecK20NPMKGDWnE392yxbIWa1GmT0bvJ88mb3pxP04iEU5Zk1NqAXHjzdDKTWJsXkzLV/OOss8v7MTArG9Hb/kzDNj4wefj8TrW2+J3HQTqja7tbbiY48YgRhg0ybup0suMUmBjg6OM3Roz9ipq4v7UIm/UIh7vL6+Z5VIMvP58Il27+Y1552XXnsDu6lSsqWFdTp2bKxasrUVku7VV/kM7343sWgmQpTDh8H24mLivExEEkok2getHDpEyfJzz4Ezs2fz/SxebJJIdlW4xwPGhcN8tiFDMhsCardgkO+psLCnD9kX08+pbaoKC/8vVs51LMoJO61IRIfDMUNEdorIpyzLuv/EY0Ui0ikiZSJSZ1lW84nHrxSRP4vIJSLyuoh8UUQuFZFJIlIkIjtE5EeWZf1v3HtMEpFvisiFIjJcRLpOvP5LlmVtS3GKp8/FztI8HgLqYFDkU5+KzZC2trKZeTw4PLW1RglSVgY59+tfQyB+5jOxG0Y0aiYWl5SQkW9txYlUNYySjCIQiHYwD4UgpbxezmnYMNN0evjw9Jy4aJR+F7t3c74LFmTWl8N+jVTqX1sb6/zt2wcRcvQof7v88p5lBIlMgwPNCGn/kGHD0iu/ie/3o4qdggJDAmvZj73P4Mk0LcHp7ORzhMOc0+jRmWcT401LmXTSc2cnBHc0yvWeMaP3DWoQi04te+45FH3XX496WYS18NBDZMU/9rFYBe/+/SJf/Spr7/bbCfzsqpe2NpR9Hg9YZCfwLcsM5ikoEPnhDyHY3v9+GvmnWqtut8h999F4e+FCCEpNAqTbk9SyKGv84Q9xFj/9aVSWmRL6vZUv79qF8vDllwkiP/lJgvpUeGJZJkiORnkPxY1Urw2FTEl0fHmTz2faOjQ3890tXcpPIiWOZfH9KQlQWgphm21/t3fCGhpE6usHsSiXTHt41dSYQXCWRdD+yiuolO0KXi0h1T122LDYskJNhLS20oohWbluNMqabWmBhIzvAWo3+zRMDdK0AX82wZ+SkKpyTFUyncqOHRNZtQp/sboahfaxYxAS5eX0Gbv00vQDXi0bViV0WVn6OKBDEHT4ksPBOXR1sY+0t/OZp06FPEzmmyh5qErPTM6hN9OhXmVlffeLvF4I2i1bIIm0b+3Mmdyzy5YNYlEumdsNIV9ZSVsp9dl//WvanvzLv8ROhXe5IBUbG6k0mDUrVrnm99Mb8e23eW18b+muLn6GDEHg8fbbkG8XXmh8k85O0/u9osK81rJMe6jSUtaSDs8cMyb9/oWHD9P3z+OBAH3Xu9LvK62m7a48np7ly04nLV1eeAEsWb4cLEpXSBKJsK8rOTluHOfn9fYcpJTOsUIhKtaeeoo+0EVFTLy++urY6dsiYJASclqdpS0RMr1GiSwQ4PvSZHR/ml1J73SKjByZ81iUE5ZD7nJqsyxrl8PhaBaRpSJy/4mHFwk3RPTE478/8fiFIhISkZdE5AwRuVFEnhCRB0SkRESuEZHfOhyOIsuyfiUi4nA4CkXk7yJSISI/E5GjIlIrIheIyEwROS1uipNl4TDqQJeLQN4e2HV2QsAVFLCp1NUR1KtCcccOpnyWl1OOp+U3qo7TicJ+P8RAJIJSUYP7SISMm2X1JBDt5cujRwOWHR1sADU16RGI3d04sB0dZPQWLMi83EczWx0dPcuXjx1jY9qzh+t24428RyZEncvFsbUEJd1NTUuZ9XqrisDl4rzy83Ekamr6Z6NJ1xwOk83v6OC6lJayAceTPpmayu6rqsxUuOHDcaA3bYpVnSWyUx2LOjvTvBCngR08CIE4YwaOk/b//NOfIOWvuYa1oNdElUAlJfQfLCgw/btEIKjuvx+H5ZOfNAkHNafTTKj/n/8hiPzkJ3FWu7p6P9d9+yDmOjpQFC1fDraJQCBqM+ve7OhRHPmtWylV/I//QDGSzmvtptir5ct+Pz/HjqF6WreOx//lX8hmFxWZaXypTEsCCwpMz650XxsI8F0UF/OeTU047K+8wt8mTAAf58/n+DpdNP79lRwtKTHJKpcrkys08KYK7NdeQyVy/DjKgt5fc2pj0T+TBYOU2JaWxiYeHn6YfeXjH+9JIOpgAe0JalejuN1gUXs7vaGT7Uvag9rp5H21lUMys1csqGo4m3YkqqxTRUxJSf8ofMeMIbmzZQtYfdddnOONN6KOspMPqUyH/6kSOlMfJi/PDPBrbUW1t307x62rQ8UVr/hM9P6ahM104FwqKy+PbQeRybWJt7Iy9rF3vYvz3roVpdWmTfQeX7as99cPYtGpY+Ew92p+PnulxhLPPguBeMUVsQSi3y/y9a+z53z605Di9tJa/fvOnfx9xYrY99M9v7iYvevoUZSP9jYD3d3cp1VVsfdpMMhxOzsRT0yeDKHo84Fl6Sj0QiHamrz+Ovv9NdfE9tJP17R8WQch6Xv7fJCTa9ZwbZcs4RpmUhnV3c3nCgaJqerrDV6GQrxHimEi/2dOJ9Usq1dDSNbWGlK4N1VyezvfQVkZMU+mVRFRAg4AACAASURBVHS9WXGxSd663X3Donjr6BBZv95UoLz4Yu/PH8Si/rHTSokoIuJwOP4gIudbllV/4vcvi8inROSIiLxpWdatJx5/VURClmUtdjgcxSIStiwrYjuOQ0TWiMgYy7Kmn3jsTBHZKiI3WJb1eBand3pd7AzMskSeeAKi8MYbcarUurtxBgsKAPfSUrLkuqnt2yfy858DQB/7GP+qdLmkBGANhwHKp54CtD/+cYgfEaNSDIdx6pTcsyxe097OccaMMWWIBQVskKlIukiEoOCtt3juggWxvUPStVAI8svvNxMAHQ6c0r/9DWetvBxS4bzzMstQ+3wAbDhsylqKijJXCmppr89nSpIKCoySKNvJzf1hzc0EW5WVRkUxdmz/9WFUi0RQmp5xRmqp/KmMRZ2d/xxY5HLR/DscFvmv/zIO3bp1ZOAvuojhH2otLRBwloUjXFMDjuhaaWgAi/LySFLEK421HP7YMfO8z3/eKI6SmWWxzn//e9bRbbeRjLC3HEi15jVJ8+CDOJmf/jTKy0zXuZYvh0KxpSdtbQyf+ctfePy661BWZuII2ocViBh1U6YlMh4PgfqmTeBvQQHBujZlT2Y+n/lsRUVgYba93QbKLAsiXIceNDfz+OTJBH8f+lBuY5H8k/hFOhDO5zN9CEVQSf/0pwR3t9xiAmr7ZFKduFlfb/ZYpxMFYmcnZYPxjfDVPB78k2CQoD2dkj+7cjAvz5TEZdoHKxg0ZbnZlsElMo8HouOvf+Vcp08nKG1thRi4/noUmamGCng8xn/pS9lwczMkx5Ej/F5XR9CuAbj2JbSX8WnptKo8y8r69xrFm9PJvVdZ2TdiQO8NJYfVdu8WWbJkEItyxV5/HX/n7LONim/rVkj5+fNjp8IHg7RC2b7dtG6prTWEu9dL65ddu6gwiycQdZBlJEIM2NWF8tE+ldjpZG/WgR1qnZ2srXAY4nLECPZDv5+1ng5Jd+wY5F57Oxh40UXZiTxaW/kpLia+KC5mHT//PP6bx0MS6D3vSb83owjHOHqUz1paig8TL4JQhZ3D0Xs58P79EIf/+Aff27x5tLs699zkn1lbM/h8YFFxMd9tfO/q/jJNUJeU9E3scfw4xPC6dabVQn09SY477sh5LMoJO62UiCdsvYhc73A4plmWtUdgkNeLyGGBLRaHw1EpImeJyPdERCzLCuiLT8hZK0QkT7gpvu1wOKosy3KKSPeJp13mcDiesSwrQ23HP6/94x9sHpdcEksgut2UpBQVEbAHg5Bwunnt2SPyy18CmrfeaohBLf1Q8mjHDjbAKVMgEHVjiUZ5TjjMpqcgGgqxsWjfjbo6NiWdpJoOgdjZiXPe2Mh5nX12dpkVt9uUWdfX81m7u8lqvfoqIH7ppQTImWTJo1HIQ50wrJt+KMT1SDLRqoeptF3l7TqZUKc56uTmjg4eH0g1olptLd9XS4spizx61JQC9Jfl55u+MWnYKYtFmQ6gyUWzLBSILhf/Krn/xhv8LFlCM2ldAx0dlCjn5dEsfNgwcEAx4/Bh04/1jjti+7GKgB/BIMHUb35jJiDHPy/eXC4Ui5s3kyC47TbwsLOT7ymdlgM7dojccw8kxfnnoz7sjUxLZtpfSKeol5aagQ2PPspav+EGMDadBt9qOihAJ8BrwOz3m+RGOgG8x4PTuHYtCsSqKs5n2bLes+uBgGkMrlNV+zvB0J8WiRCQvfYaP+3tPD5zJgHBOedkFqTIKYxF/yx26BB7/fTp5t7bto1kw/z5rCn78IH2dkNwBYOxg886OyEQXS4UiMmSFB0dYENeHu+RTgmZDj+yly9rYi4aTV2KHI1yjEjEBKT91dokGEQptXo1WLB4Meu/tpZrtmkTA6xUeX799Yl7RauqWgQsyiaREA4zaXXXLr6PoiJ82+nT2SO0DNztJvhXX1WxTwna8vKB8ZmqqkyCyOHIDP9CIUMcagKosJDPWVxsqlHStEEseoft4EHuxxkzDIF4+LDI97+Pz/yv/2rWbCRCAvbNNw2BWFVl7lm3m8Trnj2JCUQdCOVyES9FIoghxowxz9GexDq0QyS2f2tZGaXHxcWsOa04SIVnfj8x1JtvsuauuCJ1FVEiC4eJJ7Td1ahRPL5xI8mMzk7W/nvfm1rlHW9tbbHKxrq6xPiqbRJcLnwpeyIgHOZcVq+G6C0uJma8+mquk2KR7if213V3m4F59kSH3891djj6vz90aanxCbV/fjqmCdUNG1Aa7t/PZ5gwgaT20qV8DxnsN4NY1Ec7XUlEEZGlDofjgIicJyJ3CMzy3Q6HY6RwQ+Trc0+wyLcLDPQ06dmQc4iIOC3LOuRwOL4nIneJyIccDscmEXlGRB6xLOvoyf1YuWtbt5IpOOssAnc1nw9lRV4eG1dHBxuLbk5vv43ypaoKBaISiCJGjVhQwAaxcyeZ5xUrzOQ8DYAjERwcPa7LhaJIm1xXVfF8bVo+bFjvIBQKAV6HDgG0s2fjxGeqwtPMVmcn51ZfDyBqPw3LglRYvjy7iWEdHbFBs25Mqh5UIjGZBYNmyrJIbGNdhyP2eDU1pt9JRUX/ytTTNVWMNTVxrnl5bPzjx5/cDH8vNohF76A98gjE3Oc+Z1Q6Bw9S/jl5Mg6l3sNOJ6U4Tic9f4YONQGSCGro++7jsdtv76nm0Qnhf/oTGem5c1FApsqy7tpF38KuLlNqEgqBCfn5nEdvDpzPx3k9/DA49vWvm9LiTE2nL+fns87DYY77m9+AmStWECTET39PZTqwSIcV2Kcra68fvx+8Toa7x4+jJHj5ZXBp6lScxunTzTTnZO+tg6D0evYl830yTUtOX3sNktvp5JyVOFywgL0pS2XAIBa9g9baStBeX2+C9qNH6YM4dqzInXeada4EYjDIvt/ZGdvPrrWVZIbHI/LRj/bsa6XW0IBKt7wc5WMqosw+fTleOVhQwNpUMilZSZ22fdCWJ/1VmRCJUKr2xBP4NfPmUdFir/pwOFCgLFrEc598EnXUWWeBFfX1JiEaiZi+g5kSnG43uL13L5916FD8tIkTY9emBt9VVeCpx4NvcuQIf6upiVVzDYRVVZkejlrJk8yCQUMcRqM8poNe+kgMD2LRO2jt7SQ66+q4Z0XwP779be6HL3/ZEMyWxfC4V17BP5k927Qg0dd961vEQp/6FLGK3aJRCMTjx1kz5eUkbu1JbK+XPbq01DweCBDTdXVxnlOncqz9+8GgiRNTxxgHDrCXtrTw/MWLs0ueu92QfNruqrqa/Xn1ajB94kTi01TVJvEWCECQqvpy/PjUWFBQwHP8fv7v9RIvPv00ZOSoUbTOueyy2OujWBSJmCSAKj8dDtO6yb6mi4tNsqW/2lDYrazM9KLtLalhWdwLGzfyc/w4vunkySSJzj+f/2eprh7Eoj7a6VjO7BCRFqEW/b9FZJOITBGRRqGp5QeFm+JOERlqWZbb4XDcJSLfFZFHRORZEWkVkbCIXC4i/yoiEy3LOmR7j+ki8h4RWS4w1xERucayrGdTnN7pdbHTsEOHaNI7bhwZcwWiQACAD4fZmI4fx0nWCVlbt4o8/jiPvf/9PVU1wSCbxOrVgOeKFWxgOsHT4zHTjevqCPpLS41iTsuXi4rMBKriYhz83rLsLS0QCp2dnNvkyQB3pg6VvXx56FA2po0bUWz6/Ti+l12WfrNgtXDYTDYrLo5VL9hNB63k5fWczujzsXHq33XKsj4vfmKz/bVaMqNl0/01gSsT6+hA2VlUxHkWFHD/9XOpdTpS+UEseofs1VdR5l1yCeXEWo77wAOs21tuMQ6bz8cQlSNHcKBHjgSnhg/ndbt2ifzsZ6zT22/v6Yhqv9UHH8S5XLECR643p8uywK5HHoH8vvNOsCQQwHHOz0+dzHjpJUqMjh5lwNKnPw1OZurs6XRi7TNYWkp2/cEHISwWL0YdOXVqZsfVASqBgCH6EhFgdkfS7ghGo1zPtWv5DgoLKcm5+GLTy8je68tOTobDYJG9p2NFxTuDR72ZDirYvJk9LxDgO5g1C+XFrFlG3d3LuQ9i0SlsWnpfWQkh7HDgb9x1F2vue98zCVLLYv/y+/neVT07erRJkD30EHvzBz+Iv5Rowu/+/QS+NTUo51NhgvaTVmIp2fOTTW+2E5AFBdzD/bHWLAss//3v8ZemTsUfTKcawO+nmuOZZ/j/okVgs/b5ytQfaGwkmD16lM82bhzfZyqlubZwCAaNvxUImAS3Di7Qvqwn27RHbCjE+9rb+9iJQ8vicxYV8Zw0v9NBLDqFze8nzigqgnDXe/Gee7ivv/ENo9y1LPqt/vWv9Ia+4AKeW1/P6zo6IBCPH4dgtA9H0dc3N6M+PHiQOGn58liySFstlZSY2Kujg3UWjULM1daaeC8SgbTrjTByucCMo0dZT3PmkGzMlGTSdldtbSZePHiQRPGhQ3yelSvZpzPBOr0ujY28bvToWIFMOrZlCz7apk1ckwULOJezz04tgFGRjfZHra7uHe/9fv5VYUZ/m8vF92tXZIfDiIM2bsTPbW/nfKdPJ4G0YIEhdHvB8VzHopyw045EFBFxOByrROQc4ab4jGVZ4048/pKIvCEi80Ukz7Ksc088/oaIdFuWtTTuOPeKyJck7qaIe87YE8fcY1nWeSlO7fS72L1YezubUHk5/cN089BpUYEAJTZNTQDh9OlsTq+9RhZ56FCAceLEWPAKh3HK//AHXqdN9O3W2koQqWVyTifvEw4D/hMmAFhaalJSwvsl2wz8fjLP7e28Z20tP0o0ZGIuF+ciAmGxYwfOrtOJc3z55UYun4k5nWZww9ChqdWLmpXSDURLljUQqKiIDcztloxIFOGa6gSuIUMGxjGOt64unBv9bDrlrB/7e6T1rQ9i0cBbY6PIZz/L+vzRj/juvV4zFf6TnzSZ9GAQx3n3boL6iRN5bMQI7pW33oJ4rK1F0RhfMqvlFT/8IUH7zTfTD6c3THA6ye6/8QYKlltvZZ35/dy3hYWs32TrprOT8qI//xlH6o47CJB7e00y0/JlHSrw0ksQpkeOoKb8zGd6Yms6FgyCJfZhBb1dEyUxCgs5pxdeoM9QeztEyLJlBDGJ1AeaOCoo4Lt2ucAf7R1UUfHOYFAyczrpR7V5M/tYJMJ5zp1LwDNlCtertDRtRekgFp2ipsGQZfH9FhayNr7yFQLRb30rVkmoCcAhQ0wyr66O++H4cVTBlmUSq/HBXySCP9HeTtA7eXLv606Jo/jy5XQ+l/bDsyzTo7q4uP/22O3b6fF64ACfRYfJZepvdXSQsHn+eT7jpZeKXHVVetUd4TCE7M6dJtE8bRq+aipFsyZktWVDSUksFmlpcVcXvnBenlEtnuze0kpWaysJvQ+UOFTSMIsp2oNYdIpaNArp5PHgd5SX831///soDe+6CxJK7eGHUf5ecw1xWHc38U55OeTat78Nwfaxj5HciyfpWlooOW1tZb0sWRKLDX4/92BhoansOHgQ36O8nARaWRlr48ABzn/SpOSKNZ0+r/1fR43i+SoWycS03ZXXi18VCBCT7tzJ7+95D585U7/C60V9qGXRmYgbwmEU1qtXcx6FhSRU3/e+1CXUijVOJ9emtJRrns57K46JnDwi0elkr9u71wxqcrs5P/WLZs82VXVpJlxyHYtywk7HcmYRZKfXiMjNYuSq+vgNIjJWRH5kezwicTecw+EYISIfj3usSkS8lmX9Xzthy7KOOhyOVhH5J+gylr55vUxTdjjIYinw60Qwnw+1ncvFZjJ5MhvMSy+ROa6rQ4k3dmwsWESjkIyPPYbD9YlP9Bxk0t7ORjl8OIDjdPJYebkZUNDcbAayDBtmJoTGm07DPHTIBHtDhhDY2qdLp2Oa2dIJZa2tbNJtbZAXN91kygsysWDQlD+VlqZf8pafbzZyVR2qo5uq9EnLmS3LOJ5qFRW8f3c35zV06Mlpztub6fd5/Di/BwKmR2J/y/JT2CAWDaAFApCCIgTqRUWxU+FvvtmsWx22snMnRNyMGWCFYsTrr9OPdexYSMlEQeP27SLf/S7v++//Tq+63mzHDghHlwsy89JLuU99PtZLUVHyZIZloQr47nc5zw99iH5gw4ZlNgFQzevlJz+fa3D//fw7aRLneP75mQfsOqxAe6dqf9JUVlBAYuXvf4dcjUT4Pt7/fjLPvTmMSh62toKBRUVgUGXlgK/1pNbeDmm4eTOEtWWRQLroIpxj3edUCXqSznsQiwbYtOR19mwCIssS+e//5vG77oolELu6wAFNVLjdRoV6+DD+VGEhZNqoUT3vkUCAANrjQbGXqu1Ab+XLqUynnrvdsdOb+0N9eOAA/Vffegsf7tOfhoDIZkCUKm6uu46WAH/+M4NsXniB1hErViQuIXS5wMJ9+8CymhrwcMKE1GtT1TvaA7a4OHFVhr2MUPG/u5v7QH3V/pyMqqY9Kx0OElJtbewh6vcNUOuXQSwaYFMi/KyzjC/zyCMQNh/9aCyBuGoVscmKFeBNc7Ppk9zQAIHo9eLDzJ7d8z7VgZAuF2TbWWfF3v+BAHGHtkIKBvGNurtROk6Zwnr3+8EDEWLEZOW+HR0QoZ2dYOaYMfhRo0dnvpe6XMQNOhDqL39h3y4vp3w2XnGZjkWjXLfmZl47eXL68WN7O+XKf/kLn2/MGJK7S5cahWBv5nZzXSMRnqttn9LFalWna2lzf+G8CHvVq69CNr/8shksumgRCs9Jk0wLBe2lfRJsEIv6YKcziSgiMkNEvm97fJ3AFNufIyKyWkS+4XA4ficiz4tIvYh8UhjJbRcaXyQiP3M4HE+IyB5h5PeVJ97nnv79CLlr4TBOYFcXWSotyY1EKNlyuQgMHQ4AcuRIAj4dzz5hAkBdVxfr0FgWDuDq1QRdn/xkz+b+nZ0cv7oa56yx0Uy8mjoVANdhK04nrwmF2DRKS2OdYY+HgM/l4vwqK9n0Ro7MvK9WMGjKlzs7Aczjx/mMH/+4KXPKxCzLOJ5afpnOealzrcF+JGL6kWRC9uXlcS2j0Z6bkpZEafm49lIcSKuuNn0RtaTo2LGexPRJtkEsGiDT/j0HD0Ik1tWZsuEjR2IzttEowfzrr9PL5+yzCaYUAzZtIhM/aRKlvImy3y++CNlWUSHyne8kbuCvFo3imD/2GOd1990mYeD1gkW9EYgNDXymDRvIyt5+O59FBxxlYtGomVB88CD91TZvhpj42tcIrrNZHxo4i3AN0+n1FYlQmrN2LcRKXh7fxWWXmZLl3kyJDJeLwESDklNhaEpDgyEODx7ksTFjUDHMmQNeW5ZRgKWrAuuDDWLRANrRo/hAkyYZBe3vfkeJ1kc+EjsV3ulkP66s5N5taDATfffvJ9ivqCCIHT68517qcpHQCIe5t1K1QdHehtqLKpNA27LMZN6iIrP3p+qxnMoaGqgu2bSJ63DTTbSjyOaYwSC4qkF2SQn+4Mc/Dr6tWkVZ4po1DB9YupRr0NAA2XL8OJ9pwgR8s3TLDXXgXzRqei7Gt4FRf8lupaX86KCD7m7OoajI+LJ98VkiEVOmHArxWH4+mO/1co6lpQOa7B3EogG048fxgSZNMuX3a9awBlasgGBXe+YZFM9LlhBjNTdzXwwbxjHuvZd7+JZb8GHiybCmJlR7wSD7eHwblFCIuE9jls5OFITRKJVYOqDH62XfzMvjvBMJG1TpvXs3f58xwyQQkw0oSWZaZqyCjDffBIsKC7k+l1ySXf9Sp5MkUDDI5x0zJr1ExI4dXMcXXuDanH02ilC7GtvjMRUc8WtXe02GQmZwqZ6/DlqxV6L1ZiowsfdIzNZX6eoi/t24kYSxCnkuuwzFqirvNflSVXXSldmDWNQHO13LmfNEpE1ge6dYlrX/xOMVItIpsMjDTkzQEYfDUSAiXxGRj4hInYgcFJH7RMQtIg/JCXmqw+GYKCJfFuraRwt18HtF5Oci8ksr9cU8/S52nFkW0/G2bsXhnTuXx6NRej+1tRknV4F/yhR6Ab7wAiBy7rlG7Wc/7hNPQCLOns0GFh8odnebXoWVlRBGfj/HGTnSgJ5OoyovB6D8fqPKiUZ5r7Y2o14cO9ao7erqMp/kp5P5GhshLY4eNaA5f372AbtOb6yoSK+UMRIh4LY7uRUVAHY4zOfLBqz1miXKbkUifCfh8Ds3EdXt5pprb7YhQ9jI+xiwpyuVH8SiAbKnnxb5yU8IPj/wAR57/nl+li+nHFbE9Pp57jme+573oBAWIVjcuJFgf8YMCMZE6331anoGTphAX8LeJhV3dTH1+c03ccw/9SmzDjweCAAlDOLvyWgUAuF//offb7sN9aIIaz5Tp1bLlw8fZmjVCy9wnI99jLKlbIh+HVagJEJ5eWoscjpJGj3/PNdnxAhUeYsX81rLSt5KQc3j4TiaYa+uNmWWAxwQi4iZJrllC2r5hgYenzzZZNarq8EhEa51SUm/JFcGsegUMw2MR4wwasN//IN1fMklqOv03tYys/Jy7o+mJtZpfT0E4mOP4S9cey3+Snl57LpoazPlbXPm9J5UsBOAmZQvq4XDpl+eXb2o6059iEx8mo4OSL3nn+d4V17J0KtsfAXtkapK6LKy5EHy/v303d6xg+dMm4Z/V15uSpbTPQclLXXYX7Kei735SnbT5EhXF76eljpXV6ePF/pd6fctYvpV2svOIxG+AxHusz6qoAex6BQzpxPSZuhQ9iGHA5XvN75BLHX33eY7X7+exOiCBTze2ck+W1cHEfmd73Bff+xjkJHxiuijRyEm8/OZVFxfH3su4TAqRR0sdOQIr6mooHzZ7hcdPMg9qmq0eGtsRMXm8UBm1tZy/Jqa3v2xRBYKcR4dHcSpr7/OGrzgAtpLxbexScfCYWLQ9nZwdvz41MNggkGGkK5ebYZiXXYZPmr8tRQxfehFjNpZ2+IEg3xXyRR80aghEdPFa+1fraRiuntHS4sZjLJ9O+c9ahT+3rnn8tlcLtPWpqKCx/roG+U6FuWEnZYk4ilsp/3FXrcOVclFF9HHSgTAeOstiLQzzgAc9u0DjKZNw7netAlCbd48HJxRowxAhUI0E9+8mV4eH/5wT0fH5TKkX1GRaVpbXx/b+0abylZUJN4Ympo4164usxnplMSJEzMjEDWztX8/n+/YMd7zkksAzmyC3GiUjd3tNqqbVERCIMDz/X5+Ly3l89sBOhoFwOMHraRrOvErkQMajZpNrbw880nT/WHai8TnY2MdNox7ow9E4snVDJ18O62waOdOkS98Aef3a1/je922jeB0/nwyuFp+/9vfkuG99lrIxs5O7ovhw1EXPvEEzvUnPtEzEIxG6ZH45JPG0e4t0HzrLfoyejwkPi6+2Nxz2jtUCbD4e3HPHga+bN8O+fiFL5ieNMOGZU746xr43/+FQC0tpST6gx/MrkzEXrbncBjs7c0OHkQBoUO1Zs2C4J0zxziySgTk5ye+tlr6p0qo6urY4QCqQMpm8mqmFo3i7G/ezGdqb+c9Z8wgYFuwgPPQ1hnab6yfS5YHsegUMr+fdV9cDI7k5bGGv/Y1fv/KV2L7EHd1cY8MHcr/lVQ/eBCSq66Octzi4p79PY8exb+oquLYva2/vpQvawmsBp2JpvNGo/hqlpV8erPd3G6Rp55C+RSN4hddc012AbsI56dK6NLS1L5adzcE4vr1pgfX9OmoFefPT883CIXAGyVly8pSX1clEtNd/0oKuN0G14YMSUwWK3Ho9xufrLDQEIfJ3jMcZh90OFIP9Ephg1h0ClkoBHFjWRA2RUXEIf/+78QO3/622ftffZXfZ83C79A2SUOGEBd973tmKF1FRU9Bxd69JHLLyhCQxKuhIxEIRBFev2cPBNjo0STa9J5zu0nGFRZCIMb7OYEAJN/Bg2DF/Pl8zlAIIjFT/HC5ONYrryB+iURoS3PVVaZXY6bW0QE2RyJcp7q63tdUayutFv76V3Bp/Hh81osvTp3ICIf5DCJcA7/fiCVSValEIqYHfrqxUCRiEhu9EYlHjhjicO9eHtMp2YsXc01UgS9ikmjFxVwDy+p96EsalutYlBM2SCIOrJ3WF/uttyhHOfNMAnQFlx07yGJNmwY4NjXxM2YMALNlC6TanDkAh72PhcuF4mf3bspQrr66J2i53aYUMRIxTvno0bEbkJIFqlS0WzhM743GRoBx2jSAUgeg6ICQ4mKObS9TSWTBIEoELdOrroZUvfDCzJWMal4vm1MkYhpwJwNwDabdbkMOak+TZKCsg1YKCrLrP5Rs0IqaTktNRpqcbPP5IFFU+TViRHYDbE5Yrm9Qpw0WdXbSI6aoCKVPRQXfs06Fv+kmc8+vWoXK8N3vJljU9gKVlZQKP/UU/Xtuvrnn+vb76Ue4aROvv+225GspGgULH38csvoLX4gtz3W5cJ5KS3v2MwwERH7+cxInVVU4/EuWsH6UAM/EsYpGCRx++1sc1bw8SImbb+45aTpdC4c5/0jEYGKy9RwOQ7CtWYOzXlxMf7GLL8aRTGRabmknOwIBnEvNsFdVJXawLSvWMe1vnAmH2dM2b2bvcjq5V+bMgTicP98MylHS5iSXLA9i0Sli0ahp7D93Lvf68eMiX/oS+/V3vmMCO68X7NHJpIEA/kZFBev1j38EM665pud0c8vCr2hoYB+bMaN3TLCXL/c2fTnVa4uKek9exE9vThScBgIQh089xZ68ZAmkQ6YTStUiEUPkaQlxMh/Esri2O3fi6+XlEdjOmAEZ+8c/kvidOpVzmjYt8XG0PYr2ki4ry8yv6y3p2ttrtNRZP+uQIWCgfkd6XPtE5XR9uVCI+zE/P7shXSdsEItOEbMs9qf2duIrnfb+pS9xr3z3u2bNvfUWSY4JE0S++U3WbWOj6d3+gx9AOn7mMzy/piY2hnrjDZTEqpiOj68iEWK0aJTf9+/n3+nTY9e9lv4WF0MgxvtgqvQPBiE7J01ivYrgZ2WiXrYsI6nvQwAAIABJREFU8HPNGuLQaJS9++qriU2zsWCQ81dl+fjxyc9JxTWrVxui97zzMp/4HA6zb3R2gkMjR7KHZPJ6y8qOSFS/Rj/Pvn18lg0bIFFFaAdx3nkQh6o4VD/OrrC2f9eRSKzCMksiMdexKCdskEQcWDttL/aRIwS9o0fTpFcBYc8eQHXSJLJNHo8h1bZsocTvwgvJonu9kDoKSk1NEIhNTWxMy5b1BDmvF6m0w4ETpH0nRowwz7UsANbvB5DiJeWtraaB9pgxAH9bG+daVcWGqU6j18t7iJiGr/GlK42NKJVef52NZOlSAuZUUvZkpuUmXq/pbZEs263BvU5GLSriHNJthhsOm1LnbHo0piIStXwz1QTak2V+P/ejbrg6ZTsLy/UN6rTAokgEp3j3bvohTpzIWnngAe55+1T4Z54R+cUvwJvPftZkxnWg09/+Rgb6ppt63pft7ZQt793L32+4Ifm929FB+fL27WDWLbfEqoWVTC8r65k1f+01ka9/nXv06qtF7rzT9GdNNUE+kXV309vxscfArSuv5JpkS55rckKniZaXJycVuroILNav5zPX1ZmS5XScfe3flZfH59d2BOk02I5ETNlNfzQCDwTYqzZvJmDy+fg+5s0TWbgQp7+kxCgBTkLJcm82iEWniO3bB6bMnAnB43SKfPGLrJnvfc/sNdqOpLiY/VwDWocDkuvpp/GXrrvOlOsrSRUOi7z9NnvYuHFgXm/JxGzLl+3KxUxfm6i8ORKh6mTVKrBhwQL61KbT+zTZZ1Oi3uHoXQUYDILdu3aRWC0rg8CYNi0WmyMRWjw8+STnOG8evqf20lXCMhg071lcfHJ8pWSm1SitreC7CKTNiBH8q30qs7FgkM9dUJD5XnPCBrHoFLG9e8EjHdwVCqEwPHCAUmbtVbhnj8h//Afk0733Eqc0NbF+m5tpEVNXRx/mQIC/q0IvEoE0ev11CKIrruipfotGiaeCQfCwpYX79IwzYv2Ari6Ip9JSMM1OHOkAjsZG8PKcc7jHdVBJvGAklWki429/49izZ7PO7YOuMjEdmqktTEaPjo1B49977VrIw4MHuRaXX47yMZNYRJMKbjfvo3iUqXpP+yM6HJlVoYXD+EG7d+MXbdzINcjLI4G2eDHk4fDh3HtOJz+qhNcpy8kwRj+fw2H622douY5FOWGDJOLA2ml5sTs7Uc6UlNCIVwO8AwfIOI0dS6Y3EgFwIhEyMLt2UcIydy6Bt33K6O7dNPcNBnE0zzqrJzD6/WwiWrqRnw9428k6y+LYgUDPIQSBAJtsWxuv0R44TU38raYm8dRTO6GowaKSbv/4ByWR0ShkxeWXZ6/2EYFw6+ricwwZklyq7/ebJrvaLD2d8sJEpo23s+mPmI5z7PezOeTlvTOTmwMBMpr6vdfXZ6WCyPUN6rTAogcfJCi96y4IKp8PAtHngyzTkpp161Apnn02xFxeHt9/OAzJtX49ipj3v7+nU7N/P9n57m6RW28lKZDsnt26FQIxEOD9taWDWnc35xZf1u900oto1SoSGV/9Ko6yYley9gvJLBQS+f3vmS7d3c0533Zb78NfUpn2/YpGwfpE5Jxlcb3WrMGxtCwUesuXoxzItP9aU5MhXLU8JxMiw+czQwMyNY8HwnDzZgjEUIjvYcECiMNZs8zEXS0hVGdcVYcDNB16EItOAWtqIigcO5Y1rEH7vn0E7dOn87xAAAKxsJAAy+Eg+PL5eP3atTz3+uu5p3TKuYgplfZ6TRP6ZNaX8uVg0BBl9v55mZiWN0ejJEdWrcJf06nrej2yMU2W6mdLpoTW3pT79+Mj1tby/uPG9R6UBoO0fHj6aa7hOefQm0yD3mT4l4mpr5TOpFTL4py0x6H26BbhvlE/tLQUnMw2YS3Csbq6uK69VbsksUEsOgWspQWRxpgxpsLrxz9GIXbnnSLvehfPO3yYSgcdDjdsGGvG6cRH/uUvEVX8278Zxb22mlIybP9+/IoLLuh532l/eSUPAwHOadKk2PXX2QmBWF4eOwHdsogF33yT3888E+K/owMMLStLPKk+mVkWWPTII+D15MlMn54zJ/u1rBVOHg/x4rhxibG2qcm0b3C7uQYrV+K3ZqJijka5nlrCrL6hw8Hjqu7LxLQ/Yl5e6msZCuHnquKws5PPe/bZpsehvr+2ntHKkIoKrlG6vbzDYfOZsqhey3UsygkbJBEH1k67i+33E7S73QTNmqE6cgTwr68n4+RwGOJm61b+fvnlbApNTWweOpXr5ZdpzltWRiZ+2rSeoBwIkPVRAKuoYHOyO7t2AnHIkFj1SkMDJKdlsWmp09/UZJzNdPqERSKA+Zo1OJweDxvSddexSWQzzUvETDALBDhGTU1PR17L9nSogZY89dZMPB3TkqRs+yOm0zxcS2eUHM22xDtbCwa5H5ubuXfGj0890TLOcn2DynksevFFkW99i6bTt97KWnz4YbDlox/lOxWh181//ZdpIl5YaLKizz1Hhvvii2NbMKi98grkXkkJ6sW5cxM7iJEIar9Vq3Ai/+3fjHpFTZvkV1QYZ1snzt97L1j1kY/wWQoL+T0U6oldvVk0Snb9vvvAuHnzRO64A5zN1rRHYTDYs6xSLRTiOq5Zg0NdWgope9FFBtfTNS1lUcczP5/gPZvSZA28tbwvlXV1oap47TVKHiMR05B+4UL2IsVWbTIeCBi1lvZiG+BWDYNY9A6by4U6cMgQSCqdFL9+PVhw/vk8LxjEByoowFfKy+O1bW28/pVXjCpG+/tpaZrTCYFoWTwnfiqq3bItX9YpvlqNUFSU/b1sWfSlfeQR9tpx4+i/mm6/wWTH1DWnZcTxyU7LYg/YtQt/Lj8fX2zGjIz3eHG7UQz9/e9ck2XL+G56u/aZWG++UjRq8CsYNM/TMmV7tYhiZlcXvmBBgUk6Z+MLaqJXB35lYINY9A6b10tlRWkphE5+Pr7J44/TA/m97+V5jY1UcTgclDbX1rK2Wlqoonj0UdSKd95pSujr67m31HdqbSW+mzOnp1jCsohhGhp4nk5Pju8z2N5Oy4eKCmIxJRe7usDD9nbed9Ei1ntTE5hZVcU5p4slBw8iTNmxg3P44AchU7NV7UajXMPmZq7x2LE98cWySESuXk0bHIeDvWDlSjA80+nROoQrGjU9BO2+WCgEZmmLmUxM+yMmGrTi95NM3bCB78Tr5f465xx+5s7l+ygq4hh6nuoz6pTlbOJJHQaox8ngmuU6FuWEDZKIA2un1cXWoP3wYYL2CRN4vKEBh3jkSMDF4SAg3r+f7EVnJ4H/mWfy3Lw8M3nq6achB0aPpu/YuHE9VSTad6K5GRCtqzMZfbVolPcMBtnc9BheL/L97m4enzqVv2lZdF4ex0sna68bxJ/+xCY4diyfa9w4NmN1+rTkOZ1yIJ22pTLuoUN7ZvfCYTNlWUuWdcpyfwWvOmglPz87JzQdIlH7V4ZCbA7ZDHfoi4VCBDcNDZAUkyZl5DDn+gaV01h05IjI5z7Hd/a973GP/ulPJCiuu85Mhd+2jWbhkyahCiopIShrbcWxe/ttcOaqq2LvU8sia6x9FW+9NTEWieDk/vCHkE7Ll9Nr0U5YWRbr2e83ZJgIePPNb1LyO3MmZcwzZ5oEggjrPx3yy7JIvvz3f5O8mTSJ/kVLl/YNEwIBcEaEzx6fFGlvR+W5fj2YVF/PNXjXuzJPDKjz6Xbze3k5uKDEQUFBdkkZv59rWlKSWF3d0oKDvHkzqjHLYg/QwSiTJsVew0Qly6Wl2Sm3+8kGsegdtFAIpUxeHsF0QQH9UB99lED1uuvM89raeN7w4WBWKITv8OqrEITz5hHk+3zsj9rDuKUFUqy4mPdItlfay5d1Em8661+Vbpo87G0IRzq2dy+ff8cO/MBrr0WpkpeX+fRmtWCQ66JK6Hh/JxDAt9u9mwSEVpdMnZo5FtmHRmkLh+eeI4guLESVeNll2Smc483eH1EH2ChxKBJLHKbySzWx3NVlBl5VVmaXqPX58EW1h3WaNohF76BFIvgBfr9pG6JVGBdfbKbCt7VBIPp8KBDHjuW1jY3EaE89Bcn1+c+bPbm21lRqrV0LVsyeTbI2vpJHFYi7dnE/jhwJ2Ri/f7e28p5VVRzH4eA8tm8HO4qKSN6NH8/jDQ1mCF66CYHGRpK7GzeyBq66ijitL/u1y0UMqhVr8QIWnw+8ePJJfNXqakq9r7wy86onXdPd3VwD7aOdDAu0Qq6iIvPPaO+P6HZDGG7YYPpQVlfj2y1ezF6l56BVKvre0SjXuro6s/6MySwYNG2weiuBjrNcx6KcsEEScWDttLnYlgVAbtmCgzhvHo+3tOBQDxvGY3l5pp/U3/8OGFx7LY5wYyMbUX09oPO737FxzJsHUA0f3lOWHQrhJLa0EOiNH5+4B0d7O4A4dCgbVzSKXP7wYZy1KVNM/4nubtOfqK4utfNsWWyOTz8NMTpkiMiKFWSYFLQ18PV6jeOr/bmUUIx3pLXMKRTiMw0dGnsufj/ArgqDvpQsp2PaHzGbQSsi6RGJloXDGwgk7hF3si0cJkN59Cgb3tSpaZ9Drm9QOYtFXi8EosdDv56aGvpYrVmDUkRLiHfvhpirq6OfYUWFyR4/+iiE0Xvfy9q1WyQicv/94NWiRfRAHDIk8VTxLVsg7kIhHPQlS2L/br+/lSiPRlEF/OhH3H+33WaGv+igl7y8xOrjRPbWWwQJW7aAaR/7GP0U++IkRyJG4VxYCM4oBmiJ0dq1qPZEUBddfDFKg2z6g7ndOInRqMEB+2fX8kpV4GRqOh1Zhy4cP47acMsW9gQR9pKFC/nO4ye3JytZLi0d+L6uCWwQi94hsyx8FrebgLq8HCz60Y/Aoc9+lnslHCZgdjgIIvPzYxv779ljJoIqiaQqu8OH2aOqq3mPZPe/XUWYyTrRib6akOyLP3HsGG0UXnuNNXztteBCQUHs9OaCgvRVKaqEDoWMEtruF7W3448dPMg1GDUKHBo7NrvgVclDe6m0vl9TE8NXXn2V/eSqq1Bb9xVrVeltJxTtisNsTAdROZ1ccy11zkTR7fFwb5eWDvpFuWDbtoEpCxeCM2+/jQ90xhlmKnx3NyXM7e1UcmgfwJYW0ydwwQJ6IGrv1iFD+Nm716gcZ80izqur63k/HTtGzOdwoN6PT8SJIAJRIci4cfy9uZm15XLxmvnzWQPBIHt2OMz7JfLF4q2zk0Fy69aBHeedR0In2wFOIqzPY8cgSIuLOW/7ujh+nLj42WdZ01OnojpcujQ7XPV6jbpYVcGpkgGqWIxGObdM/JOODkQ8GzdC5EYixOGLFxPfzprVMz72ermnOjt5zyFDeE22VXjJLBAAi4qK0vv+JfexKCdskEQcWDttLvaLLxJk69AQETabN95gU9AehlrSsmoVm8SNN7KhtbUBdLW1APyvfkVwf+mlbGpVVT0zTcEgx3I6CfgmTOjpiEYinEckwuuLi3n+7t2A3ciRHF97WbW3m0laI0emdq4OHRL5y1/YTAsKANclS3pK9O2mWW0lFCMRE4Qqoag9LgoKOG/NcKsD7Xabvo86ZXkggld1+rMZtCKS/hRCnVarG+VAlgNGIgQghw5B3E6fnlZPoVzfoHISiywL9d7LL1OCM2cOzs4f/oD6UEuSDx0SuecenI1vfcsoTJubGa5y5AhYFN+z0ONB2bhtG0Tcu9/N+oxXqEYiIv/7vziMEyZQ8qNqavu5dnaaDG5pKUmHr38dnDz3XM5Ry57dbnCgqAgMSLW+DxwQ+elPUQFWVYl84ANMcu3r+vH5jIrFPnU0GOS6r12LI11eTh+kZct6x79kphl2l8sMj6iuTh40K4FXWpq5SioaJaDasoX7pbmZzzd1KgGXBl3xplMI/X5DfuiQi4GeLt+LnTpnkp3lJBaJQPA1NOBTjBiBGvmee9hDvvY17hcd4GRZPEd9lrY2CKkDB/CjVqww/Za1/H73bu7V2lqOmQwTsilftqsW8/ISJzbTtbY2kSeeAItKSiDXLr88cSAZCpn+W6n8ikDAlHWr+lCE9XzkCNe7pYVrOnky5GG2pcaqpolETB/KZETnwYN83rffJtnz3vdCUqR7/ZS41euvyVZNTPRnn+ho1Ex1DoU4dnV1+gMY3G5wurx80C86le3wYRIaU6eCRw0NkIXV1VRjVFRwf999N0nzr38dUkiEe+P3vyehcf75pj1MUxP344gRJAzffNNgUXFx4n6Ee/awx1ZWEgfW1PQ818ZGMHHoUNNK6o038I8qKlAta79Xr9cMnRo9OjU55fFAhv7jH7x27lx678+Y0TeyX/s2hsPEivX1rFnts/jkkxCgBQX4RStXZpdUFcHf6OoCk+xT2NM1bbNVUJB6zar6dONG8DQa5Tqfdx59/adOTdxqQacsa3KnqorvxrKy76ObyrT3f5pEYq5jUU7YIIk4sHZaXOy336bHxpw5NP92OAC8LVtwNBYujJ3O/KtfAbY33wwgud1sINXVgPxDD+FMXX+9Cbbjp1Rpk3u/n5K/0aN7nlc8gVhQgIPe0ACoTZtmiMloFOfT6wWgU0njm5pE/vpXPnthIWrJs85iA8y0DFcz3UoOdnZyriNGsDEVFgLMHo8pWS4uNlOWB9K0P6JOWczm9elOIfR6TfPmeBXmybZIBOLpwAHe+4wzUn6vub5B5SQWPf44zb4/8QkIs6NHzVT4j3yEe6ehgWmDBQUQiEoOdXSgGjx+nPYLixfHHru5mQEIjY0MiJo3L/GUytZWkR/8AGy77DJwLX5t6ARN7WmYl8d5P/gg99UXvkBJjcNhyp21z0wqErCxkT60f/kLz7/2WoLYkSP71ltUhxVEIkaBowNodGCUxwPpuXw5yqlsVUu61jXD3lt5jpqquy0r+SAFu+kgLy1V7ujgtTNnonRfuDB5mV4oxHtpSWFxcfJy6FPABrHoHbD2djCgro5pok1NDHiqrCTBocrn1lbuxREjzP3jdtOf6+BBEhUXXWQUuVq+un07uDBxounvGm/Zli+HQqbPXl/Ubi4XbST+/nd+X7GC4DlVgBeJxPoV8b6BqvNUCa1Y5PNxzffs4e+VlQTqU6Zkj0WhkHmv/PzepzzH244d7EkHD+K7XXdd8p6PSvQGAia5WlhoFIe6F6QzaCVb01Jnr5f3qKhgv0lFzDidXPuKip6VP3E2iEXvgHV2Uno6YgRxidtNubLXS7lybS333Ve/yp54993sfyI8/otfsMcvX45vJWKIu9paSloPHSJ+mzABXBs1KhY3IhHayRw4ACaefXZif6ShAZ+ipga/7cgR9udAgLWsLSFEwL/mZo6jsVEy00EvdhXg4sVgQzoCkWQWDOJndnWBDePH86/HA+49+SQ+5bBhlCtfcUXmvVft76W9s5XsT7Hekpq2oolvQ2NZEM46GOXAAR6fMsUoDkePTtwfUSdsq9JRE792dbMOOj1ZRKLGzsXFKQnSXMeinLBBEnFgLecv9rFjBMOjRlE2V1AAoGzejOO1aJFxwI4epczOsshsTZwICDU0AD5tbZQwl5fT8FdHzNfVxQJXezsOdTRKH8VEAB0O87xolM3J5UItGAgAiBMnGlJKp34Gg2y6vTm8HR1sSlu28LnOPBOCaejQzKaCxVskwrFVqq4qAFXbqDNbVcX1eSeDV+2PmO2glUyIRJ0MqP0gB/JzR6MEA/v2cY/NmdOrc53rG1TOYdHWrWTWlyzh364uyLTiYhzfsjIw5e67Wdvf+pZRBzqdDFdpaIAgPPvs2GPv3s3zo1GIgPp67tuamth79tVXDaZ9+tM9iUiRngTirl2okvbvR53zxS/GJjM6O7nvKyt7x6LOTgjTJ55gfVx9NUHrsGG8LlssUnLO7+ezqgJn506UCdu28X4LFqA6T5SZTte0YX8oxNrOZFKfiBlmoq0h4i0UYq/YvBnlhJa/zJ1L0KRTGBVf46+DKp9UKaXqp1OgZLk3G8SiATafD1VOeTlqHo+HoL27GyXzqFHcqzoBfvjw2P5RDzxg2ilceKEhEJVEevttE1QnG0ykKtlMiEDtuadVDcXF2d3bfj9J1T//mf9feCFYlIkiOVl5syZZVQldVMR13LkTIiMaBZ81mZwtFqnqU/tA2lXXmZhl4R8+8YSZ+Hr99Xx39onK0SjPV5VpomufTguY/rBg0JQ6KxmgU52Tva+9r28vCdZBLBpgCwQghPLzUY+JoDLct49/p0/nXv/mNxFifOELZtBTNIo/s24d5NfHP87jzc1mIOWLL5IIWbgQLPL5TH9ENa8X36i1Ff/gzDN73keWBdnW0UHcVV3NPn3sGL7+OefExnatrfg85eXgaTKcCochw/7yF+7nadM417o68KEvk8pbWzlnywJzRo4krn3ySXoe+nzEgytX4pdmS5qFQiaRrJOI+6OXoNvNsSsruR+UOFSCeNYsfNjzzjPKTzUdtFJQYEqWFZd1ynIyvFQiMZOhXpmYVvVpe7AklutYlBM2SCIOrOX0xe7qoldYYSGBeHk5zvPmzQDfokUmIGxpIWgPhZgOqtkrBeR9++i9MWYM/cDUgR41ygCxPv/AAd5zzpzEQbYSiJbF3w8fBvzLy9lQ7D0rAgEcPcvquRHaze0mgH7pJUDznHM4VmEhG2C2mSY9tk4m1s1Ce1+43UbCrpM+dTDLyep9mI5FIibwyGZTyIRIDIdNf41MSYa+mhKJe/ZAIJ15ZtKNMtc3qJzCotZWegcOGcLUU4cDVZ/bLXLLLQSvXV30/enqogfixIm81uUiG9/YyDEWLIg99osvolCsqUHBWFbGPahqZhF+f/hh+qBOnszE1XinS8QMdNKSuPvvR7VdW0uZo71nYjhsnttbuYrXS7Llt7/FObviCkqxte1BOqq8ZKaKZw0k8/LAvLVruV6VlRAEy5b1nL6YiWnQGghwXfoySCkc5jqoisfvh2DevBnC0+/n2PPmsSfNmRO7hsNhM6iltDRxyXJpad8m0w6w5cZZJrecwqJIBAIxEoGczssjWN+1y/Qf08ECoRDrVPewUAhM2LMHoknxQMmsUIjjOBzct8n60GmP0EzKkPU1Dkf2KpFwGL/oj38kYF+0SOR978OPy9a0vFlJRe1FWFxsSpbb2ljvU6ZAimQw6KOH2XsQajKiP9oTRCIE6KtW4Y9Onw5WjxsXSxymo6AWGZhKjGjUTHXWskQtdU50f2h/3178skEsGkCzLMi77m7U9RUVkILr14v8679CFkajxGIbNzJs7dJLeW00it+zbh0JyY9+1AzBdDq5FzZtMkmC8nJ8qZqa2DisqQk81NLhSZMSn6eq+UaO5Dhbt3IOc+fGlv1GoxzT7cYvGjEi8ZrRz/7UU+CDKulUGRc/7CQT8/uJI91uMHjMGM539WqSkwUF+EQrVxIXZmuRCN+d281nrKri2vZH0lL3qbVr+R61ymv+fEjD887r3adTX7a727S00inL6cwN8PuNX3kysMzjMb5eEt8517EoJ2yQRBxYy9mL7fcjee/uRvUzYgSPvfYaQLFokQkK29pEvv99ArXbbzebSlMTC18b2s+diwPa3o5DN2qUIcr8fjadxkYzZS+RrNs+yTQcBvijUSTn8Y21PR7Izfz8nlJ8++dcv56fYBDF0jnn4Djl55ONyrakWMlOvx9graw0yhdVE+iUZQ10vV6eL8IGoIRiX8oWszUdtJJtf8RMsux2NZd9ou1AmGVBJO7ejcM0f37CeyXXN6icwaJQiJ6DR47gII8aRT/CQ4dIQEyciBP21a+CF/fcg1MqguP0ne+QWb/tNkp91CyLUrTf/Y7A/0tfMkodewPr5mbwbP9+gsKbbkqMHaoujkYhs777XcjPD3yAAQv2ezgY5LkikAyJEgTBIMH6r37FWli2DPW3lmdXVmafWNBeq8EguOZ2MxBiwwZwZ8IESpsWLeqbGjgUMqVweXlGWd3XgL2tjX1EpziGwxx7wQLOeebM3gMInfaniQ0Rvu/+7kc2QDaIRQNou3ezHs84gzV4330EanfcYVSF7e3giL2/sSoQ9+xBtXfBBTyuA3u6usC00lJ8o0QkjQZnmqRIl5RSJVwmJc92i0YhIf7wBzDtjDNE3v9+VEd9NVVhut1gkQ6T2b2bz1pdDZ5Pntw3LFLMsw+mi5/wnO352ycqBwLg6Nq1nP+73kXLifgWPb0dL92Ea3+aJrI9nuSlzjooLBhMOuRhEIsG0HSg0JlnEps8/jhJyxtvJElhWQyfe+45fIeVK3ldJAKBuH49auibbuI793hY3243pFlhIX5AYSH+SnW1IZ4iEaq9Dh3iPp09G98skQLxyBFix7Iyzre11ZQ825WC4TAqOb8fsjFRf1PLQqn9pz+hYhw7Fr+sosJUlyUjHlOZZRGnNjaCRUOGGKKyqYlktfZ7zbb3qogh710ufldlX1/XezAIyblxI/2rdaLxnDkQrEuXplZmasJX/aOCAj5rdXVm19ROJJ6sAXQ6aLS8POF+metYlBM2SCIOrOXkxY5GUcEcOEDfsUmTAJrXXuPfhQtNZqqpCafa5UKtOHMmj3d28rc1a9hQLrqIfmKtrWbgiZKQHR081+kEuMaOTQx8GojrBDG3m+dPm9ZT5dLVxXNLSnDm4jMj4TCg+9xzbKRz59LfRxvIqqQ+WxWe0wkwi8QGFVqy01vJciQSSyhalinHU0JxoBQzoRD/FhScfCJRe8VptmkgJzdbFvf77t04Dmed1YNcyPUNKmew6H/+h1KVe+4hIHvqKZIQ730vBG8gYMp37r4bh1oEzPn+9yEBb701lkAMhcCpdetwrG67zQw/spdrvfwyz3M4yOKfc07ic1QCsbUVheSaNWTGv/51sMRuPh94lJ8fq3ZUi0ZRaf/85zizCxdyfhMmmF45fSlf1l450Sj3+IYNTHjOz4eAu/jixNMUM7FIBMzTgFRLtftyzI4O1IZbtqDj1+hPAAAgAElEQVROUpXXuefyvUyZktpRVcdWG3SrCrS/sv/vkA1i0QBZQwME14QJ+AOrVpHQuOEGSDUR7lOfj2BbccTvpw3Mnj0E8jrQKRzGbzl+3AwamDUrMZGdafmyZeFjaO/BbBQhlkUJ5GOP4bdNmMDnnDu3f3wO7UcYjYKJe/fyPnl5JIJnzkxMTGT6GbRdg2X1z1T1aJRr6/ebkmztZanfjc/HgIdnn+W7u/BC+uCmQz4okXiyy5oTWSjEd6GlzjrsTvFbB4aFwzwel8gaxKIBssZGiL7x4yH1N2xgKvyFF5K0FCEB+eSTiDU++EEeC4Wo5ti4ESxSAjEUMvi2fz976/Ll/K2lBSzT1goeD0ReVxd++eTJ+MmJBnAcPmxK5xsawLazzuqpWAwEwEHtt5hIOLB/P+Th3r2838qVvHdTE9g2Zkz2ggO3m3NV3+DVV/EPAwFIuJUrUe/1JcmosaASdOXlyVW/6ZrPx7lu2EBM7vNx3HPPhThcuJD38vt5PFHi2bJ6lixXVppBd9rOKpv9wz4Y62T4WC4XWFxR0SOpketYlBM2SCIOrOXcxbYsSvhefRUQXbCAzWbzZsDhrLOMU3TsGJtWVxc9DjVo93ohY558EiC79lqC1c5OQGvYMDaiSISN0ekEFCorySglIo+CQdQojY0m2zJpEptP/PnrJOiKip4ZqmiUoPTZZzmfqVPJao0YwYan/Yz60ihX1YciBsB1+p82DE/XtCeY9oRQ51XLGktLT67T2ddBKyKGSEx3Q9LJzUVFZkjFQJgqEnfu5B5YuDDmnHN9g8oJLHruOYaY3HADmfQNG2hmfcEFOLihkMi991K2ceedOE4iBOQ//CFr75Zb+O50Xag6cccOVILXX8/6dDpZQ5WVHPehhyDzpk6lfDlZbzJVGD/zDKWKwSAJlEQDV1wufoqLIQzs97Jl8fnuuw9necYMiMsFC3BwdTJxtk6ylvE5nTibL79sBlwtXcpPX8oERUyG3ePh94qKvhF0TU1mMMr+/Tw2erSZqDx8uMG/3nBPEzGBQGzJsrZpKCsb2EFO/WyDWDQA1t0NZtTUkKh86SXKBC+4ABWiw4EP4fWaNiUiZnjc/v003l+6lHtW18qePayX0aOT9xvNtHxZp/9qGVo2pfm7d4s8+ihqp7o6iIhzz+0f/0L9GJ+PihMlGoqKICqnTDEBbLbvpwkDe6VHpv6W3SIRozTUgUvaV7I3Ure7m8TXunU8/9JLUTKlaucwUP0Re3t/l8soD+2lznl53OuRSI/e1YNYNADmdoM/VVWo+fbupRJj6lSSrYWFEP+/+x2Yc8st3EPBoMiPf0x56zXXoFgsKOC7bmhAxdbaCjGpqurGRo6nZH5jI+8XjeITjRiRnEA8dMhUlGmF2IIFPVVjHg/PycsDB+MVrg0NlBJv28ZnvvJKEsotLayvvpQvRyKQl01N4PvmzWBfUREJ1ZUrE5doZ2KqtnY6eT8doJdtDNXdzXe4YQPfmRL62t9QhwLazeXivauqDAZqsleH3Okwl/gktbabiB+0ku5nP5lEomXx2bRqzUaS5joW5YQNkogpzOFwlFuW5emnw+XcxX7pJYLjJUtwfiIRSDeXC6CqqeF5hw+jVnS76a+xaBGAFApBQK5aBdB/9KNkjtxuyL3KSo7h80FC6jQ+lVAnytoGAmSrDx0C1OrqEk/ni0ZRIakqwN7/wbLYMP76VzaPMWMgD6dNwzlqbeUcRo3KrnxZyz7a2jhfLZ0pKUkqvc7qPeyEopbA2AnFk0G46aCVbPsjimTe98fnY+N8JyY3HzjAvTJyJMTFiWs64BvUPxsW7dtHX59Zsxh6snu3yO9/z+/XX899+IMfMJXwM58x6p6mJhxllwu8mT/fOFTHjzOBub1d5HOfA9eCQda8Ki4aG1EwHjyIcuRDH0runIbDOLY/+AFE5sKFDFGZMCH2eYoHPh9rM740ZOtWyo62bUN5feutqLVDIbBSpG/ly34/n+eFF8DvcBgcXr4cp76vJbzqyLlc/L+8PL3eOYmOo9MaX3uN70sEJ37hQs5Vh+WIGHKwoCAxpgaD/F0TH0VFsSXLmoHXic85qkYcxKKTbMEga1NLw/bvp3/q5Mn0Xy0sNL2ttK+VCL8/9BC+zYoVBHh6n3Z0UI4fDhP8jx3b830zLV+2T2tWZVyma/DIEXB2yxbw8NprwaL+2nMDAfwiVR1aFu8zcybrvKAg9fTmVKbkofZXzDZJoKXggUBsFYYSh5ngZksL7Sk2bQIfr7wSkqI3TM804XqyzF7qLAJBXlVlrrFNUT+IRSfZwmHisnAY0qizk0FzZWUkRysrGXj04IOs29tvZx35/cZPWbkS30YTksePizz/PN+z9hJWYtHhMOKMPXuIqSoqIA7Lykwiz26RCM/dtg2fYORIjmnfu9W6ulgbJSX83b6m2tsh4F95hfV22WVmkv3Ro+DyyJGJScx0rKsLReW6dfgbbjfx5FVXibz73f1T/eTxsDeEw8bHzKYdVWsr37tWjmhf/8WL+TnjjN5xUpNW+flgju5XloVPlGoSdDhsErDZtMNQIc3JELqowlPb2pwgZ99xErGfsemUtJwlER0Ox9UislpEbrAs6/G4v00UkQMicq9lWV8+8di/iMitIjJDREIi8oKI/LtlWdttr/uaiHxVRBaIyCdE5BoRGSEiM0Vkp4j8h2VZ34p7r3IRaRKRJy3L+lCK086pi71rF5msmTPJWGlpS2cn5SyqzNm/n+dFozhF8+axyVgWSqLVqyHpbrnF9FJsbmbTGDkSZ7qlBXCqqMBhq6pKrP7zeNgEW1rYOKZPTzwRMBSCTAiHeU97OfSBA5RHHjrE3y6/nMDA3tC3ooLNJBvnzetl83U6jXpO+/qdrH5bGjx4vfxEIqaESQnF/nREVcFTUJBd4J1N359gkE1fZOAnN9uJxAULRPLzzQY1iEX9b04nJTnRKOSa243Kua4OYrCggMfXrUOheMUVvO7YMUp1wmGRD38YNZ8qPrZvx8nOy6PsWacWdnSY0uING0R+9jOO/9nP4vgmM5+PkuPf/IZ1duedZPcTTdzs6OD+raqKxaK9e0V++lPed/hw+s1edRXno42jCwuzV/MFgzjgzz/Pe5WUoCa6+OKeRGc2Zlmcp5a+lZbGOHFpH2PvXqM4bG0FF6ZP5/ovWGCSVYksFAL7ior4sZcspzNlWXulaWuJHBmmYrdBLDqJFo0SaPp8+AkuFxPcS0qYxFxVZUrUtLeVCEHaQw8RCF96Ka/VpGhbG4mD/HweT+TDZFq+HAqx3i3LrIVMrKWFnmobNrCOr76aoL2/+i9r+4SdO/GPiotNyXKiIVVajh0/vbk3s7dqKCxkPWfqc6mKU8lYETPEKRtSNt6OHGGS85tv4sesXMkAjGTHVV/uVEhw6BTZ7m7TLy0aNWKAQb/o5Nvrr7NWzz6bNf7lL/N93HsvJNyaNfQ7fNe7wKn8fNbE974HsXfttagMFXMaGqg2i0RIxM6YYWKhcJi1GQzi//p8KAWVlB8+PHlrqNdfJ+aZP58WM/Hr0LLY67u6TLyl97jLhXhl/Xru/WXLwKLyctPuqi/ly6EQCdWnniKmLSjAz1i5kuvWH2tNhQ/BIN9TdXXmgpRjxyg737iRJLoIg5rOPx/icPLk9P0VbUPQ2MjvpaWmZDndvULxMJs4VolEjUtPBpGouFRVJVJQkJxEzFFsOiUt91qIG3tGRDpF5AMi8njc3z5w4t9HREQcDsePReRzIvKYiPxCRKpF5DYRecnhcCyyLGt33OsfFr7Y/xSRYZZl7XI4HC+LyIdF5Ftxz71WRCpE5Nf98JlOGWtooIl2fT1NwEVwejo6aKCrBOLu3cjmy8oAtgkTDIG4ahWlh2ecAYFYXg54K2E4bBgg6XIBZhUVgEBFRWIC8fhxAD8SMY22E4GZ388moxk0zfw3NEAe7toFyFx/PRtxXh6A39DAsUeOzG4SaSjE52lr45gjRuBYDURgqsBcUsK1sxOKOnjGTij2lczMzzeKxGxKjtQpjkZN759UVlTEZ+vsNE2eB2pys5YzKIm+YkXMn3MOi1TddioSJtEoasHmZhxjj4dgvKCAwDYQMH0Hr7uO8kCPBzX0z3/Ovfm+97GOleR6/nleM2oUjnVtLbjT0cFzKiogH//xD9TIn/0sDrInSQ5x2zYUSIcOkRn/whd4Py3bULNPjlf1occD1vzylyRZKirAx2uv5X72ejk3LV8uKOh53FTmdvOZ16/nfq2p4dqdf75RSSX7bOma/TzVSS4qMqWXvVkkApnwxhv8aIb8jDMgXObNi50AmepcAwH2DofDZMwLC7mexcWxJTWJTIlErzf7qdEDbW1tXMPLLot5OOew6FS3Q4dYT9Oncx9985vcY1/5Cn6E2806UIWxCLjy0EPcT5dfjl+kf2tq4p4vLSVwtd/navby5VQVBToMKhIx5bWZBMFOJwq5557jdVddhUopVQP+dC0c5j596y3j3y1cyPXs7T10inQolHqoWzBokqeajM4kkaGJCL2OImCZqr/7MwE7bpzI5z+PH/rEE9wnzzwD/tvbbqhl6iedTCssZF+sqTF9vv1+4oBgkOSUzQaxqJ/twAH8opkzwZ5vfhM8+drXiNVeeoke0vPmkdTMzwebvvMdyOsPfQhCT+Or48fpMZiXh38wejSPt7XxfdbW8v99+/juZ80yCuFEBKLLhQryyBGqw5YtS5wAjEYhszweYi0dFuf3g0PPPcf7L16MYnfoUNblsWMGQ0aPzi5B8PTTJEv272d9X3MN5GF/JFVFwBCdYl5QYBSb6ZhlcV6qODx8mMenTSNZvngxxGkmpiXL3d1mj1DVZ6aJpvx8rqGWPmdiqozXBG9/E4k63bqpCRX9JZf0+vRBbOony1klooiIw+F4QERuEpE6y7K6bI9vF5GwZVnzHA7HOSKySURutyzrv23PGS0iO0TkGcuybjzx2NcEJvlZEXm3Zbs4DofjFhF5QETOtSzrFdvja0VkqohMsCwrmuKUc+JiO50E43l5Ip/6FOTf228D+jNmmLKb7dtxgkaMgIyrrqYsJxIRefhhyjbOOYdhLFqi0thoAurmZsCothYwa2vjvXRDUQuFeK8DBwCJRYuSN6d2u00pcl0dG197O73NXn8dh/ziiwmm1cnUgQiFhQBrpsRUMMhnaWrisw0fnt1xTpapg+31mpIcLfEpK8te0WdZsZn6bI+RqSJRm7BrM93+CnbiLRw2JZoaKB46xM8Xvxib5co1LOrqisUi3cxT/TsQ9uijJCZuvRWC8Ne/xgG6+Waw4Q9/QN18+eU0C3c4cLweeID7+X3vM46pw8GxVq9GPX3HHWCMvTm8z4ca8MgRgucbbkgeNPp89Cx87DHe40tf6hE4/Z+pMynCc4uKwJqHH6Y/bH4+iYz3v9+UzQQC3Gs6HTNTJ+/4ccjVl15irU+dCik3f37/BaB+vynP0R466WBdMMg+smULJKzPx+ebMwcyZc6c7FpH6HRbp5Pfq6uzVyD5fIZ8PJXM5yOQ27kT8mHXLpMc2rAht7FITmG/qKUFbBk9mp9vfANf5Ktf5X71esGR0lITmLe2QgyFw5TE1dSYMr0jRyDTtJdZvMov0/JlJRu1VD+TfdjnI6B++mmwYtkyiKxs+z/Hm8vFet+xg880YgQYPGVK5qRcsvLmcNj4Nfn5fA/pKCe1t7MSh+qD2BWHA0HYWRaK1CeeALsnTiQxNmtW7PPe6f6IdguHWReNjfwcPsy5d3eL3HffIBadLGtvp+S2rg4i8Gc/YwL4Zz+Ln/T66+DT1KkkOEtK8D/uvZf4RIdi1tVxfx84gBKvpAQ/RMm+jg4z1LKxke962DCIrK4u7sMRI3rur7t20Vs+GOR8FixIvIZ0gIuWIldXc0+tX097KbebfvpXX20UytruKhQy5cuZWGcnPuDjj3MdR43CT7zqqv6LH3Qgkc9n+oeWl6der9paa+NGiMPmZl4zZw5x6nnn9YyJ0zH10zwe065F1ZDqK1VVZVearBUe2baI8PsNmdkXi0SIx3bvZl/euRM8CgZ7+kXxloPYdEpaLisRRUR+JyK3CGzuL0VEHA7HXBGZJSJ3nXjOjSISFJFVDofDDj0B4eZIFAL+3H4DnLDfi8iPReQjIvLKifcaJyLLROTbuXoDxFswyLTBYBB1TEUFm0NjI86fEohbt5LBGjsW+XckQibH6xX5xS9wHi+5BIdIJ7q1tPC8wkI2BG2iHY3ieJeW9twcmpsBh+5uNsC5c5MDV2encehrawHPP/8ZaX1+PsH+smUmUFVS0+MhI2WX06cyVbZ0dXHuwaCZJJ1NIHwyTUubhgwxTrf2uOnqMmU/ZWWZkRYOh+l7mU1mSo+h94dlpbeh5eVByjj/P3vnHR5neaz92VWvlmR127JcZFvYxuCGMZjeew2BQzGQciCccyhJvoQEMJAQQionJ8lJQhLKIQYSwEAwNcEUG1wwBvfeLVnV6tvf74+fJ8+7611ptVo10FzXXivtvvvW55ln5p6Ze5oxOJQsuCfGdSDAOLCDhvbMpfR0DKnRo03zjhAZVLpo2DDut0jk93BiBxV7A2hcvhyH6rzzMCL/8hee8/XXoyteegmn9+yzKf11ODAcHnsMQ+uGGxjD+flcx6OPAqidfz7bq+5QEv+NG3H4U1LopHzssZHPbelSIv779hG5/u53I3PmaCf1zEzD+fp//yfy9NM4rZdeKvKVrxjjUDMmAwFDbN0dUP2TT4jer1/PNc6dC4AxZky0d75rcbt5Fm636ZbeVYS9vZ21YuVKMtk9HtM5cOZMstpj4XnU7Cvl5EpNNWPa6Yw9mzAtjf1qM4r+EDWMN21ifG7cyP9+P9enTmRl5ZFgw2EZVLpooEpbGzyiw4aR/fH73wN+33YbDl5HB/ZGaqqpXKiuJujhcADIpaT8q8xTtm7lNXw4Yz90vbSXL6emdr6eammYlpR2BTbaxetFV7z4ImvdnDkETsLxlcUiBw4wZnfswC4oKyMzSrOcYhEl9LeDpvZszWh4prU8WoFDtTeSkw1w2NcAncNhyj2XLeOZ/OQnzOsrrjD6OzQbsa/O07IAlRQwrKrC3g0cntVZWcyNWbMiVu8M6aI4iMvFOpqRge5ZtAgAUSsxNmwQeegh7NP77mMu1NfzWWMjOqugwPDxrV1LsFE5T9WOaWlhjXc4KH12ufC7RowgySMQOBJAbGnBNlq7ljFw1VXh6Qn0OvbvZ1yNGMF5fvQRYGZ9PUkql14anBWo5cuJiXzenbV90ybm1FtvYYscdRQckWedFb855PMZsM7pDO5k3tlvPv2U+7ZsGc9Iu1Zfcw0+dSxN7rSBS1MTOs7p5NlqkyqVjAyeW3t798vBnc7Ykj9UNFteg7/RAomWBR6wdSug4ebNjNGODu5nRgb68sorGUdRyJBuioMMdhDxPRHZJ6Sf/vHwZ9cI0aSFh/+fKCLJh7cLKw6HwxnyELeHbmNZVrPD4XheRK5yOBy3W5blEdJTHSLyRE8vZCBIIECWT3U1fGJFRWQ/7N3L4qQGzcqVgHPjxgHKNTTwfVMTJYP797MwnXmmUaR1dSZi3NaGYistNSTbyo+o27tcKIv9+1FSs2ZhrIRTzMqt0dpqyqLfeAPOC58PI/nMM4Mdfnv5clFR5MzGUPH7OX8ly9XytzFj4kPC29uSmMh5ajdsBRSV5yYx0QCK0UT0HQ4WBeVIjCUyFYuB7HCwMCYkGCCxO52bOzoMYKjdn1XtaxlTUZEZT1Fc16DSRXYQMJKEAxf170AnS16sWY0HDsDbM368yDe+QYnX1q2AiePGYQg++SQA2b//O/v57DN0TlERQQ+/n2fW1oYBvW0bGYwXXWSO29oKeP7880R+jzqK8rJIGTiNjZzXK6+gs379a9NhNZwouJ2Swth55hmAyqYm9NAttwQ3UdByE+0SHK2R3NpK9P6dd0yTqosuMiVE8TKSlQdLo8e5uZ1TNDQ1kRWxciXOjXbwPOkkwJNJk2IvD/T5OA9751l7xqb9+1i43JKTDUDZkw700YoG1zS7cONGxrwCRBkZZJZccQXln0cdBUDeRcBmUOmigSg+H05KYiL3/5VXsCkuv5xgpMuFXlCKDYeD4MKTTzJmrr6afWRmYtusW8f3JSWAAKHPL9ryZQXCNCuvK7DRLoGAyPvvk41TV8d5XH11zzuPinA+27ebDFmnk8ylyZPjp4t0PqrdlZCAHdMZUb9yRWtHZQ0yKGgYS9fq3hCnk6yjOXOg1HjlFYJas2Yx5jTAbe+S2huiXXLtL6WmSE7mPGbNYhyXlESVxTWki3oogQDraSAAyLRiBQHJE0+Eq37HDjIPCwoYMxkZgC0PPcTzvOsubIOUFN6XLaMaoLiYUmGlU+joYO4eOoQ9kpRkaEXq6hh7+flmTQwEmO/a0XnKFLgWI9kvLS0GDCwt5beLFmH3jR6Nz1lZabb3+w23fFYWoGM0497rxS5atAj7Q4Qxe8EFzK94remBgGlOImL8qki62+2G83npUoLlra3o79mzKVOePTv24KfPZ7osa6JOfn7kYHRiInpTm9J111ZKSECXKl9rd3Worlmqm8Mdv6UFW2jLFvPSChinE/0zaxbr15Qp+OCZmd06lyHdFAcZ1CCiZVkBh8PxjIjc6XA4SoQ69C+LyHuWZelDd4hIu4hc3NmuQv6PxJ70J+HBXyAiLwipsMssy9oa4yUMKHn9dQznCy/EcN61i0j8iBEYhCIsQK+/jkNzwQV8n5cHkPj44xh3V19tuAZFTJdiBdxKSnAqXS4cqKQkAyBaFsDhzp0ouIIClENubnjl4PezYLpcKMz164nQtbcT4T3nnCOzG+vrOZ/kZIDJaBSo282C3NFhOn4mJvJ7W2e6QSUJCdyzrKxgTjCNRmp5UHp65/wVoQtKLGVAsRrImZnc+6Ymnmtu7pHPwusNBgxbW00ZdkKC4VfRexFLBtLnURdFk2HYWTajHXTsat8eD4aww0HX09WrMZZPOIGymKVLRX73O4zo//ovxsvHH9NsZdQogLn2dlMy/IMfMIa/8x0oFVQ6OjBG/vAHdM+VV0YuX7YsOFR//GP2dc01AJLFxZGDGY2NJrqq53zwIMbrrbcGG8kibNvWZkDxaAzc3bvJIli+nLE9fjy6WA3+eDmYapi2t3O/hw2LbKTV1ZnGKFu2cC8KC9G/M2d2jwA8nGjUWsGTlJTwzaISEw0vo9MZm8OQmmoyvWIt2Ykkra2ssQoabtrEmNFzHzMGjs3x41mDR4wwTTWiPY/Poy7qS9FGPx4Pzsnq1TRPmjsX+gSPBx2TmGgAst27RZ56irVy/nzmdFISDr3y6I4ZY7oP24+l5ctaShtJtFOwcgNGC4BZFrrymWcAMseOJQgzZUqPb5U0NzOGt23jvmRlYXeNGcPf8bKLAgF0txLzHybO/1cA0j43NAigwKGIaa6kwOFAlcREsqTmzQO0fv11nt28eQTTcnPjx4/o9bI2HTgAuFNVZcocHQ5s76OOYr0rKYkNDB7SRT2XDRuwb6dP51k9+ij+12234Svdey965sEHWaMPHABA9HppupKWZrrWvvUWoGN5ObaVAogeD89/1y7+Lygg2JeYyNru8+Hn6Nypr8c+O3iQuXfyyYyVSFllDQ3sJy0N3fjoowQdiopEvv51dIZ9bHV0kLyijV06a6ymUl9v6BmUB/r88wFbJ06MPlGkKwkEjI+kfNqa0BAqra3YaUuXYhu53dzzuXO5/8ce27PGVZFKlqMBI1NTDYVLYmL37RzlR1Tqje5KYmJwUOzAgWDA8MABttMu1BUVgM/l5WS35+Rw72PtOTCkm+IjgxD6OEL+IiLfFB7+ChEZLcHkldtE5BwRWWtZ1sEeHutdoWvPDQ6Ho0pEJojIT3u4zwEhy5dT9jt3LgDgvn0Y0sXFOL6WRXTnn/8kunzppXyfksLi88ILTOZrr2Wy62LT2sqi1dGBIhg5EuXl8ZgGK0VFGEStrSiPlhb2O3IkRlMk5e/xYPx4vSw4772HQp04kcUjtHzG52N7zYTU40YSy8KBbmszzquWlGVnc26xdAYbiOJ0Gn5BdaD12ltbTYaENmYJVdr2suZYGq2IxJ7RmJrK9o2NGCqJiSzWChi6XGyn3Vc1QpeV1XkWQwzyhdNF0ZYy2wHFUKAxEBD55S8JHDzwAM/w1VeZx6edhrH6y18SyLjzTp71hx/itI8bBzinPII7d4r8/Oc814ce4nsVt5v9/uUv6JT77oMeIZzs349RvnQpxvEjj3A+nQUztAPzZ5+RebhzJ7ryvvuO7PKsZSdaOttV+bLfjxH6j3/gsKekAEzOmYODl5YWPx4/v99k54qYuRJ6fgcOkG24apVxPkaNYm2YOTNy5ni0onpIs/ISEkzZYmf7TU42gEusIGBaGvqvowOdEYvD7vOZbrQKGO7da74fNQonoqKCcTpqlOlCqyBRD4CCL5wuipfs20fgc+xYnOSf/5xn9F//xTOtqzOdSZ1OnOGnn0anzJ9vxmt6OgCix8PvlftZRcuXRTrPKNRsOs3ACAeeR5ING+CY3boVB+yOO7DvejIvNdC7aZOpFBkxgmyivDyuJV6ULkobY+9SrfNReQ31peCh8j4nJJiKit7OKI63pKVBmXHaaWQl/vOfBPDPOAPbNi2te0CiZTFu7RmGdXVmLR42jPExYwbrSWFhXO/ZkC6KUfbtY80YO5Zn/fDDhou5sREA0eHAbsrPh3P1Rz/is3vuYb1sbma8vP46NkplJQChlp/7/eiwLVtY5ysqWIssC2DO4zHz2ufDvtm8mWOMHMncHzs2PBimJajavf7110n0yMnBVzzhhCPHcH09v9GgWme6xLLY30svkWUdCBBMveIK1tTCwugzGLsSe6mw6vdwgd/GRuzTpUtNI9Dhw6HgOeEEMkle4b0AACAASURBVMB7cj7hSpaHDcMn7e6cTU/n2SilV3fWBaWzUiAx+iBnMGC4cSPjT7PEc3MJoh53HDqpsJAxoHay+m1xkiHd1EMZ9CCiZVmfOByOjUIa6jihfv1vtk0WishtIvJDh8Px1dBadYfDUWBZVm2Ux7IcDsfjInKP0Oa7Q0Se6/lV9K9s2YJzPWkSiq66momdn2+i1W+/jZI+5hiMmz17MNZ27sS4GT2aMp/CQlPi0NoK74PPh0IvLUVJaATU6cSwVud/716T3ZeWxgIYiReio4Pz3LyZSG1DA9GJa65BAYVKezuGk98PMNoZ34TPh1JtbzdRf3UqtSlMbm7/d8rrLVFOsfR0kymhWYqaNWUHFPU+hAKJsR472ki7OhiaYdjUxJjQMrLsbBackhLeMzJ6rwyI8xnSRZGks5KHV14hQHHDDRivjz2G4Xflleihn/6Uuf2d7zDG3nmHrJrKSkqYOzp4rVpFOWF5ucj3vmd4ER0OdNEvfkGwZPp0wMhwwYlAgFKhX/2K8XfnnejEtDS2D3cNXi/6Z80awISNGzmHRx6h7Dn0N9qwJ5ry5aYmU7Lc1IR+/dKX0MPaSCEjIz66KBAwDYQsi/1mZ5s5Y1mAhQocVlXx+fjxZJ/PnMn59VQ0Ou52839yMg5MdzKIUlMN+BBLpFp1nB1I7Coj98AB1iMFDbdtM4BGbi7j9YwzcNLKy3G6lBYgKcm84vEsh3RRbNLYiONeWMi4/+EPWe+/+12eS20t7wogbtqELiooAEDUjH4ly09IIPiQlRUM8tvLl1NTIz9zn8+U7iu3cTSyaxfg4aefAgB87WtkC/Vk/fN4GNObNqEj0tIIwowcacDv9PT4Oexut7mX2gjOvm9ttqLBGAVYMzKYW4OxOiRUsrPJfj37bLjdXn9dZMkS+G7POCNyELSlJRgw1GC7COOtpAS9XVqKPdybHemHdFFs0twMQDZ8OHPse99jDt5/P2P/nntYm370I+yl7dsBGVNTyUDMySFRw+XCR/P5CFoVFpqmc5YF0LV9O2Nh2jRDy9TYyLzKzWWcVVUR0G1r43wUzBk7NrxeUs75ffuwuzZuZPvLL4dyJdRH8PsJSrS0dF2+7HZjEy1axLlnZEDlMn26aYw2enT8mqYofZXPx75zcoKv+eBBQMOlS3lmlsUcu+wygMNJk3qerKDci2o7JifzHDMzY7cZlE9WOeC7qwfsdFaRqtCamoIzDLdsMQHq1FTsoYsvZkyNGsU5qO2nJfhajh9vGdJNPZfPwTIrIqDJDwr164sty2rULyzLWuZwOH4uIneKyCSHw/GKiBwSEOdzROQzEZnfjWM9ISILBDLOhZZlNcXjAvpLqqtFnn0WQ+LKK4kCrVvHwjFtGtu89hrkt7NnEwXVbsYrVmCszpzJS5tPiBDJX7OGv48+2nyu2YAiAIiafdjRYdLWtetuJI7B5macWM08LCnBgJ8yJXKpXX191+XL2hlVswMUKNOGG5o1OdA6d/amqDOdlsazsQOK7e1sk5pqwBCNTPWk0UokINHjObIs2e/nu8RExszkyWaBVYLjPpYhXdQN2bCBTvBz5qBbfv97jJprr8WgfOQR5vd995lynOefRzd95Ssma+7FF8nWmDmTbBuNmouQDfbwwxh6116LnktIMMTQIrxv3sxx1q/H4b7jDpP5Fikb2uVCDz75JPquqAjj/vzzwxvA0ZYv79hB4GblSq5x6lRT5qoOc3cbIUUSberS3Mw9SUvj3BITDe/RypUEa5TvrLKSsrsZMyIS6nf7HJQmwuczekezjLsryhenDW5iiVwrKGEHElWamrgvdtCwpYXvUlLImr30UgCkykrT1Ep52dT41gh7L/GyDemibojyMGdkYIt8//vMtQULWEdqD7sK+fk8u3Xr4BcsKSEAkpgIkKzdTbOyyKRRcE2d9mjKlzWrTjM8ou0WXF3NOS1davToWWf1TE8cOsT43r6dMVxYCBhRVGTKhaPtihyNKHioAVx7p3V7R2Vd++0Ao1IY9GawsD8kP5+A2bnn0njshRdYHy68kHJNe7dkbRYown0oLGT9UB7DeOjrGGRIF3VDvF5oFJKTeXY//Sm65Z57WJvvvhuQ74EHCEht3oytlJ3Nd3l5jAPN+MrMpBoiKQngKSGBYyxdis4YN445rfOssZE1T8t0ly3D18vOxlZrb2dfY8eGt2G8XnTG22+jJ9PSoDY566zwQFV7O2BjV+XLNTU0YXntNXRseTkZ4scea3gbi4u71ySzM9HmmV4vz6KwELvCskik+eAD7uG2bWw/ZozJsCwvj8+63tFhSpZFTHJNvLLxdB3SqpjuJoBoVrjfz3qwY0cwYFhTw3YOB/fkxBOxjyZMYCyqf63BoJQU7nNWVp9lkA/pph7I5w1EzDr8d5BYlnWXw+FYJSLfEJHvi4hTRA6IyAci8rvuHMiyrD2H23KfKSKP9+y0+1daWsi6SU1F8bW1kaqelUWmiwhp4qtXoxTPOotJvmULStzlwlkeN85wYDkcOOsbNphuU1ry6/ezYFkWRtGOHfyflsZC6XCgMDXyEE7WruWc9u0jcqYZMOEWDJ+PhbS9PXL5spYsK0+e02my1rTpi3b/jZSJ9EWS1FReeXmmO2pbG45TQ4MhLFenJ5aFXJ0tXTg1O0odFoeD56MLTbj0dk3R9/tZcPvwuQ3poiilsZFMn8JCkf/8T8qMPR7AwaYmyomzsgD2srJEFi8ma3HGDJGbbuKZHjgA7+CmTWRIz59vjBrLglfqd79jzGr3ZTV4VNxutnniCeb4ww9D69DezjjOzjZlX/ZxtHmzyP/8D4Zkbq7I7beTJRjOYbeXLycnh48e+3wAkv/4B5nZqalE7E87DaO6vd0YWbHywISKgod+P8dTYvD16wnUfPyxCaAcfTRZBMceG78If7iS5czM+HRK1QYKyo0WC5CSkMB5rF+Po7BzJ6ChZmHaDePKSkDD8nKTca8vBY7tGYd9oJOGdFGUEgiYEr3x4ylh3rMHp107k6rdkphI9s6LL5Ihfd11jK0DB3C01REePdpkGzudJqtQpPPyZQXKlPszGkdKG0X985/s95JLAJhipVuxLGwsHesJCTjIkyahI9vajNMZa7l/qHg86Djl2MrMZP8aPPR4jgQO7eCqvbxZAcjPm6jNO2YM4++++7jOo48miycvj3GngKFm1A4AGdJFUYplEZB0uynpfOop/r/1VrK2vv99Aqz33cd8XLsWfZWfD4CYmwtws3Yt22mZekcH4yMlBfvqo4/QG8ccE9zNVhsXZWej9z7+mDk1ZQr6bu9e9hHK76rS0ECDzmXL2O700/ETI1V/1dUZbvxw5cuWhV+6aBGAnQj22SWXcN579+JHZmQw9uMBrrnd3Bu3m2vMz2e/W7dyDh98gH4UMRUxJ5zAnIuHaFVIU5PJWM/JMcHdeIvyZirVVzT6PBDgHihYuGkT658GSQsKAArPP5/3ceNMYFdBwz172FdGBvpLbbQ+ziQf0k09EMeRnaiHpCtxOByvisg0ESnrZmvuAXOzPR6RP/4RBf6VrzCJV61iks+ahRJ58UWU9ymn4MyKoDz/+leUzvXXo1zb21GeiYkold272c/RRxuFHgiYkoqEBBS/10tmoHZ2drlQYOEc1JoaFqY1a1CmF1yA4xZJ0WiXOQU3QxcwVZhKSJuczD1Qrpn6ehbd5GQc+IFMxj0QxOs12Ykej8lEHDaM+9qZQa9Arj3LUDMRlCxYS5MV4I1mkdMIV1JSr5SfDwg4ebDqIp+PEsHNmykz/ugjDJFrr+VZf+97bPeDHwD+L1ok8uabRMGvu45nuXUr0ffaWhoFnHOO2X97u8hvf0vpV2UlHQqLioLPwbIA7e6/H2Pm4ovZTn+flhY+G7qujn2/8grGzrXXogs18NFZ+bLqGLs0NnKe774LoFdSguE9dy77V/BQS0/i4Rx3dHAsjbCnpPAsVq0CINHmMMceS5Dm6KPjm4Ht9ZouyiKcg2blxVuUJy2aTraWxdqknZI3byYDS4GJwkKynSdNYlyNH28yKxTEUKJwEcaClp33IqgxpIt6KFu3Mq8rK7FvFi9Gp5x5pmkskJ/Ps1yxgrk/bhz0KcnJ2CerVmHbTJiA465zSIFsr7fz8mUF1AMB0zGzK6C5rY1zee01zvH00ymhi7WJgNvNvdi8GScvPZ2xXlHB+Sjgr/zC8bCL1Hbw+Ux2rsNhMg41Y1z1VFdcoVoJoVmJgznwe+gQdrM2Pzl40GTYp6XxLD77jHEwaRLdeiNV5PSRDIi7Pdh10bZtPMc1a2hYeemlBCgfeIDMvu98B1to9WqalJSWYk9lZ2NPvPUWPsyUKYCE9fX4VcOHs76tX8/YOfZYgl4qyl0ogj1WVYXemz2bz/buZdyNGXMkOO31Qov10kvM25NP5rwjUZz4fICcra2cd2lp8D5dLgKqixYBTmVliZx3HsGRwkJ0rjbfGDHClGj3RDwefNGODtN4Uim7li41dBbTpuF/Hn98dE1fohWv13RZDgTQd501tIunaFWPBnBCpb4+OMNw2zbukwhrwfjxvCZMYB3VjGetdNFkEC19zsjg/mZmHvnc/f64AIkDQheFSg9004CUIRCxm+JwOMYIZJsPW5b1vW7+fEDcbMuCx2fjRozgkSMxgBMTARATEjCkN27EiJ43j9+99x5RsaIiuqFmZhJ1ysvjN/v3839GBga2RsEDAYwfexlqVhbKJiOD37jdBnCyS1MTPDDvvIPiUWLpSA6tkgHX16OESkuDDV0tJ1RDWDl0dJuWFgw3y8IQj1RSPSSRxefDKVDiX20UYOd/Cy1LVm6wxEQDFtp5DJ3O2BZRjSgqYW8co1v9vkANZl30+99TkvXtb/OMPvyQea2R9rY2MhFHjUIXvfOOyEkn4SQ5HETZf/ADxs3dd2MMq+zYYcp/LroI4zvUKGpuZpsXX+QY991H1F8NSDVwRExWY0sL2YpPP42xedFF6MFIRqTDYfSN04kuseuibdso9/n4Y/Y/bRogwFFH8VvNzAkETLOCnhqSbreJbrvdGMhr1/LyernmGTMADidPjm80WHnOXC5TsqyZzb2dLdPRYUq17QBEQ4NpeqKgodI0pKeTWThpEq/ycp5hWpq5L4GAAQ7VuVfwIjm5z6LpQ7qoB1JdzTwYNQoOwcceI6Bwww0AiF4vczwlBUfy9dcZD1ddxfOtr4cvOiEB+6mggDVNubkUGOysfFk5EjX7sKtx4/GQZb1oEfrlhBPQc6GBkmilsZHxv2MHDlxREY5gWRnnpEFXdWzjoYvUTtCmdZr1qxyQei8UOOzO8XReWtbgKW92uYJLkquqjJOuVDqaYVhSYgLjgQAgx6JFjNdJk6DssDcV60MZ0kU9kJoa7IGRI3n2jzyCXXLHHSI//jHcgnfcQVLHRx+J/OY3JGH8v/+HjdPcjF3V3Gw6JldVmWy6TZvQd0pJUlpq5lVrK7by/v0kgogAQFZU8PnevdhF5eVHdkP/8EOSPA4e5JjXXx8MToZKezv70/JjpbsS4Xxffhk929rKOL7kEq45JYX7smsX+xg2DB3V02CG8g1q9dKuXQRTP/qIz5OTsYtOOAHwNt40Seovqe2hHZ/7mjpLqSREgrMMt2xhnRMxWelakjxhAiCuw8FY0GxxlyvYv9PmndEkgiiQ2EPbsN91Uaj0UDcNSBkCEaMUh8MxRUSmCySbk0WkwrKsA93czYC42W+8QUbheeexSKxcyeezZrHYPPMM0bDzzkNhihDZevppFqw770SpVlebsrq6OhRQejrGjkbCtTvX7t2m6/KYMaZzsnb/yskJ5sro6KA05513UELHHstC0pmR7PMBHCiXR2Gh4dfTpiAa7c7ICCbq9no5F7cbxTV8+OeDmLs/RUs46+owQurrzYKioEheXjBoGG7R1EUp1sXE68VJUmA4TtxN/bZADXZd9N57dE6++GIMs7//nYjuiScCINbVkR04diwlzkuXEjy47DJ0zdKlGNQ5OQCJZWWHL8giI+fxxzFWbrwxmChct3nrLY7f2Ej58y23MO4OHcJ40S7lKi4XBvLjj/Obk08W+cY3MK7t+7W/BwLoO3v3ZQUGV6xAt+3diw468URKljWSrvrK6zWNU3rqBHu9pvHQ+vUmwy4QQNfNmIH+r6iIv8MdCAR3WNVso3iULEcrGlzavh0HQbkMlecuIYHxpoDhpEkGQLGLPhfli1TgMCHBAIf9AFgM6aIYpaXFdAtta4NeYfZskW99yzQWUADx3XfJjJkyhe6fCQmA0O+8w98nn8x+WloMQK4UHJGAQe0iriBjV2CZ3895/O1vHPuYYwisdOawRxLl9dq4ERtN50BoFok2OdJM6J7aRX6/aYal2ZnqUCoFgZZx97SLtGYQ6/wcKOL3H8lj2Nhovh8+3DQ9KS01jXwiiYKm771HZmpzM1RCV1zB7/tQhnRRjNLejm2Tno4tsGABgY377wcsXLJE5OtfJ9j6/vtQsEyYgK5KS8N+ee459nPhhczlqirWqPR0fDqlixoxIpg3sL2dQMqGDYyjESOwB9LTWTf378cmUqoOEVN2/eKL/LaoCBvt+OMjz1vtEl5Tg64bNcpwDK5eDRC+fDm/nzcPn2/yZGMXVVUZXVVW1nN+T7+fuVJbS0bvZ58RSNKGbMcdB3A4c2ZcOwKLiLERm5pMhV52Nq++9D39fvxzBQvXrTNNTh0OxsnEiQYwHDMmciMdBaJbWkwwVX277lDwKHew+oox2lQDBkSMk24akDIEIkYpDodjgYjcKyK7ROQuy7JejGE3/X6zV60i3Xz2bLIMV61ikZk5kwn/l7/gZF18MUZIIIBif+UVHMw77mC7AwdQGjrZtcQkOxuDR4Tvdu/GSE9IwJiZMAGlEAhgBHs8pvuXCP9/8AFOdksLCuvUUzFsO4s22cuXi4o4D58PpWbv8JeZyfFVmSn3XnMzn+Xlxc4j9EUXTVu3ZxlqZM/ugCQmGiAhIcFkKNqfS6j0FEj0+w1BcnZ2XLoR9qexvEAGqS7avRsi7LFj4ZF59ln0yiWXmLLie+4BxHniCQIc55/PSwRd9Ic/oBcefNBEsNvaRH79ayLHxxxDR8u8vGAe04MHAR2XLCFavmABekV1gMtloqQijJmXX+Z4NTUEMubPR1d2BkSHK1+ur0envfceOmnECIDDOXOMXlNdqtkn2lhEJLi7daT3SOeyfTv3Ze1aostJSWSyzJyJo1Be3jtgntfLtSiQ0psly6ESCLCOaZbhpk1kWWkG5IgRPHsFDMeP7/yZKmm48rNZlgl6DIBMpyFdFIN4vTiNmiFx772MiwcfNA151DZ56y0cdw1mOp3ohKVLGU+nnkrgUtc7BZkjNUXRRkIKoqWkdD6GlHrh2WexvSoq4MY76qjuX7c2kNm0ievMzAw/B7TRkTpyna3P0UggYLqcavahZvXagcN4i5Y3a0l0X5f6WhYAoR0wrKkx1RcZGdjGmmFYXBxbZpXaSF4v1B+LFwP+nngiYzaeZZedyJAuikH8frL5XC7m4oIF6IOHH2bOL14MjcuVV1K98Oc/wyN/xx3Mm6oq/DqPh2ddVgZYp1yi1dXMreHDsX2VfkoEe0Qbpwwfjl0wejTf1day7+xsPtO5s2mTAQ8zMqC8OvHEzseYz4f90daGrlTKh7ffxq7bu5fPL7iAl/qRIlzH7t0mqKMd4WMV5fN7/3184A0bTJLB3LkAh8cc0zv6SAO6LS19X7JsWTzT0LJktdGyslhbRo1iPTj22M6r8dTWbW01jV80A1+zDmOlkVJ72LIiU4B0IQMJRFwgPddNA1KGQMS+lX692du300V0/HhKXz7+GKU8YwZGy1NPEXG6/HIWKLeb7MMPP+T/r3wFo6+qCkBGuXvy8jA2U1IA8DRq9MknKKi8PDi1NItQOQd9Poz01FQW0RUrMH6069asWSiz4uLIBrZGtrSpR2mpIaVVcvK0NEPSbRe3m/PwelkIc3P73RkcVKLp6vayZFUnycmG70K7XNsXAs1w0M6nynuk24aWHVqW2aYni5KSJSvPYg9kwCxQMUqf66L2dpH/+A/e772XspvcXEpfHnkEw/Tb38Z4e+wxIsKXXkpDJ7+fyPurrxLc+Pa3TUnJ1q0iP/sZc/maazAAExIMD2YggCH+6KPonP/4D3gMExKCx4SCy5ZFxtFvfwuoWVnJ9tOmdZ2hrI2GtEHT9u0YyZ98wvfTp1OyPHFisMHo95tM6cRE9JE2GBI58j2c2Pe3ezcAx/Ll6OukJIzDWbN49VZ2ipYsd3QY7hvNOo4zJ2nQMevqTJfkTZswjl0uvs/KMl2Sx40DgC4s7NpB8PlMqbKdbiEx0WQOxKvBTQ+l/8+gZ9LnusiycBwV0F+wgM8feYTn2d5uqiMWLwaEnz0b59bhYH6tXcuYnjMHG0cDAE6nyXwLB0xrgxUNbHYFGK1bR3B3xw6c5y9/GZutu+Ouvp45smsXc7OkhDkxcmTwvuyZ0Fq10RO7yOdDxzY3M5dSUoxdEA1PaTykL8ub29uPLEtW7tekJOxZe1lyPEsjVec6ndhkr77K+iPCunPBBfEvxQyRIV0Ug3z6KcGBKVNEfvlLAp4PPUTA829/I8PvhhuotHj6aeyI//xPxtPWrWRDWxbVY6NGMdeUQ9PvZ73Lzjblw6qXdu/mty4Xdtf06UYfHTzIKyeHfareW7QI3ZmdTabe1Kno0M6arbW1Adqp3mlrI0D7xhvMl4kTAT9PPjl4Xfb7+V1dHec8enTPxm9dHbbde++R3OJwcD4nnQR4OGVK79kp9pJl5QTs7ZLl1lbGhx00bDrcDzgpCXuoosJkGqr/ruCg9gqwi9drfD4NeKu/Z68m0yqNnuh39RNFYgISB7suGhQyBCL2rfTbza6pgYcsJ4cyv3XrUDDTp6Ocn3iCbb70JQzLQ4eIdu3YQWTq/POJDNXWEn1SJ724GOPU6UQZO50oqRUr+HzsWKIZujD4/Xzu92N4JyezgL72Ggq+vJx0eM0I1I7P4cTrNbwx2pBFMwHU+A3HvRAImJRrBUHjnar+eROv1xDj6svOAaYLiEafQp0nuwEf+jw14qSAoh180CxF7bjbUyBRxGRIpqT0qOP2YF+g+lQXWRYZPh99BP/gBx/wLG++WeR//5dSlttvx1H//e8x8L70JTJ82tooX/7kE5GzzyYiP2wY+/z73wmM5OURlc/P53Plad2+HYBgzRr0yr334jTrOTU24tgOG4YOWLGCjssbN6K7brwRIzklhX1GGnfKmejx8Pe6dWQeahnQSSdxLeEi9Vrap80Koim3D1c+vX075//hh+hFhwPjcM4c7mt+ftfZjLECYn6/abpgWehVbSoRb5CtrQ1j2A4aNjTwXWIiQTLNMAzlfRIxnIyaCW0Xn89kiClwaO+orM/f70dfJSYOiLVjSBd1U3btYo6MGkVjpwMHRH70I1PWnJ2N7fDyywRbTzgB3WNZlMLv3cvYmTIFx0sJ8S3LlOqHOk8KsGvTj66coh07RBYuBKwcPhx9OG9e99a+QADHX0v3ExNxHCsrw3dL1QCAiMk+jEV8PuZZU5MJLqanG2C2P6hieqO82esFaLEDhs3NfKcdSu2A4fDhvRt0CGcj1dcD/HzwAePyvPMIzPUSeDGki7opu3cDyo0fD//zJ5/QWG77dvyys8+GcuWllwAUjzsOOhWnE7vpk094liedhD7zeIyO0syyxET0WmEh809pVT79lG3OOCM4sFhVhb7IzcVeqqlBF65ahV487TT0iCZudMZRX1vLKzmZubJ4MRUmiYmAhtplOVQaG7kGn8/wgcZi9x84QEB1yRLsSssylSAnncT96a05GQiYRikalBk2jPUl3oEMnw/f3A4Y7t9vvh85MpjHsLy864C4y8XzVvtWKXpEeObq94ULhFmWyQDvadaoBoS7ycU72HXRoJAhELFvpV9udmsrWTw+HyWEO3YAoh1zjAEQGxooj6moIPLz5z/zu7lzySIcM4Zt1q3D+CovZ0GqrjbRJaeTfW/ejMKcNg1HXMUOIObmsnguXszxiotFzj3XRPRzcoLJdsNdU3U1i2FWlskqSkkJ3wFVpb2d6/D7UeQ9AJE+t6KZnHbQUJW4SHBXrWi5LtSAdzi6Nt6V3Fc7NooYQFEdr1gbrai0t7OwJybGnIE62EdNn+qi554T+dOfAA0bGjBKb7qJDMGlS+H6Oekksv+2bqUc+YQTMDoffBBD8JprMDrz8zGIf/UrjNHZszGqNXMsN5fx9thjlCJnZJC5eOGFZswEAhipXi86YMcOwMOVK9FlX/saus/lQpd0pic0MltTw++XL2d8lZWR/XHcceGNLG1W4PebiG93xrTfD4C2ahWv2lquq6KCe3LiiejQSNmM0WQ12t/DAY2hJcspKabENx7i85k1RUHDvXvNuY8cGcxjOG5c18fW6LYCPlqqrIEO1VH66uy5u1ymfKcfZUgXdUO0y2RhIXpp5Uqc9ooK5rFSGrzwAuXOp57Ky+fD/mlsZC0aORIH2rKMTaGZJaFjRjNa1UbpbIweOMB5ffQR53LppVDPdGdOdXRwjZs3Gx40LVmOxGel6602Qeuuw+71mo7KGhDUYG5ubty4iHsssZY3K6+qHTCsrTW6KDs7GDAsKuofHsZAgHMKtZEOHBB5/nlA8exsGoOdckrcAd0hXdQNaWzEXigoINC5eDG2RyCALTRvHhz0f/0rlFLz5uHDWRaluLt2YQ8dfbThmV+xAvBo1CgCoF4v/l5uLvppzx50S10dQcZ584J1wv79jPPhw5m7r74KAJ2UhB6aPZvgQEoKx4w0frR8ubaWa3v/feZMXh622HnnhffxPB7OsakJPTR6dPfohyyL+/LBB9iW27ZxLqNHE1A9/XRAtN4U7fJs54DXxqHx8Dcti3tpBwyVrkUEe3XCBJNhn+SdBQAAIABJREFUWFHRfQqnjg6Ooc/a6WQf6vdFo9u00Yo2x4xVFEjU5JIo7+Fg10WDQoZAxL6VPr/ZXi/O+8GDZNXU1fGaOhUHSsHCf/s3gEItncnIYHEZPhxF1NTEQpCczIKVnc0+3W6MpdZWlHV9PUqmshIjXcXn4ztttvHWW6bU+ZxzOJ+aGs43Pz9yyrpGtqqqUCy5uZxTejrnHEmx+f0Y+u3thhtkoBi1/S3t7aYcWbP0VC2kpAQDhpmZsUfQtBGB0xm94aodarW8SoTnF6lEvTuinZsdDsZRN/c12BeoPtNFa9aIfPe76JMxYwCCvvxlGgS89RaZhWefDSi4eze8g7Nmsd1DDzFu/v3fAYgKCtAbP/85BvgNN5AlraUVw4YBNi1YgFF1/vl0LrQTcNsBxKYmdOA//oHhdfPNRMZbW02AorPymfZ2sgHefx9DLiGBUsMzzsBhD2fsWBa/szcriHbseTzo6FWryEBobWUf48ejQ6dPx4HtzljuDGQMZx7YuyyrgWgvWY41q9GyCAxpl+SNG4P5eoYNC+YxnDgxttImPf/mZtMBUIFD7agc7bm73aZEs6cdInsgQ7ooSmlvJ7MvIwNn+5VXcMrnzWM8ZGSwrjz3HOPvrLP4Tn/ndqOD0tIIfCYlYU9pZUUomBwI8BudJ+H4EVUaGgB53nmH/So3WHcyXWtr0Zu7dnHsESOYK9o9M5xoxolmQndnHGuXd20O4/EEV4L0dI3uLYmmvLm1FeCtupr3gweDgyXKX6gNUAYSl3YkIFGEDLe//pVxkp9PqeycOXEr4xzSRVGK2w3IlZCA7nn8ccC1MWOwb2bMELn7bvyxN97Appg/3/AIaidubbyTkABwVlcHV+rkycztujrmYXo6AZM9e9h2+vTgRmqWBYDY0MBY/vRTqikCAQK8553HOTc28n1nmYGtrejXt9/GPvL7OZ+LL0afRrL/a2sBHkW4rs4q0exiWYxnBQ6VH3/sWK5zzhxspDhwoXcqyvmqlSXaZbmnvmZT05Flya2tfJeSwrXZswztVSfRitql6gf6fHymwTE7j2Z3xO831Gc95dRVupAogcTBrosGhQyBiH0rfV5C+NxzpHBfdRWT+eBBFhgFEN1unPiRI+GJePVVIlinn47BNG4cCmXjRpTVjBn8tq4OZZOdjZGlXS6HDwdULCgw56EAYk0NC8uGDSjXM89Eufv97EObokQymt1unMrGRpzHwkKTCdeZAdTaarrzair5FzX7UBsD2EFDe9OS0LLkeDvGfr9xMroLRnq9BlDUsknNPO2u86Pi8zE2AoFu85MM9hHUJ7qopkbkttsA8S64ACP27LNxZF56Cf7Viy4S+e//xlH7ylfIkH7/fT4rKKDMWY2xN9+EE6igQOSuuzCe2tqMQfWHP5DdWFJC6fKJJwafjzZ0qq7GYV+8mGd+7bUEUpKTTVZRTk7nGc1vv42RXV8PgHDKKbw66xiooLi9Q3lXuqijA4N+5UreldNz8mSAtIqK+BmrkUSNSQUc1ChMTe163kVqCtPcbMqSN2/GCVC+nuRkrssOGipfT6znr9mGGozQKLlG12OVjg5THt0fZZoypIuiEr+fzEK1N/74R4IMV19NMEnHwcKFOGwXXEAW8aFDAPcOB06p241uyMw0wYhwQUltxONwRO7OLILuevllKF0CAeyiyy6LnrPX7wc03LgRXZSUZEr6uyLFb283mdDRVhTYgUPN3HU4zLqemBj7etyXYi9v1ioZe5ahrilOJ7amPcswN3fg25CdNaOzLPyCv/6VwN3IkXRynjatx9c1wO9Kl9InukgbJTU1sW48+ii0UaecQjOVo47CfnnySYKt551HJcahQwRe3W7TlE0pm5Yvx56fORM95XLh7yUns9Z+9hlzfsQI1taCAqOTLIsM/9padN/y5axrs2djn+XloTNbW9F9BQXhx4nfjx574QXW9KwsfMlLLuGYkaSjg3GoVBJlZV3bMj4fgZ2lS3k1NHA9U6cyjqdM4by1aUlviZYsNzUZTmvtshxLwoXHY6ovFDA8eJDvHA7ujdp9Eyfir8ea2GFvhtnaGtwEUzPyla9b7dVYRAHJngKJSpsTJZA42HXRoJAhELFvpU9v9ttvswCdfTbKdP9+ohTp6US9/H4yeQoL6bS1fDlZhuecw7Z5eWyzZw+/mTqVidvUhPHscmF4BQJEPlJTUTr2BcbrRSEuWYJSTE1loTz5ZBaJtjaAhsREE9kPFeU+3LMHRaTNVroCfLxeFhaXi23z8gZmVLy3xO83QKG+K5+FEvvaQcPejtKp+HwGhIg1+m3vvK2ggDov0fLKqdgz0+zdebuQwb5A9bou8noB+vbupUTnww8xSl0uHPVzz8Vx+e//Jijx9a9jPD/3HN9Pnkwpj9vNvp56iqj28cdTvpyebni3VqyAkLy2FkDwttuOHM9+P4bqwoUES0QAMW+8Ed3g8RhuPeVrDZXqaoDMJUs4r/Hj0ZezZnUOIGmzAo/HZOl0tn1LC9e6ciXOns+HMTxjBjq6pIR9JiVhrPYmL5/Hw322Z+FEAszCZTEq8LBtmwEL7Xw9DgelRhMnGsBwzBhjcMZqdGq2kccTzN+anMx9S0w0Y6unDR4UGA7Hs9gHMqSLopDNm42e/+Uv4Wq+/Xb0h9ouf/kLgNwll5DBUl3N79LTAbTVUc3Lw3ZROgS7LeL3m8w87Twcbgy73SKvvw6A2N5OwOPKK4MrODqT9nbjaLpcJlN37NjO7Rwt59dM6PT0rrdX0FBLshUYTUgw5cG6r4Fe4REIsN4oWLhvHzaow8H15OUFZxgWFvZbcKBHEg2HtIJZL7wAUDFhAmtyD8o9h3RRFKINjvLysH9KSqjO+NGPoIpasAAAcdkyAgqXXcZ6uWQJc/W008xc1G7rHg/2wciRxmdqa8PmaWjALxs3jjUqP9/MecvCR3vvPUrdvV58vUsuYV8+H8d2u5kLOTlHXk9LC1ndzz3HOCouZhxdcEF47lUVLcutrmbujRzZeYdntxu7aOlS7MnWVvTNrFmAqhUVhu6otzsea8lyS4uhRhk2rHvN1iwL/WPPMNTGVyI8J3uG4fjxPadOUboqrTpTjtjMTF7h+gi0tZnKnFh0Ybz4EUUMkKgVMJ3IYNdFg0KGQMS+lT672Z98gmEwcyZO2Z49GJcZGXAgOhykxmdl4Zxv3UrE6NRTUWQ+HxO0uRnlOGYM27a3s6+qKhRNTg6Kv6WF7e3ZIo2NLCwrVvDdvHkcQ6NChw6xuOnv7M6XLo4tLYaXISeHRaIrh9myTGRIS1V7MxI1EERT0UPLklXsJLgKlPVWF7JopLNGK90RTZVXHibNUNTOqerURJNh0dRkOPA6M3wOy2BfoHpdF/33f5Ppd9NNZB+PG4fR/Kc/UR5z7bVE4JubRW69FR3zP/9D4OO00wAVDx3CUX7iCcb1jTcSFHE4GENbt4r8+tcYwBUVIvffjwEcKq2tHPfZZzGGLrgAYLOkhO87OjiWOpF2Q8eyiHi//Tal2ZYFwHD++dE5Wzo21dCMpL/q6zHiV67kmi0LI3LWLPR4WZkJBChBd28B/6p/tWRZI7/RdMhTw1ibnmzcGMzXk5cH2KGgofL1dMXVGE1TGL/fAIf2TBwtVQ4H8Gkzp1h44OzXrM84XrxH3ZAhXdSF7N+P3ZKYSCOVoiIyfdrbTTb7U0+x3eWXo0N27uQ3Ol7r6ph7eXkGoNYseJHgbFflbgo33vx+Mpiffx6dM2MGlSJlZdFdy8GDzKvdu01QVcsauxLN5g8ETDAg3FjVNVVBdi2NTUkx4KEGRewNoQZidl5TU3CG4cGDRhelpRn+wvx83nuj6UF/iQKJXXFI+/2soS+9ZPjSr7jCNCHrhgzAEdAt6XVdVFWFHZGTQzWYZUGp8NOfAvQ9+CD2zqpVAIsXXsgaunw5uueMM7DtGxtN13OnE1tkxAhTlrxpE+B4SgoBk6wsxn1+vgmQ+v00p3v1Veb65MlwsGrWoNvNvgIB5klogH3HDpr2vPkm5zFhArrsrLO6nkOtregwl4vrGjUqPMDU3s61L12KbeRy4c/NmQNv9jHH8FlrK2M8O5tr7Q3/RjP31FdwODjWsGHRZV43NgZnGG7bxvWJoEMrKoK7JXdW1dId8fuNb6h0VYmJ0fPaq08tEnslnwKJTmfP9avPZ+zgToDEwa6LBoUMgYh9K31ys3fuZBEqL0fJ7tqFgs7MJLqVkgKAKIJjXV+PwTBjBk65ZiFqtkZeHguPy0UUqKaG/8eNQ8lpynxREQrC7YZj7I03MDLnzSPrSBWiZWGQt7RwTvbMRSX4bmszfB4JCRjI0ZSzud0Akx4PilG7tH7exO0OLkvWVHQRnpkdMByIvETdabTS1X7s0XblzVBid3V+0tIYD12Vj+q9TE7GyOvEEBnsC1Sv6qI33sBZP/dcU6IyYQINnmbPJgP6V7/iGd12G/rkRz/CWP63f0MfNTbSjfC115j/3/wmQKMIRsSTT0I+rpyJN954pBHq8+Gs/+537O+UUzjeuHFmG51HKSnoKH3m7e1w7Pzzn+i4tDSarZxySuccYyqqy7xezisj40hdVFVlGqPs2MFnI0YEA4d+v+HZcTpN59jecNi1ZFlLFbVpSGfZRY2NBjDctAkjWUsB09J47vay5Pz86M4lNJsx3Lues4I32tk9MTE447AznkYFAB2Obnf/CxLNNlVQpQ8BlSFd1Ik0NRHESEqi87vPJ/KDH/CdNhF54gnsmquuYrxu2kRWc2kpTt2hQ9gi2dlsrw1IdB6qU6NzJlzDDsuiocGzz5J5M3EipdThOpOGit+PftBO5FruHy0vqK6LmgkdrkOyZlAqcChieBy1GYzux05y35M5E29xubi3dtBQnfSEBNPlVV/2rKre6N48EKQzfsRQ8Xgol/3737mXxx8PqGSnJ+pCBshIiFl6VRe1tpJdmJpKgsX+/QRQf/Mb7PQHHsCu+fRTkeuvB4xTCqhRo6jgUlonBQiHDSN7r7SUZ7x+Pb9JSEBHTJ+OfWOnXdBy9j//GSBv/HjKpadONWOkrc0ki4wYYWwAvx9Ab9EigqsiHOOcc/A3uwLT/H6uWzs2l5UdGbRvauI+LVuGz+nzYZvNnUvG9tFHc17NzVybCPevtwIAfr/psqwly0qNFclHcLl4TvYsw7o6vktIwD+3ZxmOHBlfPer1moQS1YFJScYv7G71it6DpKTYk3I06aOnjVZETLBYs/3DyGDXRYNChkDEvpVev9l1dRjKWVlk7OzebSJITz/N5J8/H6P48ceZ0PPnk6W4Zw+8GcOHs2CpoVxayvZLl2JAKqm9EuEnJZG+rkbya69xHpWVgAHaNUyE41VXo2Bzcw2w6PEY4FCNudZWFtvi4q6VlmWZqJxmE/VVeW5vi5bu2rMMtbRQyXvtoGE/dwqNWmJptBJOIpXtaDaV8ijqNnZAMdxC1tGBEdNF5+bBvkD1mi7atk3kjjtMZNznw8j83/+Fp+bmm8ke9PlE/vM/eQY/+AHBjNtvxxA9cABy8S1byI7+9383Rs+uXRCOr1kD2PbAA5TD2iUQwBn6zW/Qa1OmcE7Tp9tuwGGd0dHBeBg2jPFx4ABBkGXLMNjHjIEbbdq06HkzOzoMuba9xM+yOJ+VKwEOtaR33DhAw5kz0XcixmhrazMR78zM3omwezycrwL72mU5dF663TwTO2iofD1OJ/dq0iQDGpaV9c75aiduLRvVyLq9o3J3uk8rOJKY2DNQxOcL3k8fyZAuiiBuNzaNCODdvn0i993HPFbn48knAeb+7d8Yr2vXssaOH49j19HBnE1JAYRSfictlXO7zTqmWXpBF2dxDgsXorvKygAPjzmm63HW2goov3Wr4WLUkuVo10y3O7gbebjSa5fLZOfpfbHzOGoJtGb62xsp9Zf4/QApWg554AABDZXhw4MBQ20+0ZXYuzcnJfXvNcZLVEdGC7C0tVFF8Oab/PbUU+HGi4Knc0gXRRCfD5vC4yGz7pNP4IBeuJCxdv/9ZENv2kRm4ty5VGXs3UuG4KxZrHnLlwPAlZWZgFxxMc92yRIAx+JikjdKSrCr3G7mQ2oqOuhvf8P+yMwkcHL66cHjvLGRY6Sm4v8lJmITL14M+FlbC7A8dy5BYaWY6kqfHTqELvV6KY0eMcIct6aG+7N0KTrYstjnCScAHFZWmnW9pQXbKBDAt1V9Hm9xu02XZXvJcmhGpt/Pc1JdvXmzod8S4TrsGYZjx/YOZ6yd897l4jN7c8ye+oYul7GXY6WtiBc/oogBEjVwFyKDXRcNChmwIKLD4ZguIheJyOOWZe3q59OJl/TqzW5vJ+PG7WbB378fRZ2eLvLMMxig8+fj5D/3HP/fdBOLQVUVAGBODhmJ2p2puNiAiwkJONMlJUzc6moWgOJivn/tNRaCoiIAzGOPDV6YvF5+4/NxzIwMFJLyLajDrY0StNSkq4hwRwdOgM+Hsuwig2xAi53oVkFDjSKJcE9Cy5IHShZALKKNVnrCjyjSdbRdeZ0UUNSMpdRUAyjaDWyPB4NHRGTnztXy2msvy/z586W8vFw3GcR3XUR6SRc1N5Pp5/ejK5qaKDt57DEMp5tvRkc5nQCGtbUiP/4xz//uuzGyPvmEz1wuuA/POMNk+zz+OCXPiYki3/oWHGKhwPFHH7HN5s0Y2jfdRJTcbmRqgxWPx2QXrVlD1uGGDWx73HEYsOp8RsMH4/Mxf+3NCkTQuQoc1tVxPZWVgIYzZhD0sJ+bzn0R5nhnEe9YJVzJclqa6SAbCKD7N240gOHOnXwugp7X7MLKSozk3uRD06YoygUlYozHzmgRuspm1HcFJZOTjUEaqSmM/T3cebpc7KM37sfq1avl5ZeD9NGQLgojgQDZNtoE6eOPTTaz08mYUZqEa6/FVlq7ludXWcm893oZ8yIEKrQDsc5rHYv2MWOXbdvgWdywAZvnS19Cp3Q1l6uqmG979/J/WRnzTAMM0YhmQmvmTHq64TDUjEMFDpOSgkuVVVRHKAipJdD9Ud3R2BicYVhTY6ovtFusvoqLezb3ounePNhEbZ7urCONjZQ4v/ce9+Gcc3hpgGRIF0UvWsW1cyf66PLLsTc6OghsPP002ca33ELA8q23sEHnzGHud3TwHJqayMQrKuLvvDzsrnffBTCcNg0dk5BgOOFzc9lm0SL0YCAAAHjppcG2h2Vhkx06BOhUXEwTvEWL6Brv9RKIPfNMwEWHg/eu6H+8XnRZYyNjZ/Ro5uy+faaj8pYtbKsVdCecgM2o66y9lNjvN4BevMG40JJlpxPbLzubY2klnT3DcNs2wzefmRmcYVhRERU9UsyitF+treYc7PRV8b4/ra3G145VL9oDVj0VrUIJAyT2WBd9TnGouMpABhG/IiJ/EJFTLcta0s+nEy/p1SjX448DHF50kekYmppKB7aCAtLjP/yQ6OLYsZQUpqXxm9WrMTLnzWOx0ZLOvXsx2HJziYRlZBgwUHnk3niDbQoLKX+orCTqZTdWtMzE4cA4145PSj6emcl7VZXhHeqqTb3fz6LU1oYCCdchcaCLLgD60nsiEpx6rpGkwUjw3ZVoo5We8iN2p2zHDijqgpaSYngUExMZXw0NIk899ZjcdddX5Z133pFTTjlFdzFkLIdIICByzz2AcWeeyb077jiM4+JiwLw//QmddPvtBB5++1uM0HvuYb4/95zI//0fBvL3voeeEsG5X7AAx3rePADHUA6xtWsBD1evxpG8+mq4FUMzULRbfCCAjluxIrjL8qmncgzNiE5J6Zqg256po807tm8HOPz4Y3Sqdg6cMQNDPLQM0bJMpnEgwDjMzo7/nPf5OM/QkuWWlmAewy1buCYR9L4ChvqKF19PJFEOHTUStaGDZhv2VF+EO57LZRqtJCR0zdMoEh5ctDdsibcR/9hjj8lXvxqkj4Z0URjZsYMs2TVrsHmuvx6HXBtoPPEEz+n66xnf69cz16ZMYW56vTi5LheObUIC80HHnXYjVtDdLvv3E7hduZI5fPnlZPt0Npd9PnTGpk048SkpOKETJ0bd7OtfosCfZt4rzYzbbYA3BbnDnb99H6onFYTsC2lvP7IsWTNrkpJYH7TxSUlJ9J2suyOh5c3xyJzpT4mm0Uokqa6GY33FCtbCCy9kbX3iiSFdFI1ot926OgC5k09mjW1oEPnud/HR9u6lMqO8HJDR58MWGTGC361ciX8weza+liZx7NlD9psIwJvyNDc0GPD/n/8kyy8pCf02Y8aRVAiBgGnGkp3N+S1aRAAkNZXS6osuQl/U16NXRo7sen2rq0OPKq9ia6vpqLxnD9tMmsS5z50bnoezvR2d6PNx/Jyc+Pt6WvmhIGVSEuCf08nz27LFZBpqxnNiIjaqHTQsKel9PdHRYXxGpZ5ITze+Ym/6idqNWsHVnvAjxqPRiogJiGlA+bDEA0T8POJQcZXPDSThcDgyLMtq63rLz59YFsp+924UfX294YZ47jmMrauvJg199WqyXy6/3PDs7NiBMpg9m8nY2Gi6L3s8lNqNGYMh6/NhmO/dS1bN7t2Ad5dfTnQpJYX/7YqlpYWFJBDAANEMr9RU/k9JQSkdOMDvRo7s2mhua2ORtCwUvZYiDmTx+YIBw9ZWswA4ndyLkhKzEAw2QDRWUWddy+djFc2eioZIXJ2n3FxTytnebsa+Ok12jhUFVLqSL6ou+r//AzA7+WTm5tSplBDm5lIq+NhjjOvbb4fI+4UXKOn79rfROwsWkIV43HEi//EfGIrt7QCDTz/Nfh54gCxnO73Bjh2ULb/7LiDgHXfQuEU7stsdJuVMPXCAY61cyRycOBES82OPNSTUlhXdPPR6DRXDtm2AmZ9+yrmnppIZMHMm7+FKXJWTr7mZY6emos/izcmlZYteL+e6dy9ZEVu34jDU17NdYiI6/6yzDGAYb76eSKKOu3ZUtgOHycm968gr4KLnkJgYvjQ10rudwzEx0VBypKWZZ9ndrMZ4yBdRH9XUYKfs3AmAeOaZAIgirA9PPslcu/FG0zgpIwOdlZzMPGlsZM6UlvJZa6tZX7TkP3SO1tVRKvjuu8zjL31J5LzzOi8jU/B+2zbGfV4eDvWYMd0H7Xw+ExjTLFoNSjgcXEdGBu+RgCSPx2Tra4C3N/kB1aa0A4ZNTXynQWd1zktKjgxQ95bo/dLyZg10DtYqFx0Pqqe6o3OKi+HuO/dcxvfChcyr7gIAX0RdVF8PANXcTCf2KVMIFtTWitx1F5nKNTX8nZNDyXBaGhmf2dnohe3bmY/HHw+AXlVFoGLfPubryJGUPGujuEOHOO5HH/ESwS6bMAG9VV4ebEN5vYancPVqQMeGBnTfrbdiCyQlcbz6euZgVxz1LhcgYVMT83vXLkqxtRP60UcDRs+dG5kn2eXiWrRktaAg/jQhLhfn2NbGfaivB6Dds4fntm+f2XbECGxWBQzHjOmbxA5748yWFpNVnJHBvcvM7LsAj9PJcVtbTWlzd0UDeVqJ1tNzVxtdKxr7K9nmi6jf+i0T0eFwZIjIvSJyhYiMEJF2EdkqIj8TkaNE5L4wP7vRsqzHHQ7H4yJyg4iUichPRORsETlkWdaYw/seISI/FJFzRSRHRLYLaPIvLdsFOxyOJSIyXkROFJFficgpIuIVkedE5HbLslwh53y9iNwtIuUisktEHj78932WZUWzJPfKzX7nHZT+cceZTKqEBMiRy8pIWX/mGQzqc84hgtjczEJ06BDG0fjxLFhr16Lws7Nx2jMyDHeh30/20Ntvs+Dk5LC4TJmCQklJwQC2LywNDRwnEGB7LavJyODvQIBFpamJxUH5NyKJZhG5XAawHIgE2IFAcFmynaNCJDhqFE13rM+7qOPeU35EkeCurNFIW1ubPPDAA/K3v/1N9u/fL2lp6TJmTIXcfPNdsnXrBnn00fvD/WxIF9nko48AAadMYSyXl4u8/z5z84YbABOHD6dU589/JiP6nHPg/lm3TuSXv2S+XHEFIOGwYZS5PPgggN/ll5MxNHy4KQ2pqoL/VY3u669H12nzgFAAsaWFfS5bhmGYkoJRftppcPqImOzUhISuSbotC921ejWg4ebN6KfMTDINZ87kfnSmnxQ81Ah7vMtzAgF0s73sZscO9LeOvhEjgjMMx43rHb6ezs5RS5XtQRU7cNiXovyISq/RXdH7qvvRzs/2sqxI4nCgj37wgwfkhRfQR+np6VJRUSF33XWXbNiwQe6//3Onj+Kqi9ra0CkHDhB8mDyZTu8izLOnn2Z8zZ+PTti3D0dMObe0xF+DsYWF2CduN89RS39DA6XapdSy0GGXXBK56Yllob82buT4DgdB2MpKjtddsTuZXm9w5pw947AzG0M7N/t8pvlKb5QKqk2or9paU32RlRVcllxU1Le6KJLYy5sTEwd3RUh3KjZCbSPVRVdddZe8/PIGeffdIV3UmXR0YG80Noq8+KKpltq2DaqWxYvxwb71LebdqlUAZaefzu83bOD75GQAq9JSU+Hg8zE/ysrQUyUlPNPaWqilPvyQ53z88fhp6uuNGRO8rmmZ9Ftv4d9ZFgklF19M9ZnDgY2yf78pX+4s81e7Qy9Zwv60oiExkQzIE0/EV+2sxFfphFwu08Sku9nYnYnyKm7bht22axfrxb59xn8YNuzIsuRYG4rEInYfUgNYCuD1Jj92tNLezprYkyBTPButiBhqnsN8vl36QV9QHCqu0p9L4W9E5GoR+a2IrBWRbBGZJiLHi8ifRWSkiNwsIg+JyMbDv1kWso/XRGSTcENTRUQcDsfww9sVi8ivRWSHiFwgIj8XkXEiclvIPtJE5G0RWSIi3xKROSLydRGpFZF7dKPDD+4JEVkjIt8VkSwR+bGI7I/x+uMin34KgDhpkiE79ftZnMaPZzH6/e8xgq+9lki7gocJCSxOqqDffZfFYuxYFqZxAgLoAAAgAElEQVS2NvaZm0uE/bnnKA3KzSWCNG8eyr65mUh7bq4xSnw+shRra9lHURHKxu5Mud0obo+HxTU0gzFUmptNFmNeXnRdCftK7OnlWpasaiI5mXMtLjbK//PAsRNP0eiRz9fzyFRoRmJXcuutt8rChQvllltukalTp0pzc7N8+umnsmXLh/LlL98oBw/uk2ee+aNcd93dUlRUKYmJIg8/fN17Ibv5wuqiAwdEfvIT5nh6OkawRr+/9CUCGMXFgHw/+QmG2003kaHz7LN0Tx4xAi7FUaN4/t/5DtmKY8aI/PGPgJKJiRivjY0AkX/7G+PmmmsABFJS0A9JScFdlltaMKr/8Q+MsdJSyMTnzTOGqfIQaglqZ1yjTU0Y6MuXk0Gk2TKnngpwOHFi1+NXo9/K5ZKfH5+GSJZFEGj9egJCGzcCGipAn5vLWnH66aZBVm+UAnYlyi3n9Ro6AaeTe6AdlftL9Dy0PL27z0XHTUIC46itjbUudExFyma87bZb5dlnF8rXv36LTJmCPvrss0/lgw8+lMsvv1HWrdsnzz//R7n44rslPb1SFi687joZxLZRbW00W0UnPh+Od00N9kp+vqF3cblw5JOT0UubNqFLSksB7g4eNJxShw7xrDIzydR1ufhb6Ve0I6jLRVD1zTf5e+5cbKPhww0YaRevF4d161ZjN40bx0sd++7cD+Xv0mwdDdKmpBieRo/HEO5HumfaVMnOi6rZgD2Rtjbua00N2T01NaYpXHIya8aECdz/oqIjgYJ4nEO8RKsllD823nQKfSnRBlpvu+1WefHFhTJ//i1SWTlVWlqaZf16bKN7771RfvzjffLmm3+UiRPvlvLySnnjjcGti+IpgQDVDs3N2B/Jycz3zZuxf15+mXn3ne8w57dswd6ZNw+gffNm9lNayrwoKMDuWL2adfz445mrgQDzJxAQef119utyAdRdfDG+knIZjx1rMvm8XvzE557DV8vNJfBx8cWmGaYGOxoa+N2oUZEBI5eLIO3ixfiJPh+JI3PmABzOmtV1FqHXy5xvbzf2SldUMtFKSwtrw2ef8b5jB8dRnVlRge5W0LCgoO/nt9+PjaovbYY0EDnw09MNB3isnN1ahaaZlbFemwb96uvJIK2upmlRFDKEQ/VQ+jMTsVFE/mJZ1jcifB+xFt2GAP/BsqyvhXz3iPAQrrAs6/nDnzlE5HkRuVREjrYsa+3hz5eIyMkicodlWb+07WORiMy1LKvw8P9JIrJXRFoP/7798OcTRWSdiCT2R/bP7t0404WFOIRJSSjhJUv4f/p0UuWdTsp2iouJtCjn4KFDbJ+RgWL1elH0paUsHMnJKPC33yZKFQjQ5ODcc/mNAmZpaSwWygXV3My5eTxEx0pLjywJ1BR3p9N0j44kHg/KwePhWHl5/etker1HliWrI5yQcGS35IEQSR8somVDPW20Eg3/TyDAeC0pyZVLL71G7rvv1/8q+VTOOLdb5NVXH5NHH/2qPPjgOzJ69CnS3CzyjW8Q5fqi6yKXi/LkAwcIUGRlMfdbW8kqfPNNAhIXXyzy05/y+Z134jT/4hcYc2ecQQahZQHM/fznbPfVr6K3Wlt5jqmpAJJPPcVxL7yQbYqKTEft5GQTzNi1C931/vs8xylTRC64gDIa+5iwO9hKrxAqtbVkCaxcCTDn93Pc44/HWLcTgHcmHo/JalJQtCdd5FtacDaUy3DDBkPzkJyMYTx5sshRR5nGDP1lhPr9plTZ7sQqj81AC6wo+BKubLU7EggYpyhS52ftNFtTI3Liibly3HHXyNln/1qqq1knq6t50S3yMamt/aqUlr4jaWmnyLZtJuI+GPVRbW18dJFlAc5VVxOY8PvhGMvORoe89BJ2xmWXoa/a25m3RUWGUykxEaeorQ07w+Phu1AHzucje+fvf2cOHnssDnhpafhza24meLJzJ3Ng+HDm5qhR3R/3um5p51A972HDupc96PejNz0eA5x3la3YmXg86MmDB81Lm0M5naYEUl/2oPNgEtVjg7l7c1f2kd/PuJo8OVcuuugauffeX/8LQNVXICCyaNFj8sMfflXuvPMdqao6Rf7yl8GtiySOPtq6dQBVb71luilv2gRtytKl3N+77mKbqiroTqZNM5UC2dmmO7xlQRWzbx8A18kno1PcbtMQ6q9/ZT8TJpAwMnYsv9XGUGPHMsdra9FbL76IXzVyJHRXZ50VbIt4PFCeuFyRy5dbW7HZ3n+fa2ptRVeefDJ23bHHRqeP/H7TBdnh4NqzsmKfWx4P160VGBs2cO+U5qGsDLto8mTu1+jR/Wd/+HyGC7u93WQ7q/8YyWYYCKLUP0p7EYt0xo9oWYxzBQhDXzU1JDgpZYdmWQcCIu+8E1Um4hcRh4qr9Gcm4iEROc7hcJRZlrUnxn38JsxnF4nINn1wIiKWZVkOh+MnwsO7UECcVQIi8ruQfbwrIhc7HI4sy7JaRGSGiBSJyC/0wR3e72aHw/G6gDD3qTQ0ABBqJyinE8N32TKc5bIyAMaCAqJeSg6bkIDCPHTIdDTetYvFZd48DNGqKoyk9etZHA4dQtledpkxkrX5Sno6v2lvN8Z3XZ0hBQ/NcgkEMC6bm/ltSUlkQNCyOHZzM+ddUNAzhzsW0XJAO2io2Qp2TorBoPAHgyiXmPIjxnov1UHq6OB5qTOo4KDyfYqIpKbmyNKly+X99/dISUmZpKQwH3JyeFeemWOOwTCKMF6/cLrIskQefRS9MnUq92rvXozBCy+k4dK4cWTn3H8/c+Ohh5jTd97Jc779dkpcNm2C+3DVKgzpBQv4bUMDz+vdd2mE0NhIxt8ttxC1FzElwdoAZcUKwMNt2zjHmTPJehw37shrUC5DNdrUkLQsgAbtqLx7N2OqtJR9HX88+4t2fHq9nGNHB7o4J6f7UWWv1zRe0Jfy9Shp+dFHk104ZYoJLPWn+HymTFmBw8RExkJnvGwDQZKTOWe3m/OM1cno6GAs7dmD4dvUJP8CB/VVV2cyEl2uHPngg+WyZ88eGTGiTAoKeKbz5hmH8be/FfnZzwDfI8ig0UcFBV1tEZ3s3cs8ePddxts3v4mD3NiII19aSmBj1y7G34wZ2C5appySYtae7Gy2cblM9QDXRbbNX/+KA3PUUTjgFRVHno+W9W3cyPN3OrGjtPNzd0THoTbs0fFYVMQ1dCebWEFt7USelobu7o4uCgQYs9XVXFt1dfAYzslB/2jzk6KiwV0CHCqDtbzZnk1p18v2zzUgLiKSnZ0ja9Ysl5qaPVJWVvavMnl9127h556Lfoogg0YXxUv27UPfL1vG/CgvZ72+4AKCDwkJcDevW4dPMW8e2X+ffIK/MWoU/x84ABimQY+TTgKYq6tjXamthd911y5DF3P88eiH9nZ+63RiK23dCuXCBx+g1yZPpqT6zDOPXIebmgxHfVlZcNVXYyPXtXQpGYduN/pj+nRss9NOiz6QoU06NIiblWWamUQrqmft3ZJ37jRjOTOTa5gxAzt12rT+qb6wiz0RRbnWk5MJXGVmxp/3sbckIYFzbW/vftWGz4d9X1/PeK6pMZz0dqBQ9ZGCg8pVrr0QRo0iIKXZ7MXFRi9FIUM4VA+lP5e+u0TkKRHZ5XA41orImyLyrGVZq7qxj+1hPisXkbfCfL7h8PuYkM9rLMsKbZlwuPeS5IlIy+F9ilArHyrhPutV6eggG8frBdhwOnHMV6/m/+RkIvETJtDQoLGRRSEjg4WptZXFyu1m8pWUsMjk5rL4rVjB9x0dfH755RiEakgrCa1Graurmdza9bOggH2GZvTYy5fz81n0IommJ+siYC9P7C3RDqt2wFAjQyIoyKwsDOOBwEnxeZVQINEulsX4sWcLhntXwMLO/6O8UKmpGBGaefHwwz+Tb3zjOrnhhnKZOnWqnHXWWXLVVVfJ0UfPFBEzTjMzO10kv3C66JVXKBEuL0e3HDyIUXv22RjKlZUYb488gh75zncot1m0iEDGN7/Jvf3d7+gsn5xM1+WrruJ51dez/cKF7HvmTEqeJ08256CcMW43JdTvvot+Gj4cx2bmTOZr6HNT49XnM+XLIoB0H38MeFhdzWfjxpFJOXWqKS2Kdt5rx7+2tuAIe1cOu4KYGzcawHDbNmNQ5eWh3086ifs/bhw6sje6AXdX7B2V7Z3mNaNvMOlMe1lzKG9tIMDaqpmCdlAwXDaWvfFKTo4xeisqWDPz83mtW/czWbDgOtm2rVxSUqbKMcegj2bPnilOJw2KRDCUO2n684XSR42NgIivvcb7178OgFhTQwZiQQEO/LZtzI9p03i3dzAWMbZMRgbjV9d5y8JhXrgQcKC8nK6qRx995Fz2eDjOpk3opvR0Q8bfHefQ5zPAob3k37IMf2p3OibbO8hbFmNbOzd3Jcqhra+DBw1/qQbaKip4Ly7u+2BvX4vaE2qnaNOV/gwgqw1uBwND31Uf238T2vHeDhL+9Kc/k5tuuk7mzQu2jWbOxDbSdTUxcUgXqTQ1kYCxahWAVmkpAN7JJ2NXpKWJfO1r+FjKn+p0sr3TiZ2Rl4c/t2aNqa448UTsKd3/e+/hr+XkkOAxezbrB7y6poR5+3Y4p3fsQK+dcgqgZWXlkT5YIIAObGxkDo8cyZiorjYdlTds4LyLi7E/KioIcpWXR5+NppyEzc1G3w4bFh0Yf+iQAQu1W3L7YUhF6SHOOIPzGz3aBFpi7SQcL3G7TeWa0lykppoklMHaSFP1oAbjExL4W8FBBQMbGoL/D6WqsCxD7ZOfz7iaPp17o3ZzTg7PUik3lO+3B8HyIRyqh9JvIKJlWS84HI4PBET2DBG5SUTucjgcCyzLeiDK3UTZL7VT8Xfy3YDLKfP7MWTr6kyqeG0ti8r06UzMdeuIRp1zjgHtCgp41daSpePzYUhrk5OcHKL1b77Jd5MmkUE0bJiJjoigwBsbUcbqECkvh5b9FBcfuRgcOoRBn5BA5CCSkamOWWsr+ygqig9XWDhxu4OzDFtbg7NlMjNZRDXLsL+zej7votkWLheLUGurKX20lxeHMjBoqWtKCs9J+eUUMFRuqEidXefPv0zOO+9EeeWVV+Ttt9+WP/3pT/Kzn/1MFixYIPfee2+0p/+F0kXr14v87/+iN/LzMQoOHsSoXLWKTLiEBMDB2bPhQ/zFLzD6zj6bMuXt2+n8t2ULHH3f/z66w7LIYvztbwEEKiv57rjjjmxmsH494OH69YyTqVMxkEtLTXOV0HlrL19OTyfLcNUqXg0N/K6yEv1ZWckYcjq7VyqoIGXb4T5tqkMiOexNTYAOChpu3mzOMTUVAOKyy9DLY8eis5VHJjWVV3+V42gWi5Yqa+dPzTjsb+c6FnG7TYffqirGYV0d40NBw9ra4KwdEZ5vQQHr1tixppumvtQYVg4hu1OfkMDrzDMvk+uvP1FefRV99OSTf5JHHx3SR5HE5cKRfP99HNzLLkMP7NsHP1dpKdkxO3dy3ydPZowqpUBKCv/v3s2+RowwDUnS05mLCxcyL4uLRf7rv+D5Ch3Thw6xzfbtjIvCQmyysrLogXOv16xzaoskJRkgU7uGqxMVjViWWVMVgExPj3xObjfj2w4aqh5LSOC6pk41zU9yc6M7j8+jaFBEdV9vBEmUMywSMKh/h2OmUjAwMdGsEXaQ0J55H279uOqqy+TUU4dso2jF6wUcXL+e97w8gg4zZ/JZTg4czh9/zJw+/XSzxgwbRmazCMHTrVvxPyZOZNviYnTYwoV8V1REZvXEiegDBRBbWtj/Bx9g07S1AfB94xvYM06nWYvs4najM7V82eWCL3HpUnSaCADddddxng4H61dxMXogmjXesrDrm5sZs0qF1RnP4vbtwVmGyhnrdHJdJ52EfVRWxn3SzD4FJvszq8/lMv6lVj6lpaFDB6NPGQiYzt/2V10dWENDQ3C1nl2ys03vg4oK8/fw4Xyn3JdutwluiKCn7M3BkpPjZ08O4VA9l35Nwrcsq0ZE/igif3Q4HGkislhE7j2c8hkrN8VOEZkU5vNK2/fdlV2H38MUrciEGPYXk1gWUfXt21kMsrJI4962jUj37t38f+GFOPG7d5vy5ZQUjOGPP2Y/p5/ORPX7Ucq//z2O0rhxZB7m56Poc3KY4IEASqK+3mRyZWTw0pLj9HSUo92I0shWSwvblpREdnbb2gAQ/X6TqhwvZaHcDXbQUJW6EqirYtey5CGJn4QrJw7NINTMBhUlMNeO48pXp6CJ/h0NSGFvtBJu28LCQrn55pvl5ptvlo6ODjnvvPPkgQcekG9961viiH0Qfi51UWOjyA9/iB4pL8dwqKmBT3XjRrJzamuJpF98MQbn3XfzPO+6C4P617+mYUp2Ns1Wzj+f57JmDVHzNWswCn/8YwAAu07x+eB9ffNNdNKwYWxz2mmMkaYmxkRe3pG6RjMXt27lXLV8KCmJ877ySnRpSgrbBgLG6Y7WSFb9YlnovNAuz263yVRS0FCzHh0OQ64+aRJ6fvRovtM5o8CTzof+AOgU0NCXAof2jJaBCBzq8+ksc/DgQcZ46O+Skw1wMmuWKZ3RjMKiItZNfda6vtpfIjg5bW0ms1k7E9rvV3HxkD6KRgIBY9csW8a8Oe00w0VWVkbwYf9+nlNFhQG6NYPB60V/dXTwbPWz+nqypD/+GDvo5pvZt30uWxZ206ZNAAEJCczfykr0TzSia6M6TyIGwFSAs62N8ZOU1DkAGCoKHgYCZp/281f7zw4YNjSY7/Py0PE67gsKBh53aX9LQgJzV4HE7pQ3q47oLHvQH8a9dDgMEBgJHNTzikZUP4V7tkO2UXSi2cqbNxPQSE9Hr1RWAv5pNvTatawbc+Zgh7S1oafGjKEsedky5uCMGfy2uZl9P/kkdk9aGryK8+YZPjrNKPzgA7rPr13LdvPmwdU6fjxzW4SgSqh/c+gQttTu3ejOjz823ZiPOorMyblzDSja3IxtM3p09L5SW5vhcE1JYa20B0ICAXSpHTDcvdvoxMJCAFNtfjJuHPqwtZX9KoexZqv1B8VAaDWbcv2lp5tknIFKfeB2BwODoZmDDQ28QrOZExIYfzk5JAgVFhKIGz6ca9Z3DcDbqTl07dOgntPJ/UlKYnylpPT+ejOEQ/VM+mU4OxyOBBHJtCzrXwmtlmV1OByOzUJ762yBPFJEpLtxzldE5FsOh+NSy7JePHw8h4h88/D3L8dwyh+LSI2IfMXhcPwqhNDy7Bj2F5O8/z6O+ahRLEi7d6PQjz6aCHx7O1Gi3FycpMxMFozGRro419aiXGfPRhFs3cpisXMnC8H117PoNDWxqGh04NAhFhSXC2VQVMT2lsUi2d5uMhbtNkW05cvKjdDRgaIpLOxZSZ4a3XbAsL3dfK/RL22A0p3yxCEJFjvJe7iyYv07dOERMZElXWAVFLQDhcqD0VNQwuk0ZODBTpRfWltbZdiwYf/6LC0tTSZOnChLliyR5uZmyTychtsYiix0LZ87XfT/2XvzMMfu8s73PZKqVPu+9lLtbvdqt902eMNgQsyaxENMSCB+gBDgZpksd3KTS8JkkmBIGCYZGJKZLOQJITdhDyQmEMISwBhvEBuMcbvd7s12r9Vd+6bSfu4f3/7699OpoyOppFLpVL2f59Gj0lrS0TnveX/fd8tmISBykAodiwMHYIsOHsSC+swZOJ7j4xACd+2CgHj6NPq4nT6NRt6/+ZuIth8/LvKXfwkb19WF5951V6HDNTMjcu+9EAdmZ+GovP3tcG5bWmC35uZWTooXgT14+GHYu6NH8T1aW5HNfcMNsKFcsCcSsBmRSPnRYtoclue0tuJ7xGL4rk89hcXFU0+Zfj0iZijWa1+L6717CzOvMxkz3VfE9DBbjwg2hUOWKouYjC0Kh+sJBRE/UZCi4aVLKyfmipjz2sgIMvQpCrKfG89JLH/3awDORT+zyJgZxAU/HWJmS7Cfmn3uUXtUGSdPovLiK1/B8fMzP4PF5733YlF+7bVYAO3YAV+ICxUufBMJk/U+MABf4PRpTIb/znfwvLvuQlayveBNpWCznn4ar21vR9bh3r2lMwTZkoOLKGZdMNuCvUKZQZhM4nZ7e/l+USqF78ZzZ2cn9rXZ2ZVlybRF7FF91VWmLHmtqkA2Gn7lzfQ5gsRBP7+IC+lo1Ii+tkBY7dC5Yp/fDrSKqC2qFNqDr30Nt2dnYYPGx3E8vexlsFe7d0MAO3wY2/raa3Fc33sv1lmRCKo1tm6Fr/Cd78BvWV5GSfTP/izs0uQk9on2dmRcf/azsH1dXSJvfSsCuEND8EnOnYMd2Lq18DzNQZz33QfhkSWphw4hmeRFL8K5kWu9I5eLMcfGyu9ly6F36TS+5+Ag7MrUFL4XBcMTJ8y5ub0dtvSmm3C9Zw/WbPbnnp83/lY8ju9aq0nOlUDfz65mY2IKL+sZeGHgtNhwEl7YdsWmrc1kC27fXpg9yIud7MN2GTxX5fP43bkP2Bn2DDozGE4/0h60spbbTXWo2rBemniniJxzHOceEXlcRKZF5HoR+b9E5Juu6150HOdRgQr8Xx3H6RGkjH7Xdd1SCu4fi8gbReRTjuNwtPZPiMiPichfuK57uNIP67puxnGcd4nIR0XkQcdx/kFEOgRjun8oIi+o9D0r5fBhnJy6u+EQnzgBB3DfPkS/4nFEyjnNiFl1R4/CQMRiuG9kBCeff/kXnFiYxXPLLTjRzc/j5BeL4b3Gx3E7EoEQwNKVbBb/P5WC8+1NjbfLl8fGikerFhZM1kdv7+oa3iaTK8uS7V5cnZ04cVE0bNRIUKPBHpfFMgft4SQ2nPRoDyfxCoSVZFDRMS9Wjlwufo7ywsKCbN26VV73utfJoUOHpK+vTx577DH5yEc+IrfffrsMDw/LDTfcII7jyPvf/36ZnZ2V1tZWueuuu3ZuRlv00Y+ir8/OnTjOZmdhj6anYYsefRT7xq/+KkqST5zAIJI778QQls9/HqLhn/wJsrlSKZE/+AOIAO3tcH5f/3pTHsOJq9/4BhzOVAr/5+1vh/jHkpqpKTzW0WFsCHu/PvwwbGQ2Cxtz22147VVXFdqCdNosvNkvrJz9jYNdslk4kxcu4Hs//TQuDGC0tUHoeOMbcb1/v3+2EqOyyaRxpjj8oN7OKAcIpNOFfdno9NXLliYSwZmD4+PYB7yLcrbEGB5GGevttxeWF4+M4NxQrjhDJ5mCsz2plESjZto0swy9tLWZoT52lutq7NHb3/72n5VN6BuNj8O/+ed/xm/5jndgkfvQQ/BV9u3DNt63D+chlgJT7GFGIqskolH0m7zvPuwP/+k/Qdy3+3xNT+N/njqF331kBLZkbCzYVvCYtjMvHKd4iRZtCRfI5doi2jAOzpifN5mG4+Om1I9DMV7wApNluN7DBsKCdwiJ99r+jb3lzRQDm5v9swer9XFWC6c0s4c0ymLVFpXLpUsQ4f71X01PbiZw7NgBGzE+jiqH1laIZhw+9MwzeK0IxEW2UPrHf0RmYSwGX+X22/F8xzHBsocewrpwdhbru1/8RSMyipgWHAwQRKPYPx97DHbu3ntNVuGtt8I3uvnmQpuXSCBhhckiY2PlnS9TKXwuVhlNTppMw6efNuu+aBT2+uUvh2C4dy+2nd9xkEhAjEokzGDL7u76Bzvy+ULhkGuKeiemMAHHHlDizSScnl5Z5eU42P/6+3EeOHiwMHOQST+VbFe2RFhexm/LwXSEWdM83xUrS6Z4GJQdXSNUh6oB6yWnJETkzwU16D8hIi0iclpE/odg44vruicdx/lVgXL7NyISFZG3SYk0UNd1pxzHuVVE/ruI/JxATT4laKD5odV+YNd1/+5y6v67Ln9Ovud1InLVat+3HM6cEfnc53AQHjgAJ3ZmBiebxx+Hwb3zThy89vTlo0dxYHPBPzMj8s1vIrLV0QEnedcunGCGh3EyOXMGr+npMQvHnh4YF/YxZM8cNte1+xuWW77McqFUCie8vr7yFqTZ7MqyZBpIGvHRUdMQXSPpK7GHkwSVGPuV0TQ1GYHQHk7iLS+uJRy0kstVJ1rYjjJP+m1tbfJrv/Zr8vWvf12+9KUvSTKZlLGxMXnXu94lv/M7vyMiIldeeaX8xV/8hXzgAx+QX/iFX5AcNsyPyCazRffdJ/LpT0OIc13Yk6Eh7Cs7dsCh7elBBPzv/g6veec74fS9/vWwSe94B7KF5uYgSH7+8/gd3vIWlDR3dcEWZDIi3/0u+reeOQNb8uIXIzK9Y4dxcnM5M4Cppwf77te/DqHz6FHs511dyAJ4yUvghHudOzqEFBnsKc1BzMzAGaeocPq0KQWMRk2Db5Ylb9sWvEDM5wsHH7Ava71Llhk9pngvgu/D/qK1dOrs4SR+wiD7ErI/pE1npxED9+wpFAZZYlyLgVx2OXI2i3PP4iLOWxQKuV3K3TYUhjlBnufQ1dgjEfmUbDLfiP1QP/lJ7Je//MvI8n30URx3u3bhGDp4EI/ncjiOIhFT3tvUBDuUTCJA8aUvYZ9/5SvRa4wCfz6PY/voUeyLPLb37w/uB8jjiOIhB3zxXOmXXc9M6HTaZEKXc85LJrHQP3sWAsP0tOljKIJF4e7dRjAcGNDqCz84nKRY30G/4SQiZlp2LGZaWHABTL+o0cvAHccE5VbrG8kmtEWJBOzHF76A4851cXxxMOXBgzhf3HQTnjs+Dh+muxtZgNPTyBDcswev+eEPMbRucRE+z223YX8aHsbv8/WvI+j65JPYp174Qlyuuw6tB5jFzHUYh4o8+CBEyf/4D6z1IhG85jWvgW/kN3yO2cqxWGESSRDJJL7DU0+hPPvcObwHM/O3bEGmIwXDnTuD1wz5PL7H3BzsczRqEk7qmRCSy5l159KSEc3Y57jcljflkkiUzh6cnV35uuZmkyW4f79/9mBvb/X2iFUX3nNcPm8C5/39JsO+kvMN92Fm6a/RuduPtIkAACAASURBVEp1qBrguH7deJWycRznCyKy33XdcmrSK97YMzPoyzMzgwgRe2h0d+MkceAAUtyZhdPTg5T5+Xk4wXv2YIH75S/DoOdyyDq8807Ta2NwEAbp7Fkc7JxAmkjAaPf2Fpb/0JEeGSmMSCWTKHPMZnESLZZlMzeH/+04eA4no3rxRnsWFkwkXQRGmz0MOzrwPo3Yh6ue2MNJigmExYaT+JUTe/9er4UHnftKFurFqNHJqeH2tLW0Rc89h8nIi4tweGdnYWva23GsP/kkFqljY3CMd++GMPjXfw3x8eqrRe6+G6/5+7+Hk5zJwA694x0m8ui6mDr47W/j2N+2DRH4AwfwGKO8InBa2I/x1ClkG7IBOKOrBw+axuR+sGeYiMn28yOXg/08ehRZ4U88AWFBxAyLYnbh/v34/uVmt3GyHbN610qMDyKXM8IhgwcUx5hVVynptBEBg0RCv+EkAwOFGYPe7EG21Kg13j6GzMwRKSyvSadNhlg1ZLOmhKyK92o4WyRSkT2qyBZlMmjr8jd/A7/lv/wXCGePP46F7q5d2Jb795tM0HjcDP/h7fl5BDG+9S3YmhtuEHnTm3Asi8A2MGsmkYAN2b8fPlWxY9tu78HjmUJSqSmSzCLk5OSWFn9/hgGc8+exQH/2WbNIb2qCv7ZlC46TLVtwrKz3xPb1ptRwEl4XG07iV1Js31fMj6A9jUQat0+sF9v+r4KG/IZrZYtyOQRPOXiJCRjNzQg07NuHv9n6JRaDcHb2LES2eBx2Z2AAlRvf/rZpv/CmN2FtxgnvDzyA7MTz53H/a1+LtVwqBSFrxw7sX7kc7MLEBGzD44/DXmYyWDdefTXs2AtfCNHRT4hbWIDPx0qzbdv89weWOR87hu/zxBPwwTIZ05eaYiHLkjs7y9u2mQzWigsLJiO7u7u+JctMWrFbYrG6raNjdVPo83l8Lztr0O/i13als9MIgVxj25mD7LtY6+3D85otGNplyXYrjnjcrN1Z0bNaaJNXmaHdkLZoLahw7Vfb/60iYnk4jhMXkbRrbTDHca4WkR+IyN+6rvvLZbxNRRs7mYSj/MwzMPinTuEAbm6GUbv5Zpyc8nkYkaUlLGxjMZzAursRHfvKV3Bgv+AF6HGxdy8M2MICjFIigRNcZydeF4uZ7J7eXrOwnpvD/fE4HFT7pDIzg5NWLIZIt5/hYOPWTAZCgDcaYjekZbYHt3Zzc6FgWG620EbCbziJ99qbti5iSriKCYS1nni1VjALoBY9gSgOFBu0UgbrtrXqbYuWliAgHjkCp3N2Fsdgfz/2nTNn0Ndnfh725447sD/9n/+D7fzrv47sw89+FvZsaQk9f/7zf4boODMDYe5734MT6jjoVfiKV8DpZC+Vri44bSxxvv9+OMhTU/gdd+6EQ37NNaY0r7PTfwGdy+FzZLOmiTP3KTrGR4+ay7Fjpry4tRU29Jpr8L3374etrQSWNy4vm0UmRal6CfX2RGVm13ASXtCUUZaABmUOXrxYOKCBtLQUFwWZPViv4Q22sMCL7Q5RPPArS2YT91LCUDnQrtMBXwXrarlrYI/KtkWui4DFRz8Kce8d78Ax9NRTsE1XXolF/JVXFvaWY5YES/DvvReDCubmkI1z551YXDc1wZ6wd2k+DyFu//7imcR2o3ief3nOjcdLZ8swc4NZNiytJmyRwMv4uGklwkmrY2Om72OxgMlGpRbDSYKuq/WLWFrOHmBhyABlX7dVfNZNY4tE4H986lPI7kuljMi1axd8l+5u2KXFRax3+vrMMLcrr4TtOXJE5OMfxzlz504khdx4I7b/4cMQD++/H/7VlVeKvOENKP2dnsZrONDCcSAwfulLqMR49lncNzSEjMYbb8Rn4+R4TnO2yWYhcHKdt2NHoejHoXTsY3j8OPxBtl0ZG4MdpV80NFT58eMtWe7owHZc5bmxYtJpswZlgNlefwZVt6XThROLWWZs3y42nISCIMVACoP2ffUIBrFSzR74ZQd6m5oKBcNiwZGlJbxHtS3E+L9X8R4NvqKtnBqt/Wr7mVRELA/HcW4R1KJ/WkQuCCbk/NLlh693XfdUGW9T9sbO5UQ+9jGccA4exOKcDqrrIjtnbMyU3505A6M7PAzD/93volfGuXNY7N5xBw74wUGIfZOTOKnFYiazccsWvPfUFP4/h13wPvbOsE8MuRyc2sVFGHuvuChixsJzkhhLlykY0mDbpXMUCika1usEsh7YPdBWO5zETxjk9UbqAclJsLWI6lcpJK6niFg3W+S6Iu99L4IR27fjWG1thQ3I5eDsHTqEHoDRKBbj//RPKGe59VaR//bf4Gh/+MOwRS98IYamXHUV9ulvfAPlOZOTcIZ/5EdEfvRHTTPvmRlTknzuHMoVH3oIznIsBtt244143/5+2LJk0kSL/RZBLCFlT5102kTSKRqyX09TExYEV1wBe7tnD7IMOztXt//lcuaYZoS10h6h1WBPVLb7xjY1mUbYk5PBw0kuXvSPkvf2+k8spkg4PLz67VYLvIKhbU9ZjmhfSmGLytWKngwArTIDdb0X7tXao7L9omefxfTRBx5AO5a2Nixkr7gCx+XQkOlPyP05mzUi/WOPYdF/4gTs2VvfioBALIb9+uhREwzdvbt4gIClXPYCqxLhkDCQIGJKXi9eLBQN5+fxuOMUlqMx07DWZXSNRDniYKnhJMWu6xmE5sKcNr/RfbIqqjU2jS167jmRz3wGQ00WF+GjMICxfz9EoIEB7KdbtuC8+swzOAfedBOO63vugVDY24sWCtu343zy1FN47yNHcHzfcAPaLNx0E+zEhQuwUxwg99BDyKhmEHb3bpGXvhRlyldeaQYqRaMIhvhVf83MYJ2Zy+FcPTCA72hPSz5/ntsZFSljY/huO3eaHs+rOa7yeTMohW1lurpwqcdxmkqZtSiH2LW0mDUop0D79Ry0b/u1XWlt9S8ptjMJe3rWz4YzkMwMQ9opEZNF7x36VQ4MNrsufsfVfj970EqFdnPDnRVrtPar7WdSEbE8HMfZJiL/W0RuEZEBwdSe+0Xkv1XQJLPshfsXvoD+hTt24GTBqUYdHZhqOjgI45RKwelsacHJ4uRJpMXPzuIEc8styECcmoIhXF6GoR4ehgGbmzOlySJGQGQvg3we77+8bHojkuVlnJiyWXwev34ZiQQMLcuXIxGz0Cft7cZYd3aW30Q8DHCxESQQBg0nKSUQbpTtVC48oYjUptyzCiFxPUXEutmiz3xG5H/9LzgBqZTJQuYAkiuugKO5ezdsw2c+Axv127+N67/6KzjOLG9+xStgm775TdPUe+dO9EO86Sbzm1LMeuopOK8//CFel8vhvW68EU4yF/i5HBwWijp+TnI2C3t38iSyup99FtlMZ86Y57As+cABiAsDA8apZGBjNZkk7EFa75JlHi/pNLb1pUumZ9rUFP62JxpPTPgPJ/ETBXkfRcNGKpn0liXbmUjMQLIvq7GjrmumLNdCyFlexm/FiawVsN4L92rtUVm2aHIS2cz//M/IrNmyBbZl506I+9u3Y1+kIMxSqHgcouGnPgVb0tsLH+r223FMnjyJ7JvlZdg5tiPwHpuZjBEOuT8xK4OTt8uFmdDM2GVbhokJs4Dr7jY9DEdG8Nns79TWFo6sNj/saebFxEFvZjApJQ6u13CScghTefMqfaNNYYtmZmCLPvlJ/N3RAV9h1y4kfQwO4nhtbsZjJ07Abhw4APvzhS9APGxrQ7D19ttx7N93H0qaT5+GP/X61+Nx9o1vbYWtevxxvOeRI/BjKFTedBMSRnbuxOfM5yH8zc3hc2zdulKISafhw3FY58IC3pPDo0TwmfftMyXJIyMmENnWBlu1Gl8mnTYly2zj0N1dn9ZUrHybncW5ZXYW93Gy/exsoUDoXafZw0n8Mgd5WYu2K6uFbWvs0mT6e2xpZQuG1QY7cjn4nZzCvFrozwW1jvChga3r6qjR2q+2n0lFxLpS1sZ+4AFk83R3I/rBrJWhITi/PT04uCcnYQi2bsXzvvpVOKJjY1hkt7biudPTOPDa2/FeQ0MwbuPjMBy2gOi6Jm06m8VzMhkYSDutnVGYWAwnLzvFmwb4zBlTvtzVZRxuWzD0lu6EBUaWSwmEQcNJgkqM69kPLWzY2SW1iOivsgdQ2E9QJW3RY4+hFJkZ0BQQFxexj3Z04O/rr0c5z7PPwoF91atQKnj4MIIg73gHMgbPn0fE/IkncPwcOICynOuvNw5jOg3B8L77cJ3JwI4dOgTnde9eM3mepFL4HCx9oZjlughyPPUUnG6WKHL6ZG8vPsO+fUY07OjA/sUerK5rGuVXaqdct9AO2FPLa7n4Z8amnTF4/rwpfbx0ybSvYPN8wuzxYpmDtRpOspYElSUzcFWsLLlaOAwnEql+scChGhQlN5GzXNIWJRLoo/qRj0Dk27sX/gWzfnbuhN/CbZbP47e+cAF9xH7wAzz+2tfCjmQysFfPPQe7xuCBdyqoXdLFxRYXWZX2CF5YwOd59lmIBBMTuJ8ZjBQMeWHrBi5qWY69CpG5rhQbTmKLhn7Zg8w0KdZ3kNdhJ0zlzasQEje8LUqlYIv+6q9wPLM6a88elPIOD8NfaG3FMX/pEmzP7t3wax55BI+98pXwPaan0XLqW98ygzBf8xrYqqUlk8Dx7LP4vw89BGGmpQV+1cGDsIdjY7Ab3J+SSdjITMaUL5O5OQRQH30UtvH0aROcaGnBZ7V7Gfb34/dfWsJrs1k8j/0fK4Xvw4qQtSpZ5nASrlfPnTN+0cwM1qmJxMrgQ1NTcOYghcNGtkf2GpXXdlkyJySX06+3Gth3vK2tut+XWecVBInCbotCgYqI9aXkxj5yRORv/xZ/cxJkUxNOLC9/uck+XFiA4Y1GcWI6fRonrx/7MZxMDh82xj0SgdCYSOCE19cHIyqCBaPjGAGxvx//z57AbDexz+VghJeWsJDv61s5/ISXaBSvHR3FSdVe4DcyQcNJ7OtyhpN4BcJKMxYUfygWrOOglbCfoAJt0aVLIm9/OxbZdDYGB+EMMErc1obj+oEHsPj++Z8XefhhXIaGRH7xF1Ge/NWvYiL83Byef9tt6JnT14fL8jIcWTq0nHx7442Iwu/fj/tyOTittEWuW1i+nM+jtNHuZTg7i/ubm00fQ2YaDg4WOiN8v/l5vKa1FY5tpUJ1Lmci2ixfa21dXd/RTKawz6C37yBvs8zftkkcTkJRgtmDtki4msbg602ty5KrJZs1+2C1iyD2x+PxtUmc5UBblMsha/lDH8Lxf+212Pf37UNbBLu9AAMEs7PIWHzwQdirO+9Em4THHjO9pSMRLPoPHjRBCXvhxePXbhxfbvZ/Om3EfF4vLJhsli1bEGAZHcXffuVsFA85SbqtbX3LYGs9nMR73chiWq0JU3lzhUHWDW2LXBe26IMfhK/R0oJjeN8+2BKudURgoxwH2YnHjqGvYTSKaozbb8f7fPnLCG5GIrj/ZS8zGdVzc6ZP9Pe+h3WX66J1y6tehZ74ySR8o56eQn9mehp2JxbD/ePjEA2PH8f1hQumH/MVV6BajQHV7dtXHovLy7CpmQxsYU9PcG9AP1gtQhEyFjOTo1cToLUzBYtdmN1P+8Sg8MBA4aR6byZhPYe31ApmytvCIWGvazvTsJ7fj+3Kqp1lUOGglZD9guFERcT6Erixz50T+fM/N5mDc3M46A4cgAOczWKRS6f2Bz/AyamnB4MKrr0WByv7YgwMwPncutVMBhscxMktny8UEEXw/FgM78G+QCMjJkKxuIiU9/l5E4VnqZ/dgygWgyHetq3xnKNMxr/fYKnhJNFo8bLiMA0n2UjUctDKKoTEsP/SRW1ROo0MxG99ywzZ6O01Ylw8Dkf59GnYqDvuwDFz7724/21vg1B4//3od8gynle9Cs4qe99wovLhw3DwWEp47bUoy2ltNROYRQobS1N4fPppCJ0nTxb269mxA847JyQeOBAs8FA8zOVwPLMUqRLSaXwuO3OztdXfBrou7GmxvoMUCmmbbVpaIAYODcGe0/kdHIQwuHUrhImN0Ec2qCzZL8Nwvewvh2q0tNSmBIjZEWWKvBvWFolA+PujP8Lx9YIXYPF48CAW7Xv3Fi6IFhcxWOCb38T2+/EfR/D1zBlkAHG6/O7dsAnt7SbbjwsvCocUDUud1/N5+Et2H0P7uLVL3kZHYZtKNedPJLAfxGLYB9a6MqHRh5NsVMJQ3lyhb9SA36AiAm3RE0/AFj36KH6v0VH4KxTfWlrMQI6+PtiqBx/E8XPbbbg89JDI5z6Hc/3QEITDO+7AcT47Cz/mgQcQjE2lIGjRXr3iFRD9slmsF1MpvEdPDz5fJgPB8fBhvP/EBPwjBtoonvX2IjHlRS+Cr1CMVAqfKZXCsdzTU3ngMZWCn8hBmQzOFguS0efjMBK/HoQzMyvtUTRqhtdwcjID3VyPbt9u+kiGGSa62IIhf+NIpDDo1dy8/okr7HkZiVTXF7vC/ogh/5XDgYqI9aXoxp6bE/nTPzUDCubmsCi8+WZM8FpcxPPyeSy+jxyBA3z77XCsaUiYvj42huf29hrjPTwMI5zJGAFxeto07I7FcMKYnjZlx4kEokdnzpjI1sAADLM9+IRRJpYJ1ntCoD2cJEgg9CujaW5eKRBu5OEkG4laDlpRZxl84AMif/3XptyK09U48Mh1YQ927IBz+53v4Hl33YXS5IcewgTVfB6L/TvugDg4OQlh8nvfw+s5OfCGG2DD2FO1txfvxyl9kQj+Zpbhk0/iby6yh4bw/swwHBszWXltbcELdvaIZYS90pIav5LlpiaIkhMT/pmD/JsDFWx6egozBb2ZgwMDcMK5+BTB78LBKOvtLFZDqbLkWvQxXEuY2VGLXnXZLN6PrS9K0GBbomKK2qLTp0XuvhulfIcOGSHxmmtQPkjxeHlZ5N//HVnP2Sz8ottuw4L89Gk83tkJX2rrVrMP2RkbHL7ChVcx5uYKBcOLF02ZWGtrYUnywADsYD5v/Ipi+20mAzuXzRoBuRaVG37Zg2EcTrJRCUN5M32jMgI1G9YWnT8PW/Tv/45tMDqKrMC9exGw5MC2pibYlMcegx9w440QGu+/H8GNZBLBzTvugH/kuhAnv/1t+DfsPX3rrUge6e83bav6+/H4uXP4PeJx9Eg8fhzC4eHD+AzxOHwJtoDZtw+fd34e/7+vD4JasXVNJmN6BEajlfcpZFXH3Bz+H0uWo1GsE4OyB/2Gk7S0FGYKejMHe3pMv322fojFTB/rMA+fyudXTku2BVRvhmGjtsLKZKBFsJ/vaqGQyCByACH9xcOFioj1xXdjp1LIQHzkEdOPa9s2RJ1GRkyU4fRpZN7EYpi6deONJoIci8FYT09jEe66MKBsqj80hJNCOo3FaCQCgx2NwgizRxCzFJubzaKOC/nhYZws7RK/VMr0PWxrW5s+EfZwkmJCITMibbgoKJVBGNaTi4J91HbAq6WCHkBh32t8bdG//RumJy8tmf5bdu8UBh2uvhr2IpeDM7xvH6LzExNw6F7yEjzHdZEt/eijsF35PCLgt9wC8XD7drwHsw17e+FEfv/76In4zDOIpCcSeLy5GTZo3z4IAlddBfslYoYVZLOm/K+YLWJ0PJ02ZTXl9LRLJmEjz5+HEHr+vMkYnJkxg0r8ouT2IBK756AtGPoJmGyGbQuHsZgRDhtx0VkKLkqLlSV7BcMwfEf2NHSc2gwH46KBx14AG9IWzc6K/OEfinz3u1gINzXBblx/PbJxHAf7zX33ifzrv+LYv+UWZDEzc6W5GfaGkz5jMRMwoDAd1BMqmSwUDMfHjS2KxQrbBYyOmkFPLEvPZIwgWGzBTsE4nTa9NcspFbSHkwRdFysvLtV/UP2i+kE/hpUVjRi0LtM3Cvte42uLFhdF3v9+DFJJpSDo3XIL7NKWLRDnYjHYoJMncXv/fjzv4Ych7sXjCG7cfDP8nO99D72kn34admZwEMLhwYMIlPT3w/9ZWjJZjj/8IdaJzz0Hv2N2Fp8vlzODXW66CUGWrVuNjTx3Dn5JczOCvyy59sLhc0tL+J2ZLFLKFuRypi/z6dPwi6am8F6JBLbfzIz/cJLu7tLTi/1EJ4pSCwvGJjPozQGdYcQrGNqVceyfS9EwbNVviYTJrq1mvVbmoJUQbZnwoiJifVmxsfN5kb/7O/TGWF7GyWTPHpT+sX/eM88g+9BxsPC++WYcgJxmxUmkx47BqLS24vFYDAft4CAMLYeqMJNoeRnPYfPfdBonjdFR07tgack4y3SQRUwzf/Y+XM0UqnKGk3ibwZJiw0lsgbBRIzJKban1oJXN6iwfO4ZswrNnCwf8dHSYY3FoyIhat96KBfrRo7i9Zw9KB3t6zGAUOrljY8gSvPVWOLpkYQEC44kTcHSPHYMDmsvBlu3Zg9ft2YPAyugo7J3XqWQWAHvJFRNdMhkTHY9GYe9Y0jg7W7zvIP+emyvsPeg4sJX2xGKvSDgyUvlwEgZ/uLAUMX1tGjVbJYhKypLDnN3EfpjRaG0WMWyvUeJ8tuFsUSqFyox77sEiva8PmYU334xjzHGwOP/iF+GH7N+PrKClJbyWQ5O2bYM9SyaNsMuAgbfCIJfDcW+LhjMz5vH+/kLBcHDQ/zhMpUyWMX0RP+zeqRSemalYajiJ9xgi3uEkfmLhepb9K8E0enkzfaMAG91gn7hiVtiibFbkwx9GhcbSEuzRi18MsS8ex/ZgtdbSEs73nZ0QCScncfsnfxL26VvfQqXG8ePYltu2QfC77TYER2ZnYQc6OlDSfOwYfI6zZyFO0m/ZscNMke/qMv2lmWVNZmch6mUy8EW2bPG3WZyiy4q3zk68L7O8S/Ue5PRiBi14/hseDp5eXGnSSTpteu4nk7jPHtYZthYu9PO87TRETBLMagd5NSrsOc79a7WU0R8x7LYoFKiIWF9WbOx77sEkU2biXHONyEtfCgfi3DkIiCLI6rn1VhMVam/HJRbDAXnsGE4UfLytDSe07m6cSCYm8J7Ly3CUmaIej8MYt7TgxDQ8bPokTk7CgHn7ay0v4/OyUSpTyW3y+eDMwdUMJ7Gvw7zQVGoPF1W1atBeRjPxsJ+gCo68+XmR178eji8HRNB5SSRMCUIkguj71q2wEU1NiHzv3Anx79FHTW/CQ4ew6L/qKtNTdHoajcSPHkVLhuPHTTn6yAhs0M6dyDK89lpjn9gLtrOzUExhn1iKjn6lpJkMBIFTp+Doc1Lx7CxsIUVDvyh5fz8+l+0IDw0hM4AN0BnEqZZMBhfbkWS2YSMuKIvhl2EYprLkamGDc2YKVAv74wVk1oZ9CxbYonxe5BOfQHVGSwvswStegcyf3l4EJz7/eYj6IyOwExQDx8YQcOjuxm8wMYGFcV8fFrW9vXhPBg3swSeXLhnBvr0dfs/ICK6Hh0svUNnLkkMD2ttX2iJmnC0u4sLMs+bmwrJjHU6yeWF5swjsfqP5urlcYMuXDWWLXBcDmn77t+HvjIxA8Lv6amyDdBpZgSxBjkaxFstmIRrecgv8k4cfht+TycDHuf56DJ1jH/pMBuXPZ87g8sQT8Hva2mCztmxB4OKqq9DHsLsbtubsWfwvinUkk4F4SFFyx46Vforrwh87fRrvMz2N91xeRvCEPQj92q50dMCmcgo1b2/dChtMIbUW5/Zk0giH9NFaW00rrTAM6xQxZcm2YMh1BmcK2IJhI2Yj1wK2PotGzUCz1cIEoyLbKuy2KBSoiFhfCjb2/fdjytfp03Bsb7wRJ56ZGUSdHAeRppe8BAtX9njw9ndgqnpXl1mATkyY5v2JhBEMXRcnpe3bYbAmJ/Few8P4DNksFtyJBN6Ppc8iJmWdE0/tpuRegTBoOIlfibEOJ1GqhYNWaiW4lBASw76XPm+L8nlMUv7c58xUYgp17CvIqPLoKOwQG3NHIijVWVjA/Xv3IkL+ohdhuz3xBEqTT52CnWP0uL0dzubevbB5+/aZ389e6C8uwqawTIW2yHXh3E5OGlFwenpl5uD4OB63m04zwutXUszMwaEhfA62UqDQySnLNfkBXCMcsrcny/J5aXRbGNTHUCScZcm1IJnEvtPaWpvp8ezzVKTfYoPvJSUp8Iu+8Q2R3/s9HHdXXYXhKLfeCqHv859HYLWzEwv5/n4jNF5xBWwQ7XY2i+BIVxeOIy6MmWXIFigMYNhZhpUubpJJI/ayCsSbOZjJmExJ1zW+Tzni4EYU25Xi2OXN7HnbKJToHR32vbTAFv3Hf4i89a0Q9oaGIPzt2oXvf/68aVmQzRrB7rrr4DscOYLXicDPOXAAa7z2drz22DHYsnPn4KOwlUFfHzIUb7kFgVhmLDOIKYLnX7qE/WLbtsKs98lJvO/MjAl8cFAJL5OTWCPSH+M+Fo2arMZiPQi7u/E6DqJrajJTlmt1fmcv/sVFs5Zsbzc9DhtdYOPxawuG9pqYwWG7lcZmsu+pFH7jclt3FKPEoJVNtEXXDxUR68vzG/vJJ0V+93cRnerthZM8Ooo+YyJYYL/0pWaSX0fHykh4JoOT0ZEjOJDYf4flT3Set27F/1hehuHq74dxnpwsnMC8tIT/v7yMk0JzsxEF2e8rlcKB7xUyOZwkqAdhoxt+JdzwhCJSG6d7szjLH/ygyHvfC0eH0VA6hx0dJhuvpwd2oaMDtoMZzNddh9KeaLSwjyF7pTY1wYHm4JOdO02PsL4+PMce8NTUBDtz+jREwPl5U2p86RJs3vnzsEfLyyt/m54eOPx9ffh7YACO9o4dJruIttEPOxDCzOhaiEEixrlMp03GEaPQFB8a2Zn0CoZ2H8ONVJZcCyj8tbZWv7hijz1WGXj2kQbeY8rieVt05IjIr/wKRL7rr0d29OioyNe+hoBENAph8Yor4NPs2mWGxPE4ikRgG44cgc1YWDA9Xh0HZcjMMBwZgX0op+eX2EekagAAIABJREFUX0kxs2Toe7W0FP7WDFpwmEkkgt+P/pweJ0oQ9n7TSEJDwKCVBvmEq+Z5W/TccyKvex3sSF8fBMTRUfgqHDqSTJrkjtFRlB5PT2O7HDoEIXB0FH0Pjx+Hb3Tp0uV/5MKObduG7OlDh0wAbudO2Ktz52Bbhobge2UypuUL/RMOw7x4Ee8/OQkfxhtwammBf8VBI93deF9mDg4M4L5i56pk0vRLZECLU5ar3uiuEQ4XFky2a3u7yThsZDvJYDMFQ7uaJBpdOS15swRTg1hawnaqVhRm5YvPoJWw26JQoCJifXFFkDr+a7+GDJ3+fmTiiMAQjY2JvOxlWHAz8hKN4kBZWjJGllGa06fxGE8Ara245lRmioHT08bwX7wIJzsSwf9g2Q9LnrmQFzHTR1lKODRkek9QINwovRqU8EORplb9EQOExLCfoFwRLM7f+EbYCrtfFstotm7F8d7ebrI829pgpzo64EgfO4aIOzN7du6EWLhlC5zj66830UYOJpmdxd9nzhjBkb1ZL1zANR0DLlLYe5UlxeyRyMzB4WEIBNks3iufx2flQIUg2H6BE9wpCARNUy2XfL4w41DELAqbmxs3uBLUx3AzlCVXSz5f2KezWlguy0EdFmHf8q4Ijvm3vhWZzTfcgIFN584hGyifR7by/v2wPVdcYcr3lpZM6d34OPwYTlwfHIQN27nTlCXbAabVDifheYbBls5OEyi1swc5cdm2nY16vCuNCc8fzIZvFDGlSO/oDWGLFheRAf2d78B/uPlmrK0YuMxkcBz39JgegLEY7NPICNZEp0+jAoMtDrq6EPTYvRs27Lrr8A/Zm/nkSfhFHR1I2jh+HNf5PPyZixexdkynV/bIpUjV0wPbODa2sgeh6xq72NyM55bKAmM1yNwc/LtIBLauu7v6QL29pmVrh0jEZBv6tYNoBPL5QsEwlTLBVAaybMFQ7b0/3B9FgoP65cCAtqfaJey2KBSoiFhf3NlZOMoPP4xF+t69MDZjYyKvfCUW3CylsUVDRn9ETCPZyUkcPD09OHiYMs3SHYqP/Lu93QwVaG01/TgWF/He/f1wuJlizJRjx8H/qLZ/gaLUAzalr1WWR5Goe9hPUO7Jk3COmQVIYYuDQhiA6Ogwk/pyOdgdimHd3RAMx8Yg6u3bh8eOHzeTTLm4v3ABEXT2Q8nnjUDL1gkspRkdRcsFioR0eDmAwG9oxdKSKbFpaSnP0eVkVLu0sRYly+x/w1InEVMyxIzDRkLLktcGlqLFYtWV7ZBMBudvDha7TOhtUSol8uY3i3z72yhTvvpqM7X0wAEEWnfvhi1g64LpaSzqaYvicdOLq7UV9oiB1WJi4WqGk3ARyZJkv0nc6bQpb47FIB42UkmqEi4atbzZp+VL6G1RLifyUz8l8qUv4djet88cz/m8qbpigsfICI7v5WUzJTgeh73asQOBjOFhPHdhAf5QOo2gyfQ0/JbTp/EYbRWHLXV04PVsMTMwgPcdHcXf8bjJhGabKu++kUxCnEynTelxqaAWW0HQn2puNlUo1Zz7czkzUZlrWvbG6+jAGrWRgpH28E9e24M+2T/cnpaslA8D/s3N1fcW9xm00kB70sZFRcQ6kkqJ+9M/DUe5rQ0C4t69aBp+6BCMM6dPUVlnBJuXaBQHyvnziNLn8yYTkNOak0lj8HM5LND7+/G+IjgBDQ3heRcu4HXDw3ieCD7D1BSuW1vx2kaJfipKObC/Xq2azftE3UN9glpaEnf3boh7hIMHOjpMIIEn5Xgc35tDRjjUaWkJ73H2LIIVXOhwW0UiJnuwp8cMT+nogL3ZsQNOcUuLsXvt7UYkZLSakf/29pW2aHkZwZFs1ji7pYYgcIIq+6nUomSZfc/shtksZWmkDBIRLUuuJyxvYu+jWrwfG/lfXrSE2hbl8+L+8i9jgEFfH2yQ68IuXHcdbEckAvvC8kER2JWhISyyBwawEE0kjE/T3g67Yi/sqhlOwpK7dNpkg3qDAcw8ZBCrrU0XlkrtYHkzM57WW3DxqdQItS0SEfftbxf5+7/H92FfZGbesxS4o8MEXF3XVEf09BgxZGoKlRZTU6aai/4Uq8KGhvC+PT1YC3Z0mB71V1+N2+fPm6oyTlfO5cwwqKYmBHF7egq/SDptKj44SLOjI/jLLy8XTmlubzeBmNWSzRrhkC0+YjEzUdkvCLNesI+hLRySaLRQMKRPrFQH2wK0t1d3rvTpj6i/Th1QEbGOvPzl4t5/P04eL3wheh5edRUeY+ZKLGYcWb/sBS7oLl40pccsLe7uxvswa2dpCf+rrQ0L/VwOJ622NkTDpqfx2i1bcPByYuH8vGmwW4syLEVZD+wSoFqc7D1CYqhPUFu2iHvhgrnd3AxnjjbHXiTncsY22TQ3G8d5aAiCIPsm7tiBsprBQbx2ft5kUFNs7O6G47C8DFvFbEf+n2TSTAZsa1spDKZSEA8ZYeekwGKsRckye9Gm00aIi8VMqXIjZOxpWfL6s7yM7V6r3prs2Xn5mA31L/ZbvyXuX/4ltsvQEIKce/eaBTkrIQYGCkv0bHvEnogcotTXZ/pp1WI4CTOR2OPS65dls2bIAvselgpkKMpqaLTyZo+QGGpb9Bu/Ie6f/Rn+ZhCUghFbFrDUtqnJJG7YvwHFx5YWPK+31wRHBgdhu3p6cPvsWTx/1y74RRwENTxspi/ncrCJvb14/7k5ZC6m06Zdg/3/OeQlkTA+VdCkZNeFwEdfiq/p7l59xUQmY6ro6MM1NxvhsBZZ+dWSy60UDO0BfPzdeb3ex9lGhgkEXV3V+cwUEi8HwkNti8KCioh1xHHEZeled3dhT0EuPO1yMTsjxG4auriIA8UWR6JRHIR8fjZrxEhGwey+ZOzlw/soFDBK1EhNnBVlNbiuKclc7YnJNo/2+91zT7hPUI5TOIWQQQsuuFtazFRmBiJYRsy/OXiJE51tsZERRfYB5PuybJjZ08xctBvHe0u3vMNG+H/YM7FU3xlbRON3rSbDjhniFJX5nrysp93kPuq9iBihxXtR1h576NNqhud4f0u2bMjnRf7hHzaGLWJJE8vamJHMBRz3Vx5j3gtLzWw7Vi0sg+YAJK8Qyce5+NTMXaUe2PagyOC3Nf//3s8iIvLFL24MW0S4FmIPwnjcBAh4YbYz13PNzSajjb+PiPEPWMJLkY996XM5854MdvJxuy8+M6EpZBKW3trDBYPWcRSjmW1HX2q12fKsxKDvJmJK72mT1xPaabvKj9AntK+V+sF9l+uASl9L+8O/83mRT3wi3LYoLDRYZ6aNDcvm0mlEzHkf7y813dhxCktlSCRS2FSUjrSIORG1tJhpgiIm64gLdrusb72NvaLUAjpPdk9D4tcov9hjXjZK3IUnbGY/c5FsC4UtLUY8tG83NZnBAvG4yaRm+a5IcQGRgQve5v+n0EJb5M2y4P+wbVUxQYa/OfukiPgLkuVAx6RY2e96CYe2oOQVmUT8BRdlfWCJDXvx2QJXMeHX/n394D6+EWAgIJ1GRs7MjLnfXrB7F+60Adyu1QYIbLzioPf8wQUpH1e/SakXtOe0/d4hZNVQzBfaTH4RgxdNTcamsFrDzyZRRGTPVAY5aRP427CSxR6QtbxsMpyjUZMkwv/HAAl7CNI/I1zDsTcsg7jF9gVWT9hBrdX2aaa/5hUOKbqulxhni4V+fht9X5+Jvso6YPtH1C9sYZDX5dqjjWKLwoBmItaRTEbcaBQ9Mi5eRInxxYvmMj5u7ltaWvn6jg5c+vuR3j44iPKfgQEziCAeR6ZjOo309LY2PG9qCo55Swue29yM/zEzAyPb3Y2LLjSVsONdiLORPrNIipk8r9hSImsr1EfK3Jy4XV0oe5mYMBPbJybQZ4eXiQnTS9WGU4+Hh1FO094OO7NrF+6j0Mgo+vy8ab9Ah5g9hmIxOKFLS6bHa1ub2d65HF6/tGSmxBdr8O1XsswFQSW2zXbMWTpGYZOCR71tZVBZsreP4XpnRCrAm/mQTpt9v6mpMJvVxs5stSsTigjXof6lEwlxW1vNBFJeLl1aeZviog1bufT1oTfYli24DA2Zye2V9HXO5fAbsVqjrc3YGtc1PZxYytjaqpkryvpRbnlzULDCu0C3KeYHFfGNQm2LZmbE7e3FMT49jXUThzh5/56fX7nN2D+agytplwYGUI48MAD/p70dtunSJbxuyxbYG/a5Hx1FyXMqhdLl+Xn4PDt2mCAsy5Dn5/Ea9i/0EwPzeTNlmcHerq7C9jHlQPvHUmUGdNvajF9W76Fx2ezK4Sd2hYhdktzcrKJhI2BnDNrXS0vYvzi0yItfNQL/tu/j0+v4lTYtKiLWl7I39uJiobh47pzIk0/i9uKiEQUJxZHWVjPhdMsWONXNzTgh7dwpsn8/HOr5eRyszc24rc2/lUbHG5HyOr9BjjBL0tinzs8RrpCwn6DKtkXLy0ZcnJiAPXrmGdigxUXYppkZs5CmaNLcbHoBDQ+baak9PXCS2TMxm4Xjx8g8yxnyeTiqdpPvYj1TOLWW2Y2M4ldSGsGSCjuqz4g1L/WC4rfftGTtY7j+2Jlodnl7sXIp4jgmg5dDN/xEwgoJ+69fti1KpUzQg5cTJzBMZX4edmhiYuXU5WgUC/jhYYiKw8OFl6EhXERM9YY9pd11TY9W163NICZFqRV29htbk6xWIKyy3cWmsUXZLOwNhcXpafhF589DrJudNb3euB3Z7qW/36zVbGFwcBB98jmF/vx5vHbrVjwmYsSWuTnTZ7e7238Nl8ngeQsLJkDLASvl/rb8f/TF+H06Okx/yHrZQe7ntmBIW+84ZkKy3SZMqS92ZYxXJAyqnqC9WVzEdXd3YYugVdijsNuiUKAiYn1Z1cZ2XZHjx+Ec9/WZjJhcDieIuTk403NzaMQ7Pg6Df+kSTkIsKWTZs+tiYb9lC05Ow8M4aXmvqx25rijlUkwQLMcJ5nVQxFyksNyjBqJL2E9Qqzb8MzNYTA8MmMnJXV2wOSdPGif60iXYovl5k33NBTp7A+XzJqORWUNDQ2YKYm8vMqy3bl0p4rkunMhk0kTE2QqiXKfW7gvE8h67N1A9nNAgwVBkpWCoWU9rSzFB0L7tZ48o7gZlEfK3W142vURr8Htuals0NWWycNrasF1nZkz24vi4yWq0bzM4QfJ5LIxHRsxleBg2qLsb9o5Zjro4VepBUMagn29ktwNh3+EaCoTlsGltETOpUynTQkoEvgUnNdNfOX/eTHo/exavZe9F9j6MxeALjY3hmoMuOUSOj/kNKUkk4IMlEvidaR/LHWjCzMWFBVMhEokUCodr7YewGsQWDOnDi5iqEAqG2sd/bfEKg8VEQi+2vQnKICSsPGpqKj1NvAS6N9QBFRHry6o29oULIs89Z3putLaarCpOCGttNen1g4OmVDkeh8EfH4cQyQX+4qJxrMfHcZ+X9nazuKdDzQtv9/frolYJphIn2KaCEpqyP0cmY0T4Kgn7CWpVtiiRQIS9q8v0WKVzOjuL262tZshBT495HZ2FqSmRZ5+F7Zmeht2anDQL/Kkp0zuIWXbxuBEY+/vNwp4tHbZtK39xbzcAp3DI8tJ6lLt4BUO/Pov2RakNdHZLCYR+BJUVr2agjuuaBR77XlXBprRFy8uwF44Dm1BJdo0Itv/4OHyr8+dhd+z2DhQd2cqAF06lt8ulmc3I24OD9c1cVsJHLcuL7Qv9nFLlzWvEprRFmYxZW7FqgaW0mYwpR47HsTZjwOPcOfxO/f3wRZ56Cr7R4iJ+t2QSPhIrQTh51h7C2dNjfCL2re7ogOi4fTsqPsoRD3O5QuHQdeFPUTi0W8ysBaxIsTMNeQywJ6VdmqzrztoRlDUYZI+CSop9yovLhln/HGK0SsJui0KBiohV4jhOk4hcKSJzruteKPH0ijf24qLI0aMwqJ2dRkDkglcE1wsLMLR9fXCGk0nTg2N+Hie3SASP+2UYJpOFJUIXL0K89PYk8isTovNsC4xe0bEKQ6A0KOVkDlbqCNuPrQUctlEDgabhTlBrbYuyWTizbCK+uAgHs60Ni+9UCsc5S4q7u015cDyO56ZScA5EjMMrggX9/LwR9ViGY/dovHDBZBFNTa1sJh+JwJmmsMhrRvEpPNIWsaH4Wi60gvoYally7WA2Z5BIWKy8uFTvwbVarORyOBY4Db0KGnKvqcAeVWyLcjks2pNJHN/FeigFkU7D7riuyWBmuTkH2FHsnZnx79HIv2nzbPr6iouMvF2p8KmEg7USCCspQeWwCwbI6kRD7s1raYtcF77JxEShuNfSAhuzuIg1F4fLDQzgt5mcxHO2bTO9D/n4tm14j3TaBGd5HqKwyN6MExP4/5cu4T72crUDqp2dps1VXx/8pL4+3M8hKNhO+Luz06w314J8vlAwTKXM+ZmBGntojWZ+rw7b3gRlEPpRqu/gWou4HDDU2blq/7ykLapwzaT4oCJilTiOc4WIPCMif++67s+XeHpFGzubhYA4NYVoE1PdmZEYi+FAXloyGYcTEzjAR0bw+PQ0Tljt7ThpVHPg53J4Pw5/8Q6GoeiYSKx8bU/PSqHRFhlHR5HdpA51Y1Aqc7AcJ9h7ey3FwUqgmMPjZ5U0wDcpZC1tkevC6c3lcFJfXISD2dmJBXY6DeeTTbs7O03/sPZ2PLa0BJvGgSuRCBziuTnYqKamlSU3LFleXjaiISezzs8Xiox230Yu8hcWVu6rnZ2FC3mv4Dg4CHtV6b6hZclrQ1DWIC9+9qjC4STrAsu12MtplTScLRKpyB5V7IRevIjFdV8fjtVKRJJ8Hj5KJoNzQFsb9ods1twfiZSfBeG6sEWlyqdnZ1e+tq3Nv0+jfbuvTzOSG4VaiYN+962FLbLLm+s0LXfT2aLpaQQ0mLHMYUwcwMTeqbkcBMLZWdgZinnMgo7H0R+xs9MEUVnB4dfHkH0Rl5dxf0cH1lD5vP8wGN6enMS1PVGZPWAHB43NscVG/t3TU7ktcl34hbZgyGCxCLaXnWGoZcnlEVRSXE55cZnDSdYN9kR3HBwTq/hM5YiIV0j5aybFB9X3G5gzZ2DwOzthWDMZMykwGsVBxpRfETitra04CXD4Cvtq1CKiFI3iJDM4KHLNNcWft7hYKDDaU6cvXsSAmMnJla+Lx1eKjN7rwUGNSlVLOX12/CiWpt5IAmE58NihoBWWz72eLCzA/nR2wnltbobTSgExEjFiSEtL4fTlbBbOLh3d5mYzPT6VwvHMfj+EpdKcghqL4b2am83vRed23z7zOnuiMu3j3BwcaJYq2sLjqVOwk94stVhsZUYjHWze7u01iwO/suRYTMuSg7DLi4NEQj8oAjIQUIPhJOsCextTfA/L515P5udx4UTQSgREOxOaImEuB/tGO9beXtk0d8fBIr+7W2Tv3uD/zcFUfiLjI48Ur/bgUBg/kZG3q8xm3fRUKxAG9R9cL2gf2fd3HcqbNzQcOsc2OayuWFzEffYx2dODY951kWmYy6F8OZfD+mZ0FI9NTxcOl+jsNOJvPm/sH4MgfX0QD+3fta0N/4Mkk6ZUmSIeewymUrjfFh2PHcO1LfaJmM9ki4tesZGZYxQMWVovgvvjcePLcdChUkg1w0ns9ip+4mBY1jsM5C0uFuocSmOhmYj1peyNPTkp8vTTOODb23FNATEeh3HnhEdOJeVCfGYGj3V14cTViEYjkyksByomOtqNdEXwXQYGivdo5PVmHApTKnMwyAnmdVCJ8UbCdY2DtMpSn7BvkbJtUSoF57KlxUzm6+mBOJdO4zYn/zGjJx7H8xMJvCYeh23KZs1k+EgENor2TQTvl0ziWsRMQS0WOODvyLJpOxuAl1L7bi6H72dnM3qzGy9dMoIm/68ItsPAgMlitAfEUHDcjCWL9RhOslFwXZO1u8q+U2Hfu8q2RRxEkM9j0V3ueT6XMyXKzBQSwX2pVKEAsJ7HKrOISmU1Li2tfG1XV+ny6Ub1B9eSUgHTepQXrzfe8uYaDZfzIyRbpChl26JcDokeExMmk8/2eVhSzHLcuTk8Pjxs+tC3tyP7MB6HX7SwgPdmViGFQQZdWVnR0gIxz/advCwv4/kMAIuYwEtHR2m/13WNuFgss3Fy0kx+tgOpLS3GNxoYKAzAUnTcjJVn5ZQWlyovLmc4yUaCGb3l7LMeNugWaSxURKwvZW3sZFLk8GGcNLq7zTAV9kHkwr252TRnHxqCM5xI4P7+/qrKoxoC10X2kF82o/2331CYjo7gHo0jI9WXd9eTchxhP8opo9msMBuRGU0VEvYtV5YtyuexaKW447pGQOSixHFMxJ1CCHveMLMnEoGTvLRkyhNYouC6JuvQLlluafE/Prkg4kRlWzikw17Nfu1XlszSiqkpc6ETPTkJOzQx4V+y2NKyMovRezssA6rs7MEgkdCPcnoPblZ7xKxZLkYrJOxbrSxb5LoYRLCwgPN3OYKYbVsYiG1qMgsTLshrNCW7biwtBYuMFy+aAVU2HAoTlNUYpmqPWpUXh1UcrJQ6lDeHfcuVvSAeH0dAg8kc8bjJcuYgEGaap1KmcuH8eTxn61YIbIuL8I3yeTNFORbDvsspyyxZ7uyE+ObXZoHPX1gw/eSYhMLhKNVkobIsmRmG9L9SKXzGpSXzvxcXcR/9pJmZlcdiNIptEpTV2NcXngFV5ZQWl1NeXKvhJBsJHh9dXRXZrE2+1eqDioj1peTGzueR4n7unEn5bmszQwAoejgOjDj7ki0umgX+KvsHhJbl5ZVDYbyi48TEysUtS729PRpt0XFoaG2HwgRlDXqznryUyhzcTPvAaqFItIpSwrBv3bIM/9QUnMSmJnMSX1oyjbAZaXdd00ycj7W04NihUylinNlIxAyWSKVMyXJrq//xls8XliqLmCmF1TbeDpqW7Fc2G0Q6XSgqerMZWU7tLRPiUBhvf0ZvOfVaNToXMeJpmIaTbCSyWQhb7BFVAZvGFl26ZAbGlTrm2eMwl4ON4NR4Zn0yO3qj7pschOUdAuO9zaxv4jhYvJcqn+7oWNvPrwLh2sBzKc+5NRaMw751y7JF8/MizzwD+0KfJZnEYwxWxGLm2OrthZC2tAQfamzM9D3M5fAe7O3K9gpzcziGYzFT1uz1P/J5vCd9LAZh29tNxuFq7RtLnSkY2naCfp89/CTouMrnC0VFb1Yj//YbUNXZubI3o1d0XMvJ0ba9Cdtwko0Cjwm2SCqTsNuiUKAiYn0pubHPnoWIyJIbRs55colEzGKuqwuvSaexYO/vD08Eud6wZLHYUBiKjowk2nAoTLHBMCMj/qn51ZbQ2H+rE7x2ZLNGENtEUa6StogRcjo7HR1wmnmMMLDBrGjHgeMZjZrG4iy/aW835TnpNB6jGFisZDmfN2XKFN0iERPhX42tC5qWTNHLHnyyFsdaPo+MxVLl034li52d/iKjndnol6FVTu9BP3vkLSP2EwnVHtUOLtY4PK1Mwv4LlLRFiQRKB1taUMYcVGXB8nBmQre1mYBFPm8Cs9obDttqbi5YZCxW7cGhMEFCo99QmFqIg97b6htVhl3ezGBcjbZd2H+BkrYonRY5edJMV2bgVMQIeAzIxeNmwGU0KrJ9O+6jQBiP43wdj5uMPiaEtLaakmWbXK4w648BXAZog0qci8FsSXtiMo9D+ly2YLgWtpOZlEHl01NT8Em9NDcHi4wcwFXMFtVyOMlGLy9eL1hpybYBZaC/QB1QEbG+BG7suTmRxx/HgdLVZVLkaZCYBRKN4kTBdPXe3rWPCm8GXBcn5aAejSwT8hKPr5z4yn5Edn80lloGOcRK/WFkvgJnOuy/VKAtymTgJGezZlhKOg3nlQISnUkGOERM30SWH7S2wpbFYuWVLOdyplSZ72mXBlXivPqVJfN0x/Js+9Jox14iETx9emLClCzazm4sBsd5YADXvAwOmuu+PrPtg3oPNto22QxwEnkFWXJh/5UCbVE2K3L6NOzCtm3BfRAzGRw3zIR2HGNzGJjVQGvlJJPBQ2GKVXtEIqZnrF9Lh5ERPN7aqtmD6wHPtzUsbw77LxVoi/J5keeeQ0AjFoONYTCUlRS2f8NgBs/BS0tmwE1PjxlCNzdnWi50dkI8tAMl2awZjJJImCxStoXh8VMODM7agiGPW+4HtmDYaOXEmQyCsEFZjTMzhf302fKmqwu+T28vtn9vr7nNC1tbBGUQqj1aH3j8dHaWdR7XX6kOqIhYX4pu7ExG5Ac/QL+Mnh44u1zkMS3ebtTL7B722VBqQ1DWIC/pdGGZkO1U07HmxDYbliwW69HI+3QKVf1hZJ5OVBmE/QRV1Ba5Lvbf5WUzQY/lBBTBW1qM6ETxVQQneUbYu7vxHLtkuanJlDkTTqfNZIwzyyzHcqf3MXIcVJbszTJsdMrpPZjNwnGmoDg5Wdi3kfdxeISIue7rK8xq9OvXuJqsBqU6mJHhOGUvDsP+CwU6oefPYx/furV4H8R8HtuMmdBNTaZnVyxmKjqU1VFOVYVti4plV1+65F/t0d1dOquxu1tt0VpQ4/LmsP9Cgbbo0iWR48dxPmXvZ7ZGoH3h9ksm4b+MjJge0SxNbmkxU5Y57Kmrq7DnWyZjBqPwmOHzOjrKa21Cv9YWDO11SSxWKBiWKktuBIJKi/k3e1izH6N9mZ01f/M8K2Ku29qCezRu1qEwjYDrmkzUMn4D/YXqgIqI9cV3Y7uuyNGjmMbMHofs8RCLwejzJMVsnP7+te2PtREJ6jlYbRmN3/+amSnMavQrpfZLze/oKN6jkZcwDYUJCxUOWgn7Caqo4Z+dRWSc2YY8cdPBpMhtZ6wlk7BTTU1wkiMRU7LsOGZaM7erPVGZYp89UbnUvh3Ux9BbltyIQZZSvQdrOZzEdeFQlyqf9itZbG31zyCyhcewDIUJEyy/jUbLOs9vaFt07hyCpSMj/vsZ+xyKwL5QFOG2W8uexhuhRmHzAAAgAElEQVSBteo9yOd4WVwsXT49Pb3y/3qrPfxExzANhWkkKAIzi66K8uYNa4uWlkSOHEFgjuszVluwpYuIab3S14fnpVKwRV1d2K7z86YMua0N/hJ9qlTKZByyx2I8bjIOS9kyDjqxMw3tsmRbMGSVWyNRqu9gueXF5Q4nSaWK92fk37OzK/9nNBpcOs3sRg1c1Z5sFsdHc3NwVYKE3xaFAhUR64vvxr54UeSRR2Dwe3tNA13HgfGiwW9qwmM9PY1n/NeTUpmD9nO8lHKA1zratLzs35/Rvp6YWDnQIBZbmcnoFR2HhsI/obveUJQqoz9i2E9QvkfE8rIpY25pMRFdZkGzRJALNQ46icUgfjPzkL2W2L+E/RJZqszyEmZWBy1a/DIMG7UsmSXU1QwnCRIJ1xJmWAeVT5dTslhsKEyZfWyUyzCDhBkiAWxIW5RKYXhBUxMGEXgXZLkcMknY1sVxTBCogr5JG5q1EgjX2sbaQ2GKCY2XLvkPhenvN8Ii/SDv7RKLz01LDcqbN6QtymaR6PHcc7ArPHY6O3HNdi/RqOlz6LrYfhx0OT9v+rSyZLmpCWIhMw65PzOZpLOzuBDF7EZbMLTLkrlu5PV6i+tBfQcrHU7iFQzXklwOAdZiPRr5t99QGJZPr9dQmI1KMol1Rnt7oG+kW7UOqIhYX1Zs7ERC5KGH4BQNDOCgiMdNA3D2P2xthcHZbFH1cspo/CiVORgmo53LmYmv3v6MttjoVybEDA5baPRmNWpqfiEctFIiGh/2LbbiyMnlsDBbWIC9yecRFW9qwm2WCYqYrAUOUYlEjDjI5zc1FU5UpnBoZxz6Zc0V62Mosr5lyTqcxAyFCZo+XWwoTFdX6fJpLVkshOVnJQathH2LrThq8nmRZ5/FYuGKK1a2+OAiwvYJWP7NoMVGphbioPd22Hwj1zUDqoLERr9qj/b2YJFxM1d7VFneHJK9pygrjhzXhS168knc5vbw9leNx7FfURRiBjmnJrNKo7PTCIeLi6a82J6o7N3mbKNkC4Z2WTL7GNoJJ/U6joOyBssZTlIqgzAMsAVJkMg4Pe1vi+Lx8obCbEZbFMTCAo4ruwWAh5DsPeFGRcT6UrCx83lkIB49igOBU7ryeZN23tODE89GFHpKZQ6WGyUvdt9mgiWLpYbCTE+vfG1rq39Wo309MNCYZaFrAUt7RALLEcK+l604uiYnIQJxOMrSEmwQRUKKgq5rhp3EYiYTiCXLbNydzZrFPbMN/bKJ1rss2e6jEyQS+hFUVryZh5MkEiuzGL2Co1/JYnMzbE1Q+fTAwOYqE2IjfTZ89yHse9gKW8SBHdu2YRFFslnT+zCXM5nILS2VDRdoZMKaPdioJJP+QqM9FGZycmWGdTRaunx6aGjjBvZ5jFVY3hz2vczXL/re9wp7QnPoZSaDv5ubzTAUuyciS5a7uvA3S5Vpu2zh0PZvWJZMwdAuS2a2o51puFYCU1DfQV77EZQ1uJntUSaDNldB06enp1faIseBFmCLjH5/b1Rb5Ec+D1E2GsUx5MMm3MPqj4qI9aVgYz/9tMh3vmPKwXgyaGmBQejuhnEI24IpKGuwlBPM60p67Cjlk04bB9qbyWj/TRGNcB8tNhSG1xulT6fr4oQf0B8x7HtiwVG4sIABBiKmX2Fzs3GQuT9we9AmUUyMRrG97OdxMAq3n7cs2XaU1qosuZzhJMWi5KV6D2pkuDqyWTjNxQYw8LZfyWJvb3D59EYqWcznkXXHxasPG84WPfccFk1bt8rzbV2Wl7EwT6dNKwQ7yNHolKqoUIFw/cjljC3yExl526/ao6enuMgY9mqPVZQ3h/BbFlBwBC4vi3z3u5gOzyAoqzLYc5VJHrbAFokYYTCZhHho39/ZifNTJGIGy9mlyRTnGJy1BcNalCXb9iYog9CPUn0Hw2CLGxnXhThWqnw6kVj52vb24uXT/Jvl9RuBdBrJDgwietgg37KxURGxvjy/sScnRb76VfRaGBoyDcA5VKO/v6i6vq6UyhyspoxGaQzyeTMUxi+bkX8vLKx8bWfnSpFxdLTwdm9vOBwNDlopkgUX9j32+SM1nRY5c8b0F8tkYI/s5uHsERmPY1vwtuMY4ZDlzgyGrHVZcjm9B4PKiysZTqKsD3Soi5VNM9PRr0yorc2/fNq+HZaSRQ5aYV9SD2HfW58/SjMZkRMncCxeeaUJTiwt4fvncma6e1tb42THr0X2oP24sv4wk6ycoTBeWlpgb4LKpwcHG2d/tmEpbZnlzWHfW58/UvN5kcceE/nBD/Dd43H4RZz23tmJ84frrqyaYNCDVRvsb9jaunJash2wZ/9bVqKtJoEkKGswyB6V6juotqixSCYLBcZyh8LEYliDBWU19vaufw/NckkkcBx1dq74zLq31oGGFhEdx7lbRN5t3dXkum62yNPrhuM4u0XkuHXX+1zX/b0yXuqKYIf/t38TOX4c2V2MTG3ZgktfX/2diXKi45U4wt77lY1HIlE8k5F/T06uLHloajIOtF+PxtFRPN4IGbjsjxiLibz3vXfLe97zHvvhMNsjVwTf7exZ/F4sVW5vN0IFMw+Z7eMV/JiJyPtqUZZMh7eUSLhyO6z/cBJlfUilzOCXYuXTfiWLkUjxsmn7uhHKhFjWFo+LvO99G88WuS4GqSQSIrt2wQYtLyNYlUqZbANvL7K1RsuLlUrIZAqHwhQTHe2ediLYHzigKiirsUg2cl2+l1958913bzxbJIL12X33QYhpbzd+UU8P1mjMCqRoGI2a80tTE9Z1LS243840JBwqZ2calrIJqx1OUqrvoPpFG5NcDvtvqfJpb7WHCDJsSw2FaYQWImzl5borMr4DP9kG1JfWhZBozfKWy9fPLwEcx3m5iLxTRA6KyICITInIMRG5z3Xdu63n3S2FO4qXX3Bd9yOXn/v/ichbrceyInJeRP5NRN7tuu6ly/ePX/5MAyLyoUq+iOuKPPigyBNPmIV5dzec5q1b18ZBKKeMxg91gpUg2tpEdu7EpRi5XKFD7c1qfPJJkW9+E1E1L319xXs00qFe69T8WMyU6fI4+djHPiZvectb3iIbwB5NTIicO4cMCw5xEsH3ZTScfYB4bQtyzFIgfIzCorcsmdmd1QwnoeMe1uEkSu2Jx9E/b9u24s9hhnWx8ulTp9BexK9MqKtr5RAYr/C41iWLzc1mIidF9I1mixYX4QfFYhB9EwksyHt6cL6pZWCpHGEwKGNHZGWPL/WNlKYmkxBQDNc1tsivfPrMGfRL96v26OgoLTSuRbUHy5kzGZzzveXNG8kWXbok8u1vo61CRwd+r+ZmUw5KwZABZgY1WFHmONhG9GsjEdM3kaKhHUylzWHFRrEMQi+2vbH9M69IqGxOolGIff39xZ/jusFDYaamRI4d87dFHAoTlNXY3b22IrXjYN0yP4+KhY6Oit9iw+hL60EoRETXdT9u33Yc59dF5H+LyGMi8uciMiki20XkBhH5ryJyt8/b/L8ictHn/od97nuriORFpF1EXioivyQiP+o4znWu6yZd110UkY87jnOFVPgjP/mkyL334uQyPIySnX37EIFczYFWygEuJRDaJxl1gpVaE42aPorFYMmiN5ORty9cQEnJzMzK17a2BvdoHB6ufigMhUQu3N/85jfLm9/85udtUljt0cICou3j43Bq6Rw7jikZpBjojWLTsWWTb95Pp5cZnOUMJ6EIyBJpvyxCtUdKtUQixqE+cKD485aWVpZM28LjsWPFh8KUKp8eGKgui46D11gCt1Fs0dIS7D2DQhcuYPuyDLC5udx3AtVmD6o4qKwljmMW2vv3F39eMukvMvJy6hRskvfcGouZgEcxoXFwsPIMa56XmRVt27KNYouWl0W+/GWR738f/iWHW/b0QDhlixsGM9krkT5mKgV71d5uypOZrUi/iSXNvM8Pu7IiqAeholQDRbj2dpGxseLPy2SCy6efesp/KEwksnIojF9mYzXVHtEogowsba7kvTaSvrQehEJEtHEcJyYi7xWRR0XkRd70U8dxhou89F9c1z1R5r/5pPW+f+04zqSI/N8icqeIfHoVH1tEcNL/5CfhIN98s8itt4rs2ePb46hk5mCQE8xrP0fYfo6iNAKOAyetu1tk797iz0uljBNNsdEWHR99FLf9pixy4mvQYJhiQ2EY5fV/LJz2KJPBxMGnnjLTuSkadnSYacp2jx8RY3soGDKrsFiU3JuZqMNJlEanvb10hnU2a6aZ+w2DOXwYf/sNhenrK14+zUuxigQK/P6PhdMWZbPIvOLAlNlZfP+enpXftZyqChUIlY1CS4vIjh24FINDYYqVTz/9NMpy/ao9OKAqSGz0Vns4jplMzPO/l7DaItcVueceiIjxOLZFX19h2SZ9I7ZVsHtB20PnKBimUiv/jy0MFssgVJRGoqnJ2IRiMCHE25uRf589K/LDH/oPqGpvDxYa+/uxNil2nqZNSiTMcVkpYbVb60noRERBimePiDzoV7/uuq6fGlwt/y74kXdV8yZ/8ieY8vXyl4vccYfJzmKpZCVOsH1bnWBlMxCPi2zfjksx8nmcrLw9Gnl98qTIQw+hbM5LV9fKcmlbdKQTnssVnKBCaY++9jWUbnZ2wlFmX9bWVlOmzAWCXzagLQiyrMkrEqo9UjYqsVj5GdbFhsGcP48M62JDYYpNnR4cNOKkJ+oeSlt08iRaKgwN4fbAgAnocKBDuW1XvBk66hspG51o1NiGa67xf47rwufxExl53+HDxYfC+AmNHADJMkdOH75MKG3RJz4h8jd/g+9x6JARUXt6zETl1lYjGrIKgzC46icOavagstGxE0J2BRyFHApTrIT6uef8h8I0Na0cCmOLjb29sIdLS1jPrYJQ2q31JIwi4iURSYjIjzmO88eu614o83W9juMM+Nw/7bpukYTy59l9+Xqy3A/px+HDIq96lchP/AROQPYJu5ggqE6wolRGc3NpsTGRKOxH5L0cPowTmg2P15e+FH1NLxNKe/Txj2OAzdVXQ5Rob4eNyWaNrcnnC6N5fsNJOEhFURR/BgZwKQaHwkxNFV5PTuJy4sTKAVUXLluZH/9xkW984/m7Q2mLHn0UNqilxQxTYaaC9mVWlNpBsfHgQf/H0+nCDGvv9SOP4G97KMzEBK5vuy38ftHdd0MkfPWrRa67Dj5Sby/EwpYWM1CGvhKDrGqPFKUymptxfI2O+j+ey4nMzWHdNTuLdla8zM5ijTYzs3JAVT6PY/izn13Vxwql3VpPQiciuq6bdxznj0Tkv4vIM47jPCwiD4nIvYKml5kiL/2PIvfvFJFnPff1O46TE1Oz/m7BjvWv1Xz2r35VR44rSiPQ1RWcReSH47znbhF594MPmuM4rPboU59SW6QojcJqbdE3vhF+W/SmN6ktUpRGYWAguE+jl43kF504obZIURqFoNLptSCsdms9CZ2IKCLiuu77Hcc5ISK/IiIvFpGXicjvisiU4zi/7rrup3xe9lbBJBwv42Xcd0JEfsl1Xb/XK4qyiVF7pChKI6C2SFGURkBtkaIoYUPtVmWEUkQUEXFd97Mi8lnHceIicq2I/ISI/KaIfMJxnPOu697neclDFTS+fLVgek5GsGOccN1iHXkURdnsqD1SFKURUFukKEojoLZIUZSwoXarfEIrIhLXdVMi8oiIPOI4zgOCJpU/JyLeH7kSvunXVFNRFCUItUeKojQCaosURWkE1BYpihI21G6VZqMNkv/u5eut6/opFEVR1B4pitIYqC1SFKURUFukKErYULvlQ+hERMdx2hzHua3Iw3dcvn6qXp9HUZTNi9ojRVEaAbVFiqI0AmqLFEUJG2q3KieM5cxtIvJtx3F+ICJfFpFTIhIXkRtE5C4RmRCRD/m87icdx7noc/9h13V/sFYfVlGUDY3aI0VRGgG1RYqiNAJqixRFCRtqtyokjCLirIi8Q0R+TETeICKjIhIVkTMi8lEReb/rumd8XveBIu/3xyKyoX9kRVHWDLVHiqI0AmqLFEVpBNQWKYoSNtRuVYjTyENhHMe5W0TeLSKDIiKu606u6we6jOM4ERHpE5HtIvJ9EXmf67q/t76fSlGUtUTtkaIojYDaIkVRGgG1RYqihA21W7UhLJmIEyIijuM0NchUm10icny9P4SiKOuC2iNFURoBtUWKojQCaosURQkbareqoNEzEXcJNij5htsAH9hxnFYRebF11zOu655cr8+jKMrao/ZIUZRGQG2RoiiNgNoiRVHChtqt2tDQIqKiKIqiKIqiKIqiKIqiKOtPZL0/gKIoiqIoiqIoiqIoiqIojY2KiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEkhDi4iO49ztOI5rXWLr/ZmI4zhnrc/1wHp/HkVR1g61RYqiNAJqixRFaRTUHimKEjbUbtWGhhYRLd5y+ZKz73QcZ7fjOH/lOM4Jx3GWHcdZdBznMcdx3uc4zoj1PO4su4P+ieM4rY7jvPPye8w6jrNw+b0/7TjOazxP//XLn2myRt9RUZTGR22RoiiNgNoiRVEaBbVHiqKEDbVbVdAwymsQrut+3Huf4zg/IyIfE5ElEfm4iDwpIlERuV5EflVEfkZE9pb7Py6r0PeKyAtF5NMi8rci4orIbhF5pYj8rIh8xfpM91x+3R+t5jspihI+1BYpitIIqC1SFKVRUHukKErYULtVHaEQEb04jnOd4If9oYi8xnXdKc/jvyMi76rwbe8UkZtF5Ddc1/0zn/85svIliqJsZtQWKYrSCKgtUhSlUVB7pChK2FC7VRmhFBFF5L2Cz36X9wcWEXFdd0ZEfqfC92Qq6n1+D7quO17h+ymKsvFRW6QoSiOgtkhRlEZB7ZGiKGFD7VYFhKUn4vM4jtMqIq8Wkftd1z1Rw7d+5vL1zzmOE63h+yqKsgFRW6QoSiOgtkhRlEZB7ZGiKGFD7VblhDETcbeINIvI4zV+38+LyBMi8v+IyF2O49wnIg+LyFdc1326Fv/g1Clxt2wRaWmpxbspilIv/uAP3i3vfe975E//VNwzZ0Q++EFxJMS2SNCPQ1GUdSafL31xraP1ne98t/zP//ke+dCHxP3+90U+9rFw26KmJnFdV6SvT+TKK0V27RIZGxPp6hLp7sb9HR0i7e242H+3t4u0ttbiUyiKEoTriiwuikxPi8zM4DI3J/KGN7xb/vEf3yO///vi/uEfinP56aG0R2fOiNvWJtLfX+07KYpSDfm8SC5X/JJK4ZLJmEs2KzI/D1v16lc/b4sqIZR2az0Jo4jYdfl6vpZv6rpuynGcl4rIb4nIXSLyxssXcRznfhF5m+u6J6v5H7GYyMWLItu3i0RClwOqKJuTTEYkmcTfZ86IvPa1zz8UWlukKMra4rrlCYR+RCK4RKMiTU3mdiRigpBPPilyxx3PvyS0tuh97xP58IdFEgn4R4uLIqdOiYyOimzZIjI4KNLWZp4fj2ObkEjEX1z03lafS1HKJ5mEUGiLhtksHovFRHp7RfbsEensxH2ve13By0Npj7q7IYw2N5vvpShKbQkSB3mxA6f5vEg6XSgsOg78I/tYTSaNz7BKQmm31pMwioj8cWtu4l3XnRWR3xeR33ccZ1BEbhGRnxeRnxKRLzqOc73ruqnVvv/wsMi5c3CUR0dr8pEVRVkjXFdkaQknprk53HfwoMiP/MjzTwmtLVIUZfUUEwhzOf/sQeI4Rgz0ioP2JQjaot27RX76p5+/O7S26Ld+CyLhP/0Ttl9nJxYHuZzIc8/BZ9q6FcHXXbuQeZjPQ8iIRrFNXRd2emJC5Nlnjdhh09oaLDJ2dGBBoiibjWxWZHa2UDRcXsZjjgNxbft2ZAX39uJYEcFaZmkJfx86VPCWobRHXV0QK2ZnYQvi8Zp9bEXZ8LhueQKhFwqCkYg5r2ezxqdyXQRPHQd+U1MTjs/mZjx/dhbBx64uZBHHVq9shdJurSdhFBFPiEhaRA6VemI1uK47ISJfFPy4HxeRN4nITSJy/2rfMx7HDj41hZ2+p6dGH1ZRlJqSSsE5phhw4nJ3jDe8oeBpobVFiqL4U2l5MQnKHuTFWU2BjcXSksijj+LvX/ol/K/LhNYWRaMib3vb/8/em0bHdV1novvWhKkwFAYCBECCM0FSIAlqsqzBkiXZFhVJtmVLkWwnHmI7ev06K503Zb33OlFWenX6R3fHnRf3c/zctjw7jm3JlizZkqVIlmRZEyDOgykOIEiAmFHzcO8978eH7XOqUIWaC3UL91urFoBC1a1b956zz97f2d/eCBZ+/WuQfS0tuFZMKC4sEB05QnT8OFFnJ8jEvj6QGXxNu7ulBLquDs+HwwguQiH5CAZBfnB2uQq3O5lYTEc2NjYWfx9t2FgtCAHJn0oYBgLSpjU1IU7x+UAatrYm2ZnfH4PnJGcFp7zGsvaovR32YXYWNiX1u9uwsRaRTV7MG6ipYJ+I/SL+nR9CgDCMx/GIKTSa0wl/QCUN1bVX14mmpvC+5mbYqiLXZsvardWC5UhEIURE07RnieguTdO2VigF9HXCTe4r9kCtrdjhm5vD5LB3umzYqB6YJoLMeBy7WV4v0Q9/KBe2pib5WqvbIhs21hJKJS/2ePLPHiwFTJPoq1+V5JfPp343a9uipiaiBx/Edxwdhd31+UB2uN1Eu3Zh03VxEZmJo6NEhw4h4B8cJNq8Gb7UzAzRxASO6XCAVGxpQRZVa2tyPWrDSCYXmWDk3ycm5EaSCk0DkZhNPl1ENoQNGyVDOCzlyHNzIP84G8jjwTzr7ZWkYbZsXNPEvDxxAsfp6Vn+GivbI4cDGxVMJHZ12ZsGNmoX2bIH1WzAVDAR6HJh/U0lCFkpwGBZcjwOHiSRkOurpklpMpOGKxH44TDsmaZhvpaiNrKV7dZqwapuzqOEDjrf0zTtLiHEnPpPTdPaiOgvhRB/mesBNU3bT0QTQogrKc9rRHRw6c8TRZ31Erq6pKy5r8/e6bJhoxoQjUppDhfsf/VV1B7btInolVfSvu1RsrAtsmGjFlBo9mAp5MWVwpNPwhbt2EE0MpL2JY+ShW1RdzfR3XfjPp06BVJjzx5IlOfmcA9bWohuvhkBxuQkatS+/jrRb34DknB4mGj3bqJ160AI+v1E4+MyUPF4JLHY2ip/zwSWSadmMzLhOD+P48fjy99bV7eydLqpyW6yZ6O0SCSSCcP5ebkB6nBgzG/aJAlDdVM0FzCBOD6O7MUdO4h++9uML3+ULGqP3G5cn9lZbFzYqjEbVkSh2YMsL+ZN03TkYDbeQgjYIyYN4/FkKbPbjRjL45ES5VzAWdDBIN7b2VlyDuVRsqjdWg1YkkQUQrytadofE9FjRHR6KR30GBE5CWmoDxLRNBGl3uT/SdO0OVqO7xDRHUT0HzRNe4aIfkNEM0TURdCrX09E/yyEKEnHHqcTROLEBHbO162zd7ps2FgtGAYcYl3HQub1Yo6OjRE99xyyXDItcFa3RTZsVDPK1ZykVPLiSuHIEaKnn0bdsenp9K+xui3SNNjaO+7APTtzBiTbzp0gLmZmQIo4HMgEXL8e3ZyJQJicPw8y8cUXQY7s3Ut04ADRe9+LAGZxEcfhYzEaG5NJRa9XEseahkCnoWHlYu2JxPJMRpVsnJ1F5kQqnM7l8mm7KYyNXGCaGNMqaRgMyv97vSDmfT48WluLG0eGgbmzuIjYpbsb8zUTrG6PGhthNwIBkBVqcycbNlYb+TYnYajy4kwEYSF2gjskM2GYSMj/8Wfxw+0uzPfSdazdiYTcACy1D2d1u1VpWJJEJCISQnxf07QRIvoLIrqHiP6UiAwiOk1E/7j0SMW/y3C43xLRj5A9o9oAACAASURBVIiogYg+sPS6LiIKE9FxIvq3RPSVUp5/QwN2uubmsEittBtuw4aN0kMIpNSHw7L+FpcXCIWIHn8ci93HP0703/7bSsexti2yYWM1kI0gzOQEWyl7sBSYnib6+tex4/6pTxF96UuZX2t1W+R2Ew0MEN10E34/cwZBx969IPG4ezNnNTQ3w49qb8f/77wTPtWxY5A7v/YabPpVV4FQHBoCManrklD0+/GeyUmcg8MBAkbNVMxGILjdyFZaKWPJNLHWZJJPT08TnTuXvvB8Q8NyYjGVbLSbwtQ2QqHkTskLC3IDpa4OROHGjZI0zDWzJxcwgRiLgaxvbESWcLYA3ur2qLUVtmZuLr9sKRs2CkUxzUnUTdP6+uzy4kJhGMlkYTwufTX2y5qbJWlYCn9MlS93dZU3i9/qdquS0EQ6L71KoGnao0T014QLTkKImRXfUEFomuYjMNMjRDQmhLgph7clXWwh4BRHIthVt6UtNmxUBokEAjjDkLIzXuh0neiJJ4jeeQd1uoaGiB599FH6m7/5G5peSgPq7OysmhymUtgiGzZKiWKbk6z0sEr2YCkQixH9l/9CdPky0Z/9GeSDa8EWjY/jOx86BCJx2zbIlFtaQGIEgzJz3OWCmsPnQ6AhBMg8Jh1HR/Hw+/HaXbsge963D4EOIxqVpOLiIjZ3OVhzuZJJxZaW8pF2sVjmjEb+PVtTmEzy6YaGtTV/rAomrpgwnJ+XknmnE+ObOyX7fOXNkmMCUQiid9/FOLzmGjl3VHvU1dXVZfE4bZktMgzYEU1D9mUtbVDZqCxK0ZwkU+ZgucqiCZEsSU4k5LqYqVtyqT9/fh7rHjenzfG7rrjS1SC/tCqwSibiNBGRpmluIYS+2iezhCMkC2GOFXIALgh6+TJSdNevt+sj2rBRTgghgzAuvK8Gg0LIoPO660AgquiSmjZXLdkiGzZyQSnlxez8quSgTXBICIGmTufPYzNj+/bk/9eyLertBSF44ADGxrvvYswMDuKxuEh04QLGmtuNDo0zM8hi9PlkplZ9PdHtt+P6XbiAWpKjo5CHaxqu6YEDRPv3g5SprwchSSTXCiYV/X7cCya/uYs0S6Gbm0tDMNTVyWApE7gpTCay8dIlXL90TWFykU/bTWEqB8PA+FJJQ67NTITxtX69JA3LIeHLBM7Y1TRkyvr9IPNV8p2xZI+may1OczoxF6emcI86O0t3cjZqA5w9mI0kLEVzknJ/D7VTcjyOvxl8jkwaFipLzhWJBEqBsHy5tbUsH1OT/FKlUO2ZiFuIaIvy1POiSk5Y07SbiIhzBxeEEG/l8La05x4OY6eLpTn2TpcNG6VHPI4AyzQRADY2Ll8Ax8aIvv1t7PT/yZ9IefPZs2fp7Nmzv3/dnXfe6ahFW2Rj7aIUzUlWetjIDy+/TPS97xFdfz3Rww/LzY61YosiEZCHpkn05psgAXfuRFZiWxts87vvSrKwoQEBh9uN1/l8IBaDQQRinZ3oJFtfj0zHkRFkm1+6hM8bGAChODycvuMskayfq9ZX5KxATQMZp9ZXTLfGVApcriNdJqP6t1q7ilFXl10+bStn8ocQsiEP1zFcXEwmprnpic+Hcb5ahK5KIMZiKBHQ1wcSX4Vqj+688847ydpxWsbzDgRga3hu21gbKEVzkpUeqwlVlsxZhqosWa1hWCpZcq4IhWQNZN7gyxPZMhFrjV9aFVQ1iViDyHix2Zno7Ey/y2fDho3CYJqyjpbLhUAonWO+uIjMnytXiD73Oez+rwCr50zZhn+NQIjkDEJ2evPJHrTlxZXFuXOow7puHdEjj4BQWAFWvwMZbdHMDJQaDQ1EL72Ehg47d6LDbGsrHrOzIBN1HTY7kYANr69H1lRXF7KIZmcxD1pbQRK2tWHsqpLnc+fwuevXg0w8cIBow4aVx3gsllxf0e+X2RtO5/JO0LwxVS3I1BRG/TtbU5hM8unGxrW9gRCNJkuS5+claetySTkyk4bVQswmEiDNOHP87bdxP6++Ouv9rFlbRCQbJJW7JpuNyqAUzUlWkhhXE0wzuYZhPC79PpYlq81PVovgLEK+nAqr2yJLwCYRK4uMF9s04czG46i7YS9QNmwUj2hUSoMaGxGMpkMsRvT880Svv050111E73lP1kNbfYGyDX8NoFB5sZ09WL1YXCT6r/8VweoXvrBcxpwGNW2Lzp8HodHcTPTsswjkBweRFaVmBV24gKxCrxdZhRMTICG9XjRW6e6GJJP9rLo6kIldXXJTaX4e2YkjI0SnT2N+dXRIQnHLluzzQgjcO7W+YjAog9G6uuX1FVc7IyUb1KYwK9VrzKUpTDrCsRYaVhjGcsKQyVdNwz1n0tDnw3iuxg0YVmw4HLg/b78N4uG663IiwKvwG+WFFW0R17E3DNgTW/ZfnSi0OQlRbtmD1ThvVQghyUL+mSpLVglDl6s6vlMigTVb10uS8VsF36j2YZOIlcWKFzsexwLlciEjsRYcKxs2VgOGAUc4kcA88nozB2qGQXT4MNFPf4rg9MEHc1pQrb5A2Ya/ymE3J1l7MAyir3yF6PhxSJhvuCEnMtfqd3NFW6TrRL/7Ha5DQwPRL34Bcm5wEJma7e3YIHK7YfNPnQKhtWkT/KhTp0DktbWhxm13t+zGzNlWLHVWG1QEg2jsMjqK+6HrIH6Gh/HYuTN3EsE08VlqfcVIBP/jOoVqfcWmJmvOUd60W4lsjMWWv4+bwqwkoa6mpjBC4H6qdQy5+QgRxpHa+KStrfqJYiLEIIEAxnVLC9HRoyDeh4ezZkMzquQOFYysfpGuyzht3brqGZNrBcU2J+GfLlf6jEIrQq1jmEgky5K5BrVKGlbjmA0GUS7A4cDGXQky9qvwW9YebBKxssh6sQMB7LQ3N1vH8bBho5oQDssALZfaTRcuEP3oR3AqPvvZnMsJWH2Bsg3/KqEUzUnUh9qgxG5OYm08+SRIsve/n+jgwcyZ0ymw+h3PyS86fx5ERiKBjMRIBEReZ6fsUOt2Yx6Mj0Pi7PGgaYphoKZbKITMw6EhBCqhEAiBmRnMuZYWkIk+X/I8ikbRjOWdd7DhFIvh3uzdC4Jlz578gx4mbNT6iix1dTqxDqlS6FpRp+g61uiV5NOh0PINEocD9zgb2VgOnzkSkTUMmTTkTCa3O5kw9PmqT7KeC7grOBOIFy+CvN+2DZm9OaLmbRERxsPMDMZbe3u5T2ltgP2iQuTFtZA9mCtYlqyShqosWa1huJqy5FxhmjJru74e86lE51wjd7y6YZOIlUXWiy0ESMRQCJPJ660d42fDRjmh63CCdR1OfFNT9iyemRmiX/4SROIDD8BhzhFWn5W24S8D7OYkNgrF6CjRt74FG/Txj8suwTlgTdgilif39+Pn888jqNy+XZI3jY0y08IwQPwtLKDG4b59OMbx4yBM+vogc25pwZoxNQVCMRbD+tHdjXuQmm2YSBCdOIH79c478NXcbhxreBjEoprRmA8iEUkqsgyaA0SPZ3l9xVqVU6pNYVaST6drClNfv3Lnaa93ZZJP15Mbn8zPy+Y5DoeUJTNx6PWW5xpUEpxB6naDvF5YwPhmwj0PrAlbRCTnaXs7xpWNzMhGDvL/U5FLc5JaVlaosmR+qNdJJQvdbuupF+Nx8B0lki+nokZHRXXBJhEri5wutmHAodV1u4CvDRvZwDWoIhE4FF6v7GS6EkIh1EB8+WWim24iuv32vD7W6guUbfjzRCoZmK5BSTrY8mIb2TAxQfSP/4gg4BOfyKkOogqrj56cbJEQyC6Mx4k2byY6exa22+FArUKfD4FIQwMehoGfExPIQtQ0EH0bNyLD6tQpvGZgAJmEjY2yqPvkJAgCljp3d6cnCkwTxxoZAenCcqzBQdRQ3L+/uMCIm4KpMmi1yYkqg25pwdq3ljYb4vHs8mlWJajgpjDcPdswZLBuGCAZ6+pwTdXmJ62ttXd9mUD0eDB+4nGiN96ALbrmmryJ6jVhixjT09h0WLcuN5+zFrGWmpOUGyxFVrMMGU5nsiTZ7ba231gG+XIqLHx1rAObRKwscr7YkQgYercbDsxaXaBs2FgJXATcNGUGQi4LayJBdPIk0VNPIUvlk5+0neW1Crs5iY3VRCQCAnFyEvVYh4fzzihYM7YoFiM6cwbkT38/ara98QYCkI0bpXqjrg4ZVVwT1+lE1uDUFAKWAwfwmpMncTwiZIAODspgJhxGZuL0NOZ/czOkzu3t6dcYISC5Hh0FqTg1hddt3SrrKHZ2Fn+xdD2ZVPT7sQ4Swd6wDJqzFnOUxNcsTFOSitPTmGeTk7JjdziMccVyafXR0pJdPm217B8VkQi+v8eDcWOaGLvBING11xaUYbdmbBERrtfkJH7v6amt9X6tNycpNwxjebdkpmMcjuVZhtUuS84VpokM70gEMVtHR9nmzRofYZWBTSJWFnld7IUFOIi8w1yr0hUbNvIFBwaxGBbXfDo8CgH58jPP4P2f+AQyfvOE1ReoNWH4i5EXq7UG7exBG+WAEETf/jYC9w9+kOjGGwvKXLP6SMzLFs3Po+Zhdzc2WFlWrJJ87C+1t8tGHi0tyEo8fBhE3M6dIA2jUWQqXriAOb9zJ9GOHdLf0nVJPsViCOpY6pxpzRGC6PJlnNvoKOrLERFt2AACc3gYm1elsiHRaDKp6PfLjQ+3O5lUbGmxNvGVK+Lx5E7Jc3OSbHU6UXNczTJ0ODJnNfLf6ZrCeDyZpdP8XH199a0XrN6oq5OS7FOnMLeGhvIqp6Ciyr5l3sjbL4rHQUjX1RXkR64KCm1Okou8uFbIrlJCiOTsQlWWrGlSiqx2S65FqPLltrac688XCqvbIkvAJhEri7wuthCo/RONyno/tbTTZcNGIeAC4EJgTuTbtXFigui3vyU6fRqB+/79BZ2G1RcoSxv+UjcnsQlCG6uBF14gevpp1Ot7//tRp68AWH205m2LxsZAlG3ejKDrjTdABHKTla4uWZewqwtBi65jrXC70XX54kUEMVdfjWwIvx+ZjZcugRDYvRsyafa5hMDG7uQkCDtNw/t6erLXxZueBtE5MgIZthAgIjlDcdOm0tocIaQMmh/BoPx/Q0MyqdjcbG3f0jRxT7iG4dwcSD9Gc3Ny85OWlsK+r66v3AwmW1OYdPUZ1b8rRcCEQogrWL1BJOuFbtyYdzkFFWvOFhHhes7NyTm1WihXcxK1gZuN7EiVJKuyZJcrufmJ1WXJuYKbiHGJkAqoK9fAVV192CRiZZH3xU4kQCQKAeenGnc0bdioBAwDTjtL1Lze/J3uhQUUxX/xRQSJ991X8OlYfRZWreFnGY3dnMRGLeP0aaJvfAMk18GDyIArcG1fc7bIMFCLkOXCQhC9+iqe6+sDSdbZiaA+kcDvLhcyr7j77PQ0sgTDYRxjzx6sK7OzaMgyPQ2CZc8eECvqvYlEpNTZMLAW9fSAVMx2DxcXQSiOjkJObZrw7ZhQ3L69PHbKMJJJxcVFmVmnafgOatMWrhdYbRBCkjacZbi4KDeN6uuTG5/4fJXN7OEazdnIxmxNYTJlNRZbOywYxH1XCcRAgOitt3D/h4eLuu9VOGLyQsF+ERPXnZ3lKSEgBEjsbCRhKtZ6c5Jyg2XJKmmoypJVSbLHs/Z8UFW+3NAgs74rAHtEVwA2iVhZFHSxg0E4SSw7sBut2Fhr4No9RHB8C5kDkQiyQJ57Dsf45CeLcvasvkCtiuHPRAoyaShE5iLcdvagjVrB3BzRl7+MoPDee0FUFbGuW33kF2SLwmE0WmlrA3Go69gcunBBZhB2dCBoiUalfCoQwPubmxFAHzuGuogNDVJmTISMQ+7u3NoKiSf/j2EYUuocjSJQZKlzLpkW4TDk1SMjOI9EAmvT/v2QPQ8Olld6HIslk4p+vyQimGxVMxZXozZ3LJbcKXl+XhJwLpeUJTNpaJUakNwUJpN0OhRK3xTG5Vo5m5EbxqQL1JlAbGiQmbq6jkxe0yS67rqi7/GatEVE8Fu4IWZ3d37Etd2cxBowzeXdknnzgmXJKmlYq7LkXBGPIwnKNLGGlFm+nAqr2yJLwCYRK4uidrnCYUzCxsa1UdPGhg1dh+Or67J7YCFOkWEQnTtH9NprCPo+9jFklxQBqy9QJTX8dnMSGzZyQyJB9E//BDntwYPoGNzRUdQh16wtmppCRuCGDfCNdJ3o+echSd61C9e6vR1ZgoEACJbOTrmmNDTgufl5EHmLiyAk9+8HqSsEasQdPYr3dHaCTEzXIIWlzgsLsGv8ubkGTrEYiMTRUcito1FsHO/dC3LzqqvKv4HMWXQqqcilQ4jw+aky6FJKcA0D108lDXnzUNNkt2QmDJuba3vzSG0Ks1IH6tS1VdMwtplg5KxSjwe2prMTz7tcGGtzc5D1l0CKa/W7UZRfpOuwR04niEQiuzmJVSHE8m7Jui7/z7JktY6hfT8kAgHYcpcLNmcVNqDsu1EB2CRiFmia1iSECGV/ZU4o+GIbhixI2tICB8EuYGujVsHBTCQCEqmpqXAZjxAI2E+ehMP8nvcQ3Xxz0ae4KgtUCe1RzraomOYkai0dO3vQxlqHEEQ//jEyf268EbUQN20q+rBrxhYte6PA5lAkImXAiQTRr34FgnFoCESLz4dNo7k5rCPr14OkU+XNmgaJ+YkTsFlDQ6i5SAQbd+4casZFo0S9vSD10pEu0SiIhKkp+G1NTVLqnOuGiK6jycXICKTPgQDOc88eEJz79xfUObcgGAY+X81YjEbxP03Deagy6Kam3Oy6EDiu2vjE75drSWNjcuOTtjbb582ESCQz2RgMyi7UdXXJCQiLi/j/1q2wQyVoCrNmbFEmWXEohLnv8WDMLj9XuzlJNULXkxufZJIlc5ahvbmdHqYJexONVly+nIqqjy5KzC+tCqqeRNQ07dNE9A0iuouI3ktEnyUiHxG9QkSfF0KMaZr2b4joz4loAxEdJaIvCiHeXnr/ABH9r0T0fiIaWDrsKBH9RyHEMymf9SIRbSOi24no74noJiIaIaLvE9FXiOgmIcSrKe95HxG9uHQuX8vydYq62NEomH2HA4t7vg0lbNiwAhIJOLaGIev2FDPOp6dRiP+llxA8PvBA4U7aY489Rp/5zGeIrG+PhN2cxIaNyuKNN4ieeIJo2zZsZuzcadsi0yRRTJCRSKAWYl0dZMyGgay+X/4S/tLVV4OkamnBdZ+ZgX3i7sh+P47T3IxjBIMg76anUa/ywAHZOEXXIX0+eRKfOzAAYi8doWcY+KzJSUlWdnfjkU9WhmlCtj06ivOam8P579iBDMX9+0G0VRLx+HIZNGfpOJ2SUOSsxbo6XAOVMFxYkO9xu5MJQ5+v+Np/NiRRm0jgenJd6VAI2bqHDsn6oaEQiMZ0TWGyyad/9KPH6HOfqw1bpGnFNSdxOGRNTJ9Pkt+2vLh6YJrLuyWrsmS1hqHHY5O6uSIWA4Fomhj32RqOlQumSeRwZCcRa4xfWhVYiUQcJaIoEf2AiHqJ6H8h3NDvEdEfLb2mkYj+DyKaJ6KtQoiEpmkfI6K/JaLHieg8EbUR0SeJ6CoiulMI8bzyWS8S0V4iChHRs0T0OhGZRPQvRDRBRN8WQnwx5fy+TkQPEtF6IYR/pe/yve+RaGzEDmtjY2FOUjAIZ6yuDsbNro9oo1YgBMZ2PC67GRZbU4R3hQ8dgrPwoQ8VV5fj+99/jP7+7z9DZHF79Bd/QcLlwvVVd741LfODiUGbHLRhI38sLBC9/jqC9q1bQVDlK/Hh4vq6TvTmm4/RU09Z3xY9+yyJnTuLC679fqLLl0FAcTfmWAw1EiMREG0zM1hTtm0DiWWaeG19PYgWXYdfxYQgZ6+bJrIcN2+W5xiPg9g7fx73ZGAAx83k0wUCICVZ6tzais/Ody0SAt/z6FE8pqbw/IYNyJzcsye91LoSiETwPVnGNj2N30Mh3AunE9e6sRE1I9vbcR3a2qq3iYuVwQSiYSyPN6JRZLiyXJ7Xf9PE/8JhqQRhclF9qLJOIqK3336MHn/c+rbou98lsXUrMo1Ve1RIc5KZGVy/detsQnw1wbJklTRUx6/aJZl/2sgfvKFUKfmyrku5ufpYXETZqs9/Pi8S0dJ2azVhpbKfBhHdIoTQiYg0TXMSGGAfEe3hlFBN0+aJ6B8JzPLPiOhpIcSP1ANpmvYPhEHzvxPR85QMHxH9ZyHEf0x5z+NE9ICmaX8mhIgtPddIRB8josdzucGaBpZ+ZgZ/O52SUORHNtKkqUk6yE4njOJqFLu2YaOUiMfhcAkBh6sUXci5s/nYGBzf97ynOAIxGkXgtgRL2yO3GwGDriPIcDhge5hUdLnsHXMbNkqFeByZZA4HCKdcm1QYBuyY+pMIc5cbhJDFbVEshmYoLB0uBC0tsPFzc7IGHBHRLbeASDx0iOjaa4kmJpC1uGMHiK6pKWQLtbZK0kTXsU5s3AgC4PhxSIsvXwZR19aGe7drF8759GmQiRcv4u8tW5YHos3NeMRiWJNmZvD5DQ0gE3OVfGkaajb29RF98IOQTR87hsfTT+PR0wMycWgIv5ebnGOyamEBARxLZE1TSsV5PXG55L2JRuV6I0TxigMbEiqB2NSUbGsMA5J9IoxhNcuKN2/5HmVCLCab3YXDRG+/LQ9PFrZFjY0oW+D3Q97Nnd4L8YXa2zE/Z2eRfWxns1UGLEtWSUOG04m50NQkSUPb5hQHw8C6G43KEhTFxA5qLcpMD11fngkcj2MNOncuyTfK+WuQhe3WasJKJOL/xzd4Ca8SbvJ3UzTlnA66lYhICBHmf2iaVk9ETQSt/IsEhjcd/nua575ORA8T0X1E9MOl5z5KRM1E9FguX+Chh2Stt0AAjlYgIAtHL6XgUnMz0oCbm2HsUiekrmNhIsLr6ursLlA2rAnTxDyIxzGGvd7SjGXTlFkiY2NEH/gA0V13FXe8b34zybm2tD36u7/DtTEMXPtYDA+1DozTCdvCD4/HJhZt2MgXpkn09a9DFnvrrTJrLTV4MQw44rGY/MkSK4dDzsP6ehBWDQ0o0UAWt0XXXIPmJUTIqCsUfX2QGhuGzCQyDDz/85+DqLz5ZqwLCwuoR7mwgPWnvp6ovx/2LxCADeR6cNu3g0AcHQUBuXUrSDpep7Zvx3uOHpVNWHbtApmYjjjYtg33laXO4bCUTvf05Je1tGEDrh8RfMJ33oHk+Y03kPXa2QnJ84EDOJ9SBMzhcHLjk4UFSW57PCBfWJrs8yUTWImElEGrUmi/X/q+an1Fq3RariaYJq4nxxCphPbx44grbryx6IZORIQO5rXiF919N+zE5CRs7NQUbElPT/7loxwOzD8mEru6bMKq1ODNNZU0ZP+VZcnNzTLD0CZySwtVvuzzZZcv8/1a6ZGu0ZDDgfvnduMz+Hdeg+fmsAY7HNj4u+22vL+Kpe3WasJK1NOFlL8Xln6OZXi+nYhI0zQPEf3fhJTUgZTXptNyzwkhFtI8/8LSOfwRyZv8x0R0cel/OYELUas1dLhOCZOKi4twKtXXs0PQ3IzFrLkZjkIshtfZXUxtWA28k02EMV7KgGFiAvPp8GFkjrz//cUd75lnsMO1Zw/RT39KRBa3Rw4HFn6nE7aFF38hkknFWEzeIyJZI4YJDbfbdoxt2FgJzz5LdPYs0XXXISNlYGnWR6PJpKEqsaqrkyQWE/iM8XHYNoUAsLQt4iYnk5NYB9rbs70jPRwOZA+eOYN6b3ydm5pQxuLnPyf6zW+I3vc+kIGjoyDY3G6QYYkEyAKfD74V15LzekEkdHWBIDxzBqTigQOyA2tzM9ENN+A4R46AzDt9GuvFwMByG8nBzrp1+JzJSTwmJvD5PT35d8rt6CC6/XY8AgFkX46MEL3wAtFzz4GUGx7GI9danIlEch3D+flkn7OtDdmXTBhma/biduM8VfIqEkkmFsfHJXnu8STXV2xpseWGK4EJRNNMTyCOj2OMbd5cGgJxcpLo179OktBb2hZ5PNh0aG+HHzQxIUnF7m58T683dzLK7caxZmcR16VrtGIjN7BvqpKGKuHkdoPMVrsl2ygfVPnyunVY48LhlbMH09VYd7lkVih3jOf7x2RhuvlmGCD5OaGK7/e2bdjoyxOWtlurCStNszT89IrPs9v2JSL6UyL6fwnFMueW3vMZAvObiki6gwkhhKZpjxHR/6Vp2joi8hCKaf4nIUSG9gO5wemEw6g6jfF4crbi9DQWMn59czMmkduNhU3T7EYrNqwB7vao63LhKOUOIe9KnTyJefThDxdXk+att5DZsX+/LMJPNWCPOFOHM6CJYD+YIPz9F0rJVgyHYZfU16vEou282bABHDtG9PLLyALr6sIaPTUliRgizBcmC/lnpnWc/YB160CoLMHytmhgAGTSuXPJdQnzRX09CLiJCQQXHR0IPltaIP995hmiV1+FzJm7H+/fDz9qehoky/r1CPa5FpyuS/JqeBjZfyMjRK+8AtJy715pL30+HPvKFZCJb76JzxkaAhGZDrw5HI/Lrs4nTmCs9PTAv8t3fWxuJrrpJjwiEZzL6ChqRb30EoLtffvwffbskeUtFheTSUO283zM7m7Z+KSlpTQb1w0NeDAhKwQ+V81U5BJARDh3tWmL12tvoBNhnebu1iwhV7G4CGK7o6O40gGMSATzyevFGOLTyHR6GZ6vOlvU2Ig573Bg3vr9yEq8dAnjsKMD9iHXkhSNjTKe83iyS8VtAGqX5FRZMhNNardkO/YtD0wzmQyMRrFWBoO47k1NMulJhaZJErCxUWYO8nP8yPe+cRb/9LTMgGxqQoZ1WxvR4GBBY8Hydmu1sBbCvYeI6FtCiH+jPqlp2ucKONZjRPRXRPQJIqonIgcRfbPYE0wHjyd5x5abTjCpyATjwgJ2xpmE7OyUMmg7ddtGNYHHcDgspUulLjgdDiMIm5hAtsh734ugsFCcP48un729CTbkEAAAIABJREFURPfcQ/Td7xZ9ilVljzgjUSUSU+F0ykCPwXVZ+REISIKVZdAqsWgHeTbWCnhujI9DxtzYCAKRM3+dTji+TBjmuk77/SjN0NpanOxXQdXYIocDGQTHj6NhyeBg4bWeOzvhG01MwA+qr8fa096Osha/+AUyEm+5BWTd6CiIxN5evIeJRK6bFQiAVOPM0M5OojvuwCbVqVMgdfftA6HI4C7MLG9+9VX4ckNDGAvp4PHgvvb1gQCdnASpOjYmpc6FNNJraEAW7HXXIQg8dgzf+a23kKFomvju69fj85nM9vnwndrbEZxVKgNQ0ySx2teH53RdqnT8ftwP3lTn1zOpyDLotUQqZCMQ43EQyfX1IPyKvTamCQIxEiH6+MeR5VskqsYWEWGu+/3wJ3n8z86C5Od6pm1tsBEtLdkbA7W24h7MzUnyxIYEb1SrpCHLkh0O2USUSUPbnywNMjUn4czBVHlxLAYbrGlYz1pb02cOqlLjUkEIzJ+pKbmx192NsTA6is+76qqK8x5VZbdWA2uBRDSIkrv0aJq2k4g+nO+BhBDnNU37V0LKaT0RvSaEOF2Ss8wCTZMFj9etw3OmiUk1Pi4D+fl5uUCpMmiv1+6AZ2P1kEggsDMMmWlSakdA17FbHIkgcOvvRzH9QjE3R/T44zjfBx8smeNXVfaIuy6bJhbpXO0DN2HhjCGWmqRmLDLc7uTainZBaxu1ANOU452lyUwifu97GOM33gjiaWio8E2TSATkWn196WrbUZXZIo8HMqTTp0GebdtWeEDQ3w/J8sWLOKbLhfvS1QW5769+JYnEo0cRhOzbh/dNTGAd6e6G35RO3uxwEO3ejdePjCDjcGwMmX1qFmV/P4iw8+dB3r34IshAbtCSDg4HzrOrC2vm5CTIi8lJvKenJ39ZZCwmMwzDYRz7ttvwXc+dw4bb2BiIpr17ia6/HmRTMY3ISgmXS0qmGRzQsgyaCWB+vUoq5po1ZkUwwUqE75s6Z4TAGE8kUD+zFH7Ma69hjtx5Z2ZSPE9UlS1yOCSRGAxiHnBH8elp+IaLi8hWjkRwTZn4TmezmHRhEpLJj7UIzmxTSUMmqjh7TW18Yitb8kem5iTcdIYJwtTmJESSBOQ4jf/mxmN9fZjzlSTCFxYwd+JxnNPAAPgMw0DZDl3HRuAq2PiqslurgbUwPZ8gos9omhYidMzZQkSPENEJIhou4HjfIKJvL/3+xZVeWG5w4d66OixmDQ0wCroum7fw7hkRFremJrnYcVMWGzbKBSEwNqNRKdsvx+IjBJxaXUcg5HajDlahwXYkgtqH4TDRww+XtJZN1dkjTcODsxELuWaqDJoDTyZYmFjkTGp+vZqpyJIUGzaqFWq9UCYM43H5f7dbZhc+8QRef889sB07dhS+1iYSIMQcDjTxKOFOe9XZIu6KfP48CKGNGwuzRy4XsurOnQP51tuL66brCIJuvRW1An/zGzRbOXwYdQz37pVE4uQkAn+fD/cwHMZalkjIbK+WFtRYPHsWRM1zz4F8UxvnaBrko1yv8eRJvG7jRrx2pWL0Xi+ONTAAP+7KFbyfZdtdXcvHg2GA4OAahnNzckNH03DOfX2SlGNZ/LlzIERHR4m+/W2i73wHn811FEtRQ6+UqKuTdSWJpK+hNm3h5mpEuGYqqZiJ8LESdB3fle9ruu/z7rsYB7t3l4YUPnMG42RoCBnDJULV2SLuJM7kSUMDnlu/HnNhelqSjB4P7sXiooyxUu2904n3TU1hTip1JGsWHI+qjU/U2r8uV7L/Z8uSsyNTcxI1q1C9xgy1OQnXHkyVFrtc6Ru+cfMULmVRqXvE9YKjUdjvTZukDRMCa2EwiAzEQkugFImqs1uVxlogEf+coEP/KEGnfpJwc3ZRYTf5x0T0ZYJm/Z9LdI5FgevpxGKysGx7u9zpSpVBX74sHSuPJzlbsRYcKxvVgXgc48404YCVMxN2agrjfGwMDto992TvFJYJiQSCvIsXIX8rRf0gBVVpj9T6iKWa/w5HZhk02ytVBq12oGXH0rZFNlYLur68W3Jq53LeiKuvl+vtyy+D9HvPe0Ba9PYW3jTKNBG06zqaYZR4p70qbVFnpyxLUVcHsqwQeL041swMfmfiT9dByt18M+7Vb3+LbNFDh/AYGgLJxkXb43EQVVzXye9HZgTLmzUN2Y69vSDgDh/G2nHgQPLmk9OJe7hlC2TQp0/jdVu2gOBZSarsdsusRt4YPn8eTR8aG3GduGvy4qIcpw0N8AW3bJFkaKbMni1b8Lj/fmzIjY6CLPrhD/EYGJCEYjElQsoFTZNNwrj+JNdfZlJxcVFuqvPr1fqKVlLrcCdxhyNzfcqpKYyR/v7S3LO5OWTx9vRg/pQQVWmL6uthLyIRSboQyQYsTAryRnlDg6wZzRuqTU1yTNXVYR7Oz2NMKnVtawJMZKlZhqmyZI5R3e61m42ZDky4ZiMIV2pO4nZjDKaSg4V2po5Gsd5wOZBKEXXhMMjDUEiW+UhN5Dh3Due2bVvhzdhKgKq0W5WEJtLls9rICE3T6ohogoh+KYR4KM+3l+1iGwacZZdL1oNhBzcVpikzFbm2YkQp98ndn5lYVBdBGzaywTQxpuJxjEevt7yShMVFZI6EQggK9+4tvBuzaUKq8/zzkLfde2/GsV8VM6IIe7TMFgmB788S50qAZRcsCWXnk8E71SqxaNsiG6WGaS4nDFWJFY8/zjTMlDV79izqIG7fDnlNczOImULBWURbtyZLOVNQFTOilLbIMHAtAwFcv0IzwYXANYzHcU+4gYhhwMYdO0b0+uvIqLr+emQjRiLIbOjoAGkyNyebnDideH8ggGMyUaDapPFxHCceRwbqrl3pA7hoFDUgz57FuezYAZJxpYzsaFRmF16+jEBqfl7WwuOMR84YKaSGYiqmpkAojo7iXIlwLQ4cAKFYaLboaiEeT27a4vfLzB2nM5lUbGmpTrVOLgRiKASZvdeLe1Xsmh6Pg0yORon+8A8zbtJWxUgotV/EHa9bWzNf66kpXBsmcohwn7gRppqgMTsrywqUYo6uBkxzebdkJrhYlqw2P1nLG8KpzUnSkYNq4xiG2pwkU2OScmRvCgH7GAjg+B0dlVEKRaPY5PH7Zdfn9vbl329iAhu1fX0rdmKuCluUD4rkl1YFNomYJzRN+2NCAcwPCCGey/PtZb3YkQgmPqfdcwCeC3RdZivyTzZqDodM0edsRasufDbKi2gUDhURdhwLzcDJ5/MuXMDvL76Iz3v44cJJy6NHiZ56Crv2Dz644jivigWqCHuU1hatBpGYCnZOVWKRgzx2qlRi0ZZB28gHLEtWSUPVgWeZPROGuRLXi4tEX/4y3nfHHZg/g4OF26JLl+As9/dnzcarSVsUiyFQEAKBQqFdTWMxZHM2NIBk07TkrOu335ZS5gMHkI0YDEJq3NUFX2hqCvext1faG5Y3M/Gk3mduZHH+vCRxMtWOCwZBZo6NYawNDiK7QghkPDJpOD8vN3s1DYSGzwd/jP23REJmb3Z1lX7zbmFBEoqnT0uJ2/AwvuPWrdbLLhIC95IJRa5/yaFRXd3y+oqrSYhwp18ed+mut2GAQEwk0FCnFETo00+DRP7IR2TDmzSoSVvEjWuYEMy0HrCtiMdlMoZhYHxxXXuuz3nlCv7X3V39df94s1clDVXJLJNZarfktYJcsgfV5iQMp3NlYrAczUlyAcuXYzGsXW1t5d8kiscxb+bnZU3gzs70tm1+HnGaz5e1SVRV2KJ8UCS/tCqwScQcoWna+4loJxE9SkSXiOhqkf/FK/vFXlyEo8l1A4ox6Cw3ZGKRpalEOGaqDLraF0Ib5YNhyCCGx0a5HW3DkDWPDh9G0P3QQ4XXmhkbQx1ETcNOe5bjrOoCVQJ7lPG13GSl0PqI5YBhJHeDVne9WSajEotredfbRjI40zUaxUPt/Oh0SrKQfxZCgug60de+hsDwwx+WxFehNchmZmDburogI82CmrVFgQCy7erqUA+pUDJkfh4Zgt3dsoaeSiS+9hqyAq+5BnLmw4dBGuzahfdEoyB0iUDQqZlGnKXk9S7fNJueBkkZCuH8h4bSS9KFwPrz+uv4vrqO9aerCza4qUnWMGxvz9xAg7sW+/2yZnZPT+EE7EoIhUC4jo6CBNV1jPf9+0EqFkOgrzY421Str6iqdZqakklFr7cyayUTiFyPM9NnHjmCsTc8vGIGc84YGUGH8RtvBFm8AmrWFnF5Hm44kfEAS1lc09OYE9ycSS3vw7LeYBD+8rp11eNrESXXMWQiTF0zOa6s5SZ56ZqTpCMMV2pOshJBWI2bLZEINqxYvlyOdUOFrmOezM7ib17zMvnvoRA2/Orrsc5k8fMtMypLxC+tCmwSMUdomvYiEd1IRG8T0WeFEMcLOEzZL7YQCECIsNAJgQlXiqCad2xVYlHtwFpfv1wGXY2G0kZpEQ7LndampsplqY6PY1GZm0PwddttkCAXgulpomeewc977oG0LAtW21l+kYqzRyvaomokElOhyqBjsWSHzuVa3rjFtkW1Dyab1SxDlWxOlSWXiuT42c9gg/7gD0AkdXWtmK2zIgIBZHk1N0OCm8P8q2lbND0NW9/WhqzMQjdFx8ZACG3ZIoMjXYfNcDqJfv1rZD6+970gwI4cASm3cycyEBMJEImJBIJ+tYHUSvJmwyA6cQL31ONB8NPeLrslz80hw4+zVSIRBFW6DgLzPe/JXxLPNaVmZnB+LS0gE8tVFD8alV2uDx/G3KuvR3bn8DDk4dUoC84HTBirUmhVrcOEImctltoPisUk6bRSNtzYGMbx9u2QmheL8XE0itq6leiuu7K+vKZtUSSCR1NT9vEsBOb27CzmdksLSBKW03NGXyyWvLlRabDyQyUNVVmyml1YK7JktTlJasfibM1JViIGMzUnqXao8mWPB/Llcm4AmSbWdV6f2tsx/lda2+NxrC9CYE3JYT2xzF0oEb+0KrBJxMqiIhc7kcDCxcGSELJOYqnBGWiqDJprmjGppGYrllveaqNy0HXcb8OQu7OVImpmZmQN0GeeQbbOvfcWdiy/H1Lo48dRLPzGG3N6m2UWqAzIaos4qLWK06h2z+WH6ggyqcg/7U6A1oYQyYQhE8kMjyc5y7Bc93tkhOjHPya64QbYIY8HmxCFfFY0CsKJZa05zj2rj+IVbZEQIDJmZhBs9/QUts4YBsgVTYNcmK8tE4kOBzo2nz+P7s1bt4IYm50FIdPfj4BnYgJEgs+X3LE4k7w5kQBZeOECiOaJCfhDmzfDH2prS84y5Cyny5dBZPr9+N/evfkTDboOmdiVK5gfHg+uYTkllIkEumaOjCBrJBTC3NuzB8Hf3r2r1kmz5IhEkknFQEASMB7P8vqKhV5zLhOTjUCcn0eg3dWFrNdiEQwS/eAHsJ8PPJBTY6eatkVEstRTrvfTMGRtVSEw3zs7ZWftyUlc5/Xr8SjnJrwqS+aHKrVNlSRbTZac2pwkk9Q4U3OSbAShVXzhfKDrsoFYueXLQuCzOEu3tRVrUTZC0DSR9R4KYRMux6aZVrdFloBNIlYWFbvYoRAWO94tZ9lWJcCSC5Vc5IWKG20wqdjcbL2Faq2DM1IjEQReXm/Ju4auiGAQQWVjI8i/WIzok58sjKCORtGd8/XXIV27+247cP/9C6qgPmKxMIzlxKK6y65mKpYyM81G6cH3kUlDVZbscknCkB+VGLMTE0Rf+Qq6B95yC85t587Csq50HQSiYcAW5XGMmrdFuo4Mq0AAWYGdnYUFOuEw6rq1tuKeEcnAU9Pw+OUvQeDdcQcyuY4fR9CzZQtIYiHwt9+Pta+7W55LLIayGhyURSI4Z0ZTE3yzK1fg+1x3HQjNTN9FCJCPx47h3Lu7QQ7lK1Hl+oqTkyC8HA4QoD095SX0TBPELddR5JpXO3dCFrt/P+5FrcA0cX/Vpi1cI5pI1sRjUtHrzW6nIhHce49nZdl0LEb0xhvwp6+9tnjCwzCIfvITjOUHH8x5zNW8LeKsLSLcx1ztkK5jI2RhAe9pb8dDCJQwmJvDNVbLRBVL5jBppmYZMliWrJKG1bypmtqcJB1ByBtCKjQtOzlY7d+9XGD5MhHGYrmSfHj9uXIF98nrTS4Lkg3Hj2Pu7NmTvHGXBWvwjlYeNolYWVT0Ys/NYcK2tsIh4F2mSkMI6UwzsRgOJxeuVrMVc3GsbKwO1Lou9fWV79ydSCBTxO1GcHLsGNH998uAMB/ouqz109WFWmY57nARWX+ByskWMZFYzbLmfMEyaCalUmvkpXaDtm1R5WEYsoZhKvnLsmQ1y3A1MgQiETRSMQyij38chAF3xs0XQhCdOoV1cefOvIkdq8/MnGxRJAIiUddBJBZa640z8/r75TFUIlEINJGYmSH60IfwWSdO4D0DA1JavLCA84nFEKT6/VKWHA5jTHZ14XO4WzJvmIZCINWuXEFQdOAASKVM4G7Vx4/DXvX3QyJcSM3NSARk4vQ05lRzMwK6dF0wSwkmREdG8Jiawudt2YIMxeHhzM1nrAzOOFMzFlmtw5uwan1FtQ6ZSiCudK9NU9bevPba0hDDL76ITNiDB1fsgJqKNWGL+J5yZmg+iMflJoTTifnf1gZbEAqBWNF1OTbyyXhUyULVr3E4lndLria/JpfswUzNSXKRF9tIBpN6wWD55ct+P8Z2NIqx3dOTV5xF584RXbyIdaK/P6+PtrotsgRsErGyqOjF5i5LTicmra5XT7aNYchsSSYWYzH8j7uYpcqga4XEsCJ4hz0Wkx3qKj2OTBNBCDsZzz6LQvg33ZT/sYQAAfmb32Bc3X03gsU8YPXRmLMtskJ9xGKgyqD5p7pjn64bdC1eh9WCaUqikElDtRt3OlnyakMIom99i+jdd5EFHYmACNi0qbDjnT2LTb8tWwoiIa0+GnO2RQsLyP7kZgQrEW8ZP2wp8ycSgUyZN1ZNE36Jw4Hx99RTCIAOHsRnHT2Kuobsk8zPS+LQ5cK96+6W0mRNg2/D9fLSjduxMci0dB3k8eDgysF9IoFzOH0a57p5M9Hu3YVlkHBRew7w3G4pdS73HBMC95EzFMfG8Hx/PwjV4WGsx7VqZ6PR5TJoVa3T2ipJkM7O7Dbh1CmoM4aGSlNb78QJol/9Cvcix/IuDKvfsZxtUSwmSb9CVTDT07ARfM+5lmhzM8YEZ7FyPMSfwz6LShry+NG05d2SVyvmY/l0prqD2ZqTZCMIq4kItQpU+XJzc37ZtPkgFMJmVTgM3627O/+s88lJrHXr12OtzhNWt0WWgE0iVhYVv9ixGJzdpiYYXcPAQlSNxjeRSG7aojpWTISqxOJqZFWuRXA9HiHgzJS7Y1cmTEzA6W5rI3r8cfx88MHCxvLvfoed+/l5OMl79+Z9CKsvUHnZIiYSa7EmTDqoxBYTi6qTntoNuho2ZqwADirUxieclUMkCVtVmlyNRMLzz6N+3t13ww4RgQQqZH5cvoxHXx+c5QJQhVcoL+Rli6am8PB6QZgUsh4lElgDPB5kWfEY447N/Dk//jHI3auuwr29fBkB2MaNIGw6OvD5vD6mdkLmjCXDgA+W7lxjMTQjGRuDX3PgAIijlRCLgeh5911Z43FwsHCfiKXOLLVkqXM+GSPFYGZGEorvvotruW6dzFDcvLk67UCpIESyDPrKFfgmbrckqdT6is3N0u+ZmECG6sAAxkGxmJ4m+pd/gS267768/Sur36W8bBFvrBdT0icchq2JRGAvnE6sBawg8/sxFqJR2ShTzSTkJnJMGlZqk5Obk2QiBjM1J1FJzlpqTmIFhMNYz1hOXw75cjSKtSQQkJt9hTT0WlhAJnRbG9bfAsaDPYIqAJtErCxW5WL7/TAebW2yxll9vTWMdKoMmp11IinxUMnFtUJyVALcNCeRwGKwmteXg5yODshspqaQAVRIPaXxcWR/nD2LxenWW9fkApW3LTIMa9dHLBa6nlxbMVUGnUosrtXrpELXkwnDWCxZYqVmGNbVWcN+nzqFLMQDB4iuvhq2afv2wiSEs7PIiuvsLDyLkdaYLeLmJvPz8Gm6ugqrQen3I7O9sxNrG3dL5rplRBivhw4h2Lr3XpCHc3Ooe9jdjdqVmoZxfvkybEJXV/K6JIRUWrDPks42XLkCmW84jKzGq67KnhEYCiGj/sIFvHZwEGOx0HkUieA8pqdh77l2VXt75eyZ34+GLCMjaNBimrjPTCju2FHbtjUYlGNFlUL7/bChRBhz7I+dOwfC74Ybir8u0SjRP/8zrvkf/mFBJMOaskVEcpOgpaW49SsQwLybmMD9HxjAMbkRSDgsy0DV1WFOdHSUvuu52pxkJYIwXXMSpzM7QWiFNb7WUAn5cjyOtWNhQZby6OgozCaFw1gDPB7UzS3wXK1uiywBm0SsLFblYnNHJNPEjkA8XtlGK6UEy2qZVAwEpGNFhJ1+tWlLY6M1yNJqA9fiIUJwvJpjhWthNTUheHvtNaIPfhABXL6YmcHu1rFjkE4dPFjwDrLVR1XetqgWGq2UEpxVpxKLqTJolVj0eGrbFnH2pkoaqtmbfB2YMKwGWXK+mJtDHUSfD3UQJyZAsvT05H+sYBCEpNdbeDfnJVh9VOVti+JxXPtgEIFKZ2fugUYshvs4Pw+p1Pi4zMpwuXBvm5vxs6sLn/Wzn8Fnuvde3K8LF7AJ1dUFObHDgfHPdc24A6uKSCS7vFnXkVV25gzmCMt6s2FxEXLry5cxv3bvRvZeoXbaMKTUORKRGSXd3ZVVgITDyNIcHcX3SyTgB+zbh2uze7c17UgmMIHY0JA5a5UJxdlZojffxDUZHMR7WJ7IWYv5EExCED35JOqP3X9/YTaN1qAtMk3ZrKilJT87bprJNQzjcdilM2dwrzdtwsZFSwvmndMpxwATipylmgvha5orE4PFNCdxuWy/sBrBDX0SifLIl3UdSR2c4djRgXWxULI4kYC9NwzY+CJiT6vbIkvAJhEri1W72FwHgTu8xeMy9d3q0PXkbMVAQKbRc3FilVgs9c5dLUHXcR11XY6V1XQMdB2NVFhC+pOfQDb4oQ/lf6xAAIHIkSMIRA4eLLw4P1l/gSrIFtV6fcRiwUGBSiymyqBVYtGq9pdrMqmEYSqBqmYZ1gKBmkgQ/dM/Yaf9c58DydLQsHJ33UxgOarLBQKgyKwAi1/ZwmxRMIjgRdclaZe6VhkG7heThvPzcnNM0+APBINY5w4cwHH4XnIw7XLh/U89hft9zz34efEigv2ODmQN8mdzJmNTE0g39ZxykTcT4TzffhvkRF8fsjFyCaZ4k2xmBt/pqquwWVbM3FtchApgfl7K4Hp6CmvqUgzicWz+jY4iOzQSgX0ZGkKwOTRkzY1xIoyzYBDfsbExOyEkBK7B7KzMhuUai8FgctNClVRcKVvu9dfR3fm22zBuCsSatEVciol95rQHFpIs5J+q3JdlySxVfvdd3E+fD/ewqyuZwDcMGe+wSqShAfecpca5NCfhpit2c5Lagypf7ugorX00DKwzMzMY2z4fNpqK8WlNE5tGwSA2iopcY6xuiywBy5KImqZ9moi+QUR3CiF+tcqnkytW9WKHw3A0uCmGrq9eZ8tyIxpdLoPm9HvuqKbKoNf6IikExkckAqeiqWn1yVYhEKhFIpDr/Mu/4Nw+8Yn8syGiUQRXp09j3N98s+yyWSCSFigL2qOCbZFNJOYHw1gug07tNKwSi9VojznjUu2WrEq5U2XJtZaRIATq473zDtGnPoVxH4thQyNfW6TrkGnqOgiAEtjZNWuLZmdBbjkcsk6yShr6/XKcNjbKLsk+HwhDpxNj+swZ+AGqpFzt2OxyISvv6acR0N99N+7b5cvIJvX5QGLx3F1cBMlcV4e1S/UvcpU3mybqNh4/juMODeH8crG5ExNY77iG8NBQwZllv0csJrs667okSdORt+WGruO6cx3FQADXeNcukMH79lWunmOx4PHAWZa5BPpnz0LGvHPn8o6lponjqY1bIhH8T9PwGWp9xaYmZNY++SSu3x13FPV11qwtikbhQzc24h5yMxEmDdUGIiz7Vbslp87raFRmAvOxmppwz5iQZDLS75ckNDembGoCqZiNIKy1tdoGxsf8POLeujoQiKXyK1nZODUF37atDeRhKeLFEyewvuzenb0ucA7IulJa0D5VHdY4dVIYNE1zENFfEdE7QognVvt8ckVjIxzBQEDWKmDpRK2RAfX1eHR14W8uXK1mK87Nydc3NCyXQa+VxTWRwHUxDFyzpqbqGA/T03DK1q8neuUV3L8HHigsaD9xAgFfLIZd9iIJxKpCpe2RwyEbEFQj4VVtcDqXNyTi4IIJucVF+T+XK1kCXenmIkx6qoRhqiy5tVWShmthA+aNN0BW3H471oepKRA6+doiIZBhwgTkam/UlBqVtEWRCMboxYsgzbgLpNeL4Li9HWsHk4aZrnV9PV7HTVM6Ovi7yM1WXQdhduedRL/8JR4HD0Jq7HRifTl0CA261O66k5OQS69fLz9f00DgRKNYd+fn08ubHQ6Mkb4+1AccGUFZjwMHsmdorF8P0nBsDNl7L78MX2jv3oK6fxMRzn9ggGjDBqzNk5Mgs8bGpNS5UuPZ5SLaswePhx/GeYyMYI4eOYJrvGMHMhT37y/8O5cbKoHo9eZ2/WZmZB3EVAKRCOOmtRWPDRvwHBNN/Jiawngnwjx67TUE7bt3Y1xaNaNTRSVtEW8KRqOwIfX1Mn5gBUJTkyQM2W8yDNiWUCh95uD8PDZFGhrwuosX8T7OTGR/va0N9kMI3E8uWcVS59Vqhmij8kgkMAYTCblRUApwXcUrV6Q0uru7dM1Zzp/HurJ5c0kIxKqHVXmkVNiZiIV9touIEkT0TSHEp/N466pfbNOEE+JwwLGOxWQa/FoDywGYWOSdPCK5Y8ukotdbe9eIJTSxmOx+XS0kZi8lAAAgAElEQVTyykAA9Q99PozX555DF+Vrr83vOEIgk+PyZThgvb1EH/hASQjiqtlxL9AeFWWL7PqIpYUQyZ2gY7FkqVNqbcVS1SXjz1VJQ1WW7PEkZxlWqvNjNWFsjOhrX4Ns+cMfBmHR0SED9Hxw7hwc/M2bJVlVAtS8LdJ1KUfmLEOuhcwZgw0NIM76+wvrcn3+PNbDbduSSRTThK/gcMhGFs8/j7Xkgx/Ec9PTIOu8XmTB8Toaj2PtMQycW2rznVzlzXx+hw/jtbt25d5gxDQxZo8fx/zu68NGWktLvldoOfx+kIm8IctS51IcuxCwemF0FKTixASe37QJ5OvwMALfaoAQuH66njuBGIlgQ6Ohgeiaa4pbe1nq+MMfwse64QY5/jweSUBw1mKOm0U1b4tUWTI/eJNNCNgltxvXju9PMc1J2D7wRgQ3yHA4QLb4fOnLOHBco+u4dxzL2P5a7SIUkmUnSilfZjsfi8FGpFvLisGVK8gs7+nBulYiVHUmYhE8UlVhDeQQ2FDhcGDXam5O1gLi4LHWsiKywenEtWhrk8/FYsnZileuSEfU5UrOVqwm0i1fxGJS4s01eKqFHOCi+SzF+Nd/RcB+zTX5H+vsWQTtExNwhG+5xXaiSgEmD00TD/uaFgdNk9nTDM4IZGIxFIJNIsL1TiUWcwnyEonkOoZqh2nOgOSC/LUoS84XwSDR97+PgPAjHwGhWF8PIiZfTEzAFvX2lpRArDmYJoIWlTDkcU+EdberS0qTW1tlZ0gO5iOR/Df9+vshHx4bA5HIY9/hSN402bwZ68hLLxG98AKyU7u6IBk+ehQE1v79kuzfsAFE4sQEgn7V3+BGLsEg5nc8jvmXbt5t2oQg69AhEJbj4yDGsmXZORz4Pps2oZzHqVM4n4EBZPIVk6XEBFMshuvPBfYbG0HWdXVV1oZoGhpRbNxIdN99CHy50/NPfoJHb6/s9Lxhw+r4PSqByDL8bDAMkMhEGGvFXtfGRqJXX4WP9cUv4loEg8ky6JkZ+fp0Mui1sD6osmFVnqzr0iaoY4jnwqVLyZJ6tTlJfT3uey7NSbhhUzwumz7FYphrPN/YrvB5OJ2SAI5EpD1dWJAxTCUbJNkoL8olXw4GMfY4y587hpcSi4tYl9raiLZvL+2xbZQftZCJeJCI3kdEf0REPiJ6k4j+XAgxorzWRUR/QUSfJqItRBQkomeJ6C+FEGPK624mokeI6AYiWr/0upeI6P8UQpxaes0mIjqX5pReEkLcutI5JxIkqoV04jqBbW1YtBIJGIm1IE3LB1wrUM1WDIXk/+vrk2srrnYjkmwwTZlxyaRoNd1z00TGhWEgEPjxj+EAffKT+dc4unQJtX4uXcL3veOO0mQhBAJEzc0Zd9ytYo9KYvjt+oiVhdoNmgMatc4Sk39cW5EJSCYOU2sxqnUMq8kOVANMk+jrX0dm05/+KYKxQAA75fkSVHNzMoNx8+bSnePcHFF7u7Vtkd9PQiUNFxclGVhXJ+XI7e3wVzIFv3wMIWQglW+gHAwi07C9fTlRzCUcXC7YuqNHIQPdvp3ofe/Dc/PzkNPW1YFI5I1ZIRCMBYMI7js709dACwZlw5eVzn1iAmRlJAKCcM+e/LpTnzyJOpBEeP/gYGk2kVnpwl2qXS4QiT09q79JPTcHQnF0FEGrEBgjnKG4ZUtlfDcmyU1TEkm54NgxkKL795dmE+LIEaIXXyS6/nqi665L/xrOlGVS0e+Xah2uQ8qkYl0dUVubtW1RMEgikYDPzw9ugMI2iRuRuFySqEltTsKNx7xeXBuXS9qNQpBIYE55PJhPfJxwGERiJCL/l4nkicdlDCOEJDIbG23fzcooh3w5EoGtCQYxnru7k0nqUiESgT32eGDXSuWDpovR0sFq9qkaUQsk4iFC2uo3iaiFiP5nInIT0TVCiN9pmqYR0U+I6G4ieoyI3iaivqXXhYloWAgxvXTM/4eIdhPRi0Q0QUSbiOgLS8ffI4SY0jStiYjuX/q8l4noq0undEUI8dxK5zw0RGLvXqKrr4bj2dW1uhLZhQVZGJV31ezsk+wwDBi/UCjZ0SCSGUVNTbKwcbXIoKNRKQFLzXqqFkxN4br29EB+deIEArR8pYMLCyAjAwE4wLt3F18H0e8HKXn2LNFf/VVGZ9kS9ujpp0mUap4zkWjXR6w8VGkVN0ZSm7c4nXDMGhpk0X6Px7oZ1JXEW2+BKLrpJqzVMzMgf/J10iMRZI3V1xffKVfF9DRq833nO9a2RffeS6KxEQHQunV4+Hz4O981amEB15slgSt1o80EJjLXrVsu2TIMaes0DZmLZ84gQ2P3brwmFAIR6XAQbd2aTJ5xAwQmR9PJEMNhWZ94pe+v61iPJiZwvK1b86v9F43i/VNTOI/+fjxKZcfDYZlFKgQIlfb20srgijm3s2dRn/TiRVzvxkb4CNu2lfY6qDBNfLYQsMm5Bs3T07K2ZrENcogwxl95BWP8+uvzs0nxeLLvy/7vxATRl79sbVv0yCPSFvFYbW2ViQL19dKn56xClUxUEQ5jLeZaiMWC5edeb3I2MxFsyswMPq++HutUpnnGjXe4DjqXMvJ6bR/OagiFsOZxebJiYzrOcPX7MRY4478cJHMigY0MXUet3lLFo/PzRN/8JtGjj+ZFIlrCPlUjaoFEPEtE+4QQwaXn9xHRCBH9SAjxoKZpDxDRPxPRfUKInynv309EbxHRfxZC/OXSc41CiHDK5+wgoiNE9KgQ4u+WnitIy37rrSRmZ2W9jHXr4Kxs2oTJ2tEBQ1CpAM8wYIBcLlnomwiT2d6Zyg+8e6k6V7xzqTZW4K5plQzidV2ej9tdvU1jFhd/n1lDwSBkzDt35l8HMRxGYMeykt5eZBsUAsPALt+VK1hY5+Ywb7/whYzOsiXs0dNPIxOxVONAHes2yg+1rhLLqxhqVij/VJf5VAmVfc+W4/x5ZOkMDsJ2jI8jcMy31l4iAXmsw4HM6lJd6/l5ol/8Amv3//gf1rZF//7fk1BrgPIa1dYmmwLkumaaJq4N1wFzOjPLgzNBCBAiiQSyEVM7K6vZvJqGja7z50HicT0nJqkcDhBTaoAUCmGtc7mw1qUSSWpzBJcr+3rt94PMjETgR27enB9pEQqBTJyZwTUeGABRVaq1IZGAn7mwgPvCBGohBG85EI+D9D1zBtchkcD127IF93RgoDT+GhPERLinuX73UAj3t7kZ51Ssbx6NQorvdGKDttjvxp2yAwGiv/5ra9uib3+bhJoUUFcnm5PU18tNOf7JG3JMKKY+AgGZcVqKsb64iGO2t6cvQ7C4KLPSGhqyJ6qwyopjP64Db0udqxssXw6HMS59vuLGVyKBjYqFBVlPsZQdnVNhmsisDgaRRV8KiXQshvjsRz/CHPjSl/IiES1hn6oRtSBg+hrfeCIiIcQhTdOeJ6KDS91vHiKiS0T0G03T1J4/40T0OyK6XXnv72+8pmleIqojojkiOkVEeVIZy/HkkyjIPToqd2inpjB5W1sxadvbZae77m783t5ePtInEsHC4/ViUeJd/GrMUrMaWP6myqC5kYEQybUVy7ELyMFIOIzx09S0+pKiTAiHEWxv3YoF8Tvfwe7UQw/ll+Iei6Fu0JYtyDDo7ib60Ifyd5SjURAHExO4L1u2IAjo6Mhat8MS9uiuuySxVArbYjdaKR90fXm3ZJXIUBufsIw50zFUKbQqg1brK671bPTpaaLXXye69Vaiz30O2UpbtoBQzMcWGQYIpv5+NMIo1Zo6N0f01a/ifD7/+RVfaglb9Ld/i5/hsKxBPD8vM2U4SOesIJZsZQrMEwlZx9jtxtjON5siFgOp1NAAUk59Lzdy4RpnH/wg0a9/DSJl/XqsW0RY7995B7/v25dcjiMSwTlqGt6TbmzkI282TXz+yZP4e3AQ5Fc+mJ1FZsj0NL7j4CCI71JtKJsmxi7L5DjTpaenevzNRAIKiNFR1J48dAh/Dw1Bbrd3b2E1JA0DZK8QeTUpoXgcjVR6eiA5LlbuZ5pETzyBbMsHHii+C6oQGHNtbTITNwMsYYs+9Sn8jEQwH2Zn4b9zA0quH+5ySQUGS5djseXHczjw/MICbBCTjvwz30281lbMz3g8/cZKWxvm7MICNgVYbdbVld7354zGREJmSXPCAW/g2Akl1YV4HOPS7ca9LoaAMwyMp9lZjONNm8A5lLu0zalT+Lyrr8bnFYN4HONW18GvxOMoP5MnLGGfqhG1QCKeyvDcnUTURUQ7CWmn0xner2rZ1xPRfyKiewi6eBUzVCSam4kOHkRm1NjSp3I9g5kZTILJSTjQZ87INHiXSxKL/LO5udizARoa5CTkQJKDTHs3qjiw7IGNpGnK5ghcY3F2Vr6+sTGZWCxmAU8kZBBWV1fdRbB1HXULPR44y08+ifF3//2FBe28q0aU/077/DzIR74vXV2YrwsLmBebNmU9niXskZqhJkTxjqLaaKUUx1urMM1kwjAalVmemoY50tyc3C05F3BNJpY4sQxaJRYjEfl6t1s2bOGfa+GexmLYwHC7iR5+GKRWNIrNjXxskRAgH2MxZKeViiQJBIi+8Q3cuz/5k6wkgCVsEaOxEYTd5s24boEA7C43geOmD5omu4R7vcldZDmw7uzEGmCaWEsWF5dLAFdCXR3s/vg4jqMGOkwecp00p5Po5ptxT15/HXNlcBDnMjws6/Dt3y/9toYGkMsTE1j7uruX1/zl+c016TgjMx0cDhDVfX1oIvLWW/AxDxzIXT7c0QHifHISZOIbbyDYGxoqrNt1unPs7MQjGMTnXLmCn21tWPvzuUflgNsNwnffPtzb3/0O15Obs/B1Hh7G/cwlgOe6gpqGcZoraSQEyikkEmgqV4rA/rXXMN7uvLN4ApEIGbhzc9hk8aVahWRYyhbx/OzvlyTgwgLmYTgs11L20xm8uaeSi5EI/MrLl9MTeVxPUSUWU//meoqcJXblCmLG7u7lfr2myYZTc3OSCG1rwz1P5zO43VIJx7HJ9DTGKsck1ZA1vNYRDEr58rp1hSeFmCbGxfS0LGnW3V2ZmH9sDOOXCctCwTEuZw0/9xzmxMc/jvU3T1jKPlUTaoFEzAaNUMDyCxn+HyUiWmKbnyUMlL8nomOEgpgmEX2JiEpCwXg8cAhaWyF38XjglIRCmFgLC/jd6cTkdrngTHKXJA4oufudSi4WalBaWqSj3dGBz0wkcA72wlE6cCFqlQBmQ8jEIktn+fVq0xYmD1aCEBg/0ajs0FbN9c+EgFMrBBy2w4fhmN52W37Fw4VAwBOJyAyOW27Jzck3DAQy4+O4dizp6u3F3Lt4EcfduLEk9S2rxh6lSl1LQSRqmuzWvBZIp2KgZjAwacgOEZGUdTJhWEoijwlJJiWJJOGikorBYPLrVWKxmu1KIRACjZzm5og++1n8PTODtTXfTbuxMRAHmzaVbsMvHAaBGAgQffrTJSF2qsYWpYIzYjs7sUZyRj/LfLnmJ3cuvXQJ72P5ckuLzPpvbcX7uJFYruCAempqOVmgadJH48+97Tac68svSzlsYyOIvNFREFF798qamh6PJBInJ5GplFrT0OlEgMcZQlw8P9OGYEsLNs7OngUB9dxzyBDbvj1329HTA59yfBzHeOUV3IehodIQT0S4ntu2YZ29cgWPkydh57ir82o3enI6EYwODkIRce4c7uPICDYavvtdbC5wY5Z0/opKIOYr3z5zBuTT7t2lsSFnzuDc9+4tKMhehokJEGO9vbVvi1gZpkrzg0HYFfbTWemj+lP19RgXPT2wWY2NMr5KV5IkGMTP1CpjvHHBxKJpIl7j+uFMNqp2gUl7nw/r2Pw83uPz4fl0Y9HhkPaTuzozecq1IqtVzVTL4DIdLF/u6CgsKYRl0FNTGGfNzZXNBJ+aQnzX3Y14qhAYhpTg89x75hnY57vvlkqAEqNq7dNqoxZIxJ0ZngsSWOMzhK47LwkhEmleyxgioquI6DNCiMfUf2ia1k7JDHJRhSQdDtR6a2oC8TE7iwnV348AJhDABPH7ZdFiTUMw09YGIx6JwPE6p/T38fnwmp4e/My1poGm4bizs/jMtjaZEVNfX70ZbLUAt1t2n2REo8ky6MuXpVPhdi+XQbOzzRmlpgmyywpShCtXMJb7+uCsvPIKHPN9+/I7zrlzeL/Tieu1Z0/2RYobHkxMwNlvbgahr+7uci3Enp6cHXlL2aNSE4kOh+xiam9AJIMz/1RZcmpnZa9XkoaVtrssjVYdSl1PJha5SQK/nskeJhatfM9feQV1eu66C2vxyZOF1UGcnMQO//r1pSNdYjGib30La/RDD4GczAGWskWZ4HZLgk3Xk8uD8P85C1rXEfByswyu8dTejrnV1wf7nitB1dsLH+ziRZBe6vh2OJaXcbjjDgQ0//qv+IyNGzGfDhwAiXjoEMg4Xu+dTpzT1BR8v0QCvptqh1U5cyCA17W0ZM4a0TSsob29IL2OHMH5X3117pl+moZmZn19WFuPH8d36u0luuqq0nQAJcK96+/H57DU+cIFnC9LnauhMZ2mgRTesoXoox+FjzEyguv7wx/isXEjyMQDB3DePFaZmMnHnk9NYSOiv780WaBzc0S/+hXO66abij/e/DyI6vb2tWeLurrwYFuzsCD9dZcLc7WpCf63YWC95819JvG40RlnVKeC1910RGM0ip8cA05MyM0RbiiVmtXIqiiuO76wIMtnZRqX/B7exGGbW1cnv2O1xxe1AJYv6zrsd6EbCouLGC+xGMbmhg2VbXLl9xOdPo21I0tJqLQwTUnca5qcY08/jTXujjsyd5nPATVhn1YDtUAi/ommaf8ghAgR/b4g5u1E9GMhhKlp2veJ6A+I6C+J6G/VNy513OkQQswQkcFPp7zmjwltuk/zc0IIQ9O0KC1PVc0L/f2YBCdPwnHq68PE5mYOHLDxznsgIEnD1lYQkT09eA3v5o6NgZgkwoLS2SlJxe7uzM4fk1O8219fLzt92o1WKgsO5Lu68Dc7IKoMem5Ovp6Dd7dbpqVbIUuIHbCODnzfn/wEP++4I7/jcCZHUxOCne5uSI3SQQhcu/FxzDEm5/v7l8+N+Xns4Pp8eWVFWs4elYNI5CyhtboBYZrJkuRYLFmWXFeH8caE4Wpn3WQCy6A5C0uVQTO5uLCQ/Hq1tqJVZNBnz6LT8VVXEb33vfibawTlc/7z87AtPh/W81IgkUDW06VLRB/7WF5ZRJazRdngcslNN85ICARkvWGnE2ROY6PMunj3XdkU6/x5+Dltbcn1Fb3e9PfZ6YRPdvYsiKMNG5b/Xwici1oj8ec/B2lz110ggerqpLT58GGMM15TNE2u2XNzCBZ7epYT8nV1OD7LmxsaVs6sbGjAWB4fx+e+8AKCt927cyf7ucP0wAAy2U6eJHr2Wfy9Z0/pglC1mH8oJIn4K1dwf1jqXA22RNMwt/v6iO65B+fJGYo//SkeXV0oYzA8jOuUzzoYCsGPKTTYTkU8jkDb5cJ4LHajJxRCjNHUhO+Y4z2pSVvEY9Y0MS/n5+VPzopua8O1amrC/Pb7YS94THCTFm7Oov69EkwTvq/fL2XyKvEYiSQ3XGNwxuPZs/A91q1DnMjqAn7wfeVNnLY23Hu/X2Y22lLn8iIQgK0vRr7MpSM4rh8YKE0jk3wQjWKDtq4O60++jc64YakQsqyHw4E19s03sTFy881FnWLN2adKoRa6M3Nr7scIrbn/LaGQ5TVCiFNLN/iHRPQxInqaiJ4npJ5uJqL7iOh7QohHlzrlHCWidUT0D4TW3NcT0YeJaJ6ILgohblU+/9dEdDUR/TWhuOaUEOKFLKed9mJz97XpaTiTfX0w3EwcMrGnaXAMYzG8dmICk6qpCcHOwADez9JofkxPy86HLBdRm7eomSe8G97Rgc+LRmVgaKN6oOtYHKansaBzoXJuisBd1lgGXS2FyxnRKIjzhgYEZs8/D+nU/fcvD9RWwtwcApvmZgSLpom6o6nfl+uNjo9jMfJ4MM96e9OPbe5Y2dSUsbh8pi6EVrFHy2yRWh+x2GBtLTVaYdmkShiqzjtn6XHjE6sQa7lC/f5MLPJ6Q7S8aUu1bXAsLhJ9+ctwTh95BKToxATmfaq8dCVwcN3QgA2+Uox7wyD6wQ9AKtx3HzrVrwVblC9S6w3zBobXKzP4XC7Yfg7KQiE5T1UZH5OLagbc1BR8qf7+9LXfdB3zgGuXRaOo7RsKQWLFG4KJBLIRuSslP8/gZnsuF8jHdNmGHFSxRDsXmWw8jmyN8+exph04UFg9qngc6+2ZMziPrVuRvV8O/zCRkNc9Hpey0koU/i8UCwsIan/7W2z4O53wpffvB6G4ffvKdkHX8X5dR1ZNKa7r00+DMPrIR4rf2IjHQYILAbVImvG55m2RELKeK3ckZzl7c7MsDdLQAPueSOA1XE+RKJlU5G7QmT6Ly1yly7DmTb90GY2BAN7L2bI+X3KWmyqfTq3TqOvS1+GGM9UYZ1gV3IQqEsE4KaS5KjcqCwZxz3p6sLZV2vfUdWxixeOwgblmlguB7xAO43rU1yc3IH35ZZCI116LNTabX5QOFrRPVYdaIBEPEtGtRPRHBEb3TSL6d0KIt5TXOojoESL6LBHtIrDF40T0AhF9WQhxfOl1Wwk69puIyE1EvyWi/42gZaeUm7+HiP47EV1DRI2ENNff/z8DMl7sWAwO3uXLMMa9vXA+OHWdjT7vYjU1yZo9Fy+CHDEMTLSNG0Eq9vZiwrFBUolFNZOttVWSil1dcpFj+RA3Wam24G8tg7MwEgncF683WeqlBlNEUmah1lhcrftpGBjrQqCI/tmzyNy49lqiG2/M/TihEAKjhgaQqVNTRB/4QLKEMByWkmXuONffj/GeaVGOxRAAuFw4vwwOXCZn2Sr2KK0tKiWRyE1Waq0+IkuKmDRUOx3zhgsThmu107FhLO8GrXaUTiUWVyuTQdeJvvY12I5HHkEwdOYM1sQcZXpEhO934gS+2+BgaWwr12h85x3YtZtuyjiWatIWFQom2XgdNAxJGHZ3SyK7owNjkzP7/H48eJx6PMmdoFlStm3bcnIntWMzET6Tm4Tdc48kH3UdRIzfj7HS05N8rGhUbhCvX5856OLyAkS51Usmwjo5MoJrs2kTpNWFFNOPREBsM1G2Ywce5fApOKN0chLXjGu99fQU1im5nOCNfyZ+jhzB9T52DPfd65WE4q5dy0kf7o49PJy1UUlOGBkhevVV2I7h4eKOZRjY6A2HUXcsQxaqbYvUgy3ZIiYU43FpJ7q6ZMIIkSzHwKQib0zgeySTii6XXAt0HTEdN+DM19cKhWBvmEzkklmpcmp1Y5DBZa90He9tbJSZ4hwz8saKjdzA8mXDkGtPPojFpK3kMdHevjr3QAjYtMXF5HrA2cD1uE1TlvlRbeWbbxI99RSO+dGPZvxu+ZCIVrFPVQfLkogWxYoXW9dBeFy+nCyz1DQYepbMRCJyl8Ltxut8PgRCFy5A0szk0oYNcBb7+5MdPHWXlx9cY4jJyA0bQKKwIWtosNPWqwG8O8N1ITLt/vFOjkoshsPy//X1ycRipTo4X7yI89i4EWP+O9/B+H3ggdw/n3fENQ3f8+RJ7Nzv2IG/Z2cxl+bmpBRgw4bsC7KuIzAyTdQ/WiEosrpblNEW2USiBNc0UrMMVTKMSTAmDas1Q6YakNoNWi0gz1kPqgy6Erbopz9FF9qHHwahw6VAdu7Mfa0zDNifeBzHKFUNt6eeQrffW24hev/7VzwfC86sJJTNCRUCflIgIJvdsPyurQ1rkGrjhcBayaQiNy8gwtowO4uAbM8evN/rleM0HZHo94NIJCK69165/hgGgqv5eYy13t7k804kENgnEiAbMsnPDAOfoeuyzlo2O2sYILxPn8Y827cvv+x/FYEAiKXxcczbXbuQnViuuRsOI0CemYEdbm4G0erzrf76EovJrB/OOFP/d/QoZM+HD2Mtqa8HiXvgAOTtk5PYwNi+vfCmAyrGx4meeAL34667ij/eyZMY/7t2rZihbduiFRAOg0ycnJQlCXw+2BIm71SomYr8YHBXZ27UsrAAe5RP9rwKvx8ENjeAWbcueS0zzcxZjdyYc2EBf6s169RMxnSdp9M1hVmr4AxWlsrns8GTSCCOn5/HtezqwmbLal7X06cx1nfuxAZeNnBTTMOQyTGp1+DQIaLHH0es9+CDNe0XWQI2iVhZZL3Y/z977xkk2XWdCZ40lb68r65q74A2ABoECEIAAZAAYQgRJASAIAmIIqSRZsWJ0e6vkTZiI3YnNjZiY+bfzsiERqTAoRWdaACSAGjgSBh2w3U32ndVl82qykqf+TKf2x8fju7LrDTPVXVmd56IjOquynz53n33HfOdc77DPBfxOB6o/n44SX19cEQKBfGAsVObTEJp9/eL7OziIqq9ZmbEpN4tWwAobt1av4WTAcWLF8HBZMwkMajJ0/taLQt8pQtXGqoq7p8d0M/II8U/eSIsG34jsOg2qfnqKl5jYwiMvvc9/P8LXzCfpeKMuCTB0L72Ghzlm24CAD8/j8AxGBQty2aMsa7jmSkWAZ43ufZ2N1ANdZGbQKJxgmkrC7flGkFDo9NeDRjaqeDpiBDjdGp+VbdBG4HFeiT0duXYMVT6ffSj4LGbmYEDv3u3ea43XUfgn8kg+HeLa+j559Guc9NNRPfd17TC64rWRa59yQf6nduZUynoeJ6+3d1de515wm4mA9ty9ix8H24xi8VECzRXBHq9Qt8lkwASAwEAiew3aRrsWCKBPVcN5GkaArBCoTkvLxPOm21vJsI6HD2K8xsbQ6WaXZ9ubQ3XEo/jGAcOgF5no4A9RQHgsbQEvREIiFbny9FhIUnwn2sBiNWiKADkjh1DlTEHzdEonveHH3bONZnLgQYhHCZ69FHntmp6Gnt/x471gHeVdLxe2QEAACAASURBVHSRSWEqIlUVPng4LADFWv4nJyqML/aveBDn0BA+b4ZXsdbxUymcF1fOWuXiy2bFkE5FEd0ZPp8AHI2t2yw+X/32aX5dqUlaJ+3LqoqCoEQC/x8cbI3p9rOzwBG4M7KR8FBQWcZ584DBajl9Gnpt2zaiJ55oeo3trovaQjog4uaK6cVmUulcDg8Ug4nMt1MsQvEEAniQVlehSFQVTtzYmOA1jMfhBExPw9HxeHAs5lGs5TjqOo7JRN/xODKbyaR4cLu7K7kVh4c7Lc8bIdwSYRxp7yaAwS04RnDRCPxUt0Hb/e5cDnuotxf777XX8LrvPvPDAnQdhmRtDUHX736Hc9y/XzhkfX0Au7k136zMzSGwmpoyBQa0u4EyldAgcg4ktio/IgNYxmnJLH6/AAtDoc2rjLvahQMqI7Bo3IfGSdBOKj8XFoj+4R/g4H7pSwicLl2C3axuL20kly7B7m7btp7fzq4w18+hQ0QPPmiKZ+qK10VuiaIgwcqtgfE4fs+gG08ebdQePD8P8IrpXhhgNNrMaBR2aGAAtiSdBmVHLFZ5TzUNbcErK6h837at8rt0HX/LZPDZ0dH6uthOezOD4CdO4LgHD+I87Or7eFxUWPb0YA83AZ0cCYMeXNnl9cLvHRvbvMmjxaLgWa43oKeeaBrW/vvfB60Lgy08lOWGG8xP1GZRVRwvmUR3h9O26Hgce2R8HHujiXR0kdkv0rFnicTk5FQKfjIR9gIDio32MrdBM+93Pi+q2Lgq2sixaMaP0TQxWFDT4LNbje+46CGbFbEqxxDVVY21JlHXap/m6stmVY2XuyrZipRKAAA1TVS3mxFNw/1ZWcG/+/tbZ6jm6irs2vAwKpfrCQ/5KZeh92Kx+v7OhQsYMDc6SvTFL5qyb220C9pXOiDi5oqlxU6nYRSyWSjKaBSVVaGQaNMpFvFvnui7tiYmMfn9eIiZB4gIDzcDimzARkYEoGgET7jSMRCAglIUwe+RTCJ44vMjguIeGBCg4ujo5eNiuFKEMzSaBkcjEtn49eS9xaAit0GzqmCOCg62otHmlQ+yjD3X1YV9trhI9N3vosz9vvvMn9vFi/js1BSC7dlZBD7RKPbb1JR5I2yU5WUx2MjIqdhA2n1Xm9JFxtZdR1+mi2EHl0MfKMp6wLC6LdkIGrZ61eTVJBxUGPkVWRfxMCkjuNhsrxaLGKSiaURf/jLs5OnT0K27dpnfn8vLAnicnHR2jSxvvgmwae9eDFIxCYRcFbrILSkWce+YpL1YxL85oGHKD64qq67I1zSAKqqK6lO/XyT6uAU6mYTd5MQJD8Q7ehSg2sMPi2MyHcfSEmxjLaCGq4NCIYA59fSTquJ7Zdl8ezMRrvnYMQBGAwNEN97orKp2bg6VidksAI1Dh9wD2etJsSimOnOr8+ioSKZv1HcygGiVu4wI53n0KPbOhz4Ef/vYMbQ9Ly3hPTt3CkDRzDCcX/8aa//AA9BnTiSVAhjQ1wcwwMQ6dnSRBeEkBOsaIjy7DChms9APXV0CUGwEVGsanmFFgR+rqrXboKv5FesdT1WxJ5lDnyuirSTvjLqxXBaFED09jY9TPRSmGmjk39WCMJoBja2SFGZ7YaV9WddxP5aXcV97etYPSL2cks2i5TgWA2dhrXVmLIELY6JR2Kt6+3Bujujpp7H/n3rKdIdcu+uitpAOiLi5YnmxCwXRnunxQAGOjorsoqYJMNHjgSKJRMTkLaPy5xZSllRKtDyvror3bd+O18AAvp95hKJRociNVSDFYiW34vKyqOrp6oLzODYmqhbtgDxXm/C0yVJJVANezvJ0TUOAZQQWjZVb0WglsGg0CJqGPaYo2FeaBh5ErxdtzGYrG5eWwLHh9cJJnpkhuuUWEJVPTNjPwKVSeMb6+y1VTbS7gTKti9wCEjeLH5HJvo2gITvRPDTKCBi2Qua2I+aF26CNwKJxGnZXVyWwaJyGretEX/saJrn/u38H8O/sWRzDykCUdBqf6+tDK6ob8s474DDbuhVT6i2AOFeNLnJLUincw4EB4dMMDgqaGCOHME9d5iqaSAT75dw5/L9eqxYPbeGp0ek0QOejR/G9d96Jn9wKzQPAJicBTlZLPg8b6PM1p+jI53HuVtqbiXB+776L9di3zxo3aLVw+/iJE/ARx8YAJlqtrLMqqipanSVJ+MxuV+kUCoI2xa5Pe+oUfI9Dh9YDhIuLABOPHcN9IUIRwZEjABS3bFlvR99/H1XMR45YG1JXSwoF7IVgEGCAyX3Q0UUWpVTC88qxm1FUVQCKPPSJ+Vz7+qCTqv2ychkxWDAogHtdF4Aicyxy5TQRjmkEFatjDVlGjJhK4fsGBqAvrfqErBNZr/JUZye0SXxNjaoajdfKwgPemlU1boSoKmJzSRLDaMysZSolptVHo603XEqSQNHg9UJHVa8fDzljvIJ5MxvFA/E40Ve/ij3y1FOWkjXtrovaQjog4uaKrcUul1FxxaCNxwPHcHxcKB5Ng2KWJPw9HMaLyVY5axEOQ/FUE67mcgBlpqdFBrSnB5nx/n44SUNDUAqSBGUQDtdXfKzs+Lu51ZRItFszqDgy0uEXMwrz67CRbSUjYRSeGG5sg2awhkvTYzExFGjXLhiNZ55BEP/YY+ZbBy9dInrlFRxf0xBw3X47+MycAFKFAvZ8JGKZw6ndDZQlXeQ2kOhWpZ+RV48BQ+YXIhKAknFacqcy+soTBo6NwCLbGwaOg0Gi3/4WeuThhzGIaWEB9okHiJmRQgHBfygE4NGNioZTp1CZPTZG9MgjCBA7umhjZXkZOmN4WFT8DA1V6iYOerJZ/OQgPhYTwwS2bKnPV8gTVrnap1xGkPX889hv114rdKvPhwA7m4WtvOGG9dUlpRLAJU1rHkAyTYmum29v5u94913Y3O5uAFImq/NriqoCcOXhQ1u3gjNxM5LJ3OqcSmH9udXZ6XdzFU0oZL9tenERVX7btjVPRCQSABTfegtrqevYtzfcgPuzYwd87O9+F3HBQw8500uyjKSGpmHwjgVOvI4usiFcMNCILkjToB84AaKquMe9vbAXxmRBPg+QiqfL1xLmVzQObjFShxgBRZ42Xi4LegWfD3rBzlAjrphmjneuxDQOqnJTzLZPV8MhXLjj5lAYO+3L2axIioRC0GF2Kp83UhQFOqNUQmGH0TYxPsFV/lwl32zd1taI/umf8L4//VPLCah210VtIR0QcXPF9mKrKjKWhQIeKFa8k5OVjiY7vVw2Hong75oGxcVTmH0+0epc7agWi3Agp6cRZLFxmZqCQzE2JgDNRiXI1ee/uipAxXgcxpCF+Rz4ZSfL1e7CQ094sja3W7WTVLdBLy7CEPT2AixeXERm/aMfJbrjjsbXp+vYK+fOIfAKhVAZcfo0WnzuvNMZIFQug2fD74cTbnGt291AWdZFbgGJPGXeznEUZf205OrWViNg2G7PT0fcE25hZ3DxxAmiH/wA9AcPPIC/LyzAnu3caW6vlMsAQ4jQ3udGpcKFC0Tf+hZs4KOP2rJ9V50uckN4iB0DMlxlMzRU265wdwBX5KuqAPQOHao9CbPWxGYiVIy98grszi23wFZyaxtPtOzvR0ViX5+oVuzpwTEXF7Gvh4cbg98MPMgy9KIVzr54HLa6UMDzcfCgs/0uy7DdZ87gvHbuBIi6GW14kiRanXmICfOGW7VDuRzWnull7Eg2S/T73+Pe3XCDNT8mk4E/9NZb0EV8PYUCANq/+itnICkP/Mnnsa8tHquji2wK86qaqRzWdTHJN50WE5EZNOzrE4n9oSHzlX7G9md+sX/FbdDGadCFgug2M5uEq74OTtKUSqLVud6Qq40UI6haD2iU5dpDYbg9vFH7NCeJuH2Zi3IaCU+jz+fF8KiNruS2I7oOnZFKVVab6zqugYtiGDw0O/jrK1/Buj/1lC06jHbXRW0hHRBxc8XRYrPzmMlAoagqXiMjKC83CnMOyDIe2EhEZBONrc66jgd+bKy2EeAqyLNn4QB6vXBut2xBxnNqyn4mVpIAEjG3Ik+kJqoEOfnl1uTLVhTm1iHCerYKv4UTKRYBRHu9uHezsyD87ukBgMgVs9wCHYvh2mVZTFnO5fDv4WGiW28F34/PBxDASfWqqiJ4V1UEMzaO1e4GypYucgNINDtoRdPWA4bG6rLqacmdtuSO1JO1NaL/9t9g4558Enbt/fexx3bsEAES7yluhTYG95qGoF2SACC6Mbl+dhZk4dEoAMShIVu0FVelLnJDymX4HsEg/JpEAv+u9qeqhYOjZBLBk66jrdk4hIwDpXpA4jvvEL3xBqpZb79d/J6HbZw4gXMZGqrsQmHqEE4Ub9nSPMCy296sKKiWO3cO53LDDc4HpUgSjnnhAs5/714kBzdDf3Mym3nDu7pER4wZH4ABxEjE/vMvy7jvuo5qaCd+DLccP/001nRqCvvluutwrw4csL6up09jjfbvbzwRvI50dJFN0TQxHKinxxqwbOSq504M9qUjEYDLdumQjICiLFe2BksSvlNRBDBvN07jwVBGwKmnxx0766aoqvWhMFx5yVytw8OCaqXWUBhJQjycyeC+cYzfql00584hTtu7V3SXcUGJpgnKB7N7MJ8HgJjNYvDd+Lit02rR1bqypAMibq64stirq3hxa16xCMVUi3C7XIajoSh4gCMR4bQwd8bysshU85TlWk5mKgUwMZmEgisU8P3bt6P9ZutW545gJlPZBs0Tp4lgTIzToEdG2h9sY/4lRRHT/a6ECkxFAYDI+4OI6NvfhlH43OdEJpWzpbIMw7G6iv3MJfucmT14EJOYV1cxiMXJxEHmaioWcW42qwna3UDZ1kVuAInV/IjclmwEDY08d9yOyoBhNcDTkY7UE1nGJOZUCoNU+vsBYGSzaCP0+SorFo38mdwOHwiAQiGfR3WYnaqLaonHwc/o9wNAdEDr0e5PwmV1QnM5gIc9PbjX6TRsgtl7nMsBkGb7zXqL+b64o4DbD42+1Ztvoqrs8GGiD3+48rhzc/C3BgcBsuVyOLd0WlQXptOwY0NDAMO5arGWX2Rsb240BbOWJJPgcuT27euvd+575XIAYGdnsXb794vncTOEBxcmk2IoYL02QV0XU0SdAIi6DvB4bQ2DVNxIjL/+OkDJ227DdRw7BmCxUMB+PngQgOLhw83v2cwM9t327bjPNqSjixwIUwSxLrEjxSJsHU96TiQA8O3eDdvn9LnlpIixFTqdhm8uyzhvLkrhNmgrUt3qzImPdoqNjENhMhlUQJdKuA9dXQJ4rIZf+P08rGlsTAxGNVY4ttI6zM+DnmpqCjZIkkSlPu9jK7iAJBH98z9jPz35JOgebEq766K2kA6IuLni2mJnMqhK9PuhmFIp/HvLltoOTqkExcRt0JGIeLA1DU5NPI6Hn7kuxsbWG5xEAkZjYAAA35kzmJjLyn7LFjz027a5A/AZ27C5DZqHxRDBaTYCi9WcRq0qXMlQLIoS/iuFF1LXERgwSBcMEr30EpzbT32qcvqkpuG+nj8vBvJwpQVX3e7ahf29sIAKxoMHnQ2ZmZ/H8SYnHYEB7W6gbOsiXa9scbEjsiw4XKsdKp+vcvCJmYm7HelILdF1ou99D4H7H/8xMuUrK9AB9Sq4VFWAigwszs3BqZ2cRCWWsWLRjr1JJFA9pGkAEB1OV7xqdZFbsraGoHV4WNCK9PSY77LgVtlt22DHmdKDKwiZO4/pZYx75tVXUUX2oQ8B7DHKwgIqw/r70SZm/FyxiOB9fh7gT7mM9/l8OAdugeaffr+z9mZNA6j5/vvQx4cOwb47TeakUkTvvYc1DIdRPefGcc1KqSTun6IIzm5uT+eEpyw77xK5cAH+8v79tkG6CpmeJvrJT1AZfffd4veKAt+ceRS5omn/fnAoXnfderB0eRn3d3TU0bCoji5yKJIE34h1hRPhvX3xouDgC4XEYBa3+NaZc5Apq7had3AQz3T1NGgz/hzHSJkMjufxiKnO7dJ1wgmfri4xuMsoDMQWi9D1rIO4ml3Tag+F4UE4jdqnN2MQZyKBivmhIeiMbFYULMVilrhUiQhr8bWvwaZ9/vOOh9a1uy5qC+mAiJsrri52sYjghgigHpeV12pvZmEDpWlQNJFIpbLJ5WAEEgko8d5eOFTMccDtIDySngjHY5BvZgaKxOOBM7J9OxxrN0m0jRWU8TiMJLcCM6eRsQ26t7e1qpZkWWRqOLhopfNzKsvLCMomJmDwp6cxdfS664juugvvKZVEyzJn9ycnsdf8fnzm/Hncy2QS/FFjY3CWibBu1W3QZhyTlRWc38iILY4No7T7HXNMraDr2LfN9i6DMsYqQ65m1DQxlZBBw8s5hbwjV5a89hqC7I9/nOhjH4PNPHMGesOYzGgkKyvQRczrWj28h9uguVq22fCedBoAYqmEKcyjo/YpQT6Qq1oXuXICOnwJWYadyeWgp8xW7ug69ki5jEpVDha5+i+bFQPpurqwl7hiUNeJfvMbtITdeitANKPE4wDuenpQTVZLPxYKsKfFInSpJInJ0CxcXcmAoteLc+H/m5VcDgnBlRXY5yNH3CH5X1lBBd3aGo538CB8gs0STROtztz6PTyMdeNEr9Wg2Cirq0hmjI+DC9KppNNE3/kO7t8jj9S/h5oG8JInPScS0E979gC0vuEGgBInTohhPw780Y4uckG46tXqs1lPMhnsP48HMWI2i98HAgJQdCsO0XU8w1wUEIng+Eb/3OdbP7il0XeXy0Kf6Tr0Zk9P6w6dVFU8Z1wUUW/4DOuclRX8e2AAPoYRbHRrKEy9SdR273kuhyr6QACFHooiho7ZAb9Vleib34QdffTR9XbQhrS7LmoLaXsQ0ePx/AkRfZWIdui6Pm3xszoRfUPX9Sc24NRqieuLLcuo+pJlODyFAgxELAYQp1aVhK7D2SwW8e9gEMrY+F5ZFiCdLOM93ELMpLo8fZe5y5jjLpEQk56TSRxvaAiA4vbt7rSCVUsuJ86XAU1uKwoGK6sVR0cvD88GE7OXSkLZtktGzaxkswAGeVBOoUD09a9jvT/3OVz/3Bzuj64DiJ6aqjSy8TgMCROf/+xn+PvHPib2N1d6cDDPXFFGTqrqe5xO47v7+lypAlhnoK42XVQLSNT1SsCwVFrflmysMvT7xTE61YYdcVMuXSL6x39EsPzkk9hnZ87AWd23z1xwlk4D3OnpQVbcuM+Nk6BLpUoeJAYUjT+JoP+efhoB0Wc+AxvtAgBT01luI33UEk6ooqD63eeD7Vlbw+9qVZDUknIZlVzhMNq6qoMzDt6TSewDvx/7orsbtuvVV+E33Xkn9qxRVlYA8sRiSMbVOp9yGUCiquL8o1F8J5P580+2mcxL292N94+MWAvKp6cB+qkqknt797qjw+fn0eacySCoPnQI57aZwp0+c3NYwy1bQNdjt/24WETLcTiMilOn66QomMSczRI9/rj589J1XNOxYwAVeXBiIICg/TOfcQzcdnSRC6Lr2IO6jnvrxnPFVEEjI9Bx6TTiOP4ev18Ait3dzgFFVYUOTSTwfx74QiQq8IxDSoyAYldX7diVq8SNFW9cTNAq/qMkiSKc/v7aCUIj0KooWBtuW7YjxqEw9QbCmBkKUw9orL4XpRKoOCQJvhQXw5gdtFotmgZ9dvIkJssfOWJvHaqk6Zm0kV5qWemAiG0WuNcSVYUzkM/D4fX7AcQ0am8mEuXikiSIbMPhSmXMyi4eh+LmSj8+5sCAGPIiSaIqgyWdFoDiygp+19cnAEUbxM2mRNfhrC8tCXCRFTsRjI4RVBwe3tgKqFIJ90fTBKfOlVR9SIRrnJnB/d+6Fb/7138FyP3xjwsA0O9HNn5ysjbQd/IkjOru3UQ//zmM4AMP1A5wjJUexqmZRKKknh0M5r1yqVXqqgcRiSoBw3IZL37G/P7KScn12pLNDlrpSEfMSi5H9N//O/bgX/4l9MzsLHTArl3mgLtiEYNUgkE4ys3allV1PbDITjvzfv7whwjaPv1pAE1uBGvUCdxdEya051a81VXcN7M0KakU9hknXOsJDxHggWqsM48exTEeeAD7wyiJBMC1cBichLXoT3hitCThnGtN8uQqRQYRlpZwPsYKSWMrdCMAVZJQXTc3h/ffeGPzoTRmRNfhS5w4gfUZHQWY6IQL2YpoGu5PoSAG6CgK1n5sDP6iWVulqpjELEkYpOJGAvu559Dm/qlPOeIMo7k56KT33xfJ7fFxVCceOYIEr0X91NFFLomq4jn1+dzhztQ06DZdx/PE+oy/hyc9axr+xqCfUxBTUaBHUynBPTowgO/QtPX8iqwLeRCVsRWaz4MLYTIZUcASjeJcLxctFAO/jdqXdR3rwMU5zB+5WUUtxqEw9cDG6qEwRKJqvatLTGIuFKCTx8exT+xWNeo60Y9+hKTGffcRfeQjzq/zA+mAiJsgVwKI6COiLiIq6RYvpl0D95oH/qAdJ5VCYNLfD2eyXIYz2wis0zQBJnI1YS2QK58XYJxxMvTOnTAIrISCwdqAXD4vAMWlJUHwvW0bgJ3R0Y0F1mRZtLNyxSKX9Xs8WCMjsFivBN2KqCquu1wWoNaV2K6pabivqorgx+/HIJRnngEYuHUrjDy3LNcKyAoFcCMFgzBOr76KgOzuu3E/zAg7F0ZgMZXCs+DxCPJ5rlh0QNZcC0S8onWRoqyvMuQBKR4PAMNwWFQZWuGKqx600pGO2BVNw2S/uTmiv/gLOLnpNHihRkbMTZeVZQTWuo4qK7uBiSzjOcnliL71LST77rpL8LHy88LVim7pIqK20kct5YRmMgCN+vsBJhrpW8zoptlZ7LedO+tX9hknNnu9oromlUJrcyqFgGrv3kqqjmQSNjIQANBTq3KFfUHmdRwebnzeug6/aGkJvgrTT/COCYcrQcVaVT+LiwgCi0XY+wMH3PFzVBVdCe+/Dx9qchJtzm60T9cT5o3kSapdXYKbm9fI5xPdLc1a906cwOeuv96dpPm77xK9+CLRLbcQ3XST/ePwFPBcDmuqKGhPPHYMFdvcKcItz7t2mdJPHV3kopTLuD9M+eJUZBm6gaeSV+sFBs8ZUFQUMS2ahzbZ5Zwvl6FnGBgdHKw9cVhVK0FFI6jl9a7nV+RhNLmcaHXu7sZ6bZYvaaZ9mYeGSpJIRrhJ8+WWGIfCGIHGUgn74t138XPPHlyDUSeYaZ+uLlL6xS8QK955p6C7cknMgIjtopdaVtoeRHQi7RC4WxUukQ6FECyx0m7U3syiqgBySiU86OEwjlOrLWd5WZDNx2JwHEdG8DdVXV/RWC2ShHYznganafgMD2WZmNicqqRCoRJUjMdFuw8bWiOwaIW7iqsMiJxN9GsHmZ+HId+6Fev39ttE3/8+jMynPgXnv1EVgSzDOGkaeJ/OnUNQcuONggfRjqgqjpXNwmnhykUmvPd4Kqdochu0CefDVfek1XSRpgmgkEFD49Ta6mnJnKE0w5HY6Dt1vT0GI3WkdeVnPwOH6qOPInCXZVFRuGdP8/2paajyKRYxiMBp8KYo4C6bnia6917owkBAPGPGdn+eBs0vk9l910OlqzlwJ4LfxBVwHg/8qmDQXJUdDyDRdey3evrMCCQy4MadHz/8IXyr224DCMgJr1gMwfK77+Iz119f369IJAA68qCQZv4UTwblQJz/z63QkoT3cQu0cWhLJIJrOXECoF84jEq2sbHm62VGZBnAFtMR7NgB7j63fapaAGK1ZLMABdfWsFZ9fZW84UaZm4Mu2blzfWWpHVlcJPrBD+BnPfigM5DkzBns8337ULVqlFwOFabHjgHAVRSsx/XX4742oIPo6CKXhQs83Bq+WChAN8RijX1ynkjOk55lWTz7DCjaoWOSJOy7XE7wjjbirdd1UUHHoKJx2AgPGfF6Bec/8/PxVOeN9CmLRaELBgbW+wv5vOBZZVqwjaD02ijhjsV8HonYtTUkHcbHm7dPNxsKc/QopsvffDOSZuzzuFRos6EQcgdEhLQ9iFirHNXj8dxCRP+ZiG4hIh8RvU1E/7eu6z+r+qxORN8goq8Q0f9LRIeIKE5E/1XX9f/P7nsbyKYsdjYruH0mJ8XgE58P7c3NgiJFgcKQZSjmaLR+xntuDopF13HcgQEoSCstu7KM40xPC37HQACtFNu34xo2q3pP1+E0G0HF1VXRlhaNVoKK1SS4RFi/XE5wzTiodmsL4Qw9EfYNV1PEYmglrOVcG4Uz4vk8jFMuR/TLX8JRvv12++fFLVGFAoBpIwDMGV4jvyIbPOarNAKLNZw3U+3M7aCLOPNoHHxiHBzBwIaxNbnWc21l2Eo9Md6DjnTEqrz3HtG3v40qnT/8QzHwolBA4GuGc+j8eYAvu3c3113NRNOQTDl9GhXV+/ZBDxn1iRGwZ1oAfg6MgD2/athC0y2ELaqPWs4J1TTYNE1DsFQqwS/glrlmUihgmEVPj6D2qPc9qgr/wKjzCgWiH/8YgNbtt0MHM+DI/tv589gb119f36fLZBCwd3XhOpoF/VyJVC5jrxnb7UulSlAxkxGJJb9fgIqKgnMrFuHDXXeds4EkRpEkgFoXLuC8du8G0O8GuMJtncxD18zn5AF/3JoYColWZ+acO3oUycvDh51XRRUK0G1+P9FnP+tsTWdnkcTftq05B6IkQa++9RZ+lkrw7Q8fRoXigQMV59LRRRsgmQz2Z0+PO75RKiUS62aTZOzbp1IiCR+LCR5Fq88gF3AUi/jsyIj5CmP2WY2t0MY26HIZx5VlMTyqu9s9PcTnkE5jHbu6AMQbdYYkwYbw30dG3Olu2yzhri6m4VpbA66wbRuqks2IcShMNdj4+uuoqN6zB1WIxnUxDoWprmi0MBTGVjtzi+qllpUrDkT0eDx/QES/JKJVIvoHIioS0ZeI6BoielzX9X8xfFYnouNENEpE/0hE80T0WSL6je/EYgAAIABJREFUKBHdrev6L+28t57oOumbpUAkSVT4bdkCw8OTcIeH12cea4ksQ4FwVqc6+GFZWxOl76kUfrLTOjFhTWmqKs5zZgYv5mmZnASgODXlriEwe06rq5XAYjot/j4wIABFrmTz++uDr1eSJBLg+8nlYCBjMTj4CwuoBJqaan6MM2ewvvv2Ye2eeQYO+f33OwOPFxYABmzZYg4M4DZoBhV5EhyRIMCPxXDcm29uDiK2si7K5Ug3VhnydXq9lYNPgkFrTqtTILHDj9gRu7K8TPR3f4dA/s/+DPs2Hofju3WruSqyuTk4/lNT5ikU6omuAwh67z04yQcOiOr+ZsLUAUZgkZ9Rn08Aix/QlZgK3FtVH5XLpF8uHqtGIsvYO4EA9gLbhJ4ecx0J3CLcrAqfgUSfr1Ln5XLYP5oGQDwQqBwoVigggRsOg0eq3ncUi4LOY3zc3P7jyhOu5qllh7lCxTi0hVsKNQ3P48oKPn/TTdj/biWH8nkkHmdm4Gvu39+46rOZWAUQjcIB9tISrp/55GZncW9uvtl5ElzTwC8dj8OvMuO/15OVFfhcIyPrB/g0E6Z5eOstdJvk81j/AwcALNx7b3vrImpREJErZIkaV+2ZFaYwKJeh26xWFBaLAlAsFvG7cBh+ttmJ9izZLM6FwenhYWsdXyzcBs2gInMUZ7OCqou5bt3geUwkcHwGUvmelMuCWsznw/UMDraXPytJgl8+EMA1nT6N63A4vZ2IUOH8ox/hWI88IsBGu0NhqoHGYpFoctI6iNjCeqll5UoEEd8gogNEdI2u65c+eE8vEb1LRAEi2qrruvzB73Ui0ojoJl3Xj33wuyARXSKiF3Vdf8zwPabfW0+SSdJDodotwhshigJHplQSJdRLSyKjPjFhzrkpleAsqqoAx6pH0K+uQkn29uLf8/NQQpEIQJxaFXvNhImAp6fxKhTwHePjABS3bbt8LcKSVNkGvbAgSInDYVzz2JioWNxIDp/LIWtrCGBOnIChPHQIgfryMtGzz8JxvvXW5se5dAmB+7ZtWK/nnoOzdP/9zsikGfQdHrY/2ZGnaRuBxVdegfP81a+aAhFbVhf9zd8goWGciOf3uxPkuQEkOq1o7MjVJYpC9Nvfwtn8gz+AjS2XoQfCYXMDGfJ56LVmbV5m5dQp6Lbt24WttQuWcUsXt3LxpN90mugrXzEduLekPpqdJb2vrzUTboUCAtzuboDQySRs/8BA8/PVddhISQLA0uj9qioGGhiDzXSa6Kc/xe8ffFBwaPFglpUVtJ0yDcjYWO2KG1kWk3jNVvxwO7Om4XvN+FpcycjA4tISQPRMBs/U4cPwh7hqMRp1puPTaZD8Ly3hmq+9Fs+blYCdJ1h7PM4rvXI5nMvvfod/33wzWpmd6pNXX4XfwdXMdiWTgc/W0+McDNA0gJHvvAPde+YM0S9/2d66iFoURCQS+7Sry514QlXhI3s8eCbtglzMlcdJBCI8i1yhaBYQTKehz2QZnxkZsQZG1hIGFfkcMxkc3zg4JhQS/q8Z4fZlIsGby9+1vIy/Mcc+VyW3izB/s3HytSxD94TDqCp3ej0nTmAS865dRJ/7nPl155b2ekBjoYD7m0iATuSv/9oWiNiqeqll5Yoa8eDxeMaI6CYi+ifeAEREuq6nPR7P3xPR//PB339r+NjrfFM/eG/J4/G8RkS1CnatvHedMELOxKpOFWQz8fsBziwsCK6/iQkovaUlOLgTE82VPLdRMd9EOo1gKBIRE7N6e+FgF4sA+cbGBLg2PQ1QcXAQvzdrVBgwHB9He9rqqgAUX30Vr9FRAShuJlAXCgE0m5pC8ClJ+MmBaDwO5/ntt/H+cHh9G3QrBk2NRFWxb+bmYGgSCYClN9+Mtc9k0IY8Nob71UyYV3N0FMd5/XUc86MfdQYgMoFxb699AJEI+6+7W+yrF1+Ek2MGHG11XdTXB2dgI0A6PqaxvcTq5xlItPP5jlxdouvgiCsUoItCIQS4yaQIFpqJJOH9oZDzFmYitHPOzcE+MBexk2o7I+BPBKBG08xPwm1lfeT3Y+05oGsliURgizIZERgz12Ct6ZtG8Xhw/8+dQzJ31676usznE0CxMXnS2wuuqGefJfr5z4k++cnKYTxDQ6h0/N3vAFoXCmJCKduuUAjnOTkJ+83tt832TlcXgmROosly82ni7AvyM3fwINqxjx9H9ck774jEnscjKh27uwW/opU90NuLpMHqKr7jrbcAZh04gOttZjvcBBCJALby9NtDh/DvM2cEF9rwsPWqxLNn4UceOuQMQJQk7JFQCMdxale9XlSAjo3h+o4cMfe5VtZFrSx+P/RRoYA4y2kBBQ83WVlBzGK3upX39ugodARPfecii64uASjGYvX3HT//ySSe54sXxWAou7aTbWYohOPrOvRZIiGSHUzbwFQhxqEtRn1gbF8OBLB2fr/oVFtdxXv6++0VzVxO4eE0RoCVE7HHj+M63agkP3cO9C5TU6BksKILfT68jPaBQU+uACfCntu/3/q5dfSSPbmiQEQi2v7Bz/dr/O3kBz93UOUmmKnx3iQRHa7xeyvvXSexGJwWHrjBYOJGgkleL5wpzpDIMoKacBjA3qVLMB7Dw82Pxe2NDCamUvh/JCJ+MnlsMAjnordXAI9ra2IQy9hY7clc9cTjwTkOD6M1JpkEmDgzA/Dp9deh1HnSsxuVJM2kVBJ8EeHw+umNqioARX5NT4u/9/VVAouDg62ZtSoUsFcWFwXB9vAwwN2pKfxf0zDQQNdRRdgsq5lOI9Du7UWm/vx5OMsHDjTmkGomxSLOlStg3ZJXXgFAun8/0ec/b+oj2z/42ZK66D/9JzPvcibcfmC3orDDj9gRM/LSS7AHf/mXABSIYBdSKXCmNUtaMc9aIIDn2+l++93voIfuvx8ACgMUboHhnMjp6zPPTUQtrI/GxnD/CgUEXq02gIzb2rNZwYmcSMD2N7PZgQDRjh3Yj2trsJmN3qsosKF+v9gv4+OoQnz2WdigT36y0mccHCS65x7RXspgGFfPc0VJdzf8o5UV/N7jqT2htVpCIeznXA7HrzdwpNF1feQj4G58+20klnVd7F1O+i0uivcbp0GbaS+emMBrcRHJ22PHAEIcOlSfloB5gEMh5+2NLPE4ns89ewDU8aCcpSWcG3dHjI2Z2+dra0Qvvww/66677OsmRUEA39WFalC3nrFslui11/BcPPig6Y9t/+Bny+miVpdQSMSQDHg5EU6MJJN4Dp0k74kEN+DQEPw3BhQTCegdv19UANaa8u7xIC7kZM3aGs6rr88eAF8tbIt7egRwlslAtzEwa9StzM1HJDrNjEmS1VXE1qqK342OtldxCPP38zDVnh6hG1QVAKKiuMNrOzMDTteREaIvfME+MMy2iCsmiUQ1aDqN+P+662wdevsHPzt6yYJcaSCiHakxP4iIapNyWnlvTTGWCDNpqSThIdjIzMXICB7apSU8zMwxuLQERVgoAHRppqQ9HlFFyUBoqYT/R6PIXKTTMCLMr8ZDV7ZuFW2m7NDw9GOr197fj9cNN8AQMKB47BhePT24vu3bcS5uVjNpGhRYuSwIxWutG/NhDA8jI09UScYdj6NC4fRp8f6hocpqRTeqYuwIO79zczDmHHBMTeFvi4sIXrhK7/XX8bv77mte+VMs4po5I55MEr3xBhzr66+3f86yDFDc78d5unHPdR2gwAsvAJB4/PEN5TbZVF200eL1ionLdu6Fzyfa/NqJT6Yjmyfnz4MC4dAhUSG8tgadMj7eHEBUFCQvvF5nnGosx44B6LnmGlRU63rj6gursrCA18AAwKkNrtLdFH3k8cCWJ5PwHdhfaCUZGoJ9W1nBvurvr6xIbHQfenrwHk6gNuqY8PlEy7rRpxgdBVD4i1/g9cADlX8PBuELvfMO/KCDBwGqcbCVSonK3FgM7+fWvvHx5vs+HIaPlsngWGbbm6uP8ZGPIMn39ttoa9uzBxVsHg/O08ivuLIiPhuNCkCRKxdrrTl3wVy6hOO/9BL8lkOHKisvGUDgwNkN+5LPIxnR2yu4BrmtcXAQf4/HcV3xOL53bKz+sIVyGfzQXV1ISNjVTbqOCkRJwr5wC0AsFNCdQQRdt8HP7BXlGzmRaBT6IZfDXnO6d2MxMTgqEHCvGtznwzM3MCA4HZlHMZEQVct9feurgL1exE1GPZtO41huFVt0dQnAMp8X+lDTsAb8nHCLLBHeq2mI29bW8O/+fvNJgVYR3j/MFRmL4fk16qHTp/GegwcFjYZdWVwk+sY3cL+ffNLaHjNOh2aeRiO/ZTQqaC2iUXcHeZmQq14vXWkg4sUPfl5T42/XVL3nsgoTgPIUKc4Yc4vwRkhfH76TB5dMTop25qUlDMTYssVcu7HHg/eFw5VgYiAgqhS50pCrF1UVynZsDH+Px3EuHBSNjdlTVt3dcBIPHcJ3X7oEUPH4cbS5RaOiQtEJ9weRaFsmEtdvRQIBrLtxIl4uV1mtePIkzpsIypaBVgYWN9JYKQoU/vw81pIrKbZswb8lCXsnEhHtD/PzAAGvuaZ5GTkTc3s8eL+qwtEPBoluu81+UKxpOC9dB1jtxjOk67iu55/H3nn8cUvHbRtdtJHCQKJdINDp5zty5Uo6jcz20BDRww9Dd5RKSHzEYs2pDDQNySxZRjLD6XCPEydQLbZ7NwAfVYVtcquSloe+DA3BnlnUlS2tjxhIZN4qXbdHrr9RwgnBeBxgIE/aXFvDOTfrfBgbg98wNweAqZ4d4bZ15vIyvm9ykuhjHwNI/dxzRPfeW7m3eFLzu++iGu/aa3Gevb2V/L7cCl8sAtBKp1EV2Cyw8/sr25vL5drVRM1kyxas5fHjaPWdnweQODJSWQnFQB8Di6ur8BWJBNWIsWKR/SKPB8/H1BR82pMnsWZbtiAgDoUqKzTdsCuKgnVnfuhax4xG0XXB3NHxeGWr88hI5f1+4QVc+2c+4+xZOHcOx9m713mlGYskAUBUFAyNskgl1NK6qNXF48F6c2utG1XuAwN43hIJ7EW3Y1CvV7Q0c0sxA4rJpKgQ7OvDs8zf7/fjfAYGoKsSCXxmcBC6yI1n10hbJEnQNQxYcaXb8DDOK5MR/PzBIJ7ZaBR+Byd+urpat3uG7UChIGL4SGT9Ol64AH27a5d5ypR6srJC9LWvQT9/8YvmdJmm4Ry5+p39/2hUAJ58zqur0PGRCABEB8VYHb1kQ64oEFHX9bjH43mTiB73eDz/p67rc0REHo+nm4j+goiWiOjNy3mO1RII4FUqwalj4txIZGMUEQNqc3MAXSYmhAM2NwcAjglhzRgmr1dkpQsFXAdXWQYC+BvzQZXLeL+RI0OSRHY2kcD5cauzHQMRiQDI2r8f5zI7C6V/+jQUTTCI69+2TUytNiOcuZFlnD9flxsSi+HF7T3M52UEFn//e8ER19NT2QY9NOTc6HOAs7QkSvMPHMA+4PvAk7N9PqwdB+0//znef9ddjb9D03AfymUcOxgk+vWvsW/uvdd+BlTXcZ/LZdxXN7JQmoY1/8UvEIw8/rg1kKEdddFGiRMgkFuhjcNWOtIRRSH65jehk554As+mrsOmMYjQbK9MT0On79rlHLA6exbTBrduRZWYquKYbgVjly4BeBgZsUf30A76yOOBT8DBMVdxtooEgwI4TKcFgJXJNG8F9HoFPyIP26knzBWoqmJqM8uOHaj6evFFol/9iujjH6/UqV1dCKTefRf+jqbBnzIGylzZkc0iAFtcxGvbNuyvRr4NB/vcUpZM4v9WA7dAAMDh1BSqd19+Gd9/+LCws1wpZAxiJQlrz8Di3JygzejqWt8GvXs31vrMGfgeMzPwaQ4csEan00xOnsSa3HBDc//D74ffPT6O9VtaEgPmuBPl9GlUWd92mzNalrk56I2pKXOURWakXEbit1gkuuMO690y7aCLWl047spm8Sw7tV8eD/ZePI44zAzNgZPv4opi5pRnQDGdFpVxHCNywc3EBGLT5WVBzzU0VDkZ2anw4FNJgn+QSokKWx5CE4tBrzA9mSyL4S2SJK6ReRWZY/FyJsF1XYCHuo54PRarfU6Li9AbExPOKaFSKQCIXi/RH/9xYxupqgK85fPkyvlalZJE2Afvvw+7dviwM3+ro5fsyRUFIn4g/xsR/YqIXvN4PH9HRBJhRPc2wohu+XKeXD0JBivBROPwEreVDwNpc3MAhUZGRHvU0hKMCLc3m3UOfT48yOEwzntlBcDO5KTg0FFVASSykxoK4VwmJ0Wr8/nzcPa4As9uhUgwCGW/ezeU/NwcDMPFi3Aqu7pgxLZvx/fXulZdFxyWnAHc6FJpr1e0wFx7LX4ny6INhvmDzp6tfL8RWDRjWHUd93puDgbZ68Vn+Z5VC0933LZN3L/nn4fi/+xnm9+n8+fh+O/di+O/8w6O+eEP4/ztytISDI+ZIUFmRNOIjh5FtceWLQAQbQKcbamLNkKcAInVn+0AiR155hnorS98QVRELy5CT+/Y0dxuzc9D501OOufPnZkBWfjoKNFDD8HOhULOKxuJBDC6ugowyFjBbkNaXh8ZgcRcDte/mQPTmkl3t5j0GQiI1sJ8XnSS1JNQCMDRwgLuZ6NBBl4vrl3TsCZGnbl3L/yo3/0OYM4dd1TqRL8fQOJ77yHAUtXKYJArUDhhOzUF2zw7i3XngI1Bx1qBWXV7M1e0WJXhYUwcPnUKwNnSEs59aqr2+znIZ55DXcc+4RZorlhk4cE4vb1EH/qQAHFTKVSEXnON8+d0Zga+2Z491nQJ878NDEBvcTL9vffQAXHddc7oXVZXBWjqhGfaKIoCfuhsFgCnA7+t5XVRqwvzxzI/otO4xO/HXlxdBbjttALNjDAoF4vBtnEXWyoFfTQ7C93CgGIwCN1QKABAWlqCHR8edq/KtlDAMZn7fWEBID8RYtKhIRGXcxEQi6pWAovFIl5EooCGwUUj7+1GCcevXM0XCjVOEiWT0JEDA5b4lmtKNkv09NNYiy99qbauUBQBHBaLgg+4txfnGQrVX6PFRdiMvj5Uf7tU1NPRSxbligMRdV1/1ePx3EFE/5mI/pqIfET0FhE9qOv6s5f15JqIxyOGlxSLwlllx8lNMNE4uXl5GU7p6KjgkVpcFNObrVQDMEdgMAgDwCBlNCramkslGD+jcvD5BACWycA4LCzgPJhzwkkw4fcLjkRNw7FnZvC6cEFU123bBocrFILyYw6GYBDXcLmySZyJm5gQv2PHk19nzqBFiAiGzdgGPToqnHxFwfXPz2OfBYNos2kEGq+uQtmPjQlA7fhxGJzbbqtPXs4yOwsHeetWGOH5eTjLu3YJ/iA7wuTLQ0PuDNNRVfA1Pf88rumxx+xz/bSzLtoIcQokMj9iq7aKdGRz5OhRBNkf/ahIsmSzsGNDQ805WRMJ2JWhIegzJ7KwQPSd78CRfeQR7M9AwB3KCV2HDV5bW6/77R2vffRRby/8g3we6+BWgOiGDA7CN1hdhb/U0wObmk5DNzUK5gcH4VMsLTWnQ2E9xwOmjDrz4EH4bEePYr8xH6jxs4cPi5ZhTasPzPX2AqxaWhKthYoi/AquWunurgyYje3N+byY3mxVt/t8YpoyP9uXLqGqr5nt5cRud7cASlW1ElRMJnE8ScI5b90KX+SNNwBeHjoEYNZOFcvaGgDY0VFnQF0kguRHfz+A4UgEz/tbb4lWZyvVntksksxcjemGqCrRq6/imj/ykeY+XyNpJ13UyhIOCyDG53Ne+R4Oi+pq7iTbTIlExN6XJAEozs/jFQ4LQHH7dujS5WX8jSso7RYS6Dp0BdNVyTL2us8HQD8aFQmLTEYkKIwFBjxBmG2AruO5YVCRKxZZjIAiv9wSBg9VVdzLRjqkUBBtwddc4wzgLBZRgZjLoYXZqCs4rmZORiKcH0/vNlOwMT8P/TYw4M7UaJaOXrIuHp17JNtUPB7PnxLR/yCiKS4/bWGxtNjMW1MqCYCxETJvV4ytxBMTeCDLZTyokoQH1U55e7kMx5T5jfx+YfS83uaBVqkksrOKAuXG7btugXm6LqYmz8xAsRFBoY2NwTF0Ug25maLrgmuSX4mEaPcxltT39gIw3bGjeet6LofsfW+vmC65toZ2wokJcPY0+vzKChT+yAgc2mwW3GHd3et5naxINovggNsinIqioDryhRew5x95pCEwue6Kr2Rd5KbwfrT6DNerzOnI1SMLC0T/8A/Qy1/6EvaBogAM8PsBBjTaG9ksQJVYDO91YkuZ6ycYREUkt6G6MUhF05DcSqUArjQBO2t+Wxvpo7q6iAGqcLg5OLyZwtzBfr+4N4kEft+MXoQn5Xq9sIfNdFmtic0sr72GZNyRI0Q33rj+s5qGasTlZdj6Rm3Uug5glKsR+/vFhGcO9oJBAdoZwVIOWLlV0S4vla4DlDtxAv8/cACJRqcBbTIpeLkZBGB+s2QSe+vwYYCz/f3m/D1JAhAZCBDddJPzQFZVUdGcTBI9+iiueWlJtHgODprjDS+V4McwkOzGwEZNQ+XrwgLRzTfDd6wjV6wualXRdewRIveGBK2sYB/xQM7LLeWyABQ5RgsE8Kz29UFHrqwAoIpErHPHMx8kU3Lx8A6eNG18thVF8MKqKp6vnh7zRSaaJgBFrlpkGMbYBs2t0FbvZ6kk+ByZeqvZPSyXUTyhaeYoGZp9/9NPI/584gnYnVJJVBwyiBoMiipUK3vs0iX4RkNDSCI3WB8TQ93aRi+1rFwJIOL/QUT/FxHFdF0vXO7zaSK2FltV4QiVy2I6cjDoLpiYTsNh4Rbfri4BsCWT+E4r7c0snHEIhUQVEitKbn1uJpomWp0LBXx2eBjgntutxYuLcLpnZgSv48iIqGJspYoIMyLLKPk+fhzKN5WCQezvxz0ZGKisVqwmKy6X4WgHAoJnTFFQfZPLwUg0yvxlMggIursREKgqOBQLBXCH2c10ShKqdIJB3BenjpOiIBj75S9xjx9+uHG7GdUGEa94XeTKF+vCabILJHbamq8+KRSI/vZvcf+//GWhdy5cgFO/b1/jLLYkQbd3dSHT7iToTybhKBNh2iCDRm4MauCBL5kMwNJmA2KofuDeLvqooS4y+hBW+dc2UopFgHOxGAAeVYWfwsFno32Qy8F+DQyY451qBCS+9BJs/Ic/DNCoWng679ISbPjOnY2/K5XCdQSDIqnM1SPMwUaE54gBRU4OZzKCD9TJtN5CAVV4S0tYoyNH7IHIhYLotjD6GswLmU7D1+PvCgYR9E5Niamxvb3rByQx5Uk+DwDRDRqVX/8aftoDD1S2EhaLIpmuqriOsbHaU8FVFXyY5TL2glsV0W++iXW64YamlY1XtC5qVWFwnIcFORVNw57TdcQFrdT9oSgCUGTuXOZD1TSAVJom2pGbxYj5PPTd2hqOFQiIwplGySDmGcxkBE1XLAadYbWikNugja3QLF7ven7FetPcmbff78e5mImPNQ1Jh3weFZdO9o+iEH3969AVn/40bBufE5Goao9G7SU3pqfxGhkxVS1pBkRsF73UstK2IKLH45kkok8T0f9ORBd0Xb/tMp+SGXG02MyxIMuiks9NEK1QQPUhEaofjCPuFxfxwI6PW1cynKHnNiDO9ni9AK2sXEM2K9pudF20OjsF93hqVakkFHAuB2U4PS14dvr7AVpt2+aMx2+jRZZFy7IkIQCbnMT9U9XKasXlZVFp4PeLNujhYfHZ7duF0n/xRTjdDz0Eh7ueSBIcWr9fkN6++iqCp499zH57niwDOPB4EBA5bQGQZTjvL76IPf/QQ6baHP/NQF2NusjxlxsGpVgFAzUNn+0AiVePaBqq/i5cIPrzPxfcgCsr0HGTk41Bf0UR/HDXXOPMbjLXT6kEAJETZG5MYlZVVG3nctC5TRIZLBVPQRvqo6a6iCcLh0Ki1bkVhIcBDAzg/nNFi99fG+QxytKSoPhoBpDpOvYwJ2Cr//arX+HZuP12DJWr9fmzZ8Wzsnt343PL53F+Ph/sdDXvF095ZgJ89pliMcF9HQg4B9VnZxHglstIEuzfb/4Zqwcg1pP5eVQWLi3hnMfGBDjI3G0MKi4uwgc9fNgUyN9U3n8fHRA33ri+NZ1FVbFflpbgW3V1ieQvJ/1PnsR+PHDAvcrdt95CUuPgQejOJnLF66JWFa72CoWcAfgs5TJiAy6kaEVh8DSZxE8uUuFkczgM3Tw0tB60MnLCZ7PQVcwtb7X6slTC9xsHl/T0OAPxq0FFprUgEq3rfE1cZOTzNafJqJb334deufZa0/5G3fP9n/8TOuiuu0BTxUVPbBuc+EfM2zs2Bltgwgeo+4421EstK+0MIn6aiL5ORK8T0Z/run7+Mp+SGXFlsXn6saLgoTRb0WdGymUoVVkWfD/8e7vtzZyhZ8eayV6TSVxDf3/9SVGNzpMBMEXBGnCrs1VFJUmCByMcrm2AjYAiZ+i6uwWguJHTzKxINov7F4/DiPb3I6veLKBJpyuBRc7MFYvIJnFbtyShreVDHyK68876x+PKPlmGox0KoVrizTeR7Tp0yN71aRpAyHIZAKbdic4s5TIqJV95Bc/QAw+Ybo02gohXrS5ydAIuAImtlCHvyMbJCy+gUufTn0blDxF005kz0MONqqt0Hbonn4fz6YTnqVAAmJnJAEBk4KgZ35AZURQAPTwcxgKxfXXg3m76yJQuKhSw7sGguxM5nQon4bgzQpLg24RCjXl6dR3AX6mEgKvZ/mkEJGoaBoHNzmJic73n4dw5vGd8vHkgVioBLOMJz7X8Ik0TFYpM3s8BrhF4c+KflkrwJWZmcLwbb2we7ObzIgFqpUpQ1+E/HT+O62LaF79f8CzG4ziXiQmAasaJ0HaSEysrRN/9Lo73qU+Z84NTKYCJqZQY0FIo4Jz37HEP9Dl+HCDDvn21q1xryFWhi1pVuBDCaotoo+M1wy5hAAAgAElEQVTxkJFWqgKvJZoGPcRViuWyABa7u0UMw3Rd58+L6uOJiUq+d7tiTLBwq3N3t/X4tpaw/jdOg2aqCR5sylQSfr8533h6Gh1qO3faG9rGFd3ZLNEPfiAAxFtvFRWHblz32bMoitmypXkCzCCNQMR200stK20LIrapuLrY5TICKVUV7cFu8J+oKgDDQkFwQhDhYV5ehlHhyjaz38ckuZyR4O9hoCoSEQCeleBA03CMpSVBLsytzs0MgqqKUmvmjjCjeItFKN6ZGawTZ7y2bQOoOD6+uZxtfF/m5gS5O0/ytNtms7qKwJurChhcfPNNOCd33w3Dy5nwgQGxdpwRz2SQEe/pgaP83HP4zJ132gsAdR0BUC4Hh8Ap6TO3N77+Os7nnnuat3oZpEVCWNvSEorfCZDIvDUdfsQrW06dQob7xhsF/6qmAUBUVQS4jaqRL15ExcHOnc4mTpZKaNVZWSH63OdgZ0ol2CynHQGKguspFtHKaDFgu2p0UbEIG8d8WK0AJGoawDZdh+33+USbGw8kqSflMgKkcBjAcbPr0TTsea93va+iKEQ/+xl8gU98on4y7OJFBI+jo81bwpj7sVTCfm9U3cbtfcwXVirBhwyFhE/mRFcvLxMdO4bv2LEDicha/id/d72EsBnhZOXJk/ATJiZQiefxoJvC64W/l8mIlkoi6AEjqNjT09inlCRQw2ga0eOPW69ckiT4ZcePw//bvh2t34ODzu3i6dPoJNm5szbfZh1pgSfSkbSEX+REmFKg2d4zK8kknqmhIXfa4zdDeGp7KgV7vbKC/zP1As8ZGB/Hc+wGHUH193PSi7vuolFnfLEsnLjhacZdXdA73BJt5Fc0ToPu6qrU9fE4nvHxcWvDLblrL5fDNaoqurhOnYLd+cQn3LPLnABeWkLMZyE+I2p/XdQW0gERN1c2ZLFLJSgUTYOiCIedt3jquiB17umBomHFkM1WOs1mW4nTaZznwIDIkrFCZKXu8cDxszNAhqceMrdFXx8c11oBWbEouH2iUfsZqHIZwNbMDH4qCq5t61Y4dFu2uDtxq/q7eWpZuYz7zi3LTr6TQdJoVGSndJ3oX/4Fge6ttwrntVjE343grSQJgt7hYbzn2WdxTvffbz9DurQEMGB83BkYwNd46hR4jVQVwOa+fZYO0e4GqmUUv10gsTNo5cqXRAI8iAMDaGNmB3x2Fn/btasxSLO4CP24ZYsYCmVHZJnoW99CoP7YYwBoGCBxGlgxb225jCy7DWqOq0oXcUKyq2s9h+/lEh4iFwyKSZTpNPZIb29jMCuVwn7mKbzNxDilvvray2WiZ55B4H///fX3/MwMqiCHh5uS0/8bP1o+D1/KTMubMYhmLuuuLlxfLY5Bs6IoAPbOncNaX399JadkNos14KS0U+Hq4NOn4TMwzcAdd1T6sNls5URo9i2J4Ef19gpQkQcv6TrRj38M/fRHf2R/2nEigW4KrxfrWizC1+IErx1/68IF+EZTU+DatGCXrypd1IqiadiHXi/2m1NAh4sUZFm0zreb5PPY0y+9BH0UjaKbysogJbvCFYP5vGh17u62nuDgJA23TEcitSv9qoe21GqDzuUQ/wwOIhnTbI+oaiVwyF1AsRgoIN54A1Qa99xj7ZqaXS8PBeOZBBal3XVRW0gHRNxc2bDF1nUBJjI5bDjsPBOVSCCLwwAVH0+W4fwUi1DCo6PNFRFP/yOqzJTKsiCmNf6bwUSrwlwebPhCIcHxxxkqRYET6ka5NQtXcHKJOPMrTk5CAU5NuWOsMhnRsqzrCLCnpvDTqcOgKDh/jwfnzPf76FGil19Gq5SxFTmbreRWPH0a+6W/HwHM8DACFl3HxEG7gfzaGgABnlDoRAoFkWUvlQCKHjxo+TDtbqBaSvHbBRI7/IhXrsgy0d//PQKiL39ZtIamUoJcuxGv6toaAofBwcbcrc1EVZFAOX8eA5f27IEN4ep1J1IuQxfJMo5rk9S83Xe+ZV3UikBiLgd/qadH7NW1NdiYgYHG1aqzs7ienTvNVcU0AhIliegnP0HQ98lPwgbXkrk5AGQDA7DpzdZwdRXnGI1arypMJkW3SCCAVyQiWv2sAhPJJKoSUynogOuuE10TbgGIRimViH70IwS1O3divRpxq8pyJaiYTovhAgzuXLiA9b/3XgAadiSXQ6t3JCLuYSYjkukej3Xe8EuX0J0xPg7fyOKzddXpolYUWYZvHgg4t1FEeLaYI9VMrNdKUixCv87NiSnnkoR4RVUri036+py3NNeT6lZnv18kFRo9Y5yQKRSg80Mha/yC3AbNoGI2C57ZQABxTyhUObSFj6soYqgZF4uwz8O8iy+/DKqZm26CrXFrX2gakkWrq0gUm6SYqpY22qXtKx0QcXNlwxdb16EgJQn/DgbxsDtxsnmwit9fCYTpOgCjRAKKaMuW5iAZE49XT1oslaC0mKS+UMB7fT777WJMnBuPQ3HKsnCAh4c3NvukaTC609MA0QoF3IOJCYBzW7dac3Q1TbQsZzJYl/FxAJRukCgTiXbhYhHnyGu+vEz07W/DeX7wwfqfTyTgZPOEuHgc/IlnzuCzQ0PIxnPFxdiYOQ5L5qPs7sb+c2Kocjmcz6lTCGhuvBHtPzak3Q1Uyyn+DpDYERZdJ/re9+DsfvGLot2GQbdgUBB315JcDu+LxYj27rW/L3Sd6Ic/hEP7yU+CFyybFVU/TvabJImW7L17HbVUtfuut6WLSiWASD4fgLBWABLX1rA/hodhlzlxqqqwdfU6BDQNgJKuY1+bCRAbTWzO5wEkyjJsdj1uxsVF2MK+PuztZt+bTsPnCwTgy1jpeOAhCPm8AEFLJfwtFBKTns36ZTzF/MQJwSt57bUb03J54QLam7dtE0kMnw/P7d695kDQYlEAijxIZWoK/kcgUNkCbabtsVRCItTjAYha/f5SqZI3PBIRPle9Z2VxEe3aQ0OoLLJRhHBV6qJWFElC3GG3GKPW8VZWcLxWHirJwvt/cRHrMDyMSn9ei3we8c7KCt7LA2k4Nu3rcy+2MoqRR1CSBHdsLd3H1c+aJgZEOekyk2Wit9+GH3XoEJ5vBhh1XVCkSRJ0NMffDHYa4/A33yT66U9hNx5+2D3fW1VBz5BMQqcbK80tSrvroraQDoi4ubJpi61pAkz0eASYaPdBLxYBYBHhoTYq11wOpKdm25uZN6enp/I4XEXJ51kuC4fT77c/Fp4rExcXxfQyY/Zpo4EHBlt5PH02i9+PjYnBLPWyhaUSqhsXFkSWnVuW3R4qwXyXExPiHsoy0Te+ASPzxBP1nZFsFs58NAoeRK8XwN/LLyOTtHVrZcViLofPeb1wWBlUHBmpvCeSBOc9EEA1kZNAMZtF0H7xIgKBgweJbrnF9uHa3UC1pOK3CyRyy0Zn0MqVIa+9BhDk7rtB1E2EfXHuHOzEvn31E0ulkkhm7N/vzOl+5hlMJ737bqKbbxa62+nUWR4Ko+sAIRwGK1etLiqXEWx4vZW8vJdLdB02rlyGje7qEoPlPJ7GAE6hALCqpwf20owoCn76fOv1ZSaDZ4gIAzvqVbnG43heursBRjV7XgoFJEg9HvgKVhK83AnC04VDIdEmx9UuPNW5u7s5+KHr8OuOHsVxxscBytms6K0pq6tIZoyPA6Qkgh5gHsJgEFWJu3aZ0wnpNJKyPT1E990n+DPTaTHgjwg6wcivaKxYUlVUIEoSgvhG+kPTcA1LS7h3fj8AlbGxynu3soJ2z95etGvbbFu9anVRK0ouB13U3e1OGzIPLunrc/cZc1NkGTotkcD1RyLQU8PDtZ/PTAZ7P5+HPu3qEqBaICAAxWjU/ViRh79wq3MoJFrQOfbl6j+nRS+aBp2RzUJncIxXKmGdmH5DUaAjGFQNBLBuRn7FkyeRXN27l+izn3XP7vJAzkwGPp7DrrN210VtIR0QcXNl0xebq/rKZTFuPRi0pwxlGU5TuYyH20iybWxv7uvD3xt9RzKJ4wwOCqeVgU8+TxYm6GaFGo2aCwyZALZUEvwNRKLVuVwWHEbDwxvHXVgta2sCUEwm8buhITGYpa8PhnpuDsZN1/H3yUnnXID1JJvF/ePWdJbnnoPBeOSR+tO7OCPu8wmy81SK6Oc/x/HuuWe98c7nK6dBc+s5EYzW6KhoOxgagvPuxAlKpwFAzM/ju/btI7rtNkdOQbsbqJZV/HaAxA4/4pUjly4R/eM/wkF94gmxB5aWBMF2PT2oqgBEFAUAopMKjBdeAJh5220IqrNZMenRidNcKABA9High1yoErmqdZEsw6a2CpCoqgC2vF74QUzTkkjAhjWiHVlZwR6fnGw82Zml0cRmIvgXP/kJbOqnPlUfbFpZEUnA669vbmvLZSQ2VRXXaLWKlnnCiMT0ZkUR7X7MKcgBdC0OMV1HsKko+PvCAgJQfvb37XNuC4pF8H2Fw2g5rj7e2hq+c3kZ53fgAPy4evdXUUCNkM8j+K5OuCsKrsnYCs3Vml6vmHYdj2PtjxyxNoQpm63kDedWZx6OEImAH9rBoKirWhe1mvAzouvYN274RqureC5GRpwPFHNTVBXPYSIBfevxIEYdHGxe2KLriFlWV0VHXDAoqoe54psBRaddCNXCvKqJhPg+jqPdqqw+dQrrc8010COcvOG4KxwWg0/9/so2aH6pKuKoH/wAsernPy/aoZ3Gz7IsQM5rrnFlwny766K2kA6IuLly2RZbVUWLsNcrwESromkAYvJ5KGcj346xvTkYRMVive/g7KjXi+OwQlZVAEd+f+VnuU2bB8gEAnBc6wUMnF1hAtrqKkxdhyPFrc5cEeem0jYjmQwq9qan4dxlMrhHvb1Yv2uvxc+NPKdSCecQDCJA53U6fRrTHm++Gdw4tYQz4lweHw7j/H/2M/zuk580d+66joCHAcXFRQTasoz9MTAg2qAZ9DULKiaT4DNbWUGgsWMHHGWHDlW7G6iWVvyahp8dIPHqkmwWg1T8fvAgGluPzp5F0LttW+3P6jp0Ri4HANJJpcQrrxD95jfg+rn3XuFs2+FvM0ouh+vw+RpXU1qUq14XybJIyA0MbF5CsJ7w4LFIRPhIkoRzDIcbAz8XL8JX273b3P5oBiSurKCiNhZDa3M90DqRQHVdOAwgsVnlC4OlkgQbbQb0rP48g4AcwBr/lstVDiTw+SorFJnb2tgGWCqhXW9uDsABTyq2I6pK9Pvf45g339wY7I/H4Qclk/jeQ4dq87U+9xz8qoceMl9tWioBUGRQ8dQp3NOJCfhC3P7MVYtmKpbKZeFrJZO478PDOC+HHHpXvS5qNeHnzOezNbRrnfCgJV3H/rvcSRuOJVdWRGzIVc6Dg9ZsrKbheVhdxb97e2FPikWAjDz52ufD3/r63AFnZVkMGC2X8R3s+/JUZyeViNPT8I2GhnDOfPxIRHAcmrmP588Tfe1r0BWPPYbPGKdBM5jIHItm16VcRiFKoYCY18zwLhPS7rqoLaQDIm6uXPbFVhRRsuzzwXmzqpy4ZSeVggM3Pl6pLPJ5AI26vr5i0SilEhQ2cy6wlMtQqsHgeqdY16HQufWZS66NbR75PI7B3HzNlCO35yQSMBw9PTCO/f2bw7EmSVivCxfg/KZS4jx6ekSF4kYQGmsaDIym4Tt4vTMZoq9/HUb40UdrGwOenpVOQ/HzfX7xRVzHPffYzybNzgLkjURwf+Jx3COuXmCCZAYVR0drV3jwcIV0GhVOExNoTXTB8Wl3A3XZdVEzYSDRioPW4UdsX1FVoq98Bbrw3/970cqiqgi8iQC81Xt2p6fh/O/Y4Yyz6c03iX7xC7T8/OEfCloQu9y8LNksAMSuLlyHi5y87b7TXdFFigJ9T9QaQGImA/+mv1/4NwyMcXVdLZFlsU927zanxzQNz4nXW/v5WFxEYm9ggOiBB+rvvWQSYFggQHTDDc33O/uCuRyucXjYmt7liaPFIq63lr/GHSXZrAAOCwX4ruPjCIqrbcTiImgIikW0GR88aH0/nDgBn+P6683rk7k5AHLZrJh8yiDyu+/CN7rlFiQn7MjiIgL5/n68GFjkhDkR1qWaX7GeDc1kMCE6mcQaxWLCp7JZId3RRS0o5TL2CMdLToVbhnni+uXwtbgQhDk/OcHHlFhOeHJVFfEg25P+fjzPPh+emVQKz56iCH5k1vNW9IyiQLdJEo7DA0uYzot1Hse6XJFtZr1Zt05PQ6cPDMCeGIFDK+szN0f09NPQt089JYpDVFUMbeGKRRavt3JoSy3+3lIJdBGSBB3kYrddu+uitpAOiFhHPB7PnxDRV4loh67r0y4dtmUWW5ZFi7DfD4VgtcKCFXgohPYbo/JUFASDhQKcGW7rqZZMBu/p7690WJnYtd5QGE0TYKLHg3PweASvTjRq3QlSFFwPcxpxW+3IyMYEJMkkFDNPrOaW5f5+KNZLl2AA5uexFqGQABTd4kScn4eh2rpVOBeaRvTd78KIPvFE/ezl+fNYq927BVh44gSc9xtvREm6HYnHsSZjY+ud92JxfRs0t/t0dQmun5ERrM/KCj5z4QL+9olPuMMNQ5tooK50XdRInACJlztD3hFr8uyzIPV/7DFws7FMT8Nh37OnfgC0tARdOj7uiIib3n0XQfW+fUR/9EfCTgaDzoKvdBr6Mhg0P4jBgnR00QeiKLCr3Krp8jpblpUV7B8jKMPcU3199av0uUNhaAh72ow0mthMBH/i+edxLvfdV9+nSafxHPj9ANDMdBIkEqLKsjqpbEaM7c3d3fXBS65+zGYrk0XRqJj0bJwuevw4nrtwGKCo2bWcm0PiYudO65PddR3VpCdPwvcYG4Pv8ctfwn+zO8U0mcQxBwbQrm08Bk9+NU6DliT8jQc3GPkVIxH8/de/ho676y68j7nkjO2UVtqlqaOLWlYKBdzzaNSdCvhCAXslFrNehexUUikRp0WjolpQUdzla5RlMZWe6TIGB/Fv5ndNpfDiFupYTLQ917M/XOzC8WskUp9zUdPwPVy1bazIrpdwyeUE1+rZs4iHbrrJPq9jPE701a9Cjz71VOP11XVcnxFUZM5yIpwzg4qKgpiRO9ks6ppm0vRKN0iHXFXSARHryNVioEol0SLc1QUlYQUw46EqPh8AsOoW5NVVvOq1N/MEZU2rJB3nikOixgNhNA2KMpGAouJsuBMAgfkxuL2YW65HRx1N0CQinCMHvPk81nxiAmtTD/RkLsrpaVToyTI+t3UrnNLJSXvBUiKBIGdkpDL789vfggfo/vsRTNeShQWcz+SkaMtZWoKjvHUrJvvZkWQSxx4YMO/ws0PBoOLqKo6TTGK/FQpY34ceqpwu7lA6zvImiR0gsTNopb3kvfcwbOAjH6mcAL+2BvBjfLySq9UoTFcwMICg366cOkX0/e8DNPjsZ4XzzrxsdiWZRBIjHAaAuAEJqY4uMoiqYt9oGoJbFys+LYumwS5qmkj8cQUNc0LXO7+FBdjo7dvNB8UMJNaq+CDCc/KrX8FG1+IqZslmUR3i8QB8MwOgZ7Owv11dYqiMFalub64OePnvzO/m88FHZB5FbumORASg6PdjrY8exWcnJwGMNgJR0mm8f3AQ1ch2q6yYP+yddwDWjYwQ/cf/aK9KOp+HjgyHUa1jxq6Vy5WgIq8tn9vZs7j/99yD/cBrwlVm8Tj+HQoJINTE93Z0UQsLt+Py8+NUUik8ewMDzmMjM8KcnpIk9iWfh9/fWJ86kXIZsRK3hQ8Nre9UKxRwHsmkKGyIRgWgGAyKGQWFgqDaslIRyFOdGXyMRnEMbofmDj2/H+d5/jzec+SIfb9jbY3on/4J5/inf2oP6NP1SlCRKzCPH8eaHD4sugf43F2QDoi4CdIBEeuIx+PxEVEXEZV09xapZReb+QZ5IlU4bP5BliSAXJoGQKw64MrnK0m4q5WQolSSjrNwtaHPVxtg03UoVT5vIsGHFom4QlhPxSKMFnNkdHfXb51tdhyessyl91NTOJZVcIQBvEuXsPYM4G7fjmOayTLm8wAke3oquXvm5oi+9z20J3/iE7U/u7aGgHtwUICM+TwqiUIhgI92DFY+j+qLaLSSm9GqcEtRKgUHvlgE2MrORTW/ImcWLcpmOstXlS6qJVaBxA4/YvvI8jLR3/0dbMOf/ZmwO6USqoEiEbQk1tIH+bx4z9699u/1hQsAMScmiL7wBRyHuXKdkKivraEqic9vg0Dtji6qElVFMKeqlx9IlGVUz3Fng8cD3cTJU+NwOaNoGoJARUEVrlmbypNF6wGJ778Pzs+dO4k+9rH6ezufB7+grgN4MwOkF4u4Vo8HQKJVH8zY3uz3C7CjGkCstRaSJADFchm/C4fx/EajeMZPncJnDx2Cv1Qt5TISqF4veBCdAv6aBn/q3XfRsRGLYd2vvdb82pTL8GOIUKFtdy+zv5xIYGjUygrOiWlogkH8mysWu7tFgjabFeBJE97wji5qYeGiCyLcZzfakHlI5ejoxlV+M+VUPi/0aE8P7Gux6Lx92awUi2KSM3c+1aLrkiRRociAIZGYPN/fX1k1bVWY4ml5Gf8OBHDM4WEc3+9HR5iimK8mryWZDADEchkViMYZCE4knyc6dgznx7qQ7RaRaIM28iva2KtmQMSN0CFXlXRAxM2Vll5sHl4iSfh3MFi/nbhaFAXgjSQJPsHqvy8sQHnUam8uFKCw2OEzfq5UghIxOk+ceeE2X85ac4ZDlqGgnfJYGc9jZQWKu1TCuYyM4NXIcK6tiZZljwdKeHLSnbJtTYMR4UnP+bxw3rdvB3BWq4JAlvF+vx/v4fsgSeBB9PsRSNe6rlwOAF00ikmEXi/uwXPP4f7df7898uZSCcF2Vxcqgew6AwzUdnUhYPD5BKjJU7mXlvCTK119PnEvmV/RxDW0O99GS+uiWmIXSOzwI7aulEoYpCJJGKTCzx0PSZFlJCpq6aJyGYCI1wvqBLsB/+ws0Te/iSDkySeh242tlXZ10eoq9Gx3N4L1DayKbffdvSG6SNNgf1VVVIJcLikU4D90d4tEqapWDpertc8kCdVssVht0KuWcDsZUf1n4p13AJbt39+4a6BQAJCoqgCwzNh2WRbJ0pERe62FxvbmcBj/93jMV1DxYL1sVrT1BoM4xtmz8FWGh1Ghw+CoriOwzWTQ+udwwAgREb38MtbvE5+Ar3XyJMBMrxdJhXq6jUVV4W8ViwA+3eiEeeklAIl/8AfwdarboNkvMg516OoSCXsi4cP39a2zrR1d1OLCE8CZg9SpqCriIo/HelFEM+EBVZkMdBl3TZXLIgnT1+fOs2pF8nnEEJIEvcLgXS1JpxGXcMszV1lzhaLZZ5p5LXkAC5HQHezn+nxYi+lpvO/w4fozCcxc41e+Av3wpS+Z7wxrJtkskioeDwBOY4xqrFSU5fVt0EZQ0edr6te3uy5qC+mAiHWkuszV4/H8MxF9kYjGiOi/EtEfEpGPiJ4lov9F1/U1E4dti8XmVmJ2vkKhxi3FLJoG5zGXA4hYq/2Mp2gFAutbeFMpMenP6FiVSlAqwSAUBxPRssKsF2DyABm/H4rKjWoEXYdRWFrCTx7wMToqDBnz9szNiSwRtyxvZCCzsiImPafT+N3IiAAUe3pw/jMzWJ/t2yvX5Kc/hYP7+OO1B6KUSmip8XhgnHjdX38djvkdd6AS0qooCr5X15Glt5vNnJ3FfYlEwLOhaQAQ6xnRTKayDXp5WRitcBhrwPyKo6Pr7t1la9u5mnRRtVgFEjuDVlpXdB3g3alTaJMxgiTz89BnO3bUfn5VFZ8rlwEg2q06j8cxbTAaJfriF6E7ODllZihXPVleRqV4Tw8AxA2ukOjoojrC0zZlGQGbG90JdiWZhM0ZGhKBY7kMoJO7MGrpqEQCftX4uPmplc0mNhNhgNDbb8OWf/jD9Y8lSXhfuYz3mkmAMm1LsYjrskOWz9Wka2uCa9FOokCWRYUid63E4/AXeIDMnj0Aay9dQnKU2ySdyNmzRD//OcDXj35U/J4Tsfz9+/fXTjLoOnTc2hqqdZzyzmkaOGeXljDcpZ6vJssCUGRwUZbFOcmy4AwfGIBvOTz8b/emo4vaQEolxFHhsP0qNaOUy7B5DKg5FW6pTyZhO4eHBd0V782NbF82K5kM/JRyWcQMDIpJkvAljIBtOi3awHUdf2NAMRartAF8DB4WSgQbFoutj32LRZzP8eOwGQcPooPDTswpSUT//M+I1598Es+4G5LJCL7d665rvvfYjhkHt3AMQFQJKtZog7bczuySDrmq5DLPr2tLeYaILhDR3xDRPiL6D0RUJqInL+dJuSnMKxMKCTCxVML/eYBJLfF6UWW3vAzHR5YBnhkDqKEhHHt+HmCXsWqxpwefSaXwPv4e5pLIZitBnkZTqgIBvEolUeXY1YXPOCm593iEwpck0eq8ugoFpijCUe3pgfM3MrI5LZXDw3h96ENYQ65QfOMNvAYGYHj4vIzG97334ETffnttAFFVUfWjqsiI8xqePw9n+cABewCipsFxV1WACHbvzcwM9l1vL4yoooA8vlEWjicX7tkjziWREKBiPI7jsvT24r5zdWMLiG1dlM9v7IltlOh6ZcuDGenwI7amvPIKwIl774Xe4j2ZyUAncJtn9V7VdeiqXA5OMpOUW5VEgugb38B3fPrT+N3yMmxQLCaSaFYlHod96+2F/ePqHbdF19Eq+Sd/sjHHtyi2ddG5cxt7Ypz4u3gRgdzlBBJXV8XAFLa/koQ9HwrVr/RbWwPotHWr+fNvNrGZp4m+8AL8mAMH6h+ruxv2/5lnUD1nBkhkvmumKBkctJbIkWWRMOZOAictgCxMkdPXh7138qQYnHTNNdArTvdkKgV6F06mVx+P7//p0+jiePFF+CGTk2KNZmdxzVNTWMdEwv756Dp0Ld/nUsncNfIAB24Vz+UEsJHN4pisL8fG0MHSAnLFx2TaHPUAACAASURBVGhOJRgUsQqDME4kEMDzxIkSO91IRKLji/f60JAYkqhp+Jsk4Vnt77/8VDXc9p9OiyKOQAA6mgGu6ir4oSG8VFUAisxPz9RdnCxhwCwSEVWL9RIp4bDoeNu3D88k02j09JgfqiLL8IuWl4k+/3n3AMRUCnFmIAAA0Ywd83iwN3leAxHWxMivWCpVDpHy+5F8aZQYMyEdHWJSOiCidXlF1/X/lf/jwVP5Hzwez5d1Xc9cvtNyX3jkPIOJxSIe2HC4cXZjZASKYmkJSrV68Eckgoqz+Xm8p1AQE/16e+EwZzICANI0Me6+qwsK2KzRCwbxkiR8TzqNc4tGnTujPC05EkF25eJFKLeREThqu3ZdvixZXx9Kxa+/Hg7f9DSq815/Hcbl0iVRoejzwYndtg3tPdXCrYXFIpxszrStrQGcHBvD99iRhQUcd2rKXkZU13Ftq6sIUo4fR+Bx773Wqx8448mZVAa0Z2exV+fmYARzuZYBEa8aXcTCThCDiWacIubU4paPjlx+uXABQ5gOHEBVDIui4HkLBuu3z8zOionydoOVdJroO9/Bvx9/HLamWBTtRnaDqoUF2LT+fujXjap+VRSi//JfAAC1CIjYsrrI48H9TadF9Ycb1Td2pL9fJFk5uRgKCSDc56vd3jY2Bju3uFhJQdJI+D2NkihHjmDPHz8OX4UTatUSDCLxeOoUgK89e5rbV49H+GrcyseAQDNhANHrxWcUBXY3nXY2XZZ5Fnt6cNzJSVzT88+LexEOiwnGdp7fcpnoN7/Bd91xR/3r7elB23QigTU9fhw+JPNfLi/DF6mV1LUqx49DL+3bJwbhWREuIGDfyDgFdnUVvtGZM87P0yVpWV3UShKJiOeqt9e5bxSLiWE+DKSZFU0TXWo8EMvIsVgqifZl5hNsFeHCkkgEvkk8jt+PjjYe5OjzQYf29+MeLC6KmJlt1NgYEpH9/c315soK9MfEBKqb+RnNZMSwyVhMcCbWElUFN/TsLNGjj6JC2g1ZW4MOCoed8boSYZ9yXM8iywKjeOEFoh/+ENfhQDo6xKR0QETr8rdV/3+RiP6KiLYR0XubfzobL9w2rCgA4pj4ulGLMI+3n58XQKLRqPh8cGYSCcEtwe3NsRiUKisJrjLhdh9jObNZCYVwPFY0PLk3ErEHJiqKaFkuFnH8u+/Gua+twWl++20xxMMN7hG7EovBGHR1IWhQFICIx4+DfPedd/Ce++6rDcxMT2O9du0SFQilEoDHYJDottvsOdvLy3A4THIQrhNdBxixtoZj8DCVj3/cuuOtqmJv8IsnGYZCMMoTE0S33mqfY2QDxLYu2oxJehspRhDRzN7rDFppHUmliH78Y+j7z3++0oZcuACdsm9f7SAkHoc92LEDNsWO5PNE//qv+PdTT0F3lErCqTczibaWzM5Cn01NAejZKAAxmyX6679G4uqL/z97bx4l11ldi5+ah55n9SCpZc3W5HnCxsYDg40N2AYHbGN4fiGAgWRBXmJCBiB5kPeSrPyAhCkMYUwCITwwGGyMEca2hGfLkmxJLfU8V3dX13TrVt3h98fm5Ls131t1q9Ql1V6rV7fUXVV3+s53zj7n7HNPdT6jDJRti+wKVEpB1/HsyXKu9nItMTyM59jvz9ynwmHsO+3t+UnOoSGsj2DQ2rPPCRSXK7/t27wZgdf4OO5FISKRCL87dAjP4PCw+X02FsM5u91IDhQLIjlhzIQfryMeCsETg7Nb/8qBosD35Aq6U6dAhu3YIbpdeNKz2X3jpz/F8b397bBxpbBlC6pmpqfhw5w8ifM8//zyfSsjXnwR5/ma16DFsVoot3K7CjjrYrRy4HCIKrpoNHOtlYuODqFX2NdXWn6AJ9UvLOAZbWvLlQ4yti9Xc3hLuWAiVpZFciKRQMx06hTseXd35rXgKc3cqsz2eds27Es8SGp1FbEaD8Fsb8c1yr6ukQgSEa2teA8iMRSOK4mNEgXBIP7W6GPxEKiREaI3val4ZboVhEIoYGlqAoFo1/0zSiuk0zj+n/0McenFF1f89g0bYhINEtE6xrP+vfK772WovtQX2KlLp4UB5OEl+QxDUxOCqakpOKgDA7lkWldXZnszC+dKkjCc7DC6XMJoOJ3WjRG3aQcCOH5u02ZdEDNOYjyO85mbg6Fva0NVZU+PeH1PjxAE5tL8pqaKJgFXBFXF9XW74fi7XKgoTKWIvv99GOPubhjfgwdB7g4PwwFeWABZOjAgNC51Hdo6koSKv3Law8JhXJuODvM6T0bw5MpwGMd25Aje75prSjvuPECIycJEQuiNEMGBaW4WQQRrKHV2lpxMWGuctbbIWJFo/Hexv3c4rFUwNmA/FIXo3/4NNunOOzPJhMVFOLrZCScGVwV3dJRPICaTaNWJRvH5fX0iOcZyF+VgfBzH39tbXqWPWUxNEX3kI7DJ999PdPPN1fssi1jztsjhwLNj1KM6HRUtPh+OY3kZAR0npdraRIuby5VLtDU14flaWIAfZTaZ5XKJYSv5ki5OJxJvDz0EH8DjKTzExeNBIPjSS2gD1jRz+oHNzfA/OPHa359/H+WBKNkEIh9nezt8MNa7NjtopRCOHoUPcOGFeO99+4ieeQbrORZDQiAaFUNGmFAs9JnPPgvi4KqrzBGIRgwO4hgefhifOTODwSx79pSvh3j0KEjRLVuqSyASnV6ZgCyseVu0VuB04nmORrGmKk2scPXx/DzII55Gnw2WmJifh+/d3Iy/Ne6/qgobye3LhTRjTxe4elyScFzNzaJ6uaUFsV4ohP2G7bzfj+vME5tdLpHQyq58bm8X0+p50jNr3be0CEJR0xD/+Hxi2GU2uJJYUYQ+LOv18+f/+MewF69/ff6OtHIwP49K75YW6OnaMe2eOQAu8uDz/c53sC+99rVEd9xR2edQw4aYRoNEtA61wP+vIfNWXXg8MF48vISzxsFgrpHw+UAkTk/jq6cHxtWIQACVJdwKxqSbogiizvjZ3N5cSOunFNghZDKRdR+ZTMzeqHRdtGyw0G9fHwLZQhWG3Oo8NITzmZuDczkxIQZ11KrVmSclcusyg4cX3HEHJvUxkTs+Dp1DNtRchcc4dAjveemluffSDOJxvL6pqbyJX5omJiyuXw+tppkZZO3z6XekUpmEIU8fJ8LzGgjASQ8EcN+M1ygWQ9DmdiNYOp0iznlwVtsiq0Si04lnpzGx+fThJz+BHb3zzszkgSRhDbe15U8qJBKwn01N2CvKQSqFFpelJdi8oSHsL5wMKyeAYjmFpSXYh3LJTTM4dIjoT/8Un/l3f1ex5o/dqBtb1N6OYCwWw7U8HV0CLS0gzMJh7Cnsd3R04FlaWcE6yPZventx3NPT1vSd3W6hIeV259o+l4vohhug4/fLXyKQLESCud0ICA8fFjrJZggzvx/rY3YWa72nJ7MDgQlEHkJQyD43NeFvolHRolcOgTU2Bv9n61bRYdHdjevAbdujo6iKbmsTmoBEmRWKfA8mJ4kOHMD7lSPvwtPmh4aQnJ2awr8feQR+zq5d1p7VEydALmzcWL7cTJ2ibmzRWgDrzbE+YqXDH91uEH7cQpste8ADDTnm2rQpN5mTTIJA1DS8fi11znCbMGsdB4M4vmzyzu0WNnx8HP6Ly4X/49ixVEECk5PNzXhNIiEIxclJ2KeJCdyzq64qvR+43dhjOBnDrc4//CHs+WtfS3T55eVfGyNmZ2FD29uRCCk32cPxPusgEgntSK8Xdvmf/gnX4+1vJ7r2WlsOv2FDTKJBIjZQNozDS3gyFDvERoPhdqM6Y2YGTls6nZuhcrkQhPFUrngcjhNP1jM6T14vDAtXEZZLBnAWjslEJpiYTFIUHPP0NP7f50Prz8CAeefd5YLj39uL6zM3h/ecmRGtzuXqeplBKIRruW5dpqMdjyPj3dMD8s3lgrO5caOo8vvVrxBsjY3BoeV285ERVDIWa3sqBFkWUwnXr7d+71QVzjG3Ux07hg36kkuQbef2JCaHJUloQrHmUVeXIIyL3UeeDOn34/o1BnOsPZRDJBrb+xqoHZ59FhNhr74a+moMTYONcbvzD2dKpbDm3e7yJx0rCqqup6eJbr8d1eO6DlKAHXWrtkjX4cQvL8M2lpMQMYuHHiL69Kexj3z609iHGigfbW243/G4GIJWa3R1wb8JhcTkYadTEInLy7mdCw4H1siJEwgezznH/HPLg99UNX9FiMcD8vAnP4FvcOONovsg33vt2QOS6vhxrGEzg9U8HgTDc3NiiFFXF/bseLw0gcjwenGdIhH4Ajzcw+y1WF5GUN/Xl1s57HKBsBsaInruOZD3fX2oznE6BZk4Py/a0okwibmjA1WdVqFpIAzTaVzXYBBtiZs24foePw4fbNMm2M5S5MPYGOR0BgfR2tdImDVQDIEAbAPrslZaMRYIwKZyTNjcjPdmDXyfD+suXzU1TwT3eBCfrJX2ZV0Xcl6sWZhPWz+dhn3gIUREOI/+fqG7bNSNtLI2g0F88cC2gwfxGT09sGd+vxj8WayrwkhOPvwwbBxPc+ZK90o6rqansUd1dsKWWvW1VVUQh0ZNX47Z+P0mJ4k++1lciw9+ELazgdqiQSI2UDF8PhjEZBJfqRT+z9gi7HDAoeH23lQK/+ZWG57C194Op3JxEV/soPFn8HvxsBQm/SoBl5QHAjiO+XlsdpGImK61dWvmxOhywILesixanZeXYez7+vD+drY6s+g1TxVm6DqC0nQaA0KyDbyiYJO74AIYZZ70/PLLyLQHAti0jh4F6Wg2S6iqCHwcDjgQVjcWRYEznUhgszt2DEHMjh24rlw9yeBpl0wY+nzm9fMWFxEsNDcjcG844WsXlVYkNlB9TE+jXWbzZmjHZv9OlkEQZgcvqoqkhaZhnZcTUGgaMu2jo0S33ILKIiYQuaXV6nOgaXDaw2GQJ4XIlkqh60Rf+xrR178OZ/yTn6zeZ51t4HZZDgprrXXrcGAfnZ3FfrNunZguaaxIzK7293rhO/H0XrPPA7+3sSIxGz4ffIIHHgAp9sY3Fu42cDoReB49ijWqqoXboLNf198vKpUiEfhfLCNidq/Nbm9Op3FPSxEgySSqbngacyG0tUEe5eRJ+Bm/+IUYmNfTI7QbWeM1EkEVz+qq9erI48dhj3buzKzK8njEZ778MmzO+Dj80e3b83dGTE+jJbuvD0OrGr5LA2bQ3CwqtFtbK/eNuFttbk4UfXg8sF0dHbnPparC5skyYop8f3M6oOsgqVi7kO2U0c5wFXU8jp+J8HddXfhb4zpNJIRM1NIS4otyquGnphBDXX89yDqe9Dw3hy+emN3eXli248ABSFNdeSXRTTcJ8pPlXXiqs5VnYWICdqq7GwkPs69VFNGqzHMPuMPR48l9nxdfJPqXf8Hx3X9/dbtAGiiMBonYgC1wOEQFH7cHy7KYdsebQU9P5uRmFrXXNKFBx1mS2VkhBkskphkS4TtXQaZSlbeZssDv1BSc21QKG8DQkP2tx5yFM7Y6j44iKOjpyRUWLgepFKoduYrOiOeeg6HnzccIVRUtSrt34zhYy3FxERV/27bh5wMH8NXTAzJxeLhwIKbr+Mx0Gn9n9XryBMlwGAHI449D/2LzZmxWiYRoSw4Gcd7lOEGahvshSWJyWgNrH1aIRB6uomkNfcRaIJEg+u534ezdcUfmugyHhQh7tqPLg5MkCUFzudPbH3gACYfXvQ5tmHxMioJjslp1oWkgTSIR2D2eWGo3ZJnob/8W5MW11xL9r/91egd0nYngqjcmlI3JtlqAW94WFrAOuJWfA0CjnpYR7e1CaqO52Xwiz+EQ0+pVNX8iLxhEQPnjH0Oo/uabC+/rDocIFEdH8Z5mqmSZQE2nM5MI5dhiY3tzOFycwNM0+A2aBltQKpHpcOC4BgbEELqJCWgotrXBLzp0CH93883wF0IhfHFVZamqnvFx3PtNmwpPvPb7MWhl2zYQmq+8AnJzxw7YRj6P+XlUJ3V2YghcI0nWgFmwll8kAjKs0r2G5a4mJvAc7tiRGcMZkUxiDej62mpfTiZhZ1VVVFRyIpN/F4vBjhGJAotsktGIYBAxUDSKOGpqSrzO7HlPTSE+Xr9exHc9PfjiIhDWnV9YEBJk7e1iz3vuOSSKzj0XyVWugufETDQqElk81blUEnd0FPastxcJkVL2PJ0WX0wcejywd/mIQyI8I7/8JdH3vgf/6wMfWFPDLs86NEjEBmwFDy/JRyZy6XZbG5yeEydg5DZsgPEzGl2XCyTb8jKczNFRGBmjNp/bLYRWnc7ySvDZiWVHlifx9veLCVpckcjOql1wOoXhj0ZFBml2Fsa8r68846hpOB+u/jQa8vl5ZJ7yCW3rOu5JPI4NwLihHTyITekNbxD3gFudx8eR+X7mGRw3E4rGCobpaVzLoSFzwwsURWgYrq6C2JRlvDe39+zbh9bIQKDy9gsiPAuzs/jsfKRGA2sbVolEnvTe0EesHjQNzl40SvSe92TalFQKiZNgMP9wBp52vHFj+e2mDz8M0uCaa8TEPknCZwcC1pMZLKcQiyHoL0cT1gxWVog+9jEQFHfdhSnMa2ig0xkFrn5jEopbnWuFQACfubqKpB0H79xiyJqd2fvRwAD26snJTCKpFDgwM7aJZaO5Ge3MDzyAacO33FJ4P3Q44DO5XCAMNM0cIRiPi4QqD6zr7y8vgcrtzTw0IJXK3xZ9/Dj8ub17rQ1RCgahGz05CSLxl79EJaCmIbl5ySViGIGqipZnlkRxu0UgbhygMD+P8163LtO3LYSmJnzW9u2way+9BHu0axfe/4knYCuvusoen6iBsws8KJOre8sZNKYoIK6WlwUJr+uwO/lIIWP7clfX2mhf5spCrtju6MBxSRLWdDyO33HxTEdH8YFL+cAJhtVVxMETE2J4VrEq5lAIydWenvz60G43rmNXl5jyHA7jfoRCOMaFBdiwnTuJbrstVzKDW51lWUhGRCKiTT2fL3LyJOxjfz+SHYUG6iiKaFXmJL7HI76K7RuahsF8+/fD3t5775rTqT/r4NA54mqgFjjrLraqiqCNDS4RjHAqBYPscsHwFAoUk0k4f+EwjGa29k4yic8xO2GZCEaR24FYvHdoCIY324ixxp6mwWDlGyBjF1IpHBPrBQUCotXZ7AY1MyOGjmQH7d/9Lq7VXXflOutjY3jtpk2Z+l7HjkHLbN++wpoT8TjIxLExEKHcJjg8jO+6jvPIV7WjaUK/kL84s5dO45hcLmTMIhEcy/AwCES7gj1JwnE7HLn6kQVQ77TTGWuLjBOYSz0fXI3Y0EesDh55BNqqb36zIPGIcM1HRrDutm/PtUULC3Cq+/rMaa3lw/79qFi+7DLRQp1KCfLCaoCkKAjYE4niVUOVYmwM7TkLC0R/9EeooCxBrDRskQ3ghKHPh2qMWicWFhbga2R3IoTDWCcdHbn7kiQheGtttT4V3KgNW8hvWlqCRmIggEq7UkT2yIgIJLdvL3wNWb7G74ePIstI4PG053KnpBMJ3TKXK7O9eWYGycjh4co0RVMpkPuHDqGa5+KLid75zvznqmkgI6JR0Q7JhLCiwGfq6IBvU87zFgqBSBwfx3OwdSvRW996WhMODVt0BoDbcrNbcYtBVUUVrq7jue7tBTEUj4PE4qnC/PdrrX2ZNfjTaTFsjddwLIafeTAnV4DbUe2r64iFQyFcl9ZW0bVnRDSKJEZTE+IxK5+taXj9Cy8Q/cd/IKa8+WbEvDzpuZAfzImRaBQ/c5U1J+BOnIB9HRzMTSDpembFoZE49HrzD/rKB0ki+tKXUIn9+tcT3XprydfVuy2qCzRIxNrirL3YnFEPh2GEWlpEFQdXqXV355/MSSSEp5eXQfYZNfVYs4Ko+KAVTUPGZ3ISwQIPcxkaKl1GruuCTNR1EYRWi3zQNJzr3JxwiLnVuRjBtbKC7Ha+KdgPP4xrePvtudMUeXp0f39mdmtxEa8bHDRP2iWTIADGxrC5LC0h4D7/fNy3ri4xjIerVRk8mIfv4/g4rvf27TiW/ftxLNddZ1+rDrcVuN04f5OZ0HrfoM5oW8StEWaIRFUVLc4N2IdXXiH61rfQ+veWt2TeB6663rgxVzJgdRV2o70dwX45gcWBA8i0n38+WjOJsAdFo1jnVlu1FAXJlGQSx1StttdnniH6y7/Es/jRj4KgMBHENWyRTZAkIXpf66BW00Ck6Tr2IaN/s7wshpBk70+Li1hLg4PWiW1FwfsXC+Tm5zG1ua0NGomlnsfRUez9fX35W9piMTEUz0gWKgrOX5bhv1TSopZOw8fTdfh2ioK11d6OScWV3tdkkujLX8Z5Xnwx/JPdu4tfG9b+jkZBFhw5Aj/ywgtxXPmGNJhBNEr0gx/Ar920CT7tnj2nTTu1YYvOEEQigtAq9lzqOnz8hQX8fVtbfkmmlRWsfY7xlpdF+3IlSQM7wPEp6xk6HDgXLh7hIZzNzZmVxHZD08RQLU2DXeAuPVmGpILTCRtWTgXexATRN7+JfeT222HHwmHYS25nZ0IxXxzEw2UiERyPwwHyMB7HkK9zzhF/x9WGXBDidGZWHFrB0hIGqMzNEd19NzQcTaDebVFdoEEi1hZn7cXm1lRj6zGXzrvdMA6rq9iw+vsLZ3VHRmBQWK+QNx+uZuPR70akUqJlmdvYhobEREQrYCOaTOJnvx/HUE0CIhbD9eFNt70dm3R2ICtJoiQ+W2T22DHoG116KcS/jQiHQS62t6Mtia+9JCF4cLvRxmx100okILq+uIhNZmwM140rT9evR1UAt/gYp3pLEo6ZCcSVFZACPT1EN9xgXyXo8jLeOxCA823hPtb7BnXG2yImEkvdU10XGeYGkWgPlpaIPv952On3vCdzvcbjIAlZ+sCIRALkI8tKlHM/nnsOduvccwV5yZl0p9Pc9FcjUilUwqdSyLJXa5LvAw8Q/eM/wjb+2Z+hqsikzW3YIhvBgZXHg2e0ljaBBxGwFjFD00SFT76uhNFRrJ0tW6y3A5shEqemMIytpwdtzqX234kJVMZ1d6PVlq8htxrzfp8NTQNpGY8jkK1kmB1X3sTjYpDKJZfYo5/94x/Dn3zzm2HrTpzAdT/vvNwEbTbSaVQTJRLwf1Ip0RoZDIoKHzM+TiJB9OijONdrroEvc+QIzrm3F2RitSqmC6Bhi84QaBpiMqdTDKEyQtdhJ+fnxXT0desKV8HqOv52aUkkELq7T2/bvaqKgSiJhDhOIlEx3NxcvDilGlAUoUdIBFs4OYnrfP755ZGus7MY0NbSQvQ//kdm4Uw8jnsZDgsitblZDGbJZzOTSSRmpqYQb27eDL+Nh3cRidkFHk/593l0lOhzn8O9et/74BeaRL3borpAg0SsLc66i80ZHkWBk8Xl36kUiCJVFROYWBuCSb582S9uewmH8X49PSKzxZOd2GhFIqJlWdcF8djZWfmGwHqJyaRo0672RpNO41x40/b7RYuwroOkczoRmBuvXSRC9O1v4/zf+tbMoCiRQDuM349MOr9O09CKuLQEAtFM5Y2qimpNribSdVxztxv3ZHVVtGuzsPvQEJzpDRtw7xIJEIgOBwjESATVkO3taO2zQwND13EMPImujGCl3jeos8IWmSUSua25oY9YOVIpoi9+Eev2vvsyKw1VFWubCGvbaKfSaSQziOAolrPOjxzBJOYtW2DrXC7cV65Ksjp1UpZBICoKSL1q6KRqGq7X974HrbYPfxhEhIVsfb0/sWvOFiWT2KtYD6uWRGI8DsKwtTVz7SiK0LTK3q+41d7ttj6ghHWqeHpzIYyOIpE3MIB9uFTV3NQUjqmzE0Qiy9o0NZWWCwmF4OOxXmq511/XUZU8P4/gm32RSnDwICRVrr0W50WEY332WXwfGACZWIgkPXwY93j3blERLUmiXdA4pIF10/LZgmQSUhGyDAKRfTSeHH/0KH43OIjPqlbyIwsNW3QGgdt7eagIIxJBskOWsUbNaIizVuL0NJ7pbdtOX9KWCdLFRUEeBgJi8rLV6erVAsd8zz6LWOXSS1FtbPW6hUJEX/0q7Mi99xav8pYkQShyh18wKAhFvx/X78gRHNvgIGz66qoYQNPRYY++5TPPEH3ta/jcD30ov3Z2EdS7LaoLNEjE2uKsudhcsSdJohQ8X1DIba2aBoOjqnD43G5UquV7DTtbPLSlqQmOm9uN95qdhXFLJESL6uBgdUrmueSdS7t5qEw1iQhub5qbw8bicIhM4I4dmZUImkb0/e/j7++8M9ORTKeh66PrCF6N1/rZZxHQv+pV+cV7ub3bqGPIGSxVFRPBtm/HhpV9TXgKMusoJhJiOpiqwtk/7zyc389/juv6hjfYs7GrKj47mRR6IGWg3jeos8YWNYjE2kHXYW8OHcIwkK1bM38/NgZnc+vWTHusaahATCZhw8qx1SMjIOKGhoje8Q5BFkSjCGBaWqwRCKzFq6oIeKoxMVKSiP7mb6Dd+LrXoUKgjOqMen9a16QtkmUEUi4XiLBaBrzLy3hue3oy14Is43c+X26FWTSK9dXdnalpbAZmicTjx4l+/Wsk/cxIiszOwo9gX6C11fwezkG+1yv8O6s4dQrk5+bNWP+aJiqLysHoKDQizz0X528ED6Y7ehTXcc8e+E7GveT4cZzTjh2FhzLJsvBx2afy+0WFos8HMnb/fvhHV1+d/70UBZ937Bhs2PAwjrvKraMNW3SGgQsDgkHhOycSeA7XrTNHTksS7BYR3icWw/dqDSYrBFkW1ZCsydrejnPgtbXWMDICu86SB243bLxZ3d5wGASipsG/sHLNeQ8Mh5H4IMJ+ODmJ3+3cKTr63G7ElMbiGh4mZTUhrOvonOOE8H33lZXArXdbVBdokIi1xVlxsVMpIULLwtnFjJ2uCzJR17FR8WQvznJk//3ysqhi5Ko2FqflDWrz5kxtoWpCHZY2XQAAIABJREFUUWA8Uyk41kwmVhvxODJCxuBh3TqxwTz5JNFTT6EFads28TrOiCcSyFIbDfTYGILa7dvFMASuHDV+selwu0Ulpt+P+yHLcFrNOKy6jkzZ4cM4VknCebS1oS2qvx8TxOxwflMpBDaqiuxpBcRAvW9QZ4UtYpglEotNLG2gNA4cQJB9ww2ojjFiaUkMXTC2auo6Wh/DYZCL5WihjY9jal9PT+bQKB7g1dRkzZGVJATgug67WY3AOxRC2/Lx40Tvehe0Gzs6yiJLGraoSuDhb04nSLta2QVu/UulcnV6udI/GMxdKzMzWGcsE2IFmgb753QWP8/Dh7HOt20jevWrS/t2IyMg1np74U9Yeb4TCTHwbGDAWpAfCqFteGAAwS63N6dSYgq2lWRROIyBBO3t0BMrdI3icUgqLCwgYL/wQnzWxATs38aNuXIzhcCVYNGoqApyOnEPZBnVkKW0D2UZCZqREfx7yxZcjypNNW3YojMQi4uoINQ0UXlohsTSddgqrmbs6sL6j0axntrbrdspq2BSPhTCsWgaSMO+vsLaf2sF09PwjYaGoDeYSMCuSBKuZ09PcRI3GkUlXyIBArFcnVRFgV2bm0N1YCiEPWb9esSdPJ2an4dUSkyoZ9kvnupc6plRFGhpP/kkKi/vuafse1Tvtqgu0CARa4sz+mJrmpjqxXoSVhY/D0iRZRihpSUYnP7+3Gox1oxIJODkHz0Kh2vTJmSA2VjVekpdOo1roChiulc1R9BHIggcmpvhXHLg4fMhINi/H1WGN9yQ+bpjx3D9duzIrGgIh6EnFgxCO5GrDZlccTqxIbCmSSCQeY+np/Eeg4PWKvxWV+Hk+nwINk6cQBYqGsX95Jbn4eHyhxokErg+/ExVmHWs9w3qjLZF+WCGSGzoI5aP8XGir3wF5MJdd2U6i1zVFwwiiDVichLrcsMGrH2rmJmBXENrK6akMuHHtouTG2aRSOBYWU6hGsmgEycwOCUWI/rDPwS50tFRNknVsEVVRDqNpGWtiURVRcLL6cxt6eUArbU1MxHGpB2331slpJlILDaxmQgk2bPPop33iivy/w3LCCgKfLoTJ7A2zzvPml/IiT9FMdc2SYQ1/PTTWPsXXZR5LpKEa5c9vbkY0mlUWMfjRHfcYa76anwcFdmKIiRn+vtz7Z9ZKAr8pEcfhc077zz4RVztUyrRkUgg4Tw+jnPevr28Z6QEGrboDAJrtHJra1cXYiwzNpBjtFQKz2dbW6ZPEArhPXt77a8A5DXOX1w5yXryp3F6uWksLyNZ0NWVO709FhPFGn4/rmF2QYQkgUAMh0HEmU1cMHgoSiolJiwfOyYqEAMBxN7RKPYNtxv3mCs7HQ6RuOFuEB5q19yc/xmKx6Glffw40S23YJBXBV1B9W6L6gINErG2OGMvtiyLrAOTS5UIYnO1G1eNDQyIAJNbYUdGYEhbWsTGxqLd69YJo3U6StRTKRhErpZsarI/4yXLcAh9PgTgDoeoxhwfh9Pr8aCN2TiEZnwcZN/wMJxableIRNA6LMtEV12FzYmnUHOloc9X+L6GQmIytBUyYGUF2bZAAI5tOg0iU5bRTh2J4Jjn5/H3bW049o0b8VlmEImI1qhyBurkQb1vUGesLSqGBpFYHUSjRP/8z1hf739/JvGm63AK02msb6MdXFzE2u7thQ2zisVFTBv0+eAoc1UD21+v11q1cSwGssPlwrFWY+948kmiT34SjvSf/AkqDCogEIkatqjqSKeFyH1nZ+2GASST2PeCwdy9bmUFv+/oyFxvsgzfKBjML0VSCqoK+1eKSDx4EHrKF1yAajsjNE1Md+V2tuVl/H0gYH26KBOqLEGSPdE9+2+feQbX4ZJL8icBuMJPVc21Nz/0EGzYm95kzU7JMtb7k0/i/t16q9Dwtgpdx/vMzOCad3eLwTG6jvvFAXqx7p9IBOTE9DSuzc6dsEE27XUNW3QGQFFgd1ZW8BxxtVk8Lsj3YuDiDiLYy3zri6utVRXxWiXJGS5AYdJQVbHGuRuurQ1f1SzosBOxGKqoAwGiffsKXxuWfEinYe97e/EaWSb6xjcQJ991l5iaXAxMFPKXruPeezz4+eWXcY137cpsiWZbHw4LXUR+RnjSs9MpYkxudW5qwt/wPVlYIPrMZ7BPvOtdqEKsEPVui+oCDRKxtjjjLjZPt0qnRZbBrkw96w1OTcH4sKaVcRpYSwsMUW+vGNzB7S89PTBQPGjldIAJOtZ8ZE2LSqFpaDvWNBBq2e/5wAPIGl19tfj71lY4B9PTMOx9fWLKtK4TvfACDPgNN8BRDgTMO5arq7hPbW3WMl5LS9AZampCBZOiQAsjHodGmNHhTiSEhuLsLI65qQlk4vAwziff8S4tCZH2Qn9TBup9gzrjbJEZ8LNOVPw5aOgjmoeqIuM9PY3pedktM9PTcHTPOScz+IhEQNi1tlofBkGEIOUb38DP99wjiAVFQXDN+5FZRKM4Hq8XtsjugEPXif7zP4m+8AWc74c/jD3KhsEd9f6E1oUtUhSh69XRUTufIhLBs97Rkbl+dB17m6LkitgvL2Pd9feXR1qZmdhMRPTYY/AzLr0UHQ9EIqjUtNyhIOEwqvO8XhCJVqp8mXTgCsyenvzHduQIfMDzzy8+mVjXhe6g15t/Ai0RgvnHHiO67DIh72IWkoTzXV0VHTabNyMQt9ql8/TT8H/OPz+zmpE7gLg6VdOEDnlLixhmmI2lJZC6i4v4m9270Z5Y4X7XsEV1DFXF87C0hGeusxOxFccXLFXFQzKzwRObY7HM9uVCSKexpj0efI6VZ4+HW/J0ZX7ueV15PGIgzFrUOiwEWUYsRoS1XsoP4cKRUAj3LxAg+sUvkGy4447i04yZOOQJ8Ubi0OvFvUulYAOTSXSFFUvgsE1lHUXW2TUSilyhzkVHPh+ega9/HffvvvvKr9bOQr3borpAg0SsLc6oiy1JYrKVmYl75WJxEe0z3O66Zw+qRNrbsXEsLeHveGKhLMOB5qErnZ0gkE5XVREPIUkkhNEMBisjW6enYaw3bMhtYzl0CC0vl1+OMvhoVExKHBmBIedWGG6DOXUKDuVFFxXfdPJBkkAEBgIg88w6AouLIAR5UpuqIuO/sgIis9gkLllGG+TYGM5NVfH8bdiAYxgYwHEsLMDBaGuDQ2MjIVTvG9QZZYusgIlEh6P488BEYkMfsTgefJDoiSeI3vY2ZM2NiERgW7q7M5MLkgSdLq8X9sbqNY5GQSDKMlqYuUqLCQx2XM2u99VVVEP7fLBFdhNEikL0uc8R/fjHaP/8gz9AcNPebsu+1LBFNQLrNet6bYlEniLa15fpZ2kagkci7G/GdTQ+jnWyeXN57XtmiERdh69x6hS6F7ZtK0wgMiIRBKVud+EpxsWwvIyvQAAkqXH9TE6iYnDzZvgBZsAVTE4nbIbxmGdmIKuycSM0S634D4oi2pn37sX5HjkCHywQAEFgdgDO88/jdbt3o3KwEHigIbcQqqqo+inURjg3B98vHIaftGeP9cE8BjRsUR2C46jFRTwz3Pabj8DiwRlNTZnkHE+PT6fzty8XQiKBz25uLk5Q8XHG44I4ZP+M40+uQGQSvR7alo1QVdhGSYJttNJFoWm4f9/6FuzxrbeiiCTbBmtaZsUhkSBfmThkJJM4nlQKNsyKXrWu4x4xoZhKiWEr3PIsy5gw/73vYf/60IfMt8ubQL3borpAg0SsLc6Ii60oMOKKIjI9dhN0PAVsagqGyOMB2ZVK4ecNG2CIvF78HzuVbOQ0TZTjO51wiqwEldUAl9zzUBK/vzxykzf73l6Radc0GPypKYh/d3ZiA2GiRNdB9LG+UioFQ93Vhd8dPIhretVV1o4lncaG5XSi0sis8Z+fh9B4WxuyTrqO7NnCAtFrXoOMuJVjmJpC0DQxIZyIpiZco927y28hKoJ636DOCFtULswSiY1BK8Vx6BDszeWXQ7/GCEUBUeh2g1xgO5dOozVG18sT+E8k0MIciRDdfbcIeDkLzlXXZu3qygpsWCCA47S7VTUeJ/r4x9FiefvtGBLl9SJgsmk/atiiGoKJRE3DPaxFixxLuGha7rA4Dt7d7sxEmaoiceh0Yo+16meYndisaUQPP4z995JLQLiV0hqMxVBt43BYD5aJsM4XFuAL8uCZcBjJ5q4uBLxWCT9uv25qgl8WjxP9+7/jve+4w1o1k6aBMIxG4X8YK0iXl6EnGYkgsbJvX/EE/OHDsJfbt4tqT7NgQpG7hYhwflylyPdI10HAHj6M8+7uxmeVMT23YYvqCFzFtrAgyL9160oXhLDGXWsrbFEiIYZhFmpfLoZwGO/Z2ZlrC7jbLRYTsZPbjWeYdffjccQ/7PdXIqd1uqDr0PZfWoLNKFZFXej1//VfsKtXXCGkLDo68F5MsCoK/t/pFF16+Wx1IgECUVVhC8zowBZDIiEIRe6AO3gQEg07d0J2i/1xTnqc5br1dYEGiVhb1PXF5iynJAljXQ1B3KkpIaTd0gJHi9tQk0kEfJKE6pP2dqEBEYuBlDJuYJGIqEocGqoKmWQZXIbP2hBMJprZ9OJxEGU+HzYHJiVlGRvEz36G73fcAQcwEMAmf+SI2Ax8PryGibzHH8d1vO02ay0FqgpiUlGwYZl9FmZncY87OlAxoOvIRk1OYtqjGf2OYsc0NobM/eSkGAIzOIjKhA0bbHtm632DqmtbZAfMEIkNfcTCWFiACPbAANG99+YSrSdPwl5t2yaCEk1D+6MkISi2Sh7IMoaoLC4Svf3tICwYHNgYg+NSWF4Wcgpbt9pPFs/NEd1/P+zdfffBufd6zU22tICGLaoxNA3PDlft1KJdLp3G3un1wh8yPj+yjOPx+TKDz3gc/lJHh3VhfSLzRKIsI4BdXCS6+WZzWozxOAJeXQeRaGZgihGShPVFBF/n0CHY6EsuKS8RYGxvdruJHnkE5Ozb3madTDtxAvZx27b8us2ahorJl1+Gzdm7N3/l5LFjOK9zzsnVnbSKZFJUKKZS+L9AQFQoer04rtFRkBnJJGz77t2WKpAatqhOsLqKGECWhY682f2YK/7ZP+LBJdnV0FawsIDnkuVQuNqQp5J7PII49PvxuUwsOhw4h2JaoGsdJ08iVt2yBevOCnSd6Kc/heTB9dejGCSZxH4RConW9O5uXDuPp/h9isdBIOo6khxWbXMpRKNEX/wi0VNPwb7ceKPQcnW5hC6vzyckGcq4r3X6JNQXzmoS0eFw/CsR3UNEHl3XlRp8ZN1e7HRaCNb6/fYaa86GTU6Kicy9vXB68zkviiJ0EltbRQsKZ6m6uzMNZCqFLHkkgg1qcHBtbDSs+SjLYhP0+3OPLZ3GubGGmKKIaY0ulxh68vTTqPy57TbhkHJGPB6HDo9RI0xVQTpOT8OQu924jn19QmOyEHQdBGQ8jkDerPMxPY0WIZ7yRkT0m98g0Ln8chALlSAeh2PkcuEarayAVBwbw+94MjPrKJaaaFgEtj5BDVt0emCFSGzoIwokkyAQUykMUsnOUi8uYq1nJ25OnsSa3LLF+pR1RSH67ndh+9/2tkzdHLajTU3mK8NCISGnsHWr/STx0aNEH/sYjvujH0XCpAoEIlHDFp0WnA4iMZHA2mppya1USSRADLBgPWN+HgH6hg3W2tEYPLGZ/Y1scBVfOo2E5Ooq0RveYK4lVpKQ8FNVBKtWq13SadgZbo+++urKA15JAoF45AgI0V27rL1+chK+0YYNpTsqolFUT4ZCIBsvuEAc/6lTqFhcvx6ak3bajFRKEIrJJP6PA3bWNT9xAiRmOg1/adcuU35ewxatccRiIN8lCfFGX195VWaShP2TCKRXpZ1ekoRnPpEQnQQ+nyAOeV/nNlmWh2LysJ6TvDMzkCsYHISfYBWPPII46vLLYQNTKTFEUFVR/cfar93dxX2QaFQkZPbtqyhGyotIBEP4RkcRq15zDfYM1tIkEq3V3GbNQ6Mszlwo62k8DTanrlGjGXOnFw6H4wIiuoWI/lXX9bHTfDh1BTbYySQWb1ubfTpAiiJalhMJGI1Nm7AhFXPI3W44aDMzMHgOB4yLwwEjxCQkw+tFwDk5CYc6mYRTdLqGrTDYMAYCOP94XBBdxqpP1iaanYVR3bYN9yEYFBvrqVNw+i66KDOjPTKCa7R9e+6QgaefhuG+8UY4quEwrs/UFBzzri44GPmc8tlZXOvBQfME4sSEmN68cSPO88ABHPtFF1VOIIbDIKF9PtHytW4dvi67TJAG4+P43AMH8JzwpOdKy/XNoGGL1hbYkeJcWj7HignGBpEI8ICQlRVUIGavG0mCbW5ryyQQp6fxmqEh6wSiquIzJyaI3vKWTAIxmYSD7PebJxDn57EftLXBabc7APnVr4g+/WnYur/4C1SC+XzmdaJqgYYtqgxOJ4i8lRV8tbdXTxeaEQxivUUiQkrG+DtFERNUeV/u7cVePTUFX8Nq+7XTWbgimwlEnuB6000Y6vbQQ/g5XxWeEYEAiLMXXsDX3r3WbAMnj5NJ+IRcYVcJJieR7Ni9G9cukTAfSC8uwkb19JiTZGlpQffF2Bh0CR95BK19Ph8IxP5+VFbabTN46EVXl5hUHYvBRwqFcF27uiAtMz4OP3JyEraSj89ONGxR9cGVu7EY7i/vw+U8W/E4bJ7PJ/bdct4nmRStytxuTwQbMzycGaNxTMSDKv3+/Bqf9YaVFdibzs7yurB+9Svo0u7bB1uRTOK6ccWh0wnbLElIJs3NIU7q6clNKq2uwg653Xg/uzUlZ2aIPvtZ7Bnvex90YYlgZ3t78QwwoRiN4p6rKo5ndVVUK7a2Vm6DGjbHHpwVJCIRXUBEf0VE+4lo7LQeSR1BlsXUq0DAfMttKfDE5dlZGIjWVgwA6e01H8w5ndgEFxaEFkdXF5zapSUcs/H9HA7Ryjo7C6M9OGhteqfd0HVcYyYLIxEYSkXBcbe1iXbt1VWc7/r1uaRePA5Nop4eoiuvFP8/MQGHcOPG3HackREh1M3Obns7vpJJBNmLi3h9UxOIuM5OHNfSEjY+zmiZwfg47lVfH+4DETTCjh1D4LB7d3nXkAjXMRTC9Wtqym31YnR34+uii7BJ8aTnp57CV0cHHJfhYet6JBbQsEVrDGaIRKdTtFjUu9NaKR57DG14N92U24LHU+Pd7swgOhSC3e3pKT4wKR90nehHP4K9uvHGzMqgVAq20+s17/DOzoLQ7OiA025ngK7rRN/5DtFXvwqbdv/9uBZ+f3lVYFVGwxZVCCORyIMpqi3m39EhdKC93kxSsLUVdioSwXPn8+H5Xr8eScbJyfKeebZ5rBHrdAryiQeScKXijTeCSPz5z6GTWmpYgt+PYPKFF1BRuGeP+f13fh6B6Xnn4XOWl3FcVie9MpaXiX75S/har3+9SO6yXlwx/zQahY3iafNm4XAged7fj2vwm9/Ad7v4YlQWVbvCyuPB9e7sFHrn0Sieaa70uuACPDsnTqCCaNs22wdQNWxRlSDLWCerq7AJAwO41+WsD+4ai8dFsj6ZxB7MnUylXm8kDlkqIRDA+m1qwu9XVvCe/H48/IhbXJub7dcuPh2Ix9GxEAyCnDdzT1hiIpUi+u1vYWe5JdjnwzXL9z6BAGLBWAyx3cwMYrneXlzPlRVoonq9sKd2JwqOHCH60pfw/n/yJ/nlGzweEaepqiAUIxGhu8l6mJ2diD8r6Ips2BwbcAYswwbsBmtNpFJYsKVEss1A12GwpqZgCJxO0bJcSQVYby+M0twcjA5rSaysiApFo8hub68gEicnQa6V63BaBQe8xi8mLtxuGENuxeZSdLcbDqws43fZBKKuYxNRFLQQsbO/uIhr3dsLstSIpSVUIfb3505TJYJTv3Ej7k0oBAfk5Ek4tsEgNnmuUiwFXQepEArh81iX6dAhbFg7dsBBLRc8QCeRwIZiVruICdN9+/CsM6H4/PP4amkRhGJPz9qpHmqgOjBDJBq1Wuq5daYSnDyJAUh79yLAzcbUFGzVli1iz4hGsb5aW0UCwQoefBCO9vXXZ9oKRcG6d7vNVwpNT8P2d3YicLdzXafTRP/wD6jCuv56ZNrTaew/tahybuD0wOFAABwOI+hh4qWa6O7Gc7y4mDuhuL1dJPq6ukRr2OAgfB5O5lmFyyUqQ5hsMhKIjKYmQSQ++CDRLbeUTtb6fKIi8aWXkCgopV8djyOZ0d4u5Ag8Hpx7Op07gKYUUinoinm98KXY92XSY2Uld3ozI5nEsXi9IAPK2R/8flT6HT4sdKuPHEGCvVaEidstfCNVxTWORvG9pwf+59QUWrBHRnBs1ajkbqBypNNY6xwL9fVhTZV7r9JpsbZaW0VSjCugWZM++/25gpA1Do0Tw7myzPia5masxdVV+FqKgtd4PHj/WgyyqgVSKax1lwskYDFbpeuZE5V1HbbhkUfw2ne8w7yN4PbwSATPx+QkjmVhQcREdl/jX/8aUjQDA0Qf/KC5JJHLJZIbmiYSG7zPzs3BZnZ0wNa3t58ZxHK94YzXRHQ4HB8nsM3ZeDcRXUPofV9HRH9PRDcTkYuIHiSi9+m6vpz1XpuI6BNE9Foi6iCicSL6KhH9na7rmonDWfMXO5mEoSfC5lBpVl1RkPGYnoZT5PPBmR0YsNdQxeP4DKcT78+OD2soBAIiK6+qOJblZfyN3w9yy872Zv4M4xdPxeLMm/Er37VgsfTxcZzH9u25RvKZZ6BDdP31opovEsEGwxWe2QLsDz6InzlzZQarqziOo0fxml27YLiLBQe6jlbl5WVxz4mg23jwIJzPK68sP5BXFARS6TScIzsCdUkCWTo2hudW07AOWEORtSipDL2Nhi1a+yilkXg2D1oJh6Fl09wMgizbZoXDWDd9fUIPzRhc79hhvYrzkUdgK668Eto5DBZ2dzjMazGxnEV3t5BTsAuRCNqWDx0ieve7id70Jpx7MFiTaveGLVoD0HWhPcVi8NUEVxj5/ZnyLUTwP5aW8LOROJiaQiB2zjnlH18igeedq2sLraOVFRCJXi+IRDPEqqKgGjEaFd0phf7u6afx/ZJLMv2YWAzXxe2GHTLjZ+o6/KLRUaJbb80dbGCc3swabMbfHToEP2Tv3vJ95uVlBNvBINGrXoWqv1OnRCVgOcSvXdA0+MpcQba0BBIxHkeQf+GF/52Uadii0wxVFV1EREgk9PRURrBw+zJXXmfLNmgaYgROKrAMFn9x4pWJw2CwuP8ky3j2ZVkQRLXQnK0VNA12Lh4vPFSKicNUSrR6OxywZ6dOEf3gB/Bj7rqr/Hur61jHTz0lEjmDg/Zda02DDM0vfoEK8/e8p3LJDx6AFQ6D+OQ9l7vQDN16BW3RGrM5dY2zgUTcS0QfIqJ7iehTRPTy7371JBH9JeFheZaIThHRr4hoOxF9gIj+Tdf1uw3vs4WIDhBRnPCALBAett8joi/ruv4HJg5nzV5sVRXTLb1eMSWpXMTjcFi5QrC9HURdNau6ZBmfqSj4nHQa5+Dz4WenU5CJbJxlWUyvGhgoL+DjEn0mCxOJTG0en0+QhcGgIDNLgacfy7KoljTem7k5ou99D2TcTTfhNckkHFqPB0bbuLnoOrQz5ueJXvc6axMH02lsXOk0zoEF5XmqW1dXplOgaahaCodRfcQO8MmTaNfZsAGkQLlETDKJ89d1fH41Wsh4IM/ICL7zAJxAgOj3f78sZ3nN2CJJWru26HSDq4ALEYmahufubNJHVBS06C4twRHMrhJKpTBt1OdDFaLDgde88grsxI4d1h3TJ59E6/SFFxLdcIP4f3YiNc280PbEBAKr3l5zWmVWMDUFAnFhgeiP/xiOeDIpAqZqQZKIPvMZok98or5t0eHDZ5YtikSwHoLB6lckxuNCKyo7icb6Ui6X0D7TNKwFTUMAatXHS6VEkrm5uXTidXkZazgYhOC/GRugqrAlsZjoBDBC1/H7cBhVf/mSh7KM9a7reH2pwPXwYQT1F14IW5UPXFHF05ubm3FNT57EsW7eXH7CIBoFKep2gxTl411ZQRImHgeZsm3b6a/E0nXh505P4/zjcVQE3X9/fdsiWsMxWilomtC0VFXcD+7UKhe6jjWcSOCZ7OwsbDPYJ+diCV3H33Llm7EjrBB4gGcqhdfHYnhtIYmiesXRo7hPu3ZlxmGaJmJTvo5cYe31wj6MjhJ9+9u4JvfcUxnhNz8PH62pCfE5V3+2tcFuVlJYI8tE//IvsKvXXYdheNVIvMfjuJacIOPk7Y03FiUR15LNqWuc8cWfuq4fcjgcBwkPyy90Xd/Pv3MIq/S4rut/lPX/H3A4HPfpuh753X9/loiiRHS+ruurv/u/Lzkcjmki+ojD4fj/dF3nB7FuYHQIuP23XKPE2nS8mJ1OGLqhodpoD/p8cDqnphDQ8eARrqhkfZtkEv9mgm3DBjHgpaOj9IaVSgkdQxb1NrYls74HE4flGs6ZGTgDmzeL9hZJEtf2pz+F8b/+evy9omBzcjjgXGdnp158EZV7l11mjUA0Bh5bt4rrHArhup06hd/39uLaud3IokciCFS4mmBiAlWT/f0IKMq9LrEY7i9XGpS70SlKZqYv33dVxfF3duLaHT2KTbwcNGxRfcDpFERhIX1ETTu7Bq08+CDs0dvfnksg8qR2XRcVfpxESKcR+FrdU555BuTD7t3CvjG4JcoMgajrSAAsLYm9yE4cOkT0yU/iOfg//wcEZTIp2rSqhVOnQFxOThJ94hPWX9+wRdVDaytIIZ4eWs3noKlJBN5ebyZZ5vHgWFZXsRdzq+G6daIqN7virhjY7/F44FNxW3OxKpjOTqIrriB64gns/a9+den92uWCzRgZwV6raZlVeDMz8IGGhwt3H/h8eE0oBDKxo6MwoT83h3U8PFyYQCQSLZhut6jGXFrCvd6woXwfN5HAEBWnE3rNxnvY0YHJzGOcxbehAAAgAElEQVRjQhZm+3Zzk6+rBYdDEOTd3Tie0VGQEeWgYYsqAxN9CwtYj62tePYrrfhKp/G8KQpsR761xm3MsZiIhbiIo6vLfHKfB0Ilk1gHLEPV3o71u7JSVZ3ymmJ0FNd182ZcI00TMQcThy6XGFhj9HGmptAW3NlJdPfdlRGIs7PQpG9vR8GJy4X7trSE5ykSgf3p6rJe6biyQvS5z+F43/52omuvLf84C4FnCigKrtX69XhO5+fxVfy1DZtjF854EtEkPp/1718T0R8S0UYiesnhcHQQ0euJ6B+IyONwOIxh1M+I6CNEdC0JNrsuwM6nqsIYZWtTWHkfbllOJoW2y8BA7Scgu1xw6GZnhRgrkWh3ZV3CWAx/y9VGGzZgs1pexu8HB2HAFSW3LdkoLh4IiM0yELDvfBcXsamuWyecgWAQP0sSCMT5eWR3vF5sRK+8AqO6e3euAzE1hWz7li3WRL91HQGHLIvBNHzuPFErEhEC55OTCFr8fmxMTDjMzhLt349/X3tt+VWuKyu4R34/rk2+98luAyhEEOYrwvZ48MXizV4v/s2kxbnn5mpM2oya2KJqi/+fCeCKxEI2ke3AmT5o5ZlnEGRff72YpmcEV5tv3Sp0kk6dgu3cubP0YIVsHDqEtr7du4luuy3z+rMGopnpfCynEI9jP7I78H7oIaK//3vsc5/+NOwzV41XqwJN19Ei+nd/hzX8j/9Ync/5HWpiiyoZqrWWwf4HT1SuFnRdVAD19+cGfPG4GDrGx7FxI17DQxZKgWVuPB7sg5woUFUxUKUYtmxBS9v0NAaWmAlK9+yBLEsoJPRUmSy57DJzz42m4TwTCREQGxGNEh04gIqgt73NvP+mqvC3wmEQfzt3mntdNiQJ01XXr8ck5ELPyb59uIfPPotrwFOtq13pahYXXZTfn7IRZ2WMVgrhMHzvVArre+NGe56JWAzvzX6+ca/luDEWg10ggp/c2Sn0DNNpc2uJdTclSZD0xkEZLJmwupo7jb4eMTeHGIkLE1gigUjIbnk8+e3p/DwqEJubid75zsp8+KkpJGk6O2FH2cdyuXBsHR2wu8vLeA46O3O7zQphYgIEoiQRfehD9u3v6TSeN1nGd2MMx0PEhoZE0Y0NaNgcE2iQiMB41r9Xfved3authP76P/7dVz4UUG9Ze2C9imQSRqO1tbyS91hMZLQ1DYZn61YQRaezOsfhEJqLCwsgtxwOUdrv9cIQSRIMExOD3Go9OgpDaKzKdDjwc2uraEv2eqtznqw5wwLXRjiduOZTU3Ck29th6Ken4RBv356bEY9GUQnQ2YmJf1YwN4fjGRgovIG3tuIrkYBDHgohE8qagrqOiYdtbSAiyiFadR3EajgsCL5wOJcc5K9scEuAxwMnpb1dEIT8vdBUs2gU1yEYtF/LMw/OKlu0lpFdcWj192cCpqdBWm3enFsRSIR9ZG4OtoXJwpkZoYNqlUB85RV83qZN0CYzXld2IP3+0k4iV0KuriJAt1NPTNeJvvY1OPQXXED08Y+DwJFlsT9UA5JE9Ld/S/Szn4FU+Ou/tj7p2iIatqgCsFZnPI5nplrTuR0O+C48aGXdusx9rKlJVPrwEKKeHuzrs7P4fbH1xJ0qHMTzezud5jViWb7k0UfhC9xwQ2mb6XQiAD16FGtZkuBr8iRTM3A6QayGQkhAplKwBU4nfL4HH8Tx33STNb8kHMb79ffD3w2HcwfMlIIso9palnFtShHNra34u1OnkBB++GGQnywfcbpR5WNo2CID2Cfloo3hYXu6vTQNz3V2+7IsC+KQpZr8fhBLnGxneL3Yd2OxwmtC0/AZXK3NOqP5/ra1FZ8fDudOo68nhEJYt8EgYtFkUthjj6e47VheJvrmN/F399xT2b2emIAN6e5GUUS+z/V4YNu6uoS+5soKXtPRUXitv/gi0Ze/jGfi/vvL7/xQVUEW8ndjUt/nw37KvmCVBqo0bI4JNEhEQC3w/46s718koh8U+Nsymxxri1QKxl3TBBlmZfNnMmdqCkbd5RJTd6stJG4V3d0whjwow+USlXG8Ea2sgGiMRGCcmpthlOJxnF9fHzboStqSrSCVQhDu9+cPfFdX4YgPDcGhZH2gqakMQdn/hqKgqsfhQAuxlaopLmvv6ipNBqTTIF/b2lCtpKpw+F98kei3v0XQ8sY3Fg5WdL1we7EkwWGKRrF5trYK0WgibCBMBvKGnE0QlrvJLC3hKxAAgViDqrOzxhbVA4oRhRw4F2t9rmckEmidaW4m+r3fyz1/VYVd5QwwEdbKzAzsrNXKv1OniH74Q5CPb3tb5lpjO+D1libpNA1ZdpZTyNZUqwSyDCJv/34QD3/4h7BL6bRwaquBkyeJPvpR7GV330303vfWpMq/YYsqBFftxWKwEdlJQbvgdmPNLSxgDWZLDrS1Yb2yRqLPB3/hxAk8U4WIKJZt4cRdNniNGrszCmHzZuzpjz+O9fOa15S2mQ6HGA736KM4jze/2do+zCSrxwO/YXoatumxx3C9brrJ2n2JxeBztbaC5EynxeTQlhZzJEc6DW3oeJzoqqvMJ1scDlFV/fzzqNqenISWY7VI6jWChi0irMe5OTw3Xi/WsF02JZWC7eD2Za8Xz3QsJhLzgYCY0l3Ip2ZZrEhEDLdksK4oJ1b8frxXqfXc1YV4ggsU6qX7g4saVlcRC3m9sGc8TNOMzxiJEH3jG/Br3vWuyu736CjkXfr6IN1Q6vO9XvhjnZ2I++fnERP29GTaG13HELzvfx8+1wc+YN4ecVuykTDktm4isfcwYVhDErlhc0zgbCERKy20P8Xvoev6I5UfTu2haSKLxO1gVogVJremp7HQAwE4ngMDa3uselsbnK6jR+F0cUuuJInMhscjnOymJjjge/YIAml+HkFytY2XpuH6Ohww3NkGXtNQheJwoCXI6RQZok2bcC9Ym4QHuBw8CDL0uuuskbyc6WxpKV3Fk0pBWyOVgpYRZ9R9PrRCtrRgGuRzz+EYeLpbdgVhdjsMnz+3VWzbBmc7u3qwGuQut4hFo0JjxiaS6Ky3RfWGUkQit/adSfqImoahTdEoBqnka5GanISzt3Urzj0WA6nY0gJH0gqmpuCAdneDsDQSZNzyxFn7YlBVECOxGGyiFe3XUlhZIfrYx1At+d73Et1+O4KDahKIxvblYBC6i69+dcMW1RO4eo+JJh5yYjdYQ4yr9bOrVbhFjStK3G74NWNjqEjM1kfkbpVCBCLD5cJzqqqFh1Exdu7Env/UU1jjV11V+rz4PVnbemoKNsfqNWxvx2fOz6OF+KWXiC6/HL6JWcgyfEmvF+fCVTFuN4L91dXc6c3ZUFUQqeEwpjCXk+TgCc5TU0QvvIDqzm3bcEz1QrBkoWGLikCW4Y9GInjWWIbALjsSi4lKXa9XDGfhdceaomafLZcLr4vHhaQDy0hpmrApZmNHpxM2a34eMVmhqe2nG1wMwXEN//v4cdiEiy6y1qkQj4NAlCQQiJUkREdGYC94QJOVZycQQOwcj4vuvqUlHE8wSPRv/4ZilQsuILr33uKxMg80ZdJQlsXv3G5BFrImZBWLdxo2xwasYfrHVsR+991icxWg6/qiw+F4hIju+Z1Q5jHj7x0ORysRybquy/nf4fSC9WyIYMisGLFIRAwq0TRsXNu3IzhbqwGzpuXqGLpcoupw504YUtYx5Oo4zpBx5ognis3OIoOzbl11s71zczCo69fnrzI5cAB/c9NNQrx9ZAQ/b98OY8vi59EoMl8jI9i4rFQFJZO454EAgoxi9zkeh26RJIE4YGdkdRWObSqFtmufDxms2VkhhLtuHZyBlpb81YOKIloljdqQ1YaqYpOUJDguNgs6n9W2qF5RjEg0/q5OA7gc/PKXIOPe8pb8LSlLSwiCBwaEFuDICNb55s3W9ob5eTihLS1E73hH5jrn5BfrJRV7X0XBMScSOAarrdTFMDqKSsBwGINMXvUq2DlVBTlhkwZPBuJxov/7f6G9uG8f0Z/9mXVytgQatqhG4Gc3EsEzVC0isa0Na3FlBfuo8bl0OLCXsdZVdzfWXFcX1nNLiyAemUD0+80lH91urD8etFLs3Pbtg1/wwgs4xksvLf7eMzP4uvJK/HtiQkx8t3oNm5rgWxw8iAB4zx7zr1VVEIiahgpEo4/GE7CZNEmn8w9+0jRMnQ+F4BdVqtM6NAQf6qWXkMidnkYgb2f1dY3QsEV5kE5jfzQOquzuto9YUVUkA5eW8GxyAUAwKIaDlftZPh/sQTgsutY8HkHmW4XHgz2ddfqqVdVtFUYNdkURXSncAXX0KM593z5rsXcySfStb+Fc3/lOa0Owso/vxAnYUNYMLHfvaWpCcjYSQWXiyAi6RyYniW6+Gf6i8b1Z5sVIGGa3JXd0CNKwxv5zw+bYgLOFRHyGwBh/1OFwtBORRES/tfge7yOM/37W4XB8hYiOElE7Ee0iotuIaDcRjdl1wHZAVUUpusdjPpOkaSDbpqZgLFwuGLChobUj5MzgUmgmCxOJzMwGt7h2dcH4jYzA2PNmZgQbeDZyySQMYn+/aNNLJISmjp1YWcG17unJ77RPThI9/TQ0cLZuxbG98grOb8cOcTysGTI5CSedJ5KaFTpOp+Gk8xRHSSo8vTgWE9MTN27ENSLCvw8exL15wxvg5HLVoNsNgjMUwuvjcXF/jORBNIpNqtIJzFaRSsERZ5H6KkwVPytt0ZkAh0NogOUjElX1zNBHfPlltBtedBG+spFMYo20tGBtM3lHBNtkpTJ9eZnoO9+BE3nnnZm2T9dFG2hLS/Hrmk4j259MokLezmTP009D9zAQIPrMZ/D+RgKxGhXqx49j+vLEBNFdd6EKoQqi8g1bVEOwdMzqKp6fYtpSlaC7W+gj9vdn+nwuF4hEo1RJfz/2Ya7w44CP5W7MwuWCLVDV0jbg4oux1x46hLV/3nn5/y4SATnW2YmKQYcDn8N+B7c6m4UkIUEyMICK3rk5XK9ShISuw9+SJHxmvuvicGCNejyZ7c1M5Oo6KjDn5tB+vH69+eMuBq9XvN9zz6FNe3gYBGkd6cc1bJEBioL1yz51dzf2WjtIFk3DemctdW5fXrcOz69ViatCSKVgSxIJEUdVGj82NeF9o1ER250OaFquBrvTmdkhRQRfKhqFzbASS6TT8IsWFjDduNzkIdut+XlUElqpui4GHlL65S+jPfqNb4QNCodxr3kP4bZkhwPXhu2h31/7oat50LA5NuCsIBF1XT/pcDjuI4hf/gsRuYjo3WW8xwVE9OdEdCsRvZ8gtHmCiD5BRHO2HnSFYC0bIqEnUAqyLFqWUykY6G3bsLmslZbldFqcmyRlCq7ydKu2NlFlmL3pnnuu0AFKpbCx8YbpcIjpx/xeTKK1teEahMNierNd1SeShM2iuTl/+50kEf385wg6rrkGhvnll7FB7NyZe28kCc5qXx90hxRFTDfjID3f9GJZhi6ZJMFhicUy35c3Ap4etrqKv9uxQ2QXdR2VM+3tRK99bf5W6GAQ/x+LYXObn4djzY4MizsHAvh3rUiZREIM4Vm/vlrtiWefLTpTwHZC1/NrIJ4Jg1aWltBWPDiIzHI2NA1Oo9MJp1TXodcny6iGtmITV1cxnIQIRFk28RePg5AolfxKpUC6pVIgQeychPujHxF99rNIQH3qU7DPKytikJjdjrCuI7P/mc/AVn/qU0RXXFGdSseGLao9AgHYjXAYQXxHh/22wulEMnJuTmiIGcEJ1JUVHEdHB9byyAj8Cq4utjogyOHIrUgshiuuwJp9+mkc065dmb9Pp1Fh5/Wi8o/t7fAwzvHkSazDXbvMXUP2TRIJSBFwe2QohM8qNhDw1Clcqy1bShOOxvbmSATXsbkZk5UnJ4n27rUvmDeitxcDa44ehY87OwtyttzhBrVEwxYBmobncXFR7DF9fZXvM1xQwnJH0Si+t7TA121rsy+hwQUGqZQoQDG291b6Oe3teL/l5UzCrtpg4pArDolgd5gQy7Z3Y2O4j5s25WrUFoOqEv37v8NWvPWt8GnKPd6XXxbHYGcXw8mT8FFSKegftrbC5rC/1teHZ4tbk32+tde52LA59sChZwuRNVBNVP1iKwoMuKJg4ZopR19dFS3Luo5AaWjIXs2NcqCquW3JxswGE4X8ZTbrGg6DLFJVGL+hoVwRf65W9HrxmYkEvkuSKM1ft67yknpFwWbjdMLI5wuWf/xjBO533IHg4OhROKe7duUGzLIMR3lxEYNUAgGRuYtGxcaePSjG5YLzkkrBSc83vZg3yXgcQbvDAQKRyTZFwcTAUAgajIOD5q5BOo1nb24O31UVx7BjR+3I69VVfLbHg+M24ZissS3RMhqGv0wYScRs+2isVFxrTlMppFJEX/wibMsHPpDftk1Pw7accw5sz+goiEer+oOs9ROPo1Unm+jginLWdi0EWYYtYm1Gu6r1NI3oC18g+s//RNvhX/wFjmNlRQzIsDt4icUwtOXRRxH8f+Qj2BNM2MA6e9JycNbZIp426nZXh0gkwtoKhbBO87X2x+NY683N+JqYwNfwcGVVcpqGPdzpLF05pWkQ5B8fR4KUA2ZdRydFOIwKl3yJgelprP3OTpCMpT7r4EEQltdem0lYhkL4nGAwf9JyZgZ2bnAQ18YsdB3XWJJQDTQzg8/dvdv8e5SLcBikZTiMRPn551dvanwWGraonA/VQYotLGAva23Fs1hJ8ohjQSYOibBG0mk84x0dWDt22R7+PFnGe7J0lsMhhg/xhPdKwYMbHY7qdIYZP4fjQR4exW3ZXm9hmzM/jwrqdetQiGMWmoYk7tGjRG96E6QJyoGmQWZqaQmJj0oTCYoiqgsPHsTAvdZWTIrm59TjEd1lLO/A2runCfVui+oCDRKxtqjaxeapV5IkpgwXI9U0DYZuagrGndtGh4Zq5mxkQNdhpIyEobEt2efLJAz9/vKDdE2DceUNz+OB02y8XlyKbdRp4CpIWRYakd3d5VfL6TqyTckkgsV8DsOLL0IE/Mor0Z5y7Bic0fXrYcSzKwqPHAEped55yACyNgd/KQqO2+1GpqitDZ/LUx37+4trAPJkQrc7s/JIVdEmNDuLYMBq1ktV8dq5ORwjT77l61vNZ5I1opqacP4m72W9b1ANw18BihGJPK25nohEXYfzeugQHMN82e9IBBU5PT0IqGdnEcgPDFjT60kmib75TRByd96Z6+DKMuys31983SeTsEWqCkfdyuCoYpAkor/5G2iX3XYb0fvfL6qjiRB82e0Yv/wy0V/+Ja7pXXehUspCgFcnT1lBnJW2iIlEbjGuRiC8vAz/jgXws7G6iqDP6RTTi9Np6GZVsueytIPLVfq8VBWJz5kZouuvB1F38iT8mJ07i9uW2Vn4RG1tqPArFNSfOkX005+iE+W663J/H4nAB/J6M4cFLi9jbXZ1IalZDl54AYTepk3QUq1GVXE+6DqqS48cwT60e7doCa8iGrbIyofpWIPz8/Djm5rg75bbpptKCeKQ4ycuJmGSR9OwXuyS6uHBZ5IktIvztURza3MwaE+XD8dhgYC1Sr9SUFURUzFx6HYL4tBMUc6hQ7jGe/aYX2+6joKR557D4MzLLy//+A8fhr+ybZt1LUVNy52WrKo4vl//GnHeli3wi7q6cpOpiiISM6zD29V1Wrpz6t0W1QUaJGJtUZWLzRuHpgkh7EKGi/WsZmZgJJuaEMStW1dbUdNUKlPHMJkU03ndbkEW8oZj97FxOTxPTdQ0BMbGQFSScEx+f6YB5OEli4swlK2tcHytOocLCziG3l5RMWhsL15YIPp//w8b5FVX4fNmZ5F5Y+LSWC04N4cNaOdOiJVz9WA+koOvucMhqiuZsCuESAQl614vCEQmXTUNm8v4OJxkq+X3qRTOS1Vxbk1NcEp4EhsLPnPlp11OsK7jc2MxvG9Pj6X3rvcNqmH4K0QxItGYta4HHDhA9JOfoB3ummtyf59OI1j3eLC+w2EE5qw1axapFLLYs7OorM5u6+NWKNbwLQRJAoGo67BFdiUZFhcxwOTkSaIPfYjozW/GMYXD+L3dBCKTt5//PGzchz+MBJDF9rKGLapTpFJiaEJnp/32QtcFQZFPW1jXsW/H42hpDgaxxzscYup6uWAisdSgFSKssQcfRPB58cVYhwMD8GVKYWEBlTstLRhekL0+w2Gi//gP7PG33174GicS8KFYv01R0E4dDIIMKOdanDgBEnFoCHZKVWGrSg2JshPxOPzChQXY6wsusFfyIQsNW2QS0Siet2RSSPeUU6XHgzO5hZgIMQtXGLNGJ1c+d3XZo5XJ2opc5cjPdbF1wsfIwxQrBZ9Xe3tlpKhxojLLY7ndIr4yu/Yliej55/G6884z7yuw1MKBA/C/XvOask7jv21WJAJ7Uyye489l7UomDFnjkUgM53K74ac8/TTIzXvuKX1uqRTsOM9V6OqqeXdjvduiukCDRKwtbL3YbMRlGYuUN4x8CIdR9RYK4d9dXahms3OCZSFwW7JRy5CDbNaUYA2eQKB2GhecsQsGQVbJcmaLsq6L7Fq+IDWZFOLE3I5szIjx1K58Q0lWVlAFGgzmvwcOB1qDFQW6GIqCVqO+PmTTWZeQEQ4L3cQbbjC36akqHMtTp7ABb9ki2g+ysboKh9jvx+bE90jXiZ54AhnvSy7BsVlBIiHaEvr7c4lYRcExciDk8+Ea9PRUFswrCoj0ZBLvVcY6qPcNqmH4bUAhIpHbmrmidi1jfJzoK1/Bur7zzvzr/+RJ7DXbtmHtHDuGgGH7dvNOIWv9jI0hmN++Pff30SiuV0tL4feNxwXRsX27fdqlJ05gArMkoSrw0kuFreb2LztJnkgEmoe/+Q2Ikw98QGgJWUTDFtUx+Bnjqg27iUSu8udhaWyPdB3PYCqFLyYYWBu5o8OeNjhdN0ckyjLRD36AKp6rryZ63evM285QCBV3wSCCd/ZP0mkEv/E40e/9Xum1xQnNRAJ+R1MTKhzLIV3GxhB0Dw4i8HY4RGup2w0ir5ZJpvFxXFtFgd00DuSzEQ1bVALxOMjDREL4s1YHgUmSiF9Y4sk4UZl9Y+66SiZFrFHpPeeut3gcPzN5aOZZZpvD1ZB2PH9LSzienh5rvoAxNmMaxCjfZJXsSqeRMFAUyAdYOZb9+9FxdtllqEIsh2hLp7G+YzHEYfkmtKfTudOS+dxdLqFhyN+dTrzfF76ApO0tt2CIipXjSyZBJnJyuLvbXg3OIqh3W1QXaJCItYVtF1uWxeRKJuDyVcNwy3Isho2FpyxXY2gEETaH7LZkzo4RiRY1/jrdgqvLyzCsnZ3Y2ONx/Nzbi9+rKs7H7c4kuDRNON/Ly3C6WV+or08QiNngc+VBKhs3ionKxg1s/360Mr/lLXDsDx/GRp1PRJyz+IpCdOON5qtyOFhwOnG+rGPU1JR5risrIBECATifRvLut79Fu8/556MKwAoiEWwuXi8IxGKkoK7jOObn8TqnE9elnNYPWQbxq2n43DLbIOt9g2oYfptQz0RiNEr0z/+MNfj+9+ffFxYWhIRCczPWu8uVf6hTIWgaCIJjx+CI7t2b+/toFD8Xm8Qci4Hsc7tBaNrVGvjEE0R//ddwbj/9aVRIplJIzlSDQDx8mOiv/grkxz33wG7zQLAy0LBFdQ4mEongf9jdLp9MYu8MBhFcapoI5nlwUSgEW9XdjX15YQFrvhLdZ13PrMou5uupKtHjjyOYHhoSvo9ZLC+jCsfvB5Ho86G65/hxVBSb1XlMpXAMkQiGv5jVdjZiehpVRb29kKLJ7mSJRPCzcXpzLSDL8CsnJ/HZF15o7RqbQMMWFUAyiRiD5aP6+sxPaDcSd7EY1orDkUkcZu9Psiw6edrbK9ci5KKKeBzv6fPhPa3aKlUV1Wl2VMRytbWqFu+oMxZ1GIe8GOWeKpHIeukl3Nu9e62d14EDKAA5/3zoIJZzDKkU1rUkIUbs6sL1yG5L5ipLHiLKQ0/8/vz3cX4eg+WWl4ne/W4UipQLTsxIEvzN3l77WuoLoN5tUV2gQSLWFhVfbJ6ylU6Llq9soylJomVZUfA3Q0PYtOzOfMpyJmFobEv2eHKHn6y1YFpVsdG6XNjQ2XkOBODMq6rYvInERsSOMUPXhbZeIIAgtLtbCM4ay+LHxmDMh4fzG+6TJ4keeABtJ5deiuySy4WWmnztSI89BqL4hhsE+VkKigICUddxrB4Pzisex+9cLjgm0ShExZuaELQbn5/nn8fGtWsXKmmsIBRCdSNParbyXHD1YiiE69jSAufBjEMWj4uqjAonbNf7BtUw/DaiEJG4lvURVZXoq1/FPvG+9+WfpJ5IgLRrbUW748svw07s3Gk+EaXrsGeHDqG6KNtW6LqQlGhpKbxHRaNCTmHbNntasrid+ItfRILkf/9v2H1Zhn3ifcGufUvTUI35pS9hf/jwh9E2yoOsysQae7Iso2GLCPvu8jJ+rsbk70gERCVXPfF6M1btLS3h3x0d2PeTSTyflaw1XRc6x8UIh8OHsa9v3QoyUdMwId5KlVY4DDvD2mW//S2qAC+6yPyxvvIKrgMPBWhttSZ1Mj+P4+/oIHr1q/OfM5O46bRoPa3l/jA3B/8tkYD/t3u3bc9bwxZlIZXCM8H6pz095jTiWHaIh1XwwLamJjwvwWDh94hEsH+53XiOK723yaQgL3k4SiXvyRJcrNdYKdJpXGOPBzEQryWO13iiMvtoHI/ZZWOPHcPn79hhPgYjgszAj36EysG3vrU8P0OWUQEZjcJ2+v34v+y2ZGOVoRnC9PhxJJidTnRJbN5s/djyIRpFnC3LiJV7euzTs85CvduiukCDRKwtKrrY3BJMhEWXHcQtL4NM4oxyTw/Iw0onCDN4OrGxNZkzG05npo5hIHBapzLlhablby+OxeA0sgbG6iquJWdLPB6xgcEWYSgAACAASURBVPPYeiMxaCQIYzGQc4mE0C40DoGZmhL6Q/mqTmIxom9/G47r7bdD60eWkd3K9/eHD2MDuegi88LfmgYiU5ZBZGa/Lw82mJ8H4dbTg03OuMEdOYJWna1boYNoFpoGkjYeR3BQiSCyomAzmp/HMfP94nuWjXAYn+3zgUCs8Pms9w2qYfhtRikica3pI/70pxgecscduZWBRDjuY8fwfft22LVoFASelQzyQw/BVlxzDapyssFJsWKByeoqJBP8fny+Hc6/oiDL/sADaJ/86EdhG3jghceDvdMuAnF1FQNbDhzAdfiDP8B1bG9v2KLTfQBrBaoK30PXq0Mkzs/jq7sb+2T2c5dMgmhkP25kBGui0oEcTCQWmtg8OYmgdfNm+CThMNaly4XKZStVVJEIxP8ffxyVhLfeav7YR0eRVDnnHHQpLC+LxLAZ3fBQCEndlhbYlFLkazwOX+t0tDcrCvy4kRGcHw/jqxANW/Q7sBQPa693dcGXLnaPeUhJLIbngv0GI3FYqpp3eVm0L1eqQccdb4oihjHakbwjErrs2Z1P5UKSsP64OpNjPSIxOMrrtT8unZhAPDU8jLjOLI4eJfre92Br3vEOa8eVSgk/5fnnce7bt+P+uN2ZVYbclmwFTz6J4Xe9vUQf/GD+1uhKsbqK+I1nM/T22t4hWe+2qC7QIBFri7IutqIIQ85ZIDYKqoqsIpNTHg8IkoGByhYktyUbdQzZIDscMExGHcNatmTkg3GiVqHvrB1iBA8nkWW8R3c3DFoqhQ3J58PgAJ8vU0C41EbO+pM+H5zR5mbcn8VF0caQDV0n+q//AnH3jnfgvq6ugsDLl42fnSV69FG0ROcLzgthchKO9oYNhcmA+XlR9TM8LHQr3W78/xNP4P+vvtq8k6IoOCdZFroYdkDXsZnOz+N6scO2bh3upa6LITjNzeVP085CvW9QDcNfBRQiEtfaoJVDhzBs4IoriG66Kf/fTEwgINmyBUmWxUWseSvE//79COYvuwyTV7PB1evBYOE9ZGUFBGYgAALRjiAgFiP6xCeInnkGtvZ//k/cr2QSNoSrseyqDnrxRaKPfxw26Pd/n+jaa2FbbSIpG7boDAITAZqGZ9CuoF1V8fzNzYmBevnWUiyGZEFzM45hYgIBXr5KZSvQNCGZkq3n/Nxz2LP37hVrbmkJw54CAVQkmm31j8eJ/vVf4R9dfz0qn81UuszOws4MDGQOi4pGQQaxHFAx3fH9+2HHXvMa8/53KoXP0HVc82pJDRXC8jKu/+oqYofzzqvoGM56W6Rp2CtDIZEMKJTYJoJfbCQOifCs8WAUYxFCMbBGO9uNSqq70mk8k+m00NuvxnMZjeL8KyXQWV6K/fyODrwnVxtWq6BlYQGVy319uRrPxTAyggFzg4NEd99d3MazpJaxNVnT4DsdO4brdv758MsqHUKq6xjm+eCD6DZ573vLnxRu9vNWVrBWVFVUfdu059W7LaoLNEjE2sLSxWYdDEnK1apLJNCyPDsLI9zSIlqWrQYlup6/LZnh9Wa2JGdPK64m8g0nyUcQckWkEcbpWoW+s8HVdaEf0t2N85NlEG6aBucxGMS1YQHaUlhaEvenqQnGsqen8DTTp58GOXfDDbjOc3PIzOdz3uNxGPpAAEK8ZjdJbgNet66wFs7sLEjpjg5kybgyUddxTE89BX2h664z/xzIMl6raTifam1MkoRzXFzEZ3Hm1uNBVtbGjFq9b1ANw18lGHVnjG01a0UfcX4eQtkDA0T33pvf6VxZgRB/Xx+OeWoKyRAr+mAHDxI98ggc3HxEJdsVTkjlw9ISqoOam1H1bAcJOzuLqsOpKaKPfIToDW/A/0sSkitM7tlBIGoaKsu/8hVcvz/9U1xDvx8Os00kZcMWnWHQNBACqopnsdIkLeuQEcFnWFjAc87rOxvhMNZDezvW4MoKfIFK2854YrPLJXysp57Cvy+5JNePmZsj+tnPkHB84xtLB5eaRvTDH+L8broJ/puugxgrVs24soLKoM5OdHRkXxNJwrEQwXfKJjSjUegoulwgEK36N6e7vVnTUAnKerd79hT2U0vgrLVFHEMsLOA5b2vD+sq3dtNpMRiFYy0uEMnXZVYKq6t4fjwe+PXlVjBzwYosY302N5et02sK/NwTWR+2oaoiBjQmacNh3Iv+fvsSMPkQiSAZ29JibXr7xASq/Lq6oDNovNeaJgaeMGHIxS/chu3z4XyPHcN93ru3cr1LIlzLr30NidWrrsKQvVolvXkAEJPg7e2VD8+k+rdFdYEGiVhbmL7YvMmoKowMO2/csry0BKPS2wvy0EpVVzqd2ZZsFFx1uTLbkgsJrtoBzh7lIwWNP2cjW9OiEEFo1QlTFFxXr1dUCioKrncyKSZnyrL4nFKQJJS6nzyJe7RzJ14bDGZu9HNzqAzauhUO79gYgs2NG3PfU1XRIhiNQpDfbGvhygpadTo7scHmA2tpdnXBiTSSICMjRL/4BV7/+tcjCDazccbjIC5crupv7AyeSPnSS1hHvb2oqCqWEbaIet+gGoa/ijDKPDCYSDyd+ojJJNHnPw/bet99+W1HKgUH1e+HHTh1Cmv+nHPMf87zz6Nd+txzMSAh+3x5f2Nd33xYXASR2dICu2gH+XrkCNGf/znswyc+AYKTCPtgNAoH3a7JgSsrRJ/8JJJD112HCkSPR7Sm2YiGLToDoWl4hhSlMiJRURDwOhyi4ieRwPpqacHazoaui6Fz7e0IfDXNHiKftclcLtiJaBRyLIXWxNQU/J2eHvg7xfzRxx5D1e/rXoeqZUkSE1P37cs/8CAeFwNZ9uwpfH7ptNAZNw4FSCRAIKoqCMRKhgVwezMPnai1JFAshqrExUVc7wsusGyrzjpbZOyEYVmOfESzLIuKQ1nG//Fwkubm8vxi1nSXZewr5VbPs9Z+MonXNzWVbp22C2yfPJ7Sa0dRRGzIPpbbLeIxp1MMFHU4yiuqMYNkErbL7c6cBl8Ks7NEX/86zvPd78YxG6sMjUNIPZ7MSck8hDQaBXnpdMKm2VGQEYkQ/dM/Ie68/XYUspwOH1VRUOQSDuPfnZ3wQcvcc+rdFtUFGiRibVHyYv//7H1neFzVtfbaMyPNaNSbLVu2ZVvu3bRAbBPTgwkBAgmYEtOTkEBIuyU3AcLN5XJJuXwJEBJuEnAIgQApNBOCwbTQccNNbpJsNUuakabXc74fr1b20eic6SNp7HmfZx7ZU07ZZ++113pXU1VsNIGADCMXAsKnowMKRnExCKbGxsQbD4dCa9OStZ4NTlNl4jBbBE8kkji9OLY5CRHuOZYMjCUIc6lY+XwQqBUVUjgrCsbf7cYmXVWF+7NaE1+LqsII7+iAcco1sIjwW7tdRqsQISrm4EEITqPw+HfeAaH3qU8l33HQ64VBXlqKNGa9DaK9HZtvfT3IS+13enqIXnoJ47JqlYyq4nljtOEMDEDJ4bTu0fJsBQIYc+5e7nbjWoTAxtTQkLEhn+8bVEHw5xh6ROJYNlpRVaLf/x4E4fXX6zso2FkQCMA5dfCg7MqerDK+YweigWbNQrHw2DUfjWI9co1ZvXHo6UEUUWUlorGzYQi88grR3XdDvt19t5SdbNhlk0D86COkL3s8qCm0apWMTslBWlhBFh2lYCKRybxU544egchwOvFZba3+XsjRIRzRz4S+ntxIFZEI5FBXF4i7RKnSBw+izuHkySAI9fSIlhaQjUuXoqEJIxAAkRgKIWpHWyM8FIJBrqr4XTL6dHc39OiaGozLq6+CBFi9Ojv1x8c6vVlVQSZs3477XbAgJSfOMSWLXC5ZooebBGrXEjck4bq/RNhPOeIwE4d2IID1ySnT6UQJK4okrrnbc7yGLbkCE6xsT2ihtSVZp9J2VNa71lBI1j/Pdj2/SETKk+XLk4/U7O4m+tWvMM6f/zyuTasjahufWK36Mm5wEOvSYoG8ykaUaEcH0c9/Dplz/fXSsTqWCIfhyODmdrW1aTW4y3dZlBcokIiji7iDzYKUlTZFwQLv7pb1AqZOhVDUW0yqio1Fm5bMHi8iCKbYtORUDSZVjR81yH/1plW8qEFtc5KxhtOJ+6itHU4ScpHk0lLpvU/Ucbq7G+TVlClyY+OOaUR4xps2QUE//3xZGHjRIv3j7tsHEnHRInjAkkEwCCXcYkF0od7m1Noq6zXGFgfu7yd68UVc17nnYt5w1+pgUCof2vnE3apdLihM2o5puYbHA+PEYhlOtAcCMtU5GsVzbGjAs0xj3uX7BlUQ/KMAPSJxrOojvvYaHAHnnYdaiHro6sIamTQJsstkQvR0so6bfftQLHzKFKK1a0caSYoCZZUIhITeumOHGZdTyFRuqCqcNL/5DUiEO++Ukfvc+dJmy06NVkVBPbaHH8YY3HabLBtRWZmzKOyCLDqKwXWjQiHMoWQNR65rZjIZZw1wU7KGBv25ydkZJhOuo6cHe6pe9GIq6O5GxODUqSCpkkFLC2TY9OkjS6n090PuTJiAyOfYew2FYPj7/SAta2oghz/+WL6XLAnDNZb7+kBAFhWBQDQqD5MOxjq9mUiSr+wAP+64pJ77MSGLvF7MYS7H0dCANaaqmE/smOKu5EwclpVlZ9/PNH2Zg1W4TBFf31jaX14vZBHPda0tyZ3dU8ky83ggNysqslt/fft2jP+SJcbH5bRkjjI8coToD3/A7z//ecwXLWGYzPNzOiGvrFYQiNnoQ7BjB9GDD+JYN9+cHQdRNsFj5/FIuzmFUjP5LovyAgUSMUkIIe4gotuJaLaqqvvSPIzuYCsKFkkohA2G68c5HBDqEyZA2YoN9Q6FhhOGfr8k7yyW4YRhSUnizStecxL+d7zmJPHSiy2WsUvhSxWKAgXRZMIGrb1uTlvgzbu42JiM5SLm3JWNCM+oowPjWV+PVJ0XXpA1e7hLnt6m0t8PEmDCBBTmT2Y8IxEQiIoCgzz2uKqKz/v7QRxMmTLyHjZswO/OPXekoh2JQBEJhTBedjvGhL31VVXZVa4TweHAs7PZYOzozfloFN/p6cE1FhXJrs4pGPljNptzKYsKyD6MiMTRrI+4bx+IrcWLib7wBX3Z4fHge5WVck3Pm5c8adHWBkW5vp7oyitHKrmqKkt0lJfrr02u81tbC7Ig0z0jHCb68Y8hN886i+g735Ey0O3GfZaU6Kc5por+fhCUH36IaKmvfQ3nN5lAiOaQNC7IoqMcnDIZDA7PkjBCKIS1Fo9AJJJlP4TA/m8U1eNwYN0MDmLNzJqVfoScx4O6W2VlMMRNpuSdFB9/jO7mc+Yg2pDJhscfx1q77DJjMjAcBinm9cIJ29eHNTt/fuqkaCSCcg2HDhGtWIH7yMX69vlwvWOV3kyEFO7NmzH3mpuJFi6Mex1HtSzimttuN9bDxInYL/1+6ZDivZ3LVpSWZm+fzzR9WUtyKookqMe64RsHp/T34y/rB5najw4H7rWuLjtRey0tsG3mzpXR03zt2rRkbRmuUIjo6afx3nXXwZZP9V76+0H4lZQkFzGdDDZtgr7W2AgCUa/Z53iBzwcy0e/HvdfXJ6Wz5QnjkByyJN+yjjHYksYGQohriahCVdV7x/patOC6hJEIFLT+frxntYL0mTwZi4ZrVvD3/X4Z0cKh0DU1spahlixSVRyfhZsRUZioOQmH38cShGO9AWUbJhMUA6cTyoJWWFVV4b45QpSbsMQazBz1Vlo6PJy+pATPtasLdRL//nf8v7oaz3fmTNkRTat4BIOo92OzoRNzMpuQqkLJDYcRgahHIO7fj/vkjt5aeDwwvk0morPP1lfOLRaMTziMzZo7bXGX8EzqA6UCVcUmMziIczY0GI+R2QwFYOJEfL+nR9aCrK7Gb3N53eNVFhWQG5hMkK1cD9HovVxhYAD1VjlKR29dRKMgAYuLpUI8e3byindnJ85RVYUIRD0vOe9zRkbLoUNYi3V1I8sppAOXi+j730e00DXXoAsiH9Plwh5qt2dnrb//PghEnw9NW049VZYeqawcHxH2eijIovyAEFhbAwOYu6pqTJZxOizvzfHWkdkM/YQbrk2YMPI7PIcHBnA8bjg3a1Z6dae3b5fNOywWyJ5oNDk9ctEi3N+HH0LHOOUU6FBuN2RbvGjCoiKk6m3dioZPpaVExx+fOoEYjaIBXjgMvchslo2nsh1pzLq8y4XxH4v05smTMUc+/hhOps5ORCVm2q07FuNZFoVCWCMDA1J/tNmg83IzCG5+ycRhtoMmtOnLtbWp18Jj8jAalU1cslQfPC1os9q0qd6qilc2SotUV0snyMSJmZHwhw7B5ps0Cc+3r082QeHgHW66WV6Ov5yZIARqIscGaSSD3l40fWKnS6bPTFGInnwSMnDJElzXaMuUVGG3w6ns8cDO6+jAWpgwIfNmX6OF8SzfMsExQyIS0bVENIWIxsUD5LpQAwMy7ZMIiuLMmRBCfr9k37UFV61WKHMlJbLYKteN4A6TsQRhLLhjbXGxjB7LRnOSowVWK4ST1yujDRmlpRBohw6BDKyrG55SEI1CyFksI4k5IigbDQ2IQAyFcOxAAAqt1So9WjabPO+bb+L9s89OPoyda2hOnTqSDFAUEIgDA0hfjlUI/X7UF4pEEIGYyOtTVIRr5c50VVWye1quFRWOpvD58BxSiXysrMQrGJSpzg4H1gR3sM4BATCuZFEBuUcsacidm1lhzpWcjUSIHnsMa+SKK4yN3PZ2fNdmw77U1JR8dF5vLzzadjvOoWfc8B5WUqIvD9raZDmFZOu8xsOhQyDzjhwBkXj66fKzwUHI0mw0OIlGkSa9fj3G7Gc/AynBEY5GNR/HEQqyKE8gBIzigYHhNfO0CAZl6ley3b+tVhzX4cCx9er6lZTIzq1VVdBZu7r09RsjqCqMYb8fJJRWj0mlxMNxx0GWbN8udZhTT03uWiwW7OvbtsmIsVSgqkTvvgu5cuKJ0AMDAYzF4cM4djYaHWhRVITn43bjxZFaoylXmICdOhX1Xt98E3rjkiXZSascwriTRZGILGPEZaasVthYXK+tvFxmEeXimagqzsXRj3V1qZFhLBMiEfy+omJ0mhvqQVFGZrVxEExREe6rrExmCWRKEAmB8WIniVE3eiNEoxi/zk7IGy7Bwo1buI4ypyZrn0swiDIq/f3IzEiHQOzpIdq9G8+MnS6ZIBhEXcZt24jOPBOp1ePVwakHLgkwOAh9sb0da3LChNx2Ec8Sxp18ywaOJRJxXEBVIRyZgAoGsYirqmRttv5+CDwWshYLNiuLRXafGhiQhE0stM1JeMMYzeYkRwvKyrDZce0RrYJbXAwF8vBhPIdQSKbPcge/piZjpfjtt0FQrlghlRFFwaZps8n09EAAIfSdnfC6J0uQcVTexIkjyQBFIdq7F/c1ffrIwsPBIAjEQABpecmEubOHyGZD1CPXTBwclFGsuZhz4bBMD+e6NOnAaoVSPGWKTHU+cACbVH09xjGLynIBxyCYNGQiUY9YzDaefRbr48orjWVHfz/WqcUC5b2hIfli5E4nmrWYzSAQjbo9BwJS0daCi/hzOYXGxpRuTxdbtqAWodlM9L//i/Q7PtfgoKy7lKmB0tuL5ilbt6LO5Ne/jvsMBLJz/AIK0ENVFeaxx4M5zWsuEIBOwV1OU5En5eVYp4ODsna23neiUeglZWVYs2Vlye+57CiYM2c4Ucn1FrlZWzJG7cknQ4f+059AIC5dmtw1DAzgOk44Afeyezf+JmPgqyoijjs6QKhNn473bTaQa52deE2YkJ3yCFpwdgynN0ciY5PeXFcH8mH3bjTG6e7G2MfW0c53RKOYqz09MpCgtBRzgJ3kpaW5Jy649E4ohLWWQj24f5Y0CIcxTzLp8J4JOJggHJY2LUfs6WWyFRVhXP1+XHem12yxQPfhAAEjPUhVZWQhB3KEwxjD3bux/hYtkvXf4wXZRCJwrHZ2El16KQKDUkVnJ2y/6mqcN9OMP6cTDVQOH4autnp1ZscbS1RWQv5x5ltrK/an+vqCnTbaGFMOWghxtRBCFUJ8WghxpxDisBDCK4T4mxBi2tB3viqE2CuECAghPhBCHK/5fZMQ4udCiB1CCM/Q6w0hxLkx52klohVE1DR0PlUIocZ850IhxOtCCNfQcTYLIW7WuWy7EOJnQogjQgifEGKDECKpcqQ+H2qLvPACmmMcPiy7MLvdIC0OHgQZ09+PzzgN2euVimM0ioVSWwuja/p0KGYLF0K5WbZMdlSbPl2mI1RWQgAWCMTkwClEbHzGwmyG8lRbi82ptVUqHZzuoIdDh1ATaPJkCL7jj0etGfascIRBRQWUtM2bYdgnG6EzMIBjVVfLBi6MaBTKn8uFjS2WLAiHZXrQGWeM/L0enE7ct9WK+chRidwxLhKR0RN6pHe68PsxXmwEZKK4P/zwwySEoJdeepHuu+82OvfcKXT66aV0663n0JYt7bRlC9Htt99Pzc2zyWazUb7LogJGHxx9SCTTX9hg1islkSk++ACv1atR90sP2i7mgQDWbLIec7cbBCJHOeo5GyIRSWzERuhw5/r+fsiNbBCIGzYQffvbcMg98IA+gVhenjnB9847RFdfDVn6/e+j1iKna1dWZnZ8lkUvvvgi3XbbbTRlyhQqLS2lc845h9rb24mI6P7776fZswuy6FgF63JeL/Zy1hGLi9OPUqupwe+1Dmy983JmBqfx6mW6xMLhQNSgUaSx2Yxrjkb1m/LFwu2G3jFjBn63e3fi3/h8+F5JCfTjJUug3+zdCz0iEbZsAQG5aBFSubWwWCA37Xbo7319iY+XDux2qZM6ndCBcgk9WVReXkrf+MY5NGdOO5WXE9155/00ZcrRIYu4meV778kGGpWV0JMnTIC+P3169mrsxYPfD/0/HJbdaZOtg+504sUNOWtrR5dcYWeDyyVLhxDJ+sOcSWdEjHHGAhPmmYIbp/l8sKGJZOOpvj7IsYMH8ez7+iBPmTh2OhEQcsYZMlChuNj4WUSjaPJ08CDRhReirnSqOHwYBGJtLSIQMyUQ29qI7roLduEtt+Q3gcgQAnvWrFlYn14v9MmuruT2JBzj2OKgcoExbawihLiaiH5LRJuJKEBEjxPRZCL6FhF9TESPEdEXh75jJ6J/JSInETWrqhoWQlxCRP9JRH8molYiqiKiK4loERGdparqxqHzXEhE/0NENUT0DT6/qqqPDn3+bSL6ERFtI6I/EpGDiBYS0TxVVc8c+s4dhKKWHw59/gwRNRDRN4noQ1VVVyW6309+ktRJk6BI1ddDGSguhnDnKA2OEuTQbv7Lr3GeGnVUIhDAxmO3G6eq9PeDHPR4QN4a1YsJBEAiRyIgDmtqZAMB3tC4mQ7X3rHZZCdmbei/Hvx+eLBKShDZo50vkQg2k0AAinws6RaNwjju7yc66SRsmPHAiqzXG7/IMxMUXDuE53omYfQeD66zqAhrKdOU6WeeeZhuv/0amjdvORUX2+iccy6j3t5OevTRn9DMmYto1arL6W9/W08nn3wNORw+euWV73soj2VRT0+hmcFYQZvCrI1OzGajla4uot/9Duv80kv1j8slDTiiqawMClky1+Dzoa6O2010ySX6soLr+JpMI7uLKgqcLi4XyMNkIx+NoKpI2376aZAD3/mOJPKYQAyHZdpZuohEkKL09NOQ2//yL7K2qhAwVDKVRY8//jDdeus1tHjxcrJabXThhZdRd3cnPfjgT2jevEV00UWX05NPrqdzzrmGXnvNR1u25Lcsev31gixKFxztr6rQJzNNpY1EQPiZzdBN9PZzRcE5ufZiaSl0DSOEQkS7dmFdzJ0b3yDWRirFM9Jfew2y5VOfAjF45AicsUYpzZEI6vmpKvQuTufkSGinE/dgdB8HDkB3mjYNvzcCyxqPB3Kmujo36YKKIp0W7KDJhW2wYcPDdPfd19Ds2dCLTj/9Murv76QnnvgJzZixiM4883J6/vn1tGDBNTQw4KN3381vWbRxI6l+P+b0lCkgC0tLRzf9V5u+XFwMIimZwA/ebwMBWZ8xVynWeohEZKoyO0W1NfVTXQfa4I14zaGSQTSKcenslHXTeUy5pr22W7LFgvvZsgX3s2xZcrJVVREdvW0bshNOOin1a21rAwFZXw/nb6byY8sWoocegu5zyy3ZcdaOFygKni2Xc+vpkVlk69YlbqxyrHFQucB4iUmLEtGpqqpGiIiEEGYi+jYRVRPRQlVVvUPvO4noPiI6lzCAL6iq+pT2QEKInxEmxL8Q0UYiIlVV/zL0kKz80DTfn05E/01ErxPR2aqqBjWf6U3CQ6qqXqT5Th8R/a8QYoGqqjvj3aTbjUlfXIwosClToLQk0zm5gLGDzYbN0eeTjWViwaklqgpSzagW4DvvYKNvboZQnzZNbvLl5djAenrgidq7F8c46STMkXAYG6HPh/litQ4/RzgMzyV3jdPO3nAYm1MwiHPGph0qCqKW+vtRcygRgajtEseh5UYQQtbvZDIxFJKbdqpKzsAAFAGbDUpeNteOyWSmX//6dbIMaRiKEqX1639MbreT7rtvB7W0lJLPR/TKK9//N8pjWVTA2CE2GpHJw2w1WvH5oMiWlhJdcIHx8Xp6ZLpTWRmiepI5dzBI9Oc/Yw1edJG+rGA5SDSyyLyiQMnzeKShlgmCQdQifPttdGC+4QZpIHBX20hEFjtPF729RD/6EQiRT3+a6PrrJaFiNkMOZlsW/eUvUhZFo1H6xS9+TAMDTrr55h307LOlQ00hCrLoWAWXQeDmJJnCYpFN5QYH9esjmkxYSy4X9nCv17iWIjsqVBU6b6L1YTbLezEiTrZuxfV98pO41uOPR53CzZvxm9jmMIoC3ScSwTVoCSEh4AwwmeB40Uttbm/H7ydNik8g8vGqqnAfg4M4Xk1N9rN/2DHD5RPc7txmGZlMZvrZz4brRY8//mPyeJx0//07McNzmQAAIABJREFU6ODBUmptJXr33fyWRVYrIscybcKRLiIR2aE42fRlRZFNN7krdC4au+iB05S1jTk5EyletF4yEELKGY8n+UwjTkvWdkvWRjNyR/eJE2U/AL1j7NqFMV28OHkC8fnnZb3BdAjEgwchayZOxDzMZPxUFVllTz0FGffVr0Je5guYHNT+jX0vNgZucBBj6HSmfjo6BjioXGC8kIgP8cMbwluEB/h7fnia94mImomIVFX18QdCCBsRlRKRIKJNRHRpkuf+HGEcfqB9eEPH1/OQ/yLm/69prinuA9y4kei551CYeOdOCEaPB9Ei06fjbyGff3xCVWWKSl3dSKO4rQ0bfnU1QuKLixECr918tm6F4Dv+eHjklyzR38AUheiZZ6DErF6NFPXYgr1+P76nTRM8cACbbqyiHAoh7W7GDERJxm7Gqkr0xhuYe5deimuLh3AYCnd1NRT2VJsTcL3EYBDjyDVGEm2YqgqS1G6Xil62FKUtW/D361+/gU44QQ72RRetoPXrf0xr1lxBNlspnX46agD953/mtyzKdmfFAlJHbESiouD/mdRH1HYDvPFGY6+zy4XvWq1Yw/PnJxehx41aAgF0PI5N6+P78niwpsvKhsuuaBTOETbWUmmCpAeHA3UJ9+xBTcLPf16OnaKA3KiuhvKcCYH41ltEP/whrv+uu2AkcPH3ysrUalUlAiv6N910AzU2ysE7++wV9Itf/Jiqq6+g558vpZUrib75TaIJE/JbFp16apJXVMAweL1Yhzyv3W6sq2zMxcFBrJ2aGuPu5aEQCI/eXsismTNHGtu7dmHNLFmSfLSxqkLOCDGSyNmxAwTd2rWoi8hYuRIGvNOJOtPaiMI9e6AnxZM3qopIRW6OMns2zn/gAJwt55xD9IlPpDauXi9+azLhenKl24fDUp5nGmkdiwMH8Peb37yBTj9dPgyHYwU9/viP6XOfu4LKy0vppJPgVLnvvvyWRStXJnlFOYDfj/2MKLl0aXbU+Xz4t90O8jCXjTJ4bXLDTtZfOLgi2804zWZZtsHn0yfzuOYyE4baJqQWi4wu5L+RCNZlKKTv+CCCLHA6R9ZvjYeNG1EzdeXK9OYRy59Jk3DeTMYxGoWe9vrrsDevvXbsmunEgudQPHJQzyEmBOYD93woKZH9IsJh7DW9vbC7L7gg5cs6JjioXGC8kIhtMf8fGPobW6mE368hIhJCFBPR9wjhprE54cmmyMwe+rs9ye/HXitz3jWJfjhhAhbzueciHWP3bhhUTidIKLMZCsz06YgWy3aXtwLSB3uYuQmBdmPp7sYGNnUqNnGrFc+zrQ3pNZWVICA3bcImO2sWjHYjod7SAiN81SoQfgcP4jicnme14rdMJg4MgNSLTdUhwnf27IFgnjtXn/B75x0oi0xuxgPXaREC15SOYc4d7UpKZKFwv1+SiXqIRpGK4PdDwapJuNrSQ1PTcDFSVIQHXVIyjebOhaE0tLnntSwqYOyhVx+RoxHTjWjbuBGRPxddZEwgclRyXx8Itubm5AzPaBRe7fZ2HF+PQCSSaXaxzZQiEcg2vx/nTKZhUzwcPEj0b/8GeXznncMVd0WRNaEyKSgfDhP98pdEjz8Oxf7OOzGuAwOQrXa7McmSKbSyyO8neuUVyCKTaRp973sgMguy6NiElkBkvUAIkElOZ/L104xQWYn57XDIkjuxKC7G96JR6B+HDoF8YxKDG41Mn55auQI2Ftm4ZFnY0wO9eepUEHqx13LuuWgk9be/IZWwvl7KuenT4zsshJDXznWW7XaiDz+EUX/SSamPZ2kpZEVXFxzLEyfmptlSURH0IbcbemMolHxn7mQRqxeVlUEWWSzTaMIE1J4dkvUFWZQiOFre40kufZmbc/p82OfYWZerbDZVHd5RWUsccvmtXEY9Wq0yHZmvh0nDYFBGQHKpJ25OabXqjwl3OzfqRt/RgTU7dWrijCzGm28iEOOEE4bty0lBVcEDdHYiCtpIr0oWPh/Rgw+CVFuzBnUZRyulnWV2vChCvfrfJpNsHsuZmdqGskwexkJVIa937sRxFyyAjZYGkX5McFC5wHghEY0SMYze5yVxLxF9mcDMvknIE48S0TVEdHk2LzCFa0qISZOILrsMtVjeeAPseTAIhcPrJfrHP/CaMAGs+vTpuTNUCkgeRUXYrDl1oKQECrvLBYWVFcSyMjw3VqL9fqKXXoKxu3IllFUjZfLIESiuU6fC0x4KYVNrbwd5xlGQQsiNcv9+XMPkycO7vwYCIBAVBeSg3jk//BDfWbIEYfvx4HZjrhYVYXPNtPaXxQJll1PFeVzt9uFGC49BJIK1k8u1YNbsVG1tiHwgIpo1y2yUypTXsqiAsYUekRiNppfWvGsXHBUnnICXEdrboSSXlkJOJZPioqpEf/0rvOVr1siGJbHw+7FeS0qGOzPCYRCIgQCU5EzTat57j+gHP8B5fv5zyFRGNAq5rCiy7nA66Ooiuv12KKgXX4x0IIsFxw6HIYdy6ehjWfTee0Q//alsHnH11WY66yzdnxRk0TEAjwf6YknJ8PnHdfEGB7NDJNbVYQ309mLf1TPi7Hast2AQZB0bwi4X9IqamvQ6k7Ls44iUUAhNk+x2RAXq3ZfNBtn07LNEL74IorG3F+RdsnXAmptxnx98AFJ02TKiU05JP7rLasV4dHXhVVeXfGRTKhACupTfj/nhcOD/mepoDK1e5HQSffwx/t3YaDbqjF2QRUlAm75cXo59Md6a5efLWQSxkf7ZgqIMT1UmwhooLpbEYa6hKMO7JWu7VHOtRS4BFa9OvB5KS2VN1+JiKUf7+2FP1dUhcysZvP8+0oaXLIHzIlUCcfduOEiampI/pxH6+lDa5cgRNH5bsSKz4zG4K3miFGO9uDkmArnTth45mI589XiQ3edw4HktWZKRk+aY4qCyifFCIqaLtUS0XlXVr2rfFEJcp/NdI1Z479DfxUT0ShavLSGmT4fg2LMH6VL790PZOeUUCM62Ngio99+XDTiamjKP4CggfZSVYfNxuSA4jxzBe1ovN9claWyEUH/xRQi7lSsRgWgURef3g1QuK0O9HyEgdKdPxybT1weybfJkuWH29WGuNDdjQ+VwfkUBWSAE0nj0Io22bUMHunnzUAcxHhwOKI8lJSAQs5kyUVQE5SkUAonudmMsSkuhwHR24j6mTs0sJTFZRCIYm+5umfqdxOaU17KogLFDvIjEZNdZXx8anTQ2Ep1/vvH3jhzBvmIyIdo9tn6YEV54AWTamWcaywpOK+Lurdr3W1rwV6+cQqr461+J/t//Aznx3/89PMpJSyBWV6dvRL/2Go5NhDTm1atl0wkmJ3NdesTtRur0yy9D5l53HQqjJ1E+oiCLjlK43VhHdrv+ns6NFAYGMFczaexhMmFtdXdDvhiVwCgvl13Yu7uxLlpaIAcWLUqfyDSZpPG6YQN0n0suiR81XVoKIvGJJ9A5/rzzEtcx1DuGw4HzJiJ1koHFArnMOlw4PLIkTrbAXW1dLsyB0tLsOTq4Cc2+fZJQTiIjpCCLDODzYZ4JkTh9mZs7RqNSX852eqqiyDRlriGobeSYS+JQVXFubS1DbVpyURHGiJ0ndXWZ2yBVVTiHw4HjB4NwxJaXJ99Reds2lFGYMwcRf6lck6LIFNwZM2DbZ4L9+4nuvx9z5BvfSJxVpr2OROSgUXoxE4FG5GC8BlnpguvstrTg+MuWwTYcIxzz8i3fScQoxbCvQoi5RHShznc9RFQlhBAxeeZ/IqJ7iOh2IcRbsUUtDXLSswYmeWbPhnfvnXegMDU3w4tgtYIMam1FLcWPPoIR1tSEV3396IUqFwBUVkIh3L0bSpReR0DefF0uGN/l5TDYjYx2RUH9inCY6Iwzhhu/XFPHboeSzunN0ShIgaoqqeDbbNiUdu2CgF28WJ94270bc6m5eWRqkBaqinNwYeNcKb9E0ssZDMIgOXQIhEBVFQiPbHnV48HrRWqC329Mvhog72VRAWMHLZGobbTC/4+HUAgGs9lMdPnlxsq+zwfFy+vF3I5tIGCEl19G04KVK4fXIdOCSQSLZTjhHgzinJEIFO1U66dqoShEDzyAzsinnEL0/e8PX5+RiCyonS6BGA4T3XcfzjF/PqIdJ0/GfQwO4rnkolGCFrzKf/xj3N+FF+K5bk822aUgi446cJ3RUEim6xnBZsP8ZyKxpiZ9g5vTK/v6ZHSjHqqqZAfkjRtxzpNPznzPNpuRldPejqZJyTg9iorgeO3qQprgokXJE2kOB/b/pibo5G1tWHeLFmWWLso6XH+/jGTOtjOWYbHgObndsslfeXlm5wqHoS/296d83QVZFANt+rLVivVlNLdCIdn8zGLJvvMqGpWpykwUmc2SjM5VinQ4PDzKMBiU+x6TUmVlMsqQ51s4LGsRZ6JLEEnytqcHmU6dnbjnhQuTm9979qDB3PTpRF/4QmpjpSjIcurvR2ZGsrqYEd5/n+g3v8G6v+UWmYadqO6gXnMSIty/liCMJQctltzW3jSC04mAHLcbetmiRWPeR+KYl2/5TiL+hYiuEUJ4Cd1wZhLRV4hoFxEtj/nu+0T0aSK6VwjxLhEpqqo+rqpqqxDiP4jobiJ6TwjxBBH1E9GCoZd+4lCWYTajYcOCBdis33+faP16/P+Tn4Rg8/tlrb0dO6Dc2O0y5XnixLFZ2McaTCYZEVBZaTzmgQCiEIuK0M2zpgZk8JQpIwXfRx+B/Fu50jjdpbISm/vhw5IMaGwcTmL6fNgQKyvhneHuodwdmQhenHfewecrVhiTFFzrKBiEopOLNBw9WK24Zlayyssx97luRi6xYweMn5NPxobcHlsRwxhHjSwqYGwghH6zlXiNVlQVimxvLxqdGK1RRYHS290ND3Vzc3LOgDffhKw48URE4xkd2+PB2tQq9oEA5JSigEDMpB6Yz4eIwLffRjTSV74yXO7GEojpkHyHDxPddhuu+dJLib78Zchunw/yvqgI45vLPbarC3UniXCuO+6AoswRZkmiIIuOIqgq5l84nJhAZHCDlWwQiaWl0AG4G7MeIScEdIS9ezGHGxuzU3bkwAE0PVu4EDIkkVMlHIbTtrIS8nDjRkRRf+YzicfN5ZIN5k49VaaL796NiKPFizN3HtTWQo709kLeTJ6cG4dEbHqz05lZevPOnfjtggXQXzdtSvqnBVmkQSQio1ErKoxrV4bD0mlgNuN72WqYE4nINGUmDrkWXXFx9vc3RRne+CQYlOflbKvKSvy1WuPPUW4k6fMNbyqVLsxmyMlXX8X/V69OLsLz4EGiP/4RjoG1a1NbV9EoAoa4cYteEEoicHOSSASRkM8+i2jGdevw2eHDwztSM/Sak+jVHxxvgUmRCOTwwYN45iedNG6aQx7z8i3fScRbichP6G5zDRHtJqIvEdF8GvkAf0xEs4joKiK6mcAeP05EpKrq/wghDhDRNwlFMiNEtI+Ifp37WxiOoiJEhi1dilpIW7bA+Fu6FAtn3jy8gkEIitZWGD27dkEAT5sGUrGxMfeEy7GKI0cgqJuaZKey2I2Ha4j19qKGz+LFeB6dnSCBGxulUd3aCgE5bx7I4HgoLsZvOzqgZPBmwikse/fiO3Pn4m8kIpuXBAK4nrfewua3erWxwhAKwRiIRuHVykVBcD0oCogOjwfnravDdfv92HRtNigR2VR0wmE8AyIoFKtWpaVsH3WyqIDRhzYCUVsf0UiWv/02DNyzz46ftnfwIGTDtGmQDcmsn/ffh7G4ZAmOrweOkCICgcjKp9+PfYsI58vEAOrtJfr3f8c93HrryM574TDIEqL0CcRXXiG6+26M8913yyYtHPXAhk6ulOtoFNGP69cjApsINY2OOy6tfbwgi44SqKosncKROcnCasV6cDoR8VJTk75OWF0NnaCvD7qD3v7Y3w9ZMHcuZFZPT/KNCfQwMIBaYxMmEJ12mkxtNlrfigI9KhQC8V5eDrn14ot4rVljTBB4vShhYDIRfepTUl5x1N3OnYiAWbIk8+jKigrcQ3c31vqkSbkr05JJejNnoRBh3nziE2kRwwVZNARt+nJ9vf4z54j+QADzjhsQZrrvaDsqc2OLoiJJ2mVLn+a0ZC1pyDUViWT9Qa7nXlyc+r3ZbNKuMZszW4+qCkeFxQIyT6/pRywOH0bn45oaoiuvTE0mRyII/nG5kOmgR4Ql25wkEiH6058QgHLccXCuMgnMUaTJNCcZ7+jpwZj5/SBK580bnZqcSeKYl29inEdKHm1IebDdbkSCfPwxFs4JJ6CLrlYZikRAKrW2QikJhSBEpkwB0TV16uikgh4LcLlABNbUQBHo74dAj63R8Y9/wCg86SQYvYoia0gcPowNlhXsF1/E8c48M/FmHo3CmI5EcM7+fhy3pATC1maDEh/7vEMh/G7jRlz3eecZK5M+H45lMuEaRytcPBLB2AYCMBy0UVWKgk3E75dNZbiQfCYYGECqZiCAzSmFwsbjzFeXMgqCfxyDlVmORuQUZy1aW4l+/Wus9yuuMF4L/f0wkMvKQI4lY0Ru20b0zDM49sUXG8sltxvrtrxcKnZer6xXM2dOZgZySwvRd7+LdX/77ZCnWoTDIElMJhAdqSrJwSAKkf/1ryAe7rgDMo9Tzjh9NNPUqXjYt4/of/8X97p0KdEXv4h9O4UOqwVZdBRCSyCWl6dfA43XiBCZEYmcmcB6gVYm+HxwOtjtWEc7d2LNLl+engMyHEakj8+HJoTl5dJhynpULFpa4HCYOxe6EaO9HY3tGhqQERL7W78fkUjhMMhKvZqtfX3IUrDbsUazUY+OHbWRCMiEXMoYjmYNBmVDini6ZjAIw93hAMm5YEHS86Ygi2IPqGL9eb3G6csczc/6rd2OdZOJfsvRhqGQjODlhiRFRdlxiIXDwwlDPhcR7tFmk4Sh1ZpdstLlwrjFywZLhP37YTvPmoXr8/mMCV4i2EW//S0+v+661Ej1UAi2hsuFUgk1NfpEoVFzEi0ZGAggffnAAZQ7+cxn8pMgjIdgEDK3owPjvHRpyv0g8l0W5QUKJOLoIu3BdjhATLW0gDDiaEW9zairS6Y9cxpoYyMMk2nTRqc5xdEIbnbDEZ9CyO5qxcVSwHV0wDBtaCC64QYoh9EoBL/Fgg28owOKxebN+HzNmsTROqqK8/t8iFi027Ex7dyJKKOJE1ErTI8w7u0l+tvf8Ow50q6oCOfUKtWDg1CYi4uhPI6WxycYxJgoCs5rZHgoikxlYPI0HU+tqoJU3bMHY7J8ecrp2vm+QRUE/zhHPCLR7UYR7eJioptuMpbpoRBqGgYCMJCTUcL27EFK7fTpMOCNlFOvV5JsbFR7PJBFFgsIxEwcEG++iRTmykpEB8YS/KEQiL50CcT2dtRV3L8fJOwNN+C6o1EcNxLJbhpZLIJBRB4+/TT2gCuuAElaW5vyHl2QRUcZFEUayWVlmZNWTCQSZVbTMxCAIW23y4ZG0SgIxFAI89dmgxzYsgXrP51o2hdfBLl+wQXDi+ZzE4DY0iaHDmE9NzXp1xfbtw9E4bRpqK3IcjQYRLS1z4cIxHiNQhwOEGs2G4r5Z8O5ysRsIIB1n+umidygg9OdjSJKt2+H/Js/P/nO1kMoyCINwmGMJ6cvV1YO/5z1WZ8POimTh+mQYqo6vKMyE4es62dKHHIXdi1pyDqKySSJQiYNc207RKOQkZzunSo6OyEXGhuRxaGqkG2cfRUrsxwOOG1NJqJrrx2+VmObk8SSg34/AoECAehF/FtOL9aLGNT+W/vcurthXzqduI4TT0z93sc7Dh0CgRiNgnCdNSutNZHvsigvUCARRxcZD3Z3N4yr9naw8ytWYKPX2xw4HaGtDVErrDw0NMjGLKOVpprvUBSMoaLAuNZukD4fNrOKCgj8n/wEY33zzSDEGOwVLC7G9/7yFxiwZ52FNJlEQrKzExtHY6MkvPr7cYxgEBtTWRk+1yqHTiea9VitkqzkFGFVlbUxnE6QiHb76NbX9HplhENjY3LKeTQqSQyTSaZIJINQCJFWR45gLSxenFakbr5vUAXBnwfQptdwirOiQJnt7ERtQKPaMKqKvaKjA/tEMh3sDhxAZ9NJk9DMw4i8YPlRUiLXncsFpby4GIpyusSHqiIK6Ze/RFTRf/3XSOOeG52Yzel1oH3pJaJ77oGs+d734HwhkqnRqgoZm+0OmIyPPkKH6a4ulJW4+GLcY5qRYgVZdBRBSyCWl2cvi4S7ixNl1rnc5ZJNVioqYBwfOQJiTbtOe3rg4GxogI6aLLZuRZO5U05B5k0s2GA3m7Hue3vhXJ8wAQanEXbtgjxsboZDJRJBhLbLBceqtsu7EQYGoDsUF+N+s+GQZz3d7cZ45rpZYiSCe45Gh6c3qyp0yQMHoEcuWZJWdGRBFg3B65VR8jU1w+eKqsoyQ6qKz8rKUpf9TBxyqjIR5g5HG6a7xlV1OGEYDI5MS2ay0GbL3T6ZCNx4xmpNzZZ1OCC3amsRZcvrLRyG3CoqgjwRAuvE4UDkXzCIGojV1cMJQ700aG5OEonAMRsOI0q7vj795iR79qC5nNlM9NWvpt55frzD64V87evDmlm6NKMI7XyXRXmBAok4usjaYLe3owh0Tw8E4cqViQVKf7+MUGSvdF0dSLGmppFesgIkDh+GgJs2TT8yxenEhvbCC1CCv/hFeOBjEQhg09m3D97e2bMx7jYbPOhG3ru+Pjzr+nrZobC3F8RmRQWO4/WCWCBCfY/yciiLGzZgszr33OECWVVxPZy+HI2CkEimA2K2MDAABdpmS6/IONeQCYexsdrt8UlIjv4MhWDYNDWlfen5vkEVBH+eIJZI3LABtRAvvRSGnhE+/hiyaPHi+N9jHD6MLs/V1ZBf8aIbvV4YDqy4Dw5CptlsIBDTNV4iEZBrzz0Hcu3f/m3keg4EcL50Gp0EAkT33ovjL1mC9GWWd4EA5KXJhOPmIpLC5QI5+vLLIGrXrYPsLi/PaP8tyKKjBBxdo6qydl62j+9wQKbU1KS/Tnt7oTeEQtBFm5v16znv24fP581LroFAZ6fseLpmTfymb4oCObRzJ8Zq4cLE5NvWrag1zmRjXx8cLFpnbyK4XDiO2YwMhmxFKjsceJWU6EdCZRNcyzYQkLXxuNlDYyOeV5rnP+ZlUaL0ZW52oyiyC3Eq61xRJHHIzTO4Dl5xcXoyIxQaSRoyLJaRhOF4auDJmUmlpckFIHi9iJK22UDqca1VJgU9HmmTlJfj+3/8I/5ecolcm0aRg9rmJH4/ZEUkAj0sExv7rbeQuTBxIjowa0s25DvYgdHSgnFbsEBm+2WAfJdFeYECiTi6yOpgqypSx956C5vWpEnwqCbTLn5wUEYo9vXhvepqGaFYW5vNK81v9PdDaZ440TjdRFFkl6xzzkFkiR64kO+mTTC2V63CptXZiY15ypSRxrvLhfDuykr5bHt6oJxXVg4P9Q6HEXnk92ND/eADXNu55+pvYFxP0+2GMsNd0rJRzDkeVBVjOjCA88bWWEoVoRCUiUgEm7jdPtw7yuPO5QCWL8+YNM/3Daog+PMITCRu2UL05JNwGp13nvH3OzshYxob0Wk00Vru6YGCWloKYsvIqx+JQFZYLLIekNOJtWW3wzhPl/jweEDqffghUnuvu27kdWsJxOrq1GRUayvSl1tbQZJee6007rxenD9XHZhVFc/jF7/AeS64AE0frNaRUSppoCCLjgLkmkDUnoeJxOrq9KKIVBVNTLZuhR6zfLlxNgzXATv++Pg1xLxeoscfx/Vcemni6/J4cH6bDREryY7Xu++ihEBVFdFVVyUXoa137i1bcM/LlmUvo8ftBoHBjR5yXcs8EIAdsGsXxnHJkvS6xWpwTMuicBj2VCQC/VKbZsup5NEonmsqUcaKIqMNmTjkpiKc2ZQsIpGRhGFsWrKWNMyHWnvcvZ7lJjceiU0x9vkgM6JREOWxpCOXSWCCvawMNl1/P2RFc3Py48HnUhSsq3S71asqHCsbNoBc+9KXkm+OlA8YHMQ4DQ7KzLAslVzLd1mUFyiQiKOLnAy2oqB+wNtvQ/jNmAEjM5n0DCIobxyh2N0NoVVWJiMUOaz7WITXCwKvoiK+ctXWhuL41dVEX/+6cX09jwdRMBYLinxzZGAwiPMoCs7D7/v9qN1XUoLnIQQIgo4OnKu5eeSzUVUQjM88gw30ssv0Pe3BINLpVBUEqc2G8wWDsnmJzZb9Z891O71e3EOy8zQZBIPYvFlRs9txf1u2yM6SixdnxUDL9xVREPx5BFWFbP7FL0AMXnutsQHidqP+aXExnAeJDBWHg+iRR6Acr1tnTK5zmiXX0xICyvXBg5BXs2enb3B0daEDc0cH0be+BdkYC78f5y8uhnxNRS698ALRT38KeXb77bKOEDcc8PvxWQrNTJLGkSOoYfT++yBcrr0WMo8JxCwYaQVZlOdgApFIlkXJJRQF6z4axVpKtb5fMIga3YODSDlubDReN8Eg5r7FAiJRTx5FozCUe3uJvvCFxE7sSARpb36/TLtNZt2qKkjEv/8dY7xmDUjAdODzQa9QFJCY6ZIEsQgEIA+JYFTnqiarqiJSdN8+jN28eZBLGRKix6ws8nhkjd7aWrmmQiHZgMxiSb7LejQqicNoFO+ZzTJVORkZoSiSKGTSkElITnvWEobjvQEnRw3GkoNcHzkSiT9/Oa148WLIvdgoQq3zsLMTmRluNwjEeKUSYuHxQD4RQTaku6ZCIaRRf/gharauXZsfpG4yiEbxPA4cwDxcvDi1iPAkkO+yKC9QIBFHFzkd7EgEXt/33sNmMW8e0Sc/mVrDiEAABFRbm2x0UVIiIxQnTRpfoey5RDiMqBWLBfdudN8eDwhEv5/oy1+WRm6sNyUahXHvdiMKhZUB9rhHIkgp5O7E5eUQsCYTiGHu7NzVBSVlxgx9xTkUQmHynh4lQopZAAAgAElEQVSk+NTW4rlpvaJeLz43m/GZ1usfjeJeuN5gSUn2OjSHw9icQyHcY65S6DlNu68PERNmMzapadOydop836AKgj+PEAigkUowiFo4ZWVYm7HrPxKBgex2IyI60foaHASBGImAQDQy3pls4zptZjMM/rY2/H/27PT3hR07iP7jP3DsO+/UN+p9PpzfasU9JUv0+f2oUfviiygvcfvt8h4VBfefqw7MioKuzw8/jP9feSVSJxUFsjidYvAGKMiiPAbXqGNyfrSMREVBFHE4rK+vGEFVUdPT7UZkjN8PGZCoKcnWrSCp9NKOX38dn59zDoj2ROffsQNjtnAhHIVGHZtj8cEHcHosXgw9at8+rMkFCxL/Vg9+P4jESARkZrb0mXAY1xcOS10wmwgEQHIMDCC7Ze5cmRZaVIR5mKY8P+ZkEa8jnw9riB1D4TBsg1AI/y8rS7zGIhGZqszRgdqOyvGeCddHjO2WzOC0dW235PEUHMK1TvU6FmsJw1hwcxIi+QyYINSmG+/cCafnokXxZRURzvPoo1gj55+PbI5k14PbLcsdLF2aftTg4CB0vtZWos9/nujMM8fX88oEvb0YW58PtvX8+TkhsI+S0RrfKJCIo4tRGexAAMrSRx/JUOpPfCJ1b0g4jOi4tjb8jUSwmU2diqi4xsbR69472uBOyKEQ7tUotSYcRhrgjh1Iv1uwQHr4Y2uhvPMOlNbVq6G4sZdR28mMo/QGBrAZVVYSzZyJ77S3y7qIevWHiPCMXnoJ5NkZZ0AB5fTm6mpEHA4OYjO1WkEgGhktkYhMEebmJZkUUA4EcC2qimjLXIbkc6r/jh24vyVL8DzS7Xyng3zfoAqCP0+gqlBoW1ogY6ZNw3tEw4lERUGUTWsr0cknj+xmHAuvFwSi14v0XqMGLUQykqK8HLKqp0eWWGhuTn9NbdxI9D//Azl19936pTg41ThVAnH/fqLbboPcvOYaoquvltcZjcLwY0IvS+kz/8TBg3As7dmDqMfrrpO1pGpqsueUGUJBFuUptARiZeXoO2jTIRJbWrD2Fy2CzHA6cQ+1tfGJ+NZWOEWbm4fXIm5pgXN12TKUd0mEvXsR3TtnDnQhVcU4JiISt27FuebPx7UrCmqTtrVBJ0sl0kiLQABEYigEcjJbHZZZF/T7ZdOlbKC3F/UPFQUkbEOD/Ezbvbm8PC1975iSRaEQdGlt+nIkgjEMBrGeS0vjlwfSdlRm4lDbUdlIJkQiwwnDYFDqBWbzSMJwLCPYjMhB7b/jNScxqjvIL0YwCH2hpGR4BO+BAwjAaG5O3G1cUYieegq2w5o1stljMhlTg4Mgx4qKMmu81NGB7AWPh+iGG9KPlh5vCIVA5h46hHWxdGlOS6fluyzKCxRIxNHFqA62xwPiavt2CNrjj0fqSToGTDQKwdbWBqMsGMQxp06FQjh16th16MoFurull9ZIMWYl9IUXQNidfz7ej0ZB4hUVScVv3z48i0WLhm8Ifr+M9mRlgesIdXbK9vaHDsm6jEbRdNEojPKuLoS+M9HI9Qf7+rDBlpXhupJNUw+HZYowNy9J1WvkdmNMLRZsyrmcK8EglPr+fpxr4UKpaKmqVDAyNNjyfYMqCP48waZNiC78zGfQsVRV8VKU4V74Xbsw7+fO1W/qpEUgQPS738HhccUV8evo+nxYP6WlWLddXbKcwsyZ6XnHVRXn/+1vQfD/53/qR+Z5PJBZNlvyUT6qijpG994LWXf77dj7GKEQlH0iECfZ9ICHQkSPPYZC7GVliExfulSmS1dX58SYK8iiPEQ4jH3RZMoo8itjcCOIUAhrLF76bHc3jOupU4dHDPb0QEY0NBjv7aoKXdTphB5UW4s9+o9/hC5y0UWJx+DwYeigU6cO14M4iolrmsVi1y4QZ7NmoX4jIxpFlHJXFyJ9jJyziRAKQfb6/SASs0X4se7mckGeTJyYfjSSooCA5ehxoygpTq2PRPB5isEHx4wsik1ftliwV/n9eEbc+Vqv3FAkIoMIVBXf0RKHsb/htGQtachReUJIopBJw9FKS45tSqJHDkajktzUIhE5aLGkN9e9XowR15zs6sK8nzwZ6z/R/TzzDAJwPv1p6FseD2RWRUV8HcTphIyxWrG20nUUfvwxmq/ZbEQ335zV7KkxRUcH7i0cxnOYMyfne16+y6K8QIFEHF2MyWA7nahfs2cPBNMnPpFaIepYKAqUxtZWKCQ+H4TBpElQwow6GOcLBgagLNfWxvc+bdsGg3HqVBS71Y6n3w9DtawMG9rf/gYF8PTTh2+MqiqVDq4/2NUF4760FMpCTw8U82nTjL1oikL02mt4HitWjPSqKwoic1iBnDcv9dQbbl6iKLJ5STJzyOEAgVlSgo08lx7Rvj4o89EoyEMtOaIoMmVHCEkmpqmU5/sGVRD8eYC9exEtuGQJUlp4rmqJRJMJCtq776Jj34oV8Y0IJrq6utDAYOZM4+8GApIAKynBebicAtdoTRXhMNGPfgRi9Oyzib79bf3rdbuxXktKkk/99fmI7rkHzp0TT0QjFa1Bz41ZLBaZ8pQtbNsG4rKjA4TENdfAkIpEsp6+HIuCLMozhEIwTseaQGSoKvSeYBDXo0cueTzIcCkvh5NCu/ajUcgFIeKXvGEHHxF0lOeek3WbE2Um9PVBh62v10955mim2Npme/finE1NkAmxMischiO4rw/EQaJIJSOEwziP1wvdI5u1np1OEK42W/zsESP4/ZBPg4PQV+fOTZwaq+3enMIcPeplEdcT1TqG/H68iLBfxWa8cKoxv7TEIXdU1u7todBwwjAclscqKhrZLTkXaa7a5iRGKcZ60YMcERyPHMx153GXSzoWdu3CM0rUvV1VYae9/TYik087TX7mcGBd19Xp27b9/XCulJTAtk43SOLVV4n+8AfYLTffnL2o5rEEy54jR6BzLV2aU11Ii3yXRXmBAok4uhjTwT5yhOjNN0H+lZfDy7JgQWYKLHtKudOz2433J06UjVmyXWsql+BudXZ7/K59hw7BEA8Gib7yFX2FcWAAStu772LjX7NG3zsVjeK8ZjM2qu5ubFYTJsBz39ICxfG44/Q3MFVFh+59+4hOOmlkfZ9wGMcMh7EpuVwwtquq8JxSff6BAF6Kgs2ypERfKVBVEKAuF+ZbQ0Puanpw+vK+fZhvxx1nPO+4Sxunm5SUpNVAJt83qILgH+dwOlETp6JC1lrVgknEvj7UwTWb0VArnoIWjaIDamsrOsjPm2f8Xa7pVFwMo6i9HXtIff3wdMRUMDgIYm/7dqT4XnGF/rpzuaB82u3J1wNraUH6cmcnjn3VVcNlG0c1FhdnN3XU4yH6v/9D98SGBjTWmjMH95qj9OVYFGRRHoEbLVgsuWnkky5UFXM2EMCa00agRSKQMdEodAy9+RwMYr+32aC7GIEjdrZuxXEvvTRxQX23G78pKwMZYLR2Y4nE1lY0dWlshL4br/nLc89B7qxZE7+0QzxwwxeXC2nT6R5HDx4PxtdiGVnHOh56ekBwEGHsUrmmYFDq9BUVSZ1znMzmtBFXFsWmL7POzhkupaVSF2YykIlDIsxJbcQhET6L7ZasTUvWEoZWa+b7lrY5SbwoQj1qIJYI1CMKx9ohQiRLAXz8MRyey5cnJi43bQKJd/LJcCbEBnscOYJxmThxePBEby9SdMvK4OxNJwpUURCRvXEjSLYbbsi5zpBzqCrKuuzejf/Pn5++4zlN5LssygsUSMTRxbgY7EOHQCZ2dcHA0YtcSxdOp4xQdDjwXm0tjM7p01Nr8jLaiEZx7US4VqNNp7eX6PnnQVp9/vPG9SoUBR0H+/qILrkkfu2HcBjKCUdANjaCEOO296EQNrDJk0ca1e+9h01s2bKR1xIIyI7b3OlPVXFNfX3YqLjmRypQVUkmqip+r00R5sgEnw/3k8O6F/+sSeRwwIO3cGFyns5IBApgOCxr16QwDvm+QY0LWVSAPiIRol/9CjLhppuM14/LBSPZ6USEeTzHh6IQPf00onk++1kovPHO7/FgHZWWDi+nEO8c8dDejg7Mvb34q/X0a8FERrLNTlSV6C9/QQ2hykqiO+4YLgc5MiEQgIwqL8+OIsvOm/vug8Po4otBinJUChfZHwWjqiCL8gTBINbVeCMQtRgYwFopK8NLVUGM9ffDORdPh/N48L3Kyvjfe+YZGMxnn41mKvEyGrgJCNc2TmSkMwHS04MSMhMmwLmSaB36fCiDEAigdES6Oks0KpuWzJuX3Y6jwSCcJKzPxYveVBQ4Vtrb8TyWLEkvQ0ib3lxSklAmj8MZnRIMZZHbjb2JU5W5hqHVijGxWPB/bozCXZBNJtkYRYiRackczcfZSNrU5FSzxeI1J9H+OxZcFiVRivF4lFd6CIUQNe12o4RXorX8zjtwAi5fTnTBBfr3GYnIZpRcVqC7G/pURQXKGKST3RcIED30EGTGmWfCphwPRGwmcLngJBoYgPxNV/ZkiDyZrfmNrJKIQohNRESqqq5O4ruriehVIrpBVdX/y9pF5AhCiIeJaB0RFamqGknzMONKWd63D2SiwwGFZOXK7NZfcLsloXjkCN6rrJSEYl1d9s6VDRw6JLtFGRXEdblgOL7+Ooz2Cy80Pt6WLXjNm4dXPKU6EMBmZDaD0G1txbmmT0fkTzSKekB+P/7PmyKfY+FCpOpo4fFg3NlzHat8e71QSKNRfJ5OZ0FOxw4E8H9WfDo7oUxNnJjb0PXeXmxW0SjqLHEq0urVq4mIaNOmTQmP8fLLm+iss06jn/70Ibr66uv/WfstAcZsgzoaZVEBw/HnP0MJvvJKeHD1wMb14cOoMTN/vnEdIa4TuG0bjPZYWaGFosjok/JyyO/+fsiIdFP9Nm9GlKDFQvTDH0Je6V3j4CCMq7Ky5GpxeTxozMIRBN/73nA5qyhQZMPh5I+ZDPr6QB6+/TaKtX/jG9g3HA4ZpcLOnlRk0aZNm+i0006jhx56iK6//vpkL6cgi/IAgQD23KKi7BHZucLgIPb10lKs/f37EV2bjAOhvx/rcsIEfcOxvR3yzWbDnt3cjO/qGc6RCKKWQ6HUDNGODui2dXWoD52sce/xgOBUFNS4TrfbsqLguh0O6HPxas6mikgE+lUoBF1Q7xp9PhkR2dSEa+DxTUce/epXD9HatdeT3y8JcANH7ZjO6izIoxGySJu+LAR0Q1XF37IyjCsTh0zQMfnG9Q+ZNNSmJRcXD48y1KuFqMVoNSfJdygKbAKvFzKLSy8Z2XSbN8MJuWBBYgIvEIDNYbfjeba0ILtr0aL0xtDhgB7R0UG0di3SqPMZ7LjYtw/zWWuTjQGyJosK3JYxctpbVwhhIqLbiGiLqqp/yeW5Ckgds2ahHtauXaiZ+NRTUDhWrsxOGkZ5ObwzixdDqWlvBzm2fTsUnNJSnK+pKb202myitxebzqRJxptNIIDw+A8+wDWfc47x8Q4dwnfnzcP9u91QQvSU4HAYhrrNhnHYsQMKwcyZkiw0m0HwdnXhWjmtYssWKIixpIDTiQ2qpATH1NvgSkvRwbWjA0qp1wsyOZXnIITcoP1+nLenB4rRjBm568Csqtis9u/HPFu+PL6HXFEUuvPOO2nZsmV0YQzzywYGP3eXCxtgOg1kCiggU3zwAV6rVxsTiJEIIqF7eiAXOJI8GtU3mF96CTJ39er4BCLXwlJVrKeDB7GmGxvTj6jZsIHoJz+BIf3f/61/HC2BWF6enNzYvRup0T09iNa87LLhsisSAYGoKCAWs5EepKqIQv/1r3H8664j+tznpHFhMoEQieeEiCeLCjg6wQQiEw/jmUAkkl3QDx+GnGluTj4CuaYG+klfH9a6Vh65XKg7Vl9PdN552L87OvCd2tqRKYR79kCvWLgweQKxrw+RRRUVSGFOJTqorAzpzM8+izqJ55+fXjkekwl6386dGL9oNP0SELGwWCBLu7shc8Lh4Q757m6clwgR2fFSy4mSk0dCYByKiqDLOp2Q0/mecpkIPI/9fujQXLqH9ye/XxKHiiJfTCpyjI7FgrGqqJCRhtpGitEo9r54RKFRerHFgufC1xZLFI53WZNt7NmDObpgAdYF11a2WEbKgp07if76V8i3iy9ObPtwg7fdu2F/ceZTOrZrWxvRz3+O537LLfqO1XxCf78kb6dOxfgfTc1WtShwWxI5JRGJyEREtxPRI0R0TA/0eIXJBOE1dy4EwLvvEv3+9/DgrFiRvcKudruMyAsGQbK1tkLg79wJ4TxtGiLv0ikcnQncbgjAqipjz3MkArJ182Zc65o1xkqtywVStrYWBrvZjHtmckq7kSkKyFVFwf0fPIgNT0sgMoRAOnNxMUiGHTugJH7yk/I7XKPS7YaSV18fX4mwWKDc9vXhd34/NsZUlUOTCYqO243f1tXJmoNGpGy6CATwHJxOjNn8+Ynni6Io9IMf/IDWrVtnqCgXFWG+BwJ4BoODGOtkG8gUUECmOHwYkTCzZ6Pjux5UFZ5eLn0wYwZkkTaVSbseNm1CyvPJJ8NBFA9eL35vt0MWcSH+dJxKqoo0nT/8ASlFd9yhHwnITR1CIRhZicgCVYXD6/77QVg88AA83lqEQjimEFjT2XAGtLejcQrL3a9/HU4XpzO19OVkZFEBRw/8fuwnxcXJ1/ccDyguhqHLmQzJQgjoHV1dyISYNAnvRaMg5hQFBGJlJXSN9nboH2bzcH3zwAGs4dmzk48IHBhABKLdDoeJxQLdLZX9u6oK+t1zz0kiMZ1UPNatd+3CvSgKZHU2wI0M+/pkpHV9PQjLQ4dSS19ORR5ZrRhLlwsvrgN4NBJVbjd0Yq4RynUMuQ4id0hm4pBhMmGcqqqG6/tMCvp8GDttXcJYaJuT2GzGUYQFDEdrK57ZzJmSWC8rgx7j8QxvELRvH/SIqVPhgExWRjidkG2lpQjESYdA3LwZulFFBbIYxjBaL2OEw7Dh29shd08+ObtNpcYpCtzWEAqmcQFEBAF6/PEwxj78EK+9e+FNPfnk7DZHsVohfGfNggDq6ICyevAgosuKiiDYm5qgZOYyGiwUwobAUYB6YI/4vn1QLFasME77jkSQ6mwyEZ16qtzoKytBVA4OwtAUAsc9fBhk26RJuP9AAB4cqxXv65F5Hg82y+pqjFE4DIU/GgWxEAjgHKkQwHV12AA6OnAdDQ2p1a/s78errAz3wmnO3A25pCQ7XusjR0B2KwoM+cmTMz9mLDjFhMnEgQH8324vKG4F5A4+H5o1lZcTfeELxsppa6usZzp5snQ2mEyy2QoR5uo778CoXr4c9XYSnT8cxvznJllNTekphMEg0V13QRaefz487XpKuqpCKQ+HISMTORzcbhz3jTdAiH73uyPLJfj9MNKy1YE5EiF64gk8G5uN6FvfIjrrLFxzT4+MdMynBmIFjA58PsxHrpuWL1AURC6XlMBJx6Q8RygmgsUCneLIEegFdXVwZvT2ot4gk4L19bKOYkkJfldeDj2kuxv6X6JIOobbDXlTVIQU5niOlUSorUWmyYYNeH3mM+lF1QiB8eMmL9Eo9N5sgMlaJnvffRfzrLkZxGuuiD0mez0ezO1wOG56c95BUSDX+/vxvMrKcI/RKPR3bcqyouinB7NDPVFzEqt1/DYnyTd0d4PImjRpePkAISBTXC5JJLa3o8FcfT3qGCe7tg8cwG9nzcIacDrx22TnvqoiK+TppxEw87WvjVqn4pygq0uWm2huRjDS0SIHCkgOCUWVEKJJCPFzIcQOIYRn6PWGEOLcBL+bTkRcAWKdEEIdem3S+e7XhBD7hRBBIcQWIcSIkutCiCohxM+EEIeHvrdfCHGnEMIa871NBue4euj802PeP1cIsVkIERBCtAohviOEuEbvu0OoFUL8TggxIIRwCyGeEELUxBuLfILVisi2665Dl6iPPyb6zW9gtHHdu2yiqAjC9FOfIrr8chTanjED6bWvvgrD7eWXQWgGg9k9t6JAWRUCniAjpWv/fgjLgwdhVGsj/2Lx9ttQNFauHB51YzZjs+COp0RQVNxuEH5MJs6Zg/8XFcF4jcRUKOjogKLc1IT6HaoKBXJwEJ8FgyBD04kgtdtlCnJXF46nV2NFC1XFd7mYemOjVIbKy2XtJ68X16itCZMKFIXo5Zfb6LrrbqYbb1xIF19cRnPmlNGqVatow4YNcX/b2tpKRUNM9COPPEJCCBJC/LM2kBb33XcfNTc3k81mpVNOWUZbt75KJSXYJJ1OPLvOzgEqyKICsglFgVLr9UIOGqXzcjkDRYFhHptiyMXPFYXoo48gOxcsQGRNPHBXyKIiyBOPB7IgHQKxv5/o1luxZ9x0EzztegSiokgCsaoqMYG4YwfRNddAxt58M1KjYxVwtxvGgtUKOZqpQrtrF+5h/XrI9P/7P+xRO3e20Ze+dDOtXr2Q5s4to4aG3Mkiq9VKy5Yto1dffXXEd3p7C7JovMLrlRGq+UQgEsmUwIULQeKVl0P/GxjQJ0b0UFKCde31yuZvJ544PBpPCMiw0lLIArdbZqnU1SWfAuzzQS8igvOW5afJhFdstFgyaGiAs8DpJHrxxZG6WLIQAsb1lCm4t5aW5McwGfh8RB980EYPPHAzfe1rC+m448qovDz38uj991+lykoQZk4n5ke+22leL6LEtmyB/ut0Qjfv7MRfbtDFc4FrGbIDj18cdVxTgz20oQHPv6kJ833yZKyr2lrpgCopkccqIDUMDMBGrK7WJ+m5QVwkAnvu0Udhr3zxi8lnSu3bBwJx8mToVPX1kCn9/cmt52iU6He/Q/Tj8ccTfec7+UsgBgLIbvngA4zfqlUYk3wiEAvc1gikJTOTiUQ8kYjOJKI/E1ErEVUR0ZVE9LwQ4ixVVTca/K6XUKzxESJ6g4h+NfR+T8z3vkxEZUOfh4joViL6qxCiSVVVJxHR0GBuJKLlRPRrItpMRKcS0feH3js/ifsYASHE6UT0LBG1EdEdhKK6XyIiV5yfPU9EB4jo34loLhF9bei6r0rnGsYr7Hai00+HsPvHPyAwtm0jOukkRLXkIr3TbMZGO2WK7K7X1gaFsr0dytikSbKOYqb19rq7YThPnWoc7Xj4MK5j3z5sQueeaywod+/G9S5frp/+Y7Phmr1eGOkOB5SHnh5sMHPnSmOjuBgbFKcEm0z43iuvQOk44wxZmHnvXgjz+nqQkJmkD1ssiLLk9OZAAMSg3jGjUShagQAU/hodcVNUhM06FIJB5XbLQsfJziG/H4rdK6+8Tzt2vEyXXXYRzZgxnQYGBujRRx+l8847j/7+97/TGQb5n/X19fTII4/QunXraNWqVXTjjTcSEdHEmNDTBx98kDweD914441UXFxM9957L1144QXU1tZG1dXVNDhI9NRTQfrWt84gwrrPW1m0eXM6V1lArvD224j+Pv10RO9wIyottI4CXj/btukfr6UFsmL6dKznLVuMzx0Oy6LxvOY5zbC9PbX7OHwYdX48HqIbb4RCr3duRYFBpiiQefFrCMJ7/9RTMBJuvhnpStrjci3HUAiyKtMGKn4/0spffx3y9sorEaV/4ACew8aN79Mrr7xMZ5xxEU2ePJ3c7gF64QXIogce+Dt94hNSFrHTaPNmIr+/nu688xG67bZ1tHz5Kvrc5yCLamsn0ubNkOVERD/96YPk93vos5+9kSyWYnrssXvp/PMvoOefb6OKimpSFKIPPgjSd7+b/7LoppvSucrxDY5cMpvzr66u1ytr3mnTiMNhvDhdM9lIt/5+OGCrq0Ekrl8/8jvctToaBSlmtycuxcJgPSQahYH/4osjv6MokBEmU+oRei4X5NovfwldMROSx+WCDmS3Q65kEi3IUdxeL1Fv7/u0e/fLNGXKRbRw4XRS1QHaufNRWrPmPDr//L/TlClSHrGMuekmonC4nk4//RF65ZV1NGnSKlqwAPKopGQi3XQTxpWI6LvffZDCYQ/Nm3cjNTQU07Zt99I551xAV13VRkVF1RQIEHk8QaI8t9O+/GXM+ylToPfW1WENcKfy0lKZohybYpxPBMrRBL8fcoWjpo3WVHExZMz69XiOX/xicnoC11/v6sK8YJKyqAg2D2eYxcvc8vmIHnwQTsnzzjPuAD3eoarQCXfuxL8XLIAuNtb3oqrYQ/x+2OqbN0P/TIACtzUcacnMZMz4F1RVfSrmAn9GuNl/IQzACKiq6hVCPEYY6AOqqj5qcPyJRDRfVVXP0LFfHTr2WiJ6YOg71xHRcUT0bVVVfzL03gNCiC4iulUI8RlVVZ9L4l5i8SMi8hDRKaqqHhk6/6+JqCXOb95UVfVW/o/A6vmaEOKrqqrGe0B5icpKEGcnnICuxG+8gQiXU06BUZUrr5kQ8N41NKALcl+fJBTffhuvCRMkoZiqR8fhgEJXX2+8kfT1QWB2dcGwPvts443iyBGQAFOnxi+QW16Oc7e34/odDrw/d+7I67BaZedjnw9RRWVluA42ugMBbGZcl8btzk4NQm16c2vryOjGUAifRSJQ3BNFWhQX48WCXtu8JJ7y1d2NcHlVJbr++jV0112XDPv8lltuoeXLl9M999xjSCKWlpbS5ZdfTuvWraOZM2fSlVdeqfu9np4e2rVrF5UN3cxpp51Gy5cvp8ce+wMtXXoTPf000Vtv/Zocjo+IiL5TkEUFZAMHDkB2LFwIpUwPPp+MDC4pQQSDUb2r9nbI6YYGRHjHW1/RKGSIokDehUKQYenUbtu+nehXv4L8+dd/NS75EI1i/auqrDVlBLcbTUy2boVD69prRzqPuJt0JILP0qlfpsW2bYgKHRzE+H32s7incFhGYp1++hq65JLhsmjt2lto7drl9Mgj9wwjEbUoKSmlT3/6crrttnU0ZcpMOu88fVnkcPTQ00/vIrsdsujEE0+jtWuX04YNf6Bly26iV18levfdgiwaj2ACUa+Q/3gHpy3bbN/MJqoAACAASURBVCN1Ku4eGwrJUiuJjMdIBLpRURF0ClXV/w2Xb+nvl3qB0Xe1iEYRJcZ6iFHJFG00YqpEYkUFjt3ZCRk8ZUr6RjOPKae6Vlend6xwGGPFqcQTJ66h4467hBQFe0U0SjR//i30zDPLacuWe4aRiFoUFZXS7NmX0yuvrKOKipk0Z46+PPL5emjt2l1UVAR51Nh4Gj355HJqafkDzZlzE0WjRK2tvybKcztt/nzsSZySPDiI97lZCpfm0RKJvM61rwKhODoIh5EtJwTs0XjydmCA6Mkn8Z2LL04uOlxVERzS0wM7M7amKXdpdrtl/fRY9PYS/exn+HvNNfEz2cYzPB7oYQ4HZPmSJZk7a9MFO77ZPna7Yafv3QvdMskaugVuazjSkpkJVRxVVX2ag9qIqJTQOnsTEV2a6PdJ4Hc8yEPn2yKEcBFRs+Y7nyUiLxHdH/Pbewjs7meJKKWBFkI0EB7egzzIQ+fvE0L8nsDC6uGBmP+/RkRfJ6ImItqeyjXkE+rriS68EErUG2+A0PrwQ9QHzGX9FUZdHV7HH4/NoK0Nr/ffx6u6GlE3TU36EXFa+HxQbMvLRzYvYbjd8GgEAkhBmTfP2MD3+xGxUl6eeIPgDUdRIPSqq0Eg6hm+QkCZ7+7GeNvtIBCZJOzvx1iUlsIb1NsrFUsuZp4J7HYct7MT1+Dz4biBAN4zmUA4pEJaWq3DyURt8xItIa0o2LxbW7EhLF9OZNfs0IFAgLxeL6mqSqtXr6Ynnngis5sloquuuuqfBCIR0dKly6isrIJ+97v99N573GnyGSotLSWv15vXsmj58lSusIBcoa8PnUBPOIHohhv0leBgEB7sBQsk8TZrlv76bmtD99Ply1Hrh9ObjdKJ3W5ZF7ayErI8HQLxL38hevhhXONddw3vFqoFp74pSuKGJ9u2oZGJ04kuzJ/73Mh7jkTwuari+jOpu+p0okkLl4v46U9ld2y3G7Jq2jTsL8XF+rLo05+GLNKuLxYp/B6nwtXUjFyHbLRee+1VtGKFlEXLly+jG26ooH/8Yz8NDMABVVJydMiiB2J/mcfg9ZQNMnu0EQ4j7ZgIGSdGa5PTmrkRmZEjWVXR+bSzE0S8omB9Tpgwch1Ho4gs3r8fOsekSZJ4NDo+1592OlFqIJnmT7z2WC6mgo8/hvN6zhykTGeiXx06BP2ytjZ1Z3xnJ/YDsxk1y6HDSnnk9wfo4EEveTwqCbGannnmiWFrjDs383uRCKIsTz555FrctAkR2bfcchXddZeWdVlGlZUVtGDBfvqP/8CecdllzxDluZ323e9K8rC3F3+9XuzBXIrIbIbOyo1WLJaRkfRC6BOMse+NdQRXPkNRUOIkGAShFc8O8XiIHnkEsvn66yGbuT6i0TNQFKwzbtRi5BStqsLccDjknGDs309033041je/CdmRb1AUyKq9ezF/ly0bWUYnl2BHt5Y05Lqkfj/2okOH8Dzr6pClN3t24uMWuK0RSEtmJiQRhRDFRPQ9Ivri0MG0yEZljzad95xEpKWCphPRQVVVh1XlU1W1SwgxQETp9DybPvR3r85neu8xYq/XOfT3mKj/09iITlYHDqBg/3PPQSlctSr5+jWZoqoKr6VLITg4QnHzZrzKyyWhGJsSE4lACSsuNu44GAiAwCKC8KysRJqhHhQFimwkgsYF8YziSARRQtEolMZwGBtTPGPD5yN67TUo5KtXgzDkVG+vF5tgXZ2M3CwuBkEaDuNZZRoJYTZjw+jvx2Z65Aje4/qH6RyfyVGOtAwGZfSDzSa7Lw8OwvM3dy7GKxQK0Q9/+ENav349tbW1xRwzc22sSTOB9+0j+tOfiIiqye120OWXE512GtGSJa00Y8YM2r59e0EWFZARQiGi3/8e62ntWv21FI1CeVNV+XlTk77i29WFBiBVVTiezYbfRSIjGwtw+i87BIig4KZau01R0CX5T3+CA+V73zOWZ0z4EcUnEBUF4/LQQ5DRv/ylvvIdDEJGmEw4Xrqyjoud/+pXGI9169DYxmLBtTgceJ9TEEdbFh0+DKJZiGpyOh108cWIkHzyyYIsGi9QVRCI4TD26GxkA4wmVBUkWSgEh0Y8PcZmw3obGMDaMOpI/s47MO7OOAPRe16v7CaszWrgxnXBIMi5vj7oBWYz5AU3otMiGkWZHYcDWTHJdo83m6U8TFVeLFqE8fnwQ4xPJhFFnBbd0gJnyeLFiaPXolGQGp2dGJPFi6XTJJE84gjMdKGVR+wIqqiopoEBB02ciOtoa2slOgrsNLNZNiYMheQ+yRGe4bBs2KOq+Ov3y2yboiL85b03FMJv9WpyalOijSIaC1GN+mhpQdTZ/PnxM9H8fhCIHg/29kmT8FxcLsgkPZ1HUSAPHQ44bLWNWmIhBIj8nh7IrokTsdbee4/ot7/FXLrlluRl1HiC04noQ7cb9t7ChdlpkGkEVcVaY9IwEMD6YXCDSyZtOztZFsEJMnNm8nK9wG2NQFoyM5nhvpeQ2/0LInqTiBxEFCWia4jo8iR+nwg6De6JCIxwOlANfpstUZzt681LzJwJgmfXLihzTz8NxWjVKpBZo4WyMgi2hQshdNrbQSru2IH0OrtdpjxPnChTAo1q20QiuCdVRfSd3w+D0khwfvghyLVVq+LXxFAUXJvLJRsJTJgg6wzpKe1+P6KKVBWdArnBx5EjULi5KLMW3JSlsxPjMGVKdoR+bS023EOHoCBNnpw5QSkEno/NJjeMtjYQeFYrok61G++tt95KDz74IH3lK1+hlStXUk1NDZnNZvrtb39Ljz32WGYXQ0Rms/mfBvuWLRhHm41o6VKVzjknrUMWZFEBulBVEG+c4qInO1QVayEYhJLk9cI5olc/sLcXTajsdkQgctAuR0RoO0r+f/bePEyussofP7eqq7p637uTdCfd2feEQMIuCSAQNkVR0EFAxQ0ZHZ1xnVFx4+vo4z6jKIq4IPDTcZcgmLAlECBADCRk7z29VnXXvtyqe+/vjw/H91bVvVW3lu50J3Wep55Ouqvu8tZ9P+ecz9mIcKxQCHhYVgaSLtces+Ew0Ve+ArLg7W9HP6lMWUN6AtEMOyYnib76VUwavfRSok99yrhkJhyGYetwCGIvHxkaIvre97Df16zBQBiOssdiMFQ5a1J/HdOBRW43JsO+8ALWy+UiWrdOo8suy+uQJSyaItETiNXVU+tkTZV0d+NZ53LObFJeLqaTTkzg33qyo7sbfZrXrBEVHFVV2FN+PzCM91NPD46zeDFsx7IyBEQqKrC2qf3GNA34MDqKQS3t7dbvk7OyeWhdrjbMmWfCBnv1VWGj5Cs8hO7QITjq69aZXw+XEoZCWKfUPmRmeHTPPffRb3/7AA0OiuzOfMT++pcbDIqWDpJEVFGh5fu8z3g8kiR8x+XleFa4ekaWxVRmfo74FQyKz3OFTVUVnuXycuhhfq/+33x8xeCq+ZnNlNGYT2btbJa+PvhBXV2Zh7/JMoaoeDzoa8xkIPdlD4fhd+iDPoqC/e31IoHBLNlEL3Y7fCSeRv/cc8jgXbaM6PbbZ99grUQCuNTTg2f3nHPgrxZbuFc+k4axmBhSU1aGc9fV4ScHlcbGksnDc84xt4uzSInbSpa8rteKCn0nEf1S07Q7ko4qSbdZ+GyxZpD1ENGFkiS59Izt62mb9a//nWWSktNFWRal/J9ZV6PE11mYdDz9IkkwEJcvRzT1uefgyC5dijLnbGXFxZaKClzL8uUAp4EBKJujR0EMRqMAHbPBMBwRj0bhlPb2ItpspkR6evD+lSuzZ2EODsLRj8VECXNZGSJXPh8UkN4IiMVAIEYiIBBbWvC+gQF8bu5c834UNTW4nsFB3H97e2G9K1QVhGo0CqcgkRADGObOLTxSarPhuzt2TAywWbMGykPfF+nBBx+kW265hX7wg+TM73vvvTfrOaxkB+3eDUNdURDVuuQSZNrqldPChQtp165dVMKikhQiu3fDUL38cjiFRtLXB3KipQUGk1HQgAh/44zGm25KJwH0/cAkCfuWhwWUl8PQzbX0cmyM6LOfBUZ+/OMoVzQT7iVIlJlA/Mc/iO68E9f2yU/imEbb1u8HLpaXAyPycZ4SCQS+7r8f1/PRj2KCNR/L78errAzGc6rzPdVY9NJLKDtUFGRaXXwx0R/+kHwdJSw6+aJpeE4SidlLII6PYx+3tyM4aFWczmQikaehe71Ef/87AoAXXZT8Gc7u8njwebcbhGF7uwg+NzeDjJmcxO84K7GmBuu9Zw+CHxs2wHnMVfSBldQMbSty7rm4h5dfxn5cty73a2CZMwf4/NprwL/169Ox5sQJ2K8OB7JEjezqbHiUSNA/icRUsYJHigLMj0bxjBtlny5cuJAOHz7cdSriEZN1FRWwzWUZek2S8Bxzn02bTRCEPCyIdR9X4FRWilcqXnBmYyo5ycfkydBG04Cz9WgsKzs1Jj+PjcE2amszLzEmwjo98AAIpxtvBPGuF5cL7wmHxQCsRAJ2GWc45pI9WF4OHfDTnyKLccsWoptvnn19cUdH4c9Ho0gUWrGiOPeQSCRnGEYiIjvXZsP30diInxUV4pzBIHSU14vvPhCAj7hhA/zcAtqGlLitIoiVR0OhFCZSkqTlRHRdtg9qmqZIkhQlooZs780ifyGirUR0OxF9R/f7T77+88+63x0loqslSZqradrw69dbR2CX9dc2LEnSXiJ6pyRJd+qaTzZTcVjo00bsdmzo1athWO3ZAzJo9Wo4QPn02CpUnE4454sXA7wOH8a1+f2IYr/0EqJSXV1iOjNP3mxuhhHc0YFIt5FMToI0bW3N3l9udBSGYCgEo3H5cmEo1tfDAA8EREp+PI7zBwJEl10GEiEchuFNhOvLRgq6XIJIHBjAeTNlSppJIiEmwra2imNMTADQe3rgABTS/ykUQvmy349nZvFiUT7CjazLyxEN11Ksp8OHD9Mf//jHrOew2+3kcrloktOhXhefD31/iPD933AD+istWmS8xtdeey39DeMfS1hUkryktxcZZqtWpTvZLCMjcLBbWmBElZcbZ9wEAiAQFQXTBhtMNC07zZEI9u7AAAzefKa5Hz6M3lHRKNHXvw7H1kzicWAllxwbOeyqinKj++7DPX7rW2ICol40DYakLGNv5hvdP3KE6DvfwX6/4AJMKeUejoqC9eEJ2GaDD6YCiyIRkMt8jf/yL3BE2tuNv6MSFp1c0ROINTV5ZUKcdAmHUbVRW5tfvy6nE44fE4nV1UQPP4x9fuWV6ftdkoBpw8N4xicm8P/UIGxHB4K/k5OCVCwrQ3ZMXx+CjEYYYVVsNnx/HFjJlVx5wxuAbc8/jzVYsSL/a2ltxfkPHBBEotOJ5+q116ALmppQvmz2jGXDo44OrDlPsdZ/L2Z4RCTIKp8PuNvYaI67r+NRNZ3CeMQBb5cL6yHLWE9+jvg9TIpwO6V4HHstHMYzzba83Y7jcQ/VykprA5kyZTTy0Amj8mmbLXNG40wfCuPzwf6or8+MV4qCISo9PeilbLY/q6rw3mAQa79/P/69alXmDEcjCQbREmX/flRR3Hjj7CIQYzFc+9AQ9NnGjeb2ZDZR1fSy5Hhc/J0Hd/FeSiXTuY2Mx4PP8xR6lwvfe1dXUbI7S9xWEcTKI/5HInqPJEkhwmSZRYQbPkgYQZ1N9hDRGyVJ+gQRDRLRmKZpj+d4nfcSpth8S5KkFUT0DyJ6A4FJ/mvK9JqfENF/ENF2SZJ+TOg4/P7Xz50ah/sUEf2NiHZLksRjut9PYH8bqHhs82khTieitOvXw7jatw8R1DPOQMrxyeoTxP1vNm+GQzYyIgaz9PZCsfKkwTPOQBmO3U60dauxAynL6IPodMKYzGSATk6iua7fj6jZsmXJioXLekIh0U9lxw6A5yWXgPzz+UAoMJHApQ/Zsh4cDhjnPBhFlnNLSY/FRPl3ajZjYyMUwIkTWMeWFvMhNZlkaAiRP7sdSouvz+EQxlAoBCX0pjddR7/4xX1UVVVFGzZsoO7ubrr77rtp5cqVtHfv3qzn2rRpE23fvp2++c1vUmtrBw0OtpLPdwkdfb1LxHnnweAwavzOctttt9G9995LL7/8cgmLSpKz+P1EDz6I/XP99cbP2eQkyP/GRuy9RAK4kYoz4TAIxHAYpTqZjF5JwrHGxtBWgbOhc82c2rmT6K67YMR/61uZM4F40qvdbj6AYWKC6EtfQlDniiuIPvEJ44CEouBYiYQwPnOVaJTol79EGXlDA9EXvgASkSVT+XKqXHfddXTffcXBojlzOmh0tJUmJy/5Zy/eiy4ietvbYMyb6ZcSFp08UVXsZVWdvQSioiDjxGYDQZVvlpLDAayamMAgFbcbetQseMzEyZ49wBGjwXxlZQju9vSIrOPnnoMds2qVGHhUiDBZoig4fy4ZzZKE7OB4HJjodKZnOuUiPO301VcRUF28GIRpJAKydOHCzNeXDY+cTkEkynJ6tqMejzo6Oqi1tZUuvPCSf7agcDiyV53cdtttdMcdd7xMp4GfZlTqzCSJ0yn0bSSC39ls2A/NzVhDLo1mYnFsTBybp5MzsVhRkb43uVdiJv3NPRmNMho5A48HDaXeW7aMxpMxFCYSAanucgEDzM7PA50OHSK6+mr4o2YiSSCj3G4Q+HY7AhS5+jIjI5jAPDmJqob584GHc+bMbFKWpb9fVD6sWAH8yUUf8POsL0tm4bZQDQ0iIcTs2JylPjmJawmHxTCjefNgb+aTDGMiJW6rCGKFRPwYEUWI6K0ExvMQEX2QiFaStYW+nTD15UuEm36KiHJaaE3TYpIkXUpEX9FdxyARffX1l/69xyRJuoGI7iKibxJRPxF9mzAB576U926XJOnNr7/3y0Q0RET/Q0RxwnSbpGaXJbEmFRXIoDjzTGRWvPwyjKNNm/C7fPuy5COKAoecQchuByHW3g7SaHwcZOfzzwPY9u0DiL3lLcbH0zT0gAwGUYqYyZkNBgHMHg8MweXLjRVKTY1wuF95BQrpoougiLjcuapKRKzR2B8/s62lzYZ7HRuDUpNlrEM2BREKweDkCcxGxkpFBYzb4WEcPxwWa5xNFAVrMzAA5bJhQzrJzJPOuG/GF7/4XXI4KuhPf/o93XfffbRixQr68Y9/TAcPHrTkuN999910++0fps9//k6KRsPU3r6ZPvnJS6i9HaWC8+dnL18oLy+nHTt2UENDww+ohEUlyUEUBQSiLBPddptxUCUUguNcXY3X0JBxpm8shmN5vRiikq0MUVFE8ISnMOdCfGgahrbccw+MzLvuyhyl5qEnmQjEF18k+vKXcc+f/WxyObFeuBxa03CsfAibl15C78PRUTgW731vciSby5d5Imw2XP3ud79LFRUV9Pvf549FH/6wwKKODmBRZyfKrNva8D1lkhIWnRxJJRCn054pphw8CJ19xhmFB3jLyuCIdnfDzsvUF1uW8b76ejFwxWgwQnU19qLbDee0uxvvX726sGvVi90uyJZciRGbDcP0HnmE6Ikn8BwUMrW0oQGEx9//Dnt0xQqspZVsICt4xLav3Q5MHR0VAVPGozvvvJPC4TBdcMFmeuCBS/7Zo6+mJrtdVw4j8bTz05hUU1VR6qxpWK/qavw7HheZWTYbdFh1tfhumXDUE4s+H/7GhKWeWOSkh0wiSenTgo3EKJtR36cx01CYTCXUxSyfTiSQJUcEks8sw0/TiLZtgx/3xjdiyryVYx89ivtcvz53AvHQIaK778Y6fPKTCCYkEqKaJFNSwsmWUAg+p9uN+163LnuGXyKRTBhGo8llyRUVOAZnGVrJxgwGcQ2BANaK+wwnErCDFi7ML0kli5S4rSKIlJoCXxIiSZK+T0TvI6IaTdPMmk3mI6flYns8mOR8/DiU4LnnWptGVwwZHARQmk1BDgahnKqqAFj33w/Q4ga8zc3I5uvqwu9ffRUKatMmkIJmEosh0j4+DmOQJwybSSKB/nuDgyhhXroURl44DGM7FUB5zL3LZX0dJydxTJcL95dpuMH4ON5ndYAKH7usDJ/JNKQhGES0PRBAxGvZMmtKlqNdqiqitVbvXVEwoOCxx2CczZ8P4rKlBQ6P0QTILDItZkEJi04d+etfEVR5xzuAf6kSi8Gxt9thNHV3wxhLzXDhXj+Dgyi/z1bWp6p4b08PnvNly0Qjdu7llEkSCaLvfhdlilu2EH3mM5kzIKJR7DGzoSeKQvSznyErsLMTw1kWLjQ/lt+PY9TX514e5PNhuvOOHcC8j30see315ctVVTjHVBv8mgbD/ZFHgLPz5iGjff58QR6XsGhmiqLgedQ0EF+zqVxNLwMDKCdevDi/voKpcuIEAnGdnbDvVFUMedMLDy2IRrEPudKgrc2YyNQ0EHT79iEAzYHYpqbiERTch44ov+9TloGNk5Mo4bYyiMFIEgmUNPOQmyVLYGfmOvDKikxM4FVRkZwtFY3i99zjM4+hVdNGl0wRHhWMRUwa8qAU7pvodIpeifG46Petn+qsx33OFmRiMRIRzymTNXpicSqDGVwRYZTRqP9/qhRjKIymATN8PpBcmYJr27cjM/jCC0EiZtOjkQiwJZEAFpaXww6wWqGxaxfRr36FPfSRj4i2KHxstzuZLJ4poqrAmcOHsf4rV8JHTl0vLkvWk4acvcrkNpOFFRW5BXhVVZT2x2J4FsrLETDmFj5dXQWRsDOUuj15MhWYeVqTiJIk2YnIpmlaXPe7NgIj/bymaVuLfMrTd7EJGWs7d8KhravD0JIVK6bOafN44KS1tRmDeCwmynmWLEGmjcuFXlThsCh3Hh/H+1UV93DWWciaMZNEApHk4WGk3a9Ykd0Q40ELS5eC3AoEYJy2tBhH6TUNoK5pAG+raxgMIrvJZoNTrTfcNU00sK2uFk2/rUo0CmeCy6aNIkeDgzCU7XZE/XLtO6JpgkzUNCgtntxl9v59++Cwu924Zz5vTQ0i83kaX0V9aktYdGrLvn1Ev/kNymeNsENRENGWZTjK/f3AkdSm1tzr59gxZEtny8rRNByrpwcGLh9PUfA3JhHN8CMQIPriF5FNfvPNmCSdCWv0BKJRP8HxcZQv/+MfyAj8+MfNs6BCIeBVPhOYmXz40Y9wjBtvRMam3shlh5kzHKfCWU+VI0dAOAwOAiPf8AYxWTAfkvR1KWHRNMipQiB6vdjPXEJbqIRCRA89hGf4xhuhi/VtAXjPaRowbmICdlFDA343PIy1nTs3fU0HBmAz8oCh+fPheHIJdbFsR85GZNIjV4lGif7yF6zFNdckkwlWxO+HjohGYQM2NeH/3GKnkMF4ZhIIoIKkrAy2XjCI6+e1zXNIUNGt+WnGo6JiUWqps8PB/b3xO+6ryISiwyFIRaNnmzMDmVhkH4CPnUosTucgFd5DmQbD5DMU5tgx+HKrVmVux7RrF7J4N27EHsyGDeEw9piqAgdrarAn4vHs+K5paIvyt7/huj70IeMkFZ8Pe7uxcWr2cD7i88H+8vuBuWvWwAZj30pPGurLkp1OQRa6XHjlg7+xmChZVlXxvE5OwkdzOEBozp1b8PN72pKI04mZpzuJOIeIniei+4mol4jmE+rGG4loi6Zpu4t8ytN3sXXS0wPAHx8HmXPhheaZKPlKKAQDtLbWuNSPI+KxGCLif/87nO13vjPdAAyFkCH0u98BXFevBgnKGYr6SImqgkAcGMD7MvXuYHnpJVzL2rUwkvv6cN3z52d2bLkEwm7PrRwpFoMTqyhYm+pqQZCGQlB4uRrB+msaHoaCqqoSmYyKgozPEydgIK9fX1gJFZOobERxRIyVjqbBYd+2TTjs556Le+Pp1gX21ii2417ColNURkZAZrW3o4w2lfDWNJTTBALIEuQeqIsXJ/cV0zRk+7z2GojIM8/Mfu6+PmSAt7QAi/jcPFSASJCIqTg1NIQy46Eh9Cq84orM54pEsO+ZEEs93vPPo3w5FkPZj9nxuJQlEhENuHMxVkdH0Z/oxRdBmn7sY+n6xefDORwO4NFUE0IDAyAPjx4FebJlCzJMuVdWgQ5GCYumWJhAJMLzOBv6XBlJLIaM/LIyZLkV+twrCjDJ7UZWNE8O5sb4igIsKC+H3Tc0hOden60XjwMjmczivT48TPTMM7BF1qzB/9vasF+8Xuj7IvbH+icJYrPl9/2GQkR//jOOcc011rOP+vuREVReDjKD7ykchrOvqrCXpmJAYTQK/cADBdvacsfbFJkKEnE68WhKsEhVQRbGYqLUWU8W6glF1st6QtGMTNG09DJoWRZ/Z9KHScV8iZ9iilEGYyrhyGswNAT7vb0d/pBZVuM//gFCb/169GPNRj4Fg4KkX79e6F9NE2XkdXXmPfHvvReBmM2b4TNmwovxcTGY8mT2zuVAdU8PsGbFCtyjnjRkOoj71upJw0J1XiAA8pBLluvqRD/KkRGR2NLRUTT9ejqTiNOGmac7iVhFRPcQGlm2EpFMRC8Q0Rc1Tds1Bac8fRc7RTQNhtMzzwC0OzpAJmbr7WVF4nFkEJaVgehLVSgcEfd6kcbd00P01FNolG3UhFdRiB59FOB3ySX4XG8vFByXFHd2imnIvb047rp12RX2q6+CRFyxAiTiyAjWo63NWiSGI51scFiVRALXGo3C2I1EsG6trdl7cVkRrxf3YrfDKD18GIp76VJkfRbLkGEiNRbDMV0uRNe3bUMEs7ERir6pCffc0JC9QbhFKbbjXsKiU1CiUaIf/AB76447jB3Bvj4Yml1d2Mc9PSD9UqcxP/ww2gBceimycrJJfz/2QGsrCEQjHNRPldQTifv3E33uc/j7V76SuTk5EZyXQADGaarxnUgQ/fSnaBWxeDGIxNRprCyqKiaBVlfnRq6pKtEf/0j085/j/O95D9Gb3pR834oCQ5YnPE91+fLYGLKgX3kF97NlC3QDBz7q6kpYRDMcixIJEIiSNLsJRFWFfYv+bQAAIABJREFU4xsMgkAsRmbM00/DGd+6Fbo99XyTk6If3IkT0L1GA0jCYWBgdTV09fg4MhBra6G/HQ7gmd+Pz6sq8KampihTOpOuWVHyJxL9fmQkEgF7MhF/8TiqMsbGgPdr1qRXRUQiIEgSieylnLlKIgGiNxDA91RdDZ1TIFk5FSTidOLRlGKRWamzfthEIpE8+ZlIlHpmIhRZeCCFnljUl0G7XMnZijNxKJSqwn84cAA2PPcZTCUdieDLPfYYbIprr8X9mPVotNuxHjzMcf369EQNxnuHI30v+HxE//u/sNne/nZrJdN8L5IEv246s0NZRkYQVPX5YA+2t4vrYL9JTxoWqzReUUTJsizjO2hqAq7ztHhNg98/f37Rn8XTmUScNsw8rUnEkyClxU4RzlDbvRvgvngxSv7yzYTTNAC8LIsysVTp7gao8gSqhx6CAnrTm4yPuXs3orVbtoheiUQwBpg0HByEw+52o/zksssy9x0kgvJ77jkoyLVrYdC5XABZrxf/thJpl2VcS3l5bpkFqgrC4vhxKMt164qbcs9ZDwcP4vtkMm8qRFXxPWzbhvPV1+M7WLhQZEe1txfV4ZjtCqqERVMsmgbi7MgRove/HyUaqTI6iiy1OXNgYB46hGc1tU/o9u3AigsvBA5lEyYQOYvHzHBVVVFKRYSfjz9O9N//jWv62teSMc9IuOzYKGtwbIzozjthtL/pTUT/9m/mZXJscKoqjpNLpnJ3N9F3voO1Pvts9CdKLX2azvJlnw+Bpz17YJBv3ow2GPE4vot8J0ybSAmLpkjicZAs/J2dDAewWHLkCLBmzZrsA8SsyOHDcN7POANl+UbCevnAAejfDRvMnW6vF/tGkhBYrawE1jFeKAoyeSUJgUjOVq6vL+peIkXBddvt+X3fExPof+t0AvOMcMbnQ2AhGgXWmwVViGBH7d0LO2/t2uL0VwsEsN5EWL+qKjj1kQiOX4CdVsIii6InC4lEIoCewFEU8R4mzcrKRIaiVaJbltP7K7LrX1aWXgZ9sgMlfj/2R02N+eR4TUNVxoMPwkZ529uADalZjXqKIxCAjVVejuNWVxuXUSsK1oinYxPBx/uf/4Gt84EPZA+s6kWWYQuVl+fewilX0bd88vlgew0O4rtdvhx2Ed+Xy2VtSE+uEo2COPR6RclyUxO+z6Eh6KFEAnqos7PwwV4mMtuxaFZIiUScXikttonE44iS79kDwF21Cj0TjfoBZpLhYZHZaEQYDQ+DOJs3D0btgw8CcN/1LmND9OhRlOGtXWuuNDQN0eJnn4Vir6zEMe12XEdnZ/qE4+PHEWnv6MCxg0FcL5dGh0JQeHV11gxkHrSSSx+UQEBkPjqdMB71EapChKepDQ7ifjo6cHyrg1pyEa9XOOxlZShbXrkSv3c4cE6ebF1Eme0KqoRFUyxPPAHy79pr8UymitcLoq+hAYGE48dh4C9fnowVu3YRPfkksoeylRQTJROIa9dai5SzGfDLXxL94hfAuq98JTv+ch8tlys9S+bZZ4m++lVg+6c/jai9mciyKCOqr7ceCY/FMGTmt78Ffn74wyDs9PesaXBKpqN8ORwGCbtzJ857wQUgWDh7oqJiSsioEhZNgZxKBCJn9SxYkJ4xmI+43dhzbW1E111nvjbcd0yWQfxlI++PHQPWtbQQXX55uu0TDiNgwMPvJibwPTU2FjeLhcmHXCc2s4yPI3O8uhqlzewkc5D76FH8zmp2oSzDxoxEQALnS/LJMtZMlrG2DQ0CC7kntt+P625ry+veS1iUo3CpM5cy22wi61C//kaEor4sOhedxu2A9MSivv8dtwdiUjGXvuuFSjQK0rysDAEKM1ugpwdB2rY2oltvNQ9O8lCY8XEQk2Vl8A/s9sxDYXiIY10dAiH334/1uP12JCdYGQqjl2AQQdLa2uJmFMuyKEnmqixNQ4C6uxvP0/LlaK9VVTV1eozb0Hg8uFdJEkNBXS7oIE7waWzEGk5xn8jZjkWzQkok4vRKabGzSDSK7LW9e/H/9euJzjnHGpHGJbRNTcbRnslJZKk1NgJUd+wA0XX99SD5UsXjATk1Zw5KnY2UhabBOD9wAJmPZ58tAJwHs4TDAO65c0V59e7duMa1awGqDQ2inxALG8hWnF7ujcKp6dkU28QEHIGKCpBswSDWzumEcV5IOrvfj+8vHIbDsngxCAIub543rzjKIxSCw75rl3DYL7oI55+YwHtaW2EQT0HZxmxXUCUsmkI5ehRk3Lp1KHtJ3Y/hMCLiFRXAovFxBDgWLEjGgT17gEFr1yKrJdu+7uuD4djUlDkDMVUiEaJvfhOYePnlRJ/6VHbMCQRwH0yMscTjmIj80EPY/1/5SuZsRh7GUlYGo9NqFsS+fZgaPTSEa37/+9NJTy7Z4/Josz5HhYosgzh8/HEY8Rs3IhO6rAxrZLfj3HkOK8gmJSwqssgydOKpQCAGg8CR2lr0US30+Y/FMIQukcCkeTNSUJbhtGsacJCJitpa48+EQuhN7fVCl3OlSKqMjcG+6ujAnvJ44Ow3Nxc3g6pQInFoCH3aGhsxRIoI9ub4OOySNWtyI37icWBeMAhCIJeMJu71xpPuGxvNvzcuP3S58mr9UsKiAkRPEuonN6d+B3rikYe22GzJk55zFc6+0xOL+km8TCYysTgVuiyRAFkuy8haNvP7BgdhX9XXo21JtqoCjwc+WkUFfMpUX8BoKEw8Dix6+mlkXM+bh+FyqTZGpqEw/DfGsYkJ4Fxzc37Z0/wd6fsYppaq8+Rlnw8YMVX9VPXXNDGBNY7HRaCWAxTj4/CDIxGs3cKFxSVRM8hsx6JZISUScXqltNgWJRBA+d7+/QCijRtRDmZGBEWjcKArK40JwVAIx6qogAHW3Y1I8caNKBE0Ot62bVCeV11lrDA1DaQkl+qcc47x0AS3WxCK/f1IwZ87F5mW7e0AVSOQ5/5ddru1SYSKguvONGiFCU6/H+fUNzIPh9GjgggGej5Kju/P6UQUUU+IxGI4fiwGJdrcnP90r6efRsYCO+xXXCF6jxAhOtnUBKUWiWBtuGyjSP0+ZruCKmHRFMnkJPog1tZial8qZskycEOSEBGPx0E61tUhEMHyyito1L98OQId2YiMvj5E55uagHFWiQ+vF/0P9+8nuu02TKeXpMyf9/uxryork7FreBjly6+9hgbn//qvmcl7zmR0OnH/Vq45GCT6yU/goM+dixLpDRvS3xeJ4LsggkFbzJJHFkVBpvpjj0FnrVlDdOWVcG58PmBSdTVeU5jJUcKiIoos47ssKyt4yMRJl0QCQVlVRYCz0ECapqFUt78f+1s/IEUvqooyunBYlA0ykRWNpg8TikSQuR2Pg0AMh2HDGE1j1TTgXCSCIIXNBjvJZgP2FYvwLXRiMxHW6bHHRJWJqqJ82ai1hRVJJKAX/H7oDitl6dzGIZHAmjc0WBs8MToqgr45PDezeLcQ0QzBIkWBbculztwT0ch21bRkQpHbk+gJxXwxLB4XfRU5042HntjtglDkn4Vk+GsabBCvF5hh1sppbIzoZz8DPtx2W3aCbGwM9lZ1NYIZVu1/VUWlGgdxP/IRfNbqUBi92GyCUGSbZO5c3IOebEw9P5clM2nIhDGRyBbV9zHs7UVwWpLQZ7+ra+r0VzQK39brxXdXVSX6HUoS7rOnB1hSVQU/NzVRZopltmPRrJASiTi9UlrsHGViAsNXjh4FUJ5zDiIresBVFIAnEUAzFYw5Ik4EJRKLITW9vp7oxhuNBw7s2IEIyhVXGAOfqqIn0GuvgYjbtCm7oTU+TvT738MArKwEuNbV4fNdXchSTO13E4sBjKuqrEWTeMqbUTRSURAdj0QA9kYlMbIs+lXMnWu9nDyRgNMwPCyiX0broaowTr1erEF7u3XDQ1FALP/978kOe0MDIpPhsGgOnnpuVsaqinUp1OCh2a+gSlg0BRKPE91zD3Drwx9O32OKAtyIxWDkOZ34PxHIQsauw4eJ/u//gAvveEfmbBBNEwGKpiYc1+qz3d9P9JnPwAn/9KdRCmyzifJmI2eTiYCqquSWETt3Et11Fz77mc8gezvTNfv9OE5qJmOmz+zaBYLW5wOxevPN6QEeJiuCQawvT2QvpnALi0cewdotWoRso/nzxX05HMD3YjUpzyAlLCqSxGJ4bk4FAlHTYPd4PMhALMYk4z17oIM3b4YtZSaHDuG8K1em209eL/YHk+uxGAKC4TCO29iI78Djwf4xum4OvDidyFiMx/F+3u/F+t4KJRI1Dff25z8jMHvbbYV/D4oCW2tyEjrDbBihqmKt+XlubMyt91gsBntR02CjWuwhO4t3DBHNICwiEv3tspU669+vn/TMhKLDIUjIQvYGX48+WzEaFX/ndk5MLLpc1kn9o0fhPyxfbk6OT0xgMrIkYS9l6w86MgJbqrYWRKDVPRyNIlD5yiuwYy6/HPdipac6D2dKJRf5FYuJqix9IgUP0onHxeftdjEpmQO2TBzq19XvR5ay14u1W7t2aoKmbLd5PAj+2mzJJctE8M16ekRf/64u+IQnQZfOdiyaFVIiEadXSoudp4yMwIHs74dCOP98GKhEgkAyatDKg1uiUZBOlZVwzsfG0AfRKK16715kF553HgzUVFFVNCk/dAhK4KyzsgP25CQcTlWFQc8G9NAQMohGR/G+2lpBKLKC8ftxfw0N1koIYjEoIJdLkA+yjHPF41AymZx2RcGaRiIA/2z9d3w+rFkkgij7okXZFQaXN0sSjOBMylnTcPxHHoERwQ57ZyeI2bExUS6ezajgiJ6mweApoIn0bFdQJSwqsmga0R/+gKEAN98MMi/178eOYT8vXYo92NcHbFi6VGTmdHejXHDuXGQFZgpOcFbOiRNwEpcts05avfwysgbLykD+rVol+iMaEYlMzsViyZOT43GiH/4QPdJWrMD0ZTPHlkg4t/G49QnMbjemIu7ejd5qH/84fqbKVJcvaxqckm3bsObz5gGLli8Hrvj9eF9qptUUSwmLiiDRKBwjnso5mwlEIuBCdzcwwag6I1fp7yf605/wrF9+ufn7+vpgPyxcaI4DPh/2i9MJHPL70TtUX6LLvbV4EECq+P04V0sLSK5IRAQni1kul+/EZlkG2efxwH4bGcF3YdYaJ9dr2r8fx166NL1dRDgMvaIoogdbPudMJGA3yjLW2cK6zvJdMzOwyEh4qjOT2kwMZnom9YSiqorPcZZiMTBOVdPLoDljTj/5lwe3GPkwg4PAqgULkqsx9OL3g0CUZaL3vjd7Of/QEPy0hgb4flb37sQEBqgMDcH+2rxZZGEyMVqoBAII/Goavo9wWJCI3ELBbsdapQ7M1JdOS5IIIHOP1QULit9+g+0qbrHldIqSZV7XcBjX4nbjnhYsgA17EluBzHYsmhVSIhGnV0qLXaD09yPjZXQUILZyJYykuXPTDRx2+CYm8L6GBpSe7d6NDEMmIfUyMED01FMwzM45J/3vigLF1N2NCMyaNdkNK78fBFgohNLb5mYYvXpwDYdxb319iMbxRKuuLoAxK5Hm5uygzE2TNQ3KOxqFQiSCUW8lQqVpuA6/X2RLGhkcvb0oFSgvR0lhLpMDZRnGQywm+limDkQ4dAhl58PDyDC86irhsPNn6+vx/VuNMvL68BpxWUCOym62K6gSFhVZ9uwh+uMf4SQaDRHp7wfh3dmJZ31iAr+bMwcvIjzTv/419tEtt2Q2WDUNODQ8DFzo6rJu4G7bRvTtb4Nc+NrXxPmJRI8du12U5kgSHHRZBsHCWSknThB94QvA2RtuQNPxTCRmIiEm9lnpEcjlk/fei8/ccgvRW95i7BBMdfkyT38/fhx4tXUrME9RQIrIMu6nrm7ap1uWsKhAYQLR6Zzy0vNpEY8HmbJz5qC1QaHi9yOwUVWFHq9me3x0FIGSOXOMA7B6mZxECXMwiP6hqaXRmgbijasijPT7iRPA0YUL8b0FAjheTY21rCGrkiuRODmJLKZ4HIGVjg5kCr3wAv5vNs0612t67TUEUhctgl7h/mRM0BZj4Ay3iQmHYWs1N2d8+yzfOScfi7IJlzpz6XKmUme9pBKKRMmEYjHJnkQiuQw6HBbntNmSsxXDYfhULS3GPhkRsPlnP8P+fve7MwcpieDHsZ7OpbVLby+ClbJM9MEPJmNnIIA1rK3NLStZVZN7GEYiWJ9gEK+WFuwpJlv1+5WHwqS+FAX7/tVXcYy5c+Gz8jPAmdNmPRr539kkEhFTljUNmMpTlllHxmLwWzm7cv58+Gone8I3zX4smhVSIhGnV0qLXQTRNKS+79gB8OrqwgTU9vbk9/X2gjxbuBAgOzSEbJnly+EApgqTfbW1iLSngmAiAWf5xAmA6dKl2aNhoRBIsIkJTGidNy97ancsBiXIEX3u51dXB2Nx1arsAM2KKxDAfTkcWJ9cS+vcbry49JjPG49DgY2MIFNg3br8jFXu0Tg5CQXK19jbi3XjIRFXXokei+xYeDzinvJtGsxrFI3i+2Ay0aIDOdsVVAmLiiiDgyhjXrQIRFeq0To2BsKwrQ1GViwGLKmoQEadJGEf/OpX2Gu33po5k01VYSS73dgfHR3Wys00Ddf50EMIaHzxi+nn0TSRtWCzAX+8XuBfba0g5554gui//xvv+6//yu4YyzKOw1P7smFRfz/Rd74DR3nDBvQ+NOrBllq+3NRUXAN2ZAR6Yf9+YM1llwHLbTbgu36C71SUEFmQEhYVIOzkOp1T24B+uoSH05WXY48XuhcSCVRv+HxorWAWNPV6sVfr6mCjZNKjqorp7d3dcNSXLDE+biKBIIndjr2fekxVBWmpKLDHyspwHZEIAgnFyBpiURScTz8oIVU4M/z4cTHEQf9M7dkDcnfdOuMgda7CfblHR0FENDTgd3V11lvRWD0PkwlVVdBjJmtQwqJpEu6FGIuJUmenE/s+mw2bSAhCkYOGZWXmg1yKIUZl0MGgKDfesAHPFhOM/HxFo0Q//zlIs1tuAVmeSbg3NJOSVgnEl18m+ulPcS0f/Wg6Ucl2BpH5sC0u99aThvqp19xKiUuSg0G8p7XV+qCaeBw429+PtVq3DvZUphJqznBMFSNi0W6HXcOBUbsduNLUlHyN8Tj8VG55MG8eEl6moX2LVZntWDQr5LQnESVJejcR3UdEl2matn2KT3d6L3YRRZZhgPb2QmmEQiALL7wQymNkBH+fOxe/5z6INhvRTTelE16JBBzFaBTZbqmOdTwOZefxAEg52pJJolFk0QwPi9LoXDL1+LoGB3GPR4/CYa2pwbG6ujJPUh4dxblraox7RVoVvx/HcThwvnAY5cXRKKLqCxfmd1yjc7jdiNgfP47rvvxyMbDG7xcl2c3NGQ3ZnITLMWIxUX5hYcJ10RVUCYtmp4RC6NNns6EPYiqZ5/Nh79bXi+yco0fxvC1fDiyamMC0QbsdBGKm7GZFgeM8OSn2gRXyIxZD2fLOnZj0/NGPmmMCE4lEIgOxrg73Jsso9/nDH0AAfOlLyZmMRsKlvlYmMMfjyHp68EEY2x/8IDI7jfZjIiGmAtbUFLeP3eQkmqq/+CIw/+KLMf3d6cQa+Hw4P/d0PJXKdk4XLGKntry8uJlrJ0tUFc9rJIJBKsUgtbdvB1F17bXmpYaRCPR2eTmc2mw9XJ9/Hg7oWWfBgQ4GoXONym4jEQRhqqqMs+CiUeBhdTWuT9NE2V1TU3Gd2kwTm2MxBFYnJmB3rlxpnO3zzDMgATZtQmC0UJFlkMZcQn7WWcXvAcvi84HMKS83zQ4tYdFJEH2pM5EgE63Y/IqSPBWaCJ9jQnGqnqVIBDggy7CLmNhk4aEjf/6zIBCXLct8zO5uEaxdscKaLaBp0PO/+x2CwHfcYU7AKwrsGLsd74nHBWHIpCFTKjzgUk8aGg1PGR3FZ9rasn9fw8PAGF6zZcus+3WpJGPq/3kAk9eLvzkcsNW4jZa+hHp0VAyxbG/Huk3FtO4CJeu3P83YckrKFMFDSUoydaKqyAa024kuvRSgtncvDKlf/QpEV0MDfrLRu2MHnP0bbjDOmNu9G8rh0kvTCURZBoHo90MZtLZmT6eXZZS+DQxg2uCKFfk5KWVluIeuLmT6HDwIgm1gANE2np7X1QVi0+US2XqBgOhbUUisoLYWCmVwEH0pfT4ol/POK06zdiIxRfLpp+GMX3YZnJbycvytvx/ndbkQ7bLY5NuS2Gz4zl0uYQzEYviuZ6BiLMkMElUF4RUKgexKfS7DYezXykrRK3RoCL/v6gIW+XwIcGgaAhzZCMQjR7C3W1vhVFvBFY8H2YJHjsBIvv76zAa2JAlnXFWBIU4n9uEXvgCn/Z3vxD1nczICAdwvl/pmOu9rryH7sL8fpN2HPmSOMdz3S5JEOVAxJBiEvnjmGRx782aiSy4BRnA2QjgM7G1sLGHEbJVQCI6TyzWt/SunVA4dwn5bv744BOL+/bA5Nm0yJxA5M8Zms1Yl8dJLsF/WrQMmEmGfBQLYX/X1yRhRUYHfeb3Ya6kBE5dLVJp4PMLmcbuBX83NxcusKisTTreeSJyYQPlyIoHASqYA8/nnwz7csweYumpVftfCQw78fnw3NTW4juPHQS5MRUk+D4oaGYE9OHduCf9mgjgceOkJQVlOzi40Ex7cUVEBXc+fZVt4KghFRQFmOBwIdrDdlEiITMVgELZVXx/8gXgcJKG+vyIHCLjfNPcpXrrU2vOvKGgfs3MnMO497zEPOiiKqFxyu/E7ffmwywWc4rW0Eryw2YBPo6PALrMqtWhUVH7V1SGxIte+rzykJXW/hsM4tyzjuhsbxX3oSUbOPOzvx7/Zx2bfMDWj0aiMera3CSlJupRIxJLMOhkeBskzf74A6k2bMJFq1y6Qd3Y7stgWLEC24pEjIPOMMmYOHoSi2rAh/e+xGAxzdjZqa3HeTGCYSKAUt6cH51y3rjgOrs2G6DYrGkXBdff1AdwlCX9zuaCYeNozp9TbbPlny9jtUDQ9PTjm2rXFIRCDQWQ6PPssrv/aa9FnMhbD91xZCYWtqojUTeWUL7sdhAz3cwmFRDPlQvsKleTUlO3b4bS99a3pgYV4HIZtWRmMWpsNjvLYGBzd+no8Y7/+NZ73W27JPMQokQCOhcPYC3V11vq3HT9O9J//CWfzq1+FE5tNVBVkmaoC81wuosceI/rGN7AXvvGN7MfRD2LhyYJmEg6j59Ff/4o9/pWvwLkwO67XK3rYFat8ORZDP9wnn4RBffbZ0CGMc9Eo1lBRQDqdCsM3TlcJBvF9n0oE4okT0JkLF2btW2dJRkcR1FuwwLz0VlVhP8ky9HY2QmnfPtgQK1ciC5ulqkoMkZuchI2h31t1dfi+JiZElpVempqArcPDIiDY2JhMJBZrr9rtIpPHbge+dnfjvBs3Zg/qcGAiHkegwuGAfshFeC3icWArO/Td3bAHVdV6JlauUlmJcw0NgTyYM+fU2UOzXZgQdLlEqTOXDlvpfWiziUocVRUZjkwocsm005l/hi+X4IfDYtglS1mZGEr21FM457vfDazgrHGPR5B4ZWW436Eh2BqcnWdFwmGiu++Gf3f11URvfrPYL1yWrO9jqM+StNnw3oYG0ds5373mcACrPB6RoKFfq74+rJemIeBgZXBlNmEbyuMR32tTk3lQdGwMPmYsBqziRA6jrMZYDLaZUeJKKsloRDqexIqOkuQhJRKxJLNKJiZgLLa0pBsu3LvhuusAYvv3I+o9NgaHcOPG9OONjqIXxvz56Q3Io1EoGJ50XF4OYi6Tw6ooRH/5C8iDCy7AOYtZDmCzQclMTEB5nnMOXh4PSiT37oVyqKsD6Hd24uVw4H5y6Pn3T5mcxHFlmWjLFhgQbjeURLaekGYSjcJIeOop4bBfcYWIrrnd6B0UieD6ly+fvoh3WZkoVeCIqN2eHPksSUleew3P79lno4RML6qK/ZhIwJlzOERGrcuFTJVolOiBB4BnN90EYtBM4nEQiLGYcNqqq7MbXM8/j3Ljqiqi73/fmrOqKNjzqgqjMh7H8JWHH0bw4M47M18rH4P7KOoHsRjJ7t1oZu7xALtvvdU8iyoeF85zTU1xprAmEriG7dux19etQw/W1lb8nQnVaBTY0NxcwoHZLEwgckbLqSB+P/Chqak47UUiEQRjq6qgl81sBm6xsmJF9pYKBw/iGpcsAXmQKpWVOI/PZ0wkNjeDJBwfRwZcqh3W0YHr6e/HOcrKcIyJCRyvsTG3NTATHloQCiE7KBBAAGnlSuvBDJsNVS9/+xt0iMNhnumpF55sHwziGlpakrFy0SJcQ3c3MHjVqqlxyp1O2MxDQ2KwV7GqUkpSuHCP7/JyMVCFs+isljrbbOIY3H+RiUnuI64nFK36FcePY08uXWrc3knT4EMdOADs4QAGP188GJED/QcO4BmcOxfXduRI8uAWo9ZE4+Owh8bHMen5rLOwj5k0TC1LrqiArcEEK7dX4rLfQkm9ykpceyCA9aysxL9feQVr1dICu6RQfcX208QE7J7ycmBXQ4MxTkxMIOgTCsHeXLvWeksuRcncpzEaFf049WKzZc5q5N+XZGZI6asQYpck6YtE9D4iaiail4jow5qm7eM3SJJURUT/RUQ3EtF8IvIQ0Z+I6D81TZuY9is+zSQcBiFYU5OescMR8Xic6MwzAXibNhF9/eswKufPB1m4fr0AoHAYaew1NelZNeEwSpiJcCxVRfQlU0aaqkL5HT0KApGb7xdbnE4Y96EQlAD33WhuhtKtqkLae18f+iO9+KKYsLxwYfZSbBae/nrkCI5/3nk4Dg9D4RT4efOsK1F22P/+d1x/qsOuaSAQR0ehODUNStrrxXumM/PH4cD9yjKeh0BANG5fsGBKT13CohkubjeGDXR0IIqtF9434TAMZTb8+vvx/C9aBOPpoYdwnBtvxHHMRJaxB3mvlZeCZ6O1AAAgAElEQVRjj2czpH7/e5BzS5YQ/b//Zy07SU8gNjQgu+nzn8f9vOtdRB/4ADCNDWyzPoWTk6I00Yz8n5xEL8mdO+FAf/7zICPMpNjly6qK4Mjf/gZjeckSfJf6vc37XtOKP/G1GMLlm1MopwwWaRrIF1kWTuapILIMMsvpRCC0UB2pqtgTkQgmMZvts/5+4FdnZ/Zn8NgxBHU7OzP3AeQgp9eLPal3bm022ABMJLa1Jd9rWRnsvJ4evKe9XbRQ8PnwKkbQgQj7bt8+YN2qVThvrsLVMtu2oX3C1q2Zy6AjEayJogCLUsu+WTo7sVa85mvWTI0dardDb42O4jkIh63blvme8lTBoukULnVWVRBVTAZyaauVKhs9KalpyZOeuZe4ftKzGQadOAHiuaPDfEjao4/CV9uyxbjaQZJEq6HhYfz74ovhL3C2YiAAW0H/fsb8gQGiH/0Ie/df/gW2RHc33suZmA0NIqPTLGBYXQ0iMRgsTi/m+nqsq9uN6+/txXe0YUNm+9CKhELALL8fa1xbC8w2s2f8fuCoz4d14Aq4XITLpzM9X5qWuU9jJJJ9KIxRVqOm5Uy4lrAlTykNVhGNNV8iIpWIHiQiFxF9goj8RLRU07SEJEnlRPQUEa0mop8S0UEiWkZEdxDRESI6R9O0aJbTnd6LXYAkEgBVmw0OZ6pRxENPVqwQEeenn4YyOv98lF309sL4Ou88vG/HDiiarVuTo6ihEI7H5a3RKEA8kwHKBOLhwzjfBRdMPeHl8WBdHA4onvJyGKF6ciEYhLHPk6rjcTHgoavLvDxYlmEkc9R/7dp00mJiAqQuT1XORGqoKrJCH30Ua75kCdE11yQb35EIvqdoFGs9bx6+g7ExnIszuE5GabGmISv14Yfx86c/ndIG4lOORePjJSzKV2QZ0wJDIaLbbktvwn3iBPZNe7swvDwe7L+5c2Gg/vGP2JfXXJM5OzAWgzOoqmI/cDTcTBQFpcEPP4xAyr//uzXCJJGA806E/ff000Q//CFw5d//HcYsl/FoGl6SlIwfsRgMUJsNxzDCBE0jevxx9IGMxYje9jYMejHDDy69iUSw9xsaCitf1jTg9PbtwJZ589BzSV8mlEjgPuJx4Gtt7cyJfmsa8Pzxx5Gp8MADsxuLfvWrqccizl5RFDzPp0omKZe7hcMIEBaDGD16FA7kmjXmpJDfL/pzZctKHh8XbVB4En024SoA7lest/c4Y6eiwriM1uvF35ubxXoUq88xB1DHx4HB3BOskFYx8biouli/Pt3OVFXoGiZ+qqutYdHkpCjvnj9/6soEVVVMaf3hD2c3FtFp4KPpswoVRRCE2UqdzURPKPIwNj2hyMf0eJA12NSUXvXF8uSTRE88gQSMrVvNsUJRcCwO/hmRbPE49g0PC/H5EDR87DHo8xtuQMCQewDW1GQmQI2E7QSnszgBxvFxrEE4jDVauzZ/vOKsZY8Huk8/ZdnMhwqFYFt4PHhPZyeST0522xazjEb97xUF3/WhQ8h2/fKXcxqsMh3YckrKDDGLZ4RoRHS+pmkJIiJJkg4S0R+I6HIi2kZE/0ZEZ77+nhf5Q5IkPUlEfyGidxPRj6b3kk8P0TQ45qpqbAz19QH0uroEgdjbKzIPzz4br4EBZL089hjRb38LpfH2tycTiIEAjOiyMhzL5wMRkG3YwbZtcEzPOw8ToqdD6usBmKEQCIu5c9PXproakfJVq8QUw+5uRKj374dRzSXP/PmJCRi13OfILOuusRHGwvAwvoOOjnSFp2ko+9y2DU5HRweUt75vCU8oc7txvM7OZGKmrQ1RpeFhOCNz55pPTyu2cB+67dvFc7Fly5SftoRFM1Q0DeSc243BIqnPodsNQ7C5WRCIkYiYkt7YiL5/fX3IGs5EIPJ+1TTsQc7KzUQghsNE3/oWCPs3vxmlwVYcAz2B6HIhg3HHDhixn/gEDE9VxYuJRF4PIvyfS/85g9fovMPDRD/+MTBh5UoMZsmUvRKPwxnmsmgrU6gzSV8fsqD7+/Fd3HBDevZWMAhMJcpeij2dkkggsPPkk7j+sjLzXnVFlFmPRacqgUgEEpz1fzEIxNFR6NiODvN9GQ7jfZWVooLATLgcrrYWgUurzqjDIaotQqFkIpFLNCMR7IFUm0PfP7GtTfRNU1V8hsswc5V4HPsuHAZ2sL3EuEiUHwnjcKAiY+9eBAXOOEPgHJdtcmaNUWmmmXA5+PCwqMYp1oAZomSSIpHIv7VNDjLrsWgmiD6rkHvYcQmvwyEm8VoVznSsqhITlmVZ7F2HA/8/eBD+iFm1wXPPgUDcsCE7gfjqq3j2li9PzmjUD4ThXvCahv3/wgto77J+PTIQuW8kv9/jSS6DttL6qawM7+W+k/lWRyQSWJ/eXqzjkiXYr/kQiLIsSpYVRSRf1Neb41M0CttodBT3xBVrxcSLQsRsKAxn13Z3Azv7+/H7PIZVlbAlTymRiEJ+wg/Q6/LU6z8Xv/7znUT0IhH1SpKkLwx7johCRHQpnaYP0VTL2BhAnstT9DI6CoJxzhxh9IbDIAqbmjDRmGX+fCiPJ54gevBBRJB4AueCBfj/0aMwMOfMwXnr6jIbyrIMgunQITh0+vNNpTDxpihQYrW12Q1Ylwuk4OLFAF63G6B77Biu3+EAUMsy1ur887OTdTU1YjpXXx++I84O6O4G4dLbC1LllltgLOsVcyCACLYswzCfM8dYcdXU4PpPnMCLh0tMVYQsEAApvGsXnCCXC+Th5ZcXTmRYkCnHomkw+E9JeeYZPOdveUv64A+/X0xd5owbVQUJ3dICg/eRR+DUvfWtyBI0k3AYz3ljIzLkeBpopmdvbIzoy1/GfvvMZzCkyIowUdfSgp+f+xxw4QMfwLRCPa5wDxveo5yRGAjgXuvqjCcwJxIo/77/fuDrpz6V2VEgggPi9WINCp2CPDwMLDp4EJh2661Yfz3WxONiAnx9vTkROt3i8wGHnnwSjk5jI0rgL7nk1MCim28u0pUaCE+wTSTgwJ5Kk2THx+E4tbdnbgNgVSYniX7zG+DG9dcb6+FIBOfctAm6PBPZMDqK53btWqKLLsovk1eWcV02G557Pe6MjuLvc+emE8OcwV1RAYeYs6eZ8Gpqyo1MHh8X5dirV6cP4EskcHz9xOZcJRBANYuqosULT4MtLxcB23xkfBxZW9XVIFAKJdE1DbqmpwfXV18PHTUNgd2Sj1Zk4fJPfalzPC4Im1z7/fHxeOiGLOO53vd6UeiKFfid05mML3v3wjZatQpVCWbnTCSAP4EAArA1NXi+efiJnszn4Up2O5JGXnoJNsfNNwss4sBCOCx6LHIwlScu64lFI/3hcolhjHZ77vtrZASkaDSKfbR8Oa7J64XusrqvgkFRsixJomQ509AjDowMDeEz8+fjNVOqLoxEUUQ2+uHDeAUCwLc3vAEYl8egpxK25Ckz+FGZdunT/0fTtEkJSMbtmJcTUQURjZt8PktMtiT5CE/ra2xMd5h8PhBV9fWimbimgUCUZRjCqWA4OQnQ5mmqzz8P57a5GaRURwdAdHAQSiNTjxruqfjaaxigsnlzce/dTBIJEAyxGMhPSRL9Ea1E2F0urFN7O8gORcE6Pv44DO+qKlGq2NmJ9ch0XJcLxMnAAF6aBufh0CEosre/Pd1hTyTg2Hu9uO5Fi7IDP2cpjo+LqWLFLG9mx+TIERg1fX1QTJdcAgKxWP2ULEgJi2ag9PSgV9iqVenBgkgEJRQuV3JZ7NAQjMPFi0X56ebNmQnEUAjPoN2O/SnLMIozlcscOoQJzLEY+sAaDZEyElnGHpQk7Nnvfx/n+e5304fFECVn3jDB5vXivNXVxqTWkSNE3/421u/CC4nuuCPzkANNA06Hw8KBzjci7vGIHksuF8rHL7ggGTOYBA2FRMlPof0WCxXuq7lrF5yfcBjP1TXX4NmZxuzIWYtFegKRS9VOFQmHQQzV1lqfRppJ4nFUC9jtRFddZbzfEgnYOpIEDMzkaHo8CLjU1GDP5+uUOp3Y/5OTokciE3UtLbAhxsbSqzB4YMDgIOwF7qecOrE5G66oKmwiboWzfr3x3isrE2V1+RKJNTUgD3/7WwS5L7sM9k2hZZItLSBy9++HXXPGGfnvBY8HOB4M4rrWrSvewBoLMmuxaKaLzSZ6APJE5nBYZO2Wl+ceUON9cOgQjrtqFWx4Juy4X96xY0R/+hNspOuvNz6PqkJHv/gisKCzE/8PBPB3lwtYyPfAZF8ggJYsx44h8Hvllcl7k9sl6H0PznLm65ycxHNPJIas6InFsjJ8XlGwL6wGH2Mx7MmhIVz7xo1iaElNDWwznw9rZGaPqKq4vlhMDFvKFiRRFGDj4CCOMWcOfMmZGmTTZ8xOTIA47O2Fjp8zBzb14sUFZU6WsCVPKZGIQgzmBBER/bOuXiKi3UT0BZP3eYt+Rae5xGIwEisr0zOnIhEop4oKRG5YMezdC3C5+OL0Zt+yjD5fTidIIVZsTz8NR3P/fmQThkIAcybojMTng0I7cADp99NQ4kpEWBMu7easP+5x4vPhnrMpMC5n4HR/7pvY2YlIncMBAq2vT/ShnDdPlD0bKbSyMhiVf/kLvoP6ekQUUx12IpAOQ0O4h9bW3AamSBLeX1mJY/T0QIkUQvDF47jP7m4QQQMDUOLc2NnKQIoiSwmLZpj4/XDsGhvRw0//vMbjyGC22RAdZ0PG54PD2toKImjPHvT6yZStHAyKsvmlS7GvifA8mu2RnTuJ7roLmPWd72CPWhEmEGMxonvvRUb1xo1EX/iCuWMoSYJIjMcFScMGPAcfiIDRv/gF+j82NOC4F1yQ+ZricZEtVFubf3ZLIID72b0b13vxxQgGpJZ8xmL4nvQZ3Sez/48sg/DctQv4q2nIfDrvPDwPeUTYC5VZiUWqimdTVfGdnkolzIqCYITNBnKoGNmy3B/6zW82Jq14cF0shmqGTCS71wtMqqhABmKh5K3DATziEr3GRtFIv6UFQWGPJ91GbGgAno6N4Z4qK0VGo9uN+21qMt/vnHXp8yGQunx55rW220VvrnyzLqNRZLjv2gU7qlgD3JqaQPi9+qogEnMhDDhgz4MWVq0y76c9hTIrsWg2iX7iMhM3/Mq11Jn7iAeDwAy2KVRVlDwfOED0u9/Bv7j2WtEeJRYTJck8KOXwYfx/1SoEDXigpBnBOTKCoKjXi7YpVgOrXJ7NtoemievhwS3j4+JaHQ6RpRiPYw2NqjH00t+PgIyiIDtz8eL0e2hsFPZQaoWWLOP3k5M4RkUFEmDMhi2xqKpobxCPw7fp6po5LVv0wmR2NIp/Dw3BPxsbw/O5ahVso2w9eS1KCVvylBKJaF2OEVGDpmnbT/aFnA7CkRK7PX36bzwOg9ZmQ18tBtexMRhfixcjYqwXTUNkPBhESSobwV4vHPSbboKBumMHnP2LLoKiSjWouSTmwAGQjqtXw0GdDmMqGIQCsNuT+2VIEpQHp7LrezyaCafdHzwIZ7W+HsYrZxLNmwfCY3xckInPPINXWxsUT2cn1icQQJ+x3btx3MsuA8A3NycbHLIMAjQYFFme+Wb8VFcj+3RoCC8ub87FofL7BWk4MiKGxJxzDtZiiicNFiIlLJpGURQQiPE40fvel+x8caZKIgEnkx1mLhOprMT+2bULwYY3vtH8PH4/juV0IrsoFhOTOI2ea03DhOd77sF+u+sua3ufSJBnvb3IEhwaInr/+1HqYyUIwROYJQnOutOJtWDD+qWXiL73Peypq6/GAJpsBBiXEtlscFDziYpHoyj7feopXOO55wKPUslIJpm4r1qmZuPTIRMTwNbnn8d11dSAcD3jDODkNJQt5yszDov0BCK32ziV5OBB6LszzihOxuzevQhcnH+++ZTh48expsuWZSb2AwEEZR0OZIcUK6OXe1QzkdjQIEiNhgZgkdH05XnzsFYDA8jq5gmeDQ04Dle5pMrYGOw7ItiSVhxVSUrPSLQiPDgqEMD1LVsG0uCRR/C65priYFNDA+5l3z4EKjZsyP79hEIgD3nQwrJlsItP9qAFE5lxWDSbRV/qzFOYcyl15udmyZLkPcalxmNjqOxoawOBODYGm4kHCPH+5r6etbUIBGabBE8EjLz7blz/Jz8pKtXyES5r5qnNRFgT7lfKxKLPh/XhCqbmZpGxyPcRCmH/eTy4j0ylt5KEY4yMiGA0lywHAoKsbGrKTgJyC4LeXnyPXL030+wKfs64h7EsA7u7u7HOVVUIqK5cOe3EZwlbTKREIlqXB4noLkmSbtY07Vf6P0iSZCeiutN5zHexZXgYhtiCBcnGmKoiuiXLIPDY0YzHYXBVVBg76vv3g8DatElErMfGAPi1tVB0AwNE110H0D5yBA79mWciguVyiT6E3d0gEZctI7r00unpmzU5KSYCzpuXbqA6HFAIgQAUWrYm69EohqeMjMBgPfPMdEOVs/5aW7FuExMiQ/H550GMDA1h3aqqkLnHDvvkJNaqvx9OsM+H/xPh+hsbCzdEHQ48H243XmZ9M/WiaXi2jh/HZwIB3FdZGSKCZ50FgnSGGsksJSyaRtm2Dc/xO96R3h+1pweG4ZIlwhjkialclrtjB0i+q64yP4fXK8qhly+HIZVI4JhGzmgigazDbdsQxPj0p62TbtEozvfYY0T33QdD9PvfBylh9fP6CcxM0thsuN8f/QhE3vz5GPKyZk3m43FJTiQi+hjliqmJBNGzzyL7MBTCvVx5pXEWcSQiSKbqarxOxn7XNOiYXbugTxQFeLZ5MzCIB3qVsMi6KAq+W02bWRO1iyX9/dCjqY55vnLiBMjrxYuN2xcQQb+PjeHZzNRLNxwGgUiEIGyxnTwm+/VEotOJ75mzqsvLk4kxDrh2d8NWYZK0vBx7y+dL7jvGPWz7+/G7detyuw9JwjkVBa9s5XVcnsc9O3n4QWUlbKlHHwXRctVVxXmW6+qAjUwknnGG8f1FoyAcRkZw3kWLYFvNlEELJjKjsOhUESb9ONPOSqnz0BCwpb09ORjPPQh7e4l++Ut8fvNmHJMIfgsHTcvL8f7Dh/G+DRusBUl37kTv5TlziD76UWukY67Ce1S/dxIJ3JvbDSwaH0/eL+PjWJeKCuw7fdsbM+GAx/HjsCkrKvC71lbrfVK5BUE4DIxZtkyQoSdbuIqOiUNVxZpEIsDs3l7gaGsryMNFi05an+oStpjIKWZiTal8m4iuJqJfSJJ0FRE9S0hxXUxE1xPR54jo5yft6k4hcbsRcWlrSyfDjh0D8bN8eXIU5ckn4Yhef336Z4aGYDQtXIjPEcE4GhiAUlq8GP8PhYQx7fPBKX3hBXz2zDPFsJUDB5A6fumlU++kcATJ54MCyBQFrqoCGPv9UC5m1zY+jntSFBCkTU1QgNkiizzgYO1aGLd//jOurbkZTg0RMho6O/E7pxOK4OmnYbw2N8OoKGZmCPdGqqyE0dLba1zeLMv4GytTdjYTCbx/wwaUC86EQQoWpIRF0yT/+AemBl5wAZ57vZw4AcyZPz/ZuB0bA36Fw+iDuHgxygTN9hZPMK2sxDPIDcldLuMMlECA6M47kUF0880YfmKVaOJJ0Xffjczhc84h+vznrWcwhkJiAnN9PfCJ+yM+/jgIxFAIk6tvuin7XudJgokE9myukXFVRVuJRx8V0xqvugr4nCqKAhzl0qymppNDMsViyNTctQuEkMuFjITly2HcNzbiZwmLcpNTnUCcnIT909JivWVBJgkGEXitqzPPkB4fB6HW2mqepUgEB/Cpp0AybNkydRkudrvokTg5KYjEpiZgyfg4bCT9d89TpEdHYUOxA83DH7gXqiShfNnvB2G6bFl+e9BmE7jI7R9ShQMnPL22rS09CNTRgcyrHTtQ6XH55cUh8WprYe/s2ydKmzkAJsv4vk+cEAMH58+fNdm8MwaLTkWxWuo8MQHSq6EBBKLXKyYg86Ck//s/6L2bbhJ+HmfrEWH/cMuoeByZZ9wXka8h1ebRNJRGP/ooEkw++MHiTKy3Kjz4jpM54nHck9uN+/B4sPc6O2EbHjokiEjur6jHilhMlCwHg9BvTMpasfd8PtiVfr9oQXASWjOlCZeHM3HILXCcTuD3sWPAH5sNtvPq1TNiEGQJW0zkFDOzpk40TYtKknQpEf0HYVLPW4goSmjI+QARPX4SL++UkVAIoFtbmx4t6e/H3zo7k6NLR4+C2Nu0Kd3QDQbhrDU0wGEmElEynnzKQN3SIpzpujpksmzcCILy4Yfxe6cToHb55VNf/qaqolS3sdGaAqivxxr5fOnZfpqGKPvx41B0GzbAqOboYCyWubxFVVHq/eijOP5ZZ8Fhb2wUGYqvvALjlPuLcTkEp+ZPlTFaVYXv8sQJrFkoBHLQ7weROTgIJVxVhevx+aDgN22CgTKbHM4SFk2PDA+jn9/ChegVqhe3G39vaUkudQuFEJDw+ZDhs2ABeiiaOX8cJa6uBoGoKNiLTqexATw0hMnLw8NEn/0scMiqRCIgr775TRj6t98Oss+Ko8xDKqJR0cScJ54ODRH97/8is2XlSqKPfcxaL69gEOtks8HJzwVPNQ2Yv20byIEFC3AvHMxIlVBINGGvrT0pvQXJ7cYz8cILWMe5c5FtxNMQOUgzw7N9kmSmYFEiIb7furrZtYZWhJvwszNYqCgKCMREAkPmzIIVx45hvyxenP53Fu41HYkgq8hqQCJfYSKRy5Hr66HLuT/i+Dh0v972aWkB3gwNJU9Zra3FWhw/jr85nSDVUjPO87lGIjHNXo+xoRCuW9PwrGbqw7pwIbI6n3oKQZpiVb5UV8P++8c/QCSuXg0sHhgQgxa6umbuoAUjmSlYdDqIUakzDyE5cEBkDfe9Pq6CB5JoGtETT2B/ve995lmCoRCOU1mJAJvTKfoocp9ohyOZ1PzpT/Esb9li3a6ZKqmuBj698orwZy+4ALYiE6pcBu33i89xW5hoFPfkconp58GgKCnPZCsFg0iYmJjA+5YuTcfD6Rae/s0vTRMZrjYbbODXXoPOqayE371ixfSSwJmkhC3mImncxKgk0yGlxc4gPOCirAxEoV4JjI+DLGxrSzZo/X6iX/8aJOENNyR/RlFAeAUCILtqakAmDQ+LhrKBAAyn2lrjSHsoJEqY//AHAPR55yFCvHTp1AFzPA5CLB6Hws1lcEgsBmVeVSUyAqJRKFjOnFq1Kn1aMkcUUxWUpsGB2bZNlDVdfbWxwx6LoR/J3r24fpdLZAq2tExPVGl0FAppZAT36HKJfiKDg/jO1qzBqwAjeWYXGWaXEhZlkEgEU/0SCUwT1vdGDQRAxtfUJGOAoqD0ZmgIRFFbG9G73mX+jHG/UW6noKp4Ru124xLbV18l+tznsB+/+lWU2lmVUIjogQcw6KS1lehLX0rPrDQTJt1lGdfFBJyigGT9+c+Bu+99L3obMQarKn6mGvOFli8fP07017+KDKmrrsJeNsLieFz0KuISxukkmDQNz8TOncg84GEYa9aIoVj19en9Y3OU0xqLEgnYAZKEvXSqEYiqCoI+GETQqxgE+FNPwcHduhUYlirRKP5ut8OJN3s2EwkQiJOTmMJcpCb3loRxJB7HHnK54JiPjwOnUgkKHoDldMKGlCTRHufAAazrhRfmP8zJSBIJ7PGyMuDlxATWlqfOWw2q7t+PzPFly0AqFsvuDIeR5XjiBOy6hQvxKqAU/bTGotNFFEUMPeGffj9sFFUFZjQ3Q99WVeE5DwYxwC0chq1ghhV+fzL2pD6LXKkhyyL7/Gc/wzN8440IrJ7sFiDj4/CB3G4QgGedZb7XFQU25fAwbMdgUOiy+nrYmRz48Pvx06j/eyQCe3JsDHizYAGyFk8WmcpkKBOHRII4dLkEUXz0qKgIW70afnmRrnm2Y9GskBKJOL1SWmwT4T5isgwjRg+4fj/AprYW5BcrCFVFWrzbjbT4VKJt9244nBdfjDRwBtjWVpCU3JujvNwYuLxeZAopCox4SUJ0ZN8+nLOtDUZnMUqL9BKNQiFqGpRAPgad3w9l3dAAJ3rfPqzX2rXmA0NkWTjb7DQcO4YszP5+3O+VV5o77IoCRTg5CUO9tRVr2NeHz4+PQ1ksXYooeEdHcTMTYzFEtHp6RAlFSwuiWUNDuL7ly837AOUos11BlbDIRDQNPXWOHkW0XJ9VF42CJHc6gQV6wqKvD5957jkY0LfcYv6cjY6KdgqLFuF3eiIkdX9t30709a/D0Pra14zLdc1kZASfeeEFTIb+r/+yHpRQFOxnnnLLmcrHj6Mn49GjyPC+4w7cs82WfO2pRGIh5csnTgCLDh/GZ7duRcTabOhMMIgX924s1pAHKxKNImt71y7oipoaDHlZsQIYywNzWlqKktF+2mJRPA4HzGbD8zlLSsBzksOHEfxas6Y4JN3hw+iHumED7JdUSSTgxMfjCFSYZYMoCjJrx8YQWG1vL/zachVNA57E49jjFRXQ/T4fSMTUwXh+P3C6pQXPy759eH7mzxeVG01NxSWimeRmcoCJgVzl5ZeRSb5mDda7ENE06KDeXlwbt6U555yC+6Wdtlh0qoqmQZ/pSUPOBiSCv+B0wiaIx0GYceYgkchYvP9+2BK33mpuv3i9ICKdThCI2XR2by8GuAWDCNiuWYPzcYbidAeUZFn036+uhr4vLwcuGeFoNAof0+vFGlVVAX9crvSMRU0TQVFOeuEeiSdOwPeSJOAwVzdMtzC5HIuJ758TOVwu/Lu/H2vEQ0KXLAF5OAW9K2c7Fs0KKZGI0yulxTaR4WGAY0dHsuEXiUCpOBwgwPTA+NxzeG3dCrDWy9GjGP6xdi0M4d5eOHNz5gBg43FkF0oSnHj9cTUN7/X7AXIvvghAvPJKGFiaBiLh2WdF/5wLL8SxC5VAQDSzbm/P38Hkezh8GAqqvh5OQ7YsBp6K5fGgoffhw/jsFUsDXZ8AACAASURBVFeYO+xE+O6YqGtuBoGYmhU6PIzo3OHD+F1TE76Lzk6sYb5ZgZOTomRZVXHuri4Yxk8/jTVdtgwRyiKWWs12BVXCIhN54gmQdtdeC+KHJZHAvlcUlO3qn9eJCTikTz2F5//WW80dRZ4o3tAgCMRAQEyT1Ru+mobswV/8AuT3l7+cmwP64otEX/wiMOBf/xWReqtRelnGvibCvnE4YBz++tdEv/0tDNkPf1hkxvB05lTDnYnEUAjHs9tzm4bsdgOL9u4FKXvppcBbMyOZrzuRwPvNpltPhYyNgTh88UWsFeuGhQtF1lRVFUiMIpKapyUWnQ4E4sgIAqgLFhhnDOYqbjf2blsbhsilrhm3CfD74diZBRs0DUFaHlbX1VX4teUrPMBKlvEcVFaCIIvFYJOl4syJE7BBeNrnmjXYj/E47B4uxSxGNpMs45jhsOjNWAixsXs3HPAzzzQfhJNN3G4xEKymBjqoqgqlzZEI1qMAh/60xKJTSWQ5OcOQy0+JsDcqKqC7+KfNhsoftzuZDOJS52AQNsPoKHo4r1hhvLcmJvBsc4/gbP7AK68Q3XMPruMjH4HvyKXViQTeY7cLQnGqSbXBQWBnIgFijHush0K4pupqXIemQW+53fgbBxaamswDNkzk8uAWJgzDYayrwwFfaskSEUyZrmzMREIQh/E4fldWJojDsjL8/fBhPCfBINZi1SokdUxhcHe2Y9GskBKJOL1SWmwD8XphLDc3J/f944i4ooAM1IPNiRPIQlyxAgSXXtxuRNrnzEF/jJ4eKKh580DMqSp+J8swoPTKSlVxLZEIjL4XXgDgX3FFehmuouD6nnsO71+6FH0v8p2aODGBa6+owLUWYmxGIsiEGRiAA3vuudacrLExDEx55RXRcP2CC8wVcDwOQoSb97a3Z+9jwX1TxsaEkSJJ6BHW1QWHKVumoKriGTh+HMfj9P2uLijVvXuhoNvbcf+KAgXe3l40pTXbFVQJiwzkyBFMDVy/Hr0M9VnPR47AaFu+PJmMj8Ww1x55BPj17nebZ3MMDgJfmprEFPBgEPuopiZ5n8ky0Te+gcb6W7cS/cd/WDeENQ1lxvfcA8f1a1/LrZcalyeVlcHAtdvhZH7ve9jvV1xB9P73pxOaipI+TICDEtEo1s3q0BC/H6V2zz2H69i8GXhutn+58Xo4jOutr5/6vrV83oMHQR4eOYJzn3EGsj7r65GBzYNyWluLP7WWTkMskmV819zM/lQkEINB4EptLUijQp3CWIzo//v/YFe94x3Gz+GxY9CfS5ea9wXUNFxXXx8Ck2Z9SKdTNA12ZCyG56GiAo42EewKfj4UBY7snj3AoquvTg5ax2Kww1yuwjLyeDAEB6IZiySpcDLj6afhkJ97rvWWFERYn+5uXFNlJewivU0bjyMQFgwW1HbmtMOi2SxMADFpyEkERKL0VE8aGj27PT3wMxYvTs9GTiSQgdjdjeFy3EYgNVPQ7ca+rKxE0kc2vf3440QPPQTi7CMfSU8OYAKTq6v4fvi8xayACofhL42PAzPWr0+2i5g0jMWwtl4vromHu+XaB1lV4T8dPoxjsN+sqoI8lSR8Z/rBLcXsbxqPC+KQz+lwJGccEsHuO3AAekVR4NeuXo3EkWkgOWc7Fs0KKZGI0yulxU6RSATpzZWVyT0JVVU0Wl2zJhmUYzEoJpsNZcx6hRONonefzYbMwYEBkEwdHTAmNQ3nC4VAOukNyHgchmciAaX07LP47BvfiM+aiSyj1GTPHnx29WqUm1jNGOLSEr8fDkNbW2EAOzoKpaZpUNrcGzFTFqLfD+L1+eexduedB4c9U+aexwNChAjXnEv0PhwGCUgEpTM2hmxRznzikvOuruR1jEZFyTJH9xYtwnsHB1Hu4/PBAN64UXxvfD5FwbUWWLJDNPsVVAmLUmRykugHPwB5/qEPJRua3d1wLhcvTn52NA2E9e9+h8+95z3mzld/P55z/XTVcBjPcVVVMo55veh/eOAAyLp3vtP63vL5iL7wBZBvb3gDJjnnkr0YDAIfnU7s/2CQ6Cc/QX/ZuXOJ/u3fQB4YSepUUs7EURRgW01N9vuIRJAN+vTT+Nx552EASaZ7iEZx36oKTDDqKVlsiUSAl888g2ejtpbo/PNxvTYbnAoektPSMnUTa+k0wyI9gZhpKMVslkQCAUxVJTr77MLJcE0TfUTf+lZje2ZwEMTg/PmZByPt3QuncM0aZGTPFGHiLhoVWT8jI6KHWCgkSLJ58/D+mpr0LMpQCPZQVVV+/RGjUdGyoboaGGqz4btUFPy7kACxpiGw1NMDfE+twkmVYFDoL27dYzZogQP3fj++2zzK52f7bjxl7SIebsFlstGoINiIBAHEpKEV0mlkBIGzefPSgwmKQvSb36Dn6FvfCnJNUZJLXcvKsGePHcNeWbcuM8GnqgiEPP44AnXve1/269S0ZEJRPw2YCcV8dIimYQ8eOoTPr1xpTI5FIrAFBgbwt7Y2YQ/kcl72E/v6xFTjefOSK+nicVH+zD+5EoSH2+iJxVwCGrIsiEMmmp1O8dzoe2H39sJ25aq6pUvhFxfB78pFZjsWzQopkYjTK6XF1omiAIQlCYaN3rA6ehTAu2xZ+lTihx9GBtqNNyYbOWxcjY/D6ZyYgIJasEC8b3hYZCXqAS0aBeBpGgB+1y4A9iWXGA9cMRJ2Kvftw//POAM9ZjJlvikKMnsiEZBwhfSF4Cbhvb0gNDZsgLLwenF/TU3pCjoSgULeuROfP+88kKYuF5SGUdSOezaGw1D8+ZZdyzIUayIBp6a2Ftfa2wtF6fHgfY2NMMS5AbGmwQhetAhk48gIygfHx3HfGzca96nktQ4GcS59hkIeMtsVVAmLdBKPI2tvYgL9/fTZxFx+3N6e7nwfP46m3uXlMGiN+o1yv1fuo8p4whkAbLiz9PVh8rLHg59btli/j1dfJfrP/xTTl2+6ybqhqp/AXFEBI3fnThCrfj8yMzMNimHhsmZ2xnnysMMhDHizISi7dgHDo1Hg19atmTGRG6tHozh+Xd3UTYBnGR7Gdb78sujhe+GFyAqKx4FDoRDum5vLTzHRddpgUSwG/HY4cnfCZotoGogcjwclq7kMVTOTPXsQVNi82Xggk8cD26G5GZnWZrJ/P7July0DKTATxecDrlZV4fngcuKhIdiYa9cCUzwe/G7evHSM8fnwmbo665nDqgr7JRgUmJdq+ykK3me3F5Y9q6oI+g4MoL0Dt8XQSyQC+5oHLXR2QodlO6+iQI9MTuJZMOuhbSKzfUeeMnZRLJaeZcjCWWPcq6+8PPfnkfsX1ten90nXNAyi3LcP2b5nn538WU3D9Q0MiB7HZ56JvWaG6ZEIbLT9+9Ga6Prrc79m7ivIpCLbIw4H1sAqoej34968Xth0a9cm23BsS7ndwBGbTQSKa2vTe7VmE25BEIlA7y1ciGOMjgJLzBJPeJ2ZVAyHk58Dp1MQi/ws8Joy+crEIQeHmThMfWYiEeiQgwdFq4TVq6ErTtKU99mORbNCSiTi9EppsV8XTYMCiURg3OiNrcFBRMwXLEhvwHvgAErcLrwQZJFe9u7F388+W5S2LVwoSEjOnGtuTiYfg0FhaLW1wUEcGECvLyPjLJv4/ehd89prUEqbNkFBpjq3sgwyjidTFZKpEg7j/n0+ELIrViRHhpiQa26GIpBl3Ofjj0NJnHkmShT1xjSnqnN6uqZhncbHcex58wrvMagogpBsaUk+v88H52fPHrzHZsOzsmmT6Kvy8sv4W1WVKK3KZlh4PLgPhwPPV57lzbNdQZWw6HXRNKLf/x7PEvfsYfF4YLzxNHe9uN1E//M/2Ce3325MXHO0mgMX7JDF48AdpzM5Q/jll5FF6HQS3XWX9UwfVUXfobvvxrV+6Uvm2YJmn///2Xvv8DirM2/4nhlp1OtYxVaxJcs2lo2FjbExNqETQssG3hAgBBLIm5BkN+V9v303m92E1C+7+fbd1E02yRWyyaax6YFAKIEApthgG4ybbHVp1DWa3p5yvj9+vvc8UzVNskbMfV1z2ZrylPOc8zv3/bsbp9lUVUEJ/Na3QDxs2ED08Y+nnrao6xgbNuSN3ZeFiCUSdR1RV48/LiNgrr9+YePV78f3iRaOtM5WOIXo+edBHBcVATP37YNhHg5H1tG12eCkWiKS602BRcEg5uVKJhCJgBcDAyBw0mmglEiGh1GiZNMmGN/R4vWCDOD6gIn2z95ekJsdHbG613ITbixXUoJ1OzgI/N61K9KgHR6GntjVFasHOBzA9vr6hY1gvx+kG0dcJ3Mc5IpIVFWU0JiexnNl51Q4jPsaH8c1tLWl32hB10HWzM1hbFJ1pNObBIuWm6hqZB3DYDCyqVl0HcNsU+r9fpQ3KSlBsER0HedHH8WeftVVsKPiid2OYJHKSugY0YSe8ZgOB9E3vgEH3rvfnfiY6YqRUOTx4ghFLj9gFE1D5GV/Pz7fujVST1FVXCs3e7JapS5gscgo0PLy1OwOpxPY5fHIEgRGGykYhD1WXp56AIquRzZt8fsjI1I5i8RiwXPgSEMmDqPHZGYGGNvfj2O3toI8bGs753t0vmNRXkiBRFxaKQz2WZmZgYKyenWkp312FiDd0BBbSNzhIPrZz/CbW26JBKiREaS/dXYCsH0+/J8jijwefKeqKjJVx+GA8ldWBgLxhRegwHMnzWxkbg5EXX8/QJ5r2PBmMj6O761Zs3AdwWQyOQnl3mRClEG8FBTuimq1yu6MbLDfcEP89CYu5suGv90Opbq2Ft/PVaFiIXAPLhfmQk0NNs6hIVx3VZWsZTk2hvHk1OfVqxFdsW9fehFIgYAkcBsbM6pjme8bVAGLzsrBg0S//z2ijq+6Sr7v9WKtVFbCm2rEm2AQ3Ymnp0EgbtwYe1whMFedTihW3HiJI2otlsi020ceIfra16B8/dM/pZ5K5nSi4cqLLyKd9pOfTFzPLJ6oquwOWF0NbHjwQfx9zz1owJBq+h3XFOMmMRUVsb9lPCECefHYY9gP1q0DFi3kuFFVrP1wGEptTc3idWH0+WTKstOJveWSSxBhXlGBa5mdxfWYTPjcZlvyGn0rHovY4LFalyZV/VzJ3ByM8+ZmGGLZituN2mFVVUTvfGfsnh0KIaLGYkmeSjgwgFIhbW2Y+/kw/uPjyFDgTIeWFuhaxjFQVRAZ3CXUuG65OR03i4un72ga8I7LFtTXp5aVoao4flFRdmMZDmPfcDqRfaOqssEc15jONBWeSwrNzMiSMSlIHsyMpLLs9SJdjyQLA4HIWnjcDZhJw1zXBVYUBCzoOgjEaDLsz3+GLbZvH7Ka4s3v0VHoRjYbcM5slqnOnHJcVIR7sdvhrFUUlJlJp7ZzOqKqMtWaCcXiYkkoOhyws7gUVne3xEtueOJy4dorK4EZ8fYqjwf3Ul2d2IbyemEDzc/LEgSNjfHH0u3GeTPt+q7ruCeHQ9aUDoUkiVhSIlOgOWLRYsGewLXti4uhAydrxnUOJN+xKC+kQCIurRQGmwBUdjtAz9jR2OOB97OqCgAdXZz/F7/Ad97znsioE7cbhmhFBcA9HI6sXcZ19BiMzWYZVef14nwNDYi66e1FClE6BasXkokJRLCMjQFge3qwgXCjj0zT77ig//Cw7L6crLvXSy9B4fT5oDCnYrArCshXh0OSeYtV2+v0aSgnbjeU8ZYWPEeuMcfez+PHoTRXVcn0g5ISPHtO2UmFVDCmN1dVQelOg4zI9w2qgEUEZfb738c8e897JOaEQlhbRUUg2o3zQtMQpXfmDGogxuuSqeuo88Pd25nU4whpItkQQgik6fziF4iyfeCB1KPqXnsN3Zfn5ojuu4/ottvSa9wRDmMtmUxQRL/1Ldz3jh1EH/1o8lqw0eJ2y/Rlmw3/GusjGqW3F1hkt+Mc118PzE9mUAuBter1yo682ThfkondLlOWudvivn2RBg9HHBDJ7oqL3QEygaxoLDISiItYV/KcSyAAh0ZpKSL9siXGVRXN51wuNFKJNu64MVwoBJ0k0VoaHYVutHo1CPR8aGJjtwPHuNxAY6NsuLR6dSTOsMHOOodRNA3kgMkEUsB47x4PsJMIY5tu/cRcEYl+P9GPfgT9ctcuON87OnKDjUJgHKemoFulkJmzorFoqYXTUY2kYSgkP+fUUiYNS0sXl+DXdWCG1xvbQIQIe+aTTwK/brwx/rUMDeHV2AjdKvo7nEYbCsEe+M//xP76iU/Ers/FElWVEYrcWXhiQqZdNzXJGqxcLsFslk7EZJHLnOosBDAjOiV4aAjEfXExdMdUyi5x5kdjY2qpw0zYBoOyPqUx8tBqxefG+orBIP4dHITNqevAxJ6e2Many0TyHYvyQgok4tLKm36ww2GApNUaWYQ2GERUCnvEo42x556DQXfzzZGKDKd0+HwgAsxm2eaeCCTY4CD+zwVoNQ2Rb1wnsLYWXvY33gAYxiMFciGDg7jW0VGQpzfeiGvORHw+Sbh1dCBVKd5GIwTIuUcfhZJZVUV0xRXJOy6zuN0g2YJB/C7biMl4omnSK+l243mVleFZbdggN7M33gB5KAQiRNnoUVUYDMPDIDvDYdxXWxvmV1vbwiStwyHT2VPpLn1W8n2DetNjkc+Hen9mM+og8nNXVdR2UVUouUaljLsev/oqoqGNkYssmgYC0eOB04LLKXCXPo7Ss1iwtr70JSjfb387Og2mQh7oOpTrH/wAx//bv4UTIR1FjjswC0H0pz8R/fKXGIMPfQhRmakaI0yohUIgMI1pvNGNVkZHUdP2zBng7lvfCrxd6J7DYSjsqoprjFa+cyFcC2z/fmC11Ypr27dPOruEkOQhpy42NCx+HcYFZMViERsxJSXp15HKJ9F1YEogACIoF/vsU0+BALrppthSDEIgyszlAnmfqCzJxASicFetQhOPxYr4zZWoKu55YgKk4Pnn4z2upczN2KLrbE9OwnBfuzaWDFQUEAXsHOGUxVAIeFtfn5nzQAgcK9OOzZzBMTQEMvPoUVzL//gfuW1gwDrk+Dgi6qMzhKJkxWLRUoiixKYls4nOjTGMpOFSr8eTJ7FOurtj19CrrxI9/DDW3C23xN+fBwagpzc3w2ZJpGMIgfImv/wldPj77oPOZLXGpjovpoyPI1Lb78d1rFsHrHa7QaSaTHD4cspyqjoJ13K2WIA3oRDGZXISx2htxSvV+9R1EP1CgOCM9ztNk7UxOX2Zoz1LS5PrMFNTCPDp7cXvGxsxHkZdj+clRyzGS31eYsl3LMoLKZCISytv6sHmrk2aBjBm0FJVGG+KEluglgi/+d3vQBxdcUXkZ88/j42prQ3E4caN0jum6zAG2RvNzUImJ2Uaa2Ulzn3oEMipiy9enHtnhc/txiZ86hT+39oKIzWd4tXj47hmsxljkih1cWQEBntfH8D+bW8DQetwSIU4nqgqzuFyYcxaWvB9RcHGkItoG78fz21oCMetqQFx2NaGZzQ2hutwu0E4cHTpjh2Jo1F0HcbD8DBegYCs3bhuHbx6iUiWDNKb832DetNj0Q9/iDXywQ/K9ccGk9cLJTeauPjNb1BH9PLLYaxFC9fM8fuBOcZ55PVirldWAvvm5tAE5cwZkJjRJRoSicOBmoeHDsEZcP/9uP50ildz2kp/P4jIsTEQh/ffn146ijF9ubY2fgQlK7iPPw7cqqxEmtOePbLWaqJmK+y15yiimprcF+n2eBBp9eKLOJfNhnE1kjkcdTA7C4yoqAB5uEy87ysSi3w+GCylpYtb73I5yIkT2Lt6emKN80zk2DF0ON+1C+nH0dLfD32kqytx2YSZGehX1dUoGXKOifIFxeOBwR8IQFfo6JCY4vPh81AIa9lmi9QjuPREOAySLF4zOa5zZjbL0gXZzstMicSZGei2fj+eT2cnruvhh/H5zTfnPmq3rw9OoDVrYst7GGRFYtFiCJM6RtKQu96aTJFkYVnZuV9/Q0PQlzo6YmtkvvEG0a9/jbVz++3xS5j09UHHXrMG30uk66gq6jvv34/MjPe9D3Pb2AylqEimGS+GBAK4p6kp6BwXXIBzTk9DbwuH8Vzq6vA5k5vpdjt2OqFTOByy23JbW2b3pSi4XqsVuonJhLFk4pBT3rnm5EK1MTUNmHj8OK7RaoVO3N0tHS2aFhmt6PfLOcy1OI2NWxbreSWQfMeivJACibi08qYebLsdilx7u0y5Y4+4241UsWgvsN9P9JOfAIDuuCMS9E6ehPFXXY2NbeNGafRz4xaPB97lykoA3eQkwHX1agDpqVM4RmcnPO2L4Tnh5iHBIMC9rg7vHTuGFGO/H0rv3r3JDQhNw1iNjuIYiSKPpqYQ8RhtsPPYBYPYvCorY0kShwNjpOswLrgRC/9O0yI7eKUr09MgDycmcNw1azD2xvvmJgbPPAPipbsbhZTTqVvI6erDw1B+2GvY3Iz5sHZtrAGgabgujwfjsmZNUk9gvm9Qb2osevxxRDffeiuIaZbBQSiJxnqqLE88AVL+gguQ+hytgKkqCMRAQNZmZeE6M+yh7e9H52WPh+jTn0aaYCpy6BAIRK8X3aCvugrnSVU5YzLM4YDS/9RTIM0/+lEo7OkIpy8XF8vuy9HicmGsDx7EeF15JQiJ6OjOeERiMIjjaxrWaq6baYyMwFB57TWcY9MmOHSMTamI8IxmZqD0l5UBw9NJGV8CWXFY5PVivbABspLFboce0tGRWSO3aJmcxNpua0MUYvSaGR8HzrW0xEYosjgcRM8+i7G//PJz1l0zZeEur8XFcJTGi8TjRkwuF+6HdUCWcBgOnbKySAKSCHNxbAzj0tAAHTZXkdC6DvzhZgbJZH4e+pPHA0w0Ng4kwvU98gj2g5tvzv3aGRiATtXUFD8VlVYgFuXkoEJ2yWXSkNNIiWSXXCYNl0EUV4RMTWF9NTfH1n/u7UUplvZ2orvuitUD2DE7MQFMSpZ95fejOdypU8jUuvnm2K7PnOqs61gzTCbmYj0Kgfl98iT+v2kTsITrnlosMmWZAyuY3CSKvJ5kpK+uy8Yyfj/skQ0bsndK+v3Af+6+zYQek5ypRK/6fLAzT53CPK2rg23e1ZUakR0ORxKLgYCMpi0qioxW5PqKiyTLaAWtXCmQiEsrb9rB5pTR6A68fX14f8MGWfuORQhEINrtIBCNv5uaQoquroME2LQpUmGanJSNW+rroTzOzgIEuSlIfz887W1tiHBcjFo/oRCUdi7uHU3aKQrStF95BeDb3Q1CIZpM9XqRvuzxYBOO5wl2OmGwv/IKNo3LL4812FlcLoA7FwIPhTDOPh+U05aW2N8Jgd8QAfxTVXJUFQY7K79WK5Tf6Lo9QoDwO3RIRgS1tcnOY9HzIx1xOHDs4WEo4kSy4+7atZHRV/PzmF8LpDfn+wb1psWi48fRoGnXLqQQs0xMSE95dGTw/v1ovrJuHdHdd8dGeSgKFOVQCOvTOJ+4tgxHFLz8MhqhVFQQffnLqXU95sjJ//gPKOuf+AT+ra1NnUDUNGDEyy+jhpbbjaYp99yTXvpksvRlFr8fEZvPP491vXcv8IjrQMa7PyIch4nOYBBrsLY2d1EYqopopf37gUklJSBP9+6Njej2+UAeBoP4XkPDsk2pXVFY9GYiEN1upAHW1yMKMVviIBCAQW82E73rXfE7Dp88if00UeM4txsOvOJi6EWLVXc0F6KqMHgnJ7Gfb92aHA8DAezvDgcwOtpR6HSCkGxqAh5w13qvF1jENWxranI7Nxfq2OzxQH/iRgsdHbjGePNlehrOrqoqEDG5jpYeHsa1NDTE1i6nFYZFmQrX0mPSkCNgiTCPoqMMl3OdUZcLqfI1NcgUM865wUEEeTQ1QY+IZzOcPIk5uW5dYqcFEb7zzW9iz73nHgQ+JBMm8Dg1l8m7TDOlOJJ5fh46zZo1eG6qivtatQq6SKKyUUwmcmMYkymSUGTdZnISaygcBu7bbJgH1dWZE2o834JBXL/XC8K3rg7HTmV+TUxANx4awt9r14I8TCdLLp5wg04jsWis68mNgJhYzGFdz3zHoryQAom4tPKmHGy/X3ZGNhbG5Vp2ra2RHZNZDh9GtNCVV8K7bDzeb3+LzWbvXiiORkXX4QAg2mwA0rk5KILl5djszGZczzPP4O9rrlkcb4jPh+vglNpkylwwiGidI0fwd08P0pDKyjBOx47hGnt6Ysk0nw8G+/790mC/6qrkBi93HuSaZbOzuM7m5uQRf7ouPXILKader/Rcqyo24PXr4zc+sdtBHs7OYuO78ELMCSFA6HEjlTVrst9gXC6Z8jwzg/dqayWhaLPhedjt2JwbG+Omfuf7BvWmxKKZGXi6GxsRyccKp8OBuWqzwUAzyiuvgEC02dC4JLq4dzgMb7yiwBliJBgVBeuguBik4W9/i+YlXV0gEBOVFDDK7Cyap7z2GmoIvu99UEzr6lIn17g27IMPYp2tXw8ictOm1H7Pwml9QuD80YZ0OAzi8OmnoSju3El07bXAlOj6iNGi68B2rxd/x4uUzlTcbqQrv/QSjt/QgKjDnTtjcSwYxDzx+TC+q1Ytq46D8WRFYBE3zgmHZZTCSpZwGHu+yQSHRrZEua4DpyYm0Ik5Wk/wepGdUF4OMiDeGmRdggh613JOI3e7QW4EAsDTdetS0w14fXNUYXSjldFR6AirV8vsi6oq6Agmk3Sg2Gy5Tc9jItHYaIUbGXCjhbVroQMtRAqMj6PObX09GujlOhV2dBQBADYb9G/D9awILEpHNC22jqExpZMbnjBpeK7TktORQAA2idUqU3pZ7HY4NWtroZNE6wLc3Xt2FhHW8Ww8lr4+1KcWgujDH46Ndkwmui67KgshG4QwcZfK78+cwTWoKmygigrZ+MRmS08PESIyQpEJRZdLBpTU1EDPrKmRNRZNJpwvlWtm0pIb7bBeVVKCZ+V24zxNTcnntGsFDgAAIABJREFUm6rivo8fB66VlMC51N29uA5TXjNGYtHYYdyYBl1enjHO5jsW5YUUSMSllTfdYKsqlCCLRXZGJgKx19sLAy3ehjE9DY96RwdSclh0HXVfTpxA+nG0Eej1giCsrISxz8ZgTQ02A5MJSvaTT+Lva69dnE3d6cQ9lJTImoKpiMcDQ/f4cYxVfT02lqYmbOLGew2FQLL+5S/SYH/rW1Mvqu1yyWYlbW1QTlO5TlXF+YqLY8Gd04j7+0H+mUyyy3I8cnJmBpEYExN4Zjt24LvRGylHspaWgnTOVRdUn08SipOTuP7KSijr7e3Y7BKkN+f7BvWmw6JwmOjb34bC8pGPSGLI6wUWVVTEFvs+ehTEX2UljLHoz0Mh/FbTQCAaFS+eO2YzFKF/+zdEVu/bR/QP/5BahMiBA0Rf+AKUxY9/XNY3Syc6LxjEPfz0p5jf73kP6jmmu4ZcLtxPvPRlTcO1PvEEvrN1K2qwckMSFiYSua4Yi6rK6EMmSLNd4xzZvH8/niM3Zbr00viR3OEw8MjjwTrnyIPllFaWQJb/FSYXwU2HFAXrcJnUmlw0EQLGucuFfTsX9eteeAGO16uvRqqpUcJhRNmYTHDIxjPKAgE4VhUFEYjpdhteShkZQeS31Yr7SdQYJpFw5oXLBd3HmBKsKHC0+P3AicbGyPHSdeivup77juzcsVnTcI/shG5rS1/vGR6GntvcTHTddbnvHD8+jr2vrg6k9FndKO+xKOmHIraOIUfCEcmoKiYNrda82D/iiqLAcamqsaWTpqfhkCwtlU1PjKJpkpjasCF5V2XOjLDZUFYlUY33hcQYDahpkaRaItLd4QAOT01BR+O66fX1MksrW5meBknpdOLYa9dKTOFr4/rvVmti8s7YqZsjW81m3CO/eK5pmrS/OHDGKB4PbOjeXukQ2bIFtleucSJVURRZV5EjeDlDxWKRjkX+N4XrzNOVl1+yokhEk8l0HhGdJKL7hRDfPfuelYjmiaiciJqFEFNn37+RiB4momuI6DAR/R0RXUtEnURkJaITRPRVIcRPos7RSURfJKLLiGgVETnP/v6TQojXF7jElTPYKYgQUIRCIQAnh7p7vYisq6gAcEUDnKIg3VBRUGPDuHn95S+IdLnoInjKjSAfDMqumm1tAO9QKDKSZGYGKb9VVVCsFqPWz8wMQsorKuDNziRVYWQERv/AADbgm24CiWixYIN4+WUoiMkM9kTCjQ5mZzHGHCGaTnoOh/lzjQ1FkSnLXi/eX7dONrSJFpcLivrQED6/4AIQNMkiQr1eKK4WCxTqXD+7YBD3MDwMA0PXsVnV1eHf5maZXk0LbFAFLFpeIgScEsePE917r6w9Fgoh3cZigeFtVEx6e2XH4iuuAFYZ51wgAENWCBibxvWj61ibRDj2F76AqKN3vQuNXBYyLDSN6PvfR6pQZyfRZz4jMSwdgu3MGaKvfhX1bXbsABHZ2prab43XwtE3FRWRxJoQMDQee0zWkrzhhuRpS7ouFWCTCeuaa5ZWVUm8yDTFS1VBpuzfj3VcWopIr3374kd+qiqw0OmUjpv6+uWdYhYleY1FQpBgArGycvnX38uF9PVhn+nuho6QrfT3o7zL1q2xzee463gwCMIt3j4fCkG38vtRAiWd+sNLKYoCDOfSOFu3Zu4EDoehr3Ajlupq4JDTiXFwOPBs1q6N/a2mATNMJuiXucIKjhgfG8MxW1pw/kzJjL4+EMPt7ci4yTWmTU1h/6yuxtwqKspvLKIovYhJGyYNjWnJXHeOScNU00bzQXQdmOHx4LkaHQoOB5qxmUwgEKODFhhvnE7o9InwTQgEhDz8ML73oQ/lLvKZAx2Y4OVmIqw3KQqu8Y038F3OkGJbMRfP0ePBWjaSh/X1MkqRo1W5Q7KuY45xFB6RjLLkuUcUGd2aDBdCIeBkWZl0ktjtwM/hYTy/jg7otanajkspTJoaicVgUH5utUYSi3HWX75jUV7IiiIRiYhMJtMkET0jhLjj7N97iWg/EelEdKcQ4qGz7/9/RPQxIqolom4i+jUR/YqI+oiolIhuIaJ9RHSfEOLBs78pJky6SiL6DhGNElETEb2FiH4khPjFApe3sgZ7AZmaApnW0iI9VaEQokIsFngv4ymATz4JoLv11sguYK+/TvSHP8Bgv+WWyN+qKhRCIWAkz87K5iCsNM/Pw9gtKSG6/vrcp0txd2CfDxtrpjX8RkfhJSoqArifPCnTwevqQG44HKkZ7NHi8WAjURSZ7u10yr/T8UIFAvCejY/Lbsr19biulpbE6VJHjoDcKCrCHNiyJb2oqrExjHVLy+KlWykKzjM0hOcRCMDA4MjZPXsW9nItZyxyOt9cWMSk+5VXIt2fCEpcby/m7caNkWT30BA6MZeVIfqvoyO2UUp/P/7f1RVb29Pjwb9+P9EXv4g59OEPw3GxkMzMINX5xAl8/777MO/NZhB4qZReUFWQpr/6Fe7r3nthRKYbFcE1doTAuY0Nsc6cwZiOjwNHrr02adfOCNE0merNzojqaokZ7IFOR5l3OhENeegQcKaxkejii+GgiEdMMTnqdOJvjlZfxELfORVuQHXppfmNRa+/TkJVZdOhlS6zs7JJQbImA6mKy4UaeDU1wAvj/OWuqG43cCpeWr6iwMHh8cA5m0qJhXMhHg+cIaEQ8DhZdFOqEgoB6zkah+uY1dbKbuzNzYnHzemUdVuziTjjyKHxcRy3rg66by70m74+ZHu0t6POXK4j4zir6GyUe15jkcdDwkgaGvchY4ThQp1t8116ezEfzzsvMjLQ7QaBGA5Dp4i2cVQV9p3HA6dsoqhCRUEq9MGD0MfuumtxxjNeqvPYGNaDywVbcds22Im5siX8fmAK1+Bvb48fTKJpskkME4qcCs/RiNywhctHpZsOz03hZmdBHDKhuXkzXsu5XEU84XJaxjRoJoqNHc1DIaLOzvzGonyRlUgi/hcR7RNCrDn796eI6H4iGiGio0KID599/yARKUKIvSaTqYSIVCGEZjiOiYieIqJWIcSms+/1ENFrRHSbEOKXGVzeyhrsJOJygVCrr5cbCXuoQiEAdzwS7/RpeNR37YrsWDo0hMi8xkai9743Ekh1XSqCTU04N9f3Y6PE7QaBaDKBQMx1vQdVBTkXCuEa002v4WMcOwZF0maTxq8QRH/+M9IHxsexId17L9KW0mluMjGBTYRTrHkDMdZEZEU6mXBx4P5+6TFfvz62I61RQiGQwNz1bPNm1HfMJG1NVXHeYBDPO9X07UxFVXGvp07hHlwuov/7f1PaoJYtFr2ZSMThYUT0bdyINF4ucN3fDxJr/frIdBy7XUYg7twpu3Gy+Hz4rdkMwzx6DjMxZreDDFQUdGK+4IKFr/XAAaJ/+Rf85mMfg4LNeJYqgXj6NNHXvgbHwyWXwMOf7hoRApjJ9Rzr66WSPzKCtOXBQbx/9dXA81SxyHjsoiIY6PFwIBUikVOWX3oJpCsRsGXPntgOq8bjOp0gEHVd1j3Kh1pV3EjixRdlA6rHH89vLDp0iERFRW7ryy1X8fthZJeXx9SSy0jCYeg1wSCaaEQbhSMjiEZZuza+U1PTUPN1fh51iDNNJVxssduBN1yzKxfp30SyNvSJE3gWW7dKrBQCzp9gMDKTxiihEPCZnSCZnH96GvoMk4etrZgfqppax+ZU5ORJ6C5dXdjTshWfDxjKr/FxvL7+9fzGolOnSHAaLBMSnJb8ZpGREeyp69bF6j0PPghi6r3vjW24oSiYYz4fAgOMJQKM4vGgtEt/P4JBrrtu8VO+uTzACy8AS2pqoBtt2pQ7x1UoJMsicbZUa2tq6zcUwri43SD9dF1GRVZVZRbw4nIB1w4fhq7V0YG09M7O/HGUpiLBIMbNGPTh8xF96lP5jUX5IivRl/IsEb3TZDJtFEKcJoSRPktEwwS2mEwmUxUR7SCirxARCSH+u1fQ2XDWSiIyEybF/2symaqFEG4icp392nUmk+kxIYR3ie4pryQUApCWl0vFVQh4twIBpPDEA0W3G2RZczMiSFgmJxFRU1GBLs3Rxp7djuPW1Mjudc3N0uj1+ZDCLAQ2rFwTiMEgFKhsouPcbkTocR0ergs4NIQog4EBbMy33Qbj94034AG+9NKFPfLz8yAQdR1GQmNj5KZtNsux83gSK8OKgusZGMB1lpWBPOBCxPE2Y1VFtMzRo/h/Vxc2smyeQVERlJvxcXhLw2GQibkUbvLAHq+SElz3nj04Z4qybLEoE5I7H8XtxvpZswZdlXmOcge688+P7fr+2GNQ4C6+GBhmTLP3ePCdujq8H21cBALAmVdfBRlos4FIjJcSZxRVJfrud4l+/nOskS98AXPa6QRRV1e3MOEQCKCD869/jef7xS+iI3K6omnAFosF2FJTA7yYmoKD59gxKLZ33okxSkchZaPbasWxKytxX4nuLRGRGA7LlOWJCTyn666DYZAoFZO7PjscsoB6Q8Pyj34LhZAy/tJLiNxwu3HNPT2RjrYFZNli0bZt+UHgZitM2LW1IeIvF3UfH3sMY/fOd8aWKZiYwGcXXRTbLIoIa+vFF/Gdm2+OzPpYLqIowJtAAPMknayFhSQcBs6tXg0s4NS/9napO7a3I+K6uDixU8LrlXWTUyU3hQBZMDiI9d3VBePeGPGo65gzuSASOzuh9732GkjTXbtS/20oBMycm8O/DoeMkCoqwrzr6UkrkmzZYtHatTntDpt3Mj0N3aipKZJADAaJ/vM/oY/cfXcsgcg1VwMB6FSJ9uCJCaJvfAP78P33w3GxmMJz9/hxmf102WWwQTmqjbsvZxoJqSggrsbHsa5bWjB2C+GUoshUZW4qUlODsfN4MAfNZtggXCuaOz0nEiFAph0/jmsym2VEaF0dnms+E4i6jnHjlPDpaeilXLrMYoEjKBGBHUeWLRbli6xUEpGI6HKTyTRARJcQ0ccJzPI/mEymRsKEsPB3z7LIHyMw0BspNpe+lojcQoghk8n0FSL6P0R0l8lkepmIHiOinwohRhf3tvJDNA0gZrFEdtLl2hDr18dPDdF1KMRCoL4fG40zM2gKQER0++2x5NPUlDRKuWZXY6P8fTCIqJlwGEZmrrtser3YGC0WKOGZGKQjI/AYFRcjdbK+HsTpo49iM6iqgseODXZdh2L98stEDz0E5XbfvthIg3AYBKvXCyO7pSWx4VJSgu/4/bJIL4vbDa/h6CieL3fk4xB9BnSzWW5wug7S+LXXsFG3t0NhyFXUoNkM5XV6GkqCoqTWtTCZaJokDoNBmf5QVSVT7UymtKI1Clh0DkXTQMopCjox85yenIQhtXp1JIHocKAWq9UKRVPXYVSw0uV2IzXMagWBGK3MhUKY67//PdGPfwyD94tfXJiwnZxEzcMTJ4je8Q6iv/kbzD2nE+dOhUB85RVEH46Po7nS/fdnRhQHAnAmEGFsysrw9+OPgxgtKQE+X3ppeljHHQgDASjr3NmU6yNyB8No4ahRbsbicCCa4MABHGvNGjhWtm9PHi3CHn5FwT21tCzv7r8+HyINDxwAWer3A7u3bcM+sHt32o6YZYtFbwYCkQjr2++PbVKQqRw5AjzauzeWQJyfh7Ovvj5+uRMhQEhPTGBfXo4EotMJ52MohOjDZN1d0xHGVm6g1NAALKiuhp46NATcLy7Gq7VVRhjFq+9WWQkSgCOrF8IVhwPn8Xigr0Y7sljM5oU72qcjF10kyR7uthstmoa5YyQNfT58ZjJBf25txfVy078MCLdli0XLeU9YbHG7obPX1KAZCgvXqJ+aguMw2iEaDGJOhcPJmxydPEn0ne9gTf3t38Z3bORKPB7M36kpkIfhMHS23bsjM7A4nVhRgAVM1KVaksVul3ZRU5MkoRMJn8/YwdtqxToqKZG6Znk58IRJQ+Pv2M7iz0wmfH76NPYYlwu/v/BC4CZHNU9NYUyig0iWqwiB62b7kv+dn4fdx82tuAfCmjVwBqUZNbxssShfZCWmM5uIaJqIniCibxDRy0TURUQThKKW7yZMiv+HiOqEEF6TyfR/iOifieinRPQ4Ec0QkUpE1xPRJ4ioQwgxZDjHJiK6mYiuJjDXGhHdIoR4fIHLW1mDHUfGxqB0tLfLDXl8HIoZF4mOJy+9BIPpuusAfEQAij//Gce86Sb5Psv8PD7TNBA9tbWRylg4TPSnPwFUr70299Fq8/MwTEtLU+9sbBRVRUThxAQU2Z4eGTXJBvuVV8JgjweMqgpD4uBBbDCbNyMypbpabqBEANZU6hwJEdl1cGoK5OHsrAzPT0QC86ZYUgKF+/BhbORNTVBeFzNNyumEgl9Sgs0kneegqjDsfD5ZuLi4GBvvAjW6UgmVL2DROZSHHwbRfscdIL2JsGb7+2XtThaXCx0CVRVROV4vDEbGDKcTvysrQ6Rw9Bzj+lj//u9ETz+Ndft3f7ewQvP880Rf+hLW3ic/iaYIwSCup7gYmJbMeHS5oJj/+c9YY/ffj2jZdLGIo/RYca2vx3p46imQdiYTHBVXXpl+pDXXTtV14HRFRaQSG91oJVp0HQryCy/AEDGZYHjv25c4OojF5wNGB4NYyw0NuY9Ez5U4nSCDDxyAkygUwrVu24amOBdckDClvYBFy1xGRmDMdnUtHJWcitjtcK52dqI8i1F8PugVpaURXXMj5NVXQWRt2wbjejkJlyjo68M99PTkrlM0O0lUFWsrGl+npjC29fXQ6Ri/x8ehG61bFz/aUAjpzEzU1dXtBrHLdck6OlIz6Lljc1FR9sa/EGig09cHXbGtLTLC0OmUjUPKyyVZyNHwueiIWsCi5SeBABz+RUXYZ9ixo2kgEPv7UQqG9Sjj715/HXM0ugGLUZ5/HiVlVq+Gk3Qx6q4aCfBAAGvW4cAaP//8xE4IIWRUIHd1tlqhL8TTvYSAzTY8LGvJd3TEb1jFHaOZAGSHgNUKDEh0DiLZoZizvPg6uQM1l4XhJl26DltvyxZcT/RxAwHYchUVy7NxFteI5EhDRZGd6vm5soObsw05myQBLuU7FuWFrDgSkYjIZDL9moh2EybFXwsh2s++/yIRHSGi7URkFkJcfPb9I0TkEkJcHnWcLxPRJylqUkR9p+3sMU8LIRZKLlp5g22Q2Vm8jHXqHA7UkrPZEiurdjvSlc87D1E0RCCFDh+GZ+Xii2EwGoXrkvl8AJHGxsgNTFURgTg7S3TVVbkpws3CdWxcLiiUzc3pK3cuFwjAQACkRGMjiIAXX0zfYA8GYRQcPozNqrkZY93UBEU4nUgPvx/KhN0OYC4vh6GyUIdALuDO9TdsNtTeSbcTbKbi8+GaOUJxIW8gRxxyWg53+qqoSHm8UnriBSw6N3LkCDBl3z5EzhFhjvT2ggjctEkqWT4fCESfD92TnU7MBS4pwJEj5eVYq9FGuaZBYf2nfwJe3X03agYlwwRFIfr2t1F7cdMmos9/HhjFhBsX9090DK6T+t3vgqy/8UZE5GXSKVRVZYpaZSXWznPPwdgMh5H6du216Uc2ahpwLhTC/dTUJDZC2StvHNtQCLi2fz+M+8pK7AV79y4cUR4IgDz0+7GeGxpyR0TkUqam4AQ6eBBEKUd6b9kCY27DBlx3eXnS+VTAomUs8/PAo4YGGLPZiteLpkmlpVjzxn2ZI82IQL7F27Nffx1zbfPmWFLgXEs4DAKd9cgtW3LTcEHX8Rx8PlnjNZ6DkNMBHQ5gaUODjJju7wdWbtgQ/5p0PdIJy9/x+0EecqOFdeviN1pIJrkgEgMB3NfMDBpiDQxgDjQ3yzGpr5fEYYbRsgUsyjPhYARFQZS0sTPwr36FbKibb45NPfb5gCVCgEBMRK7/+tcIjNi6legDH8h9tGcohHU3P49r5nrUXF5q69bUsyZUVZJ0RJERf0Qy3TsYhA7S0RGrV3BXYWM3b2OdTc5oSkU8HjyX6mqJJ0KANDx6VJKHHR1yLSeLpnS5oF/W15/bpirRacmKIkvX8HXPz0vykInXpibcY4p6br5jUV7ISkxnJkLY6S1E9D6S4ar8/m1E1EZEXzW8r1HUhDOZTA1EdF/Ue9VE5BdCqPyeEGLUZDLNENEit3dY3uLzQUmqqZEEotcLZbWyMjI83iihEKIFa2oQhUMEg/zMGZBS550XWR+Rf9PfD3DhMGbjxqRpRM88A2XpsstySyDqOq7P7wcQp1F74b9laAjEqtWKTfvoUdnxbNcuEKnppF2XlsKrvHo1oqCOH4enbO9eAG4qwpFWY2NQNsvKsPl2di684U1Pw9gfH8cGuWcPNrSlDJmvqADROTaGqI/VqyOVmlBIEofczaukBM+wvHxRO+0VsGiJZWICKcUdHdIpEQ4DT4qLgUXGcgc/+xmUtTvuwN8mE+aSyQRMGxqSGBZNIHKU3Gc/C0X2U59CF+RkMj6O9OVTp1DL7MMfxnX5/biOhQhErit0+DDW59/9nSSb0l1zxvTlmhoYBU8+Cew+/3wQsJlEcPt8uBc+bjwvvVHMZoylrgPX9+9HVF4wCIy/806QIhZL8nsMhfDMOFWxqSn7zqm5FCYpDh5ExCHX5mxpwVzt7sZ+VlGBOZfjeo0FLFpiCYVAipWVYU/MVjQNZV9UFRGIRpJQ0xCpq2lYu/EIxJMngVddXcuPQJyfhy6kKBirXKVY+3yyw3xNTXKcNJmgOzDpyOUkOMuhrw/rN16KuNmM7zKhUVkJXWRyEp91dKTeaCFaLBY8c01LTVdhxxC/5uaA9XyPPD/8fmDOli1LjpEFLFoGIgQcn8FgZLNLIZDJcfw49qVoAtHrha5gMsHZFY+QCoVg1xw5gtrMd9yRfUq+8bo5ZdnrxXVUVuLv8XEZhZ2q/cNSVIRXaWlkqrPTCb0rHIZdsXVrZDQfd4HmF2dWcEflVFOko6WyUmaIlJbKlGUuhXDppbCRLRZJfkYToFarHPeaGpkSzJ8vtnBasjElmZ3GRHK82QnDLyFkxHZzM8Z7kTCqgEVZyEomEYmIziOifzG8/xcCU2z8DhHR74joCyaT6WdE9AwRrSGiDxJachsrzV1JRN8xmUy/IqLTRKQQ0Y1nz/OZ3N5C/oiiSAKJDc5wGEZycTEUwkSbx5NPygggqxX1Jex2KGtNTSABjUqTqkIRnp0FuLS1RQKhriOKxm4HiRZP2cvmPu12/NvcnH5ki6IgzWhyEoDo9yMayefDBv62t2WW9uv14rrCYRyjtBQG6oED2Oh3745f+JoJUSZkLRaQJ52d+IwL/iaKzJufR92ukREoH3v3InqLPUxL3dGupATXb7dD0eeurz6fTFPgLorl5UtWYLiARUsogQBIwbIy1FA1m/Hsz5zBnDamIisKInpmZ4E/RUVYkx0dmPPT05jb1dUwuqMxTAissc9/Ht//13/FOk4mzzyDiEWTCQ1XLr0U7/t8WMclJbKRSbRoGlIYf/xjfP7e98LxwinC6YgxfbmoCB7tp54CDnR1Ed1wQ2Y1yBQFx1UUudZSXWe9vUh76u3FNfX0IJK0vV2OB9dPJIocI0XBc+RO1g0NqdWSXArhTuAHDsg6dCYTiN9bb4URUFeHcaqsxGuRsKmARUsouo79XtOQjp4LR9X+/dAf3va2SCNWCGCc1wt9Kx4e9PWB0Fy7NrVO8UslQiDSm8tF7NiRm+7LTKRxKYP6+tSyDIqKgB+6Lh0htbXAs9WroTPNzsZ3IBcVYf2+8Qac2NXVsoxPNrU/TSYcW1XxMs4lY8MoTk12uyVOVlbifjjCkEsiXHUV6m4fOAD8yaWzPQUpYNEykDNnQJBt2iQDF4RA5ODhw7C/opt3ud0g+y0W4Ei8yEKnk+hb34L+dPvtyKrKBQHEqa1zc7B3iothJ6oqyLVAADbf5s3Z4S0TgOEwxoijiNeuxTrh6ORgEC8m7iwWjAcTh9kK1zt85RXoaMXFwKDdu3EtRv2muBi4b4ym9PnwKiqShKLNJuuCNzfnXkeKrmPIQRtEGB8uF2W14rOpKVwPO7MrKmCDNjcn1oVzLAUsykJWajqzmYhmCWxvlxCi/+z7lUQ0T2CR68920CGTyVRERJ8monuIqJmIBono34jIS0Q/pLPhqSaTqYOIPkXIa28h5MGfIaJ/J6IfiIUHc8UNNodWKwrAu7gYQH/sGMD1/PMTR6EcOwbDdd8+pL4OD8NwHx2FMX/FFZGKjRDYvCYnQVZ1dEQaW0IgHfjMGUT0dXfn7j6DQZBTRADxhSJrosXplN2XuRbi/DwM9htvzMzrrmkwSOfnAcitrZHGw/Q0jI6hISjle/ZgTBQFSvvgIO6LQduo6LJXiAjKshHIvV7cC3ct5K6JvGnz5pFNx7NMRAgoET6fLFxeXQ0SoqICzyyHG2aqofIFLFoiEQIdBPv60EilvV2m2bvdMlqPCGvnoYcwT269FTjT34+53toKjBkbg8HV2Rl/3vzhDyAOW1qIvvKV5EZYOEz0zW+CBOzuJvrc52SRfiYQS0sTRyD39RF99av4d9cuone/Wxa2TzftTFWlEj4+DqfL5CTu+4YbME7pKm5C4B68XtntPZXrCgZBrL3wApRaTlm+5JLEY2FsxMI4xQpoXR2U5HPdgVDT4EQ7cAAGAHe73roVJAk35hECOFlVBeMjQ4W5gEXLUHp7gSHnn5+bmsCnTsHpun17bHmXoSHoJx0dsZ1TiaBbHTwIjNqzZ/lE5obD0IW4S3K2xj+L2w1ijQiYkEkdVKcTL7NZlmMoK8NYejzQQaMzYMbGpP5aWgqnVbrRUMmEic35eUkcOhyRTRqMdQwTpW2zhEKIOPN4ENmag7rhBSzKExkdhf7T3h4ZbPGXv8DZefHFqFFvxAqnE+vVaoWTL94ePzoKXcfvR/ryQo7VVCQYBEY4nVgDFRWY56WliJa027HGe3pyU+/P5wOmzs3hXtvbgeFcboajDbm2Ib9y1SRM14EznFXGXZ97etIrEcV1BsPLCJwpAAAgAElEQVRh2QGadSNuwBLdkDPd6zSShVyrkQjzxpgOXlyMc3s80DcnJzGWRNBjucZhLhxIZyXfsSgvZEWSiMtYVtxgT0wAjFpbAeJCQNl1OqEQJqqjxZ1Q16wh+qu/AmDOzmLjGR3FxmPcfIRAVN3EBIxcrldmlIMH4Y264ILcetoZ9IqKpBcqHRkcRPQkExM8XjfcACUzE3G5QABoGogPY0fqaBkdRYTPwICMomxuhsLY2Yl/4xkV4TCeU1kZFGjuwsbNDbq78YziKancaKWsbHGjgXQdG7vfj3+5i2tZmUxfrqzEPMsxsbBMzLCMZcVh0dNPo07gzTfDU0sET/j0NAhyVpZ0HXV6envx3e5uYFZREdbj5CTWVn09xW3cIQTR976HQuHbt6MxSjLFZ2yM6NOfBul+++1EH/ygVDa9Xiis3B00WkIhnOdXv8Ia/J//E6SEyQRsTVdp9fthgI6OopnV2Bjw421vg4KaCbkQCgGPNA1KaVXVwmt+agoOjldfBc6sWwdiZNs2XAN3Rk8kmibJQ05TXLXq3Hb6VRQ4uQ4exH15PLieCy7AfOzultELJpMcqxxELBSwaJnJ5CQMwPb2xKVc0pGZGdRPbW6GvmRcX5OTcICsXh3ZLIrFbsdab2zEGlsO0blE0C2OHoVxu3lzbiLhWGcJh4Gp9fXZ7ftTUzKSkQgYbbXCmWM2wwlMJBsthMPAoY4OrHWvF2s802ZOihKZkuxwAMN1Hfe1alVkHcNMzuP3g0gMBtHAMEsSpoBFeSCzs7CVGhoiyyy8/DLKJWzfTvT2t0fqAw4HAj+42VE8vf/oUehG5eVooJJNSQJuHDI3Bx3JZJJOwtJS6C7Hj8s6pfGyRdKVYBDreGoK66utDfYRN17hZh/GBinchCXTlOXo8586hWfj82E9b9kCp6OqymZrmegMTPgx6efzYXxttqTNSf5buLGLMcrQmJbMRCETh8Yaji6XJA6523tdnbRF0w3KSVHyHYvyQlZqOnNBlkCcToDDqlVSeRkagmHX2ZmYQFRVbFTFxSjYPziIDaq0FIb2mjWRBch1HZvXxAQ2ClbcjPLaawDe7u7cEogOBzbcsrL0iShFAen2+uvYGFQVivzdd0tjOV3hlGqPB9fU0ZE84oc7n65Zg+d1+jRAvKQE0Z/JvORWK57r/DyIwzNn5Ia9fXvyFMqSEpB6oRCuL5eRD5oWSRwy4cDRhsbz8eY1PAyF4FySDAVZPDl9GiTi9u2I1COCIjg9LTu4EWGuPPIICMS3vhXrcGAAc6qrC+Th5CQwjesiGiUcBmn49NP4/Sc/mVz5euopon/+Z8y7r3wlMjXI48EcZjIpWo4cIfr614F7111HdNdd0nhM0KU3oQiB9T8wgMjDkREc453vRPf0TAxtjorx+zEGNlty5VbXgdH79wNLLBZE5e3bF+td1zTpEIh3H7OzssNqY2POawemLIEAntPBg0j/CgaByzt3Yh5u2wbM9noxTvzsKirOfbRkQRZHvF7sl3V18XWVdCUUgr5UWgocMK4JXtN1ddAFomVqCsRAfT2wZzkQiELgmvv7sQ527sy+Yzobqm63JNdyYZg2NAB/VRXr2u0GVre24h6OHpUpjbW1iDQ2OoM0TdZnXaihhK7jeRpJQ06nJpJN/OrrZW3H4uLsn2l5OaIQH34Y6c033ZReTe6C5Jd4PLBHqqsjm10eOQKc2bwZzlWj7sOkY3k5CMRoPVoI6EQPPQQ9+2/+Jv1GbCyqKlOWFQXn4nlvsWAfffllOFbq6xM3dUlHFAU60fg47rupCWuf06eJoNtUVQGHee9mcjEQAAYUF0MXSXdvn50FIdrfj3O2tKA8lLGUi9WKz3w+HD/dcxhrNHI0p65jHDUNfzMpWlwcWccwXlqyMcKwuDhyvgiB58fEITtOV62SgSvnSmcrSG6lEIm4tLJiBjsQAOiWl0tv08QECME1a5LXInz2WWxYN98M8HI6AdiHDwPojAXDFQUbnt0O8IkXuXf8OFLGNmyAopwLwkoIKOBuNzbbRNF6iWR+HqlHL7wA0G9rA+mQqcEuBBTLyUn83dQEoz3RNQUCeBZDQ9J7tX49lN/TpxGZ4PGAKLn00vjpVpySt38/Nu6tW2EYp6pgaho2D4sl405//y2qKiMLg0G8x92jmThMJH6/TEVvbc1Zd7h893KtGCxyOFBbtLZWRvk5nYgWqavDvGd5/HFgxWWXYd7PzGButLZinkxPYy3EqwfodKJxyhtvEN17b/IOzKEQCMA//AEOkc99LnKNud1Yo/EIRI8H3vwnngCWfvzjuAefb+GmK/FEVTEWTz6JtV9djXpY+/ZlHgXHaT26Luv4Jbomvx9pvS++iGdVUwMFeffuxOSB0dvPRrLLBWVbUWQaTmmpTG1eqhRNjweRhgcPykYQNTXA9l27gJNc+N3ni0xZLnjc48qKwSJVxbzQdcyFbKNM2ekxMoKyC0ann9+P+VdSAkM6Wq+Ym4OuVVmJxgZLXaM4noRCwE+HA9i2eXP2ZHowiOOxU6G2NrdkaTgMvYtTF7nr6smTIB06OzH+8SL4WG9TFHxufAZeb2SEIXeXJcJ5jBGG8eo55qJjs1GcThCJRUXQzTPs3lrAomUswSBsL4sFDleeUydOEP3Xf2Eu33lnpGN0ehpzvaoK8zxebfWf/xxp0Nu3E913X2YEUSAgU5aFwFq22XBezk4YGIAD2GQCdsRz9KYjXIJgbAxjU1cHPY3v0ZiunAxTNC0yUrGoCGOQLGhB12GfHTsGW5MzYbq7ZXPSeL/hus+ZNNKLFrZzvV6sd2PqM5ODHGVpTE2ONxa6Dv1schLHDIcxzxoasG81Ni55EEe+Y1FeSIFEXFpZEYOtaSCoTCaQhRaLjFarr4d3KxG4DQ6ic+q2bTDcXS4Y7EePAoDe+lapjAWD8MyMj+M7GzfGHvfMGRB169aBGMhV8d7xcWxqnC6SqggBMvShhxD91t4OUnTv3syVeK7H6PdjQ12zJvGx5ubkmAkB8F6/HkBuHBtVRYTkgQM4/qZNIGDr6mQjgMOHsbk0NsoOWTZbetfOoe+8+aT7WyYOQyG8x0V52WuWqoTDUBQUBWlf6TbFiSP5vkGtCCxSFKLvfhf485GPyIZFp06BLN60SSo8zz6LtP6LLya6+mqsb+4eb7HIQtPxas4MD6ML8swM0f/+30j/TYQ1w8NIXx4YQPTg+98fqXi7XLIWqZFEEwLX+J3vgKC77TZ0NAyFZIRbuvN2agqG4eHDWDdXXIEi55kS6ZqG6w+FsBZrahKv64kJjPfhw3hOnZ0gbrduTc3I5yhqvx/PhqOaGxoiDVw2vBeTSJybA/l84AD2OV3HdezahRfPM+6wHQrhWvgZLzKBU8CiZSBcs3luDt1McxHNxV28L788MjuDsxyEiF9SxOmEUV9SgjWfrRMvFzI3JxvNbN4cv3ZjOsIdlLlxQH394t2n1ytrRHPpnZoa2dRq48bEOKjr0N84osnlkjVpibD3GGsY2mypOxtyTSTOzhL98Y/YH266KaN9ooBFy1RUFRlb4TCytXiO9fXJ0lJ33x25V01OQpeqqQH+RBOIgQAcnseOwXa79db05iFHEM/NYe/kDuc2WySmuVzAO5cLARTbtmW31o1NJX0+rOOWFqzlkhL5StcZIYTs6syZFNGpzoEAdIiTJ3HP1dVIWd64MTU9QVGgY3CmWLrCackcZej3y/RtY31ExhVjinJ0yraqgmSenIRuzE2fmppkBtA5zLjIdyzKCymQiEsreT/YQqCeViAALxB3v+VaGVu3JgYNnw/1vbgDXyAAcmp0FNGEl1wia/p4PFC8xsdB+mzcGHvcoSEY3WvWwDDOBViFwzivqqZf5HVujugHP4DSX1VFdMstRNdck7nBLgQAemYGm9GaNfFTBNib1t+PTZa7iHV2LuxNDoUQVXPoEI7DhbWDQWzkO3dicw0GYZhw1FE6EgphPI1pAIkkHJbEISvZJSUy4jAbT5amSTJ21ar43RXTkHzfoFYEFv3mNyCp7r4bRE44LGt2bt4s58vLLyO1ePt21CLVdRCIqgrFyO3G+opn2L76KtEDD2ANfvrTWBOJlMs//YnoX/4Fc/Yzn5G1Gfl6mYCrrIxtgvTNb4I02LiR6BOfgGPE6YSil24UWyCACKZnn8V5L7sMqZDZkOc+n0yvS9QRmktPcA3WoiIQKvv2pU8aBAJQTrlJQUND4utfDCJxYgLP4+BBOKuIgIW7d+O1bp1s7uL1Ymw0TXZoraxcsvTRAhYtAxkcxJzftCm94veJZHgYkcznnQc9goXXmM8Hwz56P/Z40BjBYgGBuEjRrykLN7caHMS1btuWffoy13bVNGDCYnfx9Pmwz9jtcKq2tMh04qkpWVrGZJLZNRxhODeH/YXTmtesge7BUYbZXLsQ2MO4e3MuZHISaa01NWj6l6YDpIBFy1CEAGY4ncAMtiNGRoh+/GPMxfe9L5KYs9ux79XXg+SKF+n8zW9in7zrLjgIUxXunD43J3Uwmw0EovE8mgY9rb8f39m6NTvng67D3uRO9tXVsJVWrZLEYa5whFOdeX3OzwMHh4dxHW1tGNfW1vTPGQjITJaFyNToOobcYIVIkoTsHK6ujrSL+HfhsNSxiGS6ucOB961WWd/QZlseZTMo/7EoL6RAIi6t5P1gz8zITno1NQCXo0fx2bZtiRUOIdCZdHQUaV9WK0gurxc1ujZulLXMuA7h9DQ2sK6u2OPa7Wii0NAABTsXCpTfjw2RCEpiqp6uYBDK/u9+h/G4+mqkBGRrsNvt2IRqazHe0ffo98uU5XAY5+vsRPRjuoTqwABSEo4dg0J83XWxnmiXCxtXdFpOKsK1C+N1IA2FcL/cuZoIY8/EYS47PAsBJZk3zNWrF7cj6jKWvMeigwcR1XzllUjP1XV4zUMhGN48d48cQXRFdzfRO96B5z06CowxmTDnWlvj1wd95BF0RW5pIfrHf8T6ijcfg0F0an70UXj5H3gg1qvrdGKdGglBXUek4A9/iP+/970oaM7f13XgbKrpQaoKPH3kEWDrzp1wZmRDmKuqJDNLSnA90fji9cJ58sILWFt1dTJlOV0SIxTCPuP1Yqzr6nDOhXCAldxMFVghZBfbAwcwR4gQyc0Rh8bmD+GwrAkpBDCLuywvsRSw6BzL3ByifJqbYRhmKy4XshmqqlC31Dj3e3uBXeedF5sZ4PeDQNQ0EIg57HSZkQSD0A+dTqyd887LztnL9dICAeggmegi6UgwCP1qclKWZWlokI5VjlAcG8MzYtxms6qsTJKFVVWyFlkuOsiyLAaRODqKchoNDcikSeO4BSxahnLmDGwbY7fwiQnoHZWVSEE2OgVHR0HcrVoFvSl6Tx0cJPrWt6ATfOhDkc1Zkonfj/XicmHeVlXJlOVomZ0Fdvh8sGm6uzMLItB16BTj4yDxOKNrwwaMRS4aoiQSTcPYv/46MKS4GE6mnp6sgxjI65V2H69P7sZsrGPIWGQ2x3ZLNj5X7mhfWxv7PIJBmfY9NYUxLS0FDra2IvhkGdZ4zncsygspkIhLK3k92BwdWFsL8NU0RBAGAvAQJYt6O3QI6TWdnfDAcCetRx/F8a65Bn9PT+M88/MwPjs6Yo3QqSkoODU1ILtyoUS63ThucTGAMZXNSlURcfOrX2FD3rwZqYvxCpynKpqGzcbhkNcSDeizs9jgmfDkroxG0iJVcTgQaTU2hnHu6sI49PaCMNi1C9FbrCDPzuJ36XqbjF1Jua4QRxxqmnyficPF3pDm5kBUlJVhE8zgfPm+QeU1Fo2OEn3/+yB47r4b7/X3w4DbsEGmEp44gWjF9euRHmyxyGYE3BW5vT22JqiuI036v/4LUdP/639hfcXDmsFBRCgODxPdcw88+sb5ZCQQq6slyTQ0RPS1ryFycudOFCNvbsb3nM70OjDrOtbxww8DQ7u6QB4a60GmK0JAUfV6ZQ2eaIJsbAw1U48ckU2X9u2Lb3gsJIqCNel247ccmcDRfsb6iIkkXSJRCEQ6MHE4PS2jWHfvhsPLqOwLgf0uOmW5quqcNm0qYNE5lEAA86e0FOs4271LVaFTuN1E73pXZFr08DDW3Lp1sd2Mg0EQiKEQ0p8zbWyQK5mZgVNS14EHq1dndzyPB7hIFN/QzaWEw4jSstuxxltbobdyLURu4DI+LqOQzWaQpK2tMjU5Gi8DAdxDeXlum5foOvQoszl3utPgIBz1LS1ogJjicQtYtMxkbAz6TlubtE1mZ4kefBB6/X33Rc7FoSG8GhuxD0YTbIcOIeOqpoboox9deF1zBsbsLOZ/opRlFkWBXTk6ir21pyf9MkpcozAYxHlHRmTq8MaN2ZdSWEj8fpmyHAgAr7q7EfWo6zLVmTs7Z0Jiaposi1BaKpvREeF40d2SU1m//IwaG7EPcWMUxt3KSuioq1YB28Jh2aG5qEimPC8TQjHfsSgvpEAiLq3k7WCHw9hYSkpk04HeXpBQmzcnLgRLBMPspz8FuFx8MQzc8nKk/oVC8HSWlMguTqEQNp7W1lhFa24OvysvR12yXNTAmZ3FfZSXY3NJxVB95RVEN/X3Q1m88UZEQ2XjCXa7oZQqCkC6qUlei6ZhIxwYwPesVhgS8UjWVMTjQXoOpwn09OA58vXPzIAc4BSkiy8GUcwbV2lpekYKExIOB+YSd/Ni0rCsbOlD4D0ejHdRERSsQtpOfojPBy+4xYI6iGVlUDinpiIJwb4+kICtragtWFyMuXfiBLDGZsP6ifYIB4NEX/wioupuuAHRgZWVsVgjBDDgq1+FsvuZz4BEMAp33OTmG6WluIZf/AKRRuXlRPffj2hKk0nW1CsqSq0DsxBQuP/4R+BDQwNwMVsyIxyG4s9dSaurI7Ho6FHgw9AQ1s3OnSAPuRxCOqKqsqA6kTTAo4nYXBGJ7Pw6cAA47nTiXNu2wWmyc2fsvqNpklDllGVO6V4GqTsFLDpHwuR9IIC5k4so1KeegvF5002RDeqmpxHV0tQU2/U5HEbpAo+H6C1vyT7KJRsRAtc5NIQ10tOTXUq1okBv4Jqo9fW5zU4wiqqCdBkdxZiWlwP7PR5cA5dZcbtlreiyMuCHy4X7jVd6xygej0ylzLB5SVxZDCKxtxeR7evWQb9NAesKWLSMZG4Oex1HFBJhv/vBDzBf7r03kqDr78fcb26OrW0vBNLcf/tbOCc/8pHkRD6vW256VFIiHYOJ5tH4OBwP4TAwbsOG1OcyN3IMBmWtP7sd+iI3lmxuXtyyB1NTuP6hIYxvezvspmiHjzHVmUiSiYnulaONjVGGqiq7v/PYGonDTMTpxPVPTwNjLRboQpyqHK8MBUc/ckMWItm92WpdPKxOQfIdi/JCCiTi0kpeDjZ3kdI0KE1FRfh7fBx/J/NEKQrRj34Exezaa1GPo6oKisnoKFJ/6+pg1KsqNhefDwpadGSdy4VNrKgIhnK2Chintno8AMrGxuQbDNcVefRRRASYTKj3dc01skN1JqIoGEu3G0qysYOwzwficHhYEhHcZTkTRTEQQNoVdzjbsgXPJFG6JEcajY/LFMU1a6QSnMw40HWcz+eT6czc9auuTnZdO5cSCOAeibDRp2Hs5PsGlbdY9MMfgjD74AcxF6en8XdTk1yHw8NIz29oQL2ekhLMv95epDw3NUFJjk4rm5sj+vu/BwF5//1Y21yT0yh+P2ofPvEEMOCBB2KPxYX/NU2mJB87BtJxbAxG2Qc/KAkrTo3llOGF1kZ/P9KWh4aAhZddll739HgiBHDI75cKJGODx4Ou7i+9hO/YbCAOL7ooM/JE16WRoesgTVetSqx0cqMVs3nhsYkmEkMhEJ8HDiCSwufDfW3fjojD7dvjr/1llLKcTApYdI7kxAlkBOQiPY0I+PDMM1jHxnqqLhfIgJoakAHRxe2few5YkymRnysJBLDOXC5gsbGxVbrCWOR2437r6nJLuhlF07A3HDuGcWQHJzsWKyoiOyWbzcAFTlP2+6FLTkxAN1u7Nvn55udlN9hcNoPhaCSLJXfOjWPHgPkbN4KgXgB7C1i0TMTrha7P0XxmM977wQ8wX++9V2IF1y2126EHd3XFYsxPfgLH6q5dcKwmIqp8PlkHVAjYCTZb8jqogQCaLk1NQQ/o6UmtHBSTccGgJLC42YfTibXV1oZ7Wixnn6rCRjt2DPdttQL3tmxZOFqaU63DYYyVxSIbukTXMmSxWCIjDIXAmHMmVzrCWTIccciZYUTQrbu70zumrktCka+ZIy4zaa6ZpeQ7FuWFnDuOuCB5IxMTAIX2dhh4U1MglZqbFw5lf/xxKGdXXikLap88CaN/xw5sFJwyUlmJCLja2lgC0evFsUwmkJHZKpOqinsIBnGuZJGURNhg//hHkBMWC7xLW7bgHrJJq3E4AN66LsPETSZsgv39+MxkAqCvX59+WD9LOIxN7tgxbBKbNkV2aEskra1Et9+OTfL550FaNDWBeDSZYj1NmibTlINBuTFyI4mSEmyamobPzjWJWFYGLztHHzQ35zbNqCC5lSefxFy89VasCZcLWFJTI5sZTEwgyq+2FhGITILZ7TDE6+oQdRsdSdvXBwLR5yP6/OexvouKYtdIXx/Sl+12lC+4++5YBdVIINbWyi7Sf/wjnBVf+pKMWjQ2XCkvXxhP7HYcp7cX8/fKK4FDXBw8UwkGofhrmkzRNZkwvs8/j7o+jB233YbUvUzWrxCyMLem4TyJUsWNYjbLVKCFHChsMB0+jGjD117D+FZUYNx3705cw5c7Qns8wE2zWTZKOYcpywVZZmK3A2viRTNnIpOTiCZcu1bWhyaCgW3sNm9cc7pO9OKL0CP27Dm3BOL0NPQLIqyteDVmU5VQCPekKFizyaKXMhG/X9be7u9H5GQggHMx6cCdkuvr4+OqpuEYVitwu7kZxx0dBaYlq3tYWyujrzmCKBdisQC/uERMLvSrrVuBg4cO4V737Mn+mAVZXAmFsBaLi6HHmM2Y3z/+MfbFe+6JJBB7e4E/bW2xJVB8PqLvfAffuekmvKLnla7LlOVgEPPQZsMr2b4uBJygp07h/1u2yAZFiYS7HweDkvCyWkGiTU3JkiQdHbifxYqE83rhROrtlQ6BffsQPZnqObl7s8mE43HZGyFkdGJJidQ9iovj6z4chckpxcmEy1JNTeGZc1mWhgaQx01NMjuEo7FTFbMZz6G0VHaqDodlhOg5JBQLskhSIBELklQcDhhTjY0AE64nVle3cO2/11+HUrxlC6JkyssBXIcPg5BsbQWRZ7WCBOC6fNH1KgIBEIiqigjEbBqWEAE07XYA75o1yT1kY2OIPOzthYK5dSvGoq0teSfqVK/B58NxW1pwrMFBKLVeLzaPTZtkykwmomkgbV9/Hefs6EDkVLpj2NmJ3548CaPliScwBy6+GB7qQEASh0TYzDhSMVoBLynB94PB+I1Wllq4mzUbheFwZvUlC7K4cvw4Im5275bd3QcGMMfWr8c8mp0l+tnP8N673y0VIKcTHZrLykAiRc//F18k+sIXYPx9/et4/kwesQiBBkpf+xp+/41vgIiPFk0DScbRda+8gvTr+XnUKbz7brmeuZOnqsavOWiU2VmUcjhyBN+77DIZ2c3RMZmIpoE8DAZllLDJBJx+/nkYxSUlMB737o2tH5mOsKHB5EBDQ3qROGazjLaJd78uF9JLDxxAZIOq4n4uvxzETHd3YsyOTlnmsVgmKcsFWUbidkMn4JII2UoggCyLyko4SXlPVBQYqlyn02icCgFMm5pCNHB0ytxSCXe6HxkBhm3blnn6Mpd/4KZKjY3ZR+oZ0yq5Iyw7TGZnsc7b2oClnZ2pd4622aArzMzAmc770BtvQE/asSMxnptMwGwupbNqVe5SkIuKgHuqiv/nQr/asUMSU1YrdMiCLE/RNBkscMEFeF7hMCIJZ2eRmcEOVyEwV6en4Uw3lk8gwvvf+AbWzH33Qd83iqLILr2aJptt1NYuvGd6PLBL5uehByTDDSMRxVkGTK5xbdKxMdxPczP0+cVquDQxgfEdHsbfa9fCxk2lzqIQsRGGTIQS4X6MNaCNdQaTEZPl5VjvPh/GIxpLNA04NTmJZ6oo+E5jI8arsTHy+DxnPB7pJElXTCZJgvJ9h0KSAOYgFCYUz7UdWJDMpJDOvLSSV4Pt90MxrKrCxuD3Q0EqKYHClUzpmZyEMV5bS/TXfw1DzO8HIWe1wqDz+QBOdXXwRlksUOKMxw2FYDh7PERvfWv25I7Ph03AbMY9JYrcmZ2FUv/aa7jGnTulMrtli9yE0xUhAObT07iG1asBoJyyzEZvZyfOkanxquuImDpyBPfc0oJ7yDSS0SiaJhvlTE1B8bj0Ukk0G9OAkl1fICA7Hi4HEQL343Rizq9enXT8833Lyyssmpkh+va34SV9//ul8isEjGurFcroj36E799zj4wuNjohrr46MgJRCKJf/xrH3rABEYLFxTINh5+/z0f0z/9M9PTTIDH/8R/jRy8bCURdJ/re95AC1NlJ9IlPgHBnURTZybO2NvGacbsRgfnyy1D0LrkE+FtUBOdLNpHQfj+OTwQFVtNkyrLXizW9dy9IimyiHD0eYCrXNWtoyDyaPLo+4swMGlscPCgjGpqaZGMUTs1KtJZDIZmyTATDv6pq+eBSClLAoiWUcBhzzWzG/Mo2okLX0WV+YgKdmFnH0XU4TrxeOCyN61wIOCeGh0EUbNiQ3TVkKoEAiAC3G47hjRsz11n8fhm9XVUFTEzXsOSIKCYLHQ6Jb0SyAZLPh2M3NoL4y1SvVBQ8N6sVmGMyyXrTZWUg25LpyaoKXLRYZBZKLmQxOjYTwYnX2wsy6fzz436lgEXnULhG8vw8MKOuDvPgpz+FjfWudyGDgAhr5cQJzL/162NLMp05Q/Rv/4Y59OEPR2KMz4ff8dw55oEAACAASURBVNqqrsb8TWVP13Ucu68PczNezUAhJOEUCsn9vqQE+zITU+PjsFFVFWt43brFKTWiqrheLndQWopx3Lw5udMhuo5hvLRkY7fk6CjzeKnOiQg3XZelH6qrZVr35CR0JHaMNjXJrLdk2MS2ajiM3+QqcpAJRY5S5Iw0HoscdsvOdyzKCymQiEsreTPYqoqoOIsFwMzF9HUdHqNkBqXbDaPc7Ybh3NCA3z3xBJQ6LvpfUwNFcWgI5+vsjDSkFQXG//w8jP9su/s5nQDVkhJsWvGUK7cb13ngAD5/y1vw3bExbBY7dqTuqY4WLvQbDALkLRZsgFNTktRcv37h1OqFZGgIJJ/LhbHfuTP7sSPChsapyrwJHDmCjbWiAmOzZ0/qpIaq4pi8eSwXcTgwT7g+ZQIlPN83qLzBolAI6TR+vyzm3dsLA/a880BaezxI1QkGEenHRiF3LHW7kfZrNBY1jeib34QBv28f0T/8gyxYXVUln/vp00hfnpgg+sAHiO68M76hrKrAKiGAHz/8IY53111IvzbOo1AI69NsBgbGm2OBAK79uedwrXv24MVReInS7FIRVcX5ucnR/DxIyqNHcf3d3TI1JxuFzu+HIhoIYI03NOSmq+rYGIjOV1/FPkUEEmP3bjio2tvldQshFVXjez4fCBpOWeYU7nNYCDxTKWDREokQ2PNcLuyruZjLL7wA0unqq2GUspw+jbWzaVNsuvSRIzBqt2yRDROWWqamQFgQyQyNTIQdL34/MKK+PnV9gOuvcZQhk5BEstkA1zG0WoEbDgc+W7cuN40WmFAxpjDPzEQ2tEhGrHLqdklJ8hTodGUxiEQh0LF5cBCOYyakDFLAonMo/f2wMbq6EBmnaWgud+oUsiB6evA9bi7mcGCPjybxXnoJDtlVq9CBubFRRglzJK/FIlP+UyWYHA44Hbxe6NZbtsi1zqQZv7j+MROHTC6xs394GN/jrLhM7bJk4vGAaD11CnqCzYZrXr8+dk1pWmyUIdMrHHVnrGWYqrPFmBbMZQpKSuIfw+fDHOAmUELgu9wYxWZLD+80DWNtMkU2+sylGAlFjjI1EopZnDPfsSgvpEAiLq3kxWALAXIrFIKiVVSEDcfng7KYDKw9HqJf/hKg+573SG/lwYOIHDrvPGxMq1aBSBseBtitWxcZMq1piL6ZmiK64grZETpTmZmBgllRET/CLBBAlNHzzwPI9uyBEd3Xh9+1tSVPhUsmug5v0Nwc/lZVXA8Xw+3owP1nG/kyMQGjemYGBO2FF8amJ6QrwaAkDrlwcWkpxrG8HOM4NobzDg3h7+3bYcincj/coay0NHfpPLkQrxdeTosFyk4csibfN6i8waJf/AL4c++9cDT092NNdnWBgONaPy4XCDtOKwkEEK0zMYH5aEw79PuJPvtZfH777SAHufNmRYUsWP2b3yAVua4O39+2Lf51MoE4Pk70H/8BxbOnh+hjH4tV0LneXnFx/LQfRUEzoz//GfewYwdSHLmuEXcozUS5MpJnXBD81VdheJSVYZz27s0+YjkYlBhXVAS8T6VZTLLrHhiQEYd2O97r6kJUzO7dyWuwMZGoafL+dR3PgLss53E6Tf5eOSQvsIgI+sDwMHSBXDjm+vuRnXH++Ui5ZxkZQRmBtWtjsx6OHYMutXGjJAWWUnQdTpzRUazpbdsyj/7hOmBCyKjqROswHI5MSeaOzUTYp+vqIusYclRUIADdZGoKWLR2be4bLczPw1FljMYaGsJr7Vror8n0G78f+1d5eW5rMi9Gx2YOCBgdRXOwzs6IjwtYdI5kfBz4xMEIQqCT8uuvE91wg6yzqmnIKHM64aAw4hiXbHnkEdhqH/oQ1szcnCToS0vlfp7qGlIUYNbwMOb4tm0yuCQYlMQhUWRdvWhnwuwsCOxAAFjR0RFb2zoXYrcDZ0dGZH3FLVukjmGMpmPi0JiWbCQLi4tzR+Jz4AVHNBYXYwxnZ2FjOhzSKdrejuvORu8iwvmmp4Hxuaj9m0w4cpMJUyKMXSLSdAHJdyzKCymQiEsreTHYU1PYMFpaZNTP3Bw2lWSeUpcLXvVnn0W9ruuvx/sDA3ivsRHKd1MTNpLxcXke40ag64jAGR1FJGCUkpKW6DpIBJ8PSmZ02ko4DIP96aexmW3fTnTddfgdNxI4//zU6l3EE48HG5LTKbueCoFxXL8ex81WmZ2bk0RARQXuoasrc5LBSByy56usTKYqRx+Xi/ByAfgTJwD4F10EAmQhLyV3bi4tXV61x4JBEKS6jjkalaqR7xtUXmDR/v0oK3DddYh8GBuTBcCbmqDg/OQnUHLuvFN2xfT7Zd2azZuhALIiNTWFBiojI0Qf/zjRjTfiWQcCmOelpTBuv/xl4NYllyBKMZFxpyggzB55hOh3v8MxPvCByNpmLG63JAKrq2PTVw4ehIHmcuG63/Y2YJbDgXWWTfoyp0/PziLi8I03cC3NzXCYXHhh9hHB4bBMc+Li6lxjMV1hsuLAAYzL7CzwYcsWGEQXXSSfyUIGcjAILOY0xooKOMPyKGU5mRSwaAlkehprpqUlbgRW2uJwIErIZkOUEM/hmRlEITY2xqYp9/Zi7XZ0yMZMSyl+P/QijwcOykz1DK5TyOUN6utjG7Q5nZGkodcrP6+pkRGG9fXxCY1wGPg/Po4139oqmwPmWjg6KhyWJWp0HfrQ3BzGqbExOU653cCn6urcdqFmIjGXHZtVFfvy9DT2OUMqbAGLzoE4HNB3bDYZmfzoo9g3r7oKdhQRntvRo1i/mzdHRg8rCrInXnkF+sDb34416PHIFFmbLf25OTkJ3OSa7Bs2yPp44TC+w2WNSkvj2wtOJ8hDjwc2yLp1uSe0FAVp1seP43xlZTJl2WqNjDLkgAoi4ImRNMxVHdJk4nZDfx0bkxktNhv2Jg6SCYdl+YZsxePBmNTUZN+TIFXRNEko8ngba0Sm4BTJdyzKCymQiAuIyWSqEEL4cnS4ZT/YLhdIt/p6bDAMVOy9TSROJ8D3qaegrN19t0yT+93vsODf8haQZlar7A7V0BC5kQmBaMCBAUSYZKOsqyqItVAI5zASlZqGzfLxxwHImzeD9Fy9Gor6wADAcvv2zBQ67v7c14dN1GzGptTaCvIwF94ztxtpy4OD8NT09OA+0vU4c31Cvx//crokE4dlZQsrn1xbraoKx3jhBURZlJcjqjNZExoh8BsmK5eTqCrmfzAI0sqQar7kG9SbDYsGB4kefBBz+o47gBnDw8CMtWvxbH7+czgb3vlOaXD7fFjDY2NYb+efLxWpkyeJPvUpKIOf/zxI7nAYv7FasdZPnCB64AEYSB/6EDoRJ5r/4TBw5HvfA25edhnqB0WXJBBCdt5jAsv42RtvQOmfmYGCfMMNcJ54vZFKYiYknxBYm8ePw9kwMCBrEe3bJ5vSZCNc28vlwrE4KihdLFIUGEMHD2Jc3W48u54e2VAnujacsT5i9H37fFCAFUWmLFdUrLhC3gUsWmTx+TAfKypAtmdLxoTDIBCDQURCMx643Zj/1dWRjg8irNtDh0DY7N699PN3chIYYjYDOzKpIygE1iPjRG0txtTrjYwwdDplaltZWWSEYV1dcsNYVbEnsANw9Wpg6mKXTNE07AEmkzTkg0HsOZoGAjOaLI2W+XnZ6TWXDg5uRpVLIjEchuPM6YSz62xEWwGLllh8PtRuLyvDPmmxIIvhueeQVXDNNZiTigIHgN8PotFIwnk8qH/Y1wdSuKcHz7eoSBL16ZJRwSCwbGICdsCmTbhGjqIrKpLEYaI14fVCD5yfh42zdq2sPZorcblkl2VFwb1u2gR7V9cj05LN5tg6hksV+OByAYM5KIYIpN6qVcDR0tLIZiWcbZFOxGgymZvD3Em3GV4uJB6haLEs2HTmnGt4OcamZSl5SyKaTKa3E9HviOg2IcQvoz7rIKIBIvqyEOJTZ997PxF9mIjOIyKFiJ4jor8XQhwz/O6zRPQAEV1IRB8goluIqIGINhPRSSL6RyHEl6LOVUFEk0T0eyHEXQtc9rIe7GAQRnpZGRTVmRlsKk1NMDQTicMhU81CIXRFbWzEgv/lLwF+114LL5TFAkWZU2GiU3VeeglgfuGFCQs3p3wv4+NSiWQiUAhspI89BqPXaLAHAqg15HRC4Vuolk0i4Q7UIyPY+Hj81q7NrjkBi98PpaG3F+O5dSte6SjJui6jDTkS0GLBs6+okBtSOuJ0Yty5Rsr4OAhhux3Peu9ebM7xjqtp+C2Hri8n0XXci9cL5b6piYgMG1QBi3IvLheU2vJyEHmhELzE1dWI6hACRnhfH9E73gGDmwjK8JkzwKSaGqT8cbTaX/6C6EKbDf8yEenxYN5VVhI99BDqLzY0EH3uc/K4ia7xu9+FI6KpCbWDorsXEiXvwHz6NMjD0VFEBF5/PXBHCNwDdzCvq8sMizweGBMvvwxFvLYWpP4ll2Rfe5XvjaOFiHB8my29aJ9gEHh24ABwkyNCd+xAxOH27cmV1mgikZ+pz4f3rVY8W05ZjlcjMc+lgEWLKOxwVBTMx1zsT489BifbX/2V1IGCQegmxcVI9zOuodFRrOHmZuyjSxmxzxF1Y2NY39u2ZWZEhsMwRD0ema7G0YZGYsEYYWizpe5Y1HXoGiMjOF5jI3TOpXRMhkIw9MvKpHN8bg7XVFoqidBE+CgEvq+q6dWaS0VUFcfPZaRUMEj08MPA2htvJFq1qoBFSylcl5wIDZZKSpC98eSTiFS+8UY861AI2BIMwlYwZpSNjxP967/C3rvxRgRucOpqJqmwXA6LMx24JAMTcEwcJnMwcgmCmRnZPT0XWVvGaxwbwzUODeHvtjbYgVzKhZt9GKMMl7LkEuuA/z97Xx7eVnmlf65k2fK+b/ESO4ntxImdlSRA0rAEKGmhZSuFgVKGoUxLaaftdNpOf2UoM+10psPWZZjSli60pVC6wZACgYY1ISEkJCEbiePdljfZ2vf7/f54c+a7kiVblq4XBZ/n0WNblq6u7v2+95zzns1igU/JiRbFxdAD5eXhOBxZ6mww4O+MjInbREzlfAYGgNvl5bPXO1pVJaGo/a7aSc9nJOY3TlFsmpOSyiRiOuHivyKEuCrif18non8johVCiCOKojxIRJ8jot8S0etElE9EdxJRHhGdI4Q4ceZ99xAWwZEzx/4TERUJIe5VFGXXmd+XRnzWJ4joF0R0iRDixUlOe85e7FBIgmldHYyCo0fh9DY3xwYg7lHR3w+HfssWEICqit4a7e0gEJctkz292tuhpOrqwo/79tsA9ZYWHCNRcTpxPmlpUDw8yevkSaJnn4Xy0DrsigJw5KECLS2J9TsaGoIjfPo0gKyxEd+7slIfo83nw/U5cgTn2dQEwyFeIzkUCicOiXCNuEw5IyO581RV2fdRO2mwvR2GzdAQyJlNm8L707FwqUCEIpgzMjAAZy4YJNq4McxYTjksev31uYtFwSAyHKxWEIRZWQhumEwg9w0GkNPt7SDtmprwPpcLezsYlJl7ZWXYKzt2wNmprye6/XYYVaoqy1uJiB57DPurtRWZ1NoerZFy6BBITIcDGdYf+lB0x5oJLSIQWbyuBwZACnR341w2bJCTTQMBEJRCyN6jU5XRUWQdHj2K41VWgoxrbNTH+NNmFKkqzjPWgJho4nYjCHLsGHA5FAKOLVsGTF60aGrnyb2VvF5pWGZkxJ4Un+pEYigE3dvXR3TXXamNRceOzV0sIgLRb7ViberRr+7oUZDla9bI0sNgEJ8TCMCJ1xKVQ0N4fWHh5NN+9Rbep243MnMWLpx6Y/6xMZB7g4OwzZhMUBRgHw/Yy88HRiZCWgwP4zP8fhmc1rMkeCricuE75+XJrOneXgTPCwqAR3l5sW0cVQV+E+H1et7v6SAS3W5UIDmdRP/6r6mNRTSHfbRICYVADHo8yBzMyYHOf+YZ+DBXXy2zYQ8exN5oaQmvgnrrLQRrVRXtYJYvh92UiM1BBJx8+23YNwUFwDfOksvImHwtcwsCrt6qqppwuOGURAis1aNHZU/I9HRUsCxZIvekNstwpoV9qP5+2R7BYIDfVFEBe3ayZBEm2bjPJPePTLStjFaCQdlbtqxs9m0n7dAZzlIcHYXO3Lx5QhIxFbFpTkrqzSE8I0IIv6IoTxHRJxRFKRBCjGn+fQMRHTyzADYQ0eeJ6PNCiO/xCxRF+SURHSWibxLRxyMO30NEl4twhvVnRPSIoigbhBB7NM/fQkTdRPRX3b7cLEh/PzZgbS0M2RMn4NTFyhwjglHY2YmN3NEBB33NGtnTsK0NhBFn8wQCiFBxZEl73MOH8WhqSo5AZAAxm6GAeALys8+C5CwshLJcvRrgzFH29nYYn6tXT02BCgED8cABkIdGIxT1mjX6NcgOBqH4Dh0CUC5ePL6sb6L3ulxQnty42GTCuTFxqJcYDDiu1QqDmb8/D445cQJlzn/8IwyDzZvDyVqTSaat69kIPFHx+2GA2e2ycTqXXGkzzuaxSF95801gy9atWOOdnVgP1dVYE7t3Y7+uXSsJRIdDDsLhqGRJCdb/E0/gmOvWYe+bTLKEngjY97Of4RjXXYcBB7Ewz+Eg+v3vYSiXl8thL9GEp5mzs2w0yinIbW3AqM2bgY9sJLvdcMZ4ev1UDFkhQEq+/TaOrygwkHk6ux4GnxCyxJqbrBcUxIcjDgdIw6NHcf+EgOG+bh2cjcmGD0QTJg95Yjz3O8zKmvhY2inN2r/nonA5+sAA1vjAAPYHl/XcdZf2tfNYpKf09QHvFy7UR59bLLAVeFAbEe5vezvwoqEhfC9ZrcjSzc2FbTKTOnFwEDhiMOBcJ8tc1mLD2Bh+Wq2wP3hwSm0tjlNQoM8kdKtVthvJyQEWz1TPrliSnQ3bgVsxmM0gAFgfmEy4Nnl50QkBgwH/4z7aBQX64ZPRCNwIhZK/9n6/vNclJfABtDKPRdMnQsBvcTrlsMvDhxF8bWxE8JWTNt55B/d75UqsK56G/txzRH/+M8igz30u+sTheM7D75fBhlOnsMZWrgQxl5ERX/YgtyDggWmVlcCKZFoQBIOyj+HgIOyOtjY8X14OO4/PkSc/z4bwoE2LRep1JukqKkAgTuW+8GCajAwZULXZcNzc3PjvSTThTPHhYawhPafJTySqigdXnfDvTifWTE+PfHAv/82bYx9vHpv0k5QlEc/Ib4jodiK6hoh+SkSkKEorES0non8685qPE5GfiH6vKIq2FauPiN4kooujHPd/IhYAEdETRPQg4abvOfNZtUR0IRF9Wwih6vGFZkOGh7EZKyoAEocPA1CXLo0NXv392LAc/crIQMZhKAQj+eBBZPRs2IDXh0KScIxsbn38OBzfRYuilwPGI0IAgG02AGVFBYB5+3Z8n5wclA6de264w37gAN5TV4fvGy+4+nwwmo4fB4gZDFCc55yjXwRcVZGlc+AAzrW6Gg73ZMDNSp2nzRJBSXL/oemMsHHpoNOJNcHZWbyeGhrQJ2X3bvSzW7wYRDOXEGRkyGltmZkzp9iDQZnJ5PViTbjd+F1VcV4FBSBEY0wnTyks2rRpslfMjhw4ALLpxhuBJydOwPBtasLafeklrI0bb8TUdiI4ku3tcpK8xwNDOhAg+sY3sEc//3miW26R64lL6p59FgRiRQX6GsbqwSoEsi0eeQTv/fSniT75ydhGLk8ATk+H8+xwYGDK3r3Yf3/7t8jaZsJAVRMvX/b5kFHw+uvA5IwMXJ+LL05+yrJWHA5gqt+PcywtnTzgMjCA77xnDzKtiOAg/N3foTR00aLE9ni0kmU2kBUlfrJlLmYkulxwqLq6oDO7ukAmCCGnLm7ejPUeg8BOKSxatmyyV8yOjI7CzjnnnORaq7A4nQiiLV2KPquMHSdPYp+ee254n8HRUWBXUxMc3plq8xEK4XN9Pnzv1tbon+3xyB6G/ND2q+LetSUlWKd6Th0eHUXQNhCATl60aPonh05FhMDaCYWAd2lpOE/utZ2djf8VFsbWIT4frqnZrE/rCe25BYPAu6mSRl4v7jkPujEaYZeuXCkHKUZISmFRqkh7O+7B4sXwB06cIPrDH7DfPvYx3BeXC36YEKhY4hZDIyPSFlmzBrbRVBMnfD5pp4+OgqDz+bAP16yJv90BtyDgCp+yMui1qbZL4N6FkdOSe3txbYaGsM+WL8daPdOSaNYkEIBtZLHg3NiGqayELVpSknzpNvdHLCvDPXK58PD5wjMupyqZmcAwux16IRl/l0nBSHIw8nciec36+oCt/f2yt66i4HuuXYvkodrauD5+Hpt0kFQnEV8lsL430plFcOZ3QUSPn/m7iYjSz7wuqiiKYoi4iW2RrxFC2BVF+T0RXa8oyj8IIfxEdDOh7v4XyX6R2RKnEyQiT106cgRAvHx5bCDv7cVGLiqCgzMygkleRqOcpllXJ5187j/h94/vC9jWhsycmhoQG4lO8ezrA+nD/WZ+9zsoyfR0ossuC3fYiQDehw7h9zVrANzxyNgYzrmrC8BsMiES2Nqqz7AUIpnZ+fbbAOqyMjgRE50jR7ldLmnI89TDrKyZ7V+RkyOj1CZTuEPPUcrmZpRovfUW0S9+gb/POw9rMCMDDgpPbtRbVFUaQR4PfnI/Ea8XxofJBGVZWYn7mpk5KTExj0VJSn8/hjDV14NA7OjAel68GIbKG2+AfF63TmLL8DBex2VxFgucmuFhTGC2WDBZeetW+TluNzDroYew/i68kOgrX4lJDlN/P167bx/O5d57seejYRVnjXm9smH49u0ovxYC/cy2bg3/LHYWVRVrLdZ5RMrQEIjDt94CjpeUEF15JcgIPbNxXC58lteLvVldHfscORuSJyp3duL5+nqi669HUKmqKnHCzuMBeej14hhZWbj37IhrDdB4jHBtj0T+eyaFh391dcnH8LA0oJmAqamRvaXiyCSYx6IkxedDsCsrS2YMJiOhEPogBoMgW3i99vQg+FlTE04g2u3oZZqRgXYJM0UgOp2wi5xOrDseuhQMhk9KtlplJrfBANyqqwMZqs2AycsbP4U+GXE4QMTxoIWlS/UftKCHsFPb3w/srKiADisrw/1mfOY+tdHub0YGdJrNhvWgF6ZzkCUUklObJxLWlyMjcqBDTg7wiO3LCWQei3QWTuBYsAC6tKMDrVUqK2WlhdMJApEI+3hoCM8FArBHuB/r9dfHpye1NrPfL/VsZyfOJycHtk285JwQsM06O3G8oiLYCPEQUkJIopCJw1Ao/Fw7OpAV6XZjD114IbBipgeCaMXrlcThyAi+h9kMwquiAtdgunCMs5k5ISIQwF42GBLLxMzPx3VnHzhWyxi2xWKRg9G66TEpaLXCr7dY8HNwUAZ8OaGjuhqPysqEslbnsUkHSWkSUQihKoryWyL6oqIolYQ69I8T0atCCL7pChG5iegjEx0q4m9PjNc9SrjxHyaiPxDRJ4holxDiZIJfYVYlEIAC4OEfp07BSGtsjF0q292NTV1SIoeUrF4NA7irC45jURFIACauLBYosAULwpVEdzec4IoKkGSJRF4CAThhgQDOefduHFMIZGtcfHG4w6uqKKnr7AQQrVo1eRSOScq2NgCb3w/wb26G8V9RoV+ZUW8vyMPhYUSft26NHlXhaCCXKodCAFezWZYqz2Y5cH4+vsPYWPRsKJMJhMLKlVgzBw6AgOYprBkZ+H7cIzFR4XILbZYhl3VHKjnuVcQ9IuOZSi0/Zx6LkhGPh+jXv8Z1v+EG4JLVCgOhsBBE2c6dyIy57DK8Z3AQmJOXB2P61Cmsu74+ov/3/7Af7r8/PIvI6wUZ+N3vApO+9CUY07GG/fzhD+iVKAQyGT/84djlZaqK9R4IYC3t20f0179iva1di/OOzCK22/Hg8pXJIsNcxvTaa9gvRMjuXbtW9vXRa997vXA+XC6cV2Vl9GwiIXDtmTi0WHB9mppwzdavT2ySKwv3rnQ4QGZwqXdOzvjvysNV2ECNxzCe6usTFSFwPbWEYV+fdICys6FPWlpkL6jsbKyNqUyTnsei5ERVUb0QCiHAqMd+eu017IvLL5cYoJ02r9XxLhfRK69gXW7ZMnODQXp7YRsZDHKQ3r59wGGbTb4uJwdYxcNPuG8fE40cbEhkomsscbtBDAwO4phLlug7aGE6JC0NdvLgIK4L9+jlnt2LFuFeM5EYjeDIypItabh/tR5iMEw82d7hkMSh14vn8vLguDNRHI/MY5G+MjoKXVtUhD3a2wu7qaiI6KabcF/sdlm9tGABcIaD4r//PXTOzTcTXXTRxJ+l7TPMFU08fNFmg/3BVR8TVa1FytAQ9rLHgzU1Wa9ZLkvWZhmyGI34btnZWLPvvSdLlisrEYBZuHD2cMLtBu5bLLLPaXY27l15uX6JJ5OJogC37XY54I/7CHIiBQ8mmUzfcdCVbe3eXjlESutTRRODQeJNWpr82+UCJnKCUm+v9NMyMmAPLV0Km6iqKr5WXpPJPDbpIylNIp6R3xDRPxJu/l4iWkhE2gk4p4jog0R0WAgxkORnvUKY2nOLoij9RNRIRP+V5DFnRVQV0SwibMzeXiib2trYZSGdnTCIysrwml/9Cgbw8uWIsBw7BgDaskUSdxy1LikJL8no78e01OJiEH2JGOoeDwDH70d0etcuAM+6dXDYI0tAXC4oV7sdxlBT08TKxeuFsmtvl5lFXMKXkwMw06t0eWgIBjtH9T7wAZkFwMJ93LhUmQ3AzExJfM0Vo5od/bExKPdYoG8247uuXg0C+MABOHDr1sGZDgSkwolHgkGpFPnB0S6jEUrSbJakgcGAB1/DJEuo57EoARECmcN2O4aeeL3YByUlIOgPHcIE5KYmoiuuwP2xWOS00Pp6GI9paSDY7r8fBuR3vgMjmsXnI3r0URjdNTV4XUND9HM6dYrogQfwc+1aGOhVVbGN3WBQEojHjaNeLQAAIABJREFUj4MEcDiAjdu2jc8i5r5EXi/W3WRNrz0eWbI8MoL9tGkTMiLz8nBeekXZ/X7gkcOBPVNWNv78QiHgPROHo6NyUvyVV6IENNnyxUBAliwLIVsKTLZHOZLN2YhTIRLjzWCMRxyOcMKwq0s65JzRuWkT1mplpcw0YtIwyeEH81iUoJw8CSe5pUUf/X78OHTamjUgv4jkFHmeNs/i8QA7VBXZMzMxHMRuxz4+dQp/FxbCFiSSZGBNjSQNowX17HZZWlZUFH829WTi88lsJ4MB2Y56DVqYCcnMlNmEGRm4LjU1uPe9vdBdY2N45OdHJ4zz8qBfbDZgrF5ZqWxzh0JyUBZnmvr9uJf5+dB7SU6KnsciHYSHgmRlgXgbGkKAMztbDoKzWKQf1NAAO6G4GOvrBz8Avnz2s6iciiah0PgBZWlp+Ay2m48cwdplGyTeUvvRUfhSTieOFzklmkgOBdFmGWqrBLhdkjb7rbMT58TDNJcsgd01U/36IsXhkMSh3Y7n8vNhv1ZU6IeNUxW+jy4X1kFmJq5hKCSHsHi9cvBVWlrsLEKWrCzZz7G0dDw5yP6VNlDh90uisKcHPzlIZTDgGrW2SsJQO6RzGmQem5KUFFHFsUUIcUBRlGOENNTFhPr1pzQveZyIPktE31IU5fbIWnVFUUqFEENxfpZQFOXnRPQNwphvDxE9mfy3mHkZGABoVFdDwXR3w1msrh7/Wi6vHR6Gs1NVheEYfj/IHpsNx7PbkdlXVYX3MZjm5YWnuQ8NobdZXh7RJZckZpw4HACfd99FNqTbDaV0+eXRy377+vBaRcE5c+QkmlitICV7ewGa5eUg9IJB/F1aKgEzWbHZkHnY0QElzdNm2cBT1XDikIkvbbbcXCvlYTGbcX4ul0yZjyW5ucheXbdOlq2+8w7IxeZmKN7I662NlPKDS7kVRZYD8SAN7nvI0wn5+pnNeg2dmMeiRGTnTkS1r7wSJNF77wEbFi7E8zxVmZuF9/XJdgr19bKx/u7dICNXryb65jfDievBQaJ77gFJfemlKF+OltXh8xH98pfIQMzPR6ZiayteG6ucjMs6jhzB2h0bw3ndcgtFnUKuLV8uLJyYKBgYAHG4bx8+p64OQRfOXOJyXj2wKBiU2cMGA4y3oiJ57EAAhO6ePTgf7vm4ejWyDdes0Yf0mKxkOR7RkoLxBqiSIRL9fqxDLWHImQcGA/TmqlW4bwsW4Lpqsx+ZODQa57FoNoVLBWtrJ7YR4pWhIWQjV1WhzQAR1vWxY1jP2j7MPh9KmH0+BGKnY0CI3x/ew7CnB3jr92ONLl0K0qGoCD8n2898PO6TWlSkT+ZmMIg91NODPbJgAfRBMlUJsyUFBfI6cbZPVRVs7qEh2bPMZsN3jaaXCgtB7o2OApf1IFFVVdruVis+22jEZxUX46c+U3HnsShZ8fvhv3CgzmZDG6C0NBCIqor2QAcPYh9u2IA9YzbjuR//GOvqK18Bia0VbT9wtp9NJtjc3JKFCOv1yBGQTk1NIOvi0ZMOB8jDsTEcr6lJYisThvxTW5bM2ZPcu0+7Fr1e2CJHj8K/yM3Fd25qmrnWDyxC4H7098PfdbvxfFERfJeKipnLJp9IVFUSfGNjuOYmU3jmIFd/sV2SkSGnajNBGEkOZmUBl4QYT5CqKjCOyUJu38E7vLAQupYrLyoqZnYq9jw2JS8pTyKekd8Q0b8S6te3CyFG+R9CiF2KotxPRF8koqWKojxDRGMExvmDRHSIiD45hc/6BRHdQ2jG+bgQwjbxy+ee8OS8khJsci4D5BIWrQgBQs1qxUZfsAAOZEcHnKK0NEkyVlfL0kGPB4CRmSlJRSKAzY4deP7SSxMD/OFhlAe9+SYAb8kSog99CA52pHDGTFcXAGvVquiAzpmZ3G+HG2HX1OBaORx4X3W1Phk/nBV58iQ+a/VqGAc8odjpxGuY9DIaAdBZWfqRXjMheXkwDmw2GKaTGR1FRcg2s1hwj994AyTrxo2IvmpLk7nEggiGBl8bsxnXi6e2cjQwLQ3Ght5TqSNkHoumICdOwMlevRpk3fHjuDeLFwNT/vAHYM511+H+dXfD6SkpgVPJxtvvfgdc2raN6AtfCDc433qL6O67sZ++9jWZzRgpBw6g92F/P4IR3KCcSaxo4nbDeN+5U2LktdfCGY/2GfGUL6sqjOPXXgM2Mz5wz1CPB8/l5+vjVIdC0kElAk6WlOC7ezz4fnv34qfPh+uxdq1sR6DHXlJVYJ7TKUuWuT9kogSpwYDvNhVSMB4iUVVhCPPQk64u4BUb4oWFWJubNuEnl10GAtJJU1XpGE1jVtU8Fk1BHA7gT2FheHZgouL1ov9YZibwxGDA/T96FDq9uVnu/0AA+93lQhsWPbJouL2Cto+hwyH/7/MBP5csgX6tq5tK+w7Zq89oBF7oUWrLwxC6uuQU1fr62e1lpoeUlMj+iNxn2ekEjuTkYM3xNGYhxpO3iiKJRK7sSQQXOQOe8Z57IhYV4filpdPWBmceixIUzv7z+6FvfT4QiIEAWrEMDkp9xL3lzWY5DO7JJ0HU3HWXrA4IBKQdzcQdDydj+5nF5UIm9dAQ1snKlfFl03ELAi6n5iq3UAjPsS4kklVCJpN8RLOfhodxLdracJyqKvRirK2dWZ9ICOwhiwX2KAc8S0pkqfJMkZlcXjxZ/0Ht6wMB7H9OsuCycG7hxCXkXO3GGdDRsEHbA9/jkcGpnh5gHvtpzAUsWwY/OrK92SzKPDYlIWcbiZh75vcwEUJ8SVGUfUR0JxH9PyIyEFEfEb1ORD+aygcJIboURXmJiC4hop8nd9ozLx4PQC8nB49Dh2R0KBKEVRVgPTYme/8NDMDY5UbaeXmInmdlAcwVBeDT1QXAqa2Vxo7djqlgaWkoN55qdEZVkZWzfTvOackS9CiLdu5EMNJ42uvixejdEfk6jwdRso4OKOfcXCjJmhqcb18fXldZCRIsWUXl8yEyeOyYdCRWrsQ14QbWXPLGpFd29sxH1/QSLokZGYGSibf0obiY6IMfBMn68stEv/kNDBh2dsxmrD2zWSq3QADXcHRUKi6TSfaInKEshnksilOsVhi4FRUIApw6hfXS0ADj48knsQ5uuAH3rrNTZm7U1uIeHzlC9N//jX16xx1oFM57VFUxefmnP4Xx8tBDwIBIsdsxdXnHDrzuu9/FGvN4sPdiGcxHjxI9/TSIzcpK9BlavTp2f0WrVZJw0cqXXS6QdW+8IQ28bdtA1hmNOE+PR2J3slikqtKhVFV8XkmJLKncuxf6IRjE/z7wAWQcLl+uH/Hl98uAibZkWc/eX1PNLox8j80WPim5p0f26+HG6BdfDJ1RWwvMVlVcNx7YxMdlR2mG+tXOY1GcEgzCUeZBacnuLSFg6zidRNdcA1tHCARNvF7sIbZ/QiGZwXz++Yn3D3U6Jck0MoLjsfNoNgNL2Wbj5v7NzQj8TkU3er1yEnNODvZrspnQPM24owOYUFwM8nC2Sv/0FoMB95WnsZaXw4nmSewNDbiOHLCOltXDWYJ8j+O1RwOB8DUhBNZ5aSmOwcRSMBh90IFOMo9FCcqJE7I1isFA9KMfwQ+77DJgh8uFva/1JVSV6PHHYTuvXk10221YKzz0jXGBp+uazeP3MCeQnDiB97a2xkfW+Xx4H2cRl5XJyi2HQ5bLms1SH06EH6oKH+3IEXzvtDT4fMuXz1xPQSJJfjJxGAjIKfQVFfH1tJ6qJDOchDMFOYtQW1bM05UNBtz/yHvKhCKXOnO2aFoa1ozJhHXU14f73N0t1ymXm1dWojqFswwna9kzizKPTUmIMn4S9bxMJoqiPEtEK4modoqjuWf1YgeDMNIUBZv66FGAQ2vr+EivqoLAsduRTVFWBhD52c/geF51FRTK668DWD/4QYAEA77fj8bRTH65XHI64eWXT71fVlsblOLp0zC+rr46tsNOJEudeRpwpGE+MoJj9vUBhCsrcb5lZQDH3l4QUrm5+LxkCahgEErw0CFc84YGOCsGAz6HHU1uEjyDpNeMCA9G4MElWtH2YYmMjnJKfVcXMs28XjhCmzdDOfn9stSbe7hwVmJW1rSmxs8JdZiqWBQIwBgeGyP69KflAI+mJvx87DHcv1tuwc/OTuBMRQWwSwgYyP/5n1gr3/gG1gTLyAjKl/ftQwPxr3xlfHkgH+Phh2GEf+xjICx5DebkRI+UWixoUH74MIzYK64AuR2LGGKnWwi8PvKYfX3A0bffBk4sXiz7HXLGj88nCfFk1zQfk7MBONvv4EEQh5wpVVoKAnPDBuCVXr0Cuberw4HvpSi4Jrm507Nftf1PJzNivV5Zltzejp9OJ/5nNEIX1NZCJ/JEXS1pzdmGjF/a/kLTSBzOY1ESwgPirFZk2Cbby5MI+2jPHgyM4+qMU6fgfDY0yHI+VUUPs/5+YEhkqWEs4ZYITChxSTER1lphoSxJ1k7Qtdthg3g8CMLW1cXv2HHQgYd8FBUlnyHIw4ba23FO+fmww/S4B3NRmOjNz4cu8Hhgh+blyRYVnNHDmBgpXi/ug9kcOyirXR/cbywjA+uhuBjHjbzv3PKF2yskKPNYpKO0t4Ogqa+HHvnxj4EhH/kISDS/Hz5dQQFwhqsHfvQj+D9bt8I38/tlVhmXqGZkxNbpNhsw0WaDzdXSEnuv8/BCzjzs7ob+Y1tNW5IcWZY8kbjdyAw/dgy/5+XhOzc2zpxvFAwiy9Niwc9QCOdfXo7vl0zm7mTkYDzDSSLJQf493uCCwyH7TE4kwSDua3u7bCfEPVo5A5PLtquqsF7mQN/aOYFFkZIENs1Jmf3bnGKiKEo9IY31O6m0AISQkyBra0EQckQ8UjmEQvi/wwHlxYNWnn0WDtYVV8DQO3wYCu2882DMCCGzNGprJYHo9SIq7/NBoU3FQLRYkO2zdy8A6oYbQArEAu5QCGRdTw+M3FWr5PcLhfB8WxsAkKf8LVoEI1sIfJ+hIRy/pib5SJeqIkLzzjtQ7pWVSOc2mcKNu8LCaSe9ZlWys2Fo2O3S2Y5s4EwkFRqXJaenQ0nV1sLBY6LjZz+D0lqzBkax2QzDODNzTiivGZFUxqI//xl7+xOfwJpwOrEP/X5knaanE/3N32BPtLfDIVqwQA5Kef55om99C/vzgQdQPsyydy/RvffC2f3CF2BwR2byDg4Sff/7eG1jI9F//AccaibsuOxdK6OjCITs2oU19qEPTd6SgTNLTKbwaaWhEIz8119HYMRkQj9QHrRBJIl3IhjQepR+2O3ANzYgT58GNrW14f81NQjQbNgAokzPyDGXLDsc0hhPtmQ5HonMLOTvFAphDXZ2wkDmwWEcVy0uhn6orYUeXLBgPLaEQuGlP0Sy9GeyDIuzSVIVi4jg+I6MIIChB3nV0QECcelSSSD29sK2qK4On2S5dy8IxLVrYxOIXIKqJQ1dLvyPM/2rqyVpmJcXfd92daH/ocmEwUdTsW3cbtnHlQc5JYsNViuw3eEAtrW04PzPZsnJkWXkHOwsLwcOWa24h3xtOTs7MvjFVRh2e/jQOo9HTlTmwEdWFtZVPP0tOWspFJJlzqkoqYxFWrFYsD+459yf/gTdffPNsBUsFmBNURH8OKMRgcEHHgDeXHUV9LjPJyt2MjIm3rehEPyV06exPtetk/YIkSSatX0MfT5gWF8fjl1ZiUBobm5iw8EGB+HDnT4NvKmpQRVEdfXMZLL5/cBqiwXXU1XlhOCKisnbMmkzBCciCiOFyb9ovQcjh5PoIZxtyIMo2U8WAutNO/ikv1+Wn5vNwKzmZlyT2lroEm4hNTQk21fNS7icLdiklflMxDhFUZQVRLSG0GRzORE1CCH6pniYWbvYg4MwUiorsckHBxERj8zQCwZhaLrdcOq5N8+bbxL97/+inO3DHwa4vPoqHPD16/EaLpGprJTv8/uJnnsOoHLppeEDViaS0VEQBbt3Q1Ft3Ij+HxM1G3c60bfL6YTz19AA4HW7oZA6O3E+eXlQcjU10lByueRY+cJCKItkyCguBdi/H9c9Px9OBRvuZrPMljubSS9tD0O3G2uECNeYSxq0j2hKUgi8n41kLpfgjKmWFmShzXD2wqxFuVIdi/bsQWDg4ouxJ/r6YIxkZaHXTzCIDMTCQtznsTHZdJkI/Q//679A+n3/+9IpD4VQuvzYY9jbX/kK8EnbNkFVQWD+/OdYO7feCpJRUWSz6UgC0eVCb6HXXsP/zzkHBOJEfcu05cvZ2dj3igJsevNNEJE2G45x/vnAUP5M7aRnHg6UrEPncgHz29oQ2T9xAn8TASvXr8dDO81aL/H74ezyYCgt4T9TIgQcAi5H7u7GTw5gZGfDGOZHTQ2e435D2uh+KCQzDpk45N6G3Lh8hmUeixKUkRGQ6JWVcIqSFZuN6IknYGNcey3Ww8gIMmpKSkBUsrz9NvCttVU+z1NytRmGXIJKBIzQZhjGM/yCqyAGBmDvce/leCQYhC3m8YBUSHJKLxGB/GJcN5tB0JeVzdlSN91FCNhBwaAcJNDeDnxcskQGpXgyPU94jhRtNjlXYxCBqOSMw0QwlvvIchnkFGUei3SQvj7YCAYD9sfLL0Nf/83fYP92dWEPlZTAhgoEoNMffhjr4dZbgSs80DCevTU0hCxltxs6sLkZn6+dlhwIhE9LtlplP2AeQJlIK5JQCN/nyBGcR3o6bLfm5pmx67nNF5P5QmDvVFZij7L9Fg85OFF58URZhLOFf9xP024HWchVeESyLJknJVdXyyBHKIS1wYNY0tJw37xeYFNBQexe4jMkc0aj6IRNc1LOYvpCd7mWiO4mog4iuimVFoDDAWAsKMDvg4OyFEsrgQAIRC51KSgAOJw6BUKvrg7Os8MBBVdSgkgVkYySs3FLBGX24oswFi++OD4C0enEe3btAjg1N4MgamiY2Hjt6YECMhrhDJeUQBm1tUniiiNknFlJJLNReHKeHn14urtx/gMDUKitrXJSWnY2lFOqRnknklBIRrX4wU62wYDvX1OD57ncKpZwyaPbjZ9cipGXJw2rSy9Fuer+/Vijra0gm/XqpzaHJWWxqLsbGc1NTWgz0N4us2d+8QuQbjffjPVx6hQMG56Uqqrof/jLX+K9Dzwg9+rgICYyHzyIdgl/+7fjiar2drznxAng1uc+B0wSQhKIeXnyPT4fegO+/DLW4LJlyIJeuHBiLNKWL3MpYXc3sg4PHMA+aWxEr7Rly6SjJoQcLmIwAH+TJdpcLpC2e/ci89HlAs41NwPL16+fnoixENi7TufMlCxHiscjh55wpiH3GjOZgEPnnitJw6Ki6EY8P8eTI7V9w7g/UCLZFmeRpCwWeTzYEzk54eReohIMol8zETAoLQ3r/733sO4bGuRrDx2C08z2xqFDkjTUTkgtKgqfmDzV8mGbDcf2eoE5U8kudjiAi0TA42QdQg7m8qCFhgbYZO+XbF0WRYHtrR20UlOD6p+uLtjeiiJLjp1O2QpDSzKPjOD9fj/ez0H/ZPtns22qbcmQIpKyWEQk7ZCeHgQ20tMRsHz9dTx/7bUgEDs64NcUFGDtDA/j9U88gfv/uc9hn8crfj8C8p2dWDutrVh7nHlMhHVoMsk2S6OjWKter+xfmsg0eZcLQc1jx3CsggIEVSfz9/QQlwt7cGBAThfmYGJZmextrKrYcxOVFxsM4b0HI8nCuSLBIPxd7bRkTsxQFBCFS5dKwrCsLPb5G42wT81mrCGfDxjP3310FGslVfv56ywpjU0TyXwm4szKjF9s7pmRkQEFcPIkSLTIAQOBAKLlPO04Px9GRF8fJqQGg0S33w7Q+Mtf8Lpt23BMhwMKJTcXxgxHKf76V7x/y5bok5O1onXY/X4A2apViALxdMtowmWBvb1QZi0tUAqnT4OASE/HZ9fXjyeX7Ha8LxjENSkvTxzwhYAS3r0bwJyVhXNZulQSh3NJmSQrqop7xmShxxM+bS0jQ2YXck8UFo6wFxaGKxhVDScOuY8ZZ2zyVGruochOPGd3HT6M59asAUk0zcor1WmDGccip5Pohz/EPfrEJ4AZOTkw2n71KxitN96I/X7yJF5fVyeHffzbvwFTtmwh+vrXpVO7ezf+5/MRfelLIId4mrmiyBLpJ5/Ec5/+NHqVcWSZs/7y87HGgkGspx07cA6NjTBsKyuxZmPtYyFkiZnJBIP4yBE4AZ2d0ik4//zxARWebhcMYr8wWZ6IBIMgK3fuxGRql0tOVN64ET8TMfjjEZ4s73TKkmUeDjVd+BcMQs9oScPhYfxPUeQgHs4wLC+fPGNQiOgZh9q+TnOIOJw7Z5KYzDgWhUKyx+769fpkxe7YARvqiiuAWz4fCDxFQdCDM3feegv7MydHZv4qCvCCycLi4uSHJ3V2gsA0m0EMxJvREwjAsfT78d6iouSqJXw+2KAWC/ZcbS0c1LMxkDoV8Xphq2ZnQ8c5HLhOJSXhJaROp8wO8vtl38KCAtwbbtNQUqJvVQsHTKaIdfNYNEXhwTdWK+yc06ex9zdvRkLF/v0YorJ+Pci206dx35cswb159VUELxobiT7zmfjIfi5L7uiQQYaaGiRZcDlt5LRkItmCwOXCuq2vT2ySvMUC26i9HeeycCFKsquqpn6syUSbKWizwVbo75dBxbw82AhlZeEl/9oMwYn6D85V4QnSWsJwYEAGB/LyJFlYWSl78SdjG3J5u9+PwD4HbGepv/8cvjtnj8yTiDMrM3qxVRVKIhSCgXHiBICCp3yx+Hz4XyAARZSbCxDo70cGy+nT6K/R2AiF1d2Nhr3l5VA+7e0yi4/7T73yCoxYjirFkmAQJMCLL8JYamkBCWQ2w+idqMzF4YCCdbthjCsKnMhAAAbW4sUAyUhjNRCAIrHb8Tnc/DeR6+t241hvvQWgzsyEk97aGn3qVaqKljD0euUgGKLoZckTfW8hYIyEQrhPPh+MJ48H/zcaw4nDaMIlFpwJRITI165dWMtmM/rB8LS6aZBUv7MzjkWPPgrsuPVWEHdpadijTzyBPfTxj8t+rW63NFCHh4n++Z9hQH/0o8hULCsDdjzyCAjCJUuQicjtAnJzgUWHDxM9+CAMqK1biT71KelM86CAUEgOLDlwAO0XrFYcc8sWOPRcVhxrXYdC0vEOhXCub74JjCopQa/Dc86JPsCKS32NRnxGIuQ3T33ftQt4ygGUc84BYbp27fSWD/t8wG8uWc7MhCOk92dqy5L50dsrDePcXDgkWtIw2jWPNmiFHSvu+UQkhwzwROXI0uY5InPrbKYuM26EHj0K+2bVKn0ycQ8fRgB0wwY4+8Eg9iJPk3e7ZblYe7vMhOWyU+4ppYcEAgis8mcvXx5fVg8PXOKpnYWFyfVhDQTk/iSCjTZZFvf7TWw26MLCQjjvfX3QIzU1UqdwD0yvFxmMrBe1GYPDw3LAgZ7BmgSIxHksilNcLtxfu11O4+7vh35qaYH98NprwIn16xEQ4L6qzc24J48/DpzZsAEtYGLtrcg+hnY7bJThYay9lSuBQ0wcRt5rux24ZbNBn9bVyTYy8UowiAzKI0fwvdPTkWTR3Jx4lnO0kmLt36EQ9tfAAEgtjwffrbhYDkdhPy2SKJxjOn5S4WADk4a9vcAMIlxrJgyrqvCIJAv9fhyDW20lI9z/uqcH66m8XPa4n0FJsTuYmjJPIs6szOjF7u2Fg1pWBvA2GqGctIrG6wXpEgqhpCc7GwbvwAAU2q5dUDCXXALDe/9+kHzNzVAKp0/jODw9TAi85+RJOLDLl0c/N1XFsZ57Do78kiWItqWlSWMp1uQ5IhinR45AEefkSOVQVQViIlZ0zGrF9xICwFZSMjVlEQrJ/jMjIzDWu7oAuuvWwSlJ9anKwWB4hqHPN74smTMMzeapOz/BoMwCVVU4UGlpkjiMl0ThKc6RWZ4DAzL7KzcXRhj3d9FRUl1BzSgWPfccDOKrrpLZfg0N6E/Y3o7S3iVLZDuFxYuxLk6eJPra12CQ3HQT7uXixYhk/8u/AAM++lGiz35WTiDMzcUxfvpTROgrKlDis3atPJ9IArGtDa/t7weGbNsGfPD7sSYnMnI9HuBKdzcw8vhxHHfpUmQTNDVFxxjuHaOqstR3KljkcgFD9+wB+el0Yh+1tCB4s3lz8tNTJxIuWXY4cJ0MBvk99CLunc5wwrCrSwYb0tPhbGt7GcY78EFLJHK2IWdSc+kW9ziM/M5zkEicO2eSmMwoFvX0wOZZtAh2S7JiscCZz8+HbWS1IrvH4YDTxq07fD5gXWMjghPTsX7GxvDZPh9whyf+TiY+H+yZYBB7eKKM68mEB9jxlNbycpAO04lFqSxDQ8DR4mL83L8fuolb4HBmakaGnKZaWBi+fjh7NC0Nr9VrbSUwsXkeiyYQzoYbHob+NxpxL4uL4UsNDsK+OXSI6KWX4E9cdBH03tgY/tfQAL348MOwl668En3q+Z6rangfQ+5Zx9Lfj89KS4N/xuXz0cTlkoOn0tOBJ5WVU1tfTqe0i3w+OQiGMymjSTLDSXgwCPf+DwZxnUtLce6Vlanvo3EijJY05NYTBgMwV0saxhtccLuxLnNy9LlGXDKekSHtW+7TOQOVeamORSkh8yTizMqMXWyrFQBaVASACQTgXGozQzweGNNCwODMypLTO1UVpYNmM0oMrVZkC/KkLM5y9PlgiLOBuHcvFMaqVXhEihD4//btML6rq9Gbq7YWoKiqcPpj9SUMBtH/4+BBAB5Hkurrw88jUnw+XAcmHauq4gdJblztcuE4Ph+Ud1eX7CGycmVq9n5Q1fAMQ6833JnWliUnE0kKBCT56vfjOe4xVlaW2BRs7ptIhHUdadh0dYFMtFiwDzZtguGik6S6gpoxLHr3XTjZ69eDWOPBR9ryv2XLsKe4nUJeHoIR994L5/z227HXm5oQof/2t7F+vvpVGNlOJ9ZYTg4w6AffWvGSAAAgAElEQVQ/gCF59dUondbiAk87ZSJxxw449yUl6GW2YoUsLdb2SIwULhd5803p+GVlIXiyaVN471WthELAWa8XZBVnQcYjY2PIeuYeh8EgPrOxUWZxl5dPb7ZPKARn1unENTSZ5DCaZAxDvx8YrSUMrVb8T1Fw/7VZhom2n1BVGSjhUkAu4eKMw4lkDhKJc+MsEpcZwyKbDQNNiopkifFURVt+2NuLIVGhENF550FfcmsPbmeSk4PX7d4NR3bTJv1LebmdysmTUytf5nYOHIBIpO+i9lj9/XKAXUkJbDI9psqfreL3g1A6cUIO2jIaga+VlbiP2jXq9eJ+mUzjiV6vFzooMzMxeyqWTJFInMeiKMIkL1fgmM0yA1lRsG/b2qDT+vvhe61aBfulvR1rpK4Oj8FBoocewrFuuQU6X5tlyFn5ROHlyF4vfK/RUdjcra2xbRuvF/t4YADrsaYmelXXRNLXhyBvZyf+rqsDech9qCfKIpzqcBJVxfUdGMCDicOyMtgNZWWpO8BSVXH/tWXJg4MysaOgIHzwSWVlcvaf3Y41lJenj54aGwOe8YBArvIwmcIryaZBUh2LUkLmScSZlRm52G637DfG5SmRU67cbhguigLHPDMTIDw2Bmdw716A/8c/juNs3w4CiRuGc6P62lqZpfPOO3g0N8uJzVo5fRpDFbjvy7ZtUGRuNxSnwQAgjEXG9faiH2NPDxTR0qUgHKqqJu5TxhEpg0H2NZtMAgGQhlrSS1FwTdra8HdDA9Hq1aljJAshpyXzABT+bkS4v1rCMCMjOSfZ75fEISsO7s3JU6nHxmRz5kQUH/dRNBpjOz8nTxK98YacTr5pE4yiJCXVFdSMYNHQEIahlJcjm3l0FMbkrl2Itl92GTDgvfewRhoagDdPPYVIe2MjsgyDQdyzX/8avQ0bG0EwVldjfXFT55/8BMdevJjoH/5hfO9XJhD7++HUnzgBY+nSS4FZ7FRzI/tYpPnICIZNvfUWzrumButqsl6cXNZIhO8ZzxCnoSHg8Z49MuhTXg6Sor4e1yAvDwTFdEbYfT5Zek0EnZGbmxjpoKrAZC1hyKVcRMDomhpJGlZXJ/fdVFVmHGoHBhgMOO5UDdk5RiTO/hkkJzOCRX4/9pHBAKI/Hn3DeMCk4cgI9gD/7913cdxrrgF2ud2wEaqqZB9ozowvLEQAVm+nKRBAOfXwMHBh+fL4PsPtltnYeXnxZ/FGihDYy+3tcjjCokXT13c11YUHb3EpKxHuVzAoJ9yOjsLerawcH4yaiEh0OrE+c3L0nYzKpaE8QGICmccijTid8j7zYMDiYti/nJDQ3Q0btawM1/j55xHIvO46lByPjGBN1NSABPzhD7HnPvnJcDvWaBzfx5D7Pr/3HgbVmUw4dqzeg9yCoK8P712wAJ8RbzsEnhL97rtYwxkZwMXGRnznyYaTTEQURjvXwUEkCQwN4dpx6WxFBfZNKvZd5Sqtnh48+vqkn2Y2S7KQiUO9/U9VDV+vydo37IP7/bg3RqPsmygE/s7IiF5Gn6SkOhalhMyTiDMr036xg0EYc0YjQHVoCESbtn8FTww0GkHEmUwAY5cLhmRvL5ryf+ADiNbv2AGjZds2gIrFAsVWUSH7CR05Aoe6oQEReS0Y9PeDPDx2DO+/7DIY8UYjjjs4CBCpqopePjYwABKIJ5adfz7Iu8nIQLdb9oXIz4dCnMi4ZiIikvTKyACYv/sujlVXh+ifntHe6ZBAYHyWIW93Jt20Dz0UrtcrB6NwRiP32MjKGv8ZHEEkmnppOUswiHtnMsUmGlQVBtju3TCy6+pA+ky1r4tGUl1BTTsW+XwgAt1uTBa027EHDx8GVmzZAhx47z05sdhsJvre95Dds3kz0V13yZ53//M/wJBrryW6807cb58PuPXyy0SPPYa1cPPNiOBH7nVuv/DXv+Izs7KQxbhpE9aNz4egC09GjoZF7e0oM9q/H39zuVFDw8RrNxjEsf1+fFZ+/sSlPL29cqpyezueX7gQvY+WLQMmcRZiaen09TsUAtfX6ZQly0x+ToUMsdtBrjBh2N0t+6qazbJ/4cKF+KkHAcGZzoGAdF6MRlmqbDDILIhEmqTPISJxHosm+wCBkn+bDUR/LILF6ZQEj9UqM5aJsOe4h2FREbKoDx1CcGTpUrz+2DH8n1sYjIygP3RODnqT6k3yj47iHAIBfGY8wTEOpLjdOJ+iosTPa2QE+OR04jvyhOB5CRdufzMyAjwlgvPP6ykrC88PD2NtFhUBLx0OEEiR+O7zwXY2GvFaLclis+HzCgr01QuhEPYCT6GNIe97LOLAw8iILFkuKoK/wgMJfT5gktMJArG0FHrwqaewh66/Hj7V8DB0YkkJbNcnnsB6uf12mXHGxGG0ezIygqotlwuk0/Ll0fc6tyDo6cHvnPXPAdHJMgfHxoCHJ08Ci4qLgYmLFklyKBY5OBXd6fPBH7RYcG2EwHUrL8f1KCqadV08JfH5QBLytecWZERYNxUV4VmGM/X9uOUUV5kkK6EQ7puiyAoSJp19PvxfUeQ0Z51KnVNoJaSuzJOIMyvTerGFgIPGhEp/P4BH2xfH4YADbTIB5A0GALLPB0UVDKL0sKoKvcbeeguv/8AHcJzRUYBeUZGcIMeZXgsXghhgABgZQS+0AwcA9BdfDAKQldjgIJRPTg7AUgscgYCcLnj0KIyiZcuIPvjByUFNVSXRaTLhu0R7jxDhxCGTXpmZMOoyM5E1uX8/lH1lJRyQ0tKEbs+0Ck8s1j4440ZRxhOGepU7CiGJQ7cb115Rwq/hZArB74cDlpkZ/wTJSPH5cP8mI0ODQRhVe/bgvJuasCYTIIRTXUFNOxY9/jic6muuwXUvKgJ59NprIMM2bcL+FgIEohBE99yDqak33IABLCdOYP/9+tdYV1/7GjCGSE6Uf+QRHGfVKqLPf15OPNWK1Qpict8+rLMLLgD5x04WE2U8VVm7Zv1+YNhrrwEPOJPpsssmJ6G1JJyiyLLfaK87fRrrcs8eYDcR1uf69XhkZyMo5PNhnZeWTl8WdDAopyxrS5bjGRbl88Eg1pKGNhv+ZzDIAQtMGpaW6mcYc29D7URl7m0YK9Ida9BKPMKfMctE4jwWTSKnTmE9NjdLu8XnC88wtFplxgc7/vxgokd7vL/8BdnAF1yAPX74MPBkxQoZIH35ZThFF16ob09ADmi0teEzV66Mz9lzOmWmdX7+1PuwsthswCubDZ9fX6/vPj4bhLPQRkZk25XcXEkcRlsPo6Nw3ktK8P+TJ4FLS5aMt6P8frzeYAgftEIkh3zxsAy9hInECQatpPoKSBiL/H5cd87uzcwEcWg2438cNOO+4tzaKS0NPtDjj8OeuOoq2DU2GwjksjIkcrz0Enygz3xm8iBbIADbq7MTuNXaGt1vUVUQVx0deE9REfRyZmY4URhNFAV2yokT0PdGI3BgxQrZN1EPPHC74c9ZLLi2RLBDKirwSDSDeqYlFILPqy1LZiKUCHtVSxiWl89uCTb7dZmZ+gQjfD58/8zM8dnVnAiic6lzCqyK1Jd5EnFmZVovtsUCA9FsBtHHEXEWmw3Gb0YGnmeyTVUBWOnpRL/9LYDjppvwv127YHivWSOb3Gdng1BUFCifV16BY3jRRbKfy44d6BVmMCCjSOuwc+8clwtKVqvc7HYYp11d+H1kBIqNBypMpiwcDtkDsrh4PDnJpJfLBcOOIyBMenFfr64u9E4aHcVx1q2LXQIw08Lkp5YwjFaWzINP0tP1VbLci5AzDjmTR0scTvXzmLDIz09cYXk8MjI5GXHp84FQevttnP+KFUQbN8ZXXnpGUl1BTSsWvfYaAggXXCAdcKtV9vq56CIQf9xOYWwM/Q17eoi++EVkPR87huEou3bh/nzzm+EEwC9+QfT73+Oe3XEHMoIi153XC+P7+edxnzdvRiBCS1bb7Vg7ZnN4+YbVis/eswdrMy8Pw1nOPTe+rNlAAN8rGMSazssLX5ehEJyFvXvxGBnB/5cvB8l6zjnAR49HThZMT8dnT1epoNcLDGWnl4fKxCrRZizv7pak4cBAuGFcWytJw6oq/fs1crYhTxIlkqRhvFNFOeCSSDb2HCAS57FoAhkcRBVDXh5sCSYNOSOMCHjAZGFR0cSOqdWKlgrFxch4DoUQmCICmZeejj20cyfW04UXJj/tUit+PwhLrgbhSa0TCfdx5ABEUVFiDprLJXu0pacjoz/Sxnq/ihDSZmUST1GwlnhdTUbocWm4z4frGgjAHi4sBLEQKXxfI4lErvBQVXy2nmTEJBOb33dY5HDINgeKAnskOxv3QhuU0AbwPR7Yn14v9Osf/4h7fM01cngY9w/85S9hp27aBL9sMh3V3x9eNdXYKMuatVOLBwags30+rNGFC2VQIVbmoKKET1nmIMKyZXjohXMOhyQOueQ/L08Sh3qW6k+HcHamdvBJX59MVMnKCi9JrqqavmqSZIQrUHJz9bHbnE741Pn50W1YHgrEmbpJljqnOhalhMyTiDMr03axbTY5BWlgAEps+XJp3I2Oyqh1U5NMCzca5bSqnTthDH/0o9jgzz8Ph3XrVmzs06fxuvp6HLe3Fw56SQl6igWDiLy/8gp+37gRjr0WLIJBvM/ng4LMzwdY8MSwoSGpsLxeHHvVqslLl4NBHGNsDNeguloqNO6bNxHpxddpYADZl4ODkjSoq5vdSBf3MeQHAywRDLnILMPpMOhVVWYbclm00Sivodmc/DWyWmEUJ9rLhMlNzryM53xcLpBEhw7huq1ZA/ImjiE5qa6gpg2LTp8mevRROeyDJ64//zwc3ksuQTDDaAQWtbURff3r2MP33otWBQcPYvpyfz/Kk++4QxoxR44Qffe7IK4uugiR+Uh8CAZBAD7/PNZVSwsc/ooK+RqelOj3Ay9zcrCGTp1CD7MjR/C6xkZgaV1d7AwSrQgBI9jlwnfMz5frifuX7d0LnHE48L1WrUK24dq1ksj2+YCHPPSgpGR6ou6cLelw4Py4ZDk3N3wfsmHc2SlJw54eGT3OypJDT5g0nI5MSW70zw8uKeaMw3iJw8hjchZ1osNaiGaNTJnHIu3Bzuw/qxXr8803sU7q6qTeZ1KHH/GSLH4/CESvF/2iMzOxn71eYEx2NnTkzp1w1C+8UF+H12rF5wUCqCSJRixphYkt7nFVWJjYnvR6ETC2WHCtamrw2anYc0xPYR3CmayMnwUFco1NlcALhaD3FAW2Off05unzkRIIyAwt7eeFQiB7DQaci17YJER40CUCa98XWMRD2UZGZIZhdnY4ica2uckke/LyAJQjR4BRZWXIaM7Ph53T1YW91twMX+sHPwBpf+218LG0E5gjS4zdbmCDxQL9vWLF+PWiKDjv7m7Yyrm5sgXBZOXFNhvOm/tXl5XBLqqv128ABxOHHOApLJTEoZ6BGL3F44FfqyUN+TukpWEfa7MMeaDOXBfWH6qKtaQHhoyMYK1yCX+sz9Wh1DkFrnDqy5wlERVFWUNEVxLRz4UQHbN8OnrJtFxsnqRlMEBBGI1IX2enm/vWZGfDIebIWUYGwM1ohOP/9NMgUTZuxCAVVUVGUFoa/i+E7HExMED0wgsAlq1b4RS/9BLAYdUqDGCJ1hCaJzBzf8KODpwbp03X1EgHoLw8/HvEEh6UoKpQbKWlUqkyccikF2cbRpJMVisigz09+P/q1ehzNtNOobYsmYefaB1UnpbMWYbTme4eCoUTh0T4PC1xqPfnjYzgPnGvzUSO4fXiPKcyLdtmA+l07Bi+1znnYA2kpRHt37+fnn76afrkJz9JdXV1/JZUV1DTgkU2Gxp/m81woFmefRaZxJdfDiwxmUAgvvEG0b//O7DiO9+Bo/Tss0T/9m+4f9/6FsrNibAfHn1URu2/8AX0X9WKqiJq//zzcKCqq2F8r1gxPguQswQ5Q/Dtt0EechBmwwYY89x3qLh4cmOZ+yqGQjhGbi6eO3AAGLl/P75HZiYIww0bgJfatRoI4Ny5P2Nx8fgG+npIMCjJTlXFd+Rya0XBeXZ3hw8/4X49aWkwiLWk4XT262HikDMOiSRxyBmHenxGKhCJUfDofY1FXq8kcfjBfTA7OrCezztP9sxKJuNj+3bg11VXwYY5fhyf19yMPer1IpDq9SILW6++ydzuoK0NuNLaOjk5yeXagQCuQWHh1J19v18OWiCSe346p7/PdeGektrSVS5/54m7yZIqPh/IlMxM2LOnT2NNNTREz2YMBuUk+8JCeX+4VYzJpC8+Mx4fOLCftm9//2CRzyfvu8+H+5yTI3Wm0SgfoVB4P15FwX3o6JBD/rZvh+666SY8zxmIbjfR978PAueWW5DhrCUOw05YyOEs3Bpm8WIZTGNy0G7HZ9jtWFd1dZO3ZuJjHzkC38hgwLGXL0++rZMQuA5MHHq9OF+uICsv19/H0EOCQdiI2rJk7uuuKLBltYRhWVlqB1tCIawZozHx9hda4TkHoVB8JdtJlDonjUVnKQ+lq8xlEvHviOjHRHShEOLlWT4dvUT3ix0KQTFwD6tgEBFxjtoMDeH/ubnoq8I9V7KzsYEVBU7kY4/hNddfT/TqqwD1Sy+F4dHRgU1cVyenOD/3HAC+rAxRd5sNpMC2bdGj404niD7u/9HdLZv4lpRAMZnNyEDyepEaL/ma6OL3A8SdTtkjIxTC99GSXlriMFIcDjj2bW0wzlpb4ysP0kO4tFr7YKAkkoShdlrydEswKIlDjrCaTPIaTuf0VyI5eZAJmESEo73ccHoqMjQEIqm9Het040aiN9/8Cd1xx+20c+dOuuCCC/ilZ7WxnIgEg5iObLGgZNhkguGxfTswYds2OKQ8se/JJ1GuvGIFSEOzmejBB/H8kiVE998vWwjs2QOjemAAuHTHHeEZzkLA0N2+Ha+prAT52Ng4noDjMmM+Zy4n9npxnps2AUNtNrw2N3fyKXU80c7jkUM7Dh+WWa6BAI5xzjnIOFyxYvzaDAaBrXxunCWltwEarWQ5KwufrSUMBwfle8rKJGFYWwsCZboNY45Gc8YhEa4rE4fT8fnJ9Efk9xNNL5H4k5/8hG6/PQyP3jdYFAzChtH2MeRp4YoCAof3jcWC/61ZM3klQzyyfz+CHuefj2O2t4NcW7QIeOP3owrD4UAP6cggaqLi8wFLrFbsu2XLJl77nB3ncEhya6rEaTAI+6y7G8erqIA9NhM2yFwUJukYn7lPLBOHemXpaIWD6Twg5eRJ6MhFi6JjE+8NIcKJRI8H55yZqe8wQCGIHnnkJ/T3f3/2Y5HDgcDe6Cj2Obc+4WvMxKGW4EtLC5+WrE2ayM9Hy6dgED4XDxprbgam/PzneM+nPoUAXazJxW437IuxMeBNa+v4TGNuQWC14nwWLsR+nki/+f3odXj0KOyarCyc29KlyQVhVBXX0WKBncbD2kpLJXE4lwIUTHRqCUOLRWbi5uaGT0tesODsxMhAAHsgI0Of6hImYtPSYFvGY2tFljpzUs0E7br0IBHPRh5KV5nFtp36iqIo2UII1+SvPLukrw8b3O3GBtP2pRgYgDOYnw/DY2hITm3jTC8hQAgGg8gSOnoUx1y/HkqJ095ra6E8bDZkILKBvmsX/nfjjXD8o4nVCofUbodC46lyNTUgD3NzoeQOHsRnnHfexAM2hIAiGhjAeRcUAEzY6TWZ8P6srNiA7vGgT9KJEwCg1lYQB9OpALgsmTMMmaQjkhl+BQWSMJypLEi/f/xU6vR0nEtW1swqdc6ydLmkgpiqmExQ8mygTIVsKC1FlklPD8jEF1+EA0ckS8gnk/crFm3fDry44AKsZ6MR2FJeDuKvs1M24b//fmQLbt1K9E//hADD5z4H/LnsMjxXUACj/eGH4ZxXVRH9678iQ1S7T9vakL3Y2QmD5OMfB7akp8OZ0hoYXq8cCnD4sOzLuHIlyMOFC7E/R0ZkVHmyaLjbLR2+EyeAY8eOwegpKUH59oYNCLJE29OqKjOoVBXfu6RE30CGqoaXLNvt0ilmA5mJupwcXIe1a+XU5Jnq16OqMuOQDXU2FnlNTacYDLJELBEiMfL9c0FSFY+EwF7VZhjabBKHebptY6Ocfsrro6sL+7KhQR8CsacHts6SJSAQLRbYSZWVeASD0Bd2O3BELwJxZAQ4FQoh8BBtaJRWPB5cp1AIdtVUyS1Vxffq7MQeLC0FXs/lUsLpEh6UMTKC+yoEcKiiAutOj6yciYSz2MfGoMuqqqBfBwehUyMlLU32/LRase7T04HdoRCwn4P4eoi2Byxj9eTvSR0sCoVkphzrzexs6OfILD8i/ExPD9dTWn02NAT7IDsbPpTHQ3TdddhrQgBXDh5EEHXBAqK77orde1lV0Xbl5El81qpV4yezcwuCwUGcU3091tBEeDA6imDsyZM474oKBD65FUQiEgziu1ssOJdgUJJHFRXAmNkcIKIVl0uShT09wEIOtqan476ce64kDqcbA+aKmEzAEQ6SJ+snM1YxMV9UNPl7eCCRdlAR+9I6T3VOWFIJ3/SSWctEVBQlm4juJqJriaiKiNxEdJKI7iOiZiL6lyhvu1UI8XNFUX5ORLcQUS0RfZeILiOiMSFE/ZljVxHRt4jociIqIKI2Apv8oNB8YUVRXiaiJUS0iYi+T0QXEFGAiJ4kon8QQngjzvkTRPTPRFRHRB1E9J0zv/+LECIeKNH1Yg8P48FTlBYvlsZFfz9AsLAQDqHFIo1CbYbXvn0wfrduxWt37gTheN55IOmGh3HMkhJk/D36KMr+8vJkdtGKFdGBlFPhjx6FMjaboUAXLYJSMpkABgcPQslUVIDIm4i08nhAOI6O4nUccU1Plz1JJnq/34+mw+++CyOhqQkKWG8jORgcn2WozVKJ7GM400o02lRqJvCysmZXqQshm4KXlCSmGDjLU4jJB724XC6699576amnnqLe3l7KysqihoYG+tKXvkRvvHGUvve9b0Z72zwWaWT/fgw5aWmBo60oaG+Ql0f04Q8DS7KysMfvuQfR81tvRR+gF15Aj0ODAWU9l1yC1+3YQfSjH+E+Xncd0Yc+FN53qLcXxOXx43CWL7sMWOR0ShJce99HRoB1+/fDKcjNBc6dey7Ok3v+MYE9WRZgKAQSkrMNu7vxeVVVCMJs2ADDPdbaE0KWxbHTX1qqb7ZvIIBr/957uF4DA8DaQED2mamuDs8ynOl+PaGQdLQYI41GmXE4G4ZhMoNWiJLLSJwIj44ePUrf/OZZh0eCCLpIm2E4Oip1U3p6+KTkoqLYjszoKNoHlJYCj5IVpxMD5zIzgUMuF4IEBQUI2goBXBkclA5msiIEgiOnT4P0aW2dmPzhElu3W2bITcXR4xKzjg7gbWEh7LS5PsBAb+HSeB6UQSR7aBYX60fAxSvcLzwUAlnNE2oXLYqdEcRrIRSSAXYi6DaPR2Y2xiPvRyzyeCSB5HTKHsF5eTKwzb13WU9F0xNMMBoMWEtHjuD9b7+NYMjHPoZ1JgRw6rnnYPO0tCADMVbwcnQUPpPDAVJrxYrwvc4tCLivZlUVCMZYNr0QIDKPHMF3NhrhS65YkXhbIb8feGixwN7gdinl5VjHevboTFQCAeknM3HIVSCKgnPVZhkm6oucTcJkel6ePj6izYYATVFRYhmOoRB8WR5gxFzAGQ5gUiv2fcpD6Sqzyf//NxHdQEQPE9FhIsojopVEdC4R/YyIqonoNiL6NhEdO/OeXRHH+AsRHSdcUDMRkaIoxWdeV0FEPySi00T0YSK6n4gWE9FnI46RSUQvEtHLRPRlItpIRHcQ0RARfYNfdObG/YKI3iGirxFRLhH9BxH1xvuFu7rifeXk4nIBAJmNLy/H711dMlW8oADgvXcvFEVZGRQQN2EeHCT63/+V6fJ//jOMi8pKRL8HBuCcu93IBHrkESiZZcvg6Le24n3d3ePPz2pFph/3GFy4EA5qaSkAmoegHDkCUFqyBCDd3x/9+3q9+ByLRWYIFRUBPIxGOBs2Gx7RJBRC5O7oUbynpgbKOjcXRGkyoqq49tqHtm8XR0n4kZ4ePqhkJkQ70Vk7lTojQ/ZX5HNnRTqbwiWnvAYTEVXF92XSNpZ88YufoaeffpxuuunT1NTUQk6nnY4dO0gvvLCbrrnmVurr66Gnnvopbd78z5STs4zy84l++9ubX404TEph0cmT8b5ychkYgJNdWAjDorMTQ0PS0xHF3rsXBkJGBtFXvgLD+VOfQuT9H/8RPcQaG0E2lpbCeb77bjjqjY0YnJKfD0MvOxvY8tpr2MtmM4jANWuw5w4dggGRlyf39fAwnPx338WaqK3FlOalS3G+3N/GZsMxcnLwiLYPhAAGvvUWyMiBAXzewoXIwGxtlcNbGHOiicMBHOZ+ZUVFwILOzuTuBZOGnZ0gBHp7ZT+b9HTogKoqOB+VlbjeWsOYA1PTLUwcaicqc6kyl4PPpiTbH5EocSLxn/7pM/Tss4/TDTd8mhobgUfHjx+kZ57ZTRdffCtdckkP7djxU9q6FXj0pz/dfDOlsG20datsoI7jYa3yI87+R0Qkp9LytFo9+jf19OD8amuJ/vQn4AIPz1AU7BePB5/31FPJfR4RrgMPfOKp7hN9j2Aw3ImaauWAzwd7kjOEcnKmv23JXBK+fto1yKWoGRmz38+M7Ri211wurMucnNjYIgS+kxCy9QM/x4ROPN9rz57PUFfX47R48aeppaWFgkE7DQ4epG98YzfV199K9fU91N7+U2pqAha9/XZqY9GOHZL0ysmR5HF2djhBEWtycbThJF4vggFmsyw9/uhHgRuKgjLhX/4SxOBFF6G8Odp9DQYRMG1vx7HWrw/PSOUWBD09uNcVFbBLYu1lr1eWLDud+L7r1yOxIpFehF4vbI/+fthoHMDn8unIqpCZFC6j1g4+GRiQOjo/H0Th+vX4ycNG5yVccnKgmxMknQEAACAASURBVJxOfYb85ecDkzgpaKrXnEn8sTGsOyatrVaiL34xrkO873govWU2MxFHieg3Qog7Y/w/Zi26hgH+sRDiUxH/+0/CTbhWCPH7M88pRPR7IrqKiFqFEIfPPP8yEW0hoi8IIR7UHONPRHSeEKLszN8mIuomIueZ97vPPN9ERO8SUVo8DHBXlz7ZP4EAgJBJqMJCRI4UBQ7u0JAs77FasdHKysKNS78fBrGqEl15JdHu3TCEL7wQx2HyLzMTJZ0vvIDnP/YxKLpoRr2qYhOfPi2d4cZGkI7aCK4QIDtZsa5YMT7izaQXlxZyHwpuWpuTE58RxM3VjxzBteJsx3jSp6MJG2JawpANeCKZ6s0lyRkZs6c4tT0XeSo1Ty5m4nC2nfWJxO2GssrNTbyckh0EdgpYeMJgKES0bl0hbdt2I33taz/8P3KDy1CEIHrmmZ/Qf/7n7fTggzspJ+cCOn6c6LvfRZQrVbHo5El9sMjrJfrVr3CNN2zAnnznHfxvyxZpnHo8RA89hPX2hS/gfj74IPDqIx8B2ejzgUB85hncr+uuA9nnduN9QqCk8J138DnnnIPPNJslFvJwEB5E8NZbMJSJsO/PPXd8SaDbLaeXajM3WIQAhhw8iM+2WPDc4sVE69YhkzlePHE6ZV8lznZMNAuaM3b7+mBA9fbid58P6zc3F8GSujr8rKiYXcM4GJTN5lm4l5TJNPfKgphITLQ/ohDhBGksUVWQyhwEu/nmQlq9+kbauvWHZLPJwB/3Auru/gkdO3Y7rVmzk6qrL6A//1lG3FMRj7ZsIcGEDTvpiV5vzl5MZCpuNBkcxD2prMQ+5cBCQQHuKU+aLCjQJ2uPBzMJAfJwIr3HNhKv0fT0qelzvx+EVCAgB0Scjf28ogn3TebrRySd2LlQFhcpPFyAs96cTpzvRNk70UhDXjNE8a2XP/yhkBYuvJHWrv3h/x1TO+Cjvf0n9M47t9P55++koqIL6OmnUxuLfvc7EgsWyAm6vBa05OBUsCkYhM3gdsMO6etDRQUP/6utRR/pnh60YbnooujHGRhAYofHg+oGDoASyRYEXV34vNJS2b8+moyMwB86dQr6eMECDEqprZ36une55GAUxsbsbOBlRUXiCQDJisMRnmHIdhER7EW+xzwAZaYzjFNZgkHYyyaTPjpPVbG+mfjmNSgEcI4zw7UPqxU8x/Aw7jXbWYxLJhPRM8/ElYn4vuOh9JbZzEQcI6INiqLUCiESzdH77yjPXUlEp/jGEREJIYSiKN8l3LwrCIwzi0pEP4o4xitE9BFFUXKFEA4iWktE5UT0AN+4M8c9oSjKcwSGeVKprY3nVROLqoKg474cVVVQAEYjnjca0d8rNxcbrb4eGzOScHv+eWy0666Dg2wyoRywuBiRruJiZCvt2QPltHIl0Z134niR4vXiPR0dchjBhg1w8iNBxu+HUnU4cMwVK6QyFAJKkgkBoxF/GwyI1nH/xHilo0OWDtTWwuGvrJzCxSZ8F21JMjty3Gsmsix5LkSt+Rp6PDgnJoP551xz1icSJlyKi6eWjcJkIE+Y9npxbxRFkoQ83TUvr4DefXcPORxdVFtbO65U5eBBHHfFChh5Mfr/pBQWNTTE86qJRQhE0NPScF3y8kDaFRUBS7xelF2dOkX0gx+AyPr3f0ep4be+hfX48MN4fs8eTIfv6UFG35134jg8AITbLoRCaKFwySUSC5xOGLNmM/bl3r0YgDA0hL8/+lEcM3KaIJMOmZkwKrXly6EQIvR79uA7jY5izTQ0oGfm5s3R+1LFErcb55OZCcM6sq1EPOJwAON58El3d3ibhNJSfE92Mnhw1myKdqKyEHLP8WO2z28ySXbQitcrS3P5wdM9uXcZD2og4mtUQEeP7qHa2i6qqqqlJUug77lX5htvYBDRt7+NfRZDUgaPXnllslfEJydOAD9aWhA0TVaOHUMAdc0aBB8OH8Y+bmmB03ngALBt+XLYJ8mIELC3eAhetAEJWrHbYddw4GMqTrDTiQCL1QqSpK5u8kELqS7cX5MdUL9fXjsuj59LAx2iydgYvkNxMXSixQL7f6IAFus4vx96JzNTDvAyGCYuKxWCaNGiAsrN3UPf+EYXVVTUhtk+aWlEv/41ehl/85tEF18c8zRSBouuvVa/fSAEbAiXC3u7pwdZ1x6P7Nf8wAP4+667orde8PlQQdHXB1zYtEn2eOUWBJ2deF1hIXR/NCzQJlNYLLh3jY3Arqn2jLXbJXHIJf/5+chgrKiYeULO55NlyUwc2u34n9EIO2jlSlmaXFx8dmPddEtaGnSTywV9mEgQnPuNMh5bLFifDoecgM44zcJEYW4u1iy33OAWJyUlsIHLyqZkW7/veCi9ZTZJxC8R0WNE1KEoymEieoGInhBC7JvCMdqiPFdHRDuiPH/0zM9IGmxQCOGJeO5MwS8VEZHjzDGJUCsfKToWBk4uAwPYaHY7DIKlS2EEtLeDla+ogGFotQLMo00+On4cBvLGjdKgXLkSYHv0KLJ9Tp2C4snKgnGwbdt4EtRqReZQby82eG6uTF2vqhqf9TIyAgIxEIDCrKmRDf+ZOGSHLRCAwZSdDcUY7wQnIiiUffvgtOfng+Coq5v8fVw2oh1+oi2xysiQg0/M5rljdIZCkjjkPoCcWcDDZVJVaebnY12PjUFRcIagliSM/KmdkMfCQ1a4p562l819991Ht956M23eXEctLS106aWX0vXXX0/r1q0jIpmdwSRkDDLzfYdFf/0rsGTlShCI+/Zh/V18seyrtXMnHI01a4i++lWi//kfBDDWrCH6lzPdRh58EOXJFRUoYz7/fOn8vPEGsqR9Przngx8M79PjcMhMwtdeQ9CA2xVccQWc++Li8Xs1EAAeBYM497w8vG//fpCQ+/bJ3ogrVuA4zc0wVHJz44/Ye73AIZcL64aj85PtR58PuKolDTnSbzAgGLJ8OQyo0lJ5XrNdiiiELFOOJA65rC6VsEg7KEUbIOIouXboh3ZqMP/OpYcsigK9zf39mpuxHnJz5WPz5vvoy1++mX772zpavryFLr74Utq69XrasGHd/1UJEE2aNfa+wiN2Ihcu1IdAHBoCdlVXg0B87z3cb66qePdd2EiNjckTiF6vLHOsqYk9gIkIGMXOFa+jeAOXHg8cNZ6KuXjx5IMWUllUFdeUHdJgEN+1sFASh7Md9J2KFBTI+19ejvXY3y9bhUQTRcH3HR2VGa5ZWXiOcYrL/jlLnIM+gQDR3XffR3feeTO1tNRRc3MLbd0K22jjxnX/h2VEk17HlMEiPXXTyZO4vm1tCPht2hTeo/uhh4AlX/0qcCZSurtB+oVC8PMWL5Z7dXgYe9nths5oaoo+edvjkf6ey4XX8pC3eLOOuVc0E4fcgon1V0XFzA5eGxwMzzIcGpI6tqgIvh4ThhUVc2doy9kkGRmy739klRdXD0ZmDg4Py9/HxsYPqlQUYFlZGdqbFRbK4GlBgSQOI3uRJmlTzvNQScqsbS8hxB8URXmdwMhuJaK/JaIvKYpyjxDi3jgPE3nRE5GJ5orNKXdHm72QmQkAN5lkVJkzDh0OWc4cKTYbnP8FC0DOvfQSALehAX3NXn0Vx167FhvabkfWDROIoRDAu60NQMDGaH4+AIWzeiIdrlOn8MjKwrGNRhizkaSXySRLhPLzcW7x9ucYGYHzz73TNm0CGEUzkrU9AvmhjXrwoBYmDOcaERcMhhOHRLgXubkTT6Weq8LkQzRS0OXC+u7vjx7lZGXCJTuRSoaNCI9HlnNr7+XHPnY1XXDBJnrmmWfoxRdfpEcffZTuu+8+uueee+juu++O9yu8r7DoxAmJHbW1IO+cTmTCcUDhsceQZfShD4HQ+/znYfTddhvRLbdgr37rW9i3115L9Hd/h/urqnjfCy9gbTc3I4gRObBgbAxBiQMHcNy0NBCNa9fi89PSYHxEOjg8IZ5J5cOHkXF44AAwITsbWcvr1sEgVVUcKz8/foLO74fRxP0Iy8pi9wTico6uLkkacsk0kTSMFy7ENeA+MtoeZhP1x5pu4b3LzicRvqfJJDMOU0mCQawPLUHIUwT5ee5nqRVFwb0pKoKTv3QpyAo2fpmsNpnCszP5vdzPbuXKq+maazbRs88Cjx577FH63vfm8SiWOBxwlLmtS7Li9WJgU2YmghZdXcCo+nrc2xMn4JTX1yOAkowMDYGQFCK8n2qkcCYd40lJSfwZIH4/cKWvD+uMByil2r6MR7QZLpw9zpNAi4tlGXqqCvcNHx6GnX36NNYnDzOLJkwkjo3JKdOZmXiMjEBvZ2WNx6KsLKIbb7yaLr98HoumKj09uE9tbdh7a9fK6qXhYaI//hH6/LOfHV/y63IhqDA8jHW7cqW0e8fGkDDicOD+cGAzUoaGQEC2tWEPVFXBH6qpic+P4VYpTBz6fLIXPQ/wnG4fgzFPSxj290u9m5UlK/GqqvB4P06RnylhMpnxlXtMDg9jzXKVhSfKbtf2F120SP6utY8Yj2w2rHttgEJLGOqJ3/M8VPIyq2aEEGKQiH5KRD9VFCWTiLYT0d1nUj4T7dnVTkRLozy/TPP/qUrHmZ/RigAbEzjelMXjkZM109MRATebQcyNjcH45B545eWxU9r/8hcogwsuQOYONy3/+texgdeuJbr6ajkZcONGKA2eitzeDqM0Nxe9wKqrZV+CvLzxJXQ+Hxz9wUHpDHNGDZNe2dn4TiMjckgLlxfGo/DsdpAY7e34PuvXI2NASx4EAjK7UFuWTITXcQNzJg3noqEZCMiMTW0j9fx8KM+52gg4Vvag9vdo2YMGg7w3RUW4Zzk5WC8TTcWLJRkZ8t5HEtNlZWV022230W233UYej4e2bdtG9957L335y18mJXH2+KzEIquV6MkncQ1XrQL5ZrdjwInJhOv80ENw7D/1KazNv/977PWHHgKe3Hcfeh8WFxPdfz/2rBAwnv/8ZxiuixejX2IkMeByIRDyxhv4vawMROWGDTiGyxV9OjNnplgsOLfjx0Eg8hTLLVtwHsuXY3/Z7bLBek5OfFgUDAIPudQwMuOFDWPOLuzshHHM+zkzEw7+ihVwMmpq8Nl+vyzbdrtx7QsKZs9o5j0dCMhsbe7LxhmHc1E4Sq4NyEVmErKjrZW0NBi6RUUIuHGQjo3goqJwwlqI8Vk9PEkwEMA14mz2aNeromIej+KRQAB72GTCntFjkMoLL2CvXXMN1kJvL+wrJm0OHcK+XLs28c9RVWQqdXbC7mhtjb2XuSSehz7FS4QFg7CnenrweZWVsL/mqp2QqAQC0rHlDBceIlVcrM8AgLkiBgMyz7kHXXU1MtL6+8f3+mXhIE9GBtYzJyFk///23jRIsqs8E35vZmVlVmZW1r51dVV1V++r1JJaCxJCEsKAIDx4HAPjCRgw4GA8YM/MNzNh5rMnEMzYmDEzJtgmCAv4WD7AI8syMgKBEAgjEBJqCaRWd9O7uru69i33/cyPp1+dk7fuzb2y8madJ+JGZmVl3rx57z3vec/zLk8A50WdLznwo0LbosqwsAA7wQTi/v0Y434/Kr2eegrBzve9b22f7nPnEKRwuWATxsdxjaJRrG+Wl3Edd+9eu9bK5/G9L7+M9ZbHg0DWgQPWWYpm5HI4dhbm5F6pAwOwHYOD6xt4SCYLhU+uXMG9SYTvHRmBzeU+hhsp1NJq4Axnu/6D/Ghu5cTZg/39mBOvv16WFnPgpre3kHDmXvTmyrFUCmsEXuf29DQmGUbzULVhQ0hEwzDcRBQUQryqpSuESBiG8RuCvHWI0DySiKjCjg30j0T0nw3D+B0hxMPXvs8gov907f+PVHHIx4hojojebxjGZ0wNLe27EtUJ2SyM6swMjPr27XCMzpyBUzA4iPcYBhwJu8y9p5/GPu67D8Te6dNYVM3PY8B+6EPIvnn6aUxGN9wAY/Dss4hiE8GZ3rEDE0suh9cTCWk0VExP47OxGI55ZET2oVFJL1Yv49T80dHySoXjcfk7XC5E7A4dwjlSMwzNZcm8AGeBkWaOyKfTkjjkCJzXi+vl92/ssaviJMVKjK20mziqxEI05j6E5oiTEHISq1YxkbMV02m5kM/lchSNRqlLCQd3dHTQnj176Mknn6RwOEzBa4z8Msual4+Ws0WZDNE3voExfe+96Be5tATyjcmuT34SC5wPfxitEX74Q/z/z/4M73//++EM33sv0XvfC6fw9Glk/1y8iHv7938fDqPqJE5NIfDxi19gTO/Zg30cOID3ra7CEeGAgIrpaRCPzz0H8o6zA++7D8e2e7cs6eL9eDzl9+LkDJilJfzNvbayWZktwqQh9xFyu2Hrbr4Zi4WJicJ+PdwjdnZWZgIEArCRG9FKIZ+XpJhKHPL43UjiMJ+XC2QzMaiShpy1rSIYlOXFnG1mJgkDASmUYtUfkQWc+PxwRiaRtDtMFrJts1oAaXtUPoTAgjmZlJk+teLZZzFG774b/sGJExjLk5Mg5I4dgw90883VL2ATCRCR3Kt5925rUjCfx33LrRDKzf7J52ErL13C/Tg4iPu6USWHjQD3zVpclP3PWDChr68+Df+bFe3tsE+Li7gf+vrwnNshsP1RgxgMDoZxFvv27bgPuUpDneu0LaocnBV97hx8mR07MP58PvguJ08iu/mf//NC+7G6irVMOCzFH30+2YJgfh7XZnIS97hqL+Jx7PfUKVnBddttsCulbGI2C8JxehrfkcthnhoawnH096/PvJ7LYS2qkoYLC/L//f0I1nFZ8tBQ8wYmmxkcVOfMQTuikH1SFT6fzBY8eFA+7+3F9eEATS6Hz7e3r01e4v70iYRcKzLY3nAFGZclBwK4N5aX17evt+ah6oONoiA6iWjKMIyHiejXRLREREeI6P1E9CMhxKxhGM8RWOD/YhhGNyFl9BkhRCkG9xNE9A4i+qZhGCyt/RYiejMRfU4IcbzSgxVCZAzD+DARfYmIfmYYxleJKEiQ6X6RiG6odJ/lfzeIupkZ/L11Kyal3/wG0Skm8zhSY7e4vHwZAgEHDsDx/ru/k1kvb3qTjPAcO4YJaWAARufcOexz505MYBwtT6dh+LNZfC87bZwxw+pffj8c7oEBPFePTwhMYPPzMCBjY+VFzNJpOOEvvwwjtX27JAGmpgrLzLxeGDbOMGxvb/7oVSoliUN2AH0+WarciMnULE5i92iGYUgisL19bf9Bfqz0GnCpoJruXg08Hvw27pEYiURodHSUfud3foeuu+466u3tpRdeeIEeeOABuueee2hoaIhuuukmMgyDPv7xj9PKygp1dHTQ7/3e723fjLbo29+GU3vrrSD+FhdB3vf1YRx/9rO4V//9vyf60pdguz7wAQih/M//CRJvxw6i97wHJKAQRF/4AvbV1YWy56NHJQmYyyHT6KmnQMYJARt2zz0yQ5EX25mMHCNEsAXPPovPnj6Ne2hykugd70DWIkf5GbGYdKZCoeLCBuo5YaIqnZYtBl54AYv4uTlJog8MwE5xOeGWLdYEZS4HGxqNStvO4gmNzpDmsZ7JyIix241r3NbWmOPhKLld9iBnIJmzmd1unLfeXswt1123Nnuwp6d88skwJJHKDrG5LNnlko3HOavHfI5U1WazHazGHr33ve/9l7QJfaMLF3Dt9+6tjwroxYuwF/v2wbb8+tey7/TMDFoeDAwg47ra+352Fn4LkexDbQUuD8vnYYvKyaYTQjaoT6Vwf09Oto7yqNprK3ptaef3Y2z39ZVnr1sFwSCu8fKyXMifOIF5hf1DLksOBGRPWhZTCYcxT0Ui8vPcd5p9dG2LKkMqJUuIz53DfTk2huvx6KPwBd79bpQVM3I5rOXOn8dahcUf02kkiczMyBYEW7cW+gtsSy5cgJ0YGyO68068r5itSKdlmfLCAuyG1yt7CNZbeIR9JHNZMq8fgkGQhdddh2MolgijIZHLSf/HrgehWZyEwUHugQHMb2rmIG/lVrm4XHivmjXK/pHq57jdMgGkWFmy2y3XE0tLhT3Q6wzNQ9UBG0Uixonos4Qa9LcQkY+ILhHRXxJOPgkhzhmG8UECc/s3ROQmot+nEmmgQohFwzBeQ0R/QUT/msAmnyc00Pzrag9YCPHla6n7H752nLzP64moxtba9pifh7FPJKQk/W9+AwegtxcDtaOjUBrdjESC6LHHMNE8/TQyecbHid75Trk4HR2FA/2DH8CAcz/FI0fkRMiIx2V/nbExvLa0hNdjMalItmcPyEmr6HkshgmFVcVGRkqTY9ksyMNjx/D5kREsygMBOJVtbTh2VqHzepuzLNkMLkNnReVcTmZMcqlyPX+Hmj1YiTgJL5DdbntycD0JTigpg0SMxapfNHi9+H3IWvPThz70IfrhD39Ijz76KCWTSRofH6cPf/jD9Cd/8idERLRjxw763Oc+R5/85CfpD/7gDygH7+d1tMls0bPPYtu5Ew7K/DwW3KOjcGa/+lVk0732tUSf+ARsy6c/DSf3Ax/APj7wAXxmbo7oySdhKwIBkIcHD4LQ6ezEeH76aWyrq7ARd9+NCP3QkMyq4f51+TzGyvQ0FvvPPANnNZOBjXr720E8mvsqEkkRp0wG90ZXV+n7mNUOX3oJ38PkNiMYhI09cgSPY2OlnbJ0WgrFCIHxr/aGaRRUcoztAAcF6kkccpTcTAyaSUImDFR0dEgi8OBB6+zBepQxqmXbamkykcye5mz2csu41UxT9W8iIr+/cntERN+kTeYbLSzAroyMWI/pSrG6Ct9nYADCTidO4D7fvx/34dNPw57dfnt1c1w+j0DGpUu4Lw8fth7X2azMmG1vtxaFssL8PM5HPI45ct++8gKyzY5oVC6MuddWZyfKsjfCNm4kuEWCGtSJRjH/dXVJUmjXrtK2KBSSpcxCwF4y6cDZZ9oWlY9cDr1NT5/GxuIQqRTatuTzRP/hP4CwYczPYz0Tj8Nv2rcP1+TCBSlWOTIC/4EDXbkcCMqXX8b1am+HjTpwYG31hQpW8+YMLxbY2b4da0dz65daEI9LspCJQx67Hg9IwltvlWXJfC9qSCSThUIkVkShlThJW5skAXftKiQFOYuwt7f2CjYhCttU5XI45kgE9tnrLay8qHTO5LXv6qpcE6wDNA9VBxjCqtZQo2wYhvEIEe0VQpRTk17RyY5EkM03MwPDu2cPJhBOWXe7YYD7+4sb4a9+FQ6y1wvDc9tt6FF25Qr20dmJBf3Pf44F+r33IhJv1bB3dRURsHweEw9nZbBDcu4c9nndddbOPaexLy3BOIyO2kfKWf2J0/VfeAHPh4dlE3LOMOTMGKeASxWZOMzncQ79fmzV9GXk8mKrvoPq63blxVYlxepjs0z0Kyu4L8pdYFmBlbhVhcEK0SRnQ2I9bdGlS8gY7OiAgzw1BRuxdy/KhFlxua0NvQpvuw1BigcegFN9881Ef/RHcH6+8x1kRgeD6EN4550g0Lhf4M9+htKeXA5Bgttvx1jP5WDv+HpxJgb3ETp2DI65ywVbuWcPSMdt26ydEFbYjUbxGXXfZsRiOOZLl/B7OBOc+7pOTsoMw/Hx8vv1CCEzQtJpfIZ7MDayZFktgWP7wMRYNWOfo+TFsgeLiZMwQahu6mvrQR6oytJMGqrZ1mwf2SZyZk8t38fq1TXa1qazRUQV2aOKbFEigWBGRwcyd2oltbNZogcfxBh8+9sxxmMx2I5MBr6R348+0tX0aIrHkdUYiYAs2LXL+pgjEdkvuru7vIXT8jKymFhoYXLS2m9zCoTAb+GFMrdxCIXkQrjVejrawRy8MLdI4PlhYQH3pc+H4P7wMMjwcsDzn8+HOWdhQQr3VGmTNpUtIpJtFV58EVtvL3yhxUUovPf2Ev3xH0vRpHQa779yBQFUzpCfmoKPkc3Cx9q2TWbkcXLGqVPwW3t6QB4yYWyFaFQShxzg7OzEcQwPFycdy0Umg/2rWYZc2W4Y+B1MFm7divvSCYkd6wX2ca0Ui9WSY1bAVsHiJOaMQXXr7FyfdZqZMFT9Iu5d73LhPnW54MPV4zovLGC+Hxysau5tSlu0Hqhw7Vff79YkYnkwDMNLRGmhnDDDMA4Q0a+I6ItCiH9Txm7KPtmczn7hAoi9ffvwPJGQCo+sNmeH1VUs/L/3PTivXPb71rdKo5/JIKPm9Gk4ze94h3WGlxCY4K5ehXHo75dZGB0dcLwvXoQRO3LEmhhcXcXns1lMJoOD0tBwZlgyKQVQMhkc58mTMKojI4hgTUw405HM5wuJQ+6vpRKHdhOAnTiJ+mhXXqwSgXYkoZOQz2PCJarJ2X01esZ9GSvEhk1QjbZF0SjRZz4D52bHDtiN8XHYpL//e5D7r3kNiLX5efQ8zGTQMiEYJPrDPwSJ+OijsEU+H9Eb34hgRTAoVZaffx775rKeO+7A9V1Zwf66uvDZbBatGZ56Ck47Z+0cPozv2bsX9wiXblnZinQa9iiblT0U2RZls7BTrJR86RKcGRZn6u7G79+/H981PFz5GLIqWWaRqUY42SphxuW4bCt4sxtXicRaMRIzSbi6ujZY4fGsLSc2k4Q9PY2zR5xxac4wJMI1YNETJlPV88GReMOo7XpxpmeNROKGOst1sEdl26JcDi0RkkmM9XqQyT/4AWzXb/+2zADZuxfX/Mc/xuPdd1f3XTMzWPwbBjJmrcidTEa2Q+AM21IB0UgE5CELLWzfvr79o9YTrPrJi+lMBmOKS+56ejamB2wjobaNsGuRoNoj1eYkkwjs+/0yILVjR/n3K7fx8HrxGb6nqmwZs2lsEePsWQQwjx2Dj3LTTVgL/fKXIPk++EG5HpqaQsZiJoNMxV27UJXxyisY/9yXl9dg09MgHC9exN/j41KN2Aqrq5I45Az+7m5JHNZS8i8EbKNKGHJCCRF+O5OFo6NIfHHiOq1acNuVUgIl5nWayyX9Iqu+g0waNkJkhEj6kpp1OQAAIABJREFUhiphaC5LVjfVFuVyaJXACU61Ip/HPSZEVX0xHTgbFked1n71PSZNIpYHwzBuJdSif4uIpgkKOdeK9OiIEOJ8Gbsp62SzytbJkzAu+/bJlPBgEBP90JD9hMDqpY8/Dgf26FFk+ywtIUPo9Gnsn9WPp6aQtfOmNxUO0nxelii/8gompe5ulOYFAjiOZBIEwPKyJBbMAz2TwaI8HMZntmxZK36SSsn3ezzY36lTUjjmppuwf6chl5P9DbmpP5cD+/2YGOohTmL32KpRP56wOzpq64fFYggsDlEBNpJEbKgt+uIXUba7c2dhVvTXvobAwo03YmHf10f0r/4VyMKpKfRBfM97kIXz+OP47KFD6AvU34+x/eMfIwM6lYJNu+MO2CufT/Y6zOXw98mTKFP+xS9gi/x+9Da89Vaownm9eH8iIRfj5vs/n5clw+zohMOSLLx0CbaKHb1QCL+3sxP7GxuDg1ztPZdKye8nwnF2djamBxA7h2qzfSYOufRkdXWtGImZIOTSJBXBoDUxqG6sBroRUEVheKGuOsYqWVhuhmE+by+0UumxEdVkqzd64V6rPSrbCX35ZdgRVoGsFS+9hEzDW27BIvvyZQQpe3rgQxGBQKy0r2A+D//lyhX4TIcPrx3jnJUSDuPa9/aWbnkQj4NQYPXV8XHYI6fN89yDT1X9dLsLgwxOC26WCyvldjWYoGaAl9siIRyGbQ6FsOg2DPuMVyvE49iH1wviJxzGvVjFPLdpbBER/Jxf/ALVE8Eg7MiLL6I64tZb4f+0tUkxpbk53NuHD8MXuHhRJoawYGY2C2Ly5ZcxNrxe+Fv796/NTuZ+g0wcskBOb68kDqv1LSKRQuETbj9FhGMaHS0kDVtVzEgVJzETgqpYCQs8qeCWNGbFYnXr7t44+62KY/KmtrJSycJy15Osi+Dzld9XsRgyGdi09nYE4SrwtVqRRKzH2q++x6RJxPJgGMZWIvo0Ed1KRP0E1Z6fEtGfVtAks6yTPTWFCcfrRUR8fl4SeIEAMvKsohLpNNE//RMW5okEDP7OnehR9swzMGCxGBwG7i127BgmtTe+kdVqC0mvTAaG0uXCAnp4WA7i2VkcpxDY38jI2mNaWoJjnkxKsYJ0em2Tft6iUWQ2Xb2KSfmGGxBVdVKEPZuV5GssJsu929ulElW54iTFHp10TtYDnMnFPTCrBat3d3RUNJlvJInYMFv0ve9BNXl0FGN5aAhlNl/9qswOPn8eWUGDg7A9w8NQes9kkOUTiWDyP3oUGYuzs8giPHYMtuDgQSzU9+yR93Q+D+f1+edBHnL03uvF+1/zGjjpnKGSTsOR496IVov+ZFKWDC0uwq5euSJJMW4uPjGBxfnwsOxTyM2eyy1TLjjRppJll0uqLK93CwZesCYS+L2cJcjkxeqqJAhXVuyj5OZyYnOJcTNlHKhkqVlNmmjtIr2Wa8BEYq2ER41E4kYv3Gu1R2XZoitXkDE4OYkFd62YmSF66CGM9ZtvxsJ9aAi27sc/xr1z112VEymxGPyiSAS2cteutTaD1YWzWdgCq4CH+f2vvILMJJcLdmpszFktXLjfoyqEpPbwqlcJXDOhVIsELkvmrRa/bn4e80wwCP+5pwf3SblIJGQPsrY23MflCowp2BS2iAj38VNPwVZwa4Vf/hKv//Zvo+KLCBVkp07h+b59uM8vXoTvGgjARvT1wV6cOAEbx8JIBw5gDaeOc67EYeKQfYr+fvgsQ0OVz8fpNO4ZlTTkEmiXC/tUy5JrqQBqJqjBjGKblThJV1fxzMH+ftwXzXSezIShVVmyShhWe+zMHwSD9fEN43FcBw5Wl4kmOvP1QZ3WfvU9Jk0iNhQlT/biIjL7Mhk4n5EINm4UPzKy1nHM5RANe/xxvPfgQUz+Fy/C4X7mGSxYd+xAZODIERB23/8+Xr/3XuwjFpORJnZolpfxfGREOhP5PCa6CxdwTEeOyIgD95pbXcX3r6zAiAwNYZHOvVtUtWQivP/YMXzG50OfkL17mzcabc4eTCTgFEQiUhyFhV46OiTZoYqT2D02629uRnD5EzcDrwbcn5Kooknf6RNUSVt0/Dh6Gvp8cKIGB+Ec/e3fShuUSBC9/vVwfldWiH73dxFlf+IJ2LLt2xGdNwzYkuPH4aR6PAg83HEHSDvG8jLs1U9+Aseb+zMdPQp7sH07bKFKGkcisB9tbYWEFivInz8vW0Nw2Rar2Y+NSdKQ2ytkswicrKzIDKHe3soXuLkcvi8ahV30eGTJcr0cS7M4yfKyFL1hB3h5GU4Yl97yd3OU3KrnIG9qmXezwrxIN/cOM5cC1tupZ0d8A4nElrdF7B/09sI3qPUaxuNE3/oW7oc3vQkEYigEn+vJJ/H/172u8pLO6WkpynLo0Nr+hPk87Ar3U+3tLZ4plM0iO/rKFYz1LVuc1c6FKwZYeEoIKRjT19d6ogrmFgnmsmRzxnM9f3s+D1KJW3ksLmJ+q0RgJ5nE/akG53p6Kspmc/rVLGtBHI0S/fSnEKxsa4NNevZZXP/3vAc+TziMKoyVFfgW27fj+qys4HxOTOD1q1eRdXjpEva9bRvIQzUpI5fDnD49jWzGbBbfOzgoe2CWG1DI52UAlUnDuTl5nzL5zITh8LAz2wkkk/aKxapvZCVOwqSgXf9BJ7RYyOfXEoZWZcnrlZQSDss+5vVY066swJ+uQDna6bbIEdAkYmNR9GTH48i8WVwE4ceqoQMDMGZDQ4ULDCGQtffYY/jM5CTRW96Cz3z961iwRiL47H33FZbM/OM/Yh+q2mB7uyyzzWRk1Ht0VGY+xuMgOVdWsPCenISjoZYls5H2emX2os+Hv82GKhbDbzhzBsbs4EFsG2WgrcRJrB6FKOzhmMvJ/obBoFSoMvchbCWHuRmQy+Fec7tleX414H6VnBlbBpx+JYvaovl5ov/1vyQ5xyI2jz0GO5FI4LWxMSzAd+wgetvbQBJOTcEBfstb4EA8/DBaKHg8sGG33ipV1Ts7kZnIys8chR8cBMF4++2wM7wA7e6WC+h8XiqZer2yh+orryDbcHoa+0qnEezgHkQTE7Bp5oV4LifJOCJ8VzXkdL1KljlKbi4nNpcYc2kuZ8UR4fs4Kj4wUKjMt57iJOsNLktWSwHNZcnqQr1R/SXr0R+RqGoisaVtUToN2+ByIWOw1uy7fJ7oH/4Bduetb8Ui3uNBltDPfgZbc+ed5YtTEGGsnjoF28fliuZqkXhctmcIhYqrh+dy2NelS7jPOQPcCWNWXbxHInito0MuwCstDW9WmJXbzbbIHLxoRHCY/XaPRyYF7NpVGenMSQBuN35jPl+RiF1L2yIinNOnniJ65BFc7z17ZD/ED34Qa6LTp+EXeTzwjdJpEFjcgqC/HyXPJ07AJvh8CJLu3y+TNbiMc2YG/lg+LxMyhoexj1LzhBAgc1S15KtXZf/fjo7CkuTR0dr6JjYC/JtKZQ9aiZMEAtakoEoaOjGwYS5LNrfAMhOGjfCL8nlZ4l1srisXQmAcpNMYA2XYI4ddRWdCk4iNhe3JzmTQn+f8eUwyhoEBODKCBbUa0RYCi+1HH8WEsGULSMLubiziH3oIk8PEBBaTb3kLFpsuF17/7ndhaO6+W/aq8vulc76ygsgU973g1y9fliWIk5MwDHz7uN14zgtwVuWyc/hTKZT8nDiBz+3bh2jeevYGq4c4STaL38/p7axuHQhg01mEjQdHz5mUqhbZLO5Lj6csp9vpE5StLUqliD71KZQRe71wsmIxlOoQYbyOj+M1wyB685sxti5cgD1505tgG376U2z5PFoq3Hkn7EY4LBuG//KXsmn4xATswA03IBLv8eBYVldlo322J3NzMquRS5M5i9rng93q64OzsX07bJHd2OTei2o5dH9/ZYEMzgiMRKQwAKssW9nARMK+5yA/LyZO0tuL88FkBCsa9/WB/KhG3b3ZwKXY6kJd7dejLtLL7R22nsfKGUC1OstVEIkta4s4ULq6imzkehBQTz2Ffd5zj2xlceAAbNHCAgIXVq1Z7BCNwpeJRmHfzO1XODiRSGBeKVb+LwRs48WL8DH6+mC/mp1443KzxUXYQaLCBXs9emNtJMz9ZK2U2+vVIqFWxOOYD71e2VNvcrIyu5RKwacyDBkgKTOg1rK2iEhWfT34IGzH2BiCB9u2QYHZ5UL2YSwG38PvxzVwu+GDhEJ4/+nTGN/9/bA9O3bgPamULFNeXMR95/PJ/oalAuXJJNaETBhOTUmBFbcbdk0lDWsJvK8HMhmZhGKlXsybeZ3GfSCLKReXyvp2EsyEoeoXcVlyM1S2ZbPw97kKp1bkcrLnqzmpygJNdGe3LjSJ2FhYnmwhMLEcP45JxevFJLR1KwhCtSfPxYsgD8+fh2F8/euxeLxwAZ95/nkMsNtug7G94QZMIqkU3vfUU/j/W9+KCUU1MMz0r6yAbOzuxkQXj8sFezCISY9LHLgkmY27x1O8yW42C/LgxRdlybadmnMlMBOC9RIncbvlOYjHpUPV0QEHocI+ehrrhHAY16fW/mypFO4Vn6/k5Ov0CcrWFn3ta+hlyNmds7MIWuTzOC/9/RgTu3djccJ24a67cO6ffhoL4XQa4/ttb4OzfeYMerY+9xxshcuFfdxyC2wAXzdWJ43FpHpxNIrvuXQJDjj3aQ0EsO/xcWxjYxiXTHCGQvbZOyxssLCAax4MgoCrRAUvm5W9ObnHF2cpMyFoJVRiJU4SCFj3HFTVjH2+tY4jZzvXuzyu0TCXJJvLktWsnmbM6q6X0Arvi6jsuaXJzkTFsHVCz5zBmD9wAIvoWnH2LPq8HjwIOxaNIvvnpZdgs265pTIBt6kpBFva2lC+bBZ7iUbhTwkBP85OsZJ9rwsXYBu6umSgtlkRiUi/j0XjQqHWWLBvdIuEWrG8LBfvi4sI6g8NVbaPdBr74WxEDiiW+K1NdiYqRsmAxte+hjHd2wuy78Ybid73PqzNLl2SgYJUCp8ZGYEdP30aiRguFwIDBw7gmsTjkjhcXsZ3BQKSOLTL4mJCRS1LXliQ/+/rW1uWvFGEEveFNpcTm8uNuQ+jCr7viqkXd3e3bgKHWpZs7u9s7p/fjL3yk0lc+46O+mTSp1JIIujoWNsuxIQmOxOtCU0iNhaWJ/vyZZTreL0g31IpRLa2bpUR3JkZOL/Hj+M9r3kNjCcriXJj3lOn4HzOzGBBHQzi/xMTsmfHffcVOrvcE+7iRRhyn086u4kEHPlkEgv+Q4fwfzZUrOCVyWCfw8PWCx/uo/irX2Gf4+OYfEs1SVXl5ouRhGbUIk7Cpa2JBIwfLwxV4rDZDPVmhxAyk6ycMo9iSCRkBLjIfpx+B1jaoiefJPryl0HC9fZKxWLDkCW5nZ2wA6kUbNaNN+L/zz+Pczcygqzizk7YjfPnYXvm5vC+669HSfPRo3D+Mhk4zy4X7M7cHOzYuXN4vrJy7YAFxt/QEGzc/v2F4gLpNJzQbBZjtFg/v3AYi/ZMBu8dHCzt4PBxLi2BcLh6Fce3ugqygBUurcRJurvtRUn4uR15qWbA8HStZrw40RZx7zCr38Z9Y9VFulMCNfXqjyhE4fkoAQfeAQWwtEVzcyD3tm5FyWCtWFoi+j//B37KwYP4e9cu2CdWmZ+cLG9fuRzIw6tXMX4PHSocv5xRk0rJ3qN22WlLS7JfayCAY6iH8nS9YS4jTKdhe1hgoNkElspFOS0SKlVu32gIgfHDQdFYDPdVpaWqfB9z+avfX7JPaEvaIiL4JA88gLnf68X9/1u/hYzmEyfg+wQChcHQdBp+zOoqzt3evai2yOUkccgln6GQJA7tVJhV4ZPpaUluBwKSLOTkk0a1PlDbrpgzB1XSkCtFVHR1Fc8e5CxmJ/o41UAtS1ZbZxEV9jHkzQm2iAj+cTqN+7oercqiUYyHYoE5cr4tcgQ0idhYrDnZy8so+UsmZXnwrl1YHLe34//f/z6yd9rb0WtncFD2LNm6FVGt5WWib34Ti1UmFVntdPt2ZCCurmLS6+mRPQyTSTgYrPLFTXp9PuzzzBl8z+HDhZHMbBYO9OqqLB+0KlkRAk7688/DSR4aAnkwOLjWWFo9qmnaDDVdu17iJPl8oSo1K24ycagSpxrNiWwWzkp7e0UKXmvApLphFL3uTr8b1tii8+eJ/uIv4KR2d6O34MyMFAfq6pKN2n0+qZB67hzO0cGDIAeXlpAt/ZvfSFXy/ftBLL7mNfLaCIFI+okTsCVLS7L8JpfD9+zcKZWSAwF8L6vUv/pDhMxEdbtxnHaEXCwG8pD7KA4MYF+xmHV5sZpJGI2uXWQGArBpVj0HmSSsVHVUVfRkco1bKjRrFl4xcFmyukhnu672DuNHp2cU5HL16Y/IRKJhbL7sH26fEAyimqLWc5lOg0BMJtFrdXERdmVuDnbv8OHyicpIBJUUsRjKENVSUbZF4TBe6+mxJ27CYXw3Cy1s3w6/qJnGNgvBMDGQzRYqthcjR5sRZuX2Yi0S2NY6FbkciCZutUGEtUWl9pWDZ+r82sILd9tEj89/Hj4N9z7/F/8Cc//MDO6pUAi+jseDc3X5Ms7d4CD8n74+2JuZGXk9enokcaiun+Jx+EIqacg9/ljoUs0yrEfPOSskk/aZg8XESdzu4pmD/Njs4iTrDXMrLdUWmQlDJ/tFPC9yu6B6kJ/c95L5Cgs43RY5AppEbCwKTnYyicyf2VkMrI4ORKq2bgWJ8cQTaPSdz2MxPTKC536/VPbKZDA4H34Y/+OMmptvxv77+4l+/nMs0m++GZOWuVRqeRmT3/btmAg5yn7pEt5//fWFUa3lZTgn/H0DA4UTGEdTLl4E+bmwgN936BAmXXOERUU52YP1ir7kcoXEIRG+g8VlKilr1GgOcDZYKFRbH6ZcDvdEW5vtfeD0Capg9K2uEt1/P8j+jg6M/eVlmdHHIiqcUcdOQSAg1dlPnEC5DzcQv+sukIZ798pSz/l5md14/jwcVMMAWcA9ekZGEK3fskX2hg2HCwVeGMmkzP7jnpjmfmSrq3DCL1yArWWSkoUOlpZkj1MVoZAsleFSjFAINo+bkNcrSm7uuUVUmAXjlMWsSoDyIt3cO8y8UG811FNopUwisaVsUTYLAjGbhc9Sj3n4u9+FvbnzTpCAg4PwsX7zG9iagwfL28+VK8hIYnV5NSuLReUyGdiFnh7rhV88Dls0P4/9bNsmSx6bAblcYQuGXE62tujrc1bpoLmPoVWLBKdndRcD99gjwn3f2Ym1Q6XIZnFvRyI4V319tuS408/gmlXJwgLRpz8Nm8QK6b/7uxivLIrS2wtfhDOkXC4EF7ZskQIpySTuL67YGh6GbctmcY3UsmTuLW8YWF+phOHAQH0y3dWsYqvMQbW/qQq/H7+hmHqxE8VJ1htqT35z/31OjFG3Vjt/uRzuOdYRqIfQyuws9js0ZOlLttgZbE5oErGxePVk53Ig906dwuJ0aAiObE8P+oY9+SQG3NatiJh3dOB/W7bIkmciDJynnwZhNz4Ox3j/fjiqfj/6D87NIftvxw7Zx9Dnk0pubW1SrZT7KkYimAQ5m5EIC+3Ll2X24eAgPmvOIJydRRnS/LzsoTgxIbNMimUPrrfhzGYlccjn0OORxKETy3E0CrG8LJvS10JSZDLYD0eXTXD6BPWqLcpmif7H/4Biez6PgEMiAZvT2ysdWC7vdrvhQHZ3I0vl+HGcq64utDwYH8diPZNBluLZs7Azar8bdjYnJmCvBgelkmdXF845CxKkUnJRzvYhn5fKhdEovisSsc4kTKXwf8OA084lWWo2jbkHIZdZR6Oyf6HfL1XX6wF2KtX+f2oprxMW6lyWrPYxVMtwzaWAreYY26Ge/RHLIBKdflYLnFD2HY4cqS2jnPH88wjGXn+9XMC4XAh67NyJ7ymFbBbvn5mBfTh0qFAlfnUV9ofJNqtSwlQKftrMDL5/bAxbM4xzVdCAezgyWdTXt36ZTvUE+6CqPWqFFgm1gufFXA7+PQfrKgXPx0ycDQ1ZzoVNfpeURIEtikYhMvfEExjne/cSveENUlyRReeiUdxrHR0gB0Mh2IR0GvfZ4KCs8gqHCwlDJkKI8DlV+GTLlsr9DSZ8i2UPclaxCs6ctuo/qJKGTu512iiobbh4a4Wy5FrBfrrXWx8V8GwW46etzTKL3+m2yBHQJGJj8erJfuEFkH9EWHgfPIjS4ccfl47qnj2YVAYGMGGz08qkV1sbMga//304xixU4vHA6eNF9p13gshTDRX3r+BSZLcb2UG//jUG4v79mFB4Ychp+EQYrN3dcl9sCKNREArT05hMb7gBUf729o01kqowCvd2aW+XxOFmT6lvNeTzUnijjEbgRcHqnRZCK06foF61RV//OtFnPiMdz1xO2p2JicLMXL8fY+jqVThFAwMIUOzZg3F27JgsLWYSNhSCXZqYAME4MCBVsHt68DwclmVyLhdIBC71Y+KfScG5ORnZN2fpcZScS4u4tH1sDJnWfX3Fo6D5vFRZzmZxzVlluR6Lfe6/pfZyVcm2ZiAU7MCkp1oKqDrG5kV6M/+WRqCBRGLL2KJXXkHQYdeuygRO7HDlCtE//APG/8iIrDR46SXYo6NHS1+bSAR+USIB0nHbNvmZREISNJ2d1qVamQx8q6kp/L1liwyqbiTSaUkqcIBHFTGoR7bIeqGcFgmqPdrstmhhAfNaPI57defO6sigXE5mrAWDGFOm+7hJ75iy8aotSqWQgfj3f49768gRWeHl9+P/3BaFsxE9HimwNjQkEz6mp2GLrl6VVU/t7bKigUnDImXir4qTqESglXqxlThJe3vxzEGnZRg3E9Q+hq1ellwPsN5AIFCfgHwigXHAwoQKnG6LHAFNIjYWggiL40cfxWRy/fWYeJ58Eg50IAACb3hYKqqxE+RyYeNSy5UVokcewf9DISnG0tmJRfa5c3CS9++Xi9ZMBmTg0pLMyMlkZJS9qwuEo9cLZyyTwaI9k8Eks3UrCEI1gzAWAyl65ows8zlwYGOd5FRKEocccfP5pDBKK5bRaUiwOq7fX9wxKwUhZI9Mk6CO0ycoQYReqf/xP8JWxGKSyNu6FY9qWQoTf4ODyFJmBcLLl2VPQY8HvQ/Hx/F/zrbhhXU4jAV1LIZxOT0NuxOJwBlYXoa9SSbxGQ5AcAN/vp59fXC6BwYKswjb2mQZHpGMrJdy3DjrkDMKvF4skupRrqxmyLBzqSp8NmMU2lxebVWWbC4F1FiLegmtEBUlElvCFi0vw48YGIAPUSuiUaJvfQs2hPsddnejn+HoKNFtt5Ue25cvo+TZ40HfRM6M5JLfeBz/6+1duyDK5UAcXL4sS662bdvYTJ5EQpIN0She48BLby9sXrOBF+lq8EK1RU5Qbt9oCIF5lktufT4QidWcp3weQb75eczJW7YU2Denn3lBhN/4uc8RfelLOHc33og1Dbc9EQL3WSgEmxIMygwz9iW4ZzyRzEZUy5JVAUC192ix7EEmIFWwP2TVg5BJw0BAj4l6wUwYbray5HogEsE4CYXq4zuurmJt0dNTMIfpM98AaBKxsRDz83BsFxaw0L5wAZvHA7Jv1y5Zssw9lVQjxCV5Hg/6/CwsYLJgEpEIk/uZM0i9535kRDB2c3NwJDk9PZVCyXMige/es0eWnS0sYONyZzMZk0wiQn/yJN6/bx8c7Y1wkoUoJA65ub1KHG72CNBmQyQCsoqFQKoFq3WzQvc1OH2CEhcvEr3jHVhUZzJYbLNdCAZlyZfXi8m5vx/nUe3ZNzwMO8Zk0q5dklhkp5eV++bmZL8gj0cGNvx+ONg9PTiGzk4suMfHpUPsdsvG4lb9LvN5manIzZv7+0sHMhIJ3Cfcr4hLlmtta6CqD6vEYbOW0pn7GJp7h5mzDLVjXB7q2R+R92dBJDr9aohkEj3HPB4EPmudq3M5oocegj04dAjnqrcXlRIDAxBXKfYd2Sz8otlZ2JFDh6QtiUZlyW8otLb/Vz6P4Mgrr4B06O9HFnQ9yreqQSwmiQi2ocGgJBwapeJaLkopt2/WFgm1goN2ySTmvf5+rDWqAbcTWVjAuOL+xdQCtoiI6AtfQBlzPi+FIIWQFUw9PTLLMJuV5Czfp5xwwYHO9nb4GXbqxcvLa0UkWZykWPagFidZX+TzawlDq7JkTqjRtqg8CCEJ9nq1ypifx3gcHHzVf9dXowHQJGIDEYuR+OIXkfWXSMgmo3v3IntncBATlNstSQ/OxlGViPN59FN8/nk4g4EAoooeDxzGc+ewz5tukp/hJqT5PCb87m5EyV9+Gf+//no4FUSYDKem4AD39oIoUB3uTAafe+klTKC7diHVv9FOMqvoxuN45MUaKyp3dDTfYl2jcRBClpqVk41WDNmszMRrhQkqGiVxzz0QPmLnuKdHjpuODlnSxhHz9nZM+IEAnrPoCasItrVJkjGfl20VOMOlowMO9ZYt+HwwKCPyLEoghDwOItia1VU8+nxYsKvXUQgs6BcWZElhf3/xMol8XmYdcslyZyd+V633iFm9uRmb9nNJtbpQVx1jlSxs1kxJJ4GJxHqUNfP+TERik9xZ1SGfJ3HsGHyXo0fr40f8+McgDPfvh93o6kJGYU8P2rsUy35YXUVgJZmUbRgMQ/Ya4xJG8wJeCARKLlzAe7q7kbFdSyZ8tWDRBDV7qatLEg/NIhpnbpGgBl10i4T6I5HAPRqN4jxPTFR/f+bzyG6cn8faZWSEiBxui4iwRvtv/w3rH27rxH5RIID7MJ2WBHY+D1/G58P/hMD55XLjYuIkxdSLndCHtJVQbllyvQU+NyuyWcxTHg/871rBgQ0hwFm4XI63RY6AJhEbiI9+lMR3vgPj1NODzL3rr0e0qqNDZhiyw+T1FjpN7FTNzBA99phU7tqzBxNOMomswF27iG6/vbBvz9WreM4L+OPHsfDv68MxsErEOOVaAAAgAElEQVTY9DQW5V4vjkt16HM5OOK/+hW+a9s29D1U+yOuNzgrjIlD7jnFfdt8Pj3xakjkclItuJpm4irSaSx0vF6itjZnT1A7d5I4dw7P3W6Mc58PYzkUwt9MwguxtndoW5ssd85ksIjYuxfvCwRgOwYH8ZloFI60z4f/raxgHIdCOJfhcKHqIzvinEnqcsG+mbNJw2EsYFgNdWCgeFYNN3WOxWTJcmfnmjL1sqGW2XG2jNqPqxmIQ7UsmTfVMTYv0nVZ8vqgnv0RidYQiY62RadOkZiaQrbf4GDt+zt5kuiHP0SAYnAQC/xz5/B4113Fs4xfeYXo9GnYhsOHYQ/ZFq2u4nxz+aKKxUWQh9Eo/sftHhoFzuxg4jCdlsfaLBlL5bRIaHXl9mbAygq25WXc59xHvRoIIdWEh4eJhoacbYs+/3kSf/qnCGqOjMA/8Ple9fmICPaD5/62tkJ7oo65Yj0ItTjJxkMlC9XgBZEsS1ZFPzXqj1RKrg3M1UXVIJ1GkMTrJRoYcLYtcgo0idhA+P0kfD70CJucxKKXJ6mODtn/S+1/aN7SaaJnnsHAC4UwSYVCeP3qVfy9e7eMkqgZjz09ssk3p/2yolE8Dic0n8cxqU21hcBi/dIlGWGfmKhP9KAc5PNSDY0X65wZxVmaG71Y12hepNMYB9wAuxxYlTFwL9JsluhjH3P2BGUYsoE4l9nyeGIBFf5b/R//7fHIiLsQWDizY606XVyyzHaNhY04ip9O41y73YVqp5wdx46cOr45K1T9XLEFp6oczyUotZQUMyFkzgirF0FUCzjrTX1kmI9TR9IbCzXbs9rPqo/8/NvfdrYt+ru/I7F1K0p+a8XCAlTmAwG0Q/B6EXRtb0dg1c7+ZzIIkC4sYJG/dy9sVDoNwiWdho9mFh8Ih0E8hsPY9/g4yING2AHuo8aEENveri4cZ0/Pxi5+rcqSGWpZMhOHG207NxPm50GMR6O4XyYmqt8XE4nhMNE99zjbFrFfxOsLr1f6PVwJoVZrcOKCKj6n59Xmg5VfpM7H7A+xb6RtUeOQTmOuaG+vfL7i66he01QK670vfMHZtsgp0LG+BmJ4GJl7rPRpzrbhqBYv2nmxrv598iQ+wxNZZ6ckELu6CglEzgDiMsSVFbzP7YbDHgzCsVtZATnCCl5qVHJpCU5yLIb3Hzggm4uvJ3K5QuKQSPZn43OhoVEO2tsl8cSElBVBqJJNVrEV1dFoBXCpKjtNXI7LPZM4Au/zFZYpE8mARi4ns5VVspBIZr1xr5hMRpbLcmCAS6nZHqpkn1nVPZfDNeTv8fns7QDvSw061FJWrDqgRPKcbWQfHNWBMhOGRIXBJ+0YbzwMo5B4Jiq8ZlZE4WZAb6/s51wLkkmiJ57A89FRWbXR1gYRFTsCMRxGe5Z0mmjHDgR5uU1CNIox3ttbmCkRiyGourQEO7VjBwKy6z03sL+2vCyDvhwg7umxVoduBFTVebsWCX6/bpHQLOjrkz4R9+rjdkaVwjCQ9Xv5cn2PcSPAvVO5hFldh1kFW/k5V2xw2wqNjYOVX6TOpeyjNkvgd7OjvR12KJ2WJLwapLfarPxdBo9TjcZAZyI2FoKoUASEF+xWm1rqQUR08SLKkD0eOMm7d2PAXL4MgvLNbwbR5/FIxVNW7nr5ZRCI/f3ov9jejtKX2Vnse3gYkycb1NlZ9EubncU+brwRjv56GtxMRgqjsApae7uM+NUqdqDR2hCisGxT3VIppLlns9a9ZlTC3mozE1rk8N4/+TwJl0sKkszMYJudxTY9LZ/PzEglT+Xz5PPBbkxMwOkeGsLzkRGMV1ZuNIzCYEYksrZ8mTOmub8Qqx0S4drNz+MY2tpgw+z6BaXT2Hc8jvvB55MlyxWenzUldxzo4QVFI6He22alZ7WEWl3waGwszBFytedSMTDhqy5yzM9bUZ25ph0IokcegY+0ezd8loUFnKe777aumhACAdIzZ2AnDh+WbWGWljDOgkFk9bHtTybxHUxOjo2BQFnP8ZbJSGGU1VUZeOEy5Ub3TjO3SODAD0O3SHAG0mnZ09DrRXVUHUoKHW2L2C8iwljnbE32WXjj11ioSIXHA7sRCuGRK7t4M/s3GrXBnABgLktWS5K1X7TxYHKXN752Kyv4v50NYh/IqlJTfU39yDr/FA3SJGKjUdHJzmQkoTg1RfTgg3BuBwawYM9kiM6fx4R05AiMZT4ve/cMDSFL6MIF7G/PHpTpuFxwsJNJTGqjo5K5X1oiOnYMxKTfj36JanZjvZFOS+KQSx25nJIj1xoaXBplt6kZqyo4C4IJaO5ZxRm3NSg8On2CqsgWxWKSZJyagir78jLO/dSUVF5WiRPO/uvrA7G4ZYtswTA2huydgQGMdxZi6e6WYz6TgZ1aXcW++vpAVpptEQssRSIgHA0Ddq+zs7KIpJpNw4tiLn1uZFN/tdcib+oinSOtKmGoFySNg11UvJwouXqdeFFjJg2rgNOvfs1O6C9+gTYvW7YgI5DVk++6y7pncyaDgOz8PPykAwdw7peXYeu4hy4LkKTTyDzk3tKjoyhdXq+Mh1RKEofhMF7z+WRPtUa1kiFa28fQrNyuijDp1jLOQjSKuXt+HuNk166afX2nX/2KbFEuV5pojETWKi8bhiQTrUhGfq4zqgqhkk7mgBwHU1XCUNuixoKvj5kkVP+28o1cLrwvHpdtA8wE4SZcozkCmkRsLKo62dks0Te+gZ494+NQYg4G8XcggEg7N9a+eBFOcCAA5+DMGfxvfByvra5iUnO74TyzGEE+D0JyZgbvu+EGEIjr0QA4mZTCKOyQqn1FdLRoc6EYOcgEodkJIyosL7HLIDST0KzK29VVeXaaCU6foKo2/OfOwcbs2iUz4jo78XjunOyPdPUq7MnKCmzRlSsgBbNZWdrJiur9/SAah4dBAgQC2Pr7QTbu3YtrpiKXk9eTm5yzynK5CyF2SNXMPnVh3IjSJKveYTwtq2XYNRDeGmWiFDFoLo1i2GUPmv9m1Floxel3RE1O6MWLyEL0+xHwXFzEub3zTusSzZUVBEEyGQRWx8Zgz5aXcV26urCI4bYXly9jy+dhn7ZtWx9140RCEoec+R0ISHGGeqhWl4Kq3G62RVq5vTWxtITgYCSCOXhsrKbdbWpbZLlDJchpJhnDYUk2plJrP+vzlSYa6yFI0YzgYKpKGKq2SCULtVry+oJ9oFIEoRlqCyirLELzdWNugHuN1gin2yJHQJOIjUVVJ/tHPyJ68klECrdvRxT81CmQIPfdB+cyHseinTMQT5/GAn5gAGU6sRhIwnAYDjCLsaysoNT53DkYhPHxwgi7xyObCHd0SBEYdWtvL74QEqKQOOSeZypxqCeA1oN5QWKXPWg2QRxRLEYO1rKAWVrC9/f310RYO32CqsoWzc3BzoyNwY5kMnBo29qkAIHfL4VPQiGM/WgU17OnB+87exYl08vLcKDn5vD3lSt4DIcL+ysSYb9MMrJwQH8/7OG2bSil7usrfU1V0o4dn0Y1+FfLpM3HwPe9ulDXAZX6oRQxaOUEE5VXWlzNPaNmu9aITWmLiBAU/da3YGMOHpQlUXfcAT+o4EsECMezZ+G3HD4Mm7K0JHtC9/XJnq1Xr6LcOZOBH7V9e/0X7NGoJA4TCbzW2dkYFVdukaDaI3UMmIMX2ha1JoQAichZtpOT1tm7ZWLT2qJakU4XZi+aSUbun2/2l93utUSjuZya+/A3K3j+VQlD1RaZCcNm/i1OQzFSkP+2C5zakYLqVimiUYyFUKjmSkSn2yJHQJOINcIwDA8R7SCiVSHEdIm3V3yyz55FGXMyiQzE3buRgej1ogdiKARHenYWrwUCKNNJJBBlHx/H/7gB+OgoJpR0Gu87fhyGYs8eOOEul32PxkQC5IBVA38zuejzwchwphE7pNzfsKNDZ9Q4GSx8U4wgtOr9xZlVpbIH1/PeyOWwaOOG+VV+V9Pdvetti+JxZDZ3dYHIS6Vkr1Iubfb58LrLBTuzuiqJxlAITnA0iv+HQrADQuDzi4u4NuwIr6zIEurpaWQDTU3htYUF2DQrh3pwEGTj0BC2kRGQjb29eBwYwHGudwme2jvM3F+RaG0fQ926oTqUU1ps5+YUIwbXu+m6monbiiWEFdijqis0HnwQduHwYRl4uPVW9ClUkU4TvfQSbMzwMNH+/fBnmHTs7obNYULl4kX4XD09IFXqVT4sBI5zcRH2i9svdHXJjMP16v1sDl5YlSWrfQy1f7Z5kM3KObazE+uBKu/Dprxr1tsWNQr5PHwou7Jp3qxa+/j99iQjb+uRYW0FK1FDBpNRuiy5NqjiMsUIQisUyxpUxfrW67jDYTxyWXOVKHmEFa6ZNCygScQaYRjGNiK6QERfEUK8p8TbKzrZ0SjRV76CDMI9e9C358wZTO5vfjMc3Pl5LMADATikTDAeOYLBd/UqjEV/PxbXQkDh+de/xvu3b0fpsrlU0PYHiEIxGPV5LAannNWecX5wPF4vJiwmEO2yGnUPkI0FEx/FCEJzxgJDJUTsSMJmiSAmk7hPuXdeFWg6t2Y9bVE+D9uSz8NmpFJSvXllBfeExyMf+XXDgJ1yu0EoZrPSmXW58NrCAj4XCEiCj2EuWeam5Vzax+JQqjAMP+dNFYVhgqi7u5Bk5OfDw3KrVLDA3MdQdeSZPFeze7RjXBpWZKCZKKykvLiIOMmGoE5EYhP8krWowB5V5YT+4AdEzz+P4Gomg3F19OhapeelJRCImQzaIgwO4rV0Gj5HTw8+u7CA/tGxGOzT5CT+Vyu4TzUTh5kMrnV3txRHqXcAoVSLBHPwQleCaCSTqASYmcGcODnZOn3I1tsWNRtYFKYY0ciZzyo8Hvuyad4CgcruCyas1M2uLFkHL8oDl3oXIwmLlRdXIE6yIcjlQCS63SASq0Q5JOI2Kn/NpGEBnfvQpBCC6LHHQBpOTGDhfuYMjOwb3oAF7tWrmBwCAUQR5+awEN63D+RiOAwnmXv4nDsHpzsWQ0bijTda9wwqBsOQhB+RbIbKStNEcjJgqXarjEaOwpvhdq8lFs2kI2c5alSGfL40OcjiNirUXkh+v30GoZOuCZfSx2IYG1r5uziuXMF43bYNj0wULi/DBrjduHfa22VmIZcvs33gzE+vF3Zrfl6SkcPDhT2/UqlC9cOODjiw5vK+gQFsBw+uzfwjwj2ZTMqSQSvC8eRJEAhmMsrrBeHAJCNnN3JJdW8vNi4LNPcOU8dKMzhmzYZixGApcRI1Gm6VQegU8DHz73aSDd1IvPgitv5+2Iq2NvRwVglEIRCAPX8eY/HIEdxXMzO4R/r78frqKt6zugo7c+AA/lfLtcjlYAOXlrCxjWSbwYGVeqCcFgkdHRunLK/hDPh8mNcSCawlgsG1LQE0nAGfD9vAgP17sllJLlqRjJcvFxeFsSIa1UQRFsswlyWzDdLBC2vUIk7CG/ucdRAn2RC43VgPRKOyR6JGc0JnIjYWZZ/sZ58leughDKSDB6VC6W/9FiaGq1exOPZ64QAnk4iyh0JwkongAPT1QVXw2DFkBvX3I1o/MlL9j8hmJTHARCAvmrm8sRzk84XEoprVqL5mNYmpWYxWGY0dHZvLWS4ne9CqvLgacZJWgRAglvJ5jIsKHRqHTMe2KNsWLS+jN9jAgBQt4cW3mm3X3i7vwc5O/B0O4/yyEmEiAfIwkcD/BwZkJqgQsCmRCPbjcslMUbt7UO3rxceiZtqUawOyWSycrEhG7hc1OyvtnUoY9vXJjMbhYSjEmsupGyGK0CyohzhJsQzCVgSfmyrnLKeflYqc0Olpor/9W5yzwUGcs+uuQ4kyI5VC9uHSksyqYnsVCMjgxoULmAO8XhCQw8PV32PZLL5vcRG+FivOc5lyV1fti2YOlKikoW6RoFFPzM8j4aCtDQkJFc5dm8oWtTpUn8yKaFxdhY/H6zR1Xvf5YPM6O/HILSPUcuoaxQ0dBTtxEvNrVihVWtyqa11OTgoGq0r0cLotcgQ0idhYlHWyp6eJHngAi/frrpOG5fWvx6J0agpGJ5VCtMjngwPNrH0wiEzDxUWi556DU9DVhcxDc6lPuchkJHGYTuO19nZJHK5XGbIQ+D67Ho1MPFpl0JlFYayyGhvVA6RaqFkGxUhCO3GSUuXFmz0SmM1inHDWXAVw+gRVli1Kp1HG3N4O22MYkkDMZCSx09aGscj9vdJp/O3x4O9cDnYoFsN7+/tluTBHxKNRufAuVjajjgleQKsqxrU6VOY+hkxOCoHjX1pC5iJvLAozO4uN+6ypCAQKMxmtnvf1Nf94LFVa3GhxklZCDUIrTj9zZTuh8TjRN76B8TY+jnN16BD8JMbiIgjEbBZtYDijoa1NZg5fvIix2taG/YyOVmc30mlZpry6in2zQEtfn1R5rhZqiwS2RwzdIkFjPcCiQufP4x7eu7eiseH0O1AviG1QrCw5k8E6jMUz4/G1IjFqWxmG221fNs2vN7soDFHziZO0EsJhnMNQqOL7wOm2yBHQJGJjUfJkp1JEX/oS0a9+hbIajgLedRcWm9PTMuK9siIXosvLMDYjIzBYzz0HstHvR8/DnTsrN0aplCQOeSHt9UrisJmi3NmsfTajSjia4XKVzmj0+dbHkPMCoRg5aNUgWV082JGDurdI+YjHMVGFQhWlzTv97Ja0RUJA2CmRQHYdl8VxpiCRnNQzGdgGnw9EGxGcQI8HRBv3N+nrA1nLZcYc+CDCuQ8GrRVJWemb1fv4u3nxXO34NCuIq73D1DL+Sr4nmSzMYmRhGH4+MwPi0ZwZrIrC2BGOQ0PrE/iolziJHVGoURo19Ed0+hkuywnN54kefhj9nMfGMB4PHiS66aZrOxHIoDp/HnaEeyXyAqSjA1UZV6/iHG/dCgKxUj9GbY8QieC1jg5JHAaDle1P/X1mtWTVFqlBQR0A1FhPZDLI0r16FYkHFSQfbApb1Orgnnu8qX4RkfS9uJdhObYon5dkojmjUX3NThTGSghGJSDXyy9yojhJKyGfx/qBqOI+5frsNgCaRGwsSp7s73yH6JFH4OAODcHQvPa1WEDOzYHYm5mB8dq2Df9PpZAqHgjAwb5wAQb18GFkKJbL3gtRSBzyIldVVG72iFAxmEVh7Eqprcp+vV5rctHvl+QjZ2NuFnGSVsLyMq5XX1/Zi0qnT1AlbRETX/39sC0+H5y9ZFIq5jHB5PfLrGFWiV9eRnYOkewF5nJJdUEWGOBos/m8q+IAPFa4/L6afjpq6bN5DPIiXR1/6znOWCHcThSGnzPBqqK7uzjJaBaFaXVxklYCX5sKFxhOvwplOaFPPUX0+OMIQgQCyEC85Racp1QKPRKXl2XP0nQac2gohPF05QrO7cgI+kxXsujkDOTFRRkkCQalMEqlPZvU/q3m4AhRoXK8LkvW2AjE46hCiMVQ1tzXV9bHNoUtajWoZKGZGOP2MKoAynrCLArDJGM4LMlGK1GY9vbiJKO5uqVWcZJSJKFG/ZDN4vpzlVKZcLotcgQ0idhYFD3ZJ04Q/c3fwEht2wajeNttcHqXl+HALi+DsNqyRSqh9vQgAn/6NIzXgQNwsMvpIcDEGhOHnAmhEoebzSBy+bQV4RiLYSLjEmp18iWSky0r1/LW0SFVZZkctCIJ9aJ8Y5DPI2PO5YKzXMZ1cPqVKmqLolFkIfr96Fvo8cj73+ORzpXLhfs4m5U9DBMJ2CkhQGaxeJNasswOn7lkWe33xVOTSu5VMj7Mi3Q1ws1kJC/QmzVzNxotTjLOzuK+JSokAr1eXDfuy8jPBwcLxWH4nFoRhRobAyZ4KyASm/DOrQglndAzZ9AHUQiQdocPE91+O87RwgLKl/N5ZChyQKOzEwvOS5dgAwYHIVBXbh+uSERmHHIVQygkMw4rISHNfQzNtsjcx7AZbZHG5sPyMtHLL2O+PnzYukrABKffuS2/IGayjAlDNXjBwVSVMGxGW6SKwlhlNIbDsgzW3GrF74ffGQhIH5QD2aEQtvZ2e4KwGc/HZgDzFKqwawnoK9UAaBKxsbA92SsrRJ/6FKLlu3bBsN18M3r1LC/LPoidnSANhZAR9pMn8feePVAoLDXAWNCE+1fwgkUlDjejoVSdfLssQp5wcznZ940XCGr6P7/fHL0zi8LYlVLrbMPGI51GtgmXTpSA00eIrS3KZpGBkM0iI5r7HcbjcK74vmbHSgjcv6xIyuWD/f2wNWrk2O9fW3qi9h7k6ahSck/NWjTvSxVaqTaLsdGwKye2EifJZNBvcm5OisPMzxc+zs6u7RtrGLhG5kxGVqPm1zaTKEyzoML+iC1ri4hgk7/8ZdzbQ0PwcV73Oozhs2dReeHzSVvl9cKWs6J8by/Iw1IZDEIgc5ozDtNp2eOVicNyej+rLRLMAZFqWyRoaGwUpqaITp3CXLBvX8n7taVtkdPA2Xbq+kS1Rer6pNyy5I2EWl5cLIuQ38u9GWMxmSgTj+Nv3ri3t/rbfT77bEbeNpMoTLMgGsW8zK2SSsDptsgR0CRiY2F5snM5oi9+kegnP0GZzcAA+vyMj8uME7cbzjCX/UUiiM6nUkQ7dqDvYTEnOZeTxGEyKZUgmTT0+VqXOOQyxkrFSYgKswQrFSfh8k4+53Zl1FaiMO3tpfs0NrsojBMRicCx6O4uGXV3+mixNfysWLplC85BOo3J2+OBM8oZzioZx71sAgEstnM5fIZLltkRY9KRiXcm+9SeX6Wi36qwirncWd1PpQrNjUI9xUnKLS8WAoEqq0xG9TUuP1cRDK5Vm1ZJxuFhWaquUT/kcmVnhbasLUqnib76VaLjx3G/3XAD0T334Nxw+TKX97vdUmU9HkcgY3IS/7dDPo9xweIonFHd0yP7txYrJS7WIoFobR/DZrNFGhqlkMthrXHlCkRWtm4t+vaWtUXNDvYdVMJQtUVmwrDZbNFGiZOk0/b9GXnjFhYqWBRGVZs2k43BoPaL6gkhkGGazyO41+IBDUdAk4iNheXJfuIJoq98BYTexARUlLdvJ3rlFRgwj0c21I9G8Xoigcn8ppuwgLMCi40wiUUEp5aFUVqBhFKz/uwIwlLiJHYkYaPKivg62fVoLEcUxi6rcb1EYVoVQmAxmcthEVnE0XL6BGVpixYWYF+6urBlMlLZlDOWOUMwn5ckeEcHFty5HBwuLlnu7JT9wsxqx5yVw/uzPEixthTQ3DvMnGW4UTD3GLQjCq3QLOIkiUShAIyVKMz8/Nq+sW1tslTaimTk8ulWmHMahQqEVlrSFhERffvbRD/8IRZot91G9IY3YBFx/DgCqCMjsDuZDOx2LAZ7Mzkp2yiYkcvhvUtLMnOaRZ96e7E/u/NdTosENYjRqoFZjc0F7jkai4HIL1Kp4fQ73jELYjNhqM7JTKQ1Q1myWZzEjiS0Qjm9Bxvxu1gUphjRGIlY/45AoHhGYzCo/aJKkM8j2O1ywQ4Vuf5Ot0WOgCYRG4s1J/uVV4g+/nEMit27MUFPTqJMJ5fD4nx0FP+fngYhODgI8nB4eO0XZDIyZZsVVD0eSRyW0yexGWBuPG5HEJYSJ7EjCJstClcK+bwUvSmW1ViuKIyZdCynTGuzIJcDmebx2BP05PwJao0tSiZRtkSELES+p4SQ5JzPJ8dlLod7KxiUvVUNQ5Yst7UVZhwSFZYWW41BNSjA38NQif9qeiTWAi1OIsHjw055mslHO1EYJhntxGFKOIabCmX2R3T62bJ0Qp99luib38Tvv/NOoje+EdlQFy7IvtGGgUzCeBy2aPt23Efmc8Uk4+Ii3i8E7AeXKVupPnIZoJVyuxNbJGho1IJwmOiFF+AD3HCDrc/YkrZoo8HrIZUwbIayZC1OUohEwloIRt2sEkI44F6MaDT3D9/MyGRwLlnE0Qb6bDUAmkRsLApOdiJB9Od/DkXlXbuIjh5FJuLFizAWAwNwTqemQCD19CBLcXy8cKdcMhuPy0U3E0d+f/MRRGrPoGLlxWao/YSKlRhvZkPLojDFshqZXFbR1la8R2NHB+6pzXJuEwkQ99xw2QJOPxMFtiifRx/EcBhBi3QaWQfmMmN2gNxuKbqUzeLvYBD2Ro2QE0nyjxt2q99pLgU09w5TF+rr5VRalRObn1uhVGmxE53gekEIONB2JCMTjYuLaz/r8xVXnh4extzotEBQtSiDSGwpW0QEMZTPfhZk9b33IgPx/HmUKnd24l5YWYE9am+HTzQ6WjjmUilJHHKZvtcricPOzkKlTnPwwkktEjQ0GoGpKQhAbt2K0mYLe9RytqjhByAKycJiZcnrGbwo1XfQzjcylxFbkYSbZR1hBRaFsSMZVQFCFS6XXI9YkYxcTr2R1TiNBK9nAwHbTM5NfJc1DppEbCwKTvYDDxA99BAc4ttvR/bP7CwGRH8/nqdSiJIfOUK0c6c0vpyVFo/LLB+fT/Y43ChDUok4iQpVLbVYebFG7cjl7LMZVeLRbBrsRGGYdPT78dgqCyxepNo01Hf6BFVwda9cIbp8WWZexmIy26a9XRLPLhfsE58Pr1cGKtTehKriqMu1NrNYJRmJ1i7S6zHWKxEnUaGSgsUyCDVqRzotxWCsejTy3+agkstlLQpjJh65lN7pKCG04vS7sWAURiIQmTt5Ev0P77oL2YfRKK4pz19eL8iMsTFpLxIJqagcjeI1v18Sh4FA6RYJZl9ksy96NTQYQqBa4coVooMHkVVugtNHSsMXxGbC0K4smQnDWm1RJeIkZpTTe1DbytohBHzwYgrUkYh1QohZFMaqZ2OriMJEIpi/QyHLNYO+ExsATSI2Fq+e7J/9jOgv/xLP77oLJcrRKJxc7pHX00N03XWI+LlcUiE1kZBN11XicD3JGzVSX4wkLCVOYkcSbuasnWaEECCqi2U0JhLW/SZZFKZYVqMTyuqFQCYMERagpnvU6RPUqyM1HEZ2gduN65JMyr+uSg0AAAw4SURBVOxBIinC5PFIO+P1yn6b7HByf0Lul2gmDRkqwVht7zA7QZL1FCfR2BgIgd51diQjZzqGw2s/y1lrdiTj8HDxHnjNghL9EZ1+x75qi3I5oi98gehHPyK65Rai174W11YIXMt0WrZ4mZiAvYpGpTAKl9AHg5I4ZEV5tY+hWpZsznjW419Dwx7ZLNFzz8H/u/nmNeWETh8967ogZqKuVFkyV21UaovK6T1oFzg1k4KViJNobAxSqdJEo5UoTFubfUajk0RhhJBVBqFQy63RHIGmJhENw7ifiD6ivOQRQljQFo2FYRg7ieiM8tKfCyH+rIyPCiIsgP7dvyO6epXojjuQgZhKSfGC3l6iw4eJDhzAhM3EIS8iuEyZywlrhdqHzI4cLFecxEwO6ubirY1MpniPxngc97YZbnfprEavd+MnsUwGC1Sfj+hTn7qfPvrRj6r/drI9EkT4fS+9hInY78c1YyKQycP2djlBm8va2dk1Z/eYy5LVhXqxa9oK4iQaG4N4HFmNZgVq9fn8/FqCua2tuPI0/73RgQ8eAy4X0Uc/2nq2iIjo4YeJvv51VF3ccYdcAHF2xZYtIA+zWZlxyPNLVxcIYbZVxZTbrdoraGholIdolOiZZ0Agfu9799PHPtZ6tqhWmMuS1eAF0VrCsJSvW6q0uNnFSTQ2BmZRGLuejaVEYex6Nm60X5TL4be0teF4FBS9q1uQX9oQOKVA9F3XHl+9zQ3DeD0R/WciOkhE/US0SESniegnQoj7lffdT4U3ihl/IIR44Np7/z8ierfyvywRXSWi7xLRR4QQc9den7l2TP1E9NeV/JBsFn0Qz54l2r8fC/KZGTwODYE83L0bA39mRvZCYmEUn698g18vcRIuVzQThNoB1+B7wWS8C8AqvnYZjUtLkiQ3w0w0WhGP61nmzr+N0+aJiL72ta/Ru971rndRC9ij8+dBsLS14TpwFiGLOoVChcI8RIUkXzxeeN3a2qRQj9lG8GfYma6mvJij87q8WMMMvx9iG9u22b+HRWHsSMaXX0YWXCKx9rM9PfYkIz+upygM3+dqL6pWskXPPkv0jW/A3u7Zg/YKfj/O6+gogqupFJSZ2RZzxiGrxeZy8tq1tcF21bNFgoaGBsbdvn0IQHK1RivZompgJgxVv4hbwzBhaPaL1M9UI07Cts6KJNTY3GAV4yKK6kQkRWGsMhpXVjAflxKFsROG8fvXzy9yu7H/WAzrkSpa2LQMv7QRcIRbJYT4uvq3YRh/RESfJqIXiOizRLRARGNEdBMR/Rciut9iN/+JiGYtXn/a4rV3E1GeiAJEdCcRfYCI7jYM43ohRFIIESWirxuGsY0qvMif/zzRT36CBYnPh0j6xASyDrlsORotFCrw+dbuRxUnKUYSmqFmBjFJYEUQ6kW5Rr2gkuDFkErZZzXGYnBWyxGFsSIdaxGFCQRwbJzx8s53vpPe+c53vmqTnGqPpqchphKJyKxiPm9dXbJ3imFI9WUVnKXI2YXsGDMxyDapHHESu76D2gnWqCfcbkkC2kEIjIliytO//jVIdzM6OtaSjGo248gIejlWG4Dj9gE8nlrFFl25gj6I8Th6rS0uotdhfz98pXgcJe1E8It6evCo2hy2X7oCQkNj/bFlC8Ykt5FoFVtUDtSyZHN/Zw52trcXBn7YJ0qlCknCUuIkaqaiFifRWC+w7z84aP+eTMY6q5GfX7yIv833NIvClFKgrjbQ5/ViHHIlVSXZka3EL20EHEEiqjAMo42IPkZEzxHRbeb0U8Mw7JYH3xZCnC3za76h7PcLhmEsENEfE9HbiOhbVRw2ERE98QTR//7fGIgTExg0N96I7MOuLtz8fj8GAJfjxGKIApgJwlLiJGo2kLm8WEOjGeH1Yuvqsn8PZ5rYZTXOzVmLwrhcklAsVkZtt7jv6ipU8uTnTrVHsRjRU08RnTuH397Tg9/Y349H7nfIysvsDHM0nYk+tWRHDVqYswe1OImGU2AYMnK/a5f9+9JpSTBaZTUeO4ZHcysQlwvq0lYl02qmo13QxY5Yd7It+q//lejMGaLrr5fl5X6/7IfZ2Ynz1NUl/ZxGKLdraGjYY+9euWBPJGS1glNtkRVUH4cJQ3OGoOrTMFlYSpyE/SgtTqLhFHg8WCv09Ni/h0Vh7Eqn5+aw7rBKcuroKJ3VaJVURYRkj1wO323O9i0XrWS3GgUnUkr9RNRNRD+zql8XQlixwbXiccJFnqxlJ+9/PwjBG24gOnqU6NZbsWgnkr1/FhaKi5N4vRhYWpxEYzOCM3SDQfv3WInCqFs4jIV+OaIw6saIRgvKtx1pj77yFZAcAwOIPG7ZAlvErQs4+s0LdXVC1uIkGhqwFWNj2OyQz4MEU0lGVRTm/Hmip5+Gc20GE2dWJCOXEGazBYFBR9qiP/xDop//nGjHDtii8XHYpd5ebD090s/hIIaGhsbGgzO7iYhefBFiSNfgSFtEZF3ZxYQh+zWqajKRFLrk15kgtCIJNTRaGYYh12gW6u2vIpWy788YiaAKhIXSVHDvQyuSkYlEouJEZxE41m5tFJzojs0RUZyI3mwYxieEENNlfq7HMIx+i9eXhBA2MaNXsfPa40K5B2mF6Wn0EXntazG4pqexGFBVTc0bL+CtWHsNDY3KwIRgT49Mf0+nZbny6qrMZkylCsfdCy/g8a/+iuhjH3v1ZUfao0cewaL9xhtlVrTXi8W6mmlIJKPvurxYQ6NytLWhp9/oqP17WBRmbg7k4vy8FImZn4d6uhpg5NLevXvRX/kaHGmLvvc92KB77kEp88CArMxoa0OA1UphUkNDY+PBPUhPny4gER1pi557rlC5XSUF1TYJag9nlRy061+ooaFhjWJJIZxZGI3KR95WVyFOG40WVmZyVdRf/VVVh+NIu7WRcByJKITIG4bx34noL4jogmEYTxPRz4nox4Sml3Z027M2r28nooum1/oMw8iRrFn/COHG+k4tx55MaslxDQ2n4sMf/uj9RPSRj31MjmOn2qPHHtO2SEOjWdDVVTxqb4ZhwBadPet8WzQ/r22RhoZT8alPwRa9613Ot0U33aRtkYbGZoVT7dZGwnEkIhGREOLjhmGcJaJ/S0S3E9FdRPT/EtGiYRh/JIT4psXH3k1QwjFjpozXzhLRB4QQVp/X0NDYxND2SENDoxmgbZGGhkYzQNsiDQ0Np0HbrcrgSBKRiEgI8SARPWgYhpeIDhPRW4jo/yGi/98wjKtCiJ+YPvLzChpfvpGgnpMh3BhnhbDTF9XQ0Njs0PZIQ0OjGaBtkYaGRjNA2yINDQ2nQdut8uFYEpEhhEgR0S+J6JeGYTxFaFL5r4nIfJErwY+smmpqaGhoFIO2RxoaGs0AbYs0NDSaAdoWaWhoOA3abpVGq7XJf+baY5EW5hoaGhoNgbZHGhoazQBtizQ0NJoB2hZpaGg4DdpuWcBxJKJhGH7DMF5r8++3Xns82ajj0dDQ2LzQ9khDQ6MZoG2RhoZGM0DbIg0NDadB263K4cRyZj8R/ZNhGL8iou8R0Xki8hLRTUT0e0Q0T0R/bfG5f2YYxqzF68eFEL9ar4PV0NBoaWh7pKGh0QzQtkhDQ6MZoG2RhoaG06DtVoVwIom4QkTvI6I3E9HbiWiEiNxEdJmIvkREHxdCXLb43Cdt9vcJImrpi6yhobFu0PZIQ0OjGaBtkYaGRjNA2yINDQ2nQdutCmE0syiMYRj3E9FHiGiAiEgIsbChB3QNhmG4iKiXiMaI6Hki+nMhxJ9t7FFpaGisJ7Q90tDQaAZoW6ShodEM0LZIQ0PDadB2qz5wSibiPBGRYRieJlG1mSSiMxt9EBoaGhsCbY80NDSaAdoWaWhoNAO0LdLQ0HAatN2qAc2eiThJOKGMJ0QTHLBhGB1EdLvy0gUhxLmNOh4NDY31h7ZHGhoazQBtizQ0NJoB2hZpaGg4Ddpu1QdNTSJqaGhoaGhoaGhoaGhoaGhoaGhobDxcG30AGhoaGhoaGhoaGhoaGhoaGhoaGs0NTSJqaGhoaGhoaGhoaGhoaGhoaGhoFIUmETU0NDQ0NDQ0NDQ0NDQ0NDQ0NDSKQpOIGhoaGhoaGhoaGhoaGhoaGhoaGkWhSUQNDQ0NDQ0NDQ0NDQ0NDQ0NDQ2NotAkooaGhoaGhoaGhoaGhoaGhoaGhkZR/F8WjJB9O1hR+AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "