From 0541442558edb3771ec469b46bf236c0679a1cb2 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 13:47:33 +0100 Subject: [PATCH 001/111] add do_lower_case in examples --- examples/extract_features.py | 3 ++- examples/run_classifier.py | 6 +++++- 2 files changed, 7 insertions(+), 2 deletions(-) diff --git a/examples/extract_features.py b/examples/extract_features.py index abe7fdffe7db..dbab934c0813 100644 --- a/examples/extract_features.py +++ b/examples/extract_features.py @@ -199,6 +199,7 @@ def main(): "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") ## Other parameters + parser.add_argument("--do_lower_case", default=False, action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--layers", default="-1,-2,-3,-4", type=str) parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences longer " @@ -227,7 +228,7 @@ def main(): layer_indexes = [int(x) for x in args.layers.split(",")] - tokenizer = BertTokenizer.from_pretrained(args.bert_model) + tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) examples = read_examples(args.input_file) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 2c83b4fe497f..52f3cd752d0d 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -376,6 +376,10 @@ def main(): default=False, action='store_true', help="Whether to run eval on the dev set.") + parser.add_argument("--do_lower_case", + default=False, + action='store_true', + help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=32, type=int, @@ -473,7 +477,7 @@ def main(): processor = processors[task_name]() label_list = processor.get_labels() - tokenizer = BertTokenizer.from_pretrained(args.bert_model) + tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) train_examples = None num_train_steps = None From 298107fed79d143552ec4294cf4924301b1fc455 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 13:56:02 +0100 Subject: [PATCH 002/111] Added new bert models --- README.md | 4 +++- pytorch_pretrained_bert/modeling.py | 4 +++- pytorch_pretrained_bert/tokenization.py | 4 +++- 3 files changed, 9 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index eb337d8253f4..43c72efc4e45 100644 --- a/README.md +++ b/README.md @@ -175,7 +175,9 @@ where - `bert-base-uncased`: 12-layer, 768-hidden, 12-heads, 110M parameters - `bert-large-uncased`: 24-layer, 1024-hidden, 16-heads, 340M parameters - `bert-base-cased`: 12-layer, 768-hidden, 12-heads , 110M parameters - - `bert-base-multilingual`: 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters + - `bert-large-cased`: 24-layer, 1024-hidden, 16-heads, 340M parameters + - `bert-base-multilingual-uncased`: (Orig, not recommended) 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters + - `bert-base-multilingual-cased`: (New, recommended) 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters - `bert-base-chinese`: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters - a path or url to a pretrained model archive containing: diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 2d6dfa531dc5..30d940631cc3 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -42,7 +42,9 @@ 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", - 'bert-base-multilingual': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual.tar.gz", + 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", + 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", + 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz", } CONFIG_NAME = 'bert_config.json' diff --git a/pytorch_pretrained_bert/tokenization.py b/pytorch_pretrained_bert/tokenization.py index c37a7e3b9ee3..fefdaa54a020 100644 --- a/pytorch_pretrained_bert/tokenization.py +++ b/pytorch_pretrained_bert/tokenization.py @@ -34,7 +34,9 @@ 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt", - 'bert-base-multilingual': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-vocab.txt", + 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", + 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt", + 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", } From 296f0061326c0c3d688dda73d0655452a700f1e6 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 13:56:53 +0100 Subject: [PATCH 003/111] added BertForTokenClassification model --- README.md | 14 +++++- pytorch_pretrained_bert/modeling.py | 66 +++++++++++++++++++++++++++++ 2 files changed, 78 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 43c72efc4e45..c41c07eb692e 100644 --- a/README.md +++ b/README.md @@ -153,7 +153,7 @@ Here is a detailed documentation of the classes in the package and how to use th | Sub-section | Description | |-|-| | [Loading Google AI's pre-trained weigths](#Loading-Google-AIs-pre-trained-weigths-and-PyTorch-dump) | How to load Google AI's pre-trained weight or a PyTorch saved instance | -| [PyTorch models](#PyTorch-models) | API of the six PyTorch model classes: `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification` or `BertForQuestionAnswering` | +| [PyTorch models](#PyTorch-models) | API of the seven PyTorch model classes: `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification` or `BertForQuestionAnswering` | | [Tokenizer: `BertTokenizer`](#Tokenizer-BertTokenizer) | API of the `BertTokenizer` class| | [Optimizer: `BertAdam`](#Optimizer-BertAdam) | API of the `BertAdam` class | @@ -188,6 +188,10 @@ where If `PRE_TRAINED_MODEL_NAME_OR_PATH` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links [here](pytorch_pretrained_bert/modeling.py)) and stored in a cache folder to avoid future download (the cache folder can be found at `~/.pytorch_pretrained_bert/`). - `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example `cache_dir='./pretrained_model_{}'.format(args.local_rank)` (see the section on distributed training for more information) +`Uncased` means that the text has been lowercased before WordPiece tokenization, e.g., `John Smith` becomes `john smith`. The Uncased model also strips out any accent markers. `Cased` means that the true case and accent markers are preserved. Typically, the Uncased model is better unless you know that case information is important for your task (e.g., Named Entity Recognition or Part-of-Speech tagging). For information about the Multilingual and Chinese model, see the [Multilingual README](https://github.com/google-research/bert/blob/master/multilingual.md) or the original TensorFlow repository. + +**When using an `uncased model`, make sure to pass `--do_lower_case` to the training scripts. (Or pass `do_lower_case=True` directly to FullTokenizer if you're using your own script.)** + Example: ```python model = BertForSequenceClassification.from_pretrained('bert-base-uncased') @@ -273,7 +277,13 @@ The sequence-level classifier is a linear layer that takes as input the last hid An example on how to use this class is given in the `run_classifier.py` script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task. -#### 6. `BertForQuestionAnswering` +#### 6. `BertForTokenClassification` + +`BertForTokenClassification` is a fine-tuning model that includes `BertModel` and a token-level classifier on top of the `BertModel`. + +The token-level classifier is a linear layer that takes as input the last hidden state of the sequence. + +#### 7. `BertForQuestionAnswering` `BertForQuestionAnswering` is a fine-tuning model that includes `BertModel` with a token-level classifiers on top of the full sequence of last hidden states. diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 30d940631cc3..473b7e702241 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -877,6 +877,72 @@ def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=No return logits +class BertForTokenClassification(PreTrainedBertModel): + """BERT model for token-level classification. + This module is composed of the BERT model with a linear layer on top of + the full hidden state of the last layer. + + Params: + `config`: a BertConfig class instance with the configuration to build a new model. + `num_labels`: the number of classes for the classifier. Default = 2. + + Inputs: + `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] + with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts + `extract_features.py`, `run_classifier.py` and `run_squad.py`) + `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token + types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to + a `sentence B` token (see BERT paper for more details). + `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices + selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max + input sequence length in the current batch. It's the mask that we typically use for attention when + a batch has varying length sentences. + `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] + with indices selected in [0, ..., num_labels]. + + Outputs: + if `labels` is not `None`: + Outputs the CrossEntropy classification loss of the output with the labels. + if `labels` is `None`: + Outputs the classification logits. + + Example usage: + ```python + # Already been converted into WordPiece token ids + input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) + input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) + token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) + + config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, + num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) + + num_labels = 2 + + model = BertForTokenClassification(config, num_labels) + logits = model(input_ids, token_type_ids, input_mask) + ``` + """ + def __init__(self, config, num_labels=2): + super(BertForTokenClassification, self).__init__(config) + self.num_labels = num_labels + self.bert = BertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, num_labels) + self.apply(self.init_bert_weights) + + def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): + sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) + pooled_output = self.dropout(sequence_output) + logits = self.classifier(pooled_output) + + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + return loss, logits + else: + return logits + + class BertForQuestionAnswering(PreTrainedBertModel): """BERT model for Question Answering (span extraction). This module is composed of the BERT model with a linear layer on top of From 532a81d3d6b4b7b1ec71f3a119f3ff935a33f3c5 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 13:57:01 +0100 Subject: [PATCH 004/111] fixed doc_strings --- pytorch_pretrained_bert/modeling.py | 34 ++++++++++++++--------------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 473b7e702241..70a41d91e71c 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -569,10 +569,10 @@ class BertModel(PreTrainedBertModel): # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) - token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) + token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) - config = modeling.BertConfig(vocab_size=32000, hidden_size=512, - num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) + config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, + num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = modeling.BertModel(config=config) all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) @@ -658,10 +658,10 @@ class BertForPreTraining(PreTrainedBertModel): # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) - token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) + token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) - config = BertConfig(vocab_size=32000, hidden_size=512, - num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) + config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, + num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForPreTraining(config) masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask) @@ -721,10 +721,10 @@ class BertForMaskedLM(PreTrainedBertModel): # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) - token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) + token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) - config = BertConfig(vocab_size=32000, hidden_size=512, - num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) + config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, + num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForMaskedLM(config) masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask) @@ -785,8 +785,8 @@ class BertForNextSentencePrediction(PreTrainedBertModel): input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) - config = BertConfig(vocab_size=32000, hidden_size=512, - num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) + config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, + num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForNextSentencePrediction(config) seq_relationship_logits = model(input_ids, token_type_ids, input_mask) @@ -845,10 +845,10 @@ class BertForSequenceClassification(PreTrainedBertModel): # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) - token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) + token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) - config = BertConfig(vocab_size=32000, hidden_size=512, - num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) + config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, + num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_labels = 2 @@ -989,10 +989,10 @@ class BertForQuestionAnswering(PreTrainedBertModel): # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) - token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) + token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) - config = BertConfig(vocab_size=32000, hidden_size=512, - num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) + config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, + num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = BertForQuestionAnswering(config) start_logits, end_logits = model(input_ids, token_type_ids, input_mask) From d6f06c03f4658a80bef76ae226494864b476e391 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 14:09:06 +0100 Subject: [PATCH 005/111] fixed loading pre-trained tokenizer from directory --- pytorch_pretrained_bert/modeling.py | 2 +- pytorch_pretrained_bert/tokenization.py | 25 ++++++++++++++----------- 2 files changed, 15 insertions(+), 12 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 70a41d91e71c..e8ad26a1c675 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -478,7 +478,7 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg "associated to this path or url.".format( pretrained_model_name, ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), - pretrained_model_name)) + archive_file)) return None if resolved_archive_file == archive_file: logger.info("loading archive file {}".format(archive_file)) diff --git a/pytorch_pretrained_bert/tokenization.py b/pytorch_pretrained_bert/tokenization.py index fefdaa54a020..c7ef20ddefcb 100644 --- a/pytorch_pretrained_bert/tokenization.py +++ b/pytorch_pretrained_bert/tokenization.py @@ -39,6 +39,7 @@ 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", } +VOCAB_NAME = 'vocab.txt' def load_vocab(vocab_file): @@ -100,7 +101,7 @@ def convert_ids_to_tokens(self, ids): return tokens @classmethod - def from_pretrained(cls, pretrained_model_name, do_lower_case=True): + def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. @@ -109,16 +110,11 @@ def from_pretrained(cls, pretrained_model_name, do_lower_case=True): vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name] else: vocab_file = pretrained_model_name + if os.path.isdir(vocab_file): + vocab_file = os.path.join(vocab_file, VOCAB_NAME) # redirect to the cache, if necessary try: - resolved_vocab_file = cached_path(vocab_file) - if resolved_vocab_file == vocab_file: - logger.info("loading vocabulary file {}".format(vocab_file)) - else: - logger.info("loading vocabulary file {} from cache at {}".format( - vocab_file, resolved_vocab_file)) - # Instantiate tokenizer. - tokenizer = cls(resolved_vocab_file, do_lower_case) + resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) except FileNotFoundError: logger.error( "Model name '{}' was not found in model name list ({}). " @@ -126,8 +122,15 @@ def from_pretrained(cls, pretrained_model_name, do_lower_case=True): "associated to this path or url.".format( pretrained_model_name, ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), - pretrained_model_name)) - tokenizer = None + vocab_file)) + return None + if resolved_vocab_file == vocab_file: + logger.info("loading vocabulary file {}".format(vocab_file)) + else: + logger.info("loading vocabulary file {} from cache at {}".format( + vocab_file, resolved_vocab_file)) + # Instantiate tokenizer. + tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizer From c588453a0fc8469b96b0a055bd301516f0a33261 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 14:22:40 +0100 Subject: [PATCH 006/111] fix run_squad --- examples/run_squad.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/run_squad.py b/examples/run_squad.py index e3213189bfba..041a51a879fa 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -878,7 +878,7 @@ def main(): if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving train features into cached file %s", cached_train_features_file) with open(cached_train_features_file, "wb") as writer: - train_features = pickle.dump(train_features, writer) + pickle.dump(train_features, writer) logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) From 257a35134a1bd378b16aa985ee76675289ff439c Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 14:23:09 +0100 Subject: [PATCH 007/111] fix pickle dump in run_squad example --- examples/run_squad.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/run_squad.py b/examples/run_squad.py index e3213189bfba..041a51a879fa 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -878,7 +878,7 @@ def main(): if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info(" Saving train features into cached file %s", cached_train_features_file) with open(cached_train_features_file, "wb") as writer: - train_features = pickle.dump(train_features, writer) + pickle.dump(train_features, writer) logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) From 7b3bb8c00f6dcf8ac9613cd2f3cdc71d57b0c275 Mon Sep 17 00:00:00 2001 From: Malte Pietsch Date: Fri, 30 Nov 2018 16:52:50 +0100 Subject: [PATCH 008/111] fix typo in input for masked lm loss function --- pytorch_pretrained_bert/modeling.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 2d6dfa531dc5..599d0023fc30 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -678,7 +678,7 @@ def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm if masked_lm_labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) - masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels(-1)) + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss return total_loss From be57c8eeef69ec22edc577e6aba17eb8609ad65b Mon Sep 17 00:00:00 2001 From: Nirant Date: Sat, 1 Dec 2018 02:43:25 +0530 Subject: [PATCH 009/111] Fix internal hyperlink typo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index eb337d8253f4..bbf835e65d2d 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ This implementation is provided with [Google's pre-trained models](https://githu | [Doc](#doc) | Detailed documentation | | [Examples](#examples) | Detailed examples on how to fine-tune Bert | | [Notebooks](#notebooks) | Introduction on the provided Jupyter Notebooks | -| [TPU](#tup) | Notes on TPU support and pretraining scripts | +| [TPU](#tpu) | Notes on TPU support and pretraining scripts | | [Command-line interface](#Command-line-interface) | Convert a TensorFlow checkpoint in a PyTorch dump | ## Installation From 7f7c41b0c17789eae82e5665008305298e7576b9 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 22:54:33 +0100 Subject: [PATCH 010/111] tests for all model classes with and without labels --- tests/modeling_test.py | 168 +++++++++++++++++++++++++++++++++++++++-- 1 file changed, 160 insertions(+), 8 deletions(-) diff --git a/tests/modeling_test.py b/tests/modeling_test.py index 48d56826f8e9..b5665121397d 100644 --- a/tests/modeling_test.py +++ b/tests/modeling_test.py @@ -22,7 +22,10 @@ import torch -from pytorch_pretrained_bert import BertConfig, BertModel +from pytorch_pretrained_bert import (BertConfig, BertModel, BertForMaskedLM, + BertForNextSentencePrediction, BertForPreTraining, + BertForQuestionAnswering, BertForSequenceClassification, + BertForTokenClassification) class BertModelTest(unittest.TestCase): @@ -35,6 +38,7 @@ def __init__(self, is_training=True, use_input_mask=True, use_token_type_ids=True, + use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, @@ -45,7 +49,9 @@ def __init__(self, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, + type_sequence_label_size=2, initializer_range=0.02, + num_labels=3, scope=None): self.parent = parent self.batch_size = batch_size @@ -53,6 +59,7 @@ def __init__(self, self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids + self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers @@ -63,10 +70,12 @@ def __init__(self, self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size + self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range + self.num_labels = num_labels self.scope = scope - def create_model(self): + def prepare_config_and_inputs(self): input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None @@ -77,6 +86,12 @@ def create_model(self): if self.use_token_type_ids: token_type_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) + sequence_labels = None + token_labels = None + if self.use_labels: + sequence_labels = BertModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size) + token_labels = BertModelTest.ids_tensor([self.batch_size, self.seq_length], self.num_labels) + config = BertConfig( vocab_size_or_config_json_file=self.vocab_size, hidden_size=self.hidden_size, @@ -90,10 +105,16 @@ def create_model(self): type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range) - model = BertModel(config=config) + return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels - all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) + def check_loss_output(self, result): + self.parent.assertListEqual( + list(result["loss"].size()), + []) + def create_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels): + model = BertModel(config=config) + all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) outputs = { "sequence_output": all_encoder_layers[-1], "pooled_output": pooled_output, @@ -101,13 +122,119 @@ def create_model(self): } return outputs - def check_output(self, result): + def check_bert_model_output(self, result): + self.parent.assertListEqual( + [size for layer in result["all_encoder_layers"] for size in layer.size()], + [self.batch_size, self.seq_length, self.hidden_size] * self.num_hidden_layers) self.parent.assertListEqual( list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]) - self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size]) + + def create_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels): + model = BertForMaskedLM(config=config) + loss = model(input_ids, token_type_ids, input_mask, token_labels) + prediction_scores = model(input_ids, token_type_ids, input_mask) + outputs = { + "loss": loss, + "prediction_scores": prediction_scores, + } + return outputs + + def check_bert_for_masked_lm_output(self, result): + self.parent.assertListEqual( + list(result["prediction_scores"].size()), + [self.batch_size, self.seq_length, self.vocab_size]) + + def create_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels): + model = BertForNextSentencePrediction(config=config) + loss = model(input_ids, token_type_ids, input_mask, sequence_labels) + seq_relationship_score = model(input_ids, token_type_ids, input_mask) + outputs = { + "loss": loss, + "seq_relationship_score": seq_relationship_score, + } + return outputs + + def check_bert_for_next_sequence_prediction_output(self, result): + self.parent.assertListEqual( + list(result["seq_relationship_score"].size()), + [self.batch_size, 2]) + + + def create_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels): + model = BertForPreTraining(config=config) + loss = model(input_ids, token_type_ids, input_mask, token_labels, sequence_labels) + prediction_scores, seq_relationship_score = model(input_ids, token_type_ids, input_mask) + outputs = { + "loss": loss, + "prediction_scores": prediction_scores, + "seq_relationship_score": seq_relationship_score, + } + return outputs + + def check_bert_for_pretraining_output(self, result): + self.parent.assertListEqual( + list(result["prediction_scores"].size()), + [self.batch_size, self.seq_length, self.vocab_size]) + self.parent.assertListEqual( + list(result["seq_relationship_score"].size()), + [self.batch_size, 2]) + + + def create_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels): + model = BertForQuestionAnswering(config=config) + loss = model(input_ids, token_type_ids, input_mask, sequence_labels, sequence_labels) + start_logits, end_logits = model(input_ids, token_type_ids, input_mask) + outputs = { + "loss": loss, + "start_logits": start_logits, + "end_logits": end_logits, + } + return outputs + + def check_bert_for_question_answering_output(self, result): + self.parent.assertListEqual( + list(result["start_logits"].size()), + [self.batch_size, self.seq_length]) + self.parent.assertListEqual( + list(result["end_logits"].size()), + [self.batch_size, self.seq_length]) + + + def create_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels): + model = BertForSequenceClassification(config=config, num_labels=self.num_labels) + loss = model(input_ids, token_type_ids, input_mask, sequence_labels) + logits = model(input_ids, token_type_ids, input_mask) + outputs = { + "loss": loss, + "logits": logits, + } + return outputs + + def check_bert_for_sequence_classification_output(self, result): + self.parent.assertListEqual( + list(result["logits"].size()), + [self.batch_size, self.num_labels]) + + + def create_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels): + model = BertForTokenClassification(config=config, num_labels=self.num_labels) + loss = model(input_ids, token_type_ids, input_mask, token_labels) + logits = model(input_ids, token_type_ids, input_mask) + outputs = { + "loss": loss, + "logits": logits, + } + return outputs + + def check_bert_for_token_classification_output(self, result): + self.parent.assertListEqual( + list(result["logits"].size()), + [self.batch_size, self.seq_length, self.num_labels]) + + def test_default(self): self.run_tester(BertModelTest.BertModelTester(self)) @@ -118,8 +245,33 @@ def test_config_to_json_string(self): self.assertEqual(obj["hidden_size"], 37) def run_tester(self, tester): - output_result = tester.create_model() - tester.check_output(output_result) + config_and_inputs = tester.prepare_config_and_inputs() + output_result = tester.create_bert_model(*config_and_inputs) + tester.check_bert_model_output(output_result) + + output_result = tester.create_bert_for_masked_lm(*config_and_inputs) + tester.check_bert_for_masked_lm_output(output_result) + tester.check_loss_output(output_result) + + output_result = tester.create_bert_for_next_sequence_prediction(*config_and_inputs) + tester.check_bert_for_next_sequence_prediction_output(output_result) + tester.check_loss_output(output_result) + + output_result = tester.create_bert_for_pretraining(*config_and_inputs) + tester.check_bert_for_pretraining_output(output_result) + tester.check_loss_output(output_result) + + output_result = tester.create_bert_for_question_answering(*config_and_inputs) + tester.check_bert_for_question_answering_output(output_result) + tester.check_loss_output(output_result) + + output_result = tester.create_bert_for_sequence_classification(*config_and_inputs) + tester.check_bert_for_sequence_classification_output(output_result) + tester.check_loss_output(output_result) + + output_result = tester.create_bert_for_token_classification(*config_and_inputs) + tester.check_bert_for_token_classification_output(output_result) + tester.check_loss_output(output_result) @classmethod def ids_tensor(cls, shape, vocab_size, rng=None, name=None): From 89d47230d74061d57b700eed056f6a6763315610 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 22:54:53 +0100 Subject: [PATCH 011/111] clean up classification model output --- examples/run_classifier.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 52f3cd752d0d..23c2bea057ea 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -546,7 +546,7 @@ def main(): for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch - loss, _ = model(input_ids, segment_ids, input_mask, label_ids) + loss = model(input_ids, segment_ids, input_mask, label_ids) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.fp16 and args.loss_scale != 1.0: From ed302a73f4cc365db4cd29d26ca722d605bc85a1 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 22:55:03 +0100 Subject: [PATCH 012/111] add new token classification model --- pytorch_pretrained_bert/__init__.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/__init__.py b/pytorch_pretrained_bert/__init__.py index 7850fa5555e5..fc9b15a12d31 100644 --- a/pytorch_pretrained_bert/__init__.py +++ b/pytorch_pretrained_bert/__init__.py @@ -1,6 +1,7 @@ from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, - BertForSequenceClassification, BertForQuestionAnswering) + BertForSequenceClassification, BertForTokenClassification, + BertForQuestionAnswering) from .optimization import BertAdam from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE From d787c6be8c5fc88190f5723745f5e05d15f6b30c Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 22:55:26 +0100 Subject: [PATCH 013/111] improve docstrings and fix new token classification model --- pytorch_pretrained_bert/modeling.py | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index e8ad26a1c675..13666c86dffb 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -559,7 +559,7 @@ class BertModel(PreTrainedBertModel): of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding - to the last attention block, + to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper). @@ -650,8 +650,8 @@ class BertForPreTraining(PreTrainedBertModel): sentence classification loss. if `masked_lm_labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - - the masked language modeling logits, and - - the next sentence classification logits. + - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and + - the next sentence classification logits of shape [batch_size, 2]. Example usage: ```python @@ -680,7 +680,7 @@ def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm if masked_lm_labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss(ignore_index=-1) - masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels(-1)) + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss return total_loss @@ -714,7 +714,7 @@ class BertForMaskedLM(PreTrainedBertModel): if `masked_lm_labels` is `None`: Outputs the masked language modeling loss. if `masked_lm_labels` is `None`: - Outputs the masked language modeling logits. + Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]. Example usage: ```python @@ -776,7 +776,7 @@ class BertForNextSentencePrediction(PreTrainedBertModel): Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `next_sentence_label` is `None`: - Outputs the next sentence classification logits. + Outputs the next sentence classification logits of shape [batch_size, 2]. Example usage: ```python @@ -838,7 +838,7 @@ class BertForSequenceClassification(PreTrainedBertModel): if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: - Outputs the classification logits. + Outputs the classification logits of shape [batch_size, num_labels]. Example usage: ```python @@ -872,7 +872,7 @@ def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=No if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) - return loss, logits + return loss else: return logits @@ -904,7 +904,7 @@ class BertForTokenClassification(PreTrainedBertModel): if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: - Outputs the classification logits. + Outputs the classification logits of shape [batch_size, sequence_length, num_labels]. Example usage: ```python @@ -938,7 +938,7 @@ def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=No if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) - return loss, logits + return loss else: return logits @@ -982,7 +982,7 @@ class BertForQuestionAnswering(PreTrainedBertModel): Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions. if `start_positions` or `end_positions` is `None`: Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end - position tokens. + position tokens of shape [batch_size, sequence_length]. Example usage: ```python From 258eb500861b0f594f1aeb580268705f888e115f Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 22:55:33 +0100 Subject: [PATCH 014/111] bump up version --- setup.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/setup.py b/setup.py index 9b2a67883200..fc793b53e695 100644 --- a/setup.py +++ b/setup.py @@ -2,7 +2,7 @@ setup( name="pytorch_pretrained_bert", - version="0.2.0", + version="0.3.0", author="Thomas Wolf, Victor Sanh, Tim Rault, Google AI Language Team Authors", author_email="thomas@huggingface.co", description="PyTorch version of Google AI BERT model with script to load Google pre-trained models", From 511bce58bd93d2cbc6eef21773b99b7a35b0d814 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 22:56:02 +0100 Subject: [PATCH 015/111] update new token classification model --- pytorch_pretrained_bert/modeling.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 13666c86dffb..3af5854072fe 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -932,8 +932,8 @@ def __init__(self, config, num_labels=2): def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) - pooled_output = self.dropout(sequence_output) - logits = self.classifier(pooled_output) + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) if labels is not None: loss_fct = CrossEntropyLoss() From 52ff0590ffc3825a6bd003685e05c0f06bc480a2 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 23:01:10 +0100 Subject: [PATCH 016/111] tup => tpu --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index c41c07eb692e..08d45ad5d38b 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ This implementation is provided with [Google's pre-trained models](https://githu | [Doc](#doc) | Detailed documentation | | [Examples](#examples) | Detailed examples on how to fine-tune Bert | | [Notebooks](#notebooks) | Introduction on the provided Jupyter Notebooks | -| [TPU](#tup) | Notes on TPU support and pretraining scripts | +| [TPU](#tpu) | Notes on TPU support and pretraining scripts | | [Command-line interface](#Command-line-interface) | Convert a TensorFlow checkpoint in a PyTorch dump | ## Installation From f9f3bdd60bc84d9cd399c7df5ad6b7d47da8e5a9 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 30 Nov 2018 23:05:18 +0100 Subject: [PATCH 017/111] update readme --- README.md | 25 +++++++++++++------------ 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/README.md b/README.md index 08d45ad5d38b..f105e0e35b96 100644 --- a/README.md +++ b/README.md @@ -46,13 +46,14 @@ python -m pytest -sv tests/ This package comprises the following classes that can be imported in Python and are detailed in the [Doc](#doc) section of this readme: -- Six PyTorch models (`torch.nn.Module`) for Bert with pre-trained weights (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file): - - [`BertModel`](./pytorch_pretrained_bert/modeling.py#L535) - raw BERT Transformer model (**fully pre-trained**), - - [`BertForMaskedLM`](./pytorch_pretrained_bert/modeling.py#L689) - BERT Transformer with the pre-trained masked language modeling head on top (**fully pre-trained**), - - [`BertForNextSentencePrediction`](./pytorch_pretrained_bert/modeling.py#L750) - BERT Transformer with the pre-trained next sentence prediction classifier on top (**fully pre-trained**), - - [`BertForPreTraining`](./pytorch_pretrained_bert/modeling.py#L618) - BERT Transformer with masked language modeling head and next sentence prediction classifier on top (**fully pre-trained**), - - [`BertForSequenceClassification`](./pytorch_pretrained_bert/modeling.py#L812) - BERT Transformer with a sequence classification head on top (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), - - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L877) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**). +- Seven PyTorch models (`torch.nn.Module`) for Bert with pre-trained weights (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file): + - [`BertModel`](./pytorch_pretrained_bert/modeling.py#L537) - raw BERT Transformer model (**fully pre-trained**), + - [`BertForMaskedLM`](./pytorch_pretrained_bert/modeling.py#L691) - BERT Transformer with the pre-trained masked language modeling head on top (**fully pre-trained**), + - [`BertForNextSentencePrediction`](./pytorch_pretrained_bert/modeling.py#L752) - BERT Transformer with the pre-trained next sentence prediction classifier on top (**fully pre-trained**), + - [`BertForPreTraining`](./pytorch_pretrained_bert/modeling.py#L620) - BERT Transformer with masked language modeling head and next sentence prediction classifier on top (**fully pre-trained**), + - [`BertForSequenceClassification`](./pytorch_pretrained_bert/modeling.py#L814) - BERT Transformer with a sequence classification head on top (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), + - [`BertForTokenClassification`](./pytorch_pretrained_bert/modeling.py#L880) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**), + - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L946) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**). - Three tokenizers (in the [`tokenization.py`](./pytorch_pretrained_bert/tokenization.py) file): - `BasicTokenizer` - basic tokenization (punctuation splitting, lower casing, etc.), @@ -167,7 +168,7 @@ model = BERT_CLASS.from_pretrain(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None) where -- `BERT_CLASS` is either the `BertTokenizer` class (to load the vocabulary) or one of the six PyTorch model classes (to load the pre-trained weights): `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification` or `BertForQuestionAnswering`, and +- `BERT_CLASS` is either the `BertTokenizer` class (to load the vocabulary) or one of the seven PyTorch model classes (to load the pre-trained weights): `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification`, `BertForTokenClassification` or `BertForQuestionAnswering`, and - `PRE_TRAINED_MODEL_NAME_OR_PATH` is either: - the shortcut name of a Google AI's pre-trained model selected in the list: @@ -177,13 +178,13 @@ where - `bert-base-cased`: 12-layer, 768-hidden, 12-heads , 110M parameters - `bert-large-cased`: 24-layer, 1024-hidden, 16-heads, 340M parameters - `bert-base-multilingual-uncased`: (Orig, not recommended) 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters - - `bert-base-multilingual-cased`: (New, recommended) 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters + - `bert-base-multilingual-cased`: **(New, recommended)** 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters - `bert-base-chinese`: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters - a path or url to a pretrained model archive containing: - - - `bert_config.json` a configuration file for the model, and - - `pytorch_model.bin` a PyTorch dump of a pre-trained instance `BertForPreTraining` (saved with the usual `torch.save()`) + + - `bert_config.json` a configuration file for the model, and + - `pytorch_model.bin` a PyTorch dump of a pre-trained instance `BertForPreTraining` (saved with the usual `torch.save()`) If `PRE_TRAINED_MODEL_NAME_OR_PATH` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links [here](pytorch_pretrained_bert/modeling.py)) and stored in a cache folder to avoid future download (the cache folder can be found at `~/.pytorch_pretrained_bert/`). - `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example `cache_dir='./pretrained_model_{}'.format(args.local_rank)` (see the section on distributed training for more information) From 8a8aa59d8cad1b4e61b1bdffddb97f09260996d9 Mon Sep 17 00:00:00 2001 From: Davide Fiocco Date: Sat, 1 Dec 2018 01:00:05 +0100 Subject: [PATCH 018/111] Update finetuning example adding --do_lower_case Should be consistent with the fact that an uncased model is used --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index f105e0e35b96..8d5b60353ab9 100644 --- a/README.md +++ b/README.md @@ -377,6 +377,7 @@ python run_classifier.py \ --task_name MRPC \ --do_train \ --do_eval \ + --do_lower_case \ --data_dir $GLUE_DIR/MRPC/ \ --bert_model bert-base-uncased \ --max_seq_length 128 \ From dc13e276eec4ae8f316c82a190095380ad19e3c5 Mon Sep 17 00:00:00 2001 From: Davide Fiocco Date: Sat, 1 Dec 2018 01:02:16 +0100 Subject: [PATCH 019/111] Point typo fix --- examples/run_classifier.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 23c2bea057ea..8e136da37b07 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -416,7 +416,7 @@ def main(): parser.add_argument('--gradient_accumulation_steps', type=int, default=1, - help="Number of updates steps to accumualte before performing a backward/update pass.") + help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--optimize_on_cpu', default=False, action='store_true', From e60e8a606837ff7f49e583de8492e55575155eb6 Mon Sep 17 00:00:00 2001 From: Davide Fiocco Date: Sun, 2 Dec 2018 12:38:26 +0100 Subject: [PATCH 020/111] Correct assignement for logits in classifier example I tried to address https://github.com/huggingface/pytorch-pretrained-BERT/issues/76 should be correct, but there's likely a more efficient way. --- examples/run_classifier.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 8e136da37b07..a5e7d2c30df5 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -605,7 +605,8 @@ def main(): label_ids = label_ids.to(device) with torch.no_grad(): - tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids) + tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids) + logits = model(input_ids, segment_ids, input_mask) logits = logits.detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() From 3113e967dbc37fee99524190615bf9466f5c8f1d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Tue, 4 Dec 2018 13:40:38 +0100 Subject: [PATCH 021/111] Adding links to examples files. --- README.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 8d5b60353ab9..5f03f52b141b 100644 --- a/README.md +++ b/README.md @@ -207,8 +207,8 @@ model = BertForSequenceClassification.from_pretrained('bert-base-uncased') The inputs and output are **identical to the TensorFlow model inputs and outputs**. We detail them here. This model takes as *inputs*: - -- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`), and +[`modeling.py`](./pytorch_pretrained_bert/modeling.py) +- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts [`extract_features.py`](./pytorch_pretrained_bert/examples/extract_features.py), [`run_classifier.py`](./pytorch_pretrained_bert/examples/run_classifier.py) and [`run_squad.py`](./pytorch_pretrained_bert/examples/run_squad.py)), and - `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). - `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if some input sequence lengths are smaller than the max input sequence length of the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. - `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. @@ -222,7 +222,7 @@ This model *outputs* a tuple composed of: - `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper). -An example on how to use this class is given in the `extract_features.py` script which can be used to extract the hidden states of the model for a given input. +An example on how to use this class is given in the [`extract_features.py`](./pytorch_pretrained_bert/examples/extract_features.py) script which can be used to extract the hidden states of the model for a given input. #### 2. `BertForPreTraining` @@ -276,7 +276,7 @@ An example on how to use this class is given in the `extract_features.py` script The sequence-level classifier is a linear layer that takes as input the last hidden state of the first character in the input sequence (see Figures 3a and 3b in the BERT paper). -An example on how to use this class is given in the `run_classifier.py` script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task. +An example on how to use this class is given in the [`run_classifier.py`](./pytorch_pretrained_bert/examples/run_classifier.py) script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task. #### 6. `BertForTokenClassification` @@ -290,7 +290,7 @@ The token-level classifier is a linear layer that takes as input the last hidden The token-level classifier takes as input the full sequence of the last hidden state and compute several (e.g. two) scores for each tokens that can for example respectively be the score that a given token is a `start_span` and a `end_span` token (see Figures 3c and 3d in the BERT paper). -An example on how to use this class is given in the `run_squad.py` script which can be used to fine-tune a token classifier using BERT, for example for the SQuAD task. +An example on how to use this class is given in the [`run_squad.py`](./pytorch_pretrained_bert/examples/run_squad.py) script which can be used to fine-tune a token classifier using BERT, for example for the SQuAD task. ### Tokenizer: `BertTokenizer` @@ -341,14 +341,14 @@ The optimizer accepts the following arguments: BERT-base and BERT-large are respectively 110M and 340M parameters models and it can be difficult to fine-tune them on a single GPU with the recommended batch size for good performance (in most case a batch size of 32). -To help with fine-tuning these models, we have included five techniques that you can activate in the fine-tuning scripts `run_classifier.py` and `run_squad.py`: gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month. +To help with fine-tuning these models, we have included five techniques that you can activate in the fine-tuning scripts [`run_classifier.py`](./pytorch_pretrained_bert/examples/run_classifier.py) and [`run_squad.py`](./pytorch_pretrained_bert/examples/run_squad.py): gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month. Here is how to use these techniques in our scripts: - **Gradient Accumulation**: Gradient accumulation can be used by supplying a integer greater than 1 to the `--gradient_accumulation_steps` argument. The batch at each step will be divided by this integer and gradient will be accumulated over `gradient_accumulation_steps` steps. - **Multi-GPU**: Multi-GPU is automatically activated when several GPUs are detected and the batches are splitted over the GPUs. - **Distributed training**: Distributed training can be activated by supplying an integer greater or equal to 0 to the `--local_rank` argument (see below). -- **Optimize on CPU**: The Adam optimizer stores 2 moving average of the weights of the model. If you keep them on GPU 1 (typical behavior), your first GPU will have to store 3-times the size of the model. This is not optimal for large models like `BERT-large` and means your batch size is a lot lower than it could be. This option will perform the optimization and store the averages on the CPU/RAM to free more room on the GPU(s). As the most computational intensive operation is usually the backward pass, this doesn't have a significant impact on the training time. Activate this option with `--optimize_on_cpu` on the `run_squad.py` script. +- **Optimize on CPU**: The Adam optimizer stores 2 moving average of the weights of the model. If you keep them on GPU 1 (typical behavior), your first GPU will have to store 3-times the size of the model. This is not optimal for large models like `BERT-large` and means your batch size is a lot lower than it could be. This option will perform the optimization and store the averages on the CPU/RAM to free more room on the GPU(s). As the most computational intensive operation is usually the backward pass, this doesn't have a significant impact on the training time. Activate this option with `--optimize_on_cpu` on the [`run_squad.py`](./pytorch_pretrained_bert/examples/run_squad.py) script. - **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scaling` flag (see the previously linked documentation for details on loss scaling). If the loss scaling is too high (`Nan` in the gradients) it will be automatically scaled down until the value is acceptable. The default loss scaling is 128 which behaved nicely in our tests. Note: To use *Distributed Training*, you will need to run one training script on each of your machines. This can be done for example by running the following command on each server (see [the above mentioned blog post]((https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255)) for more details): @@ -493,7 +493,7 @@ A command-line interface is provided to convert a TensorFlow checkpoint in a PyT You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the [`./pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py`](convert_tf_checkpoint_to_pytorch.py) script. -This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using `torch.load()` (see examples in `extract_features.py`, `run_classifier.py` and `run_squad.py`). +This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using `torch.load()` (see examples in [`extract_features.py`](./pytorch_pretrained_bert/examples/extract_features.py), [`run_classifier.py`](./pytorch_pretrained_bert/examples/run_classifier.py) and [`run_squad.py`]((./pytorch_pretrained_bert/examples/run_squad.py))). You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too. From 0a7c8bdcacf2debae34977e478d00040faa83892 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Tue, 4 Dec 2018 13:43:56 +0100 Subject: [PATCH 022/111] Fixing badly formatted links. --- README.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 5f03f52b141b..85adf9c7594e 100644 --- a/README.md +++ b/README.md @@ -208,7 +208,7 @@ The inputs and output are **identical to the TensorFlow model inputs and outputs We detail them here. This model takes as *inputs*: [`modeling.py`](./pytorch_pretrained_bert/modeling.py) -- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts [`extract_features.py`](./pytorch_pretrained_bert/examples/extract_features.py), [`run_classifier.py`](./pytorch_pretrained_bert/examples/run_classifier.py) and [`run_squad.py`](./pytorch_pretrained_bert/examples/run_squad.py)), and +- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts [`extract_features.py`](./examples/extract_features.py), [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py)), and - `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). - `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if some input sequence lengths are smaller than the max input sequence length of the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. - `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. @@ -222,7 +222,7 @@ This model *outputs* a tuple composed of: - `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLF`) to train on the Next-Sentence task (see BERT's paper). -An example on how to use this class is given in the [`extract_features.py`](./pytorch_pretrained_bert/examples/extract_features.py) script which can be used to extract the hidden states of the model for a given input. +An example on how to use this class is given in the [`extract_features.py`](./examples/extract_features.py) script which can be used to extract the hidden states of the model for a given input. #### 2. `BertForPreTraining` @@ -276,7 +276,7 @@ An example on how to use this class is given in the [`extract_features.py`](./py The sequence-level classifier is a linear layer that takes as input the last hidden state of the first character in the input sequence (see Figures 3a and 3b in the BERT paper). -An example on how to use this class is given in the [`run_classifier.py`](./pytorch_pretrained_bert/examples/run_classifier.py) script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task. +An example on how to use this class is given in the [`run_classifier.py`](./examples/run_classifier.py) script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task. #### 6. `BertForTokenClassification` @@ -290,7 +290,7 @@ The token-level classifier is a linear layer that takes as input the last hidden The token-level classifier takes as input the full sequence of the last hidden state and compute several (e.g. two) scores for each tokens that can for example respectively be the score that a given token is a `start_span` and a `end_span` token (see Figures 3c and 3d in the BERT paper). -An example on how to use this class is given in the [`run_squad.py`](./pytorch_pretrained_bert/examples/run_squad.py) script which can be used to fine-tune a token classifier using BERT, for example for the SQuAD task. +An example on how to use this class is given in the [`run_squad.py`](./examples/run_squad.py) script which can be used to fine-tune a token classifier using BERT, for example for the SQuAD task. ### Tokenizer: `BertTokenizer` @@ -341,14 +341,14 @@ The optimizer accepts the following arguments: BERT-base and BERT-large are respectively 110M and 340M parameters models and it can be difficult to fine-tune them on a single GPU with the recommended batch size for good performance (in most case a batch size of 32). -To help with fine-tuning these models, we have included five techniques that you can activate in the fine-tuning scripts [`run_classifier.py`](./pytorch_pretrained_bert/examples/run_classifier.py) and [`run_squad.py`](./pytorch_pretrained_bert/examples/run_squad.py): gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month. +To help with fine-tuning these models, we have included five techniques that you can activate in the fine-tuning scripts [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py): gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month. Here is how to use these techniques in our scripts: - **Gradient Accumulation**: Gradient accumulation can be used by supplying a integer greater than 1 to the `--gradient_accumulation_steps` argument. The batch at each step will be divided by this integer and gradient will be accumulated over `gradient_accumulation_steps` steps. - **Multi-GPU**: Multi-GPU is automatically activated when several GPUs are detected and the batches are splitted over the GPUs. - **Distributed training**: Distributed training can be activated by supplying an integer greater or equal to 0 to the `--local_rank` argument (see below). -- **Optimize on CPU**: The Adam optimizer stores 2 moving average of the weights of the model. If you keep them on GPU 1 (typical behavior), your first GPU will have to store 3-times the size of the model. This is not optimal for large models like `BERT-large` and means your batch size is a lot lower than it could be. This option will perform the optimization and store the averages on the CPU/RAM to free more room on the GPU(s). As the most computational intensive operation is usually the backward pass, this doesn't have a significant impact on the training time. Activate this option with `--optimize_on_cpu` on the [`run_squad.py`](./pytorch_pretrained_bert/examples/run_squad.py) script. +- **Optimize on CPU**: The Adam optimizer stores 2 moving average of the weights of the model. If you keep them on GPU 1 (typical behavior), your first GPU will have to store 3-times the size of the model. This is not optimal for large models like `BERT-large` and means your batch size is a lot lower than it could be. This option will perform the optimization and store the averages on the CPU/RAM to free more room on the GPU(s). As the most computational intensive operation is usually the backward pass, this doesn't have a significant impact on the training time. Activate this option with `--optimize_on_cpu` on the [`run_squad.py`](./examples/run_squad.py) script. - **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scaling` flag (see the previously linked documentation for details on loss scaling). If the loss scaling is too high (`Nan` in the gradients) it will be automatically scaled down until the value is acceptable. The default loss scaling is 128 which behaved nicely in our tests. Note: To use *Distributed Training*, you will need to run one training script on each of your machines. This can be done for example by running the following command on each server (see [the above mentioned blog post]((https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255)) for more details): @@ -493,7 +493,7 @@ A command-line interface is provided to convert a TensorFlow checkpoint in a PyT You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the [`./pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py`](convert_tf_checkpoint_to_pytorch.py) script. -This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using `torch.load()` (see examples in [`extract_features.py`](./pytorch_pretrained_bert/examples/extract_features.py), [`run_classifier.py`](./pytorch_pretrained_bert/examples/run_classifier.py) and [`run_squad.py`]((./pytorch_pretrained_bert/examples/run_squad.py))). +This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using `torch.load()` (see examples in [`extract_features.py`](./examples/extract_features.py), [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`]((./examples/run_squad.py))). You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too. From 793262e8ec8ebd3cee806b444cd9daafa6856317 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Wed, 5 Dec 2018 17:52:39 +0100 Subject: [PATCH 023/111] Removing trailing whitespaces. --- examples/run_classifier.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index a5e7d2c30df5..b2b8ac2630e0 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -35,7 +35,7 @@ from pytorch_pretrained_bert.optimization import BertAdam from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE -logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', +logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) @@ -409,14 +409,14 @@ def main(): type=int, default=-1, help="local_rank for distributed training on gpus") - parser.add_argument('--seed', - type=int, + parser.add_argument('--seed', + type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, - help="Number of updates steps to accumulate before performing a backward/update pass.") + help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--optimize_on_cpu', default=False, action='store_true', @@ -487,7 +487,7 @@ def main(): len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare model - model = BertForSequenceClassification.from_pretrained(args.bert_model, + model = BertForSequenceClassification.from_pretrained(args.bert_model, cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank)) if args.fp16: model.half() From c6d9d5394e6bf461f09e5f3e9b08e333961e590b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Wed, 5 Dec 2018 17:53:09 +0100 Subject: [PATCH 024/111] Simplifying code for easier understanding. --- examples/run_classifier.py | 34 ++++++++++------------------------ 1 file changed, 10 insertions(+), 24 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index b2b8ac2630e0..7cfa39dabfc3 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -196,9 +196,7 @@ def _create_examples(self, lines, set_type): def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Loads a data file into a list of `InputBatch`s.""" - label_map = {} - for (i, label) in enumerate(label_list): - label_map[label] = i + label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): @@ -207,8 +205,6 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) - - if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" @@ -216,7 +212,7 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: - tokens_a = tokens_a[0:(max_seq_length - 2)] + tokens_a = tokens_a[:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: @@ -236,22 +232,12 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. - tokens = [] - segment_ids = [] - tokens.append("[CLS]") - segment_ids.append(0) - for token in tokens_a: - tokens.append(token) - segment_ids.append(0) - tokens.append("[SEP]") - segment_ids.append(0) + tokens = ["[CLS]"] + tokens_a + ["[SEP]"] + segment_ids = [0] * len(tokens) if tokens_b: - for token in tokens_b: - tokens.append(token) - segment_ids.append(1) - tokens.append("[SEP]") - segment_ids.append(1) + tokens += tokens_b + ["[SEP]"] + segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) @@ -260,10 +246,10 @@ def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. - while len(input_ids) < max_seq_length: - input_ids.append(0) - input_mask.append(0) - segment_ids.append(0) + padding = [0] * (max_seq_length - len(input_ids)) + input_ids += padding + input_mask += padding + segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length From a994bf4076667d6885ee0596c35c90af297ad7b7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Wed, 5 Dec 2018 18:16:30 +0100 Subject: [PATCH 025/111] Fixing related to issue #83. --- examples/run_classifier.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 7cfa39dabfc3..475ab54c9687 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -423,6 +423,12 @@ def main(): "mrpc": MrpcProcessor, } + num_labels_task = { + "cola": 2, + "mnli": 3, + "mrpc": 2, + } + if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() @@ -461,6 +467,7 @@ def main(): raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() + num_labels = num_labels_task[task_name] label_list = processor.get_labels() tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) @@ -474,7 +481,8 @@ def main(): # Prepare model model = BertForSequenceClassification.from_pretrained(args.bert_model, - cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank)) + cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank), + num_labels = num_labels) if args.fp16: model.half() model.to(device) From fa7daa247d6dde0e68af418beaf14d3e04dcd0b5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 13:14:33 +0100 Subject: [PATCH 026/111] Fixing the commentary of the `SquadExample` class. --- examples/run_squad.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/run_squad.py b/examples/run_squad.py index 041a51a879fa..e47730043e9d 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -45,7 +45,7 @@ class SquadExample(object): - """A single training/test example for simple sequence classification.""" + """A single training/test example for the Squad dataset.""" def __init__(self, qas_id, From 7183cded4e10fd35ee1737d738c4a657db28ee1f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 13:39:44 +0100 Subject: [PATCH 027/111] SwagExample class. --- examples/run_swag.py | 78 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 78 insertions(+) create mode 100644 examples/run_swag.py diff --git a/examples/run_swag.py b/examples/run_swag.py new file mode 100644 index 000000000000..37212b4e8641 --- /dev/null +++ b/examples/run_swag.py @@ -0,0 +1,78 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""BERT finetuning runner.""" + +class SwagExample(object): + """A single training/test example for the SWAG dataset.""" + def __init__(self, + swag_id, + context_sentence, + start_ending, + ending_0, + ending_1, + ending_2, + ending_3, + label = None): + self.swag_id = swag_id + self.context_sentence = context_sentence + self.start_ending = start_ending + self.ending_0 = ending_0 + self.ending_1 = ending_1 + self.ending_2 = ending_2 + self.ending_3 = ending_3 + self.label = label + + def __str__(self): + return self.__repr__() + + def __repr__(self): + l = [ + f'swag_id: {self.swag_id}', + f'context_sentence: {self.context_sentence}', + f'start_ending: {self.start_ending}', + f'ending_0: {self.ending_0}', + f'ending_1: {self.ending_1}', + f'ending_2: {self.ending_2}', + f'ending_3: {self.ending_3}', + ] + + if self.label is not None: + l.append(f'label: {self.label}') + + return ', '.join(l) + +if __name__ == "__main__": + e = SwagExample( + 3416, + 'Members of the procession walk down the street holding small horn brass instruments.', + 'A drum line', + 'passes by walking down the street playing their instruments.', + 'has heard approaching them.', + "arrives and they're outside dancing and asleep.", + 'turns the lead singer watches the performance.', + ) + print(e) + + e = SwagExample( + 3416, + 'Members of the procession walk down the street holding small horn brass instruments.', + 'A drum line', + 'passes by walking down the street playing their instruments.', + 'has heard approaching them.', + "arrives and they're outside dancing and asleep.", + 'turns the lead singer watches the performance.', + 0 + ) + print(e) From 83fdbd6043127bb7bf814bbe2e0dd65b05e60d95 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 14:02:46 +0100 Subject: [PATCH 028/111] Adding read_swag_examples to load the dataset. --- examples/run_swag.py | 53 ++++++++++++++++++++++++++------------------ 1 file changed, 31 insertions(+), 22 deletions(-) diff --git a/examples/run_swag.py b/examples/run_swag.py index 37212b4e8641..9fa5bad0504e 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -14,6 +14,9 @@ # limitations under the License. """BERT finetuning runner.""" +import pandas as pd + + class SwagExample(object): """A single training/test example for the SWAG dataset.""" def __init__(self, @@ -53,26 +56,32 @@ def __repr__(self): return ', '.join(l) -if __name__ == "__main__": - e = SwagExample( - 3416, - 'Members of the procession walk down the street holding small horn brass instruments.', - 'A drum line', - 'passes by walking down the street playing their instruments.', - 'has heard approaching them.', - "arrives and they're outside dancing and asleep.", - 'turns the lead singer watches the performance.', - ) - print(e) +def read_swag_examples(input_file, is_training): + input_df = pd.read_csv(input_file) + + if is_training and 'label' not in input_df.columns: + raise ValueError( + "For training, the input file must contain a label column.") - e = SwagExample( - 3416, - 'Members of the procession walk down the street holding small horn brass instruments.', - 'A drum line', - 'passes by walking down the street playing their instruments.', - 'has heard approaching them.', - "arrives and they're outside dancing and asleep.", - 'turns the lead singer watches the performance.', - 0 - ) - print(e) + examples = [ + SwagExample( + swag_id = row['fold-ind'], + context_sentence = row['sent1'], + start_ending = row['sent2'], + ending_0 = row['ending0'], + ending_1 = row['ending1'], + ending_2 = row['ending2'], + ending_3 = row['ending3'], + label = row['label'] if is_training else None + ) for _, row in input_df.iterrows() + ] + + return examples + + +if __name__ == "__main__": + examples = read_swag_examples('data/train.csv', True) + print(len(examples)) + for example in examples[:5]: + print('###########################') + print(example) From f2b873e995e36732e41f2484b990b8109c239cd6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 15:40:47 +0100 Subject: [PATCH 029/111] convert_examples_to_features code and small improvements. --- examples/run_swag.py | 154 ++++++++++++++++++++++++++++++++++++++----- 1 file changed, 138 insertions(+), 16 deletions(-) diff --git a/examples/run_swag.py b/examples/run_swag.py index 9fa5bad0504e..5a92f811b434 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -16,6 +16,15 @@ import pandas as pd +import logging + +from pytorch_pretrained_bert.tokenization import BertTokenizer + +logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', + datefmt = '%m/%d/%Y %H:%M:%S', + level = logging.INFO) +logger = logging.getLogger(__name__) + class SwagExample(object): """A single training/test example for the SWAG dataset.""" @@ -31,10 +40,12 @@ def __init__(self, self.swag_id = swag_id self.context_sentence = context_sentence self.start_ending = start_ending - self.ending_0 = ending_0 - self.ending_1 = ending_1 - self.ending_2 = ending_2 - self.ending_3 = ending_3 + self.endings = [ + ending_0, + ending_1, + ending_2, + ending_3, + ] self.label = label def __str__(self): @@ -42,19 +53,37 @@ def __str__(self): def __repr__(self): l = [ - f'swag_id: {self.swag_id}', - f'context_sentence: {self.context_sentence}', - f'start_ending: {self.start_ending}', - f'ending_0: {self.ending_0}', - f'ending_1: {self.ending_1}', - f'ending_2: {self.ending_2}', - f'ending_3: {self.ending_3}', + f"swag_id: {self.swag_id}", + f"context_sentence: {self.context_sentence}", + f"start_ending: {self.start_ending}", + f"ending_0: {self.endings[0]}", + f"ending_1: {self.endings[1]}", + f"ending_2: {self.endings[2]}", + f"ending_3: {self.endings[3]}", ] if self.label is not None: - l.append(f'label: {self.label}') + l.append(f"label: {self.label}") + + return ", ".join(l) + + +class InputFeatures(object): + def __init__(self, + unique_id, + example_id, + input_ids, + input_mask, + segment_ids, + label_id + ): + self.unique_id = unique_id + self.example_id = example_id + self.input_ids = input_ids + self.input_mask = input_mask + self.segment_ids = segment_ids + self.label_id = label_id - return ', '.join(l) def read_swag_examples(input_file, is_training): input_df = pd.read_csv(input_file) @@ -67,7 +96,9 @@ def read_swag_examples(input_file, is_training): SwagExample( swag_id = row['fold-ind'], context_sentence = row['sent1'], - start_ending = row['sent2'], + start_ending = row['sent2'], # in the swag dataset, the + # common beginning of each + # choice is stored in "sent2". ending_0 = row['ending0'], ending_1 = row['ending1'], ending_2 = row['ending2'], @@ -79,9 +110,100 @@ def read_swag_examples(input_file, is_training): return examples +def convert_examples_to_features(examples, tokenizer, max_seq_length, + is_training): + """Loads a data file into a list of `InputBatch`s.""" + + # Swag is a multiple choice task. To perform this task using Bert, + # we will use the formatting proposed in "Improving Language + # Understanding by Generative Pre-Training" and suggested by + # @jacobdevlin-google in this issue + # https://github.com/google-research/bert/issues/38. + # + # Each choice will correspond to a sample on which we run the + # inference. For a given Swag example, we will create the 4 + # following inputs: + # - [CLS] context [SEP] choice_1 [SEP] + # - [CLS] context [SEP] choice_2 [SEP] + # - [CLS] context [SEP] choice_3 [SEP] + # - [CLS] context [SEP] choice_4 [SEP] + # The model will output a single value for each input. To get the + # final decision of the model, we will run a softmax over these 4 + # outputs. + features = [] + for example_index, example in enumerate(examples): + context_tokens = tokenizer.tokenize(example.context_sentence) + start_ending_tokens = tokenizer.tokenize(example.start_ending) + + choices_features = [] + for ending_index, ending in enumerate(example.endings): + # We create a copy of the context tokens in order to be + # able to shrink it according to ending_tokens + context_tokens_choice = context_tokens[:] + ending_tokens = start_ending_tokens + tokenizer.tokenize(ending) + # Modifies `context_tokens_choice` and `ending_tokens` in + # place so that the total length is less than the + # specified length. Account for [CLS], [SEP], [SEP] with + # "- 3" + _truncate_seq_pair(context_tokens, ending_tokens, max_seq_length - 3) + + tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] + segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) + + input_ids = tokenizer.convert_tokens_to_ids(tokens) + input_mask = [1] * len(input_ids) + + # Zero-pad up to the sequence length. + padding = [0] * (max_seq_length - len(input_ids)) + input_ids += padding + input_mask += padding + segment_ids += padding + + assert len(input_ids) == max_seq_length + assert len(input_mask) == max_seq_length + assert len(segment_ids) == max_seq_length + + choices_features.append((tokens, input_ids, input_mask, segment_ids)) + + label = example.label + if example_index < 5: + logger.info("*** Example ***") + logger.info(f"swag_id: {example.swag_id}") + for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): + logger.info(f"choice: {choice_idx}") + logger.info(f"tokens: {' '.join(tokens)}") + logger.info(f"input_ids: {' '.join(map(str, input_ids))}") + logger.info(f"input_mask: {' '.join(map(str, input_mask))}") + logger.info(f"segment_ids: {' '.join(map(str, segment_ids))}") + if is_training: + logger.info(f"label: {label}") + + + +def _truncate_seq_pair(tokens_a, tokens_b, max_length): + """Truncates a sequence pair in place to the maximum length.""" + + # This is a simple heuristic which will always truncate the longer sequence + # one token at a time. This makes more sense than truncating an equal percent + # of tokens from each, since if one sequence is very short then each token + # that's truncated likely contains more information than a longer sequence. + while True: + total_length = len(tokens_a) + len(tokens_b) + if total_length <= max_length: + break + if len(tokens_a) > len(tokens_b): + tokens_a.pop() + else: + tokens_b.pop() + + if __name__ == "__main__": - examples = read_swag_examples('data/train.csv', True) + is_training = True + max_seq_length = 80 + examples = read_swag_examples('data/train.csv', is_training) print(len(examples)) for example in examples[:5]: - print('###########################') + print("###########################") print(example) + tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") + convert_examples_to_features(examples, tokenizer, max_seq_length, is_training) From 0812aee2c3c4d9d364ea204ef2533cb166e5301d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 15:53:07 +0100 Subject: [PATCH 030/111] Fixing problems in convert_examples_to_features. --- examples/run_swag.py | 27 ++++++++++++++------------- 1 file changed, 14 insertions(+), 13 deletions(-) diff --git a/examples/run_swag.py b/examples/run_swag.py index 5a92f811b434..06169a3e9bdf 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -70,20 +70,13 @@ def __repr__(self): class InputFeatures(object): def __init__(self, - unique_id, example_id, - input_ids, - input_mask, - segment_ids, - label_id + choices_features, + label ): - self.unique_id = unique_id self.example_id = example_id - self.input_ids = input_ids - self.input_mask = input_mask - self.segment_ids = segment_ids - self.label_id = label_id - + self.choices_features = choices_features + self.label = label def read_swag_examples(input_file, is_training): input_df = pd.read_csv(input_file) @@ -145,7 +138,7 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, # place so that the total length is less than the # specified length. Account for [CLS], [SEP], [SEP] with # "- 3" - _truncate_seq_pair(context_tokens, ending_tokens, max_seq_length - 3) + _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3) tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) @@ -178,7 +171,15 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, if is_training: logger.info(f"label: {label}") + features.append( + InputFeatures( + example_id = example.swag_id, + choices_features = choices_features, + label = label + ) + ) + return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" @@ -206,4 +207,4 @@ def _truncate_seq_pair(tokens_a, tokens_b, max_length): print("###########################") print(example) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") - convert_examples_to_features(examples, tokenizer, max_seq_length, is_training) + features = convert_examples_to_features(examples, tokenizer, max_seq_length, is_training) From c45d8ac55439decd059d697e21daf27e85ac3412 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 16:01:28 +0100 Subject: [PATCH 031/111] Storing the feature of each choice as a dict for readability. --- examples/run_swag.py | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) diff --git a/examples/run_swag.py b/examples/run_swag.py index 06169a3e9bdf..f8494f3a1fe1 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -73,9 +73,17 @@ def __init__(self, example_id, choices_features, label + ): self.example_id = example_id - self.choices_features = choices_features + self.choices_features = [ + { + 'input_ids': input_ids, + 'input_mask': input_mask, + 'segment_ids': segment_ids + } + for _, input_ids, input_mask, segment_ids in choices_features + ] self.label = label def read_swag_examples(input_file, is_training): @@ -181,6 +189,7 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, return features + def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" @@ -207,4 +216,11 @@ def _truncate_seq_pair(tokens_a, tokens_b, max_length): print("###########################") print(example) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") - features = convert_examples_to_features(examples, tokenizer, max_seq_length, is_training) + features = convert_examples_to_features(examples[:500], tokenizer, max_seq_length, is_training) + for i in range(10): + choice_feature_list = features[i].choices_features + for choice_idx, choice_feature in enumerate(choice_feature_list): + print(f'choice_idx: {choice_idx}') + print(f'input_ids: {" ".join(map(str, choice_feature["input_ids"]))}') + print(f'input_mask: {" ".join(map(str, choice_feature["input_mask"]))}') + print(f'segment_ids: {" ".join(map(str, choice_feature["segment_ids"]))}') From fc5a38ac92c74577523665d8f8602c45ae8dcd8b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 18:42:23 +0100 Subject: [PATCH 032/111] Adding the BertForMultipleChoiceClass. --- pytorch_pretrained_bert/__init__.py | 4 +- pytorch_pretrained_bert/modeling.py | 69 +++++++++++++++++++++++++++++ 2 files changed, 71 insertions(+), 2 deletions(-) diff --git a/pytorch_pretrained_bert/__init__.py b/pytorch_pretrained_bert/__init__.py index fc9b15a12d31..e1ecabf31dbd 100644 --- a/pytorch_pretrained_bert/__init__.py +++ b/pytorch_pretrained_bert/__init__.py @@ -1,7 +1,7 @@ from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, - BertForSequenceClassification, BertForTokenClassification, - BertForQuestionAnswering) + BertForSequenceClassification, BertForMultipleChoice, + BertForTokenClassification, BertForQuestionAnswering) from .optimization import BertAdam from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 3af5854072fe..e23e2c1a1c42 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -877,6 +877,75 @@ def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=No return logits +class BertForMultipleChoice(PreTrainedBertModel): + """BERT model for multiple choice tasks. + This module is composed of the BERT model with a linear layer on top of + the pooled output. + + Params: + `config`: a BertConfig class instance with the configuration to build a new model. + `num_choices`: the number of classes for the classifier. Default = 2. + + Inputs: + `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] + with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts + `extract_features.py`, `run_classifier.py` and `run_squad.py`) + `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] + with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` + and type 1 corresponds to a `sentence B` token (see BERT paper for more details). + `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices + selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max + input sequence length in the current batch. It's the mask that we typically use for attention when + a batch has varying length sentences. + `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] + with indices selected in [0, ..., num_choices]. + + Outputs: + if `labels` is not `None`: + Outputs the CrossEntropy classification loss of the output with the labels. + if `labels` is `None`: + Outputs the classification logits of shape [batch_size, num_labels]. + + Example usage: + ```python + # Already been converted into WordPiece token ids + input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]]) + input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]]) + token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]]) + config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, + num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) + + num_choices = 2 + + model = BertForMultipleChoice(config, num_choices) + logits = model(input_ids, token_type_ids, input_mask) + ``` + """ + def __init__(self, config, num_choices=2): + super(BertForMultipleChoice, self).__init__(config) + self.num_choices = num_choices + self.bert = BertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + self.apply(self.init_bert_weights) + + def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) + _, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False) + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, self.num_choices) + + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + return loss + else: + return reshaped_logits + + class BertForTokenClassification(PreTrainedBertModel): """BERT model for token-level classification. This module is composed of the BERT model with a linear layer on top of From 63c45056aa2568a0bc0f8f6d97e6d90bbc4d4b4b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 18:53:05 +0100 Subject: [PATCH 033/111] Finishing the code for the Swag task. --- examples/run_swag.py | 360 ++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 342 insertions(+), 18 deletions(-) diff --git a/examples/run_swag.py b/examples/run_swag.py index f8494f3a1fe1..8ebb506e4aad 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -17,8 +17,20 @@ import pandas as pd import logging +import os +import argparse +import random +from tqdm import tqdm, trange + +import numpy as np +import torch +from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler +from torch.utils.data.distributed import DistributedSampler from pytorch_pretrained_bert.tokenization import BertTokenizer +from pytorch_pretrained_bert.modeling import BertForMultipleChoice +from pytorch_pretrained_bert.optimization import BertAdam +from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', @@ -86,6 +98,7 @@ def __init__(self, ] self.label = label + def read_swag_examples(input_file, is_training): input_df = pd.read_csv(input_file) @@ -110,7 +123,6 @@ def read_swag_examples(input_file, is_training): return examples - def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training): """Loads a data file into a list of `InputBatch`s.""" @@ -189,7 +201,6 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, return features - def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" @@ -206,21 +217,334 @@ def _truncate_seq_pair(tokens_a, tokens_b, max_length): else: tokens_b.pop() +def accuracy(out, labels): + outputs = np.argmax(out, axis=1) + return np.sum(outputs == labels) + +def select_field(features, field): + return [ + [ + choice[field] + for choice in feature.choices_features + ] + for feature in features + ] + +def copy_optimizer_params_to_model(named_params_model, named_params_optimizer): + """ Utility function for optimize_on_cpu and 16-bits training. + Copy the parameters optimized on CPU/RAM back to the model on GPU + """ + for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): + if name_opti != name_model: + logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) + raise ValueError + param_model.data.copy_(param_opti.data) + +def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False): + """ Utility function for optimize_on_cpu and 16-bits training. + Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model + """ + is_nan = False + for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): + if name_opti != name_model: + logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) + raise ValueError + if param_model.grad is not None: + if test_nan and torch.isnan(param_model.grad).sum() > 0: + is_nan = True + if param_opti.grad is None: + param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size())) + param_opti.grad.data.copy_(param_model.grad.data) + else: + param_opti.grad = None + return is_nan + +def main(): + parser = argparse.ArgumentParser() + + ## Required parameters + parser.add_argument("--data_dir", + default=None, + type=str, + required=True, + help="The input data dir. Should contain the .csv files (or other data files) for the task.") + parser.add_argument("--bert_model", default=None, type=str, required=True, + help="Bert pre-trained model selected in the list: bert-base-uncased, " + "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") + parser.add_argument("--output_dir", + default=None, + type=str, + required=True, + help="The output directory where the model checkpoints will be written.") + + ## Other parameters + parser.add_argument("--max_seq_length", + default=128, + type=int, + help="The maximum total input sequence length after WordPiece tokenization. \n" + "Sequences longer than this will be truncated, and sequences shorter \n" + "than this will be padded.") + parser.add_argument("--do_train", + default=False, + action='store_true', + help="Whether to run training.") + parser.add_argument("--do_eval", + default=False, + action='store_true', + help="Whether to run eval on the dev set.") + parser.add_argument("--do_lower_case", + default=False, + action='store_true', + help="Set this flag if you are using an uncased model.") + parser.add_argument("--train_batch_size", + default=32, + type=int, + help="Total batch size for training.") + parser.add_argument("--eval_batch_size", + default=8, + type=int, + help="Total batch size for eval.") + parser.add_argument("--learning_rate", + default=5e-5, + type=float, + help="The initial learning rate for Adam.") + parser.add_argument("--num_train_epochs", + default=3.0, + type=float, + help="Total number of training epochs to perform.") + parser.add_argument("--warmup_proportion", + default=0.1, + type=float, + help="Proportion of training to perform linear learning rate warmup for. " + "E.g., 0.1 = 10%% of training.") + parser.add_argument("--no_cuda", + default=False, + action='store_true', + help="Whether not to use CUDA when available") + parser.add_argument("--local_rank", + type=int, + default=-1, + help="local_rank for distributed training on gpus") + parser.add_argument('--seed', + type=int, + default=42, + help="random seed for initialization") + parser.add_argument('--gradient_accumulation_steps', + type=int, + default=1, + help="Number of updates steps to accumulate before performing a backward/update pass.") + parser.add_argument('--optimize_on_cpu', + default=False, + action='store_true', + help="Whether to perform optimization and keep the optimizer averages on CPU") + parser.add_argument('--fp16', + default=False, + action='store_true', + help="Whether to use 16-bit float precision instead of 32-bit") + parser.add_argument('--loss_scale', + type=float, default=128, + help='Loss scaling, positive power of 2 values can improve fp16 convergence.') + + args = parser.parse_args() + + if args.local_rank == -1 or args.no_cuda: + device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") + n_gpu = torch.cuda.device_count() + else: + device = torch.device("cuda", args.local_rank) + n_gpu = 1 + # Initializes the distributed backend which will take care of sychronizing nodes/GPUs + torch.distributed.init_process_group(backend='nccl') + if args.fp16: + logger.info("16-bits training currently not supported in distributed training") + args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) + logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) + + if args.gradient_accumulation_steps < 1: + raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( + args.gradient_accumulation_steps)) + + args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) + + random.seed(args.seed) + np.random.seed(args.seed) + torch.manual_seed(args.seed) + if n_gpu > 0: + torch.cuda.manual_seed_all(args.seed) + + if not args.do_train and not args.do_eval: + raise ValueError("At least one of `do_train` or `do_eval` must be True.") + + if os.path.exists(args.output_dir) and os.listdir(args.output_dir): + raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) + os.makedirs(args.output_dir, exist_ok=True) + + # task_name = args.task_name.lower() + + # if task_name not in processors: + # raise ValueError("Task not found: %s" % (task_name)) + + # processor = processors[task_name]() + # label_list = processor.get_labels() + + tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) + + train_examples = None + num_train_steps = None + if args.do_train: + train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True) + num_train_steps = int( + len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) + + # Prepare model + model = BertForMultipleChoice.from_pretrained(args.bert_model, + cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank), + num_choices = 4 + ) + if args.fp16: + model.half() + model.to(device) + if args.local_rank != -1: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], + output_device=args.local_rank) + elif n_gpu > 1: + model = torch.nn.DataParallel(model) + + # Prepare optimizer + if args.fp16: + param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \ + for n, param in model.named_parameters()] + elif args.optimize_on_cpu: + param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \ + for n, param in model.named_parameters()] + else: + param_optimizer = list(model.named_parameters()) + no_decay = ['bias', 'gamma', 'beta'] + optimizer_grouped_parameters = [ + {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, + {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0} + ] + t_total = num_train_steps + if args.local_rank != -1: + t_total = t_total // torch.distributed.get_world_size() + optimizer = BertAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + warmup=args.warmup_proportion, + t_total=t_total) + + global_step = 0 + if args.do_train: + train_features = convert_examples_to_features( + train_examples, tokenizer, args.max_seq_length, True) + logger.info("***** Running training *****") + logger.info(" Num examples = %d", len(train_examples)) + logger.info(" Batch size = %d", args.train_batch_size) + logger.info(" Num steps = %d", num_train_steps) + all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long) + all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long) + all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long) + all_label = torch.tensor([f.label for f in train_features], dtype=torch.long) + train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) + if args.local_rank == -1: + train_sampler = RandomSampler(train_data) + else: + train_sampler = DistributedSampler(train_data) + train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) + + model.train() + for _ in trange(int(args.num_train_epochs), desc="Epoch"): + tr_loss = 0 + nb_tr_examples, nb_tr_steps = 0, 0 + for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): + batch = tuple(t.to(device) for t in batch) + input_ids, input_mask, segment_ids, label_ids = batch + loss = model(input_ids, segment_ids, input_mask, label_ids) + if n_gpu > 1: + loss = loss.mean() # mean() to average on multi-gpu. + if args.fp16 and args.loss_scale != 1.0: + # rescale loss for fp16 training + # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html + loss = loss * args.loss_scale + if args.gradient_accumulation_steps > 1: + loss = loss / args.gradient_accumulation_steps + loss.backward() + tr_loss += loss.item() + nb_tr_examples += input_ids.size(0) + nb_tr_steps += 1 + if (step + 1) % args.gradient_accumulation_steps == 0: + if args.fp16 or args.optimize_on_cpu: + if args.fp16 and args.loss_scale != 1.0: + # scale down gradients for fp16 training + for param in model.parameters(): + if param.grad is not None: + param.grad.data = param.grad.data / args.loss_scale + is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) + if is_nan: + logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") + args.loss_scale = args.loss_scale / 2 + model.zero_grad() + continue + optimizer.step() + copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) + else: + optimizer.step() + model.zero_grad() + global_step += 1 + + if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): + eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True) + eval_features = convert_examples_to_features( + eval_examples, tokenizer, args.max_seq_length, True) + logger.info("***** Running evaluation *****") + logger.info(" Num examples = %d", len(eval_examples)) + logger.info(" Batch size = %d", args.eval_batch_size) + all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long) + all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long) + all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long) + all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long) + eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) + # Run prediction for full data + eval_sampler = SequentialSampler(eval_data) + eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) + + model.eval() + eval_loss, eval_accuracy = 0, 0 + nb_eval_steps, nb_eval_examples = 0, 0 + for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: + input_ids = input_ids.to(device) + input_mask = input_mask.to(device) + segment_ids = segment_ids.to(device) + label_ids = label_ids.to(device) + + with torch.no_grad(): + tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids) + logits = model(input_ids, segment_ids, input_mask) + + logits = logits.detach().cpu().numpy() + label_ids = label_ids.to('cpu').numpy() + tmp_eval_accuracy = accuracy(logits, label_ids) + + eval_loss += tmp_eval_loss.mean().item() + eval_accuracy += tmp_eval_accuracy + + nb_eval_examples += input_ids.size(0) + nb_eval_steps += 1 + + eval_loss = eval_loss / nb_eval_steps + eval_accuracy = eval_accuracy / nb_eval_examples + + result = {'eval_loss': eval_loss, + 'eval_accuracy': eval_accuracy, + 'global_step': global_step, + 'loss': tr_loss/nb_tr_steps} + + output_eval_file = os.path.join(args.output_dir, "eval_results.txt") + with open(output_eval_file, "w") as writer: + logger.info("***** Eval results *****") + for key in sorted(result.keys()): + logger.info(" %s = %s", key, str(result[key])) + writer.write("%s = %s\n" % (key, str(result[key]))) + if __name__ == "__main__": - is_training = True - max_seq_length = 80 - examples = read_swag_examples('data/train.csv', is_training) - print(len(examples)) - for example in examples[:5]: - print("###########################") - print(example) - tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") - features = convert_examples_to_features(examples[:500], tokenizer, max_seq_length, is_training) - for i in range(10): - choice_feature_list = features[i].choices_features - for choice_idx, choice_feature in enumerate(choice_feature_list): - print(f'choice_idx: {choice_idx}') - print(f'input_ids: {" ".join(map(str, choice_feature["input_ids"]))}') - print(f'input_mask: {" ".join(map(str, choice_feature["input_mask"]))}') - print(f'segment_ids: {" ".join(map(str, choice_feature["segment_ids"]))}') + main() From 6a26e19ea3fe797eca051db140cdaafc154b1873 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 19:15:08 +0100 Subject: [PATCH 034/111] Updating README.md with SWAG example informations. --- README.md | 37 +++++++++++++++++++++++++++++++++---- 1 file changed, 33 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 85adf9c7594e..c77fe84d51a5 100644 --- a/README.md +++ b/README.md @@ -52,8 +52,9 @@ This package comprises the following classes that can be imported in Python and - [`BertForNextSentencePrediction`](./pytorch_pretrained_bert/modeling.py#L752) - BERT Transformer with the pre-trained next sentence prediction classifier on top (**fully pre-trained**), - [`BertForPreTraining`](./pytorch_pretrained_bert/modeling.py#L620) - BERT Transformer with masked language modeling head and next sentence prediction classifier on top (**fully pre-trained**), - [`BertForSequenceClassification`](./pytorch_pretrained_bert/modeling.py#L814) - BERT Transformer with a sequence classification head on top (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), - - [`BertForTokenClassification`](./pytorch_pretrained_bert/modeling.py#L880) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**), - - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L946) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**). + - [`BertForMultipleChoice`](./pytorch_pretrained_bert/modeling.py#L893) - BERT Transformer with a multiple choice head on top (used for task like Swag) (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), + - [`BertForTokenClassification`](./pytorch_pretrained_bert/modeling.py#L949) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**), + - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L1102) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**). - Three tokenizers (in the [`tokenization.py`](./pytorch_pretrained_bert/tokenization.py) file): - `BasicTokenizer` - basic tokenization (punctuation splitting, lower casing, etc.), @@ -72,6 +73,7 @@ The repository further comprises: - [`extract_features.py`](./examples/extract_features.py) - Show how to extract hidden states from an instance of `BertModel`, - [`run_classifier.py`](./examples/run_classifier.py) - Show how to fine-tune an instance of `BertForSequenceClassification` on GLUE's MRPC task, - [`run_squad.py`](./examples/run_squad.py) - Show how to fine-tune an instance of `BertForQuestionAnswering` on SQuAD v1.0 task. + - [`run_swag.py`](./examples/run_swag.py) - Show how to fine-tune an instance of `BertForMultipleChoice` on Swag task. These examples are detailed in the [Examples](#examples) section of this readme. @@ -278,13 +280,23 @@ The sequence-level classifier is a linear layer that takes as input the last hid An example on how to use this class is given in the [`run_classifier.py`](./examples/run_classifier.py) script which can be used to fine-tune a single sequence (or pair of sequence) classifier using BERT, for example for the MRPC task. -#### 6. `BertForTokenClassification` +#### 6. `BertForMultipleChoice` + +`BertForMultipleChoice` is a fine-tuning model that includes `BertModel` and a linear layer on top of the `BertModel`. + +The linear layer outputs a single value for each choice of a multiple choice problem, then all the output corresponding to an instance are passed through a softmax to get the model choice. + +This implementation is largely inspired by the work of OpenAI in [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) and the answer of Jacob Devlin in the following [issue](https://github.com/google-research/bert/issues/38). + +An example on how to use this class is given in the [`run_swag.py`](./examples/run_swag.py) script which can be used to fine-tune a multiple choice classifier using BERT, for example for the Swag task. + +#### 7. `BertForTokenClassification` `BertForTokenClassification` is a fine-tuning model that includes `BertModel` and a token-level classifier on top of the `BertModel`. The token-level classifier is a linear layer that takes as input the last hidden state of the sequence. -#### 7. `BertForQuestionAnswering` +#### 8. `BertForQuestionAnswering` `BertForQuestionAnswering` is a fine-tuning model that includes `BertModel` with a token-level classifiers on top of the full sequence of last hidden states. @@ -419,6 +431,23 @@ Training with the previous hyper-parameters gave us the following results: {"f1": 88.52381567990474, "exact_match": 81.22043519394512} ``` +The data for Swag can be downloaded by cloning the following [repository](https://github.com/rowanz/swagaf) + +```shell +export SWAG_DIR=/path/to/SWAG + +python run_swag.py \ + --bert_model bert-base-uncased \ + --do_train \ + --do_eval \ + --data_dir $SWAG_DIR/data + --train_batch_size 10 \ + --learning_rate 2e-5 \ + --num_train_epochs 3.0 \ + --max_seq_length 80 \ + --output_dir /tmp/swag_output/ +``` + ## Fine-tuning BERT-large on GPUs The options we list above allow to fine-tune BERT-large rather easily on GPU(s) instead of the TPU used by the original implementation. From 4fa7892d640c2244ff9b888f890344caa14d4eac Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 19:18:29 +0100 Subject: [PATCH 035/111] Wrong line number link to modeling file. --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index c77fe84d51a5..b9d57bcb3fbb 100644 --- a/README.md +++ b/README.md @@ -52,9 +52,9 @@ This package comprises the following classes that can be imported in Python and - [`BertForNextSentencePrediction`](./pytorch_pretrained_bert/modeling.py#L752) - BERT Transformer with the pre-trained next sentence prediction classifier on top (**fully pre-trained**), - [`BertForPreTraining`](./pytorch_pretrained_bert/modeling.py#L620) - BERT Transformer with masked language modeling head and next sentence prediction classifier on top (**fully pre-trained**), - [`BertForSequenceClassification`](./pytorch_pretrained_bert/modeling.py#L814) - BERT Transformer with a sequence classification head on top (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), - - [`BertForMultipleChoice`](./pytorch_pretrained_bert/modeling.py#L893) - BERT Transformer with a multiple choice head on top (used for task like Swag) (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), + - [`BertForMultipleChoice`](./pytorch_pretrained_bert/modeling.py#L880) - BERT Transformer with a multiple choice head on top (used for task like Swag) (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), - [`BertForTokenClassification`](./pytorch_pretrained_bert/modeling.py#L949) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**), - - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L1102) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**). + - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L1015) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**). - Three tokenizers (in the [`tokenization.py`](./pytorch_pretrained_bert/tokenization.py) file): - `BasicTokenizer` - basic tokenization (punctuation splitting, lower casing, etc.), From d429c15f251ba86a55f726fa1ba98e78b42fd38c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 19:19:21 +0100 Subject: [PATCH 036/111] Removing old code from copy-paste. --- examples/run_swag.py | 8 -------- 1 file changed, 8 deletions(-) diff --git a/examples/run_swag.py b/examples/run_swag.py index 8ebb506e4aad..201317766fe8 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -379,14 +379,6 @@ def main(): raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) os.makedirs(args.output_dir, exist_ok=True) - # task_name = args.task_name.lower() - - # if task_name not in processors: - # raise ValueError("Task not found: %s" % (task_name)) - - # processor = processors[task_name]() - # label_list = processor.get_labels() - tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) train_examples = None From 150f3cd9fa9a360eaf1bbc9178a5b894d899e74b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 6 Dec 2018 19:22:07 +0100 Subject: [PATCH 037/111] Few typos in README.md --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index b9d57bcb3fbb..d443ba7a07f7 100644 --- a/README.md +++ b/README.md @@ -69,7 +69,7 @@ This package comprises the following classes that can be imported in Python and The repository further comprises: -- Three examples on how to use Bert (in the [`examples` folder](./examples)): +- Four examples on how to use Bert (in the [`examples` folder](./examples)): - [`extract_features.py`](./examples/extract_features.py) - Show how to extract hidden states from an instance of `BertModel`, - [`run_classifier.py`](./examples/run_classifier.py) - Show how to fine-tune an instance of `BertForSequenceClassification` on GLUE's MRPC task, - [`run_squad.py`](./examples/run_squad.py) - Show how to fine-tune an instance of `BertForQuestionAnswering` on SQuAD v1.0 task. @@ -284,7 +284,7 @@ An example on how to use this class is given in the [`run_classifier.py`](./exam `BertForMultipleChoice` is a fine-tuning model that includes `BertModel` and a linear layer on top of the `BertModel`. -The linear layer outputs a single value for each choice of a multiple choice problem, then all the output corresponding to an instance are passed through a softmax to get the model choice. +The linear layer outputs a single value for each choice of a multiple choice problem, then all the outputs corresponding to an instance are passed through a softmax to get the model choice. This implementation is largely inspired by the work of OpenAI in [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) and the answer of Jacob Devlin in the following [issue](https://github.com/google-research/bert/issues/38). From c9f67e037cee0658b2f8a4118392dcf7994c93a9 Mon Sep 17 00:00:00 2001 From: Davide Fiocco Date: Fri, 7 Dec 2018 20:40:56 +0100 Subject: [PATCH 038/111] Adding --do_lower_case for all uncased BERTs I had missed those, it should make sense to use them --- README.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/README.md b/README.md index 85adf9c7594e..897d884ec8af 100644 --- a/README.md +++ b/README.md @@ -404,6 +404,7 @@ python run_squad.py \ --bert_model bert-base-uncased \ --do_train \ --do_predict \ + --do_lower_case \ --train_file $SQUAD_DIR/train-v1.1.json \ --predict_file $SQUAD_DIR/dev-v1.1.json \ --train_batch_size 12 \ @@ -438,6 +439,7 @@ python ./run_squad.py \ --bert_model bert-large-uncased \ --do_train \ --do_predict \ + --do_lower_case \ --train_file $SQUAD_TRAIN \ --predict_file $SQUAD_EVAL \ --learning_rate 3e-5 \ @@ -458,6 +460,7 @@ python ./run_squad.py \ --bert_model bert-large-uncased \ --do_train \ --do_predict \ + --do_lower_case \ --train_file $SQUAD_TRAIN \ --predict_file $SQUAD_EVAL \ --learning_rate 3e-5 \ From 68f77303b294385239c0b356948c93d68ea09715 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Sun, 9 Dec 2018 16:17:11 -0500 Subject: [PATCH 039/111] fixing Adam weights skip in TF convert script --- pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py b/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py index 20fdd8c0d6e8..79b5f41adcf4 100755 --- a/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py +++ b/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py @@ -50,7 +50,7 @@ def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytor name = name.split('/') # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model - if name[-1] in ["adam_v", "adam_m"]: + if any(n in ["adam_v", "adam_m"] for n in name): print("Skipping {}".format("/".join(name))) continue pointer = model From 1db916b5be1ee281fe08780e07fa24e2d9471c92 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Sun, 9 Dec 2018 16:57:51 -0500 Subject: [PATCH 040/111] compatibility PT 1.0 and 0.4.1 --- tests/optimization_test.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/optimization_test.py b/tests/optimization_test.py index 1c010750ae1f..184637359156 100644 --- a/tests/optimization_test.py +++ b/tests/optimization_test.py @@ -32,7 +32,7 @@ def assertListAlmostEqual(self, list1, list2, tol): def test_adam(self): w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) target = torch.tensor([0.4, 0.2, -0.5]) - criterion = torch.nn.MSELoss(reduction='elementwise_mean') + criterion = torch.nn.MSELoss() # No warmup, constant schedule, no gradient clipping optimizer = BertAdam(params=[w], lr=2e-1, weight_decay_rate=0.0, From 174cdbccde6601884cf0a25d2902c6ba31130de4 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Sun, 9 Dec 2018 17:04:23 -0500 Subject: [PATCH 041/111] adding save checkpoint and loading in examples --- examples/run_classifier.py | 6 +++++- examples/run_squad.py | 2 +- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index a5e7d2c30df5..3d13ee463fd9 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -359,7 +359,7 @@ def main(): default=None, type=str, required=True, - help="The output directory where the model checkpoints will be written.") + help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--max_seq_length", @@ -626,6 +626,10 @@ def main(): 'global_step': global_step, 'loss': tr_loss/nb_tr_steps} + model_to_save = model.module if hasattr(model, 'module') else model + raise NotImplementedError # TODO add save of the configuration file and vocabulary file also ? + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + torch.save(model_to_save, output_model_file) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") diff --git a/examples/run_squad.py b/examples/run_squad.py index e47730043e9d..cd0a9a302837 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -706,7 +706,7 @@ def main(): help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") parser.add_argument("--output_dir", default=None, type=str, required=True, - help="The output directory where the model checkpoints will be written.") + help="The output directory where the model checkpoints and predictions will be written.") ## Other parameters parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") From 81e1e2489f71e9f0250034492b0d52616a450c77 Mon Sep 17 00:00:00 2001 From: Li Li Date: Mon, 10 Dec 2018 02:08:38 -0800 Subject: [PATCH 042/111] Fix optimizer to work with horovod --- pytorch_pretrained_bert/optimization.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/pytorch_pretrained_bert/optimization.py b/pytorch_pretrained_bert/optimization.py index 4266a8f83ba6..4314c84144cb 100644 --- a/pytorch_pretrained_bert/optimization.py +++ b/pytorch_pretrained_bert/optimization.py @@ -17,6 +17,7 @@ import math import torch from torch.optim import Optimizer +from torch.optim.optimizer import required from torch.nn.utils import clip_grad_norm_ def warmup_cosine(x, warmup=0.002): @@ -55,10 +56,10 @@ class BertAdam(Optimizer): weight_decay_rate: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 """ - def __init__(self, params, lr, warmup=-1, t_total=-1, schedule='warmup_linear', + def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay_rate=0.01, max_grad_norm=1.0): - if not lr >= 0.0: + if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) From 0876b77f7fbda110d5e64c03880e34123f2cea88 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Mon, 10 Dec 2018 15:34:19 +0100 Subject: [PATCH 043/111] Change to the README file to add SWAG results. --- README.md | 14 +++++++++++++- 1 file changed, 13 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index d443ba7a07f7..23cd315c298c 100644 --- a/README.md +++ b/README.md @@ -441,13 +441,25 @@ python run_swag.py \ --do_train \ --do_eval \ --data_dir $SWAG_DIR/data - --train_batch_size 10 \ + --train_batch_size 4 \ --learning_rate 2e-5 \ --num_train_epochs 3.0 \ --max_seq_length 80 \ --output_dir /tmp/swag_output/ ``` +Training with the previous hyper-parameters gave us the following results: +``` +eval_accuracy = 0.7776167149855043 +eval_loss = 1.006812262735175 +global_step = 55161 +loss = 0.282251750624779 +``` + +The difference with the `81.6%` accuracy announced in the Bert article +is probably due to the different `training_batch_size` (here 4 and 16 +in the article). + ## Fine-tuning BERT-large on GPUs The options we list above allow to fine-tune BERT-large rather easily on GPU(s) instead of the TPU used by the original implementation. From df34f22854a5174f5ad941c72255098e1b47e1bd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Mon, 10 Dec 2018 17:45:23 +0100 Subject: [PATCH 044/111] Removing the dependency to pandas and using the csv module to load data. --- examples/run_swag.py | 30 ++++++++++++++++-------------- 1 file changed, 16 insertions(+), 14 deletions(-) diff --git a/examples/run_swag.py b/examples/run_swag.py index 201317766fe8..88297bf80107 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -14,13 +14,12 @@ # limitations under the License. """BERT finetuning runner.""" -import pandas as pd - import logging import os import argparse import random from tqdm import tqdm, trange +import csv import numpy as np import torch @@ -100,25 +99,28 @@ def __init__(self, def read_swag_examples(input_file, is_training): - input_df = pd.read_csv(input_file) + with open(input_file, 'r') as f: + reader = csv.reader(f) + lines = list(reader) - if is_training and 'label' not in input_df.columns: + if is_training and lines[0][-1] != 'label': raise ValueError( - "For training, the input file must contain a label column.") + "For training, the input file must contain a label column." + ) examples = [ SwagExample( - swag_id = row['fold-ind'], - context_sentence = row['sent1'], - start_ending = row['sent2'], # in the swag dataset, the + swag_id = line[2], + context_sentence = line[4], + start_ending = line[5], # in the swag dataset, the # common beginning of each # choice is stored in "sent2". - ending_0 = row['ending0'], - ending_1 = row['ending1'], - ending_2 = row['ending2'], - ending_3 = row['ending3'], - label = row['label'] if is_training else None - ) for _, row in input_df.iterrows() + ending_0 = line[7], + ending_1 = line[8], + ending_2 = line[9], + ending_3 = line[10], + label = int(line[11]) if is_training else None + ) for line in lines[1:] # we skip the line with the column names ] return examples From a3a3180c86f63ee7af9d5a2a6ce1c05a8a3385b4 Mon Sep 17 00:00:00 2001 From: Thomas Wolf Date: Tue, 11 Dec 2018 11:29:45 +0100 Subject: [PATCH 045/111] Bump up requirements to Python 3.6 --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 897d884ec8af..720ddc347813 100644 --- a/README.md +++ b/README.md @@ -19,7 +19,7 @@ This implementation is provided with [Google's pre-trained models](https://githu ## Installation -This repo was tested on Python 3.5+ and PyTorch 0.4.1 +This repo was tested on Python 3.6+ and PyTorch 0.4.1 ### With pip From 270fa2f20b6dd9736a08f24e6050f24b2a96b010 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 11 Dec 2018 11:50:38 +0100 Subject: [PATCH 046/111] add pretrained loading from state_dict --- pytorch_pretrained_bert/modeling.py | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 3af5854072fe..3d04f0842cc6 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -445,9 +445,9 @@ def init_bert_weights(self, module): module.bias.data.zero_() @classmethod - def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs): + def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None, *inputs, **kwargs): """ - Instantiate a PreTrainedBertModel from a pre-trained model file. + Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: @@ -461,6 +461,8 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance + cache_dir: an optional path to a folder in which the pre-trained models will be cached. + state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ @@ -502,8 +504,9 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) - weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) - state_dict = torch.load(weights_path) + if state_dict is None: + weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) + state_dict = torch.load(weights_path) missing_keys = [] unexpected_keys = [] From b13abfa9feb648836e47ba6e47fa18d28dd300ea Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 11 Dec 2018 11:58:07 +0100 Subject: [PATCH 047/111] add saving and loading model in examples --- examples/run_classifier.py | 17 +++++++++++------ examples/run_squad.py | 9 +++++++++ 2 files changed, 20 insertions(+), 6 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 3d13ee463fd9..b535415a7442 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -487,8 +487,8 @@ def main(): len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare model - model = BertForSequenceClassification.from_pretrained(args.bert_model, - cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank)) + cache_dir = PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank) # for distributed learning + model = BertForSequenceClassification.from_pretrained(args.bert_model, cache_dir=cache_dir) if args.fp16: model.half() model.to(device) @@ -579,6 +579,15 @@ def main(): model.zero_grad() global_step += 1 + # Save a trained model + model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + torch.save(model_to_save.state_dict(), output_model_file) + + # Load a trained model that you have fine-tuned + model_state_dict = torch.load(output_model_file) + model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict) + if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features( @@ -626,10 +635,6 @@ def main(): 'global_step': global_step, 'loss': tr_loss/nb_tr_steps} - model_to_save = model.module if hasattr(model, 'module') else model - raise NotImplementedError # TODO add save of the configuration file and vocabulary file also ? - output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") - torch.save(model_to_save, output_model_file) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") diff --git a/examples/run_squad.py b/examples/run_squad.py index cd0a9a302837..cd10e5d5f1de 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -933,6 +933,15 @@ def main(): model.zero_grad() global_step += 1 + # Save a trained model + model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + torch.save(model_to_save.state_dict(), output_model_file) + + # Load a trained model that you have fine-tuned + model_state_dict = torch.load(output_model_file) + model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict) + if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = read_squad_examples( input_file=args.predict_file, is_training=False) From ed3b62cd3bc5529b6388e405d4ada78a88903800 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 11 Dec 2018 12:12:08 +0100 Subject: [PATCH 048/111] added version in __init__.py --- pytorch_pretrained_bert/__init__.py | 1 + requirements.txt | 5 ++--- setup.py | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/pytorch_pretrained_bert/__init__.py b/pytorch_pretrained_bert/__init__.py index fc9b15a12d31..f8d04f5d7fbd 100644 --- a/pytorch_pretrained_bert/__init__.py +++ b/pytorch_pretrained_bert/__init__.py @@ -1,3 +1,4 @@ +__version__ = 0.4.0 from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, diff --git a/requirements.txt b/requirements.txt index e9a3640a9b3a..f37f11cc540b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,5 @@ -# This installs Pytorch for CUDA 8 only. If you are using a newer version, -# please visit http://pytorch.org/ and install the relevant version. -torch>=0.4.1,<0.5.0 +# PyTorch +torch>=0.4.1 # progress bars in model download and training scripts tqdm # Accessing files from S3 directly. diff --git a/setup.py b/setup.py index fc793b53e695..21ca97294d3a 100644 --- a/setup.py +++ b/setup.py @@ -2,7 +2,7 @@ setup( name="pytorch_pretrained_bert", - version="0.3.0", + version="0.4.0", author="Thomas Wolf, Victor Sanh, Tim Rault, Google AI Language Team Authors", author_email="thomas@huggingface.co", description="PyTorch version of Google AI BERT model with script to load Google pre-trained models", From 770f805ae521b0890438092b09475f99b37643de Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 11 Dec 2018 12:20:22 +0100 Subject: [PATCH 049/111] include version number + comment in setup.py --- pytorch_pretrained_bert/__init__.py | 2 +- setup.py | 35 +++++++++++++++++++++++++++++ 2 files changed, 36 insertions(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/__init__.py b/pytorch_pretrained_bert/__init__.py index f8d04f5d7fbd..ebc4f7edccb1 100644 --- a/pytorch_pretrained_bert/__init__.py +++ b/pytorch_pretrained_bert/__init__.py @@ -1,4 +1,4 @@ -__version__ = 0.4.0 +__version__ = "0.4.0" from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, diff --git a/setup.py b/setup.py index 21ca97294d3a..a1e1f68db619 100644 --- a/setup.py +++ b/setup.py @@ -1,3 +1,38 @@ +""" +Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py + +To create the package for pypi. + +1. Change the version in __init__.py and setup.py. + +2. Commit these changes with the message: "Release: VERSION" + +3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' " + Push the tag to git: git push --tags origin master + +4. Build both the sources and the wheel. Do not change anything in setup.py between + creating the wheel and the source distribution (obviously). + + For the wheel, run: "python setup.py bdist_wheel" in the top level allennlp directory. + (this will build a wheel for the python version you use to build it - make sure you use python 3.x). + + For the sources, run: "python setup.py sdist" + You should now have a /dist directory with both .whl and .tar.gz source versions of allennlp. + +5. Check that everything looks correct by uploading the package to the pypi test server: + + twine upload dist/* -r pypitest + (pypi suggest using twine as other methods upload files via plaintext.) + + Check that you can install it in a virtualenv by running: + pip install -i https://testpypi.python.org/pypi allennlp + +6. Upload the final version to actual pypi: + twine upload dist/* -r pypi + +7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory. + +""" from setuptools import find_packages, setup setup( From bc659f86adfb26d7cf86e67fa4600b89e63ac07c Mon Sep 17 00:00:00 2001 From: hzhwcmhf Date: Tue, 11 Dec 2018 20:18:56 +0800 Subject: [PATCH 050/111] fix compatibility with python 3.5.2; convert path to str --- pytorch_pretrained_bert/file_utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/pytorch_pretrained_bert/file_utils.py b/pytorch_pretrained_bert/file_utils.py index f734b7e22b11..1b34407b82de 100644 --- a/pytorch_pretrained_bert/file_utils.py +++ b/pytorch_pretrained_bert/file_utils.py @@ -23,8 +23,8 @@ logger = logging.getLogger(__name__) # pylint: disable=invalid-name -PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', - Path.home() / '.pytorch_pretrained_bert')) +PYTORCH_PRETRAINED_BERT_CACHE = str(Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', + Path.home() / '.pytorch_pretrained_bert'))) def url_to_filename(url: str, etag: str = None) -> str: From 485adde74244f9b614263420d1f823660e0f96fe Mon Sep 17 00:00:00 2001 From: hzhwcmhf Date: Tue, 11 Dec 2018 22:49:19 +0800 Subject: [PATCH 051/111] add pathlib support for file_utils.py on python 3.5 --- pytorch_pretrained_bert/file_utils.py | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/pytorch_pretrained_bert/file_utils.py b/pytorch_pretrained_bert/file_utils.py index 1b34407b82de..139418f1a544 100644 --- a/pytorch_pretrained_bert/file_utils.py +++ b/pytorch_pretrained_bert/file_utils.py @@ -23,8 +23,8 @@ logger = logging.getLogger(__name__) # pylint: disable=invalid-name -PYTORCH_PRETRAINED_BERT_CACHE = str(Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', - Path.home() / '.pytorch_pretrained_bert'))) +PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', + Path.home() / '.pytorch_pretrained_bert')) def url_to_filename(url: str, etag: str = None) -> str: @@ -45,13 +45,15 @@ def url_to_filename(url: str, etag: str = None) -> str: return filename -def filename_to_url(filename: str, cache_dir: str = None) -> Tuple[str, str]: +def filename_to_url(filename: str, cache_dir: Union[str, Path] = None) -> Tuple[str, str]: """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``FileNotFoundError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BERT_CACHE + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): @@ -69,7 +71,7 @@ def filename_to_url(filename: str, cache_dir: str = None) -> Tuple[str, str]: return url, etag -def cached_path(url_or_filename: Union[str, Path], cache_dir: str = None) -> str: +def cached_path(url_or_filename: Union[str, Path], cache_dir: Union[str, Path] = None) -> str: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and @@ -80,6 +82,8 @@ def cached_path(url_or_filename: Union[str, Path], cache_dir: str = None) -> str cache_dir = PYTORCH_PRETRAINED_BERT_CACHE if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) parsed = urlparse(url_or_filename) @@ -158,13 +162,15 @@ def http_get(url: str, temp_file: IO) -> None: progress.close() -def get_from_cache(url: str, cache_dir: str = None) -> str: +def get_from_cache(url: str, cache_dir: Union[str, Path] = None) -> str: """ Given a URL, look for the corresponding dataset in the local cache. If it's not there, download it. Then return the path to the cached file. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BERT_CACHE + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) os.makedirs(cache_dir, exist_ok=True) From c8ea286048517d9072397d77f4de21b8483a4531 Mon Sep 17 00:00:00 2001 From: Deyu Fu Date: Wed, 5 Dec 2018 15:07:40 -0800 Subject: [PATCH 052/111] change to apex for better fp16 and multi-gpu support --- README.md | 2 +- examples/run_classifier.py | 125 +++++++++------------- examples/run_squad.py | 136 ++++++++++-------------- pytorch_pretrained_bert/modeling.py | 36 +++++-- pytorch_pretrained_bert/optimization.py | 10 +- tests/optimization_test.py | 2 +- 6 files changed, 142 insertions(+), 169 deletions(-) diff --git a/README.md b/README.md index 720ddc347813..686627cd118d 100644 --- a/README.md +++ b/README.md @@ -326,7 +326,7 @@ The optimizer accepts the following arguments: - `b1` : Adams b1. Default : `0.9` - `b2` : Adams b2. Default : `0.999` - `e` : Adams epsilon. Default : `1e-6` -- `weight_decay_rate:` Weight decay. Default : `0.01` +- `weight_decay:` Weight decay. Default : `0.01` - `max_grad_norm` : Maximum norm for the gradients (`-1` means no clipping). Default : `1.0` ## Examples diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 475ab54c9687..a531ea572554 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -1,5 +1,6 @@ # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -35,6 +36,13 @@ from pytorch_pretrained_bert.optimization import BertAdam from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE +try: + from apex.optimizers import FP16_Optimizer + from apex.optimizers import FusedAdam + from apex.parallel import DistributedDataParallel as DDP +except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this.") + logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) @@ -295,34 +303,10 @@ def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) -def copy_optimizer_params_to_model(named_params_model, named_params_optimizer): - """ Utility function for optimize_on_cpu and 16-bits training. - Copy the parameters optimized on CPU/RAM back to the model on GPU - """ - for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): - if name_opti != name_model: - logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) - raise ValueError - param_model.data.copy_(param_opti.data) - -def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False): - """ Utility function for optimize_on_cpu and 16-bits training. - Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model - """ - is_nan = False - for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): - if name_opti != name_model: - logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) - raise ValueError - if param_model.grad is not None: - if test_nan and torch.isnan(param_model.grad).sum() > 0: - is_nan = True - if param_opti.grad is None: - param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size())) - param_opti.grad.data.copy_(param_model.grad.data) - else: - param_opti.grad = None - return is_nan +def warmup_linear(x, warmup=0.002): + if x < warmup: + return x/warmup + return 1.0 - x def main(): parser = argparse.ArgumentParser() @@ -403,17 +387,15 @@ def main(): type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") - parser.add_argument('--optimize_on_cpu', - default=False, - action='store_true', - help="Whether to perform optimization and keep the optimizer averages on CPU") parser.add_argument('--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', - type=float, default=128, - help='Loss scaling, positive power of 2 values can improve fp16 convergence.') + type=float, default=0, + help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" + "0 (default value): dynamic loss scaling.\n" + "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() @@ -433,13 +415,11 @@ def main(): device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: + torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') - if args.fp16: - logger.info("16-bits training currently not supported in distributed training") - args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) if args.gradient_accumulation_steps < 1: @@ -487,32 +467,35 @@ def main(): model.half() model.to(device) if args.local_rank != -1: - model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], - output_device=args.local_rank) + model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer - if args.fp16: - param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \ - for n, param in model.named_parameters()] - elif args.optimize_on_cpu: - param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \ - for n, param in model.named_parameters()] - else: - param_optimizer = list(model.named_parameters()) - no_decay = ['bias', 'gamma', 'beta'] + param_optimizer = list(model.named_parameters()) + no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ - {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, - {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0} + {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, + {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] t_total = num_train_steps if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() - optimizer = BertAdam(optimizer_grouped_parameters, - lr=args.learning_rate, - warmup=args.warmup_proportion, - t_total=t_total) + if args.fp16: + optimizer = FusedAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + bias_correction=False, + max_grad_norm=1.0) + if args.loss_scale == 0: + optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) + else: + optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) + + else: + optimizer = BertAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + warmup=args.warmup_proportion, + t_total=t_total) global_step = 0 if args.do_train: @@ -543,34 +526,24 @@ def main(): loss = model(input_ids, segment_ids, input_mask, label_ids) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. - if args.fp16 and args.loss_scale != 1.0: - # rescale loss for fp16 training - # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html - loss = loss * args.loss_scale if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps - loss.backward() + + if args.fp16: + optimizer.backward(loss) + else: + loss.backward() + tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: - if args.fp16 or args.optimize_on_cpu: - if args.fp16 and args.loss_scale != 1.0: - # scale down gradients for fp16 training - for param in model.parameters(): - if param.grad is not None: - param.grad.data = param.grad.data / args.loss_scale - is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) - if is_nan: - logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") - args.loss_scale = args.loss_scale / 2 - model.zero_grad() - continue - optimizer.step() - copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) - else: - optimizer.step() - model.zero_grad() + # modify learning rate with special warm up BERT uses + lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion) + for param_group in optimizer.param_groups: + param_group['lr'] = lr_this_step + optimizer.step() + optimizer.zero_grad() global_step += 1 if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): diff --git a/examples/run_squad.py b/examples/run_squad.py index e47730043e9d..b96fcece37ce 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -1,5 +1,6 @@ # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -38,7 +39,14 @@ from pytorch_pretrained_bert.optimization import BertAdam from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE -logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', +try: + from apex.optimizers import FP16_Optimizer + from apex.optimizers import FusedAdam + from apex.parallel import DistributedDataParallel as DDP +except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this.") + +logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) @@ -669,34 +677,10 @@ def _compute_softmax(scores): probs.append(score / total_sum) return probs -def copy_optimizer_params_to_model(named_params_model, named_params_optimizer): - """ Utility function for optimize_on_cpu and 16-bits training. - Copy the parameters optimized on CPU/RAM back to the model on GPU - """ - for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): - if name_opti != name_model: - logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) - raise ValueError - param_model.data.copy_(param_opti.data) - -def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False): - """ Utility function for optimize_on_cpu and 16-bits training. - Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model - """ - is_nan = False - for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): - if name_opti != name_model: - logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) - raise ValueError - if param_model.grad is not None: - if test_nan and torch.isnan(param_model.grad).sum() > 0: - is_nan = True - if param_opti.grad is None: - param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size())) - param_opti.grad.data.copy_(param_model.grad.data) - else: - param_opti.grad = None - return is_nan +def warmup_linear(x, warmup=0.002): + if x < warmup: + return x/warmup + return 1.0 - x def main(): parser = argparse.ArgumentParser() @@ -743,8 +727,8 @@ def main(): default=False, action='store_true', help="Whether not to use CUDA when available") - parser.add_argument('--seed', - type=int, + parser.add_argument('--seed', + type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', @@ -759,17 +743,15 @@ def main(): type=int, default=-1, help="local_rank for distributed training on gpus") - parser.add_argument('--optimize_on_cpu', - default=False, - action='store_true', - help="Whether to perform optimization and keep the optimizer averages on CPU") parser.add_argument('--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', - type=float, default=128, - help='Loss scaling, positive power of 2 values can improve fp16 convergence.') + type=float, default=0, + help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" + "0 (default value): dynamic loss scaling.\n" + "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() @@ -777,13 +759,11 @@ def main(): device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: + torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') - if args.fp16: - logger.info("16-bits training currently not supported in distributed training") - args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits trainiing: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) @@ -828,36 +808,45 @@ def main(): # Prepare model model = BertForQuestionAnswering.from_pretrained(args.bert_model, cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank)) + if args.fp16: model.half() model.to(device) if args.local_rank != -1: - model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], - output_device=args.local_rank) + model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer - if args.fp16: - param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \ - for n, param in model.named_parameters()] - elif args.optimize_on_cpu: - param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \ - for n, param in model.named_parameters()] - else: - param_optimizer = list(model.named_parameters()) - no_decay = ['bias', 'gamma', 'beta'] + param_optimizer = list(model.named_parameters()) + + # hack to remove pooler, which is not used + # thus it produce None grad that break apex + param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]] + + no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ - {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, - {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0} + {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, + {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] + t_total = num_train_steps if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() - optimizer = BertAdam(optimizer_grouped_parameters, - lr=args.learning_rate, - warmup=args.warmup_proportion, - t_total=t_total) + if args.fp16: + optimizer = FusedAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + bias_correction=False, + max_grad_norm=1.0) + if args.loss_scale == 0: + optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) + else: + optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) + else: + optimizer = BertAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + warmup=args.warmup_proportion, + t_total=t_total) global_step = 0 if args.do_train: @@ -906,31 +895,20 @@ def main(): loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. - if args.fp16 and args.loss_scale != 1.0: - # rescale loss for fp16 training - # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html - loss = loss * args.loss_scale if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps - loss.backward() + + if args.fp16: + optimizer.backward(loss) + else: + loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: - if args.fp16 or args.optimize_on_cpu: - if args.fp16 and args.loss_scale != 1.0: - # scale down gradients for fp16 training - for param in model.parameters(): - if param.grad is not None: - param.grad.data = param.grad.data / args.loss_scale - is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) - if is_nan: - logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") - args.loss_scale = args.loss_scale / 2 - model.zero_grad() - continue - optimizer.step() - copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) - else: - optimizer.step() - model.zero_grad() + # modify learning rate with special warm up BERT uses + lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion) + for param_group in optimizer.param_groups: + param_group['lr'] = lr_this_step + optimizer.step() + optimizer.zero_grad() global_step += 1 if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 3af5854072fe..7b2b05e2e97e 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -1,5 +1,6 @@ # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -30,10 +31,14 @@ import torch from torch import nn from torch.nn import CrossEntropyLoss +try: + from apex.normalization.fused_layer_norm import FusedLayerNorm +except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this.") from .file_utils import cached_path -logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', +logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) @@ -180,7 +185,7 @@ def __init__(self, config): # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file - self.LayerNorm = BertLayerNorm(config) + self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): @@ -255,7 +260,7 @@ class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.LayerNorm = BertLayerNorm(config) + self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): @@ -294,7 +299,7 @@ class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) - self.LayerNorm = BertLayerNorm(config) + self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): @@ -322,7 +327,7 @@ class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() layer = BertLayer(config) - self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) + self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] @@ -356,7 +361,7 @@ def __init__(self, config): self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act - self.LayerNorm = BertLayerNorm(config) + self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) @@ -438,6 +443,9 @@ def init_bert_weights(self, module): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, FusedLayerNorm): + module.bias.data.normal_(mean=0.0, std=self.config.initializer_range) + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.beta.data.normal_(mean=0.0, std=self.config.initializer_range) module.gamma.data.normal_(mean=0.0, std=self.config.initializer_range) @@ -449,7 +457,7 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. - + Params: pretrained_model_name: either: - a str with the name of a pre-trained model to load selected in the list of: @@ -505,6 +513,20 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) state_dict = torch.load(weights_path) + old_keys = [] + new_keys = [] + for key in state_dict.keys(): + new_key = None + if 'gamma' in key: + new_key = key.replace('gamma','weight') + if 'beta' in key: + new_key = key.replace('beta','bias') + if new_key: + old_keys.append(key) + new_keys.append(new_key) + for old_key, new_key in zip(old_keys, new_keys): + state_dict[new_key]=state_dict.pop(old_key) + missing_keys = [] unexpected_keys = [] error_msgs = [] diff --git a/pytorch_pretrained_bert/optimization.py b/pytorch_pretrained_bert/optimization.py index 4314c84144cb..f3d1de0d37b8 100644 --- a/pytorch_pretrained_bert/optimization.py +++ b/pytorch_pretrained_bert/optimization.py @@ -53,11 +53,11 @@ class BertAdam(Optimizer): b1: Adams b1. Default: 0.9 b2: Adams b2. Default: 0.999 e: Adams epsilon. Default: 1e-6 - weight_decay_rate: Weight decay. Default: 0.01 + weight_decay: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 """ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', - b1=0.9, b2=0.999, e=1e-6, weight_decay_rate=0.01, + b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) @@ -72,7 +72,7 @@ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_ if not e >= 0.0: raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, - b1=b1, b2=b2, e=e, weight_decay_rate=weight_decay_rate, + b1=b1, b2=b2, e=e, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(BertAdam, self).__init__(params, defaults) @@ -140,8 +140,8 @@ def step(self, closure=None): # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. - if group['weight_decay_rate'] > 0.0: - update += group['weight_decay_rate'] * p.data + if group['weight_decay'] > 0.0: + update += group['weight_decay'] * p.data if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] diff --git a/tests/optimization_test.py b/tests/optimization_test.py index 1c010750ae1f..ad13c28d0c5e 100644 --- a/tests/optimization_test.py +++ b/tests/optimization_test.py @@ -35,7 +35,7 @@ def test_adam(self): criterion = torch.nn.MSELoss(reduction='elementwise_mean') # No warmup, constant schedule, no gradient clipping optimizer = BertAdam(params=[w], lr=2e-1, - weight_decay_rate=0.0, + weight_decay=0.0, max_grad_norm=-1) for _ in range(100): loss = criterion(w, target) From dcb50eaa4b80d3ab75d373c36780c80fb47cfd97 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Wed, 12 Dec 2018 18:17:46 +0100 Subject: [PATCH 053/111] Swag example readme section update with gradient accumulation run. --- README.md | 15 ++++++--------- 1 file changed, 6 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index 23cd315c298c..0ccf96c42c6a 100644 --- a/README.md +++ b/README.md @@ -441,25 +441,22 @@ python run_swag.py \ --do_train \ --do_eval \ --data_dir $SWAG_DIR/data - --train_batch_size 4 \ + --train_batch_size 16 \ --learning_rate 2e-5 \ --num_train_epochs 3.0 \ --max_seq_length 80 \ --output_dir /tmp/swag_output/ + --gradient_accumulation_steps 4 ``` Training with the previous hyper-parameters gave us the following results: ``` -eval_accuracy = 0.7776167149855043 -eval_loss = 1.006812262735175 -global_step = 55161 -loss = 0.282251750624779 +eval_accuracy = 0.8062081375587323 +eval_loss = 0.5966546792367169 +global_step = 13788 +loss = 0.06423990014260186 ``` -The difference with the `81.6%` accuracy announced in the Bert article -is probably due to the different `training_batch_size` (here 4 and 16 -in the article). - ## Fine-tuning BERT-large on GPUs The options we list above allow to fine-tune BERT-large rather easily on GPU(s) instead of the TPU used by the original implementation. From 3b0a14b7614d5a1741dbd5288f6ab1e38d4a3103 Mon Sep 17 00:00:00 2001 From: Deyu Fu Date: Wed, 12 Dec 2018 15:05:45 -0800 Subject: [PATCH 054/111] add fallback path for apex used in modeling.py --- pytorch_pretrained_bert/modeling.py | 51 +++++++++++++---------------- 1 file changed, 23 insertions(+), 28 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 7b2b05e2e97e..72c7d47f86a0 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -31,10 +31,6 @@ import torch from torch import nn from torch.nn import CrossEntropyLoss -try: - from apex.normalization.fused_layer_norm import FusedLayerNorm -except ImportError: - raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this.") from .file_utils import cached_path @@ -157,22 +153,24 @@ def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" - -class BertLayerNorm(nn.Module): - def __init__(self, config, variance_epsilon=1e-12): - """Construct a layernorm module in the TF style (epsilon inside the square root). - """ - super(BertLayerNorm, self).__init__() - self.gamma = nn.Parameter(torch.ones(config.hidden_size)) - self.beta = nn.Parameter(torch.zeros(config.hidden_size)) - self.variance_epsilon = variance_epsilon - - def forward(self, x): - u = x.mean(-1, keepdim=True) - s = (x - u).pow(2).mean(-1, keepdim=True) - x = (x - u) / torch.sqrt(s + self.variance_epsilon) - return self.gamma * x + self.beta - +try: + from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm +except ImportError: + print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.") + class BertLayerNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-12): + """Construct a layernorm module in the TF style (epsilon inside the square root). + """ + super(BertLayerNorm, self).__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.bias = nn.Parameter(torch.zeros(hidden_size)) + self.variance_epsilon = eps + + def forward(self, x): + u = x.mean(-1, keepdim=True) + s = (x - u).pow(2).mean(-1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.variance_epsilon) + return self.weight * x + self.bias class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. @@ -185,7 +183,7 @@ def __init__(self, config): # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file - self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12) + self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): @@ -260,7 +258,7 @@ class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12) + self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): @@ -299,7 +297,7 @@ class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) - self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12) + self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): @@ -361,7 +359,7 @@ def __init__(self, config): self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = ACT2FN[config.hidden_act] \ if isinstance(config.hidden_act, str) else config.hidden_act - self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12) + self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) @@ -443,12 +441,9 @@ def init_bert_weights(self, module): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - elif isinstance(module, FusedLayerNorm): + elif isinstance(module, BertLayerNorm): module.bias.data.normal_(mean=0.0, std=self.config.initializer_range) module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - elif isinstance(module, BertLayerNorm): - module.beta.data.normal_(mean=0.0, std=self.config.initializer_range) - module.gamma.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() From 13bf0d4659f633a118ca75f4f8b3291e0e0ffc05 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Sun, 9 Dec 2018 16:17:11 -0500 Subject: [PATCH 055/111] fixing Adam weights skip in TF convert script --- pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py b/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py index 20fdd8c0d6e8..79b5f41adcf4 100755 --- a/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py +++ b/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py @@ -50,7 +50,7 @@ def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytor name = name.split('/') # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model - if name[-1] in ["adam_v", "adam_m"]: + if any(n in ["adam_v", "adam_m"] for n in name): print("Skipping {}".format("/".join(name))) continue pointer = model From 85fff78c2ddea175cc04ff8399e690de0cead686 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Sun, 9 Dec 2018 16:57:51 -0500 Subject: [PATCH 056/111] compatibility PT 1.0 and 0.4.1 --- tests/optimization_test.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/optimization_test.py b/tests/optimization_test.py index ad13c28d0c5e..848b9d1cf5c2 100644 --- a/tests/optimization_test.py +++ b/tests/optimization_test.py @@ -32,7 +32,7 @@ def assertListAlmostEqual(self, list1, list2, tol): def test_adam(self): w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) target = torch.tensor([0.4, 0.2, -0.5]) - criterion = torch.nn.MSELoss(reduction='elementwise_mean') + criterion = torch.nn.MSELoss() # No warmup, constant schedule, no gradient clipping optimizer = BertAdam(params=[w], lr=2e-1, weight_decay=0.0, From b3caec5a5662f591a1f148bf34ba4f853be514e2 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Sun, 9 Dec 2018 17:04:23 -0500 Subject: [PATCH 057/111] adding save checkpoint and loading in examples --- examples/run_classifier.py | 6 +++++- examples/run_squad.py | 2 +- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index a531ea572554..f18c5489bae0 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -329,7 +329,7 @@ def main(): default=None, type=str, required=True, - help="The output directory where the model checkpoints will be written.") + help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--max_seq_length", @@ -593,6 +593,10 @@ def main(): 'global_step': global_step, 'loss': tr_loss/nb_tr_steps} + model_to_save = model.module if hasattr(model, 'module') else model + raise NotImplementedError # TODO add save of the configuration file and vocabulary file also ? + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + torch.save(model_to_save, output_model_file) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") diff --git a/examples/run_squad.py b/examples/run_squad.py index b96fcece37ce..b0668b38d8c4 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -690,7 +690,7 @@ def main(): help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") parser.add_argument("--output_dir", default=None, type=str, required=True, - help="The output directory where the model checkpoints will be written.") + help="The output directory where the model checkpoints and predictions will be written.") ## Other parameters parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") From 93f335ef86b2a14ffc41daba612d022a1c73e045 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 11 Dec 2018 11:50:38 +0100 Subject: [PATCH 058/111] add pretrained loading from state_dict --- pytorch_pretrained_bert/modeling.py | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 1aeff4dd04c7..bfc5585ea8e7 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -448,9 +448,9 @@ def init_bert_weights(self, module): module.bias.data.zero_() @classmethod - def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs): + def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None, *inputs, **kwargs): """ - Instantiate a PreTrainedBertModel from a pre-trained model file. + Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: @@ -464,6 +464,8 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance + cache_dir: an optional path to a folder in which the pre-trained models will be cached. + state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ @@ -505,8 +507,9 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) - weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) - state_dict = torch.load(weights_path) + if state_dict is None: + weights_path = os.path.join(serialization_dir, WEIGHTS_NAME) + state_dict = torch.load(weights_path) old_keys = [] new_keys = [] From d3fcec1a3e21cf62e47a0b3910a991d4025ad23b Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 11 Dec 2018 11:58:07 +0100 Subject: [PATCH 059/111] add saving and loading model in examples --- examples/run_classifier.py | 13 +++++++++---- examples/run_squad.py | 9 +++++++++ 2 files changed, 18 insertions(+), 4 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index f18c5489bae0..7c4eb7da47fc 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -546,6 +546,15 @@ def main(): optimizer.zero_grad() global_step += 1 + # Save a trained model + model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + torch.save(model_to_save.state_dict(), output_model_file) + + # Load a trained model that you have fine-tuned + model_state_dict = torch.load(output_model_file) + model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict) + if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features( @@ -593,10 +602,6 @@ def main(): 'global_step': global_step, 'loss': tr_loss/nb_tr_steps} - model_to_save = model.module if hasattr(model, 'module') else model - raise NotImplementedError # TODO add save of the configuration file and vocabulary file also ? - output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") - torch.save(model_to_save, output_model_file) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") diff --git a/examples/run_squad.py b/examples/run_squad.py index b0668b38d8c4..81956ad394c8 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -911,6 +911,15 @@ def main(): optimizer.zero_grad() global_step += 1 + # Save a trained model + model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + torch.save(model_to_save.state_dict(), output_model_file) + + # Load a trained model that you have fine-tuned + model_state_dict = torch.load(output_model_file) + model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict) + if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = read_squad_examples( input_file=args.predict_file, is_training=False) From ce5217763848fa172f87ded595d77af872e0d125 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 11 Dec 2018 12:12:08 +0100 Subject: [PATCH 060/111] added version in __init__.py --- pytorch_pretrained_bert/__init__.py | 1 + requirements.txt | 5 ++--- setup.py | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/pytorch_pretrained_bert/__init__.py b/pytorch_pretrained_bert/__init__.py index e1ecabf31dbd..416fe25e6971 100644 --- a/pytorch_pretrained_bert/__init__.py +++ b/pytorch_pretrained_bert/__init__.py @@ -1,3 +1,4 @@ +__version__ = 0.4.0 from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, diff --git a/requirements.txt b/requirements.txt index e9a3640a9b3a..f37f11cc540b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,5 @@ -# This installs Pytorch for CUDA 8 only. If you are using a newer version, -# please visit http://pytorch.org/ and install the relevant version. -torch>=0.4.1,<0.5.0 +# PyTorch +torch>=0.4.1 # progress bars in model download and training scripts tqdm # Accessing files from S3 directly. diff --git a/setup.py b/setup.py index fc793b53e695..21ca97294d3a 100644 --- a/setup.py +++ b/setup.py @@ -2,7 +2,7 @@ setup( name="pytorch_pretrained_bert", - version="0.3.0", + version="0.4.0", author="Thomas Wolf, Victor Sanh, Tim Rault, Google AI Language Team Authors", author_email="thomas@huggingface.co", description="PyTorch version of Google AI BERT model with script to load Google pre-trained models", From 1cbb32a5428b6a3ad1fbc0de6b0709a63cfda903 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Tue, 11 Dec 2018 12:20:22 +0100 Subject: [PATCH 061/111] include version number + comment in setup.py --- pytorch_pretrained_bert/__init__.py | 2 +- setup.py | 35 +++++++++++++++++++++++++++++ 2 files changed, 36 insertions(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/__init__.py b/pytorch_pretrained_bert/__init__.py index 416fe25e6971..0ef826374815 100644 --- a/pytorch_pretrained_bert/__init__.py +++ b/pytorch_pretrained_bert/__init__.py @@ -1,4 +1,4 @@ -__version__ = 0.4.0 +__version__ = "0.4.0" from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, diff --git a/setup.py b/setup.py index 21ca97294d3a..a1e1f68db619 100644 --- a/setup.py +++ b/setup.py @@ -1,3 +1,38 @@ +""" +Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py + +To create the package for pypi. + +1. Change the version in __init__.py and setup.py. + +2. Commit these changes with the message: "Release: VERSION" + +3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' " + Push the tag to git: git push --tags origin master + +4. Build both the sources and the wheel. Do not change anything in setup.py between + creating the wheel and the source distribution (obviously). + + For the wheel, run: "python setup.py bdist_wheel" in the top level allennlp directory. + (this will build a wheel for the python version you use to build it - make sure you use python 3.x). + + For the sources, run: "python setup.py sdist" + You should now have a /dist directory with both .whl and .tar.gz source versions of allennlp. + +5. Check that everything looks correct by uploading the package to the pypi test server: + + twine upload dist/* -r pypitest + (pypi suggest using twine as other methods upload files via plaintext.) + + Check that you can install it in a virtualenv by running: + pip install -i https://testpypi.python.org/pypi allennlp + +6. Upload the final version to actual pypi: + twine upload dist/* -r pypi + +7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory. + +""" from setuptools import find_packages, setup setup( From 4946c2c5003a1b71632a5c89c9372e30c820fea4 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Thu, 13 Dec 2018 13:02:07 +0100 Subject: [PATCH 062/111] run_swag example in readme --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 253245561b28..bdc1d853ef67 100644 --- a/README.md +++ b/README.md @@ -440,6 +440,7 @@ export SWAG_DIR=/path/to/SWAG python run_swag.py \ --bert_model bert-base-uncased \ --do_train \ + --do_lower_case \ --do_eval \ --data_dir $SWAG_DIR/data --train_batch_size 16 \ From 52c53f39d076249f379c397d34fe27f67d382dc9 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Thu, 13 Dec 2018 13:02:17 +0100 Subject: [PATCH 063/111] clean up apex integration --- pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py | 4 ++-- pytorch_pretrained_bert/modeling.py | 4 ++-- tests/optimization_test.py | 2 +- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py b/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py index 79b5f41adcf4..120624bc1b49 100755 --- a/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py +++ b/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py @@ -59,9 +59,9 @@ def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytor l = re.split(r'_(\d+)', m_name) else: l = [m_name] - if l[0] == 'kernel': + if l[0] == 'kernel' or l[0] == 'gamma': pointer = getattr(pointer, 'weight') - elif l[0] == 'output_bias': + elif l[0] == 'output_bias' or l[0] == 'beta': pointer = getattr(pointer, 'bias') elif l[0] == 'output_weights': pointer = getattr(pointer, 'weight') diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 0699f6719994..c6940c74eb2d 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -516,9 +516,9 @@ def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None, for key in state_dict.keys(): new_key = None if 'gamma' in key: - new_key = key.replace('gamma','weight') + new_key = key.replace('gamma', 'weight') if 'beta' in key: - new_key = key.replace('beta','bias') + new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) diff --git a/tests/optimization_test.py b/tests/optimization_test.py index 848b9d1cf5c2..184637359156 100644 --- a/tests/optimization_test.py +++ b/tests/optimization_test.py @@ -35,7 +35,7 @@ def test_adam(self): criterion = torch.nn.MSELoss() # No warmup, constant schedule, no gradient clipping optimizer = BertAdam(params=[w], lr=2e-1, - weight_decay=0.0, + weight_decay_rate=0.0, max_grad_norm=-1) for _ in range(100): loss = criterion(w, target) From 0cf88ff084f963261000be436cd5e3ae3dd4adb7 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Thu, 13 Dec 2018 13:28:00 +0100 Subject: [PATCH 064/111] make examples work without apex --- examples/run_classifier.py | 18 +++++++++++------- examples/run_squad.py | 18 +++++++++++------- 2 files changed, 22 insertions(+), 14 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 7c4eb7da47fc..aca099daf243 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -36,13 +36,6 @@ from pytorch_pretrained_bert.optimization import BertAdam from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE -try: - from apex.optimizers import FP16_Optimizer - from apex.optimizers import FusedAdam - from apex.parallel import DistributedDataParallel as DDP -except ImportError: - raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this.") - logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) @@ -467,6 +460,11 @@ def main(): model.half() model.to(device) if args.local_rank != -1: + try: + from apex.parallel import DistributedDataParallel as DDP + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) @@ -482,6 +480,12 @@ def main(): if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() if args.fp16: + try: + from apex.optimizers import FP16_Optimizer + from apex.optimizers import FusedAdam + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, diff --git a/examples/run_squad.py b/examples/run_squad.py index 81956ad394c8..147cd60f29cd 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -39,13 +39,6 @@ from pytorch_pretrained_bert.optimization import BertAdam from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE -try: - from apex.optimizers import FP16_Optimizer - from apex.optimizers import FusedAdam - from apex.parallel import DistributedDataParallel as DDP -except ImportError: - raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this.") - logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) @@ -813,6 +806,11 @@ def main(): model.half() model.to(device) if args.local_rank != -1: + try: + from apex.parallel import DistributedDataParallel as DDP + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) @@ -834,6 +832,12 @@ def main(): if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() if args.fp16: + try: + from apex.optimizers import FP16_Optimizer + from apex.optimizers import FusedAdam + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, From 0f544625f4aaf04c45e4674884cf577857ae88a4 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Thu, 13 Dec 2018 13:35:59 +0100 Subject: [PATCH 065/111] fix swag example for work with apex --- README.md | 4 +- examples/run_swag.py | 131 ++++++++++++++++--------------------- tests/optimization_test.py | 2 +- 3 files changed, 59 insertions(+), 78 deletions(-) diff --git a/README.md b/README.md index bdc1d853ef67..96393bc082ec 100644 --- a/README.md +++ b/README.md @@ -442,12 +442,12 @@ python run_swag.py \ --do_train \ --do_lower_case \ --do_eval \ - --data_dir $SWAG_DIR/data + --data_dir $SWAG_DIR/data \ --train_batch_size 16 \ --learning_rate 2e-5 \ --num_train_epochs 3.0 \ --max_seq_length 80 \ - --output_dir /tmp/swag_output/ + --output_dir /tmp/swag_output/ \ --gradient_accumulation_steps 4 ``` diff --git a/examples/run_swag.py b/examples/run_swag.py index 88297bf80107..d1ebb7354248 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -1,5 +1,6 @@ # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -232,34 +233,10 @@ def select_field(features, field): for feature in features ] -def copy_optimizer_params_to_model(named_params_model, named_params_optimizer): - """ Utility function for optimize_on_cpu and 16-bits training. - Copy the parameters optimized on CPU/RAM back to the model on GPU - """ - for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): - if name_opti != name_model: - logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) - raise ValueError - param_model.data.copy_(param_opti.data) - -def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False): - """ Utility function for optimize_on_cpu and 16-bits training. - Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model - """ - is_nan = False - for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): - if name_opti != name_model: - logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) - raise ValueError - if param_model.grad is not None: - if test_nan and torch.isnan(param_model.grad).sum() > 0: - is_nan = True - if param_opti.grad is None: - param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size())) - param_opti.grad.data.copy_(param_model.grad.data) - else: - param_opti.grad = None - return is_nan +def warmup_linear(x, warmup=0.002): + if x < warmup: + return x/warmup + return 1.0 - x def main(): parser = argparse.ArgumentParser() @@ -335,17 +312,15 @@ def main(): type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") - parser.add_argument('--optimize_on_cpu', - default=False, - action='store_true', - help="Whether to perform optimization and keep the optimizer averages on CPU") parser.add_argument('--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', - type=float, default=128, - help='Loss scaling, positive power of 2 values can improve fp16 convergence.') + type=float, default=0, + help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" + "0 (default value): dynamic loss scaling.\n" + "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() @@ -353,13 +328,11 @@ def main(): device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: + torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') - if args.fp16: - logger.info("16-bits training currently not supported in distributed training") - args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) if args.gradient_accumulation_steps < 1: @@ -399,32 +372,50 @@ def main(): model.half() model.to(device) if args.local_rank != -1: - model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], - output_device=args.local_rank) + try: + from apex.parallel import DistributedDataParallel as DDP + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + + model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer - if args.fp16: - param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \ - for n, param in model.named_parameters()] - elif args.optimize_on_cpu: - param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \ - for n, param in model.named_parameters()] - else: - param_optimizer = list(model.named_parameters()) - no_decay = ['bias', 'gamma', 'beta'] + param_optimizer = list(model.named_parameters()) + + # hack to remove pooler, which is not used + # thus it produce None grad that break apex + param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]] + + no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ - {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, - {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0} + {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, + {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] t_total = num_train_steps if args.local_rank != -1: t_total = t_total // torch.distributed.get_world_size() - optimizer = BertAdam(optimizer_grouped_parameters, - lr=args.learning_rate, - warmup=args.warmup_proportion, - t_total=t_total) + if args.fp16: + try: + from apex.optimizers import FP16_Optimizer + from apex.optimizers import FusedAdam + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + + optimizer = FusedAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + bias_correction=False, + max_grad_norm=1.0) + if args.loss_scale == 0: + optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) + else: + optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) + else: + optimizer = BertAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + warmup=args.warmup_proportion, + t_total=t_total) global_step = 0 if args.do_train: @@ -461,28 +452,18 @@ def main(): loss = loss * args.loss_scale if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps - loss.backward() - tr_loss += loss.item() - nb_tr_examples += input_ids.size(0) - nb_tr_steps += 1 + + if args.fp16: + optimizer.backward(loss) + else: + loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: - if args.fp16 or args.optimize_on_cpu: - if args.fp16 and args.loss_scale != 1.0: - # scale down gradients for fp16 training - for param in model.parameters(): - if param.grad is not None: - param.grad.data = param.grad.data / args.loss_scale - is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) - if is_nan: - logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") - args.loss_scale = args.loss_scale / 2 - model.zero_grad() - continue - optimizer.step() - copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) - else: - optimizer.step() - model.zero_grad() + # modify learning rate with special warm up BERT uses + lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion) + for param_group in optimizer.param_groups: + param_group['lr'] = lr_this_step + optimizer.step() + optimizer.zero_grad() global_step += 1 if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): diff --git a/tests/optimization_test.py b/tests/optimization_test.py index 184637359156..848b9d1cf5c2 100644 --- a/tests/optimization_test.py +++ b/tests/optimization_test.py @@ -35,7 +35,7 @@ def test_adam(self): criterion = torch.nn.MSELoss() # No warmup, constant schedule, no gradient clipping optimizer = BertAdam(params=[w], lr=2e-1, - weight_decay_rate=0.0, + weight_decay=0.0, max_grad_norm=-1) for _ in range(100): loss = criterion(w, target) From 087798b7fa6dc82f34a7462fddd313d38b251bda Mon Sep 17 00:00:00 2001 From: thomwolf Date: Thu, 13 Dec 2018 14:48:12 +0100 Subject: [PATCH 066/111] fix reloading model for evaluation in examples --- README.md | 56 ++++++++++++++++++++++++++++---------- examples/run_classifier.py | 3 ++ examples/run_squad.py | 3 ++ examples/run_swag.py | 20 ++++++++++++-- 4 files changed, 65 insertions(+), 17 deletions(-) diff --git a/README.md b/README.md index 96393bc082ec..c4f6b99f1c4f 100644 --- a/README.md +++ b/README.md @@ -46,13 +46,13 @@ python -m pytest -sv tests/ This package comprises the following classes that can be imported in Python and are detailed in the [Doc](#doc) section of this readme: -- Seven PyTorch models (`torch.nn.Module`) for Bert with pre-trained weights (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file): +- Eight PyTorch models (`torch.nn.Module`) for Bert with pre-trained weights (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file): - [`BertModel`](./pytorch_pretrained_bert/modeling.py#L537) - raw BERT Transformer model (**fully pre-trained**), - [`BertForMaskedLM`](./pytorch_pretrained_bert/modeling.py#L691) - BERT Transformer with the pre-trained masked language modeling head on top (**fully pre-trained**), - [`BertForNextSentencePrediction`](./pytorch_pretrained_bert/modeling.py#L752) - BERT Transformer with the pre-trained next sentence prediction classifier on top (**fully pre-trained**), - [`BertForPreTraining`](./pytorch_pretrained_bert/modeling.py#L620) - BERT Transformer with masked language modeling head and next sentence prediction classifier on top (**fully pre-trained**), - [`BertForSequenceClassification`](./pytorch_pretrained_bert/modeling.py#L814) - BERT Transformer with a sequence classification head on top (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), - - [`BertForMultipleChoice`](./pytorch_pretrained_bert/modeling.py#L880) - BERT Transformer with a multiple choice head on top (used for task like Swag) (BERT Transformer is **pre-trained**, the sequence classification head **is only initialized and has to be trained**), + - [`BertForMultipleChoice`](./pytorch_pretrained_bert/modeling.py#L880) - BERT Transformer with a multiple choice head on top (used for task like Swag) (BERT Transformer is **pre-trained**, the multiple choice classification head **is only initialized and has to be trained**), - [`BertForTokenClassification`](./pytorch_pretrained_bert/modeling.py#L949) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**), - [`BertForQuestionAnswering`](./pytorch_pretrained_bert/modeling.py#L1015) - BERT Transformer with a token classification head on top (BERT Transformer is **pre-trained**, the token classification head **is only initialized and has to be trained**). @@ -156,7 +156,7 @@ Here is a detailed documentation of the classes in the package and how to use th | Sub-section | Description | |-|-| | [Loading Google AI's pre-trained weigths](#Loading-Google-AIs-pre-trained-weigths-and-PyTorch-dump) | How to load Google AI's pre-trained weight or a PyTorch saved instance | -| [PyTorch models](#PyTorch-models) | API of the seven PyTorch model classes: `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification` or `BertForQuestionAnswering` | +| [PyTorch models](#PyTorch-models) | API of the eight PyTorch model classes: `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification`, `BertForMultipleChoice` or `BertForQuestionAnswering` | | [Tokenizer: `BertTokenizer`](#Tokenizer-BertTokenizer) | API of the `BertTokenizer` class| | [Optimizer: `BertAdam`](#Optimizer-BertAdam) | API of the `BertAdam` class | @@ -170,7 +170,7 @@ model = BERT_CLASS.from_pretrain(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None) where -- `BERT_CLASS` is either the `BertTokenizer` class (to load the vocabulary) or one of the seven PyTorch model classes (to load the pre-trained weights): `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification`, `BertForTokenClassification` or `BertForQuestionAnswering`, and +- `BERT_CLASS` is either the `BertTokenizer` class (to load the vocabulary) or one of the eight PyTorch model classes (to load the pre-trained weights): `BertModel`, `BertForMaskedLM`, `BertForNextSentencePrediction`, `BertForPreTraining`, `BertForSequenceClassification`, `BertForTokenClassification`, `BertForMultipleChoice` or `BertForQuestionAnswering`, and - `PRE_TRAINED_MODEL_NAME_OR_PATH` is either: - the shortcut name of a Google AI's pre-trained model selected in the list: @@ -353,14 +353,13 @@ The optimizer accepts the following arguments: BERT-base and BERT-large are respectively 110M and 340M parameters models and it can be difficult to fine-tune them on a single GPU with the recommended batch size for good performance (in most case a batch size of 32). -To help with fine-tuning these models, we have included five techniques that you can activate in the fine-tuning scripts [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py): gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month. +To help with fine-tuning these models, we have included several techniques that you can activate in the fine-tuning scripts [`run_classifier.py`](./examples/run_classifier.py) and [`run_squad.py`](./examples/run_squad.py): gradient-accumulation, multi-gpu training, distributed training and 16-bits training . For more details on how to use these techniques you can read [the tips on training large batches in PyTorch](https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255) that I published earlier this month. Here is how to use these techniques in our scripts: - **Gradient Accumulation**: Gradient accumulation can be used by supplying a integer greater than 1 to the `--gradient_accumulation_steps` argument. The batch at each step will be divided by this integer and gradient will be accumulated over `gradient_accumulation_steps` steps. - **Multi-GPU**: Multi-GPU is automatically activated when several GPUs are detected and the batches are splitted over the GPUs. - **Distributed training**: Distributed training can be activated by supplying an integer greater or equal to 0 to the `--local_rank` argument (see below). -- **Optimize on CPU**: The Adam optimizer stores 2 moving average of the weights of the model. If you keep them on GPU 1 (typical behavior), your first GPU will have to store 3-times the size of the model. This is not optimal for large models like `BERT-large` and means your batch size is a lot lower than it could be. This option will perform the optimization and store the averages on the CPU/RAM to free more room on the GPU(s). As the most computational intensive operation is usually the backward pass, this doesn't have a significant impact on the training time. Activate this option with `--optimize_on_cpu` on the [`run_squad.py`](./examples/run_squad.py) script. - **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scaling` flag (see the previously linked documentation for details on loss scaling). If the loss scaling is too high (`Nan` in the gradients) it will be automatically scaled down until the value is acceptable. The default loss scaling is 128 which behaved nicely in our tests. Note: To use *Distributed Training*, you will need to run one training script on each of your machines. This can be done for example by running the following command on each server (see [the above mentioned blog post]((https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255)) for more details): @@ -371,16 +370,21 @@ Where `$THIS_MACHINE_INDEX` is an sequential index assigned to each of your mach ### Fine-tuning with BERT: running the examples -We showcase the same examples as [the original implementation](https://github.com/google-research/bert/): fine-tuning a sequence-level classifier on the MRPC classification corpus and a token-level classifier on the question answering dataset SQuAD. +We showcase several fine-tuning examples based on (and extended from) [the original implementation](https://github.com/google-research/bert/): -Before running these examples you should download the +- a sequence-level classifier on the MRPC classification corpus, +- a token-level classifier on the question answering dataset SQuAD, and +- a sequence-level multiple-choice classifier on the SWAG classification corpus. + +#### MRPC + +This example code fine-tunes BERT on the Microsoft Research Paraphrase +Corpus (MRPC) corpus and runs in less than 10 minutes on a single K-80 and in 27 seconds (!) on single tesla V100 16GB with apex installed. + +Before running this example you should download the [GLUE data](https://gluebenchmark.com/tasks) by running [this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e) -and unpack it to some directory `$GLUE_DIR`. Please also download the `BERT-Base` -checkpoint, unzip it to some directory `$BERT_BASE_DIR`, and convert it to its PyTorch version as explained in the previous section. - -This example code fine-tunes `BERT-Base` on the Microsoft Research Paraphrase -Corpus (MRPC) corpus and runs in less than 10 minutes on a single K-80. +and unpack it to some directory `$GLUE_DIR`. ```shell export GLUE_DIR=/path/to/glue @@ -401,7 +405,29 @@ python run_classifier.py \ Our test ran on a few seeds with [the original implementation hyper-parameters](https://github.com/google-research/bert#sentence-and-sentence-pair-classification-tasks) gave evaluation results between 84% and 88%. -The second example fine-tunes `BERT-Base` on the SQuAD question answering task. +**Fast run with apex and 16 bit precision: fine-tuning on MRPC in 27 seconds!** +First install apex as indicated [here](https://github.com/NVIDIA/apex). +Then run +```shell +export GLUE_DIR=/path/to/glue + +python run_classifier.py \ + --task_name MRPC \ + --do_train \ + --do_eval \ + --do_lower_case \ + --data_dir $GLUE_DIR/MRPC/ \ + --bert_model bert-base-uncased \ + --max_seq_length 128 \ + --train_batch_size 32 \ + --learning_rate 2e-5 \ + --num_train_epochs 3.0 \ + --output_dir /tmp/mrpc_output/ +``` + +#### SQuAD + +This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on single tesla V100 16GB. The data for SQuAD can be downloaded with the following links and should be saved in a `$SQUAD_DIR` directory. @@ -451,7 +477,7 @@ python run_swag.py \ --gradient_accumulation_steps 4 ``` -Training with the previous hyper-parameters gave us the following results: +Training with the previous hyper-parameters on a single GPU gave us the following results: ``` eval_accuracy = 0.8062081375587323 eval_loss = 0.5966546792367169 diff --git a/examples/run_classifier.py b/examples/run_classifier.py index aca099daf243..ccb25bfcd8c8 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -558,6 +558,9 @@ def main(): # Load a trained model that you have fine-tuned model_state_dict = torch.load(output_model_file) model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict) + if args.fp16: + model.half() + model.to(device) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) diff --git a/examples/run_squad.py b/examples/run_squad.py index 147cd60f29cd..fb8cd8ddc68c 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -923,6 +923,9 @@ def main(): # Load a trained model that you have fine-tuned model_state_dict = torch.load(output_model_file) model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict) + if args.fp16: + model.half() + model.to(device) if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = read_squad_examples( diff --git a/examples/run_swag.py b/examples/run_swag.py index d1ebb7354248..8d2ab40f8836 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -366,8 +366,7 @@ def main(): # Prepare model model = BertForMultipleChoice.from_pretrained(args.bert_model, cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank), - num_choices = 4 - ) + num_choices=4) if args.fp16: model.half() model.to(device) @@ -452,6 +451,9 @@ def main(): loss = loss * args.loss_scale if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps + tr_loss += loss.item() + nb_tr_examples += input_ids.size(0) + nb_tr_steps += 1 if args.fp16: optimizer.backward(loss) @@ -466,6 +468,20 @@ def main(): optimizer.zero_grad() global_step += 1 + # Save a trained model + model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + torch.save(model_to_save.state_dict(), output_model_file) + + # Load a trained model that you have fine-tuned + model_state_dict = torch.load(output_model_file) + model = BertForMultipleChoice.from_pretrained(args.bert_model, + state_dict=model_state_dict, + num_choices=4) + if args.fp16: + model.half() + model.to(device) + if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True) eval_features = convert_examples_to_features( From e1eab59aac9fdf5ebc062b1afe1d218d11d3a3d2 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Thu, 13 Dec 2018 14:54:02 +0100 Subject: [PATCH 067/111] no fp16 on evaluation --- examples/run_classifier.py | 2 -- examples/run_squad.py | 2 -- examples/run_swag.py | 2 -- 3 files changed, 6 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index ccb25bfcd8c8..e1dcd363446a 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -558,8 +558,6 @@ def main(): # Load a trained model that you have fine-tuned model_state_dict = torch.load(output_model_file) model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict) - if args.fp16: - model.half() model.to(device) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): diff --git a/examples/run_squad.py b/examples/run_squad.py index fb8cd8ddc68c..d6e96f4ac9c0 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -923,8 +923,6 @@ def main(): # Load a trained model that you have fine-tuned model_state_dict = torch.load(output_model_file) model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict) - if args.fp16: - model.half() model.to(device) if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): diff --git a/examples/run_swag.py b/examples/run_swag.py index 8d2ab40f8836..bedfff0b132c 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -478,8 +478,6 @@ def main(): model = BertForMultipleChoice.from_pretrained(args.bert_model, state_dict=model_state_dict, num_choices=4) - if args.fp16: - model.half() model.to(device) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): From ae88eb88a4baffdd23fa38acf7493aedd23fa6b5 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 14 Dec 2018 13:48:58 +0100 Subject: [PATCH 068/111] set encoding to 'utf-8' in calls to open --- examples/extract_features.py | 2 +- examples/run_classifier.py | 5 +++-- examples/run_squad.py | 4 ++-- examples/run_swag.py | 5 +++-- pytorch_pretrained_bert/file_utils.py | 2 +- pytorch_pretrained_bert/modeling.py | 4 ++-- setup.py | 2 +- 7 files changed, 13 insertions(+), 11 deletions(-) diff --git a/examples/extract_features.py b/examples/extract_features.py index dbab934c0813..4f8812121ea1 100644 --- a/examples/extract_features.py +++ b/examples/extract_features.py @@ -168,7 +168,7 @@ def read_examples(input_file): """Read a list of `InputExample`s from an input file.""" examples = [] unique_id = 0 - with open(input_file, "r") as reader: + with open(input_file, "r", encoding='utf-8') as reader: while True: line = reader.readline() if not line: diff --git a/examples/run_classifier.py b/examples/run_classifier.py index e1dcd363446a..adf81f4e28b6 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -91,7 +91,7 @@ def get_labels(self): @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" - with open(input_file, "r") as f: + with open(input_file, "r", encoding='utf-8') as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: @@ -413,7 +413,8 @@ def main(): n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') - logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) + logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( + device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( diff --git a/examples/run_squad.py b/examples/run_squad.py index d6e96f4ac9c0..6a97dd300b0e 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -108,7 +108,7 @@ def __init__(self, def read_squad_examples(input_file, is_training): """Read a SQuAD json file into a list of SquadExample.""" - with open(input_file, "r") as reader: + with open(input_file, "r", encoding='utf-8') as reader: input_data = json.load(reader)["data"] def is_whitespace(c): @@ -757,7 +757,7 @@ def main(): n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') - logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits trainiing: {}".format( + logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: diff --git a/examples/run_swag.py b/examples/run_swag.py index bedfff0b132c..caddbee8ab7a 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -100,7 +100,7 @@ def __init__(self, def read_swag_examples(input_file, is_training): - with open(input_file, 'r') as f: + with open(input_file, 'r', encoding='utf-8') as f: reader = csv.reader(f) lines = list(reader) @@ -333,7 +333,8 @@ def main(): n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') - logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) + logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( + device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( diff --git a/pytorch_pretrained_bert/file_utils.py b/pytorch_pretrained_bert/file_utils.py index 139418f1a544..43fa8ca87e20 100644 --- a/pytorch_pretrained_bert/file_utils.py +++ b/pytorch_pretrained_bert/file_utils.py @@ -227,7 +227,7 @@ def read_set_from_file(filename: str) -> Set[str]: Expected file format is one item per line. ''' collection = set() - with open(filename, 'r') as file_: + with open(filename, 'r', encoding='utf-8') as file_: for line in file_: collection.add(line.rstrip()) return collection diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index c6940c74eb2d..28f22287d258 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -106,7 +106,7 @@ def __init__(self, initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): - with open(vocab_size_or_config_json_file, "r") as reader: + with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value @@ -137,7 +137,7 @@ def from_dict(cls, json_object): @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" - with open(json_file, "r") as reader: + with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) diff --git a/setup.py b/setup.py index a1e1f68db619..dbfeb2c6948e 100644 --- a/setup.py +++ b/setup.py @@ -41,7 +41,7 @@ author="Thomas Wolf, Victor Sanh, Tim Rault, Google AI Language Team Authors", author_email="thomas@huggingface.co", description="PyTorch version of Google AI BERT model with script to load Google pre-trained models", - long_description=open("README.md", "r").read(), + long_description=open("README.md", "r", encoding='utf-8').read(), long_description_content_type="text/markdown", keywords='BERT NLP deep learning google', license='Apache', From 4a4b0e57831aca4294ee1b2924375ed587bd345b Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 14 Dec 2018 14:46:25 +0100 Subject: [PATCH 069/111] remove logging. basicConfig from library code --- pytorch_pretrained_bert/modeling.py | 3 --- pytorch_pretrained_bert/tokenization.py | 3 --- 2 files changed, 6 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index 28f22287d258..acdc741f6da4 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -34,9 +34,6 @@ from .file_utils import cached_path -logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', - datefmt = '%m/%d/%Y %H:%M:%S', - level = logging.INFO) logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = { diff --git a/pytorch_pretrained_bert/tokenization.py b/pytorch_pretrained_bert/tokenization.py index c7ef20ddefcb..5954b78f6833 100644 --- a/pytorch_pretrained_bert/tokenization.py +++ b/pytorch_pretrained_bert/tokenization.py @@ -25,9 +25,6 @@ from .file_utils import cached_path -logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', - datefmt = '%m/%d/%Y %H:%M:%S', - level = logging.INFO) logger = logging.getLogger(__name__) PRETRAINED_VOCAB_ARCHIVE_MAP = { From 37378898a204c91e4aa47f163dd635a06c437628 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 14 Dec 2018 15:02:32 +0100 Subject: [PATCH 070/111] adding DockerFile --- docker/Dockerfile | 7 +++++++ 1 file changed, 7 insertions(+) create mode 100644 docker/Dockerfile diff --git a/docker/Dockerfile b/docker/Dockerfile new file mode 100644 index 000000000000..e47eb548f9a1 --- /dev/null +++ b/docker/Dockerfile @@ -0,0 +1,7 @@ +FROM pytorch/pytorch:latest + +RUN git clone https://github.com/NVIDIA/apex.git && cd apex && python setup.py install --cuda_ext --cpp_ext + +RUN pip install pytorch-pretrained-bert + +WORKDIR /workspace \ No newline at end of file From d821358884e45e92164a7bc773e4bc47eed1b591 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Fri, 14 Dec 2018 15:15:17 +0100 Subject: [PATCH 071/111] update readme --- README.md | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) diff --git a/README.md b/README.md index c4f6b99f1c4f..87afa88b5223 100644 --- a/README.md +++ b/README.md @@ -19,7 +19,7 @@ This implementation is provided with [Google's pre-trained models](https://githu ## Installation -This repo was tested on Python 3.6+ and PyTorch 0.4.1 +This repo was tested on Python 3.5+ and PyTorch 0.4.1/1.0.0 ### With pip @@ -372,9 +372,9 @@ Where `$THIS_MACHINE_INDEX` is an sequential index assigned to each of your mach We showcase several fine-tuning examples based on (and extended from) [the original implementation](https://github.com/google-research/bert/): -- a sequence-level classifier on the MRPC classification corpus, -- a token-level classifier on the question answering dataset SQuAD, and -- a sequence-level multiple-choice classifier on the SWAG classification corpus. +- a *sequence-level classifier* on the MRPC classification corpus, +- a *token-level classifier* on the question answering dataset SQuAD, and +- a *sequence-level multiple-choice classifier* on the SWAG classification corpus. #### MRPC @@ -427,7 +427,7 @@ python run_classifier.py \ #### SQuAD -This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on single tesla V100 16GB. +This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB. The data for SQuAD can be downloaded with the following links and should be saved in a `$SQUAD_DIR` directory. @@ -458,7 +458,9 @@ Training with the previous hyper-parameters gave us the following results: {"f1": 88.52381567990474, "exact_match": 81.22043519394512} ``` -The data for Swag can be downloaded by cloning the following [repository](https://github.com/rowanz/swagaf) +#### SWAG + +The data for SWAG can be downloaded by cloning the following [repository](https://github.com/rowanz/swagaf) ```shell export SWAG_DIR=/path/to/SWAG From 8809eb6c93c55c86ab69df7adbfdeb4d2e753f0e Mon Sep 17 00:00:00 2001 From: Thomas Wolf Date: Fri, 14 Dec 2018 16:59:39 +0100 Subject: [PATCH 072/111] update readme with information on NVIDIA's apex --- README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 87afa88b5223..5962dfca66d8 100644 --- a/README.md +++ b/README.md @@ -360,7 +360,9 @@ Here is how to use these techniques in our scripts: - **Gradient Accumulation**: Gradient accumulation can be used by supplying a integer greater than 1 to the `--gradient_accumulation_steps` argument. The batch at each step will be divided by this integer and gradient will be accumulated over `gradient_accumulation_steps` steps. - **Multi-GPU**: Multi-GPU is automatically activated when several GPUs are detected and the batches are splitted over the GPUs. - **Distributed training**: Distributed training can be activated by supplying an integer greater or equal to 0 to the `--local_rank` argument (see below). -- **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scaling` flag (see the previously linked documentation for details on loss scaling). If the loss scaling is too high (`Nan` in the gradients) it will be automatically scaled down until the value is acceptable. The default loss scaling is 128 which behaved nicely in our tests. +- **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scale` flag (see the previously linked documentation for details on loss scaling). The loss scale can be zero in which case the scale is dynamically adjuted or a positive power of two in which case the scaling is static. + +To use 16-bits training and distributed training, you need to install NVIDIA's apex extension [as detailed here](https://github.com/nvidia/apex). You will find more information reguarding the internals of `apex` and how to use `apex` in [the doc and the associated repository](https://github.com/nvidia/apex). The results of the tests perfomed on pytorch-BERT by the NVIDIA team (and my trials at reproducing them) can be consulted in [the relevant PR of the present repository](https://github.com/huggingface/pytorch-pretrained-BERT/pull/116). Note: To use *Distributed Training*, you will need to run one training script on each of your machines. This can be done for example by running the following command on each server (see [the above mentioned blog post]((https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255)) for more details): ```bash From 8b1b93947f6e18c9dd2ef4067c286b09c27a6e28 Mon Sep 17 00:00:00 2001 From: Daniel Khashabi Date: Fri, 14 Dec 2018 14:10:36 -0500 Subject: [PATCH 073/111] Minor fix. --- README.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/README.md b/README.md index 5962dfca66d8..2dce5fcbb97d 100644 --- a/README.md +++ b/README.md @@ -517,8 +517,7 @@ python ./run_squad.py \ --doc_stride 128 \ --output_dir $OUTPUT_DIR \ --train_batch_size 24 \ - --gradient_accumulation_steps 2 \ - --optimize_on_cpu + --gradient_accumulation_steps 2 ``` If you have a recent GPU (starting from NVIDIA Volta series), you should try **16-bit fine-tuning** (FP16). From 786cc41299510ef8ee9973519d202b6ae683a293 Mon Sep 17 00:00:00 2001 From: Thomas Wolf Date: Mon, 17 Dec 2018 09:22:18 +0100 Subject: [PATCH 074/111] Typos in readme --- README.md | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 2dce5fcbb97d..d0fd120967dd 100644 --- a/README.md +++ b/README.md @@ -165,7 +165,7 @@ Here is a detailed documentation of the classes in the package and how to use th To load one of Google AI's pre-trained models or a PyTorch saved model (an instance of `BertForPreTraining` saved with `torch.save()`), the PyTorch model classes and the tokenizer can be instantiated as ```python -model = BERT_CLASS.from_pretrain(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None) +model = BERT_CLASS.from_pretrained(PRE_TRAINED_MODEL_NAME_OR_PATH, cache_dir=None) ``` where @@ -189,14 +189,15 @@ where - `pytorch_model.bin` a PyTorch dump of a pre-trained instance `BertForPreTraining` (saved with the usual `torch.save()`) If `PRE_TRAINED_MODEL_NAME_OR_PATH` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links [here](pytorch_pretrained_bert/modeling.py)) and stored in a cache folder to avoid future download (the cache folder can be found at `~/.pytorch_pretrained_bert/`). -- `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example `cache_dir='./pretrained_model_{}'.format(args.local_rank)` (see the section on distributed training for more information) +- `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example `cache_dir='./pretrained_model_{}'.format(args.local_rank)` (see the section on distributed training for more information). `Uncased` means that the text has been lowercased before WordPiece tokenization, e.g., `John Smith` becomes `john smith`. The Uncased model also strips out any accent markers. `Cased` means that the true case and accent markers are preserved. Typically, the Uncased model is better unless you know that case information is important for your task (e.g., Named Entity Recognition or Part-of-Speech tagging). For information about the Multilingual and Chinese model, see the [Multilingual README](https://github.com/google-research/bert/blob/master/multilingual.md) or the original TensorFlow repository. -**When using an `uncased model`, make sure to pass `--do_lower_case` to the training scripts. (Or pass `do_lower_case=True` directly to FullTokenizer if you're using your own script.)** +**When using an `uncased model`, make sure to pass `--do_lower_case` to the example training scripts (or pass `do_lower_case=True` to FullTokenizer if you're using your own script and loading the tokenizer your-self.).** Example: ```python +tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) model = BertForSequenceClassification.from_pretrained('bert-base-uncased') ``` From a58361f197ec0d43ef28ce20fefd6dcb0c9c2ef7 Mon Sep 17 00:00:00 2001 From: deepset Date: Tue, 18 Dec 2018 10:32:25 +0100 Subject: [PATCH 075/111] Add example for fine tuning BERT language model (#1) Adds an example for loading a pre-trained BERT model and fine tune it as a language model (masked tokens & nextSentence) on your target corpus. --- examples/run_lm_finetuning.py | 674 ++++++++++++++++++++++++++++++++++ 1 file changed, 674 insertions(+) create mode 100644 examples/run_lm_finetuning.py diff --git a/examples/run_lm_finetuning.py b/examples/run_lm_finetuning.py new file mode 100644 index 000000000000..3e8bc36f48bf --- /dev/null +++ b/examples/run_lm_finetuning.py @@ -0,0 +1,674 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""BERT finetuning runner.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os +import logging +import argparse +from tqdm import tqdm, trange + +import numpy as np +import torch +from torch.utils.data import DataLoader, RandomSampler +from torch.utils.data.distributed import DistributedSampler + +from pytorch_pretrained_bert.tokenization import BertTokenizer +from pytorch_pretrained_bert.modeling import BertForPreTraining +from pytorch_pretrained_bert.optimization import BertAdam + +from torch.utils.data import Dataset +import random + +logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', + datefmt='%m/%d/%Y %H:%M:%S', + level=logging.INFO) +logger = logging.getLogger(__name__) + + +class BERTDataset(Dataset): + def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lines=None, on_memory=True): + self.vocab = tokenizer.vocab + self.tokenizer = tokenizer + self.seq_len = seq_len + self.on_memory = on_memory + self.corpus_lines = corpus_lines # number of non-empty lines in input corpus + self.corpus_path = corpus_path + self.encoding = encoding + self.current_doc = 0 # to avoid random sentence from same doc + + # for loading samples directly from file + self.sample_counter = 0 # used to keep track of full epochs on file + self.line_buffer = None # keep second sentence of a pair in memory and use as first sentence in next pair + + # for loading samples in memory + self.current_random_doc = 0 + self.num_docs = 0 + + # load samples into memory + if on_memory: + self.all_docs = [] + doc = [] + self.corpus_lines = 0 + with open(corpus_path, "r", encoding=encoding) as f: + for line in tqdm(f, desc="Loading Dataset", total=corpus_lines): + line = line.strip() + if line == "": + self.all_docs.append(doc) + doc = [] + else: + doc.append(line) + self.corpus_lines = self.corpus_lines + 1 + # if last row in file is not empty + if self.all_docs[-1] != doc: + self.all_docs.append(doc) + + self.num_docs = len(self.all_docs) + + # load samples later lazily from disk + else: + if self.corpus_lines is None: + with open(corpus_path, "r", encoding=encoding) as f: + self.corpus_lines = 0 + for line in tqdm(f, desc="Loading Dataset", total=corpus_lines): + if line.strip() == "": + self.num_docs += 1 + else: + self.corpus_lines += 1 + + # if doc does not end with empty line + if line.strip() != "": + self.num_docs += 1 + + self.file = open(corpus_path, "r", encoding=encoding) + self.random_file = open(corpus_path, "r", encoding=encoding) + + def __len__(self): + # last line of doc won't be used, because there's no "nextSentence". Additionally, we start counting at 0. + return self.corpus_lines - self.num_docs - 1 + + def __getitem__(self, item): + cur_id = self.sample_counter + self.sample_counter += 1 + if not self.on_memory: + # after one epoch we start again from beginning of file + if cur_id != 0 and (cur_id % len(self) == 0): + self.file.close() + self.file = open(self.corpus_path, "r", encoding=self.encoding) + + t1, t2, is_next_label = self.random_sent(item) + + # tokenize + tokens_a = self.tokenizer.tokenize(t1) + tokens_b = self.tokenizer.tokenize(t2) + + # combine to one sample + cur_example = InputExample(guid=cur_id, tokens_a=tokens_a, tokens_b=tokens_b, is_next=is_next_label) + + # transform sample to features + cur_features = convert_example_to_features(cur_example, self.seq_len, self.tokenizer) + + cur_tensors = {"input_ids": torch.tensor(cur_features.input_ids), + "input_mask": torch.tensor(cur_features.input_mask), + "segment_ids": torch.tensor(cur_features.segment_ids), + "lm_label_ids": torch.tensor(cur_features.lm_label_ids), + "is_next": torch.tensor(cur_features.is_next)} + + return cur_tensors + + def random_sent(self, index): + """ + Get one sample from corpus consisting of two sentences. With prob. 50% these are two subsequent sentences + from one doc. With 50% the second sentence will be a random one from another doc. + :param index: int, index of sample. + :return: (str, str, int), sentence 1, sentence 2, isNextSentence Label + """ + t1, t2 = self.get_corpus_line(index) + if random.random() > 0.5: + label = 0 + else: + t2 = self.get_random_line() + label = 1 + + assert len(t1) > 0 + assert len(t2) > 0 + return t1, t2, label + + def get_corpus_line(self, item): + """ + Get one sample from corpus consisting of a pair of two subsequent lines from the same doc. + :param item: int, index of sample. + :return: (str, str), two subsequent sentences from corpus + """ + t1 = "" + t2 = "" + assert item < self.corpus_lines + if self.on_memory: + # get the right doc + doc_id = 0 + doc_start = 0 + doc_end = len(self.all_docs[doc_id]) - 2 + while item > doc_end: + doc_id += 1 + doc_start = doc_end + 1 + doc_end += len(self.all_docs[doc_id]) - 1 + # get the right line within doc + line_in_doc = item - doc_start + t1 = self.all_docs[doc_id][line_in_doc] + t2 = self.all_docs[doc_id][line_in_doc + 1] + # used later to avoid random nextSentence from same doc + self.current_doc = doc_id + return t1, t2 + else: + if self.line_buffer is None: + # read first non-empty line of file + while t1 == "" : + t1 = self.file.__next__().strip() + t2 = self.file.__next__().strip() + else: + # use t2 from previous iteration as new t1 + t1 = self.line_buffer + t2 = self.file.__next__().strip() + # skip empty rows that are used for separating documents and keep track of current doc id + while t2 == "" or t1 == "": + t1 = self.file.__next__().strip() + t2 = self.file.__next__().strip() + self.current_doc = self.current_doc+1 + self.line_buffer = t2 + + assert t1 != "" + assert t2 != "" + return t1, t2 + + def get_random_line(self): + """ + Get random line from another document for nextSentence task. + :return: str, content of one line + """ + # Similar to original tf repo: This outer loop should rarely go for more than one iteration for large + # corpora. However, just to be careful, we try to make sure that + # the random document is not the same as the document we're processing. + for _ in range(10): + if self.on_memory: + rand_doc_idx = random.randint(0, len(self.all_docs)-1) + rand_doc = self.all_docs[rand_doc_idx] + line = rand_doc[random.randrange(len(rand_doc))] + else: + rand_index = random.randint(1, self.corpus_lines if self.corpus_lines < 1000 else 1000) + #pick random line + for _ in range(rand_index): + line = self.get_next_line() + #check if our picked random line is really from another doc like we want it to be + if self.current_random_doc != self.current_doc: + break + return line + + def get_next_line(self): + """ Gets next line of random_file and starts over when reaching end of file""" + try: + line = self.random_file.__next__().strip() + #keep track of which document we are currently looking at to later avoid having the same doc as t1 + if line == "": + self.current_random_doc = self.current_random_doc + 1 + line = self.random_file.__next__().strip() + except StopIteration: + self.random_file.close() + self.random_file = open(self.corpus_path, "r", encoding=self.encoding) + line = self.random_file.__next__().strip() + return line + + +class InputExample(object): + """A single training/test example for the language model.""" + + def __init__(self, guid, tokens_a, tokens_b=None, is_next=None, lm_labels=None): + """Constructs a InputExample. + + Args: + guid: Unique id for the example. + tokens_a: string. The untokenized text of the first sequence. For single + sequence tasks, only this sequence must be specified. + tokens_b: (Optional) string. The untokenized text of the second sequence. + Only must be specified for sequence pair tasks. + label: (Optional) string. The label of the example. This should be + specified for train and dev examples, but not for test examples. + """ + self.guid = guid + self.tokens_a = tokens_a + self.tokens_b = tokens_b + self.is_next = is_next # nextSentence + self.lm_labels = lm_labels # masked words for language model + + +class InputFeatures(object): + """A single set of features of data.""" + + def __init__(self, input_ids, input_mask, segment_ids, is_next, lm_label_ids): + self.input_ids = input_ids + self.input_mask = input_mask + self.segment_ids = segment_ids + self.is_next = is_next + self.lm_label_ids = lm_label_ids + + +def random_word(tokens, tokenizer): + """ + Masking some random tokens for Language Model task with probabilities as in the original BERT paper. + :param tokens: list of str, tokenized sentence. + :param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here) + :return: (list of str, list of int), masked tokens and related labels for LM prediction + """ + output_label = [] + + for i, token in enumerate(tokens): + prob = random.random() + # mask token with 15% probability + if prob < 0.15: + prob /= 0.15 + + # 80% randomly change token to mask token + if prob < 0.8: + tokens[i] = "[MASK]" + + # 10% randomly change token to random token + elif prob < 0.9: + tokens[i] = random.choice(list(tokenizer.vocab.items()))[0] + + # -> rest 10% randomly keep current token + + # append current token to output (we will predict these later) + try: + output_label.append(tokenizer.vocab[token]) + except KeyError: + # For unknown words (should not occur with BPE vocab) + output_label.append(tokenizer.vocab["[UNK]"]) + else: + # no masking token (will be ignored by loss function later) + output_label.append(-1) + + return tokens, output_label + + +def convert_example_to_features(example, max_seq_length, tokenizer): + """ + Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with + IDs, LM labels, input_mask, CLS and SEP tokens etc. + :param example: InputExample, containing sentence input as strings and is_next label + :param max_seq_length: int, maximum length of sequence. + :param tokenizer: Tokenizer + :return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training) + """ + tokens_a = example.tokens_a + tokens_b = example.tokens_b + # Modifies `tokens_a` and `tokens_b` in place so that the total + # length is less than the specified length. + # Account for [CLS], [SEP], [SEP] with "- 3" + _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) + + t1_random, t1_label = random_word(tokens_a, tokenizer) + t2_random, t2_label = random_word(tokens_b, tokenizer) + # concatenate lm labels and account for CLS, SEP, SEP + lm_label_ids = ([-1] + t1_label + [-1] + t2_label + [-1]) + + # The convention in BERT is: + # (a) For sequence pairs: + # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] + # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 + # (b) For single sequences: + # tokens: [CLS] the dog is hairy . [SEP] + # type_ids: 0 0 0 0 0 0 0 + # + # Where "type_ids" are used to indicate whether this is the first + # sequence or the second sequence. The embedding vectors for `type=0` and + # `type=1` were learned during pre-training and are added to the wordpiece + # embedding vector (and position vector). This is not *strictly* necessary + # since the [SEP] token unambigiously separates the sequences, but it makes + # it easier for the model to learn the concept of sequences. + # + # For classification tasks, the first vector (corresponding to [CLS]) is + # used as as the "sentence vector". Note that this only makes sense because + # the entire model is fine-tuned. + tokens = [] + segment_ids = [] + tokens.append("[CLS]") + segment_ids.append(0) + for token in tokens_a: + tokens.append(token) + segment_ids.append(0) + tokens.append("[SEP]") + segment_ids.append(0) + + assert len(tokens_b) > 0 + for token in tokens_b: + tokens.append(token) + segment_ids.append(1) + tokens.append("[SEP]") + segment_ids.append(1) + + input_ids = tokenizer.convert_tokens_to_ids(tokens) + + # The mask has 1 for real tokens and 0 for padding tokens. Only real + # tokens are attended to. + input_mask = [1] * len(input_ids) + + # Zero-pad up to the sequence length. + while len(input_ids) < max_seq_length: + input_ids.append(0) + input_mask.append(0) + segment_ids.append(0) + lm_label_ids.append(-1) + + assert len(input_ids) == max_seq_length + assert len(input_mask) == max_seq_length + assert len(segment_ids) == max_seq_length + assert len(lm_label_ids) == max_seq_length + + if example.guid < 5: + logger.info("*** Example ***") + logger.info("guid: %s" % (example.guid)) + logger.info("tokens: %s" % " ".join( + [str(x) for x in tokens])) + logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) + logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) + logger.info( + "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) + logger.info("LM label: %s " % (lm_label_ids)) + logger.info("Is next sentence label: %s " % (example.is_next)) + + features = InputFeatures(input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + lm_label_ids=lm_label_ids, + is_next=example.is_next) + return features + + +def main(): + parser = argparse.ArgumentParser() + + ## Required parameters + parser.add_argument("--train_file", + default=None, + type=str, + required=True, + help="The input train corpus.") + parser.add_argument("--bert_model", default=None, type=str, required=True, + help="Bert pre-trained model selected in the list: bert-base-uncased, " + "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") + parser.add_argument("--output_dir", + default=None, + type=str, + required=True, + help="The output directory where the model checkpoints will be written.") + + ## Other parameters + parser.add_argument("--max_seq_length", + default=128, + type=int, + help="The maximum total input sequence length after WordPiece tokenization. \n" + "Sequences longer than this will be truncated, and sequences shorter \n" + "than this will be padded.") + parser.add_argument("--do_train", + default=False, + action='store_true', + help="Whether to run training.") + parser.add_argument("--train_batch_size", + default=32, + type=int, + help="Total batch size for training.") + parser.add_argument("--eval_batch_size", + default=8, + type=int, + help="Total batch size for eval.") + parser.add_argument("--learning_rate", + default=3e-5, + type=float, + help="The initial learning rate for Adam.") + parser.add_argument("--num_train_epochs", + default=3.0, + type=float, + help="Total number of training epochs to perform.") + parser.add_argument("--warmup_proportion", + default=0.1, + type=float, + help="Proportion of training to perform linear learning rate warmup for. " + "E.g., 0.1 = 10%% of training.") + parser.add_argument("--no_cuda", + default=False, + action='store_true', + help="Whether not to use CUDA when available") + parser.add_argument("--on_memory", + default=False, + action='store_true', + help="Whether to load train samples into memory or use disk") + parser.add_argument("--local_rank", + type=int, + default=-1, + help="local_rank for distributed training on gpus") + parser.add_argument('--seed', + type=int, + default=42, + help="random seed for initialization") + parser.add_argument('--gradient_accumulation_steps', + type=int, + default=1, + help="Number of updates steps to accumualte before performing a backward/update pass.") + parser.add_argument('--optimize_on_cpu', + default=False, + action='store_true', + help="Whether to perform optimization and keep the optimizer averages on CPU") + parser.add_argument('--fp16', + default=False, + action='store_true', + help="Whether to use 16-bit float precision instead of 32-bit") + parser.add_argument('--loss_scale', + type=float, default=128, + help='Loss scaling, positive power of 2 values can improve fp16 convergence.') + + args = parser.parse_args() + + if args.local_rank == -1 or args.no_cuda: + device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") + n_gpu = torch.cuda.device_count() + else: + device = torch.device("cuda", args.local_rank) + n_gpu = 1 + # Initializes the distributed backend which will take care of sychronizing nodes/GPUs + torch.distributed.init_process_group(backend='nccl') + if args.fp16: + logger.info("16-bits training currently not supported in distributed training") + args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) + logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) + + if args.gradient_accumulation_steps < 1: + raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( + args.gradient_accumulation_steps)) + + args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) + + random.seed(args.seed) + np.random.seed(args.seed) + torch.manual_seed(args.seed) + if n_gpu > 0: + torch.cuda.manual_seed_all(args.seed) + + if not args.do_train and not args.do_eval: + raise ValueError("At least one of `do_train` or `do_eval` must be True.") + + if os.path.exists(args.output_dir) and os.listdir(args.output_dir): + raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) + os.makedirs(args.output_dir, exist_ok=True) + + tokenizer = BertTokenizer.from_pretrained(args.bert_model) + + #train_examples = None + num_train_steps = None + if args.do_train: + print("Loading Train Dataset", args.train_file) + train_dataset = BERTDataset(args.train_file, tokenizer, seq_len=args.max_seq_length, + corpus_lines=None, on_memory=args.on_memory) + num_train_steps = int( + len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) + + # Prepare model + model = BertForPreTraining.from_pretrained(args.bert_model) + if args.fp16: + model.half() + model.to(device) + if args.local_rank != -1: + model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], + output_device=args.local_rank) + elif n_gpu > 1: + model = torch.nn.DataParallel(model) + + # Prepare optimizer + if args.fp16: + param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \ + for n, param in model.named_parameters()] + elif args.optimize_on_cpu: + param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \ + for n, param in model.named_parameters()] + else: + param_optimizer = list(model.named_parameters()) + no_decay = ['bias', 'gamma', 'beta'] + optimizer_grouped_parameters = [ + {'params': [p for n, p in param_optimizer if n not in no_decay], 'weight_decay_rate': 0.01}, + {'params': [p for n, p in param_optimizer if n in no_decay], 'weight_decay_rate': 0.0} + ] + optimizer = BertAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + warmup=args.warmup_proportion, + t_total=num_train_steps) + + global_step = 0 + if args.do_train: + logger.info("***** Running training *****") + logger.info(" Num examples = %d", len(train_dataset)) + logger.info(" Batch size = %d", args.train_batch_size) + logger.info(" Num steps = %d", num_train_steps) + + if args.local_rank == -1: + train_sampler = RandomSampler(train_dataset) + else: + #TODO: check if this works with current data generator from disk that relies on file.__next__ + # (it doesn't return item back by index) + train_sampler = DistributedSampler(train_dataset) + train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) + + model.train() + for _ in trange(int(args.num_train_epochs), desc="Epoch"): + tr_loss = 0 + nb_tr_examples, nb_tr_steps = 0, 0 + for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): + batch = tuple(t.to(device) for t in batch.values()) + input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch + loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next) + if n_gpu > 1: + loss = loss.mean() # mean() to average on multi-gpu. + if args.fp16 and args.loss_scale != 1.0: + # rescale loss for fp16 training + # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html + loss = loss * args.loss_scale + if args.gradient_accumulation_steps > 1: + loss = loss / args.gradient_accumulation_steps + loss.backward() + tr_loss += loss.item() + nb_tr_examples += input_ids.size(0) + nb_tr_steps += 1 + if (step + 1) % args.gradient_accumulation_steps == 0: + if args.fp16 or args.optimize_on_cpu: + if args.fp16 and args.loss_scale != 1.0: + # scale down gradients for fp16 training + for param in model.parameters(): + param.grad.data = param.grad.data / args.loss_scale + is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) + if is_nan: + logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") + args.loss_scale = args.loss_scale / 2 + model.zero_grad() + continue + optimizer.step() + copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) + else: + optimizer.step() + model.zero_grad() + global_step += 1 + + logger.info("** ** * Saving fine - tuned model ** ** * ") + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + if n_gpu > 1: + torch.save(model.module.bert.state_dict(), output_model_file) + else: + torch.save(model.bert.state_dict(), output_model_file) + + +def _truncate_seq_pair(tokens_a, tokens_b, max_length): + """Truncates a sequence pair in place to the maximum length.""" + + # This is a simple heuristic which will always truncate the longer sequence + # one token at a time. This makes more sense than truncating an equal percent + # of tokens from each, since if one sequence is very short then each token + # that's truncated likely contains more information than a longer sequence. + while True: + total_length = len(tokens_a) + len(tokens_b) + if total_length <= max_length: + break + if len(tokens_a) > len(tokens_b): + tokens_a.pop() + else: + tokens_b.pop() + + +def accuracy(out, labels): + outputs = np.argmax(out, axis=1) + return np.sum(outputs == labels) + + +def copy_optimizer_params_to_model(named_params_model, named_params_optimizer): + """ Utility function for optimize_on_cpu and 16-bits training. + Copy the parameters optimized on CPU/RAM back to the model on GPU + """ + for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): + if name_opti != name_model: + logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) + raise ValueError + param_model.data.copy_(param_opti.data) + + +def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False): + """ Utility function for optimize_on_cpu and 16-bits training. + Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model + """ + is_nan = False + for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): + if name_opti != name_model: + logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) + raise ValueError + if param_model.grad is not None: + if test_nan and torch.isnan(param_model.grad).sum() > 0: + is_nan = True + if param_opti.grad is None: + param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size())) + param_opti.grad.data.copy_(param_model.grad.data) + else: + param_opti.grad = None + return is_nan + + +if __name__ == "__main__": + main() \ No newline at end of file From 78cf7b4ab4de783942383b008be7eb7f65dc541d Mon Sep 17 00:00:00 2001 From: Patrick Lewis Date: Tue, 18 Dec 2018 14:41:30 +0000 Subject: [PATCH 076/111] added code to raise value error for bert tokenizer for covert_tokens_to_indices --- pytorch_pretrained_bert/tokenization.py | 44 ++++++++++++++++++------- tests/tokenization_test.py | 22 +++++++++++-- 2 files changed, 53 insertions(+), 13 deletions(-) diff --git a/pytorch_pretrained_bert/tokenization.py b/pytorch_pretrained_bert/tokenization.py index 5954b78f6833..838401565b6a 100644 --- a/pytorch_pretrained_bert/tokenization.py +++ b/pytorch_pretrained_bert/tokenization.py @@ -36,6 +36,15 @@ 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", } +PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = { + 'bert-base-uncased': 512, + 'bert-large-uncased': 512, + 'bert-base-cased': 512, + 'bert-large-cased': 512, + 'bert-base-multilingual-uncased': 512, + 'bert-base-multilingual-cased': 512, + 'bert-base-chinese': 512, +} VOCAB_NAME = 'vocab.txt' @@ -65,7 +74,8 @@ def whitespace_tokenize(text): class BertTokenizer(object): """Runs end-to-end tokenization: punctuation splitting + wordpiece""" - def __init__(self, vocab_file, do_lower_case=True): + + def __init__(self, vocab_file, do_lower_case=True, max_len=None): if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " @@ -75,6 +85,7 @@ def __init__(self, vocab_file, do_lower_case=True): [(ids, tok) for tok, ids in self.vocab.items()]) self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) + self.max_len = max_len if max_len is not None else int(1e12) def tokenize(self, text): split_tokens = [] @@ -88,6 +99,12 @@ def convert_tokens_to_ids(self, tokens): ids = [] for token in tokens: ids.append(self.vocab[token]) + if len(ids) > self.max_len: + raise ValueError( + "Token indices sequence length is longer than the specified maximum " + " sequence length for this BERT model ({} > {}). Running this" + " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) + ) return ids def convert_ids_to_tokens(self, ids): @@ -126,6 +143,11 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg else: logger.info("loading vocabulary file {} from cache at {}".format( vocab_file, resolved_vocab_file)) + if pretrained_model_name in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: + # if we're using a pretrained model, ensure the tokenizer wont index sequences longer + # than the number of positional embeddings + max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name] + kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) # Instantiate tokenizer. tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizer @@ -193,7 +215,7 @@ def _run_split_on_punc(self, text): i += 1 return ["".join(x) for x in output] - + def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] @@ -218,17 +240,17 @@ def _is_chinese_char(self, cp): # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # - (cp >= 0x3400 and cp <= 0x4DBF) or # - (cp >= 0x20000 and cp <= 0x2A6DF) or # - (cp >= 0x2A700 and cp <= 0x2B73F) or # - (cp >= 0x2B740 and cp <= 0x2B81F) or # - (cp >= 0x2B820 and cp <= 0x2CEAF) or - (cp >= 0xF900 and cp <= 0xFAFF) or # - (cp >= 0x2F800 and cp <= 0x2FA1F)): # + (cp >= 0x3400 and cp <= 0x4DBF) or # + (cp >= 0x20000 and cp <= 0x2A6DF) or # + (cp >= 0x2A700 and cp <= 0x2B73F) or # + (cp >= 0x2B740 and cp <= 0x2B81F) or # + (cp >= 0x2B820 and cp <= 0x2CEAF) or + (cp >= 0xF900 and cp <= 0xFAFF) or # + (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True - + return False - + def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] diff --git a/tests/tokenization_test.py b/tests/tokenization_test.py index f541a620e832..e1474e938bbc 100644 --- a/tests/tokenization_test.py +++ b/tests/tokenization_test.py @@ -44,12 +44,30 @@ def test_full_tokenizer(self): self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9]) + def test_full_tokenizer_raises_error_for_long_sequences(self): + vocab_tokens = [ + "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", + "##ing", "," + ] + with open("/tmp/bert_tokenizer_test.txt", "w") as vocab_writer: + vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) + vocab_file = vocab_writer.name + + tokenizer = BertTokenizer(vocab_file, max_len=10) + os.remove(vocab_file) + tokens = tokenizer.tokenize(u"the cat sat on the mat in the summer time") + indices = tokenizer.convert_tokens_to_ids(tokens) + self.assertListEqual(indices, [0 for _ in range(10)]) + + tokens = tokenizer.tokenize(u"the cat sat on the mat in the summer time .") + self.assertRaises(ValueError, tokenizer.convert_tokens_to_ids, tokens) + def test_chinese(self): tokenizer = BasicTokenizer() - + self.assertListEqual( tokenizer.tokenize(u"ah\u535A\u63A8zz"), - [u"ah", u"\u535A", u"\u63A8", u"zz"]) + [u"ah", u"\u535A", u"\u63A8", u"zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) From d57763f582c18c22768f8bd821e3d9c2c36f95f0 Mon Sep 17 00:00:00 2001 From: Julien Chaumond Date: Tue, 18 Dec 2018 19:23:22 -0500 Subject: [PATCH 077/111] Fix typos --- README.md | 6 +++--- pytorch_pretrained_bert/tokenization.py | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index d0fd120967dd..a487b03fdb77 100644 --- a/README.md +++ b/README.md @@ -65,7 +65,7 @@ This package comprises the following classes that can be imported in Python and - `BertAdam` - Bert version of Adam algorithm with weight decay fix, warmup and linear decay of the learning rate. - A configuration class (in the [`modeling.py`](./pytorch_pretrained_bert/modeling.py) file): - - `BertConfig` - Configuration class to store the configuration of a `BertModel` with utilisities to read and write from JSON configuration files. + - `BertConfig` - Configuration class to store the configuration of a `BertModel` with utilities to read and write from JSON configuration files. The repository further comprises: @@ -361,9 +361,9 @@ Here is how to use these techniques in our scripts: - **Gradient Accumulation**: Gradient accumulation can be used by supplying a integer greater than 1 to the `--gradient_accumulation_steps` argument. The batch at each step will be divided by this integer and gradient will be accumulated over `gradient_accumulation_steps` steps. - **Multi-GPU**: Multi-GPU is automatically activated when several GPUs are detected and the batches are splitted over the GPUs. - **Distributed training**: Distributed training can be activated by supplying an integer greater or equal to 0 to the `--local_rank` argument (see below). -- **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scale` flag (see the previously linked documentation for details on loss scaling). The loss scale can be zero in which case the scale is dynamically adjuted or a positive power of two in which case the scaling is static. +- **16-bits training**: 16-bits training, also called mixed-precision training, can reduce the memory requirement of your model on the GPU by using half-precision training, basically allowing to double the batch size. If you have a recent GPU (starting from NVIDIA Volta architecture) you should see no decrease in speed. A good introduction to Mixed precision training can be found [here](https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/) and a full documentation is [here](https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html). In our scripts, this option can be activated by setting the `--fp16` flag and you can play with loss scaling using the `--loss_scale` flag (see the previously linked documentation for details on loss scaling). The loss scale can be zero in which case the scale is dynamically adjusted or a positive power of two in which case the scaling is static. -To use 16-bits training and distributed training, you need to install NVIDIA's apex extension [as detailed here](https://github.com/nvidia/apex). You will find more information reguarding the internals of `apex` and how to use `apex` in [the doc and the associated repository](https://github.com/nvidia/apex). The results of the tests perfomed on pytorch-BERT by the NVIDIA team (and my trials at reproducing them) can be consulted in [the relevant PR of the present repository](https://github.com/huggingface/pytorch-pretrained-BERT/pull/116). +To use 16-bits training and distributed training, you need to install NVIDIA's apex extension [as detailed here](https://github.com/nvidia/apex). You will find more information regarding the internals of `apex` and how to use `apex` in [the doc and the associated repository](https://github.com/nvidia/apex). The results of the tests performed on pytorch-BERT by the NVIDIA team (and my trials at reproducing them) can be consulted in [the relevant PR of the present repository](https://github.com/huggingface/pytorch-pretrained-BERT/pull/116). Note: To use *Distributed Training*, you will need to run one training script on each of your machines. This can be done for example by running the following command on each server (see [the above mentioned blog post]((https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255)) for more details): ```bash diff --git a/pytorch_pretrained_bert/tokenization.py b/pytorch_pretrained_bert/tokenization.py index 5954b78f6833..23a6eba2f162 100644 --- a/pytorch_pretrained_bert/tokenization.py +++ b/pytorch_pretrained_bert/tokenization.py @@ -263,7 +263,7 @@ def tokenize(self, text): Args: text: A single token or whitespace separated tokens. This should have - already been passed through `BasicTokenizer. + already been passed through `BasicTokenizer`. Returns: A list of wordpiece tokens. From b3d86162b0eb119fc2ffb1fd2bd54d9896e60728 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrick=20Sodr=C3=A9?= Date: Wed, 19 Dec 2018 01:41:18 +0000 Subject: [PATCH 078/111] Add license to source distribution --- MANIFEST.in | 1 + 1 file changed, 1 insertion(+) create mode 100644 MANIFEST.in diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 000000000000..1aba38f67a22 --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1 @@ +include LICENSE From 87c1244c7db8d57d6e1eed9a6578c0262379afea Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrick=20Sodr=C3=A9?= Date: Wed, 19 Dec 2018 01:57:04 +0000 Subject: [PATCH 079/111] Convert scripts into entry_points The recommended approach to create launch scripts is to use entry_points and console_scripts. xref: https://packaging.python.org/guides/distributing-packages-using-setuptools/#scripts --- pytorch_pretrained_bert/__main__.py | 5 ++++- setup.py | 6 +++++- 2 files changed, 9 insertions(+), 2 deletions(-) diff --git a/pytorch_pretrained_bert/__main__.py b/pytorch_pretrained_bert/__main__.py index 73f1909b43a2..79ad84293232 100644 --- a/pytorch_pretrained_bert/__main__.py +++ b/pytorch_pretrained_bert/__main__.py @@ -1,5 +1,5 @@ # coding: utf8 -if __name__ == '__main__': +def main(): import sys try: from .convert_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch @@ -17,3 +17,6 @@ TF_CONFIG = sys.argv.pop() TF_CHECKPOINT = sys.argv.pop() convert_tf_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT) + +if __name__ == '__main__': + main() diff --git a/setup.py b/setup.py index dbfeb2c6948e..e9b5c077c491 100644 --- a/setup.py +++ b/setup.py @@ -53,7 +53,11 @@ 'boto3', 'requests', 'tqdm'], - scripts=["bin/pytorch_pretrained_bert"], + entry_points={ + 'console_scripts': [ + "pytorch_pretrained_bert=pytorch_pretrained_bert.__main__:main" + ] + }, python_requires='>=3.5.0', tests_require=['pytest'], classifiers=[ From ecf3ea197e48545eb10612ac22a25a72d90d19dd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrick=20Sodr=C3=A9?= Date: Wed, 19 Dec 2018 01:58:53 +0000 Subject: [PATCH 080/111] Remove original script --- bin/pytorch_pretrained_bert | 2 -- 1 file changed, 2 deletions(-) delete mode 100644 bin/pytorch_pretrained_bert diff --git a/bin/pytorch_pretrained_bert b/bin/pytorch_pretrained_bert deleted file mode 100644 index eee2b4c250c9..000000000000 --- a/bin/pytorch_pretrained_bert +++ /dev/null @@ -1,2 +0,0 @@ -#!/bin/sh -python -m pytorch_pretrained_bert "$@" \ No newline at end of file From 67f4dd56a39c7e34ff41df7fa7f1e0a87642dc56 Mon Sep 17 00:00:00 2001 From: tholor Date: Wed, 19 Dec 2018 09:22:37 +0100 Subject: [PATCH 081/111] update readme for run_lm_finetuning --- README.md | 32 ++++++++++++++++++++++++++++---- 1 file changed, 28 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index d0fd120967dd..89d3ac4519d7 100644 --- a/README.md +++ b/README.md @@ -69,12 +69,13 @@ This package comprises the following classes that can be imported in Python and The repository further comprises: -- Four examples on how to use Bert (in the [`examples` folder](./examples)): +- Five examples on how to use Bert (in the [`examples` folder](./examples)): - [`extract_features.py`](./examples/extract_features.py) - Show how to extract hidden states from an instance of `BertModel`, - [`run_classifier.py`](./examples/run_classifier.py) - Show how to fine-tune an instance of `BertForSequenceClassification` on GLUE's MRPC task, - [`run_squad.py`](./examples/run_squad.py) - Show how to fine-tune an instance of `BertForQuestionAnswering` on SQuAD v1.0 task. - [`run_swag.py`](./examples/run_swag.py) - Show how to fine-tune an instance of `BertForMultipleChoice` on Swag task. - + - [`run_lm_finetuning`](./examples/run_lm_finetuning.py) - Show how to fine-tune an instance of `BertForPretraining' on a target text corpus. + These examples are detailed in the [Examples](#examples) section of this readme. - Three notebooks that were used to check that the TensorFlow and PyTorch models behave identically (in the [`notebooks` folder](./notebooks)): @@ -246,6 +247,9 @@ An example on how to use this class is given in the [`extract_features.py`](./ex - the masked language modeling logits, and - the next sentence classification logits. + +An example on how to use this class is given in the [`run_lm_finetuning.py`](./examples/run_lm_finetuning.py) script which can be used to fine-tune the BERT language model on your specific different text corpus. This should improve model performance, if the language style is different from the original BERT training corpus (Wiki + BookCorpus). + #### 3. `BertForMaskedLM` @@ -347,7 +351,7 @@ The optimizer accepts the following arguments: | Sub-section | Description | |-|-| | [Training large models: introduction, tools and examples](#Training-large-models-introduction,-tools-and-examples) | How to use gradient-accumulation, multi-gpu training, distributed training, optimize on CPU and 16-bits training to train Bert models | -| [Fine-tuning with BERT: running the examples](#Fine-tuning-with-BERT-running-the-examples) | Running the examples in [`./examples`](./examples/): `extract_classif.py`, `run_classifier.py` and `run_squad.py` | +| [Fine-tuning with BERT: running the examples](#Fine-tuning-with-BERT-running-the-examples) | Running the examples in [`./examples`](./examples/): `extract_classif.py`, `run_classifier.py`, `run_squad.py` and `run_lm_finetuning.py` | | [Fine-tuning BERT-large on GPUs](#Fine-tuning-BERT-large-on-GPUs) | How to fine tune `BERT large`| ### Training large models: introduction, tools and examples @@ -378,7 +382,8 @@ We showcase several fine-tuning examples based on (and extended from) [the origi - a *sequence-level classifier* on the MRPC classification corpus, - a *token-level classifier* on the question answering dataset SQuAD, and - a *sequence-level multiple-choice classifier* on the SWAG classification corpus. - +- a *BERT language model* on another target corpus + #### MRPC This example code fine-tunes BERT on the Microsoft Research Paraphrase @@ -490,6 +495,25 @@ global_step = 13788 loss = 0.06423990014260186 ``` +#### LM Fine-tuning + +The data should be a text file in the same format as [sample_text.txt](./samples/sample_text.txt) (one sentence per line, docs separated by empty line). + +Training one epoch on a 500k sentence corpus takes about 1:20h on 4 x NVIDIA Tesla P100 with `train_batch_size=200` and `max_seq_length=128`: + + +```shell +python run_lm_finetuning.py \ + --bert_model bert-base-cased + --do_train + --train_file samples/sample_text.txt + --output_dir models + --num_train_epochs 5.0 + --learning_rate 3e-5 + --train_batch_size 32 + --max_seq_length 128 +``` + ## Fine-tuning BERT-large on GPUs The options we list above allow to fine-tune BERT-large rather easily on GPU(s) instead of the TPU used by the original implementation. From 7176674849680cfc38dda617677634222f0debaa Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Thu, 20 Dec 2018 13:11:17 +0100 Subject: [PATCH 082/111] Fixing various class documentations. --- pytorch_pretrained_bert/modeling.py | 14 ++++---------- 1 file changed, 4 insertions(+), 10 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index acdc741f6da4..8eb856e66a27 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -456,7 +456,9 @@ def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None, . `bert-base-uncased` . `bert-large-uncased` . `bert-base-cased` - . `bert-base-multilingual` + . `bert-large-cased` + . `bert-base-multilingual-uncased` + . `bert-base-multilingual-cased` . `bert-base-chinese` - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model @@ -1035,15 +1037,7 @@ class BertForQuestionAnswering(PreTrainedBertModel): the sequence output that computes start_logits and end_logits Params: - `config`: either - - a BertConfig class instance with the configuration to build a new model, or - - a str with the name of a pre-trained model to load selected in the list of: - . `bert-base-uncased` - . `bert-large-uncased` - . `bert-base-cased` - . `bert-base-multilingual` - . `bert-base-chinese` - The pre-trained model will be downloaded and cached if needed. + `config`: a BertConfig class instance with the configuration to build a new model. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] From e5fc98c542af436dd079b0c0f2b2dcac1a89594f Mon Sep 17 00:00:00 2001 From: tholor Date: Thu, 20 Dec 2018 18:30:52 +0100 Subject: [PATCH 083/111] add exemplary training data. update to nvidia apex. refactor 'item -> line in doc' mapping. add warning for unknown word. --- README.md | 4 +- examples/run_lm_finetuning.py | 162 +++++++++++++++------------------- 2 files changed, 71 insertions(+), 95 deletions(-) diff --git a/README.md b/README.md index 89d3ac4519d7..b22b66ae0cf9 100644 --- a/README.md +++ b/README.md @@ -498,8 +498,8 @@ loss = 0.06423990014260186 #### LM Fine-tuning The data should be a text file in the same format as [sample_text.txt](./samples/sample_text.txt) (one sentence per line, docs separated by empty line). - -Training one epoch on a 500k sentence corpus takes about 1:20h on 4 x NVIDIA Tesla P100 with `train_batch_size=200` and `max_seq_length=128`: +You can download an [exemplary training corpus](https://ext-bert-sample.obs.eu-de.otc.t-systems.com/small_wiki_sentence_corpus.txt) generated from wikipedia articles and splitted into ~500k sentences with spaCy. +Training one epoch on this corpus takes about 1:20h on 4 x NVIDIA Tesla P100 with `train_batch_size=200` and `max_seq_length=128`: ```shell diff --git a/examples/run_lm_finetuning.py b/examples/run_lm_finetuning.py index 3e8bc36f48bf..9ca9830eff37 100644 --- a/examples/run_lm_finetuning.py +++ b/examples/run_lm_finetuning.py @@ -1,5 +1,6 @@ # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -41,6 +42,12 @@ logger = logging.getLogger(__name__) +def warmup_linear(x, warmup=0.002): + if x < warmup: + return x/warmup + return 1.0 - x + + class BERTDataset(Dataset): def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lines=None, on_memory=True): self.vocab = tokenizer.vocab @@ -59,6 +66,7 @@ def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lin # for loading samples in memory self.current_random_doc = 0 self.num_docs = 0 + self.sample_to_doc = [] # map sample index to doc and line # load samples into memory if on_memory: @@ -71,12 +79,20 @@ def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lin if line == "": self.all_docs.append(doc) doc = [] + #remove last added sample because there won't be a subsequent line anymore in the doc + self.sample_to_doc.pop() else: + #store as one sample + sample = {"doc_id": len(self.all_docs), + "line": len(doc)} + self.sample_to_doc.append(sample) doc.append(line) - self.corpus_lines = self.corpus_lines + 1 + self.corpus_lines = self.corpus_lines + 1 + # if last row in file is not empty if self.all_docs[-1] != doc: self.all_docs.append(doc) + self.sample_to_doc.pop() self.num_docs = len(self.all_docs) @@ -159,20 +175,11 @@ def get_corpus_line(self, item): t2 = "" assert item < self.corpus_lines if self.on_memory: - # get the right doc - doc_id = 0 - doc_start = 0 - doc_end = len(self.all_docs[doc_id]) - 2 - while item > doc_end: - doc_id += 1 - doc_start = doc_end + 1 - doc_end += len(self.all_docs[doc_id]) - 1 - # get the right line within doc - line_in_doc = item - doc_start - t1 = self.all_docs[doc_id][line_in_doc] - t2 = self.all_docs[doc_id][line_in_doc + 1] + sample = self.sample_to_doc[item] + t1 = self.all_docs[sample["doc_id"]][sample["line"]] + t2 = self.all_docs[sample["doc_id"]][sample["line"]+1] # used later to avoid random nextSentence from same doc - self.current_doc = doc_id + self.current_doc = sample["doc_id"] return t1, t2 else: if self.line_buffer is None: @@ -297,6 +304,7 @@ def random_word(tokens, tokenizer): except KeyError: # For unknown words (should not occur with BPE vocab) output_label.append(tokenizer.vocab["[UNK]"]) + logger.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token)) else: # no masking token (will be ignored by loss function later) output_label.append(-1) @@ -468,17 +476,15 @@ def main(): type=int, default=1, help="Number of updates steps to accumualte before performing a backward/update pass.") - parser.add_argument('--optimize_on_cpu', - default=False, - action='store_true', - help="Whether to perform optimization and keep the optimizer averages on CPU") parser.add_argument('--fp16', default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', - type=float, default=128, - help='Loss scaling, positive power of 2 values can improve fp16 convergence.') + type = float, default = 0, + help = "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" + "0 (default value): dynamic loss scaling.\n" + "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() @@ -486,14 +492,13 @@ def main(): device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: + torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') - if args.fp16: - logger.info("16-bits training currently not supported in distributed training") - args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) - logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) + logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( + device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( @@ -531,29 +536,42 @@ def main(): model.half() model.to(device) if args.local_rank != -1: - model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], - output_device=args.local_rank) + try: + from apex.parallel import DistributedDataParallel as DDP + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer - if args.fp16: - param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \ - for n, param in model.named_parameters()] - elif args.optimize_on_cpu: - param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \ - for n, param in model.named_parameters()] - else: - param_optimizer = list(model.named_parameters()) - no_decay = ['bias', 'gamma', 'beta'] + param_optimizer = list(model.named_parameters()) + no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ - {'params': [p for n, p in param_optimizer if n not in no_decay], 'weight_decay_rate': 0.01}, - {'params': [p for n, p in param_optimizer if n in no_decay], 'weight_decay_rate': 0.0} + {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, + {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] - optimizer = BertAdam(optimizer_grouped_parameters, - lr=args.learning_rate, - warmup=args.warmup_proportion, - t_total=num_train_steps) + if args.fp16: + try: + from apex.optimizers import FP16_Optimizer + from apex.optimizers import FusedAdam + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + + optimizer = FusedAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + bias_correction=False, + max_grad_norm=1.0) + if args.loss_scale == 0: + optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) + else: + optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) + + else: + optimizer = BertAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + warmup=args.warmup_proportion, + t_total=num_train_steps) global_step = 0 if args.do_train: @@ -580,33 +598,22 @@ def main(): loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. - if args.fp16 and args.loss_scale != 1.0: - # rescale loss for fp16 training - # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html - loss = loss * args.loss_scale if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps - loss.backward() + if args.fp16: + optimizer.backward(loss) + else: + loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: - if args.fp16 or args.optimize_on_cpu: - if args.fp16 and args.loss_scale != 1.0: - # scale down gradients for fp16 training - for param in model.parameters(): - param.grad.data = param.grad.data / args.loss_scale - is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) - if is_nan: - logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") - args.loss_scale = args.loss_scale / 2 - model.zero_grad() - continue - optimizer.step() - copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) - else: - optimizer.step() - model.zero_grad() + # modify learning rate with special warm up BERT uses + lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_steps, args.warmup_proportion) + for param_group in optimizer.param_groups: + param_group['lr'] = lr_this_step + optimizer.step() + optimizer.zero_grad() global_step += 1 logger.info("** ** * Saving fine - tuned model ** ** * ") @@ -639,36 +646,5 @@ def accuracy(out, labels): return np.sum(outputs == labels) -def copy_optimizer_params_to_model(named_params_model, named_params_optimizer): - """ Utility function for optimize_on_cpu and 16-bits training. - Copy the parameters optimized on CPU/RAM back to the model on GPU - """ - for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): - if name_opti != name_model: - logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) - raise ValueError - param_model.data.copy_(param_opti.data) - - -def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False): - """ Utility function for optimize_on_cpu and 16-bits training. - Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model - """ - is_nan = False - for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): - if name_opti != name_model: - logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) - raise ValueError - if param_model.grad is not None: - if test_nan and torch.isnan(param_model.grad).sum() > 0: - is_nan = True - if param_opti.grad is None: - param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size())) - param_opti.grad.data.copy_(param_model.grad.data) - else: - param_opti.grad = None - return is_nan - - if __name__ == "__main__": main() \ No newline at end of file From 8da280ebbeca5ebd7561fd05af78c65df9161f92 Mon Sep 17 00:00:00 2001 From: Julien Chaumond Date: Thu, 20 Dec 2018 16:33:39 -0500 Subject: [PATCH 084/111] Setup CI --- .circleci/config.yml | 11 +++++++++++ README.md | 2 ++ 2 files changed, 13 insertions(+) create mode 100644 .circleci/config.yml diff --git a/.circleci/config.yml b/.circleci/config.yml new file mode 100644 index 000000000000..2c8f906aba78 --- /dev/null +++ b/.circleci/config.yml @@ -0,0 +1,11 @@ +version: 2 +jobs: + build: + working_directory: ~/pytorch-pretrained-BERT + docker: + - image: circleci/python:3.7 + steps: + - checkout + - run: sudo pip install --progress-bar off . + - run: sudo pip install pytest + - run: python -m pytest -sv tests/ diff --git a/README.md b/README.md index a487b03fdb77..e0c64e36d7a4 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,7 @@ # PyTorch Pretrained Bert +[![CircleCI](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT.svg?style=svg)](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT) + This repository contains an op-for-op PyTorch reimplementation of [Google's TensorFlow repository for the BERT model](https://github.com/google-research/bert) that was released together with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. This implementation is provided with [Google's pre-trained models](https://github.com/google-research/bert), examples, notebooks and a command-line interface to load any pre-trained TensorFlow checkpoint for BERT is also provided. From 99709ee61d887ac1a4431a54a4f78f008b5b11d6 Mon Sep 17 00:00:00 2001 From: Jasdeep Singh <33911313+SinghJasdeep@users.noreply.github.com> Date: Thu, 20 Dec 2018 13:55:47 -0800 Subject: [PATCH 085/111] loading saved model when n_classes != 2 Required to for: Assertion `t >= 0 && t < n_classes` failed, if your default number of classes is not 2. --- examples/run_classifier.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index adf81f4e28b6..456b06b07fee 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -558,7 +558,7 @@ def main(): # Load a trained model that you have fine-tuned model_state_dict = torch.load(output_model_file) - model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict) + model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict, num_labels=num_labels) model.to(device) if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): From e626eecc25b92398b7cf1e06d4fad5ca1df72c18 Mon Sep 17 00:00:00 2001 From: wlhgtc Date: Sat, 22 Dec 2018 20:26:05 +0800 Subject: [PATCH 086/111] Update modeling.py --- pytorch_pretrained_bert/modeling.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index acdc741f6da4..ad423e79ddf6 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -728,7 +728,7 @@ class BertForMaskedLM(PreTrainedBertModel): is only computed for the labels set in [0, ..., vocab_size] Outputs: - if `masked_lm_labels` is `None`: + if `masked_lm_labels` is not `None`: Outputs the masked language modeling loss. if `masked_lm_labels` is `None`: Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]. From 186f75342eed9f7bd2505b1b41ef317ea89d657b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Gr=C3=A9gory=20Ch=C3=A2tel?= Date: Wed, 2 Jan 2019 14:00:59 +0100 Subject: [PATCH 087/111] Adding new pretrained model to the help of the `bert_model` argument. --- examples/run_classifier.py | 3 ++- examples/run_squad.py | 3 ++- examples/run_swag.py | 3 ++- 3 files changed, 6 insertions(+), 3 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index adf81f4e28b6..e265ed73df35 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -312,7 +312,8 @@ def main(): help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " - "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") + "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " + "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--task_name", default=None, type=str, diff --git a/examples/run_squad.py b/examples/run_squad.py index 6a97dd300b0e..8be4143a58d2 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -681,7 +681,8 @@ def main(): ## Required parameters parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " - "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") + "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " + "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.") diff --git a/examples/run_swag.py b/examples/run_swag.py index caddbee8ab7a..c31696fec838 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -249,7 +249,8 @@ def main(): help="The input data dir. Should contain the .csv files (or other data files) for the task.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " - "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") + "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " + "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument("--output_dir", default=None, type=str, From be3b9bcf4db4f7e942c7f71eb1d7de3a8d476ad0 Mon Sep 17 00:00:00 2001 From: Jade Abbott Date: Thu, 3 Jan 2019 09:02:33 +0200 Subject: [PATCH 088/111] Allow one to use the pretrained model in evaluation when do_train is not selected --- examples/run_classifier.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index adf81f4e28b6..9236c6a252d1 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -430,8 +430,8 @@ def main(): if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") - - if os.path.exists(args.output_dir) and os.listdir(args.output_dir): + + if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) os.makedirs(args.output_dir, exist_ok=True) @@ -554,7 +554,8 @@ def main(): # Save a trained model model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") - torch.save(model_to_save.state_dict(), output_model_file) + if args.do_train: + torch.save(model_to_save.state_dict(), output_model_file) # Load a trained model that you have fine-tuned model_state_dict = torch.load(output_model_file) From b96149a19b225cc2eabd14c3227b8acc9b268b49 Mon Sep 17 00:00:00 2001 From: Jade Abbott Date: Thu, 3 Jan 2019 10:31:56 +0200 Subject: [PATCH 089/111] Training loss is not initialized if only do_eval is specified --- examples/run_classifier.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 9236c6a252d1..c99cc0e12a7a 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -430,7 +430,7 @@ def main(): if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") - + if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) os.makedirs(args.output_dir, exist_ok=True) @@ -503,6 +503,7 @@ def main(): t_total=t_total) global_step = 0 + tr_loss = 0 if args.do_train: train_features = convert_examples_to_features( train_examples, label_list, args.max_seq_length, tokenizer) @@ -581,7 +582,8 @@ def main(): model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 - for input_ids, input_mask, segment_ids, label_ids in eval_dataloader: + + for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"): input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) @@ -603,11 +605,11 @@ def main(): eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples - + loss = tr_loss/nb_tr_steps if args.do_train else None result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'global_step': global_step, - 'loss': tr_loss/nb_tr_steps} + 'loss': loss} output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: From c64de50ea4b4cec7e87732abb621bf70c8fa8763 Mon Sep 17 00:00:00 2001 From: Jade Abbott Date: Thu, 3 Jan 2019 12:34:57 +0200 Subject: [PATCH 090/111] nb_tr_steps is not initialized --- examples/run_classifier.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index c99cc0e12a7a..8441c86937b0 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -503,6 +503,7 @@ def main(): t_total=t_total) global_step = 0 + nb_tr_steps = 0 tr_loss = 0 if args.do_train: train_features = convert_examples_to_features( @@ -565,6 +566,7 @@ def main(): if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) + # should tokenize this too. eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running evaluation *****") From 193e2df8ba95efd6e3326cb0907576a0c74f1d74 Mon Sep 17 00:00:00 2001 From: Jade Abbott Date: Thu, 3 Jan 2019 13:13:06 +0200 Subject: [PATCH 091/111] Remove rogue comment --- examples/run_classifier.py | 1 - 1 file changed, 1 deletion(-) diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 8441c86937b0..be212edc1be5 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -566,7 +566,6 @@ def main(): if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0): eval_examples = processor.get_dev_examples(args.data_dir) - # should tokenize this too. eval_features = convert_examples_to_features( eval_examples, label_list, args.max_seq_length, tokenizer) logger.info("***** Running evaluation *****") From ca4e7aaa72551cdba39e49094f5a05962573c774 Mon Sep 17 00:00:00 2001 From: Sang-Kil Park Date: Sat, 5 Jan 2019 11:42:54 +0900 Subject: [PATCH 092/111] Fix error when `bert_model` param is path or url. Error occurs when `bert_model` param is path or url. Therefore, if it is path, specify the last path to prevent error. --- examples/run_squad.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/run_squad.py b/examples/run_squad.py index 6a97dd300b0e..bbc803867694 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -855,7 +855,7 @@ def main(): global_step = 0 if args.do_train: cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format( - args.bert_model, str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length)) + list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length)) train_features = None try: with open(cached_train_features_file, "rb") as reader: From d0d9b384f2578869066d2d028ee7339bbb661e75 Mon Sep 17 00:00:00 2001 From: Li Dong Date: Mon, 7 Jan 2019 15:51:33 +0800 Subject: [PATCH 093/111] LayerNorm initialization The LayerNorm gamma and beta should be initialized by .fill_(1.0) and .zero_(). reference links: https://github.com/tensorflow/tensorflow/blob/989e78c412a7e0f5361d4d7dfdfb230c8136e749/tensorflow/contrib/layers/python/layers/layers.py#L2298 https://github.com/tensorflow/tensorflow/blob/989e78c412a7e0f5361d4d7dfdfb230c8136e749/tensorflow/contrib/layers/python/layers/layers.py#L2308 --- pytorch_pretrained_bert/modeling.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/pytorch_pretrained_bert/modeling.py b/pytorch_pretrained_bert/modeling.py index acdc741f6da4..83562ea57336 100644 --- a/pytorch_pretrained_bert/modeling.py +++ b/pytorch_pretrained_bert/modeling.py @@ -439,8 +439,8 @@ def init_bert_weights(self, module): # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): - module.bias.data.normal_(mean=0.0, std=self.config.initializer_range) - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + module.bias.data.zero_() + module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() From c9fd3505678d581388fb44ba1d79ac41e8fb28a4 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Mon, 7 Jan 2019 13:01:54 +0100 Subject: [PATCH 094/111] remove default when action is store_true in arguments --- examples/extract_features.py | 3 +-- examples/run_classifier.py | 5 ----- examples/run_lm_finetuning.py | 4 ---- examples/run_squad.py | 9 +++------ examples/run_swag.py | 5 ----- 5 files changed, 4 insertions(+), 22 deletions(-) diff --git a/examples/extract_features.py b/examples/extract_features.py index 4f8812121ea1..9d05d7905d0f 100644 --- a/examples/extract_features.py +++ b/examples/extract_features.py @@ -199,7 +199,7 @@ def main(): "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") ## Other parameters - parser.add_argument("--do_lower_case", default=False, action='store_true', help="Set this flag if you are using an uncased model.") + parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--layers", default="-1,-2,-3,-4", type=str) parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences longer " @@ -210,7 +210,6 @@ def main(): default=-1, help = "local_rank for distributed training on gpus") parser.add_argument("--no_cuda", - default=False, action='store_true', help="Whether not to use CUDA when available") diff --git a/examples/run_classifier.py b/examples/run_classifier.py index 0afd4434022f..31877a541457 100644 --- a/examples/run_classifier.py +++ b/examples/run_classifier.py @@ -333,15 +333,12 @@ def main(): "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", - default=False, action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", - default=False, action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_lower_case", - default=False, action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", @@ -366,7 +363,6 @@ def main(): help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", - default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", @@ -382,7 +378,6 @@ def main(): default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', - default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', diff --git a/examples/run_lm_finetuning.py b/examples/run_lm_finetuning.py index 9ca9830eff37..2c64f67b5f6a 100644 --- a/examples/run_lm_finetuning.py +++ b/examples/run_lm_finetuning.py @@ -432,7 +432,6 @@ def main(): "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", - default=False, action='store_true', help="Whether to run training.") parser.add_argument("--train_batch_size", @@ -457,11 +456,9 @@ def main(): help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", - default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--on_memory", - default=False, action='store_true', help="Whether to load train samples into memory or use disk") parser.add_argument("--local_rank", @@ -477,7 +474,6 @@ def main(): default=1, help="Number of updates steps to accumualte before performing a backward/update pass.") parser.add_argument('--fp16', - default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', diff --git a/examples/run_squad.py b/examples/run_squad.py index a4a568d9994b..88ea59093658 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -698,8 +698,8 @@ def main(): parser.add_argument("--max_query_length", default=64, type=int, help="The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") - parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") - parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.") + parser.add_argument("--do_train", action='store_true', help="Whether to run training.") + parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") @@ -714,11 +714,10 @@ def main(): parser.add_argument("--max_answer_length", default=30, type=int, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") - parser.add_argument("--verbose_logging", default=False, action='store_true', + parser.add_argument("--verbose_logging", action='store_true', help="If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument("--no_cuda", - default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', @@ -730,7 +729,6 @@ def main(): default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--do_lower_case", - default=True, action='store_true', help="Whether to lower case the input text. True for uncased models, False for cased models.") parser.add_argument("--local_rank", @@ -738,7 +736,6 @@ def main(): default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--fp16', - default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', diff --git a/examples/run_swag.py b/examples/run_swag.py index c31696fec838..3fb87ae3e778 100644 --- a/examples/run_swag.py +++ b/examples/run_swag.py @@ -265,15 +265,12 @@ def main(): "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", - default=False, action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", - default=False, action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_lower_case", - default=False, action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", @@ -298,7 +295,6 @@ def main(): help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", - default=False, action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--local_rank", @@ -314,7 +310,6 @@ def main(): default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', - default=False, action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', From 2e4db64cab198dc241e18221ef088908f2587c61 Mon Sep 17 00:00:00 2001 From: thomwolf Date: Mon, 7 Jan 2019 13:06:42 +0100 Subject: [PATCH 095/111] add do_lower_case tokenizer loading optino in run_squad and ine_tuning examples --- examples/run_lm_finetuning.py | 2 +- examples/run_squad.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/examples/run_lm_finetuning.py b/examples/run_lm_finetuning.py index 2c64f67b5f6a..39df2e99f832 100644 --- a/examples/run_lm_finetuning.py +++ b/examples/run_lm_finetuning.py @@ -515,7 +515,7 @@ def main(): raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) os.makedirs(args.output_dir, exist_ok=True) - tokenizer = BertTokenizer.from_pretrained(args.bert_model) + tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) #train_examples = None num_train_steps = None diff --git a/examples/run_squad.py b/examples/run_squad.py index 88ea59093658..245aee0ff26a 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -786,7 +786,7 @@ def main(): raise ValueError("Output directory () already exists and is not empty.") os.makedirs(args.output_dir, exist_ok=True) - tokenizer = BertTokenizer.from_pretrained(args.bert_model) + tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) train_examples = None num_train_steps = None From 751beb9e73c39065ea8b76fbfead9007a70a054f Mon Sep 17 00:00:00 2001 From: WrRan Date: Tue, 8 Jan 2019 10:54:51 +0800 Subject: [PATCH 096/111] never split some text --- pytorch_pretrained_bert/tokenization.py | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/pytorch_pretrained_bert/tokenization.py b/pytorch_pretrained_bert/tokenization.py index 9cfb3d8ce94d..9cb36a1b466c 100644 --- a/pytorch_pretrained_bert/tokenization.py +++ b/pytorch_pretrained_bert/tokenization.py @@ -75,7 +75,8 @@ def whitespace_tokenize(text): class BertTokenizer(object): """Runs end-to-end tokenization: punctuation splitting + wordpiece""" - def __init__(self, vocab_file, do_lower_case=True, max_len=None): + def __init__(self, vocab_file, do_lower_case=True, max_len=None, + never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " @@ -83,7 +84,8 @@ def __init__(self, vocab_file, do_lower_case=True, max_len=None): self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()]) - self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) + self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, + never_split=never_split) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) self.max_len = max_len if max_len is not None else int(1e12) @@ -156,13 +158,16 @@ def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwarg class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" - def __init__(self, do_lower_case=True): + def __init__(self, + do_lower_case=True, + never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case + self.never_split = never_split def tokenize(self, text): """Tokenizes a piece of text.""" @@ -198,6 +203,8 @@ def _run_strip_accents(self, text): def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" + if text in self.never_split: + return [text] chars = list(text) i = 0 start_new_word = True From 3f60a60eede2129f01a31cea73f77b3338e5e894 Mon Sep 17 00:00:00 2001 From: WrRan Date: Tue, 8 Jan 2019 13:33:57 +0800 Subject: [PATCH 097/111] text in never_split should not lowercase --- pytorch_pretrained_bert/tokenization.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/tokenization.py b/pytorch_pretrained_bert/tokenization.py index 9cb36a1b466c..595eb8fdaa92 100644 --- a/pytorch_pretrained_bert/tokenization.py +++ b/pytorch_pretrained_bert/tokenization.py @@ -182,7 +182,7 @@ def tokenize(self, text): orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: - if self.do_lower_case: + if self.do_lower_case and token not in self.never_split: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) From b3628f117e1462c5fb968294570997c47e612ede Mon Sep 17 00:00:00 2001 From: Unknown Date: Tue, 8 Jan 2019 15:13:13 -0800 Subject: [PATCH 098/111] Added Squad 2.0 --- examples/run_squad2.py | 1075 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1075 insertions(+) create mode 100644 examples/run_squad2.py diff --git a/examples/run_squad2.py b/examples/run_squad2.py new file mode 100644 index 000000000000..2f7de749055c --- /dev/null +++ b/examples/run_squad2.py @@ -0,0 +1,1075 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Run BERT on SQuAD 2.0""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +import collections +import logging +import json +import math +import os +import random +import pickle +from tqdm import tqdm, trange + +import numpy as np +import torch +from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler +from torch.utils.data.distributed import DistributedSampler + +from pytorch_pretrained_bert.tokenization import whitespace_tokenize, BasicTokenizer, BertTokenizer +from pytorch_pretrained_bert.modeling import BertForQuestionAnswering +from pytorch_pretrained_bert.optimization import BertAdam +from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE + +logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', + datefmt = '%m/%d/%Y %H:%M:%S', + level = logging.INFO) +logger = logging.getLogger(__name__) + + +class SquadExample(object): + """ + A single training/test example for the Squad dataset. + For examples without an answer, the start and end position are -1. + """ + + def __init__(self, + qas_id, + question_text, + doc_tokens, + orig_answer_text=None, + start_position=None, + end_position=None, + is_impossible=None): + self.qas_id = qas_id + self.question_text = question_text + self.doc_tokens = doc_tokens + self.orig_answer_text = orig_answer_text + self.start_position = start_position + self.end_position = end_position + self.is_impossible = is_impossible + + def __str__(self): + return self.__repr__() + + def __repr__(self): + s = "" + s += "qas_id: %s" % (self.qas_id) + s += ", question_text: %s" % ( + self.question_text) + s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) + if self.start_position: + s += ", start_position: %d" % (self.start_position) + if self.start_position: + s += ", end_position: %d" % (self.end_position) + if self.start_position: + s += ", is_impossible: %r" % (self.is_impossible) + return s + + +class InputFeatures(object): + """A single set of features of data.""" + + def __init__(self, + unique_id, + example_index, + doc_span_index, + tokens, + token_to_orig_map, + token_is_max_context, + input_ids, + input_mask, + segment_ids, + start_position=None, + end_position=None, + is_impossible=None): + self.unique_id = unique_id + self.example_index = example_index + self.doc_span_index = doc_span_index + self.tokens = tokens + self.token_to_orig_map = token_to_orig_map + self.token_is_max_context = token_is_max_context + self.input_ids = input_ids + self.input_mask = input_mask + self.segment_ids = segment_ids + self.start_position = start_position + self.end_position = end_position + self.is_impossible = is_impossible + + +def read_squad_examples(input_file, is_training): + """Read a SQuAD json file into a list of SquadExample.""" + with open(input_file, "r", encoding='utf-8') as reader: + source = json.load(reader) + input_data = source["data"] + version = source["version"] + + def is_whitespace(c): + if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: + return True + return False + + examples = [] + for entry in input_data: + for paragraph in entry["paragraphs"]: + paragraph_text = paragraph["context"] + doc_tokens = [] + char_to_word_offset = [] + prev_is_whitespace = True + for c in paragraph_text: + if is_whitespace(c): + prev_is_whitespace = True + else: + if prev_is_whitespace: + doc_tokens.append(c) + else: + doc_tokens[-1] += c + prev_is_whitespace = False + char_to_word_offset.append(len(doc_tokens) - 1) + + for qa in paragraph["qas"]: + qas_id = qa["id"] + question_text = qa["question"] + start_position = None + end_position = None + orig_answer_text = None + is_impossible = False + if is_training: + if version == "v2.0": + is_impossible = qa["is_impossible"] + if (len(qa["answers"]) != 1) and (not is_impossible): + raise ValueError( + "For training, each question should have exactly 1 answer.") + if not is_impossible: + answer = qa["answers"][0] + orig_answer_text = answer["text"] + answer_offset = answer["answer_start"] + answer_length = len(orig_answer_text) + start_position = char_to_word_offset[answer_offset] + end_position = char_to_word_offset[answer_offset + answer_length - 1] + # Only add answers where the text can be exactly recovered from the + # document. If this CAN'T happen it's likely due to weird Unicode + # stuff so we will just skip the example. + # + # Note that this means for training mode, every example is NOT + # guaranteed to be preserved. + actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) + cleaned_answer_text = " ".join( + whitespace_tokenize(orig_answer_text)) + if actual_text.find(cleaned_answer_text) == -1: + logger.warning("Could not find answer: '%s' vs. '%s'", + actual_text, cleaned_answer_text) + continue + else: + start_position = -1 + end_position = -1 + orig_answer_text = "" + + example = SquadExample( + qas_id=qas_id, + question_text=question_text, + doc_tokens=doc_tokens, + orig_answer_text=orig_answer_text, + start_position=start_position, + end_position=end_position, + is_impossible=is_impossible) + examples.append(example) + return examples + + +def convert_examples_to_features(examples, tokenizer, max_seq_length, + doc_stride, max_query_length, is_training): + """Loads a data file into a list of `InputBatch`s.""" + + unique_id = 1000000000 + + features = [] + for (example_index, example) in enumerate(examples): + query_tokens = tokenizer.tokenize(example.question_text) + + if len(query_tokens) > max_query_length: + query_tokens = query_tokens[0:max_query_length] + + tok_to_orig_index = [] + orig_to_tok_index = [] + all_doc_tokens = [] + for (i, token) in enumerate(example.doc_tokens): + orig_to_tok_index.append(len(all_doc_tokens)) + sub_tokens = tokenizer.tokenize(token) + for sub_token in sub_tokens: + tok_to_orig_index.append(i) + all_doc_tokens.append(sub_token) + + tok_start_position = None + tok_end_position = None + if is_training and example.is_impossible: + tok_start_position = -1 + tok_end_position = -1 + if is_training and not example.is_impossible: + tok_start_position = orig_to_tok_index[example.start_position] + if example.end_position < len(example.doc_tokens) - 1: + tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 + else: + tok_end_position = len(all_doc_tokens) - 1 + (tok_start_position, tok_end_position) = _improve_answer_span( + all_doc_tokens, tok_start_position, tok_end_position, tokenizer, + example.orig_answer_text) + + # The -3 accounts for [CLS], [SEP] and [SEP] + max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 + + # We can have documents that are longer than the maximum sequence length. + # To deal with this we do a sliding window approach, where we take chunks + # of the up to our max length with a stride of `doc_stride`. + _DocSpan = collections.namedtuple( # pylint: disable=invalid-name + "DocSpan", ["start", "length"]) + doc_spans = [] + start_offset = 0 + while start_offset < len(all_doc_tokens): + length = len(all_doc_tokens) - start_offset + if length > max_tokens_for_doc: + length = max_tokens_for_doc + doc_spans.append(_DocSpan(start=start_offset, length=length)) + if start_offset + length == len(all_doc_tokens): + break + start_offset += min(length, doc_stride) + + for (doc_span_index, doc_span) in enumerate(doc_spans): + tokens = [] + token_to_orig_map = {} + token_is_max_context = {} + segment_ids = [] + tokens.append("[CLS]") + segment_ids.append(0) + for token in query_tokens: + tokens.append(token) + segment_ids.append(0) + tokens.append("[SEP]") + segment_ids.append(0) + + for i in range(doc_span.length): + split_token_index = doc_span.start + i + token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] + + is_max_context = _check_is_max_context(doc_spans, doc_span_index, + split_token_index) + token_is_max_context[len(tokens)] = is_max_context + tokens.append(all_doc_tokens[split_token_index]) + segment_ids.append(1) + tokens.append("[SEP]") + segment_ids.append(1) + + input_ids = tokenizer.convert_tokens_to_ids(tokens) + + # The mask has 1 for real tokens and 0 for padding tokens. Only real + # tokens are attended to. + input_mask = [1] * len(input_ids) + + # Zero-pad up to the sequence length. + while len(input_ids) < max_seq_length: + input_ids.append(0) + input_mask.append(0) + segment_ids.append(0) + + assert len(input_ids) == max_seq_length + assert len(input_mask) == max_seq_length + assert len(segment_ids) == max_seq_length + + start_position = None + end_position = None + if is_training and not example.is_impossible: + # For training, if our document chunk does not contain an annotation + # we throw it out, since there is nothing to predict. + doc_start = doc_span.start + doc_end = doc_span.start + doc_span.length - 1 + out_of_span = False + if (example.start_position < doc_start or + example.end_position < doc_start or + example.start_position > doc_end or example.end_position > doc_end): + out_of_span = True + if out_of_span: + start_position = 0 + end_position = 0 + else: + doc_offset = len(query_tokens) + 2 + start_position = tok_start_position - doc_start + doc_offset + end_position = tok_end_position - doc_start + doc_offset + + if is_training and example.is_impossible: + start_position = 0 + end_position = 0 + + if example_index < 20: + logger.info("*** Example ***") + logger.info("unique_id: %s" % (unique_id)) + logger.info("example_index: %s" % (example_index)) + logger.info("doc_span_index: %s" % (doc_span_index)) + logger.info("tokens: %s" % " ".join(tokens)) + logger.info("token_to_orig_map: %s" % " ".join([ + "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()])) + logger.info("token_is_max_context: %s" % " ".join([ + "%d:%s" % (x, y) for (x, y) in token_is_max_context.items() + ])) + logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) + logger.info( + "input_mask: %s" % " ".join([str(x) for x in input_mask])) + logger.info( + "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) + if is_training and example.is_impossible: + logger.info("impossible example") + if is_training and not example.is_impossible: + answer_text = " ".join(tokens[start_position:(end_position + 1)]) + logger.info("start_position: %d" % (start_position)) + logger.info("end_position: %d" % (end_position)) + logger.info( + "answer: %s" % (answer_text)) + + features.append( + InputFeatures( + unique_id=unique_id, + example_index=example_index, + doc_span_index=doc_span_index, + tokens=tokens, + token_to_orig_map=token_to_orig_map, + token_is_max_context=token_is_max_context, + input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + start_position=start_position, + end_position=end_position, + is_impossible=example.is_impossible)) + unique_id += 1 + + return features + + +def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, + orig_answer_text): + """Returns tokenized answer spans that better match the annotated answer.""" + + # The SQuAD annotations are character based. We first project them to + # whitespace-tokenized words. But then after WordPiece tokenization, we can + # often find a "better match". For example: + # + # Question: What year was John Smith born? + # Context: The leader was John Smith (1895-1943). + # Answer: 1895 + # + # The original whitespace-tokenized answer will be "(1895-1943).". However + # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match + # the exact answer, 1895. + # + # However, this is not always possible. Consider the following: + # + # Question: What country is the top exporter of electornics? + # Context: The Japanese electronics industry is the lagest in the world. + # Answer: Japan + # + # In this case, the annotator chose "Japan" as a character sub-span of + # the word "Japanese". Since our WordPiece tokenizer does not split + # "Japanese", we just use "Japanese" as the annotation. This is fairly rare + # in SQuAD, but does happen. + tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) + + for new_start in range(input_start, input_end + 1): + for new_end in range(input_end, new_start - 1, -1): + text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) + if text_span == tok_answer_text: + return (new_start, new_end) + + return (input_start, input_end) + + +def _check_is_max_context(doc_spans, cur_span_index, position): + """Check if this is the 'max context' doc span for the token.""" + + # Because of the sliding window approach taken to scoring documents, a single + # token can appear in multiple documents. E.g. + # Doc: the man went to the store and bought a gallon of milk + # Span A: the man went to the + # Span B: to the store and bought + # Span C: and bought a gallon of + # ... + # + # Now the word 'bought' will have two scores from spans B and C. We only + # want to consider the score with "maximum context", which we define as + # the *minimum* of its left and right context (the *sum* of left and + # right context will always be the same, of course). + # + # In the example the maximum context for 'bought' would be span C since + # it has 1 left context and 3 right context, while span B has 4 left context + # and 0 right context. + best_score = None + best_span_index = None + for (span_index, doc_span) in enumerate(doc_spans): + end = doc_span.start + doc_span.length - 1 + if position < doc_span.start: + continue + if position > end: + continue + num_left_context = position - doc_span.start + num_right_context = end - position + score = min(num_left_context, num_right_context) + 0.01 * doc_span.length + if best_score is None or score > best_score: + best_score = score + best_span_index = span_index + + return cur_span_index == best_span_index + + + +RawResult = collections.namedtuple("RawResult", + ["unique_id", "start_logits", "end_logits"]) + + +def write_predictions(all_examples, all_features, all_results, n_best_size, + max_answer_length, do_lower_case, output_prediction_file, + output_nbest_file, output_null_log_odds_file, verbose_logging, is_version2, null_score_diff_threshold): + """Write final predictions to the json file and log-odds of null if needed.""" + logger.info("Writing predictions to: %s" % (output_prediction_file)) + logger.info("Writing nbest to: %s" % (output_nbest_file)) + + example_index_to_features = collections.defaultdict(list) + for feature in all_features: + example_index_to_features[feature.example_index].append(feature) + + unique_id_to_result = {} + for result in all_results: + unique_id_to_result[result.unique_id] = result + + _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name + "PrelimPrediction", + ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) + + all_predictions = collections.OrderedDict() + all_nbest_json = collections.OrderedDict() + scores_diff_json = collections.OrderedDict() + + for (example_index, example) in enumerate(all_examples): + features = example_index_to_features[example_index] + + prelim_predictions = [] + # keep track of the minimum score of null start+end of position 0 + score_null = 1000000 # large and positive + min_null_feature_index = 0 # the paragraph slice with min mull score + null_start_logit = 0 # the start logit at the slice with min null score + null_end_logit = 0 # the end logit at the slice with min null score + + for (feature_index, feature) in enumerate(features): + result = unique_id_to_result[feature.unique_id] + start_indexes = _get_best_indexes(result.start_logits, n_best_size) + end_indexes = _get_best_indexes(result.end_logits, n_best_size) + # if we could have irrelevant answers, get the min score of irrelevant + if is_version2: + feature_null_score = result.start_logits[0] + result.end_logits[0] + if feature_null_score < score_null: + score_null = feature_null_score + min_null_feature_index = feature_index + null_start_logit = result.start_logits[0] + null_end_logit = result.end_logits[0] + + for start_index in start_indexes: + for end_index in end_indexes: + # We could hypothetically create invalid predictions, e.g., predict + # that the start of the span is in the question. We throw out all + # invalid predictions. + if start_index >= len(feature.tokens): + continue + if end_index >= len(feature.tokens): + continue + if start_index not in feature.token_to_orig_map: + continue + if end_index not in feature.token_to_orig_map: + continue + if not feature.token_is_max_context.get(start_index, False): + continue + if end_index < start_index: + continue + length = end_index - start_index + 1 + if length > max_answer_length: + continue + prelim_predictions.append( + _PrelimPrediction( + feature_index=feature_index, + start_index=start_index, + end_index=end_index, + start_logit=result.start_logits[start_index], + end_logit=result.end_logits[end_index])) + + if is_version2: + prelim_predictions.append( + _PrelimPrediction( + feature_index=min_null_feature_index, + start_index=0, + end_index=0, + start_logit=null_start_logit, + end_logit=null_end_logit)) + + prelim_predictions = sorted( + prelim_predictions, + key=lambda x: (x.start_logit + x.end_logit), + reverse=True) + + _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name + "NbestPrediction", ["text", "start_logit", "end_logit"]) + + seen_predictions = {} + nbest = [] + for pred in prelim_predictions: + if len(nbest) >= n_best_size: + break + feature = features[pred.feature_index] + if pred.start_index > 0: + tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] + orig_doc_start = feature.token_to_orig_map[pred.start_index] + orig_doc_end = feature.token_to_orig_map[pred.end_index] + orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] + tok_text = " ".join(tok_tokens) + + # De-tokenize WordPieces that have been split off. + tok_text = tok_text.replace(" ##", "") + tok_text = tok_text.replace("##", "") + + # Clean whitespace + tok_text = tok_text.strip() + tok_text = " ".join(tok_text.split()) + orig_text = " ".join(orig_tokens) + + final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) + if final_text in seen_predictions: + continue + seen_predictions[final_text] = True + else: + final_text = "" + seen_predictions[final_text] = True + + nbest.append( + _NbestPrediction( + text=final_text, + start_logit=pred.start_logit, + end_logit=pred.end_logit)) + + # if we didn't inlude the empty option in the n-best, inlcude it + if is_version2: + if "" not in seen_predictions: + nbest.append( + _NbestPrediction( + text="", start_logit=null_start_logit, + end_logit=null_end_logit)) + + # In very rare edge cases we could have no valid predictions. So we + # just create a nonce prediction in this case to avoid failure. + if not nbest: + nbest.append( + _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) + + assert len(nbest) >= 1 + + total_scores = [] + best_non_null_entry = None + for entry in nbest: + total_scores.append(entry.start_logit + entry.end_logit) + if not best_non_null_entry: + if entry.text: + best_non_null_entry = entry + + probs = _compute_softmax(total_scores) + + nbest_json = [] + for (i, entry) in enumerate(nbest): + output = collections.OrderedDict() + output["text"] = entry.text + output["probability"] = probs[i] + output["start_logit"] = entry.start_logit + output["end_logit"] = entry.end_logit + nbest_json.append(output) + + assert len(nbest_json) >= 1 + + + if not is_version2: + all_predictions[example.qas_id] = nbest_json[0]["text"] + else: + # predict "" iff the null score - the score of best non-null > threshold + score_diff = score_null - best_non_null_entry.start_logit - ( + best_non_null_entry.end_logit) + scores_diff_json[example.qas_id] = score_diff + if score_diff > null_score_diff_threshold: + all_predictions[example.qas_id] = "" + else: + all_predictions[example.qas_id] = best_non_null_entry.text + all_nbest_json[example.qas_id] = nbest_json + + with open(output_prediction_file, "w") as writer: + writer.write(json.dumps(all_predictions, indent=4) + "\n") + + with open(output_nbest_file, "w") as writer: + writer.write(json.dumps(all_nbest_json, indent=4) + "\n") + + if is_version2: + with open(output_null_log_odds_file, "w") as writer: + writer.write(json.dumps(scores_diff_json, indent=4) + "\n") + + +def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): + """Project the tokenized prediction back to the original text.""" + + # When we created the data, we kept track of the alignment between original + # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So + # now `orig_text` contains the span of our original text corresponding to the + # span that we predicted. + # + # However, `orig_text` may contain extra characters that we don't want in + # our prediction. + # + # For example, let's say: + # pred_text = steve smith + # orig_text = Steve Smith's + # + # We don't want to return `orig_text` because it contains the extra "'s". + # + # We don't want to return `pred_text` because it's already been normalized + # (the SQuAD eval script also does punctuation stripping/lower casing but + # our tokenizer does additional normalization like stripping accent + # characters). + # + # What we really want to return is "Steve Smith". + # + # Therefore, we have to apply a semi-complicated alignment heruistic between + # `pred_text` and `orig_text` to get a character-to-charcter alignment. This + # can fail in certain cases in which case we just return `orig_text`. + + def _strip_spaces(text): + ns_chars = [] + ns_to_s_map = collections.OrderedDict() + for (i, c) in enumerate(text): + if c == " ": + continue + ns_to_s_map[len(ns_chars)] = i + ns_chars.append(c) + ns_text = "".join(ns_chars) + return (ns_text, ns_to_s_map) + + # We first tokenize `orig_text`, strip whitespace from the result + # and `pred_text`, and check if they are the same length. If they are + # NOT the same length, the heuristic has failed. If they are the same + # length, we assume the characters are one-to-one aligned. + tokenizer = BasicTokenizer(do_lower_case=do_lower_case) + + tok_text = " ".join(tokenizer.tokenize(orig_text)) + + start_position = tok_text.find(pred_text) + if start_position == -1: + if verbose_logging: + logger.info( + "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) + return orig_text + end_position = start_position + len(pred_text) - 1 + + (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) + (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) + + if len(orig_ns_text) != len(tok_ns_text): + if verbose_logging: + logger.info("Length not equal after stripping spaces: '%s' vs '%s'", + orig_ns_text, tok_ns_text) + return orig_text + + # We then project the characters in `pred_text` back to `orig_text` using + # the character-to-character alignment. + tok_s_to_ns_map = {} + for (i, tok_index) in tok_ns_to_s_map.items(): + tok_s_to_ns_map[tok_index] = i + + orig_start_position = None + if start_position in tok_s_to_ns_map: + ns_start_position = tok_s_to_ns_map[start_position] + if ns_start_position in orig_ns_to_s_map: + orig_start_position = orig_ns_to_s_map[ns_start_position] + + if orig_start_position is None: + if verbose_logging: + logger.info("Couldn't map start position") + return orig_text + + orig_end_position = None + if end_position in tok_s_to_ns_map: + ns_end_position = tok_s_to_ns_map[end_position] + if ns_end_position in orig_ns_to_s_map: + orig_end_position = orig_ns_to_s_map[ns_end_position] + + if orig_end_position is None: + if verbose_logging: + logger.info("Couldn't map end position") + return orig_text + + output_text = orig_text[orig_start_position:(orig_end_position + 1)] + return output_text + + +def _get_best_indexes(logits, n_best_size): + """Get the n-best logits from a list.""" + index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) + + best_indexes = [] + for i in range(len(index_and_score)): + if i >= n_best_size: + break + best_indexes.append(index_and_score[i][0]) + return best_indexes + + +def _compute_softmax(scores): + """Compute softmax probability over raw logits.""" + if not scores: + return [] + + max_score = None + for score in scores: + if max_score is None or score > max_score: + max_score = score + + exp_scores = [] + total_sum = 0.0 + for score in scores: + x = math.exp(score - max_score) + exp_scores.append(x) + total_sum += x + + probs = [] + for score in exp_scores: + probs.append(score / total_sum) + return probs + +def warmup_linear(x, warmup=0.002): + if x < warmup: + return x/warmup + return 1.0 - x + +def main(): + parser = argparse.ArgumentParser() + + ## Required parameters + parser.add_argument("--bert_model", default=None, type=str, required=True, + help="Bert pre-trained model selected in the list: bert-base-uncased, " + "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") + parser.add_argument("--output_dir", default=None, type=str, required=True, + help="The output directory where the model checkpoints and predictions will be written.") + + ## Other parameters + parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") + parser.add_argument("--predict_file", default=None, type=str, + help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") + parser.add_argument("--max_seq_length", default=384, type=int, + help="The maximum total input sequence length after WordPiece tokenization. Sequences " + "longer than this will be truncated, and sequences shorter than this will be padded.") + parser.add_argument("--doc_stride", default=128, type=int, + help="When splitting up a long document into chunks, how much stride to take between chunks.") + parser.add_argument("--max_query_length", default=64, type=int, + help="The maximum number of tokens for the question. Questions longer than this will " + "be truncated to this length.") + parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") + parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.") + parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") + parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") + parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") + parser.add_argument("--num_train_epochs", default=3.0, type=float, + help="Total number of training epochs to perform.") + parser.add_argument("--warmup_proportion", default=0.1, type=float, + help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% " + "of training.") + parser.add_argument("--n_best_size", default=20, type=int, + help="The total number of n-best predictions to generate in the nbest_predictions.json " + "output file.") + parser.add_argument("--max_answer_length", default=30, type=int, + help="The maximum length of an answer that can be generated. This is needed because the start " + "and end predictions are not conditioned on one another.") + parser.add_argument("--verbose_logging", default=False, action='store_true', + help="If true, all of the warnings related to data processing will be printed. " + "A number of warnings are expected for a normal SQuAD evaluation.") + parser.add_argument("--no_cuda", + default=False, + action='store_true', + help="Whether not to use CUDA when available") + parser.add_argument('--seed', + type=int, + default=42, + help="random seed for initialization") + parser.add_argument('--gradient_accumulation_steps', + type=int, + default=1, + help="Number of updates steps to accumulate before performing a backward/update pass.") + parser.add_argument("--do_lower_case", + default=True, + action='store_true', + help="Whether to lower case the input text. True for uncased models, False for cased models.") + parser.add_argument("--local_rank", + type=int, + default=-1, + help="local_rank for distributed training on gpus") + parser.add_argument('--fp16', + default=False, + action='store_true', + help="Whether to use 16-bit float precision instead of 32-bit") + parser.add_argument('--loss_scale', + type=float, default=0, + help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" + "0 (default value): dynamic loss scaling.\n" + "Positive power of 2: static loss scaling value.\n") + parser.add_argument('--null_score_diff_threshold', + type=float, default=0.0, + help="If null_score - best_non_null is greater than the threshold predict null.") + + args = parser.parse_args() + + if args.local_rank == -1 or args.no_cuda: + device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") + n_gpu = torch.cuda.device_count() + else: + torch.cuda.set_device(args.local_rank) + device = torch.device("cuda", args.local_rank) + n_gpu = 1 + # Initializes the distributed backend which will take care of sychronizing nodes/GPUs + torch.distributed.init_process_group(backend='nccl') + logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( + device, n_gpu, bool(args.local_rank != -1), args.fp16)) + + if args.gradient_accumulation_steps < 1: + raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( + args.gradient_accumulation_steps)) + + args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) + + random.seed(args.seed) + np.random.seed(args.seed) + torch.manual_seed(args.seed) + if n_gpu > 0: + torch.cuda.manual_seed_all(args.seed) + + if not args.do_train and not args.do_predict: + raise ValueError("At least one of `do_train` or `do_predict` must be True.") + + if args.do_train: + if not args.train_file: + raise ValueError( + "If `do_train` is True, then `train_file` must be specified.") + if args.do_predict: + if not args.predict_file: + raise ValueError( + "If `do_predict` is True, then `predict_file` must be specified.") + + if os.path.exists(args.output_dir) and os.listdir(args.output_dir): + raise ValueError("Output directory () already exists and is not empty.") + os.makedirs(args.output_dir, exist_ok=True) + + tokenizer = BertTokenizer.from_pretrained(args.bert_model) + + train_examples = None + num_train_steps = None + if args.do_train: + train_examples = read_squad_examples( + input_file=args.train_file, is_training=True) + num_train_steps = int( + len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) + + # Prepare model + model = BertForQuestionAnswering.from_pretrained(args.bert_model, + cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank)) + + if args.fp16: + model.half() + model.to(device) + if args.local_rank != -1: + try: + from apex.parallel import DistributedDataParallel as DDP + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + + model = DDP(model) + elif n_gpu > 1: + model = torch.nn.DataParallel(model) + + # Prepare optimizer + param_optimizer = list(model.named_parameters()) + + # hack to remove pooler, which is not used + # thus it produce None grad that break apex + param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]] + + no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] + optimizer_grouped_parameters = [ + {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, + {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} + ] + + t_total = num_train_steps + if args.local_rank != -1: + t_total = t_total // torch.distributed.get_world_size() + if args.fp16: + try: + from apex.optimizers import FP16_Optimizer + from apex.optimizers import FusedAdam + except ImportError: + raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") + + optimizer = FusedAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + bias_correction=False, + max_grad_norm=1.0) + if args.loss_scale == 0: + optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) + else: + optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) + else: + optimizer = BertAdam(optimizer_grouped_parameters, + lr=args.learning_rate, + warmup=args.warmup_proportion, + t_total=t_total) + + global_step = 0 + if args.do_train: + cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format( + args.bert_model, str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length)) + train_features = None + try: + with open(cached_train_features_file, "rb") as reader: + train_features = pickle.load(reader) + except: + train_features = convert_examples_to_features( + examples=train_examples, + tokenizer=tokenizer, + max_seq_length=args.max_seq_length, + doc_stride=args.doc_stride, + max_query_length=args.max_query_length, + is_training=True) + if args.local_rank == -1 or torch.distributed.get_rank() == 0: + logger.info(" Saving train features into cached file %s", cached_train_features_file) + with open(cached_train_features_file, "wb") as writer: + pickle.dump(train_features, writer) + logger.info("***** Running training *****") + logger.info(" Num orig examples = %d", len(train_examples)) + logger.info(" Num split examples = %d", len(train_features)) + logger.info(" Batch size = %d", args.train_batch_size) + logger.info(" Num steps = %d", num_train_steps) + all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) + all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) + all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) + all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long) + all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long) + all_is_impossibles = torch.tensor([int(f.is_impossible) for f in train_features], dtype=torch.long) + train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, + all_start_positions, all_end_positions, all_is_impossibles) + if args.local_rank == -1: + train_sampler = RandomSampler(train_data) + else: + train_sampler = DistributedSampler(train_data) + train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) + + model.train() + for _ in trange(int(args.num_train_epochs), desc="Epoch"): + for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): + if n_gpu == 1: + batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self + input_ids, input_mask, segment_ids, start_positions, end_positions, _ = batch + loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions) + if n_gpu > 1: + loss = loss.mean() # mean() to average on multi-gpu. + if args.gradient_accumulation_steps > 1: + loss = loss / args.gradient_accumulation_steps + + if args.fp16: + optimizer.backward(loss) + else: + loss.backward() + if (step + 1) % args.gradient_accumulation_steps == 0: + # modify learning rate with special warm up BERT uses + lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion) + for param_group in optimizer.param_groups: + param_group['lr'] = lr_this_step + optimizer.step() + optimizer.zero_grad() + global_step += 1 + + # Save a trained model + model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self + output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") + torch.save(model_to_save.state_dict(), output_model_file) + + # Load a trained model that you have fine-tuned + model_state_dict = torch.load(output_model_file) + model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict) + model.to(device) + + if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0): + eval_examples = read_squad_examples( + input_file=args.predict_file, is_training=False) + eval_features = convert_examples_to_features( + examples=eval_examples, + tokenizer=tokenizer, + max_seq_length=args.max_seq_length, + doc_stride=args.doc_stride, + max_query_length=args.max_query_length, + is_training=False) + + logger.info("***** Running predictions *****") + logger.info(" Num orig examples = %d", len(eval_examples)) + logger.info(" Num split examples = %d", len(eval_features)) + logger.info(" Batch size = %d", args.predict_batch_size) + + all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) + all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) + all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) + all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) + eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) + # Run prediction for full data + eval_sampler = SequentialSampler(eval_data) + eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) + + model.eval() + all_results = [] + logger.info("Start evaluating") + for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating"): + if len(all_results) % 1000 == 0: + logger.info("Processing example: %d" % (len(all_results))) + input_ids = input_ids.to(device) + input_mask = input_mask.to(device) + segment_ids = segment_ids.to(device) + with torch.no_grad(): + batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask) + for i, example_index in enumerate(example_indices): + start_logits = batch_start_logits[i].detach().cpu().tolist() + end_logits = batch_end_logits[i].detach().cpu().tolist() + eval_feature = eval_features[example_index.item()] + unique_id = int(eval_feature.unique_id) + all_results.append(RawResult(unique_id=unique_id, + start_logits=start_logits, + end_logits=end_logits)) + output_prediction_file = os.path.join(args.output_dir, "predictions.json") + output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json") + output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json") + write_predictions(eval_examples, eval_features, all_results, + args.n_best_size, args.max_answer_length, + args.do_lower_case, output_prediction_file, + output_nbest_file, output_null_log_odds_file, args.verbose_logging, True, args.null_score_diff_threshold) + + +if __name__ == "__main__": + main() From 64326dccfba46890edc93b5bf7be6974b71984d5 Mon Sep 17 00:00:00 2001 From: Sang-Kil Park Date: Thu, 10 Jan 2019 21:51:39 +0900 Subject: [PATCH 099/111] Fix it to run properly even if without `--do_train` param. It was modified similar to `run_classifier.py`, and Fixed to run properly even if without `--do_train` param. --- examples/run_squad.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/examples/run_squad.py b/examples/run_squad.py index 245aee0ff26a..39e9c501996d 100644 --- a/examples/run_squad.py +++ b/examples/run_squad.py @@ -782,7 +782,7 @@ def main(): raise ValueError( "If `do_predict` is True, then `predict_file` must be specified.") - if os.path.exists(args.output_dir) and os.listdir(args.output_dir): + if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train: raise ValueError("Output directory () already exists and is not empty.") os.makedirs(args.output_dir, exist_ok=True) @@ -916,7 +916,8 @@ def main(): # Save a trained model model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") - torch.save(model_to_save.state_dict(), output_model_file) + if args.do_train: + torch.save(model_to_save.state_dict(), output_model_file) # Load a trained model that you have fine-tuned model_state_dict = torch.load(output_model_file) From 506e5bb0c849b210b4284d975338963029f2c0d5 Mon Sep 17 00:00:00 2001 From: tholor Date: Fri, 11 Jan 2019 08:31:37 +0100 Subject: [PATCH 100/111] add do_lower_case arg and adjust model saving for lm finetuning. --- examples/run_lm_finetuning.py | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/examples/run_lm_finetuning.py b/examples/run_lm_finetuning.py index 39df2e99f832..35d1808bbc49 100644 --- a/examples/run_lm_finetuning.py +++ b/examples/run_lm_finetuning.py @@ -461,6 +461,9 @@ def main(): parser.add_argument("--on_memory", action='store_true', help="Whether to load train samples into memory or use disk") + parser.add_argument("--do_lower_case", + action='store_true', + help="Whether to lower case the input text. True for uncased models, False for cased models.") parser.add_argument("--local_rank", type=int, default=-1, @@ -612,12 +615,12 @@ def main(): optimizer.zero_grad() global_step += 1 + # Save a trained model logger.info("** ** * Saving fine - tuned model ** ** * ") + model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") - if n_gpu > 1: - torch.save(model.module.bert.state_dict(), output_model_file) - else: - torch.save(model.bert.state_dict(), output_model_file) + if args.do_train: + torch.save(model_to_save.state_dict(), output_model_file) def _truncate_seq_pair(tokens_a, tokens_b, max_length): From a2da2b4109f88bb1312867affa21a2b89e927794 Mon Sep 17 00:00:00 2001 From: Li Dong Date: Sun, 13 Jan 2019 19:51:11 +0800 Subject: [PATCH 101/111] [bug fix] args.do_lower_case is always True The "default=True" makes args.do_lower_case always True. ```python parser.add_argument("--do_lower_case", default=True, action='store_true') ``` --- examples/run_squad2.py | 1 - 1 file changed, 1 deletion(-) diff --git a/examples/run_squad2.py b/examples/run_squad2.py index 2f7de749055c..fd35beef1e20 100644 --- a/examples/run_squad2.py +++ b/examples/run_squad2.py @@ -818,7 +818,6 @@ def main(): default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--do_lower_case", - default=True, action='store_true', help="Whether to lower case the input text. True for uncased models, False for cased models.") parser.add_argument("--local_rank", From 6c65cb2492c9c89b4dd988814303f10457dacec6 Mon Sep 17 00:00:00 2001 From: nhatchan <46347328+nhatchan@users.noreply.github.com> Date: Sun, 13 Jan 2019 21:09:13 +0900 Subject: [PATCH 102/111] lm_finetuning compatibility with Python 3.5 dicts are not ordered in Python 3.5 or prior, which is a cause of #175. This PR replaces one with a list, to keep its order. --- examples/run_lm_finetuning.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/examples/run_lm_finetuning.py b/examples/run_lm_finetuning.py index 35d1808bbc49..35a2f797c7e3 100644 --- a/examples/run_lm_finetuning.py +++ b/examples/run_lm_finetuning.py @@ -139,11 +139,11 @@ def __getitem__(self, item): # transform sample to features cur_features = convert_example_to_features(cur_example, self.seq_len, self.tokenizer) - cur_tensors = {"input_ids": torch.tensor(cur_features.input_ids), - "input_mask": torch.tensor(cur_features.input_mask), - "segment_ids": torch.tensor(cur_features.segment_ids), - "lm_label_ids": torch.tensor(cur_features.lm_label_ids), - "is_next": torch.tensor(cur_features.is_next)} + cur_tensors = (torch.tensor(cur_features.input_ids), + torch.tensor(cur_features.input_mask), + torch.tensor(cur_features.segment_ids), + torch.tensor(cur_features.lm_label_ids), + torch.tensor(cur_features.is_next)) return cur_tensors @@ -592,7 +592,7 @@ def main(): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): - batch = tuple(t.to(device) for t in batch.values()) + batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next) if n_gpu > 1: From 8edc898f63eb9fe3739c2d8f518788a7a5f13ce0 Mon Sep 17 00:00:00 2001 From: nhatchan <46347328+nhatchan@users.noreply.github.com> Date: Sun, 13 Jan 2019 21:23:19 +0900 Subject: [PATCH 103/111] Fix documentation (missing backslashes) This PR adds missing backslashes in LM Fine-tuning subsection in README.md. --- README.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 915ccf635ad2..4c35e8b27479 100644 --- a/README.md +++ b/README.md @@ -506,13 +506,13 @@ Training one epoch on this corpus takes about 1:20h on 4 x NVIDIA Tesla P100 wit ```shell python run_lm_finetuning.py \ - --bert_model bert-base-cased - --do_train - --train_file samples/sample_text.txt - --output_dir models - --num_train_epochs 5.0 - --learning_rate 3e-5 - --train_batch_size 32 + --bert_model bert-base-cased \ + --do_train \ + --train_file samples/sample_text.txt \ + --output_dir models \ + --num_train_epochs 5.0 \ + --learning_rate 3e-5 \ + --train_batch_size 32 \ --max_seq_length 128 ``` From cd30565aed0f4260b8ea0a4ebc0a4245a851218a Mon Sep 17 00:00:00 2001 From: nhatchan <46347328+nhatchan@users.noreply.github.com> Date: Mon, 14 Jan 2019 13:35:40 +0900 Subject: [PATCH 104/111] Fix importing unofficial TF models Importing unofficial TF models seems to be working well, at least for me. This PR resolves #50. --- pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py b/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py index 120624bc1b49..1ff6c073e329 100755 --- a/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py +++ b/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py @@ -50,7 +50,7 @@ def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytor name = name.split('/') # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model - if any(n in ["adam_v", "adam_m"] for n in name): + if any(n in ["adam_v", "adam_m", "global_step"] for n in name): print("Skipping {}".format("/".join(name))) continue pointer = model From 35115eaf9393abcf1e5cb920928a1f03c0717c9d Mon Sep 17 00:00:00 2001 From: Davide Fiocco Date: Wed, 16 Jan 2019 21:05:24 +0100 Subject: [PATCH 105/111] (very) minor update to README --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 4c35e8b27479..4e7d3bb1090b 100644 --- a/README.md +++ b/README.md @@ -76,7 +76,7 @@ The repository further comprises: - [`run_classifier.py`](./examples/run_classifier.py) - Show how to fine-tune an instance of `BertForSequenceClassification` on GLUE's MRPC task, - [`run_squad.py`](./examples/run_squad.py) - Show how to fine-tune an instance of `BertForQuestionAnswering` on SQuAD v1.0 task. - [`run_swag.py`](./examples/run_swag.py) - Show how to fine-tune an instance of `BertForMultipleChoice` on Swag task. - - [`run_lm_finetuning`](./examples/run_lm_finetuning.py) - Show how to fine-tune an instance of `BertForPretraining' on a target text corpus. + - [`run_lm_finetuning.py`](./examples/run_lm_finetuning.py) - Show how to fine-tune an instance of `BertForPretraining' on a target text corpus. These examples are detailed in the [Examples](#examples) section of this readme. From be9fa192f06b515118ba8a8116ea43a4a45aa902 Mon Sep 17 00:00:00 2001 From: liangtaiwan Date: Fri, 18 Jan 2019 00:41:55 +0800 Subject: [PATCH 106/111] don't save if do not train --- examples/run_squad2.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/examples/run_squad2.py b/examples/run_squad2.py index fd35beef1e20..558b24764e87 100644 --- a/examples/run_squad2.py +++ b/examples/run_squad2.py @@ -1010,7 +1010,8 @@ def main(): # Save a trained model model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(args.output_dir, "pytorch_model.bin") - torch.save(model_to_save.state_dict(), output_model_file) + if args.do_train: + torch.save(model_to_save.state_dict(), output_model_file) # Load a trained model that you have fine-tuned model_state_dict = torch.load(output_model_file) From c69add30bf0315fb7b09400fe1f911579db44d3e Mon Sep 17 00:00:00 2001 From: Da Xiao Date: Mon, 28 Jan 2019 14:39:25 +0800 Subject: [PATCH 107/111] Add notebook and json files. --- Untitled.ipynb | 992 ++ Untitled1.ipynb | 32 + Untitled2.ipynb | 54 + Untitled3.ipynb | 804 ++ Untitled_likunlin-Copy1.ipynb | 816 ++ Untitled_likunlin.ipynb | 801 ++ Untitled_linzhuo.ipynb | 239 + Untitled_linzhuo_maskedlm.ipynb | 1082 ++ Untitled_zeoliao.ipynb | 1174 +++ WSC_associative_label.json | 1 + WSC_child_problem.json | 11443 ++++++++++++++++++++++ WSC_selected.txt | 8 + WSC_switched_label.json | 3005 ++++++ mnist/processed/test.pt | Bin 0 -> 7920431 bytes mnist/processed/training.pt | Bin 0 -> 47520431 bytes mnist/raw/t10k-images-idx3-ubyte | Bin 0 -> 7840016 bytes mnist/raw/t10k-labels-idx1-ubyte | Bin 0 -> 10008 bytes mnist/raw/train-images-idx3-ubyte | Bin 0 -> 47040016 bytes mnist/raw/train-labels-idx1-ubyte | Bin 0 -> 60008 bytes probe_pretrained_model.py | 274 + score.py | 92 + test_WSC_child_problem.py | 345 + "\347\273\203\344\271\240pytorch.ipynb" | 609 ++ 23 files changed, 21771 insertions(+) create mode 100644 Untitled.ipynb create mode 100644 Untitled1.ipynb create mode 100644 Untitled2.ipynb create mode 100644 Untitled3.ipynb create mode 100644 Untitled_likunlin-Copy1.ipynb create mode 100644 Untitled_likunlin.ipynb create mode 100644 Untitled_linzhuo.ipynb create mode 100644 Untitled_linzhuo_maskedlm.ipynb create mode 100644 Untitled_zeoliao.ipynb create mode 100644 WSC_associative_label.json create mode 100644 WSC_child_problem.json create mode 100644 WSC_selected.txt create mode 100644 WSC_switched_label.json create mode 100644 mnist/processed/test.pt create mode 100644 mnist/processed/training.pt create mode 100644 mnist/raw/t10k-images-idx3-ubyte create mode 100644 mnist/raw/t10k-labels-idx1-ubyte create mode 100644 mnist/raw/train-images-idx3-ubyte create mode 100644 mnist/raw/train-labels-idx1-ubyte create mode 100644 probe_pretrained_model.py create mode 100644 score.py create mode 100644 test_WSC_child_problem.py create mode 100644 "\347\273\203\344\271\240pytorch.ipynb" diff --git a/Untitled.ipynb b/Untitled.ipynb new file mode 100644 index 000000000000..b8af7579d801 --- /dev/null +++ b/Untitled.ipynb @@ -0,0 +1,992 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = 'all'" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# import seaborn as sns\n", + "import os\n", + "import json\n", + "\n", + "import numpy as np\n", + "import math\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from pylab import rcParams\n", + "\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig\n", + "from examples.extract_features import *" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/21/2019 10:22:02 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/vocab.txt\n", + "01/21/2019 10:22:02 - INFO - pytorch_pretrained_bert.modeling - loading archive file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/\n", + "01/21/2019 10:22:02 - INFO - pytorch_pretrained_bert.modeling - Model config {\n", + " \"attention_probs_dropout_prob\": 0.1,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.1,\n", + " \"hidden_size\": 768,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"max_position_embeddings\": 512,\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 12,\n", + " \"type_vocab_size\": 2,\n", + " \"vocab_size\": 30522\n", + "}\n", + "\n" + ] + } + ], + "source": [ + "class Args:\n", + " def __init__(self):\n", + " pass\n", + " \n", + "args = Args()\n", + "args.no_cuda = False\n", + "\n", + "CONFIG_NAME = 'bert_config.json'\n", + "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n", + "config_file = os.path.join(BERT_DIR, CONFIG_NAME)\n", + "config = BertConfig.from_json_file(config_file)\n", + "\n", + "tokenizer = BertTokenizer.from_pretrained(os.path.join(BERT_DIR, 'vocab.txt'))\n", + "model = BertForPreTraining.from_pretrained(BERT_DIR)\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() and not args.no_cuda else \"cpu\")\n", + "_ = model.to(device)\n", + "_ = model.eval()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "def convert_text_to_examples(text):\n", + " examples = []\n", + " unique_id = 0\n", + " if True:\n", + " for line in text:\n", + " line = line.strip()\n", + " text_a = None\n", + " text_b = None\n", + " m = re.match(r\"^(.*) \\|\\|\\| (.*)$\", line)\n", + " if m is None:\n", + " text_a = line\n", + " else:\n", + " text_a = m.group(1)\n", + " text_b = m.group(2)\n", + " examples.append(\n", + " InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))\n", + " unique_id += 1\n", + " return examples\n", + "\n", + "def convert_examples_to_features(examples, tokenizer, append_special_tokens=True, replace_mask=True, print_info=False):\n", + " features = []\n", + " for (ex_index, example) in enumerate(examples):\n", + " tokens_a = tokenizer.tokenize(example.text_a)\n", + " tokens_b = None\n", + " if example.text_b:\n", + " tokens_b = tokenizer.tokenize(example.text_b)\n", + "\n", + " tokens = []\n", + " input_type_ids = []\n", + " if append_special_tokens:\n", + " tokens.append(\"[CLS]\")\n", + " input_type_ids.append(0)\n", + " for token in tokens_a:\n", + " if replace_mask and token == '_': # XD\n", + " token = \"[MASK]\"\n", + " tokens.append(token)\n", + " input_type_ids.append(0)\n", + " if append_special_tokens:\n", + " tokens.append(\"[SEP]\")\n", + " input_type_ids.append(0)\n", + "\n", + " if tokens_b:\n", + " for token in tokens_b:\n", + " if replace_mask and token == '_': # XD\n", + " token = \"[MASK]\"\n", + " tokens.append(token)\n", + " input_type_ids.append(1)\n", + " if append_special_tokens:\n", + " tokens.append(\"[SEP]\")\n", + " input_type_ids.append(1)\n", + "\n", + " input_ids = tokenizer.convert_tokens_to_ids(tokens)\n", + " input_mask = [1] * len(input_ids)\n", + "\n", + " if ex_index < 5:\n", + "# logger.info(\"*** Example ***\")\n", + "# logger.info(\"unique_id: %s\" % (example.unique_id))\n", + " logger.info(\"tokens: %s\" % \" \".join([str(x) for x in tokens]))\n", + "# logger.info(\"input_ids: %s\" % \" \".join([str(x) for x in input_ids]))\n", + "# logger.info(\"input_mask: %s\" % \" \".join([str(x) for x in input_mask]))\n", + "# logger.info(\n", + "# \"input_type_ids: %s\" % \" \".join([str(x) for x in input_type_ids]))\n", + " \n", + " features.append(\n", + " InputFeatures(\n", + " unique_id=example.unique_id,\n", + " tokens=tokens,\n", + " input_ids=input_ids,\n", + " input_mask=input_mask,\n", + " input_type_ids=input_type_ids))\n", + " return features\n", + "\n", + "def copy_and_mask_feature(feature, masked_tokens=None):\n", + " import copy\n", + " tokens = feature.tokens\n", + " masked_positions = [tokens.index(t) for t in masked_tokens if t in tokens] \\\n", + " if masked_tokens is not None else range(len(tokens))\n", + " assert len(masked_positions) > 0\n", + " masked_feature_copies = []\n", + " for masked_pos in masked_positions:\n", + " feature_copy = copy.deepcopy(feature)\n", + " feature_copy.input_ids[masked_pos] = tokenizer.vocab[\"[MASK]\"]\n", + " masked_feature_copies.append(feature_copy)\n", + " return masked_feature_copies, masked_positions" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def show_lm_probs(tokens, input_ids, probs, topk=5, firstk=20):\n", + " def print_pair(token, prob, end_str='', hit_mark=' '):\n", + " if i < firstk:\n", + " # token = token.replace('', '').replace('\\n', '/n')\n", + " print('{}{: >3} | {: <12}'.format(hit_mark, int(round(prob*100)), token), end=end_str)\n", + " \n", + " ret = None\n", + " for i in range(len(tokens)):\n", + " ind_ = input_ids[i].item() if input_ids is not None else tokenizer.vocab[tokens[i]]\n", + " prob_ = probs[i][ind_].item()\n", + " print_pair(tokens[i], prob_, end_str='\\t')\n", + " values, indices = probs[i].topk(topk)\n", + " top_pairs = []\n", + " for j in range(topk):\n", + " ind, prob = indices[j].item(), values[j].item()\n", + " hit_mark = '*' if ind == ind_ else ' '\n", + " token = tokenizer.ids_to_tokens[ind]\n", + " print_pair(token, prob, hit_mark=hit_mark, end_str='' if j < topk - 1 else '\\n')\n", + " top_pairs.append((token, prob))\n", + " if tokens[i] == \"[MASK]\":\n", + " ret = top_pairs\n", + " return ret" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "import colored\n", + "from colored import stylize\n", + "\n", + "def show_abnormals(tokens, probs, show_suggestions=False):\n", + " def gap2color(gap):\n", + " if gap <= 5:\n", + " return 'yellow_1'\n", + " elif gap <= 10:\n", + " return 'orange_1'\n", + " else:\n", + " return 'red_1'\n", + " \n", + " def print_token(token, suggestion, gap):\n", + " if gap == 0:\n", + " print(stylize(token + ' ', colored.fg('white') + colored.bg('black')), end='')\n", + " else:\n", + " print(stylize(token, colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n", + " if show_suggestions and gap > 5:\n", + " print(stylize('/' + suggestion + ' ', colored.fg('green' if gap > 10 else 'cyan') + colored.bg('black')), end='')\n", + " else:\n", + " print(stylize(' ', colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n", + " # print('/' + suggestion, end=' ')\n", + " # print('%.2f' % gap, end=' ')\n", + " \n", + " avg_gap = 0.\n", + " for i in range(1, len(tokens) - 1): # skip first [CLS] and last [SEP]\n", + " ind_ = tokenizer.vocab[tokens[i]]\n", + " prob_ = probs[i][ind_].item()\n", + " top_prob = probs[i].max().item()\n", + " top_ind = probs[i].argmax().item()\n", + " gap = math.log(top_prob) - math.log(prob_)\n", + " suggestion = tokenizer.ids_to_tokens[top_ind]\n", + " print_token(tokens[i], suggestion, gap)\n", + " avg_gap += gap\n", + " avg_gap /= (len(tokens) - 2)\n", + " print()\n", + " print(avg_gap)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "analyzed_cache = {}\n", + "\n", + "def analyze_text(text, masked_tokens=None, show_suggestions=False, show_firstk_probs=20):\n", + " if text[0] in analyzed_cache:\n", + " features, mlm_probs = analyzed_cache[text[0]]\n", + " given_mask = \"[MASK]\" in features[0].tokens\n", + " tokens = features[0].tokens\n", + " else:\n", + " examples = convert_text_to_examples(text)\n", + " features = convert_examples_to_features(examples, tokenizer, print_info=False)\n", + " given_mask = \"[MASK]\" in features[0].tokens\n", + " if not given_mask or masked_tokens is not None:\n", + " assert len(features) == 1\n", + " features, masked_positions = copy_and_mask_feature(features[0], masked_tokens=masked_tokens)\n", + "\n", + " input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n", + " input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long)\n", + " input_ids = input_ids.to(device)\n", + " input_type_ids = input_type_ids.to(device)\n", + "\n", + " mlm_logits, _ = model(input_ids, input_type_ids)\n", + " mlm_probs = F.softmax(mlm_logits, dim=-1)\n", + "\n", + " tokens = features[0].tokens\n", + " if not given_mask or masked_tokens is not None:\n", + " bsz, seq_len, vocab_size = mlm_probs.size()\n", + " assert bsz == len(masked_positions)\n", + " # reduced_mlm_probs = torch.Tensor(1, seq_len, vocab_size)\n", + " # for i in range(seq_len):\n", + " # reduced_mlm_probs[0, i] = mlm_probs[i, i]\n", + " reduced_mlm_probs = torch.Tensor(1, len(masked_positions), vocab_size)\n", + " for i, pos in enumerate(masked_positions):\n", + " reduced_mlm_probs[0, i] = mlm_probs[i, pos]\n", + " mlm_probs = reduced_mlm_probs\n", + " tokens = [tokens[i] for i in masked_positions]\n", + " \n", + " analyzed_cache[text[0]] = (features, mlm_probs)\n", + " \n", + " top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=show_firstk_probs)\n", + " if not given_mask:\n", + " show_abnormals(tokens, mlm_probs[0], show_suggestions=show_suggestions)\n", + " return top_pairs" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/21/2019 16:24:23 - INFO - examples.extract_features - tokens: [CLS] the [MASK] overtook the bicycle because it was going so fast . [SEP]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 | [CLS] \t 3 | . 1 | the 1 | , 1 | ) 1 | \" \n", + " 100 | the \t*100 | the 0 | a 0 | and 0 | \" 0 | but \n", + " 0 | [MASK] \t 10 | car 6 | rider 5 | horse 4 | man 3 | driver \n", + " 39 | overtook \t* 39 | overtook 9 | passed 7 | took 4 | stopped 4 | caught \n", + " 100 | the \t*100 | the 0 | his 0 | her 0 | its 0 | their \n", + " 99 | bicycle \t* 99 | bicycle 1 | bike 0 | cyclist 0 | cycling 0 | cycle \n", + " 100 | because \t*100 | because 0 | . 0 | due 0 | and 0 | since \n", + " 100 | it \t*100 | it 0 | its 0 | he 0 | that 0 | the \n", + " 100 | was \t*100 | was 0 | is 0 | started 0 | kept 0 | began \n", + " 100 | going \t*100 | going 0 | coming 0 | running 0 | moving 0 | working \n", + " 100 | so \t*100 | so 0 | too 0 | very 0 | such 0 | this \n", + " 100 | fast \t*100 | fast 0 | faster 0 | speed 0 | quick 0 | slow \n", + " 100 | . \t*100 | . 0 | ; 0 | ! 0 | ? 0 | , \n", + " 0 | [SEP] \t 50 | . 5 | him 5 | \" 4 | ! 3 | he \n" + ] + }, + { + "data": { + "text/plain": [ + "[('car', 0.0958171933889389),\n", + " ('rider', 0.06241898238658905),\n", + " ('horse', 0.0470595583319664),\n", + " ('man', 0.03596588224172592),\n", + " ('driver', 0.032284241169691086)]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# text = [\"Who was Jim Henson? Jim Henson _ a puppeteer.\"]\n", + "text = [\"I went to school by bus. I was very tired.\"]\n", + "text = [\"I thought that John defeated Mary. I was wrong. _ beat _.\"]\n", + "text = [\"Did John defeat Mary? No, _ beat _.\"]\n", + "text = [\"That mary defeated John contradicts the fact that _ beat _.\"]\n", + "text = [\"the _ overtook the bicycle because it was going so fast.\"]\n", + "# text = [\"After the outbreak of the disease, the Ministry of Agriculture and rural areas immediately sent a supervision team to the local. Local Emergency Response Mechanism has been activated in accordance with the requirements, to take blockade, culling, harmless treatment, disinfection and other treatment measures to all disease and culling of pigs for harmless treatment. At the same time, all live pigs and their products are prohibited from transferring out of the blockade area, and live pigs are not allowed to be transported into the blockade area. At present, all the above measures have been implemented.\"]\n", + "# text = [\"Early critics of Emily Dickinson's poetry mistook for simplemindedness the surface of artlessness that in fact she constructed with such innocence.\"]\n", + "analyze_text(text, show_firstk_probs=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def words2heads(attns, tokens, words):\n", + " positions = [tokens.index(word) for word in words]\n", + "\n", + " for layer in range(config.num_hidden_layers):\n", + " for head in range(config.num_attention_heads):\n", + " for pos_indices in [(0, 1), (1, 0)]:\n", + " from_pos, to_pos = positions[pos_indices[0]], positions[pos_indices[1]]\n", + " if attns[layer][head][from_pos].max(0)[1].item() == to_pos:\n", + " print('Layer %d, head %d: %s -> %s' % (layer, head, tokens[from_pos], tokens[to_pos]), end='\\t')\n", + " print(attns[layer][head][from_pos].topk(5)[0].data)\n", + "\n", + "def head2words(attns, tokens, layer, head):\n", + " for from_pos in range(len(tokens)):\n", + " to_pos = attns[layer][head][from_pos].max(0)[1].item()\n", + " from_word, to_word = tokens[from_pos], tokens[to_pos]\n", + " if from_word.isalpha() and to_word.isalpha():\n", + " print('%s @ %d -> %s @ %d' % (from_word, from_pos, to_word, to_pos), end='\\t')\n", + " print(attns[layer][head][from_pos].topk(5)[0].data)\n", + " \n", + "special_tokens = ['[CLS]', '[SEP]']\n", + "\n", + "def get_salient_heads(attns, tokens, attn_thld=0.5):\n", + " for layer in range(config.num_hidden_layers):\n", + " for head in range(config.num_attention_heads):\n", + " pos_pairs = []\n", + " for from_pos in range(1, len(tokens) - 1): # skip [CLS] and [SEP]\n", + " top_attn, to_pos = attns[layer][head][from_pos].max(0)\n", + " top_attn, to_pos = top_attn.item(), to_pos.item()\n", + " from_word, to_word = tokens[from_pos], tokens[to_pos]\n", + "# if from_word.isalpha() and to_word.isalpha() and top_attn >= attn_thld:\n", + " if abs(from_pos - to_pos) <= 1:\n", + "# print('Layer %d, head %d: %s @ %d -> %s @ %d' % (layer, head, from_word, from_pos, to_word, to_pos), end='\\t')\n", + "# print(attns[layer][head][from_pos].topk(5)[0].data)\n", + " pos_pairs.append((from_pos, to_pos))\n", + " \n", + " ratio = len(pos_pairs) / (len(tokens) - 2)\n", + " if ratio > 0.5:\n", + " print(ratio)\n", + " for from_pos, to_pos in pos_pairs:\n", + " print('Layer %d, head %d: %s @ %d -> %s @ %d' % (layer, head, tokens[from_pos], from_pos, tokens[to_pos], to_pos), end='\\t')\n", + " print(attns[layer][head][from_pos].topk(5)[0].data)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/10/2019 21:46:20 - INFO - examples.extract_features - tokens: [CLS] jim laughed because he was so happy . [SEP]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "jim @ 1 -> jim @ 1\ttensor([0.7248, 0.0842, 0.0656, 0.0407, 0.0319], device='cuda:0')\n" + ] + } + ], + "source": [ + "# text, words = [\"The trophy doesn't fit into the brown suitcase because the it is too large.\"], ['fit', 'large']\n", + "# text, words = [\"Mary couldn't beat John in the match because he was too strong.\"], ['beat', 'strong']\n", + "text, words = [\"John is taller than Mary because he is older.\"], ['taller', 'older']\n", + "# text, words = [\"The red ball is heavier than the blue ball because the red ball is bigger.\"], ['heavier', 'bigger']\n", + "text, words = [\"Jim laughed because he was so happy.\"], ['cried', 'sad']\n", + "# text, words = [\"Jim ate the cake quickly because he was so hungry.\"], ['ate', 'hungry']\n", + "# text, words = [\"Jim drank the juice quickly because he was so thirsty.\"], ['drank', 'thirsty']\n", + "# text, words = [\"Tom's drawing hangs high. It is above Susan's drawing\"], ['high', 'above']\n", + "# text, words = [\"Tom's drawing hangs low. It is below Susan's drawing\"], ['low', 'below']\n", + "# text, words = [\"John is taller than Mary . Mary is shorter than John.\"], ['taller', 'shorter']\n", + "# text, words = [\"The drawing is above the cabinet. The cabinet is below the drawing\"], ['above', 'below']\n", + "# text, words = [\"Jim is very thin . He is not fat.\"], ['thin', 'fat']\n", + "\n", + "features = convert_examples_to_features(convert_text_to_examples(text), tokenizer, print_info=False)\n", + "input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long).to(device)\n", + "input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long).to(device)\n", + "mlm_logits, _ = model(input_ids, input_type_ids)\n", + "mlm_probs = F.softmax(mlm_logits, dim=-1)\n", + "tokens = features[0].tokens\n", + "# top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=100)\n", + "\n", + "attn_name = 'enc_self_attns'\n", + "hypo = {attn_name: [model.bert.encoder.layer[i].attention.self.attention_probs[0] for i in range(config.num_hidden_layers)]}\n", + "key_labels = query_labels = tokens\n", + "labels_dict = {attn_name: (key_labels, query_labels)}\n", + "result_tuple = (hypo, config.num_attention_heads, labels_dict)\n", + "# plot_layer_attn(result_tuple, attn_name=attn_name, layer=10, heads=None)\n", + "\n", + "attns = hypo[attn_name]\n", + " \n", + "# words2heads(attns, tokens, words)\n", + "head2words(attns, tokens, 2, 10)\n", + "# get_salient_heads(attns, tokens, attn_thld=0.0)" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "0,2\t-1\n", + "0,3\t-1\n", + "0,10\t+1 动宾\n", + "1,1\t+1 动介\n", + "1,4\t-1\n", + "1,11\t0\n", + "2,0\t+1**\n", + "2,6\t0**\n", + "2,9\t+1**\n", + "3,5\t-1\n", + "7,4\t-1\n", + "11,8\t0\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "head_size = config.hidden_size // config.num_attention_heads\n", + "layer = 1\n", + "head = 1 # 2, 3, 10\n", + "wq = model.bert.encoder.layer[layer].attention.self.query.weight.data.view(-1, config.num_attention_heads, head_size).permute(1, 0, 2)\n", + "wk = model.bert.encoder.layer[layer].attention.self.key.weight.data.view(-1, config.num_attention_heads, head_size).permute(1, 0, 2)\n", + "\n", + "wqk = torch.bmm(wq, wk.transpose(-1, -2))\n", + "# (wqk * wqk.transpose(-1, -2)).sum((1, 2)) / (wqk * wqk).sum((1, 2))\n", + "# plt.imshow(wqk[head]*wqk[head])\n", + "# plt.show()\n", + "\n", + "# q = torch.matmul(pos_emb, wq)\n", + "# k = torch.matmul(pos_emb_prev, wk)\n", + "# (q * k).sum((-2, -1))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "pos_emb = model.bert.embeddings.position_embeddings.weight.data\n", + "pos_emb_prev = torch.zeros_like(pos_emb)\n", + "pos_emb_next = torch.zeros_like(pos_emb)\n", + "pos_emb_prev[1:] = pos_emb[:-1]\n", + "pos_emb_next[:-1] = pos_emb[1:]\n", + "pos_emb, pos_emb_prev, pos_emb_next = pos_emb[1:-1], pos_emb_prev[1:-1], pos_emb_next[1:-1]\n", + "\n", + "# pos_q = torch.matmul(pos_emb, wk[head])\n", + "# plt.imshow(pos_q[:32])\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.',\n", + " 'Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.']" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "text = [\n", + " # same / different\n", + " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.\",\n", + " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.\",\n", + " \"Tom has yellow hair. Mary has black hair. John has black hair. Mary and _ have the same hair color.\",\n", + " # because / although\n", + " \"John is taller/shorter than Mary because/although _ is older/younger.\",\n", + " \"The red ball is heavier/lighter than the blue ball because/although the _ ball is bigger/smaller.\",\n", + " \"Charles did a lot better/worse than his good friend Nancy on the test because/although _ had/hadn't studied so hard.\",\n", + " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n", + " \"John thought that he would arrive earlier than Susan, but/and indeed _ was the first to arrive.\",\n", + " # reverse\n", + " \"John came then Mary came. They left in reverse order. _ left then _ left.\",\n", + " \"John came after Mary. They left in reverse order. _ left after _ .\",\n", + " \"John came first, then came Mary. They left in reverse order: _ left first, then left _ .\",\n", + " # compare sentences with same / opposite meaning, 2nd order\n", + " \"Though John is tall, Tom is taller than John. So John is _ than Tom.\",\n", + " \"Tom is taller than John. So _ is shorter than _.\",\n", + " # WSC-style: before /after\n", + " # \"Mary came before/after John. _ was late/early .\",\n", + " # yes / no, 2nd order\n", + " \"Was Tom taller than Susan? Yes, _ was taller.\",\n", + " # right / wrong, epistemic modality, 2nd order\n", + " \"John said/thought that the red ball was heavier than the blue ball. He was wrong. The _ ball was heavier\",\n", + " \"John was wrong in saying/thinking that the red ball was heavier than the blue ball. The _ ball was heavier\",\n", + " \"John said the rain was about to stop. Mary said the rain would continue. Later the rain stopped. _ was wrong/right.\",\n", + " \n", + " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n", + " \"John thanked Mary because _ had given help to _ . \",\n", + " \"John felt vindicated/crushed when his longtime rival Mary revealed that _ was the winner of the competition.\",\n", + " \"John couldn't see the stage with Mary in front of him because _ is so short/tall.\",\n", + " \"Although they ran at about the same speed, John beat Sally because _ had such a bad start.\",\n", + " \"The fish ate the worm. The _ was hungry/tasty.\",\n", + " \n", + " \"John beat Mary. _ won the game/e winner.\",\n", + "]\n", + "text" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "with open('WSC_switched_label.json') as f:\n", + " examples = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "with open('WSC_child_problem.json') as f:\n", + " cexamples = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "for ce in cexamples:\n", + " for s in ce['sentences']:\n", + " for a in s['answer0'] + s['answer1']:\n", + " a = a.lower()\n", + "# if a not in tokenizer.vocab:\n", + "# ce\n", + "# print(a, 'not in vocab!!!')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "for ce in cexamples:\n", + " if len(ce['sentences']) > 0:\n", + " e = examples[ce['index']]\n", + " assert ce['index'] == e['index']\n", + " e['score'] = all([s['score'] for s in ce['sentences']])\n", + " assert len(set([s['adjacent_ref'] for s in ce['sentences']])) == 1, 'adjcent_refs are different!'\n", + " e['adjacent_ref'] = ce['sentences'][0]['adjacent_ref']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import defaultdict\n", + "\n", + "groups = defaultdict(list)\n", + "for e in examples:\n", + " if 'score' in e:\n", + " index = e['index']\n", + " if index < 252:\n", + " if index % 2 == 1:\n", + " index -= 1\n", + " elif index in [252, 253, 254]:\n", + " index = 252\n", + " else:\n", + " if index % 2 == 0:\n", + " index -= 1\n", + " groups[index].append(e)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(2,\n", + " \"The trophy doesn't fit into the brown suitcase because [it] is too large.\",\n", + " 'fit into:large/small'),\n", + " (4,\n", + " 'Joan made sure to thank Susan for all the help [she] had recieved.',\n", + " 'thank:receive/give'),\n", + " (10,\n", + " 'The delivery truck zoomed by the school bus because [it] was going so fast.',\n", + " 'zoom by:fast/slow'),\n", + " (12,\n", + " 'Frank felt vindicated when his longtime rival Bill revealed that [he] was the winner of the competition.',\n", + " 'vindicated/crushed:be the winner'),\n", + " (16,\n", + " 'The large ball crashed right through the table because [it] was made of steel.',\n", + " 'crash through:[hard]/[soft]'),\n", + " (18,\n", + " \"John couldn't see the stage with Billy in front of him because [he] is so short.\",\n", + " '[block]:short/tall'),\n", + " (20,\n", + " 'Tom threw his schoolbag down to Ray after [he] reached the top of the stairs.',\n", + " 'down to:top/bottom'),\n", + " (22,\n", + " 'Although they ran at about the same speed, Sue beat Sally because [she] had such a good start.',\n", + " 'beat:good/bad'),\n", + " (26,\n", + " \"Sam's drawing was hung just above Tina's and [it] did look much better with another one below it.\",\n", + " 'above/below'),\n", + " (28,\n", + " 'Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.',\n", + " 'better/worse:study hard'),\n", + " (30,\n", + " 'The firemen arrived after the police because [they] were coming from so far away.',\n", + " 'after/before:far away'),\n", + " (32,\n", + " \"Frank was upset with Tom because the toaster [he] had bought from him didn't work.\",\n", + " 'be upset with:buy from not work/sell not work'),\n", + " (36,\n", + " 'The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.',\n", + " 'above/below:moved first'),\n", + " (38,\n", + " 'Pete envies Martin although [he] is very successful.',\n", + " 'although/because'),\n", + " (42,\n", + " 'I poured water from the bottle into the cup until [it] was empty.',\n", + " 'pour:empty/full'),\n", + " (46,\n", + " \"Sid explained his theory to Mark but [he] couldn't convince him.\",\n", + " 'explain:convince/understand'),\n", + " (48,\n", + " \"Susan knew that Ann's son had been in a car accident, so [she] told her about it.\",\n", + " '?know tell:so/because'),\n", + " (50,\n", + " \"Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.\",\n", + " 'beat:younger/older'),\n", + " (64,\n", + " 'In the middle of the outdoor concert, the rain started falling, but [it] continued until 10.',\n", + " 'but/and'),\n", + " (68,\n", + " 'Ann asked Mary what time the library closes, because [she] had forgotten.',\n", + " 'because/but'),\n", + " (84,\n", + " 'If the con artist has succeeded in fooling Sam, [he] would have gotten a lot of money.',\n", + " 'fool:get/lose'),\n", + " (92,\n", + " 'Alice tried frantically to stop her daughter from chatting at the party, leaving us to wonder why [she] was behaving so strangely.',\n", + " '?stop normal/stop abnormal:strange'),\n", + " (98,\n", + " \"I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] in.\",\n", + " 'put ... into filled with ... :get in/get out'),\n", + " (100,\n", + " 'The dog chased the cat, which ran up a tree. [It] waited at the bottom.',\n", + " 'up:at the bottom/at the top'),\n", + " (106,\n", + " 'John was doing research in the library when he heard a man humming and whistling. [He] was very annoyed.',\n", + " 'hear ... humming and whistling:annoyed/annoying'),\n", + " (108,\n", + " 'John was jogging through the park when he saw a man juggling watermelons. [He] was very impressed.',\n", + " 'see ... juggling watermelons:impressed/impressive'),\n", + " (132,\n", + " 'Jane knocked on the door, and Susan answered it. [She] invited her to come out.',\n", + " 'visit:invite come out/invite come in'),\n", + " (150,\n", + " 'Jackson was greatly influenced by Arnold, though [he] lived two centuries later.',\n", + " 'influence:later/earlier'),\n", + " (160,\n", + " 'The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was too hard to pronounce.',\n", + " 'change:hard/easy'),\n", + " (166,\n", + " 'Fred is the only man still alive who remembers my great-grandfather. [He] is a remarkable man.',\n", + " 'alive:is/was'),\n", + " (170,\n", + " \"In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were defeated within weeks.\",\n", + " 'better equipped and large:defeated/victorious'),\n", + " (186,\n", + " 'When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the minority.',\n", + " 'be full of:minority/majority'),\n", + " (188,\n", + " 'Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make more of [them] .',\n", + " 'like over:more/fewer'),\n", + " (190,\n", + " 'We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply not enough of [them] .',\n", + " 'place on all:not enough/too many'),\n", + " (196,\n", + " \"Steve follows Fred's example in everything. [He] admires him hugely.\",\n", + " 'follow:admire/influence'),\n", + " (198,\n", + " \"The table won't fit through the doorway because [it] is too wide.\",\n", + " 'fit through:wide/narrow'),\n", + " (200,\n", + " 'Grace was happy to trade me her sweater for my jacket. She thinks [it] looks dowdy on her.',\n", + " 'trade:dowdy/great'),\n", + " (202,\n", + " 'John hired Bill to take care of [him] .',\n", + " 'hire/hire oneself to:take care of'),\n", + " (204,\n", + " 'John promised Bill to leave, so an hour later [he] left.',\n", + " 'promise/order'),\n", + " (210,\n", + " \"Jane knocked on Susan's door but [she] did not get an answer.\",\n", + " 'knock:get an answer/answer'),\n", + " (212,\n", + " 'Joe paid the detective after [he] received the final report on the case.',\n", + " 'pay:receive/deliver'),\n", + " (226,\n", + " 'Bill passed the half-empty plate to John because [he] was full.',\n", + " 'pass the plate:full/hungry'),\n", + " (252,\n", + " 'George got free tickets to the play, but he gave them to Eric, even though [he] was particularly eager to see it.',\n", + " 'even though/because/not'),\n", + " (255,\n", + " \"Jane gave Joan candy because [she] wasn't hungry.\",\n", + " 'give:not hungry/hungry'),\n", + " (259,\n", + " 'James asked Robert for a favor but [he] was refused.',\n", + " 'ask for a favor:refuse/be refused`'),\n", + " (261,\n", + " 'Kirilov ceded the presidency to Shatov because [he] was less popular.',\n", + " 'cede:less popular/more popular'),\n", + " (263,\n", + " 'Emma did not pass the ball to Janie although [she] saw that she was open.',\n", + " 'not pass although:see open/open')]" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def filter_dict(d, keys=['index', 'sentence', 'correct_answer', 'relational_word', 'is_associative', 'score']):\n", + " return {k: d[k] for k in d if k in keys}\n", + "\n", + "# ([[filter_dict(e) for e in eg] for eg in groups.values() if eg[0]['relational_word'] != 'none' and all([e['score'] for e in eg])])# / len([eg for eg in groups.values() if eg[0]['relational_word'] != 'none'])\n", + "# [(index, eg[0]['relational_word'], all([e['score'] for e in eg])) for index, eg in groups.items() if eg[0]['relational_word'] != 'none']\n", + "# len([filter_dict(e) for e in examples if 'score' in e and not e['score'] and e['adjacent_ref']])\n", + "# for e in examples:\n", + "# if e['index'] % 2 == 0:\n", + "# print(e['sentence'])\n", + "[(eg[0]['index'], eg[0]['sentence'], eg[0]['relational_word']) for index, eg in groups.items() if '/' in eg[0]['relational_word']]" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "179" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(['because' in e['sentence'] for e in examples]) + \\\n", + "sum(['so ' in e['sentence'] for e in examples]) + \\\n", + "sum(['but ' in e['sentence'] for e in examples]) + \\\n", + "sum(['though' in e['sentence'] for e in examples])" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "# with open('WSC_switched_label.json', 'w') as f:\n", + "# json.dump(examples, f)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "vis_attn_topk = 3\n", + "\n", + "def has_chinese_label(labels):\n", + " labels = [label.split('->')[0].strip() for label in labels]\n", + " r = sum([len(label) > 1 for label in labels if label not in ['BOS', 'EOS']]) * 1. / (len(labels) - 1)\n", + " return 0 < r < 0.5 # r == 0 means empty query labels used in self attention\n", + "\n", + "def _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col, color='b'):\n", + " assert len(query_labels) == attn.size(0)\n", + " assert len(key_labels) == attn.size(1)\n", + "\n", + " ax1.set_xlim([-1, 1])\n", + " ax1.set_xticks([])\n", + " ax2 = ax1.twinx()\n", + " nlabels = max(len(key_labels), len(query_labels))\n", + " pos = range(nlabels)\n", + " \n", + " if 'self' in attn_name and col < ncols - 1:\n", + " query_labels = ['' for _ in query_labels]\n", + "\n", + " for ax, labels in [(ax1, key_labels), (ax2, query_labels)]:\n", + " ax.set_yticks(pos)\n", + " if has_chinese_label(labels):\n", + " ax.set_yticklabels(labels, fontproperties=zhfont)\n", + " else:\n", + " ax.set_yticklabels(labels)\n", + " ax.set_ylim([nlabels - 1, 0])\n", + " ax.tick_params(width=0, labelsize='xx-large')\n", + "\n", + " for spine in ax.spines.values():\n", + " spine.set_visible(False)\n", + "\n", + "# mask, attn = filter_attn(attn)\n", + " for qi in range(attn.size(0)):\n", + "# if not mask[qi]:\n", + "# continue\n", + "# for ki in range(attn.size(1)):\n", + " for ki in attn[qi].topk(vis_attn_topk)[1]:\n", + " a = attn[qi, ki]\n", + " ax1.plot((-1, 1), (ki, qi), color, alpha=a)\n", + "# print(attn.mean(dim=0).topk(5)[0])\n", + "# ax1.barh(pos, attn.mean(dim=0).data.cpu().numpy())\n", + "\n", + "def plot_layer_attn(result_tuple, attn_name='dec_self_attns', layer=0, heads=None):\n", + " hypo, nheads, labels_dict = result_tuple\n", + " key_labels, query_labels = labels_dict[attn_name]\n", + " if heads is None:\n", + " heads = range(nheads)\n", + " else:\n", + " nheads = len(heads)\n", + " \n", + " stride = 2 if attn_name == 'dec_enc_attns' else 1\n", + " nlabels = max(len(key_labels), len(query_labels))\n", + " rcParams['figure.figsize'] = 20, int(round(nlabels * stride * nheads / 8 * 1.0))\n", + " \n", + " rows = nheads // ncols * stride\n", + " fig, axes = plt.subplots(rows, ncols)\n", + " \n", + " # for head in range(nheads):\n", + " for head_i, head in enumerate(heads):\n", + " row, col = head_i * stride // ncols, head_i * stride % ncols\n", + " ax1 = axes[row, col]\n", + " attn = hypo[attn_name][layer][head]\n", + " _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col)\n", + " if attn_name == 'dec_enc_attns':\n", + " col = col + 1\n", + " axes[row, col].axis('off') # next subfig acts as blank place holder\n", + " # plt.suptitle('%s with %d heads, Layer %d' % (attn_name, nheads, layer), fontsize=20)\n", + " plt.show() \n", + " \n", + "ncols = 4" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{\n", + " \"attention_probs_dropout_prob\": 0.1,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.1,\n", + " \"hidden_size\": 768,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"max_position_embeddings\": 512,\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 12,\n", + " \"type_vocab_size\": 2,\n", + " \"vocab_size\": 30522\n", + "}" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "config.num" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untitled1.ipynb b/Untitled1.ipynb new file mode 100644 index 000000000000..81f040b9f3ee --- /dev/null +++ b/Untitled1.ipynb @@ -0,0 +1,32 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untitled2.ipynb b/Untitled2.ipynb new file mode 100644 index 000000000000..2f7fae791c45 --- /dev/null +++ b/Untitled2.ipynb @@ -0,0 +1,54 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])\n" + ] + } + ], + "source": [ + "x = torch.randn(4, 4)\n", + "y = x.view(16)\n", + "z = x.view(-1, 8) # the size -1 is inferred from other dimensions\n", + "print(x.size(), y.size(), z.size())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untitled3.ipynb b/Untitled3.ipynb new file mode 100644 index 000000000000..eee4c4c83576 --- /dev/null +++ b/Untitled3.ipynb @@ -0,0 +1,804 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = 'all'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import json\n", + "import itertools\n", + "from itertools import product, chain\n", + "\n", + "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/24/2019 22:16:56 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/vocab.txt\n" + ] + } + ], + "source": [ + "CONFIG_NAME = 'bert_config.json'\n", + "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n", + "tokenizer = BertTokenizer.from_pretrained(os.path.join(BERT_DIR, 'vocab.txt'))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def reverse(l):\n", + " return list(reversed(l))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def mask(ent_str):\n", + " tokens = ent_str.strip().split()\n", + " if len(tokens) == 1:\n", + " return '[%s]' % tokens[0]\n", + " elif len(tokens) == 2:\n", + " assert tokens[0] == 'the', ent_str\n", + " return '%s [%s]' % (tokens[0], tokens[1])\n", + " else:\n", + " assert False, ent_str" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "A_template = \"{dt} {ent0} {rel} {dt} {ent1} {rel_suffix}\"\n", + "B_template = \"{dt} {ent} {pred}\"\n", + "\n", + "causal_templates = [[\"{A} because {B}.\"],# \"{B} so {A}.\"], \n", + " [\"{A} so {B}.\"],# \"{B} because {A}.\"]\n", + " ]\n", + "turning_templates = [[\"{A} although {B}.\"],# \"{B} but {A}.\"], \n", + " [\"{A} but {B}.\"],# \"{B} although {A}.\"]\n", + " ]" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "def make_sentences(A_template, B_template, causal_templates, turning_templates,\n", + " index=-1, orig_sentence='', entities=[\"John\", \"Mary\"], entity_substitutes=None, determiner=\"\", \n", + " packed_relations=[\"rel/~rel\", \"rev_rel/~rev_rel\"], packed_relation_substitutes=None, relation_suffix=\"\",\n", + " packed_predicates=[\"pred0/~pred0\", \"pred1/~pred1\"], predicate_substitutes=None,\n", + " predicate_dichotomy=True, reverse_causal=False):\n", + " assert entities[0].lower() in tokenizer.vocab , entities[0]\n", + " assert entities[1].lower() in tokenizer.vocab , entities[1]\n", + " \n", + " relations, neg_relations = zip(*[rel.split(\"/\") for rel in packed_relations])\n", + " relations, neg_relations = list(relations), list(neg_relations)\n", + " predicates, neg_predicates = zip(*[pred.split(\"/\") for pred in packed_predicates])\n", + " predicates, neg_predicates = list(predicates), list(neg_predicates)\n", + " \n", + " As = [A_template.format(dt=determiner, ent0=ent0, ent1=ent1, rel=rel, rel_suffix=relation_suffix) \n", + " for ent0, ent1, rel in [entities + relations[:1], reverse(entities) + reverse(relations)[:1]]]\n", + " negAs = [A_template.format(dt=determiner, ent0=ent0, ent1=ent1, rel=rel, rel_suffix=relation_suffix) \n", + " for ent0, ent1, rel in [entities + neg_relations[:1], reverse(entities) + reverse(neg_relations)[:1]]]\n", + "\n", + " Bs = [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, predicates)]\n", + " negBs = [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, neg_predicates)]\n", + " if predicate_dichotomy:\n", + " Bs += [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, reversed(neg_predicates))]\n", + " negBs += [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, reversed(predicates))]\n", + "\n", + " def form_sentences(sentence_template, As, Bs):\n", + " return [\" \".join(sentence_template.format(A=A, B=B).split()) for A, B in product(As, Bs)]\n", + "\n", + " causal_sentences = []\n", + " for causal_template in causal_templates[int(reverse_causal)]:\n", + " for A, B in [(As, Bs), (negAs, negBs)]:\n", + " causal_sentences.extend(form_sentences(causal_template, A, B))\n", + "\n", + " turning_sentences = []\n", + " for turning_template in turning_templates[int(reverse_causal)]:\n", + " for A, B in [(As, negBs), (negAs, Bs)]:\n", + " turning_sentences.extend(form_sentences(turning_template, A, B))\n", + " \n", + " sentences = causal_sentences + turning_sentences\n", + " substituted_sentences = sentences\n", + " \n", + " if packed_relation_substitutes is not None:\n", + " packed_relation_substitutes = list(itertools.product(packed_relations[:1] + packed_relation_substitutes[0], \n", + " packed_relations[1:] + packed_relation_substitutes[1]))\n", + " substituted_sentences = []\n", + " for packed_sub_relations in packed_relation_substitutes:\n", + " sub_relations, sub_neg_relations = zip(*[rel.split(\"/\") for rel in packed_sub_relations])\n", + " substituted_sentences += [sent.replace(relations[0], sub_relations[0]).replace(relations[1], sub_relations[1])\n", + " .replace(neg_relations[0], sub_neg_relations[0]).replace(neg_relations[1], sub_neg_relations[1]) \n", + " for sent in sentences]\n", + " substituted_sentences = list(set(substituted_sentences))\n", + " \n", + " if entity_substitutes is not None:\n", + " for sub in entity_substitutes:\n", + " for ent in sub:\n", + " assert ent.lower() in tokenizer.vocab , ent + \" not in BERT vocab\"\n", + " assert len(set(chain.from_iterable(entity_substitutes))) == 4, entity_substitutes\n", + " assert len(set(chain.from_iterable(entity_substitutes)).union(set(entities))) == 6 \n", + " \n", + " entity_substitutes = list(itertools.product(entities[:1] + entity_substitutes[0], entities[1:] + entity_substitutes[1]))\n", + " substituted_sentences = [sent.replace(entities[0], sub[0]).replace(entities[1], sub[1]) \n", + " for sent in substituted_sentences for sub in entity_substitutes]\n", + " return causal_sentences, turning_sentences, substituted_sentences" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [], + "source": [ + "frames = \\\n", + "[\n", + " {\n", + " \"index\": 2,\n", + " \"orig_sentence\": \"The trophy doesn't fit into the brown suitcase because [it] is too large/small.\",\n", + " \"entities\": [\"trophy\", \"suitcase\"],\n", + " \"entitity_substitutes\": [[\"ball\", \"toy\"], [\"bag\", \"box\"]],\n", + " \"determiner\": \"the\",\n", + " \"packed_relations\": [\"doesn't fit into/can fit into\", \"doesn't hold/can hold\"],\n", + " \"packed_relation_substitutes\": [[\"can't be put into/can be put into\"], [\"doesn't have enough room for/has enough room for\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"is large/isn't large\", \"is small/isn't small\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 4,\n", + " \"orig_sentence\": \"Joan made sure to thank Susan for all the help [she] had recieved/given.\",\n", + " \"entities\": [\"John\", \"Susan\"],\n", + " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"thanked/didn't thank\", \"took good care of/didn't good care of\"],\n", + " \"packed_relation_substitutes\": [[\"felt grateful to/didn't feel grateful to\"], [\"was appreciated by/wasn't appreciated by\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"had received a lot of help/hadn't received a lot of help\", \"had given a lot of help/hadn't given a lot of help\"],\n", + " \"predicate_dichotomy\": False,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 4000,\n", + " \"orig_sentence\": \"John gave a lot of money to Susan because [he] was very rich/poor.\",\n", + " \"entities\": [\"John\", \"Susan\"],\n", + " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"gave a lot of money to/didn't give a lot of money to\", \"received a lot of money from/didn't receive a lot of money from\"],\n", + " \"packed_relation_substitutes\": [[\"subsidized/didn't subsidize\"], [\"borrowed a lot of money from/didn't borrow any money from\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"was rich/wasn't rich\", \"was poor/wasn't poor\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 10,\n", + " \"orig_sentence\": \"The delivery truck zoomed by the school bus because [it] was going so fast/slow.\",\n", + " \"entities\": [\"truck\", \"bus\"],\n", + " \"entity_substitutes\": [[\"car\", \"ambulance\"], [\"bicycle\", \"tram\"]],\n", + " \"determiner\": \"the\",\n", + " \"packed_relations\": [\"overtook/couldn't overtake\", \"fell far behind/didn't fall far behind\"],\n", + " \"packed_relation_substitutes\": [[\"zoomed by/didn't pass\"], [\"was left behind/wasn't left far behind\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"was going fast/wasn't going fast\", \"was going slow/wasn't going slow\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 12,\n", + " \"orig_sentence\": \"Frank felt vindicated/crushed when his longtime rival Bill revealed that [he] was the winner of the competition.\",\n", + " \"entities\": [\"John\", \"Susan\"],\n", + " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"beat/didn't beat\", \"lost to/didn't lose to\"],\n", + " \"relation_suffix\": \"in the game\",\n", + " \"packed_predicates\": [\"was happy/wasn't happy\", \"was sad/wasn't sad\"],\n", + " \"packed_relation_substitutes\": None,\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": True\n", + " },\n", + " {\n", + " \"index\": 16,\n", + " \"orig_sentence\": \"The large ball crashed right through the table because [it] was made of steel/styrofoam.\",\n", + " \"entities\": [\"ball\", \"board\"],\n", + " \"substitutes\": [[\"bullet\", \"arrow\"], [\"shield\", \"disk\"]],\n", + " \"determiner\": \"the\",\n", + " \"relations\": [\"crashed right through\", \"failed to block\"],\n", + " \"neg_relations\": [\"didn't crash through\", \"blocked\"],\n", + " \"relation_suffix\": \"\",\n", + " \"predicates\": [\"was hard\", \"was soft\"],\n", + " \"neg_predicates\": [\"wasn't hard\", \"wasn't soft\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "causal_sentences, turning_sentences, substituted_sentences = \\\n", + " make_sentences(A_template, B_template, causal_templates, turning_templates, **frames[-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['John beat Susan in the game so [John] was happy.',\n", + " 'John beat Susan in the game so [Susan] was sad.',\n", + " \"John beat Susan in the game so [John] wasn't sad.\",\n", + " \"John beat Susan in the game so [Susan] wasn't happy.\",\n", + " 'Susan lost to John in the game so [John] was happy.',\n", + " 'Susan lost to John in the game so [Susan] was sad.',\n", + " \"Susan lost to John in the game so [John] wasn't sad.\",\n", + " \"Susan lost to John in the game so [Susan] wasn't happy.\",\n", + " \"John didn't beat Susan in the game so [John] wasn't happy.\",\n", + " \"John didn't beat Susan in the game so [Susan] wasn't sad.\",\n", + " \"John didn't beat Susan in the game so [John] was sad.\",\n", + " \"John didn't beat Susan in the game so [Susan] was happy.\",\n", + " \"Susan didn't lose to John in the game so [John] wasn't happy.\",\n", + " \"Susan didn't lose to John in the game so [Susan] wasn't sad.\",\n", + " \"Susan didn't lose to John in the game so [John] was sad.\",\n", + " \"Susan didn't lose to John in the game so [Susan] was happy.\",\n", + " \"John beat Susan in the game but [John] wasn't happy.\",\n", + " \"John beat Susan in the game but [Susan] wasn't sad.\",\n", + " 'John beat Susan in the game but [John] was sad.',\n", + " 'John beat Susan in the game but [Susan] was happy.',\n", + " \"Susan lost to John in the game but [John] wasn't happy.\",\n", + " \"Susan lost to John in the game but [Susan] wasn't sad.\",\n", + " 'Susan lost to John in the game but [John] was sad.',\n", + " 'Susan lost to John in the game but [Susan] was happy.',\n", + " \"John didn't beat Susan in the game but [John] was happy.\",\n", + " \"John didn't beat Susan in the game but [Susan] was sad.\",\n", + " \"John didn't beat Susan in the game but [John] wasn't sad.\",\n", + " \"John didn't beat Susan in the game but [Susan] wasn't happy.\",\n", + " \"Susan didn't lose to John in the game but [John] was happy.\",\n", + " \"Susan didn't lose to John in the game but [Susan] was sad.\",\n", + " \"Susan didn't lose to John in the game but [John] wasn't sad.\",\n", + " \"Susan didn't lose to John in the game but [Susan] wasn't happy.\"]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "['John beat Susan in the game so [John] was happy.',\n", + " 'John beat Mary in the game so [John] was happy.',\n", + " 'John beat Linda in the game so [John] was happy.',\n", + " 'David beat Susan in the game so [David] was happy.',\n", + " 'David beat Mary in the game so [David] was happy.',\n", + " 'David beat Linda in the game so [David] was happy.',\n", + " 'Michael beat Susan in the game so [Michael] was happy.',\n", + " 'Michael beat Mary in the game so [Michael] was happy.',\n", + " 'Michael beat Linda in the game so [Michael] was happy.',\n", + " 'John beat Susan in the game so [Susan] was sad.',\n", + " 'John beat Mary in the game so [Mary] was sad.',\n", + " 'John beat Linda in the game so [Linda] was sad.',\n", + " 'David beat Susan in the game so [Susan] was sad.',\n", + " 'David beat Mary in the game so [Mary] was sad.',\n", + " 'David beat Linda in the game so [Linda] was sad.',\n", + " 'Michael beat Susan in the game so [Susan] was sad.',\n", + " 'Michael beat Mary in the game so [Mary] was sad.',\n", + " 'Michael beat Linda in the game so [Linda] was sad.',\n", + " \"John beat Susan in the game so [John] wasn't sad.\",\n", + " \"John beat Mary in the game so [John] wasn't sad.\",\n", + " \"John beat Linda in the game so [John] wasn't sad.\",\n", + " \"David beat Susan in the game so [David] wasn't sad.\",\n", + " \"David beat Mary in the game so [David] wasn't sad.\",\n", + " \"David beat Linda in the game so [David] wasn't sad.\",\n", + " \"Michael beat Susan in the game so [Michael] wasn't sad.\",\n", + " \"Michael beat Mary in the game so [Michael] wasn't sad.\",\n", + " \"Michael beat Linda in the game so [Michael] wasn't sad.\",\n", + " \"John beat Susan in the game so [Susan] wasn't happy.\",\n", + " \"John beat Mary in the game so [Mary] wasn't happy.\",\n", + " \"John beat Linda in the game so [Linda] wasn't happy.\",\n", + " \"David beat Susan in the game so [Susan] wasn't happy.\",\n", + " \"David beat Mary in the game so [Mary] wasn't happy.\",\n", + " \"David beat Linda in the game so [Linda] wasn't happy.\",\n", + " \"Michael beat Susan in the game so [Susan] wasn't happy.\",\n", + " \"Michael beat Mary in the game so [Mary] wasn't happy.\",\n", + " \"Michael beat Linda in the game so [Linda] wasn't happy.\",\n", + " 'Susan lost to John in the game so [John] was happy.',\n", + " 'Mary lost to John in the game so [John] was happy.',\n", + " 'Linda lost to John in the game so [John] was happy.',\n", + " 'Susan lost to David in the game so [David] was happy.',\n", + " 'Mary lost to David in the game so [David] was happy.',\n", + " 'Linda lost to David in the game so [David] was happy.',\n", + " 'Susan lost to Michael in the game so [Michael] was happy.',\n", + " 'Mary lost to Michael in the game so [Michael] was happy.',\n", + " 'Linda lost to Michael in the game so [Michael] was happy.',\n", + " 'Susan lost to John in the game so [Susan] was sad.',\n", + " 'Mary lost to John in the game so [Mary] was sad.',\n", + " 'Linda lost to John in the game so [Linda] was sad.',\n", + " 'Susan lost to David in the game so [Susan] was sad.',\n", + " 'Mary lost to David in the game so [Mary] was sad.',\n", + " 'Linda lost to David in the game so [Linda] was sad.',\n", + " 'Susan lost to Michael in the game so [Susan] was sad.',\n", + " 'Mary lost to Michael in the game so [Mary] was sad.',\n", + " 'Linda lost to Michael in the game so [Linda] was sad.',\n", + " \"Susan lost to John in the game so [John] wasn't sad.\",\n", + " \"Mary lost to John in the game so [John] wasn't sad.\",\n", + " \"Linda lost to John in the game so [John] wasn't sad.\",\n", + " \"Susan lost to David in the game so [David] wasn't sad.\",\n", + " \"Mary lost to David in the game so [David] wasn't sad.\",\n", + " \"Linda lost to David in the game so [David] wasn't sad.\",\n", + " \"Susan lost to Michael in the game so [Michael] wasn't sad.\",\n", + " \"Mary lost to Michael in the game so [Michael] wasn't sad.\",\n", + " \"Linda lost to Michael in the game so [Michael] wasn't sad.\",\n", + " \"Susan lost to John in the game so [Susan] wasn't happy.\",\n", + " \"Mary lost to John in the game so [Mary] wasn't happy.\",\n", + " \"Linda lost to John in the game so [Linda] wasn't happy.\",\n", + " \"Susan lost to David in the game so [Susan] wasn't happy.\",\n", + " \"Mary lost to David in the game so [Mary] wasn't happy.\",\n", + " \"Linda lost to David in the game so [Linda] wasn't happy.\",\n", + " \"Susan lost to Michael in the game so [Susan] wasn't happy.\",\n", + " \"Mary lost to Michael in the game so [Mary] wasn't happy.\",\n", + " \"Linda lost to Michael in the game so [Linda] wasn't happy.\",\n", + " \"John didn't beat Susan in the game so [John] wasn't happy.\",\n", + " \"John didn't beat Mary in the game so [John] wasn't happy.\",\n", + " \"John didn't beat Linda in the game so [John] wasn't happy.\",\n", + " \"David didn't beat Susan in the game so [David] wasn't happy.\",\n", + " \"David didn't beat Mary in the game so [David] wasn't happy.\",\n", + " \"David didn't beat Linda in the game so [David] wasn't happy.\",\n", + " \"Michael didn't beat Susan in the game so [Michael] wasn't happy.\",\n", + " \"Michael didn't beat Mary in the game so [Michael] wasn't happy.\",\n", + " \"Michael didn't beat Linda in the game so [Michael] wasn't happy.\",\n", + " \"John didn't beat Susan in the game so [Susan] wasn't sad.\",\n", + " \"John didn't beat Mary in the game so [Mary] wasn't sad.\",\n", + " \"John didn't beat Linda in the game so [Linda] wasn't sad.\",\n", + " \"David didn't beat Susan in the game so [Susan] wasn't sad.\",\n", + " \"David didn't beat Mary in the game so [Mary] wasn't sad.\",\n", + " \"David didn't beat Linda in the game so [Linda] wasn't sad.\",\n", + " \"Michael didn't beat Susan in the game so [Susan] wasn't sad.\",\n", + " \"Michael didn't beat Mary in the game so [Mary] wasn't sad.\",\n", + " \"Michael didn't beat Linda in the game so [Linda] wasn't sad.\",\n", + " \"John didn't beat Susan in the game so [John] was sad.\",\n", + " \"John didn't beat Mary in the game so [John] was sad.\",\n", + " \"John didn't beat Linda in the game so [John] was sad.\",\n", + " \"David didn't beat Susan in the game so [David] was sad.\",\n", + " \"David didn't beat Mary in the game so [David] was sad.\",\n", + " \"David didn't beat Linda in the game so [David] was sad.\",\n", + " \"Michael didn't beat Susan in the game so [Michael] was sad.\",\n", + " \"Michael didn't beat Mary in the game so [Michael] was sad.\",\n", + " \"Michael didn't beat Linda in the game so [Michael] was sad.\",\n", + " \"John didn't beat Susan in the game so [Susan] was happy.\",\n", + " \"John didn't beat Mary in the game so [Mary] was happy.\",\n", + " \"John didn't beat Linda in the game so [Linda] was happy.\",\n", + " \"David didn't beat Susan in the game so [Susan] was happy.\",\n", + " \"David didn't beat Mary in the game so [Mary] was happy.\",\n", + " \"David didn't beat Linda in the game so [Linda] was happy.\",\n", + " \"Michael didn't beat Susan in the game so [Susan] was happy.\",\n", + " \"Michael didn't beat Mary in the game so [Mary] was happy.\",\n", + " \"Michael didn't beat Linda in the game so [Linda] was happy.\",\n", + " \"Susan didn't lose to John in the game so [John] wasn't happy.\",\n", + " \"Mary didn't lose to John in the game so [John] wasn't happy.\",\n", + " \"Linda didn't lose to John in the game so [John] wasn't happy.\",\n", + " \"Susan didn't lose to David in the game so [David] wasn't happy.\",\n", + " \"Mary didn't lose to David in the game so [David] wasn't happy.\",\n", + " \"Linda didn't lose to David in the game so [David] wasn't happy.\",\n", + " \"Susan didn't lose to Michael in the game so [Michael] wasn't happy.\",\n", + " \"Mary didn't lose to Michael in the game so [Michael] wasn't happy.\",\n", + " \"Linda didn't lose to Michael in the game so [Michael] wasn't happy.\",\n", + " \"Susan didn't lose to John in the game so [Susan] wasn't sad.\",\n", + " \"Mary didn't lose to John in the game so [Mary] wasn't sad.\",\n", + " \"Linda didn't lose to John in the game so [Linda] wasn't sad.\",\n", + " \"Susan didn't lose to David in the game so [Susan] wasn't sad.\",\n", + " \"Mary didn't lose to David in the game so [Mary] wasn't sad.\",\n", + " \"Linda didn't lose to David in the game so [Linda] wasn't sad.\",\n", + " \"Susan didn't lose to Michael in the game so [Susan] wasn't sad.\",\n", + " \"Mary didn't lose to Michael in the game so [Mary] wasn't sad.\",\n", + " \"Linda didn't lose to Michael in the game so [Linda] wasn't sad.\",\n", + " \"Susan didn't lose to John in the game so [John] was sad.\",\n", + " \"Mary didn't lose to John in the game so [John] was sad.\",\n", + " \"Linda didn't lose to John in the game so [John] was sad.\",\n", + " \"Susan didn't lose to David in the game so [David] was sad.\",\n", + " \"Mary didn't lose to David in the game so [David] was sad.\",\n", + " \"Linda didn't lose to David in the game so [David] was sad.\",\n", + " \"Susan didn't lose to Michael in the game so [Michael] was sad.\",\n", + " \"Mary didn't lose to Michael in the game so [Michael] was sad.\",\n", + " \"Linda didn't lose to Michael in the game so [Michael] was sad.\",\n", + " \"Susan didn't lose to John in the game so [Susan] was happy.\",\n", + " \"Mary didn't lose to John in the game so [Mary] was happy.\",\n", + " \"Linda didn't lose to John in the game so [Linda] was happy.\",\n", + " \"Susan didn't lose to David in the game so [Susan] was happy.\",\n", + " \"Mary didn't lose to David in the game so [Mary] was happy.\",\n", + " \"Linda didn't lose to David in the game so [Linda] was happy.\",\n", + " \"Susan didn't lose to Michael in the game so [Susan] was happy.\",\n", + " \"Mary didn't lose to Michael in the game so [Mary] was happy.\",\n", + " \"Linda didn't lose to Michael in the game so [Linda] was happy.\",\n", + " \"John beat Susan in the game but [John] wasn't happy.\",\n", + " \"John beat Mary in the game but [John] wasn't happy.\",\n", + " \"John beat Linda in the game but [John] wasn't happy.\",\n", + " \"David beat Susan in the game but [David] wasn't happy.\",\n", + " \"David beat Mary in the game but [David] wasn't happy.\",\n", + " \"David beat Linda in the game but [David] wasn't happy.\",\n", + " \"Michael beat Susan in the game but [Michael] wasn't happy.\",\n", + " \"Michael beat Mary in the game but [Michael] wasn't happy.\",\n", + " \"Michael beat Linda in the game but [Michael] wasn't happy.\",\n", + " \"John beat Susan in the game but [Susan] wasn't sad.\",\n", + " \"John beat Mary in the game but [Mary] wasn't sad.\",\n", + " \"John beat Linda in the game but [Linda] wasn't sad.\",\n", + " \"David beat Susan in the game but [Susan] wasn't sad.\",\n", + " \"David beat Mary in the game but [Mary] wasn't sad.\",\n", + " \"David beat Linda in the game but [Linda] wasn't sad.\",\n", + " \"Michael beat Susan in the game but [Susan] wasn't sad.\",\n", + " \"Michael beat Mary in the game but [Mary] wasn't sad.\",\n", + " \"Michael beat Linda in the game but [Linda] wasn't sad.\",\n", + " 'John beat Susan in the game but [John] was sad.',\n", + " 'John beat Mary in the game but [John] was sad.',\n", + " 'John beat Linda in the game but [John] was sad.',\n", + " 'David beat Susan in the game but [David] was sad.',\n", + " 'David beat Mary in the game but [David] was sad.',\n", + " 'David beat Linda in the game but [David] was sad.',\n", + " 'Michael beat Susan in the game but [Michael] was sad.',\n", + " 'Michael beat Mary in the game but [Michael] was sad.',\n", + " 'Michael beat Linda in the game but [Michael] was sad.',\n", + " 'John beat Susan in the game but [Susan] was happy.',\n", + " 'John beat Mary in the game but [Mary] was happy.',\n", + " 'John beat Linda in the game but [Linda] was happy.',\n", + " 'David beat Susan in the game but [Susan] was happy.',\n", + " 'David beat Mary in the game but [Mary] was happy.',\n", + " 'David beat Linda in the game but [Linda] was happy.',\n", + " 'Michael beat Susan in the game but [Susan] was happy.',\n", + " 'Michael beat Mary in the game but [Mary] was happy.',\n", + " 'Michael beat Linda in the game but [Linda] was happy.',\n", + " \"Susan lost to John in the game but [John] wasn't happy.\",\n", + " \"Mary lost to John in the game but [John] wasn't happy.\",\n", + " \"Linda lost to John in the game but [John] wasn't happy.\",\n", + " \"Susan lost to David in the game but [David] wasn't happy.\",\n", + " \"Mary lost to David in the game but [David] wasn't happy.\",\n", + " \"Linda lost to David in the game but [David] wasn't happy.\",\n", + " \"Susan lost to Michael in the game but [Michael] wasn't happy.\",\n", + " \"Mary lost to Michael in the game but [Michael] wasn't happy.\",\n", + " \"Linda lost to Michael in the game but [Michael] wasn't happy.\",\n", + " \"Susan lost to John in the game but [Susan] wasn't sad.\",\n", + " \"Mary lost to John in the game but [Mary] wasn't sad.\",\n", + " \"Linda lost to John in the game but [Linda] wasn't sad.\",\n", + " \"Susan lost to David in the game but [Susan] wasn't sad.\",\n", + " \"Mary lost to David in the game but [Mary] wasn't sad.\",\n", + " \"Linda lost to David in the game but [Linda] wasn't sad.\",\n", + " \"Susan lost to Michael in the game but [Susan] wasn't sad.\",\n", + " \"Mary lost to Michael in the game but [Mary] wasn't sad.\",\n", + " \"Linda lost to Michael in the game but [Linda] wasn't sad.\",\n", + " 'Susan lost to John in the game but [John] was sad.',\n", + " 'Mary lost to John in the game but [John] was sad.',\n", + " 'Linda lost to John in the game but [John] was sad.',\n", + " 'Susan lost to David in the game but [David] was sad.',\n", + " 'Mary lost to David in the game but [David] was sad.',\n", + " 'Linda lost to David in the game but [David] was sad.',\n", + " 'Susan lost to Michael in the game but [Michael] was sad.',\n", + " 'Mary lost to Michael in the game but [Michael] was sad.',\n", + " 'Linda lost to Michael in the game but [Michael] was sad.',\n", + " 'Susan lost to John in the game but [Susan] was happy.',\n", + " 'Mary lost to John in the game but [Mary] was happy.',\n", + " 'Linda lost to John in the game but [Linda] was happy.',\n", + " 'Susan lost to David in the game but [Susan] was happy.',\n", + " 'Mary lost to David in the game but [Mary] was happy.',\n", + " 'Linda lost to David in the game but [Linda] was happy.',\n", + " 'Susan lost to Michael in the game but [Susan] was happy.',\n", + " 'Mary lost to Michael in the game but [Mary] was happy.',\n", + " 'Linda lost to Michael in the game but [Linda] was happy.',\n", + " \"John didn't beat Susan in the game but [John] was happy.\",\n", + " \"John didn't beat Mary in the game but [John] was happy.\",\n", + " \"John didn't beat Linda in the game but [John] was happy.\",\n", + " \"David didn't beat Susan in the game but [David] was happy.\",\n", + " \"David didn't beat Mary in the game but [David] was happy.\",\n", + " \"David didn't beat Linda in the game but [David] was happy.\",\n", + " \"Michael didn't beat Susan in the game but [Michael] was happy.\",\n", + " \"Michael didn't beat Mary in the game but [Michael] was happy.\",\n", + " \"Michael didn't beat Linda in the game but [Michael] was happy.\",\n", + " \"John didn't beat Susan in the game but [Susan] was sad.\",\n", + " \"John didn't beat Mary in the game but [Mary] was sad.\",\n", + " \"John didn't beat Linda in the game but [Linda] was sad.\",\n", + " \"David didn't beat Susan in the game but [Susan] was sad.\",\n", + " \"David didn't beat Mary in the game but [Mary] was sad.\",\n", + " \"David didn't beat Linda in the game but [Linda] was sad.\",\n", + " \"Michael didn't beat Susan in the game but [Susan] was sad.\",\n", + " \"Michael didn't beat Mary in the game but [Mary] was sad.\",\n", + " \"Michael didn't beat Linda in the game but [Linda] was sad.\",\n", + " \"John didn't beat Susan in the game but [John] wasn't sad.\",\n", + " \"John didn't beat Mary in the game but [John] wasn't sad.\",\n", + " \"John didn't beat Linda in the game but [John] wasn't sad.\",\n", + " \"David didn't beat Susan in the game but [David] wasn't sad.\",\n", + " \"David didn't beat Mary in the game but [David] wasn't sad.\",\n", + " \"David didn't beat Linda in the game but [David] wasn't sad.\",\n", + " \"Michael didn't beat Susan in the game but [Michael] wasn't sad.\",\n", + " \"Michael didn't beat Mary in the game but [Michael] wasn't sad.\",\n", + " \"Michael didn't beat Linda in the game but [Michael] wasn't sad.\",\n", + " \"John didn't beat Susan in the game but [Susan] wasn't happy.\",\n", + " \"John didn't beat Mary in the game but [Mary] wasn't happy.\",\n", + " \"John didn't beat Linda in the game but [Linda] wasn't happy.\",\n", + " \"David didn't beat Susan in the game but [Susan] wasn't happy.\",\n", + " \"David didn't beat Mary in the game but [Mary] wasn't happy.\",\n", + " \"David didn't beat Linda in the game but [Linda] wasn't happy.\",\n", + " \"Michael didn't beat Susan in the game but [Susan] wasn't happy.\",\n", + " \"Michael didn't beat Mary in the game but [Mary] wasn't happy.\",\n", + " \"Michael didn't beat Linda in the game but [Linda] wasn't happy.\",\n", + " \"Susan didn't lose to John in the game but [John] was happy.\",\n", + " \"Mary didn't lose to John in the game but [John] was happy.\",\n", + " \"Linda didn't lose to John in the game but [John] was happy.\",\n", + " \"Susan didn't lose to David in the game but [David] was happy.\",\n", + " \"Mary didn't lose to David in the game but [David] was happy.\",\n", + " \"Linda didn't lose to David in the game but [David] was happy.\",\n", + " \"Susan didn't lose to Michael in the game but [Michael] was happy.\",\n", + " \"Mary didn't lose to Michael in the game but [Michael] was happy.\",\n", + " \"Linda didn't lose to Michael in the game but [Michael] was happy.\",\n", + " \"Susan didn't lose to John in the game but [Susan] was sad.\",\n", + " \"Mary didn't lose to John in the game but [Mary] was sad.\",\n", + " \"Linda didn't lose to John in the game but [Linda] was sad.\",\n", + " \"Susan didn't lose to David in the game but [Susan] was sad.\",\n", + " \"Mary didn't lose to David in the game but [Mary] was sad.\",\n", + " \"Linda didn't lose to David in the game but [Linda] was sad.\",\n", + " \"Susan didn't lose to Michael in the game but [Susan] was sad.\",\n", + " \"Mary didn't lose to Michael in the game but [Mary] was sad.\",\n", + " \"Linda didn't lose to Michael in the game but [Linda] was sad.\",\n", + " \"Susan didn't lose to John in the game but [John] wasn't sad.\",\n", + " \"Mary didn't lose to John in the game but [John] wasn't sad.\",\n", + " \"Linda didn't lose to John in the game but [John] wasn't sad.\",\n", + " \"Susan didn't lose to David in the game but [David] wasn't sad.\",\n", + " \"Mary didn't lose to David in the game but [David] wasn't sad.\",\n", + " \"Linda didn't lose to David in the game but [David] wasn't sad.\",\n", + " \"Susan didn't lose to Michael in the game but [Michael] wasn't sad.\",\n", + " \"Mary didn't lose to Michael in the game but [Michael] wasn't sad.\",\n", + " \"Linda didn't lose to Michael in the game but [Michael] wasn't sad.\",\n", + " \"Susan didn't lose to John in the game but [Susan] wasn't happy.\",\n", + " \"Mary didn't lose to John in the game but [Mary] wasn't happy.\",\n", + " \"Linda didn't lose to John in the game but [Linda] wasn't happy.\",\n", + " \"Susan didn't lose to David in the game but [Susan] wasn't happy.\",\n", + " \"Mary didn't lose to David in the game but [Mary] wasn't happy.\",\n", + " \"Linda didn't lose to David in the game but [Linda] wasn't happy.\",\n", + " \"Susan didn't lose to Michael in the game but [Susan] wasn't happy.\",\n", + " \"Mary didn't lose to Michael in the game but [Mary] wasn't happy.\",\n", + " \"Linda didn't lose to Michael in the game but [Linda] wasn't happy.\"]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "causal_sentences\n", + "turning_sentences\n", + "# substituted_sentences" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "examples = [(2,\n", + " \"The trophy doesn't fit into the brown suitcase because [it] is too large.\",\n", + " 'fit into:large/small'),\n", + " (4,\n", + " 'Joan made sure to thank Susan for all the help [she] had recieved.',\n", + " 'thank:receive/give'),\n", + " (10,\n", + " 'The delivery truck zoomed by the school bus because [it] was going so fast.',\n", + " 'zoom by:fast/slow'),\n", + " (12,\n", + " 'Frank felt vindicated when his longtime rival Bill revealed that [he] was the winner of the competition.',\n", + " 'vindicated/crushed:be the winner'),\n", + " (16,\n", + " 'The large ball crashed right through the table because [it] was made of steel.',\n", + " 'crash through:[hard]/[soft]'),\n", + " (18,\n", + " \"John couldn't see the stage with Billy in front of him because [he] is so short.\",\n", + " '[block]:short/tall'),\n", + " (20,\n", + " 'Tom threw his schoolbag down to Ray after [he] reached the top of the stairs.',\n", + " 'down to:top/bottom'),\n", + " (22,\n", + " 'Although they ran at about the same speed, Sue beat Sally because [she] had such a good start.',\n", + " 'beat:good/bad'),\n", + " (26,\n", + " \"Sam's drawing was hung just above Tina's and [it] did look much better with another one below it.\",\n", + " 'above/below'),\n", + " (28,\n", + " 'Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.',\n", + " 'better/worse:study hard'),\n", + " (30,\n", + " 'The firemen arrived after the police because [they] were coming from so far away.',\n", + " 'after/before:far away'),\n", + " (32,\n", + " \"Frank was upset with Tom because the toaster [he] had bought from him didn't work.\",\n", + " 'be upset with:buy from not work/sell not work'),\n", + " (36,\n", + " 'The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.',\n", + " 'above/below:moved first'),\n", + " (38,\n", + " 'Pete envies Martin although [he] is very successful.',\n", + " 'although/because'),\n", + " (42,\n", + " 'I poured water from the bottle into the cup until [it] was empty.',\n", + " 'pour:empty/full'),\n", + " (46,\n", + " \"Sid explained his theory to Mark but [he] couldn't convince him.\",\n", + " 'explain:convince/understand'),\n", + " (48,\n", + " \"Susan knew that Ann's son had been in a car accident, so [she] told her about it.\",\n", + " '?know tell:so/because'),\n", + " (50,\n", + " \"Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.\",\n", + " 'beat:younger/older'),\n", + " (64,\n", + " 'In the middle of the outdoor concert, the rain started falling, but [it] continued until 10.',\n", + " 'but/and'),\n", + " (68,\n", + " 'Ann asked Mary what time the library closes, because [she] had forgotten.',\n", + " 'because/but'),\n", + " (84,\n", + " 'If the con artist has succeeded in fooling Sam, [he] would have gotten a lot of money.',\n", + " 'fool:get/lose'),\n", + " (92,\n", + " 'Alice tried frantically to stop her daughter from chatting at the party, leaving us to wonder why [she] was behaving so strangely.',\n", + " '?stop normal/stop abnormal:strange'),\n", + " (98,\n", + " \"I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] in.\",\n", + " 'put ... into filled with ... :get in/get out'),\n", + " (100,\n", + " 'The dog chased the cat, which ran up a tree. [It] waited at the bottom.',\n", + " 'up:at the bottom/at the top'),\n", + " (106,\n", + " 'John was doing research in the library when he heard a man humming and whistling. [He] was very annoyed.',\n", + " 'hear ... humming and whistling:annoyed/annoying'),\n", + " (108,\n", + " 'John was jogging through the park when he saw a man juggling watermelons. [He] was very impressed.',\n", + " 'see ... juggling watermelons:impressed/impressive'),\n", + " (132,\n", + " 'Jane knocked on the door, and Susan answered it. [She] invited her to come out.',\n", + " 'visit:invite come out/invite come in'),\n", + " (150,\n", + " 'Jackson was greatly influenced by Arnold, though [he] lived two centuries later.',\n", + " 'influence:later/earlier'),\n", + " (160,\n", + " 'The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was too hard to pronounce.',\n", + " 'change:hard/easy'),\n", + " (166,\n", + " 'Fred is the only man still alive who remembers my great-grandfather. [He] is a remarkable man.',\n", + " 'alive:is/was'),\n", + " (170,\n", + " \"In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were defeated within weeks.\",\n", + " 'better equipped and large:defeated/victorious'),\n", + " (186,\n", + " 'When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the minority.',\n", + " 'be full of:minority/majority'),\n", + " (188,\n", + " 'Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make more of [them] .',\n", + " 'like over:more/fewer'),\n", + " (190,\n", + " 'We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply not enough of [them] .',\n", + " 'place on all:not enough/too many'),\n", + " (196,\n", + " \"Steve follows Fred's example in everything. [He] admires him hugely.\",\n", + " 'follow:admire/influence'),\n", + " (198,\n", + " \"The table won't fit through the doorway because [it] is too wide.\",\n", + " 'fit through:wide/narrow'),\n", + " (200,\n", + " 'Grace was happy to trade me her sweater for my jacket. She thinks [it] looks dowdy on her.',\n", + " 'trade:dowdy/great'),\n", + " (202,\n", + " 'John hired Bill to take care of [him] .',\n", + " 'hire/hire oneself to:take care of'),\n", + " (204,\n", + " 'John promised Bill to leave, so an hour later [he] left.',\n", + " 'promise/order'),\n", + " (210,\n", + " \"Jane knocked on Susan's door but [she] did not get an answer.\",\n", + " 'knock:get an answer/answer'),\n", + " (212,\n", + " 'Joe paid the detective after [he] received the final report on the case.',\n", + " 'pay:receive/deliver'),\n", + " (226,\n", + " 'Bill passed the half-empty plate to John because [he] was full.',\n", + " 'pass the plate:full/hungry'),\n", + " (252,\n", + " 'George got free tickets to the play, but he gave them to Eric, even though [he] was particularly eager to see it.',\n", + " 'even though/because/not'),\n", + " (255,\n", + " \"Jane gave Joan candy because [she] wasn't hungry.\",\n", + " 'give:not hungry/hungry'),\n", + " (259,\n", + " 'James asked Robert for a favor but [he] was refused.',\n", + " 'ask for a favor:refuse/be refused`'),\n", + " (261,\n", + " 'Kirilov ceded the presidency to Shatov because [he] was less popular.',\n", + " 'cede:less popular/more popular'),\n", + " (263,\n", + " 'Emma did not pass the ball to Janie although [she] saw that she was open.',\n", + " 'not pass although:see open/open')]" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "47" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(examples)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untitled_likunlin-Copy1.ipynb b/Untitled_likunlin-Copy1.ipynb new file mode 100644 index 000000000000..083d764b886b --- /dev/null +++ b/Untitled_likunlin-Copy1.ipynb @@ -0,0 +1,816 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = 'all'" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import json\n", + "\n", + "import numpy as np\n", + "import math\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from pylab import rcParams\n", + "\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig\n", + "from examples.extract_features import *" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/03/2019 16:37:32 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at /home/xd/.pytorch_pretrained_bert/26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084\n", + "01/03/2019 16:37:32 - INFO - pytorch_pretrained_bert.modeling - loading archive file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/\n", + "01/03/2019 16:37:32 - INFO - pytorch_pretrained_bert.modeling - Model config {\n", + " \"attention_probs_dropout_prob\": 0.1,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.1,\n", + " \"hidden_size\": 768,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"max_position_embeddings\": 512,\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 12,\n", + " \"type_vocab_size\": 2,\n", + " \"vocab_size\": 30522\n", + "}\n", + "\n" + ] + } + ], + "source": [ + "class Args:\n", + " def __init__(self):\n", + " pass\n", + " \n", + "args = Args()\n", + "args.no_cuda = False\n", + "\n", + "CONFIG_NAME = 'bert_config.json'\n", + "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n", + "config_file = os.path.join(BERT_DIR, CONFIG_NAME)\n", + "config = BertConfig.from_json_file(config_file)\n", + "\n", + "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n", + "model = BertForPreTraining.from_pretrained(BERT_DIR)\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() and not args.no_cuda else \"cpu\")\n", + "_ = model.to(device)\n", + "_ = model.eval()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "def convert_text_to_examples(text):\n", + " examples = []\n", + " unique_id = 0\n", + " if True:\n", + " for line in text:\n", + " line = line.strip()\n", + " text_a = None\n", + " text_b = None\n", + " m = re.match(r\"^(.*) \\|\\|\\| (.*)$\", line)\n", + " if m is None:\n", + " text_a = line\n", + " else:\n", + " text_a = m.group(1)\n", + " text_b = m.group(2)\n", + " examples.append(\n", + " InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))\n", + " unique_id += 1\n", + " return examples\n", + "\n", + "def convert_examples_to_features(examples, tokenizer, append_special_tokens=True, replace_mask=True, print_info=False):\n", + " features = []\n", + " for (ex_index, example) in enumerate(examples):\n", + " tokens_a = tokenizer.tokenize(example.text_a)\n", + " tokens_b = None\n", + " if example.text_b:\n", + " tokens_b = tokenizer.tokenize(example.text_b)\n", + "\n", + " tokens = []\n", + " input_type_ids = []\n", + " if append_special_tokens:\n", + " tokens.append(\"[CLS]\")\n", + " input_type_ids.append(0)\n", + " for token in tokens_a:\n", + " if replace_mask and token == '_': # XD\n", + " token = \"[MASK]\"\n", + " tokens.append(token)\n", + " input_type_ids.append(0)\n", + " if append_special_tokens:\n", + " tokens.append(\"[SEP]\")\n", + " input_type_ids.append(0)\n", + "\n", + " if tokens_b:\n", + " for token in tokens_b:\n", + " if replace_mask and token == '_': # XD\n", + " token = \"[MASK]\"\n", + " tokens.append(token)\n", + " input_type_ids.append(1)\n", + " if append_special_tokens:\n", + " tokens.append(\"[SEP]\")\n", + " input_type_ids.append(1)\n", + "\n", + " input_ids = tokenizer.convert_tokens_to_ids(tokens)\n", + " input_mask = [1] * len(input_ids)\n", + "\n", + " if ex_index < 5:\n", + "# logger.info(\"*** Example ***\")\n", + "# logger.info(\"unique_id: %s\" % (example.unique_id))\n", + " logger.info(\"tokens: %s\" % \" \".join([str(x) for x in tokens]))\n", + "# logger.info(\"input_ids: %s\" % \" \".join([str(x) for x in input_ids]))\n", + "# logger.info(\"input_mask: %s\" % \" \".join([str(x) for x in input_mask]))\n", + "# logger.info(\n", + "# \"input_type_ids: %s\" % \" \".join([str(x) for x in input_type_ids]))\n", + " \n", + " features.append(\n", + " InputFeatures(\n", + " unique_id=example.unique_id,\n", + " tokens=tokens,\n", + " input_ids=input_ids,\n", + " input_mask=input_mask,\n", + " input_type_ids=input_type_ids))\n", + " return features\n", + "\n", + "def copy_and_mask_feature(feature, masked_tokens=None):\n", + " import copy\n", + " tokens = feature.tokens\n", + " masked_positions = [tokens.index(t) for t in masked_tokens if t in tokens] \\\n", + " if masked_tokens is not None else range(len(tokens))\n", + " assert len(masked_positions) > 0\n", + " masked_feature_copies = []\n", + " for masked_pos in masked_positions:\n", + " feature_copy = copy.deepcopy(feature)\n", + " feature_copy.input_ids[masked_pos] = tokenizer.vocab[\"[MASK]\"]\n", + " masked_feature_copies.append(feature_copy)\n", + " return masked_feature_copies, masked_positions" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def show_lm_probs(tokens, input_ids, probs, topk=5, firstk=20):\n", + " def print_pair(token, prob, end_str='', hit_mark=' '):\n", + " if i < firstk:\n", + " # token = token.replace('', '').replace('\\n', '/n')\n", + " print('{}{: >3} | {: <12}'.format(hit_mark, int(round(prob*100)), token), end=end_str)\n", + " \n", + " ret = None\n", + " for i in range(len(tokens)):\n", + " ind_ = input_ids[i].item() if input_ids is not None else tokenizer.vocab[tokens[i]]\n", + " prob_ = probs[i][ind_].item()\n", + " print_pair(tokens[i], prob_, end_str='\\t')\n", + " values, indices = probs[i].topk(topk)\n", + " top_pairs = []\n", + " for j in range(topk):\n", + " ind, prob = indices[j].item(), values[j].item()\n", + " hit_mark = '*' if ind == ind_ else ' '\n", + " token = tokenizer.ids_to_tokens[ind]\n", + " print_pair(token, prob, hit_mark=hit_mark, end_str='' if j < topk - 1 else '\\n')\n", + " top_pairs.append((token, prob))\n", + " if tokens[i] == \"[MASK]\":\n", + " ret = top_pairs\n", + " return ret" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import colored\n", + "from colored import stylize\n", + "\n", + "def show_abnormals(tokens, probs, show_suggestions=False):\n", + " def gap2color(gap):\n", + " if gap <= 5:\n", + " return 'yellow_1'\n", + " elif gap <= 10:\n", + " return 'orange_1'\n", + " else:\n", + " return 'red_1'\n", + " \n", + " def print_token(token, suggestion, gap):\n", + " if gap == 0:\n", + " print(stylize(token + ' ', colored.fg('white') + colored.bg('black')), end='')\n", + " else:\n", + " print(stylize(token, colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n", + " if show_suggestions and gap > 5:\n", + " print(stylize('/' + suggestion + ' ', colored.fg('green' if gap > 10 else 'cyan') + colored.bg('black')), end='')\n", + " else:\n", + " print(stylize(' ', colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n", + " # print('/' + suggestion, end=' ')\n", + " # print('%.2f' % gap, end=' ')\n", + " \n", + " avg_gap = 0.\n", + " for i in range(1, len(tokens) - 1): # skip first [CLS] and last [SEP]\n", + " ind_ = tokenizer.vocab[tokens[i]]\n", + " prob_ = probs[i][ind_].item()\n", + " top_prob = probs[i].max().item()\n", + " top_ind = probs[i].argmax().item()\n", + " gap = math.log(top_prob) - math.log(prob_)\n", + " suggestion = tokenizer.ids_to_tokens[top_ind]\n", + " print_token(tokens[i], suggestion, gap)\n", + " avg_gap += gap\n", + " avg_gap /= (len(tokens) - 2)\n", + " print()\n", + " print(avg_gap)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "analyzed_cache = {}\n", + "\n", + "def analyze_text(text, masked_tokens=None, show_suggestions=False, show_firstk_probs=20):\n", + " if text[0] in analyzed_cache:\n", + " features, mlm_probs = analyzed_cache[text[0]]\n", + " given_mask = \"[MASK]\" in features[0].tokens\n", + " tokens = features[0].tokens\n", + " else:\n", + " examples = convert_text_to_examples(text)\n", + " features = convert_examples_to_features(examples, tokenizer, print_info=False)\n", + " given_mask = \"[MASK]\" in features[0].tokens\n", + " if not given_mask or masked_tokens is not None:\n", + " assert len(features) == 1\n", + " features, masked_positions = copy_and_mask_feature(features[0], masked_tokens=masked_tokens)\n", + "\n", + " input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n", + " input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long)\n", + " input_ids = input_ids.to(device)\n", + " input_type_ids = input_type_ids.to(device)\n", + "\n", + " mlm_logits, _ = model(input_ids, input_type_ids)\n", + " mlm_probs = F.softmax(mlm_logits, dim=-1)\n", + "\n", + " tokens = features[0].tokens\n", + " if not given_mask or masked_tokens is not None:\n", + " bsz, seq_len, vocab_size = mlm_probs.size()\n", + " assert bsz == len(masked_positions)\n", + " # reduced_mlm_probs = torch.Tensor(1, seq_len, vocab_size)\n", + " # for i in range(seq_len):\n", + " # reduced_mlm_probs[0, i] = mlm_probs[i, i]\n", + " reduced_mlm_probs = torch.Tensor(1, len(masked_positions), vocab_size)\n", + " for i, pos in enumerate(masked_positions):\n", + " reduced_mlm_probs[0, i] = mlm_probs[i, pos]\n", + " mlm_probs = reduced_mlm_probs\n", + " tokens = [tokens[i] for i in masked_positions]\n", + " \n", + " analyzed_cache[text[0]] = (features, mlm_probs)\n", + " \n", + " top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=show_firstk_probs)\n", + " if not given_mask:\n", + " show_abnormals(tokens, mlm_probs[0], show_suggestions=show_suggestions)\n", + " return top_pairs" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/03/2019 17:13:21 - INFO - examples.extract_features - tokens: [CLS] what ingredients account for the marvelous function of a dream ? [SEP]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 | [CLS] \t 3 | . 1 | the 1 | , 1 | ) 1 | \" \n", + " 35 | what \t* 35 | what 25 | do 9 | can 7 | could 5 | would \n", + " 0 | ingredients \t 51 | could 23 | would 13 | can 8 | might 2 | may \n", + " 0 | account \t 32 | were 26 | are 7 | remained 6 | existed 6 | exist \n", + " 100 | for \t*100 | for 0 | to 0 | of 0 | up 0 | all \n", + " 98 | the \t* 98 | the 2 | this 0 | a 0 | that 0 | such \n", + " 0 | marvelous \t 5 | biological 5 | normal 4 | cognitive 2 | specific 2 | physiological\n", + " 0 | function \t 21 | ##ness 8 | beauty 5 | quality 5 | nature 4 | power \n", + " 91 | of \t* 91 | of 8 | in 0 | within 0 | as 0 | during \n", + " 14 | a \t 55 | the 16 | this * 14 | a 4 | my 3 | his \n", + " 0 | dream \t 3 | heart 3 | plant 3 | soul 2 | brain 2 | body \n", + " 98 | ? \t* 98 | ? 2 | . 0 | ; 0 | ! 0 | | \n", + " 0 | [SEP] \t 13 | what 12 | \" 7 | they 4 | and 4 | ' \n", + "\u001b[38;5;15m\u001b[48;5;0mwhat \u001b[0m\u001b[38;5;196m\u001b[48;5;0mingredients\u001b[0m\u001b[38;5;196m\u001b[48;5;0m \u001b[0m\u001b[38;5;226m\u001b[48;5;0maccount\u001b[0m\u001b[38;5;226m\u001b[48;5;0m \u001b[0m\u001b[38;5;15m\u001b[48;5;0mfor \u001b[0m\u001b[38;5;15m\u001b[48;5;0mthe \u001b[0m\u001b[38;5;214m\u001b[48;5;0mmarvelous\u001b[0m\u001b[38;5;214m\u001b[48;5;0m \u001b[0m\u001b[38;5;214m\u001b[48;5;0mfunction\u001b[0m\u001b[38;5;214m\u001b[48;5;0m \u001b[0m\u001b[38;5;15m\u001b[48;5;0mof \u001b[0m\u001b[38;5;226m\u001b[48;5;0ma\u001b[0m\u001b[38;5;226m\u001b[48;5;0m \u001b[0m\u001b[38;5;226m\u001b[48;5;0mdream\u001b[0m\u001b[38;5;226m\u001b[48;5;0m \u001b[0m\u001b[38;5;15m\u001b[48;5;0m? \u001b[0m\n", + "3.421217077676471\n" + ] + } + ], + "source": [ + "# text = [\"Who was Jim Henson? Jim Henson _ a puppeteer.\"]\n", + "text = [\"What ingredients account for the marvelous function of a dream?\"]\n", + "# text = [\"Last week I went to the theatre. I had a very good seat. The play was very interesting. But I didn't enjoy it. A young man and a young woman were sitting behind me. They were talking loudly. I got very angry. I couldn't hear a word. I turned round. I looked at the man angrily. They didn't pay any attention.In the end, I couldn't bear it. I turned round again. 'I can't hear a word!' I said angrily. 'It's none of your business,' the young man said rudely. 'This is a private conversation!'\"]\n", + "# text = [\"After the outbreak of the disease, the Ministry of Agriculture and rural areas immediately sent a supervision team to the local. Local Emergency Response Mechanism has been activated in accordance with the requirements, to take blockade, culling, harmless treatment, disinfection and other treatment measures to all disease and culling of pigs for harmless treatment. At the same time, all live pigs and their products are prohibited from transferring out of the blockade area, and live pigs are not allowed to be transported into the blockade area. At present, all the above measures have been implemented.\"]\n", + "# text = [\"Early critics of Emily Dickinson's poetry mistook for simplemindedness the surface of artlessness that in fact she constructed with such innocence.\"]\n", + "analyze_text(text, show_firstk_probs=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/03/2019 17:10:45 - INFO - examples.extract_features - tokens: [CLS] the trophy doesn ' t fit into the brown suitcase because the [MASK] is too large . [SEP]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 | [CLS] \t 2 | . 1 | ) 1 | the 1 | , 1 | \" \n", + " 100 | the \t*100 | the 0 | his 0 | a 0 | its 0 | her \n", + " 97 | trophy \t* 97 | trophy 0 | cup 0 | prize 0 | trophies 0 | competition \n", + " 100 | doesn \t*100 | doesn 0 | can 0 | does 0 | won 0 | didn \n", + " 100 | ' \t*100 | ' 0 | t 0 | \" 0 | = 0 | ` \n", + " 100 | t \t*100 | t 0 | not 0 | s 0 | n 0 | to \n", + " 100 | fit \t*100 | fit 0 | fits 0 | sit 0 | get 0 | fitting \n", + " 100 | into \t*100 | into 0 | in 0 | inside 0 | onto 0 | within \n", + " 100 | the \t*100 | the 0 | her 0 | his 0 | a 0 | my \n", + " 100 | brown \t*100 | brown 0 | black 0 | green 0 | blue 0 | plastic \n", + " 95 | suitcase \t* 95 | suitcase 3 | bag 1 | luggage 0 | backpack 0 | trunk \n", + " 100 | because \t*100 | because 0 | as 0 | since 0 | due 0 | . \n", + " 100 | the \t*100 | the 0 | its 0 | his 0 | it 0 | her \n", + " 0 | [MASK] \t 21 | suitcase 19 | bag 6 | box 2 | luggage 2 | case \n", + " 99 | is \t* 99 | is 1 | was 0 | being 0 | has 0 | it \n", + " 100 | too \t*100 | too 0 | very 0 | extra 0 | overly 0 | more \n", + " 87 | large \t* 87 | large 11 | big 1 | small 1 | huge 0 | larger \n", + " 100 | . \t*100 | . 0 | ; 0 | , 0 | ! 0 | ' \n", + " 0 | [SEP] \t 35 | . 8 | ) 5 | , 4 | ( 3 | it \n" + ] + } + ], + "source": [ + "text = [\"The trophy doesn't fit into the brown suitcase because the _ is too large.\"]\n", + "# text = [\"Mary beat John in the match because _ was very strong.\"]\n", + "features = convert_examples_to_features(convert_text_to_examples(text), tokenizer, print_info=False)\n", + "input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long).to(device)\n", + "input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long).to(device)\n", + "mlm_logits, _ = model(input_ids, input_type_ids)\n", + "mlm_probs = F.softmax(mlm_logits, dim=-1)\n", + "tokens = features[0].tokens\n", + "top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.',\n", + " 'Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.']" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "text = [\n", + " # same / different\n", + " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.\",\n", + " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.\",\n", + " \"Tom has yellow hair. Mary has black hair. John has black hair. Mary and _ have the same hair color.\",\n", + " # because / although\n", + " \"John is taller/shorter than Mary because/although _ is older/younger.\",\n", + " \"The red ball is heavier/lighter than the blue ball because/although the _ ball is bigger/smaller.\",\n", + " \"Charles did a lot better/worse than his good friend Nancy on the test because/although _ had/hadn't studied so hard.\",\n", + " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n", + " \"John thought that he would arrive earlier than Susan, but/and indeed _ was the first to arrive.\",\n", + " # reverse\n", + " \"John came then Mary came. They left in reverse order. _ left then _ left.\",\n", + " \"John came after Mary. They left in reverse order. _ left after _ .\",\n", + " \"John came first, then came Mary. They left in reverse order: _ left first, then left _ .\",\n", + " # compare\n", + " \"Though John is tall, Tom is taller than John. So John is _ than Tom.\",\n", + " \"Tom is taller than John. So _ is shorter than _.\",\n", + " # WSC-style: before /after\n", + " \"Mary came before/after John. _ was late/early .\",\n", + " # yes / no\n", + " \"Was Tom taller than Susan? Yes, _ was taller.\",\n", + " # right / wrong, epistemic modality\n", + " \"John said the rain was about to stop. Mary said the rain would continue. Later the rain stopped. _ was wrong.\",\n", + " \n", + " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n", + " \"John thanked Mary because _ had given help to _ . \",\n", + " \"John felt vindicated/crushed when his longtime rival Mary revealed that _ was the winner of the competition.\",\n", + " \"John couldn't see the stage with Mary in front of him because _ is so short/tall.\",\n", + " \"Although they ran at about the same speed, John beat Sally because _ had such a bad start.\",\n", + " \"The fish ate the worm. The _ was hungry/tasty.\",\n", + " \n", + " \"John beat Mary. _ won the game/e winner.\",\n", + "]\n", + "text" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "config" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "with open('WSC_switched_label.json') as f:\n", + " examples = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "with open('WSC_child_problem.json') as f:\n", + " cexamples = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "for ce in cexamples:\n", + " for s in ce['sentences']:\n", + " for a in s['answer0'] + s['answer1']:\n", + " a = a.lower()\n", + " if a not in tokenizer.vocab:\n", + " ce\n", + " print(a, 'not in vocab!!!')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "for ce in cexamples:\n", + " if len(ce['sentences']) > 0:\n", + " e = examples[ce['index']]\n", + " assert ce['index'] == e['index']\n", + " e['score'] = all([s['score'] for s in ce['sentences']])\n", + " assert len(set([s['adjacent_ref'] for s in ce['sentences']])) == 1, 'adjcent_refs are different!'\n", + " e['adjacent_ref'] = ce['sentences'][0]['adjacent_ref']" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import defaultdict\n", + "\n", + "groups = defaultdict(list)\n", + "for e in examples:\n", + " if 'score' in e:\n", + " index = e['index']\n", + " if index < 252:\n", + " if index % 2 == 1:\n", + " index -= 1\n", + " elif index in [252, 253, 254]:\n", + " index = 252\n", + " else:\n", + " if index % 2 == 0:\n", + " index -= 1\n", + " groups[index].append(e)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(2, 'fit into:large/small', False),\n", + " (4, 'thank:receive/give', False),\n", + " (6, 'call:successful available', True),\n", + " (8, 'ask:repeat answer', False),\n", + " (10, 'zoom by:fast/slow', False),\n", + " (12, 'vindicated/crushed:be the winner', False),\n", + " (14, 'lift:weak heavy', False),\n", + " (16, 'crash through:[hard]/[soft]', False),\n", + " (18, '[block]:short/tall', False),\n", + " (20, 'down to:top/bottom', False),\n", + " (22, 'beat:good/bad', False),\n", + " (24, 'roll off:anchored level', False),\n", + " (26, 'above/below', False),\n", + " (28, 'better/worse:study hard', False),\n", + " (30, 'after/before:far away', False),\n", + " (32, 'be upset with:buy from not work/sell not work', True),\n", + " (34, '?yell at comfort:upset', False),\n", + " (36, 'above/below:moved first', False),\n", + " (38, 'although/because', False),\n", + " (40, 'bully:punish rescue', False),\n", + " (42, 'pour:empty/full', False),\n", + " (44, 'know:nosy indiscreet', False),\n", + " (46, 'explain:convince/understand', True),\n", + " (48, '?know tell:so/because', True),\n", + " (50, 'beat:younger/older', False),\n", + " (56, 'clog:cleaned removed', True),\n", + " (58, '?immediately follow:short delayed', False),\n", + " (60, '?between:see see around', True),\n", + " (64, 'but/and', False),\n", + " (66, 'clean:put in the trash put in the drawer', False),\n", + " (68, 'because/but', False),\n", + " (70, 'out of:handy lighter', False),\n", + " (72, 'put:tall high', False),\n", + " (74, 'show:good famous', True),\n", + " (76, 'pay for:generous grateful', False),\n", + " (78, 'but', False),\n", + " (80, 'if', False),\n", + " (82, 'if', False),\n", + " (84, 'fool:get/lose', False),\n", + " (88, 'wait:impatient cautious', False),\n", + " (90, 'give birth:woman baby', True),\n", + " (92, '?stop normal/stop abnormal:strange', False),\n", + " (96, 'eat:hungry tasty', False),\n", + " (98, 'put ... into filled with ... :get in/get out', False),\n", + " (100, 'up:at the bottom/at the top', False),\n", + " (102, 'crash through:removed repaired', False),\n", + " (104, 'stab:taken to the police station taken to the hospital', False),\n", + " (106, 'hear ... humming and whistling:annoyed/annoying', True),\n", + " (108, 'see ... juggling watermelons:impressed/impressive', True),\n", + " (114, 'tell lies: truthful skeptical', True),\n", + " (130, 'but:disappointed', True),\n", + " (132, 'visit:invite come out/invite come in', True),\n", + " (134, 'take classes from:eager known to speak it fluently', False),\n", + " (138, 'cover:out gone', True),\n", + " (144, 'tuck:work sleep', True),\n", + " (150, 'influence:later/earlier', False),\n", + " (152, 'can not cut:thick small', False),\n", + " (154, 'attack:kill guard', False),\n", + " (156, 'attack:bold nervous', False),\n", + " (160, 'change:hard:easy', False),\n", + " (166, 'alive:is/was', False),\n", + " (168, 'infant:twelve years old twelve months old', False),\n", + " (170, 'better equipped and large:defeated/victorious', False),\n", + " (178, 'interview:persistent cooperative', False),\n", + " (186, 'be full of:minority/majority', False),\n", + " (188, 'like over:more/fewer', False),\n", + " (190, 'place on all:not enough/too many', True),\n", + " (192, 'stick:leave have', True),\n", + " (196, 'follow:admire/influence', True),\n", + " (198, 'fit through:wide/narrow', False),\n", + " (200, 'trade:dowdy/great', False),\n", + " (202, 'hire/hire oneself to:take care of', True),\n", + " (204, 'promise/order', False),\n", + " (208, 'mother:education place', True),\n", + " (210, 'knock:get an answer/answer', True),\n", + " (212, 'pay:receive/deliver', False),\n", + " (218, '?', False),\n", + " (220, 'say check:move take', False),\n", + " (222, '?', False),\n", + " (224, 'give a life:drive alone walk', False),\n", + " (226, 'pass the plate:full/hungry', False),\n", + " (228, 'pass:turn over turn next', False),\n", + " (232, 'stretch pat', True),\n", + " (234, 'accept share', False),\n", + " (236, 'speak:break silence break concentration', False),\n", + " (240, 'carry:leg ache leg dangle', True),\n", + " (242, 'carry:in arms in bassinet', False),\n", + " (244, 'hold:against chest against will', True),\n", + " (250, 'stop', False),\n", + " (252, 'even though/because/not', False),\n", + " (255, 'give:not hungry/hungry', False),\n", + " (259, 'ask for a favor:refuse/be refused`', False),\n", + " (261, 'cede:less popular/more popular', False),\n", + " (263, 'not pass although:see open/open', True),\n", + " (271, 'suspect regret', True)]" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def filter_dict(d, keys=['index', 'sentence', 'correct_answer', 'relational_word', 'is_associative', 'score']):\n", + " return {k: d[k] for k in d if k in keys}\n", + "\n", + "# ([[filter_dict(e) for e in eg] for eg in groups.values() if eg[0]['relational_word'] != 'none' and all([e['score'] for e in eg])])# / len([eg for eg in groups.values() if eg[0]['relational_word'] != 'none'])\n", + "[(index, eg[0]['relational_word'], all([e['score'] for e in eg])) for index, eg in groups.items() if eg[0]['relational_word'] != 'none']\n", + "# len([filter_dict(e) for e in examples if 'score' in e and not e['score'] and e['adjacent_ref']])\n", + "# for e in examples:\n", + "# if e['index'] % 2 == 0:\n", + "# print(e['sentence'])" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "179" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(['because' in e['sentence'] for e in examples]) + \\\n", + "sum(['so ' in e['sentence'] for e in examples]) + \\\n", + "sum(['but ' in e['sentence'] for e in examples]) + \\\n", + "sum(['though' in e['sentence'] for e in examples])" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "# with open('WSC_switched_label.json', 'w') as f:\n", + "# json.dump(examples, f)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "vis_attn_topk = 3\n", + "\n", + "def has_chinese_label(labels):\n", + " labels = [label.split('->')[0].strip() for label in labels]\n", + " r = sum([len(label) > 1 for label in labels if label not in ['BOS', 'EOS']]) * 1. / (len(labels) - 1)\n", + " return 0 < r < 0.5 # r == 0 means empty query labels used in self attention\n", + "\n", + "def _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col, color='b'):\n", + " assert len(query_labels) == attn.size(0)\n", + " assert len(key_labels) == attn.size(1)\n", + "\n", + " ax1.set_xlim([-1, 1])\n", + " ax1.set_xticks([])\n", + " ax2 = ax1.twinx()\n", + " nlabels = max(len(key_labels), len(query_labels))\n", + " pos = range(nlabels)\n", + " \n", + " if 'self' in attn_name and col < ncols - 1:\n", + " query_labels = ['' for _ in query_labels]\n", + "\n", + " for ax, labels in [(ax1, key_labels), (ax2, query_labels)]:\n", + " ax.set_yticks(pos)\n", + " if has_chinese_label(labels):\n", + " ax.set_yticklabels(labels, fontproperties=zhfont)\n", + " else:\n", + " ax.set_yticklabels(labels)\n", + " ax.set_ylim([nlabels - 1, 0])\n", + " ax.tick_params(width=0, labelsize='xx-large')\n", + "\n", + " for spine in ax.spines.values():\n", + " spine.set_visible(False)\n", + "\n", + "# mask, attn = filter_attn(attn)\n", + " for qi in range(attn.size(0)):\n", + "# if not mask[qi]:\n", + "# continue\n", + "# for ki in range(attn.size(1)):\n", + " for ki in attn[qi].topk(vis_attn_topk)[1]:\n", + " a = attn[qi, ki]\n", + " ax1.plot((-1, 1), (ki, qi), color, alpha=a)\n", + "# print(attn.mean(dim=0).topk(5)[0])\n", + "# ax1.barh(pos, attn.mean(dim=0).data.cpu().numpy())\n", + "\n", + "def plot_layer_attn(result_tuple, attn_name='dec_self_attns', layer=0, heads=None):\n", + " hypo, nheads, labels_dict = result_tuple\n", + " key_labels, query_labels = labels_dict[attn_name]\n", + " if heads is None:\n", + " heads = range(nheads)\n", + " else:\n", + " nheads = len(heads)\n", + " \n", + " stride = 2 if attn_name == 'dec_enc_attns' else 1\n", + " nlabels = max(len(key_labels), len(query_labels))\n", + " rcParams['figure.figsize'] = 20, int(round(nlabels * stride * nheads / 8 * 1.0))\n", + " \n", + " rows = nheads // ncols * stride\n", + " fig, axes = plt.subplots(rows, ncols)\n", + " \n", + " # for head in range(nheads):\n", + " for head_i, head in enumerate(heads):\n", + " row, col = head_i * stride // ncols, head_i * stride % ncols\n", + " ax1 = axes[row, col]\n", + " attn = hypo[attn_name][layer][head]\n", + " _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col)\n", + " if attn_name == 'dec_enc_attns':\n", + " col = col + 1\n", + " axes[row, col].axis('off') # next subfig acts as blank place holder\n", + " # plt.suptitle('%s with %d heads, Layer %d' % (attn_name, nheads, layer), fontsize=20)\n", + " plt.show() \n", + " \n", + "ncols = 4" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABREAAASVCAYAAAA7VJllAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmYa1d1Jb6OVKNqnqveZL/BfvbzCMaGQMAQMJN/QIcfQxgaks4ADSSdkHRCOiS4M3STTkhCIAmkm8YEMCEMJsFMZjI4BBOwjcE27/lNfnNVvRoklUqz7uk/Vm2fI5WqSle6UklVZ33f/apKJd17de+5++yz9l57K601HBwcHBwcHBwcHBwcHBwcHBwcHBzWQmizT8DBwcHBwcHBwcHBwcHBwcHBwcGhueFIRAcHBwcHBwcHBwcHBwcHBwcHB4d14UhEBwcHBwcHBwcHBwcHBwcHBwcHh3XhSEQHBwcHBwcHBwcHBwcHBwcHBweHdeFIRAcHBwcHBwcHBwcHBwcHBwcHB4d14UhEBwcHBwcHBwcHBwcHBwcHBwcHh3XR1CSiUuo2pZS2trbNPieBUuqsdV7/utnn4+DgUD84W+Tg4NAMcLbIwcGhWeDskYODQ6vB2a1g0NQkooX/uLIV7BeVUgeUUn+nlDqmlEoppRJKqQeVUn+ilJq03ieD5cB6B1FKdSul/uvKPqJKqaWVff+jUuqFJW//1ZVzmgvoOzo4ODQ/nC1ycHBoBjhb5ODg0Cxw9sjBwaHV4OxWDWga5nU9aK0/VvqaUuqVAD4KYBnAxwA8AiAM4EkA3grglQAur/QYKyz0NwHcAOAfAXwIgAZwAMAtAH4OwJetc7pz5XN/XM13cnBwaD04W+Tg4NAMcLbIwcGhWeDskYODQ6vB2a3a0BIkYimUUteDN/ZHAF6otZ4v+f/vAHiHz93+BwBPBfDrWuv3ljnm5OqPODg4bGc4W+Tg4NAMcLbIwcGhWeDskYODQ6vB2S1/aEkSEcAfguf+mtIbDABa60UAv+Nzn5KK+q1y/9RaT/vcn4ODw9aHs0UODg7NAGeLHBwcmgXOHjk4OLQanN3ygVapifgElFLdAF4A4F6t9bEAd31y5ecblFLhAPfr4OCwBeFskYODQzPA2SIHB4dmgbNHDg4OrQZnt/yj5UhEkNHtAPBQwPv9HIAfA/gNAGdXil3+F6XUwaAO8IpXQL/3vdCnTkEXCtCA29zmtmbcPA86kYCenoY+fhz6V37lXe8CgPe/H/o974EG0bK2CE1wjd3mNrf53971Ltqij30M+qUvhQbRsrbozjuhv/Ut6NlZaK03//q6zW1uW3vL5aCTSeholM/s299Oe/Tnfw4Ng5a0R3/2Z9D/8A/Q990H/ZOfcK02Ows9Pw8di0EvLUEvL0OnUtCZDHQ+T18RTXBf3Oa27b55HvSPfgT9lrdAozq0pN3aTLSinLl/5Wc8yJ1qrTNKqWcB+E0ArwHw6pUNSql7AfyC1vp4Lce4/nrge98DFheBpz0NuOIKYHIS6Oqq+fQdHByqhNZAOg0sL5stleLrnsf/JRJ876WXAjfe+MRHW9YWOTg4tCY8jz8//Wn6EStoWVv0pCcBR44ADz0EjI0B+/YB/f0bf87BwaG+KBSAbBbI5cxPvbI8D4WA9nZjj/btK/poS9qj5z4XOHqU3zOZBDIZYGkJiET4XTs6zHtDIUCp4r9Lt3C4+G/7/Q4ODsEhmwXm5oCPfQwYHq56Ny1ptzYTrUgiys3tC3rHWusogN8H8PtKqTEATwPw8wBeDuDzSqknaa0z1e7/t34L+PjH6Szffz8QjZJE3LULmJgAenvdJOPgUG9ks8WE4fKycYTDYaCnh89joUDysKODDiQA3Hwz0GcsT8vaIgcHh9ZDOg3EV6zOzp3Af/kvT/yrZW3Rnj20qefP0yd68EFgaop+USQSyFdwcHDYAJ5XTBZms8YvUoo+UCRi/KG2NiCfB86d43tuuaVody1pj667jsRhOk37CvDvXI4bwO/f2cnvL4Sq/VOuoy6TC6XU+iSjbA4ODpWhUODzmssBd9zBn29+c9W7a0m7tZloRRLxGIAsgOvqeRCt9UUAnwdv7scAvA7ATQDurXafXV3Aa1/LifjIEUa42tuZ9XThAomL0VFG4dta8c44ODQZCgVGlBMJQxiKM6gUn8XRURKHPT18RuNxYGaGzmN7O/fR08PP9BVPLS1rixwcHFoHnkc/IZOhmgFgUFLsElrYFoVCDKDu3EnicHqa/tDCAsnEiQmn1nBwCBJakwC0CcN83vy/rY3PnGTftbWtTnDQGrj3Xi7gga3hG4XDwNVXM5Bx+jRw1VVcjwlRkc3SBmeztFsdHYZUlOujlNmESPS84q1Q4HXPrEEZbEQyuqxGh+0Orc2zqBTwjW8AZ84AL3vZqqxoP2hJu7WZaDmqSmudUkrdDeBFSqn9DUoB/R54k3fWuqPubg7yL3wBePxxYGCAk5DWfADm5gyRODjonGcHh0qhNRfapbJkQVcXnyshDCORYkdseRk4fpyf6ezkAnZhgY70wEC547W2LXJwcGh+5PNmof6P/8hsPQDYu9e8p9VtUWenITMOHCBxeOYMF/ILC1RsjIwUywkdHBwqQz5fnGVYKkvu6ODaRLIMK8mGO3IEOHECGB9f/b9Wtkd9fbRBjz3GLMvdu2mfOjoMAVhKvqZSJFrlfYDJ4gRMJqdkItp+ZzmCUX7P5/lzrazG9UjGcNgRjQ5bE+ITeR6fq6NHgW9/m5nEz3lO9fttZbu1WWg5EnEFt4EddO5QSr1Ia71g/1MpNQjgHVrrd1S6Q6XU9QAuaK1nSl5XAF688udPajrrFUQiwIteBHz5y8x4am8nYTEwwElpepoLhXicE/vAACc2NyE4OBhkMsWEYTJpHLe2NhKFQ0PMcolE1s7uTaX4HCYSfBZ37uT7T53i/i69dN3F621oYVvk4ODQvBCZTjgMfPe7jLYfOAAcPlz27behhW1RTw8XB8vLxm7PznJ7/HHWkh4Z4eaUGg4O5eF5q+sYlsqSe3pMlmG4il6hc3PMiJ6YAHbsWPNtt6FF7dHUFNdfFy7QDg0PG8JOpNyFAt+bz5tNamdLdqJkKGpt3i8QMlEIv/VsmsikS0nGUrKxFKXy6bWk1A4OrQCpX5/LcdxGIuRKPvEJ1lN+9asD4UluQ4varc1AS7piWuv7lVJvBHA7gMdW0kEfARAG01BfDeAigNKb/Bal1AJW42MAngfgj5VSXwLwbwDmAIyBevWnAvik1jqwjj29vcALXgDcfTcwP89JZ2yMmVJDQ5zAFhZIIqbTfE9/PwlF50A7bDfk86tlySK/kclkbMxkGXZ2brzPTIYL1FiMDtXUFJ3FbJaLVq1JIK6XDbwVbJGDg0NzQeTLnkff4MIF4EMfAi6/nPburrtWf6bVbZFS9Ivicdr33l7Km/v7SVosLJiakEND3KohQBwctgq0NpmF2Sw3m6wSWbJkGEpt51qQTgPf/Cb3dfPNwA9+sNa5ta49UorBmkSCwWQpdSOEmxCJnmeIRcAQerkcy1VJyaquLm7hsMkstElBOaadqWiTe5J1GA6vfw/XIhnlvEqJTIFrCuPQ7MjlaHu0NgR9JgN85CMc3697XVF5l6rRynZrM9CydJTW+hNKqQcAvB3ASwC8GUABwGMA3r+yleI31tjdfQA+DaAbwPNX3jcGIAngUQC/CuADQZ4/wOzC5z6XE/L8PIkQrfkg7NnDyPvyMiey7m7+vbjI/w8O8jUHh60GrUkY2lmGIucDOO4HBw1h2N3tz8HJ5YCLF/ksKUU5zugoHaV0mgSiUpQLVkJGbgVb5ODg0Bywa2VJEPHP/oz+wa/+KvDBD6792Va3RW1t/M5S/7GzkyRiJEJbH4txPshkmIEwPMy5wGXTOGwHlNYxlPrOgCGY7CzDoIkfzwO+8x2uSX7mZ1bVQVyFVrZHbW0M2jzyCH3CAwdM6Smti0k2IQWF/JPAs9hyIRSF1BViFygmFaVWpaCUVNzoflaSWViOYCyt1eiawjg0CzyPPlA+zzEnZLzWwJ13suzJK17BhI+g0Mp2q9FoCRJRKTUKAFrrOft1rfURAG/a6PNa69vAFNWN8EcrWyXnNAQy0zWZzcFBRvO+9S12J7zsMk46p07xoZiY4OvpNCedSIS/nzvHv0Xq7Iy3Q6sinV4tSxYnRpzikREjS642+6RQYEbL3IoVGR5m9qJk9qZSfO5CobUlzHMrHx4dHS16fSvYIgcHh82DFAoX+XJ3N197//tps/7rf2W2tGCr2qLubpN53tZmpH4TE5wD5ucNyXjxIsnEkRGSjS5bxmGrQGTJNmkofpFS9E96e02WYSOycn/0IxJq11/PRAcbc3NzGBsbG91K67T+fn7PkyeZDb5rl/EXCwVDpgmBKL/LJnUSQyHT9TmR4CaEiBCK9v0rzVa0Sb1SUtGvzauE7LOPXa5eo2sK49AISCMjoJh4B1je5d//HbjpJuCnfqr6Y2xlfqkRaAkSEUwdhVKqXWud3+jNDcKPYQphnq5lR8PDwE//NB+KY8eAQ4foFBw/ziypyy5jBF5qJfb2cpOMKlvqHIRcwcGhXpCaV7YsWSQWoRAJw4kJk2UYRCF9z+MzMjfHYw0O8rmy9728zCL+bW0kENd6jsbGxuTXtq1oixwcHBqPUvmyZEB/5jPA/fcDr3oV8OQnF39mK9siO+uwv7/49e5u2vNEwkj0ZmYodx4d3Tg7ysGh2SCyZJswtKWn7e0MoNrdkhuNs2dJIu7aBVx77WoiaMUeXdxq67SpKWYRzs7StkhJqVDIEHxCAIq8WUg6kRED/MzgIK9bOs1NFDeSvShEiXxe9ivZj3K8QqEyGXS1sOXT68E1hXGoB8QfKhRM9q49rk+dYkmXXbuAl7605gDKluaX6g2lyz3hTQKl1D4AdrPur+smOWGl1E8DkGppUa31GpVBirDuuU9PA9//PieWQ4foPM/M0Hk4cIALi7k5vpbPc0IaHDTRLYBO9sAAP+PgsJnwvNWyZDt6KRI12bq6gnUctKZkeXaWz0tfHwnK0hqHiQRT4tvbSSCWc9BPnDiBEydOPPH3LbfcEtrKtsjBwaExkFo/StE2if158EHg3e8mefjrv26Ixe1ii7JZ2uaurvL+TCpFfyifNwv6XI7XaXQ0mPpIDg71gF3HUH4XhMMmu1B+bjahEo+zfrvWwPOfzzWGwLZHt9xyyy1o7XVa2fPOZIBHHyWpcdllRlIZChkyT/62yT4h+AoF2il5zc4cTadNlqL8XwhFacxS9kR1ccaifcX9yqDriY2awshWCtcUZnsik+Emz0FpQkc8DnzgA/QNfvEXgUsuWXNX6476LcgvbQqamkTcgtjwYku0b3kZuOIKdop9/HHTJXZ0lL9L10LPo5RndJROdSxGQ+2kzg6NhHTNsgnDVMo4Nh0dhiwUWXI9x2UsRrI9m+WxJifLL0SXlkggdnZyMvIR4W/1OKkz/A4Om4hy8mVZ7M3MAL/3e7SX73wnyy6sgy1riyTw1NdXPjtcAkXSHKu93XRvjEToF63XGMvBod4oFFbXMRS/SJpy2KRhs/nruRzrts/MAM961rqLdmAL26LFReCxx2iLLr3UlFkQIlFrQ3ABq8lEO9AhpFlbm9mH1hwfkqUoEunOTkMoVlLv0D5usxKLpVhLPl2a5VgOGzWEabbv6lAehYJRY0gzotL7ls8DH/sY65S+/OUbypjdXW8AHInYWFR0sU+dYtQrnQb27WPk69QpEh6jo5zAQiE+UDMzpsbb2Bi3dJqy50yG7+vrY8aikzo7BIVsdnUdQzsia2cYSqHvRiCR4DORSnESmphYW94Wi7G2aFcXHWOfKfGtPkE5w+/gsEmw5cudncWlFTIZ4LbbaJt+53eAq67acHdb1hZpzcwDranMWGsRnc2ytEs2SzK2rc0EVHt76TcFURrDwWE9CBFkd0sWwkgy0GzScDNkyX6gNbsvP/ooJczXXbchkbVlbRHAJI8zZ4AdOyhz1rqYBCwUjFRXCJByZKI0UBGpsxCStg9qE4riWwuhWCrvXPPLlMigSzP+aq2v2GisRzCWqx8psLMa15NROzQeEkzNZo2sfy27+JWvAF/7GvD0pwO33rrhnN7ko3lrwJGIjUXFF/vECeDoUU4ge/ZwITE7yyYr3d2UN0t35myWUuiFBRrI8XGSidksHelEgg9qJMLsRCfzcfCDQmG1LDmb5f+UKi9LbjRSKT4Dy8ucWMbHOdbXcoqiUS7SIxESiFU4EK0+QTnD7+CwCbDly93dxQtHrSnVuece4Jd+iR1QKwhubGlbVCiQSGxrW7/eoRCOi4u8tgMDXFQuLPBnfz/JxGYnbhxaA0IE2aSh3Vm3ra2YMGwGWbJfHDsGfO97VEQ97WkV+XYt9g1XYUNbdOwY/ce9e4GhoeJOzfKe0teAYtmuXbtQyEQhGSU70R4rMmdIl1qA40oIRT8B8I1k0EHXV2w0ymU1lpNRl8NGJKPLagwW+bxRrEkt6LWu78MPA5/8JOsgvupVfPY2gLtTDYAjERuLii+21pysTp6kczI1BVxzDSeR48dpFC+5pFjmlE6zg1gsxklocpJSZ8/ja/E4H9r2djrY60X2HbYntKZRL5UlCzo7i2XJ3d2bO4YyGWYeyiJzbIyNitab6BcW+Jz09gK7d1d9/q0+QTnD7+DQQEjJh3zeFAsvtVNf+xrwoQ+RPHzd6yqubbzlbVEmw7koEtmYyMjnqc6QbPShIao4olH+f3CQc0Qjutk6bB2ILNmuY2jLkkvrGLa6b33xInDvvbRVz3gG1xIVYMvbomSSCR4AVWGRSDFpqJQhBW15s6CUTJT/FwprS51t5POGUJRamiL/XC+Laz20qgy6FmxEMq6V1bgewWiPAYe1Ib6QlHLZiAifmQE+/GHek5/7OSo0K4C7Cw2AIxEbC18X2/NYg+PsWU4co6MkEkMhEonxOCd2qc8hWF5mxqJkZU1NmYjZ8jKd6XTaSJ0HBpzUZ7tCitfbsmTbiSmVJTdLFkcux8zcxUWO49FRbhs57tKYqK+PBGINk32rT1DO8Ds4NAjryZcFjz0G/MmfMDj4a79Ge1YhtoUtSiQ4Xw0MVEYAJhLs4qw1icOeHgaQYjHOE0ND3Fqd7HEIHlK7zs4yLJUl26ThViOkk0kSiIuLzEC89NKKP7otbNHcHGvV9/fTjxS/2M5WE3KqVN4ssMnEch2dJeNQ6maWG2OFgiEURR0kAapyTSkqxVaTQVcL+e7rNYTx0xSmNMtxOyKbZVBQa/pC0jBuLaRSwEc+Qh7kJS8Bbryx4mu3RUdlc8GRiI2F74vtecDhw6ZJxNAQa5N0djKb6uxZThYHDqzOWojH+Z5UihljU1Oc9AA+xLEYI/Ra8//iaDtsTRQKxRmGiYRxVJRaTRhuZNw3A4UCI+Tz8/x7eJjZh5WQm7Oz/OzAAOU5NTo+rT5BOcPv4NAArCdfFkSjwO//Pu3xb/4msH+/L/u0LWyR1vRZlKIfU8n1KRRIHCYSXFBLoGlujq+FwwzErlf6wmFrQ+vV3ZJLZck2YVgqNd1qKBQoYT55kmuNK690DedWvUlz7TU9zbrbU1PmfzaRKHUSy8mbBWuRiXbdxPWkzvZ+hFDMZPiaZHl1ddWeKLLVZdDVYqOmMEJAlsN2agojgdRCwRDdG40TrYE772Rd1mc+E3j2s00ZtwqwRa5cc8ORiI1FVRe7UGBh44UFOjh9fcxIjERIAh47xonmkktYC64Ui4skE7NZSjinpgxZKPWGYjEjsxKp81aLrm4naL26jmE6bf7f1bValtzMk5XnkTi8eJG/Dw1xrFcaaZUGRIODLIodwHdt4qtVEZzhd3CoIyqRLwOcg//0TznHv/WtwA03+F7wbRtblMvR55GyGpUilaL9z+fp2wwN0R+am+M82d5OMlGCrA5bF/l8ceMTIWkA0+HbJg2b2S+qB378Y3Y/3bOHJGJvr6+Pt/rV8mWLTpygPdq9mwGKUjJQxo4QSeXkzcBqYq40U61Q4DiVBitrSZ0FnkciUQhFkVbbhGIQ43o7yqCrxXZuCpPJcFPKX4bsd74DfPWrTJK65RYS9j6wzUdcY+BIxMai6oudy3GREY/T6HR1kUjs6TGTWSzGzKy9e1dPVFqThJme5mQ0MEAyUeoLidQ5FqPDrZSROjdjRppDMTKZ1bJkebTb21dnGbYKQaw1yfOLF80CcGLC35i8cIH7GB4ujhjXiFafoJzhd3CoE0Rmtp58WXDHHcBddwGveAXwvOdVRWRtK1uUSnHr7fVHtnoeA6rxOOe/0VEGYpNJzi+ZDO/V6KhTZGwVeF6xJNmuOafU6jqGreIX1QunTwMPPsig8nXX+V60A9vMFsXj7NasNdUt/f1rE4kbyZuB1WRi6fv8SJ3tfQqhmE6brEYhFNdrZuEXpTLoUmJxu8igq0UtTWE2agizGbatUDBlXKRuZ6X3/Phx4FOf4hz9ghcABw/6PrwbXQ2AIxEbi5oudjbLCGEyyYezvR24+mrTsVDkzR0dZO7LOcKeR4d5dpb7GB5mAxbbGc9mKa+ypc7S1dkZ/c1HPl+cYbi8XOxUlBKGrVrvMhrlOM1m+T0mJipuNACAY/f8ee5ndLQqh3g9tPqT4Ay/g0MdIDV/JPNjPef9e98D3v9+4ClPYcHwKm3UtrNFEkwdGPCfhZHJMANR5pWREd6jpSW+nsvR5xkd9SWdcthkiCzZJg0lcwswHZI7Oows2cEgGqU9SqWYoLBvX1X+/razRdPT3ETl1dXFdZaQZLa8txJ5s7xPiLhymXyyH2nus5HU2f5cNmsIRTlPu9Nz0Flt69VX3M4y6FoQdFMYm4AMYo0vxHU2a/wgP/Y2GgU++lHOyc99LtUZVdjrVrdFLQFHIjYWNV/sdJoZieIgKQVcdRWdaYAP3fHjnFz27Fl7UZLPmxpxgCFZ7Ae1UOD+YjHuz0mdGw/PWy1LlnonABc5tizZT6SnWbG0RPlxOs3vMznpW1IDrYFz5zh2x8eLu5gHhBa/yo5EdHAIEpXKlwVnzwL//b8zkPfmN3O+rnJe3Xa2yPNo28Ph6iTIUl8xGuU9Gh5mMFZrEpTz87yPPT30jZwao/mQz6/uliwIh1dnGba6X1RPZDLAffeRRD94ELj88qqDz61+lauyRWfO0GaMjtJfDYfXJhIBQ/wI+bfmyWxAJsq+/EidbdiEonzeJhTrtc7bqL6ik0HXjiCbwpTLclwL0j3c8ziW/Ga65nLAJz7BxkVPfzpw001VlxlxI6cBcCRiYxHIxU4mSSQCZvI4dIh1fuS1EyfoIA8NMaK41mSQyzGKNj9PwzA+zq3USIjUOZmkQejtZX0551wHi3S6WJacSpkJtqNjdZbhVorcJZMkD6Wr+MSEIcf9QGs6dUtL3IePLqd+0OoTlDP8Dg4BwY98GaBdv+02ymvf+lYu2mvIetuWtiib5VzZ3V39tcvlSJxIwGp0lIST1rw3Cwu8p/39zFisttupQ22QrCs7y9CuH1dax3Ar+UX1htZsXHD2LGv7HThA375KbEtblE5TCp5OM2A9MVFM/pUjEiuRN9vvtWX45cg1ycSVTMdQyBCKlUAagEkgDDASVL+ZZNVgvfqKTgZdHwTVFEbGryQ3tbVxfVrNmPniF4EHHiCn8ZSnMLhaJdwoaQAcidhYBHaxEwngJz/hA1wo8OE9dIgRdcH0NMmU9eTNgnSacuhYjA++kC+lxjqbNV2dPY+Ty8AASUVn2P0hl1stS5ZoYDi8mjDcqguYdJrk4dISx974OMnvasaTRIUTCUpL7OchYLT6aHeG38EhAPiRLwN03N/3Pi7c3/hG4ElPqtlObVtblEjw+vf317bIXVoiYag1CRTp1lwokExcXOT7BgaM/NmhPhDJpU0ail8kmVsiSW5vd7LkWnHkCHD0KDNx9+8Hdu2qaXfb1hYtLNCPDYVoz8fGijsrlyMSK5U3CyolEyU70c529NNVXLLJ0mmT4SvZ9X4aY9SC9WTQgCMWG4mNSEapuam1yT4EzP3ZqF6j4MEHga99jdzDjTdSZVnDfXUjogFwJOIGUEr1aK2XA9pdoBc7HgcOH+YDK1GkgweLpZuJBOXN2SyjjJOT6+8zmWQduUSCxmBysjyh43mmq3MuRyMxMMDNOdir4XmrCcNslv9TqliW3NOzPWoxZbOU1EejnEjGxrhAqzaLwPOAU6c4hnfurCmaXgk2ZYIK0B45w+/gUAP8ypcFd90F/NM/sdvgc5/LYEeNC6Bta4tElgwY4q9aFApUZEgmvC1jzuf5v1iM89PQEDeX8VYbtDayZCENJQsK4HNlZxk6WXKwmJ4GHnqIv+/bt75qqUJsa1t0/jwDDpEIfdmBAUMkhsPFsmQblcqbBTaZuJ68tFTqLN3H/dgtybJPp82aJRwu7vTcKGwkg3b1FRsLzzM+UChk5stqmsJMTwP//M8c/zfeyOBqd3dNTWGafqYImF/aFDT9Y6aU+nmllFZKvVAp9YdKqbNKqWWl1FeUUntW3vNWpdRRpVRaKfUDpdQN1ucvUUq9Tyn1iFIqsbLdq5R6UZlj3bOy/4NKqS8qpeIAvqCUetPKOTyjzGduXvnfL9X1QpRBfz9w2WWmq2BPD0nFmRnznt5esvmDg0y3P3q02EkrRSTCrMX9+/ngnj7NSGU8Xvy+UIj7vOQSYMcOHn9hgXUMpJ7ddoXWlKtdvMjr8cgjTM8+coSSkWSS92X3buCKK2gsDx3itdwOxdzzeWa9Hj3KRdnoqCG/q534CwVe61SKkfR6EYi33347lFJw9sjBYfuiUDANrbq6aLMrITceeQT4zGc4Jz/zmbR51ZIizhaZ0ioSpKsF4TCz4CcmeH/PnzfZiaLOuPRS+lnz88DJkyQMXBy+cki3znicMvLpafpJsRh9xrY2ZsSNjDCALaoEaRDnCMTgkEiwLFI+T59p587qCURnizg2JyY4VpNJjulUymQAinS5XFZdOGxIRmmWsh5EqhwKmY7N5QiacJhrs+5ukodC+tiS5Y0gqqiREVNiqK2N9nZ+nuu9WKy4Vnu9INJvyUbu7DTZyHJt83n7SbAqAAAgAElEQVReQ2nsISSqs9PBQsqJFAr0gXp7TaBHxlxvL3mKwUFm546O8ufgIO28JMxkMsDdd/O+XX45bb+oHhcXOVcsLDDhJB7ncZNJkylb7f11/FLtaCUhwP8AkAbwvwDsAPCbAP5ZKXUHgDcA+DsAEQC/A+BOpdR+rXUOwI0AngfgTgCPAxgE8Hrw5t2itf56yXEiAL4G4G4AvwXAA/ApAH+5cpzvlLz/jQCSAP5poy/wjW8AT34yH5qgaglKzcPjx03Dk8ce42QxNcX3tLWRbJyZISn48MMkCtdrVtHXR2InGiXhc+IEH/gdO1bLoiMRbrkcH/p4nPKgzk4ai60udc5mV2cZyoQuE7A4wtXWidgK8DxOBnNz/H1oiIuEWqUR+TwzEDMZErPSrbweSKWe+LWl7dFXvkInTJxXBweHyiBNHJTiHFdp4CMWAz70IT53u3cziHLunP/ji3zogQeeeKmlbdG3vuXjy6+BTIZbUJkxnkcfJpk0KgvbZ8tkzMJZ/r9euZjtCCE3ZLPJEZsMEBLAzUONQ6FAAjGR4MI+n6dfVi0OH37i15a2RadOkVCtdiy2tTEwJEGmcJjEWzjM1woFQxZ6XvHcIRl0kj1YibxZPmNnepXLTFTKEDzyPEr2rx+pcyhk1nuSiZ9O0y9OJk02WleX/4Ya1UK+q9yzUhm03aFd3u9k0NVDMlOl9qHfjt4yPmUd7HnAF77AufQpTyFXsX//+g1h1iLa5b5++MPA29/u62u1tN3aTLQSnVEA8CytdR4AlFJh8CYMAbhKUkKVUosA3g/gRQD+BcAXtdaftneklPprAA8C+G0ApTd5CMCfa63/R8ln7gTwKqXUr2mtMyuvRQC8AsCdWuuSXL3VeOABsumXXUZHVwqCRyL8WS25NDpqMrGGh2lMjx3jw7Zzp3nfxAQJvWPHWE9x1y5DNK4FqQ+0sMCo8dGjJCunplZnzLW3m0iDdHWemaFz0t9vIlitDHEO7E1qhijFezk6agjDrq7NPd9mgNYcP7OzvH79/RyLQRDp+TzHvXQj99vF2Q8uXgS+//0n/mxpe5TJGAkCYMhE2ZwUxMGhGFKrTRaCfjKj8nlmIGazwAtfSBsYiVR+TKk5JJIyrTmHr6ClbVEQ6OzkfRFSr1ZCKhSiv9LVRT9mYYH+Tl+fye4ZH+f9kP/H4/xMJfd1q0EygOzNXrzLNRM55UaNJBzqB62ZFJBMmiB/rcoNi4BsaVuUTDLRYteu6oPbkn21uEhybW6uciJR5MzyPs/beM0khHxpk4y1ZM5CGgoZI5uQ+pXaTinD1N3NY8sclcnwe0uQTWTPjXre16o9acugRWpb+n4ng14bco+zWXPvg6iN+e1v85nbv58ZiHv3VibrX6spzOc/D3z9675JxJa2W5uJVqJ0/rfc4BV8B7zJHy/RlAuTux8AtNZJ+YdSqgtAD6iVvwfAq9c41t+Wee3/AngtgJfBsMIvB9AH4PZKvsBP/RQjXdEoJ6lCgROMMOrt7cWkotQDqAQiwTlzxnRXPnGCr9ndjXp6gKuvphTnzBk6vvv3r//AKsVU9qEhnu/MDKW5Q0MkE0sj/+KADwyYtH4pTt7by9dbQbIrsmS7W7It0+7qorMghGEk4hxjG1KvamaGTkpvL8dpUPc+lyOBmM9TCl6vxZvn8Vn67neLFkYtbY9e/GIjZ7EzRgRSh0QcTj9FuR0cthpEhql1dYXlP/xhPl//+T8D11zD4F65uT2X45xpb3ZWu2SB/PCHRQv/lrZFN9+80Tsqg+eZmoUDA8HsE+A9j0a5b/GFSoNViQR9o2yW42NsrDV8nGohmYWSzWRnhoRCxY1P/NZgc6gvTp7kfbviCo7TfftqIwPOnCl6HlraFu3cSeXV+fNcR1X7DI+Omgy9dJprH0nwEOlxKFSeSAQMyS5dySvxv8qRidKludxnJWvQDgBIgzA/XZ3l2EIWAsVBL1kz2YRio+2BXBsbpbUVbf+3lFTc7r6vNNrxPCMjD+KaHDnCZirj43z2LrvMH4ldGjD8wQ+AT30KuO4636fS0nZrM9FKJOKpkr+jKz9Pr/H6MAAopToAvBNMFb2k5L3lVPQLWutomde/sXIOb4C5yW8EcGblfxvipps4WV+4wEl33z46u3Y6uNSLEUi9JSEW13t4d+ww9eampmj8Tp3iRLR3r3lfOEw58+ws///wwyQSN5KBhkJ82EdG+NmLF+lcS/2acpNOOalzIsHvMTDAYzaLgc5kVmcZimMsLetHRgxp6OQ3a2NpiZmrmQzH7c6dwWYJZrMkED2PdarqtWBLpSjVOX6c4/TKK5/4V0vbI4lEi/MnkAwScSot+XZRpNqvk+ng0Kqwuy9HIv4XQN/6Frebb2btWwnyCTFpE4Z2Vnt3NxeeModK5vaPf8w5+xJjPVraFgWFUIhzjMiQgwoqKWXKkczN0e8RGajYwN5e/j8eZ52wM2f4t92cpVXheau7JdsdYtvb+V2lAYrzi5oX8/NUInV00LZMTdVGIC4u0h5Zz1pL26L+fo7t+XluUqbAr80PhRgwP3eOz4s0a+rtpc0QIjEcLs4cLN2HLW+utMFEKZkotRjXIsPWkzpL5rDfNVpnp1njZbOGTIzFuHV0GEJxs+yFk0FvDJGs53L83kGue+fmWAexp4f8Q61KstOngb/4C/pX73iH74+3tN3aTLTSMrDg83V5xP8KwJtBTfu/AlhY+cwvgMxvKVJlXoPWWiulbgfwe0qpcQAdAH4GwLu11mv0HCpGezuzAMNhTr4nT5J8m5gw3bwAs3iXBUY8zvcDfJBLZdC2E7BnD43fhQusuxQOs5mH5/FBtTE+vlrevGPHxt8jHKbzMTpKomh+nnKe8XFGNssZGZE6j4zQyY9GSUTOz2+O1DmfX00YSiRKFovj44YwbPWFQKOwvMzMw2SS12zPHt7fIJHJkEDUmgRivSTjFy/y2YjHOTavvtos8rFF7JFkkYgNEXJQxrsdpZaouF1A285UdPUVHbYSJBO9UDDFwv0uHE6eBD76UQYMn/pUzsOzs6YouKCzk3OxEIZrNWo5fRr46ldJIA4PP/Fyy9uioNDezvkgnTYL46DQ0UH/SPyxs2dJLvb3m0XlwAD/jkbpE506xUDp6Giw51IvSGMHmzS0F9Nyfe0sQ4fWQDpNwi8cNsqiWnyzVAq4/36OBStJoeVt0eAg7XQ8TjtdKBiS3A86O2mj5+fpP0WjJkNXiESRNgvZV+o/2fJmIbcqLQUgZKIt390os65U6iy+n1+psw35zv393KcQivE4N7EpXV2bG5heSwZdSixuFxm03CutDSkcFDIZyo6VYiOVoaHKuIe1EI8Df/InvAfveEdVdq3l7dZmoZVIxGrxGgD/oLV+q/2iUuoXq9jX7QD+AMDrAHSB3a0/4mcHkQjJvBMn+JDOzvKBmpw02VTSoc7ODMxmTaZiMsmJSeqQtLUVS6CFSDxzhpN7KMSImOcxA9GeQCIRdop8/HE6xUtLlcsb2ttJVI6Pk7Scnjb1P0ZGyhtVpfiA9/fzu9hS554eTuBBZ5V53mpZsk2EdHfzuEIYVtpp08EgnSZ5uLTE8bhzJ69p0NcxneZYVYpjux7krucx83BmxjhO4+N8Tn74w5p33zT2SBxUcRTLOXB2lFpQWjBfpCv2Pp0M2qGVIfKdauXL2Sztx7vfzX1dfTXnyLExM18PDvqrh7ywAPzzP9PhfulLgU98orrvZqFpbFGQ6O422T/9/cEv7qSepQRPl5dJEkpZF8lclFrSi4v0PQYGSCo0Uwa3nXUkPwVS91MyDKvJSHJoDnge8NBDvN9jYxy/ExPV7y+fJ4GYywFPexrXDjWiqWzR0JCpsdrezudXVGF+MDjItcfyMu2QXR+xUiIRKJY3i69W6bMotRH9kIlrSZ3FH6y2pqn4kn19Zp+pFNcNsnYQQrEZAhSV1FfcajJo6eAt5HHQ2aJas7FjNEq/qKeHvES1yGaB//k/Odf+9m8XKTQagaayW5uBJnJn6oYCDGsMAFBKHQTwH/zuSGv9uFLqm2DKaReA72qtH/O7n8FBZv2dP0+jmUhwEh4ZKcouKIJEc6QOkqQZC7FYKoPu6KCB/uEPKaHavZukoueR+beNWzhMYrO/v1jeXCmb39nJjLBkkgulc+dIjk5NcTJey5AK6ZnPG6nzuXM8d5E6V7MASKeLMwyTSSNL7uig0RobM3UMXfZU9chmea+jUV7HyUmO4XpE5aTodSjE8RZEF85yxzh8mD8nJuj0tbcD114bmFPTVPZIJDIS6a7kvtk1rwS2BLpUBm3X2BFSthWdK4ftASkeXql8uVBYXccwmwX+4R9oG1/7Ws73UjKkGruVTLIxSzgMvPzlgQVPmsoWBQWlmNUZj3P+36hMSzVoa+P8sLxMMvHcOfpmduAsFCK5ODjIBY5I+YaG6jdHrgfJJLdJQ7tbssgthTB0ftHWweHDfB7Gxnh/16rJWgk8jxmNsRj9oqGhQE6xqWyRUnxGpc5pb68hVvzKm8fHufYqFPi5+Xm+JpmCdrOV9YjEauXN9udLycS1mq/Y16Gc1Bkw/ly140g+39NjCNt0muvhRMIQWJL53CzYqL6i/C5oJRm0lG4B6nfdv/99JmlcfjmfqwMHqj+O1sDf/i3t2y/8AnDjjcGeawVoKru1GdgOJOLnAPyCUmoZ7JizD8B/BvATAE+qYn8fBvDRld/fVO1JjY7yYZUMvHyek0sqRee0ko5cQsIJpMaSZCuOjlKOee+9ZOeVomw5GmXh0VIZqBBrx47xody5kynGlRo9ybJMJEiQnj5tyMT1Cp23tRkCVbo6X7xYLHVei8CRjAN7k3RzqeEwMWGyDJtpMmpl5PO8t4uLHB9jYxxv9Vp4LC9zPLW1kUCsR5RyZoaTWzjM2odnzvBZuuaaQOs5Np09kvo5EuGuxikUKbMtgy4lFsX5BFbXVnQLVofNRiXyZXmPTRjaWe3SbOvrX+cc9p/+E6PtUrKkGuTzwOc+Rxv46lcH2jSk6WxRUJAmNNIMrV4lL0S5sLBAv2p5mb6M7Ze1tZE0kMZ0QigOD9cnWx8wXb1t0rBUlhyJmCzDZsqOdAgW585xGxrivZ6YqO15OHaM+ztwgMkJAaHpbFE4bIjEVMqop+Jxf/JmUbJcuGA63EajfPbF17KDuDbBV2obapE3C0rJxPU6Oduwpc62X1eL1FlgNw3zPEMoJpMmi9MmFJuNiKukvuJaMuhmIBZFrVcomGzQegS5Tp0CvvMd8gpSk7WWIMSnPsXuzi94AXDrrcGdpw80nd1qNLaD6/DroA795aBO/TB4c65EdTf5MwD+BtSsf7LakwqF+AAVCkZ2Iw/ymTPVLTrCYZIdNuGxdy+zEWMxHi+fJ0F4/ryJBNj1FUXefOoUHYWlJRKDfkib3l7uOxbjcU6e5H537FifjLGlzum06YgYjXLSlowCW5YsxIRdiF4Iw66uzTfOWw3SUXx+npPj0BAdpHouQhIJEogdHSQQgz5WoUDycHaWC/TLL6dken6ejvLYWKCHa0p7JESiSF1qfW5sWbNAnE8hF+2op/1+cUq3Wo0Zh+aFyJeBYilVJlNMGEqHZsBkUUjzk+5ujt0HHgDuuQd45jNJIIr8tVp8+cucR1/yEs7hAaIpbVFQ6Ow03a7r2QhKMg57ejhnTE/TVynNNmxv5/0TYuLiRQbhRkZMXcVqIbVts1lutsROZMl2HUPnF20PxOP096Xeam/v2mqnSnD2LEnEyUl2Ug0QTWmL2tvp40rZgsFBkynnR94s5SuiUdqlpSU+j3amu5BMpcqQcs9qqbw5HK6u+YtS/slEUaLY2YlBSJ3t/UuCjJCudvNRuxN0UF2Cg0Y1MujNqq+YyZj7V9pjIUjE48AXv8g11p49nC/37Kl+f/feSxLx+uuBN7xh0xIRmtJuNRJK23m3DhtCKdUJ4AKAr2itX+Pz46sudirFBYLnGWltJkOHUGQvtRrJfB549FHu94or6Og+8ggngt27i42ZTGzd3TTY09N0vqWTtF9ozQl4eprfqa+PZOJGk6/ItWMxZohJs45wmPsYGuJPIQyr6ZrpUDk8j/fx4kU6LgMDJLrrndm5tERSvbOT2bRBLwSXl+lkp1Kc0HbvpqN89CjH6eWXrzmumsJ1qcEerbJFko0INK6WoZ2tKL8LnAzaoREQ+bI4+JIBIUX1AbOwkblGsrhKMTMD3HYbAytveAMXOn6y+Uvxne8A3/0uCcmnPnXNtzXFUxGkLQoKWtOHkABlve2H1iQGYzHTwKKnp/x7UynOp+k059GRkcqk14XC6ixDceNDoeIahh0dzi/arsjlgPvuo12bmOA42Leveh9qYYF1ELu6gJtuWrOkwpa0RYkESZDeXj6jqRTnDQkkVfKMaW26NXd08O+JCTOP2MShEInA+rX1JPCrtX95c+l+bBluJWSiDSmVIF3ba5U6r3WOdqdnz+N16ew0hGKr2TqbVJTsRUG96yuKctHzTHObes2P+TzwT//EufGGG3ica6+tvv/B4cPAH/8xEzx+7/cYxCuDprBFflAjv7Qp2A6ZiEHj5wAMAfi/Qeysu5sPwsxMcRv1fJ4PXDpdmbx5PbS1UZ75yCPAY4/x90iEv6fTrJkoEXspAhxdaUIeCjEN//x5ZoHt3+9PCqGU6QQ3N8fveeQIo3JTU8YRyWZXy5JlQgqHTbFUyZTq7ORkPjDgJMr1hNamk3YuRydqYiL45jflEIvR6erq4v0POtI0Pc0GR21tlCwPDHBRd/Ikx+u+fS3hlARmj6TWixB6jZC4+ZVB2xJoJ4N2qBaexzlmYYELxFyu2IHu6jKNTyKRyjIeMhngfe/jmHz1q/lzbKx6x/zRR0kgXn31ugRiMyFQ3ygIKEV/ammJ/s1ahF6Qxxse5jw5N8d5MxKhD1RqT6UJXiLB9164QJ9vdNRkrkqXVJs0FL9IMn8iEUMaOlmyA8B59Ec/4niRRIFdu6ofH4kEa6WHQlz816OhXcAI1Bb19tIvSSRMY6y2NtqUSuXNStF3ltr04bBptGITgEKOVZKRGIS8WfYjahS7rl+l5JX4cfWQOtvnKF2CBwaKCUVREQihWC85btCoRAZd+v5a6ytKdqdd97ne88Y3v8m1/1OfyuPv3Vv9GvLCBeAv/5L3+M1vXpNAbFU0nQ+1EVwmYoVQSv0MgIMAbgNwDsAN2v/FK/t+ydZbWOBkZC+U5+fN5FOLJAqg4Xj0UR7v0CEuon7yEx7z6quLJ8FcztRXTCQo95yf53svuYRG3JZBV2qECgUagTNnOAF3dBQbE6W4T8kwFFly6feIRnleWvP9AwP1XyBsN8TjNPyZDO/R5GTjrvHiIolrSXkP0iEoFCjJuXiRRMHBgxz78TiJ9lDIdA1bB5sa5QrAHq35XrvQdzOQdHaHQNnshgClxGIrOI8OjYWdXZhMcu4QKX1PD7PUJMuwu9v/GNIa+OAHge99D3jTmzhfi0y1Gpw9y8j9zp3AK16x4XO4ZW1RUBBfRhqHNAJac06RusFDQ+uPh1iMga1UynQwtf2qtrbiDMNGZYs7tB6OHWMwdM8ezuUjI9V3Y85k2Nk5GmWwdYOSClvWFsk6LZPh9ezsNMGofJ5/V7JGi8fpe/b2ksjp7i4mQoQQFIlypYSe1FIEqpM3l35XOW41mXC2zyb7EP+sHjYrlzNkoqhZOjoModgMfmy1KJVBl2Yr+pFBy3XSmtenEXLwhx8GvvpVrqlERXjwYHX7WlpiBuK5c8Bb3gL81E+te/4tMzsGxC9tChyJWCGUUvcAeAaA+wH8J631o1XsZs2L7XmMWtvdBCUr8eJFTjZByJtTKRKJ4bAhEh99lIb2mmvWdrC1Jvl3+DAN0dgYDZAMH4mIC7EokSApRG9nGKZSppFMOs3P7N5NcrKvr/LvVyiYrs75PM9hYICOuiMSqsfyslnMdHbS+ax2MVwNFhY41np7OS6CvJeJBMdwOs3xJoXBUykS6skkM3VHRjbc1WY7y/egNnu0ruEXIrFZSTk5P5tYFIgM2iYX3WJ7+0Cy6u3NzmqXcSH1wYLIqrn7buCOO4CXvQx40pM4p1W7aF9cBD7+ce7jda+rKPN/S9uioBCPm1IcjbRp+bxpztDZScKgo4Ov21mGIgcUnyYUos8nwbtmtMMOzYeLF1kHfXzc1Hfdu7e6OVBKIZ0/zxqI+/ZtuJ8tbYs8j8+y5/E5FpJfGmxJXfqNntWZGVMLP5ViMNsuZVAtkRiUvLl0f0D1slrx02Q/9Q72Sn3jdJo2FTBy3a6urZGt7VcGLetwyQ5tFLE6MwN88pMMPOzfz/O47rrq7kEuB7znPcCDD9IvevGLN9xPy3j9AfFLmwJHIjYW617sXM7ImgcHjbx5cNDU2enqolNZiyGUDMSODhImQiR2dJBIXG9RlU4zyplMcpE0Omqi/JK1KL/LpCGdLqWws51lWCiQsFpcpFGTffqZYLQ2Eux02tQ/clJnf0ilOP4SCd6z8fH6dY9cCyJ57+sjwRfksS9coHy5vZ21QYUYzeUosV9Y4ERXYQ2zlpmg1sC6tmgz6iPWitLairYUpLQT9FZwJB3oRJcShrJwkALs0kFXCrUXCiYKHwQeewz40z+lzO/lL+cxdu6szklPp0kgptN0lAcHK/pYCzyd66IhTqgQdOFwY4NicuzFRfo6kn0kAVORJdtZhkrx/YuL/OzAQHlJtIODjWSS2dCRCAP92SyJv2r8YK1ZG/rkSUqhDx6saPxteVtUKJCoVYrXWNYquRzXIYApMbAWPI9qLGlmkU5zX3bASLL4/BKJco62LLpW/00kzkD1ZKItdQZM/dZ6klmFgiEUpSyOdB+2G6i1Okpl0HKvABOkAiovzRIEUin6MgDwtKcxi/Cqq6qbe7UGPvQhZjS+6EVUZ6zXpHUFrW6LWgKORGwsNrzYqRQzEkMhOo4iuRoaoiGcneXfExO1SUuXlpiR1d1tiMSHH6aBvfba9bMfPI/dci9cMMSf1DRMp4vrLUgdi+5u081MMhbtTlCpFPcXj/O1ycnqsi4zGS4UlpZoeLq7TW2rViBCNgOZDMeVLLDGxrhgafT1mp2lczYwwEV4UMfP50l8z83xObr88uJi1idOcHG3Ywfrflbo1LT6aNrQFgmRGJQj2miUyqDFsQacDLoVUdr0JJk0tZAA0xRMNluWXNp9OSgyJhoF3vUu7vNtb+Nxpqb81Q0WFArApz/NrJ9XvYo2sEK02JO5Cg1zQrNZBsnE/6gHtC7ulpzLmYVzoUDfJJfjGJ2cXL+ZSqFAxUYsxr+Hhri1sjzPoT4oFIB//3f6cwcO0JfesaPiQMQqnD5Nv2lwkEHXCsspbQtblM3yuWxvL/aVS+XN3d1r+03pNGWZvb0muDU5WfxsC5EogVw/RGKQ8mZ7n+JD+W2+Imi01FngeYZQlHW11OPu7t56CSeFghmLoVBx45l6d4PWGvjsZzm+n/c8zl+7dhnll1/8y7+wvMsNNwCvfW3FKo9Wt0UtAUciNhYVXeylJRIeXV0kVCS6NTTEh3N6mkZwcLA2sicaZRZFby+dhGSSRKJSzEi0nQat+X9bljwzwwWPUpRL7NxpMgztyTOTIUkojVukJgNgihQLuVgomFT/zk4uyKpxggoFOlGxGI1oW5uROjsHnMjnSdxJzabRUY6nzbg+09N0yoaGeM+DciZEvpzJUL68a5f5n9aMBp85w+996aW+Fv+tPkFVZIvEERWHsdWIxFKUFv4W6Q9Q7Mw6GfTmI5stJgylkyBAG2UThusVB5eglsh4gnKYCwVmID7+OPBbv8UF5eAgbVg1+NKXWJP11lsZ2POBVh+lDXVCl5c5Jvr7gyGTpfmTTRoKwuHyWYapFH28fJ7nMTS0/rjM5Tg/isx5eJhjzQU+HAQ//jF95yuvpN/b31/s7/jB9DSzENvbmYHow6ZtG1uUStF37u5efX1knRMOmzr35bC4SAXM0BDnOFEA2X5HLURi0PJmQRBkItB4qbPA8zgHCKEo18fu9NzKvl8mw03UGJI00ahu0N/5DgMaN9/M+xuJMAuxmn3edx/rTe/eDfzH/8iyChWihe9g68CRiI1FRRdbOuJGo5yABgZILHoeJ5u2NjqgsRiN3eRk9WnZCwt0FgYHmaElRGI6TWIQoNOdTBbXPxSyMBymw5FO8zwqkaDaGSVCLtodWDs7aXhiMe5rcJAR1fUi9usdK5nktUyluD/p6twCHebqgkKB42d+ntdneJjZh5sllbpwgeNweHjDot2+cP48pTgdHSTJS8ePNPjp6iKB6DPNvtUnqIoNv90hcCsQiaUora1YKoMulUJvte/fDCgUVsuSJXtLJF82YViJ7ZbMg6Dly4I77mAtxF/+ZS7W29urD4Dcdx/wr/8KPP3p3Hyi1UdkQ51QaXiiNf0AP/fL8+irlNYxBLgfmyzcSKrnefRLRAFgd2VeC5kM5+7lZdojad7jbNL2xunTLMmyb58Zj/v3V0fGLC4yuSCbZUajT5+s1UeiL1uUSNCW9PWt9i8rkTdrTT81m+WzHIsxqaOUlKyFSASClzfLuduNPmohE8tJncXnqjekW7FkKUp2pN3puVXsa6Fggq1SB3KjGpqlUmibEqqmG/Tx48wcvOoqrtuTSdZBrMb/OnqUdRC7uoA3vAG4/npfY6xF7lprw5GIjUXFFzufNx2I+/roKMZifNAHBzkhJRJG3jw+XlGNgLK4cMHURBwfJ6Hz2GM0SJddxtfsOoalk6HWdGJmZvj/Awf8GwwxfjaxmM9zgp6fp+EYHWU22chIdann2awpWq41DdPgIM+5VSaJWuB5vJZzc7zeg4O8t5uVxi8OVDTKe1ttI4JS5POcfObnSUxefvlqZ2R+nmPW89jBcGzM92FafcT4Mvyl9Xm2MkRuY5OLdo2Z0tqKLrPZH6TIt00Yiupp8GEAACAASURBVLwIMPVzbVmyX/tcL/my4L77gA98ALjlFuBnfoZzy86d1R3n8GHgrruYQXTrrVWdzrayRUFAfIuOjrX9JpEl21mGdoChNMOw2jEmxGA2S1+kEjWAZDJKJ+fR0eqCrA6tj8VF4P77OQZGRzmu9+6tTq6/vEwyMh5nYHXPHt/z/bazRdEo5zApm2SjEnlzPs9gdns7bdHSEv1Wu1yVnVFYSiRWKke161wH6ccFSSbK98zlGit1to+fzRpCUYhXu9NzM/q/QoRKGbFafJ716ituJINeXGRwdWiIdRBnZrj+qqBR5SrMzADvfjfnuNe8hvvzySu0ui1qCTgSsbHwdbEzGU5QmYwhEqNRQwB1dNDYirx5YIBOxHrGVgrR27JkcWKnp5lNeOWVnGROnqSRuPpq7nsjLC6yvhzAiGi1si5BNms6O587xy2f57WYmuI52TUWK13Me56ROudyNLbSiGUrEgJa897MzprrNzFRXd2uIM/p3Dneg/Hxqki8spBan9ksHekdO1a/Jx4HTp3i2Nq1q+rsoVafoHzZItuJ3Q5EYinsSLmQi2vJoLfj9VkPmcxqWXJpOQt7q9UGS1fGoOXLgrNngT/8Qy6yf+VXaHPGxqoL4p0/z+6Fk5Osg1jld99WtigoiBqip4eLk9I6hqWy5NIswyAXtVpzLoxGud/h4cpIweVl+m6ZjOn8XEutbIfWQibDgEZbG2XHs7P0p0ZHq9vX0aMcT1IfuooA87azRVoz8UKyCctds43kzYkESZPBQSO1LQ3wl6tRXQ2RWA95s+y79HxqsZGlUmcpDdFI38omFOU8bEKxGdaLEjD1PKO4CJpwLSUVy8mg83n6Mskk8JKXkBgfH2dGtF8sL7NUzLlzbFb3jGdUVdas1W1RS8CRiI2F74u9vEznUms6lb29JIQKBSPJ1ZqZVdFosbxZZMM2YWgv4Do6ijMMFxeZlTg5yYy/bJZ1VtJp4NChykjBTIbFmJeXSVTt3h1sDarTp7mIS6f5Xfv6jJRbIn1CLFaShi7XN5nke3t7aay2itQ5FqNzks3ymtTakCcISC3CpSWOtWqiVOVw7hzrk3V2Ur5cblGfSvE98TiPvWNH1aUAWn2C8m2LgqqDs1WwngzaluNsJxl0Pr9alizXJRRaLUsOMgva84yUpx7yZYD7v+02znO/+7v8fr291QVBYjF2L+zoYCfmGhp9tPrIargTKtku8/O8pzbZLF1DbdKwUbYulyOJk07znEZHK5ufRLEhDVtGRzc3SOhQf2gN/OAH9KOuv54EopRm8YtCgQTixYv0x/bsqVrZtC1tkefxufU8PnvlssA2kjdfvGj8UinlNDFRbHtsIlGO4ZdIBOojb7bPMUgyUTLCbfKzUVJnG7mcIRQlo1Mkw/VQO2wEWd/ncsa3aiSpWUoqfulLtCG33mpKdFx3nf+AWz4PvPe9LKv2ohexvEuVtV1b3Ra1BByJ2FhUdbFjMUaqwmGSZt3dJAxzORKJ4ixGo8weTCZN2rwdxbEJw56e8s7pqVPMSNy1i/KsXI5EYjLJDMVKCB8hiaanOVkeOBCsQ5vPkxiTSbu3l9dFCvHbtbS6uoobt6y1aBWps9SelKY2vb2tufiXyKYskCYmmkPu5HkcG4kEMwCHh2vfZy7HyWthgQ7cgQNrO3GPP06yfGSEx6+w42A5tOCoKEJVtmir10esBRLlt4lFWwpS2g26GaLYtUDqzdqbXdtWbK9s9awtlMsZSXS9HHqtgb/+a+BHPwJ++7f5nZRiIMIvyZTJkEBMJtltsEY72OpPYV2dUJGo2VmG4heJtL6jg3NHLbLkILG0xPlMawY1K6ndKNmM8/P8fr295js5bD0cOcKg+tVXcwznclQA+Q2Kak0F0ews1wU7dlSXybiCbWuL8nmuSaT0Urk5wZY3d3SYOUT+d/Ysf05M8Dnu7FwdoAqKSKyXvNnef5BkIlDsVzVa6lx6HkIoSsZ6W5shFKvtUVAphNDUmmNks5NeHngAuOceEn59fVxjHTpUnLBSSX1FrYHbbzf1oZ/xDCaEVIlWt0UtgZYlEZVSPw/gwwBu0Vp/bZNPp1JUHeWKxTj5dHSYroLnz/P1UIhOYzZL47awYKJYElH0Q+KdOMGo2CWXMCqWzzMqkEhQMlFp1kU0yn1pTWlpEISRjWyWROXCAidBkcWW1lcs7eppS6C7u4sXDZ5HB15I2nDYdHVuhsXFRkileE1krIyP+y8eXy94HknqZJIEdTVdt0sRj9OZzmbpQK9VBNzzDIHY28vrUqPcvuiKtqA9qtrwC5EoEexmGFvNCulubROLpTJom1xs5uxOuxnW8rJxYgE6zaWy5EZ8F6kFJLa6mvqJleLznwc+8xng9a8Hrr2W12Jqyr8D73nApz/NBeMrX8ls/RqxbW3Rqh3p1d2SZaEM8Bmzswzb2/n/pSVDejcLCgUSCTKXj45W3lAoGqVf5Hn0XdbKjnJoTUxPM7i/Zw/9qPl52pFqAsVnzjDgHArRL9q5syYbuq1tUTbLe9HezkD1WtdxLXlzJkNFTSRiVGdSaqnoJMsQiULa+SESAeOTBC1vFtgKlqDIxGaQOtvnIoSiBFGllEpXV/BqC8mEFH9ns33Gc+eAT32K66+bbmIi0yWXMBixkQy6tL7iF78IfO5zJCCf9SxmMtYwJjccZS1on5oOzq2oAkqpEIA/APBDrfXn6n88PmDLy5zw83mz6FxaMpO/SFUlU3FxkQsdn11nsXcvDeOpU3yAx8aAa64BHnmE9eYkUrYRBgcZJT12jNv4eFWFmtdERwf3Nz5OGfaFC4wETkyYroWAWWjaxKI0pJH92MSidG+Wrs4LC7yWPT38Ts0oE8pk6AjG4xwXkuXXLASPjKd0mlmuldTY3Ahnz3KfnZ2cbNYrkH/2LEnwSIT3sNZ6nc2ERtujUMg4BfIsN8s4azZIxqYdmbYdYLsBiLy/tHHLZlxbkSUvLxubacuSIxHOC0IY1jvyXg6NkC8LHn4Y+OxnWdz7pptM06ZqjvnVrzKD6IUvDIRAbCo02hZJ8NSuY2gX+Je5XUjDcr6HSNLSaUMsNgMkMJpM0q85f54+zdDQ+j5UKMSxOTBA3yUapZ84OMjXWz0DersjkWAjxKEhEn6nT/P3agjE2VmOLa25j8nJrTOXN9oWAbQzg4NcL0Sja/uZ3d20M8vLfDa7u01G2cgI70l3N9cc0gDKLnchMmTxIcRPCIUMaVfpOqutzQSGpeZ1kGNAfCA5r0Kh9nI44TA3IVPFj9oMqbOt8hOSTwKuy8um0YkQitVeW6nPKAq7ZsgwX14GvvAFzjXPfCYbsg4Omlr0Mk5tlJKKEuT7wQ+AO+/k+vCGG5iwtJXnqs2wT/WAIxGrQwjAuwB8BEDgNz+bpaMgdQyTSVNsN5vl5NPXxwe1r880R+nrM5H0kRFOOjMzJFDGxip3MpRiMdRCgZmE4TCdz6uuAn7yExoKz1s768tGRwdl0GfPkuRLJIKXN3d1kfhcXqajffYsMyknJzmJi9Ht6jKTuixA7S6hsZj5/tIhtLubjns6zck8keD/BgZ4PTfb4crl6AguLhoyeS0pxWYhnyfZl8lUHy23kcsx+1C6Ol922fqTjZCrUg4gqCYuTYS62qNS2A5saWTRYWOIA2yjtLaiLQuutwxabKE4vamUOb7YTuk8GYnUp3C3X9jy5dJs8qAxNwf83d9xwf7615sFXjWBkO9/nxlET30qA2xbEHWzRZ63uluyneHS3m7KtHR0+HtOuru5z0SC97WZ5s9IhAurxUXOY8kk572NamhKAHhoiGN2cZE+ztDQxkSkQ3Minwceeoj27qqrmFTQ2VlZUL8U0Sh98nye/v3U1JbLVm2oXyTo7jbZzW1ta/u78j9Zf+TzfNYlgWF+3pSUWljgPbbvjzy/hQI3If+qIRJFziw+SD3kzaVkol0Wp1qI3ZeMcjsLfTOkzhJgjURMzcJ02vhX9lq0Uj9KMh0LBX6feqot/KBQAO66i37Yz/4sgxnhMNf360Hut8zPWjPJ6I47yFs8/enMamxr474rkUG3KDbFPgWNrTVltCAKheLGJ8vLpsaCUibjQyId0rHYlucODpp6flqbOgSRCEmbmRlTH29srLKHMBRia/bDh/mAHzzIye3QIRKJx47x3CspeKoUz6O/Hzh+nFkde/cG11BD0NNDQikep3N06hQJtqmp1dmYoZC5poJ8vjhbUbIQ5f3SxCYe533q7DRSg0Y7X4UCidL5ef49MsJ722xOYC7H+5DL1VSs+wnEYiQQ83lOVpOT679fskgBI2N2i6faYTurIoXZQpN7w1EaPbcj7OIYC2kmJK5NLPqpg2R3SxZZskDqNI2OmiBKMz0vjZQvAzzO+9/Pcf62t5mC99UEIo4eBb71Lc6lP/3TwZ/rVoIU07dJw1JZstSekjqGtYwDaaomc3sz1A+2EQpxju/pISE4Pc3zrSSzsK2N8+TwMD8rTfhGRpqn1InDxtCavnMqBTzlKfT/CoXq1D3JJBf9+TzXDyMjzamwaVX09RUTiWsR/qEQn2MhmvJ546eeOcP1y+SkyRidmCh+Xm0iEaiNSBRCTgKZkpUYNOpBJgLGF5Jgk2ziKzU6q00pUzJL/JZ02qjiJFlFCMXS7y+fyWbNvpolSx4A7r2XSTsvfjGDb9I3we85zs0Bf//3/H7Pex4TmHbsKM5YlAxWoLwM2mHzsBUuf7tS6t1KqfNKqZRS6ttKqSfbb1BKtSmlflsp9ahSKq2UmlNK3aGU2lPyvmeuvH7Set9nlFIHrfdcCmCF5sMblVJ6ZbtnoxPVmg7q7CzrBjz8MPDgg8zsO3eOBqa/n07BlVcCT34yf+7ebaRTvb0mJTqfp9OrNZ3B7m4+zImEOWZbGx/I4WG+98yZ4iyX9RAKccHT3c1zFOn0oUNcRJ08SUekUgwMMPuip4dk4smTxY0HgkJ/P8/7kktMNqV0jF4PEhmcmGCHu0OHSEru2mXq92WzvN6JBDMeH3mERWVPnNh4/0HA8+g8HjlC4zs4SLK3GaPI0sgkl+O9qIVA1Jpj7cc/Nl2/NiIQl5ZInkuR+ZGRYCQAG5SRbRl7VCts4lAme4dgIA69lFcYGuKz3ttrJLSZDO2QlK5YWjIF9mWM5nIkvi5cMAGcI0c4D0SjPMbEBIM6V13F+eaSS0zgqpkcNM+jo5rLrS5KXy989KO0YW96E69VNstr43dBMj1N2c/UFDsOBnXeG8zlLWOLJIAXi3F+m57m/BaL8Tu2tXFel4ZY4+N8HiTzMIjrGQ5zTEnR+mZEVxezk4aG6G9ImY5K0NFBX3DPHtqQ2VmO7Xi8rqfsEBAef5zPxuWX0xYmErTdfsm/bJa+dz7P56e/P5j61DbJXwYtY4uCwuAgn7lodOM1V1eXCVzE47yW4+P8nBD+kpFYCqllWEq02GVn/EAIN88rruEcNOS8lTLHCsKHlIQPId1ExWd3VW40bEWHlNuS7PdolOuUhQWjOsznad+zWY6h3t7mIhAPHyZ38eQnc5xOT3Ne9mtHkkngb/6G3/M5zzFrbztQLqVq2ttNsFCC7KJIkdrHQn5XynFY2Hb2KShshcYqD4EFND8CoB/A2wC0A3iK1vqoUkoB+CyAWwHcDuB+ADtX3pcE8CSt9cWVfb4PwCEA9wC4AOBSAL+ysv+rtNazSqkeAP//yvHuBfD3K6c0o7X+6nrn/Jd/CS319vr6jPxYtkoXJoWCmWgkmiET0NISjWV392rSJpWiE+J5NGKVRttzOZKI+TxJNUnVPnGCjv7UFB3TSqE1F7UzMzSsl166sTSnWmjNBfbsLM+/v59Gr9qoq6SoixRaFvHLy/yfZPGMjAQr/dOax5mf5/fo66u80PpmIJslUaE1Fz213N9slmMtHud1vfTSjZ+VdJoLLK05CfX11d7YJ53m83X2LHDrrWsWEG8Je5RMBtfMQOyQjPNmIp62OuzaipmMkSOLJFlkThIgsTvVN6vtKAchdiQi34isgnvvJYl4663A85/P+aqvz38GfTwO/OM/8h783M8F17xjZobk5t13t7Ytmp6GtmXJUr9QfjY6gySR4LPT7M3Ucjn6X+Lv+W2esrzMz2cytAWjo8XKDIfmwfw8g9WTk/TBT56kf++3pmqhwIB6MmnmgV27ap+zo1FmbL/zna1tixBwp3jP4zPmeZUFnyTRRAJlEliZnOS9k3IE5QLyUtfQbpBik4h+7ajWxRmJ9fTr6tHJ2UZpV2dpxNIMWdji20gmqtR27O7mvW6G2oc25uaAT3yChN9LX8rEjs5OJgj5bejzvvdRoXHLLbRD111X+ffVenXjFtnvf/tvwHvf66uxSqvYp6bDViARTwC4TmudWHn9OgAPAPi01vrVSqlXAfgkgJdprf/F+vz1AH4A4M+11u9YeS2itU6WHOdyAD8GcJvW+n+uvNYGssgf0Vr/fKXn/MEPQktLdokADg+b7JJyKc1rQeomyu0ThwDg66lUcXRLkM+TSEynTXZWJcfMZk0txMsuM6TQyZMk6CSC4AfxOLPLRBYdtLzZhufREZub4/GGhjipB2GgCwVTw2RurlhW3tdnumN3dVWXkh6Lcb+5nJG314t0DQKZDAlEgPe1FplMLMYMqkKB46sSGWEux+MXCry/XV0kjv06DKWEcS7He9zRAbzgBWs6yy1hj4IkEcXZBLZk3ZKmhIxNKb2QTJpuyUIcSvRWbI90crRrKzZ74WpbviwS1kaMrccfB/7X/2LWz1vfykh7OMyAmZ/jZ7PAJz/JOeHVrw5ujltcBH75l0kk3n9/a9uiaBS6o8PIkjcbWhvZen9/89uyeJzjQZpj+D3npSXjXwgZ2cz+xXZDKgV873u05095ivGZ9+/3Z7+1pr++tMR9dXSQhKwlwymb5dj5yEeopnr/+1vbFiFgEhHgmmtujr5RpfXKxe9UirbI83ivolG+Pj5ePggoRKJN+tVCJMr517N7s416k4kidbbl35shdS4HqcmbSpnrDRT7cJs9P2YyrF2YywGvex1LVS0tAdde62/O0Br42MeAf/s34OabmYR09dX+m8CWwvOAP/gD4NvfBr79bV8kYqvYp6ZDE7hsNeP/yI0HAK31Q0qprwN4sWL3m9cAOAfg35RSo9bnzgI4CuC51mefuPFKqV4AnQAWABwBcGOtJ/qmN9FAzM0ZqY7UMuzt5dbXZ+okbNTNSRaQwsj39RnCRhqzdHWtLgC/Zw9TpxcW+NCNj1dGpk1OsitcPE5yqLOT8piTJ42s5rLLKjf6O3bQETp+nPtMpymlq5dB37WLE+LsLInUWIyTemnB4lohGZ+SJQCYbCG7RopkBa2VWWPLcaemeJ7NVqupFOk0F+BCKleb7STy5fl5jpMrrqgsg8fzOLGNjPDYIuev9P5qzfsnGV3hsMleXVrifZDOY2ugJexRUNlQAqlbIgSiIxKDRTZr6hjKJgGktjba+Kmp8lntIo+xG7fI/ZLOjvbWLPdNGr60t5syHo3A0hLwf/4Pbciv/ZppprVzp78Ft+cBX/oSP//KVwbXiXl5GfiN3+Dc8Ld/u+5bW8IWBSGlDBJ2fcRksvmz8/r7+czPz9OnW16mX1Pp8yKBznic+zhzht+5mZUO2wWeB/zoR7T1111nMker8ZPPnaNt6+riZycmqicQ83kSWokEO6pevAi88Y3rfqQlbFE90NbGZJH5eZL9w8Mbz7FCGC0vc32wsGDqI87McF8TE6vHgPxdGtSVGoQSYPR7/vLZenRvtiFZgkImFgrBkol2bXvxhzIZUz6mnt9tLUhH53yeNlsae0lDFVFAydpRuIFGy5u1Br78Zc4Tr3wln/9YjGt4v0Gnu+8mgXjTTfSL9u6tnUDUGnjPe6ggee1rfX9829qnWrEVSMQja7x2C4AxAAfBtNOLa3z+iap+SqkpAO8G8BIAQyXvm6v5TMGHbfdubtksH0ipaRWNmjpVkYjJurCLr9rGIxIpTtNeWjJp2r29/KxkK5YW0B4e5rlMT9NpHBvb+CHu6iKZ8+ijrIlw6BCPtXcvjd7p0zyPgwcrN8Tt7Xz/+fN0cqR7c9Akh0BIpbExSqqlOcn4eHBNN7q7SdTu2EEjK9JzkdaGQpy4lpbMZ6SGh0jFYzEuYCRaXE0n0EZDinWHQiQQq130Z7Os2xaL0VHav7/y+yK1ReXZqaTZjNRas0l56bLW08N9zc3x2VorAmyhpexRUJD7I0SiEFzNQki1EiSz2d6klo8025LGJ5HIxs9ZKMT32O+ToIZsqVTx+0szFht9H235sp9SH7XC84APfIA2+53v5HVKpXi9/Trt3/gGA2zPfz4X/UEgnQbe8haqAt7zHnZ5Xgfb0hYFAQn0CYndbJKyUrS1ca5cXqY/c+4cfYahocqeXaVMmR1pKHfqlKlD2Uz1uLYTDh+mLbr+etrpxUXTYMcPxM+VRllDQ9WR4yKplTqc3/gG1xA/+7PAjesvj7e1LRJySIiXSgInUgdWmp/NzdEXHR01RGK5RplCwgVJJMo+xG+ot7xZyES7qUaQZOJaXZ0B/83qaoHdME+ShgThsGn+WSiYuo7S9yAcLk42qjf+/d9ZVuo5z+G4fPhh2qLxcX/7eeAB4HOfMz0HxsYYAK8VH/wg607feisTtnxiW9unWrAVSMSNoACcBDXp5ZAGgBW2+W5woPwlgEcAJAB4AP4KdWhC09HBCWF01DRJke6AuRx/7+gwkQqBSNXEeEgdDCGfhoaMAVKKZFU0yonLNsBCds3MMMqVTG5MpEUiJBJ/8hNuhw7R4EpkVJqlXHGFv65gO3fSgT1+nCTlnj3+jZMftLebY1y4YAq5T0zwfgQxUbW10cgOD5vaidKyXuqa2B2h5+f53ZeX+dmdO/lZKRTbzAuZ5WUSiG1tJBCrXXQsLhrZ/OWX+xsDMzO8zkLEDg2tHSGziRqRgYbDpm6cXctSal4ODQVCbjetPaoVdiFvuXaORFwfkvlqE4biVAK08ZJpZAeWaoVImYUQl0VHaUdo+/2lxGI9IDJtyZBslHxZ8NnPslnWL/4ig0Dnz/O6+80Av/9+4Ic/5ML62muDObdcjhmIDz4I/PEfA8997saf2QBb1hYFASl8L/NxK9R67ekxmUsSiJQi/pUgFKLPMTDAuVgaNg0McD/NIPvbLjh3jtvevfTdT5zgffTrF8ditGOieOnu9l9WwfO4HpHAd18fcM89rGf2nOcAz3ymv/2VwZa3RZEI51jJKKuk0aBkRbe10U84fZpJFpLZuBYh2dZmVAdAeSLRLyEn5VAKhfp2b7ZR2sk5aDIRKO7qbPs/9ZQ6S5ZhoWD8nPXmF2n6FYkUN4pJJjk/hUKVqRerxalTzBy84grgmmuYHd3RAezb528/J08Ct9/OtfeTn8zvs39/7ef3iU+w7vQznwm8/e118Rm3vH2qFluBRDy4xmsJkDU+BuBmAN/SWufKvFdwDYCrAfyC1vp2+x9KqWEUM8iB182QlPfhYTPRSMRPiCfJRmxr42vSqUuKsUq9vWzWpLpLB0vJeCwlEsNhLpYWFzkpZTJMmV8v26q3l9mDhw8zY+yKK7gfKdAsROChQ/4c7/5+1kU4cYKS2KWlyppo1IKuLjppyaTJhrx4kdeg0ij+RlDKNNJJp42MPRotlh+KxKS3l/cykzFZAYBxAO3mCM3g1CcSdG46Oni/qpGGa82J6uxZLoSuuMJfivziIq+TEIiRyOrszXzeTLpC1LS3G5Km3JgX8re3t+Js0C1hj6qFyDAEEuBwIDKZYsJQMl8Bk4E+PGye8UY933a9RIE41UIu2lFzeb9NLtZ6n8Wx9jxTs6uReOAB4K67gGc/G3jGMzgfhEKV1WG1cfw48M1vMsr+rGcFc26eB/zu7wL/+q/8+dKXVvSxbW2LgkBvr/HDapVbNQpSe623l4HR6WnTWKzSZzQc5j4GB+kXRqP0IYeGuDmbXl/E4/SvR0a4yD51yjSp8+OTijpE1g2hEH3MSqE1/fB4nDaop4d+0De/CXz/+5QjPv/5Fe3K2SLwOZSEEfHnK4GsU44cIRGzfz+f76UlzpPlgts2kWiXmAmHi5uw+F3jiDKhEfJmQTkyUV4L8hjSzKtU6hxkqZdMxuy3mhr50nSlu9vUjJYamskk9yuEYhCNPeNx4Itf5HzwvOdx/KXTXKv7WevNzwN/93ecR5/9bJ7XlVfW7uPedRfw938P3HAD1SNVliZz9qlKbAUS8ZeUUn+ttV4GniiI+VwAn9Fae0qpTwD4/wC8A8Af2R9c6bgzorWeAyBL39LCwG8EMAXgMXlNa11QSqWxOlU1EITDdN4GB2kwEwlTOzGZpBGRLpEdHVzcxWKmuHYux6wsiUBLQ49Uiu8pR44NDfF9MzMkckZH1ydN+vu5SDp6lJljBw/yvHbs4Pk/9hjTna+6yp+RsOXNZ8+S8KmnvFkQifA4S0s89unTzM7csSPYxYMY95ERkl4nT/JnWxujMwcPFk8qMknIBJFK8bwEHR3FxOJGEa2gEY/zPnV2Vk/4ZjJ0juJxkrf79vn7DokEF0qRiHEsRleqVti15CSzqqODz1ZPz/oTeDrNiU/uV4XYcvbID2wnVf7erkSikNb2ZmcGSJMkCSQ0m2RQnGobdraikH72++1MRT9OtxCUjZYvC6angf/9v7lQe/3raZNzOcps/Izd2Vk6tZOTwItfHMyiQ2vgD/8Q+MpXgLe9DXjNayr+6La2RUEgFOI8IQXvW6nhSFcXSScpkyNZiX5krCKTHhriXCiE4vDw6oC0QzDI5YCHHqLtveYaXvNkkr6on8BKNkv/sq2NNlXsWSW2VboEx2K0893dXA90dDCQ8c1v8txe+tKK7aOzRSsYHOQ1jUZ5Lyq9px0dXKMcPcoSVDIeFhaMNLcUQiRKZr88r7USiY2WN9vHtclEOf8gj21LnQsFb9Lv4QAAIABJREFUPjey1RIwldIonmeapdRqP23CUBRrUkdRGvPY5dD8nnc+D3z+89z3S15Ce3DxIhOG/KgzUingb/6G+/vZn+U1uPLK2ppuAsyG/qu/4r7e9a6aavg6+1QltkJ3ZmnNfTvYmvtXwUKWT9FaH1m5wf8E4BUAvgjg62Dq6V4ALwNwh9b6tpVOOQ8DGAfw12Br7qcC+A8AFgGc0Vo/2zr+twHcAOBdYHHNWa31NzY47ZouttZ0ZkX2LBGm3l4SXaGQkWbGYvxMe7vpzJXL0chEIlzklFusFQokEpNJ7ncjefPcHDMvhoaKm6pcvEhiqLfXf8RCsLTEfedyJNj8RFBrRTRKmXMmQ6d7x47gCqx7nmmuIx2EOzpMdK2vzzhsa31eOgYLsZhbiY3IpGITi/Uqjh6LMXNTZPHVLPwXFkg4a00HyW/WTzrNKH17O79nPs+FUi7HayPXRTqiRyKVjcVcjvdfOrKWeQZKJ4mfR2vZo7oaftvB4/lt7QWnPJM2YSiktTyTQhaWyuVbGeVk0DLfABvLoDdbvgzw+H/0R5xTb7uN5zA7y8XekA/3bmkJ+PjHef6vf30w84XWwF/8BSVAb3wjpTrOFjUekr3e37/5HTKrgXTRzfw/9r4zTLKyTPs5lVPn6jTTPdM9DMMEBpQgQZEgioAEWRQEAyquYZdVvzXsuusa1riGdV3125X1wk/FsOaAuigiKyBZJjA5d46V8wnfj3se31PVFc6pqq6u01P3ddXV3dVVJ77nee/3flIG9qenp7rz4NpsySS+HwxaJ0LTCtA0RESHwyiF4HRCCOzogCBsFIpCdOgQeExXl+joa+ReJZPYvyxjnursFBzyqadQz2zjRjgzinDLli0yAFXFGknTwHnNcOdQCNyUm3HG4xgn/f3F12o8R2vaUsdeYbpzNWAxkiP2GgV9J2ei+ouJeuhTnYnMpTpzIEg2KzIKG3Gd9IIi32e9oGjk2O+/H+Vdrr8e9mfnTswf27YZHy+KAgFx/37YDElCnf9166o/NyLUaPzgByFofvKTRcs8VDxCC9qnpsNqEBGvIaLLiOj1BEX3SSJ6t6ZpT+k+ayOitxPRm4hoC0EtHiei3xHRlzVN23Pyc6cR8thfREROInqMiN5LyGWngpu/jYi+QkTnEZGPEOb65/+XQN0utqZhsmdBkcUSRcHE0tWF3/1+GKx0GoYsGgUJtNmEUKVv2sLeCk4PdTgqpzfPzCD9OBjMr2+wsIC6iT4fvJbVRNrIMtKb2fs9Otq4KBVNwzWYnsb1bW+HoFRtNAJvb3YW96a9HRM/X1tOX+ZmOJySa2QxylFPemGRF/Mc9aQXFmudxEIhRGz6/ZgMzE7emoYxMzEh0uPNXldZxjZUFWN3cVGIpoXCjZkxo6ogaaqK+13iWpUiy1axR8tu+Jm4rjYhkUmhXjBk5w2RSC/iFxezP1Wg73zIL32jHX2UIpPylUhf5mP9j/8AIX3ve1GHdWICc9XgoPHxmsuhLk84DKJs1hlSCnffTfTFLxLdfDPRP/xDyxatFDQN3KlYkzorgTNWJAkcsVoBMJkEj0ynRW1vIzXeWiiPQ4cgGm7dCvtz+DDeN9NcTtOwjXgcC2tOxa9USzGdhv3KZmH/OjvzOdnu3UTf+x4EgNtvL8lLW7bIIGRZrMWCQXMcYXISz2BnJ7YTi+F55gycQpQTElmIq0VI1NcrbHQjtkaKiXpuo2mVU525QRw31Vwp5zEfBztsifCM83qpGK/YtYvot79F87aLLsLzn0qhS7zRwBRNAy/6wx+IbrpJlEPYurW267BrF8q6dHbCATw6WvRjZkREq9inpoNlRUSLYtkudiol6h7Oz+MB9fvxsHPTEkYmA+Evl4PQIstChCQSwiKRCLnv6SnfUWxyEiH2/f1Ia2WEQqiP6PFASKx2oTg1hbRZDumvV1SgEXDk4MwMJsquLhA8o+fCkaF8zf1+CLPlmn5Eo/iOLMPYd3SIaFOj++RUXhYWM5n8+mt6UdGM0LGwAGE1EAChNDthp9PwSsViuI7c3dsMFEWkQHu92FZbG7bH4k01RELTcJ8M1Aa16DLyz2iI4dfXzWHSZbUFOEe16l8s0OsLXvPLipFKy43CouVsj9jB4XLlRyw2aozcfz/Rt79N9KpXIf14ehp2c+1a4/dR0xCdc+QIiHIJQmsa3/420ac+RXTVVWik0rJFKwuuZeZyWVswY/EilcKYCgar52XxOLaVzYLj9fZaK+W7mTA7izTmtWuxyB4fx3gbHTV3TScmRJPAZBJcb2iotE3NZsHz02nYvGKO6wMHIAYEg0S33VY2Qrtli0wgkwGfdrvNNbuRZay3HA7ci8VF3OvBwdJlqFgAKyb01UNI1AuVjUpvLtw/n0e9m68UA2dgcJSfPtWZG+ZxqrfH0xz164lED4V0Wqz7OQvE44G9mJmBw2BoCOnHY2OwK5s2mRunv/0t0Q9/SHTFFYIXPe95tXHkAweI3v9+zFn/9E+IiiwBq9siS6AlIjYWDbnY8Tge+HQaaTiyDHLX0wMhyuOB8QiFRKdgIhGtyAaGvUuhELbR1QWjwtGNhThxAmLfmjUQlxiRCEKiucZLtem18bhI0RgehsjTSHCq9/w8JolgEEStnEGMxbAwzWRABLlxihHo69JwfYu2Noi51ZB+7vKtj1bUd2AtlgZdOAmzmNreXp6YlsLCAmq6EEEMLuU5LXX8fOxHjuDa9vVhbHZ2QryulbjMz2Oc9fZWFKqtPkE1xBYxsWRS1+xCoqouFQz1pQL4+dCnJbdgHPr0ZSJRd0hPxony04UKG77UCwcOQKR7/vNRa5Brx/X2mhOJHnwQ3Zhf8hJsqx74+c8ReXjJJUSf+UzFmsBN+jQZhmVIKHfEZAetlRGPQ3xQVQgP1dY45CjNhQU8x34/5nWrX59GIpkkevxxPOfnn4/rOTkJfmOGI83Pg/v39Aj+Pjxc3H7mcqKDN2cmBQJLx8CxYyjT4PcjyrpCWaGWLTIJTh/nKC2jSCSwtujsxH0bH4d9Wr++9PylFxILx0Q9hESilUtvZjRaTCxMdeaSLpy6vBIZFkbBda3TabEWzGaJfvYzHPcb3oC16549sEVmOinv2EH0n/+JyMUXvhDrte3ba3PAHT9O9L73wXa9//1o7FTm3lrdFlkCLRGxsWjYxWaxxW4HseBuYFzIlzvScrfNrq6lBl8fAj07C/GIu1X6fMJzoU+DPnoUnx0ehpjIiMUQDm23w5BU662WZeyDG8SMjjZ+osrlMHkvLsKA9fUtrWuSSIjaki4XiJcZglCITEY019E0Ueja769tgpTlpfUV9XVSOErR58O+w2FRn8fMflUVZHRyEpPI5s3GiupyMWJ9J9tQCGOSRUxNEw19agGLCNzUqAKsPkE1zBaxkKgXeJshvZcFrcK0ZIbbvTQtuVnFTyuAn2VNK56+rE8VYmFRX1+xsLZiLc97OAwvts+HgtySJOpMmUlFfvZZeNvPOQfe9nrggQeI3vMeeOy/8AVD84bVR6WlSGgshrHZ3t480SXVQlHAY7iuWjBYfbF7TcNztbiI7ba1YXvN1jCq2aAoKKeQyRBdeCHmxiNHMN+sX298O9GoqJ/odoODrlmz1AGhKKLjuCRhHLe1FZ+TJyaIvvUt/O/WWw05jlu2qApEoyLt3IzIMjeH765ZI+pnZrNwqJdygjdCSGQBm6ixmQWFx8D8oVGRifE4OCR33uYMCyvwRg7S+P73EXl4ww1wRhw6hHM57zzjvP3ECaLPfQ7j8qaboAls3FhbX4OpKQiI0SjRu95F9OIXV5x/LXDVrY+WiNhYNPRix2KYUAIB/K6qeOhiMRAMvvWahs8MDVXuVnv8uOhSyBGNDK75MDkJY7ppU77RiMchJEoShMRaOi5PT8PQOZ0wTiuRXpTJwLCFw6KLod+PiT0WE+/Vs4thYaozp5/Uc0FTmAadTuOcuC7l+vX5NRYrTSzpNNG+fbj/a9ZA+C13PfRdbVnU4Q6D2awQkG02HGOlmp1GkEjgHAMBw55/q09QDbVFTOg4rZmo8UKivlN3Yd1QHl96wbCVllw/cPdl9s4btVWFadCcLkWUX4/ITBq0LCMCcWwMQuLgIBbLkgT7ZHRcHj1K9KMfoZv8jTfWx8b/8Y+Iijz9dKIvfalli5oRqor512bDvGuFBWIlpFJwNssyBKXu7urts6pCSAyF8HdHB7bXsqfFsWsXHM7nnANec/QoePWGDcYF2FQKi31OT19chACgTztWVXDHWAx/BwK4N6Xu8+ws0Te/iTHxqlcZzvSw+tOwYrZocRF8t7vbuJCvaYhA5IhTVcX40TTMa4FA6WYryy0krnR6M6MRYmImgxfXYrfZSqc6NzMefpjoySeJXvpSRB3u2oV10ebNGEv63gmlrmEoRPTpT+Oev+Ut4FYDA+aiGAuxsIDIw5kZone8Aw5bA2s+q9siS6AlIjYWDb3YXIuPm3REo6JgsqKATLAgFQ7DKKxdC/JRavJRVZCLeBzbDAZFjQVOheZowVgMQuLgoDA+uRwMk6aha3Mt4l8iAeKUzUIAHRysflu1IJmEuHriBMhcfz+EzZ6e5Z00EgncN32qM3uh64nJSYilHg+2n0qJCFYiEbHFUYv6Dqvz80hfliSMhe7u4vvQ153jbTudoqOyy4XzPXECY6atTYiatXaHzGQgSrvduHcGCYbVJ6iGG/7C+ohEy/d8KMrStGRON5GkpXUMmznlxMpYju7Lhd2g9WnQNtvSiMXC/d17L9FvfkP09rejaPjsrKgnZdR2zs2hZmFXF1L86hFt9eyzRG99K4TML30JP1u2qDmRy4HfcPOu1QCO8o9E8NwEg7WdmyxDGIlE8HdXV23i5GrEiROo7Xz66RDpZmawYB4ezq9jXg65nCgRMzQEe+b3Cz6saYLrq6pImy0n6i4uEn3jG+B6r3wl+KxBEbhli6rdsSaEfDMRvNkshESfD2JNKgXhhusllio/pW+GslxCItHKpzcz9GJivZqvcHaFquJ+FfKbwlRnPT9pNhw6hDIq27cTXXklbNGRIwga6e4Wa3y+l7ym159zOo0IxPl5OEPn5rAm3L69+usdjaKJyrFjECWvvNKwbmB1W2QJtETExmJFFu6RCIyWyyWIr56gsGd9bAwPLNf7YU9lILA0ciQSgaGw2yG86NOTczkY1t27QYjWrhVCj92O/R05gmN6/vMNpY6WPb+jR0F6OjvhvW2kgZZlkLZQSNRPc7sFiaslhdkoslncD+4e6fHgWtSa6qxpEBDDYVH/kVGYZsxFhInEBDM3h+MKBovXwtRHhnE9Dn0KqZ5EZTKYRJxOHMfcHM6v1i6osgyB1GbD/TIx0Vl9gloRw8/e73rWR+Qi1nrBUC9y67t0cxmG1RA91OzQpy9zwe7lAEc86IXFwjRorq341FPoeHzVVRD/YjHMY93dxm11IoEUP01Dl1Kji/1y2L+f6E1vwjF85SumO95bfTRbkoRypHxb2+pK2c1kRLMUvx/O0FqyHHI5bC8Ww3a6u+ubnWFVhEKopdrbi7ph8ThERW7cZwSqisV/JgMRkrv9Dg/j+sbj4IWKAo7e2Vl5rEajiEAMh5HSuGmTKSeb1e/qitoiRcE9JAJvNvrc8XosGMQcwl3Y9UJPsRJSLCTabEv3VVhXsBY0Q3qz/lhqFRM1Dc9cNiuyK8qtO5mj5HLGujo3GqGQcIrecgvObdcurNu3bMn/bGHfBEmCfXC5iO65B1lnb3ubaNhqpptzIZJJog9+kGjvXqLXv57oZS8rHYhSBE1wZVc/WiJiY7EiFzuTAZngEHkuDF7oZeY0lFgMhoEjSCQJQiLXTmFjyRFcudzS1AkiGM29e7G/0VEYGTZAsRgWTrIMI9XXZyxUuhRmZkDAnE6ETddjYVcOPNkvLGBS6OrCOTgcmMAnJ3GuPh8iShqRbs3pKpEI7onDgXvW0WF+EcBpEtGoqPlYCdksRIPFRQjI4TC+u2aNSBdl8YhfRPkiT7GJWJYhIGoaPO1zc/jc4GDtdVumpnAvBwdNLwStPkGtiC2qR6OVTGZpWjKPJYdD2DaOjrV63TIrQp++bKbze73AEQB6cXF8HE1KRkaI/s//wTFxl3l9/d5yyOXQtXBhATXCaqnxwzh2jOiNb8Q4/cpXMH+ZHLMtW7RCiEREY5LVFGHHzVJCIdjm7u7aORWLk4kE7DQ3+muGRXSjkckQPfYYrsMFF+C9I0fw3I+OGhtLmgbbEY3CpsVi2O7wsGiaIsvg052dxhbyiQQitWdnia69luiMM0xHo1r9bq64LWLR3eGAKGj0+ZiaAhcaGsJaa24Oay1eezA3KhxbjRIS9enNxfbVSOibrxCZExM5805VRQkvMzassJGc3Y61x0rNH7kcOq8nk3CK+v0QEFkALLcuymaFoPjjHxM98ghKHwwNwR6ddVb1QUKZDNFHPoIMjVtvRQSiUZ52Ela3RZZAS0RsLFbsYicSwmvOYcnt7UuJhaqCOCoK/s/CVDQqosX8fvyP6/Dp05v7+/MnB1lGZ6dsVtRV4P3EYkTPPCNIEBcCZs+GvmmLEU9oMim8smvXmjY4hqBpWEDOzeEadXTgnIs1CVhcFCJrWxuOp9qGMmbBXZ2TSSECd3QYq7WiaYhKjcWQHtHTY3y/c3O4B5y+7PWK+kiLiyL12uUStZICgdIRYpqGVHHuOsedwqsQ/ZZsd2YGY6W/v6pi8lafoFbMFrEnmFNlygmJ+vqY/NI3/ilMS15NEUFWBEeFKgruRTUOoeVAMon6h+k00Qc+gLlmbAzjkG1JpTRoTUPXwoMHkeJXS40fxvQ00R134Pi+/GXMkVWM4Sa4wjXBsiSUaxQ7HMvvuFwJsKCRTmOOrEejlFRKCBwuF7a5EjWtVwqqigjEWAzdRQMBOMATCWTSGI3amZzEdVy7Fn9z0ztFAd9mjmWUc6bTiEaanESk9hlnVFUqpmWL6oBMBusMj8d45JWiYE6z2yHiaBrmF0lCkAPXF/f7lz7DnHK83EKifl+SVHyebSTMiIlcmiWXE87RWoRQTcO29MLqSqQ6//KXRAcOoAHKunXI7JueRnCPUQHwwQchRF5yCRrCHTmCMbh+vVjHmzkvWSb6xCfQsf7GG4le8hLYRpOwui2yBFoiYmOxohc7EhHiYDyOB7WjY+mEoqogJLlcvvCUTotIN04X9HoF0eAO0MXSm597DvveunXp/3btwiLq9NMxwXG0ItdfIBIh4ywqlirOryjwzi4s4NjNFKcuB+48ODuLYw4Elp5nMagqSPjMDI6tq6s+jUCMglOdubEO1zUMBIpP3qoqCO3goHECo6pEhw/jPNvaMBlxXTomDCwUEuH+cgqqPg2a0y44iow7iw8NiYjavr7a61DNz2NbNSxgrD5BrXjaDtdHJBKRqYXdktlxQYSxoY8ybBaBqgWgUenLZqFpRP/2b5hn/v7vUd9rYUGUWnC5iqdBcwo0v7jo+OWXE517bu3HtbCACMT5eaIvfrF4yQeDsPpTYGkSmslgvtTPb6sNsRicgJqGhWVHR+22Nx4XadMsUK6W+pLlsG8fxJ7t28EF2dk8MGCcby0sILI6GAT/PnFCOIsdDtwjM9cylyP67nfhsL3iCjgzTKQN6tGyRXUCBwJwDUsjSKUgAre3I3som8Waxe3G/UwkME8XS29mca9YE5R6C4nNlN5MlC8mFmu+ksuBm2oarmW91296/tHIVOdnniF66CGiF72I6PzzEaSxbx/WfiMjxraxezcyKLZvR4mYPXsw/kZGhOhKJGpiV+KGikL0+c/juK6+WtijKq6F1W2RJdASERuLFb3YXPuQm3Bw05XOzqWCHItm2SwMQuGEk8mICMVUCu9xCrTbjag7PQnJZGBcNA1Cop5syzIMUTwO76c+dVYfLs0dsBh6o1SYBj07C2JltyNipJbmG9GoiFrzekH2OGrSKBQFxzQ3h2vQ0wMRslELbY78jERwTe120dWZPUSqChKZTMK7bdQLlUzi3oZCuOccuaiPFPN6S08CXENTX2ORU+ujUVFTkzsxG+xYWhJcL6azs6Z6nFafoFbc8CcSeGWzePbTaTFGXC6MGRYNVyIltgXj0NcHarZ79fOfE/3wh0SvfS1SYpJJ2PP29qVR1ty1Uv/SNDjBHnwQ6T0vfWnt3RajUaI774TD6/OfR2fWGgSUli1aYcTjgis1Y9H8ekBRIF4lEiKCsB6L6WhUNJTgZn2rVYydmgLXXb8emRrpNCJ/AgGkIRtBLIbvtLWBK+/Zg/fXrKmuFraiEH3/+3ACX3IJIpDMpNEWoGWL6ohIBM9bR4fxNcfCAtZuvE6Jx8F3OXuMGyMWS28uJySy0FYvIbGZ0pv1x6QXE4lwrWQZx7fc3KZYqjNnRtQbExN47jdsILr+esxfO3bApp95prHzHB8n+uxnEdhx110oX+ZwgCfxMSuKWMNzUIDdLtbt+iw+TUNGxv33E112Gfja1q1Vz6lWt0WWQEtEbCxW/GLnciBtLhcIWyiEB7pYoWu9kNjWVnqRw9uMRoXHOpsFEdm4Ed+VJExee/Zgf1u35hsPRcFCLRIBuSpVa0pVhZjIhokj2YiEl8jjEVF16bRIbzZDjBIJeIhTKdG5t9ZOwLmc6MAnSSCBfX2NnUCTSUFOJAlEoq0Nx5VOI+rPyHkqCkTHPXtwDzZsQKSlzyea81RDRDnV+NgxcT8nJiC4cjoVC0sc/WF0Yk8k6taUxeoTVENtkb77tj4tWVFEKiA3JCqWbtNCc6JZ05cZu3ZBpLvwQqK//EvMCRMTsLdG54MjR0C2h4eJrrkmP1qRU5D0UYuVtplMovD4nj1En/oU0UUXmXdKFaCJrnhVWHFeVCs0TThoV3udv2QS/EWWca5dXfWplxYOgzsqCuaDnh5TDT2aHvE40vM6OhDJrGkQAxXFeB3UdBrlFOx2XJ/DhzHWNm+urlmNqhL99KewRRdeSLRtG/hoDffT6iO/6WzR4iLue3e38XJEExPgXMPDmJMWF8F9g0HwZm5qSLSUbzVSSNTvrxnSmxmaJhr0sWO0UdljvH+9E7Peqc7xOGqfut2IHnS5IAByHUMjJRAiEaJPfxrH9773Ibo6mcT3S2kFqpovKPK5cRDQvfeiZMzFF0NAPPPMmq57E4yk1Y+WiNhYNMXFTqdF+o3dDmPA9VMKweQ4k4G3tNJih2sETUzAqEgSxLe+PrH9ffuwvy1b8icvVRURbaedZrymod7TweIiL/Q0DaJRIoFJuDCduhhSKYhY8TiOr6+v/t0EuSkNi7j9/ZjgGxnBw8W3Fxdxr4hARsstrrlGHTfGWVjAteECuvWYaJNJiL/clGZ6Gvezuzs/DZrD5LkbNAuLPOEXngNfc5cLXtoa76fVJ6hls0WqulQw1N8rTktmEZgjumy2/PIFLTQ3uMA4EZ63ZhN+5+eJPvQh2I0PfhDP/fS0cCoZOd6FBdQJa2sjuu02IWowwS+MHCDKFxT5d0YmQ/Q3f0P0xBNEH/0ovO2lSkuYQMsWNQFkGdyHnSGrGVw7m+tB9vTUJxWZtxsKiYY1PT3Wj+6UZTRSUVWIdS4XohJDIUQlGhkvsgzOFY2CLy4uwr5U0fyEiMCNf/lLRB+dcw44HDcHrAEtW1RnaJqI1DVakzSXQ5QYZ4VpGjKhZBljx+HAWIzHi6c3s3jVKCFRn95cbJ+NBK8nFQXH4nKJmt2Fac6NQL1TnRWF6Ac/wLr4Na+BfZ2YwJrrtNNgAyohk4FzdmaG6D3vgSA4NQVbZDRTjDtc89r9Jz/B65xzkMZ89tk1B+1Y3RZZApYXESVJuoOI7iGiUU3Tjpn8rkZE92qa9tplOLRiaJqLHYuJ9BtFwd9eb+n6cJGI6PRllCCn02iywUIZd3aWJBicnh54PvUeWFWFyLiwgC51Q0PVnR93B2UDNTUFQ2mzIWKOU2bYA2Kz4fOzszhXux2Raj09yztppFI4tmgU5IDr4jRqosrl4A0Ph0Uqlt0uujo7HCKKjFNPWeTTNNSxPO20+h1vNosIRIcD5HpuDvdlcHBpVIIs56dAc0QUkfAesrDodIKISRK2VYfIzyVnfCraomJ1DFlYIhIRz3rRsHCsmGm00kJzoJnTl4lwbB//OOz5hz+MhRM7TIJBY00wkkl4xnM5pEKXI7Sl0qAZPO/9wz8Q/f73+Hn11ZhP63Dtij4pFrJHTcOLagXPQ4HA6oqiK4VMBnM014nu7q5PVgWnTkci+LurC69mSHk0C02DUDc/T3TeeXC2RqOipqGRRbssE+3ciWuyfr3gZQMDxuvlFeI3vyF66inUMnv+8+uWnt6yRcsARcH4IcJ9MvIcxGKY/7q78ezIMkQfDlpgrlUqvZnnsGKC1XIIiSud3syiVjaL8/J680s96R3cK8F3VFU0YiGqPtX5wQfR8fiaayD6xeMosdDdjSxAI8fx1a/CHr397bBBBw5ArB4dNX9eRIg+/K//QmDRpZfCxvX0iKxCXqObRMUVhIXsUtPC4v69FqpFICAabnAR5mRS1H0oBBfSjsdhbI00o/B4IBLOzWFf3NgjmYRR2LMHk9w552D77IHasgUeV071WL/e/Pm5XHjxYnFoCILXnj0gb4mEEAhlGdeB05YHB2EQG+H99nohasbjEBPHxnBNBgdrqtdnCNks0pEVBWHjPh+uQTgs0olZJGBDns2CzPCEU89j5O5yREjDiEYhSHHzg0JwGqxeEMhk8oXF+Xlsd24O93r9eggJrTp71YFFZH5x/UoiPL8+n6jfoydh5WCzCVLK6SwswLSExOZCYfpyM9Yu0zSib34Ttu1d78KCKZOBM4tLN1SCLBP9+MeYJ269tbJHXJJwPQoj61lQzGaJ/vmfiX73O6K3vhXRSIoiFm/NUFy+hdrh9WKhl0jUVjPTKnC7EdUbiYA3JJPgVbV2W7bbIa5F+SMkAAAgAElEQVR1dUE4W1zE9lkQsdKzcvQo+AenHOdy4Hpeb+WSKpomFvlc6qenB9vjBjfV4A9/QIfoLVvQTbWrq7Hpmi2Yg92OsT8/LxxhlZ6BtjY8j4uLgsPz2FlcFOsfzgZJJsG5Ob3Z4RDzV+H8xOKh3gFcKzjKjtObORKyEc86Z1WoKtYahZlM+kwZ/Tk30r7bbDguvcOS061ZTKx0rfbuhYB4zjkQEBUF5RFcLuPdj3/8YzhFXv1qfGfnTtFIpRo88ADRPffAmXHttVij9faKACB9tgsH/qz2edVKWA2RiHYichJRRjN5MlaN/qkXFEVE3bW3Q0jLZPB7KUIRi2Gy8fmMLcb032Mhhz2vx46hDqLXCw9GICCK/9rtMG4zMxAAq/VwFIKbh8zNCaO0sIDzZgGEJ0y90WpUul4kAoKZTuN4BgfNXWej4Ig/VYXR9nrzI8rSadyzXA4TDIvOnBZ+xhn1vR6ahvuSTuN4OP2CayNVC66LGQ7jHFQ1v+OvPg3aZMffYpGIq8oWcXdt/UvfSZuvGUca1hp5I8uiLg53a25FJDYP9OnLHk/zphg+9BBI6fXXE910E575yUmMp7VrKxNQTSO67z5ExF9/vTHvfKXtffrT6H765jcT3XILbKfNtjQNujAVulpbRGQpe9RUvKhWcAM75lWnCnI5iBzpNOaGnp76cYRMBttmcbanxxq1JxcW0AF1cBCOWiLwrnQaC/BycyZ3552YgJC4aRO48/g4xtbQUHWL6SeegDPj9NOJLrhAcO46oWWLlhHpNARAj8dY92xVzXfM22wQCiMRCMd6sV+f3sy8mMhYRCJRfSMHG5XezJk0uZwImKh0HvrmK0QrF5lItDTV2W6HzS1mF+fnib7zHThVb74Zx3zoENbCZ55pbJ35hz+gvMullxL9xV9AQFRVpB5Xw/8ffRSNWU4/HVxrYACZbXpwZ2x9/wOXS6zNy9wvI5GIVrFLTYsmXQYYh6ZpChEpFT/YwhLY7ZhEWBhsaxOpzYW1nBjcJCWRgBE1Sj64ccL0NESyri7UJ+zrQ3RgLAbjNzmJl8+HSVKWQZoUBU1aaoXNBpEqm4UB1DQY0I0bYZjYYHEqNHvY+XqxoLhcHhHumBwK4VodPoxrNzhYn5pDRDi3Y8dw7v39uPccscfiUGcnSK4k4TieeQb3aGgIhr7emJxEhNPatRh3U1O4zkaIUjmEQvi5caMgTIqSH60YjYrPcZFffX1Fo5OjlW0RR5jpBUN9J3S3WzRXqtRtu1rY7aLZChODVkRic6DZ05cZR44gCnH7dqIbb8R7Cwuw64ODxo77kUcgIL74xbULiEToNvjd7xLdfjvR614n5g4iEVXAtRU5apFRWFvRzELNyvbIyrDZRFfUVMpYkfrVAKcTzxg315uYAM+rh9jHEY+cXTAzY640wUoglUJjp0AAEX9EWLAnkziXUryCs0E4opXLxqxZAy6sacZtWSF27ICAODpK9IIXYC5vhNDdskX1gceDNUIkAt5a6d7ZbOD4ExMYe9wcMpsF5+VmaPzZ9nbB/WQZY5d5WaWIRD1vqxVc2ob5IEcl1hO81tM00cDRCPSO7pWMTCQS/ECf9cCdpPV8IZMh+vnPcY7XXovjnJvDa3jYmA3duxc8Zts2RCHu34/tbt9enYD4pz+hruLICNErXoG5oliwEGd4tLUJR3Y6LZq5ckZMNY7tll2qHU26FDAOSZLukCRJkyRpRPfehZIk3S9JUlSSpIQkSY9IknR1mW1cIUnSk5IkpSVJOi5J0l1FPqNJkvQtI5+1ElwuEYWWzYq0ZU4/LoZAAK9UStSsMbqv4WHsIxQSJHPTJhg1pxNiT18f9s0NNWQZQuOuXfl1psxC00A8DxzABHLWWfB6xOMgpZomjFUwCMFswwYcc28vCFcuh21MTmLBevw4vss1I+sR2CtJEM+2bBHE+cABCH96YacaJBKI/uSi3Bxd6PHgHIeHcf25Vtf0NNJxenuJLr8c9yccxnlPTYkOb7Vgbg6TQW8v9js7KzpX17L44G7hHR35HlcWz/v6IChv2YIxODyM8UgE4WFsDNd93z6c7+wsxgoLjoWwki1iEjkxgYjfXbvwc2IC18zthli8YQNE9s2bidatw3NRrK5hPcCEVF9vh6g+z1QL1YGb5GSzsI36mknNhliM6EtfggPkrW/FcSYSeGY7O42lXu/ejQYI27djkV0r/t//Q62fG24gestbhAedwWnQHg9sUmcnXoEA3pMk2HyOSgqFROkNboxVClayR6sNnBLH9+lUQlsbuJPXK7iSXhivBV4v5mmOKJ6awtycSNRn+/WCqgon9dlng3Mkk+A6HR3F05AzGXDJuTl8z+PB2AkGcb5cH7q/v7oIz717iX71K8zjF12E8cl8px7Q10IuRMsW1Q9+v3BSGOHfHLUYj2PuIMLfDgd4rlIgofh8ImsnGsUYZDGKBT099HURC7dVCzi9mUXKwjrD1YI5TSqFbQcC1aXys5jIGQMspK4EX7XZxFre6cSxcGmnXA7PfTQKsc7vx7N69Chs9dq1lbc/OYk6iIODRHfeiXXC4iJEv2qcOHv3En3qU3CM3HQTxGvWAcrB4cD94lqy7KDiTMe5OfzO9UMroWWXasdqSGe+g3SFMSVJeiERPUBE80T0n0SUIqI3EtEWIrpV07T/1n1XI6LdRNRPRHcT0QQR3UJELyaiKzVNe6Caz5ZB017saBRGmj1b4TCMY7muxNyl1+0W4qNRxOMQZYhAiljQGBgQNRCzWeFtOHwYhqyvD0WgOzrMefgjERC0bBaTZH8/jCmnu87OwjhxRGI5sIHW12zgyZPToPXRirWm9HBNv9lZTFDd3bhORrfLk+b8PMLXORqTa9fxYlUPWcZn5+eF0Mv74y6UkQiOjTt7t7WZFxgiEdzXjg5MKNxJe2CgtnprySSul89nrHB5ITjNQR+xmMlAWHz8caIPf7hyY5VmtkWf/jRp7K3kBS+/VjpNlVNF2Bvd6ti8MlAUsfh3uZq7qYGqEv30p7Alr3oVnnluzuBwGKujNj+P9JqeHiyyax1vf/wj0fe/DxGB04eK2Voj4DpRHJnBXWyffproG98w1sygWe3RiRPNy4tqgaaBH3HGxqkYTZ1MYpwqimjWVs/rEIth+7IMPtjV1Rx1Wg8cAN/cuhX2RFHAMyUJIp7etmSzOI90WjQgtNshjjociNRJJmHL2MlgFsePoxNzXx9SmF0uLMTrMacqCkSBRx8l+tjHrG2LqInXaIXgMkzcgKISJifx+aEhcPlcDmPU5SrusFdVcHFZFusZzlYqxhGXK7WZj6Ue6c3ccJMI51TP5lf6NOeV6uSsh6LgHj/+OByjV1xBdO65OKbdu2Fvzjqr8tiJRlGORZaJ3v9+nNdzz2HMVJOpceQI0Qc/iLngtttgt7dtq81uq6pYi8/OIsLxq18131ilie1S02I1iohPENE2ItqiadqJk5/pIKKdROQionWapuVOvq8RkUpE52ua9szJ99xEdIKIHtI07dW6/Rj+bBk07cXmOj5EovhzJCIEolJgIdHlKi84FkMuh0i3TAbf5YjAoaGl3hFZBlHZuxfGZmQExo/ruZSKjuJtplL4Xn9/cc/JwgIi/SQJ0VdmiRqHWevFRX3NDH1txQp1HMruY2ZGdBkOBnE+xbalr2fHQtjMDITSzZvxs9S9iscRfZfJQGws1SGbi36Hw6LALy8UjAic3OXZ6wWx5jSorq7qC4YTgShMTWFMDgzUbyI/cIDof/4HY+3NbzYkIjatLfqv/yKNU1mq6fC23NB32W4JiY1HLgd7wxHizX7dH30UnUavvBILd00T4kJPT+XxHYuh3o/bjTTmWh0/zzxD9K1vwda+5jV4xqoVEIthbg6LA7eb6CtfMbxwb0p7tFpFRCKMv3hcRPGeilBVcIR4HM9Bd3d9hT5Nw0I3HMa84feDQ6xUd+ypKThg160TDvGpKZz/8LA4d27ol0yKiKhAAOdw9CjOa2QE129mRvBXs5icRCpjZyfRi14kakrW6izUNAgCzzyD4wsGid73PmvbImriNVohNA1rAVmGoFPpfsoynOBOJ9ZXkiTE6ba20mueVEoI3D6fEMlK7a+Qu9ULtXRvVhQR7MFz8XLWWWwWMfHYMaIf/hDlEK68Eu9NTOB53bKlcr35XI7oX/8VZRT+9m+xnnr2WfCOs84yfw0nJog+8AHY5je+Efdiy5b6laQIhdDAbmaG6N57qxIRm9UuNS0sXxNRD0mSBojofCL6Gg8AIiJN0yKSJP0HEX3i5P8f1X3tcb6pJz+bkSTpMSIqKO9p+rOWgs2GB5k7Nre3g9DE43iV6rbH4h2TODNCotMJgWp+Ht/1ePB9Lhytr73ncCDFrKcHYk48jmNcXMQkyEXM+bjTaQiUiYTYTzkveE8PyOehQ9j+wAAIn9Fz4TBrvk6all8Qlgsi68+9sHFLpX05HJj8e3txbrOzOPe+PrzHnkN9PTunE9cmm8X5jIyUJxuTkyCwLheud7maK5IkuiNz/UiuIenzia7fxZDN4j7zvclkRNfkWgREFlq5u2O9Ju9Dh9CwYc0apARUQrPbojvvFJ5KruficjWPWMSEsdVopbFgjy5HGFuhY+fTTyMK8Y47iN7wBrwXCsEO9fVVFm9SKaJ770WE++2312Z/iCBG/vKXKP/wmc/AxnF5iHrg6FGiX/yC6LLLUNzcCJrZHq1bZ+wcrApuWOb3W+N5Wi6k0+B6uZxovFLP+Yajc0Mh0WU1GGxsZH0kgrIgW7bAnkiSEFBPOw3Hoyii1Ep3N4TG9nZRyuPwYfC5jRsxXsbG8IwMDZl39k1Pw8Gyfj3Ry1+OffT21j4Ojx2DE2NuDuP6pptwvkbQzLbISuCyR3NzWAf09pZ/nhwOzIfT06I7s88H7s2BIMX4uteL73JpEK6JzDUSC8E1FJlX1ouvVdu9OZPBi+u9L3eDTOasXCuReWyjxcRIBGnMfX1EV18t0tcnJkRZolyueMMcIlzfr38dz/pb34r1I5cU27zZvO2enSX60IfwvTe/WQTs1FNA/NjHMLbf9S7z32/ZpeqwqkREIho5+XNvkf/tOflzlPIHwfEinw0R0VlF3jfzWcvB4QAhYCHK5xNNKOz20unD3GSBazZ1dho3MFz7zuuFkXE4QHCOH8c+e3vzP79mDd4/cABEbMsW0RyDU5ZZrOvogGgWDBoz3h4PoljGxjDRxmKCyJmFJGFSdrmEEKdPg+af8Xj+5/XRiqU86S4XSGVfH67TgQOoGdnRAQ+824174Pfj2oyP4xjWry9NQmUZ5HdhAcRk0yZz5JvF0GBQFH2enMSEzc1i9HVT9B3jiECEnE58v1qoqkj5LhWhWQ0OHCD63/8F6br2WsPjYeTkz6a1RVzPRZaF4M3d3VZaTGQi1mq00jjouy/zwqHZMT1NdPfdRKOjEACJcA7cjb2SgKgoRD/5CWz9LbfULiA+9RTRe96D7vWf+hSuoc9Xv+fp0CEIlMEgFu4mIrpGTv5sWnu0WsG17ZLJ5oz6bhQ8HjhBw2FwhFQKXKOUg9osbDbM0Z2d4IDhMJ7rzk7sZ7mvOzfrc7vhgJUkvDc9DTvU3S24kabhvDs68o/rxAnw75ER2ODJSdioagTE+Xmi730P22EBkflhtZiaQmrk1BQ43bnngpP395va7sjJny1bVCPsdoz5+XkhDJbjRn4/7hs7+rmJItd65yYWhXA68T1eGzqdWIc0WkjkbbOIyU1Eis2vzGdUVdQdbiRv5EYrejGxUc1XZBmORk0juu46nL8sY73Y2Ql+wkEELCRy/UnGz36GKOObbkJJloMHsV7dssV8JHkoBAExnSa662QVwLVra1vv6bGwQPSJT+DnO95BdP75VW1m5OTPll0yAQssE5YdpUrBFjM3Zj5rSXg8MDaplIiuUxQYD7u9tLDFBpqFxK4uc8aSi9tOT2NySybhkbXbl3bo7e/HtvfvR22GM88UAqf+ON1uiErJpIhSrETEuF5gWxsiPnbvhrekHgWoubOpXoyV5fwU6FhMpJXbbEujFR0OfJ5Tld1uEIdwWEzuXDcnHAYJ5XThUuceiyF9OZvFYtxIod1S4PvV1QXCEQ4LgtPWhnswPY2Ja906HC830BkYqG2CnZvDOfT31y+Vaf9+oocfxjldffWyR5KsiC1iAsEprCwmulwrK9bpO/8xGSVqCYnLgXRaFFBfzlSfeiKdJvriF2FD7rpLdClkh0SlVB0ilCeYmEB08Zo1tR3Pc88R/c3fwH5+7nOwFfUUY/ftw/EODKDzdAOi2lrcqE7w+yEecQbFqWq7JAncwO8HL+AayPVIr2Ww87mrC/sIhcCpurrM81Kj0DRE6WSzWMA6nXhvfBz/b2sDF1NVkaVReL7T0+BLg4MQFxcWwMP7+sw/6+EwOqnabLBtnDVSbUr9wgIiD48dw/G/+MW4Z9ksrnUD6lC2bFEJOJ0Y1yycV1qrBIOYO2dm4MRnIZJLJfH6qhCcrcbpzbIs1n3F1hbLKSTqoxILuzdzPfNcDvv1+VbWIVooJjaik/Pvfoe17w03iDT1Q4dwTTZvFmJxYVdnLl/zxBNEv/41yh9ceaXIfBseXroer4R4nOjDH8bYfPe7cX96ekqXyTKLuTmif/kX2Pm3va0+DfFM4JS3S6tNRDx68ueWIv/bUvCZFkrA7xfCIUeRhcMgwcXID4Mj4MLh6oRETm1dWMDfY2NYOG3btjRChEP3d++Gwezrw/e5kzJ3w+PGLLEYFovsiWtvLx/W3t0t0psPHsTEum5d/ck/Czh6csfFf1lYDIWEcJjLiVTo9nZcYyYC0ajoVnjwoIjIKyzkrcfEBIgh17ioV2i5JIn07kxGeOC5M/amTZjcFxfx/97e2tIMFhdBbnp6zDXcKYd9+4geeQTbvOoq09u1nC1yOjEWOTKRHQlO58otegu7NRd2bD5VF+P1gqriPnP6n1XSLTWN6J57YO/e+15BbOfmMHcNDlaee/74R0Rwv+hFINa14PBheMC7uiBs+nz1Ldy+axfRAw/A1l9/fVW20nL2aDXBZsMcz521S5X5OFXgckG0j0Yxd4+P4xkuVz7FLBwOCO7d3RBHFhbATXt66t/g5dAhnMe2beIcuNxMezu4NJfrKWYTQiGION3d4LKJBN5jrmoG8TgERFlGFBGncVYTZR2NQlA4cAD27KKL4LRnpzWnRZpEyxbVGR4Pxkk0Kko7lYIkYV0wPo4xOjgohMTZWYzjchFi+vRmDmQoVeddn9a7nEIipzdztpemCT7TLByxUWLirl1waF5wAQJgiCAChkKIcNavNbmMEUcqyjLW1F//OjjRLbfgPh85AtvFmWNGkUoRffSjcKD87d+KdSEfV62YnkYTlcVFpEhfeGFNm2vZpSpggXgD49A0bYaIniSiWyVJ+rPOLUlSGxG9lYimT/6/hTJgryURSC+RIF2RiGhyUAzcYEVR8GArpbT3MvsOBhHNsW4d9vfss+I4GGyEXS6Qr6kpGMjBQVHjwe/H32ecgXo0vb0wklNTiDA7fFhErxWD24305oEB7GPPHpHut5xwuUQqHtfw4DRvrvnIEaNzcxACudP1yAj+Pz0NApvNwpAXQpZxPkePgrg+73n1ExAL4XaDGAcCovtgMon9j43hPGspOs9CcXt7/c5hzx6IDMEg0Utfal6YtKotkiSMNyaKHJWcywnhrtHgujf6DuhEK3c8qwWcYqlpuN9WERCJiO6/H5ExN98MG00kmhQYSdnbuxcOgm3baiaeND6OmkFOJ9GXvgQbxOlT9cCf/gQBcXQUkQXVOFusao9WE3hMcJRMC5izh4ZwXRYWsNgsxceqBQuW69aJ7JRjx8AZ6gHe3tCQiGaenYUTkgjcua8Pr2ICYjwOHhQIYBvZLPim2720nE8lpFIQEJNJole+UmQUmI0eSiZR2/Xb3wZPfv7ziV77WvyMRPB/drSbRcsWLQ8CAQi68TjuTzm4XBANk0mR+cRBIFweqhw4vdnpFBlUslz8s/rmeMvB2TidOZEQ60S/v/Hpy0bBTWH4mshy+TW1GUxPEz34ILLpLroI7yWTIo15cLD495j3RyJwzvb3E73+9bimu3ZhLXDGGeYbp37yk7Af73ynECtPP70+wunEBJq+hEKohf3CF9a2vZZdqg6rLRKRiOjdRPQ7InpMkqT/S0RpQovu9YQW3S36ZgAcuh6NwpBw/RauZ1OugYrLhYUcF7nu6jJfz8Xvx6LJ4YBn5LHHYBT9fmxzdhbGd+1aCISHDkH4KdWyntOI+/vhqWLhaWZGdL5jr69+8SdJIJ+c3vzcczgus6TMCDgqiFOVuQuZ3y/qRvI1V5T8aMVEAuezsADxdmAgP4K0pwcTiMeDv/fvB1k97bTSE0s9wREHw8Mg2qEQoiW5K7imlfbSl0MqJRqy1OOeaBru8VNP4ZpdcUVNAqdlbRHX6HQ6MU441ZkjExsNmy2/PmKxNOcWjEHTYDs4fVlvV6yA/ftR6+vcc4muuQbv5XKwfUYibiYmkKozNET0spfVdiyzsxAQcznUZuRmEfWKhn7iCTRG2LgR5RRqrOtmWXu0WsDF7DnLo2W7RMRgPI65fHIS18ZMkz4j8HjwzCcSiEzk6JxgsPo5PpEAX2hvxyKbm8ccOiSc0OW2nclAgHS54ADWNByXJIGXmTn/TAZ2MRSCc4W5VKU6eXpks3Da79iB+X7rVqLzzhPnsLiIc+7srNlh27JFy4CODnCkcBhzRTlnWkeH6M7s9WK8tLVhDEQiokZ7KejTmxMJfKetrTiHL+Rr9XyuOXOLqDGNU+oBfcNAvi683qv22qRS6MLu94MXsUh58CD2tXFj+e/H40Rf/jLu3zvfiWd8507YtG3bYA9Kpa4XQlGIPvtZCJB33QX7mM2inmI97s+JE0T/8R+wdbfdhvIKdULLLpnEqhMRNU17RJKkS4noo0T0d0RkJ6I/EdErNE375YoenMXgdIr6hA6HENr0HZzLfbe7Gw/54iKERLN1KRwOECuPB4up++6D6OXxwFCuWydSKbxeiI07dqCodblFHHt4e3tB6FlQnJ3Fi5uhtLeL7Xd14ffDh0EQ+/rKpwkbBTeuSSRgrLm2B3sVS3nT7Hb8X59KMjGBzw4NYQLIZkWR8X37cNy8z+5uFMutV1HzckilRG3GNWtwjskkfg8GMZZiMdwDFgH8/sqTaTaLSEyXy7zHvhg0DWPoT3/C9i65pLbrsxpskSTheVFVUYRZlkV0bCOPo7DGTktINA+rpi8zwmEQ3b4+dBiXJDy3s7Oi82il7//kJ7DtN9xQmygXDkNADIdBaNkZY8R2GcGjj2Le27wZYmetY3w12KPVgEBAOGeXK/rfiggEMP9zbbdEAvyg3vX2OPMhFoPgNzGB/QaD5sR/RQHflCQsjufnweGmp3Eu27eXt6+yDMc0dym12/HdbBbOcTPzqywT/fCHsIM33iiaInJpHyPnsns3Ot2n0xAcXvACUU+NSDSqaW+vvQFVyxYtD7jmKNcCrdSdvK9PNJIcHhYdn9kpNzBQefywcMfNLfk5LkS9hUTmMooiSkKxs9lM9+aVRKGYWG0nZ1XF+jiVIrr1VmEzjx3DWquSeJfLgcNEIqhb2NOD6MVkEo4EHhPc5ZrLcJXq6vzFL4K7vOUtomzF5s31ca4eOUL0ta9hnrjlFqLLLqt9m4yWXTIPSbN4TpgkSW8mov8iomFN08ZX+ngqwJIXOxYDsenogOFIpeC18HoriyyyjMmMqDohkfe/fz+iEZ1OLKhGR5d+Lh4HEZIkEDiztVpkWYhZ8TiMocMhBEX2xo6PIyXa5wPZMktyZVlEG3J6NHfx9PurW9hz+nJXl0ip0TTcN66r+NhjmBja2+FZGhoSYf/cDbreE24uB6Jss+Ge2e0guqkUCAqfq6KIpjLcLYzrcRYjMYqCe6BpomN3LVBVeM127sQEevHF+QS6CJZcqVPBFnFHNyaCTmdju40yCWVyqGl46esltlAcTAKJ8LxbofuyHrKMjsdjY+j0x3ZuYQE2u7+/vM1Pp5Gel0yik3MtzbISCRDkw4cham7ejHHp99fneXjoITgzzjyT6CUvqTi2i/7XQvbIkryoFmQyGEPsKGwhH6kUhBBZhtDa3b18DVE4g0OW8fwGg8Y42M6d4CAbNuDz3DE2kYBtKmdfNA22I5mEY9zvF03oenrM2SZVhYB4+DDqpfb1wdYZEWBVFfUOn3gCnHd4GOUdCp0x0Sg4ZCBQsWFVyxY1ARQFDnabDeOg3LPDTv72dnHfZRlrCqcT48kIt1JVcPhMRqwNi32vHlF3mYwQtDyepQKZpon06lLdm5sRLCYypzV6jR5+mOjJJ7E23rYN7y0uYt28Zg3Sm8vt85578P0770SGx8ICAk8GBmCfGIqC68qlhQq7Omsa0Ve/ikyP176W6JxzsN7bsKE+gR4HDhB985s4vhtuQKmpMve24pWzkF1qWlhsGVEUawiGf3GlD2S1IhAQ0YcdHZggOIKOIxRLweFYGpFoNJw5mUSqcSIhIkd27oRQyHVu9AY2EEA6M4tBZ55pLpLM4RAd/LixTCQCcre4KOr5caTcsWM4ltHRyp1Auf5YMikW8txJ2eerrQD/5CSub08PjD6Do8jSaRjydeuQEs7e8qNHcT6dnWKy4iLJ/LOW0HNFwYKfSHSH5oLc3d35RN1uF12lOTWCU7MDAbzPn9c0jAtuoFAPAXHHDqTD9/aiu2IFAbEUVr0tsttFRCCLUo0UE7nRCqc1txqtVIbV05cZ3/0uoqnf8Q4hIHLzLH3UeDEoCtHPfgb78+pX1yYgptPowrx/P9EXvgBPfS5XHwFR09AobNcu1B+79NKaNrfq7ZFV4XYLTsALsRYEvF44ObmzcjIJflNL7eRikCTwubY2wfPY0drTU5r/HDmCNPq4cRYAACAASURBVMGBAZGh43SK71ayL2Nj4Dnr1+OcWDT1+83ZJk1DCuPhw0QvfznsYjyObVQSEI8ehWM5FIJQ9JKXIAKyELEYPuP3G+t4XwItW9RA2O3g2Myhy6W0e72iISYHMjgc+M78vLGOz0TgZh0doiajouC5KpwT9RGJLJQZBa87VVXUmC12XlzjjwUvfffmZgZHJvL1MRKZeOgQBMCzzhICYjYLm8AZe+Vw3334/g03QEBMpWDbAoGlwTrM/zUN8xeLijYbxsx3vgMB8aabEIhx4gRsUj0ExD17wAHDYaLrrkPX6DqIwy27VCMsG4l4svDljUT0ASI6omnai1b4kIzAmhebYCwiERGZR4S/OUKxkgimKCAiqlq59l06DZEoFsP++vowiUkS3nvsMVFfYWho6bZSKSzCFAVCYq0pQ6qKiZG7PCuK6Gq1sID/DwyAEOqNWjaLyTSREIXU3W6RhlxrbQhNg4AYDsNI9/Ut/f/4OIit14toGSbh6TS86FxUuaNDdFLm7mZEoq4KRyu63cYmY00DUU4mRdp5KoX7GgiU7/7G4NossRiusccj6rikUjjfWrtcckrS/v04prPPXnodS+DPU/qpbIu4kzOTNKezMV7fwvosrYjE4rB6+jLj0Ufh4X75y5GuQ4Rnd2ICY6DQoVSIX/8aDp9rrhGNWKpBLod0n0ceQdHwyy4TkRe1dmJWVTSM2bcPqYQXX2z4q3lnbkF7ZFleVAs0LX/+bdmt4shkIGZks5jvg8HlEwSYp3L2TEcHxBTen6piYfzoo3j/BS8AH5YkCIuqisidcsc3MwMn7sAAoqdlGVzJZkMkoJn589e/Rg3Dyy4TXZPZ0V0KExPg0DMz4OIXXli6WyrXj/R6wTENjNGWLWoipFIYy15v5cjYiQnMb8PDwqkRiWDdY7aJTjqNNRPXdC/GOwoj7sqBHaHZLD5rJpNCL8Y1e3pzIVhMJCouJoZCyK7o6kJqLwt8e/bg+p99dnlnwhNPIArxoouIXvc67GvnToyDs8+uzBfZoS/LRD/+MUTEq64CRzt0COPm9NNrvw47dxL96EcYj1deiYhLA+vnknfagnapaWFlEfFGIvoWET1ORH+padrhFT4kI7DmxT6JTAaGiWsSahpIi6KAjFQy6qoKo8efL1x05XIgNuGwqG/Fher1iEQg/KRS8JRwE5HCY2VjuG1b7TVcGJommphEo9j+7CyErt5eok2bYMiTSRFO7/EI4bBeEQcsEEajEL0KPT3ZLEK/WWDcuLE4sU0mIUTG47gfAwO4Nxxlxo1b9B0T2QOoj1osnJinprDvwUFsT5axH4fDfMFwVRX1Vubncd+HhkB2allMyDJSBrlD9bZtpprM6EXEU94WNVpMZPLSEhJLI5fDsytJWERYwRNfDGNjRP/8z1jovve94jymp3F+a9eWJ5SPP45OoxddVFsHP1Ul+ru/g9D3wQ/CG55KCTtYCxSF6Fe/AvG++GKIEyZQuHC3mj2yNC+qBbKMuc3trn+U3WoCpx2HQqJu23LWk5RlOIgjEcxjzG8XFlA3MBBA0zV+7tmZy5GFpRAOw6nb1QXnKos32Wxxh3g5PPggbNtFFxFdcIEQ+0pFC87PQzw8cQLHf/75aAZTap5OpcBtPR7jKa3UskVNB6453tZW/pnJ5bCmcLtFpD8R0qIzmdLdxcttj8tCcfBE4RgyIiTKMsaipglHqFl+x3yR+alV0psZejGR64HnchDtuDwL39uJCTzjp51WPiDi0CGif/s38Kq77oJ9278fduLMM82tmX/9a9RUfOEL0Sl5/35RF7bWNe/TTyNaMhZDnfqrrjLsDC8nIlrNLjUtLCsiWhSWv9jcACQQEA0XmNhxWmw56IXEjg5sQ5YxUS2eDCju6alcEDoUItq7F+RrzRpsq7d3aSTgrl043q1ba0thK4VEAkTryBGIdrIMYfO004S4We/FO0f5xWLYRyFpDIdhxBUFx9HfX3mbsRiIcCoF0rhmTb4wq6pCVOSfLJJyJ1+OVozHcQw9PZjENA2ioixju9VOKrEYSI6qCiLBXcPNLuJzOQiIJ07gODdtKp7KUwZWl6nqbou4Dg1H3XIn5+US9PRFuvm51xOtUxWrJX2ZCAT5wx+GLf/oR/Oj4BcXEZVUbmG0fz/S/TZvJnrFK6o/Dk2DkPmjHyES8fbbYfu5+VgtkGWQ5KNHkb78/Oeb3oRF7+6fYXleVAtSKbwCgdqjWVc7uOED85RgcHm7sWYy4FpTU5hbOOX4kkuEWBiNgpcEg+UX7YkEUgx9PvAySQLvjUTA48yU3vnjH1E39ZxziC6/HBzU6SweLRiJIOLo4EHwpnPPhUhQjodxCRynE/zRxHzaskVNCC4j1NVVvrlFLIb73t0t1kuqKjqGmxwLfxYAmYsEAkvXQ6WERE3DOMzl8H49HKGyLOoxWtGpqhcTf/Ur2JObbhIpy7EYusV3d2NNUwpzc0Sf/jTux3vfC1s2OQkOMjJibi30v/+Lsi7nnQdutGcP1p6bN4t6idWW7HjsMaLf/AZj94ILICCaaM5idVtkCbRExMZiVVzsSESIgHY7DHM4LJphVFqwqio+zwvdeBzvdXWBhBklhfPzMKLckcztBhnTE/FcDkIid6iqoabLn6FpmBi5xiHX9lAUiInhMIzymjUw0tyYpR6phJxOU6x4t6bhf2NjIKqbN5tf4IbDIMyZjDiHUp51Wc6PVsxkQKinp3G+IyM453gcnx0crH7BzanQXi/GiCyLVAsWFTs7Sxdz1iObJXrmGZxnVxc8cZXqhhSB1SeoZbNFXC+FRWbu5LwcQpbeu8zbP5WFRH36stttbVFC0+Ap37WL6O//HtHURLAz3Niq3KJ9aoroe9/DZ1796uqdF5pG9K//SvSNb6Dw+NvfDvvLqVq1jOtcDrUax8ZQk2z79qo207JFFkc0KjjVqWi3zCIeh5ioaZj3lyMdPJkEH2Lh4cABiIXbtoFbtbfj+T18GLZ2ZKT0MWSzEPHsdtgxhwMLfk4pNlLehfH001hYb9tGdPXVEASIYOf0wkgyiVpne/diTJ19NhwUleaETAbH5XCAT5scjy1b1ITQNDwvuRzWQOXGwMwMnq+1a4VzPpuFuOh2m6tvxxGAnNmkaZi3C9dC3FCEhUTOouAoxnqWYbFyejMRrsmTT0K8e+ELIa5xV+odO/CZs84qzXcSCaLPfAb3+P3vx/2MRIT4uHmz8WN54gmIkdu2EX3gA7BxmQz+9nphO2VZ3NtyXZ0L8Yc/4BzTaditl73MnKOFrG+LLIGWiNhYrIqLraowOlyUWpKEgOR2L00tLgRPaIcOwUBw96hqJoqZGTQ4CQQwOakqjKL+GGQZ9bDicaRvVFPkVVWFaMih9TabSFPmaB+uU3jsGPYbDIr6gnxt2tura3WvKBAJk0lM8PrmH9ksom4iEXgLN2yo3tOmaYjymZ7GZN7eDgGw0jGn0yDa7LHMZHCfw2Fso7s7v7YidzSshFwOgkAxUssd4bg+p90uujoXm0QzGZDw+Xlcv3XrMPaqIBJWn6CW3RbpxUQmEMsRNcJCov5+n4pC4mpJX2b87GeI/Hvd6yCwEeG+Tk7ifq9dW/r+RiJE996L8Xb77bVFC959Nzow33or0fveBxJOBAGxlvGVyRD95Cews1ddZY68F6BliywO5lR2e2X+1AKgKOAXiQREEaNdlSshnQZnyWZF87twGByS63On0/hfMol7tmFDaWFGUbC4lmXUB3O7se2xMZH1YZR/7N5N9ItfYDs33ig6WOud75kMsix27sS42roVUUJGbGAuB3tks4FrVTGHtGxRk4IjaVUVz0opkUlVIZZrWn6NzkQC64L2dnOpriwkcjaTLGOsFjrgOJMlk8FnOYtiubqyWzW9eXyc6Ac/gM259lqxvjx8GBl627aVzs6QZaIvfhERh+98Jxwa2SzqqjoccDQYfeZ37UJ2xsgIskXGxjCHnXHG0vFR2NXZbsf+Su3rd79DqYZcDvbrpS+tqiSZ1W2RJdASERuLVXOxczmIhi6XMFjcRIQ7fBWCC4nPzOD7Ph9IFHc9rnahNzkJAxYMYtJJJrE9fXqzosDTEokgzNtIiq+iCOGQvWJ2uzi/crU5olEYdUUBSfR4RJdBTcMkyoJisVohxY7l+HEcx9BQ/kIjFIJ4pyiYFAw2BqkIVYWXe3YW2+7qgphYjCznchBOJQmTisMhIoZYbOZoRU53JcpPg/Z4lm5bUbANTcO+y0UTJZO4xrzI51RnFj9TKUQghkJYGAwOYiKu0hNp9QmqYbZIVUUnN+6aV89upKd6fURO+5FlXNdSHQuthF27iD7/edT7estbxPnMzcEZNDhYuoRBJoNi4/E4BMTu7uqP4zvfgaf9uutAlDnKs9ZOzOk0BNL5eUQT1Vh83OJ3e/XwolqQzWLMer3VORlPVSSTEBNlWXRGrkYUyGYhFqbTIqvG74eT8okn8Pe554oGfwcOgMuuW4f05GL3TNOQnZJIgGsEArAfY2NCpDFqRw4cQPOC9euJbr5ZHGswCFsoy7CbzzwDG3j66aitanTxLcsQEIkgIFY5R7dsURNDljHn2GwYN6Wek3QatfUCgfy10uIixjKvtYyCBUJJEs5OjuTnccZZTZom1gPLDRY3rZLeHI/DOep2E912G9ZLmgY7dPAgbNG6dcX5n6Yhm+Kxx4je+EbYBk0TmXpnnWV8DX7gANGHPoS15sc/Dvs7PY21X7m1NY8DfVq5PtVZ0xBl/cwz+H3jRjiQq+RwVrdFlkBLRGwsVtXFTqeFaMgTSiyG99va8ieBWAxGhjtZ9vdjgmJhMZPB39UWFz9xAmITpxAvLECsGBgQ3mlVRb2GUAikT188mCHL+cIhkah7VSwMvxxyORDISAQpBCMjeJ+bsnDRYYcD16u9vXg6rixDoMtmQTpZtNU0CIvj47humzcvz+JDUTBJzc9jn8Eg7h8bflXF8eVyIoWZxT8iXGc9WVGU/NqK6XR+5Bg3KnC5QJS5+7XRa5/LLU11djgwySYSon7maafV5IG0+gTVcFukqhjDnNrgctWPuLGQqK+PeCoIifwsrYb0ZcbcHAS77m40MOFzisfxv87O0vVtVZXohz/EIv3mm6sqU/Bn/Pzn2P/llxN99rPCAeLz1RZRm0hAQAyHUadxdLT6bZ2E1Uf3quJFtSCRwDhra1veWn+rDVxrOxrFXN/TY3xBzHwhmcTc0dEheFguh4gYVUUXY7ZFySSieZivyDI4WGE05NgYhJd164TNmpoS2SRGhZJjx4i+/33wrltvxffjcdhCnw8d3Z98EuNn3Tocq5kUaUUBP2euVcPYa9miJkc2i/WRy4U5thQ3CoUwdvv68tccs7MY7/o1gBHohUQijFVVFc+UomDcud3GuzbXA1ZJb1YU2ID5eaLXvEaU5kqnEXXMJayIindy/tWvkN3xilcggpEI69OpKUQPGrUXx48T/eM/wt598pOYr44fh91Yv974+RSmOksS0W9/i2AfhwPBMpdfXlNQTJPeydWFlojYWKy6ix2Pw4i0twviwamlnZ34OTMD0uNyYeIp5hmNRGAM/X7TdQ/+jKNHMcEND4OwzczA8AaDYp+qCsK1sIDF29AQiGIigWPkLsQulxAOa12YT05C6PN44FlhcsupuNEofrJHrK1NEFlFEanR69YJkTWTQfpyNArjvWHD8k+4nOqyuAiD39eHazs1hXHAx8eesUymdORisW3raytmMqITc38/xpI+FdrIuaoqjmtiAuk9uRyOZ+1aTLY1ClhWn6BWzBZxjRwe705nfcTEYo1WVrOQmM3iOVkt6ctEOKePfxx2/CMfEQRSlvEccwf5UvfyN79BXaCrrqq6viARET3wAAqOn38+0b//u0jFYvtTLeJxiJyxGNENN2CuqgOsPrJXHS+qFtyFWNOWp87fagfzhmwWXKSnp7RdVBTwzngc17m9HdxLP3fs2IHtnXeeKB/Dta8lSWQyhMPgRYqCbQSDEGGmpsBfBgbw3cVFvHp7jUcITkwQffe72P/tt4sa5Owsf/xx/D0wAPGwmHO8HNhJrCg41hr5rtVH7Clhi1IpjE+fL78sUiEmJ/FMDQ2J9Z0sY7zY7RgvZmyUXki02URkI5cj4H0U1khcblghvfnBB5F2fO21ommKpqHEQTqNVGSXK7/5Cl+/p58m+trXEH14xx2iqdOBA7AXRh2ZU1OofWi3g6e53ViHdnUh8rma+UpVcfz33Ydt+f0YV5dearrZZSGsbossgZaI2FisuovNkYSqKrozczfemRnhqeVaMuWMTDSKyc3nK99xs9yxHD4sBMKeHiFgBgI4Bj6+Xbsg7PX0iPBrt1ukKtcz3ZIIi8bDhyGerF+/1LuiaSCzHKXINSTCYQgEW7eKa7K4COPP4d7V1HisBZymHA7j5XSiaQ2HnIdCGBPBYPWC8OIiJjmvF/eFu7QxOA1aH7VYbGxFoxAQ43EhLq1fDwLf2VlT5KbVJ6gVt0XcyZmJm9NZO3kr1miFhcRmJIbVYDWmLxPhvL72NaKHHyZ617uInvc88f7UFMbK2rWlbfNTTxH9/vcoNH7JJdUfx2OPEd11F2zaf/4nxlIqBRtTS6R3JAIBMZ1GPTOzi/0ysPrdX3Fb1Exgccvlqn7+PJXBnDQchl3s7s7nk6oqHLdEouxJ4fxw5Ag42+bN+WL/+Di+OzKSbw9UFbwlFBJ1mjnVmQg8dHISx2KknA4RnCnf/jb289rXwhbNz2M/+/eDI3V3QzzkTBczUFVRXqivry4ppC1bZBHEYnhxBlQxyDKiaZ1OzL3MM9JpjD2fz3yzSuYvmYxYjykKxrZ+7dVoIZFIpDdzDe9mwd69RL/+NcopvPjF4v3jx2FTzjhjacovi4lHjqBB3egoeJXDAeF2507Yom3bjPHHhQU0uEuniT7xCexvzx7YjK1bq79HsowIyYMHRXmvCy4QZbFqiA61ui2yBJroMWnBipAkGKJIBBOSx4PJZWFB1GsZHTVmkNvbsT2uG2i2wLgkgbApCqIS7XYs1EIhEK9IBNtkb7HHg8g6nw9GcDkjedraiM48E6T02DGQ2NFRsU++jm1t4pj37MHiNRBAurbPB2IciYD0Llf6ciVwJ8LxcRBQVRWpy243jq+trfoFEIupwWA+QVEUkQKdyWAijEbxP0kSgiKLi4kEPHeaBi+914vjTqXwPY5s6ujIj0BooTHgWigsJqbTtYuJ3C1eUYTN4YZHHKVoZazG9GXGQw9BQLzhBiEgEsHmZTJY5JaaRw4dgoC4aRPRi15U/THs2AGiPTpK9KUvYSwmEthvLbZ2cREpzLJM9Bd/YVxEaOHUA9ddTiYx7uvZmfRUgCTBQej3g/fNz+MZ7u6G7eQyJ34/5v5iNmVhAVxtcDBfQAyH8f2+vqX2gOvMuVzgRoqC1/w8+MX0NP5nND0vFEIEotOJFGaXC5xwxw5w7bY21AvbtKm6RTanpmazdRMQW7AQ2towH0WjoolJIRwOjA3OQGI+7vHg2YlEYJ+Mcn29gKjvvKwo4P2xGI6DHaM2m0g3bkSmBQtWHMTRDOnNc3NI8x0ayuc2kQgExP7+4jUDOdLzq19FAM+dd+I9WUY2nsMB8dHI+UWjqIGYSBB99KMYE889h+uzaVP1vDqXQ51XTod2uZD9MTKC48xmRZq507ny96KFpWhFIpaAJEl3ENE9RDSqadqxOm121V7sZBIej1RKpJF0dGBi4CLVRg1APA5j5fVW16lQVUWq7/AwDFMoJASvwUG8fD6IjZOT+HvjRvP7qgZTUyCZLhf2WVgHMp2GUSVC1ByTvR07QGJ7exE63tmJ67MSQkI8Dg8lp15PTQkhee3a6oltOo375PFgoqq0jVwuv7Yik5NwGNGabjeuFwvFnEquaSJagD2i3HXOYD2ghk1np4ot4k7OXCe0WtJQrNEKkfU7NnP6ss0mGlKtFhw5Au/2li1E7363uEfpNGwLpwgWw8wMFtvBINEtt1QfQbB/P9Gb3wxCfs89IN4cwVzYSdIM5uchIBIR3XSTuVplBtGyRasQsZhoFrKanvVGIxoFV4nFREZKV1fpeT6VQoqw2430P772mQz4otdbuvZXNouIGpsNC2EWHWdnse9t24zxtWiU6Fvfwv2//Xa8d//9cED39uK4tm2rflxoGsSJVAr2qNpa5EXQskUWgqZBMM/lsGYrNTbn5jAmed3E4JJDfX2VnR3sKGbx0OkUdaztdrzPJaX03ZvZAUzUODvYLOnN6TQikRUFdoCvfS6H9aDDgYYoxY4vlSL6l3/BfXvf+2A3VBVRjZEI0p+NZPwlk6gNPTaGWtWbN4sAl23bqm+ImskgM2NqCmtGTYPzeMsW8RlVFbUTiSp3dS5ARVu0TDbklEIrErGFmsCeVo48ZILFpESSROqIUUGQi1pz4xEzrd1VFcatqwtC3ZNPio7F/f04jlQKP30+0VxjfBzfrbaugxkMDsJ4HzoEYzw8LGrmpFIQEDnt1u3GtZ2awiRw7rmY6CMReAenpyEocKfnRniTuXObxyOapvj98G5xisTBg6LJjVHkciDbDgfO1ch9cDrx4v1oGkThPXtwjV0ujKPubrzvdOZHKw4NYTLjCM9wWEQoVDs5tlAduGszi4mcrmtWTNR7sPXRh8XeswJWa/oyIxZD1F9nJ9Hb3ibujarCHjidpVOmYjEIdF4v0StfWb2AePw49h0IwHPf3Q27QQQ7UO31npnB8TmdiEAs1RCmhRYK4feLBmycpdGCOSQSuH4+n3BOcT3eYlBVLM55QcuLVU0D55Gk0nW6OANG0xDJ7PHALnENOEkSJXTK3c9kEk6RTAZR2Tt3gscSoU7YeefV7jhm8aenp64CYgsWA6f7z82JWp3FBJpgEByEa87zZ7q7McctLGB9Vey7XPOOI/u83qWNFony05mTSdg+/rvREYmczszRxKra+PRmTSP6n/8Bx3nVq/LXI4cP43pu2VKcyyoKeMzsLNE73ykyH8bHEVAzOor7UIkLZzJEH/sY+NEHPoD9cYPKM86ofo2UShH94AcYd6edJgRJvYBIhGNzucCfeE3AdcC5lnprXlxZtCIRS0CSJDsROYkoo9XvIq2ai80erLk5GKyODhgqniza24XRTSZFF2czhCWZhAF1u8tHMqqq6KicSgnvkcsF4ydJME4sNIXDOHa7HeKdx4N04ePHMYkaDfGuFbKMCJxwGIvL/n4QVbtd1IM4dgziVyAAD5BeJMxmRQ3FZBLvuVxCUFwOEUyWQZQlSRwjEcZBIoFzSCYhbuZyIj27Uiogd3PWNIis1U7Ys7Ood+nz4RqoqjhOfbQie7a4S7DHg89kszh+RamY6txIj/spZ4s0TYiJTOjMdoxkwbBYfUSrNFpRFGHTVlv6MhHO77OfhUPlH/8xP8JnZgbnvmZN8fPOZom+8x2I/7fdVn2E3/Q0io1nMkRf/zrqmHHnSL+/+kXL5CTRT34C23LzzdVF1RtEyxatUuRyggO1xB7jSKVEgz+ex71ePNcLC4KzFtbpfu45PLfPe15+rWkWSoaHi0fvaBp4UTyOZivMNTkKsbsbdmB+HhyEG0kUOlnTadi0mRlw1ulp3P8NG4guu6x42qJZLCzgOLu6lsUmtWyRBSHLGJuckl9MWMpmIUJ5veDojFwO49XlWur85+wJotL8hUU6jkjk9xIJ/OT0Zn1EYmHn4eXESnVvfvxxokcfJbriCkQNMqanYWtGRvLvA0PTiO69l+iRR4he/3qiiy7C+1wiizPZVBWfJcpvRsiQZWSHPPss0XveQ3TxxVgnT02Bp3Hgi1kkEugyHQrBxoVCOJ7zzjP2fX1jRiJRFqmaNdoy2ZBTCi0RsbGw/MXmVNHZWTzIgQCEIxaJ+P9EiCxhgxuLgSBxLUKjYCHR5crfnqIIcTKdxnsOh+iozPvI5UAMFQXprHycnDYry/DGdnZigjx6FEStlIdnOTA9jdRbbgizbRuOd98+kL01azBhlDserm0SjeKasNedU3RriaZhqCqE1mwWx8PpC9EovJhdXfldsOfnRde/ri5MOsVSHjQN1yCbLf0ZI5iaEhGI7e3Y3uhocdIvy0JQ5J/6jmZcf1HTMGY6O/HSCVkWkKDKwhK2SFXxDDOJ42hFoyjXaKXZhcTVnL7M+P730ZXvzjvz6/1Eo7CH3d3FI9FVFQLd0aOI8KumqQAR9vHGN8J+fe1rcCAlkxhzPp954Zpx4gSKhbe14fiWuUFGE49iQ7CELVopJJOYowKB1edEqDc4qyCTEWV0CsVXboASi+EzwSDm+PFxpPpt2CCaoRCBg504AVtUauE8Pi5ERhb6OGPD681vohSPiw7SHg/27/PB5nzrW1i0Dw6CwwwNoTTM2rXVNRssRCgE28qN5ZYBLVtkUWQyGMNuN8ZwMW4UiWDsBoP583Iyie+2tWFcce1mrk3t8ZRfv7CQqE8d1qc3Oxx4jm02EbnYSCGx0enNx46hVuCWLUQvf7l4P5lEkATXxC+G3/wG2Q8vfzkimYlwL3bswL3Vpz+zMMt8mK+pqhJ97nMQMf/qr4iuvBJr/qNHsd6vlm/FYkT//d+wgWefjTXbyAgaQ5m9lwZSna1uiywBCyV1NRaSJN0hSZImSdLIyb+/fvLvfkmSvilJUliSpJgkSd+TJKkO/sHmRzSKiJGJCTyso6NLO9RxgxBVFd3viPCe04n39F12K4EjyrJZRLuFwzA8Y2P5HuU1a0C42OPL4M7BNhsIIguOHg8IHxffnpoSdREXFyFGlUp5qTf8frFgTaVQm+tPf8KxbtkCUltp0nI4cO4jI5hchoZEI5ajRyFITkzg+lfrN5iYwDGtXSuEvnQa18vnyycVNhtSyLduxaQTieAYxseX3v/5eRCYYLB6AXFiAmJxZycEy0wG3rJSxNvhwKKspwfns2ED+2MeSgAAIABJREFUIpD6+vAdrxcvux3jbO9edH/duxcLikbiVLZF3N2dSWg2i2eEiUMlMKHQP8ssHrKY2GzQNJwjL4R9vtUpID79NATEyy/PFxCzWdgUr7d0KYvf/x5R3FdeWT2hjUaJ3v52kOMvfxkCIneB93iqFxCPHiX66U9hi171quUVEB9+ePm2XQynsi1aKfDzz9GxLSxFLgd+yI7h7m7wuWLRmxxtNTiIeWB6GumBe/aAD2zYID4ry4hMdLtLN0PiRoJ9fUJAVBRs1+FY+r1AADZrYADbZ+f1Zz5D9Mtfwm6cdRbRddcRnXMOvl8PATESgc1joafe2L+//tssh5Ytqi/cboyLTAZjpRhYlF9YEBGGRLBRbW1YX4RCwlZ5vfhfpfULC3MsJhLh2eS1kaKIGrF6Ttco/sbZMHyMRvlnNYhEiH71K9ioK68U76sqgk3s9nwnhx5/+hPEx3PPJbr+evG9ffvw++bN+feCoyv1EaCyDD706KNwsF55JY7p2DGMj1L1YI2c13e/i7HxghdgzT00VJ2ASCRSnb1ecDVVxZhMpaBTGEHLhtSOlohoHvcRkZuI/p6IvkZEf0FE/7aiR7TMSCRAslg8WbcORqxUeg0LNLmcSLMlwgRkt4PIsDepEjgaJ5FAFNyxYyKybe1avLq6ynvo3W4YT02DMc1m8b7NBiLX24vjHBvDtjZtwkS4e7fx46wWXPS7uxvGOpmE8Z6bI9q+vXQtsHKw22Hs163Dea9bhwk+GsU13LsX+4xEjC9KZmbgPRoYEItiRcFxOp2lUwntdpD1LVtwLizITU3h++Ew7m1XV/XpWidOYJs9PdhOMgmB2EwtTSKRCt7Xh+9v2IDX5s0Y714vJvHf/ra641wGnDK2iMVEtxuEI5sVnu5K4KLd+s/qoxKbCZzGI8uiplYzR0tWi6kporvvxnPFjQOIRMF/my0/nVCPZ57B67zz8tN8zCCZJPrrv8bi/QtfwHZ4rnG5qndmHDxI9POfwx7efPPy1VXVNKKvfIXommuWZ/tV4JSxRSsBnnMTiZU9jmaDLIua0ZkMeA/XYq5kNz0e8EefDw6NWAyOcf33Jidhk4eGSkdmTU6Ca3BqIWdWKAr4UikHUHu7aL7ykY8QPfAA0ZlnEr3pTei6LEk4xnoIfrEY9hMI1CclmpHNgivfdx/RP/1T/bZbI1q2qEr4fBgjyaSoCVwIrpvIjSoZfj+ex+lp/B0ImHPEFRMSiTAXt7XheeCa9ishJPIxMp/M5eq/b1km+sUvsN3rrsvPujl2DOd++unFr+vx42gINzJC9IY3CHt1+DDmjU2bSmcBsphos2Ebv/0t+Mt112GfBw+Ci27cWB0fXVxEmYZMBg7j48fhHLn44tr5LWcoeb0YK88+S3TXXbVtk1o2xDBajVXM42FN097Ff0h4Av5akqS/0jQtunKHVX+kUkI8cjpBuPQpxeXgdsPIplIwhC4XvtfRIZpYFNajYWQyIlWZPT7s6crlxKRiJqTc64UYtHcvhMQtW4Qh7uiAcZ2eFoWvN2+GZ3XXLhC75SiqGw4jgs7nw8S8dy/O7XnPw/8PHsQiuxYvNHcdbm/HxJRIiLTnSATXPxAQnylGeEMhTALd3aIxAHeMVlUQ5Ur3wukEEe/txXWemYH4Z7dD5DQr+DGOHsUk2dcnxtbatfUhyjabiEjkVGauV9kkOGVsEYNJnKLkp/u6XKXHoFUarejPx4j33qpIp4n+/d/xPP3VX+Xb1sVFUdagmC06coTowQdBZi+9tLr9ZzLoAL17N6J/LrwQ8wzPVZXqt5bC3r3ooDo4iDSiaoXIUuAFiyyj2+LddxNde21991EDTjlb1EjY7bAJiQTGabVjdLVAVcFfWOhg/lKNzRwfx3c3bBCp0MGg2P7gYPFnOZUCh/H5wGEYi4vGOtaeOEH0xz8SPfQQ9vmmNxFdcAH2uW8fjqFUWqkZxOMiW6Qap3Qh2KmfSICPP/ggGkBs3Fj7tuuEli2qAe3t4FfRqEhF1sNux9ienISAz01XcjmM10gEY8OIkF+IQocvP892O9ZBXNpBliFacjpuI1ObeV8ctaev5Vgrfvc7rKtuuCHfefD/2fvu+EjLav/zzkwyM5mZ9L4lW8k2dikiSK+KUkQQC4KKHUGvqIhesaBe5HKtKCpW9FquIoiiAhZWFhaXBRa2ZGvKZpNs6iTT61t+f3w5v+edlnmnJJts3u/nM5/dTDLvPG95znOe7znneyYnsWdqb8++V5qcRFCxuhoN4nhvOzIimuEYaer24IPIhr78cqK3vAXXeu9enG9nZ3HnOT6O4xKh6mTPHtihc88tf4XNP/4Bn64Mds60IQZxnG5TZhTfS/v5KSKyElGRSb5zD4kEMtV6euAMtbYiipGL9MsF7qwVCqV24OJFilPmuXzP68X3Dg9jAeOunNy9uKkJC5aigNgqtLTH5YIhjMdBEOozk+x2fI/bjXEkkzjnUAjd8QopwTaCqSkQiJyuv3s3xrVuHVK916/Htd6/H4t1OcCEYXs7rsOKFVj043GMZd8+kHJ8/kQ4/5ERoX3JmJwUznYh0Ua7HenwHR14zlhf0+stPKrX3Y1ntK0N5+Hz4TkptsHCdGBh9cbG4rOfZgDHvS3KBe7yV1kpuhfrdS3Todd60T9n+k7Axwqs/ROPYy4dzwSipkF7cHiY6MMfTiX7uSMjN0FIx/g4svyam0GeFbNpUBSiT38aouV33omMH27MxeRtMdi9GxvpxYvRJbpcBCKX3PMzGwwSvfWtRD/+MaLtv/51eb6nDFiwtmi2wI0JCpFzON7A5CFLs7hc8Gdqa4uzmd3d8GU2boS/19CAtaSnBwELjyf75juZhK/Esj783aEQfLuamtxNS0ZHoef65z8jo9rpRDDlHe+AX6RpODfWmi6lGoa16lh7sRjo/fMjR+CPBgKwv489BhL0nHOIvvjF4sdZZpi2qETU1sLWTE1l3/twYN3rFU0UuQFmSwvs0+Rkcd9tswmSTu+rcXmzyyVITlXN7tfNNPTlzazNV+r379oFSaYzzkiVVEgkYI/c7tRgBSMWA4GYSMCOsN0JBmHD6uqwt82HRx9FufGFF0Kj2mqFfUwkECAoJpFmZITot7/FdbrkEpxfdTUCwOVMzNE0ZFDefTfG+r10C1A4TBtiEGYmYuHoT/t56pV/5329vCyD0JmagpFk0q7YaAHrI/p8MGjcYbmiAu+PjuJ3bIglCYuTy4V/szmF3GDF5xPNPAoZn8eDdPCDB0Ek6jUiuLyZxYOtVhjzvj4Y+BNPLI+wOS+8LpfoeFZdDWKPN58uFzIg+/rwe+7QV6xOVzokSTShaWvDQsSaOcPDeFksImN00SLx2VAI46muLq4EmTtOrlghnoOBATx7bW3GyncOHMBnODt2bAzPay7dolIwPIznrb5+Zo5fAo5bW2QU3JmNOznHYqKTczrJxBmMLPbNYPvD4tKzCX335VJ0+OYLnniC6PnnEeVeu1a8z9IIlZXZN+2hEMTC7XaQdMVcJ1Ul+sIXkDlz++0o1eHsbCLYsmLu/44dRFu2gEy47LLSneNsmxFJwjrw5jcjsPSNbxC9//2lfU+ZseBt0WyASwZDIeFPLQRoGs6ZJVhYg7kUezk2hhLBxYtF45PqatjhHTtgF1pbRYdnhqrCL1MU+JI83xMJHDMXYTc1RbRtGz7Lfm5NDUiDs8/GOU5Nwf4tXw4faXJS+B6FBvGjUfixdjsCL4V8lonDcBhEJPvn7DMSYaO+dy9s3rXXzqnAl2mLSoQk4ZljvU8uYWaoquiYzFVKvHdhbUWfD/uJYjqA22yiaQaTiozKSqERGwphHHb77GckEomGfZyVmD5WoxgZgV/CTUYYmoaKNFWFrUk/tqoioDg8DHkWllRIJuEnVFYiOJJvTP/8J9FPf4pOzh/+MP6+uxtzf80a0eeAr7GRuT40RPTQQ7B1r30tNOWrqpCNWM4GYYkEsg//8Q+is84i+uxny5Kpb9oQgzBJxMKRKy44b905RYGzwdlg9fVYNMoRKbBYhB5fMAijG4mIcuV4HNHf5mbj+l+80ZyaEk5XIURibS3KhLu7YaDTjay+vDkSAVF19Ci6W514YmHdpdMxPg5Hs6IC1zsahRPb0ZGd9Fi1Cn/f34808FWryiOynQ6HA6+WFtwTbi4Ti+H9nh44A04nrrnDYSw9Ph2qivMhwndxB2m/Hwvh4cOC2Mx2nqxrOTSEqFxdHe5NfX1qB8RyQNMwJr8fm4JcGm3HEMedLSoW3LVZlgWhmI1MZM0dRUm1Gdxohf8/G4jH4QAd7+XLjP370Znv1FOJXv/61N+Nj+P6Z9vsJpMQC4/FiN7+9uIalWga0T33IPvn5ptxHCKxQXa7i7v+27dDw3b1anRDLDbglos4ZOzYgY16LEb0+9+nCq7PEZi2aBbA1QSBgCgZPN4RDmMNZp1YzpIq9ZhdXfD1OjtTfzcxAZ9k+XLYaNY85OBmfz/m4fLlwhdUVfiLkgTiUT93QyHYiQMHsB69+tWw+1u2EJ18MjJ/iOBXJRLwh5lkrKvDeCYmQMo0NGBs+daoeFzoVRslEDkjm1+aJtYmDuxLEvy3b30Lwd93vYvo/PPnHJlt2qIywGLB8zY+jv1AY6PQo+amKkuX4nmYmEhNNPB48Hd+P+ZqMXum6YhELm+ORkV5s9N5bIjEUsubIxFkAbrd8Iv0Yx8agq1ftSrzGmoa/KmuLmQxc1BW02BrZBkZ1vn28c8+i0YqJ50EmRerFQkak5Nij0UkMj6NkIn9/ci25nN67jmM44ILSts/p8PvR2B4506iq69OLeUuEaYNMQiTRFzAUFUQWRMTMIC1tXA4yhklUBQYeRZ25m5dbje+K5HAiyM6RlFRAeKI9frq6gojPRsaMLa+PpCJ6YKxXN48Po6x82LKGYnFRDpGR3GtZRnXwmZD2XI+Mq65Gderuxslx4sWgTCbqYWyogJOAkfoEwksZKOjggBdtQoLeCHlf6yjKMuCQGRw+c/UlOiW6PGATOTv0DQsmCMjcODr6rDY1dZirOWEpomSKc7INTG3wVnO+sxEWRbvcVdmzkjUayGmN1qZSSeUszwUBWPjZjHHM6amkLnS0oJSGf35+v24HtmkETQNxN/YGDIQm5uL+/777kOpzjvfie8ngvMuy8V3v966FVmVa9eiVKdQEjIfccj44x+RddjYiP9v2FD4WE0cP2DdTu7gXm7tzbmCaBR+UjIJn7S5uTwbUFnGptNiwSZbP28DAXxnYyO+j31kbgAXj4MUXLw4Ncg5NgY/adEi4dfEYmjYsns35vWmTei2fOAAsmbWrEHggb83EsmUcrDbcUzOKhwdFYROrmAyZ0TabDiH6eySooiAfiwGm8QETVUVrrfeJh06RHTvvfjcRz86p6RdTMwAbDbss3ifyJ2SWSuRO51zBZt+L1Nfj7nr9Wb6+0bBvlo2IpEzY2020QjG6RRlxrPpU3F5M/uVPI/yjUFVoUEYi0GmRG/fgkFUH+RKYNi8GVICl1yCTGZGfz98qtWr81eKvfQSqho6O1GdUVGBfe7Ro7AdnNnI58ialdORiT09RH/6E56Fyy+Hn6RpIBCLbZ6ZDQMDRHfcgUSPm24iuuaa8mssmsgPk0RcgOCyCSZ0PB4Y+XJFCGRZRDNjMbxns8GocGSUFxSHAwYvGIQhKiSKwMfkjERufmEUzc0w+keOgEzU61AQYTwtLViYxsdFVJiJxEIINBa4DbwiycoRcKOEbVUVCMfDhwW5tXLlzJQ/Hj0qMiTZUW1owPcS4Z75fLjmnEnIpc3TLZpeL56HpqbszxqXUPB1Hh1F2XltLe7DoUO4hqtW4b3+foxv6dLyOgyahsU7FML3lrOboYmZhyRhXjGZyISinkzUSyjwszMbRCKXXBMtjPJlIpzzffdhc/vpT6dukuNx2BGXK/um+Kmn4JReeGGmfTaKn/8cJT9XX41IuyThe5PJ4u6BpmFcL7+MdeDCC40/K0aJQ/7bb30LXU9PO43oV79KdepNLFw4nXh+IxHYtONp8xSPiwYnNhs20eXscr53L67bKaek+iHJJHwfp1Ns2rlLvNsNX0RfAcHw+eArcAZhMgmS8qWXYPvWrMH8dbsRBH7sMdiyK67A3Gct2Fw2kAjHXbIEZN/EBDbOTCbqN+bJJHwkiwX+bbbngv1zJg6JhB/HxGE2bNsG3bHqamRzL1tm+JKbmMew2/FMjI9jTra0pK6ZnBE4OYnnlJ8fScLzyXrihZbU8zGsVjyzXD2Sfgx9eXMkIjIfZ5tIJCq8vHnrVpBhr31taoBUUbDfqazM7vfs2oWKhJNOQnCV4fXCRrW25g+47tsHDcGlS0HGORywQ3192J/mmt/ZyETOWj54EJ3aWbd661bYpIsuKq6sPRd27oSmdTIJ8vP884+vNXA+wSQRFxj8fhj1RAIOw5Il5YkOsEPLDQKIhH5hVZVogMCEYU2NMPLV1UI/o7a2MGPAkTJ9aXMhm8K2NhjsoSF8b0cW2VTWyRkZgcEcHhalzfnKibgk9uhR0SFv6VJc92I6l61cifFweTP/XC6MjeH+tLSkOrScEbB8udDHYPFv1qfkCHZ1dWZ5IHc6rK3N/7yxHidrsoyMIB1eUdC9sL4eZKrLhYWunI6CqmJRj0SM6zOamJuwWIRWTjIJm5dMCjKRuwDqHVMua54JfUR9+XIuzdfjEb/5DbKob745VXJAVTG/rdbsmb47d0JH5+STseEvBg89RPTNbxK97nVwlCUJz0AshjWp0CwuTYN+0J49GFe+DtGFkIZ6JBIgPH/xC5Cf9923MEpXTRiH2y06oZbTBzhWSCbhS0SjsAn19cXrlOZCfz/839WrU4ODXHlAhMy/bJIKmiYqIwYHQRpaLCD13G7cg927YbOiUWz+Tz9dEI49PShbXLIEG3+rVQRRWEcuH7ixRCAgCIOqKthPmw3nRpQaqOfxM8mS7p+7XNMHszUN437kEZzTBz84J6VdTMwAWLPZZsOzIstYm9L3WNyheXQUzzf7Nrw/m5jAc15MQJ6z/JhIzJbRqC9vjsdTKwxm288yWt586BBsxcaNSBDRo7cX13n9+szPDgxAv3DpUqIbbxS2KhrFMT0e7NOmQ28v0Ve+gnn8hS/ABkSjIAEdjuz6i+lIJxN37SL6299gP6+4guiZZ2BvLrigOOmrXHjiCaJvfxvP43/+J3zDheJLz0WYJOICQSgEAx+Nwkh0dJSurZdICMeEO3jZ7TAYVVWZCw03WmFCiR1fiwWk4tSUaORRiONotWZmJBZSkr14MQz+yAgWKL22B6OyEn/HEa6+PkSaN23K7cCzY9rTg/NtbET2YanEFEfGu7uhM9bent3xLRQ+HxzTurrUxZ7Litxu8czwPaupwQISDsOxZVLRYhGOtcWC++J2F3buVivOtb8f17KpCc5IXx/OV98VsRxQVWSlRqO4pjU15Tu2iWMHJhMVRZCJnJlIhPuud9Q4S1Ff7lwK0suXy6kJM9fx7LMg3S69FNk4enAX+La2zOt8+DBK/lasgBNaDB5/HI7y2WfjX4tFZOFwSWghUFU4yfv3Q9fszDOz/12xxCHD5yO6/npkO952GxzlcnYyNHF8wGLB5i8UwjNdzmy92YQsCzLUYoGP4PGUP4gzNYVNdnNzZpbNxITQv073HaNR+CBVVaiCkGVR8jc1Bb9uaoro739HYHXRIjRH0DdhGxiArmtzM5ojVVTgOF4v1p6GhsLOt7pa+NJeL3yiSATXbskSIUnDGYd6/7y+Prt/ng3JJDK5n30W9vv662dGk9vE3IKmZWo2V1cjWcDvxzOr92O4amtoCHND/+w7nfhsIIDnr5ikFT2RyBl+2f5GX94cDIoEltkmmfKVN09OggxrbUUWnR7j47BHS5dmzjWfDwHFqiqU8LKtUhRkFlosqc1Cs2FoCFl8Lhc6qtfUYJ4fOIDPdXYWlsgjSQiq/u1vsD2cgej349zKFXDQNKIHHkC35xUrIKfQ2Xn8SwHNdUjabPZFNzHrFzsaBTkWDsNpaGkpratfLCYyDmUZ7zkcomubkc0O68o4HJmlGD4fDGMxBI6qwpljfcdCtR17e2HAOzpg3HMhGIRTyFGfU07JJMc0TWQLEsFpPeGE8upNqiq+Y3wc41i5svjjh8M4J85O5edDluEs22zY7Od7bjQNzwZ3eo5E4OTW1sLw19QY3xDLMojaQIBo3TqM7bnnMNZly0D0NTWVx0HgsvZ4HJsAA47yfF+6FqzhVxQ4x5xtaLWKlx6qin9Leb705ct2+8IoX2YMDBB9+cuY97fdlnp9QyEhEZFuOycmiH79a9iKt7+9OJv29NNEH/sYyn3uuw9rjarie7k5RSFroKKgDLG7Gx0A0wnRUolDRm8vGqgcPoxS5uuuM+TQm7ZoAYO1+jye+WVfFAVreyiEn7mKYSY2/PE4ynG5sYneB4lEMN9qajIDyMkk/DwiZOfoA0/79yPzcGQEdn7JEnQ3XbIk9RgjI7BnHg8aIFRViQZzqpqZNVgoZBljmZyEP51eksw65C5XYeRAMAgd2wMHQAy84Q2GAi+mLZrnkGXsGzVNZOvrpV5Y1z2bhjEnIjQ3Z/rQXA5diu6+puG7maTLBV7rWU/V5Tp22WqqCltHJEqzf/MbXOPrr0+tMIjFUIHhdmPPo/ch4nGir38dduO221Jt1YEDuC8bNky/dx4bQ1BSUYjuugt7OrZl4TD0nQuteHjxRegzrlgBDcSnn4bNO/NMEKHlKCuPxaDd+NRTsN/veY+hKrT5bovmBUwScXYxaxc7HkfmYSAAY8vloYVOZk1LJQ4VBcdgx8TpLE6LgPVY3O7UkjJuwuJwFBfxVFVReltbW1i5mqZhkzg5CYM4XQQlkQDptGcPFqkzzhDZe6oKo757NxavjRuRxThTEZOJCTjBFguIxEIJ2Hgcn6+ogGHmxZZLsWUZhF2hjq4sY1PMgse8kFZVYYweT25nIplER9JQCGXj1dXI6LRYcC3Hx/FsMzFeaCQ/fZxHjuCeLl5seBGd7wvUgjf83MmZbZrdnvqM68uai3m2Fmr5MhHs+xe/iGt8552p2dqyjGh4ZWVmJ9NwGNp/ilJ81ssLL6B0euVKoh/9CDZY02BLNK3wTsyyjOYuhw+jfPnkk/F+uYhDxrPPgjTUNGT/nHOO4bXVtEULGJqGtVDTSgsQzxb0Uig8H2tqZk7TSlVhE0IhlBfrA9eKAh9FkuDz6e2CqsIfjMeRgagn0PbsQXflSATvr1uHrJimplRiZWIC9qyyUtgzJmISCfx9KYFlDiT7/Vi/wmHhP7e2wp8phlgeHib6zncwzne8A9fNYAb9HH/68mLB2iLe6yWTItMw25xUFDwXRCAS0//m6FEchzNiGdzBnAjPZrH+EJNy+YhEIszPaBTf5fEcu4x+ls7RNAQje3vRCEQfcNA07BnjcVS46e2CqhLdfz9+/+EPpzZXGxqCb7JsWfYqOsbUFAjEYBCVGZyN3d0N4jdd4sEItm1D2fIJJyDI8O9/Q+rh9NNxfH0gvtj7PTmJ8XZ1oUz6jW80vJ+e77ZoXsAkEWcXM36xWVh5akp0zmpsLGwCc/ldOIx/uaxPTxyWY0Ps98OwpjuQXCLNUdVCwY1jkkkcu5DyQVWFLgR3t5rOqGoaFswXXsB5nHUWnMIXXwSJ2NqKjJXZKIuNxbAYsJafUdJSlrEAaRqMfroDzM1Fiin9Gx7GdWlrw3FjMVHyrG8uwZ2ZmfBNJHANo1EQsNXVODdNgzPPfxcO4/qHw3ivtbVw7Y1kEgSiLOOaFVBqMd8XKNPwv4JkEo6bqmaPvBdKJKoqnu+FWL5MJBqC7NlD9JnPYM7qfzc8jGuu72RKhPd+9zvYnbe9LbUkyii6utDJuLUVukGc5RgOY467XIVtJJJJdBocGCC6+OJM7SKi8pA2v/0tiM8lS5C1dMIJBZEqpi1a4FAU+CwVFXO33FTTBHmoqvDtamtnfmO/fz/m78aNmTZlcBBjWrYs1cfhShK/H7IpHATxepF109UF3/DCC5G9wxUXmoZzqqnBZ3/5S7x3/fXCN5mcxN9zWXGh4GqPcBi+SywGH581JCsq8B2BAPz0+nqMyajPvm8f0Q9+gP+/5z0ojywgGG/aonmIRAI+kKbhXue738kk1mlufKRfA2UZ84qlofS/487hdntpZa5MJObSG0wfayiEz7hcx9Yf274dwYezzwbRpr82/f3Yz3R2Zu47H3yQ6Mkn4RfpdZj9fmGL1qzJ/b2hENFnP4trf+ed8C+IcJ+GhuB36PWqjeDpp1EZtm4dNKeffx6yCqeeKo5PJKSBiAonE/v6UM0yPo4A63nnFTTO+W6L5gVMEnF2MWMXW1Ew0bxe/FxfDyNt1EFTVZFtyKnsrIXBxGG5I9yqCiMoSZkR9EAAi5qeXCoEmoaMxEQCxyiEBOP07lAIBj0fCTg1JTQg2FiuWkX0qlfNbnmRvrzZ7cYY8glm9/fDCe3oSL1GwaAoQy5Uw1HTsFjFYrm7ficSglCMRPCe3Y7x9vbi502bsCHq7sbzvWpV9mMFAiL66XSCtDQiNJ9M4vwVBWn3BRKl832BMg2/DnoNIJsNr4qKzEYr+Wxgevflhahl98c/Qv/rhhvQlU+PqSnY5ebmVMKexfsPHiS66qpU4tEoenqw6XW70UWUuxNGo6KRWCH2OB5HM4HhYTjJeie9XGuhphF99at4nXMOiM/m5oKDdKYtMvH/K0am67B7rBAKiaCxw1Gc3EwxGB5GMKOjI3VjSwRbNDwsKhn0OHoUftSiRSBJAgEQAHv34lxOOQW2TW9PFAXkHZdRPvEE3nvHOwRhwj5PdXVhzXDYP9cH9n0+2KHFizOJHCLYPA4Es+5ivkzVp58G8dnYSPS+92HDXqD/bdqieQRVFXrNNpvQfDeCWAzPu8M+BSv5AAAgAElEQVSRSXqFw8g6rK3NnFvhMD5XXV1agkUhRCKXNycSQkZrtjO2BwfRUXn5cmTtEYnGL34/bEtLS2Y35qeeIvq//0PA4tprxfuJBNHLL+O+bdqU+xpEo2ie0tdH9LnPIZhCBNvQ0wPblK0DdC5oGgIpO3bgey++GP8/eBBVY/osST0KJROff57onnvwd+9+N6Rp2tqMj5Pmvy2aFzBJxNlF2S+2qoLsGR/H/2trjWtOKIogDmMxIf7KGYD6jJyZAotqV1amRtC5k7MsFx+t1hOJHk9hUV9FgVGPxbB5zBfdHx0l+v73cR8uvRTaEMeqrMjrRXYhl+jkIgGHhuDQLlqU6tDG43AAHI7isoG8XpCQjY3GSoNlGeMYG8PCIctYjFpasNBZrSAV8t0/3hQkEvjetrbcmYWJhGjYsnRpUZuu+b5AmYY/Day3I8uiVJU7OfPvpyMSmYTkUqCFVL7M2LUL3ZBf8xpkBOqvFevzejyZ3Zg5qn3++Qi+FIrBQTiaRBDfXrwY/4/HYcPt9sLmeCQCInRiAg7/qlXlt+exGEqTHnwQUfavfa1o7SbTFpkgIqy7XIExU+XBhYD1kVmbrLZ29gjOYBDEX00NsmPS9cV6e+FTdHSkfs7rhT1pbET24IsvIttH0+CTrF8Pe5Dr+nq9RD/5Cc77uuuQqWix4FpMTuI7jZQNsn/O0j96/zwaxTrV0JDfN43F4JdGo1jPGhoyCUxNQyf7J55ABc673oVzL4LoNW3RPEE8jpckYU4Wk/AQDuM55yaKekxM4Hfc0VyPyUl8trGx8ConPQohEonEftdmmzn91WwIhSBr4HBA57miQpQ3KwoCHTYbCD79mLq6oOm8YQPRhz6UKjW1ezfOZdOm3NcwmUQmX1cX0e23Q0+QCLZx3z7YjjVrjPs2moYGKrt3w6ZecAH+v2cPjsNSL9N9nhvNEGUnEzUN8jE/+hG4jBtvhL0tYi86323RvIBJIs4uynaxuWR3bAzORHU1Jlw+B427U7IYNxEMGmccFpP1VypiMYyHMx4ZHG3VNDg0xRh8JiPjcSx0hXQGSyZBJCaTcARzffbIEWhBcJQ9HocjtmnTsRM615c3t7amNkshEh3AmptTI4WKAiKOCFHoQq+534/nsqamsNLicBjRrGQSC4aq4tpHo3DyObswX0METYMTz2LnNTX4rH5exOMgECUJBGKRz/x8X6BMw58F7NRJEp4fvfYOO6npc0Jfvszl0AsR4+PQQayvR8RbvwFVFAQtLJbMEqfdu7F53bSJ6JJLCv/esTE4mqEQMvlWrsT7ySTsH69v+cCuUDhM9PDDCGxcdhkyB8qNiQlsJrZtw7X66EdL6iJp2iITRARbFAhgflVXH7tAZiwmArgVFViHZ7N7dDKJoISqQq9ab4s0DVk5ySRshT5AHQzid5WV8GV27cI6sHat0C9btCi3n51IoGnCyAiyl7mRnMcDu1JZmT1rkCHLQs6HM9orKlID+5OTGCeXTRtFOAy7E4/jOI2NOG48DtLzpZfQDOGqq+BnFem7mrZojkNRRDYry62UYie4s3pNTWZ1weAgvm/JklSSj6uVZBnkUCkVG9wB2SiRmEhg/nCDtZnOiFYUBAonJhBU0AcQOFklEECmnf76DQ0hsNjYSPTJT6b6lb292Kd1dmYGZPXHvuceBFI+9jFRBh2LgVS02RAQKaRa8bHHQD6ecQZKsvfvh91YuVIQlEagJxMlSTRfURSQh3/5C2zuW9+KPVqRpe/z3RbNCyzAYqv5D58PBjiRgNFZunR6By2ZFI5JIoH3OCrMGirHEg6HIDe5jJAIhqWmBqSU34/xFrrYSRI+5/enCusbQUUFDFlXFzQO165NJTllGQtAVxeOee65cBZ37ECaeCyGyEwhxGW54HBAq+LIETi0oRAMvd2OazExkVlqoGkgAljHsNANbSSCe+VyFUYghkK4ZkRYiKqq4Mi3t2OBZCKYdT65i6PHkzlGSRL6QOPjyBD1+/FzayvObWAAn1u6dHZKqkzMH7BDww52RQXsZzKJ+W61wkbxc6cvX3Y6F2b5MhHWle98B3P1Ix/JnFcTE7im6Y1Ujhwh+vvfEShIL302Ap8PEXqfj+iHPxQEImfxWK2518Zs8dNQCBk54TAEvNM7rZYD+/ejLGlkBKTnlVfiOVuImasmyguLBetvMCh0pWcTiQTmYiyGuVdfX3i3z1KhaciMicWgSZ1ui0ZHReMHvb2OxbA5P3wYvkMigYDmq18N2zU5ic1sLgJRllGuODqKpgmrVomqjv37cR06O7OXHXNgX++f19XBdunH7/Ph3hZTCupyiWdjYgIkRSIBgmN4GOTh2WcXLvtgYn5AL9kiSbjP5fBXamqEJqvNJsguSQJBODiI/aq+FFWSsPcYHcWz2NJSPJHJxKGqCv9tOvDeNxjEy+mcGbkuxlNPYX5ddllmBvLYGMbAexEmQwMBZCDa7ahW0BOIY2M4HkstZIOmEd17LwjED3xAEIiyjL0sEWyR0fuvKMgOPHQIsiunn4497ksvYeynnVbYNZEk3DcmE5nY/trXsBc891xU9LW3Z5bDm5hbMDMRZxclXexgUDhAXGqaq5QhHhep28kk3rPbRURzrm12mSjikmz9QpBIiJLnUjQ0AgEYqqqqwsTHYzGQhZIEYs5ux73YswcOZ1ubIL/4XPbsgbFuakK0p5TuwaVichKkHBE28cEgxpqenchkrdEyZD3YWc7WcXU6BAJYiCwWpMc7nbimgQAWJyYjubsqawpxhhiXUVRXZ49CyrJwVFgbrbkZZEOJjvJ8j3KZhn8acKmJ1SoipMmk0HThchR9J8OFSgJpGjJZnnmG6OMfF5o7jEAA2cHpZXSTkyjxcbsRoS80gzMcRsl0Tw/R974H+0Ek9I/YPuht0XQdlf1+EIixGNGb3lSw/o4hbN4MrUi7Hed+8smwmSWuDaYtMpECzmSbjUwbIqyzPh++12IRQb5j4fP09sImrFmTGQQIhRC44KAiI5lEmd7Onbhmy5djo9zcjHM6ehTnk6ukTlWRvdzdjaDAunXi/dFRXBsOStXX455wYJ/9c4cDflmu5k+BAHw0t7v0jbWmwaf99rcxhre+FedbX1/y3sC0RXMQHOzM1jyuHOCO47KM/YPetw4EQMo3NGRKK3GpfVVV6c80ZySyzqCRMXNFHmf7llsCYt8+oscfh29y7rmpvwuHUYVRWwtCj31OWca8HB4m+sQnsA/Sf2bXLtii9euz30NNQ0D18cfR0Omaa8T7+/dj/7d2rfE9sCxD57qvD7qMp5wCG7p1K3ykc88t3fcdHSX60pdw3KuvhqTN4sWFN8pMw3y3RfMCJok4uyjqYkcimGRcDtHcnGmMOcrExKEsC60LLlWeCxo504GjWVZrZilOLCaiRqVEtjlC73QWJmwdicDp4tKcvj5sjJcvh8OYrkmhaYjaHDiAxWn1ajitxyrCG49jQevuxvNz5pmpzmIkggiXx1P4Yi7LWPAkCYuK0efM5wOBWFmJhcnhwCLi82EByTUO7k7IhGIyie92uQShmO4IT03hu8JhRPDa24tqYKDHfF+gTMOfB7KMf/XPkqLAFulJqtks05uL2LyZ6Oc/RybLVVel/i6RwAbc4UjdtEciINGSSTQeKDQ4FI8jQv/yy+gEfc45eJ+DDZxxbrFMTxwyJidBICoKnFhuylJOPPAA0a23YsPwq1+B4ODmPSXCtEUmMsDBtpqamQtwsM/G9jBXhcBsYWIC63xbW6bAvyyDXKyogN/G866nBx3YJybgy513ntBUTSZRuVBRgfdybdr/9Cf4V5deirJEfn9iAjawoQHHOnIEvghnGno8IrA/nd8UDMJGuVy5s48Kwa5dKBt0OEAycEfe+nqMtQQ/1bRFcwiaBn8lmcScdDpnbh+oKHjeiZA8obcBIyNY8xctygwWBgKi0qzUzvKsZ10IkRiPY1/AVQvlCrqMj6MhSmsr5ph+PKqKOagoCLryfJNlzMudO4luugkSL/pz27kTnz3ppNxz9Je/hC/zpjchYKm3cxMTSKAwakOSSWhDHzkCeYYTT4Q/t2ULjnHBBaU/TwcPEn3lK3hOb7gBpOmiRULCrAT/aL7bonmBOZaPZkKPeBzkYSCAjWx7OyYWTypNQ3YVE4eczu10wiBXVc2v7BirFRu/YBBGXU8WOhypJWrFivFydDwcxvUzunmtqkJ5yhNP4H60tiKas3Jl9vIWSUI3QKsVxvvQIRjk5ubZL+8hwvPjdsPw22wgN1etwoKeTGJxYSeyEKgqyEdNwzUxuqBMToIAcDgQpbPbUfbg82EDMB2RyYShy4W/jUYFoXj0KF5VVYJQTCQwj5Ytw/UfH4dTw2UU02kUmVi4sFphcxQltWRG04R+HTuhC7UctacHTuvGjSj/1YPlESyWVE0bWUbX43AYGTCFEojJJCL0O3aIrsYMXgerqkRnbUauOT4+jiwiSUKZcbnLZ1SV6POfR3nRRRdhk1BdXTYC0YSJrHC5sCaGw6VvztPB2ovBIOYYS4wcy0B1NIoKEI8Hvlk6hoYwbtZkPXoUWtb79mHc114rCEAinNfICP4/XXXFE0/gGOefn/p57kRvt8P/UFXcE9bN5gz2fDrP3M3W6SxPBuKTTxL97ncgRW+8EffN4RCZjsEgbHJDw9xPPDCRG8mkaMjDJPFMguULJiaQYKH3q5ua4N+PjuK50/tK7KP7fKVrSttsqVrW+dZXScL3Wa2YZ+Ewrhv7D8UiFiN69FHMq8suy/QNDx+GvVq3LpUMfPRREIVvehN+x+XNRCDb4nEQebkIxIcfBoH4utelEohDQ7gv3MndCOJxHItLsdeuxV7vmWfAQ5x3Xun2YetWNOKrqUFVSX09gqtutyhz1msmmph7MEnEOYhkUpRAWCwgOhoahFYXk4YsjssRJpdrZrUdZgOVlTgH7iSnX1BcLhiVUAjGq9iIETttoRB+NiJAHgiACHQ6xX1ZsSJ/I5uVK/G3/f2IaCsKCN7ZJK5Y4FiWUbLC2j979kCLjDu0NTUVNiYmCRIJPKNGo9cTE4jCVVUhA7GyEguV1wuSr9AsINY0aWnBuTChODKCzEvWRFy3Ds+Q2y1KlIaGcA5tbcVpbpo4fqHXR1RVPOdcvsyZ4KyVyERjGUpT5w1Yt6e+nuiDH8ye3ZdIZAYXHn8cc++KKwovGVZVojvugCP7uc8h84fBpYF6bcp892JkBJH2igpkC5RYPpOBSITofe+DntD734+SHS5rXCjPiYljA86sCYfhT5XSBZWhaSCZAgFBinHzkGMJVcXmW9OQvZO+ufV6cR3a2jD+v/8d2TXJJMoCX/Oa1ExpImyY43F8Jpdvs3kzgqGveQ2aDagqrvXoKD7PmU1cDcTkhKJgTFNTokttNvIkGoW/5HAU7p9lu0b/939E//oXgj5vexvGxmWcjY1Y17xe+LiBAOxhsU0NTRwbcKM31nB2Omfv/lVU4HmZnMSzzUkJViv8+qNH8XylN8qor8ec8Xrhx5dCTjGRKMv4vxEikZsfseSRohRf3qxp8HGCQaK3vCV7Z+rRUSQF6QOozzwDSYXzzkODOSbRNA3XbWoKe85cAaEnniD63/9FefEHPiDOW99tftEiY+cQjULfdXwc8gyrV2PcW7bgupx/fmlVddwN/he/QLINy9ksXSrOT+97cwdu0w7NPSzocmZJkh4goncRUYWmafIsfOW0F1uWMWknJ/FzQ4MwtpxxGI2KdG12SkrtrjUXEQiIrtN6B1XT4OAwGVeK8xqJwNDb7TDmua7h4CBIQE0TpGEigcWys9OYYTtyBNEnm02Ic89WefPRoyDSFi0SJdzxOLKIBgawKJxySuFlmV4vrl9Dg/FMh9FRkS1w8sk4fxYKLmSRM4LxcZCIioLztljgNHOGYlUVxn/0KOaVw4GF3WCZe1ln3FyzRSYEuGMmR631mz29MLS+/Pl4J4kUBSLY3d0g9To6Un/PEhw1NanZzVu3IvuHxbkLgaYRffnLiLbfeivRu94lMg3jcWyc7HbjZMnQELR+HA6iN7+5MHkLIxgexiZi926iu+4ieu978UzMwLNh2iITOREKwV/JJvNR6HH8fsx9pxNze640Juvqwjp+8smZmTaxGORnNA1z/tAh2IlVqxBQbGkR5csMvx/+Q3197uqMf/8bTRM2bUJDEvbPuTKivh7Hnc4/j0RAEnLZub7SKBaDb1RRgTGWsoGOxYjuvx/X6eKLkanEFR3ZiJJEQvh3nGFmMMhq2qJjiEQC95p9lWM1P1m/nDXLGUwutrRkVmRx8kxlZemEOZEobTZCJBIJX44zOIlg5wrNjNy2DbbhwgtTy5GJcH927oRN2LBBjGv/fjSmW7sWMi081znYsG8fghknnJD9O7dsgazLqacSffrTYk6HQvisywWNWCM2JBxGsyWfDwTiihWwh//8J67lJZeUFpCSZWhY/+MfkNW6/HKMq6MjdyMwJhOJCiITi3qCjoHNmddYEJmIkiSdQkRXEtEDmqYdPsbDyYCqwpHgDpZ1dVi0k0k4MmzQOFrCxOHxDI9HdKLTOy+SlNqxuZQoKUeFAwF8V7qTlEwihXxqSnSsczph7Px+kHDd3YjS5Fukli6FYe/txXfV14PAa2oqf6mRHhMTGGtTU+pibreDsONOir29cKqNPldcylRTY3z8w8PQlaypQdmPzYbxDQ/jPpaTQJyawrEXLYIjr6oYr9+PRXliAt9fXY2/SSaRldTbi4WsvX1mOlvOdVtkIhXJJAgqIji36U45l8wwcciZibKMn406sPMNDz0E5/T9788kEBUF6xbrfjH27oVzvWFDcQTiN78JAvG97yV65zsFgcj3iLPYjeDIEeiYeTzIQCy3xMSuXSAQfT6iX/8aZcwzRCAWDdMWLQy4XLBHodD0wdJciETwHMsy/IZcWXPHCoODIBBXrMgkEFUVpOHu3TgHmw0b7VWrQCi63Zl+RywG/6CqKjeBuH07Mn+WL0cgmf0Jlt1ZvtwYEVJVBf9kchK+CWclWiwgEG220glEr5fou9+Fn3XddQgYM4GY67iVlSAt6upwbuPj8KkaG8sfbCEybVGpYK1mRRHP4bHM2nK7RdWYzSYSFOrqQLKPj2OM+qAGNx3yeoVGYilgOZpCMhKZfLNaReKOLBsvbz58GD7O2rWZBCLr5Gta6p5xeBiNUFpbUbWgv2/JJPYkVVXws/TlzYznn0cjlg0biG67TZxDPI79a2UlyEcjz0MwCKmDUAja0EuX4v+bN+PzF15YGoEYDBLdfTfs8ZvfjIakqgqpqemSWLicmclEvg6lPOOmzSkPFgSJSESnENEXiOhfRHT4mI5EB02D8zA+DkPldGJToyiIyBCJRh4u19yJ+s4GJAnXgskqveNiseCa+HxisSl2Y8bl334/nCSOBPv90A2UZRj3RAKOc0cHFqTGRtynw4dh5FeuzP9dixZh7N3dIlI9OorFqhyRt3RwV7SamuzR+akpONOVlTiHri4Y83y6O5EIntuqKuPlf4ODiLbV14tyo6kpOPI1NZldFEsBlwu43UIM3WIRpTmKIkqyfD78PetxOp343aFDeOba28tO2M9JW2QiFax1yOXLLKXA3f/04LIL1kpkMpEJRSYYjxe88ALRX/8Kh/KsszJ/zxqpzc3Cpg0OosRn6VJEsguBpkFH8Oc/RwnezTeL4/LmqRCd3N5eor/8Bbbg6qvL3xjn8ceJ3v1uHP+JJ5ABIElzcv02bdECADeAYn1Eo4R5LIb1MZGA/WpqKk9JdDnh98OvaGwEiahHPI7ywBdfhN9x0kno+mm1imzEjo5Uv0tREExk8k6PZBK+z4svYo4vW4bGAtwchYk/bn5i1J+zWPD3bjcIu4EBfE99fekEYl8fJCeSSaJbboH9zUcg6uFwwIfijMmREfhLPN4ywrRFRYD9lERC6OHPFV+julp0bbdaRUfo5mahj9jenjpPqqpwLsGgkAEoFkwKFkIkEgn/zuUSmZ1Gypv9fvhFTU3I9k3H0BBssD5ZIxjE/KyogF+j32uoKmybJEEHkc+FKxGJQMb9z//A9n3mM8LHUBTsXzUNQQ4jGeg+HwjEWAz6sO3t2Jtu3ozjXXxxaXN+eBhyLqOjwhZpGgIuRtYVvp+cMVoGMtG0OWXAQiER5xQ0DQZndBSLs8WCyWm14me7HRsQzn5bqLDZYLhDIVwX/YLCWWR+PwxzoeL8erDh9vvhIIVCcOScTpBbU1P4m46O1EWkpQXGdWAA7y9blv+72tpwvw8ehFFsb8f4YzGQleXaaEajosFIuu4Yl81XVIio94YNIDd7ejCejo7shjmRwGft9kxdk1w4cgTn29gILR6LBdd6YADPfbojXwo4as4EYLbjsqZdbS0WIS69CAaFkC9vJnw+jLuc98bE3AbrWqlqqtB3tkYrDL1+C5fN22ypZCJnJs5nDA8T/fjHCJpcd13m7zmzubFRrF1TU2ikUluL8hgjOkN6lZXf/AaO9hVXEN1+u7BLqirKzF0uYzbk4EEQAE1NEC8vZ4BA04h+8AM48xs3YtxsXxfyOm7i2MNmE1rT8fj0mYTc5CAWw+caGmYmK79U5CoNlGVsrrduhY+9cSPRa18LH1GWQSBKEjavelvEjVQUBcSZ1YrvCIfhfyYSCEA8+SQ25tddJza/qgq/g0jolxcKhwM+5YEDuE+yjH+L3bi/+CLRT3+K8/6P/xBZqEYJRD2qqrDpDwaRKXb0qNBpnGvE8kKBLGOOqirWl7kmayVJIpOVs1g5oNrUhLmp101k1NRgrk1OCv3gUsZgtabqVhslEhVF+HGRCPYIVVXZbacsoykKEcpz0/28YFDoEvK+KZkk+v73cdyPfzzzOvT0wPasWyf8FL1OYk8PZFLa2tC4jeehpsHPicUQwDTi40xOgkCUZTS7Y335zZtxnIsuKm2P3dWFsRJB/ob38suXF+6DZSMTNc1svnKscNzLVEqS9EUi+tErP26WJEl75fVu3Z81SJL0v5Ik+SRJCkqS9FtJkjIKGSRJWi5J0i8kSRqRJCkuSdJBSZJulyTJ8HUMBlHW1dUlSr4405A1VNra8J658YDBdjiE4K0elZVwsBIJ0SSlWDgcuAd79uDV0ABSkLvipROIjPZ23K/RUZBiRtDSAuMeCiE61dwsyMhgsLTzIML1GBjA88OZeAxuhsKZQuxMVlYiBb+9Hb/v6sI114MzZFkk2YjB7uvDgtbSIgjEYBAak04nFpFyGf6xMZF5mYtATIfFAsJx8WLck2XLMA+5+7Pfj/n63HMYM+veFYO5ZotMZCKZFJ3b0x1Gzmhl5yUd/LwxAWaxCPslSZiX0Sjm0XxELAbdHo6apzvK8Tg2BS6XkDiIRkXn46uvnt5h1DTxYvz5z0T33IOsxzvvFPZK0+DYExkvNdq7l+ixxxAQuOaa8hKIskz0yU+C5HzDG5DpOJcJRNMWLTxww6FIJLsNSiZFthlrPre1zU0CUdNAFCaTqGyoqIBN3ruX6Fe/QpMCq5XoqqtQNldTg88cPozPLF+eGRScnIS9qq7GGjAwAP+MG+mFQigd7OxE51M9eTY5ieM2NBQ/3xUFPkxNDXwlhwP+zMhIYX6HpsHO3X8/iL/bbhOa0G53aZmNHg984ZYWjImvEUt+FAPTFhUGTROltkRY/+ZqQ02LRVQ2eb3Cb3K78SxNTQm5LoYkCSKeJb5KAcvNaFphvhcTjhYLxlpRgWvO/qEe//wn5urrX59Zhs2Bi8pKkS2taWgq0teHDunpCSgjI7AFS5akVntZLDiXw4eR1VddTfTFL6ZKSh0+DGJy+XJj0gPj42i4pKqo9GhpgS3717+wVzvvvNyyDkaweTOIw+pqaFrzs1oMgagHk4m8L+cAv5E2H6bNKR/meV6EITxMRIuJ6L1EdBcR7Xvl/WeJ6PxX/v8XIuolos8QUScR3UJECSK6gQ8iSdIqIvo3EYWJ6D4iGnvl83cT0Qoi+mC+gfzhDyAlLBZMyoYGOGtWKyZtOQik4xGaBgdOUWAs08m8cBhOTClakYEAosyJBBaBwUFEelgfr7d3+s+HwyCajhwx3l3Ybke6en+/EK/t6xOEcjHOnqLAqVMUlE+nj5u7AdbX53b8bDac+6FDOEZ9vYi0Kwo2x+kEYzb09+M6NjfjXHt6sAgzwdnRgffKgYkJOPvcKbK7u7TjsQNht+Nce3rQhZHLe17/+qIOO2dskYlUpJcv53LK9SQi6yEy0klE/tliEVpZrN/H5FIpXQhnE5pG9JOfIBPxU5/KdCpVVWh4sXSCoqBxSSAAfcBsGkfZHD6+bv/8J9EXvgD9xP/+79RrxUSI0Q6Ku3Yhg2jpUmQ0lpPYCwbR5OUf/0DGz+c/LzJSZ4JA1Dfz+d3viK6/vqjDmLZoAcLtFtp7vMFUFLwXCgnNaY9nbnfC7O4Gcbd+Pcba0wP/y+fDJrizE/Zm5UphTwYGcN4dHalVLZoG/6GvT9hkLg2trcXfjoygNLqpCbZMT0AyEVJXV7xWJAdoVRXj567JgQCOPziI4+fLBpJlol/+kujZZ6E3dt11qZIc5SCa+BmprsbYWC8xEECjhCJg2iKD4KYfmpbZ5G2ughvzeL2Ysw0NeIYaG3Euo6Mgy/T2xmrF342NifL5UsBEor5rsxHopWpcLvhunCXM1YO7diF4ccYZIMbSwfvK9euFr/Loo5CFedOb0AxKj2AQn6mrg7+SjpERov/6L9z7z30ulSgcHsY1a283Vik2PAx964oK2DWWe9qyBXP6nHOM72fToWnQg/7tb1GO/dGP4hmw2UCalquyi8lEfSfn557LLrWjg2lzyoTjnkTUNG2XJEnbCA/L3zVN+xf/ThIr6jOapn0s7f1bJEm6WdO0wCtv30tEQSI6WdM0/yvv3S9J0hARfUKSpG9pmsYPYlYEApjczW59kWAAACAASURBVM1wUOaykzaXwCUYrOnj8aQ6Qy4XjAeXhhdinDQNhpTLMzo74UwfPozjtrYau0/cvGN4WCyA+VBbC4Hd7m68OjtxDn4/Fp3GxsLPZXQUjkZ7e+Znw2Fx/abTGvF4MK6BAbxCITyvyaSxMWkaHPLhYVy/FStwv+JxOMM2m2g0Uw6MjeHZqK0t3dnQw+nEq6kJ452cBEl86FBxJOJcskUmBPTly0Y6GurLmtOd0VxEIn+OS2uYTLRa4cDN9bXgiSeQhfPWtyJjOR1eL86L5RqIsOkeHCS67LLU5gXTEYeMbdvQZXDDBjRU0d8TduI5syofduyAU7x8OcZSzpLygQHoBx08SHTvvchQkuXiCUS91k+ul6Zho3HXXTivYkhE0xYtTFgsQiImFMKzysFrjwfk0Fy3RWNj8M/Y5/r97/FefT2ygKuqQAq2t4s5ODKCTXFbG/wEzuYKh0E8Hj0KG9PRIbSR+TqMjaFbqduNTB19oDoYFD5VsRmbHICRZewN9LauuhrnwwQMN17JtkaFwyiPPHgQgZLXvlaUpBvN1k4fF69zuV4s+bFrF8qwiyERTVuUH6qKeynL8BkcjvkTgCTCM1Jbizno84mGmC0tSHoYH8/UILXb8RmfD/59qQ19SiUS2T+02TDXAgHs1TZvBil2xhmZnx0bw9xdulRkC27bhkzhs87K1IdOJpFYYrdn78Ts9SKwqihY/9vbRfad34/9SUODMY35wUFUiTidIBBranCOzzyDcZ95ZvHNLhMJNHt5+mloKb7znbCxFRW4VjMRXGV7/b3vEf3sZ5BzyAXT5pQPxz2JaBDfS/v5KSL6DyLqIKLdkiTVEdGlRPR1IqqQJElPVTxGRJ8gogtJsNlZcf3188vwzzUkkzDcdnumToymYbFRFCw8RhaIRAKOj9WKjn0rV8JRGxvDgsClH3V1xu7b6tVw4Lj7shEikT/X1QUC8cQThTaPqmZ2VZ4Ow8M4//b2zIh1IiFIvZYWYw7lunUw/Hv3YoE69dT8USlNQ9dWqxWLEC+E8TiI0uXLRTOXUqFpGF99Pb7HqEZjqfD5ZvTws2KLTAAc2ZckbLSM2meLJbc+4nREIhFsEzuz/P1zmUzcvx8Zb696FdGll2b+ngmJujqxwd62DTbtrLNAOhohDhk7dxJ97GOwFd/9bmrAI5EQTa6M2JDnnkO3xNWrMfZyrr8vvABSIRaDM3722WKTl239SScDeROuf2UDC4fzM7JvHwjWsTFoKc0gTFt0HKKiAuvx0BDmVm2tyOCf6wiHITfDjQOOHoWfdtFF8AGiURCMtbXCb5qaQnCVswrHxuBrsU0KheA7rF6dubmdmkKpX0UF5rqeKIxG4Rc5ncXrhWkaxpNIwLfKVknDTV7CYaFHWFOT2lBwbAxSE14vuteffDLGl4tAzEcO5ioLtFqFLbLbcR337YPtet3rirsGBrFgbVEiIaqGHI75q83tdOK5CgTwXHo8eIY4S9HpzNzreDw4f78f512qBEm2ZitGoCcSrVaMc3wcWs+VlfAt0udYLIZkCtZnJ8L+8Je/RMLI29+eKTXFzTw3bswcWyAAAjEcRinz4sXinAIBHNvtzmwwlQ39/aiMrK4Ggeh24/u3bYN9Oe00BFSKgd+PTMn9+1GhccklCLba7SAQZ2qdmZyEX/TCC0TnnluWQy5Ym1MI5oHbMCvoT/t56pV/uWhrNRFJRPTJV17ZkDfp1yQQS0NFBRyiSASGSL+gcInF1BSMGEe6csHng8FWFDifzc1wNCcm4JxxhGdqCsapri6/8ZMkOKIHDqC8hgnIfKipAXm4Zw8iuieeiMgV62Jw9+bpzsfrFU1A0h1ajnRbLIV1gZYkLDKtrTj+kSN4LxdZp2kgDkZGQABwx+pkUpRVr1xZPgJxaAiZAM3NxgnbciBbWWYZMSu2aKFD00Rkn21JIZkaemeUS1fTf8/6frmOa7OJzEQWSWfh8bmibzQ5iaYmLS1E73tf5riSSdgGh0PMi/37Ec1euxbBGP1mNN95HTgAvcXmZmTV6DcV3GiAReTz4Zln4FCuXQtHtpwE7SOPEH3gA7guf/4z7B2T0aqKTV8+gpD1ljhrkf+f/mJoGjYg3/gGNl4//SmI3RmEaYuOI2gaNqB+P+ZSVRXmV3393LE300GWMad37YIP4fGAuOcyQZZyqayEz0KEzTV3OOWNv9UqqjF8Pvx/0aJMAjEQQHMkIhCIer+KGz9UVhavF8b61PE4/LZ8DUpcLvzN5CTGzVmJAwPIviEiuvVW+K4+n7Avfn8mQZgOvb5YZaX4v/6V3rhgcJDopZfw/nnniWs+Q1hwtogrJLjiweGYm0HGQuB2i+xnq1UEMbj7d7bu0vX1ws9oaSmdhOJrmCsIPN3n9Gv5li34/8UXiw72PDZVBalnsWBPKEnYX95/P/ZPH/hA5vf292Ourl6dmdUciUATemwMGoi8tyLCtenpwfevXJlfE7Cnh+hPf8J1vfZaEaR94QWM4aSTkOhRDAYGME6fD4Te+vV4z+EAgThTHMgLL6ChXSAASZkbbsj/GQNYcDanGJgkIpBLblVK+/cHRPRQjr/tK+uITGSF04lFKBwWmRkMiwWOns8HY6yP1DI0TWj1VVWBsGPNG68XhpW7GdtsIAGnpvCqrc2fhm2xgJTct0+UKBvJJPR4EH3avRtO8oYNcGwnJ/Hi7s3ZNFACASwu1dXZCT7WMmxtLcyIR6Ni4V6zBotPXx++L31BUFWQoGNjWIBYKFiW8TlFwQJXDg0XTcP9C4UwtlJEf+cgTFs0w1AU0dXQaEZbNvAmLZs+IlFmx+Zcx2Dnk7s4M7F5rMlEWQaBmEwSfeQjmcQdb4KJhN0ZGiL661+xkeXMFKPn0N9P9KEPYaPxwx+mBgYUBY4061VOB00jeuopaJhu3Eh0wQXFX8ds2YPf/jbRV7+KzOwf/Qh21+tNzUDkTTkLoWcjBwsZk98P/aMnn4RO0Ve+MiuBE9MWHSfQk4d2u+iUylqIemH+uYhQCNpau3aBsD/zTDRU0dvuo0dxfkuW4O8nJ0WlyerVouSYfRAm4hoaMm1KJIIMxHgcuoLptsjrFU0jirUtExPwsYx2v+aAlcsldByffBL2tq2N6D3vwZj6+7F2OJ1Cf5eJQNZ8zEYQGoWi4D4cPoyxn3barHRoXlC2KB7Hi7U552JzrmJRUyN0WG02zOHmZvj0o6PY96RrTTc24nder/GmjtNBTyQSFU4kbtmCpIpLL0XmXzgMYtTphJ/E+qudnTi/UAi+lMWCIGm6nJTXC9+ptTWz2isex3rf30/0n/+JCjGGoiBIoqog7Ox2kUWcrRP1gQNo+tbcjIZT7NO9/DL2q+vXZ5erMYKXXya6+26c71134TsGBnCuy5bNDAGuqkQ//jH8sOZmXOMyBlYXlM0pFguFRDTQr2da9PIxNE37R+nDMVEKWBw8FMrU8OE0+UAARl1P4MXjMKKBQKpW39GjIAkbGjKjqTYbSComEuvq8i/oVitIt717EY1asyaz/DobXK5UIvHEE/HdTicW0MHBzEzDaBTjdzpFyrwePp9wVAsh8BIJ0T2cu4x2dqIkenAQC+SqVVggVBUliF4v/ob1OBQFGYjJJK51ORxNVcXCFIkIfaN5BtMWHUNwaVCh5cu5wI1WOKJdDJFIhM9VVsK2MJnIGQjHagPxm98gAHDzzdltCzcUaG7Guft8yNCrroZgeCEZAyMjRB98RYL6Bz9ItcOsd8v3bLoNhKahwUlXF9Epp+Qua+HmJPleeiQScOJ//3uiN74RWo18byoqcP+KIQjzYdcudH4eG0OZ97vfXbaSINMWHefgkttEAs9nU1PqOsyVHbFYebuVlwvxODRNN2+GD3T22USXX57pS4yNYRPudoug6dAQbNGGDZkkaTQKEs7tzqwWicVAWAYColspg8k7VRV2rxh4vbjudXXw+9jeT6c9qM8w0jSirVuhVdveDq1al0toz3HTh2xrUikIBom2b8e1OeEEEA5lIgdMW0S416zPzBn38yFLuBBIEp77iQnRNMVmg23iZI50bXPeh01MwO8oR+KAvkkekfG53NMDvb2NG7G3s1hER3e2K0wI1tdjbt9/P8Z9662Z5xaNQmfd48lszCLLaCq3fz98gFNOEb/TNBB/sRj2XWwTJUmUa+sDBF1dRI8/DntxzTUiANPVhaSX1atxTsXgiSdQObJkCRrLWa3YJ7rdqKqbCQJxYgLf9dxzWBc++9mCm8CYNqcMWCgkYuiVfw0Ul2ZC07RxSZL+QUTvekUo84D+95IkVRNRXNO0HP1uTZQTkgSD6/fDqUkv32XNxFAIht3lggE/cACGt7MTCxaXxPr9+DmXAbJaMzMS82Uv2WyCSDxwANEjIyRaVRUi7Lt2iYzE6moY59FROMjRKMaqKKJRyZIlmc5GNIqNvdtdWKaBosAplyR8Dy8AkoQFiLshdnVBl4NJ2HXrBNmgqshajMWwMBYrOp4+roEBnFc23cd5AtMWHQOUWr48HbgkmfVy0mGktFn/t5WVIjORCUV9qcxsYOtWdEd+/euRaaIHNyXgUkCXCyTFww/jd9dcU1jAwOtFeU8ohA7QnMXM38X6ZS7X9M6oqqKZy759iEaffrrIOM3WnCQd05UX+/3I9Nm6FUTipz8t7jmXpZcbqkr0i18QfetbsMM//CHuRRk3laYtOk4Rj2N+xuN4PnNluzkcsDGRyNzqFp9MIpi6YwfOw2YDUaZv3BGPY9yTkwhWOp3YtHNlSV0dqh/Sz1uW8XvOgEr/3gcfhJ917bVCd4zh9YoGc0aCO9mak7D0DDe4CQQyP6cvL7bbU7MGVRWyBi++iAYqb34zgrvsC8+UvuWRI8g2Yr3r9EYYJWJB2yJNw/OcSGC9qaqaHxqlxcJiEaQgE4kuF55dvx/nn56tx5qJrItfjj0F2zuuJslHdk1OCuL+/PMFCWmxiD3nwYOwLYsX4/f/+78g+9773ky9QkWBv2KxCEKSoaoIVL70EgK56U2L+vthR5YvT90LcQMZvbbp7t0IrnZ0EF11lbBdBw9in7lsGSorCoWqEj3wAILHp55KdNttsMlHj8I3XLp0Zkjw7duhD+nzIfh8ww1FJaksaJtTLhzHZioFLxAY489IklRLRFEieq7AY9xEaP/9oiRJPyaivURUS0TriegaItpARIfLNWAT08NqFU4YE4V6sIhvOAyibXwcf7NmDX7HJbGBAJyhfF19rVaRkejzwWjny+yrrESkdu9eLBTr1hmL9jscIBJ370aJ8Lp1QqdxagpOaDSKDbLFkl1rQpZFJmEhZW8s9K0oyPTL5sh4PCA3DxzAgmqxQNicCURNQ6lLOIyxlaNUSlHgxMbjWJznevnVNDBt0SyjXOXL00HfsbnQRivZYLFgrKoqmokkk7NDJh45AsdwzRpsUIlSSTdFSc1S1jSiP/4RdvHaa43pwDICAaKbboLNuf9+BHj0YE0ol0tsoLO9EgnYot5eole/GjaTu84SZTYnKaS8uKcH53XkCEpn3vIW3IuZJBB9PqI77kBZ9nnnoZS5zJt2ItMWHXdIJkX1AfssLtf0Nkdf2VFdfWwzn1QV/tILL2Az2t6O576hAfM6FoNfEYnAx2FJhfp6+CR2OwKN8Tg2sOl+ITet0zRkCuk37YpC9NBD2ABfdVVmVpDPh++vrYWPVkxzkkBAXOf6+uylxdOVFweDKNnr7UWwhjswNzTgPkajCIzX1ZXezVZ/XXbuBGnR2IgAzQyULy9YW8Rav5qGNdVuP/6yD7OBswu583hDA17RKPyBJUsy19aaGqz1U1Mi+79U8HdwaXOuuZdIED36KMZ9xRX4fg5IMpHI+n/Ll8NO/etfILyuvDJ7me2hQzjfDRtSz0XToHP67LNEN94I3UU9RkaQVNLWNn3yiyTh+596CpmGV14p/Me+PgQiFi+GdnWhz1wsRvT1ryMT8LLLoJnt9eLe1dTguOV+jhUFgeaf/hTn/dWvonlfkdU6C9bmlBMLgkTUNK1HkqSbCeKXPyIiKxHdWMQxTiGiO4joaiL6MEFo8xAR3UlEI2UdtIm8sNtTGxKkk3oVFYi0TE2h9LazU5QXDgzAmWttNU6ycaMUnw+v2tr8RKLdLjIS9+/H5tbIwme3i9Lmri6QkfX1ogPqjh1YpNhx1oOJQKLC9UNY6Lu5efpxahquX1UVFgxuSFNVBWczGIQTUI5sQVnGBj6RwMJkpDR8rsK0RbMLLl/m6P5MZdro9RFzNVohKoxIJMJxeMOaTOJ8ODNxJs4lHEaXT7cb5B6X/DAkCY6ipgnb8re/YX6+/vVCysAIIhGiW26BM3vvvbBlTM5xCXM0KsjUXM1JOANxYIDowgvRmTRXc5JC8eyzoovio48SveY1M08g7thBdPvt2FjdeitKKtOzMsoB0xYdP5BlEIHhMJ732loE2ozYGUkC2RYMYs6VI8OnUHBp3vbtOI+2NjRDGhyEvVm0COSeogiduLo6kHLV1SAM7Xb4PZOTIB6zBTMmJoS+tN6/UVU0Gzh8GHZs5UqsG0wG+v3wIx0OId2QjnzNScJh3Kfm5vxB62wYHoadDASgHXvKKbhfyaRobCXLOEevVzReKUUOIxDAPQkG4ceuWTMzBNdCtEVcHZFM4vngZ2shgcvvOTmjrg5zd3AQc5n16fVoaBBNMNMDAcXCCJH4t79hnNdcI/Yg7PNxVZvPh2zDlhaip5+Gz3D66dk7lw8NYZ4uW5a6T9I0op/9DJUgb3kLiD89pqawx6qrg92bDs89h2ZUnZ2wa3xeg4P4XUsLMhwLndNeL3Qae3tRRXL55aJSrrY2U9eyHBgfR/bhCy+AOPzQh0CMFnv/F6LNmQlIWr5WPibKCfNizwACAThPNTViMfB6EeVh7ZraWhhdScKGNxxGlLuQrBmGpsGQJ5P4TiPZheEwshE5O9GoY5dMIhsxHIYD19iIKNTEBDaxNhuc/pYWYUwnJkTTkUIixtzZur5++ig26xRFo8iYtNuxAWBnyGrFIlKMo5yOZBL3iwXTZ2IzXSTme6z4uLZFM1m+PB2mE7XmcXFZczHjURQQiZqG+c46fOWApqHzb1cXSna5A6B+nIEAbGtDA2zE9u0QGT/jDOjSZEO2zMFYjOgTn0Ak/M47M7ULmfxlaYpcnYuTSWz+BwdBOqxfX55rQYTGCjffDCf/979HdgETiJzNWE6oKiLs992HzdEXvwhC1EDQybRFCxSqKrIIiUAcVlcX92yyNqLbPTPZ2rlw5AjRtm3wWzjjsLkZ2W+9vdDea2kRJY5OJ84vGETgoL4e88Xnm35zHQyCiPN48DdMEMoytMK6umDDTjwx9XOxmCg/bmoqPHuQCPfH68X4szW/y4e9e6EVW1mJwMuyZakEYnogmb9P0+CjZmsymA/9/bgHNhuyqAzqjZm2yAB4fdM03LtyNByczwgG8fJ4hKb9+DjsQTbd80QCJKPdXtx8ygXObk6fzy++CD/nnHOyZxSGQpgrdXVIFOnpgQzJkiXIJKyshP3gLEC/H/u6hgbs6/T47W/he1x2GUqg9fM2HIYtcDrxPdPZnC1b4J+tXw8SkzMmR0chy1Jfj6ZzhVa29PYSffnLGMunPoXrMTwsGpNm088uFf/+N0jLQACly1dcAZufx6bNd1s0L2CSiLML82LPANiRliQ40IcPI2rtdsNAV1TACeS/SyRAcpWSJadpOGYige80QtYFg8hGdDpBJBqNOsoyHNxgEAumqmLxaW7GGLxeLAQtLXAqvV4svIU0HQkG8TmPZ/rMzFgMBGI8TnTSSYKElWUY+v5+kA+nnVZ62WUigQ2GomBTMAsdAAvBfF+gjltbxOLk7KDP5oaYv1/Tcj//nFFXCgkly5jr7PCWQmqxC/DII3i9852QJ0hHIiGaOLW0IMv7kUewyb/00tzNStKhKCDInn4aJbuXX55KDKoq7l9FxfRZUfE4vn9kBE5yujNeLFQV3QXvuQfk5i9/ibWCr/dMEIheL4TB//1vZFN+4hNwkg3aUNMWLTCoKtbsQADPpNudGkQtFoEA5md6w7qZwOgonnf21U48EZlHsRh+190NX2LjRtgc/YZRlrFRr6gQpYMHD8LeL1uWqUUYiSDzp7Iyc/O5dSsqPs48E690/UGvF99TbFfYSASEiMNR3DG2bCH69a9xbT7yEfhcXM7tdOZe3xQFWZmhEMbf2Ggs4C3L0D4cGIC/+apXFdR0x7RF04DXNm6a5nDM/DybL5iawrWpq8NzPTKC53zRouwkaziM57u6urz66Ewk2myYqwMDkDlYtQq+SjpUFbqCsgwb5vMRfe1rCBh86lO4x6EQ/o4DIC+/jONv2pRqsx99FIHECy9EsEBvKxIJ7AOJULWRKxFF09CIascOHP/ii8VxxsagjVhdjaBroeT19u04N7cbEivLlglN/MbGzMakpUKWoQX9q1/h2DfdhAxsg4115rstmhcwScTZhXmxZwiyDMfz8GEY0fb21Lby8TgMvaKAwCvHoqNpICXjcZBvRrLkfD44u0xwGnUgFIXo+eeRXbl+fWqXrlhMLLiyjA1+IfpZ7LTnc3KjUUTkZBkZMvpryBodmobNdmUlNgDFlh4nEiAkNQ0E4hzsHDnfF6jj0hbpy5ePVXkQd2vm8rZsKAeRSCQar7DTW1FhbJOavuzv2oXI+ZlnQtuGSHQF5Q354CC+q7UVzujDDyPgoO/ErG9Oku1FhMzDRx9Fye7b3546DtaxtVim13KLRon+8AdkL73hDXDwy4FYDI7qQw+BTP3GN0TH7JkiEJ9/nugzn8Facsst6PxcYDaZaYsWCFhGxO/HvGQ5kXJ1cFcUEIlWa/k09dIxNYXMw54ePONr14oOntwQYN8+ob/H9lT/OnwY12HxYlwHPtby5am2iDPCR0bwb0dHaqnxs8+CRDzttMzACTeYIyq+E3M0KvRjW1oKIxBVFXbo738HafCBD2DTb4RATB/DxAQ+U10NkiaXbfH7QRRw5UtnZ8Gkp2mLciAex0uS4JuUa84eL9A00biooUF0+JUkzPNsz+zkpCjbL2eSAftUsRgILKcTvkq2+dbTAzuxbh1sz3//N8Z0++0ie5cbxMViokLu5JNTx/zPfxJ997uQTPnEJ1LtDdvEWAzfk2uvqWkou969G7bz/PPF73w+fEdlJTIQuWGTET9D0+Cz/eQn2Nd97nNIUuES7ubmgjsj58XICILNu3YhQ/y66+DnFbCnnO+2aF5gQWgimjj+4fPBOMfjINn0XfVkGdEkjsaWq6xRkkQ3sWBQdBCdDrW1MMLd3RjvCScYGw+XTjc347uGhhChI4JDsmgR0umjUSzA2Ro85Dru2BiuTVNT7rGEw4hsqSq6cOkbm4yPg0Csr0f6fiiEhXXfPvxcaHQqFkMGIjv9C73Uw0R+HKvy5WzgzSuTcNmctOn0EwsBN1rhzEQ+/2xkIhOH+g7FXN7y3e/Ctrzxjdjkp5OM3MyptRXX+fHHYcve+tbUcuPprrmmwcF+9FGUCacTiOxoE8FJns4WPfQQyI4rr0zt5lwKxscxpu3bib70JaL/+A+8P1MEoqoiyv7DH8J+f/Wr2Li73QtDWN9EYQiH4WvIstDAK3eWtdWKuRcOY76Xc2MeCoG027MHtvGEE/Cy20VJrqZh/nEw9OjRTFs0NQXyoK0Nn+nvh991wglC91a/OeZMx0WLUoOR27eDQNy0KZNAZEKD5XCKIRDjcdiUYrIY43Fs2F9+GVlJb3kLPh8O49pVVRknoZxOnPvUFGwmky7pRERfHzbslZXYtJdDjsaEqIxgGYxj6ZvMZUhSZsfm5mbM34mJ7CRVXR3WZ9ZBLVfTOZtNVDokk5h/2WwtNxJZtAg26DvfwXsf+Ujq/GHd2SNHsFft7Eydv88+CxmTk06CDrLe3mga9lPhMD6Xi0BUVaK//hXVbq95DXQDGcEgshNtNtgTl0sEZFjfORcUBT7KY4/huLfeKhpYcWPScpaUE0HH8b/+C0kB73sfgtvLls3JZJIFD5NENDGvoapwfoaHsaCwoCt3Mk0mEbWWZYiwsiOWraNzMZAkOPOsS8SlRdOBSb6+PpCJq1ZN71Qkk4IEveACfKa3F+e+ZIlweJua4DCyVlBr6/RGV1FAIEgSFujpOgK+9BL+f+qpqec3OYlFvrZWELduN4jcvj4smoEAxIaNLPDRKMZusSA7YbZLUU3MP+jLl+dKhF/faIUo+9ySpFSNxFK+ixutxOO4FpzNx41R9MShHokEHF9NI/rgB+GgpmcPxmI4/tKlmNu//jXm8tveVpim7Pe+B62fd75TZDsyNA1j5kDMdLbooYfwt298Y2GNXKbD/v3oRD0+jvLlK68UWdUzQSBOTCD7cPt2lIJ/9KOwoceiqYWJuY1oFBtPzvBvbp7ZzZTdju9iSYFiNub67MGpKWySd+6EH7Z8OfyD6mphr7mR0t69mOOnnio6sutfiQT8iVWr4Ov19eEYK1Zk97smJ3HcpqbUa7ZzJ9GTT4K0v/TS7J9LJIpvTMKabTbb9L5VNvh8COoMDMDGXnihsI+FEogMi0V0cJ6YgN/ncuE9TYN/NzgIQuDUU83AbTmgaViPEwnR2K1cJNfxCoslk0isq4MNqarKnOOSlKoTX2i273R45hnMkze8IbufE49jH+Z2Y+/zq1+hyuzd7wbZlx4k5qZPq1dj3gWDsEn796PiobMT2Yvpc/vIEZz/smW5JaoUBcHZ7m5IsLz61eJ3kQhsnaZh/8g+Bmdpc9M+Lt/WIxKBrMuOHURXX030rnfhOP392O+2tRlvTGoEySTR979P9OCD8DdvvBHrRUeHOXfmKszbYmLeIholOnAAxmzRIpGRwpmBVVUwwKoKI8QRHNbI4Y5o5UBNjSAoNS01Uy8bmpsxjiNH4AivWJH971QVzp2q4vy4McvBPNjsxQAAIABJREFUgyBHWb8oFsNiytpIIyP4XEND9gWQOzgryvTaW4EAFhCrFc6lPgrm88HR9Xhg8PULkM2GxXJ0FOe4Z0/+VPRIBMezWnG/5gIZZGJuI7378lzSF9ITeNkaqRTSsTmb1mD6iwlJVYUzpiiirLuyEnPSYhFZOpIE/R2vF9HlbDZIlvF7ux125ZFH4Ahfc01hzuPPf070ox/BEb311sxzZZ2o6Tpo+/1ocJJI4DjZOjcWg82bia6/Ht/92GOQimACkQjXrpyZI9u2oXFNOIx/L7kE321G2U3oEY9jjY3HMXezZY/NFFwuzP1QSPg2jHS9wWyvaBS+w65dqEiQZWQKnn46NvpcSqd/9ffDLp11Vmolif57OZja1oZqjGAQgYRsfkUkAlvl8aRKr+zfj3m+YgUE+tPntt+P8dfWFjcnubrDYik8i/HIERCI0SikDU48MZVA1DdnKAZ2O6R+/H48WyMjIEKIQOxyoN1EaZBl+OSqivXDbjevq1HYbCASvV6QZ3V1QhbA4ch8/q1W+CLj45jv5SC19u6F7TrtNMwJruzS+2yHDuHf1ashOfDssyAcTz8df6OvNolGkU1YUyP8rEgEwYx77sF+5447Mu3N6CjmaGtrbokqbi7X14eAQ7rU1ZNP4m8uuihTooL9QG4wxf4hEWzYl74EO3vLLUSvfS3Opb8f9mjRouIak+bC0aPovrxvH3yiK67AmperlN3E3IBJIpqYlxgfR9RFkqARoRda9XhgAHt74XQtX55qnD0eGM1gUDQlKAeqqzGeSASLSz5NobY2jGNoCAtjekdBTcPvYjH8jqPDkgSH3GIBmehwwAFkR9puh2M9NibKEFtaUp3ZiQlsTpqbc0edfT5EqCsrsTDpS5sCATi8LhfIzVwOUksLxtXdjcVh8eLsm/9wWGwQzKiTiXzQly9XVMxdJ91qxRhZSD0beFOuJwHzNSchSs0WZIKQXzzX+bs5W1E/hiefhON71VVoXpAN4+MYU1MTyLa+PjiTHR3Gr8HDDxN985tofnLHHZn3KRYTXUZz2eLJSWQgKgoIzHLp7/zsZ0Qf/zgykh58EPZJTyAa1Zg0AkVBlP0nP8Ga9I1v4Dq6XGbGtQmBZBJrbzSKeVxfP70+aLnA2YN6e+T3Y613OgVBmE1GnTulJxIY96FDIOtY/uT886cveZuYgG1pa8tOIBKh2iSRgL8xOQnfprk5u8h+MonNt92eait6erDhXrIEWq7pBF84DL/Q7S5Oz5m1uYnwvYX4MTt3Ev34x7jXt98u9B71Gdrl8Iu4emZ0FBrXkgSyZPnyubmGziewX5JMCl3fY6HLPN9RWQnCzeeD/WluRlLE6ChI8PTn1OEQ0lKVlfmTOKbD+Di0AxcvRjdmScr04TiAsWoVCMdHHsEc0jde4WoUbohis6VqjI6OQoe6oYHoYx/L9AF8PiSK1NZm7zZPhGP/4Q/YO73udamd5RMJ+GyRCDIQcxF+kiS0aDkY3dODbsjJJHQJN23C7/v7Yd8XLy6scWc+/OtfRHffjf9/5CPY0zc3F6btb+LYwNyqm5hXUFWQgyMjIOk6OzNJsGRSCEnnKv2pqUGUy++HcS3XQu/xpGYk5mvgsngxjPPwMMbAOodEIAFDIUSh0svcJAnO9MgInOn0CJzFgs/5/bgWAwMwyE4nFqdwGOedK7NhchJ6PE4nCET9NQ6Hsbg5HHA880WJXC4Ig/f1CR2NlSvFghwKwUGorMRiaRKIJqbDXCxfzgY9IZhIiLLl9OxBotSyZ31zEi6jTX9l2+xle4+1GXmDz6Tr4cMov9m4EWXB2eDzYUPU1ISo/Msvw1HORThmw+OPE335y9DY+spXMm0FZ5JytkY2jI+DiJQkomuvLU+mgaIQff7zKOW+5BKiBx6A7dY0jIlJ13JtqkdHUb68Yweu94c+BNvqdpv2zgQgy1ivWYqgtlb4E6XCSPZgtmAFa61yprc+c5A3yLEYNqqKgvV93z7M6XXroGWVbyMYjaIRgMeDz2SD349XUxPGwxIq2QKSmga/iCi1E/PAADbczc2QLkhfN2Ix+ISsN1koWB5G03DORtclTQNpwSV8t9wCvzGdQCyXj5pMwg4dPYrgyQknwAcbGsJ5p2eemjCGZBLPkKZhLTNLwktDVZVI9rDZMPdHRzFHswUOqqthj3y+6f2J6RCLoSzY4SC67DLhr7DutCwLyaWmJsybBx5AduENN2SvNunuhj088URhE4aG0GCuuhr+kdOJYzkc+H8kgs9VVeWWu4rHUZkxMoKxrl0rfifLRE89hb3WeecZ0yzkTMstW4juvRd+1l13IeDC8lvxOH4uV9OtRAKZ13/4A+zQe94D+1PuLEcTMwfTfTUxbxCNIrodDoN86+jIXhbX3y+y8RQFhi99QeGmKD4fnNPa2vKlTLMwfiiEnzlDMRc6OkT3U6sVji+Lh9fXZzemqgqScdkyONLDw3gvvVFLTQ0WppERLFyVlfg7LnvOhvFxOPUuFzqI6SNk0ShI3MpKLJxGHVurFYvh2Bjuz549IBI1Dc6sw4H7ZUZtTUyHdI2hY1XmYLS8OP3vbTa8OAM6vXOxPoswHdkygIxs9njTryi4duPjiIDX1UEHMZeDOjUFGzA6ioj26tXQ2zGKp58m+uxnEYT42tcyN9XskNtsuRs4jIzAwayoQAZiORzLSITove8l+stf0PH07rsxBi4DLzeB+MwzuA7JJDYO55yD++HxmGU6JkRHZL2/UEh37nzk4HTZg2wb9B2L04nCYFB09pUkzNlgUFRcWCwIVHZ14f2mJgjwG9ErVRRk4BEh2yXbOScS8G+qqvDq7cW/uY4/Ngb71d4ubM7ICEi6mho0ScgWeJ6cxN9nIyjygf0xRQGBaDSzWFWJfvMbbPhPOQWbaPbRZoJAnJqCDms0isAuExS1taJ8lBuvmCSYMaiqqIqwWrGWmXa9PPB4cF0DAaz9Hg+eUaczu89QXw9/xevNrL7KB02DzEEwCBuhT7DgbL1YDEEShwP28Gtfg0256absQYOBAewxV60SFXBeL8p2LRb4Ay0t+O5oFMePRkHYWa1Iksl2DtEo7NnEBPSbV68Wv1NV+F5eL6QhjDa21DRUe/ziFwgu3H47rrksYzyJBIIcpWR56jE4iEDuoUOQp7noIlxjrs4wMT9gkogm5gXGxpBibbGgdDfbZjISAUFls4Fcq6gQzrnVml1Lo7palOyUMwLL5UfctTnfsZcvT00Xj8VgrHNF8Scm4Phy8xS7HdlFqooFQP9dTKgODGAxqK7OXTI0OgqCz+MBgahfGGMxOPA2W2omYSFobhblzc8/L/QPly41HS8TucFOlqLMbPlyrnLifOXF+uzB9NJiPUmoqqnaOulIF+MuljjMBiYLfvIT2MRbbhHkmX7u8YaYS1z+/GfYmTe8wfh3v/gi0Sc/CSf43nszs8G5kQJ3g82GoSGUCVVVgUAsR/T76FF0lN69m+h//gckKo+n3ASi/P/Yu+74tqqz/R7JlmR5z+xBFiEDCIQAZZQdNoRQRqCsAmX2o7SlUAqltFBWgY+ySoFCm7ILlBGglECAsgIJmSbbdhxvy9rrSrrfH0/e71zJ98qSLA8len4//xLLV3ece8573vd5VwSRjs8+C+fO7bdD/hUW5jsw54E55/FA9+CGbOXl0mjUNidJ9qMHJgG5G6weQZjq/LPZQOJ1d0MmqCq+X1KCe//mG5B05eVIqZs8OfVz19djDObM0ScFuKQLEcjJhgbcg1EGBNfDrqqScqWri+jFF3H+c87pLW+iURzDTRrS1UO4vrSiJC8Pk4hAgOjPf0Y65PHHI72a65P5fDgmmwTi5s0gem02OIO0ZKnZjHv3+zEWLS2Qt5WVeb0sGTgSVwhZeziP7KKiAmvC6cR8DAax3saN6z03TSasYSYSa2tTl0Vffgn5ctRR+hHOQsA+C4dx7ccfxx5//fX6pQ96elDyqa4O51NVOCpuvRVr/4475HWEkE7xFSvwjPvtpz+ffD6il16CrFuwALKQoaooUdPWhtqMqTaei0QQEbh0KUpPXHutbNTX0IDzTpyYPXLvgw+I7r4b+9PNN8MetVhgC+adF7mFPImYx7BGNAriqr0dSuqee+oLVq83vqYek1+lpdh8PB5sRokbSmEhjmGyMVteFiJsCkLg3E6n/vUZQkD59vtBrk2dimfVg8uF4yorpXHOG+rWrVBK99orfoPlumjsnePuzVrFvbUV3y0vJ9p333iSMByWBbgnTepfCqndjiiB1laMOadC5ZXVPPTARcqJ+pe+nG70IKOv9OJ0DHImBoy+YzLJ1ELt37NFOL3yCjy/l12GdcxjywSjEFC+IxHIwldewZgvWJD6uK9bByV09Gh0ZE5UPLlRAJGUkYlobERaUVkZvNSZ1CdLxKpVIBBdLijhxx2HzweCQGxrI7rhBqSBn3km0pe5yc1gNcfIY3hCVaETOByYd1arTFvu6UmeXqxtjMTkIH+mbZzUX0Qi2Jd9PsiHcBg/lZUw0n0+aXTb7UiZS9Q5+kJzM3SAyZNxTj10dsLgHjUKx6sqjGY9B2YwCALMbpcEmdOJjvAmEwjERP1OVSHvYjEQDumOHROIoVDvDtDJ0N0NB0NbG7rVH3ooPmcCUYjkXerTQTgMYqK1FeO4//7Gstxuh0Hf04M56vfj3RhFiu+uiEYx37hOXlFR3ik0UBAC67mzE+uZuzF3dOhH2XE0cXe3zDLrC9u2EX3+Ocop7LOP/jEdHVgXY8dCprS2opah3j0Eg6hXX1wM+UaEdX377TjHbbfp15Xevh3/cpZWINC7Fv1LL+FcCxfGk4SqCpm8fTsISKNmnYnweIj+8AcEj5x7LuSkEJAbjY3YC7SNSfuDUAhO5TfeQCT0NddA9trtuEY+Ey33kCcR8xi28PuRvuz3Q1gmdgBmeDwQnFZr76YcQkiS0OPRj2axWiHsfb7kkTGZgJULl0t2GksWhVRUhPvllKHElGOu21Nc3PtvY8ZA6WSP84wZeB6OLBICYfWxmExvrqrCT3MzxrqqCpuoVpgrCqJAYzF8v7+eIocDCsGMGTgXd2+ePDl7tTby2DWgTV82ShPKNHqQKJ4ITKf+YKbgRisckcj3r8VAkIdEcE688w7SRg45BJ9xrR9FkRHQHg9k0JIlGPtFi1L3QG/ZQnTVVZBzf/6zvgLv88mSCnrvc+tWpBpXVYG8zIY8fucdoosvxjnffx8KLFE8gZitKJKPPkK0QTSKVOmDD5adVfNe9l0bLIuMogY9Hux/0SjmQlkZ5ABH5TIZqNe9OB1nRSZQFKxNvx9ylwhroqICc1dRsG8vW4Z1brEQHXQQaqSmm5XgckHfqKmJj6TRwucDKcj1q0Oh3k3yGNEodJqCAmnUe70w9iMRovPO089ecTgg46qrM1v/XV2QmdXVqcupbdsQ9RONgoSYPh2fM3GbTQLR4UD6ciiE98SERjKYTHie4mI8X1sbZHVVVd7IV1WpkwgBnWS41mTelcBzsqsL67qiQhLdejaD3Y535PFgXSdbmy4X9IPaWuhGeuAU47IyRPpt2ADCbcqU3sfGYpBtRFjbJhO+/7vfIcL3lluQmcAZICzTm5qwXidNQrAH62ORCNYiE4ihEGpDjx4df90VK3CPs2cbB6AkoqUFxGZHByIqjzgCn4dCOBcRntFi6d29OV00NkIv2roV8nj+fLzLykrYrnkSPjeRJxFThBDiNiL6DRFNVVV18xDfzi6P9nYoqmYzDD4jb5LLBTLMZjP2ZBQUQAhz1JvehsJFfJlIzKaxx0ovE4l69RdjMRChqopUk61b4cmaPl16zyMRKPGFhcbNBUaNwv1v2ABibsYMGVk0cqRU9seOxbkcDkQmOZ34++zZ8fcWieBeIhEooKl62o3Q1YXrlpXJLmulpSA+v/sOm4le97U8JHYHWcReWK4zVFgII5YJQY7UyTR6UJtiPNhgIpHTArX3zP9yp2bt5/1BSwvSmCdPhvKrvSZ3bfb7IXctFhBhHR3wdhtFCSWiuRnpwYWFIBD1Oihz1DE3aUjExo1oxlJbCwKxv/JGVdER+aabEF394ouSZIhGpWKcDUNQUYj+93+JFi9GVNadd0JBjsUg43ZFY3N3kEWMvpqT8N8TIQSMMr8fx5SVyY7L2tqDQ7HnhcPQeXw+2ZHcapXpwDxn/X6kLX/zDX6fN49o7tzM9KRwGFHBNht0O73njkbjazh7PNBZ9DJFuJFKNIpj2Gh/4QXc97nn6jcWcLlwXHl5ZpF2XV04f1VV6pHSX3+NjvAVFYjWZlmUbQJRVaUz2W6HTpluPVmbDfoY1w33+6F3ZiMqfCAw0LKIo/ZjMdm4I6+nDh4KCjCHu7tl7cmuLuM08vJyyBqudaq3/0YiyHgQguiUU/SdIbEYbCSTCUTfJ5+AADvsMCnvtbrMli2QpzNm4N4UBZF+mzejziA3puM9w2SCTdTaCvKQZYLdLvWyhgY4dYVAvcbEMldr1kh7kR2kfWHtWtyXEGh6x02tgkFcjyjeaaPt3pyuQ+vdd4n++EesmbvuwjN6vXgOPT0xj94YrrrWbkMiCiEuIaIyVVUfHOp7ycMY0SiEcEcHFK1p04w9xE4nFE0OhU6meFmt8YX89c5ZUiKLnFdUZNfos9l6RyRq77elBcJ73DgokdOnI7V4wwYYpHY7NhpVhdBN9qz89+++w4Y3fjzIRa3CbzJBgLe34xq1tfA4JdZG445ckyb1PyKoowMKQHl5vBetqAh1Lhsa8D49HlxvV60vk5dFgFHEYDgsDW6LBeuQ05mJBj96MFvQkp0mk1TI9NYy3382iMRgEKlzFgvR1VcbRw25XFiL69ZBaT7qKOPaqYno6ACBqChETz+t/71gEH83Sklfvx5RgqNHo4Nxf9d/JIKU4iefRPHxv/xFkgXZJhB37MC11q0DaXH11ZKU4Wiz4Yi8LAIGqjmJokCfKCgAAVNePvTp7NxN2efDGiCSjQLYcGWEw+jKvmoVjt17b+hkFRWZEYiqihR/RQERabT2Wlqks4Frmxk5Th0O6HUjRuCewmFE7PT0wODWq2/m80HPKC7OrISNw4FzcAftvsBNG15/HXrWVVdJMk5RZCQq19LuD8JhkJXt7SABE2tbpwMhoKtyVGJnJ4z/mprsd5UfrrJIVeXeZTJlt05lHunBasWaczohs8JhzPOxY/U7I1dX4+9dXZAPibrWBx9gTi9YYNxosqlJyso330Sq8OmnS2cvZ7mYzTLNevx4rJtoFM1X1qxB1PG8efK8nCXW0wM7q6Kid4qzxQJZ8+qr+F2PQPzuO5nJNWdOauO4dCl0wpEj0eSFictAAHaYyQQCUauDMXHIuhM7v5IhGCS6/37Ivn32IbrxRoxlIIAxMhrzXRHDVb71F7sNiUhElxDRWCLapV7grgSfDwIxEIAw1dsYGA4HPDclJfoFdvVgt0P4eb3xBcwZQkCRdjolkZhNZUG7AToc2GTMZmxyHg82B1YsCwtBHq5bB5Kvrg73zoX5+0JNDRTIb77BNcaP733Mpk3Y8PbeG/fS2op/q6qwOW7bhncxcWL/vc9tbZI81ashYjKBOCwrwybGm+Iuusns0rKoP+nFiiKbpxQX6zcpySUYRUmyXOHah3pyThuRmKlhqaog0drbQXIZdR7ldMHWVjQ7mDcPCqmiQO5wtKIenE7U/OvpAVGnlzIXDuP8HMGRiFWr0AF6/HhEBPSX2HO7UWts6VIo77fdJudOtgnEDz6AIk4Eb/shh4AUKCgwTtkeRtjlZdFQNCcJh7EeuN5oOtFq2QaTIJyqzPWRi4qgj+hFBUej2IO/+QbfnTIFMqGiQpKQwWD6kcKbNmFcZs0yJt96eqAPMYFYXq5PBBJBl+vpwTHcyfWVV6BvLFyoX3eMO8+zPpYuuMZ2WVlq+kkkQvT3v6Pm2oEHEl14oZSl2SYQu7tRtiIUQuS1Uap4urBY4NxxuzF2zc3Q5bhjd5Yw7GSRomCeqyrmS74cxdBDa8fZ7ViL3d36GRNmM4jEjg7YXNpjVq2C4/Lgg2Hj6MHphE4UjUKuTJhAdNFFcs5r9TivF1lblZWwSVUV9f+++oro8stRNzYRoRAiFC0W/YZUra24bmkp0ckny+flaOUtW4hWroTedMABfY+dqhL94x9wsuy9N0g93pd8PtmYdI899HUjdtBrHWtGNvK2bUhfbmyEzPvBD+BsFSI7QSk5iGEn37KB3YlEzGMYo61Ndv6dPTu5ctbdjeNLSyGsU1ViOHWWlUC9jskmk6zB43Ilr2GYCSwWnLOnBz9EklBMNPAtFhCJX3+NDW///VMXvFyce84cjNXq1RhXqxWCf+NGpE+PHSvrZ3R24p7YQPD7sTn1t05hayvGvKrKuNs0o6YGG+TmzSBPR4/O18sYThio5iSc8seRh/1NYx1KpNpR2WyWypgRQccRi4kdlFPFu+9Cfpxzjqy9lYhAALLO4YChO3kyagOxsqgoIEWYTNQqjT4fomp27CB65BFEFCdCGwGulzb4zTeImJ40CR2g+xvh0tQEhXXTJtQeu+AC+bdsEojhMLzsL7wAUuTuu0FK+P2Yx9kgBfIwRl/pxUbNSZjE57IleuRgps7DSAR7nd+POcaRaoM9D1QV98A/LD+KijAvk9WX3bABhq/XC/3qwAPjU844Rc/v7y0PkqG9HQbluHHGpGAoJGsbejy4T6Na2OEwyAGbDXpDLIZIv6YmRB7r1SuLRKA/ckmYdN+L2w1ZWVKSWnqwz4dyChs34p5OOkleMxyWctGowVSqYJ2uvh7v94gjBsYBy9Gq3d0yGrOmZtfLGonFZD06s1k6EfIYHigrk+nlVivWpN2ubx9ZrdLm4hqKra0o2bLHHpBvelAU2CGRCNFbb2HNX3llb72BI87Xr8ffpk3DenziCaKPPyY6/3yiE07QP/+GDVj/06dLpzHLgeZmon/+E8909tm4b65b63ZjDX71FWTpwQf3LT/CYZRb+eQTomOPhd7Gc9rrhdwsLAShmkw3EgL3bJTerKpIvX7gAcii+++HTqntW7CryYvdGUPqIxdCXCSEUIUQxwshbhdCNAshfEKI94QQ43cec7UQYpMQIiiE+FoIsb/m+xOEEH8SQqwTQnh3/nwihDgh4ToNRHQIEU3YeT1VCKEmHHO6EOJjIYR753lWCiGu1bltuxDiISFEhxDCL4R4Rwih4+/MIxVEo4g+3LwZQnLOnOTKT2cnlMzy8vQIRIbJBKU+GoXg1IPZjPNHo9icso3CQmxqXi82EZvNmFwzmaCkcag8p8glQygka4VMmgTyMBwGkRgIQNHcvh3CnDcvIWAo1NUhEnDTJtxjunV0tFBVkAvcUa0vApHB6c21tUhrqq/H/Q8knnnmGRJC0Lvvvku33norjR07loqLi2n+/PnU1NRERESPPPIITZ06lWw2G+1qsogjdhQF8ycQkClfnILf3S3JdY9HpiUoilQkrFYoPSUlWM8VFbJ5T0UFPispwTHaWjaBgGwslIsEIkcMaglEXlfJZJQ2Oq6vY4yiN41QXw+P8wEHoIaPHqJRyFS3G8plbS083lpPu80mIzBCIdmVMhQi+slPIMPuuw810hIRi0lCRU/B//JLXHfaNFy3vwTi118THXkk5MZrr8UTiJFIfI3N/mD7dnjXX3iB6Ic/RAp3WRnGpKgIczxTUiAvizC/mGTxeiXJzfv/jh14x5yqxgYi1yxjYqa8HLKnthb7DzulRo7EZ1VVOKakBO+NU5LTRTSK+2tpkXX2Ro/OeqRWUnA0DJN1HR1Ye8XFePbx47G/G9Xc27YN83npUozdqaciKlivZhVH2Hq9+k6TRPh8yKooL8da14OqwnBmAsdshpGvd6/cHE4Imdnw5pvQI+fPl/W9Er/T1YX/V1en75TxeGRTO6PUai06OlBzbOtWoksvjZer2SQQQyE0e1i/HnP7yCOzRyDqyaLy8mK64IL5FAo1USRC9Ic/PEKTJ+86sojrhEaj2Pvy6cvDE5WV0iEtBNabkR7FOifvI2+9BTvw+OON197mzZCf//kP5sTVV+sHVHD90UiEaOpU3M8//gEH7oIFRGec0fs7sRhIf0VBEAc34GRSrqFBRiCee668bmEh/t/RgcyN0lJ0du9LljmdRDffDF3roovQFZnntMeD/cJiMY5A1AM721RVNgsMBFBf8a67YMP99a8IVGluxjoabmWq8hxU/zFcIhHvJKIgEd1DRKOJ6GdE9C8hxHNEdAERPUZEdiL6JRG9JoSYrKqqQkQHENExRPQaETUQUQURnU9EbwshjlVV9YOd57+OiO4moioi+mnixYUQPyeie4lo9c7jHEQ0k4hOI6I/JRz+9M6/305EI4noeiJaTESH9fWQ27YN36LEQwGvF8I3FAIhOGIEhJ0ROCS9vByCiBXCTBAI4PtMZughGJQGSrbfWygEQzQQwEbF3nctWFFWVWxOW7ZgE5w2zdjYjkRgRHDNQx6jUaOgZD77LDYermvU2Rn/fa7NaLXCW8eFw9NVclUV3+f6OUS9r9UXSkqweW/fjnNNmDBw6c0eD/694YZfkdVqo6uuuoHa2lroscf+SCeddBqdccYievnlv9E551xJW7f66bnnbtmTclgWsbHGBnuy6EFtFKFRc5JkKcrJwJ0OmaxKhSQfLkg14jCV80SjydO1tWnNqVyjpwce4IoKKLFGcpVl6qef4tpHHGHsXCGSnZzDYaLf/hapc7/5DSLxOLJae89MMpSU9L6HL75AKs6ee6LLa38dNm++iQ6DI0aADJkyRd5TJIIx5u63/cEHHxDdey/G6/e/RxQApzwxIaCt4ZkufD78+8tfQhZdcw1k0SOP/JFOPvk0WrhwEb344t/o3HOvpI8/9tOyZbkti1avjm+WZNScRFt/UO//JlNyMn4gwE0/fD45z3muJ9PP7FyUAAAgAElEQVRlsoVoVOoQ3FGZCfuiIuzj3DjFCO3t6OzJDc/mzMFeG43CuDQCR8X01f00EkEmhaKA5Nq+Xf+4jg6sV0XBGp04EfqI0bF+PwjEHTsQVbR+PeRIVVXv+1ZV2WCuqgrfSQd+P+SkzYZzJRtPIhCHixdj3v7wh5BJfE+hEH4KCzNr6KJFdzfWTyQCh3BdXfrPlgysP/7855BFl156A7W3t9CTT/6RFi48jU49dRG98srf6IQTrqSentzXizZtkvYF2wUD7cDOI3OUlspa8X4/ZEti12JGSQlk9fPPQ2aeey5kpd77bW2FXPzkE/x7xRWwY/SObWjAOuEuxs8/D+ftccchglBPp928GbJuyhTIAT5vLIa/LVkCR8UZZ+Cc2ut2dMBZWlGBkgVOZ/KyKU1NRHfcAf3q5z+HjOR74sakVitkM9ckTwesv65fD32orQ0O1kWLZI37qirYoMnKh2QLqgoH8jnnpPW13YKDGggMFxIxSkSHq6oaISISQpiJ6OdEVElEM1VV9e38vIeIHiaiE4joDSJaoqrqK9oTCSEeIqKVRHQDEX1ARKSq6us7X5JVVdXFCcdPJKI/ENHHRHScqqohzd/0zLXtqqou0BzTRUQPCCFmqKq6PtlDdnfLNNrdsB5AHNrbIXwtFniN+ypO3d4ua+qlGtGWDEVFEGZcj0bP+2KzSSXdKJImE0QisvPghAlQSJ1OzAvtfXR14fp1dRDykydjg9m8GaRionc0FpMbak1N/KbCxq3DgWfX61bY3o6/jxqFa3Z3Y5MJhfB7qsZ3LIZN2OfD9zKpO8TgLpHbtoFE5WiSgYruMJvN9MYbH1PBzoeNRqP06KP3kcvVQ4sXr6O1a4uppoboueduuZFyWBZxkXAhMA8HuzkJR5tEo8Z18oYjEonDbIwREyR91UfUXj/ZdSMR1EGMRFCLx8hJ4nbj58svcezChX3LYa5R+Yc/4HvXXYcuhXp1G/1+fJ4Y+aSqIC3XroW3+rDD+p/K9/DDIPbmzsWza0tDZItADIVQjPxf/wJpetttUPTdbvy9tDS7zQbMZjO9/Xa8LHr44fvI6eyh++9fR48+WkwOBxFRbsuiYLB3oyQ9onA4gQlyrxfr1m7P/vs3AnfyDQYlcVhQgOszcZgKHA6Q+Nyc7uCDoWOkOtaFhbhWKGTcrI4IETeBADIijGSR1wsdKBDAecaMMT6WOwVXVuIYjsLbbz/8GH1HUfCddCNhgkGMldWaWgr0N9+gEUJVFaJ+tFGL2SIQVRX60JYtkK9z52bWICZVmM1meuklKYtisSg98QT0oldfXUfNzcXU3p77epHTifczcmS+FEUuwGTCOuvqkiUWnE59m0MIyKLWVkTr6tVQJILd0tQEom77dhCBepHNRLCRWlowX+rqiP79bzgwv/c9oh/9SH8ONTdDnowb17uE1caNIBDr6qCPJcoIhwPEpt2OkjMmk0xvttt7y7Zvv4VeZLUS/e53sBsZPT2491Qak/aFJUugG5WWoqzLPvvAvg8GMTZGY51ttLTgPjZuTJtE3C04qIHAcCER/8Ivbyf+S3iB/+CXp/mciGgyEZGqqn7+gxDCRkTFRCSI6CMiOjvFa59BGIffal/ezvPrJWo8lvD7Ms09JX2Be+0lPa2RiFSCdidEIvD2OZ0IbZ46NXn4NEe0CYFj9ZpyZIqaGiiXqgoCT0+I1tZCQIdC8NL3l+xQVXiky8vhaWeisqcHxgh3hXY6oRyOHy+VQ06/4uLke+4p71lVQQKWl4No086raBTeaouF6Mwz8d3WVij1HGHJqQBTp8rOqnV1UO47OmT3w+Li5M8Xi8naFxMn9o9A1GLMGGzsHR1QGCZPzi7xxGN85ZWX0ahRUiwee+wh9Oij99Hhh59HmzcX08iRRIcfTnTddbkti7JVcD0TaGvZ2GyDY3hnimxFG6YCbaFqo2ukEpH4t79BmbrmGuw5egiHIWPWr8f7OOss/YYoetf/3e+gyN5wA9F550mvdkEBZJcQ8Y4XrXxXVaQHbd0K8vCwfvpOw2GkVD/3HJ7hkUfiZZ+iQCb1l0BsaMDzbtxIdNllSG3i9FFumpGtlDeWsVdccRnV1sqbPvroQ+jhh++jsWPPozvuKKYJE/6fOM1pWaTtWJkL4PTqsjLsiRy5NJDgjvU+H+ZdSQnmXXGxvvGYDC4Xamlt2gQZfMopIMUzXR9uN2SXng7V0IDzHnqofpMTIsifLVvwTLW10D+MjE4un1FXB13w88+hTx19NCJ/jO6PS9SkS7QFg9A5Jk3S7+6qharCwfDuuyAzr7gi3vHMpK/F0j8CMRgEweF2o072PvsM3B7K7+Hqqy+jyZPlRU444RB64on76NRTz6NgsJjGjEHjiKuuym1ZNHs2HPFOJ8a5pmb3s9FyDRYL5j8HPXDjzET7YNMmlFQ45BBkYvl8vUm8aBQya/16HD9/PmSLHgIByJ6qKthin3yCsiYHHYSMCJMJ96XV07jD+ZgxveXh2rVE778Pu+n006UuxTLH5YLDpLgYNQ1ZhhQV4Vk4MIBTo995h+jPfwZZeeut8YEjXBqkshI2ZqYEos8HHeSDD7CP/+pXeB9bt+LvU6b0v6Z+KohGkaL+/PP4//nnp32K3YKDGggMF/MtMWmCE0GaDD6vIiISQliI6NeEcNNEFSWFSi1ERMTc/JoUj0+8V07iMuh7KcEKH3eUa23F75l4R3MRHg/qZ4VCIDHGjEl+PNfUc7kgAPVq8/QH3GiFa7wZpcqWlsq0pf4W5OeaSWPHSuXEbI5vtmK1yhD1RKW3shIK7ZYtMiJRCGygekpPNApvVE8PvGmjR+O4NWtALM6aBQOFOzMzgcgoKcH9tLXhmIoKY298NCpTtMeMye7mYTJhcy0rQ1Ti2rUYh/7UbNTDBM3OjhQJsKBm83iaNQvGwU6FPadl0VAhGISyw+nLwy3CiGhwiUMtzGZZW8aIkOorIvHTT1HT7MQT9WsU8nc7OpCK3N4OJTlVAvHBBxFlc+mliLIhwnpgxxjffyQCZVYrK2Mxovfewx5w4IGIfOoPHA4oi59+CuX1l7+MHw8mEAsK+kfwvf020nSsVpCUhxwCGcc1zQaqcUaiLFq/HrKopWU8XX890Y9//P+GUl4WDQI4yiUSwbjX1AxsBHUoJIlDJuptNkkepksc+f0gn9avh9zdf3+kw/X3GUpKpPGu3fMdDugoI0YYE4hE0PEcDjxPba0xgRiJQA+xWKALrlhBtGwZopmPPVb/O36/jNJJl0AMhSAnCwr6JhAVBfW/vv4ahOl558XLnEAAelZ/CUROZYxE8P7Gj8/8XOlgQsILNJkgi+z28TRmDHSznc+b07LIZgPpwo0rduyAXZCYJZTH8ILVincUi8HWaW+HLcNr1uGA7jFqFJwNXi/esdUaHxjR0ACicflyrK8FC3QvR9Eoak6bTCgj8PXXaFoycybRL36BucJN3JhIdLtBrpWV9e4G/e23cK5OmCAJRC43xHWlP/wQ5znqqHgZwnX+AwHo1+Ew0csvo7zL3Lm4H+3xXV2yMalR06pUsHEjyMnWVugiixbJDs9C4Nx9BZ1kA9u3Ez3+ON7b5MlwnmcQJLFbcFADgeFCIhplyRt9ztP+QSK6gsDMfkrIE48S0cVEtCibN5jGPSUFE1eseHFNAu72NpyjcvqDHTtk+vLee/et0KkqhIPHAwVuoMKhzWZZK8Pn0xd6QkDwO53YCCoqMjNKOzrw/bq63s9vNsM46OwEQVhZaVy8u6ZGesy2bsXvXi/uS1u7MRJBupLbDbKQozhtNryDNWuI/vtffGfsWChPeigsxN+7u2XK0ciR8UpVNIpIwVAIxw5Uag0bUJs3w1M4cmRmDXaMYN75Yj0ebOyrV+Pz2bPNRhEzOSuLBhNcdDkWG57py0NFHCZC27E5GZGojUhkNDai5uleeyEVxghcR2vLFjRd2X9/42O1eOopnP+ccxCJp70f7qrt92PtcIo8IxpFysuWLTCyjQjOVLFlC6Kqt2/Hff3gB/F/zwaBGAyiQPjrr2OM/vAHkBxeLxT1RAMk22BZ1NyMmkb/+Q8+v/hiM/3kJ7pfycuiAUAwiH0vHMYcr63tfy07Pagq9k+fD+soEsHastlkCZxM5nIoBD2Aa0/OmIH1l63yLBxxzI22ioqko9JuN04FJIJBy1kQI0ca1zNTVVkfeuRIGPD//jecqNqOx4nPzU7ZdJ2NioL7Mpv7JhDdbjgXGhogd487Lv5+mEDkyPtMoKp45g0boIsedtjApi8ngmVROAzZu20bPp8wwWzkgMppWcRdqLlhk88H/ToT8j6PwUFxsWz45nJhrdXVYc6+8QZk98kny6jkcBjvt7AQ+kp3N4ITPvwQEXSXXGK87jdtgoybORNr8t57EdTAkXhEUpdj5+qmTbinadPi5cPy5XCGTJ6MqHCeX1zixu9HpF80SnTMMcb1+YuKcJ277oKD5ZRTQO5p94yODvyUl8NOy7SG96uvQuZVVCB9eO+9ZWp3UZFMj9br3pwthELQKV97De9ywQLophnaFrsNB5Vt5Lo4PJeI/qaq6tXaD4UQP9I51ogV3rTz39lEtDSL95YUQshupUxO+XxQDDIlqYYjIhF4LBwOkGJTp/a9CXNKrNcLz1FiyHm2wUWUg0Hcm54QMpkgeFmpqKhITyg6nRCyHMmnByFkUXEupmskEEeMwKbCNT723DM+dTgchuHg80HAJ9ZAtFoh6LdsgdE/Y0by5xECZGVREbx827djgy4pwTtuasI1x44d+OZBVivut6kJhoXHg00/G8RUNIoxWbMG75kjM1NIy85ZWTTQ4PRlIsyf4aKEDxfiMPH6rHzFYsZKbOIxPh/qApaWEl15pfH+4fMRffcd6nbNmAGvdip4/nmc/+STkdarN04cgVhSAvnF0YmcWtPYiFpE++yT2jWN8OmniPQxmZDCctBB8X/PBoG4dSuKkG/bhvTlK67A9TweGWU5EESSFtEo0d//TvTYYxjDM84guueeviP4KS+LsgJO+We9oLo6+6SxqsrGKJyqLATmVmUliIxMo7UjEexjK1bA4Jo6FSlnA9GczGrFugsEsOZWr8b8nTvXWN4HAiDInU7oIhMmGMvfri5ZX6uhAet+wgSi007TH59IBPqW2ZxaHcPE77a34zsjRiSXIVyDy+2GjJgzJ/7vfj/GpT8EYiAAoqG7G8+8zz5DYx+0t0M3YsKXKCUZmLOyiCNjS0qg93d3411wWaNdxUbblVBWJvVNbpz50UeQMWeeGW+bVFdjTnd1QdauWoXovdpaoquuMrYnduzAXJg4Ed+/807YqbfeGr8ehMAcCQYR/U0EO007bz7/HIEce+4JZ0iiLFMU3H8wCF0tmezu6kLGxNatIECPOQbf43r4bW04pqICOkQmuq7XC5Jy2TJkktx8M8a8pQVjUlaGoA5+DpNJkqjZrG28YQN00vXrEfF4/vmQi0Ogv+esfMsWhok5lzGilMC+CiH2JKLTdY71ElGFEEIk5Jm/SujI8xshxH8Ti1oa5KRnDVwYVksmclqIUZ2+XIHHA4M1HIaXxsjLrEUsBnLI58Px2U5XNQJ7sXw+Y+PTbMZ7cbnwnlJVxrn7cnFx8pqO3D1wyhQZ/VBebqx8VlfDWO/pgXLDCIVgOAQCEKx6pKXXK+siBgLwck+f3nfEZ3ExNon2djyT3Y7ni0YhzAerYZAQUKjLyrBprl2LEPb+Es719XgPJSWImGKPewrIeVk0ENCmL3OtlqHEcCQOE2EyyTSWZLUPmUiMRlH7xuGAJ9yojAB7wz/6COT4Kaektr+8+SaKZR95JDoy630nFoPsNJmwdoSQNQPffBOK9/HHw6HRHzz3HNG112Ktv/xy77QVJhC5QUe6UFVELdx5J2Td448j9ToalfVzmSQdaNxzD2T7QQcR/fSncNzcc09KX83Lon5AUWTzDpMJOgjP6WyAo7I5co8dAXa7/OnPtWIx6F3Ll+Ma48djDg10cfviYpn94HIhVdqIdI3F4FRobYUs2mMP4/Xq8eB8lZUwgv/1LxjtCxfqE5SxmOwqnNhgri9Eo9BtOOIxmcNr3TrIXYsFjpXElG0mEG22zB2cbW1w+DAha5QtMtDYuhXPWV4OMjqNDqs5L4u4WZHbjbnY0YE9lj/PZRttV0RlJeRQczOilbduhe6SWKrJZJJE4mefEf3zn1ir11xjbNu5XHBiVFfjGr/7HY697Tb9yGBVxfXDYWSIaOXAxx+jNu3MmdCNEmU+E4g+H9ERR8C2MXIsb91KdPvtkDm33gpZwenN0SjmrtOJc6Rih+uhvh7n7uwEyXr2zop/jY1YFzU1vRsSCQEZytk1HJWYKbxelJf58EM86zHHwLk6WI1bdJDz8q2/yHUS8XUiulgI4SN0w5lERFcSUT0RJfgEaTkRHU9EDwohviSimKqqL6iq2iCEuJmI7iKir4QQLxJRNxHN2PljUG0luygowELgaDenEwuzomLgai4NJJqbIVysVhBZqUSnRaP4TjAIgT8QHvNk4BRzro+oN+YWC96Hx4OfvlJKwmGMBXccNHqPHo9MSbbboaA4ndJwTfT4RiJQZsaPR0RgaysM58pKGXkwZ44+CevzgRyzWkFYqioU4vp6eMT6qj1ZWIhnaW3Fd8xm1Aocio7jlZVI1eau1XV16RcKVhQ8CxE2yAMOwIZfVQVCO0XsMrIoGxhO6cu5QBwmIjGt2eh+hUC67apVqFGYrLZhYyOK/peXwwBPhQhbupToN78BkXb33foKoKpCphCBNOB7VRSkm3R0QElm50hhYfqKZCyGlN5770UB/7//PT46WFVxPVXNnED0+0EevvUWIrbuvBN7sqJANnMpkoGMpA0GUVydCKTwr3+NsSsuBhGbIvKyKAMwUczvmhtxZIMk4LQ0Jg7ZmCouxo/Nlh2ZtGULuqY7nYiiO/bYzI3GdMF1v5qbIYeS6RE7dkAHqa6GXDCqN8d1CYuKMG7//Cf25bPO0pdfqgonYDSKtZvOWo3FQCjEYhi7ZDXwli1DJMzo0SAdtM5L1FKWEcuZOBxiMdncobwc8migMzwSoaq0s/s7nmfqVJC3aWKXkEUmE/aboiIpI4JB6VBKLN+Rx9BBCMiVhgZkLXAtcz1YLHiXL7+Mf2+8sTfZyAiFEAFXVIT3fsst+P5vf2sc7LJtG847dap0spjN0KtWroSj5eije8v+aBQkY08PSheMGCEdy4lE4ldfQS8qLYWTkestFhXhWlu24Dxjx2a2F6gqxuexxyBTH3kExKeiYIxDIdiDRgEcWiIx0/RmVcV4vfkmCNMxY7AHHHrokPeT2CXkW3+Q6yTidUQUIHS3uZiIviOiHxPRXtT7Bd5HRFOI6IdEdC2BPX6BiEhV1buFEFuJ6HpCkcwIEW0moqcG/hHiUVgI5YvruXDHKfaGD3coClJse3ogcKZMSU2R4xp/XFNvMDo6JYIL1LKSYEQQckdlvx/PZpTSwXUCieBBNjKcQyEoa0VF0jDmdHeOelRVSdKxspvoLd+4EceWlmLT1CNhg0FsbAUFUPT5nmbNgtK6YQPO31cX7HAYBlF1Ncajq0sa2YMNTm/evh2ee68X8y6V9KH2dijqLS34fdIk1D/LIPVol5NFmUJRMKeJhi59OReJw0SYTFLxMpIdq1cjMueQQ0CuGaGrCxF2QqB+YCry9Ysv0Kxk1iyiBx4wVtb8ftxjcbFUbgMB1M1xOIhOPRWyJhKRc8NsTp3sCwSQov3qq0QXXkh0//29Oz73l0DcuBHP2tiIa112Gc7DNerM5uwRSkb48kvUXfz2W/x+/fWIFs1ASc7LojQQi8koIyK857Ky/qcrcmaD3y8zBbgRDxOH2UJzM9ZrRwd0xRNOyKi4fL/g8cTXKQ6F9J1HLhciJW02OC2T6U9tbTIN7sUXoQOfc47x2PX04LpVVek5rlinikSgfxutuViM6JVXUJ909mzICe29ZINA9PsRRepw4B3Onj34qbNeL2RiZyd+nzYtIwKRaBeTRVYr0l25hrrbLSNNCwvxb67pGbsieA2NHAkZw+W0EuF2o6ZeVxf0IiMnbCwmbaO6OkT9RaP4d8QI/e/s2IHzcrd51lPeew/BFwccoK+zxWIgPzs6iL73PVm+JLHUjRDQ6Z5+GvbOr38dT2aqKmSaomAcSksxZ9OJdHe7oZN8+ikIu1/9SjZxaWjAfUycmBo3wXI83fRmhwM67urVsF8PPhiRmdOnp/YMA4xdSr5lAjHMIyV3NaQ92IGAVIwKC6EcDUXEVypwu6EcRiJQflJVOiIRCKRwGFFkQ02WBoNS2Car+eJ2471wjRQtVFVGVU6YkFxRbmmBUB89urdQVVUo3aEQxsVux+YSDGLzYgXW64WgdbthQLA3SotQCNF6QmDTSVRwYzFsbg4HyDSj2lvBIMhR7sBlNkPZDwYxFrW1Q6dIOZ3wVKkqxsCo/mQwCCW5owMKR10dnnfMmJSJglxXFbMu+LkxwFCkL+8KpKEeVBUywmTqPS87OpBGU1OD2jSFhfrpz8Eg0eLFIBrOOw9e8b6wahWKco8fT/Tkk8akIzcN0BrMPh8ihtxukGCJaX5MJrJHOhnx19EB0uCbb6Cw/+Qn8c/XXwKRi4Tfcw+U47vukk1f/H4ZOZnNdNZEuFzoev3WWzKyae7ctMqZ5PpMHxIlVFVBBrjdkgQvL++f00NRZMQhO1IKC3Fuuz37EdkdHSAPm5sxRw88sHfh/sGAooAEV1XcQyiEdZ5IxobDuF+vF3M8WbRiSwvki90O4s5kQu0rowwVTnsuK0vPCc3GdiiE+zHS1UIhyMJVq1Cf7Kyz4tcnR2RHo7jnTLr5trZC1qkqHMEp1D/NKmIx6OKcPTNlStqpgruNLAqHITsURdYx5f3MYtk19I9cRDRK9NJLCMA54wwQeYqCQAPt2o5EiJ55BqTeggWICGTCLXEP2LIFNs6YMUT33Qcb6Xe/MyYdu7tha9XUyGNiMezx9fUgwg4/vPf3VBV1EhsbQTJOmaJ/jKIQ/eUvuPfvfQ/lTrR7CzcmdbvxPDU10GW4Zm1xcd+OibVrkYXicCB9+cwzZbT59u0Yo4kTM9vTIhHco8lkfB+xGOpF/uc/uIfaWjhUDj/c2K5LQH4FDgLyJOLgIuPB9vlAJnKR5qqq7Hqy+4vt2yH4iorgIUi1ADmHREcig9cSPhV4vZIgNFIGVRWkVTSKqEHtxrNjB4TtmDHGCq1WeR01KrnX2uXCJhAM4ns1NZJs9XiQwqyqMISjURgS2nQ/RcGmFoslb0KiqiCCu7qwQSTW4AkE8K5NJrwvvmdOfenpwWcjRw5dmHk4jGf1erHxcKcwvk9OpfL7ZbfNsWPTrr+Z6xtUVgX/UKQv76rEYSK0KSw8j8NhKLEOB4jE2tr4js08DrEYPO0rV6IpSmITEj1s3IjC3FVVRH/9q7HCFgpBHmmbBng8IBB9PjQ9MEoNUlXpkVZVyE4mQRn19VBcu7pgvJ9ySu9z9IdA9Pkwhu++C6X+jjvwzEwGDHQHZlVFzab774d8X7gQhCl3oE8DuT7rB1UJ5ffrcmGv5AyATEgfIhmV7/fj/0SYN3Y73mOm500GpxOk3ZYtWHv774+I4aFo9qCqiJ7t7obhW14OueNyyYZ02uMaG1HiJlmkpMOBH6sVKWyRCBwgRrLI78fxdnt6dZFVFdF2gQB0KqN119ODxlLNzVijRx7Z+zz9IRBjMZSU2bwZc3HevMHXhXt6ZNfZUaPwfjIg1HcrWcTv3evF7xaL3Mc4zTmPwcXSpSD6Tz4ZDlOuzV9UBCKR9YQlS4ieegpZHNddJzvAc0d21kU6OrAuqqqgh2zfDnJt5kz963s80F1KS2ELCwG58OabWN+HHgp5rUegLV+OY/bdFyWV9OD3w9m5ciVI0osuitebuK8ANybVysxIBPOVS2Tp6emxGNELL6De64gRSNfme+nslLXwJ0zon8ON63lzAxrtM7S0QG9lW3OPPRBRetBBaa2pXJdFOYE8iTi46NdgqyoEQ0+PVH6rqoZ2o1IUhHk7nTBkp0xJXZENh2VIdLJovaEARwDGYlDqjAzUWAzvgwgklMkEQdvVhfFI5sXt6cE1tIRgMjQ3w1M9YgQIPCJ8f+VKCPP99sOmUF8PpXjPPWW3ss2b8e/kyX2Ps6rKKL1x42RUo98vPVDjx+sryn6/rCtUVzc06c1EeAYeL7sd85I7hXOdydJSGDjjx2dEyOf6BpU1wa8oMDy03viBwu5CHCYisSj1X/4Cj/VPfxrfrCQWw78sr5Ytk97qk0/u+zqNjUQXX4w95ZlnjMsacMRVYaGMjHc6QSCGw0Snn55aJDoTgZEIfmcycelSogsuwLlfeql311P+HlFv8jEVfPcd0S9+AYfC1VfjmTlVyOvF/djtA+eoa21FjcnPPoOcvuYaRH9nSGbl+goYNCXU78c8jUSwV1ZUZObwCAZlxCHPXZtNRhwOVAkHnw+GZn09rrHvviDkhlIH3LIF0f977RXvNAiHsZZsNozJtm0gESdNgswyWrM+H9aH2Yz6oD4f0aJFxmmD4TB0LnYIpiMLOjvxHqurjXWwpiYQiIEAorNnzYr/O+vlHM2a7rv3+1HXrKcH+tmsWYNbX09R8P7a27F/T5vWr3rku6UsikSgV2qzMNihx6nOeQw81q+HvjN3LmoJMjo6IKdGjID8WbUKabrjxyPDgff5YBAywW6HTPD5kEZrtaIu4KZNSOk1qrEYDMIZUFAAkrGgAHPiX/+CrXv00dBlmEDTEonffgu5PnOmcQO6jg6Qei0tKLvC9RRZXnDDKp8PASx6gRFMfCsK9g1terPTCWfqF18gZfjGGyHTOPiipweyYezY7MgodiYTyTrgH3yACERVhTyvrcX7nDYt7dPnuizKCeRJxMFFVgZbVWW3pVgMyk9/PHbaBgEAACAASURBVOmZwukEKROJQDD3VUdPi1AIQpXTTodTVCWDC61zV2Yj5TQSwViwN6W1FYI2WRFbnw+bVWlpaqHZfj82EK6NWFSE+/v2W2wE2jp+kQg203AYnjiOdpw0KT3v9qZNMoR/xAgQiBYLNt5kinIkgmsGAhi3dDskZhMuF56DmxJwcWybTXYqy/Decn2D6rcsGqz05d2VOEwEE4nLlqGxyIIFiPZLBBOJGzfiuClTUEuwr3ne1gavdiiECES9kgh8H14v3jkb3g4HCMRoFN7xvpozJUJLJj77LNFNNyFq4KWXekcz9odA5CLh994LBfvuuyVBGY0iioA7MA/EfhqL4ZkeewzXuegilJ8oKoKszMuigUEwiD06HMZ75X0gVahqPHHIERRa4nAgnSehELINVq/GvcyahT1/qB2vXV1wYo4erR+Zw2nd4TAiJysrEfljNFaKAj0jGiX65BPIlXPOMY5o5gZzJhNkTjrrp7sbcqyy0jhb5NtvEX1UUgKiP/E+uCs962XpEogtLXivRCAmBqsJDoPJlUgEDuN0m9LpYLeWRX6/rK3K9aCZLLJah6Y+9O6Cjg7UTR01CjpI4jzeuhU6Tnk59v+CAqkHaOF2w24oKZGdld99l2jNGqKf/QzySw+RCAjESASy0GbDd199FQEN8+cjHZfB9a5NJjg1V6+GvcblVBKxYQPR73+P8990E4hGbrbCaGyE3ZVKY1JObzaZ8Kxr1yKrxeUiuvZaOII5ipIjG+vqjJ05/UEkAjvtrbewT9fVQSZXVYEMTie6XINcl0U5gbxIy0FoOwe6XPjx+fB7RcXAp7RwvYWmJmyUM2emR04FgyAQhUCY8lB2bk0GNpK5iLKRp7qgAAKvtRUbWV1d8igcRYHyzWnpfYE97VYriFqfD+O/aRO8NByBqL2f6dOxKXz4IRTTvfZKPz1m6lSMwaZNICSmTUPEaF/zq6AA1+zpgREQDA5dejMTXU4nfjeboTSMG5d2+nIeGmjTl63W7L/bPHHYGyYTFMnFixF9dOqpxse1tqJ7aE0Nonj6Mgy7u4kuvxyK4lNPGROIbDSbTFKedHQg9cRkQnHyFOvVxIFTWm69Fd3/jjmG6Ikneq/RWEzWoEqXQPR4EHXw/vtIKfr972XJB20H5mw01dDD5s3w8q9bh7pxP/4x5Hdp6fCtc5zrYNkfCmFfqq5OfR9UVcg4TlXmYvZ2u/wZaOeYosB4XbECesCeeyLVdagi/LUIBHBvpaXGqXd2O8bvk0/w/3nzjNcWpxMqCiJ0udmBEYEYi0FuEaXvqOzpwXovL9cnEFUVtbheeQU6zzXX9D5OSyCmUmMs8btr1oCkqKzEuAymDAgGIY8cDry/adOGTymhXAbXPXW74yP1WV8ym/H3oSg7sCsjGAQBZbMRnXiivizYYw+se26Kctdd+jZAWRlk7YoVkPeffQaC7+qrjQlEVYWdFApBFtpsuKd//hMy7eSTezcC4TmwYYOM0N5/f/3zf/IJ6iZXV0NHYpnIUYic1cfOgFRqwtps2BM9Huhazz2H895zj6ybzecNhzMq+ZQS/H6id97BeLMs4hTmAw/MR/EOd+RJxByGySS9qE4nhIHHA8UojaLsaSEchtBzuUCWaTv8poJAAN4SkwmG6nCvGWKxgCgNBCBwk0VMcppsRYWxcRuLxXvO+zKCOarPbJbHBwJQPrnDst4YFhbivkMhHJ+pIK6pwbWYDEx1Tgkh63a2t4P0rK0dvK7bkQg87K2tUNoOOADRiJxyMhwjX3MF2vTlbEbg5InD5PB4EMFWVUV06aXGY+P3g2g0m5ES3JeTxu1GakxHB9Hjj4Oo0AN3HiWCwSkEFOTXXoMMWrgwvg5rOvD5iH70I9QpuvJKkG3RKPYbRZE1DzMlENetI7rhBtzvT39K9MMfSlnGEWYD1YE5HAYx+7e/Qf7dfDOU44IC7NN5JTn7UBToRGy4V1am1hwnFsNc4B8u/s71DQerWRQ3OVu+HPcxcSLmTCYE/UAgGkVKoBBwaCRbM+vXQw+ZNy/5vstNzr78Ev8//XTjuomqCgJRUaBXpBPh5XJB5rHTXe/Znn+e6OOP4aC95BL9JnRcBy9dAtHnQ/qy04ko8ZkzBy9TQ1UR/djQgN8nT4bDN7/PZg8sb4JBGdVWXIx9OBzGHC8owJzKk4n9h6qChPJ4iM4+OzkZv2QJ7JHzz09ek9Xrxfm++AJRgpdcAsemEbZtw7uePBlyxe+HA6K7G9kieg1SiGAXcST3vHm91yFnTixeDHLy5pt721DRKGzqUAgOj3RsLLcbdaG//BINS372M1mCy+fDeYkwVtl2MqgqyNm338Za2Xdf6STef3/ooUOVwZZH6sinMw8uBnSwFQWeFo4UqahInoabLpxOEIjRKIRlumHNPh+iF7mrUy4ZT9yFTa97YzQKpSwahQCORmGw6KUasaI8cmTfRFYsBqM3EpGRfO3tiDAsK4PHhhsblJfL98ydobneIhcLnjEjPdLW5YLCyZtyUxPOx8WCU0U0insIBLDB1tYO7ObQ2QmvoKLIAsmhkIxC2bYN9zRhAu4lQ+S62p22LOKUvkhEEur9lS154jA1RKNIvdm6FYrkmDG9i1HzcU8/jfV/0UXwbut1bGb4/URXXAHC4qGH0GDECFz/jet+NTej1o/dDgIxUwfBjh1Q/teuhRf88svjn4fTnKNRyK905p2qwsP+wAOQXffcE19viDswWyySGM0mVqwguvNOyM4TToAxYrNBZvcjfTkRub5isqYXcW0y1oHKyrDnJHuv0ahMU+bGZdzBkutiDmaX+c2bQTK5XMhoOOig1OqLDibWroWDbs6c5HWfV6/G88yYASeoUZ1Rlwu6zRdfQOc48UTjumBEUs+trEzPuPV44BAtLta/70AADQXWryc6/niUjNCTsT4f/p8ugdjcDNJACKQtplMCqL/w+ZBR4vHAETVlyoA4U/OySINYDOPNzgxOMQ2HZUMxqzVPlvQHn38OuXH00cllxj/+gcjA446D46OqSr+TfU8PnI7LliEC8PTTkTVgtAe0tIAMHDMG0Xo+H0qWuFz4rlFWR3Mz0aefQi4eeqjMxuC5oCjIyli6FPUJr722t82sKLBnuDEp25wmU9971ooVqK/o9aKxzDHHyEARRYHNZrEMTLCP0wndcdMmjNv06RjH0lKkL5eW9t29OQXkuizKCeQjEXchFBZCIIXDsrud2w0yMRUvvBFUFUbQ9u1QAmfPTj/1wuvF9wsLIZRyrTZIaamM9tRGeXIDD0WBELfbsXlwzTCt8HW5YKyk0lmbuwaGwyDCLBYI2fp6vM9995Xn5/qYHAHZ3IxrjRkDRbmiAt/77jt4s1Ihb3t6sIkUF8siugUFIDHWr8d5UlV8zGbcC89JTm/Odhp7KIRNqasL833CBIyLquLdcNTBrFmIUmTv4cSJeY9wX8hm+nKeOEwfr7yC9Xv55ZjX0Sh+EonEN97AvD71VBiJ3LGZqPcYh8OIylu7FgRlMgIxEICiynWeGhvRbbCsDARipl7qVauIzjoL6/Dll4mOPTb+7/x8XIg8FsM6t1j6lj8uF7oofvQRlPDf/ja+U6zXK6OSs51K6PEQ/elPRK+/jiiDBx6AZz0azacvDwS4GzBHh5WVJSdpI5F44pBIliXhqKHBRlMTjOGuLji8TjoJa324Yft2EIiTJycnEBsbsc9OnAgj0euVKZ7a/ZabGXz5JXScY45JTgZweZnS0vTkjtcrOzjr3XdXF9ZseztqyOqlLjKBKASunaoOFI0ifXnbNuh/BxwweDKAu7VyU7zp09OvWZtHZuDu5EVFkE8OB/5fUgIZpCiYT4WFkDl5PSg9bNsGmZmsGQkRoopfew3E/WWXQX41NUHejBkjjwsGQbR/9hmiwE85BQ4Np1M/ldfhwLqqroad5HaDQPT5oBeNG6d/P21taB5SVYUIwIIC6SglwvfvvBNk5qJFcLLq6W/btmF9T5wo5Ym21qLefIrF0DTvmWdgFz3wAJzNRJiH27Yh2KWqKv1Mw74Qi0HOv/8+fj/mGOhzO3bgHubNk9wA63zs1MuvjeGJfCTi4GJQBzsYhJALhSAc0vXaEuG7GzZAOI4YAaGSrtfM44GgtVr73xZ+KBGJYBzY2CDCJuRywVDUGqhOJwRgRQWODwYlKZdK9BsTwNXVUJa3b8d7qK7GZpmohLtceMd+P0LoR46MjxT1eEBCFBWBAEy2MXR3YxMpLcUGqxXebW0g6ioqEF2Q7gYTCEBJ56jNfnQB/H+oKpSCrVvlhmo24zmKijDnEkkv/k5zM0iEKVPSVupzfUtLWRb1t/tynjTsH5Yvh0f66KORhsuIRKT3mghe83ffRdrjKafERyZzp0j+LBpFd+KlS5HOcsopxtcPhWTEs80GYmDJEiiZZ5yReXOHJUvQFbm6Gop3YtdTIpneYjJBvrHhxYolpzknYvVqpC93dYEoXbRIPjtHh0SjA0MYffghIh57eojOOw/XjkRkJMoARODn+mrKWC/id+nxyCZz5eX6MooNdr8fc5pIdqcsLh660iocgbdjB/SKefNQk2o4ykiXC/KouhqOTKN77O5GhFBpKci4ggKsWZdL1h3lov3bt8OgbmpCFMqhhxpfPxCQ+3o6qd1+P4hKm02/jMzWrZCx0SjKKeiVdGDiOV0C0euVkaXTpqXngO0vXC6QIoGA7Ew7wBlAw3DWpoUBs9HYcaWNkuYU53AYx1gs+BmOa3+4welElkFZGZovGdmVGzbAgThyJOohlpTgXWzciHNMmwbbOBaD3vDBB4hCPPZY1EJ1ubC/VFfH2wheL4IziotBzLvdaOwSDhOdeaZx9HhXF3SEkhLodNp9JxKBTXLnnTjuf/6H6Pvf732OUAhkn6oi1TgxKIXJyEQisbsbY7BiBSKtr79e6m8cENPTg3lZW5vdDI22NjhVm5sx5vPmwYGtKPj/5Mm9v6Oq8URimnIzv4oGAXkScXAxJIPt94OUUhQIh8rK1Ay/nh4IYFUFyZJJ6qfLBeXYZkutKcdwRyiEzaOoSCqmtbW9PduxGMaPCIp0ezsE4KhRfQtCtxvvi7tTNTbKJiqzZ+t/PxTCptjTA0VRrxg5d9MuKcGmp3eeri48U1mZca2cjg7Mi7IyeADTJYWjUYyH3497SberohZ+v6zRWVkJArGzE59XV/dd78ftlt0JJ0xIy0Of6xtUn7KoP+nLeeIwO2hpgQI8bhzRjTfGrzVWsITAun7hBSiUixbp1/AiwjqLxRCh9+abINoWLTK+vqLEF4jfsAFE5YgRSPXLhIBTVRjsN9+MdMgXX9QvjRGNYu4xgZh4X5GITAnjGomxGDpSP/QQjIZ77onvGhuJQH4PRAfmzk5cb9kykBA33QT5Ewr1LjmRZeT6ysqotILXC7kfi2Fu6hG0oZCMOOSO3larTFUeypIqPT0gD7dtgz4xd+7g1sdLF+Ew7tdkSl7w3utFtImigEDUNoFRFBjkVivGv6UFzo/NmxEJffTRya/f2Ynr1tamvpYCAXzPYpHlTbRYvhzd6CsrkTKol2KcKYHINc/MZrzfgehsqodIBPOqtRX79tSpg9ZIbreTRemCSy6wPcaEOtf/FQJzNd26v7sTIhHoOx4P9BejYIS2NjQiUVXoG9rUYkVBpF8sBnuouRm1Fd9/X9YHNJt7Z4UVFmJfWbcOcmDmTBmBGIuhGZSRHeF0gqS0WhGFl0j+rV2Lhm8mE9Gvf41AjUQEg1jbfTUmTSQSly+HwzgQAHl4wgnx49nYKEtt1dbKvZOb6GUa/BOJgDT95BPscyeeiHFatw7BKIcd1ncwiTa6Mg0OIb96BgF5EnFwMaSD7fVCceW0tMpKfQHENfWam6WXJZNoE6cTBKLdDoJmuCrH6cLnw6bickHYjh6tf1wkgvHu6sIYjB7dt9HCkXp2OzairVvxM2IEInWMlIrOTtRlLChAiHplpf54d3dDYa+o6F0PpKMDfy8vN34mRlcXIhuLi3FfmRhjPT24XmFh+unNnKLT1ITnnDIFc7S5GX8fOzb1KEdFwRi7XCBt99gjpY0q1zeopLIoGoWykk76cp44zC4CARCIfj/+1TMCYzEYqosXwxg5/3xjYzEWwzu6914o4FddFV9/MBGcusdK5Pr1ULDHjEGx8EwitxQFEZBPP41zPPGE/t6SjEBkqKqMTCTC/nb77agzdMwxIEq1BEY4LFMRS0uz59CKxeBh/9OfcC8//jEiEbRk5QCnLub6KktLL/L5IKsjERhhFRXxczEYlBGHkQg+KyqSEYdD7cjkyLQNG7Bfz5mDGl3DuUa0qhJ98w3GPVl36FAInUY7O9GURE+PCATwEwwiWnHtWqT3nnii8fWjUegnQkDnSvUdhkLQpwoLoUNpdSJVRTT0v/4F/eGqq7BWE8GOFK6Tmcqexo1nGhvhzDzggMwjttNFVxd0PO6oOnHioOreu5Us6g98Pll+gUtccLkOzjKwWoe3XBgqvPsuogAXLDCuOej1gjTbsQMRhQcd1PsYlwsBGn4/1uuSJTjuV7+KH3cOfBACASP19VhfM2eCyHz5Zayxs84yjpD2eNDx3WSCfpKYFfjBB0QPP4xAk1/9CvKqoCBe3gQCsPO4e3FfOlgshrn0zDPQESdOhI6kHbNQCOdUFDirtXZTJIJ5GotBfqVbQ3XbNuhG3d3Y577/fURBdnQg8vCAA1InJzm9mbNvUpDDuS6LcgI5mliaRyYoKYHg4hp6LS34vbJSCsxQCOSQxwNiZ9KkzBQQhwNe0JISCKZdhUAkgvBiz3ayyDWuc+H3x4+xEdjTbrFAUd60CUro6NFIgTESmg4H3mVdHd4Z116prOytbFdXQxBv24YIvMmTZZfVnh58J5Vi3zU18JLV16PWz6xZ6ZMKHBHb1gbyL9X0ZrcbBpjPJzuEd3VhrOx2kKjp3EthISKHOL3Z54NRke1uZLmCcBhygLuSJjPY8sThwEBViZ58EsrWDTcYE4NuN9Grr2LMTzklebSJyQSi6/nnUfPrssuMj+UutRx5s3o1vMkTJuA6mXil3W50i166FJ7wW2/V3xdSIRCJZJfmggJ42W+6CTLshhuQ3qQ9N3dgLijAnpSt/aihAalH334Lhfimm/AO3G7ZpTNXy3cMNwQC0FsURe69NhvWSiAgiUM2NNhRarcPD/0jGAQRt2YN7m/vvdGFcgCaW2QdmzZhbc2aZUwgRiI4rrMT+6dROl9REc61bBmiUebOjY+KSUQshv1dVaEjpEoghsOQn2Zz72yHSAQRy59/DtLgggv012kmBKLHg0hMjwd6RTLdLZsIhUAedndDxs2apU+K5jE8UFyMte924ycQkPUTo1FZRiQcBpmY30eAVatgdxx8sDGByE1JmpqIzj0XMkYP5eX4eeMN6Dff+x7RL3/ZW+8wm2E7tbcTff01fp8+HfvRK69gPzrrLGP9y++H3qOqREceGW9bqCoIvpdfhjPpxhuxZ7EexEQid0suKACBmAq53N1NdNttGLOTT0YDFe1+4/VijISArZ/o7OTSXX6/rIudihwMBIjeew9jVVmJJn9FRRjjaBQR6sm6Y+uBIyp5XDJIb85jAJDVVyCE+EgI8VGKxx4hhFCFEJdm8x4GCkKIZ3beb06LciEgNMeNgwff7wdxwmmsK1fis+nToQhmski7ukDIlJaC0NmVFrqiYLwqKkDucbSJHrxeKAKjRkHgsddRD1pPe10d0hMbG+FJTqaEOp2IROKx5nR1TqfmkHYt6upwbHc3jODWVhxbXZ1et8CqKnjiAgGQDFxnKh3YbJiLdjvmX1ubTL1MBBspK1bg/7NnY442NeFZampAKFosREcccQQdccQRKd3DRx99REIIevvtJ2n6dLzP9euhMAxHDJQsYmM8FILyYEQgco097bznent5AjE7ePddEA5nnQVZrIdgEAqsz4conr46uD77LIjJBQugTBq9K1XFHqCqmAMrVkD5mzQJDVsyMWaamuB9//hjKPe33dY/ApERiyGq8YoroKQ+8ww6InI0B5EklywWyMls7EeKgrE87zw4Y269FSnUxcWQ8zYb5GlBQWay6Mknn+z/TQ4CBkMv4miyzk5JJI0YgbnS2Ym51daG98w178aPxzHZJIwzhaLAmPr737FPTpuGeXPIIblBILa3QxcZN85YxqgqdInmZuhF3BVeD+EwiNSvvsJ+ra3fqgcuxVNVlXpUlqJAnzKZMA+0+5jPh2YCn3+OaOiLL9aXaeGwdDykSiA2NkJWhsN4vzNmDM6e2NqKOcblbObMMSYQ8/Jo+IAdTeXlkGddXdg/2IHL0auBQHxk9e6K1lY0SttjD5RU0IOqSlk7fz6aqhnpLIoCPWvpUthal19uHIBgtYLs7ezEHuRyIYW5qAhEpRGBGAzi/IoCApHr6RNBTtxzDwjE446DXsSyhmVWNAqHRGMj5F+qdU0//xyybeNGpEb/4hfx2V4OB2R2YWHymvDsSLbb8Qxut/E8VFU4hv73fzGuhx5KdPXV+M6HH+IcJ56YPoGovZeCAqwP1hUHA3luyxgDKmiFECYiupWIvlVV9fWBvFYe6cFkgtArK4PiwaRJXV3/Osd1dkJ5Ky/v3ZQj18FFwIkQkSMEhKPX29s7Hw6D2LLZoMT6fFAEuLacFqoqm42MHAmh39KCa0ydanw/Hg8MqOJieOR4rLmJjtMpIxITN9FRoyCAv/0W73qffZJ3WjRCRQXIvLVrsWnPnp2+YWQ2436cTozZ9u0YM+15ursxLqEQ5tWkSXj+jRvx3BMnxm/OiYjFYnT77bfTvvvuS6effrrhcaWl8OBv3YpN2+3GtYY6BW6g0Vf6cj7icPBQXw/ldN48KMF6iEaRhtfaijpi06ZhjnLH5kS8+ioM5/nziW65BZ9xs5VEcDRXcTEi/L74Auc//vjMCJnlyxEZGA4jteXww/WP4+6EZnNqRKXDgTpHn3+Oe7vlFtwzN2MJhXAMEdZ1ttIJ16whuuMOyIjjjkNUZUkJrqWqkEPJrpWqLNrdoSjYEwIBzImKCsxXjwc6hqrKVHs2uIeTTOK6T19/jWeYNAmG7yDVpssKfD48Q3k5ZIARtm+XztVJk4wNce7O+eGH2GdPPBFywWi9OJ3YlyorU9crIhHpAKyri5cl7e2IxnY4iC69FDJWD+Gw1Nfs9r7nVSSCaJ+mJmSRzJ07OASx3w/HqsuFsZ86NX05l5dHQ4+iIuhdHg/siWAQ+4jFgjmoKHJOms04dlfXSRPh9xO99Rb28uOPN16Tb7+N+ntz5xIddZSxXaCqSC/+618h2664QvYPqK7uff7WVsjDiRNld+WaGtRANCLsw2GQnn4/CESt7Hc6Uf9w0yaQfaefHn9NJswcDllabOLEvnWjSARlYp5/Hk6a22+HUy0Wk3UF2SmXTqAPR8N6vZinienNbjfqbNfXw5674ALsG8uW4VpTp+KdZGPecjqzNipxMPf+PLclMdDeGhMR/YaIniWi3Xqghys4so672lZVYcFzmHc6C7O9HZ40jtIbTgp9f6GqqK0RDseny9rt2CCCQSlQYzGZRsMFwEtKpEfJZIpXsrloL0cgtrdDEZ80yfh+fD6kJNts8OokbgJMJPb0yDTlxKYMnPLFqROZoqwMqVlr1kCRnj07MxK6ogLP09aGseZuaJs3YzyLixH5WFKCDb27O/X05VgsRr/97W/pwgsv7FNRLiiAUtHWBuNo7dpdO73ZKH05TxwOPhwOokcfhRJ2ySXG4/3++4iAO/BARCrb7bLRCiuKjPfeQ22gQw8F+cXFwvn9aq/BjXSKikDOffMNommOPTazd//Pf0I5Hz0aUZNGTpF0CcSvv0baj8eDKMAFC+T9cRSjzyefhRXO/iiwfj/ezcsvQ1Y/8ACijXw+yNiCAuyZfd1/OrJodwQ3HvD54rsyMklbUADjhztrDzeZpKowDDmldcwYpMwOVlONbIGJMbMZTkYjQ7O9HfuxyYRonooK43OuXAkjf9Ik1G+NRECMcFkCLbxe6aBNde/l2mWqKpsgMDZsIHrsMTzPz36m3w2USKaRcjOpvsAdq71eyOI99xz4Oamqsia02YxrZjq/8vJoeMBkwv7BKc4OB+ZfaSnmYmGh7OTMEbJW69BHWg8GYjHIjWAQDkkjgv7LL5GaPGECMh/GjTM+55dfIntgxAhEA5pMMiuLI0QZPT1Ya1VV+P211/CuFi40JhAjERBoLhccp9rGpI2N0MmcTugxBx+sfw63G/dkteJZ+tIt2tsRzbh2LUjJa66R0Ycmk2y45PWCAB01Kj1ZZTb3Tm+226GPvfce5O/8+dCLWlrwzlQVzVMmTEj9OqlgiNOb89zWTuREyHceA4Pubii7RCB+qquxQTHx5HZDkJaU9C1oWlux6VVV9Z1Wl4vgdKnRo+MVy6IiWXzWbMZG39kpowq1RmtZGTYNtxuKNnuZ/H78zvWEpk5NLnADAUTBWCzJo+QKCuKJxIoK3F8sJmv/7b+/9HSZzemlM2tRUiKJRI5IzIR0s9lACra3IzqWo1onTcImqiggFYNBbMojRw6cwj5yJJ5ryxbcy7hxmY/PcIRe92X+nDHcDPRdGZEICmsrCrqEJlOUV6+G4ThrljTahZDdlzm1/JNPUKR7v/2I7rtPGtX8XrVEIpPJFgu87KtWgTw44oj05wE3cPn976EgP/ecccHxdAjEWAxe9ieegJx49NHeEVKRCMgbLg2hfTZ24KSrbH76KdFdd0E+n3UW0ZVX4v309ODcNpvssplHZohGZb1mrkPH+xUR9gG7PbOO4IOFhgasTy6v8f3vY57mItatw3vYf3/jMefa2sEgdKNkut9338GpMGoUCESOeFcUGLVap3UwiHMXFaXeII2dt9EoiAGtY/Gzz5DiWFcHw1pr0GuRLoHY0ABZXFgIJ00m2Rzpwu2G5LubogAAIABJREFUs9nvlzWh8803dh1YrZhHXi90dI5KtNlk12aOTPT58PtwdKZkE59+Chvl+OON1+6mTUR/+xv0oeOO6904Uov6ejhUi4uJ7r4b483lfNj2ZWeVzwebo6QE4/7OOwjcOOQQHF9a2vs6sRh0r+5uHKeViytW4Jo2G3SKKVP077GnB8EUxcUykpB1daMxuvNOyL/bbuvd6V5RQF76fLBjWDdKF5zeXFCAIIu334a9NnUqykNUVMBZVF8PPuCww4zr6PYXHK0ZjUoHer526OCiT1VaCDFBCPEnIcQ6IYR3588nQogkpZCJhBATiWhn30S6cGfOtaqXVy6EuEYIsUUIERJCfCuEOFLnmAohxENCiOadx20RQtwuhLAmHKebuy6EuGjn9ScmfH6CEGKlECIohGgQQvxCCHGx3rE7US2E+LsQwimE8AghXhRCVCUbi+GGWAzESH09BNm++0oDz2KBAjZqFDanri4IMp9P/1wcoedwSM/Grobubii0Ro0/SkpkzUOHAxtLVVVvxZvrUXIatMuFf4uL4R3q7AQxkIxADAZBIBYUQHnsS2AWFOBehMCmFApB8Pt8eFeVlSDoqqqwwXR2pj8+jOJikA5CQLH2eDI7TygEY8DhgLE/ciTm5Nq1jXTxxdfSiSfOpO99r4SmTi2hww8/jN55552k52toaKDCnVr2s88+S0IIEkLo1gV6+OGHafLkyWS1Wmnfffel5cs/pJkzsTE2NUF57+pyUq7LIu68qyiYp1rCKl/fcGjwj39gbV92mbEc3bAByunIkUgN4UhnhtY7+/XXRD//OWTKQw/1JiW1RCJHBBUU4PyrVoE8OPLI9OdBKITow9//nujssxEZYEQgKgrutaCgb1nW1YXzPv440iCfe643gRgOQ6aaTDC8Cgogm4uKsLcxcR4KGdde1cLhAAl7/fVQhJ96ClFMO3Y00uWXX0sHHzyTJk8uoTFjBl4Wffjhh72OcTpzXxbFYth36uthCDqdkEmlpZg3Y8fip7Jy+BKIra2ITlmyBGvpuOOQ5parBGJDA/bgqVON0699PuyJPh90ozFjjB2a3EG+vBwR1kzQcZZGLCZ1TEWBzmWxyMifvqCquF9FgXHM80RVUULhmWcgK375S2MSIhjEj8XSN4EYiSD6cOVKzNGjjhp4AjEaBZnx7bf4/6xZqJdbWEjU2NhI1157Lc2cOZNKSkqopKSEDjts8OVR3k7LDoSQ8s9kgkx0OqWD0GKBvq0l4UMh4/rsuYyNG5ERsc8+iPTVQ0cH0Z//jPE44QSsdaO9oqUFNQJjMTg6WdcSAnZGcTFkEdtoGzbIKNAlSyDnzjkHThMOutFCVeG0aGtDuQRtNOQ77yC9eORIoj/+0ZhAdDhgV5eUwB40m2UGSWIdQEVBiYabbsKzPPVUbwIxGITNHwqBAK2tlenNmSAaxTM++yz0suOOw5hYLIhIrK+H3jl//sARiFpox0dRUlsHeW6rFzKSmalwtgcQ0TFE9BoRNRBRBRGdT0RvCyGOVVX1A4PvdRLRhYRwz0+I6Imdnye2K7iCiEp2/j1MRNcR0b+EEBNUVe0hIto5mB8Q0RwieoqIVhLR4UR0y87PTknhOXpBCHEUEb1JRI1EdBsRqUT0YyJyJ/na20S0lYhuIqI9ieianff9w0zuYbARDMIj7PVCGGpr6Wlhs0Eg+f0Qkh0dUqnjmitMILpcUNyMlLNcBtdfKiszfj7e8Dkac/RoY8HJKQvaZiaNjRjDGTPwXSOEwyAZiFIvrksE4VpVBWG/Zg2+t8ceslaIECAko1Gcn4/PBEVF2OzXrJFdm5PVKtRCVWFsNDRgnPbbD/fR2gqF/aOPltNXX/2HFi5cQJMnTySn00mLFy+mk046id5//306OnHn3Ina2lp69tln6cILL6TDDjuMLr/8ciIiGpGQ//P444+T1+ulyy+/nCwWCz344IN02mmnUWNjI02dWknt7UTffBOiq646mgjrPmdl0Zo1st4TE095DB2WL0c9GTZGGxt7H9PRAUKupATkhM8HhVgP330HpbK2FukyXV340QN3IDWZcB/btqEw//jx+veRDE4n0f/8DwjMa64B6dfWZnxd9hz3lWa8ciVSjvx+FOo+9tjeDg8mAbgRgtNpfN1oVKbKFhb2nv9cL+npp6F4n3020Rln4Nj164nefHM5LV36H5o/fwGNHz+R3G4nvf46ZNHixe/TIYdIWRQM4t/GRqJAoJb++Mdn6Wc/u5DmzTuMzj0XsqimZgQ1Nsqxeuihx8nn89IPfnA5FRZa6K9/fZBOPfU0+u9/G6m8HKxOfX2Izj8/92URp5iWlMhmKEJg3BINtOEGpxMOs5YW6EyzZmFvDgYRyZeLcLkwx6uqoP+sXdv7GI5q4ai9WMzYcOvpQX0uIkQS6ckUjgC0WGQDuqoqyLy+oKogHcNh2Rmd7/G11/As++8P2cr6UyKCQRxfWNh3LUO3G2PCdS7LymRGz0DB5cK4hcNYI+XlmHMs///97+X09tv/oaOPXkBnnjmRPB4nvfUW5NETT7xPBx0k5RGTtWvXEvn9tXTHHc/SzTdfSPvtdxideSbkUXX1CFq7FnsBEdEDDzxOfr+XTj8d8mjx4gfplFNOo/fegzzq7iZ6770QUd5OyyoKC6EP+HxYF1zHjut0Wq3xac7cuV5vT8tFdHcT/fvfsEW//339Y3w+NGsLhUAgjhtnTOi7XHACejxE999PvRp8FBRAZ2prw3hv2CDt3f/+F/byaadJ26usDPLAYsG+paqIRN++HfYLl6TiBnBvvAHn7y9+YVy7tKsL1+d6hdoyLUQy6s5shm30m9+AtFu4ELpRol3ItfPNZth52rJbqtq7/E1faGqCY6ajA9lnJ5yA72/eDLLXakX69mA70NiO2bEDWTcPPtjnV/LcVjwykpmpkIhLVFV9JeEGHyI87A2EAegFVVV9QojnCAO9VVXVxQbnH0FEe6mq6t157g93nvtcInp05zE/IqL9iOjnqqr+cednjwohWonoOiHEyaqqvpXCsyTiXiLyEtHBqqp27Lz+U0S0Mcl3PlVV9Tr+RWCFXyOEuFpV1WQvaMjR1QVlRwgQVqkQRXY7frxeKINtbRBClZUQIh4PlJrBSOMYbAQCEEhFRcnJPSIZ4WIy9a2ExmIyjfS77/DZrFnJa9ooCjxJsRi8V+lGZKgq3hV3OUz8vskE791332Ez2HPP1NOIEmGzydTmNWvo/yP5ksHjwYbNtTqmTsU9ctSQohAdeuiJdMklZ8alif/kJz+hOXPm0D333GNIIhYXF9OiRYvowgsvpEmTJtH555+ve1x7ezvV19dTyc4iJ0ceeSTNmTOHnn/+ebrkkquopYXotdeeosbGFUREv8hlWWQ2Q/FhMsVk2j1q6wxHNDejXuCUKTCy9eB2o2OzxQKDuKzMuFxAYyOajJSVoe5OsnWsqjIq77PPYJTOm4dyBOmioQFpvm1t8PCfeKLxsakSiNEoIphefBHGwd1391ZOuZs0G1B9RRFx/bVIJD6Vmg2vlhakSa9ejX3y6qtx7VgMRkg4THTUUSfS2WefGWeoXXTRT+ikk+bQ44/fE0ci/h975x0fWVn9/3NnMjPp2WQLu8n23pfO0gQpIiJlLfAFBRVQv8AXRcWGCqJgAXsBBBF+SLNSBcQF6SBlC8v2nt1septMb/f3x5vjvTOZlmSSTZac1ysvlmTm3uc+93nOc87nnPM5diktLZOzz75AvvKVT8mUKTNlxYr0uqitrVlWrtwoZWXooqOPfr+cccYh8uijD8gpp1wu998v8vDDd0p7+8jXRRqE02BTJMLvXK78OTKHWnw+QBjtbrl0KWfWSC8rDYfJ/CkpycwZqA3mFHQrL89sS/r96LZ4HBqATHaAx8P1mpr49/jx+fOXKqXAmDGWY+7zAVzu20eWzNFHZwZVFEB0u3PbVXv2YEOrHs5l1wxUolHu2dHBsy1YkF7vH3/8h+QDH/hY0u8+8YkvyMc/fojcdddNSSCiXUpLy+RDH7pAvvWtT8nkyTPlzDPT66P29mZ59NGNUlqKPjryyPfLxz9+iDz00AMyfvzl8tZbItu33yky6qcNipSVYVdr9ZKWOGunWi11Dof5iUQsgHGkSiRCYNXlEvnwh9Prg1iMDMS2NgKLkyb1BgZVgkEAxOZmsgEXL07/ufJyzqM1a5jnjg58r7lzRc46K3kcVVWMs6uL+V+3DuB9yRJ8KBGucfPNBGjPPFPkkksy29otLRaF0+TJvXWWHUh8/nkCqyJUfaQDWdvb0YElJWQ02teDUt/kCySGwwC6r7/O2rvwQp4xHqdEe/161unRR+8f/t/ubjIy77iDd5IHiDiKbSVLv3RmTvPMNM2A7aLFIlImIoaIPCci5+X6fh7yR53kd++3xjAMr4jYTZizRMQvIr9N+e5NArp7loj0aaINw5govLzbdJLfvX+bYRj3CShsOrkl5f+fF5Evisg0EVnXlzEMlSQSRGA1ujF/ft9BqPJyFERPD0r1zTdRHvPnH5gAojacKSpKr8ztoqU0bjfGbzhs8ZSkSjzOZx0OjN/ubiJW2ZRuLMb7i8WSI0n5SixG9Cga5eDUrpdK4qzicHAobNiAIzF/fv9T0T0eHKt33uFwWbAgvaMRj+OI7d3LnC1aZGV8KieIwwGwEY+XSlsbRnVVVUgSCb+Ypiknnnii/OlPf+rfQG1y4YUX/hdAFBE5+OCDpbKyUlat2i6zZzNvGzc+KmVlZeL3+0e0LlqyxCpnsDfZUDBxFFAcGvH7MXxqa+k0nG6/hcMizz7Lfn3/+3Fc6+rSv6O9ezGQKyuJfNfWZn6fpsn9KytFnnkGIO4jH4Heoq/y4osYlUVFlOwcdVTmz+YLILa0kE351luUhn7jG+k72/f08AylpX3XjVr+ooDiX/9KOZDbTYT/nHOYu3DYop6An8pCKkOhkPj9fikrM+XUU9FFdkoKHZP+TsuRtFTJLpr58+lPXygLF1q6aNq0g6WiolKefnq7PP00urKi4sDQRZddhqPl9+Po2Xk6tcxdgV/97/7qTBoMsh7feYfxnXEG5/dwLbPuiyQS2HXTp3PepgOrTBNbZNo0691kqooIBqEeKCuD4zVT6Z5KSwt7Yvz4/J3QtjZ0Zk2NpTsbGqCGiMfRqdn0mQYfiouzv8NolGzoUEjkiCMAEHM1cxuoNDUx19XVPMOUKdns0N76yDRNOe009JEdMNH3qr9TfVRd3RtY0ez1iy++UI480tJHs2YdLKWllbJy5XZZvhxw5P/9v0dFRv20QROtEAoGOfPa23mXZWUWH7K9UWIoBJiimYkjTf75T/yUj30sffMS02Sfb91K+e7EiQRy0p0N0Si2xLZtULwcd1z2e2uzzNZW/JP581nj6a49dizA5IsvsmcXLrT2UVsbAN/OnSKf/zznRSZpauLz1dXZG5Mqd/bf/oZf9f3v96a/MU2r+WRlJbojnQ2YL5C4aRNZlD09NAk75RSrm/iLL4IJLFmCzxcMEsQpLu57p/j+SCiEzfaLX+BPn3UW7zqXjGJbvaRfOjMniGgYhltEvi0iF717MbsUgoEhXcFUp4jYIYfpIrLTNM1Q0s1Ns9EwjC4RyRB7yCrT3/1vukKEbMUJqePVgpthybcRDKIA/H7AsGnT+p/mrvw1ra3JXZq0I/NwzBjojyQSAFXasTrXc2kpzUEHoTS9XuY71dlRsDEQ4MAwDByQsrLk7s6pY9m5E6Ng5sy+dz2ORgEQYzEyeLSLqwKYIsn3dTo5MDdsIDMwU+Q7H3G7OVjeeYfrpQLOHR2AlUrKPnMmc5ZI4Ah0drLepkzRko2I3HnnDXLPPfdIQ0PyNjQKULsxzebRx+Pa/bladu3qkIoKAM6vfGWXzJgxQ9atWzfidZEdXFIjQsmbRSzDdLTceXAkkcDJ7uqCdy8dgJhIYLx1dtLgpKIC6oh0xl5rK4ZqNAqAOHWqRTadjuMyGORn5Ur00gc+gAGsndvzlfvuE/nCF9i/f/kLOjOTRCJc3+XKDlS//DIAQDgMAXo641u73ZsmeqI/Tr3yS23fDvi6ZQsR/auvtrLPleDe3n05EonIDTegi3bvHlxd1NMD/2M0Wi1btnTI1VeLfPrTIscdd2DoIsPg3CwuZu0qyKw/0ShnhD1j2uHoDS4Opo6KRMhMWbsW/bhgAWBSf8/G4SibN2MTLFuW+bn27mU/aEM55c5OlUgEvqymJpHzz88NIHZ18Z26OiuzOJet09HBvhwzxtKd69eTmeTxUDKYjV86XwCxs5Psm2AQcGD27MFda8GgxQ1aVUUGVC5nfKj0UTQq8txzBIocjmopLe2Q665jHdx44y6RUT9t0KWkhPXq9bIXQyHWie5Dp5O9E4slg4kez8jx0d58E8Dvfe/Db00nTz0l8tprNC6pq8PeSQc2xuMAeatWiVx6KVmN2aSpCXvI58MuWLAAKoTubotf3i4Oh8XpO2cOVDAijP+GG9jP112Hr5dJ9u2zGpNmq3rbu1fk2mvRD+edx/Ok6q5EAp+vpye/PgUOR7L9b7fLfD4ap6xbh397/vkWx+Pu3cy/YWCb6nsqKuKZtdqurGxwkhJiMSpUbroJwPR977OaCOYjo9hWL+mXzsxHpfxCqO2+VUReEpEOEYmLyGdE5II8vp9L4hl+39+Tz8zw3ULFrgs93kGTlhaUoMMBAJKJIDtficdRHOEwzmZ5uZVe7/MBKo4ZM7KzmJTnMRzmUMqVYdDTw7PbS2l0Xnp6kjsOtrUxV3v3MkeHHMI70c9qSZ2KAojBII55ugMym0QiHCaJBM+i4zMM7tvVxb1NM9lIdbk4ONevx7FYuLDvGT72ay1ZwrWUbLe6mgO2uRlj5+CDrbKgUMhaYwcdlNxB7KqrrpLbbrtN/vd/L5OlS48Tj6dGSkqc8uijd8kDD9zfvwHaxOl0SiLBO6qv52A3TZHqalOOOqpf63rE6CLDSCYnVoNC+VdGAcXCyyOPYJx96lMWd06qrFzJfjj+ePbNmDHpdVJXFwBiZyflHFqK6HQmc+jYu5/6fET7Ozooo543LzkrNdd7TiQwkn/yEzIk77knc+m0nfA6G4AYi8FvdNddOM833ZQelFQyeS2F7a9zFAwCOjz4IAb8zTfjlMTjXD8QsPSjvQuj6qLLLrtMjjvuOKmpqRGn0yl33XWX3H9/YXRRKES2wb33MhaPR+S440z5ylf6tQeHvS5SQFdLzePvXrG4mL9pgEMpGLRDqYqen3ZwcaASjxMEe+st9sysWWTZDnYZ61DLvn3YJdOnc+amE212VlHBXFRXp+c7jsUoJd6xg6yQZcuy39vn46e8nHnVLCCXK3MGVVeXlYGsOuf557lvbS2Zj5nsXQUpYzGr4VIm2bYN26W4GCe1v1zR+Yhp8g5270Y/zpmTf6PCwdZHhuGUl18Wefxx1sD8+Qpwmv1tpjjs9dFwFoeDvaIZ8gS8k88ozRRWPRkMoiM9nv2XyZ2P7NlDp+G5c8n4TSdvvklw9eCDAfUrK9ODb6YJ9+Hzz1PN8IlPZL93VxeZh5s2AQwuX47v7HQy193dvXX/9u3oiPnzGXN3N9//yU8Y1003ZQ5mmCa6t7MTwG/ixMxje+YZruV00tVZ7RQNEjscvOtduxhrXV3++kq/r3a/YQC6Pvkk1zzlFGxQtSfffBMgc/x4sjrtQSfDYC0WFaFntYKjUNmwpgmw+YMfMPfLlon8/OcAmX300UaxrWTp13jzMbPOF5F7TNO8IumqhnFJHt8tVK+onSJynGEYxXbE9t20zTHv/l2lU5LTRVVS3TRFXeek+ezcNL8bMaLdl5ubUWLz5w+89CIWs8CdKVOsyG9NDffQzDYFziorRyaY2NyMQTtpUu4sg3DY4qqxHywOB/PT3c21KiqYn7Y2wCmPBwBRjV/7/FVXW0DO7t18f+rU/JuT2MdWX891pk5N35l1zBgLBDbN5Mi/2w2QuGED4N/Chf0v2SoqIoK/YYPIq6/yuzFjOFinTbPWiXYkczoBVVJB0wceeEAuuugiueUWMr+9Xg76++67M+cY8onGB4OAtnv3cnDW1fHM9kjajBkz5KWXXpIDWReNAoqDL2vWACIefzzGTzp58014+Q47DEDd40kPXvj9Ipdfzt757W8xeu3icFjGptNpcfg8+ST65cMftkBHe8fmbO82GKRpykMPkRX3059mNhLzBRCbmuieunYtJUxf/Wp6nRMO88xOJ7q1v+fMf/6DIdrYSBn3FVdY55o2FIvHmXMtGVNRXfTb3yZXodx5Z2F00Zo1GMqtrZSWXnIJ2ZjadETkwNVFDgfnj2YhagdJt9vicY3bzF39ezzO2g7ZYvr9LYM2TQJor7/OHpkyBfAwE8A2ksXr5YyvqcmcMdjdzT6pqMAW9HjSlxwnEiJ//ztn/amnZuciFOFddXVhn6huKynhvSvVQur+1q6p5eXYS4kENAQrV1JO99nPZrZV8gUQIxGc6MZGbMFDDx3c8mWfjyxo5YSePbtv9xssfaQBpccfB0ifPh0gZsECkV/+MvmzM2bMkM2bN08/0PTRcBaPh/XS08O6DofZM/b1r2B8NMrfAwF0occz/Hy0nh7OvepqKiPSyY4dZDnPmkWTEuWJTxXTJED45JNc69JLs+v/QABgbM0axnHkkVQlNDaii6qqrLlT36S+njNi0iSCDF1dVGM8/DBB2W9/O3swY+9eqzFpprMlHIby5pFH8KO++11L9+rzxOOMbc8ertufpBO161tbAWh37bIaySjFlNdL+XJnJ3bmsmWZ15Dbzfi0KVAhyptffJHA9Zo1vP9bbsF+7advOoptFUDyUSFxSUEiDcOYJyLn5PqiaZpxEQmJyABz4OQxocvNZSm//+q7/33U9rutIjLfMIz/xscMw6gS0GX72BrlXZJLwzAm2D47TgqDQu8XCQTYYM3NGL5LlhQGQNToxtSpvcvutKNVXR2KorMT5ajg1EiRjg6rY3KuTAPlNnQ603dt1g6hkQhKubGRqHZxMaCAPWPHMKyMxe5url1fz/xNntz3DFLN5hMBpMuURaj3LS7m0NSufSrFxQDQ8TiRtWg0/XXyEe2I2tEBmFpbCwGyAhz19ayZsjKieekOQKfTKaZtQVFOv1n+9a+HRYRrZxKn0ynFxcXSmdLu0zQBRER4n7t2WY1hFi/u7QCdeeaZ4qN95HtCFymgqIaoZrPF41bpoWYGjUp+0tIicvvt7M0LL0zvZG/bRtnY3LlkpBhGeiMzHKaUePNmIt+HH977M/oOTRN91NYGYbnfT6ZQagMFHY+CM+nGf8YZGMo33ogzOVAA8fnnKc/Zto3mKd/+dnrDMBBg3C5X/wNVXV0Y4ldeydl4++3wLVZUWByLPT0EVWpr0QdaFqbgVaouEhHZvHmzPPzwwznvn0kXJRLwromQITphAlkUN93UGxgWOfB1kcPBGnC7WZOqa4qKLADI6bQCGm4373DMGIsjU4T35vVaZ093N2soEkm/xnfuJDP12We5xllnwYd1IAKI0SiBCqUeSaeLAgHsibIy5j4eT8/JapqATWvWkCWjmSvZ7t3ezl4eO9b6vdLmKGerXbTBX1kZ3wmHcSRXriRb5vLLswOIfj/2bGlpZru4o0Pk3//Ghl66lGykwQIQ43FAkVWrWI8LF/LT1/sNhj7atMnqqm2aBDK+8hUrMytVzjzzTJFRP23IxTDQd2PH8u/OTs64VN3mcrFvPB7Wnd+Pbsx0zg+1xOPoj3gcfZvOpmhrE7n1Vnyi009nz2QC3O+7j4DGMceIfO5z2QGsSIRAyiuvMHfHHms1KlH6mEAAW8DrxWfYt4/Pjx+PrjNN9stf/oLeuP767ABifT1n0cSJmc+W+noqTB55ROSCCwATU4M3Tidj0g7xs2b1HUAUYd5ffJFAdEOD1QRG/dudO0WeeIJ5eP/7SYTJZX9poFebZPb09G+9rV1LY66PfQy9/OMfYyOtWDEgPuJRbKsAkk8m4sMi8hnDMPzvDmym8MAbhRbUueQNETnFMIyrRWSviLSYpvlsH8d5p9DF5qeGYcwXkTUicryAJD+e0r3mDhH5ioisNAzjdwLj8GffvXdq4v3XROQpEXnVMAxt0/1ZAf2tlsKhzUMizc1kIDqdACCFKLnR9OhYDKc3W3ae242C0wy99nYru64/Sm0oxedj/pRzLJuYJsBgIkEEKpMiLS62Isz79jE3hx2Wfg6VY1JT4aNRHFi7cZ2PBIMcPE4ngG8uY1SBRBHGqvxiKqWlAIkbNzKuBQv6Viam5eHaMOCUUzhItMv3uHE4KJFI9sNUROScc86Ru+66S8rKyuSQQw6RHTt2yK233ioLFy6Q1atXS0cHz5+JlP2II46QlStXyk9+8hOZPHmyVFZOkIMPPum/5OHRKHM2bVrmebvkkkvkzjvvlFWrVr3ndJGCUSrpMhTtWYqj0lsiEQxBw7BArFRpbsaYnjQJB9bvZ02nOm7RKE7dqlVk1B1/fOb7Kjiwbx+RftOkaUgmviF7aYv9XW7YQFlQWxtGejZ+oXwAxGhU5Fe/EvnjH9EtN91kce6kXkuBH80O7quYJobnz36GDrr4Yn70HcTj6N9oFL1nz/qLxaxMDqdT5Oyzz5G77+6tixYsQBflErsuqqubLF1dE2TVqpPktdf4+1ln8U4VQEsn7xVdpFnRGriIRFhLml2o2dLaHEeEOXO5OGOcTutv2kQnEEi+flERZ/qbb1rk9qedlrlD8YEgpgmdQjhM8CGdLopEOLsVtG9r45xOF5j85z+Zv0MOwQHPRoESj3MthwMbIHWNK6+bAh3Fxfy7vR0wYOxYwJLf/Ab74oILMmd067P6/dy3tDQ9QGGaVvlySQmZRQOlAMomnZ04/qGQ1VW2vyX4mWyj/ugjj2eybN48QeLxk8T3bluA009njWQ71y+55BImDJDkAAAgAElEQVS54oorVsmon7ZfRMF4v58fbTpkB8+UMgKOcX60M3m2s2Yo5Lnn8AvOPDN9GW4wCMCVSJAN29HBvkm3R//+d3iEly0jAzFb889EArvm2WeZi1NPhe9WxenEL2lstLpgb9uG7qypQdeFQgBba9bAG3jKKfhTqRUMer/6ev5eW5u55Pjpp6FX8Xj47/Ll6T/X2sq8lZbm5/Olk4YGqkq0McyHP8zYTROd+cYbYAsTJlC+3Bdu/oGUN2/fTun2o4/ynq+5Bl0/ZkxByqNHsa0CSD5H1lUiEhSRjwiI5yYR+byILJD8JvoyoevL9cJDPy8ifZpo0zTDhmGcLCLft41jr4jc8O6P/bPbDMM4V0RuFJGfiEi9iPxM6IBzV8pnVxqGcfa7n/2eiOwTkV+LSFTobpNEdjlcJR5ns2lr+HnzChM5jUQAELXBSL6pyB4Pyj0YRNG3tlpgYl8bgwyFhEIo0eLi7KS2Kp2dfGfcuOzzHI1y8Gzdyme1iUomcbk4WFpaiPT3NfNB09mLijhM+qJkNRPS7+fgsGeblpeTEbV5Mz/z5+dXFubz8fmeHoybOXOYY9MEWF27lrFOm4azlgsY+MUvfiElJSXy97//Xe666y6ZP3++/O53v5ONGzfK6tWrZcIE1po2xUk1eG+99Va5/PLL5brrrpNAICBHHXWC3HLLSdLVxd8nTWKM2cTj8cgzzzwj1dXVv5X3uC6yg4X2RggaaRzt9Jwspily991k3H75y+kN254eDODSUngKvd7krCqVRIJsvZdeEvnOd3Dyct27sRFjTISIbi5dlwokPvMMmZPl5QAG2bqeKoAoktk5aWigfPmdd0T+53+Yk3T6NJFAl2gGUX/4WRsbMUZffZUA2zXXJJdAKd+RSHreSeWXUiDqhz/8hXg8JfLII+l1US5RXXTttddJMBiQqqoT5JRTTpL/+R/e67x5uSPs7zVdpGCiAoIK6GqGtL20S38UVFSg0ONhLZqm9S6bm1kXe/awvg45BEBbsyf0+gea7NgBKLdgQXou03gcANE0ORsbG9n76Zze556jrG/ePJzqTNyoIlyvvZ19PWFC5rn1eHg/2gClo4O9P348TvhvfsMauPLK9Jm6KokEdk0iYWVTpkokQrluUxN68dBDB6+jbTTK3Dc3Y1MvW5Z9vvKRXLZRLrn11lvl0ksvl2996zqJRAIyefIJcscdJ0kiQXaV2537HPegsEb9tP0omsWrGXPd3fhhVVXJ+8wwrCzvcNgCE12u/QMmrl9PRvQRR6QvTY7HqRhobYVGRYGoqVN7f/af/4RTefZs7JVszZVMkwSJJ56wMiDT2TWlpdgFXV3oj9dfZ/7e9z700ve+R4D2C18AQNTOzh0dyYkgiQRJE34/Pl46ADQUotPwP/6BbrjuuvTVbpqg0dnJ2CZPts68oqL83mEkgl33yiusmwsuAETU63d2kp3Y04PdtGxZ/9eG8h0rB2628ubGRihyHniAeb7ySmhzxo61OJILIKPYVgHESE2BHxURwzB+JSKXikjFu2mrhZKCT7bfT4ZYMIhCnTKlMBssHAZAVH6F/jbWELFKUGIxrlNdPbDrFVJiMQxlw8ivE7Pfz+FQWZmdtDYe53Bav54DYP58Dr3Kyszvp6UF5akHVmlp/hk3fj9OkNvNOuhvRFu5VUpKevMwauS8ogJnIZNRmUiwdhTQnDMnGRCNxwFS1q1j3AcfzPUKIZEIjkAkwjqzd1NTLrhQyOJi0kyIyZP7PGdDYmaNJF2kkgomiowCiiIYa3/8I/x7Z53V+++RCEZTdzelvQqS1NYm6wzTFPn+9wEbv/QlGrNkEy2deeQRnIQVK1jz+ax3bbRy550iX/saBuaf/4wBnO07CiBm6pr77LN0GRShtPiUU9JfK7UDc18d+0SC0tTbbmPtXX45AKq9K7k2UHG5ejtbmZ5PASiR/nUHrq+nAc7zz3PPCy6wuH360Wn4PamL7O9AwcTUebMDimrqKuDo85FhsXWrxVOs55BmLNqbDGnmo77vkazLWlvJmqmtTQ/AmSZ2kc+HXdTayhzOnNlbb7z6Kvu5rk7k5JM5S7Ot3/Z27NWxY3MHpk0TsK2tjbN84kTAht//Hn1w5ZXZdZECiMr5nE7ntbezDsJhSrozNbkqhGizw1gMW33q1P2/jrq6ACxefZX5OfFEgGDN2Ozj+IYMfhokfXRAOcSBAOenCPslkz+RSLD+YzErW3EwOUDt0tLCGV1bi22UjibhvvtEXn4ZW6eykmdaurS3/njhBZpsTJokctFFVH5lsxm2bePesRh2weLFmT+rgOMLL2A/HXYYwOGttzJ/3/wm+kOlp4e9pd3j43H8olAIHZkucLBrF0Hh3bsZ/2c+k94e0Sanfj++lb36Ss+tXEDi1q0ElTs7AW9POy3ZL9++Hd5op5Py7kxVK/0R5e9U2i99511dVOr8/vc84yc+QTn3+PG86+Hoo40kGQydOUIavg+OGIbhFBGHaZpR2+8OEpELReSFAhvKBZemJiKaRUUor4FGM1VCIZSZYVBiMQDOARGxDi9VqgqUVVcP3UGVThIJK2stHwAxGsWY9Xiyl7mYJsDuunUcjMuXM5fKO5iutLutjXmprsawVDDP6cwNuPb0EJHyePjuQLImtLubGt72NVVdjYG9fTuHr3K12aWri+zDYBCDf9as5EM8EMCBjkYhqtexOxxEDgcKgLvdGOetrVbGaE0Nz6OdVnt6GF9JCVHKvjatGQwZ6brILqkZivZyQ/vftfz5vSDbtlFec/DBRLtTJZGAp7CtTeSjH7XmbOLE3gDiL34BgHjppbkBRBGMzYceYr2fey772N6xOZskEmTt3XILmZF33509sKHNMBR0SX2/kQhG/gMPAF7cdFNmEMDegbmysu96bds2SLg3bMAI/vrXk7sfZitfziZ2QEnBpljM+l22a7S2ivzhD5C9ezw4Ch/5iJUhNRwy3kaKLtL50vlXvkT7O7BnKCr1gtdL1tmmTfzt4INxCNOds1pCrYClvQzaXlKdz7sfLhIIkP1bUUEWYjppaOCcnDKFs1P5sFNtpFWryEKcNAk6hVR9lSqaGTVmTH6VLdpgRTOsnnmGJirTp9MIKdvZbQcQy8p67y3TxJHesIH9f8IJg9d1OxRCH2l367lz+0fJUEjx+ymZfO455uq440ROOonxFaq7eSFkpOij4SilpZwzXi/7ORRiz6QCaw4H+zEeZ6+Hw1aZ82Bl5Iownsce495nnJEesP7XvwAQTz8dHbR7N35Iqv544w34mQ86iCDs4sXZx15fDzgZjYp88pMkemQTvx9dYZoAmDt2kC03bhxVDqkgW0UF86jJCo2NVmPSVL1lmtgEP/sZ7+ynP00uqbaLVghGIlwrVWcp9UemjMRAgMzLNWsY+6WXok9VYjEyLXfsYC6PPdbi0SyUfaIBCr+ftWkYNMv5zW9YpytWoN8nT+bewyXpaKTIUOrMYXJM7DcZLyL/MQzjXhHZJSJThLrxUiFFdVhKPI5B0tqKApk3r3CKPhhESTscKJZCgXzqCGrX4u5uDFXtsLc/DJaGBg6xKVNyA6WJBBEzh4PITzZDedMmFHRdHd0JdQ5LSpjfoqJkpdjZyVgqKy0+MI1c9fRYWRbpxOvluyUlfLcQSl6daeVI1FJnEQ4djajt2GFxRsVigIuNjVaJTirQqkBpURHfKy0lwuR0cqAnEhjXA3XEtAmF280Yd+7kMHS7MeKVy7K2dv9nAdhkROqiXKLzm9rp2c5ddqB3eu7uxjgaOxaC73TP+e9/s05PPZV9o2Uwqfr3zjsxts47DyMrl+zcCYBYWkrJsBqcmTgP7eL3Ewl/6iky+G64IbuezgUg7tlDNuPGjRjtX/xiZr0WCiV3QuzLPg2Hmac//hGdeuONZDrax6PNNrRLfX8CZXZ+KW0ypIZ76nN5vSL33ivyt7/x/ytW8D4083GYAVAjRhflAnTtEo1yLq9dy2cWLwZALC5m7YZCFuho11v2M1WzUO38iuGw9Xd7pqL+ezhJPM7zG0bmzpqtrWTnTZjAczQ1oYtSg5/r1wNCKU/WpEnZ7VC/H3umrCw/jmwtNVfu5PvvByg48ki4TLPdSxtHiKQHEMNh+BtbWnBUDzlkcN6VaZKtpNUus2b1ziwfaolEOG+efpo1f/jhZCFVV2fO6N3PMmL00XAUp5N3q2dee7u1BzNxkSqYGApZPMSF3h+mCZjl9xPcTBdUWL0a++Xww2nmsX49SQGpvOfr1sEbOG4c15o3L7uOaWzERohE0CW5aIyCQfaMYQB2PvQQdtGiRXSDz3Svmhr8s9WrOetnzOj92WAQ0PCf/4RG4dprM3Ph+/1W08wZM9IHIpS7XM8ptS1Mkyzuf/yD93riifzY36uWL3u9AKXabEtt90ICiS4X7/yuu8g+bGuji/ZVV5FQ4nTy9+EQWB2BMmQ6c5iZOEMuPSLykoDOThCRiIi8LiLfNU3z1f05sEzi8wFShUJkUaUjoe+v+P2AOUVFAIiDEYFSp62ykgiN18t9taviUCmM5mbmcuLE/AzatjaM2okTs49x82ai87W1RHDsc1hailL3+y0Ho7sb57q8nDm3H+pVVSh15ZNMva89q3PKlMICYkoIbE/J17EddBDPsXcvYyorI6IfjTKO6dOTxxqP84zK75YKdk6bxtiVf3P+/IEZsYkEc+bzMYemaWXWKoH5MOTmHHG6qK+ixk0qoGhvzHKgAYrxOFl8gQBNUNKtu1WrMDIPP5zMoH37+FxqtPqBBwAjP/xhsupyzdGOHWQsVlRA9m2/nj1TNF1GaEMDQOU772DgfvazVlZpuvvmAhCffppuhU4nmZTZmiAEApxvbnd6YvJs8tZbNCTZs4d5+uIXk7Op7ZnI+ZYv5xIFExXIUnDJ5eK/f/4z7y4QwEi+6CKCJzpXwyiQoTLidJG+Ay2ltwO6IjiZq1bhGM+ZAxCl60KBQXvHecOwMh3t70ffmTpAIlZQxA4qhkLW5+2g4v5+3xs3ci4eemh6p727G/1TVYVDvmMHIF4qP/OWLTR/Gj8eO2fcuOxnajiMLaN0NrkkFsNGMwz01513An6efDKl/9n2rB1ATBeAaGsDjIxGAQ/tWTiFFL+feerpAUyYM2fgVT0DkXicjK4nnsAWW7JE5EMfsoLiw5j7c8Tpo+Eo2hTE57MaFlVVpU8UUTBR9VkwyO88nsKtkddeAxA7+eTkCgGV3bsBmGbMoKx140bWaGqzqy1bOPOrqylJnjIl/fVUWlspQQ6FKJXN1TwrHAZADIXItn7gAQDEww+nhFk5mzXgaRfNfI9EsGVSQb/t2wEN9+wBzPzUpzKfD11d+Fxud+4EHz139Fzzesn43LqVoMmKFb2B2K1bCay43QSz7X9X21zt9YHa6IkEpdQ/+hG+2WGHAQIvXcoclpTs3yrFA0CGTGeOciIOrQxoshsbMepcLoCWQpZh+nwAiKqghiqCHouhHHt6UEyVlRxsg2lod3YSXU8X0Uon3d18p6Ym+5xv3QqHxKRJOMnpDlvTlP828nA6UaAlJRxk6Z45HufzhsEhqYpbn6GsjENhsOYrGOQAcruTgUQRnveNN1iPM2YQ/bM3ZBHBcd69m/c8aVL2LmkNDazv6mq41/r6TKZplW0oiXokwr7p7OT/6+oYRwHW90iHuYaN4rcDinYOsgMBUHzwQQzOz31O5Jhjev99+3aRhx9m/591Fg58IsE6teuPxx6DK+f97xf5yU9yG/LbthEtHzMGpztT6ZxyxTmd1jyvWUM03+cTueeeZL5Ce9Mc++8yAYjhMOP9y18wEH/8Y/ZfOlF+wmgUh6cvQH9PD12eH3mEufvmNwGK7BKLoctjsfyzofojWkb5j3+QfdjdjfNx8cU4OMpXVMAzdgTvEBEZBF2kHF8bNwIsh8PYNcuXZz+DtBul/ogkBz/ydaC1nMxeCq3icPQGFodCx+3ZQwB61qz0vH/BIHqjuJjP1NfjOM+cmezQ7drFfq6pQaeNGZN5T4vw7K2tzN348bnP9Xgc2yaRYH5uu42MwQsuIHvU6cxshymAaBjJXFsivNvNm5mDsrJkILmQos0T9u5l/LNnp2+MMFRimuyBxx7jPehZo7qowNmHo7poBEgkwrkUj+N/VFRk35fRKDpUzy6PZ2A+x44dnNWLFhFYS5WODmwFl4uAaXMza3fRouS9X18v8q1vobM+9jHAwyVLMo+tvZ2S50BA5LLLcgOI0Sh8r11dAF133kk25PnnU2XmcOB/KU1DTY1VZaad7bWBVCBgVd6ZJvvxl7/kd9ddR2AnkzQ3owPLyki66Ms59PLLIitX8t4+8AH0nn1+olH81l270OPHHpu9fFjPxf7Y5qYJfcIPfkBgb8ECkW98g3NEy+hLSpiTAoCII10XjQh5r2cijgiJxTDu2tpQQHPnFjZLsKcHA9PjQUENZQlOURFGvWbdKaCoZLSFNq59PgzU8vL8AMRQyAKgcgGIr7/ONU84IbOS18h6UxNzXlODkZ7p0FODuauLg2rMGA7ClhauU1c3uA5ISQnXVyBVswj27eMZNDpZW9sbQGxt5TMaPcwFCihwsnUrB/XChfkdlgo+eL2WUeTxMEafj/lbtIjDsqUFw+Ogg/Y/J9GoIKkZivbSCXuGov53pMjrrwMgnnJKegCxpYVsngkTKJHp6GCNTpqUvO6ffRYj86ijiNzm2hNbtwIg1tTgeGfbd1r2kkjw78cfF7nkEsppVq60OvWppJZBK4Co/HB22bWL8uUtW+is93//l/lsSSTQ+/E4+zLfjB3TZH5uvhkdeeGFZE2mGsGFKF/ORxIJxvP73xMUWbSITAPtaD+Msw8PKNm5E8eoowP74qST8muepRkcRUXJgKKWhuULKOrfdZ3pteygYiSS/PlUfsVCinIVjx9PwC9VolHmrKiIv3d04PTW1iY7cw0NlOSPGUMJc3FxdjsqkcBeMQzeQ651n0jgMGt2jxLsX3UVQcpIhN8rp7FdYjHGnA5ADIXIsmlthVdt2bLBsXO7utC/ygmdrhHNUIk2gnjkEWzN2lqAk7lzrWDQQMGgURmZ4nazHzUrMRzGTs4EHtkpIyIRvqOdnPu6frq6sIsmTEAvp0ooJPLb33Kvq65ibK2t6G+7D9bYiF3kckENUl7OOZsNQPzVr/IHEONxmqh0dhIIuOkmrvHVrxIUDIXQh21t6NV4nM+OG8f+0s72M2Ywr04nNk40SnXKM8/Ae/id72TOzjZNghFdXXymL/5eUxN24N69VuAgNYDW0UH5ss8HtceiRbmvr5yLagPmO5633oJa5pVXCGD8+tdkQmsjGK0K8fv5icUs/3NUhq+MZiIOrfR5srV8ORwG4CtkhyQRi5uwuLhvEY7BEi17Ue7A6urCZYxox2m32yqhzSaxGAeVw4Fjn+nz27YBGIwfT6ZQLqMxFIKgNxzGSc8nGh4O4wT7fBY58lBy6yhBcCQC+NHTw7uZMwewrr2dw3LCBKvU2evl2SZP7tu6amkBeKio4FDLNp9+v5Vd5PFwv44O3pvTyWFl5xeJRjlcw2EcobFj+z2HI/1oGxGKf6R2et63j/LdKVOItKauYZ+PLDXDoFTHMFj3Y8YkG5SvvUYH0gULyMjJBcRv2oTTOH480fJ8mhdoOecttwB4HXooGZS5wAF7aUsqgPjEE3SQdrsxHI87LvO1YjGLf7UvHZhbWjDsX3gB5+Fb3+rd5X0wypfTiWkCWt1+O+fB7Nlknx5+OPo6GrVApUEAEUd10buydy97pqWFfbR8OeeSAnimaa3Xvr6DTJ2ei4r6n5VhBxUVzBdJBjPVge/vuo1EmBOHg/lI1UWJBGtWS721M3NlZbK92dICL6HHQ2DE4UC/ZcoYMU2c/2gUfZQrs0QBxGiUQN/99xMIufLKZF1kBz30WZQmxuHozfXW0gKAGIsBHk6blv/c5SuxGNlVTU3Y0nPnDl6Tlnxk507OgS1bsHHOPBO9bu/cOkgNM0Z10QgTzdCPRtnbuZqYmSY6RYMgLhffy0f/xWKUA/t82D2piRmJBHbIxo3s+xkzoDEoLU0GuNrbqTYIhQh6FhXhS2UC49raACZ9PoKMc+dmH2ciIfLSS/jGNTXwUDud2Bj2BiydnfgbEyYQuGhtxdbQ8ubUxqSvvSbywx/ync99jjnIdA7FYmQ0BwIEJPLNZo5GyfZ78UWrYc3ixVZAXnXmli3oxeJi7LNUyopckm9G4tatPPMTTwBifvnL2KZ63rndjMF+jWDQ4ihOx2mbp4x0XTQiZBREHFrp02QrIbPbjeJKzfQaqHR2co+yMqKzw8kpDwYZXzjM81dXD4zHLhYDQDTN/PgeTRODUDODMn1+2zYUcU0NAGKu64bDfEf5+RIJ3ms+qdu7dnGoadfjoZREgsNg40bGevDBgJgizNWWLYCMkyZZUaTa2swEwbmkrc0qO0rXZS0Y5H7aQW7MGOsda0fmdN0kdbxtbRhOHg/z2Q+DeqQfUCNO8Y8UQDEYBEAMBES+973ezmQ0CkjX0UGmYHU1+9rlYv+oMbV2LZw9U6eSkZOLvmL9ekpoJ04U+fjH8wMQdTxf+Qr8QytWiPzud7m/q8CH05msu0IhypAeegin9Yc/zA5GalaDZmjnYywmElz/17/GkP3f/yUTIfW7Q1W+vH49AO/atei8Sy/lLLBH612uZCBLM88KtG7f87qopQUHbe9e3vORRwIopzo3mlGo70ABwL5KJkBRf/ob3Estg9axivQug85n7FrK2t1NJnPqHlC+4J4ei6h/+3b+NnOmtac6Owl6OBx0SU0k2NfZbFLNZhw7Nrc+MU0AxFAI7sqnngLQvOyy9GP2eq3sFc1AVIdT514z8TZvZpxHHllYCiCVtjZsumgU0DWfAPVgSWMjXGNr1/LMp59OeaJmwvYXQO+DvOd10UgVvx/wS4S1k8vfMk2ri7Nm2Lvd2XXfU0+xJ1es6M1FaprYRS+8ALh27LGcrYEA4L+CcV6vyDXXoF+uvBJdNHVq5v4Azc0id9zB9z71KcDIXM/16qsAeJEIdDO1tQRYU20ZbZwUibD3g0HoYFwu7B97JrraLMXF2FsnnZR5H2rCi/LM50u7oGXi7e3c/4MftN6jBn1jMWio6ust7v7+VmYoBVE6ILGhgQqRP/+ZMVx+OcCp08l8aUfwTEki0ajFbVta2q/y5pGui0aEjIKIQyt5TXYsBmDT3g4YMndu4UsiNFurvLzwTTkKKX4/BqxGyeycE/lKIoHC1GzOfL7f3o5hPWFC5sN0yxYOjJoaFHEuQzkaxdhMJMhUcbutEtxcGTJNTcyDZtNUVg4dSXd3N4Z4IAAgMm6cRZCuY04kSFOvr+fZlizJH8TIJB0dGBzFxVzP7bYyIsNh9oSWJjY04Ehqlmk+h67Px3dEeM99BBlG+gE1ohX/cAUUTZPmJ6tXU8prj1rr3x9+GGNvxQoc96YmjKq6uuQo8cUXs8fuvjs3GL9mDc1LamtFPvrR/PdedzeNPv79b5EvfYlIey5+LDVENaqtjVl27KDUZ8cOsgMuuyy7TutPB+adO+HTWbsWUOCb32TeUiUYRH8bRmby+IHKzp04Jy+9xHv69Kdp5mIYyfOTqbuvPSNogBnl71ld1NVFBuj27ZwThx1m8eZlk1QwcSDvQBurFBpQTB2rHVhUUSDUDiza77dlC87w4sXpeQu1HG/yZHRMQwM6Yfp0y+7RzuLRqMg55/DfqqrsmTFer1WJkCv4rRmLPT3osNWryZi86KLMdm8sZtETOBy9AcRgkOBuWxv2wLJlhc9A1oBwezv6a+7cwQtU5JKODgJIr72GPXTqqYAUTqfFxzkYZfJp5D2riw4E0SYc4bDla+RaM8o/q2ee253+vF27FqqPY44hoJEqzz4L1+qpp4p85CP4Eg0N7Cu1fwIByn/37BG5+mruWV1NpUY62bePLEKvl0DjsmW55+CNN/C/6+vxaZYto5okE/1RLMZ4tCmXaaLzyssZt89HYPW55+BR/OpXmS/tOp8q2p/AMNBd+STPBIMAtG+9hT969tnpE01aW0Wef57PH3YY8zbQ8ykVSOzooGz8D3/g95dcIvKFLzAnwSC/83jyy15VfmmtNOtjefNI10UjQkY5EYeZ9PSQgRWJEAnWbK9CSlsb0ZmKCgDE4cw5UFaGEvX5ANEaG1EkNTX5O4b79qG8Jk/OD0D0+XgPVVXpFbgSdK9fzyFx1FH5Ze5s384hPWuWBQBWVGC06/3SvYt9+/jM2LEY7vr5dGWEhZRYDEdZy92XLGEM0SjvQjkSTZNDtKyM8SlP2kBBxJoaooYbNpCdMHmyxd1WU8P9ursx5CMRooR1dfmDSOXlvIemJn60I+Vw3g+jgtjBQntjFnWw7RyKQ/k+n3gCQ+7883sDiCIYcNu34+DNnMkeCoXYN2qs795Ndl15OeWxuQDEN9/EQJ06Fd6bfPfd7t2Qke/YQQnRJz9pZVdlc97tGS3KYfnoo2QdlpbS+XD58uz31pLEfDswRyI4A3fdxT2++12ybFK/p1lK2t15MJp0NTVhIP/zn4zl0ktpRON2J2capgI6IlbGhvJLKSikvxvVPfmJ34+zt3Ej83b44WTH52sTKLir869rvj/vwOGw7mvnctVyPwW5+vt+dVxquygQbS+FDoeTP+9yAW7t2AEgmA5AbGuz+LzGjrV4l8ePt+yeQIDsoHCY4EQsltn5VQkE2INlZflVz+g4/vY37Iizz4YrK9tc6Zx0dBBQray0Pt/cjE6Mx3GUp07NPYa+ilYJmSZ6fLC5qTOJzwd48MIL/P9JJ4mcdprVVE75anNliI3KqIigp6qrLQ7htjbskGxntGaUqc4Lh/mvUneIsF+ee469ktrwTETk7bdF/vpXuqWvWMG9GxoI7qv9Ew6L3HADdsvVVzMej4eM5XSyZ3U+MIwAACAASURBVA+UCD4fumvp0tzPv2YNZ8qqVejO007DFssWgCgq4vk3bWKshx7K83d1QXP1k5+QrHD55SLnncd8qT/r9SZnR3d0MFceT/4Vc+vXw2UdCMDVeNJJ6b+3aRPP5fHQEfuggwqjE5Qbu6eHoOqttzKWc88FMJ00yQoYO53MVb4BHYfDAh9DIauqZH/Tro2KJaMg4jCSvXtRkB4P0Y/BiGq2tBCNqKraf4ZPX0VL3crLUbpdXRww5eVkomVTtMrfl6v0RiUSwfguLk7PaaMlMlu3AmQdckju9xSPcyBFoxyididfOXyU79A+Rk2V93ox7NVw10YrXi9jHAyF2tbGM4bDgHczZlj3cbkwNLq6iJhpCcS0aQCNGzaQAbFgwcCbl5SXA6SvWsW6Peoo5kI5iDo7mc/+3svl4vna23meUKjf5c2jsp8ktTGLPUvR3phlsAHFDRswhI86Kn3HwbVrcW4PPZSfUIg1V15u6ZCmJkqYTZMS2WxdT0Uou3nlFQzO00/Pn/LhP/+xeGkefhjjU4Q5UhAkXXmw/l5BxmCQzMDHHsM5+OEPc3e/1Q7MJSX5AZ5vv43zsGsXRv2Xv5ye+2iwy5e7ukT++EfmSwSH4JOfRB8r4bxmYuQCLvVzLpeVwRCLDSpX2QEh4TBnwdtvs5aWLAEo6k/Ayg7oKpg40HegesblSgYU9R0roOh09h/c1nHbx6iBOwUV29qYp/Jy7JTu7uSMRZ8PG6qyEh0TiaB7SkutDMNQSORPf8LOOPdc5tswOB8z6VHltPZ48uMEbG9nX//pTziZn/0szQZySSTCeBRYTSQY08aN2B6VleijQlMABQJc3+u1OKH7WhlTCAmHacywciX/PvpogNeaGt5/KGTpmFGHe1T6KsXFrJ2enmQe9mxBGgWI4nHWZCjEPo3FyJKtrKS8NlV37NlDUG7qVLL543F8j+Jiq+Q5FiObb9Mmzv+yMsa1dGn6gOfOndhifj98oIccktv2W7+ewNTzz/PcF19MQCPX97xeq2qwqsqybf78Z4LAEyZQnbJ4sfWd8nKrQ7bbbSUztLWhs/KhF/N6Cd5u2oQOv+ii9ElHkQh24p49+DrHHMO70iqegeqHaBS76Kc/Zfwf+hAVInPnWo2wRHif/a2e07Jnv59308/y5lEZBBktZx5aSTvZ0SiGiXZ2mj17cMoOmppQdtXVydxbI00SCZRvdzf/X1GRHkzr6iJzsboawzef6+7bx79TO6SKYLS+8w5Ab2UlRL7ZHGa95o4dGJ8zZmQ2aoNBPlNWhrI1TYx8LalOzUbSTmAOB89XqHcZiXCAt7Yylnnz0vMIKcC5dSsHw5IlltMeiQCoxOPMUX8cPC2r0APIMJj3oiLeTXs7c1tbm92p6Yv4/WQxiORV3jxCd89/5YBX/HZAUY+5wQIUOzroFFhRAXdOqmO5axeZNjNmEGnX/W0YrGGHgzV98cX89847ezcJSZUXXyTSPWsWjQ7yBc3++ldKjevq+Pfs2cl/t/NnqSGbDkDcupWS7V27cP4/97ns51Y8zn6OxxlrLiPQ7ydD8q9/JQj0jW+k73ItMrjly4EAIIdmZJ1+ushnPoOOUPDGXhbbH9HrKOjdx9LDA14XRaMi69YBjEUi7I0jjigsx502OrET0BfKDtM9la55ykAAxXQSixEkCIXI0HQ4ksugg0GCf6WlzKPLRQBbg5wKbD/4IPbTxz+OPvP70RmZzvNYjKCtw8HeyPVMnZ2ULv/lL4zliiu4fy5RgMLlYlzd3fz/5s1cc8YM7JFCgmeJBE54fT3XnTUrO9frYEksBn3Ck0+i7w4+mOzziRMZo4KrAy3RH4Ac8LrovSYKdsXj7NN8qUdiMXTN3/8OuPTJT/beM52dgIMOh8jXv87Zrft4yRJ8kEQCgOqVV8jmmz0b32Pu3PSUCtu2wT8YCpGVd/jhucGrrVvZU//6l8VZmKuaQoR52buX70ydir7s7ob+4ZVXCHBddll6Gi3lgdUApPLH5vLNTRO77+mnmZuTT8YuSvdO2tqwE4NBAtf26hjlbO7v+ZNI8G5vugm9eMwxgIeHHsrfg0Erw7+kpDBnnL282e1mPWaZq5Gui0aEvOczEQ3D+LSI3CUip5qmuXKo7+/1EkmIRjFMcmWe9FcaG3F0a2oG7x5DJQqcaUZeT49VDqzla34/oGlZWf7GXmsrSm/ixN4GaCKBE9PQwL1nzcpdZqik5X4/EbVsUfGSEqvDoGFwuPj9jCVd1o3TybNqRmK+xLvZpLGRUstEAkM8E1dmLGZlICp3UjBolS+43WQGbthAZsDChflH6zUtXonTy8stvsiSEqLvGzZgPC9aVNgsAG0wtL/Km/e3LjrQJFOGomYHFQpQjMWINEejcL+krsm2NiLG48ZZnHmqa7Tru9eLsdncTAZiNgDRNOEwXLuWz73vffll4ZomBt+NN2Lw3Xdfeh2m86LZPfbMxKIiiyT8xz9Gp91+O4COzm8mndHTw7/tXVUzyQsvcP22NjL+/vd/M1NLDFb5cjQKSfk996BnTzgBsHTq1N6AUz7Zh9nE4UB/KhCgpYhDxGPWS4aLLkokOEPeeAMna/p0Mn3727Arm+h7VEBXM/tcroEDUnZQUgFFe4aiXVcN9F7r11ucV3a7wDT5/Z49PGddHXPa0oLTPmWKlT30yCM46mefTYC2vR39lQlATCTYqyJ8Ltde6O6GA+3xx9lPV16ZOyArwviUr031gc8n8vLLzO3y5ckdpQshXi9B/kAAcHTWrKHPFk4kyGJ/7DHexdy5nBeaqaVr9UDMPhwuuui9Km43e9PnwyfRrMRctndREUGC1laRE0+0/ARdn+EwQcJwmPLkqirsn44OQLeyMnTWLbcAyH3mM2QUbt6M3ZQOQNy0CZ1imjQ3szdkySS7dhHIWLkSXfSd7+TXuLKzE3+wrMxqpqRdo71ekauugi6mvd1KELLrDQ14vvUW+3fJktw6sKWFSoj6esZ49tn49KmiFXOrVzO+007rfWaqjrB3Wc5HTBM/7Ac/wBdbsoSO2yeeyDMFg/yoz1bIgK6WN4dCFkg5kPLmUd0ycHnPg4j7UzSyOZjly5ox1tWFgtof0dPBEqcTxVhZiZJWQK2khIPI7cagzAcg6OpCKY0d2/vQicdx2FtbmcPaWg6wXNGi3btxnPPtrlVeznNs3syzTZ6c/XsuFwpVQdT+lu4Eg9yzqwuHYe7czGWRSvqbSDC+mhorK7Kzk+9rev78+RwymzYBJGY7TLTMsbuba5eW8uzKu9bUxIE9ZYoFGkSjhS8lKirCuero4HmCQYDc0dT5kS2pgKKCinZA0Q4q9kXuu49s4yuv7J3x7PcTrXW5IAvXEiG/n73j8bDG/u//KMH51a8AyDNJIoGxu349IPry5eiNXDouHGZ8Dz4Iwfivf53duHY4mCMti1Mgxe+ntPjJJ7n3jTdaxqlhWHNrH4+WtDidjDWbwdfeDofQM8+QcfDjHyeXAdklFkNnaWbjQKkTVBIJovx/+AN659BDKTFX8nbNKNPGKIUE+RwOdJoCTFoOVgggaySJaRLQ+s9/OBMmTcIRGooAqB3QtZepF+odpAKKyuWqPwMBFHftwtGcO7d38NE0yZpxuVjLJSXoomiUeR0zBl30xBNk85x6Kmfwnj1WM7d0Yprs23g8mds1k3i96KGXX2Zvfe5z+dEwKIDodjP2RAI9uG0b41u8uLD2bTyOTlaOssWL0zvsgyla/aKg7pQpIhdcgG2lAR7NhB6lQhiVwRKllCoutiiliovRCZnspS1bAMgOO4xsQA2OBQJ85+67semvuMIKaOzahR6qrWVN3303tsC551Jt8fbbjGPGjN73W7cOnmKXi3suXJjbp967Fw6/l17iO9dem18wo73dakyqnKsPPCDyu9+hd7/0JewjhwOd0daGTzFunKXTQyF8xJISbKhsdmcsRmD1+efRfx/9KHZiOrsvHAZ0bWhgbMuXZ/Zf+gokvv46Nt9//sM7+N3vKBdXGpxAAL3sdrM+BqvJYXFxcnlzScnQNRodlWQZBRH3g0SjFmgzbhy8KoPhIGjJXHc3EdRs3fRGsrhcPF8kggG9fj3zuXhxfgBiIGBxk6UCcbEYZLsaSRo/HkM11/vau5d5r63N3/BMJLhPIMChmg/wqA6nktbmy4kmYjVE2bULZT9vXubSYE29b2mxUvcVwNNGJwrkKpBYUoKxu3GjBSSmczD8fovLTLko9dDz+zloAwEO56lTed516/hZtKgwWZh2MQwO9ZISnnnvXt57ofmVRmX/iB0wFEnmUNRSw3w7Pb/4IlmBZ5yBEWqXaJSocTAIcFdRwe/a21lbVVXorC99CUfx5pvhtsokiQQk+lu2EJE/5BD2e64xtreLfOITGJbf/jZk1/noRZ0PBU82beK7DQ2AnhdfnHxvvaa9dFyj0i5XdrDTNMmy+eUvMYIvu0zkwgszAxKBAMCkYaAXCgHymyZzdPvtgAdz51KufdhhFkAajVrZloPZrEABJDtZvd5zf3YfHwqpr6fLbFsbeviMM8j0GGpRMNEO6CrfYaHegR0wFLGCGgpUi+Tf6bmjA0DtoIN6z5dpMq/BIM6fcpc1NlpOuWEAIO7bR8n+okXYBso92N5uPb+dX7Gzk/WZT7O7jg6c9s2b4Y09//z8bN9gkPlXuyIQwKHt7KQEetEibAWfrzDZyO3tzGU4jC02ffrQg/jbt3N+bN+O/XHJJYCuqosiEYt24r2gF0Zl/4vLhU7Wvdbaiv5I9Tva2wnE1dZSKSFicQBHIvAFrlpFlcHChZypW7eyx5Re5S9/oYLjjDOgVHj7bda4Auh2WbWKzOaKCvy+GTNy+12NjSLf+x5+xAc/SDl1PkkJra34BZWVVlLDjTfCO3jCCdCu9PRYdp7b3RtI1GQMpxPdFQ5zHbe7N/C5ezd6oLWVZKMPfShzwLSlBUA0FKI6JBcljogVWM8GJG7cCN/100/ja//4xwQzNMlD9bPDwdiKiiwaoUzVKQOVoiLegd/PeRCL5SxvHpVBkFEQcYiluxsDKhZDWebD1dcfUYBIm4rkE10Z6eJyMa81NSji7m4LfMqkdJWE3O3une4djZIO7vXyniorUaC5or0NDRwWEyfmD9zGYryvaNTqNub355ddU1bGAeD3cyDkE5Hp6WEd+nyMcc6czA5ANMqB5/czl+k6IGuJuQKJVVWMQ3kVN23iZ8ECyxgPBvlsNMq9J0xIJkpvaOCwdrnYK0rU7nJxmK5bB/iycGH6ku+BSmkpRkJzMz/BYO4M1FEZeWIHC/sCKO7eTcfghQvJMrSLaZKt19gocs456GDTxMgzDNZRPI7B+dprIt//Ptw2mSQWw8HfsQPjcPFi1meurJ+tWymp2bePzsYf/Wh+c6JgmcfDuB98UORnP2MP/v73Fu9NqujeSCTQvdGopQcyyZ49lMa89RbXveaazB1V7eXLHk/2TIi+yNtvU0b+zjtkWF9/PQ6BnRNSQZ2hzArUkiBtmBEKWXxnBxpo0NzMXmhowBk85RTOpf2tb+2ArnZC1tL+Qr+DTICiOniZAMVQiDVcWopTmirK1VVXZ2UUNjRwXSXxX7mSM/V974PuQBuv6Hlv7wit3aDtWdWGYTWmSSdNTeiQpib40U49Nb93qw6qx4N9sG8foIEIpe3aTEAb1Pn9/Q/4RSKAdsoJvXDh0AcP9+0j83DdOuyo88+3miGIWLrINPcf3cGovLdFudu7u63zWGlKIhECgi4XAKD9rDQMdPzLL2PvHH201eTJ72e/uVyUJD/wAJyGl1yCrxIKodtS/ZTXXydLb8IEy6dO12DELnv2UEK9ezfNXD73ufx0eUsLP1VV2Anr1ol897v4MV/6EnzXhsGZvWcPZ9rkyVYzSg30hEJ8Zvp05qy42Oro7HbzEw4D2v3nP9hdF11EYDOdaJfmtWvRgx/8YN+yprW5mL0qRwS/7+ab4aWuqBD51rd4Hwoaq02itqLHY31XKXEGE0g0DJ5Xy5tjsdzVLqNSWBk9fixxGobxXRG5VETGichbInK5aZpr9QOGYZSJyLdE5DwRmSIi7SLyiIhcY5pmR64b1NfzU1KCMixU+VWqKAm0z0eZylCXYOwv2bcPRTJzJgovEEBpt7Sg3Kqrkzl9TBNjUYQDKLUEb/VqDrYpU/j+2LG5I1XaYUszFvORWIzDLBrlXmVljD0YRLnnAwpWVFh8gvbmB6miJToNDRxUixdnB5h7elhLiQRjywbWKZDY1WUBicXFjG3OHDKoNm8mSuj1ckgWFXF/eyTT62U+wmHmcfLk3oeC201ntnXrODwXLhycdV5UhEHS2claCoWSwc5BkkHXRaOSXtIBiqZpAUj6d7+fkuDKSrLmUtfnSy+x3k880Yqsd3SgVw46CF1z3XVEz7/2NUpCMkksRkS+vl7k2GMxJJV/NJu88AIZiC4X3RGPPDK/OVAAsagIHfTd70I4ftxxRNzz6bqqHZjLyrI3YrjvPpE77mA/X3MNTQIyGZvRqEXwXqjy5e3bKcl57TX0+9VXE+lX/ZnaOKWoaP+AWlr+qiBOKGSBWIMMIgy6LursxFHasYO1cvzx2EfDDSRV8E5BHAUTB6uBhR1QVOoFdfRErHdvGDiPpklwLVUXtbdbVCx61nd0sEcnTuQse/FFOPeOOIJ93trKGps0ybI/XC5rL5umtRe1zNHeBE3Xq4JcO3cCIIZCONuHHJLfHGggoriYa739Nnu2upqx2nWAVmIob1tfz+imJtZgIoFzP2XK0O719nbAk9dfZ+xnnw2vm4Immn2oDrndYX+PyKhdNIxEK5C0qVl7O/vx2Wex/z/+8d5ZdevX06Rs6VKqM0Ssap9Jk9i/K1fSWG75chqpNDRw7RkzelcdvfwyGYBTp/JTVZW+1Nku27fDXa38hWefnd/zqm+njTrvvZeA6qRJBCDtAJ/TiZ/Q2GjxyXo86LP6emzAmTOTz7ixY5mLtjbOxH/8g3k9+mgCLpmSPEIh5qGxkQz05cv7R2ugQKLSxPzylwTJHQ7ew5VXWrafZh9Go9lpaoYCSBRJLm/2ellHfSxvHtUt/ZRRENGSG0UkISI/FZFiEblaRB42DGOOaZoxwzA8IvKMiCwSkd+LyEYRmSsiV4jI0YZhHGWaZijbDerrLWLmwULKEwmr/LOuLj+H70CQ1laUx4QJVuS4tBSj1+dDKTY18f/V1SiYtjbLqbc7YuEwkW4t/VEC3Fz8GprmXlOTOxKmEo3yvjQjQMG00lKr0Uo2UFDFMKxGM93dPGOqwu7oANgIhRjfzJmZr6s8hK2tKOhp0/JTynYgsbub65SUsA6nTMHZaW4GVNSMURXNxmxv557z52efc5cLY+Sdd+BenDdvcEr2DYOxOhxWV7RLLy38fWwy6LpoVHKLHVC0N2aJRCD77ujACE1do+vWAYosWwYXkAi6xOtlj5aU0ODksccwzi64IPMY7E0O3v9+nFvtSppN7r0XQ3n2bMqC8i0H1e6eLheZw1/7Gve+6ioLkMwm8TiGrzZFymT4btgAILl1K9kGV1+dPZgRCFgBkpqagXN/7duHo7JyJY7P5z9PlqZ9Xu0cdcOFk1BBmfZ2skP/9CcAoEGUQddFd9/N2XLYYWSiDndeN+2orOtDO1AOJsCsusjlSuZyjUTYp21tcGSlAvY9PVZmp9okoRBncHk5e+n113FCly4lO8jrtWyIbBUcfj/nujYfU5DTDnQHg+jDO+7ApvnqV7F/U3lT04kdQIzFoBro6kKnZQKZPR6+Ewjkz1caDKKHNPA5d27mwMdgiNcLTcWLL/JMp57Kj33udV770bl90KWnB7tu9WqAhkGUUbtoGIry0Xm9rOG1a6EqqKtL/lxDA3qgro5sNocD/bV3Lzpk+nQCn8oL/eUvs7Z277a46O3y3HMEPubNA8hzuXJnrq9ZQxAjGqXj87HH5veM+/Zh72kiyde+ht48+WR0Wjo9WVqKfuzqYn7a29E1U6age4PB5O9pYOD++wE6Z87ENszWKKq5mYB1JEJWtlax9VeCQZHf/pbAajiMzfflLydzEUci6HalucjlFyq/drbGe4WQoiILxP7HPwBB+yCjuqWfMoyOov0upogcY5pmTETEMIyNIvKQiHxARJ4QkS+KyKHvfuZN/ZJhGM+JyGMi8mkRuS3bDebMGdzGJvE4CjcUyt2U40CS7m6M6DFjepckKyGwlrp0dXEgqEIbPz7ZYAwGARAjEQ4nzabJVS7b0cF1Nc09H4lErCYlU6f2Nly1JFt5fnIZ3Q4Hn+vs5HtjxvCdaJQU+uZmDrZDDsm+NhTYDAQsQLQvit8wrMPT67WyNqJRIngdHcyz3chobwdAjMe536RJ+TlkRUV0B3vnHZypRKLwe8zvJ0Nh1y721hBQAwy6LhqVvomdu+zRR4moX3QR4Jw6dw4HBvG//oVBrOXJ8ThgvHLj3HILpToXXUS330wSCsGF09KCUV5bm5v3NJGA5+dnPwN0vOee/M4B5ftTgv4HHhD5+c9Z63ffDcBg79Kcbm9GoxZPYUWFxYtjNxyDQQzUBx9EV998M2XD2Z5Hs5YLUb7c2cnzPPYYz3HBBfzYSxZTsw+HE6i1eTPv9LHHmMt8M7oGIIOuixYvRocXF1slScMNKEkVO5hjb4oy2GCiSDKgqJQf06Zho4RC/M3ptM5xjwd9ZBgWTYjTyfm7di1O1/z58CCGw+iqkpLMmf2xGPaWNrbTZ1X9aHcqn3yS/TZxIjyqY8Zgm+jn7fyKqldM0+K4KilhPKtW8bfly3M31ykrswKwlZXZeVj37mWOHA7s86Fo3KMSChHEWLmS8R5zDFnQ9sC/6qJEYnCzXvsipsncNjaSGarlmRMmDP6tZdQuGpbicHBOr18PyD9tGv9fUcF67e4GnCouJnCqOmLbNta2Uh7deisg/pVXAiBu2oS9o9UcIqy/lSvRXUuXsu7ica6R7cx47jnKcYuLyRzM1LDNLtpXQPsXNDZCdeL1Ah6eeWb2/VhTw2ffeIN/T53Kfzs6mBOtNDNN6Fyeegrdd8wxBFdT/Vn7uN55x2o0c9JJA6N0CofJOvzFL/DFPvxhnm/evGSKGj2fi4rQzfnaYmofDxaQ6PcDQD/1FOdhP6pURnVLP2UYm2lDLnfoAnpXnn/3v9rs/XwReVNEdhmGYYcRXhMRv4icLDkW0WACiFoSGw4T6XivNIEIBFDsZWXZ+SU1m7CiAqd82zarxFkd40AAYzUW44AJBPhMLtCoqwsArKKCwzMfIy8cBkA0zeQmJXbRdvYKJObzTp1ODGc7V8m2bTzT9OkW/1Em8Xp5Fh1XfzNZFUjYswdDvaKCw37yZJR8fT2gXG0t69br5R1On973LABtorNhA5mWicTAnYFEgjnctQtwOBZj/PPmDQk9wKDrolHpn6xZA4BzwgkWSKiGUUsLnZgrK3EGVQ+0tlpr8p57iMavWEFEPJOuCAS4Vmcn11K6hWzGUTBIRt3DD9P05Oab8wPA7ABiMIiR/O9/U4p9/fUWCKkd+NShtUs4bGVNV1RYOsZuOL7+OuTcjY1k/V1xRfZMY3v5cjry9r6I3w8w+uc/E7z58IfhQrLrdi1bV16g4dKsIB7HabrnHpwRj4fxf/KT6fnvCiyDrotOPdVag8o5GA5bQJ3+DEexg4magWfPTBxM8XpxsidMsNaBAv3BIOe+aXKmqjQ3M7fTppF99+STZLyceSZ7tKmJPZypwVoiAYAowt7JtD8SCfbbE0/g6F91FbpL95jOlWa1qCj4KcLnN2ygFLqmhvLlfHSA8mR5vejRdDqzpwdbwe/nOWbPLkxzpnwkGiVj68knuf9hhzH/qSCczpHqov2ZCW2azFlXF/aadq0uKmL9HHHEkDQ/GrWLhqn09LDXJ0zgbA+F2Hsa/Lv1Vtb61VdbYJc2/Zw1Czv7Rz9iDV1/PTpVq8HmzbOatSUSdGBev541N348vtGCBZmrM0yTc//nP2d8v/xl7pJn/Z42yBw3zgqITJ5MFuOsWTkv8d9S71gMPaS+Q3W11WjFMMic27kTXX3OOex1n8+qpku95ssvo6tnzCADsb9nTTwO3+FNN/E+3vc+gNalS62zzOm09LTyPfZHVw4GkLhvH7r0+eeZy0mTsOuy8YtnkFHd0k8ZBREt2W3/H9M0Ow2sKIUM5olIiYi0Zvj+4MfhMohGnKNRgJ9cZbcHimgqvMtFVD0f8E6dlSlTUNA+Hz9OJynkhkEZov4ulSsxVXp6AMQUAMtnDKEQ3zGM3GXCmqLt93N45AOwaRe01av5zkEHcRBnAyDs5cslJayjPnJK/Fc0e0jLD8eOtcbkcKDoYzGrDHnSJO43kKYl2uVs40YruplaTpGPRKMcRnv3AgpptuqcOYPTvCWDjFhddCBLczNZdNOm0TnYnoETDltk4itWWKCC14sumTCBv//852QVfuc7mde6zweA6PXiXI4dy/4sK8v8neZmOh2uXk2Tkiuu6Js+NE0AiW98Ax1w9dWUstivodmY9oxEEZyFUChzB+auLp77qacwem+/nXKlbFKo8uVIROShh0T++Efm86SToCJIzRbXUkzNxBwOWXAdHZSi338/wGttLcDzuedmzlAYBBkSXaRAidudDDRpV2Q7oLi/eCmziY4/kUgGyQZrLUWjZOK43WRx6nwoT+bu3fxuxgz+PxRiPzU3o4uam8monjwZfeV0WsGyurr0gJVpkqUSj+NUZ3quUIhMnzfegF/x4ostW8L+HlU02y4aRVdo1+GXX2bMc+cSJNTM5nycT82U0c7w6vTG4wAWygm9aNHQ7SUNpDz+OHt7wQI4YFPBN23gY9dF+2O9qx3X1cV7b25GDwWDvM8jj2T+ctnIBZRRu2gYSjyObROPY6+oHi8pYe3cdhsBiyuvxO8SwcbZs4e95/OJ3HADOuW667BzkSB2KQAAIABJREFUtm/neosWWRnqhkEwbds2ypAnTACImz07c4JFPC7ym98Q0Jg1C7AsH79Au9n39LDWf/hDQM0PfADbKB8/rLubZ/R4oOno7iYoXF1tJbX84x/oucpKwMPDDkvuvt7ejv+m+rKxkc9Ho3Al5gNkZnq+f/4TW3HLFnzen//c6qQtgt4Jh63qEuXEHcheLwSQGI/j573yCmeg14sOPe88MtX76beO6pZ+yjAwlYeNxDP83rD991URuTbD57oKPqI8JBrFKIrF2EgDydYYSRKPo6BFAKDyidJqIxXNCnK7Ueh79qCYnU6UUCDAZydOzH5dv5/oUXGxZaznkmCQw8npZNz5RHSUE0h5frI51Bo927WLQ6iujkM227rQsupAgEO9trZ/B4VGq71e5lg5QYqKLDDFNJknn88qc66uLkwpjMNBg5VNmyg/Vp7JfMTvtwjo29p4/oMOAhjWQ38IZUTqogNZIhEaqTgcGMP2fRuLkf0XCGDIqFMaCll8OC+8QIT92GPpxJxJV3i9In/7G9dasYL9o1HsTN9Zvx4S8/Z2AKczzsjvmRRAjMeJ1P/qV6z5u+/OXOpjNwI14ykSQUel6hjTBDj82c/Y75dcIvKZz2Q38lLLl/OhcUgn8Tj3/sMf2NNHHEEHxnnz0s+BGrRu9/4HqDZsAPR8/HHm4aijRL7+dQDQQW7olE6GXBfZgaZMgKKeg8OhvNMuuobswJiWZxcqk8w04RmMROBcTbUh9uyxGsxpFnEoZDWY6+khSDFuHF3lXS5ArUAge9Owri7WY01N5j3c0YEe2b4dp/jss3PbODpn0ShgQHs7AUbDQF+OHcv4NWNROaIVUM4EspWUWNyNRUU48Vu3WpzQ06cPTbDANCk7fPRRq/nBhRdm1kWaCe3xDH0mdDzOPCkVjd+PPeTz8bfqakDrmTMtnuihHF6G34/aRftRnnsOgPnMM5MD7S4Xds+WLVAl1Nail9xu9qHbzRq/9lrsG616aG4moWHyZKu6LBDAxtqxgwqJyZMJekyenDkI4PcDkj37LODct76VH1d9IoE/5PMxll/+kvt/85s8Rz7nTWsrz1Bayn4vKmL/dHSgl9rbCW42NLCXTj89OQnFMNDPTU18dsIEdL52bD/llP5Xib36KqDtW28BQv7+99iM9ucyTXS9dl4uKSkcT2x/gcSeHoDct94iSKY9C044gaD0ALGPUd3STxkFEfOXbSJSbZrmyv09EJVIBLBIu8kNJRn0/hQFyqJRFHS+WSqdnSjF8eMtw9bvRyEpYNTYyHXnzMluYAaDHGhuN4dAPg5CIICBX1QEuNWX7JqyMqtpQVVV+vv5fHBm9fRwsB55pFVmWFSU3pjv7mYuRZjL/vJo+nxW6WFxMQec/X6VlazTrVsZX2UlDkJnJ85NSUn2cvR8xTDgd9qyxWpYk6l0IZHAWO7oYEydnRxoEydibIwdOzzKGdPIsNNFB7KYpshdd2HwffnLvekNnnoKg/ass6wyei37c7vRE9deC3/dj37EGo1ELG4zXWNdXQCIkQglQVVV/LukJLMuWrkSbsWKChr+LFuW/zNpufD110POffLJdGLORZugZc1er5UhmQo87NvHs772GoDkt7/NPjTNzE0VdDyJRP/Ll02T8pY77mD/L1iA83Doob0/qzx2Ivu/cUo0yvu7914MZe3Oet55gA3DDSyzyaDqotTMNTugqGWvdkBxuOhrJcnXrDLd74UY444dOJYLFvQ+rxsb0SO1tcl/a2ri3qWlBAzGjAFAFMHhbWkBAMi093t6LI7BTPty924CLZ2dIp/6FF228wmSJhJcOxbDPmho4Ow94ojkbtD2DE8te1dJ7Qat+rK8HD28ahX2V2kpOnKo+MK3bgX82LkTG/Ozn8XhTd3LqdmHQ1m+r3q3q4v3nEhYFTrhMGMaO5azra6OdTIcmkylkVG7aIhl/XoA8iOOSOYtFMGmWLkSu+Lss1lb6m+EQqwlDahefz12lc+HfhszxkoAiEbJ2GtoEDntNAC1rVstOz2dNDVxzXXruP/nP58/gKj0Sv/+N8GWadP6VgLd0IAOHDMGkFP3+vjxXPfBB8mmrKjAdpsxAx+kszOZKkmruOrrmctQCNDviCP6F/x45x0LVJ00iZLs887rfa1YDP82keAM03NMM+sLIX0BEvfsoYHOhg2ce04n83DYYQQ0KisLM6YcMqpbMsgoiJi/PCAiNxqGcaFpmn+0/8EwDKeIVA1lm+9wGABROW/2Q4bCfpPGRqv7dL7AqbZ+r6y0yno7O+E403Rzv98y9vXf6ToUhkIcdEVFKLN8FKvPx+HpdnM49lUZK8+P8iPaCcMTCdbCnj0YnwsXWpl9brfl8GtWoAjrprERA7ukhIOyPzwXgQBjikb5vnYvS5WeHsbn9WLIK8GwclLu3s3YCtG0xDBwvJ1O5jyRSE77j0SsQ1tBVhEOef0ZpkayyrDSRQe6PPMM0duPfASjxS4vv0zm6/HHU3an0tHBnmhspJPf/PkQi5eVWYaT/oiwFh96iLX7sY+xv0MhdFOmfXn77Vx78WK69OZbvq8A4tq1gHvaZfrcc/MDquJx9kwi0RtAjMcZy223oUevvprnsRuJym9kv5ffb1FIVFf3z4levZpy8w0b0C833MB7SX2m1OzD/QnQtbVZXZZbWij3uvpqK6tjOGRG5pAh1UUKEJWUJAN0wSA/ww1Q1GYjOtZweGBgYmsrtkddXe+S/I4O1tDYsZxhKm1tFr/zQw+xZz/5SZzYUAjHzO0GWAsGrTFro5NgkDO+tDSzw7ZmDfrI6cRhX7o0v7IyBRC1KYPfz9m9YEFvKoV0ZdB2YFEzZ/TzRUXMyY4dPMPcuQSHh2Jd7Nkj8sgj6KIxY6CGOPro3vfWskV7JvRQjC8SATTs6kLviljcZ1pJYhjYkePGWbbacOUmfVdG7aIhlJYWbKOpU2kEYpdNmyghXrQIoMrhYA3V11uNL37wA/brDTdYFEebNrHG5s61gq1/+xtBydNPx0/ZuJFr1dWxdrV8WvXFpk1cU7MjP/5xq4w6myjVwb59VAJs3EiG3lVX5edfqx/j9xMwSK2u2r4d/sG9e6kuOPdc67qVlew79VFVOjoIxPb0YMssXZp7HKmycydl3A89hI6/9looJlKfSTmxo1HeV1lZsp86mECinR5HhPusXw942NTE+VVczHqaOZNA0BBw09tlVLdkkFEQMX/5mYicISL/zzCMD4nIK0KK6ywR+aiIfFtE7h6KgYRCKDvlvOkvd91IlLY2DNrx4/OPQESjfE8bqYhgOK9dizNy6KEYoD09KP7qapSWZslpV9WSEg61HTu4xsyZ+RlVPT1Epzye/Euv04nTCZCoWQHl5YxxyxaU/6RJvcek3Bvasbm62mrCEwxiIObbCdkuWqoZiXC/1C7XKlp2rvN/6KHcy+9nPFVVRDC3bOGQVWOjEDJ7NtdraOCg0s7QGm2PxfhvVZVVUj3MjWSVYaOLDnTZuhVj+OCDMUjtsn494OKSJRiFKn4/a6ypiQ53tbV0ZNZghD37MJHA2P373/ndOeewrwMB9E464zUeF7nmGsjKTz+dkt18u9ElEui6e+4BcKur498LFuT3fXsHZi2nUQNw61aM940b4UL7+td7NxNTvh/NRtQGRloSna2baibZsgUA4/XX0UNf/7rIBz+YXs9q9qGCEvsrWLB2LY7KU08xnuOOgyfz6KOT+WNHgOw3XaRAV3GxBdJFoxagqN1s93eWqX2suv7C4b532w0EyCaprCQoYRcNUlZUJAcTgkFsGBEaAzgcIv/zP3zONK0S58mTLbBTCfVF+LeW4KXjBDZNutH/9a/svfPPxwbJx+lWALG+3ipvVK6zfERBN3uQRdeBz4d+bm9Hn86ezfN1dTG2weLWbG2FH+7NNwFdP/IRyu3S2RUKgIoMTTdytdm6ulhLIrzXykrOq7Y25s/tZn1UV/MM1dUjxscYtYuGSEIh1nlpKY3f7GdVYyPn8cSJ8A/r30IhbKKaGjoBt7bCwVxXhx7ZvBk7YOlS9kMohF5paQHMmzGDPe3xACY5HHw+ErGSGF59FTqFRAJb6pRT0Ee5JBbDp37jDcYWjxNgPe20/OYjHManikQALO2lxn4/TWfWrkVHfv7z2GvRqKUny8u5p8+HHigu5vPr1zNfxx9vcRTmuxebm+E5vPdevvvFL9IZO10Wtp6bpsn1U/W3vsNUPuyBSiqQ6PORNb5mjRUUrKoCPJ4wAfBwMBvUZpFR3ZJBRkHEPMU0zZBhGCeLyFeETj0rRCQkEHLeLyLPDsU4AgGMLoeDDMSh6ig3HMTr5eCpqso/Y027pjocFgF0Swtp7uXlgFraTEMNJhH+rY1XOjutroWdnfx39uz8lLnXC4hVUsLhMlDlq4TFXi9gphr4y5ZlbvzhcDBnXV0WWbCun76mgmsEOxSy0u0zARgdHQCIsZhVeqCHkWFYHIlVVUQeN20izX/evMKVG02fzvO+8QaG8axZlrPkcnGfgw4aMUayiAwfXXSgS3c32YPjxsGnZ3c49+6FmHrqVAxVlVgMZ6yxkey+qqr/z96Zx8lZVXn/VHf1vqS709k66c6+kA0IBpCwSIgIqEFAESOouLz4qoPLOMKI4zJu6CAzrqPjoOMQQIMgihiBgIgQICQYErLvve/VVV1dez3P+8eX896nqquqq5LO0qHO59OfpKurnrrPfe4995zfOed3AOvS8dd0dVHuVlaGw1leznrVTBqNChcUmD1z88189yc/CWiXrU5RwPKrXxV56SUMZOUjyka046Lbje4sKGD/BgIAmffdx/1+61uUEKVz0NVo1GYPto0eypWOo62NsuWnn+bzn/wkPJKpzkTlqLNtw6l2ojP8IhGAnLVrzfnz3veaTInCwlOnI3S2cqroIieg6OQjVC49zf472V1uNZMyVSfnTOsxHsepdLlwsp1rRKtSSkpwtpwVCq2trLuNG/m+97/f2And3fytocGAXDpPGmzQTswVFQb4LCw0lAb33Uep3fz5lCxOnpwdDYFy723fzndMnEiZ3rFW1BQUcD0Nsp9zDteORgEUvV4TRBBJXwadq3i97O3nnuMaV1xB1/FUOk3Xp3a5P56Z0IEA9ppWXYjwLBsaGENXF3ZaQQFnlGaWa8B9LFEknSq66HQX2wYUGxri/HKukcFBbKaiIs5j3c+2TaAgHCZDt6+PQOiMGfxfK4PmzDFB1Acf5PWrr+Z9O3ZwnfnzzT4tLUWnh0LoogcfBKi75BLonJJ5R1NJNIrf8etfExCZO1fkX/81+27jSomlST1qT9k2OvtPf+K+L72UcbndZDv29pqAhgi2UyyG7bhzJzpl7lx4b9Vv1UYrmc4wr5eg9X/9F/d24400ZEsFvlkWYF0sxjXLytJf2wkkiowukNjSQhB43z6+RzM5Cwvx25YuTSwNP9GS1y3pxWVrbVFeToQc02Rr1NbtRqmOkaypUZFgEEWtnYOzVSbd3RxIkyejsDs7OYyqq+EosyyUdnEx70l1XdvmgHv1VQ6rM84gejbS/A8McO3ycpzE0XIOu7sZSzBIRoJm3GUS28awPnKEw2rRotwA6FjMRLAVlEzViVXENGoZGODeZ8xI7VhoB9biYgxYy+LwDIW4r5G42TJJOGwME8vi344Os34UPDwGI/nULjIcWfKKP4PE45SAHDoE0OYsHfR4MFjLy0XWrEk0lDs72WN33MHe+OUv05fStLRAtl9RAQdiRYXJ8quo4HqWZcp/29oAAXbuFLnrLqL82YplARzecQffcdttgJbZ6tGhIfZUcXFil+gtW0S++U3uZfVqot3ZBCa0hFG7L+fivPf2ki3wxz+ig6+/ngyoVGCocqlps4KTkeHX1YWDsm4dTsCsWaybK65A/2hG1TEY5XldlEY04zwSMfyXCpSdiOyvTKJrU8eVCUzcvh3dsmxZYiMB5RG0LBxO55ne2oqt8OKL2Arve5/hBfN6CcjW1aXO/Lcs/q6dmAsKTOa+CNf7xS/IAr7oIrp6jh+f3Zkdj3MWb9nCNRcu5Lw/VgdxaIjxDA5yT3PnJgYHYzF0jmb6OEuh9b40eOMEFjPty2AQ4OHpp01G8ZVXpg+C6vcdr0xo20a/a8ZhNMp3VVVhY5WXsya0+U5pKc56WRlzUFSUmsInB8nrotNcNm7Elli1KpHeJRol8621VeQf/zERhGtuxi76/e+xqb7wBao3tInJtm3Y42efja5et469es012Ou7d7OvFywYbl9Eo3Cx/uUv+EJnnIF/c+65I/tokQhZwz/4AeO49loa52WbVODxmE7vzqQej4d73b8f+++aaxIzrGMxQz81darRfS0tVCfE48yvk2dSQf+iotQd0UMhdPL3v49+v+Ya5jkdl2M4bAILCsZmI5o1WFBwbPorGiWzfvNmzprSUmwjt5tnXV4OVU+2TUtTyFjXRWNC8pmIY0T8fpScKquTafyeaIlEjMLNJRrh9QJU1dWhoNrbccBraylPFEEpFxamVsoqto3zV1uLQR2Pm9IhJ8+gU/r7uXZlJYfEaDiu4TBGso5lwQKun83njhzhkGlq4jORSHaHhmYMKLgxbhz3ne5+urtNo5bGxszzWl7O33w+DN6aGu5p505KGxYuzL25wuAg8+Mcr2agRCIcVuEw8zCWMn7ycmJl3TrW4C23JAKIwSClxy4XBqczc2ZgAIPyK1/BSLznnvQA4uHDgGDV1QCI5eWGm7O83KzNwkL0zyuvUIY4NAQgddllxpAbSR/GYnAU3nMP6/6nP03kb8wk6pRq6Y3ux8FBjNU//IH5+dGPyPoZyah0li+XlWXWJcni9wPe/va33NPq1TRwSEd/oKWZ2qzgRJ6Z+szWrqVhimXRVXLNGuZJu9SfbCDrdBdnyatyYSqPYjicyLV3orNT9bvTZSaqtLQAIM6enQggamAwGsXZdJ7nAwOA7Rs3orOuv94AiKEQf6uoSL13bNtwujqb0LndJlDywx9y1r/znZzZFRXZZyDu3MlPZSVcak7+xqMRbYbQ2soYzzgj9TXdbsYYCHAfzvGqrtDnEAoxbyKsISeoWFTEe555hozwQIBsoXe+M/29WBZrTjOhRzP70LaNDaWZlgUFpiS5upp7aW4GvLUsXlc/IhQy3WDTBYbzkhcRqp9eegmQzgkg2ja0KIcOUbXhBBC9Xtbe738PZdGnP23oXyIR9ElDA7bJ4cNk9FoWGfrTpnFNnw/9lwwg+nxUPuzcKbJypWmQeeaZrOtIBEAw1RmrfIs//Sk67utfx67KVrq60IGVlYamyrIoqd6wgX30jncAZibbOG43vlFnJ7q2thZO5127SGY54wz2r7PpSFER+rqvj72uGeWxGJzKd93F/l65kiqYZP5ulXgcfaDVWKWluflCWoGigZdcgUSPhwDSq69yBk+aRJZmLIb9XFjI2BcsyNtGY0Hyj2gMiM+HgVRSgoI82fw+J1KUU08kt3LgYBBlVVHBwdPSAigwfrzpYNrZiTLMlB5uWRxiwSBRkupqA6z5fKbJSU2NUcR9fRwuyk90rEaZbQOAHjzI/2fP5nDVhik6hlQyMMDacblM+bLfbzij0mXiWRbXHhzk96oqPptunjRTVMcyfXp20byyMsbm9fK8ams5QHfsIPq4cOHIJU7xOPfZ14dhoAd0SQnOksfD/5cvx+Dft48I2KJFb6y9lJfs5KWXcA5XrYKjTiUexxD2+XDKnSXKoRCG8le+wp75+c+HdytU2b+fEpf6eqLFZWWAg/E4+ip5TT72mMhHPsL7H3mE/aHRYM2wUzAx2Rjs7qZs6OWXMWjvuCN7YN6yuBcdV0kJ+ueppzBYBwboLvixj/E3zehJt6ciEfa5s3xZ+RFF0uvJUAjg9r770C+rVjEf6botpmqccqICBqEQz2vtWhyC6mrm6IYbOGe0FCidY5OX4ycuVyKg6Oz0HImYLLTi4hMLKOq4khuFuN2s9z17AKeSM0paWtAb06cn7ulIhDP/2Wc5l6+91jj18Th2j9udnltK6UpSceEdPEi5omURYKmrQzdoubPLldiYxSmhEA52Rwe23LnnHjuNyMAA53kwiPOtmSzppLSU+VVaBh2jjjc5c9HZDVoboLz8MjpwcBAb4pprsK1Sieoi1dMlJaOji9T2GxjgX+UpGzeOc0m5Zbu7ASc8Hr63oYF5Uv4xy+IZHg0XbV7eWDIwQJbcxIkAVU5RHtBrriGbUEUzpTUr75ZbCKaJsAZ37WLdLVmCLlu/nnW5ejX2TkcHa3jq1OEUVq2tlB339RGcs23AvDe/mWs6m27p3tb9PjhIpcn69ezhb35zeKOqdKI0Ecoxrz5eRwfNS9rbKaNevTozLZP6pm1tIn/7G/c9fz7Z5vG4KfMeP97szfJy7mlwELvmmWdEvv1twNlzzkE3Jze5UbFtk33ocnGto61m1HnUBkzZVsK9/DLroKAAkHDxYuZRX9OsdL2+cmfn5dSVfDnziZWcJ9vrRcmUlmIIvpFAD9vGMQ8GORyydX6VV6KggKYhzc0oqYkTUVoFBabMOVNJqyo+n4/vT+YcjMUwzvx+U+KrZbTV1Rhso1Gis2cPY6itJYPIOd5wmO8vK0ucH8viMOvv57Bqako8MDQbaNy4xAwG2+aA0g59FRW8J51hrl2eOzpYm42NidkS2Uo4jJHidnOfkQjRRZcrfel1OGyicpbF/Y8fz312dTEvRUU845oa8yy6u8norKxkPRylMz/Wj7a84k8hbW0Ypk1NlPw618b69YDb73hHYmMDy8JQvu029txPfkJmSirZvRuAcvJkiL9LStBvmpmXvBd/+EMabpxzDhmIyU0Hkrs8ixgOxRdfBDQcGgJIvPrq7PVRLGY4SysrzZ767ncxeBcsgHjcmdFo28ZZTj6n/H7GoUTZznl1Nlpxji8eB5D7n/8hGHD++WQ5pANn9TParOBEZh+2t9OAZ906w2V0000QwrvdiSWMx4GGJK+LjlG05Fl5M0XMszrR3buVMy8UgidKG44413JnJ/txypREnWDbOJSPPcaeu+YaHDP9W3s7121sTH2mDg6yfquqhjvAmzaxF+vqRD70IealstKc9xrUiMfNHCr/qMcDX2AwCMgwf/6xzWksBqDZ2YnenDs3Pe9ssmg2dEFB9uCZbQPG/e53fGdjI3QECuymKoMWMetJXz8WicUYtwKHet2aGn6qqkxH27Y2QOZQyPBxT55smn6J8HzHjRv1AEteF52GEo1if/j9UKo4kxZeeIEsxBUr+JtzP+3aBfXIjh1UDbz73eZve/dSGbRoEWt73TrW9DXXYBdpVVNT03Buw23bAM/cbjiiVRdefPHw9RyN4ivofmlrwx46eBBOx09/OvtSXm1KqRRZEyZw/b/8Bf1WVoZ9uHhxdnqluRkA1rL4nDNQFAqlb2r1hz+I3H038zt/Pvfztrel/85YDN1rWaZh32icafG4CRyn0iORCM9qyxZ8tYoK9P/ixTzbPXv4/OzZrAOnb6sB12yqbdLIWNdFY0LysfBTWDwejD4Fgd5o5Zfa2r2hIXsA0bY5mGwb4/rQIX4mT0ZJuVwo5kAA4zcTgNjcjLE2bVrqpiVuN4eIdj9WPp7GxmMHEJUr5MgRU6KTKnNAM4C0k1VxcWL58sSJfC55LNXVxhitqeEQ0I7J8TjzUlOT2fD1+wFZQyHmsrHx6J12JfJWEnAt1965k4Ny4ULGoiBnf39il9i6OvZHVxf3UFiIUeGM4qkoYe+uXXBNLV78xuIXzUtqCQYB7UpLIQV3ruUXX8QQXrFieGfUtjZ4E5ubRf7jP9IDiK+9RpnLtGlEqbXEXktunIZsNCryuc9hgF97LZ2YU+mq5E7PCkD87Gfw48yYAcH23LnZz0Mkgi5wuYyT/eCDJgPpM5/B+E4GCp2d9jQLMFX5cvJ+1N8VeLBtkb/+VeS//xtHePFiMjw1gzyVpMo+PN7Aj20DrKxdS2aSCFmSN90E6OvMZDoZYFReshcn4OzMUHQC0voMj7cdpiXYW7cylrPOSgTnPR7Oubq64UGFri6yhQYG0DEKIIrgxAWD2AOpnOZgkL1aVpYIINo21AuPPooe+cAHOPMrKhIDhs7sQyeguH07AFx5OVlI6bins5WeHoDSaBSbY/r03MvxKiuxI4LBkW3LPXvIAD9yBJviH/6BzCntLu/MVtTmU6qLSkpMswJnaWK2Eo0afkMN6hQXY3dqIxSdS5+PM6izk+8aPx67sa6Ov3V28j6l4XkjJSTk5dhkwwYCeddemwgg7t1LhcCCBXCuOvd1ZyfA46uvkol/3XXmbx0d7OOmJvyV3/6WvfHe97Juh4b4vuJivi8QMPt0wwZskYYGgoq7drEfLroo9f5yUkasXy9y552871vfErn88uznIBRCB8Ri6JzqaoDIRx7BHznnHMNzPJLE49Cd7NmDDps5c/jnSkv5DuVxraoCkPvmN8lAnDhR5Gtfoyojnf9i26asu6AAfTGagVWl23ECfiLMx+bNjFebd61eTdD54EHGH4nw/JcsSc2lqzpT9Wbedjo1JZ+JeGIl68nu60MJV1aOblOOsSJaElxfnxtnTl8fxuHEiUQ6mptRYGecgRJSzrzq6vRcWiJ8tq9veKQ/nWhmgJJYa0ZdNpyFyeL1crhopuScOZlBLuXE0ahQZyfrpbExM9G5NhwJBIxBXFKCgZmpzEg5IXt6OOSnTx+9bsra/bmggPkLBjESiopwPnw+3qP8IHV1pgO3x2O4ferrRzaSPR5AytJSDrIcO52P9SMtr/gdoll/W7eK3H57Yobd7t040QsXilx1VeLn+vsB1bZuFfnOdyDVTyVbt2I4zZhBxFmz04aGWMtOR9brBYh65hmRf/onsgmz1f89PWREbt7M99x+u6EDUMAx07WCQROQqKoiSPDNb2IMnnceXDvpyohMtc5RAAAgAElEQVRVNBNJS+60fHkkWgLLYtw//zn6b+ZMnIQLLshsQGpzCs0GOt7OcTBIJsDatWSg1tSY5i6TJyeCTycIPMzrouMkmtmqJakipov28QQU9+7FYV282HQXtm3DbVdVRemuc10pZ+iRIzhs55+f+LfOTs7pVPaU8gUXFfF3vW4sRiDjpZcoE7z2Ws7nsrLE96WSaNSUr02YwHjUrnCWPGe7N8JhrtXXh101b97R2VcqgQAOdlVVavtKG0Hs3o2dkY7fzCka0NVmOfqaimZmOrtBJ9+/VmUMDBie3NJSk3GYXHHS3W0a2RUWGn658nJT8mxZzNVIgeFRkLwuOs1k61Yy7S64wHAZipjKhOpqGng4QbBAgGYlGzYAHn7844lg92uvYd+PGwcvYUmJoYgJhwnYaslrMMhrbjfn7iOPEFj58IcJ4lVXw2WYaV1r05df/xq9+bWvsUeU3mIkHeT3ow8KCgx1wZ//TIZdXR1VJbNmZTefg4NUc/T3c3/LlvFaby9+S7IvNTCAn/LznwOC1tbSbfl978NWLClJrdOjUebOtnlPScnxs0OUyubIEebk4EFTnvymN+FHHzrEcw8E+H3p0tTJOcmizQWPAkgc67poTEgeRDyxktVk9/aioKurT25b85MlPh/ZPdXV8E1kK34/c1ddbVLhGxsxNl0uFGpXF8ZVJmBQeTgmTkTZZRIt5/V6iaBNnMj39Peb5iW1tdllUmqJTns7RuO8eZmBzuTP7trFOKZMGV6+nEqUYL23lwMmmVsplQwMYLBGIgCco9U0xinRqOHwKSvj+159lTlRp0pJh3t6cCps22Rm5BJp83oxWIqLARJz4Gga67syr/gd8thjZNutWZMYnW5vh7R6yhSIvp0AVThMKcxzz2GUOiPtTnn5ZZHnnycYcOWVXCMex0HU6LDq+MOHKfk5dAhQc82a7O/h+ecpawmHAQ/f9S5eVxJsZ6dnJ4eifrezA3NRESVKv/wl4/vc54iy59LUyu9nz2aiQ1DZvZvsyc2bAeI+8hGeQybdollA2qzgePPYtbSI3H8/To/Ph4F8440Ay8q1lly+eIKCf3lddAJEm2MkA4oKFI8WeN3ZSfZeY2Ni1rNSmxQUUMLmLEmLxSin37YNHePkLFOOxOLi1BzN8Tj2jojJ0hdh//7kJwB373oXWYTaRTNTwzQRzu+NG7EXFi/mbNXMZM1QVAoG7fKZaf+2t6MTbRsnfjS4pkXQU5aVWNbb1UXW5SuvALxdcQVZTpnsKdVFmjXjBCac/Jv6r5N+QgNKSvkQifB6ebkBDpMDMOEwz7S1lf+Xl2PzNTQwl34/z0CrSurqcg6SHq3kddFpJO3t2EUzZhCY0DXt9wMgBoMELZ18hZbFWb5uHbro8583eysSwZbXJIFHH8W+uP56wze/Ywfvc5a3er0i//ZvgIZXXMG5++yz/H3Vqsx2e2srdtGOHZzVX/wi+ykcNt3L1eZJpVP6+5kH9ZH27CGoHAzSjf3SS7MH5o8coarF5SIo42y819HBNadNM3u1o0Pke98jOFRUJPJ//6/Ipz5lkkN0n48bZzJELQvfLho1vPfHM7AaCnHubNrEWKqryco8+2yebWsrf/f5TE+CbBJznHKUQOJY10VjQvIg4omVESe7uxtDbdy40TOUxpJogw7lgMz2/iMRFG5JCaBSRwcHn/JnaRcwtxsnNVN34Y4OlN1IRLvKMeTzEQlKJv5VBR+LcT+1temzcXp7yWqJRHjuM2dmr/g1zd7vx5icOjV9oxURk+0XCjEfZWWMsaQk/eeiUcA8j4f3z5jBAXE8RLtDHjpE1EpLb/r7meO5cxlHTw9GR01N+hKtbMTnw8AoLCQ6NlLG1Osy1ndmXvG/Ljt20Cjk3HMTI+ZeL9lmJSVw/Tgj7ZZF9H39eozkm29Ofe2NGzGu5s+Hs0Ydac0wqagwuuillyj7iccBqy68MLvxx+OU99xzD/ruzjvTly+nAhRFGI/yiu7dS/bh4cMY7J/9bHYRYx2Lli9rKVImALG5mQj7X//KPv7AB+hyOhIA52xWcDzBOu22eO+9jLGggOd4440YyS6X4dNTMLO4+IRXDuR10QkWBY0UGBIxZfTH0nHb70dfVFXhiOk6isexD+JxbAPVUQpiPvII2S0rV5Ix5xxnSwv/pqIbsW1snlgMx06dYe3A7PGQ8bN4Me9TjuFM6/vAAcqXXS50arpAeCZAUTm2AgH0kXJCz52b9fmclWi2tNttOFhfeIH7XLWKDKeRvk/XgOqibOw2yzLN4Pr6Es+DceOwc8rLhwcjtNOtNgWsrwc8VNqWoSGeWTTKuVVXN7rzlYXkddFpIkNDBrxas8YAdbGYyPe/j33w2c8Oz8D7zW+gX7nwQoKrziYZr72Gjhs3TuSJJ/j3+utZ97bNXvd6sZc0I8/jEfnGN9B/N9yAXty4Edviqqsylw8//TS2TCQCRU1yINiyABN1/2pmoo63sxPfTDli//hHQMSGBrgbR0oyUYnHydDbu5c9e9FFw/0nbSJaWEjw4kc/gtLFsrCLbrwRHVhfn6jH+/t5VhMmoCdCIV7X7MPjJT093NP27eibadPIEJ03z3BabttmKv+WLs2+eU0qOQogcazrojEheRDxxErGye7sZMPV1qKc3mgAYjTKweRy5QaiaRMRy0Kh9vZC1KoktfE4wKBtM6/pDPzeXjIga2sxzDKJbRNh8fsxqtNlDCqH38AA4ygv5/p6UEUiHI49PRwq8+dnBgCTpb+fMRcWMubCQsMfkny4RqMc0IGAaQRTWWmyNBWETD7cenuNI6Ld/Y7H2tRGNf39jFVLL2tqODg9HpyTeNwApZMnj46R7Pdj4GinuCwyR8f67swrfkHffvWrrKV/+RezlsJhDOhAAADRCaLZNobp/feLfPSjZOmlkmefJZtl0SIcUpeLzypg5+zE/NvfEmWeNo3If6bmIU7p7CTr8O9/J1voC1/IHtxXHkGfzwAhv/gFzQOmTKF02dmdeiQJhxPLl0tK2KupSqh7eviu9et53w03wIdUXp6+0YpIYvbh8WycMjQEMLN2LcGM8eMZ3w03mCi6M6tIs49OEs9YXhedRNF95CxjLyhI7PScjcRiBBJiscTSX9umQmFoCLtGHW4t4//rX+n2ft55OPvOPdPRweemTk3tbPf24nTW1xvdt3u3yE9/ylr+5CfRSdkEYKNRnMrmZvTl8uXZNztR+gMnqNjWxk9JCeBhrtkr2Up/P+DASy9xbxdfTPAkExWMiMlM1eDBSLQFto2doaXKmgWlHIVamu3MWtTv6ekhQ3JoiOekXJBqpwSD2EfhsKF6yZZHfJQlr4tOA7EsbJKuLspmNUHCtmmutGkT1QLJ/M8bNmAbLV5MBp0zsH/oEH6a203VRH09oJ7qpcOH+b6ZM81eP3IEIHJwEGqXhQuxGYaGACknTGD/JOukcBgQ7re/Za/84z8y1nTnczzOZ9RecbvReRq8aGkRefJJ7v+yyyjtzjZQ6PMR4PF4GP9ZZ6X/bH8/vNpqe7773dx3UxNj6+nhs/X15hqazDI0hJ1SWsqcHo9Apm3jr27ezPMqLMS+fdObOBu0J8G2bcanXbKEpJPR8BlzBBLHui4aE5JvrHKKSEcHCqSuLvvoxukkzoj5jBm5OWM9PRhdPT0o7HnzDAiokfZ4PDOA6PGYEmpninm6sba2orQnT86cpaPNCaqqAPC023ZFhWmAYllE8xobs1e0OoaBAYzPpqZEYvhAwESxNTvI2UU6+eAtK+N9gQBzX1pqMhwHB3n/9OnHJ6odDALmeL2mG2xDA/8qb+Phw6bUsq+PeVJuktGQykoOu9de4wBcsuT4ZVrm5dSQaBRDMxaDLF/XtmXBhTUwgJGbvL//8z8BEK+7jkh8stg2HELbtmEwXnKJ2dfBIPtMAUTbJnPw29+mact992VPYfDsswCfkQiR+iuvzA1U05LqwkJKjL73PfbWe98LOFpRYYzqbJxj1TlO0n7NvFRA0OcDmHvoIf5+3XXwPzrBhuRGKwq+xmIm+/B4ZfsdPsz4fvc75mbpUsq2rrjCOETxOHOu4GFpab5JwRtZnBksyYBiJJLYlTtTye6OHeiHc85JzCDRYGVTkzmT9JrbtuFUz51LECEeNzrA42EN19enBhC1GsFZLvvcc6z/SZNEbr0V26Wzk/WdKQPR4wFY8PkYy/z5uYFYzu7GXi/ULH4/TvGsWaYJlbN5y7FKJIKefuIJbJwzz8RpT9XAzilOAFeffboxWRbX9nhM0zrtCl1Tgy2W7rPBIPqouRndWlrKGpg8mc+Ew7zu97PWSksBVY6FJzIveREB9Gprw6ZwVlj96U/s89WrhwOIr7yCLTN9Ov86AcTeXgN0bd+OL3bddUbPpeo2v2ULZ29ZGddraACkLCgQufpqdIVSsDg5l5ubaXS3Zw/B2w98gOBLJnuhsBB9pTzV+/Zx3YoK7rm5mcDu6tXZ22ciAKcvvcT1L700PT1XNIpNeffdYAErVoh86UucBc4x1tVho/X3m+zjcJh7HxxEH9TVjX6SRzCIjbhlC3qsuhp6i7POMnp+cJBnq81AlyyBjmM0A73JjfveaIlWp6LkQcSTLBpFGBhAWY9kwJyOoll9kQhAWi4p2Nq1rr0dZbpgQWLKdE8Pr0+cmL7c1esFwKysHDliomCndo3OtqGIdhGurmasmzdjcE+ezEExUtTbKUquHg7z+WSC88pK7snn4/dAgH81JT/dYVpZacp7uro4+JVIOLlU+1hFm8H09ZnMyNpaDkbn81eAsauL57d4seEDOnx4dIHEigpAg+3bcc4WL87tueRlbMl992Hk3Xor+0jlySfZX1deOTygcP/9lA6/9a1kMKbKlHvySZzgN70psSRZeWrKyjCswmEyfdatI4PoBz/IriQ/GuW9996Lw/6tb+Fo5+Jch8MYywMDdG9++mmM5LvuIlquhppmBikImJxVqAGKaBRjUjObVQoKTPblQw9BbB4IUBL84Q8nzrtTnEBiPG6yco5H9qFlAciuXQuI4nZTJnXjjegD5/siETMfJSXHLxMyL2NTkgFFZ6dnBRSdnZ6dXKjd3YBvzqBFdzcOY6pg5Z49lA5Ony7ysY+x1zSDLRIxDUhSZQP6/fxUVvJj2wDnf/4z+/+WWxhfZydjnDQptX6xbTgTlQ7k3HOxtbLpUJossRjzoJzQy5Zxz5ZlQDsF7pyNWXKVeJxyyMcewwZZsgRwQAFazYJO99lk3tNU7/F60a0+H+MvLMT2qq1NnTnlFI+H86e7m++ZONGULOtcBALYZ16vsS1LSw0IcoI5WfNyGsmePQCCZ52VyMn68stk7J5/PkG15M986Uus0e9+NzEAHwgAynV2klHd1ESDJt07Hg/AU12dSf547DHskpkzCZRWVoo89RQ21MqVRheWlprmQSUl8A3efTd74pOfxP5qasp+H0SjgHjxOHtwyxa+45pr0EfZglaxGD7e/v3s3wsvTB1UsSx4Ie+8E1v03HPhk5w2zehyp41RXMxe93jQ7yUlXKOsjHOgt5e/5QJ0ZpLubp77jh2MpamJTMx588ycBoP8/cAB9NzixZxjThtuNME+J5CoNmleTp7kTeCTKAqe+Xwomly6EJ9OomUaU6bklv2lhpSWQC9alJjFqZ2HM5V2aNetsrJErqFUopwVodDIvIOpxLb5/JEjhgi7vBwnIRbLDPCp9PWZkgAtbUolWuLtcuGA1NRk5/AWFnLwBQKMb+bM0e3mF4txv3rPxcU8M2f2kgjf39XF8ykq4tkqn9uECaZE3e0+Np6NZCkrIyNh2zbAxEWLRq/zdF5OHfnb3+h+/I53YByqbNrEcz//fJ69Ux59FMDu/PPpxJzswMbjOOH79lHucu655m+RiMmk1WzaNWvg3/rylym3ycbQam+HyHz7drJmbr01sSw6GwkG2V9PPomhHomIfOITgGaqI5xgoRps+qN/j0aJPouwR1JlKUejOB6/+AWG/oUX0nFZqSZGEuU+VK7B0TRGfT6Rhx8GGG5u5gy+9VYyMcePN+/TEmpn5tFx7nCal9NAnBmIIomAopY9u92ccfv2cU47aVQGBjjjamuHB5c1Y7a2Fj5WZxZ1MGgoTpzrWCUUMh2Wa2rY/7/4BcDBJZdQvqh8YLbNuFLZDpEITnZnJzbWokXooqMBEPv6EjmhndUoTrDQWfKsgYVsOz3bNuN99FGCy7NnA77Ons3fYzF0QiAw3K7SDFPNJEzOhI7FTJny4CDvLypi/rVUeaTgdEcHemhwkM9On04QyzmfGnwdHOSZzJplKjZUR2nQWMTwdGrw5QR0is/LGJa+PuyChgbK+lX276fR2ty50Ls411BzM81KSkpE/vVfE2kH4nHoEfbvRyfNnWuyCEXw+/bvZ7/Nns06vuce9ui558I3XVhIkHNwkOw3p07TPdbXRyXFk08CYH30o+iQXKq7fD78s85O6GEGBvAFVq7ETwuFuMeRfDSvF/tSm0qdeebwMdg29ue3voUtd8YZ6PPLLuO90SjYQHc3z8IppaXMnzYRdTaTrK7mPoqLjz4j2bIAhTdvZj7cbu7jTW9KfLaRCMHyvXu5nzlzOAP0LHJWj4x2sFWBRPUJ80DiyZM8iHiSRAGlwUGMtFTG3htB+vsB+9TYylY0YrRnD4p98eJEQ3twEGVeVZUe7AsEiP6UlGCMZVJEsZjpSjxtWu4K2udjrEqAO3cuil47EavxWVPDmFN1UGxtNfeUjiTd7+e74nEMe+3ONZISVw6iri7er8DjaJUOBQI8ay1ZrqpifMmZfuGw4SJxuzlANT1fS5sHBnjW8bhxlkaTAqCkhIN/+3bKmxcuzL6xRF5OfTl8WORXv8LgufZa8/revWSkLVhAOYlTnn6aSPvSpQCIyYBZLEb0/NAhjG8nMBmL4dhrE6O9ewEAOzrgF3KOIZP85S8AjpZF+fPKlVwz2z2qGYEHD0KMvn07WdD//M+ZOWCTAUXNtAkEMOJra4eDapbFnP33fwN8Llki8vWv828249WsIxHTrGC0nN/9+zHYf/97nsuyZSKf+QzdoJ160rbR986mCXknPC9HKwrkaCMzBeE3b8YWaGoynHZabVBRMTwbur2dLOri4uF8rS4X56zbzZkYi7EXVU9Eozjcypvn9ULp0NxMg4PLLmPdd3WxzydPTg2Y9/WRoRIO47RPncq5mSvdSSTCfuzt5V4XLcqc/Z8OUHR2y04GFG0bZ/f3v8fmbmggaLJoUeJe1mcTDHLPmhWuukiBQdUR2qBOq2FEmIOJE7GdsgmIB4OMqa2NZ1NZib0xZcrwBhCa2ShiyqGd73FWcCR3gw6HE+dQ7+NYmgDl5fSScBjwrrhY5O1vN2urpweO1Lo6MpSd66WjAwAxEsGOmD8/8Zr79gHcd3Vx9r/jHea6kQi2kNvN58JhOjBv3gw1w4c+ZMA2j4dmJKkq9Q4fxi46dIhxr1iRe18BTUbZssVkRX7wg/hpGkCIRLCfVDek8hcPHiQQ7XajS1P5Ja+8Av3Mxo3o9h/9iExH514uKqL6q7ube1cdH40aMLOmxmRG6zMZN87oJWeTmGxkaEhk61bGNzjItS67DJvXGciIx3luu3bxXdOn82yTfWLNulf9mQcST0/JN1Y5sWKLsOCbm0323WilHo81GRwEGKuuTs8VkUpsG0W/dSuG2llnJWZxBoMo39JSDLpUB0kohPFaWEgEJVNmSSzG90WjKP1csiXjcQ631lZDEJ6qNDgc5rBQsKG21ihl7VgdjZry5WQZGsIh0C7LNTX8Gwjw+crK9GXiXi/Xj0SYr6lTmeOBAcYybtzROc62zbX7+hiDs2Q5+XCLRjE0PB7ep92ukw8GNaajUdZNWxvXd5Ixj5ZEowAtgQCRwiSgf6xDCW9Ixe/3i3zlK/z/q181DmtHB6WBEyfiTDsNnhdfFPnUp3Dy7757eAl9NIrx3dwMsOcsgVXewYIC9Mazz5LxV1xMae/y5SOPORKBbPv++3Ewv/lNHOFcAETdN/fdJ/LAAxiFn/40nZBz2dvO8uXSUtPkwclf+PLLdFw+cIDsgltuoemD09hLZ/A5G6cUFhoOOWcG5NFIPA4Iu3Ytz7O4GIfmxhuZU6c4ee1ExgR4eOqOLDt5Q+oiy2KvDA4CZCt/cSSCQ1tczLnjPLe7u6Ex8PsJRCxcmLguu7sBmrSqw1l+a9vmfJ04EZ33ox+hnz76UQJnlsU5HI3ynmRQUIn1d+4kO2fxYr6ntDT3TqBa3mhZOKLpujhnO5eanai6qKAAgO6Pf2TM48ej75Yvz/w9GoStrjYgrGYfhsMGONSMP83orKnJPguzv5/zoqeH37VkOTlYqTaU18s4Kit5T64Oueo0J7ioOtXJR6mg4jEEj/O6aAyKbWPDHDwID7T6Y4EA5cl+P03bnDZ2Xx9N3To6AOWTg3CtrSJ/+AP7/NxzoQhxdpvfuZP9tHAh3/Ov/8qeuOUWqGQsC3qRtjYqO6ZPHz7u9euxyUpLaUzX1MT/1a6rqOAn3X5XOrHNm6kKcbv5rlWrhvsoGlSMRPi9qAid53KxnzZtYv4mTaLiIlkX7NtH8PdPf0IXfe5z8EFnAvq0GquhwexhTQwpKOAZRKOJPpXqcNtOT0PhlI4O7n/nTp7LzJlkHc6ZkzhvlsX9KXdvQwO27kjJP5qRqHpmtEWBxBSlzWNdF40JyYOIJ1ZsywKwCQRQ1Llk351Ook07Sko4HHIxHltbIastL8c5dYKwmqGYqZNgOAyA6HKhKDMp8WiUccbjAIi5kIX39xOx0fLnmTNHVqLOLnvFxcZpd7sTu/E536+gmvJlJBv+2n21ujrx+zW7sr+fz8yYkRhN0m6rJSW5lW5HoybDVEFNzTRNfh7xOI5PXx+/jx8PgJhpnhTgjEQwFlpa+H3OnNHP6I3FyEb0+4mWOgDcsX5AveEUv2VhcO7eLXLHHaakVpt9FBWR2ePcY9u2UX5bX48xvWBB4hqOROji29EBT6ITkNLMYG0WdN99AHdz59KBeaQO8CKs7dtuw8B7//sx1nPlu4rHMXC/9z102apVlAnluldCIZMJM25cImhg2wDuP/0pczZlCt0bL7sssZlEPG4AwmSd7+Q8S3V/RwMkDgzQofH++3EWpkyhXDNVwxwRAx4q59lol1AfJzn1R5hZ3nC6SIRMjtZWwDt1zqNR9FMwyHmv5XPFxeiSBx7gXL3ySj7ntF18Ps5SDdQ5JRpl/Uej7IH9+8kSLiszARJtQhcKpeY1DIdNVtHUqSbrKFcAMRjELvJ6sQnmzj26Euh0ok3n/vAHmgFUVcHhdtFF2ZUjWhb2iGWh5zRjVBvRiABMKHCY7b3H4zyDlhZD0zJtGnZlKrDW7+dZx+OcSbW1uWUWZTMeJ6iYDMA6QcUcgih5XTQG5eWXAewuucRUUcRiIj/8IcHAz3wG+1rF5yMD8cgRGpckdzMfGCDY0dKCDXD55YmZwfv2sbbnzycL8OtfR7/cdpvI2Wfznhde4PrLlyd+twg65O67oY85+2xsNBH03pQp7F2fj/2qiRDJiSIKZP7pT9hvs2eTETgSPZJtM1btrj40RGBycBBQbcmSxL3S1kaG5bp17ONPfILxZlPNZlnMfziMzi0vT9Q3lsX8WRY2qjNLursbfZEquULLzDdvZnxFRYz9nHOGJ7lo1eT27dxjfT1nTy70axrkOV5Aogaok4DEsa6LxoTkQcQTKPG42EeOGFDpjcq1Fo0aHsMZM3JTKl1d8E2UlGAUOkFY5cmz7fSdmKNRDGjL4mDKZABGIoBsljWcm2ak+9u/n7GWl3NQ5vqsfT4iPlrqrRF/FY2Ih8OmI2o6gNOyMNhFeJ/LhZHc0mK6VqdL/Q8EOCTLy0fOwBwaAjz0+UzJ8vjxqQ9LPfx6evh/bW3m5jfJ4gQSKyoMNcC8eaMPzMfjPAuvl+u/XlIx1g+oN5zif/hhHMubb8ZYFmH/PPAAa2fNmkTne+9egLDycrhrnHwvIujx3/2ONXzFFawNFS0dVtLrb3xD5N//nUzF//3f7ED5J58kW7KggCj9ihWmpC5bIE3LFR95BKPv9tsTuY6yEdtmfrTML7mj6KFDZB4+9xz7+IMfJOtAu0+LJDZl0cixAonJ2YfpssI1m0qbvGSS3bsBhh99lGd87rlE/VeuTB2Z12YUOobj1f35OEleF40xaWvDgZ050zjItk2mx9AQ9Crl5QbU7u/HCfV6TbazU1dps7GysuEcWiKmGqCmRuT557lWYyNBjdpavrunh/fU1w8/63t7ARoiEZzkSZPYM2VluZ3ZLS3YVAUF3GO6xkpHK/390Eq8+CK23WWXoevd7sQghJY8pwpUaFMaLelWPaVNampqcuNEDQRMybIGc7XLciodMzSE3afZ3rW1uZeJH60omOgEFlU0M9zJsZhCD+d10RiT5mZso3nzOLdF2Kv33guQd/PNifzOgQDNTvbvp2rjkksSgbdQCK7lQ4e43qpVievkyBGyE2fMQN9973vsqS9/2QRWX36Z65955vBKgYMHeW9zM7bGW9+KzzFhwvByZ02EUCBeqaLCYfTEX/7C61ddRfZgLhm4loUO37QJHXjxxYmB4f5+GuD94hfM54c/jL7NtvJQ+W39fgDB+vrU5dGxmGmC6azeUn+sqsr4RH4/fI+vvMLfa2vJOly6NLUv3NlJIMbjwe5bujS3qsHk+1FO2dGiyXJKCiBxrOuiMSGnFRuGy+VaICK7ROTjtm3/7PXXikXEIyLlIjLZtu2u119/h4g8KiJvFZFXROQ2EblcRGaJSLGI7BSRf7dte23Sd8wSkW+IyCUiUi8iA69//nbbtl/NNL7Dh1FejY1v3K6v2t3YsnIHEPv7KQd0uzm4nI64RtGVxyfVdWMxojrxOFGnTABiOMwhZdsmRT4b6ezkO2Ix7i+XzkLLF/gAACAASURBVGAqgQAR64oK7qWwkHvT7qdaolxYyIGUKV1fhO+vqjKlxQr0VVaS7ZAJHC0vZ74CAb4veR4UoOzrw3hQMve6utTOhW3z/d3dxqCeNCl3I1k7Enq9HIbTpmGc7NsHaJtr05tMoh3Hdu4EWIpGR45Wnuq66I0mf/87AOLFFxsAUTvj9fdTGuh0yo8cEfn4xw1Z+KxZiWs0EMDw9ngoi501K/H7gkETeb35Zr77Ix8hIj2SzguHMazXrcNou/NOjMNcAcRnnoG/sbsbY/9Tn8qNikGEexgYYK9WVCQGBDo7RX75S5HHH0eHfPSjZPglNwJI7vSsryvAqPM0EnDnzGRw/q4Si4ls2AB4uHkzz+vqqylZdgK8yZ+JRk0HVeVfHCsyMDBy0CSvi04t8fkAuevqTFMPEUBAvx/7UPdZSQn7Y/169MKKFcYm8HqNPujs5LVUnGFeL/qouprS3qeewjn/wAe4vvIyB4PoQKeOsG24nHfv5vU3v5nvzBVAHBzk7FRO6NmzRzerzu8nK+nZZ/l95Uo6wDv1lXZ61xJvzSRSMFHtGA24RqPMT0NDYpZPNqJ2jpYsa4frpqb0+zUY5DORCHMzaVJulS+jIQoOJjdHSMev6AQVbXvkQHteF51aMjhIJl5dHWCcyuOPAyC+/e2JAGI4DJ3KwYNwOZ95ZiKoFIvRGGXfPs7eVasSv6+rC101aRLBjF/9irP5jjvMvti6FQBx4cLhlR2PPUYwtrKSfydOZL9OmpQ6M66khL07OIjNpskXv/41+nbpUhqppaKYyiTRKNVwhw/jCyxfbppkxWIAhz/5Cd95/fUi//RPuYFv4TD+lMtlMpD7+7mPZOzA7eb59fWZzswuF/o6EuEzvb0kQuzaha0zezbg4axZqX3Hvj7Aw+5urnP++blXDCaLs5RdZPTtLAUPLYu5G8mnzOui0ZHTCkS0bXu3y+XqEpG3iMjPXn95ubAgrNdf/83rr18iIlER2SgiC0XkBhH5rYj8l4iUisi1InKvy+Uqtm37FyIiLperSESeEJFKEflPEWkRkUkicrGInCEiGRfFwYNEEnp7+XmjiW2TKRgIYJi1t2f/WZ+PTBeXC0O6r8+UwIqYSPv48amvG48b3r+mJg6ydBIOEzV2uRhnR8fI4wuFiLx5vRxws2YZ7sZcpK8Po7OoyGQUaOe/nTsxwisqTEfjnh7Dq5NJbJt7am5GuTY1ccBmmgen+HyGh7CoiP8PDHC/8TjXqq01xORtbamv0dvLMygv59DXroTHIj4fz6ykhLlobye7Y7QN8MJCjKCdO+FtySSnui56I0lXF5HxGTPIRlN5+mmMwLe9LTGC3NnJ87UsAMTGxkTHz+8XeeghjLOrrx5elhwKmf3xgQ9gFN95J5w9IxlhR45gcO7dS5T9U58ygFu2AKLHA3j4xBPc8z33wBubq2j5sgL2GnTRUqVHHuH397yHeU0F3KuTrlmJCipGIpwDLhc6I9t7SwUkapbWAw/wrKdNoyzquuvSBxOUe075zkpLxwZ4qF1zn3gCR2/TJhyuzJ/J66JTRaJRnLPi4sSyt+5u1vHEiYmZKqEQXK1eLwGQKVPIXtTsXS1TDodx8nQ963WHhkwn31/9ipK0yy9nbyiXV1cX76uvTwTdQiHA+J4edOCZZ/I9sRhnazbZePE4OratDf2xaNHoUo6Ew4CiGzbw//PPB/hIle3j5P5TfjGPh/vr7zd2zMSJjLGqinnR7ORsJBbjeTQ3o9+Ki3HYp01LH7QOh/l+Lb2cMOHoO6uOtiR3GBcxa29oiLnbtYufI0dE/vM/M18vr4tOHYnFCKLG43CF6jN+5RWaEC1fzl5yvv873+FZX3MNfK1z5yZSldxzD/bx6tXDAcSBAXRBdTXf++STZP995jMmoLBzJ9efOxd9oxIIEIDdsAHw60tfwg7zegmqZAIBXS6+s7gYu+3JJ7E5PvAB+A9zBcY8HoIVfj92lTZoCoUIqv7gB+znK64AHE0XwEwl8bgJQBcVMU4NsAaD+E+lpcN1b3ExmYLqk9XU8LxaWtCPnZ3otHPO4SddNqTPBx2NcvgvW4YvNVpVGQUFxgYUGV2bKxQiA/2JJ/j36aczvz+vi0ZHTrtyZpfLtU5ELrRtu+H1378oIh8XkWYR2Wbb9idef32TiERt217hcrlKRCRm23bccR2XiGwQkWm2bc9//bUzRWSriFxv2/aDuY5t506xR5P7ZaxJTw8KbsKE3Mp7fT46WVkWAGLyZ30+fqqrUzuN2sgmGEyM8qeSUAgjsKAAEG+kaLkCo62t/N7URFQs14NJS7EHB7kHzTaIxzmstDRS70cbNVRXj6yIg0HGp+WIdXW58+sowffQkDnoNNpVW5sZsPP7efYK9B0PI3lw0BjhHR2Mce7cYy8Dsm2uqwe7CAf15ZePnCp/KusieYOU7YTD8O14PACC6sBu2UIpy7nnJpb39vVRdtLXRwnz9OlEkDULxeeDYy8UAkBMji5HIqyVffswUvv7iUprmVAmWb+esRYVUf584YWmzDcbbj7bJqvge99jz33wgyIf+1juGT/pypcDAcC6X/+a+7/ySrIsc2lopM67ZidqabIaqVryPJLRqhyM999PdkI0ikNw0008z3Q6UQFMZ/bjqdqd1Am6NjdjHD/xBCCUZXHWvO1tIl/8Yl4XjQWxbTKiPR4cdLVVvF6c65qaxOYB0SgAYns7dk9dHUEBpw3Z3w8IqAE8Nee1SYvXy1594AGus2ZNor7zeHiPs9TP7eb1l1/GET3zTNaanv3ZAoj9/ejBcBhbaubM0XMaYzGCyuvXo6vOOgsgJFW5n1N0TjwedHkkYkqVlXolWScNDaEnMtksQ0M47O3tjG3cOGMLptNlWqauVR41NeYZnGoSixk7qK8PoOfAARMsrqoCLLnxxrwuGiuyYQNn6OrVJiP60CEy/JqaKL3VfW5Z2BUbN1K1MWsWz1vtqVgMmpYtWwDP3vnOxO8KBAAILYvg42uvkQG4Zo1Z7/v2EbSYMYNggPP1L3+ZvfWRj/AZzdpuaMiuPLi1lfEdOgQo9q53oTOrqnLjY927l3ssLoZOa+JE7unhh+HMbm6Gp/+f/gm9WViIzzOS3lOexXDYBDWTdayCgkVF2J2p9MTgIP7PgQNkkAcCzM/06YCdjY3paatee435KSwEIJ4///jZRvG4qf44FoDS7yeQ+vTTAIdKvbV8ucidd455XTQm5BQ1n49J/ioi73G5XPNs294rIMh/FZEjAlosLperSkSWich3RURs2/7/Cfqvp7NWikiBsCi+5XK5qm3b9onI64UOcoXL5Vpv27Y/l4Elczu8kUQjrdOnpy65SSdeLwddfb3IpZcOjzj5/SjFadNSR7htG8WoBngm8HJoiMNGy5BHMpT9fhR1NMqznTcv9w6F+r3NzRiRZ5zBPVoWB4LPx4HV1GSc+XgcI3hwkHsfN46fVPw+7e3MvbOURjlCkrnN0ol2do1EjEE9bx7jzDRHgYDJdJw6lTEcz0ZCWrLQ1MRhGwxi7BzNM9ES7kDAOE3l5RzuORj5p6wueiOIbRMZbmsT+cd/NPrhwAEAxLlzMQRVfD6yBbu6MAgbGxPL2DweItnRKKU8yXxesRhr7q9/JZOxuppsMWdEPZWEQnzfww9DEn7nnRin2h04GwCxvR3Q84UX0EV33EETmFwlFjNd3rV8ORqF+/F//xc9cPHFgJOpuiWOdG3l2NKyYW204nIllj6LpAYUo1Hm9N57yfAsL6dc6P3vH15S7pRU4GEuvGYnQpQrUudg3z5Awyef5Jyxbc6HT34SAHf+/JwM8LwuOsly8CAAzMKFBkAMBDj7y8vRNyrxOPqgrQ27p7KS4JvT4VXOq/HjDZCvJaeBANmNHR3sXcsiq3nxYvN5r9cEX+vqzB7Zvh1nuaaGQEZlpWkQVVExsmMZjaJjlYLlrLNGj17EtgE3H32UuZw3D9oJbZKVbjxeL7prcJBrFBRwX+PGASY4dYGWPKtuEjG2Vnl5YjZ0by/Pr6+Pa06ezHPMZGdqZcngIJ+prWV+ThUOVi0H1B8FDg8d4qe312RMXnEFGbXpOLXTSF4XnWR57TX2+bnnGgCxr49M0nHj2FO6J2yb1zdupOpg5kyTrSvC/vr1rwmQrFwJvYtTolHOL4+HAGx3N9mHK1ea9xw+DIA4bRognNoDjzxCc5dx48jwW7KE9wYCvHckfyISMWdoQQFN1S69lL3t8xmqh5F8oWgUkOrIEYDLCy7Ar9iwAbtr50506wMPiLzlLYxfS/8DAdOkLR0fczDIvisuTu9juN3Me2en0ftOaW5mDrduNdy1F1zA8wqHTQNLpw8dDhMQ2LuX3+fN43w6Gp8pF9F50MSMXHSfx4Od+/zznAWBALp82TKe7cUX50Tbk9dFxyinK4goIvIWl8t1UEQuEJHPCMjyHS6Xa6KwIAr1va+jyJ8WEOh5MpyQs0ZEfLZtH3a5XN8VkS+IyI0ul+tFEVkvIvfZtt1yfG9r7Irfj2NeVZUbgNjfj+KORonEJwOIoRBKsbQ0dTRKy4kHB0c27Px+AEQF7DIZyloarVGhRYty61TllO5u5qaoiAhZaSnj9Xo5VMrLh3cWKyxkLsaNQ6EODHAg1tRgjLpc/H7kCIdEfT33r4q7spLr+/3m/alECcYHBrjnsjIOGS1xSTdHoRD35PPxHo0WHu8Iu3KFaLl8aysH5MKF2Wdj6aGvvD+lpRxIRwk45HXRSZSnnkJ/XHedcZ67uuAFmzyZ7EBdk8EgTvbBgyJ33WUyltUY6esDQLRtIvHJ+92yWDe/+hVR8yVLyCJK1eTAKYcOEbXev58o+yc+gUGlGTIjdcWMxzHgf/pTxvYP/4ChfDRGYDBonOXaWvbu449TotTZCcD58Y8DZOUiloWhrBnUzntyAomqTxREcwKKfX10tF63Did2+nRKmlavZt+nM0Jtm7nUrs+aeXiys30ULEz+97XXcHg2bDDNx846S+QLX6AMdfr0o87myuuikyg9PeiWqVNN9nIkwv53u3H0dA1bFhyqhw7BU1ZRwdnrtH+iUXSZZvar6NoeGODzjzyCHvvYxwB6tCtwKMR7KiqM7RSJ4JR1d7POFi9mTD4f/5aXjwwgdnVxn7EY12hsHB1wzLbh9Pr97wFWGxvRc2eckXovK/fZwABgq4gpVS4r40e7Xid/XukXRHgWbrcB/lSHdXYyjlCI686ZA6iRyc7QLEhnh/tsA7nHS1Q/BoMGNFTbRzkdm5u5d7ebtbtiBQGqo7V5Ja+LTqp0dZG51dQEyCTC8//xj1nnn/ucybq1bZH/+R/Oo+uuI3BVWGhA+0gEO2fLFgIOq1cn7ifLAkDct4+gSGEh1RbOYEZrK3bapEmMp6CAPXvnnfA6n3ceZ31VFTotFBrZnxMBGHvkEfygBQvIPtRAjfIIBgKGM9Bp7zmlr49mnkND2EALF6Inv/lNeBFnzMD+Wr06UdcpDUAkYuhb3G7TId62mfdo1AQ1RtIFWn02MGD08Y4dgIfd3fgrF1/M8ykvN0BjSQn+oQYvysqYn127DH9/cvPO4y25AImdnYDYL7yAjRQKMQ/nnMP6OO+8zFnfGSSvi45RTsdyZpeIdAu16D8QkRdFZI6IdAiklu8XFsXnRaTWtm2/y+X6goh8R0TuE5HHRaRHRGIicpWIfFZEZtq2fdjxHfNFZLWIrBKQ67iIXGvb9uMjDO/0muwsJBRCiRcXY1Rmu8l7ezmYhoZQFE1NiYdTNEqUvbAQ4zjVdVtaMIQaGjIbPIODhrOnqSmzIvd4UL7BIN87e/bRpXxravrgIMp96lTmSrOASkt5PRvwKxLhPoNBfh8a4v+lpRwOqZr4RKMYsyUlw8t0/H4OTgUUqqs5jLRkWTuelZYmXlsdG4+H5zFhQmK3sBMlQ0PcQzxOhlZxMQd/uuekh3kgwNyrw1RennHs2aTK53XRSZK9e+HvWbpU5NZbWceDgyL33cczff/7jcEUifCeTZswXNUxbWjgvd3dxgC+7rrhAQvtFP6Vr2BwX3UVwNtIBtmjj2KIlpXx7wUXGL6pbADEPXv43K5dZBR85jNk4+XqlDrLl4uL2e8vvmg6LGq2zznn5A6+afahlkmmGps2PFD+ROfrW7eSAfnEE1znoot4dhddlNjdObljs5ZNazanGvQnAzxMBRiqWBbn3JNP8tPdzZo77zw4pS69lHNmBOAzr4tOYQkEcDa1zKqggPW+fz/rU4OHIoaSYPt2MnXq63mP086wLBzveByn2HmuaYO5DRsACubOJXPV2enZ6zVdO6dMYV/09uKIxuOA1k1NhtfVsnhvaWn68zAUAijweNAf8+aNHifxgQOAAQcOYFOsXk3WSfJ+CAYNcKi2UHm56ajsdifqg1zsNp3z5mZsn1iMazY1cU5k0i2WZbKedC51PCdaotHEDMNQyOijggLmrrWVAIZmSjY2AsLMn59VJUleF53CEgphA9k252hZGXv+xz/Gnrj1Vp6zinINv/3tgMdeLwHSigqu9eCD6Kqzz6aEOdmX2LuXYO6f/oSP8+UvJwZWu7oACmtr0XduN02cvvIVw019ww3sG21M2tSUuTHp0BDft2ULNsIll2AfpVu7uj+VDsmZtLF7NxyRpaXYHL29It/+NvbIxIlUuKxZM3KSgYL1Sk/jbCxXWppb0Ne2yXx89VV84HCYsbzpTSS0FBVxTz09vHfCBGNXKYepdp6fOhUbORd6sdGWWMzwzur5Ytvo2o0b+Tl4kLmbMIHzculSfLqGhoxjH+u6aEzIaQciioi4XK6HROQ8YVF8yrbtptdf3ygifxeRs0WkwLbt819//e8i4rVt+y1J1/m2iNwuSYsi6T2Nr19zr23bF4wwtNNvsjNILIbit20iI9kaTd3dKMhQCKWYnH0Rj3PAWJZxsJKlrQ2FP2nS8LJDp3i9AE1lZYnZesmiJTqdnbw3S4MqpWj5ciyGEiwvx3iLRnHia2qOjsuvvd1EaaZMwfDLdNgqcFZRwfd6PDgX4bCJ1NXVpZ7fQMA0eSku5nDSRjdaXnUyI+wKJIbDPLPycsAh55hiMdPpWhtX5FCynBUckddFJ14U0Cst5V91oB94gL+tWWOyeuJxMgGffhrOxPPOMwGCkhJTDlhaCoCYymBRY/cvfyGb8etfz7z2g0FKYB59FMPv2982TYayARBDIZGf/xxnoLqaEuyVKzNn5KWT5PLlgwdFfvYzHINp08hguuSS3K+r96LG4UjZfwokFhTwufXrKVnesQPH5LrreG7TpiUCcQoeOjnMtKRTsxuzKQcfLXHyGDoJxFU0y/SFFwANn3qKNVlSQibHZZeRSaAgQ5ZnZl4XnaISjxOcCIfRLcpbeOgQ59PMmYln9IYNgHkXXggA2NeHXeJ8T1cXAI/aDk7p7oYndNs2Oil/6EOJDm4gwOcLC3HcYzEc5YMH+f3Nb+bfeDwxg0/Xte5lp7PX1mayZmfOHDn7OltpbyfzcPt29Nzb306gxalbh4YMcKgZdJWVBjgsLja6yNmBPVt9YNvYNs3NzG0oBIgxdy5zr9xeIsyJZjFqptHgoKnkKC/HnjpRNAqWlZhhGAoZOgmXizNNbbfmZkBtBQ5nzMB+nDcvZ/7qvC46RcW2sWVaW+EjnDSJ1x54gEy7m24ymYkiVGzccw+BrPe8hz0+Ywa2kfIjHzgAqHjJJcOrzI4cIQD43HMEIP/5nxP1WG8vNlNlJedeURHlzj/5Cfvka18jOy4a5bujUfZeuvWoQcc//QndOncuQZvZs7MLaGgjOctiLNu3M1fTpvHzgx8AmlZVYed99KO5B0ricRPkUB7UXCiStOx71y7GumAB2erJzf1E2Ou9vezn8eO5l23b0Ne1tZRd51IZeDxFK1UOHTLAoTZInT7dcHCqPz95clbA61jXRWNCTsdyZhHSTq8VkZvFpKvq69eLSKOI/Lvj9bgkLTiXyzVBRD6S9Fq1iARs247pa7Ztt7hcrh4RqR3NGxjrYllk2sXjKIFsAcTOThxHywL0aWgYnp3S04PSmTw59XU7O1GeEyZkBhAHBgAJlI8onaPc3W2yBpqaOEiPJrtOswS0DKmpiYOrp4f7qK8/uuh9JMKB7fVyHxMmcN3eXoxCJV1PlrIyjPADB4wDX1bGgTluXOaDTYEZjQ663XzPpEmnBtdYRYUZ/8SJzPmePRy6yhkVDhtjOluy+KOQvC46gRKPY4QGg4CD5eXsuz/+kX127bUGQLQska9+FQDxC1/AWO7txYAtKUF//eEPrKXrrksNyO/bJ3LjjUTc/+M/aMqSSfbvZ1yHDwM83nIL+y5bAPHllwEdW1vho/rIRzAQnes9W3GWL/f3i9x9N+DW+PEin/88GZW5ZsvYNrrZyT2YbddlBUAeeoiAxuzZgMBXX52oF7XTs7Pk2dmwpaDAgIfHOws6OcPQGZPVzEqXy3BlPv44mReBAOvp0ksBgC+4AN2bDNKMsuR10QmWnTtxaJctM2dwezv7btq0RJ3yt7/hIC5fTjZgc7Mh/1fxevmsszJApaMD7rKWFkr3kksL1SYoK+OcDoXIsunqAvybP5/3ezzYFNrx0wnOx2Kcm4WF/LtvH/c3fjwZIqPBpdXXh77etImz+eqr2SfFxYnAnAZeXS5DlZNM/RKNJlIZZBvYjEbRsS0tzFNpKfZoXV1ic5miIhMA0eCFdi5W/sXycsZ2PHnGtDGDM8MwEjF/Ly5mHGVl6Jf2dgL1WlXjdqNvFywYnYZ0WUheF51geeEF/IS3vtWAR089hd5529sSAcSnngJAPP98mqft3AngNWUK6/rBB/GzzjoLzudkMKq1lUYsO3fCkfipTyXaEgMDnIdlZeztcBhb7G9/I+Pxi18kcBCJYCspPUK66o7+fgIOBw6giy68kLHOmJE9lZFmBB4+DBAZDrPnN2yApqagALqZf/iHo0sg0cYpRUXmPlRXKEdzKhsuEiE5ZPNm9Hd5OVmRs2fzt3SZeOqT7diBzWFZjPuqqxKDQCeT2iUeZ3wbNwI29/Ux7sWLCWhNnWq4uRsajltlW14XHYOcziCiiMgCEbnL8fozAlLsfI+IyCMi8nWXy3W/iPxFRBpE5BahJbezEHaliPyny+X6rYjsFVp+v+P17/ny6N7C2Jb2dsNdka1B0tZGhKWoCOU/YcLwz/b1cd0JE1IbZT09GMV1dZkj4trVsLISYz6VItUSnb4+jNSlS4++q3AshlPg95tOiF4vRm1d3dFdVwFV7Qzd2AhgpqTEfj+HtWZP1taaORscNCXLfj/jmTkzO04M22b+urtxOMrL+exod1w+VnGSoNfVMU9eL2ursJDxjlCyPBqS10UnUH7zGxyjj3+cfS1CtPvAAcpDlcvHtkX+7d/IBvzEJ4i0t7WxT8aNIyL6xz9idF17bep98eKLlASFQgBfTqLwZNEsgO98h732s59RYiOSHYDo84l8//uMt7ER3sbFiw0AnovYtinfUa7HDRu4x1tuATA9GidSHWnNAMwGgLRtjOO1axlDPI5TcdNNGJHpDFwF6AoLDYG5ggXatEVBvdEykjOVJWs2pIKGBQXoxg0byDh87jkM/vHjAXdWrSILVd+fTbbmKEheF51AaWnh7J0zx3BT9faaAKeTGH/TJojily4lq+fgQc5qZxBUQcCKCs5ypxw+TBDD5xP5P/+HveMUJdYvKjJBtS1bWMcXXICutG3DlRiP897BQQOWKR1BJGI685aWAjzl0qE9nQwOivz5zyLPPsv+WbUKHtCyMtN1VLOmCwoAGWpqUvMKapMYzZ7MNvtwcBA7raODa9TVGf4//bzySSvAqlQNbjeAQG+vAeZqa40dEo+PXnVGJJKYYegsS3a7eS7V1cxdaSlztn8/QNL+/Xy+pATAcMECAIkTHPzN66ITKAcOQKmweLHhI3z1VWhali0DqFd54QXKm888E4qU3btZt3PmsPbXrUPPLF5sssSc0twMh2FrK3bYe96TuPcGB7HJ3G7O+oMHCRb29gLQ6fvDYfSaZWG3pUqEsCwAqKeeYi+uWAHwVFU1MjVVKtHy5aIi/n/nneyVNWsIrI7U/T2VxOPoA9WpTlqI4mIDLuqe1H3o8aCjX32Vv0+eDCDrpGbq6MCGKysbDpb29vJZ9Q+XLeOZuVwEMZXvPvksOd4SiZAxunEjNvTgIGM/5xxToqw8kfX1/J6pom4UJK+LjkFO13LmAhHpFdDeObZtH3j99UoR8Qgoct3rHXTE5XK5ReRfROSDIjJZRA6JyI9FxC8iv5TX01NdLtdMEfmiUNc+VaiD3yciPxWRe+yRJ/P0m+wU0tVlOgKnaniSSpqbcf4rKvhcVdVwHkONPtfWpo6+9PdjuI8bx+GWzmjs68OgrqriwEl+n20Dgh48yO8zZ6Z+X7bi93N/kQjAlWbIVFczhqO5bjDIATs0xHWmT08NqipgoFF7zdZRR3/8eMagpL+Zuigq91tXF9fRjpFqrNfUnNwS5lQSixnAU7M4Ghs5rI7RYc82VT6vi06QvPQSmTiXX47RJ0LHwKeewkC59FLz3h//mJLgm24S+exnMcaUI+bQISLR9fUi11yT2nh96CHKiCdMoAQnU7ORoSGRb3yDEt3zzqOUWQEEBRC14Uiy2DZA1F13sX5vugkj2+1GV+aa3aINAvr6iNz/+c/s2Xe/mzk7GmMtOQswG4c9FAIQve8+jPXqau5rzRr0fzI/YiqJx9E9+r1qROvK1zJDZ7lztgGDbMqS9ZpOPsbOTviSnngCYMiyWFOXX87PkiXm+lr+OArcaHlddIrJwADgeH09zrg2Ozt0CPtkxgzz3ldfRTcsWIAz39KCzpg1y+zveJzXXa7hVRM7d4r8+7+zlj73Ocq+nBKJcGYXFAD2aaODceMIZGjwT+k9tAux6ialBnC5sGWOHOGaEyaYKeMfNAAAIABJREFUJnT6czRnaiiEjtuwgTFccAGZUcrRp1yChYWMWRvIpdrLqotyyYS2beZHG4goz3a60knt7Op2G30ZCuH0h0LoPwUPnZ2eRRKDH9naSvF4YoZhKJTYjKCkxICFpaXmHAkEeM5arh6Pc2bMn8+PBlNHWfK66BSTgQHO2dpakeuvZ902N2NTTJ2KztA18/e/w7M8dy7AXns7e+OMM9gn69YBaC1YwF4866xEG2TfPqo6/H6AxEsuSRxLIEBQLR4n6PrnP9OUZMIE6GTUjgqF8G9EWKepgppKNdPejs475xwD/Dc05KaLwmFArSNHyPp77DH8hiuvBAidNYu9nsoWTCeaHawVT2Vl6YH6eNwEQpubKTs+fJj9vWABAUcNiid/rqXFcJe6XOhLLVsuLTWNPwMB9KbqNG2yUld3/BuqBINU0bzwAv8Gg+hHbYoydSr6MxAwXe6nTTvm7O2xrovGhJyWIOIpLKf9ZHs8OFK1tZlLiZ1y+DDRUeXgKyoa3ixlaIisu8rK4V2aRVCIR46YjLp0B0hPDxGa6urUB83QEEa2z8dY5s07+tIOLV9ub8fo1rLiqqr0RnA212xvZ44LCzk4nBkNqUQzGFpaTEOUxsbELtThMAd/WVnqzCafD2MiFOI9kyebwygeN81UamtPbnq8SijEgaRdbl0uQxTv8zF+zUo7SjkF7vKY5LTSRa2tGKHTp4vcfjt74+BBjMxZsyjv03X5q1/hdF9zDUTf/f2siUmTMOAef5z18a53DTdibJuy3699jcjugw9mbtq0Zw9GdUsLGY8f/rDZ95q5lw5A7Owkc/H55zGub78dvWjb7L1cM0eCQa75+9+TZRmLEdn+0IdS69RsJB43zQqyyT5sa6Nk+be/xdidP59y8He+M7G5RKpGK8nfqRQMyU0SnBxlyV2e9fVkQHGksuRk0NAphw4Z4PDVV3ltzhyAkMsvxwlwAgnHoWQ5r4tOIQmHybBwu3GQ3G723v79rPHZs82z372bpiGzZpEBrEG6KVNMhoie+VrZ4cw4ef55GiCNH4+eSba5tNmZlvy+8gpn9axZZKXo/orFsH0KC1NTI4RCBHm1Ad3s2egMZ7MXZ0ZeNhKNUr745z9je5x5JnygxcXoYw10Kr/hSAFX1Qv6uZH0YyRiSpbDYewaZ6OUTBIOM1/6bAMBwzNZWZl6nE5AUfWLUxdoBYkzu1C7t6qUlLCGFDRM5nv1+Thz9uzBHrZtwB5tjKJAw3GUvC46hUS5oIeGqJqormb/f+c7rL3bbjOJA7t2UVI8dSq8zuEw66ihAZ2wbh3vW7aMNbxoUWJZ7+bNAIeFhVzf2YFZhPX81FOs6eXLCeS+8AJA4+23G39CEySUYzXZBotGoaB5/nl8lSuu4LPKZZ2rLdPTQ7nv3/7G+Pr60ENf/CIgqfJGR6OMpbp6ZPA9FmM8lsUeHYn3MBwG+Nu0ifGUldGsJlNDGJVgkPOhsBBdf+gQ+uuMM/BfVR/39/MM6uqMrdXdjR6cODH7su9sxecjsL9xI+B0NMq9nH8+gaJ58/j+7m7WU1UVa238+ET77xj01VjXRWNC8iDiiZXTerK1YUimEuFkOXAApTdpEsojFjMdA1W0OUZJiclSccrgINcoL8c4TuecaYakcns4xbIwupqbUbpz5hwb6azyBXZ1cS+TJnH4pCq9yVb8fq4ZCjFXyZ0ZnaLcQX19PBeXyxjjoRB/EzElQQUFvC8UQpnrgTI0xNwHAmb+U2WBKkBXVHT0DWeOVZRIPBAwpUPKA6QNDdRJ8/sxllIREmcpY/2AOm10UTCI8RsKAe7V1GCI3X8/Tt373mf0ycMPAzZefjmlKqEQ66G6msj2hg3sq9WrhzuS0SjlPffey9//67/SlxLbNgDjXXexX+68k0i5SiYA0bIMwbhlEQm/9lruU8GAXHSIbRNEePhhfoJBsgA++tHU0e1sr5lt9qFtA6qsXUsZk8tFqeKNNxJhT/U5Bf6cYJ+WKDqzjNLpPyeQmHxNbYbgbM6i73NmLTpfT76f3bsBmx9/nOwLEUpRL78czqnZsw2HnGZxHceS5bwuOkXEtilB8/lMll80atbI3Llmvx88yD5vaKDRQTyOHVNZiQ5S6e3l3NIKDf2eP/wBHTNrFl1Ck8/lWAzdpuD4tm38f9kyzj4V5QhOByD29ACAxmLoi6lTDWDn3Ge6X3SdZ9qbmzYZntrp03EqFczQ5nI1NdlxvTqzD1UXZQLovV5Tam5Z2FJNTYAP2e7NWIxrDAww7vHjR+aRdoqCiWqvhEKGv9FZIu3MMEzXHbu/H320e7dpRlBfD3C4YEH2wfxRkrwuOoVk/XrWxbXXss9CIWySvj6CDuoHHTwo8i//wp771rdYd6++is0/cSJ6yu0GXPN4uJbTdnj8cZHvfpd98J3vDA/QRyIAfxqs/f732Tuf/CRj030TCODjFBZyjWRg68ABgqD9/dhTb3mL6TTc2Ji5kipZbBs+vv/9XzIPe3sBDe+4g/tMlkDA+E2Vlamz9zQIEIkYjvlMQZW+PsDX7dv5TEMDNtGcOcZOKSzkOaSz+cJhANXXXuP5LV0KgJgqAN7Xh56pr0dPxuMmyDRp0rEHNnt7AYY3bmQ8lsX6efObKTVfsMA0Mx0Y4HsnTOC+nVnfyq2tevAoZazrojEheRDxxMppO9nKX6F8htkoo717Ae2mTkWR+P0oHKdjHovh3BcUDM9OFAHkUv6g2bPTK9rOTg6/urrh4KDXS8QtEOBvc+YcGz+Mz8fBrQfmlCmm2+bRSDxOxLynh/ucPj39YRmPc8D293NYFBWZDM/kzsQeD3NeUGBKhHw+rlFSwvcpJ9LEiSNnGSo4WVp63DksEkSdIOUFUhLxVBmkCiS2tWHAT5+e6FDlIGP9gDotdJFti/zwhxi8t91GdHNoCMDKtgGq1Dh5/HEi3itWkIlYUMA60Ajus8+iu97xjuF7dWCAUuK//lXk05+m1Cfdfvb7ASqfeILv+sY3EnlnMgGIBw/y/tdeI2L7z//M3lSOrVzpD0IhsjHvu4/9fv75cKbNn5/9NZJFwTE18NLp3EAAoGPtWkAILae64YbsuIU0Y0c7Njs5D0fSz8nZhMllycmchsmdVZPFsoimP/44z7W1lfe96U1kHL71rRjCzsYyOvZMczRKktdFp4js2YNNs2QJ4I1lsfbD4cSGFS0t8LeOH08Jf1ERe9+yEu0Yvx/bpabGZNhEoyL/8z/oq2XL4DFNDmbE43xOO3Rqk5blyxOd30wAojZO6e9H78ybN9xxVjBRQTwF6tXxdTq/to2z/NBDBGzr6wEPtVxRgcNcOF61mYnI8Ixkp1iWKVlWLuqpUwEecinl0+6q2jRFBPAwmwqMWCwxwzAUSmwMVVRkMg3VfkmXidPVZYDDnh5emzLFAIcjVaccR8nrolNEtm4laLdiBQENy4LuZedOGp1o6XBbG1l3JSWGakUbQtXXA7CVlpLx19rKWtfP2jaVHffeC+j31a8OD0zGYmT69fQAYj34IGv1a19LtEOGhtALbjfXcp7xwSCA6CuvML6rr8ZnbG423cRzKTUOhUT++79pHtPczDi++EU6wI+U7ezzmQYp48YZnRONMk7bNrov1bVsmzNh82aCRoWFzOfy5cPtokjE0EW53VzT2ehKdUAshp2rXYwz6UHVF/X1huO2u5trZ6qqSSft7aaj8p49vNbYiG5fsYIxKVjZ0cHcFxdzr5Mnp7flRgFIHOu6aExIHkQ8sXJaTnYsBoBo2yjzbBy83bs5vBobMeZ6e40xpmJZhqssOTtRxJQIFRUB/KVSNLZtCLnHj08kAI/FMNzb2zkk583LnsMx3X0dPMhPURHOwKRJx5Ym7vFwyEWjXGvq1NROrjZJGBhgHBUVhu8w06EYiRguisJCDuLOTg7Kmhrma/z47CNUQ0Ncq6Li6DpN5yLJJctaij3SgRONcs9HjvD/WbOOKlo/1g+o00IX/fGPRMnXrCELLBoV+fWvcXzf9z6z3597DvDvzDPJ8CstZZ2HQuz/TZvQIVdeORzwOXQIzsDDh4m2f+hD6UGhnTuJ8Le3QxL+wQ8m7h0FmJIBxEhE5Je/xCCvrISn6G1vM13Ei4tza1xk23AP/fznGP6LF8PhuGxZ9tdIFuVI02YF6bLqmpsBLR9+GGd70SIA2CuvzI3jxhnV1/LEkfgWnWCh/qTKLnTyGDrf78xO1IypJ5/kp6eH71+xgmdz2WXmvEjmPjvOXZaTJa+LTgHp7AQka2rCKbVtdIbPZzi19H3338/v738/Z5ZmZjg7kEYigI0lJYaTeXAQIGDHDrJ5r7tu+DmrgJnXyxkXCGCLLF6cuB4jEROccDYh0/JptelmzsyOY0z1gzq+yvVaUkIG0e9+Z7gYL7mEcr3aWuyMXClj9LsUsEynF8JhU7IciXCfWrKci2NqWcyn18ucVFWZigufj3t0gpGWxXcrWBgMovtFGKeChVqarDaiZkorICtisrE7OgzHoWbxNDUBGs6bl75L6wmWvC46BaStDbto5kyoQlwughbPPIOtdNFFvK+nh0BlLAaA2NDAZ5ubWaN/+xt2x7vehV9TUIAN5Xazvu++mwzDs88WufXW4QCiZRF4PXCAs3TXLqogvvCFxP2iDY1KSvAhdW9q4OGxx9hDF11E9qHPx37Q9+eS9PHMM2Rdbt/O/d5xB5ngueiDUIgxWBb7t7DQVD/p76k+8+qrZKoPDDCv55xD9mOmQIZmWjsbRbW0YGuGw/jQS5bwva2tzEmmpqKxGM/d7TbZ134/PpFWy2US28YmVuDwyBFenzsX4FAbdYlw9rS3A1JalqERGz8+u2D4MQKJY10XjQk5Xbsz5+UEiW2juGKx7AHEnTs5AGbMQAE6uwc739fdzXUnTRp+3VCIQ83txkBOByC2t6PsJ0xI5Mro7SUTMhplDDNmHFu2iNfLfel3LVhwbCBaNMqhqt2P58wZftBo05S+PkNIW1ubyHkxkhQXM79+PwaqprbX1+O45FqaXFHBYar8SsdIjDtMLIt7DQSMA6GEx9k67JqdKcIaOnDAHKh5GTuyYwdZLeedRyaYbdMQpbsbo1cBxC1bKPebP5+sxdJS9mswyLN/7TX26+WXD19DL74IGBmP4/ivXJlaT9g24OXdd2Mg/fKXGNtOUQAxuZnG1q0Y8IcPi1x1FSXT48ZhWMdirO1couxbtoj86Ec4m42NIt/+Nk77sZTRjtSswLIoqVm71nRXveIKwENtLJGtqNHs5DcrKRmu40fqlqyZhem4DFO9NxBg/I8/ThbH4CBzf8kl3M+llyaCuckly8fSYCIvY1f8fs7/mhrT2KSjg/NZu4WKYHf85jesqRtu4GzXxmf19eaM1wCqksy7XNhJP/wh+u2978WhTrYx1G5qacF+KC0l+zg5wyUcxoZKBhCHhrADfD5sCWf25EiigGFJCeP3eHCaH3mEc7aqij20atWxcXA5s5KLi1Pr44EB7l/LubUJTF1d7rpocNB0rNbO2E57tKyMvyuNSijE/KoUFRkdrsBhujEoYKilhvv3o8f37GGNFRZi715wwbHbmHk5PWVoCNCtuppgl8vFWfbMM+w9BRAHBqioCIWofmhoYK23tLCWX3yRtf7udwMaxWIGQPR44E3ctQu76brrhgOItm068D79NOv585+HCiaZx7OlhX3h9MMGBmi+tmcPOvTmm/FVOjvRo9qBOVu7/9AhqlWeeIJ9/KUvkZF5NJz3ykeqTToLC9ExqQK9PT1kHb72mvE3L70UezSbsTupW/btw14MBHheF1+cmHVcX894PJ70XZfdbvRgX5+pzqusBKT0+fiuZHtTE382bsTOUz9x8WIy4d/8ZpPFqGXT7e3/j73zDo+rutb+nlHvxepy701uGAwGAw7YEAIxSRx6IOFCEkJuOvdCkhsSUkhPIPlSSIMQSighgAOx6c0ONi64yk2yZVm9jDSaXs73x49195nRjKQZjWTpZtbzzCN7yjn7nLP3u9d6V0PPtlp1ynKsDVxEN5PsnQQ0oUtKgiX5SJIyLGlqwhifOHFwMA4GAdK2NhShyZNRlFNS+hM4nZ1sbiUl/Y/r9erOydOnR+9q2tiI4mXuEu3xoJhJk5aamuGl3rrdbIDHj3MdNTUDe4GGIu3tjN0wuK/hdSAlFVlSltPTMTSKimInQgMBNuSOjtCITpeLMUi3s1gkL4/f2e3Rm0bEKpFSluPpTisiG6lhQCQdPMhYhxOJmpTRk85OInKqq2lWYrHg8T58GKJvxgy+t38/HvKqKiIQc3LAADFwjx1DEbrggv6G3WOP0Qxl0iRIwXnzIs/l3l7SeF5+GbLprrsi1ycLJxD7+iD7/vY3jPx778Xgl5SZQEB3cx+KHDpEp8MtW1Asb7uNtJ/hOEdEeRMyL1yJ6+vT6dLHjnHeW2+F5IgnNSacPJQIIyHrlOrfLVmiCs2EoVnMqc2RjPfeXoysTZuYQ243z2/NGl5nnaVxRsYiEUNKaYwba53pkzI64veDJSkp1KOyWNhP29vRX0S3sdlwNFitEIh5ecz1piaMNvN6aW3luNXVrIPaWvBOKYzpefP66y2SdbFrF3O6spIUuXCiSQjEtDT9WTAI6XbiBOebOzc0a2MoYibc6uvBw/37ITOuuQaD10zW+/1DK00gIjVRJRonPPowGIRgaGjQ3ZMnTwa/4yHbJDpHHDlFReCA3891SoShx6PxWtKxc3M1aRgLLvh86La1texl8pxmzIDQnTZNY7DFoqO0RyniOSljXIJBCESPh1qDGRnYXI8/DgH4oQ/xvb4+dJbubv5Oncr8PXwYDDlyBJti/XqdmTR7NnO7vh4Csbub8iRnndW/BqK5DvL27czdu+7CvjCLlBbKyiIKOyVFZwBs2sRxLrkEvUgpvbZLSrRzZTBpayOD5IEH+P+VV9KBejhBA1LPND2d43i9kLfBoMblw4chDyVFe8ECyp/EU2v/5Elq2vb0oJusWKGj+bxejYV5eWBrV5fGn0iSkcFxJLpasgC9Xn4rY9yzB+Jwyxaed2oqUadXXskYzEEmfj9zpbmZ+SdRohUVwyP/zI0IRYdOytiRJImYlLilrU3X/RuMiJPC3h0dbEaTJ+uCuBUVocDQ08MmV1jY37Pj80H6BINsSJFIpGAQAszh0OSaKNhSd2j69OF1qpM04IYGNsLS0sjFbGMRt5sNx27nfk6ZEroJuFyQJ5JSk5urC9LGeh3iLZLOWAUFPEcZf18fBsWxY5qIHeq1WSwYDtIJubAwPuCXdEank+ceS8ryUMQczn/wIIr7ggVjJi0oKVHE54N8CwRIGc7IAFu2bSM1RFJ26+pI4S0oUOq3v2UeBoPM+S1bUHiWLiU9xiyGQSOUu+9W6pxzMN5LSyPP/z178G63thLteN11/ddiJALx1VeV+tGPWIPXXIM3NytLG6hKsYaGMs9PniRt+cUXOcaNNxI9GUv6c7iYa/tFij6sq4M4fOop1ufixRRsv+ii+JwGfr8mCKxWTZya66xJ5LG5dqE5LTmaSNdTiRZUin3oxReJONyyhfOXlRFRcdFF1JAy33tzSpGQmampOkIgGXn47ymGgZHucpGalpHB+m1q0qlbSrGHPvooc+faa7VOcvIkn0u6slLoFQ6HdqC++SbGeEkJ5GN5eeQMgWPHMNwNAzJz/vz+5JJEyZkJxJ4eHBAuF2tgxozYiD2JpOzp4e+WLZCH2dlg28UX68gWr1eXKPD79ToWMjHSWhIsihZ9KI7cxkbWaG4uulhVVXx6hxjhUlNa6k93dHCu8LTkggL2B+nwHEtzBxm/RBwePcp5pbzO3LnoquFYJAa1+b6YsTEp/57yxhtgyiWXgBeNjdT+mzQJ54PVynz79rf53te/rusS1tWhB9fXQ/585COs7aYmHBKlpZBiP/wh8/PjH4c8nDWr/5p95RX0G8kK+fKX+xP53d2MIScHW8dqRY966inGPWsWUYtFRbpRpdut02EHk95eOkD/+tfg6dlnk7q8YsXw7rFgqMXCNaWlsSb7+sCIN9/UeJqfT9ThkiWxZZOItLfjoJLIy7PP1k1LpWSCxwOeZmQwFsGi1laeezQHg2SN9fWBLzk5nOOllyB+9+8HCzMzIT9XruRveDShw8EcaW9nTAUFYFasUd8DiZlIVCqJcWNJkiRiUuISmw0DuLBw8OitQAAg7OpCuauuZgNxudgMzMa5w8FnOTn9FWWpYej3o+hG8rKIR93lYrMpKAAIDx5EyS0sZNOMB9BlDDYbr+ZmwFeuKV7ANAwIjaYmXSRYvGSGwbg7O7kmiZYrLo6PsDQM3aFYFO6Kiv73IzeX+9TYyPl9PjaY8FSeaGK1cu+7u/n9UAqPi4SnLKemshlnZSXeWE9JYQ7Onk1qxr59w49OTcrIyl/+gqL7uc9hUB8/Ts26adOIQlSKefvJTzJXf/tbHVXT3k6ETFubLvxsFrebSLrHH8cA/va3URQjpQ0++CBdBsvKaHRQU9N/rFK3S5prtLdDtr3yCkryj3+si5R7PLoMQF7e4NElHR141zdsYF18+MN4iCM1oIpFpFmCUqHRh4EARsqDD5LSkpZGIfLrriOaM95zud1aOZTOqvJ/c1djiSaM1mxgILFaIRo2bYI8fOcdjjd5MsbVRRdBvESKYjRHY0qJBiEmpTabue5iMiro30eOHWNNz5nDHud2815mJoaxxcK+/eijrO2rr9YRhx0d7HHV1Zo0dzrZ63Nz2T+ffBKie+5cooql1nH4/H/3XeZ0fj7pipFq/IrxK+lqfj842tzMeGtqoqfAmSUQ0ISh1AXz+3HkbN/O/L/kEmqghjvk0tNZ49IQRdaV1FGUkgBCKprrsMr7IuLEbWvj/+aU5XjE5eJe2O26uVxqKs9Nxi4NT7Ky+jdO8HoxyF2uwfVLhwOdVEibYJBnvngxc0lIlUhiLpsgGCRkYpJQ/PeVgwdpPLJ0KXOop4fsi+xsMioyMlhL3/sepPV//ZcuudLejgPi4EH2wQ99iO8eOQKmTJuGnvG73zE3P/IRdJQ5c/rPsb/+FQIxJYXow0su6Y9XnZ2stbw8iK5gEJ3otddYX+vX6zIoLhc6XiCAbTSYbu52K/XHP5LZ0dHBca66SqmPfjT28kxm8fsZSzCoSxTIdbW1gb+7d7O2KyvRLZcujc+parNxLIlSP/10noEZE6T7cyCgo8u9XnCqrAyCtr194MjH/HzmyXPPQRq++y57UFqaLhO0dGn/bBhzynJvL2MpK8PmHqkSC0kicWxKkkRMSszicEB65eQM3pDC7ye9pqeHKK/KSkCqpwelybwheDyAfkZG/1DzYBBly+PByxEJqAIBlEqPB8U8N5fN5/hxAGjOnKF1BY0kojj39fGSCLvJk4cXueZwYHS4XCi/kyZpJVu6LPv93JPKSpT8eI3U3l6em8fD/Zs4ceBoJauV+5idrRumOBy6qPhgUVIpKdwbMTYGu08+H8d3u/l/RgbnTnRdxUjjLC1lYzxwgMiSxYuT9YbGorz+OormZZcRcdjZqdTTT2NYX3YZc7a9XalPf5r59Ic/sKaUYv0++ywK34UXEm1mlo4OiMN//Uupb3xDqZtv5njh86Cnh8Lcr78OafnNb0aOPjETiBYLHvZf/AJF77Of5VyyhlwuXmlpg0cW9/URBfjEE5zjwgtRkONN2xORaLtgUEcHWSys3SefpCbkiRMoi5//PKlMsXYBNRu9Qh6aI5HCG6CEi6QSD1WBPHoUEmbjRhwEhgEh85//SS2nOXMi32tJV5aoo4FSls2RkuHNEJKE4v9d6exkflVUoAeIkzMlRRt8Xi9lEST1TyITnU5wqqBA74t+P8699HT219/8ho7gq1ZRbkEp9CLznBJi/+BBXWsrEoHlcmkDMysLrDtyhPcmTtSphNHE59PEoXQmlii9PXvAQpcLY/eyywYuZSAd1lNTQ2utKhUa8SvkvOgBqam663RDA+NIS2PskybF7hiWbqqiF0n9roICdBwhDOU1GOakpzNWaVYTTh709OiMh4YG3isqwlifO3dozWvCxUwYKhXa4Emwy0woJiOm/29KZycOMqmT5/FAIDqd1CEsKGBO/PjHrNfPf15H5LnddD7evZu04csvZ57U1jKPZ85U6r77SJM+/XSlLr2UuTV7dqhuHgiQvfHQQ6zJX/0KWy1c2tvBufx81u3x49RN7eggYu/979fRblIvUWqBDlQyy++HwPzxjyG3Fiygsd355zPueLOXzA3erFbGlprKXl9bC3l44gTrfckSovWys9HTpLP9UPWyvj6ez/Hj4MnixdzngbAnJYXj+/2aTLRaub+9vXwWTrzabOi5mzfrGosFBewfq1axnzkc4JOZQPT5dMqy18vzmDYNonI06hVaraHlbJJE4qmXZHfm0ZVxf7O9Xkiv1FS8QgMZST4fSrDdTqRKeTnvSQRfZaVWavx+3rdYeN8MDkIgOhycM5LB7vejmIlSHAyisDkcGL0zZ8ZXyFvSdURx7usDqHNz2SjjLQ4eCOApamvjGJMnYzhIJEJvr+4COGHC8FIThfR1Otn0KypiS7nxerXC7vOFplsWFg5uKLvd/CYzM3Idp/CUZYn8Gu0NQrpa7t+PorBkyYBKy3hXx8cdFtXXU8tmzhzSY9xuFFZJERSv6ic+wXy/7z4dIed2E0HX3Ez03GmnhR770CFd/+c3v9GNWnJzQ+f3rl1K3X47a/RLX8LDHckwMxOIjY14/3fu5Lxf/aomNg2D9SnpKAMVnna7qZ/40EOsp3PPZcwTJ6IADqf2qDmKRaImDx8m6vPppzn3aacRdbhmzdAURkkhDu+Y7PXq9O6MDPBvKGnJckwhHaI1uNm7F9Jw0yZdO3fJEqIN16wBa6OdT4xvs5IaS82xcDJRqVEhFJNYNMridmOEZWTgjLBYIBTdbnQGX4xUAAAgAElEQVQNifR77DEMzA9/mMhjpZhjdXX8Zvp0bRhJOm5+PtHTDQ04BxYt4v2SklCj3W4nqrqlhSjCs86KPKdlb83I4FxHjmCw5+RgoEaL7PF6ddZFXx/vZWSw5+fnQzr84x98Pn8+kZKCa7GIOBXMZKJE1yjFmF0urrOtjXtVUMA6Di+FE00k4lnqGMq/7XbuT1YWemJZGf+OF0ul2Z2MsbMToqG2lvErxTnmzo2v7mQsYiYUzVHcI0woJrFolMXjwcHn86EHZWWBH3v2EIG4cCHP/557cMB+8pMQdUrx/sMPU4Nw1SoiEFNScKZ3d4NPv/0tEcaXX853urrAOLMDsaNDqS9+kZIy552n1M9/HpnUb22FRCws5PebNvGboiJSlwUj5ZjNzRxn6tToOodhgEN33w0GL1gAGTZzJtgcicgcqvh84EQwqJtGOZ3ocjt26LJbp50G4We2FyTwRGoWFhREvwa3GyfnkSPg3ezZZKjEY1+KE0ZK9xgGtmp3N6Um3noLG8cwwM+zzw6tsVhSorNmPB4wyuvVKcuGwTVXVcWWYZZIkTI3Ug4jiox3LBoXkiQRR1fG9c0OBDDkDWPwTsxeLyDrdKIEl5TouoR+PwAkgCqdCAMBCETzcQ0D0rK3F6UxUrqNdDL2+/l9W5tudT97duzRMnJeu12n66SloSyLMm8mQGOVnh48TV6vDgG329mcJWW5qIhxx0tSKsWxWls1ASi1lOIZt9PJ8XJzAe7ubjZQ8dwXFAx8XIlklILjgYA+ppAt2dkjk7Ici0hx9n37MK6WLYv6DMb7BjWusMhuJ+JPKf5mZeF1bm+HyKuoYI7dfDOK2K9+hUdYKdbZAw9gzH/oQ6RnmOXVVyHHMjNJO5w3DywRj7NSzIv776cWY1UVdYHmz488ViEQDUOpRx4hGjIjA+//ZZfp+R0Msob8fh31EkkCAZTk++9HsV6xgrTlSZP4TX5+/GvGnC4ohuUrr0C4bt3KuC+7DONE0q4HOpaZNDSrFuY6XikpOq0x3jFLtKSkPm/frolDada1YgXE4YUXhqb0mOsjSlqyOWXZTKQOB4sidY6WMQ+VNB2iJLFoFCUYxPB1Oplj2dnoKD09RGXk5/Odv/0NLLrsMgxbkcZG8GzqVG1oS33pYBC8cDqVuukm1rjTSZaCOZqloYEoErebMURbm0IgZmaiX0jq7JQpuraWWdxuTRw6nbyXlYXeUFjIcXbtUuqZZ9Atpk2DPJSO1MORQAAMl1qJOTncE0m5DgR0tsaECTp6OZxENAyMXzNZ6PXqz1NT+VwyPEpLh+YMHao0NoJHdXU6Fbq6GtJwzpxT07zNHFltxiJxkiSx6H9lXGGRYZBdUV+PQ7G6mqyBF18k8nn1ar7zu98RbXjttXxP5IknIBbPPpvvW63M3+PHwbH77kNvuuUWyMjGRnCjulof4+23cYy2tSn1sY8R+RhpLTU3Q6oXFYEvGzag/6xcSaS16NmGAWHV1YVdMXFi9LX5xhs4lnftgoC88krdJOTcc2OvTyoSDIIbPh9rJCuL69u2DYI1EAD7Tj+dCMmB1o/LBd5LyYKcHP19n4/jHTzI5zNmsFfEW27LLD4fx33+ed3QVMplrVzJa+rU0LF0dOha8cEgY2tu5tlImnRVVWLGN1wZApE43rFoXEiSRBxdGbc32zDYWNxuFNCBQMTjQYnyePDOiNLU3o5SVV6uf28YgJvbzftmQ9owdOOSiRMjk4E+n66XkZ3NJifpzOZOdrFcp8OBQRAIaFKrtZXPJ02Kf2OSaEnpnFVVpbthSQ2eCROGr9B6vTo9JyUF4I9URylW6e3lGqThgzSXcTo5T2EhxFu080hEp7m+mURfDYcsTbSIErN3L9e0bFlEwmO8b1DjBouCQaV+8hMUoq99DcVnwwb+v24dyqPHg9d91y6lfvYzFEileF86B69b1z8C8YEH8KDPmoVCLZ32srL0nOzupgD5W2+RAvuNb0SPDJbmIAcPas/4hRcSOWnGr0BARzdHm/+GAcH5+9+jyC9YoNR//Af4K1HKw1HmzKmEDodOWW5uxkkiBkekOkLhEYZmNcJcH1CuVWosmtOWhyMuFyTKiy9SCLyri3u4ahXE4fveN3D9IzOpaU5BFvIw0WKOxDR3ijaTisOQJBaNouzfTxbBkiUQUM3N6DBVVbosxrPP8r2LLgp1Wths7C1lZbpkS28vv29uJnIxK4t0+4ICPsvP1zpHIADGHTzIOjrzzOjRf0LIie4mNaFnzQrFDadTE4dSSkRqUhcW6ujHgwdJOzx+HHxYt44IyEQQUFIjUUj9kyfBPIdDd26dOJE1Lh3cJV1XohgFZzwevcZSU3UNw/R0PpNMCinLMtz1LnqqpCqLnlRZyf0ZazWWhVAMxz5zw6phSBKLRlG2bkUvOf98cOb113Fcrl4NKaiULn1y+eVKXX+9Xq/PPovT7bTTSPu1WMCAfft0yRSvl8yLiRPRZUpKILqUYv78/vfUH8zMJMLxqqsirychBTMyIOL278fx+6EPhRKSUpKqrw8sjVYua/duyMPXXgN3v/AFxiZRkqefHv+6luZPUrKhro6U5aYmMGTRIu5ZLMEpwSC4I6UOcnLA0f37Od/kyYnBCcPAcSURhydOgImVlUSqX3TRwBmEbrfuxi0ldpxOnv+CBWMvfdhcqzrCNY13LBoXkqyJmJQhSVMTgFJdPbDh6nIRgej1sqmJIdfbq2ssmH8v0XfSidAsJ0+yqVVWRgZsrxcglu5Uzc2A8/z58dUpFGVaPNQTJuA56+yEoJw8OX6yq7MTQA8EuCdpadxTw8BAmDBh4FTGoYjPhzHS3Y1CIIZKooA/NxdDxG7nGtLTIX49Hp6jdI4uKgolWQyDZywKvITR5+ePvU1JKe5dVRXPav9+UheWLRudmh9J6S9PPYVie+ONOAakBth552EQ+3x4v3fsIG1YCES3m2jF48f7pzAHg0rdeScpPhdcAJmYkcFvJMVWKZwht9/OvP7a1yDVIhnNUsvL4SCS6PHHUYJ/8hOILbP4fCjJFgtKY6R59c47pBEdPMg13303DhmHg98VFcU/H83Rh4cOcY82bGB9rljBda5erddmpLRks5jTdc3RfWLsK5UY8tDpxEjauJE0zr4+MPN970M5Pu+8odUekogcSfOT+mwjWb/QXLvMTCiKMZ9AQjEpIygnT/KaNo313dnJnjthgq4DuGkT+4YY9iIej64lLQSix4NzdccOyPBJk6iXmp7OnpqdrQnE3l5IAymWv3Bh5HRYw9ARiJISmJJCtGBFhS7LIsShNDTJzdVReWan2fHjlDSorQV3rr+eNMFErBfBIuk0Kg3mJBJ8yhRdb8vcaEVKoNjt/E5qq2Zl6Vrbgq2SYtzZqaOBwq8xVgkEcEzV1oLR4kidMYPnPmuWLhEx1morC85IV1nBQ8FrcyR2sqbr2JXjx3GkzZkDzuzfz16+cKGONnzqKQjEtWs1gWgYRKe9+CLElbzv8TCXDx+GYCwqgqgrLCQiLT9fpwa3tZERsmMHpN2VV5IiHSkq+ORJ3Yl52zbm29q1RD+avy+lsqQkVaSss6NHlfr+9/X4vvUtSpS88w5r/JxzIMnikWAQO0XqNR84QKMRh4NAmLVruV/x1GiXjK2MDNLM9+/nPkyfjl43lIZWA417/37mwubN7A9WK2TnBz+IoykQ0CUsHA4dWWjWNXp72StOnGB/qKpibLIXid03liQ1NbQURlJ3Gn1JmsVJGVTa2wGYsrKBo/CcTozuYBCDXb7rdrOJZGeHknsSmVZQ0D+yR0LfpU5NuHg8eKykbkNKCpvH5MmxKz6SwiO1K0pLOYZ0eRaPWDwA5fGw2dtsusaahMlPmMDmNNwovECA+9DZyTmKi7lniSa9rFYUcyES5flK0xeXi82mvZ3vyOfmlOVJk3SNkbEM+BYLYzWMUCJxLJKe/5dlxw4UxvPOgxzcu5f0mUWL8DYHg0QJvvEGf6XWj9MJkXfsGASTuYmKy0Wq4LPP8veHP9SGd1oazgxJK/z1r5kH/+//RU/ZE8LsrbeU+ulPUbA/+lFSgMIdA4N1YK6t1TWIKipIE7rwQtabwzG89GXD0MW3X36Z1O0dOzjm5ZeT0j1rliYLhWg0RxlKxMpAKblijJo7qsZrjNpsjHXjRqXefJOxFxXR8XHtWkjPjIzB12WklGVzLcbRNJaThOL4lN5e1ueECZBFdjuGcV6ejqZ59VX2ijPP5CUixrTFor8rdZH/8Q8My6VLiTS2WNhDMzK0cXn8OAZtIABpUF3NHh8+PySTwmbj2B4P+sv06ey7EpHo9+v9vLIycr2utjbSlnfsAMfWr8chMhzyzSyCE11d6Hvi/CwvR4/Lz9eOx74+3YhJnBHSgC8zU9d7NHd8lvrV4rDJzh6evuX1QmLU1kK0SKOaWbNIVZ4xI/TYUk+7r294JSdGUsI7PZsjOoVQTHZ6HnvS20tH3eJiSLSmJlKWKyvBEKuVPfPPf4ZY+9SneJbBoFL//Cc4NW8e2QZWq05dffll9tn589GnMjJw4GZkMM8tFoiq734XfUn24Asv7I8LhgEhdfw4JF9nJzi0bl3/oBCnk+8ZBg6acL2puRnd6uGHGcuXv0zk45EjjKeoCGyKN0tMGpJIBtLRo9yTmTMpizNt2vDXb2MjEZQSET5jBlgXj5PB52M/2LyZ2rw9Pdz/ZctIKT/jjNCoRinxICWlpHFVaip7RUsLOJWayriys8GB9HSehdTFlw71Y0mESPT7E16aISlDkGQ68yBisVhyDMNwJOhw4+5m9/QArAUFurNgJOnrQ9lUCiATUjAQ4PdWKxucGGtOJ0pqTk7/Tn6S2jNhAh6pcHG7iaA5dgzPc0kJinWs4CaFw91uwKeggPHYbAC+EEnxbEyGQQr08eO6Q1ZBAQrvhAn8e7iGazDIxtzeriMcy8tHPjXY7dZpRpHueVcXBozLxYZfXh6qvPv93GNJgR7roC9pB2VlGHrvPbdRH/W/Gxa1tuLtFjKtpQVicNIkpT7yEebNt79N7bEvfEGpj3+c3/X1kZp78iTk4+mn67nX0oLXfNcuPNqf/rSuTZiSAm51dnK+t9+GrPra16JHCUs5hp//nEiiadNQvmtq+n/X6WTtROrA3NBAatCrr4INN9yAsm0YYPBw05cDAe7nE0/wamvjPl59NSlFeXmR05LNnZIHW6d+v07nlrqH8WBcW5tSL7yAEfT224y9ogIy+KKLcFCZoyQHarRibtqgVOSUZXNK36kUc8SnjGmwbtXvSRKLRlh8Pow1pXRkx5EjrOWZM5lPW7aQXrd0KfPULK2t4MqkSdq4q6ujzunJkzg/PvxhXQzfamW/CQbBqhMndDfTvDz21PD5IBF39fW6ZEpZGd/r7dX1SPPzMbrz8yPPKZsNgmLzZtbKhRfyGqgzaiwSCKAbNDXxkqZSpaW6drZkLohItLDUJ8vO5jfRosJ7etCLnE5wqLgYzE1Pj83QdLkgDGtreV4SWTh7NsThtGmDd7W22wdvmjXWxEwoCnYOkVBMYtEIizRs6u7WJOAPfsBz+u//Zm2/8QZlXZYtU+qOO3heUlt5+3bsqksvxSZTSjsva2uJ7P/85znuvn2cT1JZ77sP5+OUKehW5eVgQ7gdYBjg0GuvoTsXFIBxy5b1X3s9Pbq78dSpoZF+NptSv/gFulEwSNTkF74ABrz5JtF1s2eH6gSxiJSV2bcPgq+rC5xbvJhjDidCUKStDcKvsxPMXbSI+y8d7/1+7RweSAdxuXh2mzfrmrxZWei3Z5/NeAfSD71e7FqpcXv8uI76LijgmZaW6vvY2QkGS23+tjbGXF6eOEdSIkWcRyZ8P+WWZYKxaUzKuCURLRbLOqXU35VSVxiG8XjYZ9OUUnVKqbsNw/jqe+/dpJT6jFJqrlLKp5R6XSl1h2EYe02/+6ZS6k6l1GlKqU8qpT6slCpVSs1TSh1QSn3dMIzvhp0rRynVopR62jCM6wYZ9ri62U4nxm1Wlu5oGUl6e/G+W61sEqIsCZHm8bBZiSEvqcfp6f0j/Do6UKqLijhnpDFt3Qr4VVZCHsba5ETA2+nUYea5uaEFfXNyOH88YOl0sim1tADIVVUosYlIWVaKcXZ3a1DPy+M+JkrJH4qIlz8vj+coir/Tqbu8CqmgFEpGUVHoHOjp4f/xpJ6PttTX46mtqMBItFj0BpXEosSLxwNBaLORsmKx4IXOyVHqmmuYNz//OWnIN91ECqBSYNETT7A+zj4bb7vMrz17qBPU3a3Un/6EUisEoqTzbd0KgdjXRxrz5ZdHx5ZgkEide+9lvJ/4BEpuOIkvUTHS4MCscLe3M5bnnkN5vuoqSM7sbH7jcGgHRzyRxYYBNj/0EBEIfj8Fta+9lr+iMJoj8mKNzJNUOGl2kp4eu0Lf0KAbo+zcyXvTpmnicOHCgZ+DudGKUv27LEu0zUDHUOrUE4lmiaHTcxKLRlBkDXV3Y7BlZ0MsBYNE56Sn40DdtIkIHnPzJKVYxw0N6ABS4+vIEYxjux3nx7nncjxxCJaVsfa3buXvjBkYmWlpHCMSgXjiBCSA08m+LI7K1FRd33CgmsUOB9fw6quM5dxzlbr44sTV8zMM8PzYMXQ8r5d7WVISeg5JS87M1C/BPommlnqI4eva5eI5eTzcq+Ji/pqjo5XS5RUilViw20nrPHiQsUrJmTlzIA4nTYoNJ8R5JCTmeJRonZ6lDITpHiaxaITlhReIlvvgB5mLP/sZdsuXv4zNsm0bDtJ586jfnJ7OennmGfChuprowblzOV5dHc7a5maw6JpreL+2lrUwbx7YcOedEIKXXILjRBwM4fgQDOJwefZZ1vgZZ1BOJlId6bY2bESxt2Sdu1wQh7/8JTrd+vVK3XYb3zlxAoeNYeDQmTIl9nsozt9t27iXQo4tX46ukYh12t0NedjSAs4tXBg5otHhCC1vYyYC7Xb2gM2bdZmw/Hyue+VK6vLGYqM2NPBcpRZ3YSEYKVkx5oZ3hoE97vdDLkpvAIkWH0u6klLa8WEiEqOyAuMUm8akjOd05ueVUt1KqWuUUo+HffYeDKqHlFLKYrH8XCn1OaXUo0qp3yulCpRStyqlNlssltMNwzgY9vs/Kx7sXUqpYsMwai0Wyxal1MeUUt8N++5HlFK5Sqn7E3BNY0bEa5GWFrmLn4jNhqdcQqnNANjdjfJUWhoahdbaqht+mI8rdTPE4x4uLS06pW3+fF6x1KcIBCCuzF2FBTwl7djtZlzl5bFHyPn9EE1HjrCRSnMXUWQTIT09mpjNzuY+nQoPd06Ovp/SZEXqi0nEpdRf6enhdfIkioSQiXl5OlUpWqOKsSLTpvFMDx5EQTrrrJCPk1iUQDEMiLWTJ6l1mJ0NCWa1Eq2TkYGC+cADEG633srvuruJQHS5MIAnTdIE4saNKMgFBRjKixbpFGalwK3f/AZP+9SpeOVnzow+xhMnqL/4zjt4rb/+9ci1eKSgtjR+EqK/t5drevJJxvHhD5OGUlTEb7q7dYOXgQz/aOL1UufwoYcgT7OzUcSvvpq5HB5hGE80cCDAeYTAy8wcOnkozWc2beJVW8v7CxYo9aUvkSY1WNdDEas1NF1ZIiotFh3BNJgIVsnvxoKYyUIzoSikos+HUXf66SE/S2JRguXoUaIy5s9nLR49yjyT9NV9+5jDs2YR3WOeP34/Br5E5CvFM/vpT/neV77CcQ2Dc/j9kGonThAZk56OwS/px5GMt74+9qRjx5jvonMIcWjuBhpJvF46sm/ahP5zxhlcRyyNAwaSQADd6tAhdDjD4BqnTOF+ZmTo5ieZmQMb8OY1LanLsubNjQtKS0N1CtG/zLX/pF5rair3sK6OMTY28n5xMYb63Lk6Yiseyc7W9XJHuvbqSIk5+tBMKJqjRY8e7ReBn8SiBMvevbzOOIPU4N/9jrX1qU9BsO3Zo9SPfsRnX/2qbkT01FN8b8YM/VKKZ3bbbejnX/0q9aGVYi309vK9XbvQdQwDPcfr5bV6dX8C0enE2bttG8ETN9ygyUqzGAbrzGYDo8TG9PloDPOTn2DnrFlDJOX8+cy3d97RJSVWrYrPbqirg4Q8dIg5PW8ee2i8tRTDxW7nOTQ0cP+XLtXR6pEkJwcM7O3VmX/79pGFsXs32FZSgkNn5UruRSxOWolub24GgyTwpKZG68cS8CGd7DMywKriYl0qq7SU+97WRqCN1PUdKyKR0l4ve+yCBQN+PYlNCZJxSyIahuG1WCxPKKWut1gshYZh2EwfX62UetcwjH0Wi2WFUurzSqnPG4Zxr3zBYrH8WSm1Xyn1LaXUVWGHb1RKvd8IDdP8k1LqPovFssIwjLdN79+glDqhlHo5YRd3iiUQQIlVCkM8GmB1deFpycgglNpM6DkcurOgkFwCZtJYw3xcCWnPzQ1tOy/j2bePzSwri3D7WJQ6qU1j7spnTicW8tJqRQGP1fMuBYH37weEq6oAsOLixBmkfX0o4C4XivaUKfHX/0iEeL1sPB0dPEdR2sPJUosFJSE/H4VBGuxIZ8SsLK5J0pTGoki0Wno6/96xI5RETGJRYuXFFzGK169HAX3sMdbulVeybh99FA/1Bz5A+o7Fwjz829/AlvPP53tSJuG3v+V7NTUcS7DD6QRbnE6Iq3fewbt/xx3R52IggJL8m9+gZN1+O+nAkQxDv595I6nIaWngw+OPcwynkyi7G2/UEUoSoWsYmowfighx1tJCcfXHHkPxmzKF65GU5UTU2QsGGaekEYvCOZTf7d4NobtxI0q2xcLe8bWvYTBEKl8xlOMKoWkYukZiLIq23BNz5+SxJsePswfu2EFa04EDzLGTJ/V3kliUWGlvJwq9uprX8ePsX1On6ojEDRtYZ+vW9ceBpibm5pQpzKmtW4lALCjAaJcSMTYbhExuLjrVyZMQhosXh9YKlDnt8fCbQ4cgFQIBDNWFC9E7htpgaPNmoqB7esDHdesGLlszmBgG69DlArOPHYOokNIm06ejY+Xng7HRUpIHE6lp6vWiU9rt3PvSUhwx0Y4pkYtZWRjVe/eyjlpb+byyEkM9WtOaeCU3N1T3Gc9itXLP9+8Hz3fvZh56POyhIkksSqy0tlKzcMoU5ujTTxMh/ZGPgBOHD0P2VVQQgZidzTN58knm+qJFrLtZs9BF3n0XvUgpSLslS/h3UxO4V1amOzvPnQteHTiADvO+9/VvsrF/PzUYbTY+v/zyyEEe4lRwOMA0KdvwzDNEUNbXQ5Ledx8OFKXQo15/HZtz7lyIuVj2d5+Ptb5lCzpSVha1Is84I3GZUC4XdurRo6yRBQsY61ACSNrbGdurr3IflcL2Xr8eW0PqUcYibjfPvbVVN6qaNYv9oakJzBedUHBRamaLTSYNRjs6uPcTJvDcbTYwdyxgWXs7GLRzJ6+9e5lbR45E/00SmxIn45ZEfE8eVkrdrGBz/6CUUhaLZZFSaoFS6r/e+85VSimvUupJi8Vi5s49Sql/KaUuiHDc34RNAKWU+qtS6ueKh/72e+earJRarZT6nmEYYT0rx6eIh8jnG7gbcUcHCzc7mwhE8/e8Xj7PzNQ1JQyDxe719q+p0NfHppKV1T/cu7sbYGhsRIk/55yhRx9KjSC7nU0qJyc0LTAY1J3D4klftttRpg4fBpAnTADwJeIgEeJy6aK3EhV6quoISsqyw6G7IVZUsPFIalA0sVrZvMxkYl8fzyMtTdekGyvpPlIrpaeHsQaDjG/RIjbiCJLEogTIoUOQhMuWQRI+9xxr9NJLMW6ffRZF8/zzlbrrLuZVaysEYmoqyquQ2oZBpM9993GsP/xBG9fShW/XLlJ5XC7Spy+7LPrYamspKF5bixf89tujG5per+6knJ/PWP7+d2qgdXWRav3JT4J3IkNNXw7vlBwMYhA8/DCpToEAOHndddQtSlTki3RGlXIF5tSXaOL3Q5xs3MjY2tp4PitXcv0XXhi/R9sceWhulCLNX2KVsUQkdnQwN3fu5O+uXeCQUszhmhqlbr5ZG35hksSiBIjTiUGSn48x2NLC3iWNSI4dY01XVmLIh6/Xzk7WtJRyee45pf7yF/bwO+7QupE0TQoEWCtOJwbo9OlgmzhdfT50KJsNnaWhgd9WVbGewmtLRxPDgIh+5hmON2MGJSEkOikWkU7JLhd/3W6uubmZta4U45ozB6xLVLO3QIB7YLezTsvKNLZLKnOkTrFNTeB3bS2/Vwq9b/ly7rdkWCjFsUWvGW5TkZQUxudwcK/GqsM0ktjtkEf79/Pat489LBjUNUHXrSNCKoIksSgB4nKh+2RnU4Zlyxb21FWriB5saEAfKihAn8nL4zdPPMEaP+ccnldVFd955RV0mfx8GstJ1kVXF8EcPh+fHzxIk7ibbqLOot2O7mWOUnY4wJI33uDYn/tc1LmgPB5w0+fTmSKvvsq59uwBZx98EL1A9t+GBq7XYkGfiZSlFk1sNhxu27eDS6Wl6HixpgEPJF4v6+PQITBm5kzweyAHsGHo7tqbN0OcKgUG33gj+3tJic7sikUXsdl0WS6LhWdVVRUadFJWxnckwlBEyESfTzdiEX3UZuNVVKT7CUgjwtESKRW2ezfzZedO9mXJhpk+nSyWxYuHdLgkNiVAxjuJ+LqC9b1GvTcJ3vu3oZR65L3/z1FKpb/3vYhisVisYQ/xaPh3DMPotVgsTyqlrrRYLF8wDMOrCE+1KKUeGO6FjBVpbmahVldH92a3tbGA8/LwCJnBWOr6iFdYwK+7m01twoRQBcrpBEDFSy0Gr8+HR+fIEcB/yRK8w0MxiKUGmRQTl0Ky5nFKp0KPR3vDhgLUgQDgKQ1N2trwMp95Zuy1cgYSjwcDQtKFpa7iqTBs/X6ek8ulU5YlDcli0bUQU1MH31BSU9kcCwqYE93dofesqCjxXaWHKn6/Timw28+aKjUAACAASURBVHVtjaIiXTdzgPufxKJhis1GF+SSEgiSLVtQzs45B+Xy5Zepy7NiBYXEU1JQhP7+d+bd+9/Pui4o4Fledx3E1ec+R11FcxSPy0XK9IMPovT96EehhJ5Z3G7Shh56iGN/5ztEzUVb6263Xg/Z2Sjsf/gDZOiiRfx+4UL9fSkL4PP1T182N9uQvyIeD4bEQw9xn3JzSVe+5hqwNFFYIdFFQh5GqyVmvv633mJsL7/Mc83MxABYu5Y0qHijqKUmmtS+CU9ZlrRmUSpjlVNBJLpc7KdCFu7cyVyRBjWzZzO3lyzhNXv2oM6WJBYNUwIBiHmLBYPEZmM/Li7WBtiTT/L/K67o/zzcbnSDvDxef/4zEdYLFlC/VaJfXC7WfksLzzwjA2KgqIj3pCmHRHpJ9+WuLq1/DZQqZxbDACeefhqioKpKqc98hjENVfcRolCIQyHclELnEuI0NRWsmzo1sXpLMKidkEqBI4WFoam2kpon5QAaG3WNQ4lYnDYNh++cOf3LwYizRAhSt5vfCO7Fq59kZHBMl2t4xxlJ8flwiptJw4YGjYfV1WDQnDnsYdLQMKkXjZwYhlLPP49OceWVPI+HHiIN98orwaU77wSDvvUt1pvTqZuvvP/9rEkpf/Tww+g+VVX8TpwHfX3YXPv348i1WolsXLkSoq+7G2ySIAmpFbthA1h3+ulkPIRHKIo4HNhcFgv6iThl33qLcf3yl/zevJa3bwf7Sko491BLN9XXExV76JAuPbF8OXtnomy0QIDjHzgA3kyZAvkXLcVaSrhs3oxu29TEvZg/H303PADF42Fv6OzkugeyPwIBnbLsdIIvkybhfIoUdCM2sc3Gv8PHbC4ZIRke6ek8w5QU5pjPx9jCswoTJdK8TKKd9+wBm0T3q6gAfy6/nL1m8WL2zRjGksSmBMgY3MaGLoZhBC0Wy6NKqS9ZLJZKRR76VUqp1w3DkIduUUo5lVLrBjpU2P9dUb73R8WDv1Qp9Tel1PVKqc2GYRyO8xLGlHR0AFqlpdGNvOZmNpn8fBTYcEVICrGaU296e3Vqszn82e2mPkVqKpuKfF+i+2w2AHDhQrzFQwF/h0N3vMrIYPMJB9GuLt0xevr0odXV8HgATEk76uri9+JhT5Rn2edDKRByrbycazgVdXQ8Hu6n18vmJU0hwj14WVncb4miGopynJaGMebxcK0Oh94AE0nGDibSZEdqZSrFZilE5yAK8v9KEouGJ4GAUr/6FQbWbbfhrd68GQP3zDNJb/7v/wYLfvYz1vSJExjEeXlEQkijHocDw762Vql77qHhiYjPhyJ7111EGX34wxw3WnTz1q1K3X23joa89daBjWKHQ0fC7NsH+Xj4MErsD38IAWr+rccDNkr6sqTMC2kY3i05JUWnLEsDmRkzSAe+7LLEdH0XMYzQ2mEDkYd9fRgaGzfy1+XiuVxwASnb55wzPIwM77JsLupvFolElOjEeFMlR6o+oijG5gjDgwe1YjxxIsrwddfxd8EC9qeUlKE/1yQWDV/272dOL1vGvGts5DlMnIh+8thjGHZXXtnfcRYM8v2UFAy1e+7BADrnHKJ6hED0etnrDxxgvVRWcj63m0hBIQozM/mbk8P3AwG+O2MGWDSUeSFRk4cO4cj9+McxqqP91jC0s0WINGmSphQ4JfOys1PXaU5LwygWJ3SijEtzbeVgUNdWDtc1UlL4bl0dz/DwYcaenq47Ks+cObCz02plP8jICMVAj4fXcAjFnBxd5iLWCKNEi2GwrwlZKPdLGtAUFXHPVq1Cz505k/mWkTGwEyn0HEksGq5s3ozOsmYNz+W3v8UuuPlm7JE77wQT7rqL9+128KmvD1LO4WDNTJlCLdaXXmKN3nKLJhA9HvSVv/4VnWfBAgjJsjLq0Le1QSZWV/P9ri50r0OHmNNXXQV2RQs8kZJRUqPxs58lMnvCBIjEj30s1BFjt5O+3N3NWJcsGRznvF5wdvt27FCpR7h4cWhd/uFKMAhJuXcv+FhVBYkViTwNBPieRBx2dYFRixcTvX7mmdFJV+lYL5Hqbjc2tFlXdbuxZWVfyM1lzQ7FZiwuZvzt7aHNq0TM2SaC/S6XLmE1YQLn7egYehBONJFSPHv24LzbvZv56HaHNra66ird4KqykvmWlRWfzpvEpsTIuCYR35OHlVJfUTz8rUqpKSq0eOURpdTFSqk9hmG0DvNcrym69txgsVialVKzlVI/HuYxx4T09gImBQXR08tOnkThLS4GBMMVROl4XFyslTSXC+DMzuZ9EY9H146YMUPXCzt8GKU0GGRDLC8fuLGLiMvFhurzAXxlZdGVe5sNsDV3A4skEtEo3nWlUABdLhSs6urhg6eIeJI6O/l/SQkbyGh7q4NBHVkYCPCMc3N5fgMBdW6ujuCLhcjIyMCjJJtZezv3eurUkWsYIx4+ma9KMVfKyxn7MMiOJBbFKX/9KwrpLbewnv75T8jktWtRKL7wBebEL3/JXKyvxwNeWIgyJkTcyZNE4rndpDivXq3PEQigQH/nO8zzu+/GSx9Jenro/vyPf4A/996LkhzNeDJ3YK6rI/Jo1y4UzG98gzTr8DUhKf0pKShJUlhcKU2ApaTof7/zDpGTL73E+VavhsQ4/fTER7aYu5mmpupUYbN0dTGWjRuJJvD5wK3LL4c4XLFi+ClDQhwKKThYl2WlQhutyP2LVYSIjDeiUaSlJZQw3L0bg0ApnvnixUp9+tMYITU1KOby3GMhDiNIEovilIYGntvMmexrhw8z/6dORXf461+Z11dfHdkB2dKimyL98Ifs65deSgkD0YECAfQfaUonhGBtLd/3+ThfRQUE4okTvKxW3i8pYX8cbH60tJBquGsXx7niCsjMcKyQovoSYShRj0rpDAOpY5iZyRxuaMDxFwyCw9Om6RS8wdboUEVwtbtbN6eSxmxm8Xgg52tr+evzoVvMns1znDpVG8qxrCkxpNPTQwlFr5dzmiOzh3LNFktofcTRbChns0EUmqMMpU54ZqaO6pk5E+d6SYkuMSPEYZySxKI45ehRSL2FC5nDP/gB8+zWW5mHd97JM7zrLvSlnh4IRJeLenpS0qmsDL1n3z5I4UsuYW0oxbp6/XVqtXZ2KnXttZQaSUkhYu7kSXSMKVNY62+9RYZBMIhOtGDBwIEULS3o9Q4HTVMef5x1/F//xXnC18CxYziNrVZ0HCEuo0lXF8Th7t06s+yCC5jHgleJcKwaBhi8Zw/3vKQkchkJr5c9f/NmmqPY7ayh5cv5/hlnDN22kXI4mZk8x+5uHbTR0qLr5ZaUoGvGUqNQ6uw2NkIGRrvPUvc6PZ2519oKcVlezp4lwTVSnmMoYrdDrgppuGcPZKRS4MzcudQnnzULLKqs1HXzhThMkAMmiU3DlHFPIhqGsdNisRxQhKHOUOSvP2H6yiNKqc8qpb5rsVhuDs9Vt1gspYZhtA/xXIbFYrlfKfU/ijbfLqXUY8O/ilMrLhegkJ0dvWFJQ4MOK1+0qD8ou1y6tqBEMXq9bB7p6aFAK4a2UgBEWhpAJnUhiosBq/x8gG0gsJAC4x6PTpWN5A2LJX1Z6u10dXENaWmMRSIcS0vZUBPh2QoGAc/2dv5dVMTYRrs2YHjKsnRPHmq9C7Ny3NcXe7piVhakbl4ec+3oUV0kPRE1NyRtrKeHuaCUnu8FBbF1+Y4mSSyKT/71LzqDrl2LIfPQQ8yfdeuYB7feylz49a95//Bh0ntKSogklIiZt99W6vOfZ/1s2BDaFdDrpXj4I4/w/o9+xBoOF8MgBfonP2Eu33CDUtdfzxyMZkRJZ9C6Oo7/r38xb7/4RciDtLTQ+oV+P/ji8zEHJaInUrdktxsS4C9/AX8LCogiWr+euStRMYmKaJFUQEmlTU8PxfrmZp7Vxo2QmsEgJOvHPgZxuGTJ8KOPwlOWrVbGEctxU1J0vcR4xxMrkdjXhyFjTkuWhg2pqRiCH/0oxGFNTWhtJ0m9HCZx+L+SxKL4RJqVlJYyr48e1el3YgQHgzgqIhXk7+3V6ba/+x3fvfJKSEJJVQsGwYgdO1j/s2Yxz7u7dRaHNHiTmtBuN2OSetKDEYhdXThA/vUv9rZLL8WwzshgXUltPiEOJcJXuqzLvpuVFVoqoLUV489mY65WVUF0ilEXjhfDEYdD42RmZn/HsNPJs6qtRXcMBLgvNTVg/JQpeu1LF2ePh/fiwcxwQtHc6VmyNVJTBy/3II1dhKxNhO4RLh4P98YcZdjczGeSgbN6tY4wrKoKjfKW60xE3bgkFsUnNhvO1PJyiP9f/hL99YtfZP78z//gcLjzTp5hVxcEot+PsyAnB9LQ56OOdFcXesP8+aRCi7PtgQeIbiwsVOrHP9ZNA7dtw2ZavJjjNzXR5bm5GTyT1F0h6MNFgjZOnKD0wxNPcL6bb0ZPMweVKMX827YNJ0BpKWRntMhGiTZ+5x0djDJ3rq4laLFwjxJV97Clhb29qwvcX7UqlHRzOhnLW2/x1+3m/q9YAXG4bNnw1nl6uq7D++674E1BgXY0xWsvpqVxv9rawNqBiEC5pxMnQiy3telMP2k8GYkc9fnAIklJ3r1b2/9KsddJM6vZs7mvovtJLVkhgxMduZ3EpuHLuCcR35OHlVLfVuSvP2cYRrd8YBjGZovF8lOl1JeUUnMtFsuzSimbgnG+WCm1Wyn18RjO9YBS6puKYpyPGIbRk4gLOFXi8wHy0rQj0iKtrweoy8oi1yX0+zVZKFGMElknKblyXL+fYwUCbESBAEpyby+bSlGRTvWorIwOGj4fm6x0kSouBsAifb+zkw0wNZVzRvMCud1sEjabbsRSWooy29rKeaZP77/5xSOGwbna2rgn+fncp9EsUquUrt9mTlnOyYkvqik1ld/29XHMoXSIDJeiIjal1laeg9sdPfpgIDEMxiDEoYTj5+aySUlDlxGQJBbFII2NSv3xjygP69ZRi0cpogtbW4nSys6mOUpJCVEUmzahOF1+Od/t6iJC78c/xsv7yCOhToumJqW+/GUU6iuuIF06kkLX0oKn/6238K7fey9KmhB1kcTvR+l9+GGlXnuNsd50E+PPzNSdjEX1kPRlq5Wos2jp8o2NHPOJJ/j+3LlEErz//dowHmrpgKGIGMRCupmbCdTVcc83bUIBVAri4zOfgTicOzcxyt1QU5aHKikpHEsiEuORaKnNfj9pyObmJ4cP6+csivGSJaRUzZ2rxyPfEdIw3mjJIUgSi2IQjwcDLSuL9X/8OGt3xgye96OP8p2rrw5tLCDi8+nGHS+8wHfWr4cMrKxkfre24gCpr8dptnQpuFZYqAvZT5gAPh08yPdlPKmpzJVoeo5S7L0bN4JFSkEUnXcev+3sZD+VaGelOE9urjbSIuGi16vJAI8HzJozBwyWtSHkWSJEsle8Xvb88nKtS/T2cl9qa3WtvsJConzmzo2uw8q9EzIxEBhaVHM0MUcgKhVKKIaXf4hEKGZl8T2pnTscx0swyL0wE4aiYyvF/Zs/H4fbvHlgt9XKs/T79XGys3W00QhIEotiEJ8P56HVSlO4Rx5hH775Zgjfu+4Cn+64A2xobyfCTymcFsXFYNmxYxB/GRk66m/OHP7vdkNAbtwIDv3gB7pR3LvvotfMn898+ec/iazLziZFOiuLOTt1amTM8PvR1R58EB3G7da6V6SIt54eGrPYbNiYixdHXpceDzrI9u1gRE4OhF5NDeMJBpnDiSKcOjs5X2sr5zrzTJwTFgtjfvtt7svOnVxzYSGYu3IlwTaJWEtOp25UFQiwX+Tm6gjF4TptpQlPV5feBwaS1FRwVhqNFRVhI7e1MTfb2kLrGO7fr+0vyWK89FLuj3Svdjp1cIeMKTt7ZBwsESSJTcOQ/2skYt57/w4RwzC+bLFY3lFK3aqU+rpSyqqUalJKvamU+m0sJzIMo8FisbyklFqjlLp/eMM+tRIIoBgqRVREJDA6ehSFt7KSDSUcmA0jtAufGF2trQC6uehqIMBGKKk6LS0oP6mpKDdKAWSFhdEjIv1+wNvhYIMtLAxtRBB+fSdPAnR5eVxjOKgbBlFEnZ26m2phIYq81E9zu/l/pN/HI1Kk3etlY5oyJT7CLV6JlLKclxd/bQmzZGTolG9Jg4xVsrOZS04nz8ft5jlGq4MkIqlPQhxKI4i8PBTp/PxRSQ9PYtEQxeUihSYrS6lPfYrowd5eorXcbt6TGkCVlSgkL73EOvzgB5m3x45Ru+eppzDYf/WrUCXolVeoFxgMklp48cX9xxEMooD/6lf8/0tfggSUCLRoxnFbGwToc88xlo98hAglSSmR+ScRhlLXJjsbEjtS99AtW4g6fOUVfrNmDfXxpDabeUyJKqPg9erjSurPgQMYFxs3YkwohfJ3221EjEZrQhOPiGEvRN1wjHuzmOsjDqfRiqQx7dqFcbVzJ9FYovQWF0MWXnqprsFUWMg5hcSUyCWrVZMGo1APLYlFQxTDwOgJBJQ67TSMNodDR7M98gjYdNVV6DSRft/YSJrf9u3oSuvXaz3l2DH2sG3bmDfnnYdBKoRgZyf7XVERf/fsYb5Mngz2ud0DE4gejy4t4HAwH885B6zp6uI70kmzsBDMzcgYeE309KCfiS43YQLXNWGCJuIkSjgR0YdSa9rtZo2UlrLnd3ay9mprIWmV4jNpuGVuRjCQmJswCeb4/YkhQAWzJNUwnFA0RyjKvZISMA5HbJkbnZ2hhOGBA7osS04OuvS11/Ks5s8HnyTCXKL2ZUw5ObFHeccpSSyKQV54gbXwoQ9Brm3bphtIfO97PPMvfQmsammBqEtNhagrLsah9frrYMLUqZCPdjt4VliIXXPbbUSIXXUV/5Y5IPNq1izm6C9+wViWL4ewa23lXFOnRtbv7XYcsPffD2ZecolSt98OeRlJ6upI2U5NpexLVVX/73R0gKt79jCPq6txOs+ZoyOBlYo/ACJcenvZDxobwclly4jG7OxET33rLXQAwwB/LrsM4nDu3MSlTnd3g3c2G9hVWsq9kfRvp5N73dHBe8Mp/1RSAu62tg6tJn1KCuOpq6MG9uHDzNFDh8AX0SXnzweLamqYu5WVOutNxq+U7kItjoxRliQ2DUMs/TtRJ2UwsVgs/1BKLVZKTY6xNfeYudliGDmdKKqRSKxDh1Aiq6ujR5t0dgIEZWX6GG1tHLe8XNfJCAYBHFGUpYlGRQWe/o4OwLK4OLJSGAjoVFmlMNTz86ODncvFRunz6fTl8ON1dfHy+QCxCRN0OHdjI969jAw23ni7iZrFbmfDd7sBWKl3NFoinm8pVpuezjMbiejHnh7ucSSyJJZjeL3aU9bzns8mL093ZJRU0p4e3Y3bauV5FRTw3RFSkEeeAhiCjFcsMgwUzd27aWxSV4dSdsklrNcbbwRbfv97sGfnTqJrpk3DM5+aCrn1yU+SPnL77XjlBaN8Pmoa/uUvRDl+//u6iLhZjhxBKd+7FyXwv/8brBDCJ9y4lO6oDz5I6pDXS3TgDTfoiGtJSRZsMndflvRlM5Y6nTQ9eOghnDbS8VUICzF2hWBLxHyWCMlAQNfg27MHEmLTJggPq5VaSBddBJkZzbETjwipJpEwZnIt0WJOjRkKcdfTo8lCSU2Wej0ZGSjES5fqKENz9JPUbzRHHJrrG44QcZjEomHKwYPoOjU1PKOWFtZecTE1EJuaIAWnT4/8+6YmsKqujtqHq1ahf6Smsle1teGMzcrCUDaXUujuZu/KzETnkIYq0oXb6YxMIEqDDmlo1NMDVq5ezdglHTkzM3Lh/Egi0ZINDRwvNRXDddIk3RTEHGmXCIPd5+Oa5ToLC8FYiTiUtVdVxfXNnZu4bBCfT2NgIiO7RQIBTSaaI6yFUAwEeIbStC5cXC7uw759upahOO1TUiA2hCycPz+UABByRXBeKc4pNQ5HqHldEouGKTt3sqbPPps5ev/96CbXXENjlM2byQJYs4Z9+sknWedXXIHO29aGbrV1K7/79KfBpaIiCObnnyfq0O+n1vT69frchw+jT1VUaPJ+wgQIzNJScCEtDQIxXDcKBsme+MEPwM8zzyTScfnyyNfp90M8HT2qU7bNdRUNA/3snXfAzpQU5vjy5egi0uncMJjPibBjnE50QTnf3Llg8dat3PdDh/jelCnc25Ur0UkTWU6mtRX72O3WNeMrKiI7OsQulqZW+fnxO0Q8HuZTTk5kG9zjAY8lwvDdd9njJBBlxgy4hPnzeZYLFmhC0OvVxKHsHxkZOlV5hLLCxgQWhcswsGlMSpJEjFEsFss0RbHN7xuG8bUYfz5mbnZzM6RdVVX/2j6GAVicPAkoSAHecJEIvoICTb51denUZCHeDANQ7u7W0WKZmRxXCMWeHt1MxCxCEknjhNzcwYmpjg6OmZrK+M0eGgnbttk4Xk4Om6REM3Z3s1EK+VhdPXxly+lkU3U4dHpOtI5cIyFuN+f2+XRdi+zskY3KCwZ5phZL/F0IDYPnFAhwv+T52Gy6OYFISgrnEeJwFKJ8TvkGNZ6x6NlnUX6vvRaceOMNFLKaGqX+4z9Yg7/5DUSNKHAzZ+p03j17UKqbmoggvPJKfezGRop279tHdOAXvtDfCeD1KvWHP9AAJS+PdOe1a0PTX1NTdZdkId2eeYYaQjYbSv5nPqOVyEhzzu0Gu5TqX3vz+HGIw7/9DUxcuJCow/e/n+8Fg7q5iYxnuPPaTB76/dRle+klIh86O1HmzjmHe3HBBYkx1s0i9zdRKcuxnFfSLs3i9WKYC1m4a5eu12OxMOeELFy8mMiH8ChQuR6ZK3Jd8hoFSWLRMES6Qk6ejAOhoUE3TnviCaII160LrbFqltZWpb79bfSliy9mnrS2smdNnYru09rKnnv66aGRjD097GkSQa8Uv6mq0kayNDbxeHQNQ6cTsuGVV8CimTOJhJ0zh/091mgOjwencmOjzpCYNIlxCA6GlzsYLhb5/YzdbudYfX3cw0OHtO4wZQrXNGdOYhy5kcR8bRKtOBLrVs7j82nnSUqKjgTPy+P+myMM6+v5TCnm47x5GOfz5mmS2SxCGsoxldL1DRNZr3IASWLRMOTkSTBn2jTw5t57IWc++1lKurz4IjWR160Dp556CpvoiiuYPzYbztTaWt77+MchxVJSWEP33EMk3aRJSv3nf6JzyZw4dgw9y+3WwQ6rVil1/vn8u6EBvWTq1NB91DDQIb71Lebs7NlKffObkJzRMMJmQ+fr6dFRauY60O++S+ShZJGddhq4mpOjM6n8ft1sY7jr1eNh7IcOcT1ZWdiR27Zx3UpxXStXUjNy4sThnS9cHA6dshwM6nJe0mhtMBE9U8pwhTuqhyo2G3pgSQl/pYbhnj3MKcGt8nL93GbMYD6JE72tTXe393p1lolS2lmSnT0qutEpx6JwGSY2jUlJkohDFIvFslAptUxRZHOBUmqWYRhNMR5mTNzszk5dFDWctDMMjO+WFjaySNE7SgG6LS26q61SmlTMz9fGp2FgLNfX8xspzCq1xk6e5HelpaFdoc2pqcGgTgEcyGMRCKCE9fQwBknRlg5lkjIkadBSe0gpFLuGBhT67GzGN9wUYwkP7+1l0y0r476MAsGlgkHt+RHFX7w+o6BIKqW4p729uklLPBIM6s6MFgtzRSI3fD7mxMSJusnEKMop26DGOxbt3UvjkhUrUFA3bMAoet/78Jrv20cKzVlnodRu3YpCvXYtz/j11yEQLRbqlJ19tj72Cy+gwFosRBVecEH/dbxzp1Lf/S7r/ZJLIBkLC7WBJ00uZGsMBlGS778f0nLhQsa5bFn0axT8cjp1qoZEzr75JhGSr78OLlx8MY1JRJE2NxYRo3a4c9swUOjsdlJxXn2Vl90OJqxeTcTheeclvmOodEoOT1kepZTe/x2D389etHu3jjSUwvNKgc/mCMOamv64ZSYKzWSoRJ6OInFoliQWxSl9feBLXh4YVFcHXkybhsPg4EEwYtGi0N9JRPKBAzRp6uujVuIZZ+iuu/n5zDGnEzJuxgxd8kUp1l5jo3Z4FhdDBmZk8JnNpiOQJV1PHLKvvUbU4pQpOEoilZoZithsOmXZMBjf5MmheoqQXoki2CQyu7ub629p4a/UtxYCZfbs0S/zMhpkolK61M7evfpVV6eJkcJC5qNEGM6bF7mRj0RTejy69q65AUx6+uhh7HuSxKI4xeHAqZiWptSFF0L45eaSavzYY+DRFVeAM3V1Sj39NM6OK65gnXR2oss0NNC45PLL2d+k0eHdd7P/rV7NZzU12p5qbCSa+fBh9rFJk0ilrqhA1z5xAltv6tTQNbF1K7rUli3YgZ/9LE7ggQIUjhyBnBOHpThV2tqIOty7V5dyWL4cHBD9x+PhpZQmqoYjfj/E4b59kKhdXazLzk7WzcKF6JdnntnfVh6uGAbnkSAaqxUdpLIyvtRkCbgRHC0oGLozSWo/7t5NMy6pY2ixMLdqajRpWFPTP1JRAjuysnSGnzTlyshgfx2oFNUIyZghEROETWNS/q/URBwNWa+U+oZS6phS6rrxOgHsdsA6Pz9y1N/evXw+Y0b0uleBAApsSoom/lwugCgrK7TD09GjGGwpKZA9c+YAKFJDqK9Pt4oXcTh0TTup4TMYGDqdOoKwspJr8/u5lq4u/p2ezmeSCivS3s5YDIMxmhvBxCM+H0p5d7duLFNSMjokl6QsS90bCRkfpQK1ISJdJKUTpDlVYSji9TIPOjsxNGS+VVWhVKem8mxdLjb+wsL4PXDjTMYtFnV2EmFYXQ159tRT/Hv1aroO7tlD7cKzzsJQ3rkTRe6CCzRp+JnPMAf+9jcdJe3xQEw+9hjf/5//4bjmOWe30+HwqafAgZ//HKM/GGSOSgSiOR15yxadpjh1KgXNV60aeD0FApoAkPTlvj7O+9BDKPIlJSjcV10V6jwxk22JSK8z4/ZdlgAAIABJREFUDDzqL73Ea/Nm7lVhIaTh2rUoySOBD5FSlkfSMA+Xzs7QtOSdO3W0V04OCvFNNxHhsHQpxkw07BAiVJ6PUjqKMlEdlcepjFss8vu1bjJ3LusyPR1i7p//hEC84AJNIEr9ZJuN1+HDlDVISQFvTj9d60VOJ4ZYZiZ4lJ8fGlUiNbe6u1mL1dXoRW1t2hBMTQU7MjP5rLmZcdXXo9985jM4MmLd74JBjtXQwLkkY2PSpFDSztwUKhHRh8Ggjm45cgSHjNUK9syaxTOYMePU6CpK6bFICrLXqzFruOu7r49IHnNastSqTE0lTf7CC9nPlixhf5PuyJFKakh9Q4lUt1gYu/zm30AHiiTjFouCQbqpezzoRb//Pc/w1lt5/5lnKONy1VWQXhs2gAHr16Pj1NfjNO3sBIsuvJD3enrAtT/+kT3vs59ljc2bp+dVc7NSf/oTeDZtGnrBmWcy5202bKPs7NBu5wcOQEpu2gR+fe5zSl1/PRgyUDPMrVsZV0WF1jtqayEPpT7+woWQh+YSVIEAmCgNkYYbDBEMgu/PPYfN29io6/gtXUpGyIoVkYn74YrYh83Nujv71Knck+Hoe1Yr483K4rkLkZeXF3qvXC7wR0jD3bt153ZJS169mojn888Hm6LpbIbB8Xw+5p7ollJrdfJkfc0uF3MuI+PfEp/GLTYNJslIxNGVU3qzpU5gZqbuMCUSDAImHR0oMrL4I0lrK1F2FRU6ZLmlBQCsqNBRPDt2oDAWFBCOLhtMMAhoOxya1JPx2WwATno67w+lzkV7O+dPS2PcUqi8p0enQEvKslncbrxPfX18NnXq8BRY6VLd2cn/J0xgIxxpo1maj0i9idFKWR6q2O3MkaHU63C7dWMUIUKlrpOkRoenNUlXbakLUlQ0vCLDQ5Txvg2OOhb5fHitW1spCv7CCzyvq69W6hvfoCnBXXdRpPqll1Duli4lOs4wUFrvvhtj/c9/1iklDQ146w8eJKLvE5/QBLZg0csvEzHU1YUifuONmmCUVFdzJ83du2nosmcPGHXttSi9BQUDrylJK7FYmKeNjRCHf/8763PJEsa4dm3oWjBHH0p9wOEoyW1tujHK1q0ct7yc8150EeTpSEbZSBMYpUYnZdntZr6YuyVL0zCrFYJiyRIIoUWLdFryQGImDuVapH6kkMxjhDxMYlGsJzQgEDs6wJj2dubsrFmk2b3zDlEyK1eynm02XefXagVrnn4aHeWLX+R3Ugi/oYH5OHGibhJQVsZ8CwYxordsYb+SlGEz8WO1ap0lLY1jPv00WJSfD5mwcmXs69ft1inLPh/nkMYt5mOZyX+JahvOPHe5dKmA+nqOVVwMkTF3LsTFWNBTwsXc8CkWDPP5cJ4fOKBJw+PH9edTpoSmJc+YwXOWsjPS6MRMEEpGjURLKqWb2mRkjFhNsXgkiUVxyKuvsm+tXcueXV9PVOGBA5RdWb2a9OMDB6hpWFlJBHJGBlj13e8yL77yFYif9nZ0mH/8g6i/Zct09sacOZoc279fqZ/9DB19zRo6eJtLUzU16eaPViv48aMf0YguN5cyMuvWQTRF6lgv0t0Nrtrt7L/Tp4O/O3aAr2IjLl7cP9jA7QYrxa4Zzlx3uyEON2zg2iX6WrB++fKRi37u64Osa29nHUsD0ZHITpNMmN5e9qNjx3Q9wyNHdAZFdbWOLly0iKjnzExwqKVFZ+yZxdyYU2pSCgHrdIJJRUXYwSkpOmpRnB5KjVqU9HjHonEhSRJxdOWU3WyfDyCxWPrXtAgEAPSuLpSa6urox+nu1vULc3P5bXMzQFJZyXGdTlLmjh9n8zEXzA0GATWXS9dj9HhQ0j0eXYh8KEAu3aV7e3WjFZtNd4cqKgKgw4lBwwAgxRM+aVJoNFCsEgxijMjmUFQEcI60YheespyaqlOWx5KnxzA0oVtQ0F8Rdzo1cSipCjk5usahRKG6XGyM2dmRSUKnUzfKycjg2Y9E05j3ZAzd4bhk1LHoj38khfeWW1DgJAXwnnuokXjbbfx/0yYUnjPOQLFzu4m6eeIJFNYf/EAb588/Tz2ytDQIyNNO0xGAUp/lJz/hvLNmUS9IUv+sVk12SUTZ0aPUHtqyBeXpuut05GG4R9csEqUk2LNrFx1dN29mbB/4AOThggX9fyuRL0oNL/qwsZF79/zzGCSGAUlw8cW8ampGjvQazZTlYJDnZI4wPHhQRwhWV0MYSlrywoWh+8lAjVYiEYeSpmwmDQ1DX+cYwNpTP4LhyahjUX09xtTs2cwbhwMyZ+dOsGLePAxaqTOVmqodWC+8gKFfXk5DpTlzdEflI0fAicWLmXM9PehJYtTV1uqU6eXLcbqKk0wizNLTeU86gW7dyudr10ImxFrvsKsLPUkacphTlsNFsEgioePVYfr6iJjatUuvzcJCvR4nTx4zBPygEk4mmglfw0CPNHdLPnRI43lxsU5HXrAA0nSgchF2uy7TohTzUjI55JlkZXGMsabnvSdjb0SxyahjkUTELV2KzfSvf+Hk7O0lc+LMMyEH9+1jf588mVTj1FTw4b77wJxPfQpdxe2GPPzTn5g7N97I++3tEPbSOG7DBhycmZkQlKefrueTpNnm5WEfdXWRufHAA6zb669Hp8nLYzwDlSs6dIj6hunp4O3x41xLIIAtunw5uln4XPb7mffBIL+VQIJYxeEAQ59/nlIyLhc4fsEFOFSXLh25jsCSstzUxPNMSdEpy4kmKw0DjH/33dBahuZmpEuWsDeJM3WgmtcdHexflZXov0IaSnCHlMgyN+f0+/mdOMI6O/lciEiJbpdglxGOnB7vWDQuJEkijq6ckpsdDEIg+nz9o+38fhTn3l6UnYE6cDqdgFReHqAgZJzXqwnEEyc0IVlTg1EvEghAIHo8kACZmTriTGo4hHcgHGgsx4/rTscWC9ci5FFRUWQl1eHgXrhcfG/SpPgVZcPgOtvaOHd+vo7OHEmRTlduN/8/lSnLQxWpg5SSwvwxE4eyoUjTnIEiFu12rjsvLzJBKMaapJNmZfGcR0BJGO8b1Khi0WuvodR+4AP8/8QJPOmPPgrZdsstpJY+/zyG+MqVkIgdHRCLb7+NZ/7mm4nw8XohE598EqXoe99j/ni9umjzM8/QdMXvp4vztdeGEnRS/yo1lTX8hz9AEOTk8N1LLtERigOlyfv9usbXpk2kWTc2ggVXX63URz8aWVmTelbBoE6bi0WZku6FEnF44ADvzZlDOtMll/DvkTQ0pRPxSHZZbm0NjTDcvTtUMZZ0ZCEOh1K7SKKspE6lEIeiDpnrGw6U4jxGiMQkFsUgnZ1EwFRUQGx1daG/vPsu60g6b0o2hJTJkGZMO3dCCF10EcavYRBJdOQIx1y0iP2tu5vf5eToiJCeHqJwzjordL92uTh+RgaY8M9/QmZarUQWrV0bW3S9OHcbGlgraWng5sSJkcuKmDsVx5vCa7Ppjsp1dVxTbi4YdNppkLRjkPQakkh0Zmcn13fokL5WKZGQmcm1mrsll5XFds0+H2SPz6cdYampOhrUvGcopYneRKRcJ0jG6RP+XxlVLOroQP8pL2d9b9hAg6TiYiL+Fi1S6mtfY8975RWw44MfZF78/veQhTNmQCouX848uPdejlldTbOTigpspcpKCL/6ejrOb9/O8b7yldA9s72dPTc/H+y77z6lfv1r1vPVV0NW+nzsjVOnRnfU+3wQovX1moRvbWWMYhtG2qsls0rKCUhtvViku5tzb95MJGZ3N2uopoZMlzVrRjb62efDNm5u5joyM7F5y8oSd96+PshYM2nY3s5nqak4LiTKcOZMbRPn5Q2NwPT5SHF3OLD3JRpbiMNo9qbXq5v0paWx9xUVhTpPgkF4ANHDRiiaerxj0biQJIk4unJK0nak9mB4p2KfD4XYbgdozDUowsXnAxDT0nTtqPZ2AEY8WwcP8h2/H2+z2bvk96PQer38PhDgt1Yrm1UsHXXb29mYHA5+K1FCEyZE9/JKIeu2Nl33KN56FxJZ19qqOxlWVIxsEfBIKcuj2OVq2GL2yHk8OpQ9P18Th0O9jp4e7nthYfSNR5rp2Gy6Y1lRUUI3qvG+QY0aFtXXk24zdy64sHcvkXGvv46C+rGPUVPnuef47nnnQQrV1kLAtbZSJ/G881CET5yg/s+RI3Qf/NSnwBefD4WztZW053ffRbG+4w6cBWYRQ8xuxxv/9NNg0Uc/iqJstWqjfiDj3e0GQ594gs6JHg8e/euug8iLNqfN6YKxkG6GgbIo0VD19by/eDGNadaswagYaUwIT1lOVG1Ah4PrM3dLlno9qakY5hJhuGQJkRXxnDMQ0B1M5fdDIQ7DZYwQiUksGqK43RiXGRkYdXV17EUnTpA9MWuWTukzr3ubjaigEydYY3PmYAD7fOBWSwtG28KFul7dhAkcp7ERssDjwZgLX5+ypxsGkTIvvsjaOussnC5S7mUo4nLplGW/X0cKDdR4TLBTKfbHWIzc9nZNprW0cKzcXPB27lyudxRKi4yIeL2Qhea0ZKmdLRk98+fzzBcsAIviwV2/XzdGkUhQj4f7WFQU+Zjmuo1jjFBMYtEQxeNR6uGHeY7z5vHvM87QTtFZs5S68072wDffJIrvAx/gdz/8IY6Q972P30yfzlq/7TZw7NxzydBQivVZVMSa3LiRLIu2NnSjj30stDxQaytrOjsbHeOee3CyXHqpUrffDhY1N+saidGwoquL30vjstxciNHTToPYGoh4lKhbaZwy1H21tZVr27yZiGApi1VdjX27Zg14NJJrw27XKcuGwX2XlOXhiDSAEbJw9272LqFvpkzhGiXKcM6c/oETgQA2kZR9ilSaR2rqO526y3tnJ9cxffrQ7SeXSzcplYjSsrL+xGMgwHjEeZWRkVByd7xj0biQJIk4ujLqN7ulhcVsrj2oFOCwYwdgsWjRwOm8Uog7EEDxTk3Vac0FBSjIJ09qo3vSJBQqc3c/iUDMz9fd7yQFeaig7vWyOTQ2ApBVVYx7sEgzKS7s9QJk1dXxG9m9vbomZFYW5GGiu5maJRDQYeRjOWU5kgSD3K+eHp0WJulalZXxN5sxDIy6QCC6km0eg0Q8GobuEpYAkmWM3/1BZVSwyG6nW7JSeNC3baNgdX29Uj/9KR70O+4gnfnECVJMamrwul93HcrmffcRQVNcTF2d73+f97/zHeoU+v2sR4uFWj1//COff/GLKN3h68TnY1xPPsn3vV6U5BtuwPDv69Mp0dGUXb+fMT/8MGRldjYe7muvxXiOJlLTylxna7B1HAhQ92jjRiIdpcnQihWkN55/PjgUKwEQqyQ6ZVkUYyELd+7E8y1G8ZQpoRGGCxYML9ranKYs9cWkC+tQnkM0ESIxabjHLaOCRdIZva0NPaCpSafhbd7Mur3mmv57Q0MDdcP6+uhqmpqqMyaktuG55+oGLL297M8+H4aeRJVVVfUvni8G2zvvULe1r4/6ZZdd1r8D5kDS2ck429sZV3k55OFABKSkTwuRPtQaVU1NkIa1tbo5SEUF11dVpTNBxlOTs2CQ/ceclmyuHVZWFpqWPGsWuBEIaByMBXuFAPR4NN5J04H0dPYzt5t7OFgWhRCKEkmqlE67Hs1GVu/JOHniUWVUsMgw0B/q63E6PvIIpPTateg1VVX83bGDLIz583G8dnRADp44Qe3n8nLWuMUCgXjiBBkdt9zC/Nm3T0ce/+Mf6M1ZWczfiy8ObYLZ3Aw2btmi1O9+h023ahWRkIsXs+67urD5Jk6Mvt+9/jpO2dZWTW4tXz5wJHIwyHglwjEra/B5axhc7+bNvI4e5X2JuJaag/PnQ8COlG4k5ayamsBvqQNYWRl7M0mluK6TJ3U68u7d4JGUeioqCq1jWFMTW0CMy4X+GwyCL6mpoQEqSunstuxs3m9vRzeOxaFlt/PKzcU5bBjcl0jPVRwpwSCfp6cn5HmNdywaF5IkEUdXRvVmd3UB5NLgQ8TjIZTd42FzGMxLIhGH5eWAYl8foOnzaQ+7gFheHh4L2WB8Pt0lrLAQcJK01aEqNz6fVvC8XjaImTM53kCGm/xOulRNmRI/4SeFZp1OrqG8fGQ6d4mEpyxnZgLoI1W7I1Hi92vi0G7XdXykvmFuLu9L+ne8G4V0wLVYBp8H5u/b7fxfxjMMw3+8b1AjjkXBIPUIDx6EXNu+HQ+p14sivGYNdQyfeQYFViJ87r+fFJs5c0iBljny5z+jeC9fDpEoHdgdDs7x059itK9dS+OWcFwzDL779NOQf3Y7JNxNN+H4CAT0nJXucuHS3U0K9kMPga1VVdQHWr9+cDwQI0+Iq4HmntdLRMGmTXj0bTZwZ9Uq7tPZZ+vo7QQpXFElGNRNX5SKL2VZaoeZ05L37NH1dYqKNFkoL7OBE68IcShjV0pHG0oqsyiuw+08q9QpIxKTWDSAOBysn+3bcUBOmcJ8KCtjD9qwgXV85ZWsS6+XeSlRxn/5C/vv1VfrqHbDAHMk3XjqVNZ3Wxu/F8dZbi7nyMwMrZMsZTfefpvIw95eSMx16xjfUMTv1ynL0pBj4kSwbDCyXaIPBYsGc8SdOAFpePAgY7VaueYZM7RuKd1BCwrGPnnY1RVKGNbW6hIJ2dmQhZKSPG9edCe7GRsHupeShizRPWYHhhCH4fest5fjxqKniJPK5wstMSGE4ig0sBnjT35QGRUbbetW9vfFiynhkpWl1BVXkEFRWEgk4vbtkIiLFrHnHz4Msej1kokhJZzq6oiStljQmy67jO/s28ecrqvjt6WlzOO0NPQeSSUW0mrDBnSvY8c459e/jnNEylD19bHWIzk3AgHIrr/+lfMVF+OYPeusgRuuKMVY3W7GkZk5MHYZBtcixOHJk7w/bx5kbGGhLi8wezbvj1SZJ68X/G1p0VkwkrIci27U0xNaw3DPHu2cycgAg8ykYXX18PFVSpN1delSUvn50bPbxPatro7tfnZ367IWvb3gXGnpwB28BR9TUjjXMJwg4x2LxoUkScTRlVG72X19KH55ebqLqVIs6B07WKxLlgzuWejtBWiKilBmpMOfRCbm5nL8jg4WvDlVx+NBQbPb8VQXF3O+oSoyDgfHPXaMv8XFAOlQmqB0dDDOYFBHAMQDvG43APr/2fvu8Liqa/s9kkYzqqPeLMmSLFuWm2yDwXYgGAgmlFCcvARCCQkhIZC8Fx4hhCS/FNJIIe2Fl+Q9IAnwQiihkwRTAzFgiqtky91IlqyukTS93d8fy4tzNZoqjcrY2t8330hT7r1z7z3r7LP23muPjOC4S0txLibDSdY01fXK51N6IDO9ZNnrVdl+jDilp6sFBbV9aMwOFFFR1InslyRlLNvx+TCx2Ww4v3l5mDzHcQzJPkFNOhY9+igc00suwRguLsbY+frXQYJ9//sgBfv6oC9WVwdS8Te/QSnwH/6A68SsxcOHoYn4+c9jPPj9CHDccw+IyOJilNycdtrYY/H5EIn/05+wv1WroJPY0ID3vV7siw5VMEbt2iVy//34PS4XiMxPfQrOfbSxGZx9GK4kxG6HduRzz0FjzW7HsZx1FojRD34Q32cZNBeGk2WhSpZjzdgbHoZTvHWrIg37+vAetYn0WobV1YnBVGYY6olDah+yXDnU7wzXaCUem0YicRaL9BvT6eJarUpn7uhRZOBkZcFXMZtFHn4Y+H/RRSobhpmqmzeDxJ87V+TGG1Xn9f5++ERmM+5fBiC6u7GoJaFHMjAQgN/AoEQggIzsp57CmKirA3kYKYNZbw4HFvWdnRifFguOoaws+r1HLOIiLZwOq98P3KX+n8OBsV9Xh+Osq4N/x6Ac9dNmiC7fKHO58Dt271akYXc33ktNhc+q1zEcT9MX/XnVB4lIGno8KnubnUmjZX6y/DA1dXTJaTzH5PNh31NIKM5iURR77z3oJtfWoopheBhlxb/4Be6JH/xAaf+uXIn5f9MmvJ+fL/Ktb6ks53/8A5mDdXXwjT7wAdxTLS1Y5x04gGt+xhm4D6xW+BHUvmdG5J13Ynyw+RwrODwe+F0eDwik4MDeyAj2s2kTxlV6ush55wHPoiU8sMuvz6caBoUad34/tr1pE34rG3csWwbt2lWrQIi1tuKztbVjm6kl0oaHgb39/Th/BQVYY8aSpefx4Dh37lRahuzcbjDgOrLpydKlicug1MthsRGnvrlgejp8zXCyYn4/AnAGQ+Qs1FD77e9XJOvICPYR7VzpMTMtDfP1OOaWZMeipLBZEnFqbUpOtssFYKIjy8FntwPwAwE4v9EcE5cLzlZGBqIrXi+Ar70dk0ltLQi9Q4cw0OvrFeD19wP4AwEAo96JjmSBACa6gQEsBHp64PBUV8emf+V247czCyCS8G8k83jw261WOHHFxYioTYaTHFyybDSqUsqZGtF3uxVx6HDgNbNZLSaipfGzGYXROD4HWX8cw8OYZOLZjscDMtHhwPUdR/nVDL0yMdukYtGWLRD4PuUU5QjMnQsHddkyRNz/8Q9cuwsugFN73XUg+j73OWQaWq0gIu+5B9f2hz9ECa8ItvnCCyAXBwagZXjDDWMdR01DCfTvfw9caGxEqc/KleozbjewkU1/OMZ9PpAIDzyA35OeDrLzssuAn9GwgGL8kbIPrVb8jo0bUWrp8cApPeccEIdr1uB7zC4RUYvAyQpkxFuy7PViAUKycNs2VVokgkU6ycIVK0BCJJL8DNVRmcRhLDqN/D6/MxGbJiLxhMci6ptarZhXGISjXMrevSDbTCaMdaMRGclmMzJ3KBRvNmOcP/00xuPy5SLXXgtfpLkZAUWTCf5QRQXIu5QULOj37MH3y8vhqwwOYmyUlqrsjX37QFweOoTPbdiAfUQby1yMtbVhEW0wgDSsro69IoLZaeEy5jwelPDu2YPjpDzN/PkYswwQ6+VJuCCcggy3mCwQwLndtUtpGR46pMZleTnKkZlpuGBBYjOVfD7cK9T5YuCFpGG8uM25KSNjfKWRNGZC8h4gtusJxQTNJyc8FkWy4WFUMWRmYjwfPAgC8X//F9fl+9/HGmv3bvg6p50G2ZX77sMY/MY38LnnnsN27HY0UDv9dOCI2Yzgx5NP4lovWgR8a27GeuYDH1D60M3N2N6mTcCSr30Nvg3HMptXahp8N722aXs7JBj27AEm+v0YVx/9aGyNzdxuJUFDzNWb1ws/4vXXoWHLLLaVK1XTvaws4FVLC7ZXVQXibSLriXAWCKhAlM2mEkrKy8OvLwMB4DUzDLdvB4FIQr+4WJGFTU04f4mUxmJQTL+21CemUBKLQTf2KOA8GWxOJ8jT3NzYrrH+OPr6lByX04m1dDSSV5+9zQaH8WhkSvJjUVLYLIk4tTbpJ9vng9NE4WdOCDYbFsIiAOJoYOX3AzBSUgCUDgcA3WqFg7x4Md5jpKu+HoPc4cCk0tYG0F+yJDZQ93hABgwOqgWhwwGgqaqKXnLNzl+dnSpaEg/Q0Xy+0WnehYXYzmRkAno8AG5qXcz0kmWnUxGHLLPOyFDZfPGStS6XcpAnEjV0OLCdzMz4RdxdLtxzLhfu32BB/QiW7BPUpGARy1Zvvx1jZ+5cXJvGRkTQ6+pA/D3/PDDp4ouBUR//OBytH/8YmYa9vRAVf+01OI0/+IHKQO7vx+defBG48//+H3Am2LZuFfnd77CgrKzEds84Y7QTQskAfQfm/n6ULP/lLziOqioc54c/DCyM5f7QE3HBelnd3aoxyltv4bPl5SAozz0X+JyaOnrhJ6IWo5NBHgaXLOtLfvWmacB2Zhhu347FiMeD94uKQBSSNGxqUrpzibSJEofhtjdRInGaGq2ckFjETC0Sh8yus1iUdIrdDjKQeswU+X/5ZcwXV1yB+Z0BO5cLAYeWFozFDRsw773wAsbtvHmKOKysxJjculVlWi9dijmETdeKizG/HTki8sQTGC/MfDz99Oj3qc+H7Mb2diWlQs2vWMkvauYRi/QEvtMJgpUdlf1+nJeGBpAWNTUKi0jS+v2T0qgsbtM04LOeMGxtVb5JTs7okuRFi+LT9IrVqPXsdiuspkYqF74TaXZis2H7E5F/0RuDW5xb9MGiBASoTkgsisV8PgQQBgdxrrdtA748/jhw7LvfxVy6bx+w4aSTRP77v4E9H/wgms8FAvCfHn8cY/Mzn8F90dgI3HvkEXy+uBiB1eXLsW5rbwcpWVcHrPrxjxGgzc5G8PVLXxrtv1utwCyjEfsxmXD8LS0gD7u7VXAxOxtYsWZNbPqdTieejcbR2u5OJ0q4N21CprbTCSw65RT4gCedhGPUNJCbO3cqma1ly6KXTY/H3G5Vskyd7IqK0GvCgYHROoY7dqhM7YwM+Kh60jDezu2xWCCgsg1ZIk6NyWiJKazs8vlUQkgwZnGNXloaH+Hp86ngFytF9PIekYzavfQxY8niPmbJjkVJYTOWRDQYDCtF5CIR+aOmaYen+XASZZN6sgMB1UCEwC+CCWrrVgDCSSfFFgHo6lKdlLu6QED6/fg+9X/278dn6+tVs4uhIZBweXmxZZzYbFi0j4yoZivUJjOZQEJEI6ccDkyMDgf2W10dPxHn9wPk+vpUV62SksQ7yaFKlhkVmokly3a7Ig4J4llZijicKOHJqH1OzsS2NTKCSTMnZ3yZpw4HJkdmX+Tnq8j/li1b5KmnnpJrrrlGampq+JVkn6AmjEUkTPSNKlwuZAwODaHkd3AQDtN3v4vx9MtfgvxzuVDm3NcHAnFoCHo8556LBeG//ztw54tfRIZiSgr28cwzKL1xuZAhdM01Y8fovn0gAt56C47lpz4FfR79AozRV69XkffbtyPr8O9/x9g8/XQ44suWKXIi2j1K4o9RXy7IDh9GtuFzz2E/IiAk1q/Hb168eLRTpF/gcXE3WVnQkUqWBwaw2Nm+XWUZDg7ivYwMOMT65icVFZNHntH5pI6hyPgJuH3pAAAgAElEQVQ6KkfaPq/bRM71ZBOJIfDohMEiZrBbrfBrOD6ysxVZwywXvx+LXrsdxJ/BgMXfiy/i7yuvHF2e198PKYWjR0Eunn46MOLJJ7G/1auxneFhYJnPB79qcBAZbQys9vRg/8XF2PfTT2NRbDSiNPHcc6NnlVGOprMTv4N+TUlJfKVk1GElFqWkYK5kR2VmGlksijjkudIfy+Agfm9GBs7ZZOmMRTK7Hces1zLs78d7RiMyJvVlyYnQDgtn7O7udqvMImp46TVqfT4VTIpUPh7JNE3Jv0yG3iRLnjnfiCgyMdrxnshYFK89/zxIwvx8ZAuuW4fy3K4uBEJbW5EAcuaZwJM77gAhddll0GMdGhK5+WYQbevXIyja1YWAgsEAuZX9+7FGu+Ya+OlvvYXgwMqV2O/Pfw4fRwRZgzfdhPWc3np6QBJmZakg8LvvYu53OoFr8+bBd/P5sO1oUgwsp/V4VDZcWhqwaPNmEJ2U2bJYQEiuWQPfUe/fseHI0BB+T1MT1qiJtqEhVbIsAj+yokJlfbtcwB89aUh9xpQUYJG+LFkv85VoY8KNXkNf34Az3vWQ3a70YXNyRvMFTBLweDBPxBPUcLvhT6am4jqnpIBIjEfvlThFWYgo+DRhLDpOeaiE2kwmET8rIv8rImdqmvbKNB9OomxST3Z7OwZ/VZWKElitcHSZCh5LScTAABxlsxnRqCNH8L1Vq5ARSALR74djy05ybjf2n5uL18MRcCxZ7u/Hd9LSMCHk5GBStNnw/5w5kQEmEACgdXWpkud4xfhZJtTTo0Ss9eVHiTKfT6WVMzV7JpYsk1xhyRIBm81wLJbEli5p2mgB8YlMtNS/yssbP/kbasF0//13y3XXXScvv/yyrFu3jh+dQVdtXBYXFoUiDPXGcfo//4MF8+mn4zwuWoSod1YWNH1efRXX+tJLgUvXXINz/PDDiNT+9a/IOszKAlnI8uUjR1ACvXkzPnfbbUrPkNbRIXL33SAJcnPheF900dgydZY+Mhr+0ktwrHfuxH43bECX1oIC4Br1PWPJGuKCMi0NZCaJw7178fqSJSAR1q+HYxlqGyzfYJe6RJOH+jJrfRaK349Fjr5bclsbvpOSgoWNvvHJZHY8pOn1DemqJJI4DLZE6SNOJpF4991j8Oi4xiKvV+kb2mzqGlGEPyVltP6lyQTs7ugAIVhZqZolvfACxjQzEGmHDoncdRf29YUvYFF89CjGr82GMVtejtfMZuBHWxvG0dKl8D1EkBnncABXXn0VWZApKSgjXLcOi9FwY4aZdW1t8MFSUlTJcrwlevrsQ6MRcyyJQy52i4oUcUiNNL05HDgOr3dsYG2yjQ0j9IQhCU8R+Lh6wpCVMJN9TMyI0eN8enr0BgD6RifxaMvq982SzkSWPIbaDwNY+sASCcXguehEw6LxWnMzSEQSiE1NuL8PHUKTlIMHMe7Xrwcu3X47iLx//3fgRnOzyFe/itduvBHBzZ07VZbzq68C184/HxUTBgNIuT17UDn2yisIrHq9CKhefjmOQZ+Zq2nYltWK4/T5QB7Sd1mwAASl3Q7/ICsLfl60DECfT5XTpqfj+2++CeJw5068XlyMbMO1azGeg++z3l4EMvv6sE5ctkyRp4kyamx3dioN2LIyBG46O0frGO7dq+ac8nJFGC5bhuOfbJzketLhUJVsXFMmoprN71eJI+npo7OgvV7cJ+np8QeNHQ4lEebx4DzF0uNAb4GACt5wvg+D/YkgEY9HHiqhNkOUTCZuBoMhS9M0+3Qfx3RZdzec3bIy5WQMDAD0TCaAfyzEmN2OxT8ddpcLDlt9PRbSfj8mPJcLk4fVqqLcdjs+U10d2lFmJGJwEECQkYGJwGLBvg4fxutVVdHJwOFhOJVuNyagysr4u4VarThvLHEqK0s8+Lvdo4GeaeXTWQYUbCRVSBwycyEnB9cmN3fyomjMPmXn5IlE2i0W3FuMUo7nmLOz4RyxdKuzE+ckHjsesEhPFpIQobHkk8LMvF4bN4JAXLEC12HuXES+jUYQgK+8gs9+9KMopaE+4sMP4x649VZkATY1gUhkF9U//xkOcFqayH/8B0g+fUlxfz+yGJ95Bvu66irsIzt7bKSSmlU9PdBffPRRfL+uDtkAl1wC54gl+7wfop0rEojNzSAxN25EUMdgQEbmN78JncM5c0Jvg5ktzISbYFe6iMfJbL62NhVF37oVGaBc6JaX4zpecQWely6NXypgIscZTBzqG6NMZtCFDXuoZzZeo9YQicTptGTEI7cb+Ds4qDLERZRuIedpoxH/8zVqJvX0YMFZWIhrYDKpZkWXXz6aQHz3XZF778X8cfPNCCIywyQQwMK8shLjeWgIPoPLhQV4XZ3aVl+fytx94w2MpbVrUYqYm4vxE2pMe72qZNnpxG+ZPx9YEe9ikKVf1PA6eBAL3p4evF9ejkynhobwizeXC7/D7cb5LSmZ3LHPypeWFtX8ZM8edc3z8rAw/9CHVGnyZEgkhDKfD+fB41GkgdGomvPEGuCh7iDnCTaTiJVMZOMJpxPHM1mZoDymjAxFRHu92K/TqbIpxxvcSkYsmqh1dyNQmZEBrKmuBglz4AD8mb17EZw4/3yMha98Bd/73vdwr//f/4n89rfAhR/+ENnM27fDN92/HzhZUQGcob4qu/zu3o0qEKsVkizEvqqq0YEJnw/+ADH3zTeBHxkZyMBeuRL33OuvY79z5+L1SOsYVl2xa/22bdhuayver6wEGbp2LQKqocaB1Qos7uxUiSyxaOPHYy4Xzn93txrvAwPA45074dPZj92xOTkIBH/2syrLMF4SbLzm8SjikLIJ6enAx0SvKVNTEUR3OrEW6u9XvrDRiHuouxv3SjSpMb1lZiofnPqIbLYSqzGT1e9XVQckO6d7XX0i4tu0ZSIaDIYsEfmWiHxMROaIiENE9onInSKySES+HeJrn9Y07Y8Gg+GPIvIpEakWkZ+KyLkiYtU0rfbYtueIyA9E5DwRyRORAwI2+Zea7gcbDIZXRKReRE4Tkf8SkXUi4hWRh0Xky5qmuYKO+WoR+bqI1IjIYRG549jf39Y0LZalwqSc7MFBOGEFBXCAReDQ7tiBQbtyZWzOqMeDSefIEXwvL08JZxcVwTHduxeTS1GRagtPJ9BkwgQZ7CgThNj91GKBc5+RobQMe3owSVZXR06/9vkA7v39+NzcufE7lMPDOF63G78zXn2HaKZpCuxJyDFCNFO6F7JknOQd9aRyc3F99A0mpsK8XtUgZSLXwu/HbzIYYu+ibbfb5fbbb5dHH31UOjo6JDMzU+bPny833XSzbNu2S3784++G+tpxg0XBGYbBhKGeLAx3T+zdi/KbykolvPzII7i3fvxjkFRGIxzZO+6AkPiFFyJz8PBhEIhHjqB051OfAqHf2goycc8eOMhf+AJe54LWZgPB+MgjwIWLLgKByA5zwQSi243F/SOPgFAIBBDlv+oqlM4YDBiz7NxtsUR3SlwuaPi89BIevb1wjtauRfbS2WdHdjKDycPJ6Jrp98NJZlkyFxjU68nOhkOsL0vmPDJVptc31BOHJA+nkoib7kYr4fDo5ptvll27dsl3v3vc4ZEmggVFby98AasV45XBrNzc0eVZfIS6Pg4Hsn1SUlTTj7feUtIJ7JqsaWju9PjjWMTecAO+8/bbOA5qOtfUYMG/fz/2n5OjGnEVF+M73d3Icty8GVh08sloGJWZqbIgg4/VZlNdlgMBbJMly+O5371eYOnevTheBr+qq5Ft2NAQuQkLdalJFo2j2VhMNjysyEI+W614Lz0dx6lvflJWNrXj3+tVxCHHr76j8kT9In2ZObPAY8V8BnknM7Crt2AsysjIlHnz5suNN94se/fukjvuOD6xKFHmdKoGKG1twCyjEfMwtZ97e+ELdXaiGV1pKfSjMzLQaOXNNzEWrrkGlRlbtwK3RkYQFGhowBhZsgT3Z0sLSMfnn0fQ46yzRG65BbjldgMP9Gsmtxtrxe3bgWMGA47h5JMxDtPSgMmvvYYxcdJJyEqMZG43/LbNm0Gctrfj9fp6lXHIBi+hzGZTnYvT0/H7FyxI7D1vtQLTt2xBsKWzE/jZ14f309KAm0uXKsKwpmZq10VMQqH8lYiS32FJ+GRbIADccbmwP/rFPT24B+fMib9kenBQVeUxE3U8MlQiivjVB+CPnZeos8YJykMl1KYzE/G/ReRyEfmtiOwUkVwRaRKRNSLyBxGpFJFrReSHIrL72HdeD9rG30WkVXBCzSIiBoOh8NjnykTkLhE5KCIXisjPRWSeiHwxaBsZIvKCiLwiIreIyGoR+byI9IrI/+OHjl24P4nINhG5TURyROTHItIR6w/uiPmTsZvdDvDLyoJj0dGBSWnPHrxWV4f/o5nbDbDv71ft6j0egITZjAlw9268X1amFnudnZh4zGaASVcXtkfRc2YRpKVhm3l5mKRYJtPRobQM8/OVBkUoGxxUGkHFxQCz4eHYM8UcDgCf0wmgIXBR82+ixrR9CtpSONhkUqK102k+H67n8DDuG+pJcZGWlYVrY7MpTYypNJ678eh46I2EZFdXbJ0rv/zlG+TJJx+Uq676gixcuFRstmHZtWu7vPjiG/Lxj39aDh8+Ig89dI9ceeXXpbKyUdLTRW6//apXgzaTVFjE0rBQZcl60jCWxdvQEEqPmXnl84Hc6+tDCc5LL2EMnHGGyNVXwxn97GdF/vM/Rf7wB5RAMwuooQH33u23oxFBXh5eb2rCdgcHgTd/+xsW/zYbSmouuwyO7/Aw7nE9gehyoaT4scfgLObmgsy89FJgnQhwaHhYRTTpcIcylwvO8SuvIDJvs+F+Xb0anaXXrlVEuNsdGvep7xIIKMIzUQ6h04mFeXMzHrt345yJYB/19VhYLFmCRXqwY8xmDpNpvPdIHoqo+y5UQ5epNhKJE9VHFImfSAyHR88/DzzasOGIPPbYPfLRj35dcnMb5Q9/uOoqSWLfaNMmzMt2u2rskZuL8UyNWy6+aW536PHp92NRaLcjqDoygsVoVxcW6jk58D3Y5OCtt7AovuwyYOKOHdhOYSEwKStL5J//BG4UFqogKRu1DAygScs//oHXli5FRlFZGY7B6cQ2uABkyTLLBlmyPGeOWthTczQWow52aysWxCzDq6nBwnfePBV08ftxvMFG30TfnTMrC6/HcyyhzOsFoblnj3p0duI9gwHnc8UK4P6CBaObAdImegzRjKQeG6PoOxeTOGT2oMORuP3qM8NjJRO5oB8ampwutMF2ww03yGOPPSif/vQXZNGipTIyMiw7d26XN954QzZs+LTs3Qssuvzyr0tJSaP86lfJjUWJNE2Dn2K1YswHAvCDtm5F4LKrC/f2xReDKHzoIeDHbbdhzHznO7jOn/wkxsjixfBjnnwSWHH++VjDuN0YP0YjgrM/+xl8r1NPRQXEqlUgxzweBFD0QfqWFmyzrQ3rr2XLQB6S4NM0Va2QnQ2/IVyVmKbB13jlFQRre3uBlUuWiJx3HgK1JSWRz5nLhWM6cABjorERj0Q0m/T7gZP/+hdwf+9e+DmpqRh31dXw4UgaLlw49dqvmjaaOCQ2mM3A5enQzmcwzu0G9vT3Y44uLMT16u5WzcZitbw8FUAXUbzCeH4bcdNmwz3X3Y2xdfHFMX39hOOhEm3TmYk4KCJ/1jTtxjDvh61F1zHA/6tp2ueC3vuJ4CJ8TNO0vx57zSAifxWRS0VkmaZpO4+9/oqInCEiN2ma9kvdNp4QkbWappUc+98oIu0iYjv2fcex1xtEpFlE0mJhgDs6EhvlcrtVB63KShUR37cPkwyjSNGMehMOBxaVVVWYhFJSAPp2OwB3ZASp5OxKyMkxMxMRsZQUHNPgIMCGJcvUOwwW6+7oAGiWl0ePkB85gv1nZmL/8ZQdO534PTYbzlVRUWIFqgn61A+kJtN0p1aL4NxR45AOMEkSZnfMJGOzi5yciZEq1OeMltmoaSKLF+fLRz7ySfnmN+9636lnpoDPJ/Lkk3fLT396nfzsZy9Lff06cTpFLrsMUa5kxaKDB0ULzjAcz3jw+dBB8NAhLFgzMpDJ094O0e72dpz/FSvw/8GD6Lp8/vkgHjdtgrN77bU4hs5OkIrd3XA8P/UpVRpqNsNBfeghLIZXroSDXVcHrOH4I4HY3Q0i8qmncP/PnYtMpPXrR+OH16s0ErOzQ2OLzQbC8JVX4PCz1Pm001AeePLJsWESj1O/cJwITvj9OPfNzSAOd+7EOSZxVV4OJ56PBQsmRtBPxEjMkTwUUdl+4+moPNnGRiuJatoSjZT3enFfn3FGvqxZ80m56KK7pL8fDjabfg0MiHR13S0dHddJbe3Lkp29TnbsUBH3ZMSj++4TjdUOxcUYV+PtQr5rlwoemc2qsuLDH1bi/3Y7ghf79+P1D30Ii8vDh1UDE4cD2zh4EFm81dVYWI6M4DoVFoIQe/JJ+DG1tZBQqK/HvW234/izsnBfezzYTkeHCpTNmYPxGe/49/lwrPv2wS9zOlVwoKEBeBjL4pe6VwwY5uaG7sgZqwUC+I3UXtyzB+ePBGphIY6Pj/r6qZNICDZ9x89g4pAaW1OV/cg5QR9QirSY9nhwf5lMk+e/UeKmqSlfzjrrk3LNNXe93ziRjY2GhkRaWu6WzZuvkzPPfFmKi9fJQw8lNxZJAjMRN22Cr9Dfj/NVVgYCccMG5ZdfcAGCoa+9Bhy6/nqRBx+EvEJFBcqdNQ3+8EsvIdFjwQIEK61WzAcLFoB4++Y3UW1QXQ35mPPPV9nJPh8I+sxM7HvnTugoHj4MvD3zTPhh+gxFVlkcPYrvnnrqWKyihMvrr4Oc6+8HFi1fjuDu6tWxdUT3ehVm+P3wJRcvHr+8lKbhuClLsWWL6ubMRlJNTej83NQE4nAyOrfHeqxstkntSINBSV9lZMwc30jTgAsOh2ok1dcHHI+3eoWSGwymm82hs/Cp08+EIf2D/Qx6elS2JLH08cdjykQ84XioRNt0ZiJaReRUg8FQrWla2zi38d8hXrtIRPbzwomIaJqmGQyGnwou3kcEjDMtICK/D9rGP0XkYoPBkKNp2oiInCQipSLyC164Y9vdYzAY/iFgmKNaOD2s8RgdyfJyALzRCAd1YAB6Ok1N0Vl9lwtO6JEjcPDWrwcQHD2KCS83F6BrteLvVatU5g6br8ybh99ls+E1hwNgUFqqSpb1xtJntxtk4Ny54R1eTRvdKayhAYuMWJ07jwf7cjpx/PX1OKZEOIeBgAL+1FTVxWomAL7brZw9EofM3GQ0a6YaOxFyop/IuaTOI7Uy9HpEFDr3+0VycvJk27bN0tnZJhUV1e+TrCR4KDrf2IhIbJi4S1JhUV1dLJ+Kbv/3f8CLxkaMsS1bQATedhvGbk0NHtdcA7x54gmQBTfdhHF9663ICDx4EM7zSy/BCb7jDhCPdjuu1TvvYOHf3g7n8o47gHEiYwnEt99Gp8IXX8R7p5+OTqwf/ODYse9w4D5h4yC9k9zfjxLFjRvhTPt8OPaPfQz6hqedFjvRzWwXatnE0vky1DZYlszHjh1qjOfmgui44AKcu5Urp06vJ9Ix60uVRWY2cRhsiWi0Qie4pwdOc1+fcnxZzkZ9IRERjydPNm3aLF1dbZKdXS2lpbiOc+cCx3ftErnnHpFvfAPXOowlDR5dfnliAm5tbRgLJSUYy62t8EkuvRTjQQTn/H/+B2P7xhuBJW+9hXli5Upg1aFDuNadnZhL164FAT8wgHu4v1/kvvtAQubmogz6jDPwHWarmc3wWViy3NWF75aXA9+KiuK7n9xukIZ79mC/rO5gNvGCBbGfw0BAZR6mpSFonJcXfxbI4CBIWr2WIQnJjAyQtldeqZqf6HUop8OY/c0HCUM2RpnuoC+Dlnppi3D4aLfjnsjJif+4g/VG2bRI/z99ME0DFmVktInFUv1+xVBDA54tFmTlX3st1g9hLGmwKFF24ADOS38/zmlxMQjE9euVRvr69cCi1lYES9etgz/0zjvwL774RbzHYEFvL75z2WXApoEBjLfrr0c2dFYWMO1b38L97HYDyzQNQQ6nE37M9u0qm+y88+DTBmf6dXXhsx4PiMD6evWexwM/7/XX8RtHRhRxePXVaCIVq8SU34/ft2sXtltdDUIvXokqZpyTNNy+HeeHwdqqKvhrK1bAD1y4cGolEoJNv35kWS+1/riOnG4t5VBmMGDOy8hQ68vUVHABGRnxZUcz6/3gQSWrRX+LJOHQkJLbYpYmm7iyaoX7rasDb1FRERfXcsLxUIm26SQRbxaR+0XksMFg2CkiG0XkIU3T3oljGwdCvFYjIs+HeH3XsefaoNd7NE1zBr3GAooCERk5tk0R1MoHW6jXJtUCASym/X4sLIxGOKp798I5XbYs8uJM00A4HjqEwVhYCDKQYqkjI5iEyPSnpcHZZip6Xx8mtKwsOMt0ao1GkIf5+aEX1x6PcvQLCyN3dnI6QZKyWcvcubGntFPId3AQ2y8pwXlJRBq4z4djYskyCafpyu6hOZ2KOHQdU1BghqjFMvVp+eM1NlphhkSoSYkls6FIQf3/mqacbWa3UBicpeZo+nGnXH/9VfKhD9XI0qVLZf369fKJT3xCTj75ZBFRDg27aYexEw6L3nwTBFtREbBg+3Y4gzfeCBwpLsb53rABuPDMMyD4br4ZY/IPf4Az95e/gBTxeEQ+8xk80tOBEyQE9+2DI/yjH2FRT9zgwsvtRkkhP5uXh6Ygl14KbAu+/1kWRpF6ZuB0dqqOyu++i89VVmIxfPbZcELZvCEWmwh5aLPhnLJT8rZtqkGC0QgC4WMfU+U3tbXRs1imwkIRhykpmBOSgTjUW2qqWtiHOq+BABYrJAT1z3qS0OEYqzVqsWCMlJSABCoqwmP37jvlRz+6Spqba2TJkqWyZs16+fjHPyGnnHKyGAzQEb3nHtzXZWVhDz1p8CgR5M3goOoiarHg70OHsDAngbhvH7KmRSClYDZj8Z2SglI7LvTfe0+RaitWYFwND+P7r76K7WZlIdNnzRpgm55AFIEPtXu36kQ5Zw4WyPFk3rECpLUV+wwE8P3GRgSK587Fb4h1PHFxZrWqbeXnx3b+GXBmp+TduxHQEMH+580DGUEtw6nWDgtn7OTJjEMRtfCcCUL8emNghZUQXCiHIhPZoID+MbP1bTZFBIYjCZ3BI1pUxVB+Pu5VkoWNjXfKN795lTz0kPKNzj5b+UaUEpozJyJJnDRYlAgbHIQv0t+PucFiAbH1gQ/gfa8Xf//85/js176GcfyZz+D63XoryL2XX4YvQuLmssvwvYEBBD4efRSfoTzLRz6C7xmNGK+HDyuJmSefBFnD9dCKFfC9gtdgmqaIuNxc+Dx5ebjP3nkHxOE772D7WVmQgjjpJBCIsWhI6/fDCgqHA/PYsmWxNenwehFM2bFDHeuhQ+r92lr8Pna2nzcPPlxZWWLKosdrfr8iDrl+TE3F2iQzMz6/crrNaMQang1nhoaQjDR/Pt7TNPxGNuvUk4L6/6n16HTimbr8RUWqhNtiUSQi9SBzc7F/YlZe3rixfJaHmqBNG4moadpjBoPhXwJG9kMi8hkRudlgMHxH07TbY9xMiOkwbvNHeG9GDunOTgzQykoMqkOHEPkqKcHCMpLzZrMBgNkJl01FiotBLB49qkgxpxPbqqxUBGJPj9Il5EI8KwsAHVyyrLfhYRCfmgZgD5c6zpKYri4ASl1d7N2f/H4s2Pr7sZ+CAhx3IrTGXC4AnsejNCqysqZG2DaUsXkLiUMeV1YWHLp4JvSZZPpSR5aBUFNSTxIGm15TyGzGPc3/OdEVFoZ2Iq66aoOce+5p8vTTT8sLL7wg9957r9x5553yne98R771rW/FeugnFBa1t6Pkht07d++GQ3fNNTjfZWVwYn/wA5TB/P73Ir/6FfTFzjwTHQNtNmTxvPMOnNBvflNFvHfsEPnd7/BcXi7y9a8jCq/HNpbyPvwwMhyHh7GAvf12ZB/yPggeB9QAQxYq8ObBB0EcNjfjMwsWgAw9+2zVOTBego7kIbVHI2WW+HwgC0gWbt0KTCfxVFeHSPry5cjAnD9fHQs1faZz0R6qozIXwJPdUXmyzO1WZGBXlyop1pOEfX1jdUVTUzGfFhcrIXn+T6KwqAhYpP8uy50vvXSDXHfdafLss8CjP/7xXvnFL2bxKJyxMYDbDdzZtw9jZ/VqPEQQ8PjTn3ANbrgBY37nTvgIp5yC8fPaa8C1mhrMFSYTMlja2tCMqbUVn//IRzD+srNHE4goNcezx4PFTkMD5uNY/YShIVUOTH8pPx/HOH++8sPikUHQk0t+PwijgoLwC2rqLJIw3LUL55P3alkZMgs/+lGVBTndQVS9UWvL7Va+Qmoqrkd6+vT5bLEayUT6Om638vdIBlqt8I86O3Ft6QsG+0YMVuTl4V5duFBpk+sX4OGCzGecsUGuvHLWN4rVvF6Rp59W3X6zskC+L1+uGkkuWSLy05/iXvz+95Hx96c/YV30i19gvXX//fCVqqrgP+XlgaB/7z34N88/j21ffz18g8JClEMbjVi37d2LR1eXqrRYuxbj3mCATxVcpeB0oiS5uxvbXLAAmYavvw6fxOfD/XL22ahKq6/HHJ+ejvEf6xx/5AjwengYx33qqeFLYTUNOEjCcMcO+JoMCBQWgny8+GLgY0GB0hLMzVW/c7r8DxJkJA5FlA49icNkM79flRcPDWG+Y1IS5z27PTQWsXdDXh6CYJTQYICLusgMiogAC/V4lZ+fuGq6WR5q4jat06mmaT0ico+I3GMwGDJE5G8i8q1jKZ/j1aY4JCILQ7zeqHs/Xjt87Hl+iPei9KlKrLEjEkXH9+9XZc2LFoUHy0AAn2tvB4g1NqosHosFTmJ3N0C4qgqDeWQEIF1ejgF94ACAIi0N++AOYXkAACAASURBVGeX5UgOJEvw+vow8CNlFI6MYJJ0ubDdqqrYHD6WGPX24jfRYZpo1Emfcu73q7Ll6SpZ5mKAxKHPpzL3SksBxjPZQY6UPci/9Ytqln1QuzEtTZUdkSDkYioSuZOdrdLlw5VtlZSUyLXXXivXXnutOJ1OOf/88+X222+XW265RQzj90COSyxyOER+8xtgxMKFWPRu3YpFpQjuxZdfRnOVf/s3dCG84QbVaOUTn8Ci/L/+C9f8ppsgNJ6SggX773+P7+fliXz5y3AQ9QtmTYOze//9yAxKTQXBeOWVcNDtdhXhDb7WxLV9+yD+/eKLwDURkHNf/Sq2NXeu0lYhGRbrbeDzwZlipDm4oycdY32GYXOzahRRWIhFxyWXKNLQYlFjhfpdJA+ny0EORxwy43CmEoeUTIiUOciMfP13RIBDpaUgc1atwnNJicooLC6Gk5uSorJA9F3Pg5sZ6btP689XWdksHsVigYBakBYVwX/Ytw+lyevW4Xw/9ZTIs88Cq664AmNteBiL5MZG4NLWrbj+S5aA9Bsexlzz4IPAIpMJ4/H00/EegycGA76/dy+e2bCtujp26ZT+fpCGra0qu6+kBEGDhQvxN3VUo5W5BpvdDtLJ68WxlZSM9dd6e0eXJbe2qozK7Gyco6uugn/Z2Bh7UHcqjZjrdqsgZFoaFq2sQJiJRj20SJmDAwOqKZ9evzg9HdcnKwvzVUmJIgW52J6IxiVt1jeK3Z5/Hv5EZyfG6XvvqdLv1FRg1C9/ibXNjTciM3rrVmQQ/ud/gmD7yU+wrluzBmXNR4/i+7/4BcqfNU3k05+GLuK2bbjPzzwT47utTeTvf8cx5OTgvjj7bDyzeq2qamyFz9GjIDMHBlTmYksL/i4tFbnoIpCQDQ0qs5flt7GuOXp6VCl1bi7wrbJy9GcGB1VZMrMMee+bzcDnK69UOoalpfjO0aMYM3Y78Le8PLIW+mSa16sao7BxiNEIH46BjJlqbJ4SLnNweBhr0GBJJwaxKbGwfLlak/KRk6MyrYeGRuOb3a5Ku41GBKooPxYpOSkRNstDTcymhXIwGAypIpKtadr7/Wo1TXMaDIY9gvbWuQLxSBGRML2gwtrTInKLwWC4VNO0x4/tzyAiXzn2/lPjOOR3RaRHRD5rMBj+K0jQ8txxbG9cxugjHYQ9ezAxzJkTWePBasVnnU4MznnzFDiYTNjG4CC2M3cu9sGJq6wMTmZrKz5TVATnm5NiJPN4MIk6nfheeXnoY/T7cQx0whcsiE1bQdNwTD09qhlHWdnEo+KcBPQly7m50xM1osA1rxcXErm5mJQS4SRO1FheHKqkWP9/KC1BEoEmk8rs1JOEeiHk8S4EqL0xOIjzmJ+vL4f1i81mE4uus09GRoY0NDTIK6+8IsPDw5J9zBsZjL9N5HGHRZoGR/bQIZSNHDwIJ/jcczH+iouhF/avf6Esp6IC0fKKCryeno7OzDt3IoJ8882IsPf2orz52Wdx3a++GgtXffmf3Y6MwwceUN1Sv/AF1ZnZ6VQ6X8GOh9eLTKONG0E89vTgfjrlFDil55yjSkOZ/RFv9iHveRKPJhO+a7WO1jHctk11STWb4QxffTVKcJYvBw7z2Dm2WIKmz+6bDtM3RtFHivVk2HSaz6c0ByORhHTuaQYDyJHiYpz/5csVMUhykBq/4QhSEoUMzgWXL+ubGOlJV73N4lF8tm8fCN/sbGTd7NkDPFm/HmPxj3+EJMJpp4EA3LwZ12/tWswJbMRis6E5UmUlsG3rVmRI2+0oIfz4x3Htu7qAL8XF+PvgQdxP6emqxDiWZhdHj6pGAn19eG3OHCz4GxoUUefzqQyWeDq4O52Y79xuJTOTmQm/ZsuW0aRhby++k5aG3/DhD6uyZDbsm4nm9SrikMQ8ZUqCAzfTYazUiVZeHIxFIrif6efX1ipfLydHySDk5OA3stnPRHykUDaLRfHZli3AjcOHgfNsSFJaqqpp7rsP5b9nnilyyy0Y21//OjRVn3kGEipuN/Bm7Vps78UXUW0xOAjJgO99D/7UCy9gP+vWgXz8179AvBmNwKzVq+HTjIzgmFjZpc/i0jT4RE8/jTWYywUcmDtXlU/X1GA/Xq8ikEym2NdZg4MgD7u6gEGnnIJ72u3G79NrGba34zspKSCRzjlHybXU16v72+fD9rZswTGbTOpcT0cFlsejiENmSZpMGL9MgJhOo7RTKGJQ/z8D2Xqj5qDFgjW8nhjk69Rw7O5GVmJeHl7PyVHNVtvaVC8F+j+UUaipwXcCAVXinJ09uR3oZ3moxNh03do5ItJhMBgeF5HtIjIgIitE5LMi8pKmad0Gg+EdAQt8m8FgyBOkjG7WNC0ag/tjEfmEiDxoMBjYWvsCETlPRO7SNK053oPVNM1rMBi+JiL3isgmg8Fwn4hkC9p07xCRlfFuM16z2zEpZWdjUdPaisFaXQ3SLZT5fIhIHT0KwG9qwoC1WjHpcDHk9WLSKC/Hex0dqjtiayuAgWn4tbWxLRSpkSCCbYfrvkxw8XqVKGoszt/QEI7L7QZIV1VNrNMfRVvZyEHfHWuqJwC/fzS4sxyS+hCTHZkJPpZIuoNsThJszEhKS1Pag/rMQf4dzdLSlLjuRDpqp6bi+1Yrzinvx5GREZkzZ45ceuml0tTUJAUFBbJ161a5++675ayzzpLS0lI5+eSTxWAwyI9+9COxWq2SkZEhl19+ee2JiEXPPIPSwOJiLD63bIGzW1YGbLrzToznX/4S7z3yCBzB225DV+X77sP9++Uvw3HOzRX57W9F/vpXOBAXXADntapKXevDh9HA5bHHMD4XL4Y24oUXqqiuzQZHjmS0CP5/4w1E5jduBNaYzSAT1q/Hgj1f5xqwQQszCGPN8mP5XCCA8bBvHxxiZhoePozPGQxYpJ9zDkiq5ctBGIQaB8zw49iazpLl4GPh8fAxVWa3hycG+ffg4NhgRXq6IgKXLFF/60nCwsLY8IjnITVVkYZ8pjGrkPNrqGtmMKjuz/r3x4NHn/nMZy6TE9A3IolnMGB+2LULwdQLLwQe3HUX3r/kElzjbdsQzDzpJNwn776L65aRoTSzHn0U+Jaaim2ddRae2RCOhP7evSpgsWgRFueRFq/MPiZxODSE4547F+RlQ8PoZgL6jr3U8Y0Fi7hgczrx+aGh0aXJ1EkTwW9esQJk4eLFWKTP5CwZkdGNUfTdjNPTp5Y49HhUd9xQjUkGB+FnhJI6YDlxVRXIkeDS4ry88FhEjV2/XxHE2dmjNaQT5RvOYlHs1tGBpnC7d+P8W61YT1VWYg3R0QH8Oe88vP+NbwAzvvMd3Ce//CXIsPp64M2CBXjtz3/G+6tWIdh5wQW4h154AWRLcTEqMphIsXYtggAkX1jyziow6tUdPIjjfeIJHFtWFvZx2mnYBhtoiowmdqgnGsu8z2YnbW24nwsL8VseeACkITsxiyhNxE98AqTh4sWhgzFcB/f04LgsFiU/MdUBTJdLVaqxdNdsVqXKU+Ub+XzRswfZtERvKSk41txczI/19aOTU/iIh5TNzcW6f/dutY6lxJTRCIyrr0eQLC9vLBGtaQiqcc2Xnh6eO0iAzfJQCbDpIhEdIvIbQQ36BSJiFpE2EblDcPJF07QDBoPhRgFz+78ikioin5YoaaCapvUbDIa1IvJDEblawCYfFAho/mK8B6xp2h+Ope5/7dhxcpvLRWTReLcbi7ndGJgmE8Cd0fPaWmQVhrLeXixmvV44K4wmdXdjAjGZEPl2ODAplJVh4LJLVlGRapleVITJsLAw+rFqGiYtdv+qrg7tmLLJitWKz82fH1sE32ZTHZfNZqWrMF7jBOlwKIedk8BUTkper5oAGO2jeK3Fgkk+kcfDjJlI2YMkVIItuDlJMDHIcsZEWEoKnGSm0cfbtU1vRiO+PzKCB65zpnzxi1+UF154QZ599llxuVxSXV0tX/va1+TWW28VEZF58+bJXXfdJT/72c/kuuuuEz9m4zPkBMOinTtBBKalYfxRy5BBjO99D/foT38K53doCFH2efNErrsOi+gLL0Q31kAAjvDDD2PsrV8PB7KkBNdb05Ax+MADyCBMS0O242WXYeHLRZam4Vr6fCrC/o9/gDR86SXVJOq006BldtZZY4MNzPajFkusi1GfD2QCuyQ3NwM/6VCWleH8XH45AjjLlkUusQnOYtNnQk4lFpEY0xOH+o7KiXaOAwGVUR5cUsy/e3pUiaXe6ACXlICI0ZcW8++JLqz1Zcj6TuA8Dykp6hFclhzJqPvDay0yPjwSkQflBPONbDbgkcOB8bpjB3Dm4otx3/z615gzrrwSvkZ7OxbnVVVKE7qgAOORmTq//jX+PvVUdPAsLFTNIvbuVVrQzGxnCWm44KXfj+2SOGQny7o6bH/BgtDaTpyDiUWxjDePRzUbOHAAvhUb54ngeBctAv4tWoRzMYmLs4SZpo0mDjlWSBoy2J3I/dlso7UHQ2UShsIiZtXk5YFA0hODfJ5oAJi/nQEr3ismkyI0JhJM19ssFsVmdjsy+XbsUIROcTHWZ5mZ8Ava2+HfvP46Pnfhhag+2LgR67TKSpB3IyPAmhtuwJpv9WqULldVqaYVf/0rsC89HfhSVIRAxMKFwJbUVCUjxdLhOXOAD5s2IbDKtVdVlciXvoRAS6j1ndutMIQZvtGM2oqvvorfzYQSapNnZyOYd+218ImWLo3cuV3TVHXc0BDwt6QEYyxR93osxmYhLLulv8gGIJmZiQ1icH/hiEG+HgqLWD2Xm4v7MDh7MDcX12Eix+vzhW7a5PUiuMIsapNJNVKNVs3HihD6hIOD+C2J0kAMslkeKgFm0EKxBLMWsxkMhqdEZKGmabHUpMd9sn0+FT2ursZE0NMDNr+mZuzn3W5MSn19AImGBuUoDw6qlPL58wHMfr8qzdmxA4vzefMwMdlsAIXS0th0cNxuTE5OJ7ZZVhbaYertxaSiaQAWipNHMqdTlR2xPCcvb/wOmderuiyLANymWujW41H6hpxgTSaVcRgLqRrK6GBGKzEONn1zklC6g/x7OkoWXS6co8zMiU8o1N/Iyhr/OZYZKHY7mVjU14fGJ0ePwiHYvBkZLGvXwmH47W+xqP74x0EMVlaKfPvbaFbyxBNwYm+7Dbj1yCNwuoeHUS7zuc/BKaQm5lNPIfOwrQ04ctll0FukhAIJRL8fuGa1omTxxRdBOLrdwIbTT1dljMXF4aUUSNpFy47t70dm4datyGLasQP7p2B0UxMeLEuO0Dl39IXQRo9Jva7gVFmojsp64nC8zqbHE1l3sLcX91ZwlJz6UcGEYPDzZOB1cIZhqCzDQCAx10hPIk4AV2ccFonEhUdxYZHPh2zBjg7MBdu3wze6/HJoif3ud1h4XHIJsCktDRqJLpfShJ43D4u/557Dtvr7sSi96iqMW4cDGDIwgCDByAjut5oapYVoNI6dP7xekHitrfDD3G5V6tzQEDnbLxAYraUaKfvQZkPAoqUFGd+7dgFP2UCkoQH4vGgRHuGkZGaikTh0u1Ug02DAWGdH5fH8Fp9PaXGFIwet1tANAXJzx2YLBpOE0yV3w4xVEhsWy7RmlM7Iu2yysMjvR/byxo2K1CkoAEmWmQlfwe1GduBjj+G+vvlmkMnPP49765xzkHn3wAN4kFT8xjcQ0OjshP80OIj333sPeLJmDZ5ZjTV3rsqQb2tTgbk9e+CvWa3AvvJy3CMnn4zAbKgkDHYS9vtVNVE4H8DhAA5t3YpmMNu3Y1/p6TiuhQsVWdjUFHvndq8Xa76uLvxGsxnHXlo6ddVh1Cwlccjs58xMPMzm8flGlKkKRQrq/2dptN6yssZmC+pLiym9lejgCjkEPkZGlG+UlTUaEw0GzJ2FhThPbGSYkaFkGCKZ1wvfcHAQv6msbFzXfEZi0WRYnGu/xO57lkSMzQwGg0lEPJruhBkMhsUisk1E7tE07foYNhPXydY01WikqgoRqv5+RLCrq8d+9uhR1dGzthYTD3UQmFpsNmNbdJrS0vDc1obBetJJAKH2dgBneXn4Tsp6Y4m0wRBauFcEv+PwYVV2MXdudMfL7cZic2hIaRGNN3VdH0marpJltr0fGlI6ZxkZijiMpjMSnD0YiiQMLqERUeRLJJJwpoqP00ZG4ITFm2Ifyqj/MQGty2mboKYai7xeZBm+/TbG3zvvAF/WrQMmPfQQHNqKCjiSH/4wiLvf/AY4c8UViDq/+iqExHt7gTOf/zwcS6cTi+7HHwe56HSCiLvySmQoiqgsYY7Tjg7oJ77yCgg9vx/O5bnnQm9o/nxVrhGKdNZnH5K00zs2TicyCPTdkjs61AJ/wQIQhStX4jFvXvzjhwQmx+tUlyxPhDhkN71o5cXDw2O/m5kZuqRYTw4WFEzNedCTheHKkvVahjR9KfJEjzMBROK0OssJwKOYsUjTsEhtbQVu79wJP+eKK0TeegsZ0CUlkEpgRtD8+Sq4WVoK7GpthV5iTw98qQ98AI+UFNW8bmAAf5tMGOtstsQyUhKILhdwsLUVVR7Mim5owAK6piayf6EPIoTKhPZ6QY7quyW3tyv8mjMHpMWKFcDTurrp1+CK10igkjgUUbqyJA7DGf26UOSgniTUN0qiscQuFCnIZ4tl+vUVoxnnEqsV56OwcHq04eQEwiIR+B+PPALfgHrby5Zh/ty+HQkcdXUgDOvrRb74ReBURwd8iIsuwti+9VZ8vrISAdPLL8f919ICDOrsRNBS00QuvRSdmJ1OvJ6dDQyjPuazz8JX279fYdGqVcAHpxOfWbAAPlgon8XlUprQlCKi+f3YLjUMd+4E6el0YvwWFIAQXbcO+2xsjF+j3mbD7+rrAy7k5cG31GuZT6bpG2o6nTjnKSmjicNIx+HxRC4t1leb6S01NTwpqH9MxTqNmrr6AAsDvenpsXV37+rCOZwzB9+x2cBHUNM/2n3BtT+bpsWSbBRkxx2JmKC1X2KPaZZEjM0MBsNqQS36X0TkqKBDzuePvb1C07SDMWwmrpPd0YEBVF4OcnBwEKA8Z87ozzkcSmcnPx8TRCCgOviaTMrRKizEIq+9XU0QVivAf9EiDPD2doBIRUX0kpdAAIA/MKCiYcHOCwnOo0ex/aoqgEIk83qVxpXBgMVAUdH4nDlG1ViynJamMtqmYlJyOBRxyNIARpMYNdYvJCKRhJGak4TTHZwuLbVEG7uq0rGYyG/itny+yBpEEWw6ScQpwyJNE7n3XjjK+fkg1CoqUBb3xhsgBs89F+PfZkMTlZYWvN7QgHLm4WF0XG5pAT78x38ggzEQQAT/gQdATJpM0PxhJ1ARRYqnpQFnnnsO5cpbt+LY6uqw//XrsYB2OJRWmcUSXm+QC1Vm1u7fr8hCkhR0miorsW0KfDc1jb9ENlTJ8lR2Myb5pScOU1IUaZiSgmPr7x+bORhMEoZqTpKfHz5zkH9PZQmS3oI7JQcHW/RkYSyEHpvLJOLaTZBInO6F+0TxKGa/6NAhZN75fBijpaUin/wkcOH550HmL1mC8V1fj3mwuxsLlvnzgflPPIHAQ3Y2FuzV1cAKrxcYZbOpzu4lJfCnzGa1UE5Px7XfswePw4dxL+XkgDRk2XQs8xOxSJ8J3dExmjCkLI0I/LR583DM8+YBk6qqko80FFFash6P+n3sZm8y4TexOUk4cpDPoRoCsDlJuMzBvLypl62ZbPN4gN0pKfh98XTyTpCdMFjU2grfqLlZaXY3NeFe3r0bfpLHA9/iIx8BLr35JtYdF1wATLnjDgROc3LQrXnVKtybZjMqMjo78b/Hg+u5YQOCEizvzckBJrz1FnyuTZvw2ZISBHLXrsUxdXfDX9M0lEjPnTv291DvNRBQY7C7G0Th9u14bmlRyQ+UdMjNxRqVmoqxJJ2MOenHtPA6O3Euib3l5ROqForZ/H4la8XqNGZ1kzjUNLWWi5Q9yO/rzWwOTQrq/58uLPJ6Rwdb9HhK6Q5iZ35+7P6b368Si9igi9ngXi/ur2ikqN2Oe5BNYWORVNPZcYTssASt/RJ7TLMkYmxmMBgqReTXIrJaRIoEXXteE5FvxCGSGfPJZplXQQGi6MPDiPDoS+SYtt7WprpZWSwYpHR2LRaAX0cHBrDNptKM58zBPlJTVeertjYAyJw50fXn3G6VKRmufNlmUx2aCwrg/EZyeP1+9dtFlC7ReJxkdszSlyxnZU1+qQc7YZE4dLlwrcxm7J+ZUXqiMFpzknAk4VTrpU23+f04p4zaTeS3BwIqcp+fH7ezPZ0k4pRh0T//KfLzn+Mc7d2L8bhuHRbsu3cj63D/fjiTH/oQ9Hp8PpQoNzWJ3H03yLmCAjjAH/0o3n/0UZQsHzkC3LjySpGPfWy0bILHg32++CL0E3fvxnHMn499XXQR/mZ5KXGPDlvwvUFR+s5OFUXfvh1RdcoJ5OaqpicrVoDMJIampY1fg4sSAxznU1myrNc3ZHOS/n7MA8RafXnxwEDo5iSRMgdLShDkmUlkRrSy5GDScDzG7LFEXEc9qRunTffCfaJ4FBMW9fdDa8tqBZlYVAT5hEcfBcYsWQJCzWxGcIGdbysr8dozz+BzqanIwlm/Hv5Bfz+ejx7F3LxokcqSKCnBa04niPPDh7FvNo0rKFDEYTwlw8Si/n5gHDMZd+9W2btmM7a7aBGCx/pyxcxMzFkzvRFKsLEhiMeDc2q1wkd0OPCsL5mzWlXQUG8kyCKVF5NAOxHN7cZ5MxpxD01xhvsJgUV9fZBwefVVpa+9YgXOe2cnCER2ab7qKmBHf7+SOvnNb1DBYTaDUPzc5zAeDh7Efb9zJ9YrZ58t7zdIWrUK67TeXuDF/v143rkT19xkQlXEhRdiP8SKLVuALQUFIBaD13VMMOnvVzIMzc3YLtdhRiMwiGXJRUX4vM2Gv5uaIusahjOPR5Us03erqADuTrYv4fMp4tBux8PpxOtut9IjJFEYqjmJwaCak4QjCXNyZg5O6zvG82Gzqff1XeHz8/EbJoIbzJbNycE1pdntar/sQRDOhoZwf4iAl4ikKx5kx93KOEFrv8Qe0yyJOKUW08nmRJSVBcfWZgNw6wfh0JDqEFhSAufZ4QD4paWpKKvVionB5cL/Hg8GYmUlJqFAABHttDQQiHS6ow3UwUEQk8wsDJ6Y/H6839MDAI3UoVkEx9HXp/SxmNESL/hyQrTbMRmkpKiS5clYsJMI9HjGRnI0TRGXzGygUfMoUonxTC8vni7zeDChk5SdiPn9uF7smhgHmZDsE1RULDp4EJmELKfJzkbJ37PPAn+WL4dDe/rpwKiWFpFTTkFp4TPPQJ8wPx+lOStX4jw/8wwi7y4XHM9PfhJOL+/1QADO69/+hizF9nZck5UrUaJ4+ukgCPTXndqimja2fNlmA0m4ZQuyDHfsAFkmgjG2eLFy7JcvV3o9HNPMNBtv58/gkmWO60Qv6EiIM1uwu1s9mEnY14c5Ivgep4MXKmuQzxPpjD4VNt6y5ETslwLr00gkzuArE5NFxSKnE3jy3nvwUwoLEUT485/x2ooVSnolLw/zQ3Y27t1//hNZOCYT8KO2FvjR0QEykEGCqioQkRSILyrCeNm2DeQe9RXLykDuNTTEt3B2u+GzNTfj0dqKxRHvydpa4BG1DGtqcE/Z7TgmrxdzHjOVZqoxiEoikEGKvj68xswdt3tsEDQjI3LmYH7+xJuTnAhms2H+ysxUWBhPl+8JWLJfmahY5HYjOPrkk8CErCz4DpTvyMsDRs2bB7w5dAj37bp18H/uuQfX5Oqr8VpuLnCB2dGaBmy5+GJFFjY1gQT8299AXOobbS5bBqxobBwtnWCzATP7+4FXJBZFgCV798Iv2rYNvtt776l7o7ZWVV4sW4bjMRqVdv7AAHBz2bKxlXGx2MiIKllmEJ8ly4k0TVOk+vCwkqjo7VUBDDYDCV5zGY1jicFgknCizUkm2/Q4zGf6GCbTaMJwsgIvAwPYd2npaF6BEmuUBwlXOcRtdHYqObYYJaiSHYuSwmZJxKm1qCfb4cAElJYGsHO5ANQs//X5MCl1dGAg1dYC+JxOPFsscMSoV8VFeE0NBm12NrZ14AC2pScQfT4QiJGImUAA+x4cxOeqq8cCDzUWmVY/Z074BZamKWD3+QDMpaXxO8lMR2c6/kRLlvXNScKVGHs8KnputyvdNjrB1IqYKc1Jjifjtc7OnrigOUkoZu7GaMl+BSNi0ciIyFe/iky9vj6Mx5NOghNrNGIhnZIC4e8tWzDOrrkG437jRvx/+eVY6D/1FBzulhZs5yMfQdODBQtw/QIBlOOwJLG7G9teswalymedhbHs86nSEhp1VtLSgEcHDqiy5G3bEFWn01RbqzIMly/Hgj04SKHXFeWiK15yKNElyx5P+I7FdIj7+lRJIKf0lBSlJVNcjOdgLcLi4plNSISySGXJwYThBBuWxGSJ1Efk9kTi2tZxjUWBAEjA5mbgCxfkDz8MX+Okk3Bv67WSS0qw2H31Vfz/wQ8i83DPHixGGHBtaMDinET64CCCJz098J26uzGWa2qwqG5oiK1cj1Uiu3aBgGxpATZxjJaUgLAkabhw4dhx6HTCN2JVSX7+1JT2RTKWo0VqTMIMUEomEAMtFuBRYeHYxSufkw2LZqpRrkUEPjXnI5FJ90GPayzSNFRb3HuvIjWWLUOyh8ejdAlPOw2Y4nKhgcm+fZB0sdtF/u3fRL7yFUXidXfjO8uXw0fJz0cQ4cAB4JfDgTXX7t3YBysx1qzBdWTzCZaMigB73ngD13j1ajxTx3DHDuASEx3y8+ETkTBcsmSspv3AAHzB7m74WUuXIjEknnuIiSKdnfDbUlOB2+Xl42uWGAhgO6FKivX/M7tQrxefkwMcKiwE/k9Fc5LJNo9nbFkyJWe4LtXj7VTNJZqGa+7xhJbeYMZnIID1QFZW6Cqinh6MCo6VSgAAIABJREFUs/x83Osx+OVJdPWS12ZJxKm1iCfb40EKPDWpfD4VgRJRpS9uNxbxBQUYgHqhUrL+LF0zmZC5MzSEgVlSgn243XjdaMSE4/eDEIwE5i4XPutyYTvBQqdeLxzvgQFsp6YmMiFptWJS8njwubKy+IEtuGTZbMY2ImUwBjcnCaU9GK682GBQzVlI3DI7oKho5mfsHE82PKyI54mWPrhccOQyMmJOl0/2qxwWiwIBkR/+EOTfwAAwYv58iIgXFqqxajZjYj/jDJBRzz2H72/YgBKd554T+dOfMMbnzkXJ8oYNGDMuF5zSF17Aw2rF9tauRbfCD30IY4odmDVttBQBNdG2bgUxsHs3HGTiQEHB6I6AJ58cucM89blIBqWnx08exluyzI53oToW60lCLgb1lpGhSoiLivDbmEFIbC4pmdlR8lgtUllyvDqGk3mMJJ6nQR/xuMUiEZCHb7yBRbXFgqzkZ57BnL1qFTCJGrmZmcjSefVV+DirVyMQ4XIBK3p68HmLBeSd0ajm8x07sC9Kj1RUwEdasiS6FlN//2gdw9ZWJZGQlYWACRutLFs2uqok2Nxu4K7LBfzIz4+rhGvcxvLiSN2L9R05acwiyc3F4lyv91xUpIIVM0nq4EQwnw8+Unq6ynCjfyuiAtsJtuMai958U+SnP8X4Tk8H2dfdDcxgl+TVq3GuS0rgC9x7L+bz884TueUWvLZxI4jF/HzM1WvXKr16EUi4vPii0kKsrARenXkm8MPvx1rMZlPzvQhe/+c/RV5+GZjkduNYBwfxPiUSGhtVFUZNTfh5ZngYflV7O9aSixejpDoev8LjAfnT1QXMzswEcVhSEt430jcnCdegJBQWUeYoI0M1ZWIlWFGRCqZORyf1RBrle/SEIecbEZwDfTb3RKWfJmpeL+bl9HTMq8HHwm7VTidwKTd37Bre78d91NurunRH+U3JjkVJYbMk4tRa2JPt94Pcs9vhQIoA4C0WJc7b0wNwZBaQCJy21FSACLV02L3W7cb3GYkpLVVdl2trAaTvvQcgrq6OHAVmOnFKCj4b7NT29WHbgQBAIpQ+Im1kBBOKy4V9lpVF11/Um6apRin6kuWMjNgalMTanIT/szxnZETpODBrzWI5/sS5k8U4kYrEXYoc0ux23FPZ2TFFRpP9iofFor/8ReRXv1KNkMrLkdVXVIRxWlEBvCkuBka9+y7G8nnnITr+t7/hwZLla66BdqLLhaYoGzeKvP66yiQ9+2wQh2vWAA8oBu/1YrwZDMDHlhYcxzvvgBBg0yWzGQt9ZhkuW6a0Y5lNGM7YFZQlqenp8S92Q5UsGwwqwzpU92L+H6ohQKTmJOxObzaP7ajMBinJbNHKkhOhYzhZNo2NVmbYmYjbwmJRRwfworkZfk1dHQjC1FQsvLOzVWOsvj6RzZsxTzc1IRBBDVQ2NZs/X2WZ9PRggdzVBZzx+bC4XrkS1RNpaZgHghczTicCF3rSsKcH71FfetEiPBoalC8UrZzU6wVmOBwqcyQRpbtcoEXrXhyuOUm48mKLBQv0tDTVHIYYajJNSensrEUxpxOPrCxFnFCPk3Mefd0EWbJf8bBY9N57It/+NojE1FRUcVFmgF3SFywAZqSlQbalrQ2k4k03YRv0W1wuZFBXVGAu7+8XeeklBEr6+jBely5F1iKboJAAY7KJxwOfjM1P3nkH5ctdXbjWGRnAIpYlL1miSo+JbeHIQIcDmHvoEH4rdV/juU+Gh4G9/f245woK4Eump4cmBfVkYTzNSRi84P3NajR2l2ZFWrIGVPXyEHwwc09EJbHo8XkmBmxsNtyr+fnhA/puN36b34/rFjz/eb0YUyMjGBdRyt+THYuSwmZJxKm1kCdb0zAwKHZvNGIxnJuLhTxLjwsLVUSBWidWq9KWKSjAw+/HREIihI1PurrU4DObsU+DAaRguMiMvnw5OxvpyPpFuduNCY3iwtx2KHM4cAx2OyaS0tLYO3kFAirteWRElQWR9AuXPWgwRO5azHLFYGeXOhpDQzhuEfwuEofjSb+ftcQby6uoXzJRo0YHu2ZHsGSfoEJi0TvviNx8M4IWBgPO6eHDCnuysoA7ixYpZ/cDH4Dz/NxzIPkyMlCyfNZZcJK3bwcR8NpryvFdvx4ZQqtXj16EGo24ptu2ocS5pQVZhgd1Pceqq+EUn3oqHHE6twwgcHEUqTNlMHloNMaeleFwgDSgIHhPD85Ff7/qajwwMLYhgNEYmhQMbk4Sqrs9G6MEE4eToa84VTZdOoaTZYnWR4yDSDwusWhoSOTvf0cWYk4OMLm5Gc8nnaQ6k/b0AC+sViyaP/hBnK/+fjwXFiopl/Z2LIxJHObmggwoLcUiu6QE/gkXMSkpwD/i0K5d+D7HYUWFIgwXLQJJSV+KgUviS7h7wudTWX7shhmroL3XGzlzkI9IzUkiaRAGYxFxkx2VNU1lbvMxazPLRkZUxYb+HgwEVIlntHs0DjsusWh4WOQ730EGdCCAzEC7XTU0mT8ffonfD5Jx3z7gyWc/izGxZw/GCvWci4tVOfOhQ/AfWCackYFy6HPOwdpreFjJNbS2gmzcuxeZXfv3qyQJas+feSaqQxYvVpVgbBTCoGu4cep2A+f27sX/DIjEIjPg96umVwcP4jcxm5qSWySI9BbcnCRc9+LgYw4EVDKJ06mwSE8cJmMQw+0eTRharWq9y34HetIwmSQgenqARxUV4dfQmqZkivRVljSXC/eX34+5O0L1YhJe/eSzWRJxai3kye7sxKO3F6C/ciVAd88egEh6Opxb6uv5fMrRNZtVeU5KCl5jxmB6Oj5XUIBF7dAQSMCMDDjTzCoMN6G4XIi+ud2qPI6grGmIKnR2yvst3MOJjLtc+OzwMI6/pATHxG2FKynm/+yeRX0Hkwm/mxG/SA1K4nGKnM7RHZVFAFAkDpM9Bf54NTbSofMwESMx7/dHjegl+wQ1Bou6ukSuu07k7bfhoBmNWIiTQKQul8mEsbJwoWpc0NcHLLnySpB7FABvacG2ysuhY3buucg41DdS2bcPRGNzM5537sRYp/zCihXILKqvB1lZXDw2QqnXIIyUWaFp2LZ+cc/MQWa2htMd5LO+jIbHkJsbmhTUaxDGky17vBGHkXQMRWZOWfJEbZqIxCQ9W+/bGCzyeBCUeO45RfC/9x4WycSdkRHgy+Ag8GXNGoVNJhN8nfx8ZD23tmJc+3wg6isrscieNw9jPisLPgkJw0OHVMdk+gK5uaoMkM1PQmnoUi6FWBQuOMFmSPoKEosF9w2zT6KVF+tL2Ghmc+TGJHl58ZW3kTh0u9ViNiVFlQueqF2Qk8U4r7HUM9T7JBOjSXDEYMcdFvl8InfeiYYoTiewx+vFeMjLA1loMoF8a22FH3TZZQhaUE+6qQl48dJLIps2AVscDmDOvHloSLdqFUjFkhI0ZGluRuZiVxdIk23bVPUFm5osWaKavtXX43t6H5ha8fTnwhFrPh+Oafdu/LbaWmybQWNmiIXLIOzvB75SG95oVFnMkRqTMIswVn8mEFAdlV0ulflP399sTi7fgcSrHtOZtMIgvp4wzM5Ort8XbIEAyG82Mot03b1e3FtsKKYPrNlsGBNGI+77MHNQEp+p5LFZEnFqbczJ7uuDw9rZiQll5UoAMnULKf5KvS23W4FLYeHoCUPTMOF4PACbkRGAts0GErGiApNCezuAd+7c8A5gfz+OKS0Ng11fvmy3w6F3OABsoZqriOBYOzpUBy6ScfwtJAmDjQswfoaLfUarSKYmAkztdkUckqTMzlaT3WxkPTnMZsP9lpMz8WsWCCgNmfz8sBNdsk9Qo7DI5RK54QalNUaNH3Z5p86VCBbh2dlwan0+ZP6cfTYw5oUX4AhrGqLz552HjMSaGlwXpxNEIZufbN2q9FozM1VGz8qVyFIsL1f6OJo2NirJ0iwugMKV0LndyOqmpsrgII5XTw729o7Fo5QU4CzLiPW6OtRlKSpKTGZyIKBIQ31zDRKHyeQ8RtIxnOllyRO1aWi0kuxncBQWaRqylh95BOPW58NYXbJEybDs2oUxnJcHrMjPx3kiUTY4iEVxS4sKpNbUICBRWAgsCgQQMHnvPfhEO3fiewzALlig8KixEaWAke5VfZkosSjUNaM+VHs7Fo3MiB4eHk0WkrCj0e+LlDmYl5cYLKJGLM+/CDCIxOFMLJebtfDGJoDUDA9levI70v0bxY4rLBIRefBBkdtvx5rIYlFBorIyEBiHD4M8LCqCFnRJiWoquXAhxvXbbyNDcWgIY7ShAdmC5eW4JtnZaBTFBmnvvou1XFqayjCsqgJxeNZZ2K/djkCt1YrARlOTul6aBp+OzV6YcBFsPh9w7913sZ3sbPg0fv9owpBrI71lZuIe4XyXnY01Zm0tgjT01SY6v5MI1Wvfs3FmZmbyJHdQA1sfDKJfK4LfoicMGVA63oy8QGamkh2KZHa7khHLyVH4NTCAsWex4J4LgVXJjkVJYbMk4tTaqJM9PIzIT1sbwHf+fFXWbDJhgtFnoqSlqZLlUBPCwAC2mZWFgZeZiQmprw8TQ04OHFejEZNSqG34/RjgVis+r++mxNJmdk8tL8dngjMHXS4szPv78b28PDjuzKAJzhbU/y2CCYvp6UZjYiNMTJUmcciMJJZLJaJJx6xNvWmaKpVIxOTLEjNqU4W495J9gnofizRN5Ac/EPn1r4EbHBPZ2apbGsdgSorq0Hf66Rgvb7+NbEIRLLZPPRXOdGMjmhVs3oyoenMz8EcE25k/f3S3ZDoU1G/iWHU4lHi//roSc2w2RQqGyhzs7laksD6jy2yOnj3IzA19l+VE4gOJQ+rp8dwkE3F4vJUlJ8ISqY8oEpVITIK7JKKN8otaWkTuvhuLaOpbNTXB32hvx7jOzMSCurJS+QgOB/ynzk5sh3M6Oyr39gKn9u1TJXf0RyoqVNOTpUuRHRRPhh0JGKcTeERMCu6WSb8oEMB+TSZ1DJEyB6diUenzKeKQJYc8xvE0mpq1mWUsv83JiXxv67XDU1NxD5yoneLfeEPk+uuBKxkZqulSXR3O5b59wJ4zz1SB0vJyVWGxc6fSA6ysVDg2PIwgx549qou7CHyfwkKQhKecAl8qNxdrqvx8Fcg4eBByL6mpkJOpqFDH7PXi8yxh9nhAXulJwaEhBE+YrJKZCb+HEg6RyoqzsvCdnh5gbloafLfy8sQResRSh0NptRLnozXOnCmmb1TFuYABGaNxNLazwudEMasV86Dex45kJLU9Hlx7rtM7O8FJVFQovU+dJTsWJYXNkohTa++fbGbkHDqEyaWwEIPB7QaYM8JDgVyWLIdbkNhsKnXe7VYg29OjugazO1J1deiFsNOJScXpxP4KChQxODio3svNBSkZ7FSmpKgJKjUV2ygvx/GTKAznjLjdoycMpqcnolSGwuKcRJkpwMmRzWlmLbmN5WHUlZro4t3jwT3DJjpBluwT1PtY9PDDIl/6Esa4z6fKXkggpqerDIXiYkzWnZ2q8crJJ0O/p7YWBMCePdDqaW1V2TR0oFma3NCAbRuNGI82G7afna1eIylIfZS+Pvzf3Y0HF+ThmpMwi5vkIB1dEoThSkOCuyyPYyEV0UIRh/oy5ZlMHJ4oZcmJMF7fRJHOEYjEZD/L72NRZyeCGTt2qIYQixcDR3p64A8tWgTCj4vlgQHVjK6iAtiSnY0s57174WMdPqzGc2EhFvyNjVioz52L/WRlRe6kHpwpyMVhX58K4FKGQW8MwqSnw9coLERwtqRELSSzsqZnrHi9SuOQ58doVM1RThTS/0Qw3sPM6I92bYPJxBgb5Rw3WHTkiMjHPobgJ9chLC89cgTn5NRTVQZgSgow6vBhfLa6Gs2f6uux1mtpAfl38CDGGzOnCwsRtLjkEmCC2Qx8yMxUFV+Uk/L5QB7u3o33GxtV2afVCiyizIHXO/Yak6iyWpU/t2wZjlFPEoa6zi4XfD7KQmRnK38qETjh8aiMQ/qN6emKOJzJsglMOtAHjJg1yfWInjCcLryfSdbZiXNUWRk7Kex0KjkhzquHD+N819aOadhygp/hqbFZEnFqTRMBWG7ZgoV2YSGAfXhYMewETk4w0cpTPB6Ae2rqaF2T7m4MKosFAzY9HQvpUB2Me3tBYhoMmBiYMuzzYTsjIxi0NTXYXrDu4PCwKgfMzcV+okVW9MK4JPY4YUx0UmJ50NAQjj0QwHGypDo7e9ZBPh6NDpXJNLaD+HiMmSUk1XSW7BOUJoKy4gsvBH4wO4YlTyYTxlFqKhxYpxOEXVoaGhtQDmHPHiz62SnbYkFmYWMjsnpOPRWYIqL0l1wuOF1Hj6rs65EROMFdXXh9YGAsqZaaqkqKSQzqMwdLSxXhy8UPNYOimb7LMiUVEiWboNc3DCYOZ3IA40QuS56oTaE+YrKfeU0EC9+f/Uzk+eeV9lh5OXDFZEJ5cXU1sGNoSPkMbEbkcGBBsXs3FvPUjJ43D1hUX48gBnX8iGlsEqInCfWNSfh3MGEuosqL8/NxHMEZhCYT5g9mUBQUTH9TNuq5kcgQGd0YZdYvOn6NGT2UB4pm+rWCiPL5j3d9VodD5NJLofcsos6X04n/ly5FcMPnU80eDQb4RHPm4POUSOjowOfS0vB+YyOeV68GTqWkIJOxpwfbz88HxrW2AncyMlSzzO3bgUeFhaM16plwwmZTRUVjMwk9HmBjby982aVLgafR5m2rFevHgQF8tqgIuJyIRoZMHnE41D1G/zNcCfZ0m77bPR8jI+r9rKyxZcmzmDrW/H4lrVZZGZ9GLzt4p6XhXj54EP8vXDhKriHZsSgpbJZEnFrT/H50QGV0KyMDQMoyZYtFZQHGAqCBAADe7VYL9JQULMKzsrD9o0exr9LS0GDW14fJy2LBpGI24/NDQ/iuiMri0X9f01QjAo8H+ysri97cgs1SWLJM0nSiXabYqXdoSGU2sQzSYpmN/pwoRmI6KysxnctsNmwzO3vUAjDZ7yStvx+ZOOx8bDCo0jXqgjFIYDSqpkwsFRbB+42NmLzr6qCPWFEBYpDBB2YUMnuwt1cJcOsJu+xstfguLYVjQZKwsBDv5eaG76RMHS8GUmIpwdN3dKYWFMnDCZ1cbXTGIc+vvlR5ptlsWXLijURiovQRwxCJSY9Ffr/Iz38ucv/9wNqiIrWQZNM2rxfjhs1E3G5gSVcX/jcYkI1QW4vP19UpSRhqD3Z1qW61/f3wFagzrTeTKXx5cW6uytImFgV/3+VS2SgsVU5EUGs8Rq1GEoe8f/TE4axfdOKYywX/KB6fOw4yMdnvJE3TRK64QuTRR4Ed9IEMBiRRVFUpHWZmE6ang9hg0wgREIULFmDs19YCi9LTsd5KS8Ma0GbD57q6VONJEdVsyWIBBlKWKjsblR+1tQqHjEZcR1atBc8zQ0MI8nZ04HNsKBVpPvL74a8dPQo8Nhpx/GVlEyslZpMWEocMsumJw5nmGzkcowlDBrBEVLNB/VyRDKXWM8UcDtxjFgvm/HiMzX44Rpkd3Nj4/jhKdixKCpslEafQNE20d96BaLjHo6JEtbVYNFMfQD8x0wEM18G4qwsTUUqK6oo1MKAW5IOD2Ca7MOt1CD0eRAK8XkwO7K7sdiONnvqKNTVjo+fDw5hkXC68V1YW3Umm88KSH04cE0lTZ8np0JBaXKSnq65gE+3WO2vJaSMjuDcslsREM6nHYbG87yQk9QTl84m2fDlKbGh0lkmisQO6y6XGaEUFFucVFQh0mEwgBtvalFyA260IORJOBQWqtLi8XBH75eVwogsLlYh/ZqYqNdaTfGywFOz8Uo9M39Ag2jWfjJJlEkYkD0Vmbkfl2bLkqTMuNhOljxiCSEz2q6P9/vciP/kJcJvdg0tLgQV+v9L2YhaVwaCaulVUYAGSkwP8OXAApCH1FDkGiSGUMmCwoqBgLFkYLluQ/hexKHjB6/HA53I4lJ5ucCf5qTB2oWdHZT1xaDLFXJo6a8epjYzgvohXZ1PfPCiMRnCy31XaLbegGzPHTGrqWE1SNokjplss0HiurUUmYkkJxh67x7PjbiCA7w4N4Tw2NGAbmZkg9sxmpX/Y2Aj82L4dGdZlZdA/JDZR85BrqWDyym4HUXnoEMZ7YyNIzUi+kdOJpBRmcufkwEcrKhq//6JpKrCvx2RKVoUiPqfLvN7RhKHVquRyUlJGlyTn58+uLxNhfX0YD/oKyFiNzWp4bx09irXEggUiBkPSY1FS2CyJOIX22muiPfYYwHnBAkw6dXUAJqMxNFHIxajeWK7MaA4zhTIyVEOUoiKVth4qVbivDwOOKfaZmRiQPT2IWImoDAD9d+12EJcOB5xRfflgKAsuWeaEOZGJg+VMQ0OqvMBsVsRhIrLPZi25jVmy7Ao+USdF0zC2/H7cZ2lpyT1BLV0qWnPz6NfoEJOEy8zEAjszE68z4qc36nwVFSHYwAV5eblyptk5ldu22YBxGRmKpBweVt1HKYPA8mLqygXvOxBQWl5cIEcjD4mpiSpZJnGob4A1E4nDSGXJs4Th5FuiG60EEYlJfcXuuUe0r3xFZY9nZwMD3G7l65jNSts5I0ORYXrjuTWbgTkMXBQUYJu5ucAonresrNjHp75zbagsLOpGM6DLIMlUjiXiIR//n703j5Lsqs58vxsRmRE5zzVXaSqNaEIIyWAZj7TtZ7+228vDwwZjuRd2P9NgwHgELInRdGMbT3Rj2kY8sA02NGB5mQYMmElCaEYSGkoq1ZxVlVU5RmTGfN4fO7fOiZv33hgyMzJu5Pdb664YMqa8wz77fGcPgI3IVuGQEMD6RzrmNnueuotwPkE91rbo3e+Gectb7ONkUuyNCqa9vfJ4zx7r2wwNrc1ySiRsplV/v629PjYmcyhjJIVZF1wvvFCOh87ZDhwQn+jrXxeR5NprpTu9+mErK3KrUYiuHSsUpFGLNru77DIREKPKS83Oing4P28XWrRxZiu48z7dD265qo1qlLkeqlXZ5yoWzs7aQBTAHi/dhoY6x5/rJoyRKMJKRaJ8W4lELZXkWJ4+LRrGxRcDF14Yb1sUFygitpGrr4bp6xPx8MAB25HJP/i4tbLcyahGyiQS4iRqcVydAOZytoOV1nEbH6/9/GrVpi/39dkVJk0N0k5dU1O1E3L9Pl19q1cMvFKx6TOAHYBbDfV2Q+C16G46HY+iu2RrqFSsyN7qiqGbkqqdgMtl4I1vjPcA5XlYY/h1MUJtTjpdu+lk1N20hqA6heWytWFArWClf9eJeCKxdiLi1vhxbZsfNxW6kfRaNz1X37MeJ1b/L/9n6v2tRn9X0PDeSb9zO+Ger63gP6YqWt91V/fYIrU9mYwVE92IlUwmfNPC/IAV+jRDA7DdVYHGU3hVeHcXHfz+VKFgo1XS6fZOkDVS241+Vh9xI5tBke5Dy39o3eBmcCPZ9fwzBvjTP+0eW5RIyPU8Pi7zNW1usnu3jZZ2uxa729KSrdOWyVh7pFFXN91kbcaBAzL3WlyU79qzR+rl33+/HJdbbpHv1lRgLb+gDSuVclnqKD75pBzbiy4S4THM99V699PT8ju1s/SuXa3Np1TcXF6Wz9NFM52j+ee67SabrY0wXFiw44EuPLl1DDmnbB/FogiJmUxtp/FmMEY0kCeflFIlP/qj8bZFcaEDy5Z2L8mkFPceGBAjtrhYO1nXuhZqbHXg8df20uLI7qRkedmu2GezYrTHxmqNtgqFlYqt7VOtygWnXW137qxNS9auU7mc/F1r+4Q5p7oKrrVTVHhodnVBB8xcTgYmTSHS4sH9/Z1ZdJd0DjoZzeetM+ei4qC7uaKh2z3XfU9QN+C4ohNOvZ5TKRshqPbIf6tRODp50Am5v4lEkIAIWOdM63O5NQjd1NqgZh06oXd/exhhQl8rjqz/s/TzOqGhSJRgCFA07BQ0PV/vu/iPoXuu1Tu+3YA2ldOxXf0G7Zqstkef1wVJtSWFgk2VU3/J86y4oQKif7EiCrU1bq1UxZ3Qa11nf0TQZuGOUa4t1AUgCoekEXTc1YU8/7jtj1wPi2QH1tbQjTOplHRcvuoqiRDUDKexMYlsHh62pV7cW/WDcjkp76LNKAG5JrVz8oteJP5oIiHZXqdOie3SMi/f+IaUk9q9W9KXMxk5Rq59cxcqqlURHR9/XOzRvn0SuRjW+GR52aYsV6s2QntionkfQevbLy9bvziVsna8XnPNzaJQsGKhCocafKLp6ZdcYtOTt7rZ1Xant9dmT87Py3FpFs8TbeK666RxLWkPjERsI5UKjNtUxL/p82rsXDTCMJOxIdc6gFWrcvFMTMjANTYmq0kuWoC8p0dWvvr75bVHjojBnZyUwUcn8+WyDDLakUvrmQWJgdWq/e3rSVk2RgRQFVhVOBwasit+FA5JPTQ6Q8sCaKMdneRpqYAg06f1QlXAD3rcDSmEjz0Gs2+f2ISobW5u7XsHBmRFfnhYHF0tybBjhzije/fKY51863WtzVO0E6rWEurttbWWtCmKO9F368JqFGNUJJF7fNeTsuxO1vVccSPFt6LOGesYxg9XjHKbE6jIFdT1F6g9nv77vmMc6yN9/DjMjh22y6ne6qaP3VQzJZUSe7SyIvti506xS2Nj8nx/v9gjtQONNFdz676pLVI/RmswaWkL7cS52VEr5bLN7NCIw1TKCqqd1oyAdCYqPOvYVq3KGF8uW8EryC9Sm6MiddBtN9iir34V5pZbxJ7k8+G3unjgorbi5EmxVUNDdnEkn5fnbrjB+pG7domYp2mc5bKkL2ezwPXXi4gJ2DlhIlHbsdgYERsffVQ+e8cOEVAmJtb+X8bIXG562gaMaMpysw2fSiUrHGqmmTbH1FIT7USDatxahhqRrun6bi3DrahRSxpDS6Xt3bs+AXp1HsGj3AYoIraXhna2rjoFCYynT0vkYD4vr9UmJZo3SNi+AAAgAElEQVRaODkp4cAaTdTba52EHTskEjKRkIYq587J+y64wK5aVasiOJ47JwPP2Ji8L8hJ1sFEQ9d7e8URaebir1atU760ZB13N1WAK+tE0Tp5/tqh9eqI5nJ4vhi/m17iFwmbIO4DVEO2qFCwKS+nT9v7zzxjVw3PnrWCv5JIiN3YsUNs0q5d4iiPjsq2d6+Udejvt8dNo6/dCXGpVFuLLKixCrBWoNF0vmYn1240qg6NbkmJdtc4C4v+cMXCToiG3I74BV3//bDoHBUNNXIsSBxscsyL+9FvyBZVKjLBdkXGxUVJG5yetv5IMmn3u0bsDA1JqqDWJtOoR73VCb+OJcDaBk2aDlcui2+l5Wg2i1LJNkdxzxkVDukXEcVt6uUKhP5bPzpuZLNybo2OrhUImxxftoUt0khkv7h46JA0Msnnbc3CbFb8z717bU3FqSl5rq9P0o5nZyUNc3gY+IEfkNeWSraeoGaCKCdPSsflhQWxQ9ddtzZwBLDNN6en5fem0yIc7tzZ3MKHlooIKyfVruAOXZB2BcPFRWvv1S673ZK5wBIfqlXRJjxPgprWOcbF3RbFAoqI7WVdO3tpScS9QkEM4+ysFRGXlqxwqKLj3JxM+qtVuwKjTnhPjwwm+/fbdKGVFetMTE7KQON3kt0041LJ1uZoZiDRlaPFRTsApFJWOORK0fbDFYGiRMKw6MGoyEF1lrSQ+AYVvI/7GdqyLTp3TuzNrl3WHuTz8vzJkzZV5uRJcWBnZuTx0pKNTtT9Pzwsn6Pb7t2yTU3JpH9qSmxROh3sUKiorBOkVrosu+nriluPth34BSm/YOgXDcnm0og4GFZvMihy0H9fReoNmnxta1t04oSdaKuPk83K392JbzZrhUddhH3+B6wei8FBGR+05plmP1Qq8vmjo2KXNiP9TSMgtSSMm36twiH9ou2HKwKGCYRhtigqctAtB6I+vc4h1kHcz9CWbdH585JSPD9va7pqQMaePXIdV6tiT06dkuPT3w888YS8bmICuOIK20leBUetP9/XJ8fo0CGxY+Pjkra8f/9au5DLyXfMzMh3jozIb/DXyI8in7fBK7o4m8lY4bAdvlE+v7ZbslsWx98teavSp8nGoR3Ch4YkCGEdxN0WxQKKiO2l5Z1dKMiEXMXCpSUb3q5Rhm4Y+9mz8npA/lYsAs8+K4MKIAbXGBkkZmdFYKlUbJdjDU3XzS2KqxGHExO2c2s9NIVRU0uNkUFAuxg2kmZE4okW33ZFwaDHfjQyrZH04kbQc1A7Cq+TuJ+tLdmiXE5sy8iIXPuFgo141ihQ7UyoETuA2Ct1SM+fl4n/9LR8lpZaOH1aHG43YsLz5LNdkVEjHKemZKFj1y5xkBst3K2CkCscqsjTDuGQaclbh7vvw8TBqPTieuJgo8dKI4fcGqLrIO5nSEu2aGVFohCXlsSeDw7acioDA3ac0DRNl1LJRjOePy9+ydKSXUjV7Ihczto0rX2mkYtB0Yx6v9FjakxtR2UtwaA1Hykcdi/uOBQlEAZRL7W4lej0bFbOwXWWDYr72dqSLSoUgIcfFr9mcFDshNqXPXvsQmg6LXZleFj8p29+U15z1VWSEaZzJE2XLpftAu1zz8lcrbdXSlLt2lVbv1oDQRYW5Dj29Uk01/79jTUWNKZWONTxyRUON3MBU+vvu6KhLvbo4r8rGHLO2L3Mzsrx9/doaBKeHW2AIuI68TyvB8AlABaMMdN1Xt7Szq5UbC0LHZzUuBsjF9r4uLy2XJaivtmsTRs8f16igoyRxzt2yPsXF2XirvWE1Pl106iXluSCzmbtKlo6bWuWaV1Gv+iotTuKRRvOD8h7VThstWMu6RyiREF9HDQp14ixKJFwM8QcrU2j5+s66LgBarNtUbksdqSnRxYQtKOfLmTohEdTcPr7bVOb3l655tUx1sgfnaxop8hiURzm8+fl1q3PqCnVp0/bIt5u05CJCdtdcNcusYv6eOdOER3dDq0q4Gx2MwKmJbeHRsTBqOjBevUHN+P3qkDVjWk7Tdijpm1RtSoC4pkzMiFXW97TYxc9tY501Ge4zZ3UpykWxefRUi0aiehGMrrp1EE1rPv71wqM+lhFBs+zpRoSidpmMbQD8ca1PWGpxWHpxY0IhJuBMSJAAevK1ujIM3czbZExEoF46JC9hvN5sQ26yKn1uHM5ERTn54GHHhJb9X3fJ6KYCnfa3C6REJvz6KNSuz6RkNRnN9U5nxc7dOpUbZdlN5W3pye4EYzaSR2HtHGLLpioj7xZY9/iYm2E4eKi/bvWmnW7JTMDY/tgjJzTxaII4S3WHK575jY5ZyIBUERcJ57nXQjgOQAfMcb8Sp2XtzRAnTkjk+pUSgYMFVhSKZkkayejbFYExEpFBpq+Pim8m82K83rBBTJo5HK2gGk6LYOc28nLXZFyU5aTSbmo/XUa3S2XW1t0V6MWJydlMAgSHRmG3ln4m5OECYWtNifZSocgmxURanh4XQXxO85Z3mxbND0t17RGNmuUjzZEqVbFbujiQi4n58jgoFzvbuMUPQd0Iq+r3r29a6Mg/CnL6lyfPVtbr9G/zc+v/qPOfzowsDZ1Wh19fW5iovXzk2nJm0OQOOgXCoOoFzm41cKt/vZ1CokdZ4uApuxR07bo5EnxbXQynEzazs3a3TlskchtnKI2J5GQ5+bnxbYkEjalud75oRN5V2D0C40a0ejasVTKTvbHx4NFx8FB2olOI0oY1Nt1NifZMsplm63RYgTQtrNFx4+L0Kc+UbUqYuzEhEQBZjLyXKkkc6Ann5SIxf37ge/5HlsSRudZPT1iUx5/XLLHPA+47DLgyitrm5ZkszZl2Rjb3K6vL7heo95qJ+VCwS5iJJO1ZRzcCEc30rFVW6TltTTSUBtTAVb0VFs4Ntb+5iyk8yiX5drq7ZVo3hZsYyMi4oVofM5EAmCv2w5nfl42XSVURyOVEqFweFj+phPqdFpWq+bmJPw9mZTHExMyiBw5Io5tT48o/KOj9uKsVKwwqFGHOqDoa3SFyGV5WX7bwoI4y1qzUQUjXeVaWbGrZX509Us3v8ionanpUK+fsOYk7uOgNBoVf1IpWwNznc1JtoSBAfkfl5bk/Oc5VZ/5eblux8flHNEO7CoMViryd73utfvy2Jg8p5GDeo5Uq/KcNlTRCBxFV8fdLstuI4p0WmzalVfW/k43+mN52drFc+fWio733GObwrikUuKMu5GMQZt2lY5KS24l1XU70WpzEleQ1ZIGQUJhp5NI2P+X50hjLCzYUi3ugqqOS1ECYqWytlFTpSKLtEtL8prR0eYiX3SCPTW19ru0MUqhIJN+jW7USb6KjMeP28ZyLp4nYo4/XdqfTr3Z3aG3A/704kabkwBWCNTGX+tsTrJlaBTcyoptxEHCWVy0NQrVFs3NiQ3Zt09skdqbgQHg7rvl+r/xRmlyqXOt3l6xIeWyCJJPPSXn2yWXAC94gbVnxogvc+qUfGcyacu5uDbPX65H/SGd36mAqGOlMVZkXFgQPyloDqANXoIERr0PrE1LVv9PF2cuuKA2LZkQP6mUjKlnzsg5pNmWpLNgJGJ7aWpnLy/LirtG9ekkY2BABMShIRkIjh8XB1XDvo8dsxP+AwdkkDpzRgx7MikT5PFx6yRr5y0V99Jp+Y6w1SBjRCxU4VAHIy1KPjISLSZpxFJQ92l3CxvEglKn3ee2q0NdrzmJPg665DXtISrFOA6T8kbR5j7JZGPRJgHEYEoQScO2qFAQp1WLextj649pJGGpVCsO9vbKftXX6AQLsB2XAXnOTd/T+pl67TfSZdmtb6jntlvfMOrYqoAQFMnoblqOwWVkRBz4HTtqIxtVeNy9e8Oa+MSSzW5O0k2okN3iIkzc90bDtqhYlAn23JxNGdYoxJGRtV1Mn/8CJ/rQtUXqwxgjn6WLHq1SLtuyDO4x1SjJqM/Wibw/itEf2Ri0CJtOR9doHBpqvH51N1IvtXgjmpN0E0tLcv4ODzd9PcT9DGvYFpXLwAMPiIioKcPnz8u1dtlltY1UVlaA735XfKhbbpHbYtEGT3ge8Mwz8ppCQeZt11xjxcBi0foiWu9QsyjCjk+5bIVDFfG0xIMutkRRLNpyNP5oRv9z2sxK62pqWvfoqERfah3rHTvkuxutX02INmX0C+UNwDOsDVBEbC8N7+xSSULeZ2etM+p5Mqjv2yeTeE1frlZl0qqRN729stIzMGBVfM8TYz45KYOOpixryqFbByNoUDJGLmR1utUZHxoS570FZ6Mu9VKn3ZRpF11NjYps1JpEcWG9zUn8wmCrzUm6iWJRzulMpqXV0LjvsYZsUbVq66lq2YSBATvxKhRsMwOdpA8OipOoUYaauhwlHgal+kXVfwoSDjcyLcwfIbe0JLb09Gm5PXPGRjaqc3/+/NqJqJaLCNp0ErBjRzwieJWo5iTu/SA2sjlJN7HORitx32MN2SJjJLvi6FEZw4eGbI3m0VEbEeNHx0nARjMvLsqiarVqsytaXXwsl8UOalkG/R6dSG+0X6QNwvxCo3tfm9e5JBLBNRr9YmO7OtJvBK69iao9GJZeHCUMdkJ68VahKbmJhPj3TRD3PdbwHO3pp4EHH5TzrK9PIgSHhqTDso5lqZT4T2fOiDB44402u0I7rh89KtGHy8viF1x7rY260nqH587Je8bGREzxZ4MppdLaclK9vVY4XG+ARS5XG2GozU/0u3RupZklpZL83X/9ackbfxSj/zZOtohsDtWqaCHGSAmAJhZt4m6LYgFFxPbS8MT91CmZmLpFu8fH5SLq67OT2ExGHMCzZ8WQa32v8+ftpHZ83E5Ug1KWBwaCRbVKxQqHi4vyeo3cGhmRAXOrV2E1jdIvMvofhw1iQVGNrujYjkEsKnqw0eYkYdGDHISj0fNEha8miPsA1ZAtOntWHEdN+9ZGBTpx1vNSBUOtrap1dlKp2ghYN6o1KGVZxcOgyZuKhu6k0G2M0uqEL6pbcjN1DMtl2V9hNRrdSAIXXeAJawqjWzvSfhoRB1tpTsIakPVZR33EbWOLnnrKLmikUjKGj48H11XWzsduJHQuJ+Khdo4fH2+t/lapZIVDtRduR+WtPterVflfg6IZXdExrClMWDSj3g8SazcaHR82ujmJ3ifRaFNE9ZMbZFvYojNnpBzKwoLsn9lZ8SGvusoKhKWSNH8qFoEbbhARUUvB9PWJn/Cd78j1OD4OXHedjPvVqk1Zzmbl9Tt3ingYdN0VClY41EACzdjSskOtUCzWioXz89Z3SSZt/ULdomrQakBIVFRjUBCENsoKS53u62P9xO1AoSBifH+/+MINEndbFAsoIraXhnb2zIxEGGqUDyAi4IEDMiAcOyYO4tCQGN6FBTGmBw6IQZ6ZkfeNjsrg09srRlzrFQLWMfAbYC2svLAgTqZO/DVNeXAwfquzWrg4SmR0B2AXra8UFdUYJj6ttzlJvejBrZ6odAuLizZ1pwmHK2ZXwRrq2qJsVmyJe54nErKvNKVOJ3PptE111vqF/u6nOrluJmVZhUN9rTtBbGUiqIJhWLdkf8ONjbZ1xohD7kYwquioz01P2y6ZLoODwZGM7mO3TIWfRsTBsIidTm5O0k3osWgyCirue7+uLcrlpNHA4qL4Nb29IqqPjweXXtExVm1RPi/XXakktmp8vDkhTNOhtcaha+c0oiiO14B2kVVRMSiycXl57ft6eqJrNGpTmLB9slnNSbo1vXir0DnD0FDDUWwxvApqqGuLVlaAb3xDBMJMRq6RgQERELU5yuysiB6Dg8DNN1sRNp2Wsf2RR2zq83XXSXZZoWB9glJJ3rN7t8z9XF9H5zMqHGoEuxsU0axvpOV9XMFQS7h4ni31oM1PWiwBFIn6lWFio9Zy9JNIREczrrcpDOkM5uflmpmaqm0EG0HcbVEsoIjYXuru7MVFSdlZWBCjmkzKQKKrWMeOySCSyYiTV63K39NpmfCXSmLwd+2S51yBLCxluVSyacrZrDynNYZGRrZPLZ1yOTp1WgczYG06pU4m/KKfDmAqwLjNScJEwu2cRrMVGGM7+bqNhuoQ9yMUaYtKJXGCPU/2iZ6bOol2o0AGBuTvuuCg79cIIE3pC0pZ9qfSu8XtXeHQjThsBlco84tk/ui5TrrmVlZqhcag7ezZtXVjk0lxsnbutKnSO3bY5/SxLnz4m7/EsTlJt6FjShPjQAeduS0RaYsqFakVduKE9UcGB6Wxkl9A9C9clMti2wsFsVHj441HVWkEjW4qHGp9Q7ccQzejGSlR3afVF3UXaQDZ1wMDdnMfa8MYFafqRQ52mo3eDhgjx9cYmbg3MB7E/QhF2qJqVeogPvCA7ItcTs7pF7zALpRqjXqta6g+fz4PPPaYLBL29wNXXy1NLxcX5TnNHJuYkDmdlo8BbPkpFQ61EZcb1NDoWG2M/D4VC2dn7TEG5LPcTska9d0JaM3tsNqMehsUoRzWFMa97ZT/kwQzPS3HV5sW1SHutigWUERsL5E7O58Hnn1WJo8qIO7fL4PR3JyIhOpE6erg6KiIf4WCDfXNZOxgowKXdjd236/Coa40ZzJWOGyygGnXoCk0YdGDmuKhq2I6kOXz9jWaIqTOgzrB6jyHRTRu56YwW41G9Pb0bJtVrlBbZIwdrMfGbIreykptXUMtheCKTioSqnioz6kw4tbodL/PTVUGWhMO/SnJfsGw0bTkTiIqcrBcljFBBUX3vm5nzshxA2on4GNj4TUa9f5mRBuQ+rRQHzHuRynSLzpyBHjySbEn2rxtamptdJQbfVitysR4ZUVszehoY1kUKkLqBlhbpsLhdiWq9qAKjdmsvc1mbUr18rLc1yZ87uamT4c1h2kinZZsMJWKXEup1NquvwF0tS06fBj4ylfknC4Wxf+54gqxDdWqCIiJhNQ13LdPzu9yWezXsWNiR666Srounz8vflYuJ/tWx2GNkK5WawMYjKkNBNGGLPXI561YqF2T3aZP/rTkdpQq2Gy0KUxUQ5iwevr16jSyKczWUanINZZM2usrAh6lNkARsb2E7uxKRQao48fFwPX0ABdeKHUwdKBRZ00Nf6UiBjGTkclfOl3biUsbRqjju7JihUONqOvvt8JhkzXhYodOvOulGPtxhY+oFGPXoGnHa39EY6NNYaJqNXIQ2xwKBZn46H6uQ9yPQKgtmp0VR1NF795eOV81nU/Pe41Q1hRlFT784iFgBUEVRYKEQ3/USeSPj6hjqJ+1mWnJ66VdzUk06sBNnQ5KpT5/fu33ZDLhTWF0m5ri6v1m0KSQ2GFnd9NE2qIHHxTbrFExO3eKsKR+jS766TWl4lUi0VjqnUa3aJd5wEYVaYOAbqadzUm0mVlUVGMut/a7ksnoGo1xbAoTJwoFG3VXR2TqWls0Nwd8/vPSCKVYlEWJK66Q27k5sVUjI9I8ZXhY/J/Dh2VLJIDLL5fIw/PnZcwtl8W/0pTlRMLO6ZaXbUOSZNLOB+o1hNTIaxUL5+ZqFxGHh2sFwziWp9ootJ5+VAp1vaYwYXUa2RRm81heFr91ZERqiUewTc/s9kIRsb0E7mxjRDx8+mnbLfaSSySs/fRpKyBqkdmeHpueo6lpWhtDmx/oBH952QqHKlrpav7ISPc4yP7owSCRMGhSrgXXo0TCzRoM1GGIqtUY1hSmXp3GdjWF6TayWRvlWydcPu4DVKAtWlmRATqRsFGIroDY27u2C6qKHdowRaMRVQBRgT2oo7Jb37DeRD8uacnraU7iioHtbE5SKjXWFMbfiCGRqG0K40Yyuk1i2tEUpttootFKV9qiQkHSBk+fljTksTFg716bXqd1CtWeqHjoeda/CdtvlYotzaALh8mkrW/YLcJ4HJuTVKs2ojGsXqPWMfYzMBAtNg4Pd/9i+WaRzco1MzISeey70hYVi8CXvyz2qFCQ8+zSS8UWaefYAwckAhGQ6OnDh+VcPnhQ7NbcnAiInmdTlkdGassoaXBHKmXncVE115eWapufaB17QN7rCoZ1jhsJoF5TGL0Nq6cfJjCyKcz6OHdONI3duyMDPuJui2IBRcT2ErizZ2akVoY2MbjsMlucd3HRilo6cU+lbDcsXSnp6bFRQ7mcFQ41vWdoSAaRJptHbDnanCSsa3GzzUn8jzs9rdEtohwW0RjW2cxtChMkMgY11tnuaA2gSmX7OcuVitRBzOclwkwFRF3J1mYGOoHXa84VCf0py60Ih52cltxqc5JGxMGtFj/rYYyMSfWawiwurn2v1ukN23bvljGt0+1xu2mwPmKHnzl1WXPFGAM8+qh0Yx4YkHNk/345R7Tju0Y653K2JIuWeAmy21qOxG1Yl0pZ4TBuE+x6wqBrc13CmpP473c6blOYoBqNmkbtR0uWREU1bucIrTCMkTmFRrSF7J+477XAOdp99wFf/KIIdUNDMkfr77f1Da+9VuzTsWNSkqpUknTLXbtsc6KeHjveJRK25JQGd2h2R5hfvrKytluy2rGenlrBcHSUYnk7USE4KrIxrClMve7TWk+fWIyRuUq5LNddyNgdd1sUCygitpc1O3tpSTp1HTkijsvBg+LYnj8vA8zgoO0+lUrJ4N3XZ8VBNTr5vAzwKoAkEvLakZHOTfPQRgtR0YP+xgGAjXqKEgm3W3OSUql+VKOucrokk7Vd3YJEx+3W2axaFQctkZDrZ7s4y2fOiEg0Pi6Oizo/GqEzNGRFMo0yVPEQsFGHbnMUHV7c+ob+RiqdkJbs/w1h94Ngc5JaVlassBgW2Xj27Nr9mUqFRzK6kY7bbeFDr6OIxb+us0VHj8rEHZAInwsvlOidREIm3VqDTyP1BwetwOjidlTW883tqNyJ16ZrP6MEwiDYnKSWcjm687Te99siXXh3tyDhsVsyeRqlVJL9lU6HRpfH/ewKtEWf/KQ0vBwclLTkREIiM3fuBF78Ypl7Pfus2JmJCYnO1yjnwUEpSzU8bJujaER/Om19bX99VzcleW7OilDql7qiISP9Ox9/U5gw0TGsKUxU9+nt2BSmVJIMzkxGrq8A4m6LYgFFxPZSs7OLReChh4DHH5cB5qKLxHmZmbFderUGiXa204lpOl3rIFWr8npN4xka2lpnsZHowSBjqUJEVPRgJwqicaBatQNVVAfqoOOiA1VQVKM+7qZBrFSSSUY6LU5gAHEfoGps0eIicOqUHMeBAevUqO1R4UZtSjIZLCa6kYP+OojA1qQlu2JgmDgYFT1YL4qQNE+lIikpYTUaVYDUKFiX8fHopjC7dnVXU5gG6iPG/T+tufoWFoCvflUWNC6+WCbtk5M2tUybdWhTDi27oLiNUXQs0/qGWy0cNlJ7MCy9OEoYbKVzPRGMEd8nSGB0nwuKJMpkgsVF93G3NYVRf3FwMHBBp6tsUTYL/P3fA9/+thzHSy+1CzqXXSblpA4fFl8pnRY7pYudk5MiKCaTcn5ptpAu2vf3y9+0CZQrGGaz9jfoAoluDXbJJjHFTZ8Oq9MY1RQmqvt0b2/3+EWAXDczM3Kdud3MV+mi/7RzoYjYXp7f2dUq8J3vAPffLxf3/v02AkpXHTTqcHDQ1hsrlWwDCE1jVuFwYGDzDYTbnCRKJPQT1ZzEfdxNBi6uBDWF8T9upimM+zhOTWH0/x4YCCwmHpP/IpTnbVGxKJHQxogd0ZXy/n67GKGioQqG7qZRMW4dLX39ZqYlr7c5ST1xMC7nabeiNZ+iajSGNYXp61sbxejfJifjs/ChQmJIZGvcz9TnLUO5LALioUNSF/oFL5DSCtWqFXUAOb7aSVRrI2pzFF3ccIXDdlzL9SIHm2lO4n+OtmjrKRajazRqV2o/2hQmrEajpk/HaXHcLfnis0dxP1Ofv0IrFeCznwXuukv+x4sukmM0MSG2KZez9mhiQo5jKiWLXNpYRRd/XOHQTUvWJijqp6TTtSnJY2PbL9qV1EebwkRFNTbaFCboNk4i9Zkzci3u3bsmhT/utigWdLSI6Hne7QBuc57qMcYESFTtxfO8gwAOOU+9yxjz1gbe+vzOPnQI+MpX5P6ePTLgaMHe0VFbwzCZrF1ZB+RCUeFwI1c5/c1JgqIHg9Jo6jUn0Y10D/6mMEGiY9ggFqemMEtLtpj4O995O+644w73z3G2RwaQ43P0qDjDg4NigzxP7g8MBKfluhNaN0LGrYvoind+wbARgS6OzUnI1lAsrm0K40+lPnMmuCnM1NTaKEZ/k5hOiSTS8z6ZBO64o/tsESCdmO+9V/b7i18sxyeXkwm3MVY87OuzacramdnzbJpyT8/GRjI3IhD68TcnCWtUQrqHoKYwQRGOYU1hojpPd1JTmGpVIoaTSeBP/qQ7bdE99wAf+pAcswMHZF62a5fcZrNyDCcnZevtlef7+60t0uwcrd2pwqHO45JJeY+KhWNjnTPWkPij9fSjGsKsrATP6bUpTFS9xk4pK1OtSlqz50kdUse/j/QAulBf2hLiIu28avX2+dPd87wfBvDbAK4GMAngPICnAXzVGHO787rbUXui+HmNMeZ/rb72TgCvdv5WBnAKwL8CuM0Yc3b1+dOrv2kSwJ82+8+cOiWdvrJZcZJnZmRAmZqSAWlw0EYlGmOLr+7aJWJGQFRUJG5zkqjowajmJL29MsDFsTkJ2XiSSTlPQ1J9AYQ3hdHHCwsywQ9rChMkLrqiYzsGscFB+Z1u17uPfvSjeNWrXvUqdIE9mpkRxzaRkP+xt7d2suJP2XVFQL3u1b4o/vpb/sm8Wy+x1eYkGrUct+YkZOPp7RXncd++8NdUq3KeuxGMbir1c88Bd98t14Cf4eHopjC7dkn0yWafe4mEFbS60RYdPSoT94EB4Lrr5FaLp2cyMtnu7bVjiu6TdFq2ViJ2NqI5ifpAQdGEZHuhtciHhyUyJoyVlfDu0wsLMikOKuXQ2xtdo3F4uD0ZSYmEfE82axdnus0WfeQj0ihlzxPcWosAACAASURBVB7xN4eGxPacOiXztH37bN15Ff80Inp5WeZvuZz9TG0upoLh0BBtBNk83KjDgFTf5ymVohvCzM833hTGf9uOpjCJhCz4njwpJXJ27Gj6I7pKX2o3sRARjTEfcx97nvc6AH8O4CEAfwngHID9AG4E8PsAbg/4mDcDOBPw/D0Bz70aQBXAAICXAfh1AD/oed71xpi8MSYL4GOe512IJg/ywgLwL/8ig9PoqExsJiZEQBwasgXDtRabRhyGCSbVanT0YCPNSbSo73ZvTkI2FncQi8LfFMYvOs7OBg9iyWRjUY3rOYe1wPrCgl1BfuUrX4lXvvKVH7Oviac9ymaBEyfE0dXahyMjtZNiVyz0RyJWq8FNT3QCrgsTzTQncSfg27k5CdlYEgkZZycmJEU2jOXl6KYwTz0lwrv/PO7pWdsUJujxelPTksnaBb9usUWLi8AXviD79YUvlOfOnLHlWtJpm42hdj+dDs9wCGtO4n8uCFcM1BqKfoGQfhFZD+qbRE143ZrnQVGNR4/WbwoTVqdxeHj92UG9vbY2O9A9tmh5GXj/+yUqWoM6tJHKjh0iHmozk0JBhAsVYfRYZDLymgsusKnJzMYinUhPj2xDQ+Gv0Xr6YanTs7O1579LVFMYvV3vtaHX29yczAGjglv8dJO+tBXEzqx5npcC8HYA9wN4iT/81PO8nSFv/awx5pkGv+bvnc/9oOd55wC8HsBPA/h4Cz8bgAw4//AP0nVQB/PRUYliGBy0KwYjI7YwvKY553LBImG95iR6gbI5CelUdBAbHg5/jQ5iYQ1hzp+PbgpTL6oxahBLJsVhDBbj42mPymXg6adFRBwetgXi3ciaoIhDf1ROM81JXIGQzUlIJ9LfL808Lr44/DXlcnRTmMceA/7t34IjiSYmoiMad+8WXyDqmggbu+NqiyoVWVg9exa46SaxCbmcrQmt9qe/39bUVRFQF0n9AmG95iTqG7E5CelUUikbtRaGMbbRUFDq9MyMdA0OqmEd1hTGvV8vvVabPepv0ftxtUXGAP/tvwGf/7z1G9Np2Rc7d4ptLpXEb3LLOI2OSuSpHq9ms8UI6WQSCVvTMwq3KYz/Vudp/rIygA1miqrXWK+28diYfNfMTOuZCXG1W1tJ7ERESIjnKIBvBuWvG2OC1OD18kXIQY6YWtTnz/4M+NKXZMC54AKps7FzpzweHJQLxRhR02dm1r7fbU6ikYpsTkK2A40OYoVCeFRjNivXVZBD3dNTP6pRhcZCoaY2USzt0SOPyDY5aScNQG1dQ02f1Of9dsUVA13hkc1JSDeTSlnRLwxjZBIfVqNxehp46CFZwffT31+/KYxel9VqjfAVS1v0uc8BDz8s3U5VQB0aspMGtUPLy7ahnB+3oZNmUbA5Cel2tH7x4KDYijDcpjBBNRrPnAlvClOv+7RO1nO5mgigWNqi970P+OAHZb9eeaWteTg8bOusujUMx8bqL/oQsl3QRmYjI+GvCWsKo7czMzLH8o/zWrokqk7j1JSkNZ89G11OIoJY2q2tJI4i4lkAywB+3PO89xpjpht835jneZMBz88aY0KS7J7n4OrtuUZ/ZBAf+pCEw19zjdzqivvycm19HY0UdO/r46D6cYSQYDxvrfhYqVixUQsPa1qK+9g/iD3wgNx+8IPA61///NOxtEef/ayIFJq+XCjYyB43nTiqi7HbHZkQspZ6YqM2hTl7VsRFvX/mjGzf/KY41f5xX2s3/sRPiAi3Sixt0Yc/LLaor09EjVJJ/j93IcJNI/aXPGBWBSGNEyY6VqsyH8lm5da9f/YscPiwPPaP9/esJuz90R8B73zn80/H0hbddpvYmBtukHnaxRfLXG1sTHyloSFrb5aXbW1WQkjr+LPRjLGN0/J5uZ/Pi1/gztOC5h46v/vt327pp8TSbm0lsRMRjTFVz/PeCeDdAJ7zPO8eAHcD+Aqk6GVAsCwA4Nshz18E4IjvuQnP8yqwOeu3QU6sf1nPbz90iC3HCYkrb37zHbcDuO31r7fXcVzt0dvfTltESCcwNRVdpzEIzxNb9LnPxd8WfepTtEWExBW1Re98Z/xt0fIybREh25W42q2tJHYiIgAYY97jed4zAH4DwPcC+AEAfwDgvOd5rzPG/EPA214N6YTj53QDzz0D4NeNMUHvJ4RsY2iPCCGdAG0RIaQToC0ihMQN2q3miKWICADGmH8C8E+e56UBXAvgJwC8CcDfeZ53yhjzVd9b7m6i8OWPQrrnlCAnxjPGBFXiIYQQ2iNCSGdAW0QI6QRoiwghcYN2q3FiKyIqxpgCgPsA3Od53jcgRSp/GYD/IDfDl4OKahJCSBS0R4SQToC2iBDSCdAWEULiBu1WfRL1XxIr7l29ba0vDyGEbBy0R4SQToC2iBDSCdAWEULiBu1WALETET3P6/c87/tC/vyTq7dPtOv3EEK2L7RHhJBOgLaIENIJ0BYRQuIG7VbzxDGduR/A1zzPexjA5wAcBpAGcCOAVwCYAfCnAe/7Kc/zzgQ8/5gx5uHN+rGEkK6G9ogQ0gnQFhFCOgHaIkJI3KDdapI4iojzAP4zgB8H8PMAdgNIAjgO4G8BvMcYczzgfe8L+bz3Aujqg0wI2TRojwghnQBtESGkE6AtIoTEDdqtJvE6uSmM53m3A7gNwBQAGGPObekPWsXzvASAcQD7ATwI4F3GmLdu7a8ihGwmtEeEkE6AtogQ0gnQFhFC4gbt1sYQl0jEGQDwPK+nQ7raXAzg0Fb/CELIlkB7RAjpBGiLCCGdAG0RISRu0G6tg06PRLwYskOVL5kO+MGe5/UB+F7nqeeMMc9u1e8hhGw+tEeEkE6AtogQ0gnQFhFC4gbt1sbQ0SIiIYQQQgghhBBCCCFk60ls9Q8ghBBCCCGEEEIIIYR0NhQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJB0tInqed7vnecbZUlv9mxTP8044v+sbW/17CCGbB20RIaQToC0ihHQKtEeEkLhBu7UxdLSI6PCq1a3iPul53kHP8/6H53nPeJ634nle1vO8hzzPe5fnebuc1+nJcjDqSzzP6/M877dXP2Pe87yl1c/+uOd5P+Z7+etWf9O5DfofCSGdD20RIaQToC0ihHQKtEeEkLhBu7UOOkZ5jcIY8zH/c57n/RyAjwLIAfgYgMcBJAG8EMBrAfwcgMsa/Y5VFforAF4E4OMA/gaAAXAQwMsB/D8A/o/zmz69+r53tvI/EULiB20RIaQToC0ihHQKtEeEkLhBu7U+YiEi+vE873rIgf0OgB8zxpz3/f13Afxekx/70wBuBvAGY8yfBXznrrVvIYRsZ2iLCCGdAG0RIaRToD0ihMQN2q3miKWICODtkN/+Cv8BBgBjzByA323yMzUU9atBfzTGnG7y8wgh3Q9tESGkE6AtIoR0CrRHhJC4QbvVBHGpifg8nuf1AfhRAF83xjyzgR/93OrtL3uel9zAzyWEdCG0RYSQToC2iBDSKdAeEULiBu1W88QxEvEggF4Aj2zw534GwKMA3gjgFZ7nfRXAPQD+jzHmqY34gr17YUZGgBe9CLj6amDvXmBsDBgdBUZGgL4+oKdHtt7e2vvJrjrtCNlajAEqFaBcrt38zxkjr3/ta2/DX/3VHfjEJ2CWl4Fbb4WHGNsiSD0OQkgHYEz4Vq1aOwQAf/AHt+Hd774Df/zHMJ/5DPD1r8fbFj3yiPhF+/fTzyFkq2nEL6pW7etf97rb8Bd/cQc+8AGY3/gNeKtPx9Ie3X47zMAAcOmlwI4dQH8/kE4DiUTt5nlrn0vELiSHkO7j5Eng618HXv/6521RM8TSbm0lcRQRh1dvFzfyQ40xBc/zXgbgtwC8AsAvrG7wPO/rAG41xjy7nu/4zd8E7roLeOopYG4OuOwyYHISGB4GMhlgaEiExHQaGByU57zVyyCRCBYX3fuplH09IduVajXc+XWf9+N5cg2lUnLtJZNy3WWz9jU7d4qDuUpsbREhpD24QmDYFoTn2cmqez+16rXddRfwH//j8y+PrS3avRs4fRo4ehTYs0dsLyFkYzGmMb8oyB6pX9TbK3MUfazPAcA119S8JZb26NZbgQceEHtdKIiImErJnCydtv+rK6K6BAmLQQIkIWTjyWaBJ58EDhxo+SNiabe2kjiKiHpwhzb6g40x8wDeBuBtnudNAfgeAL8C4GcA3OV53guNMYVWP/9NbwJuuEGc/+lp4NQpGaA0CtEYGbjktwBLS/K8CovJpDyfzQKlUvBgHyYwurdcMSNxJcz5dR3jIAcvmZRNHULXCU6l7N+VahVYXJStWpX3ABI9vGfP8y+LrS0ihKyPKFEwSiBUQdAvEPq3MBYW5Payy4A3vOH5p2Nri3bskP1w9qyIiRMTsojKyTYhjeEunIb5RUELp4mE9Yv84qD6RamIWWKxKNcsALz4xTV/iqU9OnBA9snRo/K/l0p2TuZ58jiTkX3V2yvPVatrt0olfI4WFsXIqEZCWqdSAb7yFbnmfvAHW/6YWNqtrSSOIuIzAIoArtvMLzHGzAC4C3JwPwbglwDcBODrrX5mKiUndyYDPPqoiIhnzgArK8DFFwOXXAIMDNjBK5GQC2NpyUZDpdMSuTg+LqtkmYwMWqWSDOilkmz5vLwvyHFIJhuLaiSkXbir5GGr5Y2skvf3W8fX3RqdkKp4v7Ag39ffL+UGikX5+wUX1HxWbG0RISScqLTiRqIHwwTC9U4Ol5eBL39Z7r/97TJerxJrWzQ5Kftmdla2UkkWV5neTLYzQWVXghZSg+yR6wdpZoXfL1qPPTIGuP9+uVaBNRHEsbRHnieLxNWq+IA9PbK/Ewl5rqdH9vfcnLw+nRZBMZMJnjPpuBG2lUqNRzVqZgyFRkLWcu+9wPnzwMteJr5Di8TSbm0lsZOKjDErnud9AcCPe553SZtCQO+FHOS96/2gZBK4+Wa5HR8HrroKOHZMVr7On5dUyUsvtZGJKoBopJRGIs7MyOd5nggdw8Ny4UxMiBCpQodfYHSFxmJRBEx1Alw8r77Q2NPDaAFSn0qlfgRh2Cq5roa3skreLLmcOIflsjiFO3aIkzg9ba8RTWcB4m+LCNlutBo9CFghMJlsPnpwo377e94jixwAsGuX+7f426LRUevfLC/LmDA0xPRm0p1o9GBUanG5vPZ9WnYlmRT/ZGAg2C/abHv09NMShTg1tfZvcbZHyaT4firgqoCo9xMJmW8BMn+an5f7PT02c0wXd9y5WxRRQmNUVCPTpwkBnn0WOHQIuPJKCchqlTjbra0idiLiKrdDOuj8ved5P26MmXX/6HneKIDfM8b8XqMf6Hne9QCmjTFnfM97AP6v1YdPrOtXr9LTI81VPE9SeF78YhEvnntOLoTpaYlKvOoqGy6vop/nyar9wIAMECsrknJ57py8D7CDnLsNRQTnahSYX2DU+8vL4StmqVT99GlGE3QnG7FKro6X6/xuxCp5M6ysyPVXLMo5u3On/CZAJrRnztjHAdyOGNsiQrqFesJgWMTHetOL28UnPgF84xvAddcBR44EvuR2xNgWJRJWSCwWZSxZXJT7Q0OdcQwIaYRG/KIge6QLp27ZFb9f1An+9NmzwBNPSD3TiYnQl92OmNqjvj4J8pidtQvHOoZUKhKlmE6LvUomxYfUudjiok0P17TnejQSWdhIVCPTp8l2Y24O+Na3RBd50Ys25CNvR0zt1lYQSxHRGPOA53mvBnAngKdXw0EfB5CEhKH+AoAZAP6D/Bue581iLR8D8CMA3ul53ucA3A3gHIApSL76zQA+YYzZsI49vb3AC18IPPywDFQXXCCRBcePixj49NOS7nzwoE1zVkFxeVkGKkBqB+3aJQq8Ot2LizLInThhHZXe3rXCokZxadShkxoVSKUSLjQWixLJFbRyyqYw8aPeKnkjzUmCVsnVCe6EY10oyACUz8vvmpqS36uUyxIhrCUEgugGW0RIp7Pe5iRql4KEwjjw0EPAhz4kWQy9vcBnP7v2Nd1gi5JJYGxMfCJNH8znxRa7PgshW4EuuNfzi6LKrrgLp36/KA5izsqKpDH390uN989/Pvh1cbdHg4NyPBcXbZmpfF7GjL4+uX/2rNwfGZGFjkpF9o+Wk1paspk0Wtu+VRqJatzI9GlGNZJOp1AAvvpVsZ/f930b4x/E3W61m9i6ZMaYf/A870EAbwLwfwP4LwAqAJ4G8Jerm583hnzctwB8EkAfgP+w+ropAMsAvgvgdQD+50b+fkAGlGuvBb7zHXGa9+yRVb3xcYmAOnVKVvuOHweuuALYt08M+diYTCRKJQmlP3FCNq3ftn+/pERXqyLsqaioEYuKpkHrNjgY7cS4g2EYxkSnT4c1hdFJXr306Tg4WZ1OvfSZZlbJ/Sk0nbBKXo9iUa6b5WX5vWGF/I8fl31x2WXRzlM32CJCtoKtak4SJ2ZmpP7hrl3A7/4u8Gd/Fv7abrBFyaT4MXNz4isMDNhocaY3k80irDmJ6xfVWzh1xUE3grBTFk7XS6Ui3YvLZeCmm+qLYnG2R4mE2JtyWURBFQuzWbFHmt21tCRp3f398vfBQdmqVXnfyorMw7JZ+UxXUNzoc2Kz06cZ1Ug6BWMkAnFpCfj+7w8P9Gjts+Nrt9qNZ8KW8DsAz/NuB3AbZIfDGHMu8g1txPO8MYgy/SCAY8aYWxp4W+DOzuWAxx6Ti+HAARmMpqdFWFxZkdWulRUZmK65RiYT5bIMFMPDMhgtLYkwog1YMhlxxEdH10ZXabSibto0IpGQ71BRUbtGbwYqLIZFNZZKjTWFCRIat2u0gr85SZBYWG+VPMgBbrY5SadSLttrJJGQ83t4OPj/OndOhPm9eyVC8fbbb8cdd9yBmdVipJOTkx2zNzbSFhGyUWxEc5KobTtQKkkH5mefBf74j4EXvGB72CIdy+bm5FiPjMiiT7Eovg3Tm0mj+MuuhC2i1mtOEuQTtbPsSifw6KPAM8/IPOTgQXnOtUdTU1NTMZ+nrTkLlpdlfmWMzDEGB62QqCnNuZytVTswIH6lK+QZYwXFfF7GQY1o1MYsnWbP6kU16ubHXdwLawizna4Zsjk8/rgsaFxzDXD99YHXT+QV1YX60pYQF7llBgA8z+sxxgQkzG4Jj8IWwjy2ng8aGJD6h088IU1WLrpI0pvHxkRMHB6WwWdmRpT3iQlJhR4ft072wABw4YVinOfnZTtzRlbIenutoDg4KO8bH7ffn8/XiorT0yKgACLK+dOg66U9N0Ij6dPVanT69HZqChPVnESf74TmJJ2I1rBRJ29kRLYwRyaflyjgoaG1RcOn7BOpbrRFhNQjzs1J4sYHPgB897vAb/2W+Agu3WyLNLprdFR8mYUF8VnyeZmwa/fmbh+7SDQaOVUvgtCP2qCwsivtak4SJ06elLrt+/fLHMXPqj2a6bZ5Wn+/2JtCQc6pbNYGbywsyILz2JjMrRYX5e+5nPiPQ0M2Ul4FQ2Pks7SO4vKy/F07Pff1dYbIxqYwpFM5fRp45BHJ3rz66nWfJ12tL202nR6JeDEAt9fOl0yH/GDP824BoIk188aY+xt4W+RvX1iQWohLSyIIalrz3JxEJeqK6vHjMljt3i0pBYOD8p5q1dZvGxy04sn8vLy+WrWO+ehoeBSWMTYNWrdczg4EfX1rm7Zs1aCn6dNREY1RTWHqCY2bnZ67Ec1JolbKO8EZ2SqqVXv+VqtyntabeFarcg2Wy1JCQF97+PBhHD58+PnXvfzlL090sy0i25ONaE6y3aMHN4ovflG6Mf/ETwC/+Zvb0xZpHa+FBRnLxsdtNoUx4udsVrYE2Vo2ojlJmG8Uh7IrncTCAnDPPeIXv+Qltdeca49e/vKXvxzxnqcF/u5KReZRxlifemREzr/ZWVuzVdOfFxZEHNQml0HlchRXUNRAAFdQ7IZzNSyqsVKx95k+TRohmxXfyBjgR34kMo25XiRit+lLW0JHi4hdSN2dPTcHHD4sF8r+/SIUzs/LCvzsrIiF6bQY3SefFHHvwguB7/keCYlfWBCnO5mUAU2LkVerVlBcWBDjnUzKQDg6Gh2ZBcjrl5ZsbcXFRRn8ADH0bhr08LCs3nXSpLFcDhYX3ceNNIUJS58O+l/rNSfR5/1oFEZY+gxXyaMxxp6rlYpEGYyONhZBe+KErCxffHHdGhtx3/s0/NuMsJTiVtKL49icJE488wzwuteJHXrPe7a3LdKMhMVF23gFsKVYmN4cL+o1J9Hnw8qu1POLKCpsLMUi8O1vy/V2003SBTWCuF+FobaoUJB90Nsr56jniV3W7K/lZZmbjY3JuVgsig+az9u5lltaKgjNsMrnbZZVb68VFLs58rrV9GmAUY3bhXJZGqmcOSONVPbvj3w5j3gboIjYXhra2efPA0eOiEC4d69cKEtLMkgVCpLWXCjIYJ7LSYfnQgG4/HIRE3t77UoYIAPXyIgtSK4iy9ycDH7lsh0Qx8YaTxPSQdXddCUtlbKRXyos9va2sMfaiEY9+MVFv+io0YPu5k/R04FLu/FpUxiukm8u2aw9pzMZOZ8b7Yi3uCgC/tSUXHd1iPsARcPfJWxEcxJGD3YOi4vAa18r4/f73hecOugj7kepri3StLjFRRkjx8bk3FxeFpuvk/RunmTHgaDmJEERhX7c5iRRfhHtUXupViVt8PhxSRu86KK6xyDuRyjSFuVyYnP6+2X+o/VaEwl5fn5enhsft35nPi/zsWJR5gGN1povlWwdRa1br529+/o2pqxUHGlEaGwlqpH2pfO5/34Jnrr+einvUmfBiEezDVBEbC8N7+yZGRm483lgxw6pkVgoyCAFiAh49qw4VwcOyGsfflgM6NVXy4qhioma6tzba7uHqbHU1GUVFItFG1k4NtZ4BJd+1vJyraiYzVqDnsmsTYPuNMHMbU4StlKuq4TlsuwvN7VGV9PceiLqDPf0yD6ISp/mJKg1lpdtN8/eXjl3m0lzK5WAp56SY1CvG/MqcR+gaPhjAJuTbC+qVeCtbwXuuw+47TbgpS9tKLIq7keyri3S814jErXOs+fZdGemN28u9fwiTU30o/5PWAQhowc7l8OHpSbr/v0yaW9gLtDVtsgYsTXlsu0arynLiYQ8PzsrNkkzwZSVFbvArfar0QXuSsWmPGsGmHYD7+vr/ACNdrOepjBMn+5MDh+WiOh9+4AXv7ihayfutigWUERsL03t7NOnZVtZkajDCy6Q58+ft92Zp6dFJJyYkCKjjzwiXYtSKVHrX/QiGfizWbsapoOepjq7qBijKdSADJYqKDY66CnVqvw+V1hcWZG/aUMYV1gcGNi8yW3QKrnfKW50ldy/Wu5fxdLIiag6jY00hQmr2UgBQMjn5XwtFGS/+LuRN8qzz4qYfvnlDZ/jcT8CNPxbyEY0JwlKK6Y4GG8++lHgzjuBX/kV4Od/nrbIRcVzFRLTaVkU9Txb/7ZYtHWheR00hrtwGhVB6MdtThIVRcjjEE9mZoCHHhJ/6rrrRKBvgLgf7bq2SGseJpMSFLC8LPfV5hhj05t7eyUq0Q2WyOVsqZ1MRmxYMyJgpWIjFAsF+T5tnKiCIq+5xmg1qpHp0+3l/Hng61+Xc/ulL5V5XgPwCLQBiojtpemdfeqUDObFogw2F1wgF9LsrK3BsbIiXZ0BqaHU3w/ce680iMhkgBtvFCcgmbSh9bmcvF5FvKDV+3xeBsO5OZsa3dcnF3CzkV4uxeLa+orqpLq1HHXTNOww/M1JwlbKO605SVhTGL/oGPS7VUzcyqYwW0mxKOflyor8n9p5vJWB++xZuc727xcxvkHiPkDR8G8STC8mrXDvvRKF+JKXAG9+c906iC5xPysatkU6qSsUxIfQSbjipjcPD2/flD+lEb+okeYkQX5RN/sX251cDnjwQZkDXHedZEM1yLawRfm82BltfJLLia1xa7O66c1jY7XzGGPk/dr0r7+/tXIM1aoVFPN52/glk5HflsnQZ1gvblSj2whmk7f5jQAAIABJREFUvenTjGpsjHwe+NrX5Fp5yUsaKjWl8MxvAxQR20vTO9sY4ORJ2wFsYECExEzGpiEnEjIIHTsmrxseloiqXA64+255fnBQ6iVecYUNu19cFEe8UhHhSbuIBRm2YtEKitmsPJdOW0Gxlegvl6A0aDXQqZT8f/398j06GG+X5iRhTWHc+2FNYep1n47LPlDKZTkHczn5/7TmZqv/w/IycOiQfM6FFzb11hjttUBo+FsgKq24lfRiN5KQbF9OnQL+638VO/Sud0lDtSbOibifPU3ZIs0WcCfyruCqtRMrFfFn+vs38qd2Bv6FUzYnIRtFuSylkc6eBa68UuYbTZwP28YWLS3JYsbQkDzOZsWndm2Rm96szSddu66ZWktLthzD8HBrAr0xtYKillVyBUVe15sDm8JsDtWqdIU/cUIyKy+5pCmhfZvutfZCEbG9tLSzjZGah/PzclH19UkdxL4+GZzOnZPBanhYBo9nnpHHBw6IA3DqFPDNb0pHo7ExCQe+5BL72boiViiIwdJIwLBVfK1BND8v7zPGppKOjjbeKTGo4Lbe185mKihmsza92vPkO/T7tLu0imLbcZXcbQoTlT7tv9xVbK2XPr3VzkelIuebCtjDw/U7itejWpU6iMaI6N7kORP3AYqG32E96cVhKcWMHiSNUCgAb3iDOMrvfKfUNKYtinixU3d4eVkWlPr77WQesJPzQkEWO4eGtn4MaxQ2JyFbhTHSuODIEZk/HDzYdAmjuJ9dTUVFay3W4WG5JrNZ8ZtdW6R1FHO54PRmQN6rcx2d36zHZmm0toqK2vwxnbZpz3Gxh93ERjaFSSa7X2h87DHgiSekodNVVzW9INiFe6TzoIjYXlre2dWqRBRqo5KeHhnk+/vlsUZnaT2g554T0bC/XxpFjI5K3be775bX7twJfO/3SpFSJZ+XgSyXk8/UEPuotOVKxQqKCwvyOxMJWVEbGpLP8DvFra6SA/LbVPRcWLB1BV3xUzcWWK9Fax/VS58OWjFzu0y3symMOmqLi/J4cFDO5Y0QiTVy99JLW4qkjfsAtW0Mf5gg6EYSBsH0YrLZGAP89/8OfPGLwJveBPzAD7Q0bsX9LGwpQ0OFRO2YOji41o53WnpzvcYkYenFboO2sAjC7bZwSjae48elDNLwsMwb3FIBDbKtbFGxKPYllRLbUyrZeZi/huTKisy9gtKbFa23uLxsa9e3WqbH/zu1MYtmLbmCIm1H58CmMMKJE8ADD8i8/rrrmio1pcTdFsUCiojtZV07u1IR4WNlxda+2L/fDlZuevP4uAxETz8t4uCePVIvMZGQlcZvfUsGvwMHJDLRrXmiq2KaEqQh+rq6Fub8uinPWutDV9VGRmTgTKfDV8pbWSXXGo9aY1E7UQP2d7vbVk8i4kCrTWESifpCY6NNYYyxQnG1Kg5aM53C6zE3Bxw9CuzaJVsLxH2A6grDH5ZSzOYkJA7cdRfwF38B/NRPAb/0Sw0XDPcT97O1JVuk134iIWNFPm8XLl3akd4c1JwkSCz0E9acxP8c7RHZbObmJPLHGBEQ6Rc1xvKyzMn6+2V+o9F/mczaRY166c1KqWSbWyaTMn9ab8ko97NVUFQ/vrfXCoqbEQxANp5ubgqzuCjZk+UycMMNol+08JvibotiAUXE9rLunV0ui/jhpqbu22cFvlJJOhmVSnYV68gRUfV7esQ5mJwUB/eRR4D775eB6rLLpAHL4KB1ftX5np2VAUdTqYeGasUcvxCotysrNhVZw+mHh20K8mYMVm56tm7aRAaw9ZO0ll5YDUgSjdsUJkxobKQpjF9oTKVs451yWY7X2Fhz3evqUSyKkN7XJ+k6LQ6YcR+gOtrwszkJ6Xa++11poHLllcDv/I4s5NEWNYdOlJJJmXQXCjK2+6N8dFGqULD1nxsd99UfiqpBWK85SVQNQkK2mnwe+M535Bo5eFDmFC3659vOFhlj/dXBQfFll5dln/b3r40sV1ukqc9B6c1KoSB2rViU4zEysrGLIOWyFRSLRXmup8cKigy6iDdaO3cj0qfbFdVYKomAODcHXHONBDq1OP+Luy2KBRQR28uG7OxSSYRErYtTqcigrwV9/enN4+MyaH33u3KrXZ5V6Hv4YeDRR8WgXHopcO21MlC5q+SVigyMxaJNVx4fb7ypRTYrg6E6+kBtXcONFIn8lMsyyLvCov4Gz5P/RUVFTYOm0LAxqBgdJTTqebyyYp2xTEbC1wcHwyMaW3FwjJFGKoWC1EFcx3kX9zNkywz/RjcncaMJCYkDc3PSSMUY4O1vl/F4HRO2uJ/5687QAMQG6IR7dDS4lpsubOqCpjaZi4oiDLJH9VKL2ZyExIVqVfz/c+dkHrF//7qEqm1pizR7y/MkYjCVkvlXoVDbDNJlZUXsFSD2KqqMxcqKLd/U2xu8ULJeKhUrKOr8KJm0gmKTtTFJTOikpjDGSGDTiROymHHBBbWNipok7rYoFlBEbC8btrMLBUltrlSs8Z+aEmFOnd+lJXEMjLHRXNPTcoGmUlKsdM8embwUiyImPvWUPH7hC4Gbblo7cESlOjfqNGttkPl5uQ+I0zI2JoPpRg+OQRQKtaKi/j+A7Bt/GvRmipzbneVl6QSoTVMGBuw5qUJj0GTO84KjGv1Co3teTk9LrdALL2w5dfD5r1/Xu7eeDTf862lOEpVWzOhB0k2Uy8Dv/z7w+OPA294mq+3++llNEverY122yK2P6HniWxSLNsvALwrm8/KaUkkmx65gwuYkZLvxzDMyJxgfB/buban2mEvcr4yWbVGhYJunZDJiK5aWrC0KEuEqFcn0KhbF7x0ZibYtuZzMVXShfWRkc+Ym1WqtoKhlI1xBkTZwe7HepjD+RjBBQuOhQ5IlNjUl5dfcMmstwDO0DVBErIPneQPGmFz9VzZEwztba+xEFeHO5YCTJ+2FmM/LxTc5aR1fwHYQGx0VR6Fclot1fl4Gocsvt470woLUS3zqKRkobrxRipr6UxuMEfFnYUG+V2sfNiu4FQpWUNS040zGCoqbUb8oCP1/tA6f22BGf5MrKg4NMRVpvRSLcuxXVuT8Gh0Nn0y7TWGiohqjmsIUi9KpfGpKRERXbGwhdWdLBqgNtEdNd0St16Ak+PcyvZgQl7/+a+CTnwRe8xrgh35o3ZN2YJvZoiC/yC2fUSrJuFKt1tZBdpuTaBZGpSKT4vFxeR3HdLKdOH1aRMTeXhEQW6w95rKtbJGfbNZGH+oC9tKS2KShoeC5kZve3NMjtijKH3VLNlWrtgHmZtUyNMbWeXTr8WcyYjszGfpwRFhPU5jz56XEWiYjmoQGOK0jfbrjz8oN1pe2hI4XET3P+xUAHwbw4wBeCuBXAYwB+AaA1xhjjnme91oAbwCwH8BjAH7dGPPA6vsvAPBmAD8E4ILVj30IwLuNMZ/zfde/AzgI4IcB/CmAWwA8COAfAPxPALcYY77pe8/3A/j31d/yv+r8OwZY2604yCnWqLja71q7Sl4oiCPQ3y8XXD4vBZHdiYkxItJpDQ4VGdWBqFYlbHj/fnuhnjsnnZyPHJEB8eabpcV60IWsUX3aOVrrDmpKdKNoMeG5OftZvb0iLo2Nye9o52BVqaxNg87n5W+atqCiotYq4WBaHz3OuZycT6Oj4mBtxL7TpjB+cXFlRZoMVaviLPvPY7cpTFT69Ec+ciduvfVWIP726HnDH5VW3Ex6cVAkISHE8rWvAe96l4iHr361LGi0KlzdeWd32aJGmpNUKsER6RrlkEyKzdbJu+dJNEPYRNef3syMA7JdWFqSaOhyWXz/3btbP/+7zRa1igqC2gxQmyJp9GBUc0eNkNbMsaj0Zv0unZ8YYyMZN3MhxBiZ76mgqBHgrqDIMg6kHn5RMZuVOoilEnDJJeIXBZ3/jaZPGwN4Xn0Rscv0pS0hTiLiQwDyAD4OYA+A34Ic0L8H8Murr+kH8LsA5gBcYowpeZ73swDeAeDTAI4AGAXwSgBXA3i5MeZLznf9O4BrAeQAfAHAvQCqAP4JwDSAjxpjft33+/4WwC8A2G2MWYz6Xz71KZjrr4+usRNVayfMOGezEpGYTstrslm5CKemal+3vCyh854nq119fSKwPPOMpJMODMgKgFuD4ORJEROnp0XseclLwptRuKJbuWzTgluJ2iuXJSJQOz0bY6PVxsY2TnRqlmJxbRq0dl1MJtemQbOOiKVSEfFQJ3dah7IdTsdzz8mxuuwycXSCuk276dNu4yKXf/zHO/He994KxNwe/fmfw+zda1NT/KvYQWIgBUJCWmd6GviTPxFR61WvknGslfFBF0o+85k78f73x98WHTsGo2VZ/Ghzkno1CN19A8hzlYqdlEc1L1Bfo1IRH2ijuqAS0qmUStJIZXlZxMMdO9ZVewwf+tCd+LVfi78tWlmBWW9kXakkczCtJ6i+lZZMGh4OjxpsNr1Z37O0ZMsBadfndvjVrqCottcVFBnZTepRqQD33CNj8MGDYovGxlpPnwaA978feMc7mhIRY223tpI4NXOvAHiZMaYMAJ7nJSEK8BiAF2hIqOd5cwD+EqIs/zOAfzXGfNL9IM/z/hxy0vwOgC+hljEA7zPGvNv3nk8D+HnP815vjCmsPtcP4GcBfLqRA3zkiDis3//9Yuhdx3g9g9bgoIT+njxpB56ZGbnIdu60r+vvl5XG8+cl0nBoSF571VXyuqefBh58UCK1Lr5Yft/evcDP/ZyIMHffDXzuc3KRv/Sl0jXJJZkUkW9kxKYGz86KI6/NSxpd6UylJJpyYsLWYZybk887d06+a2TEfl+7Vr80knNyUh4bIwOoKyoeO2aNWzq9Ng16s9IOOpVq1aaIAzZys10Oxrlz8v0qmgFyHOudi/706cVFqRu6SqztUTYLPPusDNYavaMFwPv6bDQPIWT95PPA3/yNRKH8zM+E18jyo1kLpZK9VQf68ceff1msbZF2Aw2qQdisDVLxsFq1/sjcnGxq6/ykUiIyLi1JdHyp1L5JOCHtxhjx9bWOuvqmraANF//1X+1TiLEtqlbFVq9HSOzpkffn82KzNYNsaMjOEcKExGRS5haa2VUs1k9vVjs3OCjvUzs2NLT5wRbptGyjozbjR2veA+JHah3F7TbvIY3x2GMSXKLNYbVWfSMpzEHp0x/9qIiSTRJru7WVxOmy/pAe4FW+CTnIf+fLKddw0EsAwBizrH/wPC8DYACSK//vEIU3iA8EPPe3AH4RwE8B+MfV534GwBCAOxv5B374h0WE+Na3gFtusULURjA0JGnMp0/L/fFxEQurVVlpVFIpEQE1IqxQsGLdTTcBhw+LGHnunERtaVr0RRdJHbknn5Tf/5nPSArES19aK1QCNtV3YMBG7i0tyabFgJtJ/U0mZQKgqxNLS7bT8+ysGBo1PqOj7V398jz5X/r7Zf8DNjxbHYaFBRF1FTcNenhYBv9ujOzS1I6FBdkng4NyfNrpTOTzUgdxeHhtZG49dCLb1ye//+Mfr4mWibU9es1rJDJKJ/DVqp1Ay2+T5/U67u9vT8MjQroNY4B3vEMmlG99K3D11TL2+22+1vPThQttKKWkUra8wuc+V3M9xtoWuf7JRpBI2AlFKiV+gy5mjo8HT0zcdOalJXk905tJN3L0qPhkw8MytrdSk1Ubb+TzwP/+35LNtEqsbZGKf4XC+vydvj6x4/m8tTeambWwIDZmeDh4rqJZOum02KyzZxurD6+LIUND8h0LCzIP0eO82XMMXZgfGZH/XQVF/S3qa/b1had0k+3F0aMyP5uclHM3yC+KQkuZ6HX0pS8Bn/60lItpkljbra0kTiLiUd/j+dXbYyHPjwOA53m9AN4KCUm9wPfaoGDYWWPMfMDzX179Db8Me5BfDeD46t/qct11Yszvu09qI117rUT8bdSK9+ioDO5nz4ohn5gQIdEYiVRUPE8c60xGnOUzZ2x686WXiij41FPAo4+K4HjwoAwOngdceaWIi489Bnz728AnPiF/f8lL5DP9aOServQvLMj36cpc2EAaRiIh/9vIiERCZrO2juL8vPzGoSErKG7FYKWipru6q5Fsup07JyKOvl73hUbpxVmw0cLP8/MiuvX3y7Fo94SsWpXo30RibdRsMxgD/OM/ioD+whcC//ZvAGJujyYn5f+am7NRiBddJKJFLifRBbmc2A8VwJNJKyjqLZ1BQqL5p3+SKP5XvAK44goZJz1PrrWwEgqJhFyXmj3gdpn/xjdkbL7iCuCuuwDE3BZtNFpuQeu5qpDoRiSG+VzaVXVxUcYvpjeTbuL8efE7tVGg1kdvFM28yefl/n33SUDBFVfInAAxt0XJpIh3hYKNSGwVjQzM58WOV6t2bqDzgKgsqkxG5l+6AFIoiB9dT2Tp6ZHjWijYklBLSzZ4ox1oDfHhYRnnVFDU/1sX5zXrhWw/5uaAJ56wATja3KxVHn9c0pgvvxx485ubfnus7dZWEicRMaBiTuTzamrfD+C/APgfkGKZs6vvuRWi/PpZCfowY4zxPO9OAG/xPG8HgF5IMc0/MsYE9BsK+EGeFA1Np6UL0SOPiHG/8sqNE43Gx2WwOndO7k9N2dTmvXtrB6C+PhEMNb1ZI8WGh4EXvUjSco8dk4v9kktspF0yKYLolVcCDz0kKdDPPitp0TffHNxh1xX/tKuzCn+agt1sfSgVDIeGJCoyl7OCov52/Z9GR7e2PmFPj434VPxp0CdPAseP29drzUDd4pAOoMegVJL9PTW1dYLoqVPiwF1yyfr23de+JkV/b7lFjtkqsbZHnmfPRXXwtPC3Xi/yPeKM5nJWXDxzxoodKkC6wiLTAAkRHn4Y+PCHJcr/llvkuYWF2k7ynif2fmDARnOETey/+13gC1+QaMacXR+PtS3aDNxoRG2apanN8/NWyA1CRUdNCywW21syhZDNYGVFIgY1s2dkpH7zDsXt0GuM+HZHjwIf/KAIiFdcIR3n0QW2SH3FQkG2VucNiYT4Q2pDNBBDa6driZ+o0gnJpPjQms1VKtVPb1bSaREh83mxeefPy+eMjrbXJ9eAkaEhCSrQ80iz07R2pNbnJt1PoSDagZZMGxgI1g0aZXoaePvbxa697W0tCdOxt1tbRQxkiXXzCgD/nzHmte6Tnuf95xY+604AfwjglwBkACQAfKSZD0gkJCowmZQB/cgRmZhffvnGpTdPTtoCvZOTIhTqxH/fvlrnWdObNcS+WBRxIZWS9OUdOyQq8ckn5TMuu6y2rtzNN0tE5X33SXTEk0+KwHjjjeEDlab/lko25D6blQFkZKT10HuNGti7VwYpTXk+cUI2jYgbHW3cedpMdODUdHCN4PNHLCr9/WvToDtlYqN1UNRZ2rGjfaueQSwsyL7bsUOcl1Z5/HFJ17niCuBnfxb42MfW/dM6xh5pLR3tsKeRiYOD9thp571MxoqO1arYLI1WzOVsDRx9vT8NuhvT9QkJQtOST54Ebr9dJn0/9mNiIzMZGZszGSsYNrr6fvIk8KlPyYLZf/pPwN/93bp/asfYos0gkaitj9jbK/ZO/YKoqB6mN5NuolIR39wYGcczGbtQWI9CQcb6alVsVX+/CFLvfrdM2t/yFuCf/3ndP7GjbFEqJfuqWJTHrYpbvb020lwXhrTuqz8iMcpH0iaNs7ONpzcrmYwEgGjwxsyMrWPYbnum2SwDA7b+5MqK+JDZrNhsV1Ck39h9GCOLq8WiZD/19bVWUkHJZoE//EMJgnjXu9b3WS3QUXZrK9gOImIFqO3S43ne5QB+utkPMsYc8TzvK5CQ0wyAe4wxTzf7OSrcJRIibs3MSITBnj0bl968c6eNSNy5U+oOTU9LdN7+/bXf4Xk2Um92Vuoqjo9bse/66+W9hw+LWHjhhfIZauD7+oCXvUxed++9Epn42GMSzXj99eGTJA2711TnxUUZIN0ux63WN9SBaPducYJ04nDqlGzptDhAo6Odk67kRlbu3SvPlct23yws2OMDyDHUTmy6tVu4KxREQMrn5byenFzfitJGUCrJea7Hv1VOnQLuvFOu1Ve/esMiQTvKHvX22lVxddqyWdmHQ0PBtkjPO/c4+9Og5+asAJ5I1EYrDgwwDZp0D5qWrJvWNXzHO8QuvvGNMonbvbt1QX1+XkTDwUHgF39xw66fjrJFm4E/IlEbnel4Wk9IyWRkXy8syDHo79/68Y2QZnnmGVv/XEsM1bNDxaKM55WK+D6Dg3It5HLAHXdYGzc+viE/seNskdrYYlH2VauCW3+/jBGa1qz7M6jZStQx0chCLcvQaHqz+zv6+uT4LS5KUEhfnwiYW1X2SeeYbqSriopal1ub/VFQ7A6eekrmsfv3y7GdnGxd81Dh8NQpWcw4eHBjf2sDdJzdajfbQUT8DIBbPc/LQTrmXAzg/wXwBIAXtvB5Hwbw0dX7vx71wig0vVUd2/l5iTRYWpKop42IlNu1S5znM2dkArNnj1xsx45JjTj/hdvXJ+85d05WGt1Bas8e+b2HDomYePasRE+6UV7Dw8DLXw7ccIN0R7rnHknZvukm4AUvCBcE/anO2olZU52Hh9cXfp9Oi5C6c6c4PioonjkjglxPjxUUO63JiaZWufUm83lbX3JxUQTeEyfs693aisPDm+MglEpyjJaX5bhqQeet3nfGSJqNMSJ2t/p7FheBv/5r2Xe/+qsbOnHsOHukjm02ax3KbNamNzdy/qRS9hpW/GnQZ8/aNGhN33TToNvZEImQVqhUahufFIv2nNaJ5tAQ8KEPyXj+pjdJneHJydYnoYWCRECXy8Ctt27oolfH2aKNxvOskGiMnZgaY8dQ12YFoemf2azYMe3eTHtF4sDJkzJpHxuTcbde7bFSSc7zclnO8aEha7sqFeC975XPfMtbJOhhg+hIW9TTYyPLgdZsuDaa1EyvdFr2YzIpnz80ZFN76/nQ2r1ZAwu0e3OjPr7niS+rv2dpSeZAOs/aqpJJapfVNhcKVlBcXpa/p9P2NZ2SgUWaY3oaeO45SdHX3gWtRvkaA3zgAxLV+Gu/Jn0ZtoCOtFvtZDuIiG+A5KH/DCRP/UnIwbkSrR3kTwH4K0jO+ifW88O07l0iIYODpg08/LDUcduxYz2fbsW/Eyfk4t27V9KZT5wQoeXAgbWOcDJZm95cKMiglUrJxX711RI5eeiQRBzu2ydijfs5ExPAT/6kfOf/z953x0lSVmuf6jjTk9POzmY2sqSFVSTKBXQRI2JGUeBy9WLmfnoVMYDoT1Hv9UY/EfVTUTFcXRX0ghIEFFjisrAsy0ZmJ+3kzt3VXVXv98ezx7e6p0NVdZjumX5+v/7tzkyH6qq3znvOc85zzsMPEz3wAPofnHkm5NCFNkmz1Jn7gLDUuRyTjL1eGLC+PmzkTChOTYHkYDKkqyt/JdZ8g+WlPG1YCJld5AcTaUTYdM3ViqV8L03D+WLpAffQrJXzNDGBY1u1yvnmpKpE3/8+1t7VV5d9emhN2qPWVln12tmJ9c9kvlnebAd+Px5cqSDEXBl00NRiOFsG3cg+NzCfYDmbmTQ0TWf/m7SPZckcgP3pT0T33APJ8cknZwbhdmEYGOo0NUX03vfanzBfBDVpi8oNHrTC1YiKIqtfeB8r1vKCVQJeb6a8udHDq4FaRiiEooG2Nrm/5kuIapokyVltYF7fQhB9+9vw+6+5huj008t6qDVri3w+SSRy/1q74EEiiQRiJY9HJjh8Ppxrbutkpf0O7ymzs4jHuA2UVXC7Bh7+wgkSVjbNpz9vbqHT1ZVJKCaT+M5mQrGRzKkPRKNoedbWBk6B25c5xfbtRHffDa7hTW+at1ihZu1WtaAIZhoasARFUfxENEZEfxRCXGbz5XNOtmFI2cDYGG6EZBI/9/eDTCzVoBsGBnYkkyD9DANEot9PtHp1fiOcTMrpzixvZmgahqmMjcGQb9yYezozEfo+PvIIAqHeXqJzzsHnWj127hPIfUV4knE5s2aGIUmTUAjBIldIdnXVX+WBrstsJT+SSfyNs5HZMuhCRtgwQPhEIvi5rQ3nppbOSTwOcrujA8S2ExgG0W23gfR++9uxVvOcl5qgt0qwR3Nska5j/QsBIpGnlKqqlD2X27nkwMUshdY0/M0sd2FysdGTrIFKwTwlmf9lcE89cx/DXHbhwAHIlzdvJvrYx6RcxwmEIPrDH4gef5zokkvQHiQPFpwtqgS4GtG8Z0UisDt2GrvrOnwETZO2qZHsaKDWkEpBCeR2I7HvdqOoIHsP13XcAyzbDQRy96P77W+RXH3Tm5BczeML1MSdUAlbpKq45/1+57FHJILzzf42k4lE8M9jMby/VVtkGEhoqCrisEIDowqBbRrLiLnYoNbsWjotCUVzdSgTivUwfHIxQtPAAaTTkBy7XCjOcHq9Hn2U6Mtfhurx+uvzKjdrbPUWR4n80rygQSLahKIoVxAaYF4khLjH5stznmxdxwauqiDl3G7cZEePYrM5/vjSe93pOohEVUWVFv/s84HQy3cz67qUNre0zN2kgkGiffvghCxdCtIzV6ZOCDxvxw5sVsuXE519tr0qL55mzFMpeapzuSeNsdSJJdWaJjdWnmpXj5tVKiUJRa40ZcLG3IeSH36/JFfDYfyfp13X2vfXdfTaIILM3im5+Yc/oJLowguJXv/6gt+zJjaoEuxRTlvEMnUeuuJ2476LRnEPVKN/TiqVKYPmpu5EuB7Z/RVrichuoD7Ae66ZNGRXiKtDvF5JGlohz8Nhoo98BO/zxS/CsV2yxPn6fPRRorvuwlTniy4q+NQFaYsqAV2XFUCMcBg2rq3Nup/FVYyJBNZJvSUZG1jYMAwMhUskZFujgYHMykLDkNVdXP2Vr/p/xw6ir34ViYzrriuYzFvQtiiZhA1xSiSyP80JUqLM92H5LleNWgUXDHg89uTN2eBhl4kEjrEc6q9KQdMkocgDcLwXxIgkAAAgAElEQVReSSg2+m7XDp5+WrZAc7mgqHDKaezfT/TpT8Oe3XRTwUEqNbhqC6NEfmle0CARLUJRlAuJaBMR3UhEI0T0MmH/5OV9vqbBgGsa+o2wVPTwYWxa69bJKb5OoeuQuWoaiETDgNTB4wGRWMjocv897uVofq5h4H35vdavz3+sug7n5vHHsVmuXYteBnYmKmlaJrHl84HcqMRmx1LhYFBOHyaS/RzmY8JZucDyUnO1YjSK3wshAy4OhletKj9hWy4MDuL6bNjgvGfYY48R/eIXkCC+611F+5LO6wZVBnuU97lM1jc1Sem7pskKXafyZqcQQjrXTC5yVS0RHHqzDLpYVW0DiwuGkSlJTqelLJnlaWbS0Glw+PnPo/Lni1+Eg9vV5by38d69RD/7GSoa3/nOout5wdqickMIOY3eTCSGQrAp7e32rpmqwlYSNeTNDdQODh1Cz+/ly7HeOflNJPfTZBL/Z/IwX6LkwAEQhytWIGhvby/40QveFjGR2NTkLHGQTssWTVzRbt5z4nFcn+Zme35WKoWqRMOwL2/O9V7BIOwb91mvlQGUuaDrklBUVfyOJeTNzfUboy0EHDqEAo+1a3HPtLY6n6A8MUH0yU9ijd90U9GerHUTBZSJX5oXNEhEi1AU5QEiOoeIniKivxdC7HHwNnlPNvfc4EmCR47InoaDgzDoS5aATCwl482Taw0DxKGu42eXCz8XMrbJpNykurrmbiqxGIxFOIxs2MaN+UmndBq9H596ChvW5s3omWilHwiDqwFCIbwH9zaqZKVgPC4JRSYyWlpkH7l6DyIMAxWww8P4nqkUzqXPJ6UuPLCFHYv5JmxmZrCGly7Fwwn27YNUZ+lSTGK2MHFwvp3lB6g0e1TQ8EejuJ95GqmiyArdZLJy8marYAmWWQbN8hZep+ZqxXq/LxuwBiHmTkvmamsiacuYNMwnS7aL224juv12og9+EL3CAoHik3/zYWyM6Hvfw37/939vqaJiQduicoNlzdwfkQg/h0IIQO2qG3QdPk86jYC1Vit3GlgcmJhAq6ElS2Qv86VLMyfgCoHfBwKF9/DJSQTtLhfkg8uXF/34BW+L+DwahnMiMR6HreHzz33xGZwo5d7QVmEYMjZpbsYeVIqPlkzK+Ip7+Jdj6GclwRW2TChyCwsmy3NJ9RuoDKaniZ54ArZoyRIpY3Zy/uNxJDNGRog+8xlImYus7bq5ymXil+YFDRKxuih4srmRO5EkEoUAuTc5iZ+bmyFvLjXLdOQI/s9E4uAgbuzVqwsH3MXkzULgJj98GD8fdxwcj3xGI5kkevJJVHAQoQrs9NPtb1S82bHUmcmuSm54yaQkFONx/I437s7O6lZrlQOJhKy29PlkJQ0PuTE/mLAx96jkRzWrFVUVxHVzMypgnWxOR49iypfXS3TllUQrV1p6Wd1sUHlQ0BZxL9JcMj+zvLm9vXayvOl0pgw6FpMyaLc7s1qxpaX2JPkN2AdX8JurDLNlyWbSsBKk944dRDfeSPTqVxNdfrmU6zixReEw0Xe+g/f4wAcsJ9UWtC2qBPIRiZw4szs1khUL8bgcztaQNzdQbcRiRLt3y7Yzug7/m3vJsXInECi+PuNxBOtjY6iuPv54SzZtUdgiJhK5ktPuvsIJWSHgizDRZX6faFTGWXZ9ai6ucLuREC/VR4vHZR9YHohRD4lZw5DEOV8vl0sSik1NDUKxUkgk0AfR50Nslk4jmeFkLeo6khhPPkn00Y8SXXBB7SdXFwsaJGJ1UfRks/SKK38GB/G7Vavw+xdfhCFfu9Z51RURNqcjR7DJcI9Enui7enXxTYv76uWSNxPBYO/bJ6cYbtpUmPiMRCBx3rMHTvjWrUSnnWbf4LDUmRsYc/astbWyVVNc/m8ePuL3S0LRaqPk+YCqyuylx5O7yjQbLHllmXs0KgkbrlIzPypB2AiB/hiqivXlZHOKREAghkKYfso9Oyyg3jeooraIpzWzhNlsE8zyZibnag3s6Jtl0ImE/LvPN1cGXStTxhuYCx5CZiYN2eaYZcn8qAaJMzoKp3ZggOhzn8Oa6+111o8plUIF4uws0T/8g632JQveFlUCLGk3rxMhcP41zVmrkoa8uYH5gqYRPfss1vCKFdjrOjpgG3Vd9hO24ovpOtFXvoKg/Z//GS2HLNrTRWOLWBZO5IxI5ApmrxevFyJz0AoR/K9Uau6kbCswy5u5t2Ep4ERJOIxjb26uTo/scsFcicuVpOZeoE6uYQO5YRhIrsZiKAxSVTmg1C6EILr1VqI77yR697uJ3vxmywU69W6L6gINErG6sHSyNQ0Pt1sSidzH0OcDkRgMotph/XrnwVIigeEqXm8mkajrIBKLVfGpKqoSDSM/UTYxAaKHj3/16sKGemYGDeUPHsTnv+IVRCedZP87stSZp8uy1Lm9vfKbnqZJQjEcxrF4vZJQrJWpZ0x8xuNykIZTKZZhYMNgUjEcltWZRDD6TChyv5ZSN+zRUayvNWucSQc5aH/pJaK3vY3o1FNtBY01cAVLgiVblErBkeWJ3ubzU0vyZqswjLkyaK7+5v6fZhl0rfYAXejg9h5m0tAsS2YpMhOG2cFXNZBMEl17LfbAr30Na8VpsGYY6IG4bx+qGTdssPXyRWGLyv6hefojsiRQ1xH42PUXGvLmBqoNIdBHNRRCy6NgUPayc7uxp1n1bYQg+u53iX7/e6KrrsKAuYZflBtc6UaUfyhNIagq/JDmZlyn7P6I7GOl04gb7CY1zPLmpibYs1J9ND6mSATvz6qvelJ2sOqPZc/c/93vl30Ua92XrWXs3g1u4eSTpex/yRJn73XnnYjTzj8fSrGuLssvrXdbVBdokIjVheWTzc3fPR5JJKZSIOJaW9GzbnAQRu/4451nmWIxvFdTE2Sc5uErK1cWrzDSdRB/3L8j1yaVToMU5GnTGzcWJ33Gx4kefhjH1t6OfombNjlzxpNJOdVZCEloVUNurOtw7IJB/GsYkrDr7Jwf4oVJzmgUn809Dssd6JgH4PCDCRuXC2uWSUW7De0jEaypnh7L8uMMGAbRz39OtHMn0cUXE51xhu17qN43KMu2KJHAvePx4BxlO4vJpCQaa0nebBXpdGa1YjyeWaXEpCL/Wy+Z93qCuY9hOp0pS3a7505Lnm9SRgiir3+d6IEHIGXmBJ/ThuF33YXk2RvegMSZTSwaW1T2Dy5AJM7M4O9dXc4C5Gi0IW9uoDoYGoKvvHy5VIUsW+asH/Dvfw8S8eKLEbTbbAm06GxRqURiNCpJQpbbZldHc/VfW5sz/4MLKlyu8sibifC9mUwkwlqr1yn1ZkKRk5VmQrEev9N8YXiY6Lnn0MqsvV1OhndyDh9/nOjmmzEz4SMfgfrSxv1V77aoLtAgEasLW6XyPGjF65VEoqqCNGlrw6awdy+et3YtblQniETQxzAQyCQSUyn8bIVcYWmrx4NAKtcmNTuLKspkEse6bl1x5/zIEfRVmJjA+559NoyTE3CFAG/IXi+MHE+grTQMA5/NVYq6Lkm8zs7KBxpMaPKmzwReNUlMJnT5wXJZInk9zI9cDpOmYR253SCknRz/H/9IdP/9CNjPP99R8F/vG5Rt2U4sJichZ69TJow1rXblzXaQSwbNW6XXO7e/YiNrbR0sSzaThmZZsrmHYbVkyXZxxx1og/C+9xFt2wYbxo3D7eKxx4j+8AdIBl/7WkeHs2hsUSWQqz8ikUyQEiHwdrIOUympRmhra1Q2N1B+zM4SPf+8rFRLp6HOcCIdfOIJyJi3bCH6xCccVdEuSlvEwzy4356dc8YkoaLAl+BCA/NewoOfWJrsJKnB8mZdly2eygGOq7hPdltb9WKqSoD7hyYSsve7zydlz40kcn6Ew0iGdnUhvo9G4Rc5mU1w8CBaxHR1YbjT6tW29+B6t0V1gQaJWF3YLpXXNNkrgwjkXjKJjGNHB4zcvn1wJHp7IW92ssGEQmig3NqK9zYMSVquWGGtwbsVebOuQz46PAxjvGEDZNmFIATRgQMwTsEgCMhzzkGm1Qm4twdPY+SquGr292C59ewsvhP3wWxrg9Hs7CyfPIDJy3AY/6/0BGs7MPdZYSKah+MQYfMxk4ptbVg/kQgIRCeb05NPEm3fjk3uda+znd1i1PsGZdsWxWK4X5qacvcPNMubuRdpvTqS2eAgwSyDVlX591wy6PmulqsFmGXJ/OCkAVFmdSFLlGsdzz9P9KlPYQDYtddiPXR3OyOI9u8n+slPYMsuu8zx/VLvK23enVAmEnMlR2ZncS93dzu7PoaBfS2dxhqplXYmDdQ/4nFU67hcSPirKvxiJwTioUNE11+PoP9zn0M84WC91/vKdmyLdB2+jxMiMZ1GPOD342EYc1t0sB9vGM4LDgwD8UYiUT55M4P7ZMfjeE9u7VHPtk7TJKHIKiqPR1Yo1pvqppJIp6EeFALzDEIhrAEb8uO/YWoKk5hTKRCImzY56i9cxyuvftAgEasL2ydb12HIzCXuR44giF22TN6gIyMgV0qRN8/OQkbc3o731nV8ViIhSctiMAwQiYXkzUQgG158ERtnby/IxGJGwjAweOWxx/D916xBZWJvr/3vyuBG6NEojB83C672ZOVYTBKKTE60tkpC0clmxaSOeQBGZ2ftB+rmilF+8DlhWfratTLbHghYd1QOHCC67TZUHl5yCRxvh5VO9b5B2bZFmgYHkSf05Tvv9S5vtgo+H2YZNEthXK65MuiFeh7MYCmyucqQwbJkM2lYbwHG7CzRhz+M9f+Nb+A7trRY2xuzMT4O2WBPD9HVV5e0PursLM5BTTihuQatEGENz87i96UE3WwnuFddLSTxGqhPcBJ65074RiefLH1uJ73HpqeRGNF1TGJevtzx+lzUtoiJRLfbflKJB34w8ZZr0AonJIhKkw5zEUU55c2MVArvzeeBe6DXO3RdEoocj7jdklBczEO0hEBxxswMkqu8zzkp0EgkiD77WRQaffzjRKecYq2IKQfq3RbVBRokYnXh6GRrGgyYucR9aAhOxMAANgEiBO5798KIH3ecs0q96WmiyUk4y/392LSGhiRpaXWARSQimzvnkzcLAUNx+DC+F0uyixkdTSPatQtGS1VBmp5xhrNAjqHrOGaWZHIfo/koy08kcO5mZ+X0t0AA576ry5pzEo3iPTRNZhzreZNTVQTdPH2wvV0GfR6PrK7kisVc621iAlO+3G6iSy8FCVmCvKzeNyhHtkhV5WQ7lnfkAkvnNQ1rt5ank5cT3CjdTCyaZdDZxGItSnWtQtczycJUSn5Xl2vutOR6r0rVNGTH9+0j+uY3sabdbiSx7DrKkQhskWEQ/eM/OqscMmFR2qJyI19/RCI5hMzjwV7qlPxuyJsbKAXmCbMHDsCOnHqq3JOXLbO/pySTCNqHhlCB6LDqh7HobZGmwQ9wQiSa1UJsi7LJXPatFKU0tUc6DdJH06TKp5xIJnGcqZRUpjhRDtUiuA8mE7/cDsNMKNZbgrQU7NsH+fFJJ8HXU1XE8k6Gkt18M2L7978f7aZKKBJaRFdg/lC3JKKiKFcS0Q+IaJsQ4t55PhyrcHyyuW+U2y2dhKEhOBH9/fJG0zTc0DMzIO82bLCfUZyYkK/v68PnDg+DmFq6VJKWxZBKoSyZy+/zbVKJhJRkd3TAibFSCaiqRE89RfTMM/iMk09GFqSUKkIhEPhzJo0lxvNVUaWqklBkmW9TkyQUs79rPI7nptM43q6uhbFxGwbWiKaBNHa78V3N1YpcTUokJ6XyQ1Ew4SsSkQRiKaQzZW1QdWiPHNsizsTyNLt8jjJXSyQSst9lPZNmTmDuJ8nkIjdhJ5LScJZBO2nMXg3wNEMzacgkvqLknpa80HDrrWiD8KlPoWdYKoX90e53TaWIfvADJOuuvtp5L2MTFq0tKjeYSMzuj0gk92KfD/uv0/uUZYmpVEPe3IB1MGnBE3ePHpWJUPbN7ZJWhoGg/Ykn0JqhVP+ZGraIiGRSzeOxR8iybXC74Q9w3/R8PahZNuyUSBRCFiv4/c5bNhQCF0VomrSd9VzQkA0zsc+9s1nS3ty88FvbTEwgDl+xAgPmgkFwB04KB77/fQx2eutbiS680FpRUQEUfWUd2qeawwJ09SsPRVFcRPQFInpGCPHbanymxyOJRM6Ur1wJGfP4OH6/ZAmed8IJRKOjqPDbuROki50s05IlUpbscskJuMPDcFwMw1p2wOeDYzMzI2W6uTap5mYEZUePIrv65JNoorpyZeENze+HnHnLFkicn30WcufTTiPautUZ6cfNjVtaZFk+Vyhyfz478tlS4feDJO7vx/VnQnF8HOeLN+WmJum4eL0IbheChIAxOoqN2jyMh68TB+G6LqfQcX/FiQk4L3ffjXO3bRuunduNzX4hbO7VtkdNTZnDMVyu3PcaE/BeL+6h2Vn8vJAcyGJQFNgLc2Cm65nVipGIHODAzzdXK1b7fAmRe1oygwMjJg3rUZZsFw8+CALxkkuQHQ+HnfWtFYLo17+GPXv3u8tCINYU5sM3KicUBY9cRKLfj8RTKIRHR4ezde9yYe3w/Z9O106P4gZqD1zdzkMWiZCc7+1FknhyEuvHSVXrj36EnorvfS985oWQcGbMpy3i68R99Kzu4dwGJRaTvnyu6mhW3/B0ZE6U2wX3emV588RE+VVLXJ1n/oymJqzZhdDiRVHkdxQC9ysTivE4/m4mFOtdkWFGPA5VYHs7YrPJSfisTgjE//1fDJg77zw8lixZ2H5lvftKjIbb4gwuIrqBiH5ERFW5+FzWrmlykqXLhd4lLhduXsMAaUckmyvv3Qtybc0aPNcqli7F+01OgnDp7ESmYWQEm4AQxQei8DH29srefEeP4udcmwdXOR44AAJ0YgJVicWkXi0tyFps3Uq0YwecomefRVb1lFOcVz/5fPiO3d2SSBwflz2N2tqqW1nF5GBfn2xiPDGBa5xM4nhXrMB1rnZPx0oiFILTvGRJYTKc+6+YKwxVlejHP8a/Z5yBczgxgfdzu2WVKVfK1qm8rKr2iJ0iHprBw4nyBcFNTTjvHHwzObaQHYRC4HVnXsupVCaxyBXcRDiv2cRiOQkHsyyZSUOzLNnnk1MJF4Is2S4GB4n+7d+QnLvySpDhXEFqF/fcQ/TCC5jCvGlT2Q+1FlB136jccLlwT7Dywwy2e5yoKqWavaUF91Q4jDXV2rqwSJwGSgPvCboOe8+B+bPPguRZswa+jN9vvc2QGXffjSnz27bhUc3keJUwr7bI65U+kqJYJ8x4wnYiIXsi6rpMcJjfv7VVEomlVDRzz+aZGfgelZA3s//Cif7xcfy8kBIo7BtzCykzocitqfx+STrWszJH14mefhrf+dRTsYd5PNaVimY89RTR//t/RCeeiEStE4VHHaLufSWiBolYV3C58DAMGWC63SAMFQWVg0LI6obWVtzcTMqFQpA3W+1TMDCAzzl6VJbNr1iBKgomLfv7rb0XVyBNT2Pz6OzMvUn5fAjW+vshX336aZBia9cWN7idnUQXXwwy8ZFHiP7yF0idzzgD1ZhOg18mUbl6IBzGZsuOf3v7/FRXGQY2og0bpKMRDqM3BRNqnZ31PSU3ncZwn0DAWdXOQw9h4NC2bahQXbYM72mWQQ8P4zOIsP6YVGRHahFsZrbBQzKIZMPpQCD/PcpDCaJRBEbp9OKUN+cDy4A5GGSJjFkGPTYmn8+DbcwyaCv3uGHMnZbMewnLkjmg8Hobaz8WI7rpJpzf669HsMb7gV089RTRX/+KSsYzzyz/sTZQPrjdkkjMpZwwDNgyHh7lFD4fgq5wGGsrnW7Imxc7NA12R9Nkwsnnw56wZw9+f9JJ8D+JEHDbXS87d2Ko0ymnoCK63gmNWgX7SEwkWo29AgG5Drj/N5PJ2e+fXZHoFF4vEvXBoBxm2NVV3nXB6pSWFnnM8biMoxbaGuRp252d8LWYTAwGZWsMJhTrzdfavRvX7/TT8Z00DYVAdmPNl15Cj+lly4guvxz7YSOZVj+oU2ohA15FUW5WFGVUUZSEoigPKYqy1fwERVE8iqJ8SlGUPYqiJBVFmVIU5XZFUVZlPe+Vx35/2PS8XyuKssn0nDVExOKuKxRFEcceD1T4exKRzEwJIfv3EIFg6e0FuTUyIitJPB4QaOvWwenYuRMbhBUoiqxqGx2F00yEm727G4SgObAtBp8P5GBzMwyoudomGz09CLa4+vHxx/F5VrBkCdGb30z0lrfg2O+9l+j220GulQqWz65Ygc0wGsXx8fmpdItRXcd5GBnB5tvRgT4Uq1eDaN2yhWj9emz+4TDRoUMoNz94EK/j6bH1ACFQBSQEvp9dR/npp0EibtoEZ7mvTw63WLqUaONGope/HKXzL385fu7uxnk9eBD3ykMPQSr/wgs455FIZk+7HFg09oh737lcsvdfofXPDmRHB9bhzIycctdAJlgi09uL+3vzZiSENm6ETWZ50PAwptzv2oWK5KEh3Ofc7DuVkpPfx8dhr6em5AAp7q+6ZAnsWl+fbIBeb05tuSEE0b/+K87Z9ddLJYCTCb0HDxLdeScSPq97XflIoiJ7eV3Yonw+wHyD7Vqu42PyPpHAnlDq53R24v2SSTnsoIHFBR7uFwphzbW0YF0wETU4iPt93TqpAOjutm+nBwcxWX75cqIPflAqBUpFkTVbF7aoEmA/iav8rYDbKhkG/FFuv5PrHPt8IOHS6dJtkaJgf+vqwvFOTFTGR3O54GcMDODYo1Hss7z2FyJ8PnznpUsRB7e345qyQm98HPe31TUynxgcRMy7caP0RZ30upyZIfrKV2CDrr4a685JgjYbPD/ABhatfSoVC2Gwyi5CA80fEVE7EX2EiLxE9HIhxH5FURQi2k5EryeiHxLRU0S0/Njz4kR0mhBi8th7/hcRnUBEDxDRGBGtIaIPHHv/E4UQE4qitBDRW4993l+I6NZjhzQuhLinyGGX5WRziTwRNhdzv4zJSRj+jg44CeZgJRpFoKmqIGVWrLD2eYaBSi1VRZ9ClnGxLLSz034DVJ4ezD0XCxmfcBiBciyGYHf9enu9NA4eRGXi7CwM+NlnW//uxWAYUuqcTuN68DCPcmbVDAObjXmyY2dn4c/gwRac9UqlJJHDlZXlcB4rBSY9Vq2yXyJ/+DDRD3+I671tG9ZYV5f117NDxr0V+frOzoKwuemmvA3E68IejY+XzxZxs3ccszVZFAdM6TSckMUsby4FLHviIUORSKYkmaUzra14sITS663f6uRq4be/Jfr5z9Ev7MILYQf4PNrB1BTRT38Ku/ue95Svan1khOhLXyL6zW/q2xY98AAJTkz6/bmHmswXDEM2ys91TOZKmnL0IE6nsc6EaMibFwuYKOJhZbmGMUxPQ1HU3w+fZnwc683u5NJgEBOY02kkRpwOQDAjEkE/s1//muj3v69vW0QVHPKUTMLv8futE788sINbmOg6fP5cezf7AX5/6deUKHN6M7f9qRS4PVM8LlVvra21sw9UEpomrzMTth6PrFCstb6Rs7MorOjrQ3HG2Jjs3W8HqgpbNDxM9NGPIs5btqx0vzQaJfrkJ4luucXWYJV6sU81h4VAIh4ioi1CiOix328hoqeJ6FdCiHcqivIOIvoFEV0ihLjD9PpTiehJIvoXIcR1x34XEELEsz5nIxE9R0Q3CiG+eux3HgKL/CMhxJU2DrtsJ9swYHyYQDQTidPTyGy0tYH0MxtiXYczMjkJEmnTJmtEkq6DSEyn8Z7s3E5O4tHePpe0LIZUSlbHsXy00PcdGkIGxOUCkcj9H63AMECg7tgBI7N6NdFZZ4GULBd4qnMiITOJHR2lBY3cfyk7O+2E/OPJzcGgrKZraZHZn1oaeBGLYZ12duJa2cHkJCapNjcTvf71MvtXKkZGMDlM14k+9KG8znJd2KNykYhEWJdMJPLQGivBL09Cj8dln9GFJmepFHiwDQ894aFbRPi9puHBU5TZLnMlLj+syqAXG557DhnyM88k+vCHsU95PAi67SAWQ09WTSN63/vKF4hNTRF98Yu4vgVIxLqwRQ8/TCKRQNDIAyI4eHK78wfN1UIxIjEUwn7a1laeXsTm6c1+v/OhCQ3UNnjfTCYzhy9kX+t4nOj557G2jj8evj0REvd27gtVhc0YGsKE+dWrcc85vbcOHSL63e+I7r8fdm7zZqIf/KC+bRFVeFI8E4lNTdZ9nUgEr+H2T4YhFWnZiMexppqaypPUEALxApOT5ZY3Z4OHRyaTsiXTQhoQWQy6LglFjtHYn25unv8YTVWJHn4Yx3TWWTJ+HxiwVxFtGKiGfvxxog98AHZtYMA5Ycp8SDJJ9IUvoG/s/ffbIhHrxT7VHBaCYOl7fOGJiIQQuxRFuY+IXqdg+s1lRDRCRI8oimLO2w0T0X4iepXptX+78IqitBKRn4hmiOhFIjq9ot/CJlyuuX17eNpsTw/+HRsD8Weecux2gzjs6IATsHOn/LkQ3G68z+AgMgerVsGg9fXhvcfH8fkrVlh3eFnePDsLR5zlGbk2KZcLTk9fH6oS9+7FZ3I5tZXzdcIJeP6zz2IC9M9/jp/PPLM8JdQcmHPPvUgEhCVPdbRTbSUEHLNgEMaxuRkbeClZKT6+5cthbJlQHB7Ggz+js3N+KyB0HevM67VfMRqPI2hXFKKLLsL3tTIAqBgiEVSz9vQQveY1BZ9aF/bIbtawGHgDJ8La9fmsOzyqKmWZ89VftJbBlefZfQw9Hkm+cg9D/tcMDlZ5aAtXvaRSuP+5EpR7LGZXwSw2TEwgCbFhAzLl8TiSTX199gKodBqDC1wuomuusTfYrBCCQQx6MQyir32t4FPrwhaddRb28tlZmYhIJmFTeD17vZmEIj+qBV3Hv7mufyCAa8IDpsoxnKu1FesuGsW5WEjDBxY7uHo/lcJ64R5gudazrnrkb14AACAASURBVMPfbWlB1U8ohHti6VJ7+6QQRP/934gHrr0WQbuTAV26jr6u27fDj/b50A7moovQc7oA6sIWVRp+P+7nZNI6kdjSAv+I+yOyrDkXkRgIyH7KLlfpfjzLm/1+2Die3lypAYQ8PFJV8XkzM3KA1UIaFpkPbrdslWEYklCMxbAX8DVlQrGafpoQ4As0DX0QeYK4kyEoP/4xCMR3vAP8Q75hq8Wg6zJRrutEX/86EsAf/7jtt2rYJ4dYCG7Ji3l+t42I+ohoE6HsdDLP64/wfxRFGSCim4nojUSULX6cKvlIywzuk8GZciYTFQWOicuF6qnBQRBwZidl6VJktvbuxU23atXcqsVseDx43uAgspmrVuHG7+nBe+ciLYvBLGcOBhFMFJI3BwLoDTY2BhL0iScwpa7YsZu/w9ataEz91FMwigcOYCrUK15RnqyX1yvls9GonKJsVerMFYPpNM5Db2/5N+2mJmR+BgawETChODqKBzcD7uqqfiZweBjfff16e0G7pkE2GIkQveENCMSWLCk9cxqPE913H+6vbduKTq1blPbI48G6T6dxT7N03opj4PfL4QKhkJTfLlYiS9PmTktm8EAbM2lY7Dy5XNIxNX+GeWgL96jl55uHtgQCtSepqRRSKaIvfxnn/AtfkJOr7VZgCEH0m9/Alr3zneUjEKNRos9+FhUAN96IJFgB1IUtcrmwD7W0yGERvFY5QEilZP9Vr5f+NqmUyUQmFytlM8wD7XL5Nh0duIdCIRxDORIhgYCc3jwzA5u4GALphQohQI7E4zLRVmgYGRF8U1VFApz72zKpYwc//jHRo49icMGWLfD/7AT+wSBUGHfcAaXHwAASI2ecgTXa3V3UR60LW1RpcMUpE4lWlAC8f0ejsspQ03IPWiHCc1nlwZ9XKtgHmJnB3tPWVtkBUCyPTSRgU6en4ddzpfpiAPthZmKYB7PEYpnVy01NlU+q7d2L/XnLFtzzTvekP/0JduRVr4L9aG+3F2Myia5pMuno8RB961tQGl55JSY820TDPjnEQiARi0EhosMETXouJImIjrHNfyIslH8joueJKEpEBhH9O9XoEBqPR0rZ3O5MIrGzE/+OjGAC0urVmQ5LSwsIuYMHQf6FwwhKCgWMXi8IuyNHQCSuXo1j6OrCZ42O4m+rVtkzaq2t2DimpmRPx3zSL0VB74SeHjhZhw7hNZs2FSV4/gafDxUQW7YgI7J7N4ZnnHoq0cteVp4ggHt7tLfLzZDJupYW/N68IXJ1oKrKSWnVCBq4IrS/X/Zkmp3FOR0fx7EwoVhpcoenXnNQaRUctB85ggnd3d3Fe21aQSpF9MADuH4XXGC/N2MOLFh75PfD/ug61j5X5lgJVnJNb+7oWPjyZs6kmklD7jDCJCxP5+RqrHLA48H5NVegq2omsTgxIY+FZdBmYnEhXptvf5to3z4QiL29CF5Y9m0H99+PPeWii0AAlAPJJNENN4CYvO467F0loqZsEe+Hk5Oy6qatDeuSe3zysCAzecj3EI41s1qxXGuUCUtO2GbvgexvsarCPBCjFHi9sIusauCp9os1wVKvYPLQMKQtLbYvjozAH1qzBvZndBT3RzHVUDbuuQe+0bZtCNy9Xut+0Ysvourw/vsRtL/sZahkPPNM+LGJBNZnGZQrNWWLKolsItEKAcTXLJmUCgQmEnPZuNZWqWYqV1LD40HVWSgEe1RIOVYucNVdLIbPnZyU98BiSWwSyV6pzc0yGcGSZ26fxf2vK9GiZmxMcgj9/fiZkwd2sGsXpsJv2YI4jSXyVsCSZU2T7UX8fqy/W24BOfnWtyJRUgEsGvtkFwuBRNyU53dRAmt8gIj+jogeFEIUmnt0MhGdRERXCSF+aP6DoijdlMkg11QjSTORyI4uG/aODvxuaEgaAbPz4naDOOzokBNpN20qLO/1+yWReOSIJCc7OzOrH1etsrfBeL2okJyZKS5v5uM48URsLPv3YxrvihVwuqx+biBAdP75kGLs2AGZ83PPYVrvli3lkxCxcc8ldW5qwu/ZQejtnb9BE14vPr+3Fw4KE4rT0zjPTD50dSHAK+dmpaoIkLmC0A7+/GfIa175ShDMnCktBek0pjMHg0TnnGO5r+KitkdNTQiWiLA2kkncY1bXSWsrnEOuvmlrWziZZyZAzKQhyySJZHDJlYbVli/6/bIqlI/XLINmR57BfZeYXMzVz6ue8Mc/Et11FyoHzzwz097Zwc6dRA8+iID7nHPKc2zpNCok9+1DEH/WWZZeVne2yOdDAml6Wg6z6u6WyQkOnFl5wT6P2y3vF34eI7ta0emexdWP5kRt9t+ZSAwGsUeWY3AZTzJlefPMDIjEWh6K1gCQSuG6cdVYa6u16xYKwbfu6YHfMTaG9WW3NcuzzxJ95zvwZS+7TA5sKARNg/3avp1ozx48/w1vIHrzm2V/6tlZ7A02ZKZ1Z4sqCSYSmQiyQiQ2N+PaxOO4/znWM/fDN6O1VcYZVlUhVo6b+6dzoUEl5c0M9jOiUewL4+P4eTG2eeC1w+c8lZIVirOzeJgJxVJJ3mgUMXFXF9ogTE1h3S1ZYs/fO3IEfRBXrCB697tloYyVIYysSCCSqide8z/5CWzVRRehv6JDH7RhnxxiIbCi/3Bs0g0R/a0h5quI6C4hhEFEPyOiNiK6LvuFCsD6dg7nshsDX0FEA+bfCSF0AvNsY95r5cDlvOxYE8l/iRCIr1oFY/PSS7lHyPf3owrP60UFxeCgrELJhaYmGIN0GgQlf157O36fTOI9zM681e/S04PAQVWxWXCvtXzo64MUeWAAx/LEE3C07aCjA73uLrsM7/Pww0Q/+hHOhflclgqWOq9ejc+cmkLT7EOH8Pf+/tqRcrrduA7r1sEJXbdOyrYOHEBW6dAhnGszGeIEQmC9KArOjZ3vv2sXSMSTTwYh7vfbH4CQDU2D/Gd8HISyjeEui9oesYNjrtZh+ZZV+HxYdx6PJNzrcf5XOg3ijZ3t0VHc76EQ/ubz4X7q6wPxvWQJHHQrVSrVAE/a7utDYubEE2EH1q/H8fr9+C5DQ5C67NqFypXhYVlRXS/Yvx89w047jeiKK2DjDENW2FvF4cOQ6qxbh8C7HHZc1+F879xJ9P73Y1K0RdSlLXK5sOa6u7H3Hz2K+98s3fL7MytzeUo5Vylyco6lz7ouqzficbwvk/h2bAuTh/l8ApcLa8blwj1g1/8phEBAVm3MzspkTQO1B1Z0RCL4ua0Ntt4KgaiqSBYEArAjs7NYq7299giBoSH0TF2+nOhDH8JrA4H8NmlmBj7vO9+JhEU4jKmp//M/6DHGPhBP0eUJuhZRl7aokjBLjZPJ4naIhzUaBvwKt1vatlyvVRSsO48H6zBX3OcUzc2yVdD0tJwoX0nw9xkYkOqusbHyxB/1DPYjly5F/NjejjUSDOL8TEzg+jvZizQNxTkeD3yjWExWH9shpYNBDKpragLRx1Wt+ewZ9wFnkt0wZPsHv18SiL/9LWzWOecguVoCYdqwTw6xEKYz82juHxJGc3+U0Mjy5UKIF4+N5v4lEb2NiP6XiO4jXLjjiOgSIrpdCHHjsUk5u4loCRH9J2E09xlE9GYimiWiISHE+abPf4iIXkZENxCaa04IIe4vctgVPdncXJRvpOwMVTwOosbjQVCYy6ExDFQkjo/DMG3aVNhYRKOoPGxqyuyFGIsh8+Dzza1+tIp0GhsUS3isVIQEg3DA4nEY1PXrnWXsR0YwSGNsDIH9WWfhvcoVFAaDMOzmDGEigX9Z6jyfw00KQQgcezCIRzqN79HejnPV2Wn/eo+OYrM77jh7lT+Dg0Q/+AHW3rZtOLbly0sjYQwDEveDB0GanHhizuuebwphvdijitqidBrBEMtumJCye/9wBRwPEKkFci0XuG+buY8hb60uV2YPQ59vYU1E5l5dLIVm2R4Rrpe5WrFWCFIzwmGij3xEDh/weBAU2QySaWoKUp3WVpB95ajOEILoP/6D6N57IdN5xztyrp0Fa4tSKVSEahr2Fd4bzFWJ+MzM3xPJ/oleL64pVy5yVaOZCMyWQRfrr8gTz/Pdx7oO8keI8kv+hMCaVVXYEq5KamD+wZVi3BuYg16rMAwklRMJDFIRAr54W5u9xGgoRPTpT8uJzFwxmO0LC4E2Ptu3o/pQ09Cn7C1vwfCE7HuAk3o8ST0HFqwtqhR4gAaTisV8JJbG89pie5dvX2V7oevl96GEwFqLxWTyt1ptTnRdVloSYU02bKGEpskKxVQKv/N6ZYVisbiYB6lMTMAmtLQgodfUZE8plkqhPcyRI5gK39mJdZKrXZlhwHbymmaFQa41e889SK6edhreP0f7q6LRRh3ap5rDQiARX0dE5xPR+wiM7hNE9E9CiCdNz3UR0QeJ6O+JaDOBLR4movuJ6FtCiD3HnreOoGM/l4i8RLSDiP6ZoGWnrIt/IhH9XyJ6OREFCGWuf/t7HlT8ZHOzUa5MzHZ0EwkQLy4XiMR8BOHEBEgUlwvVXYX6FkQiIN1aWjKnM8fjMBweD4hEJ2SeEHDGYzFZYVZskzIMfEf+7PXrnU+jPXQIFWnT0zCcZ5+Nqk4nMAxsuDyJlrPT/H00DX8Lh2XmhftC1UJlYi6Yp0hzxpwIx8yEYrGMVSSCtdbTAzLQKmZmINUJBIguvRROxdKlpZGvQmDgzosvonT/1FPzrrd8znK92KOK2yKesOr1ysEITq5NKoV7QojakDezo5M9LZkI96l5SvJ8yJLnG9wE3EwscoKECHY8WwY9X46/YRB9/vOoovzmN4nWrgVpxQPDrCIex0RnVUWm3Wqfn0IQguh73yP63e8Q1L/vfXnX0oK2RYYBWx+LYa2YfQCuWOBqHJYt8+/NvRJz3Y9MJjKxaHaHC8mgWfVRiEjUNOyJPOG03MF1IiGlilar3BqoDHQd10NVZf8yJ1PuDx0CabhpE67p6CjWzcCA9fdKp2HTDh9GcL1ihazMNT/nz38Gefjii7DFr30tJMsrVuR+Xx4SaK6IzYEFbYsqBV2XE5WtrBtzf1SXSyZq8/kahiHjikokY1lKy3LnahZAcNwUi+FcVHroSz2C7RPbKCLpj3NlfzYOHYJt2LwZ8fvYGNbPwID1vUwIon/9V7QK+9jHEDu3tMxty1BMspyNhx8m+tKXEKPdcENee2SHRKwX+1RzqFsSsU5R8ZPNk4uIpDOdnVVPJiFrVhQQifkypYkEZGqxGByLQjLTYBBZira2zEmUiQTIPJcLr3fal4NlgSx3tkIkxGIwguEwMh8bNzojIITAedixA4TXypUgE60Sk5wJDIVghFtbC1frCSEdNpZntbXVRx+keFxWKJorK5lQzD7/moZrxL05rZIJiQSC9ngcEnQhsJEU6uVZDEKg98eePbgvtm4tuF7r3UWpiuFnKbPbLSW8Tpp8sxOcSmENVctJNJMRTBiaZSEeT+a0ZJZPNpAJXZdVikwumgme5ubMoS3VIop/9COin/0Mcr2LL0Y1oa4jYWTVFmka3mdkhOiqq+wlQgrh9ttxbNzrp8B9U+8rzpIt4n6ALheknbn2kuyJjW43fsfVDZxYNVcomu9XJgfN5KLZRc6uVszlX2UfEx9zd3f5yXJNg5+g643pzfMBw5CSO/O0VCd7ACfuly9HsM2tfJYts+73CYFkyF//SvSJT6DFC1eDEyFBcscdmLQcDMInv/RS2JhCxA8nipubiw5TWBS2qBJgItHtLr7/cUzBEl8h5EC7fAQPFzEQIZYod1KDkyaplKwKrKYvxC0EEgl8N5762/DHMsE2iwlF9s/Zdvn92LOeeAJFGaeeip8jEcS8dnyzn/4UiYrLL0ePaE6I8N7Je7N5X87ek7Px9NMyOXLjjQV71TeufBXQIBGri6qcbA58Czm6qgoiUQgQJvkMg2EgI3H0KIzypk35g5mZGTlZecCk/uf+iNzvzumksGx5s5VNSghkc7nn4HHHwUlzsrHoOkimJ56AAV6/HjLnfFlZJgODQby2udl+L4lkUsoFiGQz4VqVOpuRTEpCkY+/qUmSfYEArkskAgLR6nfSdQTtR46AQOQmwk6rTRl79qAH5sAA+iAWOZ5636CqYovYYWG5IJOATslwJqDc7so01da0zOEnuWTJZtKwIZ1xDu4ZaZ4IzRWdbndmtWJLS/mv9Y4dcEJf8xr00+FqBjtT3YWAk7xrF6TGJ51UnmP73e+Ivv99onPPhdS6CDm0aGxRKgWiN53OlDebkS11ZkkUV+xwUoADF656yJcAKCSDNgc/TDBmv0c6jeCaJ9CX22Zwe5FksiFvrhZ46BT3suMA3Ol5j8Xge7S1ofInEoE/3dNjb0Dc7bejh+Hll4MYJILt3L0bduovf8Hxnn02yMOtW4v7wokEjqWpCQRikecvGltUCWgaYjMrRKKmYZ34/dgf2DaxHcoFXZdKKB66WU4wuRmNyum91VZiqKoczMmD0RrJldxgKb3Zlqkq/Jn2dgwd5ZYi7e32FBb330/0rW+hzdSb3oT1ylWM2ZJlc3/jQnj+eaLPfhbr6oYbivaqr3dbVBdokIjVRdVONo9D5+a7uYhEHrRiGMh8FjK0k5MYpqEoIHzyZSOnpvDo7s7sm6CqcljL6tXOK02EACnFk42tyJuJYCD37wcJ2dYGMtROvyszUin0inj6aZzjE05Azwjz+3HmNp2WY+xLqa7hkv1IBI6A14vNsbW1PgKGVEoSitxsPBrFddm4EUS2FWJXCKLf/Abn/9JLUZHiciFbX8p54EEx3d0gEC047vW+QVXNFrGUglssaBoCLqfOpVne3NrqnFA3jMwehvlkyfyoVq+fxQp2YM3ToM0N532+uf0Vnd7zIyMYGrB8OeQ2LJnlCgqr+POf8XjVq4j+7u+cHUs27rkHvRm3biX6p3+ydDyLyhYJgX08FsOemm/gBNsarkB0uTL7K5kJRXMPT5Y8F1pbZkKRX8/HYK5U5IA+lQKR6PXaH9ZjFWZ5c3t7eaaxNpAJbtWQSOD/nMAsZW/QNExRJkIfRMOAdJCHV1jFn/9M9J//SfTqV2M4VDxO9NhjSEgcPAif5vWvJ7rkkoLVOxlIJnGv+Xy4zyys20VliyoBJhI9nuLJLCZ/WlpwjdjWFarm4ljC5apcwiGZlD1hu7rmp+iBixjSadjdXEqoBiQ4MfLQQzhvW7fifAWDWF9r1li3c889B7nxSScRXXMNbFF3N9aoVclyNg4eJLruOtwTn/884sYFntCoCzRIxOqiqic7uz8i0VwjkE6DSNQ02a8gH5JJyHqjUQRf+Yif8XFsIL29eDBSKRCJug4isZSNJR5H0KcoME5W32tiAmSipkF2tmaN8000kUBV4nPP4WcewsGNbH0+WXFXLnB1IzdWryepM0PT4CQ/84wchMKbfGdnYanqgw9iyMAFFyBjr6ogEEsJmF56CcfS2oqNs4hch1HvG1RVbRGTdT6frAIqhQSyK2/m6mwzaWiWJXMlkrnKsIH5h2HMlUFz31WWD2bLoIsFuskkKg+np0HW9fYiSeZ2Ww6UiQiB/69+BbnPpZeWhxj6619Bah5/POSI5v2zABalLSombzYjl9TZHGjnIxTZLhSyUywlZB+LycXs/oocvFus6HIEs7yZ74sGygMeaGEYWBPlGBLFrXJCIQTcgYDsPbZ8ufX98fnnUZlzwglEV14JyfK998Jerl0L+7Rtmz0VkKrCRno8MllrAYvSFpUb7KtYIRK5sICVWcX6IxJlEokdHZWxRboO+5xKwQ5V6nOKIR7H/aVpOJdW+rQvVuzejanuW7fiPA0O4tz19WE9ccV1U1N+QnFkhOgzn8Ee95nPYJ0FAng/q5LlbAwNYVCUYRBdfz3ibAuEZr3borpAg0SsLqp+sjlgzzdohQjG9aWXYOxXrSpcoWcYaNg8NiYr+nI572NjMD79/Zkl0Ok0DBOTeKU4uZoGJyeVkkNKrBimdBpZjaNHYRA3bSqtl144DJnIzp34/C1bMHK+HM31C4HL9mMxScq0t9d+6b5hYIK2rkMSHo+DdOaekSxV7erKzJQ+9xzRL3+J83v++XCe+vqcV5QSEQ0Pg0D0eDDly4Ykut43qKrbokQC17ypSfaQcjKx2Yx88maWJZtJQ4bbnUkW+nyNvjn1hHRakor8L2e3Xa65MmgzISwE0de/TvTAA0Rf/jL69PAewo6yFQwOEv3wh9jDrriiPFWqTz5JdPPN2IM/9SnYIovrst5Xr2NblE6DAE6ncf8X28e5cjBb6my+ftzkPft5TCjmq3rMHrTC5KJZCp1IZBKJ5h6L5bJBDXlzeZFKwc7oOtZKrinHTjE0BB9k3TpUHU5NgRxfutR61dToKOxFOg179PjjWFfnnYeBTKecYn9tcdsAtxt20cb6WbS2qNxgIpF9lHzghKrbLfsjalrh/oj8/uEw1nSl+hfWgryZjyMWk1Oqm5sbw6iyMTyMGGvdOlT5hUKoQuzpwfrjPoqcfOcq7KYmeU3DYVQLJhKQHbMSj/u6OvGTJiZg36JREImnnmr5utW7LaoLNEjE6qLqJ5srcDgzlW+ioK6DSFRVNCwtJqGamoIElIhow4a5kyy5F2Ekgj4I5t5FmoYgLJWC01MKCWSWN/NETaub1OwsyKxEAse4bp39DY77HcXjMKB794JAbWmBxPnEEyvvwHOfE94gvV451bkWg4ehIQTu69ZlyoYNA+uFCUV2hNrbcX5/9Susl7e/HRnO9nZ7E1SzcfQoJOmKAkd72TJbjlS9b1DzYovMMjCeRui0ET0jmYQ9Yoeb7RwR3je7j2FDlrzwkC2D5nVGhGvOxOIDDxD94Aeo1rnsMlnVbadifGYGQ52amzHwpBxSreefJ/riF0EkfPrT9qqQaJHbIiFwTaLRwvLm7Nfkkjpz+xcGk47mymXujZptS7j6sBAhaBiyT7LPl7n/5ZJBl4JkEvtpQ97sDJys4LZAgUB5z+HsLPzFJUvgC8ViIMQ5gWoFExNIYuzfLxP2F1+M/qx2pNBmaBqOQ1FAINrcLxe1LSo3OAFajEhMpeT0+qYmmbQoZkdSKdgIr7eyw+rM8uZyq7PsgBMs3A6HKyQXu08YCqFHdFcX0emnY10cPYrzk62GSKclocjJefa7b74ZRUbXX4/15HYjZnNK1s7OgkCcmiL65CeR9LUhSa93W1QXaJCI1cW8nGzuj8jOaSEi8cgRGIfly3M3LTfDLG9etmyuNFgIZDdiMbyf2WHWdRCJTFraaR6dC1zNRmRP3szHMTQEQ7dhw9zx87mgaZK8ZKKLM/5jYxhBPzqKc3jWWXjfSlc7mbNtXOnFUudaCSBCIWwyS5ZgzeQDy7ZnZ7Emf/ELfId3vxt/7+vD5uT0nE5OgkDUdRC9K1Y0nOVqgOWpXNnDvRKt3q9CZPYwTKVktU8kIvsk9vY2ZMmLGULMlUHv2UP0H/+B+/1jH8P6UFU4zlYTCIkE0Xe/i/f7x3+03PqgIA4cwLTB1lYQiKtX205mNWwR4ZpMT+M69vZatynZUme2TdnrIR+haJ70zERisb0kFsP+xlPJzT0Ws2XQ2ROh7YBli5rWkDdbhabBbvBwwkDA+TDAfEgm0Q6hqQkyZsOAv+j1ogqxmC0aHSX69a/RAzEUgjLjssuIXvnK0qaAaxoCdiLcQw6qxhq2qMxQVVyXYv4Mt/poa8N1Y3tSTDqqqrIIo9Q4rBDM8mazvHU+wNWb0Sh+5l7ItVh0UWmkUkSPPIL/n3021svYGH7mScr5wLYyFCL69rehprjmGrRj8XhKG6QaiYCMPHIE/lr23AELqHdbVBdokIjVxbydbF2Xcgyi/Blzw8BNG4shsCqWERUCFYwjI7jBjz8+M1NgGCDokkkQNWYn1i5pWQxmeXNrq71NKhIhevFFbCq9vSD9chk/w8gcDsIy6lxBw0svwThPTYH0OvvsotOkygZVlZukEAhW2tvnN4hIp0E6+/3WSdVkElU/MzPo6zM5ie/W1yfla3YnXs/MgEBUVazXlSsdkaz1vkHNmy3SNCm1I8J18Ply32/mKcmFZMnsYPNwgUpNb26gPjEzQ/TBD2KN3Hgjfjc0hLXY1SVlimYZdLZN0HWi227DnnXlleWx5UeOoEm4242M+9q1DVtUCrLlzXb6cHGy1Tw1Mlvq/LcDFpmEonlKMxOLxYjESAQBWEtLZnDE0mizFJrddE7+msnFYt/PLG/mgWyLMVguBl3H9UilZKsNv7/8RIdhQDaYSkEB4fOh6iedhs+db88SAkH69u0YmDI8jDVw/fWQLTNR7HTP03X4qoYBH9hhAq5hiyoAJhL9/sLrgycvm/sjFhu0QgTbEIvh/UtRhlkBD4icT3kzQ9dlSyiu2K5kRWatgW3KzAzRmWdib5iawvlYurQwAchJNU3DRPjf/IbobW/D+0xNwa/q6EDs2dxsj0xMJOAX7dsHv+3MMx21B1skV3F+0SARq4t5Pdmcbfd6YTwKEYlDQ7I3ixXJ6MwMbnghQBCZS6B1He+nquj3ZK4Q4M9i0rKU3oRE+PxQCJuUXXkzV04ePoxzsm4dMjGKIjNX4TD+zyRlsfcWAudlxw4c1/LlIBMHBkr7nlah67J8X9Nk/5NqZ92EQB/KeBw9KK1sKLpO9OMfg4y94go49fE4zjvLIxIJPJczm8WmYIdCRE89hddt3Ahi26Ecsd43qHm1RaoKB6SpSQ41YLtkJg15e+LA3Ewa5lu/3OtH13Gf1nqP0AYqC01Dn579+1GJuGaNtB3t7VgvZhm0ebAGy6ADAUxNfvZZore+FX1ZS8XRo0Sf+xzWOROIDtdqwxaZ38wkb/b77VdUZUudmRzMljpnP988mEUImRgpFMCHw1hzbW2Fr725ryL/n8HVk2ZyMRca8ubcMAw55ZaHNZXaYqMQ9u9HkL15M3yWYBCPvr7cSd54nOjuuxGkDw/D1It7TwAAIABJREFUx+nvl8mMSy7B8Tc1Oa/6MQwck6bJKn6HaNiiCiGZxP1fiEjUNBn7tLRI21Rs0AoR1lA8LoeVVRKqChs93/JmRjqN2CCRkMNmWloWPpm4bx/ispNOQjFFNIpCnM7O/EU9vNdx5f6jjxJ961tEr3oV7NHkJK5na6u0q8w1mAnFfOc2lUJrl127iK6+mujcc62pA3NggV+92kCDRKwu5v1kcyUPD1rJRyQyoRYOw2GxMiVSVVFpFomAfFy7Vgb6LBvmKdBmokeITNKyHBKxREJuUt3d9japRALGdXYWzvayZbLJeiAAJ85ullbX0ffq8cexUa9dC5lzKT397IDlfaGQdJZbW7FRVCOYGB9HifyqVdaurxCYMPjkk8iyH3ccrkdPT2a/TlWVTjhLE5qa5KRnszMUjeL94nFJEBfr/VkA9b5BzastYrI/mUTQG43CeWhuzpyKyoSh3Ww1y5tVFQ5LpRqHN1D7+M53EIBfdx1kf4kEbElb21z5FvftNMugk0lULj/2GGz2hRdmkotO1tXMDBqPRyJE/+f/IPFWgpSs3ld2RWyRU3mzGTxkxUwsezyFE3CcAFFVfDaTkPzIXi9sB9vb7R1j9tCWbBl0thSaX8P9hjnQW6zge52DXCYPK5lcPXoUSepVq5BQTibxO27BYcbQEOzW3XfjODdvhi/kdkPGfMEFqNKJx+W0aCcQAgRiOg3/qkTpdsMWVRBMJBaajptMYr1wJS3bh2KDVoiwlhIJ3AeVJvZ0Hfuwqs6/vJmRSiGWUFVZcLFQW0BMTKCgYsUKopNPxp4wOoo1kz1gkivvs3sI798Pwu/44+FfTU7i91x8w6/lNZlMSvKRCcWmJvlcXSf66lfha73nPUR/93fW2jvkQb3borpAg0SsLub9ZLMxYCNgnj6Y67kjI3LEu5VGzUKALBwehvE9/njpGKfTyJ4aBqRgZvKKSctIBJ9jhbQshlLkzUREhw4hG6KqIJ1OOqn0JvrpNKYBP/UU/n/88SjVrmQvkmykUrimLHVuagKZWOqk3HyIxdD3q7PTugTwr38l+uMfsYmcc45s8ltoDabTklDk/ng+Hz7X5yN64QVsYmvW4H1KJKvrfYOqmi3ibLh5WjI7I9wTsb0dv2O5XbkaXcfjUt7c3t7okbjY8OCDcEovuQQBt67DefZ6re8xu3YR3X47JslfeKHsl0YkZY9mGXSxIDwchlRnYoLo2mtRmV1iBX7DFuUBD4lIpXD/Ow1U7Uidza/h5COrQIgykyQul0yoqCpsn43G8RkoJIPmY+aEMQd0PIRtMQ0WMAe1POQrEKi8MiMSQSK5sxN+H/dBVBTZe0wIqFa2b0fC0+OBzbn0Urxm717Yjk2b0EfVnBB2sq6FgI+sqiAQna49Exq2qILgtWsYhYnESAR2gIdbsE2wMrCJE2eBQHmGhhUDy5s9HvjkteCjJZOwyTysj2W5CwWxGFpttbQg/lQUxFiaBlvESXveu8z7Hlflj42BOGxvJ/rKV3ANNa14SwZVlYNZmFDkKupvfxs+29vfjsrGgYGS9qZ6t0V1gQaJWF3UxMlmh5g3lHyDVohw04+NySqwpUutfcbsLHoMCoHgi8uRUymQjIoCQsm8YfBE51AIAZ7T6XLZx8/yZg4crZT1z87iWPm7hEIwuBs3lt67kQib1JNPIkAlQibo9NOru1GZJdpmqTM7HuWArmMdEMHxtfK+e/YQ/fznIG0vvRRrgrNbVh19TcM1CwYRRO7ejYBuwwasu3XrSg4a6n2Dqmjgbh58kk5nypKzJyVz1tfnA0HDxEy5CO2GvHlx4qWXiD7+cew/X/sa1tr0NNan1amjQ0OY5rxsGaQ6vHeYJdCxGNYtk0RutyQUmVzk1yUSRDfcgGP7yEcw5KW7u+S13rBFhd5cYA+PRJzJm7PfK1vqzNWJua6hOUnLVY2pVOZa4UrrcBh/6+ws3yAPJhPN5CKDJ5p7PDJInu9KoEqDyUPDwHkPBKpDoKZSaIXgdsPX83iQREgk4FOn00R33YXKw7Ex+NqXXEL0xjfKBMPRoxi81NICe+Zy4Zq2tDj7Diz7TybtDSMsgnpfQTURoxUCE4lcAJDLj2Xfnoc+Elnvj0iExKuqYm2VgVguClWFjTYMKSWuBbB6i/tRdnSUf8hStaHrkCAnkyjQaG7GuQ+H4RcFAnMly5z44nUTjYJAjMWQpHW78f/+fnt2hAnFeJzohz8kuv9+ote+luh1r4P6rMS1V++2qC5Q9ySioihXEtEPiOg4IcRLNl8riOinQojLK3BouVAzJ5sz47yhFCISieDYzMzA2bDaz09VQSCxJJqJG1VFRaLbDVlHtkM/Ogryp6dnblm1U1iRN/NGlkzimLq65GY2PY3S7WQSMpTjjitPQ+BIBKXbL7wAI711K9Gpp1a/XxFPdU4kZGa7vb30DXNwENdy/XprjsHICNH3vw/H+sorpcxm2TJnGcpUChLyiQnZ44Tl6DyYxWGj+Tkb1GK0RYYxd1oyB6os4zP3McwV7KTTUnbscsnpzeUk+7jpOA9xWayT+BYLYjFM9IvH0a+nu1sOmurqsuboBoOQQvt8RB/4QGH7xYGdWQbN/VqJJFF0662QM37oQ7DzPT1lWYc5neU6skdV8YvicezjRDjvpdoXq1JnXZ/rW/FruVKRCH+PRvHcnp7K+QBmQjGdhs/D8mZOIGbLoOsdqRSuPw8XLGUAiV0IgcRoNAoCMRCA3zc9DYLivvuI/vQn7E0nnwzJ8rnnZh4fB+2hENHXvw4bxjJQp5VbMzOwUdltX0pEwxZVAaziIMpPJKbTWDcs0yeSFWVW1n4kIlVc1SDODANrspbkzUQ41xwf6TrOZUdHbVRMOsGuXYixTz8dCbVkEu2mWlth/82SZa937lrRNKKbbkJs/8UvIjabmZGDVJzgttuIfvELovPOQ+V1ZyfOs88nZc+VmBRfR3apZtGYXblI4fHIHgcsq+GMda4NiavAeHrbsmXFDbzfD6foyBFUdEQikGQEAujDMDSEx6pVmeTCsmX4rOlpfFY5hpA0N4OYmp7GI5mE0VMU2QeDyYuenrnykJ4eGLbDhyG7npqaO0DGCdraiF79apCHjz4KKcuuXUSveAUq8aolM+LKmVRKygsiETgg3BfE7oY+M4MAZWDAmpMaChH95Cd47nveI0mf/n5nG7amEe3cievKFaRLl+Jnlj3PzMhG87wJNib65ga3QjCThuyUEuG8NTVl9jG0sma8XjhnqiodBpY7lKsyV1FwbXl688xMfTuCDeSHEET/8i+o3Pna10Agqiquu1WJVjKJoU66TvTe9xa3X+YeP9zn1jAkqRgOE/3Xf6Ei+tJLsb+Nj2M9su2tRsXHYkYgALs0OYlHW5v0AZyAyTaz1FnT5k5nzuVb8WubmiSZx4OmgkH4RVwVUu79yEwOspQ3HMY6DYXg+5h9wOyhLbUQ2FtFOo17kJU3bW3VT9AODuL8btiAc51Mos/hffchEPf5IN17y1uQbM2GpoE4PHoUQXtvL74TV/M7QTAoB0vVStVXA9bBEtBkEo9cVcReL+5vLopgm8R2qphdaW1FDMCJjUrfNy4X1jYPgkylakPezEUVLS0yLjp6FPdyvcULg4MgEDduxLnWdfghPLAnnZbJsHwtzr79bbRluPZatIYaH5fnwgl+9Ss8LrgAQ+t6e7G2ueVGKISH1yt9rPleEw1ILIRKRDcReYlIFTa/TL1W/5QLLM0hwk3JPXRyDVphTE6iqqu9HUSgVYcyGITDpOuoSOzvh9M6PAyDsXLlXPJyYgJkXUeHNdLSKkIhbFI81VBV5UQuKwMYwmF8l1gMjv6GDeXbYI8eRa+K4WEcy5lnQgZcbcedB1OEw9hYuKec1f5JXIUaCOB6Fzt+VSX67nexTj7wAWwUU1Ny4rJd6DqGIQSDIDHb2kAgmjOqnGGcncXzUinpMHR14bMLbFa5KhEXlC0y9zHkIJe/FfdGMVcZlrJGObMuBNYMVyfyhNNygqXuDXnzwsQvfgEJ8jXXEL35zbBlk5NYn319xdepriOZcfgw0fvehyFYpcAwiP7t32DX3/UuVCB6PFiHXB1FJKtvzTJoi85yvuqferFHVfWLhIC9D4dhX/r6yhMIFpI6Fxpil/0eqorALJ2W/Xy5h2IlA1ZVxTkhwn7p8WRKoRlcVWkmF2uNWOR7i/t/85CJamNqCgqWgQEQIr//PVq1TE3Bf770UqLXvz7/gDchUEl9332orD7vPPgsLpfzoTjcD7utraTBcvnQsEVVhGFkThXPNSAzEsHzWH3B97OV/ois4OD+itUib2pV3kwkY6NIBD+3tNRHX9nZWaje+vqITjsN13R0VLZU4KrmQrb8179Gf+h3vQtJj9FRrCE7rabMuOsukJJnnEH07nfjWmf3qtd1WVSgqvidxyMJxQKxt5VKxHqxSzWLuicRS0EtBu7VBmfRedCKFSJxehpkV1sbyD+rDmQqBWIpFEK/w3Xr4OiNjMCA5XqvqSlJWi5fXh5nlbMvQ0P4ritWyOpHqxACFZaDg3gdT/stF44cIXr4YQS/PT1EZ58NCfV8IB6HI8H96lpaCvcGEQKOs6qi8rSY42EYCNoPHkTQvmIF5PNNTdZ7cGa/3zPPoNqMqyCXLClOFsXjklBMJvG7lhZJKGZ937KGTfNti1iWbCYNzbJkDmQLyZJLhWHAUXC54Bwkk7I6p9zOa0PevDDx9NOYenzeeZD/KYqUSPX2Fl9HQhDdeSf61V56KZztUiAE0S23EN17L5qFX3AB9k2zLUomZV9FlkGzW+b1ykpFJhdzrNOyUziLIXAvt7zZDG5Iz+Qby5yZgLNCZE9Pw/61tUkS0jzp2Wqlt93j5h5gzc2Ziozs3orm/opMJprJxfmAruO6plJyH5mvCt94nOi553Adn3sO/b7icSSF3/lOyPaK7aPbt6Mi+h3vQODOw/Da2pxde04Mt7SUPMwpHxq2qMow+025iERdl4NLmHjme9iKDeG+8kxEVqvyzjBke6nmZqzXWvLRdF22SFEU3JNtbbV1jAxVRTypKFC5KQqOnWNxK4UaDz9M9M1vwrf66EcRl6sqYiwnRTQPPIDk6qmnIu5rays+B0HXZV9bVcXadLszCUXTeq5oaqtBIgI1uNztQVGUKxVFEYqirDH97kxFUf6kKEpYUZSYoigPK4ry2gLvcaGiKE8oipJUFGVQUZSP5niOUBTlJ1aemw/MotcS2Olj55ANoNlBzEZPDwxHJAISrdBzzfD5INFdtQoG6JlnZBaDycRsTru3F1WL4TCq80rhvA0DBNHICJzM447DsXBlgp335sEwL385NuYXX8T3MffBKgWrVsFpfO1rcV3uvJPof/4HmZ9qIxAAmbdyJZwIvlYjI3IKshljY3jOqlXWgvY//AGk4xvfiPL4iQmsSR7GYwdCQDI4PS0JxHw9MHN9z+XLMezgxBPxf54avns3+hqNjmJCYi7Uky1KpaSs9+hRXLPpaZm1bm6GY7FkCQj23l7ZfL9SGVeXC0QtS5t5+mAymVkJUw6wvLmtDYH6zIycuNtAfWJigujmm2F3rr0W15gnTVqdzP3IIyAQzzuvPATibbeBQHzTm0Ag8iRnM5qasKeuXImky5YtIBpWrMDekkjA1u7bhz3mhRew73KVUz7Ukz2aDwQC2CO8XiTruGdyOeB2w5Y1Ncmq01RKJkasvL67Gz4T9yXjylQe6sMS5FSqvMfd1YVzwwPmzD0bPR58r+ZmPIfbVygKnpdK4XVMhnPLC6s+olMYBvazYBDnh3uqzReBqKpEP/0pguSvf53oz38GafiVr+DnbduK76OPPAIC8dxz4QvyQBinQ8d4zfC5KTfGx/P/rV5sUaXXaSXA5CFXJWbbAiZZ0mmZHOe2BFw1XQjc7sflklWJ1YDLhX2R29BMTsphl7UAtpUDAzi/4TD86Fwx0XxCCPg08TjR5s34HZNxXV3WCMQXX0Q7ls2b0c+ZCy16e50RiI8/TvTv/473e+97cf6sxHs8tK63V1Z3+3ywbZOTcnbD4KC146gXu1TLqPtKRCWrMaaiKOcQ0X1ENEVE3yGiBBFdRUSbiehdQohfml4riGg3EfUT0XeJaISI3klE5xHRq4UQ9zl5bj7853+SOP98EGm1lq0wD1rhqW9EhR0dJuQCARBqdr5TMIigSNMgF/P74YS0t4O0yMbsLAxES0tu6XMhcEk/SxgDATlcg0jKm71ebFp2q56EABFz8CDO4Zo19io0i8EwQGA99hiM5Zo1qEwstR9jKccTjeK8sdSZpTGJBM5Dby+C4GJ49FGi//1fOMqveQ3OYzKJDcKJ/GjPHqzJ5ctlo3juUeYU3DNzdpbowQdRUfDznxcfrFLLtmj3bmTceVoyVxkWkzNUA1wNySRiPC5lzpWwm5omnWOWkTZQX0iliL7wBZD8X/sa7IemgWjz+eZKZHJh3z5U/mzaBBl0qffBHXdA/nPBBUgGNTU57xukaZKcicfx/337II/87W+tDTOoVXs0NDS/1T9caRONwv5Vog+XEHKYCidrrVQTptM4Nrc7cwAYy6bNFeP8fuWy4dxHlMj6cAX+nuap0AxFmSuFLvU4uQ0GE6lMcM7XHhYKIWnwm98gmF21iugNbyB65SulDLm/v/jxHTpE9I1vwK/+xCdwHnn4mBO/KJHAsfn95R1YwWTE4CC+8y231Lctmp0lMd9ryCn4WnCv1WxEo7AXLL3l9gvcdqEYDANriKj68t1UCvcTV0M6lfJXEqkUzg9fg/mWYfP13b2b6KWXiE45BXGpx4M4i+cNFLuO4+NQdQQCSNK6XCDs2tut+VXZePZZ9HZdvZrogx/EvWblOAqBB9slEviu3/gG0c9+Zn+wSq3apVrGQiQRHyeiE4losxDiyLHndBDRs0TkI6JVQoj0sd8LIjKI6HQhxNPHfucnoiNE9KAQ4h2mz7H83Hy49VYSMzMgV175SjgYtbRRcc8zdqCLTWwmkhWCTU0wCnYMQTqNDEcwiCxEV5ec8pRrKnMoJEnLVausEQqcndY0HGNXV24nLJmUm5R5KrMdpFKoDJmcxCa3aRNIrHJB0zB05cknpVT4jDOcB6blADun3Lx8dBTn7+STi1+fvXvRX2PzZmTaedhJb6+z87ZvH5zZ5cvloIIlS8p3j91/P0iBlSuJrrvOEolYs7ZoZISEufl/rSGRkKQekZTSO63CKAYhYCuSSZBOtSpLaSA3brkFfcM+9SlMHRRCDgHr6yt+LcfGUDnU14fePKWSSH/6E97vrLPQO8jjKW2IRzaeeQZVSr29RP/yL5YD95q0R/NNIjLYBxBCVuNVAlyVyG1j3O7cU50ZPOzM48Fen72GchGK3IuRh+Y5BUsh2X9yMmDNLIMWYi6xmC2FtgLuHcmVVzzFc75s9oEDGJbyyCPYq1auRPXxq14lg26rQ+KmplCx6PcTXX89vlc8LgcL2EUyCb/K5yuPDeKEBlfVjo3B3rW0EH3jG/Vti+JxEqqKc5RDHlnz0DSss1xEIrdwYemtokiiyeq9x+0OWMlRzfut1uXNDB4GkkrhnmUFT7VgHvQ1NoZWCuvWISYjguIoGoUtKlapHYsRfeYz+D5f/Sr8jbEx3BdLl9q/N/btI/rc5xCXfexjsmVVuWYKDA8Tff7zuAYOScSatEu1jDqaK1QciqIsJaLTiej7vACIiIQQIUVRbiGirxz7+yOmlz3GF/XYc1VFUXYQ0bocH2HnuXNw1VWoJtu5k+h3v4Oc9hWvyE2YzQfsTmwmQjZi5Ur0F3zpJRCJVntmeL2oyhwaAvkTjSKzMTuLz8sub2YHemQEz8+e6mwG97dLp2Gg+vsLG/KmJjxnZgaPZBLHYsdI+nyQwbLM7OmnQWgdd1x5yBqPh+hlL8M5e/JJBJL79mFzOP30+RkQwb0o0mlkmOJxnMfRUVyv7CnXjLExyLOXLSN629vglAaDsq+IXRw6hDUxMIDPZDl0ORxAIYjuuQdVPyefTHT11cVfU+u2aPlyK8+aPwghicPmZjnplodPVAK9vbjvIxHpaFd7kmcD9nH33UR/+Qv66lx8MX4XCmFv6ukpXrkTCqHBd18fhjqVWuXwwAOYNnjuudjzXS7sJeUi7HfsQDLj5JOJPvxha6+pZXu0cqW171AN6LokfAIB+z6AVWT3F2RCkcm/bKiqJIIKVZJxtSNXPBLJIVilJI2iUdhfJjJLXcvmakUmFxnZvRWzfU+uOGlpwfkIBOYnGaZpuNe3b0eLgeZmVB1u2gQ/cMMGPI8VMD09xX2beByT5X0+VP0sW4Zz39fnjMBVVZAGnZ3Y35yuZZ5yze16WOExNoZ4ZtMm2DorqGVbxAN44nE8VLW+psHyEKdUSlauMrifeSSC68gJWbcb67NYwQiRHLAYDuNRzV7SLG9mFRRPb641H62pSU4XDgalGiJHX/WywlzpToTP378fJN1JJ+F38TjOX3t7cQJR11HRd/Qo0Q034H3GxnAdnBRnDA4S3XgjzsPHPiaHmpXr+g0O4jiFIPryl+2/vpbtUi1jQZGIRLTm2L8v5PjbnmP/HkeZiyCXen6WiE7J8Xs7z50Drxcy1HXrQAAdPoxS4bVr0VzUSWlwOcFl7ZzF4Ox4MSKxrQ2EnplItLPpcq+9F1+UkuXpablpmMHTk4eHJZFodrqTSZCHqopjYOfLCph44oazqZS1ZvzZ6O2FoTx0CMc5NUW0cWP5rq/fT3TOOeid9fjjIO/27EEPr61b52dTDQZx/k4/HccXDiMYm56WU535OoXDqKJpbiZ6z3vwu8lJvM6J9PjIEUio+/tlVWZ/f3mcGyEgt/7jHxG0X3WVZZJ8zbF/a9IW1Tp42iBXPHCD/GQSj0r1uuIeZuEw1jQPtGigNrFvH6aXnnYaSEQiOajEigRTVTHUKZUiev/7SycQd+wg+u//hnToqquwjjs7y0dyPPQQ0c9+hir0a66xFZSsOfZvwx4VgNuNYCkYhA+gqvAJyk0i8N7EgTsPYuGhVkwmcqDm92NvC4XwyFWRyMfPVUiGgffiXowss3NCKLa2wq8Ih5FkbWsrzQbzcTK4QpHJRT4f5nOUTsu+4lwtXq0hD2ZMT6NVwZ13wtdcsQKDBi64ABWJPh98fCLZCoVbqxQCB+0jIwiGV6yQcnInFfipFI7V44Ff5YSA5KmofC1YDh0I4Lv+7ncgFK64wpbtXHPs35q0Rdyeh++bWAz3i98/P+vNLthWcf9A8x7h8Ug/yuPBWjVPbOaWA4Xg8eD88IRijsmqBbZFMzOIG7hYodbABRaxGGz2xIRsaVKuGI0rSVlFyEMQiYieegr/P+002f9yeloSmsXe99ZbUcX40Y8iKTIxgffo77fvz4yNoULQ70d7Bm4xU64KzQMHiG66Ccd1ww3kdAjpmmP/1qRdqlXUgUmsOPK1ic1lFu08NydcLjipPG33wAEQIMPDyFyedFJ5JbB2wRlgdua4b415OmAutLaCPBwclESiHUPZ0QFjt28fHDOeEOh2zzV42aTlmjWy1D2RwGt6evJXwRVDezuM3fQ0SN7OTvublMcD4rC/H+Tos8/i/+vXly8gaW1Fs+6tW9FbkAnF009HEFut7HwiISsPuXqU+yMyGcOETFMTZH6pFNE//AO+Aw+LcZLdGh3F+e3rA3mbTuP+KoezJwSChfvvxzm+/PKKO5FVtUW1Dh5OoKpYLz6flLFxL8dKgKWnkYgcXFBt6U4DxREOI+Pc1QXJDZMxwSBsbLF91DCIfvlLBCKXX158MmAx7NqF6YUbN6LXjxBYN+Wy9/feKysQ3//+qlTHLFp7xFUj09MIgLq7yx+o8noVQpKGTJ5xNSGTfjw8gSWJ4XDxNiY8qMrvl4QiD1dIJmVfRu6lWAwc+HEP6XTauY+VDa6IMvssnLxmeSCTq4GAPFdcwVmO/oqFIAQStdu3oy+yYaCVzFveguF6QhA9/zz+3bRJEjOTk/h/sf7VQhB997soLvjwh3GPm1t62N170mmsXfaFrbye91YmDplU8vvhz5nl4rt3Q0kyMAACsQpyzarbIp8P64yr+jQNv/P5arcNDMPrxfVMpzOJJSJcK02TlcVcAc3T5K3YAq8X9z4TiU6nhTuFz4f92pzs6eqqTR+tpQX3cDQKuzk+jp87OpzHE2zPmdznlhhcibpzJ67vGWdIEnl6Gn+zotC64w74G299K9H558uWVd3d9pNHU1MgEA0Dfhrbk/Z22187J/buJfrSl7Cuv/AFcANVxKL1kRgLjUQ8fOzfzTn+tjnrOfMG7ifhdkvybXgYTsqRIyCaTjihun0UzDA33c0la85ngAIBEHpMJK5ZYy/Q93qR8RgexusHB7E5bNgw1+C0tMBYHDqEjEt3N4xTV1d5MmN+P8io6WlZ2ehkk+rogJN55Ai+z8wMrm85JeydnWjc/7KXoSfPX/4CZ/SMM1CxUsmN1TDwvTyeubI0zsTx4IpQCD0QBwdRNdTfjw0mlXJG/I2P457haeGJBDbIckgGDAONwh96CNfvXe+yfXx1YYtqHV6vnPrJxCE3mVeUyhEpPJHQ54OTPDMjf25g/mEYkPvNzIC44/0hGJQ97YrtAXfdJafCr19f2vHs3YuBLitXEn384zgGq8MoikEIHOuddyKZYaMa2oyGPbIJbvg+NQU/QFXLL2/O9q2YSGP/S9Mk4efxyNYO0ai0UVY/hwlFJhe4ss9sS/lR6H26uqS8mQc1VCK5xi0s0ml8bx54Y5ZCcxDNx1ZIBu0EqRSSiNu3w1a0tIA4vOSSzJYghw/jnGzaJIPsmRmZ1Cx2LHfeCbXDW95C9OpXy+Fifr/9PY4HSikKyMtChJd5IAFPf+YWIlz9n33szzyD87FqFSarOrBxdWOLmLz3eGQyU9cl8V7LZCL7KkwkmtdRS4uc7s7JNrc7U4X+TSkbAAAgAElEQVRm5f2zKxKrCW4TYq70q0V5M5Fsj8Ny8kgEtq211d6QGr4+LFnO1ff20CHERps3y8nLPPClt7f4td2xA0qxc84huuwy2IXZWRy73WscCoHYi0ZBJLJdsTIR2gqeew69Gtvb0WvRyjDPAqgbu1RLWFAkohBiXFGUJ4joXYqi3CiEGCYiUhSljYj+kYiOEtET83mMZrS2SiPQ2opN+aWXkNEcHERgc/zx82MUcxGJ7LwVMnjNzZJIPPz/2fvu+LjKK+0zfTTqsmQVN9mWuzEYTCfBkEBCAgRIDwFSCCRZkhC+FALZTTb5kk2ym28/UjbZfEkgbSEFTAgt9F4M2MYFF2Rbsiyrz2h6ue3749mz753RlHvvjKQZeZ7fTz9bo5l777z3vec973POec5h/N+sk7FwIci3vXsxHtEoNk/6TABFgXFzufB3hwNZnKUsc2RdxnAYm9NUCoSV2ftht2Mc2tqQNbd3L4z8ypWlvd7589FV9OhRouefRyRp2zaI+3N5TakxOIjFqacn9+LkdGJxf+klZHW87W0gPnfvhoOzaJF5wnxiAgtIYyNI+HDYekOcTCgKNM1efFE0RjDfsbuybFE5w+sV+kTs1HOGihkxfqvndrngDHFZWjmWzhxv+O1vYdtuvBF2lAiOajIJ22LEUX75ZTjKp55a3LUcPkz0ne/Axn3pS3itpqY0tkjTiO69F40LzjgDm3Yr5EjVHlmDw4Fg13SVN3OpLusiMkGpJ/V448ilzqwDyJqxZitXODOJM7v1x06l0s+dq3u0vrw5ECi+vFkPRcF348ARVzAw9PM/Xxk0UTqh6HAYJ4BHR5GNc//9uO9LlhB98YtEF1ww1VcZHYU/t2CBkKyJRmGPGhsLj8vWrUR33AFf46MfFb4tl56agaKAQCTKTSDy2hmLicY0dns6cZhrnF55BeOyfDkaUFnZm1SiLWLCUE++K0p6pnA5gp9xLm1mu2W3w4ZEo5hr3I2aq9D4uxk5fm0tjsMZiTMN1kbl8uaGhtmt5ssHu12UX4dCsBFM5OZq5perZDmbbWY9/s5O7DmJhJ6uEWme3l6i225D4s4NNwiNYLe7cDZ1JmIxlBaPjoLgY/mJUmnVb9sG+Yd589CAqquruONVol0qB8wpEvG/8UUieoKIXrLZbD8jogShRfcSQotuaTYvLhNer3BuampgYCYnBZnY14dNUj6SZjrA+oicMs2LqJEFxuuFAevrwwZryRLzJFF9PYhDnw+k2zPPQKi+rk6U02gaDNvChSDOjhzBuUotXssNFiYmYBAbG60tUrW1KNk+dgzRoldewTgtXFja7IaFC4k++EGUyb/wAtEDD4gS+iIjNWmYnMSYtLcXJla2bgUpt3kz0bvehc9yN+xwGHPKaBezyUlEw+vqsNhNTuL/pehSLctEf/wj7s0556DDYhEkfkXZonKGXh/R5xMdK1kgfDqdeIcje/ZNOWchzGW8+CLRXXehiQo3UuEOtjU1hRvv7N+PzL41a0AKFINjx6DF4/PBkeVs2VJkZWgaSgaffJLorW9FNnSR60TVHllEUxNs0Ph46cubWYcsV6UHl6npS5I5YzEcFkSb1XMzYajfrOoJRQ50u1zp18blzVxenUoVV9bImYecGenz5Se0+PpzlUEzqShJ6e/PzFbk42sa5GDuuYfouefw+9lnI4h40knZryMSgY/b2CgqMVh7jPUD8+HgQWRS9/Qgg5kIY8AkjxmoanpHev1+gYnJeBzjq2kYg9pa2EyPp/B9e/55NLFatcpSZUYmKs4WMXnDGXvcDZ0TK/J1WJ9NcPax/nkmwndheQMOGNjtgpg30miFSMgscNOO2Qiysv795KSwReVa3kwkfMr6erGf5YYnLBGRrWQ5n5ZtPC72RdyJmW0CJ3Lkw/g4svqamohuvhnnGhrC38wSf8kk/KL+fvhFra2YI/Pnl+aevPQS0f/9v9h7fvWrxROIOlScXZptzDkSUdO0520227lE9C0iupmIHES0nYgu1jTtwVm9uBxwucCmBwL4vasLxsTvR6bXrl2IEKxZAx3FmTKM+kYrTBwaabRChIVr6VIQiayRaNYpcjqRXdjQAKNx770wjpxx1tQkImv6MuolS0rfeIHLm/1+LFRc2mT2XthsiFi3tkL/8eBBEJOrVpV+8V2+HPdg715k3dxzD8bmrLOmdr42i1QKmpQ+H8YlH958E0TmqlXY9CsKFs2ODiwq0Sh+HxrC/eRIYraxDYWg91FTg5L/QAD32kpDlkxIEsqtd+wgOvdckJ3FZAFXoi0qV3AGIhOJXu9UInE6NXk448flwsads2+ms9teFVMxOIjo84oVRJ/9LF7TNNwPh6NwIGF4WGh5vfe9xa2l4+NE//zP+P+tt4qMlELEgRGoKmzR88+jvPGKK4qf31V7VBy83vTy5kTCmg+QDUYqPbgkmcm+2lqsWePj+GyxxLWeUCRKJxSZiNMTikzCNTVhDY9G8T6zWl+qKuy6vpTW6nzPVsqsz1ZUVZGZRYRrfvJJZNgdPoxx/MAHULKcz7eRZfhwLhcC/awdPjaGvxfaeI+PI4O5oQEbbY8HY6iq5rUmmSxQFNEMUJbTiUMi3Je6OqyXRn0bTYMO5OOPwx9/3/uKD6BVsi3SE9CcVMHzi4memdQHNAJupsIEPd8/nw/zJBoVMlBchWa00QoRnldNw1zjLtAzjWzlzc3N5e2jcdOjhgahHc+lw7yHzVaynAlVxb5I05CowvfX78f9LSSpEI/DFqVS8GkaG7HGpVLYo5nJvJdlkJF79xJ9+ctIXEmlsHaWIhHq2WfRvG7RIjRp6ews/piMSrZLswWbpmmzfQ1FwWazfZKIfklEizj9tIyRd7BVVZTN+nxwbjiyMjyMDXNtLciTRYtmbqGSZVyblUiVJIHYk2WUa5tdXDQNi0JfHzZURCB4Vq+e+t5UCkSiouBcZklLo+DyZl4AiiGaRkdBEHNZb3f39JDEsowo+6uvwplYuRLlcVY2vJqGa47HQQzmW6RHRiAY3tKCRiouF+ZyMgmynMeO7zOXjNntIruQF7BoFBmCDgcyA5g46OwsfsxSKXRp3b0bzWre9raCWZFTnr65ZIvKFZlaUVz65nBM3/OeCUURjZ98Pti0cts0zEUkEihf9vvhRHIjFG6o1dqa3xaHw0T/+Z/4//XXF1fyNDmJEp1gkOib34Sd0jTYuWI32IpC9JvfwNa9611EF19ccH5l/WsF2aOKs0Usb+ByFZ53RmE2A4hI6N/F41jLa2unh8RgXVrOviKaSihyNjDrgRaqKmDSgUtqOTA0E0FyTUMW8b33Ej34IGzD0qUgDjdvxnXoyaLMa9I0bJLDYeh4cwCYiYC2tvy+bjwO4nBkBNquixcLkqemxtx80jTMAUmCTeNx1Zewcva+eVkWyOI88wx8rssvL3h/jitbxNlimXIEmd3VywGsf6mqogKOCDYkHBalyfxeWU7PXDSCaDS9WmS2IEmCQCvn8mYGj3ckAn9GlkVyhJE98+7dSOo4+WShtx+JgAhsasofXFUUkH47d8Kn2bAB82FiAp8zo1+oKET/9m/Yq3/+80Qnnog5MX9+afzzxx9H1+ilS+ELFkhgKfj0VZBdKlvMhUzELoLh98/2hRQLjqSEQtgYe73IWuNuRrEYsrVeeQUR0PXrC2eBlQL6smZ2ULPp+GSDyyUyEvv74SwZzbiLxWBQJQnG9AMfQEbdjh1wttatS1/g3G6RkXjkCEi56YiIcQaSvnuz1UVq/nwY6UOHcM1jYyDmSpHNoofTiQVm/Xo0otm+HUTgunVEp51mbpxGRrAwLF6cn0CMRCDQ63ZD64dLwhMJONl6R9lmw7yoq8O9DQaxkHGJotuN8n6bDZG2YBCfa28vftORSEBj7cABlDeee65lB2jO2KJyhdsNR4WJZodDRNk5Q3G6US1vnnloGspX+vsRMWcCkTNtWHIiFzhIkEggmFHMpiISQamO3w/R8OZmrI3NzcXPAVkm+tWvsMZddhnRO95R1OGq9mia0NiItW98HEExLk0rBnq/qlClB8PpxBro92O9JMJ1cXllqWySwyEyBLlEWJLE88cZWI2NQh+NSa1M/5C7AMdi+D9rPM6E/dQ0aGndcw9kEWw2SAVcfjl8I30pdLYyaF5zjh6FD7J8ufBnEwkhrZLPn1IUoh/+EP7e178OP4p19lir0sz3GRrCtXg8ouGC2w0fsqbGevYPN3R68UXoxl5ySVGk2Jy0RZwdzLqlDP7daOfzmYDNlu4rMWHPDZtYh5NL2zOr0IygtlaUNvP5ZgMul+jeHAqJxpjl5qNllizX1MCXTKXwTPv9hbVVBwbws3y5IBCZRPV68xOImkb0619jP/jpT4NATCbxWbMNUDSN6Kc/BYH4yU+i0WcwCE6jFATigw8iuLpyJTrYl4j7mJN2aSZRsZmINpttIRFdRkS3ENEhTdPOmeVLMgLDg82OmMsFZ4A7hBLB2A8M4D2trXB+SlHOmQ/c0U/f5YtJxHwdmxmKAiIxmUR6c77Sm0RCdER2uWDI2Aglk8imGxwESbhu3dRjyTI2m6kU3jNdGh2qinvCwsTFljYFAiCy4nFk1y1fPn0OSCwGncLdu3HNJ50Eo18o9T8aRXlyczNKo3NBkrAZHh3Fpr2rC4shCx8bma9c9jw+LlL1zz4b1ytJWDCLdVJiMYiaHz6MDfsZZxieL/8z4+e6LSo3cKaFpokyZu6c6PHMbCOqZBJzlAjzupxLZyoZ995L9POfE33sY9DjIoKdHxsT2WC5oKrQUNy/n+jKK0UjFitIJFDuc+gQMom6u/GakQYKhSBJyJTcswcBs/POM/zRtNW3Au1RxdoiRUFgjCUV5s0rPqhlxq9icEm/JGH94ooRJgnMNBUxe61MKPJGmLMSuQmMvryZyUNVFRlyM0GyxONoTrRlC3zDpiZk+F56aX5pF722Iv/f74cPNH8+ZBX4fo+MYIwLVUb88peQd7n+esi7cLdtrr4wgmQS32lwEOPJGUNM9BZLlqgqyrtfew0+1zveYXj+HLe2iJ8Ffu70mcWcmVgO4IxEzv7lucra5PX1Yv7oy7TN2LVwGDagrm72faJYDGSizYY92mxfD1G6pqZ+fmSOMVdnKYogBPX+bTAIqa+WFqJNm4SkwvAwztHVld8W3H8/0e23IwP76qtxHtZB7Ow0bkc0Dfu9++5DR+dLLsG+rb6+eG6Cm8vddRf2+9dfD9trwB7lfEcF2qWyRSWTiJcR0e+J6GUiuk7TtIOzfElGYGqwuauS3Q4HgfVW4nEYkkgEmnrJJB541g+cLqgqDBM7pvyaGSLxyBFc/4IFUyMkqZQoTXM6RXlO5nETCZSS9PfDeC5bNrVhiKLg78kkzjWd4xKJiPs0b15xi5SqgmwdGICT3dMjsm6mA7wI7d+P6960CSno2RweRcH7iJAtmWuB0TQY/L170cFv9Wrc22PHhLak0Q2NJCHzNhAAqRqJYH4sXow5XwxhFA4jsjUwAGf+lFNMzRM9iTjnbVG5gUX4OUOGCPNClovLvrACfXlzTY15Pasq8mP3bohnn3YaMv/YUWYNsLa2/M7uww+jwdS73010+unWr0OSkAW5eze0ftavF0LyxWa8JxJEP/sZyIkrr8TG3QQyN+6VZo8q2hYRiS7F3H2y2EAG+1VmyCBVxTUoCvxFm01I0bDW2XQ2f8gkFCUJzwc38ODGfE4nyMNSdbjOh8FBEIcPPYT1YtUq6Itu3mztHnHzAo8HGuWahp/RUTzDnZ2i0Ve2MugHHgCJeOmlRB//uJBxYR3EXPdGn70Zj+P9waBoVtDWVrr7qijI1Ny5E+N0/vmm1rPj3hZxFmJmZjEnYJRDNhwHYokEkaiqsGN2e7ofzAS6mfJsTUvPRp7JwG426Mub6+undz+YC5yII8vpAZ5C46ppsKOhEO6Dz4e9s6rCryGCzj2PcSCA97a15c8AfPVVSCmcfjrRl76EaxgZgR3r6DC3j73zTvxccgmqzkZHMa8Mkn15v/sf/wgS8aSTEERub7cW0Ej7Q+XZpbJFxZKIFQrTgy1JMAqaBlLN4xF6Bex4TExg8yFJyA5bu3b69MFYSFjvjHIJhZHFUVVBJEajiJI0Nwvtx2hUCHUX6vIXi4Fs42Yc8+Yhw0TvmPK5YrHspGUpkUrhPsgyzlPsIhWJgLALh8V3m84I2tgYylb6+uDwn3465pHeMe3rg+O6YkX++fXIIxC/vegiLG6qCgJRVXEfjDpRioJIeDgsxIKHh0U3Rk0T6f9mN/HBIDIQR0ZwnSecYLqEvNJpooo3/LIsOgvysxGLYd7MVHkcgzeDsRhsY2NjeWwWKh1+P0pXamqIfvxj8ZxzN8OWlvwZgK+8QvS3vyHD+F3vsn4drPWzdSvR5z6H4wWDwv4Ug3gc362/H07yqaeaPkTVFpUBkklBbJeivNmMX8XgTDlVxbPBXZ315ZalLnXOBt4wRyIg8rhaY+FC+KzTqRenaXhOt2yB/I3TCYmSK64A8VdM9+hdu+Drbdgg1pxQSFRY1NcLApgovQx6xw5oj512GoIidruQw6itnRr4YqKHf1g6qKYG16AoWGdKqfcmy2g89cYbkHZ561tNH6Jqi0jMf5Yl4I7O/Pt0P39GoKrwn4hEIyN+Zj2edB+fiS+zRGIoJHQJZyJoUOh6JifxzHk8M1ferChT7a8VMllVsRcKh/H/AwdgB84+W+xt43EQePX1+bsxHz6MZnALFxJ9+9sYj0AAPk1rq7nqvfvuQ2Dk7W9HSTTv0YrVqtc0yGE9+CB8oo9+1HSwpNJtUUWgSiLOLCwNtqLA+LH2ls+H18bHYfC5ZKS/Hzp3RMjOW716eognXgz1At5micSBAbEJ4+Mw+WbUSLCDGg5jMXS7EWnWk4V8rmgURs2MxoNZcCYA61kWK7KvadDeOXwY47NsGYjX6cxyGhxEdGtoCKTamWeCNPT7Qch2dgrdjWx49VWiv/4VjjI3BBgZweLW0WG85I+7jQUCyIz0+eCo19VhkVMUoZkoy3Bu2IkvNOZ+PwjEQAAZiGvW5F9wc6DSF6g5YfiTSdhFrxdzgPV4uNR5pjrZ66+nWt5cGsgyNtu9vUS33YbSYSKM8cQE7m8+4r+3FzqIPT3IiLY6FzQNJN/TT0Pr54ILYDtYaqQYexyJEP3oRwiyXHstou0WULVFZQLukluK8mYrjVaIsDZy4Fnvg7B4PxMC+syoUvsUsiwIMs6IZLvMXe6dTvhspSIUYzFkHW/ZAr+ppQUZfxdfXBq5nzffxL1du1b4mJKEZ9frTfeLMsugDx8m+sY34D9985sgDWUZtsznE34Rd6rWN5yx2+En+3wiiSAcFo3nSgVJQjbRm28ia/uMMywdpmqLdGD9UCIxz/Ulz4W67k43mEhk/UKbDc9RMon5xcSf1UYrTCRy9/hyKOnWlzc3N0+fbqPRkmWzUBTsjfbuxR5/xQqMLeuj2u2wM7ls6sQE0c03433f+x7GIBYT5KMZW/nYY/BfzjqL6KabcAxNK74Ts6qiPPqJJ0CSvu99hStOsqDSbVFFoEoiziwsDzZHUdjp4OyHWAzkCkd7fD5ksPX14YFbsQI/pY4CZS6MZhxe7kK9fz82UUuWoFTVCuEWCsGJs9kEmbhkCSIsbEQ1DURiJAIiywJhZAqlLG8mgkN54AA2Bo2NyEqcjoYxehw6hMzEiQksMu3tIDGXL8+9OB08iAYly5cjamS3YxwCAYyD0YwdTSN6/XXM6/Xrcb+GhzGOmansTBqFQhgnbtCSqR3CGB+HBkg0isykZcvy66nlQaUvUHPG8HN5FwuFc6mzzSY0E2cSrOUpSdXy5mLw85+jjOXmm1FWR4R7OzaG8Wxryz2uo6PoCt/cDOLPqg1mrZ+HHoLWz+WXIwjB+krFbAiCQZCj4+PQ+Vm3zvKhKn12zRlbxNCXN7e2Fjf/OHvJjA2RZZyfN8qZvhWTG/pOy6Xa4Mbj8FM5a47JCUnCnE8m04M+RKLLs5XO0keOgDj8+99x7nXr8Jyee27pSIuhIfjUixejmoJIbNoVJb/2mN9P9JWvYKy/+13cj2QSfiJn0SeTIiDG5BJ3uNXPnUgEY+jzlTYgzo2n+vqgj3bKKZYPVbVFmQfURIMSJu45O5glC6ZTZqAQFAX7JrtdEGqc7aZP6mBSnDMrjYLLpPl45UAkyjKeSy63LlV5c7aS5VI31xkZQXOozk7YI67gSyRwnq6u3Pv9RALNnIaHIc2yZAmulyv6zEhNPf880Q9+gCqxW27BXjGVMl8KnQlFge/33HOQUrj4YpRFW+AHKt0WVQSqJOLMoujBDodhNDwekQXBJSzBoHBaVRUC7YODeO/q1SBMSrVQZWu0UohI5KhUMCi0HWIxfJ+2Nuvaf5OTMIo+H4zk6CjGZuVKQSRpGsYiFMJ5LBJHhiFJ2ByWqryZCItHby+OuWQJFpDpdDw0DdGue+/FvDv5ZJS3ZMtE5E17YyPRpz6FOReP477U1eUXL8885549WNRWr8ZCOTQkBMvzLSSpFO5vOCxEoxsbBZE0PAwNxFQKJcxLlhi/riyo9AVqzhh+fTdALstRFFFabLHTdtHg7s3V8mbzeOopRMkvuwwlMgy/H5vt1tbcjnIkggYlqgpyrhjb+1//RXT33dhYX3ll9gwvK/D70W06FCL67GeLa/ZCVVtUluDyZu7cbXUeWmm0QiQ2ynZ7bsK7VKXOnEGnz2piW5z5vnAYY8Mlk/qMHSKcnwnFXP6NqkLLecsWVD84ndhwXnEFqlFKiXAYPklzc/qx/X48v+3tudeYRAJlg8eOgUBculQ0wWFNukRCEMXcGMXtFs0smLThDCpu4lcqJBII/g4OEr33vSjVLgJVW5QD+sYrTNrrM4O5zHU2Ao5MJDoceHa50sfpTC9t5cxas41WWMOTCHawHHwhTcM1RaN43opZ00tVslwI0SgqxWprkSnMTSaPHsX+Zt48kIjZegmoKtH3vw+JqFtuwX5O02CbOBBilOzctg1l0CtXotEc8xJtbcUluEgS0U9+AjmKiy5C1Udbm2USttJtUUWgSiLOLEoy2Jx55XSmR5mTSZA5qRQe5LY2vG/XLmRv+HwoxVi8uDQLFTugrFHHr2U6vCwMOzkJY8Wt491uEc3lbDWrbdv9fkEe2mzIinM44PRxyRsbTNZ9mM6GJXw+v7905c1EMLK9vSAUfb6p5dulxuAgFqdYjGjfPji+PT0oc+ZIeDSKTbskYdPe1IR5MTgoImNG59u+fcga7ekByceR/s5O49m0vFHhZhdOJ37fsgXz8qKLcE1Fiv5W+gI1pww/Z8A4nSKaLklCM3G6SlYKgYltLuObreuoJPT1EX3hC7AB3/++cCC5U2FjY25HVZKQaTwyggzEri7r1/HXv2JzfcEFRNddh3NLEuxbMULxY2MgEONxohtuQHCvSFRtUZlCVZGhEYvB72lttRb4s6KPSCQ0tR0OrNf5GndkljobFf3Xl94yeVjoO8ZioukK66VxdqQkpX9ft1sQiuEwNLL++lf4Bq2tIPgvvti0prEhpFJoMOJwgFzj8efyv4aG3IQeb9pfeQVE4oYNGKvxcYwXZxryD2eoZZZCE+FzTCByWZ9ZUjkbYjFIu4yOoiP82rXFHY+qtqggeH5zAgaX+zMBZeS5mw5weT0TidzIh7OJ9e8zq49IJCo0iLCGz2YZtx7xeHrWthkfLVvJ8nQRwYoCAjGZRIkvBy5SKezRbDaR1cyBa72u5e23oxvzpz4FGSci+CLRaP5ASCbeeAMN7hYuRDYj9zRobi5uL5pKwS/asQMyFOeemz9YbACVbosqAlUScWZRssHmzs1s+PTZgFxCarOJMtLRUXSVDATw+/r1IGaKRbZGK3oikaOnkiTEbLMZ6eFhUTprdeM3Po6flhZEz/btw/kXLUonTo8dwzW1tFgnLc0gGsW4c0ZAKYgEvx8lzokExmvZstKXCYRCKGtubcWCkUpBi2PbNiyea9ei7OVPf8L9++QnUerDxLAk5U+tz0RvL7SDurtBIIyMYJ63t1sfs1gMWQR33YXxeec7MVYlINIrfYGac4ZfkjBf3G5B8iSTmLcez+x1COQofLW8uTCiUTQuiceJfvpTsUHnzG6PJ/emnTv57d2L0uPVq61fx6OPoqTm7LOJbrxRdIVvbCzOfg8Pw1GWZaLPfx52qASo9Nk052xRJsJhQeZZLW9m4sHs5juVEhqe3LW50Hm4/JIoe6mzpsH34IYfHg9smxmSU5KEXlpdXfqGN5NQ7OtDZ+OnnsJrJ56IkuVzzpm+8kiuiohG0XiNr09R4ENy84Bc43nHHQhcfuQjqODgRmAshWC0tJMJS6cTn9Nv2fRdoM1mh4XDuEa/H/ayyGxoRtUWGYA+K5Gzf4lmn0xkItHpxDMdiQgtfv2zrb9Gs8fXd4AuFyJRX95cV4dryzXuM1GynA07dsB/2LRJVNLxXktVsdey22GT2d/kfglPPYVKsYsvRld4ItwHv98c+XfwIAIizc2oFHE44JexVr1VJBJoXLd3L/QPTz8dxyvSZ690W1QRqJKIM4uSDjbr3qjq1M2NJCHKwF3xOCV4cBCOUSQCgnH9+uJLe3kx1EdgolEYKFkWpdeFOkaPjMAgNTVZbyAyMoIxaW2FoTt0CK81NiJrj43S8LAwoKUgUwtBkkCS8oJciuxBRQHpNjiI77ViRenKtGUZJKzTCedSv9jH44iuv/46FjZZRubQySfj7+PjcFDb2413Ce/rg6D3woVodDIxgWOY7RSWiYMHUZLo8SB70uXCMWtqREaTRSet0heoOWn4EwnMR/2GNh4Xr82mHo++vLlctIHKCZqG0phXXoHWDmsEahrWMlVF9nCujcejj6Ir/DvfCaFvq3juORB9GzeisQvrl9XWFmeLjh6FBqLdDntZTFJd4UQAACAASURBVJZkBqq2qAKQSgn96qYm8z6A1UYrRCLo7HYbbwaUWerMm2VuksLN9Xw+67aMJW64vLm+Xnw3zry5+24EL51OaKNefDF0l7nkebrsaF8fNuiZftXIiAjeZgZINQ3f5f770bH0vPMgg+DxCA1IfSOVQuAmUixTZLeLeaDPVswkFvWl0NnmSjCIzKRwGPrVS5eaHp5cqNoiE+Dni7PYHA5BUnHQgMnEmYIkwVZx4yN9ozh9dZmVRitE6URiY2P5BFQLlTdzYCMzuDITpdl9fSDYVq6E7WNMTMA3yZZoEYvh+2zfTvQf/wFi7tZbhX7iyAh8YqMVeUePQp/a40GGdV0djpFNq94MYjEc7+BBBDM2bixZsk2ZzKy5jSqJmAM2m+1jRHQ7ES3VNK2vRIct+WBzR2AWiM0s8wqFYGg0DYRZUxP+39+PtOREAtl469dbJ7Z4QdFfD0dczTrLY2OiTETfHMUMhoZgPNvb8Z1HR2Gg7HYYYS7DHR0F4dXYOP1dj4mEFg5rWs6bV5oFKBRCkxrWpFixovisq0OHsDitXJnbmN93HzJ/WltB/J1yCha4YBD33ajw99GjWCB5HrIofWNjceLh+/cjA7G5mejCC/F8zJ8v5AAkSZRTWdBpmbEFqlJsUTmAy+t4s8ZNn/TNV2ZTj6da3pwbd92FzJjPfAYligx27PM1qdq2Ddqtp54qusJbwWuvwaFdtYroH/9RZJGyvqpV9PWhi6HXCwIxX4d7C6jaogpBZnmzWR/Aqj4iEWxgKCSCukbB/h3rV6sq5nFDQ+myu+Nx+BtMkj3yCEqWR0fxrFx2GRqh1deLDEVu7sfkZikJxfFxBDU7O0VXeCLYApbeqa/Ha/qszHgc8kG33YZsyVtvhU+uaRg7h8O4ZlgqhetwOODX5SOONU0QikwuMph0ZmJxchJ2NpEguvpqVOqUEFVbZPaEmiiJ5bnMWveZDVlmyndJpXBNehkBtzt97lpttEIkspA5oFouRCJRenlzU5PQrpyJkuVsCASIXn4Ze5eNG8V5ualqY2Nue97Xh6ZOLS1E/+t/YS9UV4fPcRdnIwGp0VEEVBUFGYhtbdhncza21YzScBjHO3KE6JprsI9saSmZjnnBOzRNNuS4QjUXosLBJbLBIB5IRUkX8G5ogOEfH0fmXSQCY7R0KUqpDh5Extljj8GZWLfOvDAqb9RHR+GYcMlZfb1waowaGXaWhoehjbdokXlj3dGBc46M4Fjz5+Na9u1DFubChdDb46wWbku/YMH0LgxcxuLxYGFgIdxiiYSGBqS4Dwxg0QgEQOZZzbAcG8MCv3Bh7mvbvh0ZQ+9/P0qKXnoJWUCPP46I17nnGjvX8DAIxLY2EIi8gNfWFkcg7t5N9Je/4B6//e0glDo6sOg1NuKHycRAAI51bS3GskrsVC5Y1J91uljcv6YG9zseLyr7tGhwhDsUwk8qBdtUTk70bOC119D06LzzoIfDSCSw+a6ry00gHjqEgEZPD4gGq2O5Zw/Rv/4rSINbbsFxQiFsGIppzvLmm8gEqKtDafS8edaPVUVlw27HWsflzazrZ3TN4e7zVjo219TAzwmHMa+NzmkmELmqhJt+6Esaiy1LrKmB73LXXURPP43vt2kTpA3OOiv9+CxXweQLZ05xR2g9oWjFFsRi8Ivr6+EnMjib0+fDGsLrCQet7HYQxLffjiDEN74hxjwaxTGMVmbIMo5ltxvT0cyWEZaZrciZsL//PX6/6irhK5dLWenxCJsN85kz3bicmDMBufQ5lZo5MpGDA0wker1CX5r/ps+KNWuLXC48X+EwfsrJB+JA8+goqrx8PpB0nE08k0gmsdfy+aCpymPE9sHjyR3cDASI/uVf8PfvfAdjHgzCzrpcUyvMciEQQEfnRALH6+gQzS7b263bjslJHG9kBDqNy5djzzdbjRCrsIZqJmIO2Gw2BxG5iCiplW6QpnWwuUMSl6xkPtzRaHrHYO7Yl0pBX6+3FwvCsmXQkzLi2MoyjEEkggWFyR+jHZtzIRCA7kxtrbUuxJqGDLdoFOQgE5qHDoG4amiAo+fxgFzlLsJWSEsrmI7yZiI4tgcO4J5wh2qjjisRHOIDB3BNuUpc+voQyV6yBJFshwMO0Pbt6JSYSGAOnHkmsiJzjefYGEqim5sRYZMk3Ae3GwuV1fuwYwe0iBYsQMdGjwfHy6XNyFHRcBhzxOPB9y+gXTeTEfeKs0WzDdafcrkE+aSqooszZynOJqJR/Bzv5c2jo2gw0tKCMmJedxQFNoJ15LLdr7ExaP00NBBde631AEBvLzb9ra3oOlhbi3WBAz9WHeW9e4l+9jMQh1/4wvQ0f6CqLapIcKYZN+sx4wNYbbRCBJsTicAGcjZdNjB5KEmY/z5fui3NLHW2UnYpywg+3nMPAn9uNwKQF16IoIBR3TTOlmRSUd8chklFI/ZeUdBIRVGwaWfCRFXhTyYSuE96PTtujBKPI1tHkhCM4BJoHsPaWmPjw3aPCMco1bowNASCkwgl1m1t5sugDaBqi4o5eUZWop6gZ5JRr8M33eRvMonnyu3G3OckFf15rTZa4eNHIjh+Pls0U9CXLGsanl2WWmhpmVkfTdOQgRgKYS+lH5/hYVxnZ2f2a0omUUlx9CgIRN7LjY9jX+31wp6z/mOueRQOI6A6MiK6MbNWfUeHNW1fIux9v/Md7FOvuw777sbG4uRissBIJuJ02JDjClUScWYx7YPNoqqZnZsZqorNEb+nrU2QTIkENj2HD8OorFgBo5GNfFFVGIBwGL/X18MIMGmoX/ysEomTkyIStHixeYdZVZGdl0ggq44zLMfGsGm02fD9WlpEVkBtLQzaTERmp6u8mQjf5eBBjEF3tzFyVFVRAqyqIFizLU7j40S/+AWM/XXXiU378DDGubMT537hBby3rQ2ZBPqIPhHm4PbtOM4pp4hrttlwDKvjsHUr9IiWLsVmxOnEYmek7EpV4dCwKLHDgXmdg+Apk7ipZcx5w59KiaYqbMNkWXRxLoeIp768ua6uPK5pJpFKocxmcJDoxz8G8c9ggoX1fDMRjcIWpVKiK7wVDAwg0u7zwbFtboZ9UpTiNg47d4Lg7OhAE5Vp3CRVbVGFgv2xaBRraWursbWvGH1EIvhtsVh2nU9Fwd8484nJw2z+A5fRZhJ3hQiFQIDob39DBvHEBORkLruM6KKLcD1c3myzwa8026FTTyhyh2MmE/MRivv2we9ctw7PK4/F0aO45rY2YadrasQmOpXCpr2vDzakpwevJ5MiI96ID6IosHuqWnRn0jQcPYpMb48HjRU4GzqzDFqvr8hzS08uGiCJqraoBODmRkzO6degmSYTmUh0ufAssF/MKEYfkUhUG3g8JSeRDEHfmZ5tqj6TOZHAs8+SYDPlo+3dC3ty0knpVWXBIGxUa2v2qkFNQ5OSl1+GhuGmTXg9GsXel5NWWCbGZsNrmdmg8Ths2qFDCLCeeCJsUyQCO2i2YpExMgIbGY9Duqa9XZy/xKh0W1QRqJKIOZBZK2+z2e4gomuIqIOI/o2ILiEiBxE9SESf0TTNb+CwMzLYqRSMDFF6VqAeiQQyQLgbld55jUSglzgwAMdn9WpkJ7LobygEA6Sq+CzrRjCyNVqxquUTCsEB8npBRJkllxQF3yOZBBHJC0A8DoeRMxW7u3EuPWk5UyUesVh61kupFqlUCqV0Y2O4TytX5i9hGhiAQ9/Tk30xj8WI/vM/MZbXXy/KjbkcuLU1XSfowAGiF1/EuC5YgE6nHR2YO6+9hu+5aRPu6fAwFvHOTuuO8/PPE/397yC/3/pWkW5vJVrGZHwsht9ra6c0L5o17Z9KskWzjXgcNsDnE8+zJMH+ud3WI6mlhKqK0mavt7xKe6Yb//7veGa/+U2iM84Qr3OZU66GXLKMbOhjx4g+8QkEiaxgZAS6ZURwbNvbYc9SKdg3q5pvr76KrJ9Fi1CSadXhNoiqLapwRCLwAbh81UhGbbFEYigE+1hfj2dMVYUMBMtCsByEEWR2dXY4phIc+/Yh6/DJJ/HeU08luuIKSKBknkeWsQYrCp4fq89QNkJRn6HI1zc4CG2uhQux1sfjsAMsezJ/fu5mKv/2b/B1vvpVfBc+bzQqms8UgqqKSqESdCb9H/T3E/3ud7iGT3yicLAlswyax4wI90ifrZjFH6/aohKByS29JmJmBiATjfysTZffwFmINhv8f7YNmddqRR+RCM9aLIbjTvNa+T/gbOpMbdVsRKiiwD6nUmIvMJ0+2tAQKqq6u6ETyEgmsVeqrc3dRPO3v4We7Mc/Dn1oIlz30NDUJiiSBBsbjwt9+NpavP6tbyE7/Gtfg01jPdimJusB28FBou9+F+PO1Sd1daWrxMuAaU3EEtmQ4wrHaQFVUXiAiA4R0deIaBUR3UBEKSK6ajYvSg/W3QoEYPgyOzcT4fdFiwQBFI8Lsei6OqLTTgPptHs3MioOHACJ19AA4+vz5SYonU4YIY5eEVnX8mlowHUODCBDsrvbXLTL4cDn+/txjMWLxQJ44omiu3EohOy7hQvxe3+/texHK/D5cM/Gx/HDWZ3FLlJuNyLqLBK+fTvIvKVLp36vyUkQiO3t2QlEWUaX41AIjigTiLEYPltfnx5Jstkwnj090Bp7+WWiP/0JTjjPz5NPxr0cHcUi195ujUDUNOgoPfEE0dq10GhUFDj9VkkizjTgjQxLBbhcyNZ8+9utHbfEsGyLIpHpvbByAZekcCMDfqZSKYwBa3zNNpxO0YmTmwrN9fLmRx8leuAB6KquXy/mZCqFcfB6RXawHpqGJiq9vUTvfS8cWivz2e+Ho8wR99pakJKJBGwZZ7KaxdatRHfeCTt77bW43ul63p59FtlbZYCy94vKGaz5OTYGYjufWD7DZhN61JwFaAYNDSIoHI+LY7F/ZJaYdDimdpdl8uH557Gx3bcP/s6llyLzMF9TD6cTfgKvvSz9Yva6OJOrpkZkcUmS0DN0OGBz33hDBFmDQdFIQpLgF+aSWPnDH1B5cc01gkBk6Qwudy4ETYPNk2X44aVakw4exPU1NRF97GPGdDCZIMzMftOTi1zGzu+XJIyfPhA0i5gTtkivf8iaiA6HyJDjzsBMJiqKsSxgK2BNREXBOVkqhucIk8tMNJp9Rlk7lO2QGQkms8jWZblQNidLqoRCWMtTqekrbw6H0ZypuRkJPAwOMrBdzIZHH4Wdfec7id79bvE5bqTS1pY+N1wufC9OPGI+4Be/wL7/pptg06JR/I2ThqzgyBFoINpsOG5dHe5zqQlETUMGZ5Ed5+eEDZkJzPFtyrTgOU3TbuRfbHgib7DZbP+gaVpo9i4rHU4nnJHJSfzU1U0lhzjzjbs1jY7CgLW1wbg0NYGQ6evDxujZZ2HYTjstf1t4XuB4cWNDa5VIZIHrI0cEkWiGbGIi8cgREIlLlsBJs9sh5trYCJJtxw5ksTFp2deH987EZt7pBInGJeLJJO5fKc7d2op7efgwsjrHx0UZNxEWkIEB0XwkE7xp7+8n+sAHhOMvSZg3XIqdDQ4HtIXWrEHzlS1bsHhfcIEgcpjAtpKBqWloCvTssyCFzzxTlECWokEKP0ctLbg3v/oVOsGWCYlYEbZoNpGt0QoR5qyq4jnL3DDNFmprYZc44juXy5vffBNZzRs3En34w+J1lsngBkjZ8MwzCEycd156lN4MQiE4tOEwMhEXLsSmP5GAHbQ67s8+S3T33QigfOIT05fpqmkoT7z33rIhEau2qEi4XMjEZ7mZZLJwebPepzIb8ORqEb9flOoWo//J4EYRExNY7++7D8/0woVEn/0smh8ZzTbiUjuXS2RrFtMVmolOXhNCIfhDu3bhHD09ePb5nMPDQvYnm7/6+ON43i+8ML2jPFcwGNHeZQIxlcrfgd4s9u1Do5q2NhCIxWR48bgRYa4NDqLM8fBh/PT2Ys7ef39JLr1YzClbZLdjTuhLbplA1Jfe8t95z1VqMtHjwfrIWYfRaHpnZbZFTCSaPbfPl04kltL30WumcsDF7TY3RiytwI0xR0dLX94sSdhfOJ3pnZiJRJChoyO7jd65E+Tfxo3wPfiznN3c3p57jXC7saePx4l+8ANkVXNQJJnEMbxe603henuJvv99jNWNN2IMa2qKa57J4KAGE+lvvIHg9Le/XdRh55QNmU6Uwdap4vAfGb8/TURfIKIlRLRr5i8nN+x2PKQcPWFR3Eyj6XYjQy0YhJM2MABn0u0WZdHnnAMDc/AgMtr6+5E90taW+9wcmdJ3f7PbxWtmnN7aWhB6/f2C3DPjSLpcIiPxyBF8nonI1lZs2Pftgw5FV5fISORzlUqbJh9sNtwvXqRGRkpX3ux0giCdPx+ZdDt3YlFZvhxjomkgZ7MtqE89hQYob3sb0Qkn4DXuxk2EYxZaiDnq9453YA4cOIAFb9EizC0rehiaRvTgg8hyPPVUkNvxeLrOZ6kQi4FAPHgQ5VdlAsu2aDa0Z2YTPh+cIe7sSSQ6bGpaernzbKOxUZQ357LZlYxQCGXM8+cjA1CfHRMICG24bPZ9xw4872ecgY27lXGJx9HAJRAg+qd/QrZ2Mol5MG+e9cj4o4+CMDnlFGQgTteakUzC0X/+eWQclAkqxi8qZ9hsmINeLzaNQ0OFA2x6n8qoDUsk8ByoKo7PtkaSiiOxNA0E/z33gOxXVTyr73kPgnxcGptMmtNyq6nB+0Mh+KRWyps1DeflDERunjA+Dl/opJNwDm4ow2V+uZoX7NqFpkknngh9aLZF2SQ08l2T34/ram4uTeCTr+0vf8G1X3ONdR+Sdbv7+sTPkSMiQ5ubM6xfj8B0mWBO2iLWmWcyTFFECbOeTOQqMH1mYinAAdlEQpyHdVX116g/t1nU1qY3wCv2eeDO1pw5y5mcxYyJ1wvfxe/HT6nKmzUN+7J4HOSd3g5HIhgT7hKdiaNH0cxp0SJoTPPemiWZWloKj6WmQSLmtdcQdDj/fARRJifx/Yzs87Jh3z5cW0MDMhDtdlyLFQKRS9D1xKFew3X7duxX29vNHzsDc9KGTAeqJKJ59Gf8Hvjvf3MkGM8uOHricAgiMVvnZiK8r7YW5Nm+fXg4589H5IMXimXLQDq98QacxPZ2bMKyGQQubeGy5syIlRmnlwgOS3d3OpFoxuF1u1GizBmJixeLxcTrRcZcXx9K2kIh/H10FK+ZzX4sBlzePDFR2vJmIhxn0yaMQX8/MoJqa1FanG3TvnMnyoRPOgmNShhjY3AkOzoKL8ipFKJrsoxMwYYGjPWjjyJC5ffj/Bs3Gh9jVcWGfds2aC1u3IjFct680muqjI4S/fSnuB8f/SjOVyaoKFs0m3C5MGdSKZF5yGUz0ahwhsuBrLPbYaNjMZF9M1fKm1UVGYCBANEPf5hOIMZiQqMtmy3q60OpzrJlRJdcYu1eJZPQ5Onrg37ZunVCF8jlMlbulwkOZtx/PwjEj398+mQwAgHoRx44QHT11elZnLOMqi0qITgrmStECpU3G/WpWOOPN/n19fiXyaJgEOcxm+mXTMJP2LJF+BRXXIGS5a4u8T59E4NEwlxXZ24WyOXNqRTGJd/31TSch7OMWUOS5UoGB4XuN/uwmibO4fHgd7YP/DM4iMyari6ir3xFPO/ZmnnlQyCA68ql/WoF27fjPixeTHTVVeZ85HgctrG/HxmG/f3whYkw/osXw/9ZuhSB9tFRrE8LFyIgXSaYs7bIbsd85WeIyXief5xhp9f702cmFgsm9vg5ZkJRP8f0JdZWzllfL54/m81aUEOfmUZkrGTZDBwOJCuEQrjWUpQ3HzqE52nt2vT9tCThGfN6swc4g0HoObvd6KSs1/0PBGCLjfg1v/sd0UMPQSLmyisxdgcPCgKW/VAz++Bdu4j+z/9BUPimmzAvWc7KSIa2nizkLFyG0ymySe12kIcvvYRs8g9+0Pg15sCctSGlxhzYlsw4lByvl8H2Mzfq6vCwBYMgQ5qbpxo81kXQNDg1zPJziRdHvLq7EfE4dAhk4xNPwIlYt25qhlM2fUTWzLBCJNbUTCUSzUSrPB5c68CAIBJ5AbbbsUHl8ub9+0WZG5dRz5R+mtMJApf1+EpZ3my347v4fCjHicdBKtbUpI/lkSPIKOjuRiYBG/1QCAu8kVR+WYZTG4+DKGxowDxLJJDZ6HbD8L/0ErIdTzsNUe18m3BFwXXt2kW0eTMIyUgE11PqDl+9vSi7VFWUYq1dW9rjF4mKtEWzBY8Hc4dLmFlSwecTBJaZRgLTDZ8PNnMulTf/5jewB1/8YnrmCmuPut3Zn+GJCegMNjfDQbRC0skyGiDs3YuSmlNOwXyYnBTErdl7z1IPjzyCjKurrpq+jNb+fmROBgJEX/4yMgXKCFVbVGJkljcnEtiMZfMB9D5VNn1EzhqSZdFdVe/L2GyY/6yJlUvvOhOjoyD2778ffkF3NzaLF1yQ3S/jjCnO+JNl+AOSZKwEk8ub3W74RdnKm7lBDEtYcEM/Jg69XhxndBRB2gUL0jftTBo2NiJIytlMrEsXDoPIt9shhcDkn6LgnE6nMZ+Utci5mUEpsHUrul4vXw4iIN89lGVRbcM/IyPi7x0d8He6u/HT1SXmXjIJ/ysaRYXLggWluf4SYc7bIi5n5nmpz0okEmSjfu7yHqzYAJc+Q5Az5Ph6+O9chcYaimZRV4fnjDu0G9l3laJk2SzY9nB5s9VgwPg4AoNdXdjTMjhT2mbL3kgllSL63vdgS779bfEeWUYAyu3O3YBFj7/8BT8XXYTgpKYJqar16zGm4bBo6tLQUHgvum0b0W234TvddBOO4XJhH5vtfmQShoruKdYHm/Sl/DwG992HxKYTTkAzmRLsk+e8DSkVqiTicQSvV4hI+/0i4izLMEKRiCiBZtHtiQn8LRpF5IU3sQ4HnIfubhBub74Jh2TpUuhU6Z0oPZGoF+K1SiR6vVOJRDOb65oaOD1Hj+Jn0aL088+bJ8qb+/uFTlBfn2jMMhNgx97jwf0aGcG9KUXEWlGwSJx4IjYUfX1Er7yCcV24EHOEBbk//GFx3xIJXIvPV1hgV1FAGITDyGRsbsZrIyOYP/Pn4993vxuL0wsvoEHK9u3YkK9alb1j45//DCLgwgtBXLPDX2qB3q1biX7/ezwL11+fXwS+isqAXh+RnyMur8jUTSwHuFyiuQBHvCu1vPmFF4j++Ec4qu94h3ids6BYziETsRieQ5sNmcBW7o+qwqHdto3o05+GhIKmiaBZc7N58k/T0CzqqafQDf5DH5q++7JtG7INXC5sFk48cXrOU0V5IVt5c2tr9meAg7x6zWkuzZUkvMYNXLKBfT+/XxCJ2TZjmoaA3z33ED33HF475xyiyy/HOm/0GeANoZ7okCRRcpiPfPB68R4ub/Z48H624UT4vbYWdj7zO0ciCII3NU1d18fHcU2sIcadb4kwlrfdhjG69VZcRzQqGmPZ7cb8s2AQn8tsSFcMnn+e6OGHkVX5wQ+m3zsmI/SE4cCAyDJqaIDvd/rp+DefT82NHxQFm/ZcTR6qmF4wScbkSzI5NeOQ9RT5PVyJUWxWHvtMqor5YLdP1Ucspnu8zYbngqW46utzE+LZSpZLQZYaBZc3BwL4SSbNBSTjcci01NeDsNNjchL3jPdKemga0U9+gr33l76EDDx+naWmcmm56vHQQ+jofO658I1sNqw1HLTi4EtdnbgfXLnT0JB9nF96ieg//gN25ItfxLG4OQ3v+zMJQ31Zsj7LMB8JHA4Lvf6zzkJSyUzd9yqAKol4nIEjAYEASCQiYXyZiGGDb7PBCHHjlWPHYOjYEPDx1q5F5HPvXlEC0dODTBO3O73Rij4yVUx3QY8Hzg47REuWmCPXamsRIRkcxM/Chenn93hEeTOXvHi9omvzTBINNTVwaCcm8GN2kcoGdiBXrMC4zZ+PSNjBg8hAfP553JOrrkqPtI+OCqHxfFBVbDSCQTiara14bWQEx80U+e3oQPkTn/uRR6DNcdZZosuWJEEo/M03QTyuXo15XF9fGoFehqZhYX3gAcyxT3zCuqBwFeWFTMKQAwJckpNM4me6GmJYgd0Ou6wvb2bh/0rB4CCyAFeuJPrMZ9L/Fg7j2W5pmeoAyjKe+clJlAlb2bBqGrKJX3gBUfYLLsDrwSCOn4ssyQdVFV1Z3/522K7pIhAfegibhQULQFzoMxWqOD7A5c3j41iDGxqy+wCsjyhJsGNMGtTWwqYVmqN6IjEQSH8mEwk0MduyBQRcfT2I8/e8pzgNKiY69KXO+oZX+Z5NpxO2YXBQlDvX1wtJmGyQZfg6bjf8H/2YhMNCQyzz82xHDh5EJvBJJwnic3ISx21qwpjnI2k4w8pomWEhaBoCGU88ARLife9LL0tmHzkaxftZ1mfzZpFl2NxszH6Nj8PPd7kQyCi1dEwV5uFwCK1E3mNlzj8mw/W2oVgykQlzbrLidKbPB5azstpohbOOuRorM/stM2ONNSFnQ9ta371ZX95cyEdTVSRNaBoqtfT+Dzd+qq/Pvt+8807sla6+Or0rOjdpmj+/8Pmfeoro5z9HBdiNN2LMebwbG9MrC7laQ0/u6gMhPO7PPAO9+5UrQSCGw0Lbm7PhM8uSPR4RODJKAo6OgkCcmEBCyaZN5aNrfjyhSiIeh+B0cyak2tpAouVy1mpqEK3lCHUsJpqRMDweOFUrViCteP9+OJqrVoFQ5IWOFxR9oxUrHZuJ4AwtXSqcpcWLzTk19fUoFxoaghO6YEH6+W02HL+xEU4nl9tpGs5V6uYd+ZCtvDlXaVMhcHZpV5f4Dh4PyL7hYaIf/QiE8Sc+ka4TNDqK+5SrOxhD04h278Z51q4VG4zxcSxu7e25HfzFizHXenvRIexvf8M92rSJ6MkncZ8vuwzzbGICc7CUBJ8kEf3XfyEL8aSTkIV5vDUhmetwODD/ixZi9wAAIABJREFUuIyOHS0u/9FH68sJXN4cCony5pm0QVYRjxN961uwVV//evqzn0yKDXVmhremoVSyr4/o/e+HbTALTUOU/bHHoPXDHVTZhlrp9KooECB/9VUEM9797ukhEFWV6Ne/RsbXhg0gLqrBjOMXLhfW3kAANiCbD8BNCeJxQR5y+a5ROBxY9/WZNffdB93PSAT+3Fe+gnL6UgZb8pU6c3aRLItS5czmHrKMZzkfgahp8OUkCYSbfuxYe4y7M2fij3/EBvmjH0Vwk0hkydTUiGPx9bEOm56oiUZx74xUchgBBzwffBB+fDhM9M//DF+Lx7SzE4Tf0qUIQHR1WdtsDwyAQG1owNjNlLRPFYXBzw6XOKdS6Rm0DCZp9GQ9v8/KGma3Yx+l1xXWzws+l9VGK3oiMRQSFXJcssxl29NZsmwGDQ2icmxsrHB58549+G6nnJL+PkXB/sblyp4g8eST6Ar/9rcTXXqpeJ0DFI2NhX3DrVvRYG79eqHrGosJHcVciRm8PtTXi/sSieC7v/gi0e23o0Ls05/G3lpRRPMufWObYnQ6Dx9GkkcyifLl9evL4/4fj6iSiMcRWDA6GMSD3dEhFh02PLkeRC6r4azEkREcq60t3RDU1qJT7sqVIJJ27wYhtGYNIp5GGq2YMQYuVzqRuGiRufKQxkaRITc0lC4CzmhpQeOO/fuxOEQi+MySJTMbic0sbx4exrWZIRISCRCm9fUgJfXQNCwCNhuIOlVFifPKlfh/IoHPFHIe9+7FeK5cKbRy/H7R+KRQFqfNBpJw+XIQ0s89R/S1r+H1z3wGxx0fx/cu5aY6HEYH5t5eLM7vfGd5lbZWUTowYcgReY5+smh4IiEyqMsJXN7MjpskpUeByw2aBkf1yBE0NNHbHFWFw+p0Zt+0P/MMspnPP190hTeLu+8GAXLRRaIJSSyGH5/P/PMty0S//CWu6/LLEQGfDsTjyNx88UXYouuuqwYzqoBN4k6bmd2bYzHRZdznw3vM+lMMhwOE0V13oSLA5UK52xVXzMyGTV/qHI2K4LWm4XUm4fTknaLAt52cFMRiJgYG8J7ly9N9N9YAs9uza4g9/TRIxPPPxxgwOKuLS/74OjhDkQlFvZ9dW2udQNQ0+FZ9fdhIP/wwfKS2NqH3u3Qp0VveAn978eLiiV4mXoeGcJ41a8p3vTnewVm9+kYU2aQB+PnSd3q2SiYyqTQ2Bj9//vz0arZsVWhmv1NdHezd8LAI/M1kybIZeDzGypsHBiCntXz51L3YxISQVMj83J496Aq/YUN6V/hkUgRBClVm7dyJxlA9PSKwm0wKHUQjOoqc+e3x4Hp//3sQexs3IgFlYgL3bsECYadLsW7s2IEMSpcLDfYys8mrmFnYNC5Er2ImMGuDHYmIkgtur87ORTQKAoWjHoUcBBae9vuFU5tLj258XGSl1dUhM40XmcwoGaelW1kYFAUkYiKBrEqzZSITEzCgzc25S3M0TZSHBIMgLFeunJ3NHUeqkkkRNTLS7Yqj8KtWTR3/Z55Bx+TNm9H0ZHJSEKcuFzYPHR35z3HgAMZo2TLRrS8cxrU2NJgvR4zFkI2zaxci6nV1mD9nnokFsFSLx9AQyIHxcRCoZ51V0Pmu9GXruDf8moYNHm+6eS5pmtiw+nzlu2GKx4WObbmWN2/ZghLAj398asc8v19kU2Ve+65d0D498UTrpcIPPADbsXkz0Q034BjJpNBQM7uRT6XwXd54A99l82bz12QE4+PQPTx4kOgjHwFZWYDsrNqi4xCyjOqAcBgbtMZG+HZss7jJihkiMRaDlMiWLSD+GxqIzjsP2balXG8LIZkUGZWsl8WZfayHyCSC/po0DTYxHhfd1tmf9Pvhz7S3wz/Rw+9HYKa9feqz9sYbRN/4Bsizf/onQVqqqrC/uXxA1msLh3GveIPOJEihIFUoJMqRWSqIm8UMDmKczjwTPgtXzZQSsgzSIhBA0Ly7u+AcqNqiMgHPPU0TGWDZ7p1eRoDIWIOjbEgmsXZlI6FUVZCIZvwpJjk5ySQaNb5PLQeEw3iGnc708uZgELqBLS2ostKPNVeatLRMTYg5dgwJFU1NCMpyIERRsIchKpxpfOAAiMP2dhyjvh7jPDQkMpez7cH184R/WIrsgQdQNXLCCQjW8r500aLSZSwrCsq3X3sN93/zZtikPPO00m1RRaBKIs4sZnywOT1ZkvAw5+qoy5sr1sQxkoEjSVg0YjE4dm1tuQ3G0BDIRE5JX70axipT/NmqEC8RjMyRI7ieBQvMbxJHR+FMzpuXX/MvEEC23bFjINU2bCiNto1ZaBrGMxQSWpf5iITBQRCly5ZNvd49e5B1sGEDNHXYMCcSSHsfH8eis2LF1KgZ49AhbHwXLwZJSQRnfmRE6C6aQTiMssFAAJvptjaUJe7fj4VvwwZkvRZb0rl/P7rGKgrIgXXrDEXvK32Bqhp+EuV/Dke6XeTXuXtzuUY6uauxopRfefPu3SiTOeMMon/8x/QxjEZFQ6TMbO4jR/DcL1hAdM011rJBn3qK6Mc/htbPl74kyqr8fhFBN3NPEwkIhff2ppczlhoHD4JADIWQdf2Wtxhq5FWms9MwqrbIAhIJ2Cgm47mbcGZ5M5MI+XD0KIjDhx/GMVevBnl93nk4xuQkfLtitZhzgbO/OXOP/UCvV2T5sU+oz7IiEqSH3mdMJvEMEYkSyJ07cZx169LfG4sJncnMIOfQEGxYYyO6oDJZqGmwYaqK1/L5q8kkgqhM9OqbQHAw3eXCsY4cAVnIlTV+v3jfggUiu3DPHrz3/PNxj6bjnsTjCObE4/DnCgWQ/xtVW1Rm0BOE+bL3uEw4U2PQDDhZpb5+KqGtKCIzMt985etgkkqvjaooeK5ZJ7pc/TI9kknsYVQV1+xygQyz2YjOPjt9z5ZKIduypmbqHjQUAoEYiyGLUL+fGhmB/ezszE/a9ffjGHV1OEZzM65reBjj3dkpriez8Ym+W7K++dXdd0NO4S1vIfrUp7DPnJgQWolcPVcMEglovu7bB2LyrLMMdYSvgNlR+aiSiDOLGRvsREKkUrtceJALld5KEj6jaeYefM40U1V8LtcGTdOQwr1nDz4zbx6IIL2xLJZIZEcsGkVExmzDjeFhLIJtbflLZVMpEIkHDmBczzhj9rrUJRIYf+4ymu0+h0Ig+Vpbkampx9GjKOPt6kLGkD7SfuyYWPx6e8V9W7EifXN75AjIuK4uZJvabGJBdDoL6yhmIhiEtkYkQnTllTju8DDmcl0d9Mj27MGxN26EKLGViNcLL0BzrKEBIvHd3YaPU+kLVNXw/zdkGc+Qy5Vu8xRFEIzlRM5lgoMJySTmbkPD7Efp/X6if/gHjNuPfpRukzj45PFMtZmBALL9vF6U6lgZ95deQinwCScQ3XKL2KBPTIjMeTPjE4uhsUl/P9HHPobAxXTg5ZeJfvhDjMuNN4LsMEAgElVt0XEFztJTVcxtnw9r7cQE/j5v3lR9LaLs3T23bsX6t3Ur1tLNm5H5u2ZN+nsTCazJHk/pNu+cCc4/TBhwNmUhLUd9h0/+fvrSTS5vTiZByjkcyGzOtPHclKWzM/18kQjRV78Kn+cHP0gn0bjjdW1tfqIllYKtczrTGxIqCnzh3l6RYTg8LPzetjYEe7nxyaJFQhPyT3+C73nhhdi4TweCQQSBNA0VKCYC8lVbVIZgYo4lo/KVLfNzxfr1ZrXrAgHsv7JJLTExmI1I5A7Shbosc2avw5HeEbqcwdIt8TieXUVBBrGeaNU0BC1UdWo2oSRB67S3F/9ykgYRjhsMTu1TkImhIdgzhwMBkfZ2oXXP98vtTr8HROkkrj6jlfWmH3kEkivXXCMCWvPmCfurKLDlTU3WqmWCQZzj6FF8740bYasNoAJmRuWjSiLOLKZ9sFMpYawcDjy4dXXGDa2igESTJBhoo5s4Lq/lsuj583NvgFQVhNaePbjOJUvgqHDqdimIxIEBOIEdHeZ1844dw6a8oyO/88Tlza++it/PPNNQdGRakK+8WZYRwXE6UX6tH9PJSXTncruJrr8+fbM/MoL709EhtOIGB+H0EsHJ7erC4rRnD+75hg04L6fXa9rUjNNC8PtBICaT6A7d3g4H2+EQOp587S++iG7NXi829xs2GCuHV1Wi+++H1tGiRci66OoytchV+gJVNfw6JJOweVwqx2Ahf6ez/PUxubzZZhMR79mALMNZ7e0FgajvJszaY5qGjbLeFsXjRP/v/8Ghve46a3qnr7+OEp3ly1GCyF1f/X7YpJYWc7YoEiG67TbYn2uvBQlRanADmTvuQIDn85/HmJmI3ldt0XGAVArkFTcp4EZLDFkGYZVMwpdiHyDTn4pG0Yzj3nuxns+bB3H+iy/OHwjlbqFer/WyWVUVpCGX5drtsK0+n7EO0pnQl9lp2lTiY/t2+CLr1mGt1/sHw8MYr8y1X5aJvvlNBEa/9a10UjWZxLV7vfmfUQ6W8PUMDIjS5P5+0RimpgbZhQsW4Id1vfWNWWw20fSttxf36vTTzY2TUYyOwl/kZnsmAzlVW1TGYKKOibx8ayGXQ7PtMKpBqGmY95IE26J/RvhZ1etN60uW+fVC2oyplNhr1tdXBpFIRLRtG/ZK69fjR29zJibgb7S3p++dNQ1+1DPPEN10E7IXGZxFXV+f318aHye6+WbY3e9+F/ZOlrHHCwZF12Uef30DlGx7cFWF/NPTT0Pq4kMfAu+QSGANYV+Z5SVCIXzG58PaYdQHGxoievxxHHv9+vRGnQZQIbOislElEWcW0zbYsiwiQJzqbTVKo2kgaJJJPPRmSnVjMWwSZRmfmzcvNxEoy9CbefNN/N7dDSNRU2NNzyfzOxw9CuM1f37+8uRsnx0chPHr6ir8/QMBGPhIBF22Vq82f72lAnfL0pc3HzyIebFyZfrilEhg0x4KYdOuH6PJSXyvefOmfv9EAhmYfr8gWRYsQDdjux3jNzyMhb5Qen0mxsawmVYURLZaW0WEPrNUizE6iozCI0ewEJ5+Ou5BrnmXTBL94Q+ItJ94ItEFF2COmCzdqPQFqmr4M8BldPrSOSLMY87yK2U30umAvry5tnZmGz8xfvYzkGJf+xqaMegRDMIWZW4uFIXod7/D5vqaa7AWmMX+/YjSd3biX47K81pmtqwmGASBOD6OToNr15q/pkJQFGRe/v3vsJ/XXpu/e30OVG3RHIYsi8w3ll3INY/ZdwuFMIe48Z2mIfj3178iqyORAKl2xRVEb32r8bUvGoWfk6uDcTYoSjpxSCSyu/N9FyvgpiZc6jw2Bj+ws1MEqbmDajAofBy99pimQQrhySeJvvhFjA9DloUuWy5yLZGAz/X66yAOmRwgwjgvXCgyDLu7cY/0Pq6+KzVvz1QVGrFHjyLgefLJJRisLGCSs7FxKslhEFVbVOZgIo8zDfXdw7OBiUfOYszWqCUTHNBgeSz9PNJnOrKmHmdHmvHB9UTibMhJmcXICEjEjg7YI1XFddfViX1zY+PUxJU//xlSUx/5CNF73ytelySQbC4Xjpmr+s/vhy82MUF0663Ct2IprJYWsU4YIYkVBT7eiy9i/bjiCpG4lKviUVVxr8JhXFNdXbpebTa8+SbKvpNJJIf09Jjbx1Pl26KKQJVEnFmUfLA5c5CdlIYGGKJSlLOFw3CYWITeKJnHqduTk6KMI9dmliMV+/fD4SJCFsnq1cL5LYZIPHZMlCeb0eTj0utYDE5foeYpqRSIxKEhlPqeeursdQ5LJLBw8GI9OYnvoBc7VhR00zp0CJt2vdB4PA7irq4uv9Heuxeb35oaNGJZtgz3anQU4zZ/vrko9vAwCES7HWWDLS14TdOwSBZyaAcGQCaOjOCzZ54pmrswJieR5Tg4iNKtU0/FJsKC7lqlL1BVw58Bbqhis2FO621OIiEyFcuxgYkemgbbnUjMfHnzk09Ca+fyy5HZrAfbJXYg9df717/Cwb7iCpBpZnH4MJoeNDYS/e//LRzxcBj3tL7enC3y+9FVOhQi+uxnEYApNaJRjNXrr6MT/BVXpIuvm0DVFs1BsJxCKiWy9QyWt1M8jk28oiBz7aGHRJflt70Nm9EVK6xdVySCuevzTRX+Z3Bwka+fCOdmfcNSie3ngqriGd69G7ZgzRrY82gUdtxuF52SM32cv/wFQcYPfSi9GRTbVZtNVPdwOTSTb3198FliMXxm8WL4IEuWoPHJggXmfA1Zxjl/+1v4spdcAvvIGYqlsuuqCh98ZAS+VmbFiglUbVGFILPxSqF1hwl6PemXb47E40ICoa4O7+djpFI4v8cDW2B1r5RI4Jl2u3PbonJANIq9CUtfEYnMPZcLY+XxTO3G/Oyz8EP0zeGIMHZDQxjPrq70DvV6LcNwGP4QN2Q54QS8l+UvamvN7YslCQGW115DA5WLL8aeKhqF71Von8yallwxw7qJ+nmkafAFd+zAta5fD+LTQmVKpduiikCVRJxZlGywVVVknWmaEDAtNXEVi4nuUs3N5o6fTIJQSqVgrFpbsztQTHYlk3BkjhwRpbfLluGcxXyvY8dExNmgOPT/XNeRI7iuRYsKb0JVFcZ13z6c56yzZicTiEg4t3v3wkneuDG9++zf/kb0yitTo9qyLDSCurpyk7eTk/iurJE0MYHxYZ2NlhZz0cGjR+EoezwgEJua4IwrCsbSzKajtxdRskBA3IeFC3GO22/HnH7Xu6CvMW+e5blV6QtU1fBnAWfNOJ1TN+zxOJ4Pn2/2AgRmoC9vbmiY/o374cNEX/gC7Pb3vpdu6xUFkXaHA+uA3q489xyyo849FwSHWRw7hgi72030ne+IYAmXX+YjO7JhbAyOezxO9LnPYfNfaoyMoIHK4CAatbzlLVMzNkygaovmELipUzIpAhqF9AEzEQ4T3XcfslhGRrBRfP/7iS66qDR+IpPzdXXCx5Ek0VFZkvCa2y2Iw5kMvqRSaKRityODmDOeiHB97GOuXp1+Xc89B13Sc8+FLdOPeTgMYnZ0VJQmDwyI71pXB7KwuVlUZhTbLTkWQ2B1dBQN73p60ptfMPnjdlsnFCUJZGswCFunl5+wgKotqjDwfDKSlUiULh3AZa+5PqNPROH3ccksP1tWOkHrwcEKJivLDYoCAjGVwl5EL4sTiSDjTlUR6NDvMffuhaTCqlXpXeGJ4KOwPj2Ts3xPiESA41/+Bfuhr39daDmnUiAg3e7cGYzZkEoR/fu/w65ecw00WYNBfIf6enP7Pa6YicUwJzgjU1FAnB46hGOuXIlAjMV+A5VuiyoCVRJxZlH0YHM0dHIShqe21rpgqVFw52abzfxGR9NgLPx+fD5beSyR6P7kdMIo7dmDzaHHA0OydGlx33F4GERXc/NUAe184I7PkgRjZiQTYP9+6PDU1sJwmyEuSwWOLHM5t9eLzTV3Bnv4YZTpXHCB+Axnbspyfn3AcBg6kB4P0aZNWIz8fnznsTHcq1NOMR5x7+tDVmRdHQjEhgbcL0maqg9i5vvv3YtmBZyle+gQFqP3vAdzoAgCkajyF6iq4c8BSRLly3rijTMVNQ3O3mw3LzECWYYNkOXpLW+ORKDll0gQ/fSnUxtasUYSl80w3ngDpTonnJDeFd4oxsdBIKZSIBC7uvA6awNzFr1RDA2hhFmW8X0WLzZ3PUawbx90iWQZZdKrV5vXasxA1RbNAbBeYCKR3pnYzDNx6BAapTz2mCgDu/BCbFC9XqFDalVvWo9gED9MArAYv8cjiMMi5rRlaBr8x2g0XdOPN9ojI7ANrPnd2Iix2b8fXeR7eiCHkEpBXqGvD/Ithw9jTDkLa/Hi9LLkpib4mLIMX6vYoE04DALR70dzuZ4e8TdVFSXPmYSiUe06Iqxnu3bhe61ebS4rKQeqtqgCkZmVaITYYy1DIjH39J/RNMwrvx9zta4OxJBevoBtRrF2goMXXu/sJW7kwo4d2M9w1ZMek5MiuMoJGXV1eP/NN+P/3/sevhOXgPv98HsaGsReOrPxiaYhA3H7dnSXZx1FWYaPY7NhD2TUTiQSaFa3bx86MJ97LuxTKCQ4CCuQJIxBIoE5sm0bjtnVhcSPRYusH5sq3xZVBKok4szC8mBrGpyiyUkYgpoabNSmO7uEwZqL3KnXLLEjSTCW8bhoX59JUvEixovRxAQipGNj+Mz69XDcrEatRkeF7sSCBcaPI8twJlUV5zei4TMwAAOuqnDOenpm1qE+cgSLTU8PxpO7Zw8PI0Nh7VqU6ujHYHwcC0N7e+6sy2gUGYwOBxZFngfxOBYnvsceD8ql9CXU2dDbS3TnnVgoPvYxsYCmUnBoi21mIUlwxP/8Zyx2F1+MBZBLr4tApS9QVcOfB4mEsLN6R4uzhGw2PCOVIOg93eXNmoZN9yuvoIvpunXpf2ctnKamdLty9CjRr38NZ1bfFd4oJicRYQ8G0fyAMwZlGbbP4QA5Z/QeHT0KAtFuR3dkgx0ATeHZZyGS3tyM8qTOTlxjkZlhFTAL8+K4tkXcpZgbjXg85oIUioIMunvuQZaIx4Pg4OWXC5mSeFz4ACx8b4VIZGKANQ79fqyxra04rtc7+1nafX3wRVaunLppj0ZBItbVYQxCIYxfOAwCUZaRrTk8DF+GSFRW9PTgZ+nSqRtwfTMJHodiEAzCNkYiyFTOlw3NBJAkCVKGic58OnOBAMhWmw1ka4l05aq2qILBWYb6Bhv5oG9qRJQeUGByW1Vh25go09uIbI1WrCIaxXlYa7Uc0NeHZIZVq9Ilo4hgR4eHsS9paRHlzbIMmZNQCH5Va6sYy0QCdqa+XjSsdDjSfRxVJfrXf0WyyOc+JxJFeP8ny+aqu6JR+HWHDhF95jPIpmQuwuebGjC2At6XhsOwdQsXYt9cpE2qdFtUEaiSiDMLS4Mdi8HASBKMcHNz8U6KFbDWoSTBiFmJ+IRCcGY1Dd9Dr7XICwpROsE4PIxoaSCA92/YYD27b2wMZGJDAwyV0Q2mJIFIJEK5h5GsyNFRkKChEEjLNWtmJt1+chKLV3u72AirKhzGO+5AlOeGG9LJUC7VaWrKvSgkEiAKVBUEIhMCLPDrdOK+RKOI6kciIIt7erITr/v2Ef3xj3jPNdfgeKOj2JyY1VPMBkUh2rIF2YjLl+OYvb2CkD7ttKKilpW+QFUNfx7wxp6zDvV2grXKuDlApSCREJpepSxvvvNOot/8Bg7me96T/rdUCnaFg16MyUmiX/wCdvS668w/h5EISnyGh9GFedUqvM5aaLzxN0poHD4MrR+vFwRiCTJy0qBpRH/6E8Zq9WpE8xsaSkIgElVtUUWCCTnObna7zUklTE4SPfAA9ETHxrD2XnYZpDqyle8rCp5F3mizPE0hH0jT8BkmDrmLKpdZ88bXbOOi6cD4OMoDOzunNmeSZVRacFllXx82xjt3olN1KgUd5cWLsZHt7kYmzLx5+bO4NQ0+bTKZ3pnUKvx+EIjJJNHVV+MajELTBKHIWWJcpup2C6JmaAjZlT4fCMQS7ieqtqjCwXOIG6kU6pRMJLKok0n83+0W+tGsRZpMinJpffM6VYVtstuLXwsjEZyntnZ29sh6BALYe8yfP7UREmsaEmGfxpJe4+PIPDx0iOiWW4SGIZOzo6MYo87O7AEgbgr12GNEn/xkuj/GWvXt7cZtVCiE6xkcBCG5aZPgI7xeSzqFUzA4CC1tmw37ZNbAb2mxlrCkQ6XboopAlUScWZga7EQCDysb3+bm2d+0cnlyIgFDZEXzhZ3ZSER0EGRDwQsYdwHTn3dgAGQiN+1Yv96aEZuYEI1DFi0yHo1PJpHhZ7eDSDQSORsfx4IwOgone9kyUXI3HUilQOB5vSDvePEPBtEFVJIgqt7YiLFzu/G9hobwmVzkbCoFAjGVAoHIZKii4LOaJiJjROJ+9fVhvJYtSy8j370bAuZdXURXXYVzj43h3ra2Fk+2xuPo9vrmm0jlP/VUUWb1yis4v90O3aJTTrG0+an0Bapq+AuAHWN2evXgxgEu1+w7q2agL2/2+Yp/zl57DdmAmzejbCYzIs7ZPPPni78lEkS//CWu41OfMt1xjxIJZB4ePAhH+8QT8bqmYb2UZXOyG2++iRLshgYQiBb1d3JCkoh+8hOip5+GhMQHPoA509JSsozQqi2qMDB5qKqi06/RTJwDB5B1+MQTmFunnIKmPGecYWw+TU7CH2B9Uo9nKknA2UOxmMiQZDuYqdGof+6ammauOiYTXJpbV4dKC76+UAh+yPbt+Je7tRNh7Pftw/V/8pPIslmwAMdwOATBW1+fm0jx+7EWlMI/Hx1FoFdRUJlRTDY0B+VTqXS9tMFB+GytrfChS1whU7VFcwTcBIVIEFmZYPKL5xc/IzabyC7k8lrW72f74PUKe6UoOFax+ohECJRy+fRsBTWSSWQCOp2wKfp9EZcUh8NT5V1+/Wv4CddcQ3T66bCn9fX4HFdo5ZKa0jSiX/0KGX0f+hC6OTP8fox/Zif6fJichOzK6CjRTTcheSeRwP7Z48Gxir1XLDlVX489osslsq6DQcwLrxf7VQvrSqXboopAlUScWRgabNZzYoF/bpteTqVzkYggAZuarG2GolGQbLIMI8GbKtZHzNZQRZZByu3fj3Hq7IQjZDbtORBAVLq2FpFno9efSAhR7iVLjEXO/H6Uyo2Owvi2tqLUt9TlzZqGTLtEApk5bHSTSWzaAwFs2lm7R1VhvEMhvG/BguzjIEnQQIzHsWFh4li/sHV0ZF+w43Hcq8lJnHflSvx+770YvyuvxOeYVDbbkCUbJiawGE9MEL373chC9HjSSxuDQaKXXsK1eDwgGTdsMHVPyuhptISq4TcAWRYd9DLndyoltBNnOwPHDDQNzxqToI2N1uz3yAgymufNQyOSTDKV1zC9Ppiqiq7wV189tcSnECQJju2uXURf/jIcbQaTA2Yyot54g+iS6WPIAAAgAElEQVTnP8d3uPHG4hshZCIUgrj53r0gD88/XwQES1hSXrVFFYJUCsQU6z/7fMbIblnG5nLLFlQUeL1E73gHSpatNMLgsjguv21sxDUxcZhMCn00Jg6zkY0MrlJRlKIaBFmGLAttv6Ym+Fv9/cgw9vvxuiTB3qxahTHr7gYZ+/jjyLLZvDnd73Y48L3y2ZNAAONlpDNpIQwNgUC02yHvUMpsaM563b0bPltHh5C64Z8S7S+qtmgOITMrkbN4mWDkMlunM70pC5fYc9Yy2wNu0sn7Jj2RyERksUQiy7dwxdxMBzVUlWjrVnzX007Dd2Q9VkWB7xUIwO6yFrLDAfLvD39AA6wPfAD+DOs8ss/W1pY7I/rOO/FzySVE114rxjAcxl6IKx+MYGICGtOTk/Cz1qyB/ZiYwL3MbI5nFpqGMXrjDdiiBQswBkuXikAMf+dQCGPK+rXH0R6tInBck4g2m+0OIrqGiFyapskzcMq8g80io9EoDCtHIcqJPNQjHhfC2mY7NzO4/IyP09YGYyHLIjKVudniBerQIWSRSBKcwrVrzUWCJydBJNbUgEg0I0Y9MADH0igBGQiI6FMqhXOuWmWua2ghDA/jhzsEEmGs/vAHkItXXSXEuXnc+/sxv9asyZ7irijINgqH0eFZvwiNjWGuGik9HhpC5tCePfg5+WQQiC6XiJI1NRUloktEyDS44w58v/e/H+SA14vxyPYcjY2hc1p/PzYBp52GeWTgnpb0qSw3W1SFQCqFH49n6uY4kYD94dKdSkIx5c2pFKLTQ0Mon8nMro7FYF+56x4RnML770cm8Hveg4CEGSgKxL23bhWbfkYkAltUX298DXj9dQRXOjrQibXUUhNHj0LcfGICpd5r104LgUhUtUVlD+5cLMtCBsHI8+b3E/3tb/iZmMBm6/LLid75zuIbCCiKaDjncGD+M1FQU2P8GhnsU7Du4nRrQLPGV18f1vDeXuEzEmHt7+6GbfL5ELjV26l774UMw/veB1+EEY1iTFIpPKusH6kvKyQSnUkbGor3444exbV4PCAQS1EmqEcqBZI1HEZQtbNTlDyrKt7jdIqS5yLsU9UWzUEwaciZidyciTU38wUX9CQkZ8YyMUYknq9S6iNy5qMs4/mcCd+Mk1927YJNWrNGVHaxXeXqjNra9KqvF15AV/hzzkEwk8czGoWPFQhAfitXZvJ998GXedvb0BCOPx+PI9jr8xkPSoyMgECMx4m++lXsGVmWxukEgViM/yJJCIgNDODYbOuWLs2+B1VVoautaRi7xkZD+3VLtmgWbE5FYxZ6p808bDbbyUR0KRHdoWla3yxfzhQoCjZcvKFraiq9+P10gJsOTE7C6bJSymK3i/LVsTEYzLo6EemQ5alRUjbIK1fCIdq/Hw7kwAAizatXG8tE4QxKjlobzSz0+eDMDw7iswsXFr5XvHEcHIRRjEahxdPdjWMVi2gUDnVLS7r22EMPofzp0kvTu/ux/gg7jZOT4neGqqKzWCiELD09gchkt9ESns5OlA3t2IFFY9UqLFLRKI7f0FA8gbh9O3THmpoQyePyZb3uZiba2kBoDA5iIX/iCXQIO+us9PEqFcrdFlUxFW43bHQyiWdE/6x7vaL0rxSaPjMJJj6DQSGSbYRI0zSU//b2En3zm1MJRFnGMT2e9OO9+CIIxHPOMU8g8jm3bkXZoZ5AZDvCxIcRvPoq0e23w+bfcEPpZUJ27oQ4usOBcu/2dsyjXMGM2UDVFk0/ZBnkIUu0GNXq2ruX6O67sdmSZWTcfvnLCHIVO38kKV3f0G4XvueSJdbJSbsd8zsQEJk2pbSHrPXMP/39sMnRKDa569fDT+nuxvdoaIDdPnYM16bfgL/0EtFvfwtbpC/7IxJ+AxHGh0vOmURxOITN4Y6zxaCvD9IrdXUgEIv1gzLBvqYsY4y42R2TxYoiOj3HYuJvnKE4E/uQqi0qX7Bmob5Zit2enkWYC3Y7nicmIe12IRNTX4/XEgkhj+B0ivMUYzs4MBoKwbY1NJQ2qKFvKKMv5+ZkCdZU5cCD3S4qt1jCi3HgAJqtrV4NX0Rv35n85GzGcHiqvXnsMRCIZ52V/vlUCntqt7twg0vG4CAqPRSF6NZb8R0kSQSa5s0rzh5Eo7jeQABJKW43rnfp0tzrot0uMr3DYQRuYjH8XgxPUrU5pcFxQSIS0clE9A0ieoqI+mb1SnRQVWy2uJy0ocEww142cLthWPx+GAarQqheL8i4yUlRIsJZZEwk6uFwiIXmhBNA+OzdCwPe1weC0UjJcEMDsgmPHEHpCxv+Qqirg1N67BgMr5EmLY2NeM/gIJztVArnDAZxvVYXOUXBd/Z4cB2Ml17CD2sC6sGZQp2dGIOJCUSg9BocO3fivq5fnx7FikTw2fp6Y+V/mkb01FMQzz3vPBAABw+iU2ltLSJ2xeiQaRoWpkceAYl8+eUi/d2oQ75gATIXDx0C2fHgg/jOZ59tTtjcAMrSFlWRH16v0AfjyDmjpgZ/i8fNdVUtBzgcsEXsmEkS7EG+Nejhh4n+/neiD38YOmx6sD4aB8MY+/bhM2vXim6BRsFaP08/jXO+613ib6kU1k/uOm0EL76ITXtPD9FnP1t6TcvHHiP62c9Art50kygFzRfMmCVUbdE0QVFEowHu5K7XEcwGScIaueX/s/fl8XGV1fvnzkxmJpnJ3jRpuqRLSje2UgRL2VRWESkIsogoILKJorgAAip8Za2ion7dWb6ioED5CQjIjpRCWyi2lJY2bdMkzZ6ZTGZf7ry/P54e3zt37mTuLClJO8/nk0/azMzd5t7znvOcc56zEs9LRQUSXMuXp67r+SAWk8QhVxOxFM2UKTLgHByUMif5wGrFNplIzLdDhWVjdu6Ubck+n9zHtGmwPfX1uMZz58KH0oNlWxob5bVvayO691585ppr0nVcQyE8s3V1CFpDIXx3brdMkPh8ow9bMYu2NqK//AXX7OKLi9uZQgT/bdMm+JaHHmq8fW3LurbijO8Xq1USimMYm5Rs0TiDvmWZtVuJ8PdYDPeDmfZjlqZKJHCf+Xx41qqq0olEju3ymR6vhaJIuSYuVMgnxhJCkqj8w9W7fG52O56Vjg4kMA4/PP2aDA/jmk2eLJ+j/n4MLqmrQ9WfNs5NJqUE1syZsEUjI3KAk8UC3cX77gMhd911cruqis8qCmyfmevY3o5jsVoxqX7qVDnsRVFARBby/A8NwTeKx5G84bVxzhxzxUe8trjdkhzm7pM8OzZLNqcI2F9IxHEFLrVmQ+pywdka6/aPsQJnKIaH8eN259capii4Di4XHNqBATmN2qjEnbNaySQWpsMOg2O4aRO0FrZvR3Zn9uzRjajbDcOvJRLNlL9XVcmWmu5ucxWFnDnp7MQxV1Xh3+vXozovHz3Azk4Y+7lz5Xl++CGIsAULiE46KfX98bi8tiyO29gIh3N4GAt6Tw/eM39+agafhXV5MEA2CEH0wgtEb7yBhe6MM3CMdjvOeXgY19xmy6+FJ5Eg+vvfUT24ZAkICp7Olo++2ezZyIpt2QICduVKkIjLlhV/YmsJEweKgns+HJZEovY1PZE4zsiiUcHOtt2OdcnjgR0yqubeuhUVgUuWQB5BD9Yi0lYh9fTgGW1uxlCnXK/NX/+KiurPfhafZyQSsB+sG2wGr71G9MgjsItXXFFcvSQhQE4+8QQC9quvhjM/TgnEEsYAXGUTiUi7oE866DE4iHa0p57C/TxjBlraTjyxsArZaBTHwhqMRJIM4y4Shs2G53NwEM9/JJJ/1QnL23BiOdsAIa4W1FYZ9vbKdsfJk6WO4axZ8LPKynB+GzbgGTbqGmACsK5OPucDA2jVq6nBUCb988+VeJwMqqlBoBoMwq7ZbCACqqrwwxV8+lZnM9i8mejRR3F+X/pS4YSkHrt3g6R0uZBoN9Odw2QPV9gzoRiJyGp7u33MCcUSPiJwhV08LgelcLeS9t52OFIJNa3O4WjQPifcfVdRITs9uLqRqx95QEu+sFjwnPp8siIx23FqCUP+t3Z7fA58zooideMdDqz9+mMOh+FbVVZK3zEUgi1KJFD1p4/9Bgex/6YmaVPtdpxLfz/s5IoViNFuuEHGrELgdVVF7Gbme2lrQ+dEeTnsYlOTHIBKVDiB2NGBQpLychSSeL04p9mzc/fBbDbY9MpKmdBhWYnxNjtif8A+r4moKMoPCWyzHhcT0fGE3vcmIlpBRKcTkZWI/klEVwohPLptzSKiHxHRSURUS0S7iOiPRHSPECJJWSAECa7iUlU8UGwY9gUwORoOS4KskAd6ZASEFQ9eqa9PN2RCSPFeraPq9UKbYmAAi9TChXDORzueUAhZb6sVRKLZ78XjkdOXM0031iMYBPnH5Nn27VhEW1pyqzoYGsJ2mpslydXbS/T738PwX3ppeotydzd+NzenE7N+PzQQe3uxGM6fL1+Lx0EIWK1YnLIFGEKAyHz7bbRhnXYarn8wiO+FK3S2bZPaiq2t5q97MAgdoZ07oRF12GG497jMvVCwvsnatdhuayvR0qX/bRfP+c4eT7aISto/eSEel8NU9PepqsKGsObZRISqwinj6c1ap8znk+0yv/xl+jPGwttaAn9kBFPhLRaiyy/PPbn0//4f2g5POAGkHx8L668JYb5t8oUXQPAdfDAGTBUzaReNYrjM6tWwReefL0XRi92eaICSLfqIIYQkD4XA915ennmNFAJry8qVRK+/jv8vXYoq+iVL8vObeHgGJzPYL+JjGe14GKoqK3dYozpf/zQehx9mtcqhZkLgudUShh0dsjrS7YbvxT+Z2quTSQwJiUTwPOuriWMx+CpOJxKkRLguN94I3+POO9M7DMJhfM5o2E08Dp+ISdGpU3E++jZPrszKZo82biR67DH4YBddZKwFli94wN7u3fAtFy4snPDTEopMqlgsskJRY0tLtmgCgr9f/m75Ps62RuoHr+QyoIfJea5A5IQbPwt8LMVYp9muEaUOkuPp0lrikCkRrQ4qXw8j+ykEihgGBiA7oZWT4n339EhJBT7XH/8YNuzmm0Hya+HzSVuj97PicfgZd92FmHbFilQb2d8PW2dGq54IyYwVK3BdbrwRcSNrNyaT+H8hmpLvv48YqqEBcWBfH9YUnsZcKKJRXK9oFN9RdfV/zzvjnTjObM6ExgStfcsJTxDRNCK6lIhuJ6LNe/7+JuFmISJ6hoh2ENENRDSPiL5GRDEi+m+thaIorUS0moiCRPQrIurf8/k7iWg2EV2e7UC6u2EAHA48UMVuo/qooShyepLfD0OZ7+RmIhjPigpkQ7xeZBuam1OvG5OHyaTMnBHBkB97LAzqxo3IEm3ditbcTOK0FRVwXLl9ZuZMc9nbujrsf3AQx2KmYo2nQnd04HMLF+Lf7e2yvTmbgY1E4ChWVsp9+v2ohnE6iS68MD0A4ImMnN3So68PC9D06ThGbgPItTw+mQQBsH49StdPPBGfDYdxDE4njllREDR1dODH60V5ezYytr8fE5h9Poiit7RInZVitQRZrSBSFy7Eebz7Lu6hmhqiL385r02OG1sUCOR1/CUQnJVAAPew/hlKJGRr8ES171zlMzCAgJ9lGH70Izy7d96J5197D7HTabHg+QsEEJA/8ABsEj8vudx3L7+MZ/zjH8czHgzi79wyzetLODz6doRAK/Vzz6Ea+oILYDuLBa8XTviOHbC5xxwjbZzNNnbPmqqiqvLyrE+7IcaNLZrIEAL3UjiMf3MQnIm0iUYxDXjlShA9bjdkNM44I7NfYmb/LLXAxCGThtmqIPXgyh2nEwmB3l74UvmsqWVl8D82boTvOzQE38rvl69Pn47nhUlD7ozIhp07YQ/mz0+3s0JIW8RaYDyUqbOT6JZb0gnE0YZn8eeJJMHIfhFX7mk10qLR1IolPd59F0NdWlpgL8xOkjcDVUUXztAQktFz5hSnMoe17RwOSRxx0p3b4Pv7S7ZookFbcUeUPmU5G7hSUXvvm61SdbnkMJKKCjx/wSD+73LJ9udEonAikQdHeb24TysqZBcbQztYyGxlJRHW/f5+xAl6ApEoXVJBCGgY/uc/6FbQE4jhMI7T5TIuhujoQDdIYyOGqHCy0mqVUmB1deYIxA0bIO3Q0IBqxtpaGcuqamEEYjIJsnPrVlSQH3IIZgg4nfh/sZK4DgdiSR70OjQE4vKII0b9WMnmFAn7PIkohNigKMpbhJvlBSHEq/yaIlfXN4QQ1+r+/jVFUa4WQuzJX9AviMhPRIuFEHvUWei3iqLsJqLrFEX5mRCCb0RDKIr57MBEBi8A/EAX0qpts4FQcruRzWlvh8HjzDaRLHnnbJjWaZo8meiTnwTZtmkThmfU16cKTGtRXi6JxPZ2OHpmyIBJk2B0PZ5U53U0aEnLri4Y1poaLErc3pypJTeZxOcsFpCRRFiE//xnBBNf+Uq64z8yIoehGGW+29vhnM+ahX17vfgOIxG5mGciH7VQVYjCv/++1EBUFGynvx+LEhOIRDiHmTPxtw8/RCtxXx+IVKPjbGtDdRJXN1VVYQHRToItJux2ZBhbW9F+tGZNfiTieLJFJeQPFgrnYFHrcJeV4dmMxWTr10SDUXvzU0/B4bzmGgSmegwPwznmtt1kEkTJ4CCGHOUqBfDmmyAQDzkEk4211ziXqYtCoFX0lVfgVJ53XnE1K3ftIrr7bhAj110Hm6WtxB8rDA5imuOWLfkF7iVbVDi46o8Hb1RUZF4b+/qQVHv6adwrs2fjfjnxxNxJJG6Z1lY+WiySNMymvTgaOClrt4PUHBoy396cSMCP0VYZcltdLAbfYeFC+BezZiEhnE+FXF8ftjttmnHQ7vGA5GpslATfH/8In+qqq2BTtGD9SpvN2NeLRrFNhwMViJEIEgOcYOH2TK7KY1/JqNX57bdxD7S2IplRzKmx0SgI22AQdkg/8MoshMD59feDIOzrw+/+/tQfrxfv5W6gZLJkiyYCzLYs5wIm3bhaVVXNVSW6XFIChafDh8OpRCITjbnaCr2OIROlwaDUFeREH7cl54rBQZBkzc2IFfXgzry6OvmsP/UU9NvPOguxqRaJxOjDULq6iH7wA1yru+7CmjM8LOOqQAC+mxnf4513MNBl6lSi66/HZ4SQ3X9aGYhcEYshCdzTA3s7axaOvbwc/x4LKQTubFu1CgM8RyMRSzaneNjnSUST+LXu/68R0TeIqIWINiqKUktEpxDRT4ioTFEU7eP9LBFdR0SfJMlmGyLfRX0iQpsZ8Xjym9yshdsNx7u3F4Y7GASZyCSTVh9RTyQqChzO5mYEfR98AG2spiaQiXqizulMJxLNtJs0NsosDg8syAajfR1yCILDjRtle7N+gevpweLEJeHJJNpjenpQtaOvamAtw0zDRrq60Fbc1ITsvqIgaHA4QGqGw9BczBbwJBKYkLxlC7QYjz4af4/FsNDZbJkrGSsqUPnHE87WrsWCoz3/tWtxng0NECLnc6uuLr6mkBZc0TpvHtoVxxB7xRaNBdm6P6GiAs8ED03Qwu3GPRmPG1crThS43bAVL7wAQvDUU6FLqLdFwaCUZeBn8NlnYdOWL8cznQveeQeZ+oMOglaQ1uYEAlIDMdvzLgRI/zfeQDv0uecWVy/nnXeI7rkH3/8998DpD4dBmBZ7QIIWa9eiqioaJfr2t8duP7SXbNFEQywmdQZtNjwnRmSQEAhmVq7EPUiEqruzzkILbi73IhNdTBwSwcdwuXD/FbOajZOyQmCd9fvhx8ViuMe5Gm1gIJUw7OqSLYhVVfBrli7F74YG2YVTSHt/IIBEZ02NsexLKCS1z9hne+YZ2KPly9OHOgmBz1gsxsl97WTSSZPk+3iqvdcrNSYZTBpqW4DjcWgsv/QSiNRzzy3uuuD3wz9JJmE3M+lVs39qRApqSUOjSu2aGti2hgacQ2Mj9lNbC9tf6PCfLCjZogJh1LJcTG1LJiOZvOP20tHucx7qEwpJLXOrFf8PBmEvOLYbbdAKtyVrCUN9WzITpTU1eF6SSWw/X58gHIZ9r6xEHKlHLAaCr6JC+gNr1qAA4qij0qfCs5YhEZ4x/XH196P12WIhuu02STLa7SiS2bULfzOjVb96NdGvf4348bvfxXVnAjEWkwRrPvD74TP6/Vjv6upQAe5yIZ4bq8GDoRCkQQYG0N1WBJRsjglM0PCm6Nil+793z29+HOcS+uu/vefHCKWxCzqUlcG5YCKxurow7RfW4vP7sb3ubhhn1kq0WLB4JJPGC6PFAiM2YwZIqi1bMC1q+nSiRYtSg1KeiKUl98xUkDY1Yf99fXI0fTZo97VrF47v0ENRcbdrF5zVefNkoDIyAkPZ0CAzTv/6F7QtTjsN79WCW5HLyvAZPXp78dmGBiyG2sWLp6nZ7ZIsyJTliscxBKGtDcdx5JHy7729uB5cHZAJigKyt74epOb27Tj2uXMRiL3yCrLsF16I44nF4BSMVXVvMgkSdedOSXKOJVlJJVs0IWCxpA5a0TtcLEzPg1Ymqgh9by/Rb34Dm/KFL8CWV1fL84nHYY+cTvlcvP02nNSjjsraUpKGTZtAyM2cCX0eLTkSieCZLy/P/gwmk6jKXr0axMGZZxaXQHzmGRCds2aB6LRapR7rWBH0qgoN2MceQ8D+ve8ZV4UWESVbpAG3cCYS+L65WlePSEQS7zt3Yr08/3y0LOdSkZtISOIwGsXfeP3lNXmsoPWleILqe+/BHxkakrInRDiOlhZ0HXBbstEgISb4uBU4V8Tj6FSw2+EP6LfPgwDsdpnAXbtWSiJcdFH6NrmS1O1O3x5PJuXOEn3FeV2dnBLKw1a02+AW4GQS5OFLL8HPXL4cr2vldwrBwAD8NyHgX+3YAcJSSwryv3n6thZWK3y/xkZcVx4ip/0x0sZkfWDW3RzjNa5ki/IEVx3y984almNF5nAspiX0RmuR5iEt2mpgiwX3FlfycsKG/QH94BN9W7LDISsMje7Lyko8t35/fpN9VRWyBEJAi91Iq58lFXhg5PbtaB1ubU2fCk8kCbzJk9OTUl4v0U03YW25447UgiQmS6urcd6Dg6PrRL/2GjTz580j+s53pO/q9eKaZ+pUM4P+ftg5IYhOPhnn0dWFa9zSMnb3XE8PKhDjcdj6uXOLstmSzTGBEokIqBn+ruh+/4aIHs/w3p1FPaJ9BNrJzSzYX0iVhsWCANLplA5pKAQnz+02V/5utYKImjkTpehtbTB0s2enauzY7enkXrbglUmwri4ppmvmfHlf7e1yX/PmwRnfvh0L1rx52H9HB4w8VxuuXQsDeuSRMKBacHYrmQTBqTfiAwNoO66tTa+OCAbxvXGm2eORArb6RSoaJXr4YRz7mWdCe4wI33dvr9RSNJt9dzhAaLKDfOed+DcTAj4fFtxCFrxsiESw7/5+XLtFi/ZKVVnJFk0QWK14brltTe/46Sc2j5UDNVYIh6GDaLcT3XornFRO4FRW4hn1euUUUyLY03/+E3ZUPxU+G9raiG6/HXbipptSn+tYDM+83Z7dnqoqtBjXrSP6zGeIPv3p4hGIySRaI595BgTpN78pJ5dWVo5dgmFwEO1LmzaBrLnqqjFPZhCVbBERYQ0LhfCMWyzwM4wq/3p6QBw++ywq5ubORZXHJz9pvlIwHpcTlXnYiN0uE7DFbH8d7RhYn3nHDqzpPMSI1/7Zs1HxxvrFZmxbRYVslWXJBLMQAknFRAJ+gdE6PDAgqycVBcf+05/iGK+9Nt0GsEyLkYYlE5KKknkyKdu9UEi2N+slFoQAofzGG/DPTjtNyl0oiqwGG80+CSFbFvWk4Pbt+H4CAVmtpYXLJYnA2bNTScHGRvw7V91yvg9Yq66Qaq4cULJFOUDfsswSBYW0LOcCbu/nFudYTN7rRqiowPEGg3iG7HZ5DkwU+v34m90u71dtNaWZQTAMux12PBCQLcC54IMPEHsuWWJcwODx4Ji562pwEORfdTVah/WEvN+P4zAqiPD7oeM6PIwKxJkz5WuqKgtW5s6V1Y/9/YiN9MntF16Ab3TQQUTf+pY8Dq8X645mKEnO2LEDds7lQpwWjaJCsqoKBOJY3HfJJL6L99+HHT/uOONCmTxRsjkmsL+QiIVO3NrB2xBCvFj44exfUBQYNNbkU1Up1p8PbDYsJlVVMP7sWPn9MCBWa2prcybY7XBIW1tBFu3YAcd57lw52KSsLJVInD49+4KjKNCZ6OxEteS0aeYCvrIyVLbwxMLp07EIVVaiavL99+V5t7bi3NraoLFzwAEIlvVgPaPJk9MXLo8HOmeVlaiw016raFQOB2Cx8/p6/N/rxfXmkvdwGMNcuruJzj5bCgWrKghEIRBo5BMAORxoG+zvx3anTcP1cbsLK7nPBq8X1zwUwv0wc2bRSKCSLdqHYLfDzrA+ojbY5AEHWiJxbzjwxYAQmDbc2QnnlyuobDY5vZXPmat0+vogZdDUBDuQy/PS2QkHuaoKmj/aSiWeGM2T90a7homEFC0/66z09sVCEA5Dh3DdOlSVXXSRTGbwELCxwNq1IEMiEZCHp55atKqfki0aBTxtnQkflyudMBEC69MTT6D6y2JBIHPmmUg6mXneuT06HJathtz2W14+tokrIbBGa9uSd++WlT21tUhoHnssSKgZM/Dc89TlbDqJerhc2HYohGtjtmq3sxPP2pw5xr4UazfzIIChIUw/dbvTK5qJZBWd3Z7uFzGBKAS2l+36a4etcHszE6bPPIPKbCYQtdPlufqqsxO+2NAQfvTtxf39klBmcPUf62rPmwe729CQWkFYbJukqlKHM9MQmjxRskVFwFi3LOcKrsblysFk0nhoCdtXnw8kGH8mGMRvvtdiMXnvFVr9yrIMwSAIvFxsUVcXbJFRZTlvr7paxke33y6rCPVyDqy5Wl6e/honcnfvhl+k7TLjAhFVlc5LL4YAACAASURBVFr13LbN9sTtlhXSTz+NTrElS1AJyc+uzwd7XIim/HvvQXO2qQlJs+Fh+IM1NYhjx8LvDYWw9nZ0oHDnyCNztnclm1ME7C8kIs9HNKFSlw4hxICiKC8S0Zf2CGV+qH1dUZQqIooKIaIFHuc+DZ5mx5Oba2vzJ2ZsNlkZMG2aHOLS2QlyqarKHJFIBEO/eDHIok2bQB7t2IFqmtmzsS8mEjs7sb9s7Th8XB0dWHBmzDBXMafdV0cHtlFZCZ3ENWtwbEwg9vVhOufkyRheoD/PQACOrZFeoM8Hw19RgXJ8raOcSEj9Qu0AFCJsx27HtR4YwPf55JP493nn4ZoR4br39sqpZPm0XvX0oBUpGETFT1MTrkFPD74rM8NrckUyiQV7505czwMPTL8GBaJki/YxcMtaJJJOFPLAAy2ROBGwciXaXi65JFXTkLVeBwYQMFdVwU74/WgfdjrR9pzL897XB0e5rIzohz9M1fRJJrEfouwVM7EYWq83b4YtOu64nE55VAwOEv3P/8AmX3EFWnVYJ65QmY5MSCSgn7RyJZJSN99MtGBByRaNNViGIBJJnXSsve6hECZ+r1wJn6CmhuiLX4RmKLevjQae6MxDBIjw7FRWjj7duVD4fKmE4a5dUv+O9ZlPOgm/W1pwbyeTspqJdc8cDtgAnt6cS3tyZaUM3jNpEWrh8WBN5so5PZjUdLmkHu3tt8vgXa9Nzd8v67HpXxsayn0yqba9ORDAMTCB2NqK7f3xj+mVhEND+LzQhLM8bbSxEYlTfWtxXR2uu9+P72jmzL2TnOIJ1rymFbmyvmSLCoC2ZZmrAMeyZTlX8LFoj5O7xrRahpGI1EYsL4f9SSSkHeY2ZyFSqxvzvf+dTqmLykTmaPD5UPk2aZJxy2wiIYcwVVfj/H76U6wRN92UPhVeVWUcpa+gi8WQCGlrw+Rk/UCowUFci8mTU5MkNhu25fPBFkWjRK++isFeS5diUB2vL2yv3O78OgRVFV1w27fDzi1bJgcx1dYa6/kXA319IC2Hh5GsW7Qor4RGyeYUAfsLibiOwBjfoChKDRGFiejtHLdxJWH89zuKovyBiD4gohoiWkREnyOiA4movVgHvK/C5YKRGx4ubHIzi+Xy4sNEGeu+BAJw5svKzGvPuN3IZsybh6q/DRvQQrNwIZy1lhYEkZ2dCOqyCYRbrSAPmXycMcNc5RwTiUxATp2Kv1VUgNSKx2G433gDi8eFF6Zn2mMxWUmod6IDARhgux0Eotb4sp6jEFicjJyQsjI4uB0dRPffj+1deqnMkvE2uJw/H9H3LVtASjgcRFdfDQJxaAgt14EAnOg1a7CQ5zr5NRMiEQRWPT1YUA84YEwmrJZs0T4GrgoJhXAP6QNTqxWvc9vrWFXPFgsbN6Ka76ijiM45J/11louor4cN6e1FJVY4jKnwuTwzHg+Iw3gcJF1jo3xNCDjCySRs2GjESiQCofC2NlQILl1q/hiyoa0Nznw0iraigw+WE2Brasbm++zrw/CUDz5A+/LFF5sjp3JEyRZpIETqxGOnM50s6eoCcfjcc3je589Hpdvxx48exAiRShxysM/VZKwDVkxEo7KDYudOrG3Dw3iNk5xHHCF1DBsbjf0ko6F12unNXq+c3myW/ORJoH6/JAiMEA7j+XO7U9v4GMkkfD4e7JRMImjfuRNBu/4zTF4SpZOX2smkbNuMwESjtlJQO8G4uxvPLQ94Wb1afra6WpKBCxZIYrShAfusq4Mfy/6tnggKh2Gfw2Hce01No13l4oDvXa0u3RgQAyVblCOEkFWHH0XLci7QTvBmP4in2rNuod0uB9YRyWnNRJJcdDrl8BYi6YtoJ6DnivJyafuNBuUxYjHISjkcSKwa7WtwEL8nTcLr99+Pz1x+eToJyLqJqgpbqn3OVZXo7rsRg37rW1JfnuH1wo7V1hofr6LIYab33w+dwk99CgQi7ycQgI2qqDCn3a9HJIIJzH19qG48+GAke4aGYMumTs19m9mgqojJP9xD133sY7DxeSbdSjanCNgvSEQhxHZFUa4miF/+noisRHRxHts4jIhuIqKziOgqgtDmNiL6ERH1FvWg92E4HHCWmEisqcmPaOL2Qe1CMmUKjOPgIJy5qips32o1v8DU1GCqMOsFvvMOtL4WLZJE4u7dWASyTWC2WpF9YvKxpcVclY7VKvfV0YGAxeUCiRgIYIHp7SX66lfTg/ZkEs6sxZJeRRcO43wsFhh+7XXn8ngm/0YLinw+BFOJBFq3uALA4cA2OEOWT4C9ahWyZs3NCJ5dLtle1NCAxWnqVCwkH3yARWzu3MKCeY8H34/XC8fc7CCdXFGyRfsmeNAKO7t6e8YT1LmSYyyHIhSCoSFU70yZgsm/RjbT65Ui/oqCauFduzA8QksCZsPICCoQ/X4Qifos/ciIrPQbzRaFQkT33Qc7ecklRIcfbv4YsmH1aoihV1fjWKdNg63gSvpiTsVlvPUW0S9+gXO/4go4/yVbNHbQEnzcKqfVMBUCFWVPPIHWcpsNxO5ZZ8nK+0zbZdKQt812gonDYmp1dnenVhn29MgKt4YGVIrMmoW1bfr03Co3jIbWWSyp05t7ehA8m12HuVtkZEQSqlqoKtZ4RUFCz4hkZdKPg/A//Qnf0Ve/igSpHkzgulyp22MCkbtkenoyTy8eGDAeTjJpEq6HEHI43hFH4Fq3tOA1M/ZCP2mW9d4CAfijRCAkCplybRZj2L6cgpItMg9t9R7RR9+ybATtMfK/Gaxrz8UdLCnAtpClAYJBWR3ncKQmYS0WeU9q95UvmcjyA0wk6pMaQqBzKxZDgtLoORgehu/HEgj//Cf0cT/7WWN96OFhKcGg9QeFIPr5z1EkccUVSFBpEQgg/qqsHJ38EwLyMm+8gW2ccYZMbIRC2EZ5efYY1gg+H/QVQyFse+ZMGT81NEi9/mIiGESnIFf+L1qUOfFlBiWbUxwoQltHX8JYo3SxNVBVGNJ4vDBNKdba0Ja1q6p0CtnB4wxvrujuhvPm94P8XLQIxt/vB+FkpkIkFkOgrShwKM06Y8kkgsqeHjik06YRPfoojOmyZVLzYt486aD29WExbGpKdcwjEeh5JRLI4OhL97mCk4fUZILHg+xWNIoWLq4S5HYXLqfPVfg/mST6xz9AIi5aBFLCapXZPa4sZQghW4+J0Hre3Jzbd8wBA18zJihNkDzjLNebM0q2aAzAEwWdTuMKa9Y9G2uts3yQSGAQxI4dcGJbWtLfwxMNeaDR88/jeT3+eDnwgFucR0M4DI2fjg606S5alPq6VqdoNDsSCOBYe3tRBanP9ucLISDT8OCDsK033IDzYgIx38TXaIjHsb+nn4Ydu/JKkCcm9lOyRXmCycNkUlbCcDAeCCAIfPJJ+AD19QgITz89c+DFrbLaikZumy0vL04VlxAI1rSEYUcH1l4iPC9cXchtycWYGM7VRIqSTujFYiDXEgk8G2YrW3hoSCyW/kxt3Qq/YuFC4+1xsrimBj/PPkv0u99hmNKll6bvp78flaSsXagdVNLVhf+Hw+nnVlGR3lKsH05SWwu78Je/oHLy9NPhY7F2rN0O+5HrABMmR3p7sd2KCkjv7A1ZDG37cg6VsiVbNEbQtyzbbIW18hYLTHpryTymFfg4tYNP9BV3/H7tYJRYDD4AV4MTyWQPk4fa68BVmaqaWsWbK3jSOg/vZHz4Ifwi1mXXIxKBHXG7sU688w70Dz/2MUxA1j87oRDsTWVlavwoBCRZnn0WHRVnn228H6dzdJmlZBITmF9/Hfbw3HPl8BZVxX5YVz7X+6enBxWIFgvRCScgXuzshB1vbMwtkWwWvb2QqfF6kZRpbTVFfk50WzQhUCIR9y5KF1sHdiKjUThG+baPsvC0PgsVCsFRjEax7UwtumaOc9cuVL6Fw9JxVBTpUGZDNApnn9uczSxyHCyoKq7P5s3IiJ1yCkjEgQE4l9psvdeLhUl7LWMxEIjRKCoQ9dfZ58Pn2CHPhIEBTPdSVaIvf1m20/D0xMFBWcmXS2aUpztv3gwR99NOk0QwD3XJdL0iEQQcPB2Rp1hnQziM4IFF4pua8GPyuCf6AlWyRWMEJiUy6UaFQvJ5Hk/VA//7v6gAvvFGPIN6sEQCZ6/XrQPpf+SRGOoUjyNoFgLOcaaKpFgMQ1Q+/JDoe9+DPdIiEoE9cjpHJyN8Pgx/GRpCxn7hwvzPXQtVhSP/wguoSP/61/E9eTyytbrYlaQ9PWhfbmtDlds55+Q0zb5ki3IEDzPhDgYejkGE9XblSqJ//Qv34oEHourwmGOMvw9VlROVo3vUj2y2VOKwEITDUr9w5078HhmR+5k+PZU05Fa6sQATidzWrEUyiWeEg/9MU42Ntun1SgLSbsfz0N4OP8moLS4ex3vsdgTCr76K6eUzZqBylysGtVWErHHJNllR8NnqajzTU6fiWrI/x2ShGV8iGoX8yq5dRMuXp1ZBhsNyInW2qmojtLdDc8ztRuUr692NleZdge3LJVtURBi1LPP3/1Edj17HUFuVqyULjQaoZNomk5Cs52ixwI7EYvAl+Hy5WpBITnDWDrTTEpr5kolMJLrduPf7+tCSPH061gI9uApcUVCB19EBH2raNPg5RkOdenpwnk1Nqc/WQw8RPfYY1psvfSn1Nf6c1Zre/qyFqkLa5a23iD73OXSK8Xa8XqwhZWUYDJNrMmLrVnRnVFVhaJ3LJdejKVOKOhn5v+eydSvitHhcyoqZTIpNdFs0IVAiEfcuShc7A/x+LBo8lTBXJ5gXW16EtGBx/qEhSRblWiXHUFVkpLZskW2LTU1wXs1kYHgaX1kZPjPaIhuLIdB2OmHwn38eQf7RR2N4AV+jcBjH4/Fgu/Pnp+oEJhLIjAUCcG71GZxgEA63yzX6ItDTg0oZqxUEova9XPXJ7QXaac7ZMDyMNqS+PjjgS5fi3D2e7ASiFn19CMITCVzblpbMC63HI8XJORuY4wCVib5AlWzRGEEr1K0fyKB9XYjUtsmPEi+/DImEs85CK6AerD1GhOdkxw5MZJ8zB7aIz4HbE2MxOShCe/6JBIL99euJrr0WtkyLeBy2uqxs9HXA4wGBODICzVQjkfN8wFIRGzZgWNX550tyhOUrit3St2oVnP5kEpXdRxwBciOH+6Jki0wiHsezx22iFRVywvqbb6Jlef16fMcnnIAALJOAPg9L4grAsjJJHOZLMicSqK7XVhn29cnXGxtBFHJbMusl703oB63oEQjgeeHJ7WZ8APbRVBXfy7ZtUphf31Lc14fr0t+PfXGFYVkZrge3SHKlYEMDgt6GBumnTZ6MYwsE4P9UVeU3WIAI98BDD4FIOPtsVCvpkUgg6aGq8LPM+J/JJPy/vj74mAccILfF7aFMKhUrGVWE9uWSLSoCVFVW1hHlRsoV+zi0hCEfDxHuPT1hWEjygidLc/U2D2wTQk4Y5vfxMCgmEq3W1PWSt6UdNGP22rFWKw/uXLcOz+vHP268Jg8MyM6vQIDo+uvx9zvvTB0Sx8fV04PfU6ak2u7HH0d8dcop6ELQXkvumBIi/XNaxOOQQnn3Xfgun/mMfC0alUUZPOTG5UJiI9v3JgRiyI0bYWOPPx7H0N6Oc546tfiazYEAina8Xqwh06ZhPznIVk10WzQhUCIR9y5KF3sUhEIICm227EL6RuAsFAv16sGl4JzdYu2KfBCPI0PC1Xc1NdDiMhL/1iMYhNPrdCK7ZbQwCQFCLBJBZV1XFyoAa2sR3OgnFcZiyDwNDSHAWLBAEno8xerQQ9MnGkejINPs9vSsmBadnSANHA7oFGoXR68XDjJn9BMJXJN4XOp2ZNpuVxcIxHgcAfQBB+CYPB58h7mItRNhO9u345wqKrA9bWWlqsLZ9/lwbaurpaB5jpjoC1TJFo0huDrJZjN2epJJSTTqJzrvbezcSfSNb8DO3HGHsU30enE+kybBlvz+93iuvvIV40qrYBA/ViueMZsN5/yzn4E0u+IKZLK1UFWZOBiNROvvx3YiEaJrroG9KwZ6ezHcpaeH6GtfQ0UgT1skKj6BGIvB9j3/PNaNSy+VA7tyvB9KtigLmPTjwLCiAvftyAi0q558Er7B5MnQjjrttPQq2FhMtipz54PdDtKwoiJ3X0IIrJNawrCzUxJEVVXpbcljMQU8HzCRmGltjscRXMfjuI767gYm5rVag1x9uG0bAsh4XFYdacGDAKZNw9r92mv4Lq+7Tg5a05IOgYDUQdQeL08vrazMvwMmGETg39+PlsEFCzK/l8mJSCR7e3M8Dgkdn08SxvptaVtHtVVX+a4lebYv61GyRQXgo2xZ1mtxctsrUer9xYThWCU/tW3JFgue0bKy1OozJhL5uIiM730mQbl6mqscs4Gro1evxnaPO87YjwsE5IBQhwPDnLq7MYjNKBYcGIDN0EtNPfssOkGOO47om99M12vt60Nc1NSUubI9FsNQqY0bUeSh9a/YHvMUaEWRk5l5snym9SuRQFv0rl0oUDnySBxTezvOZfr0/HQVR0N3t4x/6+qkFn6Oa+xEt0UTAiUSce+idLGzIBaD8VaU/II27ZAVo8WCM97cwqpv+80V0ShacN99Fwb5wAPRZpythcnvR8WBywVnWL/4sU5fSwuM+O9+h+O87DJ5/HV1WFSEgNFNJOCctrdje3PmICjxeJAd11dKJhLYD5fhZwoI2tvRquN2Y3HSBgTcBm2k7TE8jGtitxtXE27cSPTXv2K7l16K4yuEQNTC4wHJG4lAX2z2bCykXV0yi+l2gxTJswJhoi9QJVs0xojHpR6WUWVSIiGJxo+KHAgEQMTFYkS//KWxMxgK4VlmO/m73+HYL7989HbjeBz2QQjYuQcfJHrxRWj9nHFG6nvZLieTsGuZnvueHhCIySSITyN9onyweTMI1GQS+oeLFsmqSKLRnex8sHs32pfb2+Hsn3467GrJFhUXqor7l8kRbi/esQNVhy++iNcOPRRVuEcdlXrvRaOSOGRyjwevlJfntj4FAultyTwp2G5HlZyWNGS5lPEKbaCvRTSKgLW3F9e5qwt2IBgEadrfj9/aqiYibMfhkJ0Xs2fDL9G2F1dVSX/D7UbQ3tmJYVCzZ6cfI1eKatvVieB/jYzALuU7oMTvhzb08DDRBRdAp8sMtO3NVVXpa0MoBN8oGk3vKjECEyX6qjWzJE+Rpy+P4zvWFPa6X6Ql7/ZWy7K2hdioLVlPGO7tCkhtVWI8jh+XKzWuYv1ZrojUEop6cGWn9vpmez7Wr0dBwqGHwh7rt83txQ4H7NPdd6Nq8cYbjYc6jYwgLqmtTfWbXnsN5N/hh+Oz+mvNWvWj6cxHIkT33IPK5csuAxnJSCRgjxUF29BuPxKRg/JY51qLUAiTnQcH0SGxaBGu5c6duPbTpxd3wFMigbitvx//nzQJxzVa+/YomOi2aEKgRCLuXZQutgkkEjKgrK7OfeouLxaZMng8JXVoSE77mjy5sCqTYBBTsDZvhmN41FHIio+2+Pp8WITcbtmGQ4QFo60NgWt9PdFvfysndbLB7uuTk63tdji0jY1wliMRHMd//gPD+8lPpgfbXFavqjDQmc69rQ1i4bW1IBC1Qa7fj2NgMs4IoVBqdVF5Ob6b114jeuYZkKRf+hK2ywuazYbzLjTTqaoI2rq6cBzV1bIqyuHA9SqAvJnoC1TJFu0FRCJykIqRLYjH8Z6yssKmi+cDITAVed06OKBGmoLsgHLlzP33w/ZccomxVpkeySTs3J//DI3Bc89F+7MeXi9s3Gh6g52dGKJis4FALNYEwNdfRwvQ5MkgJZqb8b1wS+ZopGY+eO012HSbDYTqokWw4yVbVDxwpW80KmUFbDZUwa5ciXZ1hwME7plnSgJKiFTikIkyFvjPpHOqRzyO+1VbZcgDwjhppyUMm5vHh6zBaBACgbC2rbivD/8eGpL/Zr1GhqrCvk2aBD+kuTlVc5B/fD58fvZs2SqtrUjmLgKLBdfvnnswNfv66xHg6sGt60xMMoJBEH8VFflX0AwPwxYGAuigMNOBokWm9mavF0PzLBYkpHNJcGvJKCJzrc5jMH25ZItMYm+2LI/WlswkoZY4HC/g4+VkS01N6vXh+5cJRCYUs22Pq6gzxYjt7Yih5s5FLCIEYgfetxBIkiQSsGf/939ETz2FzoxTT03fXiQiu6O0SYE1a5AAWbQIg+b0vs/wMH70xKMWwSAkYnbuJLrqKshBaa8Py9Bk6rzjDhAeKMOdY14vfLZoFKTkjBk43x078LeWlsIKcPTw+9G+HArJgaG1tbJyMg9MdFs0ITCOzEUJJQBMInm9MKCVlblpGNpscrEwcoosFtm+GwzCAe7shMHKR4+RCMd38slYdFatQqDY1obFIZM2X3U1HL++PhB6zc0w6Lt2Sa3FBx+Ecb300tSMT2MjttnejvOcN0+K5DqdMtNWUYHgRatNJIScpNjYmNlx3LIFk6AbGkD0ab8DLuOvqBhdC4M1p4aGcBwVFdBfW7MGk1TPPRf7D4fxfbNQejECKqsVzn00itagwUEc6wEHgAAptrZZCSXowVMEIxHjtuWyMpnUYLu0t/DIIwjCr7rKmEDklh4eCPD446igO+88cwQiEc7ppZdQ8XX88bCRiUSqM8saitXVmc9/506i++4DiXPttcUR8BYC9u2RR2Cnb7gBzitXwxebQIxGif7wB1yPefNAINbWYh9783vfl8HC+0yMOJ247o8/Dj3hwUEQUFdeiWCvslJ+hn+4lZBJw2ytndxupiUMu7pkZU9NDdahY46BLzBjxt5PGGQDS5Bo24v7+tKHk7D+oxa1tQiMm5tRtWM0ydhuH729mfczZQp8Eq4C9nqxfYsFPkQyidf//GfIt1xyiTGBmElOgquqnc78K2iGhkAgRqOQdsmnGtpmw3PPWuDxOH7zBOaDDsr9HuH1o6xMElRMohu1Omvbl82S4yUUBm0bulavr5gty2baku32wtvf9wa0pOrwsOzA4nvVasVzwslavvczrdl8ztw2zu/VXn+PB7FPYyOqi1UVPsrICIgtq1UmPSdPhm/z1FMYLmdEIDKRx4kUxoYNIP/mzEHyUu8DcLLD7c5MII6MQHtx9274RdohdaoKmy7E6NJdVite9/vlUJlQCEUxZWU4r/p6XK8dO/B75sz8NWSNsHs3qj4VBcficODaFrPKsYSxQakSce+idLFzgBBSu668PFXnxsxnWf8ok/FkXR8h4Bhy621DQ2FO/tAQslhdXTDQVVUIUrXVhvr3DwzAWWZdyNZWaDVt2ACizWgqWDSKrLXfj+w9t0Vv3QoicvZsGOFt23COc+fCQPMQlEmTMk+52rgRgVdzMzLt2iqZUAgOv9OJhdbMdyKEHMzS2QnB31NPxWfZsee252I5NaEQvgNVxaLU3Y3jrq/HtZgypdS2U8LYg9tuWP/QCNwuyRVTY41164huvhm6f9/5jvFzwJo5dXVwKF9/HSTgsmXm9/PPfxL98Y/IZF9xhZze7HbjXINB7MPlymyLtm7F4JGqKjjKeeiXpoHbt19/HZXaV12F6x6NwhZZrcVLZhDB5q1YAXt0+unQteWESRG+7/3eFnFLZjgsq6o6O6F1+PLLeLYOPxxVhx//OD4TiWCNYMKRyRQmDjOtDSMjkizktmSWyHA6QRRqqwxHa/nfG+D12ogU5B8eHKQF+0JMBPKgEm17MU9gHm3QCkMI7CcQkC2AVqts33W7kczgbcRieBaZSGAC4e23YQ9OOQVDoIwGVwUC+LfbLV+PROD7OBz5+xn9/SAQk0l0ZhSjGjocRpKzuxs+3CGHFG8NMGp1tlpxbblCtNDp4Trs97bICGPVsqwlJbXbJ8L9ra8wnMhEMXcqORzwBbTXLpHA2k0Eu2VGs1F77YiwPVXFgC2bDd1kvA9VRSzKQ5sGB0GidXRA/3DxYlRE6/fJFYuxGGIpLlzYuhXEYWMjKhH1hBzr93PHlJGt8nohwTIwAB3Fgw+WryWTOMZEAjbabJIyEkGBxzvvwBaddhp81lgMBGIiAY3WfAeT6pFIoAV7YEBKVPD06SLsY6LbogmBEom4d1G62HkgEJAEX02N+YWQ9RFH0/Rg54qdWa7Qq64uLIj0euEUBoP4dyAAkvDAA401bvr7YaRDIbzn/feJXnkF7VbHHmt83N3d+Hd5OT7vdsts0YwZqHYhwsLw4YcgDrVl4plaed59F1UbLS1oPdQ6mby42e2yGtIMhoYwRKC3FwH0wQdj/0wUOxy43sUiELmqgttE43Gcu9sNUtXrxXesreDMERN9gSrZor2IREK2LRsFbVwNlUyO/cTm3l4MDmlogL6g0fHwJD+XC/Zk5UpkuT/7WfPP6KuvonrwiCOIvv1t2NhkEnYoGpUJnPLyzETLpk1o/Z00CS3MxSBkRkbgfG/eTHThhUSf+xzOKRIBaVFWJqufCoUQsOO/+x3O87LLQCw5HMXbB+3ntojJQxbPX7sW69cHH+Can3wyyMOpU2W1Id9/VqskDo204KJRkJE7d0rikHUyLRZsU0sY5rImFgrWETUiBbmSsL8fPoUePK1YTwryNOPJk81N7WRo/ahs4O4PRYE/19aGczn44PTugGgU5+D14pj6+ohuvRVE2/e/b7y/YBD2lgNS3s7QkKwGysfP6OnBcDurFQRiNq1CM1BVVD319iKIbmnBcRcrSGdwUp2HA1ks2McYVMTu17ZID6OWZbPDPYygrzDUtyXrtQz3NfDANrbXWmKU728iWWlptsCBdRfXrsXzccwx6UlNltnq60OsEo/DBjU2YiCbkRyJxwN/Q6tnuGuX7Hq46670OCyRQGzHZJrRvTI4CPLR50MSeP781PPhwZb19eaTBMkkCMRNm3BMhx2GNaC8HOtfMgkCMc94KQ1+P/YVjcp102bDmlqkxMZEt0UTAiUSce+ixbw/6wAAIABJREFUdLHzRDgMg5nr5GZuG8iUhRNCthVYLHJqIO+roSF/o+nzoUybqxq2bIFD39AAolBbUROJIAOWSMCAvvgijPjy5caZ9r4+OTTEbkfwu24dnNFDDsH2tZ8TAkHzpk1YWJYuNV703n4bWoWtrUTnn5/q1PMk57IytFqbdYTa2+F8C4G26Bkz4NCz7mVjY/EIxEQC1zwYlNMYWWtNu1j39srgpaUl85TsUTDRF6iSLdrL4PaxTNpTQkjtH5drbNqMYjGib30LAfF998F+6JFMInDnyYgPPQTn8cILzdvdt95C5d1BB0EsXH++Ph+q8hwO2AOjTPl//oMp0FOmgEDMVKmYC7q6iG67DbbnG9+QVZVjQSBGIiBAX3sNleiXXCKHcuRC0JjAfmmLolGsp0xMv/QSKl89HlRRnHkmElaKIolDIjnIiKU2GKwTrG1L7u6WlT319SAKeVrujBljJ4kRi6USgUYVhAMDxsNJGhqMNQe1FYXFJo/0flQ2xOMIdD/4AOfw8Y8b62sJgSQG+2N33QUS8I47jP2yaFR2rvB3G4thXzYbPpvPs93ZCTvocOA5LlY19MaNuHdbWxE8BwK4V8vKYCOKSUjHYpI85wqrYkx11mG/tEUpGxCyXZYnZ3PVYS7XmElCLXHIYMKFycLx3pZcTIyM4NqyPIxWx5Fb+Ilg43Kp9Hz/fdiaAw+EX2SkD9nVhfXF5YItSibx20jSKRCA3amqkvaip0dWLN55Z/qwSzNa9b29IBDDYaLvfS91oBN31UWjOCazdj4eR9K3qwu+ysc+Brs0MIB4qroaMlDFGgDY1YX2ZYcD5xmN4lj5uhcJ+8kT8dGipIlYwoQADyYYHk4dKJINNhsMJOtl6BdaLXnIlQzc5jswIAefcNtOLuBAkYPlE05AFmrLFlSnTJ0Kg+1yIWBhcfG//hWZpUxVP8PDWEC0ZeqhEBatigpsL5lMPV6ebrZoEfbx3ntYfLTaYm+8QfSvf2Hfn/98qjGPxRDQ2Gy5VVusXw/dsdpa6DqyJkh5ORZjbaa20MUjGMSCp6rYTzSKbU+enE5ANDVhYW9rQ5atvx9VicUUCi6hBC3sdtyb0ahxuw23O4dC+DHSUCwEQqCFt62N6Ec/MiYQieS0vmQSz259PSQVzNq///yH6N574XR+73vpjrCqwp5wKy/r/mhJgbVrkXhoaUHVZDGy3xs2wHEvK0PlwAEH4O+coLLbizcRd9cukKjd3UTnnEP0qU9hDaqqKg4Zuj+DNZsSCdzLzz+PtSuRIDrySKybixaBTPL58BkmZcrL8W8hcN9t2iTbkjs6ZCVLRQUIw0MOwe+WluJoQAmB4MyoelD7w8etRXm5JAKXLDGuJCzGQLJ8YORHjYayMkmM1NVJe6f3ATwe2J3aWqJbbsHfbrrJ2B5oq73ZL4rH4S9arflfm/Z2DE5wu0EgFqMaOhAAgZhIINHCJERlJY7f78e5G01vzhXa6ct2u6zyYYKKq7BYG24it7x+lOCJwkz2aSsDsyFbWzJre+4LbcmFwuXC8xGPwyZyVSZrSwohCXNu6c6G7m4kCg44APaenwmOG61WkJeqClt7552yndiIQOTBnU6nLF4YHISETCJhTCAKAds/mlZ9Vxf2qaqwgy0tqZ/3eHDedXXmCcRgEANUhofRws0dbGVlckhWVVW63EU+iMfRFcf69HV12L/bXbC8VAkfEUqViHsXpYtdIFQVxltVYdjMZEa4XJ0zgpneo8+kc6DBwwUmTcovkAgEEKDY7XKK37Zt0MVQVZxDbS2IrYcfxiJyxhnQNNSTWqEQyLzKSknI9fcjQK6rg0hvdzccxZYWLH6JBMhQngrJOhQjI9jnrFnQBnvlFTi0Z52VTkD29uLzTU3mnaIXXwQpOXs2KhDZ8WettYoKHCfrMdXV5U8WDAzIKbKTJuF7UxQsxtkW06EhfBfRKIjd2bNNOR4Tfbkr2aKPAELI9sJMJGEiIYcCFCvzS4QqrV/8guiCCzDUwwiBAJ7PsjLYomgUumNmp5h++CEIyqYmtB3qCTN2dFVVDi0ZGcF+HA7YtbfewuCE1lZoFRajauqFF4h+8xs83zfdJFsRWYPW4ch/qJb+/F54ATqQLhfR178Om5tM4hqO0UCN/cIWJRL4voJBVO0/+yyqGSoqiE46CT81NTKIt9vxWnk51rCOjtS2ZA6QbDZULmrbkvOZCMlC9kYtxdpKQq6U0aKuLnt78VhVJxcTrDOdTR9xeBidEQ0NSGYMDeHv9fXSB9BqL997Lwjj73wHuol6vyiZhO3iNl1FkZPlFUXqL+aKtjbYwbo6tDAXg0geGkIFps0Gf8soqcAabIkErke+iQetVhy3f+rB/jEP4NBWueWBcX6HZkXOflGuLctCpFcY8hAmov2jLblQcBU6Vxxz1SdfO+764MEro5Gufj/R6tVIDhxxhLRb/B2xnuXAAJ7DBx/E+6+8EkkrI1vEFezNzTgGnw8tzB4PEpja6kHG4CBsWCat+vZ2EIg2G7o79MPtPB74jTU15uUQBgcRpyUS0IbmxHIohLXSYsF6GAzimldU5O8njYzA7kWjiDktFuynri514EwRMdFt0YRAiUQ0CUVRfkhEPyCiuUKItjw3U7rYRUAyCSc0FpM6d2Y+k0iYG7Sid4C5tYjbZBoacm9jCgYRxNhsMMplZTCm69ahhdjpxCJRWYnAORjEgjB1qjy/eByLU1mZzNoMDaHar7oa7c9WKxaizk4srtOnS4FdbXm8EKiW6ewEAdnVJas4tAtuIgECUQgQA2bOO5Eg+tvfcFyHH0509tnSEfL5ZKsxZ/RVVZbgu925LVLa9uXqanze48F1Nnu8fAw7dmBbDgcykqNNnaaPcIEq2aKJjWQSzhPrsRkhHoe90VaOFIIPPyS67jpMT731VmOnmlsMrVZMG9y9G9NHp083t4+dO1EtVF0NR9losh5PNaytTa2wCYelM//MMwiuL7+8OFU4Dz0ETcfFi0FCMEkRDGKfTmdx2otDIRCVb7yB63zFFbArigJbMobT4PdpW6SquLbd3UTPPYe2Zb8fxN8pp6AVlu8TpxP/9niwtjFh2NcnKykmT04lDKdNy06YsF7yaO3FHk8qGUCE71xLChr9TJo0pvfGXgf7UZnIj2gUPofdjufcYpFBeiwmq3V7erCNv/6VaNUqou9+F+9n/4H9IpaBSCbxN4tFTkQVAtc+H0Js82ZUYk+ejCRoMXQKd+8GMely4VxGs+08IIbbm3kyrFlwJ4bFkp1IYegnB+fR6rxP26L/vimHlmU9YaiVINAStkwYjvdEwXhBMAh7UVkpJy4nEvK+ZQKdk7FG1zUeR0JKVSFtYvQ8cgIqmUSxxTPPwC868UQcg92emlzo78cz29SE7YVCIP26upBgXbQofR8+H3yjmhpjv2nbNqK778Z5sA6jFsPDqTGQGezaBamV8nKcC+83EMCaabOhKIXXJr8fRCBPlje7ZgmBc9+xA3Zo7lzZks7au2OEfepJKpJ9Kzr2m3ZmRVEuIaIqIcTPPupjKaEwWCwIQrmijQehjLb4WixYoFU1c7uNvh2Ht2e3g8wbGQHZ1dkJI5pL4OlyoTJw1y4E2zNnYh/V1ZhcunIlDPdJJ8H5nT0bQdPu3QjinU4EMIoCw6soWDjeew+LxuLF0sF0u6HX1NGBISn19QiUtEZfUXA8b72F9yxYAJ1E7XVRVewzmTRPyAWDaENsb8f05U98Ql6j4WEsqDzchWG1wtEfGZFVSWaCbm37cnMzjnNoCItirgL3VisWt8ZGEC4bN+I6t7YWTmToUbJF+zcsFjiX0SicYKP7q6wM93MsJic55gufDzqA9fVoL86kDcsV16++Cjv1+c+bJxC7u0FOVlQQ/fCHxo7wyIgkCfTnXF6O/T75JGzRl75U+HMXjWJwzOrVIJsuu0zaSB7W5XQaH2uu2LkT7cu9vRhGdfLJsqKTKy7HI8azLUomYePXr0fg9vbbuE8PPxxBD0/yZYKxpwdrXmcnAhQirDWzZuEzs2ZhXdSSQZyQzNZezFqlWlRWSiJw7lzjSsJiVLdONDCJZ+RnJZNYX4VA2xy/zkk/rxfPTUcHvrtXXgGBeNFF8E+IJGmoKPguuVXX5ZI+3OAgfudLIG7YQPT44/ArLrqo8IpwIUAe7t4N0njBguw2QVFwj9ntuCbc3pwtqZRM4pokk7lPX2Yyy6jVeayr4sazLWIYtSxzu6v+db6G+rZkHvphZoJwCZlRUYHrGwzKac1Wq7xn2W+KxXDt9c+wEHjOw2EUUGR6Tpg4e/99JFc/9SnEadw6zVJSbreMcerqpI93663wp266yZhA5OGbLpexL7J5M9E99+C1738/vbiBCzN4urEZbNyIApaGBshscYeE34/YzeHAeqn1O9kWeb2IUaursydW4nHIdw0NYV8tLTKhN3Vq8Ya0TARMBPuWD/YbEpGILiGiaUS0T32B+ysUBUbMZoPhU9XsgvhWq8wgGukjEmUmEomwUFVUwEEdGsLC0dBg3kljnSUmElk4eds27Ofaa/F70yY4nAccgPPr6oKRV1XZTuz3I7hyOlGBqHeUXS4YfW5t1jt/yaScYHnWWSALtm3Dgjl7No6jr0/qc5gJ6Pv7MYHZ5yP64hcxbZFItoWHwzgmo5Yg/j4dDlzbvj58n0aLlBBYxAYH5WAG7UKa7/RFInzHS5YgEN21C457ayuuexFRskX7OfQkoVGg63DIgJADkFyhqmiBGRkh+ulPM7fjcevcxo1wlk84AQLjZjA4iAw7EdEPfmDcmhIK4fl3uYyd+Weewc+yZbBHHARXVeUXaHm9RD/+MdpdL72U6DOfkTbB75cTHgvNgguB6rj778ex3nYbEjYjI1IPaZyTSOPOFjGx9/zzuCfa2xEcnXIK0dFHS33eJ56QVehEeKZmzCA69liss83NsiKtv5/onXfQAt3XJ/82MJA6sIBI6iI3NCCQOvJI4/biMWpN3yeQSR9x5058X/Pnp18/RUHwHY3iPe+9R/TYY0hGLl8u31dZKduXWaaGW3WZQGRd5HySL+++i2RGSwuGSRVaCZ5IwM/yeOBnsX9lFg4HrovPhx/Wvc4khZHvYAktrNZUf5m3W2CrczaMO1vE0FcR8jVg0jAcTm9Lttmk711qSy4+OIng98O/4GeCtafZNlit8t7VPsvbt2MNWLgws1xLMAg709WFNubDDoO8SzIpta2dTvgrkYgkE6uqcD/ccQdIwO9+F3GFHtGojGOM/CbWl548GdWMepLR78c+XS5zeu7JJJKqW7dibTvmmNQusY4OnM+sWZl90smTYcuGh3H8mXwcnw92Lx5HLFtZiUQfT2AudnHGBMC4tW+FYH8iEUvYB8ETeH0+kE+1taM7OPpBK0bQZtL1Cz9nzINBBCBdXTDsZqcLl5fDQL/zjhTR3bQJehRHHYX3DA0hkN+4UbahcOtPeTn2/c47OJYlS4yN8cgItr1ggcwutbRgEVBVZNnffx/7Pe44fIarOEZGcE42m/lgads2tA3abNAKmTEDf+cKp0jE3FABpxPXd2hIigRrF6l4HIFjKIRjbGiQOlP19cUpjbdYcK0aGlA1sWULAs9iTicroQR+FtnBNSLLnE7c65EIgsdcCbUHH0Qwft11xjo8RAiAQiHYiFWr0Ip7zDHmtj88jMrDUAgZd6NhLdEobJDDYayR+MQT0OU56ihU8VksOKZAADagujo3MqC9HWReMAjH+2Mfk6+NjMghDoUOUQoGiX79azjlhx1GdM01+D7ZqR/DNp19EkKAZHriCRCzfj8Cq2XLYNsHBzHgQlFwnd1uBCa1tVinYzGsYevWYU0YHk7fh9MpicDFi43biz+q4ST7ErSDVrjdk1vBp03LHLRHo3LC8t//jna6c85Jf191tWyB5q4QnkzKw1ryCVLffpvo6adhKy+4oPA280gEflwoBP8h0zCrbODhMoEAthWPp7c359O+nA3cpqsdhBOLpQ5iGedJkryhb1nmFm8iWf3KMNIx3Fevy3gCD5zRD1TiKk++T+NxPDdMMg4MIGZpbk4dTqJFIgH/w+Mh+u1v8d5vfxt+jJZct1hky25lJdaPZJLoJz9BQuKaa7CGGW2/vx/Hx91lWqxbBw3radMw0VnvrwSD8GdYpzAbYjGil18GkXfIIVj/tF1inZ0yPh2N8OYkG7c3x+Op7c1CYB1ub5dFLrEY9lteLnUiS9g38JG6SoqifFlRFKEoyimKotyqKEqXoihBRVGeVxRlxp73XK0oyjZFUSKKoqxTFGWJ5vMtiqLcpyjKJkVRAnt+/q0oyqm6/bQT0TIiatmzP6EoitC9Z7miKK8rijKyZzvrFUW5xuCwKxRF+YWiKP2KooQURXlWUZQMZqiEvQGnE0aMnUiesJgJNptcBDKBHTC9xhHD5QJRVlUlDXA4bO54eUre4CD0nebPJzr+ePl6fT2IvWXLYOTb2pDR2b4dhvvdd/H3JUuMCb5wGAtfRQUMNg9zaW+HE/rooyAQTz4Z+1UU2d68aBEWtvfek0NfsuHtt4n+8Ac48l//eiqB6PFggc9Fq4MX1aoqLJR9fVioAgHoakQiyGRNmoSFKRZDYFhI0P7AAw+Qoij03HPP0S233ELTpk2jhgYXXX/9yeRydZDfT3Tjjb+iWbPmktPppJItKqEY4Oc3EjGefscTm4nwXOciYbxqFbRJP/1ptH8agQX8+/owBGnWLAx1MhMABQIgDj0etOrMmpX+nngc2+fpuFoIQfTIIyAQjz8eVT9sd3nYlKIgCWHUTmqEdevgcBOhCkBLIPp8smKhUAKxrQ0BxZo1aHe8/nrYIbZ1xbZFLpeLTj75ZOro6CAiol/96lc0d+6+YYuSSaJ//5voK18hOv10ol/9CmujzYbv6403UDW/ejXWrTVrkERjfarHH8d9/tprCA4bG9FyduWVqIz91a/w+quvYltPPIGg8LbbEOCdey5kNxYtArlYIhCLA/Yrkkn4LTt3ItidNs34/cmk7DD405/gj3znO7gHentT/TUhZKsu68ey75fvAKN//xsE4oIFSGYUSiCyrxaNoisjXwKRwe3NTKBykpU1duNxHHM+yaZM0NqiW2+9hVpb4Rd99rMn086dHRQOE/385/uOLSLC9QyH4dcPD0tdynhcEqgWC9YoTmKwf8vVnyUCce+hvFyuFdp4jQlDux3vUVWQXn4/KvwqK0fvthgcxHt/8xs5zIR9MSbXmaz3+WCTmND85S/hf11yibHvlUzKtt7GxnRS7c03iX7+c/hU3/++8YDN4eHU6c+jwe+HbevrQ4L4sMPkPerxgPRzuUwPlSQiXL+GBtkZxhqVGzbA1jc0IEYNBHAtq6pg+8cTgVjioArHRzpYRVGULxPR/US0nogiRPQIETUT0XVE9D4R/YWILtrzngoi+h4ReYlojhAirijK2UR0GxGtJKJ2IqohoguJ6EAiOlEI8dKe/SwnoruIqI6Ivsn7F0L8ec/r3yaie4hoAxH9jYg8RLSIiOYLIU7Y854fEkQt39nz+j+IqImIvkVE7wghstZueL0kXK79sox3r4AnNycSsvU4E3jQCrdtGMFoYrMRwmEY0XhcZqIybZM1gXbvRlBTXo5hJnPmpB+vqiK71dcHsmznTpzfwQeDADQi5WIxONw2mxy+wn9vayP6xz+w4J15JiaR6c93YEA6T7EYFoLWVuPzEQITX199FVn2L35ROu9aQremJn/tCw4O+vvlRNepU+UizBOjC205euCBB+jiiy+mxYsXk9PppPPOO4+6u7vpJz/5CR144IH0+c9fQH/600N03HEXU19fiJ5++uYATWBbFI2WBquMF6iqnMacKfjl93Dwki1I6ewk+ta30D53112ZA+LBQTzz//gHnMhLLzWXOIhE0C68Ywd0Flm6QH/MHo9sU9Ta0GSS6C9/QQLihBNgA43OSQg4wDxkZrT25mefBfkwaxZIvbo6+drwMLZhdhBXJgiB/fzf/8F5v/Za7I+HarAWUiF46KEH6KtfvZgOPRS26JxzzqOenm762c9+QosWHUjnnnsBPfzwQ3TWWRfT88+HaM2aiW2LFEXaIm3rH+sYszC+04mf8nJcY+3filV5VULxkUjg+VOU0SVnIhHYuC1bYDuWLMF3rG3RtdtlVVwyKTtLIhHZWphPq21PD/ym2lqQl4WSQJEI/CzW7y52+69We49bjMdCY6+t7QFatepiqqtbTFark2bNOo9CoW7atOknVFNzIM2adQFt3/4QzZ59MSUSIdq4cWLbok2bSLCOIV9Tuz210rBkZ8YfOFFhtRqv7zyB3OsFgagoKNLIFJf4fFjTH3wQklDXXw+CzQgsbVVdjXjnb38DgXj22USf+5zxsQwMwKY1NKT7fG++SfTnPyPuuuqq9NcjEZyH3W6uA25gAAkSIUAgTp6ceuy9vbhm06fnd2+z/MjAgBxM2dqKIo/eXhxvbW2qPzaWUFX4lcuXZx+ssr9xUGOB8dLOrBLRsUKIBBGRoihWIvo2EdUS0SIhRHDP371E9EsiOpVwAf8phHhMuyFFUX5BuCG+S0QvEREJIZ7c8yU5+EvTvH8mEd1BRK8T0UlCiKjmNaObsFMIcabmPYNEdK+iKAuFEB+MdpJMzthsCNgqKkq6OsWE1QoCb3gYGSdVzawBxu2DPD3TyHhqW3IyDWMhgqM7fToMOwvrTppkvJh1dcHYvvkmjvWSS/D/XbuwDe3EQc5ULV6M8vPHHpN6iu+9h8Bdm6FSVZBtFguyW9q7VwgsJLt3o+rCKAM3NIRjb2qCUHxXF/YXCKBaUqtPGI9jauLGjRA8X748tXrT45FVAYW0AFutCCyCQTwrVVWSWLTbpUZksWC1Wun1118n256NqqpKK1asIK/XS48/vonWrXNRXx/R00/ffD1NYFtUwvgBBypc5WBE+HGAHA7LKfGZEA6jCq+sjOiGGzITiH4/nOXnnsOze8EF5p7VeBxDRLZtI/rmN40JRNZBFSKdOFBVOOfr16NK8pRTMjvCioJnvqxMtjfrB7OoKoY5PfssEiNf/3pqMoO1eyorC5uwGggQ/e//Eq1di0EdV10F2zM4KFt8ijll12q10osvptqie++FLbrllk3061+79lTd7xu2yGaTEhX19VI/1+ksVfZMZPj98AlGIxC5yqutDc/q4sXSFjFxw63O2lZarc+RSRIiG3bvht9UXw8frNB7jae+l5Vl1+nOF/pBgUbSO8WEoljplFNeJ4sFtkgIlTZtWkGxmJdOP30TEblICKKNGye2LRICcRlrbI6R9mMJRQYnV1l7We/HcFViby+ezYULpean/g7iBMDKlYh/rroqM4EYCOB5r6kBifj3vyPOOvpoJEdVNf25ZHmn+vr0+P+VV0BCLlxIdPnl6QVH0Sj8GR7Yls1WtbeDUHO50N2mjYcHBxFjVlYWZvcURepGqiqulcsl/9/YWFjiNhf09aGzxetN1dE1gf2CgxoLjBcT+Xv+8vZgFeELfJi/PM3fiYjmEBEJIUL8gqIoTiJyEZFCRK8S0bkm930W4Tr8SPvl7dm+UbXO/+r+/5rmmEb9AmfMgJELhUBy+XwwMCyUXHKWCwdnu0dGYNxVNfMUZb0+otF7uCVHCOMFR/u+ujoYy/5+GDO/P3U6oNeLjPfrr+NvX/yinHC1axdKyqdPh1HnVpXJk7FArl8Pwuwb34BQ7+bN2NasWVhwystTJylrF65wGJUzPT2oNKqsxP60kyo9HiwENTWSmJw+Hf/+8ENk72bPxrZHRjBIYPduVBAdfbS8LjwhmXWJCiHJ/X5kAYWQREV7O56fqVPRHlRsB/2yyy77b9BORLRs2TJasWIFLV36BfrgAxfNnk10/vlEP/jBxLZFhVZLlVBcOBxwLBOJzCLsDgfsFFflGH2HQkCLp7sbRGKm1sFYDHbh5ZexvS9/GZXL2aCqaLP54APYomOPNX7f8DDOYdKkVEc4Hke14IYNmP58wgnZ90kk9RR9PlmR6XLBFqxYgbbBs87CVGe2CazHSgQ7XMgkwK1bsR+vF1OeTztNahK5XMXV0WMi8qtfvYxcLmmLjj12Gd177wqqqvoCrVjhosWL0ZLb2jqxbdGOHbi2r78Om8/tZ3PmIHm1YIGUt2BisRTcTwx0dMBPmDMHz4hRwjYeh7168EE8s9ddB59CD67g6evDs8z+NA8ziMdlNbCZ+0MItPitWYPhOaedVpj/nUwisdLTg/t1/vyxIRC105ftdpzHyAheY9K9WHjgAVRV3X77ZfTVr8qL+uSTy+jMM1fQ1Vd/gW6+2fXfoRWPPjqxbZHZYWIljE+EQjJhqLcBnZ3wrz7xCfgDySTep5+u3d2NROG2bZDYOO00431Fo/BFpk8HUfaPf2AY2BlnQOIkEoFvwIS01SoHrjU2prchP/UUtnH00URf+1p6QjIWA/HX1AS/KpttWb8eevutrdC+1/qLPDRzzpzCCMRYDL5gIIDET0sLiNqeHtjkuXP3jo58PI7CnLVrcX3PPz/nTewXHNRYYLy4Yrt0/2dJ7I4Mf68jIlIUxU5ENxHKTfU94Wbb9ebu+b3R5Pv1x+rVHtNosFqlE8w6JuwE+f0wCkwommlZKyEzqqpguLkiMVNG2OyglUwTm/Ww2xG4czl8Zyec2vJyEGCvvIL9XXyxnMZls8mpzZ2dsiy+uhqfW78e53HwwXBOJ01CNWJPj/xMTQ1ItRkzUoP2YBDO+cAA0XnnwbFNJODcd3TgWFkrpKoqXaC3uhqLw9atqBLYuhXty0w8LFwo36uqIBC57ThfokoIELFDQ1gQpk3DNervx3fkduM7CIWKn+Fq0ags47rggrhcM+jww3H99nz/E9oWlTD+oJ3GXFFhbGfs9tSpznqbtXIlyJhLL8WAFCNwpfBLL8GZPOeczOLiWgiBQSJvv43ta3VA+vvBAAAgAElEQVRctfD7YR/0FYOxGPSFNm+GLeKBTmZhs8Gu8HTlnh4Ij3d1oVrgpJNSj9XrTbWj+UAI6PE9/DDs7h13wPHmJNVYTmDW2qJEgujf/4YtGhmZQT/+MRzlPcHPhLZFs2ZBQ2r7drRxrVoF275lC9a3F1+UU23nzpVdHFVVkljkNaGE8QOPBwRiYyP8Fh6yok3GCoHA+JlnkAj4wheMCUR+Lw9ei0Tgi9jt2HZ1tZSz8XphJ0arzEsmMYF5/Xq0+J14YmH3TyIBvc7hYdjSmTPH5n7UtnaXl8tzrKuDTeJBB8V+Hlp0C4TbDVs0deqM/+rO7cGEtkUlTGyw/EEwiLVBOzhk0yaQh/PmwVb4/VJnmqtOh4aw/vzrX0hwZqpmU1XEVFYrtvnii9CFP+oo6OxaLHgWeWge+3Ver9TRZPBwuSeeQFfXlVem2654HMfG3XajEYiqCu3fHTuwXh51VOr7e3rkQKqpU/O3E14vfDlVRVzEBSaxGL6Hqiqs4w7H2EoAdHbCl+3vx3d7wgl5dZzsFxzUWGC8kIhqjn/n2/5nRHQFgZl9g9AnrhLRxUR0QTEPMIdjMgWLReozCSFbNplUZEF9/inpcOSOigoY3eHhzJObFQV/40lbmTLYuRCJRLLCcGBAakWsWwcje845ctgJw2rF37Ztw2I3YwYIvQ0b4IwfeKDUsnC74ahyBq2jA9WCvb04vrlzcR5+PyoGfT4MLZgzB5+32fD5jg4Eak4nqpAyaVaUlUF0/pVXkJmuqEAb4wEHyPeoKoKBZBKLXL66n/E4SIFwGMfT2Ihtd3djcZo6FdfV48EixtObi/V8WPes3h4PWsY//BB/P+ggKy1YYPiRCW+LShgfUJTUacyZiC+nE2tGJCLb2oggLfCHP0Dr5+yzM+/H50PWdts2OFxG7ch6CEH0xz8igXD++WhDNgInxioqUo8/EsGAi+3bkaVfujT7Po3A7c0dHUT/8z+wFzfckDpAJZmEbYjHYUPzrcwZGSG67z4M8Vi6FERlebmsEne7Cx/QMhrYFr3/PtHNN+M4iIiuvtpKF15o+JEJa4sUBRUTN92Eyoa//Q0kkcWC5FgohIqxNWuQVJozB785WLBYZIKWicW9UQFRgjHCYSQd3W7p6xj5UMPDSHo89xxsUSa7JYQcrlRfD9+GE5asYWe14nlnIpGnduuhqhjGs3EjBvAcd1xhhFs4jG2FwzKYHgtoW7n1XUtG05urq4vX4sy2KJmUx0FE5HRaM/l6E9YWlTBxoShYEzjJ53Yjbli/Hs/MIYfImI87GfheHh5GIuORR+ATXX55Zp3mgQHYkSlTMPDrvvtQbHHddfKZq6yUpJq2CKKqStpAIaAN/c9/wg595SvpsUwigdhKUZDIHO2ZjkQkobZkSbpvt3s37OakSfkPehICBTG7duEaHnIIfg8OwjdyuRCDcsdlfz9iuWLPggiHkdB+7z0QlZ/+NIpa8owF9zsOqlgYLyRivjifiB4SQlyt/aOiKJcavDcTK7xtz++DiOjlIh6baWgJQw4OQyEYwWBQBpecgR9P043GOxwOGDAmEmtq0ivktPoyRhoW2vexBo2Z74CHm7S1IfjZupXo1FMzVwgR4Xt2u+GorV6N+2D+/PRWQ16Itm/HfXHqqcgw8RTn5maQfuEw2qaNSMv6eiwq0SgqPUbDqlXQHFuwAK0/AwNYJKdMwSI3NIR7txACcWQEZCERAsSqKhxbby+23dQkWxIbGqQkQCxW2H61SCRwDbduleX+RKYyW/uELSrho4XFIif8RaOZq3mZbAyH8Ux4vRh00twMRzZTUBwKwaFeswa6fpmqCfV45BE8/5/9rLFYOBGO1+/HMWu1d4JBVJp1dEAD9vDDze0zE1avJrr3XtiHb3wDiYZgEM8oV1ly9Xm+1dCbN6MtfGQE7cunnIJtDw7CLhQyLMosIhGiu++GFEVNDYKam24yJVA+YW2RzYaE2QEHIDhYuRKVBg0NGCYWiYD8fvNNPCtTp6L6gDWruruRhCKSAZuWWCymZmUJxlBVJN8sFnw32qBO60PFYgja//IXBLtXXZXZboXD+IzLhX8HAki08mRUHlLAOoScZNQPdEokiB59FMnTU05BwqUQ+Hwg+YkQTOs7OYoBffvyaH6O243XR0ZwDYrZ3hyL4Ycn0xKZCtgnrC0qYWLCakUCifWjN2zAfbt0aar9ZymAcBivb9tG9Pvfw4f69rczF5TwkLZJk/Dsr1iBGE2vP22xYN0ZGkKcVVWFGEYIWaH48MMg/U46CclVvf3j4gyi7ASiz0f0wgvw8T7xidSYTwisi14v7KQZ6RojRKOIj3w+bKO1FefR0wPfr7oaxS6KIm2Rx4N4kSeYFwPbt8MH6O8HYXnMMeamVI8B9nv7NtFJRJV07KuiKPOIyKgIOUBENYqiKLo+8yeI6G4i+oGiKKv0opYZetLHDIoCA1heDmIkGpVkIhsTLaFY0gbKjrIyXEvOUBtNbmaRXVUdvdLQzKAVLQIB6Al2dED0/+CDZVCkr5QYGMAxHHYYDOT27cgmZSL4HA45eMRuJ/r4x2GwV62CbhkRSuONWhWDQbx3zhzcY6w9qDfEySR0OlatQjXiBRfgvLduxfENDsoKz/r6/II0HiLj8eCaTJ2K8wkGsUhYrViw9M5zVRWuAU9vrqkpfJHatAkOeH09znfzZtMf3edsUQkfDWw2PEdcdWJk43mdCIXgvN12mySdMpFbTJD/619w/pYvN1eB8//+H4Y6nXCCsaPL2/b5cKzV1fLvfj9ajnt7QYKZqXrMBCFAKj30EMiJG2+EDWBxcyYa2I7lk1Tg1qK//hXO8J13gqCKxWCfiGAb9oam6A9+gHM64wwMi9myxfRHJ7QtYn21ww7D/bJ2LdagF17AWvbpT8P/2b4d69DLL+OnqQmfWbgQa4HfLyvWGNxmxcSi213q8ig2tm/HfbtwofEzaLHAtr3/PuQNmpsx4T2TL8uVb04nfg8Pp8oIOJ3wQ3p6pC51bW1qa7Oi4LMPP4zjO/10+GOFoK8PZKnTSXTQQWNT+RqP4/zZ3ptJXvPUVp9PVkJVVhZWbRmJyIoq1ngziQlti0qYmHA64ZNs3IjYYPFi464Bux0x3wcfYGhaRQXRd78rJ8Dr7/NQCM9VZSViuttvx5p0yy2ZyfpIBL/Ly6X2fjRK9NvfIq46/XTEVfrnk5OWyWSqtr4RenqwBlqtKChpaJCvCYFj9fmQcG1szH79jODxIB5KJlFMwl1inZ04x4aG9PiR5SaGh2Wyp5DOMb+f6K23UJhTVgafdP78j1Tjfb+3bxOdgnqSiC5WFCVImIYzm4iuJKLNRLRY9961RHQKEf1MUZS3iSgphHhECNGuKMr3iehOIlqjKMqjRDRERAv3/Jy4d07FGA6HrKaLxWTL89CQnFDrcuGnlGXPDIsl1bFKJNIXFa0+os2WedCKWSIxkUDFz6uvgpD68pfxt4EBkHZVVVLfgqc619cjY5RIIFB2OPB+7aJAhHthYAAGesoUOMvsYG7eDOLxkEOQAXvxRVR3cPYpHMbixAK/RNhnT49sRybCwvDwwwhejzsOwRuf78KFKGnfsAHncsQR+d1/sRj2zdPKOIvl8+H+djjSB8Vowa9z5UEkkl59kA2RCBZCIjxf8+eDOHC7cwrc93lbVMLeg14f0eh+5omEP/85yO9bbkF1jhGEgI7qk0/iGbvgAnOB4AsvgLRbtixze08yCfvFQ620OkQ//zme46v+P3vXHSdVea7fMzM7O7OFrSzLsrAsvQiCQMQOyjUao9HYYizYYiwxei03xZtYEhOjJtdEYyfYYo1dQVQQokZRKYp0YXvfnd3p7ZT7x8Prd2b2nNnZYXZhYd7fb3+wszPnfOfM+Z63P+/VZEYHkJTIMgIO77+PrPO114oARX4+7kV9Pa4znhc2WXG7sd6NG3G9V12Fex8MikExyQ5tSFW6uzHhkQjX9MAD4DRyOAS1QhIy5LGIp2laLKh8nzsXUy/ffhuUGlOnoop23jzskdpa6L133kFrWHExEnBz5kAP8sRcjwf3uK1NnIfb0vVt0Bl+xdSkpQX7vaoqNpmgF0mCvv3b32Az/Pa3sZXLepFlfL9ZWdjbLpcIkvF3xHQsnZ04N9sS+tbmnBzwbdbXYwDT7Phd0E+prcVPYSFsu3Tb3lytJMvG7ct9icUCLOYCBLZ3+4NdmiZaPYmwhhSwb8hjUUaGpni9aLkdPdq8dZd9jSVLoBt+9zvYD0xvpShiCnw0CozJzgam3HEH/LLbbzfuVNK3PY8di8/zILbHHkMw7KyzMLglHBa8jJIkAoiKggrERPiyYwe6M4YNA7ervpBC03APPB5gZLwfmYyw7Vhfj2NPmwY85eITWcb9NSvgYN/b78e9TqW9WVWh3zdswDHGjYNeLy/f50nAgx7fhnoQ8XoiChKm21xCRNuI6KdENJV6f4H3EtEEIrqQiK4lRI+fJyLSNO1PkiTtJqIbCCSZMhF9Q0RLBv4SkhduZSgqAiBxyzMbSllZokIxM321t0iSqFDgyc2FhbHGWTKDVpINJG7ejAqKUaPQUpyVhZ/KSnxfPT2Ct8Prxb8uFwB79GgEs5qbAbqqKgJ+ioLXJAkBATbstm2D089tfqWlCCJu3ozKxpISVCCxYuSAHRHW1NQkJjxnZWGKalsb2hfnz4+9tkgERuX06VjLli1QlKNGJf99cPuyJImp1Ey0zspWv0YzsVhwrV4v7mlbW3LtzZqGa969W1T5TpgABzUFp+CgwqKMDLzE8yMa7YM1axA4Oe20xG3CHR1o47PbUU2YTCvuRx8hW37YYaiEM8I5TcOe46mo/J6uLqL77sOevPZatJykKj4f0Z/+hKqCc84BJ6P+Xsgy7lNhIc4f2DMvrz9VyV9/jRZpn4/oyivFoAWuZuPAxUAZrDwp9u67EZwgQkXEscem5LgfMFhkswkHbsECBJDfew/P/COP4Jk/+mjoyunT8f6aGgSCP/gA783PR9Bozhw4QDYbHCCPRwQWW1uhC/icXKnIgcV08zkdiOLxwGEtLk7Mt+VyIVjvdoPX1IxDkIcPWiz4cblEV0k8FlqtsI/cbuBRJAKboKAA3+0TT+D1c87Zuwm8qgo7q70d6540Kf2Y0J/25b6Eiws4eJ5se7OiYA3KHvatflYf6uWAwaKMDB3x+6HTy8pg0zPtS7wEAkSPPoqkxvXXY8hXJCK6vKJR0cLPvIThMNFtt2Fv/e535smS7m6ct6QE+45pnx54AP7SBRegMIOD9Ry0ZB5/WU4cbNM08CRv2gS/a8GC2PeqKmwJnw9/5+KQ/kgohLV6PMB0bl/mwXYWC3y3ZDAlNze2vZl1a1/S1QXuw5YWfC9HHokgotl9H2Q56PFN2s8rJQ80GZCbrSiiQjEYxGs2m5j0nC5OlANJmPTVZutNwK2qIgPc14Q/TTNuf25qAtmuxQLlxENR9BIOAxjr6wGmhYUo0y4vh6HLx2xpAfAWF+Nvra1QbPoW34YGDC7QNFQMMUcUr7OuDm3Vra04xrHHGnNrNTcj47NiBQD7wgtjB6jwul0uwauoaeAT6erCMSdNSmxwahrW0d2N4EhlJQxdVUUAMBjEvUiC+6uXRCKiBaCgwFxJ+XzI4DF/WkUF7ktpadIZ/6Feq5IB/iEgioL9YLP1xvHdu4EtkycjKy7LwIP4BBIbytxSXF3d93nXrUPgbvJk8PCZJaV6eoAHeq7Z9nYEEEMhBB/j+Vj7Iy0tCDS0tRH97Ge9ORxlWbQZ80RWnw/3jDnx+sLwl17CIA/mQqqqAka53bh3TmfvZFM6pakJ39/HHyPIddNNSGT0Y8LqAY9F7GgxH3EggKrEVXsYhI45BtWjPPk3Lw/7ZedOPMtffonnkcn1mXSen1lNEzYBBxb9frxOhM/Ft0FnuKmFRCLoSrDZ0Nprdm/CYeDKp5+ihfmYY8RQlHjx+fB9M2UJT0LtK2gXCgkbwG4HNUFTEwKIe9PCzC3YXAljVvW9N6JvX3Y40veMqapobXY4zNub9RWQTCvQzzUc8FiUkf1bFAVFE5GI0AmhEDBbXxygKKgIfPNNosWLUaEcDuP9+uB9NArbiScN3347PnvXXebJEuYkHTZM+DGRCNE996Ca7oILQFOi34PME9vRgX9HjDBPhMoyBlLV1SGBdvjhsbioKAgg+v0I8qXCF9jZiYSJpsEOZB+2pwc2XnY2gpP9TS5omgiwcpelEabLMnTKtm34/njq/ejRSSdWhjoWDQnJBBEHVwb8ZnP2ljmi2EDTBxQzrTqQSARgxm148QpGUUQlhJkYBRIDAVS1tLbCyefhHPHClXAuF5TO7t1w8I8+uvd31NoKQ1pVoVhGjBCZtZoatB3n5oIsXJIQYNRnanjqcUODOM6YMXBa9aX4mzZBsVosRJddBodAL/EBRL2B2dyMtdjtUDpGHCRm7cuyjGuMRhHISyZDZSY8XCEYRABAr6Q4O9fYiGvhlvKRI5ManqKXob6LMsA/RIQdS71h6/Ohwi8SQWa7qAh7irnDGMsUBYM5Nm0iOv98VBX2JZs3i7ae22835/ryeoF1+fkCi1paEEBUVVRDV1amft1bt4JziAik5dOmxf49GgV+E/VuM+ZKMyLBnRovPT3A6U2bQNfw05/i3jF+MJfY3mBRIlEU4Pb99+P3K64AT2UKwxAOGiziNjMe7uByoUX/449xz048ES3O4TC+R4cDetDpxPO0bh2Gefh8IuA1Zw6GncXjv6LgfR6PCC4yvxVPAdUHFnNyDk7bStOAGX4/ArNmeKFpmB7/8stITp5/Pl5XFNHdwcLDDux2QZUwfHjyAS12op9+Gsc6/3zYTMyJ2V8JBMSAhqlTU2sLTCR7276crHB7s9WKfaHHTFk2DqL0U4b6DsjYRUNcNmxA0nHePFF95/FAHwwbJnDmjTfAg3jiifDT2A+JRLAHsrLEkCIeqPanP0En3HWXeTI2GMT5c3JE4C0YRABxxw4Mlzv0UBw/PpjvconuNMaArKxY3AsEMIylsxPBw3i7SFHghwWDCLj1d9iTqsIXbWzE+qZNE5je0QGbKzcXPtPeVGFzezNTL+httOZmcCG73fjOxo4FfpeX9wsXhzoWDQnJBBEHVwb1ZqsqgCQQwA+33vIkaKdzn/MJ7HORZYAiV67pnbdoVCiTRMDFgUSe8Pzoo2inuuSS3m3AeunogEKyWODgaBrKxXNyYKTGG3E7dsAw5lZnSUKlxXPPAYQvvhjKp7ERAD1qlCijb2nBMXg62I4dqHrUNCjDKVPAq7FsmSCvD4WggDjbFgrhXvEQFaNnx+dD5igcxnH0QQS3G+uQJKyNs2yhEJSupglDPx3i9QolVVqKPbBjB+4NT3HMz8f1pdCqM9QVVAb4h5CEQtjHjNm33YaAyD33xHINBgLAoJwc4NGyZWjpPOkkTLftS775BgM9SksRSDRzuINBGNc5OSLIVl8PnjObDUa5WZtiMrJmDYJrZWVEv/lN72mC0SgMbubbMQouKAr2vyyLJBrj+FdfIYAYDCJ4t3ChcCK4OrmwcGCGJRABI2+9Fa1CRx2FgHBFRd+VkyZyUGGRqgrdzDxSjY0ITm3YAD1+6qkImHu9cAo5aFJQIAaDrV9P9MUX0GkWC3TgnDn4nJnjFYmISkUOLMoy/ma1xk6CNgteH2hSU4ME4KRJiVvmli9HguH449Gqz3tR0/CdciCRqXpsNtxfIuBRf3R0Tw/oWLq6MGiguhoYEInEYlYy0t2NIKnFgg6RVIKQiSSd7cvJSCSCZ1fTYINlZ8Ne41bK7Oy98gsOKizKyP4lNTXQrZMnx3ZjKQqwhDF63TrYUFOnEt15p0i6apoIJBJhT3LRxf/9H/yX3/4Wx7fZeuvqSATvycqCzSJJ8ImYpuTqq+EThsN43W4XWNTdDdzjKcaKIvScxYJj9vSAFzocRldG/NBNWUYAkP2v/mJVKASs83rho40fL6i7WlrgOxUVpS+JwnYcc7ba7fhuamtxfysrBT1GCrg71LFoSEgmiDi4ss9uNo+y54AiZ3+dTsGjeLAGFFUVAB6NAtC5IoEVClHfHHnMHfPmm2izOvlklMebideLTBKT1ublwYHhoSc8YZTb6Hw+vB6JiHX6fGjFKytDOT5XA6mqmJg1cqTIwpWXxxqooRCCl7t2YQBMRwcU0/nnA8A7OvBTUIC19PQkxw0mywhG8OTmCROgiHt6sMZRo8T99PlwDpsN60s3QXkkggAlT4xkBy87Gw6PEb9SkjLUFVQG+IeQMH5rGiqvnn6a6JprECyJf18ggH+3bCF6/nlkvc2mKuuloQGtyzk5MKzN6AS4gjs7WwRbdu9GRaTTiQBiqkampmHNL7wAh/2Xv+zd0sPnTxRA1B9P396cm4tJ0y+/DAP1ppuEIR4Ox1Y2DoQzHw4TPfggONoKC3Gvjj5a6OEMFiX5AV17MztYkgS98+KLCBKWlUEHz5iBYLLfj8/m5YkAsabBYVm3Dj+trXjPhAkIJs6ZY0xFol8HB9Q5uOjziTbo7Oze/IoHUht0RwfueUUFnFYz+fJLTFOfNAkOdbye50Qs4xeRmLbe12CBeOnqIlq6FHtt8WJgUUcHjsWOf25ucpypLS14lnJy8BylmxpooNqX+xJub/b7cW4OeKfB/jrosCgj+4e4XPBjysqMOy7CYWBLZyewKD8f3KzxCQVVFZygzc3ApMceg592662otjbSPYoiON5HjsRe9niI/vhHvH7ddbHrCoWw/7KzRdW7EU8gBxMbGlBxn52NhHC8fRaNwg6LRlG51x9OaCJgJA9vmzxZ2HCyjI65cBj3tr+VjX0J82pv24Yfu10MgcnNhZ12kFZFDwnJBBEHV/aLm82tE8yjyIEyp1NUbBxIhm4ywhxYPMRg2DAoA3ZWLJa+ef4++wztOrNmIeNk5hAyFyK39jqdIIjXtyB2dsZmqtxuGJllZXB0V68GJ8bUqTCU441bbudpakJwrqrKuCoiGARB/RdfIFs/bx6OOW4cnoHOTvBuqCr+3p+gW0sLlJLLhcBhdTUUA3+eBwLxlOiBeOZYMbpcuH5uXx41qt/ty/Ey1BXUfoFFGUleVBXDTn7/ewz+uOkm82nJW7fC8B0zBlVufTmHbW1Et9yC/995pxjiFC9cqceTiiUJTvaDD2JvXX99alymRMDD++/HFN4TTsB05HjMDYdjJyUnm/gKh4FjDz0EQ/vEE4kuv1xgYiAAjDWiaUiXrF2L9vCGBvAhXX45sJ2rgfZCDlosYgeL274sFujiTZuQYGtowB44+2w4Rh4Pvmfm2issFC1lmgadxQHFujqcY/RoUaFYWdm3/lNV0QbNgUXmqiaC3tEHFvcieLxPhYcX8MROs2tgB9rpxP42I8TnaiEiURlXWto/B7K9HQFETUNnBldD87TTYBDHdTqxDrMBU5oGnGhoAM7wQJ50yWC1L5sJVz96vVhHTg72QhqucQg+yTGSsYuGoIRCCLBlZWHwhtlz3NpKdOONeP9f/2pOtyLLwK2eHqInn0TH1y23oH2YhXUPEfZwRwc+x8Ua3d2gY+nsJLrhht7UUESi9TkahW9nho1bt4LnsaAAXRP5+bEdcpEI8EqW4Wf1x7dRVRRZNDVBH02bJvxJDqSqakqUT0mJzwffua4O93HkSOD+yJGwQ/cCF4c6Fg0JGerTmTOSgnDW0+GAw8QZGr8fWdyuLhjYXKGY7uqw/VF4crPPhx9uZ7NYRJsyt3sYSUMD0VNPISN/2WXmwMeTlRmc7XY4J/p7zJMG8/PxntparGXUKBy3thbE5KWlUChGRrYk4TvkaWJGuYLOTrT8uFxE//3fCBxu3oxWv507oUxKS/GccCUHBw6SEacT19DVBUeKM+6aJlq58/JiA4vpknBYDHvJzcW1eDxQsg5Heh2CjGRkMIQHllRVgb/PbM94PKA4yMkh+vGP+8ZvlwutPdEoApRmAURVFfxkXCG9eTOSEKWlCBSkOjHP44HBvW0b+NJ++MPe1xcK4fxMRdCfyvktW9COFAiAZuKEEwRucvVYdnb/j5uMuN1Ef/4z0auvIiB1//2osuQpwAdbwi6dYrXiOeEpmtzePHMmnLa1a1F1+uc/o135rLPQosXBxLY26MFhwwR1R0UFKnw7OtAe/cUXRK+/jgrgsjIEFOfMgb402oMWiwgQskSjIqDo9UIvcdWjxdK7DXp/H4Yny0ge2GyoLjTDokAA7X+yjOFBifCBpwGHQjheSUn/AojNzXD4rVbwjumroS0WfHc8pZinn3I3jl4UBU57ZydsrgkT0mufDHb7crxEImLiLA/Gc7txX/LyBo7CISMZGQhRVeC0oiDIZ2bbKwr0QGcnAoKjRpkf0+1GgO+FF4AF116LQg+9WK3AFaaLCoVwTLsduuMPfwDe/OIX0D1ma+IhRkZ2mqoiwLZ1K6oLjz0Wr/MkZ5tNcCCqKnSSWWLESIJB2EZeL2yT6mph//h8uC6rFX9LNzWHpsHe27QJv8+ciXvg9QrKtaGYXDvYJFOJOLiy39/saFSQLzMvhN0uAoqDbfDsC+H2JKtVTG6WZdEOE+9kejyo3pFltN9xoC3+fTyV2O1GBaLdjso/M6NNUZAd4mo9hwPZpg8+IJo4ES3T7e14vapKOKOaBucoFML6eVJhVZX4/mpq0FJHhEpGPX9IRwcqDJqbcQ0zZkA5trTgGRgzpu9hMy0tuM7cXGTmamtxXJ5CrShYWypTwxKJpokBL5oGh5CdzJISOGhdXfiuCgr2it9oqKu3/R6LMiIkEkGgv60NhnBJiXH7WTgMXsLOTqIrrxStgGZBCY8HnIOdnaiSmzDB+H08UU+WxRCqjRtReV1RgSnM/W2fYWlsBP9idzcqGY88svd7Ug0gKgrRs88igFdVhSqEwkIEN6xWXBfzpBUUpNdo1TSid/ekY7oAACAASURBVN+FM9HTA5y94AKs3eFIawXaQY9FTD2iKLEtZkR4fc0aBAI9HiTtzjwTOi0YxHfj8+G9eXnGFWpuNxzVdevgdKkqniNueZ48uf/B4GAwll+RpxETiQ4EfWBxf0p8bduG+zZ9ujm/oKLAWf/ySyQp9FU88RIO4374/aICsT/OMCdxHQ4kCRJVQ4fDYkCA04lqJMbHcBi2j9cLLNybwVBGsq/al4lwX3ngEA+N4D2in97MHRsZaoWMDAXZsgVVbLNnm/MwaxoSsO++C7vo2GOFXxsvTLH0zDNIQl1xBTo/eFBX/J51uYAljNWdnaBsCAbhD5oN1vT7gaFOJ/ZcKCRmFRABK1avhn10yCEIYup5ZGUZa62pwZomTepfAqC9HV1akoTuMz2fbXc37oHDkTJnfELp7sa9dblQcThmjLj+UaNElyTTZ6WIk0Mdi4aEZIKIgytD6mbLstjMPJUwK0u0PB/IpOGRCACeCM6C3W48aCUSQYVLfT3Rz34GMDaa2EwEwGxvx3s5gGhWHs4Bx0hEDEN56y0olUMOgaGcnQ3Dr7ER/x87Fufs6MB3xpwSkQiUrCTBkd60CbxRxcXI2JeW9j6/1ysGuWgaFMyYMTBCnU783wjYw2Ex+Xj48NhqgIYGVHVIEhRiug10vx9r9ngQaBgxQrQojhwZyxnJJMYOR8pKaqgrqCGFRQezaBrRX/6CASl33EH0ne+Itjw9l62qopVvyxZwIB56KPZ+OAx8iE8ABYPg+KmvRyBx+nTzNTDVQ2EhjvX550hCjB0L3Eu1euXLLzHx0G5HwGHixN7vCQZxfrsd+zpZ57azE/dt2za0L196qbgHwSCuOxIR7TPplNZWVHWuWYP7+utfi8qHNLQvx0sGi/aIUXszSyiEPbRsGf5/1FFEZ5wB3SbLeMbcbhzDbhetzvEB60AAz+26ddClkQj07KxZCChOn55aslVVocP0bdDMD0gkBoLo26D3BY91YyN0eXV1Yqf9738HR/QVVyBoaybsDHu9uJ7CQtHem8z11dTA4c/Lwx5Pphqa25u50mb8eHzvmzZhPdOmJR4S01/Rty/bbKJLZDCEEyVMy5OdbW7vBAL4LqxWPGMpdCFlsCgjgyZNTeic4uGQZvLyy0RLlqDC/KqrgP/BIDBUj9WRCIoQXngB7dEXXkh0+umiEEHTgE2MS1xVPmwYbJPaWnAgEkHnjx1rvJ5gEP4g+x+SJIaA5eYCi957Dz7oEUcgSWV0jF278N6qKtFh1VfAT1XBY9vcDKycOlUkUTQNPqrbDV3Tz2nIfQpj7NatwKEZM3AvQyHYYGVl4nyBgOh8KSpKqTp/qGPRkJBMEHFwZcjebEURLc+hkJhGzBWKg83pMhiiKKL6hic36x0UVYUjvXYt0bnnYuogS3wg0e+H8b1rFxzuOXMSV8F1dOAzw4fj/n7wAX7GjQMRv80G0OUBKxyYzM2FsVpSElshEA6LNuivvoKzftFFxtl+rorg6py6OgQmgkEcs6AA69JXPxLhXrW24rV4zkHm/ggGxTTsMWNQJr+3z42q4vrr63FfqqvFdXAlpJFi9fvFgAau7OqHDPWnfchi0cEmy5ahuvD882HUEsUOIOA9/OabSDJ873to1+V9FQoBtxwO4RRGIqj+274d7TZz5pif3+fDXsnPx7k+/pjon/8Ehlx9deoBsXffJXr4YSQTfvMb42EsgQD2MfPXJYsVn3+OtmFFgdNw9NHib7IMwz8aBVZZrcDkvLz0YNELL6DqQVXRBnX66aLVdoDalzNYpBOj6c168fmQkHv/ffx+/PFwLvPz8RmvF85LOCxakwsLjQMqkQiconXrUJkbDOJZnTkTe2rmzL1rD5Xl2DZorhYjwtry8mIDiwPditrTAwdw+HDzqmUitH4//DC6Ja691jwYyPyRPT14T1ERdLZZIjZedu5EpXFxMTgQ+zN1mQj3s7YWdkAwCNtmxozUq6qNhFu0NS1tw0uSFlkWdDbJtk5Ho7gvioL70J+KUMpgUUYGSbxeok8+wZ79znfMceKTT5DQmzMHdgbvP68Xz/iwYWICcXMzuHRXrULiY/Fi7B2ucA+H8VmHA/9vawPmjhghAog2GzoeKiqg62222LWFQrA/7Hb4cPq/eb1IbKxdi/MtXIjjxEsgICoQx43DObgSX5LMg4mBAHw5nw/+V3V1bDVyczPeU1yc/sRqWxuuy+dD0qa6GvdBkmADGmEuc3BHo/h7PyukhzoWDQnJBBEHVw6Im62qYsozTwK1WESFotN54AQUmQcsEhEGFXNYrFgBZ+S440DcHu8c8sRmDnJt3QrlM2dO4jbenh78FBUBNFesAKnuYYcRnXZaLK+i0wmDPhJBcDAUghEcrwBkGdn6Dz9E2f8VVxgblMx9mJsbm9FXFLRSb9uG99hsyNZPm4Z70dwsgnajRsUqMJ5EbbOh6keSEExtb8c5Jk9OvU3e7Ub1YSAARV5ZiQBsJIJ70Fc1QTSKtaXQ3jzUn/ADAosOdNm2DQNUZs9GFaIeVxmHrVZURv3rX8CWc87pjUWBgKhc1DRU/23YIKYDmwlTO/CwqQ8+QBXz9OngZUzFIdY0tB6++iow7aabjB1Vvx/Y4XAk32rMOPfGGzBSb7oJmMMSDsMo5cnOWVkwagMB4FNBQepBvm++Qdvml1+iJfuWW3DPmId1AAdoZLDIQKJR4/ZmFpcLwa4PP0Rw5+STMfVSTyrPrc6ahu+vsNA8qCLL2K/r1hGtX499w3pyzhzs4f4GuYyEB2JwYJGdYSKcTz8JOsVqMkMJh2FjZGejG8IsMLh2LbBq5kxUOptVkGga9rjLJXhW9feHA4lm+3HLFmDRiBFw9vsZ7PpWvvkGz0BWFgLKRk57qsL8g0xhMFiVo/rKx1TOrapi6ApPGE/y8xksysiASzQKn0hRUFFulsjcuRNJ0pEjQSui92m4hd9qxfPd1gab5K23kIi96iqhMxRFTGMOh7Gn3W5gRnk5/Jm77wYG/frXwCRZFryrPBU+HEbgjItA4vdUTQ2Sq3Y70SmnoDIvXnw+BCyzshBA1OM7J9BUVRS7MH62tcFXslhQfainfIhGUdUZjWLte0Hz1EsiEejD3bvhQ8+bJ/zqnBz4bIl0FHO2+v39bm8e6lg0JCQTRBxcOeButqYJLptAQICXPqC4L1pu0imaJiYsOhwAwrVriZ5/HjwUl15q3pYcjaL1Z8sWAOWcOYkzPD4fglp5eQiAvfUWqmrmz4eTo3eEPB4oJA7iBgIw/IqKUEbPgTm/HxWTtbXIbI0bh+9l9OjY76anB8fgjI/Z9ezYgeqL9nYo54kTca6yst7X5nIJ3o8RI2LP19YG5Wu1IpBYWGh+X+JFlqFwm5vxnUyciGO3t+N4FRXJV2Uw35vfD2MkyemsQ11BHXBYdKBJTw9ahW02VNUZBSCiUezF555D0GzxYmMs4spFRSF69FFk56+8Elw/ZhKJYF9wG/GKFQi6zJqF4VGp8OSEQqB/WLsWhvpllxnvNR5w5XAkjwttbWhf3rkTWHnxxbHGqd8vDP94QzQSAZ5qGu5zf1pnIhFMwn78cWDnL36B+6rn2Rtg6o8MFplIovZmluZmtLutW4fv/rTToCf5+TZqdeaEU6IKu127xKTnzk6sYdIkMZgl1Snm8cLBOD2/Iid3ifAs6wOL/QgIxVzP11/DCZ4xw3x/7NqF57+kBNU/RtXFLMEgEn6aJhKm8cKVNfHr/eorfGejRqGjIpVBNJqGAGJTE75Pux3XV16On72xW/dl+zIPGUpH5WMK7c0ZLMrIgIqmCUydP9/cPujoILr5ZuzB3//euLU4EhHddStWIClx/PGYphy//2VZYGptLf4dOxb2xr33Yh233BJbuKBpIqinKLDpbDbgYvzxN20C3dPw4Qi0ZWWJKcwsXi/OnZ0tKhCNhAe2cCKmrg72UUEBklp6eyQUAgYSxdI+pUPq6vBdhcMIXE6aBH2rp7tKFhe5i60f7c1DHYuGhGSCiIMrB/TN1jQAEgcU2QB0OsW0paE8iZIN9bo6tKwVFsIJTjTlq6UF07UkCcTiZpNPiXDv2toA8MOHgwh+40aiY44hWrTIGGxlGRmelhYAa1UV/i9JUHBuN7hAPB6i885DdYDXC6WRmyt4CXt6RLtyMtUSoRCy96tXQ8mdeCJ4Djlwydwafj+Mz5IS4/UHAqjeCAQQ1Bwzpm+l0tkJxR2JYP1jxsBg8HpxTSNHpvac6dubi4v7VFJDXUEd0Fg01EVRkNHeuhVBNzNy7tZWcI/ZbEQ/+UniKhpFQVv06tXgVD39dPP3yrLYC0VFRG+/jbbqefMQqExlf7lcGEC1ezdw8/vfN36f14u96HQmP+3500+JHngA/7/mGvAI6YUz2Q6HOa+iquJ93Pqdn983Fq1fj+rDmhpcz803A7+DwUGdvpzBokQH10RQJRFn1O7daGXbuhXJsB/+EE4qO3uaJlpvQyHR6swBqETnr68XFYrssFVXi4CiGbdgqqIookqRA4vciidJsW3QTFOQ6Fn/5hvo2ClTzLsoOjtR+RuJoALRiMeLJRKBfcDUK2aBAE0TiWn+Htatg200diwGFaXSxSDLSOy6XLA7xo0THSM9PdD/5eWpBf/3VfuyquJ+KgowJzs7PQn8frY3Z7AoIwMq33wD+3/6dNj+RhIIwH5qaCD61a+AsWb41tWFCsSXXkJXxq9/bayzOSDY1gb8KCxEQcWDDwIrfvUrcxwLhxE8kyT4J3pcUVVUVe7cCZ1wzDHYt243/sZDtdxu4JPDgfclk8T1eJBw8fvhG06cGHttXi9sSJtNTJZOhwQCKH5pagKWHn44rr2lBdc2alRqlBH9bG8e6lg0JCStQURJklYTEWmatiCJ9y4gog+I6Ceapj2etkUMkEiS9AQRLSaiLE3T5BQPc1ApqFBI8CjKe+4Yt3Xl5Oxf0waTldpaOKuyDAN25kxz4O3pgXIIh6HEKivNjbpoVJB8l5URvfIK0ebN4DY79lhzoGRiXxZFgfPtdiPYuWYNfr/kEhjLLG43zsffRTgMQE4G2Jk7w+PBurdtg0NQUYE2p+pqOBzsIPQVCOCqjbY2rGHyZGPjPRKBou3sxLonT4aB3tyMdQwfLqo7FixYQEREq1ev7vN6Vq9eTQsXLqTHHnuMFi++/Fu+NHYQTWSfKagMFh34smQJjNobbzSvFvR4iB55BIGNc86BkagftKIXbiF+/XW0yZx3nrkzqKow1LhC6PXXwR931FFEP/5xao5pbS04GP1+BBrmzjW/pkAAa0umpSYaJXrySQQ4J0zA/dInarjKOBTqTdFgJn4/frg11EhP+XwI7r74InDvt79FwMnrhW5wOkVFaKpYdPnll/e9WEgGi5KQvtqbifC8cJtsXR109llnYUhRPK+VvtU5JwcOpFlHgl5aW0WFYk0NXquoEAHFZBJpqQhX2+rboNku40ozPb8i2zVtbQiwVlbG2hB6CQbhRNfXI5A+b17iKpm2Nuyx0tLE1C5EIpBosSBZsGwZnOHzzkstQBcKoeonEMBx9IkXWcbaXC7YQsXFyScyiPZd+zKfV5JgOyWyrVPBo0cffYzOOedyCofxXCSowt2njnsa8ChjF+3H0tGBar1Ro+B7GYmioHX5iy+QUFywwNxHk2UkSO+/H8f74x8TJw5aW4Gb5eXQE/fdB0z83/81t1cURVRcFxRg37AOikbBv9jSgg6P2bPF5zipqWn4aW6GXVFdnVxisrUVQU6bDTjHnL9WK87tcsF3dDoFf+PeiqbBR9u4Eb/PnIlzt7ZCX3Lhyt74/v1ob04bFmViW+YyoGEcSZIsRPRbItqoadprA3mujOx/4nCI6VNcNh4IALi6ugDW3PY8mGTTqYrXC8deVeHYl5UJgzEeFEMhVCD6/SD9HT1alJbHOwiqiiCcJCHo9uKLGHhw0kng1jITnw/3MScHATRNw+8eD1qPli3DGi+/vHeFUkEBlNuOHfgeJk1KzgEKBjEghrkzSkpQnfD11zjWZ58hcDp+PPjOkglKWixQNIWFyDJu2IAAod65aGmBI6OqUKKjR0MpceB1zJjE7cuqqtIdd9xBs2bNotMTlGBlZeG6urtF9UaS7c0ZyUha5KOPgDOnnGIeQIxEMNyku5voRz/C/olGBU9qPMa88gp4Ar/3PQxnCYfx3vhqW03DvlJV7MeXXiL697/R3nn22akFN774Au0+ublEd91lPrHQ7RYTE5Ophm5pIfrzn4EL3/8+2hr1OKwoImtdUJAcvhEJfeTx4P7GtzevWoWKys5OnPOaa4APPT34uz4AYyTJYlFG0ivczsztnkbtzZKECpfbbkMlxcsvw1GcOBHP/6RJeJ/DAUdSUUSrc3MzjllQIJxFIykvx94+5RQ8n+vXI6D41lsYjlRSgmDi3LnQo+kKRDGRP1OOMBWNPrDY0CBa9jgY1dSE6hmzKmdFwT7ctQs8Yoceau4kahr2jdebuAJRL5KEn9WriVauxPdz9tmpOaJsG6kqHNz4AKbNBpvJasV7XS4xOTSRDcBdOIoyuO3LigIsV9XUz5sMHkkSnulgEHany4Xfh4LdnpEDQ4JB8A3n5wMDjETTkID94gskVufPN9fFmgZMefhhHO+mm6AbzIKInIwsLYWP8uij0AvXXmt+DkUB3mkaPpeVJVqNOzpw/mAQhSLx3SZc6V5XB90yYgQqpvvSB+zXtbUBX6dNE+uTZei+piYxQCVdE5jdbtDUdHZCX3AiqaYGGMV0V3t7LubPzc6GzdXejt8HeqhY7BoysS2Wga4FsxDRrUT0JBEd1Df6YBeeDFdUBKDmCsXubvxkZcF5y81NX0l1OiUahdPe0QG+rcMOE1yJshzbtqYoyJh3dgJIq6rwuiSJjDoDKbf9yjIA/YUXYIyfeio+ayaBAI7vcAheCUkCSH/4ISqHxo2DcnK5ehPCc3Y/Lw/X5vP17WS7XFBMPAGZQTs7GzxJdjuyUD4flF4wCOU8alRyimP4cKxn2zZUYVZW4rWdO6GgCgvhxNntOL7Ph/eXl/cd5FNVlW6//XZavHhxn467JIl2ZpcLWbSSktR4lzKSkf5IQwMc8ilTwFloJKqKISoNDcCiceOwJ6xW7LlwOPZZXbYME0yPOw5txJIkWjwtlli85eri/HzwLH76KYZN/OAH/Tf+NA1Z/iVLsMZbbjHmgePMciiE/ZxM4uHjj9FGZLWiAioeK6NR7F1VTWny+rcZbg6wRCJY3113Eb33HnDor38FvnFyjCsX+zLy+4NFGUmvWK34frhyy6y9WZKQ/JszB/r0tddQ3XLooahM5Io8qxXPSVERnoOeHujlri4x1TmRPVNcDKqSRYsQWNu4EQHFVatAsD9sGGyNOXOACens3mDu6pwc0U7NAzW4w2HjRuBJfj6SG1whzFWLublES5cieXjWWWhbS9Tu6nLhp7jYnOIkXjQNA51WrULg7+yzUwusdnSgVd1uR9WP2TqZM9ViwZ4PhZCwKC01tgH2Rfsy4zfzfTqdqSc6+4NHTieuz+2G3c42e0YyMpCiKEi2EAEPzZ71t94iWr4cSc//+q/E3QyffYZugqoqcCba7dDjPExILz4fnvn8fGDiY4+h0OF//gf7wSgpq6rAUEURAUQirL2jA/iuquBgZFqpeOnuxnlzc5Pj0PX5UCEZDCJZW1UVi7GSBP0UCEA3FRYK3tZUg3vMl8u8/0ceiXN3d6My3WrF7+nGCacT3xnrFO40GSTu2Uxsa48MwYbSjAx10WfrZVkEFHkqsc0m2mz3h8CNpsFpr60F19aUKTCAuWrH54OiYK6tzz5Dtd6sWchUsVgsAFx9ILGrC8pn2DBUINbXg4tp1izz9YRCUELZ2cjuMGhGInD8v/4ajj8HEJub8ZkpU+Cgs3KLRpH98nrFxFIjInRFwTG8XihRo9L3UAiAPnw4HGynExVCa9fivhxyiPGksXhxOuGoMSm9xwMFNHUqHJ1gEJk5Wcbx+mqF2hvJycE1dXbifufnD6qSyshBJsEgWn7tdrTHmDmj774Lg+2oo5Bl5qCb1YrPsnOZlYVM95IlCIhcc414drOzBYcWV1L7fMIQ/uc/YbSfdhoqovv7zCsKBo0sX47Awn//tzGWM4ZyoKIvQzMSQdBixQrgzI039sasUEjwOQ4fnnrgxWKBke31Apsfegj37PrrwQspSTDw49uXM7J/C7d8RqOCfN6svdlqRTvckUciePz222hdP+IIojPOEM8e8wzm5eFZ7umB7nK78WwUFvYdHM/PBx/WMccAC776Cnvwk0+wj51O2AVz5kCfDsSwHotFDI3xeGAzTJ4sOBY9HujDlha8f+1a7PEjjkArXqIAotsNPTpsWKzdkkg0DXv9449RmWnGo9qX1NfDHhk2DPeur0Q1D8/hqkxucy4sjG1v1rcvD9YQQVnGM6ZpeG7t9sG1SWw2BDSYu5apX4b6AMWM7L+yeTOwZ+5cc4z5/HNQmxxyCNGZZ8YOODE63h/+APz+4x9F5wMXuPA0ZSLYE9z2+/nnRE8/DRy+5hrsP5tNBPU5AMldYbKMdejxZtcuJGTy8kBX5XTis1ZrbDCvvR0FDMXF8LkYf818kOZmdHLZbPCh4qu8uQJRltG5xQUksiwqqPtrK3V0QAewnzZnDu5JYyPwPi8PRSQDRV1mtSJA6/HAfo1EcL+GIlXaUJU+YV+SpCpJku6XJGmzJEm+PT8fSpJ0ch+fG0tE0T2/LpYkSdvzs9rgvT+TJGmXJElhSZI2SpK00OA9hZIk/U2SpMY979slSdIdkiRlx71vtck5Lt5z/rFxr58sSdIGSZJCkiTVSpJ0syRJlxi9d4+USJL0tCRJPZIkeSVJekGSpDTN2Tv4hKs3Ro4EsJWWAnA9Hhiq9fUwWoNBYdANtrz7LgJzhxyCYBYPUuEpUcOGQfF0dCBLtXMnDG+jkns2tJjvwueD0nnpJVQWnXNO4gBiOAxjlttu+XgeD5zczZtRNXTGGbiXY8eiatDjQVCOW8m58tHphEFfWCj+ppdgEMa3z4fzjR7dO4DY1YXvqKAAAQNWivPnQ+mHw6jm+PBDOPd9CWf9uD3HZsP1fvllHV1xxbV00knT6bDD8mj06Dw65phjaPny5QmPV1tbS1l7IjJPPvkkSZJEkiR9yw2klwceeIDGjx9P2dnZNGvWLPrwww9oxAgoQ68Xir2jo4cyWJSRdIqmYbJwQwOIvc0muH/2GRzq6dNhsMUbinY79ks4DFqBBx5A9c4NN/Tet1y9EgzG8gByAPHMM3tPhE9GAgG0+y5fDhz65S/NA4jd3YKPta8gXFMTJr+uWIHj3nln7wAit9plZe1dAJGlthbtSn/5C4KWjz8OXsjdu+voyiuvpfnzp9PYsXk0YsTAY9EHH3zQ6z0uVwaLUpWsLPyoKvSVqpq/125H+/E994AS4PPP8Vw/8wx0q16ys6Erq6uxj5nvuKYGz7ui9L02pxO69KqrMAzpuuuw37/6Cnv65z/Hv598gv2Wbqmvhw4eNw4YU1ICW2LmTCQvDj8c92zlSiQiZ82CXbJ2LXDn66+R7Ovuhq3h9+MeOJ2w9ZINIL75JvBu/nwMgmKHPdF3pRdVRWfD7t2wc2bNSr7TJTtbBAyZdqenRwxWCAZFNetgBBC5ZToUElWk3L5cV1dH1157LU2fPp3y8vIoL29g8Wj27Fm0bt0HlJ8vqr7D4YyflpH0S309dP+ECebT3nfvRlVhRQXoWhLRD9TWIhHkcBD96U+xhQi5udjHfr8YpNLejj3+yScIIM6di6RoTg7eoygimC/LIujIAS19smfDBtDDjBiBhAi35dpsOE4kgn9bW/FTWAi/mCc1qyr0jd4X5iFRO3bg/XPn9rYLAwHYlqoKH46HxtntYgAT0+HISbDiRaPQge+9h/UuXIhEm6YhSOp2A2+rqgY+oMdUCyUlWEt7O7C5789lYltxkhJmJvP1ziOiRUT0KhHVElEhEV1ARG9LkvRfmqatNPlcB4Gs8Uki+pCIHt3zelvc+64korw9f48Q0fVE9LokSVWapnUTEe25mSuJaDYRLSGiDUR0LBH9Zs9rpyZxHb1EkqTjiehNIqojotsIpLo/JSJPgo+9TUS7iehXRDSZiH62Z90XprKGjAixWsV0YFUVzq3PhwCOxSKMOSPer4GQL75A1qi6GkHEqqrexuKwYVj7F1/AyD/kEAC52fqYb6ezEwD7yiv4/3nn9T3RsK0Nn9cHEJubif7xD9yvSy5BoJPFbseauQz/vfdg9M+cGavcystxzzs6cHwOKrICHTu2N+cEczkGAgLEifDeujpkoyorURW5ezeM+VWrEISdPr0375miwNFqasLajj4a3/XmzRgQs3Hj5/Tpp+/TWWedQdXVY6mnp4eeeeYZOuWUU+i9996jE044wfC+DR8+nJ588klavHgxHXPMMXTFFVcQEdGIuFHZDz/8MPl8PrriiivIbrfTfffdRz/4wQ+orq6OioqKyG4nevvtMF1zzQlE2PdDFotCoVRWmZGBkldfFVOTJ082/n6++Qa8hsw343DAmItGY9+naQgC/uUvqIS+7jrsLaPghSSJibPZ2eCA27EDyYyjj+7/c9LRgcx+czO4WBctElNh49fY3Q1MY/64ROf68EME8LKyMLhh9uzYa+eW6EBAVAVGIv1bu16iUQyiefxx3Jff/AYUEx4PnJAVKz6n1avfp9NPP4PGjgUWPf88sOjtt9+jhQsFFnHAIxQiys8fTo8//iRdfvliOuqoY+iyy4BFZWUjKBQSa37oIWDRJZcAix54AFi0fTuwSNOIVq4M0wUXDH0s2peSbHszS24u2mkXLcJeXLUKz+Z3v4uAu15HWq1wUAsLe7c65+cLB7Iv4fbbWbPwLG3fLgazrFuH9U+bhiDj7Nn9GwRiJF1dgoPLzGlva0NF/hD+EQAAIABJREFU8OTJRD/7Gd7Ldg3zK3Z24r080KWgAO/3+4WzbiaqCkzcuBEdFYsWCXuK6RiM+KX1Eo3CdujpgU1ixsWaSBwOQVvjcMDG6egA1vDQlcFoX2YeT00T1EB6+fzzz+n999+nM84QeDSYttHnnxP9859hooyflpE0Sk8PAmTDhyOIaCRdXbA5nE7YHMOHm/PjtbWB/kRVie6+O3YIG5EIzvt8opiBCBj/5psIlF15pQhQWq2wqyRJJKTa2vDaiBEieaoo8CN374ZNduSRsfhns+F3WRbJl7Iy+E+McVlZopiBu8L8fmBcKAQf1Wgol8cjCk9GjeqNV0xpo6rCppJlvM8oENvYiAAid7fNnIn1M/UT0131McU97eJw4J599RUCyvfc0+dHMrGtWEkJM5MJIi7TNO1fcQv8G+Fi/4dwA3qJpml+SZKeJdzo3ZqmPWNy/BFENFXTNN+eY3+w59jnEdGDe95zGREdRkQ3aZr25z2vPShJUgsRXS9J0vc1TXsriWuJl3uIyEdER2ia1r7n/EuIaEeCz3ykadr1/IuEHfszSZKu0TQt0ReUkX6IxSL4VpgAnNuefT7BA8NtzwORBd61C4qjvBw8HKNGmSun7m44+UVFUBIMwkYSDgvC/zfewPVccEFvYl29RKNQBBZLLAfg1q2ohnA6UV5vRn5eUIB1BYOoCMjJwe96Y3TkSCiSpib8SJKoEo1XJrIMhRGJIOun5x6xWhG4rK9H9quyEgbA2LGo0tyxA05KVRWcH6cT92PHDtybigpUQHCVFE9Jnj37e/TDH55FU6YI5fzzn/+cZs+eTXfffbepoZybm0s//vGPafHixTRu3Di64IILDN/X1tZGW7dupbw9fWcLFy6k2bNn07PPPkfHHXc1vfwy0YoVS6izcz0R0c0ZLMpIOmTTJqInnoBhecYZxu9pawOlQmEhWmDih33oZedOVCmVl6NiKRElBFdhRSJo2W1sBBYdfnj/r+Obb5DZj0RQTWk2PVFVgZfRKK4n0frCYdybVatgsP78573blPh44TCM7GSmOieSTZvAkfTNNwhe3HwzMI6DsDYb0YIF36Ozzz6LCgpE0Omaa35O8+fPpr/85e6YIKJecnNz6dxzf0yXX76YqqvH0XnnmWPRxo0Ci447biHNnz+bXnzxOTriiKvpgQeIVq5cQm53Bov2VvrT3sxSVISW9u9+VwwtWrUK1SUnnBCr+/WtzpGIaHX2eESrc25ucklRiwVJwqlTic4/H07p+vVIYD75JALfEyYgoHjYYeZBQDMJBmH35OWZB91cLuwPdto5UEoEXOJODVnGe7dswR7PzsZ6+Tp4r/JEaLatFAVY9/XXuJfHHRd7b4xoYYyuY9MmOLpTp/YOFvRHnE6cy+cTCVaXC468zZbccJhUhSknFAXn5qqhePne975HZ511Vsxrg2EbPfjgc2S1Xk1r1xI1Ni4hyvhpGUmTRCKo3HM40J5rtM9DIQQQAwEkM4YPN9+PPT3oZPB6EUBkrvp4ycrCPqurw/7+6CNwzC9cSHTppbH7z2IR1YiSBP9UloFtrANCIVRst7ejuGTGDOPzWixIUPT0AFOHD8f+1/tedjuO7fMhmdTejvPMmmWcPOrsBFbl5MCvSuQnWyy4bh78oh8ayr7YF1/ApyssRHKHq/8aGqDP8vLg7+2LQZTd3eD+XrUq6Y9kYluxkhJm9hlE1DTt22YJSZIcRJRLGJ29mojO7evzScjTfJP3nG+jJEkeItKHVE4jIj8R/T3us3cTorunEVG/brQkSeWEL+9hvsl7zt8pSdI/CVFYI3kw7vc1RHQdEVUR0ab+rCEjyYmeALykBKDMAcVAAH93OERAMR0A1t5O9PzzAMvDD8e/ZgZ5RwdK1MvKwJ/k8eA1I0J/WRbVe8uX498LLkDmxkyYj4cIxjC39Hz8MZyXUaNQwWTmPMsysnVZWXCKd+1CsCAchqPAXI7cnr1rF+7tIYcYE/6GwwggahoCFUYZJ30gsbERCqywEAb9uHGixWj3bihGJsXVK0Nuk87KQguV359DO3eiOqGyMkROp580TaMFCxbQCy+8YH4Dk5QLL7zwWyOZiGjWrFmUlzeMXnxxF335JdavKG9Qbm4u+f3+IY1F+wPXaEbwfP/5z8gg//KXxkkKnw9OtdMJqoLCQvMpd7W1yMCWlWHCrMMhgiTxoqowMLltsLEROJJoIryZ/Oc/mGJbVASj3owonM9ps+EaElViNTRgqnNjIyojf/Sj3tiuKMAJTq7sTfY7ECC6/360cw8fjkDswj3NJ9xGmJ3NreY5306TttlCpKrAooULgUX6/cWGO7/G7UJWa+99yEmdiy66kEpLBRYdfjiw6Mknd9ETT+A+l5S8QW730Mei/UWSmd4cL+XlRFdfjRbnf/0LNsO77yIZcOSRvZ9Xu11MqeSpzi0t2A/ME52s/SJJSDyOH4+hJk1Nojrx+efxU1UlBrNUVCQOVCoKHFOLBRWDRtceCoFGwO9HhTMPSDFbn8+HJGRVFZ71UEhUKno8SCZypW5WFjBuzRpcy2mnwVE1EosF6413solwT7/+Gv8/9NC9r8wkAq4EAqKisrpaDD0IhYAX6XacObnD+J2o4jFHB3yhUIj8/oG1jSorZ5HDATyaOxfVuUuXvkGU8dMykgbRNNj5kQj4Vo2efVVFxVldHdFPfwo/yMwuCgRgX7W1Ed1xB4oXEglzfS5bBjw96SS0SZvx5vLU+XAYWMDc1D09wLNAALaEWWJG02DndHcDp0eMEFWB3C7N57Zacc0NDXgf8xDGH6+1FThbUJA8By0fnysso1FcU00NMFXT4KNNmQIMDgax7mgUazGj4RlI8fsx+Oztt7GOY49Fgq0vycS2eklKmNlnEFGSJDsR/S8RXbTnYHpJB0tdncFr3USk78UeS0Q1mqbFNDxpmtYiSVIPESUIwZjK2D3/7jT4m9FrLPHrZZa3DN/GIAhXIDqdMF7DYRFM5PYZh0O0PafCx+D3g/vCakVLn8MBJ99IWEk4nZiylZsLg6+rC86ynuuLS91dLqJ33sHvF18MpWHWmqMo+IyqwmHhkvnXX4fjfsghaIM24/mRZXFfSkrw+alTsd6GBgQMuW3J70eAc+TI2OpPvWPO77Fa8b5E/EIWC+5bYyOcBU2D85udDeN+2DBkjZqbcawjj8S9UhQ4Vn4/qhTKy3EsiyVCb7zxe3riiaeopSV2G0pp6G2v0qUmW1ow6Y2oiDo6XHTTTZj2NmtWLVVXV9OmTZsyWJSRvRJZRkVPOIzMuFEAkafCBwIITOTliaB/vDQ3w0DOyUEAsbQUx45GBWk3C7f/ejzAus5OtOlMmtR7ymAi0TS0QD/zDAzLX//aPJmhKIITrqgoMXasWoUJiNxKbMQTG4kAS4l6cw/1Vz76CPeutZXo3HMRIMnLw/X5fLiPzEuE9tcI/fWvv6cnn3yKGhoGHoseeYQoEimixkYX3Xor0UUXEc2bl8GidAu3N3MgMVmy+bFjiW66CZ0BL76IYUbLl4NX9LDDeu9XiwV7QD/VmW2GvLy+K3TjRZIQuK+sRKKhvR0ViuvWoS341VehR7lCsbq695p27YLOnzbNeG+y015Tg66H8nJz7jHuaIhEsCa+FodDtJ0RYX/5/cChri5wQ9fUIGmoquBY5ErFYcNwbzi4GV+RSARbads2YOmMGeadI/0Rnr7MCepoFPeppATXwu3fpaXpO184jOtiXui+ICUSidDvf/97euqpp6iubuDwyOtF5e3y5UQWSxGVlrrogQeAv3fcUUuU8dMykgbZsQP7auZMc3viiSdQGXf++eiqKi42DjaGw7AhamowTXnevMTn5krx994j+vRTcOGaBRBZfD7gGFdWEwH/PvgAGHHyyeZFKJomOGjLywU22u2iKjAcBhYEg2hfDoeB00VFwjZhkWUxTHP48NSHT1qtuKZPPoENUlaGgpqiIuBtVxfwlumuBrt9ORxGheirr8KuPPRQ+ML6YaaJJBPb6iUpYWYyIZb7CL3dDxHRR0TkIiKFiC4hoh8n8fm+xIxmOlXNp5l8Nl15wnSvNyN7IdnZ+CkuhsHKFYo89p2r3HjSbl/CTrvfD+DPyjInh/V6wZWhaZioyMFCux0GJjvpigLFwtO23nkHx7v0UgTwzFpzOOgoy3if3Q7F8MwzqBhYsAAVEGbKLRoF0EsS1sPXIEkA/awsHL+tDZktSULQr7JSKLbGRrzmcOB6urpwv/Ut1YnEYgGRb2MjFJGq4j7t2AHgP+wwKOmaGjhgW7dCSVVU4Bz61oTrr7+eHn74Ybryyqto8uSjSZaLKTfXSqtXL6UXXni278X0IVar9dsA7yef4B6glUKjU1NipshgUUbM5ZFH4PDecotxkoIDdM3NqMopLoaRaoRFnZ1Et9+Oz9x6q8gI8xRmdoLZ2fZ6US391FPAqKuvRnIhHBZtLH3hpSxjmNPKlcC/a681/4yiAI9VNXEAMRQievRR8EMecggIzI2M4GAQxr7VunfT+FwutGAvW4YK6aeeEgFLWcZ9UhRRCc/CWHTVVVfRvHlHk9NZTFlZVnrppaX0/PPpwaLubnDdvvQSvtecHKKFCzW65pqUDpnBoiSFCef7097MMnUqSPvXr8f3dv/9qBQ8+2wE2Y2EaVsiEWEzeL3QPTzVub9xoLIyVM+cdBL2yYYNcLiXL0fFRlERAopz5iBx0NoK3V5VZV6599RTGOzE1CsFBcZBM1XF8QIB6PBEU6m51TsrC3uQCNPPx48X98Hthu2kfz876/n5IshWWws7prAQ2JEOQn/99GXuduGBeJKE3+124G97O9ZVWJgaXzdPeI1GRXdNstegx6Ojjz6aiouLyWq10tKlS+nZZ/cej1TVSi+/LOh3jjoKnTCTJmlUnFpYLoNHGTGU1lZ0KI0ZI6gR4oVx7LvfBYbl5BjjDCdqN22CjXP88YnP7fNhL7/4IoJ155wDSoVw2Dypw1PKGZMUBQmZ//wHvx93HJnuEU0DZnk88HniK/k4qSXLwLeaGmDO7NlioGcwKOYFhMMIXioKjpcIexOJqsIX27QJGHTMMdANPL26tRW22rBh+I4Gs31ZluF3v/YafMrx40GrYVSR2YdkYluxktJ6k1FR5xHRU5qmxZiukiRdlsRn0zVPt4aIjpYkyaGP2O4p2yzc83eWbootF2UZF/c7R12N4taT9mKtGdlHwoTThYViImAggGBVdzcAhgOKRlUrmoasRkMDuI2ysmCMxw8AIRIZmkAAFXTx4J+VBSPb5xOTmzs6MFk0Jwdtg/wZI44fTUNwLxrFGhwO+tapbG9H+1Ii3rJIRLT5GVULSBLAPxhEQFKSBCdiIADlM3o0FFx9Pe5bOIx/+1Maz+eqrEQgceNGHJ+5I5nDsbwcXG6fforrZvL1ggJxrueee44uuugievBBVH4zj+LLLy9JYg19L3jDBijOUAgK6fjjUY2of1aqq6vpo48+ogwWZWRvZOVKtBCfdRYMNCN5/33wiS1ahH2SnW08wbinB5WHgQCq6eJ5UR0O/C0UgtMfCMDQfOIJ4MTPfy5IyznoGA4LPhwj8fmI7roLLS4/+hGq98y2mCwDuzTNvFqACFhz770Imp57LgIvRi2VTCxut+N4qfDhahoc4nvuAdZcfTXRZZeJ4GYohNd58l/8mhmL/v53YFE0ylWd6cGif/8bQZtAgOjEE5FwWrQoNmiTwaKBFX17M1d7JOMsSRL0x6xZCLS89hr2yowZ2O9mXFx2OypHSkrwLLndcNasVtHqnEpgrLAQrXQLF+KZ3rgRFYpr1gBj7HbYCIcfbl6ls2IFuh9OOgnvycoy5h7TNNg5Xi+uI5lW4mAQfI4tLXDaDzlErJslHBYt0B4P7ktTk/h7Rwe+p3HjEKzd2wAiT0LmVkK9DVBQgL/zsD+HA/ZLdzfWFg7jfvZnDVztqGli0mt/bKx4PGJZsmTv8IipF559FonsWbPwDE+YgKnheqmurqbt27ePzeBRRlIVvx+DMZj6yEjWr0el99y5KPSwWIwpFVQV9sTateCv/f73E++pUAi48vTT4EM+/3wUafj9TFvSe09zFXVODnwaWUaiZcsWBEGPO07sbYcjVn+oKgKDPh98MTNaCFkW/IclJfCbOKDJE6K5a6ynR3SApdqZ0dWFe9bTg+PMnSvOF4nATguH4QfqB3wOtGga7u3rr2MNZWXo5DvyyJR5aTOxrTRIMmpOobhIpCRJk4no9L4+qGmaIklSiIhSLKj9Vt4kopOI6Coi+j/d6zfv+fcN3Ws7iegUSZJGaprWsme9BYTosn5tLZIkbSCi8yRJulVHPllK6YlCZ2Qfip5jSFFEQNHtBjjabKLlmTPZK1ci83L88aJyceTI3scOhTCdqrsbzoIR/5ck4Rx5eTBwN29GdU1FBRzC+MyUnuPHYoHCYH4Nbj1euhSG8uWXJy7Z5sEtViuUjpnj09mJ4xUXQ0lwRU9bGxRbaSmubd06BACnT0+doJzboPnejxkjgh2yLKoUFy2CstiyBQpj+3Y4Fah8tJKmCewuLibKzd1OH374GhFB8Y8bZ6zUrFYrORwO6u7ujnk9FMJ5iBBAPOssVHialeefeuqp9M477xBlsCgjKcquXUR//StadS65xPg969Yh2zp3rpjYbmQo+XxEv/sd9vtvf2vMrcpVLcEg8K+xEVhChKqf+KAGv5eDjvH40dKCc7a3o1LwuOPMr5WHKxCZVwxi0jDal3NzERA1Ih/XNOBHMCgGUqRS8dPYiKrNTz+FU3zbbWKolVn7crzEY1FWFlF7+3Z65x1gkdud+LNGWBSJCFLwNWuITj8dumLKFGOHIINFAy/69uZoVFQlJvvZY48lmj8f3+ubb6JK+PDDiX74Q3NdarHg2S4sFI6hywV7I5VWZ73k5qKK7Kij8IyvX4917dyJoNzy5WgLO+ww4JPDgeTao4/C1vn+92GnGHGPaRocULcbaywp6Xt/+v1IZnR2Ev34xwLr4oU7TjjxqmmCwmb9evxbVATM+vRTrDu+DTrZahluHyQyrwYsKMD34nYLzkKmVHC5gJHJtDdrGs4lyyIgmUpVTzweERFt376dXnvttaQ+G49HqooAOMck8/Mx1Xb6dPNnbw8e5VEGjzKSgsgy9rLViko7I91ZVwcO6bFj0WKsKAgmxb9X08BpvHo1bPozz0wc1I9G4WP94x84x2WXoQKRCH4AF6UMGyYwjbGZK8ZlGXq7pgY6+4gjBF8icyo7ncLXq63FMUePNm859njgC4XDqBivrBQ8iayLcnOhG5qasI6xY1NLosgy0ZdfwufKyYHu0vu2XG1tt8POtNnwGR4imo7KbyPRNCSrX3sNFaq5uaDsOPzwvR7ikoltpUGS+dpfI6JLJEnyEybLjCNc8FbCCOq+5HMiWiRJ0k1E1EhE7ZqmJT8/B7KEMMXmz5IkTSGijUR0DCGS/Fbc9JrHiOhGInpfkqRHiCiHiH6y59zxIaH/IaJ3iOgTSZJ4TPdPCNHfIkpftDkj+1CsVmFMcqWd3y8y21YrAlDvv0/0ne8AmIJBgHG8ERyJoC2ovR2OblWVuaFssQD8t21DQKC4GI6hUWUjr5OHqIRCMEJzc5GZe+45rP/KKwVnhpGEQlAoVis+b6SIZRkKx++HMTxlCgKdnZ34vbgYx6ipwfUWF+N++HyxbdHJCGfbGhuhaI49VlQmtbbimlpaoBTLy0XlwsiR+MzmzTBmS0uJTjrpdHrmmaWUm5tLs2fPpt27d9NDDz1E06ZNpQ0bNnxLJGzWNjZv3jx6//336d5776WRIyupo6OMXK7jafNm/P2oo1ABxZwfRnLZZZfRkiVLaP369Rksyki/xedDew07ZUYG0O7dcOwnTAAnK2NB/DMZChH94Q/YJ7/+tflzTySCIdu2IdPudCIAaNQuxLyz3Cqjnxy7ZQvOKUkIJJpVCxDB2GW/1CyAGAwSPfww8HHmTAQ1jYKlPJAlEhFtjP0VRcG1P/AA1nLLLah84vuaqH05Xk4//XRaurQ3Fk2dCiziwIAZn5MeiyoqKqm2tow+/fR42r4dfz/vPKL//d/YFvR4yWDR4Ai3N7PDxNViyQaw7XZU8B13HFp2V6yADXHssWJQkpnwcxiNCq4urxfBqsJC7INUKe/sdnz+9NOxj2tqkLzYsAGVKDYb8AFtq3CsucrOKJDa3Y015ucnVyHs8SCZ4XaLFulkha+5pQU2ydFHw3bw+4GxbNt1dIj35+bGBhZzcnrfO+aQ5YCe2TVIEu4/D1cpLBTUOdnZOG9f7c0crNQ00UWTqvSFR30J49E999xLslxJGzeWEdHx32L2yScj4ZLIYb/sssvommuuWU8ZPy0jKcimTdi/8+YZB6q7u2F75OSAs1hRsLfiE2yahmDgO+/guT333MRJF1VF4PDhh4EnV10V2x3C2OH1wibKzRV+FicPgkH4jy4X/IiJE7EO/jwPlQqFgJ21tfi/GX0ED1rZvRvnOOwwYfNwRTzz9rpcuG+FhViLovQ/oNfcjMIYvx9rnzVLYLyiYC0+H/CsokLggKaJBJssJ88hnKzs2oXuwO3bcR8WLsS9GDs29VZtnWRiW2mQZL7u64koSEQ/JEQ8txHRT4loKiV3o68iTH25nXDRa4ioXzda07SwJEknENHvdOtoJKLf7/nRv/cbSZLOIaI7ieheIqonor8QJuAsjXvv+5Ik/WDPe+8gomYiup+IooTpNjFklxkZ+mKxAHyYND8QQAXaG28AHCsrkZGaOLG3oRyNwshub0fGnHkFzSQcxvvffhvZposvFpU5BQXmitLvh2Gcmwti3mXLcK6LLzZuZ2RhxWaz4fNGBrDfH8uZwQ7MiBFQdmx0l5Yi4BAMwpEYPx5Bv/p6KL5ksj/d3Wg3DoUQIBw/PpaXcdcurGP0aNx3vTEgSXh91CjBl3jSSfdROOyk1157hZYuXUpTpkyhRx55hLZu3UobNmyg6dNxvo0b8V3FfzcPPfQQXX311fSb39xKoVCAKiuPo+uvP56OPx5k4RUV5i0FLNnZ2bRy5UoqKir6O2WwKCP9EE0D/15HB9psjLLPHR2YqlpaCh7EQADGY7yDGY3iWDt2YKDDoYcmPjdPXl26FEa4WQCRRR9I5OFKa9aA4628HETl5eXmn49EsP8tFhi2RnhRU4P70NqKKqQzzzR3tl0uMZAlleEFW7eiCmzrVhiit9wSWwnWV/tyvNx3333kdDrplVeMsaioCEGM7u7YwQ8s8ViUl3ccff/7x9Pll4P8PRkjOYNFgys2W2rtzSxOJ57xRYtgb6xejQDdiSeibS5R0DorS7Q6e70I1rW1icRfKq3OtbU41qRJwJiZM/GzeDEqE//9b+x3HiLy17/CwTfiFeNWXqcTe7Sv/dPTA0c/EMD5zFq8zaS7GwlGiwUO77BhwNdhw3AveL9FIiKgyDywLS34m9Uqgooc/LPZercvm4k+kNjTI67bZottb+YBB/z9MF2EomAN2dl73xLYFx71JQ899BBdfPHVdMstt1I0GqCKiuNo6dLjKRzG1HGjivR4ycZNy/hpGem31NTADpgyxdgGD4eJ/vhH7GHmfs7ONg7AvfACAk/HHAOqlUSUCpqGc//tb6iivu46Y5oomw17IBjE/mU6lZIS7PP33oNeOOEE+C2aJpJONpsIJHq9wFYiVPMZJRmjUfheXV3AjcmTe2O7xQKsaWgAxhQVAXMCAcHXmkxSIhSCj1pXh7WceGIsNVcggACiLKOwI76Djs+jqrHBxP7qxnhpakLl4Vdf4VhHHIGincpKXGcaZkURZWJbaREpvgQ+I0SSJP2NiC4nonxN08zIJlORzM3ez6SzE606ubkoe9+5E6BVUSEcaTYwN2yA4V5ZCScv0dQrLm1ftgzK4sILxXS/nh5RUaMPCrpcUAgFBXj9lVcA8LNno2ImkZMQDEKZmfGEMVdRZyeuJT5op78fNTVQ2mPGwJF1u4XSZsL3MWPMDd9oFBm01lbcv0mTYqsteHoYT2+srobiTaQYZBnVojt24PhVVZhOFu94RSJQwB4PggTjx2OdmganY9kyfIdlZVBMnAnUcy8mKYNC0J3BogNH/vlPVML97GdoC4wXvx9YFI2i6icSARbF860qClp61q7FMJMFCxKfV9PQJvTYY9iHV12FYxpV4sSLLMOQfOUVGHUzZhD94heJA1wcQLRagZHxxqSmoRpr6VJg4A03YC8bSTgcW83Y32qdUAjDX554Ap//1a8wZZ2vW9++bLfHTn/dW9E0wZFmt8NI52Nv2ICKyK++QjD34otRTeV0Jve9xEkGiwZRuPpCVfFs95PM/Vtpb8e++vRT6PtTTkGAMdlnnNvp/H78zq3OyQTZOzqgTysqjAN4kQgqYevq0P2wcyeeVXZQx41De/PcubAL3G4xcTpRopMINgZTsyxenDiZYSTNzVhPTg7wSJ+MVVV8P/FD6liYP0zPr+h2i/bl3FwxwIornvsKznKVtKr2rrgOBBAMIELAISsL52LnO9VnJ51SX4/E1fr1uO5TTkE1lcORuBLaRAZtcMkA4dGQwqIDQVwuUAqNGAFfJ140DdzFn30G22P0aGDHyJG99+abbwrqhcsvB74len5ranBst5voxhtR5ZZIurqA20VF8CGampAMys4GduuDbKoKW81iEZWD33wDDK2qQoAwHqPcbnR7RKPwXcywkbvJmPIqNxfnkyTgm6JgLyfCl927sedlGTQF06fH3ivm8c/Kwj1PhkKDg4mcOLXZ+hdM7OpCgo0r4WfNwrqKi3HP+knjkRmiFCcDgZkHdRBRkiQrEVk0TYvqXhtBiEiv1TTtpDSf8uC92fuhBAKYkBoOQ+HwBMDJkwGEzKMYiSAA5fEg+DZxYmLDV1XBgfT22zjWxRdDyXCbjNUKZcEcGcOGCa7GYcMAlE8JC1oTAAAgAElEQVQ8gUq9E0/ETyKnkp0JLq2Pf68sI5sUCMDJKC83V6zcxux2A7THjoUS7+yE8uMS+sJC3Iv447S3Q1HKMhRPVVXse/x+VAJoGoyGaBRBvfx8HK8v55mDhLt24XcmUtcHRHmydEODGKKzahUqL4qLQcRbXY3XS0pSbiNKq4LKYNGBLZ9/Ds7CE06AsWq0R5cuxd649FJgAA9V0htheq6fSy+Fw9eXfPYZ0eOP41g33oiAeTCINSSqfiLCfrvvPiREFi1C0DKRUx0Ox05NjseHQAA8W598AofhuuvMW34Z17iyur+Z7bVrwXfY2IgKsBtuiD2Xvn05Nze1CsdkhKkgJAn4+OijgqLhoovwTGRn47tIMaiQwaJ9IFxpwgGhVKsj6utR7cUDBc44AwHlZJ/3aBT62u2G7cEVOnr+Lr34/eCYystD8N6I2/Dee7FHf/EL6Fi/H057VxcSm+vXQ59Go9ibM2Yg8DR5cmKnva0Nto2mwS5KVM0cL5oGx7ehAdgybZoxFvUVSNRLOIyfQADX4vPBzgsGxXv0bdD5+cbTshUldniU/rtjihqvF3t8+HDge5qqaVKW9nZMEP/oI6zn5JPRYu904md/sIuIBh2PhiQWDVUJhaALs7Jglxvt56eewjCNSy8Fxrjd2EPxtsv776Oi8JBDiH7yE/gTifRpbS3RnXdi7//qV2Kgk5lEo9gzfj/O39IC26q4GLaRkS3F3IXMgSjLopOLqxN5kGZDA3wvhwOBM7NEbSiERIqqApM5aaMoWCN32EkSMCv+nvp8WHdrqxiopa/W5AClz4fX+wrEGol+LVw1megYXi8KPNasEYPJpkzBPR01Cvc7BTlog4iDiZkHexCxnIjWEtEzRFRLRKMJfePFRLRA07RP0nzKg/dm72ciyzBmm5qgnFQVRuDEibGZdE1DAKCuTrTqlJeLCsV4x0/TUNr+9tswci+5RBhjiiJaWKxWgLTPB6WgqsLB/cc/kJ076yxBMGxmcPr9UKoOB9YW/z6fD9eoaVA4ZqX9XKno88FQtlqhJHNyRCCQp0x3d8PIrqhARaIkwRDfuRNORn4+qg/1SpADkS4XnJyKCnFfXC4otLw848CkkQSDyNjV1WGtkybhu9MrzC1bUPlVW4uA5kknicErhYXmwYskJd2OewaLDlBpaUHwrayM6P/+z5jD51//AifQuediT3m9vVt3NQ1TCZcvR5vO2Wf3fe5PP0UAsaICbc/8zMuy4Ocxa91zu8FBtH072o1POgk4Y+ZchkII+mVlGfOK7tqF4ERHByYfnn66Oa55PMCi7OzEHKVm677nHjgeVVVoY46fOhsMAjstFmNDO91SVwcHZ9UqnG/xYrSw2u34jvcyqJDBon0kXHnBPIl708K1fTuCOt98AxvjzDNR6Zfsc8GVr1xZZ7GIKnu2UWQZOKOqaF02crKffhoVkhdfjAA3Dy2Jtx3q6hAA2LQJDrDNBoybMwc/48fHrr25GTaXzQa7qD+OoaKAiqCzE07lhAmJ74uyp8bC7PtQVWF3GWFgNBrbBu3x4DUi3FeuUmR+RYdDcD1LUmwFdiSC74O/Fw4kDjTmmInbjXbP997DtZx4ohgmmJ0NPNpfsIho0PFoyGLRUBNVRaLP60UA0Sho9t574Co8+WTYDO3teF98y/PHHxPdfTf8gCuugL2TqCK6tpbojjuwH3/7W/OBTiyyDLuFA3MffohjTJyIwHuivez3w/axWOB/5OSIic0WC362b4cfVFaGazA7ns8He9JmwzUa2ZKyLPDLaoWvY7Phb9u2IVnFNBDxOOr3I+mqKPAXE3XbJSN6HmGrVVCCsIRC+I65HXzuXARQs7Kgb8aM2Suu2IM5iDhomHmwBxFziehRApFlGRFFiOgzIrpN07SPBuCUB+/N3o9E04hefhmTqM45B0ZpfT0Md31mnFtgm5uRbSothfEXjSKgxi0wdruY9LxqFTIqM2bACI830mUZypPBtKMDyigvD+99+mm87+KLUS2XKKvOWXOjAGKy7ctEUBg8zKW4WLQeu90IQDocInvGrTsNDfh39Ghcd00NzlldjfupXwu3LweDUAzMv6iXnh68Jycncat0vHi9+I6amnB9U6bgHCtWoGWQJ4mVlODapkxJmwGfbsc9g0UHoEQi4B9sawO/mNG095UrkYH9r/9CVrizE/sgfuDCc88h2Hjaaahg68vR+89/EEAcM4bo5pt7G9WRCH6ys3vjVEMDBqf09GD9RxyB/SvLcDLj9w9Pfs7K6l0NrWlIqjz5JHDqhhvMh8BoGhzxUAjrNaumMvvsO+8Q3XUX1nLJJWjFjK9S9npx3TxYYiArglwufAevvgpM+8EPiL77XVxXUZFI2OylZLBoH0q62pv5WBs3Yp83NaET4Oyz4Vj1R4JB7F2fD7/n5gJP6uvx+vTpxsOJVq5EpfN3v4vkaksL9k98xWAgIDhPefDL5s2oUtyyRQw9mD0bjqHTCToHpxPH7Y9zGg6jctLng9ObTPuzpon2vnhbQj99mXkQk5FQSLRAe734UVX8LStLBBM5IVxaGjvR227HMTo78Zni4r5bv9MpwSDaPd9+G+tasADBGaZwyM3d/+wiokHHoyGNRUNJNm8GHs2ebVyR/OWXGEI3axZ4gtva8JyOHBmrs9evh61SVQWqlrKyxPhSW4sOBVkGv2JfA50UBb6UpgHTPvwQFdGTJqFiPFGQKxRCAFGWcR59oFRRUDyxYwf0xoQJCAyaSXc31uFwAAMT2Q2KAhuHOzmIgM0uF3zBuXNjKye5yKO9XfiL/WwdTijxwURJAufusmXA9dmziebPF75xoonV/ZCDOYg4aJh5UAcR94FkbvZ+IB98gGDfokUAru3bYdzGZ2W2bYMzXVoK5TF8eKwSYL4wvx/KYvVqAOOsWSinN2sV5MqFSATAbbUiy/7mm1CQP/1pbKbNKKvORixXR8Yfv6kJa+PKSTNHORqFIpPl3tfH52logGKpqhIKKRSCkl+3DsrmsMMQGIhXPD4fjs/ty4mq/zweZMGcTgQ++uNcM6/KypVQ8GVlaPWcMwcOA09u5kBiGoz3oa6gMlg0wKJpRH/5C9ps7rijdzUcEQIGr7yC/XPqqcADSerNl/P662jrWbQIgbG+Al8ffYSqxXHjUIFo1qrL/Dl67quNG5HVz87G1OeJE8X1BAL4V//+QAB7127vnczw+dC+vHYtrv/aa83bdFQVlczRKHCiP9P3WlrgcPz732hLuu223tUFsox1qurAti8T4bqfeYbo2WeBP2ecgUqKvDxxz5nKYm+msu6RDBbtB5Ku9mYiPKOffAJs6OpCV8PZZyMh1t81catzUxOc0BkzBFewXjZtglM9YwYGD7W34/PxDmswCH1rswEjuHpN/3e2Db76CutvaMDar74aNleyz7zPh3XJMu5BX4PP9GIUSOTpy1br3rcUM5+qvmLR7xdT6e12OMPDh8N+5GCdLAPnw2EEco06SNIp0SgqfV59FWs84ghUgRcU4BocjrS2V2ewKCN9SlMTsKG62jih2NhI9Mtfwo6/8048tzygUY8dW7agknDkSGBLUZFxkQJLbS3eTwSbbOzYxOtUVWAm6+s1a4Cl8+fjnDzMyeh8wSB8EYsF12m1CjorTUMl965dwNHp03tzX7NoGrDY7QZe9GewiM+HZPKuXcDO+fPhW+mF6a54wvPIkenjhY6/jkgEeu2tt3A906YheU4EPCwtRQAzDYlVoqGPRUNC/p+9846P66zy/jMajTTSqFqW3GS5l7jEJbaJTQpxCikkkLKUBNgQSCgBll1KgLCUpS4svNRleWlLCAmQAE5PSOwkTnfsJI6juMuWZNnq0vR6733/+HLe585ommRJtpw5n48+ljUztzxzn1N/53cKScTxlcJin2B59VVahlatwpE6cADltWhRsnE6cAB0XUODblnJ5MBaFgnABx+kOiVtek6nbnm2O2nSdtTTw+s7d+LkTZtGC5O0S9uPb3eGvV4Ufjq0kt8Pos+yqGplS9qFw1T3HA4Mb6bKUyBAxbCkBKNbVMT/W1sJ3sVILlqkzydIyIGBoe3L2cTvx6BJ0jIfYxKJkBR+6inNlzJrFuszbx7XVlvLfezdi9GcO3d4fExpZKIbqIIuGmN54AHQh+99Lz+pcvgw6LxZsxi8JO1ukycno5mkpWfDBlCBuRy8J57guPPnw4GYraIsiUGl2C9yrpkzGayQ2nJoWXqQg8eDDvH52K81NcnO7b59DIDp7wc5+ba3ZS9myHCC2tr8q+CmyVCAH/2I3z/5SZJ1qWsk7csykXWsWgljMaX+/Gf4LX0+HOSbbqJ4IVMLhQTd69V8jMdZ1CjoopNERrO9WSmemS1b8C/8fhLx4iMMR/r7QeyUlOggsaqKPetyEdTfcgs+zre/rVF3DQ3JxdBIhGNJEk58nEz7+rXXQDb6fCTR4nGu4fTTKfCtWJE5md/XR5KguJjE5nCKCiLSyaEUutU0Of8oJO7TiiAN+/rwfxIJdKPDwU9FheZWFN6w0tKhOn80xDTxie66i2tavhy6jKlTOW9xsR72N4pS0EUFySo+H4mkmhql1q1L35X0hS9gS//zP9kf/f34BfZ45uBBih01Ndj9ykrijEzP88GDUJs4nSQQc02EN032jSDonnqKPbtxIzrUMLgXl2uobgoG8e+cTmINmWAslFZ79xIbTZnC6zLFObVbzDSJ50Ih3Q2Xr3R2AqwYGOBzy5dzPnuBS9qXhV8xNZ4cLbEsYu+//Y37EXqpykr8II+H7yMdOv44ZKLrogkhhSTi+EphsU+gtLYS3M2cSbtwVxcVntmzk5Xn4cPw+02ZovmEUiH0IpZFVeWxx0AgSpthKKR/pB1ZWp4dDhS8YYAYam4mOLjySt1qV1ExlFPQNDXpt8eTzFEk1aq+Ppz7xsbsjrLfj4F0uXAqcwXVwSCJw3AYZzwW09OPu7qouJWVgVqoqcGBjkT4vaFheFXuQADkQklJMvoxVeJxuFA2b2adV62C38fp5PsTHpJp00AnSXvR3r04KvX1JFpG6ERPdANV0EVjKHv2gABctQqHNfX57+vTU+FvvFEnlVIReE8/zWCTVasI8nPt00cfpW3wtNOU+tSnMlMY2MU02XN33gnf4urVXHsmJLVpst/s7c326eZSVPn970lKfPrTGs2YTqJRgoSiIhzlfIPpAwcICl59FcL1L395aDvQeLUvGwZJ41/8Aj28fj2tVbNn6yE2Hk+yTpZri0SGTm8ephR00Ukko9neLBKJ0Kr/8MM8y2efTWu8fRpots/u2oUuWLZMt7kFAtqv+O53eYa/+132iAw7sxdOo1H0ltOpE3/Zppk3N5PAmjIFDtDSUvSiDGbxejnW0qUkFFeu1EmCI0fY35WVBL/Hk/SLxVgDp3N47cvDEctifRIJ1sPt5rxer/b/hH5GhjkppZMKQuOSirQa6bVs367Un/7EOs6bp9R73oMOloExZWX52YYRSEEXFSSjiM9uWdjs1Gc9FsOOt7bSWdDUBFDB7SaOEBGkYmkp/oXHw97J9Ezv3YsfVlpKl0IqGi9VpL1XuAVfeIE9esEFybGiDGUSPlGl2OeHD6P3585N1v+9vRRGLAvQhRSDZGClPZEoHWXxeO4uLrtEo1A5tbSgP9etQ49LkVY4Evv7idNKS4mJx0gfqP37QdS3tHAf73gHcV17O9daV6dBJqOsmye6LpoQUkgijq8UFvsESX8/AV5ZGe3CiYSGeM+cqd935AitxQ0NOOiC6Eun3CyLNsMnniDwvvbaoe+zLI2CCYV0pbqoiNa7zk4QOhs36uDW6+UzbndycN7fz3EqK5MNWTzOdYfDXHM2OL8cZ3CQtZgyJb/ANZHA+L3yCp875xw+K3LsGAYvGuUeq6tBZY50eEkoRNKyuBiDYzfEpsmwm0ceYa0WL2ZIQW0t92YYGj3a1sZ1SyvEsmVcW3s7jorbzedHgHKY6AaqoIvGSAYHlbr5Zp7Zn/xkaHU1FCKBGImgiyorceZKSpKD9h07qMQvWgQqMJeT99BDoOCWLlXq4x/PH80XiTDw5PnnoQC46abcifWBARIKFRXJqCi/nwEiO3bQOnPzzdlRdjIYSrgU80noR6NK/fKXcA1WVZFcvfTSoTpPAgDT5DpHk+NHxLLQ///93wQOsvYrV3JvhqEnL2fSyZEI1ymk7SNIIhR00Ukoo9neLOLzUbTcsoXjXXAB/kOmPWaaoAGjUZJx9j0gbbVf+xrP7mc/CzIwENDE/XLN8Tg6yulkLyUS2Tn0du4kcGxsBGWduvcsC/9rxw5+ZGjBggWa0H/ePIohx4OUk/ZlpfBbRhl1p5TSCQDLGsovm4rUVkqjv4VfcXAQ3ykW4xobGvBRZHBLRUX+1/366xSD9u/n+3vXu0jQSsHH5UqmohgDKeiigqQVy2Kv9/biG6Si3oT+5bnn0EXr1hFXCEpO9kB3NzbfMEAslpXhN2VCsTU30xLt8eBH5UIgWha+TTTKvmxuZk+ef356HyIQ0BQswSBxRWkpCUTRj5aFjpXXTjtt6P3HYhzH5eLejh7l79On50+90tpKASEWo1V42TK9bvE4vpYUN6JRgBRj1b7c3q7Upk3Yn5oa7NTatcSqXi96aPZs1kOKbg7H6CD4/yETXRdNCCkkEcdXCot9AiQcJmgPBgnaq6upTMlUX1GgnZ1U7CdPRnGHQijYdIbDNBnO8uyzusUoV5Afi6HkjxwBtRIKEbQvX46S9Xi08gwGCSxdLl7zevWwAan+OxzDa18WtGIwqNuz8wlsentxSmMxjI5lYRzFAMh6yJRGj4d183gwviOtcIXDJAGLinQicdcukiXd3fztssu4jv5+1lMSMfZA3DBANezdi7FqasLAGgbIiHgcg59u6EUWmegGqqCLxkAMAx7B3buZxJxK2p1I0Grc0QEaeuZM9pdhsFdEFzU3Qxbe1ESQn82JFOTfpk20CX7kI/knzPr6mMDc0gJa6IIL+Gy2irDPx16TqnlJiUYZff/76Krrr4e0P5t+EVqGTJPl08lLL4E+PHwYDsnPfjY9Afd4tC9v306rZnMzOujmmymuCFpbhhXkg0QTvkZJzgyzvbmgi05SGe32ZpHeXvb7M8+wfy69FBR+qq09cIAE3eLFQ/eJZaGjtm7l2V28GN8kHkdv1dezt+2TSaur9TCmTDpm+3al7r0XGpHrrsudFLcszrttG4VB8SGWLWMAwBlnDNs2J01fLilh7TMNWhmpmCb73DA0yjHdsUMhzV+dyT8zDNbg6FGu2+Vi3ZXSKGZpg66qGlqUOHyY5OHOnRRj/umfQKvG4xzP4eAzY9XGbZOCLipIWjlwgDhi6dL0SMA77iCmev/7QVn397NvGhq0/zMwAALR58MPcLuJhzK1+Qq/c1UVCcdcCUSlNFhj71500dy5DFDJpLuFnsrn4/rKyviMvD8axR8cHESPzZvHZxyOoX5JLMb5+/t1Z1c+ezYYBFhx9Cjxz7p16f2i/n7uy+FgLWpruYbR9I96etD/27ahcy65hCFOUixRilg1tUNNbOUoJhMnui6aEFJIIo6vFBZ7nMUwCNrb2pjWOWsWAbPfTwJRjFNPDw5YTQ1KfnAQZ8zeMmw/5t13oyTXrsXg5aoUJRJU1VpacJTdblpM6uo4l1SJ3W7No5hI8JpMYK6r03xaQvgrRiuXsZFJYAIfT3dfqRKLYfR7ezHUCxfixEajOK2WRfDsdOrpy4KgrK3V7T01Nfx/JM57JELitbWVtsVjx0BAXnopzkgwyBpYFveUbZprLAZP24EDepL0/PkcW3hD5s/P26BOdANV0EVjIL/6FbrhM58hIWcXywKds3MnQd7y5TqRNmmSDsqlTXfyZBKJuQoDd9+NTlm1iuRdvgmoQ4doGQoGud41azT9QllZ+v0qCcTycq4rGuXn4YdBQTY00F6UbeKhfQKzcITlkkAAlMJdd+GAfuUrcESmirRmS6KjomL025f37GFYzPPPc78f/jDFDMNgbUyT77KsbHjntrc3u1zoszx1ZkEXncQyFu3NIkeOEHi//DLPy9vfrtS553IeoRmZORNEYKrceSd79n3vU+qqq9jbx45h/yxLI+sSCfZ7bS3PZnFxZh3z3HOaG/rd787/XqXlWobBHTkCaqmlhdenTyeZuHo1Ply2fRWPo5McDs3bqJRu3ZYC7PGITLZ3OPJrkQ4G0Uvl5dl5v6RTRdDTppk8uEUSi1IciUahc3n5ZfTolVeSTC4qYi0NA78wGxJ6lKWgiwoyRHp6KC7MmEGhM1Uef5yC3IUXYk/DYT5TVaWTYX4/BdquLuy/FAczUU1t2wYVTG0t/k0+Q6kGBvh55RV8s5Ur8atySXc3sUV1NQAF0Tn9/SQQTROdKN1bwo8og1ZE+vrQwS4Xei5XMdiyiNFeeYX/n346nSup6yEAEhncJ4OeZJp8URHnPB4d4fMBjtm6lXu64AJ0kcNBjCXglVmzcseqUniT63qD0rxMCCkkEcdXCos9jmJZVOtfekmpa66hVae3Fwd1xgw9NGBggPdUVJCYkoEndg4OkUQCIv+dO+G9uvDC3GSwhoFh2L4djrPp05W64Ybk9pZgEMMpzqlSKNpAgJ/aWq65tJTXhZ9w8uTc07piMc3BOGVKZq4zuxw7RruRJAobG5PPEYuRSPT7uU63G2NeXk71LhLhPoWgvbiY9c7n3HY5ckR/h5WVJF82bOBepOVAEqz5VtMiEQz7oUMYuwULCPiPHmV982xvnugGqqCLRlmefpqk3NveRktrqjzxBG2IGzdSmZUhBXZ+0/Z2Wm7Ky2nBycZ5ZlkkAh5/nGLGu9+dP33Aiy+CGvR4lPr3f9dTCqXVzuEYmgQTmgWPR+s8r5dW6FdeAfny8Y9n3+OGwT3H49xzPgnPzZtZi74+Eh4335y+aCPty5bFcUe7fbm9Xamf/xzeyaoqdPg//RN6JxRCJ8qgieOp7I+gvbmgiyaA2NubjyMwSisHDpAQ3LcPv+Wtb9WJv3TTT594gmFE55/PforHsfnSTiv79NAhXquv1/QqmQp1W7eyN5YsUeqd78wfReLz0fJmmvhfdgSN+GY7doCgMU1svSQUFyzQ62jnJcw0fVkGrYw0kWgYekCLILHzPY7fj56QbpJs5+jt1Z0n0jEi1Dg+H4ieTZtI2jqdSr3pTdgUQY+Wlmrk4mgPbMkhBV1UkCQJhejYKiujjTlVLzQ3022xdCm+j1L44sXFOrYJh/FTWlrgTGxoYJ9nopp65hkKfQ0NSn3iEyADc+1Tr1fHaYYB+jBbMVSkv584pbhYcxcWF6M729rY60uWDPWLDEMXlhwOkqM+nx54JVQomXyJwUG4Gvv6iL3WrUvvTwndlRRopk7FVwkGOX5ZmR4eMxJUYjis1N//zlyARAI/8LLL0D2dnfw4nRSz8uHwta+PJBOdTq5rmDZzouuiCSGFJOL4SmGxx1HEqT3vPAL3cBgnu7ISo6IUhmPHDhzOVatIIBYVYZxSFVYsBuR+zx4SiGefnVspmiYO36OP4igvXUqLT2qAa5ra+RU0TUcH/0pFuqQEhS9E/VOmcC/ZnPVQiAqUw5GdeNj+/n37WJeammS0pl0sS/OFFBfj1EtS1DAwnrEYbQsOB9cQj+vWg1wBRk8Pbcs7d2IYzz1XD02ordUogNrakU1tVIq1bW7GwJaUkCiV9qQ5c4YOaUiRiW6gCrpoFKWtTal/+ReqrP/1X0MdsV27QNGtXAlaRJDETif7QZzIW2/l/d/8ZjLnaKqYplK33YZz/uY3K3XFFenbV1JFBkH95jc4yLfeOvRzhoGOKS5GT1mWplOwD3xqbgYd6Pczffq889irmRw9+wTmSZNy66LublqtN2+mui6BRjqRIVZj0b7c0wPCdNMm9MR113G/FRWaWF0p9ORoJS4NgzUXFFgOHVfQRRNExqq9WSmOuWsXRc5du7D3H/sYOsceQDc3g+RZsoSAXDoJTFNPN5XJpPE4z3VvL/bS40FfVFfr/WtZ7NEnn6RQe9VV+Qd7PT0U9EpLQWZnK0AEAhQrtm/nHhIJ9vrq1fhuc+Zw3lzTl2WoyXDW3rI0Z1lREdc7ku9OBuNVVuYuqHq9JApcLmxESQmB/333gfY0DHSuIA9lUILQupSUJE+DrqrKPkl7lKSgiwry/8UwSHRHIhT/U5/5o0dpM66pwdZ7PPhB0SiJMZeLffcf/0H89PnP0y0UCOAfpYtNHn8czuTGRvid58zJvVd9PhKU27dzDRs3Zve/RHp7uYfKSny/QID919GBXzR9OtebSR9KYam7mzWaPFnHlJFI+kSiYaD/mpvZ42ecoYvAqeL3cy1Cd2XvQAuHuVa3W3e+GUb+Ra54nLV++GH00tq1+KENDaxDayv3UFfHdzFSn0zWSJKJw0BMTnRdNCHkDZ9EdDgc1yulfquUutCyrMfG+HRv7MUeR3ntNabTnX46KETLIjmWSFCZLy5G0W3fzu9r1miEzPTpQ6u3kYhSt9+OoTnrLN6fDqloF9MEvXLXXSjyc89FyWYzKAItHxjQZL2SVGxupupUV4fDXV2tCdsztR729mKEpkzJrsQti0RIayuKet685IEJdonFMJzRKNcnxMJNTTrYTSQ4XiLB30tLuafBQa41ExGy10tVa9s2rvctb2Hd3G7Os3Mn38X8+Rim0QjCBgZY264ujaoUdOPChRnXbdQNVEEXTUwJh5X65Cdx2H7606H8PG1tSv3v//K8vv/9PE99fZpjVCbl3XorTt03vpE87ClVEgmmzG/fzv5461vz4xQ0DJzrhx+mCJJterMgoiVwjUbZr0Kn8Je/kKyYNo1WoVmzeJ9wb6VeSyTCPpO9n00XmSZt39//PnrlYx/T65buvX4/7xvt9mWfjwnTd97J2l11lVIf/CBOvmFwv/ZhBaM9tMGy0OgP81IAACAASURBVHnhMOeoqsp4joIumkAylu3NloUte/55fKDBQfyda67BZh47ptTnPofv8J3vsF/6+thDU6fqooEkEOvqNMJPWmQF7StT2Z96ikTBmjXwlOabQGxrw5+qrob/cDjrEIlAb7JjB628oRDXs3o1wezy5Zl1m7Q158uPmEhw/5L4Pd4hOVKQqarKTYMj7c2RCIjMRx5B77z5zaA9p0zhXkIhvi+nk+uzD24R/agU9ysJRfl3lBHbBV1UkP8vr75K7LNmje78EvH5SCCGQgyQa2jQifO6OnSTYSj17W8TD/zrv3Kcvj6SjqmDSZTCt7ntNuKXf/7noUMZ04nEFTt3ogPz6S5TisRfZyf6S8ASPT3oJIeDwkauGFE6ugwD/zD1vJJIFFqG7m7WwucjObp6dXo9Z1nEM319fHbmzPSFlVAI/6KsDB/GXuQS9F86NPdzz1HMGBigsHvllZzDMPi+ZVDgrFkjH66Zej+STFRKIyZz6OGcumicdcspKWNAN16QgpxYaW8nyG1qQrk5HCi2SATjUlyM4tyxA6fqjDN0oNzQMNTohMMYpiNHqFAtWZKZyFfEsmgxuv12nLhrrsHxyybFxVxDZyfXJTxpsRiO5LRpmoy2q0sjb4Rc2B689/XpCVj2gQ3pxOcjwRoMYujnz89cyff5OLfDgdHzeFDsra0EBTNnaiTQzJn8rb0dYzJpEtfZ04MxDARYR5eLe9myhYDEsqhaXnABxzJNTbI8Y4aedB0OjxyFaJfaWhLDPT0EXv39rLcQLC9enJ9TUZA3nshEwY4OgvJUvdDfD3q5upp2YyleRKM4wcXF7KmvfU3/my2BGI8zJGrXLpKH55zDcXIFtaGQUt/7HgH3lVeSlMv2mZISzaPqdLJHystx8H/4Q4KDc86Bv0gC4bIyvS/tiINAgHsrKUEHZNNFhw+DknrpJdpzvvKV9CTsshaS0BjN6cuRCAWo3/2Oa3/rWxlWM2MGrwv3qww8GOngqFzicOh2RL8fh72ycuzOV5DxEZnWLEGRaY5ee3NbG8/K298OP+qTTyp1zz0UJpYuRW8UFdE2WFGhB7hVV+sEohQ46up04lC6ICor0XEyROAPf8BmSgtbPvdgmvgbnZ0kwRYtGv69u90kC08/Hb26bx/X8corBNkuF4nE1atBYtrb/CR5KNzSmc5tb48uKsrMEztckcKwz6d5GzOJy8XE5Tvu4HtZuRJub+mkiUbRRUolI6Hd7uQumXBYcytKO7Rp8lpJiU4oSnJxLAZRFeSNJW1tPGcLFgxNIMbjDDzp68PnaWjgWR4c1O3+lgXlwrZt+BkbNqAzysrSJxDvuQdKh9NOU+raa7HXuRKIwSA0NPv3c50bN+Y3yKSzkximtpY4yLIoiLS3o0vzSZ6FQoAxioo0FVSqlJZqehOhYPJ4QCBnGjYVixGrhsPogGx0V5I4FH+mrEzz4IptKi7GB7Qs/MdNm4gB58yB0mXhQo41OMh3Ho+j19N1841UBB1ZXKyvLZHIO5lYkDGUgqkoyCklg4M4tpWVGJLiYpJpvb0YKiGj3rEDpbhmDcGyz5eeoysQIJjs6SGpNXcuCjKbcpS2ot/9DuV7000YtlxiGFy/YWAk3W7N0+FwAFmvqMD42IexiIPodGIUgkGuoaaGQCDb+Q4dwtCXloIGyPR+08Roer0YGjsXiUxqbm3FiM6YwVq6XCREJMEohLozZnCc/n54F/ftg9sjGsXpv/hi7QCHw7xPWpdqarg3OVe66t1Ipb4e4yxt2t3dPCddXTjv6cjpC/LGlr/8hcT3hz40lDA8HKaIYFm0v5aX42DJoKTyct7zjW/wjP37v5PAzyTRqFL/8z/QKbztbSTZampyO2rd3ZyjowP+swsvzH1fwtMq7bRlZSQOf/hD9M/NN+Nw2503p1PTLciAJa9Xo4SyJTvjcVqsf/EL3vv1r5MIyfR+e/tydfXooAATCarrv/wl+v6ss0BBLligXw8Gk4cVjCavXSZxu9GlXq8uDI1DW2JBxliE4ykeJ/A73vbmvj6C0qlTddB+/vkULx96CB3Q1weaVqb/9vVh+8Wu9vejZ2prNSez7GsR2XNbtuA/nHUWqJvDh7WNzpTojsexrYOD+AyZ2vByiX36sscDJ+Cb3sT/9+7VPIovvcQan3YaxeJVq7QeEp5BmZSaep2xGK/lao8ershgg4EB9rMMZ7GLZZE8+eMf8f8WLlTqox/lu5UiuD2QzkYjoRTfn/BdyvoFgxqp6PPxLIjIABhJLOY6fkEKYpfBQZLf9fVDeQUtC77C3bsZwrZokaZPKC7G97csfJ0nnoAH+eKL0W1O59CEpAyX27QJP/2qq3jOcxUVAwH0YmcnemHDhvye8aNHudZJk4gJIhHu1ecjtpk3T/tAmTgGvV78MpeLzzidupXYfg2Cbnz2Wc6zfDmUEZmS/D4f16cUsVc+KEBJ2AoXttutbVMioXX2/fcTd02bhi5asYL3x+PEd4OD6Jj584fPfZ+v2JOJ8bhuwR7tCdMFyV8Ky16QU0YiEdrPDAPD4/FoBVdejvKLxXAu43GcSpcLpSsThe3i89GGODiIEZs2jQRiLkf/mWdogZs0CWWbg1tPKaXJtE1Tc3G0temJfvaqmrTODQ6iVKdP5768XqphsZhG/cnnU41jXx/Vt2iUY2fjDbG3L9fVaaJvuzidOpF45IhOYpaUgCSSpF9TE8q+ooL2gXvvxZlevJj2nFmz9HoMDODoulxD+RxnzdIoR0lajpbMmMGatraSDG5p4VyrVpF0Hmei8oKcpLJzp1K//jUonKuvTn7NMECzDQzQViNtgQMD7JWaGvbVt75F8H3LLZn5/pTCIf3Zz3gWr75a0xnkcpz27YNfMR4H1ZduMmKqmCbXmUiw7+JxkNj33sve+OpXM6MDZdhAOMwxlCIYzZbof/VVru3AAVB/n/98ZqS3vX1ZJtkfbzLNNEmI/Pd/o09OP501k6mMMtAgEtHtgOOtAwQNKpxLQnUx2i3UBRlfEQ6/eFy3OI8EWREOU5CrrByamCst5bmeNo3iQ2srLc1nnAEdwsKFnK+/n2e8poZgMBDg8+kGAtx1F4HlpZdCNxKL4Y8I0k1ane30AuEwez0aJamXD+dYOrFPXy4rS94DkjAUNNKhQ/h7O3agw37/e4L8M87gp64ueWKzaWpeZKeTtRuL5JnwOff3a/5pSVTu2oX/2NJCkuKzn6W46nBwbe3t6MqaGtZwJAlO0WN2vZxIJE+CHhiguCXvT+VXzNWKXZA3psRiINbKynSiyS533UXh9dprSdwppYECU6fyrN12Gwm+q67C3+nuZm9Om5a8Hy2LQu3DDzO05bLL2Fe5gAWDg/gzg4PowHz8IqWIbfr78U+mTydm27OH15Yu1QlO4RiUicT2NZAup/LyZLSeZelEogyT2b6d/V5TQ7EmUyeHZZEM7e9n3Rsbh6cXKivZ80JJI3rv2DEStK+/zrq+970UpeQaeno05+KMGeij8ShuCppfZglIQrGQTBx/KXAi6p74i5VS65VSH1JKTVZK7VBKfcyyrJ2293qUUrcqpd6llJqplOpTSt2jlPqiZVn9eZzujb3YYyiGgYN46BBB+9y5KLaDBwm6Fi3CKdyxA+d49WqcXLsCtDujAwMkEEMhEoh1dVS3slVYLIsR9/fdR1LuYx/LrxIkiADL0k5tayvnnjIlMxw9keA6TRPD0dfHOkglT1AzUl3yeAh+Dx3CKJeXsy7ZrlEqZg4HBjzXNFXhgQwEeL8dUdjejoIfGID3sLeXdXrLWzT/iTjTg4PcQ7ZpkKZJci8Uwhina3E4XjEMnPlnn8WBmDYNIvPGxjHl/inoopNcentB41VVKfXjHycHVJZFa81LL+EEr1zJ3wcHeVYnT8YJ+8//xNn+1KdwEDNJMKjUT37C/nn3uwn68yHmf+YZ2oFqa0E55oOkFeoA2YvBIINiXnsNlO5HP5q7wi+8OEIPkSnBHwyydnfeyfu+9CV0QSaJxdAr0r58vG29gvYRVMTcuUyXPussrW/ica7TNLnv1InVJ0KiUQJ9pdDnNTUFXXQqyEinNxsGiadEgmA4NXi8+266M97zHgp1/f38f+tW9NcVV4DiMwydJJJEdeqk8UQCdNzevUpdcolOAohIm+7gIJ8vLmb/W5YOtpctG1nRL5/py9k+e/SoTii2tfH3piYSHWvW4GvF4zpAHY9CgRRspGh69918l5MnM/n97LP1c5BI6O9F9n9FhW47HwuRVkpJDgcCejCNy5XMr+jxKOV2F3TRG1nEpg4OwrucGlts3YpP8pa3YGsdDuxrby/+RnU13R2/+x1x10c/yrG8XvaEnb7IsuCG3rwZ3+T883kGc/EQdnWBWozHSTrOmZPffR05wh5taODn4EH8nMpKKK5Sk+qSlC8p4bosi6RcIMB9CjVV6mck/nvlFX5fvhyQhVLsR6WS/ZBYDN9QhpiMNJFnWbpAGwqRmJVBM6LrnU50jQzPDAT0UJkTSbMiXI7CdfuPZOJwOBHHQ7ecklJIIuqHaIdSylRK3amUciulPqOU8imlFliWlXA4HKVKqSeVUkuVUr9SSu1WSi1USt2slNqnlHqTZVmRbOfq6FBWeTnBX4HXaPTEskjcvfgifF+rV/P3ri6UdlMTSvvllzFIK1dikLq6SG5Nm5b8ffT2kkCMx3GwPR6SYdmSbaZJRezppzn+hz6UXyUoHtdtJHV1GNTOTj19ubw8+zQq08S4dXZyfbNnJ7dFyfTQYBAnurUVBTt/PoYpk6Nsb18WFGe+FR7Lwqj5/dzD5Mn87ZVXQGf19XH+yy8HMSAIgM5OPmcYnK+xMbcjL/cfCJBszTUte6QSj2NQH32U9fzOd8bUWR5zXaQKzvKIJR4HHdLaShIslcPwqad4Tt7yFlp+ldLIPAm2fvhDknwf+Uj29mKfj3N0dcFj2NSkW80yiWXhiN9+O/vrC1/Ir5ghgaxhkHhsbsbhj0bhvlm/Xre6ZJJYjCSFUppDLN3Qka1baVnu6iIx+slPZuc3DQZ1e1CuifT5SHMzycMXX0TXfPjDOMoSjMuwgliMc6UmU060HD3K8JmnnlLqT38q6KJTRezE9vmiKvbtY88tWTJ0nz/9NAOKzj2X6fEOB8FmZyc28/HHGcJSUqLUO95BUG0YvMftTvaLYjGSj4cOYbvXrs1+XcEg/lZrK5+ZNAm0UD5T5NOti7Qvj0Z7cU+Pbnnet481b2ggmXjmmRQUxqtY0N6Ov7ljBz7gNddAnSO+jyChZbiN+ITCS1lcDAJqNFuuM4kUp+2JxYEBEiqHDin13e8WdNEbWfbs4Tk4/XTNISyyezddDIsWMRVe+O2OHtXDHx96SKmf/xy+5X/7N577nh5svp1qyTDghn76aXTWhg0cIxv/n1LoonvvZa9ceWXuhKNSeuik18vxKytB5vn9xChz52ZO4kci3ENpqR6QVF+fWQd6vQwt6ekBGLFuXbKvJ3pQgCHSvuxwsN7HS+00MABS9Lnn0DMXX4x/KoXjRIJ469gxdNDs2bnnA4yneL0kiO+5R6m//nVYScTx0C2npJxEbvEJF0sptcGyrIRSSjkcjt1Kqb8ppS5SSj2olPoXpdTqf7xnu3zI4XA8oZS6Tyl1vVLqf7KdQAy/z6f568rLR3062htOnn2WYPCcc3QCUZJxtbVUuHbuREEuX47SE1RQXV2yo9zVhUOnFFV7p1NXWzNJJAKP1q5dVMTe/e78HFBJIEprS0+PJhaeMSOZ9yFTi5PPx3sqKrhO4Vayt+MIOtDnwwhOm8ZrR47oKll5uXZCo1EMk5CrD9dIOBwkVjo6WM+2NgKVgwc518UX46zLRDOlCGgSCQINqSgNDGjUViYpKuJckkgVNOdoiWXx/QYCXO+11+Lsj7GMuS4qyMjlF7/AWf7Sl4YmEJubSSAuX44uUEpznZaUsE9/8QsSiO9/f/YE4sAASbyBAaVuvBEnu7Q0u6OYSNCWu2UL+vDjH88vuDQMEhGmia77859JUs2axfTlGTN0S28mLsBwmPt0OtnHTmfyoJWiIs7xne8QLMybB3p8xYrM1zXa7cuHD7M+jz+Ozv30p0GL2tdICi8ygfZkaduTybsPPEBBxrLyb8M6ntOqgi4aN5H25tShK5me+aNH8SHSEfnv2UMBYskSUNNSrBPusSVL+Nzq1eisv/2NQSwXX6yDchGhimlvT0ZXZ5PycgqRwSABsbT/BQL4ZPlOUs/WvjxSqa+no+Atb+Gadu7Ef9u8WanHHkM3rF5Ny/NIBr/kI/39FHsef5zv4/LLsQf2rhhBBZkm34cdgVRVpZMT4uuO9QA4h4PvraKCaz5yhNbqQEAPWBhDKeiik1g6O0kgNjUNTSB2duoJzJ/7HM+OZRHzOBz47E8+CQ/i2rVMYjYMzdlqBwckEhQAt21DF61bxzHSIfvsIr5ZdTUt0vkUVgUV6Pejv0wTMIHDAaI6V2zkdrM39u3j98bG9MVS0yQx+dpr6Jp16wBapOq6oiKOEwyy1qEQenbmzONDTgvycMsW1v2ss0B2NjbqQlYwqDvkJk1iPaSl+ETzpba2kvx85BFs1Qh0UUG3jFAKSUQtv5QH6B/y5D/+FVrY9yiltiulDjscDrvqeF4pFVRKna9yPEQNDXoSUiiEcvH7dXVREoonul1qIsnu3SiOZcuo3iqFEmxt1aS1r72Go7VkCUm0UIjAXDheRDo64OJwuZR617s4TllZdnTbwIDm0rrqKhzwfCQWw0AKN017O45yfX0ycbA9kWg3EpbFPfn93MfcuTxPMgyhqorrP3qUwNnh4P6Fn1H4OmQtBgY02XogwH3PnDlyglyBlP/97wS8kydT+TvzTM577BjXNnkyznQsprkfJdlgb//MhlKSSdGStDTNoeTLwxUhHpeWcCGTnzYt+/CLUZIx10UFGZk89hgE09dcM7QF+cgRgsKZM/VUeOFBFDL93/8eR/bqqxkckkl6e0kgBgK09EhSLlsbYCCg1Le/jbP87nejw/KxJUKLYFk891//OgmICy9kCIMk2Nxu9mMkMrSt1+/XrTt23h6Z2BwKsXb/9V96MIsMeMgksRjHVOr4pxJ3dVHoue8+7uOmm5S67rpk/SZ7XtowPZ6Tg3MwHCbp/Mgj2AmPhwTIJZdgz8ZYCrponMXezmwfupIaqHm9+Dl1dUN5l7u60AWTJ8MxKvtMKE+mTuW58vnwCzZsIIl2xx20Ej75JO20K1aw33/3O2z2u96VnbtVxDTRId3dJBUWLkS/+Hxct0x9r67OzO1qb18WrtXR8o0TCY5tWazRJZfguwUCrMNLL4Hy3bwZ32PlSgqfS5Ycf5tzIABS5uGHWaeLLsJ3LC/XvlhtLesuSOhME5NLS/FJhGdNWhrHKqg3DPzJXbt4HoqKSLKuWDEuiKSCLjpJJRCA77SmZugQyUAAjmGllLr1Vu3LDw7yfNfXs9/+z/8hjrvlFva50CjV1yfTi/zoR3SVXXcd+zKRyM5Vb1mAGF54gb1yxRX5FQZNk2c9EEC/9vcTs1RVoQfyAf8Eg7ozo64ufRzT26tbwGfN0lz90pqbupfjcfae18vaNDWNfL/HYiQOH3kEe/CmN1HMmDSJ4/t8XHNXF99HSQmD5qqrNWpedNR480SbJojJv/wFYEdRET75NddkL0xnkIJuGaEUkohaWu3/sSxrwIHmkhTSIqVUmVKqJ8Pn8wBG86B7PJojQRKKklSUaqtMxDzRGf6TWY4epfowYwZOmBiaI0dQbvPnUwHq6sKJnTEDg9PTgzK0Oz1tbQT4ZWWQx0YivMduwFKlrQ1Ukc+n1PXXo4DzkWgUw+J08tPayr+zZg3lHJRknEyhcjpRntKKXVurofHiaHq9BJudndxHQwNrYQ/ChauouprjBgIYzN7e5MmxRUXDd94HBzFKL77IGl5yCY6mTBaUc+7fz3c4bRrrbA/oxeD29HCvgQDfV6b2LkkkHj3KZ+wDaoYjsZhunbQsPblynNHC46KLCjI8OXgQZM+KFUp94APJrw0OEoDbp8IrxXMbi7FH77mHn0sugZ8sk3R10e4ci9HmW1mpBxVlQyR94xs4ev/6r7Qv5iOJhHZyW1ooiCQSHOPss5PfKy000lrndnNdg4MabVhdnXyNRUXolC9/GUfvjDNoaZo7N/t1jVb7stcLsvzPf+Za3/UuvrvUdiJpO1IKHXwy0I10dpLE2LpVT3583/tAmI414sgmBV10gsTp1NMvY7Hk9uZYDPtZVjZ0+mkwSCHANEFLy7MiRcbaWo2Odru1Xpk7F+qD3btBJf7wh/gklsW1XHstdjyXxGIUbn0+rk3Q2lJIqanB3x0cRPdIQbe6Wgf30lItNni0AlR7YlJQPaJbBGV35pkMD4hGuQ/hUXz6aa5lxQr02OmnD88viEZBYN97L7rm7LNJ1NoLnjU16P/WVtbjHzyDWaWoCB9PuCiPHcNXGk0dFgqRFN6zh/OUl7MGS5ZkL/COshR00UkoiQRJQKeTYWT2mDWRUOq738Uv+epXddErEtEJqoMHQSnOm4e+Kinh/fG4jhmUYv98//sg9m64gW4P4Y3P1G2RSJAke/11YqALL8xvXxiGRvrV1elkYlMTHIr5xEODg9xHaSk6UHwM0XHxOAjoffvYT+eem4zgTB20ohT+jLQvL1zI2sRiw49PDIPC5P33c8zTT6eobefNrqoilt69G/07bRrJVNGXEhumoubHOmfh9yv14IP40h0d6Mx3vpPrnzFjxIWmgm4ZoRSSiFqMDH932P59Tin15QzvGxzuCR0OjUCUtklp/7KPW5f3FBKKWrxeOL88HipS4mSKUzptGgqmowPnWJxhmTZnJ59taYHrp6qKFkOZUNXQkHnNd+4k6eh0wqe1dGl+yisS0cikaBSFaG9fTidFRZzHMFDW3d38W18/NJgsLcV47d3LZ1as0Oi+TCKJBLcbY1JWlsx7I4lvSWxnus9gkKD3mWdY67PPBh3q8bDuMn160iTNExKJ6Nb+VCkt5dq9Xq6vvZ3PZkNjybSzvj49zS2XSDI/GMQgy76Ulp0TIOOuiwqSXfx+AvPKSgJte1IrEkEXJRIkqKQQIPu7vJyWtTvuwFH84Acz76GODirtSpHIkyl/tbWZE2nNzaCOioq4xlQkQCaJxzUH4oMP0iY7Zw7ty5n2jVAkRKO6zT8WSz+B2TBAdv/sZ3zuc58jaM6GbjYM1iyROL725XCYgS233YYtvewy0Iep9yWIbMMgEDnRdtayQHQ89hj/GgY6+dxzCZpGigw/DinoohMoEqhJN4Jpspf27uV3GRgnYhgE7Z2dSn3taxqhKNQpwnNobxOUSaCGwfN15pm0FD70kFLf+x4+wNvelt+zFwyCUovFkqeVpor4tPE49t3rZd+XlrLnS0r08JTRQgNLMtayMvMqytAAaR+WKc6JBAm0HTtImGzbhm+wdCmvr1qVOZlmGCQy/vIXfLMzzqCYkTrhXvjOXC6uU64hX0nX3pxPy2Y26eoiiXD4MNc2ZQror7lzRxcZmqcUdNFJKLt2YWPXrUtOZlkW7cnNzfCxil9iGDyjLhf/fv3r2OWvfpX4wuvleLW1+nihELpo/354pJcsQS/V1WVGFYZCdEK1tbE/16/Pn9qlpUV3XLS0oBeWL8+fKqm7m71eUaEnTkuMX1wM0GHbNq5x4ULitNRCiR08UlTEnh4YQG8KX7wgqoXDNpdYFjrsnnu4xnnz8ItSu6sSCeItaTcXOop0vlFxcTJq3unMTL91PNLSAt/hY4/pdfvkJ6ENqqk5br+toFtGKIUkYv5yQClVa1nWY2NxcEEgikIUXqZQCIdPHEBxvk6GNqsTJdEoQXsshgIU5y0apXJSUUFw29pKBUgq9b29fMZe3dq3j2mDkyYx1Vmmz9nfYxfLwiG8/34+c+21+VemhDMskeD3RIJEZT5tIMIv1tnJdU2bNtRoDAxwP5EIkHNB2whKKN01SrXM6UxuX66o4F7lGZSkYlERz6jHo5Gy0ShomSee4Pe1a2nRsaN9BBV44ADGqbGRwS4+HwlCIQdPFUEveDwYNOFUykYkLuTKMvE6tdVLxDD0vRmGRkme6ERCHjKmuqggyWJZBOa9vbTj2qeAmyYot95eChDyDJsme6u4mNabX/8aJ1u4ydJJaytTmF0unG63m/1UU5MZifP440r99Kfogy99Kf/21lgMfdHXB1LvwAHa+T7wgdyoH5dL86aWlKR35HfvVuorX+Hf887j2mpq+Fw0mj44Ho325XgcB/mXv0SvnHsu7eCpaC0pHEQi7PWKivEZTJBJQiGQTlu2oOPdbvjaNmygkHK8XJBjKAVdNA5ib28+eBC7uXjx0Knwv/gFyedPflK3Hdu5x6qq2Beybx0O9l0sloz48/nwJc47jwLsiy+CJl6/HqqGdLa6vx/ET1ERQXs+aFmXC/9n0iTO2dXFcUpL+fto7EnTROfYeaJz8SybZjLXV3ExrZbLloEGPnBAIxR37mQdFy8mQbh6Nb6PZdFu96c/cV+LF1MYSofmjET05FVBaw4O8pMNgZ4q0t7c14d+j0Ry80qniiRR9uzBrimFb7hwIcc6GSbUZ5CCLhpnOXQIe7V48VDap7/9Df/kne8EPS8iBf5wmEJHTY0u0ArIwuPRYIFAAKRiayt67bTTOIZMBU8nfX3QxvT3Y0OXL89PlyQSPPuhkOZkrK4maZmPP2KaIIEF8W3Xk2Vl3MuWLXoa9UUXZY//nE6OdeQI1yN0V7L/hFsyFsvsVynFewRh3tZGTHTzzaxL6l7u69PnmzmT6xNASWqniUgqKtEwkgd8jlQEMblpE3bN6aTIddFFepDYOOVCCrolgxSSiPnLnUqpbzocjvdZlvV7+wsOh8OplKoezTHfpaX81NaiICSZ09+vnSxBho03F8GJFAnau7txHyhfXwAAIABJREFU5mS6lmVhZAT63dKCohSHzedDgdfWasf79ddph54yRSMQo1GOmU4ZG4ZSd98Nt8acOUwzbGzMz0GT6ayhEOeQyVb5IksCAQIBp5PrtScQJbDo6uLeVqzAQEkiw+vVPIliAGQasiAhZdiKXRyO5Nb7SETzKAaDHKO5mcE20SiImUsvTd9GLFxj5eUcxzBYY+EJ7evTAxnSicvF9+n3Y4CPHOEea2vTG7UpU/hepLXZDnOPxVhPaZeSlq4JNOBoXHXRG13+8AeC6E98AmdZxLJA7x04gC6wt+gODvLctbSAxFu+nGmDmRyegwdJBno8Sn3qU5o8O1MyzbJANt51F/vuc5/Lv61MEoivvAKaWimmTa9fn9/nBWGp1NDW30iE+73tNvbyD34AGtmud2Ix9qZ9+qgg8EfavmyaoA7+539Ac65aBXIh3eCReFzrL7GjJyoo7ugAvf3ss6xdUxN8maLDKypO+oJGQReNkzid2MnubooFqYj8TZsInK+5Rg91Uoq9HovpxFRxsU4gGobed2L/enuV+u1v2Sc33ojtfOc7QSv//e/4P+edB7eYIN2OHgUl5PGg64ZbALAszWEt3KSSRKuo4NpHMuBIEqQOR/5t0eJDWhY/qbqhqIiE2sKFcM+2temE4u238yNDZWIxfNBbbgHBl3osw9BFTJcruYBZXa1RmvbCVS4pKiLR4Pfz3R89yv9zfSeBAAjX/fvRRR4PiehZs/gOJgC9UkEXjaP09fG8TJ1KPGSXZ5/Fbzr7bHSHiN+PvonFoF8pKSGBWFurqaZcLo3483qV+ta3iG3+9V/xv7q62CeZYoX2dpKXsRhFxHnz8tNH8Tj+mter6YxmzSJOy5dbuqMD/2jKlKH6+dAh/Ei/H79kzZrc+8nr5ZiWRUIvXReW6DTRc6nJ0kOHSB7u3cu63nADQI/Uc0ejeohMRQX3LjahslInEu1xZKoUF2On4nF+RK8N17/yevGt778fPVpXRxfLOecQM2bi0R1DKeiWDFJIIuYvP1BKXaaU+p3D4bhUKfWsAuI6Tyl1tVLqS0qp/x2LE0vrRU2NntaWOhBDEIonEk0xHvLgg1TIr7giGYJ97Bhr4nZjCBoaqFRI23B/P+sjztjOnUwfnTkTDkRpZ62tTZ/YC4UgF9+/n2rzOedkhnen+6y0WcsgFfsEvlwi37PbjXGStubiYhTsgQP8v6kJxS/XVFTE/UgC1TD4v6CI4nGcy2yDY0TsSFkhKr7/fox+YyPtTvPm8bpcm1K6VToc5tlcupRrOXYM53vmTJwQ0+ReioqyO8yVlXw/vb2sSTDIPaRLANbXczwZtlJXp5OZ9gTpCWpZPh45YbrojSYvvogzfOGFJMjt8txzvH722XoqvFI8Y5EIDtmPfwwq2D7cIFX27FHq5z9nbwoC0efT3LipEotx3KefJkH30Y/mr0uiUfbs3XczPGH+fNqX8+UPFS6z4mL2biymJzY//zzIgiNHSGT8278NRQq43bptT/SUtC8Lwnk4Imifn/4U3bxgAe3g69cPdVwlWRmNsl5VVSdm75smCdzNm0EHCO3E2rXoUo+HazvJA3aRgi4aJ5GJnPX1BO12HqoXXiBxf9ZZdEeIyPAU4TJ1OvXgDdkPMthPKWzlb3/L7x/8oNYLHg9B3AUXwOm3ZQuDRy66iMC+p4fjLlky/AKAJPqky6GoiOc/kUDXiP9SWkrwWFmZe2+IjjHNkQ1lSUUjZvqsw4HPNWsWvNzPPIMuf/JJPjt7Nt/P4cOsz8yZOkEp6EOhi0n13YVzVobRZKNxSSdSgOrpoWBcU5P+GMeOoYeOHOF8U6dyP5J4nACdGSIFXTROEolgw6RoYJd9+/BPFi9O7ryQ4mUoBLdhIqHUd76DjhG0tGVpGqn+fhKIfX0UORcs4DlO5bO3S3MzurC0FCT/9On5gQNiMeLGri78A48HXZbKnZxtPY4eZc83Nib7bYEArcudneypjRv1wMxMyU1BNA4OapCH6KR0e9HlYu3icf5fUsLn77mHTpjKSgoeZ5891OcRmq9jx/iumpqGIs1dLhKLMkCvsjK7Tiwp0XFqNJrM55tN9u2jGPb449zL8uVc9+mnsw7ZunLGWAq6JYNMvPD5BIllWRGHw3G+UurTikk9VyqlIgpCzjuUUlvG4zpcLj0QQ9piQyFdsSwu1gnFk4EcfjRFJmy9+c0EXCJ+Pwkoy8IRqqvTMG3DQEE6nVoxbt/OlM45c3C4YzHWrrIyvZPV20s7Ym8vTvTy5emRe+kkGNRcFmVlGMx8p9iJYQ0EuLbJk7XiDoVAL8l1L1qUPgB3OLgnp5P3ynRGlwtjMZzqvmWR8HjgAQzOjBkgOGfP1uhEab0vLdVtRC5XMj+PTG/t6CDRMmsW6ynoSAkiMomgMSsrWZ+ODt6fbiphTQ3rd+gQ19zUxN9OJProeOVk0UWnuhw7RhvN3LmgEO3Py549DA9askRPhVcKnezzkSD/yU/YI7femtmRfe01WhAbGnQCcWAAJyzdHhgchP9w3z7oF97xjvyf40iEz/3f/8ueufxy0Nz5OmX2YL62VgfXnZ1K/cd/oBdmzSIJsWZN5uPIxGZBa8p+H24BbNcu1vjll1nnr3+dpEY6J1sGJlkW53e7x3//BwLQPjz+ODqytpYhOytX6oTxiUpsjlQKumh8JJEASVJcTDDtcmHH43E6Kn7wA5Bxdj0l3GP24HPyZO23hEL8vaKCz3R0UCh1uaA1SOen1Naid976VgoRt93GcS+/nLbB4SQQJZEmVCKpib7iYq6hrg4fT6hXenu1D5xOd0WjulDodo98P9n5EXPd15EjtC2/+CJ7+PvfZ1+/+ioIxfvuI/laX0/B4LTT8Jvc7uztwWVlnF+GLg6X47CkBN+qv5/1i0ZZT8vCf9yzh7+XlvJczZzJOYUfdiLRJhV00fiIaWJzDYPiqX1/dXfjn0yaBPrW3m0gVEQ/+Qn7+Zvf1EOX+vt1F5jLhV//zW/yvs9/nmKnJLmkyyj1ml54ged50iQ6ESZPzq/TKxqlAHnoEM/9lCn4dfn6IwKKKC4mvpDPSQvxrl1c79q13IfDwWdCIY3cs0skgj6JRpPbl6VN2D5oxS4lJZyzuxvE+LZt7OsrrlDq/PPT+6ChEDFYKERc1NSU2R8sKdFUYX5/bl3kdHLfqS3Oqd9dIoFftGkT6+V241Ofcw7fhQy3PJH5jIJuySwOy7JO9DW8kWTMFlvaUkIh3aYpAytOVNA0mrJ3L4igxYupTIgiEufa50Ox1dZi2JxO1qCzE2U8fTpK8LnnIAxfuBBya0kyut0YsNQ1amnBsbYsAr7GRiq1+QTefj/JBCEATq1QZRO5rkgEoyjoPMvSrUOWhVFqbMz93cq0saNHUf6nnTY8pXzoECjQlhbuRYLf1PPG4zilHR064dDQwDlTq+0C1Xe7NYKyvZ3neMaM/NozTRMHRBLokydzHmlZlomr0SjfgxjKUaisT+DdpJQaQ110Kkg0SvtMdzdOr30gx9GjFBWmTEnmEBRH+fBh0HDV1TjCmZC1wpU4YwZcP6Wlemq7DDywS1sbiTKvF5TfmWfmfz/hMITUt93Gfvv4x/OfJm9Zml/LzlVkWejSb32La7rhBqU+9rHcesWy0I39/azd1KnDC1ZlivSTT7JON97IZL50OllaI+Nx9IPHM/6BcXs7a//881zHokUkXObO1UnNqqrjqrAXdNEpLrt3s8eWLk1G93Z3gyQuKaHgYSf+7+ri2Xe5NOewBPyRCDpOEkZtbeiGsjL2cS4ETjRKcHzgAOgfGXp25ZX5JRNHOn1ZeKUDAf4v6JTyco4ZjWp0ZknJ8fu8lsXxHI70PkNvr0Z1u90kUy+9dGjA7vOh759/nsKRZbFea9bQ2bJ4cfY1k8naHs/IpyEHAnzPLS0UMZTieZk7VyNORUceRyGjoItOcWlu1sNK7BzMwaBSX/wivsK3v508abi/H131s5+RcPva1zRnayCgCwO1tbz+zW9iK2+5BbDHsWP8f9q0ocm9WAw+9o4OEvMLFmjEci6JRNiPBw6wHxcuJBbJV2/093Ptbndyd1l/P0nNgQHiszVrkmM/QRg7HMmovoEB7tXp1F0J9s8kErw33f4MBonRNm9GZ513Hvoonb4wTfzYri505cyZw0NdBoN8D/mssZwvHuceBJXY369blvv7Wb9LLiHZWlzMdY2UxuIfMtF10YSQQhJxfGVcFltIa4VnyrJ0q0iuCbsno3R2QpQ/eTItNnYj0tKC8fD7tVMmClaSS/X1KNInn0TBLllCa45Axp1ODRe3y44dcI7V1jLds6oKo5lPhWpgQLcZNzaSxMw3eI3HuWcZvCKGJBgkYSr3Onu2dsCzfZ8CtRdeROH5mTQp970cO0aioLkZg3HRRSQf0t2LZWlErKCLHA7d3qmUdlLLyzG8fj8BSGmpTiS2tREM2Ae95JJoFIPo8/F/CcplyrLTyWuStGxqOu5kwgTaQWmloPgziGUxQGXLFhB2dtSzzwdysKiIqex2B83rBd3xox/xjH3jG5mnk27bxkCTOXNI6EkCUYLL1GfzlVcY7lJaCrIxdZpeNvF6QR8++SSO+2c+k/m6UsUwuK54nD0l93vsGAnNp54Cmf35zxOM5mp9s09fliA/03T2VDl2jPt44AHe//73K/We92R2MiMRXUSQQtp4iWEwxXXzZtCfJSW0WG/YgB5NJHR75ihQkBR00Sks7e0gU+zJHqXw777wBT3hVOhVXC7NHSxJ6vp6naiTieQlJXr66O238yx+4AO5ESaBAAnERAJfqq6OJOef/0yxcfp06AxWrUrvl9jbl93ukRX0EgntayQS3KckFMvKRrdQkC6R6PfDM/b3v/P3iy4CFZ4pqBZec+FZ3LcP/3LXLnyX8nKKsmecwfCWdDrB50OfVVQMj/bBsnTL8uHDfH/TpqG3p09n/UQHF3RRQRdlk44O0LVz5iTzQxsG/k5zMwOYli3Tr4VC6K///m9Qb7feqjsVYjGezdJSdFt7OwlIpUhIzpxJ8jEUIhZK9RMCAXhgfT7OOXUqezAfxG44TKKvvZ3zrFiRfyJNEH/SCSbDHBMJ9vSePdzT2rUabZkqiYSeSO92E6N5veztxsbMgz0TCfSQ6LhoFD/jkUf4ff166Heqqzl26nGkUyYaJaZubBy+vpT8Qmnp8IoasRjI+fvug/rBMBg4eNll0GFJ63N19fCpbdLIRNdFE0IKScTxlXFfbGkZER5FcYbsCcWTme/E74csXymlPvKRZCetpwdnrLsbA7N2rXaCgkH+XlVFUL55M5DpFSuolotjZVk4VHZFa1ko5M2bcdwvuojXUweaZJLOThKILhfBvh0dkEvCYZJhDgeGSdqCW1sxdsXFHLOhQXNgOByZK/lSKSsu1vwgiYSekJap0tPfzxrs2ME1bNwIn0YmJzMS0ckGj0e3LIvIJGR7YlscV2nbLinRJMZtbRyrqSn3mhuGrtQLT6IY4tT2dL8fh6a0lGMXKu4FSZX774dj733vU+q66/Tfo1GQgwMDoN9kqJNSPP8HDtDGphSV9ExTwZ9+mqEoCxfCZ1hSwjETCZzY1L388MMkz5qamHKcLx2CUlzT976Hg3r11dzTcIoZ/f3oidpazWd4xx1wHikFgvLaa9mzoRB/y0QVEI1qBFFlJfcdj7N2LlfmfT4wQIv03Xdz3He+U6nrr8/MESbDChIJjuvxjJ+N8/l0y/LAAN/V+ecTNCUS3K9QkoxiUrOgi05RGRggIK2vTy4cGAY65tVXlfr3f8evkfbmeBzfJxJh39qnHEtrrPDw7dun1B//iI9y/fW5A8LeXpJRxcUkoezvtywS53fdhQ80bx7FWkk25GpfHonE4/gyg4Mc1+3G5xtt7izT1FNQH3qIIDgSgXft6qsz62TTRC8KEjq1RTgWI/GyYweFIknuLl9OQnHFiuTEidfLeYUbOpvE4+j/PXs0L+aiRSSApMBeVja8Ym0eUtBFp6j4fHRy1dYSa8nelanwjz4KB+LGjfozhoEv/9Of8ix+9rPwtiql0XBKEYO1tsKRWFJConHaNPSf10s8kZoY7OkB4W+aJKLKy3UhIZ97efxxjr1kCZx7+SbQDUNz8E+apPd+ZyfF4UAAXb1yZe5jCrK6/x8jORoachd4TZNrsCwG2DzwAPezciWFDOmaEV3rdqNzEgliH6GbmjUrfyRhOpFYLhN3t11iMYrYmzYBhHG7Nc94TQ3HKSrCLxJ6jVGQia6LJoQUkojjKyd0sS2LQE6SOcKv4HbrhOLJxIESi2kuwhtvTIbOh8MMRzl0iGTR2rU6KIvHMU7SKvfIIxi/NWuAdyulCXQlUScSj8Nts3Mnx9ywgXVqaMgPVt3SQrKvspKW4eFAsQU9INddXIyB2beP+50yBcfc7hybpq5M2RNihoFRCwRQyqktg4mETlxUVGhjEghgmJ99lmfj7LNxCjIZCdPkOIEA5580Kfc9C1JWJj3Lc9nXx3UsXsz9tLby3qam9C2SkpQQlKMMZpCpzGLg7CgMucf2dgz8rFkjTiROdANVUPxpZPduHN3Vq2m5sU8VvuMOHOH3vndoQH/gAEjBWAz0Yuq0QpEtWwiyly1T6qabeC4lMEzlfTFN0Ir33ktA+ZnPDE+fPPIIzn1JCZ/NxlOYKpGIHgQ1aRLXuX+/Ul/5CpX2s84ieWFPlErA7HQmX6dlaTSyyzV0MEIsxl4uLU12ukMhKCxuv53PXn45diDTEBhJUoTDenDSeA0aO3wYvbltm0ZoXXABuszv1xX2qqpRDdhFCrroFJRIhL1WWoq+kD1jWRQVHn4Y+oALL9SfMQyexd5e9snUqdovkn0oPIi7d6OLpk4F1ZvruTxyBD1XWUmSK9PeMgxQJps2ERwvX07hVgYoDKd9OZPYE5JOJ8eMxXSrs2XpQXqjgGhRiQSow7/+leOvXQutjr1lM1Wi0WQkdC6aB8MgwN6xg2Ts4CD3tmQJ9mj1avSHcBtmKkR4vSQOpRNm8mR80cZGPicoUCm2OJ28Z5SKGgVddApKPM6etiw46e17/557oEK46qrkoqtSJNt+/GNahj/xCQAZIkLXNHUqvv53v4teuvVWPV1cYoJUIMahQ3RBlJcTo8l+zwdJ2NmJH2YYoPbmzcs/aRWPg8aMx9FnVVXsqZdfJvarrKRTy15gzib9/XSvKMUezQfVJ8Pk7r2Xzy9ahH6dO3fo+2S4VChETGwYXHe6zruRiPh1kj9IlZ4eCi4PPoheamqCembjRs2L7XTyvdXUjHqxd6LrogkhhSTi+MpJtdj2hGIiwd9kGlt5+YkleDdNpe68E6fquutQlPbXdu0i0dfYCDeYOMBS3TJNFOVDDzFIZf16pS6+GGMhBL/19ckOpt8P/2FbG9wMp52Ggkx9XzoxDGDafX0o6YULh5eQFeJrGb5imhilY8dw7hYuzGwgDUNX94uKcFzFYNTXZ/6caeoEhsNBJXzrVgzkunUY/GwTAWXqtGHo6v9wK0iWpROK/f0k94qKuF+PByNUVESyTyaQhUJ8f5I8lSnLqevt8/F9WJY2UvbBNG1trJkce5gy0Q3USaWLTgYZGKC1uKQEHkS7Q/fgg/BZve1t7A27tLbSguP1kmSzt/nY5aGHcPxWrYJ3rLhYI2hTW9QiEYYlbNvGOT/wgeFNYP7Zz0hqnXYaLY/DQS8Gg9yLy0UCMZEgafHrX7PPP/959GO6vR6Pc/6SEj2hz+fj32zTlyMRPiuDBP76V6V+8xu+k40bQWzOnp35mqVF0zC0DRtryo5EAtuyeTOBQGkpAdb557Pe0n4o1A4ez5hdU0EXnWJimgTe0ShJOHuC57772BtXXknyzy49PdjQ8nL8CI9H050IIs7jAf32l7+AQnvf+7InkCyLAsLRo/gTufj7RGIxgvVNm/Ct1q0DRWznlx2JxOMcWyl0TKrtNgz0l6AThVtrJBPPTZPkyZ//zNouXgyFgt0fTRXpuhAk9EimG1sW/t+OHeiYnh6+wwULSCbOn4/NkMKTZZHc2L2b76moSLecTpqkp9JLF5JwpMfjHDsex9fLB8WVQwq66BQTy+I57O0l1rI/Iy+8QKfD+vXwNNvt2+CgUj/8IT7MTTeBkrO/NjhIcrCtDfqYujpamCdN0h1ZZWVDueplWFFDA+cNh3me0/FIp8revQAkysu1nc5XJK5SiuJpWRkFmx070EdLllDsyUc3GgbH8vm4Fpmkng0ZaFno7b/9jYLO9Okk5E4/PbN+kaExg4Osz5w5x8UxmFYCAT3RWibKv/Yaev/pp/n/mWfy/a9YoSc8K6WprZTSVByj6CNNdF00IaSQRBxfOWkXOx7XCUW7gyYJxfEeq/7wwzhvl102dIDAwYNUoerrmeCUSjQeDOJAP/QQicZzzyUQdTi08aqtTU6QdXURJAcCVJinTmUtJk/OXR0KBkkghkIo6aam/O9TuDWCQT1huK8PxR+L4eTPmpXbMCUSOLx2NKO0L2cT4dN47DEC+XXrgJhnq6QJT1ooxDNSVzc6iB/L4rvZuxeDPW0a31lfH/fR2KinJbpcfC+5+D1lQmUgwDU2NGhEQDiMAyNJymHew0Q3UCetLjoRYhgk2/bswfG1V3VfeIGWkQ0bKETYpa9Pqa9+lWS/tBWmimWRPHz4YfbXP/8zz1wkolvK7K06fX3wCx0+rNSHPoQOzFeOHGHQyeHDIAOGk3xUiusJBtlvtbU4yF/9KonSK64A0ZjP0AWhWZACRUVF7v0VCKCzb7sNtMDatbRHCQF7OpGiQjSqCwpjbau8Xojcn3iC36dMISARhIbPxxoWFWmU9xgnNAu66BSTAwdI7px2WnLQvm0bLX9vepNSn/tc8nMVDOI3uFz4IaWleh8K2t/tpgB7772857rrsu/LRALfpr8fv2bOnPyfZUHCBAL4GEL4f845BL/DTViZJvcg6MNcwwIti3MPDnIdRUXsxZqa3LrIskAX/fGP+AizZ0PbsGyZ5pRODdzlfkXnjRLHoLIs9LogFNvb+duUKSQJGxt1YF5eToJzwQLWR3SjZemOo9Q1syy+30CA99gneI9ACrroFJP9+9FHS5cmxzYHD0KvMmsW3Rf2Zz0SAYG4ZctQWhhJEFZU8Cz/6Ec8y1/8IjFZPK6nHU+dqveZJPQPHAA9eMYZerJ4XV12XSAFv9dfJ2688MLhIW/9fnwSiavicSaxHz3Kud/0pvz1WTjMfo7HiUcmTybWCwYzczcfPEjycP9+rv/tb+f+pZswFfAjFFEdHfxeV8d5xoq+TPTP9u34yi0tfL+XXILfOGWKHn5qmnpAn1y3UHEopQevjIJMdF00IaSQRBxfmRCLnUjohGI0yt+kojpajlE2efFFnNwzzxwaQPf2oqTKypR661uTE4FeL85QdTWtJ6+/rkfFK4WS7ulBudkrUPv2KfX733OPN9yAEg8E0vNwpEpPj56UvHjx8PgPpeU4GuVzbjcGsreXa1y4MH/OCuEeCQa5brvxTSemiVP6yCMkLWbPpnVZpnRlUuJ+P4bbsjCaYxEgR6MkQaJR1kEg/04nDvLUqdmvMZ0Eg6xrIsHzIZyNkQgJEocDZ2gYE6snuoGaELpovORXv4Jz77OfJSEksm8fLbWLFiVPhVeKZ+qrXyXp/cUvpp+WbFkcd8sWWoCFPzAWA2VXUpKclGtpIYEYCpEkWL06/3t4/HEQiE4nXIVvfnP+n7VPYBZOmh/8gGufMQOE5fr1+R9LONmqqthv2XSRZVGx/ulP0aULFyr1L//CembTLTKswDTRnWM5MEyQQY89hn0yTRAA55+vEwuSPFRKJw/HiYuxoItOIenspF1v5kwSRCItLXrYwDe+kWyrEglQaPE4CSTxGySxJZx4zc0k6hcuRJ9lS7hLO3UoxPuHgyC0T192u7HVXi9+3RNPoKMuuoiCZT7t/TKMxeFIPywgl0Sj+C1+f+5W5z17SB7u2YOv8a53JesiGbRSVKT/Jj6zYeji+1jpou5u+MX+/ncQP0L5ct55FLlmz9at1NI+ng8aMhjEF3Q4dMJhBFLQRaeQ9PSQGJoxA3sn0tvL5OSSErow7Ak004THftMm+EJvuil5nxw9yv5tb8dfaWqiu6GiQvMNpnLVR6P4UJ2ddHKcdhrPqsvFs5ptr/n9dJG0t6Mb168fnv7o6+OnrIxrOngQcIpSFI0XLsx/r/f1kUAtLka323VfMIiOq6zU13f0KOu4cye+1Nvehl8nrws/on3QSjhMTBMM4ns1NbFOQq0w0mFWmaSrC71+773Ymfnz+d7PP5/nIxBI7kbJxFcrHP+iW6Wz7jhkouuiCSGFJOL4yoRbbPtADPuEXSFTHe2JlwcOkNBbsICA265EIhHa3OJxlKk9YRcOY2BKSgim9+2jCiKBbySCspMpYKL0n3sOJT1lCglE00Th1dRkrywZBtWkjg7OuXjx8KdUdXZqjorBQYIEy8IJbGzM3zAJzF4GM0yalNlICiT+wQdZj8ZGHPn58/XEQ0kQpnJF9vVpNENd3di1u0tCY88eztvYiNGRVoL6ep6LkhLdypwP+sg0uQefj2uvr+cZjkYxupZFIjHPZ3qiG6gJp4vGSp56iiEFl18O8k2ks5PkYl3d0KnwiQTV95deoo3HTiYuIpQMTz/N69dcw54WJG9REftVdNy2bQxmqaykwp+tfdcukQjT6//+d/Tmpz41PDS0fQJzdTU68VvfYq+8//3wruUbUEr7stBjeDzZk3svv0zy8NVXSY585CME7DJ0Kd3nhOMnFuN9Hs/Y6aJ4nO9l82YKG2VlJIM3btQcb1KFlwmxVVXjzi1c0EWniPj92OeammRahL4+igpFRXCH2QsPMu3X62X/p74WCPAcb99OAm/5ctqKsz2jPp9OUC1bNjzUYK7py93d+HHPP89+uewyir3pitORoOunAAAgAElEQVSGgX02zdEZxiKtzjLVWYYcVVXhy/3xj+j0mhr09XnnpV8nGbQiaGtBQo9l145lkQjZvRvbJFxifX0kNtrauL/KShI+a9fyXQ/neuztzSOkqCnoolNEQiFaf8vKtE1Winjj1lvZx9/+9tDpw3/4A1zOF1+c3OIswywTCWKdX/0KffXZz+oBi52d6A47V73Px9CWQACgQ2OjHhY5eXL2RNORI+xnr5c9sXx5/okpuR6/n71QWoov0NcHGnHt2vz5Vg0D/eL3sz9nzBiqV6QQqRT777776IIpLWUtN25MD3KQ7iyHg+9EdMPMmcSCIqaZzB9/PHrUskhsbtqk+fM3bECPL1qETo3FtJ4tLR0aU2YSw+AzlnXcqMSJrosmhBSSiOMrE3qxJXiThKJM2LUnFI9HMXV1EQzX1tLGZ1c4hoFS7e4mOWg3XFLdSiRwkltbSQjIIAF53enUhLKmCaJx61ac9fe+V0/KkonOmUT49Pr7UYzD5ZkIhbgPaa9pbUXZ1tRQ1RrOsfr6MKglJRg2l4v7dTqHGqmWFu758GESaJdeilGVdifT1DyJiQTrUFaGYfN6eV9t7fCSpcORRAJHQYatCH+l8BYK748McAmHk5Gywq+Ry1BFIqx/PK5RqYbB92AYnCuP72CiG6gJrYtGS9raQL3Nng23jzgsfj9DSZSikm5HJFsWgfzWrQz6sHP9iJgm/KrbtqGvLr+c59k00RuWxTPsdPL7ffcxgXj+fNBG+RCEy/V/73s8u5deStvQcCbuSXHAsth///VfVPwXL2awzJIl+R8rEqH67XBoFF44zJqmJub37weF8Mwz6KIbb2SNiot14UoSiXYRHl+lMrf+jIYMDFCMeuIJdNK0abplWTjIgkF0o2nqlvTxpv34hxR00Skg8TjJ9KIi7LLookgEndDZSdA+a1by59ra8G+amoZOhA8GOe4LL6Cvli1DX5WUZE4idndTwCst5TryHQRkH3bicuW2w21tIJ1ffRXf58orSdCLTozFuPaiIo41mol52b+DgyQaHn5Yo32uuoqgPR8/IhTSwwmP1//NJMJrtmcP1+zxEKgvXMg1Cnqrt1cnGffuRS9VVoLcOuMMdHk+Abm9vbm0FP9oGIF8QRedAmIYFBMjEWye+MOGAZ3CK69Q6Eylb7nvPtqYN2xQ6stfTt6zQiu0ezeJxiVLlPr0p/U+6+nh+W5o0DpHhqA4HNjf2lqOU1SUve0+kWC/HDzI76efjm+V7/4UzsJwmHMePUpnW0kJcWWqDs4m4TD7MpGg8JitW21ggLbl55/nXIIuzpWsHBjAB5RBSo2N6fesJBJFZw1XX4XDFFQ3beJ81dX4nZdfjh8nideBAU2fUFMzfD9N/FFp13a5RoRKnOi6aEJIIYk4vnLKLLYMxJAx7wJBloTicCsdgQAQeNNU6sMfTm5TtiwMyf79tCbbA1upbvn9BHzHjuGMinEzTf5mGASCLhdO2Z13UvE/6ywUYCCA45Ta6pwqPT0kO8XYTZs2PAXp9RK0l5RwHR0dGMJ585KnT+eSRIL7CoVwfKdM0UpW+BEFDt7RAfJwzx7e+9a3ws2WqpTt1XWvlwBZpqZ6PBjTsUDYCG+SnfhbJqsmEiQ9YzGCJBmc4/FgKE1TT3kWuH5xMc+gEP2mE0E7Dg6yDtJOLoZ45sychnuiG6hTRheNVEIh2n4DARJa4tzFYgwu6O2lmGHfl5aFnrr/ftrcUgcbKMXz85vfgLJ7+9s1j6Jwfsbj7CWXC730y18SxK5fD4own2qtZeHM/fKXPO8f/GDygKl8RCYwK4Xu/PGPubaPfYz7yjdwFLRTNDp0+rKgkmQia0cH6/fII+ja668HFZW6T+NxPc3Z7daTRO3DCkZbF8kAicceA71gWdiRCy6gfco+lEnQlqWl2KrxmgKdQQq6aIKLZRGkBgIk+sT2mCZB+/btcK6uWpX8ud5eujcmT06eGK+U5ufbupUW/DVr8HXEP3A6hya9W1tppa6u5jryTYonErqgN9x24z17SCYeOICuffvbSV4qxflLSsYmOef1ErA//LCe1LpxI2sprc65kNDC9zoWxYP+ftampYXrmzqV4k5Tk74uoXSIRnl2ysvxSxMJPYBi506eA7cbfbZmDeuby86MsL25oItOAXn1VWz1mjUkh0R+9SvoED7ykeSp8ErRYv/Nb/Jsfec7yXtCJi1v386eW7mS4q3YzYEB9qOdq/7AAYqMlZWcq6xMDxiqr89s/30+dGlnJ3t44cLkPZNLYjHuXcAYzc1c/5w50MsMg/IoqX155szMeygSAW356KPs5zVrKPbkigmlI04Sq7NmZQfAyGeEIzbfROLRo5rXOxgEQfqOdyj1lrfo71AoI8Jhfioruf7j6RIxTXxBASwVFw/LFkx0XTQhpJBEHF85JRdbKtCCUhRotVQicvGxxOME3V1dBO32arpl4QC/9BIOUCovlyjpRx9Fgf3TP+kko2XxWjRKks3txlD99rcoxbe/nSpbIIAS9niSDaZdEgkNRzcMnCpJPOW7RtJKaxhcayiEwzdv3vCC0FBIJ0anTEk/QTke554ee4yqYVkZlbyzzsru8ArHhs/HOaS1QIacjJaIIy6JAWlL9HiGPiuGoTkSJXHY2anbAtIdU/iABM2UKbEdi+GYRCK8LlVHGWqTBXU50Q3UKamL8hXLwuF99lkcXuH7MU2l/vQngrdrrx06hfMPf1DqjjtAF95889DnKR5nkvFrr6GL7G3OMgm9ulqT3n/3u+zPq68GDZ3PHguHQUlu3Yozd8MNPKvDSSAKT82xYxCbv/wy5OBf/vLwWqETCa0TZZ+liiB/77hDqXvuYU++5z0QrmfjnI1G2Yeik2RYwXCc+HwkFqPyv3kziAGPh7YpSSjY78Pr5TuWNsixQkIOUwq6aIJLayt2Z/78ZB/k17+mYHHTTegcuwiqp6wMn8duN+NxXn/0UXgNZSiUnZsskdATMaUlurMTn2LRovyRHzJIKVP7cj4ig0z+9CeC4tmz4WyUZOJoSjjMmt5/P9d93nno3+pq3XURjxOwVlfzIwkL4RpUinstLdX+7mjwjJkmCM3du9GZxcUM+UodsCMcjPG47gYqKiIZU1SkOZ/lva+/rgezBAJ858uWgVBcuTJzwTSRwD+KxfJuby7oogkubW0kzhYsSC5MPPAAcdoVVzAczi47dughK9//fvLzFI2iVx5/HH20bh2+kySXJP6qrCSmEl2wcydxx8aNPOM9PbxWX58+MSUDiFpaOGZtreaVzTd2CYXQwxI/tbcTA6xbNzyQh719uaqKmDZd0jORIPn64INc8+rVxKUej6YmyJQsHRzku4rH0dnTpmkwT64CqyQSZUBVOpGp3Js20VFTVKSHYi1Zotc0HtfJQ6cTfSkdbEqNDr2L2CsZIpPn8Sa6LpoQUkgijq+8IRZbEorhsObGsicU7QrAsnAcX3+dwPK005KP1dwMrL6piSSY/bOBAMmlBx7AUL373VSdRAQ+LxOWOzowgtEoAfvixXrYSlkZCb10xiYY5LOCqKmowEnLN5g1TRxCGUoSCvHZBQuGN4hF7kmQjNOnp78Gvx9+tGeeYb3OO4+ffCrJ4TDrIQNISku101lTc/zGIB7XyEHL4j4qKnJXxKTdOBIhcWgYrGlNTXrjbpoaKSuJbeEskoSi3emXoTyWxX0PDvJ9NzZmbA+d6AbqDaGLMsndd1NVv/FGAkiRRx5h31x66dBBKZs28Zmzz6YNJ9WRjUaV+vnPCcavvZaEvUgwyD6qqMBB7O5W6utfx2H96EdBu+Ujhw/TcnzsGFxiF1+Ms5wvBYJlaU6wv/4V/tmyMvjWrrhieIWC1PbldMWJQIBz3H4763PVVax5pmKNXRIJ9F00qnnLRpMQvLcXhPtTT3EfjY3YmPXrk4s60SjrFYvxnVdVDS9hOw5S0EUTWPr60BlTp4J2EXnoIQoSl19OocAu4TCfkYFu9kBQeJ3vv5+21nPP5blO3duC8ojFOJbfT/IuXy5W+7TkfNqXs4lch2EQuN5/P+uydCnchPZ1OZ5zPPooSCi/n33+znemHxgjrc7SriwDBQUNYy92SgeHfdDKcCUS4TvYu5dzVlTwvS5YkKyLhOpBOCdTKR3icRKJTic+arrvfP9+1nj7dp10XLwY9NOqVUP5L6Vrw+/Pq725oIsmsAwOUlCbPJkEszw/27dTbF27Fg5Dux1+/XUGo0yerNR//meybZdk2v33ww199tkURCSOEK56t5v4yzSxx4cOEcsJaKSnh2PV16f3M+JxCr9CzVJdzfHsg6lyideLX9bTQzLSMNgXdmqJfCQU4vOJBDo9HTLQNKGYuPde4o7Fi+mgE90rOryoaGihNR4neTg4iF6aNUv7I1JwdTpz+0qCHk9NJIZCxI/33MN91Nbia6bOIRAO/WBQX6d90KaAUZTKPVwvH0kdvOJynfIFjQkhhSTi+MobbrGl3UKqpkrpaXHl5VSntm4lGE6dJnrgAAatqgon2F7disVwuDZtQrm8971UbEW8XhwfGZDS3AyKyOPBIZ82DUe8u3vosBW79PTwI7xeLheKNF/kYCJBFa6rC6VfXEwSbM6c4SXk7O3LYiBTlXIkooPiRILq2Xnncf+5jKBhsF7BoE4YCg+RwNSFE3EkrTvhMMe2tywPtw1IqvTBIAnURAKnYdIk1iOTCFJWkpeCapK2aUHKStIiGGS9pE1/xoy0aM+JbqDecLpI5JVXlPrCF0jyffGLyY7yvfeCyEudCv/oo0r95CegNm65ZShyIxxmQMjhw1Tp163TrwmCze3mOdq7l8EliQTOdz5oG8vCsfvNb9g3N9wAgnk4fDOmyR5/6SValw8fBt10yy3DK2bY25elCJCqi2Ixpf78Z1DfPh9J0uuvpxiUK+EpVBnSciMon9FoYbYsUD6bN/McOBwEzhdcMHTKYjyu0aNOp04ejtXU1eOQk++KhidvWF0UDtM66PGQMJNn66WXmMC8Zg06InXAXFsbSR3RASJSJPjrX0HkXHghScRMEgpxrnAYdIkd2Z9Njqd92S72RKTTybHEFm/ZAsea30/y4uqrh4cGsp/jqaeUuusu7Pvy5RSs7f5iJpEBeL29euBcQ4OeYG8/x0gSib29JD8OHeIY06eTUEhFT0mXhd1/ylR4jcXQ8y4X/lqm67EsbMCOHfx0dvL3+fNJIK1enexXhUL4W0phLzIUUgq6aIJKNKqBBxs2aN/80CEGqfw/9s48TK6yyv+net87SSfpTmffE7KQkASQEEggEGSRyCZuKDq4gArjIDoyoo4L6rj9ZkQFVBQHQSEaEEUkkQQSCJBAAiH7vvS+1r7f3x+fnHlvVVd1Ld1pUrHP8/STdHXVrVu37vt9z/me7zlnzBgSn/Zkwf794FNxMXhlT0Bof7xHH6WabPly/Ba7gq2x0fSqDwTYl1tbWe+zZ3Pft7WZXn+J4q7ubojMYNBUKgwf3rM/bG/W1gbZuXcv+FpTgx+YqjQ40XFaWrh2Y8b09HUsC7xfvZoE8vjxkIfx4hm9Pm4361yP09rKeer06kRxqw5aSaf0V3G8oIDzfvJJ/EyfDxxauZL9w47vSg663fxeWZk8wRsOx5Kh/ZEEVlWiCNe5F58w17EoJ2yQRBxY+6e+2KGQIRSDQUr+nnsOsL7mmtjNSZ0bhwNysbbW/C0ahRR8/HFA5CMfiS3BU3VheTmbyYsvkgkbM0bk5psBPc2AFRbimMaDWzhMFkazwpr1qKlJn/gKBHD2Dx0ygxSmTeu9hC+ReTxstpaFUxdPaIVCbP5r13K+8+dDyurAEHXQk4Gt243TqRm8qiozRVaE14XDPCcaTX/KlvYr9HjMOSQrWU7XolFKDHTYgWbeR4xIjwixLL4XJRR1M9JenuXlbKBtbUY1WVhIcBWXoc/1DeqfEotaW0U+8xnu8//3/4xztm8farnJkxlOYr8/N26kREcnCcb3TPV4IOWOH6c3ob1vmd6fSsxv3Mj71tTQ4yydoN3rReG4cSMk5oc/bBpWp6v+CYdZNw88QGA+ahTvf8EF6b3efhwtX9bJy3aLRFCG338/Tum559JjceZMXqt9DpOdt665aDTWeVblcqrWGMksEKB0fe1anPeKCpzjZct6Bgrq+Hq9ZvhVPGlwitmpe2bp2T8lFkUilBpr438NkA8dIslRX0/LBXuSIBg0QzTq63uq6Lq7mTB85AjKkfj2L3br6sKPEiFg1B6AqXoQ9kf5sn4W7StYVJTYr/L5UIf/7W88d8kSyunSCe4ti8SQlkhPngx5OHt2euenJcORCEF0KAQuJCt1tvtLvVk0yne8c6cZHDdlCt9BvG+nFRX2YQjp9BvXxFVRUXoTlrW3uBKKhw/z+NixEIoLFpgKEC1vrqxMSFIOYlEOmmVRstrdDWZo9U1HB0lGhwMlon3dHTvG3yIRSpntSRARCOcHH6Q0+corY9u16DAgJcO09YLPx76sgxTVDx82rGeyVKeVHzyIP1FVxZodOTL9ZINl4Q+8/TaYWVFB26wZMzLb77XdldvNGq6v74mLe/ea5E5tLQTd/Pm9v48mDgoKOE+3m+9m/PjefT/7dOPejh+N4hf98Y+UjxcV0edw5cqerXyiUXw/p5NjV1TE4l9v56JEYnV1//hRaaoScx2LcsIGScSBtcGLfcL27EFVM2oU5TpaJlJWZhpK+/2Jp2qpqrC0lKDdnnHS/htFRRBLTz1FObRmnwsLTXY5P5/NJh4E3W6T7ampMc5hJgSix8N5Hj2KEzdlSmbNfUVMH8X2djaM+vrYTFw0Sobv2WfZ/GfMoAwznpjQRurxQKtKPr+f48d/Pp3YrEogVTKFQmxkyfroaAZN+xLqYJZMpk6nui5Hj7Kh1dYaxVBtbfpTbdV02qtOsRThfEtLjXqyrY3HJkyIcaJyfYP6p8OiUAgS8PBhSD+d8N7SgrM7ZEjPqfBbtuA8jxkj8vnP91SIOJ2Qgi0tDISyB6iRCFimCt4//hHcmjkTkiCdZML+/RCYLS3g15Il3P9Dh6avhg4GSaL8+Mes3w98gIEyqSb+xZuuByXW4rFi3TqRn/6UAHnWLPoeLVoUewwlIEpKYrPb9mEFmmxI9HctLUwXR1taIA43bOD8x49HEXH22T2xPBIBUzwefq+oiB0ScwrbIBbloO3ZAz6ccYbBgs5OWgtEo/RLtSfGQiHu57Y2sGrMmFjfxeUSefhhfJdrrkHFmMyamlBEl5biG5WWxjaxT6Tw0Mme6ktkW74ciYADqpYpLk69nrU8e+1a1uPy5RATyTBsxw4UUHv34je9732s+XRwQ5XQgYBRQNuxIr7UuaLCJHR664/o9fKd79nD8auq8NmmTOmJRXY1tvpQmSZQfD6uW3FxzxLlVNbWhkJ182YSbJrAVoXisGHcb+pn27B6EIty0FQNe+aZJp7y+yEHGxtJZthVhi0tKBDdbnyqM8+M9UfUL9q2jbV33XVm7dl71dfVca89/zxr4OKLSdJq7BMIcK/Fxw7BIOfc0cH9V1LCuqyr670qyW7hMBj46qv8f9IkMCJJ+6Kk5vGY8udRo3rGIMeO0UJh+3bW4ZVXIoxJZy1Ho6y/xkZDHqYrlrD3EIw3t5vEzFNPcewhQxCeXHVVz+unlSfd3ZxPWRlkYCZVZJqA0XYw/ZWQjURiCdO4z5rrWJQTNkgiDqwNXmwhk/nAA4DJLbcARtq/TptKBwJkQubNi1WB7N5tSvo+8YlYhaKW/GrQ/rvf4bAtW0bZnsMBmDU18f/4yVGWxbkpaVRbC3iqAjHdkp3GRlMiNHEipEGmPbTCYTJPPl/P8mXLQsHwzDNs5uPGsTFNnpz8eEqQ6WfQ/owOBxtIso0znkjUcim/n8+kwY+WDLvdRl2gyr6TMbnQsgiWurtxOlQhNWpU4kEz6ZiqoDwePoOI6UHU1sbnmD79/zbZXN+g/umw6Cc/IRD9yldM6wS3GywKh3tOhX/7bcp3Ro5kavLYsbH3cmcnjnJnJ30NZ8wwf1PCPRplbd1/P47yhReihEy1JiyL9f3rX3NOd9xhegYNG5b+mjp2jABg3Tru3f/8TzNEJl2zLNZWMEigYO97I0Kg+ZOfcL0mTEB5uHRpckfR5zODWPLyDJFvWQQLyZIN4TCvLSjoPSFhWTjsa9eCkw4HZObFF4ORifqEud18RssCs/qjGfgA2iAW5Zg1NJDMGD8+Nmj/ylfMmrWX2+qAi64u1uCoUbE+hduNX9TURNB+5pmJ31dLWA8fxkeaNaunD6QKD/v05v4oX7YsMCQUYg1mc5y2NgLyl16COLjiCkq2ldA8dAjycNs2cPK668DcdNeyVstEoyaZmAzHgkH8D6fTKKerqsCP/HzzupYWCA+tSBkzhr2ivr7nsbVSwt4zui9tHLxecK20NPMKGDWnE392yxbIWa1GmT0bvJ88mb3pxP04iEU5Zk1NqAXHjzdDKTWJsXkzLV/OOss8v7MTArG9Hb/kzDNj4wefj8TrW2+J3HQTqja7tbbiY48YgRhg0ybup0suMUmBjg6OM3Roz9ipq4v7UIm/UIh7vL6+Z5VIMvP58Il27+Y1552XXnsDu6lSsqWFdTp2bKxasrUVku7VV/kM7343sWgmQpTDh8H24mLivExEEkok2getHDpEyfJzz4Ezs2fz/SxebJJIdlW4xwPGhcN8tiFDMhsCardgkO+psLCnD9kX08+pbaoKC/8vVs51LMoJO61IRIfDMUNEdorIpyzLuv/EY0Ui0ikiZSJSZ1lW84nHrxSRP4vIJSLyuoh8UUQuFZFJIlIkIjtE5EeWZf1v3HtMEpFvisiFIjJcRLpOvP5LlmVtS3GKp8/FztI8HgLqYFDkU5+KzZC2trKZeTw4PLW1RglSVgY59+tfQyB+5jOxG0Y0aiYWl5SQkW9txYlUNYySjCIQiHYwD4UgpbxezmnYMNN0evjw9Jy4aJR+F7t3c74LFmTWl8N+jVTqX1sb6/zt2wcRcvQof7v88p5lBIlMgwPNCGn/kGHD0iu/ie/3o4qdggJDAmvZj73P4Mk0LcHp7ORzhMOc0+jRmWcT401LmXTSc2cnBHc0yvWeMaP3DWoQi04te+45FH3XX496WYS18NBDZMU/9rFYBe/+/SJf/Spr7/bbCfzsqpe2NpR9Hg9YZCfwLcsM5ikoEPnhDyHY3v9+GvmnWqtut8h999F4e+FCCEpNAqTbk9SyKGv84Q9xFj/9aVSWmRL6vZUv79qF8vDllwkiP/lJgvpUeGJZJkiORnkPxY1Urw2FTEl0fHmTz2faOjQ3890tXcpPIiWOZfH9KQlQWgphm21/t3fCGhpE6usHsSiXTHt41dSYQXCWRdD+yiuolO0KXi0h1T122LDYskJNhLS20oohWbluNMqabWmBhIzvAWo3+zRMDdK0AX82wZ+SkKpyTFUyncqOHRNZtQp/sboahfaxYxAS5eX0Gbv00vQDXi0bViV0WVn6OKBDEHT4ksPBOXR1sY+0t/OZp06FPEzmmyh5qErPTM6hN9OhXmVlffeLvF4I2i1bIIm0b+3Mmdyzy5YNYlEumdsNIV9ZSVsp9dl//WvanvzLv8ROhXe5IBUbG6k0mDUrVrnm99Mb8e23eW18b+muLn6GDEHg8fbbkG8XXmh8k85O0/u9osK81rJMe6jSUtaSDs8cMyb9/oWHD9P3z+OBAH3Xu9LvK62m7a48np7ly04nLV1eeAEsWb4cLEpXSBKJsK8rOTluHOfn9fYcpJTOsUIhKtaeeoo+0EVFTLy++urY6dsiYJASclqdpS0RMr1GiSwQ4PvSZHR/ml1J73SKjByZ81iUE5ZD7nJqsyxrl8PhaBaRpSJy/4mHFwk3RPTE478/8fiFIhISkZdE5AwRuVFEnhCRB0SkRESuEZHfOhyOIsuyfiUi4nA4CkXk7yJSISI/E5GjIlIrIheIyEwROS1uipNl4TDqQJeLQN4e2HV2QsAVFLCp1NUR1KtCcccOpnyWl1OOp+U3qo7TicJ+P8RAJIJSUYP7SISMm2X1JBDt5cujRwOWHR1sADU16RGI3d04sB0dZPQWLMi83EczWx0dPcuXjx1jY9qzh+t24428RyZEncvFsbUEJd1NTUuZ9XqrisDl4rzy83Ekamr6Z6NJ1xwOk83v6OC6lJayAceTPpmayu6rqsxUuOHDcaA3bYpVnSWyUx2LOjvTvBCngR08CIE4YwaOk/b//NOfIOWvuYa1oNdElUAlJfQfLCgw/btEIKjuvx+H5ZOfNAkHNafTTKj/n/8hiPzkJ3FWu7p6P9d9+yDmOjpQFC1fDraJQCBqM+ve7OhRHPmtWylV/I//QDGSzmvtptir5ct+Pz/HjqF6WreOx//lX8hmFxWZaXypTEsCCwpMz650XxsI8F0UF/OeTU047K+8wt8mTAAf58/n+DpdNP79lRwtKTHJKpcrkys08KYK7NdeQyVy/DjKgt5fc2pj0T+TBYOU2JaWxiYeHn6YfeXjH+9JIOpgAe0JalejuN1gUXs7vaGT7Uvag9rp5H21lUMys1csqGo4m3YkqqxTRUxJSf8ofMeMIbmzZQtYfdddnOONN6KOspMPqUyH/6kSOlMfJi/PDPBrbUW1t307x62rQ8UVr/hM9P6ahM104FwqKy+PbQeRybWJt7Iy9rF3vYvz3roVpdWmTfQeX7as99cPYtGpY+Ew92p+PnulxhLPPguBeMUVsQSi3y/y9a+z53z605Di9tJa/fvOnfx9xYrY99M9v7iYvevoUZSP9jYD3d3cp1VVsfdpMMhxOzsRT0yeDKHo84Fl6Sj0QiHamrz+Ovv9NdfE9tJP17R8WQch6Xv7fJCTa9ZwbZcs4RpmUhnV3c3nCgaJqerrDV6GQrxHimEi/2dOJ9Usq1dDSNbWGlK4N1VyezvfQVkZMU+mVRFRAg4AACAASURBVHS9WXGxSd663X3Donjr6BBZv95UoLz4Yu/PH8Si/rHTSokoIuJwOP4gIudbllV/4vcvi8inROSIiLxpWdatJx5/VURClmUtdjgcxSIStiwrYjuOQ0TWiMgYy7Kmn3jsTBHZKiI3WJb1eBand3pd7AzMskSeeAKi8MYbcarUurtxBgsKAPfSUrLkuqnt2yfy858DQB/7GP+qdLmkBGANhwHKp54CtD/+cYgfEaNSDIdx6pTcsyxe097OccaMMWWIBQVskKlIukiEoOCtt3juggWxvUPStVAI8svvNxMAHQ6c0r/9DWetvBxS4bzzMstQ+3wAbDhsylqKijJXCmppr89nSpIKCoySKNvJzf1hzc0EW5WVRkUxdmz/9WFUi0RQmp5xRmqp/KmMRZ2d/xxY5HLR/DscFvmv/zIO3bp1ZOAvuojhH2otLRBwloUjXFMDjuhaaWgAi/LySFLEK421HP7YMfO8z3/eKI6SmWWxzn//e9bRbbeRjLC3HEi15jVJ8+CDOJmf/jTKy0zXuZYvh0KxpSdtbQyf+ctfePy661BWZuII2ocViBh1U6YlMh4PgfqmTeBvQQHBujZlT2Y+n/lsRUVgYba93QbKLAsiXIceNDfz+OTJBH8f+lBuY5H8k/hFOhDO5zN9CEVQSf/0pwR3t9xiAmr7ZFKduFlfb/ZYpxMFYmcnZYPxjfDVPB78k2CQoD2dkj+7cjAvz5TEZdoHKxg0ZbnZlsElMo8HouOvf+Vcp08nKG1thRi4/noUmamGCng8xn/pS9lwczMkx5Ej/F5XR9CuAbj2JbSX8WnptKo8y8r69xrFm9PJvVdZ2TdiQO8NJYfVdu8WWbJkEItyxV5/HX/n7LONim/rVkj5+fNjp8IHg7RC2b7dtG6prTWEu9dL65ddu6gwiycQdZBlJEIM2NWF8tE+ldjpZG/WgR1qnZ2srXAY4nLECPZDv5+1ng5Jd+wY5F57Oxh40UXZiTxaW/kpLia+KC5mHT//PP6bx0MS6D3vSb83owjHOHqUz1paig8TL4JQhZ3D0Xs58P79EIf/+Aff27x5tLs699zkn1lbM/h8YFFxMd9tfO/q/jJNUJeU9E3scfw4xPC6dabVQn09SY477sh5LMoJO62UiCdsvYhc73A4plmWtUdgkNeLyGGBLRaHw1EpImeJyPdERCzLCuiLT8hZK0QkT7gpvu1wOKosy3KKSPeJp13mcDiesSwrQ23HP6/94x9sHpdcEksgut2UpBQVEbAHg5Bwunnt2SPyy18CmrfeaohBLf1Q8mjHDjbAKVMgEHVjiUZ5TjjMpqcgGgqxsWjfjbo6NiWdpJoOgdjZiXPe2Mh5nX12dpkVt9uUWdfX81m7u8lqvfoqIH7ppQTImWTJo1HIQ50wrJt+KMT1SDLRqoeptF3l7TqZUKc56uTmjg4eH0g1olptLd9XS4spizx61JQC9Jfl55u+MWnYKYtFmQ6gyUWzLBSILhf/Krn/xhv8LFlCM2ldAx0dlCjn5dEsfNgwcEAx4/Bh04/1jjti+7GKgB/BIMHUb35jJiDHPy/eXC4Ui5s3kyC47TbwsLOT7ymdlgM7dojccw8kxfnnoz7sjUxLZtpfSKeol5aagQ2PPspav+EGMDadBt9qOihAJ8BrwOz3m+RGOgG8x4PTuHYtCsSqKs5n2bLes+uBgGkMrlNV+zvB0J8WiRCQvfYaP+3tPD5zJgHBOedkFqTIKYxF/yx26BB7/fTp5t7bto1kw/z5rCn78IH2dkNwBYOxg886OyEQXS4UiMmSFB0dYENeHu+RTgmZDj+yly9rYi4aTV2KHI1yjEjEBKT91dokGEQptXo1WLB4Meu/tpZrtmkTA6xUeX799Yl7RauqWgQsyiaREA4zaXXXLr6PoiJ82+nT2SO0DNztJvhXX1WxTwna8vKB8ZmqqkyCyOHIDP9CIUMcagKosJDPWVxsqlHStEEseoft4EHuxxkzDIF4+LDI97+Pz/yv/2rWbCRCAvbNNw2BWFVl7lm3m8Trnj2JCUQdCOVyES9FIoghxowxz9GexDq0QyS2f2tZGaXHxcWsOa04SIVnfj8x1JtvsuauuCJ1FVEiC4eJJ7Td1ahRPL5xI8mMzk7W/nvfm1rlHW9tbbHKxrq6xPiqbRJcLnwpeyIgHOZcVq+G6C0uJma8+mquk2KR7if213V3m4F59kSH3891djj6vz90aanxCbV/fjqmCdUNG1Aa7t/PZ5gwgaT20qV8DxnsN4NY1Ec7XUlEEZGlDofjgIicJyJ3CMzy3Q6HY6RwQ+Trc0+wyLcLDPQ06dmQc4iIOC3LOuRwOL4nIneJyIccDscmEXlGRB6xLOvoyf1YuWtbt5IpOOssAnc1nw9lRV4eG1dHBxuLbk5vv43ypaoKBaISiCJGjVhQwAaxcyeZ5xUrzOQ8DYAjERwcPa7LhaJIm1xXVfF8bVo+bFjvIBQKAV6HDgG0s2fjxGeqwtPMVmcn51ZfDyBqPw3LglRYvjy7iWEdHbFBs25Mqh5UIjGZBYNmyrJIbGNdhyP2eDU1pt9JRUX/ytTTNVWMNTVxrnl5bPzjx5/cDH8vNohF76A98gjE3Oc+Z1Q6Bw9S/jl5Mg6l3sNOJ6U4Tic9f4YONQGSCGro++7jsdtv76nm0Qnhf/oTGem5c1FApsqy7tpF38KuLlNqEgqBCfn5nEdvDpzPx3k9/DA49vWvm9LiTE2nL+fns87DYY77m9+AmStWECTET39PZTqwSIcV2Kcra68fvx+8Toa7x4+jJHj5ZXBp6lScxunTzTTnZO+tg6D0evYl830yTUtOX3sNktvp5JyVOFywgL0pS2XAIBa9g9baStBeX2+C9qNH6YM4dqzInXeada4EYjDIvt/ZGdvPrrWVZIbHI/LRj/bsa6XW0IBKt7wc5WMqosw+fTleOVhQwNpUMilZSZ22fdCWJ/1VmRCJUKr2xBP4NfPmUdFir/pwOFCgLFrEc598EnXUWWeBFfX1JiEaiZi+g5kSnG43uL13L5916FD8tIkTY9emBt9VVeCpx4NvcuQIf6upiVVzDYRVVZkejlrJk8yCQUMcRqM8poNe+kgMD2LRO2jt7SQ66+q4Z0XwP779be6HL3/ZEMyWxfC4V17BP5k927Qg0dd961vEQp/6FLGK3aJRCMTjx1kz5eUkbu1JbK+XPbq01DweCBDTdXVxnlOncqz9+8GgiRNTxxgHDrCXtrTw/MWLs0ueu92QfNruqrqa/Xn1ajB94kTi01TVJvEWCECQqvpy/PjUWFBQwHP8fv7v9RIvPv00ZOSoUbTOueyy2OujWBSJmCSAKj8dDtO6yb6mi4tNsqW/2lDYrazM9KLtLalhWdwLGzfyc/w4vunkySSJzj+f/2eprh7Eoj7a6VjO7BCRFqEW/b9FZJOITBGRRqGp5QeFm+JOERlqWZbb4XDcJSLfFZFHRORZEWkVkbCIXC4i/yoiEy3LOmR7j+ki8h4RWS4w1xERucayrGdTnN7pdbHTsEOHaNI7bhwZcwWiQACAD4fZmI4fx0nWCVlbt4o8/jiPvf/9PVU1wSCbxOrVgOeKFWxgOsHT4zHTjevqCPpLS41iTsuXi4rMBKriYhz83rLsLS0QCp2dnNvkyQB3pg6VvXx56FA2po0bUWz6/Ti+l12WfrNgtXDYTDYrLo5VL9hNB63k5fWczujzsXHq33XKsj4vfmKz/bVaMqNl0/01gSsT6+hA2VlUxHkWFHD/9XOpdTpS+UEseofs1VdR5l1yCeXEWo77wAOs21tuMQ6bz8cQlSNHcKBHjgSnhg/ndbt2ifzsZ6zT22/v6Yhqv9UHH8S5XLECR643p8uywK5HHoH8vvNOsCQQwHHOz0+dzHjpJUqMjh5lwNKnPw1OZurs6XRi7TNYWkp2/cEHISwWL0YdOXVqZsfVASqBgCH6EhFgdkfS7ghGo1zPtWv5DgoLKcm5+GLTy8je68tOTobDYJG9p2NFxTuDR72ZDirYvJk9LxDgO5g1C+XFrFlG3d3LuQ9i0SlsWnpfWQkh7HDgb9x1F2vue98zCVLLYv/y+/neVT07erRJkD30EHvzBz+Iv5Rowu/+/QS+NTUo51NhgvaTVmIp2fOTTW+2E5AFBdzD/bHWLAss//3v8ZemTsUfTKcawO+nmuOZZ/j/okVgs/b5ytQfaGwkmD16lM82bhzfZyqlubZwCAaNvxUImAS3Di7Qvqwn27RHbCjE+9rb+9iJQ8vicxYV8Zw0v9NBLDqFze8nzigqgnDXe/Gee7ivv/ENo9y1LPqt/vWv9Ia+4AKeW1/P6zo6IBCPH4dgtA9H0dc3N6M+PHiQOGn58liySFstlZSY2Kujg3UWjULM1daaeC8SgbTrjTByucCMo0dZT3PmkGzMlGTSdldtbSZePHiQRPGhQ3yelSvZpzPBOr0ujY28bvToWIFMOrZlCz7apk1ckwULOJezz04tgFGRjfZHra7uHe/9fv5VYUZ/m8vF92tXZIfDiIM2bsTPbW/nfKdPJ4G0YIEhdHvB8VzHopyw045EFBFxOByrROQc4ab4jGVZ4048/pKIvCEi80Ukz7Ksc088/oaIdFuWtTTuOPeKyJck7qaIe87YE8fcY1nWeSlO7fS72L1YezubUHk5/cN089BpUYEAJTZNTQDh9OlsTq+9RhZ56FCAceLEWPAKh3HK//AHXqdN9O3W2koQqWVyTifvEw4D/hMmAFhaalJSwvsl2wz8fjLP7e28Z20tP0o0ZGIuF+ciAmGxYwfOrtOJc3z55UYun4k5nWZww9ChqdWLmpXSDURLljUQqKiIDcztloxIFOGa6gSuIUMGxjGOt64unBv9bDrlrB/7e6T1rQ9i0cBbY6PIZz/L+vzRj/juvV4zFf6TnzSZ9GAQx3n3boL6iRN5bMQI7pW33oJ4rK1F0RhfMqvlFT/8IUH7zTfTD6c3THA6ye6/8QYKlltvZZ35/dy3hYWs32TrprOT8qI//xlH6o47CJB7e00y0/JlHSrw0ksQpkeOoKb8zGd6Yms6FgyCJfZhBb1dEyUxCgs5pxdeoM9QeztEyLJlBDGJ1AeaOCoo4Lt2ucAf7R1UUfHOYFAyczrpR7V5M/tYJMJ5zp1LwDNlCtertDRtRekgFp2ipsGQZfH9FhayNr7yFQLRb30rVkmoCcAhQ0wyr66O++H4cVTBlmUSq/HBXySCP9HeTtA7eXLv606Jo/jy5XQ+l/bDsyzTo7q4uP/22O3b6fF64ACfRYfJZepvdXSQsHn+eT7jpZeKXHVVetUd4TCE7M6dJtE8bRq+aipFsyZktWVDSUksFmlpcVcXvnBenlEtnuze0kpWaysJvQ+UOFTSMIsp2oNYdIpaNArp5PHgd5SX831///soDe+6CxJK7eGHUf5ecw1xWHc38U55OeTat78Nwfaxj5HciyfpWlooOW1tZb0sWRKLDX4/92BhoansOHgQ36O8nARaWRlr48ABzn/SpOSKNZ0+r/1fR43i+SoWycS03ZXXi18VCBCT7tzJ7+95D585U7/C60V9qGXRmYgbwmEU1qtXcx6FhSRU3/e+1CXUijVOJ9emtJRrns57K46JnDwi0elkr9u71wxqcrs5P/WLZs82VXVpJlxyHYtywk7HcmYRZKfXiMjNYuSq+vgNIjJWRH5kezwicTecw+EYISIfj3usSkS8lmX9Xzthy7KOOhyOVhH5J+gylr55vUxTdjjIYinw60Qwnw+1ncvFZjJ5MhvMSy+ROa6rQ4k3dmwsWESjkIyPPYbD9YlP9Bxk0t7ORjl8OIDjdPJYebkZUNDcbAayDBtmJoTGm07DPHTIBHtDhhDY2qdLp2Oa2dIJZa2tbNJtbZAXN91kygsysWDQlD+VlqZf8pafbzZyVR2qo5uq9EnLmS3LOJ5qFRW8f3c35zV06Mlpztub6fd5/Di/BwKmR2J/y/JT2CAWDaAFApCCIgTqRUWxU+FvvtmsWx22snMnRNyMGWCFYsTrr9OPdexYSMlEQeP27SLf/S7v++//Tq+63mzHDghHlwsy89JLuU99PtZLUVHyZIZloQr47nc5zw99iH5gw4ZlNgFQzevlJz+fa3D//fw7aRLneP75mQfsOqxAe6dqf9JUVlBAYuXvf4dcjUT4Pt7/fjLPvTmMSh62toKBRUVgUGXlgK/1pNbeDmm4eTOEtWWRQLroIpxj3edUCXqSznsQiwbYtOR19mwCIssS+e//5vG77oolELu6wAFNVLjdRoV6+DD+VGEhZNqoUT3vkUCAANrjQbGXqu1Ab+XLqUynnrvdsdOb+0N9eOAA/Vffegsf7tOfhoDIZkCUKm6uu46WAH/+M4NsXniB1hErViQuIXS5wMJ9+8CymhrwcMKE1GtT1TvaA7a4OHFVhr2MUPG/u5v7QH3V/pyMqqY9Kx0OElJtbewh6vcNUOuXQSwaYFMi/KyzjC/zyCMQNh/9aCyBuGoVscmKFeBNc7Ppk9zQAIHo9eLDzJ7d8z7VgZAuF2TbWWfF3v+BAHGHtkIKBvGNurtROk6Zwnr3+8EDEWLEZOW+HR0QoZ2dYOaYMfhRo0dnvpe6XMQNOhDqL39h3y4vp3w2XnGZjkWjXLfmZl47eXL68WN7O+XKf/kLn2/MGJK7S5cahWBv5nZzXSMRnqttn9LFalWna2lzf+G8CHvVq69CNr/8shksumgRCs9Jk0wLBe2lfRJsEIv6YKcziSgiMkNEvm97fJ3AFNufIyKyWkS+4XA4ficiz4tIvYh8UhjJbRcaXyQiP3M4HE+IyB5h5PeVJ97nnv79CLlr4TBOYFcXWSotyY1EKNlyuQgMHQ4AcuRIAj4dzz5hAkBdVxfr0FgWDuDq1QRdn/xkz+b+nZ0cv7oa56yx0Uy8mjoVANdhK04nrwmF2DRKS2OdYY+HgM/l4vwqK9n0Ro7MvK9WMGjKlzs7Aczjx/mMH/+4KXPKxCzLOJ5afpnOealzrcF+JGL6kWRC9uXlcS2j0Z6bkpZEafm49lIcSKuuNn0RtaTo2LGexPRJtkEsGiDT/j0HD0Ik1tWZsuEjR2IzttEowfzrr9PL5+yzCaYUAzZtIhM/aRKlvImy3y++CNlWUSHyne8kbuCvFo3imD/2GOd1990mYeD1gkW9EYgNDXymDRvIyt5+O59FBxxlYtGomVB88CD91TZvhpj42tcIrrNZHxo4i3AN0+n1FYlQmrN2LcRKXh7fxWWXmZLl3kyJDJeLwESDklNhaEpDgyEODx7ksTFjUDHMmQNeW5ZRgKWrAuuDDWLRANrRo/hAkyYZBe3vfkeJ1kc+EjsV3ulkP66s5N5taDATfffvJ9ivqCCIHT68517qcpHQCIe5t1K1QdHehtqLKpNA27LMZN6iIrP3p+qxnMoaGqgu2bSJ63DTTbSjyOaYwSC4qkF2SQn+4Mc/Dr6tWkVZ4po1DB9YupRr0NAA2XL8OJ9pwgR8s3TLDXXgXzRqei7Gt4FRf8lupaX86KCD7m7OoajI+LJ98VkiEVOmHArxWH4+mO/1co6lpQOa7B3EogG048fxgSZNMuX3a9awBlasgGBXe+YZFM9LlhBjNTdzXwwbxjHuvZd7+JZb8GHiybCmJlR7wSD7eHwblFCIuE9jls5OFITRKJVYOqDH62XfzMvjvBMJG1TpvXs3f58xwyQQkw0oSWZaZqyCjDffBIsKC7k+l1ySXf9Sp5MkUDDI5x0zJr1ExI4dXMcXXuDanH02ilC7GtvjMRUc8WtXe02GQmZwqZ6/DlqxV6L1ZiowsfdIzNZX6eoi/t24kYSxCnkuuwzFqirvNflSVXXSldmDWNQHO13LmfNEpE1ge6dYlrX/xOMVItIpsMjDTkzQEYfDUSAiXxGRj4hInYgcFJH7RMQtIg/JCXmqw+GYKCJfFuraRwt18HtF5Oci8ksr9cU8/S52nFkW0/G2bsXhnTuXx6NRej+1tRknV4F/yhR6Ab7wAiBy7rlG7Wc/7hNPQCLOns0GFh8odnebXoWVlRBGfj/HGTnSgJ5OoyovB6D8fqPKiUZ5r7Y2o14cO9ao7erqMp/kp5P5GhshLY4eNaA5f372AbtOb6yoSK+UMRIh4LY7uRUVAHY4zOfLBqz1miXKbkUifCfh8Ds3EdXt5pprb7YhQ9jI+xiwpyuVH8SiAbKnnxb5yU8IPj/wAR57/nl+li+nHFbE9Pp57jme+573oBAWIVjcuJFgf8YMCMZE6331anoGTphAX8LeJhV3dTH1+c03ccw/9SmzDjweCAAlDOLvyWgUAuF//offb7sN9aIIaz5Tp1bLlw8fZmjVCy9wnI99jLKlbIh+HVagJEJ5eWoscjpJGj3/PNdnxAhUeYsX81rLSt5KQc3j4TiaYa+uNmWWAxwQi4iZJrllC2r5hgYenzzZZNarq8EhEa51SUm/JFcGsegUMw2MR4wwasN//IN1fMklqOv03tYys/Jy7o+mJtZpfT0E4mOP4S9cey3+Snl57LpoazPlbXPm9J5UsBOAmZQvq4XDpl+eXb2o6059iEx8mo4OSL3nn+d4V17J0KtsfAXtkapK6LKy5EHy/v303d6xg+dMm4Z/V15uSpbTPQclLXXYX7Kei735SnbT5EhXF76eljpXV6ePF/pd6fctYvpV2svOIxG+AxHusz6qoAex6BQzpxPSZuhQ9iGHA5XvN75BLHX33eY7X7+exOiCBTze2ck+W1cHEfmd73Bff+xjkJHxiuijRyEm8/OZVFxfH3su4TAqRR0sdOQIr6mooHzZ7hcdPMg9qmq0eGtsRMXm8UBm1tZy/Jqa3v2xRBYKcR4dHcSpr7/OGrzgAtpLxbexScfCYWLQ9nZwdvz41MNggkGGkK5ebYZiXXYZPmr8tRQxfehFjNpZ2+IEg3xXyRR80aghEdPFa+1fraRiuntHS4sZjLJ9O+c9ahT+3rnn8tlcLtPWpqKCx/roG+U6FuWEnZYk4ilsp/3FXrcOVclFF9HHSgTAeOstiLQzzgAc9u0DjKZNw7netAlCbd48HJxRowxAhUI0E9+8mV4eH/5wT0fH5TKkX1GRaVpbXx/b+0abylZUJN4Ympo4164usxnplMSJEzMjEDWztX8/n+/YMd7zkksAzmyC3GiUjd3tNqqbVERCIMDz/X5+Ly3l89sBOhoFwOMHraRrOvErkQMajZpNrbw880nT/WHai8TnY2MdNox7ow9E4snVDJ18O62waOdOkS98Aef3a1/je922jeB0/nwyuFp+/9vfkuG99lrIxs5O7ovhw1EXPvEEzvUnPtEzEIxG6ZH45JPG0e4t0HzrLfoyejwkPi6+2Nxz2jtUCbD4e3HPHga+bN8O+fiFL5ieNMOGZU746xr43/+FQC0tpST6gx/MrkzEXrbncBjs7c0OHkQBoUO1Zs2C4J0zxziySgTk5ye+tlr6p0qo6urY4QCqQMpm8mqmFo3i7G/ezGdqb+c9Z8wgYFuwgPPQ1hnab6yfS5YHsegUMr+fdV9cDI7k5bGGv/Y1fv/KV2L7EHd1cY8MHcr/lVQ/eBCSq66Octzi4p79PY8exb+oquLYva2/vpQvawmsBp2JpvNGo/hqlpV8erPd3G6Rp55C+RSN4hddc012AbsI56dK6NLS1L5adzcE4vr1pgfX9OmoFefPT883CIXAGyVly8pSX1clEtNd/0oKuN0G14YMSUwWK3Ho9xufrLDQEIfJ3jMcZh90OFIP9Ephg1h0ClkoBHFjWRA2RUXEIf/+78QO3/622ftffZXfZ83C79A2SUOGEBd973tmKF1FRU9Bxd69JHLLyhCQxKuhIxEIRBFev2cPBNjo0STa9J5zu0nGFRZCIMb7OYEAJN/Bg2DF/Pl8zlAIIjFT/HC5ONYrryB+iURoS3PVVaZXY6bW0QE2RyJcp7q63tdUayutFv76V3Bp/Hh81osvTp3ICIf5DCJcA7/fiCVSValEIqYHfrqxUCRiEhu9EYlHjhjicO9eHtMp2YsXc01UgS9ikmjFxVwDy+p96EsalutYlBM2SCIOrJ3WF/uttyhHOfNMAnQFlx07yGJNmwY4NjXxM2YMALNlC6TanDkAh72PhcuF4mf3bspQrr66J2i53aYUMRIxTvno0bEbkJIFqlS0WzhM743GRoBx2jSAUgeg6ICQ4mKObS9TSWTBIEoELdOrroZUvfDCzJWMal4vm1MkYhpwJwNwDabdbkMOak+TZKCsg1YKCrLrP5Rs0IqaTktNRpqcbPP5IFFU+TViRHYDbE5Yrm9Qpw0WdXbSI6aoCKVPRQXfs06Fv+kmc8+vWoXK8N3vJljU9gKVlZQKP/UU/Xtuvrnn+vb76Ue4aROvv+225GspGgULH38csvoLX4gtz3W5cJ5KS3v2MwwERH7+cxInVVU4/EuWsH6UAM/EsYpGCRx++1sc1bw8SImbb+45aTpdC4c5/0jEYGKy9RwOQ7CtWYOzXlxMf7GLL8aRTGRabmknOwIBnEvNsFdVJXawLSvWMe1vnAmH2dM2b2bvcjq5V+bMgTicP98MylHS5iSXLA9i0Sli0ahp7D93Lvf68eMiX/oS+/V3vmMCO68X7NHJpIEA/kZFBev1j38EM665pud0c8vCr2hoYB+bMaN3TLCXL/c2fTnVa4uKek9exE9vThScBgIQh089xZ68ZAmkQ6YTStUiEUPkaQlxMh/Esri2O3fi6+XlEdjOmAEZ+8c/kvidOpVzmjYt8XG0PYr2ki4ry8yv6y3p2ttrtNRZP+uQIWCgfkd6XPtE5XR9uVCI+zE/P7shXSdsEItOEbMs9qf2duIrnfb+pS9xr3z3u2bNvfUWSY4JE0S++U3WbWOj6d3+gx9AOn7mMzy/piY2hnrjDZTEqpiOj68iEWK0aJTf9+/n3+nTY9e9lv4WF0MgxvtgqvQPBiE7J01ivYrgZ2WiXrYsI6nvQwAAIABJREFU8HPNGuLQaJS9++qriU2zsWCQ81dl+fjxyc9JxTWrVxui97zzMp/4HA6zb3R2gkMjR7KHZPJ6y8qOSFS/Rj/Pvn18lg0bIFFFaAdx3nkQh6o4VD/OrrC2f9eRSKzCMksiMdexKCdskEQcWDttL/aRIwS9o0fTpFcBYc8eQHXSJLJNHo8h1bZsocTvwgvJonu9kDoKSk1NEIhNTWxMy5b1BDmvF6m0w4ETpH0nRowwz7UsANbvB5DiJeWtraaB9pgxAH9bG+daVcWGqU6j18t7iJiGr/GlK42NKJVef52NZOlSAuZUUvZkpuUmXq/pbZEs263BvU5GLSriHNJthhsOm1LnbHo0piIStXwz1QTak2V+P/ejbrg6ZTsLy/UN6rTAokgEp3j3bvohTpzIWnngAe55+1T4Z54R+cUvwJvPftZkxnWg09/+Rgb6ppt63pft7ZQt793L32+4Ifm929FB+fL27WDWLbfEqoWVTC8r65k1f+01ka9/nXv06qtF7rzT9GdNNUE+kXV309vxscfArSuv5JpkS55rckKniZaXJycVuroILNav5zPX1ZmS5XScfe3flZfH59d2BOk02I5ETNlNfzQCDwTYqzZvJmDy+fg+5s0TWbgQp7+kxCgBTkLJcm82iEWniO3bB6bMnAnB43SKfPGLrJnvfc/sNdqOpLiY/VwDWocDkuvpp/GXrrvOlOsrSRUOi7z9NnvYuHFgXm/JxGzLl+3KxUxfm6i8ORKh6mTVKrBhwQL61KbT+zTZZ1Oi3uHoXQUYDILdu3aRWC0rg8CYNi0WmyMRWjw8+STnOG8evqf20lXCMhg071lcfHJ8pWSm1SitreC7CKTNiBH8q30qs7FgkM9dUJD5XnPCBrHoFLG9e8EjHdwVCqEwPHCAUmbtVbhnj8h//Afk0733Eqc0NbF+m5tpEVNXRx/mQIC/q0IvEoE0ev11CKIrruipfotGiaeCQfCwpYX79IwzYv2Ari6Ip9JSMM1OHOkAjsZG8PKcc7jHdVBJvGAklWki429/49izZ7PO7YOuMjEdmqktTEaPjo1B49977VrIw4MHuRaXX47yMZNYRJMKbjfvo3iUqXpP+yM6HJlVoYXD+EG7d+MXbdzINcjLI4G2eDHk4fDh3HtOJz+qhNcpy8kwRj+fw2H622douY5FOWGDJOLA2ml5sTs7Uc6UlNCIVwO8AwfIOI0dS6Y3EgFwIhEyMLt2UcIydy6Bt33K6O7dNPcNBnE0zzqrJzD6/WwiWrqRnw9428k6y+LYgUDPIQSBAJtsWxuv0R44TU38raYm8dRTO6GowaKSbv/4ByWR0ShkxeWXZ6/2EYFw6+ricwwZklyq7/ebJrvaLD2d8sJEpo23s+mPmI5z7PezOeTlvTOTmwMBMpr6vdfXZ6WCyPUN6rTAogcfJCi96y4IKp8PAtHngyzTkpp161Apnn02xFxeHt9/OAzJtX49ipj3v7+nU7N/P9n57m6RW28lKZDsnt26FQIxEOD9taWDWnc35xZf1u900oto1SoSGV/9Ko6yYley9gvJLBQS+f3vmS7d3c0533Zb78NfUpn2/YpGwfpE5Jxlcb3WrMGxtCwUesuXoxzItP9aU5MhXLU8JxMiw+czQwMyNY8HwnDzZgjEUIjvYcECiMNZs8zEXS0hVGdcVYcDNB16EItOAWtqIigcO5Y1rEH7vn0E7dOn87xAAAKxsJAAy+Eg+PL5eP3atTz3+uu5p3TKuYgplfZ6TRP6ZNaX8uVg0BBl9v55mZiWN0ejJEdWrcJf06nrej2yMU2W6mdLpoTW3pT79+Mj1tby/uPG9R6UBoO0fHj6aa7hOefQm0yD3mT4l4mpr5TOpFTL4py0x6H26BbhvlE/tLQUnMw2YS3Csbq6uK69VbsksUEsOgWspQWRxpgxpsLrxz9GIXbnnSLvehfPO3yYSgcdDjdsGGvG6cRH/uUvEVX8278Zxb22mlIybP9+/IoLLuh532l/eSUPAwHOadKk2PXX2QmBWF4eOwHdsogF33yT3888E+K/owMMLStLPKk+mVkWWPTII+D15MlMn54zJ/u1rBVOHg/x4rhxibG2qcm0b3C7uQYrV+K3ZqJijka5nlrCrL6hw8Hjqu7LxLQ/Yl5e6msZCuHnquKws5PPe/bZpsehvr+2ntHKkIoKrlG6vbzDYfOZsqhey3UsygkbJBEH1k67i+33E7S73QTNmqE6cgTwr68n4+RwGOJm61b+fvnlbApNTWweOpXr5ZdpzltWRiZ+2rSeoBwIkPVRAKuoYHOyO7t2AnHIkFj1SkMDJKdlsWmp09/UZJzNdPqERSKA+Zo1OJweDxvSddexSWQzzUvETDALBDhGTU1PR17L9nSogZY89dZMPB3TkqRs+yOm0zxcS2eUHM22xDtbCwa5H5ubuXfGj0890TLOcn2DynksevFFkW99i6bTt97KWnz4YbDlox/lOxWh181//ZdpIl5YaLKizz1Hhvvii2NbMKi98grkXkkJ6sW5cxM7iJEIar9Vq3Ai/+3fjHpFTZvkV1QYZ1snzt97L1j1kY/wWQoL+T0U6oldvVk0Snb9vvvAuHnzRO64A5zN1rRHYTDYs6xSLRTiOq5Zg0NdWgope9FFBtfTNS1lUcczP5/gPZvSZA28tbwvlXV1oap47TVKHiMR05B+4UL2IsVWbTIeCBi1lvZiG+BWDYNY9A6by4U6cMgQSCqdFL9+PVhw/vk8LxjEByoowFfKy+O1bW28/pVXjCpG+/tpaZrTCYFoWTwnfiqq3bItX9YpvlqNUFSU/b1sWfSlfeQR9tpx4+i/mm6/wWTH1DWnZcTxyU7LYg/YtQt/Lj8fX2zGjIz3eHG7UQz9/e9ck2XL+G56u/aZWG++UjRq8CsYNM/TMmV7tYhiZlcXvmBBgUk6Z+MLaqJXB35lYINY9A6b10tlRWkphE5+Pr7J44/TA/m97+V5jY1UcTgclDbX1rK2Wlqoonj0UdSKd95pSujr67m31HdqbSW+mzOnp1jCsohhGhp4nk5Pju8z2N5Oy4eKCmIxJRe7usDD9nbed9Ei1ntTE5hZVcU5p4slBw8iTNmxg3P44AchU7NV7UajXMPmZq7x2LE98cWySESuXk0bHIeDvWDlSjA80+nROoQrGjU9BO2+WCgEZmmLmUxM+yMmGrTi95NM3bCB78Tr5f465xx+5s7l+ygq4hh6nuoz6pTlbOJJHQaox8ngmuU6FuWEDZKIA2un1cXWoP3wYYL2CRN4vKEBh3jkSMDF4SAg3r+f7EVnJ4H/mWfy3Lw8M3nq6achB0aPpu/YuHE9VSTad6K5GRCtqzMZfbVolPcMBtnc9BheL/L97m4enzqVv2lZdF4ex0sna68bxJ/+xCY4diyfa9w4NmN1+rTkOZ1yIJ22pTLuoUN7ZvfCYTNlWUuWdcpyfwWvOmglPz87JzQdIlH7V4ZCbA7ZDHfoi4VCBDcNDZAUkyZl5DDn+gaV01h05IjI5z7Hd/a973GP/ulPJCiuu85Mhd+2jWbhkyahCiopIShrbcWxe/ttcOaqq2LvU8sia6x9FW+9NTEWieDk/vCHkE7Ll9Nr0U5YWRbr2e83ZJgIePPNb1LyO3MmZcwzZ5oEggjrPx3yy7JIvvz3f5O8mTSJ/kVLl/YNEwIBcEaEzx6fFGlvR+W5fj2YVF/PNXjXuzJPDKjz6Xbze3k5uKDEQUFBdkkZv59rWlKSWF3d0oKDvHkzqjHLYg/QwSiTJsVew0Qly6Wl2Sm3+8kGsegdtFAIpUxeHsF0QQH9UB99lED1uuvM89raeN7w4WBWKITv8OqrEITz5hHk+3zsj9rDuKUFUqy4mPdItlfay5d1Em8661+Vbpo87G0IRzq2dy+ff8cO/MBrr0WpkpeX+fRmtWCQ66JK6Hh/JxDAt9u9mwSEVpdMnZo5FtmHRmkLh+eeI4guLESVeNll2Smc483eH1EH2ChxKBJLHKbySzWx3NVlBl5VVmaXqPX58EW1h3WaNohF76BFIvgBfr9pG6JVGBdfbKbCt7VBIPp8KBDHjuW1jY3EaE89Bcn1+c+bPbm21lRqrV0LVsyeTbI2vpJHFYi7dnE/jhwJ2Ri/f7e28p5VVRzH4eA8tm8HO4qKSN6NH8/jDQ1mCF66CYHGRpK7GzeyBq66ijitL/u1y0UMqhVr8QIWnw+8ePJJfNXqakq9r7wy86onXdPd3VwD7aOdDAu0Qq6iIvPPaO+P6HZDGG7YYPpQVlfj2y1ezF6l56BVKvre0SjXuro6s/6MySwYNG2weiuBjrNcx6KcsEEScWDttLnYlgVAbtmCgzhvHo+3tOBQDxvGY3l5pp/U3/8OGFx7LY5wYyMbUX09oPO737FxzJsHUA0f3lOWHQrhJLa0EOiNH5+4B0d7O4A4dCgbVzSKXP7wYZy1KVNM/4nubtOfqK4utfNsWWyOTz8NMTpkiMiKFWSYFLQ18PV6jeOr/bmUUIx3pLXMKRTiMw0dGnsufj/ArgqDvpQsp2PaHzGbQSsi6RGJloXDGwgk7hF3si0cJkN59Cgb3tSpaZ9Drm9QOYtFXi8EosdDv56aGvpYrVmDUkRLiHfvhpirq6OfYUWFyR4/+iiE0Xvfy9q1WyQicv/94NWiRfRAHDIk8VTxLVsg7kIhHPQlS2L/br+/lSiPRlEF/OhH3H+33WaGv+igl7y8xOrjRPbWWwQJW7aAaR/7GP0U++IkRyJG4VxYCM4oBmiJ0dq1qPZEUBddfDFKg2z6g7ndOInRqMEB+2fX8kpV4GRqOh1Zhy4cP47acMsW9gQR9pKFC/nO4ye3JytZLi0d+L6uCWwQi94hsyx8FrebgLq8HCz60Y/Aoc9+lnslHCZgdjgIIvPzYxv779ljJoIqiaQqu8OH2aOqq3mPZPe/XUWYyTrRib6akOyLP3HsGG0UXnuNNXztteBCQUHs9OaCgvRVKaqEDoWMEtruF7W3448dPMg1GDUKHBo7NrvgVclDe6m0vl9TE8NXXn2V/eSqq1Bb9xVrVeltJxTtisNsTAdROZ1ccy11zkTR7fFwb5eWDvpFuWDbtoEpCxeCM2+/jQ90xhlmKnx3NyXM7e1UcmgfwJYW0ydwwQJ6IGrv1iFD+Nm716gcZ80izqur63k/HTtGzOdwoN6PT8SJIAJRIci4cfy9uZm15XLxmvnzWQPBIHt2OMz7JfLF4q2zk0Fy69aBHeedR0In2wFOIqzPY8cgSIuLOW/7ujh+nLj42WdZ01OnojpcujQ7XPV6jbpYVcGpkgGqWIxGObdM/JOODkQ8GzdC5EYixOGLFxPfzprVMz72ermnOjt5zyFDeE22VXjJLBAAi4qK0vv+JfexKCdskEQcWDttLvaLLxJk69AQETabN95gU9AehlrSsmoVm8SNN7KhtbUBdLW1APyvfkVwf+mlbGpVVT0zTcEgx3I6CfgmTOjpiEYinEckwuuLi3n+7t2A3ciRHF97WbW3m0laI0emdq4OHRL5y1/YTAsKANclS3pK9O2mWW0lFCMRE4Qqoag9LgoKOG/NcKsD7Xabvo86ZXkggld1+rMZtCKS/hRCnVarG+VAlgNGIgQghw5B3E6fnlZPoVzfoHISiywL9d7LL1OCM2cOzs4f/oD6UEuSDx0SuecenI1vfcsoTJubGa5y5AhYFN+z0ONB2bhtG0Tcu9/N+oxXqEYiIv/7vziMEyZQ8qNqavu5dnaaDG5pKUmHr38dnDz3XM5Ry57dbnCgqAgMSLW+DxwQ+elPUQFWVYl84ANMcu3r+vH5jIrFPnU0GOS6r12LI11eTh+kZct6x79kphl2l8sMj6iuTh40K4FXWpq5SioaJaDasoX7pbmZzzd1KgGXBl3xplMI/X5DfuiQi4GeLt+LnTpnkp3lJBaJQPA1NOBTjBiBGvmee9hDvvY17hcd4GRZPEd9lrY2CKkDB/CjVqww/Za1/H73bu7V2lqOmQwTsilftqsW8/ISJzbTtbY2kSeeAItKSiDXLr88cSAZCpn+W6n8ikDAlHWr+lCE9XzkCNe7pYVrOnky5GG2pcaqpolETB/KZETnwYN83rffJtnz3vdCUqR7/ZS41euvyVZNTPRnn+ho1Ex1DoU4dnV1+gMY3G5wurx80C86le3wYRIaU6eCRw0NkIXV1VRjVFRwf999N0nzr38dUkiEe+P3vyehcf75pj1MUxP344gRJAzffNNgUXFx4n6Ee/awx1ZWEgfW1PQ818ZGMHHoUNNK6o038I8qKlAta79Xr9cMnRo9OjU55fFAhv7jH7x27lx678+Y0TeyX/s2hsPEivX1rFnts/jkkxCgBQX4RStXZpdUFcHf6OoCk+xT2NM1bbNVUJB6zar6dONG8DQa5Tqfdx59/adOTdxqQacsa3KnqorvxrKy76ObyrT3f5pEYq5jUU7YIIk4sHZaXOy336bHxpw5NP92OAC8LVtwNBYujJ3O/KtfAbY33wwgud1sINXVgPxDD+FMXX+9Cbbjp1Rpk3u/n5K/0aN7nlc8gVhQgIPe0ACoTZtmiMloFOfT6wWgU0njm5pE/vpXPnthIWrJs85iA8y0DFcz3UoOdnZyriNGsDEVFgLMHo8pWS4uNlOWB9K0P6JOWczm9elOIfR6TfPmeBXmybZIBOLpwAHe+4wzUn6vub5B5SQWPf44zb4/8QkIs6NHzVT4j3yEe6ehgWmDBQUQiEoOdXSgGjx+nPYLixfHHru5mQEIjY0MiJo3L/GUytZWkR/8AGy77DJwLX5t6ARN7WmYl8d5P/gg99UXvkBJjcNhyp21z0wqErCxkT60f/kLz7/2WoLYkSP71ltUhxVEIkaBowNodGCUxwPpuXw5yqlsVUu61jXD3lt5jpqquy0r+SAFu+kgLy1V7ujgtTNnonRfuDB5mV4oxHtpSWFxcfJy6FPABrHoHbD2djCgro5pok1NDHiqrCTBocrn1lbuxREjzP3jdtOf6+BBEhUXXWQUuVq+un07uDBxounvGm/Zli+HQqbPXl/Ubi4XbST+/nd+X7GC4DlVgBeJxPoV8b6BqvNUCa1Y5PNxzffs4e+VlQTqU6Zkj0WhkHmv/PzepzzH244d7EkHD+K7XXdd8p6PSvQGAia5WlhoFIe6F6QzaCVb01Jnr5f3qKhgv0lFzDidXPuKip6VP3E2iEXvgHV2Uno6YgRxidtNubLXS7lybS333Ve/yp54993sfyI8/otfsMcvX45vJWKIu9paSloPHSJ+mzABXBs1KhY3IhHayRw4ACaefXZif6ShAZ+ipga/7cgR9udAgLWsLSFEwL/mZo6jsVEy00EvdhXg4sVgQzoCkWQWDOJndnWBDePH86/HA+49+SQ+5bBhlCtfcUXmvVft76W9s5XsT7Hekpq2oolvQ2NZEM46GOXAAR6fMsUoDkePTtwfUSdsq9JRE792dbMOOj1ZRKLGzsXFKQnSXMeinLBBEnFgLecv9rFjBMOjRlE2V1AAoGzejOO1aJFxwI4epczOsshsTZwICDU0AD5tbZQwl5fT8FdHzNfVxQJXezsOdTRKH8VEAB0O87xolM3J5UItGAgAiBMnGlJKp34Gg2y6vTm8HR1sSlu28LnOPBOCaejQzKaCxVskwrFVqq4qAFXbqDNbVcX1eSeDV+2PmO2glUyIRJ0MqP0gB/JzR6MEA/v2cY/NmdOrc53rG1TOYdHWrWTWlyzh364uyLTiYhzfsjIw5e67Wdvf+pZRBzqdDFdpaIAgPPvs2GPv3s3zo1GIgPp67tuamth79tVXDaZ9+tM9iUiRngTirl2okvbvR53zxS/GJjM6O7nvKyt7x6LOTgjTJ55gfVx9NUHrsGG8LlssUnLO7+ezqgJn506UCdu28X4LFqA6T5SZTte0YX8oxNrOZFKfiBlmoq0h4i0UYq/YvBnlhJa/zJ1L0KRTGBVf46+DKp9UKaXqp1OgZLk3G8SiATafD1VOeTlqHo+HoL27GyXzqFHcqzoBfvjw2P5RDzxg2ilceKEhEJVEevttE1QnG0ykKtlMiEDtuadVDcXF2d3bfj9J1T//mf9feCFYlIkiOVl5syZZVQldVMR13LkTIiMaBZ81mZwtFqnqU/tA2lXXmZhl4R8+8YSZ+Hr99Xx39onK0SjPV5VpomufTguY/rBg0JQ6KxmgU52Tva+9r28vCdZBLBpgCwQghPLzUY+JoDLct49/p0/nXv/mNxFifOELZtBTNIo/s24d5NfHP87jzc1mIOWLL5IIWbgQLPL5TH9ENa8X36i1Ff/gzDN73keWBdnW0UHcVV3NPn3sGL7+OefExnatrfg85eXgaTKcCochw/7yF+7nadM417o68KEvk8pbWzlnywJzRo4krn3ySXoe+nzEgytX4pdmS5qFQiaRrJOI+6OXoNvNsSsruR+UOFSCeNYsfNjzzjPKTzUdtFJQYEqWFZd1ynIyvFQiMZOhXpmYVvVpe7AklutYlBM2SCIOrOX0xe7qoldYYSGBeHk5zvPmzQDfokUmIGxpIWgPhZgOqtkrBeR9++i9MWYM/cDUgR41ygCxPv/AAd5zzpzEQbYSiJbF3w8fBvzLy9lQ7D0rAgEcPcvquRHaze0mgH7pJUDznHM4VmEhG2C2mSY9tk4m1s1Ce1+43UbCrpM+dTDLyep9mI5FIibwyGZTyIRIDIdNf41MSYa+mhKJe/ZAIJ15ZtKNMtc3qJzCotZWegcOGcLUU4cDVZ/bLXLLLQSvXV30/enqogfixIm81uUiG9/YyDEWLIg99osvolCsqUHBWFbGPahqZhF+f/hh+qBOnszE1XinS8QMdNKSuPvvR7VdW0uZo71nYjhsnttbuYrXS7Llt7/FObviCkqxte1BOqq8ZKaKZw0k8/LAvLVruV6VlRAEy5b1nL6YiWnQGghwXfoySCkc5jqoisfvh2DevBnC0+/n2PPmsSfNmRO7hsNhM6iltDRxyXJpad8m0w6w5cZZJrecwqJIBAIxEoGczssjWN+1y/Qf08ECoRDrVPewUAhM2LMHoknxQMmsUIjjOBzct8n60GmP0EzKkPU1Dkf2KpFwGL/oj38kYF+0SOR978OPy9a0vFlJRe1FWFxsSpbb2ljvU6ZAimQw6KOH2XsQajKiP9oTRCIE6KtW4Y9Onw5WjxsXSxymo6AWGZhKjGjUTHXWskQtdU50f2h/3178skEsGkCzLMi77m7U9RUVkILr14v8679CFkajxGIbNzJs7dJLeW00it+zbh0JyY9+1AzBdDq5FzZtMkmC8nJ8qZqa2DisqQk81NLhSZMSn6eq+UaO5Dhbt3IOc+fGlv1GoxzT7cYvGjEi8ZrRz/7UU+CDKulUGRc/7CQT8/uJI91uMHjMGM539WqSkwUF+EQrVxIXZmuRCN+d281nrKri2vZH0lL3qbVr+R61ymv+fEjD887r3adTX7a727S00inL6cwN8PuNX3kysMzjMb5eEt8517EoJ2yQRBxYy9mL7fcjee/uRvUzYgSPvfYaQLFokQkK29pEvv99ArXbbzebSlMTC18b2s+diwPa3o5DN2qUIcr8fjadxkYzZS+RrNs+yTQcBvijUSTn8Y21PR7Izfz8nlJ8++dcv56fYBDF0jnn4Djl55ONyrakWMlOvx9graw0yhdVE+iUZQ10vV6eL8IGoIRiX8oWszUdtJJtf8RMsux2NZd9ou1AmGVBJO7ejcM0f37CeyXXN6icwaJQiJ6DR47gII8aRT/CQ4dIQEyciBP21a+CF/fcg1MqguP0ne+QWb/tNkp91CyLUrTf/Y7A/0tfMkodewPr5mbwbP9+gsKbbkqMHaoujkYhs777XcjPD3yAAQv2ezgY5LkikAyJEgTBIMH6r37FWli2DPW3lmdXVmafWNBeq8EguOZ2MxBiwwZwZ8IESpsWLeqbGjgUMqVweXlGWd3XgL2tjX1EpziGwxx7wQLOeebM3gMInfaniQ0Rvu/+7kc2QDaIRQNou3ezHs84gzV4330EanfcYVSF7e3giL2/sSoQ9+xBtXfBBTyuA3u6usC00lJ8o0QkjQZnmqRIl5RSJVwmJc92i0YhIf7wBzDtjDNE3v9+VEd9NVVhut1gkQ6T2b2bz1pdDZ5Pntw3LFLMsw+mi5/wnO352ycqBwLg6Nq1nP+73kXLifgWPb0dL92Ea3+aJrI9nuSlzjooLBhMOuRhEIsG0HSg0JlnEps8/jhJyxtvJElhWQyfe+45fIeVK3ldJAKBuH49auibbuI793hY3243pFlhIX5AYSH+SnW1IZ4iEaq9Dh3iPp09G98skQLxyBFix7Iyzre11ZQ825WC4TAqOb8fsjFRf1PLQqn9pz+hYhw7Fr+sosJUlyUjHlOZZRGnNjaCRUOGGKKyqYlktfZ7zbb3qogh710ufldlX1/XezAIyblxI/2rdaLxnDkQrEuXplZmasJX/aOCAj5rdXVm19ROJJ6sAXQ6aLS8POF+metYlBM2SCIOrOXkxY5GUcEcOEDfsUmTAJrXXuPfhQtNZqqpCafa5UKtOHMmj3d28rc1a9hQLrqIfmKtrWbgiZKQHR081+kEuMaOTQx8GojrBDG3m+dPm9ZT5dLVxXNLSnDm4jMj4TCg+9xzbKRz59LfRxvIqqQ+WxWe0wkwi8QGFVqy01vJciQSSyhalinHU0JxoBQzoRD/FhScfCJRe8VptmkgJzdbFvf77t04Dmed1YNcyPUNKmew6H/+h1KVe+4hIHvqKZIQ730vBG8gYMp37r4bh1oEzPn+9yEBb701lkAMhcCpdetwrG67zQw/spdrvfwyz3M4yOKfc07ic1QCsbUVheSaNWTGv/51sMRuPh94lJ8fq3ZUi0ZRaf/85zizCxdyfhMmmF45fSlf1l450Sj3+IYNTHjOz4eAu/jixNMUM7FIBMzTgFRLtftyzI4O1IZbtqDj1+hPAAAgAElEQVROUpXXuefyvUyZktpRVcdWG3SrCrS/sv/vkA1i0QBZQwME14QJ+AOrVpHQuOEGSDUR7lOfj2BbccTvpw3Mnj0E8jrQKRzGbzl+3AwamDUrMZGdafmyZeFjaO/BbBQhlkUJ5GOP4bdNmMDnnDu3f3wO7UcYjYKJe/fyPnl5JIJnzkxMTGT6GbRdg2X1z1T1aJRr6/ebkmztZanfjc/HgIdnn+W7u/BC+uCmQz4okXiyy5oTWSjEd6GlzjrsTvFbB4aFwzwel8gaxKIBssZGiL7x4yH1N2xgKvyFF5K0FCEB+eSTiDU++EEeC4Wo5ti4ESxSAjEUMvi2fz976/Ll/K2lBSzT1goeD0ReVxd++eTJ+MmJBnAcPmxK5xsawLazzuqpWAwEwEHtt5hIOLB/P+Th3r2838qVvHdTE9g2Zkz2ggO3m3NV3+DVV/EPAwFIuJUrUe/1JcmosaASdOXlyVW/6ZrPx7lu2EBM7vNx3HPPhThcuJD38vt5PFHi2bJ6lixXVppBd9rOKpv9wz4Y62T4WC4XWFxR0SOpketYlBM2SCIOrOXcxbYsSvhefRUQXbCAzWbzZsDhrLOMU3TsGJtWVxc9DjVo93ohY558EiC79lqC1c5OQGvYMDaiSISN0ekEFCorySglIo+CQdQojY0m2zJpEptP/PnrJOiKip4ZqmiUoPTZZzmfqVPJao0YwYan/Yz60ihX1YciBsB1+p82DE/XtCeY9oRQ51XLGktLT67T2ddBKyKGSEx3Q9LJzUVFZkjFQJgqEnfu5B5YuDDmnHN9g8oJLHruOYaY3HADmfQNG2hmfcEFOLihkMi991K2ceedOE4iBOQ//CFr75Zb+O50Xag6cccOVILXX8/6dDpZQ5WVHPehhyDzpk6lfDlZbzJVGD/zDKWKwSAJlEQDV1wufoqLIQzs97Jl8fnuuw9necYMiMsFC3BwdTJxtk6ylvE5nTibL79sBlwtXcpPX8oERUyG3ePh94qKvhF0TU1mMMr+/Tw2erSZqDx8uMG/3nBPEzGBQGzJsrZpKCsb2EFO/WyDWDQA1t0NZtTUkKh86SXKBC+4ABWiw4EP4fWaNiUiZnjc/v003l+6lHtW18qePayX0aOT9xvNtHxZp/9qGVo2pfm7d4s8+ihqp7o6iIhzz+0f/0L9GJ+PihMlGoqKICqnTDEBbLbvpwkDe6VHpv6W3SIRozTUgUvaV7I3Ure7m8TXunU8/9JLUTKlaucwUP0Re3t/l8soD+2lznl53OuRSI/e1YNYNADmdoM/VVWo+fbupRJj6lSSrYWFEP+/+x2Yc8st3EPBoMiPf0x56zXXoFgsKOC7bmhAxdbaCjGpqurGRo6nZH5jI+8XjeITjRiRnEA8dMhUlGmF2IIFPVVjHg/PycsDB+MVrg0NlBJv28ZnvvJKEsotLayvvpQvRyKQl01N4PvmzWBfUREJ1ZUrE5doZ2KqtnY6eT8doJdtDNXdzXe4YQPfmRL62t9QhwLazeXivauqDAZqsleH3Okwl/gktbabiB+0ku5nP5lEomXx2bRqzUaS5joW5YQNkogpzOFwlFuW5emnw+XcxX7pJYLjJUtwfiIRSDeXC6CqqeF5hw+jVnS76a+xaBGAFApBQK5aBdB/9KNkjtxuyL3KSo7h80FC6jQ+lVAnytoGAmSrDx0C1OrqEk/ni0ZRIakqwN7/wbLYMP76VzaPMWMgD6dNwzlqbeUcRo3KrnxZyz7a2jhfLZ0pKUkqvc7qPeyEopbA2AnFk0G46aCVbPsjimTe98fnY+N8JyY3HzjAvTJyJMTFiWs64BvUPxsW7dtHX59Zsxh6snu3yO9/z+/XX899+IMfMJXwM58x6p6mJhxllwu8mT/fOFTHjzOBub1d5HOfA9eCQda8Ki4aG1EwHjyIcuRDH0runIbDOLY/+AFE5sKFDFGZMCH2eYoHPh9rM740ZOtWyo62bUN5feutqLVDIbBSpG/ly34/n+eFF8DvcBgcXr4cp76vJbzqyLlc/L+8PL3eOYmOo9MaX3uN70sEJ37hQs5Vh+WIGHKwoCAxpgaD/F0TH0VFsSXLmoHXic85qkYcxKKTbMEga1NLw/bvp3/q5Mn0Xy0sNL2ttK+VCL8/9BC+zYoVBHh6n3Z0UI4fDhP8jx3b830zLV+2T2tWZVyma/DIEXB2yxbw8NprwaL+2nMDAfwiVR1aFu8zcybrvKAg9fTmVKbkofZXzDZJoKXggUBsFYYSh5ngZksL7Sk2bQIfr7wSkqI3TM804XqyzF7qLAJBXlVlrrFNUT+IRSfZwmHisnAY0qizk0FzZWUkRysrGXj04IOs29tvZx35/cZPWbkS30YTksePizz/PN+z9hJWYtHhMOKMPXuIqSoqIA7Lykwiz26RCM/dtg2fYORIjmnfu9W6ulgbJSX83b6m2tsh4F95hfV22WVmkv3Ro+DyyJGJScx0rKsLReW6dfgbbjfx5FVXibz73f1T/eTxsDeEw8bHzKYdVWsr37tWjmhf/8WL+TnjjN5xUpNW+flgju5XloVPlGoSdDhsErDZtMNQIc3JELqowlPb2pwgZ99xErGfsemUtJwlER0Ox9UislpEbrAs6/G4v00UkQMicq9lWV8+8di/iMitIjJDREIi8oKI/LtlWdttr/uaiHxVRBaIyCdE5BoRGSEiM0Vkp4j8h2VZ34p7r3IRaRKRJy3L+lCK086pi71rF5msmTPJWGlpS2cn5SyqzNm/n+dFozhF8+axyVgWSqLVqyHpbrnF9FJsbmbTGDkSZ7qlBXCqqMBhq6pKrP7zeNgEW1rYOKZPTzwRMBSCTAiHeU97OfSBA5RHHjrE3y6/nMDA3tC3ooLNJBvnzetl83U6jXpO+/qdrH5bGjx4vfxEIqaESQnF/nREVcFTUJBd4J1N359gkE1fZOAnN9uJxAULRPLzzQY1iEX9b04nJTnRKOSa243Kua4OYrCggMfXrUOheMUVvO7YMUp1wmGRD38YNZ8qPrZvx8nOy6PsWacWdnSY0uING0R+9jOO/9nP4vgmM5+PkuPf/IZ1duedZPcTTdzs6OD+raqKxaK9e0V++lPed/hw+s1edRXno42jCwuzV/MFgzjgzz/Pe5WUoCa6+OKeRGc2Zlmcp5a+lZbGOHFpH2PvXqM4bG0FF6ZP5/ovWGCSVYksFAL7ior4sZcspzNlWXulaWuJHBmmYrdBLDqJFo0SaPp8+AkuFxPcS0qYxFxVZUrUtLeVCEHaQw8RCF96Ka/VpGhbG4mD/HweT+TDZFq+HAqx3i3LrIVMrKWFnmobNrCOr76aoL2/+i9r+4SdO/GPiotNyXKiIVVajh0/vbk3s7dqKCxkPWfqc6mKU8lYETPEKRtSNt6OHGGS85tv4sesXMkAjGTHVV/uVEhw6BTZ7m7TLy0aNWKAQb/o5Nvrr7NWzz6bNf7lL/N93HsvJNyaNfQ7fNe7wKn8fNbE974HsXfttagMFXMaGqg2i0RIxM6YYWKhcJi1GQzi//p8KAWVlB8+PHlrqNdfJ+aZP58WM/Hr0LLY67u6TLyl97jLhXhl/Xru/WXLwKLyctPuqi/ly6EQCdWnniKmLSjAz1i5kuvWH2tNhQ/BIN9TdXXmgpRjxyg737iRJLoIg5rOPx/icPLk9P0VbUPQ2MjvpaWmZDndvULxMJs4VolEjUtPBpGouFRVJVJQkJxEzFFsOiUt91qIG3tGRDpF5AMi8njc3z5w4t9HREQcDsePReRzIvKYiPxCRKpF5DYRecnhcCyyLGt33OsfFr7Y/xSRYZZl7XI4HC+LyIdF5Ftxz71WRCpE5Nf98JlOGWtooIl2fT1NwEVwejo6aKCrBOLu3cjmy8oAtgkTDIG4ahWlh2ecAYFYXg54K2E4bBgg6XIBZhUVgEBFRWIC8fhxAD8SMY22E4GZ388moxk0zfw3NEAe7toFyFx/PRtxXh6A39DAsUeOzG4SaSjE52lr45gjRuBYDURgqsBcUsK1sxOKOnjGTij2lczMzzeKxGxKjtQpjkZN759UVlTEZ+vsNE2eB2pys5YzKIm+YkXMn3MOi1TddioSJtEoasHmZhxjj4dgvKCAwDYQMH0Hr7uO8kCPBzX0z3/Ovfm+97GOleR6/nleM2oUjnVtLbjT0cFzKiogH//xD9TIn/0sDrInSQ5x2zYUSIcOkRn/whd4Py3bULNPjlf1occD1vzylyRZKirAx2uv5X72ejk3LV8uKOh53FTmdvOZ16/nfq2p4dqdf75RSSX7bOma/TzVSS4qMqWXvVkkApnwxhv8aIb8jDMgXObNi50AmepcAwH2DofDZMwLC7mexcWxJTWJTIlErzf7qdEDbW1tXMPLLot5OOew6FS3Q4dYT9Oncx9985vcY1/5Cn6E2806UIWxCLjy0EPcT5dfjl+kf2tq4p4vLSVwtd/navby5VQVBToMKhIx5bWZBMFOJwq5557jdVddhUopVQP+dC0c5j596y3j3y1cyPXs7T10inQolHqoWzBokqeajM4kkaGJCL2OImCZqr/7MwE7bpzI5z+PH/rEE9wnzzwD/tvbbqhl6iedTCssZF+sqTF9vv1+4oBgkOSUzQaxqJ/twAH8opkzwZ5vfhM8+drXiNVeeoke0vPmkdTMzwebvvMdyOsPfQhCT+Or48fpMZiXh38wejSPt7XxfdbW8v99+/juZ80yCuFEBKLLhQryyBGqw5YtS5wAjEYhszweYi0dFuf3g0PPPcf7L16MYnfoUNblsWMGQ0aPzi5B8PTTJEv272d9X3MN5GF/JFVFwBCdYl5QYBSb6ZhlcV6qODx8mMenTSNZvngxxGkmpiXL3d1mj1DVZ6aJpvx8rqGWPmdiqozXBG9/E4k63bqpCRX9JZf0+vRBbOony1klooiIw+F4QERuEpE6y7K6bI9vF5GwZVnzHA7HOSKySURutyzrv23PGS0iO0TkGcuybjzx2NcEJvlZEXm3Zbs4DofjFhF5QETOtSzrFdvja0VkqohMsCwrmuKUc+JiO50E43l5Ip/6FOTf228D+jNmmLKb7dtxgkaMgIyrrqYsJxIRefhhyjbOOYdhLFqi0thoAurmZsCothYwa2vjvXRDUQuFeK8DBwCJRYuSN6d2u00pcl0dG197O73NXn8dh/ziiwmm1cnUgQiFhQBrpsRUMMhnaWrisw0fnt1xTpapg+31mpIcLfEpK8te0WdZsZn6bI+RqSJRm7BrM93+CnbiLRw2JZoaKB46xM8Xvxib5co1LOrqisUi3cxT/TsQ9uijJCZuvRWC8Ne/xgG6+Waw4Q9/QN18+eU0C3c4cLweeID7+X3vM46pw8GxVq9GPX3HHWCMvTm8z4ca8MgRgucbbkgeNPp89Cx87DHe40tf6hE4/Z+pMynCc4uKwJqHH6Y/bH4+iYz3v9+UzQQC3Gs6HTNTJ+/4ccjVl15irU+dCik3f37/BaB+vynP0R466WBdMMg+smULJKzPx+ebMwcyZc6c7FpH6HRbp5Pfq6uzVyD5fIZ8PJXM5yOQ27kT8mHXLpMc2rAht7FITmG/qKUFbBk9mp9vfANf5Ktf5X71esGR0lITmLe2QgyFw5TE1dSYMr0jRyDTtJdZvMov0/JlJRu1VD+TfdjnI6B++mmwYtkyiKxs+z/Hm8vFet+xg880YgQYPGVK5qRcsvLmcNj4Nfn5fA/pKCe1t7MSh+qD2BWHA0HYWRaK1CeeALsnTiQxNmtW7PPe6f6IdguHWReNjfwcPsy5d3eL3HffIBadLGtvp+S2rg4i8Gc/YwL4Zz+Ln/T66+DT1KkkOEtK8D/uvZf4RIdi1tVxfx84gBKvpAQ/RMm+jg4z1LKxke962DCIrK4u7sMRI3rur7t20Vs+GOR8FixIvIZ0gIuWIldXc0+tX097KbebfvpXX20UytruKhQy5cuZWGcnPuDjj3MdR43CT7zqqv6LH3Qgkc9n+oeWl6der9paa+NGiMPmZl4zZw5x6nnn9YyJ0zH10zwe065F1ZDqK1VVZVearBUe2baI8PsNmdkXi0SIx3bvZl/euRM8CgZ7+kXxloPYdEpaLisRRUR+JyK3CGzuL0VEHA7HXBGZJSJ3nXjOjSISFJFVDofDDj0B4eZIFAL+3H4DnLDfi8iPReQjIvLKifcaJyLLROTbuXoDxFswyLTBYBB1TEUFm0NjI86fEohbt5LBGjsW+XckQibH6xX5xS9wHi+5BIdIJ7q1tPC8wkI2BG2iHY3ieJeW9twcmpsBh+5uNsC5c5MDV2encehrawHPP/8ZaX1+PsH+smUmUFVS0+MhI2WX06cyVbZ0dXHuwaCZJJ1NIHwyTUubhgwxTrf2uOnqMmU/ZWWZkRYOh+l7mU1mSo+h94dlpbeh5eVByjj/P3vnHR5neaz92VWvlmR127JcZFvYxuCGMZjeew2BQzGQciCccyhJvoQEMJAQQionJ8lJQhLKIQYSwEAwNcEUG1wwBvfeLVnV6tvf74+fJ8+7611ptVo10FzXXivtvvvW55ln5p6Ze5oxOJQsuCfGdSDAOLCDhvbMpfR0DKnRo03zjhAZVLpo2DDut0jk93BiBxV7A2hcvhyH6rzzMCL/8hee8/XXoyteegmn9+yzKf11ODAcHnsMQ+uGGxjD+flcx6OPAqidfz7bq+5QEv+NG3H4U1LopHzssZHPbelSIv779hG5/u53I3PmaCf1zEzD+fp//yfy9NM4rZdeKvKVrxjjUDMmAwFDbN0dUP2TT4jer1/PNc6dC4AxZky0d75rcbt5Fm636ZbeVYS9vZ21YuVKMtk9HtM5cOZMstpj4XnU7Cvl5EpNNWPa6Yw9mzAtjf1qM4r+EDWMN21ifG7cyP9+P9enTmRl5ZFgw2EZVLpooEpbGzyiw4aR/fH73wN+33YbDl5HB/ZGaqqpXKiuJujhcADIpaT8q8xTtm7lNXw4Yz90vbSXL6emdr6eammYlpR2BTbaxetFV7z4ImvdnDkETsLxlcUiBw4wZnfswC4oKyMzSrOcYhEl9LeDpvZszWh4prU8WoFDtTeSkw1w2NcAncNhyj2XLeOZ/OQnzOsrrjD6OzQbsa/O07IAlRQwrKrC3g0cntVZWcyNWbMiVu8M6aI4iMvFOpqRge5ZtAgAUSsxNmwQeegh7NP77mMu1NfzWWMjOqugwPDxrV1LsFE5T9WOaWlhjXc4KH12ufC7RowgySMQOBJAbGnBNlq7ljFw1VXh6Qn0OvbvZ1yNGMF5fvQRYGZ9PUkql14anBWo5cuJiXzenbV90ybm1FtvYYscdRQckWedFb855PMZsM7pDO5k3tlvPv2U+7ZsGc9Iu1Zfcw0+dSxN7rSBS1MTOs7p5NlqkyqVjAyeW3t798vBnc7Ykj9UNFteg7/RAomWBR6wdSug4ebNjNGODu5nRgb68sorGUdRyJBuioMMdhDxPRHZJ6Sf/vHwZ9cI0aSFh/+fKCLJh7cLKw6HwxnyELeHbmNZVrPD4XheRK5yOBy3W5blEdJTHSLyRE8vZCBIIECWT3U1fGJFRWQ/7N3L4qQGzcqVgHPjxgHKNTTwfVMTJYP797MwnXmmUaR1dSZi3NaGYistNSTbyo+o27tcKIv9+1FSs2ZhrIRTzMqt0dpqyqLfeAPOC58PI/nMM4Mdfnv5clFR5MzGUPH7OX8ly9XytzFj4kPC29uSmMh5ajdsBRSV5yYx0QCK0UT0HQ4WBeVIjCUyFYuB7HCwMCYkGCCxO52bOzoMYKjdn1XtaxlTUZEZT1Fc16DSRXYQMJKEAxf170AnS16sWY0HDsDbM368yDe+QYnX1q2AiePGYQg++SQA2b//O/v57DN0TlERQQ+/n2fW1oYBvW0bGYwXXWSO29oKeP7880R+jzqK8rJIGTiNjZzXK6+gs379a9NhNZwouJ2Swth55hmAyqYm9NAttwQ3UdByE+0SHK2R3NpK9P6dd0yTqosuMiVE8TKSlQdLo8e5uZ1TNDQ1kRWxciXOjXbwPOkkwJNJk2IvD/T5OA9751l7xqb9+1i43JKTDUDZkw700YoG1zS7cONGxrwCRBkZZJZccQXln0cdBUDeRcBmUOmigSg+H05KYiL3/5VXsCkuv5xgpMuFXlCKDYeD4MKTTzJmrr6afWRmYtusW8f3JSWAAKHPL9ryZQXCNCuvK7DRLoGAyPvvk41TV8d5XH11zzuPinA+27ebDFmnk8ylyZPjp4t0PqrdlZCAHdMZUb9yRWtHZQ0yKGgYS9fq3hCnk6yjOXOg1HjlFYJas2Yx5jTAbe+S2huiXXLtL6WmSE7mPGbNYhyXlESVxTWki3oogQDraSAAyLRiBQHJE0+Eq37HDjIPCwoYMxkZgC0PPcTzvOsubIOUFN6XLaMaoLiYUmGlU+joYO4eOoQ9kpRkaEXq6hh7+flmTQwEmO/a0XnKFLgWI9kvLS0GDCwt5beLFmH3jR6Nz1lZabb3+w23fFYWoGM0497rxS5atAj7Q4Qxe8EFzK94remBgGlOImL8qki62+2G83npUoLlra3o79mzKVOePTv24KfPZ7osa6JOfn7kYHRiInpTm9J111ZKSECXKl9rd3Worlmqm8Mdv6UFW2jLFvPSChinE/0zaxbr15Qp+OCZmd06lyHdFAcZ1CCiZVkBh8PxjIjc6XA4SoQ69C+LyHuWZelDd4hIu4hc3NmuQv6PxJ70J+HBXyAiLwipsMssy9oa4yUMKHn9dQznCy/EcN61i0j8iBEYhCIsQK+/jkNzwQV8n5cHkPj44xh3V19tuAZFTJdiBdxKSnAqXS4cqKQkAyBaFsDhzp0ouIIClENubnjl4PezYLpcKMz164nQtbcT4T3nnCOzG+vrOZ/kZIDJaBSo282C3NFhOn4mJvJ7W2e6QSUJCdyzrKxgTjCNRmp5UHp65/wVoQtKLGVAsRrImZnc+6Ymnmtu7pHPwusNBgxbW00ZdkKC4VfRexFLBtLnURdFk2HYWTajHXTsat8eD4aww0HX09WrMZZPOIGymKVLRX73O4zo//ovxsvHH9NsZdQogLn2dlMy/IMfMIa/8x0oFVQ6OjBG/vAHdM+VV0YuX7YsOFR//GP2dc01AJLFxZGDGY2NJrqq53zwIMbrrbcGG8kibNvWZkDxaAzc3bvJIli+nLE9fjy6WA3+eDmYapi2t3O/hw2LbKTV1ZnGKFu2cC8KC9G/M2d2jwA8nGjUWsGTlJTwzaISEw0vo9MZm8OQmmoyvWIt2Ykkra2ssQoabtrEmNFzHzMGjs3x41mDR4wwTTWiPY/Poy7qS9FGPx4Pzsnq1TRPmjsX+gSPBx2TmGgAst27RZ56irVy/nzmdFISDr3y6I4ZY7oP24+l5ctaShtJtFOwcgNGC4BZFrrymWcAMseOJQgzZUqPb5U0NzOGt23jvmRlYXeNGcPf8bKLAgF0txLzHybO/1cA0j43NAigwKGIaa6kwOFAlcREsqTmzQO0fv11nt28eQTTcnPjx4/o9bI2HTgAuFNVZcocHQ5s76OOYr0rKYkNDB7SRT2XDRuwb6dP51k9+ij+12234Svdey965sEHWaMPHABA9HppupKWZrrWvvUWoGN5ObaVAogeD89/1y7+Lygg2JeYyNru8+Hn6Nypr8c+O3iQuXfyyYyVSFllDQ3sJy0N3fjoowQdiopEvv51dIZ9bHV0kLyijV06a6ymUl9v6BmUB/r88wFbJ06MPlGkKwkEjI+kfNqa0BAqra3YaUuXYhu53dzzuXO5/8ce27PGVZFKlqMBI1NTDYVLYmL37RzlR1Tqje5KYmJwUOzAgWDA8MABttMu1BUVgM/l5WS35+Rw72PtOTCkm+IjgxD6OEL+IiLfFB7+ChEZLcHkldtE5BwRWWtZ1sEeHutdoWvPDQ6Ho0pEJojIT3u4zwEhy5dT9jt3LgDgvn0Y0sXFOL6WRXTnn/8kunzppXyfksLi88ILTOZrr2Wy62LT2sqi1dGBIhg5EuXl8ZgGK0VFGEStrSiPlhb2O3IkRlMk5e/xYPx4vSw4772HQp04kcUjtHzG52N7zYTU40YSy8KBbmszzquWlGVnc26xdAYbiOJ0Gn5BdaD12ltbTYaENmYJVdr2suZYGq2IxJ7RmJrK9o2NGCqJiSzWChi6XGyn3Vc1QpeV1XkWQwzyhdNF0ZYy2wHFUKAxEBD55S8JHDzwAM/w1VeZx6edhrH6y18SyLjzTp71hx/itI8bBzinPII7d4r8/Oc814ce4nsVt5v9/uUv6JT77oMeIZzs349RvnQpxvEjj3A+nQUztAPzZ5+RebhzJ7ryvvuO7PKsZSdaOttV+bLfjxH6j3/gsKekAEzOmYODl5YWPx4/v99k54qYuRJ6fgcOkG24apVxPkaNYm2YOTNy5ni0onpIs/ISEkzZYmf7TU42gEusIGBaGvqvowOdEYvD7vOZbrQKGO7da74fNQonoqKCcTpqlOlCqyBRD4CCL5wuipfs20fgc+xYnOSf/5xn9F//xTOtqzOdSZ1OnOGnn0anzJ9vxmt6OgCix8PvlftZRcuXRTrPKNRsOs3ACAeeR5ING+CY3boVB+yOO7DvejIvNdC7aZOpFBkxgmyivDyuJV6ULkobY+9SrfNReQ31peCh8j4nJJiKit7OKI63pKVBmXHaaWQl/vOfBPDPOAPbNi2te0CiZTFu7RmGdXVmLR42jPExYwbrSWFhXO/ZkC6KUfbtY80YO5Zn/fDDhou5sREA0eHAbsrPh3P1Rz/is3vuYb1sbma8vP46NkplJQChlp/7/eiwLVtY5ysqWIssC2DO4zHz2ufDvtm8mWOMHMncHzs2PBimJajavf7110n0yMnBVzzhhCPHcH09v9GgWme6xLLY30svkWUdCBBMveIK1tTCwugzGLsSe6mw6vdwgd/GRuzTpUtNI9Dhw6HgOeEEMkle4b0AACAASURBVMB7cj7hSpaHDcMn7e6cTU/n2SilV3fWBaWzUiAx+iBnMGC4cSPjT7PEc3MJoh53HDqpsJAxoHay+m1xkiHd1EMZ9CCiZVmfOByOjUIa6jihfv1vtk0WishtIvJDh8Px1dBadYfDUWBZVm2Ux7IcDsfjInKP0Oa7Q0Se6/lV9K9s2YJzPWkSiq66momdn2+i1W+/jZI+5hiMmz17MNZ27sS4GT2aMp/CQlPi0NoK74PPh0IvLUVJaATU6cSwVud/716T3ZeWxgIYiReio4Pz3LyZSG1DA9GJa65BAYVKezuGk98PMNoZ34TPh1JtbzdRf3UqtSlMbm7/d8rrLVFOsfR0kymhWYqaNWUHFPU+hAKJsR472ki7OhiaYdjUxJjQMrLsbBackhLeMzJ6rwyI8xnSRZGks5KHV14hQHHDDRivjz2G4Xflleihn/6Uuf2d7zDG3nmHrJrKSkqYOzp4rVpFOWF5ucj3vmd4ER0OdNEvfkGwZPp0wMhwwYlAgFKhX/2K8XfnnejEtDS2D3cNXi/6Z80awISNGzmHRx6h7Dn0N9qwJ5ry5aYmU7Lc1IR+/dKX0MPaSCEjIz66KBAwDYQsi/1mZ5s5Y1mAhQocVlXx+fjxZJ/PnMn59VQ0Ou52839yMg5MdzKIUlMN+BBLpFp1nB1I7Coj98AB1iMFDbdtM4BGbi7j9YwzcNLKy3G6lBYgKcm84vEsh3RRbNLYiONeWMi4/+EPWe+/+12eS20t7wogbtqELiooAEDUjH4ly09IIPiQlRUM8tvLl1NTIz9zn8+U7iu3cTSyaxfg4aefAgB87WtkC/Vk/fN4GNObNqEj0tIIwowcacDv9PT4Oexut7mX2gjOvm9ttqLBGAVYMzKYW4OxOiRUsrPJfj37bLjdXn9dZMkS+G7POCNyELSlJRgw1GC7COOtpAS9XVqKPdybHemHdFFs0twMQDZ8OHPse99jDt5/P2P/nntYm370I+yl7dsBGVNTyUDMySFRw+XCR/P5CFoVFpqmc5YF0LV9O2Nh2jRDy9TYyLzKzWWcVVUR0G1r43wUzBk7NrxeUs75ffuwuzZuZPvLL4dyJdRH8PsJSrS0dF2+7HZjEy1axLlnZEDlMn26aYw2enT8mqYofZXPx75zcoKv+eBBQMOlS3lmlsUcu+wygMNJk3qerKDci2o7JifzHDMzY7cZlE9WOeC7qwfsdFaRqtCamoIzDLdsMQHq1FTsoYsvZkyNGsU5qO2nJfhajh9vGdJNPZfPwTIrIqDJDwr164sty2rULyzLWuZwOH4uIneKyCSHw/GKiBwSEOdzROQzEZnfjWM9ISILBDLOhZZlNcXjAvpLqqtFnn0WQ+LKK4kCrVvHwjFtGtu89hrkt7NnEwXVbsYrVmCszpzJS5tPiBDJX7OGv48+2nyu2YAiAIiafdjRYdLWtetuJI7B5macWM08LCnBgJ8yJXKpXX191+XL2hlVswMUKNOGG5o1OdA6d/amqDOdlsazsQOK7e1sk5pqwBCNTPWk0UokINHjObIs2e/nu8RExszkyWaBVYLjPpYhXdQN2bCBTvBz5qBbfv97jJprr8WgfOQR5vd995lynOefRzd95Ssma+7FF8nWmDmTbBuNmouQDfbwwxh6116LnktIMMTQIrxv3sxx1q/H4b7jDpP5Fikb2uVCDz75JPquqAjj/vzzwxvA0ZYv79hB4GblSq5x6lRT5qoOc3cbIUUSberS3Mw9SUvj3BITDe/RypUEa5TvrLKSsrsZMyIS6nf7HJQmwuczekezjLsryhenDW5iiVwrKGEHElWamrgvdtCwpYXvUlLImr30UgCkykrT1Ep52dT41gh7L/GyDemibojyMGdkYIt8//vMtQULWEdqD7sK+fk8u3Xr4BcsKSEAkpgIkKzdTbOyyKRRcE2d9mjKlzWrTjM8ou0WXF3NOS1davToWWf1TE8cOsT43r6dMVxYCBhRVGTKhaPtihyNKHioAVx7p3V7R2Vd++0Ao1IY9GawsD8kP5+A2bnn0njshRdYHy68kHJNe7dkbRYown0oLGT9UB7DeOjrGGRIF3VDvF5oFJKTeXY//Sm65Z57WJvvvhuQ74EHCEht3oytlJ3Nd3l5jAPN+MrMpBoiKQngKSGBYyxdis4YN445rfOssZE1T8t0ly3D18vOxlZrb2dfY8eGt2G8XnTG22+jJ9PSoDY566zwQFV7O2BjV+XLNTU0YXntNXRseTkZ4scea3gbi4u71ySzM9HmmV4vz6KwELvCskik+eAD7uG2bWw/ZozJsCwvj8+63tFhSpZFTHJNvLLxdB3SqpjuJoBoVrjfz3qwY0cwYFhTw3YOB/fkxBOxjyZMYCyqf63BoJQU7nNWVp9lkA/pph7I5w1EzDr8d5BYlnWXw+FYJSLfEJHvi4hTRA6IyAci8rvuHMiyrD2H23KfKSKP9+y0+1daWsi6SU1F8bW1kaqelUWmiwhp4qtXoxTPOotJvmULStzlwlkeN85wYDkcOOsbNphuU1ry6/ezYFkWRtGOHfyflsZC6XCgMDXyEE7WruWc9u0jcqYZMOEWDJ+PhbS9PXL5spYsK0+e02my1rTpi3b/jZSJ9EWS1FReeXmmO2pbG45TQ4MhLFenJ5aFXJ0tXTg1O0odFoeD56MLTbj0dk3R9/tZcPvwuQ3poiilsZFMn8JCkf/8T8qMPR7AwaYmyomzsgD2srJEFi8ma3HGDJGbbuKZHjgA7+CmTWRIz59vjBrLglfqd79jzGr3ZTV4VNxutnniCeb4ww9D69DezjjOzjZlX/ZxtHmzyP/8D4Zkbq7I7beTJRjOYbeXLycnh48e+3wAkv/4B5nZqalE7E87DaO6vd0YWbHywISKgod+P8dTYvD16wnUfPyxCaAcfTRZBMceG78If7iS5czM+HRK1QYKyo0WC5CSkMB5rF+Po7BzJ6ChZmHaDePKSkDD8nKTca8vBY7tGYd9oJOGdFGUEgiYEr3x4ylh3rMHp107k6rdkphI9s6LL5Ihfd11jK0DB3C01REePdpkGzudJqtQpPPyZQXKlPszGkdKG0X985/s95JLAJhipVuxLGwsHesJCTjIkyahI9vajNMZa7l/qHg86Djl2MrMZP8aPPR4jgQO7eCqvbxZAcjPm6jNO2YM4++++7jOo48miycvj3GngKFm1A4AGdJFUYplEZB0uynpfOop/r/1VrK2vv99Aqz33cd8XLsWfZWfD4CYmwtws3Yt22mZekcH4yMlBfvqo4/QG8ccE9zNVhsXZWej9z7+mDk1ZQr6bu9e9hHK76rS0ECDzmXL2O700/ETI1V/1dUZbvxw5cuWhV+6aBGAnQj22SWXcN579+JHZmQw9uMBrrnd3Bu3m2vMz2e/W7dyDh98gH4UMRUxJ5zAnIuHaFVIU5PJWM/JMcHdeIvyZirVVzT6PBDgHihYuGkT658GSQsKAArPP5/3ceNMYFdBwz172FdGBvpLbbQ+ziQf0k09EMeRnaiHpCtxOByvisg0ESnrZmvuAXOzPR6RP/4RBf6VrzCJV61iks+ahRJ58UWU9ymn4MyKoDz/+leUzvXXo1zb21GeiYkold272c/RRxuFHgiYkoqEBBS/10tmoHZ2drlQYOEc1JoaFqY1a1CmF1yA4xZJ0WiXOQU3QxcwVZhKSJuczD1Qrpn6ehbd5GQc+IFMxj0QxOs12Ykej8lEHDaM+9qZQa9Arj3LUDMRlCxYS5MV4I1mkdMIV1JSr5SfDwg4ebDqIp+PEsHNmykz/ugjDJFrr+VZf+97bPeDHwD+L1ok8uabRMGvu45nuXUr0ffaWhoFnHOO2X97u8hvf0vpV2UlHQqLioLPwbIA7e6/H2Pm4ovZTn+flhY+G7qujn2/8grGzrXXogs18NFZ+bLqGLs0NnKe774LoFdSguE9dy77V/BQS0/i4Rx3dHAsjbCnpPAsVq0CINHmMMceS5Dm6KPjm4Ht9ZouyiKcg2blxVuUJy2aTraWxdqknZI3byYDS4GJwkKynSdNYlyNH28yKxTEUKJwEcaClp33IqgxpIt6KFu3Mq8rK7FvFi9Gp5x5pmkskJ/Ps1yxgrk/bhz0KcnJ2CerVmHbTJiA465zSIFsr7fz8mUF1AMB0zGzK6C5rY1zee01zvH00ymhi7WJgNvNvdi8GScvPZ2xXlHB+Sjgr/zC8bCL1Hbw+Ux2rsNhMg41Y1z1VFdcoVoJoVmJgznwe+gQdrM2Pzl40GTYp6XxLD77jHEwaRLdeiNV5PSRDIi7Pdh10bZtPMc1a2hYeemlBCgfeIDMvu98B1to9WqalJSWYk9lZ2NPvPUWPsyUKYCE9fX4VcOHs76tX8/YOfZYgl4qyl0ogj1WVYXemz2bz/buZdyNGXMkOO31Qov10kvM25NP5rwjUZz4fICcra2cd2lp8D5dLgKqixYBTmVliZx3HsGRwkJ0rjbfGDHClGj3RDwefNGODtN4Uim7li41dBbTpuF/Hn98dE1fohWv13RZDgTQd501tIunaFWPBnBCpb4+OMNw2zbukwhrwfjxvCZMYB3VjGetdNFkEC19zsjg/mZmHvnc/f64AIkDQheFSg9004CUIRCxm+JwOMYIZJsPW5b1vW7+fEDcbMuCx2fjRozgkSMxgBMTARATEjCkN27EiJ43j9+99x5RsaIiuqFmZhJ1ysvjN/v3839GBga2RsEDAYwfexlqVhbKJiOD37jdBnCyS1MTPDDvvIPiUWLpSA6tkgHX16OESkuDDV0tJ1RDWDl0dJuWFgw3y8IQj1RSPSSRxefDKVDiX20UYOd/Cy1LVm6wxEQDFtp5DJ3O2BZRjSgqYW8co1v9vkANZl30+99TkvXtb/OMPvyQea2R9rY2MhFHjUIXvfOOyEkn4SQ5HETZf/ADxs3dd2MMq+zYYcp/LroI4zvUKGpuZpsXX+QY991H1F8NSDVwRExWY0sL2YpPP42xedFF6MFIRqTDYfSN04kuseuibdso9/n4Y/Y/bRogwFFH8VvNzAkETLOCnhqSbreJbrvdGMhr1/LyernmGTMADidPjm80WHnOXC5TsqyZzb2dLdPRYUq17QBEQ4NpeqKgodI0pKeTWThpEq/ycp5hWpq5L4GAAQ7VuVfwIjm5z6LpQ7qoB1JdzTwYNQoOwcceI6Bwww0AiF4vczwlBUfy9dcZD1ddxfOtr4cvOiEB+6mggDVNubkUGOysfFk5EjX7sKtx4/GQZb1oEfrlhBPQc6GBkmilsZHxv2MHDlxREY5gWRnnpEFXdWzjoYvUTtCmdZr1qxyQei8UOOzO8XReWtbgKW92uYJLkquqjJOuVDqaYVhSYgLjgQAgx6JFjNdJk6DssDcV60MZ0kU9kJoa7IGRI3n2jzyCXXLHHSI//jHcgnfcQVLHRx+J/OY3JGH8v/+HjdPcjF3V3Gw6JldVmWy6TZvQd0pJUlpq5lVrK7by/v0kgogAQFZU8PnevdhF5eVHdkP/8EOSPA4e5JjXXx8MToZKezv70/JjpbsS4Xxffhk929rKOL7kEq45JYX7smsX+xg2DB3V02CG8g1q9dKuXQRTP/qIz5OTsYtOOAHwNt40Seovqe2hHZ/7mjpLqSREgrMMt2xhnRMxWelakjxhAiCuw8FY0GxxlyvYv9PmndEkgiiQ2EPbsN91Uaj0UDcNSBkCEaMUh8MxRUSmCySbk0WkwrKsA93czYC42W+8QUbheeexSKxcyeezZrHYPPMM0bDzzkNhihDZevppFqw770SpVlebsrq6OhRQejrGjkbCtTvX7t2m6/KYMaZzsnb/yskJ5sro6KA05513UELHHstC0pmR7PMBHCiXR2Gh4dfTpiAa7c7ICCbq9no5F7cbxTV8+OeDmLs/RUs46+owQurrzYKioEheXjBoGG7R1EUp1sXE68VJUmA4TtxN/bZADXZd9N57dE6++GIMs7//nYjuiScCINbVkR04diwlzkuXEjy47DJ0zdKlGNQ5OQCJZWWHL8giI+fxxzFWbrwxmChct3nrLY7f2Ej58y23MO4OHcJ40S7lKi4XBvLjj/Obk08W+cY3MK7t+7W/BwLoO3v3ZQUGV6xAt+3diw468URKljWSrvrK6zWNU3rqBHu9pvHQ+vUmwy4QQNfNmIH+r6iIv8MdCAR3WNVso3iULEcrGlzavh0HQbkMlecuIYHxpoDhpEkGQLGLPhfli1TgMCHBAIf9AFgM6aIYpaXFdAtta4NeYfZskW99yzQWUADx3XfJjJkyhe6fCQmA0O+8w98nn8x+WloMQK4UHJGAQe0iriBjV2CZ3895/O1vHPuYYwisdOawRxLl9dq4ERtN50BoFok2OdJM6J7aRX6/aYal2ZnqUCoFgZZx97SLtGYQ6/wcKOL3H8lj2Nhovh8+3DQ9KS01jXwiiYKm771HZmpzM1RCV1zB7/tQhnRRjNLejm2Tno4tsGABgY377wcsXLJE5OtfJ9j6/vtQsEyYgK5KS8N+ee459nPhhczlqirWqPR0fDqlixoxIpg3sL2dQMqGDYyjESOwB9LTWTf378cmUqoOEVN2/eKL/LaoCBvt+OMjz1vtEl5Tg64bNcpwDK5eDRC+fDm/nzcPn2/yZGMXVVUZXVVW1nN+T7+fuVJbS0bvZ58RSNKGbMcdB3A4c2ZcOwKLiLERm5pMhV52Nq++9D39fvxzBQvXrTNNTh0OxsnEiQYwHDMmciMdBaJbWkwwVX277lDwKHew+oox2lQDBkSMk24akDIEIkYpDodjgYjcKyK7ROQuy7JejGE3/X6zV60i3Xz2bLIMV61ikZk5kwn/l7/gZF18MUZIIIBif+UVHMw77mC7AwdQGjrZtcQkOxuDR4Tvdu/GSE9IwJiZMAGlEAhgBHs8pvuXCP9/8AFOdksLCuvUUzFsO4s22cuXi4o4D58PpWbv8JeZyfFVmSn3XnMzn+Xlxc4j9EUXTVu3ZxlqZM/ugCQmGiAhIcFkKNqfS6j0FEj0+w1BcnZ2XLoR9qexvEAGqS7avRsi7LFj4ZF59ln0yiWXmLLie+4BxHniCQIc55/PSwRd9Ic/oBcefNBEsNvaRH79ayLHxxxDR8u8vGAe04MHAR2XLCFavmABekV1gMtloqQijJmXX+Z4NTUEMubPR1d2BkSHK1+ur0envfceOmnECIDDOXOMXlNdqtkn2lhEJLi7daT3SOeyfTv3Ze1aostJSWSyzJyJo1Be3jtgntfLtSiQ0psly6ESCLCOaZbhpk1kWWkG5IgRPHsFDMeP7/yZKmm48rNZlgl6DIBMpyFdFIN4vTiNmiFx772MiwcfNA151DZ56y0cdw1mOp3ohKVLGU+nnkrgUtc7BZkjNUXRRkIKoqWkdD6GlHrh2WexvSoq4MY76qjuX7c2kNm0ievMzAw/B7TRkTpyna3P0UggYLqcavahZvXagcN4i5Y3a0l0X5f6WhYAoR0wrKkx1RcZGdjGmmFYXBxbZpXaSF4v1B+LFwP+nngiYzaeZZedyJAuikH8frL5XC7m4oIF6IOHH2bOL14MjcuVV1K98Oc/wyN/xx3Mm6oq/DqPh2ddVgZYp1yi1dXMreHDsX2VfkoEe0Qbpwwfjl0wejTf1day7+xsPtO5s2mTAQ8zMqC8OvHEzseYz4f90daGrlTKh7ffxq7bu5fPL7iAl/qRIlzH7t0mqKMd4WMV5fN7/3184A0bTJLB3LkAh8cc0zv6SAO6LS19X7JsWTzT0LJktdGyslhbRo1iPTj22M6r8dTWbW01jV80A1+zDmOlkVJ72LIiU4B0IQMJRFwgPddNA1KGQMS+lX692du300V0/HhKXz7+GKU8YwZGy1NPEXG6/HIWKLeb7MMPP+T/r3wFo6+qCkBGuXvy8jA2U1IA8DRq9MknKKi8PDi1NItQOQd9Poz01FQW0RUrMH6069asWSiz4uLIBrZGtrSpR2mpIaVVcvK0NEPSbRe3m/PwelkIc3P73RkcVKLp6vayZFUnycmG70K7XNsXAs1w0M6nynuk24aWHVqW2aYni5KSJSvPYg9kwCxQMUqf66L2dpH/+A/e772XspvcXEpfHnkEw/Tb38Z4e+wxIsKXXkpDJ7+fyPurrxLc+Pa3TUnJ1q0iP/sZc/maazAAExIMD2YggCH+6KPonP/4D3gMExKCx4SCy5ZFxtFvfwuoWVnJ9tOmdZ2hrI2GtEHT9u0YyZ98wvfTp1OyPHFisMHo95tM6cRE9JE2GBI58j2c2Pe3ezcAx/Ll6OukJIzDWbN49VZ2ipYsd3QY7hvNOo4zJ2nQMevqTJfkTZswjl0uvs/KMl2Sx40DgC4s7NpB8PlMqbKdbiEx0WQOxKvBTQ+l/8+gZ9LnusiycBwV0F+wgM8feYTn2d5uqiMWLwaEnz0b59bhYH6tXcuYnjMHG0cDAE6nyXwLB0xrgxUNbHYFGK1bR3B3xw6c5y9/GZutu+Ouvp45smsXc7OkhDkxcmTwvuyZ0Fq10RO7yOdDxzY3M5dSUoxdEA1PaTykL8ub29uPLEtW7tekJOxZe1lyPEsjVec6ndhkr77K+iPCunPBBfEvxQyRIV0Ug3z6KcGBKVNEfvlLAp4PPUTA829/I8PvhhuotHj6aeyI//xPxtPWrWRDWxbVY6NGMdeUQ9PvZ73Lzjblw6qXdu/mty4Xdtf06UYfHTzIKyeHfareW7QI3ZmdTabe1Kno0M6arbW1Adqp3mlrI0D7xhvMl4kTAT9PPjl4Xfb7+V1dHec8enTPxm9dHbbde++R3OJwcD4nnQR4OGVK79kp9pJl5QTs7ZLl1lbGhx00bDrcDzgpCXuoosJkGqr/ruCg9gqwi9drfD4NeKu/Z68m0yqNnuh39RNFYgISB7suGhQyBCL2rfTbza6pgYcsJ4cyv3XrUDDTp6Ocn3iCbb70JQzLQ4eIdu3YQWTq/POJDNXWEn1SJ724GOPU6UQZO50oqRUr+HzsWKIZujD4/Xzu92N4JyezgL72Ggq+vJx0eM0I1I7P4cTrNbwx2pBFMwHU+A3HvRAImJRrBUHjnar+eROv1xDj6svOAaYLiEafQp0nuwEf+jw14qSAoh180CxF7bjbUyBRxGRIpqT0qOP2YF+g+lQXWRYZPh99BP/gBx/wLG++WeR//5dSlttvx1H//e8x8L70JTJ82tooX/7kE5GzzyYiP2wY+/z73wmM5OURlc/P53Plad2+HYBgzRr0yr334jTrOTU24tgOG4YOWLGCjssbN6K7brwRIzklhX1GGnfKmejx8Pe6dWQeahnQSSdxLeEi9Vrap80Koim3D1c+vX075//hh+hFhwPjcM4c7mt+ftfZjLECYn6/abpgWehVbSoRb5CtrQ1j2A4aNjTwXWIiQTLNMAzlfRIxnIyaCW0Xn89kiClwaO+orM/f70dfJSYOiLVjSBd1U3btYo6MGkVjpwMHRH70I1PWnJ2N7fDyywRbTzgB3WNZlMLv3cvYmTIFx0sJ8S3LlOqHOk8KsGvTj66coh07RBYuBKwcPhx9OG9e99a+QADHX0v3ExNxHCsrw3dL1QCAiMk+jEV8PuZZU5MJLqanG2C2P6hieqO82esFaLEDhs3NfKcdSu2A4fDhvRt0CGcj1dcD/HzwAePyvPMIzPUSeDGki7opu3cDyo0fD//zJ5/QWG77dvyys8+GcuWllwAUjzsOOhWnE7vpk094liedhD7zeIyO0syyxET0WmEh809pVT79lG3OOCM4sFhVhb7IzcVeqqlBF65ahV487TT0iCZudMZRX1vLKzmZubJ4MRUmiYmAhtplOVQaG7kGn8/wgcZi9x84QEB1yRLsSssylSAnncT96a05GQiYRikalBk2jPUl3oEMnw/f3A4Y7t9vvh85MpjHsLy864C4y8XzVvtWKXpEeObq94ULhFmWyQDvadaoBoS7ycU72HXRoJAhELFvpV9udmsrWTw+HyWEO3YAoh1zjAEQGxooj6moIPLz5z/zu7lzySIcM4Zt1q3D+CovZ0GqrjbRJaeTfW/ejMKcNg1HXMUOIObmsnguXszxiotFzj3XRPRzcoLJdsNdU3U1i2FWlskqSkkJ3wFVpb2d6/D7UeQ9AJE+t6KZnHbQUJW4SHBXrWi5LtSAdzi6Nt6V3Fc7NooYQFEdr1gbrai0t7OwJybGnIE62EdNn+qi554T+dOfAA0bGjBKb7qJDMGlS+H6Oekksv+2bqUc+YQTMDoffBBD8JprMDrz8zGIf/UrjNHZszGqNXMsN5fx9thjlCJnZJC5eOGFZswEAhipXi86YMcOwMOVK9FlX/saus/lQpd0pic0MltTw++XL2d8lZWR/XHcceGNLG1W4PebiG93xrTfD4C2ahWv2lquq6KCe3LiiejQSNmM0WQ12t/DAY2hJcspKabENx7i85k1RUHDvXvNuY8cGcxjOG5c18fW6LYCPlqqrIEO1VH66uy5u1ymfKcfZUgXdUO0y2RhIXpp5Uqc9ooK5rFSGrzwAuXOp57Ky+fD/mlsZC0aORIH2rKMTaGZJaFjRjNa1UbpbIweOMB5ffQR53LppVDPdGdOdXRwjZs3Gx40LVmOxGel6602Qeuuw+71mo7KGhDUYG5ubty4iHsssZY3K6+qHTCsrTW6KDs7GDAsKuofHsZAgHMKtZEOHBB5/nlA8exsGoOdckrcAd0hXdQNaWzEXigoINC5eDG2RyCALTRvHhz0f/0rlFLz5uHDWRaluLt2YQ8dfbThmV+xAvBo1CgCoF4v/l5uLvppzx50S10dQcZ584J1wv79jPPhw5m7r74KAJ2UhB6aPZvgQEoKx4w0frR8ubaWa3v/feZMXh622HnnhffxPB7OsakJPTR6dPfohyyL+/LBB9iW27ZxLqNHE1A9/XRAtN4U7fJs54DXxqHx8Dcti3tpBwyVrkUEe3XCBJNhn+SdBQAAIABJREFUWFHRfQqnjg6Ooc/a6WQf6vdFo9u00Yo2x4xVFEjU5JIo7+Fg10WDQoZAxL6VPr/ZXi/O+8GDZNXU1fGaOhUHSsHCf/s3gEItncnIYHEZPhxF1NTEQpCczIKVnc0+3W6MpdZWlHV9PUqmshIjXcXn4ztttvHWW6bU+ZxzOJ+aGs43Pz9yyrpGtqqqUCy5uZxTejrnHEmx+f0Y+u3thhtkoBi1/S3t7aYcWbP0VC2kpAQDhpmZsUfQtBGB0xm94aodarW8SoTnF6lEvTuinZsdDsZRN/c12BeoPtNFa9aIfPe76JMxYwCCvvxlGgS89RaZhWefDSi4eze8g7Nmsd1DDzFu/v3fAYgKCtAbP/85BvgNN5AlraUVw4YBNi1YgFF1/vl0LrQTcNsBxKYmdOA//oHhdfPNRMZbW02AorPymfZ2sgHefx9DLiGBUsMzzsBhD2fsWBa/szcriHbseTzo6FWryEBobWUf48ejQ6dPx4HtzljuDGQMZx7YuyyrgWgvWY41q9GyCAxpl+SNG4P5eoYNC+YxnDgxttImPf/mZtMBUIFD7agc7bm73aZEs6cdInsgQ7ooSmlvJ7MvIwNn+5VXcMrnzWM8ZGSwrjz3HOPvrLP4Tn/ndqOD0tIIfCYlYU9pZUUomBwI8BudJ+H4EVUaGgB53nmH/So3WHcyXWtr0Zu7dnHsESOYK9o9M5xoxolmQndnHGuXd20O4/EEV4L0dI3uLYmmvLm1FeCtupr3gweDgyXKX6gNUAYSl3YkIFGEDLe//pVxkp9PqeycOXEr4xzSRVGK2w3IlZCA7nn8ccC1MWOwb2bMELn7bvyxN97Appg/3/AIaidubbyTkABwVlcHV+rkycztujrmYXo6AZM9e9h2+vTgRmqWBYDY0MBY/vRTqikCAQK8553HOTc28n1nmYGtrejXt9/GPvL7OZ+LL0afRrL/a2sBHkW4rs4q0exiWYxnBQ6VH3/sWK5zzhxspDhwoXcqyvmqlSXaZbmnvmZT05Flya2tfJeSwrXZswztVSfRitql6gf6fHymwTE7j2Z3xO831Gc95dRVupAogcTBrosGhQyBiH0rfV5C+NxzpHBfdRWT+eBBFhgFEN1unPiRI+GJePVVIlinn47BNG4cCmXjRpTVjBn8tq4OZZOdjZGlXS6HDwdULCgw56EAYk0NC8uGDSjXM89Eufv97EObokQymt1unMrGRpzHwkKTCdeZAdTaarrzair5FzX7UBsD2EFDe9OS0LLkeDvGfr9xMroLRnq9BlDUsknNPO2u86Pi8zE2AoFu85MM9hHUJ7qopkbkttsA8S64ACP27LNxZF56Cf7Viy4S+e//xlH7ylfIkH7/fT4rKKDMWY2xN9+EE6igQOSuuzCe2tqMQfWHP5DdWFJC6fKJJwafjzZ0qq7GYV+8mGd+7bUEUpKTTVZRTk7nGc1vv42RXV8PgHDKKbw66xiooLi9Q3lXuqijA4N+5UreldNz8mSAtIqK+BmrkUSNSQUc1ChMTe163kVqCtPcbMqSN2/GCVC+nuRkrssOGipfT6znr9mGGozQKLlG12OVjg5THt0fZZoypIuiEr+fzEK1N/74R4IMV19NMEnHwcKFOGwXXEAW8aFDAPcOB06p241uyMw0wYhwQUltxONwRO7OLILuevllKF0CAeyiyy6LnrPX7wc03LgRXZSUZEr6uyLFb283mdDRVhTYgUPN3HU4zLqemBj7etyXYi9v1ioZe5ahrilOJ7amPcswN3fg25CdNaOzLPyCv/6VwN3IkXRynjatx9c1wO9Kl9InukgbJTU1sW48+ii0UaecQjOVo47CfnnySYKt551HJcahQwRe3W7TlE0pm5Yvx56fORM95XLh7yUns9Z+9hlzfsQI1taCAqOTLIsM/9padN/y5axrs2djn+XloTNbW9F9BQXhx4nfjx574QXW9KwsfMlLLuGYkaSjg3GoVBJlZV3bMj4fgZ2lS3k1NHA9U6cyjqdM4by1aUlviZYsNzUZTmvtshxLwoXHY6ovFDA8eJDvHA7ujdp9Eyfir8ea2GFvhtnaGtwEUzPyla9b7dVYRAHJngKJSpsTJZA42HXRoJAhELFvpU9v9ttvswCdfTbKdP9+ohTp6US9/H4yeQoL6bS1fDlZhuecw7Z5eWyzZw+/mTqVidvUhPHscmF4BQJEPlJTUTr2BcbrRSEuWYJSTE1loTz5ZBaJtjaAhsREE9kPFeU+3LMHRaTNVroCfLxeFhaXi23z8gZmVLy3xO83QKG+K5+FEvvaQcPejtKp+HwGhIg1+m3vvK2ggDov0fLKqdgz0+zdebuQwb5A9bou8noB+vbupUTnww8xSl0uHPVzz8Vx+e//Jijx9a9jPD/3HN9Pnkwpj9vNvp56iqj28cdTvpyebni3VqyAkLy2FkDwttuOHM9+P4bqwoUES0QAMW+8Ed3g8RhuPeVrDZXqaoDMJUs4r/Hj0ZezZnUOIGmzAo/HZOl0tn1LC9e6ciXOns+HMTxjBjq6pIR9JiVhrPYmL5/Hw322Z+FEAszCZTEq8LBtmwEL7Xw9DgelRhMnGsBwzBhjcMZqdGq2kccTzN+anMx9S0w0Y6unDR4UGA7Hs9gHMqSLopDNm42e/+Uv4Wq+/Xb0h9ouf/kLgNwll5DBUl3N79LTAbTVUc3Lw3ZROgS7LeL3m8w87Twcbgy73SKvvw6A2N5OwOPKK4MrODqT9nbjaLpcJlN37NjO7Rwt59dM6PT0rrdX0FBLshUYTUgw5cG6r4Fe4REIsN4oWLhvHzaow8H15OUFZxgWFvZbcKBHEg2HtIJZL7wAUDFhAmtyD8o9h3RRFKINjvLysH9KSqjO+NGPoIpasAAAcdkyAgqXXcZ6uWQJc/W008xc1G7rHg/2wciRxmdqa8PmaWjALxs3jjUqP9/MecvCR3vvPUrdvV58vUsuYV8+H8d2u5kLOTlHXk9LC1ndzz3HOCouZhxdcEF47lUVLcutrmbujRzZeYdntxu7aOlS7MnWVvTNrFmAqhUVhu6otzsea8lyS4uhRhk2rHvN1iwL/WPPMNTGVyI8J3uG4fjxPadOUboqrTpTjtjMTF7h+gi0tZnKnFh0Ybz4EUUMkKgVMJ3IYNdFg0KGQMS+lT672Z98gmEwcyZO2Z49GJcZGXAgOhykxmdl4Zxv3UrE6NRTUWQ+HxO0uRnlOGYM27a3s6+qKhRNTg6Kv6WF7e3ZIo2NLCwrVvDdvHkcQ6NChw6xuOnv7M6XLo4tLYaXISeHRaIrh9myTGRIS1V7MxI1EERT0UPLklXsJLgKlPVWF7JopLNGK90RTZVXHibNUNTOqerURJNh0dRkOPA6M3wOy2BfoHpdF/33f5Ppd9NNZB+PG4fR/Kc/UR5z7bVE4JubRW69FR3zP/9D4OO00wAVDx3CUX7iCcb1jTcSFHE4GENbt4r8+tcYwBUVIvffjwEcKq2tHPfZZzGGLrgAYLOkhO87OjiWOpF2Q8eyiHi//Tal2ZYFwHD++dE5Wzo21dCMpL/q6zHiV67kmi0LI3LWLPR4WZkJBChBd28B/6p/tWRZI7/RdMhTw1ibnmzcGMzXk5cH2KGgofL1dMXVGE1TGL/fAIf2TBwtVQ4H8Gkzp1h44OzXrM84XrxH3ZAhXdSF7N+P3ZKYSCOVoiIyfdrbTTb7U0+x3eWXo0N27uQ3Ol7r6ph7eXkGoNYseJHgbFflbgo33vx+Mpiffx6dM2MGlSJlZdFdy8GDzKvdu01QVcsauxLN5g8ETDAg3FjVNVVBdi2NTUkx4KEGRewNoQZidl5TU3CG4cGDRhelpRn+wvx83nuj6UF/iQKJXXFI+/2soS+9ZPjSr7jCNCHrhgzAEdAt6XVdVFWFHZGTQzWYZUGp8NOfAvQ9+CD2zqpVAIsXXsgaunw5uueMM7DtGxtN13OnE1tkxAhTlrxpE+B4SgoBk6wsxn1+vgmQ+v00p3v1Veb65MlwsGrWoNvNvgIB5klogH3HDpr2vPkm5zFhArrsrLO6nkOtregwl4vrGjUqPMDU3s61L12KbeRy4c/NmQNv9jHH8FlrK2M8O5tr7Q3/RjP31FdwODjWsGHRZV43NgZnGG7bxvWJoEMrKoK7JXdW1dId8fuNb6h0VYmJ0fPaq08tEnslnwKJTmfP9avPZ+zgToDEwa6LBoUMgYh9K31ys3fuZBEqL0fJ7tqFgs7MJLqVkgKAKIJjXV+PwTBjBk65ZiFqtkZeHguPy0UUqKaG/8eNQ8lpynxREQrC7YZj7I03MDLnzSPrSBWiZWGQt7RwTvbMRSX4bmszfB4JCRjI0ZSzud0Akx4PilG7tH7exO0OLkvWVHQRnpkdMByIvETdabTS1X7s0XblzVBid3V+0tIYD12Vj+q9TE7GyOvEEBnsC1Sv6qI33sBZP/dcU6IyYQINnmbPJgP6V7/iGd12G/rkRz/CWP63f0MfNTbSjfC115j/3/wmQKMIRsSTT0I+rpyJN954pBHq8+Gs/+537O+UUzjeuHFmG51HKSnoKH3m7e1w7Pzzn+i4tDSarZxySuccYyqqy7xezisj40hdVFVlGqPs2MFnI0YEA4d+v+HZcTpN59jecNi1ZFlLFbVpSGfZRY2NBjDctAkjWUsB09J47vay5Pz86M4lNJsx3Lues4I32tk9MTE447AznkYFAB2Obnf/CxLNNlVQpQ8BlSFd1Ik0NRHESEqi87vPJ/KDH/CdNhF54gnsmquuYrxu2kRWc2kpTt2hQ9gi2dlsrw1IdB6qU6NzJlzDDsuiocGzz5J5M3EipdThOpOGit+PftBO5FruHy0vqK6LmgkdrkOyZlAqcChieBy1GYzux05y35M5E29xubi3dtBQnfSEBNPlVV/2rKre6N48EKQzfsRQ8Xgol/3737mXxx8PqGSnJ+pCBshIiFl6VRe1tpJdmJpKgsX+/QRQf/Mb7PQHHsCu+fRTkeuvB4xTCqhRo6jgUlonBQiHDSN7r7SUZ7x+Pb9JSEBHTJ+OfWOnXdBy9j//GSBv/HjKpadONWOkrc0ki4wYYWwAvx9Ab9EigqsiHOOcc/A3uwLT/H6uWzs2l5UdGbRvauI+LVuGz+nzYZvNnUvG9tFHc17NzVybCPevtwIAfr/psqwly0qNFclHcLl4TvYsw7o6vktIwD+3ZxmOHBlfPer1moQS1YFJScYv7G71it6DpKTYk3I06aOnjVZETLBYs/3DyGDXRYNChkDEvpVev9l1dRjKWVlk7OzebSJITz/N5J8/H6P48ceZ0PPnk6W4Zw+8GcOHs2CpoVxayvZLl2JAKqm9EuEnJZG+rkbya69xHpWVgAHaNUyE41VXo2Bzcw2w6PEY4FCNudZWFtvi4q6VlmWZqJxmE/VVeW5vi5bu2rMMtbRQyXvtoGE/dwqNWmJptBJOIpXtaDaV8ijqNnZAMdxC1tGBEdNF5+bBvkD1mi7atk3kjjtMZNznw8j83/+Fp+bmm8ke9PlE/vM/eQY/+AHBjNtvxxA9cABy8S1byI7+9383Rs+uXRCOr1kD2PbAA5TD2iUQwBn6zW/Qa1OmcE7Tp9tuwGGd0dHBeBg2jPFx4ABBkGXLMNjHjIEbbdq06HkzOzoMuba9xM+yOJ+VKwEOtaR33DhAw5kz0XcixmhrazMR78zM3omwezycrwL72mU5dF663TwTO2iofD1OJ/dq0iQDGpaV9c75aiduLRvVyLq9o3J3uk8rOJKY2DNQxOcL3k8fyZAuiiBuNzaNCODdvn0i993HPFbn48knAeb+7d8Yr2vXssaOH49j19HBnE1JAYRSfictlXO7zTqmWXpBF2dxDgsXorvKygAPjzmm63HW2goov3Wr4WLUkuVo10y3O7gbebjSa5fLZOfpfbHzOGoJtGb62xsp9Zf4/QApWg554AABDZXhw4MBQ20+0ZXYuzcnJfXvNcZLVEdGC7C0tVFF8Oab/PbUU+HGi4Knc0gXRRCfD5vC4yGz7pNP4IBeuJCxdv/9ZENv2kRm4ty5VGXs3UuG4KxZrHnLlwPAlZWZgFxxMc92yRIAx+JikjdKSrCr3G7mQ2oqOuhvf8P+yMwkcHL66cHjvLGRY6Sm4v8lJmITL14M+FlbC7A8dy5BYaWY6kqfHTqELvV6KY0eMcIct6aG+7N0KTrYstjnCScAHFZWmnW9pQXbKBDAt1V9Hm9xu02XZXvJcmhGpt/Pc1JdvXmzod8S4TrsGYZjx/YOZ6yd897l4jN7c8ye+oYul7GXY6WtiBc/oogBEjVwFyKDXRcNChmwIKLD4ZguIheJyOOWZe3q59OJl/TqzW5vJ+PG7WbB378fRZ2eLvLMMxig8+fj5D/3HP/fdBOLQVUVAGBODhmJ2p2puNiAiwkJONMlJUzc6moWgOJivn/tNRaCoiIAzGOPDV6YvF5+4/NxzIwMFJLyLajDrY0StNSkq4hwRwdOgM+Hsuwig2xAi53oVkFDjSKJcE9Cy5IHShZALKKNVnrCjyjSdbRdeZ0UUNSMpdRUAyjaDWyPB4NHRGTnztXy2msvy/z586W8vFw3GcR3XUR6SRc1N5Pp5/ejK5qaKDt57DEMp5tvRkc5nQCGtbUiP/4xz//uuzGyPvmEz1wuuA/POMNk+zz+OCXPiYki3/oWHGKhwPFHH7HN5s0Y2jfdRJTcbmRqgxWPx2QXrVlD1uGGDWx73HEYsOp8RsMH4/Mxf+3NCkTQuQoc1tVxPZWVgIYzZhD0sJ+bzn0R5nhnEe9YJVzJclqa6SAbCKD7N240gOHOnXwugp7X7MLKSozk3uRD06YoygUlYozHzmgRuspm1HcFJZOTjUEaqSmM/T3cebpc7KM37sfq1avl5ZeD9NGQLgojgQDZNtoE6eOPTTaz08mYUZqEa6/FVlq7ludXWcm893oZ8yIEKrQDsc5rHYv2MWOXbdvgWdywAZvnS19Cp3Q1l6uqmG979/J/WRnzTAMM0YhmQmvmTHq64TDUjEMFDpOSgkuVVVRHKAipJdD9Ud3R2BicYVhTY6ovtFusvoqLezb3ounePNhEbZ7urCONjZQ4v/ce9+Gcc3hpgGRIF0UvWsW1cyf66PLLsTc6OghsPP002ca33ELA8q23sEHnzGHud3TwHJqayMQrKuLvvDzsrnffBTCcNg0dk5BgOOFzc9lm0SL0YCAAAHjppcG2h2Vhkx06BOhUXEwTvEWL6Brv9RKIPfNMwEWHg/eu6H+8XnRZYyNjZ/Ro5uy+faaj8pYtbKsVdCecgM2o66y9lNjvN4BevMG40JJlpxPbLzubY2klnT3DcNs2wzefmRmcYVhRERU9UsyitF+treYc7PRV8b4/ra3G145VL9oDVj0VrUIJAyT2WBd9TnGouMpABhG/IiJ/EJFTLcta0s+nEy/p1SjX448DHF50kekYmppKB7aCAtLjP/yQ6OLYsZQUpqXxm9WrMTLnzWOx0ZLOvXsx2HJziYRlZBgwUHnk3niDbQoLKX+orCTqZTdWtMzE4cA4145PSj6emcl7VZXhHeqqTb3fz6LU1oYCCdchcaCLLgD60nsiEpx6rpGkwUjw3ZVoo5We8iN2p2zHDijqgpaSYngUExMZXw0NIk899ZjcdddX5Z133pFTTjlFdzFkLIdIICByzz2AcWeeyb077jiM4+JiwLw//QmddPvtBB5++1uM0HvuYb4/95zI//0fBvL3voeeEsG5X7AAx3rePADHUA6xtWsBD1evxpG8+mq4FUMzULRbfCCAjluxIrjL8qmncgzNiE5J6Zqg256po807tm8HOPz4Y3Sqdg6cMQNDPLQM0bJMpnEgwDjMzo7/nPf5OM/QkuWWlmAewy1buCYR9L4ChvqKF19PJFEOHTUStaGDZhv2VF+EO57LZRqtJCR0zdMoEh5ctDdsibcR/9hjj8lXvxqkj4Z0URjZsYMs2TVrsHmuvx6HXBtoPPEEz+n66xnf69cz16ZMYW56vTi5LheObUIC80HHnXYjVtDdLvv3E7hduZI5fPnlZPt0Npd9PnTGpk048SkpOKETJ0bd7OtfosCfZt4rzYzbbYA3BbnDnb99H6onFYTsC2lvP7IsWTNrkpJYH7TxSUlJ9J2suyOh5c3xyJzpT4mm0Uokqa6GY33FCtbCCy9kbX3iiSFdFI1ot926OgC5k09mjW1oEPnud/HR9u6lMqO8HJDR58MWGTGC361ciX8weza+liZx7NlD9psIwJvyNDc0GPD/n/8kyy8pCf02Y8aRVAiBgGnGkp3N+S1aRAAkNZXS6osuQl/U16NXRo7sen2rq0OPKq9ia6vpqLxnD9tMmsS5z50bnoezvR2d6PNx/Jyc+Pt6WvmhIGVSEuCf08nz27LFZBpqxnNiIjaqHTQsKel9PdHRYXxGpZ5ITze+Ym/6idqNWsHVnvAjxqPRiogJiGlA+bDEA0T8POJQcZXPDSThcDgyLMtq63rLz59YFsp+924UfX294YZ47jmMrauvJg199WqyXy6/3PDs7NiBMpg9m8nY2Gi6L3s8lNqNGYMh6/NhmO/dS1bN7t2Ad5dfTnQpJYX/7YqlpYWFJBDAANEMr9RU/k9JQSkdOMDvRo7s2mhua2ORtCwUvZYiDmTx+YIBw9ZWswA4ndyLkhKzEAw2QDRWUWddy+djFc2eioZIXJ2n3FxTytnebsa+Ok12jhUFVLqSL6ou+r//AzA7+WTm5tSplBDm5lIq+NhjjOvbb4fI+4UXKOn79rfROwsWkIV43HEi//EfGIrt7QCDTz/Nfh54gCxnO73Bjh2ULb/7LiDgHXfQuEU7stsdJuVMPXCAY61cyRycOBES82OPNSTUlhXdPPR6DRXDtm2AmZ9+yrmnppIZMHMm7+FKXJWTr7mZY6emos/izcmlZYteL+e6dy9ZEVu34jDU17NdYiI6/6yzDGAYb76eSKKOu3ZUtgOHycm968gr4KLnkJgYvjQ10rudwzEx0VBypKWZZ9ndrMZ4yBdRH9XUYKfs3AmAeOaZAIgirA9PPslcu/FG0zgpIwOdlZzMPGlsZM6UlvJZa6tZX7TkP3SO1tVRKvjuu8zjL31J5LzzOi8jU/B+2zbGfV4eDvWYMd0H7Xw+ExjTLFoNSjgcXEdGBu+RgCSPx2Tra4C3N/kB1aa0A4ZNTXynQWd1zktKjgxQ95bo/dLyZg10DtYqFx0Pqqe6o3OKi+HuO/dcxvfChcyr7gIAX0RdVF8PANXcTCf2KVMIFtTWitx1F5nKNTX8nZNDyXBaGhmf2dnohe3bmY/HHw+AXlVFoGLfPubryJGUPGujuEOHOO5HH/ESwS6bMAG9VV4ebEN5vYancPVqQMeGBnTfrbdiCyQlcbz6euZgVxz1LhcgYVMT83vXLkqxtRP60UcDRs+dG5kn2eXiWrRktaAg/jQhLhfn2NbGfaivB6Dds4fntm+f2XbECGxWBQzHjOmbxA5748yWFpNVnJHBvcvM7LsAj9PJcVtbTWlzd0UDeVqJ1tNzVxtdKxr7K9nmi6jf+i0T0eFwZIjIvSJyhYiMEJF2EdkqIj8TkaNE5L4wP7vRsqzHHQ7H4yJyg4iUichPRORsETlkWdaYw/seISI/FJFzRSRHRLYLaPIvLdsFOxyOJSIyXkROFJFficgpIuIVkedE5HbLslwh53y9iNwtIuUisktEHj78932WZUWzJPfKzX7nHZT+cceZTKqEBMiRy8pIWX/mGQzqc84hgtjczEJ06BDG0fjxLFhr16Lws7Nx2jMyDHeh30/20Ntvs+Dk5LC4TJmCQklJwQC2LywNDRwnEGB7LavJyODvQIBFpamJxUH5NyKJZhG5XAawHIgE2IFAcFmynaNCJDhqFE13rM+7qOPeU35EkeCurNFIW1ubPPDAA/K3v/1N9u/fL2lp6TJmTIXcfPNdsnXrBnn00fvD/WxIF9nko48AAadMYSyXl4u8/z5z84YbABOHD6dU589/JiP6nHPg/lm3TuSXv2S+XHEFIOGwYZS5PPgggN/ll5MxNHy4KQ2pqoL/VY3u669H12nzgFAAsaWFfS5bhmGYkoJRftppcPqImOzUhISuSbotC921ejWg4ebN6KfMTDINZ87kfnSmnxQ81Ah7vMtzAgF0s73sZscO9LeOvhEjgjMMx43rHb6ezs5RS5XtQRU7cNiXovyISq/RXdH7qvvRzs/2sqxI4nCgj37wgwfkhRfQR+np6VJRUSF33XWXbNiwQe6//3Onj+Kqi9ra0CkHDhB8mDyZTu8izLOnn2Z8zZ+PTti3D0dMObe0xF+DsYWF2CduN89RS39DA6XapdSy0GGXXBK56Yllob82buT4DgdB2MpKjtddsTuZXm9w5pw947AzG0M7N/t8pvlKb5QKqk2or9paU32RlRVcllxU1Le6KJLYy5sTEwd3RUh3KjZCbSPVRVdddZe8/PIGeffdIV3UmXR0YG80Noq8+KKpltq2DaqWxYvxwb71LebdqlUAZaefzu83bOD75GQAq9JSU+Hg8zE/ysrQUyUlPNPaWqilPvyQ53z88fhp6uuNGRO8rmmZ9Ftv4d9ZFgklF19M9ZnDgY2yf78pX+4s81e7Qy9Zwv60oiExkQzIE0/EV+2sxFfphFwu08Sku9nYnYnyKm7bht22axfrxb59xn8YNuzIsuRYG4rEInYfUgNYCuD1Jj92tNLezprYkyBTPButiBhqnsN8vl36QV9QHCqu0p9L4W9E5GoR+a2IrBWRbBGZJiLHi8ifRWSkiNwsIg+JyMbDv1kWso/XRGSTcENTRUQcDsfww9sVi8ivRWSHiFwgIj8XkXEiclvIPtJE5G0RWSIi3xKROSLydRGpFZF7dKPDD+4JEVkjIt8VkSwR+bGI7I/x+uMin34KgDhpkiE79ftZnMaPZzH6/e8xgq+9lki7gocJCSxOqqDffZfFYuxYFqZxAgLoAAAgAElEQVS2NvaZm0uE/bnnKA3KzSWCNG8eyr65mUh7bq4xSnw+shRra9lHURHKxu5Mud0obo+HxTU0gzFUmptNFmNeXnRdCftK7OnlWpasaiI5mXMtLjbK//PAsRNP0eiRz9fzyFRoRmJXcuutt8rChQvllltukalTp0pzc7N8+umnsmXLh/LlL98oBw/uk2ee+aNcd93dUlRUKYmJIg8/fN17Ibv5wuqiAwdEfvIT5nh6OkawRr+/9CUCGMXFgHw/+QmG2003kaHz7LN0Tx4xAi7FUaN4/t/5DtmKY8aI/PGPgJKJiRivjY0AkX/7G+PmmmsABFJS0A9JScFdlltaMKr/8Q+MsdJSyMTnzTOGqfIQaglqZ1yjTU0Y6MuXk0Gk2TKnngpwOHFi1+NXo9/K5ZKfH5+GSJZFEGj9egJCGzcCGipAn5vLWnH66aZBVm+UAnYlyi3n9Ro6AaeTe6AdlftL9Dy0PL27z0XHTUIC46itjbUudExFyma87bZb5dlnF8rXv36LTJmCPvrss0/lgw8+lMsvv1HWrdsnzz//R7n44rslPb1SFi687joZxLZRbW00W0UnPh+Od00N9kp+vqF3cblw5JOT0UubNqFLSksB7g4eNJxShw7xrDIzydR1ufhb6Ve0I6jLRVD1zTf5e+5cbKPhww0YaRevF4d161ZjN40bx0sd++7cD+Xv0mwdDdKmpBieRo/HEO5HumfaVMnOi6rZgD2Rtjbua00N2T01NaYpXHIya8aECdz/oqIjgYJ4nEO8RKsllD823nQKfSnRBlpvu+1WefHFhTJ//i1SWTlVWlqaZf16bKN7771RfvzjffLmm3+UiRPvlvLySnnjjcGti+IpgQDVDs3N2B/Jycz3zZuxf15+mXn3ne8w57dswd6ZNw+gffNm9lNayrwoKMDuWL2adfz445mrgQDzJxAQef119utyAdRdfDG+knIZjx1rMvm8XvzE557DV8vNJfBx8cWmGaYGOxoa+N2oUZEBI5eLIO3ixfiJPh+JI3PmABzOmtV1FqHXy5xvbzf2SldUMtFKSwtrw2ef8b5jB8dRnVlRge5W0LCgoO/nt9+PjaovbYY0EDnw09MNB3isnN1ahaaZlbFemwb96uvJIK2upmlRFDKEQ/VQ+jMTsVFE/mJZ1jcifB+xFt2GAP/BsqyvhXz3iPAQrrAs6/nDnzlE5HkRuVREjrYsa+3hz5eIyMkicodlWb+07WORiMy1LKvw8P9JIrJXRFoP/7798OcTRWSdiCT2R/bP7t0404WFOIRJSSjhJUv4f/p0UuWdTsp2iouJtCjn4KFDbJ+RgWL1elH0paUsHMnJKPC33yZKFQjQ5ODcc/mNAmZpaSwWygXV3My5eTxEx0pLjywJ1BR3p9N0j44kHg/KwePhWHl5/etker1HliWrI5yQcGS35IEQSR8somVDPW20Eg3/TyDAeC0pyZVLL71G7rvv1/8q+VTOOLdb5NVXH5NHH/2qPPjgOzJ69CnS3CzyjW8Q5fqi6yKXi/LkAwcIUGRlMfdbW8kqfPNNAhIXXyzy05/y+Z134jT/4hcYc2ecQQahZQHM/fznbPfVr6K3Wlt5jqmpAJJPPcVxL7yQbYqKTEft5GQTzNi1C931/vs8xylTRC64gDIa+5iwO9hKrxAqtbVkCaxcCTDn93Pc44/HWLcTgHcmHo/JalJQtCdd5FtacDaUy3DDBkPzkJyMYTx5sshRR5nGDP1lhPr9plTZ7sQqj81AC6wo+BKubLU7EggYpyhS52ftNFtTI3Liibly3HHXyNln/1qqq1knq6t50S3yMamt/aqUlr4jaWmnyLZtJuI+GPVRbW18dJFlAc5VVxOY8PvhGMvORoe89BJ2xmWXoa/a25m3RUWGUykxEaeorQ07w+Phu1AHzucje+fvf2cOHnssDnhpafhza24meLJzJ3Ng+HDm5qhR3R/3um5p51A972HDupc96PejNz0eA5x3la3YmXg86MmDB81Lm0M5naYEUl/2oPNgEtVjg7l7c1f2kd/PuJo8OVcuuugauffeX/8LQNVXICCyaNFj8sMfflXuvPMdqao6Rf7yl8GtiySOPtq6dQBVb71luilv2gRtytKl3N+77mKbqiroTqZNM5UC2dmmO7xlQRWzbx8A18kno1PcbtMQ6q9/ZT8TJpAwMnYsv9XGUGPHMsdra9FbL76IXzVyJHRXZ50VbIt4PFCeuFyRy5dbW7HZ3n+fa2ptRVeefDJ23bHHRqeP/H7TBdnh4NqzsmKfWx4P160VGBs2cO+U5qGsDLto8mTu1+jR/Wd/+HyGC7u93WQ7q/8YyWYYCKLUP0p7EYt0xo9oWYxzBQhDXzU1JDgpZYdmWQcCIu+8E1Um4hcRh4qr9Gcm4iEROc7hcJRZlrUnxn38JsxnF4nINn1wIiKWZVkOh+MnwsO7UECcVQIi8ruQfbwrIhc7HI4sy7JaRGSGiBSJyC/0wR3e72aHw/G6gDD3qTQ0ABBqJyinE8N32TKc5bIyAMaCAqJeSg6bkIDCPHTIdDTetYvFZd48DNGqKoyk9etZHA4dQtledpkxkrX5Sno6v2lvN8Z3XZ0hBQ/NcgkEMC6bm/ltSUlkQNCyOHZzM+ddUNAzhzsW0XJAO2io2Qp2TorBoPAHgyiXmPIjxnov1UHq6OB5qTOo4KDyfYqIpKbmyNKly+X99/dISUmZpKQwH3JyeFeemWOOwTCKMF6/cLrIskQefRS9MnUq92rvXozBCy+k4dK4cWTn3H8/c+Ohh5jTd97Jc779dkpcNm2C+3DVKgzpBQv4bUMDz+vdd2mE0NhIxt8ttxC1FzElwdoAZcUKwMNt2zjHmTPJehw37shrUC5DNdrUkLQsgAbtqLx7N2OqtJR9HX88+4t2fHq9nGNHB7o4J6f7UWWv1zRe0Jfy9Shp+dFHk104ZYoJLPWn+HymTFmBw8RExkJnvGwDQZKTOWe3m/OM1cno6GAs7dmD4dvUJP8CB/VVV2cyEl2uHPngg+WyZ88eGTGiTAoKeKbz5hmH8be/FfnZzwDfI8ig0UcFBV1tEZ3s3cs8ePddxts3v4mD3NiII19aSmBj1y7G34wZ2C5appySYtae7Gy2cblM9QDXRbbNX/+KA3PUUTjgFRVHno+W9W3cyPN3OrGjtPNzd0THoTbs0fFYVMQ1dCebWEFt7USelobu7o4uCgQYs9XVXFt1dfAYzslB/2jzk6KiwV0CHCqDtbzZnk1p18v2zzUgLiKSnZ0ja9Ysl5qaPVJWVvavMnl9127h556Lfoogg0YXxUv27UPfL1vG/CgvZ72+4AKCDwkJcDevW4dPMW8e2X+ffIK/MWoU/x84ABimQY+TTgKYq6tjXamthd911y5DF3P88eiH9nZ+63RiK23dCuXCBx+g1yZPpqT6zDOPXIebmgxHfVlZcNVXYyPXtXQpGYduN/pj+nRss9NOiz6QoU06NIiblWWamUQrqmft3ZJ37jRjOTOTa5gxAzt12rT+qb6wiz0RRbnWk5MJXGVmxp/3sbckIYFzbW/vftWGz4d9X1/PeK6pMZz0dqBQ9ZGCg8pVrr0QRo0iIKXZ7MXFRi9FIUM4VA+lP5e+u0TkKRHZ5XA41orImyLyrGVZq7qxj+1hPisXkbfCfL7h8PuYkM9rLMsKbZlwuPeS5IlIy+F9ilArHyrhPutV6eggG8frBdhwOnHMV6/m/+RkIvETJtDQoLGRRSEjg4WptZXFyu1m8pWUsMjk5rL4rVjB9x0dfH755RiEakgrCa1Graurmdza9bOggH2GZvTYy5fz81n0IommJ+siYC9P7C3RDqt2wFAjQyIoyKwsDOOBwEnxeZVQINEulsX4sWcLhntXwMLO/6O8UKmpGBGaefHwwz+Tb3zjOrnhhnKZOnWqnHXWWXLVVVfJ0UfPFBEzTjMzO10kv3C66JVXKBEuL0e3HDyIUXv22RjKlZUYb488gh75zncot1m0iEDGN7/Jvf3d7+gsn5xM1+WrruJ51dez/cKF7HvmTEqeJ08256CcMW43JdTvvot+Gj4cx2bmTOZr6HNT49XnM+XLIoB0H38MeFhdzWfjxpFJOXWqKS2Kdt5rx7+2tuAIe1cOu4KYGzcawHDbNmNQ5eWh3086ifs/bhw6sje6AXdX7B2V7Z3mNaNvMOlMe1lzKG9tIMDaqpmCdlAwXDaWvfFKTo4xeisqWDPz83mtW/czWbDgOtm2rVxSUqbKMcegj2bPnilOJw2KRDCUO2n684XSR42NgIivvcb7178OgFhTQwZiQQEO/LZtzI9p03i3dzAWMbZMRgbjV9d5y8JhXrgQcKC8nK6qRx995Fz2eDjOpk3opvR0Q8bfHefQ5zPAob3k37IMf2p3OibbO8hbFmNbOzd3Jcqhra+DBw1/qQbaKip4Ly7u+2BvX4vaE2qnaNOV/gwgqw1uBwND31Uf238T2vHeDhL+9Kc/k5tuuk7mzQu2jWbOxDbSdTUxcUgXqTQ1kYCxahWAVmkpAN7JJ2NXpKWJfO1r+FjKn+p0sr3TiZ2Rl4c/t2aNqa448UTsKd3/e+/hr+XkkOAxezbrB7y6poR5+3Y4p3fsQK+dcgqgZWXlkT5YIIAObGxkDo8cyZiorjYdlTds4LyLi7E/KioIcpWXR5+NppyEzc1G3w4bFh0Yf+iQAQu1W3L7YUhF6SHOOIPzGz3aBFpi7SQcL3G7TeWa0lykppoklMHaSFP1oAbjExL4W8FBBQMbGoL/D6WqsCxD7ZOfz7iaPp17o3ZzTg7PUik3lO+3B8HyIRyqh9JvIKJlWS84HI4PBET2DBG5SUTucjgcCyzLeiDK3UTZL7VT8Xfy3YDLKfP7MWTr6kyqeG0ti8r06UzMdeuIRp1zjgHtCgp41daSpePzYUhrk5OcHKL1b77Jd5MmkUE0bJiJjoigwBsbUcbqECkvh5b9FBcfuRgcOoRBn5BA5CCSkamOWWsr+ygqig9XWDhxu4OzDFtbg7NlMjNZRDXLsL+zej7votkWLheLUGurKX20lxeHMjBoqWtKCs9J+eUUMFRuqEidXefPv0zOO+9EeeWVV+Ttt9+WP/3pT/Kzn/1MFixYIPfee2+0p/+F0kXr14v87/+iN/LzMQoOHsSoXLWKTLiEBMDB2bPhQ/zFLzD6zj6bMuXt2+n8t2ULHH3f/z66w7LIYvztbwEEKiv57rjjjmxmsH494OH69YyTqVMxkEtLTXOV0HlrL19OTyfLcNUqXg0N/K6yEv1ZWckYcjq7VyqoIGXb4T5tqkMiOexNTYAOChpu3mzOMTUVAOKyy9DLY8eis5VHJjWVV3+V42gWi5Yqa+dPzTjsb+c6FnG7TYffqirGYV0d40NBw9ra4KwdEZ5vQQHr1tixppumvtQYVg4hu1OfkMDrzDMvk+uvP1FefRV99OSTf5JHHx3SR5HE5cKRfP99HNzLLkMP7NsHP1dpKdkxO3dy3ydPZowqpUBKCv/v3s2+RowwDUnS05mLCxcyL4uLRf7rv+D5Ch3Thw6xzfbtjIvCQmyysrLogXOv16xzaoskJRkgU7uGqxMVjViWWVMVgExPj3xObjfj2w4aqh5LSOC6pk41zU9yc6M7j8+jaFBEdV9vBEmUMywSMKh/h2OmUjAwMdGsEXaQ0J55H279uOqqy+TUU4dso2jF6wUcXL+e97w8gg4zZ/JZTg4czh9/zJw+/XSzxgwbRmazCMHTrVvxPyZOZNviYnTYwoV8V1REZvXEiegDBRBbWtj/Bx9g07S1AfB94xvYM06nWYvs4najM7V82eWCL3HpUnSaCADddddxng4H61dxMXogmjXesrDrm5sZs0qF1RnP4vbtwVmGyhnrdHJdJ52EfVRWxn3SzD4FJvszq8/lMv6lVj6lpaFDB6NPGQiYzt/2V10dWENDQ3C1nl2ys03vg4oK8/fw4Xyn3JdutwluiKCn7M3BkpPjZ08O4VA9l35Nwrcsq0ZE/igif3Q4HGkislhE7j2c8hkrN8VOEZkU5vNK2/fdlV2H38MUrciEGPYXk1gWUfXt21kMsrJI4962jUj37t38f+GFOPG7d5vy5ZQUjOGPP2Y/p5/ORPX7Ucq//z2O0rhxZB7m56Poc3KY4IEASqK+3mRyZWTw0pLj9HSUo92I0shWSwvblpREdnbb2gAQ/X6TqhwvZaHcDXbQUJW6EqirYtey5CGJn4QrJw7NINTMBhUlMNeO48pXp6CJ/h0NSGFvtBJu28LCQrn55pvl5ptvlo6ODjnvvPPkgQcekG9961viiH0Qfi51UWOjyA9/iB4pL8dwqKmBT3XjRrJzamuJpF98MQbn3XfzPO+6C4P617+mYUp2Ns1Wzj+f57JmDVHzNWswCn/8YwAAu07x+eB9ffNNdNKwYWxz2mmMkaYmxkRe3pG6RjMXt27lXLV8KCmJ877ySnRpSgrbBgLG6Y7WSFb9YlnovNAuz263yVRS0FCzHh0OQ64+aRJ6fvRovtM5o8CTzof+AOgU0NCXAof2jJaBCBzq8+ksc/DgQcZ46O+Skw1wMmuWKZ3RjMKiItZNfda6vtpfIjg5bW0ms1k7E9rvV3HxkD6KRgIBY9csW8a8Oe00w0VWVkbwYf9+nlNFhQG6NYPB60V/dXTwbPWz+nqypD/+GDvo5pvZt30uWxZ206ZNAAEJCczfykr0TzSia6M6TyIGwFSAs62N8ZOU1DkAGCoKHgYCZp/281f7zw4YNjSY7/Py0PE67gsKBh53aX9LQgJzV4HE7pQ3q47oLHvQH8a9dDgMEBgJHNTzikZUP4V7tkO2UXSi2cqbNxPQSE9Hr1RWAv5pNvTatawbc+Zgh7S1oafGjKEsedky5uCMGfy2uZl9P/kkdk9aGryK8+YZPjrNKPzgA7rPr13LdvPmwdU6fjxzW4SgSqh/c+gQttTu3ejOjz823ZiPOorMyblzDSja3IxtM3p09L5SW5vhcE1JYa20B0ICAXSpHTDcvdvoxMJCAFNtfjJuHPqwtZX9KoexZqv1B8VAaDWbcv2lp5tknIFKfeB2BwODoZmDDQ28QrOZExIYfzk5JAgVFhKIGz6ca9Z3DcDbqTl07dOgntPJ/UlKYnylpPT+ejOEQ/VM+mU4OxyOBBHJtCzrXwmtlmV1OByOzUJ762yBPFJEpLtxzldE5FsOh+NSy7JePHw8h4h88/D3L8dwyh+LSI2IfMXhcPwqhNDy7Bj2F5O8/z6O+ahRLEi7d6PQjz6aCHx7O1Gi3FycpMxMFozGRro419aiXGfPRhFs3cpisXMnC8H117PoNDWxqGh04NAhFhSXC2VQVMT2lsUi2d5uMhbtNkW05cvKjdDRgaIpLOxZSZ4a3XbAsL3dfK/RL22A0p3yxCEJFjvJe7iyYv07dOERMZElXWAVFLQDhcqD0VNQwuk0ZODBTpRfWltbZdiwYf/6LC0tTSZOnChLliyR5uZmyTychtsYiix0LZ87XfT/2XvzMMfu8s73PZKqVPu+9lLtbvdqt902eMNgQsyaxENMSCB+gBDgZpksd3KTS8JkkmBIGCYZGJKZLOQJITdhDyQmEMISwBhvEBuMcbvd7s12r9Vd+6bSfu4f3/7699OpoyOppFLpVL2f59Gj0lrS0TnveX/fd8tmISBykAodiwMHYIsOHsSC+swZOJ7j4xACd+2CgHj6NPq4nT6NRt6/+ZuIth8/LvKXfwkb19WF5951V6HDNTMjcu+9EAdmZ+GovP3tcG5bWmC35uZWTooXgT14+GHYu6NH8T1aW5HNfcMNsKFcsCcSsBmRSPnRYtoclue0tuJ7xGL4rk89hcXFU0+Zfj0iZijWa1+L6717CzOvMxkz3VfE9DBbjwg2hUOWKouYjC0Kh+sJBRE/UZCi4aVLKyfmipjz2sgIMvQpCrKfG89JLH/3awDORT+zyJgZxAU/HWJmS7Cfmn3uUXtUGSdPovLiK1/B8fMzP4PF5733YlF+7bVYAO3YAV+ICxUufBMJk/U+MABf4PRpTIb/znfwvLvuQlayveBNpWCznn4ar21vR9bh3r2lMwTZkoOLKGZdMNuCvUKZQZhM4nZ7e/l+USqF78ZzZ2cn9rXZ2ZVlybRF7FF91VWmLHmtqkA2Gn7lzfQ5gsRBP7+IC+lo1Ii+tkBY7dC5Yp/fDrSKqC2qFNqDr30Nt2dnYYPGx3E8vexlsFe7d0MAO3wY2/raa3Fc33sv1lmRCKo1tm6Fr/Cd78BvWV5GSfTP/izs0uQk9on2dmRcf/azsH1dXSJvfSsCuEND8EnOnYMd2Lq18DzNQZz33QfhkSWphw4hmeRFL8K5kWu9I5eLMcfGyu9ly6F36TS+5+Ag7MrUFL4XBcMTJ8y5ub0dtvSmm3C9Zw/WbPbnnp83/lY8ju9aq0nOlUDfz65mY2IKL+sZeGHgtNhwEl7YdsWmrc1kC27fXpg9yIud7MN2GTxX5fP43bkP2Bn2DDozGE4/0h60spbbTXWo2rBemniniJxzHOceEXlcRKZF5HoR+b9E5Juu6150HOdRgQr8Xx3H6RGkjH7Xdd1SCu4fi8gbReRTjuNwtPZPiMiPichfuK57uNIP67puxnGcd4nIR0XkQcdx/kFEOgRjun8oIi+o9D0r5fBhnJy6u+EQnzgBB3DfPkS/4nFEyjnNiFl1R4/CQMRiuG9kBCeff/kXnFiYxXPLLTjRzc/j5BeL4b3Gx3E7EoEQwNKVbBb/P5WC8+1NjbfLl8fGikerFhZM1kdv7+oa3iaTK8uS7V5cnZ04cVE0bNRIUKPBHpfFMgft4SQ2nPRoDyfxCoSVZFDRMS9Wjlwufo7ywsKCbN26VV73utfJoUOHpK+vTx577DH5yEc+IrfffrsMDw/LDTfcII7jyPvf/36ZnZ2V1tZWueuuu3ZuRlv00Y+ir8/OnTjOZmdhj6anYYsefRT7xq/+KkqST5zAIJI778QQls9/HqLhn/wJsrlSKZE/+AOIAO3tcH5f/3pTHsOJq9/4BhzOVAr/5+1vh/jHkpqpKTzW0WFsCHu/PvwwbGQ2Cxtz22147VVXFdqCdNosvNkvrJz9jYNdslk4kxcu4Hs//TQuDGC0tUHoeOMbcb1/v3+2EqOyyaRxpjj8oN7OKAcIpNOFfdno9NXLliYSwZmD4+PYB7yLcrbEGB5GGevttxeWF4+M4NxQrjhDJ5mCsz2plESjZto0swy9tLWZoT52lutq7NHb3/72n5VN6BuNj8O/+ed/xm/5jndgkfvQQ/BV9u3DNt63D+chlgJT7GFGIqskolH0m7zvPuwP/+k/Qdy3+3xNT+N/njqF331kBLZkbCzYVvCYtjMvHKd4iRZtCRfI5doi2jAOzpifN5mG4+Om1I9DMV7wApNluN7DBsKCdwiJ99r+jb3lzRQDm5v9swer9XFWC6c0s4c0ymLVFpXLpUsQ4f71X01PbiZw7NgBGzE+jiqH1laIZhw+9MwzeK0IxEW2UPrHf0RmYSwGX+X22/F8xzHBsocewrpwdhbru1/8RSMyipgWHAwQRKPYPx97DHbu3ntNVuGtt8I3uvnmQpuXSCBhhckiY2PlnS9TKXwuVhlNTppMw6efNuu+aBT2+uUvh2C4dy+2nd9xkEhAjEokzGDL7u76Bzvy+ULhkGuKeiemMAHHHlDizSScnl5Z5eU42P/6+3EeOHiwMHOQST+VbFe2RFhexm/LwXSEWdM83xUrS6Z4GJQdXSNUh6oB6yWnJETkzwU16D8hIi0iclpE/odg44vruicdx/lVgXL7NyISFZG3SYk0UNd1pxzHuVVE/ruI/JxATT4laKD5odV+YNd1/+5y6v67Ln9Ovud1InLVat+3HM6cEfnc53AQHjgAJ3ZmBiebxx+Hwb3zThy89vTlo0dxYHPBPzMj8s1vIrLV0QEnedcunGCGh3EyOXMGr+npMQvHnh4YF/YxZM8cNte1+xuWW77McqFUCie8vr7yFqTZ7MqyZBpIGvHRUdMQXSPpK7GHkwSVGPuV0TQ1GYHQHk7iLS+uJRy0kstVJ1rYjjJP+m1tbfJrv/Zr8vWvf12+9KUvSTKZlLGxMXnXu94lv/M7vyMiIldeeaX8xV/8hXzgAx+QX/iFX5AcNsyPyCazRffdJ/LpT0OIc13Yk6Eh7Cs7dsCh7elBBPzv/g6veec74fS9/vWwSe94B7KF5uYgSH7+8/gd3vIWlDR3dcEWZDIi3/0u+reeOQNb8uIXIzK9Y4dxcnM5M4Cppwf77te/DqHz6FHs511dyAJ4yUvghHudOzqEFBnsKc1BzMzAGaeocPq0KQWMRk2Db5Ylb9sWvEDM5wsHH7Ava71Llhk9pngvgu/D/qK1dOrs4SR+wiD7ErI/pE1npxED9+wpFAZZYlyLgVx2OXI2i3PP4iLOWxQKuV3K3TYUhjlBnufQ1dgjEfmUbDLfiP1QP/lJ7Je//MvI8n30URx3u3bhGDp4EI/ncjiOIhFT3tvUBDuUTCJA8aUvYZ9/5SvRa4wCfz6PY/voUeyLPLb37w/uB8jjiOIhB3zxXOmXXc9M6HTaZEKXc85LJrHQP3sWAsP0tOljKIJF4e7dRjAcGNDqCz84nKRY30G/4SQiZlp2LGZaWHABTL+o0cvAHccE5VbrG8kmtEWJBOzHF76A4851cXxxMOXBgzhf3HQTnjs+Dh+muxtZgNPTyBDcswev+eEPMbRucRE+z223YX8aHsbv8/WvI+j65JPYp174Qlyuuw6tB5jFzHUYh4o8+CBEyf/4D6z1IhG85jWvgW/kN3yO2cqxWGESSRDJJL7DU0+hPPvcObwHM/O3bEGmIwXDnTuD1wz5PL7H3BzsczRqEk7qmRCSy5l159KSEc3Y57jcljflkkiUzh6cnV35uuZmkyW4f79/9mBvb/X2iFUX3nNcPm8C5/39JsO+kvMN92Fm6a/RuduPtIkAACAASURBVEp1qBrguH7deJWycRznCyKy33XdcmrSK97YMzPoyzMzgwgRe2h0d+MkceAAUtyZhdPTg5T5+Xk4wXv2YIH75S/DoOdyyDq8807Ta2NwEAbp7Fkc7JxAmkjAaPf2Fpb/0JEeGSmMSCWTKHPMZnESLZZlMzeH/+04eA4no3rxRnsWFkwkXQRGmz0MOzrwPo3Yh6ue2MNJigmExYaT+JUTe/9er4UHnftKFurFqNHJqeH2tLW0Rc89h8nIi4tweGdnYWva23GsP/kkFqljY3CMd++GMPjXfw3x8eqrRe6+G6/5+7+Hk5zJwA694x0m8ui6mDr47W/j2N+2DRH4AwfwGKO8InBa2I/x1ClkG7IBOKOrBw+axuR+sGeYiMn28yOXg/08ehRZ4U88AWFBxAyLYnbh/v34/uVmt3GyHbN610qMDyKXM8IhgwcUx5hVVynptBEBg0RCv+EkAwOFGYPe7EG21Kg13j6GzMwRKSyvSadNhlg1ZLOmhKyK92o4WyRSkT2qyBZlMmjr8jd/A7/lv/wXCGePP46F7q5d2Jb795tM0HjcDP/h7fl5BDG+9S3YmhtuEHnTm3Asi8A2MGsmkYAN2b8fPlWxY9tu78HjmUJSqSmSzCLk5OSWFn9/hgGc8+exQH/2WbNIb2qCv7ZlC46TLVtwrKz3xPb1ptRwEl4XG07iV1Js31fMj6A9jUQat0+sF9v+r4KG/IZrZYtyOQRPOXiJCRjNzQg07NuHv9n6JRaDcHb2LES2eBx2Z2AAlRvf/rZpv/CmN2FtxgnvDzyA7MTz53H/a1+LtVwqBSFrxw7sX7kc7MLEBGzD44/DXmYyWDdefTXs2AtfCNHRT4hbWIDPx0qzbdv89weWOR87hu/zxBPwwTIZ05eaYiHLkjs7y9u2mQzWigsLJiO7u7u+JctMWrFbYrG6raNjdVPo83l8Lztr0O/i13als9MIgVxj25mD7LtY6+3D85otGNplyXYrjnjcrN1Z0bNaaJNXmaHdkLZoLahw7Vfb/60iYnk4jhMXkbRrbTDHca4WkR+IyN+6rvvLZbxNRRs7mYSj/MwzMPinTuEAbm6GUbv5Zpyc8nkYkaUlLGxjMZzAursRHfvKV3Bgv+AF6HGxdy8M2MICjFIigRNcZydeF4uZ7J7eXrOwnpvD/fE4HFT7pDIzg5NWLIZIt5/hYOPWTAZCgDcaYjekZbYHt3Zzc6FgWG620EbCbziJ99qbti5iSriKCYS1nni1VjALoBY9gSgOFBu0UgbrtrXqbYuWliAgHjkCp3N2Fsdgfz/2nTNn0Ndnfh725447sD/9n/+D7fzrv47sw89+FvZsaQk9f/7zf4boODMDYe5734MT6jjoVfiKV8DpZC+Vri44bSxxvv9+OMhTU/gdd+6EQ37NNaY0r7PTfwGdy+FzZLOmiTP3KTrGR4+ay7Fjpry4tRU29Jpr8L3374etrQSWNy4vm0UmRal6CfX2RGVm13ASXtCUUZaABmUOXrxYOKCBtLQUFwWZPViv4Q22sMCL7Q5RPPArS2YT91LCUDnQrtMBXwXrarlrYI/KtkWui4DFRz8Kce8d78Ax9NRTsE1XXolF/JVXFvaWY5YES/DvvReDCubmkI1z551YXDc1wZ6wd2k+DyFu//7imcR2o3ief3nOjcdLZ8swc4NZNiytJmyRwMv4uGklwkmrY2Om72OxgMlGpRbDSYKuq/WLWFrOHmBhyABlX7dVfNZNY4tE4H986lPI7kuljMi1axd8l+5u2KXFRax3+vrMMLcrr4TtOXJE5OMfxzlz504khdx4I7b/4cMQD++/H/7VlVeKvOENKP2dnsZrONDCcSAwfulLqMR49lncNzSEjMYbb8Rn4+R4TnO2yWYhcHKdt2NHoejHoXTsY3j8OPxBtl0ZG4MdpV80NFT58eMtWe7owHZc5bmxYtJpswZlgNlefwZVt6XThROLWWZs3y42nISCIMVACoP2ffUIBrFSzR74ZQd6m5oKBcNiwZGlJbxHtS3E+L9X8R4NvqKtnBqt/Wr7mVRELA/HcW4R1KJ/WkQuCCbk/NLlh693XfdUGW9T9sbO5UQ+9jGccA4exOKcDqrrIjtnbMyU3505A6M7PAzD/93volfGuXNY7N5xBw74wUGIfZOTOKnFYiazccsWvPfUFP4/h13wPvbOsE8MuRyc2sVFGHuvuChixsJzkhhLlykY0mDbpXMUCika1usEsh7YPdBWO5zETxjk9UbqAclJsLWI6lcpJK6niFg3W+S6Iu99L4IR27fjWG1thQ3I5eDsHTqEHoDRKBbj//RPKGe59VaR//bf4Gh/+MOwRS98IYamXHUV9ulvfAPlOZOTcIZ/5EdEfvRHTTPvmRlTknzuHMoVH3oIznIsBtt244143/5+2LJk0kSL/RZBLCFlT5102kTSKRqyX09TExYEV1wBe7tnD7IMOztXt//lcuaYZoS10h6h1WBPVLb7xjY1mUbYk5PBw0kuXvSPkvf2+k8spkg4PLz67VYLvIKhbU9ZjmhfSmGLytWKngwArTIDdb0X7tXao7L9omefxfTRBx5AO5a2Nixkr7gCx+XQkOlPyP05mzUi/WOPYdF/4gTs2VvfioBALIb9+uhREwzdvbt4gIClXPYCqxLhkDCQIGJKXi9eLBQN5+fxuOMUlqMx07DWZXSNRDniYKnhJMWu6xmE5sKcNr/RfbIqqjU2jS167jmRz3wGQ00WF+GjMICxfz9EoIEB7KdbtuC8+swzOAfedBOO63vugVDY24sWCtu343zy1FN47yNHcHzfcAPaLNx0E+zEhQuwUxwg99BDyKhmEHb3bpGXvhRlyldeaQYqRaMIhvhVf83MYJ2Zy+FcPTCA72hPSz5/ntsZFSljY/huO3eaHs+rOa7yeTMohW1lurpwqcdxmkqZtSiH2LW0mDUop0D79Ry0b/u1XWlt9S8ptjMJe3rWz4YzkMwMQ9opEZNF7x36VQ4MNrsufsfVfj970EqFdnPDnRVrtPar7WdSEbE8HMfZJiL/W0RuEZEBwdSe+0Xkv1XQJLPshfsXvoD+hTt24GTBqUYdHZhqOjgI45RKwelsacHJ4uRJpMXPzuIEc8styECcmoIhXF6GoR4ehgGbmzOlySJGQGQvg3we77+8bHojkuVlnJiyWXwev34ZiQQMLcuXIxGz0Cft7cZYd3aW30Q8DHCxESQQBg0nKSUQbpTtVC48oYjUptyzCiFxPUXEutmiz3xG5H/9LzgBqZTJQuYAkiuugKO5ezdsw2c+Axv127+N67/6KzjOLG9+xStgm775TdPUe+dO9EO86Sbzm1LMeuopOK8//CFel8vhvW68EU4yF/i5HBwWijp+TnI2C3t38iSyup99FtlMZ86Y57As+cABiAsDA8apZGBjNZkk7EFa75JlHi/pNLb1pUumZ9rUFP62JxpPTPgPJ/ETBXkfRcNGKpn0liXbmUjMQLIvq7GjrmumLNdCyFlexm/FiawVsN4L92rtUVm2aHIS2cz//M/IrNmyBbZl506I+9u3Y1+kIMxSqHgcouGnPgVb0tsLH+r223FMnjyJ7JvlZdg5tiPwHpuZjBEOuT8xK4OTt8uFmdDM2GVbhokJs4Dr7jY9DEdG8Nns79TWFo6sNj/saebFxEFvZjApJQ6u13CScghTefMqfaNNYYtmZmCLPvlJ/N3RAV9h1y4kfQwO4nhtbsZjJ07Abhw4APvzhS9APGxrQ7D19ttx7N93H0qaT5+GP/X61+Nx9o1vbYWtevxxvOeRI/BjKFTedBMSRnbuxOfM5yH8zc3hc2zdulKISafhw3FY58IC3pPDo0TwmfftMyXJIyMmENnWBlu1Gl8mnTYly2zj0N1dn9ZUrHybncW5ZXYW93Gy/exsoUDoXafZw0n8Mgd5WYu2K6uFbWvs0mT6e2xpZQuG1QY7cjn4nZzCvFrozwW1jvChga3r6qjR2q+2n0lFxLpS1sZ+4AFk83R3I/rBrJWhITi/PT04uCcnYQi2bsXzvvpVOKJjY1hkt7biudPTOPDa2/FeQ0MwbuPjMBy2gOi6Jm06m8VzMhkYSDutnVGYWAwnLzvFmwb4zBlTvtzVZRxuWzD0lu6EBUaWSwmEQcNJgkqM69kPLWzY2SW1iOivsgdQ2E9QJW3RY4+hFJkZ0BQQFxexj3Z04O/rr0c5z7PPwoF91atQKnj4MIIg73gHMgbPn0fE/IkncPwcOICynOuvNw5jOg3B8L77cJ3JwI4dOgTnde9eM3mepFL4HCx9oZjlughyPPUUnG6WKHL6ZG8vPsO+fUY07OjA/sUerK5rGuVXaqdct9AO2FPLa7n4Z8amnTF4/rwpfbx0ybSvYPN8wuzxYpmDtRpOspYElSUzcFWsLLlaOAwnEql+scChGhQlN5GzXNIWJRLoo/qRj0Dk27sX/gWzfnbuhN/CbZbP47e+cAF9xH7wAzz+2tfCjmQysFfPPQe7xuCBdyqoXdLFxRYXWZX2CF5YwOd59lmIBBMTuJ8ZjBQMeWHrBi5qWY69CpG5rhQbTmKLhn7Zg8w0KdZ3kNdhJ0zlzasQEje8LUqlYIv+6q9wPLM6a88elPIOD8NfaG3FMX/pEmzP7t3wax55BI+98pXwPaan0XLqW98ygzBf8xrYqqUlk8Dx7LP4vw89BGGmpQV+1cGDsIdjY7Ab3J+SSdjITMaUL5O5OQRQH30UtvH0aROcaGnBZ7V7Gfb34/dfWsJrs1k8j/0fK4Xvw4qQtSpZ5nASrlfPnTN+0cwM1qmJxMrgQ1NTcOYghcNGtkf2GpXXdlkyJySX06+3Gth3vK2tut+XWecVBInCbotCgYqI9aXkxj5yRORv/xZ/cxJkUxNOLC9/uck+XFiA4Y1GcWI6fRonrx/7MZxMDh82xj0SgdCYSOCE19cHIyqCBaPjGAGxvx//z57AbDexz+VghJeWsJDv61s5/ISXaBSvHR3FSdVe4DcyQcNJ7OtyhpN4BcJKMxYUfygWrOOglbCfoAJt0aVLIm9/OxbZdDYGB+EMMErc1obj+oEHsPj++Z8XefhhXIaGRH7xF1Ge/NWvYiL83Byef9tt6JnT14fL8jIcWTq0nHx7442Iwu/fj/tyOTittEWuW1i+nM+jtNHuZTg7i/ubm00fQ2YaDg4WOiN8v/l5vKa1FY5tpUJ1Lmci2ixfa21dXd/RTKawz6C37yBvs8zftkkcTkJRgtmDtki4msbg602ty5KrJZs1+2C1iyD2x+PxtUmc5UBblMsha/lDH8Lxf+212Pf37UNbBLu9AAMEs7PIWHzwQdirO+9Em4THHjO9pSMRLPoPHjRBCXvhxePXbhxfbvZ/Om3EfF4vLJhsli1bEGAZHcXffuVsFA85SbqtbX3LYGs9nMR73chiWq0JU3lzhUHWDW2LXBe26IMfhK/R0oJjeN8+2BKudURgoxwH2YnHjqGvYTSKaozbb8f7fPnLCG5GIrj/ZS8zGdVzc6ZP9Pe+h3WX66J1y6tehZ74ySR8o56eQn9mehp2JxbD/ePjEA2PH8f1hQumH/MVV6BajQHV7dtXHovLy7CpmQxsYU9PcG9AP1gtQhEyFjOTo1cToLUzBYtdmN1P+8Sg8MBA4aR6byZhPYe31ApmytvCIWGvazvTsJ7fj+3Kqp1lUOGglZD9guFERcT6Erixz50T+fM/N5mDc3M46A4cgAOczWKRS6f2Bz/AyamnB4MKrr0WByv7YgwMwPncutVMBhscxMktny8UEEXw/FgM78G+QCMjJkKxuIiU9/l5E4VnqZ/dgygWgyHetq3xnKNMxr/fYKnhJNFo8bLiMA0n2UjUctDKKoTEsP/SRW1ROo0MxG99ywzZ6O01Ylw8Dkf59GnYqDvuwDFz7724/21vg1B4//3od8gynle9Cs4qe99wovLhw3DwWEp47bUoy2ltNROYRQobS1N4fPppCJ0nTxb269mxA847JyQeOBAs8FA8zOVwPLMUqRLSaXwuO3OztdXfBrou7GmxvoMUCmmbbVpaIAYODcGe0/kdHIQwuHUrhImN0Ec2qCzZL8Nwvewvh2q0tNSmBIjZEWWKvBvWFolA+PujP8Lx9YIXYPF48CAW7Xv3Fi6IFhcxWOCb38T2+/EfR/D1zBlkAHG6/O7dsAnt7SbbjwsvCocUDUud1/N5+Et2H0P7uLVL3kZHYZtKNedPJLAfxGLYB9a6MqHRh5NsVMJQ3lyhb9SA36AiAm3RE0/AFj36KH6v0VH4KxTfWlrMQI6+PtiqBx/E8XPbbbg89JDI5z6Hc/3QEITDO+7AcT47Cz/mgQcQjE2lIGjRXr3iFRD9slmsF1MpvEdPDz5fJgPB8fBhvP/EBPwjBtoonvX2IjHlRS+Cr1CMVAqfKZXCsdzTU3ngMZWCn8hBmQzOFguS0efjMBK/HoQzMyvtUTRqhtdwcjID3VyPbt9u+kiGGSa62IIhf+NIpDDo1dy8/okr7HkZiVTXF7vC/ogh/5XDgYqI9aXoxp6bE/nTPzUDCubmsCi8+WZM8FpcxPPyeSy+jxyBA3z77XCsaUiYvj42huf29hrjPTwMI5zJGAFxeto07I7FcMKYnjZlx4kEokdnzpjI1sAADLM9+IRRJpYJ1ntCoD2cJEgg9CujaW5eKRBu5OEkG4laDlpRZxl84AMif/3XptyK09U48Mh1YQ927IBz+53v4Hl33YXS5IcewgTVfB6L/TvugDg4OQlh8nvfw+s5OfCGG2DD2FO1txfvxyl9kQj+Zpbhk0/iby6yh4bw/swwHBszWXltbcELdvaIZYS90pIav5LlpiaIkhMT/pmD/JsDFWx6egozBb2ZgwMDcMK5+BTB78LBKOvtLFZDqbLkWvQxXEuY2VGLXnXZLN6PrS9K0GBbomKK2qLTp0XuvhulfIcOGSHxmmtQPkjxeHlZ5N//HVnP2Sz8ottuw4L89Gk83tkJX2rrVrMP2RkbHL7ChVcx5uYKBcOLF02ZWGtrYUnywADsYD5v/Ipi+20mAzuXzRoBuRaVG37Zg2EcTrJRCUN5M32jMgI1G9YWnT8PW/Tv/45tMDqKrMC9exGw5MC2pibYlMcegx9w440QGu+/H8GNZBLBzTvugH/kuhAnv/1t+DfsPX3rrUge6e83bav6+/H4uXP4PeJx9Eg8fhzC4eHD+AzxOHwJtoDZtw+fd34e/7+vD4JasXVNJmN6BEajlfcpZFXH3Bz+H0uWo1GsE4OyB/2Gk7S0FGYKejMHe3pMv322fojFTB/rMA+fyudXTku2BVRvhmGjtsLKZKBFsJ/vaqGQyCByACH9xcOFioj1xXdjp1LIQHzkEdOPa9s2RJ1GRkyU4fRpZN7EYpi6deONJoIci8FYT09jEe66MKBsqj80hJNCOo3FaCQCgx2NwgizRxCzFJubzaKOC/nhYZws7RK/VMr0PWxrW5s+EfZwkmJCITMibbgoKJVBGNaTi4J91HbAq6WCHkBh32t8bdG//RumJy8tmf5bdu8UBh2uvhr2IpeDM7xvH6LzExNw6F7yEjzHdZEt/eijsF35PCLgt9wC8XD7drwHsw17e+FEfv/76In4zDOIpCcSeLy5GTZo3z4IAlddBfslYoYVZLOm/K+YLWJ0PJ02ZTXl9LRLJmEjz5+HEHr+vMkYnJkxg0r8ouT2IBK756AtGPoJmGyGbQuHsZgRDhtx0VkKLkqLlSV7BcMwfEf2NHSc2gwH46KBx14AG9IWzc6K/OEfinz3u1gINzXBblx/PbJxHAf7zX33ifzrv+LYv+UWZDEzc6W5GfaGkz5jMRMwoDAd1BMqmSwUDMfHjS2KxQrbBYyOmkFPLEvPZIwgWGzBTsE4nTa9NcspFbSHkwRdFysvLtV/UP2i+kE/hpUVjRi0LtM3Cvte42uLFhdF3v9+DFJJpSDo3XIL7NKWLRDnYjHYoJMncXv/fjzv4Ych7sXjCG7cfDP8nO99D72kn34admZwEMLhwYMIlPT3w/9ZWjJZjj/8IdaJzz0Hv2N2Fp8vlzODXW66CUGWrVuNjTx3Dn5JczOCvyy59sLhc0tL+J2ZLFLKFuRypi/z6dPwi6am8F6JBLbfzIz/cJLu7tLTi/1EJ4pSCwvGJjPozQGdYcQrGNqVceyfS9EwbNVviYTJrq1mvVbmoJUQbZnwoiJifVmxsfN5kb/7O/TGWF7GyWTPHpT+sX/eM88g+9BxsPC++WYcgJxmxUmkx47BqLS24vFYDAft4CAMLYeqMJNoeRnPYfPfdBonjdFR07tgack4y3SQRUwzf/Y+XM0UqnKGk3ibwZJiw0lsgbBRIzJKban1oJXN6iwfO4ZswrNnCwf8dHSYY3FoyIhat96KBfrRo7i9Zw9KB3t6zGAUOrljY8gSvPVWOLpkYQEC44kTcHSPHYMDmsvBlu3Zg9ft2YPAyugo7J3XqWQWAHvJFRNdMhkTHY9GYe9Y0jg7W7zvIP+emyvsPeg4sJX2xGKvSDgyUvlwEgZ/uLAUMX1tGjVbJYhKypLDnN3EfpjRaG0WMWyvUeJ8tuFsUSqFyox77sEiva8PmYU334xjzHGwOP/iF+GH7N+PrKClJbyWQ5O2bYM9SyaNsMuAgbfCIJfDcW+LhjMz5vH+/kLBcHDQ/zhMpUyWMX0RP+zeqRSemalYajiJ9xgi3uEkfmLhepb9K8E0enkzfaMAG91gn7hiVtiibFbkwx9GhcbSEuzRi18MsS8ex/ZgtdbSEs73nZ0QCScncfsnfxL26VvfQqXG8ePYltu2QfC77TYER2ZnYQc6OlDSfOwYfI6zZyFO0m/ZscNMke/qMv2lmWVNZmch6mUy8EW2bPG3WZyiy4q3zk68L7O8S/Ue5PRiBi14/hseDp5eXGnSSTpteu4nk7jPHtYZthYu9PO87TRETBLMagd5NSrsOc79a7WU0R8x7LYoFKiIWF9WbOx77sEkU2biXHONyEtfCgfi3DkIiCLI6rn1VhMVam/HJRbDAXnsGE4UfLytDSe07m6cSCYm8J7Ly3CUmaIej8MYt7TgxDQ8bPokTk7CgHn7ay0v4/OyUSpTyW3y+eDMwdUMJ7Gvw7zQVGoPF1W1atBeRjPxsJ+gCo68+XmR178eji8HRNB5SSRMCUIkguj71q2wEU1NiHzv3Anx79FHTW/CQ4ew6L/qKtNTdHoajcSPHkVLhuPHTTn6yAhs0M6dyDK89lpjn9gLtrOzUExhn1iKjn6lpJkMBIFTp+Doc1Lx7CxsIUVDvyh5fz8+l+0IDw0hM4AN0BnEqZZMBhfbkWS2YSMuKIvhl2EYprLkamGDc2YKVAv74wVk1oZ9CxbYonxe5BOfQHVGSwvswStegcyf3l4EJz7/eYj6IyOwExQDx8YQcOjuxm8wMYGFcV8fFrW9vXhPBg3swSeXLhnBvr0dfs/ICK6Hh0svUNnLkkMD2ttX2iJmnC0u4sLMs+bmwrJjHU6yeWF5swjsfqP5urlcYMuXDWWLXBcDmn77t+HvjIxA8Lv6amyDdBpZgSxBjkaxFstmIRrecgv8k4cfht+TycDHuf56DJ1jH/pMBuXPZ87g8sQT8Hva2mCztmxB4OKqq9DHsLsbtubsWfwvinUkk4F4SFFyx46Vforrwh87fRrvMz2N91xeRvCEPQj92q50dMCmcgo1b2/dChtMIbUW5/Zk0giH9NFaW00rrTAM6xQxZcm2YMh1BmcK2IJhI2Yj1wK2PotGzUCz1cIEoyLbKuy2KBSoiFhfCjb2/fdjytfp03Bsb7wRJ56ZGUSdHAeRppe8BAtX9njw9ndgqnpXl1mATkyY5v2JhBEMXRcnpe3bYbAmJ/Few8P4DNksFtyJBN6Ppc8iJmWdE0/tpuRegTBoOIlfibEOJ1GqhYNWaiW4lBASw76XPm+L8nlMUv7c58xUYgp17CvIqPLoKOwQG3NHIijVWVjA/Xv3IkL+ohdhuz3xBEqTT52CnWP0uL0dzubevbB5+/aZ389e6C8uwqawTIW2yHXh3E5OGlFwenpl5uD4OB63m04zwutXUszMwaEhfA62UqDQySnLNfkBXCMcsrcny/J5aXRbGNTHUCScZcm1IJnEvtPaWpvp8ezzVKTfYoPvJSUp8Iu+8Q2R3/s9HHdXXYXhKLfeCqHv859HYLWzEwv5/n4jNF5xBWwQ7XY2i+BIVxeOIy6MmWXIFigMYNhZhpUubpJJI/ayCsSbOZjJmExJ1zW+Tzni4EYU25Xi2OXN7HnbKJToHR32vbTAFv3Hf4i89a0Q9oaGIPzt2oXvf/68aVmQzRrB7rrr4DscOYLXicDPOXAAa7z2drz22DHYsnPn4KOwlUFfHzIUb7kFgVhmLDOIKYLnX7qE/WLbtsKs98lJvO/MjAl8cFAJL5OTWCPSH+M+Fo2arMZiPQi7u/E6DqJrajJTlmt1fmcv/sVFs5Zsbzc9DhtdYOPxawuG9pqYwWG7lcZmsu+pFH7jclt3FKPEoJVNtEXXDxUR68vzG/vJJ0V+93cRnerthZM8Ooo+YyJYYL/0pWaSX0fHykh4JoOT0ZEjOJDYf4flT3Set27F/1hehuHq74dxnpwsnMC8tIT/v7yMk0JzsxEF2e8rlcKB7xUyOZwkqAdhoxt+JdzwhCJSG6d7szjLH/ygyHvfC0eH0VA6hx0dJhuvpwd2oaMDtoMZzNddh9KeaLSwjyF7pTY1wYHm4JOdO02PsL4+PMce8NTUBDtz+jREwPl5U2p86RJs3vnzsEfLyyt/m54eOPx9ffh7YACO9o4dJruIttEPOxDCzOhaiEEixrlMp03GEaPQFB8a2Zn0CoZ2H8ONVJZcCyj8tbZWv7hijz1WGXj2kQbeY8rieVt05IjIr/wKRL7rr0d29OioyNe+hoBENAph8Yor4NPs2mWGxPE4ikRgG44cgc1YWDA9Xh0HZcjMMBwZgX0op+eX2EekagAAIABJREFUX0kxs2Toe7W0FP7WDFpwmEkkgt+P/pweJ0oQ9n7TSEJDwKCVBvmEq+Z5W/TccyKvex3sSF8fBMTRUfgqHDqSTJrkjtFRlB5PT2O7HDoEIXB0FH0Pjx+Hb3Tp0uV/5MKObduG7OlDh0wAbudO2Ktz52Bbhobge2UypuUL/RMOw7x4Ee8/OQkfxhtwammBf8VBI93deF9mDg4M4L5i56pk0vRLZECLU5ar3uiuEQ4XFky2a3u7yThsZDvJYDMFQ7uaJBpdOS15swRTg1hawnaqVhRm5YvPoJWw26JQoCJifXFFkDr+a7+GDJ3+fmTiiMAQjY2JvOxlWHAz8hKN4kBZWjJGllGa06fxGE8Ara245lRmioHT08bwX7wIJzsSwf9g2Q9LnrmQFzHTR1lKODRkek9QINwovRqU8EORplb9EQOExLCfoFwRLM7f+EbYCrtfFstotm7F8d7ebrI829pgpzo64EgfO4aIOzN7du6EWLhlC5zj66830UYOJpmdxd9nzhjBkb1ZL1zANR0DLlLYe5UlxeyRyMzB4WEIBNks3iufx2flQIUg2H6BE9wpCARNUy2XfL4w41DELAqbmxs3uBLUx3AzlCVXSz5f2KezWlguy0EdFmHf8q4Ijvm3vhWZzTfcgIFN584hGyifR7by/v2wPVdcYcr3lpZM6d34OPwYTlwfHIQN27nTlCXbAabVDifheYbBls5OEyi1swc5cdm2nY16vCuNCc8fzIZvFDGlSO/oDWGLFheRAf2d78B/uPlmrK0YuMxkcBz39JgegLEY7NPICNZEp0+jAoMtDrq6EPTYvRs27Lrr8A/Zm/nkSfhFHR1I2jh+HNf5PPyZixexdkynV/bIpUjV0wPbODa2sgeh6xq72NyM55bKAmM1yNwc/LtIBLauu7v6QL29pmVrh0jEZBv6tYNoBPL5QsEwlTLBVAaybMFQ7b0/3B9FgoP65cCAtqfaJey2KBSoiFhf3NlZOMoPP4xF+t69MDZjYyKvfCUW3CylsUVDRn9ETCPZyUkcPD09OHiYMs3SHYqP/Lu93QwVaG01/TgWF/He/f1wuJlizJRjx8H/qLZ/gaLUAzalr1WWR5Goe9hPUO7Jk3COmQVIYYuDQhiA6Ogwk/pyOdgdimHd3RAMx8Yg6u3bh8eOHzeTTLm4v3ABEXT2Q8nnjUDL1gkspRkdRcsFioR0eDmAwG9oxdKSKbFpaSnP0eVkVLu0sRYly+x/w1InEVMyxIzDRkLLktcGlqLFYtWV7ZBMBudvDha7TOhtUSol8uY3i3z72yhTvvpqM7X0wAEEWnfvhi1g64LpaSzqaYvicdOLq7UV9oiB1WJi4WqGk3ARyZJkv0nc6bQpb47FIB42UkmqEi4atbzZp+VL6G1RLifyUz8l8qUv4djet88cz/m8qbpigsfICI7v5WUzJTgeh73asQOBjOFhPHdhAf5QOo2gyfQ0/JbTp/EYbRWHLXV04PVsMTMwgPcdHcXf8bjJhGabKu++kUxCnEynTelxqaAWW0HQn2puNlUo1Zz7czkzUZlrWvbG6+jAGrWRgpH28E9e24M+2T/cnpaslA8D/s3N1fcW9xm00kB70sZFRcQ6kkqJ+9M/DUe5rQ0C4t69aBp+6BCMM6dPUVlnBJuXaBQHyvnziNLn8yYTkNOak0lj8HM5LND7+/G+IjgBDQ3heRcu4HXDw3ieCD7D1BSuW1vx2kaJfipKObC/Xq2azftE3UN9glpaEnf3boh7hIMHOjpMIIEn5Xgc35tDRjjUaWkJ73H2LIIVXOhwW0UiJnuwp8cMT+nogL3ZsQNOcUuLsXvt7UYkZLSakf/29pW2aHkZwZFs1ji7pYYgcIIq+6nUomSZfc/shtksZWmkDBIRLUuuJyxvYu+jWrwfG/lfXrSE2hbl8+L+8i9jgEFfH2yQ68IuXHcdbEckAvvC8kER2JWhISyyBwawEE0kjE/T3g67Yi/sqhlOwpK7dNpkg3qDAcw8ZBCrrU0XlkrtYHkzM57WW3DxqdQItS0SEfftbxf5+7/H92FfZGbesxS4o8MEXF3XVEf09BgxZGoKlRZTU6aai/4Uq8KGhvC+PT1YC3Z0mB71V1+N2+fPm6oyTlfO5cwwqKYmBHF7egq/SDptKj44SLOjI/jLLy8XTmlubzeBmNWSzRrhkC0+YjEzUdkvCLNesI+hLRySaLRQMKRPrFQH2wK0t1d3rvTpj6i/Th1QEbGOvPzl4t5/P04eL3wheh5edRUeY+ZKLGYcWb/sBS7oLl40pccsLe7uxvswa2dpCf+rrQ0L/VwOJ622NkTDpqfx2i1bcPByYuH8vGmwW4syLEVZD+wSoFqc7D1CYqhPUFu2iHvhgrnd3AxnjjbHXiTncsY22TQ3G8d5aAiCIPsm7tiBsprBQbx2ft5kUFNs7O6G47C8DFvFbEf+n2TSTAZsa1spDKZSEA8ZYeekwGKsRckye9Gm00aIi8VMqXIjZOxpWfL6s7yM7V6r3prs2Xn5mA31L/ZbvyXuX/4ltsvQEIKce/eaBTkrIQYGCkv0bHvEnogcotTXZ/pp1WI4CTOR2OPS65dls2bIAvselgpkKMpqaLTyZo+QGGpb9Bu/Ie6f/Rn+ZhCUghFbFrDUtqnJJG7YvwHFx5YWPK+31wRHBgdhu3p6cPvsWTx/1y74RRwENTxspi/ncrCJvb14/7k5ZC6m06Zdg/3/OeQlkTA+VdCkZNeFwEdfiq/p7l59xUQmY6ro6MM1NxvhsBZZ+dWSy60UDO0BfPzdeb3ex9lGhgkEXV3V+cwUEi8HwkNti8KCioh1xHHEZeled3dhT0EuPO1yMTsjxG4auriIA8UWR6JRHIR8fjZrxEhGwey+ZOzlw/soFDBK1EhNnBVlNbiuKclc7YnJNo/2+91zT7hPUI5TOIWQQQsuuFtazFRmBiJYRsy/OXiJE51tsZERRfYB5PuybJjZ08xctBvHe0u3vMNG+H/YM7FU3xlbRON3rSbDjhniFJX5nrysp93kPuq9iBihxXtR1h576NNqhud4f0u2bMjnRf7hHzaGLWJJE8vamJHMBRz3Vx5j3gtLzWw7Vi0sg+YAJK8Qyce5+NTMXaUe2PagyOC3Nf//3s8iIvLFL24MW0S4FmIPwnjcBAh4YbYz13PNzSajjb+PiPEPWMJLkY996XM5854MdvJxuy8+M6EpZBKW3trDBYPWcRSjmW1HX2q12fKsxKDvJmJK72mT1xPaabvKj9AntK+V+sF9l+uASl9L+8O/83mRT3wi3LYoLDRYZ6aNDcvm0mlEzHkf7y813dhxCktlSCRS2FSUjrSIORG1tJhpgiIm64gLdrusb72NvaLUAjpPdk9D4tcov9hjXjZK3IUnbGY/c5FsC4UtLUY8tG83NZnBAvG4yaRm+a5IcQGRgQve5v+n0EJb5M2y4P+wbVUxQYa/OfukiPgLkuVAx6RY2e96CYe2oOQVmUT8BRdlfWCJDXvx2QJXMeHX/n394D6+EWAgIJ1GRs7MjLnfXrB7F+60Adyu1QYIbLzioPf8wQUpH1e/SakXtOe0/d4hZNVQzBfaTH4RgxdNTcamsFrDzyZRRGTPVAY5aRP427CSxR6QtbxsMpyjUZMkwv/HAAl7CNI/I1zDsTcsg7jF9gVWT9hBrdX2aaa/5hUOKbqulxhni4V+fht9X5+Jvso6YPtH1C9sYZDX5dqjjWKLwoBmItaRTEbcaBQ9Mi5eRInxxYvmMj5u7ltaWvn6jg5c+vuR3j44iPKfgQEziCAeR6ZjOo309LY2PG9qCo55Swue29yM/zEzAyPb3Y2LLjSVsONdiLORPrNIipk8r9hSImsr1EfK3Jy4XV0oe5mYMBPbJybQZ4eXiQnTS9WGU4+Hh1FO094OO7NrF+6j0Mgo+vy8ab9Ah5g9hmIxOKFLS6bHa1ub2d65HF6/tGSmxBdr8O1XsswFQSW2zXbMWTpGYZOCR71tZVBZsreP4XpnRCrAm/mQTpt9v6mpMJvVxs5stSsTigjXof6lEwlxW1vNBFJeLl1aeZviog1bufT1oTfYli24DA2Zye2V9HXO5fAbsVqjrc3YGtc1PZxYytjaqpkryvpRbnlzULDCu0C3KeYHFfGNQm2LZmbE7e3FMT49jXUThzh5/56fX7nN2D+agytplwYGUI48MAD/p70dtunSJbxuyxbYG/a5Hx1FyXMqhdLl+Xn4PDt2mCAsy5Dn5/Ea9i/0EwPzeTNlmcHerq7C9jHlQPvHUmUGdNvajF9W76Fx2ezK4Sd2hYhdktzcrKJhI2BnDNrXS0vYvzi0yItfNQL/tu/j0+v4lTYtKiLWl7I39uJiobh47pzIk0/i9uKiEQUJxZHWVjPhdMsWONXNzTgh7dwpsn8/HOr5eRyszc24rc2/lUbHG5HyOr9BjjBL0tinzs8RrpCwn6DKtkXLy0ZcnJiAPXrmGdigxUXYppkZs5CmaNLcbHoBDQ+baak9PXCS2TMxm4Xjx8g8yxnyeTiqdpPvYj1TOLWW2Y2M4ldSGsGSCjuqz4g1L/WC4rfftGTtY7j+2Jlodnl7sXIp4jgmg5dDN/xEwgoJ+69fti1KpUzQg5cTJzBMZX4edmhiYuXU5WgUC/jhYYiKw8OFl6EhXERM9YY9pd11TY9W163NICZFqRV29htbk6xWIKyy3cWmsUXZLOwNhcXpafhF589DrJudNb3euB3Z7qW/36zVbGFwcBB98jmF/vx5vHbrVjwmYsSWuTnTZ7e7238Nl8ngeQsLJkDLASvl/rb8f/TF+H06Okx/yHrZQe7ntmBIW+84ZkKy3SZMqS92ZYxXJAyqnqC9WVzEdXd3YYugVdijsNuiUKAiYn1Z1cZ2XZHjx+Ec9/WZjJhcDieIuTk403NzaMQ7Pg6Df+kSTkIsKWTZs+tiYb9lC05Ow8M4aXmvqx25rijlUkwQLMcJ5nVQxFyksNyjBqJL2E9Qqzb8MzNYTA8MmMnJXV2wOSdPGif60iXYovl5k33NBTp7A+XzJqORWUNDQ2YKYm8vMqy3bl0p4rkunMhk0kTE2QqiXKfW7gvE8h67N1A9nNAgwVBkpWCoWU9rSzFB0L7tZ48o7gZlEfK3W142vURr8Htuals0NWWycNrasF1nZkz24vi4yWq0bzM4QfJ5LIxHRsxleBg2qLsb9o5Zjro4VepBUMagn29ktwNh3+EaCoTlsGltETOpUynTQkoEvgUnNdNfOX/eTHo/exavZe9F9j6MxeALjY3hmoMuOUSOj/kNKUkk4IMlEvidaR/LHWjCzMWFBVMhEokUCodr7YewGsQWDOnDi5iqEAqG2sd/bfEKg8VEQi+2vQnKICSsPGpqKj1NvAS6N9QBFRHry6o29oULIs89Z3putLaarCpOCGttNen1g4OmVDkeh8EfH4cQyQX+4qJxrMfHcZ+X9nazuKdDzQtv9/frolYJphIn2KaCEpqyP0cmY0T4Kgn7CWpVtiiRQIS9q8v0WKVzOjuL262tZshBT495HZ2FqSmRZ5+F7Zmeht2anDQL/Kkp0zuIWXbxuBEY+/vNwp4tHbZtK39xbzcAp3DI8tJ6lLt4BUO/Pov2RakNdHZLCYR+BJUVr2agjuuaBR77XlXBprRFy8uwF44Dm1BJdo0Itv/4OHyr8+dhd+z2DhQd2cqAF06lt8ulmc3I24OD9c1cVsJHLcuL7Qv9nFLlzWvEprRFmYxZW7FqgaW0mYwpR47HsTZjwOPcOfxO/f3wRZ56Cr7R4iJ+t2QSPhIrQTh51h7C2dNjfCL2re7ogOi4fTsqPsoRD3O5QuHQdeFPUTi0W8ysBaxIsTMNeQywJ6VdmqzrztoRlDUYZI+CSop9yovLhln/HGK0SsJui0KBiohV4jhOk4hcKSJzruteKPH0ijf24qLI0aMwqJ2dRkDkglcE1wsLMLR9fXCGk0nTg2N+Hie3SASP+2UYJpOFJUIXL0K89PYk8isTovNsC4xe0bEKQ6A0KOVkDlbqCNuPrQUctlEDgabhTlBrbYuyWTizbCK+uAgHs60Ni+9UCsc5S4q7u015cDyO56ZScA5EjMMrggX9/LwR9ViGY/dovHDBZBFNTa1sJh+JwJmmsMhrRvEpPNIWsaH4Wi60gvoYally7WA2Z5BIWKy8uFTvwbVarORyOBY4Db0KGnKvqcAeVWyLcjks2pNJHN/FeigFkU7D7riuyWBmuTkH2FHsnZnx79HIv2nzbPr6iouMvF2p8KmEg7USCCspQeWwCwbI6kRD7s1raYtcF77JxEShuNfSAhuzuIg1F4fLDQzgt5mcxHO2bTO9D/n4tm14j3TaBGd5HqKwyN6MExP4/5cu4T72crUDqp2dps1VXx/8pL4+3M8hKNhO+Luz06w314J8vlAwTKXM+ZmBGntojWZ+rw7b3gRlEPpRqu/gWou4HDDU2blq/7ykLapwzaT4oCJilTiOc4WIPCMif++67s+XeHpFGzubhYA4NYVoE1PdmZEYi+FAXloyGYcTEzjAR0bw+PQ0Tljt7ThpVHPg53J4Pw5/8Q6GoeiYSKx8bU/PSqHRFhlHR5HdpA51Y1Aqc7AcJ9h7ey3FwUqgmMPjZ5U0wDcpZC1tkevC6c3lcFJfXISD2dmJBXY6DeeTTbs7O03/sPZ2PLa0BJvGgSuRCBziuTnYqKamlSU3LFleXjaiISezzs8Xiox230Yu8hcWVu6rnZ2FC3mv4Dg4CHtV6b6hZclrQ1DWIC9+9qjC4STrAsu12MtplTScLRKpyB5V7IRevIjFdV8fjtVKRJJ8Hj5KJoNzQFsb9ods1twfiZSfBeG6sEWlyqdnZ1e+tq3Nv0+jfbuvTzOSG4VaiYN+962FLbLLm+s0LXfT2aLpaQQ0mLHMYUwcwMTeqbkcBMLZWdgZinnMgo7H0R+xs9MEUVnB4dfHkH0Rl5dxf0cH1lD5vP8wGN6enMS1PVGZPWAHB43NscVG/t3TU7ktcl34hbZgyGCxCLaXnWGoZcnlEVRSXE55cZnDSdYN9kR3HBwTq/hM5YiIV0j5aybFB9X3G5gzZ2DwOzthWDMZMykwGsVBxpRfETitra04CXD4Cvtq1CKiFI3iJDM4KHLNNcWft7hYKDDaU6cvXsSAmMnJla+Lx1eKjN7rwUGNSlVLOX12/CiWpt5IAmE58NihoBWWz72eLCzA/nR2wnltbobTSgExEjFiSEtL4fTlbBbOLh3d5mYzPT6VwvHMfj+EpdKcghqL4b2am83vRed23z7zOnuiMu3j3BwcaJYq2sLjqVOwk94stVhsZUYjHWze7u01iwO/suRYTMuSg7DLi4NEQj8oAjIQUIPhJOsCextTfA/L515P5udx4UTQSgREOxOaImEuB/tGO9beXtk0d8fBIr+7W2Tv3uD/zcFUfiLjI48Ur/bgUBg/kZG3q8xm3fRUKxAG9R9cL2gf2fd3HcqbNzQcOsc2OayuWFzEffYx2dODY951kWmYy6F8OZfD+mZ0FI9NTxcOl+jsNOJvPm/sH4MgfX0QD+3fta0N/4Mkk6ZUmSIeewymUrjfFh2PHcO1LfaJmM9ki4tesZGZYxQMWVovgvvjcePLcdChUkg1w0ns9ip+4mBY1jsM5C0uFuocSmOhmYj1peyNPTkp8vTTOODb23FNATEeh3HnhEdOJeVCfGYGj3V14cTViEYjkyksByomOtqNdEXwXQYGivdo5PVmHApTKnMwyAnmdVCJ8UbCdY2DtMpSn7BvkbJtUSoF57KlxUzm6+mBOJdO4zYn/zGjJx7H8xMJvCYeh23KZs1k+EgENor2TQTvl0ziWsRMQS0WOODvyLJpOxuAl1L7bi6H72dnM3qzGy9dMoIm/68ItsPAgMlitAfEUHDcjCWL9RhOslFwXZO1u8q+U2Hfu8q2RRxEkM9j0V3ueT6XMyXKzBQSwX2pVKEAsJ7HKrOISmU1Li2tfG1XV+ny6Ub1B9eSUgHTepQXrzfe8uYaDZfzIyRbpChl26JcDokeExMmk8/2eVhSzHLcuTk8Pjxs+tC3tyP7MB6HX7SwgPdmViGFQQZdWVnR0gIxz/advCwv4/kMAIuYwEtHR2m/13WNuFgss3Fy0kx+tgOpLS3GNxoYKAzAUnTcjJVn5ZQWlyovLmc4yUaCGb3l7LMeNugWaSxURKwvZW3sZFLk8GGcNLq7zTAV9kHkwr252TRnHxqCM5xI4P7+/qrKoxoC10X2kF82o/2331CYjo7gHo0jI9WXd9eTchxhP8opo9msMBuRGU0VEvYtV5YtyuexaKW447pGQOSixHFMxJ1CCHveMLMnEoGTvLRkyhNYouC6JuvQLlluafE/Prkg4kRlWzikw17Nfu1XlszSiqkpc6ETPTkJOzQx4V+y2NKyMovRezssA6rs7MEgkdCPcnoPblZ7xKxZLkYrJOxbrSxb5LoYRLCwgPN3OYKYbVsYiG1qMgsTLshrNCW7biwtBYuMFy+aAVU2HAoTlNUYpmqPWpUXh1UcrJQ6lDeHfcuVvSAeH0dAg8kc8bjJcuYgEGaap1KmcuH8eTxn61YIbIuL8I3yeTNFORbDvsspyyxZ7uyE+ObXZoHPX1gw/eSYhMLhKNVkobIsmRmG9L9SKXzGpSXzvxcXcR/9pJmZlcdiNIptEpTV2NcXngFV5ZQWl1NeXKvhJBsJHh9dXRXZrE2+1eqDioj1peTGzueR4n7unEn5bmszQwAoejgOjDj7ki0umgX+KvsHhJbl5ZVDYbyi48TEysUtS729PRpt0XFoaG2HwgRlDXqznryUyhzcTPvAaqFItIpSwrBv3bIM/9QUnMSmJnMSX1oyjbAZaXdd00ycj7W04NihUylinNlIxAyWSKVMyXJrq//xls8XliqLmCmF1TbeDpqW7Fc2G0Q6XSgqerMZWU7tLRPiUBhvf0ZvOfVaNToXMeJpmIaTbCSyWQhb7BFVAZvGFl26ZAbGlTrm2eMwl4ON4NR4Zn0yO3qj7pschOUdAuO9zaxv4jhYvJcqn+7oWNvPrwLh2sBzKc+5NRaMw751y7JF8/MizzwD+0KfJZnEYwxWxGLm2OrthZC2tAQfamzM9D3M5fAe7O3K9gpzcziGYzFT1uz1P/J5vCd9LAZh29tNxuFq7RtLnSkY2naCfp89/CTouMrnC0VFb1Yj//YbUNXZubI3o1d0XMvJ0ba9Cdtwko0Cjwm2SCqTsNuiUKAiYn0pubHPnoWIyJIbRs55colEzGKuqwuvSaexYO/vD08Eud6wZLHYUBiKjowk2nAoTLHBMCMj/qn51ZbQ2H+rE7x2ZLNGENtEUa6StogRcjo7HR1wmnmMMLDBrGjHgeMZjZrG4iy/aW835TnpNB6jGFisZDmfN2XKFN0iERPhX42tC5qWTNHLHnyyFsdaPo+MxVLl034li52d/iKjndnol6FVTu9BP3vkLSP2EwnVHtUOLtY4PK1Mwv4LlLRFiQRKB1taUMYcVGXB8nBmQre1mYBFPm8Cs9obDttqbi5YZCxW7cGhMEFCo99QmFqIg97b6htVhl3ezGBcjbZd2H+BkrYonRY5edJMV2bgVMQIeAzIxeNmwGU0KrJ9O+6jQBiP43wdj5uMPiaEtLaakmWbXK4w648BXAZog0qci8FsSXtiMo9D+ly2YLgWtpOZlEHl01NT8Em9NDcHi4wcwFXMFtVyOMlGLy9eL1hpybYBZaC/QB1QEbG+BG7suTmRxx/HgdLVZVLkaZCYBRKN4kTBdPXe3rWPCm8GXBcn5aAejSwT8hKPr5z4yn5Edn80lloGOcRK/WFkvgJnOuy/VKAtymTgJGezZlhKOg3nlQISnUkGOERM30SWH7S2wpbFYuWVLOdyplSZ72mXBlXivPqVJfN0x/Js+9Jox14iETx9emLClCzazm4sBsd5YADXvAwOmuu+PrPtg3oPNto22QxwEnkFWXJh/5UCbVE2K3L6NOzCtm3BfRAzGRw3zIR2HGNzGJjVQGvlJJPBQ2GKVXtEIqZnrF9Lh5ERPN7aqtmD6wHPtzUsbw77LxVoi/J5keeeQ0AjFoONYTCUlRS2f8NgBs/BS0tmwE1PjxlCNzdnWi50dkI8tAMl2awZjJJImCxStoXh8VMODM7agiGPW+4HtmDYaOXEmQyCsEFZjTMzhf302fKmqwu+T28vtn9vr7nNC1tbBGUQqj1aH3j8dHaWdR7XX6kOqIhYX4pu7ExG5Ac/QL+Mnh44u1zkMS3ebtTL7B722VBqQ1DWIC/pdGGZkO1U07HmxDYbliwW69HI+3QKVf1hZJ5OVBmE/QRV1Ba5Lvbf5WUzQY/lBBTBW1qM6ETxVQQneUbYu7vxHLtkuanJlDkTTqfNZIwzyyzHcqf3MXIcVJbszTJsdMrpPZjNwnGmoDg5Wdi3kfdxeISIue7rK8xq9OvXuJqsBqU6mJHhOGUvDsP+CwU6oefPYx/furV4H8R8HtuMmdBNTaZnVyxmKjqU1VFOVYVti4plV1+65F/t0d1dOquxu1tt0VpQ4/LmsP9Cgbbo0iWR48dxPmXvZ7ZGoH3h9ksm4b+MjJge0SxNbmkxU5Y57Kmrq7DnWyZjBqPwmOHzOjrKa21Cv9YWDO11SSxWKBiWKktuBIJKi/k3e1izH6N9mZ01f/M8K2Ku29qCezRu1qEwjYDrmkzUMn4D/YXqgIqI9cV3Y7uuyNGjmMbMHofs8RCLwejzJMVsnP7+te2PtREJ6jlYbRmN3/+amSnMavQrpfZLze/oKN6jkZcwDYUJCxUOWgn7Caqo4Z+dRWSc2YY8cdPBpMhtZ6wlk7BTTU1wkiMRU7LsOGZaM7erPVGZYp89UbnUvh3Ux9BbltyIQZZSvQdrOZzEdeFQlyqf9itZbG31zyCyhcewDIUJEyy/jUbLOs9vaFt07hyCpSMj/vsZ+xyKwL5QFOG2W8uexhuhRmHzAAAgAElEQVSBteo9yOd4WVwsXT49Pb3y/3qrPfxExzANhWkkKAIzi66K8uYNa4uWlkSOHEFgjuszVluwpYuIab3S14fnpVKwRV1d2K7z86YMua0N/hJ9qlTKZByyx2I8bjIOS9kyDjqxMw3tsmRbMGSVWyNRqu9gueXF5Q4nSaWK92fk37OzK/9nNBpcOs3sRg1c1Z5sFsdHc3NwVYKE3xaFAhUR64vvxr54UeSRR2Dwe3tNA13HgfGiwW9qwmM9PY1n/NeTUpmD9nO8lHKA1zratLzs35/Rvp6YWDnQIBZbmcnoFR2HhsI/obveUJQqoz9i2E9QvkfE8rIpY25pMRFdZkGzRJALNQ46icUgfjPzkL2W2L+E/RJZqszyEmZWBy1a/DIMG7UsmSXU1QwnCRIJ1xJmWAeVT5dTslhsKEyZfWyUyzCDhBkiAWxIW5RKYXhBUxMGEXgXZLkcMknY1sVxTBCogr5JG5q1EgjX2sbaQ2GKCY2XLvkPhenvN8Ii/SDv7RKLz01LDcqbN6QtymaR6PHcc7ArPHY6O3HNdi/RqOlz6LrYfhx0OT9v+rSyZLmpCWIhMw65PzOZpLOzuBDF7EZbMLTLkrlu5PV6i+tBfQcrHU7iFQzXklwOAdZiPRr5t99QGJZPr9dQmI1KMol1Rnt7oG+kW7UOqIhYX1Zs7ERC5KGH4BQNDOCgiMdNA3D2P2xthcHZbFH1cspo/CiVORgmo53LmYmv3v6MttjoVybEDA5baPRmNWpqfiEctFIiGh/2LbbiyMnlsDBbWIC9yecRFW9qwm2WCYqYrAUOUYlEjDjI5zc1FU5UpnBoZxz6Zc0V62Mosr5lyTqcxAyFCZo+XWwoTFdX6fJpLVkshOVnJQathH2LrThq8nmRZ5/FYuGKK1a2+OAiwvYJWP7NoMVGphbioPd22Hwj1zUDqoLERr9qj/b2YJFxM1d7VFneHJK9pygrjhzXhS168knc5vbw9leNx7FfURRiBjmnJrNKo7PTCIeLi6a82J6o7N3mbKNkC4Z2WTL7GNoJJ/U6joOyBssZTlIqgzAMsAVJkMg4Pe1vi+Lx8obCbEZbFMTCAo4ruwWAh5DsPeFGRcT6UrCx83lkIB49igOBU7ryeZN23tODE89GFHpKZQ6WGyUvdt9mgiWLpYbCTE+vfG1rq39Wo309MNCYZaFrAUt7RALLEcK+l604uiYnIQJxOMrSEmwQRUKKgq5rhp3EYiYTiCXLbNydzZrFPbMN/bKJ1rss2e6jEyQS+hFUVryZh5MkEiuzGL2Co1/JYnMzbE1Q+fTAwOYqE2IjfTZ89yHse9gKW8SBHdu2YRFFslnT+zCXM5nILS2VDRdoZMKaPdioJJP+QqM9FGZycmWGdTRaunx6aGjjBvZ5jFVY3hz2vczXL/re9wp7QnPoZSaDv5ubzTAUuyciS5a7uvA3S5Vpu2zh0PZvWJZMwdAuS2a2o51puFYCU1DfQV77EZQ1uJntUSaDNldB06enp1faIseBFmCLjH5/b1Rb5Ec+D1E2GsUx5MMm3MPqj4qI9aVgYz/9tMh3vmPKwXgyaGmBQejuhnEI24IpKGuwlBPM60p67Cjlk04bB9qbyWj/TRGNcB8tNhSG1xulT6fr4oQf0B8x7HtiwVG4sIABBiKmX2Fzs3GQuT9we9AmUUyMRrG97OdxMAq3n7cs2XaU1qosuZzhJMWi5KV6D2pkuDqyWTjNxQYw8LZfyWJvb3D59EYqWcznkXXHxasPG84WPfccFk1bt8rzbV2Wl7EwT6dNKwQ7yNHolKqoUIFw/cjljC3yExl526/ao6enuMgY9mqPVZQ3h/BbFlBwBC4vi3z3u5gOzyAoqzLYc5VJHrbAFokYYTCZhHho39/ZifNTJGIGy9mlyRTnGJy1BcNalCXb9iYog9CPUn0Hw2CLGxnXhThWqnw6kVj52vb24uXT/Jvl9RuBdBrJDgwietgg37KxURGxvjy/sScnRb76VfRaGBoyDcA5VKO/v6i6vq6UyhyspoxGaQzyeTMUxi+bkX8vLKx8bWfnSpFxdLTwdm9vOBwNDlopkgUX9j32+SM1nRY5c8b0F8tkYI/s5uHsERmPY1vwtuMY4ZDlzgyGrHVZcjm9B4PKiysZTqKsD3Soi5VNM9PRr0yorc2/fNq+HZaSRQ5aYV9SD2HfW58/SjMZkRMncCxeeaUJTiwt4fvncma6e1tb42THr0X2oP24sv4wk6ycoTBeWlpgb4LKpwcHG2d/tmEpbZnlzWHfW58/UvN5kcceE/nBD/Dd43H4RZz23tmJ84frrqyaYNCDVRvsb9jaunJash2wZ/9bVqKtJoEkKGswyB6V6juotqixSCYLBcZyh8LEYliDBWU19vaufw/NckkkcBx1dq74zLq31oGGFhEdx7lbRN5t3dXkum62yNPrhuM4u0XkuHXX+1zX/b0yXuqKYIf/t38TOX4c2V2MTG3ZgktfX/2diXKi45U4wt77lY1HIlE8k5F/T06uLHloajIOtF+PxtFRPN4IGbjsjxiLibz3vXfLe97zHvvhMNsjVwTf7exZ/F4sVW5vN0IFMw+Z7eMV/JiJyPtqUZZMh7eUSLhyO6z/cBJlfUilzOCXYuXTfiWLkUjxsmn7uhHKhFjWFo+LvO99G88WuS4GqSQSIrt2wQYtLyNYlUqZbANvL7K1RsuLlUrIZAqHwhQTHe2ediLYHzigKiirsUg2cl2+l1958913bzxbJIL12X33QYhpbzd+UU8P1mjMCqRoGI2a80tTE9Z1LS243840JBwqZ2calrIJqx1OUqrvoPpFG5NcDvtvqfJpb7WHCDJsSw2FaYQWImzl5borMr4DP9kG1JfWhZBozfKWy9fPLwEcx3m5iLxTRA6KyICITInIMRG5z3Xdu63n3S2FO4qXX3Bd9yOXn/v/ichbrceyInJeRP5NRN7tuu6ly/ePX/5MAyLyoUq+iOuKPPigyBNPmIV5dzec5q1b18ZBKKeMxg91gpUg2tpEdu7EpRi5XKFD7c1qfPJJkW9+E1E1L319xXs00qFe69T8WMyU6fI4+djHPiZvectb3iIbwB5NTIicO4cMCw5xEsH3ZTScfYB4bQtyzFIgfIzCorcsmdmd1QwnoeMe1uEkSu2Jx9E/b9u24s9hhnWx8ulTp9BexK9MqKtr5RAYr/C41iWLzc1mIidF9I1mixYX4QfFYhB9EwksyHt6cL6pZWCpHGEwKGNHZGWPL/WNlKYmkxBQDNc1tsivfPrMGfRL96v26OgoLTSuRbUHy5kzGZzzveXNG8kWXbok8u1vo61CRwd+r+ZmUw5KwZABZgY1WFHmONhG9GsjEdM3kaKhHUylzWHFRrEMQi+2vbH9M69IqGxOolGIff39xZ/jusFDYaamRI4d87dFHAoTlNXY3b22IrXjYN0yP4+KhY6Oit9iw+hL60EoRETXdT9u33Yc59dF5H+LyGMi8uciMiki20XkBhH5ryJyt8/b/L8ictHn/od97nuriORFpF1EXioivyQiP+o4znWu6yZd110UkY87jnOFVPgjP/mkyL334uQyPIySnX37EIFczYFWygEuJRDaJxl1gpVaE42aPorFYMmiN5ORty9cQEnJzMzK17a2BvdoHB6ufigMhUQu3N/85jfLm9/85udtUljt0cICou3j43Bq6Rw7jikZpBjojWLTsWWTb95Pp5cZnOUMJ6EIyBJpvyxCtUdKtUQixqE+cKD485aWVpZM28LjsWPFh8KUKp8eGKgui46D11gCt1Fs0dIS7D2DQhcuYPuyDLC5udx3AtVmD6o4qKwljmMW2vv3F39eMukvMvJy6hRskvfcGouZgEcxoXFwsPIMa56XmRVt27KNYouWl0W+/GWR738f/iWHW/b0QDhlixsGM9krkT5mKgV71d5uypOZrUi/iSXNvM8Pu7IiqAeholQDRbj2dpGxseLPy2SCy6efesp/KEwksnIojF9mYzXVHtEogowsba7kvTaSvrQehEJEtHEcJyYi7xWRR0XkRd70U8dxhou89F9c1z1R5r/5pPW+f+04zqSI/N8icqeIfHoVH1tEcNL/5CfhIN98s8itt4rs2ePb46hk5mCQE8xrP0fYfo6iNAKOAyetu1tk797iz0uljBNNsdEWHR99FLf9pixy4mvQYJhiQ2EY5fV/LJz2KJPBxMGnnjLTuSkadnSYacp2jx8RY3soGDKrsFiU3JuZqMNJlEanvb10hnU2a6aZ+w2DOXwYf/sNhenrK14+zUuxigQK/P6PhdMWZbPIvOLAlNlZfP+enpXftZyqChUIlY1CS4vIjh24FINDYYqVTz/9NMpy/ao9OKAqSGz0Vns4jplMzPO/l7DaItcVueceiIjxOLZFX19h2SZ9I7ZVsHtB20PnKBimUiv/jy0MFssgVJRGoqnJ2IRiMCHE25uRf589K/LDH/oPqGpvDxYa+/uxNil2nqZNSiTMcVkpYbVb60noRERBimePiDzoV7/uuq6fGlwt/y74kXdV8yZ/8ieY8vXyl4vccYfJzmKpZCVOsH1bnWBlMxCPi2zfjksx8nmcrLw9Gnl98qTIQw+hbM5LV9fKcmlbdKQTnssVnKBCaY++9jWUbnZ2wlFmX9bWVlOmzAWCXzagLQiyrMkrEqo9UjYqsVj5GdbFhsGcP48M62JDYYpNnR4cNOKkJ+oeSlt08iRaKgwN4fbAgAnocKBDuW1XvBk66hspG51o1NiGa67xf47rwufxExl53+HDxYfC+AmNHADJMkdOH75MKG3RJz4h8jd/g+9x6JARUXt6zETl1lYjGrIKgzC46icOavagstGxE0J2BRyFHApTrIT6uef8h8I0Na0cCmOLjb29sIdLS1jPrYJQ2q31JIwi4iURSYjIjzmO88eu614o83W9juMM+Nw/7bpukYTy59l9+Xqy3A/px+HDIq96lchP/AROQPYJu5ggqE6wolRGc3NpsTGRKOxH5L0cPowTmg2P15e+FH1NLxNKe/Txj2OAzdVXQ5Rob4eNyWaNrcnnC6N5fsNJOEhFURR/BgZwKQaHwkxNFV5PTuJy4sTKAVUXLluZH/9xkW984/m7Q2mLHn0UNqilxQxTYaaC9mVWlNpBsfHgQf/H0+nCDGvv9SOP4G97KMzEBK5vuy38ftHdd0MkfPWrRa67Dj5Sby/EwpYWM1CGvhKDrGqPFKUymptxfI2O+j+ey4nMzWHdNTuLdla8zM5ijTYzs3JAVT6PY/izn13Vxwql3VpPQiciuq6bdxznj0Tkv4vIM47jPCwiD4nIvYKml5kiL/2PIvfvFJFnPff1O46TE1Oz/m7BjvWv1Xz2r35VR44rSiPQ1RWcReSH47znbhF594MPmuM4rPboU59SW6QojcJqbdE3vhF+W/SmN6ktUpRGYWAguE+jl43kF504obZIURqFoNLptSCsdms9CZ2IKCLiuu77Hcc5ISK/IiIvFpGXicjvisiU4zi/7rrup3xe9lbBJBwv42Xcd0JEfsl1Xb/XK4qyiVF7pChKI6C2SFGURkBtkaIoYUPtVmWEUkQUEXFd97Mi8lnHceIicq2I/ISI/KaIfMJxnPOu697neclDFTS+fLVgek5GsGOccN1iHXkURdnsqD1SFKURUFukKEojoLZIUZSwoXarfEIrIhLXdVMi8oiIPOI4zgOCJpU/JyLeH7kSvunXVFNRFCUItUeKojQCaosURWkE1BYpihI21G6VZqMNkv/u5eut6/opFEVR1B4pitIYqC1SFKURUFukKErYULvlQ+hERMdx2hzHua3Iw3dcvn6qXp9HUZTNi9ojRVEaAbVFiqI0AmqLFEUJG2q3KieM5cxtIvJtx3F+ICJfFpFTIhIXkRtE5C4RmRCRD/m87icdx7noc/9h13V/sFYfVlGUDY3aI0VRGgG1RYqiNAJqixRFCRtqtyokjCLirIi8Q0R+TETeICKjIhIVkTMi8lEReb/rumd8XveBIu/3xyKyoX9kRVHWDLVHiqI0AmqLFEVpBNQWKYoSNtRuVYjTyENhHMe5W0TeLSKDIiKu606u6we6jOM4ERHpE5HtIvJ9EXmf67q/t76fSlGUtUTtkaIojYDaIkVRGgG1RYqihA21W7UhLJmIEyIijuM0NchUm10icny9P4SiKOuC2iNFURoBtUWKojQCaosURQkbareqoNEzEXcJNij5htsAH9hxnFYRebF11zOu655cr8+jKMrao/ZIUZRGQG2RoiiNgNoiRVHChtqt2tDQIqKiKIqiKIqiKIqiKIqiKOtPZL0/gKIoiqIoiqIoiqIoiqIojY2KiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEkhDi4iO49ztOI5rXWLr/ZmI4zhnrc/1wHp/HkVR1g61RYqiNAJqixRFaRTUHimKEjbUbtWGhhYRLd5y+ZKz73QcZ7fjOH/lOM4Jx3GWHcdZdBznMcdx3uc4zoj1PO4su4P+ieM4rY7jvPPye8w6jrNw+b0/7TjOazxP//XLn2myRt9RUZTGR22RoiiNgNoiRVEaBbVHiqKEDbVbVdAwymsQrut+3Huf4zg/IyIfE5ElEfm4iDwpIlERuV5EflVEfkZE9pb7Py6r0PeKyAtF5NMi8rci4orIbhF5pYj8rIh8xfpM91x+3R+t5jspihI+1BYpitIIqC1SFKVRUHukKErYULtVHaEQEb04jnOd4If9oYi8xnXdKc/jvyMi76rwbe8UkZtF5Ddc1/0zn/85svIliqJsZtQWKYrSCKgtUhSlUVB7pChK2FC7VRmhFBFF5L2Cz36X9wcWEXFdd0ZEfqfC92Qq6n1+D7quO17h+ymKsvFRW6QoSiOgtkhRlEZB7ZGiKGFD7VYFhKUn4vM4jtMqIq8Wkftd1z1Rw7d+5vL1zzmOE63h+yqKsgFRW6QoSiOgtkhRlEZB7ZGiKGFD7VblhDETcbeINIvI4zV+38+LyBMi8v+IyF2O49wnIg+LyFdc1326Fv/g1Clxt2wRaWmpxbspilIv/uAP3i3vfe975E//VNwzZ0Q++EFxJMS2SNCPQ1GUdSafL31xraP1ne98t/zP//ke+dCHxP3+90U+9rFw26KmJnFdV6SvT+TKK0V27RIZGxPp6hLp7sb9HR0i7e242H+3t4u0ttbiUyiKEoTriiwuikxPi8zM4DI3J/KGN7xb/vEf3yO///vi/uEfinP56aG0R2fOiNvWJtLfX+07KYpSDfm8SC5X/JJK4ZLJmEs2KzI/D1v16lc/b4sqIZR2az0Jo4jYdfl6vpZv6rpuynGcl4rIb4nIXSLyxssXcRznfhF5m+u6J6v5H7GYyMWLItu3i0RClwOqKJuTTEYkmcTfZ86IvPa1zz8UWlukKMra4rrlCYR+RCK4RKMiTU3mdiRigpBPPilyxx3PvyS0tuh97xP58IdFEgn4R4uLIqdOiYyOimzZIjI4KNLWZp4fj2ObkEjEX1z03lafS1HKJ5mEUGiLhtksHovFRHp7RfbsEensxH2ve13By0Npj7q7IYw2N5vvpShKbQkSB3mxA6f5vEg6XSgsOg78I/tYTSaNz7BKQmm31pMwioj8cWtu4l3XnRWR3xeR33ccZ1BEbhGRnxeRnxKRLzqOc73ruqnVvv/wsMi5c3CUR0dr8pEVRVkjXFdkaQknprk53HfwoMiP/MjzTwmtLVIUZfUUEwhzOf/sQeI4Rgz0ioP2JQjaot27RX76p5+/O7S26Ld+CyLhP/0Ttl9nJxYHuZzIc8/BZ9q6FcHXXbuQeZjPQ8iIRrFNXRd2emJC5Nlnjdhh09oaLDJ2dGBBoiibjWxWZHa2UDRcXsZjjgNxbft2ZAX39uJYEcFaZmkJfx86VPCWobRHXV0QK2ZnYQvi8Zp9bEXZ8LhueQKhFwqCkYg5r2ezxqdyXQRPHQd+U1MTjs/mZjx/dhbBx64uZBHHVq9shdJurSdhFBFPiEhaRA6VemI1uK47ISJfFPy4HxeRN4nITSJy/2rfMx7HDj41hZ2+p6dGH1ZRlJqSSsE5phhw4nJ3jDe8oeBpobVFiqL4U2l5MQnKHuTFWU2BjcXSksijj+LvX/ol/K/LhNYWRaMib3vb/8/em0bHdV1novvWhKkwFAYCBECCM0FSIAlqsqzBkiXZFhVJtmVLkWwnHmI7ev06K503Zb33OlFWenX6R3fHnRf3c/zctjw7jm3JlizZkqVIlmRZEyDOgykOIEiAmFHzcO8978eH7XOqUIWaC3UL91urFoBC1a1b956zz97f2d/eCBZ+/WuQfS0tuFZMKC4sEB05QnT8OFFnJ8jEvj6QGXxNu7ulBLquDs+HwwguQiH5CAZBfnB2uQq3O5lYTEc2NjYWfx9t2FgtCAHJn0oYBgLSpjU1IU7x+UAatrYm2ZnfH4PnJGcFp7zGsvaovR32YXYWNiX1u9uwsRaRTV7MG6ipYJ+I/SL+nR9CgDCMx/GIKTSa0wl/QCUN1bVX14mmpvC+5mbYqiLXZsvardWC5UhEIURE07RnieguTdO2VigF9HXCTe4r9kCtrdjhm5vD5LB3umzYqB6YJoLMeBy7WV4v0Q9/KBe2pib5WqvbIhs21hJKJS/2ePLPHiwFTJPoq1+V5JfPp343a9uipiaiBx/Edxwdhd31+UB2uN1Eu3Zh03VxEZmJo6NEhw4h4B8cJNq8Gb7UzAzRxASO6XCAVGxpQRZVa2tyPWrDSCYXmWDk3ycm5EaSCk0DkZhNPl1ENoQNGyVDOCzlyHNzIP84G8jjwTzr7ZWkYbZsXNPEvDxxAsfp6Vn+GivbI4cDGxVMJHZ12ZsGNmoX2bIH1WzAVDAR6HJh/U0lCFkpwGBZcjwOHiSRkOurpklpMpOGKxH44TDsmaZhvpaiNrKV7dZqwapuzqOEDjrf0zTtLiHEnPpPTdPaiOgvhRB/mesBNU3bT0QTQogrKc9rRHRw6c8TRZ31Erq6pKy5r8/e6bJhoxoQjUppDhfsf/VV1B7btInolVfSvu1RsrAtsmGjFlBo9mAp5MWVwpNPwhbt2EE0MpL2JY+ShW1RdzfR3XfjPp06BVJjzx5IlOfmcA9bWohuvhkBxuQkatS+/jrRb34DknB4mGj3bqJ160AI+v1E4+MyUPF4JLHY2ip/zwSWSadmMzLhOD+P48fjy99bV7eydLqpyW6yZ6O0SCSSCcP5ebkB6nBgzG/aJAlDdVM0FzCBOD6O7MUdO4h++9uML3+ULGqP3G5cn9lZbFzYqjEbVkSh2YMsL+ZN03TkYDbeQgjYIyYN4/FkKbPbjRjL45ES5VzAWdDBIN7b2VlyDuVRsqjdWg1YkkQUQrytadofE9FjRHR6KR30GBE5CWmoDxLRNBGl3uT/SdO0OVqO7xDRHUT0HzRNe4aIfkNEM0TURdCrX09E/yyEKEnHHqcTROLEBHbO162zd7ps2FgtGAYcYl3HQub1Yo6OjRE99xyyXDItcFa3RTZsVDPK1ZykVPLiSuHIEaKnn0bdsenp9K+xui3SNNjaO+7APTtzBiTbzp0gLmZmQIo4HMgEXL8e3ZyJQJicPw8y8cUXQY7s3Ut04ADRe9+LAGZxEcfhYzEaG5NJRa9XEseahkCnoWHlYu2JxPJMRpVsnJ1F5kQqnM7l8mm7KYyNXGCaGNMqaRgMyv97vSDmfT48WluLG0eGgbmzuIjYpbsb8zUTrG6PGhthNwIBkBVqcycbNlYb+TYnYajy4kwEYSF2gjskM2GYSMj/8Wfxw+0uzPfSdazdiYTcACy1D2d1u1VpWJJEJCISQnxf07QRIvoLIrqHiP6UiAwiOk1E/7j0SMW/y3C43xLRj5A9o9oAACAASURBVIiogYg+sPS6LiIKE9FxIvq3RPSVUp5/QwN2uubmsEittBtuw4aN0kMIpNSHw7L+FpcXCIWIHn8ci93HP0703/7bSsexti2yYWM1kI0gzOQEWyl7sBSYnib6+tex4/6pTxF96UuZX2t1W+R2Ew0MEN10E34/cwZBx969IPG4ezNnNTQ3w49qb8f/77wTPtWxY5A7v/YabPpVV4FQHBoCManrklD0+/GeyUmcg8MBAkbNVMxGILjdyFZaKWPJNLHWZJJPT08TnTuXvvB8Q8NyYjGVbLSbwtQ2QqHkTskLC3IDpa4OROHGjZI0zDWzJxcwgRiLgaxvbESWcLYA3ur2qLUVtmZuLr9sKRs2CkUxzUnUTdP6+uzy4kJhGMlkYTwufTX2y5qbJWlYCn9MlS93dZU3i9/qdquS0EQ6L71KoGnao0T014QLTkKImRXfUEFomuYjMNMjRDQmhLgph7clXWwh4BRHIthVt6UtNmxUBokEAjjDkLIzXuh0neiJJ4jeeQd1uoaGiB599FH6m7/5G5peSgPq7OysmhymUtgiGzZKiWKbk6z0sEr2YCkQixH9l/9CdPky0Z/9GeSDa8EWjY/jOx86BCJx2zbIlFtaQGIEgzJz3OWCmsPnQ6AhBMg8Jh1HR/Hw+/HaXbsge963D4EOIxqVpOLiIjZ3OVhzuZJJxZaW8pF2sVjmjEb+PVtTmEzy6YaGtTV/rAomrpgwnJ+XknmnE+ObOyX7fOXNkmMCUQiid9/FOLzmGjl3VHvU1dXVZfE4bZktMgzYEU1D9mUtbVDZqCxK0ZwkU+ZgucqiCZEsSU4k5LqYqVtyqT9/fh7rHjenzfG7rrjS1SC/tCqwSibiNBGRpmluIYS+2iezhCMkC2GOFXIALgh6+TJSdNevt+sj2rBRTgghgzAuvK8Gg0LIoPO660AgquiSmjZXLdkiGzZyQSnlxez8quSgTXBICIGmTufPYzNj+/bk/9eyLertBSF44ADGxrvvYswMDuKxuEh04QLGmtuNDo0zM8hi9PlkplZ9PdHtt+P6XbiAWpKjo5CHaxqu6YEDRPv3g5SprwchSSTXCiYV/X7cCya/uYs0S6Gbm0tDMNTVyWApE7gpTCay8dIlXL90TWFykU/bTWEqB8PA+FJJQ67NTITxtX69JA3LIeHLBM7Y1TRkyvr9IPNV8p2xZI+may1OczoxF6emcI86O0t3cjZqA5w9mI0kLEVzknJ/D7VTcjyOvxl8jkwaFipLzhWJBEqBsHy5tbUsH1OT/FKlUO2ZiFuIaIvy1POiSk5Y07SbiIhzBxeEEG/l8La05x4OY6eLpTn2TpcNG6VHPI4AyzQRADY2Ll8Ax8aIvv1t7PT/yZ9IefPZs2fp7Nmzv3/dnXfe6ahFW2Rj7aIUzUlWetjIDy+/TPS97xFdfz3Rww/LzY61YosiEZCHpkn05psgAXfuRFZiWxts87vvSrKwoQEBh9uN1/l8IBaDQQRinZ3oJFtfj0zHkRFkm1+6hM8bGAChODycvuMskayfq9ZX5KxATQMZp9ZXTLfGVApcriNdJqP6t1q7ilFXl10+bStn8ocQsiEP1zFcXEwmprnpic+Hcb5ahK5KIMZiKBHQ1wcSX4Vqj+688847ydpxWsbzDgRga3hu21gbKEVzkpUeqwlVlsxZhqosWa1hWCpZcq4IhWQNZN7gyxPZMhFrjV9aFVQ1iViDyHix2Zno7Ey/y2fDho3CYJqyjpbLhUAonWO+uIjMnytXiD73Oez+rwCr50zZhn+NQIjkDEJ2evPJHrTlxZXFuXOow7puHdEjj4BQWAFWvwMZbdHMDJQaDQ1EL72Ehg47d6LDbGsrHrOzIBN1HTY7kYANr69H1lRXF7KIZmcxD1pbQRK2tWHsqpLnc+fwuevXg0w8cIBow4aVx3gsllxf0e+X2RtO5/JO0LwxVS3I1BRG/TtbU5hM8unGxrW9gRCNJkuS5+claetySTkyk4bVQswmEiDNOHP87bdxP6++Ouv9rFlbRCQbJJW7JpuNyqAUzUlWkhhXE0wzuYZhPC79PpYlq81PVovgLEK+nAqr2yJLwCYRK4uMF9s04czG46i7YS9QNmwUj2hUSoMaGxGMpkMsRvT880Svv050111E73lP1kNbfYGyDX8NoFB5sZ09WL1YXCT6r/8VweoXvrBcxpwGNW2Lzp8HodHcTPTsswjkBweRFaVmBV24gKxCrxdZhRMTICG9XjRW6e6GJJP9rLo6kIldXXJTaX4e2YkjI0SnT2N+dXRIQnHLluzzQgjcO7W+YjAog9G6uuX1FVc7IyUb1KYwK9VrzKUpTDrCsRYaVhjGcsKQyVdNwz1n0tDnw3iuxg0YVmw4HLg/b78N4uG663IiwKvwG+WFFW0R17E3DNgTW/ZfnSi0OQlRbtmD1ThvVQghyUL+mSpLVglDl6s6vlMigTVb10uS8VsF36j2YZOIlcWKFzsexwLlciEjsRYcKxs2VgOGAUc4kcA88nozB2qGQXT4MNFPf4rg9MEHc1pQrb5A2Ya/ymE3J1l7MAyir3yF6PhxSJhvuCEnMtfqd3NFW6TrRL/7Ha5DQwPRL34Bcm5wEJma7e3YIHK7YfNPnQKhtWkT/KhTp0DktbWhxm13t+zGzNlWLHVWG1QEg2jsMjqK+6HrIH6Gh/HYuTN3EsE08VlqfcVIBP/jOoVqfcWmJmvOUd60W4lsjMWWv4+bwqwkoa6mpjBC4H6qdQy5+QgRxpHa+KStrfqJYiLEIIEAxnVLC9HRoyDeh4ezZkMzquQOFYysfpGuyzht3brqGZNrBcU2J+GfLlf6jEIrQq1jmEgky5K5BrVKGlbjmA0GUS7A4cDGXQky9qvwW9YebBKxssh6sQMB7LQ3N1vH8bBho5oQDssALZfaTRcuEP3oR3AqPvvZnMsJWH2Bsg3/KqEUzUnUh9qgxG5OYm08+SRIsve/n+jgwcyZ0ymw+h3PyS86fx5ERiKBjMRIBEReZ6fsUOt2Yx6Mj0Pi7PGgaYphoKZbKITMw6EhBCqhEAiBmRnMuZYWkIk+X/I8ikbRjOWdd7DhFIvh3uzdC4Jlz578gx4mbNT6iix1dTqxDqlS6FpRp+g61uiV5NOh0PINEocD9zgb2VgOnzkSkTUMmTTkTCa3O5kw9PmqT7KeC7grOBOIFy+CvN+2DZm9OaLmbRERxsPMDMZbe3u5T2ltgP2iQuTFtZA9mCtYlqyShqosWa1huJqy5FxhmjJru74e86lE51wjd7y6YZOIlUXWiy0ESMRQCJPJ660d42fDRjmh63CCdR1OfFNT9iyemRmiX/4SROIDD8BhzhFWn5W24S8D7OYkNgrF6CjRt74FG/Txj8suwTlgTdgilif39+Pn888jqNy+XZI3jY0y08IwQPwtLKDG4b59OMbx4yBM+vogc25pwZoxNQVCMRbD+tHdjXuQmm2YSBCdOIH79c478NXcbhxreBjEoprRmA8iEUkqsgyaA0SPZ3l9xVqVU6pNYVaST6drClNfv3Lnaa93ZZJP15Mbn8zPy+Y5DoeUJTNx6PWW5xpUEpxB6naDvF5YwPhmwj0PrAlbRCTnaXs7xpWNzMhGDvL/U5FLc5JaVlaosmR+qNdJJQvdbuupF+Nx8B0lki+nokZHRXXBJhEri5wutmHAodV1u4CvDRvZwDWoIhE4FF6v7GS6EkIh1EB8+WWim24iuv32vD7W6guUbfjzRCoZmK5BSTrY8mIb2TAxQfSP/4gg4BOfyKkOogqrj56cbJEQyC6Mx4k2byY6exa22+FArUKfD4FIQwMehoGfExPIQtQ0EH0bNyLD6tQpvGZgAJmEjY2yqPvkJAgCljp3d6cnCkwTxxoZAenCcqzBQdRQ3L+/uMCIm4KpMmi1yYkqg25pwdq3ljYb4vHs8mlWJajgpjDcPdswZLBuGCAZ6+pwTdXmJ62ttXd9mUD0eDB+4nGiN96ALbrmmryJ6jVhixjT09h0WLcuN5+zFrGWmpOUGyxFVrMMGU5nsiTZ7ba231gG+XIqLHx1rAObRKwscr7YkQgYercbDsxaXaBs2FgJXATcNGUGQi4LayJBdPIk0VNPIUvlk5+0neW1Crs5iY3VRCQCAnFyEvVYh4fzzihYM7YoFiM6cwbkT38/ara98QYCkI0bpXqjrg4ZVVwT1+lE1uDUFAKWAwfwmpMncTwiZIAODspgJhxGZuL0NOZ/czOkzu3t6dcYISC5Hh0FqTg1hddt3SrrKHZ2Fn+xdD2ZVPT7sQ4Swd6wDJqzFnOUxNcsTFOSitPTmGeTk7JjdziMccVyafXR0pJdPm217B8VkQi+v8eDcWOaGLvBING11xaUYbdmbBERrtfkJH7v6amt9X6tNycpNwxjebdkpmMcjuVZhtUuS84VpokM70gEMVtHR9nmzRofYZWBTSJWFnld7IUFOIi8w1yr0hUbNvIFBwaxGBbXfDo8CgH58jPP4P2f+AQyfvOE1ReoNWH4i5EXq7UG7exBG+WAEETf/jYC9w9+kOjGGwvKXLP6SMzLFs3Po+Zhdzc2WFlWrJJ87C+1t8tGHi0tyEo8fBhE3M6dIA2jUWQqXriAOb9zJ9GOHdLf0nVJPsViCOpY6pxpzRGC6PJlnNvoKOrLERFt2AACc3gYm1elsiHRaDKp6PfLjQ+3O5lUbGmxNvGVK+Lx5E7Jc3OSbHU6UXNczTJ0ODJnNfLf6ZrCeDyZpdP8XH199a0XrN6oq5OS7FOnMLeGhvIqp6Ciyr5l3sjbL4rHQUjX1RXkR64KCm1Okou8uFbIrlJCiOTsQlWWrGlSiqx2S65FqPLltrac688XCqvbIkvAJhEri7wuthCo/RONyno/tbTTZcNGIeAC4EJgTuTbtXFigui3vyU6fRqB+/79BZ2G1RcoSxv+UjcnsQlCG6uBF14gevpp1Ot7//tRp68AWH205m2LxsZAlG3ejKDrjTdABHKTla4uWZewqwtBi65jrXC70XX54kUEMVdfjWwIvx+ZjZcugRDYvRsyafa5hMDG7uQkCDtNw/t6erLXxZueBtE5MgIZthAgIjlDcdOm0tocIaQMmh/BoPx/Q0MyqdjcbG3f0jRxT7iG4dwcSD9Gc3Ny85OWlsK+r66v3AwmW1OYdPUZ1b8rRcCEQogrWL1BJOuFbtyYdzkFFWvOFhHhes7NyTm1WihXcxK1gZuN7EiVJKuyZJcrufmJ1WXJuYKbiHGJkAqoK9fAVV192CRiZZH3xU4kQCQKAeenGnc0bdioBAwDTjtL1Lze/J3uhQUUxX/xRQSJ991X8OlYfRZWreFnGY3dnMRGLeP0aaJvfAMk18GDyIArcG1fc7bIMFCLkOXCQhC9+iqe6+sDSdbZiaA+kcDvLhcyr7j77PQ0sgTDYRxjzx6sK7OzaMgyPQ2CZc8eECvqvYlEpNTZMLAW9fSAVMx2DxcXQSiOjkJObZrw7ZhQ3L69PHbKMJJJxcVFmVmnafgOatMWrhdYbRBCkjacZbi4KDeN6uuTG5/4fJXN7OEazdnIxmxNYTJlNRZbOywYxH1XCcRAgOitt3D/h4eLuu9VOGLyQsF+ERPXnZ3lKSEgBEjsbCRhKtZ6c5Jyg2XJKmmoypJVSbLHs/Z8UFW+3NAgs74rAHtEVwA2iVhZFHSxg0E4SSw7sBut2Fhr4No9RHB8C5kDkQiyQJ57Dsf45CeLcvasvkCtiuHPRAoyaShE5iLcdvagjVrB3BzRl7+MoPDee0FUFbGuW33kF2SLwmE0WmlrA3Go69gcunBBZhB2dCBoiUalfCoQwPubmxFAHzuGuogNDVJmTISMQ+7u3NoKiSf/j2EYUuocjSJQZKlzLpkW4TDk1SMjOI9EAmvT/v2QPQ8Olld6HIslk4p+vyQimGxVMxZXozZ3LJbcKXl+XhJwLpeUJTNpaJUakNwUJpN0OhRK3xTG5Vo5m5EbxqQL1JlAbGiQmbq6jkxe0yS67rqi7/GatEVE8Fu4IWZ3d37Etd2cxBowzeXdknnzgmXJKmlYq7LkXBGPIwnKNLGGlFm+nAqr2yJLwCYRK4uidrnCYUzCxsa1UdPGhg1dh+Or67J7YCFOkWEQnTtH9NprCPo+9jFklxQBqy9QJTX8dnMSGzZyQyJB9E//BDntwYPoGNzRUdQh16wtmppCRuCGDfCNdJ3o+echSd61C9e6vR1ZgoEACJbOTrmmNDTgufl5EHmLiyAk9+8HqSsEasQdPYr3dHaCTEzXIIWlzgsLsGv8ubkGTrEYiMTRUcito1FsHO/dC3LzqqvKv4HMWXQqqcilQ4jw+aky6FJKcA0D108lDXnzUNNkt2QmDJuba3vzSG0Ks1IH6tS1VdMwtplg5KxSjwe2prMTz7tcGGtzc5D1l0CKa/W7UZRfpOuwR04niEQiuzmJVSHE8m7Jui7/z7JktY6hfT8kAgHYcpcLNmcVNqDsu1EB2CRiFmia1iSECGV/ZU4o+GIbhixI2tICB8EuYGujVsHBTCQCEqmpqXAZjxAI2E+ehMP8nvcQ3Xxz0ae4KgtUCe1RzraomOYkai0dO3vQxlqHEEQ//jEyf268EbUQN20q+rBrxhYte6PA5lAkImXAiQTRr34FgnFoCESLz4dNo7k5rCPr14OkU+XNmgaJ+YkTsFlDQ6i5SAQbd+4casZFo0S9vSD10pEu0SiIhKkp+G1NTVLqnOuGiK6jycXICKTPgQDOc88eEJz79xfUObcgGAY+X81YjEbxP03Deagy6Kam3Oy6EDiu2vjE75drSWNjcuOTtjbb582ESCQz2RgMyi7UdXXJCQiLi/j/1q2wQyVoCrNmbFEmWXEohLnv8WDMLj9XuzlJNULXkxufZJIlc5ahvbmdHqYJexONVly+nIqqjy5KzC+tCqqeRNQ07dNE9A0iuouI3ktEnyUiHxG9QkSfF0KMaZr2b4joz4loAxEdJaIvCiHeXnr/ABH9r0T0fiIaWDrsKBH9RyHEMymf9SIRbSOi24no74noJiIaIaLvE9FXiOgmIcSrKe95HxG9uHQuX8vydYq62NEomH2HA4t7vg0lbNiwAhIJOLaGIev2FDPOp6dRiP+llxA8PvBA4U7aY489Rp/5zGeIrG+PhN2cxIaNyuKNN4ieeIJo2zZsZuzcadsi0yRRTJCRSKAWYl0dZMyGgay+X/4S/tLVV4OkamnBdZ+ZgX3i7sh+P47T3IxjBIMg76anUa/ywAHZOEXXIX0+eRKfOzAAYi8doWcY+KzJSUlWdnfjkU9WhmlCtj06ivOam8P579iBDMX9+0G0VRLx+HIZNGfpOJ2SUOSsxbo6XAOVMFxYkO9xu5MJQ5+v+Np/NiRRm0jgenJd6VAI2bqHDsn6oaEQiMZ0TWGyyad/9KPH6HOfqw1bpGnFNSdxOGRNTJ9Pkt+2vLh6YJrLuyWrsmS1hqHHY5O6uSIWA4Fomhj32RqOlQumSeRwZCcRa4xfWhVYiUQcJaIoEf2AiHqJ6H8h3NDvEdEfLb2mkYj+DyKaJ6KtQoiEpmkfI6K/JaLHieg8EbUR0SeJ6CoiulMI8bzyWS8S0V4iChHRs0T0OhGZRPQvRDRBRN8WQnwx5fy+TkQPEtF6IYR/pe/yve+RaGzEDmtjY2FOUjAIZ6yuDsbNro9oo1YgBMZ2PC67GRZbU4R3hQ8dgrPwoQ8VV5fj+99/jP7+7z9DZHF79Bd/QcLlwvVVd741LfODiUGbHLRhI38sLBC9/jqC9q1bQVDlK/Hh4vq6TvTmm4/RU09Z3xY9+yyJnTuLC679fqLLl0FAcTfmWAw1EiMREG0zM1hTtm0DiWWaeG19PYgWXYdfxYQgZ6+bJrIcN2+W5xiPg9g7fx73ZGAAx83k0wUCICVZ6tzais/Ody0SAt/z6FE8pqbw/IYNyJzcsye91LoSiETwPVnGNj2N30Mh3AunE9e6sRE1I9vbcR3a2qq3iYuVwQSiYSyPN6JRZLiyXJ7Xf9PE/8JhqQRhclF9qLJOIqK3336MHn/c+rbou98lsXUrMo1Ve1RIc5KZGVy/detsQnw1wbJklTRUx6/aJZl/2sgfvKFUKfmyrku5ufpYXETZqs9/Pi8S0dJ2azVhpbKfBhHdIoTQiYg0TXMSGGAfEe3hlFBN0+aJ6B8JzPLPiOhpIcSP1ANpmvYPhEHzvxPR85QMHxH9ZyHEf0x5z+NE9ICmaX8mhIgtPddIRB8josdzucGaBpZ+ZgZ/O52SUORHNtKkqUk6yE4njOJqFLu2YaOUiMfhcAkBh6sUXci5s/nYGBzf97ynOAIxGkXgtgRL2yO3GwGDriPIcDhge5hUdLnsHXMbNkqFeByZZA4HCKdcm1QYBuyY+pMIc5cbhJDFbVEshmYoLB0uBC0tsPFzc7IGHBHRLbeASDx0iOjaa4kmJpC1uGMHiK6pKWQLtbZK0kTXsU5s3AgC4PhxSIsvXwZR19aGe7drF8759GmQiRcv4u8tW5YHos3NeMRiWJNmZvD5DQ0gE3OVfGkaajb29RF98IOQTR87hsfTT+PR0wMycWgIv5ebnGOyamEBARxLZE1TSsV5PXG55L2JRuV6I0TxigMbEiqB2NSUbGsMA5J9IoxhNcuKN2/5HmVCLCab3YXDRG+/LQ9PFrZFjY0oW+D3Q97Nnd4L8YXa2zE/Z2eRfWxns1UGLEtWSUOG04m50NQkSUPb5hQHw8C6G43KEhTFxA5qLcpMD11fngkcj2MNOncuyTfK+WuQhe3WasJKJOL/xzd4Ca8SbvJ3UzTlnA66lYhICBHmf2iaVk9ETQSt/IsEhjcd/nua575ORA8T0X1E9MOl5z5KRM1E9FguX+Chh2Stt0AAjlYgIAtHL6XgUnMz0oCbm2HsUiekrmNhIsLr6ursLlA2rAnTxDyIxzGGvd7SjGXTlFkiY2NEH/gA0V13FXe8b34zybm2tD36u7/DtTEMXPtYDA+1DozTCdvCD4/HJhZt2MgXpkn09a9DFnvrrTJrLTV4MQw44rGY/MkSK4dDzsP6ehBWDQ0o0UAWt0XXXIPmJUTIqCsUfX2QGhuGzCQyDDz/85+DqLz5ZqwLCwuoR7mwgPWnvp6ovx/2LxCADeR6cNu3g0AcHQUBuXUrSDpep7Zvx3uOHpVNWHbtApmYjjjYtg33laXO4bCUTvf05Je1tGEDrh8RfMJ33oHk+Y03kPXa2QnJ84EDOJ9SBMzhcHLjk4UFSW57PCBfWJrs8yUTWImElEGrUmi/X/q+an1Fq3RariaYJq4nxxCphPbx44grbryx6IZORIQO5rXiF919N+zE5CRs7NQUbElPT/7loxwOzD8mEru6bMKq1ODNNZU0ZP+VZcnNzTLD0CZySwtVvuzzZZcv8/1a6ZGu0ZDDgfvnduMz+Hdeg+fmsAY7HNj4u+22vL+Kpe3WasJK1NOFlL8Xln6OZXi+nYhI0zQPEf3fhJTUgZTXptNyzwkhFtI8/8LSOfwRyZv8x0R0cel/OYELUas1dLhOCZOKi4twKtXXs0PQ3IzFrLkZjkIshtfZXUxtWA28k02EMV7KgGFiAvPp8GFkjrz//cUd75lnsMO1Zw/RT39KRBa3Rw4HFn6nE7aFF38hkknFWEzeIyJZI4YJDbfbdoxt2FgJzz5LdPYs0XXXISNlYGnWR6PJpKEqsaqrkyQWE/iM8XHYNoUAsLQt4iYnk5NYB9rbs70jPRwOZA+eOYN6b3ydm5pQxuLnPyf6zW+I3vc+kIGjoyDY3G6QYYkEyAKfD74V15LzekEkdHWBIDxzBqTigQOyA2tzM9ENN+A4R46AzDt9GuvFwMByG8nBzrp1+JzJSTwmJvD5PT35d8rt6CC6/XY8AgFkX46MEL3wAtFzz4GUGx7GI9danIlEch3D+flkn7OtDdmXTBhma/biduM8VfIqEkkmFsfHJXnu8STXV2xpseWGK4EJRNNMTyCOj2OMbd5cGgJxcpLo179OktBb2hZ5PNh0aG+HHzQxIUnF7m58T683dzLK7caxZmcR16VrtGIjN7BvqpKGKuHkdoPMVrsl2ygfVPnyunVY48LhlbMH09VYd7lkVih3jOf7x2RhuvlmGCD5OaGK7/e2bdjoyxOWtlurCStNszT89IrPs9v2JSL6UyL6fwnFMueW3vMZAvObiki6gwkhhKZpjxHR/6Vp2joi8hCKaf4nIUSG9gO5wemEw6g6jfF4crbi9DQWMn59czMmkduNhU3T7EYrNqwB7vao63LhKOUOIe9KnTyJefThDxdXk+att5DZsX+/LMJPNWCPOFOHM6CJYD+YIPz9F0rJVgyHYZfU16vEou282bABHDtG9PLLyALr6sIaPTUliRgizBcmC/lnpnWc/YB160CoLMHytmhgAGTSuXPJdQnzRX09CLiJCQQXHR0IPltaIP995hmiV1+FzJm7H+/fDz9qehoky/r1CPa5FpyuS/JqeBjZfyMjRK+8AtJy715pL30+HPvKFZCJb76JzxkaAhGZDrw5HI/Lrs4nTmCs9PTAv8t3fWxuJrrpJjwiEZzL6ChqRb30EoLtffvwffbskeUtFheTSUO283zM7m7Z+KSlpTQb1w0NeDAhKwQ+V81U5BJARDh3tWmL12tvoBNhnebu1iwhV7G4CGK7o6O40gGMSATzyevFGOLTyHR6GZ6vOlvU2Ig573Bg3vr9yEq8dAnjsKMD9iHXkhSNjTKe83iyS8VtAGqX5FRZMhNNardkO/YtD0wzmQyMRrFWBoO47k1NMulJhaZJErCxUWYO8nP8yPe+cRb/9LTMgGxqQoZ1WxvR4GBBY8Hydmu1sBbCvYeI6FtCiH+jPqlp2ucKONZjRPRXRPQJIqonIgcRfbPYE0wHjyd5x5abTjCpyATjwgJ2xpmE7OyUMmg7ddtGNYHHcDgspUulLjgdDiMIm5hAtsh734ugsFCcP48un729CTbkEAAAIABJREFURPfcQ/Td7xZ9ilVljzgjUSUSU+F0ykCPwXVZ+REISIKVZdAqsWgHeTbWCnhujI9DxtzYCAKRM3+dTji+TBjmuk77/SjN0NpanOxXQdXYIocDGQTHj6NhyeBg4bWeOzvhG01MwA+qr8fa096Osha/+AUyEm+5BWTd6CiIxN5evIeJRK6bFQiAVOPM0M5OojvuwCbVqVMgdfftA6HI4C7MLG9+9VX4ckNDGAvp4PHgvvb1gQCdnASpOjYmpc6FNNJraEAW7HXXIQg8dgzf+a23kKFomvju69fj85nM9vnwndrbEZxVKgNQ0ySx2teH53RdqnT8ftwP3lTn1zOpyDLotUQqZCMQ43EQyfX1IPyKvTamCQIxEiH6+MeR5VskqsYWEWGu+/3wJ3n8z86C5Od6pm1tsBEtLdkbA7W24h7MzUnyxIYEb1SrpCHLkh0O2USUSUPbnywNMjUn4czBVHlxLAYbrGlYz1pb02cOqlLjUkEIzJ+pKbmx192NsTA6is+76qqK8x5VZbdWA2uBRDSIkrv0aJq2k4g+nO+BhBDnNU37V0LKaT0RvSaEOF2Ss8wCTZMFj9etw3OmiUk1Pi4D+fl5uUCpMmiv1+6AZ2P1kEggsDMMmWlSakdA17FbHIkgcOvvRzH9QjE3R/T44zjfBx8smeNXVfaIuy6bJhbpXO0DN2HhjCGWmqRmLDLc7uTainZBaxu1ANOU452lyUwifu97GOM33gjiaWio8E2TSATkWn196WrbUZXZIo8HMqTTp0GebdtWeEDQ3w/J8sWLOKbLhfvS1QW5769+JYnEo0cRhOzbh/dNTGAd6e6G35RO3uxwEO3ejdePjCDjcGwMmX1qFmV/P4iw8+dB3r34IshAbtCSDg4HzrOrC2vm5CTIi8lJvKenJ39ZZCwmMwzDYRz7ttvwXc+dw4bb2BiIpr17ia6/HmRTMY3ISgmXS0qmGRzQsgyaCWB+vUoq5po1ZkUwwUqE75s6Z4TAGE8kUD+zFH7Ma69hjtx5Z2ZSPE9UlS1yOCSRGAxiHnBH8elp+IaLi8hWjkRwTZn4TmezmHRhEpLJj7UIzmxTSUMmqjh7TW18Yitb8kem5iTcdIYJwtTmJESSBOQ4jf/mxmN9fZjzlSTCFxYwd+JxnNPAAPgMw0DZDl3HRuAq2PiqslurgbUwPZ8gos9omhYidMzZQkSPENEJIhou4HjfIKJvL/3+xZVeWG5w4d66OixmDQ0wCroum7fw7hkRFremJrnYcVMWGzbKBSEwNqNRKdsvx+IjBJxaXUcg5HajDlahwXYkgtqH4TDRww+XtJZN1dkjTcODsxELuWaqDJoDTyZYmFjkTGp+vZqpyJIUGzaqFWq9UCYM43H5f7dbZhc+8QRef889sB07dhS+1iYSIMQcDjTxKOFOe9XZIu6KfP48CKGNGwuzRy4XsurOnQP51tuL66brCIJuvRW1An/zGzRbOXwYdQz37pVE4uQkAn+fD/cwHMZalkjIbK+WFtRYPHsWRM1zz4F8UxvnaBrko1yv8eRJvG7jRrx2pWL0Xi+ONTAAP+7KFbyfZdtdXcvHg2GA4OAahnNzckNH03DOfX2SlGNZ/LlzIERHR4m+/W2i73wHn811FEtRQ6+UqKuTdSWJpK+hNm3h5mpEuGYqqZiJ8LESdB3fle9ruu/z7rsYB7t3l4YUPnMG42RoCBnDJULV2SLuJM7kSUMDnlu/HnNhelqSjB4P7sXiooyxUu2904n3TU1hTip1JGsWHI+qjU/U2r8uV7L/Z8uSsyNTcxI1q1C9xgy1OQnXHkyVFrtc6Ru+cfMULmVRqXvE9YKjUdjvTZukDRMCa2EwiAzEQkugFImqs1uVxlogEf+coEP/KEGnfpJwc3ZRYTf5x0T0ZYJm/Z9LdI5FgevpxGKysGx7u9zpSpVBX74sHSuPJzlbsRYcKxvVgXgc48404YCVMxN2agrjfGwMDto992TvFJYJiQSCvIsXIX8rRf0gBVVpj9T6iKWa/w5HZhk02ytVBq12oGXH0rZFNlYLur68W3Jq53LeiKuvl+vtyy+D9HvPe0Ba9PYW3jTKNBG06zqaYZR4p70qbVFnpyxLUVcHsqwQeL041swMfmfiT9dByt18M+7Vb3+LbNFDh/AYGgLJxkXb43EQVVzXye9HZgTLmzUN2Y69vSDgDh/G2nHgQPLmk9OJe7hlC2TQp0/jdVu2gOBZSarsdsusRt4YPn8eTR8aG3GduGvy4qIcpw0N8AW3bJFkaKbMni1b8Lj/fmzIjY6CLPrhD/EYGJCEYjElQsoFTZNNwrj+JNdfZlJxcVFuqvPr1fqKVlLrcCdxhyNzfcqpKYyR/v7S3LO5OWTx9vRg/pQQVWmL6uthLyIRSboQyQYsTAryRnlDg6wZzRuqTU1yTNXVYR7Oz2NMKnVtawJMZKlZhqmyZI5R3e61m42ZDky4ZiMIV2pO4nZjDKaSg4V2po5Gsd5wOZBKEXXhMMjDUEiW+UhN5Dh3Due2bVvhzdhKgKq0W5WEJtLls9rICE3T6ohogoh+KYR4KM+3l+1iGwacZZdL1oNhBzcVpikzFbm2YkQp98ndn5lYVBdBGzaywTQxpuJxjEevt7yShMVFZI6EQggK9+4tvBuzaUKq8/zzkLfde2/GsV8VM6IIe7TMFgmB788S50qAZRcsCWXnk8E71SqxaNsiG6WGaS4nDFWJFY8/zjTMlDV79izqIG7fDnlNczOImULBWURbtyZLOVNQFTOilLbIMHAtAwFcv0IzwYXANYzHcU+4gYhhwMYdO0b0+uvIqLr+emQjRiLIbOjoAGkyNyebnDideH8ggGMyUaDapPFxHCceRwbqrl3pA7hoFDUgz57FuezYAZJxpYzsaFRmF16+jEBqfl7WwuOMR84YKaSGYiqmpkAojo7iXIlwLQ4cAKFYaLboaiEeT27a4vfLzB2nM5lUbGmpTrVOLgRiKASZvdeLe1Xsmh6Pg0yORon+8A8zbtJWxUgotV/EHa9bWzNf66kpXBsmcohwn7gRppqgMTsrywqUYo6uBkxzebdkJrhYlqw2P1nLG8KpzUnSkYNq4xiG2pwkU2OScmRvCgH7GAjg+B0dlVEKRaPY5PH7Zdfn9vbl329iAhu1fX0rdmKuCluUD4rkl1YFNomYJzRN+2NCAcwPCCGey/PtZb3YkQgmPqfdcwCeC3RdZivyTzZqDodM0edsRasufDbKi2gUDhURdhwLzcDJ5/MuXMDvL76Iz3v44cJJy6NHiZ56Crv2Dz644jivigWqCHuU1hatBpGYCnZOVWKRgzx2qlRi0ZZB28gHLEtWSUPVgWeZPROGuRLXi4tEX/4y3nfHHZg/g4OF26JLl+As9/dnzcarSVsUiyFQEAKBQqFdTWMxZHM2NIBk07TkrOu335ZS5gMHkI0YDEJq3NUFX2hqCvext1faG5Y3M/Gk3mduZHH+vCRxMtWOCwZBZo6NYawNDiK7QghkPDJpOD8vN3s1DYSGzwd/jP23REJmb3Z1lX7zbmFBEoqnT0uJ2/AwvuPWrdbLLhIC95IJRa5/yaFRXd3y+oqrSYhwp18ed+mut2GAQEwk0FCnFETo00+DRP7IR2TDmzSoSVvEjWuYEMy0HrCtiMdlMoZhYHxxXXuuz3nlCv7X3V39df94s1clDVXJLJNZarfktYJcsgfV5iQMp3NlYrAczUlyAcuXYzGsXW1t5d8kiscxb+bnZU3gzs70tm1+HnGaz5e1SVRV2KJ8UCS/tCqwScQcoWna+4loJxE9SkSXiOhqkf/FK/vFXlyEo8l1A4ox6Cw3ZGKRpalEOGaqDLraF0Ib5YNhyCCGx0a5HW3DkDWPDh9G0P3QQ4XXmhkbQx1ETcNOe5bjrOoCVQJ7lPG13GSl0PqI5YBhJHeDVne9WSajEotredfbRjI40zUaxUPt/Oh0SrKQfxZCgug60de+hsDwwx+WxFehNchmZmDburogI82CmrVFgQCy7erqUA+pUDJkfh4Zgt3dsoaeSiS+9hqyAq+5BnLmw4dBGuzahfdEoyB0iUDQqZlGnKXk9S7fNJueBkkZCuH8h4bSS9KFwPrz+uv4vrqO9aerCza4qUnWMGxvz9xAg7sW+/2yZnZPT+EE7EoIhUC4jo6CBNV1jPf9+0EqFkOgrzY421Str6iqdZqakklFr7cyayUTiFyPM9NnHjmCsTc8vGIGc84YGUGH8RtvBFm8AmrWFnF5Hm44kfEAS1lc09OYE9ycSS3vw7LeYBD+8rp11eNrESXXMWQiTF0zOa6s5SZ56ZqTpCMMV2pOshJBWI2bLZEINqxYvlyOdUOFrmOezM7ib17zMvnvoRA2/Orrsc5k8fMtMypLxC+tCmwSMUdomvYiEd1IRG8T0WeFEMcLOEzZL7YQCECIsNAJgQlXiqCad2xVYlHtwFpfv1wGXY2G0kZpEQ7LndampsplqY6PY1GZm0PwddttkCAXgulpomeewc977oG0LAtW21l+kYqzRyvaomokElOhyqBjsWSHzuVa3rjFtkW1Dyab1SxDlWxOlSWXiuT42c9gg/7gD0AkdXWtmK2zIgIBZHk1N0OCm8P8q2lbND0NW9/WhqzMQjdFx8ZACG3ZIoMjXYfNcDqJfv1rZD6+970gwI4cASm3cycyEBMJEImJBIJ+tYHUSvJmwyA6cQL31ONB8NPeLrslz80hw4+zVSIRBFW6DgLzPe/JXxLPNaVmZnB+LS0gE8tVFD8alV2uDx/G3KuvR3bn8DDk4dUoC84HTBirUmhVrcOEImctltoPisUk6bRSNtzYGMbx9u2QmheL8XE0itq6leiuu7K+vKZtUSSCR1NT9vEsBOb27CzmdksLSBKW03NGXyyWvLlRabDyQyUNVVmyml1YK7JktTlJasfibM1JViIGMzUnqXao8mWPB/Llcm4AmSbWdV6f2tsx/lda2+NxrC9CYE3JYT2xzF0oEb+0KrBJxMqiIhc7kcDCxcGSELJOYqnBGWiqDJprmjGppGYrllveaqNy0HXcb8OQu7OVImpmZmQN0GeeQbbOvfcWdiy/H1Lo48dRLPzGG3N6m2UWqAzIaos4qLWK06h2z+WH6ggyqcg/7U6A1oYQyYQhE8kMjyc5y7Bc93tkhOjHPya64QbYIY8HmxCFfFY0CsKJZa05zj2rj+IVbZEQIDJmZhBs9/QUts4YBsgVTYNcmK8tE4kOBzo2nz+P7s1bt4IYm50FIdPfj4BnYgJEgs+X3LE4k7w5kQBZeOECiOaJCfhDmzfDH2prS84y5Cyny5dBZPr9+N/evfkTDboOmdiVK5gfHg+uYTkllIkEumaOjCBrJBTC3NuzB8Hf3r2r1kmz5IhEkknFQEASMB7P8vqKhV5zLhOTjUCcn0eg3dWFrNdiEQwS/eAHsJ8PPJBTY6eatkVEstRTrvfTMGRtVSEw3zs7ZWftyUlc5/Xr8SjnJrwqS+aHKrVNlSRbTZac2pwkk9Q4U3OSbAShVXzhfKDrsoFYueXLQuCzOEu3tRVrUTZC0DSR9R4KYRMux6aZVrdFloBNIlYWFbvYoRAWO94tZ9lWJcCSC5Vc5IWKG20wqdjcbL2Faq2DM1IjEQReXm/Ju4auiGAQQWVjI8i/WIzok58sjKCORtGd8/XXIV27+247cP/9C6qgPmKxMIzlxKK6y65mKpYyM81G6cH3kUlDVZbscknCkB+VGLMTE0Rf+Qq6B95yC85t587Csq50HQSiYcAW5XGMmrdFuo4Mq0AAWYGdnYUFOuEw6rq1tuKeEcnAU9Pw+OUvQeDdcQcyuY4fR9CzZQtIYiHwt9+Pta+7W55LLIayGhyURSI4Z0ZTE3yzK1fg+1x3HQjNTN9FCJCPx47h3Lu7QQ7lK1Hl+oqTkyC8HA4QoD095SX0TBPELddR5JpXO3dCFrt/P+5FrcA0cX/Vpi1cI5pI1sRjUtHrzW6nIhHce49nZdl0LEb0xhvwp6+9tnjCwzCIfvITjOUHH8x5zNW8LeKsLSLcx1ztkK5jI2RhAe9pb8dDCJQwmJvDNVbLRBVL5jBppmYZMliWrJKG1bypmtqcJB1ByBtCKjQtOzlY7d+9XGD5MhHGYrmSfHj9uXIF98nrTS4Lkg3Hj2Pu7NmTvHGXBWvwjlYeNolYWVT0Ys/NYcK2tsIh4F2mSkMI6UwzsRgOJxeuVrMVc3GsbKwO1Lou9fWV79ydSCBTxO1GcHLsGNH998uAMB/ouqz109WFWmY57nARWX+ByskWMZFYzbLmfMEyaCalUmvkpXaDtm1R5WEYsoZhKvnLsmQ1y3A1MgQiETRSMQyij38chAF3xs0XQhCdOoV1cefOvIkdq8/MnGxRJAIiUddBJBZa640z8/r75TFUIlEINJGYmSH60IfwWSdO4D0DA1JavLCA84nFEKT6/VKWHA5jTHZ14XO4WzJvmIZCINWuXEFQdOAASKVM4G7Vx4/DXvX3QyJcSM3NSARk4vQ05lRzMwK6dF0wSwkmREdG8Jiawudt2YIMxeHhzM1nrAzOOFMzFlmtw5uwan1FtQ6ZSiCudK9NU9bevPba0hDDL76ITNiDB1fsgJqKNWGL+J5yZmg+iMflJoTTifnf1gZbEAqBWNF1OTbyyXhUyULVr3E4lndLria/JpfswUzNSXKRF9tIBpN6wWD55ct+P8Z2NIqx3dOTV5xF584RXbyIdaK/P6+PtrotsgRsErGyqOjF5i5LTicmra5XT7aNYchsSSYWYzH8j7uYpcqga4XEsCJ4hz0Wkx3qKj2OTBNBCDsZzz6LQvg33ZT/sYQAAfmb32Bc3X03gsU8YPXRmLMtskJ9xGKgyqD5p7pjn64bdC1eh9WCaUqikElDtRt3OlnyakMIom99i+jdd5EFHYmACNi0qbDjnT2LTb8tWwoiIa0+GnO2RQsLyP7kZgQrEW8ZP2wp8ycSgUyZN1ZNE36Jw4Hx99RTCIAOHsRnHT2Kuobsk8zPS+LQ5cK96+6W0mRNg2/D9fLSjduxMci0dB3k8eDgysF9IoFzOH0a57p5M9Hu3YVlkHBRew7w3G4pdS73HBMC95EzFMfG8Hx/PwjV4WGsx7VqZ6PR5TJoVa3T2ipJkM7O7Dbh1CmoM4aGSlNb78QJol/9Cvcix/IuDKvfsZxtUSwmSb9CVTDT07ARfM+5lmhzM8YEZ7FyPMSfwz6LShry+NG05d2SVyvmY/l0prqD2ZqTZCMIq4kItQpU+XJzc37ZtPkgFMJmVTgM3627O/+s88lJrHXr12OtzhNWt0WWgE0iVhYVv9ixGJzdpiYYXcPAQlSNxjeRSG7aojpWTISqxOJqZFWuRXA9HiHgzJS7Y1cmTEzA6W5rI3r8cfx88MHCxvLvfoed+/l5OMl79+Z9CKsvUHnZIiYSa7EmTDqoxBYTi6qTntoNuho2ZqwADirUxieclUMkCVtVmlyNRMLzz6N+3t13ww4RgQQqZH5cvoxHXx+c5QJQhVcoL+Rli6am8PB6QZgUsh4lElgDPB5kWfEY447N/Dk//jHI3auuwr29fBkB2MaNIGw6OvD5vD6mdkLmjCXDgA+W7lxjMTQjGRuDX3PgAIijlRCLgeh5911Z43FwsHCfiKXOLLVkqXM+GSPFYGZGEorvvotruW6dzFDcvLk67UCpIESyDPrKFfgmbrckqdT6is3N0u+ZmECG6sAAxkGxmJ4m+pd/gS267768/Sur36W8bBFvrBdT0icchq2JRGAvnE6sBawg8/sxFqJR2ShTzSTkJnJMGlZqk5Obk2QiBjM1J1FJzlpqTmIFhMNYz1hOXw75cjSKtSQQkJt9hTT0WlhAJnRbG9bfAsaDPYIqAJtErCxW5WL7/TAebW2yxll9vTWMdKoMmp11IinxUMnFtUJyVALcNCeRwGKwmteXg5yODshspqaQAVRIPaXxcWR/nD2LxenWW9fkApW3LTIMa9dHLBa6nlxbMVUGnUosrtXrpELXkwnDWCxZYqVmGNbVWcN+nzqFLMQDB4iuvhq2afv2wiSEs7PIiuvsLDyLkdaYLeLmJvPz8Gm6ugqrQen3I7O9sxNrG3dL5rplRBivhw4h2Lr3XpCHc3Ooe9jdjdqVmoZxfvkybEJXV/K6JIRUWrDPks42XLkCmW84jKzGq67KnhEYCiGj/sIFvHZwEGOx0HkUieA8pqdh77l2VXt75eyZ34+GLCMjaNBimrjPTCju2FHbtjUYlGNFlUL7/bChRBhz7I+dOwfC74Ybir8u0SjRP/8zrvkf/mFBJMOaskVEcpOgpaW49SsQwLybmMD9HxjAMbkRSDgsy0DV1WFOdHSUvuu52pxkJYIwXXMSpzM7QWiFNb7WUAn5cjyOtWNhQZby6OgozCaFw1gDPB7UzS3wXK1uiywBm0SsLFblYnNHJNPEjkA8XtlGK6UEy2qZVAwEpGNFhJ1+tWlLY6M1yNJqA9fiIUJwvJpjhWthNTUheHvtNaIPfhABXL6YmcHu1rFjkE4dPFjwDrLVR1XetqgWGq2UEpxVpxKLqTJolVj0eGrbFnH2pkoaqtmbfB2YMKwGWXK+mJtDHUSfD3UQJyZAsvT05H+sYBCEpNdbeDfnJVh9VOVti+JxXPtgEIFKZ2fugUYshvs4Pw+p1Pi4zMpwuXBvm5vxs6sLn/Wzn8Fnuvde3K8LF7AJ1dUFObHDgfHPdc24A6uKSCS7vFnXkVV25gzmCMt6s2FxEXLry5cxv3bvRvZeoXbaMKTUORKRGSXd3ZVVgITDyNIcHcX3SyTgB+zbh2uze7c17UgmMIHY0JA5a5UJxdlZojffxDUZHMR7WJ7IWYv5EExCED35JOqP3X9/YTaN1qAtMk3ZrKilJT87bprJNQzjcdilM2dwrzdtwsZFSwvmndMpxwATipylmgvha5orE4PFNCdxuWy/sBrBDX0SifLIl3UdSR2c4djRgXWxULI4kYC9NwzY+CJiT6vbIkvAJhEri1W72FwHgTu8xeMy9d3q0PXkbMVAQKbRc3FilVgs9c5dLUHXcR11XY6V1XQMdB2NVFhC+pOfQDb4oQ/lf6xAAIHIkSMIRA4eLLw4P1l/gSrIFtV6fcRiwUGBSiymyqBVYtGq9pdrMqmEYSqBqmYZ1gKBmkgQ/dM/Yaf9c58DydLQsHJ33UxgOarLBQKgyKwAi1/ZwmxRMIjgRdclaZe6VhkG7heThvPzcnNM0+APBINY5w4cwHH4XnIw7XLh/U89hft9zz34efEigv2ODmQN8mdzJmNTE0g39ZxykTcT4TzffhvkRF8fsjFyCaZ4k2xmBt/pqquwWVbM3FtchApgfl7K4Hp6CmvqUgzicWz+jY4iOzQSgX0ZGkKwOTRkzY1xIoyzYBDfsbExOyEkBK7B7KzMhuUai8FgctNClVRcKVvu9dfR3fm22zBuCsSatEVciol95rQHFpIs5J+q3JdlySxVfvdd3E+fD/ewqyuZwDcMGe+wSqShAfecpca5NCfhpit2c5Lagypf7ugorX00DKwzMzMY2z4fNpqK8WlNE5tGwSA2iopcY6xuiywBy5KImqZ9moi+QUR3CiF+tcqnkytW9WKHw3A0uCmGrq9eZ8tyIxpdLoPm9HvuqKbKoNf6IikExkckAqeiqWn1yVYhEKhFIpDr/Mu/4Nw+8Yn8syGiUQRXp09j3N98s+yyWSCSFigL2qOCbZFNJOYHw1gug07tNKwSi9VojznjUu2WrEq5U2XJtZaRIATq473zDtGnPoVxH4thQyNfW6TrkGnqOgiAEtjZNWuLZmdBbjkcsk6yShr6/XKcNjbKLsk+HwhDpxNj+swZ+AGqpFzt2OxyISvv6acR0N99N+7b5cvIJvX5QGLx3F1cBMlcV4e1S/UvcpU3mybqNh4/juMODeH8crG5ExNY77iG8NBQwZllv0csJrs667okSdORt+WGruO6cx3FQADXeNcukMH79lWunmOx4PHAWZa5BPpnz0LGvHPn8o6lponjqY1bIhH8T9PwGWp9xaYmZNY++SSu3x13FPV11qwtikbhQzc24h5yMxEmDdUGIiz7Vbslp87raFRmAvOxmppwz5iQZDLS75ckNDembGoCqZiNIKy1tdoGxsf8POLeujoQiKXyK1nZODUF37atDeRhKeLFEyewvuzenb0ucA7IulJa0D5VHdY4dVIYNE1zENFfEdE7QognVvt8ckVjIxzBQEDWKmDpRK2RAfX1eHR14W8uXK1mK87Nydc3NCyXQa+VxTWRwHUxDFyzpqbqGA/T03DK1q8neuUV3L8HHigsaD9xAgFfLIZd9iIJxKpCpe2RwyEbEFQj4VVtcDqXNyTi4IIJucVF+T+XK1kCXenmIkx6qoRhqiy5tVWShmthA+aNN0BW3H471oepKRA6+doiIZBhwgTkam/UlBqVtEWRCMboxYsgzbgLpNeL4Li9HWsHk4aZrnV9PV7HTVM6Ovi7yM1WXQdhduedRL/8JR4HD0Jq7HRifTl0CA261O66k5OQS69fLz9f00DgRKNYd+fn08ubHQ6Mkb4+1AccGUFZjwMHsmdorF8P0nBsDNl7L78MX2jv3oK6fxMRzn9ggGjDBqzNk5Mgs8bGpNS5UuPZ5SLaswePhx/GeYyMYI4eOYJrvGMHMhT37y/8O5cbKoHo9eZ2/WZmZB3EVAKRCOOmtRWPDRvwHBNN/Jiawngnwjx67TUE7bt3Y1xaNaNTRSVtEW8KRqOwIfX1Mn5gBUJTkyQM2W8yDNiWUCh95uD8PDZFGhrwuosX8T7OTGR/va0N9kMI3E8uWcVS59Vqhmij8kgkMAYTCblRUApwXcUrV6Q0uru7dM1Zzp/HurJ5c0kIxKqHVXmkVNiZiIV9touIEkT0TSHEp/N466pfbNOEE+JwwLGOxWQa/FoDywGYWOSdPCK5Y8ukotdbe9eIJTSxmOx+XS0kZi8lAAAgAElEQVTyykAA9Q99PozX555DF+Vrr83vOEIgk+PyZThgvb1EH/hASQjiqtlxL9AeFWWL7PqIpYUQyZ2gY7FkqVNqbcVS1SXjz1VJQ1WW7PEkZxlWqvNjNWFsjOhrX4Ns+cMfBmHR0SED9Hxw7hwc/M2bJVlVAtS8LdJ1KUfmLEOuhcwZgw0NIM76+wvrcn3+PNbDbduSSRTThK/gcMhGFs8/j7Xkgx/Ec9PTIOu8XmTB8Toaj2PtMQycW2rznVzlzXx+hw/jtbt25d5gxDQxZo8fx/zu68NGWktLvldoOfx+kIm8IctS51IcuxCwemF0FKTixASe37QJ5OvwMALfaoAQuH66njuBGIlgQ6Ohgeiaa4pbe1nq+MMfwse64QY5/jweSUBw1mKOm0U1b4tUWTI/eJNNCNgltxvXju9PMc1J2D7wRgQ3yHA4QLb4fOnLOHBco+u4dxzL2P5a7SIUkmUnSilfZjsfi8FGpFvLisGVK8gs7+nBulYiVHUmYhE8UlVhDeQQ2FDhcGDXam5O1gLi4LHWsiKywenEtWhrk8/FYsnZileuSEfU5UrOVqwm0i1fxGJS4s01eKqFHOCi+SzF+Nd/RcB+zTX5H+vsWQTtExNwhG+5xXaiSgEmD00TD/uaFgdNk9nTDM4IZGIxFIJNIsL1TiUWcwnyEonkOoZqh2nOgOSC/LUoS84XwSDR97+PgPAjHwGhWF8PIiZfTEzAFvX2lpRArDmYJoIWlTDkcU+EdberS0qTW1tlZ0gO5iOR/Df9+vshHx4bA5HIY9/hSN402bwZ68hLLxG98AKyU7u6IBk+ehQE1v79kuzfsAFE4sQEgn7V3+BGLsEg5nc8jvmXbt5t2oQg69AhEJbj4yDGsmXZORz4Pps2oZzHqVM4n4EBZPIVk6XEBFMshuvPBfYbG0HWdXVV1oZoGhpRbNxIdN99CHy50/NPfoJHb6/s9Lxhw+r4PSqByDL8bDAMkMhEGGvFXtfGRqJXX4WP9cUv4loEg8ky6JkZ+fp0Mui1sD6osmFVnqzr0iaoY4jnwqVLyZJ6tTlJfT3uey7NSbhhUzwumz7FYphrPN/YrvB5OJ2SAI5EpD1dWJAxTCUbJNkoL8olXw4GMfY4y587hpcSi4tYl9raiLZvL+2xbZQftZCJeJCI3kdEf0REPiJ6k4j+XAgxorzWRUR/QUSfJqItRBQkomeJ6C+FEGPK624mokeI6AYiWr/0upeI6P8UQpxaes0mIjqX5pReEkLcutI5JxIkqoV04jqBbW1YtBIJGIm1IE3LB1wrUM1WDIXk/+vrk2srrnYjkmwwTZlxyaRoNd1z00TGhWEgEPjxj+EAffKT+dc4unQJtX4uXcL3veOO0mQhBAJEzc0Zd9ytYo9KYvjt+oiVhdoNmgMatc4Sk39cW5EJSCYOU2sxqnUMq8kOVANMk+jrX0dm05/+KYKxQAA75fkSVHNzMoNx8+bSnePcHFF7u7Vtkd9PQiUNFxclGVhXJ+XI7e3wVzIFv3wMIWQglW+gHAwi07C9fTlRzCUcXC7YuqNHIQPdvp3ofe/Dc/PzkNPW1YFI5I1ZIRCMBYMI7js709dACwZlw5eVzn1iAmRlJAKCcM+e/LpTnzyJOpBEeP/gYGk2kVnpwl2qXS4QiT09q79JPTcHQnF0FEGrEBgjnKG4ZUtlfDcmyU1TEkm54NgxkKL795dmE+LIEaIXXyS6/nqi665L/xrOlGVS0e+Xah2uQ8qkYl0dUVubtW1RMEgikYDPzw9ugMI2iRuRuFySqEltTsKNx7xeXBuXS9qNQpBIYE55PJhPfJxwGERiJCL/l4nkicdlDCOEJDIbG23fzcooh3w5EoGtCQYxnru7k0nqUiESgT32eGDXSuWDpovR0sFq9qkaUQsk4iFC2uo3iaiFiP5nInIT0TVCiN9pmqYR0U+I6G4ieoyI3iaivqXXhYloWAgxvXTM/4eIdhPRi0Q0QUSbiOgLS8ffI4SY0jStiYjuX/q8l4noq0undEUI8dxK5zw0RGLvXqKrr4bj2dW1uhLZhQVZGJV31ezsk+wwDBi/UCjZ0SCSGUVNTbKwcbXIoKNRKQFLzXqqFkxN4br29EB+deIEArR8pYMLCyAjAwE4wLt3F18H0e8HKXn2LNFf/VVGZ9kS9ujpp0mUap4zkWjXR6w8VGkVN0ZSm7c4nXDMGhpk0X6Px7oZ1JXEW2+BKLrpJqzVMzMgf/J10iMRZI3V1xffKVfF9DRq833nO9a2RffeS6KxEQHQunV4+Hz4O981amEB15slgSt1o80EJjLXrVsu2TIMaes0DZmLZ84gQ2P3brwmFAIR6XAQbd2aTJ5xAwQmR9PJEMNhWZ94pe+v61iPJiZwvK1b86v9F43i/VNTOI/+fjxKZcfDYZlFKgQIlfb20srgijm3s2dRn/TiRVzvxkb4CNu2lfY6qDBNfLYQsMm5Bs3T07K2ZrENcogwxl95BWP8+uvzs0nxeLLvy/7vxATRl79sbVv0yCPSFvFYbW2ViQL19dKn56xClUxUEQ5jLeZaiMWC5edeb3I2MxFsyswMPq++HutUpnnGjXe4DjqXMvJ6bR/OagiFsOZxebJiYzrOcPX7MRY4478cJHMigY0MXUet3lLFo/PzRN/8JtGjj+ZFIlrCPlUjaoFEPEtE+4QQwaXn9xHRCBH9SAjxoKZpDxDRPxPRfUKInynv309EbxHRfxZC/OXSc41CiHDK5+wgoiNE9KgQ4u+WnitIy37rrSRmZ2W9jHXr4Kxs2oTJ2tEBQ1CpAM8wYIBcLlnomwiT2d6Zyg+8e6k6V7xzqTZW4K5plQzidV2ej9tdvU1jFhd/n1lDwSBkzDt35l8HMRxGYMeykt5eZBsUAsPALt+VK1hY5+Ywb7/whYzOsiXs0dNPIxOxVONAHes2yg+1rhLLqxhqVij/VJf5VAmVfc+W4/x5ZOkMDsJ2jI8jcMy31l4iAXmsw4HM6lJd6/l5ol/8Amv3//gf1rZF//7fk1BrgPIa1dYmmwLkumaaJq4N1wFzOjPLgzNBCBAiiQSyEVM7K6vZvJqGja7z50HicT0nJqkcDhBTaoAUCmGtc7mw1qUSSWpzBJcr+3rt94PMjETgR27enB9pEQqBTJyZwTUeGABRVaq1IZGAn7mwgPvCBGohBG85EI+D9D1zBtchkcD127IF93RgoDT+GhPERLinuX73UAj3t7kZ51Ssbx6NQorvdGKDttjvxp2yAwGiv/5ra9uib3+bhJoUUFcnm5PU18tNOf7JG3JMKKY+AgGZcVqKsb64iGO2t6cvQ7C4KLPSGhqyJ6qwyopjP64Db0udqxssXw6HMS59vuLGVyKBjYqFBVlPsZQdnVNhmsisDgaRRV8KiXQshvjsRz/CHPjSl/IiES1hn6oRtSBg+hrfeCIiIcQhTdOeJ6KDS91vHiKiS0T0G03T1J4/40T0OyK6XXnv72+8pmleIqojojkiOkVEeVIZy/HkkyjIPToqd2inpjB5W1sxadvbZae77m783t5ePtInEsHC4/ViUeJd/GrMUrMaWP6myqC5kYEQybUVy7ELyMFIOIzx09S0+pKiTAiHEWxv3YoF8Tvfwe7UQw/ll+Iei6Fu0JYtyDDo7ib60Ifyd5SjURAHExO4L1u2IAjo6Mhat8MS9uiuuySxVArbYjdaKR90fXm3ZJXIUBufsIw50zFUKbQqg1brK671bPTpaaLXXye69Vaiz30O2UpbtoBQzMcWGQYIpv5+NMIo1Zo6N0f01a/ifD7/+RVfaglb9Ld/i5/hsKxBPD8vM2U4SOesIJZsZQrMEwlZx9jtxtjON5siFgOp1NAAUk59Lzdy4RpnH/wg0a9/DSJl/XqsW0RY7995B7/v25dcjiMSwTlqGt6TbmzkI282TXz+yZP4e3AQ5Fc+mJ1FZsj0NL7j4CCI71JtKJsmxi7L5DjTpaenevzNRAIKiNFR1J48dAh/Dw1Bbrd3b2E1JA0DZK8QeTUpoXgcjVR6eiA5LlbuZ5pETzyBbMsHHii+C6oQGHNtbTITNwMsYYs+9Sn8jEQwH2Zn4b9zA0quH+5ySQUGS5djseXHczjw/MICbBCTjvwz30281lbMz3g8/cZKWxvm7MICNgVYbdbVld7354zGREJmSXPCAW/g2Akl1YV4HOPS7ca9LoaAMwyMp9lZjONNm8A5lLu0zalT+Lyrr8bnFYN4HONW18GvxOMoP5MnLGGfqhG1QCKeyvDcnUTURUQ7CWmn0xner2rZ1xPRfyKiewi6eBUzVCSam4kOHkRm1NjSp3I9g5kZTILJSTjQZ87INHiXSxKL/LO5udizARoa5CTkQJKDTHs3qjiw7IGNpGnK5ghcY3F2Vr6+sTGZWCxmAU8kZBBWV1fdRbB1HXULPR44y08+ifF3//2FBe28q0aU/077/DzIR74vXV2YrwsLmBebNmU9niXskZqhJkTxjqLaaKUUx1urMM1kwjAalVmemoY50tyc3C05F3BNJpY4sQxaJRYjEfl6t1s2bOGfa+GexmLYwHC7iR5+GKRWNIrNjXxskRAgH2MxZKeViiQJBIi+8Q3cuz/5k6wkgCVsEaOxEYTd5s24boEA7C43geOmD5omu4R7vcldZDmw7uzEGmCaWEsWF5dLAFdCXR3s/vg4jqMGOkwecp00p5Po5ptxT15/HXNlcBDnMjws6/Dt3y/9toYGkMsTE1j7uruX1/zl+c016TgjMx0cDhDVfX1oIvLWW/AxDxzIXT7c0QHifHISZOIbbyDYGxoqrNt1unPs7MQjGMTnXLmCn21tWPvzuUflgNsNwnffPtzb3/0O15Obs/B1Hh7G/cwlgOe6gpqGcZoraSQEyikkEmgqV4rA/rXXMN7uvLN4ApEIGbhzc9hk8aVahWRYyhbx/OzvlyTgwgLmYTgs11L20xm8uaeSi5EI/MrLl9MTeVxPUSUWU//meoqcJXblCmLG7u7lfr2myYZTc3OSCG1rwz1P5zO43VIJx7HJ9DTGKsck1ZA1vNYRDEr58rp1hSeFmCbGxfS0LGnW3V2ZmH9sDOOXCctCwTEuZw0/9xzmxMc/jvU3T1jKPlUTaoFEzAaNUMDyCxn+HyUiWmKbnyUMlL8nomOEgpgmEX2JiEpCwXg8cAhaWyF38XjglIRCmFgLC/jd6cTkdrngTHKXJA4oufudSi4WalBaWqSj3dGBz0wkcA72wlE6cCFqlQBmQ8jEIktn+fVq0xYmD1aCEBg/0ajs0FbN9c+EgFMrBBy2w4fhmN52W37Fw4VAwBOJyAyOW27Jzck3DAQy4+O4dizp6u3F3Lt4EcfduLEk9S2rxh6lSl1LQSRqmuzWvBZIp2KgZjAwacgOEZGUdTJhWEoijwlJJiWJJOGikorBYPLrVWKxmu1KIRACjZzm5og++1n8PTODtTXfTbuxMRAHmzaVbsMvHAaBGAgQffrTJSF2qsYWpYIzYjs7sUZyRj/LfLnmJ3cuvXQJ72P5ckuLzPpvbcX7uJFYruCAempqOVmgadJH48+97Tac68svSzlsYyOIvNFREFF798qamh6PJBInJ5GplFrT0OlEgMcZQlw8P9OGYEsLNs7OngUB9dxzyBDbvj1329HTA59yfBzHeOUV3IehodIQT0S4ntu2YZ29cgWPkydh57ir82o3enI6EYwODkIRce4c7uPICDYavvtdbC5wY5Z0/opKIOYr3z5zBuTT7t2lsSFnzuDc9+4tKMhehokJEGO9vbVvi1gZpkrzg0HYFfbTWemj+lP19RgXPT2wWY2NMr5KV5IkGMTP1CpjvHHBxKJpIl7j+uFMNqp2gUl7nw/r2Pw83uPz4fl0Y9HhkPaTuzozecq1IqtVzVTL4DIdLF/u6CgsKYRl0FNTGGfNzZXNBJ+aQnzX3Y14qhAYhpTg89x75hnY57vvlkqAEqNq7dNqoxZIxJ0ZngsSWOMzhK47LwkhEmleyxgioquI6DNCiMfUf2ia1k7JDHJRhSQdDtR6a2oC8TE7iwnV348AJhDABPH7ZdFiTUMw09YGIx6JwPE6p/T38fnwmp4e/My1poGm4bizs/jMtjaZEVNfX70ZbLUAt1t2n2REo8ky6MuXpVPhdi+XQbOzzRmlpgmyywpShCtXMJb7+uCsvPIKHPN9+/I7zrlzeL/Tieu1Z0/2RYobHkxMwNlvbgahr+7uci3Enp6cHXlL2aNSE4kOh+xiam9AJIMz/1RZcmpnZa9XkoaVtrssjVYdSl1PJha5SQK/nskeJhatfM9feQV1eu66C2vxyZOF1UGcnMQO//r1pSNdYjGib30La/RDD4GczAGWskWZ4HZLgk3Xk8uD8P85C1rXEfByswyu8dTejrnV1wf7nitB1dsLH+ziRZBe6vh2OJaXcbjjDgQ0//qv+IyNGzGfDhwAiXjoEMg4Xu+dTpzT1BR8v0QCvptqh1U5cyCA17W0ZM4a0TSsob29IL2OHMH5X3117pl+moZmZn19WFuPH8d36u0luuqq0nQAJcK96+/H57DU+cIFnC9LnauhMZ2mgRTesoXoox+FjzEyguv7wx/isXEjyMQDB3DePFaZmMnHnk9NYSOiv780WaBzc0S/+hXO66abij/e/DyI6vb2tWeLurrwYFuzsCD9dZcLc7WpCf63YWC95819JvG40RlnVKeC1910RGM0ip8cA05MyM0RbiiVmtXIqiiuO76wIMtnZRqX/B7exGGbW1cnv2O1xxe1AJYv6zrsd6EbCouLGC+xGMbmhg2VbXLl9xOdPo21I0tJqLQwTUnca5qcY08/jTXujjsyd5nPATVhn1YDtUAi/ommaf8ghAgR/b4g5u1E9GMhhKlp2veJ6A+I6C+J6G/VNy513OkQQswQkcFPp7zmjwltuk/zc0IIQ9O0KC1PVc0L/f2YBCdPwnHq68PE5mYOHLDxznsgIEnD1lYQkT09eA3v5o6NgZgkwoLS2SlJxe7uzM4fk1O8219fLzt92o1WKgsO5Lu68Dc7IKoMem5Ovp6Dd7dbpqVbIUuIHbCODnzfn/wEP++4I7/jcCZHUxOCne5uSI3SQQhcu/FxzDEm5/v7l8+N+Xns4Pp8eWVFWs4elYNI5CyhtboBYZrJkuRYLFmWXFeH8caE4Wpn3WQCy6A5C0uVQTO5uLCQ/Hq1tqJVZNBnz6LT8VVXEb33vfibawTlc/7z87AtPh/W81IgkUDW06VLRB/7WF5ZRJazRdngcslNN85ICARkvWGnE2ROY6PMunj3XdkU6/x5+Dltbcn1Fb3e9PfZ6YRPdvYsiKMNG5b/Xwici1oj8ec/B2lz110ggerqpLT58GGMM15TNE2u2XNzCBZ7epYT8nV1OD7LmxsaVs6sbGjAWB4fx+e+8AKCt927cyf7ucP0wAAy2U6eJHr2Wfy9Z0/pglC1mH8oJIn4K1dwf1jqXA22RNMwt/v6iO65B+fJGYo//SkeXV0oYzA8jOuUzzoYCsGPKTTYTkU8jkDb5cJ4LHajJxRCjNHUhO+Y4z2pSVvEY9Y0MS/n5+VPzopua8O1amrC/Pb7YS94THCTFm7Oov69EkwTvq/fL2XyKvEYiSQ3XGNwxuPZs/A91q1DnMjqAn7wfeVNnLY23Hu/X2Y22lLn8iIQgK0vRr7MpSM4rh8YKE0jk3wQjWKDtq4O60++jc64YakQsqyHw4E19s03sTFy881FnWLN2adKoRa6M3Nr7scIrbn/LaGQ5TVCiFNLN/iHRPQxInqaiJ4npJ5uJqL7iOh7QohHlzrlHCWidUT0D4TW3NcT0YeJaJ6ILgohblU+/9dEdDUR/TWhuOaUEOKFLKed9mJz97XpaTiTfX0w3EwcMrGnaXAMYzG8dmICk6qpCcHOwADez9JofkxPy86HLBdRm7eomSe8G97Rgc+LRmVgaKN6oOtYHKansaBzoXJuisBd1lgGXS2FyxnRKIjzhgYEZs8/D+nU/fcvD9RWwtwcApvmZgSLpom6o6nfl+uNjo9jMfJ4MM96e9OPbe5Y2dSUsbh8pi6EVrFHy2yRWh+x2GBtLTVaYdmkShiqzjtn6XHjE6sQa7lC/f5MLPJ6Q7S8aUu1bXAsLhJ9+ctwTh95BKToxATmfaq8dCVwcN3QgA2+Uox7wyD6wQ9AKtx3HzrVrwVblC9S6w3zBobXKzP4XC7Yfg7KQiE5T1UZH5OLagbc1BR8qf7+9LXfdB3zgGuXRaOo7RsKQWLFG4KJBLIRuSslP8/gZnsuF8jHdNmGHFSxRDsXmWw8jmyN8+exph04UFg9qngc6+2ZMziPrVuRvV8O/zCRkNc9Hpey0koU/i8UCwsIan/7W2z4O53wpffvB6G4ffvKdkHX8X5dR1ZNKa7r00+DMPrIR4rf2IjHQYILAbVImvG55m2RELKeK3ckZzl7c7MsDdLQAPueSOA1XE+RKJlU5G7QmT6Ly1yly7DmTb90GY2BAN7L2bI+X3KWmyqfTq3TqOvS1+GGM9UYZ1gV3IQqEsE4KaS5KjcqCwZxz3p6sLZV2vfUdWxixeOwgblmlguB7xAO43rU1yc3IH35ZZCI116LNTabX5QOFrRPVYdaIBEPEtGtRPRHBEb3TSL6d0KIt5TXOojoESL6LBHtIrDF40T0AhF9WQhxfOl1Wwk69puIyE1EvyWi/42gZaeUm7+HiP47EV1DRI2ENNff/z8DMl7sWAwO3uXLMMa9vXA+OHWdjT7vYjU1yZo9Fy+CHDEMTLSNG0Eq9vZiwrFBUolFNZOttVWSil1dcpFj+RA3Wam24G8tg7MwEgncF683WeqlBlNEUmah1lhcrftpGBjrQqCI/tmzyNy49lqiG2/M/TihEAKjhgaQqVNTRB/4QLKEMByWkmXuONffj/GeaVGOxRAAuFw4vwwOXCZn2Sr2KK0tKiWRyE1Waq0+IkuKmDRUOx3zhgsThmu107FhLO8GrXaUTiUWVyuTQdeJvvY12I5HHkEwdOYM1sQcZXpEhO934gS+2+BgaWwr12h85x3YtZtuyjiWatIWFQom2XgdNAxJGHZ3SyK7owNjkzP7/H48eJx6PMmdoFlStm3bcnIntWMzET6Tm4Tdc48kH3UdRIzfj7HS05N8rGhUbhCvX5856OLyAkS51Usmwjo5MoJrs2kTpNWFFNOPREBsM1G2Ywce5fApOKN0chLXjGu99fQU1im5nOCNfyZ+jhzB9T52DPfd65WE4q5dy0kf7o49PJy1UUlOGBkhevVV2I7h4eKOZRjY6A2HUXcsQxaqbYvUgy3ZIiYU43FpJ7q6ZMIIkSzHwKQib0zgeySTii6XXAt0HTEdN+DM19cKhWBvmEzkklmpcmp1Y5DBZa90He9tbJSZ4hwz8saKjdzA8mXDkGtPPojFpK3kMdHevjr3QAjYtMXF5HrA2cD1uE1TlvlRbeWbbxI99RSO+dGPZvxu+ZCIVrFPVQfLkogWxYoXW9dBeFy+nCyz1DQYepbMRCJyl8Ltxut8PgRCFy5A0szk0oYNcBb7+5MdPHWXlx9cY4jJyA0bQKKwIWtosNPWqwG8O8N1ITLt/vFOjkoshsPy//X1ycRipTo4X7yI89i4EWP+O9/B+H3ggdw/n3fENQ3f8+RJ7Nzv2IG/Z2cxl+bmpBRgw4bsC7KuIzAyTdQ/WiEosrpblNEW2USiBNc0UrMMVTKMSTAmDas1Q6YakNoNWi0gz1kPqgy6Erbopz9FF9qHHwahw6VAdu7Mfa0zDNifeBzHKFUNt6eeQrffW24hev/7VzwfC86sJJTNCRUCflIgIJvdsPyurQ1rkGrjhcBayaQiNy8gwtowO4uAbM8evN/rleM0HZHo94NIJCK69165/hgGgqv5eYy13t7k804kENgnEiAbMsnPDAOfoeuyzlo2O2sYILxPn8Y827cvv+x/FYEAiKXxcczbXbuQnViuuRsOI0CemYEdbm4G0erzrf76EovJrB/OOFP/d/QoZM+HD2Mtqa8HiXvgAOTtk5PYwNi+vfCmAyrGx4meeAL34667ij/eyZMY/7t2rZihbduiFRAOg0ycnJQlCXw+2BIm71SomYr8YHBXZ27UsrAAe5RP9rwKvx8ENjeAWbcueS0zzcxZjdyYc2EBf6s169RMxnSdp9M1hVmr4AxWlsrns8GTSCCOn5/HtezqwmbLal7X06cx1nfuxAZeNnBTTMOQyTGp1+DQIaLHH0es9+CDNe0XWQI2iVhZZL3Y/z977xkk2XWdCZ40lb68r65q74A2ABoECEIAAZAAYQgRJASAIAmIIqSRZsWJ0e6vkTZiI3YnNjZiY+bfzsiERqTAoRWdaACSAGjgSBh2w3U32ndVl82qykqf+TKf2x8fju7LrDTPVXVmd56IjOquynz53n33HfOdc77DPBfxOB6o/n44SX19cEQKBfGAsVObTEJp9/eL7OziIqq9ZmbEpN4tWwAobt1av4WTAcWLF8HBZMwkMajJ0/taLQt8pQtXGqoq7p8d0M/II8U/eSIsG34jsOg2qfnqKl5jYwiMvvc9/P8LXzCfpeKMuCTB0L72Ghzlm24CAD8/j8AxGBQty2aMsa7jmSkWAZ43ufZ2N1ANdZGbQKJxgmkrC7flGkFDo9NeDRjaqeDpiBDjdGp+VbdBG4HFeiT0duXYMVT6ffSj4LGbmYEDv3u3ea43XUfgn8kg+HeLa+j559Guc9NNRPfd17TC64rWRa59yQf6nduZUynoeJ6+3d1de515wm4mA9ty9ix8H24xi8VECzRXBHq9Qt8lkwASAwEAiew3aRrsWCKBPVcN5GkaArBCoTkvLxPOm21vJsI6HD2K8xsbQ6WaXZ9ubQ3XEo/jGAcOgF5no4A9RQHgsbQEvREIiFbny9FhIUnwn2sBiNWiKADkjh1DlTEHzdEonveHH3bONZnLgQYhHCZ69FHntmp6Gnt/x471gHeVdLxe2QEAACAASURBVHSRSWEqIlUVPng4LADFWv4nJyqML/aveBDn0BA+b4ZXsdbxUymcF1fOWuXiy2bFkE5FEd0ZPp8AHI2t2yw+X/32aX5dqUlaJ+3LqoqCoEQC/x8cbI3p9rOzwBG4M7KR8FBQWcZ584DBajl9Gnpt2zaiJ55oeo3trovaQjog4uaK6cVmUulcDg8Ug4nMt1MsQvEEAniQVlehSFQVTtzYmOA1jMfhBExPw9HxeHAs5lGs5TjqOo7JRN/xODKbyaR4cLu7K7kVh4c7Lc8bIdwSYRxp7yaAwS04RnDRCPxUt0Hb/e5cDnuotxf777XX8LrvPvPDAnQdhmRtDUHX736Hc9y/XzhkfX0Au7k136zMzSGwmpoyBQa0u4EyldAgcg4ktio/IgNYxmnJLH6/AAtDoc2rjLvahQMqI7Bo3IfGSdBOKj8XFoj+4R/g4H7pSwicLl2C3axuL20kly7B7m7btp7fzq4w18+hQ0QPPmiKZ+qK10VuiaIgwcqtgfE4fs+gG08ebdQePD8P8IrpXhhgNNrMaBR2aGAAtiSdBmVHLFZ5TzUNbcErK6h837at8rt0HX/LZPDZ0dH6uthOezOD4CdO4LgHD+I87Or7eFxUWPb0YA83AZ0cCYMeXNnl9cLvHRvbvMmjxaLgWa43oKeeaBrW/vvfB60Lgy08lOWGG8xP1GZRVRwvmUR3h9O26Hgce2R8HHujiXR0kdkv0rFnicTk5FQKfjIR9gIDio32MrdBM+93Pi+q2Lgq2sixaMaP0TQxWFDT4LNbje+46CGbFbEqxxDVVY21JlHXap/m6stmVY2XuyrZipRKAAA1TVS3mxFNw/1ZWcG/+/tbZ6jm6irs2vAwKpfrCQ/5KZeh92Kx+v7OhQsYMDc6SvTFL5qyb220C9pXOiDi5oqlxU6nYRSyWSjKaBSVVaGQaNMpFvFvnui7tiYmMfn9eIiZB4gIDzcDimzARkYEoGgET7jSMRCAglIUwe+RTCJ44vMjguIeGBCg4ujo5eNiuFKEMzSaBkcjEtn49eS9xaAit0GzqmCOCg62otHmlQ+yjD3X1YV9trhI9N3vosz9vvvMn9vFi/js1BSC7dlZBD7RKPbb1JR5I2yU5WUx2MjIqdhA2n1Xm9JFxtZdR1+mi2EHl0MfKMp6wLC6LdkIGrZ61eTVJBxUGPkVWRfxMCkjuNhsrxaLGKSiaURf/jLs5OnT0K27dpnfn8vLAnicnHR2jSxvvgmwae9eDFIxCYRcFbrILSkWce+YpL1YxL85oGHKD64qq67I1zSAKqqK6lO/XyT6uAU6mYTd5MQJD8Q7ehSg2sMPi2MyHcfSEmxjLaCGq4NCIYA59fSTquJ7Zdl8ezMRrvnYMQBGAwNEN97orKp2bg6VidksAI1Dh9wD2etJsSimOnOr8+ioSKZv1HcygGiVu4wI53n0KPbOhz4Ef/vYMbQ9Ly3hPTt3CkDRzDCcX/8aa//AA9BnTiSVAhjQ1wcwwMQ6dnSRBeEkBOsaIjy7DChms9APXV0CUGwEVGsanmFFgR+rqrXboKv5FesdT1WxJ5lDnyuirSTvjLqxXBaFED09jY9TPRSmGmjk39WCMJoBja2SFGZ7YaV9WddxP5aXcV97etYPSL2cks2i5TgWA2dhrXVmLIELY6JR2Kt6+3Bujujpp7H/n3rKdIdcu+uitpAOiLi5YnmxCwXRnunxQAGOjorsoqYJMNHjgSKJRMTkLaPy5xZSllRKtDyvror3bd+O18AAvp95hKJRociNVSDFYiW34vKyqOrp6oLzODYmqhbtgDxXm/C0yVJJVANezvJ0TUOAZQQWjZVb0WglsGg0CJqGPaYo2FeaBh5ErxdtzGYrG5eWwLHh9cJJnpkhuuUWEJVPTNjPwKVSeMb6+y1VTbS7gTKti9wCEjeLH5HJvo2gITvRPDTKCBi2Qua2I+aF26CNwKJxGnZXVyWwaJyGretEX/saJrn/u38H8O/sWRzDykCUdBqf6+tDK6ob8s474DDbuhVT6i2AOFeNLnJLUincw4EB4dMMDgqaGCOHME9d5iqaSAT75dw5/L9eqxYPbeGp0ek0QOejR/G9d96Jn9wKzQPAJicBTlZLPg8b6PM1p+jI53HuVtqbiXB+776L9di3zxo3aLVw+/iJE/ARx8YAJlqtrLMqqipanSVJ+MxuV+kUCoI2xa5Pe+oUfI9Dh9YDhIuLABOPHcN9IUIRwZEjABS3bFlvR99/H1XMR45YG1JXSwoF7IVgEGCAyX3Q0UUWpVTC88qxm1FUVQCKPPSJ+Vz7+qCTqv2ychkxWDAogHtdF4Aicyxy5TQRjmkEFatjDVlGjJhK4fsGBqAvrfqErBNZr/JUZye0SXxNjaoajdfKwgPemlU1boSoKmJzSRLDaMysZSolptVHo603XEqSQNHg9UJHVa8fDzljvIJ5MxvFA/E40Ve/ij3y1FOWkjXtrovaQjog4uaKrcUul1FxxaCNxwPHcHxcKB5Ng2KWJPw9HMaLyVY5axEOQ/FUE67mcgBlpqdFBrSnB5nx/n44SUNDUAqSBGUQDtdXfKzs+Lu51ZRItFszqDgy0uEXMwrz67CRbSUjYRSeGG5sg2awhkvTYzExFGjXLhiNZ55BEP/YY+ZbBy9dInrlFRxf0xBw3X47+MycAFKFAvZ8JGKZw6ndDZQlXeQ2kOhWpZ+RV48BQ+YXIhKAknFacqcy+soTBo6NwCLbGwaOg0Gi3/4WeuThhzGIaWEB9okHiJmRQgHBfygE4NGNioZTp1CZPTZG9MgjCBA7umhjZXkZOmN4WFT8DA1V6iYOerJZ/OQgPhYTwwS2bKnPV8gTVrnap1xGkPX889hv114rdKvPhwA7m4WtvOGG9dUlpRLAJU1rHkAyTYmum29v5u94913Y3O5uAFImq/NriqoCcOXhQ1u3gjNxM5LJ3OqcSmH9udXZ6XdzFU0oZL9tenERVX7btjVPRCQSABTfegtrqevYtzfcgPuzYwd87O9+F3HBQw8500uyjKSGpmHwjgVOvI4usiFcMNCILkjToB84AaKquMe9vbAXxmRBPg+QiqfL1xLmVzQObjFShxgBRZ42Xi4LegWfD3rBzlAjrphmjneuxDQOqnJTzLZPV8MhXLjj5lAYO+3L2axIioRC0GF2Kp83UhQFOqNUQmGH0TYxPsFV/lwl32zd1taI/umf8L4//VPLCah210VtIR0QcXPF9mKrKjKWhQIeKFa8k5OVjiY7vVw2Hong75oGxcVTmH0+0epc7agWi3Agp6cRZLFxmZqCQzE2JgDNRiXI1ee/uipAxXgcxpCF+Rz4ZSfL1e7CQ094sja3W7WTVLdBLy7CEPT2AixeXERm/aMfJbrjjsbXp+vYK+fOIfAKhVAZcfo0WnzuvNMZIFQug2fD74cTbnGt291AWdZFbgGJPGXeznEUZf205OrWViNg2G7PT0fcE25hZ3DxxAmiH/wA9AcPPIC/LyzAnu3caW6vlMsAQ4jQ3udGpcKFC0Tf+hZs4KOP2rJ9V50uckN4iB0DMlxlMzRU265wdwBX5KuqAPQOHao9CbPWxGYiVIy98grszi23wFZyaxtPtOzvR0ViX5+oVuzpwTEXF7Gvh4cbg98MPMgy9KIVzr54HLa6UMDzcfCgs/0uy7DdZ87gvHbuBIi6GW14kiRanXmICfOGW7VDuRzWnull7Eg2S/T73+Pe3XCDNT8mk4E/9NZb0EV8PYUCANq/+itnICkP/Mnnsa8tHquji2wK86qaqRzWdTHJN50WE5EZNOzrE4n9oSHzlX7G9md+sX/FbdDGadCFgug2M5uEq74OTtKUSqLVud6Qq40UI6haD2iU5dpDYbg9vFH7NCeJuH2Zi3IaCU+jz+fF8KiNruS2I7oOnZFKVVab6zqugYtiGDw0O/jrK1/Buj/1lC06jHbXRW0hHRBxc8XRYrPzmMlAoagqXiMjKC83CnMOyDIe2EhEZBONrc66jgd+bKy2EeAqyLNn4QB6vXBut2xBxnNqyn4mVpIAEjG3Ik+kJqoEOfnl1uTLVhTm1iHCerYKv4UTKRYBRHu9uHezsyD87ukBgMgVs9wCHYvh2mVZTFnO5fDv4WGiW28F34/PBxDASfWqqiJ4V1UEMzaO1e4GypYucgNINDtoRdPWA4bG6rLqacmdtuSO1JO1NaL/9t9g4558Enbt/fexx3bsEAES7yluhTYG95qGoF2SACC6Mbl+dhZk4dEoAMShIVu0FVelLnJDymX4HsEg/JpEAv+u9qeqhYOjZBLBk66jrdk4hIwDpXpA4jvvEL3xBqpZb79d/J6HbZw4gXMZGqrsQmHqEE4Ub9nSPMCy296sKKiWO3cO53LDDc4HpUgSjnnhAs5/714kBzdDf3Mym3nDu7pER4wZH4ABxEjE/vMvy7jvuo5qaCd+DLccP/001nRqCvvluutwrw4csL6up09jjfbvbzwRvI50dJFN0TQxHKinxxqwbOSq504M9qUjEYDLdumQjICiLFe2BksSvlNRBDBvN07jwVBGwKmnxx0766aoqvWhMFx5yVytw8OCaqXWUBhJQjycyeC+cYzfql00584hTtu7V3SXcUGJpgnKB7N7MJ8HgJjNYvDd+Lit02rR1bqypAMibq64stirq3hxa16xCMVUi3C7XIajoSh4gCMR4bQwd8bysshU85TlWk5mKgUwMZmEgisU8P3bt6P9ZutW545gJlPZBs0Tp4lgTIzToEdG2h9sY/4lRRHT/a6ECkxFAYDI+4OI6NvfhlH43OdEJpWzpbIMw7G6iv3MJfucmT14EJOYV1cxiMXJxEHmaioWcW42qwna3UDZ1kVuAInV/IjclmwEDY08d9yOyoBhNcDTkY7UE1nGJOZUCoNU+vsBYGSzaCP0+SorFo38mdwOHwiAQiGfR3WYnaqLaonHwc/o9wNAdEDr0e5PwmV1QnM5gIc9PbjX6TRsgtl7nMsBkGb7zXqL+b64o4DbD42+1Ztvoqrs8GGiD3+48rhzc/C3BgcBsuVyOLd0WlQXptOwY0NDAMO5arGWX2Rsb240BbOWJJPgcuT27euvd+575XIAYGdnsXb794vncTOEBxcmk2IoYL02QV0XU0SdAIi6DvB4bQ2DVNxIjL/+OkDJ227DdRw7BmCxUMB+PngQgOLhw83v2cwM9t327bjPNqSjixwIUwSxLrEjxSJsHU96TiQA8O3eDdvn9LnlpIixFTqdhm8uyzhvLkrhNmgrUt3qzImPdoqNjENhMhlUQJdKuA9dXQJ4rIZf+P08rGlsTAxGNVY4ttI6zM+DnmpqCjZIkkSlPu9jK7iAJBH98z9jPz35JOgebEq766K2kA6IuLni2mJnMqhK9PuhmFIp/HvLltoOTqkExcRt0JGIeLA1DU5NPI6Hn7kuxsbWG5xEAkZjYAAA35kzmJjLyn7LFjz027a5A/AZ27C5DZqHxRDBaTYCi9WcRq0qXMlQLIoS/iuFF1LXERgwSBcMEr30EpzbT32qcvqkpuG+nj8vBvJwpQVX3e7ahf29sIAKxoMHnQ2ZmZ/H8SYnHYEB7W6gbOsiXa9scbEjsiw4XKsdKp+vcvCJmYm7HelILdF1ou99D4H7H/8xMuUrK9AB9Sq4VFWAigwszs3BqZ2cRCWWsWLRjr1JJFA9pGkAEB1OV7xqdZFbsraGoHV4WNCK9PSY77LgVtlt22DHmdKDKwiZO4/pZYx75tVXUUX2oQ8B7DHKwgIqw/r70SZm/FyxiOB9fh7gT7mM9/l8OAdugeaffr+z9mZNA6j5/vvQx4cOwb47TeakUkTvvYc1DIdRPefGcc1KqSTun6IIzm5uT+eEpyw77xK5cAH+8v79tkG6CpmeJvrJT1AZfffd4veKAt+ceRS5omn/fnAoXnfderB0eRn3d3TU0bCoji5yKJIE34h1hRPhvX3xouDgC4XEYBa3+NaZc5Apq7had3AQz3T1NGgz/hzHSJkMjufxiKnO7dJ1wgmfri4xuMsoDMQWi9D1rIO4ml3Tag+F4UE4jdqnN2MQZyKBivmhIeiMbFYULMVilrhUiQhr8bWvwaZ9/vOOh9a1uy5qC+mAiJsrri52sYjghgigHpeV12pvZmEDpWlQNJFIpbLJ5WAEEgko8d5eOFTMccDtIDySngjHY5BvZgaKxOOBM7J9OxxrN0m0jRWU8TiMJLcCM6eRsQ26t7e1qpZkWWRqOLhopfNzKsvLCMomJmDwp6cxdfS664juugvvKZVEyzJn9ycnsdf8fnzm/Hncy2QS/FFjY3CWibBu1W3QZhyTlRWc38iILY4No7T7HXNMraDr2LfN9i6DMsYqQ65m1DQxlZBBw8s5hbwjV5a89hqC7I9/nOhjH4PNPHMGesOYzGgkKyvQRczrWj28h9uguVq22fCedBoAYqmEKcyjo/YpQT6Qq1oXuXICOnwJWYadyeWgp8xW7ug69ki5jEpVDha5+i+bFQPpurqwl7hiUNeJfvMbtITdeitANKPE4wDuenpQTVZLPxYKsKfFInSpJInJ0CxcXcmAoteLc+H/m5VcDgnBlRXY5yNH3CH5X1lBBd3aGo538CB8gs0STROtztz6PTyMdeNEr9Wg2Cirq0hmjI+DC9KppNNE3/kO7t8jj9S/h5oG8JInPScS0E979gC0vuEGgBInTohhPw780Y4uckG46tXqs1lPMhnsP48HMWI2i98HAgJQdCsO0XU8w1wUEIng+Eb/3OdbP7il0XeXy0Kf6Tr0Zk9P6w6dVFU8Z1wUUW/4DOuclRX8e2AAPoYRbHRrKEy9SdR273kuhyr6QACFHooiho7ZAb9Vleib34QdffTR9XbQhrS7LmoLaXsQ0ePx/AkRfZWIdui6Pm3xszoRfUPX9Sc24NRqieuLLcuo+pJlODyFAgxELAYQp1aVhK7D2SwW8e9gEMrY+F5ZFiCdLOM93ELMpLo8fZe5y5jjLpEQk56TSRxvaAiA4vbt7rSCVUsuJ86XAU1uKwoGK6sVR0cvD88GE7OXSkLZtktGzaxkswAGeVBOoUD09a9jvT/3OVz/3Bzuj64DiJ6aqjSy8TgMCROf/+xn+PvHPib2N1d6cDDPXFFGTqrqe5xO47v7+lypAlhnoK42XVQLSNT1SsCwVFrflmysMvT7xTE61YYdcVMuXSL6x39EsPzkk9hnZ87AWd23z1xwlk4D3OnpQVbcuM+Nk6BLpUoeJAYUjT+JoP+efhoB0Wc+AxvtAgBT01luI33UEk6ooqD63eeD7Vlbw+9qVZDUknIZlVzhMNq6qoMzDt6TSewDvx/7orsbtuvVV+E33Xkn9qxRVlYA8sRiSMbVOp9yGUCiquL8o1F8J5P580+2mcxL292N94+MWAvKp6cB+qkqknt797qjw+fn0eacySCoPnQI57aZwp0+c3NYwy1bQNdjt/24WETLcTiMilOn66QomMSczRI9/rj589J1XNOxYwAVeXBiIICg/TOfcQzcdnSRC6Lr2IO6jnvrxnPFVEEjI9Bx6TTiOP4ev18Ait3dzgFFVYUOTSTwfx74QiQq8IxDSoyAYldX7diVq8SNFW9cTNAq/qMkiSKc/v7aCUIj0KooWBtuW7YjxqEw9QbCmBkKUw9orL4XpRKoOCQJvhQXw5gdtFotmgZ9dvIkJssfOWJvHaqk6Zm0kV5qWemAiG0WuNcSVYUzkM/D4fX7AcQ0am8mEuXikiSIbMPhSmXMyi4eh+LmSj8+5sCAGPIiSaIqgyWdFoDiygp+19cnAEUbxM2mRNfhrC8tCXCRFTsRjI4RVBwe3tgKqFIJ90fTBKfOlVR9SIRrnJnB/d+6Fb/7138FyP3xjwsA0O9HNn5ysjbQd/IkjOru3UQ//zmM4AMP1A5wjJUexqmZRKKknh0M5r1yqVXqqgcRiSoBw3IZL37G/P7KScn12pLNDlrpSEfMSi5H9N//O/bgX/4l9MzsLHTArl3mgLtiEYNUgkE4ys3allV1PbDITjvzfv7whwjaPv1pAE1uBGvUCdxdEya051a81VXcN7M0KakU9hknXOsJDxHggWqsM48exTEeeAD7wyiJBMC1cBichLXoT3hitCThnGtN8uQqRQYRlpZwPsYKSWMrdCMAVZJQXTc3h/ffeGPzoTRmRNfhS5w4gfUZHQWY6IQL2YpoGu5PoSAG6CgK1n5sDP6iWVulqpjELEkYpOJGAvu559Dm/qlPOeIMo7k56KT33xfJ7fFxVCceOYIEr0X91NFFLomq4jn1+dzhztQ06DZdx/PE+oy/hyc9axr+xqCfUxBTUaBHUynBPTowgO/QtPX8iqwLeRCVsRWaz4MLYTIZUcASjeJcLxctFAO/jdqXdR3rwMU5zB+5WUUtxqEw9cDG6qEwRKJqvatLTGIuFKCTx8exT+xWNeo60Y9+hKTGffcRfeQjzq/zA+mAiJsgVwKI6COiLiIq6RYvpl0D95oH/qAdJ5VCYNLfD2eyXIYz2wis0zQBJnI1YS2QK58XYJxxMvTOnTAIrISCwdqAXD4vAMWlJUHwvW0bgJ3R0Y0F1mRZtLNyxSKX9Xs8WCMjsFivBN2KqCquu1wWoNaV2K6pabivqorgx+/HIJRnngEYuHUrjDy3LNcKyAoFcCMFgzBOr76KgOzuu3E/zAg7F0ZgMZXCs+DxCPJ5rlh0QNZcC0S8onWRoqyvMuQBKR4PAMNwWFQZWuGKqx600pGO2BVNw2S/uTmiv/gLOLnpNHihRkbMTZeVZQTWuo4qK7uBiSzjOcnliL71LST77rpL8LHy88LVim7pIqK20kct5YRmMgCN+vsBJhrpW8zoptlZ7LedO+tX9hknNnu9oromlUJrcyqFgGrv3kqqjmQSNjIQANBTq3KFfUHmdRwebnzeug6/aGkJvgrTT/COCYcrQcVaVT+LiwgCi0XY+wMH3PFzVBVdCe+/Dx9qchJtzm60T9cT5o3kSapdXYKbm9fI5xPdLc1a906cwOeuv96dpPm77xK9+CLRLbcQ3XST/ePwFPBcDmuqKGhPPHYMFdvcKcItz7t2mdJPHV3kopTLuD9M+eJUZBm6gaeSV+sFBs8ZUFQUMS2ahzbZ5Zwvl6FnGBgdHKw9cVhVK0FFI6jl9a7nV+RhNLmcaHXu7sZ6bZYvaaZ9mYeGSpJIRrhJ8+WWGIfCGIHGUgn74t138XPPHlyDUSeYaZ+uLlL6xS8QK955p6C7cknMgIjtopdaVtoeRHQi7RC4WxUukQ6FECyx0m7U3syiqgBySiU86OEwjlOrLWd5WZDNx2JwHEdG8DdVXV/RWC2ShHYznganafgMD2WZmNicqqRCoRJUjMdFuw8bWiOwaIW7iqsMiJxN9GsHmZ+HId+6Fev39ttE3/8+jMynPgXnv1EVgSzDOGkaeJ/OnUNQcuONggfRjqgqjpXNwmnhykUmvPd4Kqdochu0CefDVfek1XSRpgmgkEFD49Ta6mnJnKE0w5HY6Dt1vT0GI3WkdeVnPwOH6qOPInCXZVFRuGdP8/2paajyKRYxiMBp8KYo4C6bnia6917owkBAPGPGdn+eBs0vk9l910OlqzlwJ4LfxBVwHg/8qmDQXJUdDyDRdey3evrMCCQy4MadHz/8IXyr224DCMgJr1gMwfK77+Iz119f369IJAA68qCQZv4UTwblQJz/z63QkoT3cQu0cWhLJIJrOXECoF84jEq2sbHm62VGZBnAFtMR7NgB7j63fapaAGK1ZLMABdfWsFZ9fZW84UaZm4Mu2blzfWWpHVlcJPrBD+BnPfigM5DkzBns8337ULVqlFwOFabHjgHAVRSsx/XX4742oIPo6CKXhQs83Bq+WChAN8RijX1ynkjOk55lWTz7DCjaoWOSJOy7XE7wjjbirdd1UUHHoKJx2AgPGfF6Bec/8/PxVOeN9CmLRaELBgbW+wv5vOBZZVqwjaD02ijhjsV8HonYtTUkHcbHm7dPNxsKc/QopsvffDOSZuzzuFRos6EQcgdEhLQ9iFirHNXj8dxCRP+ZiG4hIh8RvU1E/7eu6z+r+qxORN8goq8Q0f9LRIeIKE5E/1XX9f/P7nsbyKYsdjYruH0mJ8XgE58P7c3NgiJFgcKQZSjmaLR+xntuDopF13HcgQEoSCstu7KM40xPC37HQACtFNu34xo2q3pP1+E0G0HF1VXRlhaNVoKK1SS4RFi/XE5wzTiodmsL4Qw9EfYNV1PEYmglrOVcG4Uz4vk8jFMuR/TLX8JRvv12++fFLVGFAoBpIwDMGV4jvyIbPOarNAKLNZw3U+3M7aCLOPNoHHxiHBzBwIaxNbnWc21l2Eo9Md6DjnTEqrz3HtG3v40qnT/8QzHwolBA4GuGc+j8eYAvu3c3113NRNOQTDl9GhXV+/ZBDxn1iRGwZ1oAfg6MgD2/athC0y2ELaqPWs4J1TTYNE1DsFQqwS/glrlmUihgmEVPj6D2qPc9qgr/wKjzCgWiH/8YgNbtt0MHM+DI/tv589gb119f36fLZBCwd3XhOpoF/VyJVC5jrxnb7UulSlAxkxGJJb9fgIqKgnMrFuHDXXeds4EkRpEkgFoXLuC8du8G0O8GuMJtncxD18zn5AF/3JoYColWZ+acO3oUycvDh51XRRUK0G1+P9FnP+tsTWdnkcTftq05B6IkQa++9RZ+lkrw7Q8fRoXigQMV59LRRRsgmQz2Z0+PO75RKiUS62aTZOzbp1IiCR+LCR5Fq88gF3AUi/jsyIj5CmP2WY2t0MY26HIZx5VlMTyqu9s9PcTnkE5jHbu6AMQbdYYkwYbw30dG3Olu2yzhri6m4VpbA66wbRuqks2IcShMNdj4+uuoqN6zB1WIxnUxDoWprmi0MBTGVjtzi+qllpUrDkT0eDx/QES/JKJVIvoHIioS0ZeI6BoielzX9X8xfFYnouNENEpE/0hE80T0WSL6je/EYgAAIABJREFUKBHdrev6L+28t57oOumbpUAkSVT4bdkCw8OTcIeH12cea4ksQ4FwVqc6+GFZWxOl76kUfrLTOjFhTWmqKs5zZgYv5mmZnASgODXlriEwe06rq5XAYjot/j4wIABFrmTz++uDr1eSJBLg+8nlYCBjMTj4CwuoBJqaan6MM2ewvvv2Ye2eeQYO+f33OwOPFxYABmzZYg4M4DZoBhV5EhyRIMCPxXDcm29uDiK2si7K5Ug3VhnydXq9lYNPgkFrTqtTILHDj9gRu7K8TPR3f4dA/s/+DPs2Hofju3WruSqyuTk4/lNT5ikU6omuAwh67z04yQcOiOr+ZsLUAUZgkZ9Rn08Aix/QlZgK3FtVH5XLpF8uHqtGIsvYO4EA9gLbhJ4ecx0J3CLcrAqfgUSfr1Ln5XLYP5oGQDwQqBwoVigggRsOg0eq3ncUi4LOY3zc3P7jyhOu5qllh7lCxTi0hVsKNQ3P48oKPn/TTdj/biWH8nkkHmdm4Gvu39+46rOZWAUQjcIB9tISrp/55GZncW9uvtl5ElzTwC8dj8OvMuO/15OVFfhcIyPrB/g0E6Z5eOstdJvk81j/AwcALNx7b3vrImpREJErZIkaV+2ZFaYwKJeh26xWFBaLAlAsFvG7cBh+ttmJ9izZLM6FwenhYWsdXyzcBs2gInMUZ7OCqou5bt3geUwkcHwGUvmelMuCWsznw/UMDraXPytJgl8+EMA1nT6N63A4vZ2IUOH8ox/hWI88IsBGu0NhqoHGYpFoctI6iNjCeqll5UoEEd8gogNEdI2u65c+eE8vEb1LRAEi2qrruvzB73Ui0ojoJl3Xj33wuyARXSKiF3Vdf8zwPabfW0+SSdJDodotwhshigJHplQSJdRLSyKjPjFhzrkpleAsqqoAx6pH0K+uQkn29uLf8/NQQpEIQJxaFXvNhImAp6fxKhTwHePjABS3bbt8LcKSVNkGvbAgSInDYVzz2JioWNxIDp/LIWtrCGBOnIChPHQIgfryMtGzz8JxvvXW5se5dAmB+7ZtWK/nnoOzdP/9zsikGfQdHrY/2ZGnaRuBxVdegfP81a+aAhFbVhf9zd8goWGciOf3uxPkuQEkOq1o7MjVJYpC9Nvfwtn8gz+AjS2XoQfCYXMDGfJ56LVmbV5m5dQp6Lbt24WttQuWcUsXt3LxpN90mugrXzEduLekPpqdJb2vrzUTboUCAtzuboDQySRs/8BA8/PVddhISQLA0uj9qioGGhiDzXSa6Kc/xe8ffFBwaPFglpUVtJ0yDcjYWO2KG1kWk3jNVvxwO7Om4XvN+FpcycjA4tISQPRMBs/U4cPwh7hqMRp1puPTaZD8Ly3hmq+9Fs+blYCdJ1h7PM4rvXI5nMvvfod/33wzWpmd6pNXX4XfwdXMdiWTgc/W0+McDNA0gJHvvAPde+YM0S9/2d66iFoURCQS+7Sry514QlXhI3s8eCbtglzMlcdJBCI8i1yhaBYQTKehz2QZnxkZsQZG1hIGFfkcMxkc3zg4JhQS/q8Z4fZlIsGby9+1vIy/Mcc+VyW3izB/s3HytSxD94TDqCp3ej0nTmAS865dRJ/7nPl155b2ekBjoYD7m0iATuSv/9oWiNiqeqll5Yoa8eDxeMaI6CYi+ifeAEREuq6nPR7P3xPR//PB339r+NjrfFM/eG/J4/G8RkS1CnatvHedMELOxKpOFWQz8fsBziwsCK6/iQkovaUlOLgTE82VPLdRMd9EOo1gKBIRE7N6e+FgF4sA+cbGBLg2PQ1QcXAQvzdrVBgwHB9He9rqqgAUX30Vr9FRAShuJlAXCgE0m5pC8ClJ+MmBaDwO5/ntt/H+cHh9G3QrBk2NRFWxb+bmYGgSCYClN9+Mtc9k0IY8Nob71UyYV3N0FMd5/XUc86MfdQYgMoFxb699AJEI+6+7W+yrF1+Ek2MGHG11XdTXB2dgI0A6PqaxvcTq5xlItPP5jlxdouvgiCsUoItCIQS4yaQIFpqJJOH9oZDzFmYitHPOzcE+MBexk2o7I+BPBKBG08xPwm1lfeT3Y+05oGsliURgizIZERgz12Ct6ZtG8Xhw/8+dQzJ31676usznE0CxMXnS2wuuqGefJfr5z4k++cnKYTxDQ6h0/N3vAFoXCmJCKduuUAjnOTkJ+83tt832TlcXgmROosly82ni7AvyM3fwINqxjx9H9ck774jEnscjKh27uwW/opU90NuLpMHqKr7jrbcAZh04gOttZjvcBBCJALby9NtDh/DvM2cEF9rwsPWqxLNn4UceOuQMQJQk7JFQCMdxale9XlSAjo3h+o4cMfe5VtZFrSx+P/RRoYA4y2kBBQ83WVlBzGK3upX39ugodARPfecii64uASjGYvX3HT//ySSe54sXxWAou7aTbWYohOPrOvRZIiGSHUzbwFQhxqEtRn1gbF8OBLB2fr/oVFtdxXv6++0VzVxO4eE0RoCVE7HHj+M63agkP3cO9C5TU6BksKILfT68jPaBQU+uACfCntu/3/q5dfSSPbmiQEQi2v7Bz/dr/O3kBz93UOUmmKnx3iQRHa7xeyvvXSexGJwWHrjBYOJGgkleL5wpzpDIMoKacBjA3qVLMB7Dw82Pxe2NDCamUvh/JCJ+MnlsMAjnordXAI9ra2IQy9hY7clc9cTjwTkOD6M1JpkEmDgzA/Dp9deh1HnSsxuVJM2kVBJ8EeHw+umNqioARX5NT4u/9/VVAouDg62ZtSoUsFcWFwXB9vAwwN2pKfxf0zDQQNdRRdgsq5lOI9Du7UWm/vx5OMsHDjTmkGomxSLOlStg3ZJXXgFAun8/0ec/b+oj2z/42ZK66D/9JzPvcibcfmC3orDDj9gRM/LSS7AHf/mXABSIYBdSKXCmNUtaMc9aIIDn2+l++93voIfuvx8ACgMUboHhnMjp6zPPTUQtrI/GxnD/CgUEXq02gIzb2rNZwYmcSMD2N7PZgQDRjh3Yj2trsJmN3qsosKF+v9gv4+OoQnz2WdigT36y0mccHCS65x7RXspgGFfPc0VJdzf8o5UV/N7jqT2htVpCIeznXA7HrzdwpNF1feQj4G58+20klnVd7F1O+i0uivcbp0GbaS+emMBrcRHJ22PHAEIcOlSfloB5gEMh5+2NLPE4ns89ewDU8aCcpSWcG3dHjI2Z2+dra0Qvvww/66677OsmRUEA39WFalC3nrFslui11/BcPPig6Y9t/+Bny+miVpdQSMSQDHg5EU6MJJN4Dp0k74kEN+DQEPw3BhQTCegdv19UANaa8u7xIC7kZM3aGs6rr88eAF8tbIt7egRwlslAtzEwa9StzM1HJDrNjEmS1VXE1qqK342OtldxCPP38zDVnh6hG1QVAKKiuMNrOzMDTteREaIvfME+MMy2iCsmiUQ1aDqN+P+662wdevsHPzt6yYJcaSCiHakxP4iIapNyWnlvTTGWCDNpqSThIdjIzMXICB7apSU8zMwxuLQERVgoAHRppqQ9HlFFyUBoqYT/R6PIXKTTMCLMr8ZDV7ZuFW2m7NDw9GOr197fj9cNN8AQMKB47BhePT24vu3bcS5uVjNpGhRYuSwIxWutG/NhDA8jI09UScYdj6NC4fRp8f6hocpqRTeqYuwIO79zczDmHHBMTeFvi4sIXrhK7/XX8bv77mte+VMs4po5I55MEr3xBhzr66+3f86yDFDc78d5unHPdR2gwAsvAJB4/PEN5TbZVF200eL1ionLdu6Fzyfa/NqJT6Yjmyfnz4MC4dAhUSG8tgadMj7eHEBUFCQvvF5nnGosx44B6LnmGlRU63rj6gursrCA18AAwKkNrtLdFH3k8cCWJ5PwHdhfaCUZGoJ9W1nBvurvr6xIbHQfenrwHk6gNuqY8PlEy7rRpxgdBVD4i1/g9cADlX8PBuELvfMO/KCDBwGqcbCVSonK3FgM7+fWvvHx5vs+HIaPlsngWGbbm6uP8ZGPIMn39ttoa9uzBxVsHg/O08ivuLIiPhuNCkCRKxdrrTl3wVy6hOO/9BL8lkOHKisvGUDgwNkN+5LPIxnR2yu4BrmtcXAQf4/HcV3xOL53bKz+sIVyGfzQXV1ISNjVTbqOCkRJwr5wC0AsFNCdQQRdt8HP7BXlGzmRaBT6IZfDXnO6d2MxMTgqEHCvGtznwzM3MCA4HZlHMZEQVct9feurgL1exE1GPZtO41huFVt0dQnAMp8X+lDTsAb8nHCLLBHeq2mI29bW8O/+fvNJgVYR3j/MFRmL4fk16qHTp/GegwcFjYZdWVwk+sY3cL+ffNLaHjNOh2aeRiO/ZTQqaC2iUXcHeZmQq14vXWkg4sUPfl5T42/XVL3nsgoTgPIUKc4Yc4vwRkhfH76TB5dMTop25qUlDMTYssVcu7HHg/eFw5VgYiAgqhS50pCrF1UVynZsDH+Px3EuHBSNjdlTVt3dcBIPHcJ3X7oEUPH4cbS5RaOiQtEJ9weRaFsmEtdvRQIBrLtxIl4uV1mtePIkzpsIypaBVgYWN9JYKQoU/vw81pIrKbZswb8lCXsnEhHtD/PzAAGvuaZ5GTkTc3s8eL+qwtEPBoluu81+UKxpOC9dB1jtxjOk67iu55/H3nn8cUvHbRtdtJHCQKJdINDp5zty5Uo6jcz20BDRww9Dd5RKSHzEYs2pDDQNySxZRjLD6XCPEydQLbZ7NwAfVYVtcquSloe+DA3BnlnUlS2tjxhIZN4qXbdHrr9RwgnBeBxgIE/aXFvDOTfrfBgbg98wNweAqZ4d4bZ15vIyvm9ykuhjHwNI/dxzRPfeW7m3eFLzu++iGu/aa3Gevb2V/L7cCl8sAtBKp1EV2Cyw8/sr25vL5drVRM1kyxas5fHjaPWdnweQODJSWQnFQB8Di6ur8BWJBNWIsWKR/SKPB8/H1BR82pMnsWZbtiAgDoUqKzTdsCuKgnVnfuhax4xG0XXB3NHxeGWr88hI5f1+4QVc+2c+4+xZOHcOx9m713mlGYskAUBUFAyNskgl1NK6qNXF48F6c2utG1XuAwN43hIJ7EW3Y1CvV7Q0c0sxA4rJpKgQ7OvDs8zf7/fjfAYGoKsSCXxmcBC6yI1n10hbJEnQNQxYcaXb8DDOK5MR/PzBIJ7ZaBR+Byd+urpat3uG7UChIGL4SGT9Ol64AH27a5d5ypR6srJC9LWvQT9/8YvmdJmm4Ry5+p39/2hUAJ58zqur0PGRCABEB8VYHb1kQ64oEFHX9bjH43mTiB73eDz/p67rc0REHo+nm4j+goiWiOjNy3mO1RII4FUqwalj4txIZGMUEQNqc3MAXSYmhAM2NwcAjglhzRgmr1dkpQsFXAdXWQYC+BvzQZXLeL+RI0OSRHY2kcD5cauzHQMRiQDI2r8f5zI7C6V/+jQUTTCI69+2TUytNiOcuZFlnD9flxsSi+HF7T3M52UEFn//e8ER19NT2QY9NOTc6HOAs7QkSvMPHMA+4PvAk7N9PqwdB+0//znef9ddjb9D03AfymUcOxgk+vWvsW/uvdd+BlTXcZ/LZdxXN7JQmoY1/8UvEIw8/rg1kKEdddFGiRMgkFuhjcNWOtIRRSH65jehk554As+mrsOmMYjQbK9MT0On79rlHLA6exbTBrduRZWYquKYbgVjly4BeBgZsUf30A76yOOBT8DBMVdxtooEgwI4TKcFgJXJNG8F9HoFPyIP26knzBWoqmJqM8uOHaj6evFFol/9iujjH6/UqV1dCKTefRf+jqbBnzIGylzZkc0iAFtcxGvbNuyvRr4NB/vcUpZM4v9WA7dAAMDh1BSqd19+Gd9/+LCws1wpZAxiJQlrz8Di3JygzejqWt8GvXs31vrMGfgeMzPwaQ4csEan00xOnsSa3HBDc//D74ffPT6O9VtaEgPmuBPl9GlUWd92mzNalrk56I2pKXOURWakXEbit1gkuuMO690y7aCLWl047spm8Sw7tV8eD/ZePI44zAzNgZPv4opi5pRnQDGdFpVxHCNywc3EBGLT5WVBzzU0VDkZ2anw4FNJgn+QSokKWx5CE4tBrzA9mSyL4S2SJK6ReRWZY/FyJsF1XYCHuo54PRarfU6Li9AbExPOKaFSKQCIXi/RH/9xYxupqgK85fPkyvlalZJE2Afvvw+7dviwM3+ro5fsyRUFIn4g/xsR/YqIXvN4PH9HRBJhRPc2wohu+XKeXD0JBivBROPwEreVDwNpc3MAhUZGRHvU0hKMCLc3m3UOfT48yOEwzntlBcDO5KTg0FFVASSykxoK4VwmJ0Wr8/nzcPa4As9uhUgwCGW/ezeU/NwcDMPFi3Aqu7pgxLZvx/fXulZdFxyWnAHc6FJpr1e0wFx7LX4ny6INhvmDzp6tfL8RWDRjWHUd93puDgbZ68Vn+Z5VC0933LZN3L/nn4fi/+xnm9+n8+fh+O/di+O/8w6O+eEP4/ztytISDI+ZIUFmRNOIjh5FtceWLQAQbQKcbamLNkKcAInVn+0AiR155hnorS98QVRELy5CT+/Y0dxuzc9D501OOufPnZkBWfjoKNFDD8HOhULOKxuJBDC6ugowyFjBbkNaXh8ZgcRcDte/mQPTmkl3t5j0GQiI1sJ8XnSS1JNQCMDRwgLuZ6NBBl4vrl3TsCZGnbl3L/yo3/0OYM4dd1TqRL8fQOJ77yHAUtXKYJArUDhhOzUF2zw7i3XngI1Bx1qBWXV7M1e0WJXhYUwcPnUKwNnSEs59aqr2+znIZ55DXcc+4RZorlhk4cE4vb1EH/qQAHFTKVSEXnON8+d0Zga+2Z491nQJ878NDEBvcTL9vffQAXHddc7oXVZXBWjqhGfaKIoCfuhsFgCnA7+t5XVRqwvzxzI/otO4xO/HXlxdBbjttALNjDAoF4vBtnEXWyoFfTQ7C93CgGIwCN1QKABAWlqCHR8edq/KtlDAMZn7fWEBID8RYtKhIRGXcxEQi6pWAovFIl5EooCGwUUj7+1GCcevXM0XCjVOEiWT0JEDA5b4lmtKNkv09NNYiy99qbauUBQBHBaLgg+4txfnGQrVX6PFRdiMvj5Uf7tU1NPRSxbligMRdV1/1ePx3EFE/5mI/pqIfET0FhE9qOv6s5f15JqIxyOGlxSLwlllx8lNMNE4uXl5GU7p6KjgkVpcFNObrVQDMEdgMAgDwCBlNCramkslGD+jcvD5BACWycA4LCzgPJhzwkkw4fcLjkRNw7FnZvC6cEFU123bBocrFILyYw6GYBDXcLmySZyJm5gQv2PHk19nzqBFiAiGzdgGPToqnHxFwfXPz2OfBYNos2kEGq+uQtmPjQlA7fhxGJzbbqtPXs4yOwsHeetWGOH5eTjLu3YJ/iA7wuTLQ0PuDNNRVfA1Pf88rumxx+xz/bSzLtoIcQokMj9iq7aKdGRz5OhRBNkf/ahIsmSzsGNDQ805WRMJ2JWhIegzJ7KwQPSd78CRfeQR7M9AwB3KCV2HDV5bW6/77R2vffRRby/8g3we6+BWgOiGDA7CN1hdhb/U0wObmk5DNzUK5gcH4VMsLTWnQ2E9xwOmjDrz4EH4bEePYr8xH6jxs4cPi5ZhTasPzPX2AqxaWhKthYoi/AquWunurgyYje3N+byY3mxVt/t8YpoyP9uXLqGqr5nt5cRud7cASlW1ElRMJnE8ScI5b90KX+SNNwBeHjoEYNZOFcvaGgDY0VFnQF0kguRHfz+A4UgEz/tbb4lWZyvVntksksxcjemGqCrRq6/imj/ykeY+XyNpJ13UyhIOCyDG53Ne+R4Oi+pq7iTbTIlExN6XJAEozs/jFQ4LQHH7dujS5WX8jSso7RYS6Dp0BdNVyTL2us8HQD8aFQmLTEYkKIwFBjxBmG2AruO5YVCRKxZZjIAiv9wSBg9VVdzLRjqkUBBtwddc4wzgLBZRgZjLoYXZqCs4rmZORiKcH0/vNlOwMT8P/TYw4M7UaJaOXrIuHp17JNtUPB7PnxLR/yCiKS4/bWGxtNjMW1MqCYCxETJvV4ytxBMTeCDLZTyokoQH1U55e7kMx5T5jfx+YfS83uaBVqkksrOKAuXG7btugXm6LqYmz8xAsRFBoY2NwTF0Ug25maLrgmuSX4mEaPcxltT39gIw3bGjeet6LofsfW+vmC65toZ2wokJcPY0+vzKChT+yAgc2mwW3GHd3et5naxINovggNsinIqioDryhRew5x95pCEwue6Kr2Rd5KbwfrT6DNerzOnI1SMLC0T/8A/Qy1/6EvaBogAM8PsBBjTaG9ksQJVYDO91YkuZ6ycYREUkt6G6MUhF05DcSqUArjQBO2t+Wxvpo7q6iAGqcLg5OLyZwtzBfr+4N4kEft+MXoQn5Xq9sIfNdFmtic0sr72GZNyRI0Q33rj+s5qGasTlZdj6Rm3Uug5glKsR+/vFhGcO9oJBAdoZwVIOWLlV0S4vla4DlDtxAv8/cACJRqcBbTIpeLkZBGB+s2QSe+vwYYCz/f3m/D1JAhAZCBDddJPzQFZVUdGcTBI9+iiueWlJtHgODprjDS+V4McwkOzGwEZNQ+XrwgLRzTfDd6wjV6wualXRdewRIveGBK2sYB/xQM7LLeWyABQ5RgsE8Kz29UFHrqwAoIpErHPHMx8kU3Lx8A6eNG18thVF8MKqKp6vnh7zRSaaJgBFrlpkGMbYBs2t0FbvZ6kk+ByZeqvZPSyXUTyhaeYoGZp9/9NPI/584gnYnVJJVBwyiBoMiipUK3vs0iX4RkNDSCI3WB8TQ93aRi+1rFwJIOL/QUT/FxHFdF0vXO7zaSK2FltV4QiVy2I6cjDoLpiYTsNh4Rbfri4BsCWT+E4r7c0snHEIhUQVEitKbn1uJpomWp0LBXx2eBjgntutxYuLcLpnZgSv48iIqGJspYoIMyLLKPk+fhzKN5WCQezvxz0ZGKisVqwmKy6X4WgHAoJnTFFQfZPLwUg0yvxlMggIursREKgqOBQLBXCH2c10ShKqdIJB3BenjpOiIBj75S9xjx9+uHG7GdUGEa94XeTKF+vCabILJHbamq8+KRSI/vZvcf+//GWhdy5cgFO/b1/jLLYkQbd3dSHT7iToTybhKBNh2iCDRm4MauCBL5kMwNJmA2KofuDeLvqooS4y+hBW+dc2UopFgHOxGAAeVYWfwsFno32Qy8F+DQyY451qBCS+9BJs/Ic/DNCoWng679ISbPjOnY2/K5XCdQSDIqnM1SPMwUaE54gBRU4OZzKCD9TJtN5CAVV4S0tYoyNH7IHIhYLotjD6GswLmU7D1+PvCgYR9E5Niamxvb3rByQx5Uk+DwDRDRqVX/8aftoDD1S2EhaLIpmuqriOsbHaU8FVFXyY5TL2glsV0W++iXW64YamlY1XtC5qVWFwnIcFORVNw57TdcQFrdT9oSgCUGTuXOZD1TSAVJom2pGbxYj5PPTd2hqOFQiIwplGySDmGcxkBE1XLAadYbWikNugja3QLF7ven7FetPcmbff78e5mImPNQ1Jh3weFZdO9o+iEH3969AVn/40bBufE5Goao9G7SU3pqfxGhkxVS1pBkRsF73UstK2IKLH45kkok8T0f9ORBd0Xb/tMp+SGXG02MyxIMuiks9NEK1QQPUhEaofjCPuFxfxwI6PW1cynKHnNiDO9ni9AK2sXEM2K9pudF20OjsF93hqVakkFHAuB2U4PS14dvr7AVpt2+aMx2+jRZZFy7IkIQCbnMT9U9XKasXlZVFp4PeLNujhYfHZ7duF0n/xRTjdDz0Eh7ueSBIcWr9fkN6++iqCp499zH57niwDOPB4EBA5bQGQZTjvL76IPf/QQ6baHP/NQF2NusjxlxsGpVgFAzUNn+0AiVePaBqq/i5cIPrzPxfcgCsr0HGTk41Bf0UR/HDXXOPMbjLXT6kEAJETZG5MYlZVVG3nctC5TRIZLBVPQRvqo6a6iCcLh0Ki1bkVhIcBDAzg/nNFi99fG+QxytKSoPhoBpDpOvYwJ2Cr//arX+HZuP12DJWr9fmzZ8Wzsnt343PL53F+Ph/sdDXvF095ZgJ89pliMcF9HQg4B9VnZxHglstIEuzfb/4Zqwcg1pP5eVQWLi3hnMfGBDjI3G0MKi4uwgc9fNgUyN9U3n8fHRA33ri+NZ1FVbFflpbgW3V1ieQvJ/1PnsR+PHDAvcrdt95CUuPgQejOJnLF66JWFa72CoWcAfgs5TJiAy6kaEVh8DSZxE8uUuFkczgM3Tw0tB60MnLCZ7PQVcwtb7X6slTC9xsHl/T0OAPxq0FFprUgEq3rfE1cZOTzNafJqJb334deufZa0/5G3fP9n/8TOuiuu0BTxUVPbBuc+EfM2zs2Bltgwgeo+4421EstK+0MIn6aiL5ORK8T0Z/run7+Mp+SGXFlsXn6saLgoTRb0WdGymUoVVkWfD/8e7vtzZyhZ8eayV6TSVxDf3/9SVGNzpMBMEXBGnCrs1VFJUmCByMcrm2AjYAiZ+i6uwWguJHTzKxINov7F4/DiPb3I6veLKBJpyuBRc7MFYvIJnFbtyShreVDHyK68876x+PKPlmGox0KoVrizTeR7Tp0yN71aRpAyHIZAKbdic4s5TIqJV95Bc/QAw+Ybo02gohXrS5ydAIuAImtlCHvyMbJCy+gUufTn0blDxF005kz0MONqqt0Hbonn4fz6YTnqVAAmJnJAEBk4KgZ35AZURQAPTwcxgKxfXXg3m76yJQuKhSw7sGguxM5nQon4bgzQpLg24RCjXl6dR3AX6mEgKvZ/mkEJGoaBoHNzmJic73n4dw5vGd8vHkgVioBLOMJz7X8Ik0TFYpM3s8BrhF4c+KflkrwJWZmcLwbb2we7ObzIgFqpUpQ1+E/HT+O62LaF79f8CzG4ziXiQmAasaJ0HaSEysrRN/9Lo73qU+Z84NTKYCJqZQY0FIo4Jz37HEP9Dl+HCDDvn21q1xryFWhi1pVuBDCaotoo+M1wy5hAAAgAElEQVTxkJFWqgKvJZoGPcRViuWyABa7u0UMw3Rd58+L6uOJiUq+d7tiTLBwq3N3t/X4tpaw/jdOg2aqCR5sylQSfr8533h6Gh1qO3faG9rGFd3ZLNEPfiAAxFtvFRWHblz32bMoitmypXkCzCCNQMR200stK20LIrapuLrY5TICKVUV7cFu8J+oKgDDQkFwQhDhYV5ehlHhyjaz38ckuZyR4O9hoCoSEQCeleBA03CMpSVBLsytzs0MgqqKUmvmjjCjeItFKN6ZGawTZ7y2bQOoOD6+uZxtfF/m5gS5O0/ytNtms7qKwJurChhcfPNNOCd33w3Dy5nwgQGxdpwRz2SQEe/pgaP83HP4zJ132gsAdR0BUC4Hh8Ap6TO3N77+Os7nnnuat3oZpEVCWNvSEorfCZDIvDUdfsQrW06dQob7xhsF/6qmAUBUVQS4jaqRL15ExcHOnc4mTpZKaNVZWSH63OdgZ0ol2CynHQGKguspFtHKaDFgu2p0UbEIG8d8WK0AJGoawDZdh+33+USbGw8kqSflMgKkcBjAcbPr0TTsea93va+iKEQ/+xl8gU98on4y7OJFBI+jo81bwpj7sVTCfm9U3cbtfcwXVirBhwyFhE/mRFcvLxMdO4bv2LEDicha/id/d72EsBnhZOXJk/ATJiZQiefxoJvC64W/l8mIlkoi6AEjqNjT09inlCRQw2ga0eOPW69ckiT4ZcePw//bvh2t34ODzu3i6dPoJNm5szbfZh1pgSfSkbSEX+REmFKg2d4zK8kknqmhIXfa4zdDeGp7KgV7vbKC/zP1As8ZGB/Hc+wGHUH193PSi7vuolFnfLEsnLjhacZdXdA73BJt5Fc0ToPu6qrU9fE4nvHxcWvDLblrL5fDNaoqurhOnYLd+cQn3LPLnABeWkLMZyE+I2p/XdQW0gERN1c2ZLFLJSgUTYOiCIedt3jquiB17umBomHFkM1WOs1mW4nTaZznwIDIkrFCZKXu8cDxszNAhqceMrdFXx8c11oBWbEouH2iUfsZqHIZwNbMDH4qCq5t61Y4dFu2uDtxq/q7eWpZuYz7zi3LTr6TQdJoVGSndJ3oX/4Fge6ttwrntVjE343grSQJgt7hYbzn2WdxTvffbz9DurQEMGB83BkYwNd46hR4jVQVwOa+fZYO0e4GqmUUv10gsTNo5cqXRAI8iAMDaGNmB3x2Fn/btasxSLO4CP24ZYsYCmVHZJnoW99CoP7YYwBoGCBxGlgxb225jCy7DWqOq0oXcUKyq2s9h+/lEh4iFwyKSZTpNPZIb29jMCuVwn7mKbzNxDilvvray2WiZ55B4H///fX3/MwMqiCHh5uS0/8bP1o+D1/KTMubMYhmLuuuLlxfLY5Bs6IoAPbOncNaX399JadkNos14KS0U+Hq4NOn4TMwzcAdd1T6sNls5URo9i2J4Ef19gpQkQcv6TrRj38M/fRHf2R/2nEigW4KrxfrWizC1+IErx1/68IF+EZTU+DatGCXrypd1IqiadiHXi/2m1NAh4sUZFm0zreb5PPY0y+9BH0UjaKbysogJbvCFYP5vGh17u62nuDgJA23TEcitSv9qoe21GqDzuUQ/wwOIhnTbI+oaiVwyF1AsRgoIN54A1Qa99xj7ZqaXS8PBeOZBBal3XVRW0gHRNxc2bDF1nUBJjI5bDjsPBOVSCCLwwAVH0+W4fwUi1DCo6PNFRFP/yOqzJTKsiCmNf6bwUSrwlwebPhCIcHxxxkqRYET6ka5NQtXcHKJOPMrTk5CAU5NuWOsMhnRsqzrCLCnpvDTqcOgKDh/jwfnzPf76FGil19Gq5SxFTmbreRWPH0a+6W/HwHM8DACFl3HxEG7gfzaGgABnlDoRAoFkWUvlQCKHjxo+TDtbqBaSvHbBRI7/IhXrsgy0d//PQKiL39ZtIamUoJcuxGv6toaAofBwcbcrc1EVZFAOX8eA5f27IEN4ep1J1IuQxfJMo5rk9S83Xe+ZV3UikBiLgd/qadH7NW1NdiYgYHG1aqzs7ienTvNVcU0AhIliegnP0HQ98lPwgbXkrk5AGQDA7DpzdZwdRXnGI1arypMJkW3SCCAVyQiWv2sAhPJJKoSUynogOuuE10TbgGIRimViH70IwS1O3divRpxq8pyJaiYTovhAgzuXLiA9b/3XgAadiSXQ6t3JCLuYSYjkukej3Xe8EuX0J0xPg7fyOKzddXpolYUWYZvHgg4t1FEeLaYI9VMrNdKUixCv87NiSnnkoR4RVUri036+py3NNeT6lZnv18kFRo9Y5yQKRSg80Mha/yC3AbNoGI2C57ZQABxTyhUObSFj6soYqgZF4uwz8O8iy+/DKqZm26CrXFrX2gakkWrq0gUm6SYqpY22qXtKx0QcXNlwxdb16EgJQn/DgbxsDtxsnmwit9fCYTpOgCjRAKKaMuW5iAZE49XT1oslaC0mKS+UMB7fT777WJMnBuPQ3HKsnCAh4c3NvukaTC609MA0QoF3IOJCYBzW7dac3Q1TbQsZzJYl/FxAJRukCgTiXbhYhHnyGu+vEz07W/DeX7wwfqfTyTgZPOEuHgc/IlnzuCzQ0PIxnPFxdiYOQ5L5qPs7sb+c2Kocjmcz6lTCGhuvBHtPzak3Q1Uyyn+DpDYERZdJ/re9+DsfvGLot2GQbdgUBB315JcDu+LxYj27rW/L3Sd6Ic/hEP7yU+CFyybFVU/TvabJImW7L17HbVUtfuut6WLSiWASD4fgLBWABLX1rA/hodhlzlxqqqwdfU6BDQNgJKuY1+bCRAbTWzO5wEkyjJsdj1uxsVF2MK+PuztZt+bTsPnCwTgy1jpeOAhCPm8AEFLJfwtFBKTns36ZTzF/MQJwSt57bUb03J54QLam7dtE0kMnw/P7d695kDQYlEAijxIZWoK/kcgUNkCbabtsVRCItTjAYha/f5SqZI3PBIRPle9Z2VxEe3aQ0OoLLJRhHBV6qJWFElC3GG3GKPW8VZWcLxWHirJwvt/cRHrMDyMSn9ei3we8c7KCt7LA2k4Nu3rcy+2MoqRR1CSBHdsLd3H1c+aJgZEOekyk2Wit9+GH3XoEJ5vBhh1XVCkSRJ0NMffDHYa4/A33yT66U9hNx5+2D3fW1VBz5BMQqcbK80tSrvroraQDoi4ubJpi61pAkz0eASYaPdBLxYBYBHhoTYq11wOpKdm25uZN6enp/I4XEXJ51kuC4fT77c/Fp4rExcXxfQyY/Zpo4EHBlt5PH02i9+PjYnBLPWyhaUSqhsXFkSWnVuW3R4qwXyXExPiHsoy0Te+ASPzxBP1nZFsFs58NAoeRK8XwN/LLyOTtHVrZcViLofPeb1wWBlUHBmpvCeSBOc9EEA1kZNAMZtF0H7xIgKBgweJbrnF9uHa3UC1pOK3CyRyy0Zn0MqVIa+9BhDk7rtB1E2EfXHuHOzEvn31E0ulkkhm7N/vzOl+5hlMJ737bqKbbxa62+nUWR4Ko+sAIRwGK1etLiqXEWx4vZW8vJdLdB02rlyGje7qEoPlPJ7GAE6hALCqpwf20owoCn76fOv1ZSaDZ4gIAzvqVbnG43heursBRjV7XgoFJEg9HvgKVhK83AnC04VDIdEmx9UuPNW5u7s5+KHr8OuOHsVxxscBytms6K0pq6tIZoyPA6Qkgh5gHsJgEFWJu3aZ0wnpNJKyPT1E990n+DPTaTHgjwg6wcivaKxYUlVUIEoSgvhG+kPTcA1LS7h3fj8AlbGxynu3soJ2z95etGvbbFu9anVRK0ouB13U3e1OGzIPLunrc/cZc1NkGTotkcD1RyLQU8PDtZ/PTAZ7P5+HPu3qEqBaICAAxWjU/ViRh79wq3MoJFrQOfbl6j+nRS+aBp2RzUJncIxXKmGdmH5DUaAjGFQNBLBuRn7FkyeRXN27l+izn3XP7vJAzkwGPp7DrrN210VtIR0QcXNl0xebq/rKZTFuPRi0pwxlGU5TuYyH20iybWxv7uvD3xt9RzKJ4wwOCqeVgU8+TxYm6GaFGo2aCwyZALZUEvwNRKLVuVwWHEbDwxvHXVgta2sCUEwm8buhITGYpa8PhnpuDsZN1/H3yUnnXID1JJvF/ePWdJbnnoPBeOSR+tO7OCPu8wmy81SK6Oc/x/HuuWe98c7nK6dBc+s5EYzW6KhoOxgagvPuxAlKpwFAzM/ju/btI7rtNkdOQbsbqJZV/HaAxA4/4pUjly4R/eM/wkF94gmxB5aWBMF2PT2oqgBEFAUAopMKjBdeAJh5220IqrNZMenRidNcKABA9High1yoErmqdZEsw6a2CpCoqgC2vF74QUzTkkjAhjWiHVlZwR6fnGw82Zml0cRmIvgXP/kJbOqnPlUfbFpZEUnA669vbmvLZSQ2VRXXaLWKlnnCiMT0ZkUR7X7MKcgBdC0OMV1HsKko+PvCAgJQfvb37XNuC4pF8H2Fw2g5rj7e2hq+c3kZ53fgAPy4evdXUUCNkM8j+K5OuCsKrsnYCs3Vml6vmHYdj2PtjxyxNoQpm63kDedWZx6OEImAH9rBoKirWhe1mvAzouvYN274RqureC5GRpwPFHNTVBXPYSIBfevxIEYdHGxe2KLriFlWV0VHXDAoqoe54psBRaddCNXCvKqJhPg+jqPdqqw+dQrrc8010COcvOG4KxwWg0/9/so2aH6pKuKoH/wAsernPy/aoZ3Gz7IsQM5rrnFlwny766K2kA6IuLly2RZbVUWLsNcrwESromkAYvJ5KGcj346xvTkYRMVive/g7KjXi+OwQlZVAEd+f+VnuU2bB8gEAnBc6wUMnF1hAtrqKkxdhyPFrc5cEeem0jYjmQwq9qan4dxlMrhHvb1Yv2uvxc+NPKdSCecQDCJA53U6fRrTHm++Gdw4tYQz4lweHw7j/H/2M/zuk580d+66joCHAcXFRQTasoz9MTAg2qAZ9DULKiaT4DNbWUGgsWMHHGWHDlW7G6iWVvyahp8dIPHqkmwWg1T8fvAgGluPzp5F0LttW+3P6jp0Ri4HANJJpcQrrxD95jfg+rn3XuFs2+FvM0ouh+vw+RpXU1qUq14XybJIyA0MbF5CsJ7w4LFIRPhIkoRzDIcbAz8XL8JX273b3P5oBiSurKCiNhZDa3M90DqRQHVdOAwgsVnlC4OlkgQbbQb0rP48g4AcwBr/lstVDiTw+SorFJnb2tgGWCqhXW9uDsABTyq2I6pK9Pvf45g339wY7I/H4Qclk/jeQ4dq87U+9xz8qoceMl9tWioBUGRQ8dQp3NOJCfhC3P7MVYtmKpbKZeFrJZO478PDOC+HHHpXvS5qNeHnzOezNbRrnfCgJV3H/rvcSRuOJVdWRGzIVc6Dg9ZsrKbheVhdxb97e2FPikWAjDz52ufD3/r63AFnZVkMGC2X8R3s+/JUZyeViNPT8I2GhnDOfPxIRHAcmrmP588Tfe1r0BWPPYbPGKdBM5jIHItm16VcRiFKoYCY18zwLhPS7rqoLaQDIm6uXPbFVhRRsuzzwXmzqpy4ZSeVggM3Pl6pLPJ5AI26vr5i0SilEhQ2cy6wlMtQqsHgeqdY16HQufWZS66NbR75PI7B3HzNlCO35yQSMBw9PTCO/f2bw7EmSVivCxfg/KZS4jx6ekSF4kYQGmsaDIym4Tt4vTMZoq9/HUb40UdrGwOenpVOQ/HzfX7xRVzHPffYzybNzgLkjURwf+Jx3COuXmCCZAYVR0drV3jwcIV0GhVOExNoTXTB8Wl3A3XZdVEzYSDRioPW4UdsX1FVoq98Bbrw3/970cqiqgi8iQC81Xt2p6fh/O/Y4Yyz6c03iX7xC7T8/OEfCloQu9y8LNksAMSuLlyHi5y87b7TXdFFigJ9T9QaQGImA/+mv1/4NwyMcXVdLZFlsU927zanxzQNz4nXW/v5WFxEYm9ggOiBB+rvvWQSYFggQHTDDc33O/uCuRyucXjYmt7liaPFIq63lr/GHSXZrAAOCwX4ruPjCIqrbcTiImgIikW0GR88aH0/nDgBn+P6683rk7k5AHLZrJh8yiDyu+/CN7rlFiQn7MjiIgL5/n68GFjkhDkR1qWaX7GeDc1kMCE6mcQaxWLCp7JZId3RRS0o5TL2CMdLToVbhnni+uXwtbgQhDk/OcHHlFhOeHJVFfEg25P+fjzPPh+emVQKz56iCH5k1vNW9IyiQLdJEo7DA0uYzot1Hse6XJFtZr1Zt05PQ6cPDMCeGIFDK+szN0f09NPQt089JYpDVFUMbeGKRRavt3JoSy3+3lIJdBGSBB3kYrddu+uitpAOiFhHPB7PnxDRV4loh67r0y4dtmUWW5ZFi7DfD4VgtcKCFXgohPYbo/JUFASDhQKcGW7rqZZMBu/p7690WJnYtd5QGE0TYKLHg3PweASvTjRq3QlSFFwPcxpxW+3IyMYEJMkkFDNPrOaW5f5+KNZLl2AA5uexFqGQABTd4kScn4eh2rpVOBeaRvTd78KIPvFE/ezl+fNYq927BVh44gSc9xtvREm6HYnHsSZjY+ud92JxfRs0t/t0dQmun5ERrM/KCj5z4QL+9olPuMMNQ5tooK50XdRInACJlztD3hFr8uyzIPV/7DFws7FMT8Nh37OnfgC0tARdOj7uiIib3n0XQfW+fUR/9EfCTgaDzoKvdBr6Mhg0P4jBgnR00QeiKLCr3Krp8jpblpUV7B8jKMPcU3199av0uUNhaAh72ow0mthMBH/i+edxLvfdV9+nSafxHPj9ANDMdBIkEqLKsjqpbEaM7c3d3fXBS65+zGYrk0XRqJj0bJwuevw4nrtwGKCo2bWcm0PiYudO65PddR3VpCdPwvcYG4Pv8ctfwn+zO8U0mcQxBwbQrm08Bk9+NU6DliT8jQc3GPkVIxH8/de/ho676y68j7nkjO2UVtqlqaOLWlYKBdzzaNSdCvhCAXslFrNehexUUikRp0WjolpQUdzla5RlMZWe6TIGB/Fv5ndNpfDiFupYTLQ917M/XOzC8WskUp9zUdPwPVy1bazIrpdwyeUE1+rZs4iHbrrJPq9jPE701a9Cjz71VOP11XVcnxFUZM5yIpwzg4qKgpiRO9ks6ppm0vRKN0iHXFXSARHryNVioEol0SLc1QUlYQUw46EqPh8AsOoW5NVVvOq1N/MEZU2rJB3nikOixgNhNA2KMpGAouJsuBMAgfkxuL2YW65HRx1N0CQinCMHvPk81nxiAmtTD/RkLsrpaVToyTI+t3UrnNLJSXvBUiKBIGdkpDL789vfggfo/vsRTNeShQWcz+SkaMtZWoKjvHUrJvvZkWQSxx4YMO/ws0PBoOLqKo6TTGK/FQpY34ceqpwu7lA6zvImiR0gsTNopb3kvfcwbOAjH6mcAL+2BvBjfLySq9UoTFcwMICg366cOkX0/e8DNPjsZ4XzzrxsdiWZRBIjHAaAuAEJqY4uMoiqYt9oGoJbFys+LYumwS5qmkj8cQUNc0LXO7+FBdjo7dvNB8UMJNaq+CDCc/KrX8FG1+IqZslmUR3i8QB8MwOgZ7Owv11dYqiMFalub64OePnvzO/m88FHZB5FbumORASg6PdjrY8exWcnJwGMNgJR0mm8f3AQ1ch2q6yYP+yddwDWjYwQ/cf/aK9KOp+HjgyHUa1jxq6Vy5WgIq8tn9vZs7j/99yD/cBrwlVm8Tj+HQoJINTE93Z0UQsLt+Py8+NUUik8ewMDzmMjM8KcnpIk9iWfh9/fWJ86kXIZsRK3hQ8Nre9UKxRwHsmkKGyIRgWgGAyKGQWFgqDaslIRyFOdGXyMRnEMbofmDj2/H+d5/jzec+SIfb9jbY3on/4J5/inf2oP6NP1SlCRKzCPH8eaHD4sugf43F2QDoi4CdIBEeuIx+PxEVEXEZV09xapZReb+QZ5IlU4bP5BliSAXJoGQKw64MrnK0m4q5WQolSSjrNwtaHPVxtg03UoVT5vIsGHFom4QlhPxSKMFnNkdHfXb51tdhyessyl91NTOJZVcIQBvEuXsPYM4G7fjmOayTLm8wAke3oquXvm5oi+9z20J3/iE7U/u7aGgHtwUICM+TwqiUIhgI92DFY+j+qLaLSSm9GqcEtRKgUHvlgE2MrORTW/ImcWLcpmOstXlS6qJVaBxA4/YvvI8jLR3/0dbMOf/ZmwO6USqoEiEbQk1tIH+bx4z9699u/1hQsAMScmiL7wBRyHuXKdkKivraEqic9vg0Dtji6qElVFMKeqlx9IlGVUz3Fng8cD3cTJU+NwOaNoGoJARUEVrlmbypNF6wGJ778Pzs+dO4k+9rH6ezufB7+grgN4MwOkF4u4Vo8HQKJVH8zY3uz3C7CjGkCstRaSJADFchm/C4fx/EajeMZPncJnDx2Cv1Qt5TISqF4veBCdAv6aBn/q3XfRsRGLYd2vvdb82pTL8GOIUKFtdy+zv5xIYGjUygrOiWlogkH8mysWu7tFgjabFeBJE97wji5qYeGiCyLcZzfakHlI5ejoxlV+M+VUPi/0aE8P7Gux6Lx92awUi2KSM3c+1aLrkiRRociAIZGYPN/fX1k1bVWY4ml5Gf8OBHDM4WEc3+9HR5iimK8mryWZDADEchkViMYZCE4knyc6dgznx7qQ7RaRaIM28iva2KtmQMSN0CFXlXRAxM2Vll5sHl4iSfh3MFi/nbhaFAXgjSQJPsHqvy8sQHnUam8uFKCw2OEzfq5UghIxOk+ceeE2X85ac4ZDlqGgnfJYGc9jZQWKu1TCuYyM4NXIcK6tiZZljwdKeHLSnbJtTYMR4UnP+bxw3rdvB3BWq4JAlvF+vx/v4fsgSeBB9PsRSNe6rlwOAF00ikmEXi/uwXPP4f7df7898uZSCcF2Vxcqgew6AwzUdnUhYPD5BKjJU7mXlvCTK119PnEvmV/RxDW0O99GS+uiWmIXSOzwI7aulEoYpCJJGKTCzx0PSZFlJCpq6aJyGYCI1wvqBLsB/+ws0Te/iSDkySeh242tlXZ10eoq9Gx3N4L1DayKbffdvSG6SNNgf1VVVIJcLikU4D90d4tEqapWDpertc8kCdVssVht0KuWcDsZUf1n4p13AJbt39+4a6BQAJCoqgCwzNh2WRbJ0pERe62FxvbmcBj/93jMV1DxYL1sVrT1BoM4xtmz8FWGh1Ghw+CoriOwzWTQ+udwwAgREb38MtbvE5+Ar3XyJMBMrxdJhXq6jUVV4W8ViwA+3eiEeeklAIl/8AfwdarboNkvMg516OoSCXsi4cP39a2zrR1d1OLCE8CZg9SpqCriIo/HelFEM+EBVZkMdBl3TZXLIgnT1+fOs2pF8nnEEJIEvcLgXS1JpxGXcMszV1lzhaLZZ5p5LXkAC5HQHezn+nxYi+lpvO/w4fozCcxc41e+Av3wpS+Z7wxrJtkskioeDwBOY4xqrFSU5fVt0EZQ0edr6te3uy5qC+mAiHWkuszV4/H8MxF9kYjGiOi/EtEfEpGPiJ4lov9F1/U1E4dti8XmVmJ2vkKhxi3FLJoG5zGXA4hYq/2Mp2gFAutbeFMpMenP6FiVSlAqwSAUBxPRssKsF2DyABm/H4rKjWoEXYdRWFrCTx7wMToqDBnz9szNiSwRtyxvZCCzsiImPafT+N3IiAAUe3pw/jMzWJ/t2yvX5Kc/hYP7+OO1B6KUSmip8XhgnHjdX38djvkdd6AS0qooCr5X15Glt5vNnJ3FfYlEwLOhaQAQ6xnRTKayDXp5WRitcBhrwPyKo6Pr7t1la9u5mnRRtVgFEjuDVlpXdB3g3alTaJMxgiTz89BnO3bUfn5VFZ8rlwEg2q06j8cxbTAaJfriF6E7ODllZihXPVleRqV4Tw8AxA2ukOjoojrC0zZlGQGbG90JdiWZhM0ZGhKBY7kMoJO7MGrpqEQCftX4uPmplc0mNhNhgNDbb8OWf/jD9Y8lSXhfuYz3mkmAMm1LsYjrskOWz9Wka2uCa9FOokCWRYUid63E4/AXeIDMnj0Aay9dQnKU2ySdyNmzRD//OcDXj35U/J4Tsfz9+/fXTjLoOnTc2hqqdZzyzmkaOGeXljDcpZ6vJssCUGRwUZbFOcmy4AwfGIBvOTz8b/emo4vaQEolxFHhsP0qNaOUy7B5DKg5FW6pTyZhO4eHBd0V782NbF82K5kM/JRyWcQMDIpJkvAljIBtOi3awHUdf2NAMRartAF8DB4WSgQbFoutj32LRZzP8eOwGQcPooPDTswpSUT//M+I1598Es+4G5LJCL7d665rvvfYjhkHt3AMQFQJKtZog7bczuySDrmq5DLPr2tLeYaILhDR3xDRPiL6D0RUJqInL+dJuSnMKxMKCTCxVML/eYBJLfF6UWW3vAzHR5YBnhkDqKEhHHt+HmCXsWqxpwefSaXwPv4e5pLIZitBnkZTqgIBvEolUeXY1YXPOCm593iEwpck0eq8ugoFpijCUe3pgfM3MrI5LZXDw3h96ENYQ65QfOMNvAYGYHj4vIzG97334ETffnttAFFVUfWjqsiI8xqePw9n+cABewCipsFxV1WACHbvzcwM9l1vL4yoooA8vlEWjicX7tkjziWREKBiPI7jsvT24r5zdWMLiG1dlM9v7IltlOh6ZcuDGenwI7amvPIKwIl774Xe4j2ZyUAncJtn9V7VdeiqXA5OMpOUW5VEgugb38B3fPrT+N3yMmxQLCaSaFYlHod96+2F/ePqHbdF19Eq+Sd/sjHHtyi2ddG5cxt7Ypz4u3gRgdzlBBJXV8XAFLa/koQ9HwrVr/RbWwPotHWr+fNvNrGZp4m+8AL8mAMH6h+ruxv2/5lnUD1nBkhkvmumKBkctJbIkWWRMOZOAictgCxMkdPXh7138qQYnHTNNdArTvdkKgV6F06mVx+P7//p0+jiePFF+CGTk2KNZmdxzVNTWMdEwv756Dp0Ld/nUsncNfIAB24Vz+UEsJHN4pisL8fG0MHSAnLFx2TaHPUAACAASURBVGhOJRgUsQqDME4kEMDzxIkSO91IRKLji/f60JAYkqhp+Jsk4Vnt77/8VDXc9p9OiyKOQAA6mgGu6ir4oSG8VFUAisxPz9RdnCxhwCwSEVWL9RIp4bDoeNu3D88k02j09JgfqiLL8IuWl4k+/3n3AMRUCnFmIAAA0Ywd83iwN3leAxHWxMivWCpVDpHy+5F8aZQYMyEdHWJSOiCidXlF1/X/lf/jwVP5Hzwez5d1Xc9cvtNyX3jkPIOJxSIe2HC4cXZjZASKYmkJSrV68Eckgoqz+Xm8p1AQE/16e+EwZzICANI0Me6+qwsK2KzRCwbxkiR8TzqNc4tGnTujPC05EkF25eJFKLeREThqu3ZdvixZXx9Kxa+/Hg7f9DSq815/Hcbl0iVRoejzwYndtg3tPdXCrYXFIpxszrStrQGcHBvD99iRhQUcd2rKXkZU13Ftq6sIUo4fR+Bx773Wqx8448mZVAa0Z2exV+fmYARzuZYBEa8aXcTCThCDiWacIubU4paPjlx+uXABQ5gOHEBVDIui4HkLBuu3z8zOionydoOVdJroO9/Bvx9/HLamWBTtRnaDqoUF2LT+fujXjap+VRSi//JfAAC1CIjYsrrI48H9TadF9Ycb1Td2pL9fJFk5uRgKCSDc56vd3jY2Bju3uFhJQdJI+D2NkihHjmDPHz8OX4UTatUSDCLxeOoUgK89e5rbV49H+GrcyseAQDNhANHrxWcUBXY3nXY2XZZ5Fnt6cNzJSVzT88+LexEOiwnGdp7fcpnoN7/Bd91xR/3r7elB23QigTU9fhw+JPNfLi/DF6mV1LUqx49DL+3bJwbhWREuIGDfyDgFdnUVvtGZM87P0yVpWV3UShKJiOeqt9e5bxSLiWE+DKSZFU0TXWo8EMvIsVgqifZl5hNsFeHCkkgEvkk8jt+PjjYe5OjzQYf29+MeLC6KmJlt1NgYEpH9/c315soK9MfEBKqb+RnNZMSwyVhMcCbWElUFN/TsLNGjj6JC2g1ZW4MOCoed8boSYZ9yXM8iywKjeOEFoh/+ENfhQDo6xKR0QETr8rdV/3+RiP6KiLYR0XubfzobL9w2rCgA4pj4ulGLMI+3n58XQKLRqPh8cGYSCcEtwe3NsRiUKisJrjLhdh9jObNZCYVwPFY0PLk3ErEHJiqKaFkuFnH8u+/Gua+twWl++20xxMMN7hG7EovBGHR1IWhQFICIx4+DfPedd/Ce++6rDcxMT2O9du0SFQilEoDHYJDottvsOdvLy3A4THIQrhNdBxixtoZj8DCVj3/cuuOtqmJv8IsnGYZCMMoTE0S33mqfY2QDxLYu2oxJehspRhDRzN7rDFppHUmliH78Y+j7z3++0oZcuACdsm9f7SAkHoc92LEDNsWO5PNE//qv+PdTT0F3lErCqTczibaWzM5Cn01NAejZKAAxmyX6679G4uqL/z97bx4l11ldi5+ah55n9SCpZc3W5HnCxsYDg40N2AYHbGN4fiGAgWRBXmJCBiB5kPeSrPyAhCkMYUwCITwwGGyMEca2hGfLkmxJLfU8V3dX13TrVt3h98fm5Ls131t1q9Ql1V6rV7fUXVV3+s53zj7n7HNPdT6jDJRti+wKVEpB1/HsyXKu9nItMTyM59jvz9ynwmHsO+3t+UnOoSGsj2DQ2rPPCRSXK7/t27wZgdf4OO5FISKRCL87dAjP4PCw+X02FsM5u91IDhQLIjlhzIQfryMeCsETg7Nb/8qBosD35Aq6U6dAhu3YIbpdeNKz2X3jpz/F8b397bBxpbBlC6pmpqfhw5w8ifM8//zyfSsjXnwR5/ma16DFsVoot3K7CjjrYrRy4HCIKrpoNHOtlYuODqFX2NdXWn6AJ9UvLOAZbWvLlQ4yti9Xc3hLuWAiVpZFciKRQMx06hTseXd35rXgKc3cqsz2eds27Es8SGp1FbEaD8Fsb8c1yr6ukQgSEa2teA8iMRSOK4mNEgXBIP7W6GPxEKiREaI3val4ZboVhEIoYGlqAoFo1/0zSiuk0zj+n/0McenFF1f89g0bYhINEtE6xrP+vfK772WovtQX2KlLp4UB5OEl+QxDUxOCqakpOKgDA7lkWldXZnszC+dKkjCc7DC6XMJoOJ3WjRG3aQcCOH5u02ZdEDNOYjyO85mbg6Fva0NVZU+PeH1PjxAE5tL8pqaKJgFXBFXF9XW74fi7XKgoTKWIvv99GOPubhjfgwdB7g4PwwFeWABZOjAgNC51Hdo6koSKv3Law8JhXJuODvM6T0bw5MpwGMd25Aje75prSjvuPECIycJEQuiNEMGBaW4WQQRrKHV2lpxMWGuctbbIWJFo/Hexv3c4rFUwNmA/FIXo3/4NNunOOzPJhMVFOLrZCScGVwV3dJRPICaTaNWJRvH5fX0iOcZyF+VgfBzH39tbXqWPWUxNEX3kI7DJ999PdPPN1fssi1jztsjhwLNj1KM6HRUtPh+OY3kZAR0npdraRIuby5VLtDU14flaWIAfZTaZ5XKJYSv5ki5OJxJvDz0EH8DjKTzExeNBIPjSS2gD1jRz+oHNzfA/OPHa359/H+WBKNkEIh9nezt8MNa7NjtopRCOHoUPcOGFeO99+4ieeQbrORZDQiAaFUNGmFAs9JnPPgvi4KqrzBGIRgwO4hgefhifOTODwSx79pSvh3j0KEjRLVuqSyASnV6ZgCyseVu0VuB04nmORrGmKk2scPXx/DzII55Gnw2WmJifh+/d3Iy/Ne6/qgobye3LhTRjTxe4elyScFzNzaJ6uaUFsV4ohP2G7bzfj+vME5tdLpHQyq58bm8X0+p50jNr3be0CEJR0xD/+Hxi2GU2uJJYUYQ+LOv18+f/+MewF69/ff6OtHIwP49K75YW6OnaMe2eOQAu8uDz/c53sC+99rVEd9xR2edQw4aYRoNEtA61wP+vIfNWXXg8MF48vISzxsFgrpHw+UAkTk/jq6cHxtWIQACVJdwKxqSbogiizvjZ3N5cSOunFNghZDKRdR+ZTMzeqHRdtGyw0G9fHwLZQhWG3Oo8NITzmZuDczkxIQZ11KrVmSclcusyg4cX3HEHJvUxkTs+Dp1DNtRchcc4dAjveemluffSDOJxvL6pqbyJX5omJiyuXw+tppkZZO3z6XekUpmEIU8fJ8LzGgjASQ8EcN+M1ygWQ9DmdiNYOp0iznlwVtsiq0Si04lnpzGx+fThJz+BHb3zzszkgSRhDbe15U8qJBKwn01N2CvKQSqFFpelJdi8oSHsL5wMKyeAYjmFpSXYh3LJTTM4dIjoT/8Un/l3f1ex5o/dqBtb1N6OYCwWw7U8HV0CLS0gzMJh7Cnsd3R04FlaWcE6yPZventx3NPT1vSd3W6hIeV259o+l4vohhug4/fLXyKQLESCud0ICA8fFjrJZggzvx/rY3YWa72nJ7MDgQlEHkJQyD43NeFvolHRolcOgTU2Bv9n61bRYdHdjevAbdujo6iKbmsTmoBEmRWKfA8mJ4kOHMD7lSPvwtPmh4aQnJ2awr8feQR+zq5d1p7VEydALmzcWL7cTJ2ibmzRWgDrzbE+YqXDH91uEH7cQpste8ADDTnm2rQpN5mTTIJA1DS8fi11znCbMGsdB4M4vmzyzu0WNnx8HP6Ly4X/49ixVEECk5PNzXhNIiEIxclJ2KeJCdyzq64qvR+43dhjOBnDrc4//CHs+WtfS3T55eVfGyNmZ2FD29uRCCk32cPxPusgEgntSK8Xdvmf/gnX4+1vJ7r2WlsOv2FDTKJBIjZQNozDS3gyFDvERoPhdqM6Y2YGTls6nZuhcrkQhPFUrngcjhNP1jM6T14vDAtXEZZLBnAWjslEJpiYTFIUHPP0NP7f50Prz8CAeefd5YLj39uL6zM3h/ecmRGtzuXqeplBKIRruW5dpqMdjyPj3dMD8s3lgrO5caOo8vvVrxBsjY3BoeV285ERVDIWa3sqBFkWUwnXr7d+71QVzjG3Ux07hg36kkuQbef2JCaHJUloQrHmUVeXIIyL3UeeDOn34/o1BnOsPZRDJBrb+xqoHZ59FhNhr74a+moMTYONcbvzD2dKpbDm3e7yJx0rCqqup6eJbr8d1eO6DlKAHXWrtkjX4cQvL8M2lpMQMYuHHiL69Kexj3z609iHGigfbW243/G4GIJWa3R1wb8JhcTkYadTEInLy7mdCw4H1siJEwgezznH/HPLg99UNX9FiMcD8vAnP4FvcOONovsg33vt2QOS6vhxrGEzg9U8HgTDc3NiiFFXF/bseLw0gcjwenGdIhH4Ajzcw+y1WF5GUN/Xl1s57HKBsBsaInruOZD3fX2oznE6BZk4Py/a0okwibmjA1WdVqFpIAzTaVzXYBBtiZs24foePw4fbNMm2M5S5MPYGOR0BgfR2tdImDVQDIEAbAPrslZaMRYIwKZyTNjcjPdmDXyfD+suXzU1TwT3eBCfrJX2ZV0Xcl6sWZhPWz+dhn3gIUREOI/+fqG7bNSNtLI2g0F88cC2gwfxGT09sGd+vxj8WayrwkhOPvwwbBxPc+ZK90o6rqansUd1dsKWWvW1VVUQh0ZNX47Z+P0mJ4k++1lciw9+ELazgdqiQSI2UDF8PhjEZBJfqRT+z9gi7HDAoeH23lQK/+ZWG57C194Op3JxEV/soPFn8HvxsBQm/SoBl5QHAjiO+XlsdpGImK61dWvmxOhywILesixanZeXYez7+vD+drY6s+g1TxVm6DqC0nQaA0KyDbyiYJO74AIYZZ70/PLLyLQHAti0jh4F6Wg2S6iqCHwcDjgQVjcWRYEznUhgszt2DEHMjh24rlw9yeBpl0wY+nzm9fMWFxEsNDcjcG844WsXlVYkNlB9TE+jXWbzZmjHZv9OlkEQZgcvqoqkhaZhnZcTUGgaMu2jo0S33ILKIiYQuaXV6nOgaXDaw2GQJ4XIlkqh60Rf+xrR178OZ/yTn6zeZ51t4HZZDgprrXXrcGAfnZ3FfrNunZguaaxIzK7293rhO/H0XrPPA7+3sSIxGz4ffIIHHgAp9sY3Fu42cDoReB49ijWqqoXboLNf198vKpUiEfhfLCNidq/Nbm9Op3FPSxEgySSqbngacyG0tUEe5eRJ+Bm/+IUYmNfTI7QbWeM1EkEVz+qq9erI48dhj3buzKzK8njEZ778MmzO+Dj80e3b83dGTE+jJbuvD0OrGr5LA2bQ3CwqtFtbK/eNuFttbk4UfXg8sF0dHbnPparC5skyYop8f3M6oOsgqVi7kO2U0c5wFXU8jp+J8HddXfhb4zpNJIRM1NIS4otyquGnphBDXX89yDqe9Dw3hy+emN3eXli248ABSFNdeSXRTTcJ8pPlXXiqs5VnYWICdqq7GwkPs69VFNGqzHMPuMPR48l9nxdfJPqXf8Hx3X9/dbtAGiiMBonYgC1wOEQFH7cHy7KYdsebQU9P5uRmFrXXNKFBx1mS2VkhBkskphkS4TtXQaZSlbeZssDv1BSc21QKG8DQkP2tx5yFM7Y6j44iKOjpyRUWLgepFKoduYrOiOeeg6HnzccIVRUtSrt34zhYy3FxERV/27bh5wMH8NXTAzJxeLhwIKbr+Mx0Gn9n9XryBMlwGAHI449D/2LzZmxWiYRoSw4Gcd7lOEGahvshSWJyWgNrH1aIRB6uomkNfcRaIJEg+u534ezdcUfmugyHhQh7tqPLg5MkCUFzudPbH3gACYfXvQ5tmHxMioJjslp1oWkgTSIR2D2eWGo3ZJnob/8W5MW11xL9r/91egd0nYngqjcmlI3JtlqAW94WFrAOuJWfA0CjnpYR7e1CaqO52Xwiz+EQ0+pVNX8iLxhEQPnjH0Oo/uabC+/rDocIFEdH8Z5mqmSZQE2nM5MI5dhiY3tzOFycwNM0+A2aBltQKpHpcOC4BgbEELqJCWgotrXBLzp0CH93883wF0IhfHFVZamqnvFx3PtNmwpPvPb7MWhl2zYQmq+8AnJzxw7YRj6P+XlUJ3V2YghcI0nWgFmwll8kAjKs0r2G5a4mJvAc7tiRGcMZkUxiDej62mpfTiZhZ1VVVFRyIpN/F4vBjhGJAotsktGIYBAxUDSKOGpqSrzO7HlPTSE+Xr9exHc9PfjiIhDWnV9YEBJk7e1iz3vuOSSKzj0XyVWugufETDQqElk81blUEnd0FPastxcJkVL2PJ0WX0wcejywd/mIQyI8I7/8JdH3vgf/6wMfWFPDLs86NEjEBmwFDy/JRyZy6XZbG5yeEydg5DZsgPEzGl2XCyTb8jKczNFRGBmjNp/bLYRWnc7ySvDZiWVHlifx9veLCVpckcjOql1wOoXhj0ZFBml2Fsa8r68846hpOB+u/jQa8vl5ZJ7yCW3rOu5JPI4NwLihHTyITekNbxD3gFudx8eR+X7mGRw3E4rGCobpaVzLoSFzwwsURWgYrq6C2JRlvDe39+zbh9bIQKDy9gsiPAuzs/jsfKRGA2sbVolEnvTe0EesHjQNzl40SvSe92TalFQKiZNgMP9wBp52vHFj+e2mDz8M0uCaa8TEPknCZwcC1pMZLKcQiyHoL0cT1gxWVog+9jEQFHfdhSnMa2ig0xkFrn5jEopbnWuFQACfubqKpB0H79xiyJqd2fvRwAD26snJTCKpFDgwM7aJZaO5Ge3MDzyAacO33FJ4P3Q44DO5XCAMNM0cIRiPi4QqD6zr7y8vgcrtzTw0IJXK3xZ9/Dj8ub17rQ1RCgahGz05CSLxl79EJaCmIbl5ySViGIGqipZnlkRxu0UgbhygMD+P8163LtO3LYSmJnzW9u2way+9BHu0axfe/4knYCuvusoen6iBsws8KJOre8sZNKYoIK6WlwUJr+uwO/lIIWP7clfX2mhf5spCrtju6MBxSRLWdDyO33HxTEdH8YFL+cAJhtVVxMETE2J4VrEq5lAIydWenvz60G43rmNXl5jyHA7jfoRCOMaFBdiwnTuJbrstVzKDW51lWUhGRCKiTT2fL3LyJOxjfz+SHYUG6iiKaFXmJL7HI76K7RuahsF8+/fD3t5775rTqT/r4NA54mqgFjjrLraqiqCNDS4RjHAqBYPscsHwFAoUk0k4f+EwjGa29k4yic8xO2GZCEaR24FYvHdoCIY324ixxp6mwWDlGyBjF1IpHBPrBQUCotXZ7AY1MyOGjmQH7d/9Lq7VXXflOutjY3jtpk2Z+l7HjkHLbN++wpoT8TjIxLExEKHcJjg8jO+6jvPIV7WjaUK/kL84s5dO45hcLmTMIhEcy/AwCES7gj1JwnE7HLn6kQVQ77TTGWuLjBOYSz0fXI3Y0EesDh55BNqqb36zIPGIcM1HRrDutm/PtUULC3Cq+/rMaa3lw/79qFi+7DLRQp1KCfLCaoCkKAjYE4niVUOVYmwM7TkLC0R/9EeooCxBrDRskQ3ghKHPh2qMWicWFhbga2R3IoTDWCcdHbn7kiQheGtttT4V3KgNW8hvWlqCRmIggEq7UkT2yIgIJLdvL3wNWb7G74ePIstI4PG053KnpBMJ3TKXK7O9eWYGycjh4co0RVMpkPuHDqGa5+KLid75zvznqmkgI6JR0Q7JhLCiwGfq6IBvU87zFgqBSBwfx3OwdSvRW996WhMODVt0BoDbcrNbcYtBVUUVrq7jue7tBTEUj4PE4qnC/PdrrX2ZNfjTaTFsjddwLIafeTAnV4DbUe2r64iFQyFcl9ZW0bVnRDSKJEZTE+IxK5+taXj9Cy8Q/cd/IKa8+WbEvDzpuZAfzImRaBQ/c5U1J+BOnIB9HRzMTSDpembFoZE49HrzD/rKB0ki+tKXUIn9+tcT3XprydfVuy2qCzRIxNrirL3YnFEPh2GEWlpEFQdXqXV355/MSSSEp5eXQfYZNfVYs4Ko+KAVTUPGZ3ISwQIPcxkaKl1GruuCTNR1EYRWi3zQNJzr3JxwiLnVuRjBtbKC7Ha+KdgPP4xrePvtudMUeXp0f39mdmtxEa8bHDRP2iWTIADGxrC5LC0h4D7/fNy3ri4xjIerVRk8mIfv4/g4rvf27TiW/ftxLNddZ1+rDrcVuN04f5OZ0HrfoM5oW8StEWaIRFUVLc4N2IdXXiH61rfQ+veWt2TeB6663rgxVzJgdRV2o70dwX45gcWBA8i0n38+WjOJsAdFo1jnVlu1FAXJlGQSx1StttdnniH6y7/Es/jRj4KgMBHENWyRTZAkIXpf66BW00Ck6Tr2IaN/s7wshpBk70+Li1hLg4PWiW1FwfsXC+Tm5zG1ua0NGomlnsfRUez9fX35W9piMTEUz0gWKgrOX5bhv1TSopZOw8fTdfh2ioK11d6OScWV3tdkkujLX8Z5Xnwx/JPdu4tfG9b+jkZBFhw5Aj/ywgtxXPmGNJhBNEr0gx/Ar920CT7tnj2nTTu1YYvOEEQigtAq9lzqOnz8hQX8fVtbfkmmlRWsfY7xlpdF+3IlSQM7wPEp6xk6HDgXLh7hIZzNzZmVxHZD08RQLU2DXeAuPVmGpILTCRtWTgXexATRN7+JfeT222HHwmHYS25nZ0IxXxzEw2UiERyPwwHyMB7HkK9zzhF/x9WGXBDidGZWHFrB0hIGqMzNEd19NzQcTaDebVFdoEEi1hZn7cXm1lRj6zGXzrvdMA6rq9iw+vsLZ3VHRmBQWK+QNx+uZuPR70akUqJlmdvYhobEREQrYCOaTOJnvx/HUE0CIhbD9eFNt70dm3R2ICtJoiQ+W2T22DHoG116KcS/jQiHQS62t6Mtia+9JCF4cLvRxmx100okILq+uIhNZmwM140rT9evR1UAt/gYp3pLEo6ZCcSVFZACPT1EN9xgXyXo8jLeOxCA823hPtb7BnXG2yImEkvdU10XGeYGkWgPlpaIPv952On3vCdzvcbjIAlZ+sCIRALkI8tKlHM/nnsOduvccwV5yZl0p9Pc9FcjUilUwqdSyLJXa5LvAw8Q/eM/wjb+2Z+hqsikzW3YIhvBgZXHg2e0ljaBBxGwFjFD00SFT76uhNFRrJ0tW6y3A5shEqemMIytpwdtzqX234kJVMZ1d6PVlq8htxrzfp8NTQNpGY8jkK1kmB1X3sTjYpDKJZfYo5/94x/Dn3zzm2HrTpzAdT/vvNwEbTbSaVQTJRLwf1Ip0RoZDIoKHzM+TiJB9OijONdrroEvc+QIzrm3F2RitSqmC6Bhi84QaBpiMqdTDKEyQtdhJ+fnxXT0desKV8HqOv52aUkkELq7T2/bvaqKgSiJhDhOIlEx3NxcvDilGlAUoUdIBFs4OYnrfP755ZGus7MY0NbSQvQ//kdm4Uw8jnsZDgsitblZDGbJZzOTSSRmpqYQb27eDL+Nh3cRidkFHk/593l0lOhzn8O9et/74BeaRL3borpAg0SsLc66i80ZHkWBk8Xl36kUiCJVFROYWBuCSb582S9uewmH8X49PSKzxZOd2GhFIqJlWdcF8djZWfmGwHqJyaRo0672RpNO41x40/b7RYuwroOkczoRmBuvXSRC9O1v4/zf+tbMoCiRQDuM349MOr9O09CKuLQEAtFM5Y2qimpNribSdVxztxv3ZHVVtGuzsPvQEJzpDRtw7xIJEIgOBwjESATVkO3taO2zQwND13EMPImujGCl3jeos8IWmSUSua25oY9YOVIpoi9+Eev2vvsyKw1VFWubCGvbaKfSaSQziOAolrPOjxzBJOYtW2DrXC7cV65Ksjp1UpZBICoKSL1q6KRqGq7X974HrbYPfxhEhIVsfb0/sWvOFiWT2KtYD6uWRGI8DsKwtTVz7SiK0LTK3q+41d7ttj6ghHWqeHpzIYyOIpE3MIB9uFTV3NQUjqmzE0Qiy9o0NZWWCwmF4OOxXmq511/XUZU8P4/gm32RSnDwICRVrr0W50WEY332WXwfGACZWIgkPXwY93j3blERLUmiXdA4pIF10/LZgmQSUhGyDAKRfTSeHH/0KH43OIjPqlbyIwsNW3QGgdt7eagIIxJBskOWsUbNaIizVuL0NJ7pbdtOX9KWCdLFRUEeBgJi8rLV6erVAsd8zz6LWOXSS1FtbPW6hUJEX/0q7Mi99xav8pYkQShyh18wKAhFvx/X78gRHNvgIGz66qoYQNPRYY++5TPPEH3ta/jcD30ov3Z2EdS7LaoLNEjE2uKsudhcsSdJohQ8X1DIba2aBoOjqnD43G5UquV7DTtbPLSlqQmOm9uN95qdhXFLJESL6uBgdUrmueSdS7t5qEw1iQhub5qbw8bicIhM4I4dmZUImkb0/e/j7++8M9ORTKeh66PrCF6N1/rZZxHQv+pV+cV7ub3bqGPIGSxVFRPBtm/HhpV9TXgKMusoJhJiOpiqwtk/7zyc389/juv6hjfYs7GrKj47mRR6IGWg3jeos8YWNYjE2kHXYW8OHcIwkK1bM38/NgZnc+vWTHusaahATCZhw8qx1SMjIOKGhoje8Q5BFkSjCGBaWqwRCKzFq6oIeKoxMVKSiP7mb6Dd+LrXoUKgjOqMen9a16QtkmUEUi4XiLBaBrzLy3hue3oy14Is43c+X26FWTSK9dXdnalpbAZmicTjx4l+/Wsk/cxIiszOwo9gX6C11fwezkG+1yv8O6s4dQrk5+bNWP+aJiqLysHoKDQizz0X528ED6Y7ehTXcc8e+E7GveT4cZzTjh2FhzLJsvBx2afy+0WFos8HMnb/fvhHV1+d/70UBZ937Bhs2PAwjrvKraMNW3SGgQsDgkHhOycSeA7XrTNHTksS7BYR3icWw/dqDSYrBFkW1ZCsydrejnPgtbXWMDICu86SB243bLxZ3d5wGASipsG/sHLNeQ8Mh5H4IMJ+ODmJ3+3cKTr63G7ElMbiGh4mZTUhrOvonOOE8H33lZXArXdbVBdokIi1xVlxsVMpIULLwtnFjJ2uCzJR17FR8WQvznJk//3ysqhi5Ko2FqflDWrz5kxtoWpCHZY2XQAAIABJREFUUWA8Uyk41kwmVhvxODJCxuBh3TqxwTz5JNFTT6EFads28TrOiCcSyFIbDfTYGILa7dvFMASuHDV+selwu0Ulpt+P+yHLcFrNOKy6jkzZ4cM4VknCebS1oS2qvx8TxOxwflMpBDaqiuxpBcRAvW9QZ4UtYpglEotNLG2gNA4cQJB9ww2ojjFiaUkMXTC2auo6Wh/DYZCL5WihjY9jal9PT+bQKB7g1dRkzZGVJATgug67WY3AOxRC2/Lx40Tvehe0Gzs6yiJLGraoSuDhb04nSLta2QVu/UulcnV6udI/GMxdKzMzWGcsE2IFmgb753QWP8/Dh7HOt20jevWrS/t2IyMg1np74U9Yeb4TCTHwbGDAWpAfCqFteGAAwS63N6dSYgq2lWRROIyBBO3t0BMrdI3icUgqLCwgYL/wQnzWxATs38aNuXIzhcCVYNGoqApyOnEPZBnVkKW0D2UZCZqREfx7yxZcjypNNW3YojMQi4uoINQ0UXlohsTSddgqrmbs6sL6j0axntrbrdspq2BSPhTCsWgaSMO+vsLaf2sF09PwjYaGoDeYSMCuSBKuZ09PcRI3GkUlXyIBArFcnVRFgV2bm0N1YCiEPWb9esSdPJ2an4dUSkyoZ9kvnupc6plRFGhpP/kkKi/vuafse1Tvtqgu0CARa4sz+mJrmpjqxXoSVhY/D0iRZRihpSUYnP7+3Gox1oxIJODkHz0Kh2vTJmSA2VjVekpdOo1roChiulc1R9BHIggcmpvhXHLg4fMhINi/H1WGN9yQ+bpjx3D9duzIrGgIh6EnFgxCO5GrDZlccTqxIbCmSSCQeY+np/Eeg4PWKvxWV+Hk+nwINk6cQBYqGsX95Jbn4eHyhxokErg+/ExVmHWs9w3qjLZF+WCGSGzoI5aP8XGir3wF5MJdd2U6i1zVFwwiiDVichLrcsMGrH2rmJmBXENrK6akMuHHtouTG2aRSOBYWU6hGsmgEycwOCUWI/rDPwS50tFRNknVsEVVRDqNpGWtiURVRcLL6cxt6eUArbU1MxHGpB2331slpJlILDaxmQgk2bPPop33iivy/w3LCCgKfLoTJ7A2zzvPml/IiT9FMdc2SYQ1/PTTWPsXXZR5LpKEa5c9vbkY0mlUWMfjRHfcYa76anwcFdmKIiRn+vtz7Z9ZKAr8pEcfhc077zz4RVztUyrRkUgg4Tw+jnPevr28Z6QEGrboDAJrtHJra1cXYiwzNpBjtFQKz2dbW6ZPEArhPXt77a8A5DXOX1w5yXryp3F6uWksLyNZ0NWVO709FhPFGn4/rmF2QYQkgUAMh0HEmU1cMHgoSiolJiwfOyYqEAMBxN7RKPYNtxv3mCs7HQ6RuOFuEB5q19yc/xmKx6Glffw40S23YJBXBV1B9W6L6gINErG2OGMvtiyLrAOTS5UIYnO1G1eNDQyIAJNbYUdGYEhbWsTGxqLd69YJo3U6StRTKRhErpZsarI/4yXLcAh9PgTgDoeoxhwfh9Pr8aCN2TiEZnwcZN/wMJxableIRNA6LMtEV12FzYmnUHOloc9X+L6GQmIytBUyYGUF2bZAAI5tOg0iU5bRTh2J4Jjn5/H3bW049o0b8VlmEImI1qhyBurkQb1vUGesLSqGBpFYHUSjRP/8z1hf739/JvGm63AK02msb6MdXFzE2u7thQ2zisVFTBv0+eAoc1UD21+v11q1cSwGssPlwrFWY+948kmiT34SjvSf/AkqDCogEIkatqjqSKeFyH1nZ+2GASST2PeCwdy9bmUFv+/oyFxvsgzfKBjML0VSCqoK+1eKSDx4EHrKF1yAajsjNE1Md+V2tuVl/H0gYH26KBOqLEGSPdE9+2+feQbX4ZJL8icBuMJPVc21Nz/0EGzYm95kzU7JMtb7k0/i/t16q9Dwtgpdx/vMzOCad3eLwTG6jvvFAXqx7p9IBOTE9DSuzc6dsEE27XUNW3QGQFFgd1ZW8BxxtVk8Lsj3YuDiDiLYy3zri6utVRXxWiXJGS5AYdJQVbHGuRuurQ1f1SzosBOxGKqoAwGiffsKXxuWfEinYe97e/EaWSb6xjcQJ991l5iaXAxMFPKXruPeezz4+eWXcY137cpsiWZbHw4LXUR+RnjSs9MpYkxudW5qwt/wPVlYIPrMZ7BPvOtdqEKsEPVui+oCDRKxtjjjLjZPt0qnRZbBrkw96w1OTcH4sKaVcRpYSwsMUW+vGNzB7S89PTBQPGjldIAJOtZ8ZE2LSqFpaDvWNBBq2e/5wAPIGl19tfj71lY4B9PTMOx9fWLKtK4TvfACDPgNN8BRDgTMO5arq7hPbW3WMl5LS9AZampCBZOiQAsjHodGmNHhTiSEhuLsLI65qQlk4vAwziff8S4tCZH2Qn9TBup9gzrjbJEZ8LNOVPw5aOgjmoeqIuM9PY3pedktM9PTcHTPOScz+IhEQNi1tlofBkGEIOUb38DP99wjiAVFQXDN+5FZRKM4Hq8XtsjugEPXif7zP4m+8AWc74c/jD3KhsEd9f6E1oUtUhSh69XRUTufIhLBs97Rkbl+dB17m6LkitgvL2Pd9feXR1qZmdhMRPTYY/AzLr0UHQ9EIqjUtNyhIOEwqvO8XhCJVqp8mXTgCsyenvzHduQIfMDzzy8+mVjXhe6g15t/Ai0RgvnHHiO67DIh72IWkoTzXV0VHTabNyMQt9ql8/TT8H/OPz+zmpE7gLg6VdOEDnlLixhmmI2lJZC6i4v4m9270Z5Y4X7XsEV1DFXF87C0hGeusxOxFccXLFXFQzKzwRObY7HM9uVCSKexpj0efI6VZ4+HW/J0ZX7ueV15PGIgzFrUOiwEWUYsRoS1XsoP4cKRUAj3LxAg+sUvkGy4447i04yZOOQJ8Ubi0OvFvUulYAOTSXSFFUvgsE1lHUXW2TUSilyhzkVHPh+ega9/HffvvvvKr9bOQr3borpAg0SsLc6oiy1JYrKVmYl75WJxEe0z3O66Zw+qRNrbsXEsLeHveGKhLMOB5qErnZ0gkE5XVREPIUkkhNEMBisjW6enYaw3bMhtYzl0CC0vl1+OMvhoVExKHBmBIedWGG6DOXUKDuVFFxXfdPJBkkAEBgIg88w6AouLIAR5UpuqIuO/sgIis9gkLllGG+TYGM5NVfH8bdiAYxgYwHEsLMDBaGuDQ2MjIVTvG9QZZYusgIlEh6P488BEYkMfsTgefJDoiSeI3vY2ZM2NiERgW7q7M5MLkgSdLq8X9sbqNY5GQSDKMlqYuUqLCQx2XM2u99VVVEP7fLBFdhNEikL0uc8R/fjHaP/8gz9AcNPebsu+1LBFNQLrNet6bYlEniLa15fpZ2kagkci7G/GdTQ+jnWyeXN57XtmiERdh69x6hS6F7ZtK0wgMiIRBKVud+EpxsWwvIyvQAAkqXH9TE6iYnDzZvgBZsAVTE4nbIbxmGdmIKuycSM0S634D4oi2pn37sX5HjkCHywQAEFgdgDO88/jdbt3o3KwEHigIbcQqqqo+inURjg3B98vHIaftGeP9cE8BjRsUR2C46jFRTwz3Pabj8DiwRlNTZnkHE+PT6fzty8XQiKBz25uLk5Q8XHG44I4ZP+M40+uQGQSvR7alo1QVdhGSYJttNJFoWm4f9/6FuzxrbeiiCTbBmtaZsUhkSBfmThkJJM4nlQKNsyKXrWu4x4xoZhKiWEr3PIsy5gw/73vYf/60IfMt8ubQL3borpAg0SsLc6Ii60oMOKKIjI9dhN0PAVsagqGyOMB2ZVK4ecNG2CIvF78HzuVbOQ0TZTjO51wiqwEldUAl9zzUBK/vzxykzf73l6Radc0GPypKYh/d3ZiA2GiRNdB9LG+UioFQ93Vhd8dPIhretVV1o4lncaG5XSi0sis8Z+fh9B4WxuyTrqO7NnCAtFrXoOMuJVjmJpC0DQxIZyIpiZco927y28hKoJ636DOCFtULswSiY1BK8Vx6BDszeWXQ7/GCEUBUeh2g1xgO5dOozVG18sT+E8k0MIciRDdfbcIeDkLzlXXZu3qygpsWCCA47S7VTUeJ/r4x9FiefvtGBLl9SJgsmk/atiiGoKJRE3DPaxFixxLuGha7rA4Dt7d7sxEmaoiceh0Yo+16meYndisaUQPP4z995JLQLiV0hqMxVBt43BYD5aJsM4XFuAL8uCZcBjJ5q4uBLxWCT9uv25qgl8WjxP9+7/jve+4w1o1k6aBMIxG4X8YK0iXl6EnGYkgsbJvX/EE/OHDsJfbt4tqT7NgQpG7hYhwflylyPdI10HAHj6M8+7uxmeVMT23YYvqCFzFtrAgyL9160oXhLDGXWsrbFEiIYZhFmpfLoZwGO/Z2ZlrC7jbLRYTsZPbjWeYdffjccQ/7PdXIqd1uqDr0PZfWoLNKFZFXej1//VfsKtXXCGkLDo68F5MsCoK/t/pFF16+Wx1IgECUVVhC8zowBZDIiEIRe6AO3gQEg07d0J2i/1xTnqc5br1dYEGiVhb1PXF5iynJAljXQ1B3KkpIaTd0gJHi9tQk0kEfJKE6pP2dqEBEYuBlDJuYJGIqEocGqoKmWQZXIbP2hBMJprZ9OJxEGU+HzYHJiVlGRvEz36G73fcAQcwEMAmf+SI2Ax8PryGibzHH8d1vO02ay0FqgpiUlGwYZl9FmZncY87OlAxoOvIRk1OYtqjGf2OYsc0NobM/eSkGAIzOIjKhA0bbHtm632DqmtbZAfMEIkNfcTCWFiACPbAANG99+YSrSdPwl5t2yaCEk1D+6MkISi2Sh7IMoaoLC4Svf3tICwYHNgYg+NSWF4Wcgpbt9pPFs/NEd1/P+zdfffBufd6zU22tICGLaoxNA3PDlft1KJdLp3G3un1wh8yPj+yjOPx+TKDz3gc/lJHh3VhfSLzRKIsI4BdXCS6+WZzWozxOAJeXQeRaGZgihGShPVFBF/n0CHY6EsuKS8RYGxvdruJHnkE5Ozb3madTDtxAvZx27b8us2ahorJl1+Gzdm7N3/l5LFjOK9zzsnVnbSKZFJUKKZS+L9AQFQoer04rtFRkBnJJGz77t2WKpAatqhOsLqKGECWhY682f2YK/7ZP+LBJdnV0FawsIDnkuVQuNqQp5J7PII49PvxuUwsOhw4h2JaoGsdJ08iVt2yBevOCnSd6Kc/heTB9dejGCSZxH4RConW9O5uXDuPp/h9isdBIOo6khxWbXMpRKNEX/wi0VNPwb7ceKPQcnW5hC6vzyckGcq4r3X6JNQXzmoS0eFw/CsR3UNEHl3XlRp8ZN1e7HRaCNb6/fYaa86GTU6Kicy9vXB68zkviiJ0EltbRQsKZ6m6uzMNZCqFLHkkgg1qcHBtbDSs+SjLYhP0+3OPLZ3GubGGmKKIaY0ulxh68vTTqPy57TbhkHJGPB6HDo9RI0xVQTpOT8OQu924jn19QmOyEHQdBGQ8jkDerPMxPY0WIZ7yRkT0m98g0Ln8chALlSAeh2PkcuEarayAVBwbw+94MjPrKJaaaFgEtj5BDVt0emCFSGzoIwokkyAQUykMUsnOUi8uYq1nJ25OnsSa3LLF+pR1RSH67ndh+9/2tkzdHLajTU3mK8NCISGnsHWr/STx0aNEH/sYjvujH0XCpAoEIlHDFp0WnA4iMZHA2mppya1USSRADLBgPWN+HgH6hg3W2tEYPLGZ/Y1scBVfOo2E5Ooq0RveYK4lVpKQ8FNVBKtWq13SadgZbo+++urKA15JAoF45AgI0V27rL1+chK+0YYNpTsqolFUT4ZCIBsvuEAc/6lTqFhcvx6ak3bajFRKEIrJJP6PA3bWNT9xAiRmOg1/adcuU35ewxatccRiIN8lCfFGX195VWaShP2TCKRXpZ1ekoRnPpEQnQQ+nyAOeV/nNlmWh2LysJ6TvDMzkCsYHISfYBWPPII46vLLYQNTKTFEUFVR/cfar93dxX2QaFQkZPbtqyhGyotIBEP4RkcRq15zDfYM1tIkEq3V3GbNQ6Mszlwo62k8DTanrlGjGXOnFw6H4wIiuoWI/lXX9bHTfDh1BTbYySQWb1ubfTpAiiJalhMJGI1Nm7AhFXPI3W44aDMzMHgOB4yLwwEjxCQkw+tFwDk5CYc6mYRTdLqGrTDYMAYCOP94XBBdxqpP1iaanYVR3bYN9yEYFBvrqVNw+i66KDOjPTKCa7R9e+6QgaefhuG+8UY4quEwrs/UFBzzri44GPmc8tlZXOvBQfME4sSEmN68cSPO88ABHPtFF1VOIIbDIKF9PtHytW4dvi67TJAG4+P43AMH8JzwpOdKy/XNoGGL1hbYkeJcWj7HignGBpEI8ICQlRVUIGavG0mCbW5ryyQQp6fxmqEh6wSiquIzJyaI3vKWTAIxmYSD7PebJxDn57EftLXBabc7APnVr4g+/WnYur/4C1SC+XzmdaJqgYYtqgxOJ4i8lRV8tbdXTxeaEQxivUUiQkrG+DtFERNUeV/u7cVePTUFX8Nq+7XTWbgimwlEnuB6000Y6vbQQ/g5XxWeEYEAiLMXXsDX3r3WbAMnj5NJ+IRcYVcJJieR7Ni9G9cukTAfSC8uwkb19JiTZGlpQffF2Bh0CR95BK19Ph8IxP5+VFbabTN46EVXl5hUHYvBRwqFcF27uiAtMz4OP3JyEraSj89ONGxR9cGVu7EY7i/vw+U8W/E4bJ7PJ/bdct4nmRStytxuTwQbMzycGaNxTMSDKv3+/Bqf9YaVFdibzs7yurB+9Svo0u7bB1uRTOK6ccWh0wnbLElIJs3NIU7q6clNKq2uwg653Xg/uzUlZ2aIPvtZ7Bnvex90YYlgZ3t78QwwoRiN4p6rKo5ndVVUK7a2Vm6DGjbHHpwVJCIRXUBEf0VE+4lo7LQeSR1BlsXUq0DAfMttKfDE5dlZGIjWVgwA6e01H8w5ndgEFxaEFkdXF5zapSUcs/H9HA7Ryjo7C6M9OGhteqfd0HVcYyYLIxEYSkXBcbe1iXbt1VWc7/r1uaRePA5Nop4eoiuvFP8/MQGHcOPG3HackREh1M3Obns7vpJJBNmLi3h9UxOIuM5OHNfSEjY+zmiZwfg47lVfH+4DETTCjh1D4LB7d3nXkAjXMRTC9Wtqym31YnR34+uii7BJ8aTnp57CV0cHHJfhYet6JBbQsEVrDGaIRKdTtFjUu9NaKR57DG14N92U24LHU+Pd7swgOhSC3e3pKT4wKR90nehHP4K9uvHGzMqgVAq20+s17/DOzoLQ7OiA025ngK7rRN/5DtFXvwqbdv/9uBZ+f3lVYFVGwxZVCCORyIMpqi3m39EhdKC93kxSsLUVdioSwXPn8+H5Xr8eScbJyfKeebZ5rBHrdAryiQeScKXijTeCSPz5z6GTWmpYgt+PYPKFF1BRuGeP+f13fh6B6Xnn4XOWl3FcVie9MpaXiX75S/har3+9SO6yXlwx/zQahY3iafNm4XAged7fj2vwm9/Ad7v4YlQWVbvCyuPB9e7sFHrn0Sieaa70uuACPDsnTqCCaNs22wdQNWxRlSDLWCerq7AJAwO41+WsD+4ai8dFsj6ZxB7MnUylXm8kDlkqIRDA+m1qwu9XVvCe/H48/IhbXJub7dcuPh2Ix9GxEAyCnDdzT1hiIpUi+u1vYWe5JdjnwzXL9z6BAGLBWAyx3cwMYrneXlzPlRVoonq9sKd2JwqOHCH60pfw/n/yJ/nlGzweEaepqiAUIxGhu8l6mJ2diD8r6Ips2BwbcAYswwbsBmtNpFJYsKVEss1A12GwpqZgCJxO0bJcSQVYby+M0twcjA5rSaysiApFo8hub68gEicnQa6V63BaBQe8xi8mLtxuGENuxeZSdLcbDqws43fZBKKuYxNRFLQQsbO/uIhr3dsLstSIpSVUIfb3505TJYJTv3Ej7k0oBAfk5Ek4tsEgNnmuUiwFXQepEArh81iX6dAhbFg7dsBBLRc8QCeRwIZiVruICdN9+/CsM6H4/PP4amkRhGJPz9qpHmqgOjBDJBq1Wuq5daYSnDyJAUh79yLAzcbUFGzVli1iz4hGsb5aW0UCwQoefBCO9vXXZ9oKRcG6d7vNVwpNT8P2d3YicLdzXafTRP/wD6jCuv56ZNrTaew/tahybuD0wOFAABwOI+hh4qWa6O7Gc7y4mDuhuL1dJPq6ukRr2OAgfB5O5lmFyyUqQ5hsMhKIjKYmQSQ++CDRLbeUTtb6fKIi8aWXkCgopV8djyOZ0d4u5Ag8Hpx7Op07gKYUUinoinm98KXY92XSY2Uld3ozI5nEsXi9IAPK2R/8flT6HT4sdKuPHEGCvVaEidstfCNVxTWORvG9pwf+59QUWrBHRnBs1ajkbqBypNNY6xwL9fVhTZV7r9JpsbZaW0VSjCugWZM++/25gpA1Do0Tw7myzPia5masxdVV+FqKgtd4PHj/WgyyqgVSKax1lwskYDFbpeuZE5V1HbbhkUfw2ne8w7yN4PbwSATPx+QkjmVhQcREdl/jX/8aUjQDA0Qf/KC5JJHLJZIbmiYSG7zPzs3BZnZ0wNa3t58ZxHK94YzXRHQ4HB8nsM3ZeDcRXUPofV9HRH9PRDcTkYuIHiSi9+m6vpz1XpuI6BNE9Foi6iCicSL6KhH9na7rmonDWfMXO5mEoSfC5lBpVl1RkPGYnoZT5PPBmR0YsNdQxeP4DKcT78+OD2soBAIiK6+qOJblZfyN3w9yy872Zv4M4xdPxeLMm/Er37VgsfTxcZzH9u25RvKZZ6BDdP31opovEsEGwxWe2QLsDz6InzlzZQarqziOo0fxml27YLiLBQe6jlbl5WVxz4mg23jwIJzPK68sP5BXFARS6TScIzsCdUkCWTo2hudW07AOWEORtSipDL2Nhi1a+yilkXg2D1oJh6Fl09wMgizbZoXDWDd9fUIPzRhc79hhvYrzkUdgK668Eto5DBZ2dzjMazGxnEV3t5BTsAuRCNqWDx0ieve7id70Jpx7MFiTaveGLVoD0HWhPcVi8NUEVxj5/ZnyLUTwP5aW8LOROJiaQiB2zjnlH18igeedq2sLraOVFRCJXi+IRDPEqqKgGjEaFd0phf7u6afx/ZJLMv2YWAzXxe2GHTLjZ+o6/KLRUaJbb80dbGCc3swabMbfHToEP2Tv3vJ95uVlBNvBINGrXoWqv1OnRCVgOcSvXdA0+MpcQba0BBIxHkeQf+GF/52Uadii0wxVFV1EREgk9PRURrBw+zJXXmfLNmgaYgROKrAMFn9x4pWJw2CwuP8ky3j2ZVkQRLXQnK0VNA12Lh4vPFSKicNUSrR6OxywZ6dOEf3gB/Bj7rqr/Hur61jHTz0lEjmDg/Zda02DDM0vfoEK8/e8p3LJDx6AFQ6D+OQ9l7vQDN16BW3RGrM5dY2zgUTcS0QfIqJ7iehTRPTy7371JBH9JeFheZaIThHRr4hoOxF9gIj+Tdf1uw3vs4WIDhBRnPCALBAett8joi/ruv4HJg5nzV5sVRXTLb1eMSWpXMTjcFi5QrC9HURdNau6ZBmfqSj4nHQa5+Dz4WenU5CJbJxlWUyvGhgoL+DjEn0mCxOJTG0en0+QhcGgIDNLgacfy7KoljTem7k5ou99D2TcTTfhNckkHFqPB0bbuLnoOrQz5ueJXvc6axMH02lsXOk0zoEF5XmqW1dXplOgaahaCodRfcQO8MmTaNfZsAGkQLlETDKJ89d1fH41Wsh4IM/ICL7zAJxAgOj3f78sZ3nN2CJJWru26HSDq4ALEYmahufubNJHVBS06C4twRHMrhJKpTBt1OdDFaLDgde88grsxI4d1h3TJ59E6/SFFxLdcIP4f3YiNc280PbEBAKr3l5zWmVWMDUFAnFhgeiP/xiOeDIpAqZqQZKIPvMZok98or5t0eHDZ5YtikSwHoLB6lckxuNCKyo7icb6Ui6X0D7TNKwFTUMAatXHS6VEkrm5uXTidXkZazgYhOC/GRugqrAlsZjoBDBC1/H7cBhVf/mSh7KM9a7reH2pwPXwYQT1F14IW5UPXFHF05ubm3FNT57EsW7eXH7CIBoFKep2gxTl411ZQRImHgeZsm3b6a/E0nXh505P4/zjcVQE3X9/fdsiWsMxWilomtC0VFXcD+7UKhe6jjWcSOCZ7OwsbDPYJ+diCV3H33Llm7EjrBB4gGcqhdfHYnhtIYmiesXRo7hPu3ZlxmGaJmJTvo5cYe31wj6MjhJ9+9u4JvfcUxnhNz8PH62pCfE5V3+2tcFuVlJYI8tE//IvsKvXXYdheNVIvMfjuJacIOPk7Y03FiUR15LNqWuc8cWfuq4fcjgcBwkPyy90Xd/Pv3MIq/S4rut/lPX/H3A4HPfpuh753X9/loiiRHS+ruurv/u/Lzkcjmki+ojD4fj/dF3nB7FuYHQIuP23XKPE2nS8mJ1OGLqhodpoD/p8cDqnphDQ8eARrqhkfZtkEv9mgm3DBjHgpaOj9IaVSgkdQxb1NrYls74HE4flGs6ZGTgDmzeL9hZJEtf2pz+F8b/+evy9omBzcjjgXGdnp158EZV7l11mjUA0Bh5bt4rrHArhup06hd/39uLaud3IokciCFS4mmBiAlWT/f0IKMq9LrEY7i9XGpS70SlKZqYv33dVxfF3duLaHT2KTbwcNGxRfcDpFERhIX1ETTu7Bq08+CDs0dvfnksg8qR2XRcVfpxESKcR+FrdU555BuTD7t3CvjG4JcoMgajrSAAsLYm9yE4cOkT0yU/iOfg//wcEZTIp2rSqhVOnQFxOThJ94hPWX9+wRdVDaytIIZ4eWs3noKlJBN5ebyZZ5vHgWFZXsRdzq+G6daIqN7virhjY7/F44FNxW3OxKpjOTqIrriB64gns/a9+den92uWCzRgZwV6raZlVeDMz8IGGhwt3H/h8eE0oBDKxo6MwoT83h3U8PFyYQCQSLZhut6jGXFrCvd6woXwfN5HAEBWnE3rNxnvY0YHJzGOcxbehAAAgAElEQVRjQhZm+3Zzk6+rBYdDEOTd3Tie0VGQEeWgYYsqAxN9CwtYj62tePYrrfhKp/G8KQpsR761xm3MsZiIhbiIo6vLfHKfB0Ilk1gHLEPV3o71u7JSVZ3ymmJ0FNd182ZcI00TMQcThy6XGFhj9HGmptAW3NlJdPfdlRGIs7PQpG9vR8GJy4X7trSE5ykSgf3p6rJe6biyQvS5z+F43/52omuvLf84C4FnCigKrtX69XhO5+fxVfy1DZtjF854EtEkPp/1718T0R8S0UYiesnhcHQQ0euJ6B+IyONwOIxh1M+I6CNEdC0JNrsuwM6nqsIYZWtTWHkfbllOJoW2y8BA7Scgu1xw6GZnhRgrkWh3ZV3CWAx/y9VGGzZgs1pexu8HB2HAFSW3LdkoLh4IiM0yELDvfBcXsamuWyecgWAQP0sSCMT5eWR3vF5sRK+8AqO6e3euAzE1hWz7li3WRL91HQGHLIvBNHzuPFErEhEC55OTCFr8fmxMTDjMzhLt349/X3tt+VWuKyu4R34/rk2+98luAyhEEOYrwvZ48MXizV4v/s2kxbnn5mpM2oya2KJqi/+fCeCKxEI2ke3AmT5o5ZlnEGRff72YpmcEV5tv3Sp0kk6dgu3cubP0YIVsHDqEtr7du4luuy3z+rMGopnpfCynEI9jP7I78H7oIaK//3vsc5/+NOwzV41XqwJN19Ei+nd/hzX8j/9Ync/5HWpiiyoZqrWWwf4HT1SuFnRdVAD19+cGfPG4GDrGx7FxI17DQxZKgWVuPB7sg5woUFUxUKUYtmxBS9v0NAaWmAlK9+yBLEsoJPRUmSy57DJzz42m4TwTCREQGxGNEh04gIqgt73NvP+mqvC3wmEQfzt3mntdNiQJ01XXr8ck5ELPyb59uIfPPotrwFOtq13pahYXXZTfn7IRZ2WMVgrhMHzvVArre+NGe56JWAzvzX6+ca/luDEWg10ggp/c2Sn0DNNpc2uJdTclSZD0xkEZLJmwupo7jb4eMTeHGIkLE1gigUjIbnk8+e3p/DwqEJubid75zsp8+KkpJGk6O2FH2cdyuXBsHR2wu8vLeA46O3O7zQphYgIEoiQRfehD9u3v6TSeN1nGd2MMx0PEhoZE0Y0NaNgcE2iQiMB41r9Xfved3authP76P/7dVz4UUG9Ze2C9imQSRqO1tbyS91hMZLQ1DYZn61YQRaezOsfhEJqLCwsgtxwOUdrv9cIQSRIMExOD3Go9OgpDaKzKdDjwc2uraEv2eqtznqw5wwLXRjiduOZTU3Ck29th6Ken4RBv356bEY9GUQnQ2YmJf1YwN4fjGRgovIG3tuIrkYBDHgohE8qagrqOiYdtbSAiyiFadR3EajgsCL5wOJcc5K9scEuAxwMnpb1dEIT8vdBUs2gU1yEYtF/LMw/OKlu0lpFdcWj192cCpqdBWm3enFsRSIR9ZG4OtoXJwpkZoYNqlUB85RV83qZN0CYzXld2IP3+0k4iV0KuriJAt1NPTNeJvvY1OPQXXED08Y+DwJFlsT9UA5JE9Ld/S/Szn4FU+Ou/tj7p2iIatqgCsFZnPI5nplrTuR0O+C48aGXdusx9rKlJVPrwEKKeHuzrs7P4fbH1xJ0qHMTzezud5jViWb7k0UfhC9xwQ2mb6XQiAD16FGtZkuBr8iRTM3A6QayGQkhAplKwBU4nfL4HH8Tx33STNb8kHMb79ffD3w2HcwfMlIIso9palnFtShHNra34u1OnkBB++GGQnywfcbpR5WNo2CID2Cfloo3hYXu6vTQNz3V2+7IsC+KQpZr8fhBLnGxneL3Yd2OxwmtC0/AZXK3NOqP5/ra1FZ8fDudOo68nhEJYt8EgYtFkUthjj6e47VheJvrmN/F399xT2b2emIAN6e5GUUS+z/V4YNu6uoS+5soKXtPRUXitv/gi0Ze/jGfi/vvL7/xQVUEW8ndjUt/nw37KvmCVBqo0bI4JNEhEQC3w/46s718koh8U+Nsymxxri1QKxl3TBBlmZfNnMmdqCkbd5RJTd6stJG4V3d0whjwow+USlXG8Ea2sgGiMRGCcmpthlOJxnF9fHzboStqSrSCVQhDu9+cPfFdX4YgPDcGhZH2gqakMQdn/hqKgqsfhQAuxlaopLmvv6ipNBqTTIF/b2lCtpKpw+F98kei3v0XQ8sY3Fg5WdL1we7EkwWGKRrF5trYK0WgibCBMBvKGnE0QlrvJLC3hKxAAgViDqrOzxhbVA4oRhRw4F2t9rmckEmidaW4m+r3fyz1/VYVd5QwwEdbKzAzsrNXKv1OniH74Q5CPb3tb5lpjO+D1libpNA1ZdpZTyNZUqwSyDCJv/34QD3/4h7BL6bRwaquBkyeJPvpR7GV330303vfWpMq/YYsqBFftxWKwEdlJQbvgdmPNLSxgDWZLDrS1Yb2yRqLPB3/hxAk8U4WIKJZt4cRdNniNGrszCmHzZuzpjz+O9fOa15S2mQ6HGA736KM4jze/2do+zCSrxwO/YXoatumxx3C9brrJ2n2JxeBztbaC5EynxeTQlhZzJEc6DW3oeJzoqqvMJ1scDlFV/fzzqNqenISWY7VI6jWChi0irMe5OTw3Xi/WsF02JZWC7eD2Za8Xz3QsJhLzgYCY0l3Ip2ZZrEhEDLdksK4oJ1b8frxXqfXc1YV4ggsU6qX7g4saVlcRC3m9sGc8TNOMzxiJEH3jG/Br3vWuyu736CjkXfr6IN1Q6vO9XvhjnZ2I++fnERP29GTaG13HELzvfx8+1wc+YN4ecVuykTDktm4isfcwYVhDErlhc0zgbCERKy20P8Xvoev6I5UfTu2haSKLxO1gVogVJremp7HQAwE4ngMDa3uselsbnK6jR+F0cUuuJInMhscjnOymJjjge/YIAml+HkFytY2XpuH6Ohww3NkGXtNQheJwoCXI6RQZok2bcC9Ym4QHuBw8CDL0uuuskbyc6WxpKV3Fk0pBWyOVgpYRZ9R9PrRCtrRgGuRzz+EYeLpbdgVhdjsMnz+3VWzbBmc7u3qwGuQut4hFo0JjxiaS6Ky3RfWGUkQit/adSfqImoahTdEoBqnka5GanISzt3Urzj0WA6nY0gJH0gqmpuCAdneDsDQSZNzyxFn7YlBVECOxGGyiFe3XUlhZIfrYx1At+d73Et1+O4KDahKIxvblYBC6i69+dcMW1RO4eo+JJh5yYjdYQ4yr9bOrVbhFjStK3G74NWNjqEjM1kfkbpVCBCLD5cJzqqqFh1Exdu7Env/UU1jjV11V+rz4PVnbemoKNsfqNWxvx2fOz6OF+KWXiC6/HL6JWcgyfEmvF+fCVTFuN4L91dXc6c3ZUFUQqeEwpjCXk+TgCc5TU0QvvIDqzm3bcEz1QrBkoWGLikCW4Y9GInjWWIbALjsSi4lKXa9XDGfhdceaomafLZcLr4vHhaQDy0hpmrApZmNHpxM2a34eMVmhqe2nG1wMwXEN//v4cdiEiy6y1qkQj4NAlCQQiJUkREdGYC94QJOVZycQQOwcj4vuvqUlHE8wSPRv/4ZilQsuILr33uKxMg80ZdJQlsXv3G5BFrImZBWLdxo2xwasYfrHVsR+991icxWg6/qiw+F4hIju+Z1Q5jHj7x0ORysRybquy/nf4fSC9WyIYMisGLFIRAwq0TRsXNu3IzhbqwGzpuXqGLpcoupw504YUtYx5Oo4zpBx5ognis3OIoOzbl11s71zczCo69fnrzI5cAB/c9NNQrx9ZAQ/b98OY8vi59EoMl8jI9i4rFQFJZO454EAgoxi9zkeh26RJIE4YGdkdRWObSqFtmufDxms2VkhhLtuHZyBlpb81YOKIloljdqQ1YaqYpOUJDguNgs6n9W2qF5RjEg0/q5OA7gc/PKXIOPe8pb8LSlLSwiCBwaEFuDICNb55s3W9ob5eTihLS1E73hH5jrn5BfrJRV7X0XBMScSOAarrdTFMDqKSsBwGINMXvUq2DlVBTlhkwZPBuJxov/7f6G9uG8f0Z/9mXVytgQatqhG4Gc3EsEzVC0isa0Na3FlBfuo8bl0OLCXsdZVdzfWXFcX1nNLiyAemUD0+80lH91urD8etFLs3Pbtg1/wwgs4xksvLf7eMzP4uvJK/HtiQkx8t3oNm5rgWxw8iAB4zx7zr1VVEIiahgpEo4/GE7CZNEmn8w9+0jRMnQ+F4BdVqtM6NAQf6qWXkMidnkYgb2f1dY3QsEV5kE5jfzQOquzuto9YUVUkA5eW8GxyAUAwKIaDlftZPh/sQTgsutY8HkHmW4XHgz2ddfqqVdVtFUYNdkURXSncAXX0KM593z5rsXcySfStb+Fc3/lOa0Owso/vxAnYUNYMLHfvaWpCcjYSQWXiyAi6RyYniW6+Gf6i8b1Z5sVIGGa3JXd0CNKwxv5zw+bYgLOFRHyGwBh/1OFwtBORRES/tfge7yOM/37W4XB8hYiOElE7Ee0iotuIaDcRjdl1wHZAVUUpusdjPpOkaSDbpqZgLFwuGLChobUj5MzgUmgmCxOJzMwGt7h2dcH4jYzA2PNmZgQbeDZyySQMYn+/aNNLJISmjp1YWcG17unJ77RPThI9/TQ0cLZuxbG98grOb8cOcTysGTI5CSedJ5KaFTpOp+Gk8xRHSSo8vTgWE9MTN27ENSLCvw8exL15wxvg5HLVoNsNgjMUwuvjcXF/jORBNIpNqtIJzFaRSsERZ5H6KkwVPytt0ZkAh0NogOUjElX1zNBHfPlltBtedBG+spFMYo20tGBtM3lHBNtkpTJ9eZnoO9+BE3nnnZm2T9dFG2hLS/Hrmk4j259MokLezmTP009D9zAQIPrMZ/D+RgKxGhXqx49j+vLEBNFdd6EKoQqi8g1bVEOwdMzqKp6fYtpSlaC7W+gj9vdn+nwuF4hEo1RJfz/2Ya7w44CP5W7MwuWCLVDV0jbg4oux1x46hLV/3nn5/y4SATnW2YmKQYcDn8N+B7c6m4UkIUEyMICK3rk5XK9ShISuw9+SJHxmvuvicGCNejyZ7c1M5Oo6KjDn5tB+vH69+eMuBq9XvN9zz6FNe3gYBGkd6cc1bJEBioL1yz51dzf2WjtIFk3DemctdW5fXrcOz69ViatCSKVgSxIJEUdVGj82NeF9o1ER250OaFquBrvTmdkhRQRfKhqFzbASS6TT8IsWFjDduNzkIdut+XlUElqpui4GHlL65S+jPfqNb4QNCodxr3kP4bZkhwPXhu2h31/7oat50LA5NuCsIBF1XT/pcDjuI4hf/gsRuYjo3WW8xwVE9OdEdCsRvZ8gtHmCiD5BRHO2HnSFYC0bIqEnUAqyLFqWUykY6G3bsLmslZbldFqcmyRlCq7ydKu2NlFlmL3pnnuu0AFKpbCx8YbpcIjpx/xeTKK1teEahMNierNd1SeShM2iuTl/+50kEf385wg6rrkGhvnll7FB7NyZe28kCc5qXx90hxRFTDfjID3f9GJZhi6ZJMFhicUy35c3Ap4etrqKv9uxQ2QXdR2VM+3tRK99bf5W6GAQ/x+LYXObn4djzY4MizsHAvh3rUiZREIM4Vm/vlrtiWefLTpTwHZC1/NrIJ4Jg1aWltBWPDiIzHI2NA1Oo9MJp1TXodcny6iGtmITV1cxnIQIRFk28RePg5AolfxKpUC6pVIgQeychPujHxF99rNIQH3qU7DPKytikJjdjrCuI7P/mc/AVn/qU0RXXFGdSseGLao9AgHYjXAYQXxHh/22wulEMnJuTmiIGcEJ1JUVHEdHB9byyAj8Cq4utjogyOHIrUgshiuuwJp9+mkc065dmb9Pp1Fh5/Wi8o/t7fAwzvHkSazDXbvMXUP2TRIJSBFwe2QohM8qNhDw1Clcqy1bShOOxvbmSATXsbkZk5UnJ4n27rUvmDeitxcDa44ehY87OwtyttzhBrVEwxYBmobncXFR7DF9fZXvM1xQwnJH0Si+t7TA121rsy+hwQUGqZQoQDG291b6Oe3teL/l5UzCrtpg4pArDolgd5gQy7Z3Y2O4j5s25WrUFoOqEv37v8NWvPWt8GnKPd6XXxbHYGcXw8mT8FFSKegftrbC5rC/1teHZ4tbk32+tde52LA59sChZwuRNVBNVP1iKwoMuKJg4ZopR19dFS3Luo5AaWjIXs2NcqCquW3JxswGE4X8ZTbrGg6DLFJVGL+hoVwRf65W9HrxmYkEvkuSKM1ft67yknpFwWbjdMLI5wuWf/xjBO533IHg4OhROKe7duUGzLIMR3lxEYNUAgGRuYtGxcaePSjG5YLzkkrBSc83vZg3yXgcQbvDAQKRyTZFwcTAUAgajIOD5q5BOo1nb24O31UVx7BjR+3I69VVfLbHg+M24ZissS3RMhqGv0wYScRs+2isVFxrTlMppFJEX/wibMsHPpDftk1Pw7accw5sz+goiEer+oOs9ROPo1Unm+jginLWdi0EWYYtYm1Gu6r1NI3oC18g+s//RNvhX/wFjmNlRQzIsDt4icUwtOXRRxH8f+Qj2BNM2MA6e9JycNbZIp426nZXh0gkwtoKhbBO87X2x+NY683N+JqYwNfwcGVVcpqGPdzpLF05pWkQ5B8fR4KUA2ZdRydFOIwKl3yJgelprP3OTpCMpT7r4EEQltdem0lYhkL4nGAwf9JyZgZ2bnAQ18YsdB3XWJJQDTQzg8/dvdv8e5SLcBikZTiMRPn551dvanwWGraonA/VQYotLGAva23Fs1hJ8ohjQSYOibBG0mk84x0dWDt22R7+PFnGe7J0lsMhhg/xhPdKwYMbHY7qdIYZP4fjQR4exW3ZXm9hmzM/jwrqdetQiGMWmoYk7tGjRG96E6QJyoGmQWZqaQmJj0oTCYoiqgsPHsTAvdZWTIrm59TjEd1lLO/A2runCfVui+oCDRKxtqjaxeapV5IkpgwXI9U0DYZuagrGndtGh4Zq5mxkQNdhpIyEobEt2efLJAz9/vKDdE2DceUNz+OB02y8XlyKbdRp4CpIWRYakd3d5VfL6TqyTckkgsV8DsOLL0IE/Mor0Z5y7Bic0fXrYcSzKwqPHAEped55yACyNgd/KQqO2+1GpqitDZ/LUx37+4trAPJkQrc7s/JIVdEmNDuLYMBq1ktV8dq5ORwjT77l61vNZ5I1opqacP4m72W9b1ANw18BihGJPK25nohEXYfzeugQHMN82e9IBBU5PT0IqGdnEcgPDFjT60kmib75TRByd96Z6+DKMuys31983SeTsEWqCkfdyuCoYpAkor/5G2iX3XYb0fvfL6qjiRB82e0Yv/wy0V/+Ja7pXXehUspCgFcnT1lBnJW2iIlEbjGuRiC8vAz/jgXws7G6iqDP6RTTi9Np6GZVsueytIPLVfq8VBWJz5kZouuvB1F38iT8mJ07i9uW2Vn4RG1tqPArFNSfOkX005+iE+W663J/H4nAB/J6M4cFLi9jbXZ1IalZDl54AYTepk3QUq1GVXE+6DqqS48cwT60e7doCa8iGrbIyofpWIPz8/Djm5rg75bbpptKCeKQ4ycuJmGSR9OwXuyS6uHBZ5IktIvztURza3MwaE+XD8dhgYC1Sr9SUFURUzFx6HYL4tBMUc6hQ7jGe/aYX2+6joKR557D4MzLLy//+A8fhr+ybZt1LUVNy52WrKo4vl//GnHeli3wi7q6cpOpiiISM6zD29V1Wrpz6t0W1QUaJGJtUZWLzRuHpgkh7EKGi/WsZmZgJJuaEMStW1dbUdNUKlPHMJkU03ndbkEW8oZj97FxOTxPTdQ0BMbGQFSScEx+f6YB5OEli4swlK2tcHytOocLCziG3l5RMWhsL15YIPp//w8b5FVX4fNmZ5F5Y+LSWC04N4cNaOdOiJVz9WA+koOvucMhqiuZsCuESAQl614vCEQmXTUNm8v4OJxkq+X3qRTOS1Vxbk1NcEp4EhsLPnPlp11OsK7jc2MxvG9Pj6X3rvcNqmH4K0QxItGYta4HHDhA9JOfoB3ummtyf59OI1j3eLC+w2EE5qw1axapFLLYs7OorM5u6+NWKNbwLQRJAoGo67BFdiUZFhcxwOTkSaIPfYjozW/GMYXD+L3dBCKTt5//PGzchz+MBJDF9rKGLapTpFJiaEJnp/32QtcFQZFPW1jXsW/H42hpDgaxxzscYup6uWAisdSgFSKssQcfRPB58cVYhwMD8GVKYWEBlTstLRhekL0+w2Gi//gP7PG33174GicS8KFYv01R0E4dDIIMKOdanDgBEnFoCHZKVWGrSg2JshPxOPzChQXY6wsusFfyIQsNW2QS0Siet2RSSPeUU6XHgzO5hZgIMQtXGLNGJ1c+d3XZo5XJ2opc5cjPdbF1wsfIwxQrBZ9Xe3tlpKhxojLLY7ndIr4yu/Yliej55/G6884z7yuw1MKBA/C/XvOask7jv21WJAJ7Uyye489l7UomDFnjkUgM53K74ac8/TTIzXvuKX1uqRTsOM9V6OqqeXdjvduiukCDRKwtbL3YbMRlGYuUN4x8CIdR9RYK4d9dXahms3OCZSFwW7JRy5CDbNaUYA2eQKB2GhecsQsGQVbJcmaLsq6L7Fq+IDWZFOLE3I5szIjx1K58Q0lWVlAFGgzmvwcOB1qDFQW6GIqCVqO+PmTTWZeQEQ4L3cQbbjC36akqHMtTp7ABb9ki2g+ysboKh9jvx+bE90jXiZ54AhnvSy7BsVlBIiHaEvr7c4lYRcExciDk8+Ea9PRUFswrCoj0ZBLvVcY6qPcNqmH4bUAhIpHbmrmidi1jfJzoK1/Bur7zzvzr/+RJ7DXbtmHtHDuGgGH7dvNOIWv9jI0hmN++Pff30SiuV0tL4feNxwXRsX27fdqlJ05gArMkoSrw0kuFreb2LztJnkgEmoe/+Q2Ikw98QGgJWUTDFtUx+Bnjqg27iUSu8udhaWyPdB3PYCqFLyYYWBu5o8OeNjhdN0ckyjLRD36AKp6rryZ63evM285QCBV3wSCCd/ZP0mkEv/E40e/9Xum1xQnNRAJ+R1MTKhzLIV3GxhB0Dw4i8HY4RGup2w0ir5ZJpvFxXFtFgd00DuSzEQ1bVALxOMjDREL4s1YHgUmSiF9Y4sk4UZl9Y+66SiZFrFHpPeeut3gcPzN5aOZZZpvD1ZB2PH9LSzienh5rvoAxNmMaxCjfZJXsSqeRMFAUyAdYOZb9+9FxdtllqEIsh2hLp7G+YzHEYfkmtKfTudOS+dxdLqFhyN+dTrzfF76ApO0tt2CIipXjSyZBJnJyuLvbXg3OIqh3W1QXaJCItYVtF1uWxeRKJuDyVcNwy3Isho2FpyxXY2gEETaH7LZkzo4RiRY1/jrdgqvLyzCsnZ3Y2ONx/Nzbi9+rKs7H7c4kuDRNON/Ly3C6WV+or08QiNngc+VBKhs3ionKxg1s/360Mr/lLXDsDx/GRp1PRJyz+IpCdOON5qtyOFhwOnG+rGPU1JR5risrIBECATifRvLut79Fu8/556MKwAoiEWwuXi8IxGKkoK7jOObn8TqnE9elnNYPWQbxq2n43DLbIOt9g2oYfptQz0RiNEr0z/+MNfj+9+ffFxYWhIRCczPWu8uVf6hTIWgaCIJjx+CI7t2b+/toFD8Xm8Qci4Hsc7tBaNrVGvjEE0R//ddwbj/9aVRIplJIzlSDQDx8mOiv/grkxz33wG7zQLAy0LBFdQ4mEongf9jdLp9MYu8MBhFcapoI5nlwUSgEW9XdjX15YQFrvhLdZ13PrMou5uupKtHjjyOYHhoSvo9ZLC+jCsfvB5Ho86G65/hxVBSb1XlMpXAMkQiGv5jVdjZiehpVRb29kKLJ7mSJRPCzcXpzLSDL8CsnJ/HZF15o7RqbQMMWFUAyiRiD5aP6+sxPaDcSd7EY1orDkUkcZu9Psiw6edrbK9ci5KKKeBzv6fPhPa3aKlUV1Wl2VMRytbWqFu+oMxZ1GIe8GOWeKpHIeukl3Nu9e62d14EDKAA5/3zoIJZzDKkU1rUkIUbs6sL1yG5L5ipLHiLKQ0/8/vz3cX4eg+WWl4ne/W4UipQLTsxIEvzN3l77WuoLoN5tUV2gQSLWFhVfbJ6ylU6Llq9soylJomVZUfA3Q0PYtOzOfMpyJmFobEv2eHKHn6y1YFpVsdG6XNjQ2XkOBODMq6rYvInERsSOMUPXhbZeIIAgtLtbCM4ay+LHxmDMh4fzG+6TJ4keeABtJ5deiuySy4WWmnztSI89BqL4hhsE+VkKigICUddxrB4Pzisex+9cLjgm0ShExZuaELQbn5/nn8fGtWsXKmmsIBRCdSNParbyXHD1YiiE69jSAufBjEMWj4uqjAonbNf7BtUw/DaiEJG4lvURVZXoq1/FPvG+9+WfpJ5IgLRrbUW748svw07s3Gk+EaXrsGeHDqG6KNtW6LqQlGhpKbxHRaNCTmHbNntasrid+ItfRILkf/9v2H1Zhn3ifcGufUvTUI35pS9hf/jwh9E2yoOsysQae7Iso2GLCPvu8jJ+rsbk70gERCVXPfF6M1btLS3h3x0d2PeTSTyflaw1XRc6x8UIh8OHsa9v3QoyUdMwId5KlVY4DDvD2mW//S2qAC+6yPyxvvIKrgMPBWhttSZ1Mj+P4+/oIHr1q/OfM5O46bRoPa3l/jA3B/8tkYD/t3u3bc9bwxZlIZXCM8H6pz095jTiWHaIh1XwwLamJjwvwWDh94hEsH+53XiOK723yaQgL3k4SiXvyRJcrNdYKdJpXGOPBzEQryWO13iiMvtoHI/ZZWOPHcPn79hhPgYjgszAj36EysG3vrU8P0OWUQEZjcJ2+v34v+y2ZGOVoRnC9PhxJJidTnRJbN5s/djyIRpFnC3LiJV7euzTs85CvduiukCDRKwtKrrY3BJMhEWXHcQtL4NM4oxyTw/Iw0onCDN4OrGxNZkzG05npo5hIHBapzLlhablby+OxeA0sgbG6iquJWdLPB6xgcEWYSgAACAASURBVPPYeiMxaCQIYzGQc4mE0C40DoGZmhL6Q/mqTmIxom9/G47r7bdD60eWkd3K9/eHD2MDuegi88LfmgYiU5ZBZGa/Lw82mJ8H4dbTg03OuMEdOYJWna1boYNoFpoGkjYeR3BQiSCyomAzmp/HMfP94nuWjXAYn+3zgUCs8Pms9w2qYfhtRikica3pI/70pxgecscduZWBRDjuY8fwfft22LVoFASelQzyQw/BVlxzDapyssFJsWKByeoqJBP8fny+Hc6/oiDL/sADaJ/86EdhG3jghceDvdMuAnF1FQNbDhzAdfiDP8B1bG9v2KLTfQBrBaoK30PXq0Mkzs/jq7sb+2T2c5dMgmhkP25kBGui0oEcTCQWmtg8OYmgdfNm+CThMNaly4XKZStVVJEIxP8ffxyVhLfeav7YR0eRVDnnHHQpLC+LxLAZ3fBQCEndlhbYlFLkazwOX+t0tDcrCvy4kRGcHw/jqxANW/Q7sBQPa693dcGXLnaPeUhJLIbngv0GI3FYqpp3eVm0L1eqQccdb4oihjHakbwjErrs2Z1P5UKSsP64OpNjPSIxOMrrtT8unZhAPDU8jLjOLI4eJfre92Br3vEOa8eVSgk/5fnnce7bt+P+uN2ZVYbclmwFTz6J4Xe9vUQf/GD+1uhKsbqK+I1nM/T22t4hWe+2qC7QIBFri7IutqIIQ85ZIDYKqoqsIpNTHg8IkoGByhYktyUbdQzZIDscMExGHcNatmTkg3GiVqHvrB1iBA8nkWW8R3c3DFoqhQ3J58PgAJ8vU0C41EbO+pM+H5zR5mbcn8VF0caQDV0n+q//AnH3jnfgvq6ugsDLl42fnSV69FG0ROcLzgthchKO9oYNhcmA+XlR9TM8LHQr3W78/xNP4P+vvtq8k6IoOCdZFroYdkDXsZnOz+N6scO2bh3upa6LITjNzeVP085CvW9QDcNfBRQiEtfaoJVDhzBs4IoriG66Kf/fTEwgINmyBUmWxUWseSvE//79COYvuwyTV7PB1evBYOE9ZGUFBGYgAALRjiAgFiP6xCeInnkGtvZ//k/cr2QSNoSrseyqDnrxRaKPfxw26Pd/n+jaa2FbbSIpG7boDAITAZqGZ9CuoF1V8fzNzYmBevnWUiyGZEFzM45hYgIBXr5KZSvQNCGZkq3n/Nxz2LP37hVrbmkJw54CAVQkmm31j8eJ/vVf4R9dfz0qn81UuszOws4MDGQOi4pGQQaxHFAx3fH9+2HHXvMa8/53KoXP0HVc82pJDRXC8jKu/+oqYofzzqvoGM56W6Rp2CtDIZEMKJTYJoJfbCQOifCs8WAUYxFCMbBGO9uNSqq70mk8k+m00NuvxnMZjeL8KyXQWV6K/fyODrwnVxtWq6BlYQGVy319uRrPxTAyggFzg4NEd99d3MazpJaxNVnT4DsdO4brdv758MsqHUKq6xjm+eCD6DZ573vLnxRu9vNWVrBWVFVUfdu059W7LaoLNEjE2sLSxWYdDEnK1apLJNCyPDsLI9zSIlqWrQYlup6/LZnh9Wa2JGdPK64m8g0nyUcQckWkEcbpWoW+s8HVdaEf0t2N85NlEG6aBucxGMS1YQHaUlhaEvenqQnGsqen8DTTp58GOXfDDbjOc3PIzOdz3uNxGPpAAEK8ZjdJbgNet66wFs7sLEjpjg5kybgyUddxTE89BX2h664z/xzIMl6raTifam1MkoRzXFzEZ3Hm1uNBVtbGjFq9b1ANw18lGHVnjG01a0UfcX4eQtkDA0T33pvf6VxZgRB/Xx+OeWoKyRAr+mAHDxI98ggc3HxEJdsVTkjlw9ISqoOam1H1bAcJOzuLqsOpKaKPfIToDW/A/0sSkitM7tlBIGoaKsu/8hVcvz/9U1xDvx8Os00kZcMWnWHQNBACqopnsdIkLeuQEcFnWFjAc87rOxvhMNZDezvW4MoKfIFK2854YrPLJXysp57Cvy+5JNePmZsj+tnPkHB84xtLB5eaRvTDH+L8broJ/puugxgrVs24soLKoM5OdHRkXxNJwrEQwXfKJjSjUegoulwgEK36N6e7vVnTUAnKerd79hT2U0vgrLVFHEMsLOA5b2vD+sq3dtNpMRiFYy0uEMnXZVYKq6t4fjwe+PXlVjBzwYosY302N5et02sK/NwTWR+2oaoiBjQmacNh3Iv+fvsSMPkQiSAZ29JibXr7xASq/Lq6oDNovNeaJgaeMGHIxS/chu3z4XyPHcN93ru3cr1LIlzLr30NidWrrsKQvVolvXkAEJPg7e2VD8+k+rdFdYEGiVhbmL7YvMmoKowMO2/csry0BKPS2wvy0EpVVzqd2ZZsFFx1uTLbkgsJrtoBzh7lIwWNP2cjW9OiEEFo1QlTFFxXr1dUCioKrncyKSZnyrL4nFKQJJS6nzyJe7RzJ14bDGZu9HNzqAzauhUO79gYgs2NG3PfU1XRIhiNQpDfbGvhygpadTo7scHmA2tpdnXBiTSSICMjRL/4BV7/+tcjCDazccbjIC5crupv7AyeSPnSS1hHvb2oqCqWEbaIet+gGoa/ijDKPDCYSDyd+ojJJNHnPw/bet99+W1HKgUH1e+HHTh1Cmv+nHPMf87zz6Nd+txzMSAh+3x5f2Nd33xYXASR2dICu2gH+XrkCNGf/znswyc+AYKTCPtgNAoH3a7JgSsrRJ/8JJJD112HCkSPR7Sm2YiGLToDoWl4hhSlMiJRURDwOhyi4ieRwPpqacHazoaui6Fz7e0IfDXNHiKftclcLtiJaBRyLIXWxNQU/J2eHvg7xfzRxx5D1e/rXoeqZUkSE1P37cs/8CAeFwNZ9uwpfH7ptNAZNw4FSCRAIKoqCMRKhgVwezMPnai1JFAshqrExUVc7wsusGyrzjpbZOyEYVmOfESzLIuKQ1nG//Fwkubm8vxi1nSXZewr5VbPs9Z+MonXNzWVbp22C2yfPJ7Sa0dRRGzIPpbbLeIxp1MMFHU4yiuqMYNkErbL7c6cBl8Ks7NEX/86zvPd78YxG6sMjUNIPZ7MSck8hDQaBXnpdMKm2VGQEYkQ/dM/Ie68/XYUspwOH1VRUOQSDuPfnZ3wQcvcc+rdFtUFGiRibVHyYv//7H1neFzVtfbaMyPNaNSbLVu2ZVvu3bRAbBPTgwkBAgmYEtOTkEBIuyU3AcLN5XJJuXwJEBJuEnAIgQApNBOCwbTQccNNbpJsNUuakabXc74fr1b20eic6SNp7HmfZx7ZU07ZZ++113pXU1VsNIGADCMXAsKnowMKRnExCKbGxsQbD4dCa9OStZ4NTlNl4jBbBE8kkji9OLY5CRHuOZYMjCUIc6lY+XwQqBUVUjgrCsbf7cYmXVWF+7NaE1+LqsII7+iAcco1sIjwW7tdRqsQISrm4EEITqPw+HfeAaH3qU8l33HQ64VBXlqKNGa9DaK9HZtvfT3IS+13enqIXnoJ47JqlYyq4nljtOEMDEDJ4bTu0fJsBQIYc+5e7nbjWoTAxtTQkLEhn+8bVEHw5xh6ROJYNlpRVaLf/x4E4fXX6zso2FkQCMA5dfCg7MqerDK+YweigWbNQrHw2DUfjWI9co1ZvXHo6UEUUWUlorGzYQi88grR3XdDvt19t5SdbNhlk0D86COkL3s8qCm0apWMTslBWlhBFh2lYCKRybxU544egchwOvFZba3+XsjRIRzRz4S+ntxIFZEI5FBXF4i7RKnSBw+izuHkySAI9fSIlhaQjUuXoqEJIxAAkRgKIWpHWyM8FIJBrqr4XTL6dHc39OiaGozLq6+CBFi9Ojv1x8c6vVlVQSZs3477XbAgJSfOMSWLXC5ZooebBGrXEjck4bq/RNhPOeIwE4d2IID1ySnT6UQJK4okrrnbc7yGLbkCE6xsT2ihtSVZp9J2VNa71lBI1j/Pdj2/SETKk+XLk4/U7O4m+tWvMM6f/zyuTasjahufWK36Mm5wEOvSYoG8ykaUaEcH0c9/Dplz/fXSsTqWCIfhyODmdrW1aTW4y3dZlBcokIiji7iDzYKUlTZFwQLv7pb1AqZOhVDUW0yqio1Fm5bMHi8iCKbYtORUDSZVjR81yH/1plW8qEFtc5KxhtOJ+6itHU4ScpHk0lLpvU/Ucbq7G+TVlClyY+OOaUR4xps2QUE//3xZGHjRIv3j7tsHEnHRInjAkkEwCCXcYkF0od7m1Noq6zXGFgfu7yd68UVc17nnYt5w1+pgUCof2vnE3apdLihM2o5puYbHA+PEYhlOtAcCMtU5GsVzbGjAs0xj3uX7BlUQ/KMAPSJxrOojvvYaHAHnnYdaiHro6sIamTQJsstkQvR0so6bfftQLHzKFKK1a0caSYoCZZUIhITeumOHGZdTyFRuqCqcNL/5DUiEO++Ukfvc+dJmy06NVkVBPbaHH8YY3HabLBtRWZmzKOyCLDqKwXWjQiHMoWQNR65rZjIZZw1wU7KGBv25ydkZJhOuo6cHe6pe9GIq6O5GxODUqSCpkkFLC2TY9OkjS6n090PuTJiAyOfYew2FYPj7/SAta2oghz/+WL6XLAnDNZb7+kBAFhWBQDQqD5MOxjq9mUiSr+wAP+64pJ77MSGLvF7MYS7H0dCANaaqmE/smOKu5EwclpVlZ9/PNH2Zg1W4TBFf31jaX14vZBHPda0tyZ3dU8ky83ggNysqslt/fft2jP+SJcbH5bRkjjI8coToD3/A7z//ecwXLWGYzPNzOiGvrFYQiNnoQ7BjB9GDD+JYN9+cHQdRNsFj5/FIuzmFUjP5LovyAgUSMUkIIe4gotuJaLaqqvvSPIzuYCsKFkkohA2G68c5HBDqEyZA2YoN9Q6FhhOGfr8k7yyW4YRhSUnizStecxL+d7zmJPHSiy2WsUvhSxWKAgXRZMIGrb1uTlvgzbu42JiM5SLm3JWNCM+oowPjWV+PVJ0XXpA1e7hLnt6m0t8PEmDCBBTmT2Y8IxEQiIoCgzz2uKqKz/v7QRxMmTLyHjZswO/OPXekoh2JQBEJhTBedjvGhL31VVXZVa4TweHAs7PZYOzozfloFN/p6cE1FhXJrs4pGPljNptzKYsKyD6MiMTRrI+4bx+IrcWLib7wBX3Z4fHge5WVck3Pm5c8adHWBkW5vp7oyitHKrmqKkt0lJfrr02u81tbC7Ig0z0jHCb68Y8hN886i+g735Ey0O3GfZaU6Kc5por+fhCUH36IaKmvfQ3nN5lAiOaQNC7IoqMcnDIZDA7PkjBCKIS1Fo9AJJJlP4TA/m8U1eNwYN0MDmLNzJqVfoScx4O6W2VlMMRNpuSdFB9/jO7mc+Yg2pDJhscfx1q77DJjMjAcBinm9cIJ29eHNTt/fuqkaCSCcg2HDhGtWIH7yMX69vlwvWOV3kyEFO7NmzH3mpuJFi6Mex1HtSzimttuN9bDxInYL/1+6ZDivZ3LVpSWZm+fzzR9WUtyKookqMe64RsHp/T34y/rB5najw4H7rWuLjtRey0tsG3mzpXR03zt2rRkbRmuUIjo6afx3nXXwZZP9V76+0H4lZQkFzGdDDZtgr7W2AgCUa/Z53iBzwcy0e/HvdfXJ6Wz5QnjkByyJN+yjjHYksYGQohriahCVdV7x/patOC6hJEIFLT+frxntYL0mTwZi4ZrVvD3/X4Z0cKh0DU1spahlixSVRyfhZsRUZioOQmH38cShGO9AWUbJhMUA6cTyoJWWFVV4b45QpSbsMQazBz1Vlo6PJy+pATPtasLdRL//nf8v7oaz3fmTNkRTat4BIOo92OzoRNzMpuQqkLJDYcRgahHIO7fj/vkjt5aeDwwvk0morPP1lfOLRaMTziMzZo7bXGX8EzqA6UCVcUmMziIczY0GI+R2QwFYOJEfL+nR9aCrK7Gb3N53eNVFhWQG5hMkK1cD9HovVxhYAD1VjlKR29dRKMgAYuLpUI8e3byindnJ85RVYUIRD0vOe9zRkbLoUNYi3V1I8sppAOXi+j730e00DXXoAsiH9Plwh5qt2dnrb//PghEnw9NW049VZYeqawcHxH2eijIovyAEFhbAwOYu6pqTJZxOizvzfHWkdkM/YQbrk2YMPI7PIcHBnA8bjg3a1Z6dae3b5fNOywWyJ5oNDk9ctEi3N+HH0LHOOUU6FBuN2RbvGjCoiKk6m3dioZPpaVExx+fOoEYjaIBXjgMvchslo2nsh1pzLq8y4XxH4v05smTMUc+/hhOps5ORCVm2q07FuNZFoVCWCMDA1J/tNmg83IzCG5+ycRhtoMmtOnLtbWp18Jj8jAalU1cslQfPC1os9q0qd6qilc2SotUV0snyMSJmZHwhw7B5ps0Cc+3r082QeHgHW66WV6Ov5yZIARqIscGaSSD3l40fWKnS6bPTFGInnwSMnDJElzXaMuUVGG3w6ns8cDO6+jAWpgwIfNmX6OF8SzfMsExQyIS0bVENIWIxsUD5LpQAwMy7ZMIiuLMmRBCfr9k37UFV61WKHMlJbLYKteN4A6TsQRhLLhjbXGxjB7LRnOSowVWK4ST1yujDRmlpRBohw6BDKyrG55SEI1CyFksI4k5IigbDQ2IQAyFcOxAAAqt1So9WjabPO+bb+L9s89OPoyda2hOnTqSDFAUEIgDA0hfjlUI/X7UF4pEEIGYyOtTVIRr5c50VVWye1quFRWOpvD58BxSiXysrMQrGJSpzg4H1gR3sM4BATCuZFEBuUcsacidm1lhzpWcjUSIHnsMa+SKK4yN3PZ2fNdmw77U1JR8dF5vLzzadjvOoWfc8B5WUqIvD9raZDmFZOu8xsOhQyDzjhwBkXj66fKzwUHI0mw0OIlGkSa9fj3G7Gc/AynBEY5GNR/HEQqyKE8gBIzigYHhNfO0CAZl6ley3b+tVhzX4cCx9er6lZTIzq1VVdBZu7r09RsjqCqMYb8fJJRWj0mlxMNxx0GWbN8udZhTT03uWiwW7OvbtsmIsVSgqkTvvgu5cuKJ0AMDAYzF4cM4djYaHWhRVITn43bjxZFaoylXmICdOhX1Xt98E3rjkiXZSascwriTRZGILGPEZaasVthYXK+tvFxmEeXimagqzsXRj3V1qZFhLBMiEfy+omJ0mhvqQVFGZrVxEExREe6rrExmCWRKEAmB8WIniVE3eiNEoxi/zk7IGy7Bwo1buI4ypyZrn0swiDIq/f3IzEiHQOzpIdq9G8+MnS6ZIBhEXcZt24jOPBOp1ePVwakHLgkwOAh9sb0da3LChNx2Ec8Sxp18ywaOJRJxXEBVIRyZgAoGsYirqmRttv5+CDwWshYLNiuLRXafGhiQhE0stM1JeMMYzeYkRwvKyrDZce0RrYJbXAwF8vBhPIdQSKbPcge/piZjpfjtt0FQrlghlRFFwaZps8n09EAAIfSdnfC6J0uQcVTexIkjyQBFIdq7F/c1ffrIwsPBIAjEQABpecmEubOHyGZD1CPXTBwclFGsuZhz4bBMD+e6NOnAaoVSPGWKTHU+cACbVH09xjGLynIBxyCYNGQiUY9YzDaefRbr48orjWVHfz/WqcUC5b2hIfli5E4nmrWYzSAQjbo9BwJS0daCi/hzOYXGxpRuTxdbtqAWodlM9L//i/Q7PtfgoKy7lKmB0tuL5ilbt6LO5Ne/jvsMBLJz/AIK0ENVFeaxx4M5zWsuEIBOwV1OU5En5eVYp4ODsna23neiUeglZWVYs2Vlye+57CiYM2c4Ucn1FrlZWzJG7cknQ4f+059AIC5dmtw1DAzgOk44Afeyezf+JmPgqyoijjs6QKhNn473bTaQa52deE2YkJ3yCFpwdgynN0ciY5PeXFcH8mH3bjTG6e7G2MfW0c53RKOYqz09MpCgtBRzgJ3kpaW5Jy649E4ohLWWQj24f5Y0CIcxTzLp8J4JOJggHJY2LUfs6WWyFRVhXP1+XHem12yxQPfhAAEjPUhVZWQhB3KEwxjD3bux/hYtkvXf4wXZRCJwrHZ2El16KQKDUkVnJ2y/6mqcN9OMP6cTDVQOH4autnp1ZscbS1RWQv5x5ltrK/an+vqCnTbaGFMOWghxtRBCFUJ8WghxpxDisBDCK4T4mxBi2tB3viqE2CuECAghPhBCHK/5fZMQ4udCiB1CCM/Q6w0hxLkx52klohVE1DR0PlUIocZ850IhxOtCCNfQcTYLIW7WuWy7EOJnQogjQgifEGKDECKpcqQ+H2qLvPACmmMcPiy7MLvdIC0OHgQZ09+PzzgN2euVimM0ioVSWwuja/p0KGYLF0K5WbZMdlSbPl2mI1RWQgAWCMTkwClEbHzGwmyG8lRbi82ptVUqHZzuoIdDh1ATaPJkCL7jj0etGfascIRBRQWUtM2bYdgnG6EzMIBjVVfLBi6MaBTKn8uFjS2WLAiHZXrQGWeM/L0enE7ct9WK+chRidwxLhKR0RN6pHe68PsxXmwEZKK4P/zwwySEoJdeepHuu+82OvfcKXT66aV0663n0JYt7bRlC9Htt99Pzc2zyWazUb7LogJGHxx9SCTTX9hg1islkSk++ACv1atR90sP2i7mgQDWbLIec7cbBCJHOeo5GyIRSWzERuhw5/r+fsiNbBCIGzYQffvbcMg98IA+gVhenjnB9847RFdfDVn6/e+j1iKna1dWZnZ8lkUvvvgi3XbbbTRlyhQqLS2lc845h9rb24mI6P7776fZswuy6FgF63JeL/Zy1hGLi9OPUqupwe+1Dmy983JmBqfx6mW6xMLhQNSgUaSx2Yxrjkb1m/LFwu2G3jFjBn63e3fi3/h8+F5JCfTjJUug3+zdCz0iEbZsAQG5aBFSubWwWCA37Xbo7319iY+XDux2qZM6ndCBcgk9WVReXkrf+MY5NGdOO5WXE9155/00ZcrRIYu4meV778kGGpWV0JMnTIC+P3169mrsxYPfD/0/HJbdaZOtg+504sUNOWtrR5dcYWeDyyVLhxDJ+sOcSWdEjHHGAhPmmYIbp/l8sKGJZOOpvj7IsYMH8ez7+iBPmTh2OhEQcsYZMlChuNj4WUSjaPJ08CDRhReirnSqOHwYBGJtLSIQMyUQ29qI7roLduEtt+Q3gcgQAnvWrFlYn14v9MmuruT2JBzj2OKgcoExbawihLiaiH5LRJuJKEBEjxPRZCL6FhF9TESPEdEXh75jJ6J/JSInETWrqhoWQlxCRP9JRH8molYiqiKiK4loERGdparqxqHzXEhE/0NENUT0DT6/qqqPDn3+bSL6ERFtI6I/EpGDiBYS0TxVVc8c+s4dhKKWHw59/gwRNRDRN4noQ1VVVyW6309+ktRJk6BI1ddDGSguhnDnKA2OEuTQbv7Lr3GeGnVUIhDAxmO3G6eq9PeDHPR4QN4a1YsJBEAiRyIgDmtqZAMB3tC4mQ7X3rHZZCdmbei/Hvx+eLBKShDZo50vkQg2k0AAinws6RaNwjju7yc66SRsmPHAiqzXG7/IMxMUXDuE53omYfQeD66zqAhrKdOU6WeeeZhuv/0amjdvORUX2+iccy6j3t5OevTRn9DMmYto1arL6W9/W08nn3wNORw+euWV73soj2VRT0+hmcFYQZvCrI1OzGajla4uot/9Duv80kv1j8slDTiiqawMClky1+Dzoa6O2010ySX6soLr+JpMI7uLKgqcLi4XyMNkIx+NoKpI2376aZAD3/mOJPKYQAyHZdpZuohEkKL09NOQ2//yL7K2qhAwVDKVRY8//jDdeus1tHjxcrJabXThhZdRd3cnPfjgT2jevEV00UWX05NPrqdzzrmGXnvNR1u25Lcsev31gixKFxztr6rQJzNNpY1EQPiZzdBN9PZzRcE5ufZiaSl0DSOEQkS7dmFdzJ0b3yDWRirFM9Jfew2y5VOfAjF45AicsUYpzZEI6vmpKvQuTufkSGinE/dgdB8HDkB3mjYNvzcCyxqPB3Kmujo36YKKIp0W7KDJhW2wYcPDdPfd19Ds2dCLTj/9Murv76QnnvgJzZixiM4883J6/vn1tGDBNTQw4KN3381vWbRxI6l+P+b0lCkgC0tLRzf9V5u+XFwMIimZwA/ebwMBWZ8xVynWeohEZKoyO0W1NfVTXQfa4I14zaGSQTSKcenslHXTeUy5pr22W7LFgvvZsgX3s2xZcrJVVREdvW0bshNOOin1a21rAwFZXw/nb6byY8sWoocegu5zyy3ZcdaOFygKni2Xc+vpkVlk69YlbqxyrHFQucB4iUmLEtGpqqpGiIiEEGYi+jYRVRPRQlVVvUPvO4noPiI6lzCAL6iq+pT2QEKInxEmxL8Q0UYiIlVV/zL0kKz80DTfn05E/01ErxPR2aqqBjWf6U3CQ6qqXqT5Th8R/a8QYoGqqjvj3aTbjUlfXIwosClToLQk0zm5gLGDzYbN0eeTjWViwaklqgpSzagW4DvvYKNvboZQnzZNbvLl5djAenrgidq7F8c46STMkXAYG6HPh/litQ4/RzgMzyV3jdPO3nAYm1MwiHPGph0qCqKW+vtRcygRgajtEseh5UYQQtbvZDIxFJKbdqpKzsAAFAGbDUpeNteOyWSmX//6dbIMaRiKEqX1639MbreT7rtvB7W0lJLPR/TKK9//N8pjWVTA2CE2GpHJw2w1WvH5oMiWlhJdcIHx8Xp6ZLpTWRmiepI5dzBI9Oc/Yw1edJG+rGA5SDSyyLyiQMnzeKShlgmCQdQifPttdGC+4QZpIHBX20hEFjtPF729RD/6EQiRT3+a6PrrJaFiNkMOZlsW/eUvUhZFo1H6xS9+TAMDTrr55h307LOlQ00hCrLoWAWXQeDmJJnCYpFN5QYH9esjmkxYSy4X9nCv17iWIjsqVBU6b6L1YTbLezEiTrZuxfV98pO41uOPR53CzZvxm9jmMIoC3ScSwTVoCSEh4AwwmeB40Uttbm/H7ydNik8g8vGqqnAfg4M4Xk1N9rN/2DHD5RPc7txmGZlMZvrZz4brRY8//mPyeJx0//07McNzmQAAIABJREFU6ODBUmptJXr33fyWRVYrIscybcKRLiIR2aE42fRlRZFNN7krdC4au+iB05S1jTk5EyletF4yEELKGY8n+UwjTkvWdkvWRjNyR/eJE2U/AL1j7NqFMV28OHkC8fnnZb3BdAjEgwchayZOxDzMZPxUFVllTz0FGffVr0Je5guYHNT+jX0vNgZucBBj6HSmfjo6BjioXGC8kIgP8cMbwluEB/h7fnia94mImomIVFX18QdCCBsRlRKRIKJNRHRpkuf+HGEcfqB9eEPH1/OQ/yLm/69prinuA9y4kei551CYeOdOCEaPB9Ei06fjbyGff3xCVWWKSl3dSKO4rQ0bfnU1QuKLixECr918tm6F4Dv+eHjklyzR38AUheiZZ6DErF6NFPXYgr1+P76nTRM8cACbbqyiHAoh7W7GDERJxm7Gqkr0xhuYe5deimuLh3AYCnd1NRT2VJsTcL3EYBDjyDVGEm2YqgqS1G6Xil62FKUtW/D361+/gU44QQ72RRetoPXrf0xr1lxBNlspnX46agD953/mtyzKdmfFAlJHbESiouD/mdRH1HYDvPFGY6+zy4XvWq1Yw/PnJxehx41aAgF0PI5N6+P78niwpsvKhsuuaBTOETbWUmmCpAeHA3UJ9+xBTcLPf16OnaKA3KiuhvKcCYH41ltEP/whrv+uu2AkcPH3ysrUalUlAiv6N910AzU2ysE7++wV9Itf/Jiqq6+g558vpZUrib75TaIJE/JbFp16apJXVMAweL1Yhzyv3W6sq2zMxcFBrJ2aGuPu5aEQCI/eXsismTNHGtu7dmHNLFmSfLSxqkLOCDGSyNmxAwTd2rWoi8hYuRIGvNOJOtPaiMI9e6AnxZM3qopIRW6OMns2zn/gAJwt55xD9IlPpDauXi9+azLhenKl24fDUp5nGmkdiwMH8Peb37yBTj9dPgyHYwU9/viP6XOfu4LKy0vppJPgVLnvvvyWRStXJnlFOYDfj/2MKLl0aXbU+Xz4t90O8jCXjTJ4bXLDTtZfOLgi2804zWZZtsHn0yfzuOYyE4baJqQWi4wu5L+RCNZlKKTv+CCCLHA6R9ZvjYeNG1EzdeXK9OYRy59Jk3DeTMYxGoWe9vrrsDevvXbsmunEgudQPHJQzyEmBOYD93woKZH9IsJh7DW9vbC7L7gg5cs6JjioXGC8kIhtMf8fGPobW6mE368hIhJCFBPR9wjhprE54cmmyMwe+rs9ye/HXitz3jWJfjhhAhbzueciHWP3bhhUTidIKLMZCsz06YgWy3aXtwLSB3uYuQmBdmPp7sYGNnUqNnGrFc+zrQ3pNZWVICA3bcImO2sWjHYjod7SAiN81SoQfgcP4jicnme14rdMJg4MgNSLTdUhwnf27IFgnjtXn/B75x0oi0xuxgPXaREC15SOYc4d7UpKZKFwv1+SiXqIRpGK4PdDwapJuNrSQ1PTcDFSVIQHXVIyjebOhaE0tLnntSwqYOyhVx+RoxHTjWjbuBGRPxddZEwgclRyXx8Itubm5AzPaBRe7fZ2HF+PQCSSaXaxzZQiEcg2vx/nTKZhUzwcPEj0b/8GeXznncMVd0WRNaEyKSgfDhP98pdEjz8Oxf7OOzGuAwOQrXa7McmSKbSyyO8neuUVyCKTaRp973sgMguy6NiElkBkvUAIkElOZ/L104xQWYn57XDIkjuxKC7G96JR6B+HDoF8YxKDG41Mn55auQI2Ftm4ZFnY0wO9eepUEHqx13LuuWgk9be/IZWwvl7KuenT4zsshJDXznWW7XaiDz+EUX/SSamPZ2kpZEVXFxzLEyfmptlSURH0IbcbemMolHxn7mQRqxeVlUEWWSzTaMIE1J4dkvUFWZQiOFre40kufZmbc/p82OfYWZerbDZVHd5RWUsccvmtXEY9Wq0yHZmvh0nDYFBGQHKpJ25OabXqjwl3OzfqRt/RgTU7dWrijCzGm28iEOOEE4bty0lBVcEDdHYiCtpIr0oWPh/Rgw+CVFuzBnUZRyulnWV2vChCvfrfJpNsHsuZmdqGskwexkJVIa937sRxFyyAjZYGkX5McFC5wHghEY0SMYze5yVxLxF9mcDMvknIE48S0TVEdHk2LzCFa0qISZOILrsMtVjeeAPseTAIhcPrJfrHP/CaMAGs+vTpuTNUCkgeRUXYrDl1oKQECrvLBYWVFcSyMjw3VqL9fqKXXoKxu3IllFUjZfLIESiuU6fC0x4KYVNrbwd5xlGQQsiNcv9+XMPkycO7vwYCIBAVBeSg3jk//BDfWbIEYfvx4HZjrhYVYXPNtPaXxQJll1PFeVzt9uFGC49BJIK1k8u1YNbsVG1tiHwgIpo1y2yUypTXsqiAsYUekRiNppfWvGsXHBUnnICXEdrboSSXlkJOJZPioqpEf/0rvOVr1siGJbHw+7FeS0qGOzPCYRCIgQCU5EzTat57j+gHP8B5fv5zyFRGNAq5rCiy7nA66Ooiuv12KKgXX4x0IIsFxw6HIYdy6ehjWfTee0Q//alsHnH11WY66yzdnxRk0TEAjwf6YknJ8PnHdfEGB7NDJNbVYQ309mLf1TPi7Hast2AQZB0bwi4X9IqamvQ6k7Ls44iUUAhNk+x2RAXq3ZfNBtn07LNEL74IorG3F+RdsnXAmptxnx98AFJ02TKiU05JP7rLasV4dHXhVVeXfGRTKhACupTfj/nhcOD/mepoDK1e5HQSffwx/t3YaDbqjF2QRUlAm75cXo59Md6a5efLWQSxkf7ZgqIMT1UmwhooLpbEYa6hKMO7JWu7VHOtRS4BFa9OvB5KS2VN1+JiKUf7+2FP1dUhcysZvP8+0oaXLIHzIlUCcfduOEiampI/pxH6+lDa5cgRNH5bsSKz4zG4K3miFGO9uDkmArnTth45mI589XiQ3edw4HktWZKRk+aY4qCyifFCIqaLtUS0XlXVr2rfFEJcp/NdI1Z479DfxUT0ShavLSGmT4fg2LMH6VL790PZOeUUCM62Ngio99+XDTiamjKP4CggfZSVYfNxuSA4jxzBe1ovN9claWyEUH/xRQi7lSsRgWgURef3g1QuK0O9HyEgdKdPxybT1weybfJkuWH29WGuNDdjQ+VwfkUBWSAE0nj0Io22bUMHunnzUAcxHhwOKI8lJSAQs5kyUVQE5SkUAonudmMsSkuhwHR24j6mTs0sJTFZRCIYm+5umfqdxOaU17KogLFDvIjEZNdZXx8anTQ2Ep1/vvH3jhzBvmIyIdo9tn6YEV54AWTamWcaywpOK+Lurdr3W1rwV6+cQqr461+J/t//Aznx3/89PMpJSyBWV6dvRL/2Go5NhDTm1atl0wkmJ3NdesTtRur0yy9D5l53HQqjJ1E+oiCLjlK43VhHdrv+ns6NFAYGMFczaexhMmFtdXdDvhiVwCgvl13Yu7uxLlpaIAcWLUqfyDSZpPG6YQN0n0suiR81XVoKIvGJJ9A5/rzzEtcx1DuGw4HzJiJ1koHFArnMOlw4PLIkTrbAXW1dLsyB0tLsOTq4Cc2+fZJQTiIjpCCLDODzYZ4JkTh9mZs7RqNSX852eqqiyDRlriGobeSYS+JQVXFubS1DbVpyURHGiJ0ndXWZ2yBVVTiHw4HjB4NwxJaXJ99Reds2lFGYMwcRf6lck6LIFNwZM2DbZ4L9+4nuvx9z5BvfSJxVpr2OROSgUXoxE4FG5GC8BlnpguvstrTg+MuWwTYcIxzz8i3fScQoxbCvQoi5RHShznc9RFQlhBAxeeZ/IqJ7iOh2IcRbsUUtDXLSswYmeWbPhnfvnXegMDU3w4tgtYIMam1FLcWPPoIR1tSEV3396IUqFwBUVkIh3L0bSpReR0DefF0uGN/l5TDYjYx2RUH9inCY6Iwzhhu/XFPHboeSzunN0ShIgaoqqeDbbNiUdu2CgF28WJ94270bc6m5eWRqkBaqinNwYeNcKb9E0ssZDMIgOXQIhEBVFQiPbHnV48HrRWqC329Mvhog72VRAWMHLZGobbTC/4+HUAgGs9lMdPnlxsq+zwfFy+vF3I5tIGCEl19G04KVK4fXIdOCSQSLZTjhHgzinJEIFO1U66dqoShEDzyAzsinnEL0/e8PX5+RiCyonS6BGA4T3XcfzjF/PqIdJ0/GfQwO4rnkolGCFrzKf/xj3N+FF+K5bk822aUgi446cJ3RUEim6xnBZsP8ZyKxpiZ9g5vTK/v6ZHSjHqqqZAfkjRtxzpNPznzPNpuRldPejqZJyTg9iorgeO3qQprgokXJE2kOB/b/pibo5G1tWHeLFmWWLso6XH+/jGTOtjOWYbHgObndsslfeXlm5wqHoS/296d83QVZFANt+rLVivVlNLdCIdn8zGLJvvMqGpWpykwUmc2SjM5VinQ4PDzKMBiU+x6TUmVlMsqQ51s4LGsRZ6JLEEnytqcHmU6dnbjnhQuTm9979qDB3PTpRF/4QmpjpSjIcurvR2ZGsrqYEd5/n+g3v8G6v+UWmYadqO6gXnMSIty/liCMJQctltzW3jSC04mAHLcbetmiRWPeR+KYl2/5TiL+hYiuEUJ4Cd1wZhLRV4hoFxEtj/nu+0T0aSK6VwjxLhEpqqo+rqpqqxDiP4jobiJ6TwjxBBH1E9GCoZd+4lCWYTajYcOCBdis33+faP16/P+Tn4Rg8/tlrb0dO6Dc2O0y5XnixLFZ2McaTCYZEVBZaTzmgQCiEIuK0M2zpgZk8JQpIwXfRx+B/Fu50jjdpbISm/vhw5IMaGwcTmL6fNgQKyvhneHuodwdmQhenHfewecrVhiTFFzrKBiEopOLNBw9WK24Zlayyssx97luRi6xYweMn5NPxobcHlsRwxhHjSwqYGwghH6zlXiNVlQVimxvLxqdGK1RRYHS290ND3Vzc3LOgDffhKw48URE4xkd2+PB2tQq9oEA5JSigEDMpB6Yz4eIwLffRjTSV74yXO7GEojpkHyHDxPddhuu+dJLib78Zchunw/yvqgI45vLPbarC3UniXCuO+6AoswRZkmiIIuOIqgq5l84nJhAZHCDlWwQiaWl0AG4G7MeIScEdIS9ezGHGxuzU3bkwAE0PVu4EDIkkVMlHIbTtrIS8nDjRkRRf+YzicfN5ZIN5k49VaaL796NiKPFizN3HtTWQo709kLeTJ6cG4dEbHqz05lZevPOnfjtggXQXzdtSvqnBVmkQSQio1ErKoxrV4bD0mlgNuN72WqYE4nINGUmDrkWXXFx9vc3RRne+CQYlOflbKvKSvy1WuPPUW4k6fMNbyqVLsxmyMlXX8X/V69OLsLz4EGiP/4RjoG1a1NbV9EoAoa4cYteEEoicHOSSASRkM8+i2jGdevw2eHDwztSM/Sak+jVHxxvgUmRCOTwwYN45iedNG6aQx7z8i3fScRbichP6G5zDRHtJqIvEdF8GvkAf0xEs4joKiK6mcAeP05EpKrq/wghDhDRNwlFMiNEtI+Ifp37WxiOoiJEhi1dilpIW7bA+Fu6FAtn3jy8gkEIitZWGD27dkEAT5sGUrGxMfeEy7GKI0cgqJuaZKey2I2Ha4j19qKGz+LFeB6dnSCBGxulUd3aCgE5bx7I4HgoLsZvOzqgZPBmwikse/fiO3Pn4m8kIpuXBAK4nrfewua3erWxwhAKwRiIRuHVykVBcD0oCogOjwfnravDdfv92HRtNigR2VR0wmE8AyIoFKtWpaVsH3WyqIDRhzYCUVsf0UiWv/02DNyzz46ftnfwIGTDtGmQDcmsn/ffh7G4ZAmOrweOkCICgcjKp9+PfYsI58vEAOrtJfr3f8c93HrryM574TDIEqL0CcRXXiG6+26M8913yyYtHPXAhk6ulOtoFNGP69cjApsINY2OOy6tfbwgi44SqKosncKROcnCasV6cDoR8VJTk75OWF0NnaCvD7qD3v7Y3w9ZMHcuZFZPT/KNCfQwMIBaYxMmEJ12mkxtNlrfigI9KhQC8V5eDrn14ot4rVljTBB4vShhYDIRfepTUl5x1N3OnYiAWbIk8+jKigrcQ3c31vqkSbkr05JJejNnoRBh3nziE2kRwwVZNARt+nJ9vf4z54j+QADzjhsQZrrvaDsqc2OLoiJJ2mVLn+a0ZC1pyDUViWT9Qa7nXlyc+r3ZbNKuMZszW4+qCkeFxQIyT6/pRywOH0bn45oaoiuvTE0mRyII/nG5kOmgR4Ql25wkEiH6058QgHLccXCuMgnMUaTJNCcZ7+jpwZj5/SBK580bnZqcSeKYl29inEdKHm1IebDdbkSCfPwxFs4JJ6CLrlYZikRAKrW2QikJhSBEpkwB0TV16uikgh4LcLlABNbUQBHo74dAj63R8Y9/wCg86SQYvYoia0gcPowNlhXsF1/E8c48M/FmHo3CmI5EcM7+fhy3pATC1maDEh/7vEMh/G7jRlz3eecZK5M+H45lMuEaRytcPBLB2AYCMBy0UVWKgk3E75dNZbiQfCYYGECqZiCAzSmFwsbjzFeXMgqCfxyDlVmORuQUZy1aW4l+/Wus9yuuMF4L/f0wkMvKQI4lY0Ru20b0zDM49sUXG8sltxvrtrxcKnZer6xXM2dOZgZySwvRd7+LdX/77ZCnWoTDIElMJhAdqSrJwSAKkf/1ryAe7rgDMo9Tzjh9NNPUqXjYt4/of/8X97p0KdEXv4h9O4UOqwVZdBRCSyCWl6dfA43XiBCZEYmcmcB6gVYm+HxwOtjtWEc7d2LNLl+engMyHEakj8+HJoTl5dJhynpULFpa4HCYOxe6EaO9HY3tGhqQERL7W78fkUjhMMhKvZqtfX3IUrDbsUazUY+OHbWRCMiEXMoYjmYNBmVDini6ZjAIw93hAMm5YEHS86Ygi2IPqGL9eb3G6csczc/6rd2OdZOJfsvRhqGQjODlhiRFRdlxiIXDwwlDPhcR7tFmk4Sh1ZpdstLlwrjFywZLhP37YTvPmoXr8/mMCV4i2EW//S0+v+661Ej1UAi2hsuFUgk1NfpEoVFzEi0ZGAggffnAAZQ7+cxn8pMgjIdgEDK3owPjvHRpyv0g8l0W5QUKJOLoIu3BdjhATLW0gDDiaEW9zairS6Y9cxpoYyMMk2nTRqc5xdEIbnbDEZ9CyO5qxcVSwHV0wDBtaCC64QYoh9EoBL/Fgg28owOKxebN+HzNmsTROqqK8/t8iFi027Ex7dyJKKOJE1ErTI8w7u0l+tvf8Ow50q6oCOfUKtWDg1CYi4uhPI6WxycYxJgoCs5rZHgoikxlYPI0HU+tqoJU3bMHY7J8ecrp2vm+QRUE/zhHPCLR7UYR7eJioptuMpbpoRBqGgYCMJCTUcL27EFK7fTpMOCNlFOvV5JsbFR7PJBFFgsIxEwcEG++iRTmykpEB8YS/KEQiL50CcT2dtRV3L8fJOwNN+C6o1EcNxLJbhpZLIJBRB4+/TT2gCuuAElaW5vyHl2QRUcZFEUayWVlmZNWTCQSZVbTMxCAIW23y4ZG0SgIxFAI89dmgxzYsgXrP51o2hdfBLl+wQXDi+ZzE4DY0iaHDmE9NzXp1xfbtw9E4bRpqK3IcjQYRLS1z4cIxHiNQhwOEGs2G4r5Z8O5ysRsIIB1n+umidygg9OdjSJKt2+H/Js/P/nO1kMoyCINwmGMJ6cvV1YO/5z1WZ8POimTh+mQYqo6vKMyE4es62dKHHIXdi1pyDqKySSJQiYNc207RKOQkZzunSo6OyEXGhuRxaGqkG2cfRUrsxwOOG1NJqJrrx2+VmObk8SSg34/AoECAehF/FtOL9aLGNT+W/vcurthXzqduI4TT0z93sc7Dh0CgRiNgnCdNSutNZHvsigvUCARRxcZD3Z3N4yr9naw8ytWYKPX2xw4HaGtDVErrDw0NMjGLKOVpprvUBSMoaLAuNZukD4fNrOKCgj8n/wEY33zzSDEGOwVLC7G9/7yFxiwZ52FNJlEQrKzExtHY6MkvPr7cYxgEBtTWRk+1yqHTiea9VitkqzkFGFVlbUxnE6QiHb76NbX9HplhENjY3LKeTQqSQyTSaZIJINQCJFWR45gLSxenFakbr5vUAXBnwfQptdwirOiQJnt7ERtQKPaMKqKvaKjA/tEMh3sDhxAZ9NJk9DMw4i8YPlRUiLXncsFpby4GIpyusSHqiIK6Ze/RFTRf/3XSOOeG52Yzel1oH3pJaJ77oGs+d734HwhkqnRqgoZm+0OmIyPPkKH6a4ulJW4+GLcY5qRYgVZdBRBSyCWl2cvi4S7ixNl1rnc5ZJNVioqYBwfOQJiTbtOe3rg4GxogI6aLLZuRZO5U05B5k0s2GA3m7Hue3vhXJ8wAQanEXbtgjxsboZDJRJBhLbLBceqtsu7EQYGoDsUF+N+s+GQZz3d7cZ45rpZYiSCe45Gh6c3qyp0yQMHoEcuWZJWdGRBFg3B65VR8jU1w+eKqsoyQ6qKz8rKUpf9TBxyqjIR5g5HG6a7xlV1OGEYDI5MS2ay0GbL3T6ZCNx4xmpNzZZ1OCC3amsRZcvrLRyG3CoqgjwRAuvE4UDkXzCIGojV1cMJQ700aG5OEonAMRsOI0q7vj795iR79qC5nNlM9NWvpt55frzD64V87evDmlm6NKMI7XyXRXmBAok4usjaYLe3owh0Tw8E4cqViQVKf7+MUGSvdF0dSLGmppFesgIkDh+GgJs2TT8yxenEhvbCC1CCv/hFeOBjEQhg09m3D97e2bMx7jYbPOhG3ru+Pjzr+nrZobC3F8RmRQWO4/WCWCBCfY/yciiLGzZgszr33OECWVVxPZy+HI2CkEimA2K2MDAABdpmS6/IONeQCYexsdrt8UlIjv4MhWDYNDWlfen5vkEVBH+eIJZI3LABtRAvvRSGnhE+/hiyaPHi+N9jHD6MLs/V1ZBf8aIbvV4YDqy4Dw5CptlsIBDTNV4iEZBrzz0Hcu3f/m3keg4EcL50Gp0EAkT33ovjL1mC9GWWd4EA5KXJhOPmIpLC5QI5+vLLIGrXrYPsLi/PaP8tyKKjBBxdo6qydl62j+9wQKbU1KS/Tnt7oTeEQtBFm5v16znv24fP581LroFAZ6fseLpmTfymb4oCObRzJ8Zq4cLE5NvWrag1zmRjXx8cLFpnbyK4XDiO2YwMhmxFKjsceJWU6EdCZRNcyzYQkLXxuNlDYyOeV5rnP+ZlUaL0ZW52oyiyC3Eq61xRJHHIzTO4Dl5xcXoyIxQaSRoyLJaRhOF4auDJmUmlpckFIHi9iJK22UDqca1VJgU9HmmTlJfj+3/8I/5ecolcm0aRg9rmJH4/ZEUkAj0sExv7rbeQuTBxIjowa0s25DvYgdHSgnFbsEBm+2WAfJdFeYECiTi6yOpgqypSx956C5vWpEnwqCbTLn5wUEYo9vXhvepqGaFYW5vNK81v9PdDaZ440TjdRFFkl6xzzkFkiR64kO+mTTC2V63CptXZiY15ypSRxrvLhfDuykr5bHt6oJxXVg4P9Q6HEXnk92ND/eADXNu55+pvYFxP0+2GMsNd0rJRzDkeVBVjOjCA88bWWEoVoRCUiUgEm7jdPtw7yuPO5QCWL8+YNM/3Daog+PMITCRu2UL05JNwGp13nvH3OzshYxob0Wk00Vru6YGCWloKYsvIqx+JQFZYLLIekNOJtWW3wzhPl/jweEDqffghUnuvu27kdWsJxOrq1GRUayvSl1tbQZJee6007rxenD9XHZhVFc/jF7/AeS64AE0frNaRUSppoCCLjgLkmkDUnoeJxOrq9KKIVBVNTLZuhR6zfLlxNgzXATv++Pg1xLxeoscfx/Vcemni6/J4cH6bDREryY7Xu++ihEBVFdFVVyUXoa137i1bcM/LlmUvo8ftBoHBjR5yXcs8EIAdsGsXxnHJkvS6xWpwTMuicBj2VCQC/VKbZsup5NEonmsqUcaKIqMNmTjkpiKc2ZQsIpGRhGFsWrKWNMyHWnvcvZ7lJjceiU0x9vkgM6JREOWxpCOXSWCCvawMNl1/P2RFc3Py48HnUhSsq3S71asqHCsbNoBc+9KXkm+OlA8YHMQ4DQ7KzLAslVzLd1mUFyiQiKOLnAy2oqB+wNtvQ/jNmAEjM5n0DCIobxyh2N0NoVVWJiMUOaz7WITXCwKvoiK+ctXWhuL41dVEX/+6cX09jwdRMBYLinxzZGAwiPMoCs7D7/v9qN1XUoLnIQQIgo4OnKu5eeSzUVUQjM88gw30ssv0Pe3BINLpVBUEqc2G8wWDsnmJzZb9Z891O71e3EOy8zQZBIPYvFlRs9txf1u2yM6SixdnxUDL9xVREPx5BFWFbP7FL0AMXnutsQHidqP+aXExnAeJDBWHg+iRR6Acr1tnTK5zmiXX0xICyvXBg5BXs2enb3B0daEDc0cH0be+BdkYC78f5y8uhnxNRS698ALRT38KeXb77bKOEDcc8PvxWQrNTJLGkSOoYfT++yBcrr0WMo8JxCwYaQVZlOdgApFIlkXJJRQF6z4axVpKtb5fMIga3YODSDlubDReN8Eg5r7FAiJRTx5FozCUe3uJvvCFxE7sSARpb36/TLtNZt2qKkjEv/8dY7xmDUjAdODzQa9QFJCY6ZIEsQgEIA+JYFTnqiarqiJSdN8+jN28eZBLGRKix6ws8nhkjd7aWrmmQiHZgMxiSb7LejQqicNoFO+ZzTJVORkZoSiSKGTSkElITnvWEobjvQEnRw3GkoNcHzkSiT9/Oa148WLIvdgoQq3zsLMTmRluNwjEeKUSYuHxQD4RQTaku6ZCIaRRf/gharauXZsfpG4yiEbxPA4cwDxcvDi1iPAkkO+yKC9QIBFHFzkd7EgEXt/33sNmMW8e0Sc/mVrDiEAABFRbm2x0UVIiIxQnTRpfoey5RDiMqBWLBfdudN8eDwhEv5/oy1+WRm6sNyUahXHvdiMKhZUB9rhHIkgp5O7E5eUQsCYTiGHu7NzVBSVlxgx9xTkUQmHynh4lQopZAAAgAElEQVSk+NTW4rlpvaJeLz43m/GZ1usfjeJeuN5gSUn2OjSHw9icQyHcY65S6DlNu68PERNmMzapadOydop836AKgj+PEAigkUowiFo4ZWVYm7HrPxKBgex2IyI60foaHASBGImAQDQy3pls4zptZjMM/rY2/H/27PT3hR07iP7jP3DsO+/UN+p9PpzfasU9JUv0+f2oUfviiygvcfvt8h4VBfefqw7MioKuzw8/jP9feSVSJxUFsjidYvAGKMiiPAbXqGNyfrSMREVBFHE4rK+vGEFVUdPT7UZkjN8PGZCoKcnWrSCp9NKOX38dn59zDoj2ROffsQNjtnAhHIVGHZtj8cEHcHosXgw9at8+rMkFCxL/Vg9+P4jESARkZrb0mXAY1xcOS10wmwgEQHIMDCC7Ze5cmRZaVIR5mKY8P+ZkEa8jnw9riB1D4TBsg1AI/y8rS7zGIhGZqszRgdqOyvGeCddHjO2WzOC0dW235PEUHMK1TvU6FmsJw1hwcxIi+QyYINSmG+/cCafnokXxZRURzvPoo1gj55+PbI5k14PbLcsdLF2aftTg4CB0vtZWos9/nujMM8fX88oEvb0YW58PtvX8+TkhsI+S0RrfKJCIo4tRGexAAMrSRx/JUOpPfCJ1b0g4jOi4tjb8jUSwmU2diqi4xsbR69472uBOyKEQ7tUotSYcRhrgjh1Iv1uwQHr4Y2uhvPMOlNbVq6G4sZdR28mMo/QGBrAZVVYSzZyJ77S3y7qIevWHiPCMXnoJ5NkZZ0AB5fTm6mpEHA4OYjO1WkEgGhktkYhMEebmJZkUUA4EcC2qimjLXIbkc6r/jh24vyVL8DzS7Xyng3zfoAqCP0+gqlBoW1ogY6ZNw3tEw4lERUGUTWsr0cknj+xmHAuvFwSi14v0XqMGLUQykqK8HLKqp0eWWGhuTn9NbdxI9D//Azl19936pTg41ThVAnH/fqLbboPcvOYaoquvltcZjcLwY0IvS+kz/8TBg3As7dmDqMfrrpO1pGpqsueUGUJBFuUptARiZeXoO2jTIRJbWrD2Fy2CzHA6cQ+1tfGJ+NZWOEWbm4fXIm5pgXN12TKUd0mEvXsR3TtnDnQhVcU4JiISt27FuebPx7UrCmqTtrVBJ0sl0kiLQABEYigEcjJbHZZZF/T7ZdOlbKC3F/UPFQUkbEOD/Ezbvbm8PC1975iSRaEQdGlt+nIkgjEMBrGeS0vjlwfSdlRm4lDbUdlIJkQiwwnDYFDqBWbzSMJwLCPYjMhB7b/jNScxqjvIL0YwCH2hpGR4BO+BAwjAaG5O3G1cUYieegq2w5o1stljMhlTg4Mgx4qKMmu81NGB7AWPh+iGG9KPlh5vCIVA5h46hHWxdGlOS6fluyzKCxRIxNHFqA62xwPiavt2CNrjj0fqSToGTDQKwdbWBqMsGMQxp06FQjh16th16MoFurull9ZIMWYl9IUXQNidfz7ej0ZB4hUVScVv3z48i0WLhm8Ifr+M9mRlgesIdXbK9vaHDsm6jEbRdNEojPKuLoS+M9HI9Qf7+rDBlpXhupJNUw+HZYowNy9J1WvkdmNMLRZsyrmcK8EglPr+fpxr4UKpaKmqVDAyNNjyfYMqCP48waZNiC78zGfQsVRV8VKU4V74Xbsw7+fO1W/qpEUgQPS738HhccUV8evo+nxYP6WlWLddXbKcwsyZ6XnHVRXn/+1vQfD/53/qR+Z5PJBZNlvyUT6qijpG994LWXf77dj7GKEQlH0iECfZ9ICHQkSPPYZC7GVliExfulSmS1dX58SYK8iiPEQ4jH3RZMoo8itjcCOIUAhrLF76bHc3jOupU4dHDPb0QEY0NBjv7aoKXdTphB5UW4s9+o9/hC5y0UWJx+DwYeigU6cO14M4iolrmsVi1y4QZ7NmoX4jIxpFlHJXFyJ9jJyziRAKQfb6/SASs0X4se7mckGeTJyYfjSSooCA5ehxoygpTq2PRPB5isEHx4wsik1ftliwV/n9eEbc+Vqv3FAkIoMIVBXf0RKHsb/htGQtachReUJIopBJw9FKS45tSqJHDkajktzUIhE5aLGkN9e9XowR15zs6sK8nzwZ6z/R/TzzDAJwPv1p6FseD2RWRUV8HcTphIyxWrG20nUUfvwxmq/ZbEQ335zV7KkxRUcH7i0cxnOYMyfne16+y6K8QIFEHF2MyWA7nahfs2cPBNMnPpFaIepYKAqUxtZWKCQ+H4TBpElQwow6GOcLBgagLNfWxvc+bdsGg3HqVBS71Y6n3w9DtawMG9rf/gYF8PTTh2+MqiqVDq4/2NUF4760FMpCTw8U82nTjL1oikL02mt4HitWjPSqKwoic1iBnDcv9dQbbl6iKLJ5STJzyOEAgVlSgo08lx7Rvj4o89EoyEMtOaIoMmVHCEkmpqmU5/sGVRD8eYC9exEtuGQJUlp4rmqJRJMJCtq776Jj34oV8Y0IJrq6utDAYOZM4+8GApIAKynBebicAtdoTRXhMNGPfgRi9Oyzib79bf3rdbuxXktKkk/99fmI7rkHzp0TT0QjFa1Bz41ZLBaZ8pQtbNsG4rKjA4TENdfAkIpEsp6+HIuCLMozhEIwTseaQGSoKvSeYBDXo0cueTzIcCkvh5NCu/ajUcgFIeKXvGEHHxF0lOeek3WbE2Um9PVBh62v10955mim2Npme/finE1NkAmxMischiO4rw/EQaJIJSOEwziP1wvdI5u1np1OEK42W/zsESP4/ZBPg4PQV+fOTZwaq+3enMIcPeplEdcT1TqG/H68iLBfxWa8cKoxv7TEIXdU1u7todBwwjAclscqKhrZLTkXaa7a5iRGKcZ60YMcERyPHMx153GXSzoWdu3CM0rUvV1VYae9/TYik087TX7mcGBd19Xp27b9/XCulJTAtk43SOLVV4n+8AfYLTffnL2o5rEEy54jR6BzLV2aU11Ii3yXRXmBAok4uhjTwT5yhOjNN0H+lZfDy7JgQWYKLHtKudOz2433J06UjVmyXWsql+BudXZ7/K59hw7BEA8Gib7yFX2FcWAAStu772LjX7NG3zsVjeK8ZjM2qu5ubFYTJsBz39ICxfG44/Q3MFVFh+59+4hOOmlkfZ9wGMcMh7EpuVwwtquq8JxSff6BAF6Kgs2ypERfKVBVEKAuF+ZbQ0Puanpw+vK+fZhvxx1nPO+4Sxunm5SUpNVAJt83qILgH+dwOlETp6JC1lrVgknEvj7UwTWb0VArnoIWjaIDamsrOsjPm2f8Xa7pVFwMo6i9HXtIff3wdMRUMDgIYm/7dqT4XnGF/rpzuaB82u3J1wNraUH6cmcnjn3VVcNlG0c1FhdnN3XU4yH6v/9D98SGBjTWmjMH95qj9OVYFGRRHoEbLVgsuWnkky5UFXM2EMCa00agRSKQMdEodAy9+RwMYr+32aC7GIEjdrZuxXEvvTRxQX23G78pKwMZYLR2Y4nE1lY0dWlshL4br/nLc89B7qxZE7+0QzxwwxeXC2nT6R5HDx4PxtdiGVnHOh56ekBwEGHsUrmmYFDq9BUVSZ1znMzmtBFXFsWmL7POzhkupaVSF2YykIlDIsxJbcQhET6L7ZasTUvWEoZWa+b7lrY5SbwoQj1qIJYI1CMKx9ohQiRLAXz8MRyey5cnJi43bQKJd/LJcCbEBnscOYJxmThxePBEby9SdMvK4OxNJwpUURCRvXEjSLYbbsi5zpBzqCrKuuzejf/Pn5++4zlN5LssygsUSMTRxbgY7EOHQCZ2dcHA0YtcSxdOp4xQdDjwXm0tjM7p01Nr8jLaiEZx7US4VqNNp7eX6PnnQVp9/vPG9SoUBR0H+/qILrkkfu2HcBjKCUdANjaCEOO296EQNrDJk0ca1e+9h01s2bKR1xIIyI7b3OlPVXFNfX3YqLjmRypQVUkmqip+r00R5sgEnw/3k8O6F/+sSeRwwIO3cGFyns5IBApgOCxr16QwDvm+QY0LWVSAPiIRol/9CjLhppuM14/LBSPZ6USEeTzHh6IQPf00onk++1kovPHO7/FgHZWWDi+nEO8c8dDejg7Mvb34q/X0a8FERrLNTlSV6C9/QQ2hykqiO+4YLgc5MiEQgIwqL8+OIsvOm/vug8Po4otBinJUChfZHwWjqiCL8gTBINbVeCMQtRgYwFopK8NLVUGM9ffDORdPh/N48L3Kyvjfe+YZGMxnn41mKvEyGrgJCNc2TmSkMwHS04MSMhMmwLmSaB36fCiDEAigdES6Oks0KpuWzJuX3Y6jwSCcJKzPxYveVBQ4Vtrb8TyWLEkvQ0ib3lxSklAmj8MZnRIMZZHbjb2JU5W5hqHVijGxWPB/bozCXZBNJtkYRYiRackczcfZSNrU5FSzxeI1J9H+OxZcFiVRivF4lFd6CIUQNe12o4RXorX8zjtwAi5fTnTBBfr3GYnIZpRcVqC7G/pURQXKGKST3RcIED30EGTGmWfCphwPRGwmcLngJBoYgPxNV/ZkiDyZrfmNrJKIQohNRESqqq5O4ruriehVIrpBVdX/y9pF5AhCiIeJaB0RFamqGknzMONKWd63D2SiwwGFZOXK7NZfcLsloXjkCN6rrJSEYl1d9s6VDRw6JLtFGRXEdblgOL7+Ooz2Cy80Pt6WLXjNm4dXPKU6EMBmZDaD0G1txbmmT0fkTzSKekB+P/7PmyKfY+FCpOpo4fFg3NlzHat8e71QSKNRfJ5OZ0FOxw4E8H9WfDo7oUxNnJjb0PXeXmxW0SjqLHEq0urVq4mIaNOmTQmP8fLLm+iss06jn/70Ibr66uv/WfstAcZsgzoaZVEBw/HnP0MJvvJKeHD1wMb14cOoMTN/vnEdIa4TuG0bjPZYWaGFosjok/JyyO/+fsiIdFP9Nm9GlKDFQvTDH0Je6V3j4CCMq7Ky5GpxeTxozMIRBN/73nA5qyhQZMPh5I+ZDPr6QB6+/TaKtX/jG9g3HA4ZpcLOnlRk0aZNm+i0006jhx56iK6//vpkL6cgi/IAgQD23KKi7BHZucLgIPb10lKs/f37EV2bjAOhvx/rcsIEfcOxvR3yzWbDnt3cjO/qGc6RCKKWQ6HUDNGODui2dXWoD52sce/xgOBUFNS4TrfbsqLguh0O6HPxas6mikgE+lUoBF1Q7xp9PhkR2dSEa+DxTUce/epXD9HatdeT3y8JcANH7ZjO6izIoxGySJu+LAR0Q1XF37IyjCsTh0zQMfnG9Q+ZNNSmJRcXD48y1KuFqMVoNSfJdygKbAKvFzKLSy8Z2XSbN8MJuWBBYgIvEIDNYbfjeba0ILtr0aL0xtDhgB7R0UG0di3SqPMZ7LjYtw/zWWuTjQGyJosK3JYxctpbVwhhIqLbiGiLqqp/yeW5Ckgds2ahHtauXaiZ+NRTUDhWrsxOGkZ5ObwzixdDqWlvBzm2fTsUnNJSnK+pKb202myitxebzqRJxptNIIDw+A8+wDWfc47x8Q4dwnfnzcP9u91QQvSU4HAYhrrNhnHYsQMKwcyZkiw0m0HwdnXhWjmtYssWKIixpIDTiQ2qpATH1NvgSkvRwbWjA0qp1wsyOZXnIITcoP1+nLenB4rRjBm568Csqtis9u/HPFu+PL6HXFEUuvPOO2nZsmV0YQzzywYGP3eXCxtgOg1kCiggU3zwAV6rVxsTiJEIIqF7eiAXOJI8GtU3mF96CTJ39er4BCLXwlJVrKeDB7GmGxvTj6jZsIHoJz+BIf3f/61/HC2BWF6enNzYvRup0T09iNa87LLhsisSAYGoKCAWs5EepKqIQv/1r3H8664j+tznpHFhMoEQieeEiCeLCjg6wQQiEw/jmUAkkl3QDx+GnGluTj4CuaYG+klfH9a6Vh65XKg7Vl9PdN552L87OvCd2tqRKYR79kCvWLgweQKxrw+RRRUVSGFOJTqorAzpzM8+izqJ55+fXjkekwl6386dGL9oNP0SELGwWCBLu7shc8Lh4Q757m6clwgR2fFSy4mSk0dCYByKiqDLOp2Q0/mecpkIPI/9fujQXLqH9ye/XxKHiiJfTCpyjI7FgrGqqJCRhtpGitEo9r54RKFRerHFgufC1xZLFI53WZNt7NmDObpgAdYF11a2WEbKgp07if76V8i3iy9ObPtwg7fdu2F/ceZTOrZrWxvRz3+O537LLfqO1XxCf78kb6dOxfgfTc1WtShwWxI5JRGJyEREtxPRI0R0TA/0eIXJBOE1dy4EwLvvEv3+9/DgrFiRvcKudruMyAsGQbK1tkLg79wJ4TxtGiLv0ikcnQncbgjAqipjz3MkArJ182Zc65o1xkqtywVStrYWBrvZjHtmckq7kSkKyFVFwf0fPIgNT0sgMoRAOnNxMUiGHTugJH7yk/I7XKPS7YaSV18fX4mwWKDc9vXhd34/NsZUlUOTCYqO243f1tXJmoNGpGy6CATwHJxOjNn8+Ynni6Io9IMf/IDWrVtnqCgXFWG+BwJ4BoODGOtkG8gUUECmOHwYkTCzZ6Pjux5UFZ5eLn0wYwZkkTaVSbseNm1CyvPJJ8NBFA9eL35vt0MWcSH+dJxKqoo0nT/8ASlFd9yhHwnITR1CIRhZicgCVYXD6/77QVg88AA83lqEQjimEFjT2XAGtLejcQrL3a9/HU4XpzO19OVkZFEBRw/8fuwnxcXJ1/ccDyguhqHLmQzJQgjoHV1dyISYNAnvRaMg5hQFBGJlJXSN9nboH2bzcH3zwAGs4dmzk48IHBhABKLdDoeJxQLdLZX9u6oK+t1zz0kiMZ1UPNatd+3CvSgKZHU2wI0M+/pkpHV9PQjLQ4dSS19ORR5ZrRhLlwsvrgN4NBJVbjd0Yq4RynUMuQ4id0hm4pBhMmGcqqqG6/tMCvp8GDttXcJYaJuT2GzGUYQFDEdrK57ZzJmSWC8rgx7j8QxvELRvH/SIqVPhgExWRjidkG2lpQjESYdA3LwZulFFBbIYxjBaL2OEw7Dh29shd08+ObtNpcYpCtzWEAqmcQFEBAF6/PEwxj78EK+9e+FNPfnk7DZHsVohfGfNggDq6ICyevAgosuKiiDYm5qgZOYyGiwUwobAUYB6YI/4vn1QLFasME77jkSQ6mwyEZ16qtzoKytBVA4OwtAUAsc9fBhk26RJuP9AAB4cqxXv65F5Hg82y+pqjFE4DIU/GgWxEAjgHKkQwHV12AA6OnAdDQ2p1a/s78errAz3wmnO3A25pCQ7XusjR0B2KwoM+cmTMz9mLDjFhMnEgQH8324vKG4F5A4+H5o1lZcTfeELxsppa6usZzp5snQ2mEyy2QoR5uo778CoXr4c9XYSnT8cxvznJllNTekphMEg0V13QRaefz487XpKuqpCKQ+HISMTORzcbhz3jTdAiH73uyPLJfj9MNKy1YE5EiF64gk8G5uN6FvfIjrrLFxzT4+MdMynBmIFjA58PsxHrpuWL1AURC6XlMBJx6Q8RygmgsUCneLIEegFdXVwZvT2ot4gk4L19bKOYkkJfldeDj2kuxv6X6JIOobbDXlTVIQU5niOlUSorUWmyYYNeH3mM+lF1QiB8eMmL9Eo9N5sgMlaJnvffRfzrLkZxGuuiD0mez0ezO1wOG56c95BUSDX+/vxvMrKcI/RKPR3bcqyouinB7NDPVFzEqt1/DYnyTd0d4PImjRpePkAISBTXC5JJLa3o8FcfT3qGCe7tg8cwG9nzcIacDrx22TnvqoiK+TppxEw87WvjVqn4pygq0uWm2huRjDS0SIHCkgOCUWVEKJJCPFzIcQOIYRn6PWGEOLcBL+bTkRcAWKdEEIdem3S+e7XhBD7hRBBIcQWIcSIkutCiCohxM+EEIeHvrdfCHGnEMIa871NBue4euj802PeP1cIsVkIERBCtAohviOEuEbvu0OoFUL8TggxIIRwCyGeEELUxBuLfILVisi2665Dl6iPPyb6zW9gtHHdu2yiqAjC9FOfIrr8chTanjED6bWvvgrD7eWXQWgGg9k9t6JAWRUCniAjpWv/fgjLgwdhVGsj/2Lx9ttQNFauHB51YzZjs+COp0RQVNxuEH5MJs6Zg/8XFcF4jcRUKOjogKLc1IT6HaoKBXJwEJ8FgyBD04kgtdtlCnJXF46nV2NFC1XFd7mYemOjVIbKy2XtJ68X16itCZMKFIXo5Zfb6LrrbqYbb1xIF19cRnPmlNGqVatow4YNcX/b2tpKRUNM9COPPEJCCBJC/LM2kBb33XcfNTc3k81mpVNOWUZbt75KJSXYJJ1OPLvOzgEqyKICsglFgVLr9UIOGqXzcjkDRYFhHptiyMXPFYXoo48gOxcsQGRNPHBXyKIiyBOPB7IgHQKxv5/o1luxZ9x0EzztegSiokgCsaoqMYG4YwfRNddAxt58M1KjYxVwtxvGgtUKOZqpQrtrF+5h/XrI9P/7P+xRO3e20Ze+dDOtXr2Q5s4to4aG3Mkiq9VKy5Yto1dffXXEd3p7C7JovMLrlRGq+UQgEsmUwIULQeKVl0P/GxjQJ0b0UFKCde31yuZvJ544PBpPCMiw0lLIArdbZqnU1SWfAuzzQS8igvOW5afJhFdstFgyaGiAs8DpJHrxxZG6WLIQAsb1lCm4t5aW5McwGfh8RB980EYPPHAzfe1rC+m448qovDz38uj991+lykoQZk4n5ke+22leL6LEtmyB/ut0Qjfv7MRfbtDFc4FrGbIDj18cdVxTgz20oQHPv6kJ833yZKyr2lrpgCopkccqIDUMDMBGrK7WJ+m5QVwkAnvu0Udhr3zxi8lnSu3bBwJx8mToVPX1kCn9/cmt52iU6He/Q/Tj8ccTfec7+UsgBgLIbvngA4zfqlUYk3wiEAvc1gikJTOTiUQ8kYjOJKI/E1ErEVUR0ZVE9LwQ4ixVVTca/K6XUKzxESJ6g4h+NfR+T8z3vkxEZUOfh4joViL6qxCiSVVVJxHR0GBuJKLlRPRrItpMRKcS0feH3js/ifsYASHE6UT0LBG1EdEdhKK6XyIiV5yfPU9EB4jo34loLhF9bei6r0rnGsYr7Hai00+HsPvHPyAwtm0jOukkRLXkIr3TbMZGO2WK7K7X1gaFsr0dytikSbKOYqb19rq7YThPnWoc7Xj4MK5j3z5sQueeaywod+/G9S5frp/+Y7Phmr1eGOkOB5SHnh5sMHPnSmOjuBgbFKcEm0z43iuvQOk44wxZmHnvXgjz+nqQkJmkD1ssiLLk9OZAAMSg3jGjUShagQAU/hodcVNUhM06FIJB5XbLQsfJziG/H4rdK6+8Tzt2vEyXXXYRzZgxnQYGBujRRx+l8847j/7+97/TGQb5n/X19fTII4/QunXraNWqVXTjjTcSEdHEmNDTBx98kDweD914441UXFxM9957L1144QXU1tZG1dXVNDhI9NRTQfrWt84gwrrPW1m0eXM6V1lArvD224j+Pv10RO9wIyottI4CXj/btukfr6UFsmL6dKznLVuMzx0Oy6LxvOY5zbC9PbX7OHwYdX48HqIbb4RCr3duRYFBpiiQefFrCMJ7/9RTMBJuvhnpStrjci3HUAiyKtMGKn4/0spffx3y9sorEaV/4ACew8aN79Mrr7xMZ5xxEU2ePJ3c7gF64QXIogce+Dt94hNSFrHTaPNmIr+/nu688xG67bZ1tHz5Kvrc5yCLamsn0ubNkOVERD/96YPk93vos5+9kSyWYnrssXvp/PMvoOefb6OKimpSFKIPPgjSd7+b/7LoppvSucrxDY5cMpvzr66u1ytr3mnTiMNhvDhdM9lIt/5+OGCrq0Ekrl8/8jvctToaBSlmtycuxcJgPSQahYH/4osjv6MokBEmU+oRei4X5NovfwldMROSx+WCDmS3Q65kEi3IUdxeL1Fv7/u0e/fLNGXKRbRw4XRS1QHaufNRWrPmPDr//L/TlClSHrGMuekmonC4nk4//RF65ZV1NGnSKlqwAPKopGQi3XQTxpWI6LvffZDCYQ/Nm3cjNTQU07Zt99I551xAV13VRkVF1RQIEHk8QaI8t9O+/GXM+ylToPfW1WENcKfy0lKZohybYpxPBMrRBL8fcoWjpo3WVHExZMz69XiOX/xicnoC11/v6sK8YJKyqAg2D2eYxcvc8vmIHnwQTsnzzjPuAD3eoarQCXfuxL8XLIAuNtb3oqrYQ/x+2OqbN0P/TIACtzUcacnMZMz4F1RVfSrmAn9GuNl/IQzACKiq6hVCPEYY6AOqqj5qcPyJRDRfVVXP0LFfHTr2WiJ6YOg71xHRcUT0bVVVfzL03gNCiC4iulUI8RlVVZ9L4l5i8SMi8hDRKaqqHhk6/6+JqCXOb95UVfVW/o/A6vmaEOKrqqrGe0B5icpKEGcnnICuxG+8gQiXU06BUZUrr5kQ8N41NKALcl+fJBTffhuvCRMkoZiqR8fhgEJXX2+8kfT1QWB2dcGwPvts443iyBGQAFOnxi+QW16Oc7e34/odDrw/d+7I67BaZedjnw9RRWVluA42ugMBbGZcl8btzk4NQm16c2vryOjGUAifRSJQ3BNFWhQX48WCXtu8JJ7y1d2NcHlVJbr++jV0112XDPv8lltuoeXLl9M999xjSCKWlpbS5ZdfTuvWraOZM2fSlVdeqfu9np4e2rVrF5UN3cxpp51Gy5cvp8ce+wMtXXoTPf000Vtv/Zocjo+IiL5TkEUFZAMHDkB2LFwIpUwPPp+MDC4pQQSDUb2r9nbI6YYGRHjHW1/RKGSIokDehUKQYenUbtu+nehXv4L8+dd/NS75EI1i/auqrDVlBLcbTUy2boVD69prRzqPuJt0JILP0qlfpsW2bYgKHRzE+H32s7incFhGYp1++hq65JLhsmjt2lto7drl9Mgj9wwjEbUoKSmlT3/6crrttnU0ZcpMOu88fVnkcPTQ00/vIrsdsujEE0+jtWuX04YNf6Bly26iV18levfdgiwaj2ACUa+Q/3gHpy3bbN/MJqoAACAASURBVCN1Ku4eGwrJUiuJjMdIBLpRURF0ClXV/w2Xb+nvl3qB0Xe1iEYRJcZ6iFHJFG00YqpEYkUFjt3ZCRk8ZUr6RjOPKae6Vlend6xwGGPFqcQTJ66h4467hBQFe0U0SjR//i30zDPLacuWe4aRiFoUFZXS7NmX0yuvrKOKipk0Z46+PPL5emjt2l1UVAR51Nh4Gj355HJqafkDzZlzE0WjRK2tvybKcztt/nzsSZySPDiI97lZCpfm0RKJvM61rwKhODoIh5EtJwTs0XjydmCA6Mkn8Z2LL04uOlxVERzS0wM7M7amKXdpdrtl/fRY9PYS/exn+HvNNfEz2cYzPB7oYQ4HZPmSJZk7a9MFO77ZPna7Yafv3QvdMskaugVuazjSkpkJVRxVVX2ag9qIqJTQOnsTEV2a6PdJ4Hc8yEPn2yKEcBFRs+Y7nyUiLxHdH/Pbewjs7meJKKWBFkI0EB7egzzIQ+fvE0L8nsDC6uGBmP+/RkRfJ6ImItqeyjXkE+rriS68EErUG2+A0PrwQ9QHzGX9FUZdHV7HH4/NoK0Nr/ffx6u6GlE3TU36EXFa+HxQbMvLRzYvYbjd8GgEAkhBmTfP2MD3+xGxUl6eeIPgDUdRIPSqq0Eg6hm+QkCZ7+7GeNvtIBCZJOzvx1iUlsIb1NsrFUsuZp4J7HYct7MT1+Dz4biBAN4zmUA4pEJaWq3DyURt8xItIa0o2LxbW7EhLF9OZNfs0IFAgLxeL6mqSqtXr6Ynnngis5sloquuuuqfBCIR0dKly6isrIJ+97v99N573GnyGSotLSWv15vXsmj58lSusIBcoa8PnUBPOIHohhv0leBgEB7sBQsk8TZrlv76bmtD99Ply1Hrh9ObjdKJ3W5ZF7ayErI8HQLxL38hevhhXONddw3vFqoFp74pSuKGJ9u2oZGJ04kuzJ/73Mh7jkTwuari+jOpu+p0okkLl4v46U9ld2y3G7Jq2jTsL8XF+rLo05+GLNKuLxYp/B6nwtXUjFyHbLRee+1VtGKFlEXLly+jG26ooH/8Yz8NDMABVVJydMiiB2J/mcfg9ZQNMnu0EQ4j7ZgIGSdGa5PTmrkRmZEjWVXR+bSzE0S8omB9Tpgwch1Ho4gs3r8fOsekSZJ4NDo+1592OlFqIJnmT7z2WC6mgo8/hvN6zhykTGeiXx06BP2ytjZ1Z3xnJ/YDsxk1y6HDSnnk9wfo4EEveTwqCbGannnmiWFrjDs383uRCKIsTz555FrctAkR2bfcchXddZeWdVlGlZUVtGDBfvqP/8CecdllzxDluZ323e9K8rC3F3+9XuzBXIrIbIbOyo1WLJaRkfRC6BOMse+NdQRXPkNRUOIkGAShFc8O8XiIHnkEsvn66yGbuT6i0TNQFKwzbtRi5BStqsLccDjknGDs309033041je/CdmRb1AUyKq9ezF/ly0bWUYnl2BHt5Y05Lqkfj/2okOH8Dzr6pClN3t24uMWuK0RSEtmJiQRhRDFRPQ9Ivri0MG0yEZljzad95xEpKWCphPRQVVVh1XlU1W1SwgxQETp9DybPvR3r85neu8xYq/XOfT3mKj/09iITlYHDqBg/3PPQSlctSr5+jWZoqoKr6VLITg4QnHzZrzKyyWhGJsSE4lACSsuNu44GAiAwCKC8KysRJqhHhQFimwkgsYF8YziSARRQtEolMZwGBtTPGPD5yN67TUo5KtXgzDkVG+vF5tgXZ2M3CwuBkEaDuNZZRoJYTZjw+jvx2Z65Aje4/qH6RyfyVGOtAwGZfSDzSa7Lw8OwvM3dy7GKxQK0Q9/+ENav349tbW1xRwzc22sSTOB9+0j+tOfiIiqye120OWXE512GtGSJa00Y8YM2r59e0EWFZARQiGi3/8e62ntWv21FI1CeVNV+XlTk77i29WFBiBVVTiezYbfRSIjGwtw+i87BIig4KZau01R0CX5T3+CA+V73zOWZ0z4EcUnEBUF4/LQQ5DRv/ylvvIdDEJGmEw4Xrqyjoud/+pXGI9169DYxmLBtTgceJ9TEEdbFh0+DKJZiGpyOh108cWIkHzyyYIsGi9QVRCI4TD26GxkA4wmVBUkWSgEh0Y8PcZmw3obGMDaMOpI/s47MO7OOAPRe16v7CaszWrgxnXBIMi5vj7oBWYz5AU3otMiGkWZHYcDWTHJdo83m6U8TFVeLFqE8fnwQ4xPJhFFnBbd0gJnyeLFiaPXolGQGp2dGJPFi6XTJJE84gjMdKGVR+wIqqiopoEBB02ciOtoa2slOgrsNLNZNiYMheQ+yRGe4bBs2KOq+Ov3y2yboiL85b03FMJv9WpyalOijSIaC1GN+mhpQdTZ/PnxM9H8fhCIHg/29kmT8FxcLsgkPZ1HUSAPHQ44bLWNWmIhBIj8nh7IrokTsdbee4/ot7/FXLrlluRl1HiC04noQ7cb9t7ChdlpkGkEVcVaY9IwEMD6YXCDSyZtOztZFsEJMnNm8nK9wG2NQFoyM5nhvpeQ2/0LInqTiBxEFCWia4jo8iR+nwg6De6JCIxwOlANfpstUZzt681LzJwJgmfXLihzTz8NxWjVKpBZo4WyMgi2hQshdNrbQSru2IH0OrtdpjxPnChTAo1q20QiuCdVRfSd3w+D0khwfvghyLVVq+LXxFAUXJvLJRsJTJgg6wzpKe1+P6KKVBWdArnBx5EjULi5KLMW3JSlsxPjMGVKdoR+bS023EOHoCBNnpw5QSkEno/NJjeMtjYQeFYrok61G++tt95KDz74IH3lK1+hlStXUk1NDZnNZvrtb39Ljz32WGYXQ0Rms/mfBvuWLRhHm41o6VKVzjknrUMWZFEBulBVEG+c4qInO1QVayEYhJLk9cI5olc/sLcXTajsdkQgctAuR0RoO0r+f/bePEyussofP7eqq7p637uTdCfd2feEQMIuCSAQNkVR0EFAxQ0ZHZ1xnVFx4+vo4z6jKIq4IPDTcZcgmLAlECBADCRk7z29VnXXvtyqe+/vjw/H91bVvVW3lu50J3Wep55Ouqvu8tZ9P+ecz9mIcKxQCHhYVgaSLtces+Ew0Ve+ArLg7W9HP6lMWUN6AtEMOyYnib76VUwavfRSok99yrhkJhyGYetwCGIvHxkaIvre97Df16zBQBiOssdiMFQ5a1J/HdOBRW43JsO+8ALWy+UiWrdOo8suy+uQJSyaItETiNXVU+tkTZV0d+NZ53LObFJeLqaTTkzg33qyo7sbfZrXrBEVHFVV2FN+PzCM91NPD46zeDFsx7IyBEQqKrC2qf3GNA34MDqKQS3t7dbvk7OyeWhdrjbMmWfCBnv1VWGj5Cs8hO7QITjq69aZXw+XEoZCWKfUPmRmeHTPPffRb3/7AA0OiuzOfMT++pcbDIqWDpJEVFGh5fu8z3g8kiR8x+XleFa4ekaWxVRmfo74FQyKz3OFTVUVnuXycuhhfq/+33x8xeCq+ZnNlNGYT2btbJa+PvhBXV2Zh7/JMoaoeDzoa8xkIPdlD4fhd+iDPoqC/e31IoHBLNlEL3Y7fCSeRv/cc8jgXbaM6PbbZ99grUQCuNTTg2f3nHPgrxZbuFc+k4axmBhSU1aGc9fV4ScHlcbGksnDc84xt4uzSInbSpa8rteKCn0nEf1S07Q7ko4qSbdZ+GyxZpD1ENGFkiS59Izt62mb9a//nWWSktNFWRal/J9ZV6PE11mYdDz9IkkwEJcvRzT1uefgyC5dijLnbGXFxZaKClzL8uUAp4EBKJujR0EMRqMAHbPBMBwRj0bhlPb2ItpspkR6evD+lSuzZ2EODsLRj8VECXNZGSJXPh8UkN4IiMVAIEYiIBBbWvC+gQF8bu5c834UNTW4nsFB3H97e2G9K1QVhGo0CqcgkRADGObOLTxSarPhuzt2TAywWbMGykPfF+nBBx+kW265hX7wg+TM73vvvTfrOaxkB+3eDUNdURDVuuQSZNrqldPChQtp165dVMKikhQiu3fDUL38cjiFRtLXB3KipQUGk1HQgAh/44zGm25KJwH0/cAkCfuWhwWUl8PQzbX0cmyM6LOfBUZ+/OMoVzQT7iVIlJlA/Mc/iO68E9f2yU/imEbb1u8HLpaXAyPycZ4SCQS+7r8f1/PRj2KCNR/L78errAzGc6rzPdVY9NJLKDtUFGRaXXwx0R/+kHwdJSw6+aJpeE4SidlLII6PYx+3tyM4aFWczmQikaehe71Ef/87AoAXXZT8Gc7u8njwebcbhGF7uwg+NzeDjJmcxO84K7GmBuu9Zw+CHxs2wHnMVfSBldQMbSty7rm4h5dfxn5cty73a2CZMwf4/NprwL/169Ox5sQJ2K8OB7JEjezqbHiUSNA/icRUsYJHigLMj0bxjBtlny5cuJAOHz7cdSriEZN1FRWwzWUZek2S8Bxzn02bTRCEPCyIdR9X4FRWilcqXnBmYyo5ycfkydBG04Cz9WgsKzs1Jj+PjcE2amszLzEmwjo98AAIpxtvBPGuF5cL7wmHxQCsRAJ2GWc45pI9WF4OHfDTnyKLccsWoptvnn19cUdH4c9Ho0gUWrGiOPeQSCRnGEYiIjvXZsP30diInxUV4pzBIHSU14vvPhCAj7hhA/zcAtqGlLitIoiVR0OhFCZSkqTlRHRdtg9qmqZIkhQlooZs780ifyGirUR0OxF9R/f7T77+88+63x0loqslSZqradrw69dbR2CX9dc2LEnSXiJ6pyRJd+qaTzZTcVjo00bsdmzo1athWO3ZAzJo9Wo4QPn02CpUnE4454sXA7wOH8a1+f2IYr/0EqJSXV1iOjNP3mxuhhHc0YFIt5FMToI0bW3N3l9udBSGYCgEo3H5cmEo1tfDAA8EREp+PI7zBwJEl10GEiEchuFNhOvLRgq6XIJIHBjAeTNlSppJIiEmwra2imNMTADQe3rgABTS/ykUQvmy349nZvFiUT7CjazLyxEN11Ksp8OHD9Mf//jHrOew2+3kcrloktOhXhefD31/iPD933AD+istWmS8xtdeey39DeMfS1hUkryktxcZZqtWpTvZLCMjcLBbWmBElZcbZ9wEAiAQFQXTBhtMNC07zZEI9u7AAAzefKa5Hz6M3lHRKNHXvw7H1kzicWAllxwbOeyqinKj++7DPX7rW2ICol40DYakLGNv5hvdP3KE6DvfwX6/4AJMKeUejoqC9eEJ2GaDD6YCiyIRkMt8jf/yL3BE2tuNv6MSFp1c0ROINTV5ZUKcdAmHUbVRW5tfvy6nE44fE4nV1UQPP4x9fuWV6ftdkoBpw8N4xicm8P/UIGxHB4K/k5OCVCwrQ3ZMXx+CjEYYYVVsNnx/HFjJlVx5wxuAbc8/jzVYsSL/a2ltxfkPHBBEotOJ5+q116ALmppQvmz2jGXDo44OrDlPsdZ/L2Z4RCTIKp8PuNvYaI67r+NRNZ3CeMQBb5cL6yHLWE9+jvg9TIpwO6V4HHstHMYzzba83Y7jcQ/VykprA5kyZTTy0Amj8mmbLXNG40wfCuPzwf6or8+MV4qCISo9PeilbLY/q6rw3mAQa79/P/69alXmDEcjCQbREmX/flRR3Hjj7CIQYzFc+9AQ9NnGjeb2ZDZR1fSy5Hhc/J0Hd/FeSiXTuY2Mx4PP8xR6lwvfe1dXUbI7S9xWEcTKI/5HInqPJEkhwmSZRYQbPkgYQZ1N9hDRGyVJ+gQRDRLRmKZpj+d4nfcSpth8S5KkFUT0DyJ6A4FJ/mvK9JqfENF/ENF2SZJ+TOg4/P7Xz50ah/sUEf2NiHZLksRjut9PYH8bqHhs82khTieitOvXw7jatw8R1DPOQMrxyeoTxP1vNm+GQzYyIgaz9PZCsfKkwTPOQBmO3U60dauxAynL6IPodMKYzGSATk6iua7fj6jZsmXJioXLekIh0U9lxw6A5yWXgPzz+UAoMJHApQ/Zsh4cDhjnPBhFlnNLSY/FRPl3ajZjYyMUwIkTWMeWFvMhNZlkaAiRP7sdSouvz+EQxlAoBCX0pjddR7/4xX1UVVVFGzZsoO7ubrr77rtp5cqVtHfv3qzn2rRpE23fvp2++c1vUmtrBw0OtpLPdwkdfb1LxHnnweAwavzOctttt9G9995LL7/8cgmLSpKz+P1EDz6I/XP99cbP2eQkyP/GRuy9RAK4kYoz4TAIxHAYpTqZjF5JwrHGxtBWgbOhc82c2rmT6K67YMR/61uZM4F40qvdbj6AYWKC6EtfQlDniiuIPvEJ44CEouBYiYQwPnOVaJTol79EGXlDA9EXvgASkSVT+XKqXHfddXTffcXBojlzOmh0tJUmJy/5Zy/eiy4ietvbYMyb6ZcSFp08UVXsZVWdvQSioiDjxGYDQZVvlpLDAayamMAgFbcbetQseMzEyZ49wBGjwXxlZQju9vSIrOPnnoMds2qVGHhUiDBZoig4fy4ZzZKE7OB4HJjodKZnOuUiPO301VcRUF28GIRpJAKydOHCzNeXDY+cTkEkynJ6tqMejzo6Oqi1tZUuvPCSf7agcDiyV53cdtttdMcdd7xMp4GfZlTqzCSJ0yn0bSSC39ls2A/NzVhDLo1mYnFsTBybp5MzsVhRkb43uVdiJv3NPRmNMho5A48HDaXeW7aMxpMxFCYSAanucgEDzM7PA50OHSK6+mr4o2YiSSCj3G4Q+HY7AhS5+jIjI5jAPDmJqob584GHc+bMbFKWpb9fVD6sWAH8yUUf8POsL0tm4bZQDQ0iIcTs2JylPjmJawmHxTCjefNgb+aTDGMiJW6rCGKFRPwYEUWI6K0ExvMQEX2QiFaStYW+nTD15UuEm36KiHJaaE3TYpIkXUpEX9FdxyARffX1l/69xyRJuoGI7iKibxJRPxF9mzAB576U926XJOnNr7/3y0Q0RET/Q0RxwnSbpGaXJbEmFRXIoDjzTGRWvPwyjKNNm/C7fPuy5COKAoecQchuByHW3g7SaHwcZOfzzwPY9u0DiL3lLcbH0zT0gAwGUYqYyZkNBgHMHg8MweXLjRVKTY1wuF95BQrpoougiLjcuapKRKzR2B8/s62lzYZ7HRuDUpNlrEM2BREKweDkCcxGxkpFBYzb4WEcPxwWa5xNFAVrMzAA5bJhQzrJzJPOuG/GF7/4XXI4KuhPf/o93XfffbRixQr68Y9/TAcPHrTkuN999910++0fps9//k6KRsPU3r6ZPvnJS6i9HaWC8+dnL18oLy+nHTt2UENDww+ohEUlyUEUBQSiLBPddptxUCUUguNcXY3X0JBxpm8shmN5vRiikq0MUVFE8ISnMOdCfGgahrbccw+MzLvuyhyl5qEnmQjEF18k+vKXcc+f/WxyObFeuBxa03CsfAibl15C78PRUTgW731vciSby5d5Imw2XP3ud79LFRUV9Pvf549FH/6wwKKODmBRZyfKrNva8D1lkhIWnRxJJRCn054pphw8CJ19xhmFB3jLyuCIdnfDzsvUF1uW8b76ejFwxWgwQnU19qLbDee0uxvvX726sGvVi90uyJZciRGbDcP0HnmE6Ikn8BwUMrW0oQGEx9//Dnt0xQqspZVsICt4xLav3Q5MHR0VAVPGozvvvJPC4TBdcMFmeuCBS/7Zo6+mJrtdVw4j8bTz05hUU1VR6qxpWK/qavw7HheZWTYbdFh1tfhumXDUE4s+H/7GhKWeWOSkh0wiSenTgo3EKJtR36cx01CYTCXUxSyfTiSQJUcEks8sw0/TiLZtgx/3xjdiyryVYx89ivtcvz53AvHQIaK778Y6fPKTCCYkEqKaJFNSwsmWUAg+p9uN+163LnuGXyKRTBhGo8llyRUVOAZnGVrJxgwGcQ2BANaK+wwnErCDFi7ML0kli5S4rSKIlJoCXxIiSZK+T0TvI6IaTdPMmk3mI6flYns8mOR8/DiU4LnnWptGVwwZHARQmk1BDgahnKqqAFj33w/Q4ga8zc3I5uvqwu9ffRUKatMmkIJmEosh0j4+DmOQJwybSSKB/nuDgyhhXroURl44DGM7FUB5zL3LZX0dJydxTJcL95dpuMH4ON5ndYAKH7usDJ/JNKQhGES0PRBAxGvZMmtKlqNdqiqitVbvXVEwoOCxx2CczZ8P4rKlBQ6P0QTILDItZkEJi04d+etfEVR5xzuAf6kSi8Gxt9thNHV3wxhLzXDhXj+Dgyi/z1bWp6p4b08PnvNly0Qjdu7llEkSCaLvfhdlilu2EH3mM5kzIKJR7DGzoSeKQvSznyErsLMTw1kWLjQ/lt+PY9TX514e5PNhuvOOHcC8j30see315ctVVTjHVBv8mgbD/ZFHgLPz5iGjff58QR6XsGhmiqLgedQ0EF+zqVxNLwMDKCdevDi/voKpcuIEAnGdnbDvVFUMedMLDy2IRrEPudKgrc2YyNQ0EHT79iEAzYHYpqbiERTch44ov+9TloGNk5Mo4bYyiMFIEgmUNPOQmyVLYGfmOvDKikxM4FVRkZwtFY3i99zjM4+hVdNGl0wRHhWMRUwa8qAU7pvodIpeifG46Petn+qsx33OFmRiMRIRzymTNXpicSqDGVwRYZTRqP9/qhRjKIymATN8PpBcmYJr27cjM/jCC0EiZtOjkQiwJZEAFpaXww6wWqGxaxfRr36FPfSRj4i2KHxstzuZLJ4poqrAmcOHsf4rV8JHTl0vLkvWk4acvcrkNpOFFRW5BXhVVZT2x2J4FsrLETDmFj5dXQWRsDOUuj15MhWYeVqTiJIk2YnIpmlaXPe7NgIj/bymaVuLfMrTd7EJGWs7d8KhravD0JIVK6bOafN44KS1tRmDeCwmynmWLEGmjcuFXlThsCh3Hh/H+1UV93DWWciaMZNEApHk4WGk3a9Ykd0Q40ELS5eC3AoEYJy2tBhH6TUNoK5pAG+raxgMIrvJZoNTrTfcNU00sK2uFk2/rUo0CmeCy6aNIkeDgzCU7XZE/XLtO6JpgkzUNCgtntxl9v59++Cwu924Zz5vTQ0i83kaX0V9aktYdGrLvn1Ev/kNymeNsENRENGWZTjK/f3AkdSm1tzr59gxZEtny8rRNByrpwcGLh9PUfA3JhHN8CMQIPriF5FNfvPNmCSdCWv0BKJRP8HxcZQv/+MfyAj8+MfNs6BCIeBVPhOYmXz40Y9wjBtvRMam3shlh5kzHKfCWU+VI0dAOAwOAiPf8AYxWTAfkvR1KWHRNMipQiB6vdjPXEJbqIRCRA89hGf4xhuhi/VtAXjPaRowbmICdlFDA343PIy1nTs3fU0HBmAz8oCh+fPheHIJdbFsR85GZNIjV4lGif7yF6zFNdckkwlWxO+HjohGYQM2NeH/3GKnkMF4ZhIIoIKkrAy2XjCI6+e1zXNIUNGt+WnGo6JiUWqps8PB/b3xO+6ryISiwyFIRaNnmzMDmVhkH4CPnUosTucgFd5DmQbD5DMU5tgx+HKrVmVux7RrF7J4N27EHsyGDeEw9piqAgdrarAn4vHs+K5paIvyt7/huj70IeMkFZ8Pe7uxcWr2cD7i88H+8vuBuWvWwAZj30pPGurLkp1OQRa6XHjlg7+xmChZVlXxvE5OwkdzOEBozp1b8PN72pKI04mZpzuJOIeIniei+4mol4jmE+rGG4loi6Zpu4t8ytN3sXXS0wPAHx8HmXPhheaZKPlKKAQDtLbWuNSPI+KxGCLif/87nO13vjPdAAyFkCH0u98BXFevBgnKGYr6SImqgkAcGMD7MvXuYHnpJVzL2rUwkvv6cN3z52d2bLkEwm7PrRwpFoMTqyhYm+pqQZCGQlB4uRrB+msaHoaCqqoSmYyKgozPEydgIK9fX1gJFZOobERxRIyVjqbBYd+2TTjs556Le+Pp1gX21ii2417ColNURkZAZrW3o4w2lfDWNJTTBALIEuQeqIsXJ/cV0zRk+7z2GojIM8/Mfu6+PmSAt7QAi/jcPFSASJCIqTg1NIQy46Eh9Cq84orM54pEsO+ZEEs93vPPo3w5FkPZj9nxuJQlEhENuHMxVkdH0Z/oxRdBmn7sY+n6xefDORwO4NFUE0IDAyAPjx4FebJlCzJMuVdWgQ5GCYumWJhAJMLzOBv6XBlJLIaM/LIyZLkV+twrCjDJ7UZWNE8O5sb4igIsKC+H3Tc0hOden60XjwMjmczivT48TPTMM7BF1qzB/9vasF+8Xuj7IvbH+icJYrPl9/2GQkR//jOOcc011rOP+vuREVReDjKD7ykchrOvqrCXpmJAYTQK/cADBdvacsfbFJkKEnE68WhKsEhVQRbGYqLUWU8W6glF1st6QtGMTNG09DJoWRZ/Z9KHScV8iZ9iilEGYyrhyGswNAT7vb0d/pBZVuM//gFCb/169GPNRj4Fg4KkX79e6F9NE2XkdXXmPfHvvReBmM2b4TNmwovxcTGY8mT2zuVAdU8PsGbFCtyjnjRkOoj71upJw0J1XiAA8pBLluvqRD/KkRGR2NLRUTT9ejqTiNOGmac7iVhFRPcQGlm2EpFMRC8Q0Rc1Tds1Bac8fRc7RTQNhtMzzwC0OzpAJmbr7WVF4nFkEJaVgehLVSgcEfd6kcbd00P01FNolG3UhFdRiB59FOB3ySX4XG8vFByXFHd2imnIvb047rp12RX2q6+CRFyxAiTiyAjWo63NWiSGI51scFiVRALXGo3C2I1EsG6trdl7cVkRrxf3YrfDKD18GIp76VJkfRbLkGEiNRbDMV0uRNe3bUMEs7ERir6pCffc0JC9QbhFKbbjXsKiU1CiUaIf/AB76447jB3Bvj4Yml1d2Mc9PSD9UqcxP/ww2gBceimycrJJfz/2QGsrCEQjHNRPldQTifv3E33uc/j7V76SuTk5EZyXQADGaarxnUgQ/fSnaBWxeDGIxNRprCyqKiaBVlfnRq6pKtEf/0j085/j/O95D9Gb3pR834oCQ5YnPE91+fLYGLKgX3kF97NlC3QDBz7q6kpYRDMcixIJEIiSNLsJRFWFfYv+bQAAIABJREFU4xsMgkAsRmbM00/DGd+6Fbo99XyTk6If3IkT0L1GA0jCYWBgdTV09fg4MhBra6G/HQ7gmd+Pz6sq8KampihTOpOuWVHyJxL9fmQkEgF7MhF/8TiqMsbGgPdr1qRXRUQiIEgSieylnLlKIgGiNxDA91RdDZ1TIFk5FSTidOLRlGKRWamzfthEIpE8+ZlIlHpmIhRZeCCFnljUl0G7XMnZijNxKJSqwn84cAA2PPcZTCUdieDLPfYYbIprr8X9mPVotNuxHjzMcf369EQNxnuHI30v+HxE//u/sNne/nZrJdN8L5IEv246s0NZRkYQVPX5YA+2t4vrYL9JTxoWqzReUUTJsizjO2hqAq7ztHhNg98/f37Rn8XTmUScNsw8rUnEkyClxU4RzlDbvRvgvngxSv7yzYTTNAC8LIsysVTp7gao8gSqhx6CAnrTm4yPuXs3orVbtoheiUQwBpg0HByEw+52o/zksssy9x0kgvJ77jkoyLVrYdC5XABZrxf/thJpl2VcS3l5bpkFqgrC4vhxKMt164qbcs9ZDwcP4vtkMm8qRFXxPWzbhvPV1+M7WLhQZEe1txfV4ZjtCqqERVMsmgbi7MgRove/HyUaqTI6iiy1OXNgYB46hGc1tU/o9u3AigsvBA5lEyYQOYvHzHBVVVFKRYSfjz9O9N//jWv62teSMc9IuOzYKGtwbIzozjthtL/pTUT/9m/mZXJscKoqjpNLpnJ3N9F3voO1Pvts9CdKLX2azvJlnw+Bpz17YJBv3ow2GPE4vot8J0ybSAmLpkjicZAs/J2dDAewWHLkCLBmzZrsA8SsyOHDcN7POANl+UbCevnAAejfDRvMnW6vF/tGkhBYrawE1jFeKAoyeSUJgUjOVq6vL+peIkXBddvt+X3fExPof+t0AvOMcMbnQ2AhGgXWmwVViGBH7d0LO2/t2uL0VwsEsN5EWL+qKjj1kQiOX4CdVsIii6InC4lEIoCewFEU8R4mzcrKRIaiVaJbltP7K7LrX1aWXgZ9sgMlfj/2R02N+eR4TUNVxoMPwkZ529uADalZjXqKIxCAjVVejuNWVxuXUSsK1oinYxPBx/uf/4Gt84EPZA+s6kWWYQuVl+fewilX0bd88vlgew0O4rtdvhx2Ed+Xy2VtSE+uEo2COPR6RclyUxO+z6Eh6KFEAnqos7PwwV4mMtuxaFZIiUScXikttonE44iS79kDwF21Cj0TjfoBZpLhYZHZaEQYDQ+DOJs3D0btgw8CcN/1LmND9OhRlOGtXWuuNDQN0eJnn4Vir6zEMe12XEdnZ/qE4+PHEWnv6MCxg0FcL5dGh0JQeHV11gxkHrSSSx+UQEBkPjqdMB71EapChKepDQ7ifjo6cHyrg1pyEa9XOOxlZShbXrkSv3c4cE6ebF1Eme0KqoRFUyxPPAHy79pr8UymitcLoq+hAYGE48dh4C9fnowVu3YRPfkksoeylRQTJROIa9dai5SzGfDLXxL94hfAuq98JTv+ch8tlys9S+bZZ4m++lVg+6c/jai9mciyKCOqr7ceCY/FMGTmt78Ffn74wyDs9PesaXBKpqN8ORwGCbtzJ857wQUgWDh7oqJiSsioEhZNgZxKBCJn9SxYkJ4xmI+43dhzbW1E111nvjbcd0yWQfxlI++PHQPWtbQQXX55uu0TDiNgwMPvJibwPTU2FjeLhcmHXCc2s4yPI3O8uhqlzewkc5D76FH8zmp2oSzDxoxEQALnS/LJMtZMlrG2DQ0CC7kntt+P625ry+veS1iUo3CpM5cy22wi61C//kaEor4sOhedxu2A9MSivv8dtwdiUjGXvuuFSjQK0rysDAEKM1ugpwdB2rY2oltvNQ9O8lCY8XEQk2Vl8A/s9sxDYXiIY10dAiH334/1uP12JCdYGQqjl2AQQdLa2uJmFMuyKEnmqixNQ4C6uxvP0/LlaK9VVTV1eozb0Hg8uFdJEkNBXS7oIE7waWzEGk5xn8jZjkWzQkok4vRKabGzSDSK7LW9e/H/9euJzjnHGpHGJbRNTcbRnslJZKk1NgJUd+wA0XX99SD5UsXjATk1Zw5KnY2UhabBOD9wAJmPZ58tAJwHs4TDAO65c0V59e7duMa1awGqDQ2inxALG8hWnF7ujcKp6dkU28QEHIGKCpBswSDWzumEcV5IOrvfj+8vHIbDsngxCAIub543rzjKIxSCw75rl3DYL7oI55+YwHtaW2EQT0HZxmxXUCUsmkI5ehRk3Lp1KHtJ3Y/hMCLiFRXAovFxBDgWLEjGgT17gEFr1yKrJdu+7uuD4djUlDkDMVUiEaJvfhOYePnlRJ/6VHbMCQRwH0yMscTjmIj80EPY/1/5SuZsRh7GUlYGo9NqFsS+fZgaPTSEa37/+9NJTy7Z4/Josz5HhYosgzh8/HEY8Rs3IhO6rAxrZLfj3HkOK8gmJSwqssgydOKpQCAGg8CR2lr0US30+Y/FMIQukcCkeTNSUJbhtGsacJCJitpa48+EQuhN7fVCl3OlSKqMjcG+6ujAnvJ44Ow3Nxc3g6pQInFoCH3aGhsxRIoI9ub4OOySNWtyI37icWBeMAhCIJeMJu71xpPuGxvNvzcuP3S58mr9UsKiAkRPEuonN6d+B3rikYe22GzJk55zFc6+0xOL+km8TCYysTgVuiyRAFkuy8haNvP7BgdhX9XXo21JtqoCjwc+WkUFfMpUX8BoKEw8Dix6+mlkXM+bh+FyqTZGpqEw/DfGsYkJ4Fxzc37Z0/wd6fsYppaq8+Rlnw8YMVX9VPXXNDGBNY7HRaCWAxTj4/CDIxGs3cKFxSVRM8hsx6JZISUScXqltNgWJRBA+d7+/QCijRtRDmZGBEWjcKArK40JwVAIx6qogAHW3Y1I8caNKBE0Ot62bVCeV11lrDA1DaQkl+qcc47x0AS3WxCK/f1IwZ87F5mW7e0AVSOQ5/5ddru1SYSKguvONGiFCU6/H+fUNzIPh9GjgggGej5Kju/P6UQUUU+IxGI4fiwGJdrcnP90r6efRsYCO+xXXCF6jxAhOtnUBKUWiWBtuGyjSP0+ZruCKmHRFMnkJPog1tZial8qZskycEOSEBGPx0E61tUhEMHyyito1L98OQId2YiMvj5E55uagHFWiQ+vF/0P9+8nuu02TKeXpMyf9/uxryork7FreBjly6+9hgbn//qvmcl7zmR0OnH/Vq45GCT6yU/goM+dixLpDRvS3xeJ4LsggkFbzJJHFkVBpvpjj0FnrVlDdOWVcG58PmBSdTVeU5jJUcKiIoos47ssKyt4yMRJl0QCQVlVRYCz0ECapqFUt78f+1s/IEUvqooyunBYlA0ykRWNpg8TikSQuR2Pg0AMh2HDGE1j1TTgXCSCIIXNBjvJZgP2FYvwLXRiMxHW6bHHRJWJqqJ82ai1hRVJJKAX/H7oDitl6dzGIZHAmjc0WBs8MToqgr45PDezeLcQ0QzBIkWBbculztwT0ch21bRkQpHbk+gJxXwxLB4XfRU5042HntjtglDkn4Vk+GsabBCvF5hh1sppbIzoZz8DPtx2W3aCbGwM9lZ1NYIZVu1/VUWlGgdxP/IRfNbqUBi92GyCUGSbZO5c3IOebEw9P5clM2nIhDGRyBbV9zHs7UVwWpLQZ7+ra+r0VzQK39brxXdXVSX6HUoS7rOnB1hSVQU/NzVRZopltmPRrJASiTi9UlrsHGViAsNXjh4FUJ5zDiIresBVFIAnEUAzFYw5Ik4EJRKLITW9vp7oxhuNBw7s2IEIyhVXGAOfqqIn0GuvgYjbtCm7oTU+TvT738MArKwEuNbV4fNdXchSTO13E4sBjKuqrEWTeMqbUTRSURAdj0QA9kYlMbIs+lXMnWu9nDyRgNMwPCyiX0broaowTr1erEF7u3XDQ1FALP/978kOe0MDIpPhsGgOnnpuVsaqinUp1OCh2a+gSlg0BRKPE91zD3Drwx9O32OKAtyIxWDkOZ34PxHIQsauw4eJ/u//gAvveEfmbBBNEwGKpiYc1+qz3d9P9JnPwAn/9KdRCmyzifJmI2eTiYCqquSWETt3Et11Fz77mc8gezvTNfv9OE5qJmOmz+zaBYLW5wOxevPN6QEeJiuCQawvT2QvpnALi0cewdotWoRso/nzxX05HMD3YjUpzyAlLCqSxGJ4bk4FAlHTYPd4PMhALMYk4z17oIM3b4YtZSaHDuG8K1em209eL/YHk+uxGAKC4TCO29iI78Djwf4xum4OvDidyFiMx/F+3u/F+t4KJRI1Dff25z8jMHvbbYV/D4oCW2tyEjrDbBihqmKt+XlubMyt91gsBntR02CjWuwhO4t3DBHNICwiEv3tspU669+vn/TMhKLDIUjIQvYGX48+WzEaFX/ndk5MLLpc1kn9o0fhPyxfbk6OT0xgMrIkYS9l6w86MgJbqrYWRKDVPRyNIlD5yiuwYy6/HPdipac6D2dKJRf5FYuJqix9IgUP0onHxeftdjEpmQO2TBzq19XvR5ay14u1W7t2aoKmbLd5PAj+2mzJJctE8M16ekRf/64u+IQnQZfOdiyaFVIiEadXSoudp4yMwIHs74dCOP98GKhEgkAyatDKg1uiUZBOlZVwzsfG0AfRKK16715kF553HgzUVFFVNCk/dAhK4KyzsgP25CQcTlWFQc8G9NAQMohGR/G+2lpBKLKC8ftxfw0N1koIYjEoIJdLkA+yjHPF41AymZx2RcGaRiIA/2z9d3w+rFkkgij7okXZFQaXN0sSjOBMylnTcPxHHoERwQ57ZyeI2bExUS6ezajgiJ6mweApoIn0bFdQJSwqsmga0R/+gKEAN98MMi/178eOYT8vXYo92NcHbFi6VGTmdHejXHDuXGQFZgpOcFbOiRNwEpcts05avfwysgbLykD+rVol+iMaEYlMzsViyZOT43GiH/4QPdJWrMD0ZTPHlkg4t/G49QnMbjemIu7ejd5qH/84fqbKVJcvaxqckm3bsObz5gGLli8Hrvj9eF9qptUUSwmLiiDRKBwjnso5mwlEIuBCdzcwwag6I1fp7yf605/wrF9+ufn7+vpgPyxcaI4DPh/2i9MJHPL70TtUX6LLvbV4EECq+P04V0sLSK5IRAQni1kul+/EZlkG2efxwH4bGcF3YdYaJ9dr2r8fx166NL1dRDgMvaIoogdbPudMJGA3yjLW2cK6zvJdMzOwyEh4qjOT2kwMZnom9YSiqorPcZZiMTBOVdPLoDljTj/5lwe3GPkwg4PAqgULkqsx9OL3g0CUZaL3vjd7Of/QEPy0hgb4flb37sQEBqgMDcH+2rxZZGEyMVqoBAII/Goavo9wWJCI3ELBbsdapQ7M1JdOS5IIIHOP1QULit9+g+0qbrHldIqSZV7XcBjX4nbjnhYsgA17EluBzHYsmhVSIhGnV0qLXaD09yPjZXQUILZyJYykuXPTDRx2+CYm8L6GBpSe7d6NDEMmIfUyMED01FMwzM45J/3vigLF1N2NCMyaNdkNK78fBFgohNLb5mYYvXpwDYdxb319iMbxRKuuLoAxK5Hm5uygzE2TNQ3KOxqFQiSCUW8lQqVpuA6/X2RLGhkcvb0oFSgvR0lhLpMDZRnGQywm+limDkQ4dAhl58PDyDC86irhsPNn6+vx/VuNMvL68BpxWUCOym62K6gSFhVZ9uwh+uMf4SQaDRHp7wfh3dmJZ31iAr+bMwcvIjzTv/419tEtt2Q2WDUNODQ8DFzo6rJu4G7bRvTtb4Nc+NrXxPmJRI8du12U5kgSHHRZBsHCWSknThB94QvA2RtuQNPxTCRmIiEm9lnpEcjlk/fei8/ccgvRW95i7BBMdfkyT38/fhx4tXUrME9RQIrIMu6nrm7ap1uWsKhAYQLR6Zzy0vNpEY8HmbJz5qC1QaHi9yOwUVWFHq9me3x0FIGSOXOMA7B6mZxECXMwiP6hqaXRmgbijasijPT7iRPA0YUL8b0FAjheTY21rCGrkiuRODmJLKZ4HIGVjg5kCr3wAv5vNs0612t67TUEUhctgl7h/mRM0BZj4Ay3iQmHYWs1N2d8+yzfOScfi7IJlzpz6XKmUme9pBKKRMmEYjHJnkQiuQw6HBbntNmSsxXDYfhULS3GPhkRsPlnP8P+fve7MwcpieDHsZ7OpbVLby+ClbJM9MEPJmNnIIA1rK3NLStZVZN7GEYiWJ9gEK+WFuwpJlv1+5WHwqS+FAX7/tVXcYy5c+Gz8jPAmdNmPRr539kkEhFTljUNmMpTlllHxmLwWzm7cv58+Gone8I3zX4smhVSIhGnV0qLXQTRNKS+79gB8OrqwgTU9vbk9/X2gjxbuBAgOzSEbJnly+EApgqTfbW1iLSngmAiAWf5xAmA6dKl2aNhoRBIsIkJTGidNy97ancsBiXIEX3u51dXB2Nx1arsAM2KKxDAfTkcWJ9cS+vcbry49JjPG49DgY2MIFNg3br8jFXu0Tg5CQXK19jbi3XjIRFXXokei+xYeDzinvJtGsxrFI3i+2Ay0aIDOdsVVAmLiiiDgyhjXrQIRFeq0To2BsKwrQ1GViwGLKmoQEadJGEf/OpX2Gu33po5k01VYSS73dgfHR3Wys00Ddf50EMIaHzxi+nn0TSRtWCzAX+8XuBfba0g5554gui//xvv+6//yu4YyzKOw1P7smFRfz/Rd74DR3nDBvQ+NOrBllq+3NRUXAN2ZAR6Yf9+YM1llwHLbTbgu36C71SUEFmQEhYVIOzkOp1T24B+uoSH05WXY48XuhcSCVRv+HxorWAWNPV6sVfr6mCjZNKjqorp7d3dcNSXLDE+biKBIIndjr2fekxVBWmpKLDHyspwHZEIAgnFyBpiURScTz8oIVU4M/z4cTHEQf9M7dkDcnfdOuMgda7CfblHR0FENDTgd3V11lvRWD0PkwlVVdBjJmtQwqJpEu6FGIuJUmenE/s+mw2bSAhCkYOGZWXmg1yKIUZl0MGgKDfesAHPFhOM/HxFo0Q//zlIs1tuAVmeSbg3NJOSVgnEl18m+ulPcS0f/Wg6Ucl2BpH5sC0u99aThvqp19xKiUuSg0G8p7XV+qCaeBw429+PtVq3DvZUphJqznBMFSNi0W6HXcOBUbsduNLUlHyN8Tj8VG55MG8eEl6moX2LVZntWDQr5LQnESVJejcR3UdEl2matn2KT3d6L3YRRZZhgPb2QmmEQiALL7wQymNkBH+fOxe/5z6INhvRTTelE16JBBzFaBTZbqmOdTwOZefxAEg52pJJolFk0QwPi9LoXDL1+LoGB3GPR4/CYa2pwbG6ujJPUh4dxblraox7RVoVvx/HcThwvnAY5cXRKKLqCxfmd1yjc7jdiNgfP47rvvxyMbDG7xcl2c3NGQ3ZnITLMWIxUX5hYcJ10RVUCYtmp4RC6NNns6EPYiqZ5/Nh79bXi+yco0fxvC1fDiyamMC0QbsdBGKm7GZFgeM8OSn2gRXyIxZD2fLOnZj0/NGPmmMCE4lEIgOxrg73Jsso9/nDH0AAfOlLyZmMRsKlvlYmMMfjyHp68EEY2x/8IDI7jfZjIiGmAtbUFLeP3eQkmqq/+CIw/+KLMf3d6cQa+Hw4P/d0PJXKdk4XLGKntry8uJlrJ0tUFc9rJIJBKsUgtbdvB1F17bXmpYaRCPR2eTmc2mw9XJ9/Hg7oWWfBgQ4GoXONym4jEQRhqqqMs+CiUeBhdTWuT9NE2V1TU3Gd2kwTm2MxBFYnJmB3rlxpnO3zzDMgATZtQmC0UJFlkMZcQn7WWcXvAcvi84HMKS83zQ4tYdFJEH2pM5EgE63Y/IqSPBWaCJ9jQnGqnqVIBDggy7CLmNhk4aEjf/6zIBCXLct8zO5uEaxdscKaLaBp0PO/+x2CwHfcYU7AKwrsGLsd74nHBWHIpCFTKjzgUk8aGg1PGR3FZ9rasn9fw8PAGF6zZcus+3WpJGPq/3kAk9eLvzkcsNW4jZa+hHp0VAyxbG/Huk3FtO4CJeu3P83YckrKFMFDSUoydaKqyAa024kuvRSgtncvDKlf/QpEV0MDfrLRu2MHnP0bbjDOmNu9G8rh0kvTCURZBoHo90MZtLZmT6eXZZS+DQxg2uCKFfk5KWVluIeuLmT6HDwIgm1gANE2np7X1QVi0+US2XqBgOhbUUisoLYWCmVwEH0pfT4ol/POK06zdiIxRfLpp+GMX3YZnJbycvytvx/ndbkQ7bLY5NuS2Gz4zl0uYQzEYviuZ6BiLMkMElUF4RUKgexKfS7DYezXykrRK3RoCL/v6gIW+XwIcGgaAhzZCMQjR7C3W1vhVFvBFY8H2YJHjsBIvv76zAa2JAlnXFWBIU4n9uEXvgCn/Z3vxD1nczICAdwvl/pmOu9rryH7sL8fpN2HPmSOMdz3S5JEOVAxJBiEvnjmGRx782aiSy4BRnA2QjgM7G1sLGHEbJVQCI6TyzWt/SunVA4dwn5bv744BOL+/bA5Nm0yJxA5M8Zms1Yl8dJLsF/WrQMmEmGfBQLYX/X1yRhRUYHfeb3Ya6kBE5dLVJp4PMLmcbuBX83NxcusKisTTreeSJyYQPlyIoHASqYA8/nnwz7csweYumpVftfCQw78fnw3NTW4juPHQS5MRUk+D4oaGYE9OHduCf9mgjgceOkJQVlOzi40Ex7cUVEBXc+fZVt4KghFRQFmOBwIdrDdlEiITMVgELZVXx/8gXgcJKG+vyIHCLjfNPcpXrrU2vOvKGgfs3MnMO497zEPOiiKqFxyu/E7ffmwywWc4rW0Eryw2YBPo6PALrMqtWhUVH7V1SGxIte+rzykJXW/hsM4tyzjuhsbxX3oSUbOPOzvx7/Zx2bfMDWj0aiMera3CSlJupRIxJLMOhkeBskzf74A6k2bMJFq1y6Qd3Y7stgWLEC24pEjIPOMMmYOHoSi2rAh/e+xGAxzdjZqa3HeTGCYSKAUt6cH51y3rjgOrs2G6DYrGkXBdff1AdwlCX9zuaCYeNozp9TbbPlny9jtUDQ9PTjm2rXFIRCDQWQ6PPssrv/aa9FnMhbD91xZCYWtqojUTeWUL7sdhAz3cwmFRDPlQvsKleTUlO3b4bS99a3pgYV4HIZtWRmMWpsNjvLYGBzd+no8Y7/+NZ73W27JPMQokQCOhcPYC3V11vq3HT9O9J//CWfzq1+FE5tNVBVkmaoC81wuosceI/rGN7AXvvGN7MfRD2LhyYJmEg6j59Ff/4o9/pWvwLkwO67XK3rYFat8ORZDP9wnn4RBffbZ0CGMc9Eo1lBRQDqdCsM3TlcJBvF9n0oE4okT0JkLF2btW2dJRkcR1FuwwLz0VlVhP8ky9HY2QmnfPtgQK1ciC5ulqkoMkZuchI2h31t1dfi+JiZElpVempqArcPDIiDY2JhMJBZrr9rtIpPHbge+dnfjvBs3Zg/qcGAiHkegwuGAfshFeC3icWArO/Td3bAHVdV6JlauUlmJcw0NgTyYM+fU2UOzXZgQdLlEqTOXDlvpfWiziUocVRUZjkwocsm005l/hi+X4IfDYtglS1mZGEr21FM457vfDazgrHGPR5B4ZWW436Eh2BqcnWdFwmGiu++Gf3f11URvfrPYL1yWrO9jqM+StNnw3oYG0ds5373mcACrPB6RoKFfq74+rJemIeBgZXBlNmEbyuMR32tTk3lQdGwMPmYsBqziRA6jrMZYDLaZUeJKKsloRDqexIqOkuQhJRKxJLNKJiZgLLa0pBsu3LvhuusAYvv3I+o9NgaHcOPG9OONjqIXxvz56Q3Io1EoGJ50XF4OYi6Tw6ooRH/5C8iDCy7AOYtZDmCzQclMTEB5nnMOXh4PSiT37oVyqKsD6Hd24uVw4H5y6Pn3T5mcxHFlmWjLFhgQbjeURLaekGYSjcJIeOop4bBfcYWIrrnd6B0UieD6ly+fvoh3WZkoVeCIqN2eHPksSUleew3P79lno4RML6qK/ZhIwJlzOERGrcuFTJVolOiBB4BnN90EYtBM4nEQiLGYcNqqq7MbXM8/j3Ljqiqi73/fmrOqKNjzqgqjMh7H8JWHH0bw4M47M18rH4P7KOoHsRjJ7t1oZu7xALtvvdU8iyoeF85zTU1xprAmEriG7dux19etQw/W1lb8nQnVaBTY0NxcwoHZLEwgckbLqSB+P/Chqak47UUiEQRjq6qgl81sBm6xsmJF9pYKBw/iGpcsAXmQKpWVOI/PZ0wkNjeDJBwfRwZcqh3W0YHr6e/HOcrKcIyJCRyvsTG3NTATHloQCiE7KBBAAGnlSuvBDJsNVS9/+xt0iMNhnumpF55sHwziGlpakrFy0SJcQ3c3MHjVqqlxyp1O2MxDQ2KwV7GqUkpSuHCP7/JyMVCFs+isljrbbOIY3H+RiUnuI64nFK36FcePY08uXWrc3knT4EMdOADs4QAGP188GJED/QcO4BmcOxfXduRI8uAWo9ZE4+Owh8bHMen5rLOwj5k0TC1LrqiArcEEK7dX4rLfQkm9ykpceyCA9aysxL9feQVr1dICu6RQfcX208QE7J7ycmBXQ4MxTkxMIOgTCsHeXLvWeksuRcncpzEaFf049WKzZc5q5N+XZGZI6asQYpck6YtE9D4iaiail4jow5qm7eM3SJJURUT/RUQ3EtF8IvIQ0Z+I6D81TZuY9is+zSQcBiFYU5OescMR8Xic6MwzAXibNhF9/eswKufPB1m4fr0AoHAYaew1NelZNeEwSpiJcCxVRfQlU0aaqkL5HT0KApGb7xdbnE4Y96EQlAD33WhuhtKtqkLae18f+iO9+KKYsLxwYfZSbBae/nrkCI5/3nk4Dg9D4RT4efOsK1F22P/+d1x/qsOuaSAQR0ehODUNStrrxXumM/PH4cD9yjKeh0BANG5fsGBKT13CohkubjeGDXR0IIqtF9434TAMZTb8+vvx/C9aBOPpoYdwnBtvxHHMRJaxB3mvlZeCZ6O1AAAgAElEQVRjj2czpH7/e5BzS5YQ/b//Zy07SU8gNjQgu+nzn8f9vOtdRB/4ADCNDWyzPoWTk6I00Yz8n5xEL8mdO+FAf/7zICPMpNjly6qK4Mjf/gZjeckSfJf6vc37XtOKP/G1GMLlm1MopwwWaRrIF1kWTuapILIMMsvpRCC0UB2pqtgTkQgmMZvts/5+4FdnZ/Zn8NgxBHU7OzP3AeQgp9eLPal3bm022ABMJLa1Jd9rWRnsvJ4evKe9XbRQ8PnwKkbQgQj7bt8+YN2qVThvrsLVMtu2oX3C1q2Zy6AjEayJogCLUsu+WTo7sVa85mvWTI0dardDb42O4jkIh63blvme8lTBoukULnVWVRBVTAZyaauVKhs9KalpyZOeuZe4ftKzGQadOAHiuaPDfEjao4/CV9uyxbjaQZJEq6HhYfz74ovhL3C2YiAAW0H/fsb8gQGiH/0Ie/df/gW2RHc33suZmA0NIqPTLGBYXQ0iMRgsTi/m+nqsq9uN6+/txXe0YUNm+9CKhELALL8fa1xbC8w2s2f8fuCoz4d14Aq4XITLpzM9X5qWuU9jJJJ9KIxRVqOm5Uy4lrAlTykNVhGNNV8iIpWIHiQiFxF9goj8RLRU07SEJEnlRPQUEa0mop8S0UEiWkZEdxDRESI6R9O0aJbTnd6LXYAkEgBVmw0OZ6pRxENPVqwQEeenn4YyOv98lF309sL4Ou88vG/HDiiarVuTo6ihEI7H5a3RKEA8kwHKBOLhwzjfBRdMPeHl8WBdHA4onvJyGKF6ciEYhLHPk6rjcTHgoavLvDxYlmEkc9R/7dp00mJiAqQuT1XORGqoKrJCH30Ua75kCdE11yQb35EIvqdoFGs9bx6+g7ExnIszuE5GabGmISv14Yfx86c/ndIG4lOORePjJSzKV2QZ0wJDIaLbbktvwn3iBPZNe7swvDwe7L+5c2Gg/vGP2JfXXJM5OzAWgzOoqmI/cDTcTBQFpcEPP4xAyr//uzXCJJGA806E/ff000Q//CFw5d//HcYsl/FoGl6SlIwfsRgMUJsNxzDCBE0jevxx9IGMxYje9jYMejHDDy69iUSw9xsaCitf1jTg9PbtwJZ589BzSV8mlEjgPuJx4Gtt7cyJfmsa8Pzxx5Gp8MADsxuLfvWrqccizl5RFDzPp0omKZe7hcMIEBaDGD16FA7kmjXmpJDfL/pzZctKHh8XbVB4En024SoA7lest/c4Y6eiwriM1uvF35ubxXoUq88xB1DHx4HB3BOskFYx8biouli/Pt3OVFXoGiZ+qqutYdHkpCjvnj9/6soEVVVMaf3hD2c3FtFp4KPpswoVRRCE2UqdzURPKPIwNj2hyMf0eJA12NSUXvXF8uSTRE88gQSMrVvNsUJRcCwO/hmRbPE49g0PC/H5EDR87DHo8xtuQMCQewDW1GQmQI2E7QSnszgBxvFxrEE4jDVauzZ/vOKsZY8Huk8/ZdnMhwqFYFt4PHhPZyeST0522xazjEb97xUF3/WhQ8h2/fKXcxqsMh3YckrKDDGLZ4RoRHS+pmkJIiJJkg4S0R+I6HIi2kZE/0ZEZ77+nhf5Q5IkPUlEfyGidxPRj6b3kk8P0TQ45qpqbAz19QH0uroEgdjbKzIPzz4br4EBZL089hjRb38LpfH2tycTiIEAjOiyMhzL5wMRkG3YwbZtcEzPOw8ToqdD6usBmKEQCIu5c9PXproakfJVq8QUw+5uRKj374dRzSXP/PmJCRi13OfILOuusRHGwvAwvoOOjnSFp2ko+9y2DU5HRweUt75vCU8oc7txvM7OZGKmrQ1RpeFhOCNz55pPTyu2cB+67dvFc7Fly5SftoRFM1Q0DeSc243BIqnPodsNQ7C5WRCIkYiYkt7YiL5/fX3IGs5EIPJ+1TTsQc7KzUQghsNE3/oWCPs3vxmlwVYcAz2B6HIhg3HHDhixn/gEDE9VxYuJRF4PIvyfS/85g9fovMPDRD/+MTBh5UoMZsmUvRKPwxnmsmgrU6gzSV8fsqD7+/Fd3HBDevZWMAhMJcpeij2dkkggsPPkk7j+sjLzXnVFlFmPRacqgUgEEpz1fzEIxNFR6NiODvN9GQ7jfZWVooLATLgcrrYWgUurzqjDIaotQqFkIpFLNCMR7IFUm0PfP7GtTfRNU1V8hsswc5V4HPsuHAZ2sL3EuEiUHwnjcKAiY+9eBAXOOEPgHJdtcmaNUWmmmXA5+PCwqMYp1oAZomSSIpHIv7VNDjLrsWgmiD6rkHvYcQmvwyEm8VoVznSsqhITlmVZ7F2HA/8/eBD+iFm1wXPPgUDcsCE7gfjqq3j2li9PzmjUD4ThXvCahv3/wgto77J+PTIQuW8kv9/jSS6DttL6qawM7+W+k/lWRyQSWJ/eXqzjkiXYr/kQiLIsSpYVRSRf1Neb41M0CttodBT3xBVrxcSLQsRsKAxn13Z3Azv7+/H7PIZVlbAlTymRiEJ+wg/Q6/LU6z8Xv/7znUT0IhH1SpKkLwx7johCRHQpnaYP0VTL2BhAnstT9DI6CoJxzhxh9IbDIAqbmjDRmGX+fCiPJ54gevBBRJB4AueCBfj/0aMwMOfMwXnr6jIbyrIMgunQITh0+vNNpTDxpihQYrW12Q1Ylwuk4OLFAF63G6B77Biu3+EAUMsy1ur887OTdTU1YjpXXx++I84O6O4G4dLbC1LllltgLOsVcyCACLYswzCfM8dYcdXU4PpPnMCLh0tMVYQsEAApvGsXnCCXC+Th5ZcXTmRYkCnHomkw+E9JeeYZPOdveUv64A+/X0xd5owbVQUJ3dICg/eRR+DUvfWtyBI0k3AYz3ljIzLkeBpopmdvbIzoy1/GfvvMZzCkyIowUdfSgp+f+xxw4QMfwLRCPa5wDxveo5yRGAjgXuvqjCcwJxIo/77/fuDrpz6V2VEgggPi9WINCp2CPDwMLDp4EJh2661Yfz3WxONiAnx9vTkROt3i8wGHnnwSjk5jI0rgL7nk1MCim28u0pUaCE+wTSTgwJ5Kk2THx+E4tbdnbgNgVSYniX7zG+DG9dcb6+FIBOfctAm6PBPZMDqK53btWqKLLsovk1eWcV02G557Pe6MjuLvc+emE8OcwV1RAYeYs6eZ8Gpqyo1MHh8X5dirV6cP4EskcHz9xOZcJRBANYuqosULT4MtLxcB23xkfBxZW9XVIFAKJdE1DbqmpwfXV18PHTUNgd2Sj1Zk4fJPfalzPC4Im1z7/fHxeOiGLOO53vd6UeiKFfid05mML3v3wjZatQpVCWbnTCSAP4EAArA1NXi+efiJnszn4Up2O5JGXnoJNsfNNwss4sBCOCx6LHIwlScu64lFI/3hcolhjHZ77vtrZASkaDSKfbR8Oa7J64XusrqvgkFRsixJomQ509AjDowMDeEz8+fjNVOqLoxEUUQ2+uHDeAUCwLc3vAEYl8egpxK25Ckz+FGZdunT/0fTtEkJSMbtmJcTUQURjZt8PktMtiT5CE/ra2xMd5h8PhBV9fWimbimgUCUZRjCqWA4OQnQ5mmqzz8P57a5GaRURwdAdHAQSiNTjxruqfjaaxigsnlzce/dTBIJEAyxGMhPSRL9Ea1E2F0urFN7O8gORcE6Pv44DO+qKlGq2NmJ9ch0XJcLxMnAAF6aBufh0CEosre/Pd1hTyTg2Hu9uO5Fi7IDP2cpjo+LqWLFLG9mx+TIERg1fX1QTJdcAgKxWP2ULEgJi2ag9PSgV9iqVenBgkgEJRQuV3JZ7NAQjMPFi0X56ebNmQnEUAjPoN2O/SnLMIozlcscOoQJzLEY+sAaDZEyElnGHpQk7Nnvfx/n+e5304fFECVn3jDB5vXivNXVxqTWkSNE3/421u/CC4nuuCPzkANNA06Hw8KBzjci7vGIHksuF8rHL7ggGTOYBA2FRMlPof0WCxXuq7lrF5yfcBjP1TXX4NmZxuzIWYtFegKRS9VOFQmHQQzV1lqfRppJ4nFUC9jtRFddZbzfEgnYOpIEDMzkaHo8CLjU1GDP5+uUOp3Y/5OTokciE3UtLbAhxsbSqzB4YMDgIOwF7qecOrE5G66oKmwiboWzfr3x3isrE2V1+RKJNTUgD3/7WwS5L7sM9k2hZZItLSBy9++HXXPGGfnvBY8HOB4M4rrWrSvewBoLMmuxaKaLzSZ6APJE5nBYZO2Wl+ceUON9cOgQjrtqFWx4Juy4X96xY0R/+hNspOuvNz6PqkJHv/gisKCzE/8PBPB3lwtYyPfAZF8ggJYsx44h8Hvllcl7k9sl6H0PznLm65ycxHNPJIas6InFsjJ8XlGwL6wGH2Mx7MmhIVz7xo1iaElNDWwznw9rZGaPqKq4vlhMDFvKFiRRFGDj4CCOMWcOfMmZGmTTZ8xOTIA47O2Fjp8zBzb14sUFZU6WsCVPKZGIQgzmBBER/bOuXiKi3UT0BZP3eYt+Rae5xGIwEisr0zOnIhEop4oKRG5YMezdC3C5+OL0Zt+yjD5fTidIIVZsTz8NR3P/fmQThkIAcybojMTng0I7cADp99NQ4kpEWBMu7easP+5x4vPhnrMpMC5n4HR/7pvY2YlIncMBAq2vT/ShnDdPlD0bKbSyMhiVf/kLvoP6ekQUUx12IpAOQ0O4h9bW3AamSBLeX1mJY/T0QIkUQvDF47jP7m4QQQMDUOLc2NnKQIoiSwmLZpj4/XDsGhvRw0//vMbjyGC22RAdZ0PG54PD2toKImjPHvT6yZStHAyKsvmlS7GvifA8mu2RnTuJ7roLmPWd72CPWhEmEGMxonvvRUb1xo1EX/iCuWMoSYJIjMcFScMGPAcfiIDRv/gF+j82NOC4F1yQ+ZricZEtVFubf3ZLIID72b0b13vxxQgGpJZ8xmL4nvQZ3Sez/48sg/DctQv4q2nIfDrvPDwPeUTYC5VZiUWqimdTVfGdnkolzIqCYITNBnKoGNmy3B/6zW82Jq14cF0shmqGTCS71wtMqqhABmKh5K3DATziEr3GRtFIv6UFQWGPJ91GbGgAno6N4Z4qK0VGo9uN+21qMt/vnHXp8yGQunx55rW220VvrnyzLqNRZLjv2gU7qlgD3JqaQPi9+qogEnMhDDhgz4MWVq0y76c9hTIrsWg2iX7iMhM3/Mq11Jn7iAeDwAy2KVRVlDwfOED0u9/Bv7j2WtEeJRYTJck8KOXwYfx/1SoEDXigpBnBOTKCoKjXi7YpVgOrXJ7NtoemievhwS3j4+JaHQ6RpRiPYw2NqjH00t+PgIyiIDtz8eL0e2hsFPZQaoWWLOP3k5M4RkUFEmDMhi2xqKpobxCPw7fp6po5LVv0wmR2NIp/Dw3BPxsbw/O5ahVso2w9eS1KCVvylBKJaF2OEVGDpmnbT/aFnA7CkRK7PX36bzwOg9ZmQ18tBtexMRhfixcjYqwXTUNkPBhESSobwV4vHPSbboKBumMHnP2LLoKiSjWouSTmwAGQjqtXw0GdDmMqGIQCsNuT+2VIEpQHp7LrezyaCafdHzwIZ7W+HsYrZxLNmwfCY3xckInPPINXWxsUT2cn1icQQJ+x3btx3MsuA8A3NycbHLIMAjQYFFme+Wb8VFcj+3RoCC8ub87FofL7BWk4MiKGxJxzDtZiiicNFiIlLJpGURQQiPE40fvel+x8caZKIgEnkx1mLhOprMT+2bULwYY3vtH8PH4/juV0IrsoFhOTOI2ea03DhOd77sF+u+sua3ufSJBnvb3IEhwaInr/+1HqYyUIwROYJQnOutOJtWDD+qWXiL73Peypq6/GAJpsBBiXEtlscFDziYpHoyj7feopXOO55wKPUslIJpm4r1qmZuPTIRMTwNbnn8d11dSAcD3jDODkNJQt5yszDov0BCK32ziV5OBB6LszzihOxuzevQhcnH+++ZTh48expsuWZSb2AwEEZR0OZIcUK6OXe1QzkdjQIEiNhgZgkdH05XnzsFYDA8jq5gmeDQ04Dle5pMrYGOw7ItiSVhxVSUrPSLQiPDgqEMD1LVsG0uCRR/C65priYFNDA+5l3z4EKjZsyP79hEIgD3nQwrJlsItP9qAFE5lxWDSbRV/qzFOYcyl15udmyZLkPcalxmNjqOxoawOBODYGm4kHCPH+5r6etbUIBGabBE8EjLz7blz/Jz8pKtXyES5r5qnNRFgT7lfKxKLPh/XhCqbmZpGxyPcRCmH/eTy4j0ylt5KEY4yMiGA0lywHAoKsbGrKTgJyC4LeXnyPXL030+wKfs64h7EsA7u7u7HOVVUIqK5cOe3EZwlbTKREIlqXB4noLkmSbtY07Vf6P0iSZCeiutN5zHexZXgYhtiCBcnGmKoiuiXLIPDY0YzHYXBVVBg76vv3g8DatElErMfGAPi1tVB0AwNE110H0D5yBA79mWciguVyiT6E3d0gEZctI7r00unpmzU5KSYCzpuXbqA6HFAIgQAUWrYm69EohqeMjMBgPfPMdEOVs/5aW7FuExMiQ/H550GMDA1h3aqqkLnHDvvkJNaqvx9OsM+H/xPh+hsbCzdEHQ48H243XmZ9M/WiaXi2jh/HZwIB3FdZGSKCZ50FgnSGGsksJSyaRtm2Dc/xO96R3h+1pweG4ZIlwhjkialclrtjB0i+q64yP4fXK8qhly+HIZVI4JhGzmgigazDbdsQxPj0p62TbtEozvfYY0T33QdD9PvfBylh9fP6CcxM0thsuN8f/QhE3vz5GPKyZk3m43FJTiQi+hjliqmJBNGzzyL7MBTCvVx5pXEWcSQiSKbqarxOxn7XNOiYXbugTxQFeLZ5MzCIB3qVsMi6KAq+W02bWRO1iyX9/dCjqY55vnLiBMjrxYuN2xcQQb+PjeHZzNRLNxwGgUiEIGyxnTwm+/VEotOJ75mzqsvLk4kxDrh2d8NWYZK0vBx7y+dL7jvGPWz7+/G7detyuw9JwjkVBa9s5XVcnsc9O3n4QWUlbKlHHwXRctVVxXmW6+qAjUwknnGG8f1FoyAcRkZw3kWLYFvNlEELJjKjsOhUESb9ONPOSqnz0BCwpb09ORjPPQh7e4l++Ut8fvNmHJMIfgsHTcvL8f7Dh/G+DRusBUl37kTv5TlziD76UWukY67Ce1S/dxIJ3JvbDSwaH0/eL+PjWJeKCuw7fdsbM+GAx/HjsCkrKvC71lbrfVK5BUE4DIxZtkyQoSdbuIqOiUNVxZpEIsDs3l7gaGsryMNFi05an+oStpjIKWZiTal8m4iuJqJfSJJ0FRE9S0hxXUxE1xPR54jo5yft6k4hcbsRcWlrSyfDjh0D8bN8eXIU5ckn4Yhef336Z4aGYDQtXIjPEcE4GhiAUlq8GP8PhYQx7fPBKX3hBXz2zDPFsJUDB5A6fumlU++kcATJ54MCyBQFrqoCGPv9UC5m1zY+jntSFBCkTU1QgNkiizzgYO1aGLd//jOurbkZTg0RMho6O/E7pxOK4OmnYbw2N8OoKGZmCPdGqqyE0dLba1zeLMv4GytTdjYTCbx/wwaUC86EQQoWpIRF0yT/+AemBl5wAZ57vZw4AcyZPz/ZuB0bA36Fw+iDuHgxygTN9hZPMK2sxDPIDcldLuMMlECA6M47kUF0880YfmKVaOJJ0Xffjczhc84h+vznrWcwhkJiAnN9PfCJ+yM+/jgIxFAIk6tvuin7XudJgokE9myukXFVRVuJRx8V0xqvugr4nCqKAhzl0qymppNDMsViyNTctQuEkMuFjITly2HcNzbiZwmLcpNTnUCcnIT909JivWVBJgkGEXitqzPPkB4fB6HW2mqepUgEB/Cpp0AybNkydRkudrvokTg5KYjEpiZgyfg4bCT9d89TpEdHYUOxA83DH7gXqiShfNnvB2G6bFl+e9BmE7jI7R9ShQMnPL22rS09CNTRgcyrHTtQ6XH55cUh8WprYe/s2ydKmzkAJsv4vk+cEAMH58+fNdm8MwaLTkWxWuo8MQHSq6EBBKLXKyYg86Ck//s/6L2bbhJ+HmfrEWH/cMuoeByZZ9wXka8h1ebRNJRGP/ooEkw++MHiTKy3Kjz4jpM54nHck9uN+/B4sPc6O2EbHjokiEjur6jHilhMlCwHg9BvTMpasfd8PtiVfr9oQXASWjOlCZeHM3HILXCcTuD3sWPAH5sNtvPq1TNiEGQJW0zkFDOzpk40TYtKknQpEf0HYVLPW4goSmjI+QARPX4SL++UkVAIoFtbmx4t6e/H3zo7k6NLR4+C2Nu0Kd3QDQbhrDU0wGEmElEynnzKQN3SIpzpujpksmzcCILy4Yfxe6cToHb55VNf/qaqolS3sdGaAqivxxr5fOnZfpqGKPvx41B0GzbAqOboYCyWubxFVVHq/eijOP5ZZ8Fhb2wUGYqvvALjlPuLcTkEp+ZPlTFaVYXv8sQJrFkoBHLQ7weROTgIJVxVhevx+aDgN22CgTKbHM4SFk2PDA+jn9/ChegVqhe3G39vaUkudQuFEJDw+ZDhs2ABeiiaOX8cJa6uBoGoKNiLTqexATw0hMnLw8NEn/0scMiqRCIgr775TRj6t98Oss+Ko8xDKqJR0cScJ54ODRH97/8is2XlSqKPfcxaL69gEOtks8HJzwVPNQ2Yv20byIEFC3AvHMxIlVBINGGvrT0pvQXJ7cYz8cILWMe5c5FtxNMQOUgzw7N9kmSmYFEiIb7furrZtYZWhJvwszNYqCgKCMREAkPmzIIVx45hvyxenP53Fu41HYkgq8hqQCJfYSKRy5Hr66HLuT/i+Dh0v972aWkB3gwNJU9Zra3FWhw/jr85nSDVUjPO87lGIjHNXo+xoRCuW9PwrGbqw7pwIbI6n3oKQZpiVb5UV8P++8c/QCSuXg0sHhgQgxa6umbuoAUjmSlYdDqIUakzDyE5cEBkDfe9Pq6CB5JoGtETT2B/ve995lmCoRCOU1mJAJvTKfoocp9ohyOZ1PzpT/Esb9li3a6ZKqmuBj698orwZy+4ALYiE6pcBu33i89xW5hoFPfkconp58GgKCnPZCsFg0iYmJjA+5YuTcfD6Rae/s0vTRMZrjYbbODXXoPOqayE371ixfSSwJmkhC3mImncxKgk0yGlxc4gPOCirAxEoV4JjI+DLGxrSzZo/X6iX/8aJOENNyR/RlFAeAUCILtqakAmDQ+LhrKBAAyn2lrjSHsoJEqY//AHAPR55yFCvHTp1AFzPA5CLB6Hws1lcEgsBmVeVSUyAqJRKFjOnFq1Kn1aMkcUUxWUpsGB2bZNlDVdfbWxwx6LoR/J3r24fpdLZAq2tExPVGl0FAppZAT36HKJfiKDg/jO1qzBqwAjeWYXGWaXEhZlkEgEU/0SCUwT1vdGDQRAxtfUJGOAoqD0ZmgIRFFbG9G73mX+jHG/UW6noKp4Ru124xLbV18l+tznsB+/+lWU2lmVUIjogQcw6KS1lehLX0rPrDQTJt1lGdfFBJyigGT9+c+Bu+99L3obMQarKn6mGvOFli8fP07017+KDKmrrsJeNsLieFz0KuISxukkmDQNz8TOncg84GEYa9aIoVj19en9Y3OU0xqLEgnYAZKEvXSqEYiqCoI+GETQqxgE+FNPwcHduhUYlirRKP5ut8OJN3s2EwkQiJOTmMJcpCb3loRxJB7HHnK54JiPjwOnUgkKHoDldMKGlCTRHufAAazrhRfmP8zJSBIJ7PGyMuDlxATWlqfOWw2q7t+PzPFly0AqFsvuDIeR5XjiBOy6hQvxKqAU/bTGotNFFEUMPeGffj9sFFUFZjQ3Q99WVeE5DwYxwC0chq1ghhV+fzL2pD6LXKkhyyL7/Gc/wzN8440IrJ7sFiDj4/CB3G4QgGedZb7XFQU25fAwbMdgUOiy+nrYmRz48Pvx06j/eyQCe3JsDHizYAGyFk8WmcpkKBOHRII4dLkEUXz0qKgIW70afnmRrnm2Y9GskBKJOL1SWmwT4T5isgwjRg+4fj/AprYW5BcrCFVFWrzbjbT4VKJt9244nBdfjDRwBtjWVpCU3JujvNwYuLxeZAopCox4SUJ0ZN8+nLOtDUZnMUqL9BKNQiFqGpRAPgad3w9l3dAAJ3rfPqzX2rXmA0NkWTjb7DQcO4YszP5+3O+VV5o77IoCRTg5CUO9tRVr2NeHz4+PQ1ksXYooeEdHcTMTYzFEtHp6RAlFSwuiWUNDuL7ly837AOUos11BlbDIRDQNPXWOHkW0XJ9VF42CJHc6gQV6wqKvD5957jkY0LfcYv6cjY6KdgqLFuF3eiIkdX9t30709a/D0Pra14zLdc1kZASfeeEFTIb+r/+yHpRQFOxnnnLLmcrHj6Mn49GjyPC+4w7cs82WfO2pRGIh5csnTgCLDh/GZ7duRcTabOhMMIgX924s1pAHKxKNImt71y7oipoaDHlZsQIYywNzWlqKktF+2mJRPA4HzGbD8zlLSsBzksOHEfxas6Y4JN3hw+iHumED7JdUSSTgxMfjCFSYZYMoCjJrx8YQWG1vL/zachVNA57E49jjFRXQ/T4fSMTUwXh+P3C6pQXPy759eH7mzxeVG01NxSWimeRmcoCJgVzl5ZeRSb5mDda7ENE06KDeXlwbt6U555yC+6Wdtlh0qoqmQZ/pSUPOBiSCv+B0wiaIx0GYceYgkchYvP9+2BK33mpuv3i9ICKdThCI2XR2by8GuAWDCNiuWYPzcYbidAeUZFn036+uhr4vLwcuGeFoNAof0+vFGlVVAX9crvSMRU0TQVFOeuEeiSdOwPeSJOAwVzdMtzC5HIuJ758TOVwu/Lu/H2vEQ0KXLAF5OAW9K2c7Fs0KKZGI0yulxTaR4WGAY0dHsuEXiUCpOBwgwPTA+NxzeG3dCrDWy9GjGP6xdi0M4d5eOHNz5gBg43FkF0oSnHj9cTUN7/X7AXIvvghAvPJKGFiaBiLh2WdF/5wLL8SxC5VAQDSzbm/P38Hkezh8GAqqvh5OQ7YsBp6K5fGgoffhw/jsFUsDXZ8AACAASURBVFeYO+xE+O6YqGtuBoGYmhU6PIzo3OHD+F1TE76Lzk6sYb5ZgZOTomRZVXHuri4Yxk8/jTVdtgwRyiKWWs12BVXCIhN54gmQdtdeC+KHJZHAvlcUlO3qn9eJCTikTz2F5//WW80dRZ4o3tAgCMRAQEyT1Ru+mobswV/8AuT3l7+cmwP64otEX/wiMOBf/xWReqtRelnGvibCvnE4YBz++tdEv/0tDNkPf1hkxvB05lTDnYnEUAjHs9tzm4bsdgOL9u4FKXvppcBbMyOZrzuRwPvNpltPhYyNgTh88UWsFeuGhQtF1lRVFUiMIpKapyUWnQ4E4sgIAqgLFhhnDOYqbjf2blsbhsilrhm3CfD74diZBRs0DUFaHlbX1VX4teUrPMBKlvEcVFaCIIvFYJOl4syJE7BBeNrnmjXYj/E47B4uxSxGNpMs45jhsOjNWAixsXs3HPAzzzQfhJNN3G4xEKymBjqoqgqlzZEI1qMAh/60xKJTSWQ5OcOQy0+JsDcqKqC7+KfNhsoftzuZDOJS52AQNsPoKHo4r1hhvLcmJvBsc4/gbP7AK68Q3XMPruMjH4HvyKXViQTeY7cLQnGqSbXBQWBnIgFijHush0K4pupqXIemQW+53fgbBxaamswDNkzk8uAWJgzDYayrwwFfaskSEUyZrmzMREIQh/E4fldWJojDsjL8/fBhPCfBINZi1SokdUxhcHe2Y9GskBKJOL1SWmwD8XphLDc3J/f944i4ooAM1IPNiRPIQlyxAgSXXtxuRNrnzEF/jJ4eKKh580DMqSp+J8swoPTKSlVxLZEIjL4XXgDgX3FFehmuouD6nnsO71+6FH0v8p2aODGBa6+owLUWYmxGIsiEGRiAA3vuudacrLExDEx55RXRcP2CC8wVcDwOQoSb97a3Z+9jwX1TxsaEkSJJ6BHW1QWHKVumoKriGTh+HMfj9P2uLijVvXuhoNvbcf+KAgXe3l40pTXbFVQJiwzkyBFMDVy/Hr0M9VnPR47AaFu+PJmMj8Ww1x55BPj17nebZ3MMDgJfmprEFPBgEPuopiZ5n8ky0Te+gcb6W7cS/cd/WDeENQ1lxvfcA8f1a1/LrZcalyeVlcHAtdvhZH7ve9jvV1xB9P73pxOaipI+TICDEtEo1s3q0BC/H6V2zz2H69i8GXhutn+58Xo4jOutr5/6vrV83oMHQR4eOYJzn3EGsj7r65GBzYNyWluLP7WWTkMskmV819zM/lQkEINB4EptLUijQp3CWIzo//v/YFe94x3Gz+GxY9CfS5ea9wXUNFxXXx8Ck2Z9SKdTNA12ZCyG56GiAo42EewKfj4UBY7snj3AoquvTg5ax2Kww1yuwjLyeDAEB6IZiySpcDLj6afhkJ97rvWWFERYn+5uXFNlJewivU0bjyMQFgwW1HbmtMOi2SxMADFpyEkERKL0VE8aGj27PT3wMxYvTs9GTiSQgdjdjeFy3EYgNVPQ7ca+rKxE0kc2vf3440QPPQTi7CMfSU8OYAKTq6v4fvi8xayACofhL42PAzPWr0+2i5g0jMWwtl4vromHu+XaB1lV4T8dPoxjsN+sqoI8lSR8Z/rBLcXsbxqPC+KQz+lwJGccEsHuO3AAekVR4NeuXo3EkWkgOWc7Fs0KKZGI0yulxU6RSATpzZWVyT0JVVU0Wl2zJhmUYzEoJpsNZcx6hRONonefzYbMwYEBkEwdHTAmNQ3nC4VAOukNyHgchmciAaX07LP47BvfiM+aiSyj1GTPHnx29WqUm1jNGOLSEr8fDkNbW2EAOzoKpaZpUNrcGzFTFqLfD+L1+eexduedB4c9U+aexwNChAjXnEv0PhwGCUgEpTM2hmxRznzikvOuruR1jEZFyTJH9xYtwnsHB1Hu4/PBAN64UXxvfD5FwbUWWLJDNPsVVAmLUmRykugHPwB5/qEPJRua3d1wLhcvTn52NA2E9e9+h8+95z3mzld/P55z/XTVcBjPcVVVMo55veh/eOAAyLp3vtP63vL5iL7wBZBvb3gDJjnnkr0YDAIfnU7s/2CQ6Cc/QX/ZuXOJ/u3fQB4YSepUUs7EURRgW01N9vuIRJAN+vTT+Nx552EASaZ7iEZx36oKTDDqKVlsiUSAl888g2ejtpbo/PNxvTYbnAoektPSMnUTa+k0wyI9gZhpKMVslkQCAUxVJTr77MLJcE0TfUTf+lZje2ZwEMTg/PmZByPt3QuncM0aZGTPFGHiLhoVWT8jI6KHWCgkSLJ58/D+mpr0LMpQCPZQVVV+/RGjUdGyoboaGGqz4btUFPy7kACxpiGw1NMDfE+twkmVYFDoL27dYzZogQP3fj++2zzK52f7bjxl7SIebsFlstGoINiIBAHEpKEV0mlkBIGzefPSgwmKQvSb36Dn6FvfCnJNUZJLXcvKsGePHcNeWbcuM8GnqgiEPP44AnXve1/269S0ZEJRPw2YCcV8dIimYQ8eOoTPr1xpTI5FIrAFBgbwt7Y2YQ/kcl72E/v6xFTjefOSK+nicVH+zD+5EoSH2+iJxVwCGrIsiEMmmp1O8dzoe2H39sJ25aq6pUvhFxfB78pFZjsWzQopkYjTK6XF1omiAIQlCYaN3rA6ehTAu2xZ+lTihx9GBtqNNyYbOWxcjY/D6ZyYgIJasEC8b3hYZCXqAS0aBeBpGgB+1y4A9iWXGA9cMRJ2Kvftw//POAM9ZjJlvikKMnsiEZBwhfSF4Cbhvb0gNDZsgLLwenF/TU3pCjoSgULeuROfP+88kKYuF5SGUdSOezaGw1D8+ZZdyzIUayIBp6a2Ftfa2wtF6fHgfY2NMMS5AbGmwQhetAhk48gIygfHx3HfGzca96nktQ4GcS59hkIeMtsVVAmLdBKPI2tvYgL9/fTZxFx+3N6e7nwfP46m3uXlMGiN+o1yv1fuo8p4whkAbLiz9PVh8rLHg59btli/j1dfJfrP/xTTl2+6ybqhqp/AXFEBI3fnThCrfj8yMzMNimHhsmZ2xnnysMMhDHizISi7dgHDo1Hg19atmTGRG6tHozh+Xd3UTYBnGR7Gdb78sujhe+GFyAqKx4FDoRDum5vLTzHRddpgUSwG/HY4cnfCZotoGogcjwclq7kMVTOTPXsQVNi82Xggk8cD26G5GZnWZrJ/P7July0DKTATxecDrlZV4fngcuKhIdiYa9cCUzwe/G7evHSM8fnwmbo665nDqgr7JRgUmJdq+ykK3me3F5Y9q6oI+g4MoL0Dt8XQSyQC+5oHLXR2QodlO6+iQI9MTuJZMOuhbSKzfUeeMnZRLJaeZcjCWWPcq6+8PPfnkfsX1ten90nXNAyi3LcP2b5nn538WU3D9Q0MiB7HZ56JvWaG6ZEIbLT9+9Ga6Prrc79m7ivIpCLbIw4H1sAqoej34968Xth0a9cm23BsS7ndwBGbTQSKa2vTe7VmE25BEIlA7y1ciGOMjgJLzBJPeJ2ZVAyHk58Dp1MQi/ws8Joy+crEIQeHmThMfWYiEeiQgwdFq4TVq6ErTtKU99mORbNCSiTi9EppsV8XTYMCiURg3OiNrcFBRMwXLEhvwHvgAErcLrwQZJFe9u7F388+W5S2LVwoSEjOnGtuTiYfg0FhaLW1wUEcGECvLyPjLJv4/ehd89prUEqbNkFBpjq3sgwyjidTFZKpEg7j/n0+ELIrViRHhpiQa26GIpBl3Ofjj0NJnHkmShT1xjSnqnN6uqZhncbHcex58wrvMagogpBsaUk+v88H52fPHrzHZsOzsmmT6Kvy8sv4W1WVKK3KZlh4PLgPhwPPV57lzbNdQZWw6HXRNKLf/x7PEvfsYfF4YLzxNHe9uN1E//M/2Ce3325MXHO0mgMX7JDF48AdpzM5Q/jll5FF6HQS3XWX9UwfVUXfobvvxrV+6Uvm2YJmn///2Xvv8DirM2/4nhlp1OtYxVaxJcs2lo2FjbExNqETQssG3hAgBBLIm5BkN+V9v303m92E1C+7+fbd1E02yRWyyaax6YFAKIEApthgG4ybbHVp1DWa3p5yvj9+vvc8UzVNskbMfV1z2ZrylPOc8zv3/bsbp9lUVUEJ/Na3QDxs2ED08Y+nnrao6xgbNuSN3ZeFiCUSdR1RV48/LiNgrr9+YePV78f3iRaOtM5WOIXo+edBHBcVATP37YNhHg5H1tG12eCkWiKS602BRcEg5uVKJhCJgBcDAyBw0mmglEiGh1GiZNMmGN/R4vWCDOD6gIn2z95ekJsdHbG613ITbixXUoJ1OzgI/N61K9KgHR6GntjVFasHOBzA9vr6hY1gvx+kG0dcJ3Mc5IpIVFWU0JiexnNl51Q4jPsaH8c1tLWl32hB10HWzM1hbFJ1pNObBIuWm6hqZB3DYDCyqVl0HcNsU+r9fpQ3KSlBsER0HedHH8WeftVVsKPiid2OYJHKSugY0YSe8ZgOB9E3vgEH3rvfnfiY6YqRUOTx4ghFLj9gFE1D5GV/Pz7fujVST1FVXCs3e7JapS5gscgo0PLy1OwOpxPY5fHIEgRGGykYhD1WXp56AIquRzZt8fsjI1I5i8RiwXPgSEMmDqPHZGYGGNvfj2O3toI8bGs753t0vmNRXkiBRFxaKQz2WZmZgYKyenWkp312FiDd0BBbSNzhIPrZz/CbW26JBKiREaS/dXYCsH0+/J8jijwefKeqKjJVx+GA8ldWBgLxhRegwHMnzWxkbg5EXX8/QJ5r2PBmMj6O761Zs3AdwWQyOQnl3mRClEG8FBTuimq1yu6MbLDfcEP89CYu5suGv90Opbq2Ft/PVaFiIXAPLhfmQk0NNs6hIVx3VZWsZTk2hvHk1OfVqxFdsW9fehFIgYAkcBsbM6pjme8bVAGLzsrBg0S//z2ijq+6Sr7v9WKtVFbCm2rEm2AQ3Ymnp0EgbtwYe1whMFedTihW3HiJI2otlsi020ceIfra16B8/dM/pZ5K5nSi4cqLLyKd9pOfTFzPLJ6oquwOWF0NbHjwQfx9zz1owJBq+h3XFOMmMRUVsb9lPCECefHYY9gP1q0DFi3kuFFVrP1wGEptTc3idWH0+WTKstOJveWSSxBhXlGBa5mdxfWYTPjcZlvyGn0rHovY4LFalyZV/VzJ3ByM8+ZmGGLZituN2mFVVUTvfGfsnh0KIaLGYkmeSjgwgFIhbW2Y+/kw/uPjyFDgTIeWFuhaxjFQVRAZ3CXUuG65OR03i4un72ga8I7LFtTXp5aVoao4flFRdmMZDmPfcDqRfaOqssEc15jONBWeSwrNzMiSMSlIHsyMpLLs9SJdjyQLA4HIWnjcDZhJw1zXBVYUBCzoOgjEaDLsz3+GLbZvH7Ka4s3v0VHoRjYbcM5slqnOnHJcVIR7sdvhrFUUlJlJp7ZzOqKqMtWaCcXiYkkoOhyws7gUVne3xEtueOJy4dorK4EZ8fYqjwf3Ul2d2IbyemEDzc/LEgSNjfHH0u3GeTPt+q7ruCeHQ9aUDoUkiVhSIlOgOWLRYsGewLXti4uhAydrxnUOJN+xKC+kQCIurRQGmwBUdjtAz9jR2OOB97OqCgAdXZz/F7/Ad97znsioE7cbhmhFBcA9HI6sXcZ19BiMzWYZVef14nwNDYi66e1FClE6BasXkokJRLCMjQFge3qwgXCjj0zT77ig//Cw7L6crLvXSy9B4fT5oDCnYrArCshXh0OSeYtV2+v0aSgnbjeU8ZYWPEeuMcfez+PHoTRXVcn0g5ISPHtO2UmFVDCmN1dVQelOg4zI9w2qgEUEZfb738c8e897JOaEQlhbRUUg2o3zQtMQpXfmDGogxuuSqeuo88Pd25nU4whpItkQQgik6fziF4iyfeCB1KPqXnsN3Zfn5ojuu4/ottvSa9wRDmMtmUxQRL/1Ldz3jh1EH/1o8lqw0eJ2y/Rlmw3/GusjGqW3F1hkt+Mc118PzE9mUAuBter1yo682ThfkondLlOWudvivn2RBg9HHBDJ7oqL3QEygaxoLDISiItYV/KcSyAAh0ZpKSL9siXGVRXN51wuNFKJNu64MVwoBJ0k0VoaHYVutHo1CPR8aGJjtwPHuNxAY6NsuLR6dSTOsMHOOodRNA3kgMkEUsB47x4PsJMIY5tu/cRcEYl+P9GPfgT9ctcuON87OnKDjUJgHKemoFulkJmzorFoqYXTUY2kYSgkP+fUUiYNS0sXl+DXdWCG1xvbQIQIe+aTTwK/brwx/rUMDeHV2AjdKvo7nEYbCsEe+M//xP76iU/Ers/FElWVEYrcWXhiQqZdNzXJGqxcLsFslk7EZJHLnOosBDAjOiV4aAjEfXExdMdUyi5x5kdjY2qpw0zYBoOyPqUx8tBqxefG+orBIP4dHITNqevAxJ6e2Many0TyHYvyQgok4tLKm36ww2GApNUaWYQ2GERUCnvEo42x556DQXfzzZGKDKd0+HwgAsxm2eaeCCTY4CD+zwVoNQ2Rb1wnsLYWXvY33gAYxiMFciGDg7jW0VGQpzfeiGvORHw+Sbh1dCBVKd5GIwTIuUcfhZJZVUV0xRXJOy6zuN0g2YJB/C7biMl4omnSK+l243mVleFZbdggN7M33gB5KAQiRNnoUVUYDMPDIDvDYdxXWxvmV1vbwiStwyHT2VPpLn1W8n2DetNjkc+Hen9mM+og8nNXVdR2UVUouUaljLsev/oqoqGNkYssmgYC0eOB04LLKXCXPo7Ss1iwtr70JSjfb387Og2mQh7oOpTrH/wAx//bv4UTIR1FjjswC0H0pz8R/fKXGIMPfQhRmakaI0yohUIgMI1pvNGNVkZHUdP2zBng7lvfCrxd6J7DYSjsqoprjFa+cyFcC2z/fmC11Ypr27dPOruEkOQhpy42NCx+HcYFZMViERsxJSXp15HKJ9F1YEogACIoF/vsU0+BALrppthSDEIgyszlAnmfqCzJxASicFetQhOPxYr4zZWoKu55YgKk4Pnn4z2upczN2KLrbE9OwnBfuzaWDFQUEAXsHOGUxVAIeFtfn5nzQAgcK9OOzZzBMTQEMvPoUVzL//gfuW1gwDrk+Dgi6qMzhKJkxWLRUoiixKYls4nOjTGMpOFSr8eTJ7FOurtj19CrrxI9/DDW3C23xN+fBwagpzc3w2ZJpGMIgfImv/wldPj77oPOZLXGpjovpoyPI1Lb78d1rFsHrHa7QaSaTHD4cspyqjoJ13K2WIA3oRDGZXISx2htxSvV+9R1EP1CgOCM9ztNk7UxOX2Zoz1LS5PrMFNTCPDp7cXvGxsxHkZdj+clRyzGS31eYsl3LMoLKZCISytv6sHmrk2aBjBm0FJVGG+KEluglgi/+d3vQBxdcUXkZ88/j42prQ3E4caN0jum6zAG2RvNzUImJ2Uaa2Ulzn3oEMipiy9enHtnhc/txiZ86hT+39oKIzWd4tXj47hmsxljkih1cWQEBntfH8D+bW8DQetwSIU4nqgqzuFyYcxaWvB9RcHGkItoG78fz21oCMetqQFx2NaGZzQ2hutwu0E4cHTpjh2Jo1F0HcbD8DBegYCs3bhuHbx6iUiWDNKb832DetNj0Q9/iDXywQ/K9ccGk9cLJTeauPjNb1BH9PLLYaxFC9fM8fuBOcZ55PVirldWAvvm5tAE5cwZkJjRJRoSicOBmoeHDsEZcP/9uP50ildz2kp/P4jIsTEQh/ffn146ijF9ubY2fgQlK7iPPw7cqqxEmtOePbLWaqJmK+y15yiimprcF+n2eBBp9eKLOJfNhnE1kjkcdTA7C4yoqAB5uEy87ysSi3w+GCylpYtb73I5yIkT2Lt6emKN80zk2DF0ON+1C+nH0dLfD32kqytx2YSZGehX1dUoGXKOifIFxeOBwR8IQFfo6JCY4vPh81AIa9lmi9QjuPREOAySLF4zOa5zZjbL0gXZzstMicSZGei2fj+eT2cnruvhh/H5zTfnPmq3rw9OoDVrYst7GGRFYtFiCJM6RtKQu96aTJFkYVnZuV9/Q0PQlzo6YmtkvvEG0a9/jbVz++3xS5j09UHHXrMG30uk66gq6jvv34/MjPe9D3Pb2AylqEimGS+GBAK4p6kp6BwXXIBzTk9DbwuH8Vzq6vA5k5vpdjt2OqFTOByy23JbW2b3pSi4XqsVuonJhLFk4pBT3rnm5EK1MTUNmHj8OK7RaoVO3N0tHS2aFhmt6PfLOcy1OI2NWxbreSWQfMeivJACibi08qYebLsdilx7u0y5Y4+4241UsWgvsN9P9JOfAIDuuCMS9E6ehPFXXY2NbeNGafRz4xaPB97lykoA3eQkwHX1agDpqVM4RmcnPO2L4Tnh5iHBIMC9rg7vHTuGFGO/H0rv3r3JDQhNw1iNjuIYiSKPpqYQ8RhtsPPYBYPYvCorY0kShwNjpOswLrgRC/9O0yI7eKUr09MgDycmcNw1azD2xvvmJgbPPAPipbsbhZTTqVvI6erDw1B+2GvY3Iz5sHZtrAGgabgujwfjsmZNUk9gvm9Qb2osevxxRDffeiuIaZbBQSiJxnqqLE88AVL+gguQ+hytgKkqCMRAQNZmZeE6M+yh7e9H52WPh+jTn0aaYCpy6BAIRK8X3aCvugrnSVU5YzLM4YDS/9RTIM0/+lEo7OkIpy8XF8vuy9HicmGsDx7EeF15JQiJ6OjOeERiMIjjaxrWaq6baYyMwFB57TWcY9MmOHSMTamI8IxmZqD0l5UBw9NJGV8CWXFY5PVivbABspLFboce0tGRWSO3aJmcxNpua0MUYvSaGR8HzrW0xEYosjgcRM8+i7G//PJz1l0zZeEur8XFcJTGi8TjRkwuF+6HdUCWcBgOnbKySAKSCHNxbAzj0tAAHTZXkdC6DvzhZgbJZH4e+pPHA0w0Ng4kwvU98gj2g5tvzv3aGRiATtXUFD8VlVYgFuXkoEJ2yWXSkNNIiWSXXCYNl0EUV4RMTWF9NTfH1n/u7UUplvZ2orvuitUD2DE7MQFMSpZ95fejOdypU8jUuvnm2K7PnOqs61gzTCbmYj0Kgfl98iT+v2kTsITrnlosMmWZAyuY3CSKvJ5kpK+uy8Yyfj/skQ0bsndK+v3Af+6+zYQek5ypRK/6fLAzT53CPK2rg23e1ZUakR0ORxKLgYCMpi0qioxW5PqKiyTLaAWtXCmQiEsrb9rB5pTR6A68fX14f8MGWfuORQhEINrtIBCNv5uaQoquroME2LQpUmGanJSNW+rroTzOzgIEuSlIfz887W1tiHBcjFo/oRCUdi7uHU3aKQrStF95BeDb3Q1CIZpM9XqRvuzxYBOO5wl2OmGwv/IKNo3LL4812FlcLoA7FwIPhTDOPh+U05aW2N8Jgd8QAfxTVXJUFQY7K79WK5Tf6Lo9QoDwO3RIRgS1tcnOY9HzIx1xOHDs4WEo4kSy4+7atZHRV/PzmF8LpDfn+wb1psWi48fRoGnXLqQQs0xMSE95dGTw/v1ovrJuHdHdd8dGeSgKFOVQCOvTOJ+4tgxHFLz8MhqhVFQQffnLqXU95sjJ//gPKOuf+AT+ra1NnUDUNGDEyy+jhpbbjaYp99yTXvpksvRlFr8fEZvPP491vXcv8IjrQMa7PyIch4nOYBBrsLY2d1EYqopopf37gUklJSBP9+6Njej2+UAeBoP4XkPDsk2pXVFY9GYiEN1upAHW1yMKMVviIBCAQW82E73rXfE7Dp88if00UeM4txsOvOJi6EWLVXc0F6KqMHgnJ7Gfb92aHA8DAezvDgcwOtpR6HSCkGxqAh5w13qvF1jENWxranI7Nxfq2OzxQH/iRgsdHbjGePNlehrOrqoqEDG5jpYeHsa1NDTE1i6nFYZFmQrX0mPSkCNgiTCPoqMMl3OdUZcLqfI1NcgUM865wUEEeTQ1QY+IZzOcPIk5uW5dYqcFEb7zzW9iz73nHgQ+JBMm8Dg1l8m7TDOlOJJ5fh46zZo1eG6qivtatQq6SKKyUUwmcmMYkymSUGTdZnISaygcBu7bbJgH1dWZE2o834JBXL/XC8K3rg7HTmV+TUxANx4awt9r14I8TCdLLp5wg04jsWis68mNgJhYzGFdz3zHoryQAom4tPKmHGy/X3ZGNhbG5Vp2ra2RHZNZDh9GtNCVV8K7bDzeb3+LzWbvXiiORkXX4QAg2mwA0rk5KILl5djszGZczzPP4O9rrlkcb4jPh+vglNpkylwwiGidI0fwd08P0pDKyjBOx47hGnt6Ysk0nw8G+/790mC/6qrkBi93HuSaZbOzuM7m5uQRf7ouPXILKader/Rcqyo24PXr4zc+sdtBHs7OYuO78ELMCSFA6HEjlTVrst9gXC6Z8jwzg/dqayWhaLPhedjt2JwbG+Omfuf7BvWmxKKZGXi6GxsRyccKp8OBuWqzwUAzyiuvgEC02dC4JLq4dzgMb7yiwBliJBgVBeuguBik4W9/i+YlXV0gEBOVFDDK7Cyap7z2GmoIvu99UEzr6lIn17g27IMPYp2tXw8ictOm1H7Pwml9QuD80YZ0OAzi8OmnoSju3El07bXAlOj6iNGi68B2rxd/x4uUzlTcbqQrv/QSjt/QgKjDnTtjcSwYxDzx+TC+q1Ytq46D8WRFYBE3zgmHZZTCSpZwGHu+yQSHRrZEua4DpyYm0Ik5Wk/wepGdUF4OMiDeGmRdggh613JOI3e7QW4EAsDTdetS0w14fXNUYXSjldFR6AirV8vsi6oq6Agmk3Sg2Gy5Tc9jItHYaIUbGXCjhbVroQMtRAqMj6PObX09GujlOhV2dBQBADYb9G/D9awILEpHNC22jqExpZMbnjBpeK7TktORQAA2idUqU3pZ7HY4NWtroZNE6wLc3Xt2FhHW8Ww8lr4+1KcWgujDH46Ndkwmui67KgshG4QwcZfK78+cwTWoKmygigrZ+MRmS08PESIyQpEJRZdLBpTU1EDPrKmRNRZNJpwvlWtm0pIb7bBeVVKCZ+V24zxNTcnntGsFDgAAIABJREFUm6rivo8fB66VlMC51N29uA5TXjNGYtHYYdyYBl1enjHO5jsW5YUUSMSllTfdYKsqlCCLRXZGJgKx19sLAy3ehjE9DY96RwdSclh0HXVfTpxA+nG0Eej1giCsrISxz8ZgTQ02A5MJSvaTT+Lva69dnE3d6cQ9lJTImoKpiMcDQ/f4cYxVfT02lqYmbOLGew2FQLL+5S/SYH/rW1Mvqu1yyWYlbW1QTlO5TlXF+YqLY8Gd04j7+0H+mUyyy3I8cnJmBpEYExN4Zjt24LvRGylHspaWgnTOVRdUn08SipOTuP7KSijr7e3Y7BKkN+f7BvWmw6JwmOjb34bC8pGPSGLI6wUWVVTEFvs+ehTEX2UljLHoz0Mh/FbTQCAaFS+eO2YzFKF/+zdEVu/bR/QP/5BahMiBA0Rf+AKUxY9/XNY3Syc6LxjEPfz0p5jf73kP6jmmu4ZcLtxPvPRlTcO1PvEEvrN1K2qwckMSFiYSua4Yi6rK6EMmSLNd4xzZvH8/niM3Zbr00viR3OEw8MjjwTrnyIPllFaWQJb/FSYXwU2HFAXrcJnUmlw0EQLGucuFfTsX9eteeAGO16uvRqqpUcJhRNmYTHDIxjPKAgE4VhUFEYjpdhteShkZQeS31Yr7SdQYJpFw5oXLBd3HmBKsKHC0+P3AicbGyPHSdeivup77juzcsVnTcI/shG5rS1/vGR6GntvcTHTddbnvHD8+jr2vrg6k9FndKO+xKOmHIraOIUfCEcmoKiYNrda82D/iiqLAcamqsaWTpqfhkCwtlU1PjKJpkpjasCF5V2XOjLDZUFYlUY33hcQYDahpkaRaItLd4QAOT01BR+O66fX1MksrW5meBknpdOLYa9dKTOFr4/rvVmti8s7YqZsjW81m3CO/eK5pmrS/OHDGKB4PbOjeXukQ2bIFtleucSJVURRZV5EjeDlDxWKRjkX+N4XrzNOVl1+yokhEk8l0HhGdJKL7hRDfPfuelYjmiaiciJqFEFNn37+RiB4momuI6DAR/R0RXUtEnURkJaITRPRVIcRPos7RSURfJKLLiGgVETnP/v6TQojXF7jElTPYKYgQUIRCIQAnh7p7vYisq6gAcEUDnKIg3VBRUGPDuHn95S+IdLnoInjKjSAfDMqumm1tAO9QKDKSZGYGKb9VVVCsFqPWz8wMQsorKuDNziRVYWQERv/AADbgm24CiWixYIN4+WUoiMkM9kTCjQ5mZzHGHCGaTnoOh/lzjQ1FkSnLXi/eX7dONrSJFpcLivrQED6/4AIQNMkiQr1eKK4WCxTqXD+7YBD3MDwMA0PXsVnV1eHf5maZXk0LbFAFLFpeIgScEsePE917r6w9Fgoh3cZigeFtVEx6e2XH4iuuAFYZ51wgAENWCBibxvWj61ibRDj2F76AqKN3vQuNXBYyLDSN6PvfR6pQZyfRZz4jMSwdgu3MGaKvfhX1bXbsABHZ2prab43XwtE3FRWRxJoQMDQee0zWkrzhhuRpS7ouFWCTCeuaa5ZWVUm8yDTFS1VBpuzfj3VcWopIr3374kd+qiqw0OmUjpv6+uWdYhYleY1FQpBgArGycvnX38uF9PVhn+nuho6QrfT3o7zL1q2xzee463gwCMIt3j4fCkG38vtRAiWd+sNLKYoCDOfSOFu3Zu4EDoehr3Ajlupq4JDTiXFwOPBs1q6N/a2mATNMJuiXucIKjhgfG8MxW1pw/kzJjL4+EMPt7ci4yTWmTU1h/6yuxtwqKspvLKIovYhJGyYNjWnJXHeOScNU00bzQXQdmOHx4LkaHQoOB5qxmUwgEKODFhhvnE7o9InwTQgEhDz8ML73oQ/lLvKZAx2Y4OVmIqw3KQqu8Y038F3OkGJbMRfP0ePBWjaSh/X1MkqRo1W5Q7KuY45xFB6RjLLkuUcUGd2aDBdCIeBkWZl0ktjtwM/hYTy/jg7otanajkspTJoaicVgUH5utUYSi3HWX75jUV7IiiIRiYhMJtMkET0jhLjj7N97iWg/EelEdKcQ4qGz7/9/RPQxIqolom4i+jUR/YqI+oiolIhuIaJ9RHSfEOLBs78pJky6SiL6DhGNElETEb2FiH4khPjFApe3sgZ7AZmaApnW0iI9VaEQokIsFngv4ymATz4JoLv11sguYK+/TvSHP8Bgv+WWyN+qKhRCIWAkz87K5iCsNM/Pw9gtKSG6/vrcp0txd2CfDxtrpjX8RkfhJSoqArifPCnTwevqQG44HKkZ7NHi8WAjURSZ7u10yr/T8UIFAvCejY/Lbsr19biulpbE6VJHjoDcKCrCHNiyJb2oqrExjHVLy+KlWykKzjM0hOcRCMDA4MjZPXsW9nItZyxyOt9cWMSk+5VXIt2fCEpcby/m7caNkWT30BA6MZeVIfqvoyO2UUp/P/7f1RVb29Pjwb9+P9EXv4g59OEPw3GxkMzMINX5xAl8/777MO/NZhB4qZReUFWQpr/6Fe7r3nthRKYbFcE1doTAuY0Nsc6cwZiOjwNHrr02adfOCNE0merNzojqaokZ7IFOR5l3OhENeegQcKaxkejii+GgiEdMMTnqdOJvjlZfxELfORVuQHXppfmNRa+/TkJVZdOhlS6zs7JJQbImA6mKy4UaeDU1wAvj/OWuqG43cCpeWr6iwMHh8cA5m0qJhXMhHg+cIaEQ8DhZdFOqEgoB6zkah+uY1dbKbuzNzYnHzemUdVuziTjjyKHxcRy3rg66by70m74+ZHu0t6POXK4j4zir6GyUe15jkcdDwkgaGvchY4ThQp1t8116ezEfzzsvMjLQ7QaBGA5Dp4i2cVQV9p3HA6dsoqhCRUEq9MGD0MfuumtxxjNeqvPYGNaDywVbcds22Im5siX8fmAK1+Bvb48fTKJpskkME4qcCs/RiNywhctHpZsOz03hZmdBHDKhuXkzXsu5XEU84XJaxjRoJoqNHc1DIaLOzvzGonyRlUgi/hcR7RNCrDn796eI6H4iGiGio0KID599/yARKUKIvSaTqYSIVCGEZjiOiYieIqJWIcSms+/1ENFrRHSbEOKXGVzeyhrsJOJygVCrr5cbCXuoQiEAdzwS7/RpeNR37YrsWDo0hMi8xkai9743Ekh1XSqCTU04N9f3Y6PE7QaBaDKBQMx1vQdVBTkXCuEa002v4WMcOwZF0maTxq8QRH/+M9IHxsexId17L9KW0mluMjGBTYRTrHkDMdZEZEU6mXBx4P5+6TFfvz62I61RQiGQwNz1bPNm1HfMJG1NVXHeYBDPO9X07UxFVXGvp07hHlwuov/7f1PaoJYtFr2ZSMThYUT0bdyINF4ucN3fDxJr/frIdBy7XUYg7twpu3Gy+Hz4rdkMwzx6DjMxZreDDFQUdGK+4IKFr/XAAaJ/+Rf85mMfg4LNeJYqgXj6NNHXvgbHwyWXwMOf7hoRApjJ9Rzr66WSPzKCtOXBQbx/9dXA81SxyHjsoiIY6PFwIBUikVOWX3oJpCsRsGXPntgOq8bjOp0gEHVd1j3Kh1pV3EjixRdlA6rHH89vLDp0iERFRW7ryy1X8fthZJeXx9SSy0jCYeg1wSCaaEQbhSMjiEZZuza+U1PTUPN1fh51iDNNJVxssduBN1yzKxfp30SyNvSJE3gWW7dKrBQCzp9gMDKTxiihEPCZnSCZnH96GvoMk4etrZgfqppax+ZU5ORJ6C5dXdjTshWfDxjKr/FxvL7+9fzGolOnSHAaLBMSnJb8ZpGREeyp69bF6j0PPghi6r3vjW24oSiYYz4fAgOMJQKM4vGgtEt/P4JBrrtu8VO+uTzACy8AS2pqoBtt2pQ7x1UoJMsicbZUa2tq6zcUwri43SD9dF1GRVZVZRbw4nIB1w4fhq7V0YG09M7O/HGUpiLBIMbNGPTh8xF96lP5jUX5IivRl/IsEb3TZDJtFEKcJoSRPktEwwS2mEwmUxUR7SCirxARCSH+u1fQ2XDWSiIyEybF/2symaqFEG4icp392nUmk+kxIYR3ie4pryQUApCWl0vFVQh4twIBpPDEA0W3G2RZczMiSFgmJxFRU1GBLs3Rxp7djuPW1Mjudc3N0uj1+ZDCLAQ2rFwTiMEgFKhsouPcbkTocR0ergs4NIQog4EBbMy33Qbj94034AG+9NKFPfLz8yAQdR1GQmNj5KZtNsux83gSK8OKgusZGMB1lpWBPOBCxPE2Y1VFtMzRo/h/Vxc2smyeQVERlJvxcXhLw2GQibkUbvLAHq+SElz3nj04Z4qybLEoE5I7H8XtxvpZswZdlXmOcge688+P7fr+2GNQ4C6+GBhmTLP3ePCdujq8H21cBALAmVdfBRlos4FIjJcSZxRVJfrud4l+/nOskS98AXPa6QRRV1e3MOEQCKCD869/jef7xS+iI3K6omnAFosF2FJTA7yYmoKD59gxKLZ33okxSkchZaPbasWxKytxX4nuLRGRGA7LlOWJCTyn666DYZAoFZO7PjscsoB6Q8Pyj34LhZAy/tJLiNxwu3HNPT2RjrYFZNli0bZt+UHgZitM2LW1IeIvF3UfH3sMY/fOd8aWKZiYwGcXXRTbLIoIa+vFF/Gdm2+OzPpYLqIowJtAAPMknayFhSQcBs6tXg0s4NS/9napO7a3I+K6uDixU8LrlXWTUyU3hQBZMDiI9d3VBePeGPGo65gzuSASOzuh9732GkjTXbtS/20oBMycm8O/DoeMkCoqwrzr6UkrkmzZYtHatTntDpt3Mj0N3aipKZJADAaJ/vM/oY/cfXcsgcg1VwMB6FSJ9uCJCaJvfAP78P33w3GxmMJz9/hxmf102WWwQTmqjbsvZxoJqSggrsbHsa5bWjB2C+GUoshUZW4qUlODsfN4MAfNZtggXCuaOz0nEiFAph0/jmsym2VEaF0dnms+E4i6jnHjlPDpaeilXLrMYoEjKBGBHUeWLRbli6xUEpGI6HKTyTRARJcQ0ccJzPI/mEymRsKEsPB3z7LIHyMw0BspNpe+lojcQoghk8n0FSL6P0R0l8lkepmIHiOinwohRhf3tvJDNA0gZrFEdtLl2hDr18dPDdF1KMRCoL4fG40zM2gKQER0++2x5NPUlDRKuWZXY6P8fTCIqJlwGEZmrrtser3YGC0WKOGZGKQjI/AYFRcjdbK+HsTpo49iM6iqgseODXZdh2L98stEDz0E5XbfvthIg3AYBKvXCyO7pSWx4VJSgu/4/bJIL4vbDa/h6CieL3fk4xB9BnSzWW5wug7S+LXXsFG3t0NhyFXUoNkM5XV6GkqCoqTWtTCZaJokDoNBmf5QVSVT7UymtKI1Clh0DkXTQMopCjox85yenIQhtXp1JIHocKAWq9UKRVPXYVSw0uV2IzXMagWBGK3MhUKY67//PdGPfwyD94tfXJiwnZxEzcMTJ4je8Q6iv/kbzD2nE+dOhUB85RVEH46Po7nS/fdnRhQHAnAmEGFsysrw9+OPgxgtKQE+X3ppeljHHQgDASjr3NmU6yNyB8No4ahRbsbicCCa4MABHGvNGjhWtm9PHi3CHn5FwT21tCzv7r8+HyINDxwAWer3A7u3bcM+sHt32o6YZYtFbwYCkQjr2++PbVKQqRw5AjzauzeWQJyfh7Ovvj5+uRMhQEhPTGBfXo4EotMJ52MohOjDZN1d0xHGVm6g1NAALKiuhp46NATcLy7Gq7VVRhjFq+9WWQkSgCOrF8IVhwPn8Xigr0Y7sljM5oU72qcjF10kyR7uthstmoa5YyQNfT58ZjJBf25txfVy078MCLdli0XLeU9YbHG7obPX1KAZCgvXqJ+aguMw2iEaDGJOhcPJmxydPEn0ne9gTf3t38Z3bORKPB7M36kpkIfhMHS23bsjM7A4nVhRgAVM1KVaksVul3ZRU5MkoRMJn8/YwdtqxToqKZG6Znk58IRJQ+Pv2M7iz0wmfH76NPYYlwu/v/BC4CZHNU9NYUyig0iWqwiB62b7kv+dn4fdx82tuAfCmjVwBqUZNbxssShfZCWmM5uIaJqIniCibxDRy0TURUQThKKW7yZMiv+HiOqEEF6TyfR/iOifieinRPQ4Ec0QkUpE1xPRJ4ioQwgxZDjHJiK6mYiuJjDXGhHdIoR4fIHLW1mDHUfGxqB0tLfLDXl8HIoZF4mOJy+9BIPpuusAfEQAij//Gce86Sb5Psv8PD7TNBA9tbWRylg4TPSnPwFUr70299Fq8/MwTEtLU+9sbBRVRUThxAQU2Z4eGTXJBvuVV8JgjweMqgpD4uBBbDCbNyMypbpabqBEANZU6hwJEdl1cGoK5OHsrAzPT0QC86ZYUgKF+/BhbORNTVBeFzNNyumEgl9Sgs0kneegqjDsfD5ZuLi4GBvvAjW6UgmVL2DROZSHHwbRfscdIL2JsGb7+2XtThaXCx0CVRVROV4vDEbGDKcTvysrQ6Rw9Bzj+lj//u9ETz+Ndft3f7ewQvP880Rf+hLW3ic/iaYIwSCup7gYmJbMeHS5oJj/+c9YY/ffj2jZdLGIo/RYca2vx3p46imQdiYTHBVXXpl+pDXXTtV14HRFRaQSG91oJVp0HQryCy/AEDGZYHjv25c4OojF5wNGB4NYyw0NuY9Ez5U4nSCDDxyAkygUwrVu24amOBdckDClvYBFy1xGRmDMdnUtHJWcitjtcK52dqI8i1F8PugVpaURXXMj5NVXQWRt2wbjejkJlyjo68M99PTkrlM0O0lUFWsrGl+npjC29fXQ6Ri/x8ehG61bFz/aUAjpzEzU1dXtBrHLdck6OlIz6Lljc1FR9sa/EGig09cHXbGtLTLC0OmUjUPKyyVZyNHwueiIWsCi5SeBABz+RUXYZ9ixo2kgEPv7UQqG9Sjj715/HXM0ugGLUZ5/HiVlVq+Gk3Qx6q4aCfBAAGvW4cAaP//8xE4IIWRUIHd1tlqhL8TTvYSAzTY8LGvJd3TEb1jFHaOZAGSHgNUKDEh0DiLZoZizvPg6uQM1l4XhJl26DltvyxZcT/RxAwHYchUVy7NxFteI5EhDRZGd6vm5soObsw05myQBLuU7FuWFrDgSkYjIZDL9moh2EybFXwsh2s++/yIRHSGi7URkFkJcfPb9I0TkEkJcHnWcLxPRJylqUkR9p+3sMU8LIRZKLlp5g22Q2Vm8jHXqHA7UkrPZEiurdjvSlc87D1E0RCCFDh+GZ+Xii2EwGoXrkvl8AJHGxsgNTFURgTg7S3TVVbkpws3CdWxcLiiUzc3pK3cuFwjAQACkRGMjiIAXX0zfYA8GYRQcPozNqrkZY93UBEU4nUgPvx/KhN0OYC4vh6GyUIdALuDO9TdsNtTeSbcTbKbi8+GaOUJxIW8gRxxyWg53+qqoSHm8UnriBSw6N3LkCDBl3z5EzhFhjvT2ggjctEkqWT4fCESfD92TnU7MBS4pwJEj5eVYq9FGuaZBYf2nfwJe3X03agYlwwRFIfr2t1F7cdMmos9/HhjFhBsX9090DK6T+t3vgqy/8UZE5GXSKVRVZYpaZSXWznPPwdgMh5H6du216Uc2ahpwLhTC/dTUJDZC2StvHNtQCLi2fz+M+8pK7AV79y4cUR4IgDz0+7GeGxpyR0TkUqam4AQ6eBBEKUd6b9kCY27DBlx3eXnS+VTAomUs8/PAo4YGGLPZiteLpkmlpVjzxn2ZI82IQL7F27Nffx1zbfPmWFLgXEs4DAKd9cgtW3LTcEHX8Rx8PlnjNZ6DkNMBHQ5gaUODjJju7wdWbtgQ/5p0PdIJy9/x+0EecqOFdeviN1pIJrkgEgMB3NfMDBpiDQxgDjQ3yzGpr5fEYYbRsgUsyjPhYARFQZS0sTPwr36FbKibb45NPfb5gCVCgEBMRK7/+tcIjNi6legDH8h9tGcohHU3P49r5nrUXF5q69bUsyZUVZJ0RJERf0Qy3TsYhA7S0RGrV3BXYWM3b2OdTc5oSkU8HjyX6mqJJ0KANDx6VJKHHR1yLSeLpnS5oF/W15/bpirRacmKIkvX8HXPz0vykInXpibcY4p6br5jUV7ISkxnJkLY6S1E9D6S4ar8/m1E1EZEXzW8r1HUhDOZTA1EdF/Ue9VE5BdCqPyeEGLUZDLNENEit3dY3uLzQUmqqZEEotcLZbWyMjI83iihEKIFa2oQhUMEg/zMGZBS550XWR+Rf9PfD3DhMGbjxqRpRM88A2XpsstySyDqOq7P7wcQp1F74b9laAjEqtWKTfvoUdnxbNcuEKnppF2XlsKrvHo1oqCOH4enbO9eAG4qwpFWY2NQNsvKsPl2di684U1Pw9gfH8cGuWcPNrSlDJmvqADROTaGqI/VqyOVmlBIEofczaukBM+wvHxRO+0VsGiJZWICKcUdHdIpEQ4DT4qLgUXGcgc/+xmUtTvuwN8mE+aSyQRMGxqSGBZNIHKU3Gc/C0X2U59CF+RkMj6O9OVTp1DL7MMfxnX5/biOhQhErit0+DDW59/9nSSb0l1zxvTlmhoYBU8+Cew+/3wQsJlEcPt8uBc+bjwvvVHMZoylrgPX9+9HVF4wCIy/806QIhZL8nsMhfDMOFWxqSn7zqm5FCYpDh5ExCHX5mxpwVzt7sZ+VlGBOZfjeo0FLFpiCYVAipWVYU/MVjQNZV9UFRGIRpJQ0xCpq2lYu/EIxJMngVddXcuPQJyfhy6kKBirXKVY+3yyw3xNTXKcNJmgOzDpyOUkOMuhrw/rN16KuNmM7zKhUVkJXWRyEp91dKTeaCFaLBY8c01LTVdhxxC/5uaA9XyPPD/8fmDOli1LjpEFLFoGIgQcn8FgZLNLIZDJcfw49qVoAtHrha5gMsHZFY+QCoVg1xw5gtrMd9yRfUq+8bo5ZdnrxXVUVuLv8XEZhZ2q/cNSVIRXaWlkqrPTCb0rHIZdsXVrZDQfd4HmF2dWcEflVFOko6WyUmaIlJbKlGUuhXDppbCRLRZJfkYToFarHPeaGpkSzJ8vtnBasjElmZ3GRHK82QnDLyFkxHZzM8Z7kTCqgEVZyEomEYmIziOifzG8/xcCU2z8DhHR74joCyaT6WdE9AwRrSGiDxJachsrzV1JRN8xmUy/IqLTRKQQ0Y1nz/OZ3N5C/oiiSAKJDc5wGEZycTEUwkSbx5NPygggqxX1Jex2KGtNTSABjUqTqkIRnp0FuLS1RQKhriOKxm4HiRZP2cvmPu12/NvcnH5ki6IgzWhyEoDo9yMayefDBv62t2WW9uv14rrCYRyjtBQG6oED2Oh3745f+JoJUSZkLRaQJ52d+IwL/iaKzJufR92ukREoH3v3InqLPUxL3dGupATXb7dD0eeurz6fTFPgLorl5UtWYLiARUsogQBIwbIy1FA1m/Hsz5zBnDamIisKInpmZ4E/RUVYkx0dmPPT05jb1dUwuqMxTAissc9/Ht//13/FOk4mzzyDiEWTCQ1XLr0U7/t8WMclJbKRSbRoGlIYf/xjfP7e98LxwinC6YgxfbmoCB7tp54CDnR1Ed1wQ2Y1yBQFx1UUudZSXWe9vUh76u3FNfX0IJK0vV2OB9dPJIocI0XBc+RO1g0NqdWSXArhTuAHDsg6dCYTiN9bb4URUFeHcaqsxGuRsKmARUsouo79XtOQjp4LR9X+/dAf3va2SCNWCGCc1wt9Kx4e9PWB0Fy7NrVO8UslQiDSm8tF7NiRm+7LTKRxKYP6+tSyDIqKgB+6Lh0htbXAs9WroTPNzsZ3IBcVYf2+8Qac2NXVsoxPNrU/TSYcW1XxMs4lY8MoTk12uyVOVlbifjjCkEsiXHUV6m4fOAD8yaWzPQUpYNEykDNnQJBt2iQDF4RA5ODhw7C/opt3ud0g+y0W4Ei8yEKnk+hb34L+dPvtyKrKBQHEqa1zc7B3iothJ6oqyLVAADbf5s3Z4S0TgOEwxoijiNeuxTrh6ORgEC8m7iwWjAcTh9kK1zt85RXoaMXFwKDdu3EtRv2muBi4b4ym9PnwKiqShKLNJuuCNzfnXkeKrmPIQRtEGB8uF2W14rOpKVwPO7MrKmCDNjcn1oVzLAUsykJWajqzmYhmCWxvlxCi/+z7lUQ0T2CR68920CGTyVRERJ8monuIqJmIBono34jIS0Q/pLPhqSaTqYOIPkXIa28h5MGfIaJ/J6IfiIUHc8UNNodWKwrAu7gYQH/sGMD1/PMTR6EcOwbDdd8+pL4OD8NwHx2FMX/FFZGKjRDYvCYnQVZ1dEQaW0IgHfjMGUT0dXfn7j6DQZBTRADxhSJrosXplN2XuRbi/DwM9htvzMzrrmkwSOfnAcitrZHGw/Q0jI6hISjle/ZgTBQFSvvgIO6LQduo6LJXiAjKshHIvV7cC3ct5K6JvGnz5pFNx7NMRAgoET6fLFxeXQ0SoqICzyyHG2aqofIFLFoiEQIdBPv60EilvV2m2bvdMlqPCGvnoYcwT269FTjT34+53toKjBkbg8HV2Rl/3vzhDyAOW1qIvvKV5EZYOEz0zW+CBOzuJvrc52SRfiYQS0sTRyD39RF99av4d9cuone/Wxa2TzftTFWlEj4+DqfL5CTu+4YbME7pKm5C4B68XtntPZXrCgZBrL3wApRaTlm+5JLEY2FsxMI4xQpoXR2U5HPdgVDT4EQ7cAAGAHe73roVJAk35hECOFlVBeMjQ4W5gEXLUHp7gSHnn5+bmsCnTsHpun17bHmXoSHoJx0dsZ1TiaBbHTwIjNqzZ/lE5obD0IW4S3K2xj+L2w1ijQiYkEkdVKcTL7NZlmMoK8NYejzQQaMzYMbGpP5aWgqnVbrRUMmEic35eUkcOhyRTRqMdQwTpW2zhEKIOPN4ENmag7rhBSzKExkdhf7T3h4ZbPGXv8DZefHFqFFvxAqnE+vVaoWTL94ePzoKXcfvR/ryQo7VVCQYBEY4nVgDFRWY56WliJa027HGe3pyU+/P5wOmzs3hXtvbgeFcboajDbm2Ib9y1SRM14EznFXGXZ97etIrEcV1BsPLCJwpAAAgAElEQVRh2QGadSNuwBLdkDPd6zSShVyrkQjzxpgOXlyMc3s80DcnJzGWRNBjucZhLhxIZyXfsSgvZEWSiMtYVtxgT0wAjFpbAeJCQNl1OqEQJqqjxZ1Q16wh+qu/AmDOzmLjGR3FxmPcfIRAVN3EBIxcrldmlIMH4Y264ILcetoZ9IqKpBcqHRkcRPQkExM8XjfcACUzE3G5QABoGogPY0fqaBkdRYTPwICMomxuhsLY2Yl/4xkV4TCeU1kZFGjuwsbNDbq78YziKancaKWsbHGjgXQdG7vfj3+5i2tZmUxfrqzEPMsxsbBMzLCMZcVh0dNPo07gzTfDU0sET/j0NAhyVpZ0HXV6envx3e5uYFZREdbj5CTWVn09xW3cIQTR976HQuHbt6MxSjLFZ2yM6NOfBul+++1EH/ygVDa9Xiis3B00WkIhnOdXv8Ia/J//E6SEyQRsTVdp9fthgI6OopnV2Bjw421vg4KaCbkQCgGPNA1KaVXVwmt+agoOjldfBc6sWwdiZNs2XAN3Rk8kmibJQ05TXLXq3Hb6VRQ4uQ4exH15PLieCy7AfOzultELJpMcqxxELBSwaJnJ5CQMwPb2xKVc0pGZGdRPbW6GvmRcX5OTcICsXh3ZLIrFbsdab2zEGlsO0blE0C2OHoVxu3lzbiLhWGcJh4Gp9fXZ7ftTUzKSkQgYbbXCmWM2wwlMJBsthMPAoY4OrHWvF2s802ZOihKZkuxwAMN1Hfe1alVkHcNMzuP3g0gMBtHAMEsSpoBFeSCzs7CVGhoiyyy8/DLKJWzfTvT2t0fqAw4HAj+42VE8vf/oUehG5eVooJJNSQJuHDI3Bx3JZJJOwtJS6C7Hj8s6pfGyRdKVYBDreGoK66utDfYRN17hZh/GBinchCXTlOXo8586hWfj82E9b9kCp6OqymZrmegMTPgx6efzYXxttqTNSf5buLGLMcrQmJbMRCETh8Yaji6XJA6523tdnbRF0w3KSVHyHYvyQlZqOnNBlkCcToDDqlVSeRkagmHX2ZmYQFRVbFTFxSjYPziIDaq0FIb2mjWRBch1HZvXxAQ2ClbcjPLaawDe7u7cEogOBzbcsrL0iShFAen2+uvYGFQVivzdd0tjOV3hlGqPB9fU0ZE84oc7n65Zg+d1+jRAvKQE0Z/JvORWK57r/DyIwzNn5Ia9fXvyFMqSEpB6oRCuL5eRD5oWSRwy4cDRhsbz8eY1PAyF4FySDAVZPDl9GiTi9u2I1COCIjg9LTu4EWGuPPIICMS3vhXrcGAAc6qrC+Th5CQwjesiGiUcBmn49NP4/Sc/mVz5euopon/+Z8y7r3wlMjXI48EcZjIpWo4cIfr614F7111HdNdd0nhM0KU3oQiB9T8wgMjDkREc453vRPf0TAxtjorx+zEGNlty5VbXgdH79wNLLBZE5e3bF+td1zTpEIh3H7OzssNqY2POawemLIEAntPBg0j/CgaByzt3Yh5u2wbM9noxTvzsKirOfbRkQRZHvF7sl3V18XWVdCUUgr5UWgocMK4JXtN1ddAFomVqCsRAfT2wZzkQiELgmvv7sQ527sy+Yzobqm63JNdyYZg2NAB/VRXr2u0GVre24h6OHpUpjbW1iDQ2OoM0TdZnXaihhK7jeRpJQ06nJpJN/OrrZW3H4uLsn2l5OaIQH34Y6c033ZReTe6C5Jd4PLBHqqsjm10eOQKc2bwZzlWj7sOkY3k5CMRoPVoI6EQPPQQ9+2/+Jv1GbCyqKlOWFQXn4nlvsWAfffllOFbq6xM3dUlHFAU60fg47rupCWuf06eJoNtUVQGHee9mcjEQAAYUF0MXSXdvn50FIdrfj3O2tKA8lLGUi9WKz3w+HD/dcxhrNHI0p65jHDUNfzMpWlwcWccwXlqyMcKwuDhyvgiB58fEITtOV62SgSvnSmcrSG6lEIm4tLJiBjsQAOiWl0tv08QECME1a5LXInz2WWxYN98M8HI6AdiHDwPojAXDFQUbnt0O8IkXuXf8OFLGNmyAopwLwkoIKOBuNzbbRNF6iWR+HqlHL7wA0G9rA+mQqcEuBBTLyUn83dQEoz3RNQUCeBZDQ9J7tX49lN/TpxGZ4PGAKLn00vjpVpySt38/Nu6tW2EYp6pgaho2D4sl405//y2qKiMLg0G8x92jmThMJH6/TEVvbc1Zd7h893KtGCxyOFBbtLZWRvk5nYgWqavDvGd5/HFgxWWXYd7PzGButLZinkxPYy3EqwfodKJxyhtvEN17b/IOzKEQCMA//AEOkc99LnKNud1Yo/EIRI8H3vwnngCWfvzjuAefb+GmK/FEVTEWTz6JtV9djXpY+/ZlHgXHaT26Luv4Jbomvx9pvS++iGdVUwMFeffuxOSB0dvPRrLLBWVbUWQaTmmpTG1eqhRNjweRhgcPykYQNTXA9l27gJNc+N3ni0xZLnjc48qKwSJVxbzQdcyFbKNM2ekxMoKyC0ann9+P+VdSAkM6Wq+Ym4OuVVmJxgZLXaM4noRCwE+HA9i2eXP2ZHowiOOxU6G2NrdkaTgMvYtTF7nr6smTIB06OzH+8SL4WG9TFHxufAZeb2SEIXeXJcJ5jBGG8eo55qJjs1GcThCJRUXQzTPs3lrAomUswSBsL4sFDleeUydOEP3Xf2Eu33lnpGN0ehpzvaoK8zxebfWf/xxp0Nu3E913X2YEUSAgU5aFwFq22XBezk4YGIAD2GQCdsRz9KYjXIJgbAxjU1cHPY3v0ZiunAxTNC0yUrGoCGOQLGhB12GfHTsGW5MzYbq7ZXPSeL/hus+ZNNKLFrZzvV6sd2PqM5ODHGVpTE2ONxa6Dv1schLHDIcxzxoasG81Ni55EEe+Y1FeSIFEXFpZEYOtaSCoTCaQhRaLjFarr4d3KxG4DQ6ic+q2bTDcXS4Y7EePAoDe+lapjAWD8MyMj+M7GzfGHvfMGRB169aBGMhV8d7xcWxqnC6SqggBMvShhxD91t4OUnTv3syVeK7H6PdjQ12zJvGx5ubkmAkB8F6/HkBuHBtVRYTkgQM4/qZNIGDr6mQjgMOHsbk0NsoOWTZbetfOoe+8+aT7WyYOQyG8x0V52WuWqoTDUBQUBWlf6TbFiSP5vkGtCCxSFKLvfhf485GPyIZFp06BLN60SSo8zz6LtP6LLya6+mqsb+4eb7HIQtPxas4MD6ML8swM0f/+30j/TYQ1w8NIXx4YQPTg+98fqXi7XLIWqZFEEwLX+J3vgKC77TZ0NAyFZIRbuvN2agqG4eHDWDdXXIEi55kS6ZqG6w+FsBZrahKv64kJjPfhw3hOnZ0gbrduTc3I5yhqvx/PhqOaGxoiDVw2vBeTSJybA/l84AD2OV3HdezahRfPM+6wHQrhWvgZLzKBU8CiZSBcs3luDt1McxHNxV28L788MjuDsxyEiF9SxOmEUV9SgjWfrRMvFzI3JxvNbN4cv3ZjOsIdlLlxQH394t2n1ytrRHPpnZoa2dRq48bEOKjr0N84osnlkjVpibD3GGsY2mypOxtyTSTOzhL98Y/YH266KaN9ooBFy1RUFRlb4TCytXiO9fXJ0lJ33x25V01OQpeqqQH+RBOIgQAcnseOwXa79db05iFHEM/NYe/kDuc2WySmuVzAO5cLARTbtmW31o1NJX0+rOOWFqzlkhL5StcZIYTs6syZFNGpzoEAdIiTJ3HP1dVIWd64MTU9QVGgY3CmWLrCackcZej3y/RtY31ExhVjinJ0yraqgmSenIRuzE2fmppkBtA5zLjIdyzKCymQiEsreT/YQqCeViAALxB3v+VaGVu3JgYNnw/1vbgDXyAAcmp0FNGEl1wia/p4PFC8xsdB+mzcGHvcoSEY3WvWwDDOBViFwzivqqZf5HVujugHP4DSX1VFdMstRNdck7nBLgQAemYGm9GaNfFTBNib1t+PTZa7iHV2LuxNDoUQVXPoEI7DhbWDQWzkO3dicw0GYZhw1FE6EgphPI1pAIkkHJbEISvZJSUy4jAbT5amSTJ21ar43RXTkHzfoFYEFv3mNyCp7r4bRE44LGt2bt4s58vLLyO1ePt21CLVdRCIqgrFyO3G+opn2L76KtEDD2ANfvrTWBOJlMs//YnoX/4Fc/Yzn5G1Gfl6mYCrrIxtgvTNb4I02LiR6BOfgGPE6YSil24UWyCACKZnn8V5L7sMqZDZkOc+n0yvS9QRmktPcA3WoiIQKvv2pU8aBAJQTrlJQUND4utfDCJxYgLP4+BBOKuIgIW7d+O1bp1s7uL1Ymw0TXZoraxcsvTRAhYtAxkcxJzftCm94veJZHgYkcznnQc9goXXmM8Hwz56P/Z40BjBYgGBuEjRrykLN7caHMS1btuWffoy13bVNGDCYnfx9Pmwz9jtcKq2tMh04qkpWVrGZJLZNRxhODeH/YXTmtesge7BUYbZXLsQ2MO4e3MuZHISaa01NWj6l6YDpIBFy1CEAGY4ncAMtiNGRoh+/GPMxfe9L5KYs9ux79XXg+SKF+n8zW9in7zrLjgIUxXunD43J3Uwmw0EovE8mgY9rb8f39m6NTvng67D3uRO9tXVsJVWrZLEYa5whFOdeX3OzwMHh4dxHW1tGNfW1vTPGQjITJaFyNToOobcYIVIkoTsHK6ujrSL+HfhsNSxiGS6ucOB961WWd/QZlseZTMo/7EoL6RAIi6t5P1gz8zITno1NQCXo0fx2bZtiRUOIdCZdHQUaV9WK0gurxc1ujZulLXMuA7h9DQ2sK6u2OPa7Wii0NAABTsXCpTfjw2RCEpiqp6uYBDK/u9+h/G4+mqkBGRrsNvt2IRqazHe0ffo98uU5XAY5+vsRPRjuoTqwABSEo4dg0J83XWxnmiXCxtXdFpOKsK1C+N1IA2FcL/cuZoIY8/EYS47PAsBJZk3zNWrF7cj6jKWvMeigwcR1XzllUjP1XV4zUMhGN48d48cQXRFdzfRO96B5z06CowxmTDnWlvj1wd95BF0RW5pIfrHf8T6ijcfg0F0an70UXj5H3gg1qvrdGKdGglBXUek4A9/iP+/970oaM7f13XgbKrpQaoKPH3kEWDrzp1wZmRDmKuqJDNLSnA90fji9cJ58sILWFt1dTJlOV0SIxTCPuP1Yqzr6nDOhXCAldxMFVghZBfbAwcwR4gQyc0Rh8bmD+GwrAkpBDCLuywvsRSw6BzL3ByifJqbYRhmKy4XshmqqlC31Dj3e3uBXeedF5sZ4PeDQNQ0EIg57HSZkQSD0A+dTqyd887LztnL9dICAeggmegi6UgwCP1qclKWZWlokI5VjlAcG8MzYtxms6qsTJKFVVWyFlkuOsiyLAaRODqKchoNDcikSeO4BSxahnLmDGwbY7fwiQnoHZWVSEE2OgVHR0HcrVoFvSl6Tx0cJPrWt6ATfOhDkc1Zkonfj/XicmHeVlXJlOVomZ0Fdvh8sGm6uzMLItB16BTj4yDxOKNrwwaMRS4aoiQSTcPYv/46MKS4GE6mnp6sgxjI65V2H69P7sZsrGPIWGQ2x3ZLNj5X7mhfWxv7PIJBmfY9NYUxLS0FDra2IvhkGdZ4zncsygspkIhLK3k92BwdWFsL8NU0RBAGAvAQJYt6O3QI6TWdnfDAcCetRx/F8a65Bn9PT+M88/MwPjs6Yo3QqSkoODU1ILtyoUS63ThucTGAMZXNSlURcfOrX2FD3rwZqYvxCpynKpqGzcbhkNcSDeizs9jgmfDkroxG0iJVcTgQaTU2hnHu6sI49PaCMNi1C9FbrCDPzuJ36XqbjF1Jua4QRxxqmnyficPF3pDm5kBUlJVhE8zgfPm+QeU1Fo2OEn3/+yB47r4b7/X3w4DbsEGmEp44gWjF9euRHmyxyGYE3BW5vT22JqiuI036v/4LUdP/639hfcXDmsFBRCgODxPdcw88+sb5ZCQQq6slyTQ0RPS1ryFycudOFCNvbsb3nM70OjDrOtbxww8DQ7u6QB4a60GmK0JAUfV6ZQ2eaIJsbAw1U48ckU2X9u2Lb3gsJIqCNel247ccmcDRfsb6iIkkXSJRCEQ6MHE4PS2jWHfvhsPLqOwLgf0uOmW5quqcNm0qYNE5lEAA86e0FOs4271LVaFTuN1E73pXZFr08DDW3Lp1sd2Mg0EQiKEQ0p8zbWyQK5mZgVNS14EHq1dndzyPB7hIFN/QzaWEw4jSstuxxltbobdyLURu4DI+LqOQzWaQpK2tMjU5Gi8DAdxDeXlum5foOvQoszl3utPgIBz1LS1ogJjicQtYtMxkbAz6TlubtE1mZ4kefBB6/X33Rc7FoSG8GhuxD0YTbIcOIeOqpoboox9deF1zBsbsLOZ/opRlFkWBXTk6ir21pyf9MkpcozAYxHlHRmTq8MaN2ZdSWEj8fpmyHAgAr7q7EfWo6zLVmTs7Z0Jiaposi1BaKpvREeF40d2SU1m//IwaG7EPcWMUxt3KSuioq1YB28Jh2aG5qEimPC8TQjHfsSgvpEAiLq3k7WCHw9hYSkpk04HeXpBQmzcnLgRLBMPspz8FuFx8MQzc8nKk/oVC8HSWlMguTqEQNp7W1lhFa24OvysvR12yXNTAmZ3FfZSXY3NJxVB95RVEN/X3Q1m88UZEQ2XjCXa7oZQqCkC6qUlei6ZhIxwYwPesVhgS8UjWVMTjQXoOpwn09OA58vXPzIAc4BSkiy8GUcwbV2lpekYKExIOB+YSd/Ni0rCsbOlD4D0ejHdRERSsQtpOfojPBy+4xYI6iGVlUDinpiIJwb4+kICtragtWFyMuXfiBLDGZsP6ifYIB4NEX/wioupuuAHRgZWVsVgjBDDgq1+FsvuZz4BEMAp33OTmG6WluIZf/AKRRuXlRPffj2hKk0nW1CsqSq0DsxBQuP/4R+BDQwNwMVsyIxyG4s9dSaurI7Ho6FHgw9AQ1s3OnSAPuRxCOqKqsqA6kTTAo4nYXBGJ7Pw6cAA47nTiXNu2wWmyc2fsvqNpklDllGVO6V4GqTsFLDpHwuR9IIC5k4so1KeegvF5002RDeqmpxHV0tQU2/U5HEbpAo+H6C1vyT7KJRsRAtc5NIQ10tOTXUq1okBv4Jqo9fW5zU4wiqqCdBkdxZiWlwP7PR5cA5dZcbtlreiyMuCHy4X7jVd6xygej0ylzLB5SVxZDCKxtxeR7evWQb9NAesKWLSMZG4Oex1HFBJhv/vBDzBf7r03kqDr78fcb26OrW0vBNLcf/tbOCc/8pHkRD6vW256VFIiHYOJ5tH4OBwP4TAwbsOG1OcyN3IMBmWtP7sd+iI3lmxuXtyyB1NTuP6hIYxvezvspmiHjzHVmUiSiYnulaONjVGGqiq7v/PYGonDTMTpxPVPTwNjLRboQpyqHK8MBUc/ckMWItm92WpdPKxOQfIdi/JCCiTi0kpeDjZ3kdI0KE1FRfh7fBx/J/NEKQrRj34Exezaa1GPo6oKisnoKFJ/6+pg1KsqNhefDwpadGSdy4VNrKgIhnK2Chintno8AMrGxuQbDNcVefRRRASYTKj3dc01skN1JqIoGEu3G0qysYOwzwficHhYEhHcZTkTRTEQQNoVdzjbsgXPJFG6JEcajY/LFMU1a6QSnMw40HWcz+eT6czc9auuTnZdO5cSCOAeibDRp2Hs5PsGlbdY9MMfgjD74AcxF6en8XdTk1yHw8NIz29oQL2ekhLMv95epDw3NUFJjk4rm5sj+vu/BwF5//1Y21yT0yh+P2ofPvEEMOCBB2KPxYX/NU2mJB87BtJxbAxG2Qc/KAkrTo3llOGF1kZ/P9KWh4aAhZddll739HgiBHDI75cKJGODx4Ou7i+9hO/YbCAOL7ooM/JE16WRoesgTVetSqx0cqMVs3nhsYkmEkMhEJ8HDiCSwufDfW3fjojD7dvjr/1llLKcTApYdI7kxAlkBOQiPY0I+PDMM1jHxnqqLhfIgJoakAHRxe2few5YkymRnysJBLDOXC5gsbGxVbrCWOR2437r6nJLuhlF07A3HDuGcWQHJzsWKyoiOyWbzcAFTlP2+6FLTkxAN1u7Nvn55udlN9hcNoPhaCSLJXfOjWPHgPkbN4KgXgB7C1i0TMTrha7P0XxmM977wQ8wX++9V2IF1y2126EHd3XFYsxPfgLH6q5dcKwmIqp8PlkHVAjYCTZb8jqogQCaLk1NQQ/o6UmtHBSTccGgJLC42YfTibXV1oZ7Wixnn6rCRjt2DPdttQL3tmxZOFqaU63DYYyVxSIbukTXMmSxWCIjDIXAmHMmVzrCWTIccciZYUTQrbu70zumrktCka+ZIy4zaa6ZpeQ7FuWFnDuOuCB5IxMTAIX2dhh4U1MglZqbFw5lf/xxKGdXXikLap88CaN/xw5sFJwyUlmJCLja2lgC0evFsUwmkJHZKpOqinsIBnGuZJGURNhg//hHkBMWC7xLW7bgHrJJq3E4AN66LsPETSZsgv39+MxkAqCvX59+WD9LOIxN7tgxbBKbNkV2aEskra1Et9+OTfL550FaNDWBeDSZYj1NmibTlINBuTFyI4mSEmyamobPzjWJWFYGLztHHzQ35zbNqCC5lSefxFy89VasCZcLWFJTI5sZTEwgyq+2FhGITILZ7TDE6+oQdRsdSdvXBwLR5yP6/OexvouKYtdIXx/Sl+12lC+4++5YBdVIINbWyi7Sf/wjnBVf+pKMWjQ2XCkvXxhP7HYcp7cX8/fKK4FDXBw8UwkGofhrmkzRNZkwvs8/j7o+jB233YbUvUzWrxCyMLem4TyJUsWNYjbLVKCFHChsMB0+jGjD117D+FZUYNx3705cw5c7Qns8wE2zWTZKOYcpywVZZmK3A2viRTNnIpOTiCZcu1bWhyaCgW3sNm9cc7pO9OKL0CP27Dm3BOL0NPQLIqyteDVmU5VQCPekKFizyaKXMhG/X9be7u9H5GQggHMx6cCdkuvr4+OqpuEYVitwu7kZxx0dBaYlq3tYWyujrzmCKBdisQC/uERMLvSrrVuBg4cO4V737Mn+mAVZXAmFsBaLi6HHmM2Y3z/+MfbFe+6JJBB7e4E/bW2xJVB8PqLvfAffuekmvKLnla7LlOVgEPPQZsMr2b4uBJygp07h/1u2yAZFiYS7HweDkvCyWkGiTU3JkiQdHbifxYqE83rhROrtlQ6BffsQPZnqObl7s8mE43HZGyFkdGJJidQ9iovj6z4chckpxcmEy1JNTeGZc1mWhgaQx01NMjuEo7FTFbMZz6G0VHaqDodlhOg5JBQLskhSIBELklQcDhhTjY0AE64nVle3cO2/11+HUrxlC6JkyssBXIcPg5BsbQWRZ7WCBOC6fNH1KgIBEIiqigjEbBqWEAE07XYA75o1yT1kY2OIPOzthYK5dSvGoq0teSfqVK/B58NxW1pwrMFBKLVeLzaPTZtkykwmomkgbV9/Hefs6EDkVLpj2NmJ3548CaPliScwBy6+GB7qQEASh0TYzDhSMVoBLynB94PB+I1Wllq4mzUbheFwZvUlC7K4cvw4Im5275bd3QcGMMfWr8c8mp0l+tnP8N673y0VIKcTHZrLykAiRc//F18k+sIXYPx9/et4/kwesQiBBkpf+xp+/41vgIiPFk0DScbRda+8gvTr+XnUKbz7brmeuZOnqsavOWiU2VmUcjhyBN+77DIZ2c3RMZmIpoE8DAZllLDJBJx+/nkYxSUlMB737o2tH5mOsKHB5EBDQ3qROGazjLaJd78uF9JLDxxAZIOq4n4uvxzETHd3YsyOTlnmsVgmKcsFWUbidkMn4JII2UoggCyLyko4SXlPVBQYqlyn02icCgFMm5pCNHB0ytxSCXe6HxkBhm3blnn6Mpd/4KZKjY3ZR+oZ0yq5Iyw7TGZnsc7b2oClnZ2pd4622aArzMzAmc770BtvQE/asSMxnptMwGwupbNqVe5SkIuKgHuqiv/nQr/asUMSU1YrdMiCLE/RNBkscMEFeF7hMCIJZ2eRmcEOVyEwV6en4Uw3lk8gwvvf+AbWzH33Qd83iqLILr2aJptt1NYuvGd6PLBL5uehByTDDSMRxVkGTK5xbdKxMdxPczP0+cVquDQxgfEdHsbfa9fCxk2lzqIQsRGGTIQS4X6MNaCNdQaTEZPl5VjvPh/GIxpLNA04NTmJZ6oo+E5jI8arsTHy+DxnPB7pJElXTCZJgvJ9h0KSAOYgFCYUz7UdWJDMpJDOvLSSV4Pt90MxrKrCxuD3Q0EqKYHClUzpmZyEMV5bS/TXfw1DzO8HIWe1wqDz+QBOdXXwRlksUOKMxw2FYDh7PERvfWv25I7Ph03AbMY9JYrcmZ2FUv/aa7jGnTulMrtli9yE0xUhAObT07iG1asBoJyyzEZvZyfOkanxquuImDpyBPfc0oJ7yDSS0SiaJhvlTE1B8bj0Ukk0G9OAkl1fICA7Hi4HEQL343Rizq9enXT8833Lyyssmpkh+va34SV9//ul8isEjGurFcroj36E799zj4wuNjohrr46MgJRCKJf/xrH3rABEYLFxTINh5+/z0f0z/9M9PTTIDH/8R/jRy8bCURdJ/re95AC1NlJ9IlPgHBnURTZybO2NvGacbsRgfnyy1D0LrkE+FtUBOdLNpHQfj+OTwQFVtNkyrLXizW9dy9IimyiHD0eYCrXNWtoyDyaPLo+4swMGlscPCgjGpqaZGMUTs1KtJZDIZmyTATDv6pq+eBSClLAoiWUcBhzzWzG/Mo2okLX0WV+YgKdmFnH0XU4TrxeOCyN61wIOCeGh0EUbNiQ3TVkKoEAiAC3G47hjRsz11n8fhm9XVUFTEzXsOSIKCYLHQ6Jb0SyAZLPh2M3NoL4y1SvVBQ8N6sVmGMyyXrTZWUg25LpyaoKXLRYZBZKLmQxOjYTwYnX2wsy6fzz436lgEXnULhG8vw8MKOuDvPgpz+FjfWudyGDgAhr5cQJzL/162NLMp05Q/Rv/4Y59OEPR2KMz4ff8dw55oEAACAASURBVNqqrsb8TWVP13Ucu68PczNezUAhJOEUCsn9vqQE+zITU+PjsFFVFWt43brFKTWiqrheLndQWopx3Lw5udMhuo5hvLRkY7fk6CjzeKnOiQg3XZelH6qrZVr35CR0JHaMNjXJrLdk2MS2ajiM3+QqcpAJRY5S5Iw0HoscdsvOdyzKCymQiEsreTPYqoqoOIsFwMzF9HUdHqNkBqXbDaPc7Ybh3NCA3z3xBJQ6LvpfUwNFcWgI5+vsjDSkFQXG//w8jP9su/s5nQDVkhJsWvGUK7cb13ngAD5/y1vw3bExbBY7dqTuqY4WLvQbDALkLRZsgFNTktRcv37h1OqFZGgIJJ/LhbHfuTP7sSPChsapyrwJHDmCjbWiAmOzZ0/qpIaq4pi8eSwXcTgwT7g+ZQIlPN83qLzBolAI6TR+vyzm3dsLA/a880BaezxI1QkGEenHRiF3LHW7kfZrNBY1jeib34QBv28f0T/8gyxYXVUln/vp00hfnpgg+sAHiO68M76hrKrAKiGAHz/8IY53111IvzbOo1AI69NsBgbGm2OBAK79uedwrXv24MVReInS7FIRVcX5ucnR/DxIyqNHcf3d3TI1JxuFzu+HIhoIYI03NOSmq+rYGIjOV1/FPkUEEmP3bjio2tvldQshFVXjez4fCBpOWeYU7nNYCDxTKWDREokQ2PNcLuyruZjLL7wA0unqq2GUspw+jbWzaVNsuvSRIzBqt2yRDROWWqamQFgQyQyNTIQdL34/MKK+PnV9gOuvcZQhk5BEstkA1zG0WoEbDgc+W7cuN40WmFAxpjDPzEQ2tEhGrHLqdklJ8hTodGUxiEQh0LF5cBCOYyakDFLAonMo/f2wMbq6EBmnaWgud+oUsiB6evA9bi7mcGCPjybxXnoJDtlVq9CBubFRRglzJK/FIlP+UyWYHA44Hbxe6NZbtsi1zqQZv7j+MROHTC6xs394GN/jrLhM7bJk4vGAaD11CnqCzYZrXr8+dk1pWmyUIdMrHHVnrGWYqrPFmBbMZQpKSuIfw+fDHOAmUELgu9wYxWZLD+80DWNtMkU2+sylGAlFjjI1EopZnDPfsSgvpEAiLq3kxWALAXIrFIKiVVSEDcfng7KYDKw9HqJf/hKg+573SG/lwYOIHDrvPGxMq1aBSBseBtitWxcZMq1piL6ZmiK64grZETpTmZmBgllRET/CLBBAlNHzzwPI9uyBEd3Xh9+1tSVPhUsmug5v0Nwc/lZVXA8Xw+3owP1nG/kyMQGjemYGBO2FF8amJ6QrwaAkDrlwcWkpxrG8HOM4NobzDg3h7+3bYcincj/coay0NHfpPLkQrxdeTosFyk4csibfN6i8waJf/AL4c++9cDT092NNdnWBgONaPy4XCDtOKwkEEK0zMYH5aEw79PuJPvtZfH777SAHufNmRYUsWP2b3yAVua4O39+2Lf51MoE4Pk70H/8BxbOnh+hjH4tV0LneXnFx/LQfRUEzoz//GfewYwdSHLmuEXcozUS5MpJnXBD81VdheJSVYZz27s0+YjkYlBhXVAS8T6VZTLLrHhiQEYd2O97r6kJUzO7dyWuwMZGoafL+dR3PgLss53E6Tf5eOSQvsIgI+sDwMHSBXDjm+vuRnXH++Ui5ZxkZQRmBtWtjsx6OHYMutXGjJAWWUnQdTpzRUazpbdsyj/7hOmBCyKjqROswHI5MSeaOzUTYp+vqIusYclRUIADdZGoKWLR2be4bLczPw1FljMYaGsJr7Vror8n0G78f+1d5eW5rMi9Gx2YOCBgdRXOwzs6IjwtYdI5kfBz4xMEIQqCT8uuvE91wg6yzqmnIKHM64aAw4hiXbHnkEdhqH/oQ1szcnCToS0vlfp7qGlIUYNbwMOb4tm0yuCQYlMQhUWRdvWhnwuwsCOxAAFjR0RFb2zoXYrcDZ0dGZH3FLVukjmGMpmPi0JiWbCQLi4tzR+Jz4AVHNBYXYwxnZ2FjOhzSKdrejuvORu8iwvmmp4Hxuaj9m0w4cpMJUyKMXSLSdAHJdyzKCymQiEsreTHYU1PYMFpaZNTP3Bw2lWSeUpcLXvVnn0W9ruuvx/sDA3ivsRHKd1MTNpLxcXke40ag64jAGR1FJGCUkpKW6DpIBJ8PSmZ02ko4DIP96aexmW3fTnTddfgdNxI4//zU6l3EE48HG5LTKbueCoFxXL8ex81WmZ2bk0RARQXuoasrc5LBSByy56usTKYqRx+Xi/ByAfgTJwD4F10EAmQhLyV3bi4tXV61x4JBEKS6jjkalaqR7xtUXmDR/v0oK3DddYh8GBuTBcCbmqDg/OQnUHLuvFN2xfT7Zd2azZuhALIiNTWFBiojI0Qf/zjRjTfiWQcCmOelpTBuv/xl4NYllyBKMZFxpyggzB55hOh3v8MxPvCByNpmLG63JAKrq2PTVw4ehIHmcuG63/Y2YJbDgXWWTfoyp0/PziLi8I03cC3NzXCYXHhh9hHB4bBMc+Li6lxjMV1hsuLAAYzL7CzwYcsWGEQXXSSfyUIGcjAILOY0xooKOMPyKGU5mRSwaAlkehprpqUlbgRW2uJwIErIZkOUEM/hmRlEITY2xqYp9/Zi7XZ0yMZMSyl+P/QijwcOykz1DK5TyOUN6utjG7Q5nZGkodcrP6+pkRGG9fXxCY1wGPg/Po4139oqmwPmWjg6KhyWJWp0HfrQ3BzGqbExOU653cCn6urcdqFmIjGXHZtVFfvy9DT2OUMqbAGLzoE4HNB3bDYZmfzoo9g3r7oKdhQRntvRo1i/mzdHRg8rCrInXnkF+sDb34416PHIFFmbLf25OTkJ3OSa7Bs2yPp44TC+w2WNSkvj2wtOJ8hDjwc2yLp1uSe0FAVp1seP43xlZTJl2WqNjDLkgAoi4ImRNMxVHdJk4nZDfx0bkxktNhv2Jg6SCYdl+YZsxePBmNTUZN+TIFXRNEko8ngba0Sm4BTJdyzKCymQiAuIyWSqEEL4cnS4ZT/YLhdIt/p6bDAMVOy9TSROJ8D3qaegrN19t0yT+93vsODf8haQZlar7A7V0BC5kQmBaMCBAUSYZKOsqyqItVAI5zASlZqGzfLxxwHImzeD9Fy9Gor6wADAcvv2zBQ67v7c14dN1GzGptTaCvIwF94ztxtpy4OD8NT09OA+0vU4c31Cvx//crokE4dlZQsrn1xbraoKx3jhBURZlJcjqjNZExoh8BsmK5eTqCrmfzAI0sqQar7kG9SbDYsGB4kefBBz+o47gBnDw8CMtWvxbH7+czgb3vlOaXD7fFjDY2NYb+efLxWpkyeJPvUpKIOf/zxI7nAYv7FasdZPnCB64AEYSB/6EDoRJ5r/4TBw5HvfA25edhnqB0WXJBBCdt5jAsv42RtvQOmfmYGCfMMNcJ54vZFKYiYknxBYm8ePw9kwMCBrEe3bJ5vSZCNc28vlwrE4KihdLFIUGEMHD2Jc3W48u54e2VAnujacsT5i9H37fFCAFUWmLFdUrLhC3gUsWmTx+TAfKypAtmdLxoTDIBCDQURCMx643Zj/1dWRjg8irNtDh0DY7N699PN3chIYYjYDOzKpIygE1iPjRG0txtTrjYwwdDplaltZWWSEYV1dcsNYVbEnsANw9Wpg6mKXTNE07AEmkzTkg0HsOZoGAjOaLI2W+XnZ6TWXDg5uRpVLIjEchuPM6YSz62xEWwGLllh8PtRuLyvDPmmxIIvhueeQVXDNNZiTigIHgN8PotFIwnk8qH/Y1wdSuKcHz7eoSBL16ZJRwSCwbGICdsCmTbhGjqIrKpLEYaI14fVCD5yfh42zdq2sPZorcblkl2VFwb1u2gR7V9cj05LN5tg6hksV+OByAYM5KIYIpN6qVcDR0tLIZiWcbZFOxGgymZvD3Em3GV4uJB6haLEs2HTmnGt4OcamZSl5SyKaTKa3E9HviOg2IcQvoz7rIKIBIvqyEOJTZ997PxF9mIjOIyKFiJ4jor8XQhwz/O6zRPQAEV1IRB8goluIqIGINhPRSSL6RyHEl6LOVUFEk0T0eyHEXQtc9rIe7GAQRnpZGRTVmRlsKk1NMDQTicMhU81CIXRFbWzEgv/lLwF+114LL5TFAkWZU2GiU3VeeglgfuGFCQs3p3wv4+NSiWQiUAhspI89BqPXaLAHAqg15HRC4Vuolk0i4Q7UIyPY+Hj81q7NrjkBi98PpaG3F+O5dSte6SjJui6jDTkS0GLBs6+okBtSOuJ0Yty5Rsr4OAhhux3Peu9ebM7xjqtp+C2Hri8n0XXci9cL5b6piYgMG1QBi3IvLheU2vJyEHmhELzE1dWI6hACRnhfH9E73gGDmwjK8JkzwKSaGqT8cbTaX/6C6EKbDf8yEenxYN5VVhI99BDqLzY0EH3uc/K4ia7xu9+FI6KpCbWDorsXEiXvwHz6NMjD0VFEBF5/PXBHCNwDdzCvq8sMizweGBMvvwxFvLYWpP4ll2Rfe5XvjaOFiHB8my29aJ9gEHh24ABwkyNCd+xAxOH27cmV1mgikZ+pz4f3rVY8W05ZjlcjMc+lgEWLKOxwVBTMx1zsT489BifbX/2V1IGCQegmxcVI9zOuodFRrOHmZuyjSxmxzxF1Y2NY39u2ZWZEhsMwRD0ema7G0YZGYsEYYWizpe5Y1HXoGiMjOF5jI3TOpXRMhkIw9MvKpHN8bg7XVFoqidBE+CgEvq+q6dWaS0VUFcfPZaRUMEj08MPA2htvJFq1qoBFSylcl5wIDZZKSpC98eSTiFS+8UY861AI2BIMwlYwZpSNjxP967/C3rvxRgRucOpqJqmwXA6LMx24JAMTcEwcJnMwcgmCmRnZPT0XWVvGaxwbwzUODeHvtjbYgVzKhZt9GKMMl7LkEuuA/z97Xx7eVnmlf65k2fK+b/ESO4ntxImdlSRA0rAEKGmhZSuFgVKGoUxLaaftdNpOf2UoM+10psPWZZjSli60pVC6wZACgYY1ISEkJCEbiePdljfZ2vf7/f54c+a7kiVblq4XBZ/n0WNblq6u7v2+95zzns1igU/JiRbFxdAD5eXhOBxZ6mww4O+MjInbREzlfAYGgNvl5bPXO1pVJaGo/a7aSc9nJOY3TlFsmpOSyiRiOuHivyKEuCrif18non8johVCiCOKojxIRJ8jot8S0etElE9EdxJRHhGdI4Q4ceZ99xAWwZEzx/4TERUJIe5VFGXXmd+XRnzWJ4joF0R0iRDixUlOe85e7FBIgmldHYyCo0fh9DY3xwYg7lHR3w+HfssWEICqit4a7e0gEJctkz292tuhpOrqwo/79tsA9ZYWHCNRcTpxPmlpUDw8yevkSaJnn4Xy0DrsigJw5KECLS2J9TsaGoIjfPo0gKyxEd+7slIfo83nw/U5cgTn2dQEwyFeIzkUCicOiXCNuEw5IyO581RV2fdRO2mwvR2GzdAQyJlNm8L707FwqUCEIpgzMjAAZy4YJNq4McxYTjksev31uYtFwSAyHKxWEIRZWQhumEwg9w0GkNPt7SDtmprwPpcLezsYlJl7ZWXYKzt2wNmprye6/XYYVaoqy1uJiB57DPurtRWZ1NoerZFy6BBITIcDGdYf+lB0x5oJLSIQWbyuBwZACnR341w2bJCTTQMBEJRCyN6jU5XRUWQdHj2K41VWgoxrbNTH+NNmFKkqzjPWgJho4nYjCHLsGHA5FAKOLVsGTF60aGrnyb2VvF5pWGZkxJ4Un+pEYigE3dvXR3TXXamNRceOzV0sIgLRb7ViberRr+7oUZDla9bI0sNgEJ8TCMCJ1xKVQ0N4fWHh5NN+9Rbep243MnMWLpx6Y/6xMZB7g4OwzZhMUBRgHw/Yy88HRiZCWgwP4zP8fhmc1rMkeCricuE75+XJrOneXgTPCwqAR3l5sW0cVQV+E+H1et7v6SAS3W5UIDmdRP/6r6mNRTSHfbRICYVADHo8yBzMyYHOf+YZ+DBXXy2zYQ8exN5oaQmvgnrrLQRrVRXtYJYvh92UiM1BBJx8+23YNwUFwDfOksvImHwtcwsCrt6qqppwuOGURAis1aNHZU/I9HRUsCxZIvekNstwpoV9qP5+2R7BYIDfVFEBe3ayZBEm2bjPJPePTLStjFaCQdlbtqxs9m0n7dAZzlIcHYXO3Lx5QhIxFbFpTkrqzSE8I0IIv6IoTxHRJxRFKRBCjGn+fQMRHTyzADYQ0eeJ6PNCiO/xCxRF+SURHSWibxLRxyMO30NEl4twhvVnRPSIoigbhBB7NM/fQkTdRPRX3b7cLEh/PzZgbS0M2RMn4NTFyhwjglHY2YmN3NEBB33NGtnTsK0NhBFn8wQCiFBxZEl73MOH8WhqSo5AZAAxm6GAeALys8+C5CwshLJcvRrgzFH29nYYn6tXT02BCgED8cABkIdGIxT1mjX6NcgOBqH4Dh0CUC5ePL6sb6L3ulxQnty42GTCuTFxqJcYDDiu1QqDmb8/D445cQJlzn/8IwyDzZvDyVqTSaat69kIPFHx+2GA2e2ycTqXXGkzzuaxSF95801gy9atWOOdnVgP1dVYE7t3Y7+uXSsJRIdDDsLhqGRJCdb/E0/gmOvWYe+bTLKEngjY97Of4RjXXYcBB7Ewz+Eg+v3vYSiXl8thL9GEp5mzs2w0yinIbW3AqM2bgY9sJLvdcMZ4ev1UDFkhQEq+/TaOrygwkHk6ux4GnxCyxJqbrBcUxIcjDgdIw6NHcf+EgOG+bh2cjcmGD0QTJg95Yjz3O8zKmvhY2inN2r/nonA5+sAA1vjAAPYHl/XcdZf2tfNYpKf09QHvFy7UR59bLLAVeFAbEe5vezvwoqEhfC9ZrcjSzc2FbTKTOnFwEDhiMOBcJ8tc1mLD2Bh+Wq2wP3hwSm0tjlNQoM8kdKtVthvJyQEWz1TPrliSnQ3bgVsxmM0gAFgfmEy4Nnl50QkBgwH/4z7aBQX64ZPRCNwIhZK/9n6/vNclJfABtDKPRdMnQsBvcTrlsMvDhxF8bWxE8JWTNt55B/d75UqsK56G/txzRH/+M8igz30u+sTheM7D75fBhlOnsMZWrgQxl5ERX/YgtyDggWmVlcCKZFoQBIOyj+HgIOyOtjY8X14OO4/PkSc/z4bwoE2LRep1JukqKkAgTuW+8GCajAwZULXZcNzc3PjvSTThTPHhYawhPafJTySqigdXnfDvTifWTE+PfHAv/82bYx9vHpv0k5QlEc/Ib4jodiK6hoh+SkSkKEorES0non8685qPE5GfiH6vKIq2FauPiN4kooujHPd/IhYAEdETRPQg4abvOfNZtUR0IRF9Wwih6vGFZkOGh7EZKyoAEocPA1CXLo0NXv392LAc/crIQMZhKAQj+eBBZPRs2IDXh0KScIxsbn38OBzfRYuilwPGI0IAgG02AGVFBYB5+3Z8n5wclA6de264w37gAN5TV4fvGy+4+nwwmo4fB4gZDFCc55yjXwRcVZGlc+AAzrW6Gg73ZMDNSp2nzRJBSXL/oemMsHHpoNOJNcHZWbyeGhrQJ2X3bvSzW7wYRDOXEGRkyGltmZkzp9iDQZnJ5PViTbjd+F1VcV4FBSBEY0wnTyks2rRpslfMjhw4ALLpxhuBJydOwPBtasLafeklrI0bb8TUdiI4ku3tcpK8xwNDOhAg+sY3sEc//3miW26R64lL6p59FgRiRQX6GsbqwSoEsi0eeQTv/fSniT75ydhGLk8ATk+H8+xwYGDK3r3Yf3/7t8jaZsJAVRMvX/b5kFHw+uvA5IwMXJ+LL05+yrJWHA5gqt+PcywtnTzgMjCA77xnDzKtiOAg/N3foTR00aLE9ni0kmU2kBUlfrJlLmYkulxwqLq6oDO7ukAmCCGnLm7ejPUeg8BOKSxatmyyV8yOjI7CzjnnnORaq7A4nQiiLV2KPquMHSdPYp+ee254n8HRUWBXUxMc3plq8xEK4XN9Pnzv1tbon+3xyB6G/ND2q+LetSUlWKd6Th0eHUXQNhCATl60aPonh05FhMDaCYWAd2lpOE/utZ2djf8VFsbWIT4frqnZrE/rCe25BYPAu6mSRl4v7jkPujEaYZeuXCkHKUZISmFRqkh7O+7B4sXwB06cIPrDH7DfPvYx3BeXC36YEKhY4hZDIyPSFlmzBrbRVBMnfD5pp4+OgqDz+bAP16yJv90BtyDgCp+yMui1qbZL4N6FkdOSe3txbYaGsM+WL8daPdOSaNYkEIBtZLHg3NiGqayELVpSknzpNvdHLCvDPXK58PD5wjMupyqZmcAwux16IRl/l0nBSHIw8nciec36+oCt/f2yt66i4HuuXYvkodrauD5+Hpt0kFQnEV8lsL430plFcOZ3QUSPn/m7iYjSz7wuqiiKYoi4iW2RrxFC2BVF+T0RXa8oyj8IIfxEdDOh7v4XyX6R2RKnEyQiT106cgRAvHx5bCDv7cVGLiqCgzMygkleRqOcpllXJ5187j/h94/vC9jWhsycmhoQG4lO8ezrA+nD/WZ+9zsoyfR0ossuC3fYiQDehw7h9zVrANzxyNgYzrmrC8BsMiES2Nqqz7AUIpnZ+fbbAOqyMjgRE50jR7ldLmnI89TDrKyZ7V+RkyOj1CZTuEPPUcrmZpRovfUW0S9+gb/POw9rMCMDDgpPbtRbVFUaQR4PfnI/Ea8XxofJBGVZWYn7mpk5KTExj0VJSn8/hjDV14NA7OjAel68GIbKG2+AfF63TmLL8DBex2VxFgucmuFhTGC2WDBZeetW+TluNzDroYew/i68kOgrX4lJDlN/P167bx/O5d57seejYRVnjXm9smH49u0ovxYC/cy2bg3/LHYWVRVrLdZ5RMrQEIjDt94CjpeUEF15JcgIPbNxXC58lteLvVldHfscORuSJyp3duL5+nqi669HUKmqKnHCzuMBeej14hhZWbj37IhrDdB4jHBtj0T+eyaFh391dcnH8LA0oJmAqamRvaXiyCSYx6IkxedDsCsrS2YMJiOhEPogBoMgW3i99vQg+FlTE04g2u3oZZqRgXYJM0UgOp2wi5xOrDseuhQMhk9KtlplJrfBANyqqwMZqs2AycsbP4U+GXE4QMTxoIWlS/UftKCHsFPb3w/srKiADisrw/1mfOY+tdHub0YGdJrNhvWgF6ZzkCUUklObJxLWlyMjcqBDTg7wiO3LCWQei3QWTuBYsAC6tKMDrVUqK2WlhdMJApEI+3hoCM8FArBHuB/r9dfHpye1NrPfL/VsZyfOJycHtk285JwQsM06O3G8oiLYCPEQUkJIopCJw1Ao/Fw7OpAV6XZjD114IbBipgeCaMXrlcThyAi+h9kMwquiAtdgunCMs5k5ISIQwF42GBLLxMzPx3VnHzhWyxi2xWKRg9G66TEpaLXCr7dY8HNwUAZ8OaGjuhqPysqEslbnsUkHSWkSUQihKoryWyL6oqIolYQ69I8T0atCCL7pChG5iegjEx0q4m9PjNc9SrjxHyaiPxDRJ4holxDiZIJfYVYlEIAC4OEfp07BSGtsjF0q292NTV1SIoeUrF4NA7irC45jURFIACauLBYosAULwpVEdzec4IoKkGSJRF4CAThhgQDOefduHFMIZGtcfHG4w6uqKKnr7AQQrVo1eRSOScq2NgCb3w/wb26G8V9RoV+ZUW8vyMPhYUSft26NHlXhaCCXKodCAFezWZYqz2Y5cH4+vsPYWPRsKJMJhMLKlVgzBw6AgOYprBkZ+H7cIzFR4XILbZYhl3VHKjnuVcQ9IuOZSi0/Zx6LkhGPh+jXv8Z1v+EG4JLVCgOhsBBE2c6dyIy57DK8Z3AQmJOXB2P61Cmsu74+ov/3/7Af7r8/PIvI6wUZ+N3vApO+9CUY07GG/fzhD+iVKAQyGT/84djlZaqK9R4IYC3t20f0179iva1di/OOzCK22/Hg8pXJIsNcxvTaa9gvRMjuXbtW9vXRa997vXA+XC6cV2Vl9GwiIXDtmTi0WHB9mppwzdavT2ySKwv3rnQ4QGZwqXdOzvjvysNV2ECNxzCe6usTFSFwPbWEYV+fdICys6FPWlpkL6jsbKyNqUyTnsei5ERVUb0QCiHAqMd+eu017IvLL5cYoJ02r9XxLhfRK69gXW7ZMnODQXp7YRsZDHKQ3r59wGGbTb4uJwdYxcNPuG8fE40cbEhkomsscbtBDAwO4phLlug7aGE6JC0NdvLgIK4L9+jlnt2LFuFeM5EYjeDIypItabh/tR5iMEw82d7hkMSh14vn8vLguDNRHI/MY5G+MjoKXVtUhD3a2wu7qaiI6KabcF/sdlm9tGABcIaD4r//PXTOzTcTXXTRxJ+l7TPMFU08fNFmg/3BVR8TVa1FytAQ9rLHgzU1Wa9ZLkvWZhmyGI34btnZWLPvvSdLlisrEYBZuHD2cMLtBu5bLLLPaXY27l15uX6JJ5OJogC37XY54I/7CHIiBQ8mmUzfcdCVbe3eXjlESutTRRODQeJNWpr82+UCJnKCUm+v9NMyMmAPLV0Km6iqKr5WXpPJPDbpIylNIp6R3xDRPxJu/l4iWkhE2gk4p4jog0R0WAgxkORnvUKY2nOLoij9RNRIRP+V5DFnRVQV0SwibMzeXiib2trYZSGdnTCIysrwml/9Cgbw8uWIsBw7BgDaskUSdxy1LikJL8no78e01OJiEH2JGOoeDwDH70d0etcuAM+6dXDYI0tAXC4oV7sdxlBT08TKxeuFsmtvl5lFXMKXkwMw06t0eWgIBjtH9T7wAZkFwMJ93LhUmQ3AzExJfM0Vo5od/bExKPdYoG8247uuXg0C+MABOHDr1sGZDgSkwolHgkGpFPnB0S6jEUrSbJakgcGAB1/DJEuo57EoARECmcN2O4aeeL3YByUlIOgPHcIE5KYmoiuuwP2xWOS00Pp6GI9paSDY7r8fBuR3vgMjmsXnI3r0URjdNTV4XUND9HM6dYrogQfwc+1aGOhVVbGN3WBQEojHjaNeLQAAIABJREFUj4MEcDiAjdu2jc8i5r5EXi/W3WRNrz0eWbI8MoL9tGkTMiLz8nBeekXZ/X7gkcOBPVNWNv78QiHgPROHo6NyUvyVV6IENNnyxUBAliwLIVsKTLZHOZLN2YhTIRLjzWCMRxyOcMKwq0s65JzRuWkT1mplpcw0YtIwyeEH81iUoJw8CSe5pUUf/X78OHTamjUgv4jkFHmeNs/i8QA7VBXZMzMxHMRuxz4+dQp/FxbCFiSSZGBNjSQNowX17HZZWlZUFH829WTi88lsJ4MB2Y56DVqYCcnMlNmEGRm4LjU1uPe9vdBdY2N45OdHJ4zz8qBfbDZgrF5ZqWxzh0JyUBZnmvr9uJf5+dB7SU6KnsciHYSHgmRlgXgbGkKAMztbDoKzWKQf1NAAO6G4GOvrBz8Avnz2s6iciiah0PgBZWlp+Ay2m48cwdplGyTeUvvRUfhSTieOFzklmkgOBdFmGWqrBLhdkjb7rbMT58TDNJcsgd01U/36IsXhkMSh3Y7n8vNhv1ZU6IeNUxW+jy4X1kFmJq5hKCSHsHi9cvBVWlrsLEKWrCzZz7G0dDw5yP6VNlDh90uisKcHPzlIZTDgGrW2SsJQO6RzGmQem5KUFFHFsUUIcUBRlGOENNTFhPr1pzQveZyIPktE31IU5fbIWnVFUUqFEENxfpZQFOXnRPQNwphvDxE9mfy3mHkZGABoVFdDwXR3w1msrh7/Wi6vHR6Gs1NVheEYfj/IHpsNx7PbkdlXVYX3MZjm5YWnuQ8NobdZXh7RJZckZpw4HACfd99FNqTbDaV0+eXRy377+vBaRcE5c+QkmlitICV7ewGa5eUg9IJB/F1aKgEzWbHZkHnY0QElzdNm2cBT1XDikIkvbbbcXCvlYTGbcX4ul0yZjyW5ucheXbdOlq2+8w7IxeZmKN7I662NlPKDS7kVRZYD8SAN7nvI0wn5+pnNeg2dmMeiRGTnTkS1r7wSJNF77wEbFi7E8zxVmZuF9/XJdgr19bKx/u7dICNXryb65jfDievBQaJ77gFJfemlKF+OltXh8xH98pfIQMzPR6ZiayteG6ucjMs6jhzB2h0bw3ndcgtFnUKuLV8uLJyYKBgYAHG4bx8+p64OQRfOXOJyXj2wKBiU2cMGA4y3oiJ57EAAhO6ePTgf7vm4ejWyDdes0Yf0mKxkOR7RkoLxBqiSIRL9fqxDLWHImQcGA/TmqlW4bwsW4Lpqsx+ZODQa57FoNoVLBWtrJ7YR4pWhIWQjV1WhzQAR1vWxY1jP2j7MPh9KmH0+BGKnY0CI3x/ew7CnB3jr92ONLl0K0qGoCD8n2898PO6TWlSkT+ZmMIg91NODPbJgAfRBMlUJsyUFBfI6cbZPVRVs7qEh2bPMZsN3jaaXCgtB7o2OApf1IFFVVdruVis+22jEZxUX46c+U3HnsShZ8fvhv3CgzmZDG6C0NBCIqor2QAcPYh9u2IA9YzbjuR//GOvqK18Bia0VbT9wtp9NJtjc3JKFCOv1yBGQTk1NIOvi0ZMOB8jDsTEcr6lJYisThvxTW5bM2ZPcu0+7Fr1e2CJHj8K/yM3Fd25qmrnWDyxC4H7098PfdbvxfFERfJeKipnLJp9IVFUSfGNjuOYmU3jmIFd/sV2SkSGnajNBGEkOZmUBl4QYT5CqKjCOyUJu38E7vLAQupYrLyoqZnYq9jw2JS8pTyKekd8Q0b8S6te3CyFG+R9CiF2KotxPRF8koqWKojxDRGMExvmDRHSIiD45hc/6BRHdQ2jG+bgQwjbxy+ee8OS8khJsci4D5BIWrQgBQs1qxUZfsAAOZEcHnKK0NEkyVlfL0kGPB4CRmSlJRSKAzY4deP7SSxMD/OFhlAe9+SYAb8kSog99CA52pHDGTFcXAGvVquiAzpmZ3G+HG2HX1OBaORx4X3W1Phk/nBV58iQ+a/VqGAc8odjpxGuY9DIaAdBZWfqRXjMheXkwDmw2GKaTGR1FRcg2s1hwj994AyTrxo2IvmpLk7nEggiGBl8bsxnXi6e2cjQwLQ3Ght5TqSNkHoumICdOwMlevRpk3fHjuDeLFwNT/vAHYM511+H+dXfD6SkpgVPJxtvvfgdc2raN6AtfCDc433qL6O67sZ++9jWZzRgpBw6g92F/P4IR3KCcSaxo4nbDeN+5U2LktdfCGY/2GfGUL6sqjOPXXgM2Mz5wz1CPB8/l5+vjVIdC0kElAk6WlOC7ezz4fnv34qfPh+uxdq1sR6DHXlJVYJ7TKUuWuT9kogSpwYDvNhVSMB4iUVVhCPPQk64u4BUb4oWFWJubNuEnl10GAtJJU1XpGE1jVtU8Fk1BHA7gT2FheHZgouL1ov9YZibwxGDA/T96FDq9uVnu/0AA+93lQhsWPbJouL2Cto+hwyH/7/MBP5csgX6tq5tK+w7Zq89oBF7oUWrLwxC6uuQU1fr62e1lpoeUlMj+iNxn2ekEjuTkYM3xNGYhxpO3iiKJRK7sSQQXOQOe8Z57IhYV4filpdPWBmceixIUzv7z+6FvfT4QiIEAWrEMDkp9xL3lzWY5DO7JJ0HU3HWXrA4IBKQdzcQdDydj+5nF5UIm9dAQ1snKlfFl03ELAi6n5iq3UAjPsS4kklVCJpN8RLOfhodxLdracJyqKvRirK2dWZ9ICOwhiwX2KAc8S0pkqfJMkZlcXjxZ/0Ht6wMB7H9OsuCycG7hxCXkXO3GGdDRsEHbA9/jkcGpnh5gHvtpzAUsWwY/OrK92SzKPDYlIWcbiZh75vcwEUJ8SVGUfUR0JxH9PyIyEFEfEb1ORD+aygcJIboURXmJiC4hop8nd9ozLx4PQC8nB49Dh2R0KBKEVRVgPTYme/8NDMDY5UbaeXmInmdlAcwVBeDT1QXAqa2Vxo7djqlgaWkoN55qdEZVkZWzfTvOackS9CiLdu5EMNJ42uvixejdEfk6jwdRso4OKOfcXCjJmhqcb18fXldZCRIsWUXl8yEyeOyYdCRWrsQ14QbWXPLGpFd29sxH1/QSLokZGYGSibf0obiY6IMfBMn68stEv/kNDBh2dsxmrD2zWSq3QADXcHRUKi6TSfaInKEshnksilOsVhi4FRUIApw6hfXS0ADj48knsQ5uuAH3rrNTZm7U1uIeHzlC9N//jX16xx1oFM57VFUxefmnP4Xx8tBDwIBIsdsxdXnHDrzuu9/FGvN4sPdiGcxHjxI9/TSIzcpK9BlavTp2f0WrVZJw0cqXXS6QdW+8IQ28bdtA1hmNOE+PR2J3slikqtKhVFV8XkmJLKncuxf6IRjE/z7wAWQcLl+uH/Hl98uAibZkWc/eX1PNLox8j80WPim5p0f26+HG6BdfDJ1RWwvMVlVcNx7YxMdlR2mG+tXOY1GcEgzCUeZBacnuLSFg6zidRNdcA1tHCARNvF7sIbZ/QiGZwXz++Yn3D3U6Jck0MoLjsfNoNgNL2Wbj5v7NzQj8TkU3er1yEnNODvZrspnQPM24owOYUFwM8nC2Sv/0FoMB95WnsZaXw4nmSewNDbiOHLCOltXDWYJ8j+O1RwOB8DUhBNZ5aSmOwcRSMBh90IFOMo9FCcqJE7I1isFA9KMfwQ+77DJgh8uFva/1JVSV6PHHYTuvXk10221YKzz0jXGBp+uazeP3MCeQnDiB97a2xkfW+Xx4H2cRl5XJyi2HQ5bLms1SH06EH6oKH+3IEXzvtDT4fMuXz1xPQSJJfjJxGAjIKfQVFfH1tJ6qJDOchDMFOYtQW1bM05UNBtz/yHvKhCKXOnO2aFoa1ozJhHXU14f73N0t1ymXm1dWojqFswwna9kzizKPTUmIMn4S9bxMJoqiPEtEK4modoqjuWf1YgeDMNIUBZv66FGAQ2vr+EivqoLAsduRTVFWBhD52c/geF51FRTK668DWD/4QYAEA77fj8bRTH65XHI64eWXT71fVlsblOLp0zC+rr46tsNOJEudeRpwpGE+MoJj9vUBhCsrcb5lZQDH3l4QUrm5+LxkCahgEErw0CFc84YGOCsGAz6HHU1uEjyDpNeMCA9G4MElWtH2YYmMjnJKfVcXMs28XjhCmzdDOfn9stSbe7hwVmJW1rSmxs8JdZiqWBQIwBgeGyP69KflAI+mJvx87DHcv1tuwc/OTuBMRQWwSwgYyP/5n1gr3/gG1gTLyAjKl/ftQwPxr3xlfHkgH+Phh2GEf+xjICx5DebkRI+UWixoUH74MIzYK64AuR2LGGKnWwi8PvKYfX3A0bffBk4sXiz7HXLGj88nCfFk1zQfk7MBONvv4EEQh5wpVVoKAnPDBuCVXr0Cuberw4HvpSi4Jrm507Nftf1PJzNivV5Zltzejp9OJ/5nNEIX1NZCJ/JEXS1pzdmGjF/a/kLTSBzOY1ESwgPirFZk2Cbby5MI+2jPHgyM4+qMU6fgfDY0yHI+VUUPs/5+YEhkqWEs4ZYITChxSTER1lphoSxJ1k7Qtdthg3g8CMLW1cXv2HHQgYd8FBUlnyHIw4ba23FO+fmww/S4B3NRmOjNz4cu8Hhgh+blyRYVnNHDmBgpXi/ug9kcOyirXR/cbywjA+uhuBjHjbzv3PKF2yskKPNYpKO0t4Ogqa+HHvnxj4EhH/kISDS/Hz5dQQFwhqsHfvQj+D9bt8I38/tlVhmXqGZkxNbpNhsw0WaDzdXSEnuv8/BCzjzs7ob+Y1tNW5IcWZY8kbjdyAw/dgy/5+XhOzc2zpxvFAwiy9Niwc9QCOdfXo7vl0zm7mTkYDzDSSLJQf493uCCwyH7TE4kwSDua3u7bCfEPVo5A5PLtquqsF7mQN/aOYFFkZIENs1Jmf3bnGKiKEo9IY31O6m0AISQkyBra0EQckQ8UjmEQvi/wwHlxYNWnn0WDtYVV8DQO3wYCu2882DMCCGzNGprJYHo9SIq7/NBoU3FQLRYkO2zdy8A6oYbQArEAu5QCGRdTw+M3FWr5PcLhfB8WxsAkKf8LVoEI1sIfJ+hIRy/pib5SJeqIkLzzjtQ7pWVSOc2mcKNu8LCaSe9ZlWys2Fo2O3S2Y5s4EwkFRqXJaenQ0nV1sLBY6LjZz+D0lqzBkax2QzDODNzTiivGZFUxqI//xl7+xOfwJpwOrEP/X5knaanE/3N32BPtLfDIVqwQA5Kef55om99C/vzgQdQPsyydy/RvffC2f3CF2BwR2byDg4Sff/7eG1jI9F//AccaibsuOxdK6OjCITs2oU19qEPTd6SgTNLTKbwaaWhEIz8119HYMRkQj9QHrRBJIl3IhjQepR+2O3ANzYgT58GNrW14f81NQjQbNgAokzPyDGXLDsc0hhPtmQ5HonMLOTvFAphDXZ2wkDmwWEcVy0uhn6orYUeXLBgPLaEQuGlP0Sy9GeyDIuzSVIVi4jg+I6MIIChB3nV0QECcelSSSD29sK2qK4On2S5dy8IxLVrYxOIXIKqJQ1dLvyPM/2rqyVpmJcXfd92daH/ocmEwUdTsW3cbtnHlQc5JYsNViuw3eEAtrW04PzPZsnJkWXkHOwsLwcOWa24h3xtOTs7MvjFVRh2e/jQOo9HTlTmwEdWFtZVPP0tOWspFJJlzqkoqYxFWrFYsD+459yf/gTdffPNsBUsFmBNURH8OKMRgcEHHgDeXHUV9LjPJyt2MjIm3rehEPyV06exPtetk/YIkSSatX0MfT5gWF8fjl1ZiUBobm5iw8EGB+HDnT4NvKmpQRVEdfXMZLL5/cBqiwXXU1XlhOCKisnbMmkzBCciCiOFyb9ovQcjh5PoIZxtyIMo2U8WAutNO/ikv1+Wn5vNwKzmZlyT2lroEm4hNTQk21fNS7icLdiklflMxDhFUZQVRLSG0GRzORE1CCH6pniYWbvYg4MwUiorsckHBxERj8zQCwZhaLrdcOq5N8+bbxL97/+inO3DHwa4vPoqHPD16/EaLpGprJTv8/uJnnsOoHLppeEDViaS0VEQBbt3Q1Ft3Ij+HxM1G3c60bfL6YTz19AA4HW7oZA6O3E+eXlQcjU10lByueRY+cJCKItkyCguBdi/H9c9Px9OBRvuZrPMljubSS9tD0O3G2uECNeYSxq0j2hKUgi8n41kLpfgjKmWFmShzXD2wqxFuVIdi/bsQWDg4ouxJ/r6YIxkZaHXTzCIDMTCQtznsTHZdJkI/Q//679A+n3/+9IpD4VQuvzYY9jbX/kK8EnbNkFVQWD+/OdYO7feCpJRUWSz6UgC0eVCb6HXXsP/zzkHBOJEfcu05cvZ2dj3igJsevNNEJE2G45x/vnAUP5M7aRnHg6UrEPncgHz29oQ2T9xAn8TASvXr8dDO81aL/H74ezyYCgt4T9TIgQcAi5H7u7GTw5gZGfDGOZHTQ2e435D2uh+KCQzDpk45N6G3Lh8hmUeixKUkRGQ6JWVcIqSFZuN6IknYGNcey3Ww8gIMmpKSkBUsrz9NvCttVU+z1NytRmGXIJKBIzQZhjGM/yCqyAGBmDvce/leCQYhC3m8YBUSHJKLxGB/GJcN5tB0JeVzdlSN91FCNhBwaAcJNDeDnxcskQGpXgyPU94jhRtNjlXYxCBqOSMw0QwlvvIchnkFGUei3SQvj7YCAYD9sfLL0Nf/83fYP92dWEPlZTAhgoEoNMffhjr4dZbgSs80DCevTU0hCxltxs6sLkZn6+dlhwIhE9LtlplP2AeQJlIK5JQCN/nyBGcR3o6bLfm5pmx67nNF5P5QmDvVFZij7L9Fg85OFF58URZhLOFf9xP024HWchVeESyLJknJVdXyyBHKIS1wYNY0tJw37xeYFNBQexe4jMkc0aj6IRNc1LOYvpCd7mWiO4mog4iuimVFoDDAWAsKMDvg4OyFEsrgQAIRC51KSgAOJw6BUKvrg7Os8MBBVdSgkgVkYySs3FLBGX24oswFi++OD4C0enEe3btAjg1N4MgamiY2Hjt6YECMhrhDJeUQBm1tUniiiNknFlJJLNReHKeHn14urtx/gMDUKitrXJSWnY2lFOqRnknklBIRrX4wU62wYDvX1OD57ncKpZwyaPbjZ9cipGXJw2rSy9Fuer+/Vijra0gm/XqpzaHJWWxqLsbGc1NTWgz0N4us2d+8QuQbjffjPVx6hQMG56Uqqrof/jLX+K9Dzwg9+rgICYyHzyIdgl/+7fjiar2drznxAng1uc+B0wSQhKIeXnyPT4fegO+/DLW4LJlyIJeuHBiLNKWL3MpYXc3sg4PHMA+aWxEr7Rly6SjJoQcLmIwAH+TJdpcLpC2e/ci89HlAs41NwPL16+fnoixENi7TufMlCxHiscjh55wpiH3GjOZgEPnnitJw6Ki6EY8P8eTI7V9w7g/UCLZFmeRpCwWeTzYEzk54eReohIMol8zETAoLQ3r/733sO4bGuRrDx2C08z2xqFDkjTUTkgtKgqfmDzV8mGbDcf2eoE5U8kudjiAi0TA42QdQg7m8qCFhgbYZO+XbF0WRYHtrR20UlOD6p+uLtjeiiJLjp1O2QpDSzKPjOD9fj/ez0H/ZPtns22qbcmQIpKyWEQk7ZCeHgQ20tMRsHz9dTx/7bUgEDs64NcUFGDtDA/j9U88gfv/uc9hn8crfj8C8p2dWDutrVh7nHlMhHVoMsk2S6OjWKter+xfmsg0eZcLQc1jx3CsggIEVSfz9/QQlwt7cGBAThfmYGJZmextrKrYcxOVFxsM4b0HI8nCuSLBIPxd7bRkTsxQFBCFS5dKwrCsLPb5G42wT81mrCGfDxjP3310FGslVfv56ywpjU0TyXwm4szKjF9s7pmRkQEFcPIkSLTIAQOBAKLlPO04Px9GRF8fJqQGg0S33w7Q+Mtf8Lpt23BMhwMKJTcXxgxHKf76V7x/y5bok5O1onXY/X4A2apViALxdMtowmWBvb1QZi0tUAqnT4OASE/HZ9fXjyeX7Ha8LxjENSkvTxzwhYAS3r0bwJyVhXNZulQSh3NJmSQrqop7xmShxxM+bS0jQ2YXck8UFo6wFxaGKxhVDScOuY8ZZ2zyVGruochOPGd3HT6M59asAUk0zcor1WmDGccip5Pohz/EPfrEJ4AZOTkw2n71KxitN96I/X7yJF5fVyeHffzbvwFTtmwh+vrXpVO7ezf+5/MRfelLIId4mrmiyBLpJ5/Ec5/+NHqVcWSZs/7y87HGgkGspx07cA6NjTBsKyuxZmPtYyFkiZnJBIP4yBE4AZ2d0ik4//zxARWebhcMYr8wWZ6IBIMgK3fuxGRql0tOVN64ET8TMfjjEZ4s73TKkmUeDjVd+BcMQs9oScPhYfxPUeQgHs4wLC+fPGNQiOgZh9q+TnOIOJw7Z5KYzDgWhUKyx+769fpkxe7YARvqiiuAWz4fCDxFQdCDM3feegv7MydHZv4qCvCCycLi4uSHJ3V2gsA0m0EMxJvREwjAsfT78d6iouSqJXw+2KAWC/ZcbS0c1LMxkDoV8Xphq2ZnQ8c5HLhOJSXhJaROp8wO8vtl38KCAtwbbtNQUqJvVQsHTKaIdfNYNEXhwTdWK+yc06ex9zdvRkLF/v0YorJ+Pci206dx35cswb159VUELxobiT7zmfjIfi5L7uiQQYaaGiRZcDlt5LRkItmCwOXCuq2vT2ySvMUC26i9HeeycCFKsquqpn6syUSbKWizwVbo75dBxbw82AhlZeEl/9oMwYn6D85V4QnSWsJwYEAGB/LyJFlYWSl78SdjG3J5u9+PwD4HbGepv/8cvjtnj8yTiDMrM3qxVRVKIhSCgXHiBICCp3yx+Hz4XyAARZSbCxDo70cGy+nT6K/R2AiF1d2Nhr3l5VA+7e0yi4/7T73yCoxYjirFkmAQJMCLL8JYamkBCWQ2w+idqMzF4YCCdbthjCsKnMhAAAbW4sUAyUhjNRCAIrHb8Tnc/DeR6+t241hvvQWgzsyEk97aGn3qVaqKljD0euUgGKLoZckTfW8hYIyEQrhPPh+MJ48H/zcaw4nDaMIlFpwJRITI165dWMtmM/rB8LS6aZBUv7MzjkWPPgrsuPVWEHdpadijTzyBPfTxj8t+rW63NFCHh4n++Z9hQH/0o8hULCsDdjzyCAjCJUuQicjtAnJzgUWHDxM9+CAMqK1biT71KelM86CAUEgOLDlwAO0XrFYcc8sWOPRcVhxrXYdC0vEOhXCub74JjCopQa/Dc86JPsCKS32NRnxGIuQ3T33ftQt4ygGUc84BYbp27fSWD/t8wG8uWc7MhCOk92dqy5L50dsrDePcXDgkWtIw2jWPNmiFHSvu+UQkhwzwROXI0uY5InPrbKYuM26EHj0K+2bVKn0ycQ8fRgB0wwY4+8Eg9iJPk3e7ZblYe7vMhOWyU+4ppYcEAgis8mcvXx5fVg8PXOKpnYWFyfVhDQTk/iSCjTZZFvf7TWw26MLCQjjvfX3QIzU1UqdwD0yvFxmMrBe1GYPDw3LAgZ7BmgSIxHksilNcLtxfu11O4+7vh35qaYH98NprwIn16xEQ4L6qzc24J48/DpzZsAEtYGLtrcg+hnY7bJThYay9lSuBQ0wcRt5rux24ZbNBn9bVyTYy8UowiAzKI0fwvdPTkWTR3Jx4lnO0kmLt36EQ9tfAAEgtjwffrbhYDkdhPy2SKJxjOn5S4WADk4a9vcAMIlxrJgyrqvCIJAv9fhyDW20lI9z/uqcH66m8XPa4n0FJsTuYmjJPIs6szOjF7u2Fg1pWBvA2GqGctIrG6wXpEgqhpCc7GwbvwAAU2q5dUDCXXALDe/9+kHzNzVAKp0/jODw9TAi85+RJOLDLl0c/N1XFsZ57Do78kiWItqWlSWMp1uQ5IhinR45AEefkSOVQVQViIlZ0zGrF9xICwFZSMjVlEQrJ/jMjIzDWu7oAuuvWwSlJ9anKwWB4hqHPN74smTMMzeapOz/BoMwCVVU4UGlpkjiMl0ThKc6RWZ4DAzL7KzcXRhj3d9FRUl1BzSgWPfccDOKrrpLZfg0N6E/Y3o7S3iVLZDuFxYuxLk6eJPra12CQ3HQT7uXixYhk/8u/AAM++lGiz35WTiDMzcUxfvpTROgrKlDis3atPJ9IArGtDa/t7weGbNsGfPD7sSYnMnI9HuBKdzcw8vhxHHfpUmQTNDVFxxjuHaOqstR3KljkcgFD9+wB+el0Yh+1tCB4s3lz8tNTJxIuWXY4cJ0MBvk99CLunc5wwrCrSwYb0tPhbGt7GcY78EFLJHK2IWdSc+kW9ziM/M5zkEicO2eSmMwoFvX0wOZZtAh2S7JiscCZz8+HbWS1IrvH4YDTxq07fD5gXWMjghPTsX7GxvDZPh9whyf+TiY+H+yZYBB7eKKM68mEB9jxlNbycpAO04lFqSxDQ8DR4mL83L8fuolb4HBmakaGnKZaWBi+fjh7NC0Nr9VrbSUwsXkeiyYQzoYbHob+NxpxL4uL4UsNDsK+OXSI6KWX4E9cdBH03tgY/tfQAL348MOwl668En3q+Z6rangfQ+5Zx9Lfj89KS4N/xuXz0cTlkoOn0tOBJ5WVU1tfTqe0i3w+OQiGMymjSTLDSXgwCPf+DwZxnUtLce6Vlanvo3EijJY05NYTBgMwV0saxhtccLuxLnNy9LlGXDKekSHtW+7TOQOVeamORSkh8yTizMqMXWyrFQBaVASACQTgXGozQzweGNNCwODMypLTO1UVpYNmM0oMrVZkC/KkLM5y9PlgiLOBuHcvFMaqVXhEihD4//btML6rq9Gbq7YWoKiqcPpj9SUMBtH/4+BBAB5Hkurrw88jUnw+XAcmHauq4gdJblztcuE4Ph+Ud1eX7CGycmVq9n5Q1fAMQ6833JnWliUnE0kKBCT56vfjOe4xVlaW2BRs7ptIhHUdadh0dYFMtFiwDzZtguGik6S6gpoxLHr3XTjZ69eDWOPBR9ryv2XLsKe4nUJeHoIR994L5/z227HXm5oQof/2t7F+vvpVGNlOJ9ZYTg4w6AffWvGSAAAgAElEQVQ/gCF59dUondbiAk87ZSJxxw449yUl6GW2YoUsLdb2SIwULhd5803p+GVlIXiyaVN471WthELAWa8XZBVnQcYjY2PIeuYeh8EgPrOxUWZxl5dPb7ZPKARn1unENTSZ5DCaZAxDvx8YrSUMrVb8T1Fw/7VZhom2n1BVGSjhUkAu4eKMw4lkDhKJc+MsEpcZwyKbDQNNiopkifFURVt+2NuLIVGhENF550FfcmsPbmeSk4PX7d4NR3bTJv1LebmdysmTUytf5nYOHIBIpO+i9lj9/XKAXUkJbDI9psqfreL3g1A6cUIO2jIaga+VlbiP2jXq9eJ+mUzjiV6vFzooMzMxeyqWTJFInMeiKMIkL1fgmM0yA1lRsG/b2qDT+vvhe61aBfulvR1rpK4Oj8FBoocewrFuuQU6X5tlyFn5ROHlyF4vfK/RUdjcra2xbRuvF/t4YADrsaYmelXXRNLXhyBvZyf+rqsDech9qCfKIpzqcBJVxfUdGMCDicOyMtgNZWWpO8BSVXH/tWXJg4MysaOgIHzwSWVlcvaf3Y41lJenj54aGwOe8YBArvIwmcIryaZBUh2LUkLmScSZlRm52G637DfG5SmRU67cbhguigLHPDMTIDw2Bmdw716A/8c/juNs3w4CiRuGc6P62lqZpfPOO3g0N8uJzVo5fRpDFbjvy7ZtUGRuNxSnwQAgjEXG9faiH2NPDxTR0qUgHKqqJu5TxhEpg0H2NZtMAgGQhlrSS1FwTdra8HdDA9Hq1aljJAshpyXzABT+bkS4v1rCMCMjOSfZ75fEISsO7s3JU6nHxmRz5kQUH/dRNBpjOz8nTxK98YacTr5pE4yiJCXVFdSMYNHQEIahlJcjm3l0FMbkrl2Itl92GTDgvfewRhoagDdPPYVIe2MjsgyDQdyzX/8avQ0bG0EwVldjfXFT55/8BMdevJjoH/5hfO9XJhD7++HUnzgBY+nSS4FZ7FRzI/tYpPnICIZNvfUWzrumButqsl6cXNZIhO8ZzxCnoSHg8Z49MuhTXg6Sor4e1yAvDwTFdEbYfT5Zek0EnZGbmxjpoKrAZC1hyKVcRMDomhpJGlZXJ/fdVFVmHGoHBhgMOO5UDdk5RiTO/hkkJzOCRX4/9pHBAKI/Hn3DeMCk4cgI9gD/7913cdxrrgF2ud2wEaqqZB9ozowvLEQAVm+nKRBAOfXwMHBh+fL4PsPtltnYeXnxZ/FGihDYy+3tcjjCokXT13c11YUHb3EpKxHuVzAoJ9yOjsLerawcH4yaiEh0OrE+c3L0nYzKpaE8QGICmccijTid8j7zYMDiYti/nJDQ3Q0btawM1/j55xHIvO46lByPjGBN1NSABPzhD7HnPvnJcDvWaBzfx5D7Pr/3HgbVmUw4dqzeg9yCoK8P712wAJ8RbzsEnhL97rtYwxkZwMXGRnznyYaTTEQURjvXwUEkCQwN4dpx6WxFBfZNKvZd5Sqtnh48+vqkn2Y2S7KQiUO9/U9VDV+vydo37IP7/bg3RqPsmygE/s7IiF5Gn6SkOhalhMyTiDMr036xg0EYc0YjQHVoCESbtn8FTww0GkHEmUwAY5cLhmRvL5ryf+ADiNbv2AGjZds2gIrFAsVWUSH7CR05Aoe6oQEReS0Y9PeDPDx2DO+/7DIY8UYjjjs4CBCpqopePjYwABKIJ5adfz7Iu8nIQLdb9oXIz4dCnMi4ZiIikvTKyACYv/sujlVXh+ifntHe6ZBAYHyWIW93Jt20Dz0UrtcrB6NwRiP32MjKGv8ZHEEkmnppOUswiHtnMsUmGlQVBtju3TCy6+pA+ky1r4tGUl1BTTsW+XwgAt1uTBa027EHDx8GVmzZAhx47z05sdhsJvre95Dds3kz0V13yZ53//M/wJBrryW6807cb58PuPXyy0SPPYa1cPPNiOBH7nVuv/DXv+Izs7KQxbhpE9aNz4egC09GjoZF7e0oM9q/H39zuVFDw8RrNxjEsf1+fFZ+/sSlPL29cqpyezueX7gQvY+WLQMmcRZiaen09TsUAtfX6ZQly0x+ToUMsdtBrjBh2N0t+6qazbJ/4cKF+KkHAcGZzoGAdF6MRlmqbDDILIhEmqTPISJxHosm+wCBkn+bDUR/LILF6ZQEj9UqM5aJsOe4h2FREbKoDx1CcGTpUrz+2DH8n1sYjIygP3RODnqT6k3yj47iHAIBfGY8wTEOpLjdOJ+iosTPa2QE+OR04jvyhOB5CRdufzMyAjwlgvPP6ykrC88PD2NtFhUBLx0OEEiR+O7zwXY2GvFaLclis+HzCgr01QuhEPYCT6GNIe97LOLAw8iILFkuKoK/wgMJfT5gktMJArG0FHrwqaewh66/Hj7V8DB0YkkJbNcnnsB6uf12mXHGxGG0ezIygqotlwuk0/Ll0fc6tyDo6cHvnPXPAdHJMgfHxoCHJ08Ci4qLgYmLFklyKBY5OBXd6fPBH7RYcG2EwHUrL8f1KCqadV08JfH5QBLytecWZERYNxUV4VmGM/X9uOUUV5kkK6EQ7puiyAoSJp19PvxfUeQ0Z51KnVNoJaSuzJOIMyvTerGFgIPGhEp/P4BH2xfH4YADbTIB5A0GALLPB0UVDKL0sKoKvcbeeguv/8AHcJzRUYBeUZGcIMeZXgsXghhgABgZQS+0AwcA9BdfDAKQldjgIJRPTg7AUgscgYCcLnj0KIyiZcuIPvjByUFNVSXRaTLhu0R7jxDhxCGTXpmZMOoyM5E1uX8/lH1lJRyQ0tKEbs+0Ck8s1j4440ZRxhOGepU7CiGJQ7cb115Rwq/hZArB74cDlpkZ/wTJSPH5cP8mI0ODQRhVe/bgvJuasCYTIIRTXUFNOxY9/jic6muuwXUvKgJ59NprIMM2bcL+FgIEohBE99yDqak33IABLCdOYP/9+tdYV1/7GjCGSE6Uf+QRHGfVKqLPf15OPNWK1Qpict8+rLMLLgD5x04WE2U8VVm7Zv1+YNhrrwEPOJPpsssmJ6G1JJyiyLLfaK87fRrrcs8eYDcR1uf69XhkZyMo5PNhnZeWTl8WdDAopyxrS5bjGRbl88Eg1pKGNhv+ZzDIAQtMGpaW6mcYc29D7URl7m0YK9Ida9BKPMKfMctE4jwWTSKnTmE9NjdLu8XnC88wtFplxgc7/vxgokd7vL/8BdnAF1yAPX74MPBkxQoZIH35ZThFF16ob09ADmi0teEzV66Mz9lzOmWmdX7+1PuwsthswCubDZ9fX6/vPj4bhLPQRkZk25XcXEkcRlsPo6Nw3ktK8P+TJ4FLS5aMt6P8frzeYAgftEIkh3zxsAy9hInECQatpPoKSBiL/H5cd87uzcwEcWg2438cNOO+4tzaKS0NPtDjj8OeuOoq2DU2GwjksjIkcrz0Enygz3xm8iBbIADbq7MTuNXaGt1vUVUQVx0deE9REfRyZmY4URhNFAV2yokT0PdGI3BgxQrZN1EPPHC74c9ZLLi2RLBDKirwSDSDeqYlFILPqy1LZiKUCHtVSxiWl89uCTb7dZmZ+gQjfD58/8zM8dnVnAiic6lzCqyK1Jd5EnFmZVovtsUCA9FsBtHHEXEWmw3Gb0YGnmeyTVUBWOnpRL/9LYDjppvwv127YHivWSOb3Gdng1BUFCifV16BY3jRRbKfy44d6BVmMCCjSOuwc+8clwtKVqvc7HYYp11d+H1kBIqNBypMpiwcDtkDsrh4PDnJpJfLBcOOIyBMenFfr64u9E4aHcVx1q2LXQIw08Lkp5YwjFaWzINP0tP1VbLci5AzDjmTR0scTvXzmLDIz09cYXk8MjI5GXHp84FQevttnP+KFUQbN8ZXXnpGUl1BTSsWvfYaAggXXCAdcKtV9vq56CIQf9xOYWwM/Q17eoi++EVkPR87huEou3bh/nzzm+EEwC9+QfT73+Oe3XEHMoIi153XC+P7+edxnzdvRiBCS1bb7Vg7ZnN4+YbVis/eswdrMy8Pw1nOPTe+rNlAAN8rGMSazssLX5ehEJyFvXvxGBnB/5cvB8l6zjnAR49HThZMT8dnT1epoNcLDGWnl4fKxCrRZizv7pak4cBAuGFcWytJw6oq/fs1crYhTxIlkqRhvFNFOeCSSDb2HCAS57FoAhkcRBVDXh5sCSYNOSOMCHjAZGFR0cSOqdWKlgrFxch4DoUQmCICmZeejj20cyfW04UXJj/tUit+PwhLrgbhSa0TCfdx5ABEUVFiDprLJXu0pacjoz/Sxnq/ihDSZmUST1GwlnhdTUbocWm4z4frGgjAHi4sBLEQKXxfI4lErvBQVXy2nmTEJBOb33dY5HDINgeKAnskOxv3QhuU0AbwPR7Yn14v9Osf/4h7fM01cngY9w/85S9hp27aBL9sMh3V3x9eNdXYKMuatVOLBwags30+rNGFC2VQIVbmoKKET1nmIMKyZXjohXMOhyQOueQ/L08Sh3qW6k+HcHamdvBJX59MVMnKCi9JrqqavmqSZIQrUHJz9bHbnE741Pn50W1YHgrEmbpJljqnOhalhMyTiDMr03axbTY5BWlgAEps+XJp3I2Oyqh1U5NMCzca5bSqnTthDH/0o9jgzz8Ph3XrVmzs06fxuvp6HLe3Fw56SQl6igWDiLy/8gp+37gRjr0WLIJBvM/ng4LMzwdY8MSwoSGpsLxeHHvVqslLl4NBHGNsDNeguloqNO6bNxHpxddpYADZl4ODkjSoq5vdSBf3MeQHAywRDLnILMPpMOhVVWYbclm00Sivodmc/DWyWmEUJ9rLhMlNzryM53xcLpBEhw7huq1ZA/ImjiE5qa6gpg2LTp8mevRROeyDJ64//zwc3ksuQTDDaAQWtbURff3r2MP33otWBQcPYvpyfz/Kk++4QxoxR44Qffe7IK4uugiR+Uh8CAZBAD7/PNZVSwsc/ooK+RqelOj3Ay9zcrCGTp1CD7MjR/C6xkZgaV1d7AwSrQgBI9jlwnfMz5frifuX7d0LnHE48L1WrUK24dq1ksj2+YCHPPSgpGR6ou6cLelw4Py4ZDk3N3wfsmHc2SlJw54eGT3OypJDT5g0nI5MSW70zw8uKeaMw3iJw8hjchZ1osNaiGaNTJnHIu3Bzuw/qxXr8803sU7q6qTeZ1KHH/GSLH4/CESvF/2iMzOxn71eYEx2NnTkzp1w1C+8UF+H12rF5wUCqCSJRixphYkt7nFVWJjYnvR6ETC2WHCtamrw2anYc0xPYR3CmayMnwUFco1NlcALhaD3FAW2Off05unzkRIIyAwt7eeFQiB7DQaci17YJER40CUCa98XWMRD2UZGZIZhdnY4ica2uckke/LyAJQjR4BRZWXIaM7Ph53T1YW91twMX+sHPwBpf+218LG0E5gjS4zdbmCDxQL9vWLF+PWiKDjv7m7Yyrm5sgXBZOXFNhvOm/tXl5XBLqqv128ABxOHHOApLJTEoZ6BGL3F44FfqyUN+TukpWEfa7MMeaDOXBfWH6qKtaQHhoyMYK1yCX+sz9Wh1DkFrnDqy5wlERVFWUNEVxLRz4UQHbN8OnrJtFxsnqRlMEBBGI1IX2enm/vWZGfDIebIWUYGwM1ohOP/9NMgUTZuxCAVVUVGUFoa/i+E7HExMED0wgsAlq1b4RS/9BLAYdUqDGCJ1hCaJzBzf8KODpwbp03X1EgHoLw8/HvEEh6UoKpQbKWlUqkyccikF2cbRpJMVisigz09+P/q1ehzNtNOobYsmYefaB1UnpbMWYbTme4eCoUTh0T4PC1xqPfnjYzgPnGvzUSO4fXiPKcyLdtmA+l07Bi+1znnYA2kpRHt37+fnn76afrkJz9JdXV1/JZUV1DTgkU2Gxp/m81woFmefRaZxJdfDiwxmUAgvvEG0b//O7DiO9+Bo/Tss0T/9m+4f9/6FsrNibAfHn1URu2/8AX0X9WKqiJq//zzcKCqq2F8r1gxPguQswQ5Q/Dtt0EechBmwwYY89x3qLh4cmOZ+yqGQjhGbi6eO3AAGLl/P75HZiYIww0bgJfatRoI4Ny5P2Nx8fgG+npIMCjJTlXFd+Rya0XBeXZ3hw8/4X49aWkwiLWk4XT262HikDMOiSRxyBmHenxGKhCJUfDofY1FXq8kcfjBfTA7OrCezztP9sxKJuNj+3bg11VXwYY5fhyf19yMPer1IpDq9SILW6++ydzuoK0NuNLaOjk5yeXagQCuQWHh1J19v18OWiCSe346p7/PdeGektrSVS5/54m7yZIqPh/IlMxM2LOnT2NNNTREz2YMBuUk+8JCeX+4VYzJpC8+Mx4fOLCftm9//2CRzyfvu8+H+5yTI3Wm0SgfoVB4P15FwX3o6JBD/rZvh+666SY8zxmIbjfR978PAueWW5DhrCUOw05YyOEs3Bpm8WIZTGNy0G7HZ9jtWFd1dZO3ZuJjHzkC38hgwLGXL0++rZMQuA5MHHq9OF+uICsv19/H0EOCQdiI2rJk7uuuKLBltYRhWVlqB1tCIawZozHx9hda4TkHoVB8JdtJlDonjUVnKQ+lq8xlEvHviOjHRHShEOLlWT4dvUT3ix0KQTFwD6tgEBFxjtoMDeH/ubnoq8I9V7KzsYEVBU7kY4/hNddfT/TqqwD1Sy+F4dHRgU1cVyenOD/3HAC+rAxRd5sNpMC2bdGj404niD7u/9HdLZv4lpRAMZnNyEDyepEaL/ma6OL3A8SdTtkjIxTC99GSXlriMFIcDjj2bW0wzlpb4ysP0kO4tFr7YKAkkoShdlrydEswKIlDjrCaTPIaTuf0VyI5eZAJmESEo73ccHoqMjQEIqm9Het040aiN9/8Cd1xx+20c+dOuuCCC/ilZ7WxnIgEg5iObLGgZNhkguGxfTswYds2OKQ8se/JJ1GuvGIFSEOzmejBB/H8kiVE998vWwjs2QOjemAAuHTHHeEZzkLA0N2+Ha+prAT52Ng4noDjMmM+Zy4n9npxnps2AUNtNrw2N3fyKXU80c7jkUM7Dh+WWa6BAI5xzjnIOFyxYvzaDAaBrXxunCWltwEarWQ5KwufrSUMBwfle8rKJGFYWwsCZboNY45Gc8YhEa4rE4fT8fnJ9Efk9xNNL5H4k5/8hG6/PQyP3jdYFAzChtH2MeRp4YoCAof3jcWC/61ZM3klQzyyfz+CHuefj2O2t4NcW7QIeOP3owrD4UAP6cggaqLi8wFLrFbsu2XLJl77nB3ncEhya6rEaTAI+6y7G8erqIA9NhM2yFwUJukYn7lPLBOHemXpaIWD6Twg5eRJ6MhFi6JjE+8NIcKJRI8H55yZqe8wQCGIHnnkJ/T3f3/2Y5HDgcDe6Cj2Obc+4WvMxKGW4EtLC5+WrE2ayM9Hy6dgED4XDxprbgam/PzneM+nPoUAXazJxW437IuxMeBNa+v4TGNuQWC14nwWLsR+nki/+f3odXj0KOyarCyc29KlyQVhVBXX0WKBncbD2kpLJXE4lwIUTHRqCUOLRWbi5uaGT0tesODsxMhAAHsgI0Of6hImYtPSYFvGY2tFljpzUs0E7br0IBHPRh5KV5nFtp36iqIo2UII1+SvPLukrw8b3O3GBtP2pRgYgDOYnw/DY2hITm3jTC8hQAgGg8gSOnoUx1y/HkqJ095ra6E8bDZkILKBvmsX/nfjjXD8o4nVCofUbodC46lyNTUgD3NzoeQOHsRnnHfexAM2hIAiGhjAeRcUAEzY6TWZ8P6srNiA7vGgT9KJEwCg1lYQB9OpALgsmTMMmaQjkhl+BQWSMJypLEi/f/xU6vR0nEtW1swqdc6ydLmkgpiqmExQ8mygTIVsKC1FlklPD8jEF1+EA0ckS8gnk/crFm3fDry44AKsZ6MR2FJeDuKvs1M24b//fmQLbt1K9E//hADD5z4H/LnsMjxXUACj/eGH4ZxXVRH9678iQ1S7T9vakL3Y2QmD5OMfB7akp8OZ0hoYXq8cCnD4sOzLuHIlyMOFC7E/R0ZkVHmyaLjbLR2+EyeAY8eOwegpKUH59oYNCLJE29OqKjOoVBXfu6RE30CGqoaXLNvt0ilmA5mJupwcXIe1a+XU5Jnq16OqMuOQDXU2FnlNTacYDLJELBEiMfL9c0FSFY+EwF7VZhjabBKHebptY6Ocfsrro6sL+7KhQR8CsacHts6SJSAQLRbYSZWVeASD0Bd2O3BELwJxZAQ4FQoh8BBtaJRWPB5cp1AIdtVUyS1Vxffq7MQeLC0FXs/lUsLpEh6UMTKC+yoEcKiiAutOj6yciYSz2MfGoMuqqqBfBwehUyMlLU32/LRase7T04HdoRCwn4P4eoi2Byxj9eTvSR0sCoVkphzrzexs6OfILD8i/ExPD9dTWn02NAT7IDsbPpTHQ3TdddhrQgBXDh5EEHXBAqK77orde1lV0Xbl5El81qpV4yezcwuCwUGcU3091tBEeDA6imDsyZM474oKBD65FUQiEgziu1ssOJdgUJJHFRXAmNkcIKIVl0uShT09wEIOtqan476ce64kDqcbA+aKmEzAEQ6SJ+snM1YxMV9UNPl7eCCRdlAR+9I6T3VOWFIJ3/SSWctEVBQlm4juJqJriaiKiNxEdJKI7iOiZiL6lyhvu1UI8XNFUX5ORLcQUS0RfZeILiOiMSFE/ZljVxHRt4jociIqIKI2Apv8oNB8YUVRXiaiJUS0iYi+T0QXEFGAiJ4kon8QQngjzvkTRPTPRFRHRB1E9J0zv/+LECIeKNH1Yg8P48FTlBYvlsZFfz9AsLAQDqHFIo1CbYbXvn0wfrduxWt37gTheN55IOmGh3HMkhJk/D36KMr+8vJkdtGKFdGBlFPhjx6FMjaboUAXLYJSMpkABgcPQslUVIDIm4i08nhAOI6O4nUccU1Plz1JJnq/34+mw+++CyOhqQkKWG8jORgcn2WozVKJ7GM400o02lRqJvCysmZXqQshm4KXlCSmGDjLU4jJB724XC6699576amnnqLe3l7KysqihoYG+tKXvkRvvHGUvve9b0Z72zwWaWT/fgw5aWmBo60oaG+Ql0f04Q8DS7KysMfvuQfR81tvRR+gF15Aj0ODAWU9l1yC1+3YQfSjH+E+Xncd0Yc+FN53qLcXxOXx43CWL7sMWOR0ShJce99HRoB1+/fDKcjNBc6dey7Ok3v+MYE9WRZgKAQSkrMNu7vxeVVVCMJs2ADDPdbaE0KWxbHTX1qqb7ZvIIBr/957uF4DA8DaQED2mamuDs8ynOl+PaGQdLQYI41GmXE4G4ZhMoNWiJLLSJwIj44ePUrf/OZZh0eCCLpIm2E4Oip1U3p6+KTkoqLYjszoKNoHlJYCj5IVpxMD5zIzgUMuF4IEBQUI2goBXBkclA5msiIEgiOnT4P0aW2dmPzhElu3W2bITcXR4xKzjg7gbWEh7LS5PsBAb+HSeB6UQSR7aBYX60fAxSvcLzwUAlnNE2oXLYqdEcRrIRSSAXYi6DaPR2Y2xiPvRyzyeCSB5HTKHsF5eTKwzb13WU9F0xNMMBoMWEtHjuD9b7+NYMjHPoZ1JgRw6rnnYPO0tCADMVbwcnQUPpPDAVJrxYrwvc4tCLivZlUVCMZYNr0QIDKPHMF3NhrhS65YkXhbIb8feGixwN7gdinl5VjHevboTFQCAeknM3HIVSCKgnPVZhkm6oucTcJkel6ePj6izYYATVFRYhmOoRB8WR5gxFzAGQ5gUiv2fcpD6Sqzyf//NxHdQEQPE9FhIsojopVEdC4R/YyIqonoNiL6NhEdO/OeXRHH+AsRHSdcUDMRkaIoxWdeV0FEPySi00T0YSK6n4gWE9FnI46RSUQvEtHLRPRlItpIRHcQ0RARfYNfdObG/YKI3iGirxFRLhH9BxH1xvuFu7rifeXk4nIBAJmNLy/H711dMlW8oADgvXcvFEVZGRQQN2EeHCT63/+V6fJ//jOMi8pKRL8HBuCcu93IBHrkESiZZcvg6Le24n3d3ePPz2pFph/3GFy4EA5qaSkAmoegHDkCUFqyBCDd3x/9+3q9+ByLRWYIFRUBPIxGOBs2Gx7RJBRC5O7oUbynpgbKOjcXRGkyoqq49tqHtm8XR0n4kZ4ePqhkJkQ70Vk7lTojQ/ZX5HNnRTqbwiWnvAYTEVXF92XSNpZ88YufoaeffpxuuunT1NTUQk6nnY4dO0gvvLCbrrnmVurr66Gnnvopbd78z5STs4zy84l++9ubX404TEph0cmT8b5ychkYgJNdWAjDorMTQ0PS0xHF3rsXBkJGBtFXvgLD+VOfQuT9H/8RPcQaG0E2lpbCeb77bjjqjY0YnJKfD0MvOxvY8tpr2MtmM4jANWuw5w4dggGRlyf39fAwnPx338WaqK3FlOalS3G+3N/GZsMxcnLwiLYPhAAGvvUWyMiBAXzewoXIwGxtlcNbGHOiicMBHOZ+ZUVFwILOzuTuBZOGnZ0gBHp7ZT+b9HTogKoqOB+VlbjeWsOYA1PTLUwcaicqc6kyl4PPpiTbH5EocSLxn/7pM/Tss4/TDTd8mhobgUfHjx+kZ57ZTRdffCtdckkP7djxU9q6FXj0pz/dfDOlsG20datsoI7jYa3yI87+R0Qkp9LytFo9+jf19OD8amuJ/vQn4AIPz1AU7BePB5/31FPJfR4RrgMPfOKp7hN9j2Aw3ImaauWAzwd7kjOEcnKmv23JXBK+fto1yKWoGRmz38+M7Ri211wurMucnNjYIgS+kxCy9QM/x4ROPN9rz57PUFfX47R48aeppaWFgkE7DQ4epG98YzfV199K9fU91N7+U2pqAha9/XZqY9GOHZL0ysmR5HF2djhBEWtycbThJF4vggFmsyw9/uhHgRuKgjLhX/4SxOBFF6G8Odp9DQYRMG1vx7HWrw/PSOUWBD09uNcVFbBLYu1lr1eWLDud+L7r1yOxIpFehF4vbI/+fthoHMDn8unIqpCZFC6j1g4+GRiQOjo/H0Th+vX4ycNG5yVccnKgmxMknQEAACAASURBVJxOfYb85ecDkzgpaKrXnEn8sTGsOyatrVaiL34xrkO873govWU2MxFHieg3Qog7Y/w/Zi26hgH+sRDiUxH/+0/CTbhWCPH7M88pRPR7IrqKiFqFEIfPPP8yEW0hoi8IIR7UHONPRHSeEKLszN8mIuomIueZ97vPPN9ERO8SUVo8DHBXlz7ZP4EAgJBJqMJCRI4UBQ7u0JAs77FasdHKysKNS78fBrGqEl15JdHu3TCEL7wQx2HyLzMTJZ0vvIDnP/YxKLpoRr2qYhOfPi2d4cZGkI7aCK4QIDtZsa5YMT7izaQXlxZyHwpuWpuTE58RxM3VjxzBteJsx3jSp6MJG2JawpANeCKZ6s0lyRkZs6c4tT0XeSo1Ty5m4nC2nfWJxO2GssrNTbyckh0EdgpYeMJgKES0bl0hbdt2I33taz/8P3KDy1CEIHrmmZ/Qf/7n7fTggzspJ+cCOn6c6LvfRZQrVbHo5El9sMjrJfrVr3CNN2zAnnznHfxvyxZpnHo8RA89hPX2hS/gfj74IPDqIx8B2ejzgUB85hncr+uuA9nnduN9QqCk8J138DnnnIPPNJslFvJwEB5E8NZbMJSJsO/PPXd8SaDbLaeXajM3WIQAhhw8iM+2WPDc4sVE69YhkzlePHE6ZV8lznZMNAuaM3b7+mBA9fbid58P6zc3F8GSujr8rKiYXcM4GJTN5lm4l5TJNPfKgphITLQ/ohDhBGksUVWQyhwEu/nmQlq9+kbauvWHZLPJwB/3Auru/gkdO3Y7rVmzk6qrL6A//1lG3FMRj7ZsIcGEDTvpiV5vzl5MZCpuNBkcxD2prMQ+5cBCQQHuKU+aLCjQJ2uPBzMJAfJwIr3HNhKv0fT0qelzvx+EVCAgB0Scjf28ogn3TebrRySd2LlQFhcpPFyAs96cTpzvRNk70UhDXjNE8a2XP/yhkBYuvJHWrv3h/x1TO+Cjvf0n9M47t9P55++koqIL6OmnUxuLfvc7EgsWyAm6vBa05OBUsCkYhM3gdsMO6etDRQUP/6utRR/pnh60YbnooujHGRhAYofHg+oGDoASyRYEXV34vNJS2b8+moyMwB86dQr6eMECDEqprZ36une55GAUxsbsbOBlRUXiCQDJisMRnmHIdhER7EW+xzwAZaYzjFNZgkHYyyaTPjpPVbG+mfjmNSgEcI4zw7UPqxU8x/Aw7jXbWYxLJhPRM8/ElYn4vuOh9JbZzEQcI6INiqLUCiESzdH77yjPXUlEp/jGEREJIYSiKN8l3LwrCIwzi0pEP4o4xitE9BFFUXKFEA4iWktE5UT0AN+4M8c9oSjKcwSGeVKprY3nVROLqoKg474cVVVQAEYjnjca0d8rNxcbrb4eGzOScHv+eWy0666Dg2wyoRywuBiRruJiZCvt2QPltHIl0Z134niR4vXiPR0dchjBhg1w8iNBxu+HUnU4cMwVK6QyFAJKkgkBoxF/GwyI1nH/xHilo0OWDtTWwuGvrJzCxSZ8F21JMjty3Gsmsix5LkSt+Rp6PDgnJoP551xz1icSJlyKi6eWjcJkIE+Y9npxbxRFkoQ83TUvr4DefXcPORxdVFtbO65U5eBBHHfFChh5Mfr/pBQWNTTE86qJRQhE0NPScF3y8kDaFRUBS7xelF2dOkX0gx+AyPr3f0ep4be+hfX48MN4fs8eTIfv6UFG35134jg8AITbLoRCaKFwySUSC5xOGLNmM/bl3r0YgDA0hL8/+lEcM3KaIJMOmZkwKrXly6EQIvR79uA7jY5izTQ0oGfm5s3R+1LFErcb55OZCcM6sq1EPOJwAON58El3d3ibhNJSfE92Mnhw1myKdqKyEHLP8WO2z28ySXbQitcrS3P5wdM9uXcZD2og4mtUQEeP7qHa2i6qqqqlJUug77lX5htvYBDRt7+NfRZDUgaPXnllslfEJydOAD9aWhA0TVaOHUMAdc0aBB8OH8Y+bmmB03ngALBt+XLYJ8mIELC3eAhetAEJWrHbYddw4GMqTrDTiQCL1QqSpK5u8kELqS7cX5MdUL9fXjsuj59LAx2iydgYvkNxMXSixQL7f6IAFus4vx96JzNTDvAyGCYuKxWCaNGiAsrN3UPf+EYXVVTUhtk+aWlEv/41ehl/85tEF18c8zRSBouuvVa/fSAEbAiXC3u7pwdZ1x6P7Nf8wAP4+667orde8PlQQdHXB1zYtEn2eOUWBJ2deF1hIXR/NCzQJlNYLLh3jY3Arqn2jLXbJXHIJf/5+chgrKiYeULO55NlyUwc2u34n9EIO2jlSlmaXFx8dmPddEtaGnSTywV9mEgQnPuNMh5bLFifDoecgM44zcJEYW4u1iy33OAWJyUlsIHLyqZkW7/veCi9ZTZJxC8R0WNE1KEoymEieoGInhBC7JvCMdqiPFdHRDuiPH/0zM9IGmxQCOGJeO5MwS8VEZHjzDGJUCsfKToWBk4uAwPYaHY7DIKlS2EEtLeDla+ogGFotQLMo00+On4cBvLGjdKgXLkSYHv0KLJ9Tp2C4snKgnGwbdt4EtRqReZQby82eG6uTF2vqhqf9TIyAgIxEIDCrKmRDf+ZOGSHLRCAwZSdDcUY7wQnIiiUffvgtOfng+Coq5v8fVw2oh1+oi2xysiQg0/M5rljdIZCkjjkPoCcWcDDZVJVaebnY12PjUFRcIagliSM/KmdkMfCQ1a4p562l819991Ht956M23eXEctLS106aWX0vXXX0/r1q0jIpmdwSRkDDLzfYdFf/0rsGTlShCI+/Zh/V18seyrtXMnHI01a4i++lWi//kfBDDWrCH6lzPdRh58EOXJFRUoYz7/fOn8vPEGsqR9Przngx8M79PjcMhMwtdeQ9CA2xVccQWc++Li8Xs1EAAeBYM497w8vG//fpCQ+/bJ3ogrVuA4zc0wVHJz44/Ye73AIZcL64aj85PtR58PuKolDTnSbzAgGLJ8OQyo0lJ5XrNdiiiELFOOJA65rC6VsEg7KEUbIOIouXboh3ZqMP/OpYcsigK9zf39mpuxHnJz5WPz5vvoy1++mX772zpavryFLr74Utq69XrasGHd/1UJEE2aNfa+wiN2Ihcu1IdAHBoCdlVXg0B87z3cb66qePdd2EiNjckTiF6vLHOsqYk9gIkIGMXOFa+jeAOXHg8cNZ6KuXjx5IMWUllUFdeUHdJgEN+1sFASh7Md9J2KFBTI+19ejvXY3y9bhUQTRcH3HR2VGa5ZWXiOcYrL/jlLnIM+gQDR3XffR3feeTO1tNRRc3MLbd0K22jjxnX/h2VEk17HlMEiPXXTyZO4vm1tCPht2hTeo/uhh4AlX/0qcCZSurtB+oVC8PMWL5Z7dXgYe9nths5oaoo+edvjkf6ey4XX8pC3eLOOuVc0E4fcgon1V0XFzA5eGxwMzzIcGpI6tqgIvh4ThhUVc2doy9kkGRmy739klRdXD0ZmDg4Py9/HxsYPqlQUYFlZGdqbFRbK4GlBgSQOI3uRJmlTzvNQScqsbS8hxB8URXmdwMhuJaK/JaIvKYpyjxDi3jgPE3nRE5GJ5orNKXdHm72QmQkAN5lkVJkzDh0OWc4cKTYbnP8FC0DOvfQSALehAX3NXn0Vx167FhvabkfWDROIoRDAu60NQMDGaH4+AIWzeiIdrlOn8MjKwrGNRhizkaSXySRLhPLzcW7x9ucYGYHzz73TNm0CGEUzkrU9AvmhjXrwoBYmDOcaERcMhhOHRLgXubkTT6Weq8LkQzRS0OXC+u7vjx7lZGXCJTuRSoaNCI9HlnNr7+XHPnY1XXDBJnrmmWfoxRdfpEcffZTuu+8+uueee+juu++O9yu8r7DoxAmJHbW1IO+cTmTCcUDhsceQZfShD4HQ+/znYfTddhvRLbdgr37rW9i3115L9Hd/h/urqnjfCy9gbTc3I4gRObBgbAxBiQMHcNy0NBCNa9fi89PSYHxEOjg8IZ5J5cOHkXF44AAwITsbWcvr1sEgVVUcKz8/foLO74fRxP0Iy8pi9wTico6uLkkacsk0kTSMFy7ENeA+MtoeZhP1x5pu4b3LzicRvqfJJDMOU0mCQawPLUHIUwT5ee5nqRVFwb0pKoKTv3QpyAo2fpmsNpnCszP5vdzPbuXKq+maazbRs88Cjx577FH63vfm8SiWOBxwlLmtS7Li9WJgU2YmghZdXcCo+nrc2xMn4JTX1yOAkowMDYGQFCK8n2qkcCYd40lJSfwZIH4/cKWvD+uMByil2r6MR7QZLpw9zpNAi4tlGXqqCvcNHx6GnX36NNYnDzOLJkwkjo3JKdOZmXiMjEBvZ2WNx6KsLKIbb7yaLr98HoumKj09uE9tbdh7a9fK6qXhYaI//hH6/LOfHV/y63IhqDA8jHW7cqW0e8fGkDDicOD+cGAzUoaGQEC2tWEPVFXBH6qpic+P4VYpTBz6fLIXPQ/wnG4fgzFPSxj290u9m5UlK/GqqvB4P06RnylhMpnxlXtMDg9jzXKVhSfKbtf2F120SP6utY8Yj2w2rHttgEJLGOqJ3/M8VPIyq2aEEGKQiH5KRD9VFCWTiLYT0d1nUj4T7dnVTkRLozy/TPP/qUrHmZ/RigAbEzjelMXjkZM109MRATebQcyNjcH45B545eWxU9r/8hcogwsuQOYONy3/+texgdeuJbr6ajkZcONGKA2eitzeDqM0Nxe9wKqrZV+CvLzxJXQ+Hxz9wUHpDHNGDZNe2dn4TiMjckgLlxfGo/DsdpAY7e34PuvXI2NASx4EAjK7UFuWTITXcQNzJg3noqEZCMiMTW0j9fx8KM+52gg4Vvag9vdo2YMGg7w3RUW4Zzk5WC8TTcWLJRkZ8t5HEtNlZWV022230W233UYej4e2bdtG9957L335y18mJXH2+KzEIquV6MkncQ1XrQL5ZrdjwInJhOv80ENw7D/1KazNv/977PWHHgKe3Hcfeh8WFxPdfz/2rBAwnv/8ZxiuixejX2IkMeByIRDyxhv4vawMROWGDTiGyxV9OjNnplgsOLfjx0Eg8hTLLVtwHsuXY3/Z7bLBek5OfFgUDAIPudQwMuOFDWPOLuzshHHM+zkzEw7+ihVwMmpq8Nl+vyzbdrtx7QsKZs9o5j0dCMhsbe7LxhmHc1E4Sq4NyEVmErKjrZW0NBi6RUUIuHGQjo3goqJwwlqI8Vk9PEkwEMA14mz2aNeromIej+KRQAB72GTCntFjkMoLL2CvXXMN1kJvL+wrJm0OHcK+XLs28c9RVWQqdXbC7mhtjb2XuSSehz7FS4QFg7CnenrweZWVsL/mqp2QqAQC0rHlDBceIlVcrM8AgLkiBgMyz7kHXXU1MtL6+8f3+mXhIE9GBtYzJyFk///23jRIsqs8E35vZmVlVmZW1r51dVV1V++r1JJaCxJCEsKAIDx4HAPjCRgw4GA8YM/MNzNh5rMnEMzYmDEzJtgmCAv4WD7AI8syMgKBEAgjEBJqCaRWd9O7uru69i33/cyPp1+dk7fuzb2y8madJ+JGZmVl3rx57z3vec/zLk8A50WdLznwo0LbosqwsAA7wQTi/v0Y434/Kr2eegrBzve9b22f7nPnEKRwuWATxsdxjaJRrG+Wl3Edd+9eu9bK5/G9L7+M9ZbHg0DWgQPWWYpm5HI4dhbm5F6pAwOwHYOD6xt4SCYLhU+uXMG9SYTvHRmBzeU+hhsp1NJq4Axnu/6D/Ghu5cTZg/39mBOvv16WFnPgpre3kHDmXvTmyrFUCmsEXuf29DQmGUbzULVhQ0hEwzDcRBQUQryqpSuESBiG8RuCvHWI0DySiKjCjg30j0T0nw3D+B0hxMPXvs8gov907f+PVHHIx4hojojebxjGZ0wNLe27EtUJ2SyM6swMjPr27XCMzpyBUzA4iPcYBhwJu8y9p5/GPu67D8Te6dNYVM3PY8B+6EPIvnn6aUxGN9wAY/Dss4hiE8GZ3rEDE0suh9cTCWk0VExP47OxGI55ZET2oVFJL1Yv49T80dHySoXjcfk7XC5E7A4dwjlSMwzNZcm8AGeBkWaOyKfTkjjkCJzXi+vl92/ssaviJMVKjK20mziqxEI05j6E5oiTEHISq1YxkbMV02m5kM/lchSNRqlLCQd3dHTQnj176Mknn6RwOEzBa4z8Msual4+Ws0WZDNE3voExfe+96Be5tATyjcmuT34SC5wPfxitEX74Q/z/z/4M73//++EM33sv0XvfC6fw9Glk/1y8iHv7938fDqPqJE5NIfDxi19gTO/Zg30cOID3ra7CEeGAgIrpaRCPzz0H8o6zA++7D8e2e7cs6eL9eDzl9+LkDJilJfzNvbayWZktwqQh9xFyu2Hrbr4Zi4WJicJ+PdwjdnZWZgIEArCRG9FKIZ+XpJhKHPL43UjiMJ+XC2QzMaiShpy1rSIYlOXFnG1mJgkDASmUYtUfkQWc+PxwRiaRtDtMFrJts1oAaXtUPoTAgjmZlJk+teLZZzFG774b/sGJExjLk5Mg5I4dgw90883VL2ATCRCR3Kt5925rUjCfx33LrRDKzf7J52ErL13C/Tg4iPu6USWHjQD3zVpclP3PWDChr68+Df+bFe3tsE+Li7gf+vrwnNshsP1RgxgMDoZxFvv27bgPuUpDneu0LaocnBV97hx8mR07MP58PvguJ08iu/mf//NC+7G6irVMOCzFH30+2YJgfh7XZnIS97hqL+Jx7PfUKVnBddttsCulbGI2C8JxehrfkcthnhoawnH096/PvJ7LYS2qkoYLC/L//f0I1nFZ8tBQ8wYmmxkcVOfMQTuikH1SFT6fzBY8eFA+7+3F9eEATS6Hz7e3r01e4v70iYRcKzLY3nAFGZclBwK4N5aX17evt+ah6oONoiA6iWjKMIyHiejXRLREREeI6P1E9CMhxKxhGM8RWOD/YhhGNyFl9BkhRCkG9xNE9A4i+qZhGCyt/RYiejMRfU4IcbzSgxVCZAzD+DARfYmIfmYYxleJKEiQ6X6RiG6odJ/lfzeIupkZ/L11Kyal3/wG0Skm8zhSY7e4vHwZAgEHDsDx/ru/k1kvb3qTjPAcO4YJaWAARufcOexz505MYBwtT6dh+LNZfC87bZwxw+pffj8c7oEBPFePTwhMYPPzMCBjY+VFzNJpOOEvvwwjtX27JAGmpgrLzLxeGDbOMGxvb/7oVSoliUN2AH0+WarciMnULE5i92iGYUgisL19bf9Bfqz0GnCpoJruXg08Hvw27pEYiURodHSUfud3foeuu+466u3tpRdeeIEeeOABuueee2hoaIhuuukmMgyDPv7xj9PKygp1dHTQ7/3e723fjLbo29+GU3vrrSD+FhdB3vf1YRx/9rO4V//9vyf60pdguz7wAQih/M//CRJvxw6i97wHJKAQRF/4AvbV1YWy56NHJQmYyyHT6KmnQMYJARt2zz0yQ5EX25mMHCNEsAXPPovPnj6Ne2hykugd70DWIkf5GbGYdKZCoeLCBuo5YaIqnZYtBl54AYv4uTlJog8MwE5xOeGWLdYEZS4HGxqNStvO4gmNzpDmsZ7JyIix241r3NbWmOPhKLld9iBnIJmzmd1unLfeXswt1123Nnuwp6d88skwJJHKDrG5LNnlko3HOavHfI5U1WazHazGHr33ve/9l7QJfaMLF3Dt9+6tjwroxYuwF/v2wbb8+tey7/TMDFoeDAwg47ra+352Fn4LkexDbQUuD8vnYYvKyaYTQjaoT6Vwf09Oto7yqNprK3ptaef3Y2z39ZVnr1sFwSCu8fKyXMifOIF5hf1DLksOBGRPWhZTCYcxT0Ui8vPcd5p9dG2LKkMqJUuIz53DfTk2huvx6KPwBd79bpQVM3I5rOXOn8dahcUf02kkiczMyBYEW7cW+gtsSy5cgJ0YGyO68068r5itSKdlmfLCAuyG1yt7CNZbeIR9JHNZMq8fgkGQhdddh2MolgijIZHLSf/HrgehWZyEwUHugQHMb2rmIG/lVrm4XHivmjXK/pHq57jdMgGkWFmy2y3XE0tLhT3Q6wzNQ9UBG0Uixonos4Qa9LcQkY+ILhHRXxJOPgkhzhmG8UECc/s3ROQmot+nEmmgQohFwzBeQ0R/QUT/msAmnyc00Pzrag9YCPHla6n7H752nLzP64moxtba9pifh7FPJKQk/W9+AwegtxcDtaOjUBrdjESC6LHHMNE8/TQyecbHid75Trk4HR2FA/2DH8CAcz/FI0fkRMiIx2V/nbExvLa0hNdjMalItmcPyEmr6HkshgmFVcVGRkqTY9ksyMNjx/D5kREsygMBOJVtbTh2VqHzepuzLNkMLkNnReVcTmZMcqlyPX+Hmj1YiTgJL5DdbntycD0JTigpg0SMxapfNHi9+H3IWvPThz70IfrhD39Ijz76KCWTSRofH6cPf/jD9Cd/8idERLRjxw763Oc+R5/85CfpD/7gDygH7+d1tMls0bPPYtu5Ew7K/DwW3KOjcGa/+lVk0732tUSf+ARsy6c/DSf3Ax/APj7wAXxmbo7oySdhKwIBkIcHD4LQ6ezEeH76aWyrq7ARd9+NCP3QkMyq4f51+TzGyvQ0FvvPPANnNZOBjXr720E8mvsqEkkRp0wG90ZXV+n7mNUOX3oJ38PkNiMYhI09cgSPY2OlnbJ0WgrFCIHxr/aGaRRUcoztAAcF6kkccpTcTAyaSUImDFR0dEgi8OBB6+zBepQxqmXbamkykcye5mz2csu41UxT9W8iIr+/cntERN+kTeYbLSzAroyMWI/pSrG6Ct9nYADCTidO4D7fvx/34dNPw57dfnt1c1w+j0DGpUu4Lw8fth7X2azMmG1vtxaFssL8PM5HPI45ct++8gKyzY5oVC6MuddWZyfKsjfCNm4kuEWCGtSJRjH/dXVJUmjXrtK2KBSSpcxCwF4y6cDZZ9oWlY9cDr1NT5/GxuIQqRTatuTzRP/hP4CwYczPYz0Tj8Nv2rcP1+TCBSlWOTIC/4EDXbkcCMqXX8b1am+HjTpwYG31hQpW8+YMLxbY2b4da0dz65daEI9LspCJQx67Hg9IwltvlWXJfC9qSCSThUIkVkShlThJW5skAXftKiQFOYuwt7f2CjYhCttU5XI45kgE9tnrLay8qHTO5LXv6qpcE6wDNA9VBxjCqtZQo2wYhvEIEe0VQpRTk17RyY5EkM03MwPDu2cPJhBOWXe7YYD7+4sb4a9+FQ6y1wvDc9tt6FF25Qr20dmJBf3Pf44F+r33IhJv1bB3dRURsHweEw9nZbBDcu4c9nndddbOPaexLy3BOIyO2kfKWf2J0/VfeAHPh4dlE3LOMOTMGKeASxWZOMzncQ79fmzV9GXk8mKrvoPq63blxVYlxepjs0z0Kyu4L8pdYFmBlbhVhcEK0SRnQ2I9bdGlS8gY7OiAgzw1BRuxdy/KhFlxua0NvQpvuw1BigcegFN9881Ef/RHcH6+8x1kRgeD6EN4550g0Lhf4M9+htKeXA5Bgttvx1jP5WDv+HpxJgb3ETp2DI65ywVbuWcPSMdt26ydEFbYjUbxGXXfZsRiOOZLl/B7OBOc+7pOTsoMw/Hx8vv1CCEzQtJpfIZ7MDayZFktgWP7wMRYNWOfo+TFsgeLiZMwQahu6mvrQR6oytJMGqrZ1mwf2SZyZk8t38fq1TXa1qazRUQV2aOKbFEigWBGRwcyd2oltbNZogcfxBh8+9sxxmMx2I5MBr6R348+0tX0aIrHkdUYiYAs2LXL+pgjEdkvuru7vIXT8jKymFhoYXLS2m9zCoTAb+GFMrdxCIXkQrjVejrawRy8MLdI4PlhYQH3pc+H4P7wMMjwcsDzn8+HOWdhQQr3VGmTNpUtIpJtFV58EVtvL3yhxUUovPf2Ev3xH0vRpHQa779yBQFUzpCfmoKPkc3Cx9q2TWbkcXLGqVPwW3t6QB4yYWyFaFQShxzg7OzEcQwPFycdy0Umg/2rWYZc2W4Y+B1MFm7divvSCYkd6wX2ca0Ui9WSY1bAVsHiJOaMQXXr7FyfdZqZMFT9Iu5d73LhPnW54MPV4zovLGC+Hxysau5tSlu0Hqhw7Vff79YkYnkwDMNLRGmhnDDDMA4Q0a+I6ItCiH9Txm7KPtmczn7hAoi9ffvwPJGQCo+sNmeH1VUs/L/3PTivXPb71rdKo5/JIKPm9Gk4ze94h3WGlxCY4K5ehXHo75dZGB0dcLwvXoQRO3LEmhhcXcXns1lMJoOD0tBwZlgyKQVQMhkc58mTMKojI4hgTUw405HM5wuJQ+6vpRKHdhOAnTiJ+mhXXqwSgXYkoZOQz2PCJarJ2X01esZ9GSvEhk1QjbZF0SjRZz4D52bHDtiN8XHYpL//e5D7r3kNiLX5efQ8zGTQMiEYJPrDPwSJ+OijsEU+H9Eb34hgRTAoVZaffx775rKeO+7A9V1Zwf66uvDZbBatGZ56Ck47Z+0cPozv2bsX9wiXblnZinQa9iiblT0U2RZls7BTrJR86RKcGRZn6u7G79+/H981PFz5GLIqWWaRqUY42SphxuW4bCt4sxtXicRaMRIzSbi6ujZY4fGsLSc2k4Q9PY2zR5xxac4wJMI1YNETJlPV88GReMOo7XpxpmeNROKGOst1sEdl26JcDi0RkkmM9XqQyT/4AWzXb/+2zADZuxfX/Mc/xuPdd1f3XTMzWPwbBjJmrcidTEa2Q+AM21IB0UgE5CELLWzfvr79o9YTrPrJi+lMBmOKS+56ejamB2wjobaNsGuRoNoj1eYkkwjs+/0yILVjR/n3K7fx8HrxGb6nqmwZs2lsEePsWQQwjx2Dj3LTTVgL/fKXIPk++EG5HpqaQsZiJoNMxV27UJXxyisY/9yXl9dg09MgHC9exN/j41KN2Aqrq5I45Az+7m5JHNZS8i8EbKNKGHJCCRF+O5OFo6NIfHHiOq1acNuVUgIl5nWayyX9Iqu+g0waNkJkhEj6kpp1OQAAIABJREFUhiphaC5LVjfVFuVyaJXACU61Ip/HPSZEVX0xHTgbFked1n71PSZNIpYHwzBuJdSif4uIpgkKOdeK9OiIEOJ8Gbsp62SzytbJkzAu+/bJlPBgEBP90JD9hMDqpY8/Dgf26FFk+ywtIUPo9Gnsn9WPp6aQtfOmNxUO0nxelii/8gompe5ulOYFAjiOZBIEwPKyJBbMAz2TwaI8HMZntmxZK36SSsn3ezzY36lTUjjmppuwf6chl5P9DbmpP5cD+/2YGOohTmL32KpRP56wOzpq64fFYggsDlEBNpJEbKgt+uIXUba7c2dhVvTXvobAwo03YmHf10f0r/4VyMKpKfRBfM97kIXz+OP47KFD6AvU34+x/eMfIwM6lYJNu+MO2CufT/Y6zOXw98mTKFP+xS9gi/x+9Da89Vaownm9eH8iIRfj5vs/n5clw+zohMOSLLx0CbaKHb1QCL+3sxP7GxuDg1ztPZdKye8nwnF2djamBxA7h2qzfSYOufRkdXWtGImZIOTSJBXBoDUxqG6sBroRUEVheKGuOsYqWVhuhmE+by+0UumxEdVkqzd64V6rPSrbCX35ZdgRVoGsFS+9hEzDW27BIvvyZQQpe3rgQxGBQKy0r2A+D//lyhX4TIcPrx3jnJUSDuPa9/aWbnkQj4NQYPXV8XHYI6fN89yDT1X9dLsLgwxOC26WCyvldjWYoGaAl9siIRyGbQ6FsOg2DPuMVyvE49iH1wviJxzGvVjFPLdpbBER/Jxf/ALVE8Eg7MiLL6I64tZb4f+0tUkxpbk53NuHD8MXuHhRJoawYGY2C2Ly5ZcxNrxe+Fv796/NTuZ+g0wcskBOb68kDqv1LSKRQuETbj9FhGMaHS0kDVtVzEgVJzETgqpYCQs8qeCWNGbFYnXr7t44+62KY/KmtrJSycJy15Osi+Dzld9XsRgyGdi09nYE4SrwtVqRRKzH2q++x6RJxPJgGMZWIvo0Ed1KRP0E1Z6fEtGfVtAks6yTPTWFCcfrRUR8fl4SeIEAMvKsohLpNNE//RMW5okEDP7OnehR9swzMGCxGBwG7i127BgmtTe+kdVqC0mvTAaG0uXCAnp4WA7i2VkcpxDY38jI2mNaWoJjnkxKsYJ0em2Tft6iUWQ2Xb2KSfmGGxBVdVKEPZuV5GssJsu929ulElW54iTFHp10TtYDnMnFPTCrBat3d3RUNJlvJInYMFv0ve9BNXl0FGN5aAhlNl/9qswOPn8eWUGDg7A9w8NQes9kkOUTiWDyP3oUGYuzs8giPHYMtuDgQSzU9+yR93Q+D+f1+edBHnL03uvF+1/zGjjpnKGSTsOR496IVov+ZFKWDC0uwq5euSJJMW4uPjGBxfnwsOxTyM2eyy1TLjjRppJll0uqLK93CwZesCYS+L2cJcjkxeqqJAhXVuyj5OZyYnOJcTNlHKhkqVlNmmjtIr2Wa8BEYq2ER41E4kYv3Gu1R2XZoitXkDE4OYkFd62YmSF66CGM9ZtvxsJ9aAi27sc/xr1z112VEymxGPyiSAS2cteutTaD1YWzWdgCq4CH+f2vvILMJJcLdmpszFktXLjfoyqEpPbwqlcJXDOhVIsELkvmrRa/bn4e80wwCP+5pwf3SblIJGQPsrY23MflCowp2BS2iAj38VNPwVZwa4Vf/hKv//Zvo+KLCBVkp07h+b59uM8vXoTvGgjARvT1wV6cOAEbx8JIBw5gDaeOc67EYeKQfYr+fvgsQ0OVz8fpNO4ZlTTkEmiXC/tUy5JrqQBqJqjBjGKblThJV1fxzMH+ftwXzXSezIShVVmyShhWe+zMHwSD9fEN43FcBw5Wl4kmOvP1QZ3WfvU9Jk0iNhQlT/biIjL7Mhk4n5EINm4UPzKy1nHM5RANe/xxvPfgQUz+Fy/C4X7mGSxYd+xAZODIERB23/8+Xr/3XuwjFpORJnZolpfxfGREOhP5PCa6CxdwTEeOyIgD95pbXcX3r6zAiAwNYZHOvVtUtWQivP/YMXzG50OfkL17mzcabc4eTCTgFEQiUhyFhV46OiTZoYqT2D02629uRnD5EzcDrwbcn5Kooknf6RNUSVt0/Dh6Gvp8cKIGB+Ec/e3fShuUSBC9/vVwfldWiH73dxFlf+IJ2LLt2xGdNwzYkuPH4aR6PAg83HEHSDvG8jLs1U9+Aseb+zMdPQp7sH07bKFKGkcisB9tbYWEFivInz8vW0Nw2Rar2Y+NSdKQ2ytkswicrKzIDKHe3soXuLkcvi8ahV30eGTJcr0cS7M4yfKyFL1hB3h5GU4Yl97yd3OU3KrnIG9qmXezwrxIN/cOM5cC1tupZ0d8A4nElrdF7B/09sI3qPUaxuNE3/oW7oc3vQkEYigEn+vJJ/H/172u8pLO6WkpynLo0Nr+hPk87Ar3U+3tLZ4plM0iO/rKFYz1LVuc1c6FKwZYeEoIKRjT19d6ogrmFgnmsmRzxnM9f3s+D1KJW3ksLmJ+q0RgJ5nE/akG53p6Kspmc/rVLGtBHI0S/fSnEKxsa4NNevZZXP/3vAc+TziMKoyVFfgW27fj+qys4HxOTOD1q1eRdXjpEva9bRvIQzUpI5fDnD49jWzGbBbfOzgoe2CWG1DI52UAlUnDuTl5nzL5zITh8LAz2wkkk/aKxapvZCVOwqSgXf9BJ7RYyOfXEoZWZcnrlZQSDss+5vVY066swJ+uQDna6bbIEdAkYmNR9GTH48i8WVwE4ceqoQMDMGZDQ4ULDCGQtffYY/jM5CTRW96Cz3z961iwRiL47H33FZbM/OM/Yh+q2mB7uyyzzWRk1Ht0VGY+xuMgOVdWsPCenISjoZYls5H2emX2os+Hv82GKhbDbzhzBsbs4EFsG2WgrcRJrB6FKOzhmMvJ/obBoFSoMvchbCWHuRmQy+Fec7tleX414H6VnBlbBpx+JYvaovl5ov/1vyQ5xyI2jz0GO5FI4LWxMSzAd+wgetvbQBJOTcEBfstb4EA8/DBaKHg8sGG33ipV1Ts7kZnIys8chR8cBMF4++2wM7wA7e6WC+h8XiqZer2yh+orryDbcHoa+0qnEezgHkQTE7Bp5oV4LifJOCJ8VzXkdL1KljlKbi4nNpcYc2kuZ8UR4fs4Kj4wUKjMt57iJOsNLktWSwHNZcnqQr1R/SXr0R+RqGoisaVtUToN2+ByIWOw1uy7fJ7oH/4Bduetb8Ui3uNBltDPfgZbc+ed5YtTEGGsnjoF28fliuZqkXhctmcIhYqrh+dy2NelS7jPOQPcCWNWXbxHInito0MuwCstDW9WmJXbzbbIHLxoRHCY/XaPRyYF7NpVGenMSQBuN35jPl+RiF1L2yIinNOnniJ65BFc7z17ZD/ED34Qa6LTp+EXeTzwjdJpEFjcgqC/HyXPJ07AJvh8CJLu3y+TNbiMc2YG/lg+LxMyhoexj1LzhBAgc1S15KtXZf/fjo7CkuTR0dr6JjYC/JtKZQ9aiZMEAtakoEoaOjGwYS5LNrfAMhOGjfCL8nlZ4l1srisXQmAcpNMYA2XYI4ddRWdCk4iNhe3JzmTQn+f8eUwyhoEBODKCBbUa0RYCi+1HH8WEsGULSMLubiziH3oIk8PEBBaTb3kLFpsuF17/7ndhaO6+W/aq8vulc76ygsgU973g1y9fliWIk5MwDHz7uN14zgtwVuWyc/hTKZT8nDiBz+3bh2jeevYGq4c4STaL38/p7axuHQhg01mEjQdHz5mUqhbZLO5Lj6csp9vpE5StLUqliD71KZQRe71wsmIxlOoQYbyOj+M1wyB685sxti5cgD1505tgG376U2z5PFoq3Hkn7EY4LBuG//KXsmn4xATswA03IBLv8eBYVldlo322J3NzMquRS5M5i9rng93q64OzsX07bJHd2OTei2o5dH9/ZYEMzgiMRKQwAKssW9nARMK+5yA/LyZO0tuL88FkBCsa9/WB/KhG3b3ZwKXY6kJd7dejLtLL7R22nsfKGUC1OstVEIkta4s4ULq6imzkehBQTz2Ffd5zj2xlceAAbNHCAgIXVq1Z7BCNwpeJRmHfzO1XODiRSGBeKVb+LwRs48WL8DH6+mC/mp1443KzxUXYQaLCBXs9emNtJMz9ZK2U2+vVIqFWxOOYD71e2VNvcrIyu5RKwacyDBkgKTOg1rK2iEhWfT34IGzH2BiCB9u2QYHZ5UL2YSwG38PvxzVwu+GDhEJ4/+nTGN/9/bA9O3bgPamULFNeXMR95/PJ/oalAuXJJNaETBhOTUmBFbcbdk0lDWsJvK8HMhmZhGKlXsybeZ3GfSCLKReXyvp2EsyEoeoXcVlyM1S2ZbPw97kKp1bkcrLnqzmpygJNdGe3LjSJ2FhYnmwhMLEcP45JxevFJLR1KwhCtSfPxYsgD8+fh2F8/euxeLxwAZ95/nkMsNtug7G94QZMIqkU3vfUU/j/W9+KCUU1MMz0r6yAbOzuxkQXj8sFezCISY9LHLgkmY27x1O8yW42C/LgxRdlybadmnMlMBOC9RIncbvlOYjHpUPV0QEHocI+ehrrhHAY16fW/mypFO4Vn6/k5Ov0CcrWFn3ta+hlyNmds7MIWuTzOC/9/RgTu3djccJ24a67cO6ffhoL4XQa4/ttb4OzfeYMerY+9xxshcuFfdxyC2wAXzdWJ43FpHpxNIrvuXQJDjj3aQ0EsO/xcWxjYxiXTHCGQvbZOyxssLCAax4MgoCrRAUvm5W9ObnHF2cpMyFoJVRiJU4SCFj3HFTVjH2+tY4jZzvXuzyu0TCXJJvLktWsnmbM6q6X0Arvi6jsuaXJzkTFsHVCz5zBmD9wAIvoWnH2LPq8HjwIOxaNIvvnpZdgs265pTIBt6kpBFva2lC+bBZ7iUbhTwkBP85OsZJ9rwsXYBu6umSgtlkRiUi/j0XjQqHWWLBvdIuEWrG8LBfvi4sI6g8NVbaPdBr74WxEDiiW+K1NdiYqRsmAxte+hjHd2wuy78Ybid73PqzNLl2SgYJUCp8ZGYEdP30aiRguFwIDBw7gmsTjkjhcXsZ3BQKSOLTL4mJCRS1LXliQ/+/rW1uWvFGEEveFNpcTm8uNuQ+jCr7viqkXd3e3bgKHWpZs7u9s7p/fjL3yk0lc+46O+mTSp1JIIujoWNsuxIQmOxOtCU0iNhaWJ/vyZZTreL0g31IpRLa2bpUR3JkZOL/Hj+M9r3kNjCcriXJj3lOn4HzOzGBBHQzi/xMTsmfHffcVOrvcE+7iRRhyn086u4kEHPlkEgv+Q4fwfzZUrOCVyWCfw8PWCx/uo/irX2Gf4+OYfEs1SVXl5ouRhGbUIk7Cpa2JBIwfLwxV4rDZDPVmhxAyk6ycMo9iSCRkBLjIfpx+B1jaoiefJPryl0HC9fZKxWLDkCW5nZ2wA6kUbNaNN+L/zz+Pczcygqzizk7YjfPnYXvm5vC+669HSfPRo3D+Mhk4zy4X7M7cHOzYuXN4vrJy7YAFxt/QEGzc/v2F4gLpNJzQbBZjtFg/v3AYi/ZMBu8dHCzt4PBxLi2BcLh6Fce3ugqygBUurcRJurvtRUn4uR15qWbA8HStZrw40RZx7zCr38Z9Y9VFulMCNfXqjyhE4fkoAQfeAQWwtEVzcyD3tm5FyWCtWFoi+j//B37KwYP4e9cu2CdWmZ+cLG9fuRzIw6tXMX4PHSocv5xRk0rJ3qN22WlLS7JfayCAY6iH8nS9YS4jTKdhe1hgoNkElspFOS0SKlVu32gIgfHDQdFYDPdVpaWqfB9z+avfX7JPaEvaIiL4JA88gLnf68X9/1u/hYzmEyfg+wQChcHQdBp+zOoqzt3evai2yOUkccgln6GQJA7tVJhV4ZPpaUluBwKSLOTkk0a1PlDbrpgzB1XSkCtFVHR1Fc8e5CxmJ/o41UAtS1ZbZxEV9jHkzQm2iAj+cTqN+7oercqiUYyHYoE5cr4tcgQ0idhYrDnZy8so+UsmZXnwrl1YHLe34//f/z6yd9rb0WtncFD2LNm6FVGt5WWib34Ti1UmFVntdPt2ZCCurmLS6+mRPQyTSTgYrPLFTXp9PuzzzBl8z+HDhZHMbBYO9OqqLB+0KlkRAk7688/DSR4aAnkwOLjWWFo9qmnaDDVdu17iJPl8oSo1K24ycagSpxrNiWwWzkp7e0UKXmvApLphFL3uTr8b1tii8+eJ/uIv4KR2d6O34MyMFAfq6pKN2n0+qZB67hzO0cGDIAeXlpAt/ZvfSFXy/ftBLL7mNfLaCIFI+okTsCVLS7L8JpfD9+zcKZWSAwF8L6vUv/pDhMxEdbtxnHaEXCwG8pD7KA4MYF+xmHV5sZpJGI2uXWQGArBpVj0HmSSsVHVUVfRkco1bKjRrFl4xcFmyukhnu672DuNHp2cU5HL16Y/IRKJhbL7sH26fEAyimqLWc5lOg0BMJtFrdXERdmVuDnbv8OHyicpIBJUUsRjKENVSUbZF4TBe6+mxJ27CYXw3Cy1s3w6/qJnGNgvBMDGQzRYqthcjR5sRZuX2Yi0S2NY6FbkciCZutUGEtUWl9pWDZ+r82sILd9tEj89/Hj4N9z7/F/8Cc//MDO6pUAi+jseDc3X5Ms7d4CD8n74+2JuZGXk9enokcaiun+Jx+EIqacg9/ljoUs0yrEfPOSskk/aZg8XESdzu4pmD/Njs4iTrDXMrLdUWmQlDJ/tFPC9yu6B6kJ/c95L5Cgs43RY5AppEbCwKTnYyicyf2VkMrI4ORKq2bgWJ8cQTaPSdz2MxPTKC536/VPbKZDA4H34Y/+OMmptvxv77+4l+/nMs0m++GZOWuVRqeRmT3/btmAg5yn7pEt5//fWFUa3lZTgn/H0DA4UTGEdTLl4E+bmwgN936BAmXXOERUU52YP1ir7kcoXEIRG+g8VlKilr1GgOcDZYKFRbH6ZcDvdEW5vtfeD0Capg9K2uEt1/P8j+jg6M/eVlmdHHIiqcUcdOQSAg1dlPnEC5DzcQv+sukIZ798pSz/l5md14/jwcVMMAWcA9ekZGEK3fskX2hg2HCwVeGMmkzP7jnpjmfmSrq3DCL1yArWWSkoUOlpZkj1MVoZAsleFSjFAINo+bkNcrSm7uuUVUmAXjlMWsSoDyIt3cO8y8UG811FNopUwisaVsUTYLAjGbhc9Sj3n4u9+FvbnzTpCAg4PwsX7zG9iagwfL28+VK8hIYnV5NSuLReUyGdiFnh7rhV88Dls0P4/9bNsmSx6bAblcYQuGXE62tujrc1bpoLmPoVWLBKdndRcD99gjwn3f2Ym1Q6XIZnFvRyI4V319tuS408/gmlXJwgLRpz8Nm8QK6b/7uxivLIrS2wtfhDOkXC4EF7ZskQIpySTuL67YGh6GbctmcY3UsmTuLW8YWF+phOHAQH0y3dWsYqvMQbW/qQq/H7+hmHqxE8VJ1htqT35z/31OjFG3Vjt/uRzuOdYRqIfQyuws9js0ZOlLttgZbE5oErGxePVk53Ig906dwuJ0aAiObE8P+oY9+SQG3NatiJh3dOB/W7bIkmciDJynnwZhNz4Ox3j/fjiqfj/6D87NIftvxw7Zx9Dnk0pubW1SrZT7KkYimAQ5m5EIC+3Ll2X24eAgPmvOIJydRRnS/LzsoTgxIbNMimUPrrfhzGYlccjn0OORxKETy3E0CrG8LJvS10JSZDLYD0eXTXD6BPWqLcpmif7H/4Biez6PgEMiAZvT2ysdWC7vdrvhQHZ3I0vl+HGcq64utDwYH8diPZNBluLZs7Azar8bdjYnJmCvBgelkmdXF845CxKkUnJRzvYhn5fKhdEovisSsc4kTKXwf8OA084lWWo2jbkHIZdZR6Oyf6HfL1XX6wF2KtX+f2oprxMW6lyWrPYxVMtwzaWAreYY26Ge/RHLIBKdflYLnFD2HY4cqS2jnPH88wjGXn+9XMC4XAh67NyJ7ymFbBbvn5mBfTh0qFAlfnUV9ofJNqtSwlQKftrMDL5/bAxbM4xzVdCAezgyWdTXt36ZTvUE+6CqPWqFFgm1gufFXA7+PQfrKgXPx0ycDQ1ZzoVNfpeURIEtikYhMvfEExjne/cSveENUlyRReeiUdxrHR0gB0Mh2IR0GvfZ4KCs8gqHCwlDJkKI8DlV+GTLlsr9DSZ8i2UPclaxCs6ctuo/qJKGTu512iiobbh4a4Wy5FrBfrrXWx8V8GwW46etzTKL3+m2yBHQJGJj8erJfuEFkH9EWHgfPIjS4ccfl47qnj2YVAYGMGGz08qkV1sbMga//304xixU4vHA6eNF9p13gshTDRX3r+BSZLcb2UG//jUG4v79mFB4Ychp+EQYrN3dcl9sCKNREArT05hMb7gBUf729o01kqowCvd2aW+XxOFmT6lvNeTzUnijjEbgRcHqnRZCK06foF61RV//OtFnPiMdz1xO2p2JicLMXL8fY+jqVThFAwMIUOzZg3F27JgsLWYSNhSCXZqYAME4MCBVsHt68DwclmVyLhdIBC71Y+KfScG5ORnZN2fpcZScS4u4tH1sDJnWfX3Fo6D5vFRZzmZxzVlluR6Lfe6/pfZyVcm2ZiAU7MCkp1oKqDrG5kV6M/+WRqCBRGLL2KJXXkHQYdeuygRO7HDlCtE//APG/8iIrDR46SXYo6NHS1+bSAR+USIB0nHbNvmZREISNJ2d1qVamQx8q6kp/L1liwyqbiTSaUkqcIBHFTGoR7bIeqGcFgmqPdrstmhhAfNaPI57defO6sigXE5mrAWDGFOm+7hJ75iy8aotSqWQgfj3f49768gRWeHl9+P/3BaFsxE9HimwNjQkEz6mp2GLrl6VVU/t7bKigUnDImXir4qTqESglXqxlThJe3vxzEGnZRg3E9Q+hq1ellwPsN5AIFCfgHwigXHAwoQKnG6LHAFNIjYWggiL40cfxWRy/fWYeJ58Eg50IAACb3hYKqqxE+RyYeNSy5UVokcewf9DISnG0tmJRfa5c3CS9++Xi9ZMBmTg0pLMyMlkZJS9qwuEo9cLZyyTwaI9k8Eks3UrCEI1gzAWAyl65ows8zlwYGOd5FRKEocccfP5pDBKK5bRaUiwOq7fX9wxKwUhZI9Mk6CO0ycoQYReqf/xP8JWxGKSyNu6FY9qWQoTf4ODyFJmBcLLl2VPQY8HvQ/Hx/F/zrbhhXU4jAV1LIZxOT0NuxOJwBlYXoa9SSbxGQ5AcAN/vp59fXC6BwYKswjb2mQZHpGMrJdy3DjrkDMKvF4skupRrqxmyLBzqSp8NmMU2lxebVWWbC4F1FiLegmtEBUlElvCFi0vw48YGIAPUSuiUaJvfQs2hPsddnejn+HoKNFtt5Ue25cvo+TZ40HfRM6M5JLfeBz/6+1duyDK5UAcXL4sS662bdvYTJ5EQpIN0She48BLby9sXrOBF+lq8EK1RU5Qbt9oCIF5lktufT4QidWcp3weQb75eczJW7YU2Denn3lBhN/4uc8RfelLOHc33og1Dbc9EQL3WSgEmxIMygwz9iW4ZzyRzEZUy5JVAUC192ix7EEmIFWwP2TVg5BJw0BAj4l6wUwYbray5HogEsE4CYXq4zuurmJt0dNTMIfpM98AaBKxsRDz83BsFxaw0L5wAZvHA7Jv1y5Zssw9lVQjxCV5Hg/6/CwsYLJgEpEIk/uZM0i9535kRDB2c3NwJDk9PZVCyXMige/es0eWnS0sYONyZzMZk0wiQn/yJN6/bx8c7Y1wkoUoJA65ub1KHG72CNBmQyQCsoqFQKoFq3WzQvc1OH2CEhcvEr3jHVhUZzJYbLNdCAZlyZfXi8m5vx/nUe3ZNzwMO8Zk0q5dklhkp5eV++bmZL8gj0cGNvx+ONg9PTiGzk4suMfHpUPsdsvG4lb9LvN5manIzZv7+0sHMhIJ3Cfcr4hLlmtta6CqD6vEYbOW0pn7GJp7h5mzDLVjXB7q2R+R92dBJDr9aohkEj3HPB4EPmudq3M5oocegj04dAjnqrcXlRIDAxBXKfYd2Sz8otlZ2JFDh6QtiUZlyW8otLb/Vz6P4Mgrr4B06O9HFnQ9yreqQSwmiQi2ocGgJBwapeJaLkopt2/WFgm1goN2ySTmvf5+rDWqAbcTWVjAuOL+xdQCtoiI6AtfQBlzPi+FIIWQFUw9PTLLMJuV5Czfp5xwwYHO9nb4GXbqxcvLa0UkWZykWPagFidZX+TzawlDq7JkTqjRtqg8CCEJ9nq1ypifx3gcHHzVf9dXowHQJGIDEYuR+OIXkfWXSMgmo3v3IntncBATlNstSQ/OxlGViPN59FN8/nk4g4EAoooeDxzGc+ewz5tukp/hJqT5PCb87m5EyV9+Gf+//no4FUSYDKem4AD39oIoUB3uTAafe+klTKC7diHVv9FOMqvoxuN45MUaKyp3dDTfYl2jcRBClpqVk41WDNmszMRrhQkqGiVxzz0QPmLnuKdHjpuODlnSxhHz9nZM+IEAnrPoCasItrVJkjGfl20VOMOlowMO9ZYt+HwwKCPyLEoghDwOItia1VU8+nxYsKvXUQgs6BcWZElhf3/xMol8XmYdcslyZyd+V633iFm9uRmb9nNJtbpQVx1jlSxs1kxJJ4GJxHqUNfP+TERik9xZ1SGfJ3HsGHyXo0fr40f8+McgDPfvh93o6kJGYU8P2rsUy35YXUVgJZmUbRgMQ/Ya4xJG8wJeCARKLlzAe7q7kbFdSyZ8tWDRBDV7qatLEg/NIhpnbpGgBl10i4T6I5HAPRqN4jxPTFR/f+bzyG6cn8faZWSEiBxui4iwRvtv/w3rH27rxH5RIID7MJ2WBHY+D1/G58P/hMD55XLjYuIkxdSLndCHtJVQbllyvQU+NyuyWcxTHg/871rBgQ0hwFm4XI63RY6AJhEbiI9+lMR3vgPj1NODzL3rr0e0qqNDZhiyw+T1FjpN7FTNzBA99phU7tqzBxNOMomswF27iG6/vbBvz9WreM4L+OPHsfDv68MxsErEOOVaAAAgAElEQVTY9DQW5V4vjkt16HM5OOK/+hW+a9s29D1U+yOuNzgrjIlD7jnFfdt8Pj3xakjkclItuJpm4irSaSx0vF6itjZnT1A7d5I4dw7P3W6Mc58PYzkUwt9MwguxtndoW5ssd85ksIjYuxfvCwRgOwYH8ZloFI60z4f/raxgHIdCOJfhcKHqIzvinEnqcsG+mbNJw2EsYFgNdWCgeFYNN3WOxWTJcmfnmjL1sqGW2XG2jNqPqxmIQ7UsmTfVMTYv0nVZ8vqgnv0RidYQiY62RadOkZiaQrbf4GDt+zt5kuiHP0SAYnAQC/xz5/B4113Fs4xfeYXo9GnYhsOHYQ/ZFq2u4nxz+aKKxUWQh9Eo/sftHhoFzuxg4jCdlsfaLBlL5bRIaHXl9mbAygq25WXc59xHvRoIIdWEh4eJhoacbYs+/3kSf/qnCGqOjMA/8Ple9fmICPaD5/62tkJ7oo65Yj0ItTjJxkMlC9XgBZEsS1ZFPzXqj1RKrg3M1UXVIJ1GkMTrJRoYcLYtcgo0idhA+P0kfD70CJucxKKXJ6mODtn/S+1/aN7SaaJnnsHAC4UwSYVCeP3qVfy9e7eMkqgZjz09ssk3p/2yolE8Dic0n8cxqU21hcBi/dIlGWGfmKhP9KAc5PNSDY0X65wZxVmaG71Y12hepNMYB9wAuxxYlTFwL9JsluhjH3P2BGUYsoE4l9nyeGIBFf5b/R//7fHIiLsQWDizY606XVyyzHaNhY04ip9O41y73YVqp5wdx46cOr45K1T9XLEFp6oczyUotZQUMyFkzgirF0FUCzjrTX1kmI9TR9IbCzXbs9rPqo/8/NvfdrYt+ru/I7F1K0p+a8XCAlTmAwG0Q/B6EXRtb0dg1c7+ZzIIkC4sYJG/dy9sVDoNwiWdho9mFh8Ih0E8hsPY9/g4yING2AHuo8aEENveri4cZ0/Pxi5+rcqSGWpZMhOHG207NxPm50GMR6O4XyYmqt8XE4nhMNE99zjbFrFfxOsLr1f6PVwJoVZrcOKCKj6n59Xmg5VfpM7H7A+xb6RtUeOQTmOuaG+vfL7i66he01QK670vfMHZtsgp0LG+BmJ4GJl7rPRpzrbhqBYv2nmxrv598iQ+wxNZZ6ckELu6CglEzgDiMsSVFbzP7YbDHgzCsVtZATnCCl5qVHJpCU5yLIb3Hzggm4uvJ3K5QuKQSPZn43OhoVEO2tsl8cSElBVBqJJNVrEV1dFoBXCpKjtNXI7LPZM4Au/zFZYpE8mARi4ns5VVspBIZr1xr5hMRpbLcmCAS6nZHqpkn1nVPZfDNeTv8fns7QDvSw061FJWrDqgRPKcbWQfHNWBMhOGRIXBJ+0YbzwMo5B4Jiq8ZlZE4WZAb6/s51wLkkmiJ57A89FRWbXR1gYRFTsCMRxGe5Z0mmjHDgR5uU1CNIox3ttbmCkRiyGourQEO7VjBwKy6z03sL+2vCyDvhwg7umxVoduBFTVebsWCX6/bpHQLOjrkz4R9+rjdkaVwjCQ9Xv5cn2PcSPAvVO5hFldh1kFW/k5V2xw2wqNjYOVX6TOpeyjNkvgd7OjvR12KJ2WJLwapLfarPxdBo9TjcZAZyI2FoKoUASEF+xWm1rqQUR08SLKkD0eOMm7d2PAXL4MgvLNbwbR5/FIxVNW7nr5ZRCI/f3ov9jejtKX2Vnse3gYkycb1NlZ9EubncU+brwRjv56GtxMRgqjsApae7uM+NUqdqDR2hCisGxT3VIppLlns9a9ZlTC3mozE1rk8N4/+TwJl0sKkszMYJudxTY9LZ/PzEglT+Xz5PPBbkxMwOkeGsLzkRGMV1ZuNIzCYEYksrZ8mTOmub8Qqx0S4drNz+MY2tpgw+z6BaXT2Hc8jvvB55MlyxWenzUldxzo4QVFI6He22alZ7WEWl3waGwszBFytedSMTDhqy5yzM9bUZ25ph0IokcegY+0ezd8loUFnKe777aumhACAdIzZ2AnDh+WbWGWljDOgkFk9bHtTybxHUxOjo2BQFnP8ZbJSGGU1VUZeOEy5Ub3TjO3SODAD0O3SHAG0mnZ09DrRXVUHUoKHW2L2C8iwljnbE32WXjj11ioSIXHA7sRCuGRK7t4M/s3GrXBnABgLktWS5K1X7TxYHKXN752Kyv4v50NYh/IqlJTfU39yDr/FA3SJGKjUdHJzmQkoTg1RfTgg3BuBwawYM9kiM6fx4R05AiMZT4ve/cMDSFL6MIF7G/PHpTpuFxwsJNJTGqjo5K5X1oiOnYMxKTfj36JanZjvZFOS+KQSx25nJIj1xoaXBplt6kZqyo4C4IJaO5ZxRm3NSg8On2CqsgWxWKSZJyagir78jLO/dSUVF5WiRPO/uvrA7G4ZYtswTA2huydgQGMdxZi6e6WYz6TgZ1aXcW++vpAVpptEQssRSIgHA0Ddq+zs7KIpJpNw4tiLn1uZFN/tdcib+oinSOtKmGoFySNg11UvJwouXqdeFFjJg2rgNOvfs1O6C9+gTYvW7YgI5DVk++6y7pncyaDgOz8PPykAwdw7peXYeu4hy4LkKTTyDzk3tKjoyhdXq+Mh1RKEofhMF7z+WRPtUa1kiFa28fQrNyuijDp1jLOQjSKuXt+HuNk166afX2nX/2KbFEuV5pojETWKi8bhiQTrUhGfq4zqgqhkk7mgBwHU1XCUNuixoKvj5kkVP+28o1cLrwvHpdtA8wE4SZcozkCmkRsLKo62dks0Te+gZ494+NQYg4G8XcggEg7N9a+eBFOcCAA5+DMGfxvfByvra5iUnO74TyzGEE+D0JyZgbvu+EGEIjr0QA4mZTCKOyQqn1FdLRoc6EYOcgEodkJIyosL7HLIDST0KzK29VVeXaaCU6foKo2/OfOwcbs2iUz4jo78XjunOyPdPUq7MnKCmzRlSsgBbNZWdrJiur9/SAah4dBAgQC2Pr7QTbu3YtrpiKXk9eTm5yzynK5CyF2SNXMPnVh3IjSJKveYTwtq2XYNRDeGmWiFDFoLo1i2GUPmv9m1Floxel3RE1O6MWLyEL0+xHwXFzEub3zTusSzZUVBEEyGQRWx8Zgz5aXcV26urCI4bYXly9jy+dhn7ZtWx9140RCEoec+R0ISHGGeqhWl4Kq3G62RVq5vTWxtITgYCSCOXhsrKbdbWpbZLlDJchpJhnDYUk2plJrP+vzlSYa6yFI0YzgYKpKGKq2SCULtVry+oJ9oFIEoRlqCyirLELzdWNugHuN1gin2yJHQJOIjUVVJ/tHPyJ68klECrdvRxT81CmQIPfdB+cyHseinTMQT5/GAn5gAGU6sRhIwnAYDjCLsaysoNT53DkYhPHxwgi7xyObCHd0SBEYdWtvL74QEqKQOOSeZypxqCeA1oN5QWKXPWg2QRxRLEYO1rKAWVrC9/f310RYO32CqsoWzc3BzoyNwY5kMnBo29qkAIHfL4VPQiGM/WgU17OnB+87exYl08vLcKDn5vD3lSt4DIcL+ysSYb9MMrJwQH8/7OG2bSil7usrfU1V0o4dn0Y1+FfLpM3HwPe9ulDXAZX6oRQxaOUEE5VXWlzNPaNmu9aITWmLiBAU/da3YGMOHpQlUXfcAT+o4EsECMezZ+G3HD4Mm7K0JHtC9/XJnq1Xr6LcOZOBH7V9e/0X7NGoJA4TCbzW2dkYFVdukaDaI3UMmIMX2ha1JoQAichZtpOT1tm7ZWLT2qJakU4XZi+aSUbun2/2l93utUSjuZya+/A3K3j+VQlD1RaZCcNm/i1OQzFSkP+2C5zakYLqVimiUYyFUKjmSkSn2yJHQJOINcIwDA8R7SCiVSHEdIm3V3yyz55FGXMyiQzE3buRgej1ogdiKARHenYWrwUCKNNJJBBlHx/H/7gB+OgoJpR0Gu87fhyGYs8eOOEul32PxkQC5IBVA38zuejzwchwphE7pNzfsKNDZ9Q4GSx8U4wgtOr9xZlVpbIH1/PeyOWwaOOG+VV+V9Pdvetti+JxZDZ3dYHIS6Vkr1Iubfb58LrLBTuzuiqJxlAITnA0iv+HQrADQuDzi4u4NuwIr6zIEurpaWQDTU3htYUF2DQrh3pwEGTj0BC2kRGQjb29eBwYwHGudwme2jvM3F+RaG0fQ926oTqUU1ps5+YUIwbXu+m6monbiiWEFdijqis0HnwQduHwYRl4uPVW9ClUkU4TvfQSbMzwMNH+/fBnmHTs7obNYULl4kX4XD09IFXqVT4sBI5zcRH2i9svdHXJjMP16v1sDl5YlSWrfQy1f7Z5kM3KObazE+uBKu/Dprxr1tsWNQr5PHwou7Jp3qxa+/j99iQjb+uRYW0FK1FDBpNRuiy5NqjiMsUIQisUyxpUxfrW67jDYTxyWXOVKHmEFa6ZNCygScQaYRjGNiK6QERfEUK8p8TbKzrZ0SjRV76CDMI9e9C358wZTO5vfjMc3Pl5LMADATikTDAeOYLBd/UqjEV/PxbXQkDh+de/xvu3b0fpsrlU0PYHiEIxGPV5LAannNWecX5wPF4vJiwmEO2yGnUPkI0FEx/FCEJzxgJDJUTsSMJmiSAmk7hPuXdeFWg6t2Y9bVE+D9uSz8NmpFJSvXllBfeExyMf+XXDgJ1yu0EoZrPSmXW58NrCAj4XCEiCj2EuWeam5Vzax+JQqjAMP+dNFYVhgqi7u5Bk5OfDw3KrVLDA3MdQdeSZPFeze7RjXBpWZKCZKKykvLiIOMmGoE5EYhP8krWowB5V5YT+4AdEzz+P4Gomg3F19OhapeelJRCImQzaIgwO4rV0Gj5HTw8+u7CA/tGxGOzT5CT+Vyu4TzUTh5kMrnV3txRHqXcAoVSLBHPwQleCaCSTqASYmcGcODnZOn3I1tsWNRtYFKYY0ciZzyo8Hvuyad4CgcruCyas1M2uLFkHL8oDl3oXIwmLlRdXIE6yIcjlQCS63SASq0Q5JOI2Kn/NpGEBnfvQpBCC6LHHQBpOTGDhfuYMjOwb3oAF7tWrmBwCAUQR5+awEN63D+RiOAwnmXv4nDsHpzsWQ0bijTda9wwqBsOQhB+RbIbKStNEcjJgqXarjEaOwpvhdq8lFs2kI2c5alSGfL40OcjiNirUXkh+v30GoZOuCZfSx2IYG1r5uziuXMF43bYNj0wULi/DBrjduHfa22VmIZcvs33gzE+vF3Zrfl6SkcPDhT2/UqlC9cOODjiw5vK+gQFsBw+uzfwjwj2ZTMqSQSvC8eRJEAhmMsrrBeHAJCNnN3JJdW8vNi4LNPcOU8dKMzhmzYZixGApcRI1Gm6VQegU8DHz73aSDd1IvPgitv5+2Iq2NvRwVglEIRCAPX8eY/HIEdxXMzO4R/r78frqKt6zugo7c+AA/lfLtcjlYAOXlrCxjWSbwYGVeqCcFgkdHRunLK/hDPh8mNcSCawlgsG1LQE0nAGfD9vAgP17sllJLlqRjJcvFxeFsSIa1UQRFsswlyWzDdLBC2vUIk7CG/ucdRAn2RC43VgPRKOyR6JGc0JnIjYWZZ/sZ58leughDKSDB6VC6W/9FiaGq1exOPZ64QAnk4iyh0JwkongAPT1QVXw2DFkBvX3I1o/MlL9j8hmJTHARCAvmrm8sRzk84XEoprVqL5mNYmpWYxWGY0dHZvLWS4ne9CqvLgacZJWgRAglvJ5jIsKHRqHTMe2KNsWLS+jN9jAgBQt4cW3mm3X3i7vwc5O/B0O4/yyEmEiAfIwkcD/BwZkJqgQsCmRCPbjcslMUbt7UO3rxceiZtqUawOyWSycrEhG7hc1OyvtnUoY9vXJjMbhYSjEmsupGyGK0CyohzhJsQzCVgSfmyrnLKeflYqc0Olpor/9W5yzwUGcs+uuQ4kyI5VC9uHSksyqYnsVCMjgxoULmAO8XhCQw8PV32PZLL5vcRG+FivOc5lyV1fti2YOlKikoW6RoFFPzM8j4aCtDQkJFc5dm8oWtTpUn8yKaFxdhY/H6zR1Xvf5YPM6O/HILSPUcuoaxQ0dBTtxEvNrVihVWtyqa11OTgoGq0r0cLotcgQ0idhYlHWyp6eJHngAi/frrpOG5fWvx6J0agpGJ5VCtMjngwPNrH0wiEzDxUWi556DU9DVhcxDc6lPuchkJHGYTuO19nZJHK5XGbIQ+D67Ho1MPFpl0JlFYayyGhvVA6RaqFkGxUhCO3GSUuXFmz0SmM1inHDWXAVw+gRVli1Kp1HG3N4O22MYkkDMZCSx09aGscj9vdJp/O3x4O9cDnYoFsN7+/tluTBHxKNRufAuVjajjgleQKsqxrU6VOY+hkxOCoHjX1pC5iJvLAozO4uN+6ypCAQKMxmtnvf1Nf94LFVa3GhxklZCDUIrTj9zZTuh8TjRN76B8TY+jnN16BD8JMbiIgjEbBZtYDijoa1NZg5fvIix2taG/YyOVmc30mlZpry6in2zQEtfn1R5rhZqiwS2RwzdIkFjPcCiQufP4x7eu7eiseH0O1AviG1QrCw5k8E6jMUz4/G1IjFqWxmG221fNs2vN7soDFHziZO0EsJhnMNQqOL7wOm2yBHQJGJjUfJkp1JEX/oS0a9+hbIajgLedRcWm9PTMuK9siIXosvLMDYjIzBYzz0HstHvR8/DnTsrN0aplCQOeSHt9UrisJmi3NmsfTajSjia4XKVzmj0+dbHkPMCoRg5aNUgWV082JGDurdI+YjHMVGFQhWlzTv97Ja0RUJA2CmRQHYdl8VxpiCRnNQzGdgGnw9EGxGcQI8HRBv3N+nrA1nLZcYc+CDCuQ8GrRVJWemb1fv4u3nxXO34NCuIq73D1DL+Sr4nmSzMYmRhGH4+MwPi0ZwZrIrC2BGOQ0PrE/iolziJHVGoURo19Ed0+hkuywnN54kefhj9nMfGMB4PHiS66aZrOxHIoDp/HnaEeyXyAqSjA1UZV6/iHG/dCgKxUj9GbY8QieC1jg5JHAaDle1P/X1mtWTVFqlBQR0A1FhPZDLI0r16FYkHFSQfbApb1Orgnnu8qX4RkfS9uJdhObYon5dkojmjUX3NThTGSghGJSDXyy9yojhJKyGfx/qBqOI+5frsNgCaRGwsSp7s73yH6JFH4OAODcHQvPa1WEDOzYHYm5mB8dq2Df9PpZAqHgjAwb5wAQb18GFkKJbL3gtRSBzyIldVVG72iFAxmEVh7Eqprcp+vV5rctHvl+QjZ2NuFnGSVsLyMq5XX1/Zi0qnT1AlbRETX/39sC0+H5y9ZFIq5jHB5PfLrGFWiV9eRnYOkewF5nJJdUEWGOBos/m8q+IAPFa4/L6afjpq6bN5DPIiXR1/6znOWCHcThSGnzPBqqK7uzjJaBaFaXVxklYCX5sKFxhOvwplOaFPPUX0+OMIQgQCyEC85Racp1QKPRKXl2XP0nQac2gohPF05QrO7cgI+kxXsujkDOTFRRkkCQalMEqlPZvU/q3m4AhRoXK8LkvW2AjE46hCiMVQ1tzXV9bHNoUtajWoZKGZGOP2MKoAynrCLArDJGM4LMlGK1GY9vbiJKO5uqVWcZJSJKFG/ZDN4vpzlVKZcLotcgQ0idhYFD3ZJ04Q/c3fwEht2wajeNttcHqXl+HALi+DsNqyRSqh9vQgAn/6NIzXgQNwsMvpIcDEGhOHnAmhEoebzSBy+bQV4RiLYSLjEmp18iWSky0r1/LW0SFVZZkctCIJ9aJ8Y5DPI2PO5YKzXMZ1cPqVKmqLolFkIfr96Fvo8cj73+ORzpXLhfs4m5U9DBMJ2CkhQGaxeJNasswOn7lkWe33xVOTSu5VMj7Mi3Q1ws1kJC/QmzVzNxotTjLOzuK+JSokAr1eXDfuy8jPBwcLxWH4nFoRhRobAyZ4KyASm/DOrQglndAzZ9AHUQiQdocPE91+O87RwgLKl/N5ZChyQKOzEwvOS5dgAwYHIVBXbh+uSERmHHIVQygkMw4rISHNfQzNtsjcx7AZbZHG5sPyMtHLL2O+PnzYukrABKffuS2/IGayjAlDNXjBwVSVMGxGW6SKwlhlNIbDsgzW3GrF74ffGQhIH5QD2aEQtvZ2e4KwGc/HZgDzFKqwawnoK9UAaBKxsbA92SsrRJ/6FKLlu3bBsN18M3r1LC/LPoidnSANhZAR9pMn8feePVAoLDXAWNCE+1fwgkUlDjejoVSdfLssQp5wcznZ940XCGr6P7/fHL0zi8LYlVLrbMPGI51GtgmXTpSA00eIrS3KZpGBkM0iI5r7HcbjcK74vmbHSgjcv6xIyuWD/f2wNWrk2O9fW3qi9h7k6ahSck/NWjTvSxVaqTaLsdGwKye2EifJZNBvcm5OisPMzxc+zs6u7RtrGLhG5kxGVqPm1zaTKEyzoML+iC1ri4hgk7/8ZdzbQ0PwcV73Oozhs2dReeHzSVvl9cKWs6J8by/Iw1IZDEIgc5ozDtNp2eOVicNyej+rLRLMAZFqWyRoaGwUpqaITp3CXLBvX8n7taVtkdPA2Xbq+kS1Rer6pNyy5I2EWl5cLIuQ38u9GWMxmSgTj+Nv3ri3t/rbfT77bEbeNpMoTLMgGsW8zK2SSsDptsgR0CRiY2F5snM5oi9+kegnP0GZzcAA+vyMj8uME7cbzjCX/UUiiM6nUkQ7dqDvYTEnOZeTxGEyKZUgmTT0+VqXOOQyxkrFSYgKswQrFSfh8k4+53Zl1FaiMO3tpfs0NrsojBMRicCx6O4uGXV3+mixNfysWLplC85BOo3J2+OBM8oZzioZx71sAgEstnM5fIZLltkRY9KRiXcm+9SeX6Wi36qwirncWd1PpQrNjUI9xUnKLS8WAoEqq0xG9TUuP1cRDK5Vm1ZJxuFhWaquUT/kcmVnhbasLUqnib76VaLjx3G/3XAD0T334Nxw+TKX97vdUmU9HkcgY3IS/7dDPo9xweIonFHd0yP7txYrJS7WIoFobR/DZrNFGhqlkMthrXHlCkRWtm4t+vaWtUXNDvYdVMJQtUVmwrDZbNFGiZOk0/b9GXnjFhYqWBRGVZs2k43BoPaL6gkhkGGazyO41+IBDUdAk4iNheXJfuIJoq98BYTexARUlLdvJ3rlFRgwj0c21I9G8Xoigcn8ppuwgLMCi40wiUUEp5aFUVqBhFKz/uwIwlLiJHYkYaPKivg62fVoLEcUxi6rcb1EYVoVQmAxmcthEVnE0XL6BGVpixYWYF+6urBlMlLZlDOWOUMwn5ckeEcHFty5HBwuLlnu7JT9wsxqx5yVw/uzPEixthTQ3DvMnGW4UTD3GLQjCq3QLOIkiUShAIyVKMz8/Nq+sW1tslTaimTk8ulWmHMahQqEVlrSFhERffvbRD/8IRZot91G9IY3YBFx/DgCqCMjsDuZDOx2LAZ7Mzkp2yiYkcvhvUtLMnOaRZ96e7E/u/NdTosENYjRqoFZjc0F7jkai4HIL1Kp4fQ73jELYjNhqM7JTKQ1Q1myWZzEjiS0Qjm9Bxvxu1gUphjRGIlY/45AoHhGYzCo/aJKkM8j2O1ywQ4Vuf5Ot0WOgCYRG4s1J/uVV4g+/nEMit27MUFPTqJMJ5fD4nx0FP+fngYhODgI8nB4eO0XZDIyZZsVVD0eSRyW0yexGWBuPG5HEJYSJ7EjCJstClcK+bwUvSmW1ViuKIyZdCynTGuzIJcDmebx2BP05PwJao0tSiZRtkSELES+p4SQ5JzPJ8dlLod7KxiUvVUNQ5Yst7UVZhwSFZYWW41BNSjA38NQif9qeiTWAi1OIsHjw055mslHO1EYJhntxGFKOIabCmX2R3T62bJ0Qp99luib38Tvv/NOoje+EdlQFy7IvtGGgUzCeBy2aPt23Efmc8Uk4+Ii3i8E7AeXKVupPnIZoJVyuxNbJGho1IJwmOiFF+AD3HCDrc/YkrZoo8HrIZUwbIayZC1OUohEwloIRt2sEkI44F6MaDT3D9/MyGRwLlnE0Qb6bDUAmkRsLApOdiJB9Od/DkXlXbuIjh5FJuLFizAWAwNwTqemQCD19CBLcXy8cKdcMhuPy0U3E0d+f/MRRGrPoGLlxWao/YSKlRhvZkPLojDFshqZXFbR1la8R2NHB+6pzXJuEwkQ99xw2QJOPxMFtiifRx/EcBhBi3QaWQfmMmN2gNxuKbqUzeLvYBD2Ro2QE0nyjxt2q99pLgU09w5TF+rr5VRalRObn1uhVGmxE53gekEIONB2JCMTjYuLaz/r8xVXnh4extzotEBQtSiDSGwpW0QEMZTPfhZk9b33IgPx/HmUKnd24l5YWYE9am+HTzQ6WjjmUilJHHKZvtcricPOzkKlTnPwwkktEjQ0GoGpKQhAbt2K0mYLe9RytqjhByAKycJiZcnrGbwo1XfQzjcylxFbkYSbZR1hBRaFsSMZVQFCFS6XXI9YkYxcTr2R1TiNBK9nAwHbTM5NfJc1DppEbCwKTvYDDxA99BAc4ttvR/bP7CwGRH8/nqdSiJIfOUK0c6c0vpyVFo/LLB+fT/Y43ChDUok4iQpVLbVYebFG7cjl7LMZVeLRbBrsRGGYdPT78dgqCyxepNo01Hf6BFVwda9cIbp8WWZexmIy26a9XRLPLhfsE58Pr1cGKtTehKriqMu1NrNYJRmJ1i7S6zHWKxEnUaGSgsUyCDVqRzotxWCsejTy3+agkstlLQpjJh65lN7pKCG04vS7sWAURiIQmTt5Ev0P77oL2YfRKK4pz19eL8iMsTFpLxIJqagcjeI1v18Sh4FA6RYJZl9ksy96NTQYQqBa4coVooMHkVVugtNHSsMXxGbC0K4smQnDWm1RJeIkZpTTe1DbytohBHzwYgrUkYh1QohZFMaqZ2OriMJEIpi/QyHLNYO+ExsATSI2Fq+e7J/9jOgv/xLP77oLJcrRKJxc7pHX00N03XWI+LlcUiE1kZBN11XicD3JGzVSX4wkLCVOYkcSbuasnWaEECCqi2U0JhLW/SZZFKZYVqMTyuqFQCYMERagpnvU6RPUqyM1HEZ2gduN65JMyr+uSg0AAAw4SURBVOxBIinC5PFIO+P1yn6b7HByf0Lul2gmDRkqwVht7zA7QZL1FCfR2BgIgd51diQjZzqGw2s/y1lrdiTj8HDxHnjNghL9EZ1+x75qi3I5oi98gehHPyK65Rai174W11YIXMt0WrZ4mZiAvYpGpTAKl9AHg5I4ZEV5tY+hWpZsznjW419Dwx7ZLNFzz8H/u/nmNeWETh8967ogZqKuVFkyV21UaovK6T1oFzg1k4KViJNobAxSqdJEo5UoTFubfUajk0RhhJBVBqFQy63RHIGmJhENw7ifiD6ivOQRQljQFo2FYRg7ieiM8tKfCyH+rIyPCiIsgP7dvyO6epXojjuQgZhKSfGC3l6iw4eJDhzAhM3EIS8iuEyZywlrhdqHzI4cLFecxEwO6ubirY1MpniPxngc97YZbnfprEavd+MnsUwGC1Sfj+hTn7qfPvrRj6r/drI9EkT4fS+9hInY78c1YyKQycP2djlBm8va2dk1Z/eYy5LVhXqxa9oK4iQaG4N4HFmNZgVq9fn8/FqCua2tuPI0/73RgQ8eAy4X0Uc/2nq2iIjo4YeJvv51VF3ccYdcAHF2xZYtIA+zWZlxyPNLVxcIYbZVxZTbrdoraGholIdolOiZZ0Agfu9799PHPtZ6tqhWmMuS1eAF0VrCsJSvW6q0uNnFSTQ2BmZRGLuejaVEYex6Nm60X5TL4be0teF4FBS9q1uQX9oQOKVA9F3XHl+9zQ3DeD0R/WciOkhE/US0SESniegnQoj7lffdT4U3ihl/IIR44Np7/z8ierfyvywRXSWi7xLRR4QQc9den7l2TP1E9NeV/JBsFn0Qz54l2r8fC/KZGTwODYE83L0bA39mRvZCYmEUn698g18vcRIuVzQThNoB1+B7wWS8C8AqvnYZjUtLkiQ3w0w0WhGP61nmzr+N0+aJiL72ta/Ru971rndRC9ij8+dBsLS14TpwFiGLOoVChcI8RIUkXzxeeN3a2qRQj9lG8GfYma6mvJij87q8WMMMvx9iG9u22b+HRWHsSMaXX0YWXCKx9rM9PfYkIz+upygM3+dqL6pWskXPPkv0jW/A3u7Zg/YKfj/O6+gogqupFJSZ2RZzxiGrxeZy8tq1tcF21bNFgoaGBsbdvn0IQHK1RivZompgJgxVv4hbwzBhaPaL1M9UI07Cts6KJNTY3GAV4yKK6kQkRWGsMhpXVjAflxKFsROG8fvXzy9yu7H/WAzrkSpa2LQMv7QRcIRbJYT4uvq3YRh/RESfJqIXiOizRLRARGNEdBMR/Rciut9iN/+JiGYtXn/a4rV3E1GeiAJEdCcRfYCI7jYM43ohRFIIESWirxuGsY0qvMif/zzRT36CBYnPh0j6xASyDrlsORotFCrw+dbuRxUnKUYSmqFmBjFJYEUQ6kW5Rr2gkuDFkErZZzXGYnBWyxGFsSIdaxGFCQRwbJzx8s53vpPe+c53vmqTnGqPpqchphKJyKxiPm9dXbJ3imFI9WUVnKXI2YXsGDMxyDapHHESu76D2gnWqCfcbkkC2kEIjIliytO//jVIdzM6OtaSjGo248gIejlWG4Dj9gE8nlrFFl25gj6I8Th6rS0uotdhfz98pXgcJe1E8It6evCo2hy2X7oCQkNj/bFlC8Ykt5FoFVtUDtSyZHN/Zw52trcXBn7YJ0qlCknCUuIkaqaiFifRWC+w7z84aP+eTMY6q5GfX7yIv833NIvClFKgrjbQ5/ViHHIlVSXZka3EL20EHEEiqjAMo42IPkZEzxHRbeb0U8Mw7JYH3xZCnC3za76h7PcLhmEsENEfE9HbiOhbVRw2ERE98QTR//7fGIgTExg0N96I7MOuLtz8fj8GAJfjxGKIApgJwlLiJGo2kLm8WEOjGeH1Yuvqsn8PZ5rYZTXOzVmLwrhcklAsVkZtt7jv6ipU8uTnTrVHsRjRU08RnTuH397Tg9/Y349H7nfIysvsDHM0nYk+tWRHDVqYswe1OImGU2AYMnK/a5f9+9JpSTBaZTUeO4ZHcysQlwvq0lYl02qmo13QxY5Yd7It+q//lejMGaLrr5fl5X6/7IfZ2Ynz1NUl/ZxGKLdraGjYY+9euWBPJGS1glNtkRVUH4cJQ3OGoOrTMFlYSpyE/SgtTqLhFHg8WCv09Ni/h0Vh7Eqn5+aw7rBKcuroKJ3VaJVURYRkj1wO323O9i0XrWS3GgUnUkr9RNRNRD+zql8XQlixwbXiccJFnqxlJ+9/PwjBG24gOnqU6NZbsWgnkr1/FhaKi5N4vRhYWpxEYzOCM3SDQfv3WInCqFs4jIV+OaIw6saIRgvKtx1pj77yFZAcAwOIPG7ZAlvErQs4+s0LdXVC1uIkGhqwFWNj2OyQz4MEU0lGVRTm/Hmip5+Gc20GE2dWJCOXEGazBYFBR9qiP/xDop//nGjHDtii8XHYpd5ebD090s/hIIaGhsbGgzO7iYhefBFiSNfgSFtEZF3ZxYQh+zWqajKRFLrk15kgtCIJNTRaGYYh12gW6u2vIpWy788YiaAKhIXSVHDvQyuSkYlEouJEZxE41m5tFJzojs0RUZyI3mwYxieEENNlfq7HMIx+i9eXhBA2MaNXsfPa40K5B2mF6Wn0EXntazG4pqexGFBVTc0bL+CtWHsNDY3KwIRgT49Mf0+nZbny6qrMZkylCsfdCy/g8a/+iuhjH3v1ZUfao0cewaL9xhtlVrTXi8W6mmlIJKPvurxYQ6NytLWhp9/oqP17WBRmbg7k4vy8FImZn4d6uhpg5NLevXvRX/kaHGmLvvc92KB77kEp88CArMxoa0OA1UphUkNDY+PBPUhPny4gER1pi557rlC5XSUF1TYJag9nlRy061+ooaFhjWJJIZxZGI3KR95WVyFOG40WVmZyVdRf/VVVh+NIu7WRcByJKITIG4bx34noL4jogmEYTxPRz4nox4Sml3Z027M2r28nooum1/oMw8iRrFn/COHG+k4tx55MaslxDQ2n4sMf/uj9RPSRj31MjmOn2qPHHtO2SEOjWdDVVTxqb4ZhwBadPet8WzQ/r22RhoZT8alPwRa9613Ot0U33aRtkYbGZoVT7dZGwnEkIhGREOLjhmGcJaJ/S0S3E9FdRPT/EtGiYRh/JIT4psXH3k1QwjFjpozXzhLRB4QQVp/X0NDYxND2SENDoxmgbZGGhkYzQNsiDQ0Np0HbrcrgSBKRiEgI8SARPWgYhpeIDhPRW4jo/yGi/98wjKtCiJ+YPvLzChpfvpGgnpMh3BhnhbDTF9XQ0Njs0PZIQ0OjGaBtkYaGRjNA2yINDQ2nQdut8uFYEpEhhEgR0S+J6JeGYTxFaFL5r4nIfJErwY+smmpqaGhoFIO2RxoaGs0AbYs0NDSaAdoWaWhoOA3abpVGq7XJf+baY5EW5hoaGhoNgbZHGhoazQBtizQ0NJoB2hZpaGg4DdpuWcBxJKJhGH7DMF5r8++3Xns82ajj0dDQ2LzQ9khDQ6MZoG2RhoZGM0DbIg0NDadB263K4cRyZj8R/ZNhGL8iou8R0Xki8hLRTUT0e0Q0T0R/bfG5f2YYxqzF68eFEL9ar4PV0NBoaWh7pKGh0QzQtkhDQ6MZoG2RhoaG06DtVoVwIom4QkTvI6I3E9HbiWiEiNxEdJmIvkREHxdCXLb43Cdt9vcJImrpi6yhobFu0PZIQ0OjGaBtkYaGRjNA2yINDQ2nQdutCmE0syiMYRj3E9FHiGiAiEgIsbChB3QNhmG4iKiXiMaI6Hki+nMhxJ9t7FFpaGisJ7Q90tDQaAZoW6ShodEM0LZIQ0PDadB2qz5wSibiPBGRYRieJlG1mSSiMxt9EBoaGhsCbY80NDSaAdoWaWhoNAO0LdLQ0HAatN2qAc2eiThJOKGMJ0QTHLBhGB1EdLvy0gUhxLmNOh4NDY31h7ZHGhoazQBtizQ0NJoB2hZpaGg4Ddpu1QdNTSJqaGhoaGhoaGhoaGhoaGhoaGhobDxcG30AGhoaGhoaGhoaGhoaGhoaGhoaGs0NTSJqaGhoaGhoaGhoaGhoaGhoaGhoFIUmETU0NDQ0NDQ0NDQ0NDQ0NDQ0NDSKQpOIGhoaGhoaGhoaGhoaGhoaGhoaGkWhSUQNDQ0NDQ0NDQ0NDQ0NDQ0NDQ2NotAkooaGhoaGhoaGhoaGhoaGhoaGhkZR/F8WjJB9O1hR+AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "attn_name = 'enc_self_attns'\n", + "hypo = {attn_name: [model.bert.encoder.layer[i].attention.self.attention_probs[0] for i in range(config.num_hidden_layers)]}\n", + "key_labels = query_labels = tokens\n", + "labels_dict = {attn_name: (key_labels, query_labels)}\n", + "result_tuple = (hypo, config.num_attention_heads, labels_dict)\n", + "plot_layer_attn(result_tuple, attn_name=attn_name, layer=10, heads=None)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untitled_likunlin.ipynb b/Untitled_likunlin.ipynb new file mode 100644 index 000000000000..966a1ecde52c --- /dev/null +++ b/Untitled_likunlin.ipynb @@ -0,0 +1,801 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = 'all'" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import json\n", + "\n", + "import numpy as np\n", + "import math\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from pylab import rcParams\n", + "\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig\n", + "from examples.extract_features import *" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/21/2019 15:55:04 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at /home/xd/.pytorch_pretrained_bert/26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084\n", + "01/21/2019 15:55:04 - INFO - pytorch_pretrained_bert.modeling - loading archive file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/\n", + "01/21/2019 15:55:04 - INFO - pytorch_pretrained_bert.modeling - Model config {\n", + " \"attention_probs_dropout_prob\": 0.1,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.1,\n", + " \"hidden_size\": 768,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"max_position_embeddings\": 512,\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 12,\n", + " \"type_vocab_size\": 2,\n", + " \"vocab_size\": 30522\n", + "}\n", + "\n" + ] + } + ], + "source": [ + "class Args:\n", + " def __init__(self):\n", + " pass\n", + " \n", + "args = Args()\n", + "args.no_cuda = True\n", + "\n", + "CONFIG_NAME = 'bert_config.json'\n", + "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n", + "config_file = os.path.join(BERT_DIR, CONFIG_NAME)\n", + "config = BertConfig.from_json_file(config_file)\n", + "\n", + "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n", + "model = BertForPreTraining.from_pretrained(BERT_DIR)\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() and not args.no_cuda else \"cpu\")\n", + "_ = model.to(device)\n", + "_ = model.eval()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "def convert_text_to_examples(text):\n", + " examples = []\n", + " unique_id = 0\n", + " if True:\n", + " for line in text:\n", + " line = line.strip()\n", + " text_a = None\n", + " text_b = None\n", + " m = re.match(r\"^(.*) \\|\\|\\| (.*)$\", line)\n", + " if m is None:\n", + " text_a = line\n", + " else:\n", + " text_a = m.group(1)\n", + " text_b = m.group(2)\n", + " examples.append(\n", + " InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))\n", + " unique_id += 1\n", + " return examples\n", + "\n", + "def convert_examples_to_features(examples, tokenizer, append_special_tokens=True, replace_mask=True, print_info=False):\n", + " features = []\n", + " for (ex_index, example) in enumerate(examples):\n", + " tokens_a = tokenizer.tokenize(example.text_a)\n", + " tokens_b = None\n", + " if example.text_b:\n", + " tokens_b = tokenizer.tokenize(example.text_b)\n", + "\n", + " tokens = []\n", + " input_type_ids = []\n", + " if append_special_tokens:\n", + " tokens.append(\"[CLS]\")\n", + " input_type_ids.append(0)\n", + " for token in tokens_a:\n", + " if replace_mask and token == '_': # XD\n", + " token = \"[MASK]\"\n", + " tokens.append(token)\n", + " input_type_ids.append(0)\n", + " if append_special_tokens:\n", + " tokens.append(\"[SEP]\")\n", + " input_type_ids.append(0)\n", + "\n", + " if tokens_b:\n", + " for token in tokens_b:\n", + " if replace_mask and token == '_': # XD\n", + " token = \"[MASK]\"\n", + " tokens.append(token)\n", + " input_type_ids.append(1)\n", + " if append_special_tokens:\n", + " tokens.append(\"[SEP]\")\n", + " input_type_ids.append(1)\n", + "\n", + " input_ids = tokenizer.convert_tokens_to_ids(tokens)\n", + " input_mask = [1] * len(input_ids)\n", + "\n", + " if ex_index < 5:\n", + "# logger.info(\"*** Example ***\")\n", + "# logger.info(\"unique_id: %s\" % (example.unique_id))\n", + " logger.info(\"tokens: %s\" % \" \".join([str(x) for x in tokens]))\n", + "# logger.info(\"input_ids: %s\" % \" \".join([str(x) for x in input_ids]))\n", + "# logger.info(\"input_mask: %s\" % \" \".join([str(x) for x in input_mask]))\n", + "# logger.info(\n", + "# \"input_type_ids: %s\" % \" \".join([str(x) for x in input_type_ids]))\n", + " \n", + " features.append(\n", + " InputFeatures(\n", + " unique_id=example.unique_id,\n", + " tokens=tokens,\n", + " input_ids=input_ids,\n", + " input_mask=input_mask,\n", + " input_type_ids=input_type_ids))\n", + " return features\n", + "\n", + "def copy_and_mask_feature(feature, masked_tokens=None):\n", + " import copy\n", + " tokens = feature.tokens\n", + " masked_positions = [tokens.index(t) for t in masked_tokens if t in tokens] \\\n", + " if masked_tokens is not None else range(len(tokens))\n", + " assert len(masked_positions) > 0\n", + " masked_feature_copies = []\n", + " for masked_pos in masked_positions:\n", + " feature_copy = copy.deepcopy(feature)\n", + " feature_copy.input_ids[masked_pos] = tokenizer.vocab[\"[MASK]\"]\n", + " masked_feature_copies.append(feature_copy)\n", + " return masked_feature_copies, masked_positions" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "def show_lm_probs(tokens, input_ids, probs, topk=5, firstk=20):\n", + " def print_pair(token, prob, end_str='', hit_mark=' '):\n", + " if i < firstk:\n", + " # token = token.replace('', '').replace('\\n', '/n')\n", + " print('{}{: >3} | {: <12}'.format(hit_mark, int(round(prob*100)), token), end=end_str)\n", + " \n", + " ret = None\n", + " for i in range(len(tokens)):\n", + " ind_ = input_ids[i].item() if input_ids is not None else tokenizer.vocab[tokens[i]]\n", + " prob_ = probs[i][ind_].item()\n", + " print_pair(tokens[i], prob_, end_str='\\t')\n", + " values, indices = probs[i].topk(topk)\n", + " top_pairs = []\n", + " for j in range(topk):\n", + " ind, prob = indices[j].item(), values[j].item()\n", + " hit_mark = '*' if ind == ind_ else ' '\n", + " token = tokenizer.ids_to_tokens[ind]\n", + " print_pair(token, prob, hit_mark=hit_mark, end_str='' if j < topk - 1 else '\\n')\n", + " top_pairs.append((token, prob))\n", + " if tokens[i] == \"[MASK]\":\n", + " ret = top_pairs\n", + " return ret" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "import colored\n", + "from colored import stylize\n", + "\n", + "def show_abnormals(tokens, probs, show_suggestions=False):\n", + " def gap2color(gap):\n", + " if gap <= 5:\n", + " return 'yellow_1'\n", + " elif gap <= 10:\n", + " return 'orange_1'\n", + " else:\n", + " return 'red_1'\n", + " \n", + " def print_token(token, suggestion, gap):\n", + " if gap == 0:\n", + " print(stylize(token + ' ', colored.fg('white') + colored.bg('black')), end='')\n", + " else:\n", + " print(stylize(token, colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n", + " if show_suggestions and gap > 5:\n", + " print(stylize('/' + suggestion + ' ', colored.fg('green' if gap > 10 else 'cyan') + colored.bg('black')), end='')\n", + " else:\n", + " print(stylize(' ', colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n", + " # print('/' + suggestion, end=' ')\n", + " # print('%.2f' % gap, end=' ')\n", + " \n", + " avg_gap = 0.\n", + " for i in range(1, len(tokens) - 1): # skip first [CLS] and last [SEP]\n", + " ind_ = tokenizer.vocab[tokens[i]]\n", + " prob_ = probs[i][ind_].item()\n", + " top_prob = probs[i].max().item()\n", + " top_ind = probs[i].argmax().item()\n", + " gap = math.log(top_prob) - math.log(prob_)\n", + " suggestion = tokenizer.ids_to_tokens[top_ind]\n", + " print_token(tokens[i], suggestion, gap)\n", + " avg_gap += gap\n", + " avg_gap /= (len(tokens) - 2)\n", + " print()\n", + " print(avg_gap)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "analyzed_cache = {}\n", + "\n", + "def analyze_text(text, masked_tokens=None, show_suggestions=False, show_firstk_probs=20):\n", + " if text[0] in analyzed_cache:\n", + " features, mlm_probs = analyzed_cache[text[0]]\n", + " given_mask = \"[MASK]\" in features[0].tokens\n", + " tokens = features[0].tokens\n", + " else:\n", + " examples = convert_text_to_examples(text)\n", + " features = convert_examples_to_features(examples, tokenizer, print_info=False)\n", + " given_mask = \"[MASK]\" in features[0].tokens\n", + " if not given_mask or masked_tokens is not None:\n", + " assert len(features) == 1\n", + " features, masked_positions = copy_and_mask_feature(features[0], masked_tokens=masked_tokens)\n", + "\n", + " input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n", + " input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long)\n", + " input_ids = input_ids.to(device)\n", + " input_type_ids = input_type_ids.to(device)\n", + "\n", + " mlm_logits, _ = model(input_ids, input_type_ids)\n", + " mlm_probs = F.softmax(mlm_logits, dim=-1)\n", + "\n", + " tokens = features[0].tokens\n", + " if not given_mask or masked_tokens is not None:\n", + " bsz, seq_len, vocab_size = mlm_probs.size()\n", + " assert bsz == len(masked_positions)\n", + " # reduced_mlm_probs = torch.Tensor(1, seq_len, vocab_size)\n", + " # for i in range(seq_len):\n", + " # reduced_mlm_probs[0, i] = mlm_probs[i, i]\n", + " reduced_mlm_probs = torch.Tensor(1, len(masked_positions), vocab_size)\n", + " for i, pos in enumerate(masked_positions):\n", + " reduced_mlm_probs[0, i] = mlm_probs[i, pos]\n", + " mlm_probs = reduced_mlm_probs\n", + " tokens = [tokens[i] for i in masked_positions]\n", + " \n", + " analyzed_cache[text[0]] = (features, mlm_probs)\n", + " \n", + " top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=show_firstk_probs)\n", + " if not given_mask:\n", + " show_abnormals(tokens, mlm_probs[0], show_suggestions=show_suggestions)\n", + " return top_pairs" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 | [CLS] \t 3 | . 1 | the 1 | , 1 | ) 1 | \" \n", + " 99 | i \t* 99 | i 0 | we 0 | they 0 | and 0 | always \n", + " 67 | love \t* 67 | love 5 | miss 5 | need 4 | want 2 | promise \n", + " 0 | you \t 87 | . 11 | ! 2 | ; 0 | ... 0 | ? \n", + " 0 | [SEP] \t 12 | . 9 | , 4 | - 2 | and 1 | on \n", + "\u001b[38;5;15m\u001b[48;5;0mi \u001b[0m\u001b[38;5;15m\u001b[48;5;0mlove \u001b[0m\u001b[38;5;214m\u001b[48;5;0myou\u001b[0m\u001b[38;5;214m\u001b[48;5;0m \u001b[0m\n", + "2.310520330937367\n" + ] + } + ], + "source": [ + "# text = [\"Who was Jim Henson? Jim Henson _ a puppeteer.\"]\n", + "# text = [\"Last week I went to the theatre. I had a very good seat. The play was very interesting. But I didn't enjoy it. A young man and a young woman were sitting behind me. They were talking loudly. I got very angry. I couldn't hear a word. I turned round. I looked at the man angrily. They didn't pay any attention.In the end, I couldn't bear it. I turned round again. 'I can't hear a word!' I said angrily. 'It's none of your business,' the young man said rudely. 'This is a private conversation!'\"]\n", + "# text = [\"After the outbreak of the disease, the Ministry of Agriculture and rural areas immediately sent a supervision team to the local. Local Emergency Response Mechanism has been activated in accordance with the requirements, to take blockade, culling, harmless treatment, disinfection and other treatment measures to all disease and culling of pigs for harmless treatment. At the same time, all live pigs and their products are prohibited from transferring out of the blockade area, and live pigs are not allowed to be transported into the blockade area. At present, all the above measures have been implemented.\"]\n", + "# text = [\"Early critics of Emily Dickinson's poetry mistook for simplemindedness the surface of artlessness that in fact she constructed with such innocence.\"]\n", + "text = [\"i love you\"]\n", + "analyze_text(text, show_firstk_probs=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/03/2019 17:10:45 - INFO - examples.extract_features - tokens: [CLS] the trophy doesn ' t fit into the brown suitcase because the [MASK] is too large . [SEP]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 | [CLS] \t 2 | . 1 | ) 1 | the 1 | , 1 | \" \n", + " 100 | the \t*100 | the 0 | his 0 | a 0 | its 0 | her \n", + " 97 | trophy \t* 97 | trophy 0 | cup 0 | prize 0 | trophies 0 | competition \n", + " 100 | doesn \t*100 | doesn 0 | can 0 | does 0 | won 0 | didn \n", + " 100 | ' \t*100 | ' 0 | t 0 | \" 0 | = 0 | ` \n", + " 100 | t \t*100 | t 0 | not 0 | s 0 | n 0 | to \n", + " 100 | fit \t*100 | fit 0 | fits 0 | sit 0 | get 0 | fitting \n", + " 100 | into \t*100 | into 0 | in 0 | inside 0 | onto 0 | within \n", + " 100 | the \t*100 | the 0 | her 0 | his 0 | a 0 | my \n", + " 100 | brown \t*100 | brown 0 | black 0 | green 0 | blue 0 | plastic \n", + " 95 | suitcase \t* 95 | suitcase 3 | bag 1 | luggage 0 | backpack 0 | trunk \n", + " 100 | because \t*100 | because 0 | as 0 | since 0 | due 0 | . \n", + " 100 | the \t*100 | the 0 | its 0 | his 0 | it 0 | her \n", + " 0 | [MASK] \t 21 | suitcase 19 | bag 6 | box 2 | luggage 2 | case \n", + " 99 | is \t* 99 | is 1 | was 0 | being 0 | has 0 | it \n", + " 100 | too \t*100 | too 0 | very 0 | extra 0 | overly 0 | more \n", + " 87 | large \t* 87 | large 11 | big 1 | small 1 | huge 0 | larger \n", + " 100 | . \t*100 | . 0 | ; 0 | , 0 | ! 0 | ' \n", + " 0 | [SEP] \t 35 | . 8 | ) 5 | , 4 | ( 3 | it \n" + ] + } + ], + "source": [ + "text = [\"The trophy doesn't fit into the brown suitcase because the _ is too large.\"]\n", + "# text = [\"Mary beat John in the match because _ was very strong.\"]\n", + "features = convert_examples_to_features(convert_text_to_examples(text), tokenizer, print_info=False)\n", + "input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long).to(device)\n", + "input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long).to(device)\n", + "mlm_logits, _ = model(input_ids, input_type_ids)\n", + "mlm_probs = F.softmax(mlm_logits, dim=-1)\n", + "tokens = features[0].tokens\n", + "top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.',\n", + " 'Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.']" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "text = [\n", + " # same / different\n", + " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.\",\n", + " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.\",\n", + " \"Tom has yellow hair. Mary has black hair. John has black hair. Mary and _ have the same hair color.\",\n", + " # because / although\n", + " \"John is taller/shorter than Mary because/although _ is older/younger.\",\n", + " \"The red ball is heavier/lighter than the blue ball because/although the _ ball is bigger/smaller.\",\n", + " \"Charles did a lot better/worse than his good friend Nancy on the test because/although _ had/hadn't studied so hard.\",\n", + " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n", + " \"John thought that he would arrive earlier than Susan, but/and indeed _ was the first to arrive.\",\n", + " # reverse\n", + " \"John came then Mary came. They left in reverse order. _ left then _ left.\",\n", + " \"John came after Mary. They left in reverse order. _ left after _ .\",\n", + " \"John came first, then came Mary. They left in reverse order: _ left first, then left _ .\",\n", + " # compare\n", + " \"Though John is tall, Tom is taller than John. So John is _ than Tom.\",\n", + " \"Tom is taller than John. So _ is shorter than _.\",\n", + " # WSC-style: before /after\n", + " \"Mary came before/after John. _ was late/early .\",\n", + " # yes / no\n", + " \"Was Tom taller than Susan? Yes, _ was taller.\",\n", + " # right / wrong, epistemic modality\n", + " \"John said the rain was about to stop. Mary said the rain would continue. Later the rain stopped. _ was wrong.\",\n", + " \n", + " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n", + " \"John thanked Mary because _ had given help to _ . \",\n", + " \"John felt vindicated/crushed when his longtime rival Mary revealed that _ was the winner of the competition.\",\n", + " \"John couldn't see the stage with Mary in front of him because _ is so short/tall.\",\n", + " \"Although they ran at about the same speed, John beat Sally because _ had such a bad start.\",\n", + " \"The fish ate the worm. The _ was hungry/tasty.\",\n", + " \n", + " \"John beat Mary. _ won the game/e winner.\",\n", + "]\n", + "text" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "config" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "with open('WSC_switched_label.json') as f:\n", + " examples = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "with open('WSC_child_problem.json') as f:\n", + " cexamples = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "for ce in cexamples:\n", + " for s in ce['sentences']:\n", + " for a in s['answer0'] + s['answer1']:\n", + " a = a.lower()\n", + " if a not in tokenizer.vocab:\n", + " ce\n", + " print(a, 'not in vocab!!!')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "for ce in cexamples:\n", + " if len(ce['sentences']) > 0:\n", + " e = examples[ce['index']]\n", + " assert ce['index'] == e['index']\n", + " e['score'] = all([s['score'] for s in ce['sentences']])\n", + " assert len(set([s['adjacent_ref'] for s in ce['sentences']])) == 1, 'adjcent_refs are different!'\n", + " e['adjacent_ref'] = ce['sentences'][0]['adjacent_ref']" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import defaultdict\n", + "\n", + "groups = defaultdict(list)\n", + "for e in examples:\n", + " if 'score' in e:\n", + " index = e['index']\n", + " if index < 252:\n", + " if index % 2 == 1:\n", + " index -= 1\n", + " elif index in [252, 253, 254]:\n", + " index = 252\n", + " else:\n", + " if index % 2 == 0:\n", + " index -= 1\n", + " groups[index].append(e)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(2, 'fit into:large/small', False),\n", + " (4, 'thank:receive/give', False),\n", + " (6, 'call:successful available', True),\n", + " (8, 'ask:repeat answer', False),\n", + " (10, 'zoom by:fast/slow', False),\n", + " (12, 'vindicated/crushed:be the winner', False),\n", + " (14, 'lift:weak heavy', False),\n", + " (16, 'crash through:[hard]/[soft]', False),\n", + " (18, '[block]:short/tall', False),\n", + " (20, 'down to:top/bottom', False),\n", + " (22, 'beat:good/bad', False),\n", + " (24, 'roll off:anchored level', False),\n", + " (26, 'above/below', False),\n", + " (28, 'better/worse:study hard', False),\n", + " (30, 'after/before:far away', False),\n", + " (32, 'be upset with:buy from not work/sell not work', True),\n", + " (34, '?yell at comfort:upset', False),\n", + " (36, 'above/below:moved first', False),\n", + " (38, 'although/because', False),\n", + " (40, 'bully:punish rescue', False),\n", + " (42, 'pour:empty/full', False),\n", + " (44, 'know:nosy indiscreet', False),\n", + " (46, 'explain:convince/understand', True),\n", + " (48, '?know tell:so/because', True),\n", + " (50, 'beat:younger/older', False),\n", + " (56, 'clog:cleaned removed', True),\n", + " (58, '?immediately follow:short delayed', False),\n", + " (60, '?between:see see around', True),\n", + " (64, 'but/and', False),\n", + " (66, 'clean:put in the trash put in the drawer', False),\n", + " (68, 'because/but', False),\n", + " (70, 'out of:handy lighter', False),\n", + " (72, 'put:tall high', False),\n", + " (74, 'show:good famous', True),\n", + " (76, 'pay for:generous grateful', False),\n", + " (78, 'but', False),\n", + " (80, 'if', False),\n", + " (82, 'if', False),\n", + " (84, 'fool:get/lose', False),\n", + " (88, 'wait:impatient cautious', False),\n", + " (90, 'give birth:woman baby', True),\n", + " (92, '?stop normal/stop abnormal:strange', False),\n", + " (96, 'eat:hungry tasty', False),\n", + " (98, 'put ... into filled with ... :get in/get out', False),\n", + " (100, 'up:at the bottom/at the top', False),\n", + " (102, 'crash through:removed repaired', False),\n", + " (104, 'stab:taken to the police station taken to the hospital', False),\n", + " (106, 'hear ... humming and whistling:annoyed/annoying', True),\n", + " (108, 'see ... juggling watermelons:impressed/impressive', True),\n", + " (114, 'tell lies: truthful skeptical', True),\n", + " (130, 'but:disappointed', True),\n", + " (132, 'visit:invite come out/invite come in', True),\n", + " (134, 'take classes from:eager known to speak it fluently', False),\n", + " (138, 'cover:out gone', True),\n", + " (144, 'tuck:work sleep', True),\n", + " (150, 'influence:later/earlier', False),\n", + " (152, 'can not cut:thick small', False),\n", + " (154, 'attack:kill guard', False),\n", + " (156, 'attack:bold nervous', False),\n", + " (160, 'change:hard:easy', False),\n", + " (166, 'alive:is/was', False),\n", + " (168, 'infant:twelve years old twelve months old', False),\n", + " (170, 'better equipped and large:defeated/victorious', False),\n", + " (178, 'interview:persistent cooperative', False),\n", + " (186, 'be full of:minority/majority', False),\n", + " (188, 'like over:more/fewer', False),\n", + " (190, 'place on all:not enough/too many', True),\n", + " (192, 'stick:leave have', True),\n", + " (196, 'follow:admire/influence', True),\n", + " (198, 'fit through:wide/narrow', False),\n", + " (200, 'trade:dowdy/great', False),\n", + " (202, 'hire/hire oneself to:take care of', True),\n", + " (204, 'promise/order', False),\n", + " (208, 'mother:education place', True),\n", + " (210, 'knock:get an answer/answer', True),\n", + " (212, 'pay:receive/deliver', False),\n", + " (218, '?', False),\n", + " (220, 'say check:move take', False),\n", + " (222, '?', False),\n", + " (224, 'give a life:drive alone walk', False),\n", + " (226, 'pass the plate:full/hungry', False),\n", + " (228, 'pass:turn over turn next', False),\n", + " (232, 'stretch pat', True),\n", + " (234, 'accept share', False),\n", + " (236, 'speak:break silence break concentration', False),\n", + " (240, 'carry:leg ache leg dangle', True),\n", + " (242, 'carry:in arms in bassinet', False),\n", + " (244, 'hold:against chest against will', True),\n", + " (250, 'stop', False),\n", + " (252, 'even though/because/not', False),\n", + " (255, 'give:not hungry/hungry', False),\n", + " (259, 'ask for a favor:refuse/be refused`', False),\n", + " (261, 'cede:less popular/more popular', False),\n", + " (263, 'not pass although:see open/open', True),\n", + " (271, 'suspect regret', True)]" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def filter_dict(d, keys=['index', 'sentence', 'correct_answer', 'relational_word', 'is_associative', 'score']):\n", + " return {k: d[k] for k in d if k in keys}\n", + "\n", + "# ([[filter_dict(e) for e in eg] for eg in groups.values() if eg[0]['relational_word'] != 'none' and all([e['score'] for e in eg])])# / len([eg for eg in groups.values() if eg[0]['relational_word'] != 'none'])\n", + "[(index, eg[0]['relational_word'], all([e['score'] for e in eg])) for index, eg in groups.items() if eg[0]['relational_word'] != 'none']\n", + "# len([filter_dict(e) for e in examples if 'score' in e and not e['score'] and e['adjacent_ref']])\n", + "# for e in examples:\n", + "# if e['index'] % 2 == 0:\n", + "# print(e['sentence'])" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "179" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(['because' in e['sentence'] for e in examples]) + \\\n", + "sum(['so ' in e['sentence'] for e in examples]) + \\\n", + "sum(['but ' in e['sentence'] for e in examples]) + \\\n", + "sum(['though' in e['sentence'] for e in examples])" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "# with open('WSC_switched_label.json', 'w') as f:\n", + "# json.dump(examples, f)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "vis_attn_topk = 3\n", + "\n", + "def has_chinese_label(labels):\n", + " labels = [label.split('->')[0].strip() for label in labels]\n", + " r = sum([len(label) > 1 for label in labels if label not in ['BOS', 'EOS']]) * 1. / (len(labels) - 1)\n", + " return 0 < r < 0.5 # r == 0 means empty query labels used in self attention\n", + "\n", + "def _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col, color='b'):\n", + " assert len(query_labels) == attn.size(0)\n", + " assert len(key_labels) == attn.size(1)\n", + "\n", + " ax1.set_xlim([-1, 1])\n", + " ax1.set_xticks([])\n", + " ax2 = ax1.twinx()\n", + " nlabels = max(len(key_labels), len(query_labels))\n", + " pos = range(nlabels)\n", + " \n", + " if 'self' in attn_name and col < ncols - 1:\n", + " query_labels = ['' for _ in query_labels]\n", + "\n", + " for ax, labels in [(ax1, key_labels), (ax2, query_labels)]:\n", + " ax.set_yticks(pos)\n", + " if has_chinese_label(labels):\n", + " ax.set_yticklabels(labels, fontproperties=zhfont)\n", + " else:\n", + " ax.set_yticklabels(labels)\n", + " ax.set_ylim([nlabels - 1, 0])\n", + " ax.tick_params(width=0, labelsize='xx-large')\n", + "\n", + " for spine in ax.spines.values():\n", + " spine.set_visible(False)\n", + "\n", + "# mask, attn = filter_attn(attn)\n", + " for qi in range(attn.size(0)):\n", + "# if not mask[qi]:\n", + "# continue\n", + "# for ki in range(attn.size(1)):\n", + " for ki in attn[qi].topk(vis_attn_topk)[1]:\n", + " a = attn[qi, ki]\n", + " ax1.plot((-1, 1), (ki, qi), color, alpha=a)\n", + "# print(attn.mean(dim=0).topk(5)[0])\n", + "# ax1.barh(pos, attn.mean(dim=0).data.cpu().numpy())\n", + "\n", + "def plot_layer_attn(result_tuple, attn_name='dec_self_attns', layer=0, heads=None):\n", + " hypo, nheads, labels_dict = result_tuple\n", + " key_labels, query_labels = labels_dict[attn_name]\n", + " if heads is None:\n", + " heads = range(nheads)\n", + " else:\n", + " nheads = len(heads)\n", + " \n", + " stride = 2 if attn_name == 'dec_enc_attns' else 1\n", + " nlabels = max(len(key_labels), len(query_labels))\n", + " rcParams['figure.figsize'] = 20, int(round(nlabels * stride * nheads / 8 * 1.0))\n", + " \n", + " rows = nheads // ncols * stride\n", + " fig, axes = plt.subplots(rows, ncols)\n", + " \n", + " # for head in range(nheads):\n", + " for head_i, head in enumerate(heads):\n", + " row, col = head_i * stride // ncols, head_i * stride % ncols\n", + " ax1 = axes[row, col]\n", + " attn = hypo[attn_name][layer][head]\n", + " _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col)\n", + " if attn_name == 'dec_enc_attns':\n", + " col = col + 1\n", + " axes[row, col].axis('off') # next subfig acts as blank place holder\n", + " # plt.suptitle('%s with %d heads, Layer %d' % (attn_name, nheads, layer), fontsize=20)\n", + " plt.show() \n", + " \n", + "ncols = 4" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABREAAASVCAYAAAA7VJllAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmYa1d1Jb6OVKNqnqveZL/BfvbzCMaGQMAQMJN/QIcfQxgaks4ADSSdkHRCOiS4M3STTkhCIAmkm8YEMCEMJsFMZjI4BBOwjcE27/lNfnNVvRoklUqz7uk/Vm2fI5WqSle6UklVZ33f/apKJd17de+5++yz9l57K601HBwcHBwcHBwcHBwcHBwcHBwcHBzWQmizT8DBwcHBwcHBwcHBwcHBwcHBwcGhueFIRAcHBwcHBwcHBwcHBwcHBwcHB4d14UhEBwcHBwcHBwcHBwcHBwcHBwcHh3XhSEQHBwcHBwcHBwcHBwcHBwcHBweHdeFIRAcHBwcHBwcHBwcHBwcHBwcHB4d14UhEBwcHBwcHBwcHBwcHBwcHBwcHh3XR1CSiUuo2pZS2trbNPieBUuqsdV7/utnn4+DgUD84W+Tg4NAMcLbIwcGhWeDskYODQ6vB2a1g0NQkooX/uLIV7BeVUgeUUn+nlDqmlEoppRJKqQeVUn+ilJq03ieD5cB6B1FKdSul/uvKPqJKqaWVff+jUuqFJW//1ZVzmgvoOzo4ODQ/nC1ycHBoBjhb5ODg0Cxw9sjBwaHV4OxWDWga5nU9aK0/VvqaUuqVAD4KYBnAxwA8AiAM4EkA3grglQAur/QYKyz0NwHcAOAfAXwIgAZwAMAtAH4OwJetc7pz5XN/XM13cnBwaD04W+Tg4NAMcLbIwcGhWeDskYODQ6vB2a3a0BIkYimUUteDN/ZHAF6otZ4v+f/vAHiHz93+BwBPBfDrWuv3ljnm5OqPODg4bGc4W+Tg4NAMcLbIwcGhWeDskYODQ6vB2S1/aEkSEcAfguf+mtIbDABa60UAv+Nzn5KK+q1y/9RaT/vcn4ODw9aHs0UODg7NAGeLHBwcmgXOHjk4OLQanN3ygVapifgElFLdAF4A4F6t9bEAd31y5ecblFLhAPfr4OCwBeFskYODQzPA2SIHB4dmgbNHDg4OrQZnt/yj5UhEkNHtAPBQwPv9HIAfA/gNAGdXil3+F6XUwaAO8IpXQL/3vdCnTkEXCtCA29zmtmbcPA86kYCenoY+fhz6V37lXe8CgPe/H/o974EG0bK2CE1wjd3mNrf53971Ltqij30M+qUvhQbRsrbozjuhv/Ut6NlZaK03//q6zW1uW3vL5aCTSeholM/s299Oe/Tnfw4Ng5a0R3/2Z9D/8A/Q990H/ZOfcK02Ows9Pw8di0EvLUEvL0OnUtCZDHQ+T18RTXBf3Oa27b55HvSPfgT9lrdAozq0pN3aTLSinLl/5Wc8yJ1qrTNKqWcB+E0ArwHw6pUNSql7AfyC1vp4Lce4/nrge98DFheBpz0NuOIKYHIS6Oqq+fQdHByqhNZAOg0sL5stleLrnsf/JRJ876WXAjfe+MRHW9YWOTg4tCY8jz8//Wn6EStoWVv0pCcBR44ADz0EjI0B+/YB/f0bf87BwaG+KBSAbBbI5cxPvbI8D4WA9nZjj/btK/poS9qj5z4XOHqU3zOZBDIZYGkJiET4XTs6zHtDIUCp4r9Lt3C4+G/7/Q4ODsEhmwXm5oCPfQwYHq56Ny1ptzYTrUgiys3tC3rHWusogN8H8PtKqTEATwPw8wBeDuDzSqknaa0z1e7/t34L+PjH6Szffz8QjZJE3LULmJgAenvdJOPgUG9ks8WE4fKycYTDYaCnh89joUDysKODDiQA3Hwz0GcsT8vaIgcHh9ZDOg3EV6zOzp3Af/kvT/yrZW3Rnj20qefP0yd68EFgaop+USQSyFdwcHDYAJ5XTBZms8YvUoo+UCRi/KG2NiCfB86d43tuuaVody1pj667jsRhOk37CvDvXI4bwO/f2cnvL4Sq/VOuoy6TC6XU+iSjbA4ODpWhUODzmssBd9zBn29+c9W7a0m7tZloRRLxGIAsgOvqeRCt9UUAnwdv7scAvA7ATQDurXafXV3Aa1/LifjIEUa42tuZ9XThAomL0VFG4dta8c44ODQZCgVGlBMJQxiKM6gUn8XRURKHPT18RuNxYGaGzmN7O/fR08PP9BVPLS1rixwcHFoHnkc/IZOhmgFgUFLsElrYFoVCDKDu3EnicHqa/tDCAsnEiQmn1nBwCBJakwC0CcN83vy/rY3PnGTftbWtTnDQGrj3Xi7gga3hG4XDwNVXM5Bx+jRw1VVcjwlRkc3SBmeztFsdHYZUlOujlNmESPS84q1Q4HXPrEEZbEQyuqxGh+0Orc2zqBTwjW8AZ84AL3vZqqxoP2hJu7WZaDmqSmudUkrdDeBFSqn9DUoB/R54k3fWuqPubg7yL3wBePxxYGCAk5DWfADm5gyRODjonGcHh0qhNRfapbJkQVcXnyshDCORYkdseRk4fpyf6ezkAnZhgY70wEC547W2LXJwcGh+5PNmof6P/8hsPQDYu9e8p9VtUWenITMOHCBxeOYMF/ILC1RsjIwUywkdHBwqQz5fnGVYKkvu6ODaRLIMK8mGO3IEOHECGB9f/b9Wtkd9fbRBjz3GLMvdu2mfOjoMAVhKvqZSJFrlfYDJ4gRMJqdkItp+ZzmCUX7P5/lzrazG9UjGcNgRjQ5bE+ITeR6fq6NHgW9/m5nEz3lO9fttZbu1WWg5EnEFt4EddO5QSr1Ia71g/1MpNQjgHVrrd1S6Q6XU9QAuaK1nSl5XAF688udPajrrFUQiwIteBHz5y8x4am8nYTEwwElpepoLhXicE/vAACc2NyE4OBhkMsWEYTJpHLe2NhKFQ0PMcolE1s7uTaX4HCYSfBZ37uT7T53i/i69dN3F621oYVvk4ODQvBCZTjgMfPe7jLYfOAAcPlz27behhW1RTw8XB8vLxm7PznJ7/HHWkh4Z4eaUGg4O5eF5q+sYlsqSe3pMlmG4il6hc3PMiJ6YAHbsWPNtt6FF7dHUFNdfFy7QDg0PG8JOpNyFAt+bz5tNamdLdqJkKGpt3i8QMlEIv/VsmsikS0nGUrKxFKXy6bWk1A4OrQCpX5/LcdxGIuRKPvEJ1lN+9asD4UluQ4varc1AS7piWuv7lVJvBHA7gMdW0kEfARAG01BfDeAigNKb/Bal1AJW42MAngfgj5VSXwLwbwDmAIyBevWnAvik1jqwjj29vcALXgDcfTcwP89JZ2yMmVJDQ5zAFhZIIqbTfE9/PwlF50A7bDfk86tlySK/kclkbMxkGXZ2brzPTIYL1FiMDtXUFJ3FbJaLVq1JIK6XDbwVbJGDg0NzQeTLnkff4MIF4EMfAi6/nPburrtWf6bVbZFS9Ivicdr33l7Km/v7SVosLJiakEND3KohQBwctgq0NpmF2Sw3m6wSWbJkGEpt51qQTgPf/Cb3dfPNwA9+sNa5ta49UorBmkSCwWQpdSOEmxCJnmeIRcAQerkcy1VJyaquLm7hsMkstElBOaadqWiTe5J1GA6vfw/XIhnlvEqJTIFrCuPQ7MjlaHu0NgR9JgN85CMc3697XVF5l6rRynZrM9CydJTW+hNKqQcAvB3ASwC8GUABwGMA3r+yleI31tjdfQA+DaAbwPNX3jcGIAngUQC/CuADQZ4/wOzC5z6XE/L8PIkQrfkg7NnDyPvyMiey7m7+vbjI/w8O8jUHh60GrUkY2lmGIucDOO4HBw1h2N3tz8HJ5YCLF/ksKUU5zugoHaV0mgSiUpQLVkJGbgVb5ODg0Bywa2VJEPHP/oz+wa/+KvDBD6792Va3RW1t/M5S/7GzkyRiJEJbH4txPshkmIEwPMy5wGXTOGwHlNYxlPrOgCGY7CzDoIkfzwO+8x2uSX7mZ1bVQVyFVrZHbW0M2jzyCH3CAwdM6Smti0k2IQWF/JPAs9hyIRSF1BViFygmFaVWpaCUVNzoflaSWViOYCyt1eiawjg0CzyPPlA+zzEnZLzWwJ13suzJK17BhI+g0Mp2q9FoCRJRKTUKAFrrOft1rfURAG/a6PNa69vAFNWN8EcrWyXnNAQy0zWZzcFBRvO+9S12J7zsMk46p07xoZiY4OvpNCedSIS/nzvHv0Xq7Iy3Q6sinV4tSxYnRpzikREjS642+6RQYEbL3IoVGR5m9qJk9qZSfO5CobUlzHMrHx4dHS16fSvYIgcHh82DFAoX+XJ3N197//tps/7rf2W2tGCr2qLubpN53tZmpH4TE5wD5ucNyXjxIsnEkRGSjS5bxmGrQGTJNmkofpFS9E96e02WYSOycn/0IxJq11/PRAcbc3NzGBsbG91K67T+fn7PkyeZDb5rl/EXCwVDpgmBKL/LJnUSQyHT9TmR4CaEiBCK9v0rzVa0Sb1SUtGvzauE7LOPXa5eo2sK49AISCMjoJh4B1je5d//HbjpJuCnfqr6Y2xlfqkRaAkSEUwdhVKqXWud3+jNDcKPYQphnq5lR8PDwE//NB+KY8eAQ4foFBw/ziypyy5jBF5qJfb2cpOMKlvqHIRcwcGhXpCaV7YsWSQWoRAJw4kJk2UYRCF9z+MzMjfHYw0O8rmy9728zCL+bW0kENd6jsbGxuTXtq1oixwcHBqPUvmyZEB/5jPA/fcDr3oV8OQnF39mK9siO+uwv7/49e5u2vNEwkj0ZmYodx4d3Tg7ysGh2SCyZJswtKWn7e0MoNrdkhuNs2dJIu7aBVx77WoiaMUeXdxq67SpKWYRzs7StkhJqVDIEHxCAIq8WUg6kRED/MzgIK9bOs1NFDeSvShEiXxe9ivZj3K8QqEyGXS1sOXT68E1hXGoB8QfKhRM9q49rk+dYkmXXbuAl7605gDKluaX6g2lyz3hTQKl1D4AdrPur+smOWGl1E8DkGppUa31GpVBirDuuU9PA9//PieWQ4foPM/M0Hk4cIALi7k5vpbPc0IaHDTRLYBO9sAAP+PgsJnwvNWyZDt6KRI12bq6gnUctKZkeXaWz0tfHwnK0hqHiQRT4tvbSSCWc9BPnDiBEydOPPH3LbfcEtrKtsjBwaExkFo/StE2if158EHg3e8mefjrv26Ixe1ii7JZ2uaurvL+TCpFfyifNwv6XI7XaXQ0mPpIDg71gF3HUH4XhMMmu1B+bjahEo+zfrvWwPOfzzWGwLZHt9xyyy1o7XVa2fPOZIBHHyWpcdllRlIZChkyT/62yT4h+AoF2il5zc4cTadNlqL8XwhFacxS9kR1ccaifcX9yqDriY2awshWCtcUZnsik+Emz0FpQkc8DnzgA/QNfvEXgUsuWXNX6476LcgvbQqamkTcgtjwYku0b3kZuOIKdop9/HHTJXZ0lL9L10LPo5RndJROdSxGQ+2kzg6NhHTNsgnDVMo4Nh0dhiwUWXI9x2UsRrI9m+WxJifLL0SXlkggdnZyMvIR4W/1OKkz/A4Om4hy8mVZ7M3MAL/3e7SX73wnyy6sgy1riyTw1NdXPjtcAkXSHKu93XRvjEToF63XGMvBod4oFFbXMRS/SJpy2KRhs/nruRzrts/MAM961rqLdmAL26LFReCxx2iLLr3UlFkQIlFrQ3ABq8lEO9AhpFlbm9mH1hwfkqUoEunOTkMoVlLv0D5usxKLpVhLPl2a5VgOGzWEabbv6lAehYJRY0gzotL7ls8DH/sY65S+/OUbypjdXW8AHInYWFR0sU+dYtQrnQb27WPk69QpEh6jo5zAQiE+UDMzpsbb2Bi3dJqy50yG7+vrY8aikzo7BIVsdnUdQzsia2cYSqHvRiCR4DORSnESmphYW94Wi7G2aFcXHWOfKfGtPkE5w+/gsEmw5cudncWlFTIZ4LbbaJt+53eAq67acHdb1hZpzcwDranMWGsRnc2ytEs2SzK2rc0EVHt76TcFURrDwWE9CBFkd0sWwkgy0GzScDNkyX6gNbsvP/ooJczXXbchkbVlbRHAJI8zZ4AdOyhz1rqYBCwUjFRXCJByZKI0UBGpsxCStg9qE4riWwuhWCrvXPPLlMigSzP+aq2v2GisRzCWqx8psLMa15NROzQeEkzNZo2sfy27+JWvAF/7GvD0pwO33rrhnN7ko3lrwJGIjUXFF/vECeDoUU4ge/ZwITE7yyYr3d2UN0t35myWUuiFBRrI8XGSidksHelEgg9qJMLsRCfzcfCDQmG1LDmb5f+UKi9LbjRSKT4Dy8ucWMbHOdbXcoqiUS7SIxESiFU4EK0+QTnD7+CwCbDly93dxQtHrSnVuece4Jd+iR1QKwhubGlbVCiQSGxrW7/eoRCOi4u8tgMDXFQuLPBnfz/JxGYnbhxaA0IE2aSh3Vm3ra2YMGwGWbJfHDsGfO97VEQ97WkV+XYt9g1XYUNbdOwY/ce9e4GhoeJOzfKe0teAYtmuXbtQyEQhGSU70R4rMmdIl1qA40oIRT8B8I1k0EHXV2w0ymU1lpNRl8NGJKPLagwW+bxRrEkt6LWu78MPA5/8JOsgvupVfPY2gLtTDYAjERuLii+21pysTp6kczI1BVxzDSeR48dpFC+5pFjmlE6zg1gsxklocpJSZ8/ja/E4H9r2djrY60X2HbYntKZRL5UlCzo7i2XJ3d2bO4YyGWYeyiJzbIyNitab6BcW+Jz09gK7d1d9/q0+QTnD7+DQQEjJh3zeFAsvtVNf+xrwoQ+RPHzd6yqubbzlbVEmw7koEtmYyMjnqc6QbPShIao4olH+f3CQc0Qjutk6bB2ILNmuY2jLkkvrGLa6b33xInDvvbRVz3gG1xIVYMvbomSSCR4AVWGRSDFpqJQhBW15s6CUTJT/FwprS51t5POGUJRamiL/XC+Laz20qgy6FmxEMq6V1bgewWiPAYe1Ib6QlHLZiAifmQE+/GHek5/7OSo0K4C7Cw2AIxEbC18X2/NYg+PsWU4co6MkEkMhEonxOCd2qc8hWF5mxqJkZU1NmYjZ8jKd6XTaSJ0HBpzUZ7tCitfbsmTbiSmVJTdLFkcux8zcxUWO49FRbhs57tKYqK+PBGINk32rT1DO8Ds4NAjryZcFjz0G/MmfMDj4a79Ge1YhtoUtSiQ4Xw0MVEYAJhLs4qw1icOeHgaQYjHOE0ND3Fqd7HEIHlK7zs4yLJUl26ThViOkk0kSiIuLzEC89NKKP7otbNHcHGvV9/fTjxS/2M5WE3KqVN4ssMnEch2dJeNQ6maWG2OFgiEURR0kAapyTSkqxVaTQVcL+e7rNYTx0xSmNMtxOyKbZVBQa/pC0jBuLaRSwEc+Qh7kJS8Bbryx4mu3RUdlc8GRiI2F74vtecDhw6ZJxNAQa5N0djKb6uxZThYHDqzOWojH+Z5UihljU1Oc9AA+xLEYI/Ra8//iaDtsTRQKxRmGiYRxVJRaTRhuZNw3A4UCI+Tz8/x7eJjZh5WQm7Oz/OzAAOU5NTo+rT5BOcPv4NAArCdfFkSjwO//Pu3xb/4msH+/L/u0LWyR1vRZlKIfU8n1KRRIHCYSXFBLoGlujq+FwwzErlf6wmFrQ+vV3ZJLZck2YVgqNd1qKBQoYT55kmuNK690DedWvUlz7TU9zbrbU1PmfzaRKHUSy8mbBWuRiXbdxPWkzvZ+hFDMZPiaZHl1ddWeKLLVZdDVYqOmMEJAlsN2agojgdRCwRDdG40TrYE772Rd1mc+E3j2s00ZtwqwRa5cc8ORiI1FVRe7UGBh44UFOjh9fcxIjERIAh47xonmkktYC64Ui4skE7NZSjinpgxZKPWGYjEjsxKp81aLrm4naL26jmE6bf7f1bValtzMk5XnkTi8eJG/Dw1xrFcaaZUGRIODLIodwHdt4qtVEZzhd3CoIyqRLwOcg//0TznHv/WtwA03+F7wbRtblMvR55GyGpUilaL9z+fp2wwN0R+am+M82d5OMlGCrA5bF/l8ceMTIWkA0+HbJg2b2S+qB378Y3Y/3bOHJGJvr6+Pt/rV8mWLTpygPdq9mwGKUjJQxo4QSeXkzcBqYq40U61Q4DiVBitrSZ0FnkciUQhFkVbbhGIQ43o7yqCrxXZuCpPJcFPKX4bsd74DfPWrTJK65RYS9j6wzUdcY+BIxMai6oudy3GREY/T6HR1kUjs6TGTWSzGzKy9e1dPVFqThJme5mQ0MEAyUeoLidQ5FqPDrZSROjdjRppDMTKZ1bJkebTb21dnGbYKQaw1yfOLF80CcGLC35i8cIH7GB4ujhjXiFafoJzhd3CoE0Rmtp58WXDHHcBddwGveAXwvOdVRWRtK1uUSnHr7fVHtnoeA6rxOOe/0VEGYpNJzi+ZDO/V6KhTZGwVeF6xJNmuOafU6jqGreIX1QunTwMPPsig8nXX+V60A9vMFsXj7NasNdUt/f1rE4kbyZuB1WRi6fv8SJ3tfQqhmE6brEYhFNdrZuEXpTLoUmJxu8igq0UtTWE2agizGbatUDBlXKRuZ6X3/Phx4FOf4hz9ghcABw/6PrwbXQ2AIxEbi5oudjbLCGEyyYezvR24+mrTsVDkzR0dZO7LOcKeR4d5dpb7GB5mAxbbGc9mKa+ypc7S1dkZ/c1HPl+cYbi8XOxUlBKGrVrvMhrlOM1m+T0mJipuNACAY/f8ee5ndLQqh3g9tPqT4Ay/g0MdIDV/JPNjPef9e98D3v9+4ClPYcHwKm3UtrNFEkwdGPCfhZHJMANR5pWREd6jpSW+nsvR5xkd9SWdcthkiCzZJg0lcwswHZI7Oows2cEgGqU9SqWYoLBvX1X+/razRdPT3ETl1dXFdZaQZLa8txJ5s7xPiLhymXyyH2nus5HU2f5cNmsIRTlPu9Nz0Flt69VX3M4y6FoQdFMYm4AMYo0vxHU2a/wgP/Y2GgU++lHOyc99LtUZVdjrVrdFLQFHIjYWNV/sdJoZieIgKQVcdRWdaYAP3fHjnFz27Fl7UZLPmxpxgCFZ7Ae1UOD+YjHuz0mdGw/PWy1LlnonABc5tizZT6SnWbG0RPlxOs3vMznpW1IDrYFz5zh2x8eLu5gHhBa/yo5EdHAIEpXKlwVnzwL//b8zkPfmN3O+rnJe3Xa2yPNo28Ph6iTIUl8xGuU9Gh5mMFZrEpTz87yPPT30jZwao/mQz6/uliwIh1dnGba6X1RPZDLAffeRRD94ELj88qqDz61+lauyRWfO0GaMjtJfDYfXJhIBQ/wI+bfmyWxAJsq+/EidbdiEonzeJhTrtc7bqL6ik0HXjiCbwpTLclwL0j3c8ziW/Ga65nLAJz7BxkVPfzpw001VlxlxI6cBcCRiYxHIxU4mSSQCZvI4dIh1fuS1EyfoIA8NMaK41mSQyzGKNj9PwzA+zq3USIjUOZmkQejtZX0551wHi3S6WJacSpkJtqNjdZbhVorcJZMkD6Wr+MSEIcf9QGs6dUtL3IePLqd+0OoTlDP8Dg4BwY98GaBdv+02ymvf+lYu2mvIetuWtiib5VzZ3V39tcvlSJxIwGp0lIST1rw3Cwu8p/39zFisttupQ22QrCs7y9CuH1dax3Ar+UX1htZsXHD2LGv7HThA375KbEtblE5TCp5OM2A9MVFM/pUjEiuRN9vvtWX45cg1ycSVTMdQyBCKlUAagEkgDDASVL+ZZNVgvfqKTgZdHwTVFEbGryQ3tbVxfVrNmPniF4EHHiCn8ZSnMLhaJdwoaQAcidhYBHaxEwngJz/hA1wo8OE9dIgRdcH0NMmU9eTNgnSacuhYjA++kC+lxjqbNV2dPY+Ty8AASUVn2P0hl1stS5ZoYDi8mjDcqguYdJrk4dISx974OMnvasaTRIUTCUpL7OchYLT6aHeG38EhAPiRLwN03N/3Pi7c3/hG4ElPqtlObVtblEjw+vf317bIXVoiYag1CRTp1lwokExcXOT7BgaM/NmhPhDJpU0ail8kmVsiSW5vd7LkWnHkCHD0KDNx9+8Hdu2qaXfb1hYtLNCPDYVoz8fGijsrlyMSK5U3CyolEyU70c529NNVXLLJ0mmT4SvZ9X4aY9SC9WTQgCMWG4mNSEapuam1yT4EzP3ZqF6j4MEHga99jdzDjTdSZVnDfXUjogFwJOIGUEr1aK2XA9pdoBc7HgcOH+YDK1GkgweLpZuJBOXN2SyjjJOT6+8zmWQduUSCxmBysjyh43mmq3MuRyMxMMDNOdir4XmrCcNslv9TqliW3NOzPWoxZbOU1EejnEjGxrhAqzaLwPOAU6c4hnfurCmaXgk2ZYIK0B45w+/gUAP8ypcFd90F/NM/sdvgc5/LYEeNC6Bta4tElgwY4q9aFApUZEgmvC1jzuf5v1iM89PQEDeX8VYbtDayZCENJQsK4HNlZxk6WXKwmJ4GHnqIv+/bt75qqUJsa1t0/jwDDpEIfdmBAUMkhsPFsmQblcqbBTaZuJ68tFTqLN3H/dgtybJPp82aJRwu7vTcKGwkg3b1FRsLzzM+UChk5stqmsJMTwP//M8c/zfeyOBqd3dNTWGafqYImF/aFDT9Y6aU+nmllFZKvVAp9YdKqbNKqWWl1FeUUntW3vNWpdRRpVRaKfUDpdQN1ucvUUq9Tyn1iFIqsbLdq5R6UZlj3bOy/4NKqS8qpeIAvqCUetPKOTyjzGduXvnfL9X1QpRBfz9w2WWmq2BPD0nFmRnznt5esvmDg0y3P3q02EkrRSTCrMX9+/ngnj7NSGU8Xvy+UIj7vOQSYMcOHn9hgXUMpJ7ddoXWlKtdvMjr8cgjTM8+coSSkWSS92X3buCKK2gsDx3itdwOxdzzeWa9Hj3KRdnoqCG/q534CwVe61SKkfR6EYi33347lFJw9sjBYfuiUDANrbq6aLMrITceeQT4zGc4Jz/zmbR51ZIizhaZ0ioSpKsF4TCz4CcmeH/PnzfZiaLOuPRS+lnz88DJkyQMXBy+cki3znicMvLpafpJsRh9xrY2ZsSNjDCALaoEaRDnCMTgkEiwLFI+T59p587qCURnizg2JyY4VpNJjulUymQAinS5XFZdOGxIRmmWsh5EqhwKmY7N5QiacJhrs+5ukodC+tiS5Y0gqqiREVNiqK2N9nZ+nuu9WKy4Vnu9INJvyUbu7DTZyHJt83n7SbAqAAAgAElEQVReQ2nsISSqs9PBQsqJFAr0gXp7TaBHxlxvL3mKwUFm546O8ufgIO28JMxkMsDdd/O+XX45bb+oHhcXOVcsLDDhJB7ncZNJkylb7f11/FLtaCUhwP8AkAbwvwDsAPCbAP5ZKXUHgDcA+DsAEQC/A+BOpdR+rXUOwI0AngfgTgCPAxgE8Hrw5t2itf56yXEiAL4G4G4AvwXAA/ApAH+5cpzvlLz/jQCSAP5poy/wjW8AT34yH5qgaglKzcPjx03Dk8ce42QxNcX3tLWRbJyZISn48MMkCtdrVtHXR2InGiXhc+IEH/gdO1bLoiMRbrkcH/p4nPKgzk4ai60udc5mV2cZyoQuE7A4wtXWidgK8DxOBnNz/H1oiIuEWqUR+TwzEDMZErPSrbweSKWe+LWl7dFXvkInTJxXBweHyiBNHJTiHFdp4CMWAz70IT53u3cziHLunP/ji3zogQeeeKmlbdG3vuXjy6+BTIZbUJkxnkcfJpk0KgvbZ8tkzMJZ/r9euZjtCCE3ZLPJEZsMEBLAzUONQ6FAAjGR4MI+n6dfVi0OH37i15a2RadOkVCtdiy2tTEwJEGmcJjEWzjM1woFQxZ6XvHcIRl0kj1YibxZPmNnepXLTFTKEDzyPEr2rx+pcyhk1nuSiZ9O0y9OJk02WleX/4Ya1UK+q9yzUhm03aFd3u9k0NVDMlOl9qHfjt4yPmUd7HnAF77AufQpTyFXsX//+g1h1iLa5b5++MPA29/u62u1tN3aTLQSnVEA8CytdR4AlFJh8CYMAbhKUkKVUosA3g/gRQD+BcAXtdaftneklPprAA8C+G0ApTd5CMCfa63/R8ln7gTwKqXUr2mtMyuvRQC8AsCdWuuSXL3VeOABsumXXUZHVwqCRyL8WS25NDpqMrGGh2lMjx3jw7Zzp3nfxAQJvWPHWE9x1y5DNK4FqQ+0sMCo8dGjJCunplZnzLW3m0iDdHWemaFz0t9vIlitDHEO7E1qhijFezk6agjDrq7NPd9mgNYcP7OzvH79/RyLQRDp+TzHvXQj99vF2Q8uXgS+//0n/mxpe5TJGAkCYMhE2ZwUxMGhGFKrTRaCfjKj8nlmIGazwAtfSBsYiVR+TKk5JJIyrTmHr6ClbVEQ6OzkfRFSr1ZCKhSiv9LVRT9mYYH+Tl+fye4ZH+f9kP/H4/xMJfd1q0EygOzNXrzLNRM55UaNJBzqB62ZFJBMmiB/rcoNi4BsaVuUTDLRYteu6oPbkn21uEhybW6uciJR5MzyPs/beM0khHxpk4y1ZM5CGgoZI5uQ+pXaTinD1N3NY8sclcnwe0uQTWTPjXre16o9acugRWpb+n4ng14bco+zWXPvg6iN+e1v85nbv58ZiHv3VibrX6spzOc/D3z9675JxJa2W5uJVqJ0/rfc4BV8B7zJHy/RlAuTux8AtNZJ+YdSqgtAD6iVvwfAq9c41t+Wee3/AngtgJfBsMIvB9AH4PZKvsBP/RQjXdEoJ6lCgROMMOrt7cWkotQDqAQiwTlzxnRXPnGCr9ndjXp6gKuvphTnzBk6vvv3r//AKsVU9qEhnu/MDKW5Q0MkE0sj/+KADwyYtH4pTt7by9dbQbIrsmS7W7It0+7qorMghGEk4hxjG1KvamaGTkpvL8dpUPc+lyOBmM9TCl6vxZvn8Vn67neLFkYtbY9e/GIjZ7EzRgRSh0QcTj9FuR0cthpEhql1dYXlP/xhPl//+T8D11zD4F65uT2X45xpb3ZWu2SB/PCHRQv/lrZFN9+80Tsqg+eZmoUDA8HsE+A9j0a5b/GFSoNViQR9o2yW42NsrDV8nGohmYWSzWRnhoRCxY1P/NZgc6gvTp7kfbviCo7TfftqIwPOnCl6HlraFu3cSeXV+fNcR1X7DI+Omgy9dJprH0nwEOlxKFSeSAQMyS5dySvxv8qRidKludxnJWvQDgBIgzA/XZ3l2EIWAsVBL1kz2YRio+2BXBsbpbUVbf+3lFTc7r6vNNrxPCMjD+KaHDnCZirj43z2LrvMH4ldGjD8wQ+AT30KuO4636fS0nZrM9FKJOKpkr+jKz9Pr/H6MAAopToAvBNMFb2k5L3lVPQLWutomde/sXIOb4C5yW8EcGblfxvipps4WV+4wEl33z46u3Y6uNSLEUi9JSEW13t4d+ww9eampmj8Tp3iRLR3r3lfOEw58+ws///wwyQSN5KBhkJ82EdG+NmLF+lcS/2acpNOOalzIsHvMTDAYzaLgc5kVmcZimMsLetHRgxp6OQ3a2NpiZmrmQzH7c6dwWYJZrMkED2PdarqtWBLpSjVOX6c4/TKK5/4V0vbI4lEi/MnkAwScSot+XZRpNqvk+ng0Kqwuy9HIv4XQN/6Frebb2btWwnyCTFpE4Z2Vnt3NxeeModK5vaPf8w5+xJjPVraFgWFUIhzjMiQgwoqKWXKkczN0e8RGajYwN5e/j8eZ52wM2f4t92cpVXheau7JdsdYtvb+V2lAYrzi5oX8/NUInV00LZMTdVGIC4u0h5Zz1pL26L+fo7t+XluUqbAr80PhRgwP3eOz4s0a+rtpc0QIjEcLs4cLN2HLW+utMFEKZkotRjXIsPWkzpL5rDfNVpnp1njZbOGTIzFuHV0GEJxs+yFk0FvDJGs53L83kGue+fmWAexp4f8Q61KstOngb/4C/pX73iH74+3tN3aTLTSMrDg83V5xP8KwJtBTfu/AlhY+cwvgMxvKVJlXoPWWiulbgfwe0qpcQAdAH4GwLu11mv0HCpGezuzAMNhTr4nT5J8m5gw3bwAs3iXBUY8zvcDfJBLZdC2E7BnD43fhQusuxQOs5mH5/FBtTE+vlrevGPHxt8jHKbzMTpKomh+nnKe8XFGNssZGZE6j4zQyY9GSUTOz2+O1DmfX00YSiRKFovj44YwbPWFQKOwvMzMw2SS12zPHt7fIJHJkEDUmgRivSTjFy/y2YjHOTavvtos8rFF7JFkkYgNEXJQxrsdpZaouF1A285UdPUVHbYSJBO9UDDFwv0uHE6eBD76UQYMn/pUzsOzs6YouKCzk3OxEIZrNWo5fRr46ldJIA4PP/Fyy9uioNDezvkgnTYL46DQ0UH/SPyxs2dJLvb3m0XlwAD/jkbpE506xUDp6Giw51IvSGMHmzS0F9Nyfe0sQ4fWQDpNwi8cNsqiWnyzVAq4/36OBStJoeVt0eAg7XQ8TjtdKBiS3A86O2mj5+fpP0WjJkNXiESRNgvZV+o/2fJmIbcqLQUgZKIt390os65U6iy+n1+psw35zv393KcQivE4N7EpXV2bG5heSwZdSixuFxm03CutDSkcFDIZyo6VYiOVoaHKuIe1EI8Df/InvAfveEdVdq3l7dZmoZVIxGrxGgD/oLV+q/2iUuoXq9jX7QD+AMDrAHSB3a0/4mcHkQjJvBMn+JDOzvKBmpw02VTSoc7ODMxmTaZiMsmJSeqQtLUVS6CFSDxzhpN7KMSImOcxA9GeQCIRdop8/HE6xUtLlcsb2ttJVI6Pk7Scnjb1P0ZGyhtVpfiA9/fzu9hS554eTuBBZ5V53mpZsk2EdHfzuEIYVtpp08EgnSZ5uLTE8bhzJ69p0NcxneZYVYpjux7krucx83BmxjhO4+N8Tn74w5p33zT2SBxUcRTLOXB2lFpQWjBfpCv2Pp0M2qGVIfKdauXL2Sztx7vfzX1dfTXnyLExM18PDvqrh7ywAPzzP9PhfulLgU98orrvZqFpbFGQ6O422T/9/cEv7qSepQRPl5dJEkpZF8lclFrSi4v0PQYGSCo0Uwa3nXUkPwVS91MyDKvJSHJoDnge8NBDvN9jYxy/ExPV7y+fJ4GYywFPexrXDjWiqWzR0JCpsdrezudXVGF+MDjItcfyMu2QXR+xUiIRKJY3i69W6bMotRH9kIlrSZ3FH6y2pqn4kn19Zp+pFNcNsnYQQrEZAhSV1FfcajJo6eAt5HHQ2aJas7FjNEq/qKeHvES1yGaB//k/Odf+9m8XKTQagaayW5uBJnJn6oYCDGsMAFBKHQTwH/zuSGv9uFLqm2DKaReA72qtH/O7n8FBZv2dP0+jmUhwEh4ZKcouKIJEc6QOkqQZC7FYKoPu6KCB/uEPKaHavZukoueR+beNWzhMYrO/v1jeXCmb39nJjLBkkgulc+dIjk5NcTJey5AK6ZnPG6nzuXM8d5E6V7MASKeLMwyTSSNL7uig0RobM3UMXfZU9chmea+jUV7HyUmO4XpE5aTodSjE8RZEF85yxzh8mD8nJuj0tbcD114bmFPTVPZIJDIS6a7kvtk1rwS2BLpUBm3X2BFSthWdK4ftASkeXql8uVBYXccwmwX+4R9oG1/7Ws73UjKkGruVTLIxSzgMvPzlgQVPmsoWBQWlmNUZj3P+36hMSzVoa+P8sLxMMvHcOfpmduAsFCK5ODjIBY5I+YaG6jdHrgfJJLdJQ7tbssgthTB0ftHWweHDfB7Gxnh/16rJWgk8jxmNsRj9oqGhQE6xqWyRUnxGpc5pb68hVvzKm8fHufYqFPi5+Xm+JpmCdrOV9YjEauXN9udLycS1mq/Y16Gc1Bkw/ly140g+39NjCNt0muvhRMIQWJL53CzYqL6i/C5oJRm0lG4B6nfdv/99JmlcfjmfqwMHqj+O1sDf/i3t2y/8AnDjjcGeawVoKru1GdgOJOLnAPyCUmoZ7JizD8B/BvATAE+qYn8fBvDRld/fVO1JjY7yYZUMvHyek0sqRee0ko5cQsIJpMaSZCuOjlKOee+9ZOeVomw5GmXh0VIZqBBrx47xody5kynGlRo9ybJMJEiQnj5tyMT1Cp23tRkCVbo6X7xYLHVei8CRjAN7k3RzqeEwMWGyDJtpMmpl5PO8t4uLHB9jYxxv9Vp4LC9zPLW1kUCsR5RyZoaTWzjM2odnzvBZuuaaQOs5Np09kvo5EuGuxikUKbMtgy4lFsX5BFbXVnQLVofNRiXyZXmPTRjaWe3SbOvrX+cc9p/+E6PtUrKkGuTzwOc+Rxv46lcH2jSk6WxRUJAmNNIMrV4lL0S5sLBAv2p5mb6M7Ze1tZE0kMZ0QigOD9cnWx8wXb1t0rBUlhyJmCzDZsqOdAgW585xGxrivZ6YqO15OHaM+ztwgMkJAaHpbFE4bIjEVMqop+Jxf/JmUbJcuGA63EajfPbF17KDuDbBV2obapE3C0rJxPU6Oduwpc62X1eL1FlgNw3zPEMoJpMmi9MmFJuNiKukvuJaMuhmIBZFrVcomGzQegS5Tp0CvvMd8gpSk7WWIMSnPsXuzi94AXDrrcGdpw80nd1qNLaD6/DroA795aBO/TB4c65EdTf5MwD+BtSsf7LakwqF+AAVCkZ2Iw/ymTPVLTrCYZIdNuGxdy+zEWMxHi+fJ0F4/ryJBNj1FUXefOoUHYWlJRKDfkib3l7uOxbjcU6e5H537FifjLGlzum06YgYjXLSlowCW5YsxIRdiF4Iw66uzTfOWw3SUXx+npPj0BAdpHouQhIJEogdHSQQgz5WoUDycHaWC/TLL6dken6ejvLYWKCHa0p7JESiSF1qfW5sWbNAnE8hF+2op/1+cUq3Wo0Zh+aFyJeBYilVJlNMGEqHZsBkUUjzk+5ujt0HHgDuuQd45jNJIIr8tVp8+cucR1/yEs7hAaIpbVFQ6Ow03a7r2QhKMg57ejhnTE/TVynNNmxv5/0TYuLiRQbhRkZMXcVqIbVts1lutsROZMl2HUPnF20PxOP096Xeam/v2mqnSnD2LEnEyUl2Ug0QTWmL2tvp40rZgsFBkynnR94s5SuiUdqlpSU+j3amu5BMpcqQcs9qqbw5HK6u+YtS/slEUaLY2YlBSJ3t/UuCjJCudvNRuxN0UF2Cg0Y1MujNqq+YyZj7V9pjIUjE48AXv8g11p49nC/37Kl+f/feSxLx+uuBN7xh0xIRmtJuNRJK23m3DhtCKdUJ4AKAr2itX+Pz46sudirFBYLnGWltJkOHUGQvtRrJfB549FHu94or6Og+8ggngt27i42ZTGzd3TTY09N0vqWTtF9ozQl4eprfqa+PZOJGk6/ItWMxZohJs45wmPsYGuJPIQyr6ZrpUDk8j/fx4kU6LgMDJLrrndm5tERSvbOT2bRBLwSXl+lkp1Kc0HbvpqN89CjH6eWXrzmumsJ1qcEerbJFko0INK6WoZ2tKL8LnAzaoREQ+bI4+JIBIUX1AbOwkblGsrhKMTMD3HYbAytveAMXOn6y+Uvxne8A3/0uCcmnPnXNtzXFUxGkLQoKWtOHkABlve2H1iQGYzHTwKKnp/x7UynOp+k059GRkcqk14XC6ixDceNDoeIahh0dzi/arsjlgPvuo12bmOA42Leveh9qYYF1ELu6gJtuWrOkwpa0RYkESZDeXj6jqRTnDQkkVfKMaW26NXd08O+JCTOP2MShEInA+rX1JPCrtX95c+l+bBluJWSiDSmVIF3ba5U6r3WOdqdnz+N16ew0hGKr2TqbVJTsRUG96yuKctHzTHObes2P+TzwT//EufGGG3ica6+tvv/B4cPAH/8xEzx+7/cYxCuDprBFflAjv7Qp2A6ZiEHj5wAMAfi/Qeysu5sPwsxMcRv1fJ4PXDpdmbx5PbS1UZ75yCPAY4/x90iEv6fTrJkoEXspAhxdaUIeCjEN//x5ZoHt3+9PCqGU6QQ3N8fveeQIo3JTU8YRyWZXy5JlQgqHTbFUyZTq7ORkPjDgJMr1hNamk3YuRydqYiL45jflEIvR6erq4v0POtI0Pc0GR21tlCwPDHBRd/Ikx+u+fS3hlARmj6TWixB6jZC4+ZVB2xJoJ4N2qBaexzlmYYELxFyu2IHu6jKNTyKRyjIeMhngfe/jmHz1q/lzbKx6x/zRR0kgXn31ugRiMyFQ3ygIKEV/ammJ/s1ahF6Qxxse5jw5N8d5MxKhD1RqT6UJXiLB9164QJ9vdNRkrkqXVJs0FL9IMn8iEUMaOlmyA8B59Ec/4niRRIFdu6ofH4kEa6WHQlz816OhXcAI1Bb19tIvSSRMY6y2NtqUSuXNStF3ltr04bBptGITgEKOVZKRGIS8WfYjahS7rl+l5JX4cfWQOtvnKF2CBwaKCUVREQihWC85btCoRAZd+v5a6ytKdqdd97ne88Y3v8m1/1OfyuPv3Vv9GvLCBeAv/5L3+M1vXpNAbFU0nQ+1EVwmYoVQSv0MgIMAbgNwDsAN2v/FK/t+ydZbWOBkZC+U5+fN5FOLJAqg4Xj0UR7v0CEuon7yEx7z6quLJ8FcztRXTCQo95yf53svuYRG3JZBV2qECgUagTNnOAF3dBQbE6W4T8kwFFly6feIRnleWvP9AwP1XyBsN8TjNPyZDO/R5GTjrvHiIolrSXkP0iEoFCjJuXiRRMHBgxz78TiJ9lDIdA1bB5sa5QrAHq35XrvQdzOQdHaHQNnshgClxGIrOI8OjYWdXZhMcu4QKX1PD7PUJMuwu9v/GNIa+OAHge99D3jTmzhfi0y1Gpw9y8j9zp3AK16x4XO4ZW1RUBBfRhqHNAJac06RusFDQ+uPh1iMga1UynQwtf2qtrbiDMNGZYs7tB6OHWMwdM8ezuUjI9V3Y85k2Nk5GmWwdYOSClvWFsk6LZPh9ezsNMGofJ5/V7JGi8fpe/b2ksjp7i4mQoQQFIlypYSe1FIEqpM3l35XOW41mXC2zyb7EP+sHjYrlzNkoqhZOjoModgMfmy1KJVBl2Yr+pFBy3XSmtenEXLwhx8GvvpVrqlERXjwYHX7WlpiBuK5c8Bb3gL81E+te/4tMzsGxC9tChyJWCGUUvcAeAaA+wH8J631o1XsZs2L7XmMWtvdBCUr8eJFTjZByJtTKRKJ4bAhEh99lIb2mmvWdrC1Jvl3+DAN0dgYDZAMH4mIC7EokSApRG9nGKZSppFMOs3P7N5NcrKvr/LvVyiYrs75PM9hYICOuiMSqsfyslnMdHbS+ax2MVwNFhY41np7OS6CvJeJBMdwOs3xJoXBUykS6skkM3VHRjbc1WY7y/egNnu0ruEXIrFZSTk5P5tYFIgM2iYX3WJ7+0Cy6u3NzmqXcSH1wYLIqrn7buCOO4CXvQx40pM4p1W7aF9cBD7+ce7jda+rKPN/S9uioBCPm1IcjbRp+bxpztDZScKgo4Ov21mGIgcUnyYUos8nwbtmtMMOzYeLF1kHfXzc1Hfdu7e6OVBKIZ0/zxqI+/ZtuJ8tbYs8j8+y5/E5FpJfGmxJXfqNntWZGVMLP5ViMNsuZVAtkRiUvLl0f0D1slrx02Q/9Q72Sn3jdJo2FTBy3a6urZGt7VcGLetwyQ5tFLE6MwN88pMMPOzfz/O47rrq7kEuB7znPcCDD9IvevGLN9xPy3j9AfFLmwJHIjYW617sXM7ImgcHjbx5cNDU2enqolNZiyGUDMSODhImQiR2dJBIXG9RlU4zyplMcpE0Omqi/JK1KL/LpCGdLqWws51lWCiQsFpcpFGTffqZYLQ2Eux02tQ/clJnf0ilOP4SCd6z8fH6dY9cCyJ57+sjwRfksS9coHy5vZ21QYUYzeUosV9Y4ERXYQ2zlpmg1sC6tmgz6iPWitLairYUpLQT9FZwJB3oRJcShrJwkALs0kFXCrUXCiYKHwQeewz40z+lzO/lL+cxdu6szklPp0kgptN0lAcHK/pYCzyd66IhTqgQdOFwY4NicuzFRfo6kn0kAVORJdtZhkrx/YuL/OzAQHlJtIODjWSS2dCRCAP92SyJv2r8YK1ZG/rkSUqhDx6saPxteVtUKJCoVYrXWNYquRzXIYApMbAWPI9qLGlmkU5zX3bASLL4/BKJco62LLpW/00kzkD1ZKItdQZM/dZ6klmFgiEUpSyOdB+2G6i1Okpl0HKvABOkAiovzRIEUin6MgDwtKcxi/Cqq6qbe7UGPvQhZjS+6EVUZ6zXpHUFrW6LWgKORGwsNrzYqRQzEkMhOo4iuRoaoiGcneXfExO1SUuXlpiR1d1tiMSHH6aBvfba9bMfPI/dci9cMMSf1DRMp4vrLUgdi+5u081MMhbtTlCpFPcXj/O1ycnqsi4zGS4UlpZoeLq7TW2rViBCNgOZDMeVLLDGxrhgafT1mp2lczYwwEV4UMfP50l8z83xObr88uJi1idOcHG3Ywfrflbo1LT6aNrQFgmRGJQj2miUyqDFsQacDLoVUdr0JJk0tZAA0xRMNluWXNp9OSgyJhoF3vUu7vNtb+Nxpqb81Q0WFArApz/NrJ9XvYo2sEK02JO5Cg1zQrNZBsnE/6gHtC7ulpzLmYVzoUDfJJfjGJ2cXL+ZSqFAxUYsxr+Hhri1sjzPoT4oFIB//3f6cwcO0JfesaPiQMQqnD5Nv2lwkEHXCsspbQtblM3yuWxvL/aVS+XN3d1r+03pNGWZvb0muDU5WfxsC5EogVw/RGKQ8mZ7n+JD+W2+Imi01FngeYZQlHW11OPu7t56CSeFghmLoVBx45l6d4PWGvjsZzm+n/c8zl+7dhnll1/8y7+wvMsNNwCvfW3FKo9Wt0UtAUciNhYVXeylJRIeXV0kVCS6NTTEh3N6mkZwcLA2sicaZRZFby+dhGSSRKJSzEi0nQat+X9bljwzwwWPUpRL7NxpMgztyTOTIUkojVukJgNgihQLuVgomFT/zk4uyKpxggoFOlGxGI1oW5uROjsHnMjnSdxJzabRUY6nzbg+09N0yoaGeM+DciZEvpzJUL68a5f5n9aMBp85w+996aW+Fv+tPkFVZIvEERWHsdWIxFKUFv4W6Q9Q7Mw6GfTmI5stJgylkyBAG2UThusVB5eglsh4gnKYCwVmID7+OPBbv8UF5eAgbVg1+NKXWJP11lsZ2POBVh+lDXVCl5c5Jvr7gyGTpfmTTRoKwuHyWYapFH28fJ7nMTS0/rjM5Tg/isx5eJhjzQU+HAQ//jF95yuvpN/b31/s7/jB9DSzENvbmYHow6ZtG1uUStF37u5efX1knRMOmzr35bC4SAXM0BDnOFEA2X5HLURi0PJmQRBkItB4qbPA8zgHCKEo18fu9NzKvl8mw03UGJI00ahu0N/5DgMaN9/M+xuJMAuxmn3edx/rTe/eDfzH/8iyChWihe9g68CRiI1FRRdbOuJGo5yABgZILHoeJ5u2NjqgsRiN3eRk9WnZCwt0FgYHmaElRGI6TWIQoNOdTBbXPxSyMBymw5FO8zwqkaDaGSVCLtodWDs7aXhiMe5rcJAR1fUi9usdK5nktUyluD/p6twCHebqgkKB42d+ntdneJjZh5sllbpwgeNweHjDot2+cP48pTgdHSTJS8ePNPjp6iKB6DPNvtUnqIoNv90hcCsQiaUora1YKoMulUJvte/fDCgUVsuSJXtLJF82YViJ7ZbMg6Dly4I77mAtxF/+ZS7W29urD4Dcdx/wr/8KPP3p3Hyi1UdkQ51QaXiiNf0AP/fL8+irlNYxBLgfmyzcSKrnefRLRAFgd2VeC5kM5+7lZdojad7jbNL2xunTLMmyb58Zj/v3V0fGLC4yuSCbZUajT5+s1UeiL1uUSNCW9PWt9i8rkTdrTT81m+WzHIsxqaOUlKyFSASClzfLuduNPmohE8tJncXnqjekW7FkKUp2pN3puVXsa6Fggq1SB3KjGpqlUmibEqqmG/Tx48wcvOoqrtuTSdZBrMb/OnqUdRC7uoA3vAG4/npfY6xF7lprw5GIjUXFFzufNx2I+/roKMZifNAHBzkhJRJG3jw+XlGNgLK4cMHURBwfJ6Hz2GM0SJddxtfsOoalk6HWdGJmZvj/Awf8GwwxfjaxmM9zgp6fp+EYHWU22chIdann2awpWq41DdPgIM+5VSaJWuB5vJZzc7zeg4O8t5uVxi8OVDTKe1ttI4JS5POcfObnSUxefvlqZ2R+nmPW89jBcGzM92FafcT4Mvyl9Xm2MkRuY5OLdo2Z0tqKLrPZH6TIt00Yiupp8GEAACAASURBVLwIMPVzbVmyX/tcL/my4L77gA98ALjlFuBnfoZzy86d1R3n8GHgrruYQXTrrVWdzrayRUFAfIuOjrX9JpEl21mGdoChNMOw2jEmxGA2S1+kEjWAZDJKJ+fR0eqCrA6tj8VF4P77OQZGRzmu9+6tTq6/vEwyMh5nYHXPHt/z/bazRdEo5zApm2SjEnlzPs9gdns7bdHSEv1Wu1yVnVFYSiRWKke161wH6ccFSSbK98zlGit1to+fzRpCUYhXu9NzM/q/QoRKGbFafJ716ituJINeXGRwdWiIdRBnZrj+qqBR5SrMzADvfjfnuNe8hvvzySu0ui1qCTgSsbHwdbEzGU5QmYwhEqNRQwB1dNDYirx5YIBOxHrGVgrR27JkcWKnp5lNeOWVnGROnqSRuPpq7nsjLC6yvhzAiGi1si5BNms6O587xy2f57WYmuI52TUWK13Me56ROudyNLbSiGUrEgJa897MzprrNzFRXd2uIM/p3Dneg/Hxqki8spBan9ksHekdO1a/Jx4HTp3i2Nq1q+rsoVafoHzZItuJ3Q5EYinsSLmQi2vJoLfj9VkPmcxqWXJpOQt7q9UGS1fGoOXLgrNngT/8Qy6yf+VXaHPGxqoL4p0/z+6Fk5Osg1jld99WtigoiBqip4eLk9I6hqWy5NIswyAXtVpzLoxGud/h4cpIweVl+m6ZjOn8XEutbIfWQibDgEZbG2XHs7P0p0ZHq9vX0aMcT1IfuooA87azRVoz8UKyCctds43kzYkESZPBQSO1LQ3wl6tRXQ2RWA95s+y79HxqsZGlUmcpDdFI38omFOU8bEKxGdaLEjD1PKO4CJpwLSUVy8mg83n6Mskk8JKXkBgfH2dGtF8sL7NUzLlzbFb3jGdUVdas1W1RS8CRiI2F74u9vEznUms6lb29JIQKBSPJ1ZqZVdFosbxZZMM2YWgv4Do6ijMMFxeZlTg5yYy/bJZ1VtJp4NChykjBTIbFmJeXSVTt3h1sDarTp7mIS6f5Xfv6jJRbIn1CLFaShi7XN5nke3t7aay2itQ5FqNzks3ymtTakCcISC3CpSWOtWqiVOVw7hzrk3V2Ur5cblGfSvE98TiPvWNH1aUAWn2C8m2LgqqDs1WwngzaluNsJxl0Pr9alizXJRRaLUsOMgva84yUpx7yZYD7v+02znO/+7v8fr291QVBYjF2L+zoYCfmGhp9tPrIargTKtku8/O8pzbZLF1DbdKwUbYulyOJk07znEZHK5ufRLEhDVtGRzc3SOhQf2gN/OAH9KOuv54EopRm8YtCgQTixYv0x/bsqVrZtC1tkefxufU8PnvlssA2kjdfvGj8UinlNDFRbHtsIlGO4ZdIBOojb7bPMUgyUTLCbfKzUVJnG7mcIRQlo1Mkw/VQO2wEWd/ncsa3aiSpWUoqfulLtCG33mpKdFx3nf+AWz4PvPe9LKv2ohexvEuVtV1b3Ra1BByJ2FhUdbFjMUaqwmGSZt3dJAxzORKJ4ixGo8weTCZN2rwdxbEJw56e8s7pqVPMSNy1i/KsXI5EYjLJDMVKCB8hiaanOVkeOBCsQ5vPkxiTSbu3l9dFCvHbtbS6uoobt6y1aBWps9SelKY2vb2tufiXyKYskCYmmkPu5HkcG4kEMwCHh2vfZy7HyWthgQ7cgQNrO3GPP06yfGSEx6+w42A5tOCoKEJVtmir10esBRLlt4lFWwpS2g26GaLYtUDqzdqbXdtWbK9s9awtlMsZSXS9HHqtgb/+a+BHPwJ++7f5nZRiIMIvyZTJkEBMJtltsEY72OpPYV2dUJGo2VmG4heJtL6jg3NHLbLkILG0xPlMawY1K6ndKNmM8/P8fr295js5bD0cOcKg+tVXcwznclQA+Q2Kak0F0ews1wU7dlSXybiCbWuL8nmuSaT0Urk5wZY3d3SYOUT+d/Ysf05M8Dnu7FwdoAqKSKyXvNnef5BkIlDsVzVa6lx6HkIoSsZ6W5shFKvtUVAphNDUmmNks5NeHngAuOceEn59fVxjHTpUnLBSSX1FrYHbbzf1oZ/xDCaEVIlWt0UtgZYlEZVSPw/gwwBu0Vp/bZNPp1JUHeWKxTj5dHSYroLnz/P1UIhOYzZL47awYKJYElH0Q+KdOMGo2CWXMCqWzzMqkEhQMlFp1kU0yn1pTWlpEISRjWyWROXCAidBkcWW1lcs7eppS6C7u4sXDZ5HB15I2nDYdHVuhsXFRkileE1krIyP+y8eXy94HknqZJIEdTVdt0sRj9OZzmbpQK9VBNzzDIHY28vrUqPcvuiKtqA9qtrwC5EoEexmGFvNCulubROLpTJom1xs5uxOuxnW8rJxYgE6zaWy5EZ8F6kFJLa6mvqJleLznwc+8xng9a8Hrr2W12Jqyr8D73nApz/NBeMrX8ls/RqxbW3Rqh3p1d2SZaEM8Bmzswzb2/n/pSVDejcLCgUSCTKXj45W3lAoGqVf5Hn0XdbKjnJoTUxPM7i/Zw/9qPl52pFqAsVnzjDgHArRL9q5syYbuq1tUTbLe9HezkD1WtdxLXlzJkNFTSRiVGdSaqnoJMsQiULa+SESAeOTBC1vFtgKlqDIxGaQOtvnIoSiBFGllEpXV/BqC8mEFH9ns33Gc+eAT32K66+bbmIi0yWXMBixkQy6tL7iF78IfO5zJCCf9SxmMtYwJjccZS1on5oOzq2oAkqpEIA/APBDrfXn6n88PmDLy5zw83mz6FxaMpO/SFUlU3FxkQsdn11nsXcvDeOpU3yAx8aAa64BHnmE9eYkUrYRBgcZJT12jNv4eFWFmtdERwf3Nz5OGfaFC4wETkyYroWAWWjaxKI0pJH92MSidG+Wrs4LC7yWPT38Ts0oE8pk6AjG4xwXkuXXLASPjKd0mlmuldTY3Ahnz3KfnZ2cbNYrkH/2LEnwSIT3sNZ6nc2ERtujUMg4BfIsN8s4azZIxqYdmbYdYLsBiLy/tHHLZlxbkSUvLxubacuSIxHOC0IY1jvyXg6NkC8LHn4Y+OxnWdz7pptM06ZqjvnVrzKD6IUvDIRAbCo02hZJ8NSuY2gX+Je5XUjDcr6HSNLSaUMsNgMkMJpM0q85f54+zdDQ+j5UKMSxOTBA3yUapZ84OMjXWz0DersjkWAjxKEhEn6nT/P3agjE2VmOLa25j8nJrTOXN9oWAbQzg4NcL0Sja/uZ3d20M8vLfDa7u01G2cgI70l3N9cc0gDKLnchMmTxIcRPCIUMaVfpOqutzQSGpeZ1kGNAfCA5r0Kh9nI44TA3IVPFj9oMqbOt8hOSTwKuy8um0YkQitVeW6nPKAq7ZsgwX14GvvAFzjXPfCYbsg4Omlr0Mk5tlJKKEuT7wQ+AO+/k+vCGG5iwtJXnqs2wT/WAIxGrQwjAuwB8BEDgNz+bpaMgdQyTSVNsN5vl5NPXxwe1r880R+nrM5H0kRFOOjMzJFDGxip3MpRiMdRCgZmE4TCdz6uuAn7yExoKz1s768tGRwdl0GfPkuRLJIKXN3d1kfhcXqajffYsMyknJzmJi9Ht6jKTuixA7S6hsZj5/tIhtLubjns6zck8keD/BgZ4PTfb4crl6AguLhoyeS0pxWYhnyfZl8lUHy23kcsx+1C6Ol922fqTjZCrUg4gqCYuTYS62qNS2A5saWTRYWOIA2yjtLaiLQuutwxabKE4vamUOb7YTuk8GYnUp3C3X9jy5dJs8qAxNwf83d9xwf7615sFXjWBkO9/nxlET30qA2xbEHWzRZ63uluyneHS3m7KtHR0+HtOuru5z0SC97WZ5s9IhAurxUXOY8kk572NamhKAHhoiGN2cZE+ztDQxkSkQ3Minwceeoj27qqrmFTQ2VlZUL8U0Sh98nye/v3U1JbLVm2oXyTo7jbZzW1ta/u78j9Zf+TzfNYlgWF+3pSUWljgPbbvjzy/hQI3If+qIRJFziw+SD3kzaVkol0Wp1qI3ZeMcjsLfTOkzhJgjURMzcJ02vhX9lq0Uj9KMh0LBX6feqot/KBQAO66i37Yz/4sgxnhMNf360Hut8zPWjPJ6I47yFs8/enMamxr474rkUG3KDbFPgWNrTVltCAKheLGJ8vLpsaCUibjQyId0rHYlucODpp6flqbOgSRCEmbmRlTH29srLKHMBRia/bDh/mAHzzIye3QIRKJx47x3CspeKoUz6O/Hzh+nFkde/cG11BD0NNDQikep3N06hQJtqmp1dmYoZC5poJ8vjhbUbIQ5f3SxCYe533q7DRSg0Y7X4UCidL5ef49MsJ722xOYC7H+5DL1VSs+wnEYiQQ83lOVpOT679fskgBI2N2i6faYTurIoXZQpN7w1EaPbcj7OIYC2kmJK5NLPqpg2R3SxZZskDqNI2OmiBKMz0vjZQvAzzO+9/Pcf62t5mC99UEIo4eBb71Lc6lP/3TwZ/rVoIU07dJw1JZstSekjqGtYwDaaomc3sz1A+2EQpxju/pISE4Pc3zrSSzsK2N8+TwMD8rTfhGRpqn1InDxtCavnMqBTzlKfT/CoXq1D3JJBf9+TzXDyMjzamwaVX09RUTiWsR/qEQn2MhmvJ546eeOcP1y+SkyRidmCh+Xm0iEaiNSBRCTgKZkpUYNOpBJgLGF5Jgk2ziKzU6q00pUzJL/JZ02qjiJFlFCMXS7y+fyWbNvpolSx4A7r2XSTsvfjGDb9I3we85zs0Bf//3/H7Pex4TmHbsKM5YlAxWoLwM2mHzsBUuf7tS6t1KqfNKqZRS6ttKqSfbb1BKtSmlflsp9ahSKq2UmlNK3aGU2lPyvmeuvH7Set9nlFIHrfdcCmCF5sMblVJ6ZbtnoxPVmg7q7CzrBjz8MPDgg8zsO3eOBqa/n07BlVcCT34yf+7ebaRTvb0mJTqfp9OrNZ3B7m4+zImEOWZbGx/I4WG+98yZ4iyX9RAKccHT3c1zFOn0oUNcRJ08SUekUgwMMPuip4dk4smTxY0HgkJ/P8/7kktMNqV0jF4PEhmcmGCHu0OHSEru2mXq92WzvN6JBDMeH3mERWVPnNh4/0HA8+g8HjlC4zs4SLK3GaPI0sgkl+O9qIVA1Jpj7cc/Nl2/NiIQl5ZInkuR+ZGRYCQAG5SRbRl7VCts4lAme4dgIA69lFcYGuKz3ttrJLSZDO2QlK5YWjIF9mWM5nIkvi5cMAGcI0c4D0SjPMbEBIM6V13F+eaSS0zgqpkcNM+jo5rLrS5KXy989KO0YW96E69VNstr43dBMj1N2c/UFDsOBnXeG8zlLWOLJIAXi3F+m57m/BaL8Tu2tXFel4ZY4+N8HiTzMIjrGQ5zTEnR+mZEVxezk4aG6G9ImY5K0NFBX3DPHtqQ2VmO7Xi8rqfsEBAef5zPxuWX0xYmErTdfsm/bJa+dz7P56e/P5j61DbJXwYtY4uCwuAgn7lodOM1V1eXCVzE47yW4+P8nBD+kpFYCqllWEq02GVn/EAIN88rruEcNOS8lTLHCsKHlIQPId1ExWd3VW40bEWHlNuS7PdolOuUhQWjOsznad+zWY6h3t7mIhAPHyZ38eQnc5xOT3Ne9mtHkkngb/6G3/M5zzFrbztQLqVq2ttNsFCC7KJIkdrHQn5XynFY2Hb2KShshcYqD4EFND8CoB/A2wC0A3iK1vqoUkoB+CyAWwHcDuB+ADtX3pcE8CSt9cWVfb4PwCEA9wC4AOBSAL+ysv+rtNazSqkeAP//yvHuBfD3K6c0o7X+6nrn/Jd/CS319vr6jPxYtkoXJoWCmWgkmiET0NISjWV392rSJpWiE+J5NGKVRttzOZKI+TxJNUnVPnGCjv7UFB3TSqE1F7UzMzSsl166sTSnWmjNBfbsLM+/v59Gr9qoq6SoixRaFvHLy/yfZPGMjAQr/dOax5mf5/fo66u80PpmIJslUaE1Fz213N9slmMtHud1vfTSjZ+VdJoLLK05CfX11d7YJ53m83X2LHDrrWsWEG8Je5RMBtfMQOyQjPNmIp62OuzaipmMkSOLJFlkThIgsTvVN6vtKAchdiQi34isgnvvJYl4663A85/P+aqvz38GfTwO/OM/8h783M8F17xjZobk5t13t7Ytmp6GtmXJUr9QfjY6gySR4LPT7M3Ucjn6X+Lv+W2esrzMz2cytAWjo8XKDIfmwfw8g9WTk/TBT56kf++3pmqhwIB6MmnmgV27ap+zo1FmbL/zna1tixBwp3jP4zPmeZUFnyTRRAJlEliZnOS9k3IE5QLyUtfQbpBik4h+7ajWxRmJ9fTr6tHJ2UZpV2dpxNIMWdji20gmqtR27O7mvW6G2oc25uaAT3yChN9LX8rEjs5OJgj5bejzvvdRoXHLLbRD111X+ffVenXjFtnvf/tvwHvf66uxSqvYp6bDViARTwC4TmudWHn9OgAPAPi01vrVSqlXAfgkgJdprf/F+vz1AH4A4M+11u9YeS2itU6WHOdyAD8GcJvW+n+uvNYGssgf0Vr/fKXn/MEPQktLdokADg+b7JJyKc1rQeomyu0ThwDg66lUcXRLkM+TSEynTXZWJcfMZk0txMsuM6TQyZMk6CSC4AfxOLPLRBYdtLzZhufREZub4/GGhjipB2GgCwVTw2RurlhW3tdnumN3dVWXkh6Lcb+5nJG314t0DQKZDAlEgPe1FplMLMYMqkKB46sSGWEux+MXCry/XV0kjv06DKWEcS7He9zRAbzgBWs6yy1hj4IkEcXZBLZk3ZKmhIxNKb2QTJpuyUIcSvRWbI90crRrKzZ74WpbviwS1kaMrccfB/7X/2LWz1vfykh7OMyAmZ/jZ7PAJz/JOeHVrw5ujltcBH75l0kk3n9/a9uiaBS6o8PIkjcbWhvZen9/89uyeJzjQZpj+D3npSXjXwgZ2cz+xXZDKgV873u05095ivGZ9+/3Z7+1pr++tMR9dXSQhKwlwymb5dj5yEeopnr/+1vbFiFgEhHgmmtujr5RpfXKxe9UirbI83ivolG+Pj5ePggoRKJN+tVCJMr517N7s416k4kidbbl35shdS4HqcmbSpnrDRT7cJs9P2YyrF2YywGvex1LVS0tAdde62/O0Br42MeAf/s34OabmYR09dX+m8CWwvOAP/gD4NvfBr79bV8kYqvYp6ZDE7hsNeP/yI0HAK31Q0qprwN4sWL3m9cAOAfg35RSo9bnzgI4CuC51mefuPFKqV4AnQAWABwBcGOtJ/qmN9FAzM0ZqY7UMuzt5dbXZ+okbNTNSRaQwsj39RnCRhqzdHWtLgC/Zw9TpxcW+NCNj1dGpk1OsitcPE5yqLOT8piTJ42s5rLLKjf6O3bQETp+nPtMpymlq5dB37WLE+LsLInUWIyTemnB4lohGZ+SJQCYbCG7RopkBa2VWWPLcaemeJ7NVqupFOk0F+BCKleb7STy5fl5jpMrrqgsg8fzOLGNjPDYIuev9P5qzfsnGV3hsMleXVrifZDOY2ugJexRUNlQAqlbIgSiIxKDRTZr6hjKJgGktjba+Kmp8lntIo+xG7fI/ZLOjvbWLPdNGr60t5syHo3A0hLwf/4Pbciv/ZppprVzp78Ft+cBX/oSP//KVwbXiXl5GfiN3+Dc8Ld/u+5bW8IWBSGlDBJ2fcRksvmz8/r7+czPz9OnW16mX1Pp8yKBznic+zhzht+5mZUO2wWeB/zoR7T1111nMker8ZPPnaNt6+riZycmqicQ83kSWokEO6pevAi88Y3rfqQlbFE90NbGZJH5eZL9w8Mbz7FCGC0vc32wsGDqI87McF8TE6vHgPxdGtSVGoQSYPR7/vLZenRvtiFZgkImFgrBkol2bXvxhzIZUz6mnt9tLUhH53yeNlsae0lDFVFAydpRuIFGy5u1Br78Zc4Tr3wln/9YjGt4v0Gnu+8mgXjTTfSL9u6tnUDUGnjPe6ggee1rfX9829qnWrEVSMQja7x2C4AxAAfBtNOLa3z+iap+SqkpAO8G8BIAQyXvm6v5TMGHbfdubtksH0ipaRWNmjpVkYjJurCLr9rGIxIpTtNeWjJp2r29/KxkK5YW0B4e5rlMT9NpHBvb+CHu6iKZ8+ijrIlw6BCPtXcvjd7p0zyPgwcrN8Tt7Xz/+fN0cqR7c9Akh0BIpbExSqqlOcn4eHBNN7q7SdTu2EEjK9JzkdaGQpy4lpbMZ6SGh0jFYzEuYCRaXE0n0EZDinWHQiQQq130Z7Os2xaL0VHav7/y+yK1ReXZqaTZjNRas0l56bLW08N9zc3x2VorAmyhpexRUJD7I0SiEFzNQki1EiSz2d6klo8025LGJ5HIxs9ZKMT32O+ToIZsqVTx+0szFht9H235sp9SH7XC84APfIA2+53v5HVKpXi9/Trt3/gGA2zPfz4X/UEgnQbe8haqAt7zHnZ5Xgfb0hYFAQn0CYndbJKyUrS1ca5cXqY/c+4cfYahocqeXaVMmR1pKHfqlKlD2Uz1uLYTDh+mLbr+etrpxUXTYMcPxM+VRllDQ9WR4yKplTqc3/gG1xA/+7PAjesvj7e1LRJySIiXSgInUgdWmp/NzdEXHR01RGK5RplCwgVJJMo+xG+ot7xZyES7qUaQZOJaXZ0B/83qaoHdME+ShgThsGn+WSiYuo7S9yAcLk42qjf+/d9ZVuo5z+G4fPhh2qLxcX/7eeAB4HOfMz0HxsYYAK8VH/wg607feisTtnxiW9unWrAVSMSNoACcBDXp5ZAGgBW2+W5woPwlgEcAJAB4AP4KdWhC09HBCWF01DRJke6AuRx/7+gwkQqBSNXEeEgdDCGfhoaMAVKKZFU0yonLNsBCds3MMMqVTG5MpEUiJBJ/8hNuhw7R4EpkVJqlXHGFv65gO3fSgT1+nCTlnj3+jZMftLebY1y4YAq5T0zwfgQxUbW10cgOD5vaidKyXuqa2B2h5+f53ZeX+dmdO/lZKRTbzAuZ5WUSiG1tJBCrXXQsLhrZ/OWX+xsDMzO8zkLEDg2tHSGziRqRgYbDpm6cXctSal4ODQVCbjetPaoVdiFvuXaORFwfkvlqE4biVAK08ZJpZAeWaoVImYUQl0VHaUdo+/2lxGI9IDJtyZBslHxZ8NnPslnWL/4ig0Dnz/O6+80Av/9+4Ic/5ML62muDObdcjhmIDz4I/PEfA8997saf2QBb1hYFASl8L/NxK9R67ekxmUsSiJQi/pUgFKLPMTDAuVgaNg0McD/NIPvbLjh3jtvevfTdT5zgffTrF8ditGOieOnu9l9WwfO4HpHAd18fcM89rGf2nOcAz3ymv/2VwZa3RZEI51jJKKuk0aBkRbe10U84fZpJFpLZuBYh2dZmVAdAeSLRLyEn5VAKhfp2b7ZR2sk5aDIRKO7qbPs/9ZQ6S5ZhoWD8nPXmF2n6FYkUN4pJJjk/hUKVqRerxalTzBy84grgmmuYHd3RAezb528/J08Ct9/OtfeTn8zvs39/7ef3iU+w7vQznwm8/e118Rm3vH2qFluBRDy4xmsJkDU+BuBmAN/SWufKvFdwDYCrAfyC1vp2+x9KqWEUM8iB182QlPfhYTPRSMRPiCfJRmxr42vSqUuKsUq9vWzWpLpLB0vJeCwlEsNhLpYWFzkpZTJMmV8v26q3l9mDhw8zY+yKK7gfKdAsROChQ/4c7/5+1kU4cYKS2KWlyppo1IKuLjppyaTJhrx4kdeg0ij+RlDKNNJJp42MPRotlh+KxKS3l/cykzFZAYBxAO3mCM3g1CcSdG46Oni/qpGGa82J6uxZLoSuuMJfivziIq+TEIiRyOrszXzeTLpC1LS3G5Km3JgX8re3t+Js0C1hj6qFyDAEEuBwIDKZYsJQMl8Bk4E+PGye8UY933a9RIE41UIu2lFzeb9NLtZ6n8Wx9jxTs6uReOAB4K67gGc/G3jGMzgfhEKV1WG1cfw48M1vMsr+rGcFc26eB/zu7wL/+q/8+dKXVvSxbW2LgkBvr/HDapVbNQpSe623l4HR6WnTWKzSZzQc5j4GB+kXRqP0IYeGuDmbXl/E4/SvR0a4yD51yjSp8+OTijpE1g2hEH3MSqE1/fB4nDaop4d+0De/CXz/+5QjPv/5Fe3K2SLwOZSEEfHnK4GsU44cIRGzfz+f76UlzpPlgts2kWiXmAmHi5uw+F3jiDKhEfJmQTkyUV4L8hjSzKtU6hxkqZdMxuy3mhr50nSlu9vUjJYamskk9yuEYhCNPeNx4Itf5HzwvOdx/KXTXKv7WevNzwN/93ecR5/9bJ7XlVfW7uPedRfw938P3HAD1SNVliZz9qlKbAUS8ZeUUn+ttV4GniiI+VwAn9Fae0qpTwD4/wC8A8Af2R9c6bgzorWeAyBL39LCwG8EMAXgMXlNa11QSqWxOlU1EITDdN4GB2kwEwlTOzGZpBGRLpEdHVzcxWKmuHYux6wsiUBLQ49Uiu8pR44NDfF9MzMkckZH1ydN+vu5SDp6lJljBw/yvHbs4Pk/9hjTna+6yp+RsOXNZ8+S8KmnvFkQifA4S0s89unTzM7csSPYxYMY95ERkl4nT/JnWxujMwcPFk8qMknIBJFK8bwEHR3FxOJGEa2gEY/zPnV2Vk/4ZjJ0juJxkrf79vn7DokEF0qRiHEsRleqVti15CSzqqODz1ZPz/oTeDrNiU/uV4XYcvbID2wnVf7erkSikNb2ZmcGSJMkCSQ0m2RQnGobdraikH72++1MRT9OtxCUjZYvC6angf/9v7lQe/3raZNzOcps/Izd2Vk6tZOTwItfHMyiQ2vgD/8Q+MpXgLe9DXjNayr+6La2RUEgFOI8IQXvW6nhSFcXSScpkyNZiX5krCKTHhriXCiE4vDw6oC0QzDI5YCHHqLtveYaXvNkkr6on8BKNkv/sq2NNlXsWSW2VboEx2K0893dXA90dDCQ8c1v8txe+tKK7aOzRSsYHOQ1jUZ5Lyq9px0dXKMcPcoSVDIeFhaMNLcUQiRKZr88r7USiY2WN9vHtclEOf8gj21LnQsFb9Lv4QAAIABJREFUPjey1RIwldIonmeapdRqP23CUBRrUkdRGvPY5dD8nnc+D3z+89z3S15Ce3DxIhOG/KgzUingb/6G+/vZn+U1uPLK2ppuAsyG/qu/4r7e9a6aavg6+1QltkJ3ZmnNfTvYmvtXwUKWT9FaH1m5wf8E4BUAvgjg62Dq6V4ALwNwh9b6tpVOOQ8DGAfw12Br7qcC+A8AFgGc0Vo/2zr+twHcAOBdYHHNWa31NzY47ZouttZ0ZkX2LBGm3l4SXaGQkWbGYvxMe7vpzJXL0chEIlzklFusFQokEpNJ7ncjefPcHDMvhoaKm6pcvEhiqLfXf8RCsLTEfedyJNj8RFBrRTRKmXMmQ6d7x47gCqx7nmmuIx2EOzpMdK2vzzhsa31eOgYLsZhbiY3IpGITi/Uqjh6LMXNTZPHVLPwXFkg4a00HyW/WTzrNKH17O79nPs+FUi7HayPXRTqiRyKVjcVcjvdfOrKWeQZKJ4mfR2vZo7oaftvB4/lt7QWnPJM2YSiktTyTQhaWyuVbGeVk0DLfABvLoDdbvgzw+H/0R5xTb7uN5zA7y8XekA/3bmkJ+PjHef6vf30w84XWwF/8BSVAb3wjpTrOFjUekr3e37/5HTKrgXTRzfw/9r4zTLKyTPs5lVPn6jTTPdM9DMMEBpQgQZEgioAEWRQEAyquYZdVvzXsuusa1riGdV3125X1wk/FsOaAuigiKyBZJjA5d46V8wnfj3se31PVFc6pqq6u01P3ddXV3dVVJ77nee/3flIG9qenp7rz4NpsySS+HwxaJ0LTCtA0RESHwyiF4HRCCOzogCBsFIpCdOgQeExXl+joa+ReJZPYvyxjnursFBzyqadQz2zjRjgzinDLli0yAFXFGknTwHnNcOdQCNyUm3HG4xgn/f3F12o8R2vaUsdeYbpzNWAxkiP2GgV9J2ei+ouJeuhTnYnMpTpzIEg2KzIKG3Gd9IIi32e9oGjk2O+/H+Vdrr8e9mfnTswf27YZHy+KAgFx/37YDElCnf9166o/NyLUaPzgByFofvKTRcs8VDxCC9qnpsNqEBGvIaLLiOj1BEX3SSJ6t6ZpT+k+ayOitxPRm4hoC0EtHiei3xHRlzVN23Pyc6cR8thfREROInqMiN5LyGWngpu/jYi+QkTnEZGPEOb65/+XQN0utqZhsmdBkcUSRcHE0tWF3/1+GKx0GoYsGgUJtNmEUKVv2sLeCk4PdTgqpzfPzCD9OBjMr2+wsIC6iT4fvJbVRNrIMtKb2fs9Otq4KBVNwzWYnsb1bW+HoFRtNAJvb3YW96a9HRM/X1tOX+ZmOJySa2QxylFPemGRF/Mc9aQXFmudxEIhRGz6/ZgMzE7emoYxMzEh0uPNXldZxjZUFWN3cVGIpoXCjZkxo6ogaaqK+13iWpUiy1axR8tu+Jm4rjYhkUmhXjBk5w2RSC/iFxezP1Wg73zIL32jHX2UIpPylUhf5mP9j/8AIX3ve1GHdWICc9XgoPHxmsuhLk84DKJs1hlSCnffTfTFLxLdfDPRP/xDyxatFDQN3KlYkzorgTNWJAkcsVoBMJkEj0ynRW1vIzXeWiiPQ4cgGm7dCvtz+DDeN9NcTtOwjXgcC2tOxa9USzGdhv3KZmH/OjvzOdnu3UTf+x4EgNtvL8lLW7bIIGRZrMWCQXMcYXISz2BnJ7YTi+F55gycQpQTElmIq0VI1NcrbHQjtkaKiXpuo2mVU525QRw31Vwp5zEfBztsifCM83qpGK/YtYvot79F87aLLsLzn0qhS7zRwBRNAy/6wx+IbrpJlEPYurW267BrF8q6dHbCATw6WvRjZkREq9inpoNlRUSLYtkudiol6h7Oz+MB9fvxsHPTEkYmA+Evl4PQIstChCQSwiKRCLnv6SnfUWxyEiH2/f1Ia2WEQqiP6PFASKx2oTg1hbRZDumvV1SgEXDk4MwMJsquLhA8o+fCkaF8zf1+CLPlmn5Eo/iOLMPYd3SIaFOj++RUXhYWM5n8+mt6UdGM0LGwAGE1EAChNDthp9PwSsViuI7c3dsMFEWkQHu92FZbG7bH4k01RELTcJ8M1Aa16DLyz2iI4dfXzWHSZbUFOEe16l8s0OsLXvPLipFKy43CouVsj9jB4XLlRyw2aozcfz/Rt79N9KpXIf14ehp2c+1a4/dR0xCdc+QIiHIJQmsa3/420ac+RXTVVWik0rJFKwuuZeZyWVswY/EilcKYCgar52XxOLaVzYLj9fZaK+W7mTA7izTmtWuxyB4fx3gbHTV3TScmRJPAZBJcb2iotE3NZsHz02nYvGKO6wMHIAYEg0S33VY2Qrtli0wgkwGfdrvNNbuRZay3HA7ci8VF3OvBwdJlqFgAKyb01UNI1AuVjUpvLtw/n0e9m68UA2dgcJSfPtWZG+ZxqrfH0xz164lED4V0Wqz7OQvE44G9mJmBw2BoCOnHY2OwK5s2mRunv/0t0Q9/SHTFFYIXPe95tXHkAweI3v9+zFn/9E+IiiwBq9siS6AlIjYWDbnY8Tge+HQaaTiyDHLX0wMhyuOB8QiFRKdgIhGtyAaGvUuhELbR1QWjwtGNhThxAmLfmjUQlxiRCEKiucZLtem18bhI0RgehsjTSHCq9/w8JolgEEStnEGMxbAwzWRABLlxihHo69JwfYu2Noi51ZB+7vKtj1bUd2AtlgZdOAmzmNreXp6YlsLCAmq6EEEMLuU5LXX8fOxHjuDa9vVhbHZ2QryulbjMz2Oc9fZWFKqtPkE1xBYxsWRS1+xCoqouFQz1pQL4+dCnJbdgHPr0ZSJRd0hPxony04UKG77UCwcOQKR7/vNRa5Brx/X2mhOJHnwQ3Zhf8hJsqx74+c8ReXjJJUSf+UzFmsBN+jQZhmVIKHfEZAetlRGPQ3xQVQgP1dY45CjNhQU8x34/5nWrX59GIpkkevxxPOfnn4/rOTkJfmOGI83Pg/v39Aj+Pjxc3H7mcqKDN2cmBQJLx8CxYyjT4PcjyrpCWaGWLTIJTh/nKC2jSCSwtujsxH0bH4d9Wr++9PylFxILx0Q9hESilUtvZjRaTCxMdeaSLpy6vBIZFkbBda3TabEWzGaJfvYzHPcb3oC16549sEVmOinv2EH0n/+JyMUXvhDrte3ba3PAHT9O9L73wXa9//1o7FTm3lrdFlkCLRGxsWjYxWaxxW4HseBuYFzIlzvScrfNrq6lBl8fAj07C/GIu1X6fMJzoU+DPnoUnx0ehpjIiMUQDm23w5BU662WZeyDG8SMjjZ+osrlMHkvLsKA9fUtrWuSSIjaki4XiJcZglCITEY019E0Ueja769tgpTlpfUV9XVSOErR58O+w2FRn8fMflUVZHRyEpPI5s3GiupyMWJ9J9tQCGOSRUxNEw19agGLCNzUqAKsPkE1zBaxkKgXeJshvZcFrcK0ZIbbvTQtuVnFTyuAn2VNK56+rE8VYmFRX1+xsLZiLc97OAwvts+HgtySJOpMmUlFfvZZeNvPOQfe9nrggQeI3vMeeOy/8AVD84bVR6WlSGgshrHZ3t480SXVQlHAY7iuWjBYfbF7TcNztbiI7ba1YXvN1jCq2aAoKKeQyRBdeCHmxiNHMN+sX298O9GoqJ/odoODrlmz1AGhKKLjuCRhHLe1FZ+TJyaIvvUt/O/WWw05jlu2qApEoyLt3IzIMjeH765ZI+pnZrNwqJdygjdCSGQBm6ixmQWFx8D8oVGRifE4OCR33uYMCyvwRg7S+P73EXl4ww1wRhw6hHM57zzjvP3ECaLPfQ7j8qaboAls3FhbX4OpKQiI0SjRu95F9OIXV5x/LXDVrY+WiNhYNPRix2KYUAIB/K6qeOhiMRAMvvWahs8MDVXuVnv8uOhSyBGNDK75MDkJY7ppU77RiMchJEoShMRaOi5PT8PQOZ0wTiuRXpTJwLCFw6KLod+PiT0WE+/Vs4thYaozp5/Uc0FTmAadTuOcuC7l+vX5NRYrTSzpNNG+fbj/a9ZA+C13PfRdbVnU4Q6D2awQkG02HGOlmp1GkEjgHAMBw55/q09QDbVFTOg4rZmo8UKivlN3Yd1QHl96wbCVllw/cPdl9s4btVWFadCcLkWUX4/ITBq0LCMCcWwMQuLgIBbLkgT7ZHRcHj1K9KMfoZv8jTfWx8b/8Y+Iijz9dKIvfalli5oRqor512bDvGuFBWIlpFJwNssyBKXu7urts6pCSAyF8HdHB7bXsqfFsWsXHM7nnANec/QoePWGDcYF2FQKi31OT19chACgTztWVXDHWAx/BwK4N6Xu8+ws0Te/iTHxqlcZzvSw+tOwYrZocRF8t7vbuJCvaYhA5IhTVcX40TTMa4FA6WYryy0krnR6M6MRYmImgxfXYrfZSqc6NzMefpjoySeJXvpSRB3u2oV10ebNGEv63gmlrmEoRPTpT+Oev+Ut4FYDA+aiGAuxsIDIw5kZone8Aw5bA2s+q9siS6AlIjYWDb3YXIuPm3REo6JgsqKATLAgFQ7DKKxdC/JRavJRVZCLeBzbDAZFjQVOheZowVgMQuLgoDA+uRwMk6aha3Mt4l8iAeKUzUIAHRysflu1IJmEuHriBMhcfz+EzZ6e5Z00EgncN32qM3uh64nJSYilHg+2n0qJCFYiEbHFUYv6Dqvz80hfliSMhe7u4vvQ153jbTudoqOyy4XzPXECY6atTYiatXaHzGQgSrvduHcGCYbVJ6iGG/7C+ohEy/d8KMrStGRON5GkpXUMmznlxMpYju7Lhd2g9WnQNtvSiMXC/d17L9FvfkP09rejaPjsrKgnZdR2zs2hZmFXF1L86hFt9eyzRG99K4TML30JP1u2qDmRy4HfcPOu1QCO8o9E8NwEg7WdmyxDGIlE8HdXV23i5GrEiROo7Xz66RDpZmawYB4ezq9jXg65nCgRMzQEe+b3Cz6saYLrq6pImy0n6i4uEn3jG+B6r3wl+KxBEbhli6rdsSaEfDMRvNkshESfD2JNKgXhhusllio/pW+GslxCItHKpzcz9GJivZqvcHaFquJ+FfKbwlRnPT9pNhw6hDIq27cTXXklbNGRIwga6e4Wa3y+l7ym159zOo0IxPl5OEPn5rAm3L69+usdjaKJyrFjECWvvNKwbmB1W2QJtETExmJFFu6RCIyWyyWIr56gsGd9bAwPLNf7YU9lILA0ciQSgaGw2yG86NOTczkY1t27QYjWrhVCj92O/R05gmN6/vMNpY6WPb+jR0F6OjvhvW2kgZZlkLZQSNRPc7sFiaslhdkoslncD+4e6fHgWtSa6qxpEBDDYVH/kVGYZsxFhInEBDM3h+MKBovXwtRHhnE9Dn0KqZ5EZTKYRJxOHMfcHM6v1i6osgyB1GbD/TIx0Vl9gloRw8/e73rWR+Qi1nrBUC9y67t0cxmG1RA91OzQpy9zwe7lAEc86IXFwjRorq341FPoeHzVVRD/YjHMY93dxm11IoEUP01Dl1Kji/1y2L+f6E1vwjF85SumO95bfTRbkoRypHxb2+pK2c1kRLMUvx/O0FqyHHI5bC8Ww3a6u+ubnWFVhEKopdrbi7ph8ThERW7cZwSqisV/JgMRkrv9Dg/j+sbj4IWKAo7e2Vl5rEajiEAMh5HSuGmTKSeb1e/qitoiRcE9JAJvNvrc8XosGMQcwl3Y9UJPsRJSLCTabEv3VVhXsBY0Q3qz/lhqFRM1Dc9cNiuyK8qtO5mj5HLGujo3GqGQcIrecgvObdcurNu3bMn/bGHfBEmCfXC5iO65B1lnb3ubaNhqpptzIZJJog9+kGjvXqLXv57oZS8rHYhSBE1wZVc/WiJiY7EiFzuTAZngEHkuDF7oZeY0lFgMhoEjSCQJQiLXTmFjyRFcudzS1AkiGM29e7G/0VEYGTZAsRgWTrIMI9XXZyxUuhRmZkDAnE6ETddjYVcOPNkvLGBS6OrCOTgcmMAnJ3GuPh8iShqRbs3pKpEI7onDgXvW0WF+EcBpEtGoqPlYCdksRIPFRQjI4TC+u2aNSBdl8YhfRPkiT7GJWJYhIGoaPO1zc/jc4GDtdVumpnAvBwdNLwStPkGtiC2qR6OVTGZpWjKPJYdD2DaOjrV63TIrQp++bKbze73AEQB6cXF8HE1KRkaI/s//wTFxl3l9/d5yyOXQtXBhATXCaqnxwzh2jOiNb8Q4/cpXMH+ZHLMtW7RCiEREY5LVFGHHzVJCIdjm7u7aORWLk4kE7DQ3+muGRXSjkckQPfYYrsMFF+C9I0fw3I+OGhtLmgbbEY3CpsVi2O7wsGiaIsvg052dxhbyiQQitWdnia69luiMM0xHo1r9bq64LWLR3eGAKGj0+ZiaAhcaGsJaa24Oay1eezA3KhxbjRIS9enNxfbVSOibrxCZExM5805VRQkvMzassJGc3Y61x0rNH7kcOq8nk3CK+v0QEFkALLcuymaFoPjjHxM98ghKHwwNwR6ddVb1QUKZDNFHPoIMjVtvRQSiUZ52Ela3RZZAS0RsLFbsYicSwmvOYcnt7UuJhaqCOCoK/s/CVDQqosX8fvyP6/Dp05v7+/MnB1lGZ6dsVtRV4P3EYkTPPCNIEBcCZs+GvmmLEU9oMim8smvXmjY4hqBpWEDOzeEadXTgnIs1CVhcFCJrWxuOp9qGMmbBXZ2TSSECd3QYq7WiaYhKjcWQHtHTY3y/c3O4B5y+7PWK+kiLiyL12uUStZICgdIRYpqGVHHuOsedwqsQ/ZZsd2YGY6W/v6pi8lafoFbMFrEnmFNlygmJ+vqY/NI3/ilMS15NEUFWBEeFKgruRTUOoeVAMon6h+k00Qc+gLlmbAzjkG1JpTRoTUPXwoMHkeJXS40fxvQ00R134Pi+/GXMkVWM4Sa4wjXBsiSUaxQ7HMvvuFwJsKCRTmOOrEejlFRKCBwuF7a5EjWtVwqqigjEWAzdRQMBOMATCWTSGI3amZzEdVy7Fn9z0ztFAd9mjmWUc6bTiEaanESk9hlnVFUqpmWL6oBMBusMj8d45JWiYE6z2yHiaBrmF0lCkAPXF/f7lz7DnHK83EKifl+SVHyebSTMiIlcmiWXE87RWoRQTcO29MLqSqQ6//KXRAcOoAHKunXI7JueRnCPUQHwwQchRF5yCRrCHTmCMbh+vVjHmzkvWSb6xCfQsf7GG4le8hLYRpOwui2yBFoiYmOxohc7EhHiYDyOB7WjY+mEoqogJLlcvvCUTotIN04X9HoF0eAO0MXSm597DvveunXp/3btwiLq9NMxwXG0ItdfIBIh4ywqlirOryjwzi4s4NjNFKcuB+48ODuLYw4Elp5nMagqSPjMDI6tq6s+jUCMglOdubEO1zUMBIpP3qoqCO3goHECo6pEhw/jPNvaMBlxXTomDCwUEuH+cgqqPg2a0y44iow7iw8NiYjavr7a61DNz2NbNSxgrD5BrXjaDtdHJBKRqYXdktlxQYSxoY8ybBaBqgWgUenLZqFpRP/2b5hn/v7vUd9rYUGUWnC5iqdBcwo0v7jo+OWXE517bu3HtbCACMT5eaIvfrF4yQeDsPpTYGkSmslgvtTPb6sNsRicgJqGhWVHR+22Nx4XadMsUK6W+pLlsG8fxJ7t28EF2dk8MGCcby0sILI6GAT/PnFCOIsdDtwjM9cylyP67nfhsL3iCjgzTKQN6tGyRXUCBwJwDUsjSKUgAre3I3som8Waxe3G/UwkME8XS29mca9YE5R6C4nNlN5MlC8mFmu+ksuBm2oarmW91296/tHIVOdnniF66CGiF72I6PzzEaSxbx/WfiMjxraxezcyKLZvR4mYPXsw/kZGhOhKJGpiV+KGikL0+c/juK6+WtijKq6F1W2RJdASERuLFb3YXPuQm3Bw05XOzqWCHItm2SwMQuGEk8mICMVUCu9xCrTbjag7PQnJZGBcNA1Cop5syzIMUTwO76c+dVYfLs0dsBh6o1SYBj07C2JltyNipJbmG9GoiFrzekH2OGrSKBQFxzQ3h2vQ0wMRslELbY78jERwTe120dWZPUSqChKZTMK7bdQLlUzi3oZCuOccuaiPFPN6S08CXENTX2ORU+ujUVFTkzsxG+xYWhJcL6azs6Z6nFafoFbc8CcSeGWzePbTaTFGXC6MGRYNVyIltgXj0NcHarZ79fOfE/3wh0SvfS1SYpJJ2PP29qVR1ty1Uv/SNDjBHnwQ6T0vfWnt3RajUaI774TD6/OfR2fWGgSUli1aYcTjgis1Y9H8ekBRIF4lEiKCsB6L6WhUNJTgZn2rVYydmgLXXb8emRrpNCJ/AgGkIRtBLIbvtLWBK+/Zg/fXrKmuFraiEH3/+3ACX3IJIpDMpNEWoGWL6ohIBM9bR4fxNcfCAtZuvE6Jx8F3OXuMGyMWS28uJySy0FYvIbGZ0pv1x6QXE4lwrWQZx7fc3KZYqjNnRtQbExN47jdsILr+esxfO3bApp95prHzHB8n+uxnEdhx110oX+ZwgCfxMSuKWMNzUIDdLtbt+iw+TUNGxv33E112Gfja1q1Vz6lWt0WWQEtEbCxW/GLnciBtLhcIWyiEB7pYoWu9kNjWVnqRw9uMRoXHOpsFEdm4Ed+VJExee/Zgf1u35hsPRcFCLRIBuSpVa0pVhZjIhokj2YiEl8jjEVF16bRIbzZDjBIJeIhTKdG5t9ZOwLmc6MAnSSCBfX2NnUCTSUFOJAlEoq0Nx5VOI+rPyHkqCkTHPXtwDzZsQKSlzyea81RDRDnV+NgxcT8nJiC4cjoVC0sc/WF0Yk8k6taUxeoTVENtkb77tj4tWVFEKiA3JCqWbtNCc6JZ05cZu3ZBpLvwQqK//EvMCRMTsLdG54MjR0C2h4eJrrkmP1qRU5D0UYuVtplMovD4nj1En/oU0UUXmXdKFaCJrnhVWHFeVCs0TThoV3udv2QS/EWWca5dXfWplxYOgzsqCuaDnh5TDT2aHvE40vM6OhDJrGkQAxXFeB3UdBrlFOx2XJ/DhzHWNm+urlmNqhL99KewRRdeSLRtG/hoDffT6iO/6WzR4iLue3e38XJEExPgXMPDmJMWF8F9g0HwZm5qSLSUbzVSSNTvrxnSmxmaJhr0sWO0UdljvH+9E7Peqc7xOGqfut2IHnS5IAByHUMjJRAiEaJPfxrH9773Ibo6mcT3S2kFqpovKPK5cRDQvfeiZMzFF0NAPPPMmq57E4yk1Y+WiNhYNMXFTqdF+o3dDmPA9VMKweQ4k4G3tNJih2sETUzAqEgSxLe+PrH9ffuwvy1b8icvVRURbaedZrymod7TweIiL/Q0DaJRIoFJuDCduhhSKYhY8TiOr6+v/t0EuSkNi7j9/ZjgGxnBw8W3Fxdxr4hARsstrrlGHTfGWVjAteECuvWYaJNJiL/clGZ6Gvezuzs/DZrD5LkbNAuLPOEXngNfc5cLXtoa76fVJ6hls0WqulQw1N8rTktmEZgjumy2/PIFLTQ3uMA4EZ63ZhN+5+eJPvQh2I0PfhDP/fS0cCoZOd6FBdQJa2sjuu02IWowwS+MHCDKFxT5d0YmQ/Q3f0P0xBNEH/0ovO2lSkuYQMsWNQFkGdyHnSGrGVw7m+tB9vTUJxWZtxsKiYY1PT3Wj+6UZTRSUVWIdS4XohJDIUQlGhkvsgzOFY2CLy4uwr5U0fyEiMCNf/lLRB+dcw44HDcHrAEtW1RnaJqI1DVakzSXQ5QYZ4VpGjKhZBljx+HAWIzHi6c3s3jVKCFRn95cbJ+NBK8nFQXH4nKJmt2Fac6NQL1TnRWF6Ac/wLr4Na+BfZ2YwJrrtNNgAyohk4FzdmaG6D3vgSA4NQVbZDRTjDtc89r9Jz/B65xzkMZ89tk1B+1Y3RZZApYXESVJuoOI7iGiUU3Tjpn8rkZE92qa9tplOLRiaJqLHYuJ9BtFwd9eb+n6cJGI6PRllCCn02iywUIZd3aWJBicnh54PvUeWFWFyLiwgC51Q0PVnR93B2UDNTUFQ2mzIWKOU2bYA2Kz4fOzszhXux2Raj09yztppFI4tmgU5IDr4jRqosrl4A0Ph0Uqlt0uujo7HCKKjFNPWeTTNNSxPO20+h1vNosIRIcD5HpuDvdlcHBpVIIs56dAc0QUkfAesrDodIKISRK2VYfIzyVnfCraomJ1DFlYIhIRz3rRsHCsmGm00kJzoJnTl4lwbB//OOz5hz+MhRM7TIJBY00wkkl4xnM5pEKXI7Sl0qAZPO/9wz8Q/f73+Hn11ZhP63Dtij4pFrJHTcOLagXPQ4HA6oqiK4VMBnM014nu7q5PVgWnTkci+LurC69mSHk0C02DUDc/T3TeeXC2RqOipqGRRbssE+3ciWuyfr3gZQMDxuvlFeI3vyF66inUMnv+8+uWnt6yRcsARcH4IcJ9MvIcxGKY/7q78ezIMkQfDlpgrlUqvZnnsGKC1XIIiSud3syiVjaL8/J680s96R3cK8F3VFU0YiGqPtX5wQfR8fiaayD6xeMosdDdjSxAI8fx1a/CHr397bBBBw5ArB4dNX9eRIg+/K//QmDRpZfCxvX0iKxCXqObRMUVhIXsUtPC4v69FqpFICAabnAR5mRS1H0oBBfSjsdhbI00o/B4IBLOzWFf3NgjmYRR2LMHk9w552D77IHasgUeV071WL/e/Pm5XHjxYnFoCILXnj0gb4mEEAhlGdeB05YHB2EQG+H99nohasbjEBPHxnBNBgdrqtdnCNks0pEVBWHjPh+uQTgs0olZJGBDns2CzPCEU89j5O5yREjDiEYhSHHzg0JwGqxeEMhk8oXF+Xlsd24O93r9eggJrTp71YFFZH5x/UoiPL8+n6jfoydh5WCzCVLK6SwswLSExOZCYfpyM9Yu0zSib34Ttu1d78KCKZOBM4tLN1SCLBP9+MeYJ269tbJHXJJwPQoj61lQzGaJ/vmfiX73O6K3vhXRSIoiFm/NUFy+hdrh9WKhl0jUVjPTKnC7EdUbiYA3JJPgVbV2W7bbIa5F+SMkAAAgAElEQVR1dUE4W1zE9lkQsdKzcvQo+AenHOdy4Hpeb+WSKpomFvlc6qenB9vjBjfV4A9/QIfoLVvQTbWrq7Hpmi2Yg92OsT8/LxxhlZ6BtjY8j4uLgsPz2FlcFOsfzgZJJsG5Ob3Z4RDzV+H8xOKh3gFcKzjKjtObORKyEc86Z1WoKtYahZlM+kwZ/Tk30r7bbDguvcOS061ZTKx0rfbuhYB4zjkQEBUF5RFcLuPdj3/8YzhFXv1qfGfnTtFIpRo88ADRPffAmXHttVij9faKACB9tgsH/qz2edVKWA2RiHYichJRRjN5MlaN/qkXFEVE3bW3Q0jLZPB7KUIRi2Gy8fmMLcb032Mhhz2vx46hDqLXCw9GICCK/9rtMG4zMxAAq/VwFIKbh8zNCaO0sIDzZgGEJ0y90WpUul4kAoKZTuN4BgfNXWej4Ig/VYXR9nrzI8rSadyzXA4TDIvOnBZ+xhn1vR6ahvuSTuN4OP2CayNVC66LGQ7jHFQ1v+OvPg3aZMffYpGIq8oWcXdt/UvfSZuvGUca1hp5I8uiLg53a25FJDYP9OnLHk/zphg+9BBI6fXXE910E575yUmMp7VrKxNQTSO67z5ExF9/vTHvfKXtffrT6H765jcT3XILbKfNtjQNujAVulpbRGQpe9RUvKhWcAM75lWnCnI5iBzpNOaGnp76cYRMBttmcbanxxq1JxcW0AF1cBCOWiLwrnQaC/BycyZ3552YgJC4aRO48/g4xtbQUHWL6SeegDPj9NOJLrhAcO46oWWLlhHpNARAj8dY92xVzXfM22wQCiMRCMd6sV+f3sy8mMhYRCJRfSMHG5XezJk0uZwImKh0HvrmK0QrF5lItDTV2W6HzS1mF+fnib7zHThVb74Zx3zoENbCZ55pbJ35hz+gvMullxL9xV9AQFRVpB5Xw/8ffRSNWU4/HVxrYACZbXpwZ2x9/wOXS6zNy9wvI5GIVrFLTYsmXQYYh6ZpChEpFT/YwhLY7ZhEWBhsaxOpzYW1nBjcJCWRgBE1Sj64ccL0NESyri7UJ+zrQ3RgLAbjNzmJl8+HSVKWQZoUBU1aaoXNBpEqm4UB1DQY0I0bYZjYYHEqNHvY+XqxoLhcHhHumBwK4VodPoxrNzhYn5pDRDi3Y8dw7v39uPccscfiUGcnSK4k4TieeQb3aGgIhr7emJxEhNPatRh3U1O4zkaIUjmEQvi5caMgTIqSH60YjYrPcZFffX1Fo5OjlW0RR5jpBUN9J3S3WzRXqtRtu1rY7aLZChODVkRic6DZ05cZR44gCnH7dqIbb8R7Cwuw64ODxo77kUcgIL74xbULiEToNvjd7xLdfjvR614n5g4iEVXAtRU5apFRWFvRzELNyvbIyrDZRFfUVMpYkfrVAKcTzxg315uYAM+rh9jHEY+cXTAzY640wUoglUJjp0AAEX9EWLAnkziXUryCs0E4opXLxqxZAy6sacZtWSF27ICAODpK9IIXYC5vhNDdskX1gceDNUIkAt5a6d7ZbOD4ExMYe9wcMpsF5+VmaPzZ9nbB/WQZY5d5WaWIRD1vqxVc2ob5IEcl1hO81tM00cDRCPSO7pWMTCQS/ECf9cCdpPV8IZMh+vnPcY7XXovjnJvDa3jYmA3duxc8Zts2RCHu34/tbt9enYD4pz+hruLICNErXoG5oliwEGd4tLUJR3Y6LZq5ckZMNY7tll2qHU26FDAOSZLukCRJkyRpRPfehZIk3S9JUlSSpIQkSY9IknR1mW1cIUnSk5IkpSVJOi5J0l1FPqNJkvQtI5+1ElwuEYWWzYq0ZU4/LoZAAK9UStSsMbqv4WHsIxQSJHPTJhg1pxNiT18f9s0NNWQZQuOuXfl1psxC00A8DxzABHLWWfB6xOMgpZomjFUwCMFswwYcc28vCFcuh21MTmLBevw4vss1I+sR2CtJEM+2bBHE+cABCH96YacaJBKI/uSi3Bxd6PHgHIeHcf25Vtf0NNJxenuJLr8c9yccxnlPTYkOb7Vgbg6TQW8v9js7KzpX17L44G7hHR35HlcWz/v6IChv2YIxODyM8UgE4WFsDNd93z6c7+wsxgoLjoWwki1iEjkxgYjfXbvwc2IC18zthli8YQNE9s2bidatw3NRrK5hPcCEVF9vh6g+z1QL1YGb5GSzsI36mknNhliM6EtfggPkrW/FcSYSeGY7O42lXu/ejQYI27djkV0r/t//Q62fG24gestbhAedwWnQHg9sUmcnXoEA3pMk2HyOSgqFROkNboxVClayR6sNnBLH9+lUQlsbuJPXK7iSXhivBV4v5mmOKJ6awtycSNRn+/WCqgon9dlng3Mkk+A6HR3F05AzGXDJuTl8z+PB2AkGcb5cH7q/v7oIz717iX71K8zjF12E8cl8px7Q10IuRMsW1Q9+v3BSGOHfHLUYj2PuIMLfDgd4rlIgofh8ImsnGsUYZDGKBT099HURC7dVCzi9mUXKwjrD1YI5TSqFbQcC1aXys5jIGQMspK4EX7XZxFre6cSxcGmnXA7PfTQKsc7vx7N69Chs9dq1lbc/OYk6iIODRHfeiXXC4iJEv2qcOHv3En3qU3CM3HQTxGvWAcrB4cD94lqy7KDiTMe5OfzO9UMroWWXasdqSGe+g3SFMSVJeiERPUBE80T0n0SUIqI3EtEWIrpV07T/1n1XI6LdRNRPRHcT0QQR3UJELyaiKzVNe6Caz5ZB017saBRGmj1b4TCMY7muxNyl1+0W4qNRxOMQZYhAiljQGBgQNRCzWeFtOHwYhqyvD0WgOzrMefgjERC0bBaTZH8/jCmnu87OwjhxRGI5sIHW12zgyZPToPXRirWm9HBNv9lZTFDd3bhORrfLk+b8PMLXORqTa9fxYlUPWcZn5+eF0Mv74y6UkQiOjTt7t7WZFxgiEdzXjg5MKNxJe2CgtnprySSul89nrHB5ITjNQR+xmMlAWHz8caIPf7hyY5VmtkWf/jRp7K3kBS+/VjpNlVNF2Bvd6ti8MlAUsfh3uZq7qYGqEv30p7Alr3oVnnluzuBwGKujNj+P9JqeHiyyax1vf/wj0fe/DxGB04eK2Voj4DpRHJnBXWyffproG98w1sygWe3RiRPNy4tqgaaBH3HGxqkYTZ1MYpwqimjWVs/rEIth+7IMPtjV1Rx1Wg8cAN/cuhX2RFHAMyUJIp7etmSzOI90WjQgtNshjjociNRJJmHL2MlgFsePoxNzXx9SmF0uLMTrMacqCkSBRx8l+tjHrG2LqInXaIXgMkzcgKISJifx+aEhcPlcDmPU5SrusFdVcHFZFusZzlYqxhGXK7WZj6Ue6c3ccJMI51TP5lf6NOeV6uSsh6LgHj/+OByjV1xBdO65OKbdu2Fvzjqr8tiJRlGORZaJ3v9+nNdzz2HMVJOpceQI0Qc/iLngtttgt7dtq81uq6pYi8/OIsLxq18131ilie1S02I1iohPENE2ItqiadqJk5/pIKKdROQionWapuVOvq8RkUpE52ua9szJ99xEdIKIHtI07dW6/Rj+bBk07cXmOj5EovhzJCIEolJgIdHlKi84FkMuh0i3TAbf5YjAoaGl3hFZBlHZuxfGZmQExo/ruZSKjuJtplL4Xn9/cc/JwgIi/SQJ0VdmiRqHWevFRX3NDH1txQp1HMruY2ZGdBkOBnE+xbalr2fHQtjMDITSzZvxs9S9iscRfZfJQGws1SGbi36Hw6LALy8UjAic3OXZ6wWx5jSorq7qC4YTgShMTWFMDgzUbyI/cIDof/4HY+3NbzYkIjatLfqv/yKNU1mq6fC23NB32W4JiY1HLgd7wxHizX7dH30UnUavvBILd00T4kJPT+XxHYuh3o/bjTTmWh0/zzxD9K1vwda+5jV4xqoVEIthbg6LA7eb6CtfMbxwb0p7tFpFRCKMv3hcRPGeilBVcIR4HM9Bd3d9hT5Nw0I3HMa84feDQ6xUd+ypKThg160TDvGpKZz/8LA4d27ol0yKiKhAAOdw9CjOa2QE129mRvBXs5icRCpjZyfRi14kakrW6izUNAgCzzyD4wsGid73PmvbImriNVohNA1rAVmGoFPpfsoynOBOJ9ZXkiTE6ba20mueVEoI3D6fEMlK7a+Qu9ULtXRvVhQR7MFz8XLWWWwWMfHYMaIf/hDlEK68Eu9NTOB53bKlcr35XI7oX/8VZRT+9m+xnnr2WfCOs84yfw0nJog+8AHY5je+Efdiy5b6laQIhdDAbmaG6N57qxIRm9UuNS0sXxNRD0mSBojofCL6Gg8AIiJN0yKSJP0HEX3i5P8f1X3tcb6pJz+bkSTpMSIqKO9p+rOWgs2GB5k7Nre3g9DE43iV6rbH4h2TODNCotMJgWp+Ht/1ePB9Lhytr73ncCDFrKcHYk48jmNcXMQkyEXM+bjTaQiUiYTYTzkveE8PyOehQ9j+wAAIn9Fz4TBrvk6all8Qlgsi68+9sHFLpX05HJj8e3txbrOzOPe+PrzHnkN9PTunE9cmm8X5jIyUJxuTkyCwLheud7maK5IkuiNz/UiuIenzia7fxZDN4j7zvclkRNfkWgREFlq5u2O9Ju9Dh9CwYc0apARUQrPbojvvFJ5KruficjWPWMSEsdVopbFgjy5HGFuhY+fTTyMK8Y47iN7wBrwXCsEO9fVVFm9SKaJ770WE++2312Z/iCBG/vKXKP/wmc/AxnF5iHrg6FGiX/yC6LLLUNzcCJrZHq1bZ+wcrApuWOb3W+N5Wi6k0+B6uZxovFLP+Yajc0Mh0WU1GGxsZH0kgrIgW7bAnkiSEFBPOw3Hoyii1Ep3N4TG9nZRyuPwYfC5jRsxXsbG8IwMDZl39k1Pw8Gyfj3Ry1+OffT21j4Ojx2DE2NuDuP6pptwvkbQzLbISuCyR3NzWAf09pZ/nhwOzIfT06I7s88H7s2BIMX4uteL73JpEK6JzDUSC8E1FJlX1ouvVdu9OZPBi+u9L3eDTOasXCuReWyjxcRIBGnMfX1EV18t0tcnJkRZolyueMMcIlzfr38dz/pb34r1I5cU27zZvO2enSX60IfwvTe/WQTs1FNA/NjHMLbf9S7z32/ZpeqwqkREIho5+XNvkf/tOflzlPIHwfEinw0R0VlF3jfzWcvB4QAhYCHK5xNNKOz20unD3GSBazZ1dho3MFz7zuuFkXE4QHCOH8c+e3vzP79mDd4/cABEbMsW0RyDU5ZZrOvogGgWDBoz3h4PoljGxjDRxmKCyJmFJGFSdrmEEKdPg+af8Xj+5/XRiqU86S4XSGVfH67TgQOoGdnRAQ+824174Pfj2oyP4xjWry9NQmUZ5HdhAcRk0yZz5JvF0GBQFH2enMSEzc1i9HVT9B3jiECEnE58v1qoqkj5LhWhWQ0OHCD63/8F6br2WsPjYeTkz6a1RVzPRZaF4M3d3VZaTGQi1mq00jjouy/zwqHZMT1NdPfdRKOjEACJcA7cjb2SgKgoRD/5CWz9LbfULiA+9RTRe96D7vWf+hSuoc9Xv+fp0CEIlMEgFu4mIrpGTv5sWnu0WsG17ZLJ5oz6bhQ8HjhBw2FwhFQKXKOUg9osbDbM0Z2d4IDhMJ7rzk7sZ7mvOzfrc7vhgJUkvDc9DTvU3S24kabhvDs68o/rxAnw75ER2ODJSdioagTE+Xmi730P22EBkflhtZiaQmrk1BQ43bnngpP395va7sjJny1bVCPsdoz5+XkhDJbjRn4/7hs7+rmJItd65yYWhXA68T1eGzqdWIc0WkjkbbOIyU1Eis2vzGdUVdQdbiRv5EYrejGxUc1XZBmORk0juu46nL8sY73Y2Ql+wkEELCRy/UnGz36GKOObbkJJloMHsV7dssV8JHkoBAExnSa662QVwLVra1vv6bGwQPSJT+DnO95BdP75VW1m5OTPll0yAQssE5YdpUrBFjM3Zj5rSXg8MDaplIiuUxQYD7u9tLDFBpqFxK4uc8aSi9tOT2NySybhkbXbl3bo7e/HtvfvR22GM88UAqf+ON1uiErJpIhSrETEuF5gWxsiPnbvhrekHgWoubOpXoyV5fwU6FhMpJXbbEujFR0OfJ5Tld1uEIdwWEzuXDcnHAYJ5XThUuceiyF9OZvFYtxIod1S4PvV1QXCEQ4LgtPWhnswPY2Ja906HC830BkYqG2CnZvDOfT31y+Vaf9+oocfxjldffWyR5KsiC1iAsEprCwmulwrK9bpO/8xGSVqCYnLgXRaFFBfzlSfeiKdJvriF2FD7rpLdClkh0SlVB0ilCeYmEB08Zo1tR3Pc88R/c3fwH5+7nOwFfUUY/ftw/EODKDzdAOi2lrcqE7w+yEecQbFqWq7JAncwO8HL+AayPVIr2Ww87mrC/sIhcCpurrM81Kj0DRE6WSzWMA6nXhvfBz/b2sDF1NVkaVReL7T0+BLg4MQFxcWwMP7+sw/6+EwOqnabLBtnDVSbUr9wgIiD48dw/G/+MW4Z9ksrnUD6lC2bFEJOJ0Y1yycV1qrBIOYO2dm4MRnIZJLJfH6qhCcrcbpzbIs1n3F1hbLKSTqoxILuzdzPfNcDvv1+VbWIVooJjaik/Pvfoe17w03iDT1Q4dwTTZvFmJxYVdnLl/zxBNEv/41yh9ceaXIfBseXroer4R4nOjDH8bYfPe7cX96ekqXyTKLuTmif/kX2Pm3va0+DfFM4JS3S6tNRDx68ueWIv/bUvCZFkrA7xfCIUeRhcMgwcXID4Mj4MLh6oRETm1dWMDfY2NYOG3btjRChEP3d++Gwezrw/e5kzJ3w+PGLLEYFovsiWtvLx/W3t0t0psPHsTEum5d/ck/Czh6csfFf1lYDIWEcJjLiVTo9nZcYyYC0ajoVnjwoIjIKyzkrcfEBIgh17ioV2i5JIn07kxGeOC5M/amTZjcFxfx/97e2tIMFhdBbnp6zDXcKYd9+4geeQTbvOoq09u1nC1yOjEWOTKRHQlO58otegu7NRd2bD5VF+P1gqriPnP6n1XSLTWN6J57YO/e+15BbOfmMHcNDlaee/74R0Rwv+hFINa14PBheMC7uiBs+nz1Ldy+axfRAw/A1l9/fVW20nL2aDXBZsMcz521S5X5OFXgckG0j0Yxd4+P4xkuVz7FLBwOCO7d3RBHFhbATXt66t/g5dAhnMe2beIcuNxMezu4NJfrKWYTQiGION3d4LKJBN5jrmoG8TgERFlGFBGncVYTZR2NQlA4cAD27KKL4LRnpzWnRZpEyxbVGR4Pxkk0Kko7lYIkYV0wPo4xOjgohMTZWYzjchFi+vRmDmQoVeddn9a7nEIipzdztpemCT7TLByxUWLirl1waF5wAQJgiCAChkKIcNavNbmMEUcqyjLW1F//OjjRLbfgPh85AtvFmWNGkUoRffSjcKD87d+KdSEfV62YnkYTlcVFpEhfeGFNm2vZpSpggXgD49A0bYaIniSiWyVJ+rPOLUlSGxG9lYimT/6/hTJgryURSC+RIF2RiGhyUAzcYEVR8GArpbT3MvsOBhHNsW4d9vfss+I4GGyEXS6Qr6kpGMjBQVHjwe/H32ecgXo0vb0wklNTiDA7fFhErxWD24305oEB7GPPHpHut5xwuUQqHtfw4DRvrvnIEaNzcxACudP1yAj+Pz0NApvNwpAXQpZxPkePgrg+73n1ExAL4XaDGAcCovtgMon9j43hPGspOs9CcXt7/c5hzx6IDMEg0Utfal6YtKotkiSMNyaKHJWcywnhrtHgujf6DuhEK3c8qwWcYqlpuN9WERCJiO6/H5ExN98MG00kmhQYSdnbuxcOgm3baiaeND6OmkFOJ9GXvgQbxOlT9cCf/gQBcXQUkQXVOFusao9WE3hMcJRMC5izh4ZwXRYWsNgsxceqBQuW69aJ7JRjx8AZ6gHe3tCQiGaenYUTkgjcua8Pr2ICYjwOHhQIYBvZLPim2720nE8lpFIQEJNJole+UmQUmI0eSiZR2/Xb3wZPfv7ziV77WvyMRPB/drSbRcsWLQ8CAQi68TjuTzm4XBANk0mR+cRBIFweqhw4vdnpFBlUslz8s/rmeMvB2TidOZEQ60S/v/Hpy0bBTWH4mshy+TW1GUxPEz34ILLpLroI7yWTIo15cLD495j3RyJwzvb3E73+9bimu3ZhLXDGGeYbp37yk7Af73ynECtPP70+wunEBJq+hEKohf3CF9a2vZZdqg6rLRKRiOjdRPQ7InpMkqT/S0RpQovu9YQW3S36ZgAcuh6NwpBw/RauZ1OugYrLhYUcF7nu6jJfz8Xvx6LJ4YBn5LHHYBT9fmxzdhbGd+1aCISHDkH4KdWyntOI+/vhqWLhaWZGdL5jr69+8SdJIJ+c3vzcczgus6TMCDgqiFOVuQuZ3y/qRvI1V5T8aMVEAuezsADxdmAgP4K0pwcTiMeDv/fvB1k97bTSE0s9wREHw8Mg2qEQoiW5K7imlfbSl0MqJRqy1OOeaBru8VNP4ZpdcUVNAqdlbRHX6HQ6MU441ZkjExsNmy2/PmKxNOcWjEHTYDs4fVlvV6yA/ftR6+vcc4muuQbv5XKwfUYibiYmkKozNET0spfVdiyzsxAQcznUZuRmEfWKhn7iCTRG2LgR5RRqrOtmWXu0WsDF7DnLo2W7RMRgPI65fHIS18ZMkz4j8HjwzCcSiEzk6JxgsPo5PpEAX2hvxyKbm8ccOiSc0OW2nclAgHS54ADWNByXJIGXmTn/TAZ2MRSCc4W5VKU6eXpks3Da79iB+X7rVqLzzhPnsLiIc+7srNlh27JFy4CODnCkcBhzRTlnWkeH6M7s9WK8tLVhDEQiokZ7KejTmxMJfKetrTiHL+Rr9XyuOXOLqDGNU+oBfcNAvi683qv22qRS6MLu94MXsUh58CD2tXFj+e/H40Rf/jLu3zvfiWd8507YtG3bYA9Kpa4XQlGIPvtZCJB33QX7mM2inmI97s+JE0T/8R+wdbfdhvIKdULLLpnEqhMRNU17RJKkS4noo0T0d0RkJ6I/EdErNE375YoenMXgdIr6hA6HENr0HZzLfbe7Gw/54iKERLN1KRwOECuPB4up++6D6OXxwFCuWydSKbxeiI07dqCodblFHHt4e3tB6FlQnJ3Fi5uhtLeL7Xd14ffDh0EQ+/rKpwkbBTeuSSRgrLm2B3sVS3nT7Hb8X59KMjGBzw4NYQLIZkWR8X37cNy8z+5uFMutV1HzckilRG3GNWtwjskkfg8GMZZiMdwDFgH8/sqTaTaLSEyXy7zHvhg0DWPoT3/C9i65pLbrsxpskSTheVFVUYRZlkV0bCOPo7DGTktINA+rpi8zwmEQ3b4+dBiXJDy3s7Oi82il7//kJ7DtN9xQmygXDkNADIdBaNkZY8R2GcGjj2Le27wZYmetY3w12KPVgEBAOGeXK/rfiggEMP9zbbdEAvyg3vX2OPMhFoPgNzGB/QaD5sR/RQHflCQsjufnweGmp3Eu27eXt6+yDMc0dym12/HdbBbOcTPzqywT/fCHsIM33iiaInJpHyPnsns3Ot2n0xAcXvACUU+NSDSqaW+vvQFVyxYtD7jmKNcCrdSdvK9PNJIcHhYdn9kpNzBQefywcMfNLfk5LkS9hUTmMooiSkKxs9lM9+aVRKGYWG0nZ1XF+jiVIrr1VmEzjx3DWquSeJfLgcNEIqhb2NOD6MVkEo4EHhPc5ZrLcJXq6vzFL4K7vOUtomzF5s31ca4eOUL0ta9hnrjlFqLLLqt9m4yWXTIPSbN4TpgkSW8mov8iomFN08ZX+ngqwJIXOxYDsenogOFIpeC18HoriyyyjMmMqDohkfe/fz+iEZ1OLKhGR5d+Lh4HEZIkEDiztVpkWYhZ8TiMocMhBEX2xo6PIyXa5wPZMktyZVlEG3J6NHfx9PurW9hz+nJXl0ip0TTcN66r+NhjmBja2+FZGhoSYf/cDbreE24uB6Jss+Ge2e0guqkUCAqfq6KIpjLcLYzrcRYjMYqCe6BpomN3LVBVeM127sQEevHF+QS6CJZcqVPBFnFHNyaCTmdju40yCWVyqGl46esltlAcTAKJ8LxbofuyHrKMjsdjY+j0x3ZuYQE2u7+/vM1Pp5Gel0yik3MtzbISCRDkw4cham7ejHHp99fneXjoITgzzjyT6CUvqTi2i/7XQvbIkryoFmQyGEPsKGwhH6kUhBBZhtDa3b18DVE4g0OW8fwGg8Y42M6d4CAbNuDz3DE2kYBtKmdfNA22I5mEY9zvF03oenrM2SZVhYB4+DDqpfb1wdYZEWBVFfUOn3gCnHd4GOUdCp0x0Sg4ZCBQsWFVyxY1ARQFDnabDeOg3LPDTv72dnHfZRlrCqcT48kIt1JVcPhMRqwNi32vHlF3mYwQtDyepQKZpon06lLdm5sRLCYypzV6jR5+mOjJJ7E23rYN7y0uYt28Zg3Sm8vt85578P0770SGx8ICAk8GBmCfGIqC68qlhQq7Omsa0Ve/ikyP176W6JxzsN7bsKE+gR4HDhB985s4vhtuQKmpMve24pWzkF1qWlhsGVEUawiGf3GlD2S1IhAQ0YcdHZggOIKOIxRLweFYGpFoNJw5mUSqcSIhIkd27oRQyHVu9AY2EEA6M4tBZ55pLpLM4RAd/LixTCQCcre4KOr5caTcsWM4ltHRyp1Auf5YMikW8txJ2eerrQD/5CSub08PjD6Do8jSaRjydeuQEs7e8qNHcT6dnWKy4iLJ/LOW0HNFwYKfSHSH5oLc3d35RN1uF12lOTWCU7MDAbzPn9c0jAtuoFAPAXHHDqTD9/aiu2IFAbEUVr0tsttFRCCLUo0UE7nRCqc1txqtVIbV05cZ3/0uoqnf8Q4hIHLzLH3UeDEoCtHPfgb78+pX1yYgptPowrx/P9EXvgBPfS5XHwFR09AobNcu1B+79NKaNrfq7ZFV4XYLTsALsRYEvF44ObmzcjIJflNL7eRikCTwubY2wfPY0drTU5r/HDmCNPq4cRYAACAASURBVMGBAZGh43SK71ayL2Nj4Dnr1+OcWDT1+83ZJk1DCuPhw0QvfznsYjyObVQSEI8ehWM5FIJQ9JKXIAKyELEYPuP3G+t4XwItW9RA2O3g2Myhy6W0e72iISYHMjgc+M78vLGOz0TgZh0doiajouC5KpwT9RGJLJQZBa87VVXUmC12XlzjjwUvfffmZgZHJvL1MRKZeOgQBMCzzhICYjYLm8AZe+Vw3334/g03QEBMpWDbAoGlwTrM/zUN8xeLijYbxsx3vgMB8aabEIhx4gRsUj0ExD17wAHDYaLrrkPX6DqIwy27VCMsG4l4svDljUT0ASI6omnai1b4kIzAmhebYCwiERGZR4S/OUKxkgimKCAiqlq59l06DZEoFsP++vowiUkS3nvsMVFfYWho6bZSKSzCFAVCYq0pQ6qKiZG7PCuK6Gq1sID/DwyAEOqNWjaLyTSREIXU3W6RhlxrbQhNg4AYDsNI9/Ut/f/4OIit14toGSbh6TS86FxUuaNDdFLm7mZEoq4KRyu63cYmY00DUU4mRdp5KoX7GgiU7/7G4NossRiusccj6rikUjjfWrtcckrS/v04prPPXnodS+DPU/qpbIu4kzOTNKezMV7fwvosrYjE4rB6+jLj0Ufh4X75y5GuQ4Rnd2ICY6DQoVSIX/8aDp9rrhGNWKpBLod0n0ceQdHwyy4TkRe1dmJWVTSM2bcPqYQXX2z4q3lnbkF7ZFleVAs0LX/+bdmt4shkIGZks5jvg8HlEwSYp3L2TEcHxBTen6piYfzoo3j/BS8AH5YkCIuqisidcsc3MwMn7sAAoqdlGVzJZkMkoJn589e/Rg3Dyy4TXZPZ0V0KExPg0DMz4OIXXli6WyrXj/R6wTENjNGWLWoipFIYy15v5cjYiQnMb8PDwqkRiWDdY7aJTjqNNRPXdC/GOwoj7sqBHaHZLD5rJpNCL8Y1e3pzIVhMJCouJoZCyK7o6kJqLwt8e/bg+p99dnlnwhNPIArxoouIXvc67GvnToyDs8+uzBfZoS/LRD/+MUTEq64CRzt0COPm9NNrvw47dxL96EcYj1deiYhLA+vnknfagnapaWFlEfFGIvoWET1ORH+padrhFT4kI7DmxT6JTAaGiWsSahpIi6KAjFQy6qoKo8efL1x05XIgNuGwqG/Fher1iEQg/KRS8JRwE5HCY2VjuG1b7TVcGJommphEo9j+7CyErt5eok2bYMiTSRFO7/EI4bBeEQcsEEajEL0KPT3ZLEK/WWDcuLE4sU0mIUTG47gfAwO4Nxxlxo1b9B0T2QOoj1osnJinprDvwUFsT5axH4fDfMFwVRX1Vubncd+HhkB2allMyDJSBrlD9bZtpprM6EXEU94WNVpMZPLSEhJLI5fDsytJWERYwRNfDGNjRP/8z1jovve94jymp3F+a9eWJ5SPP45OoxddVFsHP1Ul+ru/g9D3wQ/CG55KCTtYCxSF6Fe/AvG++GKIEyZQuHC3mj2yNC+qBbKMuc3trn+U3WoCpx2HQqJu23LWk5RlOIgjEcxjzG8XFlA3MBBA0zV+7tmZy5GFpRAOw6nb1QXnKos32Wxxh3g5PPggbNtFFxFdcIEQ+0pFC87PQzw8cQLHf/75aAZTap5OpcBtPR7jKa3UskVNB6453tZW/pnJ5bCmcLtFpD8R0qIzmdLdxcttj8tCcfBE4RgyIiTKMsaipglHqFl+x3yR+alV0psZejGR64HnchDtuDwL39uJCTzjp51WPiDi0CGif/s38Kq77oJ9278fduLMM82tmX/9a9RUfOEL0Sl5/35RF7bWNe/TTyNaMhZDnfqrrjLsDC8nIlrNLjUtLCsiWhSWv9jcACQQEA0XmNhxWmw56IXEjg5sQ5YxUS2eDCju6alcEDoUItq7F+RrzRpsq7d3aSTgrl043q1ba0thK4VEAkTryBGIdrIMYfO004S4We/FO0f5xWLYRyFpDIdhxBUFx9HfX3mbsRiIcCoF0rhmTb4wq6pCVOSfLJJyJ1+OVozHcQw9PZjENA2ioixju9VOKrEYSI6qCiLBXcPNLuJzOQiIJ07gODdtKp7KUwZWl6nqbou4Dg1H3XIn5+US9PRFuvm51xOtUxWrJX2ZCAT5wx+GLf/oR/Oj4BcXEZVUbmG0fz/S/TZvJnrFK6o/Dk2DkPmjHyES8fbbYfu5+VgtkGWQ5KNHkb78/Oeb3oRF7+6fYXleVAtSKbwCgdqjWVc7uOED85RgcHm7sWYy4FpTU5hbOOX4kkuEWBiNgpcEg+UX7YkEUgx9PvAySQLvjUTA48yU3vnjH1E39ZxziC6/HBzU6SweLRiJIOLo4EHwpnPPhUhQjodxCRynE/zRxHzaskVNCC4j1NVVvrlFLIb73t0t1kuqKjqGmxwLfxYAmYsEAkvXQ6WERE3DOMzl8H49HKGyLOoxWtGpqhcTf/Ur2JObbhIpy7EYusV3d2NNUwpzc0Sf/jTux3vfC1s2OQkOMjJibi30v/+Lsi7nnQdutGcP1p6bN4t6idWW7HjsMaLf/AZj94ILICCaaM5idVtkCbRExMZiVVzsSESIgHY7DHM4LJphVFqwqio+zwvdeBzvdXWBhBklhfPzMKLckcztBhnTE/FcDkIid6iqoabLn6FpmBi5xiHX9lAUiInhMIzymjUw0tyYpR6phJxOU6x4t6bhf2NjIKqbN5tf4IbDIMyZjDiHUp51Wc6PVsxkQKinp3G+IyM453gcnx0crH7BzanQXi/GiCyLVAsWFTs7Sxdz1iObJXrmGZxnVxc8cZXqhhSB1SeoZbNFXC+FRWbu5LwcQpbeu8zbP5WFRH36stttbVFC0+Ap37WL6O//HtHURLAz3Niq3KJ9aoroe9/DZ1796uqdF5pG9K//SvSNb6Dw+NvfDvvLqVq1jOtcDrUax8ZQk2z79qo207JFFkc0KjjVqWi3zCIeh5ioaZj3lyMdPJkEH2Lh4cABiIXbtoFbtbfj+T18GLZ2ZKT0MWSzEPHsdtgxhwMLfk4pNlLehfH001hYb9tGdPXVEASIYOf0wkgyiVpne/diTJ19NhwUleaETAbH5XCAT5scjy1b1ITQNDwvuRzWQOXGwMwMnq+1a4VzPpuFuOh2m6tvxxGAnNmkaZi3C9dC3FCEhUTOouAoxnqWYbFyejMRrsmTT0K8e+ELIa5xV+odO/CZs84qzXcSCaLPfAb3+P3vx/2MRIT4uHmz8WN54gmIkdu2EX3gA7BxmQz+9nphO2VZ3NtyXZ0L8Yc/4BzTaditl73MnKOFrG+LLIGWiNhYrIqLraowOlyUWpKEgOR2L00tLgRPaIcOwUBw96hqJoqZGTQ4CQQwOakqjKL+GGQZ9bDicaRvVFPkVVWFaMih9TabSFPmaB+uU3jsGPYbDIr6gnxt2tura3WvKBAJk0lM8PrmH9ksom4iEXgLN2yo3tOmaYjymZ7GZN7eDgGw0jGn0yDa7LHMZHCfw2Fso7s7v7YidzSshFwOgkAxUssd4bg+p90uujoXm0QzGZDw+Xlcv3XrMPaqIBJWn6CW3RbpxUQmEMsRNcJCov5+n4pC4mpJX2b87GeI/Hvd6yCwEeG+Tk7ifq9dW/r+RiJE996L8Xb77bVFC959Nzow33or0fveBxJOBAGxlvGVyRD95Cews1ddZY68F6BliywO5lR2e2X+1AKgKOAXiQREEaNdlSshnQZnyWZF87twGByS63On0/hfMol7tmFDaWFGUbC4lmXUB3O7se2xMZH1YZR/7N5N9ItfYDs33ig6WOud75kMsix27sS42roVUUJGbGAuB3tks4FrVTGHtGxRk4IjaVUVz0opkUlVIZZrWn6NzkQC64L2dnOpriwkcjaTLGOsFjrgOJMlk8FnOYtiubqyWzW9eXyc6Ac/gM259lqxvjx8GBl627aVzs6QZaIvfhERh+98Jxwa2SzqqjoccDQYfeZ37UJ2xsgIskXGxjCHnXHG0vFR2NXZbsf+Su3rd79DqYZcDvbrpS+tqiSZ1W2RJdASERuLVXOxczmIhi6XMFjcRIQ7fBWCC4nPzOD7Ph9IFHc9rnahNzkJAxYMYtJJJrE9fXqzosDTEokgzNtIiq+iCOGQvWJ2uzi/crU5olEYdUUBSfR4RJdBTcMkyoJisVohxY7l+HEcx9BQ/kIjFIJ4pyiYFAw2BqkIVYWXe3YW2+7qgphYjCznchBOJQmTisMhIoZYbOZoRU53JcpPg/Z4lm5bUbANTcO+y0UTJZO4xrzI51RnFj9TKUQghkJYGAwOYiKu0hNp9QmqYbZIVUUnN+6aV89upKd6fURO+5FlXNdSHQuthF27iD7/edT7estbxPnMzcEZNDhYuoRBJoNi4/E4BMTu7uqP4zvfgaf9uutAlDnKs9ZOzOk0BNL5eUQT1Vh83OJ3e/XwolqQzWLMer3VORlPVSSTEBNlWXRGrkYUyGYhFqbTIqvG74eT8okn8Pe554oGfwcOgMuuW4f05GL3TNOQnZJIgGsEArAfY2NCpDFqRw4cQPOC9euJbr5ZHGswCFsoy7CbzzwDG3j66aitanTxLcsQEIkgIFY5R7dsURNDljHn2GwYN6Wek3QatfUCgfy10uIixjKvtYyCBUJJEs5OjuTnccZZTZom1gPLDRY3rZLeHI/DOep2E912G9ZLmgY7dPAgbNG6dcX5n6Yhm+Kxx4je+EbYBk0TmXpnnWV8DX7gANGHPoS15sc/Dvs7PY21X7m1NY8DfVq5PtVZ0xBl/cwz+H3jRjiQq+RwVrdFlkBLRGwsVtXFTqeFaMgTSiyG99va8ieBWAxGhjtZ9vdjgmJhMZPB39UWFz9xAmITpxAvLECsGBgQ3mlVRb2GUAikT188mCHL+cIhkah7VSwMvxxyORDISAQpBCMjeJ+bsnDRYYcD16u9vXg6rixDoMtmQTpZtNU0CIvj47humzcvz+JDUTBJzc9jn8Eg7h8bflXF8eVyIoWZxT8iXGc9WVGU/NqK6XR+5Bg3KnC5QJS5+7XRa5/LLU11djgwySYSon7maafV5IG0+gTVcFukqhjDnNrgctWPuLGQqK+PeCoIifwsrYb0ZcbcHAS77m40MOFzisfxv87O0vVtVZXohz/EIv3mm6sqU/Bn/Pzn2P/llxN99rPCAeLz1RZRm0hAQAyHUadxdLT6bZ2E1Uf3quJFtSCRwDhra1veWn+rDVxrOxrFXN/TY3xBzHwhmcTc0dEheFguh4gYVUUXY7ZFySSieZivyDI4WGE05NgYhJd164TNmpoS2SRGhZJjx4i+/33wrltvxffjcdhCnw8d3Z98EuNn3Tocq5kUaUUBP2euVcPYa9miJkc2i/WRy4U5thQ3CoUwdvv68tccs7MY7/o1gBHohUQijFVVFc+UomDcud3GuzbXA1ZJb1YU2ID5eaLXvEaU5kqnEXXMJayIindy/tWvkN3xilcggpEI69OpKUQPGrUXx48T/eM/wt598pOYr44fh91Yv974+RSmOksS0W9/i2AfhwPBMpdfXlNQTJPeydWFlojYWKy6ix2Pw4i0twviwamlnZ34OTMD0uNyYeIp5hmNRGAM/X7TdQ/+jKNHMcEND4OwzczA8AaDYp+qCsK1sIDF29AQiGIigWPkLsQulxAOa12YT05C6PN44FlhcsupuNEofrJHrK1NEFlFEanR69YJkTWTQfpyNArjvWHD8k+4nOqyuAiD39eHazs1hXHAx8eesUymdORisW3raytmMqITc38/xpI+FdrIuaoqjmtiAuk9uRyOZ+1aTLY1ClhWn6BWzBZxjRwe705nfcTEYo1WVrOQmM3iOVkt6ctEOKePfxx2/CMfEQRSlvEccwf5UvfyN79BXaCrrqq6viARET3wAAqOn38+0b//u0jFYvtTLeJxiJyxGNENN2CuqgOsPrJXHS+qFtyFWNOWp87fagfzhmwWXKSnp7RdVBTwzngc17m9HdxLP3fs2IHtnXeeKB/Dta8lSWQyhMPgRYqCbQSDEGGmpsBfBgbw3cVFvHp7jUcITkwQffe72P/tt4sa5Owsf/xx/D0wAPGwmHO8HNhJrCg41hr5rtVH7Clhi1IpjE+fL78sUiEmJ/FMDQ2J9Z0sY7zY7RgvZmyUXki02URkI5cj4H0U1khcblghvfnBB5F2fO21ommKpqHEQTqNVGSXK7/5Cl+/p58m+trXEH14xx2iqdOBA7AXRh2ZU1OofWi3g6e53ViHdnUh8rma+UpVcfz33Ydt+f0YV5dearrZZSGsbossgZaI2FisuovNkYSqKrozczfemRnhqeVaMuWMTDSKyc3nK99xs9yxHD4sBMKeHiFgBgI4Bj6+Xbsg7PX0iPBrt1ukKtcz3ZIIi8bDhyGerF+/1LuiaSCzHKXINSTCYQgEW7eKa7K4COPP4d7V1HisBZymHA7j5XSiaQ2HnIdCGBPBYPWC8OIiJjmvF/eFu7QxOA1aH7VYbGxFoxAQ43EhLq1fDwLf2VlT5KbVJ6gVt0XcyZmJm9NZO3kr1miFhcRmJIbVYDWmLxPhvL72NaKHHyZ617uInvc88f7UFMbK2rWlbfNTTxH9/vcoNH7JJdUfx2OPEd11F2zaf/4nxlIqBRtTS6R3JAIBMZ1GPTOzi/0ysPrdX3Fb1Exgccvlqn7+PJXBnDQchl3s7s7nk6oqHLdEouxJ4fxw5Ag42+bN+WL/+Di+OzKSbw9UFbwlFBJ1mjnVmQg8dHISx2KknA4RnCnf/jb289rXwhbNz2M/+/eDI3V3QzzkTBczUFVRXqivry4ppC1bZBHEYnhxBlQxyDKiaZ1OzL3MM9JpjD2fz3yzSuYvmYxYjykKxrZ+7dVoIZFIpDdzDe9mwd69RL/+NcopvPjF4v3jx2FTzjhjacovi4lHjqBB3egoeJXDAeF2507Yom3bjPHHhQU0uEuniT7xCexvzx7YjK1bq79HsowIyYMHRXmvCy4QZbFqiA61ui2yBJroMWnBipAkGKJIBBOSx4PJZWFB1GsZHTVmkNvbsT2uG2i2wLgkgbApCqIS7XYs1EIhEK9IBNtkb7HHg8g6nw9GcDkjedraiM48E6T02DGQ2NFRsU++jm1t4pj37MHiNRBAurbPB2IciYD0Llf6ciVwJ8LxcRBQVRWpy243jq+trfoFEIupwWA+QVEUkQKdyWAijEbxP0kSgiKLi4kEPHeaBi+914vjTqXwPY5s6ujIj0BooTHgWigsJqbTtYuJ3C1eUYTN4YZHHKVoZazG9GXGQw9BQLzhBiEgEsHmZTJY5JaaRw4dgoC4aRPRi15U/THs2AGiPTpK9KUvYSwmEthvLbZ2cREpzLJM9Bd/YVxEaOHUA9ddTiYx7uvZmfRUgCTBQej3g/fNz+MZ7u6G7eQyJ34/5v5iNmVhAVxtcDBfQAyH8f2+vqX2gOvMuVzgRoqC1/w8+MX0NP5nND0vFEIEotOJFGaXC5xwxw5w7bY21AvbtKm6RTanpmazdRMQW7AQ2towH0WjoolJIRwOjA3OQGI+7vHg2YlEYJ+Mcn29gKjvvKwo4P2xGI6DHaM2m0g3bkSmBQtWHMTRDOnNc3NI8x0ayuc2kQgExP7+4jUDOdLzq19FAM+dd+I9WUY2nsMB8dHI+UWjqIGYSBB99KMYE889h+uzaVP1vDqXQ51XTod2uZD9MTKC48xmRZq507ny96KFpWhFIpaAJEl3ENE9RDSqadqxOm121V7sZBIej1RKpJF0dGBi4CLVRg1APA5j5fVW16lQVUWq7/AwDFMoJASvwUG8fD6IjZOT+HvjRvP7qgZTUyCZLhf2WVgHMp2GUSVC1ByTvR07QGJ7exE63tmJ67MSQkI8Dg8lp15PTQkhee3a6oltOo375PFgoqq0jVwuv7Yik5NwGNGabjeuFwvFnEquaSJagD2i3HXOYD2ghk1np4ot4k7OXCe0WtJQrNEKkfU7NnP6ss0mGlKtFhw5Au/2li1E7363uEfpNGwLpwgWw8wMFtvBINEtt1QfQbB/P9Gb3wxCfs89IN4cwVzYSdIM5uchIBIR3XSTuVplBtGyRasQsZhoFrKanvVGIxoFV4nFREZKV1fpeT6VQoqw2430P772mQz4otdbuvZXNouIGpsNC2EWHWdnse9t24zxtWiU6Fvfwv2//Xa8d//9cED39uK4tm2rflxoGsSJVAr2qNpa5EXQskUWgqZBMM/lsGYrNTbn5jAmed3E4JJDfX2VnR3sKGbx0OkUdaztdrzPJaX03ZvZAUzUODvYLOnN6TQikRUFdoCvfS6H9aDDgYYoxY4vlSL6l3/BfXvf+2A3VBVRjZEI0p+NZPwlk6gNPTaGWtWbN4sAl23bqm+ImskgM2NqCmtGTYPzeMsW8RlVFbUTiSp3dS5ARVu0TDbklEIrErGFmsCeVo48ZILFpESSROqIUUGQi1pz4xEzrd1VFcatqwtC3ZNPio7F/f04jlQKP30+0VxjfBzfrbaugxkMDsJ4HzoEYzw8LGrmpFIQEDnt1u3GtZ2awiRw7rmY6CMReAenpyEocKfnRniTuXObxyOapvj98G5xisTBg6LJjVHkciDbDgfO1ch9cDrx4v1oGkThPXtwjV0ujKPubrzvdOZHKw4NYTLjCM9wWEQoVDs5tlAduGszi4mcrmtWTNR7sPXRh8XeswJWa/oyIxZD1F9nJ9Hb3ibujarCHjidpVOmYjEIdF4v0StfWb2AePw49h0IwHPf3Q27QQQ7UO31npnB8TmdiEAs1RCmhRYK4feLBmycpdGCOSQSuH4+n3BOcT3eYlBVLM55QcuLVU0D55Gk0nW6OANG0xDJ7PHALnENOEkSJXTK3c9kEk6RTAZR2Tt3gscSoU7YeefV7jhm8aenp64CYgsWA6f7z82JWp3FBJpgEByEa87zZ7q7McctLGB9Vey7XPOOI/u83qWNFony05mTSdg+/rvREYmczszRxKra+PRmTSP6n/8Bx3nVq/LXI4cP43pu2VKcyyoKeMzsLNE73ykyH8bHEVAzOor7UIkLZzJEH/sY+NEHPoD9cYPKM86ofo2UShH94AcYd6edJgRJvYBIhGNzucCfeE3AdcC5lnprXlxZtCIRS0CSJDsROYkoo9XvIq2ai80erLk5GKyODhgqniza24XRTSZFF2czhCWZhAF1u8tHMqqq6KicSgnvkcsF4ydJME4sNIXDOHa7HeKdx4N04ePHMYkaDfGuFbKMCJxwGIvL/n4QVbtd1IM4dgziVyAAD5BeJMxmRQ3FZBLvuVxCUFwOEUyWQZQlSRwjEcZBIoFzSCYhbuZyIj27Uiogd3PWNIis1U7Ys7Ood+nz4RqoqjhOfbQie7a4S7DHg89kszh+RamY6txIj/spZ4s0TYiJTOjMdoxkwbBYfUSrNFpRFGHTVlv6MhHO77OfhUPlH/8xP8JnZgbnvmZN8fPOZom+8x2I/7fdVn2E3/Q0io1nMkRf/zrqmHHnSL+/+kXL5CTRT34C23LzzdVF1RtEyxatUuRyggO1xB7jSKVEgz+ex71ePNcLC4KzFtbpfu45PLfPe15+rWkWSoaHi0fvaBp4UTyOZivMNTkKsbsbdmB+HhyEG0kUOlnTadi0mRlw1ulp3P8NG4guu6x42qJZLCzgOLu6lsUmtWyRBSHLGJuckl9MWMpmIUJ5veDojFwO49XlWur85+wJotL8hUU6jkjk9xIJ/OT0Zn1EYmHn4eXESnVvfvxxokcfJbriCkQNMqanYWtGRvLvA0PTiO69l+iRR4he/3qiiy7C+1wiizPZVBWfJcpvRsiQZWSHPPss0XveQ3TxxVgnT02Bp3Hgi1kkEugyHQrBxoVCOJ7zzjP2fX1jRiJRFqmaNdoy2ZBTCi0RsbGw/MXmVNHZWTzIgQCEIxaJ+P9EiCxhgxuLgSBxLUKjYCHR5crfnqIIcTKdxnsOh+iozPvI5UAMFQXprHycnDYry/DGdnZigjx6FEStlIdnOTA9jdRbbgizbRuOd98+kL01azBhlDserm0SjeKasNedU3RriaZhqCqE1mwWx8PpC9EovJhdXfldsOfnRde/ri5MOsVSHjQN1yCbLf0ZI5iaEhGI7e3Y3uhocdIvy0JQ5J/6jmZcf1HTMGY6O/HSCVkWkKDKwhK2SFXxDDOJ42hFoyjXaKXZhcTVnL7M+P730ZXvzjvz6/1Eo7CH3d3FI9FVFQLd0aOI8KumqQAR9vHGN8J+fe1rcCAlkxhzPp954Zpx4gSKhbe14fiWuUFGE49iQ7CELVopJJOYowKB1edEqDc4qyCTEWV0CsVXboASi+EzwSDm+PFxpPpt2CCaoRCBg504AVtUauE8Pi5ERhb6OGPD681vohSPiw7SHg/27/PB5nzrW1i0Dw6CwwwNoTTM2rXVNRssRCgE28qN5ZYBLVtkUWQyGMNuN8ZwMW4UiWDsBoP583Iyie+2tWFcce1mrk3t8ZRfv7CQqE8d1qc3Oxx4jm02EbnYSCGx0enNx46hVuCWLUQvf7l4P5lEkATXxC+G3/wG2Q8vfzkimYlwL3bswL3Vpz+zMMt8mK+pqhJ97nMQMf/qr4iuvBJr/qNHsd6vlm/FYkT//d+wgWefjTXbyAgaQ5m9lwZSna1uiywBCyV1NRaSJN0hSZImSdLIyb+/fvLvfkmSvilJUliSpJgkSd+TJKkO/sHmRzSKiJGJCTyso6NLO9RxgxBVFd3viPCe04n39F12K4EjyrJZRLuFwzA8Y2P5HuU1a0C42OPL4M7BNhsIIguOHg8IHxffnpoSdREXFyFGlUp5qTf8frFgTaVQm+tPf8KxbtkCUltp0nI4cO4jI5hchoZEI5ajRyFITkzg+lfrN5iYwDGtXSuEvnQa18vnyycVNhtSyLduxaQTieAYxseX3v/5eRCYYLB6AXFiAmJxZycEy0wG3rJSxNvhwKKspwfns2ED+2MeSgAAIABJREFUIpD6+vAdrxcvux3jbO9edH/duxcLikbiVLZF3N2dSWg2i2eEiUMlMKHQP8ssHrKY2GzQNJwjL4R9vtUpID79NATEyy/PFxCzWdgUr7d0KYvf/x5R3FdeWT2hjUaJ3v52kOMvfxkCIneB93iqFxCPHiX66U9hi171quUVEB9+ePm2XQynsi1aKfDzz9GxLSxFLgd+yI7h7m7wuWLRmxxtNTiIeWB6GumBe/aAD2zYID4ry4hMdLtLN0PiRoJ9fUJAVBRs1+FY+r1AADZrYADbZ+f1Zz5D9Mtfwm6cdRbRddcRnXMOvl8PATESgc1joafe2L+//tssh5Ytqi/cboyLTAZjpRhYlF9YEBGGRLBRbW1YX4RCwlZ5vfhfpfULC3MsJhLh2eS1kaKIGrF6Ttco/sbZMHyMRvlnNYhEiH71K9ioK68U76sqgk3s9nwnhx5/+hPEx3PPJbr+evG9ffvw++bN+feCoyv1EaCyDD706KNwsF55JY7p2DGMj1L1YI2c13e/i7HxghdgzT00VJ2ASCRSnb1ecDVVxZhMpaBTGEHLhtSOlohoHvcRkZuI/p6IvkZEf0FE/7aiR7TMSCRAslg8WbcORqxUeg0LNLmcSLMlwgRkt4PIsDepEjgaJ5FAFNyxYyKybe1avLq6ynvo3W4YT02DMc1m8b7NBiLX24vjHBvDtjZtwkS4e7fx46wWXPS7uxvGOpmE8Z6bI9q+vXQtsHKw22Hs163Dea9bhwk+GsU13LsX+4xEjC9KZmbgPRoYEItiRcFxOp2lUwntdpD1LVtwLizITU3h++Ew7m1XV/XpWidOYJs9PdhOMgmB2EwtTSKRCt7Xh+9v2IDX5s0Y714vJvHf/ra641wGnDK2iMVEtxuEI5sVnu5K4KLd+s/qoxKbCZzGI8uiplYzR0tWi6kporvvxnPFjQOIRMF/my0/nVCPZ57B67zz8tN8zCCZJPrrv8bi/QtfwHZ4rnG5qndmHDxI9POfwx7efPPy1VXVNKKvfIXommuWZ/tV4JSxRSsBnnMTiZU9jmaDLIua0ZkMeA/XYq5kNz0e8EefDw6NWAyOcf33Jidhk4eGSkdmTU6Ca3BqIWdWKAr4UikHUHu7aL7ykY8QPfAA0ZlnEr3pTei6LEk4xnoIfrEY9hMI1CclmpHNgivfdx/RP/1T/bZbI1q2qEr4fBgjyaSoCVwIrpvIjSoZfj+ex+lp/B0ImHPEFRMSiTAXt7XheeCa9ishJPIxMp/M5eq/b1km+sUvsN3rrsvPujl2DOd++unFr+vx42gINzJC9IY3CHt1+DDmjU2bSmcBsphos2Ebv/0t+Mt112GfBw+Ci27cWB0fXVxEmYZMBg7j48fhHLn44tr5LWcoeb0YK88+S3TXXbVtk1o2xDBajVXM42FN097Ff0h4Av5akqS/0jQtunKHVX+kUkI8cjpBuPQpxeXgdsPIplIwhC4XvtfRIZpYFNajYWQyIlWZPT7s6crlxKRiJqTc64UYtHcvhMQtW4Qh7uiAcZ2eFoWvN2+GZ3XXLhC75SiqGw4jgs7nw8S8dy/O7XnPw/8PHsQiuxYvNHcdbm/HxJRIiLTnSATXPxAQnylGeEMhTALd3aIxAHeMVlUQ5Ur3wukEEe/txXWemYH4Z7dD5DQr+DGOHsUk2dcnxtbatfUhyjabiEjkVGauV9kkOGVsEYNJnKLkp/u6XKXHoFUarejPx4j33qpIp4n+/d/xPP3VX+Xb1sVFUdagmC06coTowQdBZi+9tLr9ZzLoAL17N6J/LrwQ8wzPVZXqt5bC3r3ooDo4iDSiaoXIUuAFiyyj2+LddxNde21991EDTjlb1EjY7bAJiQTGabVjdLVAVcFfWOhg/lKNzRwfx3c3bBCp0MGg2P7gYPFnOZUCh/H5wGEYi4vGOtaeOEH0xz8SPfQQ9vmmNxFdcAH2uW8fjqFUWqkZxOMiW6Qap3Qh2KmfSICPP/ggGkBs3Fj7tuuEli2qAe3t4FfRqEhF1sNux9ienISAz01XcjmM10gEY8OIkF+IQocvP892O9ZBXNpBliFacjpuI1ObeV8ctaev5Vgrfvc7rKtuuCHfefD/2fvu+EjLav/zzkwyM5mZ9L4lW8k2dikiSK+KUkQQC4KKHUGvqIhesaBe5HKtKCpW9FquIoiiAhZWFhaXBRa2ZGvKZpNs6iTT61t+f3w5v+edlnmnJJts3u/nM5/dTDLvPG95znOe7znneyYnsWdqb8++V5qcRFCxuhoN4nhvOzIimuEYaer24IPIhr78cqK3vAXXeu9enG9nZ3HnOT6O4xKh6mTPHtihc88tf4XNP/4Bn64Mds60IQZxnG5TZhTfS/v5KSKyElGRSb5zD4kEMtV6euAMtbYiipGL9MsF7qwVCqV24OJFilPmuXzP68X3Dg9jAeOunNy9uKkJC5aigNgqtLTH5YIhjMdBEOozk+x2fI/bjXEkkzjnUAjd8QopwTaCqSkQiJyuv3s3xrVuHVK916/Htd6/H4t1OcCEYXs7rsOKFVj043GMZd8+kHJ8/kQ4/5ERoX3JmJwUznYh0Ua7HenwHR14zlhf0+stPKrX3Y1ntK0N5+Hz4TkptsHCdGBh9cbG4rOfZgDHvS3KBe7yV1kpuhfrdS3Todd60T9n+k7Axwqs/ROPYy4dzwSipkF7cHiY6MMfTiX7uSMjN0FIx/g4svyam0GeFbNpUBSiT38aouV33omMH27MxeRtMdi9GxvpxYvRJbpcBCKX3PMzGwwSvfWtRD/+MaLtv/51eb6nDFiwtmi2wI0JCpFzON7A5CFLs7hc8Gdqa4uzmd3d8GU2boS/19CAtaSnBwELjyf75juZhK/Esj783aEQfLuamtxNS0ZHoef65z8jo9rpRDDlHe+AX6RpODfWmi6lGoa16lh7sRjo/fMjR+CPBgKwv489BhL0nHOIvvjF4sdZZpi2qETU1sLWTE1l3/twYN3rFU0UuQFmSwvs0+Rkcd9tswmSTu+rcXmzyyVITlXN7tfNNPTlzazNV+r379oFSaYzzkiVVEgkYI/c7tRgBSMWA4GYSMCOsN0JBmHD6uqwt82HRx9FufGFF0Kj2mqFfUwkECAoJpFmZITot7/FdbrkEpxfdTUCwOVMzNE0ZFDefTfG+r10C1A4TBtiEGYmYuHoT/t56pV/5329vCyD0JmagpFk0q7YaAHrI/p8MGjcYbmiAu+PjuJ3bIglCYuTy4V/szmF3GDF5xPNPAoZn8eDdPCDB0Ek6jUiuLyZxYOtVhjzvj4Y+BNPLI+wOS+8LpfoeFZdDWKPN58uFzIg+/rwe+7QV6xOVzokSTShaWvDQsSaOcPDeFksImN00SLx2VAI46muLq4EmTtOrlghnoOBATx7bW3GyncOHMBnODt2bAzPay7dolIwPIznrb5+Zo5fAo5bW2QU3JmNOznHYqKTczrJxBmMLPbNYPvD4tKzCX335VJ0+OYLnniC6PnnEeVeu1a8z9IIlZXZN+2hEMTC7XaQdMVcJ1Ul+sIXkDlz++0o1eHsbCLYsmLu/44dRFu2gEy47LLSneNsmxFJwjrw5jcjsPSNbxC9//2lfU+ZseBt0WyASwZDIeFPLQRoGs6ZJVhYg7kUezk2hhLBxYtF45PqatjhHTtgF1pbRYdnhqrCL1MU+JI83xMJHDMXYTc1RbRtGz7Lfm5NDUiDs8/GOU5Nwf4tXw4faXJS+B6FBvGjUfixdjsCL4V8lonDcBhEJPvn7DMSYaO+dy9s3rXXzqnAl2mLSoQk4ZljvU8uYWaoquiYzFVKvHdhbUWfD/uJYjqA22yiaQaTiozKSqERGwphHHb77GckEomGfZyVmD5WoxgZgV/CTUYYmoaKNFWFrUk/tqoioDg8DHkWllRIJuEnVFYiOJJvTP/8J9FPf4pOzh/+MP6+uxtzf80a0eeAr7GRuT40RPTQQ7B1r30tNOWrqpCNWM4GYYkEsg//8Q+is84i+uxny5Kpb9oQgzBJxMKRKy44b905RYGzwdlg9fVYNMoRKbBYhB5fMAijG4mIcuV4HNHf5mbj+l+80ZyaEk5XIURibS3KhLu7YaDTjay+vDkSAVF19Ci6W514YmHdpdMxPg5Hs6IC1zsahRPb0ZGd9Fi1Cn/f34808FWryiOynQ6HA6+WFtwTbi4Ti+H9nh44A04nrrnDYSw9Ph2qivMhwndxB2m/Hwvh4cOC2Mx2nqxrOTSEqFxdHe5NfX1qB8RyQNMwJr8fm4JcGm3HEMedLSoW3LVZlgWhmI1MZM0dRUm1Gdxohf8/G4jH4QAd7+XLjP370Znv1FOJXv/61N+Nj+P6Z9vsJpMQC4/FiN7+9uIalWga0T33IPvn5ptxHCKxQXa7i7v+27dDw3b1anRDLDbglos4ZOzYgY16LEb0+9+nCq7PEZi2aBbA1QSBgCgZPN4RDmMNZp1YzpIq9ZhdXfD1OjtTfzcxAZ9k+XLYaNY85OBmfz/m4fLlwhdUVfiLkgTiUT93QyHYiQMHsB69+tWw+1u2EJ18MjJ/iOBXJRLwh5lkrKvDeCYmQMo0NGBs+daoeFzoVRslEDkjm1+aJtYmDuxLEvy3b30Lwd93vYvo/PPnHJlt2qIywGLB8zY+jv1AY6PQo+amKkuX4nmYmEhNNPB48Hd+P+ZqMXum6YhELm+ORkV5s9N5bIjEUsubIxFkAbrd8Iv0Yx8agq1ftSrzGmoa/KmuLmQxc1BW02BrZBkZ1vn28c8+i0YqJ50EmRerFQkak5Nij0UkMj6NkIn9/ci25nN67jmM44ILSts/p8PvR2B4506iq69OLeUuEaYNMQiTRFzAUFUQWRMTMIC1tXA4yhklUBQYeRZ25m5dbje+K5HAiyM6RlFRAeKI9frq6gojPRsaMLa+PpCJ6YKxXN48Po6x82LKGYnFRDpGR3GtZRnXwmZD2XI+Mq65Gderuxslx4sWgTCbqYWyogJOAkfoEwksZKOjggBdtQoLeCHlf6yjKMuCQGRw+c/UlOiW6PGATOTv0DQsmCMjcODr6rDY1dZirOWEpomSKc7INTG3wVnO+sxEWRbvcVdmzkjUayGmN1qZSSeUszwUBWPjZjHHM6amkLnS0oJSGf35+v24HtmkETQNxN/YGDIQm5uL+/777kOpzjvfie8ngvMuy8V3v966FVmVa9eiVKdQEjIfccj44x+RddjYiP9v2FD4WE0cP2DdTu7gXm7tzbmCaBR+UjIJn7S5uTwbUFnGptNiwSZbP28DAXxnYyO+j31kbgAXj4MUXLw4Ncg5NgY/adEi4dfEYmjYsns35vWmTei2fOAAsmbWrEHggb83EsmUcrDbcUzOKhwdFYROrmAyZ0TabDiH6eySooiAfiwGm8QETVUVrrfeJh06RHTvvfjcRz86p6RdTMwAbDbss3ifyJ2SWSuRO51zBZt+L1Nfj7nr9Wb6+0bBvlo2IpEzY2020QjG6RRlxrPpU3F5M/uVPI/yjUFVoUEYi0GmRG/fgkFUH+RKYNi8GVICl1yCTGZGfz98qtWr81eKvfQSqho6O1GdUVGBfe7Ro7AdnNnI58ialdORiT09RH/6E56Fyy+Hn6RpIBCLbZ6ZDQMDRHfcgUSPm24iuuaa8mssmsgPk0RcgOCyCSZ0PB4Y+XJFCGRZRDNjMbxns8GocGSUFxSHAwYvGIQhKiSKwMfkjERufmEUzc0w+keOgEzU61AQYTwtLViYxsdFVJiJxEIINBa4DbwiycoRcKOEbVUVCMfDhwW5tXLlzJQ/Hj0qMiTZUW1owPcS4Z75fLjmnEnIpc3TLZpeL56HpqbszxqXUPB1Hh1F2XltLe7DoUO4hqtW4b3+foxv6dLyOgyahsU7FML3lrOboYmZhyRhXjGZyISinkzUSyjwszMbRCKXXBMtjPJlIpzzffdhc/vpT6dukuNx2BGXK/um+Kmn4JReeGGmfTaKn/8cJT9XX41IuyThe5PJ4u6BpmFcL7+MdeDCC40/K0aJQ/7bb30LXU9PO43oV79KdepNLFw4nXh+IxHYtONp8xSPiwYnNhs20eXscr53L67bKaek+iHJJHwfp1Ns2rlLvNsNX0RfAcHw+eArcAZhMgmS8qWXYPvWrMH8dbsRBH7sMdiyK67A3Gct2Fw2kAjHXbIEZN/EBDbOTCbqN+bJJHwkiwX+bbbngv1zJg6JhB/HxGE2bNsG3bHqamRzL1tm+JKbmMew2/FMjI9jTra0pK6ZnBE4OYnnlJ8fScLzyXrihZbU8zGsVjyzXD2Sfgx9eXMkIjIfZ5tIJCq8vHnrVpBhr31taoBUUbDfqazM7vfs2oWKhJNOQnCV4fXCRrW25g+47tsHDcGlS0HGORywQ3192J/mmt/ZyETOWj54EJ3aWbd661bYpIsuKq6sPRd27oSmdTIJ8vP884+vNXA+wSQRFxj8fhj1RAIOw5Il5YkOsEPLDQKIhH5hVZVogMCEYU2NMPLV1UI/o7a2MGPAkTJ9aXMhm8K2NhjsoSF8b0cW2VTWyRkZgcEcHhalzfnKibgk9uhR0SFv6VJc92I6l61cifFweTP/XC6MjeH+tLSkOrScEbB8udDHYPFv1qfkCHZ1dWZ5IHc6rK3N/7yxHidrsoyMIB1eUdC9sL4eZKrLhYWunI6CqmJRj0SM6zOamJuwWIRWTjIJm5dMCjKRuwDqHVMua54JfUR9+XIuzdfjEb/5DbKob745VXJAVTG/rdbsmb47d0JH5+STseEvBg89RPTNbxK97nVwlCUJz0AshjWp0CwuTYN+0J49GFe+DtGFkIZ6JBIgPH/xC5Cf9923MEpXTRiH2y06oZbTBzhWSCbhS0SjsAn19cXrlOZCfz/839WrU4ODXHlAhMy/bJIKmiYqIwYHQRpaLCD13G7cg927YbOiUWz+Tz9dEI49PShbXLIEG3+rVQRRWEcuH7ixRCAgCIOqKthPmw3nRpQaqOfxM8mS7p+7XNMHszUN437kEZzTBz84J6VdTMwAWLPZZsOzIstYm9L3WNyheXQUzzf7Nrw/m5jAc15MQJ6z/JhIzJbRqC9vjsdTKwxm288yWt586BBsxcaNSBDRo7cX13n9+szPDgxAv3DpUqIbbxS2KhrFMT0e7NOmQ28v0Ve+gnn8hS/ABkSjIAEdjuz6i+lIJxN37SL6299gP6+4guiZZ2BvLrigOOmrXHjiCaJvfxvP43/+J3zDheJLz0WYJOICQSgEAx+Nwkh0dJSurZdICMeEO3jZ7TAYVVWZCw03WmFCiR1fiwWk4tSUaORRiONotWZmJBZSkr14MQz+yAgWKL22B6OyEn/HEa6+PkSaN23K7cCzY9rTg/NtbET2YanEFEfGu7uhM9bent3xLRQ+HxzTurrUxZ7Litxu8czwPaupwQISDsOxZVLRYhGOtcWC++J2F3buVivOtb8f17KpCc5IXx/OV98VsRxQVWSlRqO4pjU15Tu2iWMHJhMVRZCJnJlIhPuud9Q4S1Ff7lwK0suXy6kJM9fx7LMg3S69FNk4enAX+La2zOt8+DBK/lasgBNaDB5/HI7y2WfjX4tFZOFwSWghUFU4yfv3Q9fszDOz/12xxCHD5yO6/npkO952GxzlcnYyNHF8wGLB5i8UwjNdzmy92YQsCzLUYoGP4PGUP4gzNYVNdnNzZpbNxITQv073HaNR+CBVVaiCkGVR8jc1Bb9uaoro739HYHXRIjRH0DdhGxiArmtzM5ojVVTgOF4v1p6GhsLOt7pa+NJeL3yiSATXbskSIUnDGYd6/7y+Prt/ng3JJDK5n30W9vv662dGk9vE3IKmZWo2V1cjWcDvxzOr92O4amtoCHND/+w7nfhsIIDnr5ikFT2RyBl+2f5GX94cDIoEltkmmfKVN09OggxrbUUWnR7j47BHS5dmzjWfDwHFqiqU8LKtUhRkFlosqc1Cs2FoCFl8Lhc6qtfUYJ4fOIDPdXYWlsgjSQiq/u1vsD2cgej349zKFXDQNKIHHkC35xUrIKfQ2Xn8SwHNdUjabPZFNzHrFzsaBTkWDsNpaGkpratfLCYyDmUZ7zkcomubkc0O68o4HJmlGD4fDGMxBI6qwpljfcdCtR17e2HAOzpg3HMhGIRTyFGfU07JJMc0TWQLEsFpPeGE8upNqiq+Y3wc41i5svjjh8M4J85O5edDluEs22zY7Od7bjQNzwZ3eo5E4OTW1sLw19QY3xDLMojaQIBo3TqM7bnnMNZly0D0NTWVx0HgsvZ4HJsAA47yfF+6FqzhVxQ4x5xtaLWKlx6qin9Leb705ct2+8IoX2YMDBB9+cuY97fdlnp9QyEhEZFuOycmiH79a9iKt7+9OJv29NNEH/sYyn3uuw9rjarie7k5RSFroKKgDLG7Gx0A0wnRUolDRm8vGqgcPoxS5uuuM+TQm7ZoAYO1+jye+WVfFAVreyiEn7mKYSY2/PE4ynG5sYneB4lEMN9qajIDyMkk/DwiZOfoA0/79yPzcGQEdn7JEnQ3XbIk9RgjI7BnHg8aIFRViQZzqpqZNVgoZBljmZyEP51eksw65C5XYeRAMAgd2wMHQAy84Q2GAi+mLZrnkGXsGzVNZOvrpV5Y1z2bhjEnIjQ3Z/rQXA5diu6+puG7maTLBV7rWU/V5Tp22WqqCltHJEqzf/MbXOPrr0+tMIjFUIHhdmPPo/ch4nGir38dduO221Jt1YEDuC8bNky/dx4bQ1BSUYjuugt7OrZl4TD0nQuteHjxRegzrlgBDcSnn4bNO/NMEKHlKCuPxaDd+NRTsN/veY+hKrT5bovmBUwScXYxaxc7HkfmYSAAY8vloYVOZk1LJQ4VBcdgx8TpLE6LgPVY3O7UkjJuwuJwFBfxVFVReltbW1i5mqZhkzg5CYM4XQQlkQDptGcPFqkzzhDZe6oKo757NxavjRuRxThTEZOJCTjBFguIxEIJ2Hgcn6+ogGHmxZZLsWUZhF2hjq4sY1PMgse8kFZVYYweT25nIplER9JQCGXj1dXI6LRYcC3Hx/FsMzFeaCQ/fZxHjuCeLl5seBGd7wvUgjf83MmZbZrdnvqM68uai3m2Fmr5MhHs+xe/iGt8552p2dqyjGh4ZWVmJ9NwGNp/ilJ81ssLL6B0euVKoh/9CDZY02BLNK3wTsyyjOYuhw+jfPnkk/F+uYhDxrPPgjTUNGT/nHOO4bXVtEULGJqGtVDTSgsQzxb0Uig8H2tqZk7TSlVhE0IhlBfrA9eKAh9FkuDz6e2CqsIfjMeRgagn0PbsQXflSATvr1uHrJimplRiZWIC9qyyUtgzJmISCfx9KYFlDiT7/Vi/wmHhP7e2wp8phlgeHib6zncwzne8A9fNYAb9HH/68mLB2iLe6yWTItMw25xUFDwXRCAS0//m6FEchzNiGdzBnAjPZrH+EJNy+YhEIszPaBTf5fEcu4x+ls7RNAQje3vRCEQfcNA07BnjcVS46e2CqhLdfz9+/+EPpzZXGxqCb7JsWfYqOsbUFAjEYBCVGZyN3d0N4jdd4sEItm1D2fIJJyDI8O9/Q+rh9NNxfH0gvtj7PTmJ8XZ1oUz6jW80vJ+e77ZoXsAkEWcXM36xWVh5akp0zmpsLGwCc/ldOIx/uaxPTxyWY0Ps98OwpjuQXCLNUdVCwY1jkkkcu5DyQVWFLgR3t5rOqGoaFswXXsB5nHUWnMIXXwSJ2NqKjJXZKIuNxbAYsJafUdJSlrEAaRqMfroDzM1Fiin9Gx7GdWlrw3FjMVHyrG8uwZ2ZmfBNJHANo1EQsNXVODdNgzPPfxcO4/qHw3ivtbVw7Y1kEgSiLOOaFVBqMd8XKNPwv4JkEo6bqmaPvBdKJKoqnu+FWL5MJBqC7NlD9JnPYM7qfzc8jGuu72RKhPd+9zvYnbe9LbUkyii6utDJuLUVukGc5RgOY467XIVtJJJJdBocGCC6+OJM7SKi8pA2v/0tiM8lS5C1dMIJBZEqpi1a4FAU+CwVFXO33FTTBHmoqvDtamtnfmO/fz/m78aNmTZlcBBjWrYs1cfhShK/H7IpHATxepF109UF3/DCC5G9wxUXmoZzqqnBZ3/5S7x3/fXCN5mcxN9zWXGh4GqPcBi+SywGH581JCsq8B2BAPz0+nqMyajPvm8f0Q9+gP+/5z0ojywgGG/aonmIRAI+kKbhXue738kk1mlufKRfA2UZ84qlofS/487hdntpZa5MJObSG0wfayiEz7hcx9Yf274dwYezzwbRpr82/f3Yz3R2Zu47H3yQ6Mkn4RfpdZj9fmGL1qzJ/b2hENFnP4trf+ed8C+IcJ+GhuB36PWqjeDpp1EZtm4dNKeffx6yCqeeKo5PJKSBiAonE/v6UM0yPo4A63nnFTTO+W6L5gVMEnF2MWMXW1Ew0bxe/FxfDyNt1EFTVZFtyKnsrIXBxGG5I9yqCiMoSZkR9EAAi5qeXCoEmoaMxEQCxyiEBOP07lAIBj0fCTg1JTQg2FiuWkX0qlfNbnmRvrzZ7cYY8glm9/fDCe3oSL1GwaAoQy5Uw1HTsFjFYrm7ficSglCMRPCe3Y7x9vbi502bsCHq7sbzvWpV9mMFAiL66XSCtDQiNJ9M4vwVBWn3BRKl832BMg2/DnoNIJsNr4qKzEYr+Wxgevflhahl98c/Qv/rhhvQlU+PqSnY5ebmVMKexfsPHiS66qpU4tEoenqw6XW70UWUuxNGo6KRWCH2OB5HM4HhYTjJeie9XGuhphF99at4nXMOiM/m5oKDdKYtMvH/K0am67B7rBAKiaCxw1Gc3EwxGB5GMKOjI3VjSwRbNDwsKhn0OHoUftSiRSBJAgEQAHv34lxOOQW2TW9PFAXkHZdRPvEE3nvHOwRhwj5PdXVhzXDYP9cH9n0+2KHFizOJHCLYPA4Es+5ivkzVp58G8dnYSPS+92HDXqD/bdqieQRVFXrNNpvQfDeCWAzPu8M+BSv5AAAgAElEQVSRSXqFw8g6rK3NnFvhMD5XXV1agkUhRCKXNycSQkZrtjO2BwfRUXn5cmTtEYnGL34/bEtLS2Y35qeeIvq//0PA4tprxfuJBNHLL+O+bdqU+xpEo2ie0tdH9LnPIZhCBNvQ0wPblK0DdC5oGgIpO3bgey++GP8/eBBVY/osST0KJROff57onnvwd+9+N6Rp2tqMj5Pmvy2aFzBJxNlF2S+2qoLsGR/H/2trjWtOKIogDmMxIf7KGYD6jJyZAotqV1amRtC5k7MsFx+t1hOJHk9hUV9FgVGPxbB5zBfdHx0l+v73cR8uvRTaEMeqrMjrRXYhl+jkIgGHhuDQLlqU6tDG43AAHI7isoG8XpCQjY3GSoNlGeMYG8PCIctYjFpasNBZrSAV8t0/3hQkEvjetrbcmYWJhGjYsnRpUZuu+b5AmYY/Day3I8uiVJU7OfPvpyMSmYTkUqCFVL7M2LUL3ZBf8xpkBOqvFevzejyZ3Zg5qn3++Qi+FIrBQTiaRBDfXrwY/4/HYcPt9sLmeCQCInRiAg7/qlXlt+exGEqTHnwQUfavfa1o7SbTFpkgIqy7XIExU+XBhYD1kVmbrLZ29gjOYBDEX00NsmPS9cV6e+FTdHSkfs7rhT1pbET24IsvIttH0+CTrF8Pe5Dr+nq9RD/5Cc77uuuQqWix4FpMTuI7jZQNsn/O0j96/zwaxTrV0JDfN43F4JdGo1jPGhoyCUxNQyf7J55ABc673oVzL4LoNW3RPEE8jpckYU4Wk/AQDuM55yaKekxM4Hfc0VyPyUl8trGx8ConPQohEonEftdmmzn91WwIhSBr4HBA57miQpQ3KwoCHTYbCD79mLq6oOm8YQPRhz6UKjW1ezfOZdOm3NcwmUQmX1cX0e23Q0+QCLZx3z7YjjVrjPs2moYGKrt3w6ZecAH+v2cPjsNSL9N9nhvNEGUnEzUN8jE/+hG4jBtvhL0tYi86323RvIBJIs4uynaxuWR3bAzORHU1Jlw+B427U7IYNxEMGmccFpP1VypiMYyHMx4ZHG3VNDg0xRh8JiPjcSx0hXQGSyZBJCaTcARzffbIEWhBcJQ9HocjtmnTsRM615c3t7amNkshEh3AmptTI4WKAiKOCFHoQq+534/nsqamsNLicBjRrGQSC4aq4tpHo3DyObswX0METYMTz2LnNTX4rH5exOMgECUJBGKRz/x8X6BMw58F7NRJEp4fvfYOO6npc0Jfvszl0AsR4+PQQayvR8RbvwFVFAQtLJbMEqfdu7F53bSJ6JJLCv/esTE4mqEQMvlWrsT7ySTsH69v+cCuUDhM9PDDCGxcdhkyB8qNiQlsJrZtw7X66EdL6iJp2iITRARbFAhgflVXH7tAZiwmArgVFViHZ7N7dDKJoISqQq9ab4s0DVk5ySRshT5AHQzid5WV8GV27cI6sHat0C9btCi3n51IoGnCyAiyl7mRnMcDu1JZmT1rkCHLQs6HM9orKlID+5OTGCeXTRtFOAy7E4/jOI2NOG48DtLzpZfQDOGqq+BnFem7mrZojkNRRDYry62UYie4s3pNTWZ1weAgvm/JklSSj6uVZBnkUCkVG9wB2SiRmEhg/nCDtZnOiFYUBAonJhBU0AcQOFklEECmnf76DQ0hsNjYSPTJT6b6lb292Kd1dmYGZPXHvuceBFI+9jFRBh2LgVS02RAQKaRa8bHHQD6ecQZKsvfvh91YuVIQlEagJxMlSTRfURSQh3/5C2zuW9+KPVqRpe/z3RbNCyzAYqv5D58PBjiRgNFZunR6By2ZFI5JIoH3OCrMGirHEg6HIDe5jJAIhqWmBqSU34/xFrrYSRI+5/enCusbQUUFDFlXFzQO165NJTllGQtAVxeOee65cBZ37ECaeCyGyEwhxGW54HBAq+LIETi0oRAMvd2OazExkVlqoGkgAljHsNANbSSCe+VyFUYghkK4ZkRYiKqq4Mi3t2OBZCKYdT65i6PHkzlGSRL6QOPjyBD1+/FzayvObWAAn1u6dHZKqkzMH7BDww52RQXsZzKJ+W61wkbxc6cvX3Y6F2b5MhHWle98B3P1Ix/JnFcTE7im6Y1Ujhwh+vvfEShIL302Ap8PEXqfj+iHPxQEImfxWK2518Zs8dNQCBk54TAEvNM7rZYD+/ejLGlkBKTnlVfiOVuImasmyguLBetvMCh0pWcTiQTmYiyGuVdfX3i3z1KhaciMicWgSZ1ui0ZHReMHvb2OxbA5P3wYvkMigYDmq18N2zU5ic1sLgJRllGuODqKpgmrVomqjv37cR06O7OXHXNgX++f19XBdunH7/Ph3hZTCupyiWdjYgIkRSIBgmN4GOTh2WcXLvtgYn5AL9kiSbjP5fBXamqEJqvNJsguSQJBODiI/aq+FFWSsPcYHcWz2NJSPJHJxKGqCv9tOvDeNxjEy+mcGbkuxlNPYX5ddllmBvLYGMbAexEmQwMBZCDa7ahW0BOIY2M4HkstZIOmEd17LwjED3xAEIiyjL0sEWyR0fuvKMgOPHQIsiunn4497ksvYeynnVbYNZEk3DcmE5nY/trXsBc891xU9LW3Z5bDm5hbMDMRZxclXexgUDhAXGqaq5QhHhep28kk3rPbRURzrm12mSjikmz9QpBIiJLnUjQ0AgEYqqqqwsTHYzGQhZIEYs5ux73YswcOZ1ubIL/4XPbsgbFuakK0p5TuwaVichKkHBE28cEgxpqenchkrdEyZD3YWc7WcXU6BAJYiCwWpMc7nbimgQAWJyYjubsqawpxhhiXUVRXZ49CyrJwVFgbrbkZZEOJjvJ8j3KZhn8acKmJ1SoipMmk0HThchR9J8OFSgJpGjJZnnmG6OMfF5o7jEAA2cHpZXSTkyjxcbsRoS80gzMcRsl0Tw/R974H+0Ek9I/YPuht0XQdlf1+EIixGNGb3lSw/o4hbN4MrUi7Hed+8smwmSWuDaYtMpECzmSbjUwbIqyzPh++12IRQb5j4fP09sImrFmTGQQIhRC44KAiI5lEmd7Onbhmy5djo9zcjHM6ehTnk6ukTlWRvdzdjaDAunXi/dFRXBsOStXX455wYJ/9c4cDflmu5k+BAHw0t7v0jbWmwaf99rcxhre+FedbX1/y3sC0RXMQHOzM1jyuHOCO47KM/YPetw4EQMo3NGRKK3GpfVVV6c80ZySyzqCRMXNFHmf7llsCYt8+oscfh29y7rmpvwuHUYVRWwtCj31OWca8HB4m+sQnsA/Sf2bXLtii9euz30NNQ0D18cfR0Omaa8T7+/dj/7d2rfE9sCxD57qvD7qMp5wCG7p1K3ykc88t3fcdHSX60pdw3KuvhqTN4sWFN8pMw3y3RfMCJok4uyjqYkcimGRcDtHcnGmMOcrExKEsC60LLlWeCxo504GjWVZrZilOLCaiRqVEtjlC73QWJmwdicDp4tKcvj5sjJcvh8OYrkmhaYjaHDiAxWn1ajitxyrCG49jQevuxvNz5pmpzmIkggiXx1P4Yi7LWPAkCYuK0efM5wOBWFmJhcnhwCLi82EByTUO7k7IhGIyie92uQShmO4IT03hu8JhRPDa24tqYKDHfF+gTMOfB7KMf/XPkqLAFulJqtks05uL2LyZ6Oc/RybLVVel/i6RwAbc4UjdtEciINGSSTQeKDQ4FI8jQv/yy+gEfc45eJ+DDZxxbrFMTxwyJidBICoKnFhuylJOPPAA0a23YsPwq1+B4ODmPSXCtEUmMsDBtpqamQtwsM/G9jBXhcBsYWIC63xbW6bAvyyDXKyogN/G866nBx3YJybgy513ntBUTSZRuVBRgfdybdr/9Cf4V5deirJEfn9iAjawoQHHOnIEvghnGno8IrA/nd8UDMJGuVy5s48Kwa5dKBt0OEAycEfe+nqMtQQ/1bRFcwiaBn8lmcScdDpnbh+oKHjeiZA8obcBIyNY8xctygwWBgKi0qzUzvKsZ10IkRiPY1/AVQvlCrqMj6MhSmsr5ph+PKqKOagoCLryfJNlzMudO4luugkSL/pz27kTnz3ppNxz9Je/hC/zpjchYKm3cxMTSKAwakOSSWhDHzkCeYYTT4Q/t2ULjnHBBaU/TwcPEn3lK3hOb7gBpOmiRULCrAT/aL7bonmBOZaPZkKPeBzkYSCAjWx7OyYWTypNQ3YVE4eczu10wiBXVc2v7BirFRu/YBBGXU8WOhypJWrFivFydDwcxvUzunmtqkJ5yhNP4H60tiKas3Jl9vIWSUI3QKsVxvvQIRjk5ubZL+8hwvPjdsPw22wgN1etwoKeTGJxYSeyEKgqyEdNwzUxuqBMToIAcDgQpbPbUfbg82EDMB2RyYShy4W/jUYFoXj0KF5VVYJQTCQwj5Ytw/UfH4dTw2UU02kUmVi4sFphcxQltWRG04R+HTuhC7UctacHTuvGjSj/1YPlESyWVE0bWUbX43AYGTCFEojJJCL0O3aIrsYMXgerqkRnbUauOT4+jiwiSUKZcbnLZ1SV6POfR3nRRRdhk1BdXTYC0YSJrHC5sCaGw6VvztPB2ovBIOYYS4wcy0B1NIoKEI8Hvlk6hoYwbtZkPXoUWtb79mHc114rCEAinNfICP4/XXXFE0/gGOefn/p57kRvt8P/UFXcE9bN5gz2fDrP3M3W6SxPBuKTTxL97ncgRW+8EffN4RCZjsEgbHJDw9xPPDCRG8mkaMjDJPFMguULJiaQYKH3q5ua4N+PjuK50/tK7KP7fKVrSttsqVrW+dZXScL3Wa2YZ+Ewrhv7D8UiFiN69FHMq8suy/QNDx+GvVq3LpUMfPRREIVvehN+x+XNRCDb4nEQebkIxIcfBoH4utelEohDQ7gv3MndCOJxHItLsdeuxV7vmWfAQ5x3Xun2YetWNOKrqUFVSX09gqtutyhz1msmmph7MEnEOYhkUpRAWCwgOhoahFYXk4YsjssRJpdrZrUdZgOVlTgH7iSnX1BcLhiVUAjGq9iIETttoRB+NiJAHgiACHQ6xX1ZsSJ/I5uVK/G3/f2IaCsKCN7ZJK5Y4FiWUbLC2j979kCLjDu0NTUVNiYmCRIJPKNGo9cTE4jCVVUhA7GyEguV1wuSr9AsINY0aWnBuTChODKCzEvWRFy3Ds+Q2y1KlIaGcA5tbcVpbpo4fqHXR1RVPOdcvsyZ4KyVyERjGUpT5w1Yt6e+nuiDH8ye3ZdIZAYXHn8cc++KKwovGVZVojvugCP7uc8h84fBpYF6bcp892JkBJH2igpkC5RYPpOBSITofe+DntD734+SHS5rXCjPiYljA86sCYfhT5XSBZWhaSCZAgFBinHzkGMJVcXmW9OQvZO+ufV6cR3a2jD+v/8d2TXJJMoCX/Oa1ExpImyY43F8Jpdvs3kzgqGveQ2aDagqrvXoKD7PmU1cDcTkhKJgTFNTokttNvIkGoW/5HAU7p9lu0b/939E//oXgj5vexvGxmWcjY1Y17xe+LiBAOxhsU0NTRwbcKM31nB2Omfv/lVU4HmZnMSzzUkJViv8+qNH8XylN8qor8ec8Xrhx5dCTjGRKMv4vxEikZsfseSRohRf3qxp8HGCQaK3vCV7Z+rRUSQF6QOozzwDSYXzzkODOSbRNA3XbWoKe85cAaEnniD63/9FefEHPiDOW99tftEiY+cQjULfdXwc8gyrV2PcW7bgupx/fmlVddwN/he/QLINy9ksXSrOT+97cwdu0w7NPSzocmZJkh4goncRUYWmafIsfOW0F1uWMWknJ/FzQ4MwtpxxGI2KdG12SkrtrjUXEQiIrtN6B1XT4OAwGVeK8xqJwNDb7TDmua7h4CBIQE0TpGEigcWys9OYYTtyBNEnm02Ic89WefPRoyDSFi0SJdzxOLKIBgawKJxySuFlmV4vrl9Dg/FMh9FRkS1w8sk4fxYKLmSRM4LxcZCIioLztljgNHOGYlUVxn/0KOaVw4GF3WCZe1ln3FyzRSYEuGMmR631mz29MLS+/Pl4J4kUBSLY3d0g9To6Un/PEhw1NanZzVu3IvuHxbkLgaYRffnLiLbfeivRu94lMg3jcWyc7HbjZMnQELR+HA6iN7+5MHkLIxgexiZi926iu+4ieu978UzMwLNh2iITOREKwV/JJvNR6HH8fsx9pxNze640Juvqwjp+8smZmTaxGORnNA1z/tAh2IlVqxBQbGkR5csMvx/+Q3197uqMf/8bTRM2bUJDEvbPuTKivh7Hnc4/j0RAEnLZub7SKBaDb1RRgTGWsoGOxYjuvx/X6eKLkanEFR3ZiJJEQvh3nGFmMMhq2qJjiEQC95p9lWM1P1m/nDXLGUwutrRkVmRx8kxlZemEOZEobTZCJBIJX44zOIlg5wrNjNy2DbbhwgtTy5GJcH927oRN2LBBjGv/fjSmW7sWMi081znYsG8fghknnJD9O7dsgazLqacSffrTYk6HQvisywWNWCM2JBxGsyWfDwTiihWwh//8J67lJZeUFpCSZWhY/+MfkNW6/HKMq6MjdyMwJhOJCiITi3qCjoHNmddYEJmIkiSdQkRXEtEDmqYdPsbDyYCqwpHgDpZ1dVi0k0k4MmzQOFrCxOHxDI9HdKLTOy+SlNqxuZQoKUeFAwF8V7qTlEwihXxqSnSsczph7Px+kHDd3YjS5Fukli6FYe/txXfV14PAa2oqf6mRHhMTGGtTU+pibreDsONOir29cKqNPldcylRTY3z8w8PQlaypQdmPzYbxDQ/jPpaTQJyawrEXLYIjr6oYr9+PRXliAt9fXY2/SSaRldTbi4WsvX1mOlvOdVtkIhXJJAgqIji36U45l8wwcciZibKMn406sPMNDz0E5/T9788kEBUF6xbrfjH27oVzvWFDcQTiN78JAvG97yV65zsFgcj3iLPYjeDIEeiYeTzIQCy3xMSuXSAQfT6iX/8aZcwzRCAWDdMWLQy4XLBHodD0wdJciETwHMsy/IZcWXPHCoODIBBXrMgkEFUVpOHu3TgHmw0b7VWrQCi63Zl+RywG/6CqKjeBuH07Mn+WL0cgmf0Jlt1ZvtwYEVJVBf9kchK+CWclWiwgEG220glEr5fou9+Fn3XddQgYM4GY67iVlSAt6upwbuPj8KkaG8sfbCEybVGpYK1mRRHP4bHM2nK7RdWYzSYSFOrqQLKPj2OM+qAGNx3yeoVGYilgOZpCMhKZfLNaReKOLBsvbz58GD7O2rWZBCLr5Gta6p5xeBiNUFpbUbWgv2/JJPYkVVXws/TlzYznn0cjlg0biG67TZxDPI79a2UlyEcjz0MwCKmDUAja0EuX4v+bN+PzF15YGoEYDBLdfTfs8ZvfjIakqgqpqemSWLicmclEvg6lPOOmzSkPFgSJSESnENEXiOhfRHT4mI5EB02D8zA+DkPldGJToyiIyBCJRh4u19yJ+s4GJAnXgskqveNiseCa+HxisSl2Y8bl334/nCSOBPv90A2UZRj3RAKOc0cHFqTGRtynw4dh5FeuzP9dixZh7N3dIlI9OorFqhyRt3RwV7SamuzR+akpONOVlTiHri4Y83y6O5EIntuqKuPlf4ODiLbV14tyo6kpOPI1NZldFEsBlwu43UIM3WIRpTmKIkqyfD78PetxOp343aFDeOba28tO2M9JW2QiFax1yOXLLKXA3f/04LIL1kpkMpEJRSYYjxe88ALRX/8Kh/KsszJ/zxqpzc3Cpg0OosRn6VJEsguBpkFH8Oc/RwnezTeL4/LmqRCd3N5eor/8Bbbg6qvL3xjn8ceJ3v1uHP+JJ5ABIElzcv02bdECADeAYn1Eo4R5LIb1MZGA/WpqKk9JdDnh98OvaGwEiahHPI7ywBdfhN9x0kno+mm1imzEjo5Uv0tREExk8k6PZBK+z4svYo4vW4bGAtwchYk/bn5i1J+zWPD3bjcIu4EBfE99fekEYl8fJCeSSaJbboH9zUcg6uFwwIfijMmREfhLPN4ywrRFRYD9lERC6OHPFV+julp0bbdaRUfo5mahj9jenjpPqqpwLsGgkAEoFkwKFkIkEgn/zuUSmZ1Gypv9fvhFTU3I9k3H0BBssD5ZIxjE/KyogF+j32uoKmybJEEHkc+FKxGJQMb9z//A9n3mM8LHUBTsXzUNQQ4jGeg+HwjEWAz6sO3t2Jtu3ozjXXxxaXN+eBhyLqOjwhZpGgIuRtYVvp+cMVoGMtG0OWXAQiER5xQ0DQZndBSLs8WCyWm14me7HRsQzn5bqLDZYLhDIVwX/YLCWWR+PwxzoeL8erDh9vvhIIVCcOScTpBbU1P4m46O1EWkpQXGdWAA7y9blv+72tpwvw8ehFFsb8f4YzGQleXaaEajosFIuu4Yl81XVIio94YNIDd7ejCejo7shjmRwGft9kxdk1w4cgTn29gILR6LBdd6YADPfbojXwo4as4EYLbjsqZdbS0WIS69CAaFkC9vJnw+jLuc98bE3AbrWqlqqtB3tkYrDL1+C5fN22ypZCJnJs5nDA8T/fjHCJpcd13m7zmzubFRrF1TU2ikUluL8hgjOkN6lZXf/AaO9hVXEN1+u7BLqirKzF0uYzbk4EEQAE1NEC8vZ4BA04h+8AM48xs3YtxsXxfyOm7i2MNmE1rT8fj0mYTc5CAWw+caGmYmK79U5CoNlGVsrrduhY+9cSPRa18LH1GWQSBKEjavelvEjVQUBcSZ1YrvCIfhfyYSCEA8+SQ25tddJza/qgq/g0jolxcKhwM+5YEDuE+yjH+L3bi/+CLRT3+K8/6P/xBZqEYJRD2qqrDpDwaRKXb0qNBpnGvE8kKBLGOOqirWl7kmayVJIpOVs1g5oNrUhLmp101k1NRgrk1OCv3gUsZgtabqVhslEhVF+HGRCPYIVVXZbacsoykKEcpz0/28YFDoEvK+KZkk+v73cdyPfzzzOvT0wPasWyf8FL1OYk8PZFLa2tC4jeehpsHPicUQwDTi40xOgkCUZTS7Y335zZtxnIsuKm2P3dWFsRJB/ob38suXF+6DZSMTNc1svnKscNzLVEqS9EUi+tErP26WJEl75fVu3Z81SJL0v5Ik+SRJCkqS9FtJkjIKGSRJWi5J0i8kSRqRJCkuSdJBSZJulyTJ8HUMBlHW1dUlSr4405A1VNra8J658YDBdjiE4K0elZVwsBIJ0SSlWDgcuAd79uDV0ABSkLvipROIjPZ23K/RUZBiRtDSAuMeCiE61dwsyMhgsLTzIML1GBjA88OZeAxuhsKZQuxMVlYiBb+9Hb/v6sI114MzZFkk2YjB7uvDgtbSIgjEYBAak04nFpFyGf6xMZF5mYtATIfFAsJx8WLck2XLMA+5+7Pfj/n63HMYM+veFYO5ZotMZCKZFJ3b0x1Gzmhl5yUd/LwxAWaxCPslSZiX0Sjm0XxELAbdHo6apzvK8Tg2BS6XkDiIRkXn46uvnt5h1DTxYvz5z0T33IOsxzvvFPZK0+DYExkvNdq7l+ixxxAQuOaa8hKIskz0yU+C5HzDG5DpOJcJRNMWLTxww6FIJLsNSiZFthlrPre1zU0CUdNAFCaTqGyoqIBN3ruX6Fe/QpMCq5XoqqtQNldTg88cPozPLF+eGRScnIS9qq7GGjAwAP+MG+mFQigd7OxE51M9eTY5ieM2NBQ/3xUFPkxNDXwlhwP+zMhIYX6HpsHO3X8/iL/bbhOa0G53aZmNHg984ZYWjImvEUt+FAPTFhUGTROltkRY/+ZqQ02LRVQ2eb3Cb3K78SxNTQm5LoYkCSKeJb5KAcvNaFphvhcTjhYLxlpRgWvO/qEe//wn5urrX59Zhs2Bi8pKkS2taWgq0teHDunpCSgjI7AFS5akVntZLDiXw4eR1VddTfTFL6ZKSh0+DGJy+XJj0gPj42i4pKqo9GhpgS3717+wVzvvvNyyDkaweTOIw+pqaFrzs1oMgagHk4m8L+cAv5E2H6bNKR/meV6EITxMRIuJ6L1EdBcR7Xvl/WeJ6PxX/v8XIuolos8QUScR3UJECSK6gQ8iSdIqIvo3EYWJ6D4iGnvl83cT0Qoi+mC+gfzhDyAlLBZMyoYGOGtWKyZtOQik4xGaBgdOUWAs08m8cBhOTClakYEAosyJBBaBwUFEelgfr7d3+s+HwyCajhwx3l3Ybke6en+/EK/t6xOEcjHOnqLAqVMUlE+nj5u7AdbX53b8bDac+6FDOEZ9vYi0Kwo2x+kEYzb09+M6NjfjXHt6sAgzwdnRgffKgYkJOPvcKbK7u7TjsQNht+Nce3rQhZHLe17/+qIOO2dskYlUpJcv53LK9SQi6yEy0klE/tliEVpZrN/H5FIpXQhnE5pG9JOfIBPxU5/KdCpVVWh4sXSCoqBxSSAAfcBsGkfZHD6+bv/8J9EXvgD9xP/+79RrxUSI0Q6Ku3Yhg2jpUmQ0lpPYCwbR5OUf/0DGz+c/LzJSZ4JA1Dfz+d3viK6/vqjDmLZoAcLtFtp7vMFUFLwXCgnNaY9nbnfC7O4Gcbd+Pcba0wP/y+fDJrizE/Zm5UphTwYGcN4dHalVLZoG/6GvT9hkLg2trcXfjoygNLqpCbZMT0AyEVJXV7xWJAdoVRXj567JgQCOPziI4+fLBpJlol/+kujZZ6E3dt11qZIc5SCa+BmprsbYWC8xEECjhCJg2iKD4KYfmpbZ5G2ughvzeL2Ysw0NeIYaG3Euo6Mgy/T2xmrF342NifL5UsBEor5rsxHopWpcLvhunCXM1YO7diF4ccYZIMbSwfvK9euFr/Loo5CFedOb0AxKj2AQn6mrg7+SjpERov/6L9z7z30ulSgcHsY1a283Vik2PAx964oK2DWWe9qyBXP6nHOM72fToWnQg/7tb1GO/dGP4hmw2UCalquyi8lEfSfn557LLrWjg2lzyoTjnkTUNG2XJEnbCA/L3zVN+xf/ThIr6jOapn0s7f1bJEm6WdO0wCtv30tEQSI6WdM0/yvv3S9J0hARfUKSpG9pmsYPYlYEApjczW59kWAAACAASURBVM1wUOaykzaXwCUYrOnj8aQ6Qy4XjAeXhhdinDQNhpTLMzo74UwfPozjtrYau0/cvGN4WCyA+VBbC4Hd7m68OjtxDn4/Fp3GxsLPZXQUjkZ7e+Znw2Fx/abTGvF4MK6BAbxCITyvyaSxMWkaHPLhYVy/FStwv+JxOMM2m2g0Uw6MjeHZqK0t3dnQw+nEq6kJ452cBEl86FBxJOJcskUmBPTly0Y6GurLmtOd0VxEIn+OS2uYTLRa4cDN9bXgiSeQhfPWtyJjOR1eL86L5RqIsOkeHCS67LLU5gXTEYeMbdvQZXDDBjRU0d8TduI5syofduyAU7x8OcZSzpLygQHoBx08SHTvvchQkuXiCUS91k+ul6Zho3HXXTivYkhE0xYtTFgsQiImFMKzysFrjwfk0Fy3RWNj8M/Y5/r97/FefT2ygKuqQAq2t4s5ODKCTXFbG/wEzuYKh0E8Hj0KG9PRIbSR+TqMjaFbqduNTB19oDoYFD5VsRmbHICRZewN9LauuhrnwwQMN17JtkaFwyiPPHgQgZLXvlaUpBvN1k4fF69zuV4s+bFrF8qwiyERTVuUH6qKeynL8BkcjvkTgCTCM1Jbizno84mGmC0tSHoYH8/UILXb8RmfD/59qQ19SiUS2T+02TDXAgHs1TZvBil2xhmZnx0bw9xdulRkC27bhkzhs87K1IdOJpFYYrdn78Ts9SKwqihY/9vbRfad34/9SUODMY35wUFUiTidIBBranCOzzyDcZ95ZvHNLhMJNHt5+mloKb7znbCxFRW4VjMRXGV7/b3vEf3sZ5BzyAXT5pQPxz2JaBDfS/v5KSL6DyLqIKLdkiTVEdGlRPR1IqqQJElPVTxGRJ8gogtJsNlZcf3188vwzzUkkzDcdnumToymYbFRFCw8RhaIRAKOj9WKjn0rV8JRGxvDgsClH3V1xu7b6tVw4Lj7shEikT/X1QUC8cQThTaPqmZ2VZ4Ow8M4//b2zIh1IiFIvZYWYw7lunUw/Hv3YoE69dT8USlNQ9dWqxWLEC+E8TiI0uXLRTOXUqFpGF99Pb7HqEZjqfD5ZvTws2KLTAAc2ZckbLSM2meLJbc+4nREIhFsEzuz/P1zmUzcvx8Zb696FdGll2b+ngmJujqxwd62DTbtrLNAOhohDhk7dxJ97GOwFd/9bmrAI5EQTa6M2JDnnkO3xNWrMfZyrr8vvABSIRaDM3722WKTl239SScDeROuf2UDC4fzM7JvHwjWsTFoKc0gTFt0HKKiAuvx0BDmVm2tyOCf6wiHITfDjQOOHoWfdtFF8AGiURCMtbXCb5qaQnCVswrHxuBrsU0KheA7rF6dubmdmkKpX0UF5rqeKIxG4Rc5ncXrhWkaxpNIwLfKVknDTV7CYaFHWFOT2lBwbAxSE14vuteffDLGl4tAzEcO5ioLtFqFLbLbcR337YPtet3rirsGBrFgbVEiIaqGHI75q83tdOK5CgTwXHo8eIY4S9HpzNzreDw4f78f512qBEm2ZitGoCcSrVaMc3wcWs+VlfAt0udYLIZkCtZnJ8L+8Je/RMLI29+eKTXFzTw3bswcWyAAAjEcRinz4sXinAIBHNvtzmwwlQ39/aiMrK4Ggeh24/u3bYN9Oe00BFSKgd+PTMn9+1GhccklCLba7SAQZ2qdmZyEX/TCC0TnnluWQy5Ym1MI5oHbMCvoT/t56pV/uWhrNRFJRPTJV17ZkDfp1yQQS0NFBRyiSASGSL+gcInF1BSMGEe6csHng8FWFDifzc1wNCcm4JxxhGdqCsapri6/8ZMkOKIHDqC8hgnIfKipAXm4Zw8iuieeiMgV62Jw9+bpzsfrFU1A0h1ajnRbLIV1gZYkLDKtrTj+kSN4LxdZp2kgDkZGQABwx+pkUpRVr1xZPgJxaAiZAM3NxgnbciBbWWYZMSu2aKFD00Rkn21JIZkaemeUS1fTf8/6frmOa7OJzEQWSWfh8bmibzQ5iaYmLS1E73tf5riSSdgGh0PMi/37Ec1euxbBGP1mNN95HTgAvcXmZmTV6DcV3GiAReTz4Zln4FCuXQtHtpwE7SOPEH3gA7guf/4z7B2T0aqKTV8+gpD1ljhrkf+f/mJoGjYg3/gGNl4//SmI3RmEaYuOI2gaNqB+P+ZSVRXmV3393LE300GWMad37YIP4fGAuOcyQZZyqayEz0KEzTV3OOWNv9UqqjF8Pvx/0aJMAjEQQHMkIhCIer+KGz9UVhavF8b61PE4/LZ8DUpcLvzN5CTGzVmJAwPIviEiuvVW+K4+n7Avfn8mQZgOvb5YZaX4v/6V3rhgcJDopZfw/nnniWs+Q1hwtogrJLjiweGYm0HGQuB2i+xnq1UEMbj7d7bu0vX1ws9oaSmdhOJrmCsIPN3n9Gv5li34/8UXiw72PDZVBalnsWBPKEnYX95/P/ZPH/hA5vf292Ourl6dmdUciUATemwMGoi8tyLCtenpwfevXJlfE7Cnh+hPf8J1vfZaEaR94QWM4aSTkOhRDAYGME6fD4Te+vV4z+EAgThTHMgLL6ChXSAASZkbbsj/GQNYcDanGJgkIpBLblVK+/cHRPRQjr/tK+uITGSF04lFKBwWmRkMiwWOns8HY6yP1DI0TWj1VVWBsGPNG68XhpW7GdtsIAGnpvCqrc2fhm2xgJTct0+UKBvJJPR4EH3avRtO8oYNcGwnJ/Hi7s3ZNFACASwu1dXZCT7WMmxtLcyIR6Ni4V6zBotPXx++L31BUFWQoGNjWIBYKFiW8TlFwQJXDg0XTcP9C4UwtlJEf+cgTFs0w1AU0dXQaEZbNvAmLZs+IlFmx+Zcx2Dnk7s4M7F5rMlEWQaBmEwSfeQjmcQdb4KJhN0ZGiL661+xkeXMFKPn0N9P9KEPYaPxwx+mBgYUBY4061VOB00jeuopaJhu3Eh0wQXFX8ds2YPf/jbRV7+KzOwf/Qh21+tNzUDkTTkLoWcjBwsZk98P/aMnn4RO0Ve+MiuBE9MWHSfQk4d2u+iUylqIemH+uYhQCNpau3aBsD/zTDRU0dvuo0dxfkuW4O8nJ0WlyerVouSYfRAm4hoaMm1KJIIMxHgcuoLptsjrFU0jirUtExPwsYx2v+aAlcsldByffBL2tq2N6D3vwZj6+7F2OJ1Cf5eJQNZ8zEYQGoWi4D4cPoyxn3barHRoXlC2KB7Hi7U552JzrmJRUyN0WG02zOHmZvj0o6PY96RrTTc24nder/GmjtNBTyQSFU4kbtmCpIpLL0XmXzgMYtTphJ/E+qudnTi/UAi+lMWCIGm6nJTXC9+ptTWz2isex3rf30/0n/+JCjGGoiBIoqog7Ox2kUWcrRP1gQNo+tbcjIZT7NO9/DL2q+vXZ5erMYKXXya6+26c71134TsGBnCuy5bNDAGuqkQ//jH8sOZmXOMyBlYXlM0pFguFRDTQr2da9PIxNE37R+nDMVEKWBw8FMrU8OE0+UAARl1P4MXjMKKBQKpW39GjIAkbGjKjqTYbSComEuvq8i/oVitIt717EY1asyaz/DobXK5UIvHEE/HdTicW0MHBzEzDaBTjdzpFyrwePp9wVAsh8BIJ0T2cu4x2dqIkenAQC+SqVVggVBUliF4v/ob1OBQFGYjJJK51ORxNVcXCFIkIfaN5BtMWHUNwaVCh5cu5wI1WOKJdDJFIhM9VVsK2MJnIGQjHagPxm98gAHDzzdltCzcUaG7Guft8yNCrroZgeCEZAyMjRB98RYL6Bz9ItcOsd8v3bLoNhKahwUlXF9Epp+Qua+HmJPleeiQScOJ//3uiN74RWo18byoqcP+KIQjzYdcudH4eG0OZ97vfXbaSINMWHefgkttEAs9nU1PqOsyVHbFYebuVlwvxODRNN2+GD3T22USXX57pS4yNYRPudoug6dAQbNGGDZkkaTQKEs7tzqwWicVAWAYColspg8k7VRV2rxh4vbjudXXw+9jeT6c9qM8w0jSirVuhVdveDq1al0toz3HTh2xrUikIBom2b8e1OeEEEA5lIgdMW0S416zPzBn38yFLuBBIEp77iQnRNMVmg23iZI50bXPeh01MwO8oR+KAvkkekfG53NMDvb2NG7G3s1hER3e2K0wI1tdjbt9/P8Z9662Z5xaNQmfd48lszCLLaCq3fz98gFNOEb/TNBB/sRj2XWwTJUmUa+sDBF1dRI8/DntxzTUiANPVhaSX1atxTsXgiSdQObJkCRrLWa3YJ7rdqKqbCQJxYgLf9dxzWBc++9mCm8CYNqcMWCgkYuiVfw0Ul2ZC07RxSZL+QUTvekUo84D+95IkVRNRXNO0HP1uTZQTkgSD6/fDqUkv32XNxFAIht3lggE/cACGt7MTCxaXxPr9+DmXAbJaMzMS82Uv2WyCSDxwANEjIyRaVRUi7Lt2iYzE6moY59FROMjRKMaqKKJRyZIlmc5GNIqNvdtdWKaBosAplyR8Dy8AkoQFiLshdnVBl4NJ2HXrBNmgqshajMWwMBYrOp4+roEBnFc23cd5AtMWHQOUWr48HbgkmfVy0mGktFn/t5WVIjORCUV9qcxsYOtWdEd+/euRaaIHNyXgUkCXCyTFww/jd9dcU1jAwOtFeU8ohA7QnMXM38X6ZS7X9M6oqqKZy759iEaffrrIOM3WnCQd05UX+/3I9Nm6FUTipz8t7jmXpZcbqkr0i18QfetbsMM//CHuRRk3laYtOk4Rj2N+xuN4PnNluzkcsDGRyNzqFp9MIpi6YwfOw2YDUaZv3BGPY9yTkwhWOp3YtHNlSV0dqh/Sz1uW8XvOgEr/3gcfhJ917bVCd4zh9YoGc0aCO9mak7D0DDe4CQQyP6cvL7bbU7MGVRWyBi++iAYqb34zgrvsC8+UvuWRI8g2Yr3r9EYYJWJB2yJNw/OcSGC9qaqaHxqlxcJiEaQgE4kuF55dvx/nn56tx5qJrItfjj0F2zuuJslHdk1OCuL+/PMFCWmxiD3nwYOwLYsX4/f/+78g+9773ky9QkWBv2KxCEKSoaoIVL70EgK56U2L+vthR5YvT90LcQMZvbbp7t0IrnZ0EF11lbBdBw9in7lsGSorCoWqEj3wAILHp55KdNttsMlHj8I3XLp0Zkjw7duhD+nzIfh8ww1FJaksaJtTLhzHZioFLxAY489IklRLRFEieq7AY9xEaP/9oiRJPyaivURUS0TriegaItpARIfLNWAT08NqFU4YE4V6sIhvOAyibXwcf7NmDX7HJbGBAJyhfF19rVaRkejzwWjny+yrrESkdu9eLBTr1hmL9jscIBJ370aJ8Lp1QqdxagpOaDSKDbLFkl1rQpZFJmEhZW8s9K0oyPTL5sh4PCA3DxzAgmqxQNicCURNQ6lLOIyxlaNUSlHgxMbjWJznevnVNDBt0SyjXOXL00HfsbnQRivZYLFgrKoqmokkk7NDJh45AsdwzRpsUIlSSTdFSc1S1jSiP/4RdvHaa43pwDICAaKbboLNuf9+BHj0YE0ol0tsoLO9EgnYot5eole/GjaTu84SZTYnKaS8uKcH53XkCEpn3vIW3IuZJBB9PqI77kBZ9nnnoZS5zJt2ItMWHXdIJkX1AfssLtf0Nkdf2VFdfWwzn1QV/tILL2Az2t6O576hAfM6FoNfEYnAx2FJhfp6+CR2OwKN8Tg2sOl+ITet0zRkCuk37YpC9NBD2ABfdVVmVpDPh++vrYWPVkxzkkBAXOf6+uylxdOVFweDKNnr7UWwhjswNzTgPkajCIzX1ZXezVZ/XXbuBGnR2IgAzQyULy9YW8Rav5qGNdVuP/6yD7OBswu583hDA17RKPyBJUsy19aaGqz1U1Mi+79U8HdwaXOuuZdIED36KMZ9xRX4fg5IMpHI+n/Ll8NO/etfILyuvDJ7me2hQzjfDRtSz0XToHP67LNEN94I3UU9RkaQVNLWNn3yiyTh+596CpmGV14p/Me+PgQiFi+GdnWhz1wsRvT1ryMT8LLLoJnt9eLe1dTguOV+jhUFgeaf/hTn/dWvonlfkdU6C9bmlBMLgkTUNK1HkqSbCeKXPyIiKxHdWMQxTiGiO4joaiL6MEFo8xAR3UlEI2UdtIm8sNtTGxKkk3oVFYi0TE2h9LazU5QXDgzAmWttNU6ycaMUnw+v2tr8RKLdLjIS9+/H5tbIwme3i9Lmri6QkfX1ogPqjh1YpNhx1oOJQKLC9UNY6Lu5efpxahquX1UVFgxuSFNVBWczGIQTUI5sQVnGBj6RwMJkpDR8rsK0RbMLLl/m6P5MZdro9RFzNVohKoxIJMJxeMOaTOJ8ODNxJs4lHEaXT7cb5B6X/DAkCY6ipgnb8re/YX6+/vVCysAIIhGiW26BM3vvvbBlTM5xCXM0KsjUXM1JOANxYIDowgvRmTRXc5JC8eyzoovio48SveY1M08g7thBdPvt2FjdeitKKtOzMsoB0xYdP5BlEIHhMJ732loE2ozYGUkC2RYMYs6VI8OnUHBp3vbtOI+2NjRDGhyEvVm0COSeogiduLo6kHLV1SAM7Xb4PZOTIB6zBTMmJoS+tN6/UVU0Gzh8GHZs5UqsG0wG+v3wIx0OId2QjnzNScJh3Kfm5vxB62wYHoadDASgHXvKKbhfyaRobCXLOEevVzReKUUOIxDAPQkG4ceuWTMzBNdCtEVcHZFM4vngZ2shgcvvOTmjrg5zd3AQc5n16fVoaBBNMNMDAcXCCJH4t79hnNdcI/Yg7PNxVZvPh2zDlhaip5+Gz3D66dk7lw8NYZ4uW5a6T9I0op/9DJUgb3kLiD89pqawx6qrg92bDs89h2ZUnZ2wa3xeg4P4XUsLMhwLndNeL3Qae3tRRXL55aJSrrY2U9eyHBgfR/bhCy+AOPzQh0CMFnv/F6LNmQlIWr5WPibKCfNizwACAThPNTViMfB6EeVh7ZraWhhdScKGNxxGlLuQrBmGpsGQJ5P4TiPZheEwshE5O9GoY5dMIhsxHIYD19iIKNTEBDaxNhuc/pYWYUwnJkTTkUIixtzZur5++ig26xRFo8iYtNuxAWBnyGrFIlKMo5yOZBL3iwXTZ2IzXSTme6z4uLZFM1m+PB2mE7XmcXFZczHjURQQiZqG+c46fOWApqHzb1cXSna5A6B+nIEAbGtDA2zE9u0QGT/jDOjSZEO2zMFYjOgTn0Ak/M47M7ULmfxlaYpcnYuTSWz+BwdBOqxfX55rQYTGCjffDCf/979HdgETiJzNWE6oKiLs992HzdEXvwhC1EDQybRFCxSqKrIIiUAcVlcX92yyNqLbPTPZ2rlw5AjRtm3wWzjjsLkZ2W+9vdDea2kRJY5OJ84vGETgoL4e88Xnm35zHQyCiPN48DdMEMoytMK6umDDTjwx9XOxmCg/bmoqPHuQCPfH68X4szW/y4e9e6EVW1mJwMuyZakEYnogmb9P0+CjZmsymA/9/bgHNhuyqAzqjZm2yAB4fdM03LtyNByczwgG8fJ4hKb9+DjsQTbd80QCJKPdXtx8ygXObk6fzy++CD/nnHOyZxSGQpgrdXVIFOnpgQzJkiXIJKyshP3gLEC/H/u6hgbs6/T47W/he1x2GUqg9fM2HIYtcDrxPdPZnC1b4J+tXw8SkzMmR0chy1Jfj6ZzhVa29PYSffnLGMunPoXrMTwsGpNm088uFf/+N0jLQACly1dcAZufx6bNd1s0L2CSiLML82LPANiRliQ40IcPI2rtdsNAV1TACeS/SyRAcpWSJadpOGYige80QtYFg8hGdDpBJBqNOsoyHNxgEAumqmLxaW7GGLxeLAQtLXAqvV4svIU0HQkG8TmPZ/rMzFgMBGI8TnTSSYKElWUY+v5+kA+nnVZ62WUigQ2GomBTMAsdAAvBfF+gjltbxOLk7KDP5oaYv1/Tcj//nFFXCgkly5jr7PCWQmqxC/DII3i9852QJ0hHIiGaOLW0IMv7kUewyb/00tzNStKhKCDInn4aJbuXX55KDKoq7l9FxfRZUfE4vn9kBE5yujNeLFQV3QXvuQfk5i9/ibWCr/dMEIheL4TB//1vZFN+4hNwkg3aUNMWLTCoKtbsQADPpNudGkQtFoEA5md6w7qZwOgonnf21U48EZlHsRh+190NX2LjRtgc/YZRlrFRr6gQpYMHD8LeL1uWqUUYiSDzp7Iyc/O5dSsqPs48E690/UGvF99TbFfYSASEiMNR3DG2bCH69a9xbT7yEfhcXM7tdOZe3xQFWZmhEMbf2Ggs4C3L0D4cGIC/+apXFdR0x7RF04DXNm6a5nDM/DybL5iawrWpq8NzPTKC53zRouwkaziM57u6urz66Ewk2myYqwMDkDlYtQq+SjpUFbqCsgwb5vMRfe1rCBh86lO4x6EQ/o4DIC+/jONv2pRqsx99FIHECy9EsEBvKxIJ7AOJULWRKxFF09CIascOHP/ii8VxxsagjVhdjaBroeT19u04N7cbEivLlglN/MbGzMakpUKWoQX9q1/h2DfdhAxsg4115rstmhcwScTZhXmxZwiyDMfz8GEY0fb21Lby8TgMvaKAwCvHoqNpICXjcZBvRrLkfD44u0xwGnUgFIXo+eeRXbl+fWqXrlhMLLiyjA1+IfpZ7LTnc3KjUUTkZBkZMvpryBodmobNdmUlNgDFlh4nEiAkNQ0E4hzsHDnfF6jj0hbpy5ePVXkQd2vm8rZsKAeRSCQar7DTW1FhbJOavuzv2oXI+ZlnQtuGSHQF5Q354CC+q7UVzujDDyPgoO/ErG9Oku1FhMzDRx9Fye7b3546DtaxtVim13KLRon+8AdkL73hDXDwy4FYDI7qQw+BTP3GN0TH7JkiEJ9/nugzn8Facsst6PxcYDaZaYsWCFhGxO/HvGQ5kXJ1cFcUEIlWa/k09dIxNYXMw54ePONr14oOntwQYN8+ob/H9lT/OnwY12HxYlwHPtby5am2iDPCR0bwb0dHaqnxs8+CRDzttMzACTeYIyq+E3M0KvRjW1oKIxBVFXbo738HafCBD2DTb4RATB/DxAQ+U10NkiaXbfH7QRRw5UtnZ8Gkp2mLciAex0uS4JuUa84eL9A00biooUF0+JUkzPNsz+zkpCjbL2eSAftUsRgILKcTvkq2+dbTAzuxbh1sz3//N8Z0++0ie5cbxMViokLu5JNTx/zPfxJ997uQTPnEJ1LtDdvEWAzfk2uvqWkou969G7bz/PPF73w+fEdlJTIQuWGTET9D0+Cz/eQn2Nd97nNIUuES7ubmgjsj58XICILNu3YhQ/y66+DnFbCnnO+2aF5gQWgimjj+4fPBOMfjINn0XfVkGdEkjsaWq6xRkkQ3sWBQdBCdDrW1MMLd3RjvCScYGw+XTjc347uGhhChI4JDsmgR0umjUSzA2Ro85Dru2BiuTVNT7rGEw4hsqSq6cOkbm4yPg0Csr0f6fiiEhXXfPvxcaHQqFkMGIjv9C73Uw0R+HKvy5WzgzSuTcNmctOn0EwsBN1rhzEQ+/2xkIhOH+g7FXN7y3e/Ctrzxjdjkp5OM3MyptRXX+fHHYcve+tbUcuPprrmmwcF+9FGUCacTiOxoE8FJns4WPfQQyI4rr0zt5lwKxscxpu3bib70JaL/+A+8P1MEoqoiyv7DH8J+f/Wr2Li73QtDWN9EYQiH4WvIstDAK3eWtdWKuRcOY76Xc2MeCoG027MHtvGEE/Cy20VJrqZh/nEw9OjRTFs0NQXyoK0Nn+nvh991wglC91a/OeZMx0WLUoOR27eDQNy0KZNAZEKD5XCKIRDjcdiUYrIY43Fs2F9+GVlJb3kLPh8O49pVVRknoZxOnPvUFGwmky7pRERfHzbslZXYtJdDjsaEqIxgGYxj6ZvMZUhSZsfm5mbM34mJ7CRVXR3WZ9ZBLVfTOZtNVDokk5h/2WwtNxJZtAg26DvfwXsf+Ujq/GHd2SNHsFft7Eydv88+CxmTk06CDrLe3mga9lPhMD6Xi0BUVaK//hXVbq95DXQDGcEgshNtNtgTl0sEZFjfORcUBT7KY4/huLfeKhpYcWPScpaUE0HH8b/+C0kB73sfgtvLls3JZJIFD5NENDGvoapwfoaHsaCwoCt3Mk0mEbWWZYiwsiOWraNzMZAkOPOsS8SlRdOBSb6+PpCJq1ZN71Qkk4IEveACfKa3F+e+ZIlweJua4DCyVlBr6/RGV1FAIEgSFujpOgK+9BL+f+qpqec3OYlFvrZWELduN4jcvj4smoEAxIaNLPDRKMZusSA7YbZLUU3MP+jLl+dKhF/faIUo+9ySpFSNxFK+ixutxOO4FpzNx41R9MShHokEHF9NI/rgB+GgpmcPxmI4/tKlmNu//jXm8tveVpim7Pe+B62fd75TZDsyNA1j5kDMdLbooYfwt298Y2GNXKbD/v3oRD0+jvLlK68UWdUzQSBOTCD7cPt2lIJ/9KOwoceiqYWJuY1oFBtPzvBvbp7ZzZTdju9iSYFiNub67MGpKWySd+6EH7Z8OfyD6mphr7mR0t69mOOnnio6sutfiQT8iVWr4Ov19eEYK1Zk97smJ3HcpqbUa7ZzJ9GTT4K0v/TS7J9LJIpvTMKabTbb9L5VNvh8COoMDMDGXnihsI+FEogMi0V0cJ6YgN/ncuE9TYN/NzgIQuDUU83AbTmgaViPEwnR2K1cJNfxCoslk0isq4MNqarKnOOSlKoTX2i273R45hnMkze8IbufE49jH+Z2Y+/zq1+hyuzd7wbZlx4k5qZPq1dj3gWDsEn796PiobMT2Yvpc/vIEZz/smW5JaoUBcHZ7m5IsLz61eJ3kQhsnaZh/8g+Bmdpc9M+Lt/WIxKBrMuOHURXX030rnfhOP392O+2tRlvTGoEySTR979P9OCD8DdvvBHrRUeHOXfmKszbYmLeIholOnAAxmzRIpGRwpmBVVUwwKoKI8QRHNbI4Y5o5UBNjSAoNS01Uy8bmpsxjiNH4AivWJH971QVzp2q4vy4McvBPNjsxQAAIABJREFUgyBHWb8oFsNiytpIIyP4XEND9gWQOzgryvTaW4EAFhCrFc6lPgrm88HR9Xhg8PULkM2GxXJ0FOe4Z0/+VPRIBMezWnG/5gIZZGJuI7378lzSF9ITeNkaqRTSsTmb1mD6iwlJVYUzpiiirLuyEnPSYhFZOpIE/R2vF9HlbDZIlvF7ux125ZFH4Ahfc01hzuPPf070ox/BEb311sxzZZ2o6Tpo+/1ocJJI4DjZOjcWg82bia6/Ht/92GOQimACkQjXrpyZI9u2oXFNOIx/L7kE321G2U3oEY9jjY3HMXezZY/NFFwuzP1QSPg2jHS9wWyvaBS+w65dqEiQZWQKnn46NvpcSqd/9ffDLp11Vmolif57OZja1oZqjGAQgYRsfkUkAlvl8aRKr+zfj3m+YgUE+tPntt+P8dfWFjcnubrDYik8i/HIERCI0SikDU48MZVA1DdnKAZ2O6R+/H48WyMjIEKIQOxyoN1EaZBl+OSqivXDbjevq1HYbCASvV6QZ3V1QhbA4ch8/q1W+CLj45jv5SC19u6F7TrtNMwJruzS+2yHDuHf1ashOfDssyAcTz8df6OvNolGkU1YUyP8rEgEwYx77sF+5447Mu3N6CjmaGtrbokqbi7X14eAQ7rU1ZNP4m8uuihTooL9QG4wxf4hEWzYl74EO3vLLUSvfS3Opb8f9mjRouIak+bC0aPovrxvH3yiK67AmperlN3E3IBJIpqYlxgfR9RFkqARoRda9XhgAHt74XQtX55qnD0eGM1gUDQlKAeqqzGeSASLSz5NobY2jGNoCAtjekdBTcPvYjH8jqPDkgSH3GIBmehwwAFkR9puh2M9NibKEFtaUp3ZiQlsTpqbc0edfT5EqCsrsTDpS5sCATi8LhfIzVwOUksLxtXdjcVh8eLsm/9wWGwQzKiTiXzQly9XVMxdJ91qxRhZSD0beFOuJwHzNSchSs0WZIKQXzzX+bs5W1E/hiefhON71VVoXpAN4+MYU1MTyLa+PjiTHR3Gr8HDDxN985tofnLHHZn3KRYTXUZz2eLJSWQgKgoIzHLp7/zsZ0Qf/zgykh58EPZJTyAa1Zg0AkVBlP0nP8Ga9I1v4Dq6XGbGtQmBZBJrbzSKeVxfP70+aLnA2YN6e+T3Y613OgVBmE1GnTulJxIY96FDIOtY/uT886cveZuYgG1pa8tOIBKh2iSRgL8xOQnfprk5u8h+MonNt92eait6erDhXrIEWq7pBF84DL/Q7S5Oz5m1uYnwvYX4MTt3Ev34x7jXt98u9B71Gdrl8Iu4emZ0FBrXkgSyZPnyubmGziewX5JMCl3fY6HLPN9RWQnCzeeD/WluRlLE6ChI8PTn1OEQ0lKVlfmTOKbD+Di0AxcvRjdmScr04TiAsWoVCMdHHsEc0jde4WoUbohis6VqjI6OQoe6oYHoYx/L9AF8PiSK1NZm7zZPhGP/4Q/YO73udamd5RMJ+GyRCDIQcxF+kiS0aDkY3dODbsjJJHQJN23C7/v7Yd8XLy6scWc+/OtfRHffjf9/5CPY0zc3F6btb+LYwNyqm5hXUFWQgyMjIOk6OzNJsGRSCEnnKv2pqUGUy++HcS3XQu/xpGYk5mvgsngxjPPwMMbAOodEIAFDIUSh0svcJAnO9MgInOn0CJzFgs/5/bgWAwMwyE4nFqdwGOedK7NhchJ6PE4nCET9NQ6Hsbg5HHA880WJXC4Ig/f1CR2NlSvFghwKwUGorMRiaRKIJqbDXCxfzgY9IZhIiLLl9OxBotSyZ31zEi6jTX9l2+xle4+1GXmDz6Tr4cMov9m4EWXB2eDzYUPU1ISo/Msvw1HORThmw+OPE335y9DY+spXMm0FZ5JytkY2jI+DiJQkomuvLU+mgaIQff7zKOW+5BKiBx6A7dY0jIlJ13JtqkdHUb68Yweu94c+BNvqdpv2zgQgy1ivWYqgtlb4E6XCSPZgtmAFa61yprc+c5A3yLEYNqqKgvV93z7M6XXroGWVbyMYjaIRgMeDz2SD349XUxPGwxIq2QKSmga/iCi1E/PAADbczc2QLkhfN2Ix+ISsN1koWB5G03DORtclTQNpwSV8t9wCvzGdQCyXj5pMwg4dPYrgyQknwAcbGsJ5p2eemjCGZBLPkKZhLTNLwktDVZVI9rDZMPdHRzFHswUOqqthj3y+6f2J6RCLoSzY4SC67DLhr7DutCwLyaWmJsybBx5AduENN2SvNunuhj088URhE4aG0GCuuhr+kdOJYzkc+H8kgs9VVeWWu4rHUZkxMoKxrl0rfifLRE89hb3WeecZ0yzkTMstW4juvRd+1l13IeDC8lvxOH4uV9OtRAKZ13/4A+zQe94D+1PuLEcTMwfTfTUxbxCNIrodDoN86+jIXhbX3y+y8RQFhi99QeGmKD4fnNPa2vKlTLMwfiiEnzlDMRc6OkT3U6sVji+Lh9fXZzemqgqScdkyONLDw3gvvVFLTQ0WppERLFyVlfg7LnvOhvFxOPUuFzqI6SNk0ShI3MpKLJxGHVurFYvh2Bjuz549IBI1Dc6sw4H7ZUZtTUyHdI2hY1XmYLS8OP3vbTa8OAM6vXOxPoswHdkygIxs9njTryi4duPjiIDX1UEHMZeDOjUFGzA6ioj26tXQ2zGKp58m+uxnEYT42tcyN9XskNtsuRs4jIzAwayoQAZiORzLSITove8l+stf0PH07rsxBi4DLzeB+MwzuA7JJDYO55yD++HxmGU6JkRHZL2/UEh37nzk4HTZg2wb9B2L04nCYFB09pUkzNlgUFRcWCwIVHZ14f2mJgjwG9ErVRRk4BEh2yXbOScS8G+qqvDq7cW/uY4/Ngb71d4ubM7ICEi6mho0ScgWeJ6cxN9nIyjygf0xRQGBaDSzWFWJfvMbbPhPOQWbaPbRZoJAnJqCDms0isAuExS1taJ8lBuvmCSYMaiqqIqwWrGWmXa9PPB4cF0DAaz9Hg+eUaczu89QXw9/xevNrL7KB02DzEEwCBuhT7DgbL1YDEEShwP28Gtfg0256absQYOBAewxV60SFXBeL8p2LRb4Ay0t+O5oFMePRkHYWa1Iksl2DtEo7NnEBPSbV68Wv1NV+F5eL6QhjDa21DRUe/ziFwgu3H47rrksYzyJBIIcpWR56jE4iEDuoUOQp7noIlxjrs4wMT9gkogm5gXGxpBibbGgdDfbZjISAUFls4Fcq6gQzrnVml1Lo7palOyUMwLL5UfctTnfsZcvT00Xj8VgrHNF8Scm4Phy8xS7HdlFqooFQP9dTKgODGAxqK7OXTI0OgqCz+MBgahfGGMxOPA2W2omYSFobhblzc8/L/QPly41HS8TucFOlqLMbPlyrnLifOXF+uzB9NJiPUmoqqnaOulIF+MuljjMBiYLfvIT2MRbbhHkmX7u8YaYS1z+/GfYmTe8wfh3v/gi0Sc/CSf43nszs8G5kQJ3g82GoSGUCVVVgUAsR/T76FF0lN69m+h//gckKo+n3ASi/P/Yu+74tqqz/R7JlmR5z+xBFiEDCIQAZZQdNoRQRqCsAmX2o7SlUAqltFBWgY+ySoFCm7ILlBGglECAsgIJmSbbdhxvy9rrSrrfH0/e71zJ98qSLA8len4//xLLV3ece8573vd5VwSRjs8+C+fO7bdD/hUW5jsw54E55/FA9+CGbOXl0mjUNidJ9qMHJgG5G6weQZjq/LPZQOJ1d0MmqCq+X1KCe//mG5B05eVIqZs8OfVz19djDObM0ScFuKQLEcjJhgbcg1EGBNfDrqqScqWri+jFF3H+c87pLW+iURzDTRrS1UO4vrSiJC8Pk4hAgOjPf0Y65PHHI72a65P5fDgmmwTi5s0gem02OIO0ZKnZjHv3+zEWLS2Qt5WVeb0sGTgSVwhZeziP7KKiAmvC6cR8DAax3saN6z03TSasYSYSa2tTl0Vffgn5ctRR+hHOQsA+C4dx7ccfxx5//fX6pQ96elDyqa4O51NVOCpuvRVr/4475HWEkE7xFSvwjPvtpz+ffD6il16CrFuwALKQoaooUdPWhtqMqTaei0QQEbh0KUpPXHutbNTX0IDzTpyYPXLvgw+I7r4b+9PNN8MetVhgC+adF7mFPImYx7BGNAriqr0dSuqee+oLVq83vqYek1+lpdh8PB5sRokbSmEhjmGyMVteFiJsCkLg3E6n/vUZQkD59vtBrk2dimfVg8uF4yorpXHOG+rWrVBK99orfoPlumjsnePuzVrFvbUV3y0vJ9p333iSMByWBbgnTepfCqndjiiB1laMOadC5ZXVPPTARcqJ+pe+nG70IKOv9OJ0DHImBoy+YzLJ1ELt37NFOL3yCjy/l12GdcxjywSjEFC+IxHIwldewZgvWJD6uK9bByV09Gh0ZE5UPLlRAJGUkYlobERaUVkZvNSZ1CdLxKpVIBBdLijhxx2HzweCQGxrI7rhBqSBn3km0pe5yc1gNcfIY3hCVaETOByYd1arTFvu6UmeXqxtjMTkIH+mbZzUX0Qi2Jd9PsiHcBg/lZUw0n0+aXTb7UiZS9Q5+kJzM3SAyZNxTj10dsLgHjUKx6sqjGY9B2YwCALMbpcEmdOJjvAmEwjERP1OVSHvYjEQDumOHROIoVDvDtDJ0N0NB0NbG7rVH3ooPmcCUYjkXerTQTgMYqK1FeO4//7Gstxuh0Hf04M56vfj3RhFiu+uiEYx37hOXlFR3ik0UBAC67mzE+uZuzF3dOhH2XE0cXe3zDLrC9u2EX3+Ocop7LOP/jEdHVgXY8dCprS2opah3j0Eg6hXX1wM+UaEdX377TjHbbfp15Xevh3/cpZWINC7Fv1LL+FcCxfGk4SqCpm8fTsISKNmnYnweIj+8AcEj5x7LuSkEJAbjY3YC7SNSfuDUAhO5TfeQCT0NddA9trtuEY+Ey33kCcR8xi28PuRvuz3Q1gmdgBmeDwQnFZr76YcQkiS0OPRj2axWiHsfb7kkTGZgJULl0t2GksWhVRUhPvllKHElGOu21Nc3PtvY8ZA6WSP84wZeB6OLBICYfWxmExvrqrCT3MzxrqqCpuoVpgrCqJAYzF8v7+eIocDCsGMGTgXd2+ePDl7tTby2DWgTV82ShPKNHqQKJ4ITKf+YKbgRisckcj3r8VAkIdEcE688w7SRg45BJ9xrR9FkRHQHg9k0JIlGPtFi1L3QG/ZQnTVVZBzf/6zvgLv88mSCnrvc+tWpBpXVYG8zIY8fucdoosvxjnffx8KLFE8gZitKJKPPkK0QTSKVOmDD5adVfNe9l0bLIuMogY9Hux/0SjmQlkZ5ABH5TIZqNe9OB1nRSZQFKxNvx9ylwhroqICc1dRsG8vW4Z1brEQHXQQaqSmm5XgckHfqKmJj6TRwucDKcj1q0Oh3k3yGNEodJqCAmnUe70w9iMRovPO089ecTgg46qrM1v/XV2QmdXVqcupbdsQ9RONgoSYPh2fM3GbTQLR4UD6ciiE98SERjKYTHie4mI8X1sbZHVVVd7IV1WpkwgBnWS41mTelcBzsqsL67qiQhLdejaD3Y535PFgXSdbmy4X9IPaWuhGeuAU47IyRPpt2ADCbcqU3sfGYpBtRFjbJhO+/7vfIcL3lluQmcAZICzTm5qwXidNQrAH62ORCNYiE4ihEGpDjx4df90VK3CPs2cbB6AkoqUFxGZHByIqjzgCn4dCOBcRntFi6d29OV00NkIv2roV8nj+fLzLykrYrnkSPjeRJxFThBDiNiL6DRFNVVV18xDfzi6P9nYoqmYzDD4jb5LLBTLMZjP2ZBQUQAhz1JvehsJFfJlIzKaxx0ovE4l69RdjMRChqopUk61b4cmaPl16zyMRKPGFhcbNBUaNwv1v2ABibsYMGVk0cqRU9seOxbkcDkQmOZ34++zZ8fcWieBeIhEooKl62o3Q1YXrlpXJLmulpSA+v/sOm4le97U8JHYHWcReWK4zVFgII5YJQY7UyTR6UJtiPNhgIpHTArX3zP9yp2bt5/1BSwvSmCdPhvKrvSZ3bfb7IXctFhBhHR3wdhtFCSWiuRnpwYWFIBD1Oihz1DE3aUjExo1oxlJbCwKxv/JGVdER+aabEF394ouSZIhGpWKcDUNQUYj+93+JFi9GVNadd0JBjsUg43ZFY3N3kEWMvpqT8N8TIQSMMr8fx5SVyY7L2tqDQ7HnhcPQeXw+2ZHcapXpwDxn/X6kLX/zDX6fN49o7tzM9KRwGFHBNht0O73njkbjazh7PNBZ9DJFuJFKNIpj2Gh/4QXc97nn6jcWcLlwXHl5ZpF2XV04f1VV6pHSX3+NjvAVFYjWZlmUbQJRVaUz2W6HTpluPVmbDfoY1w33+6F3ZiMqfCAw0LKIo/ZjMdm4I6+nDh4KCjCHu7tl7cmuLuM08vJyyBqudaq3/0YiyHgQguiUU/SdIbEYbCSTCUTfJ5+AADvsMCnvtbrMli2QpzNm4N4UBZF+mzejziA3puM9w2SCTdTaCvKQZYLdLvWyhgY4dYVAvcbEMldr1kh7kR2kfWHtWtyXEGh6x02tgkFcjyjeaaPt3pyuQ+vdd4n++EesmbvuwjN6vXgOPT0xj94YrrrWbkMiCiEuIaIyVVUfHOp7ycMY0SiEcEcHFK1p04w9xE4nFE0OhU6meFmt8YX89c5ZUiKLnFdUZNfos9l6RyRq77elBcJ73DgokdOnI7V4wwYYpHY7NhpVhdBN9qz89+++w4Y3fjzIRa3CbzJBgLe34xq1tfA4JdZG445ckyb1PyKoowMKQHl5vBetqAh1Lhsa8D49HlxvV60vk5dFgFHEYDgsDW6LBeuQ05mJBj96MFvQkp0mk1TI9NYy3382iMRgEKlzFgvR1VcbRw25XFiL69ZBaT7qKOPaqYno6ACBqChETz+t/71gEH83Sklfvx5RgqNHo4Nxf9d/JIKU4iefRPHxv/xFkgXZJhB37MC11q0DaXH11ZKU4Wiz4Yi8LAIGqjmJokCfKCgAAVNePvTp7NxN2efDGiCSjQLYcGWEw+jKvmoVjt17b+hkFRWZEYiqihR/RQERabT2Wlqks4Frmxk5Th0O6HUjRuCewmFE7PT0wODWq2/m80HPKC7OrISNw4FzcAftvsBNG15/HXrWVVdJMk5RZCQq19LuD8JhkJXt7SABE2tbpwMhoKtyVGJnJ4z/mprsd5UfrrJIVeXeZTJlt05lHunBasWaczohs8JhzPOxY/U7I1dX4+9dXZAPibrWBx9gTi9YYNxosqlJyso330Sq8OmnS2cvZ7mYzTLNevx4rJtoFM1X1qxB1PG8efK8nCXW0wM7q6Kid4qzxQJZ8+qr+F2PQPzuO5nJNWdOauO4dCl0wpEj0eSFictAAHaYyQQCUauDMXHIuhM7v5IhGCS6/37Ivn32IbrxRoxlIIAxMhrzXRHDVb71F7sNiUhElxDRWCLapV7grgSfDwIxEIAw1dsYGA4HPDclJfoFdvVgt0P4eb3xBcwZQkCRdjolkZhNZUG7AToc2GTMZmxyHg82B1YsCwtBHq5bB5Kvrg73zoX5+0JNDRTIb77BNcaP733Mpk3Y8PbeG/fS2op/q6qwOW7bhncxcWL/vc9tbZI81ashYjKBOCwrwybGm+Iuusns0rKoP+nFiiKbpxQX6zcpySUYRUmyXOHah3pyThuRmKlhqaog0drbQXIZdR7ldMHWVjQ7mDcPCqmiQO5wtKIenE7U/OvpAVGnlzIXDuP8HMGRiFWr0AF6/HhEBPSX2HO7UWts6VIo77fdJudOtgnEDz6AIk4Eb/shh4AUKCgwTtkeRtjlZdFQNCcJh7EeuN5oOtFq2QaTIJyqzPWRi4qgj+hFBUej2IO/+QbfnTIFMqGiQpKQwWD6kcKbNmFcZs0yJt96eqAPMYFYXq5PBBJBl+vpwTHcyfWVV6BvLFyoX3eMO8+zPpYuuMZ2WVlq+kkkQvT3v6Pm2oEHEl14oZSl2SYQu7tRtiIUQuS1Uap4urBY4NxxuzF2zc3Q5bhjd5Yw7GSRomCeqyrmS74cxdBDa8fZ7ViL3d36GRNmM4jEjg7YXNpjVq2C4/Lgg2Hj6MHphE4UjUKuTJhAdNFFcs5r9TivF1lblZWwSVUV9f+++oro8stRNzYRoRAiFC0W/YZUra24bmkp0ckny+flaOUtW4hWroTedMABfY+dqhL94x9wsuy9N0g93pd8PtmYdI899HUjdtBrHWtGNvK2bUhfbmyEzPvBD+BsFSI7QSk5iGEn37KB3YlEzGMYo61Ndv6dPTu5ctbdjeNLSyGsU1ViOHWWlUC9jskmk6zB43Ilr2GYCSwWnLOnBz9EklBMNPAtFhCJX3+NDW///VMXvFyce84cjNXq1RhXqxWCf+NGpE+PHSvrZ3R24p7YQPD7sTn1t05hayvGvKrKuNs0o6YGG+TmzSBPR4/O18sYThio5iSc8seRh/1NYx1KpNpR2WyWypgRQccRi4kdlFPFu+9Cfpxzjqy9lYhAALLO4YChO3kyagOxsqgoIEWYTNQqjT4fomp27CB65BFEFCdCGwGulzb4zTeImJ40CR2g+xvh0tQEhXXTJtQeu+AC+bdsEojhMLzsL7wAUuTuu0FK+P2Yx9kgBfIwRl/pxUbNSZjE57IleuRgps7DSAR7nd+POcaRaoM9D1QV98A/LD+KijAvk9WX3bABhq/XC/3qwAPjU844Rc/v7y0PkqG9HQbluHHGpGAoJGsbejy4T6Na2OEwyAGbDXpDLIZIv6YmRB7r1SuLRKA/ckmYdN+L2w1ZWVKSWnqwz4dyChs34p5OOkleMxyWctGowVSqYJ2uvh7v94gjBsYBy9Gq3d0yGrOmZtfLGonFZD06s1k6EfIYHigrk+nlVivWpN2ubx9ZrdLm4hqKra0o2bLHHpBvelAU2CGRCNFbb2HNX3llb72BI87Xr8ffpk3DenziCaKPPyY6/3yiE07QP/+GDVj/06dLpzHLgeZmon/+E8909tm4b65b63ZjDX71FWTpwQf3LT/CYZRb+eQTomOPhd7Gc9rrhdwsLAShmkw3EgL3bJTerKpIvX7gAcii+++HTqntW7CryYvdGUPqIxdCXCSEUIUQxwshbhdCNAshfEKI94QQ43cec7UQYpMQIiiE+FoIsb/m+xOEEH8SQqwTQnh3/nwihDgh4ToNRHQIEU3YeT1VCKEmHHO6EOJjIYR753lWCiGu1bltuxDiISFEhxDCL4R4Rwih4+/MIxVEo4g+3LwZQnLOnOTKT2cnlMzy8vQIRIbJBKU+GoXg1IPZjPNHo9icso3CQmxqXi82EZvNmFwzmaCkcag8p8glQygka4VMmgTyMBwGkRgIQNHcvh3CnDcvIWAo1NUhEnDTJtxjunV0tFBVkAvcUa0vApHB6c21tUhrqq/H/Q8knnnmGRJC0Lvvvku33norjR07loqLi2n+/PnU1NRERESPPPIITZ06lWw2G+1qsogjdhQF8ycQkClfnILf3S3JdY9HpiUoilQkrFYoPSUlWM8VFbJ5T0UFPispwTHaWjaBgGwslIsEIkcMaglEXlfJZJQ2Oq6vY4yiN41QXw+P8wEHoIaPHqJRyFS3G8plbS083lpPu80mIzBCIdmVMhQi+slPIMPuuw810hIRi0lCRU/B//JLXHfaNFy3vwTi118THXkk5MZrr8UTiJFIfI3N/mD7dnjXX3iB6Ic/RAp3WRnGpKgIczxTUiAvizC/mGTxeiXJzfv/jh14x5yqxgYi1yxjYqa8HLKnthb7DzulRo7EZ1VVOKakBO+NU5LTRTSK+2tpkXX2Ro/OeqRWUnA0DJN1HR1Ye8XFePbx47G/G9Xc27YN83npUozdqaciKlivZhVH2Hq9+k6TRPh8yKooL8da14OqwnBmAsdshpGvd6/cHE4Imdnw5pvQI+fPl/W9Er/T1YX/V1en75TxeGRTO6PUai06OlBzbOtWoksvjZer2SQQQyE0e1i/HnP7yCOzRyDqyaLy8mK64IL5FAo1USRC9Ic/PEKTJ+86sojrhEaj2Pvy6cvDE5WV0iEtBNabkR7FOifvI2+9BTvw+OON197mzZCf//kP5sTVV+sHVHD90UiEaOpU3M8//gEH7oIFRGec0fs7sRhIf0VBEAc34GRSrqFBRiCee668bmEh/t/RgcyN0lJ0du9LljmdRDffDF3roovQFZnntMeD/cJiMY5A1AM721RVNgsMBFBf8a67YMP99a8IVGluxjoabmWq8hxU/zFcIhHvJKIgEd1DRKOJ6GdE9C8hxHNEdAERPUZEdiL6JRG9JoSYrKqqQkQHENExRPQaETUQUQURnU9EbwshjlVV9YOd57+OiO4moioi+mnixYUQPyeie4lo9c7jHEQ0k4hOI6I/JRz+9M6/305EI4noeiJaTESH9fWQ27YN36LEQwGvF8I3FAIhOGIEhJ0ROCS9vByCiBXCTBAI4PtMZughGJQGSrbfWygEQzQQwEbF3nctWFFWVWxOW7ZgE5w2zdjYjkRgRHDNQx6jUaOgZD77LDYermvU2Rn/fa7NaLXCW8eFw9NVclUV3+f6OUS9r9UXSkqweW/fjnNNmDBw6c0eD/694YZfkdVqo6uuuoHa2lroscf+SCeddBqdccYievnlv9E551xJW7f66bnnbtmTclgWsbHGBnuy6EFtFKFRc5JkKcrJwJ0OmaxKhSQfLkg14jCV80SjydO1tWnNqVyjpwce4IoKKLFGcpVl6qef4tpHHGHsXCGSnZzDYaLf/hapc7/5DSLxOLJae89MMpSU9L6HL75AKs6ee6LLa38dNm++iQ6DI0aADJkyRd5TJIIx5u63/cEHHxDdey/G6/e/RxQApzwxIaCt4ZkufD78+8tfQhZdcw1k0SOP/JFOPvk0WrhwEb344t/o3HOvpI8/9tOyZbkti1avjm+WZNScRFt/UO//JlNyMn4gwE0/fD45z3muJ9PP7FyUAAAgAElEQVRlsoVoVOoQ3FGZCfuiIuzj3DjFCO3t6OzJDc/mzMFeG43CuDQCR8X01f00EkEmhaKA5Nq+Xf+4jg6sV0XBGp04EfqI0bF+PwjEHTsQVbR+PeRIVVXv+1ZV2WCuqgrfSQd+P+SkzYZzJRtPIhCHixdj3v7wh5BJfE+hEH4KCzNr6KJFdzfWTyQCh3BdXfrPlgysP/7855BFl156A7W3t9CTT/6RFi48jU49dRG98srf6IQTrqSentzXizZtkvYF2wUD7cDOI3OUlspa8X4/ZEti12JGSQlk9fPPQ2aeey5kpd77bW2FXPzkE/x7xRWwY/SObWjAOuEuxs8/D+ftccchglBPp928GbJuyhTIAT5vLIa/LVkCR8UZZ+Cc2ut2dMBZWlGBkgVOZ/KyKU1NRHfcAf3q5z+HjOR74sakVitkM9ckTwesv65fD32orQ0O1kWLZI37qirYoMnKh2QLqgoH8jnnpPW13YKDGggMFxIxSkSHq6oaISISQpiJ6OdEVElEM1VV9e38vIeIHiaiE4joDSJaoqrqK9oTCSEeIqKVRHQDEX1ARKSq6us7X5JVVdXFCcdPJKI/ENHHRHScqqohzd/0zLXtqqou0BzTRUQPCCFmqKq6PtlDdnfLNNrdsB5AHNrbIXwtFniN+ypO3d4ua+qlGtGWDEVFEGZcj0bP+2KzSSXdKJImE0QisvPghAlQSJ1OzAvtfXR14fp1dRDykydjg9m8GaRionc0FpMbak1N/KbCxq3DgWfX61bY3o6/jxqFa3Z3Y5MJhfB7qsZ3LIZN2OfD9zKpO8TgLpHbtoFE5WiSgYruMJvN9MYbH1PBzoeNRqP06KP3kcvVQ4sXr6O1a4uppoboueduuZFyWBZxkXAhMA8HuzkJR5tEo8Z18oYjEonDbIwREyR91UfUXj/ZdSMR1EGMRFCLx8hJ4nbj58svcezChX3LYa5R+Yc/4HvXXYcuhXp1G/1+fJ4Y+aSqIC3XroW3+rDD+p/K9/DDIPbmzsWza0tDZItADIVQjPxf/wJpetttUPTdbvy9tDS7zQbMZjO9/Xa8LHr44fvI6eyh++9fR48+WkwOBxFRbsuiYLB3oyQ9onA4gQlyrxfr1m7P/vs3AnfyDQYlcVhQgOszcZgKHA6Q+Nyc7uCDoWOkOtaFhbhWKGTcrI4IETeBADIijGSR1wsdKBDAecaMMT6WOwVXVuIYjsLbbz/8GH1HUfCddCNhgkGMldWaWgr0N9+gEUJVFaJ+tFGL2SIQVRX60JYtkK9z52bWICZVmM1meuklKYtisSg98QT0oldfXUfNzcXU3p77epHTifczcmS+FEUuwGTCOuvqkiUWnE59m0MIyKLWVkTr6tVQJILd0tQEom77dhCBepHNRLCRWlowX+rqiP79bzgwv/c9oh/9SH8ONTdDnowb17uE1caNIBDr6qCPJcoIhwPEpt2OkjMmk0xvttt7y7Zvv4VeZLUS/e53sBsZPT2491Qak/aFJUugG5WWoqzLPvvAvg8GMTZGY51ttLTgPjZuTJtE3C04qIHAcCER/8Ivbyf+S3iB/+CXp/mciGgyEZGqqn7+gxDCRkTFRCSI6CMiOjvFa59BGIffal/ezvPrJWo8lvD7Ms09JX2Be+0lPa2RiFSCdidEIvD2OZ0IbZ46NXn4NEe0CYFj9ZpyZIqaGiiXqgoCT0+I1tZCQIdC8NL3l+xQVXiky8vhaWeisqcHxgh3hXY6oRyOHy+VQ06/4uLke+4p71lVQQKWl4No086raBTeaouF6Mwz8d3WVij1HGHJqQBTp8rOqnV1UO47OmT3w+Li5M8Xi8naFxMn9o9A1GLMGGzsHR1QGCZPzi7xxGN85ZWX0ahRUiwee+wh9Oij99Hhh59HmzcX08iRRIcfTnTddbkti7JVcD0TaGvZ2GyDY3hnimxFG6YCbaFqo2ukEpH4t79BmbrmGuw5egiHIWPWr8f7OOss/YYoetf/3e+gyN5wA9F550mvdkEBZJcQ8Y4XrXxXVaQHbd0K8vCwfvpOw2GkVD/3HJ7hkUfiZZ+iQCb1l0BsaMDzbtxIdNllSG3i9FFumpGtlDeWsVdccRnV1sqbPvroQ+jhh++jsWPPozvuKKYJE/6fOM1pWaTtWJkL4PTqsjLsiRy5NJDgjvU+H+ZdSQnmXXGxvvGYDC4Xamlt2gQZfMopIMUzXR9uN2SXng7V0IDzHnqofpMTIsifLVvwTLW10D+MjE4un1FXB13w88+hTx19NCJ/jO6PS9SkS7QFg9A5Jk3S7+6qharCwfDuuyAzr7gi3vHMpK/F0j8CMRgEweF2o072PvsM3B7K7+Hqqy+jyZPlRU444RB64on76NRTz6NgsJjGjEHjiKuuym1ZNHs2HPFOJ8a5pmb3s9FyDRYL5j8HPXDjzET7YNMmlFQ45BBkYvl8vUm8aBQya/16HD9/PmSLHgIByJ6qKthin3yCsiYHHYSMCJMJ96XV07jD+ZgxveXh2rVE778Pu+n006UuxTLH5YLDpLgYNQ1ZhhQV4Vk4MIBTo995h+jPfwZZeeut8YEjXBqkshI2ZqYEos8HHeSDD7CP/+pXeB9bt+LvU6b0v6Z+KohGkaL+/PP4//nnp32K3YKDGggMF/MtMWmCE0GaDD6vIiISQliI6NeEcNNEFSWFSi1ERMTc/JoUj0+8V07iMuh7KcEKH3eUa23F75l4R3MRHg/qZ4VCIDHGjEl+PNfUc7kgAPVq8/QH3GiFa7wZpcqWlsq0pf4W5OeaSWPHSuXEbI5vtmK1yhD1RKW3shIK7ZYtMiJRCGygekpPNApvVE8PvGmjR+O4NWtALM6aBQOFOzMzgcgoKcH9tLXhmIoKY298NCpTtMeMye7mYTJhcy0rQ1Ti2rUYh/7UbNTDBM3OjhQJsKBm83iaNQvGwU6FPadl0VAhGISyw+nLwy3CiGhwiUMtzGZZW8aIkOorIvHTT1HT7MQT9WsU8nc7OpCK3N4OJTlVAvHBBxFlc+mliLIhwnpgxxjffyQCZVYrK2Mxovfewx5w4IGIfOoPHA4oi59+CuX1l7+MHw8mEAsK+kfwvf020nSsVpCUhxwCGcc1zQaqcUaiLFq/HrKopWU8XX890Y9//P+GUl4WDQI4yiUSwbjX1AxsBHUoJIlDJuptNkkepksc+f0gn9avh9zdf3+kw/X3GUpKpPGu3fMdDugoI0YYE4hE0PEcDjxPba0xgRiJQA+xWKALrlhBtGwZopmPPVb/O36/jNJJl0AMhSAnCwr6JhAVBfW/vv4ahOl558XLnEAAelZ/CUROZYxE8P7Gj8/8XOlgQsILNJkgi+z28TRmDHSznc+b07LIZgPpwo0rduyAXZCYJZTH8ILVincUi8HWaW+HLcNr1uGA7jFqFJwNXi/esdUaHxjR0ACicflyrK8FC3QvR9Eoak6bTCgj8PXXaFoycybRL36BucJN3JhIdLtBrpWV9e4G/e23cK5OmCAJRC43xHWlP/wQ5znqqHgZwnX+AwHo1+Ew0csvo7zL3Lm4H+3xXV2yMalR06pUsHEjyMnWVugiixbJDs9C4Nx9BZ1kA9u3Ez3+ON7b5MlwnmcQJLFbcFADgeFCIhplyRt9ztP+QSK6gsDMfkrIE48S0cVEtCibN5jGPSUFE1eseHFNAu72NpyjcvqDHTtk+vLee/et0KkqhIPHAwVuoMKhzWZZK8Pn0xd6QkDwO53YCCoqMjNKOzrw/bq63s9vNsM46OwEQVhZaVy8u6ZGesy2bsXvXi/uS1u7MRJBupLbDbKQozhtNryDNWuI/vtffGfsWChPeigsxN+7u2XK0ciR8UpVNIpIwVAIxw5Uag0bUJs3w1M4cmRmDXaMYN75Yj0ebOyrV+Pz2bPNRhEzOSuLBhNcdDkWG57py0NFHCZC27E5GZGojUhkNDai5uleeyEVxghcR2vLFjRd2X9/42O1eOopnP+ccxCJp70f7qrt92PtcIo8IxpFysuWLTCyjQjOVLFlC6Kqt2/Hff3gB/F/zwaBGAyiQPjrr2OM/vAHkBxeLxT1RAMk22BZ1NyMmkb/+Q8+v/hiM/3kJ7pfycuiAUAwiH0vHMYcr63tfy07Pagq9k+fD+soEsHastlkCZxM5nIoBD2Aa0/OmIH1l63yLBxxzI22ioqko9JuN04FJIJBy1kQI0ca1zNTVVkfeuRIGPD//jecqNqOx4nPzU7ZdJ2NioL7Mpv7JhDdbjgXGhogd487Lv5+mEDkyPtMoKp45g0boIsedtjApi8ngmVROAzZu20bPp8wwWzkgMppWcRdqLlhk88H/ToT8j6PwUFxsWz45nJhrdXVYc6+8QZk98kny6jkcBjvt7AQ+kp3N4ITPvwQEXSXXGK87jdtgoybORNr8t57EdTAkXhEUpdj5+qmTbinadPi5cPy5XCGTJ6MqHCeX1zixu9HpF80SnTMMcb1+YuKcJ277oKD5ZRTQO5p94yODvyUl8NOy7SG96uvQuZVVCB9eO+9ZWp3UZFMj9br3pwthELQKV97De9ywQLophnaFrsNB5Vt5Lo4PJeI/qaq6tXaD4UQP9I51ogV3rTz39lEtDSL95YUQshupUxO+XxQDDIlqYYjIhF4LBwOkGJTp/a9CXNKrNcLz1FiyHm2wUWUg0Hcm54QMpkgeFmpqKhITyg6nRCyHMmnByFkUXEupmskEEeMwKbCNT723DM+dTgchuHg80HAJ9ZAtFoh6LdsgdE/Y0by5xECZGVREbx827djgy4pwTtuasI1x44d+OZBVivut6kJhoXHg00/G8RUNIoxWbMG75kjM1NIy85ZWTTQ4PRlIsyf4aKEDxfiMPH6rHzFYsZKbOIxPh/qApaWEl15pfH+4fMRffcd6nbNmAGvdip4/nmc/+STkdarN04cgVhSAvnF0YmcWtPYiFpE++yT2jWN8OmniPQxmZDCctBB8X/PBoG4dSuKkG/bhvTlK67A9TweGWU5EESSFtEo0d//TvTYYxjDM84guueeviP4KS+LsgJO+We9oLo6+6SxqsrGKJyqLATmVmUliIxMo7UjEexjK1bA4Jo6FSlnA9GczGrFugsEsOZWr8b8nTvXWN4HAiDInU7oIhMmGMvfri5ZX6uhAet+wgSi007TH59IBPqW2ZxaHcPE77a34zsjRiSXIVyDy+2GjJgzJ/7vfj/GpT8EYiAAoqG7G8+8zz5DYx+0t0M3YsKXKCUZmLOyiCNjS0qg93d3411wWaNdxUbblVBWJvVNbpz50UeQMWeeGW+bVFdjTnd1QdauWoXovdpaoquuMrYnduzAXJg4Ed+/807YqbfeGr8ehMAcCQYR/U0EO007bz7/HIEce+4JZ0iiLFMU3H8wCF0tmezu6kLGxNatIECPOQbf43r4bW04pqICOkQmuq7XC5Jy2TJkktx8M8a8pQVjUlaGoA5+DpNJkqjZrG28YQN00vXrEfF4/vmQi0Ogv+esfMsWhok5lzGilMC+CiH2JKLTdY71ElGFEEIk5Jm/SujI8xshxH8Ti1oa5KRnDVwYVksmclqIUZ2+XIHHA4M1HIaXxsjLrEUsBnLI58Px2U5XNQJ7sXw+Y+PTbMZ7cbnwnlJVxrn7cnFx8pqO3D1wyhQZ/VBebqx8VlfDWO/pgXLDCIVgOAQCEKx6pKXXK+siBgLwck+f3nfEZ3ExNon2djyT3Y7ni0YhzAerYZAQUKjLyrBprl2LEPb+Es719XgPJSWImGKPewrIeVk0ENCmL3OtlqHEcCQOE2EyyTSWZLUPmUiMRlH7xuGAJ9yojAB7wz/6COT4Kaektr+8+SaKZR95JDoy630nFoPsNJmwdoSQNQPffBOK9/HHw6HRHzz3HNG112Ktv/xy77QVJhC5QUe6UFVELdx5J2Td448j9ToalfVzmSQdaNxzD2T7QQcR/fSncNzcc09KX83Lon5AUWTzDpMJOgjP6WyAo7I5co8dAXa7/OnPtWIx6F3Ll+Ma48djDg10cfviYpn94HIhVdqIdI3F4FRobYUs2mMP4/Xq8eB8lZUwgv/1LxjtCxfqE5SxmOwqnNhgri9Eo9BtOOIxmcNr3TrIXYsFjpXElG0mEG22zB2cbW1w+DAha5QtMtDYuhXPWV4OMjqNDqs5L4u4WZHbjbnY0YE9lj/PZRttV0RlJeRQczOilbduhe6SWKrJZJJE4mefEf3zn1ir11xjbNu5XHBiVFfjGr/7HY697Tb9yGBVxfXDYWSIaOXAxx+jNu3MmdCNEmU+E4g+H9ERR8C2MXIsb91KdPvtkDm33gpZwenN0SjmrtOJc6Rih+uhvh7n7uwEyXr2zop/jY1YFzU1vRsSCQEZytk1HJWYKbxelJf58EM86zHHwLk6WI1bdJDz8q2/yHUS8XUiulgI4SN0w5lERFcSUT0RJfgEaTkRHU9EDwohviSimKqqL6iq2iCEuJmI7iKir4QQLxJRNxHN2PljUG0luygowELgaDenEwuzomLgai4NJJqbIVysVhBZqUSnRaP4TjAIgT8QHvNk4BRzro+oN+YWC96Hx4OfvlJKwmGMBXccNHqPHo9MSbbboaA4ndJwTfT4RiJQZsaPR0RgaysM58pKGXkwZ44+CevzgRyzWkFYqioU4vp6eMT6qj1ZWIhnaW3Fd8xm1Aocio7jlZVI1eau1XV16RcKVhQ8CxE2yAMOwIZfVQVCO0XsMrIoGxhO6cu5QBwmIjGt2eh+hUC67apVqFGYrLZhYyOK/peXwwBPhQhbupToN78BkXb33foKoKpCphCBNOB7VRSkm3R0QElm50hhYfqKZCyGlN5770UB/7//PT46WFVxPVXNnED0+0EevvUWIrbuvBN7sqJANnMpkoGMpA0GUVydCKTwr3+NsSsuBhGbIvKyKAMwUczvmhtxZIMk4LQ0Jg7ZmCouxo/Nlh2ZtGULuqY7nYiiO/bYzI3GdMF1v5qbIYeS6RE7dkAHqa6GXDCqN8d1CYuKMG7//Cf25bPO0pdfqgonYDSKtZvOWo3FQCjEYhi7ZDXwli1DJMzo0SAdtM5L1FKWEcuZOBxiMdncobwc8migMzwSoaq0s/s7nmfqVJC3aWKXkEUmE/aboiIpI4JB6VBKLN+Rx9BBCMiVhgZkLXAtcz1YLHiXL7+Mf2+8sTfZyAiFEAFXVIT3fsst+P5vf2sc7LJtG847dap0spjN0KtWroSj5eije8v+aBQkY08PSheMGCEdy4lE4ldfQS8qLYWTkestFhXhWlu24Dxjx2a2F6gqxuexxyBTH3kExKeiYIxDIdiDRgEcWiIx0/RmVcV4vfkmCNMxY7AHHHrokPeT2CXkW3+Q6yTidUQUIHS3uZiIviOiHxPRXtT7Bd5HRFOI6IdEdC2BPX6BiEhV1buFEFuJ6HpCkcwIEW0moqcG/hHiUVgI5YvruXDHKfaGD3coClJse3ogcKZMSU2R4xp/XFNvMDo6JYIL1LKSYEQQckdlvx/PZpTSwXUCieBBNjKcQyEoa0VF0jDmdHeOelRVSdKxspvoLd+4EceWlmLT1CNhg0FsbAUFUPT5nmbNgtK6YQPO31cX7HAYBlF1Ncajq0sa2YMNTm/evh2ee68X8y6V9KH2dijqLS34fdIk1D/LIPVol5NFmUJRMKeJhi59OReJw0SYTFLxMpIdq1cjMueQQ0CuGaGrCxF2QqB+YCry9Ysv0Kxk1iyiBx4wVtb8ftxjcbFUbgMB1M1xOIhOPRWyJhKRc8NsTp3sCwSQov3qq0QXXkh0//29Oz73l0DcuBHP2tiIa112Gc7DNerM5uwRSkb48kvUXfz2W/x+/fWIFs1ASc7LojQQi8koIyK857Ky/qcrcmaD3y8zBbgRDxOH2UJzM9ZrRwd0xRNOyKi4fL/g8cTXKQ6F9J1HLhciJW02OC2T6U9tbTIN7sUXoQOfc47x2PX04LpVVek5rlinikSgfxutuViM6JVXUJ909mzICe29ZINA9PsRRepw4B3Onj34qbNeL2RiZyd+nzYtIwKRaBeTRVYr0l25hrrbLSNNCwvxb67pGbsieA2NHAkZw+W0EuF2o6ZeVxf0IiMnbCwmbaO6OkT9RaP4d8QI/e/s2IHzcrd51lPeew/BFwccoK+zxWIgPzs6iL73PVm+JLHUjRDQ6Z5+GvbOr38dT2aqKmSaomAcSksxZ9OJdHe7oZN8+ikIu1/9SjZxaWjAfUycmBo3wXI83fRmhwM67urVsF8PPhiRmdOnp/YMA4xdSr5lAjHMIyV3NaQ92IGAVIwKC6EcDUXEVypwu6EcRiJQflJVOiIRCKRwGFFkQ02WBoNS2Car+eJ2471wjRQtVFVGVU6YkFxRbmmBUB89urdQVVUo3aEQxsVux+YSDGLzYgXW64WgdbthQLA3SotQCNF6QmDTSVRwYzFsbg4HyDSj2lvBIMhR7sBlNkPZDwYxFrW1Q6dIOZ3wVKkqxsCo/mQwCCW5owMKR10dnnfMmJSJglxXFbMu+LkxwFCkL+8KpKEeVBUywmTqPS87OpBGU1OD2jSFhfrpz8Eg0eLFIBrOOw9e8b6wahWKco8fT/Tkk8akIzcN0BrMPh8ihtxukGCJaX5MJrJHOhnx19EB0uCbb6Cw/+Qn8c/XXwKRi4Tfcw+U47vukk1f/H4ZOZnNdNZEuFzoev3WWzKyae7ctMqZ5PpMHxIlVFVBBrjdkgQvL++f00NRZMQhO1IKC3Fuuz37EdkdHSAPm5sxRw88sHfh/sGAooAEV1XcQyiEdZ5IxobDuF+vF3M8WbRiSwvki90O4s5kQu0rowwVTnsuK0vPCc3GdiiE+zHS1UIhyMJVq1Cf7Kyz4tcnR2RHo7jnTLr5trZC1qkqHMEp1D/NKmIx6OKcPTNlStqpgruNLAqHITsURdYx5f3MYtk19I9cRDRK9NJLCMA54wwQeYqCQAPt2o5EiJ55BqTeggWICGTCLXEP2LIFNs6YMUT33Qcb6Xe/MyYdu7tha9XUyGNiMezx9fUgwg4/vPf3VBV1EhsbQTJOmaJ/jKIQ/eUvuPfvfQ/lTrR7CzcmdbvxPDU10GW4Zm1xcd+OibVrkYXicCB9+cwzZbT59u0Yo4kTM9vTIhHco8lkfB+xGOpF/uc/uIfaWjhUDj/c2K5LQH4FDgLyJOLgIuPB9vlAJnKR5qqq7Hqy+4vt2yH4iorgIUi1ADmHREcig9cSPhV4vZIgNFIGVRWkVTSKqEHtxrNjB4TtmDHGCq1WeR01KrnX2uXCJhAM4ns1NZJs9XiQwqyqMISjURgS2nQ/RcGmFoslb0KiqiCCu7qwQSTW4AkE8K5NJrwvvmdOfenpwWcjRw5dmHk4jGf1erHxcKcwvk9OpfL7ZbfNsWPTrr+Z6xtUVgX/UKQv76rEYSK0KSw8j8NhKLEOB4jE2tr4js08DrEYPO0rV6IpSmITEj1s3IjC3FVVRH/9q7HCFgpBHmmbBng8IBB9PjQ9MEoNUlXpkVZVyE4mQRn19VBcu7pgvJ9ySu9z9IdA9Pkwhu++C6X+jjvwzEwGDHQHZlVFzab774d8X7gQhCl3oE8DuT7rB1UJ5ffrcmGv5AyATEgfIhmV7/fj/0SYN3Y73mOm500GpxOk3ZYtWHv774+I4aFo9qCqiJ7t7obhW14OueNyyYZ02uMaG1HiJlmkpMOBH6sVKWyRCBwgRrLI78fxdnt6dZFVFdF2gQB0KqN119ODxlLNzVijRx7Z+zz9IRBjMZSU2bwZc3HevMHXhXt6ZNfZUaPwfjIg1HcrWcTv3evF7xaL3Mc4zTmPwcXSpSD6Tz4ZDlOuzV9UBCKR9YQlS4ieegpZHNddJzvAc0d21kU6OrAuqqqgh2zfDnJt5kz963s80F1KS2ELCwG58OabWN+HHgp5rUegLV+OY/bdFyWV9OD3w9m5ciVI0osuitebuK8ANybVysxIBPOVS2Tp6emxGNELL6De64gRSNfme+nslLXwJ0zon8ON63lzAxrtM7S0QG9lW3OPPRBRetBBaa2pXJdFOYE8iTi46NdgqyoEQ0+PVH6rqoZ2o1IUhHk7nTBkp0xJXZENh2VIdLJovaEARwDGYlDqjAzUWAzvgwgklMkEQdvVhfFI5sXt6cE1tIRgMjQ3w1M9YgQIPCJ8f+VKCPP99sOmUF8PpXjPPWW3ss2b8e/kyX2Ps6rKKL1x42RUo98vPVDjx+sryn6/rCtUVzc06c1EeAYeL7sd85I7hXOdydJSGDjjx2dEyOf6BpU1wa8oMDy03viBwu5CHCYisSj1X/4Cj/VPfxrfrCQWw78sr5Ytk97qk0/u+zqNjUQXX4w95ZlnjMsacMRVYaGMjHc6QSCGw0Snn55aJDoTgZEIfmcycelSogsuwLlfeql311P+HlFv8jEVfPcd0S9+AYfC1VfjmTlVyOvF/djtA+eoa21FjcnPPoOcvuYaRH9nSGbl+goYNCXU78c8jUSwV1ZUZObwCAZlxCHPXZtNRhwOVAkHnw+GZn09rrHvviDkhlIH3LIF0f977RXvNAiHsZZsNozJtm0gESdNgswyWrM+H9aH2Yz6oD4f0aJFxmmD4TB0LnYIpiMLOjvxHqurjXWwpiYQiIEAorNnzYr/O+vlHM2a7rv3+1HXrKcH+tmsWYNbX09R8P7a27F/T5vWr3rku6UsikSgV2qzMNihx6nOeQw81q+HvjN3LmoJMjo6IKdGjID8WbUKabrjxyPDgff5YBAywW6HTPD5kEZrtaIu4KZNSOk1qrEYDMIZUFAAkrGgAHPiX/+CrXv00dBlmEDTEonffgu5PnOmcQO6jg6Qei0tKLvC9RRZXnDDKp8PASx6gRFMfCsK9g1terPTCWfqF18gZfjGGyHTOPiipweyYezY7MgodiYTyTrgH3yACERVhTyvrcX7nDYt7dPnuizKCeRJxMFFVgZbVWW3pVgMyk9/PHbaBgEAACAASURBVOmZwukEKROJQDD3VUdPi1AIQpXTTodTVCWDC61zV2Yj5TQSwViwN6W1FYI2WRFbnw+bVWlpaqHZfj82EK6NWFSE+/v2W2wE2jp+kQg203AYnjiOdpw0KT3v9qZNMoR/xAgQiBYLNt5kinIkgmsGAhi3dDskZhMuF56DmxJwcWybTXYqy/Decn2D6rcsGqz05d2VOEwEE4nLlqGxyIIFiPZLBBOJGzfiuClTUEuwr3ne1gavdiiECES9kgh8H14v3jkb3g4HCMRoFN7xvpozJUJLJj77LNFNNyFq4KWXekcz9odA5CLh994LBfvuuyVBGY0iioA7MA/EfhqL4ZkeewzXuegilJ8oKoKszMuigUEwiD06HMZ75X0gVahqPHHIERRa4nAgnSehELINVq/GvcyahT1/qB2vXV1wYo4erR+Zw2nd4TAiJysrEfljNFaKAj0jGiX65BPIlXPOMY5o5gZzJhNkTjrrp7sbcqyy0jhb5NtvEX1UUgKiP/E+uCs962XpEogtLXivRCAmBqsJDoPJlUgEDuN0m9LpYLeWRX6/rK3K9aCZLLJah6Y+9O6Cjg7UTR01CjpI4jzeuhU6Tnk59v+CAqkHaOF2w24oKZGdld99l2jNGqKf/QzySw+RCAjESASy0GbDd199FQEN8+cjHZfB9a5NJjg1V6+GvcblVBKxYQPR73+P8990E4hGbrbCaGyE3ZVKY1JObzaZ8Kxr1yKrxeUiuvZaOII5ipIjG+vqjJ05/UEkAjvtrbewT9fVQSZXVYEMTie6XINcl0U5gbxIy0FoOwe6XPjx+fB7RcXAp7RwvYWmJmyUM2emR04FgyAQhUCY8lB2bk0GNpK5iLKRp7qgAAKvtRUbWV1d8igcRYHyzWnpfYE97VYriFqfD+O/aRO8NByBqL2f6dOxKXz4IRTTvfZKPz1m6lSMwaZNICSmTUPEaF/zq6AA1+zpgREQDA5dejMTXU4nfjeboTSMG5d2+nIeGmjTl63W7L/bPHHYGyYTFMnFixF9dOqpxse1tqJ7aE0Nonj6Mgy7u4kuvxyK4lNPGROIbDSbTFKedHQg9cRkQnHyFOvVxIFTWm69Fd3/jjmG6Ikneq/RWEzWoEqXQPR4EHXw/vtIKfr972XJB20H5mw01dDD5s3w8q9bh7pxP/4x5Hdp6fCtc5zrYNkfCmFfqq5OfR9UVcg4TlXmYvZ2u/wZaOeYosB4XbECesCeeyLVdagi/LUIBHBvpaXGqXd2O8bvk0/w/3nzjNcWpxMqCiJ0udmBEYEYi0FuEaXvqOzpwXovL9cnEFUVtbheeQU6zzXX9D5OSyCmUmMs8btr1oCkqKzEuAymDAgGIY8cDry/adOGTymhXAbXPXW74yP1WV8ym/H3oSg7sCsjGAQBZbMRnXiivizYYw+se26Kctdd+jZAWRlk7YoVkPeffQaC7+qrjQlEVYWdFApBFtpsuKd//hMy7eSTezcC4TmwYYOM0N5/f/3zf/IJ6iZXV0NHYpnIUYic1cfOgFRqwtps2BM9Huhazz2H895zj6ybzecNhzMq+ZQS/H6id97BeLMs4hTmAw/MR/EOd+RJxByGySS9qE4nhIHHA8UojaLsaSEchtBzuUCWaTv8poJAAN4SkwmG6nCvGWKxgCgNBCBwk0VMcppsRYWxcRuLxXvO+zKCOarPbJbHBwJQPrnDst4YFhbivkMhHJ+pIK6pwbWYDEx1Tgkh63a2t4P0rK0dvK7bkQg87K2tUNoOOADRiJxyMhwjX3MF2vTlbEbg5InD5PB4EMFWVUV06aXGY+P3g2g0m5ES3JeTxu1GakxHB9Hjj4Oo0AN3HiWCwSkEFOTXXoMMWrgwvg5rOvD5iH70I9QpuvJKkG3RKPYbRZE1DzMlENetI7rhBtzvT39K9MMfSlnGEWYD1YE5HAYx+7e/Qf7dfDOU44IC7NN5JTn7UBToRGy4V1am1hwnFsNc4B8u/s71DQerWRQ3OVu+HPcxcSLmTCYE/UAgGkVKoBBwaCRbM+vXQw+ZNy/5vstNzr78Ev8//XTjuomqCgJRUaBXpBPh5XJB5rHTXe/Znn+e6OOP4aC95BL9JnRcBy9dAtHnQ/qy04ko8ZkzBy9TQ1UR/djQgN8nT4bDN7/PZg8sb4JBGdVWXIx9OBzGHC8owJzKk4n9h6qChPJ4iM4+OzkZv2QJ7JHzz09ek9Xrxfm++AJRgpdcAsemEbZtw7uePBlyxe+HA6K7G9kieg1SiGAXcST3vHm91yFnTixeDHLy5pt721DRKGzqUAgOj3RsLLcbdaG//BINS372M1mCy+fDeYkwVtl2MqgqyNm338Za2Xdf6STef3/ooUOVwZZH6sinMw8uBnSwFQWeFo4UqahInoabLpxOEIjRKIRlumHNPh+iF7mrUy4ZT9yFTa97YzQKpSwahQCORmGw6KUasaI8cmTfRFYsBqM3EpGRfO3tiDAsK4PHhhsblJfL98ydobneIhcLnjEjPdLW5YLCyZtyUxPOx8WCU0U0insIBLDB1tYO7ObQ2QmvoKLIAsmhkIxC2bYN9zRhAu4lQ+S62p22LOKUvkhEEur9lS154jA1RKNIvdm6FYrkmDG9i1HzcU8/jfV/0UXwbut1bGb4/URXXAHC4qGH0GDECFz/jet+NTej1o/dDgIxUwfBjh1Q/teuhRf88svjn4fTnKNRyK905p2qwsP+wAOQXffcE19viDswWyySGM0mVqwguvNOyM4TToAxYrNBZvcjfTkRub5isqYXcW0y1oHKyrDnJHuv0ahMU+bGZdzBkutiDmaX+c2bQTK5XMhoOOig1OqLDibWroWDbs6c5HWfV6/G88yYASeoUZ1Rlwu6zRdfQOc48UTjumBEUs+trEzPuPV44BAtLta/70AADQXWryc6/niUjNCTsT4f/p8ugdjcDNJACKQtplMCqL/w+ZBR4vHAETVlyoA4U/OySINYDOPNzgxOMQ2HZUMxqzVPlvQHn38OuXH00cllxj/+gcjA446D46OqSr+TfU8PnI7LliEC8PTTkTVgtAe0tIAMHDMG0Xo+H0qWuFz4rlFWR3Mz0aefQi4eeqjMxuC5oCjIyli6FPUJr722t82sKLBnuDEp25wmU9971ooVqK/o9aKxzDHHyEARRYHNZrEMTLCP0wndcdMmjNv06RjH0lKkL5eW9t29OQXkuizKCeQjEXchFBZCIIXDsrud2w0yMRUvvBFUFUbQ9u1QAmfPTj/1wuvF9wsLIZRyrTZIaamM9tRGeXIDD0WBELfbsXlwzTCt8HW5YKyk0lmbuwaGwyDCLBYI2fp6vM9995Xn5/qYHAHZ3IxrjRkDRbmiAt/77jt4s1Ihb3t6sIkUF8siugUFIDHWr8d5UlV8zGbcC89JTm/Odhp7KIRNqasL833CBIyLquLdcNTBrFmIUmTv4cSJeY9wX8hm+nKeOEwfr7yC9Xv55ZjX0Sh+EonEN97AvD71VBiJ3LGZqPcYh8OIylu7FgRlMgIxEICiynWeGhvRbbCsDARipl7qVauIzjoL6/Dll4mOPTb+7/x8XIg8FsM6t1j6lj8uF7oofvQRlPDf/ja+U6zXK6OSs51K6PEQ/elPRK+/jiiDBx6AZz0azacvDwS4GzBHh5WVJSdpI5F44pBIliXhqKHBRlMTjOGuLji8TjoJa324Yft2EIiTJycnEBsbsc9OnAgj0euVKZ7a/ZabGXz5JXScY45JTgZweZnS0vTkjtcrOzjr3XdXF9ZseztqyOqlLjKBKASunaoOFI0ifXnbNuh/BxwweDKAu7VyU7zp09OvWZtHZuDu5EVFkE8OB/5fUgIZpCiYT4WFkDl5PSg9bNsGmZmsGQkRoopfew3E/WWXQX41NUHejBkjjwsGQbR/9hmiwE85BQ4Np1M/ldfhwLqqroad5HaDQPT5oBeNG6d/P21taB5SVYUIwIIC6SglwvfvvBNk5qJFcLLq6W/btmF9T5wo5Ym21qLefIrF0DTvmWdgFz3wAJzNRJiH27Yh2KWqKv1Mw74Qi0HOv/8+fj/mGOhzO3bgHubNk9wA63zs1MuvjeGJfCTi4GJQBzsYhJALhSAc0vXaEuG7GzZAOI4YAaGSrtfM44GgtVr73xZ+KBGJYBzY2CDCJuRywVDUGqhOJwRgRQWODwYlKZdK9BsTwNXVUJa3b8d7qK7GZpmohLtceMd+P0LoR46MjxT1eEBCFBWBAEy2MXR3YxMpLcUGqxXebW0g6ioqEF2Q7gYTCEBJ56jNfnQB/H+oKpSCrVvlhmo24zmKijDnEkkv/k5zM0iEKVPSVupzfUtLWRb1t/tynjTsH5Yvh0f66KORhsuIRKT3mghe83ffRdrjKafERyZzp0j+LBpFd+KlS5HOcsopxtcPhWTEs80GYmDJEiiZZ5yReXOHJUvQFbm6Gop3YtdTIpneYjJBvrHhxYolpzknYvVqpC93dYEoXbRIPjtHh0SjA0MYffghIh57eojOOw/XjkRkJMoARODn+mrKWC/id+nxyCZz5eX6MooNdr8fc5pIdqcsLh660iocgbdjB/SKefNQk2o4ykiXC/KouhqOTKN77O5GhFBpKci4ggKsWZdL1h3lov3bt8OgbmpCFMqhhxpfPxCQ+3o6qd1+P4hKm02/jMzWrZCx0SjKKeiVdGDiOV0C0euVkaXTpqXngO0vXC6QIoGA7Ew7wBlAw3DWpoUBs9HYcaWNkuYU53AYx1gs+BmOa3+4welElkFZGZovGdmVGzbAgThyJOohlpTgXWzciHNMmwbbOBaD3vDBB4hCPPZY1EJ1ubC/VFfH2wheL4IziotBzLvdaOwSDhOdeaZx9HhXF3SEkhLodNp9JxKBTXLnnTjuf/6H6Pvf732OUAhkn6oi1TgxKIXJyEQisbsbY7BiBSKtr79e6m8cENPTg3lZW5vdDI22NjhVm5sx5vPmwYGtKPj/5Mm9v6Oq8URimnIzv4oGAXkScXAxJIPt94OUUhQIh8rK1Ay/nh4IYFUFyZJJ6qfLBeXYZkutKcdwRyiEzaOoSCqmtbW9PduxGMaPCIp0ezsE4KhRfQtCtxvvi7tTNTbKJiqzZ+t/PxTCptjTA0VRrxg5d9MuKcGmp3eeri48U1mZca2cjg7Mi7IyeADTJYWjUYyH3497SberohZ+v6zRWVkJArGzE59XV/dd78ftlt0JJ0xIy0Of6xtUn7KoP+nLeeIwO2hpgQI8bhzRjTfGrzVWsITAun7hBSiUixbp1/AiwjqLxRCh9+abINoWLTK+vqLEF4jfsAFE5YgRSPXLhIBTVRjsN9+MdMgXX9QvjRGNYu4xgZh4X5GITAnjGomxGDpSP/QQjIZ77onvGhuJQH4PRAfmzk5cb9kykBA33QT5Ewr1LjmRZeT6ysqotILXC7kfi2Fu6hG0oZCMOOSO3larTFUeypIqPT0gD7dtgz4xd+7g1sdLF+Ew7tdkSl7w3utFtImigEDUNoFRFBjkVivGv6UFzo/NmxEJffTRya/f2Ynr1tamvpYCAXzPYpHlTbRYvhzd6CsrkTKol2KcKYHINc/MZrzfgehsqodIBPOqtRX79tSpg9ZIbreTRemCSy6wPcaEOtf/FQJzNd26v7sTIhHoOx4P9BejYIS2NjQiUVXoG9rUYkVBpF8sBnuouRm1Fd9/X9YHNJt7Z4UVFmJfWbcOcmDmTBmBGIuhGZSRHeF0gqS0WhGFl0j+rV2Lhm8mE9Gvf41AjUQEg1jbfTUmTSQSly+HwzgQAHl4wgnx49nYKEtt1dbKvZOb6GUa/BOJgDT95BPscyeeiHFatw7BKIcd1ncwiTa6Mg0OIb96BgF5EnFwMaSD7fVCceW0tMpKfQHENfWam6WXJZNoE6cTBKLdDoJmuCrH6cLnw6bickHYjh6tf1wkgvHu6sIYjB7dt9HCkXp2OzairVvxM2IEInWMlIrOTtRlLChAiHplpf54d3dDYa+o6F0PpKMDfy8vN34mRlcXIhuLi3FfmRhjPT24XmFh+unNnKLT1ITnnDIFc7S5GX8fOzb1KEdFwRi7XCBt99gjpY0q1zeopLIoGoWykk76cp44zC4CARCIfj/+1TMCYzEYqosXwxg5/3xjYzEWwzu6914o4FddFV9/MBGcusdK5Pr1ULDHjEGx8EwitxQFEZBPP41zPPGE/t6SjEBkqKqMTCTC/nb77agzdMwxIEq1BEY4LFMRS0uz59CKxeBh/9OfcC8//jEiEbRk5QCnLub6KktLL/L5IKsjERhhFRXxczEYlBGHkQg+KyqSEYdD7cjkyLQNG7Bfz5mDGl3DuUa0qhJ98w3GPVl36FAInUY7O9GURE+PCATwEwwiWnHtWqT3nnii8fWjUegnQkDnSvUdhkLQpwoLoUNpdSJVRTT0v/4F/eGqq7BWE8GOFK6Tmcqexo1nGhvhzDzggMwjttNFVxd0PO6oOnHioOreu5Us6g98Pll+gUtccLkOzjKwWoe3XBgqvPsuogAXLDCuOej1gjTbsQMRhQcd1PsYlwsBGn4/1uuSJTjuV7+KH3cOfBACASP19VhfM2eCyHz5Zayxs84yjpD2eNDx3WSCfpKYFfjBB0QPP4xAk1/9CvKqoCBe3gQCsPO4e3FfOlgshrn0zDPQESdOhI6kHbNQCOdUFDirtXZTJIJ5GotBfqVbQ3XbNuhG3d3Y577/fURBdnQg8vCAA1InJzm9mbNvUpDDuS6LcgI5mliaRyYoKYHg4hp6LS34vbJSCsxQCOSQxwNiZ9KkzBQQhwNe0JISCKZdhUAkgvBiz3ayyDWuc+H3x4+xEdjTbrFAUd60CUro6NFIgTESmg4H3mVdHd4Z116prOytbFdXQxBv24YIvMmTZZfVnh58J5Vi3zU18JLV16PWz6xZ6ZMKHBHb1gbyL9X0ZrcbBpjPJzuEd3VhrOx2kKjp3EthISKHOL3Z54NRke1uZLmCcBhygLuSJjPY8sThwEBViZ58EsrWDTcYE4NuN9Grr2LMTzklebSJyQSi6/nnUfPrssuMj+UutRx5s3o1vMkTJuA6mXil3W50i166FJ7wW2/V3xdSIRCJZJfmggJ42W+6CTLshhuQ3qQ9N3dgLijAnpSt/aihAalH334Lhfimm/AO3G7ZpTNXy3cMNwQC0FsURe69NhvWSiAgiUM2NNhRarcPD/0jGAQRt2YN7m/vvdGFcgCaW2QdmzZhbc2aZUwgRiI4rrMT+6dROl9REc61bBmiUebOjY+KSUQshv1dVaEjpEoghsOQn2Zz72yHSAQRy59/DtLgggv012kmBKLHg0hMjwd6RTLdLZsIhUAedndDxs2apU+K5jE8UFyMte924ycQkPUTo1FZRiQcBpmY30eAVatgdxx8sDGByE1JmpqIzj0XMkYP5eX4eeMN6Dff+x7RL3/ZW+8wm2E7tbcTff01fp8+HfvRK69gPzrrLGP9y++H3qOqREceGW9bqCoIvpdfhjPpxhuxZ7EexEQid0suKACBmAq53N1NdNttGLOTT0YDFe1+4/VijISArZ/o7OTSXX6/rIudihwMBIjeew9jVVmJJn9FRRjjaBQR6sm6Y+uBIyp5XDJIb85jAJDVVyCE+EgI8VGKxx4hhFCFEJdm8x4GCkKIZ3beb06LciEgNMeNgwff7wdxwmmsK1fis+nToQhmski7ukDIlJaC0NmVFrqiYLwqKkDucbSJHrxeKAKjRkHgsddRD1pPe10d0hMbG+FJTqaEOp2IROKx5nR1TqfmkHYt6upwbHc3jODWVhxbXZ1et8CqKnjiAgGQDFxnKh3YbJiLdjvmX1ubTL1MBBspK1bg/7NnY442NeFZampAKFosREcccQQdccQRKd3DRx99REIIevvtJ2n6dLzP9euhMAxHDJQsYmM8FILyYEQgco097bznent5AjE7ePddEA5nnQVZrIdgEAqsz4conr46uD77LIjJBQugTBq9K1XFHqCqmAMrVkD5mzQJDVsyMWaamuB9//hjKPe33dY/ApERiyGq8YoroKQ+8ww6InI0B5EklywWyMls7EeKgrE87zw4Y269FSnUxcWQ8zYb5GlBQWay6Mknn+z/TQ4CBkMv4miyzk5JJI0YgbnS2Ym51daG98w178aPxzHZJIwzhaLAmPr737FPTpuGeXPIIblBILa3QxcZN85YxqgqdInmZuhF3BVeD+EwiNSvvsJ+ra3fqgcuxVNVlXpUlqJAnzKZMA+0+5jPh2YCn3+OaOiLL9aXaeGwdDykSiA2NkJWhsN4vzNmDM6e2NqKOcblbObMMSYQ8/Jo+IAdTeXlkGddXdg/2IHL0auBQHxk9e6K1lY0SttjD5RU0IOqSlk7fz6aqhnpLIoCPWvpUthal19uHIBgtYLs7ezEHuRyIYW5qAhEpRGBGAzi/IoCApHr6RNBTtxzDwjE446DXsSyhmVWNAqHRGMj5F+qdU0//xyybeNGpEb/4hfx2V4OB2R2YWHymvDsSLbb8Qxut/E8VFU4hv73fzGuhx5KdPXV+M6HH+IcJ56YPoGovZeCAqwP1hUHA3luyxgDKmiFECYiupWIvlVV9fWBvFYe6cFkgtArK4PiwaRJXV3/Osd1dkJ5Ky/v3ZQj18FFwIkQkSMEhKPX29s7Hw6D2LLZoMT6fFAEuLacFqoqm42MHAmh39KCa0ydanw/Hg8MqOJieOR4rLmJjtMpIxITN9FRoyCAv/0W73qffZJ3WjRCRQXIvLVrsWnPnp2+YWQ2436cTozZ9u0YM+15ursxLqEQ5tWkSXj+jRvx3BMnxm/OiYjFYnT77bfTvvvuS6effrrhcaWl8OBv3YpN2+3GtYY6BW6g0Vf6cj7icPBQXw/ldN48KMF6iEaRhtfaijpi06ZhjnLH5kS8+ioM5/nziW65BZ9xs5VEcDRXcTEi/L74Auc//vjMCJnlyxEZGA4jteXww/WP4+6EZnNqRKXDgTpHn3+Oe7vlFtwzN2MJhXAMEdZ1ttIJ16whuuMOyIjjjkNUZUkJrqWqkEPJrpWqLNrdoSjYEwIBzImKCsxXjwc6hqrKVHs2uIeTTOK6T19/jWeYNAmG7yDVpssKfD48Q3k5ZIARtm+XztVJk4wNce7O+eGH2GdPPBFywWi9OJ3YlyorU9crIhHpAKyri5cl7e2IxnY4iC69FDJWD+Gw1Nfs9r7nVSSCaJ+mJmSRzJ07OASx3w/HqsuFsZ86NX05l5dHQ4+iIuhdHg/siWAQ+4jFgjmoKHJOms04dlfXSRPh9xO99Rb28uOPN16Tb7+N+ntz5xIddZSxXaCqSC/+618h2664QvYPqK7uff7WVsjDiRNld+WaGtRANCLsw2GQnn4/CESt7Hc6Uf9w0yaQfaefHn9NJswcDllabOLEvnWjSARlYp5/Hk6a22+HUy0Wk3UF2SmXTqAPR8N6vZinienNbjfqbNfXw5674ALsG8uW4VpTp+KdZGPecjqzNipxMPf+PLclMdDeGhMR/YaIniWi3Xqghys4so672lZVYcFzmHc6C7O9HZ40jtIbTgp9f6GqqK0RDseny9rt2CCCQSlQYzGZRsMFwEtKpEfJZIpXsrloL0cgtrdDEZ80yfh+fD6kJNts8OokbgJMJPb0yDTlxKYMnPLFqROZoqwMqVlr1kCRnj07MxK6ogLP09aGseZuaJs3YzyLixH5WFKCDb27O/X05VgsRr/97W/pwgsv7FNRLiiAUtHWBuNo7dpdO73ZKH05TxwOPhwOokcfhRJ2ySXG4/3++4iAO/BARCrb7bLRCiuKjPfeQ22gQw8F+cXFwvn9aq/BjXSKikDOffMNommOPTazd//Pf0I5Hz0aUZNGTpF0CcSvv0baj8eDKMAFC+T9cRSjzyefhRXO/iiwfj/ezcsvQ1Y/8ACijXw+yNiCAuyZfd1/OrJodwQ3HvD54rsyMklbUADjhztrDzeZpKowDDmldcwYpMwOVlONbIGJMbMZTkYjQ7O9HfuxyYRonooK43OuXAkjf9Ik1G+NRECMcFkCLbxe6aBNde/l2mWqKpsgMDZsIHrsMTzPz36m3w2USKaRcjOpvsAdq71eyOI99xz4Oamqsia02YxrZjq/8vJoeMBkwv7BKc4OB+ZfaSnmYmGh7OTMEbJW69BHWg8GYjHIjWAQDkkjgv7LL5GaPGECMh/GjTM+55dfIntgxAhEA5pMMiuLI0QZPT1Ya1VV+P211/CuFi40JhAjERBoLhccp9rGpI2N0MmcTugxBx+sfw63G/dkteJZ+tIt2tsRzbh2LUjJa66R0Ycmk2y45PWCAB01Kj1ZZTb3Tm+226GPvfce5O/8+dCLWlrwzlQVzVMmTEj9OqlgiNOb89zWTuREyHceA4Pubii7RCB+qquxQTHx5HZDkJaU9C1oWlux6VVV9Z1Wl4vgdKnRo+MVy6IiWXzWbMZG39kpowq1RmtZGTYNtxuKNnuZ/H78zvWEpk5NLnADAUTBWCzJo+QKCuKJxIoK3F8sJmv/7b+/9HSZzemlM2tRUiKJRI5IzIR0s9lACra3IzqWo1onTcImqiggFYNBbMojRw6cwj5yJJ5ryxbcy7hxmY/PcIRe92X+nDHcDPRdGZEICmsrCrqEJlOUV6+G4ThrljTahZDdlzm1/JNPUKR7v/2I7rtPGtX8XrVEIpPJFgu87KtWgTw44oj05wE3cPn976EgP/ecccHxdAjEWAxe9ieegJx49NHeEVKRCMgbLg2hfTZ24KSrbH76KdFdd0E+n3UW0ZVX4v309ODcNpvssplHZohGZb1mrkPH+xUR9gG7PbOO4IOFhgasTy6v8f3vY57mItatw3vYf3/jMefa2sEgdKNkut9338GpMGoUCESOeFcUGLVap3UwiHMXFaXeII2dt9EoiAGtY/Gzz5DiWFcHw1pr0GuRLoHY0ABZXFgIJ00m2Rzpwu2G5LubogAAIABJREFUs9nvlzWh8803dh1YrZhHXi90dI5KtNlk12aOTPT58PtwdKZkE59+Chvl+OON1+6mTUR/+xv0oeOO6904Uov6ejhUi4uJ7r4b483lfNj2ZWeVzwebo6QE4/7OOwjcOOQQHF9a2vs6sRh0r+5uHKeViytW4Jo2G3SKKVP077GnB8EUxcUykpB1daMxuvNOyL/bbuvd6V5RQF76fLBjWDdKF5zeXFCAIIu334a9NnUqykNUVMBZVF8PPuCww4zr6PYXHK0ZjUoHer526OCiT1VaCDFBCPEnIcQ6IYR3588nQogkpZCJhBATiWhn30S6cGfOtaqXVy6EuEYIsUUIERJCfCuEOFLnmAohxENCiOadx20RQtwuhLAmHKebuy6EuGjn9ScmfH6CEGKlECIohGgQQvxCCHGx3rE7US2E+LsQwimE8AghXhRCVCUbi+GGWAzESH09BNm++0oDz2KBAjZqFDanri4IMp9P/1wcoedwSM/Grobubii0Ro0/SkpkzUOHAxtLVVVvxZvrUXIatMuFf4uL4R3q7AQxkIxADAZBIBYUQHnsS2AWFOBehMCmFApB8Pt8eFeVlSDoqqqwwXR2pj8+jOJikA5CQLH2eDI7TygEY8DhgLE/ciTm5Nq1jXTxxdfSiSfOpO99r4SmTi2hww8/jN55552k52toaKDCnVr2s88+S0IIEkLo1gV6+OGHafLkyWS1Wmnfffel5cs/pJkzsTE2NUF57+pyUq7LIu68qyiYp1rCKl/fcGjwj39gbV92mbEc3bAByunIkUgN4UhnhtY7+/XXRD//OWTKQw/1JiW1RCJHBBUU4PyrVoE8OPLI9OdBKITow9//nujssxEZYEQgKgrutaCgb1nW1YXzPv440iCfe643gRgOQ6aaTDC8Cgogm4uKsLcxcR4KGdde1cLhAAl7/fVQhJ96ClFMO3Y00uWXX0sHHzyTJk8uoTFjBl4Wffjhh72OcTpzXxbFYth36uthCDqdkEmlpZg3Y8fip7Jy+BKIra2ITlmyBGvpuOOQ5parBGJDA/bgqVON0699PuyJPh90ozFjjB2a3EG+vBwR1kzQcZZGLCZ1TEWBzmWxyMifvqCquF9FgXHM80RVUULhmWcgK375S2MSIhjEj8XSN4EYiSD6cOVKzNGjjhp4AjEaBZnx7bf4/6xZqJdbWEjU2NhI1157Lc2cOZNKSkqopKSEDjts8OVR3k7LDoSQ8s9kgkx0OqWD0GKBvq0l4UMh4/rsuYyNG5ERsc8+iPTVQ0cH0Z//jPE44QSsdaO9oqUFNQJjMTg6WdcSAnZGcTFkEdtoGzbIKNAlSyDnzjkHThMOutFCVeG0aGtDuQRtNOQ77yC9eORIoj/+0ZhAdDhgV5eUwB40m2UGSWIdQEVBiYabbsKzPPVUbwIxGITNHwqBAK2tlenNmSAaxTM++yz0suOOw5hYLIhIrK+H3jl//sARiFpox0dRUlsHeW6rFzKSmalwtgcQ0TFE9BoRNRBRBRGdT0RvCyGOVVX1A4PvdRLRhYRwz0+I6Imdnye2K7iCiEp2/j1MRNcR0b+EEBNUVe0hIto5mB8Q0RwieoqIVhLR4UR0y87PTknhOXpBCHEUEb1JRI1EdBsRqUT0YyJyJ/na20S0lYhuIqI9ieianff9w0zuYbARDMIj7PVCGGpr6Wlhs0Eg+f0Qkh0dUqnjmitMILpcUNyMlLNcBtdfKiszfj7e8Dkac/RoY8HJKQvaZiaNjRjDGTPwXSOEwyAZiFIvrksE4VpVBWG/Zg2+t8ceslaIECAko1Gcn4/PBEVF2OzXrJFdm5PVKtRCVWFsNDRgnPbbD/fR2gqF/aOPltNXX/2HFi5cQJMnTySn00mLFy+mk046id5//306OnHn3Ina2lp69tln6cILL6TDDjuMLr/8ciIiGpGQ//P444+T1+ulyy+/nCwWCz344IN02mmnUWNjI02dWknt7UTffBOiq646mgjrPmdl0Zo1st4TE095DB2WL0c9GTZGGxt7H9PRAUKupATkhM8HhVgP330HpbK2FukyXV340QN3IDWZcB/btqEw//jx+veRDE4n0f/8DwjMa64B6dfWZnxd9hz3lWa8ciVSjvx+FOo+9tjeDg8mAbgRgtNpfN1oVKbKFhb2nv9cL+npp6F4n3020Rln4Nj164nefHM5LV36H5o/fwGNHz+R3G4nvf46ZNHixe/TIYdIWRQM4t/GRqJAoJb++Mdn6Wc/u5DmzTuMzj0XsqimZgQ1Nsqxeuihx8nn89IPfnA5FRZa6K9/fZBOPfU0+u9/G6m8HKxOfX2Izj8/92URp5iWlMhmKEJg3BINtOEGpxMOs5YW6EyzZmFvDgYRyZeLcLkwx6uqoP+sXdv7GI5q4ai9WMzYcOvpQX0uIkQS6ckUjgC0WGQDuqoqyLy+oKogHcNh2Rmd7/G11/As++8P2cr6UyKCQRxfWNh3LUO3G2PCdS7LymRGz0DB5cK4hcNYI+XlmHMs///97+X09tv/oaOPXkBnnjmRPB4nvfUW5NETT7xPBx0k5RGTtWvXEvn9tXTHHc/SzTdfSPvtdxideSbkUXX1CFq7FnsBEdEDDzxOfr+XTj8d8mjx4gfplFNOo/fegzzq7iZ6770QUd5OyyoKC6EP+HxYF1zHjut0Wq3xac7cuV5vT8tFdHcT/fvfsEW//339Y3w+NGsLhUAgjhtnTOi7XHACejxE999PvRp8FBRAZ2prw3hv2CDt3f/+F/byaadJ26usDPLAYsG+paqIRN++HfYLl6TiBnBvvAHn7y9+YVy7tKsL1+d6hdoyLUQy6s5shm30m9+AtFu4ELpRol3ItfPNZth52rJbqtq7/E1faGqCY6ajA9lnJ5yA72/eDLLXakX69mA70NiO2bEDWTcPPtjnV/LcVjwykpmpkIhLVFV9JeEGHyI87A2EAegFVVV9QojnCAO9VVXVxQbnH0FEe6mq6t157g93nvtcInp05zE/IqL9iOjnqqr+cednjwohWonoOiHEyaqqvpXCsyTiXiLyEtHBqqp27Lz+U0S0Mcl3PlVV9Tr+RWCFXyOEuFpV1WQvaMjR1QVlRwgQVqkQRXY7frxeKINtbRBClZUQIh4PlJrBSOMYbAQCEEhFRcnJPSIZ4WIy9a2ExmIyjfS77/DZrFnJa9ooCjxJsRi8V+lGZKgq3hV3OUz8vskE791332Ez2HPP1NOIEmGzydTmNWvo/yP5ksHjwYbNtTqmTsU9ctSQohAdeuiJdMklZ8alif/kJz+hOXPm0D333GNIIhYXF9OiRYvowgsvpEmTJtH555+ve1x7ezvV19dTyc4iJ0ceeSTNmTOHnn/+ebrkkquopYXotdeeosbGFUREv8hlWWQ2Q/FhMsVk2j1q6wxHNDejXuCUKTCy9eB2o2OzxQKDuKzMuFxAYyOajJSVoe5OsnWsqjIq77PPYJTOm4dyBOmioQFpvm1t8PCfeKLxsakSiNEoIphefBHGwd1391ZOuZs0G1B9RRFx/bVIJD6Vmg2vlhakSa9ejX3y6qtx7VgMRkg4THTUUSfS2WefGWeoXXTRT+ikk+bQ44/fE0ci/h975x0fWVn9/3NnMjPp2WQLu8n23pfO0gQpIiJlLfAFBRVQv8AXRcWGCqJgAXsBBBF+SLNSBcQF6SBlC8v2nt1septMb/f3x5vjvTOZlmSSTZac1ysvlmTm3uc+93nOc87nnPM5diktLZOzz75AvvKVT8mUKTNlxYr0uqitrVlWrtwoZWXooqOPfr+cccYh8uijD8gpp1wu998v8vDDd0p7+8jXRRqE02BTJMLvXK78OTKHWnw+QBjtbrl0KWfWSC8rDYfJ/CkpycwZqA3mFHQrL89sS/r96LZ4HBqATHaAx8P1mpr49/jx+fOXKqXAmDGWY+7zAVzu20eWzNFHZwZVFEB0u3PbVXv2YEOrHs5l1wxUolHu2dHBsy1YkF7vH3/8h+QDH/hY0u8+8YkvyMc/fojcdddNSSCiXUpLy+RDH7pAvvWtT8nkyTPlzDPT66P29mZ59NGNUlqKPjryyPfLxz9+iDz00AMyfvzl8tZbItu33yky6qcNipSVYVdr9ZKWOGunWi11Dof5iUQsgHGkSiRCYNXlEvnwh9Prg1iMDMS2NgKLkyb1BgZVgkEAxOZmsgEXL07/ufJyzqM1a5jnjg58r7lzRc46K3kcVVWMs6uL+V+3DuB9yRJ8KBGucfPNBGjPPFPkkksy29otLRaF0+TJvXWWHUh8/nkCqyJUfaQDWdvb0YElJWQ02teDUt/kCySGwwC6r7/O2rvwQp4xHqdEe/161unRR+8f/t/ubjIy77iDd5IHiDiKbSVLv3RmTvPMNM2A7aLFIlImIoaIPCci5+X6fh7yR53kd++3xjAMr4jYTZizRMQvIr9N+e5NArp7loj0aaINw5govLzbdJLfvX+bYRj3CShsOrkl5f+fF5Evisg0EVnXlzEMlSQSRGA1ujF/ft9BqPJyFERPD0r1zTdRHvPnH5gAojacKSpKr8ztoqU0bjfGbzhs8ZSkSjzOZx0OjN/ubiJW2ZRuLMb7i8WSI0n5SixG9Cga5eDUrpdK4qzicHAobNiAIzF/fv9T0T0eHKt33uFwWbAgvaMRj+OI7d3LnC1aZGV8KieIwwGwEY+XSlsbRnVVVUgSCb+Ypiknnnii/OlPf+rfQG1y4YUX/hdAFBE5+OCDpbKyUlat2i6zZzNvGzc+KmVlZeL3+0e0LlqyxCpnsDfZUDBxFFAcGvH7MXxqa+k0nG6/hcMizz7Lfn3/+3Fc6+rSv6O9ezGQKyuJfNfWZn6fpsn9KytFnnkGIO4jH4Heoq/y4osYlUVFlOwcdVTmz+YLILa0kE351luUhn7jG+k72/f08AylpX3XjVr+ooDiX/9KOZDbTYT/nHOYu3DYop6An8pCKkOhkPj9fikrM+XUU9FFdkoKHZP+TsuRtFTJLpr58+lPXygLF1q6aNq0g6WiolKefnq7PP00urKi4sDQRZddhqPl9+Po2Xk6tcxdgV/97/7qTBoMsh7feYfxnXEG5/dwLbPuiyQS2HXTp3PepgOrTBNbZNo0691kqooIBqEeKCuD4zVT6Z5KSwt7Yvz4/J3QtjZ0Zk2NpTsbGqCGiMfRqdn0mQYfiouzv8NolGzoUEjkiCMAEHM1cxuoNDUx19XVPMOUKdns0N76yDRNOe009JEdMNH3qr9TfVRd3RtY0ez1iy++UI480tJHs2YdLKWllbJy5XZZvhxw5P/9v0dFRv20QROtEAoGOfPa23mXZWUWH7K9UWIoBJiimYkjTf75T/yUj30sffMS02Sfb91K+e7EiQRy0p0N0Si2xLZtULwcd1z2e2uzzNZW/JP581nj6a49dizA5IsvsmcXLrT2UVsbAN/OnSKf/zznRSZpauLz1dXZG5Mqd/bf/oZf9f3v96a/MU2r+WRlJbojnQ2YL5C4aRNZlD09NAk75RSrm/iLL4IJLFmCzxcMEsQpLu57p/j+SCiEzfaLX+BPn3UW7zqXjGJbvaRfOjMniGgYhltEvi0iF717MbsUgoEhXcFUp4jYIYfpIrLTNM1Q0s1Ns9EwjC4RyRB7yCrT3/1vukKEbMUJqePVgpthybcRDKIA/H7AsGnT+p/mrvw1ra3JXZq0I/NwzBjojyQSAFXasTrXc2kpzUEHoTS9XuY71dlRsDEQ4MAwDByQsrLk7s6pY9m5E6Ng5sy+dz2ORgEQYzEyeLSLqwKYIsn3dTo5MDdsIDMwU+Q7H3G7OVjeeYfrpQLOHR2AlUrKPnMmc5ZI4Ah0drLepkzRko2I3HnnDXLPPfdIQ0PyNjQKULsxzebRx+Pa/bladu3qkIoKAM6vfGWXzJgxQ9atWzfidZEdXFIjQsmbRSzDdLTceXAkkcDJ7uqCdy8dgJhIYLx1dtLgpKIC6oh0xl5rK4ZqNAqAOHWqRTadjuMyGORn5Ur00gc+gAGsndvzlfvuE/nCF9i/f/kLOjOTRCJc3+XKDlS//DIAQDgMAXo641u73ZsmeqI/Tr3yS23fDvi6ZQsR/auvtrLPleDe3n05EonIDTegi3bvHlxd1NMD/2M0Wi1btnTI1VeLfPrTIscdd2DoIsPg3CwuZu0qyKw/0ShnhD1j2uHoDS4Opo6KRMhMWbsW/bhgAWBSf8/G4SibN2MTLFuW+bn27mU/aEM55c5OlUgEvqymJpHzz88NIHZ18Z26OiuzOJet09HBvhwzxtKd69eTmeTxUDKYjV86XwCxs5Psm2AQcGD27MFda8GgxQ1aVUUGVC5nfKj0UTQq8txzBIocjmopLe2Q665jHdx44y6RUT9t0KWkhPXq9bIXQyHWie5Dp5O9E4slg4kez8jx0d58E8Dvfe/Db00nTz0l8tprNC6pq8PeSQc2xuMAeatWiVx6KVmN2aSpCXvI58MuWLAAKoTubotf3i4Oh8XpO2cOVDAijP+GG9jP112Hr5dJ9u2zGpNmq3rbu1fk2mvRD+edx/Ok6q5EAp+vpye/PgUOR7L9b7fLfD4ap6xbh397/vkWx+Pu3cy/YWCb6nsqKuKZtdqurGxwkhJiMSpUbroJwPR977OaCOYjo9hWL+mXzsxHpfxCqO2+VUReEpEOEYmLyGdE5II8vp9L4hl+39+Tz8zw3ULFrgs93kGTlhaUoMMBAJKJIDtficdRHOEwzmZ5uZVe7/MBKo4ZM7KzmJTnMRzmUMqVYdDTw7PbS2l0Xnp6kjsOtrUxV3v3MkeHHMI70c9qSZ2KAojBII55ugMym0QiHCaJBM+i4zMM7tvVxb1NM9lIdbk4ONevx7FYuLDvGT72ay1ZwrWUbLe6mgO2uRlj5+CDrbKgUMhaYwcdlNxB7KqrrpLbbrtN/vd/L5OlS48Tj6dGSkqc8uijd8kDD9zfvwHaxOl0SiLBO6qv52A3TZHqalOOOqpf63rE6CLDSCYnVoNC+VdGAcXCyyOPYJx96lMWd06qrFzJfjj+ePbNmDHpdVJXFwBiZyflHFqK6HQmc+jYu5/6fET7Ozooo543LzkrNdd7TiQwkn/yEzIk77knc+m0nfA6G4AYi8FvdNddOM833ZQelFQyeS2F7a9zFAwCOjz4IAb8zTfjlMTjXD8QsPSjvQuj6qLLLrtMjjvuOKmpqRGn0yl33XWX3H9/YXRRKES2wb33MhaPR+S440z5ylf6tQeHvS5SQFdLzePvXrG4mL9pgEMpGLRDqYqen3ZwcaASjxMEe+st9sysWWTZDnYZ61DLvn3YJdOnc+amE212VlHBXFRXp+c7jsUoJd6xg6yQZcuy39vn46e8nHnVLCCXK3MGVVeXlYGsOuf557lvbS2Zj5nsXQUpYzGr4VIm2bYN26W4GCe1v1zR+Yhp8g5270Y/zpmTf6PCwdZHhuGUl18Wefxx1sD8+Qpwmv1tpjjs9dFwFoeDvaIZ8gS8k88ozRRWPRkMoiM9nv2XyZ2P7NlDp+G5c8n4TSdvvklw9eCDAfUrK9ODb6YJ9+Hzz1PN8IlPZL93VxeZh5s2AQwuX47v7HQy193dvXX/9u3oiPnzGXN3N9//yU8Y1003ZQ5mmCa6t7MTwG/ixMxje+YZruV00tVZ7RQNEjscvOtduxhrXV3++kq/r3a/YQC6Pvkk1zzlFGxQtSfffBMgc/x4sjrtQSfDYC0WFaFntYKjUNmwpgmw+YMfMPfLlon8/OcAmX300UaxrWTp13jzMbPOF5F7TNO8IumqhnFJHt8tVK+onSJynGEYxXbE9t20zTHv/l2lU5LTRVVS3TRFXeek+ezcNL8bMaLdl5ubUWLz5w+89CIWs8CdKVOsyG9NDffQzDYFziorRyaY2NyMQTtpUu4sg3DY4qqxHywOB/PT3c21KiqYn7Y2wCmPBwBRjV/7/FVXW0DO7t18f+rU/JuT2MdWX891pk5N35l1zBgLBDbN5Mi/2w2QuGED4N/Chf0v2SoqIoK/YYPIq6/yuzFjOFinTbPWiXYkczoBVVJB0wceeEAuuugiueUWMr+9Xg76++67M+cY8onGB4OAtnv3cnDW1fHM9kjajBkz5KWXXpIDWReNAoqDL2vWACIefzzGTzp58014+Q47DEDd40kPXvj9Ipdfzt757W8xeu3icFjGptNpcfg8+ST65cMftkBHe8fmbO82GKRpykMPkRX3059mNhLzBRCbmuieunYtJUxf/Wp6nRMO88xOJ7q1v+fMf/6DIdrYSBn3FVdY55o2FIvHmXMtGVNRXfTb3yZXodx5Z2F00Zo1GMqtrZSWXnIJ2ZjadETkwNVFDgfnj2YhagdJt9vicY3bzF39ezzO2g7ZYvr9LYM2TQJor7/OHpkyBfAwE8A2ksXr5YyvqcmcMdjdzT6pqMAW9HjSlxwnEiJ//ztn/amnZuciFOFddXVhn6huKynhvSvVQur+1q6p5eXYS4kENAQrV1JO99nPZrZV8gUQIxGc6MZGbMFDDx3c8mWfjyxo5YSePbtv9xssfaQBpccfB0ifPh0gZsECkV/+MvmzM2bMkM2bN08/0PTRcBaPh/XS08O6DofZM/b1r2B8NMrfAwF0occz/Hy0nh7OvepqKiPSyY4dZDnPmkWTEuWJTxXTJED45JNc69JLs+v/QABgbM0axnHkkVQlNDaii6qqrLlT36S+njNi0iSCDF1dVGM8/DBB2W9/O3swY+9eqzFpprMlHIby5pFH8KO++11L9+rzxOOMbc8ertufpBO161tbAWh37bIaySjFlNdL+XJnJ3bmsmWZ15Dbzfi0KVAhyptffJHA9Zo1vP9bbsF+7advOoptFUDyUSFxSUEiDcOYJyLn5PqiaZpxEQmJyABz4OQxocvNZSm//+q7/33U9rutIjLfMIz/xscMw6gS0GX72BrlXZJLwzAm2D47TgqDQu8XCQTYYM3NGL5LlhQGQNToxtSpvcvutKNVXR2KorMT5ajg1EiRjg6rY3KuTAPlNnQ603dt1g6hkQhKubGRqHZxMaCAPWPHMKyMxe5url1fz/xNntz3DFLN5hMBpMuURaj3LS7m0NSufSrFxQDQ8TiRtWg0/XXyEe2I2tEBmFpbCwGyAhz19ayZsjKieekOQKfTKaZtQVFOv1n+9a+HRYRrZxKn0ynFxcXSmdLu0zQBRER4n7t2WY1hFi/u7QCdeeaZ4qN95HtCFymgqIaoZrPF41bpoWYGjUp+0tIicvvt7M0LL0zvZG/bRtnY3LlkpBhGeiMzHKaUePNmIt+HH977M/oOTRN91NYGYbnfT6ZQagMFHY+CM+nGf8YZGMo33ogzOVAA8fnnKc/Zto3mKd/+dnrDMBBg3C5X/wNVXV0Y4ldeydl4++3wLVZUWByLPT0EVWpr0QdaFqbgVaouEhHZvHmzPPzwwznvn0kXJRLwromQITphAlkUN93UGxgWOfB1kcPBGnC7WZOqa4qKLADI6bQCGm4373DMGIsjU4T35vVaZ093N2soEkm/xnfuJDP12We5xllnwYd1IAKI0SiBCqUeSaeLAgHsibIy5j4eT8/JapqATWvWkCWjmSvZ7t3ezl4eO9b6vdLmKGerXbTBX1kZ3wmHcSRXriRb5vLLswOIfj/2bGlpZru4o0Pk3//Ghl66lGykwQIQ43FAkVWrWI8LF/LT1/sNhj7atMnqqm2aBDK+8hUrMytVzjzzTJFRP23IxTDQd2PH8u/OTs64VN3mcrFvPB7Wnd+Pbsx0zg+1xOPoj3gcfZvOpmhrE7n1Vnyi009nz2QC3O+7j4DGMceIfO5z2QGsSIRAyiuvMHfHHms1KlH6mEAAW8DrxWfYt4/Pjx+PrjNN9stf/oLeuP767ABifT1n0cSJmc+W+noqTB55ROSCCwATU4M3Tidj0g7xs2b1HUAUYd5ffJFAdEOD1QRG/dudO0WeeIJ5eP/7SYTJZX9poFebZPb09G+9rV1LY66PfQy9/OMfYyOtWDEgPuJRbKsAkk8m4sMi8hnDMPzvDmym8MAbhRbUueQNETnFMIyrRWSviLSYpvlsH8d5p9DF5qeGYcwXkTUicryAJD+e0r3mDhH5ioisNAzjdwLj8GffvXdq4v3XROQpEXnVMAxt0/1ZAf2tlsKhzUMizc1kIDqdACCFKLnR9OhYDKc3W3ae242C0wy99nYru64/Sm0oxedj/pRzLJuYJsBgIkEEKpMiLS62Isz79jE3hx2Wfg6VY1JT4aNRHFi7cZ2PBIMcPE4ngG8uY1SBRBHGqvxiKqWlAIkbNzKuBQv6Viam5eHaMOCUUzhItMv3uHE4KJFI9sNUROScc86Ru+66S8rKyuSQQw6RHTt2yK233ioLFy6Q1atXS0cHz5+JlP2II46QlStXyk9+8hOZPHmyVFZOkIMPPum/5OHRKHM2bVrmebvkkkvkzjvvlFWrVr3ndJGCUSrpMhTtWYqj0lsiEQxBw7BArFRpbsaYnjQJB9bvZ02nOm7RKE7dqlVk1B1/fOb7Kjiwbx+RftOkaUgmviF7aYv9XW7YQFlQWxtGejZ+oXwAxGhU5Fe/EvnjH9EtN91kce6kXkuBH80O7quYJobnz36GDrr4Yn70HcTj6N9oFL1nz/qLxaxMDqdT5Oyzz5G77+6tixYsQBflErsuqqubLF1dE2TVqpPktdf4+1ln8U4VQEsn7xVdpFnRGriIRFhLml2o2dLaHEeEOXO5OGOcTutv2kQnEEi+flERZ/qbb1rk9qedlrlD8YEgpgmdQjhM8CGdLopEOLsVtG9r45xOF5j85z+Zv0MOwQHPRoESj3MthwMbIHWNK6+bAh3Fxfy7vR0wYOxYwJLf/Ab74oILMmd067P6/dy3tDQ9QGGaVvlySQmZRQOlAMomnZ04/qGQ1VW2vyX4mWyj/ugjj2eybN48QeLxk8T3bluA009njWQ71y+55BImDJDkAAAgAElEQVS54oorVsmon7ZfRMF4v58fbTpkB8+UMgKOcX60M3m2s2Yo5Lnn8AvOPDN9GW4wCMCVSJAN29HBvkm3R//+d3iEly0jAzFb889EArvm2WeZi1NPhe9WxenEL2lstLpgb9uG7qypQdeFQgBba9bAG3jKKfhTqRUMer/6ev5eW5u55Pjpp6FX8Xj47/Ll6T/X2sq8lZbm5/Olk4YGqkq0McyHP8zYTROd+cYbYAsTJlC+3Bdu/oGUN2/fTun2o4/ynq+5Bl0/ZkxByqNHsa0CSD5H1lUiEhSRjwiI5yYR+byILJD8JvoyoevL9cJDPy8ifZpo0zTDhmGcLCLft41jr4jc8O6P/bPbDMM4V0RuFJGfiEi9iPxM6IBzV8pnVxqGcfa7n/2eiOwTkV+LSFTobpNEdjlcJR5ns2lr+HnzChM5jUQAELXBSL6pyB4Pyj0YRNG3tlpgYl8bgwyFhEIo0eLi7KS2Kp2dfGfcuOzzHI1y8Gzdyme1iUomcbk4WFpaiPT3NfNB09mLijhM+qJkNRPS7+fgsGeblpeTEbV5Mz/z5+dXFubz8fmeHoybOXOYY9MEWF27lrFOm4azlgsY+MUvfiElJSXy97//Xe666y6ZP3++/O53v5ONGzfK6tWrZcIE1po2xUk1eG+99Va5/PLL5brrrpNAICBHHXWC3HLLSdLVxd8nTWKM2cTj8cgzzzwj1dXVv5X3uC6yg4X2RggaaRzt9Jwspily991k3H75y+kN254eDODSUngKvd7krCqVRIJsvZdeEvnOd3Dyct27sRFjTISIbi5dlwokPvMMmZPl5QAG2bqeKoAoktk5aWigfPmdd0T+53+Yk3T6NJFAl2gGUX/4WRsbMUZffZUA2zXXJJdAKd+RSHreSeWXUiDqhz/8hXg8JfLII+l1US5RXXTttddJMBiQqqoT5JRTTpL/+R/e67x5uSPs7zVdpGCiAoIK6GqGtL20S38UVFSg0ONhLZqm9S6bm1kXe/awvg45BEBbsyf0+gea7NgBKLdgQXou03gcANE0ORsbG9n76Zze556jrG/ePJzqTNyoIlyvvZ19PWFC5rn1eHg/2gClo4O9P348TvhvfsMauPLK9Jm6KokEdk0iYWVTpkokQrluUxN68dBDB6+jbTTK3Dc3Y1MvW5Z9vvKRXLZRLrn11lvl0ksvl2996zqJRAIyefIJcscdJ0kiQXaV2537HPegsEb9tP0omsWrGXPd3fhhVVXJ+8wwrCzvcNgCE12u/QMmrl9PRvQRR6QvTY7HqRhobYVGRYGoqVN7f/af/4RTefZs7JVszZVMkwSJJ56wMiDT2TWlpdgFXV3oj9dfZ/7e9z700ve+R4D2C18AQNTOzh0dyYkgiQRJE34/Pl46ADQUotPwP/6BbrjuuvTVbpqg0dnJ2CZPts68oqL83mEkgl33yiusmwsuAETU63d2kp3Y04PdtGxZ/9eG8h0rB2628ubGRihyHniAeb7ySmhzxo61OJILIKPYVgHESE2BHxURwzB+JSKXikjFu2mrhZKCT7bfT4ZYMIhCnTKlMBssHAZAVH6F/jbWELFKUGIxrlNdPbDrFVJiMQxlw8ivE7Pfz+FQWZmdtDYe53Bav54DYP58Dr3Kyszvp6UF5akHVmlp/hk3fj9OkNvNOuhvRFu5VUpKevMwauS8ogJnIZNRmUiwdhTQnDMnGRCNxwFS1q1j3AcfzPUKIZEIjkAkwjqzd1NTLrhQyOJi0kyIyZP7PGdDYmaNJF2kkgomiowCiiIYa3/8I/x7Z53V+++RCEZTdzelvQqS1NYm6wzTFPn+9wEbv/QlGrNkEy2deeQRnIQVK1jz+ax3bbRy550iX/saBuaf/4wBnO07CiBm6pr77LN0GRShtPiUU9JfK7UDc18d+0SC0tTbbmPtXX45AKq9K7k2UHG5ejtbmZ5PASiR/nUHrq+nAc7zz3PPCy6wuH360Wn4PamL7O9AwcTUebMDimrqKuDo85FhsXWrxVOs55BmLNqbDGnmo77vkazLWlvJmqmtTQ/AmSZ2kc+HXdTayhzOnNlbb7z6Kvu5rk7k5JM5S7Ot3/Z27NWxY3MHpk0TsK2tjbN84kTAht//Hn1w5ZXZdZECiMr5nE7ntbezDsJhSrozNbkqhGizw1gMW33q1P2/jrq6ACxefZX5OfFEgGDN2Ozj+IYMfhokfXRAOcSBAOenCPslkz+RSLD+YzErW3EwOUDt0tLCGV1bi22UjibhvvtEXn4ZW6eykmdaurS3/njhBZpsTJokctFFVH5lsxm2bePesRh2weLFmT+rgOMLL2A/HXYYwOGttzJ/3/wm+kOlp4e9pd3j43H8olAIHZkucLBrF0Hh3bsZ/2c+k94e0Sanfj++lb36Ss+tXEDi1q0ElTs7AW9POy3ZL9++Hd5op5Py7kxVK/0R5e9U2i99511dVOr8/vc84yc+QTn3+PG86+Hoo40kGQydOUIavg+OGIbhFBGHaZpR2+8OEpELReSFAhvKBZemJiKaRUUor4FGM1VCIZSZYVBiMQDOARGxDi9VqgqUVVcP3UGVThIJK2stHwAxGsWY9Xiyl7mYJsDuunUcjMuXM5fKO5iutLutjXmprsawVDDP6cwNuPb0EJHyePjuQLImtLubGt72NVVdjYG9fTuHr3K12aWri+zDYBCDf9as5EM8EMCBjkYhqtexOxxEDgcKgLvdGOetrVbGaE0Nz6OdVnt6GF9JCVHKvjatGQwZ6brILqkZivZyQ/vftfz5vSDbtlFec/DBRLtTJZGAp7CtTeSjH7XmbOLE3gDiL34BgHjppbkBRBGMzYceYr2fey772N6xOZskEmTt3XILmZF33509sKHNMBR0SX2/kQhG/gMPAF7cdFNmEMDegbmysu96bds2SLg3bMAI/vrXk7sfZitfziZ2QEnBpljM+l22a7S2ivzhD5C9ezw4Ch/5iJUhNRwy3kaKLtL50vlXvkT7O7BnKCr1gtdL1tmmTfzt4INxCNOds1pCrYClvQzaXlKdz7sfLhIIkP1bUUEWYjppaOCcnDKFs1P5sFNtpFWryEKcNAk6hVR9lSqaGTVmTH6VLdpgRTOsnnmGJirTp9MIKdvZbQcQy8p67y3TxJHesIH9f8IJg9d1OxRCH2l367lz+0fJUEjx+ymZfO455uq440ROOonxFaq7eSFkpOij4SilpZwzXi/7ORRiz6QCaw4H+zEeZ6+Hw1aZ82Bl5Iownsce495nnJEesP7XvwAQTz8dHbR7N35Iqv544w34mQ86iCDs4sXZx15fDzgZjYp88pMkemQTvx9dYZoAmDt2kC03bhxVDqkgW0UF86jJCo2NVmPSVL1lmtgEP/sZ7+ynP00uqbaLVghGIlwrVWcp9UemjMRAgMzLNWsY+6WXok9VYjEyLXfsYC6PPdbi0SyUfaIBCr+ftWkYNMv5zW9YpytWoN8nT+bewyXpaKTIUOrMYXJM7DcZLyL/MQzjXhHZJSJThLrxUiFFdVhKPI5B0tqKApk3r3CKPhhESTscKJZCgXzqCGrX4u5uDFXtsLc/DJaGBg6xKVNyA6WJBBEzh4PITzZDedMmFHRdHd0JdQ5LSpjfoqJkpdjZyVgqKy0+MI1c9fRYWRbpxOvluyUlfLcQSl6daeVI1FJnEQ4djajt2GFxRsVigIuNjVaJTirQqkBpURHfKy0lwuR0cqAnEhjXA3XEtAmF280Yd+7kMHS7MeKVy7K2dv9nAdhkROqiXKLzm9rp2c5ddqB3eu7uxjgaOxaC73TP+e9/s05PPZV9o2Uwqfr3zjsxts47DyMrl+zcCYBYWkrJsBqcmTgP7eL3Ewl/6iky+G64IbuezgUg7tlDNuPGjRjtX/xiZr0WCiV3QuzLPg2Hmac//hGdeuONZDrax6PNNrRLfX8CZXZ+KW0ypIZ76nN5vSL33ivyt7/x/ytW8D4083GYAVAjRhflAnTtEo1yLq9dy2cWLwZALC5m7YZCFuho11v2M1WzUO38iuGw9Xd7pqL+ezhJPM7zG0bmzpqtrWTnTZjAczQ1oYtSg5/r1wNCKU/WpEnZ7VC/H3umrCw/jmwtNVfu5PvvByg48ki4TLPdSxtHiKQHEMNh+BtbWnBUDzlkcN6VaZKtpNUus2b1ziwfaolEOG+efpo1f/jhZCFVV2fO6N3PMmL00XAUp5N3q2dee7u1BzNxkSqYGApZPMSF3h+mCZjl9xPcTBdUWL0a++Xww2nmsX49SQGpvOfr1sEbOG4c15o3L7uOaWzERohE0CW5aIyCQfaMYQB2PvQQdtGiRXSDz3Svmhr8s9WrOetnzOj92WAQ0PCf/4RG4dprM3Ph+/1W08wZM9IHIpS7XM8ptS1Mkyzuf/yD93riifzY36uWL3u9AKXabEtt90ICiS4X7/yuu8g+bGuji/ZVV5FQ4nTy9+EQWB2BMmQ6c5iZOEMuPSLykoDOThCRiIi8LiLfNU3z1f05sEzi8wFShUJkUaUjoe+v+P2AOUVFAIiDEYFSp62ykgiN18t9taviUCmM5mbmcuLE/AzatjaM2okTs49x82ai87W1RHDsc1hailL3+y0Ho7sb57q8nDm3H+pVVSh15ZNMva89q3PKlMICYkoIbE/J17EddBDPsXcvYyorI6IfjTKO6dOTxxqP84zK75YKdk6bxtiVf3P+/IEZsYkEc+bzMYemaWXWKoH5MOTmHHG6qK+ixk0qoGhvzHKgAYrxOFl8gQBNUNKtu1WrMDIPP5zMoH37+FxqtPqBBwAjP/xhsupyzdGOHWQsVlRA9m2/nj1TNF1GaEMDQOU772DgfvazVlZpuvvmAhCffppuhU4nmZTZmiAEApxvbnd6YvJs8tZbNCTZs4d5+uIXk7Op7ZnI+ZYv5xIFExXIUnDJ5eK/f/4z7y4QwEi+6CKCJzpXwyiQoTLidJG+Ay2ltwO6IjiZq1bhGM+ZAxCl60KBQXvHecOwMh3t70ffmTpAIlZQxA4qhkLW5+2g4v5+3xs3ci4eemh6p727G/1TVYVDvmMHIF4qP/OWLTR/Gj8eO2fcuOxnajiMLaN0NrkkFsNGMwz01513An6efDKl/9n2rB1ATBeAaGsDjIxGAQ/tWTiFFL+feerpAUyYM2fgVT0DkXicjK4nnsAWW7JE5EMfsoLiw5j7c8Tpo+Eo2hTE57MaFlVVpU8UUTBR9VkwyO88nsKtkddeAxA7+eTkCgGV3bsBmGbMoKx140bWaGqzqy1bOPOrqylJnjIl/fVUWlspQQ6FKJXN1TwrHAZADIXItn7gAQDEww+nhFk5mzXgaRfNfI9EsGVSQb/t2wEN9+wBzPzUpzKfD11d+Fxud+4EHz139Fzzesn43LqVoMmKFb2B2K1bCay43QSz7X9X21zt9YHa6IkEpdQ/+hG+2WGHAQIvXcoclpTs3yrFA0CGTGeOciIOrQxoshsbMepcLoCWQpZh+nwAiKqghiqCHouhHHt6UEyVlRxsg2lod3YSXU8X0Uon3d18p6Ym+5xv3QqHxKRJOMnpDlvTlP828nA6UaAlJRxk6Z45HufzhsEhqYpbn6GsjENhsOYrGOQAcruTgUQRnveNN1iPM2YQ/bM3ZBHBcd69m/c8aVL2LmkNDazv6mq41/r6TKZplW0oiXokwr7p7OT/6+oYRwHW90iHuYaN4rcDinYOsgMBUHzwQQzOz31O5Jhjev99+3aRhx9m/591Fg58IsE6teuPxx6DK+f97xf5yU9yG/LbthEtHzMGpztT6ZxyxTmd1jyvWUM03+cTueeeZL5Ce9Mc++8yAYjhMOP9y18wEH/8Y/ZfOlF+wmgUh6cvQH9PD12eH3mEufvmNwGK7BKLoctjsfyzofojWkb5j3+QfdjdjfNx8cU4OMpXVMAzdgTvEBEZBF2kHF8bNwIsh8PYNcuXZz+DtBul/ogkBz/ydaC1nMxeCq3icPQGFodCx+3ZQwB61qz0vH/BIHqjuJjP1NfjOM+cmezQ7drFfq6pQaeNGZN5T4vw7K2tzN348bnP9Xgc2yaRYH5uu42MwQsuIHvU6cxshymAaBjJXFsivNvNm5mDsrJkILmQos0T9u5l/LNnp2+MMFRimuyBxx7jPehZo7qowNmHo7poBEgkwrkUj+N/VFRk35fRKDpUzy6PZ2A+x44dnNWLFhFYS5WODmwFl4uAaXMza3fRouS9X18v8q1vobM+9jHAwyVLMo+tvZ2S50BA5LLLcgOI0Sh8r11dAF133kk25PnnU2XmcOB/KU1DTY1VZaad7bWBVCBgVd6ZJvvxl7/kd9ddR2AnkzQ3owPLyki66Ms59PLLIitX8t4+8AH0nn1+olH81l270OPHHpu9fFjPxf7Y5qYJfcIPfkBgb8ECkW98g3NEy+hLSpiTAoCII10XjQh5r2cijgiJxTDu2tpQQHPnFjZLsKcHA9PjQUENZQlOURFGvWbdKaCoZLSFNq59PgzU8vL8AMRQyAKgcgGIr7/ONU84IbOS18h6UxNzXlODkZ7p0FODuauLg2rMGA7ClhauU1c3uA5ISQnXVyBVswj27eMZNDpZW9sbQGxt5TMaPcwFCihwsnUrB/XChfkdlgo+eL2WUeTxMEafj/lbtIjDsqUFw+Ogg/Y/J9GoIKkZivbSCXuGov53pMjrrwMgnnJKegCxpYVsngkTKJHp6GCNTpqUvO6ffRYj86ijiNzm2hNbtwIg1tTgeGfbd1r2kkjw78cfF7nkEsppVq60OvWppJZBK4Co/HB22bWL8uUtW+is93//l/lsSSTQ+/E4+zLfjB3TZH5uvhkdeeGFZE2mGsGFKF/ORxIJxvP73xMUWbSITAPtaD+Msw8PKNm5E8eoowP74qST8muepRkcRUXJgKKWhuULKOrfdZ3pteygYiSS/PlUfsVCinIVjx9PwC9VolHmrKiIv3d04PTW1iY7cw0NlOSPGUMJc3FxdjsqkcBeMQzeQ651n0jgMGt2jxLsX3UVQcpIhN8rp7FdYjHGnA5ADIXIsmlthVdt2bLBsXO7utC/ygmdrhHNUIk2gnjkEWzN2lqAk7lzrWDQQMGgURmZ4nazHzUrMRzGTs4EHtkpIyIRvqOdnPu6frq6sIsmTEAvp0ooJPLb33Kvq65ibK2t6G+7D9bYiF3kckENUl7OOZsNQPzVr/IHEONxmqh0dhIIuOkmrvHVrxIUDIXQh21t6NV4nM+OG8f+0s72M2Ywr04nNk40SnXKM8/Ae/id72TOzjZNghFdXXymL/5eUxN24N69VuAgNYDW0UH5ss8HtceiRbmvr5yLagPmO5633oJa5pVXCGD8+tdkQmsjGK0K8fv5icUs/3NUhq+MZiIOrfR5srV8ORwG4CtkhyQRi5uwuLhvEY7BEi17Ue7A6urCZYxox2m32yqhzSaxGAeVw4Fjn+nz27YBGIwfT6ZQLqMxFIKgNxzGSc8nGh4O4wT7fBY58lBy6yhBcCQC+NHTw7uZMwewrr2dw3LCBKvU2evl2SZP7tu6amkBeKio4FDLNp9+v5Vd5PFwv44O3pvTyWFl5xeJRjlcw2EcobFj+z2HI/1oGxGKf6R2et63j/LdKVOItKauYZ+PLDXDoFTHMFj3Y8YkG5SvvUYH0gULyMjJBcRv2oTTOH480fJ8mhdoOecttwB4HXooGZS5wAF7aUsqgPjEE3SQdrsxHI87LvO1YjGLf7UvHZhbWjDsX3gB5+Fb3+rd5X0wypfTiWkCWt1+O+fB7Nlknx5+OPo6GrVApUEAEUd10buydy97pqWFfbR8OeeSAnimaa3Xvr6DTJ2ei4r6n5VhBxUVzBdJBjPVge/vuo1EmBOHg/lI1UWJBGtWS721M3NlZbK92dICL6HHQ2DE4UC/ZcoYMU2c/2gUfZQrs0QBxGiUQN/99xMIufLKZF1kBz30WZQmxuHozfXW0gKAGIsBHk6blv/c5SuxGNlVTU3Y0nPnDl6Tlnxk507OgS1bsHHOPBO9bu/cOkgNM0Z10QgTzdCPRtnbuZqYmSY6RYMgLhffy0f/xWKUA/t82D2piRmJBHbIxo3s+xkzoDEoLU0GuNrbqTYIhQh6FhXhS2UC49raACZ9PoKMc+dmH2ciIfLSS/jGNTXwUDud2Bj2BiydnfgbEyYQuGhtxdbQ8ubUxqSvvSbywx/ync99jjnIdA7FYmQ0BwIEJPLNZo5GyfZ78UWrYc3ixVZAXnXmli3oxeJi7LNUyopckm9G4tatPPMTTwBifvnL2KZ63rndjMF+jWDQ4ihOx2mbp4x0XTQiZBREHFrp02QrIbPbjeJKzfQaqHR2co+yMqKzw8kpDwYZXzjM81dXD4zHLhYDQDTN/PgeTRODUDODMn1+2zYUcU0NAGKu64bDfEf5+RIJ3ms+qdu7dnGoadfjoZREgsNg40bGevDBgJgizNWWLYCMkyZZUaTa2swEwbmkrc0qO0rXZS0Y5H7aQW7MGOsda0fmdN0kdbxtbRhOHg/z2Q+DeqQfUCNO8Y8UQDEYBEAMBES+973ezmQ0CkjX0UGmYHU1+9rlYv+oMbV2LZw9U6eSkZOLvmL9ekpoJ04U+fjH8wMQdTxf+Qr8QytWiPzud7m/q8CH05msu0IhypAeegin9Yc/zA5GalaDZmjnYywmElz/17/GkP3f/yUTIfW7Q1W+vH49AO/atei8Sy/lLLBH612uZCBLM88KtG7f87qopQUHbe9e3vORRwIopzo3mlGo70ABwL5KJkBRf/ob3Estg9axivQug85n7FrK2t1NJnPqHlC+4J4ei6h/+3b+NnOmtac6Owl6OBx0SU0k2NfZbFLNZhw7Nrc+MU0AxFAI7sqnngLQvOyy9GP2eq3sFc1AVIdT514z8TZvZpxHHllYCiCVtjZsumgU0DWfAPVgSWMjXGNr1/LMp59OeaJmwvYXQO+DvOd10UgVvx/wS4S1k8vfMk2ri7Nm2Lvd2XXfU0+xJ1es6M1FaprYRS+8ALh27LGcrYEA4L+CcV6vyDXXoF+uvBJdNHVq5v4Azc0id9zB9z71KcDIXM/16qsAeJEIdDO1tQRYU20ZbZwUibD3g0HoYFwu7B97JrraLMXF2FsnnZR5H2rCi/LM50u7oGXi7e3c/4MftN6jBn1jMWio6ust7v7+VmYoBVE6ILGhgQqRP/+ZMVx+OcCp08l8aUfwTEki0ajFbVta2q/y5pGui0aEjIKIQyt5TXYsBmDT3g4YMndu4UsiNFurvLzwTTkKKX4/BqxGyeycE/lKIoHC1GzOfL7f3o5hPWFC5sN0yxYOjJoaFHEuQzkaxdhMJMhUcbutEtxcGTJNTcyDZtNUVg4dSXd3N4Z4IAAgMm6cRZCuY04kSFOvr+fZlizJH8TIJB0dGBzFxVzP7bYyIsNh9oSWJjY04Ehqlmk+h67Px3dEeM99BBlG+gE1ohX/cAUUTZPmJ6tXU8prj1rr3x9+GGNvxQoc96YmjKq6uuQo8cUXs8fuvjs3GL9mDc1LamtFPvrR/PdedzeNPv79b5EvfYlIey5+LDVENaqtjVl27KDUZ8cOsgMuuyy7TutPB+adO+HTWbsWUOCb32TeUiUYRH8bRmby+IHKzp04Jy+9xHv69Kdp5mIYyfOTqbuvPSNogBnl71ld1NVFBuj27ZwThx1m8eZlk1QwcSDvQBurFBpQTB2rHVhUUSDUDiza77dlC87w4sXpeQu1HG/yZHRMQwM6Yfp0y+7RzuLRqMg55/DfqqrsmTFer1WJkCv4rRmLPT3osNWryZi86KLMdm8sZtETOBy9AcRgkOBuWxv2wLJlhc9A1oBwezv6a+7cwQtU5JKODgJIr72GPXTqqYAUTqfFxzkYZfJp5D2riw4E0SYc4bDla+RaM8o/q2ee253+vF27FqqPY44hoJEqzz4L1+qpp4p85CP4Eg0N7Cu1fwIByn/37BG5+mruWV1NpUY62bePLEKvl0DjsmW55+CNN/C/6+vxaZYto5okE/1RLMZ4tCmXaaLzyssZt89HYPW55+BR/OpXmS/tOp8q2p/AMNBd+STPBIMAtG+9hT969tnpE01aW0Wef57PH3YY8zbQ8ykVSOzooGz8D3/g95dcIvKFLzAnwSC/83jyy15VfmmtNOtjefNI10UjQkY5EYeZ9PSQgRWJEAnWbK9CSlsb0ZmKCgDE4cw5UFaGEvX5ANEaG1EkNTX5O4b79qG8Jk/OD0D0+XgPVVXpFbgSdK9fzyFx1FH5Ze5s384hPWuWBQBWVGC06/3SvYt9+/jM2LEY7vr5dGWEhZRYDEdZy92XLGEM0SjvQjkSTZNDtKyM8SlP2kBBxJoaooYbNpCdMHmyxd1WU8P9ursx5CMRooR1dfmDSOXlvIemJn60I+Vw3g+jgtjBQntjFnWw7RyKQ/k+n3gCQ+7883sDiCIYcNu34+DNnMkeCoXYN2qs795Ndl15OeWxuQDEN9/EQJ06Fd6bfPfd7t2Qke/YQQnRJz9pZVdlc97tGS3KYfnoo2QdlpbS+XD58uz31pLEfDswRyI4A3fdxT2++12ybFK/p1lK2t15MJp0NTVhIP/zn4zl0ktpRON2J2capgI6IlbGhvJLKSikvxvVPfmJ34+zt3Ej83b44WTH52sTKLir869rvj/vwOGw7mvnctVyPwW5+vt+dVxquygQbS+FDoeTP+9yAW7t2AEgmA5AbGuz+LzGjrV4l8ePt+yeQIDsoHCY4EQsltn5VQkE2INlZflVz+g4/vY37Iizz4YrK9tc6Zx0dBBQray0Pt/cjE6Mx3GUp07NPYa+ilYJmSZ6fLC5qTOJzwd48MIL/P9JJ4mcdprVVE75anNliI3KqIigp6qrLQ7htjbskGxntGaUqc4Lh/mvUneIsF+ee469ktrwTETk7bdF/vpXuqWvWMG9GxoI7qv9Ew6L3HADdsvVVzMej4eM5XSyZ3U+MIwAACAASURBVA+UCD4fumvp0tzPv2YNZ8qqVejO007DFssWgCgq4vk3bWKshx7K83d1QXP1k5+QrHD55SLnncd8qT/r9SZnR3d0MFceT/4Vc+vXw2UdCMDVeNJJ6b+3aRPP5fHQEfuggwqjE5Qbu6eHoOqttzKWc88FMJ00yQoYO53MVb4BHYfDAh9DIauqZH/Tro2KJaMg4jCSvXtRkB4P0Y/BiGq2tBCNqKraf4ZPX0VL3crLUbpdXRww5eVkomVTtMrfl6v0RiUSwfguLk7PaaMlMlu3AmQdckju9xSPcyBFoxyididfOXyU79A+Rk2V93ox7NVw10YrXi9jHAyF2tbGM4bDgHczZlj3cbkwNLq6iJhpCcS0aQCNGzaQAbFgwcCbl5SXA6SvWsW6Peoo5kI5iDo7mc/+3svl4vna23meUKjf5c2jsp8ktTGLPUvR3phlsAHFDRswhI86Kn3HwbVrcW4PPZSfUIg1V15u6ZCmJkqYTZMS2WxdT0Uou3nlFQzO00/Pn/LhP/+xeGkefhjjU4Q5UhAkXXmw/l5BxmCQzMDHHsM5+OEPc3e/1Q7MJSX5AZ5vv43zsGsXRv2Xv5ye+2iwy5e7ukT++EfmSwSH4JOfRB8r4bxmYuQCLvVzLpeVwRCLDSpX2QEh4TBnwdtvs5aWLAEo6k/Ayg7oKpg40HegesblSgYU9R0roOh09h/c1nHbx6iBOwUV29qYp/Jy7JTu7uSMRZ8PG6qyEh0TiaB7SkutDMNQSORPf8LOOPdc5tswOB8z6VHltPZ48uMEbG9nX//pTziZn/0szQZySSTCeBRYTSQY08aN2B6VleijQlMABQJc3+u1OKH7WhlTCAmHacywciX/PvpogNeaGt5/KGTpmFGHe1T6KsXFrJ2enmQe9mxBGgWI4nHWZCjEPo3FyJKtrKS8NlV37NlDUG7qVLL543F8j+Jiq+Q5FiObb9Mmzv+yMsa1dGn6gOfOndhifj98oIccktv2W7+ewNTzz/PcF19MQCPX97xeq2qwqsqybf78Z4LAEyZQnbJ4sfWd8nKrQ7bbbSUztLWhs/KhF/N6Cd5u2oQOv+ii9ElHkQh24p49+DrHHMO70iqegeqHaBS76Kc/Zfwf+hAVInPnWo2wRHif/a2e07Jnv59308/y5lEZBBktZx5aSTvZ0SiGiXZ2mj17cMoOmppQdtXVydxbI00SCZRvdzf/X1GRHkzr6iJzsboawzef6+7bx79TO6SKYLS+8w5Ab2UlRL7ZHGa95o4dGJ8zZmQ2aoNBPlNWhrI1TYx8LalOzUbSTmAOB89XqHcZiXCAt7Yylnnz0vMIKcC5dSsHw5IlltMeiQCoxOPMUX8cPC2r0APIMJj3oiLeTXs7c1tbm92p6Yv4/WQxiORV3jxCd89/5YBX/HZAUY+5wQIUOzroFFhRAXdOqmO5axeZNjNmEGnX/W0YrGGHgzV98cX89847ezcJSZUXXyTSPWsWjQ7yBc3++ldKjevq+Pfs2cl/t/NnqSGbDkDcupWS7V27cP4/97ns51Y8zn6OxxlrLiPQ7ydD8q9/JQj0jW+k73ItMrjly4EAIIdmZJ1+ushnPoOOUPDGXhbbH9HrKOjdx9LDA14XRaMi69YBjEUi7I0jjigsx502OrET0BfKDtM9la55ykAAxXQSixEkCIXI0HQ4ksugg0GCf6WlzKPLRQBbg5wKbD/4IPbTxz+OPvP70RmZzvNYjKCtw8HeyPVMnZ2ULv/lL4zliiu4fy5RgMLlYlzd3fz/5s1cc8YM7JFCgmeJBE54fT3XnTUrO9frYEksBn3Ck0+i7w4+mOzziRMZo4KrAy3RH4Ac8LrovSYKdsXj7NN8qUdiMXTN3/8OuPTJT/beM52dgIMOh8jXv87Zrft4yRJ8kEQCgOqVV8jmmz0b32Pu3PSUCtu2wT8YCpGVd/jhucGrrVvZU//6l8VZmKuaQoR52buX70ydir7s7ob+4ZVXCHBddll6Gi3lgdUApPLH5vLNTRO77+mnmZuTT8YuSvdO2tqwE4NBAtf26hjlbO7v+ZNI8G5vugm9eMwxgIeHHsrfg0Erw7+kpDBnnL282e1mPWaZq5Gui0aEvOczEQ3D+LSI3CUip5qmuXKo7+/1EkmIRjFMcmWe9FcaG3F0a2oG7x5DJQqcaUZeT49VDqzla34/oGlZWf7GXmsrSm/ixN4GaCKBE9PQwL1nzcpdZqik5X4/EbVsUfGSEqvDoGFwuPj9jCVd1o3TybNqRmK+xLvZpLGRUstEAkM8E1dmLGZlICp3UjBolS+43WQGbthAZsDChflH6zUtXonTy8stvsiSEqLvGzZgPC9aVNgsAG0wtL/Km/e3LjrQJFOGomYHFQpQjMWINEejcL+krsm2NiLG48ZZnHmqa7Tru9eLsdncTAZiNgDRNOEwXLuWz73vffll4ZomBt+NN2Lw3Xdfeh2m86LZPfbMxKIiiyT8xz9Gp91+O4COzm8mndHTw7/tXVUzyQsvcP22NjL+/vd/M1NLDFb5cjQKSfk996BnTzgBsHTq1N6AUz7Zh9nE4UB/KhCgpYhDxGPWS4aLLkokOEPeeAMna/p0Mn3727Arm+h7VEBXM/tcroEDUnZQUgFFe4aiXVcN9F7r11ucV3a7wDT5/Z49PGddHXPa0oLTPmWKlT30yCM46mefTYC2vR39lQlATCTYqyJ8Ltde6O6GA+3xx9lPV16ZOyArwviUr031gc8n8vLLzO3y5ckdpQshXi9B/kAAcHTWrKHPFk4kyGJ/7DHexdy5nBeaqaVr9UDMPhwuuui9Km43e9PnwyfRrMRctndREUGC1laRE0+0/ARdn+EwQcJwmPLkqirsn44OQLeyMnTWLbcAyH3mM2QUbt6M3ZQOQNy0CZ1imjQ3szdkySS7dhHIWLkSXfSd7+TXuLKzE3+wrMxqpqRdo71ekauugi6mvd1KELLrDQ14vvUW+3fJktw6sKWFSoj6esZ49tn49KmiFXOrVzO+007rfWaqjrB3Wc5HTBM/7Ac/wBdbsoSO2yeeyDMFg/yoz1bIgK6WN4dCFkg5kPLmUd0ycHnPg4j7UzSyOZjly5ox1tWFgtof0dPBEqcTxVhZiZJWQK2khIPI7cagzAcg6OpCKY0d2/vQicdx2FtbmcPaWg6wXNGi3btxnPPtrlVeznNs3syzTZ6c/XsuFwpVQdT+lu4Eg9yzqwuHYe7czGWRSvqbSDC+mhorK7Kzk+9rev78+RwymzYBJGY7TLTMsbuba5eW8uzKu9bUxIE9ZYoFGkSjhS8lKirCuero4HmCQYDc0dT5kS2pgKKCinZA0Q4q9kXuu49s4yuv7J3x7PcTrXW5IAvXEiG/n73j8bDG/u//KMH51a8AyDNJIoGxu349IPry5eiNXDouHGZ8Dz4Iwfivf53duHY4mCMti1Mgxe+ntPjJJ7n3jTdaxqlhWHNrH4+WtDidjDWbwdfeDofQM8+QcfDjHyeXAdklFkNnaWbjQKkTVBIJovx/+AN659BDKTFX8nbNKNPGKIUE+RwOdJoCTFoOVgggaySJaRLQ+s9/OBMmTcIRGooAqB3QtZepF+odpAKKyuWqPwMBFHftwtGcO7d38NE0yZpxuVjLJSXoomiUeR0zBl30xBNk85x6Kmfwnj1WM7d0Yprs23g8mds1k3i96KGXX2Zvfe5z+dEwKIDodjP2RAI9uG0b41u8uLD2bTyOTlaOssWL0zvsgyla/aKg7pQpIhdcgG2lAR7NhB6lQhiVwRKllCoutiiliovRCZnspS1bAMgOO4xsQA2OBQJ85+67semvuMIKaOzahR6qrWVN3303tsC551Jt8fbbjGPGjN73W7cOnmKXi3suXJjbp967Fw6/l17iO9dem18wo73dakyqnKsPPCDyu9+hd7/0JewjhwOd0daGTzFunKXTQyF8xJISbKhsdmcsRmD1+efRfx/9KHZiOrsvHAZ0bWhgbMuXZ/Zf+gokvv46Nt9//sM7+N3vKBdXGpxAAL3sdrM+BqvJYXFxcnlzScnQNRodlWQZBRH3g0SjFmgzbhy8KoPhIGjJXHc3EdRs3fRGsrhcPF8kggG9fj3zuXhxfgBiIGBxk6UCcbEYZLsaSRo/HkM11/vau5d5r63N3/BMJLhPIMChmg/wqA6nktbmy4kmYjVE2bULZT9vXubSYE29b2mxUvcVwNNGJwrkKpBYUoKxu3GjBSSmczD8fovLTLko9dDz+zloAwEO56lTed516/hZtKgwWZh2MQwO9ZISnnnvXt57ofmVRmX/iB0wFEnmUNRSw3w7Pb/4IlmBZ5yBEWqXaJSocTAIcFdRwe/a21lbVVXorC99CUfx5pvhtsokiQQk+lu2EJE/5BD2e64xtreLfOITGJbf/jZk1/noRZ0PBU82beK7DQ2AnhdfnHxvvaa9dFyj0i5XdrDTNMmy+eUvMYIvu0zkwgszAxKBAMCkYaAXCgHymyZzdPvtgAdz51KufdhhFkAajVrZloPZrEABJDtZvd5zf3YfHwqpr6fLbFsbeviMM8j0GGpRMNEO6CrfYaHegR0wFLGCGgpUi+Tf6bmjA0DtoIN6z5dpMq/BIM6fcpc1NlpOuWEAIO7bR8n+okXYBso92N5uPb+dX7Gzk/WZT7O7jg6c9s2b4Y09//z8bN9gkPlXuyIQwKHt7KQEetEibAWfrzDZyO3tzGU4jC02ffrQg/jbt3N+bN+O/XHJJYCuqosiEYt24r2gF0Zl/4vLhU7Wvdbaiv5I9Tva2wnE1dZSKSFicQBHIvAFrlpFlcHChZypW7eyx5Re5S9/oYLjjDOgVHj7bda4Auh2WbWKzOaKCvy+GTNy+12NjSLf+x5+xAc/SDl1PkkJra34BZWVVlLDjTfCO3jCCdCu9PRYdp7b3RtI1GQMpxPdFQ5zHbe7N/C5ezd6oLWVZKMPfShzwLSlBUA0FKI6JBcljogVWM8GJG7cCN/100/ja//4xwQzNMlD9bPDwdiKiiwaoUzVKQOVoiLegd/PeRCL5SxvHpVBkFEQcYiluxsDKhZDWebD1dcfUYBIm4rkE10Z6eJyMa81NSji7m4LfMqkdJWE3O3une4djZIO7vXyniorUaC5or0NDRwWEyfmD9zGYryvaNTqNub355ddU1bGAeD3cyDkE5Hp6WEd+nyMcc6czA5ANMqB5/czl+k6IGuJuQKJVVWMQ3kVN23iZ8ECyxgPBvlsNMq9J0xIJkpvaOCwdrnYK0rU7nJxmK5bB/iycGH6ku+BSmkpRkJzMz/BYO4M1FEZeWIHC/sCKO7eTcfghQvJMrSLaZKt19gocs456GDTxMgzDNZRPI7B+dprIt//Ptw2mSQWw8HfsQPjcPFi1meurJ+tWymp2bePzsYf/Wh+c6JgmcfDuB98UORnP2MP/v73Fu9NqujeSCTQvdGopQcyyZ49lMa89RbXveaazB1V7eXLHk/2TIi+yNtvU0b+zjtkWF9/PQ6BnRNSQZ2hzArUkiBtmBEKWXxnBxpo0NzMXmhowBk85RTOpf2tb+2ArnZC1tL+Qr+DTICiOniZAMVQiDVcWopTmirK1VVXZ2UUNjRwXSXxX7mSM/V974PuQBuv6Hlv7wit3aDtWdWGYTWmSSdNTeiQpib40U49Nb93qw6qx4N9sG8foIEIpe3aTEAb1Pn9/Q/4RSKAdsoJvXDh0AcP9+0j83DdOuyo88+3miGIWLrINPcf3cGovLdFudu7u63zWGlKIhECgi4XAKD9rDQMdPzLL2PvHH201eTJ72e/uVyUJD/wAJyGl1yCrxIKodtS/ZTXXydLb8IEy6dO12DELnv2UEK9ezfNXD73ufx0eUsLP1VV2Anr1ol897v4MV/6EnzXhsGZvWcPZ9rkyVYzSg30hEJ8Zvp05qy42Oro7HbzEw4D2v3nP9hdF11EYDOdaJfmtWvRgx/8YN+yprW5mL0qRwS/7+ab4aWuqBD51rd4Hwoaq02itqLHY31XKXEGE0g0DJ5Xy5tjsdzVLqNSWBk9fixxGobxXRG5VETGichbInK5aZpr9QOGYZSJyLdE5DwRmSIi7SLyiIhcY5pmR64b1NfzU1KCMixU+VWqKAm0z0eZylCXYOwv2bcPRTJzJgovEEBpt7Sg3Kqrkzl9TBNjUYQDKLUEb/VqDrYpU/j+2LG5I1XaYUszFvORWIzDLBrlXmVljD0YRLnnAwpWVFh8gvbmB6miJToNDRxUixdnB5h7elhLiQRjywbWKZDY1WUBicXFjG3OHDKoNm8mSuj1ckgWFXF/eyTT62U+wmHmcfLk3oeC201ntnXrODwXLhycdV5UhEHS2claCoWSwc5BkkHXRaOSXtIBiqZpAUj6d7+fkuDKSrLmUtfnSy+x3k880Yqsd3SgVw46CF1z3XVEz7/2NUpCMkksRkS+vl7k2GMxJJV/NJu88AIZiC4X3RGPPDK/OVAAsagIHfTd70I4ftxxRNzz6bqqHZjLyrI3YrjvPpE77mA/X3MNTQIyGZvRqEXwXqjy5e3bKcl57TX0+9VXE+lX/ZnaOKWoaP+AWlr+qiBOKGSBWIMMIgy6LursxFHasYO1cvzx2EfDDSRV8E5BHAUTB6uBhR1QVOoFdfRErHdvGDiPpklwLVUXtbdbVCx61nd0sEcnTuQse/FFOPeOOIJ93trKGps0ybI/XC5rL5umtRe1zNHeBE3Xq4JcO3cCIIZCONuHHJLfHGggoriYa739Nnu2upqx2nWAVmIob1tfz+imJtZgIoFzP2XK0O719nbAk9dfZ+xnnw2vm4Immn2oDrndYX+PyKhdNIxEK5C0qVl7O/vx2Wex/z/+8d5ZdevX06Rs6VKqM0Ssap9Jk9i/K1fSWG75chqpNDRw7RkzelcdvfwyGYBTp/JTVZW+1Nku27fDXa38hWefnd/zqm+njTrvvZeA6qRJBCDtAJ/TiZ/Q2GjxyXo86LP6emzAmTOTz7ixY5mLtjbOxH/8g3k9+mgCLpmSPEIh5qGxkQz05cv7R2ugQKLSxPzylwTJHQ7ew5VXWrafZh9Go9lpaoYCSBRJLm/2ellHfSxvHtUt/ZRRENGSG0UkISI/FZFiEblaRB42DGOOaZoxwzA8IvKMiCwSkd+LyEYRmSsiV4jI0YZhHGWaZijbDerrLWLmwULKEwmr/LOuLj+H70CQ1laUx4QJVuS4tBSj1+dDKTY18f/V1SiYtjbLqbc7YuEwkW4t/VEC3Fz8GprmXlOTOxKmEo3yvjQjQMG00lKr0Uo2UFDFMKxGM93dPGOqwu7oANgIhRjfzJmZr6s8hK2tKOhp0/JTynYgsbub65SUsA6nTMHZaW4GVNSMURXNxmxv557z52efc5cLY+Sdd+BenDdvcEr2DYOxOhxWV7RLLy38fWwy6LpoVHKLHVC0N2aJRCD77ujACE1do+vWAYosWwYXkAi6xOtlj5aU0ODksccwzi64IPMY7E0O3v9+nFvtSppN7r0XQ3n2bMqC8i0H1e6eLheZw1/7Gve+6ioLkMwm8TiGrzZFymT4btgAILl1K9kGV1+dPZgRCFgBkpqagXN/7duHo7JyJY7P5z9PlqZ9Xu0cdcOFk1BBmfZ2skP/9CcAoEGUQddFd9/N2XLYYWSiDndeN+2orOtDO1AOJsCsusjlSuZyjUTYp21tcGSlAvY9PVZmp9okoRBncHk5e+n113FCly4lO8jrtWyIbBUcfj/nujYfU5DTDnQHg+jDO+7ApvnqV7F/U3lT04kdQIzFoBro6kKnZQKZPR6+Ewjkz1caDKKHNPA5d27mwMdgiNcLTcWLL/JMp57Kj33udV770bl90KWnB7tu9WqAhkGUUbtoGIry0Xm9rOG1a6EqqKtL/lxDA3qgro5sNocD/bV3Lzpk+nQCn8oL/eUvs7Z277a46O3y3HMEPubNA8hzuXJnrq9ZQxAjGqXj87HH5veM+/Zh72kiyde+ht48+WR0Wjo9WVqKfuzqYn7a29E1U6age4PB5O9pYOD++wE6Z87ENszWKKq5mYB1JEJWtlax9VeCQZHf/pbAajiMzfflLydzEUci6HalucjlFyq/drbGe4WQoiILxP7HPwBB+yCjuqWfMoyOov0upogcY5pmTETEMIyNIvKQiHxARJ4QkS+KyKHvfuZN/ZJhGM+JyGMi8mkRuS3bDebMGdzGJvE4CjcUyt2U40CS7m6M6DFjepckKyGwlrp0dXEgqEIbPz7ZYAwGARAjEQ4nzabJVS7b0cF1Nc09H4lErCYlU6f2Nly1JFt5fnIZ3Q4Hn+vs5HtjxvCdaJQU+uZmDrZDDsm+NhTYDAQsQLQvit8wrMPT67WyNqJRIngdHcyz3chobwdAjMe536RJ+TlkRUV0B3vnHZypRKLwe8zvJ0Nh1y721hBQAwy6LhqVvomdu+zRR4moX3QR4Jw6dw4HBvG//oVBrOXJ8ThgvHLj3HILpToXXUS330wSCsGF09KCUV5bm5v3NJGA5+dnPwN0vOee/M4B5ftTgv4HHhD5+c9Z63ffDcBg79Kcbm9GoxZPYUWFxYtjNxyDQQzUBx9EV998M2XD2Z5Hs5YLUb7c2cnzPPYYz3HBBfzYSxZTsw+HE6i1eTPv9LHHmMt8M7oGIIOuixYvRocXF1slScMNKEkVO5hjb4oy2GCiSDKgqJQf06Zho4RC/M3ptM5xjwd9ZBgWTYjTyfm7di1O1/z58CCGw+iqkpLMmf2xGPaWNrbTZ1X9aHcqn3yS/TZxIjyqY8Zgm+jn7fyKqldM0+K4KilhPKtW8bfly3M31ykrswKwlZXZeVj37mWOHA7s86Fo3KMSChHEWLmS8R5zDFnQ9sC/6qJEYnCzXvsipsncNjaSGarlmRMmDP6tZdQuGpbicHBOr18PyD9tGv9fUcF67e4GnCouJnCqOmLbNta2Uh7deisg/pVXAiBu2oS9o9UcIqy/lSvRXUuXsu7ica6R7cx47jnKcYuLyRzM1LDNLtpXQPsXNDZCdeL1Ah6eeWb2/VhTw2ffeIN/T53Kfzs6mBOtNDNN6Fyeegrdd8wxBFdT/Vn7uN55x2o0c9JJA6N0CofJOvzFL/DFPvxhnm/evGSKGj2fi4rQzfnaYmofDxaQ6PcDQD/1FOdhP6pURnVLP2UYm2lDLnfoAnpXnn/3v9rs/XwReVNEdhmGYYcRXhMRv4icLDkW0WACiFoSGw4T6XivNIEIBFDsZWXZ+SU1m7CiAqd82zarxFkd40AAYzUW44AJBPhMLtCoqwsArKKCwzMfIy8cBkA0zeQmJXbRdvYKJObzTp1ODGc7V8m2bTzT9OkW/1Em8Xp5Fh1XfzNZFUjYswdDvaKCw37yZJR8fT2gXG0t69br5R1On973LABtorNhA5mWicTAnYFEgjnctQtwOBZj/PPmDQk9wKDrolHpn6xZA4BzwgkWSKiGUUsLnZgrK3EGVQ+0tlpr8p57iMavWEFEPJOuCAS4Vmcn11K6hWzGUTBIRt3DD9P05Oab8wPA7ABiMIiR/O9/U4p9/fUWCKkd+NShtUs4bGVNV1RYOsZuOL7+OuTcjY1k/V1xRfZMY3v5cjry9r6I3w8w+uc/E7z58IfhQrLrdi1bV16g4dKsIB7HabrnHpwRj4fxf/KT6fnvCiyDrotOPdVag8o5GA5bQJ3+DEexg4magWfPTBxM8XpxsidMsNaBAv3BIOe+aXKmqjQ3M7fTppF99+STZLyceSZ7tKmJPZypwVoiAYAowt7JtD8SCfbbE0/g6F91FbpL95jOlWa1qCj4KcLnN2ygFLqmhvLlfHSA8mR5vejRdDqzpwdbwe/nOWbPLkxzpnwkGiVj68knuf9hhzH/qSCczpHqov2ZCW2azFlXF/aadq0uKmL9HHHEkDQ/GrWLhqn09LDXJ0zgbA+F2Hsa/Lv1Vtb61VdbYJc2/Zw1Czv7Rz9iDV1/PTpVq8HmzbOatSUSdGBev541N348vtGCBZmrM0yTc//nP2d8v/xl7pJn/Z42yBw3zgqITJ5MFuOsWTkv8d9S71gMPaS+Q3W11WjFMMic27kTXX3OOex1n8+qpku95ssvo6tnzCADsb9nTTwO3+FNN/E+3vc+gNalS62zzOm09LTyPfZHVw4GkLhvH7r0+eeZy0mTsOuy8YtnkFHd0k8ZBREt2W3/H9M0Ow2sKIUM5olIiYi0Zvj+4MfhMohGnKNRgJ9cZbcHimgqvMtFVD0f8E6dlSlTUNA+Hz9OJynkhkEZov4ulSsxVXp6AMQUAMtnDKEQ3zGM3GXCmqLt93N45AOwaRe01av5zkEHcRBnAyDs5cslJayjPnJK/Fc0e0jLD8eOtcbkcKDoYzGrDHnSJO43kKYl2uVs40YruplaTpGPRKMcRnv3AgpptuqcOYPTvCWDjFhddCBLczNZdNOm0TnYnoETDltk4itWWKCC14sumTCBv//852QVfuc7mde6zweA6PXiXI4dy/4sK8v8neZmOh2uXk2Tkiuu6Js+NE0AiW98Ax1w9dWUstivodmY9oxEEZyFUChzB+auLp77qacwem+/nXKlbFKo8uVIROShh0T++Efm86SToCJIzRbXUkzNxBwOWXAdHZSi338/wGttLcDzuedmzlAYBBkSXaRAidudDDRpV2Q7oLi/eCmziY4/kUgGyQZrLUWjZOK43WRx6nwoT+bu3fxuxgz+PxRiPzU3o4uam8monjwZfeV0WsGyurr0gJVpkqUSj+NUZ3quUIhMnzfegF/x4ostW8L+HlU02y4aRVdo1+GXX2bMc+cSJNTM5nycT82U0c7w6vTG4wAWygm9aNHQ7SUNpDz+OHt7wQI4YFPBN23gY9dF+2O9qx3X1cV7b25GDwWDvM8jj2T+ctnIBZRRu2gYSjyObROPY6+oHi8pYe3cdhsBiyuvxO8SwcbZs4e95/OJ3HADOuW667BzkSB2KQAAIABJREFUtm/neosWWRnqhkEwbds2ypAnTACImz07c4JFPC7ym98Q0Jg1C7AsH79Au9n39LDWf/hDQM0PfADbKB8/rLubZ/R4oOno7iYoXF1tJbX84x/oucpKwMPDDkvuvt7ejv+m+rKxkc9Ho3Al5gNkZnq+f/4TW3HLFnzen//c6qQtgt4Jh63qEuXEHcheLwSQGI/j573yCmeg14sOPe88MtX76beO6pZ+yjAwlYeNxDP83rD991URuTbD57oKPqI8JBrFKIrF2EgDydYYSRKPo6BFAKDyidJqIxXNCnK7Ueh79qCYnU6UUCDAZydOzH5dv5/oUXGxZaznkmCQw8npZNz5RHSUE0h5frI51Bo927WLQ6iujkM227rQsupAgEO9trZ/B4VGq71e5lg5QYqKLDDFNJknn88qc66uLkwpjMNBg5VNmyg/Vp7JfMTvtwjo29p4/oMOAhjWQ38IZUTqogNZIhEaqTgcGMP2fRuLkf0XCGDIqFMaCll8OC+8QIT92GPpxJxJV3i9In/7G9dasYL9o1HsTN9Zvx4S8/Z2AKczzsjvmRRAjMeJ1P/qV6z5u+/OXOpjNwI14ykSQUel6hjTBDj82c/Y75dcIvKZz2Q38lLLl/OhcUgn8Tj3/sMf2NNHHEEHxnnz0s+BGrRu9/4HqDZsAPR8/HHm4aijRL7+dQDQQW7olE6GXBfZgaZMgKKeg8OhvNMuuobswJiWZxcqk8w04RmMROBcTbUh9uyxGsxpFnEoZDWY6+khSDFuHF3lXS5ArUAge9Owri7WY01N5j3c0YEe2b4dp/jss3PbODpn0ShgQHs7AUbDQF+OHcv4NWNROaIVUM4EspWUWNyNRUU48Vu3WpzQ06cPTbDANCk7fPRRq/nBhRdm1kWaCe3xDH0mdDzOPCkVjd+PPeTz8bfqakDrmTMtnuihHF6G34/aRftRnnsOgPnMM5MD7S4Xds+WLVAl1Nail9xu9qHbzRq/9lrsG616aG4moWHyZKu6LBDAxtqxgwqJyZMJekyenDkI4PcDkj37LODct76VH1d9IoE/5PMxll/+kvt/85s8Rz7nTWsrz1Bayn4vKmL/dHSgl9rbCW42NLCXTj89OQnFMNDPTU18dsIEdL52bD/llP5Xib36KqDtW28BQv7+99iM9ucyTXS9dl4uKSkcT2x/gcSeHoDct94iSKY9C044gaD0ALGPUd3STxkFEfOXbSJSbZrmyv09EJVIBLBIu8kNJRn0/hQFyqJRFHS+WSqdnSjF8eMtw9bvRyEpYNTYyHXnzMluYAaDHGhuN4dAPg5CIICBX1QEuNWX7JqyMqtpQVVV+vv5fHBm9fRwsB55pFVmWFSU3pjv7mYuRZjL/vJo+nxW6WFxMQec/X6VlazTrVsZX2UlDkJnJ85NSUn2cvR8xTDgd9qyxWpYk6l0IZHAWO7oYEydnRxoEydibIwdOzzKGdPIsNNFB7KYpshdd2HwffnLvekNnnoKg/ass6wyei37c7vRE9deC3/dj37EGo1ELG4zXWNdXQCIkQglQVVV/LukJLMuWrkSbsWKChr+LFuW/zNpufD110POffLJdGLORZugZc1er5UhmQo87NvHs772GoDkt7/NPjTNzE0VdDyJRP/Ll02T8pY77mD/L1iA83Doob0/qzx2Ivu/cUo0yvu7914MZe3Oet55gA3DDSyzyaDqotTMNTugqGWvdkBxuOhrJcnXrDLd74UY444dOJYLFvQ+rxsb0SO1tcl/a2ri3qWlBAzGjAFAFMHhbWkBAMi093t6LI7BTPty924CLZ2dIp/6FF228wmSJhJcOxbDPmho4Ow94ojkbtD2DE8te1dJ7Qat+rK8HD28ahX2V2kpOnKo+MK3bgX82LkTG/Ozn8XhTd3LqdmHQ1m+r3q3q4v3nEhYFTrhMGMaO5azra6OdTIcmkylkVG7aIhl/XoA8iOOSOYtFMGmWLkSu+Lss1lb6m+EQqwlDahefz12lc+HfhszxkoAiEbJ2GtoEDntNAC1rVstOz2dNDVxzXXruP/nP58/gKj0Sv/+N8GWadP6VgLd0IAOHDMGkFP3+vjxXPfBB8mmrKjAdpsxAx+kszOZKkmruOrrmctQCNDviCP6F/x45x0LVJ00iZLs887rfa1YDP82keAM03NMM+sLIX0BEvfsoYHOhg2ce04n83DYYQQ0KisLM6YcMqpbMsgoiJi/PCAiNxqGcaFpmn+0/8EwDKeIVA1lm+9wGABROW/2Q4bCfpPGRqv7dL7AqbZ+r6y0yno7O+E403Rzv98y9vXf6ToUhkIcdEVFKLN8FKvPx+HpdnM49lUZK8+P8iPaCcMTCdbCnj0YnwsXWpl9brfl8GtWoAjrprERA7ukhIOyPzwXgQBjikb5vnYvS5WeHsbn9WLIK8GwclLu3s3YCtG0xDBwvJ1O5jyRSE77j0SsQ1tBVhEOef0ZpkayyrDSRQe6PPMM0duPfASjxS4vv0zm6/HHU3an0tHBnmhspJPf/PkQi5eVWYaT/oiwFh96iLX7sY+xv0MhdFOmfXn77Vx78WK69OZbvq8A4tq1gHvaZfrcc/MDquJx9kwi0RtAjMcZy223oUevvprnsRuJym9kv5ffb1FIVFf3z4levZpy8w0b0C833MB7SX2m1OzD/QnQtbVZXZZbWij3uvpqK6tjOGRG5pAh1UUKEJWUJAN0wSA/ww1Q1GYjOtZweGBgYmsrtkddXe+S/I4O1tDYsZxhKm1tFr/zQw+xZz/5SZzYUAjHzO0GWAsGrTFro5NgkDO+tDSzw7ZmDfrI6cRhX7o0v7IyBRC1KYPfz9m9YEFvKoV0ZdB2YFEzZ/TzRUXMyY4dPMPcuQSHh2Jd7Nkj8sgj6KIxY6CGOPro3vfWskV7JvRQjC8SATTs6kLviljcZ1pJYhjYkePGWbbacOUmfVdG7aIhlJYWbKOpU2kEYpdNmyghXrQIoMrhYA3V11uNL37wA/brDTdYFEebNrHG5s61gq1/+xtBydNPx0/ZuJFr1dWxdrV8WvXFpk1cU7MjP/5xq4w6myjVwb59VAJs3EiG3lVX5edfqx/j9xMwSK2u2r4d/sG9e6kuOPdc67qVlew79VFVOjoIxPb0YMssXZp7HKmycydl3A89hI6/9looJlKfSTmxo1HeV1lZsp86mECinR5HhPusXw942NTE+VVczHqaOZNA0BBw09tlVLdkkFEQMX/5mYicISL/zzCMD4nIK0KK6ywR+aiIfFtE7h6KgYRCKDvlvOkvd91IlLY2DNrx4/OPQESjfE8bqYhgOK9dizNy6KEYoD09KP7qapSWZslpV9WSEg61HTu4xsyZ+RlVPT1Epzye/Euv04nTCZCoWQHl5YxxyxaU/6RJvcek3Bvasbm62mrCEwxiIObbCdkuWqoZiXC/1C7XKlp2rvN/6KHcy+9nPFVVRDC3bOGQVWOjEDJ7NtdraOCg0s7QGm2PxfhvVZVVUj3MjWSVYaOLDnTZuhVj+OCDMUjtsn494OKSJRiFKn4/a6ypiQ53tbV0ZNZghD37MJHA2P373/ndOeewrwMB9E464zUeF7nmGsjKTz+dkt18u9ElEui6e+4BcKur498LFuT3fXsHZi2nUQNw61aM940b4UL7+td7NxNTvh/NRtQGRloSna2baibZsgUA4/XX0UNf/7rIBz+YXs9q9qGCEvsrWLB2LY7KU08xnuOOgyfz6KOT+WNHgOw3XaRAV3GxBdJFoxagqN1s93eWqX2suv7C4b532w0EyCaprCQoYRcNUlZUJAcTgkFsGBEaAzgcIv/zP3zONK0S58mTLbBTCfVF+LeW4KXjBDZNutH/9a/svfPPxwbJx+lWALG+3ipvVK6zfERBN3uQRdeBz4d+bm9Hn86ezfN1dTG2weLWbG2FH+7NNwFdP/IRyu3S2RUKgIoMTTdytdm6ulhLIrzXykrOq7Y25s/tZn1UV/MM1dUjxscYtYuGSEIh1nlpKY3f7GdVYyPn8cSJ8A/r30IhbKKaGjoBt7bCwVxXhx7ZvBk7YOlS9kMohF5paQHMmzGDPe3xACY5HHw+ErGSGF59FTqFRAJb6pRT0Ee5JBbDp37jDcYWjxNgPe20/OYjHManikQALO2lxn4/TWfWrkVHfv7z2GvRqKUny8u5p8+HHigu5vPr1zNfxx9vcRTmuxebm+E5vPdevvvFL9IZO10Wtp6bpsn1U/W3vsNUPuyBSiqQ6PORNb5mjRUUrKoCPJ4wAfBwMBvUZpFR3ZJBRkHEPMU0zZBhGCeLyFeETj0rRCQkEHLeLyLPDsU4AgGMLoeDDMSh6ig3HMTr5eCpqso/Y027pjocFgF0Swtp7uXlgFraTEMNJhH+rY1XOjutroWdnfx39uz8lLnXC4hVUsLhMlDlq4TFXi9gphr4y5ZlbvzhcDBnXV0WWbCun76mgmsEOxSy0u0zARgdHQCIsZhVeqCHkWFYHIlVVUQeN20izX/evMKVG02fzvO+8QaG8axZlrPkcnGfgw4aMUayiAwfXXSgS3c32YPjxsGnZ3c49+6FmHrqVAxVlVgMZ6yxkey+qqr/z96Zx8lZVXn/VHf1vqS709k66c6+kA0IBpCwSIgIqEFAESOouLz4qoPLOMKI4zJu6CAzrqPjoOMQQIMgihiBgIgQICQYErLvve/VVV1dez3P+8eX896nqquqq5LO0qHO59OfpKurnrrPfe4995zfOed3AOvS8dd0dVHuVlaGw1leznrVTBqNChcUmD1z88189yc/CWiXrU5RwPKrXxV56SUMZOUjyka046Lbje4sKGD/BgIAmffdx/1+61uUEKVz0NVo1GYPto0eypWOo62NsuWnn+bzn/wkPJKpzkTlqLNtw6l2ojP8IhGAnLVrzfnz3veaTInCwlOnI3S2cqroIieg6OQjVC49zf472V1uNZMyVSfnTOsxHsepdLlwsp1rRKtSSkpwtpwVCq2trLuNG/m+97/f2And3fytocGAXDpPGmzQTswVFQb4LCw0lAb33Uep3fz5lCxOnpwdDYFy723fzndMnEiZ3rFW1BQUcD0Nsp9zDteORgEUvV4TRBBJXwadq3i97O3nnuMaV1xB1/FUOk3Xp3a5P56Z0IEA9ppWXYjwLBsaGENXF3ZaQQFnlGaWa8B9LFEknSq66HQX2wYUGxri/HKukcFBbKaiIs5j3c+2TaAgHCZDt6+PQOiMGfxfK4PmzDFB1Acf5PWrr+Z9O3ZwnfnzzT4tLUWnh0LoogcfBKi75BLonJJ5R1NJNIrf8etfExCZO1fkX/81+27jSomlST1qT9k2OvtPf+K+L72UcbndZDv29pqAhgi2UyyG7bhzJzpl7lx4b9Vv1UYrmc4wr5eg9X/9F/d24400ZEsFvlkWYF0sxjXLytJf2wkkiowukNjSQhB43z6+RzM5Cwvx25YuTSwNP9GS1y3pxWVrbVFeToQc02Rr1NbtRqmOkaypUZFgEEWtnYOzVSbd3RxIkyejsDs7OYyqq+EosyyUdnEx70l1XdvmgHv1VQ6rM84gejbS/A8McO3ycpzE0XIOu7sZSzBIRoJm3GUS28awPnKEw2rRotwA6FjMRLAVlEzViVXENGoZGODeZ8xI7VhoB9biYgxYy+LwDIW4r5G42TJJOGwME8vi344Os34UPDwGI/nULjIcWfKKP4PE45SAHDoE0OYsHfR4MFjLy0XWrEk0lDs72WN33MHe+OUv05fStLRAtl9RAQdiRYXJ8quo4HqWZcp/29oAAXbuFLnrLqL82YplARzecQffcdttgJbZ6tGhIfZUcXFil+gtW0S++U3uZfVqot3ZBCa0hFG7L+fivPf2ki3wxz+ig6+/ngyoVGCocqlps4KTkeHX1YWDsm4dTsCsWaybK65A/2hG1TEY5XldlEY04zwSMfyXCpSdiOyvTKJrU8eVCUzcvh3dsmxZYiMB5RG0LBxO55ne2oqt8OKL2Arve5/hBfN6CcjW1aXO/Lcs/q6dmAsKTOa+CNf7xS/IAr7oIrp6jh+f3Zkdj3MWb9nCNRcu5Lw/VgdxaIjxDA5yT3PnJgYHYzF0jmb6OEuh9b40eOMEFjPty2AQ4OHpp01G8ZVXpg+C6vcdr0xo20a/a8ZhNMp3VVVhY5WXsya0+U5pKc56WRlzUFSUmsInB8nrotNcNm7Elli1KpHeJRol8621VeQf/zERhGtuxi76/e+xqb7wBao3tInJtm3Y42efja5et469es012Ou7d7OvFywYbl9Eo3Cx/uUv+EJnnIF/c+65I/tokQhZwz/4AeO49loa52WbVODxmE7vzqQej4d73b8f+++aaxIzrGMxQz81darRfS0tVCfE48yvk2dSQf+iotQd0UMhdPL3v49+v+Ya5jkdl2M4bAILCsZmI5o1WFBwbPorGiWzfvNmzprSUmwjt5tnXV4OVU+2TUtTyFjXRWNC8pmIY0T8fpScKquTafyeaIlEjMLNJRrh9QJU1dWhoNrbccBraylPFEEpFxamVsoqto3zV1uLQR2Pm9IhJ8+gU/r7uXZlJYfEaDiu4TBGso5lwQKun83njhzhkGlq4jORSHaHhmYMKLgxbhz3ne5+urtNo5bGxszzWl7O33w+DN6aGu5p505KGxYuzL25wuAg8+Mcr2agRCIcVuEw8zCWMn7ycmJl3TrW4C23JAKIwSClxy4XBqczc2ZgAIPyK1/BSLznnvQA4uHDgGDV1QCI5eWGm7O83KzNwkL0zyuvUIY4NAQgddllxpAbSR/GYnAU3nMP6/6nP03kb8wk6pRq6Y3ux8FBjNU//IH5+dGPyPoZyah0li+XlWXWJcni9wPe/va33NPq1TRwSEd/oKWZ2qzgRJ6Z+szWrqVhimXRVXLNGuZJu9SfbCDrdBdnyatyYSqPYjicyLV3orNT9bvTZSaqtLQAIM6enQggamAwGsXZdJ7nAwOA7Rs3orOuv94AiKEQf6uoSL13bNtwujqb0LndJlDywx9y1r/znZzZFRXZZyDu3MlPZSVcak7+xqMRbYbQ2soYzzgj9TXdbsYYCHAfzvGqrtDnEAoxbyKsISeoWFTEe555hozwQIBsoXe+M/29WBZrTjOhRzP70LaNDaWZlgUFpiS5upp7aW4GvLUsXlc/IhQy3WDTBYbzkhcRqp9eegmQzgkg2ja0KIcOUbXhBBC9Xtbe738PZdGnP23oXyIR9ElDA7bJ4cNk9FoWGfrTpnFNnw/9lwwg+nxUPuzcKbJypWmQeeaZrOtIBEAw1RmrfIs//Sk67utfx67KVrq60IGVlYamyrIoqd6wgX30jncAZibbOG43vlFnJ7q2thZO5127SGY54wz2r7PpSFER+rqvj72uGeWxGJzKd93F/l65kiqYZP5ulXgcfaDVWKWluflCWoGigZdcgUSPhwDSq69yBk+aRJZmLIb9XFjI2BcsyNtGY0Hyj2gMiM+HgVRSgoI82fw+J1KUU08kt3LgYBBlVVHBwdPSAigwfrzpYNrZiTLMlB5uWRxiwSBRkupqA6z5fKbJSU2NUcR9fRwuyk90rEaZbQOAHjzI/2fP5nDVhik6hlQyMMDacblM+bLfbzij0mXiWRbXHhzk96oqPptunjRTVMcyfXp20byyMsbm9fK8ams5QHfsIPq4cOHIJU7xOPfZ14dhoAd0SQnOksfD/5cvx+Dft48I2KJFb6y9lJfs5KWXcA5XrYKjTiUexxD2+XDKnSXKoRCG8le+wp75+c+HdytU2b+fEpf6eqLFZWWAg/E4+ip5TT72mMhHPsL7H3mE/aHRYM2wUzAx2Rjs7qZs6OWXMWjvuCN7YN6yuBcdV0kJ+ueppzBYBwboLvixj/E3zehJt6ciEfa5s3xZ+RFF0uvJUAjg9r770C+rVjEf6botpmqccqICBqEQz2vtWhyC6mrm6IYbOGe0FCidY5OX4ycuVyKg6Oz0HImYLLTi4hMLKOq4khuFuN2s9z17AKeSM0paWtAb06cn7ulIhDP/2Wc5l6+91jj18Th2j9udnltK6UpSceEdPEi5omURYKmrQzdoubPLldiYxSmhEA52Rwe23LnnHjuNyMAA53kwiPOtmSzppLSU+VVaBh2jjjc5c9HZDVoboLz8MjpwcBAb4pprsK1Sieoi1dMlJaOji9T2GxjgX+UpGzeOc0m5Zbu7ASc8Hr63oYF5Uv4xy+IZHg0XbV7eWDIwQJbcxIkAVU5RHtBrriGbUEUzpTUr75ZbCKaJsAZ37WLdLVmCLlu/nnW5ejX2TkcHa3jq1OEUVq2tlB339RGcs23AvDe/mWs6m27p3tb9PjhIpcn69ezhb35zeKOqdKI0Ecoxrz5eRwfNS9rbKaNevTozLZP6pm1tIn/7G/c9fz7Z5vG4KfMeP97szfJy7mlwELvmmWdEvv1twNlzzkE3Jze5UbFtk33ocnGto61m1HnUBkzZVsK9/DLroKAAkHDxYuZRX9OsdL2+cmfn5dSVfDnziZWcJ9vrRcmUlmIIvpFAD9vGMQ8GORyydX6VV6KggKYhzc0oqYkTUVoFBabMOVNJqyo+n4/vT+YcjMUwzvx+U+KrZbTV1Rhso1Gis2cPY6itJYPIOd5wmO8vK0ucH8viMOvv57Bqako8MDQbaNy4xAwG2+aA0g59FRW8J51hrl2eOzpYm42NidkS2Uo4jJHidnOfkQjRRZcrfel1OGyicpbF/Y8fz312dTEvRUU845oa8yy6u8norKxkPRylMz/Wj7a84k8hbW0Ypk1NlPw618b69YDb73hHYmMDy8JQvu029txPfkJmSirZvRuAcvJkiL9LStBvmpmXvBd/+EMabpxzDhmIyU0Hkrs8ixgOxRdfBDQcGgJIvPrq7PVRLGY4SysrzZ767ncxeBcsgHjcmdFo28ZZTj6n/H7GoUTZznl1Nlpxji8eB5D7n/8hGHD++WQ5pANn9TParOBEZh+2t9OAZ906w2V0000QwrvdiSWMx4GGJK+LjlG05Fl5M0XMszrR3buVMy8UgidKG44413JnJ/txypREnWDbOJSPPcaeu+YaHDP9W3s7121sTH2mDg6yfquqhjvAmzaxF+vqRD70IealstKc9xrUiMfNHCr/qMcDX2AwCMgwf/6xzWksBqDZ2YnenDs3Pe9ssmg2dEFB9uCZbQPG/e53fGdjI3QECuymKoMWMetJXz8WicUYtwKHet2aGn6qqkxH27Y2QOZQyPBxT55smn6J8HzHjRv1AEteF52GEo1if/j9UKo4kxZeeIEsxBUr+JtzP+3aBfXIjh1UDbz73eZve/dSGbRoEWt73TrW9DXXYBdpVVNT03Buw23bAM/cbjiiVRdefPHw9RyN4ivofmlrwx46eBBOx09/OvtSXm1KqRRZEyZw/b/8Bf1WVoZ9uHhxdnqluRkA1rL4nDNQFAqlb2r1hz+I3H038zt/Pvfztrel/85YDN1rWaZh32icafG4CRyn0iORCM9qyxZ8tYoK9P/ixTzbPXv4/OzZrAOnb6sB12yqbdLIWNdFY0LysfBTWDwejD4Fgd5o5Zfa2r2hIXsA0bY5mGwb4/rQIX4mT0ZJuVwo5kAA4zcTgNjcjLE2bVrqpiVuN4eIdj9WPp7GxmMHEJUr5MgRU6KTKnNAM4C0k1VxcWL58sSJfC55LNXVxhitqeEQ0I7J8TjzUlOT2fD1+wFZQyHmsrHx6J12JfJWEnAt1965k4Ny4ULGoiBnf39il9i6OvZHVxf3UFiIUeGM4qkoYe+uXXBNLV78xuIXzUtqCQYB7UpLIQV3ruUXX8QQXrFieGfUtjZ4E5ubRf7jP9IDiK+9RpnLtGlEqbXEXktunIZsNCryuc9hgF97LZ2YU+mq5E7PCkD87Gfw48yYAcH23LnZz0Mkgi5wuYyT/eCDJgPpM5/B+E4GCp2d9jQLMFX5cvJ+1N8VeLBtkb/+VeS//xtHePFiMjw1gzyVpMo+PN7Aj20DrKxdS2aSCFmSN90E6OvMZDoZYFReshcn4OzMUHQC0voMj7cdpiXYW7cylrPOSgTnPR7Oubq64UGFri6yhQYG0DEKIIrgxAWD2AOpnOZgkL1aVpYIINo21AuPPooe+cAHOPMrKhIDhs7sQyeguH07AFx5OVlI6bins5WeHoDSaBSbY/r03MvxKiuxI4LBkW3LPXvIAD9yBJviH/6BzCntLu/MVtTmU6qLSkpMswJnaWK2Eo0afkMN6hQXY3dqIxSdS5+PM6izk+8aPx67sa6Ov3V28j6l4XkjJSTk5dhkwwYCeddemwgg7t1LhcCCBXCuOvd1ZyfA46uvkol/3XXmbx0d7OOmJvyV3/6WvfHe97Juh4b4vuJivi8QMPt0wwZskYYGgoq7drEfLroo9f5yUkasXy9y552871vfErn88uznIBRCB8Ri6JzqaoDIRx7BHznnHMNzPJLE49Cd7NmDDps5c/jnSkv5DuVxraoCkPvmN8lAnDhR5Gtfoyojnf9i26asu6AAfTGagVWl23ECfiLMx+bNjFebd61eTdD54EHGH4nw/JcsSc2lqzpT9Wbedjo1JZ+JeGIl68nu60MJV1aOblOOsSJaElxfnxtnTl8fxuHEiUQ6mptRYGecgRJSzrzq6vRcWiJ8tq9veKQ/nWhmgJJYa0ZdNpyFyeL1crhopuScOZlBLuXE0ahQZyfrpbExM9G5NhwJBIxBXFKCgZmpzEg5IXt6OOSnTx+9bsra/bmggPkLBjESiopwPnw+3qP8IHV1pgO3x2O4ferrRzaSPR5AytJSDrIcO52P9SMtr/gdoll/W7eK3H57Yobd7t040QsXilx1VeLn+vsB1bZuFfnOdyDVTyVbt2I4zZhBxFmz04aGWMtOR9brBYh65hmRf/onsgmz1f89PWREbt7M99x+u6EDUMAx07WCQROQqKoiSPDNb2IMnnceXDvpyohMtc5RAAAgAElEQVRVNBNJS+60fHkkWgLLYtw//zn6b+ZMnIQLLshsQGpzCs0GOt7OcTBIJsDatWSg1tSY5i6TJyeCTycIPMzrouMkmtmqJakipov28QQU9+7FYV282HQXtm3DbVdVRemuc10pZ+iRIzhs55+f+LfOTs7pVPaU8gUXFfF3vW4sRiDjpZcoE7z2Ws7nsrLE96WSaNSUr02YwHjUrnCWPGe7N8JhrtXXh101b97R2VcqgQAOdlVVavtKG0Hs3o2dkY7fzCka0NVmOfqaimZmOrtBJ9+/VmUMDBie3NJSk3GYXHHS3W0a2RUWGn658nJT8mxZzNVIgeFRkLwuOs1k61Yy7S64wHAZipjKhOpqGng4QbBAgGYlGzYAHn7844lg92uvYd+PGwcvYUmJoYgJhwnYaslrMMhrbjfn7iOPEFj58IcJ4lVXw2WYaV1r05df/xq9+bWvsUeU3mIkHeT3ow8KCgx1wZ//TIZdXR1VJbNmZTefg4NUc/T3c3/LlvFaby9+S7IvNTCAn/LznwOC1tbSbfl978NWLClJrdOjUebOtnlPScnxs0OUyubIEebk4EFTnvymN+FHHzrEcw8E+H3p0tTJOcmizQWPAkgc67poTEgeRDyxktVk9/aioKurT25b85MlPh/ZPdXV8E1kK34/c1ddbVLhGxsxNl0uFGpXF8ZVJmBQeTgmTkTZZRIt5/V6iaBNnMj39Peb5iW1tdllUmqJTns7RuO8eZmBzuTP7trFOKZMGV6+nEqUYL23lwMmmVsplQwMYLBGIgCco9U0xinRqOHwKSvj+159lTlRp0pJh3t6cCps22Rm5BJp83oxWIqLARJz4Gga67syr/gd8thjZNutWZMYnW5vh7R6yhSIvp0AVThMKcxzz2GUOiPtTnn5ZZHnnycYcOWVXCMex0HU6LDq+MOHKfk5dAhQc82a7O/h+ecpawmHAQ/f9S5eVxJsZ6dnJ4eifrezA3NRESVKv/wl4/vc54iy59LUyu9nz2aiQ1DZvZvsyc2bAeI+8hGeQybdollA2qzgePPYtbSI3H8/To/Ph4F8440Ay8q1lly+eIKCf3lddAJEm2MkA4oKFI8WeN3ZSfZeY2Ni1rNSmxQUUMLmLEmLxSin37YNHePkLFOOxOLi1BzN8Tj2jojJ0hdh//7kJwB373oXWYTaRTNTwzQRzu+NG7EXFi/mbNXMZM1QVAoG7fKZaf+2t6MTbRsnfjS4pkXQU5aVWNbb1UXW5SuvALxdcQVZTpnsKdVFmjXjBCac/Jv6r5N+QgNKSvkQifB6ebkBDpMDMOEwz7S1lf+Xl2PzNTQwl34/z0CrSurqcg6SHq3kddFpJO3t2EUzZhCY0DXt9wMgBoMELZ18hZbFWb5uHbro8583eysSwZbXJIFHH8W+uP56wze/Ywfvc5a3er0i//ZvgIZXXMG5++yz/H3Vqsx2e2srdtGOHZzVX/wi+ykcNt3L1eZJpVP6+5kH9ZH27CGoHAzSjf3SS7MH5o8coarF5SIo42y819HBNadNM3u1o0Pke98jOFRUJPJ//6/Ipz5lkkN0n48bZzJELQvfLho1vPfHM7AaCnHubNrEWKqryco8+2yebWsrf/f5TE+CbBJznHKUQOJY10VjQvIg4omVESe7uxtDbdy40TOUxpJogw7lgMz2/iMRFG5JCaBSRwcHn/JnaRcwtxsnNVN34Y4OlN1IRLvKMeTzEQlKJv5VBR+LcT+1temzcXp7yWqJRHjuM2dmr/g1zd7vx5icOjV9oxURk+0XCjEfZWWMsaQk/eeiUcA8j4f3z5jBAXE8RLtDHjpE1EpLb/r7meO5cxlHTw9GR01N+hKtbMTnw8AoLCQ6NlLG1Osy1ndmXvG/Ljt20Cjk3HMTI+ZeL9lmJSVw/Tgj7ZZF9H39eozkm29Ofe2NGzGu5s+Hs0Ydac0wqagwuuillyj7iccBqy68MLvxx+OU99xzD/ruzjvTly+nAhRFGI/yiu7dS/bh4cMY7J/9bHYRYx2Lli9rKVImALG5mQj7X//KPv7AB+hyOhIA52xWcDzBOu22eO+9jLGggOd4440YyS6X4dNTMLO4+IRXDuR10QkWBY0UGBIxZfTH0nHb70dfVFXhiOk6isexD+JxbAPVUQpiPvII2S0rV5Ix5xxnSwv/pqIbsW1snlgMx06dYe3A7PGQ8bN4Me9TjuFM6/vAAcqXXS50arpAeCZAUTm2AgH0kXJCz52b9fmclWi2tNttOFhfeIH7XLWKDKeRvk/XgOqibOw2yzLN4Pr6Es+DceOwc8rLhwcjtNOtNgWsrwc8VNqWoSGeWTTKuVVXN7rzlYXkddFpIkNDBrxas8YAdbGYyPe/j33w2c8Oz8D7zW+gX7nwQoKrziYZr72Gjhs3TuSJJ/j3+utZ97bNXvd6sZc0I8/jEfnGN9B/N9yAXty4Edviqqsylw8//TS2TCQCRU1yINiyABN1/2pmoo63sxPfTDli//hHQMSGBrgbR0oyUYnHydDbu5c9e9FFw/0nbSJaWEjw4kc/gtLFsrCLbrwRHVhfn6jH+/t5VhMmoCdCIV7X7MPjJT093NP27eibadPIEJ03z3BabttmKv+WLs2+eU0qOQogcazrojEheRDxxErGye7sZMPV1qKc3mgAYjTKweRy5QaiaRMRy0Kh9vZC1KoktfE4wKBtM6/pDPzeXjIga2sxzDKJbRNh8fsxqtNlDCqH38AA4ygv5/p6UEUiHI49PRwq8+dnBgCTpb+fMRcWMubCQsMfkny4RqMc0IGAaQRTWWmyNBWETD7cenuNI6Ld/Y7H2tRGNf39jFVLL2tqODg9HpyTeNwApZMnj46R7Pdj4GinuCwyR8f67swrfkHffvWrrKV/+RezlsJhDOhAAADRCaLZNobp/feLfPSjZOmlkmefJZtl0SIcUpeLzypg5+zE/NvfEmWeNo3If6bmIU7p7CTr8O9/J1voC1/IHtxXHkGfzwAhv/gFzQOmTKF02dmdeiQJhxPLl0tK2KupSqh7eviu9et53w03wIdUXp6+0YpIYvbh8WycMjQEMLN2LcGM8eMZ3w03mCi6M6tIs49OEs9YXhedRNF95CxjLyhI7PScjcRiBBJiscTSX9umQmFoCLtGHW4t4//rX+n2ft55OPvOPdPRweemTk3tbPf24nTW1xvdt3u3yE9/ylr+5CfRSdkEYKNRnMrmZvTl8uXZNztR+gMnqNjWxk9JCeBhrtkr2Up/P+DASy9xbxdfTPAkExWMiMlM1eDBSLQFto2doaXKmgWlHIVamu3MWtTv6ekhQ3JoiOekXJBqpwSD2EfhsKF6yZZHfJQlr4tOA7EsbJKuLspmNUHCtmmutGkT1QLJ/M8bNmAbLV5MBp0zsH/oEH6a203VRH09oJ7qpcOH+b6ZM81eP3IEIHJwEGqXhQuxGYaGACknTGD/JOukcBgQ7re/Za/84z8y1nTnczzOZ9RecbvReRq8aGkRefJJ7v+yyyjtzjZQ6PMR4PF4GP9ZZ6X/bH8/vNpqe7773dx3UxNj6+nhs/X15hqazDI0hJ1SWsqcHo9Apm3jr27ezPMqLMS+fdObOBu0J8G2bcanXbKEpJPR8BlzBBLHui4aE5JvrHKKSEcHCqSuLvvoxukkzoj5jBm5OWM9PRhdPT0o7HnzDAiokfZ4PDOA6PGYEmpninm6sba2orQnT86cpaPNCaqqAPC023ZFhWmAYllE8xobs1e0OoaBAYzPpqZEYvhAwESxNTvI2UU6+eAtK+N9gQBzX1pqMhwHB3n/9OnHJ6odDALmeL2mG2xDA/8qb+Phw6bUsq+PeVJuktGQykoOu9de4wBcsuT4ZVrm5dSQaBRDMxaDLF/XtmXBhTUwgJGbvL//8z8BEK+7jkh8stg2HELbtmEwXnKJ2dfBIPtMAUTbJnPw29+mact992VPYfDsswCfkQiR+iuvzA1U05LqwkJKjL73PfbWe98LOFpRYYzqbJxj1TlO0n7NvFRA0OcDmHvoIf5+3XXwPzrBhuRGKwq+xmIm+/B4ZfsdPsz4fvc75mbpUsq2rrjCOETxOHOu4GFpab5JwRtZnBksyYBiJJLYlTtTye6OHeiHc85JzCDRYGVTkzmT9JrbtuFUz51LECEeNzrA42EN19enBhC1GsFZLvvcc6z/SZNEbr0V26Wzk/WdKQPR4wFY8PkYy/z5uYFYzu7GXi/ULH4/TvGsWaYJlbN5y7FKJIKefuIJbJwzz8RpT9XAzilOAFeffboxWRbX9nhM0zrtCl1Tgy2W7rPBIPqouRndWlrKGpg8mc+Ew7zu97PWSksBVY6FJzIveREB9Gprw6ZwVlj96U/s89WrhwOIr7yCLTN9Ov86AcTeXgN0bd+OL3bddUbPpeo2v2ULZ29ZGddraACkLCgQufpqdIVSsDg5l5ubaXS3Zw/B2w98gOBLJnuhsBB9pTzV+/Zx3YoK7rm5mcDu6tXZ22ciAKcvvcT1L700PT1XNIpNeffdYAErVoh86UucBc4x1tVho/X3m+zjcJh7HxxEH9TVjX6SRzCIjbhlC3qsuhp6i7POMnp+cJBnq81AlyyBjmM0A73JjfveaIlWp6LkQcSTLBpFGBhAWY9kwJyOoll9kQhAWi4p2Nq1rr0dZbpgQWLKdE8Pr0+cmL7c1esFwKysHDliomCndo3OtqGIdhGurmasmzdjcE+ezEExUtTbKUquHg7z+WSC88pK7snn4/dAgH81JT/dYVpZacp7uro4+JVIOLlU+1hFm8H09ZnMyNpaDkbn81eAsauL57d4seEDOnx4dIHEigpAg+3bcc4WL87tueRlbMl992Hk3Xor+0jlySfZX1deOTygcP/9lA6/9a1kMKbKlHvySZzgN70psSRZeWrKyjCswmEyfdatI4PoBz/IriQ/GuW9996Lw/6tb+Fo5+Jch8MYywMDdG9++mmM5LvuIlquhppmBikImJxVqAGKaBRjUjObVQoKTPblQw9BbB4IUBL84Q8nzrtTnEBiPG6yco5H9qFlAciuXQuI4nZTJnXjjegD5/siETMfJSXHLxMyL2NTkgFFZ6dnBRSdnZ6dXKjd3YBvzqBFdzcOY6pg5Z49lA5Ony7ysY+x1zSDLRIxDUhSZQP6/fxUVvJj2wDnf/4z+/+WWxhfZydjnDQptX6xbTgTlQ7k3HOxtbLpUJossRjzoJzQy5Zxz5ZlQDsF7pyNWXKVeJxyyMcewwZZsgRwQAFazYJO99lk3tNU7/F60a0+H+MvLMT2qq1NnTnlFI+H86e7m++ZONGULOtcBALYZ16vsS1LSw0IcoI5WfNyGsmePQCCZ52VyMn68stk7J5/PkG15M986Uus0e9+NzEAHwgAynV2klHd1ESDJt07Hg/AU12dSf547DHskpkzCZRWVoo89RQ21MqVRheWlprmQSUl8A3efTd74pOfxP5qasp+H0SjgHjxOHtwyxa+45pr0EfZglaxGD7e/v3s3wsvTB1UsSx4Ie+8E1v03HPhk5w2zehyp41RXMxe93jQ7yUlXKOsjHOgt5e/5QJ0ZpLubp77jh2MpamJTMx588ycBoP8/cAB9NzixZxjThtuNME+J5CoNmleTp7kTeCTKAqe+Xwomly6EJ9OomUaU6bklv2lhpSWQC9alJjFqZ2HM5V2aNetsrJErqFUopwVodDIvIOpxLb5/JEjhgi7vBwnIRbLDPCp9PWZkgAtbUolWuLtcuGA1NRk5/AWFnLwBQKMb+bM0e3mF4txv3rPxcU8M2f2kgjf39XF8ykq4tkqn9uECaZE3e0+Np6NZCkrIyNh2zbAxEWLRq/zdF5OHfnb3+h+/I53YByqbNrEcz//fJ69Ux59FMDu/PPpxJzswMbjOOH79lHucu655m+RiMmk1WzaNWvg3/rylym3ycbQam+HyHz7drJmbr01sSw6GwkG2V9PPomhHomIfOITgGaqI5xgoRps+qN/j0aJPouwR1JlKUejOB6/+AWG/oUX0nFZqSZGEuU+VK7B0TRGfT6Rhx8GGG5u5gy+9VYyMcePN+/TEmpn5tFx7nCal9NAnBmIIomAopY9u92ccfv2cU47aVQGBjjjamuHB5c1Y7a2Fj5WZxZ1MGgoTpzrWCUUMh2Wa2rY/7/4BcDBJZdQvqh8YLbNuFLZDpEITnZnJzbWokXooqMBEPv6EjmhndUoTrDQWfKsgYVsOz3bNuN99FGCy7NnA77Ons3fYzF0QiAw3K7SDFPNJEzOhI7FTJny4CDvLypi/rVUeaTgdEcHemhwkM9On04QyzmfGnwdHOSZzJplKjZUR2nQWMTwdGrw5QR0is/LGJa+PuyChgbK+lX276fR2ty50Ls411BzM81KSkpE/vVfE2kH4nHoEfbvRyfNnWuyCEXw+/bvZ7/Nns06vuce9ui558I3XVhIkHNwkOw3p07TPdbXRyXFk08CYH30o+iQXKq7fD78s85O6GEGBvAFVq7ETwuFuMeRfDSvF/tSm0qdeebwMdg29ue3voUtd8YZ6PPLLuO90SjYQHc3z8IppaXMnzYRdTaTrK7mPoqLjz4j2bIAhTdvZj7cbu7jTW9KfLaRCMHyvXu5nzlzOAP0LHJWj4x2sFWBRPUJ80DiyZM8iHiSRAGlwUGMtFTG3htB+vsB+9TYylY0YrRnD4p98eJEQ3twEGVeVZUe7AsEiP6UlGCMZVJEsZjpSjxtWu4K2udjrEqAO3cuil47EavxWVPDmFN1UGxtNfeUjiTd7+e74nEMe+3ONZISVw6iri7er8DjaJUOBQI8ay1ZrqpifMmZfuGw4SJxuzlANT1fS5sHBnjW8bhxlkaTAqCkhIN/+3bKmxcuzL6xRF5OfTl8WORXv8LgufZa8/revWSkLVhAOYlTnn6aSPvSpQCIyYBZLEb0/NAhjG8nMBmL4dhrE6O9ewEAOzrgF3KOIZP85S8AjpZF+fPKlVwz2z2qGYEHD0KMvn07WdD//M+ZOWCTAUXNtAkEMOJra4eDapbFnP33fwN8Llki8vWv828249WsIxHTrGC0nN/9+zHYf/97nsuyZSKf+QzdoJ160rbR986mCXknPC9HKwrkaCMzBeE3b8YWaGoynHZabVBRMTwbur2dLOri4uF8rS4X56zbzZkYi7EXVU9Eozjcypvn9ULp0NxMg4PLLmPdd3WxzydPTg2Y9/WRoRIO47RPncq5mSvdSSTCfuzt5V4XLcqc/Z8OUHR2y04GFG0bZ/f3v8fmbmggaLJoUeJe1mcTDHLPmhWuukiBQdUR2qBOq2FEmIOJE7GdsgmIB4OMqa2NZ1NZib0xZcrwBhCa2ShiyqGd73FWcCR3gw6HE+dQ7+NYmgDl5fSScBjwrrhY5O1vN2urpweO1Lo6MpSd66WjAwAxEsGOmD8/8Zr79gHcd3Vx9r/jHea6kQi2kNvN58JhOjBv3gw1w4c+ZMA2j4dmJKkq9Q4fxi46dIhxr1iRe18BTUbZssVkRX7wg/hpGkCIRLCfVDek8hcPHiQQ7XajS1P5Ja+8Av3Mxo3o9h/9iExH514uKqL6q7ube1cdH40aMLOmxmRG6zMZN87oJWeTmGxkaEhk61bGNzjItS67DJvXGciIx3luu3bxXdOn82yTfWLNulf9mQcST0/JN1Y5sWKLsOCbm0323WilHo81GRwEGKuuTs8VkUpsG0W/dSuG2llnJWZxBoMo39JSDLpUB0kohPFaWEgEJVNmSSzG90WjKP1csiXjcQ631lZDEJ6qNDgc5rBQsKG21ihl7VgdjZry5WQZGsIh0C7LNTX8Gwjw+crK9GXiXi/Xj0SYr6lTmeOBAcYybtzROc62zbX7+hiDs2Q5+XCLRjE0PB7ep92ukw8GNaajUdZNWxvXd5Ixj5ZEowAtgQCRwiSgf6xDCW9Ixe/3i3zlK/z/q181DmtHB6WBEyfiTDsNnhdfFPnUp3Dy7757eAl9NIrx3dwMsOcsgVXewYIC9Mazz5LxV1xMae/y5SOPORKBbPv++3Ewv/lNHOFcAETdN/fdJ/LAAxiFn/40nZBz2dvO8uXSUtPkwclf+PLLdFw+cIDsgltuoemD09hLZ/A5G6cUFhoOOWcG5NFIPA4Iu3Ytz7O4GIfmxhuZU6c4ee1ExgR4eOqOLDt5Q+oiy2KvDA4CZCt/cSSCQ1tczLnjPLe7u6Ex8PsJRCxcmLguu7sBmrSqw1l+a9vmfJ04EZ33ox+hnz76UQJnlsU5HI3ynmRQUIn1d+4kO2fxYr6ntDT3TqBa3mhZOKLpujhnO5eanai6qKAAgO6Pf2TM48ej75Yvz/w9GoStrjYgrGYfhsMGONSMP83orKnJPguzv5/zoqeH37VkOTlYqTaU18s4Kit5T64Oueo0J7ioOtXJR6mg4jEEj/O6aAyKbWPDHDwID7T6Y4EA5cl+P03bnDZ2Xx9N3To6AOWTg3CtrSJ/+AP7/NxzoQhxdpvfuZP9tHAh3/Ov/8qeuOUWqGQsC3qRtjYqO6ZPHz7u9euxyUpLaUzX1MT/1a6rqOAn3X5XOrHNm6kKcbv5rlWrhvsoGlSMRPi9qAid53KxnzZtYv4mTaLiIlkX7NtH8PdPf0IXfe5z8EFnAvq0GquhwexhTQwpKOAZRKOJPpXqcNtOT0PhlI4O7n/nTp7LzJlkHc6ZkzhvlsX9KXdvQwO27kjJP5qRqHpmtEWBxBSlzWNdF40JyYOIJ1ZsywKwCQRQ1Llk351Ook07Sko4HHIxHltbIastL8c5dYKwmqGYqZNgOAyA6HKhKDMp8WiUccbjAIi5kIX39xOx0fLnmTNHVqLOLnvFxcZpd7sTu/E536+gmvJlJBv+2n21ujrx+zW7sr+fz8yYkRhN0m6rJSW5lW5HoybDVEFNzTRNfh7xOI5PXx+/jx8PgJhpnhTgjEQwFlpa+H3OnNHP6I3FyEb0+4mWOgDcsX5AveEUv2VhcO7eLXLHHaakVpt9FBWR2ePcY9u2UX5bX48xvWBB4hqOROji29EBT6ITkNLMYG0WdN99AHdz59KBeaQO8CKs7dtuw8B7//sx1nPlu4rHMXC/9z102apVlAnluldCIZMJM25cImhg2wDuP/0pczZlCt0bL7sssZlEPG4AwmSd7+Q8S3V/RwMkDgzQofH++3EWpkyhXDNVwxwRAx4q59lol1AfJzn1R5hZ3nC6SIRMjtZWwDt1zqNR9FMwyHmv5XPFxeiSBx7gXL3ySj7ntF18Ps5SDdQ5JRpl/Uej7IH9+8kSLiszARJtQhcKpeY1DIdNVtHUqSbrKFcAMRjELvJ6sQnmzj26Euh0ok3n/vAHmgFUVcHhdtFF2ZUjWhb2iGWh5zRjVBvRiABMKHCY7b3H4zyDlhZD0zJtGnZlKrDW7+dZx+OcSbW1uWUWZTMeJ6iYDMA6QcUcgih5XTQG5eWXAewuucRUUcRiIj/8IcHAz3wG+1rF5yMD8cgRGpckdzMfGCDY0dKCDXD55YmZwfv2sbbnzycL8OtfR7/cdpvI2Wfznhde4PrLlyd+twg65O67oY85+2xsNBH03pQp7F2fj/2qiRDJiSIKZP7pT9hvs2eTETgSPZJtM1btrj40RGBycBBQbcmSxL3S1kaG5bp17ONPfILxZlPNZlnMfziMzi0vT9Q3lsX8WRY2qjNLursbfZEquULLzDdvZnxFRYz9nHOGJ7lo1eT27dxjfT1nTy70axrkOV5Aogaok4DEsa6LxoTkQcQTKPG42EeOGFDpjcq1Fo0aHsMZM3JTKl1d8E2UlGAUOkFY5cmz7fSdmKNRDGjL4mDKZABGIoBsljWcm2ak+9u/n7GWl3NQ5vqsfT4iPlrqrRF/FY2Ih8OmI2o6gNOyMNhFeJ/LhZHc0mK6VqdL/Q8EOCTLy0fOwBwaAjz0+UzJ8vjxqQ9LPfx6evh/bW3m5jfJ4gQSKyoMNcC8eaMPzMfjPAuvl+u/XlIx1g+oN5zif/hhHMubb8ZYFmH/PPAAa2fNmkTne+9egLDycrhrnHwvIujx3/2ONXzFFawNFS0dVtLrb3xD5N//nUzF//3f7ED5J58kW7KggCj9ihWmpC5bIE3LFR95BKPv9tsTuY6yEdtmfrTML7mj6KFDZB4+9xz7+IMfJOtAu0+LJDZl0cixAonJ2YfpssI1m0qbvGSS3bsBhh99lGd87rlE/VeuTB2Z12YUOobj1f35OEleF40xaWvDgZ050zjItk2mx9AQ9Crl5QbU7u/HCfV6TbazU1dps7GysuEcWiKmGqCmRuT557lWYyNBjdpavrunh/fU1w8/63t7ARoiEZzkSZPYM2VluZ3ZLS3YVAUF3GO6xkpHK/390Eq8+CK23WWXoevd7sQghJY8pwpUaFMaLelWPaVNampqcuNEDQRMybIGc7XLciodMzSE3afZ3rW1uZeJH60omOgEFlU0M9zJsZhCD+d10RiT5mZso3nzOLdF2Kv33guQd/PNifzOgQDNTvbvp2rjkksSgbdQCK7lQ4e43qpVievkyBGyE2fMQN9973vsqS9/2QRWX36Z65955vBKgYMHeW9zM7bGW9+KzzFhwvByZ02EUCBeqaLCYfTEX/7C61ddRfZgLhm4loUO37QJHXjxxYmB4f5+GuD94hfM54c/jL7NtvJQ+W39fgDB+vrU5dGxmGmC6azeUn+sqsr4RH4/fI+vvMLfa2vJOly6NLUv3NlJIMbjwe5bujS3qsHk+1FO2dGiyXJKCiBxrOuiMSGnFRuGy+VaICK7ROTjtm3/7PXXikXEIyLlIjLZtu2u119/h4g8KiJvFZFXROQ2EblcRGaJSLGI7BSRf7dte23Sd8wSkW+IyCUiUi8iA69//nbbtl/NNL7Dh1FejY1v3K6v2t3YsnIHEPv7KQd0uzm4nI64RtGVxyfVdWMxojrxOFGnTABiOMwhZdsmRT4b6ezkO2Ix7i+XzkLLF/gAACAASURBVGAqgQAR64oK7qWwkHvT7qdaolxYyIGUKV1fhO+vqjKlxQr0VVaS7ZAJHC0vZ74CAb4veR4UoOzrw3hQMve6utTOhW3z/d3dxqCeNCl3I1k7Enq9HIbTpmGc7NsHaJtr05tMoh3Hdu4EWIpGR45Wnuq66I0mf/87AOLFFxsAUTvj9fdTGuh0yo8cEfn4xw1Z+KxZiWs0EMDw9ngoi501K/H7gkETeb35Zr77Ix8hIj2SzguHMazXrcNou/NOjMNcAcRnnoG/sbsbY/9Tn8qNikGEexgYYK9WVCQGBDo7RX75S5HHH0eHfPSjZPglNwJI7vSsryvAqPM0EnDnzGRw/q4Si4ls2AB4uHkzz+vqqylZdgK8yZ+JRk0HVeVfHCsyMDBy0CSvi04t8fkAuevqTFMPEUBAvx/7UPdZSQn7Y/169MKKFcYm8HqNPujs5LVUnGFeL/qouprS3qeewjn/wAe4vvIyB4PoQKeOsG24nHfv5vU3v5nvzBVAHBzk7FRO6NmzRzerzu8nK+nZZ/l95Uo6wDv1lXZ61xJvzSRSMFHtGA24RqPMT0NDYpZPNqJ2jpYsa4frpqb0+zUY5DORCHMzaVJulS+jIQoOJjdHSMev6AQVbXvkQHteF51aMjhIJl5dHWCcyuOPAyC+/e2JAGI4DJ3KwYNwOZ95ZiKoFIvRGGXfPs7eVasSv6+rC101aRLBjF/9irP5jjvMvti6FQBx4cLhlR2PPUYwtrKSfydOZL9OmpQ6M66khL07OIjNpskXv/41+nbpUhqppaKYyiTRKNVwhw/jCyxfbppkxWIAhz/5Cd95/fUi//RPuYFv4TD+lMtlMpD7+7mPZOzA7eb59fWZzswuF/o6EuEzvb0kQuzaha0zezbg4axZqX3Hvj7Aw+5urnP++blXDCaLs5RdZPTtLAUPLYu5G8mnzOui0ZHTCkS0bXu3y+XqEpG3iMjPXn95ubAgrNdf/83rr18iIlER2SgiC0XkBhH5rYj8l4iUisi1InKvy+Uqtm37FyIiLperSESeEJFKEflPEWkRkUkicrGInCEiGRfFwYNEEnp7+XmjiW2TKRgIYJi1t2f/WZ+PTBeXC0O6r8+UwIqYSPv48amvG48b3r+mJg6ydBIOEzV2uRhnR8fI4wuFiLx5vRxws2YZ7sZcpK8Po7OoyGQUaOe/nTsxwisqTEfjnh7Dq5NJbJt7am5GuTY1ccBmmgen+HyGh7CoiP8PDHC/8TjXqq01xORtbamv0dvLMygv59DXroTHIj4fz6ykhLlobye7Y7QN8MJCjKCdO+FtySSnui56I0lXF5HxGTPIRlN5+mmMwLe9LTGC3NnJ87UsAMTGxkTHz+8XeeghjLOrrx5elhwKmf3xgQ9gFN95J5w9IxlhR45gcO7dS5T9U58ygFu2AKLHA3j4xBPc8z33wBubq2j5sgL2GnTRUqVHHuH397yHeU0F3KuTrlmJCipGIpwDLhc6I9t7SwUkapbWAw/wrKdNoyzquuvSBxOUe075zkpLxwZ4qF1zn3gCR2/TJhyuzJ/J66JTRaJRnLPi4sSyt+5u1vHEiYmZKqEQXK1eLwGQKVPIXtTsXS1TDodx8nQ963WHhkwn31/9ipK0yy9nbyiXV1cX76uvTwTdQiHA+J4edOCZZ/I9sRhnazbZePE4OratDf2xaNHoUo6Ew4CiGzbw//PPB/hIle3j5P5TfjGPh/vr7zd2zMSJjLGqinnR7ORsJBbjeTQ3o9+Ki3HYp01LH7QOh/l+Lb2cMOHoO6uOtiR3GBcxa29oiLnbtYufI0dE/vM/M18vr4tOHYnFCKLG43CF6jN+5RWaEC1fzl5yvv873+FZX3MNfK1z5yZSldxzD/bx6tXDAcSBAXRBdTXf++STZP995jMmoLBzJ9efOxd9oxIIEIDdsAHw60tfwg7zegmqZAIBXS6+s7gYu+3JJ7E5PvAB+A9zBcY8HoIVfj92lTZoCoUIqv7gB+znK64AHE0XwEwl8bgJQBcVMU4NsAaD+E+lpcN1b3ExmYLqk9XU8LxaWtCPnZ3otHPO4SddNqTPBx2NcvgvW4YvNVpVGQUFxgYUGV2bKxQiA/2JJ/j36aczvz+vi0ZHTrtyZpfLtU5ELrRtu+H1378oIh8XkWYR2Wbb9idef32TiERt217hcrlKRCRm23bccR2XiGwQkWm2bc9//bUzRWSriFxv2/aDuY5t506xR5P7ZaxJTw8KbsKE3Mp7fT46WVkWAGLyZ30+fqqrUzuN2sgmGEyM8qeSUAgjsKAAEG+kaLkCo62t/N7URFQs14NJS7EHB7kHzTaIxzmstDRS70cbNVRXj6yIg0HGp+WIdXW58+sowffQkDnoNNpVW5sZsPP7efYK9B0PI3lw0BjhHR2Mce7cYy8Dsm2uqwe7CAf15ZePnCp/KusieYOU7YTD8O14PACC6sBu2UIpy7nnJpb39vVRdtLXRwnz9OlEkDULxeeDYy8UAkBMji5HIqyVffswUvv7iUprmVAmWb+esRYVUf584YWmzDcbbj7bJqvge99jz33wgyIf+1juGT/pypcDAcC6X/+a+7/ySrIsc2lopM67ZidqabIaqVryPJLRqhyM999PdkI0ikNw0008z3Q6UQFMZ/bjqdqd1Am6NjdjHD/xBCCUZXHWvO1tIl/8Yl4XjQWxbTKiPR4cdLVVvF6c65qaxOYB0SgAYns7dk9dHUEBpw3Z3w8IqAE8Nee1SYvXy1594AGus2ZNor7zeHiPs9TP7eb1l1/GET3zTNaanv3ZAoj9/ejBcBhbaubM0XMaYzGCyuvXo6vOOgsgJFW5n1N0TjwedHkkYkqVlXolWScNDaEnMtksQ0M47O3tjG3cOGMLptNlWqauVR41NeYZnGoSixk7qK8PoOfAARMsrqoCLLnxxrwuGiuyYQNn6OrVJiP60CEy/JqaKL3VfW5Z2BUbN1K1MWsWz1vtqVgMmpYtWwDP3vnOxO8KBAAILYvg42uvkQG4Zo1Z7/v2EbSYMYNggPP1L3+ZvfWRj/AZzdpuaMiuPLi1lfEdOgQo9q53oTOrqnLjY927l3ssLoZOa+JE7unhh+HMbm6Gp/+f/gm9WViIzzOS3lOexXDYBDWTdayCgkVF2J2p9MTgIP7PgQNkkAcCzM/06YCdjY3paatee435KSwEIJ4///jZRvG4qf44FoDS7yeQ+vTTAIdKvbV8ucidd455XTQm5BQ1n49J/ioi73G5XPNs294rIMh/FZEjAlosLperSkSWich3RURs2/7/Cfqvp7NWikiBsCi+5XK5qm3b9onI64UOcoXL5Vpv27Y/l4Elczu8kUQjrdOnpy65SSdeLwddfb3IpZcOjzj5/SjFadNSR7htG8WoBngm8HJoiMNGy5BHMpT9fhR1NMqznTcv9w6F+r3NzRiRZ5zBPVoWB4LPx4HV1GSc+XgcI3hwkHsfN46fVPw+7e3MvbOURjlCkrnN0ol2do1EjEE9bx7jzDRHgYDJdJw6lTEcz0ZCWrLQ1MRhGwxi7BzNM9ES7kDAOE3l5RzuORj5p6wueiOIbRMZbmsT+cd/NPrhwAEAxLlzMQRVfD6yBbu6MAgbGxPL2DweItnRKKU8yXxesRhr7q9/JZOxuppsMWdEPZWEQnzfww9DEn7nnRin2h04GwCxvR3Q84UX0EV33EETmFwlFjNd3rV8ORqF+/F//xc9cPHFgJOpuiWOdG3l2NKyYW204nIllj6LpAYUo1Hm9N57yfAsL6dc6P3vH15S7pRU4GEuvGYnQpQrUudg3z5Awyef5Jyxbc6HT34SAHf+/JwM8LwuOsly8CAAzMKFBkAMBDj7y8vRNyrxOPqgrQ27p7KS4JvT4VXOq/HjDZCvJaeBANmNHR3sXcsiq3nxYvN5r9cEX+vqzB7Zvh1nuaaGQEZlpWkQVVExsmMZjaJjlYLlrLNGj17EtgE3H32UuZw3D9oJbZKVbjxeL7prcJBrFBRwX+PGASY4dYGWPKtuEjG2Vnl5YjZ0by/Pr6+Pa06ezHPMZGdqZcngIJ+prWV+ThUOVi0H1B8FDg8d4qe312RMXnEFGbXpOLXTSF4XnWR57TX2+bnnGgCxr49M0nHj2FO6J2yb1zdupOpg5kyTrSvC/vr1rwmQrFwJvYtTolHOL4+HAGx3N9mHK1ea9xw+DIA4bRognNoDjzxCc5dx48jwW7KE9wYCvHckfyISMWdoQQFN1S69lL3t8xmqh5F8oWgUkOrIEYDLCy7Ar9iwAbtr50506wMPiLzlLYxfS/8DAdOkLR0fczDIvisuTu9juN3Me2en0ftOaW5mDrduNdy1F1zA8wqHTQNLpw8dDhMQ2LuX3+fN43w6Gp8pF9F50MSMXHSfx4Od+/zznAWBALp82TKe7cUX50Tbk9dFxyinK4goIvIWl8t1UEQuEJHPCMjyHS6Xa6KwIAr1va+jyJ8WEOh5MpyQs0ZEfLZtH3a5XN8VkS+IyI0ul+tFEVkvIvfZtt1yfG9r7Irfj2NeVZUbgNjfj+KORonEJwOIoRBKsbQ0dTRKy4kHB0c27Px+AEQF7DIZyloarVGhRYty61TllO5u5qaoiAhZaSnj9Xo5VMrLh3cWKyxkLsaNQ6EODHAg1tRgjLpc/H7kCIdEfT33r4q7spLr+/3m/alECcYHBrjnsjIOGS1xSTdHoRD35PPxHo0WHu8Iu3KFaLl8aysH5MKF2Wdj6aGvvD+lpRxIRwk45HXRSZSnnkJ/XHedcZ67uuAFmzyZ7EBdk8EgTvbBgyJ33WUyltUY6esDQLRtIvHJ+92yWDe/+hVR8yVLyCJK1eTAKYcOEbXev58o+yc+gUGlGTIjdcWMxzHgf/pTxvYP/4ChfDRGYDBonOXaWvbu449TotTZCcD58Y8DZOUiloWhrBnUzntyAomqTxREcwKKfX10tF63Did2+nRKmlavZt+nM0Jtm7nUrs+aeXiys30ULEz+97XXcHg2bDDNx846S+QLX6AMdfr0o87myuuikyg9PeiWqVNN9nIkwv53u3H0dA1bFhyqhw7BU1ZRwdnrtH+iUXSZZvar6NoeGODzjzyCHvvYxwB6tCtwKMR7KiqM7RSJ4JR1d7POFi9mTD4f/5aXjwwgdnVxn7EY12hsHB1wzLbh9Pr97wFWGxvRc2eckXovK/fZwABgq4gpVS4r40e7Xid/XukXRHgWbrcB/lSHdXYyjlCI686ZA6iRyc7QLEhnh/tsA7nHS1Q/BoMGNFTbRzkdm5u5d7ebtbtiBQGqo7V5Ja+LTqp0dZG51dQEyCTC8//xj1nnn/ucybq1bZH/+R/Oo+uuI3BVWGhA+0gEO2fLFgIOq1cn7ifLAkDct4+gSGEh1RbOYEZrK3bapEmMp6CAPXvnnfA6n3ceZ31VFTotFBrZnxMBGHvkEfygBQvIPtRAjfIIBgKGM9Bp7zmlr49mnkND2EALF6Inv/lNeBFnzMD+Wr06UdcpDUAkYuhb3G7TId62mfdo1AQ1RtIFWn02MGD08Y4dgIfd3fgrF1/M8ykvN0BjSQn+oQYvysqYn127DH9/cvPO4y25AImdnYDYL7yAjRQKMQ/nnMP6OO+8zFnfGSSvi45RTsdyZpeIdAu16D8QkRdFZI6IdAiklu8XFsXnRaTWtm2/y+X6goh8R0TuE5HHRaRHRGIicpWIfFZEZtq2fdjxHfNFZLWIrBKQ67iIXGvb9uMjDO/0muwsJBRCiRcXY1Rmu8l7ezmYhoZQFE1NiYdTNEqUvbAQ4zjVdVtaMIQaGjIbPIODhrOnqSmzIvd4UL7BIN87e/bRpXxravrgIMp96lTmSrOASkt5PRvwKxLhPoNBfh8a4v+lpRwOqZr4RKMYsyUlw8t0/H4OTgUUqqs5jLRkWTuelZYmXlsdG4+H5zFhQmK3sBMlQ0PcQzxOhlZxMQd/uuekh3kgwNyrw1RennHs2aTK53XRSZK9e+HvWbpU5NZbWceDgyL33cczff/7jcEUifCeTZswXNUxbWjgvd3dxgC+7rrhAQvtFP6Vr2BwX3UVwNtIBtmjj2KIlpXx7wUXGL6pbADEPXv43K5dZBR85jNk4+XqlDrLl4uL2e8vvmg6LGq2zznn5A6+afahlkmmGps2PFD+ROfrW7eSAfnEE1znoot4dhddlNjdObljs5ZNazanGvQnAzxMBRiqWBbn3JNP8tPdzZo77zw4pS69lHNmBOAzr4tOYQkEcDa1zKqggPW+fz/rU4OHIoaSYPt2MnXq63mP086wLBzveByn2HmuaYO5DRsACubOJXPV2enZ6zVdO6dMYV/09uKIxuOA1k1NhtfVsnhvaWn68zAUAijweNAf8+aNHifxgQOAAQcOYFOsXk3WSfJ+CAYNcKi2UHm56ajsdifqg1zsNp3z5mZsn1iMazY1cU5k0i2WZbKedC51PCdaotHEDMNQyOijggLmrrWVAIZmSjY2AsLMn59VJUleF53CEgphA9k252hZGXv+xz/Gnrj1Vp6zinINv/3tgMdeLwHSigqu9eCD6Kqzz6aEOdmX2LuXYO6f/oSP8+UvJwZWu7oACmtr0XduN02cvvIVw019ww3sG21M2tSUuTHp0BDft2ULNsIll2AfpVu7uj+VDsmZtLF7NxyRpaXYHL29It/+NvbIxIlUuKxZM3KSgYL1Sk/jbCxXWppb0Ne2yXx89VV84HCYsbzpTSS0FBVxTz09vHfCBGNXKYepdp6fOhUbORd6sdGWWMzwzur5Ytvo2o0b+Tl4kLmbMIHzculSfLqGhoxjH+u6aEzIaQciioi4XK6HROQ8YVF8yrbtptdf3ygifxeRs0WkwLbt819//e8i4rVt+y1J1/m2iNwuSYsi6T2Nr19zr23bF4wwtNNvsjNILIbit20iI9kaTd3dKMhQCKWYnH0Rj3PAWJZxsJKlrQ2FP2nS8LJDp3i9AE1lZYnZesmiJTqdnbw3S4MqpWj5ciyGEiwvx3iLRnHia2qOjsuvvd1EaaZMwfDLdNgqcFZRwfd6PDgX4bCJ1NXVpZ7fQMA0eSku5nDSRjdaXnUyI+wKJIbDPLPycsAh55hiMdPpWhtX5FCynBUckddFJ14U0Cst5V91oB94gL+tWWOyeuJxMgGffhrOxPPOMwGCkhJTDlhaCoCYymBRY/cvfyGb8etfz7z2g0FKYB59FMPv2982TYayARBDIZGf/xxnoLqaEuyVKzNn5KWT5PLlgwdFfvYzHINp08hguuSS3K+r96LG4UjZfwokFhTwufXrKVnesQPH5LrreG7TpiUCcQoeOjnMtKRTsxuzKQcfLXHyGDoJxFU0y/SFFwANn3qKNVlSQibHZZeRSaAgQ5ZnZl4XnaISjxOcCIfRLcpbeOgQ59PMmYln9IYNgHkXXggA2NeHXeJ8T1cXAI/aDk7p7oYndNs2Oil/6EOJDm4gwOcLC3HcYzEc5YMH+f3Nb+bfeDwxg0/Xte5lp7PX1mayZmfOHDn7OltpbyfzcPt29Nzb306gxalbh4YMcKgZdJWVBjgsLja6yNmBPVt9YNvYNs3NzG0oBIgxdy5zr9xeIsyJZjFqptHgoKnkKC/HnjpRNAqWlZhhGAoZOgmXizNNbbfmZkBtBQ5nzMB+nDcvZ/7qvC46RcW2sWVaW+EjnDSJ1x54gEy7m24ymYkiVGzccw+BrPe8hz0+Ywa2kfIjHzgAqHjJJcOrzI4cIQD43HMEIP/5nxP1WG8vNlNlJedeURHlzj/5Cfvka18jOy4a5bujUfZeuvWoQcc//QndOncuQZvZs7MLaGgjOctiLNu3M1fTpvHzgx8AmlZVYed99KO5B0ricRPkUB7UXCiStOx71y7GumAB2erJzf1E2Ou9vezn8eO5l23b0Ne1tZRd51IZeDxFK1UOHTLAoTZInT7dcHCqPz95clbA61jXRWNCTsdyZhHSTq8VkZvFpKvq69eLSKOI/Lvj9bgkLTiXyzVBRD6S9Fq1iARs247pa7Ztt7hcrh4RqR3NGxjrYllk2sXjKIFsAcTOThxHywL0aWgYnp3S04PSmTw59XU7O1GeEyZkBhAHBgAJlI8onaPc3W2yBpqaOEiPJrtOswS0DKmpiYOrp4f7qK8/uuh9JMKB7fVyHxMmcN3eXoxCJV1PlrIyjPADB4wDX1bGgTluXOaDTYEZjQ663XzPpEmnBtdYRYUZ/8SJzPmePRy6yhkVDhtjOluy+KOQvC46gRKPY4QGg4CD5eXsuz/+kX127bUGQLQska9+FQDxC1/AWO7txYAtKUF//eEPrKXrrksNyO/bJ3LjjUTc/+M/aMqSSfbvZ1yHDwM83nIL+y5bAPHllwEdW1vho/rIRzAQnes9W3GWL/f3i9x9N+DW+PEin/88GZW5ZsvYNrrZyT2YbddlBUAeeoiAxuzZgMBXX52oF7XTs7Pk2dmwpaDAgIfHOws6OcPQGZPVzEqXy3BlPv44mReBAOvp0ksBgC+4AN2bDNKMsuR10QmWnTtxaJctM2dwezv7btq0RJ3yt7/hIC5fTjZgc7Mh/1fxevmsszJApaMD7rKWFkr3kksL1SYoK+OcDoXIsunqAvybP5/3ezzYFNrx0wnOx2Kcm4WF/LtvH/c3fjwZIqPBpdXXh77etImz+eqr2SfFxYnAnAZeXS5DlZNM/RKNJlIZZBvYjEbRsS0tzFNpKfZoXV1ic5miIhMA0eCFdi5W/sXycsZ2PHnGtDGDM8MwEjF/Ly5mHGVl6Jf2dgL1WlXjdqNvFywYnYZ0WUheF51geeEF/IS3vtWAR089hd5529sSAcSnngJAPP98mqft3AngNWUK6/rBB/GzzjoLzudkMKq1lUYsO3fCkfipTyXaEgMDnIdlZeztcBhb7G9/I+Pxi18kcBCJYCspPUK66o7+fgIOBw6giy68kLHOmJE9lZFmBB4+DBAZDrPnN2yApqagALqZf/iHo0sg0cYpRUXmPlRXKEdzKhsuEiE5ZPNm9Hd5OVmRs2fzt3SZeOqT7diBzWFZjPuqqxKDQCeT2iUeZ3wbNwI29/Ux7sWLCWhNnWq4uRsajltlW14XHYOcziCiiMgCEbnL8fozAlLsfI+IyCMi8nWXy3W/iPxFRBpE5BahJbezEHaliPyny+X6rYjsFVp+v+P17/ny6N7C2Jb2dsNdka1B0tZGhKWoCOU/YcLwz/b1cd0JE1IbZT09GMV1dZkj4trVsLISYz6VItUSnb4+jNSlS4++q3AshlPg95tOiF4vRm1d3dFdVwFV7Qzd2AhgpqTEfj+HtWZP1taaORscNCXLfj/jmTkzO04M22b+urtxOMrL+exod1w+VnGSoNfVMU9eL2ursJDxjlCyPBqS10UnUH7zGxyjj3+cfS1CtPvAAcpDlcvHtkX+7d/IBvzEJ4i0t7WxT8aNIyL6xz9idF17bep98eKLlASFQgBfTqLwZNEsgO98h732s59RYiOSHYDo84l8//uMt7ER3sbFiw0AnovYtinfUa7HDRu4x1tuATA9GidSHWnNAMwGgLRtjOO1axlDPI5TcdNNGJHpDFwF6AoLDYG5ggXatEVBvdEykjOVJWs2pIKGBQXoxg0byDh87jkM/vHjAXdWrSILVd+fTbbmKEheF51AaWnh7J0zx3BT9faaAKeTGH/TJojily4lq+fgQc5qZxBUQcCKCs5ypxw+TBDD5xP5P/+HveMUJdYvKjJBtS1bWMcXXICutG3DlRiP897BQQOWKR1BJGI685aWAjzl0qE9nQwOivz5zyLPPsv+WbUKHtCyMtN1VLOmCwoAGWpqUvMKapMYzZ7MNvtwcBA7raODa9TVGf4//bzySSvAqlQNbjeAQG+vAeZqa40dEo+PXnVGJJKYYegsS3a7eS7V1cxdaSlztn8/QNL+/Xy+pATAcMECAIkTHPzN66ITKAcOQKmweLHhI3z1VWhali0DqFd54QXKm888E4qU3btZt3PmsPbXrUPPLF5sssSc0twMh2FrK3bYe96TuPcGB7HJ3G7O+oMHCRb29gLQ6fvDYfSaZWG3pUqEsCwAqKeeYi+uWAHwVFU1MjVVKtHy5aIi/n/nneyVNWsIrI7U/T2VxOPoA9WpTlqI4mIDLuqe1H3o8aCjX32Vv0+eDCDrpGbq6MCGKysbDpb29vJZ9Q+XLeOZuVwEMZXvPvksOd4SiZAxunEjNvTgIGM/5xxToqw8kfX1/J6pom4UJK+LjkFO13LmAhHpFdDeObZtH3j99UoR8Qgoct3rHXTE5XK5ReRfROSDIjJZRA6JyI9FxC8iv5TX01NdLtdMEfmiUNc+VaiD3yciPxWRe+yRJ/P0m+wU0tVlOgKnaniSSpqbcf4rKvhcVdVwHkONPtfWpo6+9PdjuI8bx+GWzmjs68OgrqriwEl+n20Dgh48yO8zZ6Z+X7bi93N/kQjAlWbIVFczhqO5bjDIATs0xHWmT08NqipgoFF7zdZRR3/8eMagpL+Zuigq91tXF9fRjpFqrNfUnNwS5lQSixnAU7M4Ghs5rI7RYc82VT6vi06QvPQSmTiXX47RJ0LHwKeewkC59FLz3h//mJLgm24S+exnMcaUI+bQISLR9fUi11yT2nh96CHKiCdMoAQnU7ORoSGRb3yDEt3zzqOUWQEEBRC14Uiy2DZA1F13sX5vugkj2+1GV+aa3aINAvr6iNz/+c/s2Xe/mzk7GmMtOQswG4c9FAIQve8+jPXqau5rzRr0fzI/YiqJx9E9+r1qROvK1zJDZ7lztgGDbMqS9ZpOPsbOTviSnngCYMiyWFOXX87PkiXm+lr+OArcaHlddIrJwADgeH09zrg2Ozt0CPtkxgzz3ldfRTcsWIAz39KCzpg1y+zveJzXXa7hVRM7d4r8+7+zlj73Ocq+nBKJcGYXFAD2aaODceMIZGjwT+k9tAux6ialBnC5sGWOHOGaEyaYKeMfNAAAIABJREFUJnT6czRnaiiEjtuwgTFccAGZUcrRp1yChYWMWRvIpdrLqotyyYS2beZHG4goz3a60knt7Op2G30ZCuH0h0LoPwUPnZ2eRRKDH9naSvF4YoZhKJTYjKCkxICFpaXmHAkEeM5arh6Pc2bMn8+PBlNHWfK66BSTgQHO2dpakeuvZ902N2NTTJ2KztA18/e/w7M8dy7AXns7e+OMM9gn69YBaC1YwF4866xEG2TfPqo6/H6AxEsuSRxLIEBQLR4n6PrnP9OUZMIE6GTUjgqF8G9EWKepgppKNdPejs475xwD/Dc05KaLwmFArSNHyPp77DH8hiuvBAidNYu9nsoWTCeaHawVT2Vl6YH6eNwEQpubKTs+fJj9vWABAUcNiid/rqXFcJe6XOhLLVsuLTWNPwMB9KbqNG2yUld3/BuqBINU0bzwAv8Gg+hHbYoydSr6MxAwXe6nTTvm7O2xrovGhJyWIOIpLKf9ZHs8OFK1tZlLiZ1y+DDRUeXgKyoa3ixlaIisu8rK4V2aRVCIR46YjLp0B0hPDxGa6urUB83QEEa2z8dY5s07+tIOLV9ub8fo1rLiqqr0RnA212xvZ44LCzk4nBkNqUQzGFpaTEOUxsbELtThMAd/WVnqzCafD2MiFOI9kyebwygeN81UamtPbnq8SijEgaRdbl0uQxTv8zF+zUo7SjkF7vKY5LTSRa2tGKHTp4vcfjt74+BBjMxZsyjv03X5q1/hdF9zDUTf/f2siUmTMOAef5z18a53DTdibJuy3699jcjugw9mbtq0Zw9GdUsLGY8f/rDZ95q5lw5A7Owkc/H55zGub78dvWjb7L1cM0eCQa75+9+TZRmLEdn+0IdS69RsJB43zQqyyT5sa6Nk+be/xdidP59y8He+M7G5RKpGK8nfqRQMyU0SnBxlyV2e9fVkQHGksuRk0NAphw4Z4PDVV3ltzhyAkMsvxwlwAgnHoWQ5r4tOIQmHybBwu3GQ3G723v79rPHZs82z372bpiGzZpEBrEG6KVNMhoie+VrZ4cw4ef55GiCNH4+eSba5tNmZlvy+8gpn9axZZKXo/orFsH0KC1NTI4RCBHm1Ad3s2egMZ7MXZ0ZeNhKNUr745z9je5x5JnygxcXoYw10Kr/hSAFX1Qv6uZH0YyRiSpbDYewaZ6OUTBIOM1/6bAMBwzNZWZl6nE5AUfWLUxdoBYkzu1C7t6qUlLCGFDRM5nv1+Thz9uzBHrZtwB5tjKJAw3GUvC46hUS5oIeGqJqormb/f+c7rL3bbjOJA7t2UVI8dSq8zuEw66ihAZ2wbh3vW7aMNbxoUWJZ7+bNAIeFhVzf2YFZhPX81FOs6eXLCeS+8AJA4+23G39CEySUYzXZBotGoaB5/nl8lSuu4LPKZZ2rLdPTQ7nv3/7G+Pr60ENf/CIgqfJGR6OMpbp6ZPA9FmM8lsUeHYn3MBwG+Nu0ifGUldGsJlNDGJVgkPOhsBBdf+gQ+uuMM/BfVR/39/MM6uqMrdXdjR6cODH7su9sxecjsL9xI+B0NMq9nH8+gaJ58/j+7m7WU1UVa238+ET77xj01VjXRWNC8iDiiZXTerK1YUimEuFkOXAApTdpEsojFjMdA1W0OUZJiclSccrgINcoL8c4TuecaYakcns4xbIwupqbUbpz5hwb6azyBXZ1cS+TJnH4pCq9yVb8fq4ZCjFXyZ0ZnaLcQX19PBeXyxjjoRB/EzElQQUFvC8UQpnrgTI0xNwHAmb+U2WBKkBXVHT0DWeOVZRIPBAwpUPKA6QNDdRJ8/sxllIREmcpY/2AOm10UTCI8RsKAe7V1GCI3X8/Tt373mf0ycMPAzZefjmlKqEQ66G6msj2hg3sq9WrhzuS0SjlPffey9//67/SlxLbNgDjXXexX+68k0i5SiYA0bIMwbhlEQm/9lruU8GAXHSIbRNEePhhfoJBsgA++tHU0e1sr5lt9qFtA6qsXUsZk8tFqeKNNxJhT/U5Bf6cYJ+WKDqzjNLpPyeQmHxNbYbgbM6i73NmLTpfT76f3bsBmx9/nOwLEUpRL78czqnZsw2HnGZxHceS5bwuOkXEtilB8/lMll80atbI3Llmvx88yD5vaKDRQTyOHVNZiQ5S6e3l3NIKDf2eP/wBHTNrFl1Ck8/lWAzdpuD4tm38f9kyzj4V5QhOByD29ACAxmLoi6lTDWDn3Ge6X3SdZ9qbmzYZntrp03EqFczQ5nI1NdlxvTqzD1UXZQLovV5Tam5Z2FJNTYAP2e7NWIxrDAww7vHjR+aRdoqCiWqvhEKGv9FZIu3MMEzXHbu/H320e7dpRlBfD3C4YEH2wfxRkrwuOoVk/XrWxbXXss9CIWySvj6CDuoHHTwo8i//wp771rdYd6++is0/cSJ6yu0GXPN4uJbTdnj8cZHvfpd98J3vDA/QRyIAfxqs/f732Tuf/CRj030TCODjFBZyjWRg68ABgqD9/dhTb3mL6TTc2Ji5kipZbBs+vv/9XzIPe3sBDe+4g/tMlkDA+E2Vlamz9zQIEIkYjvlMQZW+PsDX7dv5TEMDNtGcOcZOKSzkOaSz+cJhANXXXuP5LV0KgJgqAN7Xh56pr0dPxuMmyDRp0rEHNnt7AYY3bmQ8lsX6efObKTVfsMA0Mx0Y4HsnTOC+nVnfyq2tevAoZazrojEheRDxxMppO9nKX6F8htkoo717Ae2mTkWR+P0oHKdjHovh3BcUDM9OFAHkUv6g2bPTK9rOTg6/urrh4KDXS8QtEOBvc+YcGz+Mz8fBrQfmlCmm2+bRSDxOxLynh/ucPj39YRmPc8D293NYFBWZDM/kzsQeD3NeUGBKhHw+rlFSwvcpJ9LEiSNnGSo4WVp63DksEkSdIOUFUhLxVBmkCiS2tWHAT5+e6FDlIGP9gDotdJFti/zwhxi8t91GdHNoCMDKtgGq1Dh5/HEi3itWkIlYUMA60Ajus8+iu97xjuF7dWCAUuK//lXk05+m1Cfdfvb7ASqfeILv+sY3EnlnMgGIBw/y/tdeI2L7z//M3lSOrVzpD0IhsjHvu4/9fv75cKbNn5/9NZJFwTE18NLp3EAAoGPtWkAILae64YbsuIU0Y0c7Njs5D0fSz8nZhMllycmchsmdVZPFsoimP/44z7W1lfe96U1kHL71rRjCzsYyOvZMczRKktdFp4js2YNNs2QJ4I1lsfbD4cSGFS0t8LeOH08Jf1ERe9+yEu0Yvx/bpabGZNhEoyL/8z/oq2XL4DFNDmbE43xOO3Rqk5blyxOd30wAojZO6e9H78ybN9xxVjBRQTwF6tXxdTq/to2z/NBDBGzr6wEPtVxRgcNcOF61mYnI8Ixkp1iWKVlWLuqpUwEecinl0+6q2jRFBPAwmwqMWCwxwzAUSmwMVVRkMg3VfkmXidPVZYDDnh5emzLFAIcjVaccR8nrolNEtm4laLdiBQENy4LuZedOGp1o6XBbG1l3JSWGakUbQtXXA7CVlpLx19rKWtfP2jaVHffeC+j31a8OD0zGYmT69fQAYj34IGv1a19LtEOGhtALbjfXcp7xwSCA6CuvML6rr8ZnbG423cRzKTUOhUT++79pHtPczDi++EU6wI+U7ezzmQYp48YZnRONMk7bNrov1bVsmzNh82aCRoWFzOfy5cPtokjE0EW53VzT2ehKdUAshp2rXYwz6UHVF/X1huO2u5trZ6qqSSft7aaj8p49vNbYiG5fsYIxKVjZ0cHcFxdzr5Mnp7flRgFIHOu6aExIHkQ8sXJaTnYsBoBo2yjzbBy83bs5vBobMeZ6e40xpmJZhqssOTtRxJQIFRUB/KVSNLZtCLnHj08kAI/FMNzb2zkk583LnsMx3X0dPMhPURHOwKRJx5Ym7vFwyEWjXGvq1NROrjZJGBhgHBUVhu8w06EYiRguisJCDuLOTg7Kmhrma/z47CNUQ0Ncq6Li6DpN5yLJJctaij3SgRONcs9HjvD/WbOOKlo/1g+o00IX/fGPRMnXrCELLBoV+fWvcXzf9z6z3597DvDvzDPJ8CstZZ2HQuz/TZvQIVdeORzwOXQIzsDDh4m2f+hD6UGhnTuJ8Le3QxL+wQ8m7h0FmJIBxEhE5Je/xCCvrISn6G1vM13Ei4tza1xk23AP/fznGP6LF8PhuGxZ9tdIFuVI02YF6bLqmpsBLR9+GGd70SIA2CuvzI3jxhnV1/LEkfgWnWCh/qTKLnTyGDrf78xO1IypJ5/kp6eH71+xgmdz2WXmvEjmPjvOXZaTJa+LTgHp7AQka2rCKbVtdIbPZzi19H3338/v738/Z5ZmZjg7kEYigI0lJYaTeXAQIGDHDrJ5r7tu+DmrgJnXyxkXCGCLLF6cuB4jEROccDYh0/JptelmzsyOY0z1gzq+yvVaUkIG0e9+Z7gYL7mEcr3aWuyMXClj9LsUsEynF8JhU7IciXCfWrKci2NqWcyn18ucVFWZigufj3t0gpGWxXcrWBgMovtFGKeChVqarDaiZkorICtisrE7OgzHoWbxNDUBGs6bl75L6wmWvC46BaStDbto5kyoQlwughbPPIOtdNFFvK+nh0BlLAaA2NDAZ5ubWaN/+xt2x7vehV9TUIAN5Xazvu++mwzDs88WufXW4QCiZRF4PXCAs3TXLqogvvCFxP2iDY1KSvAhdW9q4OGxx9hDF11E9qHPx37Q9+eS9PHMM2Rdbt/O/d5xB5ngueiDUIgxWBb7t7DQVD/p76k+8+qrZKoPDDCv55xD9mOmQIZmWjsbRbW0YGuGw/jQS5bwva2tzEmmpqKxGM/d7TbZ134/PpFWy2US28YmVuDwyBFenzsX4FAbdYlw9rS3A1JalqERGz8+u2D4MQKJY10XjQk5Xbsz5+UEiW2juGKx7AHEnTs5AGbMQAE6uwc739fdzXUnTRp+3VCIQ83txkBOByC2t6PsJ0xI5Mro7SUTMhplDDNmHFu2iNfLfel3LVhwbCBaNMqhqt2P58wZftBo05S+PkNIW1ubyHkxkhQXM79+PwaqprbX1+O45FqaXFHBYar8SsdIjDtMLIt7DQSMA6GEx9k67JqdKcIaOnDAHKh5GTuyYwdZLeedRyaYbdMQpbsbo1cBxC1bKPebP5+sxdJS9mswyLN/7TX26+WXD19DL74IGBmP4/ivXJlaT9g24OXdd2Mg/fKXGNtOUQAxuZnG1q0Y8IcPi1x1FSXT48ZhWMdirO1couxbtoj86Ec4m42NIt/+Nk77sZTRjtSswLIoqVm71nRXveIKwENtLJGtqNHs5DcrKRmu40fqlqyZhem4DFO9NxBg/I8/ThbH4CBzf8kl3M+llyaCuckly8fSYCIvY1f8fs7/mhrT2KSjg/NZu4WKYHf85jesqRtu4GzXxmf19eaM1wCqksy7XNhJP/wh+u2978WhTrYx1G5qacF+KC0l+zg5wyUcxoZKBhCHhrADfD5sCWf25EiigGFJCeP3eHCaH3mEc7aqij20atWxcXA5s5KLi1Pr44EB7l/LubUJTF1d7rpocNB0rNbO2E57tKyMvyuNSijE/KoUFRkdrsBhujEoYKilhvv3o8f37GGNFRZi715wwbHbmHk5PWVoCNCtuppgl8vFWfbMM+w9BRAHBqioCIWofmhoYK23tLCWX3yRtf7udwMaxWIGQPR44E3ctQu76brrhgOItm068D79NOv585+HCiaZx7OlhX3h9MMGBmi+tmcPOvTmm/FVOjvRo9qBOVu7/9AhqlWeeIJ9/KUvkZF5NJz3ykeqTToLC9ExqQK9PT1kHb72mvE3L70UezSbsTupW/btw14MBHheF1+cmHVcX894PJ70XZfdbvRgX5+pzqusBKT0+fiuZHtTE382bsTOUz9x8WIy4d/8ZpPFqGXT7e3/j73zDo+rutb+nlHvxepy701uGAwGAw7YEAIxSRx6IOFCEkJuOvdCkhsSUkhPIPlSSIMQSighgAOx6c0ONi64yk2yZVm9jDSaXs73x49195nRjKQZjWTpZtbzzCN7yjn7nLP3u9d6V0PPtlp1ynKsDVxEN5PsnQQ0oUtKgiX5SJIyLGlqwhifOHFwMA4GAdK2NhShyZNRlFNS+hM4nZ1sbiUl/Y/r9erOydOnR+9q2tiI4mXuEu3xoJhJk5aamuGl3rrdbIDHj3MdNTUDe4GGIu3tjN0wuK/hdSAlFVlSltPTMTSKimInQgMBNuSOjtCITpeLMUi3s1gkL4/f2e3Rm0bEKpFSluPpTisiG6lhQCQdPMhYhxOJmpTRk85OInKqq2lWYrHg8T58GKJvxgy+t38/HvKqKiIQc3LAADFwjx1DEbrggv6G3WOP0Qxl0iRIwXnzIs/l3l7SeF5+GbLprrsi1ycLJxD7+iD7/vY3jPx778Xgl5SZQEB3cx+KHDpEp8MtW1Asb7uNtJ/hOEdEeRMyL1yJ6+vT6dLHjnHeW2+F5IgnNSacPJQIIyHrlOrfLVmiCs2EoVnMqc2RjPfeXoysTZuYQ243z2/NGl5nnaVxRsYiEUNKaYwba53pkzI64veDJSkp1KOyWNhP29vRX0S3sdlwNFitEIh5ecz1piaMNvN6aW3luNXVrIPaWvBOKYzpefP66y2SdbFrF3O6spIUuXCiSQjEtDT9WTAI6XbiBOebOzc0a2MoYibc6uvBw/37ITOuuQaD10zW+/1DK00gIjVRJRonPPowGIRgaGjQ3ZMnTwa/4yHbJDpHHDlFReCA3891SoShx6PxWtKxc3M1aRgLLvh86La1texl8pxmzIDQnTZNY7DFoqO0RyniOSljXIJBCESPh1qDGRnYXI8/DgH4oQ/xvb4+dJbubv5Oncr8PXwYDDlyBJti/XqdmTR7NnO7vh4Csbub8iRnndW/BqK5DvL27czdu+7CvjCLlBbKyiIKOyVFZwBs2sRxLrkEvUgpvbZLSrRzZTBpayOD5IEH+P+VV9KBejhBA1LPND2d43i9kLfBoMblw4chDyVFe8ECyp/EU2v/5Elq2vb0oJusWKGj+bxejYV5eWBrV5fGn0iSkcFxJLpasgC9Xn4rY9yzB+Jwyxaed2oqUadXXskYzEEmfj9zpbmZ+SdRohUVwyP/zI0IRYdOytiRJImYlLilrU3X/RuMiJPC3h0dbEaTJ+uCuBUVocDQ08MmV1jY37Pj80H6BINsSJFIpGAQAszh0OSaKNhSd2j69OF1qpM04IYGNsLS0sjFbGMRt5sNx27nfk6ZEroJuFyQJ5JSk5urC9LGeh3iLZLOWAUFPEcZf18fBsWxY5qIHeq1WSwYDtIJubAwPuCXdEank+ceS8ryUMQczn/wIIr7ggVjJi0oKVHE54N8CwRIGc7IAFu2bSM1RFJ26+pI4S0oUOq3v2UeBoPM+S1bUHiWLiU9xiyGQSOUu+9W6pxzMN5LSyPP/z178G63thLteN11/ddiJALx1VeV+tGPWIPXXIM3NytLG6hKsYaGMs9PniRt+cUXOcaNNxI9GUv6c7iYa/tFij6sq4M4fOop1ufixRRsv+ii+JwGfr8mCKxWTZya66xJ5LG5dqE5LTmaSNdTiRZUin3oxReJONyyhfOXlRFRcdFF1JAy33tzSpGQmampOkIgGXn47ymGgZHucpGalpHB+m1q0qlbSrGHPvooc+faa7VOcvIkn0u6slLoFQ6HdqC++SbGeEkJ5GN5eeQMgWPHMNwNAzJz/vz+5JJEyZkJxJ4eHBAuF2tgxozYiD2JpOzp4e+WLZCH2dlg28UX68gWr1eXKPD79ToWMjHSWhIsihZ9KI7cxkbWaG4uulhVVXx6hxjhUlNa6k93dHCu8LTkggL2B+nwHEtzBxm/RBwePcp5pbzO3LnoquFYJAa1+b6YsTEp/57yxhtgyiWXgBeNjdT+mzQJ54PVynz79rf53te/rusS1tWhB9fXQ/585COs7aYmHBKlpZBiP/wh8/PjH4c8nDWr/5p95RX0G8kK+fKX+xP53d2MIScHW8dqRY966inGPWsWUYtFRbpRpdut02EHk95eOkD/+tfg6dlnk7q8YsXw7rFgqMXCNaWlsSb7+sCIN9/UeJqfT9ThkiWxZZOItLfjoJLIy7PP1k1LpWSCxwOeZmQwFsGi1laeezQHg2SN9fWBLzk5nOOllyB+9+8HCzMzIT9XruRveDShw8EcaW9nTAUFYFasUd8DiZlIVCqJcWNJkiRiUuISmw0DuLBw8OitQAAg7OpCuauuZgNxudgMzMa5w8FnOTn9FWWpYej3o+hG8rKIR93lYrMpKAAIDx5EyS0sZNOMB9BlDDYbr+ZmwFeuKV7ANAwIjaYmXSRYvGSGwbg7O7kmiZYrLo6PsDQM3aFYFO6Kiv73IzeX+9TYyPl9PjaY8FSeaGK1cu+7u/n9UAqPi4SnLKemshlnZSXeWE9JYQ7Onk1qxr59w49OTcrIyl/+gqL7uc9hUB8/Ts26adOIQlSKefvJTzJXf/tbHVXT3k6ETFubLvxsFrebSLrHH8cA/va3URQjpQ0++CBdBsvKaHRQU9N/rFK3S5prtLdDtr3yCkryj3+si5R7PLoMQF7e4NElHR141zdsYF18+MN4iCM1oIpFpFmCUqHRh4EARsqDD5LSkpZGIfLrriOaM95zud1aOZTOqvJ/c1djiSaM1mxgILFaIRo2bYI8fOcdjjd5MsbVRRdBvESKYjRHY0qJBiEmpTabue5iMiro30eOHWNNz5nDHud2815mJoaxxcK+/eijrO2rr9YRhx0d7HHV1Zo0dzrZ63Nz2T+ffBKie+5cooql1nH4/H/3XeZ0fj7pipFq/IrxK+lqfj842tzMeGtqoqfAmSUQ0ISh1AXz+3HkbN/O/L/kEmqghjvk0tNZ49IQRdaV1FGUkgBCKprrsMr7IuLEbWvj/+aU5XjE5eJe2O26uVxqKs9Nxi4NT7Ky+jdO8HoxyF2uwfVLhwOdVEibYJBnvngxc0lIlUhiLpsgGCRkYpJQ/PeVgwdpPLJ0KXOop4fsi+xsMioyMlhL3/sepPV//ZcuudLejgPi4EH2wQ99iO8eOQKmTJuGnvG73zE3P/IRdJQ5c/rPsb/+FQIxJYXow0su6Y9XnZ2stbw8iK5gEJ3otddYX+vX6zIoLhc6XiCAbTSYbu52K/XHP5LZ0dHBca66SqmPfjT28kxm8fsZSzCoSxTIdbW1gb+7d7O2KyvRLZcujc+parNxLIlSP/10noEZE6T7cyCgo8u9XnCqrAyCtr194MjH/HzmyXPPQRq++y57UFqaLhO0dGn/bBhzynJvL2MpK8PmHqkSC0kicWxKkkRMSszicEB65eQM3pDC7ye9pqeHKK/KSkCqpwelybwheDyAfkZG/1DzYBBly+PByxEJqAIBlEqPB8U8N5fN5/hxAGjOnKF1BY0kojj39fGSCLvJk4cXueZwYHS4XCi/kyZpJVu6LPv93JPKSpT8eI3U3l6em8fD/Zs4ceBoJauV+5idrRumOBy6qPhgUVIpKdwbMTYGu08+H8d3u/l/RgbnTnRdxUjjLC1lYzxwgMiSxYuT9YbGorz+OormZZcRcdjZqdTTT2NYX3YZc7a9XalPf5r59Ic/sKaUYv0++ywK34UXEm1mlo4OiMN//Uupb3xDqZtv5njh86Cnh8Lcr78OafnNb0aOPjETiBYLHvZf/AJF77Of5VyyhlwuXmlpg0cW9/URBfjEE5zjwgtRkONN2xORaLtgUEcHWSys3SefpCbkiRMoi5//PKlMsXYBNRu9Qh6aI5HCG6CEi6QSD1WBPHoUEmbjRhwEhgEh85//SS2nOXMi32tJV5aoo4FSls2RkuHNEJKE4v9d6exkflVUoAeIkzMlRRt8Xi9lEST1TyITnU5wqqBA74t+P8699HT219/8ho7gq1ZRbkEp9CLznBJi/+BBXWsrEoHlcmkDMysLrDtyhPcmTtSphNHE59PEoXQmlii9PXvAQpcLY/eyywYuZSAd1lNTQ2utKhUa8SvkvOgBqam663RDA+NIS2PskybF7hiWbqqiF0n9roICdBwhDOU1GOakpzNWaVYTTh709OiMh4YG3isqwlifO3dozWvCxUwYKhXa4Emwy0woJiOm/29KZycOMqmT5/FAIDqd1CEsKGBO/PjHrNfPf15H5LnddD7evZu04csvZ57U1jKPZ85U6r77SJM+/XSlLr2UuTV7dqhuHgiQvfHQQ6zJX/0KWy1c2tvBufx81u3x49RN7eggYu/979fRblIvUWqBDlQyy++HwPzxjyG3Fiygsd355zPueLOXzA3erFbGlprKXl9bC3l44gTrfckSovWys9HTpLP9UPWyvj6ez/Hj4MnixdzngbAnJYXj+/2aTLRaub+9vXwWTrzabOi5mzfrGosFBewfq1axnzkc4JOZQPT5dMqy18vzmDYNonI06hVaraHlbJJE4qmXZHfm0ZVxf7O9Xkiv1FS8QgMZST4fSrDdTqRKeTnvSQRfZaVWavx+3rdYeN8MDkIgOhycM5LB7vejmIlSHAyisDkcGL0zZ8ZXyFvSdURx7usDqHNz2SjjLQ4eCOApamvjGJMnYzhIJEJvr+4COGHC8FIThfR1Otn0KypiS7nxerXC7vOFplsWFg5uKLvd/CYzM3Idp/CUZYn8Gu0NQrpa7t+PorBkyYBKy3hXx8cdFtXXU8tmzhzSY9xuFFZJERSv6ic+wXy/7z4dIed2E0HX3Ez03GmnhR770CFd/+c3v9GNWnJzQ+f3rl1K3X47a/RLX8LDHckwMxOIjY14/3fu5Lxf/aomNg2D9SnpKAMVnna7qZ/40EOsp3PPZcwTJ6IADqf2qDmKRaImDx8m6vPppzn3aacRdbhmzdAURkkhDu+Y7PXq9O6MDPBvKGnJckwhHaI1uNm7F9Jw0yZdO3fJEqIN16wBa6OdT4xvs5IaS82xcDJRqVEhFJNYNMridmOEZWTgjLBYIBTdbnQGX4xUAAAgAElEQVQNifR77DEMzA9/mMhjpZhjdXX8Zvp0bRhJOm5+PtHTDQ04BxYt4v2SklCj3W4nqrqlhSjCs86KPKdlb83I4FxHjmCw5+RgoEaL7PF6ddZFXx/vZWSw5+fnQzr84x98Pn8+kZKCa7GIOBXMZKJE1yjFmF0urrOtjXtVUMA6Di+FE00k4lnqGMq/7XbuT1YWemJZGf+OF0ul2Z2MsbMToqG2lvErxTnmzo2v7mQsYiYUzVHcI0woJrFolMXjwcHn86EHZWWBH3v2EIG4cCHP/557cMB+8pMQdUrx/sMPU4Nw1SoiEFNScKZ3d4NPv/0tEcaXX853urrAOLMDsaNDqS9+kZIy552n1M9/HpnUb22FRCws5PebNvGboiJSlwUj5ZjNzRxn6tToOodhgEN33w0GL1gAGTZzJtgcicgcqvh84EQwqJtGOZ3ocjt26LJbp50G4We2FyTwRGoWFhREvwa3GyfnkSPg3ezZZKjEY1+KE0ZK9xgGtmp3N6Um3noLG8cwwM+zzw6tsVhSorNmPB4wyuvVKcuGwTVXVcWWYZZIkTI3Ug4jiox3LBoXkiQRR1fG9c0OBDDkDWPwTsxeLyDrdKIEl5TouoR+PwAkgCqdCAMBCETzcQ0D0rK3F6UxUrqNdDL2+/l9W5tudT97duzRMnJeu12n66SloSyLMm8mQGOVnh48TV6vDgG329mcJWW5qIhxx0tSKsWxWls1ASi1lOIZt9PJ8XJzAe7ubjZQ8dwXFAx8XIlklILjgYA+ppAt2dkjk7Ici0hx9n37MK6WLYv6DMb7BjWusMhuJ+JPKf5mZeF1bm+HyKuoYI7dfDOK2K9+hUdYKdbZAw9gzH/oQ6RnmOXVVyHHMjNJO5w3DywRj7NSzIv776cWY1UVdYHmz488ViEQDUOpRx4hGjIjA+//ZZfp+R0Msob8fh31EkkCAZTk++9HsV6xgrTlSZP4TX5+/GvGnC4ohuUrr0C4bt3KuC+7DONE0q4HOpaZNDSrFuY6XikpOq0x3jFLtKSkPm/frolDada1YgXE4YUXhqb0mOsjSlqyOWXZTKQOB4sidY6WMQ+VNB2iJLFoFCUYxPB1Oplj2dnoKD09RGXk5/Odv/0NLLrsMgxbkcZG8GzqVG1oS33pYBC8cDqVuukm1rjTSZaCOZqloYEoErebMURbm0IgZmaiX0jq7JQpuraWWdxuTRw6nbyXlYXeUFjIcXbtUuqZZ9Atpk2DPJSO1MORQAAMl1qJOTncE0m5DgR0tsaECTp6OZxENAyMXzNZ6PXqz1NT+VwyPEpLh+YMHao0NoJHdXU6Fbq6GtJwzpxT07zNHFltxiJxkiSx6H9lXGGRYZBdUV+PQ7G6mqyBF18k8nn1ar7zu98RbXjttXxP5IknIBbPPpvvW63M3+PHwbH77kNvuuUWyMjGRnCjulof4+23cYy2tSn1sY8R+RhpLTU3Q6oXFYEvGzag/6xcSaS16NmGAWHV1YVdMXFi9LX5xhs4lnftgoC88krdJOTcc2OvTyoSDIIbPh9rJCuL69u2DYI1EAD7Tj+dCMmB1o/LBd5LyYKcHP19n4/jHTzI5zNmsFfEW27LLD4fx33+ed3QVMplrVzJa+rU0LF0dOha8cEgY2tu5tlImnRVVWLGN1wZApE43rFoXEiSRBxdGbc32zDYWNxuFNCBQMTjQYnyePDOiNLU3o5SVV6uf28YgJvbzftmQ9owdOOSiRMjk4E+n66XkZ3NJifpzOZOdrFcp8OBQRAIaFKrtZXPJ02Kf2OSaEnpnFVVpbthSQ2eCROGr9B6vTo9JyUF4I9URylW6e3lGqThgzSXcTo5T2EhxFu080hEp7m+mURfDYcsTbSIErN3L9e0bFlEwmO8b1DjBouCQaV+8hMUoq99DcVnwwb+v24dyqPHg9d91y6lfvYzFEileF86B69b1z8C8YEH8KDPmoVCLZ32srL0nOzupgD5W2+RAvuNb0SPDJbmIAcPas/4hRcSOWnGr0BARzdHm/+GAcH5+9+jyC9YoNR//Af4K1HKw1HmzKmEDodOWW5uxkkiBkekOkLhEYZmNcJcH1CuVWosmtOWhyMuFyTKiy9SCLyri3u4ahXE4fveN3D9IzOpaU5BFvIw0WKOxDR3ijaTisOQJBaNouzfTxbBkiUQUM3N6DBVVbosxrPP8r2LLgp1Wths7C1lZbpkS28vv29uJnIxK4t0+4ICPsvP1zpHIADGHTzIOjrzzOjRf0LIie4mNaFnzQrFDadTE4dSSkRqUhcW6ujHgwdJOzx+HHxYt44IyEQQUFIjUUj9kyfBPIdDd26dOJE1Lh3cJV1XohgFZzwevcZSU3UNw/R0PpNMCinLMtz1LnqqpCqLnlRZyf0ZazWWhVAMxz5zw6phSBKLRlG2bkUvOf98cOb113Fcrl4NKaiULn1y+eVKXX+9Xq/PPovT7bTTSPu1WMCAfft0yRSvl8yLiRPRZUpKILqUYv78/vfUH8zMJMLxqqsirychBTMyIOL278fx+6EPhRKSUpKqrw8sjVYua/duyMPXXgN3v/AFxiZRkqefHv+6luZPUrKhro6U5aYmMGTRIu5ZLMEpwSC4I6UOcnLA0f37Od/kyYnBCcPAcSURhydOgImVlUSqX3TRwBmEbrfuxi0ldpxOnv+CBWMvfdhcqzrCNY13LBoXkqyJmJQhSVMTgFJdPbDh6nIRgej1sqmJIdfbq2ssmH8v0XfSidAsJ0+yqVVWRgZsrxcglu5Uzc2A8/z58dUpFGVaPNQTJuA56+yEoJw8OX6yq7MTQA8EuCdpadxTw8BAmDBh4FTGoYjPhzHS3Y1CIIZKooA/NxdDxG7nGtLTIX49Hp6jdI4uKgolWQyDZywKvITR5+ePvU1JKe5dVRXPav9+UheWLRudmh9J6S9PPYVie+ONOAakBth552EQ+3x4v3fsIG1YCES3m2jF48f7pzAHg0rdeScpPhdcAJmYkcFvJMVWKZwht9/OvP7a1yDVIhnNUsvL4SCS6PHHUYJ/8hOILbP4fCjJFgtKY6R59c47pBEdPMg13303DhmHg98VFcU/H83Rh4cOcY82bGB9rljBda5erddmpLRks5jTdc3RfWLsK5UY8tDpxEjauJE0zr4+MPN970M5Pu+8odUekogcSfOT+mwjWb/QXLvMTCiKMZ9AQjEpIygnT/KaNo313dnJnjthgq4DuGkT+4YY9iIej64lLQSix4NzdccOyPBJk6iXmp7OnpqdrQnE3l5IAymWv3Bh5HRYw9ARiJISmJJCtGBFhS7LIsShNDTJzdVReWan2fHjlDSorQV3rr+eNMFErBfBIuk0Kg3mJBJ8yhRdb8vcaEVKoNjt/E5qq2Zl6Vrbgq2SYtzZqaOBwq8xVgkEcEzV1oLR4kidMYPnPmuWLhEx1morC85IV1nBQ8FrcyR2sqbr2JXjx3GkzZkDzuzfz16+cKGONnzqKQjEtWs1gWgYRKe9+CLElbzv8TCXDx+GYCwqgqgrLCQiLT9fpwa3tZERsmMHpN2VV5IiHSkq+ORJ3Yl52zbm29q1RD+avy+lsqQkVaSss6NHlfr+9/X4vvUtSpS88w5r/JxzIMnikWAQO0XqNR84QKMRh4NAmLVruV/x1GiXjK2MDNLM9+/nPkyfjl43lIZWA417/37mwubN7A9WK2TnBz+IoykQ0CUsHA4dWWjWNXp72StOnGB/qKpibLIXid03liQ1NbQURlJ3Gn1JmsVJGVTa2wGYsrKBo/CcTozuYBCDXb7rdrOJZGeHknsSmVZQ0D+yR0LfpU5NuHg8eKykbkNKCpvH5MmxKz6SwiO1K0pLOYZ0eRaPWDwA5fGw2dtsusaahMlPmMDmNNwovECA+9DZyTmKi7lniSa9rFYUcyES5flK0xeXi82mvZ3vyOfmlOVJk3SNkbEM+BYLYzWMUCJxLJKe/5dlxw4UxvPOgxzcu5f0mUWL8DYHg0QJvvEGf6XWj9MJkXfsGASTuYmKy0Wq4LPP8veHP9SGd1oazgxJK/z1r5kH/+//RU/ZE8LsrbeU+ulPUbA/+lFSgMIdA4N1YK6t1TWIKipIE7rwQtabwzG89GXD0MW3X36Z1O0dOzjm5ZeT0j1rliYLhWg0RxlKxMpAKblijJo7qsZrjNpsjHXjRqXefJOxFxXR8XHtWkjPjIzB12WklGVzLcbRNJaThOL4lN5e1ueECZBFdjuGcV6ejqZ59VX2ijPP5CUixrTFor8rdZH/8Q8My6VLiTS2WNhDMzK0cXn8OAZtIABpUF3NHh8+PySTwmbj2B4P+sv06ey7EpHo9+v9vLIycr2utjbSlnfsAMfWr8chMhzyzSyCE11d6Hvi/CwvR4/Lz9eOx74+3YhJnBHSgC8zU9d7NHd8lvrV4rDJzh6evuX1QmLU1kK0SKOaWbNIVZ4xI/TYUk+7r294JSdGUsI7PZsjOoVQTHZ6HnvS20tH3eJiSLSmJlKWKyvBEKuVPfPPf4ZY+9SneJbBoFL//Cc4NW8e2QZWq05dffll9tn589GnMjJw4GZkMM8tFoiq734XfUn24Asv7I8LhgEhdfw4JF9nJzi0bl3/oBCnk+8ZBg6acL2puRnd6uGHGcuXv0zk45EjjKeoCGyKN0tMGpJIBtLRo9yTmTMpizNt2vDXb2MjEZQSET5jBlgXj5PB52M/2LyZ2rw9Pdz/ZctIKT/jjNCoRinxICWlpHFVaip7RUsLOJWayriys8GB9HSehdTFlw71Y0mESPT7E16aISlDkGQ68yBisVhyDMNwJOhw4+5m9/QArAUFurNgJOnrQ9lUCiATUjAQ4PdWKxucGGtOJ0pqTk7/Tn6S2jNhAh6pcHG7iaA5dgzPc0kJinWs4CaFw91uwKeggPHYbAC+EEnxbEyGQQr08eO6Q1ZBAQrvhAn8e7iGazDIxtzeriMcy8tHPjXY7dZpRpHueVcXBozLxYZfXh6qvPv93GNJgR7roC9pB2VlGHrvPbdRH/W/Gxa1tuLtFjKtpQVicNIkpT7yEebNt79N7bEvfEGpj3+c3/X1kZp78iTk4+mn67nX0oLXfNcuPNqf/rSuTZiSAm51dnK+t9+GrPra16JHCUs5hp//nEiiadNQvmtq+n/X6WTtROrA3NBAatCrr4INN9yAsm0YYPBw05cDAe7nE0/wamvjPl59NSlFeXmR05LNnZIHW6d+v07nlrqH8WBcW5tSL7yAEfT224y9ogIy+KKLcFCZoyQHarRibtqgVOSUZXNK36kUc8SnjGmwbtXvSRKLRlh8Pow1pXRkx5EjrOWZM5lPW7aQXrd0KfPULK2t4MqkSdq4q6ujzunJkzg/PvxhXQzfamW/CQbBqhMndDfTvDz21PD5IBF39fW6ZEpZGd/r7dX1SPPzMbrz8yPPKZsNgmLzZtbKhRfyGqgzaiwSCKAbNDXxkqZSpaW6drZkLohItLDUJ8vO5jfRosJ7etCLnE5wqLgYzE1Pj83QdLkgDGtreV4SWTh7NsThtGmDd7W22wdvmjXWxEwoCnYOkVBMYtEIizRs6u7WJOAPfsBz+u//Zm2/8QZlXZYtU+qOO3heUlt5+3bsqksvxSZTSjsva2uJ7P/85znuvn2cT1JZ77sP5+OUKehW5eVgQ7gdYBjg0GuvoTsXFIBxy5b1X3s9Pbq78dSpoZF+NptSv/gFulEwSNTkF74ABrz5JtF1s2eH6gSxiJSV2bcPgq+rC5xbvJhjDidCUKStDcKvsxPMXbSI+y8d7/1+7RweSAdxuXh2mzfrmrxZWei3Z5/NeAfSD71e7FqpcXv8uI76LijgmZaW6vvY2QkGS23+tjbGXF6eOEdSIkWcRyZ8P+WWZYKxaUzKuCURLRbLOqXU35VSVxiG8XjYZ9OUUnVKqbsNw/jqe+/dpJT6jFJqrlLKp5R6XSl1h2EYe02/+6ZS6k6l1GlKqU8qpT6slCpVSs1TSh1QSn3dMIzvhp0rRynVopR62jCM6wYZ9ri62U4nxm1Wlu5oGUl6e/G+W61sEqIsCZHm8bBZiSEvqcfp6f0j/Do6UKqLijhnpDFt3Qr4VVZCHsba5ETA2+nUYea5uaEFfXNyOH88YOl0sim1tADIVVUosYlIWVaKcXZ3a1DPy+M+JkrJH4qIlz8vj+coir/Tqbu8CqmgFEpGUVHoHOjp4f/xpJ6PttTX46mtqMBItFj0BpXEosSLxwNBaLORsmKx4IXOyVHqmmuYNz//OWnIN91ECqBSYNETT7A+zj4bb7vMrz17qBPU3a3Un/6EUisEoqTzbd0KgdjXRxrz5ZdHx5ZgkEide+9lvJ/4BEpuOIkvUTHS4MCscLe3M5bnnkN5vuoqSM7sbH7jcGgHRzyRxYYBNj/0EBEIfj8Fta+9lr+iMJoj8mKNzJNUOGl2kp4eu0Lf0KAbo+zcyXvTpmnicOHCgZ+DudGKUv27LEu0zUDHUOrUE4lmiaHTcxKLRlBkDXV3Y7BlZ0MsBYNE56Sn40DdtIkIHnPzJKVYxw0N6ABS4+vIEYxjux3nx7nncjxxCJaVsfa3buXvjBkYmWlpHCMSgXjiBCSA08m+LI7K1FRd33CgmsUOB9fw6quM5dxzlbr44sTV8zMM8PzYMXQ8r5d7WVISeg5JS87M1C/BPommlnqI4eva5eI5eTzcq+Ji/pqjo5XS5RUilViw20nrPHiQsUrJmTlzIA4nTYoNJ8R5JCTmeJRonZ6lDITpHiaxaITlhReIlvvgB5mLP/sZdsuXv4zNsm0bDtJ586jfnJ7OennmGfChuprowblzOV5dHc7a5maw6JpreL+2lrUwbx7YcOedEIKXXILjRBwM4fgQDOJwefZZ1vgZZ1BOJlId6bY2bESxt2Sdu1wQh7/8JTrd+vVK3XYb3zlxAoeNYeDQmTIl9nsozt9t27iXQo4tX46ukYh12t0NedjSAs4tXBg5otHhCC1vYyYC7Xb2gM2bdZmw/Hyue+VK6vLGYqM2NPBcpRZ3YSEYKVkx5oZ3hoE97vdDLkpvAIkWH0u6klLa8WEiEqOyAuMUm8akjOd05ueVUt1KqWuUUo+HffYeDKqHlFLKYrH8XCn1OaXUo0qp3yulCpRStyqlNlssltMNwzgY9vs/Kx7sXUqpYsMwai0Wyxal1MeUUt8N++5HlFK5Sqn7E3BNY0bEa5GWFrmLn4jNhqdcQqnNANjdjfJUWhoahdbaqht+mI8rdTPE4x4uLS06pW3+fF6x1KcIBCCuzF2FBTwl7djtZlzl5bFHyPn9EE1HjrCRSnMXUWQTIT09mpjNzuY+nQoPd06Ovp/SZEXqi0nEpdRf6enhdfIkioSQiXl5OlUpWqOKsSLTpvFMDx5EQTrrrJCPk1iUQDEMiLWTJ6l1mJ0NCWa1Eq2TkYGC+cADEG633srvuruJQHS5MIAnTdIE4saNKMgFBRjKixbpFGalwK3f/AZP+9SpeOVnzow+xhMnqL/4zjt4rb/+9ci1eKSgtjR+EqK/t5drevJJxvHhD5OGUlTEb7q7dYOXgQz/aOL1UufwoYcgT7OzUcSvvpq5HB5hGE80cCDAeYTAy8wcOnkozWc2beJVW8v7CxYo9aUvkSY1WNdDEas1NF1ZIiotFh3BNJgIVsnvxoKYyUIzoSikos+HUXf66SE/S2JRguXoUaIy5s9nLR49yjyT9NV9+5jDs2YR3WOeP34/Br5E5CvFM/vpT/neV77CcQ2Dc/j9kGonThAZk56OwS/px5GMt74+9qRjx5jvonMIcWjuBhpJvF46sm/ahP5zxhlcRyyNAwaSQADd6tAhdDjD4BqnTOF+ZmTo5ieZmQMb8OY1LanLsubNjQtKS0N1CtG/zLX/pF5rair3sK6OMTY28n5xMYb63Lk6Yiseyc7W9XJHuvbqSIk5+tBMKJqjRY8e7ReBn8SiBMvevbzOOIPU4N/9jrX1qU9BsO3Zo9SPfsRnX/2qbkT01FN8b8YM/VKKZ3bbbejnX/0q9aGVYi309vK9XbvQdQwDPcfr5bV6dX8C0enE2bttG8ETN9ygyUqzGAbrzGYDo8TG9PloDPOTn2DnrFlDJOX8+cy3d97RJSVWrYrPbqirg4Q8dIg5PW8ee2i8tRTDxW7nOTQ0cP+XLtXR6pEkJwcM7O3VmX/79pGFsXs32FZSgkNn5UruRSxOWolub24GgyTwpKZG68cS8CGd7DMywKriYl0qq7SU+97WRqCN1PUdKyKR0l4ve+yCBQN+PYlNCZJxSyIahuG1WCxPKKWut1gshYZh2EwfX62UetcwjH0Wi2WFUurzSqnPG4Zxr3zBYrH8WSm1Xyn1LaXUVWGHb1RKvd8IDdP8k1LqPovFssIwjLdN79+glDqhlHo5YRd3iiUQQIlVCkM8GmB1deFpycgglNpM6DkcurOgkFwCZtJYw3xcCWnPzQ1tOy/j2bePzSwri3D7WJQ6qU1j7spnTicW8tJqRQGP1fMuBYH37weEq6oAsOLixBmkfX0o4C4XivaUKfHX/0iEeL1sPB0dPEdR2sPJUosFJSE/H4VBGuxIZ8SsLK5J0pTGoki0Wno6/96xI5RETGJRYuXFFzGK169HAX3sMdbulVeybh99FA/1Bz5A+o7Fwjz829/AlvPP53tSJuG3v+V7NTUcS7DD6QRbnE6Iq3fewbt/xx3R52IggJL8m9+gZN1+O+nAkQxDv595I6nIaWngw+OPcwynkyi7G2/UEUoSoWsYmowfighx1tJCcfXHHkPxmzKF65GU5UTU2QsGGaekEYvCOZTf7d4NobtxI0q2xcLe8bWvYTBEKl8xlOMKoWkYukZiLIq23BNz5+SxJsePswfu2EFa04EDzLGTJ/V3kliUWGlvJwq9uprX8ePsX1On6ojEDRtYZ+vW9ceBpibm5pQpzKmtW4lALCjAaJcSMTYbhExuLjrVyZMQhosXh9YKlDnt8fCbQ4cgFQIBDNWFC9E7htpgaPNmoqB7esDHdesGLlszmBgG69DlArOPHYOokNIm06ejY+Xng7HRUpIHE6lp6vWiU9rt3PvSUhwx0Y4pkYtZWRjVe/eyjlpb+byyEkM9WtOaeCU3N1T3Gc9itXLP9+8Hz3fvZh56POyhIkksSqy0tlKzcMoU5ujTTxMh/ZGPgBOHD0P2VVQQgZidzTN58knm+qJFrLtZs9BF3n0XvUgpSLslS/h3UxO4V1amOzvPnQteHTiADvO+9/VvsrF/PzUYbTY+v/zyyEEe4lRwOMA0KdvwzDNEUNbXQ5Ledx8OFKXQo15/HZtz7lyIuVj2d5+Ptb5lCzpSVha1Is84I3GZUC4XdurRo6yRBQsY61ACSNrbGdurr3IflcL2Xr8eW0PqUcYibjfPvbVVN6qaNYv9oakJzBedUHBRamaLTSYNRjs6uPcTJvDcbTYwdyxgWXs7GLRzJ6+9e5lbR45E/00SmxIn45ZEfE8eVkrdrGBz/6CUUhaLZZFSaoFS6r/e+85VSimvUupJi8Vi5s49Sql/KaUuiHDc34RNAKWU+qtS6ueKh/72e+earJRarZT6nmEYYT0rx6eIh8jnG7gbcUcHCzc7mwhE8/e8Xj7PzNQ1JQyDxe719q+p0NfHppKV1T/cu7sbYGhsRIk/55yhRx9KjSC7nU0qJyc0LTAY1J3D4klftttRpg4fBpAnTADwJeIgEeJy6aK3EhV6quoISsqyw6G7IVZUsPFIalA0sVrZvMxkYl8fzyMtTdekGyvpPlIrpaeHsQaDjG/RIjbiCJLEogTIoUOQhMuWQRI+9xxr9NJLMW6ffRZF8/zzlbrrLuZVaysEYmoqyquQ2oZBpM9993GsP/xBG9fShW/XLlJ5XC7Spy+7LPrYamspKF5bixf89tujG5per+6knJ/PWP7+d2qgdXWRav3JT4J3IkNNXw7vlBwMYhA8/DCpToEAOHndddQtSlTki3RGlXIF5tSXaOL3Q5xs3MjY2tp4PitXcv0XXhi/R9sceWhulCLNX2KVsUQkdnQwN3fu5O+uXeCQUszhmhqlbr5ZG35hksSiBIjTiUGSn48x2NLC3iWNSI4dY01XVmLIh6/Xzk7WtJRyee45pf7yF/bwO+7QupE0TQoEWCtOJwbo9OlgmzhdfT50KJsNnaWhgd9WVbGewmtLRxPDgIh+5hmON2MGJSEkOikWkU7JLhd/3W6uubmZta4U45ozB6xLVLO3QIB7YLezTsvKNLZLKnOkTrFNTeB3bS2/Vwq9b/ly7rdkWCjFsUWvGW5TkZQUxudwcK/GqsM0ktjtkEf79/Pat489LBjUNUHXrSNCKoIksSgB4nKh+2RnU4Zlyxb21FWriB5saEAfKihAn8nL4zdPPMEaP+ccnldVFd955RV0mfx8GstJ1kVXF8EcPh+fHzxIk7ibbqLOot2O7mWOUnY4wJI33uDYn/tc1LmgPB5w0+fTmSKvvsq59uwBZx98EL1A9t+GBq7XYkGfiZSlFk1sNhxu27eDS6Wl6HixpgEPJF4v6+PQITBm5kzweyAHsGHo7tqbN0OcKgUG33gj+3tJic7sikUXsdl0WS6LhWdVVRUadFJWxnckwlBEyESfTzdiEX3UZuNVVKT7CUgjwtESKRW2ezfzZedO9mXJhpk+nSyWxYuHdLgkNiVAxjuJ+LqC9b1GvTcJ3vu3oZR65L3/z1FKpb/3vYhisVisYQ/xaPh3DMPotVgsTyqlrrRYLF8wDMOrCE+1KKUeGO6FjBVpbmahVldH92a3tbGA8/LwCJnBWOr6iFdYwK+7m01twoRQBcrpBEDFSy0Gr8+HR+fIEcB/yRK8w0MxiKUGmRQTl0Ky5nFKp0KPR3vDhgLUgQDgKQ1N2trwMp95Zuy1cgYSjwcDQtKFpa7iqTBs/X6ek8ulU5YlDcli0bUQU1MH31BSU9kcCwqYE93dofesqCjxXaWHKn6/Timw28+aKjUAACAASURBVHVtjaIiXTdzgPufxKJhis1GF+SSEgiSLVtQzs45B+Xy5Zepy7NiBYXEU1JQhP7+d+bd+9/Pui4o4Fledx3E1ec+R11FcxSPy0XK9IMPovT96EehhJ5Z3G7Shh56iGN/5ztEzUVb6263Xg/Z2Sjsf/gDZOiiRfx+4UL9fSkL4PP1T182N9uQvyIeD4bEQw9xn3JzSVe+5hqwNFFYIdFFQh5GqyVmvv633mJsL7/Mc83MxABYu5Y0qHijqKUmmtS+CU9ZlrRmUSpjlVNBJLpc7KdCFu7cyVyRBjWzZzO3lyzhNXv2oM6WJBYNUwIBiHmLBYPEZmM/Li7WBtiTT/L/K67o/zzcbnSDvDxef/4zEdYLFlC/VaJfXC7WfksLzzwjA2KgqIj3pCmHRHpJ9+WuLq1/DZQqZxbDACeefhqioKpKqc98hjENVfcRolCIQyHclELnEuI0NRWsmzo1sXpLMKidkEqBI4WFoam2kpon5QAaG3WNQ4lYnDYNh++cOf3LwYizRAhSt5vfCO7Fq59kZHBMl2t4xxlJ8flwiptJw4YGjYfV1WDQnDnsYdLQMKkXjZwYhlLPP49OceWVPI+HHiIN98orwaU77wSDvvUt1pvTqZuvvP/9rEkpf/Tww+g+VVX8TpwHfX3YXPv348i1WolsXLkSoq+7G2ySIAmpFbthA1h3+ulkPIRHKIo4HNhcFgv6iThl33qLcf3yl/zevJa3bwf7Sko491BLN9XXExV76JAuPbF8OXtnomy0QIDjHzgA3kyZAvkXLcVaSrhs3oxu29TEvZg/H303PADF42Fv6OzkugeyPwIBnbLsdIIvkybhfIoUdCM2sc3Gv8PHbC4ZIRke6ek8w5QU5pjPx9jCswoTJdK8TKKd9+wBm0T3q6gAfy6/nL1m8WL2zRjGksSmBMgY3MaGLoZhBC0Wy6NKqS9ZLJZKRR76VUqp1w3DkIduUUo5lVLrBjpU2P9dUb73R8WDv1Qp9Tel1PVKqc2GYRyO8xLGlHR0AFqlpdGNvOZmNpn8fBTYcEVICrGaU296e3Vqszn82e2mPkVqKpuKfF+i+2w2AHDhQrzFQwF/h0N3vMrIYPMJB9GuLt0xevr0odXV8HgATEk76uri9+JhT5Rn2edDKRByrbycazgVdXQ8Hu6n18vmJU0hwj14WVncb4miGopynJaGMebxcK0Oh94AE0nGDibSZEdqZSrFZilE5yAK8v9KEouGJ4GAUr/6FQbWbbfhrd68GQP3zDNJb/7v/wYLfvYz1vSJExjEeXlEQkijHocDw762Vql77qHhiYjPhyJ7111EGX34wxw3WnTz1q1K3X23joa89daBjWKHQ0fC7NsH+Xj4MErsD38IAWr+rccDNkr6sqTMC2kY3i05JUWnLEsDmRkzSAe+7LLEdH0XMYzQ2mEDkYd9fRgaGzfy1+XiuVxwASnb55wzPIwM77JsLupvFolElOjEeFMlR6o+oijG5gjDgwe1YjxxIsrwddfxd8EC9qeUlKE/1yQWDV/272dOL1vGvGts5DlMnIh+8thjGHZXXtnfcRYM8v2UFAy1e+7BADrnHKJ6hED0etnrDxxgvVRWcj63m0hBIQozM/mbk8P3AwG+O2MGWDSUeSFRk4cO4cj9+McxqqP91jC0s0WINGmSphQ4JfOys1PXaU5LwygWJ3SijEtzbeVgUNdWDtc1UlL4bl0dz/DwYcaenq47Ks+cObCz02plP8jICMVAj4fXcAjFnBxd5iLWCKNEi2GwrwlZKPdLGtAUFXHPVq1Cz505k/mWkTGwEyn0HEksGq5s3ozOsmYNz+W3v8UuuPlm7JE77wQT7rqL9+128KmvD1LO4WDNTJlCLdaXXmKN3nKLJhA9HvSVv/4VnWfBAgjJsjLq0Le1QSZWV/P9ri50r0OHmNNXXQV2RQs8kZJRUqPxs58lMnvCBIjEj30s1BFjt5O+3N3NWJcsGRznvF5wdvt27FCpR7h4cWhd/uFKMAhJuXcv+FhVBYkViTwNBPieRBx2dYFRixcTvX7mmdFJV+lYL5Hqbjc2tFlXdbuxZWVfyM1lzQ7FZiwuZvzt7aHNq0TM2SaC/S6XLmE1YQLn7egYehBONJFSPHv24LzbvZv56HaHNra66ird4KqykvmWlRWfzpvEpsTIuCYR35OHlVJfUTz8rUqpKSq0eOURpdTFSqk9hmG0DvNcrym69txgsVialVKzlVI/HuYxx4T09gImBQXR08tOnkThLS4GBMMVROl4XFyslTSXC+DMzuZ9EY9H146YMUPXCzt8GKU0GGRDLC8fuLGLiMvFhurzAXxlZdGVe5sNsDV3A4skEtEo3nWlUABdLhSs6urhg6eIeJI6O/l/SQkbyGh7q4NBHVkYCPCMc3N5fgMBdW6ujuCLhcjIyMCjJJtZezv3eurUkWsYIx4+ma9KMVfKyxn7MMiOJBbFKX/9KwrpLbewnv75T8jktWtRKL7wBebEL3/JXKyvxwNeWIgyJkTcyZNE4rndpDivXq3PEQigQH/nO8zzu+/GSx9Jenro/vyPf4A/996LkhzNeDJ3YK6rI/Jo1y4UzG98gzTr8DUhKf0pKShJUlhcKU2ApaTof7/zDpGTL73E+VavhsQ4/fTER7aYu5mmpupUYbN0dTGWjRuJJvD5wK3LL4c4XLFi+ClDQhwKKThYl2WlQhutyP2LVYSIjDeiUaSlJZQw3L0bg0ApnvnixUp9+tMYITU1KOby3GMhDiNIEovilIYGntvMmexrhw8z/6dORXf461+Z11dfHdkB2dKimyL98Ifs65deSgkD0YECAfQfaUonhGBtLd/3+ThfRQUE4okTvKxW3i8pYX8cbH60tJBquGsXx7niCsjMcKyQovoSYShRj0rpDAOpY5iZyRxuaMDxFwyCw9Om6RS8wdboUEVwtbtbN6eSxmxm8Xgg52tr+evzoVvMns1znDpVG8qxrCkxpNPTQwlFr5dzmiOzh3LNFktofcTRbChns0EUmqMMpU54ZqaO6pk5E+d6SYkuMSPEYZySxKI45ehRSL2FC5nDP/gB8+zWW5mHd97JM7zrLvSlnh4IRJeLenpS0qmsDL1n3z5I4UsuYW0oxbp6/XVqtXZ2KnXttZQaSUkhYu7kSXSMKVNY62+9RYZBMIhOtGDBwIEULS3o9Q4HTVMef5x1/F//xXnC18CxYziNrVZ0HCEuo0lXF8Th7t06s+yCC5jHgleJcKwaBhi8Zw/3vKQkchkJr5c9f/NmmqPY7ayh5cv5/hlnDN22kXI4mZk8x+5uHbTR0qLr5ZaUoGvGUqNQ6uw2NkIGRrvPUvc6PZ2519oKcVlezp4lwTVSnmMoYrdDrgppuGcPZKRS4MzcudQnnzULLKqs1HXzhThMkAMmiU3DlHFPIhqGsdNisRxQhKHOUOSvP2H6yiNKqc8qpb5rsVhuDs9Vt1gspYZhtA/xXIbFYrlfKfU/ijbfLqXUY8O/ilMrLhegkJ0dvWFJQ4MOK1+0qD8ou1y6tqBEMXq9bB7p6aFAK4a2UgBEWhpAJnUhiosBq/x8gG0gsJAC4x6PTpWN5A2LJX1Z6u10dXENaWmMRSIcS0vZUBPh2QoGAc/2dv5dVMTYRrs2YHjKsnRPHmq9C7Ny3NcXe7piVhakbl4ec+3oUV0kPRE1NyRtrKeHuaCUnu8FBbF1+Y4mSSyKT/71LzqDrl2LIfPQQ8yfdeuYB7feylz49a95//Bh0ntKSogklIiZt99W6vOfZ/1s2BDaFdDrpXj4I4/w/o9+xBoOF8MgBfonP2Eu33CDUtdfzxyMZkRJZ9C6Oo7/r38xb7/4RciDtLTQ+oV+P/ji8zEHJaInUrdktxsS4C9/AX8LCogiWr+euStRMYmKaJFUQEmlTU8PxfrmZp7Vxo2QmsEgJOvHPgZxuGTJ8KOPwlOWrVbGEctxU1J0vcR4xxMrkdjXhyFjTkuWhg2pqRiCH/0oxGFNTWhtJ0m9HCZx+L+SxKL4RJqVlJYyr48e1el3YgQHgzgqIhXk7+3V6ba/+x3fvfJKSEJJVQsGwYgdO1j/s2Yxz7u7dRaHNHiTmtBuN2OSetKDEYhdXThA/vUv9rZLL8WwzshgXUltPiEOJcJXuqzLvpuVFVoqoLUV489mY65WVUF0ilEXjhfDEYdD42RmZn/HsNPJs6qtRXcMBLgvNTVg/JQpeu1LF2ePh/fiwcxwQtHc6VmyNVJTBy/3II1dhKxNhO4RLh4P98YcZdjczGeSgbN6tY4wrKoKjfKW60xE3bgkFsUnNhvO1PJyiP9f/hL99YtfZP78z//gcLjzTp5hVxcEot+PsyAnB9LQ56OOdFcXesP8+aRCi7PtgQeIbiwsVOrHP9ZNA7dtw2ZavJjjNzXR5bm5GTyT1F0h6MNFgjZOnKD0wxNPcL6bb0ZPMweVKMX827YNJ0BpKWRntMhGiTZ+5x0djDJ3rq4laLFwjxJV97Clhb29qwvcX7UqlHRzOhnLW2/x1+3m/q9YAXG4bNnw1nl6uq7D++674E1BgXY0xWsvpqVxv9rawNqBiEC5pxMnQiy3telMP2k8GYkc9fnAIklJ3r1b2/9KsddJM6vZs7mvovtJLVkhgxMduZ3EpuHLuCcR35OHlVLfVuSvP2cYRrd8YBjGZovF8lOl1JeUUnMtFsuzSimbgnG+WCm1Wyn18RjO9YBS6puKYpyPGIbRk4gLOFXi8wHy0rQj0iKtrweoy8oi1yX0+zVZKFGMElknKblyXL+fYwUCbESBAEpyby+bSlGRTvWorIwOGj4fm6x0kSouBsAifb+zkw0wNZVzRvMCud1sEjabbsRSWooy29rKeaZP77/5xSOGwbna2rgn+fncp9EsUquUrt9mTlnOyYkvqik1ld/29XHMoXSIDJeiIjal1laeg9sdPfpgIDEMxiDEoYTj5+aySUlDlxGQJBbFII2NSv3xjygP69ZRi0cpogtbW4nSys6mOUpJCVEUmzahOF1+Od/t6iJC78c/xsv7yCOhToumJqW+/GUU6iuuIF06kkLX0oKn/6238K7fey9KmhB1kcTvR+l9+GGlXnuNsd50E+PPzNSdjEX1kPRlq5Wos2jp8o2NHPOJJ/j+3LlEErz//dowHmrpgKGIGMRCupmbCdTVcc83bUIBVAri4zOfgTicOzcxyt1QU5aHKikpHEsiEuORaKnNfj9pyObmJ4cP6+csivGSJaRUzZ2rxyPfEdIw3mjJIUgSi2IQjwcDLSuL9X/8OGt3xgye96OP8p2rrw5tLCDi8+nGHS+8wHfWr4cMrKxkfre24gCpr8dptnQpuFZYqAvZT5gAPh08yPdlPKmpzJVoeo5S7L0bN4JFSkEUnXcev+3sZD+VaGelOE9urjbSIuGi16vJAI8HzJozBwyWtSHkWSJEsle8Xvb88nKtS/T2cl9qa3WtvsJConzmzo2uw8q9EzIxEBhaVHM0MUcgKhVKKIaXf4hEKGZl8T2pnTscx0swyL0wE4aiYyvF/Zs/H4fbvHlgt9XKs/T79XGys3W00QhIEotiEJ8P56HVSlO4Rx5hH775Zgjfu+4Cn+64A2xobyfCTymcFsXFYNmxYxB/GRk66m/OHP7vdkNAbtwIDv3gB7pR3LvvotfMn898+ec/iazLziZFOiuLOTt1amTM8PvR1R58EB3G7da6V6SIt54eGrPYbNiYixdHXpceDzrI9u1gRE4OhF5NDeMJBpnDiSKcOjs5X2sr5zrzTJwTFgtjfvtt7svOnVxzYSGYu3IlwTaJWEtOp25UFQiwX+Tm6gjF4TptpQlPV5feBwaS1FRwVhqNFRVhI7e1MTfb2kLrGO7fr+0vyWK89FLuj3Svdjp1cIeMKTt7ZBwsESSJTcOQ/2skYt57/w4RwzC+bLFY3lFK3aqU+rpSyqqUalJKvamU+m0sJzIMo8FisbyklFqjlLp/eMM+tRIIoBgqRVREJDA6ehSFt7KSDSUcmA0jtAufGF2trQC6uehqIMBGKKk6LS0oP6mpKDdKAWSFhdEjIv1+wNvhYIMtLAxtRBB+fSdPAnR5eVxjOKgbBlFEnZ26m2phIYq81E9zu/l/pN/HI1Kk3etlY5oyJT7CLV6JlLKclxd/bQmzZGTolG9Jg4xVsrOZS04nz8ft5jlGq4MkIqlPQhxKI4i8PBTp/PxRSQ9PYtEQxeUihSYrS6lPfYrowd5eorXcbt6TGkCVlSgkL73EOvzgB5m3x45Ru+eppzDYf/WrUCXolVeoFxgMklp48cX9xxEMooD/6lf8/0tfggSUCLRoxnFbGwToc88xlo98hAglSSmR+ScRhlLXJjsbEjtS99AtW4g6fOUVfrNmDfXxpDabeUyJKqPg9erjSurPgQMYFxs3YkwohfJ3221EjEZrQhOPiGEvRN1wjHuzmOsjDqfRiqQx7dqFcbVzJ9FYovQWF0MWXnqprsFUWMg5hcSUyCWrVZMGo1APLYlFQxTDwOgJBJQ67TSMNodDR7M98gjYdNVV6DSRft/YSJrf9u3oSuvXaz3l2DH2sG3bmDfnnYdBKoRgZyf7XVERf/fsYb5Mngz2ud0DE4gejy4t4HAwH885B6zp6uI70kmzsBDMzcgYeE309KCfiS43YQLXNWGCJuIkSjgR0YdSa9rtZo2UlrLnd3ay9mprIWmV4jNpuGVuRjCQmJswCeb4/YkhQAWzJNUwnFA0RyjKvZISMA5HbJkbnZ2hhOGBA7osS04OuvS11/Ks5s8HnyTCXKL2ZUw5ObFHeccpSSyKQV54gbXwoQ9Brm3bphtIfO97PPMvfQmsammBqEtNhagrLsah9frrYMLUqZCPdjt4VliIXXPbbUSIXXUV/5Y5IPNq1izm6C9+wViWL4ewa23lXFOnRtbv7XYcsPffD2ZecolSt98OeRlJ6upI2U5NpexLVVX/73R0gKt79jCPq6txOs+ZoyOBlYo/ACJcenvZDxobwclly4jG7OxET33rLXQAwwB/LrsM4nDu3MSlTnd3g3c2G9hVWsq9kfRvp5N73dHBe8Mp/1RSAu62tg6tJn1KCuOpq6MG9uHDzNFDh8AX0SXnzweLamqYu5WVOutNxq+U7kItjoxRliQ2DUMs/TtRJ2UwsVgs/1BKLVZKTY6xNfeYudliGDmdKKqRSKxDh1Aiq6ujR5t0dgIEZWX6GG1tHLe8XNfJCAYBHFGUpYlGRQWe/o4OwLK4OLJSGAjoVFmlMNTz86ODncvFRunz6fTl8ON1dfHy+QCxCRN0OHdjI969jAw23ni7iZrFbmfDd7sBWKl3NFoinm8pVpuezjMbiejHnh7ucSSyJJZjeL3aU9bzns8mL093ZJRU0p4e3Y3bauV5FRTw3RFSkEeeAhiCjFcsMgwUzd27aWxSV4dSdsklrNcbbwRbfv97sGfnTqJrpk3DM5+aCrn1yU+SPnL77XjlBaN8Pmoa/uUvRDl+//u6iLhZjhxBKd+7FyXwv/8brBDCJ9y4lO6oDz5I6pDXS3TgDTfoiGtJSRZsMndflvRlM5Y6nTQ9eOghnDbS8VUICzF2hWBLxHyWCMlAQNfg27MHEmLTJggPq5VaSBddBJkZzbETjwipJpEwZnIt0WJOjRkKcdfTo8lCSU2Wej0ZGSjES5fqKENz9JPUbzRHHJrrG44QcZjEomHKwYPoOjU1PKOWFtZecTE1EJuaIAWnT4/8+6YmsKqujtqHq1ahf6Smsle1teGMzcrCUDaXUujuZu/KzETnkIYq0oXb6YxMIEqDDmlo1NMDVq5ezdglHTkzM3Lh/Egi0ZINDRwvNRXDddIk3RTEHGmXCIPd5+Oa5ToLC8FYiTiUtVdVxfXNnZu4bBCfT2NgIiO7RQIBTSaaI6yFUAwEeIbStC5cXC7uw759upahOO1TUiA2hCycPz+UABByRXBeKc4pNQ5HqHldEouGKTt3sqbPPps5ev/96CbXXENjlM2byQJYs4Z9+sknWedXXIHO29aGbrV1K7/79KfBpaIiCObnnyfq0O+n1vT69frchw+jT1VUaPJ+wgQIzNJScCEtDQIxXDcKBsme+MEPwM8zzyTScfnyyNfp90M8HT2qU7bNdRUNA/3snXfAzpQU5vjy5egi0uncMJjPibBjnE50QTnf3Llg8dat3PdDh/jelCnc25Ur0UkTWU6mtRX72O3WNeMrKiI7OsQulqZW+fnxO0Q8HuZTTk5kG9zjAY8lwvDdd9njJBBlxgy4hPnzeZYLFmhC0OvVxKHsHxkZOlV5hLLCxgQWhcswsGlMSpJEjFEsFss0RbHN7xuG8bUYfz5mbnZzM6RdVVX/2j6GAVicPAkoSAHecJEIvoICTb51denUZCHeDANQ7u7W0WKZmRxXCMWeHt1MxCxCEknjhNzcwYmpjg6OmZrK+M0eGgnbttk4Xk4Om6REM3Z3s1EK+VhdPXxly+lkU3U4dHpOtI5cIyFuN+f2+XRdi+zskY3KCwZ5phZL/F0IDYPnFAhwv+T52Gy6OYFISgrnEeJwFKJ8TvkGNZ6x6NlnUX6vvRaceOMNFLKaGqX+4z9Yg7/5DUSNKHAzZ+p03j17UKqbmoggvPJKfezGRop279tHdOAXvtDfCeD1KvWHP9AAJS+PdOe1a0PTX1NTdZdkId2eeYYaQjYbSv5nPqOVyEhzzu0Gu5TqX3vz+HGIw7/9DUxcuJCow/e/n+8Fg7q5iYxnuPPaTB76/dRle+klIh86O1HmzjmHe3HBBYkx1s0i9zdRKcuxnFfSLs3i9WKYC1m4a5eu12OxMOeELFy8mMiH8ChQuR6ZK3Jd8hoFSWLRMES6Qk6ejAOhoUE3TnviCaII160LrbFqltZWpb79bfSliy9mnrS2smdNnYru09rKnnv66aGRjD097GkSQa8Uv6mq0kayNDbxeHQNQ6cTsuGVV8CimTOJhJ0zh/091mgOjwencmOjzpCYNIlxCA6GlzsYLhb5/YzdbudYfX3cw0OHtO4wZQrXNGdOYhy5kcR8bRKtOBLrVs7j82nnSUqKjgTPy+P+myMM6+v5TCnm47x5GOfz5mmS2SxCGsoxldL1DRNZr3IASWLRMOTkSTBn2jTw5t57IWc++1lKurz4IjWR160Dp556CpvoiiuYPzYbztTaWt77+MchxVJSWEP33EMk3aRJSv3nf6JzyZw4dgw9y+3WwQ6rVil1/vn8u6EBvWTq1NB91DDQIb71Lebs7NlKffObkJzRMMJmQ+fr6dFRauY60O++S+ShZJGddhq4mpOjM6n8ft1sY7jr1eNh7IcOcT1ZWdiR27Zx3UpxXStXUjNy4sThnS9cHA6dshwM6nJe0mhtMBE9U8pwhTuqhyo2G3pgSQl/pYbhnj3MKcGt8nL93GbMYD6JE72tTXe393p1lolS2lmSnT0qutEpx6JwGSY2jUlJkohDFIvFslAptUxRZHOBUmqWYRhNMR5mTNzszk5dFDWctDMMjO+WFjaySNE7SgG6LS26q61SmlTMz9fGp2FgLNfX8xspzCq1xk6e5HelpaFdoc2pqcGgTgEcyGMRCKCE9fQwBknRlg5lkjIkadBSe0gpFLuGBhT67GzGN9wUYwkP7+1l0y0r476MAsGlgkHt+RHFX7w+o6BIKqW4p729uklLPBIM6s6MFgtzRSI3fD7mxMSJusnEKMop26DGOxbt3UvjkhUrUFA3bMAoet/78Jrv20cKzVlnodRu3YpCvXYtz/j11yEQLRbqlJ19tj72Cy+gwFosRBVecEH/dbxzp1Lf/S7r/ZJLIBkLC7WBJ00uZGsMBlGS778f0nLhQsa5bFn0axT8cjp1qoZEzr75JhGSr78OLlx8MY1JRJE2NxYRo3a4c9swUOjsdlJxXn2Vl90OJqxeTcTheeclvmOodEoOT1kepZTe/x2D389etHu3jjSUwvNKgc/mCMOamv64ZSYKzWSoRJ6OInFoliQWxSl9feBLXh4YVFcHXkybhsPg4EEwYtGi0N9JRPKBAzRp6uujVuIZZ+iuu/n5zDGnEzJuxgxd8kUp1l5jo3Z4FhdDBmZk8JnNpiOQJV1PHLKvvUbU4pQpOEoilZoZithsOmXZMBjf5MmheoqQXoki2CQyu7ub629p4a/UtxYCZfbs0S/zMhpkolK61M7evfpVV6eJkcJC5qNEGM6bF7mRj0RTejy69q65AUx6+uhh7HuSxKI4xeHAqZiWptSFF0L45eaSavzYY+DRFVeAM3V1Sj39NM6OK65gnXR2oss0NNC45PLL2d+k0eHdd7P/rV7NZzU12p5qbCSa+fBh9rFJk0ilrqhA1z5xAltv6tTQNbF1K7rUli3YgZ/9LE7ggQIUjhyBnBOHpThV2tqIOty7V5dyWL4cHBD9x+PhpZQmqoYjfj/E4b59kKhdXazLzk7WzcKF6JdnntnfVh6uGAbnkSAaqxUdpLIyvtRkCbgRHC0oGLozSWo/7t5NMy6pY2ixMLdqajRpWFPTP1JRAjuysnSGnzTlyshgfx2oFNUIyZghEROETWNS/q/URBwNWa+U+oZS6phS6rrxOgHsdsA6Pz9y1N/evXw+Y0b0uleBAApsSoom/lwugCgrK7TD09GjGGwpKZA9c+YAKFJDqK9Pt4oXcTh0TTup4TMYGDqdOoKwspJr8/u5lq4u/p2ezmeSCivS3s5YDIMxmhvBxCM+H0p5d7duLFNSMjokl6QsS90bCRkfpQK1ISJdJKUTpDlVYSji9TIPOjsxNGS+VVWhVKem8mxdLjb+wsL4PXDjTMYtFnV2EmFYXQ159tRT/Hv1aroO7tlD7cKzzsJQ3rkTRe6CCzRp+JnPMAf+9jcdJe3xQEw+9hjf/5//4bjmOWe30+HwqafAgZ//HKM/GGSOSgSiOR15yxadpjh1KgXNV60aeD0FApoAkPTlvj7O+9BDKPIlJSjcV10V6jwxk22JSK8z4/ZdlgAAIABJREFUDDzqL73Ea/Nm7lVhIaTh2rUoySOBD5FSlkfSMA+Xzs7QtOSdO3W0V04OCvFNNxHhsHQpxkw07BAiVJ6PUjqKMlEdlcepjFss8vu1bjJ3LusyPR1i7p//hEC84AJNIEr9ZJuN1+HDlDVISQFvTj9d60VOJ4ZYZiZ4lJ8fGlUiNbe6u1mL1dXoRW1t2hBMTQU7MjP5rLmZcdXXo9985jM4MmLd74JBjtXQwLkkY2PSpFDSztwUKhHRh8Ggjm45cgSHjNUK9syaxTOYMePU6CpK6bFICrLXqzFruOu7r49IHnNastSqTE0lTf7CC9nPlixhf5PuyJFKakh9Q4lUt1gYu/zm30AHiiTjFouCQbqpezzoRb//Pc/w1lt5/5lnKONy1VWQXhs2gAHr16Pj1NfjNO3sBIsuvJD3enrAtT/+kT3vs59ljc2bp+dVc7NSf/oTeDZtGnrBmWcy5202bKPs7NBu5wcOQEpu2gR+fe5zSl1/PRgyUDPMrVsZV0WF1jtqayEPpT7+woWQh+YSVIEAmCgNkYYbDBEMgu/PPYfN29io6/gtXUpGyIoVkYn74YrYh83Nujv71Knck+Hoe1Yr483K4rkLkZeXF3qvXC7wR0jD3bt153ZJS169mojn888Hm6LpbIbB8Xw+5p7ollJrdfJkfc0uF3MuI+PfEp/GLTYNJslIxNGVU3qzpU5gZqbuMCUSDAImHR0oMrL4I0lrK1F2FRU6ZLmlBQCsqNBRPDt2oDAWFBCOLhtMMAhoOxya1JPx2WwATno67w+lzkV7O+dPS2PcUqi8p0enQEvKslncbrxPfX18NnXq8BRY6VLd2cn/J0xgIxxpo1maj0i9idFKWR6q2O3MkaHU63C7dWMUIUKlrpOkRoenNUlXbakLUlQ0vCLDQ5Txvg2OOhb5fHitW1spCv7CCzyvq69W6hvfoCnBXXdRpPqll1Duli4lOs4wUFrvvhtj/c9/1iklDQ146w8eJKLvE5/QBLZg0csvEzHU1YUifuONmmCUVFdzJ83du2nosmcPGHXttSi9BQUDrylJK7FYmKeNjRCHf/8763PJEsa4dm3oWjBHH0p9wOEoyW1tujHK1q0ct7yc8150EeTpSEbZSBMYpUYnZdntZr6YuyVL0zCrFYJiyRIIoUWLdFryQGImDuVapH6kkMxjhDxMYlGsJzQgEDs6wJj2dubsrFmk2b3zDlEyK1eynm02XefXagVrnn4aHeWLX+R3Ugi/oYH5OHGibhJQVsZ8CwYxordsYb+SlGEz8WO1ap0lLY1jPv00WJSfD5mwcmXs69ft1inLPh/nkMYt5mOZyX+JahvOPHe5dKmA+nqOVVwMkTF3LsTFWNBTwsXc8CkWDPP5cJ4fOKBJw+PH9edTpoSmJc+YwXOWsjPS6MRMEEpGjURLKqWb2mRkjFhNsXgkiUVxyKuvsm+tXcueXV9PVOGBA5RdWb2a9OMDB6hpWFlJBHJGBlj13e8yL77yFYif9nZ0mH/8g6i/Zct09sacOZoc279fqZ/9DB19zRo6eJtLUzU16eaPViv48aMf0YguN5cyMuvWQTRF6lgv0t0Nrtrt7L/Tp4O/O3aAr2IjLl7cP9jA7QYrxa4Zzlx3uyEON2zg2iX6WrB++fKRi37u64Osa29nHUsD0ZHITpNMmN5e9qNjx3Q9wyNHdAZFdbWOLly0iKjnzExwqKVFZ+yZxdyYU2pSCgHrdIJJRUXYwSkpOmpRnB5KjVqU9HjHonEhSRJxdOWU3WyfDyCxWPrXtAgEAPSuLpSa6urox+nu1vULc3P5bXMzQFJZyXGdTlLmjh9n8zEXzA0GATWXS9dj9HhQ0j0eXYh8KEAu3aV7e3WjFZtNd4cqKgKgw4lBwwAgxRM+aVJoNFCsEgxijMjmUFQEcI60YheespyaqlOWx5KnxzA0oVtQ0F8Rdzo1cSipCjk5usahRKG6XGyM2dmRSUKnUzfKycjg2Y9E05j3ZAzd4bhk1LHoj38khfeWW1DgJAXwnnuokXjbbfx/0yYUnjPOQLFzu4m6eeIJFNYf/EAb588/Tz2ytDQIyNNO0xGAUp/lJz/hvLNmUS9IUv+sVk12SUTZ0aPUHtqyBeXpuut05GG4R9csEqUk2LNrFx1dN29mbB/4AOThggX9fyuRL0oNL/qwsZF79/zzGCSGAUlw8cW8ampGjvQazZTlYJDnZI4wPHhQRwhWV0MYSlrywoWh+8lAjVYiEYeSpmwmDQ1DX+cYwNpTP4LhyahjUX09xtTs2cwbhwMyZ+dOsGLePAxaqTOVmqodWC+8gKFfXk5DpTlzdEflI0fAicWLmXM9PehJYtTV1uqU6eXLcbqKk0wizNLTeU86gW7dyudr10ImxFrvsKsLPUkacphTlsNFsEgioePVYfr6iJjatUuvzcJCvR4nTx4zBPygEk4mmglfw0CPNHdLPnRI43lxsU5HXrAA0nSgchF2uy7TohTzUjI55JlkZXGMsabnvSdjb0SxyahjkUTELV2KzfSvf+Hk7O0lc+LMMyEH9+1jf588mVTj1FTw4b77wJxPfQpdxe2GPPzTn5g7N97I++3tEPbSOG7DBhycmZkQlKefrueTpNnm5WEfdXWRufHAA6zb669Hp8nLYzwDlSs6dIj6hunp4O3x41xLIIAtunw5uln4XPb7mffBIL+VQIJYxeEAQ59/nlIyLhc4fsEFOFSXLh25jsCSstzUxPNMSdEpy4kmKw0DjH/33dBahuZmpEuWsDeJM3WgmtcdHexflZXov0IaSnCHlMgyN+f0+/mdOMI6O/lciEiJbpdglxGOnB7vWDQuJEkijq6ckpsdDEIg+nz9o+38fhTn3l6UnYE6cDqdgFReHqAgZJzXqwnEEyc0IVlTg1EvEghAIHo8kACZmTriTGo4hHcgHGgsx4/rTscWC9ci5FFRUWQl1eHgXrhcfG/SpPgVZcPgOtvaOHd+vo7OHEmRTlduN/8/lSnLQxWpg5SSwvwxE4eyoUjTnIEiFu12rjsvLzJBKMaapJNmZfGcR0BJGO8b1Khi0WuvodR+4AP8/8QJPOmPPgrZdsstpJY+/zyG+MqVkIgdHRCLb7+NZ/7mm4nw8XohE598EqXoe99j/ni9umjzM8/QdMXvp4vztdeGEnRS/yo1lTX8hz9AEOTk8N1LLtERigOlyfv9usbXpk2kWTc2ggVXX63URz8aWVmTelbBoE6bi0WZku6FEnF44ADvzZlDOtMll/DvkTQ0pRPxSHZZbm0NjTDcvTtUMZZ0ZCEOh1K7SKKspE6lEIeiDpnrGw6U4jxGiMQkFsUgnZ1EwFRUQGx1daG/vPsu60g6b0o2hJTJkGZMO3dCCF10EcavYRBJdOQIx1y0iP2tu5vf5eToiJCeHqJwzjordL92uTh+RgaY8M9/QmZarUQWrV0bW3S9OHcbGlgraWng5sSJkcuKmDsVx5vCa7Ppjsp1dVxTbi4YdNppkLRjkPQakkh0Zmcn13fokL5WKZGQmcm1mrsll5XFds0+H2SPz6cdYampOhrUvGcopYneRKRcJ0jG6RP+XxlVLOroQP8pL2d9b9hAg6TiYiL+Fi1S6mtfY8975RWw44MfZF78/veQhTNmQCouX848uPdejlldTbOTigpspcpKCL/6ejrOb9/O8b7yldA9s72dPTc/H+y77z6lfv1r1vPVV0NW+nzsjVOnRnfU+3wQovX1moRvbWWMYhtG2qsls0rKCUhtvViku5tzb95MJGZ3N2uopoZMlzVrRjb62efDNm5u5joyM7F5y8oSd96+PshYM2nY3s5nqak4LiTKcOZMbRPn5Q2NwPT5SHF3OLD3JRpbiMNo9qbXq5v0paWx9xUVhTpPgkF4ANHDRiiaerxj0biQJIk4unJK0nak9mB4p2KfD4XYbgdozDUowsXnAxDT0nTtqPZ2AEY8WwcP8h2/H2+z2bvk96PQer38PhDgt1Yrm1UsHXXb29mYHA5+K1FCEyZE9/JKIeu2Nl33KN56FxJZ19qqOxlWVIxsEfBIKcuj2OVq2GL2yHk8OpQ9P18Th0O9jp4e7nthYfSNR5rp2Gy6Y1lRUUI3qvG+QY0aFtXXk24zdy64sHcvkXGvv46C+rGPUVPnuef47nnnQQrV1kLAtbZSJ/G881CET5yg/s+RI3Qf/NSnwBefD4WztZW053ffRbG+4w6cBWYRQ8xuxxv/9NNg0Uc/iqJstWqjfiDj3e0GQ594gs6JHg8e/euug8iLNqfN6YKxkG6GgbIo0VD19by/eDGNadaswagYaUwIT1lOVG1Ah4PrM3dLlno9qakY5hJhuGQJkRXxnDMQ0B1M5fdDIQ7DZYwQiUksGqK43RiXGRkYdXV17EUnTpA9MWuWTukzr3ubjaigEydYY3PmYAD7fOBWSwtG28KFul7dhAkcp7ERssDjwZgLX5+ypxsGkTIvvsjaOussnC5S7mUo4nLplGW/X0cKDdR4TLBTKfbHWIzc9nZNprW0cKzcXPB27lyudxRKi4yIeL2Qhea0ZKmdLRk98+fzzBcsAIviwV2/XzdGkUhQj4f7WFQU+Zjmuo1jjFBMYtEQxeNR6uGHeY7z5vHvM87QTtFZs5S68072wDffJIrvAx/gdz/8IY6Q972P30yfzlq/7TZw7NxzydBQivVZVMSa3LiRLIu2NnSjj30stDxQaytrOjsbHeOee3CyXHqpUrffDhY1N+saidGwoquL30vjstxciNHTToPYGoh4lKhbaZwy1H21tZVr27yZiGApi1VdjX27Zg14NJJrw27XKcuGwX2XlOXhiDSAEbJw9272LqFvpkzhGiXKcM6c/oETgQA2kZR9ilSaR2rqO526y3tnJ9cxffrQ7SeXSzcplYjSsrL+xGMgwHjEeZWRkVByd7xj0biQJIk4ujLqN7ulhcVsrj2oFOCwYwdgsWjRwOm8Uog7EEDxTk3Vac0FBSjIJ09qo3vSJBQqc3c/iUDMz9fd7yQFeaig7vWyOTQ2ApBVVYx7sEgzKS7s9QJk1dXxG9m9vbomZFYW5GGiu5maJRDQYeRjOWU5kgSD3K+eHp0WJulalZXxN5sxDIy6QCC6km0eg0Q8GobuEpYAkmWM3/1BZVSwyG6nW7JSeNC3baNgdX29Uj/9KR70O+4gnfnECVJMamrwul93HcrmffcRQVNcTF2d73+f97/zHeoU+v2sR4uFWj1//COff/GLKN3h68TnY1xPPsn3vV6U5BtuwPDv69Mp0dGUXb+fMT/8MGRldjYe7muvxXiOJlLTylxna7B1HAhQ92jjRiIdpcnQihWkN55/PjgUKwEQqyQ6ZVkUYyELd+7E8y1G8ZQpoRGGCxYML9ranKYs9cWkC+tQnkM0ESIxabjHLaOCRdIZva0NPaCpSafhbd7Mur3mmv57Q0MDdcP6+uhqmpqqMyaktuG55+oGLL297M8+H4aeRJVVVfUvni8G2zvvULe1r4/6ZZdd1r8D5kDS2ck429sZV3k55OFABKSkTwuRPtQaVU1NkIa1tbo5SEUF11dVpTNBxlOTs2CQ/ceclmyuHVZWFpqWPGsWuBEIaByMBXuFAPR4NN5J04H0dPYzt5t7OFgWhRCKEkmqlE67Hs1GVu/JOHniUWVUsMgw0B/q63E6PvIIpPTateg1VVX83bGDLIz583G8dnRADp44Qe3n8nLWuMUCgXjiBBkdt9zC/Nm3T0ce/+Mf6M1ZWczfiy8ObYLZ3Aw2btmi1O9+h023ahWRkIsXs+67urD5Jk6Mvt+9/jpO2dZWTW4tXz5wJHIwyHglwjEra/B5axhc7+bNvI4e5X2JuJaag/PnQ8COlG4k5ayamsBvqQNYWRl7M0mluK6TJ3U68u7d4JGUeioqCq1jWFMTW0CMy4X+GwyCL6mpoQEqSunstuxs3m9vRzeOxaFlt/PKzcU5bBjcl0jPVRwpwSCfp6cn5HmNdywaF5IkEUdXRvVmd3UB5NLgQ8TjIZTd42FzGMxLIhGH5eWAYl8foOnzaQ+7gFheHh4L2WB8Pt0lrLAQcJK01aEqNz6fVvC8XjaImTM53kCGm/xOulRNmRI/4SeFZp1OrqG8fGQ6d4mEpyxnZgLoI1W7I1Hi92vi0G7XdXykvmFuLu9L+ne8G4V0wLVYBp8H5u/b7fxfxjMMw3+8b1AjjkXBIPUIDx6EXNu+HQ+p14sivGYNdQyfeQYFViJ87r+fFJs5c0iBljny5z+jeC9fDpEoHdgdDs7x059itK9dS+OWcFwzDL779NOQf3Y7JNxNN+H4CAT0nJXucuHS3U0K9kMPga1VVdQHWr9+cDwQI0+Iq4HmntdLRMGmTXj0bTZwZ9Uq7tPZZ+vo7QQpXFElGNRNX5SKL2VZaoeZ05L37NH1dYqKNFkoL7OBE68IcShjV0pHG0oqsyiuw+08q9QpIxKTWDSAOBysn+3bcUBOmcJ8KCtjD9qwgXV85ZWsS6+XeSlRxn/5C/vv1VfrqHbDAHMk3XjqVNZ3Wxu/F8dZbi7nyMwMrZMsZTfefpvIw95eSMx16xjfUMTv1ynL0pBj4kSwbDCyXaIPBYsGc8SdOAFpePAgY7VaueYZM7RuKd1BCwrGPnnY1RVKGNbW6hIJ2dmQhZKSPG9edCe7GRsHupeShizRPWYHhhCH4fest5fjxqKniJPK5wstMSGE4ig0sBnjT35QGRUbbetW9vfFiynhkpWl1BVXkEFRWEgk4vbtkIiLFrHnHz4Msej1kokhJZzq6oiStljQmy67jO/s28ecrqvjt6WlzOO0NPQeSSUW0mrDBnSvY8c459e/jnNEylD19bHWIzk3AgHIrr/+lfMVF+OYPeusgRuuKMVY3W7GkZk5MHYZBtcixOHJk7w/bx5kbGGhLi8wezbvj1SZJ68X/G1p0VkwkrIci27U0xNaw3DPHu2cycgAg8ykYXX18PFVSpN1delSUvn50bPbxPatro7tfnZ367IWvb3gXGnpwB28BR9TUjjXMJwg4x2LxoUkScTRlVG72X19KH55ebqLqVIs6B07WKxLlgzuWejtBWiKilBmpMOfRCbm5nL8jg4WvDlVx+NBQbPb8VQXF3O+oSoyDgfHPXaMv8XFAOlQmqB0dDDOYFBHAMQDvG43APr/2fvu8Liqa/s9kkYzqqPeLMmSLFuWm2yDwXYgGAgmlFCcvARCCQkhIZC8Fx4hhCS/FNJIIe2Fl+Q9IAnwQiihkwRTAzFgiqtky91IlqyukTS93d8fy4tzNZoqjcrY2t8330hT7r1z7z3r7LP23muPjOC4S0txLibDSdY01fXK51N6IDO9ZNnrVdl+jDilp6sFBbV9aMwOFFFR1InslyRlLNvx+TCx2Ww4v3l5mDzHcQzJPkFNOhY9+igc00suwRguLsbY+frXQYJ9//sgBfv6oC9WVwdS8Te/QSnwH/6A68SsxcOHoYn4+c9jPPj9CHDccw+IyOJilNycdtrYY/H5EIn/05+wv1WroJPY0ID3vV7siw5VMEbt2iVy//34PS4XiMxPfQrOfbSxGZx9GK4kxG6HduRzz0FjzW7HsZx1FojRD34Q32cZNBeGk2WhSpZjzdgbHoZTvHWrIg37+vAetYn0WobV1YnBVGYY6olDah+yXDnU7wzXaCUem0YicRaL9BvT6eJarUpn7uhRZOBkZcFXMZtFHn4Y+H/RRSobhpmqmzeDxJ87V+TGG1Xn9f5++ERmM+5fBiC6u7GoJaFHMjAQgN/AoEQggIzsp57CmKirA3kYKYNZbw4HFvWdnRifFguOoaws+r1HLOIiLZwOq98P3KX+n8OBsV9Xh+Osq4N/x6Ac9dNmiC7fKHO58Dt271akYXc33ktNhc+q1zEcT9MX/XnVB4lIGno8KnubnUmjZX6y/DA1dXTJaTzH5PNh31NIKM5iURR77z3oJtfWoopheBhlxb/4Be6JH/xAaf+uXIn5f9MmvJ+fL/Ktb6ks53/8A5mDdXXwjT7wAdxTLS1Y5x04gGt+xhm4D6xW+BHUvmdG5J13Ynyw+RwrODwe+F0eDwik4MDeyAj2s2kTxlV6ush55wHPoiU8sMuvz6caBoUad34/tr1pE34rG3csWwbt2lWrQIi1tuKztbVjm6kl0oaHgb39/Th/BQVYY8aSpefx4Dh37lRahuzcbjDgOrLpydKlicug1MthsRGnvrlgejp8zXCyYn4/AnAGQ+Qs1FD77e9XJOvICPYR7VzpMTMtDfP1OOaWZMeipLBZEnFqbUpOtssFYKIjy8FntwPwAwE4v9EcE5cLzlZGBqIrXi+Ar70dk0ltLQi9Q4cw0OvrFeD19wP4AwEAo96JjmSBACa6gQEsBHp64PBUV8emf+V247czCyCS8G8k83jw261WOHHFxYioTYaTHFyybDSqUsqZGtF3uxVx6HDgNbNZLSaipfGzGYXROD4HWX8cw8OYZOLZjscDMtHhwPUdR/nVDL0yMdukYtGWLRD4PuUU5QjMnQsHddkyRNz/8Q9cuwsugFN73XUg+j73OWQaWq0gIu+5B9f2hz9ECa8ItvnCCyAXBwagZXjDDWMdR01DCfTvfw9caGxEqc/KleozbjewkU1/OMZ9PpAIDzyA35OeDrLzssuAn9GwgGL8kbIPrVb8jo0bUWrp8cApPeccEIdr1uB7zC4RUYvAyQpkxFuy7PViAUKycNs2VVokgkU6ycIVK0BCJJL8DNVRmcRhLDqN/D6/MxGbJiLxhMci6ptarZhXGISjXMrevSDbTCaMdaMRGclmMzJ3KBRvNmOcP/00xuPy5SLXXgtfpLkZAUWTCf5QRQXIu5QULOj37MH3y8vhqwwOYmyUlqrsjX37QFweOoTPbdiAfUQby1yMtbVhEW0wgDSsro69IoLZaeEy5jwelPDu2YPjpDzN/PkYswwQ6+VJuCCcggy3mCwQwLndtUtpGR46pMZleTnKkZlpuGBBYjOVfD7cK9T5YuCFpGG8uM25KSNjfKWRNGZC8h4gtusJxQTNJyc8FkWy4WFUMWRmYjwfPAgC8X//F9fl+9/HGmv3bvg6p50G2ZX77sMY/MY38LnnnsN27HY0UDv9dOCI2Yzgx5NP4lovWgR8a27GeuYDH1D60M3N2N6mTcCSr30Nvg3HMptXahp8N722aXs7JBj27AEm+v0YVx/9aGyNzdxuJUFDzNWb1ws/4vXXoWHLLLaVK1XTvaws4FVLC7ZXVQXibSLriXAWCKhAlM2mEkrKy8OvLwMB4DUzDLdvB4FIQr+4WJGFTU04f4mUxmJQTL+21CemUBKLQTf2KOA8GWxOJ8jT3NzYrrH+OPr6lByX04m1dDSSV5+9zQaH8WhkSvJjUVLYLIk4tTbpJ9vng9NE4WdOCDYbFsIiAOJoYOX3AzBSUgCUDgcA3WqFg7x4Md5jpKu+HoPc4cCk0tYG0F+yJDZQ93hABgwOqgWhwwGgqaqKXnLNzl+dnSpaEg/Q0Xy+0WnehYXYzmRkAno8AG5qXcz0kmWnUxGHLLPOyFDZfPGStS6XcpAnEjV0OLCdzMz4RdxdLtxzLhfu32BB/QiW7BPUpGARy1Zvvx1jZ+5cXJvGRkTQ6+pA/D3/PDDp4ouBUR//OBytH/8YmYa9vRAVf+01OI0/+IHKQO7vx+defBG48//+H3Am2LZuFfnd77CgrKzEds84Y7QTQskAfQfm/n6ULP/lLziOqioc54c/DCyM5f7QE3HBelnd3aoxyltv4bPl5SAozz0X+JyaOnrhJ6IWo5NBHgaXLOtLfvWmacB2Zhhu347FiMeD94uKQBSSNGxqUrpzibSJEofhtjdRInGaGq2ckFjETC0Sh8yus1iUdIrdDjKQeswU+X/5ZcwXV1yB+Z0BO5cLAYeWFozFDRsw773wAsbtvHmKOKysxJjculVlWi9dijmETdeKizG/HTki8sQTGC/MfDz99Oj3qc+H7Mb2diWlQs2vWMkvauYRi/QEvtMJgpUdlf1+nJeGBpAWNTUKi0jS+v2T0qgsbtM04LOeMGxtVb5JTs7okuRFi+LT9IrVqPXsdiuspkYqF74TaXZis2H7E5F/0RuDW5xb9MGiBASoTkgsisV8PgQQBgdxrrdtA748/jhw7LvfxVy6bx+w4aSTRP77v4E9H/wgms8FAvCfHn8cY/Mzn8F90dgI3HvkEXy+uBiB1eXLsW5rbwcpWVcHrPrxjxGgzc5G8PVLXxrtv1utwCyjEfsxmXD8LS0gD7u7VXAxOxtYsWZNbPqdTieejcbR2u5OJ0q4N21CprbTCSw65RT4gCedhGPUNJCbO3cqma1ly6KXTY/H3G5Vskyd7IqK0GvCgYHROoY7dqhM7YwM+Kh60jDezu2xWCCgsg1ZIk6NyWiJKazs8vlUQkgwZnGNXloaH+Hp86ngFytF9PIekYzavfQxY8niPmbJjkVJYTOWRDQYDCtF5CIR+aOmaYen+XASZZN6sgMB1UCEwC+CCWrrVgDCSSfFFgHo6lKdlLu6QED6/fg+9X/278dn6+tVs4uhIZBweXmxZZzYbFi0j4yoZivUJjOZQEJEI6ccDkyMDgf2W10dPxHn9wPk+vpUV62SksQ7yaFKlhkVmokly3a7Ig4J4llZijicKOHJqH1OzsS2NTKCSTMnZ3yZpw4HJkdmX+Tnq8j/li1b5KmnnpJrrrlGampq+JVkn6AmjEUkTPSNKlwuZAwODaHkd3AQDtN3v4vx9MtfgvxzuVDm3NcHAnFoCHo8556LBeG//ztw54tfRIZiSgr28cwzKL1xuZAhdM01Y8fovn0gAt56C47lpz4FfR79AozRV69XkffbtyPr8O9/x9g8/XQ44suWKXIi2j1K4o9RXy7IDh9GtuFzz2E/IiAk1q/Hb168eLRTpF/gcXE3WVnQkUqWBwaw2Nm+XWUZDg7ivYwMOMT65icVFZNHntH5pI6hyPgJuH3pAAAgAElEQVQ6KkfaPq/bRM71ZBOJIfDohMEiZrBbrfBrOD6ysxVZwywXvx+LXrsdxJ/BgMXfiy/i7yuvHF2e198PKYWjR0Eunn46MOLJJ7G/1auxneFhYJnPB79qcBAZbQys9vRg/8XF2PfTT2NRbDSiNPHcc6NnlVGOprMTv4N+TUlJfKVk1GElFqWkYK5kR2VmGlksijjkudIfy+Agfm9GBs7ZZOmMRTK7Hces1zLs78d7RiMyJvVlyYnQDgtn7O7udqvMImp46TVqfT4VTIpUPh7JNE3Jv0yG3iRLnjnfiCgyMdrxnshYFK89/zxIwvx8ZAuuW4fy3K4uBEJbW5EAcuaZwJM77gAhddll0GMdGhK5+WYQbevXIyja1YWAgsEAuZX9+7FGu+Ya+OlvvYXgwMqV2O/Pfw4fRwRZgzfdhPWc3np6QBJmZakg8LvvYu53OoFr8+bBd/P5sO1oUgwsp/V4VDZcWhqwaPNmEJ2U2bJYQEiuWQPfUe/fseHI0BB+T1MT1qiJtqEhVbIsAj+yokJlfbtcwB89aUh9xpQUYJG+LFkv85VoY8KNXkNf34Az3vWQ3a70YXNyRvMFTBLweDBPxBPUcLvhT6am4jqnpIBIjEfvlThFWYgo+DRhLDpOeaiE2kwmET8rIv8rImdqmvbKNB9OomxST3Z7OwZ/VZWKElitcHSZCh5LScTAABxlsxnRqCNH8L1Vq5ARSALR74djy05ybjf2n5uL18MRcCxZ7u/Hd9LSMCHk5GBStNnw/5w5kQEmEACgdXWpkud4xfhZJtTTo0Ss9eVHiTKfT6WVMzV7JpYsk1xhyRIBm81wLJbEli5p2mgB8YlMtNS/yssbP/kbasF0//13y3XXXScvv/yyrFu3jh+dQVdtXBYXFoUiDPXGcfo//4MF8+mn4zwuWoSod1YWNH1efRXX+tJLgUvXXINz/PDDiNT+9a/IOszKAlnI8uUjR1ACvXkzPnfbbUrPkNbRIXL33SAJcnPheF900dgydZY+Mhr+0ktwrHfuxH43bECX1oIC4Br1PWPJGuKCMi0NZCaJw7178fqSJSAR1q+HYxlqGyzfYJe6RJOH+jJrfRaK349Fjr5bclsbvpOSgoWNvvHJZHY8pOn1DemqJJI4DLZE6SNOJpF4991j8Oi4xiKvV+kb2mzqGlGEPyVltP6lyQTs7ugAIVhZqZolvfACxjQzEGmHDoncdRf29YUvYFF89CjGr82GMVtejtfMZuBHWxvG0dKl8D1EkBnncABXXn0VWZApKSgjXLcOi9FwY4aZdW1t8MFSUlTJcrwlevrsQ6MRcyyJQy52i4oUcUiNNL05HDgOr3dsYG2yjQ0j9IQhCU8R+Lh6wpCVMJN9TMyI0eN8enr0BgD6RifxaMvq982SzkSWPIbaDwNY+sASCcXguehEw6LxWnMzSEQSiE1NuL8PHUKTlIMHMe7Xrwcu3X47iLx//3fgRnOzyFe/itduvBHBzZ07VZbzq68C184/HxUTBgNIuT17UDn2yisIrHq9CKhefjmOQZ+Zq2nYltWK4/T5QB7Sd1mwAASl3Q7/ICsLfl60DECfT5XTpqfj+2++CeJw5068XlyMbMO1azGeg++z3l4EMvv6sE5ctkyRp4kyamx3dioN2LIyBG46O0frGO7dq+ac8nJFGC5bhuOfbJzketLhUJVsXFMmoprN71eJI+npo7OgvV7cJ+np8QeNHQ4lEebx4DzF0uNAb4GACt5wvg+D/YkgEY9HHiqhNkOUTCZuBoMhS9M0+3Qfx3RZdzec3bIy5WQMDAD0TCaAfyzEmN2OxT8ddpcLDlt9PRbSfj8mPJcLk4fVqqLcdjs+U10d2lFmJGJwEECQkYGJwGLBvg4fxutVVdHJwOFhOJVuNyagysr4u4VarThvLHEqK0s8+Lvdo4GeaeXTWQYUbCRVSBwycyEnB9cmN3fyomjMPmXn5IlE2i0W3FuMUo7nmLOz4RyxdKuzE+ckHjsesEhPFpIQobHkk8LMvF4bN4JAXLEC12HuXES+jUYQgK+8gs9+9KMopaE+4sMP4x649VZkATY1gUhkF9U//xkOcFqayH/8B0g+fUlxfz+yGJ95Bvu66irsIzt7bKSSmlU9PdBffPRRfL+uDtkAl1wC54gl+7wfop0rEojNzSAxN25EUMdgQEbmN78JncM5c0Jvg5ktzISbYFe6iMfJbL62NhVF37oVGaBc6JaX4zpecQWely6NXypgIscZTBzqG6NMZtCFDXuoZzZeo9YQicTptGTEI7cb+Ds4qDLERZRuIedpoxH/8zVqJvX0YMFZWIhrYDKpZkWXXz6aQHz3XZF778X8cfPNCCIywyQQwMK8shLjeWgIPoPLhQV4XZ3aVl+fytx94w2MpbVrUYqYm4vxE2pMe72qZNnpxG+ZPx9YEe9ikKVf1PA6eBAL3p4evF9ejkynhobwizeXC7/D7cb5LSmZ3LHPypeWFtX8ZM8edc3z8rAw/9CHVGnyZEgkhDKfD+fB41GkgdGomvPEGuCh7iDnCTaTiJVMZOMJpxPHM1mZoDymjAxFRHu92K/TqbIpxxvcSkYsmqh1dyNQmZEBrKmuBglz4AD8mb17EZw4/3yMha98Bd/73vdwr//f/4n89rfAhR/+ENnM27fDN92/HzhZUQGcob4qu/zu3o0qEKsVkizEvqqq0YEJnw/+ADH3zTeBHxkZyMBeuRL33OuvY79z5+L1SOsYVl2xa/22bdhuayver6wEGbp2LQKqocaB1Qos7uxUiSyxaOPHYy4Xzn93txrvAwPA45074dPZj92xOTkIBH/2syrLMF4SbLzm8SjikLIJ6enAx0SvKVNTEUR3OrEW6u9XvrDRiHuouxv3SjSpMb1lZiofnPqIbLYSqzGT1e9XVQckO6d7XX0i4tu0ZSIaDIYsEfmWiHxMROaIiENE9onInSKySES+HeJrn9Y07Y8Gg+GPIvIpEakWkZ+KyLkiYtU0rfbYtueIyA9E5DwRyRORAwI2+Zea7gcbDIZXRKReRE4Tkf8SkXUi4hWRh0Xky5qmuYKO+WoR+bqI1IjIYRG549jf39Y0LZalwqSc7MFBOGEFBXCAReDQ7tiBQbtyZWzOqMeDSefIEXwvL08JZxcVwTHduxeTS1GRagtPJ9BkwgQZ7CgThNj91GKBc5+RobQMe3owSVZXR06/9vkA7v39+NzcufE7lMPDOF63G78zXn2HaKZpCuxJyDFCNFO6F7JknOQd9aRyc3F99A0mpsK8XtUgZSLXwu/HbzIYYu+ibbfb5fbbb5dHH31UOjo6JDMzU+bPny833XSzbNu2S3784++G+tpxg0XBGYbBhKGeLAx3T+zdi/KbykolvPzII7i3fvxjkFRGIxzZO+6AkPiFFyJz8PBhEIhHjqB051OfAqHf2goycc8eOMhf+AJe54LWZgPB+MgjwIWLLgKByA5zwQSi243F/SOPgFAIBBDlv+oqlM4YDBiz7NxtsUR3SlwuaPi89BIevb1wjtauRfbS2WdHdjKDycPJ6Jrp98NJZlkyFxjU68nOhkOsL0vmPDJVptc31BOHJA+nkoib7kYr4fDo5ptvll27dsl3v3vc4ZEmggVFby98AasV45XBrNzc0eVZfIS6Pg4Hsn1SUlTTj7feUtIJ7JqsaWju9PjjWMTecAO+8/bbOA5qOtfUYMG/fz/2n5OjGnEVF+M73d3Icty8GVh08sloGJWZqbIgg4/VZlNdlgMBbJMly+O5371eYOnevTheBr+qq5Ft2NAQuQkLdalJFo2j2VhMNjysyEI+W614Lz0dx6lvflJWNrXj3+tVxCHHr76j8kT9In2ZObPAY8V8BnknM7Crt2AsysjIlHnz5suNN94se/fukjvuOD6xKFHmdKoGKG1twCyjEfMwtZ97e+ELdXaiGV1pKfSjMzLQaOXNNzEWrrkGlRlbtwK3RkYQFGhowBhZsgT3Z0sLSMfnn0fQ46yzRG65BbjldgMP9Gsmtxtrxe3bgWMGA47h5JMxDtPSgMmvvYYxcdJJyEqMZG43/LbNm0Gctrfj9fp6lXHIBi+hzGZTnYvT0/H7FyxI7D1vtQLTt2xBsKWzE/jZ14f309KAm0uXKsKwpmZq10VMQqH8lYiS32FJ+GRbIADccbmwP/rFPT24B+fMib9kenBQVeUxE3U8MlQiivjVB+CPnZeos8YJykMl1KYzE/G/ReRyEfmtiOwUkVwRaRKRNSLyBxGpFJFrReSHIrL72HdeD9rG30WkVXBCzSIiBoOh8NjnykTkLhE5KCIXisjPRWSeiHwxaBsZIvKCiLwiIreIyGoR+byI9IrI/+OHjl24P4nINhG5TURyROTHItIR6w/uiPmTsZvdDvDLyoJj0dGBSWnPHrxWV4f/o5nbDbDv71ft6j0egITZjAlw9268X1amFnudnZh4zGaASVcXtkfRc2YRpKVhm3l5mKRYJtPRobQM8/OVBkUoGxxUGkHFxQCz4eHYM8UcDgCf0wmgIXBR82+ixrR9CtpSONhkUqK102k+H67n8DDuG+pJcZGWlYVrY7MpTYypNJ678eh46I2EZFdXbJ0rv/zlG+TJJx+Uq676gixcuFRstmHZtWu7vPjiG/Lxj39aDh8+Ig89dI9ceeXXpbKyUdLTRW6//apXgzaTVFjE0rBQZcl60jCWxdvQEEqPmXnl84Hc6+tDCc5LL2EMnHGGyNVXwxn97GdF/vM/Rf7wB5RAMwuooQH33u23oxFBXh5eb2rCdgcHgTd/+xsW/zYbSmouuwyO7/Aw7nE9gehyoaT4scfgLObmgsy89FJgnQhwaHhYRTTpcIcylwvO8SuvIDJvs+F+Xb0anaXXrlVEuNsdGvep7xIIKMIzUQ6h04mFeXMzHrt345yJYB/19VhYLFmCRXqwY8xmDpNpvPdIHoqo+y5UQ5epNhKJE9VHFImfSAyHR88/DzzasOGIPPbYPfLRj35dcnMb5Q9/uOoqSWLfaNMmzMt2u2rskZuL8UyNWy6+aW536PHp92NRaLcjqDoygsVoVxcW6jk58D3Y5OCtt7AovuwyYOKOHdhOYSEwKStL5J//BG4UFqogKRu1DAygScs//oHXli5FRlFZGY7B6cQ2uABkyTLLBlmyPGeOWthTczQWow52aysWxCzDq6nBwnfePBV08ftxvMFG30TfnTMrC6/HcyyhzOsFoblnj3p0duI9gwHnc8UK4P6CBaObAdImegzRjKQeG6PoOxeTOGT2oMORuP3qM8NjJRO5oB8ampwutMF2ww03yGOPPSif/vQXZNGipTIyMiw7d26XN954QzZs+LTs3Qssuvzyr0tJSaP86lfJjUWJNE2Dn2K1YswHAvCDtm5F4LKrC/f2xReDKHzoIeDHbbdhzHznO7jOn/wkxsjixfBjnnwSWHH++VjDuN0YP0YjgrM/+xl8r1NPRQXEqlUgxzweBFD0QfqWFmyzrQ3rr2XLQB6S4NM0Va2QnQ2/IVyVmKbB13jlFQRre3uBlUuWiJx3HgK1JSWRz5nLhWM6cABjorERj0Q0m/T7gZP/+hdwf+9e+DmpqRh31dXw4UgaLlw49dqvmjaaOCQ2mM3A5enQzmcwzu0G9vT3Y44uLMT16u5WzcZitbw8FUAXUbzCeH4bcdNmwz3X3Y2xdfHFMX39hOOhEm3TmYk4KCJ/1jTtxjDvh61F1zHA/6tp2ueC3vuJ4CJ8TNO0vx57zSAifxWRS0VkmaZpO4+9/oqInCEiN2ma9kvdNp4QkbWappUc+98oIu0iYjv2fcex1xtEpFlE0mJhgDs6EhvlcrtVB63KShUR37cPkwyjSNGMehMOBxaVVVWYhFJSAPp2OwB3ZASp5OxKyMkxMxMRsZQUHNPgIMCGJcvUOwwW6+7oAGiWl0ePkB85gv1nZmL/8ZQdO534PTYbzlVRUWIFqgn61A+kJtN0p1aL4NxR45AOMEkSZnfMJGOzi5yciZEq1OeMltmoaSKLF+fLRz7ySfnmN+9636lnpoDPJ/Lkk3fLT396nfzsZy9Lff06cTpFLrsMUa5kxaKDB0ULzjAcz3jw+dBB8NAhLFgzMpDJ094O0e72dpz/FSvw/8GD6Lp8/vkgHjdtgrN77bU4hs5OkIrd3XA8P/UpVRpqNsNBfeghLIZXroSDXVcHrOH4I4HY3Q0i8qmncP/PnYtMpPXrR+OH16s0ErOzQ2OLzQbC8JVX4PCz1Pm001AeePLJsWESj1O/cJwITvj9OPfNzSAOd+7EOSZxVV4OJ56PBQsmRtBPxEjMkTwUUdl+4+moPNnGRiuJatoSjZT3enFfn3FGvqxZ80m56KK7pL8fDjabfg0MiHR13S0dHddJbe3Lkp29TnbsUBH3ZMSj++4TjdUOxcUYV+PtQr5rlwoemc2qsuLDH1bi/3Y7ghf79+P1D30Ii8vDh1UDE4cD2zh4EFm81dVYWI6M4DoVFoIQe/JJ+DG1tZBQqK/HvW234/izsnBfezzYTkeHCpTNmYPxGe/49/lwrPv2wS9zOlVwoKEBeBjL4pe6VwwY5uaG7sgZqwUC+I3UXtyzB+ePBGphIY6Pj/r6qZNICDZ9x89g4pAaW1OV/cg5QR9QirSY9nhwf5lMk+e/UeKmqSlfzjrrk3LNNXe93ziRjY2GhkRaWu6WzZuvkzPPfFmKi9fJQw8lNxZJAjMRN22Cr9Dfj/NVVgYCccMG5ZdfcAGCoa+9Bhy6/nqRBx+EvEJFBcqdNQ3+8EsvIdFjwQIEK61WzAcLFoB4++Y3UW1QXQ35mPPPV9nJPh8I+sxM7HvnTugoHj4MvD3zTPhh+gxFVlkcPYrvnnrqWKyihMvrr4Oc6+8HFi1fjuDu6tWxdUT3ehVm+P3wJRcvHr+8lKbhuClLsWWL6ubMRlJNTej83NQE4nAyOrfHeqxstkntSINBSV9lZMwc30jTgAsOh2ok1dcHHI+3eoWSGwymm82hs/Cp08+EIf2D/Qx6elS2JLH08cdjykQ84XioRNt0ZiJaReRUg8FQrWla2zi38d8hXrtIRPbzwomIaJqmGQyGnwou3kcEjDMtICK/D9rGP0XkYoPBkKNp2oiInCQipSLyC164Y9vdYzAY/iFgmKNaOD2s8RgdyfJyALzRCAd1YAB6Ok1N0Vl9lwtO6JEjcPDWrwcQHD2KCS83F6BrteLvVatU5g6br8ybh99ls+E1hwNgUFqqSpb1xtJntxtk4Ny54R1eTRvdKayhAYuMWJ07jwf7cjpx/PX1OKZEOIeBgAL+1FTVxWomAL7brZw9EofM3GQ0a6YaOxFyop/IuaTOI7Uy9HpEFDr3+0VycvJk27bN0tnZJhUV1e+TrCR4KDrf2IhIbJi4S1JhUV1dLJ+Kbv/3f8CLxkaMsS1bQATedhvGbk0NHtdcA7x54gmQBTfdhHF9663ICDx4EM7zSy/BCb7jDhCPdjuu1TvvYOHf3g7n8o47gHEiYwnEt99Gp8IXX8R7p5+OTqwf/ODYse9w4D5h4yC9k9zfjxLFjRvhTPt8OPaPfQz6hqedFjvRzWwXatnE0vky1DZYlszHjh1qjOfmgui44AKcu5Urp06vJ9Ix60uVRWY2cRhsiWi0Qie4pwdOc1+fcnxZzkZ9IRERjydPNm3aLF1dbZKdXS2lpbiOc+cCx3ftErnnHpFvfAPXOowlDR5dfnliAm5tbRgLJSUYy62t8EkuvRTjQQTn/H/+B2P7xhuBJW+9hXli5Upg1aFDuNadnZhL164FAT8wgHu4v1/kvvtAQubmogz6jDPwHWarmc3wWViy3NWF75aXA9+KiuK7n9xukIZ79mC/rO5gNvGCBbGfw0BAZR6mpSFonJcXfxbI4CBIWr2WIQnJjAyQtldeqZqf6HUop8OY/c0HCUM2RpnuoC+Dlnppi3D4aLfjnsjJif+4g/VG2bRI/z99ME0DFmVktInFUv1+xVBDA54tFmTlX3st1g9hLGmwKFF24ADOS38/zmlxMQjE9euVRvr69cCi1lYES9etgz/0zjvwL774RbzHYEFvL75z2WXApoEBjLfrr0c2dFYWMO1b38L97HYDyzQNQQ6nE37M9u0qm+y88+DTBmf6dXXhsx4PiMD6evWexwM/7/XX8RtHRhRxePXVaCIVq8SU34/ft2sXtltdDUIvXokqZpyTNNy+HeeHwdqqKvhrK1bAD1y4cGolEoJNv35kWS+1/riOnG4t5VBmMGDOy8hQ68vUVHABGRnxZUcz6/3gQSWrRX+LJOHQkJLbYpYmm7iyaoX7rasDb1FRERfXcsLxUIm26SQRbxaR+0XksMFg2CkiG0XkIU3T3oljGwdCvFYjIs+HeH3XsefaoNd7NE1zBr3GAooCERk5tk0R1MoHW6jXJtUCASym/X4sLIxGOKp798I5XbYs8uJM00A4HjqEwVhYCDKQYqkjI5iEyPSnpcHZZip6Xx8mtKwsOMt0ao1GkIf5+aEX1x6PcvQLCyN3dnI6QZKyWcvcubGntFPId3AQ2y8pwXlJRBq4z4djYskyCafpyu6hOZ2KOHQdU1BghqjFMvVp+eM1NlphhkSoSYkls6FIQf3/mqacbWa3UBicpeZo+nGnXH/9VfKhD9XI0qVLZf369fKJT3xCTj75ZBFRDg27aYexEw6L3nwTBFtREbBg+3Y4gzfeCBwpLsb53rABuPDMMyD4br4ZY/IPf4Az95e/gBTxeEQ+8xk80tOBEyQE9+2DI/yjH2FRT9zgwsvtRkkhP5uXh6Ygl14KbAu+/1kWRpF6ZuB0dqqOyu++i89VVmIxfPbZcELZvCEWmwh5aLPhnLJT8rZtqkGC0QgC4WMfU+U3tbXRs1imwkIRhykpmBOSgTjUW2qqWtiHOq+BABYrJAT1z3qS0OEYqzVqsWCMlJSABCoqwmP37jvlRz+6Spqba2TJkqWyZs16+fjHPyGnnHKyGAzQEb3nHtzXZWVhDz1p8CgR5M3goOoiarHg70OHsDAngbhvH7KmRSClYDZj8Z2SglI7LvTfe0+RaitWYFwND+P7r76K7WZlIdNnzRpgm55AFIEPtXu36kQ5Zw4WyPFk3rECpLUV+wwE8P3GRgSK587Fb4h1PHFxZrWqbeXnx3b+GXBmp+TduxHQEMH+580DGUEtw6nWDgtn7OTJjEMRtfCcCUL8emNghZUQXCiHIhPZoID+MbP1bTZFBIYjCZ3BI1pUxVB+Pu5VkoWNjXfKN795lTz0kPKNzj5b+UaUEpozJyJJnDRYlAgbHIQv0t+PucFiAbH1gQ/gfa8Xf//85/js176GcfyZz+D63XoryL2XX4YvQuLmssvwvYEBBD4efRSfoTzLRz6C7xmNGK+HDyuJmSefBFnD9dCKFfC9gtdgmqaIuNxc+Dx5ebjP3nkHxOE772D7WVmQgjjpJBCIsWhI6/fDCgqHA/PYsmWxNenwehFM2bFDHeuhQ+r92lr8Pna2nzcPPlxZWWLKosdrfr8iDrl+TE3F2iQzMz6/crrNaMQang1nhoaQjDR/Pt7TNPxGNuvUk4L6/6n16HTimbr8RUWqhNtiUSQi9SBzc7F/YlZe3rixfJaHmqBNG4moadpjBoPhXwJG9kMi8hkRudlgMHxH07TbY9xMiOkwbvNHeG9GDunOTgzQykoMqkOHEPkqKcHCMpLzZrMBgNkJl01FiotBLB49qkgxpxPbqqxUBGJPj9Il5EI8KwsAHVyyrLfhYRCfmgZgD5c6zpKYri4ASl1d7N2f/H4s2Pr7sZ+CAhx3IrTGXC4AnsejNCqysqZG2DaUsXkLiUMeV1YWHLp4JvSZZPpSR5aBUFNSTxIGm15TyGzGPc3/OdEVFoZ2Iq66aoOce+5p8vTTT8sLL7wg9957r9x5553yne98R771rW/FeugnFBa1t6Pkht07d++GQ3fNNTjfZWVwYn/wA5TB/P73Ir/6FfTFzjwTHQNtNmTxvPMOnNBvflNFvHfsEPnd7/BcXi7y9a8jCq/HNpbyPvwwMhyHh7GAvf12ZB/yPggeB9QAQxYq8ObBB0EcNjfjMwsWgAw9+2zVOTBego7kIbVHI2WW+HwgC0gWbt0KTCfxVFeHSPry5cjAnD9fHQs1faZz0R6qozIXwJPdUXmyzO1WZGBXlyop1pOEfX1jdUVTUzGfFhcrIXn+T6KwqAhYpP8uy50vvXSDXHfdafLss8CjP/7xXvnFL2bxKJyxMYDbDdzZtw9jZ/VqPEQQ8PjTn3ANbrgBY37nTvgIp5yC8fPaa8C1mhrMFSYTMlja2tCMqbUVn//IRzD+srNHE4goNcezx4PFTkMD5uNY/YShIVUOTH8pPx/HOH++8sPikUHQk0t+PwijgoLwC2rqLJIw3LUL55P3alkZMgs/+lGVBTndQVS9UWvL7Va+Qmoqrkd6+vT5bLEayUT6Om638vdIBlqt8I86O3Ft6QsG+0YMVuTl4V5duFBpk+sX4OGCzGecsUGuvHLWN4rVvF6Rp59W3X6zskC+L1+uGkkuWSLy05/iXvz+95Hx96c/YV30i19gvXX//fCVqqrgP+XlgaB/7z34N88/j21ffz18g8JClEMbjVi37d2LR1eXqrRYuxbj3mCATxVcpeB0oiS5uxvbXLAAmYavvw6fxOfD/XL22ahKq6/HHJ+ejvEf6xx/5AjwengYx33qqeFLYTUNOEjCcMcO+JoMCBQWgny8+GLgY0GB0hLMzVW/c7r8DxJkJA5FlA49icNkM79flRcPDWG+Y1IS5z27PTQWsXdDXh6CYJTQYICLusgMiogAC/V4lZ+fuGq6WR5q4jat06mmaT0ico+I3GMwGDJE5G8i8q1jKZ/j1aY4JCILQ7zeqHs/Xjt87Hl+iPei9KlKrLEjEkXH9+9XZc2LFoUHy0AAn2tvB4g1NqosHosFTmJ3N0C4qgqDeWQEIF1ejgF94ACAIi0N++AOYXkAACAASURBVGeX5UgOJEvw+vow8CNlFI6MYJJ0ubDdqqrYHD6WGPX24jfRYZpo1Emfcu73q7Ll6SpZ5mKAxKHPpzL3SksBxjPZQY6UPci/9Ytqln1QuzEtTZUdkSDkYioSuZOdrdLlw5VtlZSUyLXXXivXXnutOJ1OOf/88+X222+XW265RQzj90COSyxyOER+8xtgxMKFWPRu3YpFpQjuxZdfRnOVf/s3dCG84QbVaOUTn8Ci/L/+C9f8ppsgNJ6SggX773+P7+fliXz5y3AQ9QtmTYOze//9yAxKTQXBeOWVcNDtdhXhDb7WxLV9+yD+/eKLwDURkHNf/Sq2NXeu0lYhGRbrbeDzwZlipDm4oycdY32GYXOzahRRWIhFxyWXKNLQYlFjhfpdJA+ny0EORxwy43CmEoeUTIiUOciMfP13RIBDpaUgc1atwnNJicooLC6Gk5uSorJA9F3Pg5sZ6btP689XWdksHsVigYBakBYVwX/Ytw+lyevW4Xw/9ZTIs88Cq664AmNteBiL5MZG4NLWrbj+S5aA9Bsexlzz4IPAIpMJ4/H00/EegycGA76/dy+e2bCtujp26ZT+fpCGra0qu6+kBEGDhQvxN3VUo5W5BpvdDtLJ68WxlZSM9dd6e0eXJbe2qozK7Gyco6uugn/Z2Bh7UHcqjZjrdqsgZFoaFq2sQJiJRj20SJmDAwOqKZ9evzg9HdcnKwvzVUmJIgW52J6IxiVt1jeK3Z5/Hv5EZyfG6XvvqdLv1FRg1C9/ibXNjTciM3rrVmQQ/ud/gmD7yU+wrluzBmXNR4/i+7/4BcqfNU3k05+GLuK2bbjPzzwT47utTeTvf8cx5OTgvjj7bDyzeq2qamyFz9GjIDMHBlTmYksL/i4tFbnoIpCQDQ0qs5flt7GuOXp6VCl1bi7wrbJy9GcGB1VZMrMMee+bzcDnK69UOoalpfjO0aMYM3Y78Le8PLIW+mSa16sao7BxiNEIH46BjJlqbJ4SLnNweBhr0GBJJwaxKbGwfLlak/KRk6MyrYeGRuOb3a5Ku41GBKooPxYpOSkRNstDTcymhXIwGAypIpKtadr7/Wo1TXMaDIY9gvbWuQLxSBGRML2gwtrTInKLwWC4VNO0x4/tzyAiXzn2/lPjOOR3RaRHRD5rMBj+K0jQ8txxbG9cxugjHYQ9ezAxzJkTWePBasVnnU4MznnzFDiYTNjG4CC2M3cu9sGJq6wMTmZrKz5TVATnm5NiJPN4MIk6nfheeXnoY/T7cQx0whcsiE1bQdNwTD09qhlHWdnEo+KcBPQly7m50xM1osA1rxcXErm5mJQS4SRO1FheHKqkWP9/KC1BEoEmk8rs1JOEeiHk8S4EqL0xOIjzmJ+vL4f1i81mE4uus09GRoY0NDTIK6+8IsPDw5J9zBsZjL9N5HGHRZoGR/bQIZSNHDwIJ/jcczH+iouhF/avf6Esp6IC0fKKCryeno7OzDt3IoJ8882IsPf2orz52Wdx3a++GgtXffmf3Y6MwwceUN1Sv/AF1ZnZ6VQ6X8GOh9eLTKONG0E89vTgfjrlFDil55yjSkOZ/RFv9iHveRKPJhO+a7WO1jHctk11STWb4QxffTVKcJYvBw7z2Dm2WIKmz+6bDtM3RtFHivVk2HSaz6c0ByORhHTuaQYDyJHiYpz/5csVMUhykBq/4QhSEoUMzgWXL+ubGOlJV73N4lF8tm8fCN/sbGTd7NkDPFm/HmPxj3+EJMJpp4EA3LwZ12/tWswJbMRis6E5UmUlsG3rVmRI2+0oIfz4x3Htu7qAL8XF+PvgQdxP6emqxDiWZhdHj6pGAn19eG3OHCz4GxoUUefzqQyWeDq4O52Y79xuJTOTmQm/ZsuW0aRhby++k5aG3/DhD6uyZDbsm4nm9SrikMQ8ZUqCAzfTYazUiVZeHIxFIrif6efX1ipfLydHySDk5OA3stnPRHykUDaLRfHZli3AjcOHgfNsSFJaqqpp7rsP5b9nnilyyy0Y21//OjRVn3kGEipuN/Bm7Vps78UXUW0xOAjJgO99D/7UCy9gP+vWgXz8179AvBmNwKzVq+HTjIzgmFjZpc/i0jT4RE8/jTWYywUcmDtXlU/X1GA/Xq8ikEym2NdZg4MgD7u6gEGnnIJ72u3G79NrGba34zspKSCRzjlHybXU16v72+fD9rZswTGbTOpcT0cFlsejiENmSZpMGL9MgJhOo7RTKGJQ/z8D2Xqj5qDFgjW8nhjk69Rw7O5GVmJeHl7PyVHNVtvaVC8F+j+UUaipwXcCAVXinJ09uR3oZ3moxNh03do5ItJhMBgeF5HtIjIgIitE5LMi8pKmad0Gg+EdAQt8m8FgyBOkjG7WNC0ag/tjEfmEiDxoMBjYWvsCETlPRO7SNK053oPVNM1rMBi+JiL3isgmg8Fwn4hkC9p07xCRlfFuM16z2zEpZWdjUdPaisFaXQ3SLZT5fIhIHT0KwG9qwoC1WjHpcDHk9WLSKC/Hex0dqjtiayuAgWn4tbWxLRSpkSCCbYfrvkxw8XqVKGoszt/QEI7L7QZIV1VNrNMfRVvZyEHfHWuqJwC/fzS4sxyS+hCTHZkJPpZIuoNsThJszEhKS1Pag/rMQf4dzdLSlLjuRDpqp6bi+1Yrzinvx5GREZkzZ45ceuml0tTUJAUFBbJ161a5++675ayzzpLS0lI5+eSTxWAwyI9+9COxWq2SkZEhl19+ee2JiEXPPIPSwOJiLD63bIGzW1YGbLrzToznX/4S7z3yCBzB225DV+X77sP9++Uvw3HOzRX57W9F/vpXOBAXXADntapKXevDh9HA5bHHMD4XL4Y24oUXqqiuzQZHjmS0CP5/4w1E5jduBNaYzSAT1q/Hgj1f5xqwQQszCGPN8mP5XCCA8bBvHxxiZhoePozPGQxYpJ9zDkiq5ctBGIQaB8zw49iazpLl4GPh8fAxVWa3hycG+ffg4NhgRXq6IgKXLFF/60nCwsLY8IjnITVVkYZ8pjGrkPNrqGtmMKjuz/r3x4NHn/nMZy6TE9A3IolnMGB+2LULwdQLLwQe3HUX3r/kElzjbdsQzDzpJNwn776L65aRoTSzHn0U+Jaaim2ddRae2RCOhP7evSpgsWgRFueRFq/MPiZxODSE4547F+RlQ8PoZgL6jr3U8Y0Fi7hgczrx+aGh0aXJ1EkTwW9esQJk4eLFWKTP5CwZkdGNUfTdjNPTp5Y49HhUd9xQjUkGB+FnhJI6YDlxVRXIkeDS4ry88FhEjV2/XxHE2dmjNaQT5RvOYlHs1tGBpnC7d+P8W61YT1VWYg3R0QH8Oe88vP+NbwAzvvMd3Ce//CXIsPp64M2CBXjtz3/G+6tWIdh5wQW4h154AWRLcTEqMphIsXYtggAkX1jyziow6tUdPIjjfeIJHFtWFvZx2mnYBhtoiowmdqgnGsu8z2YnbW24nwsL8VseeACkITsxiyhNxE98AqTh4sWhgzFcB/f04LgsFiU/MdUBTJdLVaqxdNdsVqXKU+Ub+XzRswfZtERvKSk41txczI/19aOTU/iIh5TNzcW6f/dutY6lxJTRCIyrr0eQLC9vLBGtaQiqcc2Xnh6eO0iAzfJQCbDpIhEdIvIbQQ36BSJiFpE2EblDcPJF07QDBoPhRgFz+78ikioin5YoaaCapvUbDIa1IvJDEblawCYfFAho/mK8B6xp2h+Ope5/7dhxcpvLRWTReLcbi7ndGJgmE8Cd0fPaWmQVhrLeXixmvV44K4wmdXdjAjGZEPl2ODAplJVh4LJLVlGRapleVITJsLAw+rFqGiYtdv+qrg7tmLLJitWKz82fH1sE32ZTHZfNZqWrMF7jBOlwKIedk8BUTkper5oAGO2jeK3Fgkk+kcfDjJlI2YMkVIItuDlJMDHIcsZEWEoKnGSm0cfbtU1vRiO+PzKCB65zpnzxi1+UF154QZ599llxuVxSXV0tX/va1+TWW28VEZF58+bJXXfdJT/72c/kuuuuEz9m4zPkBMOinTtBBKalYfxRy5BBjO99D/foT38K53doCFH2efNErrsOi+gLL0Q31kAAjvDDD2PsrV8PB7KkBNdb05Ax+MADyCBMS0O242WXYeHLRZam4Vr6fCrC/o9/gDR86SXVJOq006BldtZZY4MNzPajFkusi1GfD2QCuyQ3NwM/6VCWleH8XH45AjjLlkUusQnOYtNnQk4lFpEY0xOH+o7KiXaOAwGVUR5cUsy/e3pUiaXe6ACXlICI0ZcW8++JLqz1Zcj6TuA8Dykp6hFclhzJqPvDay0yPjwSkQflBPONbDbgkcOB8bpjB3Dm4otx3/z615gzrrwSvkZ7OxbnVVVKE7qgAOORmTq//jX+PvVUdPAsLFTNIvbuVVrQzGxnCWm44KXfj+2SOGQny7o6bH/BgtDaTpyDiUWxjDePRzUbOHAAvhUb54ngeBctAv4tWoRzMYmLs4SZpo0mDjlWSBoy2J3I/dlso7UHQ2UShsIiZtXk5YFA0hODfJ5oAJi/nQEr3ismkyI0JhJM19ssFsVmdjsy+XbsUIROcTHWZ5mZ8Ava2+HfvP46Pnfhhag+2LgR67TKSpB3IyPAmhtuwJpv9WqULldVqaYVf/0rsC89HfhSVIRAxMKFwJbUVCUjxdLhOXOAD5s2IbDKtVdVlciXvoRAS6j1ndutMIQZvtGM2oqvvorfzYQSapNnZyOYd+218ImWLo3cuV3TVHXc0BDwt6QEYyxR93osxmYhLLulv8gGIJmZiQ1icH/hiEG+HgqLWD2Xm4v7MDh7MDcX12Eix+vzhW7a5PUiuMIsapNJNVKNVs3HihD6hIOD+C2J0kAMslkeKgFm0EKxBLMWsxkMhqdEZKGmabHUpMd9sn0+FT2ursZE0NMDNr+mZuzn3W5MSn19AImGBuUoDw6qlPL58wHMfr8qzdmxA4vzefMwMdlsAIXS0th0cNxuTE5OJ7ZZVhbaYertxaSiaQAWipNHMqdTlR2xPCcvb/wOmderuiyLANymWujW41H6hpxgTSaVcRgLqRrK6GBGKzEONn1zklC6g/x7OkoWXS6co8zMiU8o1N/Iyhr/OZYZKHY7mVjU14fGJ0ePwiHYvBkZLGvXwmH47W+xqP74x0EMVlaKfPvbaFbyxBNwYm+7Dbj1yCNwuoeHUS7zuc/BKaQm5lNPIfOwrQ04ctll0FukhAIJRL8fuGa1omTxxRdBOLrdwIbTT1dljMXF4aUUSNpFy47t70dm4datyGLasQP7p2B0UxMeLEuO0Dl39IXQRo9Jva7gVFmojsp64nC8zqbHE1l3sLcX91ZwlJz6UcGEYPDzZOB1cIZhqCzDQCAx10hPIk4AV2ccFonEhUdxYZHPh2zBjg7MBdu3wze6/HJoif3ud1h4XHIJsCktDRqJLpfShJ43D4u/557Dtvr7sSi96iqMW4cDGDIwgCDByAjut5oapYVoNI6dP7xekHitrfDD3G5V6tzQEDnbLxAYraUaKfvQZkPAoqUFGd+7dgFP2UCkoQH4vGgRHuGkZGaikTh0u1Ug02DAWGdH5fH8Fp9PaXGFIwet1tANAXJzx2YLBpOE0yV3w4xVEhsWy7RmlM7Iu2yysMjvR/byxo2K1CkoAEmWmQlfwe1GduBjj+G+vvlmkMnPP49765xzkHn3wAN4kFT8xjcQ0OjshP80OIj333sPeLJmDZ5ZjTV3rsqQb2tTgbk9e+CvWa3AvvJy3CMnn4zAbKgkDHYS9vtVNVE4H8DhAA5t3YpmMNu3Y1/p6TiuhQsVWdjUFHvndq8Xa76uLvxGsxnHXlo6ddVh1Cwlccjs58xMPMzm8flGlKkKRQrq/2dptN6yssZmC+pLiym9lejgCjkEPkZGlG+UlTUaEw0GzJ2FhThPbGSYkaFkGCKZ1wvfcHAQv6msbFzXfEZi0WRYnGu/xO57lkSMzQwGg0lEPJruhBkMhsUisk1E7tE07foYNhPXydY01WikqgoRqv5+RLCrq8d+9uhR1dGzthYTD3UQmFpsNmNbdJrS0vDc1obBetJJAKH2dgBneXn4Tsp6Y4m0wRBauFcEv+PwYVV2MXdudMfL7cZic2hIaRGNN3VdH0marpJltr0fGlI6ZxkZijiMpjMSnD0YiiQMLqERUeRLJJJwpoqP00ZG4ITFm2Ifyqj/MQGty2mboKYai7xeZBm+/TbG3zvvAF/WrQMmPfQQHNqKCjiSH/4wiLvf/AY4c8UViDq/+iqExHt7gTOf/zwcS6cTi+7HHwe56HSCiLvySmQoiqgsYY7Tjg7oJ77yCgg9vx/O5bnnQm9o/nxVrhGKdNZnH5K00zs2TicyCPTdkjs61AJ/wQIQhStX4jFvXvzjhwQmx+tUlyxPhDhkN71o5cXDw2O/m5kZuqRYTw4WFEzNedCTheHKkvVahjR9KfJEjzMBROK0OssJwKOYsUjTsEhtbQVu79wJP+eKK0TeegsZ0CUlkEpgRtD8+Sq4WVoK7GpthV5iTw98qQ98AI+UFNW8bmAAf5tMGOtstsQyUhKILhdwsLUVVR7Mim5owAK6piayf6EPIoTKhPZ6QY7quyW3tyv8mjMHpMWKFcDTurrp1+CK10igkjgUUbqyJA7DGf26UOSgniTUN0qiscQuFCnIZ4tl+vUVoxnnEqsV56OwcHq04eQEwiIR+B+PPALfgHrby5Zh/ty+HQkcdXUgDOvrRb74ReBURwd8iIsuwti+9VZ8vrISAdPLL8f919ICDOrsRNBS00QuvRSdmJ1OvJ6dDQyjPuazz8JX279fYdGqVcAHpxOfWbAAPlgon8XlUprQlCKi+f3YLjUMd+4E6el0YvwWFIAQXbcO+2xsjF+j3mbD7+rrAy7k5cG31GuZT6bpG2o6nTjnKSmjicNIx+HxRC4t1leb6S01NTwpqH9MxTqNmrr6AAsDvenpsXV37+rCOZwzB9+x2cBHUNM/2n3BtT+bpsWSbBRkxx2JmKC1X2KPaZZEjM0MBsNqQS36X0TkqKBDzuePvb1C07SDMWwmrpPd0YEBVF4OcnBwEKA8Z87ozzkcSmcnPx8TRCCgOviaTMrRKizEIq+9XU0QVivAf9EiDPD2doBIRUX0kpdAAIA/MKCiYcHOCwnOo0ex/aoqgEIk83qVxpXBgMVAUdH4nDlG1ViynJamMtqmYlJyOBRxyNIARpMYNdYvJCKRhJGak4TTHZwuLbVEG7uq0rGYyG/itny+yBpEEWw6ScQpwyJNE7n3XjjK+fkg1CoqUBb3xhsgBs89F+PfZkMTlZYWvN7QgHLm4WF0XG5pAT78x38ggzEQQAT/gQdATJpM0PxhJ1ARRYqnpQFnnnsO5cpbt+LY6uqw//XrsYB2OJRWmcUSXm+QC1Vm1u7fr8hCkhR0miorsW0KfDc1jb9ENlTJ8lR2Myb5pScOU1IUaZiSgmPr7x+bORhMEoZqTpKfHz5zkH9PZQmS3oI7JQcHW/RkYSyEHpvLJOLaTZBInO6F+0TxKGa/6NAhZN75fBijpaUin/wkcOH550HmL1mC8V1fj3mwuxsLlvnzgflPPIHAQ3Y2FuzV1cAKrxcYZbOpzu4lJfCnzGa1UE5Px7XfswePw4dxL+XkgDRk2XQs8xOxSJ8J3dExmjCkLI0I/LR583DM8+YBk6qqko80FFFash6P+n3sZm8y4TexOUk4cpDPoRoCsDlJuMzBvLypl62ZbPN4gN0pKfh98XTyTpCdMFjU2grfqLlZaXY3NeFe3r0bfpLHA9/iIx8BLr35JtYdF1wATLnjDgROc3LQrXnVKtybZjMqMjo78b/Hg+u5YQOCEizvzckBJrz1FnyuTZvw2ZISBHLXrsUxdXfDX9M0lEjPnTv291DvNRBQY7C7G0Th9u14bmlRyQ+UdMjNxRqVmoqxJJ2MOenHtPA6O3Euib3l5ROqForZ/H4la8XqNGZ1kzjUNLWWi5Q9yO/rzWwOTQrq/58uLPJ6Rwdb9HhK6Q5iZ35+7P6b368Si9igi9ngXi/ur2ikqN2Oe5BNYWORVNPZcYTssASt/RJ7TLMkYmxmMBgqReTXIrJaRIoEXXteE5FvxCGSGfPJZplXQQGi6MPDiPDoS+SYtt7WprpZWSwYpHR2LRaAX0cHBrDNptKM58zBPlJTVeertjYAyJw50fXn3G6VKRmufNlmUx2aCwrg/EZyeP1+9dtFlC7ReJxkdszSlyxnZU1+qQc7YZE4dLlwrcxm7J+ZUXqiMFpzknAk4VTrpU23+f04p4zaTeS3BwIqcp+fH7ezPZ0k4pRh0T//KfLzn+Mc7d2L8bhuHRbsu3cj63D/fjiTH/oQ9Hp8PpQoNzWJ3H03yLmCAjjAH/0o3n/0UZQsHzkC3LjySpGPfWy0bILHg32++CL0E3fvxnHMn499XXQR/mZ5KXGPDlvwvUFR+s5OFUXfvh1RdcoJ5OaqpicrVoDMJIampY1fg4sSAxznU1myrNc3ZHOS/n7MA8RafXnxwEDo5iSRMgdLShDkmUlkRrSy5GDScDzG7LFEXEc9qRunTffCfaJ4FBMW9fdDa8tqBZlYVAT5hEcfBcYsWQJCzWxGcIGdbysr8dozz+BzqanIwlm/Hv5Bfz+ejx7F3LxokcqSKCnBa04niPPDh7FvNo0rKFDEYTwlw8Si/n5gHDMZd+9W2btmM7a7aBGCx/pyxcxMzFkzvRFKsLEhiMeDc2q1wkd0OPCsL5mzWlXQUG8kyCKVF5NAOxHN7cZ5MxpxD01xhvsJgUV9fZBwefVVpa+9YgXOe2cnCER2ab7qKmBHf7+SOvnNb1DBYTaDUPzc5zAeDh7Efb9zJ9YrZ58t7zdIWrUK67TeXuDF/v143rkT19xkQlXEhRdiP8SKLVuALQUFIBaD13VMMOnvVzIMzc3YLtdhRiMwiGXJRUX4vM2Gv5uaIusahjOPR5Us03erqADuTrYv4fMp4tBux8PpxOtut9IjJFEYqjmJwaCak4QjCXNyZg5O6zvG82Gzqff1XeHz8/EbJoIbzJbNycE1pdntar/sQRDOhoZwf4iAl4ikKx5kx93KOEFrv8Qe0yyJOKUW08nmRJSVBcfWZgNw6wfh0JDqEFhSAufZ4QD4paWpKKvVionB5cL/Hg8GYmUlJqFAABHttDQQiHS6ow3UwUEQk8wsDJ6Y/H6839MDAI3UoVkEx9HXp/SxmNESL/hyQrTbMRmkpKiS5clYsJMI9HjGRnI0TRGXzGygUfMoUonxTC8vni7zeDChk5SdiPn9uF7smhgHmZDsE1RULDp4EJmELKfJzkbJ37PPAn+WL4dDe/rpwKiWFpFTTkFp4TPPQJ8wPx+lOStX4jw/8wwi7y4XHM9PfhJOL+/1QADO69/+hizF9nZck5UrUaJ4+ukgCPTXndqimja2fNlmA0m4ZQuyDHfsAFkmgjG2eLFy7JcvV3o9HNPMNBtv58/gkmWO60Qv6EiIM1uwu1s9mEnY14c5Ivgep4MXKmuQzxPpjD4VNt6y5ETslwLr00gkzuArE5NFxSKnE3jy3nvwUwoLEUT485/x2ooVSnolLw/zQ3Y27t1//hNZOCYT8KO2FvjR0QEykEGCqioQkRSILyrCeNm2DeQe9RXLykDuNTTEt3B2u+GzNTfj0dqKxRHvydpa4BG1DGtqcE/Z7TgmrxdzHjOVZqoxiEoikEGKvj68xswdt3tsEDQjI3LmYH7+xJuTnAhms2H+ysxUWBhPl+8JWLJfmahY5HYjOPrkk8CErCz4DpTvyMsDRs2bB7w5dAj37bp18H/uuQfX5Oqr8VpuLnCB2dGaBmy5+GJFFjY1gQT8299AXOobbS5bBqxobBwtnWCzATP7+4FXJBZFgCV798Iv2rYNvtt776l7o7ZWVV4sW4bjMRqVdv7AAHBz2bKxlXGx2MiIKllmEJ8ly4k0TVOk+vCwkqjo7VUBDDYDCV5zGY1jicFgknCizUkm2/Q4zGf6GCbTaMJwsgIvAwPYd2npaF6BEmuUBwlXOcRtdHYqObYYJaiSHYuSwmZJxKm1qCfb4cAElJYGsHO5ANQs//X5MCl1dGAg1dYC+JxOPFsscMSoV8VFeE0NBm12NrZ14AC2pScQfT4QiJGImUAA+x4cxOeqq8cCDzUWmVY/Z074BZamKWD3+QDMpaXxO8lMR2c6/kRLlvXNScKVGHs8KnputyvdNjrB1IqYKc1Jjifjtc7OnrigOUkoZu7GaMl+BSNi0ciIyFe/iky9vj6Mx5NOghNrNGIhnZIC4e8tWzDOrrkG437jRvx/+eVY6D/1FBzulhZs5yMfQdODBQtw/QIBlOOwJLG7G9teswalymedhbHs86nSEhp1VtLSgEcHDqiy5G3bEFWn01RbqzIMly/Hgj04SKHXFeWiK15yKNElyx5P+I7FdIj7+lRJIKf0lBSlJVNcjOdgLcLi4plNSISySGXJwYThBBuWxGSJ1Efk9kTi2tZxjUWBAEjA5mbgCxfkDz8MX+Okk3Bv67WSS0qw2H31Vfz/wQ8i83DPHixGGHBtaMDinET64CCCJz098J26uzGWa2qwqG5oiK1cj1Uiu3aBgGxpATZxjJaUgLAkabhw4dhx6HTCN2JVSX7+1JT2RTKWo0VqTMIMUEomEAMtFuBRYeHYxSufkw2LZqpRrkUEPjXnI5FJ90GPayzSNFRb3HuvIjWWLUOyh8ejdAlPOw2Y4nKhgcm+fZB0sdtF/u3fRL7yFUXidXfjO8uXw0fJz0cQ4cAB4JfDgTXX7t3YBysx1qzBdWTzCZaMigB73ngD13j1ajxTx3DHDuASEx3y8+ETkTBcsmSspv3AAHzB7m74WUuXIjEknnuIiSKdnfDbUlOB2+Xl42uWGAhgO6FKivX/M7tQrxefkwMcKiwE/k9Fc5LJNo9nbFkyJWe4LtXj7VTNJZqGa+7xhJbeYMZnIID1QFZW6Cqinh6MCo6VSgAAIABJREFUs/x83Osx+OVJdPWS12ZJxKm1iCfb40EKPDWpfD4VgRJRpS9uNxbxBQUYgHqhUrL+LF0zmZC5MzSEgVlSgn243XjdaMSE4/eDEIwE5i4XPutyYTvBQqdeLxzvgQFsp6YmMiFptWJS8njwubKy+IEtuGTZbMY2ImUwBjcnCaU9GK682GBQzVlI3DI7oKho5mfsHE82PKyI54mWPrhccOQyMmJOl0/2qxwWiwIBkR/+EOTfwAAwYv58iIgXFqqxajZjYj/jDJBRzz2H72/YgBKd554T+dOfMMbnzkXJ8oYNGDMuF5zSF17Aw2rF9tauRbfCD30IY4odmDVttBQBNdG2bgUxsHs3HGTiQEHB6I6AJ58cucM89blIBqWnx08exluyzI53oToW60lCLgb1lpGhSoiLivDbmEFIbC4pmdlR8lgtUllyvDqGk3mMJJ6nQR/xuMUiEZCHb7yBRbXFgqzkZ57BnL1qFTCJGrmZmcjSefVV+DirVyMQ4XIBK3p68HmLBeSd0ajm8x07sC9Kj1RUwEdasiS6FlN//2gdw9ZWJZGQlYWACRutLFs2uqok2Nxu4K7LBfzIz4+rhGvcxvLiSN2L9R05acwiyc3F4lyv91xUpIIVM0nq4EQwnw8+Unq6ynCjfyuiAtsJtuMai958U+SnP8X4Tk8H2dfdDcxgl+TVq3GuS0rgC9x7L+bz884TueUWvLZxI4jF/HzM1WvXKr16EUi4vPii0kKsrARenXkm8MPvx1rMZlPzvQhe/+c/RV5+GZjkduNYBwfxPiUSGhtVFUZNTfh5ZngYflV7O9aSixejpDoev8LjAfnT1QXMzswEcVhSEt430jcnCdegJBQWUeYoI0M1ZWIlWFGRCqZORyf1RBrle/SEIecbEZwDfTb3RKWfJmpeL+bl9HTMq8HHwm7VTidwKTd37Bre78d91NurunRH+U3JjkVJYbMk4tRa2JPt94Pcs9vhQIoA4C0WJc7b0wNwZBaQCJy21FSACLV02L3W7cb3GYkpLVVdl2trAaTvvQcgrq6OHAVmOnFKCj4b7NT29WHbgQBAIpQ+Im1kBBOKy4V9lpVF11/Um6apRin6kuWMjNgalMTanIT/szxnZETpODBrzWI5/sS5k8U4kYrEXYoc0ux23FPZ2TFFRpP9iofFor/8ReRXv1KNkMrLkdVXVIRxWlEBvCkuBka9+y7G8nnnITr+t7/hwZLla66BdqLLhaYoGzeKvP66yiQ9+2wQh2vWAA8oBu/1YrwZDMDHlhYcxzvvgBBg0yWzGQt9ZhkuW6a0Y5lNGM7YFZQlqenp8S92Q5UsGwwqwzpU92L+H6ohQKTmJOxObzaP7ajMBinJbNHKkhOhYzhZNo2NVmbYmYjbwmJRRwfworkZfk1dHQjC1FQsvLOzVWOsvj6RzZsxTzc1IRBBDVQ2NZs/X2WZ9PRggdzVBZzx+bC4XrkS1RNpaZgHghczTicCF3rSsKcH71FfetEiPBoalC8UrZzU6wVmOBwqcyQRpbtcoEXrXhyuOUm48mKLBQv0tDTVHIYYajJNSensrEUxpxOPrCxFnFCPk3Mefd0EWbJf8bBY9N57It/+NojE1FRUcVFmgF3SFywAZqSlQbalrQ2k4k03YRv0W1wuZFBXVGAu7+8XeeklBEr6+jBely5F1iKboJAAY7KJxwOfjM1P3nkH5ctdXbjWGRnAIpYlL1miSo+JbeHIQIcDmHvoEH4rdV/juU+Gh4G9/f245woK4Eump4cmBfVkYTzNSRi84P3NajR2l2ZFWrIGVPXyEHwwc09EJbHo8XkmBmxsNtyr+fnhA/puN36b34/rFjz/eb0YUyMjGBdRyt+THYuSwmZJxKm1kCdb0zAwKHZvNGIxnJuLhTxLjwsLVUSBWidWq9KWKSjAw+/HREIihI1PurrU4DObsU+DAaRguMiMvnw5OxvpyPpFuduNCY3iwtx2KHM4cAx2OyaS0tLYO3kFAirteWRElQWR9AuXPWgwRO5azHLFYGeXOhpDQzhuEfwuEofjSb+ftcQby6uoXzJRo0YHu2ZHsGSfoEJi0TvviNx8M4IWBgPO6eHDCnuysoA7ixYpZ/cDH4Dz/NxzIPkyMlCyfNZZcJK3bwcR8NpryvFdvx4ZQqtXj16EGo24ptu2ocS5pQVZhgd1Pceqq+EUn3oqHHE6twwgcHEUqTNlMHloNMaeleFwgDSgIHhPD85Ff7/qajwwMLYhgNEYmhQMbk4Sqrs9G6MEE4eToa84VTZdOoaTZYnWR4yDSDwusWhoSOTvf0cWYk4OMLm5Gc8nnaQ6k/b0AC+sViyaP/hBnK/+fjwXFiopl/Z2LIxJHObmggwoLcUiu6QE/gkXMSkpwD/i0K5d+D7HYUWFIgwXLQJJSV+KgUviS7h7wudTWX7shhmroL3XGzlzkI9IzUkiaRAGYxFxkx2VNU1lbvMxazPLRkZUxYb+HgwEVIlntHs0DjsusWh4WOQ730EGdCCAzEC7XTU0mT8ffonfD5Jx3z7gyWc/izGxZw/GCvWci4tVOfOhQ/AfWCackYFy6HPOwdpreFjJNbS2gmzcuxeZXfv3qyQJas+feSaqQxYvVpVgbBTCoGu4cep2A+f27sX/DIjEIjPg96umVwcP4jcxm5qSWySI9BbcnCRc9+LgYw4EVDKJ06mwSE8cJmMQw+0eTRharWq9y34HetIwmSQgenqARxUV4dfQmqZkivRVljSXC/eX34+5O0L1YhJe/eSzWRJxai3kye7sxKO3F6C/ciVAd88egEh6Opxb6uv5fMrRNZtVeU5KCl5jxmB6Oj5XUIBF7dAQSMCMDDjTzCoMN6G4XIi+ud2qPI6grGmIKnR2yvst3MOJjLtc+OzwMI6/pATHxG2FKynm/+yeRX0Hkwm/mxG/SA1K4nGKnM7RHZVFAFAkDpM9Bf54NTbSofMwESMx7/dHjegl+wQ1Bou6ukSuu07k7bfhoBmNWIiTQKQul8mEsbJwoWpc0NcHLLnySpB7FABvacG2ysuhY3buucg41DdS2bcPRGNzM5537sRYp/zCihXILKqvB1lZXDw2QqnXIIyUWaFp2LZ+cc/MQWa2htMd5LO+jIbHkJsbmhTUaxDGky17vBGHkXQMRWZOWfJEbZqIxCQ9W+/bGCzyeBCUeO45RfC/9x4WycSdkRHgy+Ag8GXNGoVNJhN8nfx8ZD23tmJc+3wg6isrscieNw9jPisLPgkJw0OHVMdk+gK5uaoMkM1PQmnoUi6FWBQuOMFmSPoKEosF9w2zT6KVF+tL2Ghmc+TGJHl58ZW3kTh0u9ViNiVFlQueqF2Qk8U4r7HUM9T7JBOjSXDEYMcdFvl8InfeiYYoTiewx+vFeMjLA1loMoF8a22FH3TZZQhaUE+6qQl48dJLIps2AVscDmDOvHloSLdqFUjFkhI0ZGluRuZiVxdIk23bVPUFm5osWaKavtXX43t6H5ha8fTnwhFrPh+Oafdu/LbaWmybQWNmiIXLIOzvB75SG95oVFnMkRqTMIswVn8mEFAdlV0ulflP399sTi7fgcSrHtOZtMIgvp4wzM5Ort8XbIEAyG82Mot03b1e3FtsKKYPrNlsGBNGI+77MHNQEp+p5LFZEnFqbczJ7uuDw9rZiQll5UoAMnULKf5KvS23W4FLYeHoCUPTMOF4PACbkRGAts0GErGiApNCezuAd+7c8A5gfz+OKS0Ng11fvmy3w6F3OABsoZqriOBYOzpUBy6ScfwtJAmDjQswfoaLfUarSKYmAkztdkUckqTMzlaT3WxkPTnMZsP9lpMz8WsWCCgNmfz8sBNdsk9Qo7DI5RK54QalNUaNH3Z5p86VCBbh2dlwan0+ZP6cfTYw5oUX4AhrGqLz552HjMSaGlwXpxNEIZufbN2q9FozM1VGz8qVyFIsL1f6OJo2NirJ0iwugMKV0LndyOqmpsrgII5XTw729o7Fo5QU4CzLiPW6OtRlKSpKTGZyIKBIQ31zDRKHyeQ8RtIxnOllyRO1aWi0kuxncBQWaRqylh95BOPW58NYXbJEybDs2oUxnJcHrMjPx3kiUTY4iEVxS4sKpNbUICBRWAgsCgQQMHnvPfhEO3fiewzALlig8KixEaWAke5VfZkosSjUNaM+VHs7Fo3MiB4eHk0WkrCj0e+LlDmYl5cYLKJGLM+/CDCIxOFMLJebtfDGJoDUDA9levI70v0bxY4rLBIRefBBkdtvx5rIYlFBorIyEBiHD4M8LCqCFnRJiWoquXAhxvXbbyNDcWgIY7ShAdmC5eW4JtnZaBTFBmnvvou1XFqayjCsqgJxeNZZ2K/djkCt1YrARlOTul6aBp+OzV6YcBFsPh9w7913sZ3sbPg0fv9owpBrI71lZuIe4XyXnY01Zm0tgjT01SY6v5MI1Wvfs3FmZmbyJHdQA1sfDKJfK4LfoicMGVA63oy8QGamkh2KZHa7khHLyVH4NTCAsWex4J4LgVXJjkVJYbMk4tTaqJM9PIzIT1sbwHf+fFXWbDJhgtFnoqSlqZLlUBPCwAC2mZWFgZeZiQmprw8TQ04OHFejEZNSqG34/RjgVis+r++mxNJmdk8tL8dngjMHXS4szPv78b28PDjuzKAJzhbU/y2CCYvp6UZjYiNMTJUmcciMJJZLJaJJx6xNvWmaKpVIxOTLEjNqU4W495J9gnofizRN5Ac/EPn1r4EbHBPZ2apbGsdgSorq0Hf66Rgvb7+NbEIRLLZPPRXOdGMjmhVs3oyoenMz8EcE25k/f3S3ZDoU1G/iWHU4lHi//roSc2w2RQqGyhzs7laksD6jy2yOnj3IzA19l+VE4gOJQ+rp8dwkE3F4vJUlJ8ISqY8oEpVITIK7JKKN8otaWkTuvhuLaOpbNTXB32hvx7jOzMSCurJS+QgOB/ynzk5sh3M6Oyr39gKn9u1TJXf0RyoqVNOTpUuRHRRPhh0JGKcTeERMCu6WSb8oEMB+TSZ1DJEyB6diUenzKeKQJYc8xvE0mpq1mWUsv83JiXxv67XDU1NxD5yoneLfeEPk+uuBKxkZqulSXR3O5b59wJ4zz1SB0vJyVWGxc6fSA6ysVDg2PIwgx549qou7CHyfwkKQhKecAl8qNxdrqvx8Fcg4eBByL6mpkJOpqFDH7PXi8yxh9nhAXulJwaEhBE+YrJKZCb+HEg6RyoqzsvCdnh5gbloafLfy8sQResRSh0NptRLnozXOnCmmb1TFuYABGaNxNLazwudEMasV86Dex45kJLU9Hlx7rtM7O8FJVFQovU+dJTsWJYXNkohTa++fbGbkHDqEyaWwEIPB7QaYM8JDgVyWLIdbkNhsKnXe7VYg29OjugazO1J1deiFsNOJScXpxP4KChQxODio3svNBSkZ7FSmpKgJKjUV2ygvx/GTKAznjLjdoycMpqcnolSGwuKcRJkpwMmRzWlmLbmN5WHUlZro4t3jwT3DJjpBluwT1PtY9PDDIl/6Esa4z6fKXkggpqerDIXiYkzWnZ2q8crJJ0O/p7YWBMCePdDqaW1V2TR0oFma3NCAbRuNGI82G7afna1eIylIfZS+Pvzf3Y0HF+ThmpMwi5vkIB1dEoThSkOCuyyPYyEV0UIRh/oy5ZlMHJ4oZcmJMF7fRJHOEYjEZD/L72NRZyeCGTt2qIYQixcDR3p64A8tWgTCj4vlgQHVjK6iAtiSnY0s57174WMdPqzGc2EhFvyNjVioz52L/WRlRe6kHpwpyMVhX58K4FKGQW8MwqSnw9coLERwtqRELSSzsqZnrHi9SuOQ58doVM1RThTS/0Qw3sPM6I92bYPJxBgb5Rw3WHTkiMjHPobgJ9chLC89cgTn5NRTVQZgSgow6vBhfLa6Gs2f6uux1mtpAfl38CDGGzOnCwsRtLjkEmCC2Qx8yMxUFV+Uk/L5QB7u3o33GxtV2afVCiyizIHXO/Yak6iyWpU/t2wZjlFPEoa6zi4XfD7KQmRnK38qETjh8aiMQ/qN6emKOJzJsglMOtAHjJg1yfWInjCcLryfSdbZiXNUWRk7Kex0KjkhzquHD+N819aOadhygp/hqbFZEnFqTRMBWG7ZgoV2YSGAfXhYMewETk4w0cpTPB6Ae2rqaF2T7m4MKosFAzY9HQvpUB2Me3tBYhoMmBiYMuzzYTsjIxi0NTXYXrDu4PCwKgfMzcV+okVW9MK4JPY4YUx0UmJ50NAQjj0QwHGypDo7e9ZBPh6NDpXJNLaD+HiMmSUk1XSW7BOUJoKy4gsvBH4wO4YlTyYTxlFqKhxYpxOEXVoaGhtQDmHPHiz62SnbYkFmYWMjsnpOPRWYIqL0l1wuOF1Hj6rs65EROMFdXXh9YGAsqZaaqkqKSQzqMwdLSxXhy8UPNYOimb7LMiUVEiWboNc3DCYOZ3IA40QuS56oTaE+YrKfeU0EC9+f/Uzk+eeV9lh5OXDFZEJ5cXU1sGNoSPkMbEbkcGBBsXs3FvPUjJ43D1hUX48gBnX8iGlsEqInCfWNSfh3MGEuosqL8/NxHMEZhCYT5g9mUBQUTH9TNuq5kcgQGd0YZdYvOn6NGT2UB4pm+rWCiPL5j3d9VodD5NJLofcsos6X04n/ly5FcMPnU80eDQb4RHPm4POUSOjowOfS0vB+YyOeV68GTqWkIJOxpwfbz88HxrW2AncyMlSzzO3bgUeFhaM16plwwmZTRUVjMwk9HmBjby982aVLgafR5m2rFevHgQF8tqgIuJyIRoZMHnE41D1G/zNcCfZ0m77bPR8jI+r9rKyxZcmzmDrW/H4lrVZZGZ9GLzt4p6XhXj54EP8vXDhKriHZsSgpbJZEnFrT/H50QGV0KyMDQMoyZYtFZQHGAqCBAADe7VYL9JQULMKzsrD9o0exr9LS0GDW14fJy2LBpGI24/NDQ/iuiMri0X9f01QjAo8H+ysri97cgs1SWLJM0nSiXabYqXdoSGU2sQzSYpmN/pwoRmI6KysxnctsNmwzO3vUAjDZ7yStvx+ZOOx8bDCo0jXqgjFIYDSqpkwsFRbB+42NmLzr6qCPWFEBYpDBB2YUMnuwt1cJcOsJu+xstfguLYVjQZKwsBDv5eaG76RMHS8GUmIpwdN3dKYWFMnDCZ1cbXTGIc+vvlR5ptlsWXLijURiovQRwxCJSY9Ffr/Iz38ucv/9wNqiIrWQZNM2rxfjhs1E3G5gSVcX/jcYkI1QW4vP19UpSRhqD3Z1qW61/f3wFagzrTeTKXx5cW6uytImFgV/3+VS2SgsVU5EUGs8Rq1GEoe8f/TE4axfdOKYywX/KB6fOw4yMdnvJE3TRK64QuTRR4Ed9IEMBiRRVFUpHWZmE6ang9hg0wgREIULFmDs19YCi9LTsd5KS8Ma0GbD57q6VONJEdVsyWIBBlKWKjsblR+1tQqHjEZcR1atBc8zQ0MI8nZ04HNsKBVpPvL74a8dPQo8Nhpx/GVlEyslZpMWEocMsumJw5nmGzkcowlDBrBEVLNB/VyRDKXWM8UcDtxjFgvm/HiMzX44Rpkd3Nj4/jhKdixKCpslEafQNE20d96BaLjHo6JEtbVYNFMfQD8x0wEM18G4qwsTUUqK6oo1MKAW5IOD2Ca7MOt1CD0eRAK8XkwO7K7sdiONnvqKNTVjo+fDw5hkXC68V1YW3Umm88KSH04cE0lTZ8np0JBaXKSnq65gE+3WO2vJaSMjuDcslsREM6nHYbG87yQk9QTl84m2fDlKbGh0lkmisQO6y6XGaEUFFucVFQh0mEwgBtvalFyA260IORJOBQWqtLi8XBH75eVwogsLlYh/ZqYqNdaTfGywFOz8Uo9M39Ag2jWfjJJlEkYkD0Vmbkfl2bLkqTMuNhOljxiCSEz2q6P9/vciP/kJcJvdg0tLgQV+v9L2YhaVwaCaulVUYAGSkwP8OXAApCH1FDkGiSGUMmCwoqBgLFkYLluQ/hexKHjB6/HA53I4lJ5ucCf5qTB2oWdHZT1xaDLFXJo6a8epjYzgvohXZ1PfPCiMRnCy31XaLbegGzPHTGrqWE1SNokjplss0HiurUUmYkkJxh67x7PjbiCA7w4N4Tw2NGAbmZkg9sxmpX/Y2Aj82L4dGdZlZdA/JDZR85BrqWDyym4HUXnoEMZ7YyNIzUi+kdOJpBRmcufkwEcrKhq//6JpKrCvx2RKVoUiPqfLvN7RhKHVquRyUlJGlyTn58+uLxNhfX0YD/oKyFiNzWp4bx09irXEggUiBkPSY1FS2CyJOIX22muiPfYYwHnBAkw6dXUAJqMxNFHIxajeWK7MaA4zhTIyVEOUoiKVth4qVbivDwOOKfaZmRiQPT2IWImoDAD9d+12EJcOB5xRfflgKAsuWeaEOZGJg+VMQ0OqvMBsVsRhIrLPZi25jVmy7Ao+USdF0zC2/H7cZ2lpyT1BLV0qWnPz6NfoEJOEy8zEAjszE68z4qc36nwVFSHYwAV5eblyptk5ldu22YBxGRmKpBweVt1HKYPA8mLqygXvOxBQWl5cIEcjD4mpiSpZJnGob4A1E4nDSGXJs4Th5FuiG60EEYlJfcXuuUe0r3xFZY9nZwMD3G7l65jNSts5I0ORYXrjuTWbgTkMXBQUYJu5ucAonresrNjHp75zbagsLOpGM6DLIMlUjiXiIR//n703j5Lsqs58vxsRmRE5zzVXaSqNaEIIyWAZj7TtZ7+228vDwwZjuRd2P9NgwHgELInRdGMbT3Rj2kY8sA02NGB5mQYMmElCaEYSGkoq1ZxVlVU5RmTGfN4fO7fOiZv33hgyMzJu5Pdb664YMqa8wz77fGcPgI3IVuGQEMD6RzrmNnueuotwPkE91rbo3e+Gectb7ONkUuyNCqa9vfJ4zx7r2wwNrc1ySiRsplV/v629PjYmcyhjJIVZF1wvvFCOh87ZDhwQn+jrXxeR5NprpTu9+mErK3KrUYiuHSsUpFGLNru77DIREKPKS83Oing4P28XWrRxZiu48z7dD265qo1qlLkeqlXZ5yoWzs7aQBTAHi/dhoY6x5/rJoyRKMJKRaJ8W4lELZXkWJ4+LRrGxRcDF14Yb1sUFygitpGrr4bp6xPx8MAB25HJP/i4tbLcyahGyiQS4iRqcVydAOZytoOV1nEbH6/9/GrVpi/39dkVJk0N0k5dU1O1E3L9Pl19q1cMvFKx6TOAHYBbDfV2Q+C16G46HY+iu2RrqFSsyN7qiqGbkqqdgMtl4I1vjPcA5XlYY/h1MUJtTjpdu+lk1N20hqA6heWytWFArWClf9eJeCKxdiLi1vhxbZsfNxW6kfRaNz1X37MeJ1b/L/9n6v2tRn9X0PDeSb9zO+Ger63gP6YqWt91V/fYIrU9mYwVE92IlUwmfNPC/IAV+jRDA7DdVYHGU3hVeHcXHfz+VKFgo1XS6fZOkDVS241+Vh9xI5tBke5Dy39o3eBmcCPZ9fwzBvjTP+0eW5RIyPU8Pi7zNW1usnu3jZZ2uxa729KSrdOWyVh7pFFXN91kbcaBAzL3WlyU79qzR+rl33+/HJdbbpHv1lRgLb+gDSuVclnqKD75pBzbiy4S4THM99V699PT8ju1s/SuXa3Np1TcXF6Wz9NFM52j+ee67SabrY0wXFiw44EuPLl1DDmnbB/FogiJmUxtp/FmMEY0kCeflFIlP/qj8bZFcaEDy5Z2L8mkFPceGBAjtrhYO1nXuhZqbHXg8df20uLI7qRkedmu2GezYrTHxmqNtgqFlYqt7VOtygWnXW137qxNS9auU7mc/F1r+4Q5p7oKrrVTVHhodnVBB8xcTgYmTSHS4sH9/Z1ZdJd0DjoZzeetM+ei4qC7uaKh2z3XfU9QN+C4ohNOvZ5TKRshqPbIf6tRODp50Am5v4lEkIAIWOdM63O5NQjd1NqgZh06oXd/exhhQl8rjqz/s/TzOqGhSJRgCFA07BQ0PV/vu/iPoXuu1Tu+3YA2ldOxXf0G7Zqstkef1wVJtSWFgk2VU3/J86y4oQKif7EiCrU1bq1UxZ3Qa11nf0TQZuGOUa4t1AUgCoekEXTc1YU8/7jtj1wPi2QH1tbQjTOplHRcvuoqiRDUDKexMYlsHh62pV7cW/WDcjkp76LNKAG5JrVz8oteJP5oIiHZXqdOie3SMi/f+IaUk9q9W9KXMxk5Rq59cxcqqlURHR9/XOzRvn0SuRjW+GR52aYsV6s2QntionkfQevbLy9bvziVsna8XnPNzaJQsGKhCocafKLp6ZdcYtOTt7rZ1Xant9dmT87Py3FpFs8TbeK666RxLWkPjERsI5UKjNtUxL/p82rsXDTCMJOxIdc6gFWrcvFMTMjANTYmq0kuWoC8p0dWvvr75bVHjojBnZyUwUcn8+WyDDLakUvrmQWJgdWq/e3rSVk2RgRQFVhVOBwasit+FA5JPTQ6Q8sCaKMdneRpqYAg06f1QlXAD3rcDSmEjz0Gs2+f2ISobW5u7XsHBmRFfnhYHF0tybBjhzije/fKY51863WtzVO0E6rWEurttbWWtCmKO9F368JqFGNUJJF7fNeTsuxO1vVccSPFt6LOGesYxg9XjHKbE6jIFdT1F6g9nv77vmMc6yN9/DjMjh22y6ne6qaP3VQzJZUSe7SyIvti506xS2Nj8nx/v9gjtQONNFdz676pLVI/RmswaWkL7cS52VEr5bLN7NCIw1TKCqqd1oyAdCYqPOvYVq3KGF8uW8EryC9Sm6MiddBtN9iir34V5pZbxJ7k8+G3unjgorbi5EmxVUNDdnEkn5fnbrjB+pG7domYp2mc5bKkL2ezwPXXi4gJ2DlhIlHbsdgYERsffVQ+e8cOEVAmJtb+X8bIXG562gaMaMpysw2fSiUrHGqmmTbH1FIT7USDatxahhqRrun6bi3DrahRSxpDS6Xt3bs+AXp1HsGj3AYoIraXhna2rjoFCYynT0vkYD4vr9UmJZo3SNi+AAAgAElEQVRaODkp4cAaTdTba52EHTskEjKRkIYq587J+y64wK5aVasiOJ47JwPP2Ji8L8hJ1sFEQ9d7e8URaebir1atU760ZB13N1WAK+tE0Tp5/tqh9eqI5nJ4vhi/m17iFwmbIO4DVEO2qFCwKS+nT9v7zzxjVw3PnrWCv5JIiN3YsUNs0q5d4iiPjsq2d6+Udejvt8dNo6/dCXGpVFuLLKixCrBWoNF0vmYn1240qg6NbkmJdtc4C4v+cMXCToiG3I74BV3//bDoHBUNNXIsSBxscsyL+9FvyBZVKjLBdkXGxUVJG5yetv5IMmn3u0bsDA1JqqDWJtOoR73VCb+OJcDaBk2aDlcui2+l5Wg2i1LJNkdxzxkVDukXEcVt6uUKhP5bPzpuZLNybo2OrhUImxxftoUt0khkv7h46JA0Msnnbc3CbFb8z717bU3FqSl5rq9P0o5nZyUNc3gY+IEfkNeWSraeoGaCKCdPSsflhQWxQ9ddtzZwBLDNN6en5fem0yIc7tzZ3MKHlooIKyfVruAOXZB2BcPFRWvv1S673ZK5wBIfqlXRJjxPgprWOcbF3RbFAoqI7WVdO3tpScS9QkEM4+ysFRGXlqxwqKLj3JxM+qtVuwKjTnhPjwwm+/fbdKGVFetMTE7KQON3kt0041LJ1uZoZiDRlaPFRTsApFJWOORK0fbDFYGiRMKw6MGoyEF1lrSQ+AYVvI/7GdqyLTp3TuzNrl3WHuTz8vzJkzZV5uRJcWBnZuTx0pKNTtT9Pzwsn6Pb7t2yTU3JpH9qSmxROh3sUKiorBOkVrosu+nriluPth34BSm/YOgXDcnm0og4GFZvMihy0H9fReoNmnxta1t04oSdaKuPk83K392JbzZrhUddhH3+B6wei8FBGR+05plmP1Qq8vmjo2KXNiP9TSMgtSSMm36twiH9ou2HKwKGCYRhtigqctAtB6I+vc4h1kHcz9CWbdH585JSPD9va7pqQMaePXIdV6tiT06dkuPT3w888YS8bmICuOIK20leBUetP9/XJ8fo0CGxY+Pjkra8f/9au5DLyXfMzMh3jozIb/DXyI8in7fBK7o4m8lY4bAdvlE+v7ZbslsWx98teavSp8nGoR3Ch4YkCGEdxN0WxQKKiO2l5Z1dKMiEXMXCpSUb3q5Rhm4Y+9mz8npA/lYsAs8+K4MKIAbXGBkkZmdFYKlUbJdjDU3XzS2KqxGHExO2c2s9NIVRU0uNkUFAuxg2kmZE4okW33ZFwaDHfjQyrZH04kbQc1A7Cq+TuJ+tLdmiXE5sy8iIXPuFgo141ihQ7UyoETuA2Ct1SM+fl4n/9LR8lpZaOH1aHG43YsLz5LNdkVEjHKemZKFj1y5xkBst3K2CkCscqsjTDuGQaclbh7vvw8TBqPTieuJgo8dKI4fcGqLrIO5nSEu2aGVFohCXlsSeDw7acioDA3ac0DRNl1LJRjOePy9+ydKSXUjV7Ihczto0rX2mkYtB0Yx6v9FjakxtR2UtwaA1Hykcdi/uOBQlEAZRL7W4lej0bFbOwXWWDYr72dqSLSoUgIcfFr9mcFDshNqXPXvsQmg6LXZleFj8p29+U15z1VWSEaZzJE2XLpftAu1zz8lcrbdXSlLt2lVbv1oDQRYW5Dj29Uk01/79jTUWNKZWONTxyRUON3MBU+vvu6KhLvbo4r8rGHLO2L3Mzsrx9/doaBKeHW2AIuI68TyvB8AlABaMMdN1Xt7Szq5UbC0LHZzUuBsjF9r4uLy2XJaivtmsTRs8f16igoyRxzt2yPsXF2XirvWE1Pl106iXluSCzmbtKlo6bWuWaV1Gv+iotTuKRRvOD8h7VThstWMu6RyiREF9HDQp14ixKJFwM8QcrU2j5+s66LgBarNtUbksdqSnRxYQtKOfLmTohEdTcPr7bVOb3l655tUx1sgfnaxop8hiURzm8+fl1q3PqCnVp0/bIt5u05CJCdtdcNcusYv6eOdOER3dDq0q4Gx2MwKmJbeHRsTBqOjBevUHN+P3qkDVjWk7Tdijpm1RtSoC4pkzMiFXW97TYxc9tY501Ge4zZ3UpykWxefRUi0aiehGMrrp1EE1rPv71wqM+lhFBs+zpRoSidpmMbQD8ca1PWGpxWHpxY0IhJuBMSJAAevK1ujIM3czbZExEoF46JC9hvN5sQ26yKn1uHM5ERTn54GHHhJb9X3fJ6KYCnfa3C6REJvz6KNSuz6RkNRnN9U5nxc7dOpUbZdlN5W3pye4EYzaSR2HtHGLLpioj7xZY9/iYm2E4eKi/bvWmnW7JTMDY/tgjJzTxaII4S3WHK575jY5ZyIBUERcJ57nXQjgOQAfMcb8Sp2XtzRAnTkjk+pUSgYMFVhSKZkkayejbFYExEpFBpq+Pim8m82K83rBBTJo5HK2gGk6LYOc28nLXZFyU5aTSbmo/XUa3S2XW1t0V6MWJydlMAgSHRmG3ln4m5OECYWtNifZSocgmxURanh4XQXxO85Z3mxbND0t17RGNmuUjzZEqVbFbujiQi4n58jgoFzvbuMUPQd0Iq+r3r29a6Mg/CnL6lyfPVtbr9G/zc+v/qPOfzowsDZ1Wh19fW5iovXzk2nJm0OQOOgXCoOoFzm41cKt/vZ1CokdZ4uApuxR07bo5EnxbXQynEzazs3a3TlskchtnKI2J5GQ5+bnxbYkEjalud75oRN5V2D0C40a0ejasVTKTvbHx4NFx8FB2olOI0oY1Nt1NifZMsplm63RYgTQtrNFx4+L0Kc+UbUqYuzEhEQBZjLyXKkkc6Ann5SIxf37ge/5HlsSRudZPT1iUx5/XLLHPA+47DLgyitrm5ZkszZl2Rjb3K6vL7heo95qJ+VCwS5iJJO1ZRzcCEc30rFVW6TltTTSUBtTAVb0VFs4Ntb+5iyk8yiX5drq7ZVo3hZsYyMi4oVofM5EAmCv2w5nfl42XSVURyOVEqFweFj+phPqdFpWq+bmJPw9mZTHExMyiBw5Io5tT48o/KOj9uKsVKwwqFGHOqDoa3SFyGV5WX7bwoI4y1qzUQUjXeVaWbGrZX509Us3v8ionanpUK+fsOYk7uOgNBoVf1IpWwNznc1JtoSBAfkfl5bk/Oc5VZ/5eblux8flHNEO7CoMViryd73utfvy2Jg8p5GDeo5Uq/KcNlTRCBxFV8fdLstuI4p0WmzalVfW/k43+mN52drFc+fWio733GObwrikUuKMu5GMQZt2lY5KS24l1XU70WpzEleQ1ZIGQUJhp5NI2P+X50hjLCzYUi3ugqqOS1ECYqWytlFTpSKLtEtL8prR0eYiX3SCPTW19ru0MUqhIJN+jW7USb6KjMeP28ZyLp4nYo4/XdqfTr3Z3aG3A/704kabkwBWCNTGX+tsTrJlaBTcyoptxEHCWVy0NQrVFs3NiQ3Zt09skdqbgQHg7rvl+r/xRmlyqXOt3l6xIeWyCJJPPSXn2yWXAC94gbVnxogvc+qUfGcyacu5uDbPX65H/SGd36mAqGOlMVZkXFgQPyloDqANXoIERr0PrE1LVv9PF2cuuKA2LZkQP6mUjKlnzsg5pNmWpLNgJGJ7aWpnLy/LirtG9ekkY2BABMShIRkIjh8XB1XDvo8dsxP+AwdkkDpzRgx7MikT5PFx6yRr5y0V99Jp+Y6w1SBjRCxU4VAHIy1KPjISLSZpxFJQ92l3CxvEglKn3ee2q0NdrzmJPg665DXtISrFOA6T8kbR5j7JZGPRJgHEYEoQScO2qFAQp1WLextj649pJGGpVCsO9vbKftXX6AQLsB2XAXnOTd/T+pl67TfSZdmtb6jntlvfMOrYqoAQFMnoblqOwWVkRBz4HTtqIxtVeNy9e8Oa+MSSzW5O0k2okN3iIkzc90bDtqhYlAn23JxNGdYoxJGRtV1Mn/8CJ/rQtUXqwxgjn6WLHq1SLtuyDO4x1SjJqM/Wibw/itEf2Ri0CJtOR9doHBpqvH51N1IvtXgjmpN0E0tLcv4ODzd9PcT9DGvYFpXLwAMPiIioKcPnz8u1dtlltY1UVlaA735XfKhbbpHbYtEGT3ge8Mwz8ppCQeZt11xjxcBi0foiWu9QsyjCjk+5bIVDFfG0xIMutkRRLNpyNP5oRv9z2sxK62pqWvfoqERfah3rHTvkuxutX02INmX0C+UNwDOsDVBEbC8N7+xSSULeZ2etM+p5Mqjv2yeTeE1frlZl0qqRN729stIzMGBVfM8TYz45KYOOpixryqFbByNoUDJGLmR1utUZHxoS570FZ6Mu9VKn3ZRpF11NjYps1JpEcWG9zUn8wmCrzUm6iWJRzulMpqXV0LjvsYZsUbVq66lq2YSBATvxKhRsMwOdpA8OipOoUYaauhwlHgal+kXVfwoSDjcyLcwfIbe0JLb09Gm5PXPGRjaqc3/+/NqJqJaLCNp0ErBjRzwieJWo5iTu/SA2sjlJN7HORitx32MN2SJjJLvi6FEZw4eGbI3m0VEbEeNHx0nARjMvLsqiarVqsytaXXwsl8UOalkG/R6dSG+0X6QNwvxCo3tfm9e5JBLBNRr9YmO7OtJvBK69iao9GJZeHCUMdkJ68VahKbmJhPj3TRD3PdbwHO3pp4EHH5TzrK9PIgSHhqTDso5lqZT4T2fOiDB44402u0I7rh89KtGHy8viF1x7rY260nqH587Je8bGREzxZ4MppdLaclK9vVY4XG+ARS5XG2GozU/0u3RupZklpZL83X/9ackbfxSj/zZOtohsDtWqaCHGSAmAJhZt4m6LYgFFxPbS8MT91CmZmLpFu8fH5SLq67OT2ExGHMCzZ8WQa32v8+ftpHZ83E5Ug1KWBwaCRbVKxQqHi4vyeo3cGhmRAXOrV2E1jdIvMvofhw1iQVGNrujYjkEsKnqw0eYkYdGDHISj0fNEha8miPsA1ZAtOntWHEdN+9ZGBTpx1vNSBUOtrap1dlKp2ghYN6o1KGVZxcOgyZuKhu6k0G2M0uqEL6pbcjN1DMtl2V9hNRrdSAIXXeAJawqjWzvSfhoRB1tpTsIakPVZR33EbWOLnnrKLmikUjKGj48H11XWzsduJHQuJ+Khdo4fH2+t/lapZIVDtRduR+WtPterVflfg6IZXdExrClMWDSj3g8SazcaHR82ujmJ3ifRaFNE9ZMbZFvYojNnpBzKwoLsn9lZ8SGvusoKhKWSNH8qFoEbbhARUUvB9PWJn/Cd78j1OD4OXHedjPvVqk1Zzmbl9Tt3ingYdN0VClY41EACzdjSskOtUCzWioXz89Z3SSZt/ULdomrQakBIVFRjUBCENsoKS53u62P9xO1AoSBifH+/+MINEndbFAsoIraXhnb2zIxEGGqUDyAi4IEDMiAcOyYO4tCQGN6FBTGmBw6IQZ6ZkfeNjsrg09srRlzrFQLWMfAbYC2svLAgTqZO/DVNeXAwfquzWrg4SmR0B2AXra8UFdUYJj6ttzlJvejBrZ6odAuLizZ1pwmHK2ZXwRrq2qJsVmyJe54nErKvNKVOJ3PptE111vqF/u6nOrluJmVZhUN9rTtBbGUiqIJhWLdkf8ONjbZ1xohD7kYwquioz01P2y6ZLoODwZGM7mO3TIWfRsTBsIidTm5O0k3osWgyCirue7+uLcrlpNHA4qL4Nb29IqqPjweXXtExVm1RPi/XXakktmp8vDkhTNOhtcaha+c0oiiO14B2kVVRMSiycXl57ft6eqJrNGpTmLB9slnNSbo1vXir0DnD0FDDUWwxvApqqGuLVlaAb3xDBMJMRq6RgQERELU5yuysiB6Dg8DNN1sRNp2Wsf2RR2zq83XXSXZZoWB9glJJ3rN7t8z9XF9H5zMqHGoEuxsU0axvpOV9XMFQS7h4ni31oM1PWiwBFIn6lWFio9Zy9JNIREczrrcpDOkM5uflmpmaqm0EG0HcbVEsoIjYXuru7MVFSdlZWBCjmkzKQKKrWMeOySCSyYiTV63K39NpmfCXSmLwd+2S51yBLCxluVSyacrZrDynNYZGRrZPLZ1yOTp1WgczYG06pU4m/KKfDmAqwLjNScJEwu2cRrMVGGM7+bqNhuoQ9yMUaYtKJXGCPU/2iZ6bOol2o0AGBuTvuuCg79cIIE3pC0pZ9qfSu8XtXeHQjThsBlco84tk/ui5TrrmVlZqhcag7ezZtXVjk0lxsnbutKnSO3bY5/SxLnz4m7/EsTlJt6FjShPjQAeduS0RaYsqFakVduKE9UcGB6Wxkl9A9C9clMti2wsFsVHj441HVWkEjW4qHGp9Q7ccQzejGSlR3afVF3UXaQDZ1wMDdnMfa8MYFafqRQ52mo3eDhgjx9cYmbg3MB7E/QhF2qJqVeogPvCA7ItcTs7pF7zALpRqjXqta6g+fz4PPPaYLBL29wNXXy1NLxcX5TnNHJuYkDmdlo8BbPkpFQ61EZcb1NDoWG2M/D4VC2dn7TEG5LPcTska9d0JaM3tsNqMehsUoRzWFMa97ZT/kwQzPS3HV5sW1SHutigWUERsL5E7O58Hnn1WJo8qIO7fL4PR3JyIhOpE6erg6KiIf4WCDfXNZOxgowKXdjd236/Coa40ZzJWOGyygGnXoCk0YdGDmuKhq2I6kOXz9jWaIqTOgzrB6jyHRTRu56YwW41G9Pb0bJtVrlBbZIwdrMfGbIreykptXUMtheCKTioSqnioz6kw4tbodL/PTVUGWhMO/SnJfsGw0bTkTiIqcrBcljFBBUX3vm5nzshxA2on4GNj4TUa9f5mRBuQ+rRQHzHuRynSLzpyBHjySbEn2rxtamptdJQbfVitysR4ZUVszehoY1kUKkLqBlhbpsLhdiWq9qAKjdmsvc1mbUr18rLc1yZ87uamT4c1h2kinZZsMJWKXEup1NquvwF0tS06fBj4ylfknC4Wxf+54gqxDdWqCIiJhNQ13LdPzu9yWezXsWNiR666Srounz8vflYuJ/tWx2GNkK5WawMYjKkNBNGGLPXI561YqF2T3aZP/rTkdpQq2Gy0KUxUQ5iwevr16jSyKczWUanINZZM2usrAh6lNkARsb2E7uxKRQao48fFwPX0ABdeKHUwdKBRZ00Nf6UiBjGTkclfOl3biUsbRqjju7JihUONqOvvt8JhkzXhYodOvOulGPtxhY+oFGPXoGnHa39EY6NNYaJqNXIQ2xwKBZn46H6uQ9yPQKgtmp0VR1NF795eOV81nU/Pe41Q1hRlFT784iFgBUEVRYKEQ3/USeSPj6hjqJ+1mWnJ66VdzUk06sBNnQ5KpT5/fu33ZDLhTWF0m5ri6v1m0KSQ2GFnd9NE2qIHHxTbrFExO3eKsKR+jS766TWl4lUi0VjqnUa3aJd5wEYVaYOAbqadzUm0mVlUVGMut/a7ksnoGo1xbAoTJwoFG3VXR2TqWls0Nwd8/vPSCKVYlEWJK66Q27k5sVUjI9I8ZXhY/J/Dh2VLJIDLL5fIw/PnZcwtl8W/0pTlRMLO6ZaXbUOSZNLOB+o1hNTIaxUL5+ZqFxGHh2sFwziWp9ootJ5+VAp1vaYwYXUa2RRm81heFr91ZERqiUewTc/s9kIRsb0E7mxjRDx8+mnbLfaSSySs/fRpKyBqkdmeHpueo6lpWhtDmx/oBH952QqHKlrpav7ISPc4yP7owSCRMGhSrgXXo0TCzRoM1GGIqtUY1hSmXp3GdjWF6TayWRvlWydcPu4DVKAtWlmRATqRsFGIroDY27u2C6qKHdowRaMRVQBRgT2oo7Jb37DeRD8uacnraU7iioHtbE5SKjXWFMbfiCGRqG0K40Yyuk1i2tEUpttootFKV9qiQkHSBk+fljTksTFg716bXqd1CtWeqHjoeda/CdtvlYotzaALh8mkrW/YLcJ4HJuTVKs2ojGsXqPWMfYzMBAtNg4Pd/9i+WaRzco1MzISeey70hYVi8CXvyz2qFCQ8+zSS8UWaefYAwckAhGQ6OnDh+VcPnhQ7NbcnAiInmdTlkdGassoaXBHKmXncVE115eWapufaB17QN7rCoZ1jhsJoF5TGL0Nq6cfJjCyKcz6OHdONI3duyMDPuJui2IBRcT2ErizZ2akVoY2MbjsMlucd3HRilo6cU+lbDcsXSnp6bFRQ7mcFQ41vWdoSAaRJptHbDnanCSsa3GzzUn8jzs9rdEtohwW0RjW2cxtChMkMgY11tnuaA2gSmX7OcuVitRBzOclwkwFRF3J1mYGOoHXa84VCf0py60Ih52cltxqc5JGxMGtFj/rYYyMSfWawiwurn2v1ukN23bvljGt0+1xu2mwPmKHnzl1WXPFGAM8+qh0Yx4YkHNk/345R7Tju0Y653K2JIuWeAmy21qOxG1Yl0pZ4TBuE+x6wqBrc13CmpP473c6blOYoBqNmkbtR0uWREU1bucIrTCMkTmFRrSF7J+477XAOdp99wFf/KIIdUNDMkfr77f1Da+9VuzTsWNSkqpUknTLXbtsc6KeHjveJRK25JQGd2h2R5hfvrKytluy2rGenlrBcHSUYnk7USE4KrIxrClMve7TWk+fWIyRuUq5LNddyNgdd1sUCygitpc1O3tpSTp1HTkijsvBg+LYnj8vA8zgoO0+lUrJ4N3XZ8VBNTr5vAzwKoAkEvLakZHOTfPQRgtR0YP+xgGAjXqKEgm3W3OSUql+VKOucrokk7Vd3YJEx+3W2axaFQctkZDrZ7s4y2fOiEg0Pi6Oizo/GqEzNGRFMo0yVPEQsFGHbnMUHV7c+ob+RiqdkJbs/w1h94Ngc5JaVlassBgW2Xj27Nr9mUqFRzK6kY7bbeFDr6OIxb+us0VHj8rEHZAInwsvlOidREIm3VqDTyP1BwetwOjidlTW883tqNyJ16ZrP6MEwiDYnKSWcjm687Te99siXXh3tyDhsVsyeRqlVJL9lU6HRpfH/ewKtEWf/KQ0vBwclLTkREIiM3fuBF78Ypl7Pfus2JmJCYnO1yjnwUEpSzU8bJujaER/Om19bX99VzcleW7OilDql7qiISP9Ox9/U5gw0TGsKUxU9+nt2BSmVJIMzkxGrq8A4m6LYgFFxPZSs7OLReChh4DHH5cB5qKLxHmZmbFderUGiXa204lpOl3rIFWr8npN4xka2lpnsZHowSBjqUJEVPRgJwqicaBatQNVVAfqoOOiA1VQVKM+7qZBrFSSSUY6LU5gAHEfoGps0eIicOqUHMeBAevUqO1R4UZtSjIZLCa6kYP+OojA1qQlu2JgmDgYFT1YL4qQNE+lIikpYTUaVYDUKFiX8fHopjC7dnVXU5gG6iPG/T+tufoWFoCvflUWNC6+WCbtk5M2tUybdWhTDi27oLiNUXQs0/qGWy0cNlJ7MCy9OEoYbKVzPRGMEd8nSGB0nwuKJMpkgsVF93G3NYVRf3FwMHBBp6tsUTYL/P3fA9/+thzHSy+1CzqXXSblpA4fFl8pnRY7pYudk5MiKCaTcn5ptpAu2vf3y9+0CZQrGGaz9jfoAoluDXbJJjHFTZ8Oq9MY1RQmqvt0b2/3+EWAXDczM3Kdud3MV+mi/7RzoYjYXp7f2dUq8J3vAPffLxf3/v02AkpXHTTqcHDQ1hsrlWwDCE1jVuFwYGDzDYTbnCRKJPQT1ZzEfdxNBi6uBDWF8T9upimM+zhOTWH0/x4YCCwmHpP/IpTnbVGxKJHQxogd0ZXy/n67GKGioQqG7qZRMW4dLX39ZqYlr7c5ST1xMC7nabeiNZ+iajSGNYXp61sbxejfJifjs/ChQmJIZGvcz9TnLUO5LALioUNSF/oFL5DSCtWqFXUAOb7aSVRrI2pzFF3ccIXDdlzL9SIHm2lO4n+OtmjrKRajazRqV2o/2hQmrEajpk/HaXHcLfnis0dxP1Ofv0IrFeCznwXuukv+x4sukmM0MSG2KZez9mhiQo5jKiWLXNpYRRd/XOHQTUvWJijqp6TTtSnJY2PbL9qV1EebwkRFNTbaFCboNk4i9Zkzci3u3bsmhT/utigWdLSI6Hne7QBuc57qMcYESFTtxfO8gwAOOU+9yxjz1gbe+vzOPnQI+MpX5P6ePTLgaMHe0VFbwzCZrF1ZB+RCUeFwI1c5/c1JgqIHg9Jo6jUn0Y10D/6mMEGiY9ggFqemMEtLtpj4O995O+644w73z3G2RwaQ43P0qDjDg4NigzxP7g8MBKfluhNaN0LGrYvoind+wbARgS6OzUnI1lAsrm0K40+lPnMmuCnM1NTaKEZ/k5hOiSTS8z6ZBO64o/tsESCdmO+9V/b7i18sxyeXkwm3MVY87OuzacramdnzbJpyT8/GRjI3IhD68TcnCWtUQrqHoKYwQRGOYU1hojpPd1JTmGpVIoaTSeBP/qQ7bdE99wAf+pAcswMHZF62a5fcZrNyDCcnZevtlef7+60t0uwcrd2pwqHO45JJeY+KhWNjnTPWkPij9fSjGsKsrATP6bUpTFS9xk4pK1OtSlqz50kdUse/j/QAulBf2hLiIu28avX2+dPd87wfBvDbAK4GMAngPICnAXzVGHO787rbUXui+HmNMeZ/rb72TgCvdv5WBnAKwL8CuM0Yc3b1+dOrv2kSwJ82+8+cOiWdvrJZcZJnZmRAmZqSAWlw0EYlGmOLr+7aJWJGQFRUJG5zkqjowajmJL29MsDFsTkJ2XiSSTlPQ1J9AYQ3hdHHCwsywQ9rChMkLrqiYzsGscFB+Z1u17uPfvSjeNWrXvUqdIE9mpkRxzaRkP+xt7d2suJP2XVFQL3u1b4o/vpb/sm8Wy+x1eYkGrUct+YkZOPp7RXncd++8NdUq3KeuxGMbir1c88Bd98t14Cf4eHopjC7dkn0yWafe4mEFbS60RYdPSoT94EB4Lrr5FaLp2cyMtnu7bVjiu6TdFq2ViJ2NqI5ifpAQdGEZHuhtciHhyUyJoyVlfDu0wsLMikOKuXQ2xtdo3F4uD0ZSYmEfE82axdnus0WfeQj0ihlzxPcWosAACAASURBVB7xN4eGxPacOiXztH37bN15Ff80Inp5WeZvuZz9TG0upoLh0BBtBNk83KjDgFTf5ymVohvCzM833hTGf9uOpjCJhCz4njwpJXJ27Gj6I7pKX2o3sRARjTEfcx97nvc6AH8O4CEAfwngHID9AG4E8PsAbg/4mDcDOBPw/D0Bz70aQBXAAICXAfh1AD/oed71xpi8MSYL4GOe512IJg/ywgLwL/8ig9PoqExsJiZEQBwasgXDtRabRhyGCSbVanT0YCPNSbSo73ZvTkI2FncQi8LfFMYvOs7OBg9iyWRjUY3rOYe1wPrCgl1BfuUrX4lXvvKVH7Oviac9ymaBEyfE0dXahyMjtZNiVyz0RyJWq8FNT3QCrgsTzTQncSfg27k5CdlYEgkZZycmJEU2jOXl6KYwTz0lwrv/PO7pWdsUJujxelPTksnaBb9usUWLi8AXviD79YUvlOfOnLHlWtJpm42hdj+dDs9wCGtO4n8uCFcM1BqKfoGQfhFZD+qbRE143ZrnQVGNR4/WbwoTVqdxeHj92UG9vbY2O9A9tmh5GXj/+yUqWoM6tJHKjh0iHmozk0JBhAsVYfRYZDLymgsusKnJzMYinUhPj2xDQ+Gv0Xr6YanTs7O1579LVFMYvV3vtaHX29yczAGjglv8dJO+tBXEzqx5npcC8HYA9wN4iT/81PO8nSFv/awx5pkGv+bvnc/9oOd55wC8HsBPA/h4Cz8bgAw4//AP0nVQB/PRUYliGBy0KwYjI7YwvKY553LBImG95iR6gbI5CelUdBAbHg5/jQ5iYQ1hzp+PbgpTL6oxahBLJsVhDBbj42mPymXg6adFRBwetgXi3ciaoIhDf1ROM81JXIGQzUlIJ9LfL808Lr44/DXlcnRTmMceA/7t34IjiSYmoiMad+8WXyDqmggbu+NqiyoVWVg9exa46SaxCbmcrQmt9qe/39bUVRFQF0n9AmG95iTqG7E5CelUUikbtRaGMbbRUFDq9MyMdA0OqmEd1hTGvV8vvVabPepv0ftxtUXGAP/tvwGf/7z1G9Np2Rc7d4ptLpXEb3LLOI2OSuSpHq9ms8UI6WQSCVvTMwq3KYz/Vudp/rIygA1miqrXWK+28diYfNfMTOuZCXG1W1tJ7ERESIjnKIBvBuWvG2OC1OD18kXIQY6YWtTnz/4M+NKXZMC54AKps7FzpzweHJQLxRhR02dm1r7fbU6ikYpsTkK2A40OYoVCeFRjNivXVZBD3dNTP6pRhcZCoaY2USzt0SOPyDY5aScNQG1dQ02f1Of9dsUVA13hkc1JSDeTSlnRLwxjZBIfVqNxehp46CFZwffT31+/KYxel9VqjfAVS1v0uc8BDz8s3U5VQB0aspMGtUPLy7ahnB+3oZNmUbA5Cel2tH7x4KDYijDcpjBBNRrPnAlvClOv+7RO1nO5mgigWNqi970P+OAHZb9eeaWteTg8bOusujUMx8bqL/oQsl3QRmYjI+GvCWsKo7czMzLH8o/zWrokqk7j1JSkNZ89G11OIoJY2q2tJI4i4lkAywB+3PO89xpjpht835jneZMBz88aY0KS7J7n4OrtuUZ/ZBAf+pCEw19zjdzqivvycm19HY0UdO/r46D6cYSQYDxvrfhYqVixUQsPa1qK+9g/iD3wgNx+8IPA61///NOxtEef/ayIFJq+XCjYyB43nTiqi7HbHZkQspZ6YqM2hTl7VsRFvX/mjGzf/KY41f5xX2s3/sRPiAi3Sixt0Yc/LLaor09EjVJJ/j93IcJNI/aXPGBWBSGNEyY6VqsyH8lm5da9f/YscPiwPPaP9/esJuz90R8B73zn80/H0hbddpvYmBtukHnaxRfLXG1sTHyloSFrb5aXbW1WQkjr+LPRjLGN0/J5uZ/Pi1/gztOC5h46v/vt327pp8TSbm0lsRMRjTFVz/PeCeDdAJ7zPO8eAHcD+Aqk6GVAsCwA4Nshz18E4IjvuQnP8yqwOeu3QU6sf1nPbz90iC3HCYkrb37zHbcDuO31r7fXcVzt0dvfTltESCcwNRVdpzEIzxNb9LnPxd8WfepTtEWExBW1Re98Z/xt0fIybREh25W42q2tJHYiIgAYY97jed4zAH4DwPcC+AEAfwDgvOd5rzPG/EPA214N6YTj53QDzz0D4NeNMUHvJ4RsY2iPCCGdAG0RIaQToC0ihMQN2q3miKWICADGmH8C8E+e56UBXAvgJwC8CcDfeZ53yhjzVd9b7m6i8OWPQrrnlCAnxjPGBFXiIYQQ2iNCSGdAW0QI6QRoiwghcYN2q3FiKyIqxpgCgPsA3Od53jcgRSp/GYD/IDfDl4OKahJCSBS0R4SQToC2iBDSCdAWEULiBu1WfRL1XxIr7l29ba0vDyGEbBy0R4SQToC2iBDSCdAWEULiBu1WALETET3P6/c87/tC/vyTq7dPtOv3EEK2L7RHhJBOgLaIENIJ0BYRQuIG7VbzxDGduR/A1zzPexjA5wAcBpAGcCOAVwCYAfCnAe/7Kc/zzgQ8/5gx5uHN+rGEkK6G9ogQ0gnQFhFCOgHaIkJI3KDdapI4iojzAP4zgB8H8PMAdgNIAjgO4G8BvMcYczzgfe8L+bz3Aujqg0wI2TRojwghnQBtESGkE6AtIoTEDdqtJvE6uSmM53m3A7gNwBQAGGPObekPWsXzvASAcQD7ATwI4F3GmLdu7a8ihGwmtEeEkE6AtogQ0gnQFhFC4gbt1sYQl0jEGQDwPK+nQ7raXAzg0Fb/CELIlkB7RAjpBGiLCCGdAG0RISRu0G6tg06PRLwYskOVL5kO+MGe5/UB+F7nqeeMMc9u1e8hhGw+tEeEkE6AtogQ0gnQFhFC4gbt1sbQ0SIiIYQQQgghhBBCCCFk60ls9Q8ghBBCCCGEEEIIIYR0NhQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJBQRCSGEEEIIIYQQQgghkVBEJIQQQgghhBBCCCGEREIRkRBCCCGEEEIIIYQQEglFREIIIYQQQgghhBBCSCQUEQkhhBBCCCGEEEIIIZFQRCSEEEIIIYQQQgghhERCEZEQQgghhBBCCCGEEBIJRURCCCGEEEIIIYQQQkgkFBEJIYQQQgghhBBCCCGRUEQkhBBCCCGEEEIIIYREQhGREEIIIYQQQgghhBASCUVEQgghhBBCCCGEEEJIJB0tInqed7vnecbZUlv9mxTP8044v+sbW/17CCGbB20RIaQToC0ihHQKtEeEkLhBu7UxdLSI6PCq1a3iPul53kHP8/6H53nPeJ634nle1vO8hzzPe5fnebuc1+nJcjDqSzzP6/M877dXP2Pe87yl1c/+uOd5P+Z7+etWf9O5DfofCSGdD20RIaQToC0ihHQKtEeEkLhBu7UOOkZ5jcIY8zH/c57n/RyAjwLIAfgYgMcBJAG8EMBrAfwcgMsa/Y5VFforAF4E4OMA/gaAAXAQwMsB/D8A/o/zmz69+r53tvI/EULiB20RIaQToC0ihHQKtEeEkLhBu7U+YiEi+vE873rIgf0OgB8zxpz3/f13Afxekx/70wBuBvAGY8yfBXznrrVvIYRsZ2iLCCGdAG0RIaRToD0ihMQN2q3miKWICODtkN/+Cv8BBgBjzByA323yMzUU9atBfzTGnG7y8wgh3Q9tESGkE6AtIoR0CrRHhJC4QbvVBHGpifg8nuf1AfhRAF83xjyzgR/93OrtL3uel9zAzyWEdCG0RYSQToC2iBDSKdAeEULiBu1W88QxEvEggF4Aj2zw534GwKMA3gjgFZ7nfRXAPQD+jzHmqY34gr17YUZGgBe9CLj6amDvXmBsDBgdBUZGgL4+oKdHtt7e2vvJrjrtCNlajAEqFaBcrt38zxkjr3/ta2/DX/3VHfjEJ2CWl4Fbb4WHGNsiSD0OQkgHYEz4Vq1aOwQAf/AHt+Hd774Df/zHMJ/5DPD1r8fbFj3yiPhF+/fTzyFkq2nEL6pW7etf97rb8Bd/cQc+8AGY3/gNeKtPx9Ie3X47zMAAcOmlwI4dQH8/kE4DiUTt5nlrn0vELiSHkO7j5Eng618HXv/6521RM8TSbm0lcRQRh1dvFzfyQ40xBc/zXgbgtwC8AsAvrG7wPO/rAG41xjy7nu/4zd8E7roLeOopYG4OuOwyYHISGB4GMhlgaEiExHQaGByU57zVyyCRCBYX3fuplH09IduVajXc+XWf9+N5cg2lUnLtJZNy3WWz9jU7d4qDuUpsbREhpD24QmDYFoTn2cmqez+16rXddRfwH//j8y+PrS3avRs4fRo4ehTYs0dsLyFkYzGmMb8oyB6pX9TbK3MUfazPAcA119S8JZb26NZbgQceEHtdKIiImErJnCydtv+rK6K6BAmLQQIkIWTjyWaBJ58EDhxo+SNiabe2kjiKiHpwhzb6g40x8wDeBuBtnudNAfgeAL8C4GcA3OV53guNMYVWP/9NbwJuuEGc/+lp4NQpGaA0CtEYGbjktwBLS/K8CovJpDyfzQKlUvBgHyYwurdcMSNxJcz5dR3jIAcvmZRNHULXCU6l7N+VahVYXJStWpX3ABI9vGfP8y+LrS0ihKyPKFEwSiBUQdAvEPq3MBYW5Payy4A3vOH5p2Nri3bskP1w9qyIiRMTsojKyTYhjeEunIb5RUELp4mE9Yv84qD6RamIWWKxKNcsALz4xTV/iqU9OnBA9snRo/K/l0p2TuZ58jiTkX3V2yvPVatrt0olfI4WFsXIqEZCWqdSAb7yFbnmfvAHW/6YWNqtrSSOIuIzAIoArtvMLzHGzAC4C3JwPwbglwDcBODrrX5mKiUndyYDPPqoiIhnzgArK8DFFwOXXAIMDNjBK5GQC2NpyUZDpdMSuTg+LqtkmYwMWqWSDOilkmz5vLwvyHFIJhuLaiSkXbir5GGr5Y2skvf3W8fX3RqdkKp4v7Ag39ffL+UGikX5+wUX1HxWbG0RISScqLTiRqIHwwTC9U4Ol5eBL39Z7r/97TJerxJrWzQ5Kftmdla2UkkWV5neTLYzQWVXghZSg+yR6wdpZoXfL1qPPTIGuP9+uVaBNRHEsbRHnieLxNWq+IA9PbK/Ewl5rqdH9vfcnLw+nRZBMZMJnjPpuBG2lUqNRzVqZgyFRkLWcu+9wPnzwMteJr5Di8TSbm0lsZOKjDErnud9AcCPe553SZtCQO+FHOS96/2gZBK4+Wa5HR8HrroKOHZMVr7On5dUyUsvtZGJKoBopJRGIs7MyOd5nggdw8Ny4UxMiBCpQodfYHSFxmJRBEx1Alw8r77Q2NPDaAFSn0qlfgRh2Cq5roa3skreLLmcOIflsjiFO3aIkzg9ba8RTWcB4m+LCNlutBo9CFghMJlsPnpwo377e94jixwAsGuX+7f426LRUevfLC/LmDA0xPRm0p1o9GBUanG5vPZ9WnYlmRT/ZGAg2C/abHv09NMShTg1tfZvcbZHyaT4firgqoCo9xMJmW8BMn+an5f7PT02c0wXd9y5WxRRQmNUVCPTpwkBnn0WOHQIuPJKCchqlTjbra0idiLiKrdDOuj8ved5P26MmXX/6HneKIDfM8b8XqMf6Hne9QCmjTFnfM97AP6v1YdPrOtXr9LTI81VPE9SeF78YhEvnntOLoTpaYlKvOoqGy6vop/nyar9wIAMECsrknJ57py8D7CDnLsNRQTnahSYX2DU+8vL4StmqVT99GlGE3QnG7FKro6X6/xuxCp5M6ysyPVXLMo5u3On/CZAJrRnztjHAdyOGNsiQrqFesJgWMTHetOL28UnPgF84xvAddcBR44EvuR2xNgWJRJWSCwWZSxZXJT7Q0OdcQwIaYRG/KIge6QLp27ZFb9f1An+9NmzwBNPSD3TiYnQl92OmNqjvj4J8pidtQvHOoZUKhKlmE6LvUomxYfUudjiok0P17TnejQSWdhIVCPTp8l2Y24O+Na3RBd50Ys25CNvR0zt1lYQSxHRGPOA53mvBnAngKdXw0EfB5CEhKH+AoAZAP6D/Bue581iLR8D8CMA3ul53ucA3A3gHIApSL76zQA+YYzZsI49vb3AC18IPPywDFQXXCCRBcePixj49NOS7nzwoE1zVkFxeVkGKkBqB+3aJQq8Ot2LizLInThhHZXe3rXCokZxadShkxoVSKUSLjQWixLJFbRyyqYw8aPeKnkjzUmCVsnVCe6EY10oyACUz8vvmpqS36uUyxIhrCUEgugGW0RIp7Pe5iRql4KEwjjw0EPAhz4kWQy9vcBnP7v2Nd1gi5JJYGxMfCJNH8znxRa7PgshW4EuuNfzi6LKrrgLp36/KA5izsqKpDH390uN989/Pvh1cbdHg4NyPBcXbZmpfF7GjL4+uX/2rNwfGZGFjkpF9o+Wk1paspk0Wtu+VRqJatzI9GlGNZJOp1AAvvpVsZ/f930b4x/E3W61m9i6ZMaYf/A870EAbwLwfwP4LwAqAJ4G8Jerm583hnzctwB8EkAfgP+w+ropAMsAvgvgdQD+50b+fkAGlGuvBb7zHXGa9+yRVb3xcYmAOnVKVvuOHweuuALYt08M+diYTCRKJQmlP3FCNq3ftn+/pERXqyLsqaioEYuKpkHrNjgY7cS4g2EYxkSnT4c1hdFJXr306Tg4WZ1OvfSZZlbJ/Sk0nbBKXo9iUa6b5WX5vWGF/I8fl31x2WXRzlM32CJCtoKtak4SJ2ZmpP7hrl3A7/4u8Gd/Fv7abrBFyaT4MXNz4isMDNhocaY3k80irDmJ6xfVWzh1xUE3grBTFk7XS6Ui3YvLZeCmm+qLYnG2R4mE2JtyWURBFQuzWbFHmt21tCRp3f398vfBQdmqVXnfyorMw7JZ+UxXUNzoc2Kz06cZ1Ug6BWMkAnFpCfj+7w8P9Gjts+Nrt9qNZ8KW8DsAz/NuB3AbZIfDGHMu8g1txPO8MYgy/SCAY8aYWxp4W+DOzuWAxx6Ti+HAARmMpqdFWFxZkdWulRUZmK65RiYT5bIMFMPDMhgtLYkwog1YMhlxxEdH10ZXabSibto0IpGQ71BRUbtGbwYqLIZFNZZKjTWFCRIat2u0gr85SZBYWG+VPMgBbrY5SadSLttrJJGQ83t4OPj/OndOhPm9eyVC8fbbb8cdd9yBmdVipJOTkx2zNzbSFhGyUWxEc5KobTtQKkkH5mefBf74j4EXvGB72CIdy+bm5FiPjMiiT7Eovg3Tm0mj+MuuhC2i1mtOEuQTtbPsSifw6KPAM8/IPOTgQXnOtUdTU1NTMZ+nrTkLlpdlfmWMzDEGB62QqCnNuZytVTswIH6lK+QZYwXFfF7GQY1o1MYsnWbP6kU16ubHXdwLawizna4Zsjk8/rgsaFxzDXD99YHXT+QV1YX60pYQF7llBgA8z+sxxgQkzG4Jj8IWwjy2ng8aGJD6h088IU1WLrpI0pvHxkRMHB6WwWdmRpT3iQlJhR4ft072wABw4YVinOfnZTtzRlbIenutoDg4KO8bH7ffn8/XiorT0yKgACLK+dOg66U9N0Ij6dPVanT69HZqChPVnESf74TmJJ2I1rBRJ29kRLYwRyaflyjgoaG1RcOn7BOpbrRFhNQjzs1J4sYHPgB897vAb/2W+Agu3WyLNLprdFR8mYUF8VnyeZmwa/fmbh+7SDQaOVUvgtCP2qCwsivtak4SJ06elLrt+/fLHMXPqj2a6bZ5Wn+/2JtCQc6pbNYGbywsyILz2JjMrRYX5e+5nPiPQ0M2Ul4FQ2Pks7SO4vKy/F07Pff1dYbIxqYwpFM5fRp45BHJ3rz66nWfJ12tL202nR6JeDEAt9fOl0yH/GDP824BoIk188aY+xt4W+RvX1iQWohLSyIIalrz3JxEJeqK6vHjMljt3i0pBYOD8p5q1dZvGxy04sn8vLy+WrWO+ehoeBSWMTYNWrdczg4EfX1rm7Zs1aCn6dNREY1RTWHqCY2bnZ67Ec1JolbKO8EZ2SqqVXv+VqtyntabeFarcg2Wy1JCQF97+PBhHD58+PnXvfzlL090sy0i25ONaE6y3aMHN4ovflG6Mf/ETwC/+Zvb0xZpHa+FBRnLxsdtNoUx4udsVrYE2Vo2ojlJmG8Uh7IrncTCAnDPPeIXv+Qltdeca49e/vKXvxzxnqcF/u5KReZRxlifemREzr/ZWVuzVdOfFxZEHNQml0HlchRXUNRAAFdQ7IZzNSyqsVKx95k+TRohmxXfyBjgR34kMo25XiRit+lLW0JHi4hdSN2dPTcHHD4sF8r+/SIUzs/LCvzsrIiF6bQY3SefFHHvwguB7/keCYlfWBCnO5mUAU2LkVerVlBcWBDjnUzKQDg6Gh2ZBcjrl5ZsbcXFRRn8ADH0bhr08LCs3nXSpLFcDhYX3ceNNIUJS58O+l/rNSfR5/1oFEZY+gxXyaMxxp6rlYpEGYyONhZBe+KErCxffHHdGhtx3/s0/NuMsJTiVtKL49icJE488wzwuteJHXrPe7a3LdKMhMVF23gFsKVYmN4cL+o1J9Hnw8qu1POLKCpsLMUi8O1vy/V2003SBTWCuF+FobaoUJB90Nsr56jniV3W7K/lZZmbjY3JuVgsig+az9u5lltaKgjNsMrnbZZVb68VFLs58rrV9GmAUY3bhXJZGqmcOSONVPbvj3w5j3gboIjYXhra2efPA0eOiEC4d69cKEtLMkgVCpLWXCjIYJ7LSYfnQgG4/HIRE3t77UoYIAPXyIgtSK4iy9ycDH7lsh0Qx8YaTxPSQdXddCUtlbKRXyos9va2sMfaiEY9+MVFv+io0YPu5k/R04FLu/FpUxiukm8u2aw9pzMZOZ8b7Yi3uCgC/tSUXHd1iPsARcPfJWxEcxJGD3YOi4vAa18r4/f73hecOugj7kepri3StLjFRRkjx8bk3FxeFpuvk/RunmTHgaDmJEERhX7c5iRRfhHtUXupViVt8PhxSRu86KK6xyDuRyjSFuVyYnP6+2X+o/VaEwl5fn5enhsft35nPi/zsWJR5gGN1povlWwdRa1br529+/o2pqxUHGlEaGwlqpH2pfO5/34Jnrr+einvUmfBiEezDVBEbC8N7+yZGRm483lgxw6pkVgoyCAFiAh49qw4VwcOyGsfflgM6NVXy4qhioma6tzba7uHqbHU1GUVFItFG1k4NtZ4BJd+1vJyraiYzVqDnsmsTYPuNMHMbU4StlKuq4TlsuwvN7VGV9PceiLqDPf0yD6ISp/mJKg1lpdtN8/eXjl3m0lzK5WAp56SY1CvG/MqcR+gaPhjAJuTbC+qVeCtbwXuuw+47TbgpS9tKLIq7keyri3S814jErXOs+fZdGemN28u9fwiTU30o/5PWAQhowc7l8OHpSbr/v0yaW9gLtDVtsgYsTXlsu0arynLiYQ8PzsrNkkzwZSVFbvArfar0QXuSsWmPGsGmHYD7+vr/ACNdrOepjBMn+5MDh+WiOh9+4AXv7ihayfutigWUERsL03t7NOnZVtZkajDCy6Q58+ft92Zp6dFJJyYkCKjjzwiXYtSKVHrX/QiGfizWbsapoOepjq7qBijKdSADJYqKDY66CnVqvw+V1hcWZG/aUMYV1gcGNi8yW3QKrnfKW50ldy/Wu5fxdLIiag6jY00hQmr2UgBQMjn5XwtFGS/+LuRN8qzz4qYfvnlDZ/jcT8CNPxbyEY0JwlKK6Y4GG8++lHgzjuBX/kV4Od/nrbIRcVzFRLTaVkU9Txb/7ZYtHWheR00hrtwGhVB6MdtThIVRcjjEE9mZoCHHhJ/6rrrRKBvgLgf7bq2SGseJpMSFLC8LPfV5hhj05t7eyUq0Q2WyOVsqZ1MRmxYMyJgpWIjFAsF+T5tnKiCIq+5xmg1qpHp0+3l/Hng61+Xc/ulL5V5XgPwCLQBiojtpemdfeqUDObFogw2F1wgF9LsrK3BsbIiXZ0BqaHU3w/ce680iMhkgBtvFCcgmbSh9bmcvF5FvKDV+3xeBsO5OZsa3dcnF3CzkV4uxeLa+orqpLq1HHXTNOww/M1JwlbKO605SVhTGL/oGPS7VUzcyqYwW0mxKOflyor8n9p5vJWB++xZuc727xcxvkHiPkDR8G8STC8mrXDvvRKF+JKXAG9+c906iC5xPysatkU6qSsUxIfQSbjipjcPD2/flD+lEb+okeYkQX5RN/sX251cDnjwQZkDXHedZEM1yLawRfm82BltfJLLia1xa7O66c1jY7XzGGPk/dr0r7+/tXIM1aoVFPN52/glk5HflsnQZ1gvblSj2whmk7f5jQAAIABJREFUvenTjGpsjHwe+NrX5Fp5yUsaKjWl8MxvAxQR20vTO9sY4ORJ2wFsYECExEzGpiEnEjIIHTsmrxseloiqXA64+255fnBQ6iVecYUNu19cFEe8UhHhSbuIBRm2YtEKitmsPJdOW0Gxlegvl6A0aDXQqZT8f/398j06GG+X5iRhTWHc+2FNYep1n47LPlDKZTkHczn5/7TmZqv/w/IycOiQfM6FFzb11hjttUBo+FsgKq24lfRiN5KQbF9OnQL+638VO/Sud0lDtSbOibifPU3ZIs0WcCfyruCqtRMrFfFn+vs38qd2Bv6FUzYnIRtFuSylkc6eBa68UuYbTZwP28YWLS3JYsbQkDzOZsWndm2Rm96szSddu66ZWktLthzD8HBrAr0xtYKillVyBUVe15sDm8JsDtWqdIU/cUIyKy+5pCmhfZvutfZCEbG9tLSzjZGah/PzclH19UkdxL4+GZzOnZPBanhYBo9nnpHHBw6IA3DqFPDNb0pHo7ExCQe+5BL72boiViiIwdJIwLBVfK1BND8v7zPGppKOjjbeKTGo4Lbe185mKihmsza92vPkO/T7tLu0imLbcZXcbQoTlT7tv9xVbK2XPr3VzkelIuebCtjDw/U7itejWpU6iMaI6N7kORP3AYqG32E96cVhKcWMHiSNUCgAb3iDOMrvfKfUNKYtinixU3d4eVkWlPr77WQesJPzQkEWO4eGtn4MaxQ2JyFbhTHSuODIEZk/HDzYdAmjuJ9dTUVFay3W4WG5JrNZ8ZtdW6R1FHO54PRmQN6rcx2d36zHZmm0toqK2vwxnbZpz3Gxh93ERjaFSSa7X2h87DHgiSekodNVVzW9INiFe6TzoIjYXlre2dWqRBRqo5KeHhnk+/vlsUZnaT2g554T0bC/XxpFjI5K3be775bX7twJfO/3SpFSJZ+XgSyXk8/UEPuotOVKxQqKCwvyOxMJWVEbGpLP8DvFra6SA/LbVPRcWLB1BV3xUzcWWK9Fax/VS58OWjFzu0y3symMOmqLi/J4cFDO5Y0QiTVy99JLW4qkjfsAtW0Mf5gg6EYSBsH0YrLZGAP89/8OfPGLwJveBPzAD7Q0bsX9LGwpQ0OFRO2YOji41o53WnpzvcYkYenFboO2sAjC7bZwSjae48elDNLwsMwb3FIBDbKtbFGxKPYllRLbUyrZeZi/huTKisy9gtKbFa23uLxsa9e3WqbH/zu1MYtmLbmCIm1H58CmMMKJE8ADD8i8/rrrmio1pcTdFsUCiojtZV07u1IR4WNlxda+2L/fDlZuevP4uAxETz8t4uCePVIvMZGQlcZvfUsGvwMHJDLRrXmiq2KaEqQh+rq6Fub8uinPWutDV9VGRmTgTKfDV8pbWSXXGo9aY1E7UQP2d7vbVk8i4kCrTWESifpCY6NNYYyxQnG1Kg5aM53C6zE3Bxw9CuzaJVsLxH2A6grDH5ZSzOYkJA7cdRfwF38B/NRPAb/0Sw0XDPcT97O1JVuk134iIWNFPm8XLl3akd4c1JwkSCz0E9acxP8c7RHZbObmJPLHGBEQ6Rc1xvKyzMn6+2V+o9F/mczaRY166c1KqWSbWyaTMn9ab8ko97NVUFQ/vrfXCoqbEQxANp5ubgqzuCjZk+UycMMNol+08JvibotiAUXE9rLunV0ui/jhpqbu22cFvlJJOhmVSnYV68gRUfV7esQ5mJwUB/eRR4D775eB6rLLpAHL4KB1ftX5np2VAUdTqYeGasUcvxCotysrNhVZw+mHh20K8mYMVm56tm7aRAaw9ZO0ll5YDUgSjdsUJkxobKQpjF9oTKVs451yWY7X2Fhz3evqUSyKkN7XJ+k6LQ6YcR+gOtrwszkJ6Xa++11poHLllcDv/I4s5NEWNYdOlJJJmXQXCjK2+6N8dFGqULD1nxsd99UfiqpBWK85SVQNQkK2mnwe+M535Bo5eFDmFC3659vOFhlj/dXBQfFll5dln/b3r40sV1ukqc9B6c1KoSB2rViU4zEysrGLIOWyFRSLRXmup8cKigy6iDdaO3cj0qfbFdVYKomAODcHXHONBDq1OP+Luy2KBRQR28uG7OxSSYRErYtTqcigrwV9/enN4+MyaH33u3KrXZ5V6Hv4YeDRR8WgXHopcO21MlC5q+SVigyMxaJNVx4fb7ypRTYrg6E6+kBtXcONFIn8lMsyyLvCov4Gz5P/RUVFTYOm0LAxqBgdJTTqebyyYp2xTEbC1wcHwyMaW3FwjJFGKoWC1EFcx3kX9zNkywz/RjcncaMJCYkDc3PSSMUY4O1vl/F4HRO2uJ/5687QAMQG6IR7dDS4lpsubOqCpjaZi4oiDLJH9VKL2ZyExIVqVfz/c+dkHrF//7qEqm1pizR7y/MkYjCVkvlXoVDbDNJlZUXsFSD2KqqMxcqKLd/U2xu8ULJeKhUrKOr8KJm0gmKTtTFJTOikpjDGSGDTiROymHHBBbWNipok7rYoFlBEbC8btrMLBUltrlSs8Z+aEmFOnd+lJXEMjLHRXNPTcoGmUlKsdM8embwUiyImPvWUPH7hC4Gbblo7cESlOjfqNGttkPl5uQ+I0zI2JoPpRg+OQRQKtaKi/j+A7Bt/GvRmipzbneVl6QSoTVMGBuw5qUJj0GTO84KjGv1Co3teTk9LrdALL2w5dfD5r1/Xu7eeDTf862lOEpVWzOhB0k2Uy8Dv/z7w+OPA294mq+3++llNEverY122yK2P6HniWxSLNsvALwrm8/KaUkkmx65gwuYkZLvxzDMyJxgfB/buban2mEvcr4yWbVGhYJunZDJiK5aWrC0KEuEqFcn0KhbF7x0ZibYtuZzMVXShfWRkc+Ym1WqtoKhlI1xBkTZwe7HepjD+RjBBQuOhQ5IlNjUl5dfcMmstwDO0DVBErIPneQPGmFz9VzZEwztba+xEFeHO5YCTJ+2FmM/LxTc5aR1fwHYQGx0VR6Fclot1fl4Gocsvt470woLUS3zqKRkobrxRipr6UxuMEfFnYUG+V2sfNiu4FQpWUNS040zGCoqbUb8oCP1/tA6f22BGf5MrKg4NMRVpvRSLcuxXVuT8Gh0Nn0y7TWGiohqjmsIUi9KpfGpKRERXbGwhdWdLBqgNtEdNd0St16Ak+PcyvZgQl7/+a+CTnwRe8xrgh35o3ZN2YJvZoiC/yC2fUSrJuFKt1tZBdpuTaBZGpSKT4vFxeR3HdLKdOH1aRMTeXhEQW6w95rKtbJGfbNZGH+oC9tKS2KShoeC5kZve3NMjtijKH3VLNlWrtgHmZtUyNMbWeXTr8WcyYjszGfpwRFhPU5jz56XEWiYjmoQGOK0jfbrjz8oN1pe2hI4XET3P+xUAHwbw4wBeCuBXAYwB+AaA1xhjjnme91oAbwCwH8BjAH7dGPPA6vsvAPBmAD8E4ILVj30IwLuNMZ/zfde/AzgI4IcB/CmAWwA8COAfAPxPALcYY77pe8/3A/j31d/yv+r8OwZY2604yCnWqLja71q7Sl4oiCPQ3y8XXD4vBZHdiYkxItJpDQ4VGdWBqFYlbHj/fnuhnjsnnZyPHJEB8eabpcV60IWsUX3aOVrrDmpKdKNoMeG5OftZvb0iLo2Nye9o52BVqaxNg87n5W+atqCiotYq4WBaHz3OuZycT6Oj4mBtxL7TpjB+cXFlRZoMVaviLPvPY7cpTFT69Ec+ciduvfVWIP726HnDH5VW3Ex6cVAkISHE8rWvAe96l4iHr361LGi0KlzdeWd32aJGmpNUKsER6RrlkEyKzdbJu+dJNEPYRNef3syMA7JdWFqSaOhyWXz/3btbP/+7zRa1igqC2gxQmyJp9GBUc0eNkNbMsaj0Zv0unZ8YYyMZN3MhxBiZ76mgqBHgrqDIMg6kHn5RMZuVOoilEnDJJeIXBZ3/jaZPGwN4Xn0Rscv0pS0hTiLiQwDyAD4OYA+A34Ic0L8H8Murr+kH8LsA5gBcYowpeZ73swDeAeDTAI4AGAXwSgBXA3i5MeZLznf9O4BrAeQAfAHAvQCqAP4JwDSAjxpjft33+/4WwC8A2G2MWYz6Xz71KZjrr4+usRNVayfMOGezEpGYTstrslm5CKemal+3vCyh854nq119fSKwPPOMpJMODMgKgFuD4ORJEROnp0XseclLwptRuKJbuWzTgluJ2iuXJSJQOz0bY6PVxsY2TnRqlmJxbRq0dl1MJtemQbOOiKVSEfFQJ3dah7IdTsdzz8mxuuwycXSCuk276dNu4yKXf/zHO/He994KxNwe/fmfw+zda1NT/KvYQWIgBUJCWmd6GviTPxFR61WvknGslfFBF0o+85k78f73x98WHTsGo2VZ/Ghzkno1CN19A8hzlYqdlEc1L1Bfo1IRH2ijuqAS0qmUStJIZXlZxMMdO9ZVewwf+tCd+LVfi78tWlmBWW9kXakkczCtJ6i+lZZMGh4OjxpsNr1Z37O0ZMsBadfndvjVrqCottcVFBnZTepRqQD33CNj8MGDYovGxlpPnwaA978feMc7mhIRY223tpI4NXOvAHiZMaYMAJ7nJSEK8BiAF2hIqOd5cwD+EqIs/zOAfzXGfNL9IM/z/hxy0vwOgC+hljEA7zPGvNv3nk8D+HnP815vjCmsPtcP4GcBfLqRA3zkiDis3//9Yuhdx3g9g9bgoIT+njxpB56ZGbnIdu60r+vvl5XG8+cl0nBoSF571VXyuqefBh58UCK1Lr5Yft/evcDP/ZyIMHffDXzuc3KRv/Sl0jXJJZkUkW9kxKYGz86KI6/NSxpd6UylJJpyYsLWYZybk887d06+a2TEfl+7Vr80knNyUh4bIwOoKyoeO2aNWzq9Ng16s9IOOpVq1aaIAzZys10Oxrlz8v0qmgFyHOudi/706cVFqRu6SqztUTYLPPusDNYavaMFwPv6bDQPIWT95PPA3/yNRKH8zM+E18jyo1kLpZK9VQf68ceff1msbZF2Aw2qQdisDVLxsFq1/sjcnGxq6/ykUiIyLi1JdHyp1L5JOCHtxhjx9bWOuvqmraANF//1X+1TiLEtqlbFVq9HSOzpkffn82KzNYNsaMjOEcKExGRS5haa2VUs1k9vVjs3OCjvUzs2NLT5wRbptGyjozbjR2veA+JHah3F7TbvIY3x2GMSXKLNYbVWfSMpzEHp0x/9qIiSTRJru7WVxOmy/pAe4FW+CTnIf+fLKddw0EsAwBizrH/wPC8DYACSK//vEIU3iA8EPPe3AH4RwE8B+MfV534GwBCAOxv5B374h0WE+Na3gFtusULURjA0JGnMp0/L/fFxEQurVVlpVFIpEQE1IqxQsGLdTTcBhw+LGHnunERtaVr0RRdJHbknn5Tf/5nPSArES19aK1QCNtV3YMBG7i0tyabFgJtJ/U0mZQKgqxNLS7bT8+ysGBo1PqOj7V398jz5X/r7Zf8DNjxbHYaFBRF1FTcNenhYBv9ujOzS1I6FBdkng4NyfNrpTOTzUgdxeHhtZG49dCLb1ye//+Mfr4mWibU9es1rJDJKJ/DVqp1Ay2+T5/U67u9vT8MjQroNY4B3vEMmlG99K3D11TL2+22+1vPThQttKKWkUra8wuc+V3M9xtoWuf7JRpBI2AlFKiV+gy5mjo8HT0zcdOalJXk905tJN3L0qPhkw8MytrdSk1Ubb+TzwP/+35LNtEqsbZGKf4XC+vydvj6x4/m8tTeambWwIDZmeDh4rqJZOum02KyzZxurD6+LIUND8h0LCzIP0eO82XMMXZgfGZH/XQVF/S3qa/b1had0k+3F0aMyP5uclHM3yC+KQkuZ6HX0pS8Bn/60lItpkljbra0kTiLiUd/j+dXbYyHPjwOA53m9AN4KCUm9wPfaoGDYWWPMfMDzX179Db8Me5BfDeD46t/qct11Yszvu09qI117rUT8bdSK9+ioDO5nz4ohn5gQIdEYiVRUPE8c60xGnOUzZ2x686WXiij41FPAo4+K4HjwoAwOngdceaWIi489Bnz728AnPiF/f8lL5DP9aOServQvLMj36cpc2EAaRiIh/9vIiERCZrO2juL8vPzGoSErKG7FYKWipru6q5Fsup07JyKOvl73hUbpxVmw0cLP8/MiuvX3y7Fo94SsWpXo30RibdRsMxgD/OM/ioD+whcC//ZvAGJujyYn5f+am7NRiBddJKJFLifRBbmc2A8VwJNJKyjqLZ1BQqL5p3+SKP5XvAK44goZJz1PrrWwEgqJhFyXmj3gdpn/xjdkbL7iCuCuuwDE3BZtNFpuQeu5qpDoRiSG+VzaVXVxUcYvpjeTbuL8efE7tVGg1kdvFM28yefl/n33SUDBFVfInAAxt0XJpIh3hYKNSGwVjQzM58WOV6t2bqDzgKgsqkxG5l+6AFIoiB9dT2Tp6ZHjWijYklBLSzZ4ox1oDfHhYRnnVFDU/1sX5zXrhWw/5uaAJ56wATja3KxVHn9c0pgvvxx485ubfnus7dZWEicRMaBiTuTzamrfD+C/APgfkGKZs6vvuRWi/PpZCfowY4zxPO9OAG/xPG8HgF5IMc0/MsYE9BsK+EGeFA1Np6UL0SOPiHG/8sqNE43Gx2WwOndO7k9N2dTmvXtrB6C+PhEMNb1ZI8WGh4EXvUjSco8dk4v9kktspF0yKYLolVcCDz0kKdDPPitp0TffHNxh1xX/tKuzCn+agt1sfSgVDIeGJCoyl7OCov52/Z9GR7e2PmFPj434VPxp0CdPAseP29drzUDd4pAOoMegVJL9PTW1dYLoqVPiwF1yyfr23de+JkV/b7lFjtkqsbZHnmfPRXXwtPC3Xi/yPeKM5nJWXDxzxoodKkC6wiLTAAkRHn4Y+PCHJcr/llvkuYWF2k7ynif2fmDARnOETey/+13gC1+QaMacXR+PtS3aDNxoRG2apanN8/NWyA1CRUdNCywW21syhZDNYGVFIgY1s2dkpH7zDsXt0GuM+HZHjwIf/KAIiFdcIR3n0QW2SH3FQkG2VucNiYT4Q2pDNBBDa6driZ+o0gnJpPjQms1VKtVPb1bSaREh83mxeefPy+eMjrbXJ9eAkaEhCSrQ80iz07R2pNbnJt1PoSDagZZMGxgI1g0aZXoaePvbxa697W0tCdOxt1tbRQxkiXXzCgD/nzHmte6Tnuf95xY+604AfwjglwBkACQAfKSZD0gkJCowmZQB/cgRmZhffvnGpTdPTtoCvZOTIhTqxH/fvlrnWdObNcS+WBRxIZWS9OUdOyQq8ckn5TMuu6y2rtzNN0tE5X33SXTEk0+KwHjjjeEDlab/lko25D6blQFkZKT10HuNGti7VwYpTXk+cUI2jYgbHW3cedpMdODUdHCN4PNHLCr9/WvToDtlYqN1UNRZ2rGjfaueQSwsyL7bsUOcl1Z5/HFJ17niCuBnfxb42MfW/dM6xh5pLR3tsKeRiYOD9thp571MxoqO1arYLI1WzOVsDRx9vT8NuhvT9QkJQtOST54Ebr9dJn0/9mNiIzMZGZszGSsYNrr6fvIk8KlPyYLZf/pPwN/93bp/asfYos0gkaitj9jbK/ZO/YKoqB6mN5NuolIR39wYGcczGbtQWI9CQcb6alVsVX+/CFLvfrdM2t/yFuCf/3ndP7GjbFEqJfuqWJTHrYpbvb020lwXhrTuqz8iMcpH0iaNs7ONpzcrmYwEgGjwxsyMrWPYbnum2SwDA7b+5MqK+JDZrNhsV1Ck39h9GCOLq8WiZD/19bVWUkHJZoE//EMJgnjXu9b3WS3QUXZrK9gOImIFqO3S43ne5QB+utkPMsYc8TzvK5CQ0wyAe4wxTzf7OSrcJRIibs3MSITBnj0bl968c6eNSNy5U+oOTU9LdN7+/bXf4Xk2Um92Vuoqjo9bse/66+W9hw+LWHjhhfIZauD7+oCXvUxed++9Epn42GMSzXj99eGTJA2711TnxUUZIN0ux63WN9SBaPducYJ04nDqlGzptDhAo6Odk67kRlbu3SvPlct23yws2OMDyDHUTmy6tVu4KxREQMrn5byenFzfitJGUCrJea7Hv1VOnQLuvFOu1Ve/esMiQTvKHvX22lVxddqyWdmHQ0PBtkjPO/c4+9Og5+asAJ5I1EYrDgwwDZp0D5qWrJvWNXzHO8QuvvGNMonbvbt1QX1+XkTDwUHgF39xw66fjrJFm4E/IlEbnel4Wk9IyWRkXy8syDHo79/68Y2QZnnmGVv/XEsM1bNDxaKM55WK+D6Dg3It5HLAHXdYGzc+viE/seNskdrYYlH2VauCW3+/jBGa1qz7M6jZStQx0chCLcvQaHqz+zv6+uT4LS5KUEhfnwiYW1X2SeeYbqSriopal1ub/VFQ7A6eekrmsfv3y7GdnGxd81Dh8NQpWcw4eHBjf2sDdJzdajfbQUT8DIBbPc/LQTrmXAzg/wXwBIAXtvB5Hwbw0dX7vx71wig0vVUd2/l5iTRYWpKop42IlNu1S5znM2dkArNnj1xsx45JjTj/hdvXJ+85d05WGt1Bas8e+b2HDomYePasRE+6UV7Dw8DLXw7ccIN0R7rnHknZvukm4AUvCBcE/anO2olZU52Hh9cXfp9Oi5C6c6c4PioonjkjglxPjxUUO63JiaZWufUm83lbX3JxUQTeEyfs693aisPDm+MglEpyjJaX5bhqQeet3nfGSJqNMSJ2t/p7FheBv/5r2Xe/+qsbOnHsOHukjm02ax3KbNamNzdy/qRS9hpW/GnQZ8/aNGhN33TToNvZEImQVqhUahufFIv2nNaJ5tAQ8KEPyXj+pjdJneHJydYnoYWCRECXy8Ctt27oolfH2aKNxvOskGiMnZgaY8dQ12YFoemf2azYMe3eTHtF4sDJkzJpHxuTcbde7bFSSc7zclnO8aEha7sqFeC975XPfMtbJOhhg+hIW9TTYyPLgdZsuDaa1EyvdFr2YzIpnz80ZFN76/nQ2r1ZAwu0e3OjPr7niS+rv2dpSeZAOs/aqpJJapfVNhcKVlBcXpa/p9P2NZ2SgUWaY3oaeO45SdHX3gWtRvkaA3zgAxLV+Gu/Jn0ZtoCOtFvtZDuIiG+A5KH/DCRP/UnIwbkSrR3kTwH4K0jO+ifW88O07l0iIYODpg08/LDUcduxYz2fbsW/Eyfk4t27V9KZT5wQoeXAgbWOcDJZm95cKMiglUrJxX711RI5eeiQRBzu2ydijfs5ExPAT/6kfOf/z953x0lSVmuf6jjTk9POzmY2sqSFVSTKBXQRI2JGUeBy9WLmfnoVMYDoT1Hv9UY/EfVTUTFcXRX0ghIEFFjisrAsy0ZmJ+3kzt3VXVXv98ezx7e6p0NVdZjumX5+v/7tzkyH6qq3znvOc85zzsMPEz3wAPofnHkm5NCFNkmz1Jn7gLDUuRyTjL1eGLC+PmzkTChOTYHkYDKkqyt/JdZ8g+WlPG1YCJld5AcTaUTYdM3ViqV8L03D+WLpAffQrJXzNDGBY1u1yvnmpKpE3/8+1t7VV5d9emhN2qPWVln12tmJ9c9kvlnebAd+Px5cqSDEXBl00NRiOFsG3cg+NzCfYDmbmTQ0TWf/m7SPZckcgP3pT0T33APJ8cknZwbhdmEYGOo0NUX03vfanzBfBDVpi8oNHrTC1YiKIqtfeB8r1vKCVQJeb6a8udHDq4FaRiiEooG2Nrm/5kuIapokyVltYF7fQhB9+9vw+6+5huj008t6qDVri3w+SSRy/1q74EEiiQRiJY9HJjh8Ppxrbutkpf0O7ymzs4jHuA2UVXC7Bh7+wgkSVjbNpz9vbqHT1ZVJKCaT+M5mQrGRzKkPRKNoedbWBk6B25c5xfbtRHffDa7hTW+at1ihZu1WtaAIZhoasARFUfxENEZEfxRCXGbz5XNOtmFI2cDYGG6EZBI/9/eDTCzVoBsGBnYkkyD9DANEot9PtHp1fiOcTMrpzixvZmgahqmMjcGQb9yYezozEfo+PvIIAqHeXqJzzsHnWj127hPIfUV4knE5s2aGIUmTUAjBIldIdnXVX+WBrstsJT+SSfyNs5HZMuhCRtgwQPhEIvi5rQ3nppbOSTwOcrujA8S2ExgG0W23gfR++9uxVvOcl5qgt0qwR3Nska5j/QsBIpGnlKqqlD2X27nkwMUshdY0/M0sd2FysdGTrIFKwTwlmf9lcE89cx/DXHbhwAHIlzdvJvrYx6RcxwmEIPrDH4gef5zokkvQHiQPFpwtqgS4GtG8Z0UisDt2GrvrOnwETZO2qZHsaKDWkEpBCeR2I7HvdqOoIHsP13XcAyzbDQRy96P77W+RXH3Tm5BczeML1MSdUAlbpKq45/1+57FHJILzzf42k4lE8M9jMby/VVtkGEhoqCrisEIDowqBbRrLiLnYoNbsWjotCUVzdSgTivUwfHIxQtPAAaTTkBy7XCjOcHq9Hn2U6Mtfhurx+uvzKjdrbPUWR4n80rygQSLahKIoVxAaYF4khLjH5stznmxdxwauqiDl3G7cZEePYrM5/vjSe93pOohEVUWVFv/s84HQy3cz67qUNre0zN2kgkGiffvghCxdCtIzV6ZOCDxvxw5sVsuXE519tr0qL55mzFMpeapzuSeNsdSJJdWaJjdWnmpXj5tVKiUJRa40ZcLG3IeSH36/JFfDYfyfp13X2vfXdfTaIILM3im5+Yc/oJLowguJXv/6gt+zJjaoEuxRTlvEMnUeuuJ2476LRnEPVKN/TiqVKYPmpu5EuB7Z/RVrichuoD7Ae66ZNGRXiKtDvF5JGlohz8Nhoo98BO/zxS/CsV2yxPn6fPRRorvuwlTniy4q+NQFaYsqAV2XFUCMcBg2rq3Nup/FVYyJBNZJvSUZG1jYMAwMhUskZFujgYHMykLDkNVdXP2Vr/p/xw6ir34ViYzrriuYzFvQtiiZhA1xSiSyP80JUqLM92H5LleNWgUXDHg89uTN2eBhl4kEjrEc6q9KQdMkocgDcLwXxIgkAAAgAElEQVReSSg2+m7XDp5+WrZAc7mgqHDKaezfT/TpT8Oe3XRTwUEqNbhqC6NEfmle0CARLUJRlAuJaBMR3UhEI0T0MmH/5OV9vqbBgGsa+o2wVPTwYWxa69bJKb5OoeuQuWoaiETDgNTB4wGRWMjocv897uVofq5h4H35vdavz3+sug7n5vHHsVmuXYteBnYmKmlaJrHl84HcqMRmx1LhYFBOHyaS/RzmY8JZucDyUnO1YjSK3wshAy4OhletKj9hWy4MDuL6bNjgvGfYY48R/eIXkCC+611F+5LO6wZVBnuU97lM1jc1Sem7pskKXafyZqcQQjrXTC5yVS0RHHqzDLpYVW0DiwuGkSlJTqelLJnlaWbS0Glw+PnPo/Lni1+Eg9vV5by38d69RD/7GSoa3/nOout5wdqickMIOY3eTCSGQrAp7e32rpmqwlYSNeTNDdQODh1Cz+/ly7HeOflNJPfTZBL/Z/IwX6LkwAEQhytWIGhvby/40QveFjGR2NTkLHGQTssWTVzRbt5z4nFcn+Zme35WKoWqRMOwL2/O9V7BIOwb91mvlQGUuaDrklBUVfyOJeTNzfUboy0EHDqEAo+1a3HPtLY6n6A8MUH0yU9ijd90U9GerHUTBZSJX5oXNEhEi1AU5QEiOoeIniKivxdC7HHwNnlPNvfc4EmCR47InoaDgzDoS5aATCwl482Taw0DxKGu42eXCz8XMrbJpNykurrmbiqxGIxFOIxs2MaN+UmndBq9H596ChvW5s3omWilHwiDqwFCIbwH9zaqZKVgPC4JRSYyWlpkH7l6DyIMAxWww8P4nqkUzqXPJ6UuPLCFHYv5JmxmZrCGly7Fwwn27YNUZ+lSTGK2MHFwvp3lB6g0e1TQ8EejuJ95GqmiyArdZLJy8marYAmWWQbN8hZep+ZqxXq/LxuwBiHmTkvmamsiacuYNMwnS7aL224juv12og9+EL3CAoHik3/zYWyM6Hvfw37/939vqaJiQduicoNlzdwfkQg/h0IIQO2qG3QdPk86jYC1Vit3GlgcmJhAq6ElS2Qv86VLMyfgCoHfBwKF9/DJSQTtLhfkg8uXF/34BW+L+DwahnMiMR6HreHzz33xGZwo5d7QVmEYMjZpbsYeVIqPlkzK+Ip7+Jdj6GclwRW2TChyCwsmy3NJ9RuoDKaniZ54ArZoyRIpY3Zy/uNxJDNGRog+8xlImYus7bq5ymXil+YFDRKxuih4srmRO5EkEoUAuTc5iZ+bmyFvLjXLdOQI/s9E4uAgbuzVqwsH3MXkzULgJj98GD8fdxwcj3xGI5kkevJJVHAQoQrs9NPtb1S82bHUmcmuSm54yaQkFONx/I437s7O6lZrlQOJhKy29PlkJQ0PuTE/mLAx96jkRzWrFVUVxHVzMypgnWxOR49iypfXS3TllUQrV1p6Wd1sUHlQ0BZxL9JcMj+zvLm9vXayvOl0pgw6FpMyaLc7s1qxpaX2JPkN2AdX8JurDLNlyWbSsBKk944dRDfeSPTqVxNdfrmU6zixReEw0Xe+g/f4wAcsJ9UWtC2qBPIRiZw4szs1khUL8bgcztaQNzdQbcRiRLt3y7Yzug7/m3vJsXInECi+PuNxBOtjY6iuPv54SzZtUdgiJhK5ktPuvsIJWSHgizDRZX6faFTGWXZ9ai6ucLuREC/VR4vHZR9YHohRD4lZw5DEOV8vl0sSik1NDUKxUkgk0AfR50Nslk4jmeFkLeo6khhPPkn00Y8SXXBB7SdXFwsaJGJ1UfRks/SKK38GB/G7Vavw+xdfhCFfu9Z51RURNqcjR7DJcI9Enui7enXxTYv76uWSNxPBYO/bJ6cYbtpUmPiMRCBx3rMHTvjWrUSnnWbf4LDUmRsYc/astbWyVVNc/m8ePuL3S0LRaqPk+YCqyuylx5O7yjQbLHllmXs0KgkbrlIzPypB2AiB/hiqivXlZHOKREAghkKYfso9Oyyg3jeooraIpzWzhNlsE8zyZibnag3s6Jtl0ImE/LvPN1cGXStTxhuYCx5CZiYN2eaYZcn8qAaJMzoKp3ZggOhzn8Oa6+111o8plUIF4uws0T/8g632JQveFlUCLGk3rxMhcP41zVmrkoa8uYH5gqYRPfss1vCKFdjrOjpgG3Vd9hO24ovpOtFXvoKg/Z//GS2HLNrTRWOLWBZO5IxI5ApmrxevFyJz0AoR/K9Uau6kbCswy5u5t2Ep4ERJOIxjb26uTo/scsFcicuVpOZeoE6uYQO5YRhIrsZiKAxSVTmg1C6EILr1VqI77yR697uJ3vxmywU69W6L6gINErG6sHSyNQ0Pt1sSidzH0OcDkRgMotph/XrnwVIigeEqXm8mkajrIBKLVfGpKqoSDSM/UTYxAaKHj3/16sKGemYGDeUPHsTnv+IVRCedZP87stSZp8uy1Lm9vfKbnqZJQjEcxrF4vZJQrJWpZ0x8xuNykIZTKZZhYMNgUjEcltWZRDD6TChyv5ZSN+zRUayvNWucSQc5aH/pJaK3vY3o1FNtBY01cAVLgiVblErBkeWJ3ubzU0vyZqswjLkyaK7+5v6fZhl0rfYAXejg9h5m0tAsS2YpMhOG2cFXNZBMEl17LfbAr30Na8VpsGYY6IG4bx+qGTdssPXyRWGLyv6hefojsiRQ1xH42PUXGvLmBqoNIdBHNRRCy6NgUPayc7uxp1n1bYQg+u53iX7/e6KrrsKAuYZflBtc6UaUfyhNIagq/JDmZlyn7P6I7GOl04gb7CY1zPLmpibYs1J9ND6mSATvz6qvelJ2sOqPZc/c/93vl30Ua92XrWXs3g1u4eSTpex/yRJn73XnnYjTzj8fSrGuLssvrXdbVBdokIjVheWTzc3fPR5JJKZSIOJaW9GzbnAQRu/4451nmWIxvFdTE2Sc5uErK1cWrzDSdRB/3L8j1yaVToMU5GnTGzcWJ33Gx4kefhjH1t6OfombNjlzxpNJOdVZCEloVUNurOtw7IJB/GsYkrDr7Jwf4oVJzmgUn809Dssd6JgH4PCDCRuXC2uWSUW7De0jEaypnh7L8uMMGAbRz39OtHMn0cUXE51xhu17qN43KMu2KJHAvePx4BxlO4vJpCQaa0nebBXpdGa1YjyeWaXEpCL/Wy+Z93qCuY9hOp0pS3a7505Lnm9SRgiir3+d6IEHIGXmBJ/ThuF33YXk2RvegMSZTSwaW1T2Dy5AJM7M4O9dXc4C5Gi0IW9uoDoYGoKvvHy5VIUsW+asH/Dvfw8S8eKLEbTbbAm06GxRqURiNCpJQpbbZldHc/VfW5sz/4MLKlyu8sibifC9mUwkwlqr1yn1ZkKRk5VmQrEev9N8YXiY6Lnn0MqsvV1OhndyDh9/nOjmmzEz4SMfgfrSxv1V77aoLtAgEasLW6XyPGjF65VEoqqCNGlrw6awdy+et3YtblQniETQxzAQyCQSUyn8bIVcYWmrx4NAKtcmNTuLKspkEse6bl1x5/zIEfRVmJjA+559NoyTE3CFAG/IXi+MHE+grTQMA5/NVYq6Lkm8zs7KBxpMaPKmzwReNUlMJnT5wXJZInk9zI9cDpOmYR253SCknRz/H/9IdP/9CNjPP99R8F/vG5Rt2U4sJichZ69TJow1rXblzXaQSwbNW6XXO7e/YiNrbR0sSzaThmZZsrmHYbVkyXZxxx1og/C+9xFt2wYbxo3D7eKxx4j+8AdIBl/7WkeHs2hsUSWQqz8ikUyQEiHwdrIOUympRmhra1Q2N1B+zM4SPf+8rFRLp6HOcCIdfOIJyJi3bCH6xCccVdEuSlvEwzy4356dc8YkoaLAl+BCA/NewoOfWJrsJKnB8mZdly2eygGOq7hPdltb9WKqSoD7hyYSsve7zydlz40kcn6Ew0iGdnUhvo9G4Rc5mU1w8CBaxHR1YbjT6tW29+B6t0V1gQaJWF3YLpXXNNkrgwjkXjKJjGNHB4zcvn1wJHp7IW92ssGEQmig3NqK9zYMSVquWGGtwbsVebOuQz46PAxjvGEDZNmFIATRgQMwTsEgCMhzzkGm1Qm4twdPY+SquGr292C59ewsvhP3wWxrg9Hs7CyfPIDJy3AY/6/0BGs7MPdZYSKah+MQYfMxk4ptbVg/kQgIRCeb05NPEm3fjk3uda+znd1i1PsGZdsWxWK4X5qacvcPNMubuRdpvTqS2eAgwSyDVlX591wy6PmulqsFmGXJ/OCkAVFmdSFLlGsdzz9P9KlPYQDYtddiPXR3OyOI9u8n+slPYMsuu8zx/VLvK23enVAmEnMlR2ZncS93dzu7PoaBfS2dxhqplXYmDdQ/4nFU67hcSPirKvxiJwTioUNE11+PoP9zn0M84WC91/vKdmyLdB2+jxMiMZ1GPOD342EYc1t0sB9vGM4LDgwD8UYiUT55M4P7ZMfjeE9u7VHPtk7TJKHIKiqPR1Yo1pvqppJIp6EeFALzDEIhrAEb8uO/YWoKk5hTKRCImzY56i9cxyuvftAgEasL2ydb12HIzCXuR44giF22TN6gIyMgV0qRN8/OQkbc3o731nV8ViIhSctiMAwQiYXkzUQgG158ERtnby/IxGJGwjAweOWxx/D916xBZWJvr/3vyuBG6NEojB83C672ZOVYTBKKTE60tkpC0clmxaSOeQBGZ2ftB+rmilF+8DlhWfratTLbHghYd1QOHCC67TZUHl5yCRxvh5VO9b5B2bZFmgYHkSf05Tvv9S5vtgo+H2YZNEthXK65MuiFeh7MYCmyucqQwbJkM2lYbwHG7CzRhz+M9f+Nb+A7trRY2xuzMT4O2WBPD9HVV5e0PursLM5BTTihuQatEGENz87i96UE3WwnuFddLSTxGqhPcBJ65074RiefLH1uJ73HpqeRGNF1TGJevtzx+lzUtoiJRLfbflKJB34w8ZZr0AonJIhKkw5zEUU55c2MVArvzeeBe6DXO3RdEoocj7jdklBczEO0hEBxxswMkqu8zzkp0EgkiD77WRQaffzjRKecYq2IKQfq3RbVBRokYnXh6GRrGgyYucR9aAhOxMAANgEiBO5798KIH3ecs0q96WmiyUk4y/392LSGhiRpaXWARSQimzvnkzcLAUNx+DC+F0uyixkdTSPatQtGS1VBmp5xhrNAjqHrOGaWZHIfo/koy08kcO5mZ+X0t0AA576ry5pzEo3iPTRNZhzreZNTVQTdPH2wvV0GfR6PrK7kisVc621iAlO+3G6iSy8FCVmCvKzeNyhHtkhV5WQ7lnfkAkvnNQ1rt5ank5cT3CjdTCyaZdDZxGItSnWtQtczycJUSn5Xl2vutOR6r0rVNGTH9+0j+uY3sabdbiSx7DrKkQhskWEQ/eM/OqscMmFR2qJyI19/RCI5hMzjwV7qlPxuyJsbKAXmCbMHDsCOnHqq3JOXLbO/pySTCNqHhlCB6LDqh7HobZGmwQ9wQiSa1UJsi7LJXPatFKU0tUc6DdJH06TKp5xIJnGcqZRUpjhRDtUiuA8mE7/cDsNMKNZbgrQU7NsH+fFJJ8HXU1XE8k6Gkt18M2L7978f7aZKKBJaRFdg/lC3JKKiKFcS0Q+IaJsQ4t55PhyrcHyyuW+U2y2dhKEhOBH9/fJG0zTc0DMzIO82bLCfUZyYkK/v68PnDg+DmFq6VJKWxZBKoSyZy+/zbVKJhJRkd3TAibFSCaiqRE89RfTMM/iMk09GFqSUKkIhEPhzJo0lxvNVUaWqklBkmW9TkyQUs79rPI7nptM43q6uhbFxGwbWiKaBNHa78V3N1YpcTUokJ6XyQ1Ew4SsSkQRiKaQzZW1QdWiPHNsizsTyNLt8jjJXSyQSst9lPZNmTmDuJ8nkIjdhJ5LScJZBO2nMXg3wNEMzacgkvqLknpa80HDrrWiD8KlPoWdYKoX90e53TaWIfvADJOuuvtp5L2MTFq0tKjeYSMzuj0gk92KfD/uv0/uUZYmpVEPe3IB1MGnBE3ePHpWJUPbN7ZJWhoGg/Ykn0JqhVP+ZGraIiGRSzeOxR8iybXC74Q9w3/R8PahZNuyUSBRCFiv4/c5bNhQCF0VomrSd9VzQkA0zsc+9s1nS3ty88FvbTEwgDl+xAgPmgkFwB04KB77/fQx2eutbiS680FpRUQEUfWUd2qeawwJ09SsPRVFcRPQFInpGCPHbanymxyOJRM6Ur1wJGfP4OH6/ZAmed8IJRKOjqPDbuROki50s05IlUpbscskJuMPDcFwMw1p2wOeDYzMzI2W6uTap5mYEZUePIrv65JNoorpyZeENze+HnHnLFkicn30WcufTTiPautUZ6cfNjVtaZFk+Vyhyfz478tlS4feDJO7vx/VnQnF8HOeLN+WmJum4eL0IbheChIAxOoqN2jyMh68TB+G6LqfQcX/FiQk4L3ffjXO3bRuunduNzX4hbO7VtkdNTZnDMVyu3PcaE/BeL+6h2Vn8vJAcyGJQFNgLc2Cm65nVipGIHODAzzdXK1b7fAmRe1oygwMjJg3rUZZsFw8+CALxkkuQHQ+HnfWtFYLo17+GPXv3u8tCINYU5sM3KicUBY9cRKLfj8RTKIRHR4ezde9yYe3w/Z9O106P4gZqD1zdzkMWiZCc7+1FknhyEuvHSVXrj36EnorvfS985oWQcGbMpy3i68R99Kzu4dwGJRaTvnyu6mhW3/B0ZE6U2wX3emV588RE+VVLXJ1n/oymJqzZhdDiRVHkdxQC9ysTivE4/m4mFOtdkWFGPA5VYHs7YrPJSfisTgjE//1fDJg77zw8lixZ2H5lvftKjIbb4gwuIrqBiH5ERFW5+FzWrmlykqXLhd4lLhduXsMAaUckmyvv3Qtybc0aPNcqli7F+01OgnDp7ESmYWQEm4AQxQei8DH29srefEeP4udcmwdXOR44AAJ0YgJVicWkXi0tyFps3Uq0YwecomefRVb1lFOcVz/5fPiO3d2SSBwflz2N2tqqW1nF5GBfn2xiPDGBa5xM4nhXrMB1rnZPx0oiFILTvGRJYTKc+6+YKwxVlejHP8a/Z5yBczgxgfdzu2WVKVfK1qm8rKr2iJ0iHprBw4nyBcFNTTjvHHwzObaQHYRC4HVnXsupVCaxyBXcRDiv2cRiOQkHsyyZSUOzLNnnk1MJF4Is2S4GB4n+7d+QnLvySpDhXEFqF/fcQ/TCC5jCvGlT2Q+1FlB136jccLlwT7Dywwy2e5yoKqWavaUF91Q4jDXV2rqwSJwGSgPvCboOe8+B+bPPguRZswa+jN9vvc2QGXffjSnz27bhUc3keJUwr7bI65U+kqJYJ8x4wnYiIXsi6rpMcJjfv7VVEomlVDRzz+aZGfgelZA3s//Cif7xcfy8kBIo7BtzCykzocitqfx+STrWszJH14mefhrf+dRTsYd5PNaVimY89RTR//t/RCeeiEStE4VHHaLufSWiBolYV3C58DAMGWC63SAMFQWVg0LI6obWVtzcTMqFQpA3W+1TMDCAzzl6VJbNr1iBKgomLfv7rb0XVyBNT2Pz6OzMvUn5fAjW+vshX336aZBia9cWN7idnUQXXwwy8ZFHiP7yF0idzzgD1ZhOg18mUbl6IBzGZsuOf3v7/FRXGQY2og0bpKMRDqM3BRNqnZ31PSU3ncZwn0DAWdXOQw9h4NC2bahQXbYM72mWQQ8P4zOIsP6YVGRHahFsZrbBQzKIZMPpQCD/PcpDCaJRBEbp9OKUN+cDy4A5GGSJjFkGPTYmn8+DbcwyaCv3uGHMnZbMewnLkjmg8Hobaz8WI7rpJpzf669HsMb7gV089RTRX/+KSsYzzyz/sTZQPrjdkkjMpZwwDNgyHh7lFD4fgq5wGGsrnW7Imxc7NA12R9Nkwsnnw56wZw9+f9JJ8D+JEHDbXS87d2Ko0ymnoCK63gmNWgX7SEwkWo29AgG5Drj/N5PJ2e+fXZHoFF4vEvXBoBxm2NVV3nXB6pSWFnnM8biMoxbaGuRp252d8LWYTAwGZWsMJhTrzdfavRvX7/TT8Z00DYVAdmPNl15Cj+lly4guvxz7YSOZVj+oU2ohA15FUW5WFGVUUZSEoigPKYqy1fwERVE8iqJ8SlGUPYqiJBVFmVIU5XZFUVZlPe+Vx35/2PS8XyuKssn0nDVExOKuKxRFEcceD1T4exKRzEwJIfv3EIFg6e0FuTUyIitJPB4QaOvWwenYuRMbhBUoiqxqGx2F00yEm727G4SgObAtBp8P5GBzMwyoudomGz09CLa4+vHxx/F5VrBkCdGb30z0lrfg2O+9l+j220GulQqWz65Ygc0wGsXx8fmpdItRXcd5GBnB5tvRgT4Uq1eDaN2yhWj9emz+4TDRoUMoNz94EK/j6bH1ACFQBSQEvp9dR/npp0EibtoEZ7mvTw63WLqUaONGope/HKXzL385fu7uxnk9eBD3ykMPQSr/wgs455FIZk+7HFg09oh737lcsvdfofXPDmRHB9bhzIycctdAJlgi09uL+3vzZiSENm6ETWZ50PAwptzv2oWK5KEh3Ofc7DuVkpPfx8dhr6em5AAp7q+6ZAnsWl+fbIBeb05tuSEE0b/+K87Z9ddLJYCTCb0HDxLdeScSPq97XflIoiJ7eV3Yonw+wHyD7Vqu42PyPpHAnlDq53R24v2SSTnsoIHFBR7uFwphzbW0YF0wETU4iPt93TqpAOjutm+nBwcxWX75cqIPflAqBUpFkTVbF7aoEmA/iav8rYDbKhkG/FFuv5PrHPt8IOHS6dJtkaJgf+vqwvFOTFTGR3O54GcMDODYo1Hss7z2FyJ8PnznpUsRB7e345qyQm98HPe31TUynxgcRMy7caP0RZ30upyZIfrKV2CDrr4a685JgjYbPD/ABhatfSoVC2Gwyi5CA80fEVE7EX2EiLxE9HIhxH5FURQi2k5EryeiHxLRU0S0/Njz4kR0mhBi8th7/hcRnUBEDxDRGBGtIaIPHHv/E4UQE4qitBDRW4993l+I6NZjhzQuhLinyGGX5WRziTwRNhdzv4zJSRj+jg44CeZgJRpFoKmqIGVWrLD2eYaBSi1VRZ9ClnGxLLSz034DVJ4ezD0XCxmfcBiBciyGYHf9enu9NA4eRGXi7CwM+NlnW//uxWAYUuqcTuN68DCPcmbVDAObjXmyY2dn4c/gwRac9UqlJJHDlZXlcB4rBSY9Vq2yXyJ/+DDRD3+I671tG9ZYV5f117NDxr0V+frOzoKwuemmvA3E68IejY+XzxZxs3ccszVZFAdM6TSckMUsby4FLHviIUORSKYkmaUzra14sITS663f6uRq4be/Jfr5z9Ev7MILYQf4PNrB1BTRT38Ku/ue95Svan1khOhLXyL6zW/q2xY98AAJTkz6/bmHmswXDEM2ys91TOZKmnL0IE6nsc6EaMibFwuYKOJhZbmGMUxPQ1HU3w+fZnwc683u5NJgEBOY02kkRpwOQDAjEkE/s1//muj3v69vW0QVHPKUTMLv8futE788sINbmOg6fP5cezf7AX5/6deUKHN6M7f9qRS4PVM8LlVvra21sw9UEpomrzMTth6PrFCstb6Rs7MorOjrQ3HG2Jjs3W8HqgpbNDxM9NGPIs5btqx0vzQaJfrkJ4luucXWYJV6sU81h4VAIh4ioi1CiOix328hoqeJ6FdCiHcqivIOIvoFEV0ihLjD9PpTiehJIvoXIcR1x34XEELEsz5nIxE9R0Q3CiG+eux3HgKL/CMhxJU2DrtsJ9swYHyYQDQTidPTyGy0tYH0MxtiXYczMjkJEmnTJmtEkq6DSEyn8Z7s3E5O4tHePpe0LIZUSlbHsXy00PcdGkIGxOUCkcj9H63AMECg7tgBI7N6NdFZZ4GULBd4qnMiITOJHR2lBY3cfyk7O+2E/OPJzcGgrKZraZHZn1oaeBGLYZ12duJa2cHkJCapNjcTvf71MvtXKkZGMDlM14k+9KG8znJd2KNykYhEWJdMJPLQGivBL09Cj8dln9GFJmepFHiwDQ894aFbRPi9puHBU5TZLnMlLj+syqAXG557DhnyM88k+vCHsU95PAi67SAWQ09WTSN63/vKF4hNTRF98Yu4vgVIxLqwRQ8/TCKRQNDIAyI4eHK78wfN1UIxIjEUwn7a1laeXsTm6c1+v/OhCQ3UNnjfTCYzhy9kX+t4nOj557G2jj8evj0REvd27gtVhc0YGsKE+dWrcc85vbcOHSL63e+I7r8fdm7zZqIf/KC+bRFVeFI8E4lNTdZ9nUgEr+H2T4YhFWnZiMexppqaypPUEALxApOT5ZY3Z4OHRyaTsiXTQhoQWQy6LglFjtHYn25unv8YTVWJHn4Yx3TWWTJ+HxiwVxFtGKiGfvxxog98AHZtYMA5Ycp8SDJJ9IUvoG/s/ffbIhHrxT7VHBaCYOl7fOGJiIQQuxRFuY+IXqdg+s1lRDRCRI8oimLO2w0T0X4iepXptX+78IqitBKRn4hmiOhFIjq9ot/CJlyuuX17eNpsTw/+HRsD8Weecux2gzjs6IATsHOn/LkQ3G68z+AgMgerVsGg9fXhvcfH8fkrVlh3eFnePDsLR5zlGbk2KZcLTk9fH6oS9+7FZ3I5tZXzdcIJeP6zz2IC9M9/jp/PPLM8JdQcmHPPvUgEhCVPdbRTbSUEHLNgEMaxuRkbeClZKT6+5cthbJlQHB7Ggz+js3N+KyB0HevM67VfMRqPI2hXFKKLLsL3tTIAqBgiEVSz9vQQveY1BZ9aF/bIbtawGHgDJ8La9fmsOzyqKmWZ89VftJbBlefZfQw9Hkm+cg9D/tcMDlZ5aAtXvaRSuP+5EpR7LGZXwSw2TEwgCbFhAzLl8TiSTX199gKodBqDC1wuomuusTfYrBCCQQx6MQyir32t4FPrwhaddRb28tlZmYhIJmFTeD17vZmEIj+qBV3Hv7mufyCAa8IDpsoxnKu1FesuGsW5WEjDBxY7uHo/lcJ64R5gudazrnrkb14AACAASURBVMPfbWlB1U8ohHti6VJ7+6QQRP/934gHrr0WQbuTAV26jr6u27fDj/b50A7moovQc7oA6sIWVRp+P+7nZNI6kdjSAv+I+yOyrDkXkRgIyH7KLlfpfjzLm/1+2Die3lypAYQ8PFJV8XkzM3KA1UIaFpkPbrdslWEYklCMxbAX8DVlQrGafpoQ4As0DX0QeYK4kyEoP/4xCMR3vAP8Q75hq8Wg6zJRrutEX/86EsAf/7jtt2rYJ4dYCG7Ji3l+t42I+ohoE6HsdDLP64/wfxRFGSCim4nojUSULX6cKvlIywzuk8GZciYTFQWOicuF6qnBQRBwZidl6VJktvbuxU23atXcqsVseDx43uAgspmrVuHG7+nBe+ciLYvBLGcOBhFMFJI3BwLoDTY2BhL0iScwpa7YsZu/w9ataEz91FMwigcOYCrUK15RnqyX1yvls9GonKJsVerMFYPpNM5Db2/5N+2mJmR+BgawETChODqKBzcD7uqqfiZweBjfff16e0G7pkE2GIkQveENCMSWLCk9cxqPE913H+6vbduKTq1blPbI48G6T6dxT7N03opj4PfL4QKhkJTfLlYiS9PmTktm8EAbM2lY7Dy5XNIxNX+GeWgL96jl55uHtgQCtSepqRRSKaIvfxnn/AtfkJOr7VZgCEH0m9/Alr3zneUjEKNRos9+FhUAN96IJFgB1IUtcrmwD7W0yGERvFY5QEilZP9Vr5f+NqmUyUQmFytlM8wD7XL5Nh0duIdCIRxDORIhgYCc3jwzA5u4GALphQohQI7E4zLRVmgYGRF8U1VFApz72zKpYwc//jHRo49icMGWLfD/7AT+wSBUGHfcAaXHwAASI2ecgTXa3V3UR60LW1RpcMUpE4lWlAC8f0ejsspQ03IPWiHCc1nlwZ9XKtgHmJnB3tPWVtkBUCyPTSRgU6en4ddzpfpiAPthZmKYB7PEYpnVy01NlU+q7d2L/XnLFtzzTvekP/0JduRVr4L9aG+3F2Myia5pMuno8RB961tQGl55JSY820TDPjnEQiARi0EhosMETXouJImIjrHNfyIslH8joueJKEpEBhH9O9XoEBqPR0rZ3O5MIrGzE/+OjGAC0urVmQ5LSwsIuYMHQf6FwwhKCgWMXi8IuyNHQCSuXo1j6OrCZ42O4m+rVtkzaq2t2DimpmRPx3zSL0VB74SeHjhZhw7hNZs2FSV4/gafDxUQW7YgI7J7N4ZnnHoq0cteVp4ggHt7tLfLzZDJupYW/N68IXJ1oKrKSWnVCBq4IrS/X/Zkmp3FOR0fx7EwoVhpcoenXnNQaRUctB85ggnd3d3Fe21aQSpF9MADuH4XXGC/N2MOLFh75PfD/ug61j5X5lgJVnJNb+7oWPjyZs6kmklD7jDCJCxP5+RqrHLA48H5NVegq2omsTgxIY+FZdBmYnEhXptvf5to3z4QiL29CF5Y9m0H99+PPeWii0AAlAPJJNENN4CYvO467F0loqZsEe+Hk5Oy6qatDeuSe3zysCAzecj3EI41s1qxXGuUCUtO2GbvgexvsarCPBCjFHi9sIusauCp9os1wVKvYPLQMKQtLbYvjozAH1qzBvZndBT3RzHVUDbuuQe+0bZtCNy9Xut+0Ysvourw/vsRtL/sZahkPPNM+LGJBNZnGZQrNWWLKolsItEKAcTXLJmUCgQmEnPZuNZWqWYqV1LD40HVWSgEe1RIOVYucNVdLIbPnZyU98BiSWwSyV6pzc0yGcGSZ26fxf2vK9GiZmxMcgj9/fiZkwd2sGsXpsJv2YI4jSXyVsCSZU2T7UX8fqy/W24BOfnWtyJRUgEsGvtkFwuBRNyU53dRAmt8gIj+jogeFEIUmnt0MhGdRERXCSF+aP6DoijdlMkg11QjSTORyI4uG/aODvxuaEgaAbPz4naDOOzokBNpN20qLO/1+yWReOSIJCc7OzOrH1etsrfBeL2okJyZKS5v5uM48URsLPv3YxrvihVwuqx+biBAdP75kGLs2AGZ83PPYVrvli3lkxCxcc8ldW5qwu/ZQejtnb9BE14vPr+3Fw4KE4rT0zjPTD50dSHAK+dmpaoIkLmC0A7+/GfIa175ShDMnCktBek0pjMHg0TnnGO5r+KitkdNTQiWiLA2kkncY1bXSWsrnEOuvmlrWziZZyZAzKQhyySJZHDJlYbVli/6/bIqlI/XLINmR57BfZeYXMzVz6ue8Mc/Et11FyoHzzwz097Zwc6dRA8+iID7nHPKc2zpNCok9+1DEH/WWZZeVne2yOdDAml6Wg6z6u6WyQkOnFl5wT6P2y3vF34eI7ta0emexdWP5kRt9t+ZSAwGsUeWY3AZTzJlefPMDIjEWh6K1gCQSuG6cdVYa6u16xYKwbfu6YHfMTaG9WW3NcuzzxJ95zvwZS+7TA5sKARNg/3avp1ozx48/w1vIHrzm2V/6tlZ7A02ZKZ1Z4sqCSYSmQiyQiQ2N+PaxOO4/znWM/fDN6O1VcYZVlUhVo6b+6dzoUEl5c0M9jOiUewL4+P4eTG2eeC1w+c8lZIVirOzeJgJxVJJ3mgUMXFXF9ogTE1h3S1ZYs/fO3IEfRBXrCB697tloYyVIYysSCCSqide8z/5CWzVRRehv6JDH7RhnxxiIbCi/3Bs0g0R/a0h5quI6C4hhEFEPyOiNiK6LvuFCsD6dg7nshsDX0FEA+bfCSF0AvNsY95r5cDlvOxYE8l/iRCIr1oFY/PSS7lHyPf3owrP60UFxeCgrELJhaYmGIN0GgQlf157O36fTOI9zM681e/S04PAQVWxWXCvtXzo64MUeWAAx/LEE3C07aCjA73uLrsM7/Pww0Q/+hHOhflclgqWOq9ejc+cmkLT7EOH8Pf+/tqRcrrduA7r1sEJXbdOyrYOHEBW6dAhnGszGeIEQmC9KArOjZ3vv2sXSMSTTwYh7vfbH4CQDU2D/Gd8HISyjeEui9oesYNjrtZh+ZZV+HxYdx6PJNzrcf5XOg3ijZ3t0VHc76EQ/ubz4X7q6wPxvWQJHHQrVSrVAE/a7utDYubEE2EH1q/H8fr9+C5DQ5C67NqFypXhYVlRXS/Yvx89w047jeiKK2DjDENW2FvF4cOQ6qxbh8C7HHZc1+F879xJ9P73Y1K0RdSlLXK5sOa6u7H3Hz2K+98s3fL7MytzeUo5Vylyco6lz7ouqzficbwvk/h2bAuTh/l8ApcLa8blwj1g1/8phEBAVm3MzspkTQO1B1Z0RCL4ua0Ntt4KgaiqSBYEArAjs7NYq7299giBoSH0TF2+nOhDH8JrA4H8NmlmBj7vO9+JhEU4jKmp//M/6DHGPhBP0eUJuhZRl7aokjBLjZPJ4naIhzUaBvwKt1vatlyvVRSsO48H6zBX3OcUzc2yVdD0tJwoX0nw9xkYkOqusbHyxB/1DPYjly5F/NjejjUSDOL8TEzg+jvZizQNxTkeD3yjWExWH9shpYNBDKpragLRx1Wt+ewZ9wFnkt0wZPsHv18SiL/9LWzWOecguVoCYdqwTw6xEKYz82juHxJGc3+U0Mjy5UKIF4+N5v4lEb2NiP6XiO4jXLjjiOgSIrpdCHHjsUk5u4loCRH9J2E09xlE9GYimiWiISHE+abPf4iIXkZENxCaa04IIe4vctgVPdncXJRvpOwMVTwOosbjQVCYy6ExDFQkjo/DMG3aVNhYRKOoPGxqyuyFGIsh8+Dzza1+tIp0GhsUS3isVIQEg3DA4nEY1PXrnWXsR0YwSGNsDIH9WWfhvcoVFAaDMOzmDGEigX9Z6jyfw00KQQgcezCIRzqN79HejnPV2Wn/eo+OYrM77jh7lT+Dg0Q/+AHW3rZtOLbly0sjYQwDEveDB0GanHhizuuebwphvdijitqidBrBEMtumJCye/9wBRwPEKkFci0XuG+buY8hb60uV2YPQ59vYU1E5l5dLIVm2R4Rrpe5WrFWCFIzwmGij3xEDh/weBAU2QySaWoKUp3WVpB95ajOEILoP/6D6N57IdN5xztyrp0Fa4tSKVSEahr2Fd4bzFWJ+MzM3xPJ/oleL64pVy5yVaOZCMyWQRfrr8gTz/Pdx7oO8keI8kv+hMCaVVXYEq5KamD+wZVi3BuYg16rMAwklRMJDFIRAr54W5u9xGgoRPTpT8uJzFwxmO0LC4E2Ptu3o/pQ09Cn7C1vwfCE7HuAk3o8ST0HFqwtqhR4gAaTisV8JJbG89pie5dvX2V7oevl96GEwFqLxWTyt1ptTnRdVloSYU02bKGEpskKxVQKv/N6ZYVisbiYB6lMTMAmtLQgodfUZE8plkqhPcyRI5gK39mJdZKrXZlhwHbymmaFQa41e889SK6edhreP0f7q6LRRh3ap5rDQiARX0dE5xPR+wiM7hNE9E9CiCdNz3UR0QeJ6O+JaDOBLR4movuJ6FtCiD3HnreOoGM/l4i8RLSDiP6ZoGWnrIt/IhH9XyJ6OREFCGWuf/t7HlT8ZHOzUa5MzHZ0EwkQLy4XiMR8BOHEBEgUlwvVXYX6FkQiIN1aWjKnM8fjMBweD4hEJ2SeEHDGYzFZYVZskzIMfEf+7PXrnU+jPXQIFWnT0zCcZ5+Nqk4nMAxsuDyJlrPT/H00DX8Lh2XmhftC1UJlYi6Yp0hzxpwIx8yEYrGMVSSCtdbTAzLQKmZmINUJBIguvRROxdKlpZGvQmDgzosvonT/1FPzrrd8znK92KOK2yKesOr1ysEITq5NKoV7QojakDezo5M9LZkI96l5SvJ8yJLnG9wE3EwscoKECHY8WwY9X46/YRB9/vOoovzmN4nWrgVpxQPDrCIex0RnVUWm3Wqfn0IQguh73yP63e8Q1L/vfXnX0oK2RYYBWx+LYa2YfQCuWOBqHJYt8+/NvRJz3Y9MJjKxaHaHC8mgWfVRiEjUNOyJPOG03MF1IiGlilar3BqoDHQd10NVZf8yJ1PuDx0CabhpE67p6CjWzcCA9fdKp2HTDh9GcL1ihazMNT/nz38Gefjii7DFr30tJMsrVuR+Xx4SaK6IzYEFbYsqBV2XE5WtrBtzf1SXSyZq8/kahiHjikokY1lKy3LnahZAcNwUi+FcVHroSz2C7RPbKCLpj3NlfzYOHYJt2LwZ8fvYGNbPwID1vUwIon/9V7QK+9jHEDu3tMxty1BMspyNhx8m+tKXEKPdcENee2SHRKwX+1RzqFsSsU5R8ZPNk4uIpDOdnVVPJiFrVhQQifkypYkEZGqxGByLQjLTYBBZira2zEmUiQTIPJcLr3fal4NlgSx3tkIkxGIwguEwMh8bNzojIITAedixA4TXypUgE60Sk5wJDIVghFtbC1frCSEdNpZntbXVRx+keFxWKJorK5lQzD7/moZrxL05rZIJiQSC9ngcEnQhsJEU6uVZDEKg98eePbgvtm4tuF7r3UWpiuFnKbPbLSW8Tpp8sxOcSmENVctJNJMRTBiaZSEeT+a0ZJZPNpAJXZdVikwumgme5ubMoS3VIop/9COin/0Mcr2LL0Y1oa4jYWTVFmka3mdkhOiqq+wlQgrh9ttxbNzrp8B9U+8rzpIt4n6ALheknbn2kuyJjW43fsfVDZxYNVcomu9XJgfN5KLZRc6uVszlX2UfEx9zd3f5yXJNg5+g643pzfMBw5CSO/O0VCd7ACfuly9HsM2tfJYts+73CYFkyF//SvSJT6DFC1eDEyFBcscdmLQcDMInv/RS2JhCxA8nipubiw5TWBS2qBJgItHtLr7/cUzBEl8h5EC7fAQPFzEQIZYod1KDkyaplKwKrKYvxC0EEgl8N5762/DHMsE2iwlF9s/Zdvn92LOeeAJFGaeeip8jEcS8dnyzn/4UiYrLL0ePaE6I8N7Je7N5X87ek7Px9NMyOXLjjQV71TeufBXQIBGri6qcbA58Czm6qgoiUQgQJvkMg2EgI3H0KIzypk35g5mZGTlZecCk/uf+iNzvzumksGx5s5VNSghkc7nn4HHHwUlzsrHoOkimJ56AAV6/HjLnfFlZJgODQby2udl+L4lkUsoFiGQz4VqVOpuRTEpCkY+/qUmSfYEArkskAgLR6nfSdQTtR46AQOQmwk6rTRl79qAH5sAA+iAWOZ5636CqYovYYWG5IJOATslwJqDc7so01da0zOEnuWTJZtKwIZ1xDu4ZaZ4IzRWdbndmtWJLS/mv9Y4dcEJf8xr00+FqBjtT3YWAk7xrF6TGJ51UnmP73e+Ivv99onPPhdS6CDm0aGxRKgWiN53OlDebkS11ZkkUV+xwUoADF656yJcAKCSDNgc/TDBmv0c6jeCaJ9CX22Zwe5FksiFvrhZ46BT3suMA3Ol5j8Xge7S1ofInEoE/3dNjb0Dc7bejh+Hll4MYJILt3L0bduovf8Hxnn02yMOtW4v7wokEjqWpCQRikecvGltUCWgaYjMrRKKmYZ34/dgf2DaxHcoFXZdKKB66WU4wuRmNyum91VZiqKoczMmD0RrJldxgKb3Zlqkq/Jn2dgwd5ZYi7e32FBb330/0rW+hzdSb3oT1ylWM2ZJlc3/jQnj+eaLPfhbr6oYbivaqr3dbVBdokIjVRdVONo9D5+a7uYhEHrRiGMh8FjK0k5MYpqEoIHzyZSOnpvDo7s7sm6CqcljL6tXOK02EACnFk42tyJuJYCD37wcJ2dYGMtROvyszUin0inj6aZzjE05Azwjz+3HmNp2WY+xLqa7hkv1IBI6A14vNsbW1PgKGVEoSitxsPBrFddm4EUS2FWJXCKLf/Abn/9JLUZHiciFbX8p54EEx3d0gEC047vW+QVXNFrGUglssaBoCLqfOpVne3NrqnFA3jMwehvlkyfyoVq+fxQp2YM3ToM0N532+uf0Vnd7zIyMYGrB8OeQ2LJnlCgqr+POf8XjVq4j+7u+cHUs27rkHvRm3biX6p3+ydDyLyhYJgX08FsOemm/gBNsarkB0uTL7K5kJRXMPT5Y8F1pbZkKRX8/HYK5U5IA+lQKR6PXaH9ZjFWZ5c3t7eaaxNpAJbtWQSOD/nMAsZW/QNExRJkIfRMOAdJCHV1jFn/9M9J//SfTqV2M4VDxO9NhjSEgcPAif5vWvJ7rkkoLVOxlIJnGv+Xy4zyys20VliyoBJhI9nuLJLCZ/WlpwjdjWFarm4ljC5apcwiGZlD1hu7rmp+iBixjSadjdXEqoBiQ4MfLQQzhvW7fifAWDWF9r1li3c889B7nxSScRXXMNbFF3N9aoVclyNg4eJLruOtwTn/884sYFntCoCzRIxOqiqic7uz8i0VwjkE6DSNQ02a8gH5JJyHqjUQRf+Yif8XFsIL29eDBSKRCJug4isZSNJR5H0KcoME5W32tiAmSipkF2tmaN8000kUBV4nPP4WcewsGNbH0+WXFXLnB1IzdWryepM0PT4CQ/84wchMKbfGdnYanqgw9iyMAFFyBjr6ogEEsJmF56CcfS2oqNs4hch1HvG1RVbRGTdT6frAIqhQSyK2/m6mwzaWiWJXMlkrnKsIH5h2HMlUFz31WWD2bLoIsFuskkKg+np0HW9fYiSeZ2Ww6UiQiB/69+BbnPpZeWhxj6619Bah5/POSI5v2zABalLSombzYjl9TZHGjnIxTZLhSyUywlZB+LycXs/oocvFus6HIEs7yZ74sGygMeaGEYWBPlGBLFrXJCIQTcgYDsPbZ8ufX98fnnUZlzwglEV14JyfK998Jerl0L+7Rtmz0VkKrCRno8MllrAYvSFpUb7KtYIRK5sICVWcX6IxJlEokdHZWxRboO+5xKwQ5V6nOKIR7H/aVpOJdW+rQvVuzejanuW7fiPA0O4tz19WE9ccV1U1N+QnFkhOgzn8Ee95nPYJ0FAng/q5LlbAwNYVCUYRBdfz3ibAuEZr3borpAg0SsLqp+sjlgzzdohQjG9aWXYOxXrSpcoWcYaNg8NiYr+nI572NjMD79/Zkl0Ok0DBOTeKU4uZoGJyeVkkNKrBimdBpZjaNHYRA3bSqtl144DJnIzp34/C1bMHK+HM31C4HL9mMxScq0t9d+6b5hYIK2rkMSHo+DdOaekSxV7erKzJQ+9xzRL3+J83v++XCe+vqcV5QSEQ0Pg0D0eDDly4Ykut43qKrbokQC17ypSfaQcjKx2Yx88maWJZtJQ4bbnUkW+nyNvjn1hHRakor8L2e3Xa65MmgzISwE0de/TvTAA0Rf/jL69PAewo6yFQwOEv3wh9jDrriiPFWqTz5JdPPN2IM/9SnYIovrst5Xr2NblE6DAE6ncf8X28e5cjBb6my+ftzkPft5TCjmq3rMHrTC5KJZCp1IZBKJ5h6L5bJBDXlzeZFKwc7oOtZKrinHTjE0BB9k3TpUHU5NgRxfutR61dToKOxFOg179PjjWFfnnYeBTKecYn9tcdsAtxt20cb6WbS2qNxgIpF9lHzghKrbLfsjalrh/oj8/uEw1nSl+hfWgryZjyMWk1Oqm5sbw6iyMTyMGGvdOlT5hUKoQuzpwfrjPoqcfOcq7KYmeU3DYVQLJhKQHbMSj/u6OvGTJiZg36JREImnnmr5utW7LaoLNEjE6qLqJ5srcDgzlW+ioK6DSFRVNCwtJqGamoIElIhow4a5kyy5F2Ekgj4I5t5FmoYgLJWC01MKCWSWN/NETaub1OwsyKxEAse4bp39DY77HcXjMKB794JAbWmBxPnEEyvvwHOfE94gvV451bkWg4ehIQTu69ZlyoYNA+uFCUV2hNrbcX5/9Susl7e/HRnO9nZ7E1SzcfQoJOmKAkd72TJbjlS9b1DzYovMMjCeRui0ET0jmYQ9Yoeb7RwR3je7j2FDlrzwkC2D5nVGhGvOxOIDDxD94Aeo1rnsMlnVbadifGYGQ52amzHwpBxSreefJ/riF0EkfPrT9qqQaJHbIiFwTaLRwvLm7Nfkkjpz+xcGk47mymXujZptS7j6sBAhaBiyT7LPl7n/5ZJBl4JkEvtpQ97sDJys4LZAgUB5z+HsLPzFJUvgC8ViIMQ5gWoFExNIYuzfLxP2F1+M/qx2pNBmaBqOQ1FAINrcLxe1LSo3OAFajEhMpeT0+qYmmbQoZkdSKdgIr7eyw+rM8uZyq7PsgBMs3A6HKyQXu08YCqFHdFcX0emnY10cPYrzk62GSKclocjJefa7b74ZRUbXX4/15HYjZnNK1s7OgkCcmiL65CeR9LUhSa93W1QXaJCI1cW8nGzuj8jOaSEi8cgRGIfly3M3LTfDLG9etmyuNFgIZDdiMbyf2WHWdRCJTFraaR6dC1zNRmRP3szHMTQEQ7dhw9zx87mgaZK8ZKKLM/5jYxhBPzqKc3jWWXjfSlc7mbNtXOnFUudaCSBCIWwyS5ZgzeQDy7ZnZ7Emf/ELfId3vxt/7+vD5uT0nE5OgkDUdRC9K1Y0nOVqgOWpXNnDvRKt3q9CZPYwTKVktU8kIvsk9vY2ZMmLGULMlUHv2UP0H/+B+/1jH8P6UFU4zlYTCIkE0Xe/i/f7x3+03PqgIA4cwLTB1lYQiKtX205mNWwR4ZpMT+M69vZatynZUme2TdnrIR+haJ70zERisb0kFsP+xlPJzT0Ws2XQ2ROh7YBli5rWkDdbhabBbvBwwkDA+TDAfEgm0Q6hqQkyZsOAv+j1ogqxmC0aHSX69a/RAzEUgjLjssuIXvnK0qaAaxoCdiLcQw6qxhq2qMxQVVyXYv4Mt/poa8N1Y3tSTDqqqrIIo9Q4rBDM8mazvHU+wNWb0Sh+5l7ItVh0UWmkUkSPPIL/n3021svYGH7mScr5wLYyFCL69rehprjmGrRj8XhKG6QaiYCMPHIE/lr23AELqHdbVBdokIjVxbydbF2Xcgyi/Blzw8BNG4shsCqWERUCFYwjI7jBjz8+M1NgGCDokkkQNWYn1i5pWQxmeXNrq71NKhIhevFFbCq9vSD9chk/w8gcDsIy6lxBw0svwThPTYH0OvvsotOkygZVlZukEAhW2tvnN4hIp0E6+/3WSdVkElU/MzPo6zM5ie/W1yfla3YnXs/MgEBUVazXlSsdkaz1vkHNmy3SNCm1I8J18Ply32/mKcmFZMnsYPNwgUpNb26gPjEzQ/TBD2KN3Hgjfjc0hLXY1SVlimYZdLZN0HWi227DnnXlleWx5UeOoEm4242M+9q1DVtUCrLlzXb6cHGy1Tw1Mlvq/LcDFpmEonlKMxOLxYjESAQBWEtLZnDE0mizFJrddE7+msnFYt/PLG/mgWyLMVguBl3H9UilZKsNv7/8RIdhQDaYSkEB4fOh6iedhs+db88SAkH69u0YmDI8jDVw/fWQLTNR7HTP03X4qoYBH9hhAq5hiyoAJhL9/sLrgycvm/sjFhu0QgTbEIvh/UtRhlkBD4icT3kzQ9dlSyiu2K5kRWatgW3KzAzRmWdib5iawvlYurQwAchJNU3DRPjf/IbobW/D+0xNwa/q6EDs2dxsj0xMJOAX7dsHv+3MMx21B1skV3F+0SARq4t5Pdmcbfd6YTwKEYlDQ7I3ixXJ6MwMbnghQBCZS6B1He+nquj3ZK4Q4M9i0rKU3oRE+PxQCJuUXXkzV04ePoxzsm4dMjGKIjNX4TD+zyRlsfcWAudlxw4c1/LlIBMHBkr7nlah67J8X9Nk/5NqZ92EQB/KeBw9KK1sKLpO9OMfg4y94go49fE4zjvLIxIJPJczm8WmYIdCRE89hddt3Ahi26Ecsd43qHm1RaoKB6SpSQ41YLtkJg15e+LA3Ewa5lu/3OtH13Gf1nqP0AYqC01Dn579+1GJuGaNtB3t7VgvZhm0ebAGy6ADAUxNfvZZore+FX1ZS8XRo0Sf+xzWOROIDtdqwxaZ38wkb/b77VdUZUudmRzMljpnP988mEUImRgpFMCHw1hzbW2Fr725ryL/n8HVk2ZyMRca8ubcMAw55ZaHNZXaYqMQ9u9HkL15M3yWYBCPvr7cSd54nOjuuxGkDw/D1It7TwAAIABJREFUx+nvl8mMSy7B8Tc1Oa/6MQwck6bJKn6HaNiiCiGZxP1fiEjUNBn7tLRI21Rs0AoR1lA8LoeVVRKqChs93/JmRjqN2CCRkMNmWloWPpm4bx/ispNOQjFFNIpCnM7O/EU9vNdx5f6jjxJ961tEr3oV7NHkJK5na6u0q8w1mAnFfOc2lUJrl127iK6+mujcc62pA3NggV+92kCDRKwu5v1kcyUPD1rJRyQyoRYOw2GxMiVSVVFpFomAfFy7Vgb6LBvmKdBmokeITNKyHBKxREJuUt3d9japRALGdXYWzvayZbLJeiAAJ85ullbX0ffq8cexUa9dC5lzKT397IDlfaGQdJZbW7FRVCOYGB9HifyqVdaurxCYMPjkk8iyH3ccrkdPT2a/TlWVTjhLE5qa5KRnszMUjeL94nFJEBfr/VkA9b5BzastYrI/mUTQG43CeWhuzpyKyoSh3Ww1y5tVFQ5LpRqHN1D7+M53EIBfdx1kf4kEbElb21z5FvftNMugk0lULj/2GGz2hRdmkotO1tXMDBqPRyJE/+f/IPFWgpSs3ld2RWyRU3mzGTxkxUwsezyFE3CcAFFVfDaTkPzIXi9sB9vb7R1j9tCWbBl0thSaX8P9hjnQW6zge52DXCYPK5lcPXoUSepVq5BQTibxO27BYcbQEOzW3XfjODdvhi/kdkPGfMEFqNKJx+W0aCcQAgRiOg3/qkTpdsMWVRBMJBaajptMYr1wJS3bh2KDVoiwlhIJ3AeVJvZ0Hfuwqs6/vJmRSiGWUFVZcLFQW0BMTKCgYsUKopNPxp4wOoo1kz1gkivvs3sI798Pwu/44+FfTU7i91x8w6/lNZlMSvKRCcWmJvlcXSf66lfha73nPUR/93fW2jvkQb3borpAg0SsLub9ZLMxYCNgnj6Y67kjI3LEu5VGzUKALBwehvE9/njpGKfTyJ4aBqRgZvKKSctIBJ9jhbQshlLkzUREhw4hG6KqIJ1OOqn0JvrpNKYBP/UU/n/88SjVrmQvkmykUrimLHVuagKZWOqk3HyIxdD3q7PTugTwr38l+uMfsYmcc45s8ltoDabTklDk/ng+Hz7X5yN64QVsYmvW4H1KJKvrfYOqmi3ibLh5WjI7I9wTsb0dv2O5XbkaXcfjUt7c3t7okbjY8OCDcEovuQQBt67DefZ6re8xu3YR3X47JslfeKHsl0YkZY9mGXSxIDwchlRnYoLo2mtRmV1iBX7DFuUBD4lIpXD/Ow1U7Uidza/h5COrQIgykyQul0yoqCpsn43G8RkoJIPmY+aEMQd0PIRtMQ0WMAe1POQrEKi8MiMSQSK5sxN+H/dBVBTZe0wIqFa2b0fC0+OBzbn0Urxm717Yjk2b0EfVnBB2sq6FgI+sqiAQna49Exq2qILgtWsYhYnESAR2gIdbsE2wMrCJE2eBQHmGhhUDy5s9HvjkteCjJZOwyTysj2W5CwWxGFpttbQg/lQUxFiaBlvESXveu8z7Hlflj42BOGxvJ/rKV3ANNa14SwZVlYNZmFDkKupvfxs+29vfjsrGgYGS9qZ6t0V1gQaJWF3UxMlmh5g3lHyDVohw04+NySqwpUutfcbsLHoMCoHgi8uRUymQjIoCQsm8YfBE51AIAZ7T6XLZx8/yZg4crZT1z87iWPm7hEIwuBs3lt67kQib1JNPIkAlQibo9NOru1GZJdpmqTM7HuWArmMdEMHxtfK+e/YQ/fznIG0vvRRrgrNbVh19TcM1CwYRRO7ejYBuwwasu3XrSg4a6n2Dqmjgbh58kk5nypKzJyVz1tfnA0HDxEy5CO2GvHlx4qWXiD7+cew/X/sa1tr0NNan1amjQ0OY5rxsGaQ6vHeYJdCxGNYtk0RutyQUmVzk1yUSRDfcgGP7yEcw5KW7u+S13rBFhd5cYA+PRJzJm7PfK1vqzNWJua6hOUnLVY2pVOZa4UrrcBh/6+ws3yAPJhPN5CKDJ5p7PDJInu9KoEqDyUPDwHkPBKpDoKZSaIXgdsPX83iQREgk4FOn00R33YXKw7Ex+NqXXEL0xjfKBMPRoxi81NICe+Zy4Zq2tDj7Diz7TybtDSMsgnpfQTURoxUCE4lcAJDLj2Xfnoc+Elnvj0iExKuqYm2VgVguClWFjTYMKSWuBbB6i/tRdnSUf8hStaHrkCAnkyjQaG7GuQ+H4RcFAnMly5z44nUTjYJAjMWQpHW78f/+fnt2hAnFeJzohz8kuv9+ote+luh1r4P6rMS1V++2qC5Q9ySioihXEtEPiOg4IcRLNl8riOinQojLK3BouVAzJ5sz47yhFCISieDYzMzA2bDaz09VQSCxJJqJG1VFRaLbDVlHtkM/Ogryp6dnblm1U1iRN/NGlkzimLq65GY2PY3S7WQSMpTjjitPQ+BIBKXbL7wAI711K9Gpp1a/XxFPdU4kZGa7vb30DXNwENdy/XprjsHICNH3vw/H+sorpcxm2TJnGcpUChLyiQnZ44Tl6DyYxWGj+Tkb1GK0RYYxd1oyB6os4zP3McwV7KTTUnbscsnpzeUk+7jpOA9xWayT+BYLYjFM9IvH0a+nu1sOmurqsuboBoOQQvt8RB/4QGH7xYGdWQbN/VqJJFF0662QM37oQ7DzPT1lWYc5neU6skdV8YvicezjRDjvpdoXq1JnXZ/rW/FruVKRCH+PRvHcnp7K+QBmQjGdhs/D8mZOIGbLoOsdqRSuPw8XLGUAiV0IgcRoNAoCMRCA3zc9DYLivvuI/vQn7E0nnwzJ8rnnZh4fB+2hENHXvw4bxjJQp5VbMzOwUdltX0pEwxZVAaziIMpPJKbTWDcs0yeSFWVW1n4kIlVc1SDODANrspbkzUQ41xwf6TrOZUdHbVRMOsGuXYixTz8dCbVkEu2mWlth/82SZa937lrRNKKbbkJs/8UvIjabmZGDVJzgttuIfvELovPOQ+V1ZyfOs88nZc+VmBRfR3apZtGYXblI4fHIHgcsq+GMda4NiavAeHrbsmXFDbzfD6foyBFUdEQikGQEAujDMDSEx6pVmeTCsmX4rOlpfFY5hpA0N4OYmp7GI5mE0VMU2QeDyYuenrnykJ4eGLbDhyG7npqaO0DGCdraiF79apCHjz4KKcuuXUSveAUq8aolM+LKmVRKygsiETgg3BfE7oY+M4MAZWDAmpMaChH95Cd47nveI0mf/n5nG7amEe3cievKFaRLl+Jnlj3PzMhG87wJNib65ga3QjCThuyUEuG8NTVl9jG0sma8XjhnqiodBpY7lKsyV1FwbXl688xMfTuCDeSHEET/8i+o3Pna10Agqiquu1WJVjKJoU66TvTe9xa3X+YeP9zn1jAkqRgOE/3Xf6Ei+tJLsb+Nj2M9su2tRsXHYkYgALs0OYlHW5v0AZyAyTaz1FnT5k5nzuVb8WubmiSZx4OmgkH4RVwVUu79yEwOspQ3HMY6DYXg+5h9wOyhLbUQ2FtFOo17kJU3bW3VT9AODuL8btiAc51Mos/hffchEPf5IN17y1uQbM2GpoE4PHoUQXtvL74TV/M7QTAoB0vVStVXA9bBEtBkEo9cVcReL+5vLopgm8R2qphdaW1FDMCJjUrfNy4X1jYPgkylakPezEUVLS0yLjp6FPdyvcULg4MgEDduxLnWdfghPLAnnZbJsHwtzr79bbRluPZatIYaH5fnwgl+9Ss8LrgAQ+t6e7G2ueVGKISH1yt9rPleEw1ILIRKRDcReYlIFTa/TL1W/5QLLM0hwk3JPXRyDVphTE6iqqu9HUSgVYcyGITDpOuoSOzvh9M6PAyDsXLlXPJyYgJkXUeHNdLSKkIhbFI81VBV5UQuKwMYwmF8l1gMjv6GDeXbYI8eRa+K4WEcy5lnQgZcbcedB1OEw9hYuKec1f5JXIUaCOB6Fzt+VSX67nexTj7wAWwUU1Ny4rJd6DqGIQSDIDHb2kAgmjOqnGGcncXzUinpMHR14bMLbFa5KhEXlC0y9zHkIJe/FfdGMVcZlrJGObMuBNYMVyfyhNNygqXuDXnzwsQvfgEJ8jXXEL35zbBlk5NYn319xdepriOZcfgw0fvehyFYpcAwiP7t32DX3/UuVCB6PFiHXB1FJKtvzTJoi85yvuqferFHVfWLhIC9D4dhX/r6yhMIFpI6Fxpil/0eqorALJ2W/Xy5h2IlA1ZVxTkhwn7p8WRKoRlcVWkmF2uNWOR7i/t/85CJamNqCgqWgQEQIr//PVq1TE3Bf770UqLXvz7/gDchUEl9332orD7vPPgsLpfzoTjcD7utraTBcvnQsEVVhGFkThXPNSAzEsHzWH3B97OV/ois4OD+itUib2pV3kwkY6NIBD+3tNRHX9nZWaje+vqITjsN13R0VLZU4KrmQrb8179Gf+h3vQtJj9FRrCE7rabMuOsukJJnnEH07nfjWmf3qtd1WVSgqvidxyMJxQKxt5VKxHqxSzWLuicRS0EtBu7VBmfRedCKFSJxehpkV1sbyD+rDmQqBWIpFEK/w3Xr4OiNjMCA5XqvqSlJWi5fXh5nlbMvQ0P4ritWyOpHqxACFZaDg3gdT/stF44cIXr4YQS/PT1EZ58NCfV8IB6HI8H96lpaCvcGEQKOs6qi8rSY42EYCNoPHkTQvmIF5PNNTdZ7cGa/3zPPoNqMqyCXLClOFsXjklBMJvG7lhZJKGZ937KGTfNti1iWbCYNzbJkDmQLyZJLhWHAUXC54Bwkk7I6p9zOa0PevDDx9NOYenzeeZD/KYqUSPX2Fl9HQhDdeSf61V56KZztUiAE0S23EN17L5qFX3AB9k2zLUomZV9FlkGzW+b1ykpFJhdzrNOyUziLIXAvt7zZDG5Iz+Qby5yZgLNCZE9Pw/61tUkS0jzp2Wqlt93j5h5gzc2Ziozs3orm/opMJprJxfmAruO6plJyH5mvCt94nOi553Adn3sO/b7icSSF3/lOyPaK7aPbt6Mi+h3vQODOw/Da2pxde04Mt7SUPMwpHxq2qMow+025iERdl4NLmHjme9iKDeG+8kxEVqvyzjBke6nmZqzXWvLRdF22SFEU3JNtbbV1jAxVRTypKFC5KQqOnWNxK4UaDz9M9M1vwrf66EcRl6sqYiwnRTQPPIDk6qmnIu5rays+B0HXZV9bVcXadLszCUXTeq5oaqtBIgI1uNztQVGUKxVFEYqirDH97kxFUf6kKEpYUZSYoigPK4ry2gLvcaGiKE8oipJUFGVQUZSP5niOUBTlJ1aemw/MotcS2Olj55ANoNlBzEZPDwxHJAISrdBzzfD5INFdtQoG6JlnZBaDycRsTru3F1WL4TCq80rhvA0DBNHICJzM447DsXBlgp335sEwL385NuYXX8T3MffBKgWrVsFpfO1rcV3uvJPof/4HmZ9qIxAAmbdyJZwIvlYjI3IKshljY3jOqlXWgvY//AGk4xvfiPL4iQmsSR7GYwdCQDI4PS0JxHw9MHN9z+XLMezgxBPxf54avns3+hqNjmJCYi7Uky1KpaSs9+hRXLPpaZm1bm6GY7FkCQj23l7ZfL9SGVeXC0QtS5t5+mAymVkJUw6wvLmtDYH6zIycuNtAfWJigujmm2F3rr0W15gnTVqdzP3IIyAQzzuvPATibbeBQHzTm0Ag8iRnM5qasKeuXImky5YtIBpWrMDekkjA1u7bhz3mhRew73KVUz7Ukz2aDwQC2CO8XiTruGdyOeB2w5Y1Ncmq01RKJkasvL67Gz4T9yXjylQe6sMS5FSqvMfd1YVzwwPmzD0bPR58r+ZmPIfbVygKnpdK4XVMhnPLC6s+olMYBvazYBDnh3uqzReBqKpEP/0pguSvf53oz38GafiVr+DnbduK76OPPAIC8dxz4QvyQBinQ8d4zfC5KTfGx/P/rV5sUaXXaSXA5CFXJWbbAiZZ0mmZHOe2BFw1XQjc7sflklWJ1YDLhX2R29BMTsphl7UAtpUDAzi/4TD86Fwx0XxCCPg08TjR5s34HZNxXV3WCMQXX0Q7ls2b0c+ZCy16e50RiI8/TvTv/473e+97cf6sxHs8tK63V1Z3+3ywbZOTcnbD4KC146gXu1TLqPtKRCWrMaaiKOcQ0X1ENEVE3yGiBBFdRUSbiehdQohfml4riGg3EfUT0XeJaISI3klE5xHRq4UQ9zl5bj7853+SOP98EGm1lq0wD1rhqW9EhR0dJuQCARBqdr5TMIigSNMgF/P74YS0t4O0yMbsLAxES0tu6XMhcEk/SxgDATlcg0jKm71ebFp2q56EABFz8CDO4Zo19io0i8EwQGA99hiM5Zo1qEwstR9jKccTjeK8sdSZpTGJBM5Dby+C4GJ49FGi//1fOMqveQ3OYzKJDcKJ/GjPHqzJ5ctlo3juUeYU3DNzdpbowQdRUfDznxcfrFLLtmj3bmTceVoyVxkWkzNUA1wNySRiPC5lzpWwm5omnWOWkTZQX0iliL7wBZD8X/sa7IemgWjz+eZKZHJh3z5U/mzaBBl0qffBHXdA/nPBBUgGNTU57xukaZKcicfx/337II/87W+tDTOoVXs0NDS/1T9caRONwv5Vog+XEHKYCidrrVQTptM4Nrc7cwAYy6bNFeP8fuWy4dxHlMj6cAX+nuap0AxFmSuFLvU4uQ0GE6lMcM7XHhYKIWnwm98gmF21iugNbyB65SulDLm/v/jxHTpE9I1vwK/+xCdwHnn4mBO/KJHAsfn95R1YwWTE4CC+8y231Lctmp0lMd9ryCn4WnCv1WxEo7AXLL3l9gvcdqEYDANriKj68t1UCvcTV0M6lfJXEqkUzg9fg/mWYfP13b2b6KWXiE45BXGpx4M4i+cNFLuO4+NQdQQCSNK6XCDs2tut+VXZePZZ9HZdvZrogx/EvWblOAqBB9slEviu3/gG0c9+Zn+wSq3apVrGQiQRHyeiE4losxDiyLHndBDRs0TkI6JVQoj0sd8LIjKI6HQhxNPHfucnoiNE9KAQ4h2mz7H83Hy49VYSMzMgV175SjgYtbRRcc8zdqCLTWwmkhWCTU0wCnYMQTqNDEcwiCxEV5ec8pRrKnMoJEnLVausEQqcndY0HGNXV24nLJmUm5R5KrMdpFKoDJmcxCa3aRNIrHJB0zB05cknpVT4jDOcB6blADun3Lx8dBTn7+STi1+fvXvRX2PzZmTaedhJb6+z87ZvH5zZ5cvloIIlS8p3j91/P0iBlSuJrrvOEolYs7ZoZISEufl/rSGRkKQekZTSO63CKAYhYCuSSZBOtSpLaSA3brkFfcM+9SlMHRRCDgHr6yt+LcfGUDnU14fePKWSSH/6E97vrLPQO8jjKW2IRzaeeQZVSr29RP/yL5YD95q0R/NNIjLYBxBCVuNVAlyVyG1j3O7cU50ZPOzM48Fen72GchGK3IuRh+Y5BUsh2X9yMmDNLIMWYi6xmC2FtgLuHcmVVzzFc75s9oEDGJbyyCPYq1auRPXxq14lg26rQ+KmplCx6PcTXX89vlc8LgcL2EUyCb/K5yuPDeKEBlfVjo3B3rW0EH3jG/Vti+JxEqqKc5RDHlnz0DSss1xEIrdwYemtokiiyeq9x+0OWMlRzfut1uXNDB4GkkrhnmUFT7VgHvQ1NoZWCuvWISYjguIoGoUtKlapHYsRfeYz+D5f/Sr8jbEx3BdLl9q/N/btI/rc5xCXfexjsmVVuWYKDA8Tff7zuAYOScSatEu1jDqaK1QciqIsJaLTiej7vACIiIQQIUVRbiGirxz7+yOmlz3GF/XYc1VFUXYQ0bocH2HnuXNw1VWoJtu5k+h3v4Oc9hWvyE2YzQfsTmwmQjZi5Ur0F3zpJRCJVntmeL2oyhwaAvkTjSKzMTuLz8sub2YHemQEz8+e6mwG97dLp2Gg+vsLG/KmJjxnZgaPZBLHYsdI+nyQwbLM7OmnQWgdd1x5yBqPh+hlL8M5e/JJBJL79mFzOP30+RkQwb0o0mlkmOJxnMfRUVyv7CnXjLExyLOXLSN629vglAaDsq+IXRw6hDUxMIDPZDl0ORxAIYjuuQdVPyefTHT11cVfU+u2aPlyK8+aPwghicPmZjnplodPVAK9vbjvIxHpaFd7kmcD9nH33UR/+Qv66lx8MX4XCmFv6ukpXrkTCqHBd18fhjqVWuXwwAOYNnjuudjzXS7sJeUi7HfsQDLj5JOJPvxha6+pZXu0cqW171AN6LokfAIB+z6AVWT3F2RCkcm/bKiqJIIKVZJxtSNXPBLJIVilJI2iUdhfJjJLXcvmakUmFxnZvRWzfU+uOGlpwfkIBOYnGaZpuNe3b0eLgeZmVB1u2gQ/cMMGPI8VMD09xX2beByT5X0+VP0sW4Zz39fnjMBVVZAGnZ3Y35yuZZ5yze16WOExNoZ4ZtMm2DorqGVbxAN44nE8VLW+psHyEKdUSlauMrifeSSC68gJWbcb67NYwQiRHLAYDuNRzV7SLG9mFRRPb641H62pSU4XDgalGiJHX/WywlzpToTP378fJN1JJ+F38TjOX3t7cQJR11HRd/Qo0Q034H3GxnAdnBRnDA4S3XgjzsPHPiaHmpXr+g0O4jiFIPryl+2/vpbtUi1jQZGIRLTm2L8v5PjbnmP/HkeZiyCXen6WiE7J8Xs7z50Drxcy1HXrQAAdPoxS4bVr0VzUSWlwOcFl7ZzF4Ox4MSKxrQ2EnplItLPpcq+9F1+UkuXpablpmMHTk4eHJZFodrqTSZCHqopjYOfLCph44oazqZS1ZvzZ6O2FoTx0CMc5NUW0cWP5rq/fT3TOOeid9fjjIO/27EEPr61b52dTDQZx/k4/HccXDiMYm56WU535OoXDqKJpbiZ6z3vwu8lJvM6J9PjIEUio+/tlVWZ/f3mcGyEgt/7jHxG0X3WVZZJ8zbF/a9IW1Tp42iBXPHCD/GQSj0r1uuIeZuEw1jQPtGigNrFvH6aXnnYaSEQiOajEigRTVTHUKZUiev/7SycQd+wg+u//hnToqquwjjs7y0dyPPQQ0c9+hir0a66xFZSsOfZvwx4VgNuNYCkYhA+gqvAJyk0i8N7EgTsPYuGhVkwmcqDm92NvC4XwyFWRyMfPVUiGgffiXowss3NCKLa2wq8Ih5FkbWsrzQbzcTK4QpHJRT4f5nOUTsu+4lwtXq0hD2ZMT6NVwZ13wtdcsQKDBi64ABWJPh98fCLZCoVbqxQCB+0jIwiGV6yQcnInFfipFI7V44Ff5YSA5KmofC1YDh0I4Lv+7ncgFK64wpbtXHPs35q0Rdyeh++bWAz3i98/P+vNLthWcf9A8x7h8Ug/yuPBWjVPbOaWA4Xg8eD88IRijsmqBbZFMzOIG7hYodbABRaxGGz2xIRsaVKuGI0rSVlFyEMQiYieegr/P+002f9yeloSmsXe99ZbUcX40Y8iKTIxgffo77fvz4yNoULQ70d7Bm4xU64KzQMHiG66Ccd1ww3kdAjpmmP/1qRdqlXUgUmsOPK1ic1lFu08NydcLjipPG33wAEQIMPDyFyedFJ5JbB2wRlgdua4b415OmAutLaCPBwclESiHUPZ0QFjt28fHDOeEOh2zzV42aTlmjWy1D2RwGt6evJXwRVDezuM3fQ0SN7OTvublMcD4rC/H+Tos8/i/+vXly8gaW1Fs+6tW9FbkAnF009HEFut7HwiISsPuXqU+yMyGcOETFMTZH6pFNE//AO+Aw+LcZLdGh3F+e3rA3mbTuP+KoezJwSChfvvxzm+/PKKO5FVtUW1Dh5OoKpYLz6flLFxL8dKgKWnkYgcXFBt6U4DxREOI+Pc1QXJDZMxwSBsbLF91DCIfvlLBCKXX158MmAx7NqF6YUbN6LXjxBYN+Wy9/feKysQ3//+qlTHLFp7xFUj09MIgLq7yx+o8noVQpKGTJ5xNSGTfjw8gSWJ4XDxNiY8qMrvl4QiD1dIJmVfRu6lWAwc+HEP6XTauY+VDa6IMvssnLxmeSCTq4GAPFdcwVmO/oqFIAQStdu3oy+yYaCVzFveguF6QhA9/zz+3bRJEjOTk/h/sf7VQhB997soLvjwh3GPm1t62N170mmsXfaFrbye91YmDplU8vvhz5nl4rt3Q0kyMAACsQpyzarbIp8P64yr+jQNv/P5arcNDMPrxfVMpzOJJSJcK02TlcVcAc3T5K3YAq8X9z4TiU6nhTuFz4f92pzs6eqqTR+tpQX3cDQKuzk+jp87OpzHE2zPmdznlhhcibpzJ67vGWdIEnl6Gn+zotC64w74G299K9H558uWVd3d9pNHU1MgEA0Dfhrbk/Z22187J/buJfrSl7Cuv/AFcANVxKL1kRgLjUQ8fOzfzTn+tjnrOfMG7ifhdkvybXgYTsqRIyCaTjihun0UzDA33c0la85ngAIBEHpMJK5ZYy/Q93qR8RgexusHB7E5bNgw1+C0tMBYHDqEjEt3N4xTV1d5MmN+P8io6WlZ2ehkk+rogJN55Ai+z8wMrm85JeydnWjc/7KXoSfPX/4CZ/SMM1CxUsmN1TDwvTyeubI0zsTx4IpQCD0QBwdRNdTfjw0mlXJG/I2P457haeGJBDbIckgGDAONwh96CNfvXe+yfXx1YYtqHV6vnPrJxCE3mVeUyhEpPJHQ54OTPDMjf25g/mEYkPvNzIC44/0hGJQ97YrtAXfdJafCr19f2vHs3YuBLitXEn384zgGq8MoikEIHOuddyKZYaMa2oyGPbIJbvg+NQU/QFXLL2/O9q2YSGP/S9Mk4efxyNYO0ai0UVY/hwlFJhe4ss9sS/lR6H26uqS8mQc1VCK5xi0s0ml8bx54Y5ZCcxDNx1ZIBu0EqRSSiNu3w1a0tIA4vOSSzJYghw/jnGzaJIPsmRmZ1Cx2LHfeCbXDW95C9OpXy+Fifr/9PY4HSikKyMtChJd5IAFPf+YWIlz9n33szzyD87FqFSarOrBxdWOLmLz3eGQyU9cl8V7LZCL7KkwkmtdRS4uc7s7JNrc7U4X+TSkbAAAgAElEQVRm5f2zKxKrCW4TYq70q0V5M5Fsj8Ny8kgEtq211d6QGr4+LFnO1ff20CHERps3y8nLPPClt7f4td2xA0qxc84huuwy2IXZWRy73WscCoHYi0ZBJLJdsTIR2gqeew69Gtvb0WvRyjDPAqgbu1RLWFAkohBiXFGUJ4joXYqi3CiEGCYiUhSljYj+kYiOEtET83mMZrS2SiPQ2opN+aWXkNEcHERgc/zx82MUcxGJ7LwVMnjNzZJIPPz/2fvu+LjKK+0zfTTqsmQVN9mWuzEYTCfBkEBCAgRIDwFSCCRZkhC+FALZTTb5kk2ym28/UjbZfEkgbSEFTAgt9F4M2MYFF2Rbsiyrz2h6ue3749mz753RlHvvjKQZeZ7fTz9bo5l777z3vec973POec5h/N+sk7FwIci3vXsxHtEoNk/6TABFgXFzufB3hwNZnKUsc2RdxnAYm9NUCoSV2ftht2Mc2tqQNbd3L4z8ypWlvd7589FV9OhRouefRyRp2zaI+3N5TakxOIjFqacn9+LkdGJxf+klZHW87W0gPnfvhoOzaJF5wnxiAgtIYyNI+HDYekOcTCgKNM1efFE0RjDfsbuybFE5w+sV+kTs1HOGihkxfqvndrngDHFZWjmWzhxv+O1vYdtuvBF2lAiOajIJ22LEUX75ZTjKp55a3LUcPkz0ne/Axn3pS3itpqY0tkjTiO69F40LzjgDm3Yr5EjVHlmDw4Fg13SVN3OpLusiMkGpJ/V448ilzqwDyJqxZitXODOJM7v1x06l0s+dq3u0vrw5ECi+vFkPRcF348ARVzAw9PM/Xxk0UTqh6HAYJ4BHR5GNc//9uO9LlhB98YtEF1ww1VcZHYU/t2CBkKyJRmGPGhsLj8vWrUR33AFf46MfFb4tl56agaKAQCTKTSDy2hmLicY0dns6cZhrnF55BeOyfDkaUFnZm1SiLWLCUE++K0p6pnA5gp9xLm1mu2W3w4ZEo5hr3I2aq9D4uxk5fm0tjsMZiTMN1kbl8uaGhtmt5ssHu12UX4dCsBFM5OZq5perZDmbbWY9/s5O7DmJhJ6uEWme3l6i225D4s4NNwiNYLe7cDZ1JmIxlBaPjoLgY/mJUmnVb9sG+Yd589CAqquruONVol0qB8wpEvG/8UUieoKIXrLZbD8jogShRfcSQotuaTYvLhNer3BuampgYCYnBZnY14dNUj6SZjrA+oicMs2LqJEFxuuFAevrwwZryRLzJFF9PYhDnw+k2zPPQKi+rk6U02gaDNvChSDOjhzBuUotXssNFiYmYBAbG60tUrW1KNk+dgzRoldewTgtXFja7IaFC4k++EGUyb/wAtEDD4gS+iIjNWmYnMSYtLcXJla2bgUpt3kz0bvehc9yN+xwGHPKaBezyUlEw+vqsNhNTuL/pehSLctEf/wj7s0556DDYhEkfkXZonKGXh/R5xMdK1kgfDqdeIcje/ZNOWchzGW8+CLRXXehiQo3UuEOtjU1hRvv7N+PzL41a0AKFINjx6DF4/PBkeVs2VJkZWgaSgaffJLorW9FNnSR60TVHllEUxNs0Ph46cubWYcsV6UHl6npS5I5YzEcFkSb1XMzYajfrOoJRQ50u1zp18blzVxenUoVV9bImYecGenz5Se0+PpzlUEzqShJ6e/PzFbk42sa5GDuuYfouefw+9lnI4h40knZryMSgY/b2CgqMVh7jPUD8+HgQWRS9/Qgg5kIY8AkjxmoanpHev1+gYnJeBzjq2kYg9pa2EyPp/B9e/55NLFatcpSZUYmKs4WMXnDGXvcDZ0TK/J1WJ9NcPax/nkmwndheQMOGNjtgpg30miFSMgscNOO2Qiysv795KSwReVa3kwkfMr6erGf5YYnLBGRrWQ5n5ZtPC72RdyJmW0CJ3Lkw/g4svqamohuvhnnGhrC38wSf8kk/KL+fvhFra2YI/Pnl+aevPQS0f/9v9h7fvWrxROIOlScXZptzDkSUdO0520227lE9C0iupmIHES0nYgu1jTtwVm9uBxwucCmBwL4vasLxsTvR6bXrl2IEKxZAx3FmTKM+kYrTBwaabRChIVr6VIQiayRaNYpcjqRXdjQAKNx770wjpxx1tQkImv6MuolS0rfeIHLm/1+LFRc2mT2XthsiFi3tkL/8eBBEJOrVpV+8V2+HPdg715k3dxzD8bmrLOmdr42i1QKmpQ+H8YlH958E0TmqlXY9CsKFs2ODiwq0Sh+HxrC/eRIYraxDYWg91FTg5L/QAD32kpDlkxIEsqtd+wgOvdckJ3FZAFXoi0qV3AGIhOJXu9UInE6NXk448flwsads2+ms9teFVMxOIjo84oVRJ/9LF7TNNwPh6NwIGF4WGh5vfe9xa2l4+NE//zP+P+tt4qMlELEgRGoKmzR88+jvPGKK4qf31V7VBy83vTy5kTCmg+QDUYqPbgkmcm+2lqsWePj+GyxxLWeUCRKJxSZiNMTikzCNTVhDY9G8T6zWl+qKuy6vpTW6nzPVsqsz1ZUVZGZRYRrfvJJZNgdPoxx/MAHULKcz7eRZfhwLhcC/awdPjaGvxfaeI+PI4O5oQEbbY8HY6iq5rUmmSxQFNEMUJbTiUMi3Je6OqyXRn0bTYMO5OOPwx9/3/uKD6BVsi3SE9CcVMHzi4memdQHNAJupsIEPd8/nw/zJBoVMlBchWa00QoRnldNw1zjLtAzjWzlzc3N5e2jcdOjhgahHc+lw7yHzVaynAlVxb5I05CowvfX78f9LSSpEI/DFqVS8GkaG7HGpVLYo5nJvJdlkJF79xJ9+ctIXEmlsHaWIhHq2WfRvG7RIjRp6ews/piMSrZLswWbpmmzfQ1FwWazfZKIfklEizj9tIyRd7BVVZTN+nxwbjiyMjyMDXNtLciTRYtmbqGSZVyblUiVJIHYk2WUa5tdXDQNi0JfHzZURCB4Vq+e+t5UCkSiouBcZklLo+DyZl4AiiGaRkdBEHNZb3f39JDEsowo+6uvwplYuRLlcVY2vJqGa47HQQzmW6RHRiAY3tKCRiouF+ZyMgmynMeO7zOXjNntIruQF7BoFBmCDgcyA5g46OwsfsxSKXRp3b0bzWre9raCWZFTnr65ZIvKFZlaUVz65nBM3/OeCUURjZ98Pti0cts0zEUkEihf9vvhRHIjFG6o1dqa3xaHw0T/+Z/4//XXF1fyNDmJEp1gkOib34Sd0jTYuWI32IpC9JvfwNa9611EF19ccH5l/WsF2aOKs0Usb+ByFZ53RmE2A4hI6N/F41jLa2unh8RgXVrOviKaSihyNjDrgRaqKmDSgUtqOTA0E0FyTUMW8b33Ej34IGzD0qUgDjdvxnXoyaLMa9I0bJLDYeh4cwCYiYC2tvy+bjwO4nBkBNquixcLkqemxtx80jTMAUmCTeNx1Zewcva+eVkWyOI88wx8rssvL3h/jitbxNlimXIEmd3VywGsf6mqogKOCDYkHBalyfxeWU7PXDSCaDS9WmS2IEmCQCvn8mYGj3ckAn9GlkVyhJE98+7dSOo4+WShtx+JgAhsasofXFUUkH47d8Kn2bAB82FiAp8zo1+oKET/9m/Yq3/+80Qnnog5MX9+afzzxx9H1+ilS+ELFkhgKfj0VZBdKlvMhUzELoLh98/2hRQLjqSEQtgYe73IWuNuRrEYsrVeeQUR0PXrC2eBlQL6smZ2ULPp+GSDyyUyEvv74SwZzbiLxWBQJQnG9AMfQEbdjh1wttatS1/g3G6RkXjkCEi56YiIcQaSvnuz1UVq/nwY6UOHcM1jYyDmSpHNoofTiQVm/Xo0otm+HUTgunVEp51mbpxGRrAwLF6cn0CMRCDQ63ZD64dLwhMJONl6R9lmw7yoq8O9DQaxkHGJotuN8n6bDZG2YBCfa28vftORSEBj7cABlDeee65lB2jO2KJyhdsNR4WJZodDRNk5Q3G6US1vnnloGspX+vsRMWcCkTNtWHIiFzhIkEggmFHMpiISQamO3w/R8OZmrI3NzcXPAVkm+tWvsMZddhnRO95R1OGq9mia0NiItW98HEExLk0rBnq/qlClB8PpxBro92O9JMJ1cXllqWySwyEyBLlEWJLE88cZWI2NQh+NSa1M/5C7AMdi+D9rPM6E/dQ0aGndcw9kEWw2SAVcfjl8I30pdLYyaF5zjh6FD7J8ufBnEwkhrZLPn1IUoh/+EP7e178OP4p19lir0sz3GRrCtXg8ouGC2w0fsqbGevYPN3R68UXoxl5ySVGk2Jy0RZwdzLqlDP7daOfzmYDNlu4rMWHPDZtYh5NL2zOr0IygtlaUNvP5ZgMul+jeHAqJxpjl5qNllizX1MCXTKXwTPv9hbVVBwbws3y5IBCZRPV68xOImkb0619jP/jpT4NATCbxWbMNUDSN6Kc/BYH4yU+i0WcwCE6jFATigw8iuLpyJTrYl4j7mJN2aSZRsZmINpttIRFdRkS3ENEhTdPOmeVLMgLDg82OmMsFZ4A7hBLB2A8M4D2trXB+SlHOmQ/c0U/f5YtJxHwdmxmKAiIxmUR6c77Sm0RCdER2uWDI2Aglk8imGxwESbhu3dRjyTI2m6kU3jNdGh2qinvCwsTFljYFAiCy4nFk1y1fPn0OSCwGncLdu3HNJ50Eo18o9T8aRXlyczNKo3NBkrAZHh3Fpr2rC4shCx8bma9c9jw+LlL1zz4b1ytJWDCLdVJiMYiaHz6MDfsZZxieL/8z4+e6LSo3cKaFpokyZu6c6PHMbCOqZBJzlAjzupxLZyoZ995L9POfE33sY9DjIoKdHxsT2WC5oKrQUNy/n+jKK0UjFitIJFDuc+gQMom6u/GakQYKhSBJyJTcswcBs/POM/zRtNW3Au1RxdoiRUFgjCUV5s0rPqhlxq9icEm/JGH94ooRJgnMNBUxe61MKPJGmLMSuQmMvryZyUNVFRlyM0GyxONoTrRlC3zDpiZk+F56aX5pF722Iv/f74cPNH8+ZBX4fo+MYIwLVUb88peQd7n+esi7cLdtrr4wgmQS32lwEOPJGUNM9BZLlqgqyrtfew0+1zveYXj+HLe2iJ8Ffu70mcWcmVgO4IxEzv7lucra5PX1Yv7oy7TN2LVwGDagrm72faJYDGSizYY92mxfD1G6pqZ+fmSOMVdnKYogBPX+bTAIqa+WFqJNm4SkwvAwztHVld8W3H8/0e23IwP76qtxHtZB7Ow0bkc0Dfu9++5DR+dLLsG+rb6+eG6Cm8vddRf2+9dfD9trwB7lfEcF2qWyRSWTiJcR0e+J6GUiuk7TtIOzfElGYGqwuauS3Q4HgfVW4nEYkkgEmnrJJB541g+cLqgqDBM7pvyaGSLxyBFc/4IFUyMkqZQoTXM6RXlO5nETCZSS9PfDeC5bNrVhiKLg78kkzjWd4xKJiPs0b15xi5SqgmwdGICT3dMjsm6mA7wI7d+P6960CSno2RweRcH7iJAtmWuB0TQY/L170cFv9Wrc22PHhLak0Q2NJCHzNhAAqRqJYH4sXow5XwxhFA4jsjUwAGf+lFNMzRM9iTjnbVG5gUX4OUOGCPNClovLvrACfXlzTY15Pasq8mP3bohnn3YaMv/YUWYNsLa2/M7uww+jwdS73010+unWr0OSkAW5eze0ftavF0LyxWa8JxJEP/sZyIkrr8TG3QQyN+6VZo8q2hYRiS7F3H2y2EAG+1VmyCBVxTUoCvxFm01I0bDW2XQ2f8gkFCUJzwc38ODGfE4nyMNSdbjOh8FBEIcPPYT1YtUq6Itu3mztHnHzAo8HGuWahp/RUTzDnZ2i0Ve2MugHHgCJeOmlRB//uJBxYR3EXPdGn70Zj+P9waBoVtDWVrr7qijI1Ny5E+N0/vmm1rPj3hZxFmJmZjEnYJRDNhwHYokEkaiqsGN2e7ofzAS6mfJsTUvPRp7JwG426Mub6+undz+YC5yII8vpAZ5C46ppsKOhEO6Dz4e9s6rCryGCzj2PcSCA97a15c8AfPVVSCmcfjrRl76EaxgZgR3r6DC3j73zTvxccgmqzkZHMa8Mkn15v/sf/wgS8aSTEERub7cW0Ej7Q+XZpbJFxZKIFQrTgy1JMAqaBlLN4xF6Bex4TExg8yFJyA5bu3b69MFYSFjvjHIJhZHFUVVBJEajiJI0Nwvtx2hUCHUX6vIXi4Fs42Yc8+Yhw0TvmPK5YrHspGUpkUrhPsgyzlPsIhWJgLALh8V3m84I2tgYylb6+uDwn3465pHeMe3rg+O6YkX++fXIIxC/vegiLG6qCgJRVXEfjDpRioJIeDgsxIKHh0U3Rk0T6f9mN/HBIDIQR0ZwnSecYLqEvNJpooo3/LIsOgvysxGLYd7MVHkcgzeDsRhsY2NjeWwWKh1+P0pXamqIfvxj8ZxzN8OWlvwZgK+8QvS3vyHD+F3vsn4drPWzdSvR5z6H4wWDwv4Ug3gc362/H07yqaeaPkTVFpUBkklBbJeivNmMX8XgTDlVxbPBXZ315ZalLnXOBt4wRyIg8rhaY+FC+KzTqRenaXhOt2yB/I3TCYmSK64A8VdM9+hdu+Drbdgg1pxQSFRY1NcLApgovQx6xw5oj512GoIidruQw6itnRr4YqKHf1g6qKYG16AoWGdKqfcmy2g89cYbkHZ561tNH6Jqi0jMf5Yl4I7O/Pt0P39GoKrwn4hEIyN+Zj2edB+fiS+zRGIoJHQJZyJoUOh6JifxzHk8M1ferChT7a8VMllVsRcKh/H/AwdgB84+W+xt43EQePX1+bsxHz6MZnALFxJ9+9sYj0AAPk1rq7nqvfvuQ2Dk7W9HSTTv0YrVqtc0yGE9+CB8oo9+1HSwpNJtUUWgSiLOLCwNtqLA+LH2ls+H18bHYfC5ZKS/Hzp3RMjOW716eognXgz1At5micSBAbEJ4+Mw+WbUSLCDGg5jMXS7EWnWk4V8rmgURs2MxoNZcCYA61kWK7KvadDeOXwY47NsGYjX6cxyGhxEdGtoCKTamWeCNPT7Qch2dgrdjWx49VWiv/4VjjI3BBgZweLW0WG85I+7jQUCyIz0+eCo19VhkVMUoZkoy3Bu2IkvNOZ+PwjEQAAZiGvW5F9wc6DSF6g5YfiTSdhFrxdzgPV4uNR5pjrZ66+nWt5cGsgyNtu9vUS33YbSYSKM8cQE7m8+4r+3FzqIPT3IiLY6FzQNJN/TT0Pr54ILYDtYaqQYexyJEP3oRwiyXHstou0WULVFZQLukluK8mYrjVaIsDZy4Fnvg7B4PxMC+syoUvsUsiwIMs6IZLvMXe6dTvhspSIUYzFkHW/ZAr+ppQUZfxdfXBq5nzffxL1du1b4mJKEZ9frTfeLMsugDx8m+sY34D9985sgDWUZtsznE34Rd6rWN5yx2+En+3wiiSAcFo3nSgVJQjbRm28ia/uMMywdpmqLdGD9UCIxz/Ulz4W67k43mEhk/UKbDc9RMon5xcSf1UYrTCRy9/hyKOnWlzc3N0+fbqPRkmWzUBTsjfbuxR5/xQqMLeuj2u2wM7ls6sQE0c03433f+x7GIBYT5KMZW/nYY/BfzjqL6KabcAxNK74Ts6qiPPqJJ0CSvu99hStOsqDSbVFFoEoiziwsDzZHUdjp4OyHWAzkCkd7fD5ksPX14YFbsQI/pY4CZS6MZhxe7kK9fz82UUuWoFTVCuEWCsGJs9kEmbhkCSIsbEQ1DURiJAIiywJhZAqlLG8mgkN54AA2Bo2NyEqcjoYxehw6hMzEiQksMu3tIDGXL8+9OB08iAYly5cjamS3YxwCAYyD0YwdTSN6/XXM6/Xrcb+GhzGOmansTBqFQhgnbtCSqR3CGB+HBkg0isykZcvy66nlQaUvUHPG8HN5FwuFc6mzzSY0E2cSrOUpSdXy5mLw85+jjOXmm1FWR4R7OzaG8Wxryz2uo6PoCt/cDOLPqg1mrZ+HHoLWz+WXIwjB+krFbAiCQZCj4+PQ+Vm3zvKhKn12zRlbxNCXN7e2Fjf/OHvJjA2RZZyfN8qZvhWTG/pOy6Xa4Mbj8FM5a47JCUnCnE8m04M+RKLLs5XO0keOgDj8+99x7nXr8Jyee27pSIuhIfjUixejmoJIbNoVJb/2mN9P9JWvYKy/+13cj2QSfiJn0SeTIiDG5BJ3uNXPnUgEY+jzlTYgzo2n+vqgj3bKKZYPVbVFmQfURIMSJu45O5glC6ZTZqAQFAX7JrtdEGqc7aZP6mBSnDMrjYLLpPl45UAkyjKeSy63LlV5c7aS5VI31xkZQXOozk7YI67gSyRwnq6u3Pv9RALNnIaHIc2yZAmulyv6zEhNPf880Q9+gCqxW27BXjGVMl8KnQlFge/33HOQUrj4YpRFW+AHKt0WVQSqJOLMoujBDodhNDwekQXBJSzBoHBaVRUC7YODeO/q1SBMSrVQZWu0UohI5KhUMCi0HWIxfJ+2Nuvaf5OTMIo+H4zk6CjGZuVKQSRpGsYiFMJ5LBJHhiFJ2ByWqryZCItHby+OuWQJFpDpdDw0DdGue+/FvDv5ZJS3ZMtE5E17YyPRpz6FOReP477U1eUXL8885549WNRWr8ZCOTQkBMvzLSSpFO5vOCxEoxsbBZE0PAwNxFQKJcxLlhi/riyo9AVqzhh+fTdALstRFFFabLHTdtHg7s3V8mbzeOopRMkvuwwlMgy/H5vt1tbcjnIkggYlqgpyrhjb+1//RXT33dhYX3ll9gwvK/D70W06FCL67GeLa/ZCVVtUluDyZu7cbXUeWmm0QiQ2ynZ7bsK7VKXOnEGnz2piW5z5vnAYY8Mlk/qMHSKcnwnFXP6NqkLLecsWVD84ndhwXnEFqlFKiXAYPklzc/qx/X48v+3tudeYRAJlg8eOgUBculQ0wWFNukRCEMXcGMXtFs0smLThDCpu4lcqJBII/g4OEr33vSjVLgJVW5QD+sYrTNrrM4O5zHU2Ao5MJDoceHa50sfpTC9t5cxas41WWMOTCHawHHwhTcM1RaN43opZ00tVslwI0SgqxWprkSnMTSaPHsX+Zt48kIjZegmoKtH3vw+JqFtuwX5O02CbOBBilOzctg1l0CtXotEc8xJtbcUluEgS0U9+AjmKiy5C1Udbm2USttJtUUWgSiLOLEoy2Jx55XSmR5mTSZA5qRQe5LY2vG/XLmRv+HwoxVi8uDQLFTugrFHHr2U6vCwMOzkJY8Wt491uEc3lbDWrbdv9fkEe2mzIinM44PRxyRsbTNZ9mM6GJXw+v7905c1EMLK9vSAUfb6p5dulxuAgFqdYjGjfPji+PT0oc+ZIeDSKTbskYdPe1IR5MTgoImNG59u+fcga7ekByceR/s5O49m0vFHhZhdOJ37fsgXz8qKLcE1Fiv5W+gI1pww/Z8A4nSKaLklCM3G6SlYKgYltLuObreuoJPT1EX3hC7AB3/++cCC5U2FjY25HVZKQaTwyggzEri7r1/HXv2JzfcEFRNddh3NLEuxbMULxY2MgEONxohtuQHCvSFRtUZlCVZGhEYvB72lttRb4s6KPSCQ0tR0OrNf5GndkljobFf3Xl94yeVjoO8ZioukK66VxdqQkpX9ft1sQiuEwNLL++lf4Bq2tIPgvvti0prEhpFJoMOJwgFzj8efyv4aG3IQeb9pfeQVE4oYNGKvxcYwXZxryD2eoZZZCE+FzTCByWZ9ZUjkbYjFIu4yOoiP82rXFHY+qtqggeH5zAgaX+zMBZeS5mw5weT0TidzIh7OJ9e8zq49IJCo0iLCGz2YZtx7xeHrWthkfLVvJ8nQRwYoCAjGZRIkvBy5SKezRbDaR1cyBa72u5e23oxvzpz4FGSci+CLRaP5ASCbeeAMN7hYuRDYj9zRobi5uL5pKwS/asQMyFOeemz9YbACVbosqAlUScWZRssHmzs1s+PTZgFxCarOJMtLRUXSVDATw+/r1IGaKRbZGK3oikaOnkiTEbLMZ6eFhUTprdeM3Po6flhZEz/btw/kXLUonTo8dwzW1tFgnLc0gGsW4c0ZAKYgEvx8lzokExmvZstKXCYRCKGtubcWCkUpBi2PbNiyea9ei7OVPf8L9++QnUerDxLAk5U+tz0RvL7SDurtBIIyMYJ63t1sfs1gMWQR33YXxeec7MVYlINIrfYGac4ZfkjBf3G5B8iSTmLcez+x1COQofLW8uTCiUTQuiceJfvpTsUHnzG6PJ/emnTv57d2L0uPVq61fx6OPoqTm7LOJbrxRdIVvbCzOfg8Pw1GWZaLPfx52qASo9Nk052xRJsJhQeZZLW9m4sHs5juVEhqe3LW50Hm4/JIoe6mzpsH34IYfHg9smxmSU5KEXlpdXfqGN5NQ7OtDZ+OnnsJrJ56IkuVzzpm+8kiuiohG0XiNr09R4ENy84Bc43nHHQhcfuQjqODgRmAshWC0tJMJS6cTn9Nv2fRdoM1mh4XDuEa/H/ayyGxoRtUWGYA+K5Gzf4lmn0xkItHpxDMdiQgtfv2zrb9Gs8fXd4AuFyJRX95cV4dryzXuM1GynA07dsB/2LRJVNLxXktVsdey22GT2d/kfglPPYVKsYsvRld4ItwHv98c+XfwIAIizc2oFHE44JexVr1VJBJoXLd3L/QPTz8dxyvSZ690W1QRqJKIM4uSDjbr3qjq1M2NJCHKwF3xOCV4cBCOUSQCgnH9+uJLe3kx1EdgolEYKFkWpdeFOkaPjMAgNTVZbyAyMoIxaW2FoTt0CK81NiJrj43S8LAwoKUgUwtBkkCS8oJciuxBRQHpNjiI77ViRenKtGUZJKzTCedSv9jH44iuv/46FjZZRubQySfj7+PjcFDb2413Ce/rg6D3woVodDIxgWOY7RSWiYMHUZLo8SB70uXCMWtqREaTRSet0heoOWn4EwnMR/2GNh4Xr82mHo++vLlctIHKCZqG0phXXoHWDmsEahrWMlVF9nCujcejj6Ir/DvfCaFvq3juORB9GzeisQvrl9XWFmeLjh6FBqLdDntZTFJd4UQAACAASURBVJZkBqq2qAKQSgn96qYm8z6A1UYrRCLo7HYbbwaUWerMm2VuksLN9Xw+67aMJW64vLm+Xnw3zry5+24EL51OaKNefDF0l7nkebrsaF8fNuiZftXIiAjeZgZINQ3f5f770bH0vPMgg+DxCA1IfSOVQuAmUixTZLeLeaDPVswkFvWl0NnmSjCIzKRwGPrVS5eaHp5cqNoiE+Dni7PYHA5BUnHQgMnEmYIkwVZx4yN9ozh9dZmVRitE6URiY2P5BFQLlTdzYCMzuDITpdl9fSDYVq6E7WNMTMA3yZZoEYvh+2zfTvQf/wFi7tZbhX7iyAh8YqMVeUePQp/a40GGdV0djpFNq94MYjEc7+BBBDM2bixZsk2ZzKy5jSqJmAM2m+1jRHQ7ES3VNK2vRIct+WBzR2AWiM0s8wqFYGg0DYRZUxP+39+PtOREAtl469dbJ7Z4QdFfD0dczTrLY2OiTETfHMUMhoZgPNvb8Z1HR2Gg7HYYYS7DHR0F4dXYOP1dj4mEFg5rWs6bV5oFKBRCkxrWpFixovisq0OHsDitXJnbmN93HzJ/WltB/J1yCha4YBD33ajw99GjWCB5HrIofWNjceLh+/cjA7G5mejCC/F8zJ8v5AAkSZRTWdBpmbEFqlJsUTmAy+t4s8ZNn/TNV2ZTj6da3pwbd92FzJjPfAYligx27PM1qdq2Ddqtp54qusJbwWuvwaFdtYroH/9RZJGyvqpV9PWhi6HXCwIxX4d7C6jaogpBZnmzWR/Aqj4iEWxgKCSCukbB/h3rV6sq5nFDQ+myu+Nx+BtMkj3yCEqWR0fxrFx2GRqh1deLDEVu7sfkZikJxfFxBDU7O0VXeCLYApbeqa/Ha/qszHgc8kG33YZsyVtvhU+uaRg7h8O4ZlgqhetwOODX5SOONU0QikwuMph0ZmJxchJ2NpEguvpqVOqUEFVbZPaEmiiJ5bnMWveZDVlmyndJpXBNehkBtzt97lpttEIkspA5oFouRCJRenlzU5PQrpyJkuVsCASIXn4Ze5eNG8V5ualqY2Nue97Xh6ZOLS1E/+t/YS9UV4fPcRdnIwGp0VEEVBUFGYhtbdhncza21YzScBjHO3KE6JprsI9saSmZjnnBOzRNNuS4QjUXosLBJbLBIB5IRUkX8G5ogOEfH0fmXSQCY7R0KUqpDh5Extljj8GZWLfOvDAqb9RHR+GYcMlZfb1waowaGXaWhoehjbdokXlj3dGBc46M4Fjz5+Na9u1DFubChdDb46wWbku/YMH0LgxcxuLxYGFgIdxiiYSGBqS4Dwxg0QgEQOZZzbAcG8MCv3Bh7mvbvh0ZQ+9/P0qKXnoJWUCPP46I17nnGjvX8DAIxLY2EIi8gNfWFkcg7t5N9Je/4B6//e0glDo6sOg1NuKHycRAAI51bS3GskrsVC5Y1J91uljcv6YG9zseLyr7tGhwhDsUwk8qBdtUTk70bOC119D06LzzoIfDSCSw+a6ry00gHjqEgEZPD4gGq2O5Zw/Rv/4rSINbbsFxQiFsGIppzvLmm8gEqKtDafS8edaPVUVlw27HWsflzazrZ3TN4e7zVjo219TAzwmHMa+NzmkmELmqhJt+6Esaiy1LrKmB73LXXURPP43vt2kTpA3OOiv9+CxXweQLZ05xR2g9oWjFFsRi8Ivr6+EnMjib0+fDGsLrCQet7HYQxLffjiDEN74hxjwaxTGMVmbIMo5ltxvT0cyWEZaZrciZsL//PX6/6irhK5dLWenxCJsN85kz3bicmDMBufQ5lZo5MpGDA0wker1CX5r/ps+KNWuLXC48X+EwfsrJB+JA8+goqrx8PpB0nE08k0gmsdfy+aCpymPE9sHjyR3cDASI/uVf8PfvfAdjHgzCzrpcUyvMciEQQEfnRALH6+gQzS7b263bjslJHG9kBDqNy5djzzdbjRCrsIZqJmIO2Gw2BxG5iCiplW6QpnWwuUMSl6xkPtzRaHrHYO7Yl0pBX6+3FwvCsmXQkzLi2MoyjEEkggWFyR+jHZtzIRCA7kxtrbUuxJqGDLdoFOQgE5qHDoG4amiAo+fxgFzlLsJWSEsrmI7yZiI4tgcO4J5wh2qjjisRHOIDB3BNuUpc+voQyV6yBJFshwMO0Pbt6JSYSGAOnHkmsiJzjefYGEqim5sRYZMk3Ae3GwuV1fuwYwe0iBYsQMdGjwfHy6XNyFHRcBhzxOPB9y+gXTeTEfeKs0WzDdafcrkE+aSqooszZynOJqJR/Bzv5c2jo2gw0tKCMmJedxQFNoJ15LLdr7ExaP00NBBde631AEBvLzb9ra3oOlhbi3WBAz9WHeW9e4l+9jMQh1/4wvQ0f6CqLapIcKYZN+sx4wNYbbRCBJsTicAGcjZdNjB5KEmY/z5fui3NLHW2UnYpywg+3nMPAn9uNwKQF16IoIBR3TTOlmRSUd8chklFI/ZeUdBIRVGwaWfCRFXhTyYSuE96PTtujBKPI1tHkhCM4BJoHsPaWmPjw3aPCMco1bowNASCkwgl1m1t5sugDaBqi4o5eUZWop6gZ5JRr8M33eRvMonnyu3G3OckFf15rTZa4eNHIjh+Pls0U9CXLGsanl2WWmhpmVkfTdOQgRgKYS+lH5/hYVxnZ2f2a0omUUlx9CgIRN7LjY9jX+31wp6z/mOueRQOI6A6MiK6MbNWfUeHNW1fIux9v/Md7FOvuw777sbG4uRissBIJuJ02JDjClUScWYx7YPNoqqZnZsZqorNEb+nrU2QTIkENj2HD8OorFgBo5GNfFFVGIBwGL/X18MIMGmoX/ysEomTkyIStHixeYdZVZGdl0ggq44zLMfGsGm02fD9WlpEVkBtLQzaTERmp6u8mQjf5eBBjEF3tzFyVFVRAqyqIFizLU7j40S/+AWM/XXXiU378DDGubMT537hBby3rQ2ZBPqIPhHm4PbtOM4pp4hrttlwDKvjsHUr9IiWLsVmxOnEYmek7EpV4dCwKLHDgXmdg+Apk7ipZcx5w59KiaYqbMNkWXRxLoeIp768ua6uPK5pJpFKocxmcJDoxz8G8c9ggoX1fDMRjcIWpVKiK7wVDAwg0u7zwbFtboZ9UpTiNg47d4Lg7OhAE5Vp3CRVbVGFgv2xaBRraWursbWvGH1EIvhtsVh2nU9Fwd8484nJw2z+A5fRZhJ3hQiFQIDob39DBvHEBORkLruM6KKLcD1c3myzwa8026FTTyhyh2MmE/MRivv2we9ctw7PK4/F0aO45rY2YadrasQmOpXCpr2vDzakpwevJ5MiI96ID6IosHuqWnRn0jQcPYpMb48HjRU4GzqzDFqvr8hzS08uGiCJqraoBODmRkzO6degmSYTmUh0ufAssF/MKEYfkUhUG3g8JSeRDEHfmZ5tqj6TOZHAs8+SYDPlo+3dC3ty0knpVWXBIGxUa2v2qkFNQ5OSl1+GhuGmTXg9GsXel5NWWCbGZsNrmdmg8Ths2qFDCLCeeCJsUyQCO2i2YpExMgIbGY9Duqa9XZy/xKh0W1QRqJKIOZBZK2+z2e4gomuIqIOI/o2ILiEiBxE9SESf0TTNb+CwMzLYqRSMDFF6VqAeiQQyQLgbld55jUSglzgwAMdn9WpkJ7LobygEA6Sq+CzrRjCyNVqxquUTCsEB8npBRJkllxQF3yOZBBHJC0A8DoeRMxW7u3EuPWk5UyUesVh61kupFqlUCqV0Y2O4TytX5i9hGhiAQ9/Tk30xj8WI/vM/MZbXXy/KjbkcuLU1XSfowAGiF1/EuC5YgE6nHR2YO6+9hu+5aRPu6fAwFvHOTuuO8/PPE/397yC/3/pWkW5vJVrGZHwsht9ra6c0L5o17Z9KskWzjXgcNsDnE8+zJMH+ud3WI6mlhKqK0mavt7xKe6Yb//7veGa/+U2iM84Qr3OZU66GXLKMbOhjx4g+8QkEiaxgZAS6ZURwbNvbYc9SKdg3q5pvr76KrJ9Fi1CSadXhNoiqLapwRCLwAbh81UhGbbFEYigE+1hfj2dMVYUMBMtCsByEEWR2dXY4phIc+/Yh6/DJJ/HeU08luuIKSKBknkeWsQYrCp4fq89QNkJRn6HI1zc4CG2uhQux1sfjsAMsezJ/fu5mKv/2b/B1vvpVfBc+bzQqms8UgqqKSqESdCb9H/T3E/3ud7iGT3yicLAlswyax4wI90ifrZjFH6/aohKByS29JmJmBiATjfysTZffwFmINhv8f7YNmddqRR+RCM9aLIbjTvNa+T/gbOpMbdVsRKiiwD6nUmIvMJ0+2tAQKqq6u6ETyEgmsVeqrc3dRPO3v4We7Mc/Dn1oIlz30NDUJiiSBBsbjwt9+NpavP6tbyE7/Gtfg01jPdimJusB28FBou9+F+PO1Sd1daWrxMuAaU3EEtmQ4wrHaQFVUXiAiA4R0deIaBUR3UBEKSK6ajYvSg/W3QoEYPgyOzcT4fdFiwQBFI8Lsei6OqLTTgPptHs3MioOHACJ19AA4+vz5SYonU4YIY5eEVnX8mlowHUODCBDsrvbXLTL4cDn+/txjMWLxQJ44omiu3EohOy7hQvxe3+/texHK/D5cM/Gx/HDWZ3FLlJuNyLqLBK+fTvIvKVLp36vyUkQiO3t2QlEWUaX41AIjigTiLEYPltfnx5Jstkwnj090Bp7+WWiP/0JTjjPz5NPxr0cHcUi195ujUDUNOgoPfEE0dq10GhUFDj9VkkizjTgjQxLBbhcyNZ8+9utHbfEsGyLIpHpvbByAZekcCMDfqZSKYwBa3zNNpxO0YmTmwrN9fLmRx8leuAB6KquXy/mZCqFcfB6RXawHpqGJiq9vUTvfS8cWivz2e+Ho8wR99pakJKJBGwZZ7KaxdatRHfeCTt77bW43ul63p59FtlbZYCy94vKGaz5OTYGYjufWD7DZhN61JwFaAYNDSIoHI+LY7F/ZJaYdDimdpdl8uH557Gx3bcP/s6llyLzMF9TD6cTfgKvvSz9Yva6OJOrpkZkcUmS0DN0OGBz33hDBFmDQdFIQpLgF+aSWPnDH1B5cc01gkBk6Qwudy4ETYPNk2X44aVakw4exPU1NRF97GPGdDCZIMzMftOTi1zGzu+XJIyfPhA0i5gTtkivf8iaiA6HyJDjzsBMJiqKsSxgK2BNREXBOVkqhucIk8tMNJp9Rlk7lO2QGQkms8jWZblQNidLqoRCWMtTqekrbw6H0ZypuRkJPAwOMrBdzIZHH4Wdfec7id79bvE5bqTS1pY+N1wufC9OPGI+4Be/wL7/pptg06JR/I2ThqzgyBFoINpsOG5dHe5zqQlETUMGZ5Ed5+eEDZkJzPFtyrTgOU3TbuRfbHgib7DZbP+gaVpo9i4rHU4nnJHJSfzU1U0lhzjzjbs1jY7CgLW1wbg0NYGQ6evDxujZZ2HYTjstf1t4XuB4cWNDa5VIZIHrI0cEkWiGbGIi8cgREIlLlsBJs9sh5trYCJJtxw5ksTFp2deH987EZt7pBInGJeLJJO5fKc7d2op7efgwsjrHx0UZNxEWkIEB0XwkE7xp7+8n+sAHhOMvSZg3XIqdDQ4HtIXWrEHzlS1bsHhfcIEgcpjAtpKBqWloCvTssyCFzzxTlECWokEKP0ctLbg3v/oVOsGWCYlYEbZoNpGt0QoR5qyq4jnL3DDNFmprYZc44juXy5vffBNZzRs3En34w+J1lsngBkjZ8MwzCEycd156lN4MQiE4tOEwMhEXLsSmP5GAHbQ67s8+S3T33QigfOIT05fpqmkoT7z33rIhEau2qEi4XMjEZ7mZZLJwebPepzIb8ORqEb9flOoWo//J4EYRExNY7++7D8/0woVEn/0smh8ZzTbiUjuXS2RrFtMVmolOXhNCIfhDu3bhHD09ePb5nMPDQvYnm7/6+ON43i+8ML2jPFcwGNHeZQIxlcrfgd4s9u1Do5q2NhCIxWR48bgRYa4NDqLM8fBh/PT2Ys7ef39JLr1YzClbZLdjTuhLbplA1Jfe8t95z1VqMtHjwfrIWYfRaHpnZbZFTCSaPbfPl04kltL30WumcsDF7TY3RiytwI0xR0dLX94sSdhfOJ3pnZiJRJChoyO7jd65E+Tfxo3wPfiznN3c3p57jXC7saePx4l+8ANkVXNQJJnEMbxe603henuJvv99jNWNN2IMa2qKa57J4KAGE+lvvIHg9Le/XdRh55QNmU6Uwdap4vAfGb8/TURfIKIlRLRr5i8nN+x2PKQcPWFR3Eyj6XYjQy0YhJM2MABn0u0WZdHnnAMDc/AgMtr6+5E90taW+9wcmdJ3f7PbxWtmnN7aWhB6/f2C3DPjSLpcIiPxyBF8nonI1lZs2Pftgw5FV5fISORzlUqbJh9sNtwvXqRGRkpX3ux0giCdPx+ZdDt3YlFZvhxjomkgZ7MtqE89hQYob3sb0Qkn4DXuxk2EYxZaiDnq9453YA4cOIAFb9EizC0rehiaRvTgg8hyPPVUkNvxeLrOZ6kQi4FAPHgQ5VdlAsu2aDa0Z2YTPh+cIe7sSSQ6bGpaernzbKOxUZQ357LZlYxQCGXM8+cjA1CfHRMICG24bPZ9xw4872ecgY27lXGJx9HAJRAg+qd/QrZ2Mol5MG+e9cj4o4+CMDnlFGQgTteakUzC0X/+eWQclAkqxi8qZ9hsmINeLzaNQ0OFA2x6n8qoDUsk8ByoKo7PtkaSiiOxNA0E/z33gOxXVTyr73kPgnxcGptMmtNyq6nB+0Mh+KRWyps1DeflDERunjA+Dl/opJNwDm4ow2V+uZoX7NqFpkknngh9aLZF2SQ08l2T34/ram4uTeCTr+0vf8G1X3ONdR+Sdbv7+sTPkSMiQ5ubM6xfj8B0mWBO2iLWmWcyTFFECbOeTOQqMH1mYinAAdlEQpyHdVX116g/t1nU1qY3wCv2eeDO1pw5y5mcxYyJ1wvfxe/HT6nKmzUN+7J4HOSd3g5HIhgT7hKdiaNH0cxp0SJoTPPemiWZWloKj6WmQSLmtdcQdDj/fARRJifx/Yzs87Jh3z5cW0MDMhDtdlyLFQKRS9D1xKFew3X7duxX29vNHzsDc9KGTAeqJKJ59Gf8Hvjvf3MkGM8uOHricAgiMVvnZiK8r7YW5Nm+fXg4589H5IMXimXLQDq98QacxPZ2bMKyGQQubeGy5syIlRmnlwgOS3d3OpFoxuF1u1GizBmJixeLxcTrRcZcXx9K2kIh/H10FK+ZzX4sBlzePDFR2vJmIhxn0yaMQX8/MoJqa1FanG3TvnMnyoRPOgmNShhjY3AkOzoKL8ipFKJrsoxMwYYGjPWjjyJC5ffj/Bs3Gh9jVcWGfds2aC1u3IjFct680muqjI4S/fSnuB8f/SjOVyaoKFs0m3C5MGdSKZF5yGUz0ahwhsuBrLPbYaNjMZF9M1fKm1UVGYCBANEPf5hOIMZiQqMtmy3q60OpzrJlRJdcYu1eJZPQ5Onrg37ZunVCF8jlMlbulwkOZtx/PwjEj398+mQwAgHoRx44QHT11elZnLOMqi0qITgrmStECpU3G/WpWOOPN/n19fiXyaJgEOcxm+mXTMJP2LJF+BRXXIGS5a4u8T59E4NEwlxXZ24WyOXNqRTGJd/31TSch7OMWUOS5UoGB4XuN/uwmibO4fHgd7YP/DM4iMyari6ir3xFPO/ZmnnlQyCA68ql/WoF27fjPixeTHTVVeZ85HgctrG/HxmG/f3whYkw/osXw/9ZuhSB9tFRrE8LFyIgXSaYs7bIbsd85WeIyXief5xhp9f702cmFgsm9vg5ZkJRP8f0JdZWzllfL54/m81aUEOfmUZkrGTZDBwOJCuEQrjWUpQ3HzqE52nt2vT9tCThGfN6swc4g0HoObvd6KSs1/0PBGCLjfg1v/sd0UMPQSLmyisxdgcPCgKW/VAz++Bdu4j+z/9BUPimmzAvWc7KSIa2nizkLFyG0ymySe12kIcvvYRs8g9+0Pg15sCctSGlxhzYlsw4lByvl8H2Mzfq6vCwBYMgQ5qbpxo81kXQNDg1zPJziRdHvLq7EfE4dAhk4xNPwIlYt25qhlM2fUTWzLBCJNbUTCUSzUSrPB5c68CAIBJ5AbbbsUHl8ub9+0WZG5dRz5R+mtMJApf1+EpZ3my347v4fCjHicdBKtbUpI/lkSPIKOjuRiYBG/1QCAu8kVR+WYZTG4+DKGxowDxLJJDZ6HbD8L/0ErIdTzsNUe18m3BFwXXt2kW0eTMIyUgE11PqDl+9vSi7VFWUYq1dW9rjF4mKtEWzBY8Hc4dLmFlSwecTBJaZRgLTDZ8PNnMulTf/5jewB1/8YnrmCmuPut3Zn+GJCegMNjfDQbRC0skyGiDs3YuSmlNOwXyYnBTErdl7z1IPjzyCjKurrpq+jNb+fmROBgJEX/4yMgXKCFVbVGJkljcnEtiMZfMB9D5VNn1EzhqSZdFdVe/L2GyY/6yJlUvvOhOjoyD2778ffkF3NzaLF1yQ3S/jjCnO+JNl+AOSZKwEk8ub3W74RdnKm7lBDEtYcEM/Jg69XhxndBRB2gUL0jftTBo2NiJIytlMrEsXDoPIt9shhcDkn6LgnE6nMZ+Utci5mUEpsHUrul4vXw4iIN89lGVRbcM/IyPi7x0d8He6u/HT1SXmXjIJ/ysaRYXLggWluf4SYc7bIi5n5nmpz0okEmSjfu7yHqzYAJc+Q5Az5Ph6+O9chcYaimZRV4fnjDu0G9l3laJk2SzY9nB5s9VgwPg4AoNdXdjTMjhT2mbL3kgllSL63vdgS779bfEeWUYAyu3O3YBFj7/8BT8XXYTgpKYJqar16zGm4bBo6tLQUHgvum0b0W234TvddBOO4XJhH5vtfmQShoruKdYHm/Sl/DwG992HxKYTTkAzmRLsk+e8DSkVqiTicQSvV4hI+/0i4izLMEKRiCiBZtHtiQn8LRpF5IU3sQ4HnIfubhBub74Jh2TpUuhU6Z0oPZGoF+K1SiR6vVOJRDOb65oaOD1Hj+Jn0aL088+bJ8qb+/uFTlBfn2jMMhNgx97jwf0aGcG9KUXEWlGwSJx4IjYUfX1Er7yCcV24EHOEBbk//GFx3xIJXIvPV1hgV1FAGITDyGRsbsZrIyOYP/Pn4993vxuL0wsvoEHK9u3YkK9alb1j45//DCLgwgtBXLPDX2qB3q1biX7/ezwL11+fXwS+isqAXh+RnyMur8jUTSwHuFyiuQBHvCu1vPmFF4j++Ec4qu94h3ids6BYziETsRieQ5sNmcBW7o+qwqHdto3o05+GhIKmiaBZc7N58k/T0CzqqafQDf5DH5q++7JtG7INXC5sFk48cXrOU0V5IVt5c2tr9meAg7x6zWkuzZUkvMYNXLKBfT+/XxCJ2TZjmoaA3z33ED33HF475xyiyy/HOm/0GeANoZ7okCRRcpiPfPB68R4ub/Z48H624UT4vbYWdj7zO0ciCII3NU1d18fHcU2sIcadb4kwlrfdhjG69VZcRzQqGmPZ7cb8s2AQn8tsSFcMnn+e6OGHkVX5wQ+m3zsmI/SE4cCAyDJqaIDvd/rp+DefT82NHxQFm/ZcTR6qmF4wScbkSzI5NeOQ9RT5PVyJUWxWHvtMqor5YLdP1Ucspnu8zYbngqW46utzE+LZSpZLQZYaBZc3BwL4SSbNBSTjcci01NeDsNNjchL3jPdKemga0U9+gr33l76EDDx+naWmcmm56vHQQ+jofO658I1sNqw1HLTi4EtdnbgfXLnT0JB9nF96ieg//gN25ItfxLG4OQ3v+zMJQ31Zsj7LMB8JHA4Lvf6zzkJSyUzd9yqAKol4nIEjAYEASCQiYXyZiGGDb7PBCHHjlWPHYOjYEPDx1q5F5HPvXlEC0dODTBO3O73Rij4yVUx3QY8Hzg47REuWmCPXamsRIRkcxM/Chenn93hEeTOXvHi9omvzTBINNTVwaCcm8GN2kcoGdiBXrMC4zZ+PSNjBg8hAfP553JOrrkqPtI+OCqHxfFBVbDSCQTiara14bWQEx80U+e3oQPkTn/uRR6DNcdZZosuWJEEo/M03QTyuXo15XF9fGoFehqZhYX3gAcyxT3zCuqBwFeWFTMKQAwJckpNM4me6GmJYgd0Ou6wvb2bh/0rB4CCyAFeuJPrMZ9L/Fg7j2W5pmeoAyjKe+clJlAlb2bBqGrKJX3gBUfYLLsDrwSCOn4ssyQdVFV1Z3/522K7pIhAfegibhQULQFzoMxWqOD7A5c3j41iDGxqy+wCsjyhJsGNMGtTWwqYVmqN6IjEQSH8mEwk0MduyBQRcfT2I8/e8pzgNKiY69KXO+oZX+Z5NpxO2YXBQlDvX1wtJmGyQZfg6bjf8H/2YhMNCQyzz82xHDh5EJvBJJwnic3ISx21qwpjnI2k4w8pomWEhaBoCGU88ARLife9LL0tmHzkaxftZ1mfzZpFl2NxszH6Nj8PPd7kQyCi1dEwV5uFwCK1E3mNlzj8mw/W2oVgykQlzbrLidKbPB5azstpohbOOuRorM/stM2ONNSFnQ9ta371ZX95cyEdTVSRNaBoqtfT+Dzd+qq/Pvt+8807sla6+Or0rOjdpmj+/8Pmfeoro5z9HBdiNN2LMebwbG9MrC7laQ0/u6gMhPO7PPAO9+5UrQSCGw0Lbm7PhM8uSPR4RODJKAo6OgkCcmEBCyaZN5aNrfjyhSiIeh+B0cyak2tpAouVy1mpqEK3lCHUsJpqRMDweOFUrViCteP9+OJqrVoFQ5IWOFxR9oxUrHZuJ4AwtXSqcpcWLzTk19fUoFxoaghO6YEH6+W02HL+xEU4nl9tpGs5V6uYd+ZCtvDlXaVMhcHZpV5f4Dh4PyL7hYaIf/QiE8Sc+ka4TNDqK+5SrOxhD04h278Z51q4VG4zxcSxu7e25HfzFizHXenvRIexvf8M92rSJ6MkncZ8vuwzzbGICc7CUBJ8kEf3XfyEL8aSTkIV5vDUhmetwODD/ixZi9wAAIABJREFUuIyOHS0u/9FH68sJXN4cCony5pm0QVYRjxN961uwVV//evqzn0yKDXVmhremoVSyr4/o/e+HbTALTUOU/bHHoPXDHVTZhlrp9KooECB/9VUEM9797ukhEFWV6Ne/RsbXhg0gLqrBjOMXLhfW3kAANiCbD8BNCeJxQR5y+a5ROBxY9/WZNffdB93PSAT+3Fe+gnL6UgZb8pU6c3aRLItS5czmHrKMZzkfgahp8OUkCYSbfuxYe4y7M2fij3/EBvmjH0Vwk0hkydTUiGPx9bEOm56oiUZx74xUchgBBzwffBB+fDhM9M//DF+Lx7SzE4Tf0qUIQHR1WdtsDwyAQG1owNjNlLRPFYXBzw6XOKdS6Rm0DCZp9GQ9v8/KGma3Yx+l1xXWzws+l9VGK3oiMRQSFXJcssxl29NZsmwGDQ2icmxsrHB58549+G6nnJL+PkXB/sblyp4g8eST6Ar/9rcTXXqpeJ0DFI2NhX3DrVvRYG79eqHrGosJHcVciRm8PtTXi/sSieC7v/gi0e23o0Ls05/G3lpRRPMufWObYnQ6Dx9GkkcyifLl9evL4/4fj6iSiMcRWDA6GMSD3dEhFh02PLkeRC6r4azEkREcq60t3RDU1qJT7sqVIJJ27wYhtGYNIp5GGq2YMQYuVzqRuGiRufKQxkaRITc0lC4CzmhpQeOO/fuxOEQi+MySJTMbic0sbx4exrWZIRISCRCm9fUgJfXQNCwCNhuIOlVFifPKlfh/IoHPFHIe9+7FeK5cKbRy/H7R+KRQFqfNBpJw+XIQ0s89R/S1r+H1z3wGxx0fx/cu5aY6HEYH5t5eLM7vfGd5lbZWUTowYcgReY5+smh4IiEyqMsJXN7MjpskpUeByw2aBkf1yBE0NNHbHFWFw+p0Zt+0P/MMspnPP190hTeLu+8GAXLRRaIJSSyGH5/P/PMty0S//CWu6/LLEQGfDsTjyNx88UXYouuuqwYzqoBN4k6bmd2bYzHRZdznw3vM+lMMhwOE0V13oSLA5UK52xVXzMyGTV/qHI2K4LWm4XUm4fTknaLAt52cFMRiJgYG8J7ly9N9N9YAs9uza4g9/TRIxPPPxxgwOKuLS/74OjhDkQlFvZ9dW2udQNQ0+FZ9fdhIP/wwfKS2NqH3u3Qp0VveAn978eLiiV4mXoeGcJ41a8p3vTnewVm9+kYU2aQB+PnSd3q2SiYyqTQ2Bj9//vz0arZsVWhmv1NdHezd8LAI/M1kybIZeDzGypsHBiCntXz51L3YxISQVMj83J496Aq/YUN6V/hkUgRBClVm7dyJxlA9PSKwm0wKHUQjOoqc+e3x4Hp//3sQexs3IgFlYgL3bsECYadLsW7s2IEMSpcLDfYys8mrmFnYNC5Er2ImMGuDHYmIkgtur87ORTQKAoWjHoUcBBae9vuFU5tLj258XGSl1dUhM40XmcwoGaelW1kYFAUkYiKBrEqzZSITEzCgzc25S3M0TZSHBIMgLFeunJ3NHUeqkkkRNTLS7Yqj8KtWTR3/Z55Bx+TNm9H0ZHJSEKcuFzYPHR35z3HgAMZo2TLRrS8cxrU2NJgvR4zFkI2zaxci6nV1mD9nnokFsFSLx9AQyIHxcRCoZ51V0Pmu9GXruDf8moYNHm+6eS5pmtiw+nzlu2GKx4WObbmWN2/ZghLAj398asc8v19kU2Ve+65d0D498UTrpcIPPADbsXkz0Q034BjJpNBQM7uRT6XwXd54A99l82bz12QE4+PQPTx4kOgjHwFZWYDsrNqi4xCyjOqAcBgbtMZG+HZss7jJihkiMRaDlMiWLSD+GxqIzjsP2balXG8LIZkUGZWsl8WZfayHyCSC/po0DTYxHhfd1tmf9Pvhz7S3wz/Rw+9HYKa9feqz9sYbRN/4Bsizf/onQVqqqrC/uXxA1msLh3GveIPOJEihIFUoJMqRWSqIm8UMDmKczjwTPgtXzZQSsgzSIhBA0Ly7u+AcqNqiMgHPPU0TGWDZ7p1eRoDIWIOjbEgmsXZlI6FUVZCIZvwpJjk5ySQaNb5PLQeEw3iGnc708uZgELqBLS2ostKPNVeatLRMTYg5dgwJFU1NCMpyIERRsIchKpxpfOAAiMP2dhyjvh7jPDQkMpez7cH184R/WIrsgQdQNXLCCQjW8r500aLSZSwrCsq3X3sN93/zZtikPPO00m1RRaBKIs4sZnywOT1ZkvAw5+qoy5sr1sQxkoEjSVg0YjE4dm1tuQ3G0BDIRE5JX70axipT/NmqEC8RjMyRI7ieBQvMbxJHR+FMzpuXX/MvEEC23bFjINU2bCiNto1ZaBrGMxQSWpf5iITBQRCly5ZNvd49e5B1sGEDNHXYMCcSSHsfH8eis2LF1KgZ49AhbHwXLwZJSQRnfmRE6C6aQTiMssFAAJvptjaUJe7fj4VvwwZkvRZb0rl/P7rGKgrIgXXrDEXvK32Bqhp+EuV/Dke6XeTXuXtzuUY6uauxopRfefPu3SiTOeMMon/8x/QxjEZFQ6TMbO4jR/DcL1hAdM011rJBn3qK6Mc/htbPl74kyqr8fhFBN3NPEwkIhff2ppczlhoHD4JADIWQdf2Wtxhq5FWms9MwqrbIAhIJ2Cgm47mbcGZ5M5MI+XD0KIjDhx/GMVevBnl93nk4xuQkfLtitZhzgbO/OXOP/UCvV2T5sU+oz7IiEqSH3mdMJvEMEYkSyJ07cZx169LfG4sJncnMIOfQEGxYYyO6oDJZqGmwYaqK1/L5q8kkgqhM9OqbQHAw3eXCsY4cAVnIlTV+v3jfggUiu3DPHrz3/PNxj6bjnsTjCObE4/DnCgWQ/xtVW1Rm0BOE+bL3uEw4U2PQDDhZpb5+KqGtKCIzMt985etgkkqvjaooeK5ZJ7pc/TI9kknsYVQV1+xygQyz2YjOPjt9z5ZKIduypmbqHjQUAoEYiyGLUL+fGhmB/ezszE/a9ffjGHV1OEZzM65reBjj3dkpriez8Ym+W7K++dXdd0NO4S1vIfrUp7DPnJgQWolcPVcMEglovu7bB2LyrLMMdYSvgNlR+aiSiDOLGRvsREKkUrtceJALld5KEj6jaeYefM40U1V8LtcGTdOQwr1nDz4zbx6IIL2xLJZIZEcsGkVExmzDjeFhLIJtbflLZVMpEIkHDmBczzhj9rrUJRIYf+4ymu0+h0Ig+Vpbkampx9GjKOPt6kLGkD7SfuyYWPx6e8V9W7EifXN75AjIuK4uZJvabGJBdDoL6yhmIhiEtkYkQnTllTju8DDmcl0d9Mj27MGxN26EKLGViNcLL0BzrKEBIvHd3YaPU+kLVNXw/zdkGc+Qy5Vu8xRFEIzlRM5lgoMJySTmbkPD7Efp/X6if/gHjNuPfpRukzj45PFMtZmBALL9vF6U6lgZ95deQinwCScQ3XKL2KBPTIjMeTPjE4uhsUl/P9HHPobAxXTg5ZeJfvhDjMuNN4LsMEAgElVt0XEFztJTVcxtnw9r7cQE/j5v3lR9LaLs3T23bsX6t3Ur1tLNm5H5u2ZN+nsTCazJHk/pNu+cCc4/TBhwNmUhLUd9h0/+fvrSTS5vTiZByjkcyGzOtPHclKWzM/18kQjRV78Kn+cHP0gn0bjjdW1tfqIllYKtczrTGxIqCnzh3l6RYTg8LPzetjYEe7nxyaJFQhPyT3+C73nhhdi4TweCQQSBNA0VKCYC8lVbVIZgYo4lo/KVLfNzxfr1ZrXrAgHsv7JJLTExmI1I5A7Shbosc2avw5HeEbqcwdIt8TieXUVBBrGeaNU0BC1UdWo2oSRB67S3F/9ykgYRjhsMTu1TkImhIdgzhwMBkfZ2oXXP98vtTr8HROkkrj6jlfWmH3kEkivXXCMCWvPmCfurKLDlTU3WqmWCQZzj6FF8740bYasNoAJmRuWjSiLOLKZ9sFMpYawcDjy4dXXGDa2igESTJBhoo5s4Lq/lsuj583NvgFQVhNaePbjOJUvgqHDqdimIxIEBOIEdHeZ1844dw6a8oyO/88Tlza++it/PPNNQdGRakK+8WZYRwXE6UX6tH9PJSXTncruJrr8+fbM/MoL709EhtOIGB+H0EsHJ7erC4rRnD+75hg04L6fXa9rUjNNC8PtBICaT6A7d3g4H2+EQOp587S++iG7NXi829xs2GCuHV1Wi+++H1tGiRci66OoytchV+gJVNfw6JJOweVwqx2Ahf6ez/PUxubzZZhMR79mALMNZ7e0FgajvJszaY5qGjbLeFsXjRP/v/8Ghve46a3qnr7+OEp3ly1GCyF1f/X7YpJYWc7YoEiG67TbYn2uvBQlRanADmTvuQIDn85/HmJmI3ldt0XGAVArkFTcp4EZLDFkGYZVMwpdiHyDTn4pG0Yzj3nuxns+bB3H+iy/OHwjlbqFer/WyWVUVpCGX5drtsK0+n7EO0pnQl9lp2lTiY/t2+CLr1mGt1/sHw8MYr8y1X5aJvvlNBEa/9a10UjWZxLV7vfmfUQ6W8PUMDIjS5P5+0RimpgbZhQsW4Id1vfWNWWw20fSttxf36vTTzY2TUYyOwl/kZnsmAzlVW1TGYKKOibx8ayGXQ7PtMKpBqGmY95IE26J/RvhZ1etN60uW+fVC2oyplNhr1tdXBpFIRLRtG/ZK69fjR29zJibgb7S3p++dNQ1+1DPPEN10E7IXGZxFXV+f318aHye6+WbY3e9+F/ZOlrHHCwZF12Uef30DlGx7cFWF/NPTT0Pq4kMfAu+QSGANYV+Z5SVCIXzG58PaYdQHGxoievxxHHv9+vRGnQZQIbOislElEWcW0zbYsiwiQJzqbTVKo2kgaJJJPPRmSnVjMWwSZRmfmzcvNxEoy9CbefNN/N7dDSNRU2NNzyfzOxw9CuM1f37+8uRsnx0chPHr6ir8/QMBGPhIBF22Vq82f72lAnfL0pc3HzyIebFyZfrilEhg0x4KYdOuH6PJSXyvefOmfv9EAhmYfr8gWRYsQDdjux3jNzyMhb5Qen0mxsawmVYURLZaW0WEPrNUizE6iozCI0ewEJ5+Ou5BrnmXTBL94Q+ItJ94ItEFF2COmCzdqPQFqmr4M8BldPrSOSLMY87yK2U30umAvry5tnZmGz8xfvYzkGJf+xqaMegRDMIWZW4uFIXod7/D5vqaa7AWmMX+/YjSd3biX47K81pmtqwmGASBOD6OToNr15q/pkJQFGRe/v3vsJ/XXpu/e30OVG3RHIYsi8w3ll3INY/ZdwuFMIe48Z2mIfj3178iqyORAKl2xRVEb32r8bUvGoWfk6uDcTYoSjpxSCSyu/N9FyvgpiZc6jw2Bj+ws1MEqbmDajAofBy99pimQQrhySeJvvhFjA9DloUuWy5yLZGAz/X66yAOmRwgwjgvXCgyDLu7cY/0Pq6+KzVvz1QVGrFHjyLgefLJJRisLGCSs7FxKslhEFVbVOZgIo8zDfXdw7OBiUfOYszWqCUTHNBgeSz9PNJnOrKmHmdHmvHB9UTibMhJmcXICEjEjg7YI1XFddfViX1zY+PUxJU//xlSUx/5CNF73ytelySQbC4Xjpmr+s/vhy82MUF0663Ct2IprJYWsU4YIYkVBT7eiy9i/bjiCpG4lKviUVVxr8JhXFNdXbpebTa8+SbKvpNJJIf09Jjbx1Pl26KKQJVEnFmUfLA5c5CdlIYGGKJSlLOFw3CYWITeKJnHqduTk6KMI9dmliMV+/fD4SJCFsnq1cL5LYZIPHZMlCeb0eTj0utYDE5foeYpqRSIxKEhlPqeeursdQ5LJLBw8GI9OYnvoBc7VhR00zp0CJt2vdB4PA7irq4uv9Heuxeb35oaNGJZtgz3anQU4zZ/vrko9vAwCES7HWWDLS14TdOwSBZyaAcGQCaOjOCzZ54pmrswJieR5Tg4iNKtU0/FJsKC7lqlL1BVw58Bbqhis2FO621OIiEyFcuxgYkemgbbnUjMfHnzk09Ca+fyy5HZrAfbJXYg9df717/Cwb7iCpBpZnH4MJoeNDYS/e//LRzxcBj3tL7enC3y+9FVOhQi+uxnEYApNaJRjNXrr6MT/BVXpIuvm0DVFs1BsJxCKiWy9QyWt1M8jk28oiBz7aGHRJflt70Nm9EVK6xdVySCuevzTRX+Z3Bwka+fCOdmfcNSie3ngqriGd69G7ZgzRrY82gUdtxuF52SM32cv/wFQcYPfSi9GRTbVZtNVPdwOTSTb3198FliMXxm8WL4IEuWoPHJggXmfA1Zxjl/+1v4spdcAvvIGYqlsuuqCh98ZAS+VmbFiglUbVGFILPxSqF1hwl6PemXb47E40ICoa4O7+djpFI4v8cDW2B1r5RI4Jl2u3PbonJANIq9CUtfEYnMPZcLY+XxTO3G/Oyz8EP0zeGIMHZDQxjPrq70DvV6LcNwGP4QN2Q54QS8l+UvamvN7YslCQGW115DA5WLL8aeKhqF71Von8yallwxw7qJ+nmkafAFd+zAta5fD+LTQmVKpduiikCVRJxZlGywVVVknWmaEDAtNXEVi4nuUs3N5o6fTIJQSqVgrFpbsztQTHYlk3BkjhwRpbfLluGcxXyvY8dExNmgOPT/XNeRI7iuRYsKb0JVFcZ13z6c56yzZicTiEg4t3v3wkneuDG9++zf/kb0yitTo9qyLDSCurpyk7eTk/iurJE0MYHxYZ2NlhZz0cGjR+EoezwgEJua4IwrCsbSzKajtxdRskBA3IeFC3GO22/HnH7Xu6CvMW+e5blV6QtU1fBnAWfNOJ1TN+zxOJ4Pn2/2AgRmoC9vbmiY/o374cNEX/gC7Pb3vpdu6xUFkXaHA+uA3q489xyyo849FwSHWRw7hgi72030ne+IYAmXX+YjO7JhbAyOezxO9LnPYfNfaoyMoIHK4CAatbzlLVMzNkygaovmELipUzIpAhqF9AEzEQ4T3XcfslhGRrBRfP/7iS66qDR+IpPzdXXCx5Ek0VFZkvCa2y2Iw5kMvqRSaKRityODmDOeiHB97GOuXp1+Xc89B13Sc8+FLdOPeTgMYnZ0VJQmDwyI71pXB7KwuVlUZhTbLTkWQ2B1dBQN73p60ptfMPnjdlsnFCUJZGswCFunl5+wgKotqjDwfDKSlUiULh3AZa+5PqNPROH3ccksP1tWOkHrwcEKJivLDYoCAjGVwl5EL4sTiSDjTlUR6NDvMffuhaTCqlXpXeGJ4KOwPj2Ts3xPiESA41/+Bfuhr39daDmnUiAg3e7cGYzZkEoR/fu/w65ecw00WYNBfIf6enP7Pa6YicUwJzgjU1FAnB46hGOuXIlAjMV+A5VuiyoCVRJxZlH0YHM0dHIShqe21rpgqVFw52abzfxGR9NgLPx+fD5beSyR6P7kdMIo7dmDzaHHA0OydGlx33F4GERXc/NUAe184I7PkgRjZiQTYP9+6PDU1sJwmyEuSwWOLHM5t9eLzTV3Bnv4YZTpXHCB+Axnbspyfn3AcBg6kB4P0aZNWIz8fnznsTHcq1NOMR5x7+tDVmRdHQjEhgbcL0maqg9i5vvv3YtmBZyle+gQFqP3vAdzoAgCkajyF6iq4c8BSRLly3rijTMVNQ3O3mw3LzECWYYNkOXpLW+ORKDll0gQ/fSnUxtasUYSl80w3ngDpTonnJDeFd4oxsdBIKZSIBC7uvA6awNzFr1RDA2hhFmW8X0WLzZ3PUawbx90iWQZZdKrV5vXasxA1RbNAbBeYCKR3pnYzDNx6BAapTz2mCgDu/BCbFC9XqFDalVvWo9gED9MArAYv8cjiMMi5rRlaBr8x2g0XdOPN9ojI7ANrPnd2Iix2b8fXeR7eiCHkEpBXqGvD/Ithw9jTDkLa/Hi9LLkpib4mLIMX6vYoE04DALR70dzuZ4e8TdVFSXPmYSiUe06Iqxnu3bhe61ebS4rKQeqtqgCkZmVaITYYy1DIjH39J/RNMwrvx9zta4OxJBevoBtRrF2goMXXu/sJW7kwo4d2M9w1ZMek5MiuMoJGXV1eP/NN+P/3/sevhOXgPv98HsaGsReOrPxiaYhA3H7dnSXZx1FWYaPY7NhD2TUTiQSaFa3bx86MJ97LuxTKCQ4CCuQJIxBIoE5sm0bjtnVhcSPRYusH5sq3xZVBKok4szC8mBrGpyiyUkYgpoabNSmO7uEwZqL3KnXLLEjSTCW8bhoX59JUvEixovRxAQipGNj+Mz69XDcrEatRkeF7sSCBcaPI8twJlUV5zei4TMwAAOuqnDOenpm1qE+cgSLTU8PxpO7Zw8PI0Nh7VqU6ujHYHwcC0N7e+6sy2gUGYwOBxZFngfxOBYnvsceD8ql9CXU2dDbS3TnnVgoPvYxsYCmUnBoi21mIUlwxP/8Zyx2F1+MBZBLr4tApS9QVcOfB4mEsLN6R4uzhGw2PCOVIOg93eXNmoZN9yuvoIvpunXpf2ctnKamdLty9CjRr38NZ1bfFd4oJicRYQ8G0fyAMwZlGbbP4QA5Z/QeHT0KAtFuR3dkgx0ATeHZZyGS3tyM8qTOTlxjkZlhFTAL8+K4tkXcpZgbjXg85oIUioIMunvuQZaIx4Pg4OWXC5mSeFz4ACx8b4VIZGKANQ79fqyxra04rtc7+1nafX3wRVaunLppj0ZBItbVYQxCIYxfOAwCUZaRrTk8DF+GSFRW9PTgZ+nSqRtwfTMJHodiEAzCNkYiyFTOlw3NBJAkCVKGic58OnOBAMhWmw1ka4l05aq2qILBWYb6Bhv5oG9qRJQeUGByW1Vh25go09uIbI1WrCIaxXlYa7Uc0NeHZIZVq9Ilo4hgR4eHsS9paRHlzbIMmZNQCH5Va6sYy0QCdqa+XjSsdDjSfRxVJfrXf0WyyOc+JxJFeP8ny+aqu6JR+HWHDhF95jPIpmQuwuebGjC2At6XhsOwdQsXYt9cpE2qdFtUEaiSiDMLS4Mdi8HASBKMcHNz8U6KFbDWoSTBiFmJ+IRCcGY1Dd9Dr7XICwpROsE4PIxoaSCA92/YYD27b2wMZGJDAwyV0Q2mJIFIJEK5h5GsyNFRkKChEEjLNWtmJt1+chKLV3u72AirKhzGO+5AlOeGG9LJUC7VaWrKvSgkEiAKVBUEIhMCLPDrdOK+RKOI6kciIIt7erITr/v2Ef3xj3jPNdfgeKOj2JyY1VPMBkUh2rIF2YjLl+OYvb2CkD7ttKKilpW+QFUNfx7wxp6zDvV2grXKuDlApSCREJpepSxvvvNOot/8Bg7me96T/rdUCnaFg16MyUmiX/wCdvS668w/h5EISnyGh9GFedUqvM5aaLzxN0poHD4MrR+vFwRiCTJy0qBpRH/6E8Zq9WpE8xsaSkIgElVtUUWCCTnObna7zUklTE4SPfAA9ETHxrD2XnYZpDqyle8rCp5F3mizPE0hH0jT8BkmDrmLKpdZ88bXbOOi6cD4OMoDOzunNmeSZVRacFllXx82xjt3olN1KgUd5cWLsZHt7kYmzLx5+bO4NQ0+bTKZ3pnUKvx+EIjJJNHVV+MajELTBKHIWWJcpup2C6JmaAjZlT4fCMQS7ieqtqjCwXOIG6kU6pRMJLKok0n83+0W+tGsRZpMinJpffM6VYVtstuLXwsjEZyntnZ29sh6BALYe8yfP7UREmsaEmGfxpJe4+PIPDx0iOiWW4SGIZOzo6MYo87O7AEgbgr12GNEn/xkuj/GWvXt7cZtVCiE6xkcBCG5aZPgI7xeSzqFUzA4CC1tmw37ZNbAb2mxlrCkQ6XboopAlUScWZga7EQCDysb3+bm2d+0cnlyIgFDZEXzhZ3ZSER0EGRDwQsYdwHTn3dgAGQiN+1Yv96aEZuYEI1DFi0yHo1PJpHhZ7eDSDQSORsfx4IwOgone9kyUXI3HUilQOB5vSDvePEPBtEFVJIgqt7YiLFzu/G9hobwmVzkbCoFAjGVAoHIZKii4LOaJiJjROJ+9fVhvJYtSy8j370bAuZdXURXXYVzj43h3ra2Fk+2xuPo9vrmm0jlP/VUUWb1yis4v90O3aJTTrG0+an0Bapq+AuAHWN2evXgxgEu1+w7q2agL2/2+Yp/zl57DdmAmzejbCYzIs7ZPPPni78lEkS//CWu41OfMt1xjxIJZB4ePAhH+8QT8bqmYb2UZXOyG2++iRLshgYQiBb1d3JCkoh+8hOip5+GhMQHPoA509JSsozQqi2qMDB5qKqi06/RTJwDB5B1+MQTmFunnIKmPGecYWw+TU7CH2B9Uo9nKknA2UOxmMiQZDuYqdGof+6ammauOiYTXJpbV4dKC76+UAh+yPbt+Je7tRNh7Pftw/V/8pPIslmwAMdwOATBW1+fm0jx+7EWlMI/Hx1FoFdRUJlRTDY0B+VTqXS9tMFB+GytrfChS1whU7VFcwTcBIVIEFmZYPKL5xc/IzabyC7k8lrW72f74PUKe6UoOFax+ohECJRy+fRsBTWSSWQCOp2wKfp9EZcUh8NT5V1+/Wv4CddcQ3T66bCn9fX4HFdo5ZKa0jSiX/0KGX0f+hC6OTP8fox/Zif6fJichOzK6CjRTTcheSeRwP7Z48Gxir1XLDlVX489osslsq6DQcwLrxf7VQvrSqXboopAlUScWRgabNZzYoF/bpteTqVzkYggAZuarG2GolGQbLIMI8GbKtZHzNZQRZZByu3fj3Hq7IQjZDbtORBAVLq2FpFno9efSAhR7iVLjEXO/H6Uyo2Owvi2tqLUt9TlzZqGTLtEApk5bHSTSWzaAwFs2lm7R1VhvEMhvG/BguzjIEnQQIzHsWFh4li/sHV0ZF+w43Hcq8lJnHflSvx+770YvyuvxOeYVDbbkCUbJiawGE9MEL373chC9HjSSxuDQaKXXsK1eDwgGTdsMHVPyuhptISq4TcAWRYd9DLndyoltBNnOwPHDDQNzxqToI2N1uz3yAgymufNQyOSTDKV1zC9Ppiqiq7wV189tcSnECQJju2uXURf/jIcbQaTA2Yyot54g+iS6WPIAAAgAElEQVTnP8d3uPHG4hshZCIUgrj53r0gD88/XwQES1hSXrVFFYJUCsQU6z/7fMbIblnG5nLLFlQUeL1E73gHSpatNMLgsjguv21sxDUxcZhMCn00Jg6zkY0MrlJRlKIaBFmGLAttv6Ym+Fv9/cgw9vvxuiTB3qxahTHr7gYZ+/jjyLLZvDnd73Y48L3y2ZNAAONlpDNpIQwNgUC02yHvUMpsaM563b0bPltHh5C64Z8S7S+qtmgOITMrkbN4mWDkMlunM70pC5fYc9Yy2wNu0sn7Jj2RyERksUQiy7dwxdxMBzVUlWjrVnzX007Dd2Q9VkWB7xUIwO6yFrLDAfLvD39AA6wPfAD+DOs8ss/W1pY7I/rOO/FzySVE114rxjAcxl6IKx+MYGICGtOTk/Cz1qyB/ZiYwL3MbI5nFpqGMXrjDdiiBQswBkuXikAMf+dQCGPK+rXH0R6tInBck4g2m+0OIrqGiFyapskzcMq8g80io9EoDCtHIcqJPNQjHhfC2mY7NzO4/IyP09YGYyHLIjKVudniBerQIWSRSBKcwrVrzUWCJydBJNbUgEg0I0Y9MADH0igBGQiI6FMqhXOuWmWua2ghDA/jhzsEEmGs/vAHkItXXSXEuXnc+/sxv9asyZ7irijINgqH0eFZvwiNjWGuGik9HhpC5tCePfg5+WQQiC6XiJI1NRUloktEyDS44w58v/e/H+SA14vxyPYcjY2hc1p/PzYBp52GeWTgnpb0qSw3W1SFQCqFH49n6uY4kYD94dKdSkIx5c2pFKLTQ0Mon8nMro7FYF+56x4RnML770cm8Hveg4CEGSgKxL23bhWbfkYkAltUX298DXj9dQRXOjrQibXUUhNHj0LcfGICpd5r104LgUhUtUVlD+5cLMtCBsHI8+b3E/3tb/iZmMBm6/LLid75zuIbCCiKaDjncGD+M1FQU2P8GhnsU7Du4nRrQLPGV18f1vDeXuEzEmHt7+6GbfL5ELjV26l774UMw/veB1+EEY1iTFIpPKusH6kvKyQSnUkbGor3444exbV4PCAQS1EmqEcqBZI1HEZQtbNTlDyrKt7jdIqS5yLsU9UWzUEwaciZidyciTU38wUX9CQkZ8YyMUYknq9S6iNy5qMs4/mcCd+Mk1927YJNWrNGVHaxXeXqjNra9KqvF15AV/hzzkEwk8czGoWPFQhAfitXZvJ998GXedvb0BCOPx+PI9jr8xkPSoyMgECMx4m++lXsGVmWxukEgViM/yJJCIgNDODYbOuWLs2+B1VVoautaRi7xkZD+3VLtmgWbE5FYxZ6p808bDbbyUR0KRHdoWla3yxfzhQoCjZcvKFraiq9+P10gJsOTE7C6bJSymK3i/LVsTEYzLo6EemQ5alRUjbIK1fCIdq/Hw7kwAAizatXG8tE4QxKjlobzSz0+eDMDw7iswsXFr5XvHEcHIRRjEahxdPdjWMVi2gUDnVLS7r22EMPofzp0kvTu/ux/gg7jZOT4neGqqKzWCiELD09gchkt9ESns5OlA3t2IFFY9UqLFLRKI7f0FA8gbh9O3THmpoQyePyZb3uZiba2kBoDA5iIX/iCXQIO+us9PEqFcrdFlUxFW43bHQyiWdE/6x7vaL0rxSaPjMJJj6DQSGSbYRI0zSU//b2En3zm1MJRFnGMT2e9OO9+CIIxHPOMU8g8jm3bkXZoZ5AZDvCxIcRvPoq0e23w+bfcEPpZUJ27oQ4usOBcu/2dsyjXMGM2UDVFk0/ZBnkIUu0GNXq2ruX6O67sdmSZWTcfvnLCHIVO38kKV3f0G4XvueSJdbJSbsd8zsQEJk2pbSHrPXMP/39sMnRKDa569fDT+nuxvdoaIDdPnYM16bfgL/0EtFvfwtbpC/7IxJ+AxHGh0vOmURxOITN4Y6zxaCvD9IrdXUgEIv1gzLBvqYsY4y42R2TxYoiOj3HYuJvnKE4E/uQqi0qX7Bmob5Zit2enkWYC3Y7nicmIe12IRNTX4/XEgkhj+B0ivMUYzs4MBoKwbY1NJQ2qKFvKKMv5+ZkCdZU5cCD3S4qt1jCi3HgAJqtrV4NX0Rv35n85GzGcHiqvXnsMRCIZ52V/vlUCntqt7twg0vG4CAqPRSF6NZb8R0kSQSa5s0rzh5Eo7jeQABJKW43rnfp0tzrot0uMr3DYQRuYjH8XgxPUrU5pcFxQSIS0clE9A0ieoqI+mb1SnRQVWy2uJy0ocEww142cLthWPx+GAarQqheL8i4yUlRIsJZZEwk6uFwiIXmhBNA+OzdCwPe1weC0UjJcEMDsgmPHEHpCxv+Qqirg1N67BgMr5EmLY2NeM/gIJztVArnDAZxvVYXOUXBd/Z4cB2Ml17CD2sC6sGZQp2dGIOJCUSg9BocO3fivq5fnx7FikTw2fp6Y+V/mkb01FMQzz3vPBAABw+iU2ltLSJ2xeiQaRoWpkceAYl8+eUi/d2oQ75gATIXDx0C2fHgg/jOZ59tTtjcAMrSFlWRH16v0AfjyDmjpgZ/i8fNdVUtBzgcsEXsmEkS7EG+Nejhh4n+/neiD38YOmx6sD4aB8MY+/bhM2vXim6BRsFaP08/jXO+613ib6kU1k/uOm0EL76ITXtPD9FnP1t6TcvHHiP62c9Art50kygFzRfMmCVUbdE0QVFEowHu5K7XEcwGScIaueX/s/fl8XGV1fvnzkxmJpnJ3jRpuqRLSje2UgRL2VRWESkIsogoILKJorgAAip8Za2ion7dWb6ioED5CQjIjpRCWyi2lJY2bdMkzZ6ZTGZf7ry/P54e3zt37mTuLClJO8/nk0/azMzd5t7znvOcc56zEs9LRQUSXMuXp67r+SAWk8QhVxOxFM2UKTLgHByUMif5wGrFNplIzLdDhWVjdu6Ubck+n9zHtGmwPfX1uMZz58KH0oNlWxob5bVvayO691585ppr0nVcQyE8s3V1CFpDIXx3brdMkPh8ow9bMYu2NqK//AXX7OKLi9uZQgT/bdMm+JaHHmq8fW3LurbijO8Xq1USimMYm5Rs0TiDvmWZtVuJ8PdYDPeDmfZjlqZKJHCf+Xx41qqq0olEju3ymR6vhaJIuSYuVMgnxhJCkqj8w9W7fG52O56Vjg4kMA4/PP2aDA/jmk2eLJ+j/n4MLqmrQ9WfNs5NJqUE1syZsEUjI3KAk8UC3cX77gMhd911cruqis8qCmyfmevY3o5jsVoxqX7qVDnsRVFARBby/A8NwTeKx5G84bVxzhxzxUe8trjdkhzm7pM8OzZLNqcI2F9IxHEFLrVmQ+pywdka6/aPsQJnKIaH8eN259capii4Di4XHNqBATmN2qjEnbNaySQWpsMOg2O4aRO0FrZvR3Zn9uzRjajbDcOvJRLNlL9XVcmWmu5ucxWFnDnp7MQxV1Xh3+vXozovHz3Azk4Y+7lz5Xl++CGIsAULiE46KfX98bi8tiyO29gIh3N4GAt6Tw/eM39+agafhXV5MEA2CEH0wgtEb7yBhe6MM3CMdjvOeXgY19xmy6+FJ5Eg+vvfUT24ZAkICp7Olo++2ezZyIpt2QICduVKkIjLlhV/YmsJEweKgns+HJZEovY1PZE4zsiiUcHOtt2OdcnjgR0yqubeuhUVgUuWQB5BD9Yi0lYh9fTgGW1uxlCnXK/NX/+KiurPfhafZyQSsB+sG2wGr71G9MgjsItXXFFcvSQhQE4+8QQC9quvhjM/TgnEEsYAXGUTiUi7oE866DE4iHa0p57C/TxjBlraTjyxsArZaBTHwhqMRJIM4y4Shs2G53NwEM9/JJJ/1QnL23BiOdsAIa4W1FYZ9vbKdsfJk6WO4axZ8LPKynB+GzbgGTbqGmACsK5OPucDA2jVq6nBUCb988+VeJwMqqlBoBoMwq7ZbCACqqrwwxV8+lZnM9i8mejRR3F+X/pS4YSkHrt3g6R0uZBoN9Odw2QPV9gzoRiJyGp7u33MCcUSPiJwhV08LgelcLeS9t52OFIJNa3O4WjQPifcfVdRITs9uLqRqx95QEu+sFjwnPp8siIx23FqCUP+t3Z7fA58zooideMdDqz9+mMOh+FbVVZK3zEUgi1KJFD1p4/9Bgex/6YmaVPtdpxLfz/s5IoViNFuuEHGrELgdVVF7Gbme2lrQ+dEeTnsYlOTHIBKVDiB2NGBQpLychSSeL04p9mzc/fBbDbY9MpKmdBhWYnxNjtif8A+r4moKMoPCWyzHhcT0fGE3vcmIlpBRKcTkZWI/klEVwohPLptzSKiHxHRSURUS0S7iOiPRHSPECJJWSAECa7iUlU8UGwY9gUwORoOS4KskAd6ZASEFQ9eqa9PN2RCSPFeraPq9UKbYmAAi9TChXDORzueUAhZb6sVRKLZ78XjkdOXM0031iMYBPnH5Nn27VhEW1pyqzoYGsJ2mpslydXbS/T738PwX3ppeotydzd+NzenE7N+PzQQe3uxGM6fL1+Lx0EIWK1YnLIFGEKAyHz7bbRhnXYarn8wiO+FK3S2bZPaiq2t5q97MAgdoZ07oRF12GG497jMvVCwvsnatdhuayvR0qX/bRfP+c4eT7aISto/eSEel8NU9PepqsKGsObZRISqwinj6c1ap8znk+0yv/xl+jPGwttaAn9kBFPhLRaiyy/PPbn0//4f2g5POAGkHx8L668JYb5t8oUXQPAdfDAGTBUzaReNYrjM6tWwReefL0XRi92eaICSLfqIIYQkD4XA915ennmNFAJry8qVRK+/jv8vXYoq+iVL8vObeHgGJzPYL+JjGe14GKoqK3dYozpf/zQehx9mtcqhZkLgudUShh0dsjrS7YbvxT+Z2quTSQwJiUTwPOuriWMx+CpOJxKkRLguN94I3+POO9M7DMJhfM5o2E08Dp+ISdGpU3E++jZPrszKZo82biR67DH4YBddZKwFli94wN7u3fAtFy4snPDTEopMqlgsskJRY0tLtmgCgr9f/m75Ps62RuoHr+QyoIfJea5A5IQbPwt8LMVYp9muEaUOkuPp0lrikCkRrQ4qXw8j+ykEihgGBiA7oZWT4n339EhJBT7XH/8YNuzmm0Hya+HzSVuj97PicfgZd92FmHbFilQb2d8PW2dGq54IyYwVK3BdbrwRcSNrNyaT+H8hmpLvv48YqqEBcWBfH9YUnsZcKKJRXK9oFN9RdfV/zzvjnTjObM6ExgStfcsJTxDRNCK6lIhuJ6LNe/7+JuFmISJ6hoh2ENENRDSPiL5GRDEi+m+thaIorUS0moiCRPQrIurf8/k7iWg2EV2e7UC6u2EAHA48UMVuo/qooShyepLfD0OZ7+RmIhjPigpkQ7xeZBuam1OvG5OHyaTMnBHBkB97LAzqxo3IEm3ditbcTOK0FRVwXLl9ZuZMc9nbujrsf3AQx2KmYo2nQnd04HMLF+Lf7e2yvTmbgY1E4ChWVsp9+v2ohnE6iS68MD0A4ImMnN3So68PC9D06ThGbgPItTw+mQQBsH49StdPPBGfDYdxDE4njllREDR1dODH60V5ezYytr8fE5h9Poiit7RInZVitQRZrSBSFy7Eebz7Lu6hmhqiL385r02OG1sUCOR1/CUQnJVAAPew/hlKJGRr8ES171zlMzCAgJ9lGH70Izy7d96J5197D7HTabHg+QsEEJA/8ABsEj8vudx3L7+MZ/zjH8czHgzi79wyzetLODz6doRAK/Vzz6Ea+oILYDuLBa8XTviOHbC5xxwjbZzNNnbPmqqiqvLyrE+7IcaNLZrIEAL3UjiMf3MQnIm0iUYxDXjlShA9bjdkNM44I7NfYmb/LLXAxCGThtmqIPXgyh2nEwmB3l74UvmsqWVl8D82boTvOzQE38rvl69Pn47nhUlD7ozIhp07YQ/mz0+3s0JIW8RaYDyUqbOT6JZb0gnE0YZn8eeJJMHIfhFX7mk10qLR1IolPd59F0NdWlpgL8xOkjcDVUUXztAQktFz5hSnMoe17RwOSRxx0p3b4Pv7S7ZookFbcUeUPmU5G7hSUXvvm61SdbnkMJKKCjx/wSD+73LJ9udEonAikQdHeb24TysqZBcbQztYyGxlJRHW/f5+xAl6ApEoXVJBCGgY/uc/6FbQE4jhMI7T5TIuhujoQDdIYyOGqHCy0mqVUmB1deYIxA0bIO3Q0IBqxtpaGcuqamEEYjIJsnPrVlSQH3IIZgg4nfh/sZK4DgdiSR70OjQE4vKII0b9WMnmFAn7PIkohNigKMpbhJvlBSHEq/yaIlfXN4QQ1+r+/jVFUa4WQuzJX9AviMhPRIuFEHvUWei3iqLsJqLrFEX5mRCCb0RDKIr57MBEBi8A/EAX0qpts4FQcruRzWlvh8HjzDaRLHnnbJjWaZo8meiTnwTZtmkThmfU16cKTGtRXi6JxPZ2OHpmyIBJk2B0PZ5U53U0aEnLri4Y1poaLErc3pypJTeZxOcsFpCRRFiE//xnBBNf+Uq64z8yIoehGGW+29vhnM+ahX17vfgOIxG5mGciH7VQVYjCv/++1EBUFGynvx+LEhOIRDiHmTPxtw8/RCtxXx+IVKPjbGtDdRJXN1VVYQHRToItJux2ZBhbW9F+tGZNfiTieLJFJeQPFgrnYFHrcJeV4dmMxWTr10SDUXvzU0/B4bzmGgSmegwPwznmtt1kEkTJ4CCGHOUqBfDmmyAQDzkEk4211ziXqYtCoFX0lVfgVJ53XnE1K3ftIrr7bhAj110Hm6WtxB8rDA5imuOWLfkF7iVbVDi46o8Hb1RUZF4b+/qQVHv6adwrs2fjfjnxxNxJJG6Z1lY+WiySNMymvTgaOClrt4PUHBoy396cSMCP0VYZcltdLAbfYeFC+BezZiEhnE+FXF8ftjttmnHQ7vGA5GpslATfH/8In+qqq2BTtGD9SpvN2NeLRrFNhwMViJEIEgOcYOH2TK7KY1/JqNX57bdxD7S2IplRzKmx0SgI22AQdkg/8MoshMD59feDIOzrw+/+/tQfrxfv5W6gZLJkiyYCzLYs5wIm3bhaVVXNVSW6XFIChafDh8OpRCITjbnaCr2OIROlwaDUFeREH7cl54rBQZBkzc2IFfXgzry6OvmsP/UU9NvPOguxqRaJxOjDULq6iH7wA1yru+7CmjM8LOOqQAC+mxnf4513MNBl6lSi66/HZ4SQ3X9aGYhcEYshCdzTA3s7axaOvbwc/x4LKQTubFu1CgM8RyMRSzaneNjnSUST+LXu/68R0TeIqIWINiqKUktEpxDRT4ioTFEU7eP9LBFdR0SfJMlmGyLfRX0iQpsZ8Xjym9yshdsNx7u3F4Y7GASZyCSTVh9RTyQqChzO5mYEfR98AG2spiaQiXqizulMJxLNtJs0NsosDg8syAajfR1yCILDjRtle7N+gevpweLEJeHJJNpjenpQtaOvamAtw0zDRrq60Fbc1ITsvqIgaHA4QGqGw9BczBbwJBKYkLxlC7QYjz4af4/FsNDZbJkrGSsqUPnHE87WrsWCoz3/tWtxng0NECLnc6uuLr6mkBZc0TpvHtoVxxB7xRaNBdm6P6GiAs8ED03Qwu3GPRmPG1crThS43bAVL7wAQvDUU6FLqLdFwaCUZeBn8NlnYdOWL8cznQveeQeZ+oMOglaQ1uYEAlIDMdvzLgRI/zfeQDv0uecWVy/nnXeI7rkH3/8998DpD4dBmBZ7QIIWa9eiqioaJfr2t8duP7SXbNFEQywmdQZtNjwnRmSQEAhmVq7EPUiEqruzzkILbi73IhNdTBwSwcdwuXD/FbOajZOyQmCd9fvhx8ViuMe5Gm1gIJUw7OqSLYhVVfBrli7F74YG2YVTSHt/IIBEZ02NsexLKCS1z9hne+YZ2KPly9OHOgmBz1gsxsl97WTSSZPk+3iqvdcrNSYZTBpqW4DjcWgsv/QSiNRzzy3uuuD3wz9JJmE3M+lVs39qRApqSUOjSu2aGti2hgacQ2Mj9lNbC9tf6PCfLCjZogJh1LJcTG1LJiOZvOP20tHucx7qEwpJLXOrFf8PBmEvOLYbbdAKtyVrCUN9WzITpTU1eF6SSWw/X58gHIZ9r6xEHKlHLAaCr6JC+gNr1qAA4qij0qfCs5YhEZ4x/XH196P12WIhuu02STLa7SiS2bULfzOjVb96NdGvf4348bvfxXVnAjEWkwRrPvD74TP6/Vjv6upQAe5yIZ4bq8GDoRCkQQYG0N1WBJRsjglM0PCm6Nil+793z29+HOcS+uu/vefHCKWxCzqUlcG5YCKxurow7RfW4vP7sb3ubhhn1kq0WLB4JJPGC6PFAiM2YwZIqi1bMC1q+nSiRYtSg1KeiKUl98xUkDY1Yf99fXI0fTZo97VrF47v0ENRcbdrF5zVefNkoDIyAkPZ0CAzTv/6F7QtTjsN79WCW5HLyvAZPXp78dmGBiyG2sWLp6nZ7ZIsyJTliscxBKGtDcdx5JHy7729uB5cHZAJigKyt74epOb27Tj2uXMRiL3yCrLsF16I44nF4BSMVXVvMgkSdedOSXKOJVlJJVs0IWCxpA5a0TtcLEzPg1Ymqgh9by/Rb34Dm/KFL8CWV1fL84nHYY+cTvlcvP02nNSjjsraUpKGTZtAyM2cCX0eLTkSieCZLy/P/gwmk6jKXr0axMGZZxaXQHzmGRCds2aB6LRapR7rWBH0qgoN2MceQ8D+ve8ZV4UWESVbpAG3cCYS+L65WlePSEQS7zt3Yr08/3y0LOdSkZtISOIwGsXfeP3lNXmsoPWleILqe+/BHxkakrInRDiOlhZ0HXBbstEgISb4uBU4V8Tj6FSw2+EP6LfPgwDsdpnAXbtWSiJcdFH6NrmS1O1O3x5PJuXOEn3FeV2dnBLKw1a02+AW4GQS5OFLL8HPXL4cr2vldwrBwAD8NyHgX+3YAcJSSwryv3n6thZWK3y/xkZcVx4ip/0x0sZkfWDW3RzjNa5ki/IEVx3y984almNF5nAspiX0RmuR5iEt2mpgiwX3FlfycsKG/QH94BN9W7LDISsMje7Lyko8t35/fpN9VRWyBEJAi91Iq58lFXhg5PbtaB1ubU2fCk8kCbzJk9OTUl4v0U03YW25447UgiQmS6urcd6Dg6PrRL/2GjTz580j+s53pO/q9eKaZ+pUM4P+ftg5IYhOPhnn0dWFa9zSMnb3XE8PKhDjcdj6uXOLstmSzTGBEokIqBn+ruh+/4aIHs/w3p1FPaJ9BNrJzSzYX0iVhsWCANLplA5pKAQnz+02V/5utYKImjkTpehtbTB0s2enauzY7enkXrbglUmwri4ppmvmfHlf7e1yX/PmwRnfvh0L1rx52H9HB4w8VxuuXQsDeuSRMKBacHYrmQTBqTfiAwNoO66tTa+OCAbxvXGm2eORArb6RSoaJXr4YRz7mWdCe4wI33dvr9RSNJt9dzhAaLKDfOed+DcTAj4fFtxCFrxsiESw7/5+XLtFi/ZKVVnJFk0QWK14brltTe/46Sc2j5UDNVYIh6GDaLcT3XornFRO4FRW4hn1euUUUyLY03/+E3ZUPxU+G9raiG6/HXbipptSn+tYDM+83Z7dnqoqtBjXrSP6zGeIPv3p4hGIySRaI595BgTpN78pJ5dWVo5dgmFwEO1LmzaBrLnqqjFPZhCVbBERYQ0LhfCMWyzwM4wq/3p6QBw++ywq5ubORZXHJz9pvlIwHpcTlXnYiN0uE7DFbH8d7RhYn3nHDqzpPMSI1/7Zs1HxxvrFZmxbRYVslWXJBLMQAknFRAJ+gdE6PDAgqycVBcf+05/iGK+9Nt0GsEyLkYYlE5KKknkyKdu9UEi2N+slFoQAofzGG/DPTjtNyl0oiqwGG80+CSFbFvWk4Pbt+H4CAVmtpYXLJYnA2bNTScHGRvw7V91yvg9Yq66Qaq4cULJFOUDfsswSBYW0LOcCbu/nFudYTN7rRqiowPEGg3iG7HZ5DkwU+v34m90u71dtNaWZQTAMux12PBCQLcC54IMPEHsuWWJcwODx4Ji562pwEORfdTVah/WEvN+P4zAqiPD7oeM6PIwKxJkz5WuqKgtW5s6V1Y/9/YiN9MntF16Ab3TQQUTf+pY8Dq8X645mKEnO2LEDds7lQpwWjaJCsqoKBOJY3HfJJL6L99+HHT/uOONCmTxRsjkmsL+QiIVO3NrB2xBCvFj44exfUBQYNNbkU1Up1p8PbDYsJlVVMP7sWPn9MCBWa2prcybY7XBIW1tBFu3YAcd57lw52KSsLJVInD49+4KjKNCZ6OxEteS0aeYCvrIyVLbwxMLp07EIVVaiavL99+V5t7bi3NraoLFzwAEIlvVgPaPJk9MXLo8HOmeVlaiw016raFQOB2Cx8/p6/N/rxfXmkvdwGMNcuruJzj5bCgWrKghEIRBo5BMAORxoG+zvx3anTcP1cbsLK7nPBq8X1zwUwv0wc2bRSKCSLdqHYLfDzrA+ojbY5AEHWiJxbzjwxYAQmDbc2QnnlyuobDY5vZXPmat0+vogZdDUBDuQy/PS2QkHuaoKmj/aSiWeGM2T90a7homEFC0/66z09sVCEA5Dh3DdOlSVXXSRTGbwELCxwNq1IEMiEZCHp55atKqfki0aBTxtnQkflyudMBEC69MTT6D6y2JBIHPmmUg6mXneuT06HJathtz2W14+tokrIbBGa9uSd++WlT21tUhoHnssSKgZM/Dc89TlbDqJerhc2HYohGtjtmq3sxPP2pw5xr4UazfzIIChIUw/dbvTK5qJZBWd3Z7uFzGBKAS2l+36a4etcHszE6bPPIPKbCYQtdPlufqqsxO+2NAQfvTtxf39klBmcPUf62rPmwe729CQWkFYbJukqlKHM9MQmjxRskVFwFi3LOcKrsblysFk0nhoCdtXnw8kGH8mGMRvvtdiMXnvFVr9yrIMwSAIvFxsUVcXbJFRZTlvr7paxke33y6rCPVyDqy5Wl6e/honcnfvhl+k7TLjAhFVlc5LL4YAACAASURBVFr13LbN9sTtlhXSTz+NTrElS1AJyc+uzwd7XIim/HvvQXO2qQlJs+Fh+IM1NYhjx8LvDYWw9nZ0oHDnyCNztnclm1ME7C8kIs9HNKFSlw4hxICiKC8S0Zf2CGV+qH1dUZQqIooKIaIFHuc+DZ5mx5Oba2vzJ2ZsNlkZMG2aHOLS2QlyqarKHJFIBEO/eDHIok2bQB7t2IFqmtmzsS8mEjs7sb9s7Th8XB0dWHBmzDBXMafdV0cHtlFZCZ3ENWtwbEwg9vVhOufkyRheoD/PQACOrZFeoM8Hw19RgXJ8raOcSEj9Qu0AFCJsx27HtR4YwPf55JP493nn4ZoR4br39sqpZPm0XvX0oBUpGETFT1MTrkFPD74rM8NrckUyiQV7505czwMPTL8GBaJki/YxcMtaJJJOFPLAAy2ROBGwciXaXi65JFXTkLVeBwYQMFdVwU74/WgfdjrR9pzL897XB0e5rIzohz9M1fRJJrEfouwVM7EYWq83b4YtOu64nE55VAwOEv3P/8AmX3EFWnVYJ65QmY5MSCSgn7RyJZJSN99MtGBByRaNNViGIBJJnXSsve6hECZ+r1wJn6CmhuiLX4RmKLevjQae6MxDBIjw7FRWjj7duVD4fKmE4a5dUv+O9ZlPOgm/W1pwbyeTspqJdc8cDtgAnt6cS3tyZaUM3jNpEWrh8WBN5so5PZjUdLmkHu3tt8vgXa9Nzd8v67HpXxsayn0yqba9ORDAMTCB2NqK7f3xj+mVhEND+LzQhLM8bbSxEYlTfWtxXR2uu9+P72jmzL2TnOIJ1rymFbmyvmSLCoC2ZZmrAMeyZTlX8LFoj5O7xrRahpGI1EYsL4f9SSSkHeY2ZyFSqxvzvf+dTqmLykTmaPD5UPk2aZJxy2wiIYcwVVfj/H76U6wRN92UPhVeVWUcpa+gi8WQCGlrw+Rk/UCowUFci8mTU5MkNhu25fPBFkWjRK++isFeS5diUB2vL2yv3O78OgRVFV1w27fDzi1bJgcx1dYa6/kXA319IC2Hh5GsW7Qor4RGyeYUAfsLibiOwBjfoChKDRGFiejtHLdxJWH89zuKovyBiD4gohoiWkREnyOiA4movVgHvK/C5YKRGx4ubHIzi+Xy4sNEGeu+BAJw5svKzGvPuN3IZsybh6q/DRvQQrNwIZy1lhYEkZ2dCOqyCYRbrSAPmXycMcNc5RwTiUxATp2Kv1VUgNSKx2G433gDi8eFF6Zn2mMxWUmod6IDARhgux0Eotb4sp6jEFicjJyQsjI4uB0dRPffj+1deqnMkvE2uJw/H9H3LVtASjgcRFdfDQJxaAgt14EAnOg1a7CQ5zr5NRMiEQRWPT1YUA84YEwmrJZs0T4GrgoJhXAP6QNTqxWvc9vrWFXPFgsbN6Ka76ijiM45J/11louor4cN6e1FJVY4jKnwuTwzHg+Iw3gcJF1jo3xNCDjCySRs2GjESiQCofC2NlQILl1q/hiyoa0Nznw0iraigw+WE2Brasbm++zrw/CUDz5A+/LFF5sjp3JEyRZpIETqxGOnM50s6eoCcfjcc3je589Hpdvxx48exAiRShxysM/VZKwDVkxEo7KDYudOrG3Dw3iNk5xHHCF1DBsbjf0ko6F12unNXq+c3myW/ORJoH6/JAiMEA7j+XO7U9v4GMkkfD4e7JRMImjfuRNBu/4zTF4SpZOX2smkbNuMwESjtlJQO8G4uxvPLQ94Wb1afra6WpKBCxZIYrShAfusq4Mfy/6tnggKh2Gfw2Hce01No13l4oDvXa0u3RgQAyVblCOEkFWHH0XLci7QTvBmP4in2rNuod0uB9YRyWnNRJJcdDrl8BYi6YtoJ6DnivJyafuNBuUxYjHISjkcSKwa7WtwEL8nTcLr99+Pz1x+eToJyLqJqgpbqn3OVZXo7rsRg37rW1JfnuH1wo7V1hofr6LIYab33w+dwk99CgQi7ycQgI2qqDCn3a9HJIIJzH19qG48+GAke4aGYMumTs19m9mgqojJP9xD133sY7DxeSbdSjanCNgvSEQhxHZFUa4miF/+noisRHRxHts4jIhuIqKziOgqgtDmNiL6ERH1FvWg92E4HHCWmEisqcmPaOL2Qe1CMmUKjOPgIJy5qips32o1v8DU1GCqMOsFvvMOtL4WLZJE4u7dWASyTWC2WpF9YvKxpcVclY7VKvfV0YGAxeUCiRgIYIHp7SX66lfTg/ZkEs6sxZJeRRcO43wsFhh+7XXn8ngm/0YLinw+BFOJBFq3uALA4cA2OEOWT4C9ahWyZs3NCJ5dLtle1NCAxWnqVCwkH3yARWzu3MKCeY8H34/XC8fc7CCdXFGyRfsmeNAKO7t6e8YT1LmSYyyHIhSCoSFU70yZgsm/RjbT65Ui/oqCauFduzA8QksCZsPICCoQ/X4Qifos/ciIrPQbzRaFQkT33Qc7ecklRIcfbv4YsmH1aoihV1fjWKdNg63gSvpiTsVlvPUW0S9+gXO/4go4/yVbNHbQEnzcKqfVMBUCFWVPPIHWcpsNxO5ZZ8nK+0zbZdKQt812gonDYmp1dnenVhn29MgKt4YGVIrMmoW1bfr03Co3jIbWWSyp05t7ehA8m12HuVtkZEQSqlqoKtZ4RUFCz4hkZdKPg/A//Qnf0Ve/igSpHkzgulyp22MCkbtkenoyTy8eGDAeTjJpEq6HEHI43hFH4Fq3tOA1M/ZCP2mW9d4CAfijRCAkCplybRZj2L6cgpItMg9t9R7RR9+ybATtMfK/Gaxrz8UdLCnAtpClAYJBWR3ncKQmYS0WeU9q95UvmcjyA0wk6pMaQqBzKxZDgtLoORgehu/HEgj//Cf0cT/7WWN96OFhKcGg9QeFIPr5z1EkccUVSFBpEQgg/qqsHJ38EwLyMm+8gW2ccYZMbIRC2EZ5efYY1gg+H/QVQyFse+ZMGT81NEi9/mIiGESnIFf+L1qUOfFlBiWbUxwoQltHX8JYo3SxNVBVGNJ4vDBNKdba0Ja1q6p0CtnB4wxvrujuhvPm94P8XLQIxt/vB+FkpkIkFkOgrShwKM06Y8kkgsqeHjik06YRPfoojOmyZVLzYt486aD29WExbGpKdcwjEeh5JRLI4OhL97mCk4fUZILHg+xWNIoWLq4S5HYXLqfPVfg/mST6xz9AIi5aBFLCapXZPa4sZQghW4+J0Hre3Jzbd8wBA18zJihNkDzjLNebM0q2aAzAEwWdTuMKa9Y9G2uts3yQSGAQxI4dcGJbWtLfwxMNeaDR88/jeT3+eDnwgFucR0M4DI2fjg606S5alPq6VqdoNDsSCOBYe3tRBanP9ucLISDT8OCDsK033IDzYgIx38TXaIjHsb+nn4Ydu/JKkCcm9lOyRXmCycNkUlbCcDAeCCAIfPJJ+AD19QgITz89c+DFrbLaikZumy0vL04VlxAI1rSEYUcH1l4iPC9cXchtycWYGM7VRIqSTujFYiDXEgk8G2YrW3hoSCyW/kxt3Qq/YuFC4+1xsrimBj/PPkv0u99hmNKll6bvp78flaSsXagdVNLVhf+Hw+nnVlGR3lKsH05SWwu78Je/oHLy9NPhY7F2rN0O+5HrABMmR3p7sd2KCkjv7A1ZDG37cg6VsiVbNEbQtyzbbIW18hYLTHpryTymFfg4tYNP9BV3/H7tYJRYDD4AV4MTyWQPk4fa68BVmaqaWsWbK3jSOg/vZHz4Ifwi1mXXIxKBHXG7sU688w70Dz/2MUxA1j87oRDsTWVlavwoBCRZnn0WHRVnn228H6dzdJmlZBITmF9/Hfbw3HPl8BZVxX5YVz7X+6enBxWIFgvRCScgXuzshB1vbMwtkWwWvb2QqfF6kZRpbTVFfk50WzQhUCIR9y5KF1sHdiKjUThG+baPsvC0PgsVCsFRjEax7UwtumaOc9cuVL6Fw9JxVBTpUGZDNApnn9uczSxyHCyoKq7P5s3IiJ1yCkjEgQE4l9psvdeLhUl7LWMxEIjRKCoQ9dfZ58Pn2CHPhIEBTPdSVaIvf1m20/D0xMFBWcmXS2aUpztv3gwR99NOk0QwD3XJdL0iEQQcPB2Rp1hnQziM4IFF4pua8GPyuCf6AlWyRWMEJiUy6UaFQvJ5Hk/VA//7v6gAvvFGPIN6sEQCZ6/XrQPpf+SRGOoUjyNoFgLOcaaKpFgMQ1Q+/JDoe9+DPdIiEoE9cjpHJyN8Pgx/GRpCxn7hwvzPXQtVhSP/wguoSP/61/E9eTyytbrYlaQ9PWhfbmtDlds55+Q0zb5ki3IEDzPhDgYejkGE9XblSqJ//Qv34oEHourwmGOMvw9VlROVo3vUj2y2VOKwEITDUr9w5078HhmR+5k+PZU05Fa6sQATidzWrEUyiWeEg/9MU42Ntun1SgLSbsfz0N4OP8moLS4ex3vsdgTCr76K6eUzZqBylysGtVWErHHJNllR8NnqajzTU6fiWrI/x2ShGV8iGoX8yq5dRMuXp1ZBhsNyInW2qmojtLdDc8ztRuUr692NleZdge3LJVtURBi1LPP3/1Edj17HUFuVqyULjQaoZNomk5Cs52ixwI7EYvAl+Hy5WpBITnDWDrTTEpr5kolMJLrduPf7+tCSPH061gI9uApcUVCB19EBH2raNPg5RkOdenpwnk1Nqc/WQw8RPfYY1psvfSn1Nf6c1Zre/qyFqkLa5a23iD73OXSK8Xa8XqwhZWUYDJNrMmLrVnRnVFVhaJ3LJdejKVOKOhn5v+eydSvitHhcyoqZTIpNdFs0IVAiEfcuShc7A/x+LBo8lTBXJ5gXW16EtGBx/qEhSRblWiXHUFVkpLZskW2LTU1wXs1kYHgaX1kZPjPaIhuLIdB2OmHwn38eQf7RR2N4AV+jcBjH4/Fgu/Pnp+oEJhLIjAUCcG71GZxgEA63yzX6ItDTg0oZqxUEova9XPXJ7QXaac7ZMDyMNqS+PjjgS5fi3D2e7ASiFn19CMITCVzblpbMC63HI8XJORuY4wCVib5AlWzRGEEr1K0fyKB9XYjUtsmPEi+/DImEs85CK6AerD1GhOdkxw5MZJ8zB7aIz4HbE2MxOShCe/6JBIL99euJrr0WtkyLeBy2uqxs9HXA4wGBODICzVQjkfN8wFIRGzZgWNX550tyhOUrit3St2oVnP5kEpXdRxwBciOH+6Jki0wiHsezx22iFRVywvqbb6Jlef16fMcnnIAALJOAPg9L4grAsjJJHOZLMicSqK7XVhn29cnXGxtBFHJbMusl703oB63oEQjgeeHJ7WZ8APbRVBXfy7ZtUphf31Lc14fr0t+PfXGFYVkZrge3SHKlYEMDgt6GBumnTZ6MYwsE4P9UVeU3WIAI98BDD4FIOPtsVCvpkUgg6aGq8LPM+J/JJPy/vj74mAccILfF7aFMKhUrGVWE9uWSLSoCVFVW1hHlRsoV+zi0hCEfDxHuPT1hWEjygidLc/U2D2wTQk4Y5vfxMCgmEq3W1PWSt6UdNGP22rFWKw/uXLcOz+vHP268Jg8MyM6vQIDo+uvx9zvvTB0Sx8fV04PfU6ak2u7HH0d8dcop6ELQXkvumBIi/XNaxOOQQnn3Xfgun/mMfC0alUUZPOTG5UJiI9v3JgRiyI0bYWOPPx7H0N6Oc546tfiazYEAina8Xqwh06ZhPznIVk10WzQhUCIR9y5KF3sUhEIICm227EL6RuAsFAv16sGl4JzdYu2KfBCPI0PC1Xc1NdDiMhL/1iMYhNPrdCK7ZbQwCQFCLBJBZV1XFyoAa2sR3OgnFcZiyDwNDSHAWLBAEno8xerQQ9MnGkejINPs9vSsmBadnSANHA7oFGoXR68XDjJn9BMJXJN4XOp2ZNpuVxcIxHgcAfQBB+CYPB58h7mItRNhO9u345wqKrA9bWWlqsLZ9/lwbaurpaB5jpjoC1TJFo0huDrJZjN2epJJSTTqJzrvbezcSfSNb8DO3HGHsU30enE+kybBlvz+93iuvvIV40qrYBA/ViueMZsN5/yzn4E0u+IKZLK1UFWZOBiNROvvx3YiEaJrroG9KwZ6ezHcpaeH6GtfQ0UgT1skKj6BGIvB9j3/PNaNSy+VA7tyvB9KtigLmPTjwLCiAvftyAi0q558Er7B5MnQjjrttPQq2FhMtipz54PdDtKwoiJ3X0IIrJNawrCzUxJEVVXpbcljMQU8HzCRmGltjscRXMfjuI767gYm5rVag1x9uG0bAsh4XFYdacGDAKZNw9r92mv4Lq+7Tg5a05IOgYDUQdQeL08vrazMvwMmGETg39+PlsEFCzK/l8mJSCR7e3M8Dgkdn08SxvptaVtHtVVX+a4lebYv61GyRQXgo2xZ1mtxctsrUer9xYThWCU/tW3JFgue0bKy1OozJhL5uIiM730mQbl6mqscs4Gro1evxnaPO87YjwsE5IBQhwPDnLq7MYjNKBYcGIDN0EtNPfssOkGOO47om99M12vt60Nc1NSUubI9FsNQqY0bUeSh9a/YHvMUaEWRk5l5snym9SuRQFv0rl0oUDnySBxTezvOZfr0/HQVR0N3t4x/6+qkFn6Oa+xEt0UTAiUSce+idLGzIBaD8VaU/II27ZAVo8WCM97cwqpv+80V0ShacN99Fwb5wAPRZpythcnvR8WBywVnWL/4sU5fSwuM+O9+h+O87DJ5/HV1WFSEgNFNJOCctrdje3PmICjxeJAd11dKJhLYD5fhZwoI2tvRquN2Y3HSBgTcBm2k7TE8jGtitxtXE27cSPTXv2K7l16K4yuEQNTC4wHJG4lAX2z2bCykXV0yi+l2gxTJswJhoi9QJVs0xojHpR6WUWVSIiGJxo+KHAgEQMTFYkS//KWxMxgK4VlmO/m73+HYL7989HbjeBz2QQjYuQcfJHrxRWj9nHFG6nvZLieTsGuZnvueHhCIySSITyN9onyweTMI1GQS+oeLFsmqSKLRnex8sHs32pfb2+Hsn3467GrJFhUXqor7l8kRbi/esQNVhy++iNcOPRRVuEcdlXrvRaOSOGRyjwevlJfntj4FAultyTwp2G5HlZyWNGS5lPEKbaCvRTSKgLW3F9e5qwt2IBgEadrfj9/aqiYibMfhkJ0Xs2fDL9G2F1dVSX/D7UbQ3tmJYVCzZ6cfI1eKatvVieB/jYzALuU7oMTvhzb08DDRBRdAp8sMtO3NVVXpa0MoBN8oGk3vKjECEyX6qjWzJE+Rpy+P4zvWFPa6X6Ql7/ZWy7K2hdioLVlPGO7tCkhtVWI8jh+XKzWuYv1ZrojUEop6cGWn9vpmez7Wr0dBwqGHwh7rt83txQ4H7NPdd6Nq8cYbjYc6jYwgLqmtTfWbXnsN5N/hh+Oz+mvNWvWj6cxHIkT33IPK5csuAxnJSCRgjxUF29BuPxKRg/JY51qLUAiTnQcH0SGxaBGu5c6duPbTpxd3wFMigbitvx//nzQJxzVa+/YomOi2aEKgRCLuXZQutgkkEjKgrK7OfeouLxaZMng8JXVoSE77mjy5sCqTYBBTsDZvhmN41FHIio+2+Pp8WITcbtmGQ4QFo60NgWt9PdFvfysndbLB7uuTk63tdji0jY1wliMRHMd//gPD+8lPpgfbXFavqjDQmc69rQ1i4bW1IBC1Qa7fj2NgMs4IoVBqdVF5Ob6b114jeuYZkKRf+hK2ywuazYbzLjTTqaoI2rq6cBzV1bIqyuHA9SqAvJnoC1TJFu0FRCJykIqRLYjH8Z6yssKmi+cDITAVed06OKBGmoLsgHLlzP33w/ZccomxVpkeySTs3J//DI3Bc89F+7MeXi9s3Gh6g52dGKJis4FALNYEwNdfRwvQ5MkgJZqb8b1wS+ZopGY+eO012HSbDYTqokWw4yVbVDxwpW80KmUFbDZUwa5ciXZ1hwME7plnSgJKiFTikIkyFvjPpHOqRzyO+1VbZcgDwjhppyUMm5vHh6zBaBACgbC2rbivD/8eGpL/Zr1GhqrCvk2aBD+kuTlVc5B/fD58fvZs2SqtrUjmLgKLBdfvnnswNfv66xHg6sGt60xMMoJBEH8VFflX0AwPwxYGAuigMNOBokWm9mavF0PzLBYkpHNJcGvJKCJzrc5jMH25ZItMYm+2LI/WlswkoZY4HC/g4+VkS01N6vXh+5cJRCYUs22Pq6gzxYjt7Yih5s5FLCIEYgfetxBIkiQSsGf/939ETz2FzoxTT03fXiQiu6O0SYE1a5AAWbQIg+b0vs/wMH70xKMWwSAkYnbuJLrqKshBaa8Py9Bk6rzjDhAeKMOdY14vfLZoFKTkjBk43x078LeWlsIKcPTw+9G+HArJgaG1tbJyMg9MdFs0ITCOzEUJJQBMInm9MKCVlblpGNpscrEwcoosFtm+GwzCAe7shMHKR4+RCMd38slYdFatQqDY1obFIZM2X3U1HL++PhB6zc0w6Lt2Sa3FBx+Ecb300tSMT2MjttnejvOcN0+K5DqdMtNWUYHgRatNJIScpNjYmNlx3LIFk6AbGkD0ab8DLuOvqBhdC4M1p4aGcBwVFdBfW7MGk1TPPRf7D4fxfbNQejECKqsVzn00itagwUEc6wEHgAAptrZZCSXowVMEIxHjtuWyMpnUYLu0t/DIIwjCr7rKmEDklh4eCPD446igO+88cwQiEc7ppZdQ8XX88bCRiUSqM8saitXVmc9/506i++4DiXPttcUR8BYC9u2RR2Cnb7gBzitXwxebQIxGif7wB1yPefNAINbWYh9783vfl8HC+0yMOJ247o8/Dj3hwUEQUFdeiWCvslJ+hn+4lZBJw2ytndxupiUMu7pkZU9NDdahY46BLzBjxt5PGGQDS5Bo24v7+tKHk7D+oxa1tQiMm5tRtWM0ydhuH729mfczZQp8Eq4C9nqxfYsFPkQyidf//GfIt1xyiTGBmElOgquqnc78K2iGhkAgRqOQdsmnGtpmw3PPWuDxOH7zBOaDDsr9HuH1o6xMElRMohu1Omvbl82S4yUUBm0bulavr5gty2baku32wtvf9wa0pOrwsOzA4nvVasVzwslavvczrdl8ztw2zu/VXn+PB7FPYyOqi1UVPsrICIgtq1UmPSdPhm/z1FMYLmdEIDKRx4kUxoYNIP/mzEHyUu8DcLLD7c5MII6MQHtx9274RdohdaoKmy7E6NJdVite9/vlUJlQCEUxZWU4r/p6XK8dO/B75sz8NWSNsHs3qj4VBcficODaFrPKsYSxQakSce+idLFzgBBSu668PFXnxsxnWf8ok/FkXR8h4Bhy621DQ2FO/tAQslhdXTDQVVUIUrXVhvr3DwzAWWZdyNZWaDVt2ACizWgqWDSKrLXfj+w9t0Vv3QoicvZsGOFt23COc+fCQPMQlEmTMk+52rgRgVdzMzLt2iqZUAgOv9OJhdbMdyKEHMzS2QnB31NPxWfZsee252I5NaEQvgNVxaLU3Y3jrq/HtZgypdS2U8LYg9tuWP/QCNwuyRVTY41164huvhm6f9/5jvFzwJo5dXVwKF9/HSTgsmXm9/PPfxL98Y/IZF9xhZze7HbjXINB7MPlymyLtm7F4JGqKjjKeeiXpoHbt19/HZXaV12F6x6NwhZZrcVLZhDB5q1YAXt0+unQteWESRG+7/3eFnFLZjgsq6o6O6F1+PLLeLYOPxxVhx//OD4TiWCNYMKRyRQmDjOtDSMjkizktmSWyHA6QRRqqwxHa/nfG+D12ogU5B8eHKQF+0JMBPKgEm17MU9gHm3QCkMI7CcQkC2AVqts33W7kczgbcRieBaZSGAC4e23YQ9OOQVDoIwGVwUC+LfbLV+PROD7OBz5+xn9/SAQk0l0ZhSjGjocRpKzuxs+3CGHFG8NMGp1tlpxbblCtNDp4Trs97bICGPVsqwlJbXbJ8L9ra8wnMhEMXcqORzwBbTXLpHA2k0Eu2VGs1F77YiwPVXFgC2bDd1kvA9VRSzKQ5sGB0GidXRA/3DxYlRE6/fJFYuxGGIpLlzYuhXEYWMjKhH1hBzr93PHlJGt8nohwTIwAB3Fgw+WryWTOMZEAjbabJIyEkGBxzvvwBaddhp81lgMBGIiAY3WfAeT6pFIoAV7YEBKVPD06SLsY6LbogmBEom4d1G62HkgEJAEX02N+YWQ9RFH0/Rg54qdWa7Qq64uLIj0euEUBoP4dyAAkvDAA401bvr7YaRDIbzn/feJXnkF7VbHHmt83N3d+Hd5OT7vdsts0YwZqHYhwsLw4YcgDrVl4plaed59F1UbLS1oPdQ6mby42e2yGtIMhoYwRKC3FwH0wQdj/0wUOxy43sUiELmqgttE43Gcu9sNUtXrxXesreDMERN9gSrZor2IREK2LRsFbVwNlUyO/cTm3l4MDmlogL6g0fHwJD+XC/Zk5UpkuT/7WfPP6KuvonrwiCOIvv1t2NhkEnYoGpUJnPLyzETLpk1o/Z00CS3MxSBkRkbgfG/eTHThhUSf+xzOKRIBaVFWJqufCoUQsOO/+x3O87LLQCw5HMXbB+3ntojJQxbPX7sW69cHH+Can3wyyMOpU2W1Id9/VqskDo204KJRkJE7d0rikHUyLRZsU0sY5rImFgrWETUiBbmSsL8fPoUePK1YTwryNOPJk81N7WRo/ahs4O4PRYE/19aGczn44PTugGgU5+D14pj6+ohuvRVE2/e/b7y/YBD2lgNS3s7QkKwGysfP6OnBcDurFQRiNq1CM1BVVD319iKIbmnBcRcrSGdwUp2HA1ks2McYVMTu17ZID6OWZbPDPYygrzDUtyXrtQz3NfDANrbXWmKU728iWWlptsCBdRfXrsXzccwx6UlNltnq60OsEo/DBjU2YiCbkRyJxwN/Q6tnuGuX7Hq46670OCyRQGzHZJrRvTI4CPLR50MSeP781PPhwZb19eaTBMkkCMRNm3BMhx2GNaC8HOtfMgkCMc94KQ1+P/YVjcp102bDmlqkxMZEt0UTAiUSce+ixbw/6wAAIABJREFUdLHzRDgMg5nr5GZuG8iUhRNCthVYLHJqIO+roSF/o+nzoUybqxq2bIFD39AAolBbUROJIAOWSMCAvvgijPjy5caZ9r4+OTTEbkfwu24dnNFDDsH2tZ8TAkHzpk1YWJYuNV703n4bWoWtrUTnn5/q1PMk57IytFqbdYTa2+F8C4G26Bkz4NCz7mVjY/EIxEQC1zwYlNMYWWtNu1j39srgpaUl85TsUTDRF6iSLdrL4PaxTNpTQkjtH5drbNqMYjGib30LAfF998F+6JFMInDnyYgPPQTn8cILzdvdt95C5d1BB0EsXH++Ph+q8hwO2AOjTPl//oMp0FOmgEDMVKmYC7q6iG67DbbnG9+QVZVjQSBGIiBAX3sNleiXXCKHcuRC0JjAfmmLolGsp0xMv/QSKl89HlRRnHkmElaKIolDIjnIiKU2GKwTrG1L7u6WlT319SAKeVrujBljJ4kRi6USgUYVhAMDxsNJGhqMNQe1FYXFJo/0flQ2xOMIdD/4AOfw8Y8b62sJgSQG+2N33QUS8I47jP2yaFR2rvB3G4thXzYbPpvPs93ZCTvocOA5LlY19MaNuHdbWxE8BwK4V8vKYCOKSUjHYpI85wqrYkx11mG/tEUpGxCyXZYnZ3PVYS7XmElCLXHIYMKFycLx3pZcTIyM4NqyPIxWx5Fb+Ilg43Kp9Hz/fdiaAw+EX2SkD9nVhfXF5YItSibx20jSKRCA3amqkvaip0dWLN55Z/qwSzNa9b29IBDDYaLvfS91oBN31UWjOCazdj4eR9K3qwu+ysc+Brs0MIB4qroaMlDFGgDY1YX2ZYcD5xmN4lj5uhcJ+8kT8dGipIlYwoQADyYYHk4dKJINNhsMJOtl6BdaLXnIlQzc5jswIAefcNtOLuBAkYPlE05AFmrLFlSnTJ0Kg+1yIWBhcfG//hWZpUxVP8PDWEC0ZeqhEBatigpsL5lMPV6ebrZoEfbx3ntYfLTaYm+8QfSvf2Hfn/98qjGPxRDQ2Gy5VVusXw/dsdpa6DqyJkh5ORZjbaa20MUjGMSCp6rYTzSKbU+enE5ANDVhYW9rQ5atvx9VicUUCi6hBC3sdtyb0ahxuw23O4dC+DHSUCwEQqCFt62N6Ec/MiYQieS0vmQSz259PSQVzNq///yH6N574XR+73vpjrCqwp5wKy/r/mhJgbVrkXhoaUHVZDGy3xs2wHEvK0PlwAEH4O+coLLbizcRd9cukKjd3UTnnEP0qU9hDaqqKg4Zuj+DNZsSCdzLzz+PtSuRIDrySKybixaBTPL58BkmZcrL8W8hcN9t2iTbkjs6ZCVLRQUIw0MOwe+WluJoQAmB4MyoelD7w8etRXm5JAKXLDGuJCzGQLJ8YORHjYayMkmM1NVJe6f3ATwe2J3aWqJbbsHfbrrJ2B5oq73ZL4rH4S9arflfm/Z2DE5wu0EgFqMaOhAAgZhIINHCJERlJY7f78e5G01vzhXa6ct2u6zyYYKKq7BYG24it7x+lOCJwkz2aSsDsyFbWzJre+4LbcmFwuXC8xGPwyZyVSZrSwohCXNu6c6G7m4kCg44APaenwmOG61WkJeqClt7552yndiIQOTBnU6nLF4YHISETCJhTCAKAds/mlZ9Vxf2qaqwgy0tqZ/3eHDedXXmCcRgEANUhofRws0dbGVlckhWVVW63EU+iMfRFcf69HV12L/bXbC8VAkfEUqViHsXpYtdIFQVxltVYdjMZEa4XJ0zgpneo8+kc6DBwwUmTcovkAgEEKDY7XKK37Zt0MVQVZxDbS2IrYcfxiJyxhnQNNSTWqEQyLzKSknI9fcjQK6rg0hvdzccxZYWLH6JBMhQngrJOhQjI9jnrFnQBnvlFTi0Z52VTkD29uLzTU3mnaIXXwQpOXs2KhDZ8WettYoKHCfrMdXV5U8WDAzIKbKTJuF7UxQsxtkW06EhfBfRKIjd2bNNOR4Tfbkr2aKPAELI9sJMJGEiIYcCFCvzS4QqrV/8guiCCzDUwwiBAJ7PsjLYomgUumNmp5h++CEIyqYmtB3qCTN2dFVVDi0ZGcF+HA7YtbfewuCE1lZoFRajauqFF4h+8xs83zfdJFsRWYPW4ch/qJb+/F54ATqQLhfR178Om5tM4hqO0UCN/cIWJRL4voJBVO0/+yyqGSoqiE46CT81NTKIt9vxWnk51rCOjtS2ZA6QbDZULmrbkvOZCMlC9kYtxdpKQq6U0aKuLnt78VhVJxcTrDOdTR9xeBidEQ0NSGYMDeHv9fXSB9BqL997Lwjj73wHuol6vyiZhO3iNl1FkZPlFUXqL+aKtjbYwbo6tDAXg0geGkIFps0Gf8soqcAabIkErke+iQetVhy3f+rB/jEP4NBWueWBcX6HZkXOflGuLctCpFcY8hAmov2jLblQcBU6Vxxz1SdfO+764MEro5Gufj/R6tVIDhxxhLRb/B2xnuXAAJ7DBx/E+6+8EkkrI1vEFezNzTgGnw8tzB4PEpja6kHG4CBsWCat+vZ2EIg2G7o79MPtPB74jTU15uUQBgcRpyUS0IbmxHIohLXSYsF6GAzimldU5O8njYzA7kWjiDktFuynri514EwRMdFt0YRAiUQ0CUVRfkhEPyCiuUKItjw3U7rYRUAyCSc0FpM6d2Y+k0iYG7Sid4C5tYjbZBoacm9jCgYRxNhsMMplZTCm69ahhdjpxCJRWYnAORjEgjB1qjy/eByLU1mZzNoMDaHar7oa7c9WKxaizk4srtOnS4FdbXm8EKiW6ewEAdnVJas4tAtuIgECUQgQA2bOO5Eg+tvfcFyHH0509tnSEfL5ZKsxZ/RVVZbgu925LVLa9uXqanze48F1Nnu8fAw7dmBbDgcykqNNnaaPcIEq2aKJjWQSzhPrsRkhHoe90VaOFIIPPyS67jpMT731VmOnmlsMrVZMG9y9G9NHp083t4+dO1EtVF0NR9losh5PNaytTa2wCYelM//MMwiuL7+8OFU4Dz0ETcfFi0FCMEkRDGKfTmdx2otDIRCVb7yB63zFFbArigJbMobT4PdpW6SquLbd3UTPPYe2Zb8fxN8pp6AVlu8TpxP/9niwtjFh2NcnKykmT04lDKdNy06YsF7yaO3FHk8qGUCE71xLChr9TJo0pvfGXgf7UZnIj2gUPofdjufcYpFBeiwmq3V7erCNv/6VaNUqou9+F+9n/4H9IpaBSCbxN4tFTkQVAtc+H0Js82ZUYk+ejCRoMXQKd+8GMely4VxGs+08IIbbm3kyrFlwJ4bFkp1IYegnB+fR6rxP26L/vimHlmU9YaiVINAStkwYjvdEwXhBMAh7UVkpJy4nEvK+ZQKdk7FG1zUeR0JKVSFtYvQ8cgIqmUSxxTPPwC868UQcg92emlzo78cz29SE7YVCIP26upBgXbQofR8+H3yjmhpjv2nbNqK778Z5sA6jFsPDqTGQGezaBamV8nKcC+83EMCaabOhKIXXJr8fRCBPlje7ZgmBc9+xA3Zo7lzZks7au2OEfepJKpJ9Kzr2m3ZmRVEuIaIqIcTPPupjKaEwWCwIQrmijQehjLb4WixYoFU1c7uNvh2Ht2e3g8wbGQHZ1dkJI5pL4OlyoTJw1y4E2zNnYh/V1ZhcunIlDPdJJ8H5nT0bQdPu3QjinU4EMIoCw6soWDjeew+LxuLF0sF0u6HX1NGBISn19QiUtEZfUXA8b72F9yxYAJ1E7XVRVewzmTRPyAWDaENsb8f05U98Ql6j4WEsqDzchWG1wtEfGZFVSWaCbm37cnMzjnNoCItirgL3VisWt8ZGEC4bN+I6t7YWTmToUbJF+zcsFjiX0SicYKP7q6wM93MsJic55gufDzqA9fVoL86kDcsV16++Cjv1+c+bJxC7u0FOVlQQ/fCHxo7wyIgkCfTnXF6O/T75JGzRl75U+HMXjWJwzOrVIJsuu0zaSB7W5XQaH2uu2LkT7cu9vRhGdfLJsqKTKy7HI8azLUomYePXr0fg9vbbuE8PPxxBD0/yZYKxpwdrXmcnAhQirDWzZuEzs2ZhXdSSQZyQzNZezFqlWlRWSiJw7lzjSsJiVLdONDCJZ+RnJZNYX4VA2xy/zkk/rxfPTUcHvrtXXgGBeNFF8E+IJGmoKPguuVXX5ZI+3OAgfudLIG7YQPT44/ArLrqo8IpwIUAe7t4N0njBguw2QVFwj9ntuCbc3pwtqZRM4pokk7lPX2Yyy6jVeayr4sazLWIYtSxzu6v+db6G+rZkHvphZoJwCZlRUYHrGwzKac1Wq7xn2W+KxXDt9c+wEHjOw2EUUGR6Tpg4e/99JFc/9SnEadw6zVJSbreMcerqpI93663wp266yZhA5OGbLpexL7J5M9E99+C1738/vbiBCzN4urEZbNyIApaGBshscYeE34/YzeHAeqn1O9kWeb2IUaursydW4nHIdw0NYV8tLTKhN3Vq8Ya0TARMBPuWD/YbEpGILiGiaUS0T32B+ysUBUbMZoPhU9XsgvhWq8wgGukjEmUmEomwUFVUwEEdGsLC0dBg3kljnSUmElk4eds27Ofaa/F70yY4nAccgPPr6oKRV1XZTuz3I7hyOlGBqHeUXS4YfW5t1jt/yaScYHnWWSALtm3Dgjl7No6jr0/qc5gJ6Pv7MYHZ5yP64hcxbZFItoWHwzgmo5Yg/j4dDlzbvj58n0aLlBBYxAYH5WAG7UKa7/RFInzHS5YgEN21C457ayuuexFRskX7OfQkoVGg63DIgJADkFyhqmiBGRkh+ulPM7fjcevcxo1wlk84AQLjZjA4iAw7EdEPfmDcmhIK4fl3uYyd+Weewc+yZbBHHARXVeUXaHm9RD/+MdpdL72U6DOfkTbB75cTHgvNgguB6rj778ex3nYbEjYjI1IPaZyTSOPOFjGx9/zzuCfa2xEcnXIK0dFHS33eJ56QVehEeKZmzCA69liss83NsiKtv5/onXfQAt3XJ/82MJA6sIBI6iI3NCCQOvJI4/biMWpN3yeQSR9x5058X/Pnp18/RUHwHY3iPe+9R/TYY0hGLl8u31dZKduXWaaGW3WZQGRd5HySL+++i2RGSwuGSRVaCZ5IwM/yeOBnsX9lFg4HrovPhx/Wvc4khZHvYAktrNZUf5m3W2CrczaMO1vE0FcR8jVg0jAcTm9Lttmk711qSy4+OIng98O/4GeCtafZNlit8t7VPsvbt2MNWLgws1xLMAg709WFNubDDoO8SzIpta2dTvgrkYgkE6uqcD/ccQdIwO9+F3GFHtGojGOM/CbWl548GdWMepLR78c+XS5zeu7JJJKqW7dibTvmmNQusY4OnM+sWZl90smTYcuGh3H8mXwcnw92Lx5HLFtZiUQfT2AudnHGBMC4tW+FYH8iEUvYB8ETeH0+kE+1taM7OPpBK0bQZtL1Cz9nzINBBCBdXTDsZqcLl5fDQL/zjhTR3bQJehRHHYX3DA0hkN+4UbahcOtPeTn2/c47OJYlS4yN8cgItr1ggcwutbRgEVBVZNnffx/7Pe44fIarOEZGcE42m/lgads2tA3abNAKmTEDf+cKp0jE3FABpxPXd2hIigRrF6l4HIFjKIRjbGiQOlP19cUpjbdYcK0aGlA1sWULAs9iTicroQR+FtnBNSLLnE7c65EIgsdcCbUHH0Qwft11xjo8RAiAQiHYiFWr0Ip7zDHmtj88jMrDUAgZd6NhLdEobJDDYayR+MQT0OU56ihU8VksOKZAADagujo3MqC9HWReMAjH+2Mfk6+NjMghDoUOUQoGiX79azjlhx1GdM01+D7ZqR/DNp19EkKAZHriCRCzfj8Cq2XLYNsHBzHgQlFwnd1uBCa1tVinYzGsYevWYU0YHk7fh9MpicDFi43biz+q4ST7ErSDVrjdk1vBp03LHLRHo3LC8t//jna6c85Jf191tWyB5q4QnkzKw1ryCVLffpvo6adhKy+4oPA280gEflwoBP8h0zCrbODhMoEAthWPp7c359O+nA3cpqsdhBOLpQ5iGedJkryhb1nmFm8iWf3KMNIx3Fevy3gCD5zRD1TiKk++T+NxPDdMMg4MIGZpbk4dTqJFIgH/w+Mh+u1v8d5vfxt+jJZct1hky25lJdaPZJLoJz9BQuKaa7CGGW2/vx/Hx91lWqxbBw3radMw0VnvrwSD8GdYpzAbYjGil18GkXfIIVj/tF1inZ0yPh2N8OYkG7c3x+Op7c1CYB1ub5dFLrEY9lteLnUiS9g38JG6SoqifFlRFKEoyimKotyqKEqXoihBRVGeVxRlxp73XK0oyjZFUSKKoqxTFGWJ5vMtiqLcpyjKJkVRAnt+/q0oyqm6/bQT0TIiatmzP6EoitC9Z7miKK8rijKyZzvrFUW5xuCwKxRF+YWiKP2KooQURXlWUZQMZqiEvQGnE0aMnUiesJgJNptcBDKBHTC9xhHD5QJRVlUlDXA4bO54eUre4CD0nebPJzr+ePl6fT2IvWXLYOTb2pDR2b4dhvvdd/H3JUuMCb5wGAtfRQUMNg9zaW+HE/rooyAQTz4Z+1UU2d68aBEWtvfek0NfsuHtt4n+8Ac48l//eiqB6PFggc9Fq4MX1aoqLJR9fVioAgHoakQiyGRNmoSFKRZDYFhI0P7AAw+Qoij03HPP0S233ELTpk2jhgYXXX/9yeRydZDfT3Tjjb+iWbPmktPppJItKqEY4Oc3EjGefscTm4nwXOciYbxqFbRJP/1ptH8agQX8+/owBGnWLAx1MhMABQIgDj0etOrMmpX+nngc2+fpuFoIQfTIIyAQjz8eVT9sd3nYlKIgCWHUTmqEdevgcBOhCkBLIPp8smKhUAKxrQ0BxZo1aHe8/nrYIbZ1xbZFLpeLTj75ZOro6CAiol/96lc0d+6+YYuSSaJ//5voK18hOv10ol/9CmujzYbv6403UDW/ejXWrTVrkERjfarHH8d9/tprCA4bG9FyduWVqIz91a/w+quvYltPPIGg8LbbEOCdey5kNxYtArlYIhCLA/Yrkkn4LTt3ItidNs34/cmk7DD405/gj3znO7gHentT/TUhZKsu68ey75fvAKN//xsE4oIFSGYUSiCyrxaNoisjXwKRwe3NTKBykpU1duNxHHM+yaZM0NqiW2+9hVpb4Rd99rMn086dHRQOE/385/uOLSLC9QyH4dcPD0tdynhcEqgWC9YoTmKwf8vVnyUCce+hvFyuFdp4jQlDux3vUVWQXn4/KvwqK0fvthgcxHt/8xs5zIR9MSbXmaz3+WCTmND85S/hf11yibHvlUzKtt7GxnRS7c03iX7+c/hU3/++8YDN4eHU6c+jwe+HbevrQ4L4sMPkPerxgPRzuUwPlSQiXL+GBtkZxhqVGzbA1jc0IEYNBHAtq6pg+8cTgVjioArHRzpYRVGULxPR/US0nogiRPQIETUT0XVE9D4R/YWILtrzngoi+h4ReYlojhAirijK2UR0GxGtJKJ2IqohoguJ6EAiOlEI8dKe/SwnoruIqI6Ivsn7F0L8ec/r3yaie4hoAxH9jYg8RLSIiOYLIU7Y854fEkQt39nz+j+IqImIvkVE7wghstZueL0kXK79sox3r4AnNycSsvU4E3jQCrdtGMFoYrMRwmEY0XhcZqIybZM1gXbvRlBTXo5hJnPmpB+vqiK71dcHsmznTpzfwQeDADQi5WIxONw2mxy+wn9vayP6xz+w4J15JiaR6c93YEA6T7EYFoLWVuPzEQITX199FVn2L35ROu9aQremJn/tCw4O+vvlRNepU+UizBOjC205euCBB+jiiy+mxYsXk9PppPPOO4+6u7vpJz/5CR144IH0+c9fQH/600N03HEXU19fiJ5++uYATWBbFI2WBquMF6iqnMacKfjl93Dwki1I6ewk+ta30D53112ZA+LBQTzz//gHnMhLLzWXOIhE0C68Ywd0Flm6QH/MHo9sU9Ta0GSS6C9/QQLihBNgA43OSQg4wDxkZrT25mefBfkwaxZIvbo6+drwMLZhdhBXJgiB/fzf/8F5v/Za7I+HarAWUiF46KEH6KtfvZgOPRS26JxzzqOenm762c9+QosWHUjnnnsBPfzwQ3TWWRfT88+HaM2aiW2LFEXaIm3rH+sYszC+04mf8nJcY+3filV5VULxkUjg+VOU0SVnIhHYuC1bYDuWLMF3rG3RtdtlVVwyKTtLIhHZWphPq21PD/ym2lqQl4WSQJEI/CzW7y52+69We49bjMdCY6+t7QFatepiqqtbTFark2bNOo9CoW7atOknVFNzIM2adQFt3/4QzZ59MSUSIdq4cWLbok2bSLCOIV9Tuz210rBkZ8YfOFFhtRqv7zyB3OsFgagoKNLIFJf4fFjTH3wQklDXXw+CzQgsbVVdjXjnb38DgXj22USf+5zxsQwMwKY1NKT7fG++SfTnPyPuuuqq9NcjEZyH3W6uA25gAAkSIUAgTp6ceuy9vbhm06fnd2+z/MjAgBxM2dqKIo/eXhxvbW2qPzaWUFX4lcuXZx+ssr9xUGOB8dLOrBLRsUKIBBGRoihWIvo2EdUS0SIhRHDP371E9EsiOpVwAf8phHhMuyFFUX5BuCG+S0QvEREJIZ7c8yU5+EvTvH8mEd1BRK8T0UlCiKjmNaObsFMIcabmPYNEdK+iKAuFEB+MdpJMzthsCNgqKkq6OsWE1QoCb3gYGSdVzawBxu2DPD3TyHhqW3IyDWMhgqM7fToMOwvrTppkvJh1dcHYvvkmjvWSS/D/XbuwDe3EQc5ULV6M8vPHHpN6iu+9h8Bdm6FSVZBtFguyW9q7VwgsJLt3o+rCKAM3NIRjb2qCUHxXF/YXCKBaUqtPGI9jauLGjRA8X748tXrT45FVAYW0AFutCCyCQTwrVVWSWLTbpUZksWC1Wun1118n256NqqpKK1asIK/XS48/vonWrXNRXx/R00/ffD1NYFtUwvgBBypc5WBE+HGAHA7LKfGZEA6jCq+sjOiGGzITiH4/nOXnnsOze8EF5p7VeBxDRLZtI/rmN40JRNZBFSKdOFBVOOfr16NK8pRTMjvCioJnvqxMtjfrB7OoKoY5PfssEiNf/3pqMoO1eyorC5uwGggQ/e//Eq1di0EdV10F2zM4KFt8ijll12q10osvptqie++FLbrllk3061+79lTd7xu2yGaTEhX19VI/1+ksVfZMZPj98AlGIxC5yqutDc/q4sXSFjFxw63O2lZarc+RSRIiG3bvht9UXw8frNB7jae+l5Vl1+nOF/pBgUbSO8WEoljplFNeJ4sFtkgIlTZtWkGxmJdOP30TEblICKKNGye2LRICcRlrbI6R9mMJRQYnV1l7We/HcFViby+ezYULpean/g7iBMDKlYh/rroqM4EYCOB5r6kBifj3vyPOOvpoJEdVNf25ZHmn+vr0+P+VV0BCLlxIdPnl6QVH0Sj8GR7Yls1WtbeDUHO50N2mjYcHBxFjVlYWZvcURepGqiqulcsl/9/YWFjiNhf09aGzxetN1dE1gf2CgxoLjBcT+Xv+8vZgFeELfJi/PM3fiYjmEBEJIUL8gqIoTiJyEZFCRK8S0bkm930W4Tr8SPvl7dm+UbXO/+r+/5rmmEb9AmfMgJELhUBy+XwwMCyUXHKWCwdnu0dGYNxVNfMUZb0+otF7uCVHCOMFR/u+ujoYy/5+GDO/P3U6oNeLjPfrr+NvX/yinHC1axdKyqdPh1HnVpXJk7FArl8Pwuwb34BQ7+bN2NasWVhwystTJylrF65wGJUzPT2oNKqsxP60kyo9HiwENTWSmJw+Hf/+8ENk72bPxrZHRjBIYPduVBAdfbS8LjwhmXWJCiHJ/X5kAYWQREV7O56fqVPRHlRsB/2yyy77b9BORLRs2TJasWIFLV36BfrgAxfNnk10/vlEP/jBxLZFhVZLlVBcOBxwLBOJzCLsDgfsFFflGH2HQkCLp7sbRGKm1sFYDHbh5ZexvS9/GZXL2aCqaLP54APYomOPNX7f8DDOYdKkVEc4Hke14IYNmP58wgnZ90kk9RR9PlmR6XLBFqxYgbbBs87CVGe2CazHSgQ7XMgkwK1bsR+vF1OeTztNahK5XMXV0WMi8qtfvYxcLmmLjj12Gd177wqqqvoCrVjhosWL0ZLb2jqxbdGOHbi2r78Om8/tZ3PmIHm1YIGUt2BisRTcTwx0dMBPmDMHz4hRwjYeh7168EE8s9ddB59CD67g6evDs8z+NA8ziMdlNbCZ+0MItPitWYPhOaedVpj/nUwisdLTg/t1/vyxIRC105ftdpzHyAheY9K9WHjgAVRV3X77ZfTVr8qL+uSTy+jMM1fQ1Vd/gW6+2fXfoRWPPjqxbZHZYWIljE+EQjJhqLcBnZ3wrz7xCfgDySTep5+u3d2NROG2bZDYOO00431Fo/BFpk8HUfaPf2AY2BlnQOIkEoFvwIS01SoHrjU2prchP/UUtnH00URf+1p6QjIWA/HX1AS/KpttWb8eevutrdC+1/qLPDRzzpzCCMRYDL5gIIDET0sLiNqeHtjkuXP3jo58PI7CnLVrcX3PPz/nTewXHNRYYLy4Yrt0/2dJ7I4Mf68jIlIUxU5ENxHKTfU94Wbb9ebu+b3R5Pv1x+rVHtNosFqlE8w6JuwE+f0wCkwommlZKyEzqqpguLkiMVNG2OyglUwTm/Ww2xG4czl8Zyec2vJyEGCvvIL9XXyxnMZls8mpzZ2dsiy+uhqfW78e53HwwXBOJ01CNWJPj/xMTQ1ItRkzUoP2YBDO+cAA0XnnwbFNJODcd3TgWFkrpKoqXaC3uhqLw9atqBLYuhXty0w8LFwo36uqIBC57ThfokoIELFDQ1gQpk3DNervx3fkduM7CIWKn+Fq0ags47rggrhcM+jww3H99nz/E9oWlTD+oJ3GXFFhbGfs9tSpznqbtXIlyJhLL8WAFCNwpfBLL8GZPOeczOLiWgiBQSJvv43ta3VA+vvBAAAgAElEQVRctfD7YR/0FYOxGPSFNm+GLeKBTmZhs8Gu8HTlnh4Ij3d1oVrgpJNSj9XrTbWj+UAI6PE9/DDs7h13wPHmJNVYTmDW2qJEgujf/4YtGhmZQT/+MRzlPcHPhLZFs2ZBQ2r7drRxrVoF275lC9a3F1+UU23nzpVdHFVVkljkNaGE8QOPBwRiYyP8Fh6yok3GCoHA+JlnkAj4wheMCUR+Lw9ei0Tgi9jt2HZ1tZSz8XphJ0arzEsmMYF5/Xq0+J14YmH3TyIBvc7hYdjSmTPH5n7UtnaXl8tzrKuDTeJBB8V+Hlp0C4TbDVs0deqM/+rO7cGEtkUlTGyw/EEwiLVBOzhk0yaQh/PmwVb4/VJnmqtOh4aw/vzrX0hwZqpmU1XEVFYrtvnii9CFP+oo6OxaLHgWeWge+3Ver9TRZPBwuSeeQFfXlVem2654HMfG3XajEYiqCu3fHTuwXh51VOr7e3rkQKqpU/O3E14vfDlVRVzEBSaxGL6Hqiqs4w7H2EoAdHbCl+3vx3d7wgl5dZzsFxzUWGC8kIhqjn/n2/5nRHQFgZl9g9AnrhLRxUR0QTEPMIdjMgWLReozCSFbNplUZEF9/inpcOSOigoY3eHhzJObFQV/40lbmTLYuRCJRLLCcGBAakWsWwcje845ctgJw2rF37Ztw2I3YwYIvQ0b4IwfeKDUsnC74ahyBq2jA9WCvb04vrlzcR5+PyoGfT4MLZgzB5+32fD5jg4Eak4nqpAyaVaUlUF0/pVXkJmuqEAb4wEHyPeoKoKBZBKLXL66n/E4SIFwGMfT2Ihtd3djcZo6FdfV48EixtObi/V8WPes3h4PWsY//BB/P+ggKy1YYPiRCW+LShgfUJTUacyZiC+nE2tGJCLb2oggLfCHP0Dr5+yzM+/H50PWdts2OFxG7ch6CEH0xz8igXD++WhDNgInxioqUo8/EsGAi+3bkaVfujT7Po3A7c0dHUT/8z+wFzfckDpAJZmEbYjHYUPzrcwZGSG67z4M8Vi6FERlebmsEne7Cx/QMhrYFr3/PtHNN+M4iIiuvtpKF15o+JEJa4sUBRUTN92Eyoa//Q0kkcWC5FgohIqxNWuQVJozB785WLBYZIKWicW9UQFRgjHCYSQd3W7p6xj5UMPDSHo89xxsUSa7JYQcrlRfD9+GE5asYWe14nlnIpGnduuhqhjGs3EjBvAcd1xhhFs4jG2FwzKYHgtoW7n1XUtG05urq4vX4sy2KJmUx0FE5HRaM/l6E9YWlTBxoShYEzjJ53Yjbli/Hs/MIYfImI87GfheHh5GIuORR+ATXX55Zp3mgQHYkSlTMPDrvvtQbHHddfKZq6yUpJq2CKKqStpAIaAN/c9/wg595SvpsUwigdhKUZDIHO2ZjkQkobZkSbpvt3s37OakSfkPehICBTG7duEaHnIIfg8OwjdyuRCDcsdlfz9iuWLPggiHkdB+7z0QlZ/+NIpa8owF9zsOqlgYLyRivjifiB4SQlyt/aOiKJcavDcTK7xtz++DiOjlIh6baWgJQw4OQyEYwWBQBpecgR9P043GOxwOGDAmEmtq0ivktPoyRhoW2vexBo2Z74CHm7S1IfjZupXo1FMzVwgR4Xt2u+GorV6N+2D+/PRWQ16Itm/HfXHqqcgw8RTn5maQfuEw2qaNSMv6eiwq0SgqPUbDqlXQHFuwAK0/AwNYJKdMwSI3NIR7txACcWQEZCERAsSqKhxbby+23dQkWxIbGqQkQCxW2H61SCRwDbduleX+RKYyW/uELSrho4XFIif8RaOZq3mZbAyH8Ux4vRh00twMRzZTUBwKwaFeswa6fpmqCfV45BE8/5/9rLFYOBGO1+/HMWu1d4JBVJp1dEAD9vDDze0zE1avJrr3XtiHb3wDiYZgEM8oV1ly9Xm+1dCbN6MtfGQE7cunnIJtDw7CLhQyLMosIhGiu++GFEVNDYKam24yJVA+YW2RzYaE2QEHIDhYuRKVBg0NGCYWiYD8fvNNPCtTp6L6gDWruruRhCKSAZuWWCymZmUJxlBVJN8sFnw32qBO60PFYgja//IXBLtXXZXZboXD+IzLhX8HAki08mRUHlLAOoScZNQPdEokiB59FMnTU05BwqUQ+Hwg+YkQTOs7OYoBffvyaH6O243XR0ZwDYrZ3hyL4Ycn0xKZCtgnrC0qYWLCakUCifWjN2zAfbt0aar9ZymAcBivb9tG9Pvfw4f69rczF5TwkLZJk/Dsr1iBGE2vP22xYN0ZGkKcVVWFGEYIWaH48MMg/U46CclVvf3j4gyi7ASiz0f0wgvw8T7xidSYTwisi14v7KQZ6RojRKOIj3w+bKO1FefR0wPfr7oaxS6KIm2Rx4N4kSeYFwPbt8MH6O8HYXnMMeamVI8B9nv7NtFJRJV07KuiKPOIyKgIOUBENYqiKLo+8yeI6G4i+oGiKKv0opYZetLHDIoCA1heDmIkGpVkIhsTLaFY0gbKjrIyXEvOUBtNbmaRXVUdvdLQzKAVLQIB6Al2dED0/+CDZVCkr5QYGMAxHHYYDOT27cgmZSL4HA45eMRuJ/r4x2GwV62CbhkRSuONWhWDQbx3zhzcY6w9qDfEySR0OlatQjXiBRfgvLduxfENDsoKz/r6/II0HiLj8eCaTJ2K8wkGsUhYrViw9M5zVRWuAU9vrqkpfJHatAkOeH09znfzZtMf3edsUQkfDWw2PEdcdWJk43mdCIXgvN12mySdMpFbTJD/619w/pYvN1eB8//+H4Y6nXCCsaPL2/b5cKzV1fLvfj9ajnt7QYKZqXrMBCFAKj30EMiJG2+EDWBxcyYa2I7lk1Tg1qK//hXO8J13gqCKxWCfiGAb9oam6A9+gHM64wwMi9myxfRHJ7QtYn21ww7D/bJ2LdagF17AWvbpT8P/2b4d69DLL+OnqQmfWbgQa4HfLyvWGNxmxcSi213q8ig2tm/HfbtwofEzaLHAtr3/PuQNmpsx4T2TL8uVb04nfg8Pp8oIOJ3wQ3p6pC51bW1qa7Oi4LMPP4zjO/10+GOFoK8PZKnTSXTQQWNT+RqP4/zZ3ptJXvPUVp9PVkJVVhZWbRmJyIoq1ngziQlti0qYmHA64ZNs3IjYYPFi464Bux0x3wcfYGhaRQXRd78rJ8Dr7/NQCM9VZSViuttvx5p0yy2ZyfpIBL/Ly6X2fjRK9NvfIq46/XTEVfrnk5OWyWSqtr4RenqwBlqtKChpaJCvCYFj9fmQcG1szH79jODxIB5KJlFMwl1inZ04x4aG9PiR5SaGh2Wyp5DOMb+f6K23UJhTVgafdP78j1Tjfb+3bxOdgnqSiC5WFCVImIYzm4iuJKLNRLRY9961RHQKEf1MUZS3iSgphHhECNGuKMr3iehOIlqjKMqjRDRERAv3/Jy4d07FGA6HrKaLxWTL89CQnFDrcuGnlGXPDIsl1bFKJNIXFa0+os2WedCKWSIxkUDFz6uvgpD68pfxt4EBkHZVVVLfgqc619cjY5RIIFB2OPB+7aJAhHthYAAGesoUOMvsYG7eDOLxkEOQAXvxRVR3cPYpHMbixAK/RNhnT49sRybCwvDwwwhejzsOwRuf78KFKGnfsAHncsQR+d1/sRj2zdPKOIvl8+H+djjSB8Vowa9z5UEkkl59kA2RCBZCIjxf8+eDOHC7cwrc93lbVMLeg14f0eh+5omEP/85yO9bbkF1jhGEgI7qk0/iGbvgAnOB4AsvgLRbtixze08yCfvFQ620OkQ//zme46v+P3vXHSdVea7fMzM7O7OFrSzLsrAsvQiCQMQOyjUao9HYYizYYiwxei03xZtYEhOjJtdEYyfYYo1dQVQQokZRKYp0YXvfnd3p7ZT7x8Prd2b2nNnZYXZhYd7fb3+wszPnfOfM+Z63P+/VZEYHkJTIMgIO77+PrPO114oARX4+7kV9Pa4znhc2WXG7sd6NG3G9V12Fex8MikExyQ5tSFW6uzHhkQjX9MAD4DRyOAS1QhIy5LGIp2laLKh8nzsXUy/ffhuUGlOnoop23jzskdpa6L133kFrWHExEnBz5kAP8sRcjwf3uK1NnIfb0vVt0Bl+xdSkpQX7vaoqNpmgF0mCvv3b32Az/Pa3sZXLepFlfL9ZWdjbLpcIkvF3xHQsnZ04N9sS+tbmnBzwbdbXYwDT7Phd0E+prcVPYSFsu3Tb3lytJMvG7ct9icUCLOYCBLZ3+4NdmiZaPYmwhhSwb8hjUUaGpni9aLkdPdq8dZd9jSVLoBt+9zvYD0xvpShiCnw0CozJzgam3HEH/LLbbzfuVNK3PY8di8/zILbHHkMw7KyzMLglHBa8jJIkAoiKggrERPiyYwe6M4YNA7ervpBC03APPB5gZLwfmYyw7Vhfj2NPmwY85eITWcb9NSvgYN/b78e9TqW9WVWh3zdswDHGjYNeLy/f50nAgx7fhnoQ8XoiChKm21xCRNuI6KdENJV6f4H3EtEEIrqQiK4lRI+fJyLSNO1PkiTtJqIbCCSZMhF9Q0RLBv4SkhduZSgqAiBxyzMbSllZokIxM321t0iSqFDgyc2FhbHGWTKDVpINJG7ejAqKUaPQUpyVhZ/KSnxfPT2Ct8Prxb8uFwB79GgEs5qbAbqqKgJ+ioLXJAkBATbstm2D089tfqWlCCJu3ozKxpISVCCxYuSAHRHW1NQkJjxnZWGKalsb2hfnz4+9tkgERuX06VjLli1QlKNGJf99cPuyJImp1Ey0zspWv0YzsVhwrV4v7mlbW3LtzZqGa969W1T5TpgABzUFp+CgwqKMDLzE8yMa7YM1axA4Oe20xG3CHR1o47PbUU2YTCvuRx8hW37YYaiEM8I5TcOe46mo/J6uLqL77sOevPZatJykKj4f0Z/+hKqCc84BJ6P+Xsgy7lNhIc4f2DMvrz9VyV9/jRZpn4/oyivFoAWuZuPAxUAZrDwp9u67EZwgQkXEscem5LgfMFhkswkHbsECBJDfew/P/COP4Jk/+mjoyunT8f6aGgSCP/gA783PR9Bozhw4QDYbHCCPRwQWW1uhC/icXKnIgcV08zkdiOLxwGEtLk7Mt+VyIVjvdoPX1IxDkIcPWiz4cblEV0k8FlqtsI/cbuBRJAKboKAA3+0TT+D1c87Zuwm8qgo7q70d6540Kf2Y0J/25b6Eiws4eJ5se7OiYA3KHvatflYf6uWAwaKMDB3x+6HTy8pg0zPtS7wEAkSPPoqkxvXXY8hXJCK6vKJR0cLPvIThMNFtt2Fv/e535smS7m6ct6QE+45pnx54AP7SBRegMIOD9Ry0ZB5/WU4cbNM08CRv2gS/a8GC2PeqKmwJnw9/5+KQ/kgohLV6PMB0bl/mwXYWC3y3ZDAlNze2vZl1a1/S1QXuw5YWfC9HHokgotl9H2Q56PFN2s8rJQ80GZCbrSiiQjEYxGs2m5j0nC5OlANJmPTVZutNwK2qIgPc14Q/TTNuf25qAtmuxQLlxENR9BIOAxjr6wGmhYUo0y4vh6HLx2xpAfAWF+Nvra1QbPoW34YGDC7QNFQMMUcUr7OuDm3Vra04xrHHGnNrNTcj47NiBQD7wgtjB6jwul0uwauoaeAT6erCMSdNSmxwahrW0d2N4EhlJQxdVUUAMBjEvUiC+6uXRCKiBaCgwFxJ+XzI4DF/WkUF7ktpadIZ/6Feq5IB/iEgioL9YLP1xvHdu4EtkycjKy7LwIP4BBIbytxSXF3d93nXrUPgbvJk8PCZJaV6eoAHeq7Z9nYEEEMhBB/j+Vj7Iy0tCDS0tRH97Ge9ORxlWbQZ80RWnw/3jDnx+sLwl17CIA/mQqqqAka53bh3TmfvZFM6pakJ39/HHyPIddNNSGT0Y8LqAY9F7GgxH3EggKrEVXsYhI45BtWjPPk3Lw/7ZedOPMtffonnkcn1mXSen1lNEzYBBxb9frxOhM/Ft0FnuKmFRCLoSrDZ0Nprdm/CYeDKp5+ihfmYY8RQlHjx+fB9M2UJT0LtK2gXCgkbwG4HNUFTEwKIe9PCzC3YXAljVvW9N6JvX3Y40veMqapobXY4zNub9RWQTCvQzzUc8FiUkf1bFAVFE5GI0AmhEDBbXxygKKgIfPNNosWLUaEcDuP9+uB9NArbiScN3347PnvXXebJEuYkHTZM+DGRCNE996Ca7oILQFOi34PME9vRgX9HjDBPhMoyBlLV1SGBdvjhsbioKAgg+v0I8qXCF9jZiYSJpsEOZB+2pwc2XnY2gpP9TS5omgiwcpelEabLMnTKtm34/njq/ejRSSdWhjoWDQnJBBEHVwb8ZnP2ljmi2EDTBxQzrTqQSARgxm148QpGUUQlhJkYBRIDAVS1tLbCyefhHPHClXAuF5TO7t1w8I8+uvd31NoKQ1pVoVhGjBCZtZoatB3n5oIsXJIQYNRnanjqcUODOM6YMXBa9aX4mzZBsVosRJddBodAL/EBRL2B2dyMtdjtUDpGHCRm7cuyjGuMRhHISyZDZSY8XCEYRABAr6Q4O9fYiGvhlvKRI5ManqKXob6LMsA/RIQdS71h6/Ohwi8SQWa7qAh7irnDGMsUBYM5Nm0iOv98VBX2JZs3i7ae22835/ryeoF1+fkCi1paEEBUVVRDV1amft1bt4JziAik5dOmxf49GgV+E/VuM+ZKMyLBnRovPT3A6U2bQNfw05/i3jF+MJfY3mBRIlEU4Pb99+P3K64AT2UKwxAOGiziNjMe7uByoUX/449xz048ES3O4TC+R4cDetDpxPO0bh2Gefh8IuA1Zw6GncXjv6LgfR6PCC4yvxVPAdUHFnNyDk7bStOAGX4/ArNmeKFpmB7/8stITp5/Pl5XFNHdwcLDDux2QZUwfHjyAS12op9+Gsc6/3zYTMyJ2V8JBMSAhqlTU2sLTCR7276crHB7s9WKfaHHTFk2DqL0U4b6DsjYRUNcNmxA0nHePFF95/FAHwwbJnDmjTfAg3jiifDT2A+JRLAHsrLEkCIeqPanP0En3HWXeTI2GMT5c3JE4C0YRABxxw4Mlzv0UBw/PpjvconuNMaArKxY3AsEMIylsxPBw3i7SFHghwWDCLj1d9iTqsIXbWzE+qZNE5je0QGbKzcXPtPeVGFzezNTL+httOZmcCG73fjOxo4FfpeX9wsXhzoWDQnJBBEHVwb1ZqsqgCQQwA+33vIkaKdzn/MJ7HORZYAiV67pnbdoVCiTRMDFgUSe8Pzoo2inuuSS3m3AeunogEKyWODgaBrKxXNyYKTGG3E7dsAw5lZnSUKlxXPPAYQvvhjKp7ERAD1qlCijb2nBMXg62I4dqHrUNCjDKVPAq7FsmSCvD4WggDjbFgrhXvEQFaNnx+dD5igcxnH0QQS3G+uQJKyNs2yhEJSupglDPx3i9QolVVqKPbBjB+4NT3HMz8f1pdCqM9QVVAb4h5CEQtjHjNm33YaAyD33xHINBgLAoJwc4NGyZWjpPOkkTLftS775BgM9SksRSDRzuINBGNc5OSLIVl8PnjObDUa5WZtiMrJmDYJrZWVEv/lN72mC0SgMbubbMQouKAr2vyyLJBrj+FdfIYAYDCJ4t3ChcCK4OrmwcGCGJRABI2+9Fa1CRx2FgHBFRd+VkyZyUGGRqgrdzDxSjY0ITm3YAD1+6qkImHu9cAo5aFJQIAaDrV9P9MUX0GkWC3TgnDn4nJnjFYmISkUOLMoy/ma1xk6CNgteH2hSU4ME4KRJiVvmli9HguH449Gqz3tR0/CdciCRqXpsNtxfIuBRf3R0Tw/oWLq6MGiguhoYEInEYlYy0t2NIKnFgg6RVIKQiSSd7cvJSCSCZ1fTYINlZ8Ne41bK7Oy98gsOKizKyP4lNTXQrZMnx3ZjKQqwhDF63TrYUFOnEt15p0i6apoIJBJhT3LRxf/9H/yX3/4Wx7fZeuvqSATvycqCzSJJ8ImYpuTqq+EThsN43W4XWNTdDdzjKcaKIvScxYJj9vSAFzocRldG/NBNWUYAkP2v/mJVKASs83rho40fL6i7WlrgOxUVpS+JwnYcc7ba7fhuamtxfysrBT1GCrg71LFoSEgmiDi4ss9uNo+y54AiZ3+dTsGjeLAGFFUVAB6NAtC5IoEVClHfHHnMHfPmm2izOvlklMebideLTBKT1ublwYHhoSc8YZTb6Hw+vB6JiHX6fGjFKytDOT5XA6mqmJg1cqTIwpWXxxqooRCCl7t2YQBMRwcU0/nnA8A7OvBTUIC19PQkxw0mywhG8OTmCROgiHt6sMZRo8T99PlwDpsN60s3QXkkggAlT4xkBy87Gw6PEb9SkjLUFVQG+IeQMH5rGiqvnn6a6JprECyJf18ggH+3bCF6/nlkvc2mKuuloQGtyzk5MKzN6AS4gjs7WwRbdu9GRaTTiQBiqkampmHNL7wAh/2Xv+zd0sPnTxRA1B9P396cm4tJ0y+/DAP1ppuEIR4Ox1Y2DoQzHw4TPfggONoKC3Gvjj5a6OEMFiX5AV17MztYkgS98+KLCBKWlUEHz5iBYLLfj8/m5YkAsabBYVm3Dj+trXjPhAkIJs6ZY0xFol8HB9Q5uOjziTbo7Oze/IoHUht0RwfueUUFnFYz+fJLTFOfNAkOdbye50Qs4xeRmLbe12CBeOnqIlq6FHtt8WJgUUcHjsWOf25ucpypLS14lnJy8BylmxpooNqX+xJub/b7cW4OeKfB/jrosCgj+4e4XPBjysqMOy7CYWBLZyewKD8f3KzxCQVVFZygzc3ApMceg592662otjbSPYoiON5HjsRe9niI/vhHvH7ddbHrCoWw/7KzRdW7EU8gBxMbGlBxn52NhHC8fRaNwg6LRlG51x9OaCJgJA9vmzxZ2HCyjI65cBj3tr+VjX0J82pv24Yfu10MgcnNhZ12kFZFDwnJBBEHV/aLm82tE8yjyIEyp1NUbBxIhm4ywhxYPMRg2DAoA3ZWLJa+ef4++wztOrNmIeNk5hAyFyK39jqdIIjXtyB2dsZmqtxuGJllZXB0V68GJ8bUqTCU441bbudpakJwrqrKuCoiGARB/RdfIFs/bx6OOW4cnoHOTvBuqCr+3p+gW0sLlJLLhcBhdTUUA3+eBwLxlOiBeOZYMbpcuH5uXx41qt/ty/Ey1BXUfoFFGUleVBXDTn7/ewz+uOkm82nJW7fC8B0zBlVufTmHbW1Et9yC/995pxjiFC9cqceTiiUJTvaDD2JvXX99alymRMDD++/HFN4TTsB05HjMDYdjJyUnm/gKh4FjDz0EQ/vEE4kuv1xgYiAAjDWiaUiXrF2L9vCGBvAhXX45sJ2rgfZCDlosYgeL274sFujiTZuQYGtowB44+2w4Rh4Pvmfm2issFC1lmgadxQHFujqcY/RoUaFYWdm3/lNV0QbNgUXmqiaC3tEHFvcieLxPhYcX8MROs2tgB9rpxP42I8TnaiEiURlXWto/B7K9HQFETUNnBldD87TTYBDHdTqxDrMBU5oGnGhoAM7wQJ50yWC1L5sJVz96vVhHTg72QhqucQg+yTGSsYuGoIRCCLBlZWHwhtlz3NpKdOONeP9f/2pOtyLLwK2eHqInn0TH1y23oH2YhXUPEfZwRwc+x8Ua3d2gY+nsJLrhht7UUESi9TkahW9nho1bt4LnsaAAXRP5+bEdcpEI8EqW4Wf1x7dRVRRZNDVBH02bJvxJDqSqakqUT0mJzwffua4O93HkSOD+yJGwQ/cCF4c6Fg0JGerTmTOSgnDW0+GAw8QZGr8fWdyuLhjYXKGY7uqw/VF4crPPhx9uZ7NYRJsyt3sYSUMD0VNPISN/2WXmwMeTlRmc7XY4J/p7zJMG8/PxntparGXUKBy3thbE5KWlUChGRrYk4TvkaWJGuYLOTrT8uFxE//3fCBxu3oxWv507oUxKS/GccCUHBw6SEacT19DVBUeKM+6aJlq58/JiA4vpknBYDHvJzcW1eDxQsg5Heh2CjGRkMIQHllRVgb/PbM94PKA4yMkh+vGP+8ZvlwutPdEoApRmAURVFfxkXCG9eTOSEKWlCBSkOjHP44HBvW0b+NJ++MPe1xcK4fxMRdCfyvktW9COFAiAZuKEEwRucvVYdnb/j5uMuN1Ef/4z0auvIiB1//2osuQpwAdbwi6dYrXiOeEpmtzePHMmnLa1a1F1+uc/o135rLPQosXBxLY26MFhwwR1R0UFKnw7OtAe/cUXRK+/jgrgsjIEFOfMgb402oMWiwgQskSjIqDo9UIvcdWjxdK7DXp/H4Yny0ge2GyoLjTDokAA7X+yjOFBifCBpwGHQjheSUn/AojNzXD4rVbwjumroS0WfHc8pZinn3I3jl4UBU57ZydsrgkT0mufDHb7crxEImLiLA/Gc7txX/LyBo7CISMZGQhRVeC0oiDIZ2bbKwr0QGcnAoKjRpkf0+1GgO+FF4AF116LQg+9WK3AFaaLCoVwTLsduuMPfwDe/OIX0D1ma+IhRkZ2mqoiwLZ1K6oLjz0Wr/MkZ5tNcCCqKnSSWWLESIJB2EZeL2yT6mph//h8uC6rFX9LNzWHpsHe27QJv8+ciXvg9QrKtaGYXDvYJFOJOLiy39/saFSQLzMvhN0uAoqDbfDsC+H2JKtVTG6WZdEOE+9kejyo3pFltN9xoC3+fTyV2O1GBaLdjso/M6NNUZAd4mo9hwPZpg8+IJo4ES3T7e14vapKOKOaBucoFML6eVJhVZX4/mpq0FJHhEpGPX9IRwcqDJqbcQ0zZkA5trTgGRgzpu9hMy0tuM7cXGTmamtxXJ5CrShYWypTwxKJpokBL5oGh5CdzJISOGhdXfiuCgr2it9oqKu3/R6LMiIkEkGgv60NhnBJiXH7WTgMXsLOTqIrrxStgGZBCY8HnIOdnaiSmzDB+H08UU+WxRCqjRtReV1RgSnM/W2fYWlsBP9idzcqGY88svd7Ug0gKgrRs88igFdVhSqEwkIEN6xWXBfzpBUUpNdo1TSid/ekY7oAACAASURBVN+FM9HTA5y94AKs3eFIawXaQY9FTD2iKLEtZkR4fc0aBAI9HiTtzjwTOi0YxHfj8+G9eXnGFWpuNxzVdevgdKkqniNueZ48uf/B4GAwll+RpxETiQ4EfWBxf0p8bduG+zZ9ujm/oKLAWf/ySyQp9FU88RIO4374/aICsT/OMCdxHQ4kCRJVQ4fDYkCA04lqJMbHcBi2j9cLLNybwVBGsq/al4lwX3ngEA+N4D2in97MHRsZaoWMDAXZsgVVbLNnm/MwaxoSsO++C7vo2GOFXxsvTLH0zDNIQl1xBTo/eFBX/J51uYAljNWdnaBsCAbhD5oN1vT7gaFOJ/ZcKCRmFRABK1avhn10yCEIYup5ZGUZa62pwZomTepfAqC9HV1akoTuMz2fbXc37oHDkTJnfELp7sa9dblQcThmjLj+UaNElyTTZ6WIk0Mdi4aEZIKIgytD6mbLstjMPJUwK0u0PB/IpOGRCACeCM6C3W48aCUSQYVLfT3Rz34GMDaa2EwEwGxvx3s5gGhWHs4Bx0hEDEN56y0olUMOgaGcnQ3Dr7ER/x87Fufs6MB3xpwSkQiUrCTBkd60CbxRxcXI2JeW9j6/1ysGuWgaFMyYMTBCnU783wjYw2Ex+Xj48NhqgIYGVHVIEhRiug10vx9r9ngQaBgxQrQojhwZyxnJJMYOR8pKaqgrqCGFRQezaBrRX/6CASl33EH0ne+Itjw9l62qopVvyxZwIB56KPZ+OAx8iE8ABYPg+KmvRyBx+nTzNTDVQ2EhjvX550hCjB0L3Eu1euXLLzHx0G5HwGHixN7vCQZxfrsd+zpZ57azE/dt2za0L196qbgHwSCuOxIR7TPplNZWVHWuWYP7+utfi8qHNLQvx0sGi/aIUXszSyiEPbRsGf5/1FFEZ5wB3SbLeMbcbhzDbhetzvEB60AAz+26ddClkQj07KxZCChOn55aslVVocP0bdDMD0gkBoLo26D3BY91YyN0eXV1Yqf9738HR/QVVyBoaybsDHu9uJ7CQtHem8z11dTA4c/Lwx5Pphqa25u50mb8eHzvmzZhPdOmJR4S01/Rty/bbKJLZDCEEyVMy5OdbW7vBAL4LqxWPGMpdCFlsCgjgyZNTeic4uGQZvLyy0RLlqDC/KqrgP/BIDBUj9WRCIoQXngB7dEXXkh0+umiEEHTgE2MS1xVPmwYbJPaWnAgEkHnjx1rvJ5gEP4g+x+SJIaA5eYCi957Dz7oEUcgSWV0jF278N6qKtFh1VfAT1XBY9vcDKycOlUkUTQNPqrbDV3Tz2nIfQpj7NatwKEZM3AvQyHYYGVl4nyBgOh8KSpKqTp/qGPRkJBMEHFwZcjebEURLc+hkJhGzBWKg83pMhiiKKL6hic36x0UVYUjvXYt0bnnYuogS3wg0e+H8b1rFxzuOXMSV8F1dOAzw4fj/n7wAX7GjQMRv80G0OUBKxyYzM2FsVpSElshEA6LNuivvoKzftFFxtl+rorg6py6OgQmgkEcs6AA69JXPxLhXrW24rV4zkHm/ggGxTTsMWNQJr+3z42q4vrr63FfqqvFdXAlpJFi9fvFgAau7OqHDPWnfchi0cEmy5ahuvD882HUEsUOIOA9/OabSDJ873to1+V9FQoBtxwO4RRGIqj+274d7TZz5pif3+fDXsnPx7k+/pjon/8Ehlx9deoBsXffJXr4YSQTfvMb42EsgQD2MfPXJYsVn3+OtmFFgdNw9NHib7IMwz8aBVZZrcDkvLz0YNELL6DqQVXRBnX66aLVdoDalzNYpBOj6c168fmQkHv/ffx+/PFwLvPz8RmvF85LOCxakwsLjQMqkQiconXrUJkbDOJZnTkTe2rmzL1rD5Xl2DZorhYjwtry8mIDiwPditrTAwdw+HDzqmUitH4//DC6Ja691jwYyPyRPT14T1ERdLZZIjZedu5EpXFxMTgQ+zN1mQj3s7YWdkAwCNtmxozUq6qNhFu0NS1tw0uSFlkWdDbJtk5Ho7gvioL70J+KUMpgUUYGSbxeok8+wZ79znfMceKTT5DQmzMHdgbvP68Xz/iwYWICcXMzuHRXrULiY/Fi7B2ucA+H8VmHA/9vawPmjhghAog2GzoeKiqg62222LWFQrA/7Hb4cPq/eb1IbKxdi/MtXIjjxEsgICoQx43DObgSX5LMg4mBAHw5nw/+V3V1bDVyczPeU1yc/sRqWxuuy+dD0qa6GvdBkmADGmEuc3BHo/h7PyukhzoWDQnJBBEHVw6Im62qYsozTwK1WESFotN54AQUmQcsEhEGFXNYrFgBZ+S440DcHu8c8sRmDnJt3QrlM2dO4jbenh78FBUBNFesAKnuYYcRnXZaLK+i0wmDPhJBcDAUghEcrwBkGdn6Dz9E2f8VVxgblMx9mJsbm9FXFLRSb9uG99hsyNZPm4Z70dwsgnajRsUqMJ5EbbOh6keSEExtb8c5Jk9OvU3e7Ub1YSAARV5ZiQBsJIJ70Fc1QTSKtaXQ3jzUn/ADAosOdNm2DQNUZs9GFaIeVxmHrVZURv3rX8CWc87pjUWBgKhc1DRU/23YIKYDmwlTO/CwqQ8+QBXz9OngZUzFIdY0tB6++iow7aabjB1Vvx/Y4XAk32rMOPfGGzBSb7oJmMMSDsMo5cnOWVkwagMB4FNBQepBvm++Qdvml1+iJfuWW3DPmId1AAdoZLDIQKJR4/ZmFpcLwa4PP0Rw5+STMfVSTyrPrc6ahu+vsNA8qCLL2K/r1hGtX499w3pyzhzs4f4GuYyEB2JwYJGdYSKcTz8JOsVqMkMJh2FjZGejG8IsMLh2LbBq5kxUOptVkGga9rjLJXhW9feHA4lm+3HLFmDRiBFw9vsZ7PpWvvkGz0BWFgLKRk57qsL8g0xhMFiVo/rKx1TOrapi6ApPGE/y8xksysiASzQKn0hRUFFulsjcuRNJ0pEjQSui92m4hd9qxfPd1gab5K23kIi96iqhMxRFTGMOh7Gn3W5gRnk5/Jm77wYG/frXwCRZFryrPBU+HEbgjItA4vdUTQ2Sq3Y70SmnoDIvXnw+BCyzshBA1OM7J9BUVRS7MH62tcFXslhQfainfIhGUdUZjWLte0Hz1EsiEejD3bvhQ8+bJ/zqnBz4bIl0FHO2+v39bm8e6lg0JCQTRBxcOeButqYJLptAQICXPqC4L1pu0imaJiYsOhwAwrVriZ5/HjwUl15q3pYcjaL1Z8sWAOWcOYkzPD4fglp5eQiAvfUWqmrmz4eTo3eEPB4oJA7iBgIw/IqKUEbPgTm/HxWTtbXIbI0bh+9l9OjY76anB8fgjI/Z9ezYgeqL9nYo54kTca6yst7X5nIJ3o8RI2LP19YG5Wu1IpBYWGh+X+JFlqFwm5vxnUyciGO3t+N4FRXJV2Uw35vfD2MkyemsQ11BHXBYdKBJTw9ahW02VNUZBSCiUezF555D0GzxYmMs4spFRSF69FFk56+8Elw/ZhKJYF9wG/GKFQi6zJqF4VGp8OSEQqB/WLsWhvpllxnvNR5w5XAkjwttbWhf3rkTWHnxxbHGqd8vDP94QzQSAZ5qGu5zf1pnIhFMwn78cWDnL36B+6rn2Rtg6o8MFplIovZmluZmtLutW4fv/rTToCf5+TZqdeaEU6IKu127xKTnzk6sYdIkMZgl1Snm8cLBOD2/Iid3ifAs6wOL/QgIxVzP11/DCZ4xw3x/7NqF57+kBNU/RtXFLMEgEn6aJhKm8cKVNfHr/eorfGejRqGjIpVBNJqGAGJTE75Pux3XV16On72xW/dl+zIPGUpH5WMK7c0ZLMrIgIqmCUydP9/cPujoILr5ZuzB3//euLU4EhHddStWIClx/PGYphy//2VZYGptLf4dOxb2xr33Yh233BJbuKBpIqinKLDpbDbgYvzxN20C3dPw4Qi0ZWWJKcwsXi/OnZ0tKhCNhAe2cCKmrg72UUEBklp6eyQUAgYSxdI+pUPq6vBdhcMIXE6aBH2rp7tKFhe5i60f7c1DHYuGhGSCiIMrB/TN1jQAEgcU2QB0OsW0paE8iZIN9bo6tKwVFsIJTjTlq6UF07UkCcTiZpNPiXDv2toA8MOHgwh+40aiY44hWrTIGGxlGRmelhYAa1UV/i9JUHBuN7hAPB6i885DdYDXC6WRmyt4CXt6RLtyMtUSoRCy96tXQ8mdeCJ4Djlwydwafj+Mz5IS4/UHAqjeCAQQ1Bwzpm+l0tkJxR2JYP1jxsBg8HpxTSNHpvac6dubi4v7VFJDXUEd0Fg01EVRkNHeuhVBNzNy7tZWcI/ZbEQ/+UniKhpFQVv06tXgVD39dPP3yrLYC0VFRG+/jbbqefMQqExlf7lcGEC1ezdw8/vfN36f14u96HQmP+3500+JHngA/7/mGvAI6YUz2Q6HOa+iquJ93Pqdn983Fq1fj+rDmhpcz803A7+DwUGdvpzBokQH10RQJRFn1O7daGXbuhXJsB/+EE4qO3uaJlpvQyHR6swBqETnr68XFYrssFVXi4CiGbdgqqIookqRA4vciidJsW3QTFOQ6Fn/5hvo2ClTzLsoOjtR+RuJoALRiMeLJRKBfcDUK2aBAE0TiWn+Htatg200diwGFaXSxSDLSOy6XLA7xo0THSM9PdD/5eWpBf/3VfuyquJ+KgowJzs7PQn8frY3Z7AoIwMq33wD+3/6dNj+RhIIwH5qaCD61a+AsWb41tWFCsSXXkJXxq9/bayzOSDY1gb8KCxEQcWDDwIrfvUrcxwLhxE8kyT4J3pcUVVUVe7cCZ1wzDHYt243/sZDtdxu4JPDgfclk8T1eJBw8fvhG06cGHttXi9sSJtNTJZOhwQCKH5pagKWHn44rr2lBdc2alRqlBH9bG8e6lg0JCStQURJklYTEWmatiCJ9y4gog+I6Ceapj2etkUMkEiS9AQRLSaiLE3T5BQPc1ApqFBI8CjKe+4Yt3Xl5Oxf0waTldpaOKuyDAN25kxz4O3pgXIIh6HEKivNjbpoVJB8l5URvfIK0ebN4DY79lhzoGRiXxZFgfPtdiPYuWYNfr/kEhjLLG43zsffRTgMQE4G2Jk7w+PBurdtg0NQUYE2p+pqOBzsIPQVCOCqjbY2rGHyZGPjPRKBou3sxLonT4aB3tyMdQwfLqo7FixYQEREq1ev7vN6Vq9eTQsXLqTHHnuMFi++/Fu+NHYQTWSfKagMFh34smQJjNobbzSvFvR4iB55BIGNc86BkagftKIXbiF+/XW0yZx3nrkzqKow1LhC6PXXwR931FFEP/5xao5pbS04GP1+BBrmzjW/pkAAa0umpSYaJXrySQQ4J0zA/dInarjKOBTqTdFgJn4/frg11EhP+XwI7r74InDvt79FwMnrhW5wOkVFaKpYdPnll/e9WEgGi5KQvtqbifC8cJtsXR109llnYUhRPK+VvtU5JwcOpFlHgl5aW0WFYk0NXquoEAHFZBJpqQhX2+rboNku40ozPb8i2zVtbQiwVlbG2hB6CQbhRNfXI5A+b17iKpm2Nuyx0tLE1C5EIpBosSBZsGwZnOHzzkstQBcKoeonEMBx9IkXWcbaXC7YQsXFyScyiPZd+zKfV5JgOyWyrVPBo0cffYzOOedyCofxXCSowt2njnsa8ChjF+3H0tGBar1Ro+B7GYmioHX5iy+QUFywwNxHk2UkSO+/H8f74x8TJw5aW4Gb5eXQE/fdB0z83/81t1cURVRcFxRg37AOikbBv9jSgg6P2bPF5zipqWn4aW6GXVFdnVxisrUVQU6bDTjHnL9WK87tcsF3dDoFf+PeiqbBR9u4Eb/PnIlzt7ZCX3Lhyt74/v1ob04bFmViW+YyoGEcSZIsRPRbItqoadprA3mujOx/4nCI6VNcNh4IALi6ugDW3PY8mGTTqYrXC8deVeHYl5UJgzEeFEMhVCD6/SD9HT1alJbHOwiqiiCcJCHo9uKLGHhw0kng1jITnw/3MScHATRNw+8eD1qPli3DGi+/vHeFUkEBlNuOHfgeJk1KzgEKBjEghrkzSkpQnfD11zjWZ58hcDp+PPjOkglKWixQNIWFyDJu2IAAod65aGmBI6OqUKKjR0MpceB1zJjE7cuqqtIdd9xBs2bNotMTlGBlZeG6urtF9UaS7c0ZyUha5KOPgDOnnGIeQIxEMNyku5voRz/C/olGBU9qPMa88gp4Ar/3PQxnCYfx3vhqW03DvlJV7MeXXiL697/R3nn22akFN774Au0+ublEd91lPrHQ7RYTE5Ophm5pIfrzn4EL3/8+2hr1OKwoImtdUJAcvhEJfeTx4P7GtzevWoWKys5OnPOaa4APPT34uz4AYyTJYlFG0ivczsztnkbtzZKECpfbbkMlxcsvw1GcOBHP/6RJeJ/DAUdSUUSrc3MzjllQIJxFIykvx94+5RQ8n+vXI6D41lsYjlRSgmDi3LnQo+kKRDGRP1OOMBWNPrDY0CBa9jgY1dSE6hmzKmdFwT7ctQs8Yoceau4kahr2jdebuAJRL5KEn9WriVauxPdz9tmpOaJsG6kqHNz4AKbNBpvJasV7XS4xOTSRDcBdOIoyuO3LigIsV9XUz5sMHkkSnulgEHany4Xfh4LdnpEDQ4JB8A3n5wMDjETTkID94gskVufPN9fFmgZMefhhHO+mm6AbzIKInIwsLYWP8uij0AvXXmt+DkUB3mkaPpeVJVqNOzpw/mAQhSLx3SZc6V5XB90yYgQqpvvSB+zXtbUBX6dNE+uTZei+piYxQCVdE5jdbtDUdHZCX3AiqaYGGMV0V3t7LubPzc6GzdXejt8HeqhY7BoysS2Wga4FsxDRrUT0JBEd1Df6YBeeDFdUBKDmCsXubvxkZcF5y81NX0l1OiUahdPe0QG+rcMOE1yJshzbtqYoyJh3dgJIq6rwuiSJjDoDKbf9yjIA/YUXYIyfeio+ayaBAI7vcAheCUkCSH/4ISqHxo2DcnK5ehPCc3Y/Lw/X5vP17WS7XFBMPAGZQTs7GzxJdjuyUD4flF4wCOU8alRyimP4cKxn2zZUYVZW4rWdO6GgCgvhxNntOL7Ph/eXl/cd5FNVlW6//XZavHhxn467JIl2ZpcLWbSSktR4lzKSkf5IQwMc8ilTwFloJKqKISoNDcCiceOwJ6xW7LlwOPZZXbYME0yPOw5txJIkWjwtlli85eri/HzwLH76KYZN/OAH/Tf+NA1Z/iVLsMZbbjHmgePMciiE/ZxM4uHjj9FGZLWiAioeK6NR7F1VTWny+rcZbg6wRCJY3113Eb33HnDor38FvnFyjCsX+zLy+4NFGUmvWK34frhyy6y9WZKQ/JszB/r0tddQ3XLooahM5Io8qxXPSVERnoOeHujlri4x1TmRPVNcDKqSRYsQWNu4EQHFVatAsD9sGGyNOXOACens3mDu6pwc0U7NAzW4w2HjRuBJfj6SG1whzFWLublES5cieXjWWWhbS9Tu6nLhp7jYnOIkXjQNA51WrULg7+yzUwusdnSgVd1uR9WP2TqZM9ViwZ4PhZCwKC01tgH2Rfsy4zfzfTqdqSc6+4NHTieuz+2G3c42e0YyMpCiKEi2EAEPzZ71t94iWr4cSc//+q/E3QyffYZugqoqcCba7dDjPExILz4fnvn8fGDiY4+h0OF//gf7wSgpq6rAUEURAUQirL2jA/iuquBgZFqpeOnuxnlzc5Pj0PX5UCEZDCJZW1UVi7GSBP0UCEA3FRYK3tZUg3vMl8u8/0ceiXN3d6My3WrF7+nGCacT3xnrFO40GSTu2Uxsa48MwYbSjAx10WfrZVkEFHkqsc0m2mz3h8CNpsFpr60F19aUKTCAuWrH54OiYK6tzz5Dtd6sWchUsVgsAFx9ILGrC8pn2DBUINbXg4tp1izz9YRCUELZ2cjuMGhGInD8v/4ajj8HEJub8ZkpU+Cgs3KLRpH98nrFxFIjInRFwTG8XihRo9L3UAiAPnw4HGynExVCa9fivhxyiPGksXhxOuGoMSm9xwMFNHUqHJ1gEJk5Wcbx+mqF2hvJycE1dXbifufnD6qSyshBJsEgWn7tdrTHmDmj774Lg+2oo5Bl5qCb1YrPsnOZlYVM95IlCIhcc414drOzBYcWV1L7fMIQ/uc/YbSfdhoqovv7zCsKBo0sX47Awn//tzGWM4ZyoKIvQzMSQdBixQrgzI039sasUEjwOQ4fnnrgxWKBke31Apsfegj37PrrwQspSTDw49uXM7J/C7d8RqOCfN6svdlqRTvckUciePz222hdP+IIojPOEM8e8wzm5eFZ7umB7nK78WwUFvYdHM/PBx/WMccAC776Cnvwk0+wj51O2AVz5kCfDsSwHotFDI3xeGAzTJ4sOBY9HujDlha8f+1a7PEjjkArXqIAotsNPTpsWKzdkkg0DXv9449RmWnGo9qX1NfDHhk2DPeur0Q1D8/hqkxucy4sjG1v1rcvD9YQQVnGM6ZpeG7t9sG1SWw2BDSYu5apX4b6AMWM7L+yeTOwZ+5cc4z5/HNQmxxyCNGZZ8YOODE63h/+APz+4x9F5wMXuPA0ZSLYE9z2+/nnRE8/DRy+5hrsP5tNBPU5AMldYbKMdejxZtcuJGTy8kBX5XTis1ZrbDCvvR0FDMXF8LkYf818kOZmdHLZbPCh4qu8uQJRltG5xQUksiwqqPtrK3V0QAewnzZnDu5JYyPwPi8PRSQDRV1mtSJA6/HAfo1EcL+GIlXaUJU+YV+SpCpJku6XJGmzJEm+PT8fSpJ0ch+fG0tE0T2/LpYkSdvzs9rgvT+TJGmXJElhSZI2SpK00OA9hZIk/U2SpMY979slSdIdkiRlx71vtck5Lt5z/rFxr58sSdIGSZJCkiTVSpJ0syRJlxi9d4+USJL0tCRJPZIkeSVJekGSpDTN2Tv4hKs3Ro4EsJWWAnA9Hhiq9fUwWoNBYdANtrz7LgJzhxyCYBYPUuEpUcOGQfF0dCBLtXMnDG+jkns2tJjvwueD0nnpJVQWnXNO4gBiOAxjlttu+XgeD5zczZtRNXTGGbiXY8eiatDjQVCOW8m58tHphEFfWCj+ppdgEMa3z4fzjR7dO4DY1YXvqKAAAQNWivPnQ+mHw6jm+PBDOPd9CWf9uD3HZsP1fvllHV1xxbV00knT6bDD8mj06Dw65phjaPny5QmPV1tbS1l7IjJPPvkkSZJEkiR9yw2klwceeIDGjx9P2dnZNGvWLPrwww9oxAgoQ68Xir2jo4cyWJSRdIqmYbJwQwOIvc0muH/2GRzq6dNhsMUbinY79ks4DFqBBx5A9c4NN/Tet1y9EgzG8gByAPHMM3tPhE9GAgG0+y5fDhz65S/NA4jd3YKPta8gXFMTJr+uWIHj3nln7wAit9plZe1dAJGlthbtSn/5C4KWjz8OXsjdu+voyiuvpfnzp9PYsXk0YsTAY9EHH3zQ6z0uVwaLUpWsLPyoKvSVqpq/125H+/E994AS4PPP8Vw/8wx0q16ys6Erq6uxj5nvuKYGz7ui9L02pxO69KqrMAzpuuuw37/6Cnv65z/Hv598gv2Wbqmvhw4eNw4YU1ICW2LmTCQvDj8c92zlSiQiZ82CXbJ2LXDn66+R7Ovuhq3h9+MeOJ2w9ZINIL75JvBu/nwMgmKHPdF3pRdVRWfD7t2wc2bNSr7TJTtbBAyZdqenRwxWCAZFNetgBBC5ZToUElWk3L5cV1dH1157LU2fPp3y8vIoL29g8Wj27Fm0bt0HlJ8vqr7D4YyflpH0S309dP+ECebT3nfvRlVhRQXoWhLRD9TWIhHkcBD96U+xhQi5udjHfr8YpNLejj3+yScIIM6di6RoTg7eoygimC/LIujIAS19smfDBtDDjBiBhAi35dpsOE4kgn9bW/FTWAi/mCc1qyr0jd4X5iFRO3bg/XPn9rYLAwHYlqoKH46HxtntYgAT0+HISbDiRaPQge+9h/UuXIhEm6YhSOp2A2+rqgY+oMdUCyUlWEt7O7C5789lYltxkhJmJvP1ziOiRUT0KhHVElEhEV1ARG9LkvRfmqatNPlcB4Gs8Uki+pCIHt3zelvc+64korw9f48Q0fVE9LokSVWapnUTEe25mSuJaDYRLSGiDUR0LBH9Zs9rpyZxHb1EkqTjiehNIqojotsIpLo/JSJPgo+9TUS7iehXRDSZiH62Z90XprKGjAixWsV0YFUVzq3PhwCOxSKMOSPer4GQL75A1qi6GkHEqqrexuKwYVj7F1/AyD/kEAC52fqYb6ezEwD7yiv4/3nn9T3RsK0Nn9cHEJubif7xD9yvSy5BoJPFbseauQz/vfdg9M+cGavcystxzzs6cHwOKrICHTu2N+cEczkGAgLEifDeujpkoyorURW5ezeM+VWrEISdPr0375miwNFqasLajj4a3/XmzRgQs3Hj5/Tpp+/TWWedQdXVY6mnp4eeeeYZOuWUU+i9996jE044wfC+DR8+nJ588klavHgxHXPMMXTFFVcQEdGIuFHZDz/8MPl8PrriiivIbrfTfffdRz/4wQ+orq6OioqKyG4nevvtMF1zzQlE2PdDFotCoVRWmZGBkldfFVOTJ082/n6++Qa8hsw343DAmItGY9+naQgC/uUvqIS+7jrsLaPghSSJibPZ2eCA27EDyYyjj+7/c9LRgcx+czO4WBctElNh49fY3Q1MY/64ROf68EME8LKyMLhh9uzYa+eW6EBAVAVGIv1bu16iUQyiefxx3Jff/AYUEx4PnJAVKz6n1avfp9NPP4PGjgUWPf88sOjtt9+jhQsFFnHAIxQiys8fTo8//iRdfvliOuqoY+iyy4BFZWUjKBQSa37oIWDRJZcAix54AFi0fTuwSNOIVq4M0wUXDH0s2peSbHszS24u2mkXLcJeXLUKz+Z3v4uAu15HWq1wUAsLe7c65+cLB7Iv4fbbWbPwLG3fLgazrFuH9U+bhiDj7Nn9GwRiJF1dgoPLzGlva0NF/hD+EQAAIABJREFU8OTJRD/7Gd7Ldg3zK3Z24r080KWgAO/3+4WzbiaqCkzcuBEdFYsWCXuK6RiM+KX1Eo3CdujpgU1ixsWaSBwOQVvjcMDG6egA1vDQlcFoX2YeT00T1EB6+fzzz+n999+nM84QeDSYttHnnxP9859hooyflpE0Sk8PAmTDhyOIaCRdXbA5nE7YHMOHm/PjtbWB/kRVie6+O3YIG5EIzvt8opiBCBj/5psIlF15pQhQWq2wqyRJJKTa2vDaiBEieaoo8CN374ZNduSRsfhns+F3WRbJl7Iy+E+McVlZopiBu8L8fmBcKAQf1Wgol8cjCk9GjeqNV0xpo6rCppJlvM8oENvYiAAid7fNnIn1M/UT0131McU97eJw4J599RUCyvfc0+dHMrGtWEkJM5MJIi7TNO1fcQv8G+Fi/4dwA3qJpml+SZKeJdzo3ZqmPWNy/BFENFXTNN+eY3+w59jnEdGDe95zGREdRkQ3aZr25z2vPShJUgsRXS9J0vc1TXsriWuJl3uIyEdER2ia1r7n/EuIaEeCz3ykadr1/IuEHfszSZKu0TQt0ReUkX6IxSL4VpgAnNuefT7BA8NtzwORBd61C4qjvBw8HKNGmSun7m44+UVFUBIMwkYSDgvC/zfewPVccEFvYl29RKNQBBZLLAfg1q2ohnA6UV5vRn5eUIB1BYOoCMjJwe96Y3TkSCiSpib8SJKoEo1XJrIMhRGJIOun5x6xWhG4rK9H9quyEgbA2LGo0tyxA05KVRWcH6cT92PHDtybigpUQHCVFE9Jnj37e/TDH55FU6YI5fzzn/+cZs+eTXfffbepoZybm0s//vGPafHixTRu3Di64IILDN/X1tZGW7dupbw9fWcLFy6k2bNn07PPPkfHHXc1vfwy0YoVS6izcz0R0c0ZLMpIOmTTJqInnoBhecYZxu9pawOlQmEhWmDih33oZedOVCmVl6NiKRElBFdhRSJo2W1sBBYdfnj/r+Obb5DZj0RQTWk2PVFVgZfRKK4n0frCYdybVatgsP78573blPh44TCM7GSmOieSTZvAkfTNNwhe3HwzMI6DsDYb0YIF36Ozzz6LCgpE0Omaa35O8+fPpr/85e6YIKJecnNz6dxzf0yXX76YqqvH0XnnmWPRxo0Ci447biHNnz+bXnzxOTriiKvpgQeIVq5cQm53Bov2VvrT3sxSVISW9u9+VwwtWrUK1SUnnBCr+/WtzpGIaHX2eESrc25ucklRiwVJwqlTic4/H07p+vVIYD75JALfEyYgoHjYYeZBQDMJBmH35OWZB91cLuwPdto5UEoEXOJODVnGe7dswR7PzsZ6+Tp4r/JEaLatFAVY9/XXuJfHHRd7b4xoYYyuY9MmOLpTp/YOFvRHnE6cy+cTCVaXC468zZbccJhUhSknFAXn5qqhePne975HZ511Vsxrg2EbPfjgc2S1Xk1r1xI1Ni4hyvhpGUmTRCKo3HM40J5rtM9DIQQQAwEkM4YPN9+PPT3oZPB6EUBkrvp4ycrCPqurw/7+6CNwzC9cSHTppbH7z2IR1YiSBP9UloFtrANCIVRst7ejuGTGDOPzWixIUPT0AFOHD8f+1/tedjuO7fMhmdTejvPMmmWcPOrsBFbl5MCvSuQnWyy4bh78oh8ayr7YF1/ApyssRHKHq/8aGqDP8vLg7+2LQZTd3eD+XrUq6Y9kYluxkhJm9hlE1DTt22YJSZIcRJRLGJ29mojO7evzScjTfJP3nG+jJEkeItKHVE4jIj8R/T3us3cTorunEVG/brQkSeWEL+9hvsl7zt8pSdI/CVFYI3kw7vc1RHQdEVUR0ab+rCEjyYmeALykBKDMAcVAAH93OERAMR0A1t5O9PzzAMvDD8e/ZgZ5RwdK1MvKwJ/k8eA1I0J/WRbVe8uX498LLkDmxkyYj4cIxjC39Hz8MZyXUaNQwWTmPMsysnVZWXCKd+1CsCAchqPAXI7cnr1rF+7tIYcYE/6GwwggahoCFUYZJ30gsbERCqywEAb9uHGixWj3bihGJsXVK0Nuk87KQguV359DO3eiOqGyMkROp580TaMFCxbQCy+8YH4Dk5QLL7zwWyOZiGjWrFmUlzeMXnxxF335JdavKG9Qbm4u+f3+IY1F+wPXaEbwfP/5z8gg//KXxkkKnw9OtdMJqoLCQvMpd7W1yMCWlWHCrMMhgiTxoqowMLltsLEROJJoIryZ/Oc/mGJbVASj3owonM9ps+EaElViNTRgqnNjIyojf/Sj3tiuKMAJTq7sTfY7ECC6/360cw8fjkDswj3NJ9xGmJ3NreY5306TttlCpKrAooULgUX6/cWGO7/G7UJWa+99yEmdiy66kEpLBRYdfjiw6Mknd9ETT+A+l5S8QW730Mei/UWSmd4cL+XlRFdfjRbnf/0LNsO77yIZcOSRvZ9Xu11MqeSpzi0t2A/ME52s/SJJSDyOH4+hJk1Nojrx+efxU1UlBrNUVCQOVCoKHFOLBRWDRtceCoFGwO9HhTMPSDFbn8+HJGRVFZ71UEhUKno8SCZypW5WFjBuzRpcy2mnwVE1EosF6413solwT7/+Gv8/9NC9r8wkAq4EAqKisrpaDD0IhYAX6XacObnD+J2o4jFHB3yhUIj8/oG1jSorZ5HDATyaOxfVuUuXvkGU8dMykgbRNNj5kQj4Vo2efVVFxVldHdFPfwo/yMwuCgRgX7W1Ed1xB4oXEglzfS5bBjw96SS0SZvx5vLU+XAYWMDc1D09wLNAALaEWWJG02DndHcDp0eMEFWB3C7N57Zacc0NDXgf8xDGH6+1FThbUJA8By0fnysso1FcU00NMFXT4KNNmQIMDgax7mgUazGj4RlI8fsx+Oztt7GOY49Fgq0vycS2eklKmNlnEFGSJDsR/S8RXbTnYHpJB0tdncFr3USk78UeS0Q1mqbFNDxpmtYiSVIPESUIwZjK2D3/7jT4m9FrLPHrZZa3DN/GIAhXIDqdMF7DYRFM5PYZh0O0PafCx+D3g/vCakVLn8MBJ99IWEk4nZiylZsLg6+rC86ynuuLS91dLqJ33sHvF18MpWHWmqMo+IyqwmHhkvnXX4fjfsghaIM24/mRZXFfSkrw+alTsd6GBgQMuW3J70eAc+TI2OpPvWPO77Fa8b5E/EIWC+5bYyOcBU2D85udDeN+2DBkjZqbcawjj8S9UhQ4Vn4/qhTKy3EsiyVCb7zxe3riiaeopSV2G0pp6G2v0qUmW1ow6Y2oiDo6XHTTTZj2NmtWLVVXV9OmTZsyWJSRvRJZRkVPOIzMuFEAkafCBwIITOTliaB/vDQ3w0DOyUEAsbQUx45GBWk3C7f/ejzAus5OtOlMmtR7ymAi0TS0QD/zDAzLX//aPJmhKIITrqgoMXasWoUJiNxKbMQTG4kAS4l6cw/1Vz76CPeutZXo3HMRIMnLw/X5fLiPzEuE9tcI/fWvv6cnn3yKGhoGHoseeYQoEimixkYX3Xor0UUXEc2bl8GidAu3N3MgMVmy+bFjiW66CZ0BL76IYUbLl4NX9LDDeu9XiwV7QD/VmW2GvLy+K3TjRZIQuK+sRKKhvR0ViuvWoS341VehR7lCsbq695p27YLOnzbNeG+y015Tg66H8nJz7jHuaIhEsCa+FodDtJ0RYX/5/cChri5wQ9fUIGmoquBY5ErFYcNwbzi4GV+RSARbads2YOmMGeadI/0Rnr7MCepoFPeppATXwu3fpaXpO184jOtiXui+ICUSidDvf/97euqpp6iubuDwyOtF5e3y5UQWSxGVlrrogQeAv3fcUUuU8dMykgbZsQP7auZMc3viiSdQGXf++eiqKi42DjaGw7AhamowTXnevMTn5krx994j+vRTcOGaBRBZfD7gGFdWEwH/PvgAGHHyyeZFKJomOGjLywU22u2iKjAcBhYEg2hfDoeB00VFwjZhkWUxTHP48NSHT1qtuKZPPoENUlaGgpqiIuBtVxfwlumuBrt9ORxGheirr8KuPPRQ+ML6YaaJJBPb6iUpYWYyIZb7CL3dDxHRR0TkIiKFiC4hoh8n8fm+xIxmOlXNp5l8Nl15wnSvNyN7IdnZ+CkuhsHKFYo89p2r3HjSbl/CTrvfD+DPyjInh/V6wZWhaZioyMFCux0GJjvpigLFwtO23nkHx7v0UgTwzFpzOOgoy3if3Q7F8MwzqBhYsAAVEGbKLRoF0EsS1sPXIEkA/awsHL+tDZktSULQr7JSKLbGRrzmcOB6urpwv/Ut1YnEYgGRb2MjFJGq4j7t2AHgP+wwKOmaGjhgW7dCSVVU4Bz61oTrr7+eHn74Ybryyqto8uSjSZaLKTfXSqtXL6UXXni278X0IVar9dsA7yef4B6glUKjU1NipshgUUbM5ZFH4PDecotxkoIDdM3NqMopLoaRaoRFnZ1Et9+Oz9x6q8gI8xRmdoLZ2fZ6US391FPAqKuvRnIhHBZtLH3hpSxjmNPKlcC/a681/4yiAI9VNXEAMRQievRR8EMecggIzI2M4GAQxr7VunfT+FwutGAvW4YK6aeeEgFLWcZ9UhRRCc/CWHTVVVfRvHlHk9NZTFlZVnrppaX0/PPpwaLubnDdvvQSvtecHKKFCzW65pqUDpnBoiSFCef7097MMnUqSPvXr8f3dv/9qBQ8+2wE2Y2EaVsiEWEzeL3QPTzVub9xoLIyVM+cdBL2yYYNcLiXL0fFRlERAopz5iBx0NoK3V5VZV6599RTGOzE1CsFBcZBM1XF8QIB6PBEU6m51TsrC3uQCNPPx48X98Hthu2kfz876/n5IshWWws7prAQ2JEOQn/99GXuduGBeJKE3+124G97O9ZVWJgaXzdPeI1GRXdNstegx6Ojjz6aiouLyWq10tKlS+nZZ/cej1TVSi+/LOh3jjoKnTCTJmlUnFpYLoNHGTGU1lZ0KI0ZI6gR4oVx7LvfBYbl5BjjDCdqN22CjXP88YnP7fNhL7/4IoJ155wDSoVw2Dypw1PKGZMUBQmZ//wHvx93HJnuEU0DZnk88HniK/k4qSXLwLeaGmDO7NlioGcwKOYFhMMIXioKjpcIexOJqsIX27QJGHTMMdANPL26tRW22rBh+I4Gs31ZluF3v/YafMrx40GrYVSR2YdkYluxktJ6k1FR5xHRU5qmxZiukiRdlsRn0zVPt4aIjpYkyaGP2O4p2yzc83eWbootF2UZF/c7R12N4taT9mKtGdlHwoTThYViImAggGBVdzcAhgOKRlUrmoasRkMDuI2ysmCMxw8AIRIZmkAAFXTx4J+VBSPb5xOTmzs6MFk0Jwdtg/wZI44fTUNwLxrFGhwO+tapbG9H+1Ii3rJIRLT5GVULSBLAPxhEQFKSBCdiIADlM3o0FFx9Pe5bOIx/+1Maz+eqrEQgceNGHJ+5I5nDsbwcXG6fforrZvL1ggJxrueee44uuugievBBVH4zj+LLLy9JYg19L3jDBijOUAgK6fjjUY2of1aqq6vpo48+ogwWZWRvZOVKtBCfdRYMNCN5/33wiS1ahH2SnW08wbinB5WHgQCq6eJ5UR0O/C0UgtMfCMDQfOIJ4MTPfy5IyznoGA4LPhwj8fmI7roLLS4/+hGq98y2mCwDuzTNvFqACFhz770Imp57LgIvRi2VTCxut+N4qfDhahoc4nvuAdZcfTXRZZeJ4GYohNd58l/8mhmL/v53YFE0ylWd6cGif/8bQZtAgOjEE5FwWrQoNmiTwaKBFX17M1d7JOMsSRL0x6xZCLS89hr2yowZ2O9mXFx2OypHSkrwLLndcNasVtHqnEpgrLAQrXQLF+KZ3rgRFYpr1gBj7HbYCIcfbl6ls2IFuh9OOgnvycoy5h7TNNg5Xi+uI5lW4mAQfI4tLXDaDzlErJslHBYt0B4P7ktTk/h7Rwe+p3HjEKzd2wAiT0LmVkK9DVBQgL/zsD+HA/ZLdzfWFg7jfvZnDVztqGli0mt/bKx4PGJZsmTv8IipF559FonsWbPwDE+YgKnheqmurqbt27ePzeBRRlIVvx+DMZj6yEjWr0el99y5KPSwWIwpFVQV9sTateCv/f73E++pUAi48vTT4EM+/3wUafj9TFvSe09zFXVODnwaWUaiZcsWBEGPO07sbYcjVn+oKgKDPh98MTNaCFkW/IclJfCbOKDJE6K5a6ynR3SApdqZ0dWFe9bTg+PMnSvOF4nATguH4QfqB3wOtGga7u3rr2MNZWXo5DvyyJR5aTOxrTRIMmpOobhIpCRJk4no9L4+qGmaIklSiIhSLKj9Vt4kopOI6Coi+j/d6zfv+fcN3Ws7iegUSZJGaprWsme9BYTosn5tLZIkbSCi8yRJulVHPllK6YlCZ2Qfip5jSFFEQNHtBjjabKLlmTPZK1ci83L88aJyceTI3scOhTCdqrsbzoIR/5ck4Rx5eTBwN29GdU1FBRzC+MyUnuPHYoHCYH4Nbj1euhSG8uWXJy7Z5sEtViuUjpnj09mJ4xUXQ0lwRU9bGxRbaSmubd06BACnT0+doJzboPnejxkjgh2yLKoUFy2CstiyBQpj+3Y4Fah8tJKmCewuLibKzd1OH374GhFB8Y8bZ6zUrFYrORwO6u7ujnk9FMJ5iBBAPOssVHialeefeuqp9M477xBlsCgjKcquXUR//StadS65xPg969Yh2zp3rpjYbmQo+XxEv/sd9vtvf2vMrcpVLcEg8K+xEVhChKqf+KAGv5eDjvH40dKCc7a3o1LwuOPMr5WHKxCZVwxi0jDal3NzERA1Ih/XNOBHMCgGUqRS8dPYiKrNTz+FU3zbbWKolVn7crzEY1FWFlF7+3Z65x1gkdud+LNGWBSJCFLwNWuITj8dumLKFGOHIINFAy/69uZoVFQlJvvZY48lmj8f3+ubb6JK+PDDiX74Q3NdarHg2S4sFI6hywV7I5VWZ73k5qKK7Kij8IyvX4917dyJoNzy5WgLO+ww4JPDgeTao4/C1vn+92GnGHGPaRocULcbaywp6Xt/+v1IZnR2Ev34xwLr4oU7TjjxqmmCwmb9evxbVATM+vRTrDu+DTrZahluHyQyrwYsKMD34nYLzkKmVHC5gJHJtDdrGs4lyyIgmUpVTzweERFt376dXnvttaQ+G49HqooAOMck8/Mx1Xb6dPNnbw8e5VEGjzKSgsgy9rLViko7I91ZVwcO6bFj0WKsKAgmxb9X08BpvHo1bPozz0wc1I9G4WP94x84x2WXoQKRCH4AF6UMGyYwjbGZK8ZlGXq7pgY6+4gjBF8icyo7ncLXq63FMUePNm859njgC4XDqBivrBQ8iayLcnOhG5qasI6xY1NLosgy0ZdfwufKyYHu0vu2XG1tt8POtNnwGR4imo7KbyPRNCSrX3sNFaq5uaDsOPzwvR7ikoltpUGS+dpfI6JLJEnyEybLjCNc8FbCCOq+5HMiWiRJ0k1E1EhE7ZqmJT8/B7KEMMXmz5IkTSGijUR0DCGS/Fbc9JrHiOhGInpfkqRHiCiHiH6y59zxIaH/IaJ3iOgTSZJ4TPdPCNHfIkpftDkj+1CsVmFMcqWd3y8y21YrAlDvv0/0ne8AmIJBgHG8ERyJoC2ovR2OblWVuaFssQD8t21DQKC4GI6hUWUjr5OHqIRCMEJzc5GZe+45rP/KKwVnhpGEQlAoVis+b6SIZRkKx++HMTxlCgKdnZ34vbgYx6ipwfUWF+N++HyxbdHJCGfbGhuhaI49VlQmtbbimlpaoBTLy0XlwsiR+MzmzTBmS0uJTjrpdHrmmaWUm5tLs2fPpt27d9NDDz1E06ZNpQ0bNnxLJGzWNjZv3jx6//336d5776WRIyupo6OMXK7jafNm/P2oo1ABxZwfRnLZZZfRkiVLaP369Rksyki/xedDew07ZUYG0O7dcOwnTAAnK2NB/DMZChH94Q/YJ7/+tflzTySCIdu2IdPudCIAaNQuxLyz3Cqjnxy7ZQvOKUkIJJpVCxDB2GW/1CyAGAwSPfww8HHmTAQ1jYKlPJAlEhFtjP0VRcG1P/AA1nLLLah84vuaqH05Xk4//XRaurQ3Fk2dCiziwIAZn5MeiyoqKqm2tow+/fR42r4dfz/vPKL//d/YFvR4yWDR4Ai3N7PDxNViyQaw7XZU8B13HFp2V6yADXHssWJQkpnwcxiNCq4urxfBqsJC7INUKe/sdnz+9NOxj2tqkLzYsAGVKDYb8AFtq3CsucrOKJDa3Y015ucnVyHs8SCZ4XaLFulkha+5pQU2ydFHw3bw+4GxbNt1dIj35+bGBhZzcnrfO+aQ5YCe2TVIEu4/D1cpLBTUOdnZOG9f7c0crNQ00UWTqvSFR30J49E999xLslxJGzeWEdHx32L2yScj4ZLIYb/sssvommuuWU8ZPy0jKcimTdi/8+YZB6q7u2F75OSAs1hRsLfiE2yahmDgO+/guT333MRJF1VF4PDhh4EnV10V2x3C2OH1wibKzRV+FicPgkH4jy4X/IiJE7EO/jwPlQqFgJ21tfi/GX0ED1rZvRvnOOwwYfNwRTzz9rpcuG+FhViLovQ/oNfcjMIYvx9rnzVLYLyiYC0+H/CsokLggKaJBJssJ88hnKzs2oXuwO3bcR8WLsS9GDs29VZtnWRiW2mQZL7u64koSEQ/JEQ8txHRT4loKiV3o68iTH25nXDRa4ioXzda07SwJEknENHvdOtoJKLf7/nRv/cbSZLOIaI7ieheIqonor8QJuAsjXvv+5Ik/WDPe+8gomYiup+IooTpNjFklxkZ+mKxAHyYND8QQAXaG28AHCsrkZGaOLG3oRyNwshub0fGnHkFzSQcxvvffhvZposvFpU5BQXmitLvh2Gcmwti3mXLcK6LLzZuZ2RhxWaz4fNGBrDfH8uZwQ7MiBFQdmx0l5Yi4BAMwpEYPx5Bv/p6KL5ksj/d3Wg3DoUQIBw/PpaXcdcurGP0aNx3vTEgSXh91CjBl3jSSfdROOyk1157hZYuXUpTpkyhRx55hLZu3UobNmyg6dNxvo0b8V3FfzcPPfQQXX311fSb39xKoVCAKiuPo+uvP56OPx5k4RUV5i0FLNnZ2bRy5UoqKir6O2WwKCP9EE0D/15HB9psjLLPHR2YqlpaCh7EQADGY7yDGY3iWDt2YKDDoYcmPjdPXl26FEa4WQCRRR9I5OFKa9aA4628HETl5eXmn49EsP8tFhi2RnhRU4P70NqKKqQzzzR3tl0uMZAlleEFW7eiCmzrVhiit9wSWwnWV/tyvNx3333kdDrplVeMsaioCEGM7u7YwQ8s8ViUl3ccff/7x9Pll4P8PRkjOYNFgys2W2rtzSxOJ57xRYtgb6xejQDdiSeibS5R0DorS7Q6e70I1rW1icRfKq3OtbU41qRJwJiZM/GzeDEqE//9b+x3HiLy17/CwTfiFeNWXqcTe7Sv/dPTA0c/EMD5zFq8zaS7GwlGiwUO77BhwNdhw3AveL9FIiKgyDywLS34m9Uqgooc/LPZercvm4k+kNjTI67bZottb+YBB/z9MF2EomAN2dl73xLYFx71JQ899BBdfPHVdMstt1I0GqCKiuNo6dLjKRzG1HGjivR4ycZNy/hpGem31NTADpgyxdgGD4eJ/vhH7GHmfs7ONg7AvfACAk/HHAOqlUSUCpqGc//tb6iivu46Y5oomw17IBjE/mU6lZIS7PP33oNeOOEE+C2aJpJONpsIJHq9wFYiVPMZJRmjUfheXV3AjcmTe2O7xQKsaWgAxhQVAXMCAcHXmkxSIhSCj1pXh7WceGIsNVcggACiLKOwI76Djs+jqrHBxP7qxnhpakLl4Vdf4VhHHIGincpKXGcaZkURZWJbaREpvgQ+I0SSJP2NiC4nonxN08zIJlORzM3ez6SzE606ubkoe9+5E6BVUSEcaTYwN2yA4V5ZCScv0dQrLm1ftgzK4sILxXS/nh5RUaMPCrpcUAgFBXj9lVcA8LNno2ImkZMQDEKZmfGEMVdRZyeuJT5op78fNTVQ2mPGwJF1u4XSZsL3MWPMDd9oFBm01lbcv0mTYqsteHoYT2+srobiTaQYZBnVojt24PhVVZhOFu94RSJQwB4PggTjx2OdmganY9kyfIdlZVBMnAnUcy8mKYNC0J3BogNH/vlPVML97GdoC4wXvx9YFI2i6icSARbF860qClp61q7FMJMFCxKfV9PQJvTYY9iHV12FYxpV4sSLLMOQfOUVGHUzZhD94heJA1wcQLRagZHxxqSmoRpr6VJg4A03YC8bSTgcW83Y32qdUAjDX554Ap//1a8wZZ2vW9++bLfHTn/dW9E0wZFmt8NI52Nv2ICKyK++QjD34otRTeV0Jve9xEkGiwZRuPpCVfFs95PM/Vtpb8e++vRT6PtTTkGAMdlnnNvp/H78zq3OyQTZOzqgTysqjAN4kQgqYevq0P2wcyeeVXZQx41De/PcubAL3G4xcTpRopMINgZTsyxenDiZYSTNzVhPTg7wSJ+MVVV8P/FD6liYP0zPr+h2i/bl3FwxwIornvsKznKVtKr2rrgOBBAMIELAISsL52LnO9VnJ51SX4/E1fr1uO5TTkE1lcORuBLaRAZtcMkA4dGQwqIDQVwuUAqNGAFfJ140DdzFn30G22P0aGDHyJG99+abbwrqhcsvB74len5ranBst5voxhtR5ZZIurqA20VF8CGampAMys4GduuDbKoKW81iEZWD33wDDK2qQoAwHqPcbnR7RKPwXcywkbvJmPIqNxfnkyTgm6JgLyfCl927sedlGTQF06fH3ivm8c/Kwj1PhkKDg4mcOLXZ+hdM7OpCgo0r4WfNwrqKi3HP+knjkRmiFCcDgZkHdRBRkiQrEVk0TYvqXhtBiEiv1TTtpDSf8uC92fuhBAKYkBoOQ+HwBMDJkwGEzKMYiSAA5fEg+DZxYmLDV1XBgfT22zjWxRdDyXCbjNUKZcEcGcOGCa7GYcMAlE8JC1oTAAAgAElEQVQ8gUq9E0/ETyKnkp0JLq2Pf68sI5sUCMDJKC83V6zcxux2A7THjoUS7+yE8uMS+sJC3Iv447S3Q1HKMhRPVVXse/x+VAJoGoyGaBRBvfx8HK8v55mDhLt24XcmUtcHRHmydEODGKKzahUqL4qLQcRbXY3XS0pSbiNKq4LKYNGBLZ9/Ds7CE06AsWq0R5cuxd649FJgAA9V0htheq6fSy+Fw9eXfPYZ0eOP41g33oiAeTCINSSqfiLCfrvvPiREFi1C0DKRUx0Ox05NjseHQAA8W598AofhuuvMW34Z17iyur+Z7bVrwXfY2IgKsBtuiD2Xvn05Nze1CsdkhKkgJAn4+OijgqLhoovwTGRn47tIMaiQwaJ9IFxpwgGhVKsj6utR7cUDBc44AwHlZJ/3aBT62u2G7cEVOnr+Lr34/eCYystD8N6I2/Dee7FHf/EL6Fi/H057VxcSm+vXQ59Go9ibM2Yg8DR5cmKnva0Nto2mwS5KVM0cL5oGx7ehAdgybZoxFvUVSNRLOIyfQADX4vPBzgsGxXv0bdD5+cbTshUldniU/rtjihqvF3t8+HDge5qqaVKW9nZMEP/oI6zn5JPRYu904md/sIuIBh2PhiQWDVUJhaALs7Jglxvt56eewjCNSy8Fxrjd2EPxtsv776Oi8JBDiH7yE/gTifRpbS3RnXdi7//qV2Kgk5lEo9gzfj/O39IC26q4GLaRkS3F3IXMgSjLopOLqxN5kGZDA3wvhwOBM7NEbSiERIqqApM5aaMoWCN32EkSMCv+nvp8WHdrqxiopa/W5AClz4fX+wrEGol+LVw1megYXi8KPNasEYPJpkzBPR01Cvc7BTlog4iDiZkHexCxnIjWEtEzRFRLRKMJfePFRLRA07RP0nzKg/dm72ciyzBmm5qgnFQVRuDEibGZdE1DAKCuTrTqlJeLCsV4x0/TUNr+9tswci+5RBhjiiJaWKxWgLTPB6WgqsLB/cc/kJ076yxBMGxmcPr9UKoOB9YW/z6fD9eoaVA4ZqX9XKno88FQtlqhJHNyRCCQp0x3d8PIrqhARaIkwRDfuRNORn4+qg/1SpADkS4XnJyKCnFfXC4otLw848CkkQSDyNjV1WGtkybhu9MrzC1bUPlVW4uA5kknicErhYXmwYskJd2OewaLDlBpaUHwrayM6P/+z5jD51//AifQuediT3m9vVt3NQ1TCZcvR5vO2Wf3fe5PP0UAsaICbc/8zMuy4Ocxa91zu8FBtH072o1POgk4Y+ZchkII+mVlGfOK7tqF4ERHByYfnn66Oa55PMCi7OzEHKVm677nHjgeVVVoY46fOhsMAjstFmNDO91SVwcHZ9UqnG/xYrSw2u34jvcyqJDBon0kXHnBPIl708K1fTuCOt98AxvjzDNR6Zfsc8GVr1xZZ7GIKnu2UWQZOKOqaF02crKffhoVkhdfjAA3Dy2Jtx3q6hAA2LQJDrDNBoybMwc/48fHrr25GTaXzQa7qD+OoaKAiqCzE07lhAmJ74uyp8bC7PtQVWF3GWFgNBrbBu3x4DUi3FeuUmR+RYdDcD1LUmwFdiSC74O/Fw4kDjTmmInbjXbP997DtZx4ohgmmJ0NPNpfsIho0PFoyGLRUBNVRaLP60UA0Sho9t574Co8+WTYDO3teF98y/PHHxPdfTf8gCuugL2TqCK6tpbojjuwH3/7W/OBTiyyDLuFA3MffohjTJyIwHuivez3w/axWOB/5OSIic0WC362b4cfVFaGazA7ns8He9JmwzUa2ZKyLPDLaoWvY7Phb9u2IVnFNBDxOOr3I+mqKPAXE3XbJSN6HmGrVVCCsIRC+I65HXzuXARQs7Kgb8aM2Suu2IM5iDhomHmwBxFziehRApFlGRFFiOgzIrpN07SPBuCUB+/N3o9E04hefhmTqM45B0ZpfT0Md31mnFtgm5uRbSothfEXjSKgxi0wdruY9LxqFTIqM2bACI830mUZypPBtKMDyigvD+99+mm87+KLUS2XKKvOWXOjAGKy7ctEUBg8zKW4WLQeu90IQDocInvGrTsNDfh39Ghcd00NzlldjfupXwu3LweDUAzMv6iXnh68Jycncat0vHi9+I6amnB9U6bgHCtWoGWQJ4mVlODapkxJmwGfbsc9g0UHoEQi4B9sawO/mNG095UrkYH9r/9CVrizE/sgfuDCc88h2Hjaaahg68vR+89/EEAcM4bo5pt7G9WRCH6ys3vjVEMDBqf09GD9RxyB/SvLcDLj9w9Pfs7K6l0NrWlIqjz5JHDqhhvMh8BoGhzxUAjrNaumMvvsO+8Q3XUX1nLJJWjFjK9S9npx3TxYYiArglwufAevvgpM+8EPiL77XVxXUZFI2OylZLBoH0q62pv5WBs3Yp83NaET4Oyz4Vj1R4JB7F2fD7/n5gJP6uvx+vTpxsOJVq5EpfN3v4vkaksL9k98xWAgIDhPefDL5s2oUtyyRQw9mD0bjqHTCToHpxPH7Y9zGg6jctLng9ObTPuzpon2vnhbQj99mXkQk5FQSLRAe734UVX8LStLBBM5IVxaGjvR227HMTo78Zni4r5bv9MpwSDaPd9+G+tasADBGaZwyM3d/+wiokHHoyGNRUNJNm8GHs2ebVyR/OWXGEI3axZ4gtva8JyOHBmrs9evh61SVQWqlrKyxPhSW4sOBVkGv2JfA50UBb6UpgHTPvwQFdGTJqFiPFGQKxRCAFGWcR59oFRRUDyxYwf0xoQJCAyaSXc31uFwAAMT2Q2KAhuHOzmIgM0uF3zBuXNjKye5yKO9XfiL/WwdTijxwURJAufusmXA9dmziebPF75xoonV/ZCDOYg4aJh5UAcR94FkbvZ+IB98gGDfokUAru3bYdzGZ2W2bYMzXVoK5TF8eKwSYL4wvx/KYvVqAOOsWSinN2sV5MqFSATAbbUiy/7mm1CQP/1pbKbNKKvORixXR8Yfv6kJa+PKSTNHORqFIpPl3tfH52logGKpqhIKKRSCkl+3DsrmsMMQGIhXPD4fjs/ty4mq/zweZMGcTgQ++uNcM6/KypVQ8GVlaPWcMwcOA09u5kBiGoz3oa6gMlg0wKJpRH/5C9ps7rijdzUcEQIGr7yC/XPqqcADSerNl/P662jrWbQIgbG+Al8ffYSqxXHjUIFo1qrL/Dl67quNG5HVz87G1OeJE8X1BAL4V//+QAB7127vnczw+dC+vHYtrv/aa83bdFQVlczRKHCiP9P3WlrgcPz732hLuu223tUFsox1qurAti8T4bqfeYbo2WeBP2ecgUqKvDxxz5nKYm+msu6RDBbtB5Ku9mYiPKOffAJs6OpCV8PZZyMh1t81catzUxOc0BkzBFewXjZtglM9YwYGD7W34/PxDmswCH1rswEjuHpN/3e2Db76CutvaMDar74aNleyz7zPh3XJMu5BX4PP9GIUSOTpy1br3rcUM5+qvmLR7xdT6e12OMPDh8N+5GCdLAPnw2EEco06SNIp0SgqfV59FWs84ghUgRcU4BocjrS2V2ewKCN9SlMTsKG62jih2NhI9Mtfwo6/8048tzygUY8dW7agknDkSGBLUZFxkQJLbS3eTwSbbOzYxOtUVWAm6+s1a4Cl8+fjnDzMyeh8wSB8EYsF12m1CjorTUMl965dwNHp03tzX7NoGrDY7QZe9GewiM+HZPKuXcDO+fPhW+mF6a54wvPIkenjhY6/jkgEeu2tt3A906YheU4EPCwtRQAzDYlVoqGPRUNC/p+9846P66zy/jMajTTSqFqW3GS5l7jEJbaJTQpxCikkkLKUBNgQSCgBll1KgLCUpS4svNRleWlLCAmQAE5PSOwkTnfsJI6juMuWZNnq0vR6733/+HLe585ommRJtpw5n48+ljUztzxzn1N/53cKScTxlcJin2B59VVahlatwpE6cADltWhRsnE6cAB0XUODblnJ5MBaFgnABx+kOiVtek6nbnm2O2nSdtTTw+s7d+LkTZtGC5O0S9uPb3eGvV4Ufjq0kt8Pos+yqGplS9qFw1T3HA4Mb6bKUyBAxbCkBKNbVMT/W1sJ3sVILlqkzydIyIGBoe3L2cTvx6BJ0jIfYxKJkBR+6inNlzJrFuszbx7XVlvLfezdi9GcO3d4fExpZKIbqIIuGmN54AHQh+99Lz+pcvgw6LxZsxi8JO1ukycno5mkpWfDBlCBuRy8J57guPPnw4GYraIsiUGl2C9yrpkzGayQ2nJoWXqQg8eDDvH52K81NcnO7b59DIDp7wc5+ba3ZS9myHCC2tr8q+CmyVCAH/2I3z/5SZJ1qWsk7csykXWsWgljMaX+/Gf4LX0+HOSbbqJ4IVMLhQTd69V8jMdZ1CjoopNERrO9WSmemS1b8C/8fhLx4iMMR/r7QeyUlOggsaqKPetyEdTfcgs+zre/rVF3DQ3JxdBIhGNJEk58nEz7+rXXQDb6fCTR4nGu4fTTKfCtWJE5md/XR5KguJjE5nCKCiLSyaEUutU0Of8oJO7TiiAN+/rwfxIJdKPDwU9FheZWFN6w0tKhOn80xDTxie66i2tavhy6jKlTOW9xsR72N4pS0EUFySo+H4mkmhql1q1L35X0hS9gS//zP9kf/f34BfZ45uBBih01Ndj9ykrijEzP88GDUJs4nSQQc02EN032jSDonnqKPbtxIzrUMLgXl2uobgoG8e+cTmINmWAslFZ79xIbTZnC6zLFObVbzDSJ50Ih3Q2Xr3R2AqwYGOBzy5dzPnuBS9qXhV8xNZ4cLbEsYu+//Y37EXqpykr8II+H7yMdOv44ZKLrogkhhSTi+EphsU+gtLYS3M2cSbtwVxcVntmzk5Xn4cPw+02ZovmEUiH0IpZFVeWxx0AgSpthKKR/pB1ZWp4dDhS8YYAYam4mOLjySt1qV1ExlFPQNDXpt8eTzFEk1aq+Ppz7xsbsjrLfj4F0uXAqcwXVwSCJw3AYZzwW09OPu7qouJWVgVqoqcGBjkT4vaFheFXuQADkQklJMvoxVeJxuFA2b2adV62C38fp5PsTHpJp00AnSXvR3r04KvX1JFpG6ERPdANV0EVjKHv2gABctQqHNfX57+vTU+FvvFEnlVIReE8/zWCTVasI8nPt00cfpW3wtNOU+tSnMlMY2MU02XN33gnf4urVXHsmJLVpst/s7c326eZSVPn970lKfPrTGs2YTqJRgoSiIhzlfIPpAwcICl59FcL1L395aDvQeLUvGwZJ41/8Aj28fj2tVbNn6yE2Hk+yTpZri0SGTm8ephR00Ukko9neLBKJ0Kr/8MM8y2efTWu8fRpots/u2oUuWLZMt7kFAtqv+O53eYa/+132iAw7sxdOo1H0ltOpE3/Zppk3N5PAmjIFDtDSUvSiDGbxejnW0qUkFFeu1EmCI0fY35WVBL/Hk/SLxVgDp3N47cvDEctifRIJ1sPt5rxer/b/hH5GhjkppZMKQuOSirQa6bVs367Un/7EOs6bp9R73oMOloExZWX52YYRSEEXFSSjiM9uWdjs1Gc9FsOOt7bSWdDUBFDB7SaOEBGkYmkp/oXHw97J9Ezv3YsfVlpKl0IqGi9VpL1XuAVfeIE9esEFybGiDGUSPlGl2OeHD6P3585N1v+9vRRGLAvQhRSDZGClPZEoHWXxeO4uLrtEo1A5tbSgP9etQ49LkVY4Evv7idNKS4mJx0gfqP37QdS3tHAf73gHcV17O9daV6dBJqOsmye6LpoQUkgijq8UFvsESX8/AV5ZGe3CiYSGeM+cqd935AitxQ0NOOiC6Eun3CyLNsMnniDwvvbaoe+zLI2CCYV0pbqoiNa7zk4QOhs36uDW6+UzbndycN7fz3EqK5MNWTzOdYfDXHM2OL8cZ3CQtZgyJb/ANZHA+L3yCp875xw+K3LsGAYvGuUeq6tBZY50eEkoRNKyuBiDYzfEpsmwm0ceYa0WL2ZIQW0t92YYGj3a1sZ1SyvEsmVcW3s7jorbzedHgHKY6AaqoIvGSAYHlbr5Zp7Zn/xkaHU1FCKBGImgiyorceZKSpKD9h07qMQvWgQqMJeT99BDoOCWLlXq4x/PH80XiTDw5PnnoQC46abcifWBARIKFRXJqCi/nwEiO3bQOnPzzdlRdjIYSrgU80noR6NK/fKXcA1WVZFcvfTSoTpPAgDT5DpHk+NHxLLQ///93wQOsvYrV3JvhqEnL2fSyZEI1ymk7SNIIhR00Ukoo9neLOLzUbTcsoXjXXAB/kOmPWaaoAGjUZJx9j0gbbVf+xrP7mc/CzIwENDE/XLN8Tg6yulkLyUS2Tn0du4kcGxsBGWduvcsC/9rxw5+ZGjBggWa0H/ePIohx4OUk/ZlpfBbRhl1p5TSCQDLGsovm4rUVkqjv4VfcXAQ3ykW4xobGvBRZHBLRUX+1/366xSD9u/n+3vXu0jQSsHH5UqmohgDKeiigqQVy2Kv9/biG6Si3oT+5bnn0EXr1hFXCEpO9kB3NzbfMEAslpXhN2VCsTU30xLt8eBH5UIgWha+TTTKvmxuZk+ef356HyIQ0BQswSBxRWkpCUTRj5aFjpXXTjtt6P3HYhzH5eLejh7l79On50+90tpKASEWo1V42TK9bvE4vpYUN6JRgBRj1b7c3q7Upk3Yn5oa7NTatcSqXi96aPZs1kOKbg7H6CD4/yETXRdNCCkkEcdXCot9AiQcJmgPBgnaq6upTMlUX1GgnZ1U7CdPRnGHQijYdIbDNBnO8uyzusUoV5Afi6HkjxwBtRIKEbQvX46S9Xi08gwGCSxdLl7zevWwAan+OxzDa18WtGIwqNuz8wlsentxSmMxjI5lYRzFAMh6yJRGj4d183gwviOtcIXDJAGLinQicdcukiXd3fztssu4jv5+1lMSMfZA3DBANezdi7FqasLAGgbIiHgcg59u6EUWmegGqqCLxkAMAx7B3buZxJxK2p1I0Grc0QEaeuZM9pdhsFdEFzU3Qxbe1ESQn82JFOTfpk20CX7kI/knzPr6mMDc0gJa6IIL+Gy2irDPx16TqnlJiUYZff/76Krrr4e0P5t+EVqGTJPl08lLL4E+PHwYDsnPfjY9Afd4tC9v306rZnMzOujmmymuCFpbhhXkg0QTvkZJzgyzvbmgi05SGe32ZpHeXvb7M8+wfy69FBR+qq09cIAE3eLFQ/eJZaGjtm7l2V28GN8kHkdv1dezt+2TSaur9TCmTDpm+3al7r0XGpHrrsudFLcszrttG4VB8SGWLWMAwBlnDNs2J01fLilh7TMNWhmpmCb73DA0yjHdsUMhzV+dyT8zDNbg6FGu2+Vi3ZXSKGZpg66qGlqUOHyY5OHOnRRj/umfQKvG4xzP4eAzY9XGbZOCLipIWjlwgDhi6dL0SMA77iCmev/7QVn397NvGhq0/zMwAALR58MPcLuJhzK1+Qq/c1UVCcdcCUSlNFhj71500dy5DFDJpLuFnsrn4/rKyviMvD8axR8cHESPzZvHZxyOoX5JLMb5+/t1Z1c+ezYYBFhx9Cjxz7p16f2i/n7uy+FgLWpruYbR9I96etD/27ahcy65hCFOUixRilg1tUNNbOUoJhMnui6aEFJIIo6vFBZ7nMUwCNrb2pjWOWsWAbPfTwJRjFNPDw5YTQ1KfnAQZ8zeMmw/5t13oyTXrsXg5aoUJRJU1VpacJTdblpM6uo4l1SJ3W7No5hI8JpMYK6r03xaQvgrRiuXsZFJYAIfT3dfqRKLYfR7ezHUCxfixEajOK2WRfDsdOrpy4KgrK3V7T01Nfx/JM57JELitbWVtsVjx0BAXnopzkgwyBpYFveUbZprLAZP24EDepL0/PkcW3hD5s/P26BOdANV0EVjIL/6FbrhM58hIWcXywKds3MnQd7y5TqRNmmSDsqlTXfyZBKJuQoDd9+NTlm1iuRdvgmoQ4doGQoGud41azT9QllZ+v0qCcTycq4rGuXn4YdBQTY00F6UbeKhfQKzcITlkkAAlMJdd+GAfuUrcESmirRmS6KjomL025f37GFYzPPPc78f/jDFDMNgbUyT77KsbHjntrc3u1zoszx1ZkEXncQyFu3NIkeOEHi//DLPy9vfrtS553IeoRmZORNEYKrceSd79n3vU+qqq9jbx45h/yxLI+sSCfZ7bS3PZnFxZh3z3HOaG/rd787/XqXlWobBHTkCaqmlhdenTyeZuHo1Ply2fRWPo5McDs3bqJRu3ZYC7PGITLZ3OPJrkQ4G0Uvl5dl5v6RTRdDTppk8uEUSi1IciUahc3n5ZfTolVeSTC4qYi0NA78wGxJ6lKWgiwoyRHp6KC7MmEGhM1Uef5yC3IUXYk/DYT5TVaWTYX4/BdquLuy/FAczUU1t2wYVTG0t/k0+Q6kGBvh55RV8s5Ur8atySXc3sUV1NQAF0Tn9/SQQTROdKN1bwo8og1ZE+vrQwS4Xei5XMdiyiNFeeYX/n346nSup6yEAEhncJ4OeZJp8URHnPB4d4fMBjtm6lXu64AJ0kcNBjCXglVmzcseqUniT63qD0rxMCCkkEcdXCos9jmJZVOtfekmpa66hVae3Fwd1xgw9NGBggPdUVJCYkoEndg4OkUQCIv+dO+G9uvDC3GSwhoFh2L4djrPp05W64Ybk9pZgEMMpzqlSKNpAgJ/aWq65tJTXhZ9w8uTc07piMc3BOGVKZq4zuxw7RruRJAobG5PPEYuRSPT7uU63G2NeXk71LhLhPoWgvbiY9c7n3HY5ckR/h5WVJF82bOBepOVAEqz5VtMiEQz7oUMYuwULCPiPHmV982xvnugGqqCLRlmefpqk3NveRktrqjzxBG2IGzdSmZUhBXZ+0/Z2Wm7Ky2nBycZ5ZlkkAh5/nGLGu9+dP33Aiy+CGvR4lPr3f9dTCqXVzuEYmgQTmgWPR+s8r5dW6FdeAfny8Y9n3+OGwT3H49xzPgnPzZtZi74+Eh4335y+aCPty5bFcUe7fbm9Xamf/xzeyaoqdPg//RN6JxRCJ8qgieOp7I+gvbmgiyaA2NubjyMwSisHDpAQ3LcPv+Wtb9WJv3TTT594gmFE55/PforHsfnSTiv79NAhXquv1/QqmQp1W7eyN5YsUeqd78wfReLz0fJmmvhfdgSN+GY7doCgMU1svSQUFyzQ62jnJcw0fVkGrYw0kWgYekCLILHzPY7fj56QbpJs5+jt1Z0n0jEi1Dg+H4ieTZtI2jqdSr3pTdgUQY+Wlmrk4mgPbMkhBV1UkCQJhejYKiujjTlVLzQ3022xdCm+j1L44sXFOrYJh/FTWlrgTGxoYJ9nopp65hkKfQ0NSn3iEyADc+1Tr1fHaYYB+jBbMVSkv584pbhYcxcWF6M729rY60uWDPWLDEMXlhwOkqM+nx54JVQomXyJwUG4Gvv6iL3WrUvvTwndlRRopk7FVwkGOX5ZmR4eMxJUYjis1N//zlyARAI/8LLL0D2dnfw4nRSz8uHwta+PJBOdTq5rmDZzouuiCSGFJOL4SmGxx1HEqT3vPAL3cBgnu7ISo6IUhmPHDhzOVatIIBYVYZxSFVYsBuR+zx4SiGefnVspmiYO36OP4igvXUqLT2qAa5ra+RU0TUcH/0pFuqQEhS9E/VOmcC/ZnPVQiAqUw5GdeNj+/n37WJeammS0pl0sS/OFFBfj1EtS1DAwnrEYbQsOB9cQj+vWg1wBRk8Pbcs7d2IYzz1XD02ordUogNrakU1tVIq1bW7GwJaUkCiV9qQ5c4YOaUiRiW6gCrpoFKWtTal/+ReqrP/1X0MdsV27QNGtXAlaRJDETif7QZzIW2/l/d/8ZjLnaKqYplK33YZz/uY3K3XFFenbV1JFBkH95jc4yLfeOvRzhoGOKS5GT1mWplOwD3xqbgYd6Pczffq889irmRw9+wTmSZNy66LublqtN2+mui6BRjqRIVZj0b7c0wPCdNMm9MR113G/FRWaWF0p9ORoJS4NgzUXFFgOHVfQRRNExqq9WSmOuWsXRc5du7D3H/sYOsceQDc3g+RZsoSAXDoJTFNPN5XJpPE4z3VvL/bS40FfVFfr/WtZ7NEnn6RQe9VV+Qd7PT0U9EpLQWZnK0AEAhQrtm/nHhIJ9vrq1fhuc+Zw3lzTl2WoyXDW3rI0Z1lREdc7ku9OBuNVVuYuqHq9JApcLmxESQmB/333gfY0DHSuIA9lUILQupSUJE+DrqrKPkl7lKSgiwry/8UwSHRHIhT/U5/5o0dpM66pwdZ7PPhB0SiJMZeLffcf/0H89PnP0y0UCOAfpYtNHn8czuTGRvid58zJvVd9PhKU27dzDRs3Zve/RHp7uYfKSny/QID919GBXzR9OtebSR9KYam7mzWaPFnHlJFI+kSiYaD/mpvZ42ecoYvAqeL3cy1Cd2XvQAuHuVa3W3e+GUb+Ra54nLV++GH00tq1+KENDaxDayv3UFfHdzFSn0zWSJKJw0BMTnRdNCHkDZ9EdDgc1yulfquUutCyrMfG+HRv7MUeR3ntNabTnX46KETLIjmWSFCZLy5G0W3fzu9r1miEzPTpQ6u3kYhSt9+OoTnrLN6fDqloF9MEvXLXXSjyc89FyWYzKAItHxjQZL2SVGxupupUV4fDXV2tCdsztR729mKEpkzJrsQti0RIayuKet685IEJdonFMJzRKNcnxMJNTTrYTSQ4XiLB30tLuafBQa41ExGy10tVa9s2rvctb2Hd3G7Os3Mn38X8+Rim0QjCBgZY264ujaoUdOPChRnXbdQNVEEXTUwJh5X65Cdx2H7606H8PG1tSv3v//K8vv/9PE99fZpjVCbl3XorTt03vpE87ClVEgmmzG/fzv5461vz4xQ0DJzrhx+mCJJterMgoiVwjUbZr0Kn8Je/kKyYNo1WoVmzeJ9wb6VeSyTCPpO9n00XmSZt39//PnrlYx/T65buvX4/7xvt9mWfjwnTd97J2l11lVIf/CBOvmFwv/ZhBaM9tMGy0OgP81IAACAASURBVHnhMOeoqsp4joIumkAylu3NloUte/55fKDBQfyda67BZh47ptTnPofv8J3vsF/6+thDU6fqooEkEOvqNMJPWmQF7StT2Z96ikTBmjXwlOabQGxrw5+qrob/cDjrEIlAb7JjB628oRDXs3o1wezy5Zl1m7Q158uPmEhw/5L4Pd4hOVKQqarKTYMj7c2RCIjMRx5B77z5zaA9p0zhXkIhvi+nk+uzD24R/agU9ysJRfl3lBHbBV1UkP8vr75K7LNmje78EvH5SCCGQgyQa2jQifO6OnSTYSj17W8TD/zrv3Kcvj6SjqmDSZTCt7ntNuKXf/7noUMZ04nEFTt3ogPz6S5TisRfZyf6S8ASPT3oJIeDwkauGFE6ugwD/zD1vJJIFFqG7m7WwucjObp6dXo9Z1nEM319fHbmzPSFlVAI/6KsDB/GXuQS9F86NPdzz1HMGBigsHvllZzDMPi+ZVDgrFkjH66Zej+STFRKIyZz6OGcumicdcspKWNAN16QgpxYaW8nyG1qQrk5HCi2SATjUlyM4tyxA6fqjDN0oNzQMNTohMMYpiNHqFAtWZKZyFfEsmgxuv12nLhrrsHxyybFxVxDZyfXJTxpsRiO5LRpmoy2q0sjb4Rc2B689/XpCVj2gQ3pxOcjwRoMYujnz89cyff5OLfDgdHzeFDsra0EBTNnaiTQzJn8rb0dYzJpEtfZ04MxDARYR5eLe9myhYDEsqhaXnABxzJNTbI8Y4aedB0OjxyFaJfaWhLDPT0EXv39rLcQLC9enJ9TUZA3nshEwY4OgvJUvdDfD3q5upp2YyleRKM4wcXF7KmvfU3/my2BGI8zJGrXLpKH55zDcXIFtaGQUt/7HgH3lVeSlMv2mZISzaPqdLJHystx8H/4Q4KDc86Bv0gC4bIyvS/tiINAgHsrKUEHZNNFhw+DknrpJdpzvvKV9CTsshaS0BjN6cuRCAWo3/2Oa3/rWxlWM2MGrwv3qww8GOngqFzicOh2RL8fh72ycuzOV5DxEZnWLEGRaY5ee3NbG8/K298OP+qTTyp1zz0UJpYuRW8UFdE2WFGhB7hVV+sEohQ46up04lC6ICor0XEyROAPf8BmSgtbPvdgmvgbnZ0kwRYtGv69u90kC08/Hb26bx/X8corBNkuF4nE1atBYtrb/CR5KNzSmc5tb48uKsrMEztckcKwz6d5GzOJy8XE5Tvu4HtZuRJub+mkiUbRRUolI6Hd7uQumXBYcytKO7Rp8lpJiU4oSnJxLAZRFeSNJW1tPGcLFgxNIMbjDDzp68PnaWjgWR4c1O3+lgXlwrZt+BkbNqAzysrSJxDvuQdKh9NOU+raa7HXuRKIwSA0NPv3c50bN+Y3yKSzkximtpY4yLIoiLS3o0vzSZ6FQoAxioo0FVSqlJZqehOhYPJ4QCBnGjYVixGrhsPogGx0V5I4FH+mrEzz4IptKi7GB7Qs/MdNm4gB58yB0mXhQo41OMh3Ho+j19N1841UBB1ZXKyvLZHIO5lYkDGUgqkoyCklg4M4tpWVGJLiYpJpvb0YKiGj3rEDpbhmDcGyz5eeoysQIJjs6SGpNXcuCjKbcpS2ot/9DuV7000YtlxiGFy/YWAk3W7N0+FwAFmvqMD42IexiIPodGIUgkGuoaaGQCDb+Q4dwtCXloIGyPR+08Roer0YGjsXiUxqbm3FiM6YwVq6XCREJMEohLozZnCc/n54F/ftg9sjGsXpv/hi7QCHw7xPWpdqarg3OVe66t1Ipb4e4yxt2t3dPCddXTjv6cjpC/LGlr/8hcT3hz40lDA8HKaIYFm0v5aX42DJoKTyct7zjW/wjP37v5PAzyTRqFL/8z/QKbztbSTZampyO2rd3ZyjowP+swsvzH1fwtMq7bRlZSQOf/hD9M/NN+Nw2503p1PTLciAJa9Xo4SyJTvjcVqsf/EL3vv1r5MIyfR+e/tydfXooAATCarrv/wl+v6ss0BBLligXw8Gk4cVjCavXSZxu9GlXq8uDI1DW2JBxliE4ykeJ/A73vbmvj6C0qlTddB+/vkULx96CB3Q1weaVqb/9vVh+8Wu9vejZ2prNSez7GsR2XNbtuA/nHUWqJvDh7WNzpTojsexrYOD+AyZ2vByiX36sscDJ+Cb3sT/9+7VPIovvcQan3YaxeJVq7QeEp5BmZSaep2xGK/lao8ershgg4EB9rMMZ7GLZZE8+eMf8f8WLlTqox/lu5UiuD2QzkYjoRTfn/BdyvoFgxqp6PPxLIjIABhJLOY6fkEKYpfBQZLf9fVDeQUtC77C3bsZwrZokaZPKC7G97csfJ0nnoAH+eKL0W1O59CEpAyX27QJP/2qq3jOcxUVAwH0YmcnemHDhvye8aNHudZJk4gJIhHu1ecjtpk3T/tAmTgGvV78MpeLzzidupXYfg2Cbnz2Wc6zfDmUEZmS/D4f16cUsVc+KEBJ2AoXttutbVMioXX2/fcTd02bhi5asYL3x+PEd4OD6Jj584fPfZ+v2JOJ8bhuwR7tCdMFyV8Ky16QU0YiEdrPDAPD4/FoBVdejvKLxXAu43GcSpcLpSsThe3i89GGODiIEZs2jQRiLkf/mWdogZs0CWWbg1tPKaXJtE1Tc3G0temJfvaqmrTODQ6iVKdP5768XqphsZhG/cnnU41jXx/Vt2iUY2fjDbG3L9fVaaJvuzidOpF45IhOYpaUgCSSpF9TE8q+ooL2gXvvxZlevJj2nFmz9HoMDODoulxD+RxnzdIoR0lajpbMmMGatraSDG5p4VyrVpF0Hmei8oKcpLJzp1K//jUonKuvTn7NMECzDQzQViNtgQMD7JWaGvbVt75F8H3LLZn5/pTCIf3Zz3gWr75a0xnkcpz27YNfMR4H1ZduMmKqmCbXmUiw7+JxkNj33sve+OpXM6MDZdhAOMwxlCIYzZbof/VVru3AAVB/n/98ZqS3vX1ZJtkfbzLNNEmI/Pd/o09OP501k6mMMtAgEtHtgOOtAwQNKpxLQnUx2i3UBRlfEQ6/eFy3OI8EWREOU5CrrByamCst5bmeNo3iQ2srLc1nnAEdwsKFnK+/n2e8poZgMBDg8+kGAtx1F4HlpZdCNxKL4Y8I0k1ane30AuEwez0aJamXD+dYOrFPXy4rS94DkjAUNNKhQ/h7O3agw37/e4L8M87gp64ueWKzaWpeZKeTtRuL5JnwOff3a/5pSVTu2oX/2NJCkuKzn6W46nBwbe3t6MqaGtZwJAlO0WN2vZxIJE+CHhiguCXvT+VXzNWKXZA3psRiINbKynSiyS533UXh9dprSdwppYECU6fyrN12Gwm+q67C3+nuZm9Om5a8Hy2LQu3DDzO05bLL2Fe5gAWDg/gzg4PowHz8IqWIbfr78U+mTydm27OH15Yu1QlO4RiUicT2NZAup/LyZLSeZelEogyT2b6d/V5TQ7EmUyeHZZEM7e9n3Rsbh6cXKivZ80JJI3rv2DEStK+/zrq+970UpeQaeno05+KMGeij8ShuCppfZglIQrGQTBx/KXAi6p74i5VS65VSH1JKTVZK7VBKfcyyrJ2293qUUrcqpd6llJqplOpTSt2jlPqiZVn9eZzujb3YYyiGgYN46BBB+9y5KLaDBwm6Fi3CKdyxA+d49WqcXLsCtDujAwMkEEMhEoh1dVS3slVYLIsR9/fdR1LuYx/LrxIkiADL0k5tayvnnjIlMxw9keA6TRPD0dfHOkglT1AzUl3yeAh+Dx3CKJeXsy7ZrlEqZg4HBjzXNFXhgQwEeL8dUdjejoIfGID3sLeXdXrLWzT/iTjTg4PcQ7ZpkKZJci8Uwhina3E4XjEMnPlnn8WBmDYNIvPGxjHl/inoopNcentB41VVKfXjHycHVJZFa81LL+EEr1zJ3wcHeVYnT8YJ+8//xNn+1KdwEDNJMKjUT37C/nn3uwn68yHmf+YZ2oFqa0E55oOkFeoA2YvBIINiXnsNlO5HP5q7wi+8OEIPkSnBHwyydnfeyfu+9CV0QSaJxdAr0r58vG29gvYRVMTcuUyXPussrW/ica7TNLnv1InVJ0KiUQJ9pdDnNTUFXXQqyEinNxsGiadEgmA4NXi8+266M97zHgp1/f38f+tW9NcVV4DiMwydJJJEdeqk8UQCdNzevUpdcolOAohIm+7gIJ8vLmb/W5YOtpctG1nRL5/py9k+e/SoTii2tfH3piYSHWvW4GvF4zpAHY9CgRRspGh69918l5MnM/n97LP1c5BI6O9F9n9FhW47HwuRVkpJDgcCejCNy5XMr+jxKOV2F3TRG1nEpg4OwrucGlts3YpP8pa3YGsdDuxrby/+RnU13R2/+x1x10c/yrG8XvaEnb7IsuCG3rwZ3+T883kGc/EQdnWBWozHSTrOmZPffR05wh5taODn4EH8nMpKKK5Sk+qSlC8p4bosi6RcIMB9CjVV6mck/nvlFX5fvhyQhVLsR6WS/ZBYDN9QhpiMNJFnWbpAGwqRmJVBM6LrnU50jQzPDAT0UJkTSbMiXI7CdfuPZOJwOBHHQ7ecklJIIuqHaIdSylRK3amUciulPqOU8imlFliWlXA4HKVKqSeVUkuVUr9SSu1WSi1USt2slNqnlHqTZVmRbOfq6FBWeTnBX4HXaPTEskjcvfgifF+rV/P3ri6UdlMTSvvllzFIK1dikLq6SG5Nm5b8ffT2kkCMx3GwPR6SYdmSbaZJRezppzn+hz6UXyUoHtdtJHV1GNTOTj19ubw8+zQq08S4dXZyfbNnJ7dFyfTQYBAnurUVBTt/PoYpk6Nsb18WFGe+FR7Lwqj5/dzD5Mn87ZVXQGf19XH+yy8HMSAIgM5OPmcYnK+xMbcjL/cfCJBszTUte6QSj2NQH32U9fzOd8bUWR5zXaQKzvKIJR4HHdLaShIslcPwqad4Tt7yFlp+ldLIPAm2fvhDknwf+Uj29mKfj3N0dcFj2NSkW80yiWXhiN9+O/vrC1/Ir5ghgaxhkHhsbsbhj0bhvlm/Xre6ZJJYjCSFUppDLN3Qka1baVnu6iIx+slPZuc3DQZ1e1CuifT5SHMzycMXX0TXfPjDOMoSjMuwgliMc6UmU060HD3K8JmnnlLqT38q6KJTRezE9vmiKvbtY88tWTJ0nz/9NAOKzj2X6fEOB8FmZyc28/HHGcJSUqLUO95BUG0YvMftTvaLYjGSj4cOYbvXrs1+XcEg/lZrK5+ZNAm0UD5T5NOti7Qvj0Z7cU+Pbnnet481b2ggmXjmmRQUxqtY0N6Ov7ljBz7gNddAnSO+jyChZbiN+ITCS1lcDAJqNFuuM4kUp+2JxYEBEiqHDin13e8WdNEbWfbs4Tk4/XTNISyyezddDIsWMRVe+O2OHtXDHx96SKmf/xy+5X/7N577nh5svp1qyTDghn76aXTWhg0cIxv/n1LoonvvZa9ceWXuhKNSeuik18vxKytB5vn9xChz52ZO4kci3ENpqR6QVF+fWQd6vQwt6ekBGLFuXbKvJ3pQgCHSvuxwsN7HS+00MABS9Lnn0DMXX4x/KoXjRIJ469gxdNDs2bnnA4yneL0kiO+5R6m//nVYScTx0C2npJxEbvEJF0sptcGyrIRSSjkcjt1Kqb8ppS5SSj2olPoXpdTqf7xnu3zI4XA8oZS6Tyl1vVLqf7KdQAy/z6f568rLR3062htOnn2WYPCcc3QCUZJxtbVUuHbuREEuX47SE1RQXV2yo9zVhUOnFFV7p1NXWzNJJAKP1q5dVMTe/e78HFBJIEprS0+PJhaeMSOZ9yFTi5PPx3sqKrhO4Vayt+MIOtDnwwhOm8ZrR47oKll5uXZCo1EMk5CrD9dIOBwkVjo6WM+2NgKVgwc518UX46zLRDOlCGgSCQINqSgNDGjUViYpKuJckkgVNOdoiWXx/QYCXO+11+Lsj7GMuS4qyMjlF7/AWf7Sl4YmEJubSSAuX44uUEpznZaUsE9/8QsSiO9/f/YE4sAASbyBAaVuvBEnu7Q0u6OYSNCWu2UL+vDjH88vuDQMEhGmia77859JUs2axfTlGTN0S28mLsBwmPt0OtnHTmfyoJWiIs7xne8QLMybB3p8xYrM1zXa7cuHD7M+jz+Ozv30p0GL2tdICi8ygfZkaduTybsPPEBBxrLyb8M6ntOqgi4aN5H25tShK5me+aNH8SHSEfnv2UMBYskSUNNSrBPusSVL+Nzq1eisv/2NQSwXX6yDchGhimlvT0ZXZ5PycgqRwSABsbT/BQL4ZPlOUs/WvjxSqa+no+Atb+Gadu7Ef9u8WanHHkM3rF5Ny/NIBr/kI/39FHsef5zv4/LLsQf2rhhBBZkm34cdgVRVpZMT4uuO9QA4h4PvraKCaz5yhNbqQEAPWBhDKeiik1g6O0kgNjUNTSB2duoJzJ/7HM+OZRHzOBz47E8+CQ/i2rVMYjYMzdlqBwckEhQAt21DF61bxzHSIfvsIr5ZdTUt0vkUVgUV6Pejv0wTMIHDAaI6V2zkdrM39u3j98bG9MVS0yQx+dpr6Jp16wBapOq6oiKOEwyy1qEQenbmzONDTgvycMsW1v2ss0B2NjbqQlYwqDvkJk1iPaSl+ETzpba2kvx85BFs1Qh0UUG3jFAKSUQtv5QH6B/y5D/+FVrY9yiltiulDjscDrvqeF4pFVRKna9yPEQNDXoSUiiEcvH7dXVREoonul1qIsnu3SiOZcuo3iqFEmxt1aS1r72Go7VkCUm0UIjAXDheRDo64OJwuZR617s4TllZdnTbwIDm0rrqKhzwfCQWw0AKN017O45yfX0ycbA9kWg3EpbFPfn93MfcuTxPMgyhqorrP3qUwNnh4P6Fn1H4OmQtBgY02XogwH3PnDlyglyBlP/97wS8kydT+TvzTM577BjXNnkyznQsprkfJdlgb//MhlKSSdGStDTNoeTLwxUhHpeWcCGTnzYt+/CLUZIx10UFGZk89hgE09dcM7QF+cgRgsKZM/VUeOFBFDL93/8eR/bqqxkckkl6e0kgBgK09EhSLlsbYCCg1Le/jbP87nejw/KxJUKLYFk891//OgmICy9kCIMk2Nxu9mMkMrSt1+/XrTt23h6Z2BwKsXb/9V96MIsMeMgksRjHVOr4pxJ3dVHoue8+7uOmm5S67rpk/SZ7XtowPZ6Tg3MwHCbp/Mgj2AmPhwTIJZdgz8ZYCrponMXezmwfupIaqHm9+Dl1dUN5l7u60AWTJ8MxKvtMKE+mTuW58vnwCzZsIIl2xx20Ej75JO20K1aw33/3O2z2u96VnbtVxDTRId3dJBUWLkS/+Hxct0x9r67OzO1qb18WrtXR8o0TCY5tWazRJZfguwUCrMNLL4Hy3bwZ32PlSgqfS5Ycf5tzIABS5uGHWaeLLsJ3LC/XvlhtLesuSOhME5NLS/FJhGdNWhrHKqg3DPzJXbt4HoqKSLKuWDEuiKSCLjpJJRCA77SmZugQyUAAjmGllLr1Vu3LDw7yfNfXs9/+z/8hjrvlFva50CjV1yfTi/zoR3SVXXcd+zKRyM5Vb1mAGF54gb1yxRX5FQZNk2c9EEC/9vcTs1RVoQfyAf8Eg7ozo64ufRzT26tbwGfN0lz90pqbupfjcfae18vaNDWNfL/HYiQOH3kEe/CmN1HMmDSJ4/t8XHNXF99HSQmD5qqrNWpedNR480SbJojJv/wFYEdRET75NddkL0xnkIJuGaEUkohaWu3/sSxrwIHmkhTSIqVUmVKqJ8Pn8wBG86B7PJojQRKKklSUaqtMxDzRGf6TWY4epfowYwZOmBiaI0dQbvPnUwHq6sKJnTEDg9PTgzK0Oz1tbQT4ZWWQx0YivMduwFKlrQ1Ukc+n1PXXo4DzkWgUw+J08tPayr+zZg3lHJRknEyhcjpRntKKXVurofHiaHq9BJudndxHQwNrYQ/ChauouprjBgIYzN7e5MmxRUXDd94HBzFKL77IGl5yCY6mTBaUc+7fz3c4bRrrbA/oxeD29HCvgQDfV6b2LkkkHj3KZ+wDaoYjsZhunbQsPblynNHC46KLCjI8OXgQZM+KFUp94APJrw0OEoDbp8IrxXMbi7FH77mHn0sugZ8sk3R10e4ci9HmW1mpBxVlQyR94xs4ev/6r7Qv5iOJhHZyW1ooiCQSHOPss5PfKy000lrndnNdg4MabVhdnXyNRUXolC9/GUfvjDNoaZo7N/t1jVb7stcLsvzPf+Za3/UuvrvUdiJpO1IKHXwy0I10dpLE2LpVT3583/tAmI414sgmBV10gsTp1NMvY7Hk9uZYDPtZVjZ0+mkwSCHANEFLy7MiRcbaWo2Odru1Xpk7F+qD3btBJf7wh/gklsW1XHstdjyXxGIUbn0+rk3Q2lJIqanB3x0cRPdIQbe6Wgf30lItNni0AlR7YlJQPaJbBGV35pkMD4hGuQ/hUXz6aa5lxQr02OmnD88viEZBYN97L7rm7LNJ1NoLnjU16P/WVtbjHzyDWaWoCB9PuCiPHcNXGk0dFgqRFN6zh/OUl7MGS5ZkL/COshR00UkoiQRJQKeTYWT2mDWRUOq738Uv+epXddErEtEJqoMHQSnOm4e+Kinh/fG4jhmUYv98//sg9m64gW4P4Y3P1G2RSJAke/11YqALL8xvXxiGRvrV1elkYlMTHIr5xEODg9xHaSk6UHwM0XHxOAjoffvYT+eem4zgTB20ohT+jLQvL1zI2sRiw49PDIPC5P33c8zTT6eobefNrqoilt69G/07bRrJVNGXEhumoubHOmfh9yv14IP40h0d6Mx3vpPrnzFjxIWmgm4ZoRSSiFqMDH932P59Tin15QzvGxzuCR0OjUCUtklp/7KPW5f3FBKKWrxeOL88HipS4mSKUzptGgqmowPnWJxhmTZnJ59taYHrp6qKFkOZUNXQkHnNd+4k6eh0wqe1dGl+yisS0cikaBSFaG9fTidFRZzHMFDW3d38W18/NJgsLcV47d3LZ1as0Oi+TCKJBLcbY1JWlsx7I4lvSWxnus9gkKD3mWdY67PPBh3q8bDuMn160iTNExKJ6Nb+VCkt5dq9Xq6vvZ3PZkNjybSzvj49zS2XSDI/GMQgy76Ulp0TIOOuiwqSXfx+AvPKSgJte1IrEkEXJRIkqKQQIPu7vJyWtTvuwFH84Acz76GODirtSpHIkyl/tbWZE2nNzaCOioq4xlQkQCaJxzUH4oMP0iY7Zw7ty5n2jVAkRKO6zT8WSz+B2TBAdv/sZ3zuc58jaM6GbjYM1iyROL725XCYgS233YYtvewy0Iep9yWIbMMgEDnRdtayQHQ89hj/GgY6+dxzCZpGigw/DinoohMoEqhJN4Jpspf27uV3GRgnYhgE7Z2dSn3taxqhKNQpwnNobxOUSaCGwfN15pm0FD70kFLf+x4+wNvelt+zFwyCUovFkqeVpor4tPE49t3rZd+XlrLnS0r08JTRQgNLMtayMvMqytAAaR+WKc6JBAm0HTtImGzbhm+wdCmvr1qVOZlmGCQy/vIXfLMzzqCYkTrhXvjOXC6uU64hX0nX3pxPy2Y26eoiiXD4MNc2ZQror7lzRxcZmqcUdNFJKLt2YWPXrUtOZlkW7cnNzfCxil9iGDyjLhf/fv3r2OWvfpX4wuvleLW1+nihELpo/354pJcsQS/V1WVGFYZCdEK1tbE/16/Pn9qlpUV3XLS0oBeWL8+fKqm7m71eUaEnTkuMX1wM0GHbNq5x4ULitNRCiR08UlTEnh4YQG8KX7wgqoXDNpdYFjrsnnu4xnnz8ItSu6sSCeItaTcXOop0vlFxcTJq3unMTL91PNLSAt/hY4/pdfvkJ6ENqqk5br+toFtGKIUkYv5yQClVa1nWY2NxcEEgikIUXqZQCIdPHEBxvk6GNqsTJdEoQXsshgIU5y0apXJSUUFw29pKBUgq9b29fMZe3dq3j2mDkyYx1Vmmz9nfYxfLwiG8/34+c+21+VemhDMskeD3RIJEZT5tIMIv1tnJdU2bNtRoDAxwP5EIkHNB2whKKN01SrXM6UxuX66o4F7lGZSkYlERz6jHo5Gy0ShomSee4Pe1a2nRsaN9BBV44ADGqbGRwS4+HwlCIQdPFUEveDwYNOFUykYkLuTKMvE6tdVLxDD0vRmGRkme6ERCHjKmuqggyWJZBOa9vbTj2qeAmyYot95eChDyDJsme6u4mNabX/8aJ1u4ydJJaytTmF0unG63m/1UU5MZifP440r99Kfogy99Kf/21lgMfdHXB1LvwAHa+T7wgdyoH5dL86aWlKR35HfvVuorX+Hf887j2mpq+Fw0mj44Ho325XgcB/mXv0SvnHsu7eCpaC0pHEQi7PWKivEZTJBJQiGQTlu2oOPdbvjaNmygkHK8XJBjKAVdNA5ib28+eBC7uXjx0Knwv/gFyedPflK3Hdu5x6qq2Beybx0O9l0sloz48/nwJc47jwLsiy+CJl6/HqqGdLa6vx/ET1ERQXs+aFmXC/9n0iTO2dXFcUpL+fto7EnTROfYeaJz8SybZjLXV3ExrZbLloEGPnBAIxR37mQdFy8mQbh6Nb6PZdFu96c/cV+LF1MYSofmjET05FVBaw4O8pMNgZ4q0t7c14d+j0Ry80qniiRR9uzBrimFb7hwIcc6GSbUZ5CCLhpnOXQIe7V48VDap7/9Df/kne8EPS8iBf5wmEJHTY0u0ArIwuPRYIFAAKRiayt67bTTOIZMBU8nfX3QxvT3Y0OXL89PlyQSPPuhkOZkrK4maZmPP2KaIIEF8W3Xk2Vl3MuWLXoa9UUXZY//nE6OdeQI1yN0V7L/hFsyFsvsVynFewRh3tZGTHTzzaxL6l7u69PnmzmT6xNASWqniUgqKtEwkgd8jlQEMblpE3bN6aTIddFFepDYOOVCCrolgxSSiPnLnUqpbzocjvdZlvV7+wsOh8OplKoezTHfpaX81NaiICSZ09+vnSxBho03F8GJFAnau7txHyhfXwAAIABJREFU5mS6lmVhZAT63dKCohSHzedDgdfWasf79ddph54yRSMQo1GOmU4ZG4ZSd98Nt8acOUwzbGzMz0GT6ayhEOeQyVb5IksCAQIBp5PrtScQJbDo6uLeVqzAQEkiw+vVPIliAGQasiAhZdiKXRyO5Nb7SETzKAaDHKO5mcE20SiImUsvTd9GLFxj5eUcxzBYY+EJ7evTAxnSicvF9+n3Y4CPHOEea2vTG7UpU/hepLXZDnOPxVhPaZeSlq4JNOBoXHXRG13+8AeC6E98AmdZxLJA7x04gC6wt+gODvLctbSAxFu+nGmDmRyegwdJBno8Sn3qU5o8O1MyzbJANt51F/vuc5/Lv61MEoivvAKaWimmTa9fn9/nBWGp1NDW30iE+73tNvbyD34AGtmud2Ix9qZ9+qgg8EfavmyaoA7+539Ac65aBXIh3eCReFzrL7GjJyoo7ugAvf3ss6xdUxN8maLDKypO+oJGQReNkzid2MnubooFqYj8TZsInK+5Rg91Uoq9HovpxFRxsU4gGobed2L/enuV+u1v2Sc33ojtfOc7QSv//e/4P+edB7eYIN2OHgUl5PGg64ZbALAszWEt3KSSRKuo4NpHMuBIEqQOR/5t0eJDWhY/qbqhqIiE2sKFcM+2temE4u238yNDZWIxfNBbbgHBl3osw9BFTJcruYBZXa1RmvbCVS4pKiLR4Pfz3R89yv9zfSeBAAjX/fvRRR4PiehZs/gOJgC9UkEXjaP09fG8TJ1KPGSXZ5/Fbzr7bHSHiN+PvonFoF8pKSGBWFurqaZcLo3483qV+ta3iG3+9V/xv7q62CeZYoX2dpKXsRhFxHnz8tNH8Tj+mter6YxmzSJOy5dbuqMD/2jKlKH6+dAh/Ei/H79kzZrc+8nr5ZiWRUIvXReW6DTRc6nJ0kOHSB7u3cu63nADQI/Uc0ejeohMRQX3LjahslInEu1xZKoUF2On4nF+RK8N17/yevGt778fPVpXRxfLOecQM2bi0R1DKeiWDFJIIuYvP1BKXaaU+p3D4bhUKfWsAuI6Tyl1tVLqS0qp/x2LE0vrRU2NntaWOhBDEIonEk0xHvLgg1TIr7giGYJ97Bhr4nZjCBoaqFRI23B/P+sjztjOnUwfnTkTDkRpZ62tTZ/YC4UgF9+/n2rzOedkhnen+6y0WcsgFfsEvlwi37PbjXGStubiYhTsgQP8v6kJxS/XVFTE/UgC1TD4v6CI4nGcy2yDY0TsSFkhKr7/fox+YyPtTvPm8bpcm1K6VToc5tlcupRrOXYM53vmTJwQ0+ReioqyO8yVlXw/vb2sSTDIPaRLANbXczwZtlJXp5OZ9gTpCWpZPh45YbrojSYvvogzfOGFJMjt8txzvH722XoqvFI8Y5EIDtmPfwwq2D7cIFX27FHq5z9nbwoC0efT3LipEotx3KefJkH30Y/mr0uiUfbs3XczPGH+fNqX8+UPFS6z4mL2biymJzY//zzIgiNHSGT8278NRQq43bptT/SUtC8Lwnk4Imifn/4U3bxgAe3g69cPdVwlWRmNsl5VVSdm75smCdzNm0EHCO3E2rXoUo+HazvJA3aRgi4aJ5GJnPX1BO12HqoXXiBxf9ZZdEeIyPAU4TJ1OvXgDdkPMthPKWzlb3/L7x/8oNYLHg9B3AUXwOm3ZQuDRy66iMC+p4fjLlky/AKAJPqky6GoiOc/kUDXiP9SWkrwWFmZe2+IjjHNkQ1lSUUjZvqsw4HPNWsWvNzPPIMuf/JJPjt7Nt/P4cOsz8yZOkEp6EOhi0n13YVzVobRZKNxSSdSgOrpoWBcU5P+GMeOoYeOHOF8U6dyP5J4nACdGSIFXTROEolgw6RoYJd9+/BPFi9O7ryQ4mUoBLdhIqHUd76DjhG0tGVpGqn+fhKIfX0UORcs4DlO5bO3S3MzurC0FCT/9On5gQNiMeLGri78A48HXZbKnZxtPY4eZc83Nib7bYEArcudneypjRv1wMxMyU1BNA4OapCH6KR0e9HlYu3icf5fUsLn77mHTpjKSgoeZ5891OcRmq9jx/iumpqGIs1dLhKLMkCvsjK7Tiwp0XFqNJrM55tN9u2jGPb449zL8uVc9+mnsw7ZunLGWAq6JYNMvPD5BIllWRGHw3G+UurTikk9VyqlIgpCzjuUUlvG4zpcLj0QQ9piQyFdsSwu1gnFk4EcfjRFJmy9+c0EXCJ+Pwkoy8IRqqvTMG3DQEE6nVoxbt/OlM45c3C4YzHWrrIyvZPV20s7Ym8vTvTy5emRe+kkGNRcFmVlGMx8p9iJYQ0EuLbJk7XiDoVAL8l1L1qUPgB3OLgnp5P3ynRGlwtjMZzqvmWR8HjgAQzOjBkgOGfP1uhEab0vLdVtRC5XMj+PTG/t6CDRMmsW6ynoSAkiMomgMSsrWZ+ODt6fbiphTQ3rd+gQ19zUxN9OJProeOVk0UWnuhw7RhvN3LmgEO3Py549DA9askRPhVcKnezzkSD/yU/YI7femtmRfe01WhAbGnQCcWAAJyzdHhgchP9w3z7oF97xjvyf40iEz/3f/8ueufxy0Nz5OmX2YL62VgfXnZ1K/cd/oBdmzSIJsWZN5uPIxGZBa8p+H24BbNcu1vjll1nnr3+dpEY6J1sGJlkW53e7x3//BwLQPjz+ODqytpYhOytX6oTxiUpsjlQKumh8JJEASVJcTDDtcmHH43E6Kn7wA5Bxdj0l3GP24HPyZO23hEL8vaKCz3R0UCh1uaA1SOen1Naid976VgoRt93GcS+/nLbB4SQQJZEmVCKpib7iYq6hrg4fT6hXenu1D5xOd0WjulDodo98P9n5EXPd15EjtC2/+CJ7+PvfZ1+/+ioIxfvuI/laX0/B4LTT8Jvc7uztwWVlnF+GLg6X47CkBN+qv5/1i0ZZT8vCf9yzh7+XlvJczZzJOYUfdiLRJhV00fiIaWJzDYPiqX1/dXfjn0yaBPrW3m0gVEQ/+Qn7+Zvf1EOX+vt1F5jLhV//zW/yvs9/nmKnJLmkyyj1ml54ged50iQ6ESZPzq/TKxqlAHnoEM/9lCn4dfn6IwKKKC4mvpDPSQvxrl1c79q13IfDwWdCIY3cs0skgj6JRpPbl6VN2D5oxS4lJZyzuxvE+LZt7OsrrlDq/PPT+6ChEDFYKERc1NSU2R8sKdFUYX5/bl3kdHLfqS3Oqd9dIoFftGkT6+V241Ofcw7fhQy3PJH5jIJuySwOy7JO9DW8kWTMFlvaUkIh3aYpAytOVNA0mrJ3L4igxYupTIgiEufa50Ox1dZi2JxO1qCzE2U8fTpK8LnnIAxfuBBya0kyut0YsNQ1amnBsbYsAr7GRiq1+QTefj/JBCEATq1QZRO5rkgEoyjoPMvSrUOWhVFqbMz93cq0saNHUf6nnTY8pXzoECjQlhbuRYLf1PPG4zilHR064dDQwDlTq+0C1Xe7NYKyvZ3neMaM/NozTRMHRBLokydzHmlZlomr0SjfgxjKUaisT+DdpJQaQ110Kkg0SvtMdzdOr30gx9GjFBWmTEnmEBRH+fBh0HDV1TjCmZC1wpU4YwZcP6Wlemq7DDywS1sbiTKvF5TfmWfmfz/hMITUt93Gfvv4x/OfJm9Zml/LzlVkWejSb32La7rhBqU+9rHcesWy0I39/azd1KnDC1ZlivSTT7JON97IZL50OllaI+Nx9IPHM/6BcXs7a//881zHokUkXObO1UnNqqrjqrAXdNEpLrt3s8eWLk1G93Z3gyQuKaHgYSf+7+ri2Xe5NOewBPyRCDpOEkZtbeiGsjL2cS4ETjRKcHzgAOgfGXp25ZX5JRNHOn1ZeKUDAf4v6JTyco4ZjWp0ZknJ8fu8lsXxHI70PkNvr0Z1u90kUy+9dGjA7vOh759/nsKRZbFea9bQ2bJ4cfY1k8naHs/IpyEHAnzPLS0UMZTieZk7VyNORUceRyGjoItOcWlu1sNK7BzMwaBSX/wivsK3v508abi/H131s5+RcPva1zRnayCgCwO1tbz+zW9iK2+5BbDHsWP8f9q0ocm9WAw+9o4OEvMLFmjEci6JRNiPBw6wHxcuJBbJV2/093Ptbndyd1l/P0nNgQHiszVrkmM/QRg7HMmovoEB7tXp1F0J9s8kErw33f4MBonRNm9GZ513Hvoonb4wTfzYri505cyZw0NdBoN8D/mssZwvHuceBJXY369blvv7Wb9LLiHZWlzMdY2UxuIfMtF10YSQQhJxfGVcFltIa4VnyrJ0q0iuCbsno3R2QpQ/eTItNnYj0tKC8fD7tVMmClaSS/X1KNInn0TBLllCa45Axp1ODRe3y44dcI7V1jLds6oKo5lPhWpgQLcZNzaSxMw3eI3HuWcZvCKGJBgkYSr3Onu2dsCzfZ8CtRdeROH5mTQp970cO0aioLkZg3HRRSQf0t2LZWlErKCLHA7d3qmUdlLLyzG8fj8BSGmpTiS2tREM2Ae95JJoFIPo8/F/CcplyrLTyWuStGxqOu5kwgTaQWmloPgziGUxQGXLFhB2dtSzzwdysKiIqex2B83rBd3xox/xjH3jG5mnk27bxkCTOXNI6EkCUYLL1GfzlVcY7lJaCrIxdZpeNvF6QR8++SSO+2c+k/m6UsUwuK54nD0l93vsGAnNp54Cmf35zxOM5mp9s09fliA/03T2VDl2jPt44AHe//73K/We92R2MiMRXUSQQtp4iWEwxXXzZtCfJSW0WG/YgB5NJHR75ihQkBR00Sks7e0gU+zJHqXw777wBT3hVOhVXC7NHSxJ6vp6naiTieQlJXr66O238yx+4AO5ESaBAAnERAJfqq6OJOef/0yxcfp06AxWrUrvl9jbl93ukRX0EgntayQS3KckFMvKRrdQkC6R6PfDM/b3v/P3iy4CFZ4pqBZec+FZ3LcP/3LXLnyX8nKKsmecwfCWdDrB50OfVVQMj/bBsnTL8uHDfH/TpqG3p09n/UQHF3RRQRdlk44O0LVz5iTzQxsG/k5zMwOYli3Tr4VC6K///m9Qb7feqjsVYjGezdJSdFt7OwlIpUhIzpxJ8jEUIhZK9RMCAXhgfT7OOXUqezAfxG44TKKvvZ3zrFiRfyJNEH/SCSbDHBMJ9vSePdzT2rUabZkqiYSeSO92E6N5veztxsbMgz0TCfSQ6LhoFD/jkUf4ff166Heqqzl26nGkUyYaJaZubBy+vpT8Qmnp8IoasRjI+fvug/rBMBg4eNll0GFJ63N19fCpbdLIRNdFE0IKScTxlXFfbGkZER5FcYbsCcWTme/E74csXymlPvKRZCetpwdnrLsbA7N2rXaCgkH+XlVFUL55M5DpFSuolotjZVk4VHZFa1ko5M2bcdwvuojXUweaZJLOThKILhfBvh0dkEvCYZJhDgeGSdqCW1sxdsXFHLOhQXNgOByZK/lSKSsu1vwgiYSekJap0tPfzxrs2ME1bNwIn0YmJzMS0ckGj0e3LIvIJGR7YlscV2nbLinRJMZtbRyrqSn3mhuGrtQLT6IY4tT2dL8fh6a0lGMXKu4FSZX774dj733vU+q66/Tfo1GQgwMDoN9kqJNSPP8HDtDGphSV9ExTwZ9+mqEoCxfCZ1hSwjETCZzY1L388MMkz5qamHKcLx2CUlzT976Hg3r11dzTcIoZ/f3oidpazWd4xx1wHikFgvLaa9mzoRB/y0QVEI1qBFFlJfcdj7N2LlfmfT4wQIv03Xdz3He+U6nrr8/MESbDChIJjuvxjJ+N8/l0y/LAAN/V+ecTNCUS3K9QkoxiUrOgi05RGRggIK2vTy4cGAY65tVXlfr3f8evkfbmeBzfJxJh39qnHEtrrPDw7dun1B//iI9y/fW5A8LeXpJRxcUkoezvtywS53fdhQ80bx7FWkk25GpfHonE4/gyg4Mc1+3G5xtt7izT1FNQH3qIIDgSgXft6qsz62TTRC8KEjq1RTgWI/GyYweFIknuLl9OQnHFiuTEidfLeYUbOpvE4+j/PXs0L+aiRSSApMBeVja8Ym0eUtBFp6j4fHRy1dYSa8nelanwjz4KB+LGjfozhoEv/9Of8ix+9rPwtiql0XBKEYO1tsKRWFJConHaNPSf10s8kZoY7OkB4W+aJKLKy3UhIZ97efxxjr1kCZx7+SbQDUNz8E+apPd+ZyfF4UAAXb1yZe5jCrK6/x8jORoachd4TZNrsCwG2DzwAPezciWFDOmaEV3rdqNzEgliH6GbmjUrfyRhOpFYLhN3t11iMYrYmzYBhHG7Nc94TQ3HKSrCLxJ6jVGQia6LJoQUkojjKyd0sS2LQE6SOcKv4HbrhOLJxIESi2kuwhtvTIbOh8MMRzl0iGTR2rU6KIvHMU7SKvfIIxi/NWuAdyulCXQlUScSj8Nts3Mnx9ywgXVqaMgPVt3SQrKvspKW4eFAsQU9INddXIyB2beP+50yBcfc7hybpq5M2RNihoFRCwRQyqktg4mETlxUVGhjEghgmJ99lmfj7LNxCjIZCdPkOIEA5580Kfc9C1JWJj3Lc9nXx3UsXsz9tLby3qam9C2SkpQQlKMMZpCpzGLg7CgMucf2dgz8rFkjTiROdANVUPxpZPduHN3Vq2m5sU8VvuMOHOH3vndoQH/gAEjBWAz0Yuq0QpEtWwiyly1T6qabeC4lMEzlfTFN0Ir33ktA+ZnPDE+fPPIIzn1JCZ/NxlOYKpGIHgQ1aRLXuX+/Ul/5CpX2s84ieWFPlErA7HQmX6dlaTSyyzV0MEIsxl4uLU12ukMhKCxuv53PXn45diDTEBhJUoTDenDSeA0aO3wYvbltm0ZoXXABuszv1xX2qqpRDdhFCrroFJRIhL1WWoq+kD1jWRQVHn4Y+oALL9SfMQyexd5e9snUqdovkn0oPIi7d6OLpk4F1ZvruTxyBD1XWUmSK9PeMgxQJps2ERwvX07hVgYoDKd9OZPYE5JOJ8eMxXSrs2XpQXqjgGhRiQSow7/+leOvXQutjr1lM1Wi0WQkdC6aB8MgwN6xg2Ts4CD3tmQJ9mj1avSHcBtmKkR4vSQOpRNm8mR80cZGPicoUCm2OJ28Z5SKGgVddApKPM6etiw46e17/557oEK46qrkoqtSJNt+/GNahj/xCQAZIkLXNHUqvv53v4teuvVWPV1cYoJUIMahQ3RBlJcTo8l+zwdJ2NmJH2YYoPbmzcs/aRWPg8aMx9FnVVXsqZdfJvarrKRTy15gzib9/XSvKMUezQfVJ8Pk7r2Xzy9ahH6dO3fo+2S4VChETGwYXHe6zruRiPh1kj9IlZ4eCi4PPoheamqCembjRs2L7XTyvdXUjHqxd6LrogkhhSTi+MpJtdj2hGIiwd9kGlt5+YkleDdNpe68E6fquutQlPbXdu0i0dfYCDeYOMBS3TJNFOVDDzFIZf16pS6+GGMhBL/19ckOpt8P/2FbG9wMp52Ggkx9XzoxDGDafX0o6YULh5eQFeJrGb5imhilY8dw7hYuzGwgDUNX94uKcFzFYNTXZ/6caeoEhsNBJXzrVgzkunUY/GwTAWXqtGHo6v9wK0iWpROK/f0k94qKuF+PByNUVESyTyaQhUJ8f5I8lSnLqevt8/F9WJY2UvbBNG1trJkce5gy0Q3USaWLTgYZGKC1uKQEHkS7Q/fgg/BZve1t7A27tLbSguP1kmSzt/nY5aGHcPxWrYJ3rLhYI2hTW9QiEYYlbNvGOT/wgeFNYP7Zz0hqnXYaLY/DQS8Gg9yLy0UCMZEgafHrX7PPP/959GO6vR6Pc/6SEj2hz+fj32zTlyMRPiuDBP76V6V+8xu+k40bQWzOnp35mqVF0zC0DRtryo5EAtuyeTOBQGkpAdb557Pe0n4o1A4ez5hdU0EXnWJimgTe0ShJOHuC57772BtXXknyzy49PdjQ8nL8CI9H050IIs7jAf32l7+AQnvf+7InkCyLAsLRo/gTufj7RGIxgvVNm/Ct1q0DRWznlx2JxOMcWyl0TKrtNgz0l6AThVtrJBPPTZPkyZ//zNouXgyFgt0fTRXpuhAk9EimG1sW/t+OHeiYnh6+wwULSCbOn4/NkMKTZZHc2L2b76moSLecTpqkp9JLF5JwpMfjHDsex9fLB8WVQwq66BQTy+I57O0l1rI/Iy+8QKfD+vXwNNvt2+CgUj/8IT7MTTeBkrO/NjhIcrCtDfqYujpamCdN0h1ZZWVDueplWFFDA+cNh3me0/FIp8revQAkysu1nc5XJK5SiuJpWRkFmx070EdLllDsyUc3GgbH8vm4Fpmkng0ZaFno7b/9jYLO9Okk5E4/PbN+kaExg4Osz5w5x8UxmFYCAT3RWibKv/Yaev/pp/n/mWfy/a9YoSc8K6WprZTSVByj6CNNdF00IaSQRBxfOWkXOx7XCUW7gyYJxfEeq/7wwzhvl102dIDAwYNUoerrmeCUSjQeDOJAP/QQicZzzyUQdTi08aqtTU6QdXURJAcCVJinTmUtJk/OXR0KBkkghkIo6aam/O9TuDWCQT1huK8PxR+L4eTPmpXbMCUSOLx2NKO0L2cT4dN47DEC+XXrgJhnq6QJT1ooxDNSVzc6iB/L4rvZuxeDPW0a31lfH/fR2KinJbpcfC+5+D1lQmUgwDU2NGhEQDiMAyNJymHew0Q3UCetLjoRYhgk2/bswfG1V3VfeIGWkQ0bKETYpa9Pqa9+lWS/tBWmimWRPHz4YfbXP/8zz1wkolvK7K06fX3wCx0+rNSHPoQOzFeOHGHQyeHDIAOGk3xUiusJBtlvtbU4yF/9KonSK64A0ZjP0AWhWZACRUVF7v0VCKCzb7sNtMDatbRHCQF7OpGiQjSqCwpjbau8Xojcn3iC36dMISARhIbPxxoWFWmU9xgnNAu66BSTAwdI7px2WnLQvm0bLX9vepNSn/tc8nMVDOI3uFz4IaWleh8K2t/tpgB7772857rrsu/LRALfpr8fv2bOnPyfZUHCBAL4GEL4f845BL/DTViZJvcg6MNcwwIti3MPDnIdRUXsxZqa3LrIskAX/fGP+AizZ0PbsGyZ5pRODdzlfkXnjRLHoLIs9LogFNvb+duUKSQJGxt1YF5eToJzwQLWR3SjZemOo9Q1syy+30CA99gneI9ACrroFJP9+9FHS5cmxzYHD0KvMmsW3Rf2Zz0SAYG4ZctQWhhJEFZU8Cz/6Ec8y1/8IjFZPK6nHU+dqveZJPQPHAA9eMYZerJ4XV12XSAFv9dfJ2688MLhIW/9fnwSiavicSaxHz3Kud/0pvz1WTjMfo7HiUcmTybWCwYzczcfPEjycP9+rv/tb+f+pZswFfAjFFEdHfxeV8d5xoq+TPTP9u34yi0tfL+XXILfOGWKHn5qmnpAn1y3UHEopQevjIJMdF00IaSQRBxfmRCLnUjohGI0yt+kojpajlE2efFFnNwzzxwaQPf2oqTKypR661uTE4FeL85QdTWtJ6+/rkfFK4WS7ulBudkrUPv2KfX733OPN9yAEg8E0vNwpEpPj56UvHjx8PgPpeU4GuVzbjcGsreXa1y4MH/OCuEeCQa5brvxTSemiVP6yCMkLWbPpnVZpnRlUuJ+P4bbsjCaYxEgR6MkQaJR1kEg/04nDvLUqdmvMZ0Eg6xrIsHzIZyNkQgJEocDZ2gYE6snuoGaELpovORXv4Jz77OfJSEksm8fLbWLFiVPhVeKZ+qrXyXp/cUvpp+WbFkcd8sWWoCFPzAWA2VXUpKclGtpIYEYCpEkWL06/3t4/HEQiE4nXIVvfnP+n7VPYBZOmh/8gGufMQOE5fr1+R9LONmqqthv2XSRZVGx/ulP0aULFyr1L//CembTLTKswDTRnWM5MEyQQY89hn0yTRAA55+vEwuSPFRKJw/HiYuxoItOIenspF1v5kwSRCItLXrYwDe+kWyrEglQaPE4CSTxGySxJZx4zc0k6hcuRJ9lS7hLO3UoxPuHgyC0T192u7HVXi9+3RNPoKMuuoiCZT7t/TKMxeFIPywgl0Sj+C1+f+5W5z17SB7u2YOv8a53JesiGbRSVKT/Jj6zYeji+1jpou5u+MX+/ncQP0L5ct55FLlmz9at1NI+ng8aMhjEF3Q4dMJhBFLQRaeQ9PSQGJoxA3sn0tvL5OSSErow7Ak004THftMm+EJvuil5nxw9yv5tb8dfaWqiu6GiQvMNpnLVR6P4UJ2ddHKcdhrPqsvFs5ptr/n9dJG0t6Mb168fnv7o6+OnrIxrOngQcIpSFI0XLsx/r/f1kUAtLka323VfMIiOq6zU13f0KOu4cye+1Nvehl8nrws/on3QSjhMTBMM4ns1NbFOQq0w0mFWmaSrC71+773Ymfnz+d7PP5/nIxBI7kbJxFcrHP+iW6Wz7jhkouuiCSGFJOL4yoRbbPtADPuEXSFTHe2JlwcOkNBbsICA265EIhHa3OJxlKk9YRcOY2BKSgim9+2jCiKBbySCspMpYKL0n3sOJT1lCglE00Th1dRkrywZBtWkjg7OuXjx8KdUdXZqjorBQYIEy8IJbGzM3zAJzF4GM0yalNlICiT+wQdZj8ZGHPn58/XEQ0kQpnJF9vVpNENd3di1u0tCY88eztvYiNGRVoL6ep6LkhLdypwP+sg0uQefj2uvr+cZjkYxupZFIjHPZ3qiG6gJp4vGSp56iiEFl18O8k2ks5PkYl3d0KnwiQTV95deoo3HTiYuIpQMTz/N69dcw54WJG9REftVdNy2bQxmqaykwp+tfdcukQjT6//+d/Tmpz41PDS0fQJzdTU68VvfYq+8//3wruUbUEr7stBjeDzZk3svv0zy8NVXSY585CME7DJ0Kd3nhOMnFuN9Hs/Y6aJ4nO9l82YKG2VlJIM3btQcb1KFlwmxVVXjzi1c0EWniPj92OeammRahL4+igpFRXCH2QsPMu3X62X/p74WCPAcb99OAm/5ctqKsz2jPp9OUC1bNjzUYK7py93d+HHPP89+uewyir3pitORoOunAAAgAElEQVSGgX02zdEZxiKtzjLVWYYcVVXhy/3xj+j0mhr09XnnpV8nGbQiaGtBQo9l145lkQjZvRvbJFxifX0kNtrauL/KShI+a9fyXQ/neuztzSOkqCnoolNEQiFaf8vKtE1Winjj1lvZx9/+9tDpw3/4A1zOF1+c3OIswywTCWKdX/0KffXZz+oBi52d6A47V73Px9CWQACgQ2OjHhY5eXL2RNORI+xnr5c9sXx5/okpuR6/n71QWoov0NcHGnHt2vz5Vg0D/eL3sz9nzBiqV6QQqRT777776IIpLWUtN25MD3KQ7iyHg+9EdMPMmcSCIqaZzB9/PHrUskhsbtqk+fM3bECPL1qETo3FtJ4tLR0aU2YSw+AzlnXcqMSJrosmhBSSiOMrE3qxJXiThKJM2LUnFI9HMXV1EQzX1tLGZ1c4hoFS7e4mOWg3XFLdSiRwkltbSQjIIAF53enUhLKmCaJx61ac9fe+V0/KkonOmUT49Pr7UYzD5ZkIhbgPaa9pbUXZ1tRQ1RrOsfr6MKglJRg2l4v7dTqHGqmWFu758GESaJdeilGVdifT1DyJiQTrUFaGYfN6eV9t7fCSpcORRAJHQYatCH+l8BYK748McAmHk5Gywq+Ry1BFIqx/PK5RqYbB92AYnCuP72CiG6gJrYtGS9raQL3Nng23jzgsfj9DSZSikm5HJFsWgfzWrQz6sHP9iJgm/KrbtqGvLr+c59k00RuWxTPsdPL7ffcxgXj+fNBG+RCEy/V/73s8u5deStvQcCbuSXHAsth///VfVPwXL2awzJIl+R8rEqH67XBoFF44zJqmJub37weF8Mwz6KIbb2SNiot14UoSiXYRHl+lMrf+jIYMDFCMeuIJdNK0abplWTjIgkF0o2nqlvTxpv34hxR00Skg8TjJ9KIi7LLookgEndDZSdA+a1by59ra8G+amoZOhA8GOe4LL6Cvli1DX5WUZE4idndTwCst5TryHQRkH3bicuW2w21tIJ1ffRXf58orSdCLTozFuPaiIo41mol52b+DgyQaHn5Yo32uuoqgPR8/IhTSwwmP1//NJMJrtmcP1+zxEKgvXMg1Cnqrt1cnGffuRS9VVoLcOuMMdHk+Abm9vbm0FP9oGIF8QRedAmIYFBMjEWye+MOGAZ3CK69Q6Eylb7nvPtqYN2xQ6stfTt6zQiu0ezeJxiVLlPr0p/U+6+nh+W5o0DpHhqA4HNjf2lqOU1SUve0+kWC/HDzI76efjm+V7/4UzsJwmHMePUpnW0kJcWWqDs4m4TD7MpGg8JitW21ggLbl55/nXIIuzpWsHBjAB5RBSo2N6fesJBJFZw1XX4XDFFQ3beJ81dX4nZdfjh8nideBAU2fUFMzfD9N/FFp13a5RoRKnOi6aEJIIYk4vnLKLLYMxJAx7wJBloTicCsdgQAQeNNU6sMfTm5TtiwMyf79tCbbA1upbvn9BHzHjuGMinEzTf5mGASCLhdO2Z13UvE/6ywUYCCA45Ta6pwqPT0kO8XYTZs2PAXp9RK0l5RwHR0dGMJ585KnT+eSRIL7CoVwfKdM0UpW+BEFDt7RAfJwzx7e+9a3ws2WqpTt1XWvlwBZpqZ6PBjTsUDYCG+SnfhbJqsmEiQ9YzGCJBmc4/FgKE1TT3kWuH5xMc+gEP2mE0E7Dg6yDtJOLoZ45sychnuiG6hTRheNVEIh2n4DARJa4tzFYgwu6O2lmGHfl5aFnrr/ftrcUgcbKMXz85vfgLJ7+9s1j6Jwfsbj7CWXC730y18SxK5fD4own2qtZeHM/fKXPO8f/GDygKl8RCYwK4Xu/PGPubaPfYz7yjdwFLRTNDp0+rKgkmQia0cH6/fII+ja668HFZW6T+NxPc3Z7daTRO3DCkZbF8kAicceA71gWdiRCy6gfco+lEnQlqWl2KrxmgKdQQq6aIKLZRGkBgIk+sT2mCZB+/btcK6uWpX8ud5eujcmT06eGK+U5ufbupUW/DVr8HXEP3A6hya9W1tppa6u5jryTYonErqgN9x24z17SCYeOICuffvbSV4qxflLSsYmOef1ErA//LCe1LpxI2sprc65kNDC9zoWxYP+ftampYXrmzqV4k5Tk74uoXSIRnl2ysvxSxMJPYBi506eA7cbfbZmDeuby86MsL25oItOAXn1VWz1mjUkh0R+9SvoED7ykeSp8ErRYv/Nb/Jsfec7yXtCJi1v386eW7mS4q3YzYEB9qOdq/7AAYqMlZWcq6xMDxiqr89s/30+dGlnJ3t44cLkPZNLYjHuXcAYzc1c/5w50MsMg/IoqX155szMeygSAW356KPs5zVrKPbkigmlI04Sq7NmZQfAyGeEIzbfROLRo5rXOxgEQfqOdyj1lrfo71AoI8Jhfioruf7j6RIxTXxBASwVFw/LFkx0XTQhpJBEHF85JRdbKtCCUhRotVQicvGxxOME3V1dBO32arpl4QC/9BIOUCovlyjpRx9Fgf3TP+kko2XxWjRKks3txlD99rcoxbe/nSpbIIAS9niSDaZdEgkNRzcMnCpJPOW7RtJKaxhcayiEwzdv3vCC0FBIJ0anTEk/QTke554ee4yqYVkZlbyzzsru8ArHhs/HOaS1QIacjJaIIy6JAWlL9HiGPiuGoTkSJXHY2anbAtIdU/iABM2UKbEdi+GYRCK8LlVHGWqTBXU50Q3UKamL8hXLwuF99lkcXuH7MU2l/vQngrdrrx06hfMPf1DqjjtAF95889DnKR5nkvFrr6GL7G3OMgm9ulqT3n/3u+zPq68GDZ3PHguHQUlu3Yozd8MNPKvDSSAKT82xYxCbv/wy5OBf/vLwWqETCa0TZZ+liiB/77hDqXvuYU++5z0QrmfjnI1G2Yeik2RYwXCc+HwkFqPyv3kziAGPh7YpSSjY78Pr5TuWNsixQkIOUwq6aIJLayt2Z/78ZB/k17+mYHHTTegcuwiqp6wMn8duN+NxXn/0UXgNZSiUnZsskdATMaUlurMTn2LRovyRHzJIKVP7cj4ig0z+9CeC4tmz4WyUZOJoSjjMmt5/P9d93nno3+pq3XURjxOwVlfzIwkL4RpUinstLdX+7mjwjJkmCM3du9GZxcUM+UodsCMcjPG47gYqKiIZU1SkOZ/lva+/rgezBAJ858uWgVBcuTJzwTSRwD+KxfJuby7oogkubW0kzhYsSC5MPPAAcdoVVzAczi47dughK9//fvLzFI2iVx5/HH20bh2+kySXJP6qrCSmEl2wcydxx8aNPOM9PbxWX58+MSUDiFpaOGZtreaVzTd2CYXQwxI/tbcTA6xbNzyQh719uaqKmDZd0jORIPn64INc8+rVxKUej6YmyJQsHRzku4rH0dnTpmkwT64CqyQSZUBVOpGp3Js20VFTVKSHYi1Zotc0HtfJQ6cTfSkdbEqNDr2L2CsZIpPn8Sa6LpoQUkgijq+8IRZbEorhsObGsicU7QrAsnAcX3+dwPK005KP1dwMrL6piSSY/bOBAMmlBx7AUL373VSdRAQ+LxOWOzowgtEoAfvixXrYSlkZCb10xiYY5LOCqKmowEnLN5g1TRxCGUoSCvHZBQuGN4hF7kmQjNOnp78Gvx9+tGeeYb3OO4+ffCrJ4TDrIQNISku101lTc/zGIB7XyEHL4j4qKnJXxKTdOBIhcWgYrGlNTXrjbpoaKSuJbeEskoSi3emXoTyWxX0PDvJ9NzZmbA+d6AbqDaGLMsndd1NVv/FGAkiRRx5h31x66dBBKZs28Zmzz6YNJ9WRjUaV+vnPCcavvZaEvUgwyD6qqMBB7O5W6utfx2H96EdBu+Ujhw/TcnzsGFxiF1+Ms5wvBYJlaU6wv/4V/tmyMvjWrrhieIWC1PbldMWJQIBz3H4763PVVax5pmKNXRIJ9F00qnnLRpMQvLcXhPtTT3EfjY3YmPXrk4s60SjrFYvxnVdVDS9hOw5S0EUTWPr60BlTp4J2EXnoIQoSl19OocAu4TCfkYFu9kBQeJ3vv5+21nPP5blO3duC8ojFOJbfT/IuXy5W+7TkfNqXs4lch2EQuN5/P+uydCnchPZ1OZ5zPPooSCi/n33+znemHxgjrc7SriwDBQUNYy92SgeHfdDKcCUS4TvYu5dzVlTwvS5YkKyLhOpBOCdTKR3icRKJTic+arrvfP9+1nj7dp10XLwY9NOqVUP5L6Vrw+/Pq725oIsmsAwOUlCbPJkEszw/27dTbF27Fg5Dux1+/XUGo0yerNR//meybZdk2v33ww199tkURCSOEK56t5v4yzSxx4cOEcsJaKSnh2PV16f3M+JxCr9CzVJdzfHsg6lyideLX9bTQzLSMNgXdmqJfCQU4vOJBDo9HTLQNKGYuPde4o7Fi+mgE90rOryoaGihNR4neTg4iF6aNUv7I1JwdTpz+0qCHk9NJIZCxI/33MN91Nbia6bOIRAO/WBQX6d90KaAUZTKPVwvH0kdvOJynfIFjQkhhSTi+MobbrGl3UKqpkrpaXHl5VSntm4lGE6dJnrgAAatqgon2F7disVwuDZtQrm8971UbEW8XhwfGZDS3AyKyOPBIZ82DUe8u3vosBW79PTwI7xeLheKNF/kYCJBFa6rC6VfXEwSbM6c4SXk7O3LYiBTlXIkooPiRILq2Xnncf+5jKBhsF7BoE4YCg+RwNSFE3EkrTvhMMe2tywPtw1IqvTBIAnURAKnYdIk1iOTCFJWkpeCapK2aUHKStIiGGS9pE1/xoy0aM+JbqDecLpI5JVXlPrCF0jyffGLyY7yvfeCyEudCv/oo0r95CegNm65ZShyIxxmQMjhw1Tp163TrwmCze3mOdq7l8EliQTOdz5oG8vCsfvNb9g3N9wAgnk4fDOmyR5/6SValw8fBt10yy3DK2bY25elCJCqi2Ixpf78Z1DfPh9J0uuvpxiUK+EpVBnSciMon9FoYbYsUD6bN/McOBwEzhdcMHTKYjyu0aNOp04ejtXU1eOQk++KhidvWF0UDtM66PGQMJNn66WXmMC8Zg06InXAXFsbSR3RASJSJPjrX0HkXHghScRMEgpxrnAYdIkd2Z9Njqd92S72RKTTybHEFm/ZAsea30/y4uqrh4cGsp/jqaeUuusu7Pvy5RSs7f5iJpEBeL29euBcQ4OeYG8/x0gSib29JD8OHeIY06eTUEhFT0mXhd1/ylR4jcXQ8y4X/lqm67EsbMCOHfx0dvL3+fNJIK1enexXhUL4W0phLzIUUgq6aIJKNKqBBxs2aN/80CEGqfw/9s48TK6yyv+net87SSfpTmffE7KQkASQEEggEGSRyCZuKDq4gArjIDoyoo4L6rj9ZkQFVBQHQSEaEEUkkQQSCJBAAiH7vvS+1r7f3x+fnHlvVVd1Ld1pUrHP8/STdHXVrVu37vt9z/me7zlnzBgSn/Zkwf794FNxMXhlT0Bof7xHH6WabPly/Ba7gq2x0fSqDwTYl1tbWe+zZ3Pft7WZXn+J4q7ubojMYNBUKgwf3rM/bG/W1gbZuXcv+FpTgx+YqjQ40XFaWrh2Y8b09HUsC7xfvZoE8vjxkIfx4hm9Pm4361yP09rKeer06kRxqw5aSaf0V3G8oIDzfvJJ/EyfDxxauZL9w47vSg663fxeWZk8wRsOx5Kh/ZEEVlWiCNe5F58w17EoJ2yQRBxY+6e+2KGQIRSDQUr+nnsOsL7mmtjNSZ0bhwNysbbW/C0ahRR8/HFA5CMfiS3BU3VheTmbyYsvkgkbM0bk5psBPc2AFRbimMaDWzhMFkazwpr1qKlJn/gKBHD2Dx0ygxSmTeu9hC+ReTxstpaFUxdPaIVCbP5r13K+8+dDyurAEHXQk4Gt243TqRm8qiozRVaE14XDPCcaTX/KlvYr9HjMOSQrWU7XolFKDHTYgWbeR4xIjwixLL4XJRR1M9JenuXlbKBtbUY1WVhIcBWXoc/1DeqfEotaW0U+8xnu8//3/4xztm8farnJkxlOYr8/N26kREcnCcb3TPV4IOWOH6c3ob1vmd6fSsxv3Mj71tTQ4yydoN3rReG4cSMk5oc/bBpWp6v+CYdZNw88QGA+ahTvf8EF6b3efhwtX9bJy3aLRFCG338/Tum559JjceZMXqt9DpOdt665aDTWeVblcqrWGMksEKB0fe1anPeKCpzjZct6Bgrq+Hq9ZvhVPGlwitmpe2bp2T8lFkUilBpr438NkA8dIslRX0/LBXuSIBg0QzTq63uq6Lq7mTB85AjKkfj2L3br6sKPEiFg1B6AqXoQ9kf5sn4W7StYVJTYr/L5UIf/7W88d8kSyunSCe4ti8SQlkhPngx5OHt2euenJcORCEF0KAQuJCt1tvtLvVk0yne8c6cZHDdlCt9BvG+nFRX2YQjp9BvXxFVRUXoTlrW3uBKKhw/z+NixEIoLFpgKEC1vrqxMSFIOYlEOmmVRstrdDWZo9U1HB0lGhwMlon3dHTvG3yIRSpntSRARCOcHH6Q0+corY9u16DAgJcO09YLPx76sgxTVDx82rGeyVKeVHzyIP1FVxZodOTL9ZINl4Q+8/TaYWVFB26wZMzLb77XdldvNGq6v74mLe/ea5E5tLQTd/Pm9v48mDgoKOE+3m+9m/PjefT/7dOPejh+N4hf98Y+UjxcV0edw5cqerXyiUXw/p5NjV1TE4l9v56JEYnV1//hRaaoScx2LcsIGScSBtcGLfcL27EFVM2oU5TpaJlJWZhpK+/2Jp2qpqrC0lKDdnnHS/htFRRBLTz1FObRmnwsLTXY5P5/NJh4E3W6T7ampMc5hJgSix8N5Hj2KEzdlSmbNfUVMH8X2djaM+vrYTFw0Sobv2WfZ/GfMoAwznpjQRurxQKtKPr+f48d/Pp3YrEogVTKFQmxkyfroaAZN+xLqYJZMpk6nui5Hj7Kh1dYaxVBtbfpTbdV02qtOsRThfEtLjXqyrY3HJkyIcaJyfYP6p8OiUAgS8PBhSD+d8N7SgrM7ZEjPqfBbtuA8jxkj8vnP91SIOJ2Qgi0tDISyB6iRCFimCt4//hHcmjkTkiCdZML+/RCYLS3g15Il3P9Dh6avhg4GSaL8+Mes3w98gIEyqSb+xZuuByXW4rFi3TqRn/6UAHnWLPoeLVoUewwlIEpKYrPb9mEFmmxI9HctLUwXR1taIA43bOD8x49HEXH22T2xPBIBUzwefq+oiB0ScwrbIBbloO3ZAz6ccYbBgs5OWgtEo/RLtSfGQiHu57Y2sGrMmFjfxeUSefhhfJdrrkHFmMyamlBEl5biG5WWxjaxT6Tw0Mme6ktkW74ciYADqpYpLk69nrU8e+1a1uPy5RATyTBsxw4UUHv34je9732s+XRwQ5XQgYBRQNuxIr7UuaLCJHR664/o9fKd79nD8auq8NmmTOmJRXY1tvpQmSZQfD6uW3FxzxLlVNbWhkJ182YSbJrAVoXisGHcb+pn27B6EIty0FQNe+aZJp7y+yEHGxtJZthVhi0tKBDdbnyqM8+M9UfUL9q2jbV33XVm7dl71dfVca89/zxr4OKLSdJq7BMIcK/Fxw7BIOfc0cH9V1LCuqyr670qyW7hMBj46qv8f9IkMCJJ+6Kk5vGY8udRo3rGIMeO0UJh+3bW4ZVXIoxJZy1Ho6y/xkZDHqYrlrD3EIw3t5vEzFNPcewhQxCeXHVVz+unlSfd3ZxPWRlkYCZVZJqA0XYw/ZWQjURiCdO4z5rrWJQTNkgiDqwNXmwhk/nAA4DJLbcARtq/TptKBwJkQubNi1WB7N5tSvo+8YlYhaKW/GrQ/rvf4bAtW0bZnsMBmDU18f/4yVGWxbkpaVRbC3iqAjHdkp3GRlMiNHEipEGmPbTCYTJPPl/P8mXLQsHwzDNs5uPGsTFNnpz8eEqQ6WfQ/owOBxtIso0znkjUcim/n8+kwY+WDLvdRl2gyr6TMbnQsgiWurtxOlQhNWpU4kEz6ZiqoDwePoOI6UHU1sbnmD79/zbZXN+g/umw6Cc/IRD9yldM6wS3GywKh3tOhX/7bcp3Ro5kavLYsbH3cmcnjnJnJ30NZ8wwf1PCPRplbd1/P47yhReihEy1JiyL9f3rX3NOd9xhegYNG5b+mjp2jABg3Tru3f/8TzNEJl2zLNZWMEigYO97I0Kg+ZOfcL0mTEB5uHRpckfR5zODWPLyDJFvWQQLyZIN4TCvLSjoPSFhWTjsa9eCkw4HZObFF4ORifqEud18RssCs/qjGfgA2iAW5Zg1NJDMGD8+Nmj/ylfMmrWX2+qAi64u1uCoUbE+hduNX9TURNB+5pmJ31dLWA8fxkeaNaunD6QKD/v05v4oX7YsMCQUYg1mc5y2NgLyl16COLjiCkq2ldA8dAjycNs2cPK668DcdNeyVstEoyaZmAzHgkH8D6fTKKerqsCP/HzzupYWCA+tSBkzhr2ivr7nsbVSwt4zui9tHLxecK20NPMKGDWnE392yxbIWa1GmT0bvJ88mb3pxP04iEU5Zk1NqAXHjzdDKTWJsXkzLV/OOss8v7MTArG9Hb/kzDNj4wefj8TrW2+J3HQTqja7tbbiY48YgRhg0ybup0suMUmBjg6OM3Roz9ipq4v7UIm/UIh7vL6+Z5VIMvP58Il27+Y1552XXnsDu6lSsqWFdTp2bKxasrUVku7VV/kM7343sWgmQpTDh8H24mLivExEEkok2getHDpEyfJzz4Ezs2fz/SxebJJIdlW4xwPGhcN8tiFDMhsCardgkO+psLCnD9kX08+pbaoKC/8vVs51LMoJO61IRIfDMUNEdorIpyzLuv/EY0Ui0ikiZSJSZ1lW84nHrxSRP4vIJSLyuoh8UUQuFZFJIlIkIjtE5EeWZf1v3HtMEpFvisiFIjJcRLpOvP5LlmVtS3GKp8/FztI8HgLqYFDkU5+KzZC2trKZeTw4PLW1RglSVgY59+tfQyB+5jOxG0Y0aiYWl5SQkW9txYlUNYySjCIQiHYwD4UgpbxezmnYMNN0evjw9Jy4aJR+F7t3c74LFmTWl8N+jVTqX1sb6/zt2wcRcvQof7v88p5lBIlMgwPNCGn/kGHD0iu/ie/3o4qdggJDAmvZj73P4Mk0LcHp7ORzhMOc0+jRmWcT401LmXTSc2cnBHc0yvWeMaP3DWoQi04te+45FH3XX496WYS18NBDZMU/9rFYBe/+/SJf/Spr7/bbCfzsqpe2NpR9Hg9YZCfwLcsM5ikoEPnhDyHY3v9+GvmnWqtut8h999F4e+FCCEpNAqTbk9SyKGv84Q9xFj/9aVSWmRL6vZUv79qF8vDllwkiP/lJgvpUeGJZJkiORnkPxY1Urw2FTEl0fHmTz2faOjQ3890tXcpPIiWOZfH9KQlQWgphm21/t3fCGhpE6usHsSiXTHt41dSYQXCWRdD+yiuolO0KXi0h1T122LDYskJNhLS20oohWbluNMqabWmBhIzvAWo3+zRMDdK0AX82wZ+SkKpyTFUyncqOHRNZtQp/sboahfaxYxAS5eX0Gbv00vQDXi0bViV0WVn6OKBDEHT4ksPBOXR1sY+0t/OZp06FPEzmmyh5qErPTM6hN9OhXmVlffeLvF4I2i1bIIm0b+3Mmdyzy5YNYlEumdsNIV9ZSVsp9dl//WvanvzLv8ROhXe5IBUbG6k0mDUrVrnm99Mb8e23eW18b+muLn6GDEHg8fbbkG8XXmh8k85O0/u9osK81rJMe6jSUtaSDs8cMyb9/oWHD9P3z+OBAH3Xu9LvK62m7a48np7ly04nLV1eeAEsWb4cLEpXSBKJsK8rOTluHOfn9fYcpJTOsUIhKtaeeoo+0EVFTLy++urY6dsiYJASclqdpS0RMr1GiSwQ4PvSZHR/ml1J73SKjByZ81iUE5ZD7nJqsyxrl8PhaBaRpSJy/4mHFwk3RPTE478/8fiFIhISkZdE5AwRuVFEnhCRB0SkRESuEZHfOhyOIsuyfiUi4nA4CkXk7yJSISI/E5GjIlIrIheIyEwROS1uipNl4TDqQJeLQN4e2HV2QsAVFLCp1NUR1KtCcccOpnyWl1OOp+U3qo7TicJ+P8RAJIJSUYP7SISMm2X1JBDt5cujRwOWHR1sADU16RGI3d04sB0dZPQWLMi83EczWx0dPcuXjx1jY9qzh+t24428RyZEncvFsbUEJd1NTUuZ9XqrisDl4rzy83Ekamr6Z6NJ1xwOk83v6OC6lJayAceTPpmayu6rqsxUuOHDcaA3bYpVnSWyUx2LOjvTvBCngR08CIE4YwaOk/b//NOfIOWvuYa1oNdElUAlJfQfLCgw/btEIKjuvx+H5ZOfNAkHNafTTKj/n/8hiPzkJ3FWu7p6P9d9+yDmOjpQFC1fDraJQCBqM+ve7OhRHPmtWylV/I//QDGSzmvtptir5ct+Pz/HjqF6WreOx//lX8hmFxWZaXypTEsCCwpMz650XxsI8F0UF/OeTU047K+8wt8mTAAf58/n+DpdNP79lRwtKTHJKpcrkys08KYK7NdeQyVy/DjKgt5fc2pj0T+TBYOU2JaWxiYeHn6YfeXjH+9JIOpgAe0JalejuN1gUXs7vaGT7Uvag9rp5H21lUMys1csqGo4m3YkqqxTRUxJSf8ofMeMIbmzZQtYfdddnOONN6KOspMPqUyH/6kSOlMfJi/PDPBrbUW1t307x62rQ8UVr/hM9P6ahM104FwqKy+PbQeRybWJt7Iy9rF3vYvz3roVpdWmTfQeX7as99cPYtGpY+Ew92p+PnulxhLPPguBeMUVsQSi3y/y9a+z53z605Di9tJa/fvOnfx9xYrY99M9v7iYvevoUZSP9jYD3d3cp1VVsfdpMMhxOzsRT0yeDKHo84Fl6Sj0QiHamrz+Ovv9NdfE9tJP17R8WQch6Xv7fJCTa9ZwbZcs4RpmUhnV3c3nCgaJqerrDV6GQrxHimEi/2dOJ9Usq1dDSNbWGlK4N1VyezvfQVkZMU+mVRFRAg4AACAASURBVHS9WXGxSd663X3Donjr6BBZv95UoLz4Yu/PH8Si/rHTSokoIuJwOP4gIudbllV/4vcvi8inROSIiLxpWdatJx5/VURClmUtdjgcxSIStiwrYjuOQ0TWiMgYy7Kmn3jsTBHZKiI3WJb1eBand3pd7AzMskSeeAKi8MYbcarUurtxBgsKAPfSUrLkuqnt2yfy858DQB/7GP+qdLmkBGANhwHKp54CtD/+cYgfEaNSDIdx6pTcsyxe097OccaMMWWIBQVskKlIukiEoOCtt3juggWxvUPStVAI8svvNxMAHQ6c0r/9DWetvBxS4bzzMstQ+3wAbDhsylqKijJXCmppr89nSpIKCoySKNvJzf1hzc0EW5WVRkUxdmz/9WFUi0RQmp5xRmqp/KmMRZ2d/xxY5HLR/DscFvmv/zIO3bp1ZOAvuojhH2otLRBwloUjXFMDjuhaaWgAi/LySFLEK421HP7YMfO8z3/eKI6SmWWxzn//e9bRbbeRjLC3HEi15jVJ8+CDOJmf/jTKy0zXuZYvh0KxpSdtbQyf+ctfePy661BWZuII2ocViBh1U6YlMh4PgfqmTeBvQQHBujZlT2Y+n/lsRUVgYba93QbKLAsiXIceNDfz+OTJBH8f+lBuY5H8k/hFOhDO5zN9CEVQSf/0pwR3t9xiAmr7ZFKduFlfb/ZYpxMFYmcnZYPxjfDVPB78k2CQoD2dkj+7cjAvz5TEZdoHKxg0ZbnZlsElMo8HouOvf+Vcp08nKG1thRi4/noUmamGCng8xn/pS9lwczMkx5Ej/F5XR9CuAbj2JbSX8WnptKo8y8r69xrFm9PJvVdZ2TdiQO8NJYfVdu8WWbJkEItyxV5/HX/n7LONim/rVkj5+fNjp8IHg7RC2b7dtG6prTWEu9dL65ddu6gwiycQdZBlJEIM2NWF8tE+ldjpZG/WgR1qnZ2srXAY4nLECPZDv5+1ng5Jd+wY5F57Oxh40UXZiTxaW/kpLia+KC5mHT//PP6bx0MS6D3vSb83owjHOHqUz1paig8TL4JQhZ3D0Xs58P79EIf/+Aff27x5tLs699zkn1lbM/h8YFFxMd9tfO/q/jJNUJeU9E3scfw4xPC6dabVQn09SY477sh5LMoJO62UiCdsvYhc73A4plmWtUdgkNeLyGGBLRaHw1EpImeJyPdERCzLCuiLT8hZK0QkT7gpvu1wOKosy3KKSPeJp13mcDiesSwrQ23HP6/94x9sHpdcEksgut2UpBQVEbAHg5Bwunnt2SPyy18CmrfeaohBLf1Q8mjHDjbAKVMgEHVjiUZ5TjjMpqcgGgqxsWjfjbo6NiWdpJoOgdjZiXPe2Mh5nX12dpkVt9uUWdfX81m7u8lqvfoqIH7ppQTImWTJo1HIQ50wrJt+KMT1SDLRqoeptF3l7TqZUKc56uTmjg4eH0g1olptLd9XS4spizx61JQC9Jfl55u+MWnYKYtFmQ6gyUWzLBSILhf/Krn/xhv8LFlCM2ldAx0dlCjn5dEsfNgwcEAx4/Bh04/1jjti+7GKgB/BIMHUb35jJiDHPy/eXC4Ui5s3kyC47TbwsLOT7ymdlgM7dojccw8kxfnnoz7sjUxLZtpfSKeol5aagQ2PPspav+EGMDadBt9qOihAJ8BrwOz3m+RGOgG8x4PTuHYtCsSqKs5n2bLes+uBgGkMrlNV+zvB0J8WiRCQvfYaP+3tPD5zJgHBOedkFqTIKYxF/yx26BB7/fTp5t7bto1kw/z5rCn78IH2dkNwBYOxg886OyEQXS4UiMmSFB0dYENeHu+RTgmZDj+yly9rYi4aTV2KHI1yjEjEBKT91dokGEQptXo1WLB4Meu/tpZrtmkTA6xUeX799Yl7RauqWgQsyiaREA4zaXXXLr6PoiJ82+nT2SO0DNztJvhXX1WxTwna8vKB8ZmqqkyCyOHIDP9CIUMcagKosJDPWVxsqlHStEEseoft4EHuxxkzDIF4+LDI97+Pz/yv/2rWbCRCAvbNNw2BWFVl7lm3m8Trnj2JCUQdCOVyES9FIoghxowxz9GexDq0QyS2f2tZGaXHxcWsOa04SIVnfj8x1JtvsuauuCJ1FVEiC4eJJ7Td1ahRPL5xI8mMzk7W/nvfm1rlHW9tbbHKxrq6xPiqbRJcLnwpeyIgHOZcVq+G6C0uJma8+mquk2KR7if213V3m4F59kSH3891djj6vz90aanxCbV/fjqmCdUNG1Aa7t/PZ5gwgaT20qV8DxnsN4NY1Ec7XUlEEZGlDofjgIicJyJ3CMzy3Q6HY6RwQ+Trc0+wyLcLDPQ06dmQc4iIOC3LOuRwOL4nIneJyIccDscmEXlGRB6xLOvoyf1YuWtbt5IpOOssAnc1nw9lRV4eG1dHBxuLbk5vv43ypaoKBaISiCJGjVhQwAaxcyeZ5xUrzOQ8DYAjERwcPa7LhaJIm1xXVfF8bVo+bFjvIBQKAV6HDgG0s2fjxGeqwtPMVmcn51ZfDyBqPw3LglRYvjy7iWEdHbFBs25Mqh5UIjGZBYNmyrJIbGNdhyP2eDU1pt9JRUX/ytTTNVWMNTVxrnl5bPzjx5/cDH8vNohF76A98gjE3Oc+Z1Q6Bw9S/jl5Mg6l3sNOJ6U4Tic9f4YONQGSCGro++7jsdtv76nm0Qnhf/oTGem5c1FApsqy7tpF38KuLlNqEgqBCfn5nEdvDpzPx3k9/DA49vWvm9LiTE2nL+fns87DYY77m9+AmStWECTET39PZTqwSIcV2Kcra68fvx+8Toa7x4+jJHj5ZXBp6lScxunTzTTnZO+tg6D0evYl830yTUtOX3sNktvp5JyVOFywgL0pS2XAIBa9g9baStBeX2+C9qNH6YM4dqzInXeada4EYjDIvt/ZGdvPrrWVZIbHI/LRj/bsa6XW0IBKt7wc5WMqosw+fTleOVhQwNpUMilZSZ22fdCWJ/1VmRCJUKr2xBP4NfPmUdFir/pwOFCgLFrEc598EnXUWWeBFfX1JiEaiZi+g5kSnG43uL13L5916FD8tIkTY9emBt9VVeCpx4NvcuQIf6upiVVzDYRVVZkejlrJk8yCQUMcRqM8poNe+kgMD2LRO2jt7SQ66+q4Z0XwP779be6HL3/ZEMyWxfC4V17BP5k927Qg0dd961vEQp/6FLGK3aJRCMTjx1kz5eUkbu1JbK+XPbq01DweCBDTdXVxnlOncqz9+8GgiRNTxxgHDrCXtrTw/MWLs0ueu92QfNruqrqa/Xn1ajB94kTi01TVJvEWCECQqvpy/PjUWFBQwHP8fv7v9RIvPv00ZOSoUbTOueyy2OujWBSJmCSAKj8dDtO6yb6mi4tNsqW/2lDYrazM9KLtLalhWdwLGzfyc/w4vunkySSJzj+f/2eprh7Eoj7a6VjO7BCRFqEW/b9FZJOITBGRRqGp5QeFm+JOERlqWZbb4XDcJSLfFZFHRORZEWkVkbCIXC4i/yoiEy3LOmR7j+ki8h4RWS4w1xERucayrGdTnN7pdbHTsEOHaNI7bhwZcwWiQACAD4fZmI4fx0nWCVlbt4o8/jiPvf/9PVU1wSCbxOrVgOeKFWxgOsHT4zHTjevqCPpLS41iTsuXi4rMBKriYhz83rLsLS0QCp2dnNvkyQB3pg6VvXx56FA2po0bUWz6/Ti+l12WfrNgtXDYTDYrLo5VL9hNB63k5fWczujzsXHq33XKsj4vfmKz/bVaMqNl0/01gSsT6+hA2VlUxHkWFHD/9XOpdTpS+UEseofs1VdR5l1yCeXEWo77wAOs21tuMQ6bz8cQlSNHcKBHjgSnhg/ndbt2ifzsZ6zT22/v6Yhqv9UHH8S5XLECR643p8uywK5HHoH8vvNOsCQQwHHOz0+dzHjpJUqMjh5lwNKnPw1OZurs6XRi7TNYWkp2/cEHISwWL0YdOXVqZsfVASqBgCH6EhFgdkfS7ghGo1zPtWv5DgoLKcm5+GLTy8je68tOTobDYJG9p2NFxTuDR72ZDirYvJk9LxDgO5g1C+XFrFlG3d3LuQ9i0SlsWnpfWQkh7HDgb9x1F2vue98zCVLLYv/y+/neVT07erRJkD30EHvzBz+Iv5Rowu/+/QS+NTUo51NhgvaTVmIp2fOTTW+2E5AFBdzD/bHWLAss//3v8ZemTsUfTKcawO+nmuOZZ/j/okVgs/b5ytQfaGwkmD16lM82bhzfZyqlubZwCAaNvxUImAS3Di7Qvqwn27RHbCjE+9rb+9iJQ8vicxYV8Zw0v9NBLDqFze8nzigqgnDXe/Gee7ivv/ENo9y1LPqt/vWv9Ia+4AKeW1/P6zo6IBCPH4dgtA9H0dc3N6M+PHiQOGn58liySFstlZSY2Kujg3UWjULM1daaeC8SgbTrjTByucCMo0dZT3PmkGzMlGTSdldtbSZePHiQRPGhQ3yelSvZpzPBOr0ujY28bvToWIFMOrZlCz7apk1ckwULOJezz04tgFGRjfZHra7uHe/9fv5VYUZ/m8vF92tXZIfDiIM2bsTPbW/nfKdPJ4G0YIEhdHvB8VzHopyw045EFBFxOByrROQc4ab4jGVZ4048/pKIvCEi80Ukz7Ksc088/oaIdFuWtTTuOPeKyJck7qaIe87YE8fcY1nWeSlO7fS72L1YezubUHk5/cN089BpUYEAJTZNTQDh9OlsTq+9RhZ56FCAceLEWPAKh3HK//AHXqdN9O3W2koQqWVyTifvEw4D/hMmAFhaalJSwvsl2wz8fjLP7e28Z20tP0o0ZGIuF+ciAmGxYwfOrtOJc3z55UYun4k5nWZww9ChqdWLmpXSDURLljUQqKiIDcztloxIFOGa6gSuIUMGxjGOt64unBv9bDrlrB/7e6T1rQ9i0cBbY6PIZz/L+vzRj/juvV4zFf6TnzSZ9GAQx3n3boL6iRN5bMQI7pW33oJ4rK1F0RhfMqvlFT/8IUH7zTfTD6c3THA6ye6/8QYKlltvZZ35/dy3hYWs32TrprOT8qI//xlH6o47CJB7e00y0/JlHSrw0ksQpkeOoKb8zGd6Yms6FgyCJfZhBb1dEyUxCgs5pxdeoM9QeztEyLJlBDGJ1AeaOCoo4Lt2ucAf7R1UUfHOYFAyczrpR7V5M/tYJMJ5zp1LwDNlCtertDRtRekgFp2ipsGQZfH9FhayNr7yFQLRb30rVkmoCcAhQ0wyr66O++H4cVTBlmUSq/HBXySCP9HeTtA7eXLv606Jo/jy5XQ+l/bDsyzTo7q4uP/22O3b6fF64ACfRYfJZepvdXSQsHn+eT7jpZeKXHVVetUd4TCE7M6dJtE8bRq+aipFsyZktWVDSUksFmlpcVcXvnBenlEtnuze0kpWaysJvQ+UOFTSMIsp2oNYdIpaNArp5PHgd5SX831///soDe+6CxJK7eGHUf5ecw1xWHc38U55OeTat78Nwfaxj5HciyfpWlooOW1tZb0sWRKLDX4/92BhoansOHgQ36O8nARaWRlr48ABzn/SpOSKNZ0+r/1fR43i+SoWycS03ZXXi18VCBCT7tzJ7+95D585U7/C60V9qGXRmYgbwmEU1qtXcx6FhSRU3/e+1CXUijVOJ9emtJRrns57K46JnDwi0elkr9u71wxqcrs5P/WLZs82VXVpJlxyHYtywk7HcmYRZKfXiMjNYuSq+vgNIjJWRH5kezwicTecw+EYISIfj3usSkS8lmX9Xzthy7KOOhyOVhH5J+gylr55vUxTdjjIYinw60Qwnw+1ncvFZjJ5MhvMSy+ROa6rQ4k3dmwsWESjkIyPPYbD9YlP9Bxk0t7ORjl8OIDjdPJYebkZUNDcbAayDBtmJoTGm07DPHTIBHtDhhDY2qdLp2Oa2dIJZa2tbNJtbZAXN91kygsysWDQlD+VlqZf8pafbzZyVR2qo5uq9EnLmS3LOJ5qFRW8f3c35zV06Mlpztub6fd5/Di/BwKmR2J/y/JT2CAWDaAFApCCIgTqRUWxU+FvvtmsWx22snMnRNyMGWCFYsTrr9OPdexYSMlEQeP27SLf/S7v++//Tq+63mzHDghHlwsy89JLuU99PtZLUVHyZIZloQr47nc5zw99iH5gw4ZlNgFQzevlJz+fa3D//fw7aRLneP75mQfsOqxAe6dqf9JUVlBAYuXvf4dcjUT4Pt7/fjLPvTmMSh62toKBRUVgUGXlgK/1pNbeDmm4eTOEtWWRQLroIpxj3edUCXqSznsQiwbYtOR19mwCIssS+e//5vG77oolELu6wAFNVLjdRoV6+DD+VGEhZNqoUT3vkUCAANrjQbGXqu1Ab+XLqUynnrvdsdOb+0N9eOAA/Vffegsf7tOfhoDIZkCUKm6uu46WAH/+M4NsXniB1hErViQuIXS5wMJ9+8CymhrwcMKE1GtT1TvaA7a4OHFVhr2MUPG/u5v7QH3V/pyMqqY9Kx0OElJtbewh6vcNUOuXQSwaYFMi/KyzjC/zyCMQNh/9aCyBuGoVscmKFeBNc7Ppk9zQAIHo9eLDzJ7d8z7VgZAuF2TbWWfF3v+BAHGHtkIKBvGNurtROk6Zwnr3+8EDEWLEZOW+HR0QoZ2dYOaYMfhRo0dnvpe6XMQNOhDqL39h3y4vp3w2XnGZjkWjXLfmZl47eXL68WN7O+XKf/kLn2/MGJK7S5cahWBv5nZzXSMRnqttn9LFalWna2lzf+G8CHvVq69CNr/8shksumgRCs9Jk0wLBe2lfRJsEIv6YKcziSgiMkNEvm97fJ3AFNufIyKyWkS+4XA4ficiz4tIvYh8UhjJbRcaXyQiP3M4HE+IyB5h5PeVJ97nnv79CLlr4TBOYFcXWSotyY1EKNlyuQgMHQ4AcuRIAj4dzz5hAkBdVxfr0FgWDuDq1QRdn/xkz+b+nZ0cv7oa56yx0Uy8mjoVANdhK04nrwmF2DRKS2OdYY+HgM/l4vwqK9n0Ro7MvK9WMGjKlzs7Aczjx/mMH/+4KXPKxCzLOJ5afpnOealzrcF+JGL6kWRC9uXlcS2j0Z6bkpZEafm49lIcSKuuNn0RtaTo2LGexPRJtkEsGiDT/j0HD0Ik1tWZsuEjR2IzttEowfzrr9PL5+yzCaYUAzZtIhM/aRKlvImy3y++CNlWUSHyne8kbuCvFo3imD/2GOd1990mYeD1gkW9EYgNDXymDRvIyt5+O59FBxxlYtGomVB88CD91TZvhpj42tcIrrNZHxo4i3AN0+n1FYlQmrN2LcRKXh7fxWWXmZLl3kyJDJeLwESDklNhaEpDgyEODx7ksTFjUDHMmQNeW5ZRgKWrAuuDDWLRANrRo/hAkyYZBe3vfkeJ1kc+EjsV3ulkP66s5N5taDATfffvJ9ivqCCIHT68517qcpHQCIe5t1K1QdHehtqLKpNA27LMZN6iIrP3p+qxnMoaGqgu2bSJ63DTTbSjyOaYwSC4qkF2SQn+4Mc/Dr6tWkVZ4po1DB9YupRr0NAA2XL8OJ9pwgR8s3TLDXXgXzRqei7Gt4FRf8lupaX86KCD7m7OoajI+LJ98VkiEVOmHArxWH4+mO/1co6lpQOa7B3EogG048fxgSZNMuX3a9awBlasgGBXe+YZFM9LlhBjNTdzXwwbxjHuvZd7+JZb8GHiybCmJlR7wSD7eHwblFCIuE9jls5OFITRKJVYOqDH62XfzMvjvBMJG1TpvXs3f58xwyQQkw0oSWZaZqyCjDffBIsKC7k+l1ySXf9Sp5MkUDDI5x0zJr1ExI4dXMcXXuDanH02ilC7GtvjMRUc8WtXe02GQmZwqZ6/DlqxV6L1ZiowsfdIzNZX6eoi/t24kYSxCnkuuwzFqirvNflSVXXSldmDWNQHO13LmfNEpE1ge6dYlrX/xOMVItIpsMjDTkzQEYfDUSAiXxGRj4hInYgcFJH7RMQtIg/JCXmqw+GYKCJfFuraRwt18HtF5Oci8ksr9cU8/S52nFkW0/G2bsXhnTuXx6NRej+1tRknV4F/yhR6Ab7wAiBy7rlG7Wc/7hNPQCLOns0GFh8odnebXoWVlRBGfj/HGTnSgJ5OoyovB6D8fqPKiUZ5r7Y2o14cO9ao7erqMp/kp5P5GhshLY4eNaA5f372AbtOb6yoSK+UMRIh4LY7uRUVAHY4zOfLBqz1miXKbkUifCfh8Ds3EdXt5pprb7YhQ9jI+xiwpyuVH8SiAbKnnxb5yU8IPj/wAR57/nl+li+nHFbE9Pp57jme+573oBAWIVjcuJFgf8YMCMZE6331anoGTphAX8LeJhV3dTH1+c03ccw/9SmzDjweCAAlDOLvyWgUAuF//offb7sN9aIIaz5Tp1bLlw8fZmjVCy9wnI99jLKlbIh+HVagJEJ5eWoscjpJGj3/PNdnxAhUeYsX81rLSt5KQc3j4TiaYa+uNmWWAxwQi4iZJrllC2r5hgYenzzZZNarq8EhEa51SUm/JFcGsegUMw2MR4wwasN//IN1fMklqOv03tYys/Jy7o+mJtZpfT0E4mOP4S9cey3+Snl57LpoazPlbXPm9J5UsBOAmZQvq4XDpl+eXb2o6059iEx8mo4OSL3nn+d4V17J0KtsfAXtkapK6LKy5EHy/v303d6xg+dMm4Z/V15uSpbTPQclLXXYX7Kei735SnbT5EhXF76eljpXV6ePF/pd6fctYvpV2svOIxG+AxHusz6qoAex6BQzpxPSZuhQ9iGHA5XvN75BLHX33eY7X7+exOiCBTze2ck+W1cHEfmd73Bff+xjkJHxiuijRyEm8/OZVFxfH3su4TAqRR0sdOQIr6mooHzZ7hcdPMg9qmq0eGtsRMXm8UBm1tZy/Jqa3v2xRBYKcR4dHcSpr7/OGrzgAtpLxbexScfCYWLQ9nZwdvz41MNggkGGkK5ebYZiXXYZPmr8tRQxfehFjNpZ2+IEg3xXyRR80aghEdPFa+1fraRiuntHS4sZjLJ9O+c9ahT+3rnn8tlcLtPWpqKCx/roG+U6FuWEnZYk4ilsp/3FXrcOVclFF9HHSgTAeOstiLQzzgAc9u0DjKZNw7netAlCbd48HJxRowxAhUI0E9+8mV4eH/5wT0fH5TKkX1GRaVpbXx/b+0abylZUJN4Ympo4164usxnplMSJEzMjEDWztX8/n+/YMd7zkksAzmyC3GiUjd3tNqqbVERCIMDz/X5+Ly3l89sBOhoFwOMHraRrOvErkQMajZpNrbw880nT/WHai8TnY2MdNox7ow9E4snVDJ18O62waOdOkS98Aef3a1/je922jeB0/nwyuFp+/9vfkuG99lrIxs5O7ovhw1EXPvEEzvUnPtEzEIxG6ZH45JPG0e4t0HzrLfoyejwkPi6+2Nxz2jtUCbD4e3HPHga+bN8O+fiFL5ieNMOGZU746xr43/+FQC0tpST6gx/MrkzEXrbncBjs7c0OHkQBoUO1Zs2C4J0zxziySgTk5ye+tlr6p0qo6urY4QCqQMpm8mqmFo3i7G/ezGdqb+c9Z8wgYFuwgPPQ1hnab6yfS5YHsegUMr+fdV9cDI7k5bGGv/Y1fv/KV2L7EHd1cY8MHcr/lVQ/eBCSq66Octzi4p79PY8exb+oquLYva2/vpQvawmsBp2JpvNGo/hqlpV8erPd3G6Rp55C+RSN4hddc012AbsI56dK6NLS1L5adzcE4vr1pgfX9OmoFefPT883CIXAGyVly8pSX1clEtNd/0oKuN0G14YMSUwWK3Ho9xufrLDQEIfJ3jMcZh90OFIP9Ephg1h0ClkoBHFjWRA2RUXEIf/+78QO3/622ftffZXfZ83C79A2SUOGEBd973tmKF1FRU9Bxd69JHLLyhCQxKuhIxEIRBFev2cPBNjo0STa9J5zu0nGFRZCIMb7OYEAJN/Bg2DF/Pl8zlAIIjFT/HC5ONYrryB+iURoS3PVVaZXY6bW0QE2RyJcp7q63tdUayutFv76V3Bp/Hh81osvTp3ICIf5DCJcA7/fiCVSValEIqYHfrqxUCRiEhu9EYlHjhjicO9eHtMp2YsXc01UgS9ikmjFxVwDy+p96EsalutYlBM2SCIOrJ3WF/uttyhHOfNMAnQFlx07yGJNmwY4NjXxM2YMALNlC6TanDkAh72PhcuF4mf3bspQrr66J2i53aYUMRIxTvno0bEbkJIFqlS0WzhM743GRoBx2jSAUgeg6ICQ4mKObS9TSWTBIEoELdOrroZUvfDCzJWMal4vm1MkYhpwJwNwDabdbkMOak+TZKCsg1YKCrLrP5Rs0IqaTktNRpqcbPP5IFFU+TViRHYDbE5Yrm9Qpw0WdXbSI6aoCKVPRQXfs06Fv+kmc8+vWoXK8N3vJljU9gKVlZQKP/UU/Xtuvrnn+vb76Ue4aROvv+225GspGgULH38csvoLX4gtz3W5cJ5KS3v2MwwERH7+cxInVVU4/EuWsH6UAM/EsYpGCRx++1sc1bw8SImbb+45aTpdC4c5/0jEYGKy9RwOQ7CtWYOzXlxMf7GLL8aRTGRabmknOwIBnEvNsFdVJXawLSvWMe1vnAmH2dM2b2bvcjq5V+bMgTicP98MylHS5iSXLA9i0Sli0ahp7D93Lvf68eMiX/oS+/V3vmMCO68X7NHJpIEA/kZFBev1j38EM665pud0c8vCr2hoYB+bMaN3TLCXL/c2fTnVa4uKek9exE9vThScBgIQh089xZ68ZAmkQ6YTStUiEUPkaQlxMh/Esri2O3fi6+XlEdjOmAEZ+8c/kvidOpVzmjYt8XG0PYr2ki4ry8yv6y3p2ttrtNRZP+uQIWCgfkd6XPtE5XR9uVCI+zE/P7shXSdsEItOEbMs9qf2duIrnfb+pS9xr3z3u2bNvfUWSY4JE0S++U3WbWOj6d3+gx9AOn7mMzy/piY2hnrjDZTEqpiOj68iEWK0aJTf9+/n3+nTY9e9lv4WF0MgxvtgqvQPBiE7J01ivYrgZ2WiXrYsI6nvQwAAIABJREFU8HPNGuLQaJS9++qriU2zsWCQ81dl+fjxyc9JxTWrVxui97zzMp/4HA6zb3R2gkMjR7KHZPJ6y8qOSFS/Rj/Pvn18lg0bIFFFaAdx3nkQh6o4VD/OrrC2f9eRSKzCMksiMdexKCdskEQcWDttL/aRIwS9o0fTpFcBYc8eQHXSJLJNHo8h1bZsocTvwgvJonu9kDoKSk1NEIhNTWxMy5b1BDmvF6m0w4ETpH0nRowwz7UsANbvB5DiJeWtraaB9pgxAH9bG+daVcWGqU6j18t7iJiGr/GlK42NKJVef52NZOlSAuZUUvZkpuUmXq/pbZEs263BvU5GLSriHNJthhsOm1LnbHo0piIStXwz1QTak2V+P/ejbrg6ZTsLy/UN6rTAokgEp3j3bvohTpzIWnngAe55+1T4Z54R+cUvwJvPftZkxnWg09/+Rgb6ppt63pft7ZQt793L32+4Ifm929FB+fL27WDWLbfEqoWVTC8r65k1f+01ka9/nXv06qtF7rzT9GdNNUE+kXV309vxscfArSuv5JpkS55rckKniZaXJycVuroILNav5zPX1ZmS5XScfe3flZfH59d2BOk02I5ETNlNfzQCDwTYqzZvJmDy+fg+5s0TWbgQp7+kxCgBTkLJcm82iEWniO3bB6bMnAnB43SKfPGLrJnvfc/sNdqOpLiY/VwDWocDkuvpp/GXrrvOlOsrSRUOi7z9NnvYuHFgXm/JxGzLl+3KxUxfm6i8ORKh6mTVKrBhwQL61KbT+zTZZ1Oi3uHoXQUYDILdu3aRWC0rg8CYNi0WmyMRWjw8+STnOG8evqf20lXCMhg071lcfHJ8pWSm1SitreC7CKTNiBH8q30qs7FgkM9dUJD5XnPCBrHoFLG9e8EjHdwVCqEwPHCAUmbtVbhnj8h//Afk0733Eqc0NbF+m5tpEVNXRx/mQIC/q0IvEoE0ev11CKIrruipfotGiaeCQfCwpYX79IwzYv2Ari6Ip9JSMM1OHOkAjsZG8PKcc7jHdVBJvGAklWki429/49izZ7PO7YOuMjEdmqktTEaPjo1B49977VrIw4MHuRaXX47yMZNYRJMKbjfvo3iUqXpP+yM6HJlVoYXD+EG7d+MXbdzINcjLI4G2eDHk4fDh3HtOJz+qhNcpy8kwRj+fw2H622douY5FOWGDJOLA2ml5sTs7Uc6UlNCIVwO8AwfIOI0dS6Y3EgFwIhEyMLt2UcIydy6Bt33K6O7dNPcNBnE0zzqrJzD6/WwiWrqRnw9428k6y+LYgUDPIQSBAJtsWxuv0R44TU38raYm8dRTO6GowaKSbv/4ByWR0ShkxeWXZ6/2EYFw6+ricwwZklyq7/ebJrvaLD2d8sJEpo23s+mPmI5z7PezOeTlvTOTmwMBMpr6vdfXZ6WCyPUN6rTAogcfJCi96y4IKp8PAtHngyzTkpp161Apnn02xFxeHt9/OAzJtX49ipj3v7+nU7N/P9n57m6RW28lKZDsnt26FQIxEOD9taWDWnc35xZf1u900oto1SoSGV/9Ko6yYley9gvJLBQS+f3vmS7d3c0533Zb78NfUpn2/YpGwfpE5Jxlcb3WrMGxtCwUesuXoxzItP9aU5MhXLU8JxMiw+czQwMyNY8HwnDzZgjEUIjvYcECiMNZs8zEXS0hVGdcVYcDNB16EItOAWtqIigcO5Y1rEH7vn0E7dOn87xAAAKxsJAAy+Eg+PL5eP3atTz3+uu5p3TKuYgplfZ6TRP6ZNaX8uVg0BBl9v55mZiWN0ejJEdWrcJf06nrej2yMU2W6mdLpoTW3pT79+Mj1tby/uPG9R6UBoO0fHj6aa7hOefQm0yD3mT4l4mpr5TOpFTL4py0x6H26BbhvlE/tLQUnMw2YS3Csbq6uK69VbsksUEsOgWspQWRxpgxpsLrxz9GIXbnnSLvehfPO3yYSgcdDjdsGGvG6cRH/uUvEVX8278Zxb22mlIybP9+/IoLLuh532l/eSUPAwHOadKk2PXX2QmBWF4eOwHdsogF33yT3888E+K/owMMLStLPKk+mVkWWPTII+D15MlMn54zJ/u1rBVOHg/x4rhxibG2qcm0b3C7uQYrV+K3ZqJijka5nlrCrL6hw8Hjqu7LxLQ/Yl5e6msZCuHnquKws5PPe/bZpsehvr+2ntHKkIoKrlG6vbzDYfOZsqhey3UsygkbJBEH1k67i+33E7S73QTNmqE6cgTwr68n4+RwGOJm61b+fvnlbApNTWweOpXr5ZdpzltWRiZ+2rSeoBwIkPVRAKuoYHOyO7t2AnHIkFj1SkMDJKdlsWmp09/UZJzNdPqERSKA+Zo1OJweDxvSddexSWQzzUvETDALBDhGTU1PR17L9nSogZY89dZMPB3TkqRs+yOm0zxcS2eUHM22xDtbCwa5H5ubuXfGj0890TLOcn2DynksevFFkW99i6bTt97KWnz4YbDlox/lOxWh181//ZdpIl5YaLKizz1Hhvvii2NbMKi98grkXkkJ6sW5cxM7iJEIar9Vq3Ai/+3fjHpFTZvkV1QYZ1snzt97L1j1kY/wWQoL+T0U6oldvVk0Snb9vvvAuHnzRO64A5zN1rRHYTDYs6xSLRTiOq5Zg0NdWgope9FFBtfTNS1lUcczP5/gPZvSZA28tbwvlXV1oap47TVKHiMR05B+4UL2IsVWbTIeCBi1lvZiG+BWDYNY9A6by4U6cMgQSCqdFL9+PVhw/vk8LxjEByoowFfKy+O1bW28/pVXjCpG+/tpaZrTCYFoWTwnfiqq3bItX9YpvlqNUFSU/b1sWfSlfeQR9tpx4+i/mm6/wWTH1DWnZcTxyU7LYg/YtQt/Lj8fX2zGjIz3eHG7UQz9/e9ck2XL+G56u/aZWG++UjRq8CsYNM/TMmV7tYhiZlcXvmBBgUk6Z+MLaqJXB35lYINY9A6b10tlRWkphE5+Pr7J44/TA/m97+V5jY1UcTgclDbX1rK2Wlqoonj0UdSKd95pSujr67m31HdqbSW+mzOnp1jCsohhGhp4nk5Pju8z2N5Oy4eKCmIxJRe7usDD9nbed9Ei1ntTE5hZVcU5p4slBw8iTNmxg3P44AchU7NV7UajXMPmZq7x2LE98cWySESuXk0bHIeDvWDlSjA80+nROoQrGjU9BO2+WCgEZmmLmUxM+yMmGrTi95NM3bCB78Tr5f465xx+5s7l+ygq4hh6nuoz6pTlbOJJHQaox8ngmuU6FuWEDZKIA2un1cXWoP3wYYL2CRN4vKEBh3jkSMDF4SAg3r+f7EVnJ4H/mWfy3Lw8M3nq6achB0aPpu/YuHE9VSTad6K5GRCtqzMZfbVolPcMBtnc9BheL/L97m4enzqVv2lZdF4ex0sna68bxJ/+xCY4diyfa9w4NmN1+rTkOZ1yIJ22pTLuoUN7ZvfCYTNlWUuWdcpyfwWvOmglPz87JzQdIlH7V4ZCbA7ZDHfoi4VCBDcNDZAUkyZl5DDn+gaV01h05IjI5z7Hd/a973GP/ulPJCiuu85Mhd+2jWbhkyahCiopIShrbcWxe/ttcOaqq2LvU8sia6x9FW+9NTEWieDk/vCHkE7Ll9Nr0U5YWRbr2e83ZJgIePPNb1LyO3MmZcwzZ5oEggjrPx3yy7JIvvz3f5O8mTSJ/kVLl/YNEwIBcEaEzx6fFGlvR+W5fj2YVF/PNXjXuzJPDKjz6Xbze3k5uKDEQUFBdkkZv59rWlKSWF3d0oKDvHkzqjHLYg/QwSiTJsVew0Qly6Wl2Sm3+8kGsegdtFAIpUxeHsF0QQH9UB99lED1uuvM89raeN7w4WBWKITv8OqrEITz5hHk+3zsj9rDuKUFUqy4mPdItlfay5d1Em8661+Vbpo87G0IRzq2dy+ff8cO/MBrr0WpkpeX+fRmtWCQ66JK6Hh/JxDAt9u9mwSEVpdMnZo5FtmHRmkLh+eeI4guLESVeNll2Smc483eH1EH2ChxKBJLHKbySzWx3NVlBl5VVmaXqPX58EW1h3WaNohF76BFIvgBfr9pG6JVGBdfbKbCt7VBIPp8KBDHjuW1jY3EaE89Bcn1+c+bPbm21lRqrV0LVsyeTbI2vpJHFYi7dnE/jhwJ2Ri/f7e28p5VVRzH4eA8tm8HO4qKSN6NH8/jDQ1mCF66CYHGRpK7GzeyBq66ijitL/u1y0UMqhVr8QIWnw+8ePJJfNXqakq9r7wy86onXdPd3VwD7aOdDAu0Qq6iIvPPaO+P6HZDGG7YYPpQVlfj2y1ezF6l56BVKvre0SjXuro6s/6MySwYNG2weiuBjrNcx6KcsEEScWDttLnYlgVAbtmCgzhvHo+3tOBQDxvGY3l5pp/U3/8OGFx7LY5wYyMbUX09oPO737FxzJsHUA0f3lOWHQrhJLa0EOiNH5+4B0d7O4A4dCgbVzSKXP7wYZy1KVNM/4nubtOfqK4utfNsWWyOTz8NMTpkiMiKFWSYFLQ18PV6jeOr/bmUUIx3pLXMKRTiMw0dGnsufj/ArgqDvpQsp2PaHzGbQSsi6RGJloXDGwgk7hF3si0cJkN59Cgb3tSpaZ9Drm9QOYtFXi8EosdDv56aGvpYrVmDUkRLiHfvhpirq6OfYUWFyR4/+iiE0Xvfy9q1WyQicv/94NWiRfRAHDIk8VTxLVsg7kIhHPQlS2L/br+/lSiPRlEF/OhH3H+33WaGv+igl7y8xOrjRPbWWwQJW7aAaR/7GP0U++IkRyJG4VxYCM4oBmiJ0dq1qPZEUBddfDFKg2z6g7ndOInRqMEB+2fX8kpV4GRqOh1Zhy4cP47acMsW9gQR9pKFC/nO4ye3JytZLi0d+L6uCWwQi94hsyx8FrebgLq8HCz60Y/Aoc9+lnslHCZgdjgIIvPzYxv779ljJoIqiaQqu8OH2aOqq3mPZPe/XUWYyTrRib6akOyLP3HsGG0UXnuNNXztteBCQUHs9OaCgvRVKaqEDoWMEtruF7W3448dPMg1GDUKHBo7NrvgVclDe6m0vl9TE8NXXn2V/eSqq1Bb9xVrVeltJxTtisNsTAdROZ1ccy11zkTR7fFwb5eWDvpFuWDbtoEpCxeCM2+/jQ90xhlmKnx3NyXM7e1UcmgfwJYW0ydwwQJ6IGrv1iFD+Nm716gcZ80izqur63k/HTtGzOdwoN6PT8SJIAJRIci4cfy9uZm15XLxmvnzWQPBIHt2OMz7JfLF4q2zk0Fy69aBHeedR0In2wFOIqzPY8cgSIuLOW/7ujh+nLj42WdZ01OnojpcujQ7XPV6jbpYVcGpkgGqWIxGObdM/JOODkQ8GzdC5EYixOGLFxPfzprVMz72ermnOjt5zyFDeE22VXjJLBAAi4qK0vv+JfexKCdskEQcWDttLvaLLxJk69AQETabN95gU9AehlrSsmoVm8SNN7KhtbUBdLW1APyvfkVwf+mlbGpVVT0zTcEgx3I6CfgmTOjpiEYinEckwuuLi3n+7t2A3ciRHF97WbW3m0laI0emdq4OHRL5y1/YTAsKANclS3pK9O2mWW0lFCMRE4Qqoag9LgoKOG/NcKsD7Xabvo86ZXkggld1+rMZtCKS/hRCnVarG+VAlgNGIgQghw5B3E6fnlZPoVzfoHISiywL9d7LL1OCM2cOzs4f/oD6UEuSDx0SuecenI1vfcsoTJubGa5y5AhYFN+z0ONB2bhtG0Tcu9/N+oxXqEYiIv/7vziMEyZQ8qNqavu5dnaaDG5pKUmHr38dnDz3XM5Ry57dbnCgqAgMSLW+DxwQ+elPUQFWVYl84ANMcu3r+vH5jIrFPnU0GOS6r12LI11eTh+kZct6x79kphl2l8sMj6iuTh40K4FXWpq5SioaJaDasoX7pbmZzzd1KgGXBl3xplMI/X5DfuiQi4GeLt+LnTpnkp3lJBaJQPA1NOBTjBiBGvmee9hDvvY17hcd4GRZPEd9lrY2CKkDB/CjVqww/Za1/H73bu7V2lqOmQwTsilftqsW8/ISJzbTtbY2kSeeAItKSiDXLr88cSAZCpn+W6n8ikDAlHWr+lCE9XzkCNe7pYVrOnky5GG2pcaqpolETB/KZETnwYN83rffJtnz3vdCUqR7/ZS41euvyVZNTPRnn+ho1Ex1DoU4dnV1+gMY3G5wurx80C86le3wYRIaU6eCRw0NkIXV1VRjVFRwf999N0nzr38dUkiEe+P3vyehcf75pj1MUxP344gRJAzffNNgUXFx4n6Ee/awx1ZWEgfW1PQ818ZGMHHoUNNK6o038I8qKlAta79Xr9cMnRo9OjU55fFAhv7jH7x27lx678+Y0TeyX/s2hsPEivX1rFnts/jkkxCgBQX4RStXZpdUFcHf6OoCk+xT2NM1bbNVUJB6zar6dONG8DQa5Tqfdx59/adOTdxqQacsa3KnqorvxrKy76ObyrT3f5pEYq5jUU7YIIk4sHZaXOy336bHxpw5NP92OAC8LVtwNBYujJ3O/KtfAbY33wwgud1sINXVgPxDD+FMXX+9Cbbjp1Rpk3u/n5K/0aN7nlc8gVhQgIPe0ACoTZtmiMloFOfT6wWgU0njm5pE/vpXPnthIWrJs85iA8y0DFcz3UoOdnZyriNGsDEVFgLMHo8pWS4uNlOWB9K0P6JOWczm9elOIfR6TfPmeBXmybZIBOLpwAHe+4wzUn6vub5B5SQWPf44zb4/8QkIs6NHzVT4j3yEe6ehgWmDBQUQiEoOdXSgGjx+nPYLixfHHru5mQEIjY0MiJo3L/GUytZWkR/8AGy77DJwLX5t6ARN7WmYl8d5P/gg99UXvkBJjcNhyp21z0wqErCxkT60f/kLz7/2WoLYkSP71ltUhxVEIkaBowNodGCUxwPpuXw5yqlsVUu61jXD3lt5jpqquy0r+SAFu+kgLy1V7ujgtTNnonRfuDB5mV4oxHtpSWFxcfJy6FPABrHoHbD2djCgro5pok1NDHiqrCTBocrn1lbuxREjzP3jdtOf6+BBEhUXXWQUuVq+un07uDBxounvGm/Zli+HQqbPXl/Ubi4XbST+/nd+X7GC4DlVgBeJxPoV8b6BqvNUCa1Y5PNxzffs4e+VlQTqU6Zkj0WhkHmv/PzepzzH244d7EkHD+K7XXdd8p6PSvQGAia5WlhoFIe6F6QzaCVb01Jnr5f3qKhgv0lFzDidXPuKip6VP3E2iEXvgHV2Uno6YgRxidtNubLXS7lybS333Ve/yp54993sfyI8/otfsMcvX45vJWKIu9paSloPHSJ+mzABXBs1KhY3IhHayRw4ACaefXZif6ShAZ+ipga/7cgR9udAgLWsLSFEwL/mZo6jsVEy00EvdhXg4sVgQzoCkWQWDOJndnWBDePH86/HA+49+SQ+5bBhlCtfcUXmvVft76W9s5XsT7Hekpq2oolvQ2NZEM46GOXAAR6fMsUoDkePTtwfUSdsq9JRE792dbMOOj1ZRKLGzsXFKQnSXMeinLBBEnFgLecv9rFjBMOjRlE2V1AAoGzejOO1aJFxwI4epczOsshsTZwICDU0AD5tbZQwl5fT8FdHzNfVxQJXezsOdTRKH8VEAB0O87xolM3J5UItGAgAiBMnGlJKp34Gg2y6vTm8HR1sSlu28LnOPBOCaejQzKaCxVskwrFVqq4qAFXbqDNbVcX1eSeDV+2PmO2glUyIRJ0MqP0gB/JzR6MEA/v2cY/NmdOrc53rG1TOYdHWrWTWlyzh364uyLTiYhzfsjIw5e67Wdvf+pZRBzqdDFdpaIAgPPvs2GPv3s3zo1GIgPp67tuamth79tVXDaZ9+tM9iUiRngTirl2okvbvR53zxS/GJjM6O7nvKyt7x6LOTgjTJ55gfVx9NUHrsGG8LlssUnLO7+ezqgJn506UCdu28X4LFqA6T5SZTte0YX8oxNrOZFKfiBlmoq0h4i0UYq/YvBnlhJa/zJ1L0KRTGBVf46+DKp9UKaXqp1OgZLk3G8SiATafD1VOeTlqHo+HoL27GyXzqFHcqzoBfvjw2P5RDzxg2ilceKEhEJVEevttE1QnG0ykKtlMiEDtuadVDcXF2d3bfj9J1T//mf9feCFYlIkiOVl5syZZVQldVMR13LkTIiMaBZ81mZwtFqnqU/tA2lXXmZhl4R8+8YSZ+Hr99Xx39onK0SjPV5VpomufTguY/rBg0JQ6KxmgU52Tva+9r28vCdZBLBpgCwQghPLzUY+JoDLct49/p0/nXv/mNxFifOELZtBTNIo/s24d5NfHP87jzc1mIOWLL5IIWbgQLPL5TH9ENa8X36i1Ff/gzDN73keWBdnW0UHcVV3NPn3sGL7+OefExnatrfg85eXgaTKcCochw/7yF+7nadM417o68KEvk8pbWzlnywJzRo4krn3ySXoe+nzEgytX4pdmS5qFQiaRrJOI+6OXoNvNsSsruR+UOFSCeNYsfNjzzjPKTzUdtFJQYEqWFZd1ynIyvFQiMZOhXpmYVvVpe7AklutYlBM2SCIOrOX0xe7qoldYYSGBeHk5zvPmzQDfokUmIGxpIWgPhZgOqtkrBeR9++i9MWYM/cDUgR41ygCxPv/AAd5zzpzEQbYSiJbF3w8fBvzLy9lQ7D0rAgEcPcvquRHaze0mgH7pJUDznHM4VmEhG2C2mSY9tk4m1s1Ce1+43UbCrpM+dTDLyep9mI5FIibwyGZTyIRIDIdNf41MSYa+mhKJe/ZAIJ15ZtKNMtc3qJzCotZWegcOGcLUU4cDVZ/bLXLLLQSvXV30/enqogfixIm81uUiG9/YyDEWLIg99osvolCsqUHBWFbGPahqZhF+f/hh+qBOnszE1XinS8QMdNKSuPvvR7VdW0uZo71nYjhsnttbuYrXS7Llt7/FObviCkqxte1BOqq8ZKaKZw0k8/LAvLVruV6VlRAEy5b1nL6YiWnQGghwXfoySCkc5jqoisfvh2DevBnC0+/n2PPmsSfNmRO7hsNhM6iltDRxyXJpad8m0w6w5cZZJrecwqJIBAIxEoGczssjWN+1y/Qf08ECoRDrVPewUAhM2LMHoknxQMmsUIjjOBzct8n60GmP0EzKkPU1Dkf2KpFwGL/oj38kYF+0SOR978OPy9a0vFlJRe1FWFxsSpbb2ljvU6ZAimQw6KOH2XsQajKiP9oTRCIE6KtW4Y9Onw5WjxsXSxymo6AWGZhKjGjUTHXWskQtdU50f2h/3178skEsGkCzLMi77m7U9RUVkILr14v8679CFkajxGIbNzJs7dJLeW00it+zbh0JyY9+1AzBdDq5FzZtMkmC8nJ8qZqa2DisqQk81NLhSZMSn6eq+UaO5Dhbt3IOc+fGlv1GoxzT7cYvGjEi8ZrRz/7UU+CDKulUGRc/7CQT8/uJI91uMHjMGM539WqSkwUF+EQrVxIXZmuRCN+d281nrKri2vZH0lL3qbVr+R61ymv+fEjD887r3adTX7a727S00inL6cwN8PuNX3kysMzjMb5eEt8517EoJ2yQRBxYy9mL7fcjee/uRvUzYgSPvfYaQLFokQkK29pEvv99ArXbbzebSlMTC18b2s+diwPa3o5DN2qUIcr8fjadxkYzZS+RrNs+yTQcBvijUSTn8Y21PR7Izfz8nlJ8++dcv56fYBDF0jnn4Djl55ONyrakWMlOvx9graw0yhdVE+iUZQ10vV6eL8IGoIRiX8oWszUdtJJtf8RMsux2NZd9ou1AmGVBJO7ejcM0f37CeyXXN6icwaJQiJ6DR47gII8aRT/CQ4dIQEyciBP21a+CF/fcg1MqguP0ne+QWb/tNkp91CyLUrTf/Y7A/0tfMkodewPr5mbwbP9+gsKbbkqMHaoujkYhs777XcjPD3yAAQv2ezgY5LkikAyJEgTBIMH6r37FWli2DPW3lmdXVmafWNBeq8EguOZ2MxBiwwZwZ8IESpsWLeqbGjgUMqVweXlGWd3XgL2tjX1EpziGwxx7wQLOeebM3gMInfaniQ0Rvu/+7kc2QDaIRQNou3ezHs84gzV4330EanfcYVSF7e3giL2/sSoQ9+xBtXfBBTyuA3u6usC00lJ8o0QkjQZnmqRIl5RSJVwmJc92i0YhIf7wBzDtjDNE3v9+VEd9NVVhut1gkQ6T2b2bz1pdDZ5Pntw3LFLMsw+mi5/wnO352ycqBwLg6Nq1nP+73kXLifgWPb0dL92Ea3+aJrI9nuSlzjooLBhMOuRhEIsG0HSg0JlnEps8/jhJyxtvJElhWQyfe+45fIeVK3ldJAKBuH49auibbuI793hY3243pFlhIX5AYSH+SnW1IZ4iEaq9Dh3iPp09G98skQLxyBFix7Iyzre11ZQ825WC4TAqOb8fsjFRf1PLQqn9pz+hYhw7Fr+sosJUlyUjHlOZZRGnNjaCRUOGGKKyqYlktfZ7zbb3qogh710ufldlX1/XezAIyblxI/2rdaLxnDkQrEuXplZmasJX/aOCAj5rdXVm19ROJJ6sAXQ6aLS8POF+metYlBM2SCIOrOXkxY5GUcEcOEDfsUmTAJrXXuPfhQtNZqqpCafa5UKtOHMmj3d28rc1a9hQLrqIfmKtrWbgiZKQHR081+kEuMaOTQx8GojrBDG3m+dPm9ZT5dLVxXNLSnDm4jMj4TCg+9xzbKRz59LfRxvIqqQ+WxWe0wkwi8QGFVqy01vJciQSSyhalinHU0JxoBQzoRD/FhScfCJRe8VptmkgJzdbFvf77t04Dmed1YNcyPUNKmew6H/+h1KVe+4hIHvqKZIQ730vBG8gYMp37r4bh1oEzPn+9yEBb701lkAMhcCpdetwrG67zQw/spdrvfwyz3M4yOKfc07ic1QCsbUVheSaNWTGv/51sMRuPh94lJ8fq3ZUi0ZRaf/85zizCxdyfhMmmF45fSlf1l450Sj3+IYNTHjOz4eAu/jixNMUM7FIBMzTgFRLtftyzI4O1IZbtqDj1+hPAAAgAElEQVROUpXXuefyvUyZktpRVcdWG3SrCrS/sv/vkA1i0QBZQwME14QJ+AOrVpHQuOEGSDUR7lOfj2BbccTvpw3Mnj0E8jrQKRzGbzl+3AwamDUrMZGdafmyZeFjaO/BbBQhlkUJ5GOP4bdNmMDnnDu3f3wO7UcYjYKJe/fyPnl5JIJnzkxMTGT6GbRdg2X1z1T1aJRr6/ebkmztZanfjc/HgIdnn+W7u/BC+uCmQz4okXiyy5oTWSjEd6GlzjrsTvFbB4aFwzwel8gaxKIBssZGiL7x4yH1N2xgKvyFF5K0FCEB+eSTiDU++EEeC4Wo5ti4ESxSAjEUMvi2fz976/Ll/K2lBSzT1goeD0ReVxd++eTJ+MmJBnAcPmxK5xsawLazzuqpWAwEwEHtt5hIOLB/P+Th3r2838qVvHdTE9g2Zkz2ggO3m3NV3+DVV/EPAwFIuJUrUe/1JcmosaASdOXlyVW/6ZrPx7lu2EBM7vNx3HPPhThcuJD38vt5PFHi2bJ6lixXVppBd9rOKpv9wz4Y62T4WC4XWFxR0SOpketYlBM2SCIOrOXcxbYsSvhefRUQXbCAzWbzZsDhrLOMU3TsGJtWVxc9DjVo93ohY558EiC79lqC1c5OQGvYMDaiSISN0ekEFCorySglIo+CQdQojY0m2zJpEptP/PnrJOiKip4ZqmiUoPTZZzmfqVPJao0YwYan/Yz60ihX1YciBsB1+p82DE/XtCeY9oRQ51XLGktLT67T2ddBKyKGSEx3Q9LJzUVFZkjFQJgqEnfu5B5YuDDmnHN9g8oJLHruOYaY3HADmfQNG2hmfcEFOLihkMi991K2ceedOE4iBOQ//CFr75Zb+O50Xag6cccOVILXX8/6dDpZQ5WVHPehhyDzpk6lfDlZbzJVGD/zDKWKwSAJlEQDV1wufoqLIQzs97Jl8fnuuw9necYMiMsFC3BwdTJxtk6ylvE5nTibL79sBlwtXcpPX8oERUyG3ePh94qKvhF0TU1mMMr+/Tw2erSZqDx8uMG/3nBPEzGBQGzJsrZpKCsb2EFO/WyDWDQA1t0NZtTUkKh86SXKBC+4ABWiw4EP4fWaNiUiZnjc/v003l+6lHtW18qePayX0aOT9xvNtHxZp/9qGVo2pfm7d4s8+ihqp7o6iIhzz+0f/0L9GJ+PihMlGoqKICqnTDEBbLbvpwkDe6VHpv6W3SIRozTUgUvaV7I3Ure7m8TXunU8/9JLUTKlaucwUP0Re3t/l8soD+2lznl53OuRSI/e1YNYNADmdoM/VVWo+fbupRJj6lSSrYWFEP+/+x2Yc8st3EPBoMiPf0x56zXXoFgsKOC7bmhAxdbaCjGpqurGRo6nZH5jI+8XjeITjRiRnEA8dMhUlGmF2IIFPVVjHg/PycsDB+MVrg0NlBJv28ZnvvJKEsotLayvvpQvRyKQl01N4PvmzWBfUREJ1ZUrE5doZ2KqtnY6eT8doJdtDNXdzXe4YQPfmRL62t9QhwLazeXivauqDAZqsleH3Okwl/gktbabiB+0ku5nP5lEomXx2bRqzUaS5joW5YQNkogpzOFwlFuW5emnw+XcxX7pJYLjJUtwfiIRSDeXC6CqqeF5hw+jVnS76a+xaBGAFApBQK5aBdB/9KNkjtxuyL3KSo7h80FC6jQ+lVAnytoGAmSrDx0C1OrqEk/ni0ZRIakqwN7/wbLYMP76VzaPMWMgD6dNwzlqbeUcRo3KrnxZyz7a2jhfLZ0pKUkqvc7qPeyEopbA2AnFk0G46aCVbPsjimTe98fnY+N8JyY3HzjAvTJyJMTFiWs64BvUPxsW7dtHX59Zsxh6snu3yO9/z+/XX899+IMfMJXwM58x6p6mJhxllwu8mT/fOFTHjzOBub1d5HOfA9eCQda8Ki4aG1EwHjyIcuRDH0runIbDOLY/+AFE5sKFDFGZMCH2eYoHPh9rM740ZOtWyo62bUN5feutqLVDIbBSpG/ly34/n+eFF8DvcBgcXr4cp76vJbzqyLlc/L+8PL3eOYmOo9MaX3uN70sEJ37hQs5Vh+WIGHKwoCAxpgaD/F0TH0VFsSXLmoHXic85qkYcxKKTbMEga1NLw/bvp3/q5Mn0Xy0sNL2ttK+VCL8/9BC+zYoVBHh6n3Z0UI4fDhP8jx3b830zLV+2T2tWZVyma/DIEXB2yxbw8NprwaL+2nMDAfwiVR1aFu8zcybrvKAg9fTmVKbkofZXzDZJoKXggUBsFYYSh5ngZksL7Sk2bQIfr7wSkqI3TM804XqyzF7qLAJBXlVlrrFNUT+IRSfZwmHisnAY0qizk0FzZWUkRysrGXj04IOs29tvZx35/cZPWbkS30YTksePizz/PN+z9hJWYtHhMOKMPXuIqSoqIA7Lykwiz26RCM/dtg2fYORIjmnfu9W6ulgbJSX83b6m2tsh4F95hfV22WVmkv3Ro+DyyJGJScx0rKsLReW6dfgbbjfx5FVXibz73f1T/eTxsDeEw8bHzKYdVWsr37tWjmhf/8WL+TnjjN5xUpNW+flgju5XloVPlGoSdDhsErDZtMNQIc3JELqowlPb2pwgZ99xErGfsemUtJwlER0Ox9UislpEbrAs6/G4v00UkQMicq9lWV8+8di/iMitIjJDREIi8oKI/LtlWdttr/uaiHxVRBaIyCdE5BoRGSEiM0Vkp4j8h2VZ34p7r3IRaRKRJy3L+lCK086pi71rF5msmTPJWGlpS2cn5SyqzNm/n+dFozhF8+axyVgWSqLVqyHpbrnF9FJsbmbTGDkSZ7qlBXCqqMBhq6pKrP7zeNgEW1rYOKZPTzwRMBSCTAiHeU97OfSBA5RHHjrE3y6/nMDA3tC3ooLNJBvnzetl83U6jXpO+/qdrH5bGjx4vfxEIqaESQnF/nREVcFTUJBd4J1N359gkE1fZOAnN9uJxAULRPLzzQY1iEX9b04nJTnRKOSa243Kua4OYrCggMfXrUOheMUVvO7YMUp1wmGRD38YNZ8qPrZvx8nOy6PsWacWdnSY0uING0R+9jOO/9nP4vgmM5+PkuPf/IZ1duedZPcTTdzs6OD+raqKxaK9e0V++lPed/hw+s1edRXno42jCwuzV/MFgzjgzz/Pe5WUoCa6+OKeRGc2Zlmcp5a+lZbGOHFpH2PvXqM4bG0FF6ZP5/ovWGCSVYksFAL7ior4sZcspzNlWXulaWuJHBmmYrdBLDqJFo0SaPp8+AkuFxPcS0qYxFxVZUrUtLeVCEHaQw8RCF96Ka/VpGhbG4mD/HweT+TDZFq+HAqx3i3LrIVMrKWFnmobNrCOr76aoL2/+i9r+4SdO/GPiotNyXKiIVVajh0/vbk3s7dqKCxkPWfqc6mKU8lYETPEKRtSNt6OHGGS85tv4sesXMkAjGTHVV/uVEhw6BTZ7m7TLy0aNWKAQb/o5Nvrr7NWzz6bNf7lL/N93HsvJNyaNfQ7fNe7wKn8fNbE974HsXfttagMFXMaGqg2i0RIxM6YYWKhcJi1GQzi//p8KAWVlB8+PHlrqNdfJ+aZP58WM/Hr0LLY67u6TLyl97jLhXhl/Xru/WXLwKLyctPuqi/ly6EQCdWnniKmLSjAz1i5kuvWH2tNhQ/BIN9TdXXmgpRjxyg737iRJLoIg5rOPx/icPLk9P0VbUPQ2MjvpaWmZDndvULxMJs4VolEjUtPBpGouFRVJVJQkJxEzFFsOiUt91qIG3tGRDpF5AMi8njc3z5w4t9HREQcDsePReRzIvKYiPxCRKpF5DYRecnhcCyyLGt33OsfFr7Y/xSRYZZl7XI4HC+LyIdF5Ftxz71WRCpE5Nf98JlOGWtooIl2fT1NwEVwejo6aKCrBOLu3cjmy8oAtgkTDIG4ahWlh2ecAYFYXg54K2E4bBgg6XIBZhUVgEBFRWIC8fhxAD8SMY22E4GZ388moxk0zfw3NEAe7toFyFx/PRtxXh6A39DAsUeOzG4SaSjE52lr45gjRuBYDURgqsBcUsK1sxOKOnjGTij2lczMzzeKxGxKjtQpjkZN759UVlTEZ+vsNE2eB2pys5YzKIm+YkXMn3MOi1TddioSJtEoasHmZhxjj4dgvKCAwDYQMH0Hr7uO8kCPBzX0z3/Ovfm+97GOleR6/nleM2oUjnVtLbjT0cFzKiogH//xD9TIn/0sDrInSQ5x2zYUSIcOkRn/whd4Py3bULNPjlf1occD1vzylyRZKirAx2uv5X72ejk3LV8uKOh53FTmdvOZ16/nfq2p4dqdf75RSSX7bOma/TzVSS4qMqWXvVkkApnwxhv8aIb8jDMgXObNi50AmepcAwH2DofDZMwLC7mexcWxJTWJTIlErzf7qdEDbW1tXMPLLot5OOew6FS3Q4dYT9Oncx9985vcY1/5Cn6E2806UIWxCLjy0EPcT5dfjl+kf2tq4p4vLSVwtd/navby5VQVBToMKhIx5bWZBMFOJwq5557jdVddhUopVQP+dC0c5j596y3j3y1cyPXs7T10inQolHqoWzBokqeajM4kkaGJCL2OImCZqr/7MwE7bpzI5z+PH/rEE9wnzzwD/tvbbqhl6iedTCssZF+sqTF9vv1+4oBgkOSUzQaxqJ/twAH8opkzwZ5vfhM8+drXiNVeeoke0vPmkdTMzwebvvMdyOsPfQhCT+Or48fpMZiXh38wejSPt7XxfdbW8v99+/juZ80yCuFEBKLLhQryyBGqw5YtS5wAjEYhszweYi0dFuf3g0PPPcf7L16MYnfoUNblsWMGQ0aPzi5B8PTTJEv272d9X3MN5GF/JFVFwBCdYl5QYBSb6ZhlcV6qODx8mMenTSNZvngxxGkmpiXL3d1mj1DVZ6aJpvx8rqGWPmdiqozXBG9/E4k63bqpCRX9JZf0+vRBbOony1klooiIw+F4QERuEpE6y7K6bI9vF5GwZVnzHA7HOSKySURutyzrv23PGS0iO0TkGcuybjzx2NcEJvlZEXm3Zbs4DofjFhF5QETOtSzrFdvja0VkqohMsCwrmuKUc+JiO50E43l5Ip/6FOTf228D+jNmmLKb7dtxgkaMgIyrrqYsJxIRefhhyjbOOYdhLFqi0thoAurmZsCothYwa2vjvXRDUQuFeK8DBwCJRYuSN6d2u00pcl0dG197O73NXn8dh/ziiwmm1cnUgQiFhQBrpsRUMMhnaWrisw0fnt1xTpapg+31mpIcLfEpK8te0WdZsZn6bI+RqSJRm7BrM93+CnbiLRw2JZoaKB46xM8Xvxib5co1LOrqisUi3cxT/TsQ9uijJCZuvRWC8Ne/xgG6+Waw4Q9/QN18+eU0C3c4cLweeID7+X3vM46pw8GxVq9GPX3HHWCMvTm8z4ca8MgRgucbbkgeNPp89Cx87DHe40tf6hE4/Z+pMynCc4uKwJqHH6Y/bH4+iYz3v9+UzQQC3Gs6HTNTJ+/4ccjVl15irU+dCik3f37/BaB+vynP0R466WBdMMg+smULJKzPx+ebMwcyZc6c7FpH6HRbp5Pfq6uzVyD5fIZ8PJXM5yOQ27kT8mHXLpMc2rAht7FITmG/qKUFbBk9mp9vfANf5Ktf5X71esGR0lITmLe2QgyFw5TE1dSYMr0jRyDTtJdZvMov0/JlJRu1VD+TfdjnI6B++mmwYtkyiKxs+z/Hm8vFet+xg880YgQYPGVK5qRcsvLmcNj4Nfn5fA/pKCe1t7MSh+qD2BWHA0HYWRaK1CeeALsnTiQxNmtW7PPe6f6IdguHWReNjfwcPsy5d3eL3HffIBadLGtvp+S2rg4i8Gc/YwL4Zz+Ln/T66+DT1KkkOEtK8D/uvZf4RIdi1tVxfx84gBKvpAQ/RMm+jg4z1LKxke962DCIrK4u7sMRI3rur7t20Vs+GOR8FixIvIZ0gIuWIldXc0+tX097KbebfvpXX20UytruKhQy5cuZWGcnPuDjj3MdR43CT7zqqv6LH3Qgkc9n+oeWl6der9paa+NGiMPmZl4zZw5x6nnn9YyJ0zH10zwe065F1ZDqK1VVZVearBUe2baI8PsNmdkXi0SIx3bvZl/euRM8CgZ7+kXxloPYdEpaLisRRUR+JyK3CGzuL0VEHA7HXBGZJSJ3nXjOjSISFJFVDofDDj0B4eZIFAL+3H4DnLDfi8iPReQjIvLKifcaJyLLROTbuXoDxFswyLTBYBB1TEUFm0NjI86fEohbt5LBGjsW+XckQibH6xX5xS9wHi+5BIdIJ7q1tPC8wkI2BG2iHY3ieJeW9twcmpsBh+5uNsC5c5MDV2encehrawHPP/8ZaX1+PsH+smUmUFVS0+MhI2WX06cyVbZ0dXHuwaCZJJ1NIHwyTUubhgwxTrf2uOnqMmU/ZWWZkRYOh+l7mU1mSo+h94dlpbeh5eVByjj/P3vnHR5neaz92VWvlmR127JcZFvYxuCGMZjeew2BQzGQciCccyhJvoQEMJAQQionJ8lJQhLKIQYSwEAwNcEUG1wwBvfeLVnV6tvf74+fJ8+7611ptVo10FzXXivtvvvW55ln5p6Ze5oxOJQsuCfGdSDAOLCDhvbMpfR0DKnRo03zjhAZVLpo2DDut0jk93BiBxV7A2hcvhyH6rzzMCL/8hee8/XXoyteegmn9+yzKf11ODAcHnsMQ+uGGxjD+flcx6OPAqidfz7bq+5QEv+NG3H4U1LopHzssZHPbelSIv779hG5/u53I3PmaCf1zEzD+fp//yfy9NM4rZdeKvKVrxjjUDMmAwFDbN0dUP2TT4jer1/PNc6dC4AxZky0d75rcbt5Fm636ZbeVYS9vZ21YuVKMtk9HtM5cOZMstpj4XnU7Cvl5EpNNWPa6Yw9mzAtjf1qM4r+EDWMN21ifG7cyP9+P9enTmRl5ZFgw2EZVLpooEpbGzyiw4aR/fH73wN+33YbDl5HB/ZGaqqpXKiuJujhcADIpaT8q8xTtm7lNXw4Yz90vbSXL6emdr6eammYlpR2BTbaxetFV7z4ImvdnDkETsLxlcUiBw4wZnfswC4oKyMzSrOcYhEl9LeDpvZszWh4prU8WoFDtTeSkw1w2NcAncNhyj2XLeOZ/OQnzOsrrjD6OzQbsa/O07IAlRQwrKrC3g0cntVZWcyNWbMiVu8M6aI4iMvFOpqRge5ZtAgAUSsxNmwQeegh7NP77mMu1NfzWWMjOqugwPDxrV1LsFE5T9WOaWlhjXc4KH12ufC7RowgySMQOBJAbGnBNlq7ljFw1VXh6Qn0OvbvZ1yNGMF5fvQRYGZ9PUkql14anBWo5cuJiXzenbV90ybm1FtvYYscdRQckWedFb855PMZsM7pDO5k3tlvPv2U+7ZsGc9Iu1Zfcw0+dSxN7rSBS1MTOs7p5NlqkyqVjAyeW3t798vBnc7Ykj9UNFteg7/RAomWBR6wdSug4ebNjNGODu5nRgb68sorGUdRyJBuioMMdhDxPRHZJ6Sf/vHwZ9cI0aSFh/+fKCLJh7cLKw6HwxnyELeHbmNZVrPD4XheRK5yOBy3W5blEdJTHSLyRE8vZCBIIECWT3U1fGJFRWQ/7N3L4qQGzcqVgHPjxgHKNTTwfVMTJYP797MwnXmmUaR1dSZi3NaGYistNSTbyo+o27tcKIv9+1FSs2ZhrIRTzMqt0dpqyqLfeAPOC58PI/nMM4Mdfnv5clFR5MzGUPH7OX8ly9XytzFj4kPC29uSmMh5ajdsBRSV5yYx0QCK0UT0HQ4WBeVIjCUyFYuB7HCwMCYkGCCxO52bOzoMYKjdn1XtaxlTUZEZT1Fc16DSRXYQMJKEAxf170AnS16sWY0HDsDbM368yDe+QYnX1q2AiePGYQg++SQA2b//O/v57DN0TlERQQ+/n2fW1oYBvW0bGYwXXWSO29oKeP7880R+jzqK8rJIGTiNjZzXK6+gs379a9NhNZwouJ2Swth55hmAyqYm9NAttwQ3UdByE+0SHK2R3NpK9P6dd0yTqosuMiVE8TKSlQdLo8e5uZ1TNDQ1kRWxciXOjXbwPOkkwJNJk2IvD/T5OA9751l7xqb9+1i43JKTDUDZkw700YoG1zS7cONGxrwCRBkZZJZccQXln0cdBUDeRcBmUOmigSg+H05KYiL3/5VXsCkuv5xgpMuFXlCKDYeD4MKTTzJmrr6afWRmYtusW8f3JSWAAKHPL9ryZQXCNCuvK7DRLoGAyPvvk41TV8d5XH11zzuPinA+27ebDFmnk8ylyZPjp4t0PqrdlZCAHdMZUb9yRWtHZQ0yKGgYS9fq3hCnk6yjOXOg1HjlFYJas2Yx5jTAbe+S2huiXXLtL6WmSE7mPGbNYhyXlESVxTWki3oogQDraSAAyLRiBQHJE0+Eq37HDjIPCwoYMxkZgC0PPcTzvOsubIOUFN6XLaMaoLiYUmGlU+joYO4eOoQ9kpRkaEXq6hh7+flmTQwEmO/a0XnKFLgWI9kvLS0GDCwt5beLFmH3jR6Nz1lZabb3+w23fFYWoGM0497rxS5atAj7Q4Qxe8EFzK94remBgGlOImL8qki62+2G83npUoLlra3o79mzKVOePTv24KfPZ7osa6JOfn7kYHRiInpTm9J111ZKSECXKl9rd3Worlmqm8Mdv6UFW2jLFvPSChinE/0zaxbr15Qp+OCZmd06lyHdFAcZ1CCiZVkBh8PxjIjc6XA4SoQ69C+LyHuWZelDd4hIu4hc3NmuQv6PxJ70J+HBXyAiLwipsMssy9oa4yUMKHn9dQznCy/EcN61i0j8iBEYhCIsQK+/jkNzwQV8n5cHkPj44xh3V19tuAZFTJdiBdxKSnAqXS4cqKQkAyBaFsDhzp0ouIIClENubnjl4PezYLpcKMz164nQtbcT4T3nnCOzG+vrOZ/kZIDJaBSo282C3NFhOn4mJvJ7W2e6QSUJCdyzrKxgTjCNRmp5UHp65/wVoQtKLGVAsRrImZnc+6Ymnmtu7pHPwusNBgxbW00ZdkKC4VfRexFLBtLnURdFk2HYWTajHXTsat8eD4aww0HX09WrMZZPOIGymKVLRX73O4zo//ovxsvHH9NsZdQogLn2dlMy/IMfMIa/8x0oFVQ6OjBG/vAHdM+VV0YuX7YsOFR//GP2dc01AJLFxZGDGY2NJrqq53zwIMbrrbcGG8kibNvWZkDxaAzc3bvJIli+nLE9fjy6WA3+eDmYapi2t3O/hw2LbKTV1ZnGKFu2cC8KC9G/M2d2jwA8nGjUWsGTlJTwzaISEw0vo9MZm8OQmmoyvWIt2Ykkra2ssQoabtrEmNFzHzMGjs3x41mDR4wwTTWiPY/Poy7qS9FGPx4Pzsnq1TRPmjsX+gSPBx2TmGgAst27RZ56irVy/nzmdFISDr3y6I4ZY7oP24+l5ctaShtJtFOwcgNGC4BZFrrymWcAMseOJQgzZUqPb5U0NzOGt23jvmRlYXeNGcPf8bKLAgF0txLzHybO/1cA0j43NAigwKGIaa6kwOFAlcREsqTmzQO0fv11nt28eQTTcnPjx4/o9bI2HTgAuFNVZcocHQ5s76OOYr0rKYkNDB7SRT2XDRuwb6dP51k9+ij+12234Svdey965sEHWaMPHABA9HppupKWZrrWvvUWoGN5ObaVAogeD89/1y7+Lygg2JeYyNru8+Hn6Nypr8c+O3iQuXfyyYyVSFllDQ3sJy0N3fjoowQdiopEvv51dIZ9bHV0kLyijV06a6ymUl9v6BmUB/r88wFbJ06MPlGkKwkEjI+kfNqa0BAqra3YaUuXYhu53dzzuXO5/8ce27PGVZFKlqMBI1NTDYVLYmL37RzlR1Tqje5KYmJwUOzAgWDA8MABttMu1BUVgM/l5WS35+Rw72PtOTCkm+IjgxD6OEL+IiLfFB7+ChEZLcHkldtE5BwRWWtZ1sEeHutdoWvPDQ6Ho0pEJojIT3u4zwEhy5dT9jt3LgDgvn0Y0sXFOL6WRXTnn/8kunzppXyfksLi88ILTOZrr2Wy62LT2sqi1dGBIhg5EuXl8ZgGK0VFGEStrSiPlhb2O3IkRlMk5e/xYPx4vSw4772HQp04kcUjtHzG52N7zYTU40YSy8KBbmszzquWlGVnc26xdAYbiOJ0Gn5BdaD12ltbTYaENmYJVdr2suZYGq2IxJ7RmJrK9o2NGCqJiSzWChi6XGyn3Vc1QpeV1XkWQwzyhdNF0ZYy2wHFUKAxEBD55S8JHDzwAM/w1VeZx6edhrH6y18SyLjzTp71hx/itI8bBzinPII7d4r8/Oc814ce4nsVt5v9/uUv6JT77oMeIZzs349RvnQpxvEjj3A+nQUztAPzZ5+RebhzJ7ryvvuO7PKsZSdaOttV+bLfjxH6j3/gsKekAEzOmYODl5YWPx4/v99k54qYuRJ6fgcOkG24apVxPkaNYm2YOTNy5ni0onpIs/ISEkzZYmf7TU42gEusIGBaGvqvowOdEYvD7vOZbrQKGO7da74fNQonoqKCcTpqlOlCqyBRD4CCL5wuipfs20fgc+xYnOSf/5xn9F//xTOtqzOdSZ1OnOGnn0anzJ9vxmt6OgCix8PvlftZRcuXRTrPKNRsOs3ACAeeR5ING+CY3boVB+yOO7DvejIvNdC7aZOpFBkxgmyivDyuJV6ULkobY+9SrfNReQ31peCh8j4nJJiKit7OKI63pKVBmXHaaWQl/vOfBPDPOAPbNi2te0CiZTFu7RmGdXVmLR42jPExYwbrSWFhXO/ZkC6KUfbtY80YO5Zn/fDDhou5sREA0eHAbsrPh3P1Rz/is3vuYb1sbma8vP46NkplJQChlp/7/eiwLVtY5ysqWIssC2DO4zHz2ufDvtm8mWOMHMncHzs2PBimJajavf7110n0yMnBVzzhhCPHcH09v9GgWme6xLLY30svkWUdCBBMveIK1tTCwugzGLsSe6mw6vdwgd/GRuzTpUtNI9Dhw6HgOeEEMkle4b0AACAASURBVMB7cj7hSpaHDcMn7e6cTU/n2SilV3fWBaWzUiAx+iBnMGC4cSPjT7PEc3MJoh53HDqpsJAxoHay+m1xkiHd1EMZ9CCiZVmfOByOjUIa6jihfv1vtk0WishtIvJDh8Px1dBadYfDUWBZVm2Ux7IcDsfjInKP0Oa7Q0Se6/lV9K9s2YJzPWkSiq66momdn2+i1W+/jZI+5hiMmz17MNZ27sS4GT2aMp/CQlPi0NoK74PPh0IvLUVJaATU6cSwVud/716T3ZeWxgIYiReio4Pz3LyZSG1DA9GJa65BAYVKezuGk98PMNoZ34TPh1JtbzdRf3UqtSlMbm7/d8rrLVFOsfR0kymhWYqaNWUHFPU+hAKJsR472ki7OhiaYdjUxJjQMrLsbBackhLeMzJ6rwyI8xnSRZGks5KHV14hQHHDDRivjz2G4Xflleihn/6Uuf2d7zDG3nmHrJrKSkqYOzp4rVpFOWF5ucj3vmd4ER0OdNEvfkGwZPp0wMhwwYlAgFKhX/2K8XfnnejEtDS2D3cNXi/6Z80awISNGzmHRx6h7Dn0N9qwJ5ry5aYmU7Lc1IR+/dKX0MPaSCEjIz66KBAwDYQsi/1mZ5s5Y1mAhQocVlXx+fjxZJ/PnMn59VQ0Ou52839yMg5MdzKIUlMN+BBLpFp1nB1I7Coj98AB1iMFDbdtM4BGbi7j9YwzcNLKy3G6lBYgKcm84vEsh3RRbNLYiONeWMi4/+EPWe+/+12eS20t7wogbtqELiooAEDUjH4ly09IIPiQlRUM8tvLl1NTIz9zn8+U7iu3cTSyaxfg4aefAgB87WtkC/Vk/fN4GNObNqEj0tIIwowcacDv9PT4Oexut7mX2gjOvm9ttqLBGAVYMzKYW4OxOiRUsrPJfj37bLjdXn9dZMkS+G7POCNyELSlJRgw1GC7COOtpAS9XVqKPdybHemHdFFs0twMQDZ8OHPse99jDt5/P2P/nntYm370I+yl7dsBGVNTyUDMySFRw+XCR/P5CFoVFpqmc5YF0LV9O2Nh2jRDy9TYyLzKzWWcVVUR0G1r43wUzBk7NrxeUs75ffuwuzZuZPvLL4dyJdRH8PsJSrS0dF2+7HZjEy1axLlnZEDlMn26aYw2enT8mqYofZXPx75zcoKv+eBBQMOlS3lmlsUcu+wygMNJk3qerKDci2o7JifzHDMzY7cZlE9WOeC7qwfsdFaRqtCamoIzDLdsMQHq1FTsoYsvZkyNGsU5qO2nJfhajh9vGdJNPZfPwTIrIqDJDwr164sty2rULyzLWuZwOH4uIneKyCSHw/GKiBwSEOdzROQzEZnfjWM9ISILBDLOhZZlNcXjAvpLqqtFnn0WQ+LKK4kCrVvHwjFtGtu89hrkt7NnEwXVbsYrVmCszpzJS5tPiBDJX7OGv48+2nyu2YAiAIiafdjRYdLWtetuJI7B5macWM08LCnBgJ8yJXKpXX191+XL2hlVswMUKNOGG5o1OdA6d/amqDOdlsazsQOK7e1sk5pqwBCNTPWk0UokINHjObIs2e/nu8RExszkyWaBVYLjPpYhXdQN2bCBTvBz5qBbfv97jJprr8WgfOQR5vd995lynOefRzd95Ssma+7FF8nWmDmTbBuNmouQDfbwwxh6116LnktIMMTQIrxv3sxx1q/H4b7jDpP5Fikb2uVCDz75JPquqAjj/vzzwxvA0ZYv79hB4GblSq5x6lRT5qoOc3cbIUUSberS3Mw9SUvj3BITDe/RypUEa5TvrLKSsrsZMyIS6nf7HJQmwuczekezjLsryhenDW5iiVwrKGEHElWamrgvdtCwpYXvUlLImr30UgCkykrT1Ep52dT41gh7L/GyDemibojyMGdkYIt8//vMtQULWEdqD7sK+fk8u3Xr4BcsKSEAkpgIkKzdTbOyyKRRcE2d9mjKlzWrTjM8ou0WXF3NOS1davToWWf1TE8cOsT43r6dMVxYCBhRVGTKhaPtihyNKHioAVx7p3V7R2Vd++0Ao1IY9GawsD8kP5+A2bnn0njshRdYHy68kHJNe7dkbRYown0oLGT9UB7DeOjrGGRIF3VDvF5oFJKTeXY//Sm65Z57WJvvvhuQ74EHCEht3oytlJ3Nd3l5jAPN+MrMpBoiKQngKSGBYyxdis4YN445rfOssZE1T8t0ly3D18vOxlZrb2dfY8eGt2G8XnTG22+jJ9PSoDY566zwQFV7O2BjV+XLNTU0YXntNXRseTkZ4scea3gbi4u71ySzM9HmmV4vz6KwELvCskik+eAD7uG2bWw/ZozJsCwvj8+63tFhSpZFTHJNvLLxdB3SqpjuJoBoVrjfz3qwY0cwYFhTw3YOB/fkxBOxjyZMYCyqf63BoJQU7nNWVp9lkA/pph7I5w1EzDr8d5BYlnWXw+FYJSLfEJHvi4hTRA6IyAci8rvuHMiyrD2H23KfKSKP9+y0+1daWsi6SU1F8bW1kaqelUWmiwhp4qtXoxTPOotJvmULStzlwlkeN85wYDkcOOsbNphuU1ry6/ezYFkWRtGOHfyflsZC6XCgMDXyEE7WruWc9u0jcqYZMOEWDJ+PhbS9PXL5spYsK0+e02my1rTpi3b/jZSJ9EWS1FReeXmmO2pbG45TQ4MhLFenJ5aFXJ0tXTg1O0odFoeD56MLTbj0dk3R9/tZcPvwuQ3poiilsZFMn8JCkf/8T8qMPR7AwaYmyomzsgD2srJEFi8ma3HGDJGbbuKZHjgA7+CmTWRIz59vjBrLglfqd79jzGr3ZTV4VNxutnniCeb4ww9D69DezjjOzjZlX/ZxtHmzyP/8D4Zkbq7I7beTJRjOYbeXLycnh48e+3wAkv/4B5nZqalE7E87DaO6vd0YWbHywISKgod+P8dTYvD16wnUfPyxCaAcfTRZBMceG78If7iS5czM+HRK1QYKyo0WC5CSkMB5rF+Po7BzJ6ChZmHaDePKSkDD8nKTca8vBY7tGYd9oJOGdFGUEgiYEr3x4ylh3rMHp107k6rdkphI9s6LL5Ihfd11jK0DB3C01REePdpkGzudJqtQpPPyZQXKlPszGkdKG0X985/s95JLAJhipVuxLGwsHesJCTjIkyahI9vajNMZa7l/qHg86Djl2MrMZP8aPPR4jgQO7eCqvbxZAcjPm6jNO2YM4++++7jOo48miycvj3GngKFm1A4AGdJFUYplEZB0uynpfOop/r/1VrK2vv99Aqz33cd8XLsWfZWfD4CYmwtws3Yt22mZekcH4yMlBfvqo4/QG8ccE9zNVhsXZWej9z7+mDk1ZQr6bu9e9hHK76rS0ECDzmXL2O700/ETI1V/1dUZbvxw5cuWhV+6aBGAnQj22SWXcN579+JHZmQw9uMBrrnd3Bu3m2vMz2e/W7dyDh98gH4UMRUxJ5zAnIuHaFVIU5PJWM/JMcHdeIvyZirVVzT6PBDgHihYuGkT658GSQsKAArPP5/3ceNMYFdBwz172FdGBvpLbbQ+ziQf0k09EMeRnaiHpCtxOByvisg0ESnrZmvuAXOzPR6RP/4RBf6VrzCJV61iks+ahRJ58UWU9ymn4MyKoDz/+leUzvXXo1zb21GeiYkold272c/RRxuFHgiYkoqEBBS/10tmoHZ2drlQYOEc1JoaFqY1a1CmF1yA4xZJ0WiXOQU3QxcwVZhKSJuczD1Qrpn6ehbd5GQc+IFMxj0QxOs12Ykej8lEHDaM+9qZQa9Arj3LUDMRlCxYS5MV4I1mkdMIV1JSr5SfDwg4ebDqIp+PEsHNmykz/ugjDJFrr+VZf+97bPeDHwD+L1ok8uabRMGvu45nuXUr0ffaWhoFnHOO2X97u8hvf0vpV2UlHQqLioLPwbIA7e6/H2Pm4ovZTn+flhY+G7qujn2/8grGzrXXogs18NFZ+bLqGLs0NnKe774LoFdSguE9dy77V/BQS0/i4Rx3dHAsjbCnpPAsVq0CINHmMMceS5Dm6KPjm4Ht9ZouyiKcg2blxVuUJy2aTraWxdqknZI3byYDS4GJwkKynSdNYlyNH28yKxTEUKJwEcaClp33IqgxpIt6KFu3Mq8rK7FvFi9Gp5x5pmkskJ/Ps1yxgrk/bhz0KcnJ2CerVmHbTJiA465zSIFsr7fz8mUF1AMB0zGzK6C5rY1zee01zvH00ymhi7WJgNvNvdi8GScvPZ2xXlHB+Sjgr/zC8bCL1Hbw+Ux2rsNhMg41Y1z1VFdcoVoJoVmJgznwe+gQdrM2Pzl40GTYp6XxLD77jHEwaRLdeiNV5PSRDIi7Pdh10bZtPMc1a2hYeemlBCgfeIDMvu98B1to9WqalJSWYk9lZ2NPvPUWPsyUKYCE9fX4VcOHs76tX8/YOfZYgl4qyl0ogj1WVYXemz2bz/buZdyNGXMkOO31Qov10kvM25NP5rwjUZz4fICcra2cd2lp8D5dLgKqixYBTmVliZx3HsGRwkJ0rjbfGDHClGj3RDwefNGODtN4Uim7li41dBbTpuF/Hn98dE1fohWv13RZDgTQd501tIunaFWPBnBCpb4+OMNw2zbukwhrwfjxvCZMYB3VjGetdNFkEC19zsjg/mZmHvnc/f64AIkDQheFSg9004CUIRCxm+JwOMYIZJsPW5b1vW7+fEDcbMuCx2fjRozgkSMxgBMTARATEjCkN27EiJ43j9+99x5RsaIiuqFmZhJ1ysvjN/v3839GBga2RsEDAYwfexlqVhbKJiOD37jdBnCyS1MTPDDvvIPiUWLpSA6tkgHX16OESkuDDV0tJ1RDWDl0dJuWFgw3y8IQj1RSPSSRxefDKVDiX20UYOd/Cy1LVm6wxEQDFtp5DJ3O2BZRjSgqYW8co1v9vkANZl30+99TkvXtb/OMPvyQea2R9rY2MhFHjUIXvfOOyEkn4SQ5HETZf/ADxs3dd2MMq+zYYcp/LroI4zvUKGpuZpsXX+QY991H1F8NSDVwRExWY0sL2YpPP42xedFF6MFIRqTDYfSN04kuseuibdso9/n4Y/Y/bRogwFFH8VvNzAkETLOCnhqSbreJbrvdGMhr1/LyernmGTMADidPjm80WHnOXC5TsqyZzb2dLdPRYUq17QBEQ4NpeqKgodI0pKeTWThpEq/ycp5hWpq5L4GAAQ7VuVfwIjm5z6LpQ7qoB1JdzTwYNQoOwcceI6Bwww0AiF4vczwlBUfy9dcZD1ddxfOtr4cvOiEB+6mggDVNubkUGOysfFk5EjX7sKtx4/GQZb1oEfrlhBPQc6GBkmilsZHxv2MHDlxREY5gWRnnpEFXdWzjoYvUTtCmdZr1qxyQei8UOOzO8XReWtbgKW92uYJLkquqjJOuVDqaYVhSYgLjgQAgx6JFjNdJk6DssDcV60MZ0kU9kJoa7IGRI3n2jzyCXXLHHSI//jHcgnfcQVLHRx+J/OY3JGH8v/+HjdPcjF3V3Gw6JldVmWy6TZvQd0pJUlpq5lVrK7by/v0kgogAQFZU8PnevdhF5eVHdkP/8EOSPA4e5JjXXx8MToZKezv70/JjpbsS4Xxffhk929rKOL7kEq45JYX7smsX+xg2DB3V02CG8g1q9dKuXQRTP/qIz5OTsYtOOAHwNt40Seovqe2hHZ/7mjpLqSREgrMMt2xhnRMxWelakjxhAiCuw8FY0GxxlyvYv9PmndEkgiiQ2EPbsN91Uaj0UDcNSBkCEaMUh8MxRUSmCySbk0WkwrKsA93czYC42W+8QUbheeexSKxcyeezZrHYPPMM0bDzzkNhihDZevppFqw770SpVlebsrq6OhRQejrGjkbCtTvX7t2m6/KYMaZzsnb/yskJ5sro6KA05513UELHHstC0pmR7PMBHCiXR2Gh4dfTpiAa7c7ICCbq9no5F7cbxTV8+OeDmLs/RUs46+owQurrzYKioEheXjBoGG7R1EUp1sXE68VJUmA4TtxN/bZADXZd9N57dE6++GIMs7//nYjuiScCINbVkR04diwlzkuXEjy47DJ0zdKlGNQ5OQCJZWWHL8giI+fxxzFWbrwxmChct3nrLY7f2Ej58y23MO4OHcJ40S7lKi4XBvLjj/Obk08W+cY3MK7t+7W/BwLoO3v3ZQUGV6xAt+3diw468URKljWSrvrK6zWNU3rqBHu9pvHQ+vUmwy4QQNfNmIH+r6iIv8MdCAR3WNVso3iULEcrGlzavh0HQbkMlecuIYHxpoDhpEkGQLGLPhfli1TgMCHBAIf9AFgM6aIYpaXFdAtta4NeYfZskW99yzQWUADx3XfJjJkyhe6fCQmA0O+8w98nn8x+WloMQK4UHJGAQe0iriBjV2CZ3895/O1vHPuYYwisdOawRxLl9dq4ERtN50BoFok2OdJM6J7aRX6/aYal2ZnqUCoFgZZx97SLtGYQ6/wcKOL3H8lj2Nhovh8+3DQ9KS01jXwiiYKm771HZmpzM1RCV1zB7/tQhnRRjNLejm2Tno4tsGABgY377wcsXLJE5OtfJ9j6/vtQsEyYgK5KS8N+ee459nPhhczlqirWqPR0fDqlixoxIpg3sL2dQMqGDYyjESOwB9LTWTf378cmUqoOEVN2/eKL/LaoCBvt+OMjz1vtEl5Tg64bNcpwDK5eDRC+fDm/nzcPn2/yZGMXVVUZXVVW1nN+T7+fuVJbS0bvZ58RSNKGbMcdB3A4c2ZcOwKLiLERm5pMhV52Nq++9D39fvxzBQvXrTNNTh0OxsnEiQYwHDMmciMdBaJbWkwwVX277lDwKHew+oox2lQDBkSMk24akDIEIkYpDodjgYjcKyK7ROQuy7JejGE3/X6zV60i3Xz2bLIMV61ikZk5kwn/l7/gZF18MUZIIIBif+UVHMw77mC7AwdQGjrZtcQkOxuDR4Tvdu/GSE9IwJiZMAGlEAhgBHs8pvuXCP9/8AFOdksLCuvUUzFsO4s22cuXi4o4D58PpWbv8JeZyfFVmSn3XnMzn+Xlxc4j9EUXTVu3ZxlqZM/ugCQmGiAhIcFkKNqfS6j0FEj0+w1BcnZ2XLoR9qexvEAGqS7avRsi7LFj4ZF59ln0yiWXmLLie+4BxHniCQIc55/PSwRd9Ic/oBcefNBEsNvaRH79ayLHxxxDR8u8vGAe04MHAR2XLCFavmABekV1gMtloqQijJmXX+Z4NTUEMubPR1d2BkSHK1+ur0envfceOmnECIDDOXOMXlNdqtkn2lhEJLi7daT3SOeyfTv3Ze1aostJSWSyzJyJo1Be3jtgntfLtSiQ0psly6ESCLCOaZbhpk1kWWkG5IgRPHsFDMeP7/yZKmm48rNZlgl6DIBMpyFdFIN4vTiNmiFx772MiwcfNA151DZ56y0cdw1mOp3ohKVLGU+nnkrgUtc7BZkjNUXRRkIKoqWkdD6GlHrh2WexvSoq4MY76qjuX7c2kNm0ievMzAw/B7TRkTpyna3P0UggYLqcavahZvXagcN4i5Y3a0l0X5f6WhYAoR0wrKkx1RcZGdjGmmFYXBxbZpXaSF4v1B+LFwP+nngiYzaeZZedyJAuikH8frL5XC7m4oIF6IOHH2bOL14MjcuVV1K98Oc/wyN/xx3Mm6oq/DqPh2ddVgZYp1yi1dXMreHDsX2VfkoEe0Qbpwwfjl0wejTf1day7+xsPtO5s2mTAQ8zMqC8OvHEzseYz4f90daGrlTKh7ffxq7bu5fPL7iAl/qRIlzH7t0mqKMd4WMV5fN7/3184A0bTJLB3LkAh8cc0zv6SAO6LS19X7JsWTzT0LJktdGyslhbRo1iPTj22M6r8dTWbW01jV80A1+zDmOlkVJ72LIiU4B0IQMJRFwgPddNA1KGQMS+lX692du300V0/HhKXz7+GKU8YwZGy1NPEXG6/HIWKLeb7MMPP+T/r3wFo6+qCkBGuXvy8jA2U1IA8DRq9MknKKi8PDi1NItQOQd9Poz01FQW0RUrMH6069asWSiz4uLIBrZGtrSpR2mpIaVVcvK0NEPSbRe3m/PwelkIc3P73RkcVKLp6vayZFUnycmG70K7XNsXAs1w0M6nynuk24aWHVqW2aYni5KSJSvPYg9kwCxQMUqf66L2dpH/+A/e772XspvcXEpfHnkEw/Tb38Z4e+wxIsKXXkpDJ7+fyPurrxLc+Pa3TUnJ1q0iP/sZc/maazAAExIMD2YggCH+6KPonP/4D3gMExKCx4SCy5ZFxtFvfwuoWVnJ9tOmdZ2hrI2GtEHT9u0YyZ98wvfTp1OyPHFisMHo95tM6cRE9JE2GBI58j2c2Pe3ezcAx/Ll6OukJIzDWbN49VZ2ipYsd3QY7hvNOo4zJ2nQMevqTJfkTZswjl0uvs/KMl2Sx40DgC4s7NpB8PlMqbKdbiEx0WQOxKvBTQ+l/8+gZ9LnusiycBwV0F+wgM8feYTn2d5uqiMWLwaEnz0b59bhYH6tXcuYnjMHG0cDAE6nyXwLB0xrgxUNbHYFGK1bR3B3xw6c5y9/GZutu+Ouvp45smsXc7OkhDkxcmTwvuyZ0Fq10RO7yOdDxzY3M5dSUoxdEA1PaTykL8ub29uPLEtW7tekJOxZe1lyPEsjVec6ndhkr77K+iPCunPBBfEvxQyRIV0Ug3z6KcGBKVNEfvlLAp4PPUTA829/I8PvhhuotHj6aeyI//xPxtPWrWRDWxbVY6NGMdeUQ9PvZ73Lzjblw6qXdu/mty4Xdtf06UYfHTzIKyeHfareW7QI3ZmdTabe1Kno0M6arbW1Adqp3mlrI0D7xhvMl4kTAT9PPjl4Xfb7+V1dHec8enTPxm9dHbbde++R3OJwcD4nnQR4OGVK79kp9pJl5QTs7ZLl1lbGhx00bDrcDzgpCXuoosJkGqr/ruCg9gqwi9drfD4NeKu/Z68m0yqNnuh39RNFYgISB7suGhQyBCL2rfTbza6pgYcsJ4cyv3XrUDDTp6Ocn3iCbb70JQzLQ4eIdu3YQWTq/POJDNXWEn1SJ724GOPU6UQZO50oqRUr+HzsWKIZujD4/Xzu92N4JyezgL72Ggq+vJx0eM0I1I7P4cTrNbwx2pBFMwHU+A3HvRAImJRrBUHjnar+eROv1xDj6svOAaYLiEafQp0nuwEf+jw14qSAoh180CxF7bjbUyBRxGRIpqT0qOP2YF+g+lQXWRYZPh99BP/gBx/wLG++WeR//5dSlttvx1H//e8x8L70JTJ82tooX/7kE5GzzyYiP2wY+/z73wmM5OURlc/P53Plad2+HYBgzRr0yr334jTrOTU24tgOG4YOWLGCjssbN6K7brwRIzklhX1GGnfKmejx8Pe6dWQeahnQSSdxLeEi9Vrap80Koim3D1c+vX075//hh+hFhwPjcM4c7mt+ftfZjLECYn6/abpgWehVbSoRb5CtrQ1j2A4aNjTwXWIiQTLNMAzlfRIxnIyaCW0Xn89kiClwaO+orM/f70dfJSYOiLVjSBd1U3btYo6MGkVjpwMHRH70I1PWnJ2N7fDyywRbTzgB3WNZlMLv3cvYmTIFx0sJ8S3LlOqHOk8KsGvTj66coh07RBYuBKwcPhx9OG9e99a+QADHX0v3ExNxHCsrw3dL1QCAiMk+jEV8PuZZU5MJLqanG2C2P6hieqO82esFaLEDhs3NfKcdSu2A4fDhvRt0CGcj1dcD/HzwAePyvPMIzPUSeDGki7opu3cDyo0fD//zJ5/QWG77dvyys8+GcuWllwAUjzsOOhWnE7vpk094liedhD7zeIyO0syyxET0WmEh809pVT79lG3OOCM4sFhVhb7IzcVeqqlBF65ahV487TT0iCZudMZRX1vLKzmZubJ4MRUmiYmAhtplOVQaG7kGn8/wgcZi9x84QEB1yRLsSssylSAnncT96a05GQiYRikalBk2jPUl3oEMnw/f3A4Y7t9vvh85MpjHsLy864C4y8XzVvtWKXpEeObq94ULhFmWyQDvadaoBoS7ycU72HXRoJAhELFvpV9udmsrWTw+HyWEO3YAoh1zjAEQGxooj6moIPLz5z/zu7lzySIcM4Zt1q3D+CovZ0GqrjbRJaeTfW/ejMKcNg1HXMUOIObmsnguXszxiotFzj3XRPRzcoLJdsNdU3U1i2FWlskqSkkJ3wFVpb2d6/D7UeQ9AJE+t6KZnHbQUJW4SHBXrWi5LtSAdzi6Nt6V3Fc7NooYQFEdr1gbrai0t7OwJybGnIE62EdNn+qi554T+dOfAA0bGjBKb7qJDMGlS+H6Oekksv+2bqUc+YQTMDoffBBD8JprMDrz8zGIf/UrjNHZszGqNXMsN5fx9thjlCJnZJC5eOGFZswEAhipXi86YMcOwMOVK9FlX/saus/lQpd0pic0MltTw++XL2d8lZWR/XHcceGNLG1W4PebiG93xrTfD4C2ahWv2lquq6KCe3LiiejQSNmM0WQ12t/DAY2hJcspKabENx7i85k1RUHDvXvNuY8cGcxjOG5c18fW6LYCPlqqrIEO1VH66uy5u1ymfKcfZUgXdUO0y2RhIXpp5Uqc9ooK5rFSGrzwAuXOp57Ky+fD/mlsZC0aORIH2rKMTaGZJaFjRjNa1UbpbIweOMB5ffQR53LppVDPdGdOdXRwjZs3Gx40LVmOxGel6602Qeuuw+71mo7KGhDUYG5ubty4iHsssZY3K6+qHTCsrTW6KDs7GDAsKuofHsZAgHMKtZEOHBB5/nlA8exsGoOdckrcAd0hXdQNaWzEXigoINC5eDG2RyCALTRvHhz0f/0rlFLz5uHDWRaluLt2YQ8dfbThmV+xAvBo1CgCoF4v/l5uLvppzx50S10dQcZ584J1wv79jPPhw5m7r74KAJ2UhB6aPZvgQEoKx4w0frR8ubaWa3v/feZMXh622HnnhffxPB7OsakJPTR6dPfohyyL+/LBB9iW27ZxLqNHE1A9/XRAtN4U7fJs54DXxqHx8Dcti3tpBwyVrkUEe3XCBJNhn+SdBQAAIABJREFUWFHRfQqnjg6Ooc/a6WQf6vdFo9u00Yo2x4xVFEjU5JIo7+Fg10WDQoZAxL6VPr/ZXi/O+8GDZNXU1fGaOhUHSsHCf/s3gEItncnIYHEZPhxF1NTEQpCczIKVnc0+3W6MpdZWlHV9PUqmshIjXcXn4ztttvHWW6bU+ZxzOJ+aGs43Pz9yyrpGtqqqUCy5uZxTejrnHEmx+f0Y+u3thhtkoBi1/S3t7aYcWbP0VC2kpAQDhpmZsUfQtBGB0xm94aodarW8SoTnF6lEvTuinZsdDsZRN/c12BeoPtNFa9aIfPe76JMxYwCCvvxlGgS89RaZhWefDSi4eze8g7Nmsd1DDzFu/v3fAYgKCtAbP/85BvgNN5AlraUVw4YBNi1YgFF1/vl0LrQTcNsBxKYmdOA//oHhdfPNRMZbW02AorPymfZ2sgHefx9DLiGBUsMzzsBhD2fsWBa/szcriHbseTzo6FWryEBobWUf48ejQ6dPx4HtzljuDGQMZx7YuyyrgWgvWY41q9GyCAxpl+SNG4P5eoYNC+YxnDgxttImPf/mZtMBUIFD7agc7bm73aZEs6cdInsgQ7ooSmlvJ7MvIwNn+5VXcMrnzWM8ZGSwrjz3HOPvrLP4Tn/ndqOD0tIIfCYlYU9pZUUomBwI8BudJ+H4EVUaGgB53nmH/So3WHcyXWtr0Zu7dnHsESOYK9o9M5xoxolmQndnHGuXd20O4/EEV4L0dI3uLYmmvLm1FeCtupr3gweDgyXKX6gNUAYSl3YkIFGEDLe//pVxkp9PqeycOXEr4xzSRVGK2w3IlZCA7nn8ccC1MWOwb2bMELn7bvyxN97Appg/3/AIaidubbyTkABwVlcHV+rkycztujrmYXo6AZM9e9h2+vTgRmqWBYDY0MBY/vRTqikCAQK8553HOTc28n1nmYGtrejXt9/GPvL7OZ+LL0afRrL/a2sBHkW4rs4q0exiWYxnBQ6VH3/sWK5zzhxspDhwoXcqyvmqlSXaZbmnvmZT05Flya2tfJeSwrXZswztVSfRitql6gf6fHymwTE7j2Z3xO831Gc95dRVupAogcTBrosGhQyBiH0rfV5C+NxzpHBfdRWT+eBBFhgFEN1unPiRI+GJePVVIlinn47BNG4cCmXjRpTVjBn8tq4OZZOdjZGlXS6HDwdULCgw56EAYk0NC8uGDSjXM89Eufv97EObokQymt1unMrGRpzHwkKTCdeZAdTaarrzair5FzX7UBsD2EFDe9OS0LLkeDvGfr9xMroLRnq9BlDUsknNPO2u86Pi8zE2AoFu85MM9hHUJ7qopkbkttsA8S64ACP27LNxZF56Cf7Viy4S+e//xlH7ylfIkH7/fT4rKKDMWY2xN9+EE6igQOSuuzCe2tqMQfWHP5DdWFJC6fKJJwafjzZ0qq7GYV+8mGd+7bUEUpKTTVZRTk7nGc1vv42RXV8PgHDKKbw66xiooLi9Q3lXuqijA4N+5UreldNz8mSAtIqK+BmrkUSNSQUc1ChMTe163kVqCtPcbMqSN2/GCVC+nuRkrssOGipfT6znr9mGGozQKLlG12OVjg5THt0fZZoypIuiEr+fzEK1N/74R4IMV19NMEnHwcKFOGwXXEAW8aFDAPcOB06p241uyMw0wYhwQUltxONwRO7OLILuevllKF0CAeyiyy6LnrPX7wc03LgRXZSUZEr6uyLFb283mdDRVhTYgUPN3HU4zLqemBj7etyXYi9v1ioZe5ahrilOJ7amPcswN3fg25CdNaOzLPyCv/6VwN3IkXRynjatx9c1wO9Kl9InukgbJTU1sW48+ii0UaecQjOVo47CfnnySYKt551HJcahQwRe3W7TlE0pm5Yvx56fORM95XLh7yUns9Z+9hlzfsQI1taCAqOTLIsM/9padN/y5axrs2djn+XloTNbW9F9BQXhx4nfjx574QXW9KwsfMlLLuGYkaSjg3GoVBJlZV3bMj4fgZ2lS3k1NHA9U6cyjqdM4by1aUlviZYsNzUZTmvtshxLwoXHY6ovFDA8eJDvHA7ujdp9Eyfir8ea2GFvhtnaGtwEUzPyla9b7dVYRAHJngKJSpsTJZA42HXRoJAhELFvpU9v9ttvswCdfTbKdP9+ohTp6US9/H4yeQoL6bS1fDlZhuecw7Z5eWyzZw+/mTqVidvUhPHscmF4BQJEPlJTUTr2BcbrRSEuWYJSTE1loTz5ZBaJtjaAhsREE9kPFeU+3LMHRaTNVroCfLxeFhaXi23z8gZmVLy3xO83QKG+K5+FEvvaQcPejtKp+HwGhIg1+m3vvK2ggDov0fLKqdgz0+zdebuQwb5A9bou8noB+vbupUTnww8xSl0uHPVzz8Vx+e//Jijx9a9jPD/3HN9Pnkwpj9vNvp56iqj28cdTvpyebni3VqyAkLy2FkDwttuOHM9+P4bqwoUES0QAMW+8Ed3g8RhuPeVrDZXqaoDMJUs4r/Hj0ZezZnUOIGmzAo/HZOl0tn1LC9e6ciXOns+HMTxjBjq6pIR9JiVhrPYmL5/Hw322Z+FEAszCZTEq8LBtmwEL7Xw9DgelRhMnGsBwzBhjcMZqdGq2kccTzN+anMx9S0w0Y6unDR4UGA7Hs9gHMqSLopDNm42e/+Uv4Wq+/Xb0h9ouf/kLgNwll5DBUl3N79LTAbTVUc3Lw3ZROgS7LeL3m8w87Twcbgy73SKvvw6A2N5OwOPKK4MrODqT9nbjaLpcJlN37NjO7Rwt59dM6PT0rrdX0FBLshUYTUgw5cG6r4Fe4REIsN4oWLhvHzaow8H15OUFZxgWFvZbcKBHEg2HtIJZL7wAUDFhAmtyD8o9h3RRFKINjvLysH9KSqjO+NGPoIpasAAAcdkyAgqXXcZ6uWQJc/W008xc1G7rHg/2wciRxmdqa8PmaWjALxs3jjUqP9/MecvCR3vvPUrdvV58vUsuYV8+H8d2u5kLOTlHXk9LC1ndzz3HOCouZhxdcEF47lUVLcutrmbujRzZeYdntxu7aOlS7MnWVvTNrFmAqhUVhu6otzsea8lyS4uhRhk2rHvN1iwL/WPPMNTGVyI8J3uG4fjxPadOUboqrTpTjtjMTF7h+gi0tZnKnFh0Ybz4EUUMkKgVMJ3IYNdFg0KGQMS+lT672Z98gmEwcyZO2Z49GJcZGXAgOhykxmdl4Zxv3UrE6NRTUWQ+HxO0uRnlOGYM27a3s6+qKhRNTg6Kv6WF7e3ZIo2NLCwrVvDdvHkcQ6NChw6xuOnv7M6XLo4tLYaXISeHRaIrh9myTGRIS1V7MxI1EERT0UPLklXsJLgKlPVWF7JopLNGK90RTZVXHibNUNTOqerURJNh0dRkOPA6M3wOy2BfoHpdF/33f5Ppd9NNZB+PG4fR/Kc/UR5z7bVE4JubRW69FR3zP/9D4OO00wAVDx3CUX7iCcb1jTcSFHE4GENbt4r8+tcYwBUVIvffjwEcKq2tHPfZZzGGLrgAYLOkhO87OjiWOpF2Q8eyiHi//Tal2ZYFwHD++dE5Wzo21dCMpL/q6zHiV67kmi0LI3LWLPR4WZkJBChBd28B/6p/tWRZI7/RdMhTw1ibnmzcGMzXk5cH2KGgofL1dMXVGE1TGL/fAIf2TBwtVQ4H8Gkzp1h44OzXrM84XrxH3ZAhXdSF7N+P3ZKYSCOVoiIyfdrbTTb7U0+x3eWXo0N27uQ3Ol7r6ph7eXkGoNYseJHgbFflbgo33vx+Mpiffx6dM2MGlSJlZdFdy8GDzKvdu01QVcsauxLN5g8ETDAg3FjVNVVBdi2NTUkx4KEGRewNoQZidl5TU3CG4cGDRhelpRn+wvx83nuj6UF/iQKJXXFI+/2soS+9ZPjSr7jCNCHrhgzAEdAt6XVdVFWFHZGTQzWYZUGp8NOfAvQ9+CD2zqpVAIsXXsgaunw5uueMM7DtGxtN13OnE1tkxAhTlrxpE+B4SgoBk6wsxn1+vgmQ+v00p3v1Veb65MlwsGrWoNvNvgIB5klogH3HDpr2vPkm5zFhArrsrLO6nkOtregwl4vrGjUqPMDU3s61L12KbeRy4c/NmQNv9jHH8FlrK2M8O5tr7Q3/RjP31FdwODjWsGHRZV43NgZnGG7bxvWJoEMrKoK7JXdW1dId8fuNb6h0VYmJ0fPaq08tEnslnwKJTmfP9avPZ+zgToDEwa6LBoUMgYh9K31ys3fuZBEqL0fJ7tqFgs7MJLqVkgKAKIJjXV+PwTBjBk65ZiFqtkZeHguPy0UUqKaG/8eNQ8lpynxREQrC7YZj7I03MDLnzSPrSBWiZWGQt7RwTvbMRSX4bmszfB4JCRjI0ZSzud0Akx4PilG7tH7exO0OLkvWVHQRnpkdMByIvETdabTS1X7s0XblzVBid3V+0tIYD12Vj+q9TE7GyOvEEBnsC1Sv6qI33sBZP/dcU6IyYQINnmbPJgP6V7/iGd12G/rkRz/CWP63f0MfNTbSjfC115j/3/wmQKMIRsSTT0I+rpyJN954pBHq8+Gs/+537O+UUzjeuHFmG51HKSnoKH3m7e1w7Pzzn+i4tDSarZxySuccYyqqy7xezisj40hdVFVlGqPs2MFnI0YEA4d+v+HZcTpN59jecNi1ZFlLFbVpSGfZRY2NBjDctAkjWUsB09J47vay5Pz86M4lNJsx3Lues4I32tk9MTE447AznkYFAB2Obnf/CxLNNlVQpQ8BlSFd1Ik0NRHESEqi87vPJ/KDH/CdNhF54gnsmquuYrxu2kRWc2kpTt2hQ9gi2dlsrw1IdB6qU6NzJlzDDsuiocGzz5J5M3EipdThOpOGit+PftBO5FruHy0vqK6LmgkdrkOyZlAqcChieBy1GYzux05y35M5E29xubi3dtBQnfSEBNPlVV/2rKre6N48EKQzfsRQ8Xgol/3737mXxx8PqGSnJ+pCBshIiFl6VRe1tpJdmJpKgsX+/QRQf/Mb7PQHHsCu+fRTkeuvB4xTCqhRo6jgUlonBQiHDSN7r7SUZ7x+Pb9JSEBHTJ+OfWOnXdBy9j//GSBv/HjKpadONWOkrc0ki4wYYWwAvx9Ab9EigqsiHOOcc/A3uwLT/H6uWzs2l5UdGbRvauI+LVuGz+nzYZvNnUvG9tFHc17NzVybCPevtwIAfr/psqwly0qNFclHcLl4TvYsw7o6vktIwD+3ZxmOHBlfPer1moQS1YFJScYv7G71it6DpKTYk3I06aOnjVZETLBYs/3DyGDXRYNChkDEvpVev9l1dRjKWVlk7OzebSJITz/N5J8/H6P48ceZ0PPnk6W4Zw+8GcOHs2CpoVxayvZLl2JAKqm9EuEnJZG+rkbya69xHpWVgAHaNUyE41VXo2Bzcw2w6PEY4FCNudZWFtvi4q6VlmWZqJxmE/VVeW5vi5bu2rMMtbRQyXvtoGE/dwqNWmJptBJOIpXtaDaV8ijqNnZAMdxC1tGBEdNF5+bBvkD1mi7atk3kjjtMZNznw8j83/+Fp+bmm8ke9PlE/vM/eQY/+AHBjNtvxxA9cABy8S1byI7+9383Rs+uXRCOr1kD2PbAA5TD2iUQwBn6zW/Qa1OmcE7Tp9tuwGGd0dHBeBg2jPFx4ABBkGXLMNjHjIEbbdq06HkzOzoMuba9xM+yOJ+VKwEOtaR33DhAw5kz0XcixmhrazMR78zM3omwezycrwL72mU5dF663TwTO2iofD1OJ/dq0iQDGpaV9c75aiduLRvVyLq9o3J3uk8rOJKY2DNQxOcL3k8fyZAuiiBuNzaNCODdvn0i993HPFbn48knAeb+7d8Yr2vXssaOH49j19HBnE1JAYRSfictlXO7zTqmWXpBF2dxDgsXorvKygAPjzmm63HW2goov3Wr4WLUkuVo10y3O7gbebjSa5fLZOfpfbHzOGoJtGb62xsp9Zf4/QApWg554AABDZXhw4MBQ20+0ZXYuzcnJfXvNcZLVEdGC7C0tVFF8Oab/PbUU+HGi4Knc0gXRRCfD5vC4yGz7pNP4IBeuJCxdv/9ZENv2kRm4ty5VGXs3UuG4KxZrHnLlwPAlZWZgFxxMc92yRIAx+JikjdKSrCr3G7mQ2oqOuhvf8P+yMwkcHL66cHjvLGRY6Sm4v8lJmITL14M+FlbC7A8dy5BYaWY6kqfHTqELvV6KY0eMcIct6aG+7N0KTrYstjnCScAHFZWmnW9pQXbKBDAt1V9Hm9xu02XZXvJcmhGpt/Pc1JdvXmzod8S4TrsGYZjx/YOZ6yd897l4jN7c8ye+oYul7GXY6WtiBc/oogBEjVwFyKDXRcNChmwIKLD4ZguIheJyOOWZe3q59OJl/TqzW5vJ+PG7WbB378fRZ2eLvLMMxig8+fj5D/3HP/fdBOLQVUVAGBODhmJ2p2puNiAiwkJONMlJUzc6moWgOJivn/tNRaCoiIAzGOPDV6YvF5+4/NxzIwMFJLyLajDrY0StNSkq4hwRwdOgM+Hsuwig2xAi53oVkFDjSKJcE9Cy5IHShZALKKNVnrCjyjSdbRdeZ0UUNSMpdRUAyjaDWyPB4NHRGTnztXy2msvy/z586W8vFw3GcR3XUR6SRc1N5Pp5/ejK5qaKDt57DEMp5tvRkc5nQCGtbUiP/4xz//uuzGyPvmEz1wuuA/POMNk+zz+OCXPiYki3/oWHGKhwPFHH7HN5s0Y2jfdRJTcbmRqgxWPx2QXrVlD1uGGDWx73HEYsOp8RsMH4/Mxf+3NCkTQuQoc1tVxPZWVgIYzZhD0sJ+bzn0R5nhnEe9YJVzJclqa6SAbCKD7N240gOHOnXwugp7X7MLKSozk3uRD06YoygUlYozHzmgRuspm1HcFJZOTjUEaqSmM/T3cebpc7KM37sfq1avl5ZeD9NGQLgojgQDZNtoE6eOPTTaz08mYUZqEa6/FVlq7ludXWcm893oZ8yIEKrQDsc5rHYv2MWOXbdvgWdywAZvnS19Cp3Q1l6uqmG979/J/WRnzTAMM0YhmQmvmTHq64TDUjEMFDpOSgkuVVVRHKAipJdD9Ud3R2BicYVhTY6ovtFusvoqLezb3ounePNhEbZ7urCONjZQ4v/ce9+Gcc3hpgGRIF0UvWsW1cyf66PLLsTc6OghsPP002ca33ELA8q23sEHnzGHud3TwHJqayMQrKuLvvDzsrnffBTCcNg0dk5BgOOFzc9lm0SL0YCAAAHjppcG2h2Vhkx06BOhUXEwTvEWL6Brv9RKIPfNMwEWHg/eu6H+8XnRZYyNjZ/Ro5uy+faaj8pYtbKsVdCecgM2o66y9lNjvN4BevMG40JJlpxPbLzubY2klnT3DcNs2wzefmRmcYVhRERU9UsyitF+treYc7PRV8b4/ra3G145VL9oDVj0VrUIJAyT2WBd9TnGouMpABhG/IiJ/EJFTLcta0s+nEy/p1SjX448DHF50kekYmppKB7aCAtLjP/yQ6OLYsZQUpqXxm9WrMTLnzWOx0ZLOvXsx2HJziYRlZBgwUHnk3niDbQoLKX+orCTqZTdWtMzE4cA4145PSj6emcl7VZXhHeqqTb3fz6LU1oYCCdchcaCLLgD60nsiEpx6rpGkwUjw3ZVoo5We8iN2p2zHDijqgpaSYngUExMZXw0NIk899ZjcdddX5Z133pFTTjlFdzFkLIdIICByzz2AcWeeyb077jiM4+JiwLw//QmddPvtBB5++1uM0HvuYb4/95zI//0fBvL3voeeEsG5X7AAx3rePADHUA6xtWsBD1evxpG8+mq4FUMzULRbfCCAjluxIrjL8qmncgzNiE5J6Zqg256po807tm8HOPz4Y3Sqdg6cMQNDPLQM0bJMpnEgwDjMzo7/nPf5OM/QkuWWlmAewy1buCYR9L4ChvqKF19PJFEOHTUStaGDZhv2VF+EO57LZRqtJCR0zdMoEh5ctDdsibcR/9hjj8lXvxqkj4Z0URjZsYMs2TVrsHmuvx6HXBtoPPEEz+n66xnf69cz16ZMYW56vTi5LheObUIC80HHnXYjVtDdLvv3E7hduZI5fPnlZPt0Npd9PnTGpk048SkpOKETJ0bd7OtfosCfZt4rzYzbbYA3BbnDnb99H6onFYTsC2lvP7IsWTNrkpJYH7TxSUlJ9J2suyOh5c3xyJzpT4mm0Uokqa6GY33FCtbCCy9kbX3iiSFdFI1ot926OgC5k09mjW1oEPnud/HR9u6lMqO8HJDR58MWGTGC361ciX8weza+liZx7NlD9psIwJvyNDc0GPD/n/8kyy8pCf02Y8aRVAiBgGnGkp3N+S1aRAAkNZXS6osuQl/U16NXRo7sen2rq0OPKq9ia6vpqLxnD9tMmsS5z50bnoezvR2d6PNx/Jyc+Pt6WvmhIGVSEuCf08nz27LFZBpqxnNiIjaqHTQsKel9PdHRYXxGpZ5ITze+Ym/6idqNWsHVnvAjxqPRiogJiGlA+bDEA0T8POJQcZXPDSThcDgyLMtq63rLz59YFsp+924UfX294YZ47jmMrauvJg199WqyXy6/3PDs7NiBMpg9m8nY2Gi6L3s8lNqNGYMh6/NhmO/dS1bN7t2Ad5dfTnQpJYX/7YqlpYWFJBDAANEMr9RU/k9JQSkdOMDvRo7s2mhua2ORtCwUvZYiDmTx+YIBw9ZWswA4ndyLkhKzEAw2QDRWUWddy+djFc2eioZIXJ2n3FxTytnebsa+Ok12jhUFVLqSL6ou+r//AzA7+WTm5tSplBDm5lIq+NhjjOvbb4fI+4UXKOn79rfROwsWkIV43HEi//EfGIrt7QCDTz/Nfh54gCxnO73Bjh2ULb/7LiDgHXfQuEU7stsdJuVMPXCAY61cyRycOBES82OPNSTUlhXdPPR6DRXDtm2AmZ9+yrmnppIZMHMm7+FKXJWTr7mZY6emos/izcmlZYteL+e6dy9ZEVu34jDU17NdYiI6/6yzDGAYb76eSKKOu3ZUtgOHycm968gr4KLnkJgYvjQ10rudwzEx0VBypKWZZ9ndrMZ4yBdRH9XUYKfs3AmAeOaZAIgirA9PPslcu/FG0zgpIwOdlZzMPGlsZM6UlvJZa6tZX7TkP3SO1tVRKvjuu8zjL31J5LzzOi8jU/B+2zbGfV4eDvWYMd0H7Xw+ExjTLFoNSjgcXEdGBu+RgCSPx2Tra4C3N/kB1aa0A4ZNTXynQWd1zktKjgxQ95bo/dLyZg10DtYqFx0Pqqe6o3OKi+HuO/dcxvfChcyr7gIAX0RdVF8PANXcTCf2KVMIFtTWitx1F5nKNTX8nZNDyXBaGhmf2dnohe3bmY/HHw+AXlVFoGLfPubryJGUPGujuEOHOO5HH/ESwS6bMAG9VV4ebEN5vYancPVqQMeGBnTfrbdiCyQlcbz6euZgVxz1LhcgYVMT83vXLkqxtRP60UcDRs+dG5kn2eXiWrRktaAg/jQhLhfn2NbGfaivB6Dds4fntm+f2XbECGxWBQzHjOmbxA5748yWFpNVnJHBvcvM7LsAj9PJcVtbTWlzd0UDeVqJ1tNzVxtdKxr7K9nmi6jf+i0T0eFwZIjIvSJyhYiMEJF2EdkqIj8TkaNE5L4wP7vRsqzHHQ7H4yJyg4iUichPRORsETlkWdaYw/seISI/FJFzRSRHRLYLaPIvLdsFOxyOJSIyXkROFJFficgpIuIVkedE5HbLslwh53y9iNwtIuUisktEHj78932WZUWzJPfKzX7nHZT+cceZTKqEBMiRy8pIWX/mGQzqc84hgtjczEJ06BDG0fjxLFhr16Lws7Nx2jMyDHeh30/20Ntvs+Dk5LC4TJmCQklJwQC2LywNDRwnEGB7LavJyODvQIBFpamJxUH5NyKJZhG5XAawHIgE2IFAcFmynaNCJDhqFE13rM+7qOPeU35EkeCurNFIW1ubPPDAA/K3v/1N9u/fL2lp6TJmTIXcfPNdsnXrBnn00fvD/WxIF9nko48AAadMYSyXl4u8/z5z84YbABOHD6dU589/JiP6nHPg/lm3TuSXv2S+XHEFIOGwYZS5PPgggN/ll5MxNHy4KQ2pqoL/VY3u669H12nzgFAAsaWFfS5bhmGYkoJRftppcPqImOzUhISuSbotC921ejWg4ebN6KfMTDINZ87kfnSmnxQ81Ah7vMtzAgF0s73sZscO9LeOvhEjgjMMx43rHb6ezs5RS5XtQRU7cNiXovyISq/RXdH7qvvRzs/2sqxI4nCgj37wgwfkhRfQR+np6VJRUSF33XWXbNiwQe6//3Onj+Kqi9ra0CkHDhB8mDyZTu8izLOnn2Z8zZ+PTti3D0dMObe0xF+DsYWF2CduN89RS39DA6XapdSy0GGXXBK56Yllob82buT4DgdB2MpKjtddsTuZXm9w5pw947AzG0M7N/t8pvlKb5QKqk2or9paU32RlRVcllxU1Le6KJLYy5sTEwd3RUh3KjZCbSPVRVdddZe8/PIGeffdIV3UmXR0YG80Noq8+KKpltq2DaqWxYvxwb71LebdqlUAZaefzu83bOD75GQAq9JSU+Hg8zE/ysrQUyUlPNPaWqilPvyQ53z88fhp6uuNGRO8rmmZ9Ftv4d9ZFgklF19M9ZnDgY2yf78pX+4s81e7Qy9Zwv60oiExkQzIE0/EV+2sxFfphFwu08Sku9nYnYnyKm7bht22axfrxb59xn8YNuzIsuRYG4rEInYfUgNYCuD1Jj92tNLezprYkyBTPButiBhqnsN8vl36QV9QHCqu0p9L4W9E5GoR+a2IrBWRbBGZJiLHi8ifRWSkiNwsIg+JyMbDv1kWso/XRGSTcENTRUQcDsfww9sVi8ivRWSHiFwgIj8XkXEiclvIPtJE5G0RWSIi3xKROSLydRGpFZF7dKPDD+4JEVkjIt8VkSwR+bGI7I/x+uMin34KgDhpkiE79ftZnMaPZzH6/e8xgq+9lki7gocJCSxOqqDffZfFYuxYFqZxAgLoAAAgAElEQVS2NvaZm0uE/bnnKA3KzSWCNG8eyr65mUh7bq4xSnw+shRra9lHURHKxu5Mud0obo+HxTU0gzFUmptNFmNeXnRdCftK7OnlWpasaiI5mXMtLjbK//PAsRNP0eiRz9fzyFRoRmJXcuutt8rChQvllltukalTp0pzc7N8+umnsmXLh/LlL98oBw/uk2ee+aNcd93dUlRUKYmJIg8/fN17Ibv5wuqiAwdEfvIT5nh6OkawRr+/9CUCGMXFgHw/+QmG2003kaHz7LN0Tx4xAi7FUaN4/t/5DtmKY8aI/PGPgJKJiRivjY0AkX/7G+PmmmsABFJS0A9JScFdlltaMKr/8Q+MsdJSyMTnzTOGqfIQaglqZ1yjTU0Y6MuXk0Gk2TKnngpwOHFi1+NXo9/K5ZKfH5+GSJZFEGj9egJCGzcCGipAn5vLWnH66aZBVm+UAnYlyi3n9Ro6AaeTe6AdlftL9Dy0PL27z0XHTUIC46itjbUudExFyma87bZb5dlnF8rXv36LTJmCPvrss0/lgw8+lMsvv1HWrdsnzz//R7n44rslPb1SFi687joZxLZRbW00W0UnPh+Od00N9kp+vqF3cblw5JOT0UubNqFLSksB7g4eNJxShw7xrDIzydR1ufhb6Ve0I6jLRVD1zTf5e+5cbKPhww0YaRevF4d161ZjN40bx0sd++7cD+Xv0mwdDdKmpBieRo/HEO5HumfaVMnOi6rZgD2Rtjbua00N2T01NaYpXHIya8aECdz/oqIjgYJ4nEO8RKsllD823nQKfSnRBlpvu+1WefHFhTJ//i1SWTlVWlqaZf16bKN7771RfvzjffLmm3+UiRPvlvLySnnjjcGti+IpgQDVDs3N2B/Jycz3zZuxf15+mXn3ne8w57dswd6ZNw+gffNm9lNayrwoKMDuWL2adfz445mrgQDzJxAQef119utyAdRdfDG+knIZjx1rMvm8XvzE557DV8vNJfBx8cWmGaYGOxoa+N2oUZEBI5eLIO3ixfiJPh+JI3PmABzOmtV1FqHXy5xvbzf2SldUMtFKSwtrw2ef8b5jB8dRnVlRge5W0LCgoO/nt9+PjaovbYY0EDnw09MNB3isnN1ahaaZlbFemwb96uvJIK2upmlRFDKEQ/VQ+jMTsVFE/mJZ1jcifB+xFt2GAP/BsqyvhXz3iPAQrrAs6/nDnzlE5HkRuVREjrYsa+3hz5eIyMkicodlWb+07WORiMy1LKvw8P9JIrJXRFoP/7798OcTRWSdiCT2R/bP7t0404WFOIRJSSjhJUv4f/p0UuWdTsp2iouJtCjn4KFDbJ+RgWL1elH0paUsHMnJKPC33yZKFQjQ5ODcc/mNAmZpaSwWygXV3My5eTxEx0pLjywJ1BR3p9N0j44kHg/KwePhWHl5/etker1HliWrI5yQcGS35IEQSR8somVDPW20Eg3/TyDAeC0pyZVLL71G7rvv1/8q+VTOOLdb5NVXH5NHH/2qPPjgOzJ69CnS3CzyjW8Q5fqi6yKXi/LkAwcIUGRlMfdbW8kqfPNNAhIXXyzy05/y+Z134jT/4hcYc2ecQQahZQHM/fznbPfVr6K3Wlt5jqmpAJJPPcVxL7yQbYqKTEft5GQTzNi1C931/vs8xylTRC64gDIa+5iwO9hKrxAqtbVkCaxcCTDn93Pc44/HWLcTgHcmHo/JalJQtCdd5FtacDaUy3DDBkPzkJyMYTx5sshRR5nGDP1lhPr9plTZ7sQqj81AC6wo+BKubLU7EggYpyhS52ftNFtTI3Liibly3HHXyNln/1qqq1knq6t50S3yMamt/aqUlr4jaWmnyLZtJuI+GPVRbW18dJFlAc5VVxOY8PvhGMvORoe89BJ2xmWXoa/a25m3RUWGUykxEaeorQ07w+Phu1AHzucje+fvf2cOHnssDnhpafhza24meLJzJ3Ng+HDm5qhR3R/3um5p51A972HDupc96PejNz0eA5x3la3YmXg86MmDB81Lm0M5naYEUl/2oPNgEtVjg7l7c1f2kd/PuJo8OVcuuugauffeX/8LQNVXICCyaNFj8sMfflXuvPMdqao6Rf7yl8GtiySOPtq6dQBVb71luilv2gRtytKl3N+77mKbqiroTqZNM5UC2dmmO7xlQRWzbx8A18kno1PcbtMQ6q9/ZT8TJpAwMnYsv9XGUGPHMsdra9FbL76IXzVyJHRXZ50VbIt4PFCeuFyRy5dbW7HZ3n+fa2ptRVeefDJ23bHHRqeP/H7TBdnh4NqzsmKfWx4P160VGBs2cO+U5qGsDLto8mTu1+jR/Wd/+HyGC7u93WQ7q/8YyWYYCKLUP0p7EYt0xo9oWYxzBQhDXzU1JDgpZYdmWQcCIu+8E1Um4hcRh4qr9Gcm4iEROc7hcJRZlrUnxn38JsxnF4nINn1wIiKWZVkOh+MnwsO7UECcVQIi8ruQfbwrIhc7HI4sy7JaRGSGiBSJyC/0wR3e72aHw/G6gDD3qTQ0ABBqJyinE8N32TKc5bIyAMaCAqJeSg6bkIDCPHTIdDTetYvFZd48DNGqKoyk9etZHA4dQtledpkxkrX5Sno6v2lvN8Z3XZ0hBQ/NcgkEMC6bm/ltSUlkQNCyOHZzM+ddUNAzhzsW0XJAO2io2Qp2TorBoPAHgyiXmPIjxnov1UHq6OB5qTOo4KDyfYqIpKbmyNKly+X99/dISUmZpKQwH3JyeFeemWOOwTCKMF6/cLrIskQefRS9MnUq92rvXozBCy+k4dK4cWTn3H8/c+Ohh5jTd97Jc779dkpcNm2C+3DVKgzpBQv4bUMDz+vdd2mE0NhIxt8ttxC1FzElwdoAZcUKwMNt2zjHmTPJehw37shrUC5DNdrUkLQsgAbtqLx7N2OqtJR9HX88+4t2fHq9nGNHB7o4J6f7UWWv1zRe0Jfy9Shp+dFHk104ZYoJLPWn+HymTFmBw8RExkJnvGwDQZKTOWe3m/OM1cno6GAs7dmD4dvUJP8CB/VVV2cyEl2uHPngg+WyZ88eGTGiTAoKeKbz5hmH8be/FfnZzwDfI8ig0UcFBV1tEZ3s3cs8ePddxts3v4mD3NiII19aSmBj1y7G34wZ2C5appySYtae7Gy2cblM9QDXRbbNX/+KA3PUUTjgFRVHno+W9W3cyPN3OrGjtPNzd0THoTbs0fFYVMQ1dCebWEFt7USelobu7o4uCgQYs9XVXFt1dfAYzslB/2jzk6KiwV0CHCqDtbzZnk1p18v2zzUgLiKSnZ0ja9Ysl5qaPVJWVvavMnl9127h556Lfoogg0YXxUv27UPfL1vG/CgvZ72+4AKCDwkJcDevW4dPMW8e2X+ffIK/MWoU/x84ABimQY+TTgKYq6tjXamthd911y5DF3P88eiH9nZ+63RiK23dCuXCBx+g1yZPpqT6zDOPXIebmgxHfVlZcNVXYyPXtXQpGYduN/pj+nRss9NOiz6QoU06NIiblWWamUQrqmft3ZJ37jRjOTOTa5gxAzt12rT+qb6wiz0RRbnWk5MJXGVmxp/3sbckIYFzbW/vftWGz4d9X1/PeK6pMZz0dqBQ9ZGCg8pVrr0QRo0iIKXZ7MXFRi9FIUM4VA+lP5e+u0TkKRHZ5XA41orImyLyrGVZq7qxj+1hPisXkbfCfL7h8PuYkM9rLMsKbZlwuPeS5IlIy+F9ilArHyrhPutV6eggG8frBdhwOnHMV6/m/+RkIvETJtDQoLGRRSEjg4WptZXFyu1m8pWUsMjk5rL4rVjB9x0dfH755RiEakgrCa1Graurmdza9bOggH2GZvTYy5fz81n0IommJ+siYC9P7C3RDqt2wFAjQyIoyKwsDOOBwEnxeZVQINEulsX4sWcLhntXwMLO/6O8UKmpGBGaefHwwz+Tb3zjOrnhhnKZOnWqnHXWWXLVVVfJ0UfPFBEzTjMzO10kv3C66JVXKBEuL0e3HDyIUXv22RjKlZUYb488gh75zncot1m0iEDGN7/Jvf3d7+gsn5xM1+WrruJ51dez/cKF7HvmTEqeJ08256CcMW43JdTvvot+Gj4cx2bmTOZr6HNT49XnM+XLIoB0H38MeFhdzWfjxpFJOXWqKS2Kdt5rx7+2tuAIe1cOu4KYGzcawHDbNmNQ5eWh3086ifs/bhw6sje6AXdX7B2V7Z3mNaNvMOlMe1lzKG9tIMDaqpmCdlAwXDaWvfFKTo4xeisqWDPz83mtW/czWbDgOtm2rVxSUqbKMcegj2bPnilOJw2KRDCUO2n684XSR42NgIivvcb7178OgFhTQwZiQQEO/LZtzI9p03i3dzAWMbZMRgbjV9d5y8JhXrgQcKC8nK6qRx995Fz2eDjOpk3opvR0Q8bfHefQ5zPAob3k37IMf2p3OibbO8hbFmNbOzd3Jcqhra+DBw1/qQbaKip4Ly7u+2BvX4vaE2qnaNOV/gwgqw1uBwND31Uf238T2vHeDhL+9Kc/k5tuuk7mzQu2jWbOxDbSdTUxcUgXqTQ1kYCxahWAVmkpAN7JJ2NXpKWJfO1r+FjKn+p0sr3TiZ2Rl4c/t2aNqa448UTsKd3/e+/hr+XkkOAxezbrB7y6poR5+3Y4p3fsQK+dcgqgZWXlkT5YIIAObGxkDo8cyZiorjYdlTds4LyLi7E/KioIcpWXR5+NppyEzc1G3w4bFh0Yf+iQAQu1W3L7YUhF6SHOOIPzGz3aBFpi7SQcL3G7TeWa0lykppoklMHaSFP1oAbjExL4W8FBBQMbGoL/D6WqsCxD7ZOfz7iaPp17o3ZzTg7PUik3lO+3B8HyIRyqh9JvIKJlWS84HI4PBET2DBG5SUTucjgcCyzLeiDK3UTZL7VT8Xfy3YDLKfP7MWTr6kyqeG0ti8r06UzMdeuIRp1zjgHtCgp41daSpePzYUhrk5OcHKL1b77Jd5MmkUE0bJiJjoigwBsbUcbqECkvh5b9FBcfuRgcOoRBn5BA5CCSkamOWWsr+ygqig9XWDhxu4OzDFtbg7NlMjNZRDXLsL+zej7votkWLheLUGurKX20lxeHMjBoqWtKCs9J+eUUMFRuqEidXefPv0zOO+9EeeWVV+Ttt9+WP/3pT/Kzn/1MFixYIPfee2+0p/+F0kXr14v87/+iN/LzMQoOHsSoXLWKTLiEBMDB2bPhQ/zFLzD6zj6bMuXt2+n8t2ULHH3f/z66w7LIYvztbwEEKiv57rjjjmxmsH494OH69YyTqVMxkEtLTXOV0HlrL19OTyfLcNUqXg0N/K6yEv1ZWckYcjq7VyqoIGXb4T5tqkMiOexNTYAOChpu3mzOMTUVAOKyy9DLY8eis5VHJjWVV3+V42gWi5Yqa+dPzTjsb+c6FnG7TYffqirGYV0d40NBw9ra4KwdEZ5vQQHr1tixppumvtQYVg4hu1OfkMDrzDMvk+uvP1FefRV99OSTf5JHHx3SR5HE5cKRfP99HNzLLkMP7NsHP1dpKdkxO3dy3ydPZowqpUBKCv/v3s2+RowwDUnS05mLCxcyL4uLRf7rv+D5Ch3Thw6xzfbtjIvCQmyysrLogXOv16xzaoskJRkgU7uGqxMVjViWWVMVgExPj3xObjfj2w4aqh5LSOC6pk41zU9yc6M7j8+jaFBEdV9vBEmUMywSMKh/h2OmUjAwMdGsEXaQ0J55H279uOqqy+TUU4dso2jF6wUcXL+e97w8gg4zZ/JZTg4czh9/zJw+/XSzxgwbRmazCMHTrVvxPyZOZNviYnTYwoV8V1REZvXEiegDBRBbWtj/Bx9g07S1AfB94xvYM06nWYvs4najM7V82eWCL3HpUnSaCADddddxng4H61dxMXogmjXesrDrm5sZs0qF1RnP4vbtwVmGyhnrdHJdJ52EfVRWxn3SzD4FJvszq8/lMv6lVj6lpaFDB6NPGQiYzt/2V10dWENDQ3C1nl2ys03vg4oK8/fw4Xyn3JdutwluiKCn7M3BkpPjZ08O4VA9l35Nwrcsq0ZE/igif3Q4HGkislhE7j2c8hkrN8VOEZkU5vNK2/fdlV2H38MUrciEGPYXk1gWUfXt21kMsrJI4962jUj37t38f+GFOPG7d5vy5ZQUjOGPP2Y/p5/ORPX7Ucq//z2O0rhxZB7m56Poc3KY4IEASqK+3mRyZWTw0pLj9HSUo92I0shWSwvblpREdnbb2gAQ/X6TqhwvZaHcDXbQUJW6EqirYtey5CGJn4QrJw7NINTMBhUlMNeO48pXp6CJ/h0NSGFvtBJu28LCQrn55pvl5ptvlo6ODjnvvPPkgQcekG9961viiH0Qfi51UWOjyA9/iB4pL8dwqKmBT3XjRrJzamuJpF98MQbn3XfzPO+6C4P617+mYUp2Ns1Wzj+f57JmDVHzNWswCn/8YwAAu07x+eB9ffNNdNKwYWxz2mmMkaYmxkRe3pG6RjMXt27lXLV8KCmJ877ySnRpSgrbBgLG6Y7WSFb9YlnovNAuz263yVRS0FCzHh0OQ64+aRJ6fvRovtM5o8CTzof+AOgU0NCXAof2jJaBCBzq8+ksc/DgQcZ46O+Skw1wMmuWKZ3RjMKiItZNfda6vtpfIjg5bW0ms1k7E9rvV3HxkD6KRgIBY9csW8a8Oe00w0VWVkbwYf9+nlNFhQG6NYPB60V/dXTwbPWz+nqypD/+GDvo5pvZt30uWxZ206ZNAAEJCczfykr0TzSia6M6TyIGwFSAs62N8ZOU1DkAGCoKHgYCZp/281f7zw4YNjSY7/Py0PE67gsKBh53aX9LQgJzV4HE7pQ3q47oLHvQH8a9dDgMEBgJHNTzikZUP4V7tkO2UXSi2cqbNxPQSE9Hr1RWAv5pNvTatawbc+Zgh7S1oafGjKEsedky5uCMGfy2uZl9P/kkdk9aGryK8+YZPjrNKPzgA7rPr13LdvPmwdU6fjxzW4SgSqh/c+gQttTu3ejOjz823ZiPOorMyblzDSja3IxtM3p09L5SW5vhcE1JYa20B0ICAXSpHTDcvdvoxMJCAFNtfjJuHPqwtZX9KoexZqv1B8VAaDWbcv2lp5tknIFKfeB2BwODoZmDDQ28QrOZExIYfzk5JAgVFhKIGz6ca9Z3DcDbqTl07dOgntPJ/UlKYnylpPT+ejOEQ/VM+mU4OxyOBBHJtCzrXwmtlmV1OByOzUJ762yBPFJEpLtxzldE5FsOh+NSy7JePHw8h4h88/D3L8dwyh+LSI2IfMXhcPwqhNDy7Bj2F5O8/z6O+ahRLEi7d6PQjz6aCHx7O1Gi3FycpMxMFozGRro419aiXGfPRhFs3cpisXMnC8H117PoNDWxqGh04NAhFhSXC2VQVMT2lsUi2d5uMhbtNkW05cvKjdDRgaIpLOxZSZ4a3XbAsL3dfK/RL22A0p3yxCEJFjvJe7iyYv07dOERMZElXWAVFLQDhcqD0VNQwuk0ZODBTpRfWltbZdiwYf/6LC0tTSZOnChLliyR5uZmyTychtsYiix0LZ87XfT/2XvzMMfu8s73PZKqVPu+9lLtbvdqt902eMNgQsyaxENMSCB+gBDgZpksd3KTS8JkkmBIGCYZGJKZLOQJITdhDyQmEMISwBhvEBuMcbvd7s12r9Vd+6bSfu4f3/7699OpoyOppFLpVL2f59Gj0lrS0TnveX/fd8tmISBykAodiwMHYIsOHsSC+swZOJ7j4xACd+2CgHj6NPq4nT6NRt6/+ZuIth8/LvKXfwkb19WF5951V6HDNTMjcu+9EAdmZ+GovP3tcG5bWmC35uZWTooXgT14+GHYu6NH8T1aW5HNfcMNsKFcsCcSsBmRSPnRYtoclue0tuJ7xGL4rk89hcXFU0+Zfj0iZijWa1+L6717CzOvMxkz3VfE9DBbjwg2hUOWKouYjC0Kh+sJBRE/UZCi4aVLKyfmipjz2sgIMvQpCrKfG89JLH/3awDORT+zyJgZxAU/HWJmS7Cfmn3uUXtUGSdPovLiK1/B8fMzP4PF5733YlF+7bVYAO3YAV+ICxUufBMJk/U+MABf4PRpTIb/znfwvLvuQlayveBNpWCznn4ar21vR9bh3r2lMwTZkoOLKGZdMNuCvUKZQZhM4nZ7e/l+USqF78ZzZ2cn9rXZ2ZVlybRF7FF91VWmLHmtqkA2Gn7lzfQ5gsRBP7+IC+lo1Ii+tkBY7dC5Yp/fDrSKqC2qFNqDr30Nt2dnYYPGx3E8vexlsFe7d0MAO3wY2/raa3Fc33sv1lmRCKo1tm6Fr/Cd78BvWV5GSfTP/izs0uQk9on2dmRcf/azsH1dXSJvfSsCuEND8EnOnYMd2Lq18DzNQZz33QfhkSWphw4hmeRFL8K5kWu9I5eLMcfGyu9ly6F36TS+5+Ag7MrUFL4XBcMTJ8y5ub0dtvSmm3C9Zw/WbPbnnp83/lY8ju9aq0nOlUDfz65mY2IKL+sZeGHgtNhwEl7YdsWmrc1kC27fXpg9yIud7MN2GTxX5fP43bkP2Bn2DDozGE4/0h60spbbTXWo2rBemniniJxzHOceEXlcRKZF5HoR+b9E5Juu6150HOdRgQr8Xx3H6RGkjH7Xdd1SCu4fi8gbReRTjuNwtPZPiMiPichfuK57uNIP67puxnGcd4nIR0XkQcdx/kFEOgRjun8oIi+o9D0r5fBhnJy6u+EQnzgBB3DfPkS/4nFEyjnNiFl1R4/CQMRiuG9kBCeff/kXnFiYxXPLLTjRzc/j5BeL4b3Gx3E7EoEQwNKVbBb/P5WC8+1NjbfLl8fGikerFhZM1kdv7+oa3iaTK8uS7V5cnZ04cVE0bNRIUKPBHpfFMgft4SQ2nPRoDyfxCoSVZFDRMS9Wjlwufo7ywsKCbN26VV73utfJoUOHpK+vTx577DH5yEc+IrfffrsMDw/LDTfcII7jyPvf/36ZnZ2V1tZWueuuu3ZuRlv00Y+ir8/OnTjOZmdhj6anYYsefRT7xq/+KkqST5zAIJI778QQls9/HqLhn/wJsrlSKZE/+AOIAO3tcH5f/3pTHsOJq9/4BhzOVAr/5+1vh/jHkpqpKTzW0WFsCHu/PvwwbGQ2Cxtz22147VVXFdqCdNosvNkvrJz9jYNdslk4kxcu4Hs//TQuDGC0tUHoeOMbcb1/v3+2EqOyyaRxpjj8oN7OKAcIpNOFfdno9NXLliYSwZmD4+PYB7yLcrbEGB5GGevttxeWF4+M4NxQrjhDJ5mCsz2plESjZto0swy9tLWZoT52lutq7NHb3/72n5VN6BuNj8O/+ed/xm/5jndgkfvQQ/BV9u3DNt63D+chlgJT7GFGIqskolH0m7zvPuwP/+k/Qdy3+3xNT+N/njqF331kBLZkbCzYVvCYtjMvHKd4iRZtCRfI5doi2jAOzpifN5mG4+Om1I9DMV7wApNluN7DBsKCdwiJ99r+jb3lzRQDm5v9swer9XFWC6c0s4c0ymLVFpXLpUsQ4f71X01PbiZw7NgBGzE+jiqH1laIZhw+9MwzeK0IxEW2UPrHf0RmYSwGX+X22/F8xzHBsocewrpwdhbru1/8RSMyipgWHAwQRKPYPx97DHbu3ntNVuGtt8I3uvnmQpuXSCBhhckiY2PlnS9TKXwuVhlNTppMw6efNuu+aBT2+uUvh2C4dy+2nd9xkEhAjEokzGDL7u76Bzvy+ULhkGuKeiemMAHHHlDizSScnl5Z5eU42P/6+3EeOHiwMHOQST+VbFe2RFhexm/LwXSEWdM83xUrS6Z4GJQdXSNUh6oB6yWnJETkzwU16D8hIi0iclpE/odg44vruicdx/lVgXL7NyISFZG3SYk0UNd1pxzHuVVE/ruI/JxATT4laKD5odV+YNd1/+5y6v67Ln9Ovud1InLVat+3HM6cEfnc53AQHjgAJ3ZmBiebxx+Hwb3zThy89vTlo0dxYHPBPzMj8s1vIrLV0QEnedcunGCGh3EyOXMGr+npMQvHnh4YF/YxZM8cNte1+xuWW77McqFUCie8vr7yFqTZ7MqyZBpIGvHRUdMQXSPpK7GHkwSVGPuV0TQ1GYHQHk7iLS+uJRy0kstVJ1rYjjJP+m1tbfJrv/Zr8vWvf12+9KUvSTKZlLGxMXnXu94lv/M7vyMiIldeeaX8xV/8hXzgAx+QX/iFX5AcNsyPyCazRffdJ/LpT0OIc13Yk6Eh7Cs7dsCh7elBBPzv/g6veec74fS9/vWwSe94B7KF5uYgSH7+8/gd3vIWlDR3dcEWZDIi3/0u+reeOQNb8uIXIzK9Y4dxcnM5M4Cppwf77te/DqHz6FHs511dyAJ4yUvghHudOzqEFBnsKc1BzMzAGaeocPq0KQWMRk2Db5Ylb9sWvEDM5wsHH7Ava71Llhk9pngvgu/D/qK1dOrs4SR+wiD7ErI/pE1npxED9+wpFAZZYlyLgVx2OXI2i3PP4iLOWxQKuV3K3TYUhjlBnufQ1dgjEfmUbDLfiP1QP/lJ7Je//MvI8n30URx3u3bhGDp4EI/ncjiOIhFT3tvUBDuUTCJA8aUvYZ9/5SvRa4wCfz6PY/voUeyLPLb37w/uB8jjiOIhB3zxXOmXXc9M6HTaZEKXc85LJrHQP3sWAsP0tOljKIJF4e7dRjAcGNDqCz84nKRY30G/4SQiZlp2LGZaWHABTL+o0cvAHccE5VbrG8kmtEWJBOzHF76A4851cXxxMOXBgzhf3HQTnjs+Dh+muxtZgNPTyBDcswev+eEPMbRucRE+z223YX8aHsbv8/WvI+j65JPYp174Qlyuuw6tB5jFzHUYh4o8+CBEyf/4D6z1IhG85jWvgW/kN3yO2cqxWGESSRDJJL7DU0+hPPvcObwHM/O3bEGmIwXDnTuD1wz5PL7H3BzsczRqEk7qmRCSy5l159KSEc3Y57jcljflkkiUzh6cnV35uuZmkyW4f79/9mBvb/X2iFUX3nNcPm8C5/39JsO+kvMN92Fm6a/RuduPtIkAACAASURBVEp1qBrguH7deJWycRznCyKy33XdcmrSK97YMzPoyzMzgwgRe2h0d+MkceAAUtyZhdPTg5T5+Xk4wXv2YIH75S/DoOdyyDq8807Ta2NwEAbp7Fkc7JxAmkjAaPf2Fpb/0JEeGSmMSCWTKHPMZnESLZZlMzeH/+04eA4no3rxRnsWFkwkXQRGmz0MOzrwPo3Yh6ue2MNJigmExYaT+JUTe/9er4UHnftKFurFqNHJqeH2tLW0Rc89h8nIi4tweGdnYWva23GsP/kkFqljY3CMd++GMPjXfw3x8eqrRe6+G6/5+7+Hk5zJwA694x0m8ui6mDr47W/j2N+2DRH4AwfwGKO8InBa2I/x1ClkG7IBOKOrBw+axuR+sGeYiMn28yOXg/08ehRZ4U88AWFBxAyLYnbh/v34/uVmt3GyHbN610qMDyKXM8IhgwcUx5hVVynptBEBg0RCv+EkAwOFGYPe7EG21Kg13j6GzMwRKSyvSadNhlg1ZLOmhKyK92o4WyRSkT2qyBZlMmjr8jd/A7/lv/wXCGePP46F7q5d2Jb795tM0HjcDP/h7fl5BDG+9S3YmhtuEHnTm3Asi8A2MGsmkYAN2b8fPlWxY9tu78HjmUJSqSmSzCLk5OSWFn9/hgGc8+exQH/2WbNIb2qCv7ZlC46TLVtwrKz3xPb1ptRwEl4XG07iV1Js31fMj6A9jUQat0+sF9v+r4KG/IZrZYtyOQRPOXiJCRjNzQg07NuHv9n6JRaDcHb2LES2eBx2Z2AAlRvf/rZpv/CmN2FtxgnvDzyA7MTz53H/a1+LtVwqBSFrxw7sX7kc7MLEBGzD44/DXmYyWDdefTXs2AtfCNHRT4hbWIDPx0qzbdv89weWOR87hu/zxBPwwTIZ05eaYiHLkjs7y9u2mQzWigsLJiO7u7u+JctMWrFbYrG6raNjdVPo83l8Lztr0O/i13als9MIgVxj25mD7LtY6+3D85otGNplyXYrjnjcrN1Z0bNaaJNXmaHdkLZoLahw7Vfb/60iYnk4jhMXkbRrbTDHca4WkR+IyN+6rvvLZbxNRRs7mYSj/MwzMPinTuEAbm6GUbv5Zpyc8nkYkaUlLGxjMZzAursRHfvKV3Bgv+AF6HGxdy8M2MICjFIigRNcZydeF4uZ7J7eXrOwnpvD/fE4HFT7pDIzg5NWLIZIt5/hYOPWTAZCgDcaYjekZbYHt3Zzc6FgWG620EbCbziJ99qbti5iSriKCYS1nni1VjALoBY9gSgOFBu0UgbrtrXqbYuWliAgHjkCp3N2Fsdgfz/2nTNn0Ndnfh725447sD/9n/+D7fzrv47sw89+FvZsaQk9f/7zf4boODMDYe5734MT6jjoVfiKV8DpZC+Vri44bSxxvv9+OMhTU/gdd+6EQ37NNaY0r7PTfwGdy+FzZLOmiTP3KTrGR4+ay7Fjpry4tRU29Jpr8L3374etrQSWNy4vm0UmRal6CfX2RGVm13ASXtCUUZaABmUOXrxYOKCBtLQUFwWZPViv4Q22sMCL7Q5RPPArS2YT91LCUDnQrtMBXwXrarlrYI/KtkWui4DFRz8Kce8d78Ax9NRTsE1XXolF/JVXFvaWY5YES/DvvReDCubmkI1z551YXDc1wZ6wd2k+DyFu//7imcR2o3ief3nOjcdLZ8swc4NZNiytJmyRwMv4uGklwkmrY2Om72OxgMlGpRbDSYKuq/WLWFrOHmBhyABlX7dVfNZNY4tE4H986lPI7kuljMi1axd8l+5u2KXFRax3+vrMMLcrr4TtOXJE5OMfxzlz504khdx4I7b/4cMQD++/H/7VlVeKvOENKP2dnsZrONDCcSAwfulLqMR49lncNzSEjMYbb8Rn4+R4TnO2yWYhcHKdt2NHoejHoXTsY3j8OPxBtl0ZG4MdpV80NFT58eMtWe7owHZc5bmxYtJpswZlgNlefwZVt6XThROLWWZs3y42nISCIMVACoP2ffUIBrFSzR74ZQd6m5oKBcNiwZGlJbxHtS3E+L9X8R4NvqKtnBqt/Wr7mVRELA/HcW4R1KJ/WkQuCCbk/NLlh693XfdUGW9T9sbO5UQ+9jGccA4exOKcDqrrIjtnbMyU3505A6M7PAzD/93volfGuXNY7N5xBw74wUGIfZOTOKnFYiazccsWvPfUFP4/h13wPvbOsE8MuRyc2sVFGHuvuChixsJzkhhLlykY0mDbpXMUCika1usEsh7YPdBWO5zETxjk9UbqAclJsLWI6lcpJK6niFg3W+S6Iu99L4IR27fjWG1thQ3I5eDsHTqEHoDRKBbj//RPKGe59VaR//bf4Gh/+MOwRS98IYamXHUV9ulvfAPlOZOTcIZ/5EdEfvRHTTPvmRlTknzuHMoVH3oIznIsBtt244143/5+2LJk0kSL/RZBLCFlT5102kTSKRqyX09TExYEV1wBe7tnD7IMOztXt//lcuaYZoS10h6h1WBPVLb7xjY1mUbYk5PBw0kuXvSPkvf2+k8spkg4PLz67VYLvIKhbU9ZjmhfSmGLytWKngwArTIDdb0X7tXao7L9omefxfTRBx5AO5a2Nixkr7gCx+XQkOlPyP05mzUi/WOPYdF/4gTs2VvfioBALIb9+uhREwzdvbt4gIClXPYCqxLhkDCQIGJKXi9eLBQN5+fxuOMUlqMx07DWZXSNRDniYKnhJMWu6xmE5sKcNr/RfbIqqjU2jS167jmRz3wGQ00WF+GjMICxfz9EoIEB7KdbtuC8+swzOAfedBOO63vugVDY24sWCtu343zy1FN47yNHcHzfcAPaLNx0E+zEhQuwUxwg99BDyKhmEHb3bpGXvhRlyldeaQYqRaMIhvhVf83MYJ2Zy+FcPTCA72hPSz5/ntsZFSljY/huO3eaHs+rOa7yeTMohW1lurpwqcdxmkqZtSiH2LW0mDUop0D79Ry0b/u1XWlt9S8ptjMJe3rWz4YzkMwMQ9opEZNF7x36VQ4MNrsufsfVfj970EqFdnPDnRVrtPar7WdSEbE8HMfZJiL/W0RuEZEBwdSe+0Xkv1XQJLPshfsXvoD+hTt24GTBqUYdHZhqOjgI45RKwelsacHJ4uRJpMXPzuIEc8styECcmoIhXF6GoR4ehgGbmzOlySJGQGQvg3we77+8bHojkuVlnJiyWXwev34ZiQQMLcuXIxGz0Cft7cZYd3aW30Q8DHCxESQQBg0nKSUQbpTtVC48oYjUptyzCiFxPUXEutmiz3xG5H/9LzgBqZTJQuYAkiuugKO5ezdsw2c+Axv127+N67/6KzjOLG9+xStgm775TdPUe+dO9EO86Sbzm1LMeuopOK8//CFel8vhvW68EU4yF/i5HBwWijp+TnI2C3t38iSyup99FtlMZ86Y57As+cABiAsDA8apZGBjNZkk7EFa75JlHi/pNLb1pUumZ9rUFP62JxpPTPgPJ/ETBXkfRcNGKpn0liXbmUjMQLIvq7GjrmumLNdCyFlexm/FiawVsN4L92rtUVm2aHIS2cz//M/IrNmyBbZl506I+9u3Y1+kIMxSqHgcouGnPgVb0tsLH+r223FMnjyJ7JvlZdg5tiPwHpuZjBEOuT8xK4OTt8uFmdDM2GVbhokJs4Dr7jY9DEdG8Nns79TWFo6sNj/saebFxEFvZjApJQ6u13CScghTefMqfaNNYYtmZmCLPvlJ/N3RAV9h1y4kfQwO4nhtbsZjJ07Abhw4APvzhS9APGxrQ7D19ttx7N93H0qaT5+GP/X61+Nx9o1vbYWtevxxvOeRI/BjKFTedBMSRnbuxOfM5yH8zc3hc2zdulKISafhw3FY58IC3pPDo0TwmfftMyXJIyMmENnWBlu1Gl8mnTYly2zj0N1dn9ZUrHybncW5ZXYW93Gy/exsoUDoXafZw0n8Mgd5WYu2K6uFbWvs0mT6e2xpZQuG1QY7cjn4nZzCvFrozwW1jvChga3r6qjR2q+2n0lFxLpS1sZ+4AFk83R3I/rBrJWhITi/PT04uCcnYQi2bsXzvvpVOKJjY1hkt7biudPTOPDa2/FeQ0MwbuPjMBy2gOi6Jm06m8VzMhkYSDutnVGYWAwnLzvFmwb4zBlTvtzVZRxuWzD0lu6EBUaWSwmEQcNJgkqM69kPLWzY2SW1iOivsgdQ2E9QJW3RY4+hFJkZ0BQQFxexj3Z04O/rr0c5z7PPwoF91atQKnj4MIIg73gHMgbPn0fE/IkncPwcOICynOuvNw5jOg3B8L77cJ3JwI4dOgTnde9eM3mepFL4HCx9oZjlughyPPUUnG6WKHL6ZG8vPsO+fUY07OjA/sUerK5rGuVXaqdct9AO2FPLa7n4Z8amnTF4/rwpfbx0ybSvYPN8wuzxYpmDtRpOspYElSUzcFWsLLlaOAwnEql+scChGhQlN5GzXNIWJRLoo/qRj0Dk27sX/gWzfnbuhN/CbZbP47e+cAF9xH7wAzz+2tfCjmQysFfPPQe7xuCBdyqoXdLFxRYXWZX2CF5YwOd59lmIBBMTuJ8ZjBQMeWHrBi5qWY69CpG5rhQbTmKLhn7Zg8w0KdZ3kNdhJ0zlzasQEje8LUqlYIv+6q9wPLM6a88elPIOD8NfaG3FMX/pEmzP7t3wax55BI+98pXwPaan0XLqW98ygzBf8xrYqqUlk8Dx7LP4vw89BGGmpQV+1cGDsIdjY7Ab3J+SSdjITMaUL5O5OQRQH30UtvH0aROcaGnBZ7V7Gfb34/dfWsJrs1k8j/0fK4Xvw4qQtSpZ5nASrlfPnTN+0cwM1qmJxMrgQ1NTcOYghcNGtkf2GpXXdlkyJySX06+3Gth3vK2tut+XWecVBInCbotCgYqI9aXkxj5yRORv/xZ/cxJkUxNOLC9/uck+XFiA4Y1GcWI6fRonrx/7MZxMDh82xj0SgdCYSOCE19cHIyqCBaPjGAGxvx//z57AbDexz+VghJeWsJDv61s5/ISXaBSvHR3FSdVe4DcyQcNJ7OtyhpN4BcJKMxYUfygWrOOglbCfoAJt0aVLIm9/OxbZdDYGB+EMMErc1obj+oEHsPj++Z8XefhhXIaGRH7xF1Ge/NWvYiL83Byef9tt6JnT14fL8jIcWTq0nHx7442Iwu/fj/tyOTittEWuW1i+nM+jtNHuZTg7i/ubm00fQ2YaDg4WOiN8v/l5vKa1FY5tpUJ1Lmci2ixfa21dXd/RTKawz6C37yBvs8zftkkcTkJRgtmDtki4msbg602ty5KrJZs1+2C1iyD2x+PxtUmc5UBblMsha/lDH8Lxf+212Pf37UNbBLu9AAMEs7PIWHzwQdirO+9Em4THHjO9pSMRLPoPHjRBCXvhxePXbhxfbvZ/Om3EfF4vLJhsli1bEGAZHcXffuVsFA85SbqtbX3LYGs9nMR73chiWq0JU3lzhUHWDW2LXBe26IMfhK/R0oJjeN8+2BKudURgoxwH2YnHjqGvYTSKaozbb8f7fPnLCG5GIrj/ZS8zGdVzc6ZP9Pe+h3WX66J1y6tehZ74ySR8o56eQn9mehp2JxbD/ePjEA2PH8f1hQumH/MVV6BajQHV7dtXHovLy7CpmQxsYU9PcG9AP1gtQhEyFjOTo1cToLUzBYtdmN1P+8Sg8MBA4aR6byZhPYe31ApmytvCIWGvazvTsJ7fj+3Kqp1lUOGglZD9guFERcT6Erixz50T+fM/N5mDc3M46A4cgAOczWKRS6f2Bz/AyamnB4MKrr0WByv7YgwMwPncutVMBhscxMktny8UEEXw/FgM78G+QCMjJkKxuIiU9/l5E4VnqZ/dgygWgyHetq3xnKNMxr/fYKnhJNFo8bLiMA0n2UjUctDKKoTEsP/SRW1ROo0MxG99ywzZ6O01Ylw8Dkf59GnYqDvuwDFz7724/21vg1B4//3od8gynle9Cs4qe99wovLhw3DwWEp47bUoy2ltNROYRQobS1N4fPppCJ0nTxb269mxA847JyQeOBAs8FA8zOVwPLMUqRLSaXwuO3OztdXfBrou7GmxvoMUCmmbbVpaIAYODcGe0/kdHIQwuHUrhImN0Ec2qCzZL8Nwvewvh2q0tNSmBIjZEWWKvBvWFolA+PujP8Lx9YIXYPF48CAW7Xv3Fi6IFhcxWOCb38T2+/EfR/D1zBlkAHG6/O7dsAnt7SbbjwsvCocUDUud1/N5+Et2H0P7uLVL3kZHYZtKNedPJLAfxGLYB9a6MqHRh5NsVMJQ3lyhb9SA36AiAm3RE0/AFj36KH6v0VH4KxTfWlrMQI6+PtiqBx/E8XPbbbg89JDI5z6Hc/3QEITDO+7AcT47Cz/mgQcQjE2lIGjRXr3iFRD9slmsF1MpvEdPDz5fJgPB8fBhvP/EBPwjBtoonvX2IjHlRS+Cr1CMVAqfKZXCsdzTU3ngMZWCn8hBmQzOFguS0efjMBK/HoQzMyvtUTRqhtdwcjID3VyPbt9u+kiGGSa62IIhf+NIpDDo1dy8/okr7HkZiVTXF7vC/ogh/5XDgYqI9aXoxp6bE/nTPzUDCubmsCi8+WZM8FpcxPPyeSy+jxyBA3z77XCsaUiYvj42huf29hrjPTwMI5zJGAFxeto07I7FcMKYnjZlx4kEokdnzpjI1sAADLM9+IRRJpYJ1ntCoD2cJEgg9CujaW5eKRBu5OEkG4laDlpRZxl84AMif/3XptyK09U48Mh1YQ927IBz+53v4Hl33YXS5IcewgTVfB6L/TvugDg4OQlh8nvfw+s5OfCGG2DD2FO1txfvxyl9kQj+Zpbhk0/iby6yh4bw/swwHBszWXltbcELdvaIZYS90pIav5LlpiaIkhMT/pmD/JsDFWx6egozBb2ZgwMDcMK5+BTB78LBKOvtLFZDqbLkWvQxXEuY2VGLXnXZLN6PrS9K0GBbomKK2qLTp0XuvhulfIcOGSHxmmtQPkjxeHlZ5N//HVnP2Sz8ottuw4L89Gk83tkJX2rrVrMP2RkbHL7ChVcx5uYKBcOLF02ZWGtrYUnywADsYD5v/Ipi+20mAzuXzRoBuRaVG37Zg2EcTrJRCUN5M32jMgI1G9YWnT8PW/Tv/45tMDqKrMC9exGw5MC2pibYlMcegx9w440QGu+/H8GNZBLBzTvugH/kuhAnv/1t+DfsPX3rrUge6e83bav6+/H4uXP4PeJx9Eg8fhzC4eHD+AzxOHwJtoDZtw+fd34e/7+vD4JasXVNJmN6BEajlfcpZFXH3Bz+H0uWo1GsE4OyB/2Gk7S0FGYKejMHe3pMv322fojFTB/rMA+fyudXTku2BVRvhmGjtsLKZKBFsJ/vaqGQyCByACH9xcOFioj1xXdjp1LIQHzkEdOPa9s2RJ1GRkyU4fRpZN7EYpi6deONJoIci8FYT09jEe66MKBsqj80hJNCOo3FaCQCgx2NwgizRxCzFJubzaKOC/nhYZws7RK/VMr0PWxrW5s+EfZwkmJCITMibbgoKJVBGNaTi4J91HbAq6WCHkBh32t8bdG//RumJy8tmf5bdu8UBh2uvhr2IpeDM7xvH6LzExNw6F7yEjzHdZEt/eijsF35PCLgt9wC8XD7drwHsw17e+FEfv/76In4zDOIpCcSeLy5GTZo3z4IAlddBfslYoYVZLOm/K+YLWJ0PJ02ZTXl9LRLJmEjz5+HEHr+vMkYnJkxg0r8ouT2IBK756AtGPoJmGyGbQuHsZgRDhtx0VkKLkqLlSV7BcMwfEf2NHSc2gwH46KBx14AG9IWzc6K/OEfinz3u1gINzXBblx/PbJxHAf7zX33ifzrv+LYv+UWZDEzc6W5GfaGkz5jMRMwoDAd1BMqmSwUDMfHjS2KxQrbBYyOmkFPLEvPZIwgWGzBTsE4nTa9NcspFbSHkwRdFysvLtV/UP2i+kE/hpUVjRi0LtM3Cvte42uLFhdF3v9+DFJJpSDo3XIL7NKWLRDnYjHYoJMncXv/fjzv4Ych7sXjCG7cfDP8nO99D72kn34admZwEMLhwYMIlPT3w/9ZWjJZjj/8IdaJzz0Hv2N2Fp8vlzODXW66CUGWrVuNjTx3Dn5JczOCvyy59sLhc0tL+J2ZLFLKFuRypi/z6dPwi6am8F6JBLbfzIz/cJLu7tLTi/1EJ4pSCwvGJjPozQGdYcQrGNqVceyfS9EwbNVviYTJrq1mvVbmoJUQbZnwoiJifVmxsfN5kb/7O/TGWF7GyWTPHpT+sX/eM88g+9BxsPC++WYcgJxmxUmkx47BqLS24vFYDAft4CAMLYeqMJNoeRnPYfPfdBonjdFR07tgack4y3SQRUwzf/Y+XM0UqnKGk3ibwZJiw0lsgbBRIzJKban1oJXN6iwfO4ZswrNnCwf8dHSYY3FoyIhat96KBfrRo7i9Zw9KB3t6zGAUOrljY8gSvPVWOLpkYQEC44kTcHSPHYMDmsvBlu3Zg9ft2YPAyugo7J3XqWQWAHvJFRNdMhkTHY9GYe9Y0jg7W7zvIP+emyvsPeg4sJX2xGKvSDgyUvlwEgZ/uLAUMX1tGjVbJYhKypLDnN3EfpjRaG0WMWyvUeJ8tuFsUSqFyox77sEiva8PmYU334xjzHGwOP/iF+GH7N+PrKClJbyWQ5O2bYM9SyaNsMuAgbfCIJfDcW+LhjMz5vH+/kLBcHDQ/zhMpUyWMX0RP+zeqRSemalYajiJ9xgi3uEkfmLhepb9K8E0enkzfaMAG91gn7hiVtiibFbkwx9GhcbSEuzRi18MsS8ex/ZgtdbSEs73nZ0QCScncfsnfxL26VvfQqXG8ePYltu2QfC77TYER2ZnYQc6OlDSfOwYfI6zZyFO0m/ZscNMke/qMv2lmWVNZmch6mUy8EW2bPG3WZyiy4q3zk68L7O8S/Ue5PRiBi14/hseDp5eXGnSSTpteu4nk7jPHtYZthYu9PO87TRETBLMagd5NSrsOc79a7WU0R8x7LYoFKiIWF9WbOx77sEkU2biXHONyEtfCgfi3DkIiCLI6rn1VhMVam/HJRbDAXnsGE4UfLytDSe07m6cSCYm8J7Ly3CUmaIej8MYt7TgxDQ8bPokTk7CgHn7ay0v4/OyUSpTyW3y+eDMwdUMJ7Gvw7zQVGoPF1W1atBeRjPxsJ+gCo68+XmR178eji8HRNB5SSRMCUIkguj71q2wEU1NiHzv3Anx79FHTW/CQ4ew6L/qKtNTdHoajcSPHkVLhuPHTTn6yAhs0M6dyDK89lpjn9gLtrOzUExhn1iKjn6lpJkMBIFTp+Doc1Lx7CxsIUVDvyh5fz8+l+0IDw0hM4AN0BnEqZZMBhfbkWS2YSMuKIvhl2EYprLkamGDc2YKVAv74wVk1oZ9CxbYonxe5BOfQHVGSwvswStegcyf3l4EJz7/eYj6IyOwExQDx8YQcOjuxm8wMYGFcV8fFrW9vXhPBg3swSeXLhnBvr0dfs/ICK6Hh0svUNnLkkMD2ttX2iJmnC0u4sLMs+bmwrJjHU6yeWF5swjsfqP5urlcYMuXDWWLXBcDmn77t+HvjIxA8Lv6amyDdBpZgSxBjkaxFstmIRrecgv8k4cfht+TycDHuf56DJ1jH/pMBuXPZ87g8sQT8Hva2mCztmxB4OKqq9DHsLsbtubsWfwvinUkk4F4SFFyx46Vforrwh87fRrvMz2N91xeRvCEPQj92q50dMCmcgo1b2/dChtMIbUW5/Zk0giH9NFaW00rrTAM6xQxZcm2YMh1BmcK2IJhI2Yj1wK2PotGzUCz1cIEoyLbKuy2KBSoiFhfCjb2/fdjytfp03Bsb7wRJ56ZGUSdHAeRppe8BAtX9njw9ndgqnpXl1mATkyY5v2JhBEMXRcnpe3bYbAmJ/Few8P4DNksFtyJBN6Ppc8iJmWdE0/tpuRegTBoOIlfibEOJ1GqhYNWaiW4lBASw76XPm+L8nlMUv7c58xUYgp17CvIqPLoKOwQG3NHIijVWVjA/Xv3IkL+ohdhuz3xBEqTT52CnWP0uL0dzubevbB5+/aZ389e6C8uwqawTIW2yHXh3E5OGlFwenpl5uD4OB63m04zwutXUszMwaEhfA62UqDQySnLNfkBXCMcsrcny/J5aXRbGNTHUCScZcm1IJnEvtPaWpvp8ezzVKTfYoPvJSUp8Iu+8Q2R3/s9HHdXXYXhKLfeCqHv859HYLWzEwv5/n4jNF5xBWwQ7XY2i+BIVxeOIy6MmWXIFigMYNhZhpUubpJJI/ayCsSbOZjJmExJ1zW+Tzni4EYU25Xi2OXN7HnbKJToHR32vbTAFv3Hf4i89a0Q9oaGIPzt2oXvf/68aVmQzRrB7rrr4DscOYLXicDPOXAAa7z2drz22DHYsnPn4KOwlUFfHzIUb7kFgVhmLDOIKYLnX7qE/WLbtsKs98lJvO/MjAl8cFAJL5OTWCPSH+M+Fo2arMZiPQi7u/E6DqJrajJTlmt1fmcv/sVFs5Zsbzc9DhtdYOPxawuG9pqYwWG7lcZmsu+pFH7jclt3FKPEoJVNtEXXDxUR68vzG/vJJ0V+93cRnerthZM8Ooo+YyJYYL/0pWaSX0fHykh4JoOT0ZEjOJDYf4flT3Set27F/1hehuHq74dxnpwsnMC8tIT/v7yMk0JzsxEF2e8rlcKB7xUyOZwkqAdhoxt+JdzwhCJSG6d7szjLH/ygyHvfC0eH0VA6hx0dJhuvpwd2oaMDtoMZzNddh9KeaLSwjyF7pTY1wYHm4JOdO02PsL4+PMce8NTUBDtz+jREwPl5U2p86RJs3vnzsEfLyyt/m54eOPx9ffh7YACO9o4dJruIttEPOxDCzOhaiEEixrlMp03GEaPQFB8a2Zn0CoZ2H8ONVJZcCyj8tbZWv7hijz1WGXj2kQbeY8rieVt05IjIr/wKRL7rr0d29OioyNe+hoBENAph8Yor4NPs2mWGxPE4ikRgG44cgc1YWDA9Xh0HZcjMMBwZgX0op+eX2EekagAAIABJREFUX0kxs2Toe7W0FP7WDFpwmEkkgt+P/pweJ0oQ9n7TSEJDwKCVBvmEq+Z5W/TccyKvex3sSF8fBMTRUfgqHDqSTJrkjtFRlB5PT2O7HDoEIXB0FH0Pjx+Hb3Tp0uV/5MKObduG7OlDh0wAbudO2Ktz52Bbhobge2UypuUL/RMOw7x4Ee8/OQkfxhtwammBf8VBI93deF9mDg4M4L5i56pk0vRLZECLU5ar3uiuEQ4XFky2a3u7yThsZDvJYDMFQ7uaJBpdOS15swRTg1hawnaqVhRm5YvPoJWw26JQoCJifXFFkDr+a7+GDJ3+fmTiiMAQjY2JvOxlWHAz8hKN4kBZWjJGllGa06fxGE8Ara245lRmioHT08bwX7wIJzsSwf9g2Q9LnrmQFzHTR1lKODRkek9QINwovRqU8EORplb9EQOExLCfoFwRLM7f+EbYCrtfFstotm7F8d7ebrI829pgpzo64EgfO4aIOzN7du6EWLhlC5zj66830UYOJpmdxd9nzhjBkb1ZL1zANR0DLlLYe5UlxeyRyMzB4WEIBNks3iufx2flQIUg2H6BE9wpCARNUy2XfL4w41DELAqbmxs3uBLUx3AzlCVXSz5f2KezWlguy0EdFmHf8q4Ijvm3vhWZzTfcgIFN584hGyifR7by/v2wPVdcYcr3lpZM6d34OPwYTlwfHIQN27nTlCXbAabVDifheYbBls5OEyi1swc5cdm2nY16vCuNCc8fzIZvFDGlSO/oDWGLFheRAf2d78B/uPlmrK0YuMxkcBz39JgegLEY7NPICNZEp0+jAoMtDrq6EPTYvRs27Lrr8A/Zm/nkSfhFHR1I2jh+HNf5PPyZixexdkynV/bIpUjV0wPbODa2sgeh6xq72NyM55bKAmM1yNwc/LtIBLauu7v6QL29pmVrh0jEZBv6tYNoBPL5QsEwlTLBVAaybMFQ7b0/3B9FgoP65cCAtqfaJey2KBSoiFhf3NlZOMoPP4xF+t69MDZjYyKvfCUW3CylsUVDRn9ETCPZyUkcPD09OHiYMs3SHYqP/Lu93QwVaG01/TgWF/He/f1wuJlizJRjx8H/qLZ/gaLUAzalr1WWR5Goe9hPUO7Jk3COmQVIYYuDQhiA6Ogwk/pyOdgdimHd3RAMx8Yg6u3bh8eOHzeTTLm4v3ABEXT2Q8nnjUDL1gkspRkdRcsFioR0eDmAwG9oxdKSKbFpaSnP0eVkVLu0sRYly+x/w1InEVMyxIzDRkLLktcGlqLFYtWV7ZBMBudvDha7TOhtUSol8uY3i3z72yhTvvpqM7X0wAEEWnfvhi1g64LpaSzqaYvicdOLq7UV9oiB1WJi4WqGk3ARyZJkv0nc6bQpb47FIB42UkmqEi4atbzZp+VL6G1RLifyUz8l8qUv4djet88cz/m8qbpigsfICI7v5WUzJTgeh73asQOBjOFhPHdhAf5QOo2gyfQ0/JbTp/EYbRWHLXV04PVsMTMwgPcdHcXf8bjJhGabKu++kUxCnEynTelxqaAWW0HQn2puNlUo1Zz7czkzUZlrWvbG6+jAGrWRgpH28E9e24M+2T/cnpaslA8D/s3N1fcW9xm00kB70sZFRcQ6kkqJ+9M/DUe5rQ0C4t69aBp+6BCMM6dPUVlnBJuXaBQHyvnziNLn8yYTkNOak0lj8HM5LND7+/G+IjgBDQ3heRcu4HXDw3ieCD7D1BSuW1vx2kaJfipKObC/Xq2azftE3UN9glpaEnf3boh7hIMHOjpMIIEn5Xgc35tDRjjUaWkJ73H2LIIVXOhwW0UiJnuwp8cMT+nogL3ZsQNOcUuLsXvt7UYkZLSakf/29pW2aHkZwZFs1ji7pYYgcIIq+6nUomSZfc/shtksZWmkDBIRLUuuJyxvYu+jWrwfG/lfXrSE2hbl8+L+8i9jgEFfH2yQ68IuXHcdbEckAvvC8kER2JWhISyyBwawEE0kjE/T3g67Yi/sqhlOwpK7dNpkg3qDAcw8ZBCrrU0XlkrtYHkzM57WW3DxqdQItS0SEfftbxf5+7/H92FfZGbesxS4o8MEXF3XVEf09BgxZGoKlRZTU6aai/4Uq8KGhvC+PT1YC3Z0mB71V1+N2+fPm6oyTlfO5cwwqKYmBHF7egq/SDptKj44SLOjI/jLLy8XTmlubzeBmNWSzRrhkC0+YjEzUdkvCLNesI+hLRySaLRQMKRPrFQH2wK0t1d3rvTpj6i/Th1QEbGOvPzl4t5/P04eL3wheh5edRUeY+ZKLGYcWb/sBS7oLl40pccsLe7uxvswa2dpCf+rrQ0L/VwOJ622NkTDpqfx2i1bcPByYuH8vGmwW4syLEVZD+wSoFqc7D1CYqhPUFu2iHvhgrnd3AxnjjbHXiTncsY22TQ3G8d5aAiCIPsm7tiBsprBQbx2ft5kUFNs7O6G47C8DFvFbEf+n2TSTAZsa1spDKZSEA8ZYeekwGKsRckye9Gm00aIi8VMqXIjZOxpWfL6s7yM7V6r3prs2Xn5mA31L/ZbvyXuX/4ltsvQEIKce/eaBTkrIQYGCkv0bHvEnogcotTXZ/pp1WI4CTOR2OPS65dls2bIAvselgpkKMpqaLTyZo+QGGpb9Bu/Ie6f/Rn+ZhCUghFbFrDUtqnJJG7YvwHFx5YWPK+31wRHBgdhu3p6cPvsWTx/1y74RRwENTxspi/ncrCJvb14/7k5ZC6m06Zdg/3/OeQlkTA+VdCkZNeFwEdfiq/p7l59xUQmY6ro6MM1NxvhsBZZ+dWSy60UDO0BfPzdeb3ex9lGhgkEXV3V+cwUEi8HwkNti8KCioh1xHHEZeled3dhT0EuPO1yMTsjxG4auriIA8UWR6JRHIR8fjZrxEhGwey+ZOzlw/soFDBK1EhNnBVlNbiuKclc7YnJNo/2+91zT7hPUI5TOIWQQQsuuFtazFRmBiJYRsy/OXiJE51tsZERRfYB5PuybJjZ08xctBvHe0u3vMNG+H/YM7FU3xlbRON3rSbDjhniFJX5nrysp93kPuq9iBihxXtR1h576NNqhud4f0u2bMjnRf7hHzaGLWJJE8vamJHMBRz3Vx5j3gtLzWw7Vi0sg+YAJK8Qyce5+NTMXaUe2PagyOC3Nf//3s8iIvLFL24MW0S4FmIPwnjcBAh4YbYz13PNzSajjb+PiPEPWMJLkY996XM5854MdvJxuy8+M6EpZBKW3trDBYPWcRSjmW1HX2q12fKsxKDvJmJK72mT1xPaabvKj9AntK+V+sF9l+uASl9L+8O/83mRT3wi3LYoLDRYZ6aNDcvm0mlEzHkf7y813dhxCktlSCRS2FSUjrSIORG1tJhpgiIm64gLdrusb72NvaLUAjpPdk9D4tcov9hjXjZK3IUnbGY/c5FsC4UtLUY8tG83NZnBAvG4yaRm+a5IcQGRgQve5v+n0EJb5M2y4P+wbVUxQYa/OfukiPgLkuVAx6RY2e96CYe2oOQVmUT8BRdlfWCJDXvx2QJXMeHX/n394D6+EWAgIJ1GRs7MjLnfXrB7F+60Adyu1QYIbLzioPf8wQUpH1e/SakXtOe0/d4hZNVQzBfaTH4RgxdNTcamsFrDzyZRRGTPVAY5aRP427CSxR6QtbxsMpyjUZMkwv/HAAl7CNI/I1zDsTcsg7jF9gVWT9hBrdX2aaa/5hUOKbqulxhni4V+fht9X5+Jvso6YPtH1C9sYZDX5dqjjWKLwoBmItaRTEbcaBQ9Mi5eRInxxYvmMj5u7ltaWvn6jg5c+vuR3j44iPKfgQEziCAeR6ZjOo309LY2PG9qCo55Swue29yM/zEzAyPb3Y2LLjSVsONdiLORPrNIipk8r9hSImsr1EfK3Jy4XV0oe5mYMBPbJybQZ4eXiQnTS9WGU4+Hh1FO094OO7NrF+6j0Mgo+vy8ab9Ah5g9hmIxOKFLS6bHa1ub2d65HF6/tGSmxBdr8O1XsswFQSW2zXbMWTpGYZOCR71tZVBZsreP4XpnRCrAm/mQTpt9v6mpMJvVxs5stSsTigjXof6lEwlxW1vNBFJeLl1aeZviog1bufT1oTfYli24DA2Zye2V9HXO5fAbsVqjrc3YGtc1PZxYytjaqpkryvpRbnlzULDCu0C3KeYHFfGNQm2LZmbE7e3FMT49jXUThzh5/56fX7nN2D+agytplwYGUI48MAD/p70dtunSJbxuyxbYG/a5Hx1FyXMqhdLl+Xn4PDt2mCAsy5Dn5/Ea9i/0EwPzeTNlmcHerq7C9jHlQPvHUmUGdNvajF9W76Fx2ezK4Sd2hYhdktzcrKJhI2BnDNrXS0vYvzi0yItfNQL/tu/j0+v4lTYtKiLWl7I39uJiobh47pzIk0/i9uKiEQUJxZHWVjPhdMsWONXNzTgh7dwpsn8/HOr5eRyszc24rc2/lUbHG5HyOr9BjjBL0tinzs8RrpCwn6DKtkXLy0ZcnJiAPXrmGdigxUXYppkZs5CmaNLcbHoBDQ+baak9PXCS2TMxm4Xjx8g8yxnyeTiqdpPvYj1TOLWW2Y2M4ldSGsGSCjuqz4g1L/WC4rfftGTtY7j+2Jlodnl7sXIp4jgmg5dDN/xEwgoJ+69fti1KpUzQg5cTJzBMZX4edmhiYuXU5WgUC/jhYYiKw8OFl6EhXERM9YY9pd11TY9W163NICZFqRV29htbk6xWIKyy3cWmsUXZLOwNhcXpafhF589DrJudNb3euB3Z7qW/36zVbGFwcBB98jmF/vx5vHbrVjwmYsSWuTnTZ7e7238Nl8ngeQsLJkDLASvl/rb8f/TF+H06Okx/yHrZQe7ntmBIW+84ZkKy3SZMqS92ZYxXJAyqnqC9WVzEdXd3YYugVdijsNuiUKAiYn1Z1cZ2XZHjx+Ec9/WZjJhcDieIuTk403NzaMQ7Pg6Df+kSTkIsKWTZs+tiYb9lC05Ow8M4aXmvqx25rijlUkwQLMcJ5nVQxFyksNyjBqJL2E9Qqzb8MzNYTA8MmMnJXV2wOSdPGif60iXYovl5k33NBTp7A+XzJqORWUNDQ2YKYm8vMqy3bl0p4rkunMhk0kTE2QqiXKfW7gvE8h67N1A9nNAgwVBkpWCoWU9rSzFB0L7tZ48o7gZlEfK3W142vURr8Htuals0NWWycNrasF1nZkz24vi4yWq0bzM4QfJ5LIxHRsxleBg2qLsb9o5Zjro4VepBUMagn29ktwNh3+EaCoTlsGltETOpUynTQkoEvgUnNdNfOX/eTHo/exavZe9F9j6MxeALjY3hmoMuOUSOj/kNKUkk4IMlEvidaR/LHWjCzMWFBVMhEokUCodr7YewGsQWDOnDi5iqEAqG2sd/bfEKg8VEQi+2vQnKICSsPGpqKj1NvAS6N9QBFRHry6o29oULIs89Z3putLaarCpOCGttNen1g4OmVDkeh8EfH4cQyQX+4qJxrMfHcZ+X9nazuKdDzQtv9/frolYJphIn2KaCEpqyP0cmY0T4Kgn7CWpVtiiRQIS9q8v0WKVzOjuL262tZshBT495HZ2FqSmRZ5+F7Zmeht2anDQL/Kkp0zuIWXbxuBEY+/vNwp4tHbZtK39xbzcAp3DI8tJ6lLt4BUO/Pov2RakNdHZLCYR+BJUVr2agjuuaBR77XlXBprRFy8uwF44Dm1BJdo0Itv/4OHyr8+dhd+z2DhQd2cqAF06lt8ulmc3I24OD9c1cVsJHLcuL7Qv9nFLlzWvEprRFmYxZW7FqgaW0mYwpR47HsTZjwOPcOfxO/f3wRZ56Cr7R4iJ+t2QSPhIrQTh51h7C2dNjfCL2re7ogOi4fTsqPsoRD3O5QuHQdeFPUTi0W8ysBaxIsTMNeQywJ6VdmqzrztoRlDUYZI+CSop9yovLhln/HGK0SsJui0KBiohV4jhOk4hcKSJzruteKPH0ijf24qLI0aMwqJ2dRkDkglcE1wsLMLR9fXCGk0nTg2N+Hie3SASP+2UYJpOFJUIXL0K89PYk8isTovNsC4xe0bEKQ6A0KOVkDlbqCNuPrQUctlEDgabhTlBrbYuyWTizbCK+uAgHs60Ni+9UCsc5S4q7u015cDyO56ZScA5EjMMrggX9/LwR9ViGY/dovHDBZBFNTa1sJh+JwJmmsMhrRvEpPNIWsaH4Wi60gvoYally7WA2Z5BIWKy8uFTvwbVarORyOBY4Db0KGnKvqcAeVWyLcjks2pNJHN/FeigFkU7D7riuyWBmuTkH2FHsnZnx79HIv2nzbPr6iouMvF2p8KmEg7USCCspQeWwCwbI6kRD7s1raYtcF77JxEShuNfSAhuzuIg1F4fLDQzgt5mcxHO2bTO9D/n4tm14j3TaBGd5HqKwyN6MExP4/5cu4T72crUDqp2dps1VXx/8pL4+3M8hKNhO+Luz06w314J8vlAwTKXM+ZmBGntojWZ+rw7b3gRlEPpRqu/gWou4HDDU2blq/7ykLapwzaT4oCJilTiOc4WIPCMif++67s+XeHpFGzubhYA4NYVoE1PdmZEYi+FAXloyGYcTEzjAR0bw+PQ0Tljt7ThpVHPg53J4Pw5/8Q6GoeiYSKx8bU/PSqHRFhlHR5HdpA51Y1Aqc7AcJ9h7ey3FwUqgmMPjZ5U0wDcpZC1tkevC6c3lcFJfXISD2dmJBXY6DeeTTbs7O03/sPZ2PLa0BJvGgSuRCBziuTnYqKamlSU3LFleXjaiISezzs8Xiox230Yu8hcWVu6rnZ2FC3mv4Dg4CHtV6b6hZclrQ1DWIC9+9qjC4STrAsu12MtplTScLRKpyB5V7IRevIjFdV8fjtVKRJJ8Hj5KJoNzQFsb9ods1twfiZSfBeG6sEWlyqdnZ1e+tq3Nv0+jfbuvTzOSG4VaiYN+962FLbLLm+s0LXfT2aLpaQQ0mLHMYUwcwMTeqbkcBMLZWdgZinnMgo7H0R+xs9MEUVnB4dfHkH0Rl5dxf0cH1lD5vP8wGN6enMS1PVGZPWAHB43NscVG/t3TU7ktcl34hbZgyGCxCLaXnWGoZcnlEVRSXE55cZnDSdYN9kR3HBwTq/hM5YiIV0j5aybFB9X3G5gzZ2DwOzthWDMZMykwGsVBxpRfETitra04CXD4Cvtq1CKiFI3iJDM4KHLNNcWft7hYKDDaU6cvXsSAmMnJla+Lx1eKjN7rwUGNSlVLOX12/CiWpt5IAmE58NihoBWWz72eLCzA/nR2wnltbobTSgExEjFiSEtL4fTlbBbOLh3d5mYzPT6VwvHMfj+EpdKcghqL4b2am83vRed23z7zOnuiMu3j3BwcaJYq2sLjqVOwk94stVhsZUYjHWze7u01iwO/suRYTMuSg7DLi4NEQj8oAjIQUIPhJOsCextTfA/L515P5udx4UTQSgREOxOaImEuB/tGO9beXtk0d8fBIr+7W2Tv3uD/zcFUfiLjI48Ur/bgUBg/kZG3q8xm3fRUKxAG9R9cL2gf2fd3HcqbNzQcOsc2OayuWFzEffYx2dODY951kWmYy6F8OZfD+mZ0FI9NTxcOl+jsNOJvPm/sH4MgfX0QD+3fta0N/4Mkk6ZUmSIeewymUrjfFh2PHcO1LfaJmM9ki4tesZGZYxQMWVovgvvjcePLcdChUkg1w0ns9ip+4mBY1jsM5C0uFuocSmOhmYj1peyNPTkp8vTTOODb23FNATEeh3HnhEdOJeVCfGYGj3V14cTViEYjkyksByomOtqNdEXwXQYGivdo5PVmHApTKnMwyAnmdVCJ8UbCdY2DtMpSn7BvkbJtUSoF57KlxUzm6+mBOJdO4zYn/zGjJx7H8xMJvCYeh23KZs1k+EgENor2TQTvl0ziWsRMQS0WOODvyLJpOxuAl1L7bi6H72dnM3qzGy9dMoIm/68ItsPAgMlitAfEUHDcjCWL9RhOslFwXZO1u8q+U2Hfu8q2RRxEkM9j0V3ueT6XMyXKzBQSwX2pVKEAsJ7HKrOISmU1Li2tfG1XV+ny6Ub1B9eSUgHTepQXrzfe8uYaDZfzIyRbpChl26JcDokeExMmk8/2eVhSzHLcuTk8Pjxs+tC3tyP7MB6HX7SwgPdmViGFQQZdWVnR0gIxz/advCwv4/kMAIuYwEtHR2m/13WNuFgss3Fy0kx+tgOpLS3GNxoYKAzAUnTcjJVn5ZQWlyovLmc4yUaCGb3l7LMeNugWaSxURKwvZW3sZFLk8GGcNLq7zTAV9kHkwr252TRnHxqCM5xI4P7+/qrKoxoC10X2kF82o/2331CYjo7gHo0jI9WXd9eTchxhP8opo9msMBuRGU0VEvYtV5YtyuexaKW447pGQOSixHFMxJ1CCHveMLMnEoGTvLRkyhNYouC6JuvQLlluafE/Prkg4kRlWzikw17Nfu1XlszSiqkpc6ETPTkJOzQx4V+y2NKyMovRezssA6rs7MEgkdCPcnoPblZ7xKxZLkYrJOxbrSxb5LoYRLCwgPN3OYKYbVsYiG1qMgsTLshrNCW7biwtBYuMFy+aAVU2HAoTlNUYpmqPWpUXh1UcrJQ6lDeHfcuVvSAeH0dAg8kc8bjJcuYgEGaap1KmcuH8eTxn61YIbIuL8I3yeTNFORbDvsspyyxZ7uyE+ObXZoHPX1gw/eSYhMLhKNVkobIsmRmG9L9SKXzGpSXzvxcXcR/9pJmZlcdiNIptEpTV2NcXngFV5ZQWl1NeXKvhJBsJHh9dXRXZrE2+1eqDioj1peTGzueR4n7unEn5bmszQwAoejgOjDj7ki0umgX+KvsHhJbl5ZVDYbyi48TEysUtS729PRpt0XFoaG2HwgRlDXqznryUyhzcTPvAaqFItIpSwrBv3bIM/9QUnMSmJnMSX1oyjbAZaXdd00ycj7W04NihUylinNlIxAyWSKVMyXJrq//xls8XliqLmCmF1TbeDpqW7Fc2G0Q6XSgqerMZWU7tLRPiUBhvf0ZvOfVaNToXMeJpmIaTbCSyWQhb7BFVAZvGFl26ZAbGlTrm2eMwl4ON4NR4Zn0yO3qj7pschOUdAuO9zaxv4jhYvJcqn+7oWNvPrwLh2sBzKc+5NRaMw751y7JF8/MizzwD+0KfJZnEYwxWxGLm2OrthZC2tAQfamzM9D3M5fAe7O3K9gpzcziGYzFT1uz1P/J5vCd9LAZh29tNxuFq7RtLnSkY2naCfp89/CTouMrnC0VFb1Yj//YbUNXZubI3o1d0XMvJ0ba9Cdtwko0Cjwm2SCqTsNuiUKAiYn0pubHPnoWIyJIbRs55colEzGKuqwuvSaexYO/vD08Eud6wZLHYUBiKjowk2nAoTLHBMCMj/qn51ZbQ2H+rE7x2ZLNGENtEUa6StogRcjo7HR1wmnmMMLDBrGjHgeMZjZrG4iy/aW835TnpNB6jGFisZDmfN2XKFN0iERPhX42tC5qWTNHLHnyyFsdaPo+MxVLl034li52d/iKjndnol6FVTu9BP3vkLSP2EwnVHtUOLtY4PK1Mwv4LlLRFiQRKB1taUMYcVGXB8nBmQre1mYBFPm8Cs9obDttqbi5YZCxW7cGhMEFCo99QmFqIg97b6htVhl3ezGBcjbZd2H+BkrYonRY5edJMV2bgVMQIeAzIxeNmwGU0KrJ9O+6jQBiP43wdj5uMPiaEtLaakmWbXK4w648BXAZog0qci8FsSXtiMo9D+ly2YLgWtpOZlEHl01NT8Em9NDcHi4wcwFXMFtVyOMlGLy9eL1hpybYBZaC/QB1QEbG+BG7suTmRxx/HgdLVZVLkaZCYBRKN4kTBdPXe3rWPCm8GXBcn5aAejSwT8hKPr5z4yn5Edn80lloGOcRK/WFkvgJnOuy/VKAtymTgJGezZlhKOg3nlQISnUkGOERM30SWH7S2wpbFYuWVLOdyplSZ72mXBlXivPqVJfN0x/Js+9Jox14iETx9emLClCzazm4sBsd5YADXvAwOmuu+PrPtg3oPNto22QxwEnkFWXJh/5UCbVE2K3L6NOzCtm3BfRAzGRw3zIR2HGNzGJjVQGvlJJPBQ2GKVXtEIqZnrF9Lh5ERPN7aqtmD6wHPtzUsbw77LxVoi/J5keeeQ0AjFoONYTCUlRS2f8NgBs/BS0tmwE1PjxlCNzdnWi50dkI8tAMl2awZjJJImCxStoXh8VMODM7agiGPW+4HtmDYaOXEmQyCsEFZjTMzhf302fKmqwu+T28vtn9vr7nNC1tbBGUQqj1aH3j8dHaWdR7XX6kOqIhYX4pu7ExG5Ac/QL+Mnh44u1zkMS3ebtTL7B722VBqQ1DWIC/pdGGZkO1U07HmxDYbliwW69HI+3QKVf1hZJ5OVBmE/QRV1Ba5Lvbf5WUzQY/lBBTBW1qM6ETxVQQneUbYu7vxHLtkuanJlDkTTqfNZIwzyyzHcqf3MXIcVJbszTJsdMrpPZjNwnGmoDg5Wdi3kfdxeISIue7rK8xq9OvXuJqsBqU6mJHhOGUvDsP+CwU6oefPYx/furV4H8R8HtuMmdBNTaZnVyxmKjqU1VFOVYVti4plV1+65F/t0d1dOquxu1tt0VpQ4/LmsP9Cgbbo0iWR48dxPmXvZ7ZGoH3h9ksm4b+MjJge0SxNbmkxU5Y57Kmrq7DnWyZjBqPwmOHzOjrKa21Cv9YWDO11SSxWKBiWKktuBIJKi/k3e1izH6N9mZ01f/M8K2Ku29qCezRu1qEwjYDrmkzUMn4D/YXqgIqI9cV3Y7uuyNGjmMbMHofs8RCLwejzJMVsnP7+te2PtREJ6jlYbRmN3/+amSnMavQrpfZLze/oKN6jkZcwDYUJCxUOWgn7Caqo4Z+dRWSc2YY8cdPBpMhtZ6wlk7BTTU1wkiMRU7LsOGZaM7erPVGZYp89UbnUvh3Ux9BbltyIQZZSvQdrOZzEdeFQlyqf9itZbG31zyCyhcewDIUJEyy/jUbLOs9vaFt07hyCpSMj/vsZ+xyKwL5QFOG2W8uexhuhRmHzAAAgAElEQVSBteo9yOd4WVwsXT49Pb3y/3qrPfxExzANhWkkKAIzi66K8uYNa4uWlkSOHEFgjuszVluwpYuIab3S14fnpVKwRV1d2K7z86YMua0N/hJ9qlTKZByyx2I8bjIOS9kyDjqxMw3tsmRbMGSVWyNRqu9gueXF5Q4nSaWK92fk37OzK/9nNBpcOs3sRg1c1Z5sFsdHc3NwVYKE3xaFAhUR64vvxr54UeSRR2Dwe3tNA13HgfGiwW9qwmM9PY1n/NeTUpmD9nO8lHKA1zratLzs35/Rvp6YWDnQIBZbmcnoFR2HhsI/obveUJQqoz9i2E9QvkfE8rIpY25pMRFdZkGzRJALNQ46icUgfjPzkL2W2L+E/RJZqszyEmZWBy1a/DIMG7UsmSXU1QwnCRIJ1xJmWAeVT5dTslhsKEyZfWyUyzCDhBkiAWxIW5RKYXhBUxMGEXgXZLkcMknY1sVxTBCogr5JG5q1EgjX2sbaQ2GKCY2XLvkPhenvN8Ii/SDv7RKLz01LDcqbN6QtymaR6PHcc7ArPHY6O3HNdi/RqOlz6LrYfhx0OT9v+rSyZLmpCWIhMw65PzOZpLOzuBDF7EZbMLTLkrlu5PV6i+tBfQcrHU7iFQzXklwOAdZiPRr5t99QGJZPr9dQmI1KMol1Rnt7oG+kW7UOqIhYX1Zs7ERC5KGH4BQNDOCgiMdNA3D2P2xthcHZbFH1cspo/CiVORgmo53LmYmv3v6MttjoVybEDA5baPRmNWpqfiEctFIiGh/2LbbiyMnlsDBbWIC9yecRFW9qwm2WCYqYrAUOUYlEjDjI5zc1FU5UpnBoZxz6Zc0V62Mosr5lyTqcxAyFCZo+XWwoTFdX6fJpLVkshOVnJQathH2LrThq8nmRZ5/FYuGKK1a2+OAiwvYJWP7NoMVGphbioPd22Hwj1zUDqoLERr9qj/b2YJFxM1d7VFneHJK9pygrjhzXhS168knc5vbw9leNx7FfURRiBjmnJrNKo7PTCIeLi6a82J6o7N3mbKNkC4Z2WTL7GNoJJ/U6joOyBssZTlIqgzAMsAVJkMg4Pe1vi+Lx8obCbEZbFMTCAo4ruwWAh5DsPeFGRcT6UrCx83lkIB49igOBU7ryeZN23tODE89GFHpKZQ6WGyUvdt9mgiWLpYbCTE+vfG1rq39Wo309MNCYZaFrAUt7RALLEcK+l604uiYnIQJxOMrSEmwQRUKKgq5rhp3EYiYTiCXLbNydzZrFPbMN/bKJ1rss2e6jEyQS+hFUVryZh5MkEiuzGL2Co1/JYnMzbE1Q+fTAwOYqE2IjfTZ89yHse9gKW8SBHdu2YRFFslnT+zCXM5nILS2VDRdoZMKaPdioJJP+QqM9FGZycmWGdTRaunx6aGjjBvZ5jFVY3hz2vczXL/re9wp7QnPoZSaDv5ubzTAUuyciS5a7uvA3S5Vpu2zh0PZvWJZMwdAuS2a2o51puFYCU1DfQV77EZQ1uJntUSaDNldB06enp1faIseBFmCLjH5/b1Rb5Ec+D1E2GsUx5MMm3MPqj4qI9aVgYz/9tMh3vmPKwXgyaGmBQejuhnEI24IpKGuwlBPM60p67Cjlk04bB9qbyWj/TRGNcB8tNhSG1xulT6fr4oQf0B8x7HtiwVG4sIABBiKmX2Fzs3GQuT9we9AmUUyMRrG97OdxMAq3n7cs2XaU1qosuZzhJMWi5KV6D2pkuDqyWTjNxQYw8LZfyWJvb3D59EYqWcznkXXHxasPG84WPfccFk1bt8rzbV2Wl7EwT6dNKwQ7yNHolKqoUIFw/cjljC3yExl526/ao6enuMgY9mqPVZQ3h/BbFlBwBC4vi3z3u5gOzyAoqzLYc5VJHrbAFokYYTCZhHho39/ZifNTJGIGy9mlyRTnGJy1BcNalCXb9iYog9CPUn0Hw2CLGxnXhThWqnw6kVj52vb24uXT/Jvl9RuBdBrJDgwietgg37KxURGxvjy/sScnRb76VfRaGBoyDcA5VKO/v6i6vq6UyhyspoxGaQzyeTMUxi+bkX8vLKx8bWfnSpFxdLTwdm9vOBwNDlopkgUX9j32+SM1nRY5c8b0F8tkYI/s5uHsERmPY1vwtuMY4ZDlzgyGrHVZcjm9B4PKiysZTqKsD3Soi5VNM9PRr0yorc2/fNq+HZaSRQ5aYV9SD2HfW58/SjMZkRMncCxeeaUJTiwt4fvncma6e1tb42THr0X2oP24sv4wk6ycoTBeWlpgb4LKpwcHG2d/tmEpbZnlzWHfW58/UvN5kcceE/nBD/Dd43H4RZz23tmJ84frrqyaYNCDVRvsb9jaunJash2wZ/9bVqKtJoEkKGswyB6V6juotqixSCYLBcZyh8LEYliDBWU19vaufw/NckkkcBx1dq74zLq31oGGFhEdx7lbRN5t3dXkum62yNPrhuM4u0XkuHXX+1zX/b0yXuqKYIf/t38TOX4c2V2MTG3ZgktfX/2diXKi45U4wt77lY1HIlE8k5F/T06uLHloajIOtF+PxtFRPN4IGbjsjxiLibz3vXfLe97zHvvhMNsjVwTf7exZ/F4sVW5vN0IFMw+Z7eMV/JiJyPtqUZZMh7eUSLhyO6z/cBJlfUilzOCXYuXTfiWLkUjxsmn7uhHKhFjWFo+LvO99G88WuS4GqSQSIrt2wQYtLyNYlUqZbANvL7K1RsuLlUrIZAqHwhQTHe2ediLYHzigKiirsUg2cl2+l1958913bzxbJIL12X33QYhpbzd+UU8P1mjMCqRoGI2a80tTE9Z1LS243840JBwqZ2calrIJqx1OUqrvoPpFG5NcDvtvqfJpb7WHCDJsSw2FaYQWImzl5borMr4DP9kG1JfWhZBozfKWy9fPLwEcx3m5iLxTRA6KyICITInIMRG5z3Xdu63n3S2FO4qXX3Bd9yOXn/v/ichbrceyInJeRP5NRN7tuu6ly/ePX/5MAyLyoUq+iOuKPPigyBNPmIV5dzec5q1b18ZBKKeMxg91gpUg2tpEdu7EpRi5XKFD7c1qfPJJkW9+E1E1L319xXs00qFe69T8WMyU6fI4+djHPiZvectb3iIbwB5NTIicO4cMCw5xEsH3ZTScfYB4bQtyzFIgfIzCorcsmdmd1QwnoeMe1uEkSu2Jx9E/b9u24s9hhnWx8ulTp9BexK9MqKtr5RAYr/C41iWLzc1mIidF9I1mixYX4QfFYhB9EwksyHt6cL6pZWCpHGEwKGNHZGWPL/WNlKYmkxBQDNc1tsivfPrMGfRL96v26OgoLTSuRbUHy5kzGZzzveXNG8kWXbok8u1vo61CRwd+r+ZmUw5KwZABZgY1WFHmONhG9GsjEdM3kaKhHUylzWHFRrEMQi+2vbH9M69IqGxOolGIff39xZ/jusFDYaamRI4d87dFHAoTlNXY3b22IrXjYN0yP4+KhY6Oit9iw+hL60EoRETXdT9u33Yc59dF5H+LyGMi8uciMiki20XkBhH5ryJyt8/b/L8ictHn/od97nuriORFpF1EXioivyQiP+o4znWu6yZd110UkY87jnOFVPgjP/mkyL334uQyPIySnX37EIFczYFWygEuJRDaJxl1gpVaE42aPorFYMmiN5ORty9cQEnJzMzK17a2BvdoHB6ufigMhUQu3N/85jfLm9/85udtUljt0cICou3j43Bq6Rw7jikZpBjojWLTsWWTb95Pp5cZnOUMJ6EIyBJpvyxCtUdKtUQixqE+cKD485aWVpZM28LjsWPFh8KUKp8eGKgui46D11gCt1Fs0dIS7D2DQhcuYPuyDLC5udx3AtVmD6o4qKwljmMW2vv3F39eMukvMvJy6hRskvfcGouZgEcxoXFwsPIMa56XmRVt27KNYouWl0W+/GWR738f/iWHW/b0QDhlixsGM9krkT5mKgV71d5uypOZrUi/iSXNvM8Pu7IiqAeholQDRbj2dpGxseLPy2SCy6efesp/KEwksnIojF9mYzXVHtEogowsba7kvTaSvrQehEJEtHEcJyYi7xWRR0XkRd70U8dxhou89F9c1z1R5r/5pPW+f+04zqSI/N8icqeIfHoVH1tEcNL/5CfhIN98s8itt4rs2ePb46hk5mCQE8xrP0fYfo6iNAKOAyetu1tk797iz0uljBNNsdEWHR99FLf9pixy4mvQYJhiQ2EY5fV/LJz2KJPBxMGnnjLTuSkadnSYacp2jx8RY3soGDKrsFiU3JuZqMNJlEanvb10hnU2a6aZ+w2DOXwYf/sNhenrK14+zUuxigQK/P6PhdMWZbPIvOLAlNlZfP+enpXftZyqChUIlY1CS4vIjh24FINDYYqVTz/9NMpy/ao9OKAqSGz0Vns4jplMzPO/l7DaItcVueceiIjxOLZFX19h2SZ9I7ZVsHtB20PnKBimUiv/jy0MFssgVJRGoqnJ2IRiMCHE25uRf589K/LDH/oPqGpvDxYa+/uxNil2nqZNSiTMcVkpYbVb60noRERBimePiDzoV7/uuq6fGlwt/y74kXdV8yZ/8ieY8vXyl4vccYfJzmKpZCVOsH1bnWBlMxCPi2zfjksx8nmcrLw9Gnl98qTIQw+hbM5LV9fKcmlbdKQTnssVnKBCaY++9jWUbnZ2wlFmX9bWVlOmzAWCXzagLQiyrMkrEqo9UjYqsVj5GdbFhsGcP48M62JDYYpNnR4cNOKkJ+oeSlt08iRaKgwN4fbAgAnocKBDuW1XvBk66hspG51o1NiGa67xf47rwufxExl53+HDxYfC+AmNHADJMkdOH75MKG3RJz4h8jd/g+9x6JARUXt6zETl1lYjGrIKgzC46icOavagstGxE0J2BRyFHApTrIT6uef8h8I0Na0cCmOLjb29sIdLS1jPrYJQ2q31JIwi4iURSYjIjzmO88eu614o83W9juMM+Nw/7bpukYTy59l9+Xqy3A/px+HDIq96lchP/AROQPYJu5ggqE6wolRGc3NpsTGRKOxH5L0cPowTmg2P15e+FH1NLxNKe/Txj2OAzdVXQ5Rob4eNyWaNrcnnC6N5fsNJOEhFURR/BgZwKQaHwkxNFV5PTuJy4sTKAVUXLluZH/9xkW984/m7Q2mLHn0UNqilxQxTYaaC9mVWlNpBsfHgQf/H0+nCDGvv9SOP4G97KMzEBK5vuy38ftHdd0MkfPWrRa67Dj5Sby/EwpYWM1CGvhKDrGqPFKUymptxfI2O+j+ey4nMzWHdNTuLdla8zM5ijTYzs3JAVT6PY/izn13Vxwql3VpPQiciuq6bdxznj0Tkv4vIM47jPCwiD4nIvYKml5kiL/2PIvfvFJFnPff1O46TE1Oz/m7BjvWv1Xz2r35VR44rSiPQ1RWcReSH47znbhF594MPmuM4rPboU59SW6QojcJqbdE3vhF+W/SmN6ktUpRGYWAguE+jl43kF504obZIURqFoNLptSCsdms9CZ2IKCLiuu77Hcc5ISK/IiIvFpGXicjvisiU4zi/7rrup3xe9lbBJBwv42Xcd0JEfsl1Xb/XK4qyiVF7pChKI6C2SFGURkBtkaIoYUPtVmWEUkQUEXFd97Mi8lnHceIicq2I/ISI/KaIfMJxnPOu697neclDFTS+fLVgek5GsGOccN1iHXkURdnsqD1SFKURUFukKEojoLZIUZSwoXarfEIrIhLXdVMi8oiIPOI4zgOCJpU/JyLeH7kSvunXVFNRFCUItUeKojQCaosURWkE1BYpihI21G6VZqMNkv/u5eut6/opFEVR1B4pitIYqC1SFKURUFukKErYULvlQ+hERMdx2hzHua3Iw3dcvn6qXp9HUZTNi9ojRVEaAbVFiqI0AmqLFEUJG2q3KieM5cxtIvJtx3F+ICJfFpFTIhIXkRtE5C4RmRCRD/m87icdx7noc/9h13V/sFYfVlGUDY3aI0VRGgG1RYqiNAJqixRFCRtqtyokjCLirIi8Q0R+TETeICKjIhIVkTMi8lEReb/rumd8XveBIu/3xyKyoX9kRVHWDLVHiqI0AmqLFEVpBNQWKYoSNtRuVYjTyENhHMe5W0TeLSKDIiKu606u6we6jOM4ERHpE5HtIvJ9EXmf67q/t76fSlGUtUTtkaIojYDaIkVRGgG1RYqihA21W7UhLJmIEyIijuM0NchUm10icny9P4SiKOuC2iNFURoBtUWKojQCaosURQkbareqoNEzEXcJNij5htsAH9hxnFYRebF11zOu655cr8+jKMrao/ZIUZRGQG2RoiiNgNoiRVHChtqt2tDQIqKiKIqiKIqiKIqiKIqiKOtPZL0/gKIoiqIoiqIoiqIoiqIojY2KiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEoiKiIqiKIqiKIqiKIqiKIqiBKIioqIoiqIoiqIoiqIoiqIogaiIqCiKoiiKoiiKoiiKoihKICoiKoqiKIqiKIqiKIqiKIoSiIqIiqIoiqIoiqIoiqIoiqIEoiKioiiKoiiKoiiKoiiKoiiBqIioKIqiKIqiKIqiKIqiKEogKiIqiqIoiqIoiqIoiqIoihKIioiKoiiKoiiKoiiKoiiKogSiIqKiKIqiKIqiKIqiKIqiKIGoiKgoiqIoiqIoiqIoiqIoSiAqIiqKoiiKoiiKoiiKoiiKEkhDi4iO49ztOI5rXWLr/ZmI4zhnrc/1wHp/HkVR1g61RYqiNAJqixRFaRTUHimKEjbUbtWGhhYRLd5y+ZKz73QcZ7fjOH/lOM4Jx3GWHcdZdBznMcdx3uc4zoj1PO4su4P+ieM4rY7jvPPye8w6jrNw+b0/7TjOazxP//XLn2myRt9RUZTGR22RoiiNgNoiRVEaBbVHiqKEDbVbVdAwymsQrut+3Huf4zg/IyIfE5ElEfm4iDwpIlERuV5EflVEfkZE9pb7Py6r0PeKyAtF5NMi8rci4orIbhF5pYj8rIh8xfpM91x+3R+t5jspihI+1BYpitIIqC1SFKVRUHukKErYULtVHaEQEb04jnOd4If9oYi8xnXdKc/jvyMi76rwbe8UkZtF5Ddc1/0zn/85svIliqJsZtQWKYrSCKgtUhSlUVB7pChK2FC7VRmhFBFF5L2Cz36X9wcWEXFdd0ZEfqfC92Qq6n1+D7quO17h+ymKsvFRW6QoSiOgtkhRlEZB7ZGiKGFD7VYFhKUn4vM4jtMqIq8Wkftd1z1Rw7d+5vL1zzmOE63h+yqKsgFRW6QoSiOgtkhRlEZB7ZGiKGFD7VblhDETcbeINIvI4zV+38+LyBMi8v+IyF2O49wnIg+LyFdc1326Fv/g1Clxt2wRaWmpxbspilIv/uAP3i3vfe975E//VNwzZ0Q++EFxJMS2SNCPQ1GUdSafL31xraP1ne98t/zP//ke+dCHxP3+90U+9rFw26KmJnFdV6SvT+TKK0V27RIZGxPp6hLp7sb9HR0i7e242H+3t4u0ttbiUyiKEoTriiwuikxPi8zM4DI3J/KGN7xb/vEf3yO///vi/uEfinP56aG0R2fOiNvWJtLfX+07KYpSDfm8SC5X/JJK4ZLJmEs2KzI/D1v16lc/b4sqIZR2az0Jo4jYdfl6vpZv6rpuynGcl4rIb4nIXSLyxssXcRznfhF5m+u6J6v5H7GYyMWLItu3i0RClwOqKJuTTEYkmcTfZ86IvPa1zz8UWlukKMra4rrlCYR+RCK4RKMiTU3mdiRigpBPPilyxx3PvyS0tuh97xP58IdFEgn4R4uLIqdOiYyOimzZIjI4KNLWZp4fj2ObkEjEX1z03lafS1HKJ5mEUGiLhtksHovFRHp7RfbsEensxH2ve13By0Npj7q7IYw2N5vvpShKbQkSB3mxA6f5vEg6XSgsOg78I/tYTSaNz7BKQmm31pMwioj8cWtu4l3XnRWR3xeR33ccZ1BEbhGRnxeRnxKRLzqOc73ruqnVvv/wsMi5c3CUR0dr8pEVRVkjXFdkaQknprk53HfwoMiP/MjzTwmtLVIUZfUUEwhzOf/sQeI4Rgz0ioP2JQjaot27RX76p5+/O7S26Ld+CyLhP/0Ttl9nJxYHuZzIc8/BZ9q6FcHXXbuQeZjPQ8iIRrFNXRd2emJC5Nlnjdhh09oaLDJ2dGBBoiibjWxWZHa2UDRcXsZjjgNxbft2ZAX39uJYEcFaZmkJfx86VPCWobRHXV0QK2ZnYQvi8Zp9bEXZ8LhueQKhFwqCkYg5r2ezxqdyXQRPHQd+U1MTjs/mZjx/dhbBx64uZBHHVq9shdJurSdhFBFPiEhaRA6VemI1uK47ISJfFPy4HxeRN4nITSJy/2rfMx7HDj41hZ2+p6dGH1ZRlJqSSsE5phhw4nJ3jDe8oeBpobVFiqL4U2l5MQnKHuTFWU2BjcXSksijj+LvX/ol/K/LhNYWRaMib3vb/8/em0bHdV1novvWhKkwFAYCBECCM0FSIAlqsqzBkiXZFhVJtmVLkWwnHmI7ev06K503Zb33OlFWenX6R3fHnRf3c/zctjw7jm3JlizZkqVIlmRZEyDOgykOIEiAmFHzcO8978eH7XOqUIWaC3UL91urFoBC1a1b956zz97f2d/eCBZ+/WuQfS0tuFZMKC4sEB05QnT8OFFnJ8jEvj6QGXxNu7ulBLquDs+HwwguQiH5CAZBfnB2uQq3O5lYTEc2NjYWfx9t2FgtCAHJn0oYBgLSpjU1IU7x+UAatrYm2ZnfH4PnJGcFp7zGsvaovR32YXYWNiX1u9uwsRaRTV7MG6ipYJ+I/SL+nR9CgDCMx/GIKTSa0wl/QCUN1bVX14mmpvC+5mbYqiLXZsvardWC5UhEIURE07RnieguTdO2VigF9HXCTe4r9kCtrdjhm5vD5LB3umzYqB6YJoLMeBy7WV4v0Q9/KBe2pib5WqvbIhs21hJKJS/2ePLPHiwFTJPoq1+V5JfPp343a9uipiaiBx/Edxwdhd31+UB2uN1Eu3Zh03VxEZmJo6NEhw4h4B8cJNq8Gb7UzAzRxASO6XCAVGxpQRZVa2tyPWrDSCYXmWDk3ycm5EaSCk0DkZhNPl1ENoQNGyVDOCzlyHNzIP84G8jjwTzr7ZWkYbZsXNPEvDxxAsfp6Vn+GivbI4cDGxVMJHZ12ZsGNmoX2bIH1WzAVDAR6HJh/U0lCFkpwGBZcjwOHiSRkOurpklpMpOGKxH44TDsmaZhvpaiNrKV7dZqwapuzqOEDjrf0zTtLiHEnPpPTdPaiOgvhRB/mesBNU3bT0QTQogrKc9rRHRw6c8TRZ31Erq6pKy5r8/e6bJhoxoQjUppDhfsf/VV1B7btInolVfSvu1RsrAtsmGjFlBo9mAp5MWVwpNPwhbt2EE0MpL2JY+ShW1RdzfR3XfjPp06BVJjzx5IlOfmcA9bWohuvhkBxuQkatS+/jrRb34DknB4mGj3bqJ160AI+v1E4+MyUPF4JLHY2ip/zwSWSadmMzLhOD+P48fjy99bV7eydLqpyW6yZ6O0SCSSCcP5ebkB6nBgzG/aJAlDdVM0FzCBOD6O7MUdO4h++9uML3+ULGqP3G5cn9lZbFzYqjEbVkSh2YMsL+ZN03TkYDbeQgjYIyYN4/FkKbPbjRjL45ES5VzAWdDBIN7b2VlyDuVRsqjdWg1YkkQUQrytadofE9FjRHR6KR30GBE5CWmoDxLRNBGl3uT/SdO0OVqO7xDRHUT0HzRNe4aIfkNEM0TURdCrX09E/yyEKEnHHqcTROLEBHbO162zd7ps2FgtGAYcYl3HQub1Yo6OjRE99xyyXDItcFa3RTZsVDPK1ZykVPLiSuHIEaKnn0bdsenp9K+xui3SNNjaO+7APTtzBiTbzp0gLmZmQIo4HMgEXL8e3ZyJQJicPw8y8cUXQY7s3Ut04ADRe9+LAGZxEcfhYzEaG5NJRa9XEseahkCnoWHlYu2JxPJMRpVsnJ1F5kQqnM7l8mm7KYyNXGCaGNMqaRgMyv97vSDmfT48WluLG0eGgbmzuIjYpbsb8zUTrG6PGhthNwIBkBVqcycbNlYb+TYnYajy4kwEYSF2gjskM2GYSMj/8Wfxw+0uzPfSdazdiYTcACy1D2d1u1VpWJJEJCISQnxf07QRIvoLIrqHiP6UiAwiOk1E/7j0SMW/y3C43xLRj5A9o9oAACAASURBVIiogYg+sPS6LiIKE9FxIvq3RPSVUp5/QwN2uubmsEittBtuw4aN0kMIpNSHw7L+FpcXCIWIHn8ci93HP0703/7bSsexti2yYWM1kI0gzOQEWyl7sBSYnib6+tex4/6pTxF96UuZX2t1W+R2Ew0MEN10E34/cwZBx969IPG4ezNnNTQ3w49qb8f/77wTPtWxY5A7v/YabPpVV4FQHBoCManrklD0+/GeyUmcg8MBAkbNVMxGILjdyFZaKWPJNLHWZJJPT08TnTuXvvB8Q8NyYjGVbLSbwtQ2QqHkTskLC3IDpa4OROHGjZI0zDWzJxcwgRiLgaxvbESWcLYA3ur2qLUVtmZuLr9sKRs2CkUxzUnUTdP6+uzy4kJhGMlkYTwufTX2y5qbJWlYCn9MlS93dZU3i9/qdquS0EQ6L71KoGnao0T014QLTkKImRXfUEFomuYjMNMjRDQmhLgph7clXWwh4BRHIthVt6UtNmxUBokEAjjDkLIzXuh0neiJJ4jeeQd1uoaGiB599FH6m7/5G5peSgPq7OysmhymUtgiGzZKiWKbk6z0sEr2YCkQixH9l/9CdPky0Z/9GeSDa8EWjY/jOx86BCJx2zbIlFtaQGIEgzJz3OWCmsPnQ6AhBMg8Jh1HR/Hw+/HaXbsge963D4EOIxqVpOLiIjZ3OVhzuZJJxZaW8pF2sVjmjEb+PVtTmEzy6YaGtTV/rAomrpgwnJ+XknmnE+ObOyX7fOXNkmMCUQiid9/FOLzmGjl3VHvU1dXVZfE4bZktMgzYEU1D9mUtbVDZqCxK0ZwkU+ZgucqiCZEsSU4k5LqYqVtyqT9/fh7rHjenzfG7rrjS1SC/tCqwSibiNBGRpmluIYS+2iezhCMkC2GOFXIALgh6+TJSdNevt+sj2rBRTgghgzAuvK8Gg0LIoPO660AgquiSmjZXLdkiGzZyQSnlxez8quSgTXBICIGmTufPYzNj+/bk/9eyLertBSF44ADGxrvvYswMDuKxuEh04QLGmtuNDo0zM8hi9PlkplZ9PdHtt+P6XbiAWpKjo5CHaxqu6YEDRPv3g5SprwchSSTXCiYV/X7cCya/uYs0S6Gbm0tDMNTVyWApE7gpTCay8dIlXL90TWFykU/bTWEqB8PA+FJJQ67NTITxtX69JA3LIeHLBM7Y1TRkyvr9IPNV8p2xZI+may1OczoxF6emcI86O0t3cjZqA5w9mI0kLEVzknJ/D7VTcjyOvxl8jkwaFipLzhWJBEqBsHy5tbUsH1OT/FKlUO2ZiFuIaIvy1POiSk5Y07SbiIhzBxeEEG/l8La05x4OY6eLpTn2TpcNG6VHPI4AyzQRADY2Ll8Ax8aIvv1t7PT/yZ9IefPZs2fp7Nmzv3/dnXfe6ahFW2Rj7aIUzUlWetjIDy+/TPS97xFdfz3Rww/LzY61YosiEZCHpkn05psgAXfuRFZiWxts87vvSrKwoQEBh9uN1/l8IBaDQQRinZ3oJFtfj0zHkRFkm1+6hM8bGAChODycvuMskayfq9ZX5KxATQMZp9ZXTLfGVApcriNdJqP6t1q7ilFXl10+bStn8ocQsiEP1zFcXEwmprnpic+Hcb5ahK5KIMZiKBHQ1wcSX4Vqj+688847ydpxWsbzDgRga3hu21gbKEVzkpUeqwlVlsxZhqosWa1hWCpZcq4IhWQNZN7gyxPZMhFrjV9aFVQ1iViDyHix2Zno7Ey/y2fDho3CYJqyjpbLhUAonWO+uIjMnytXiD73Oez+rwCr50zZhn+NQIjkDEJ2evPJHrTlxZXFuXOow7puHdEjj4BQWAFWvwMZbdHMDJQaDQ1EL72Ehg47d6LDbGsrHrOzIBN1HTY7kYANr69H1lRXF7KIZmcxD1pbQRK2tWHsqpLnc+fwuevXg0w8cIBow4aVx3gsllxf0e+X2RtO5/JO0LwxVS3I1BRG/TtbU5hM8unGxrW9gRCNJkuS5+claetySTkyk4bVQswmEiDNOHP87bdxP6++Ouv9rFlbRCQbJJW7JpuNyqAUzUlWkhhXE0wzuYZhPC79PpYlq81PVovgLEK+nAqr2yJLwCYRK4uMF9s04czG46i7YS9QNmwUj2hUSoMaGxGMpkMsRvT880Svv050111E73lP1kNbfYGyDX8NoFB5sZ09WL1YXCT6r/8VweoXvrBcxpwGNW2Lzp8HodHcTPTsswjkBweRFaVmBV24gKxCrxdZhRMTICG9XjRW6e6GJJP9rLo6kIldXXJTaX4e2YkjI0SnT2N+dXRIQnHLluzzQgjcO7W+YjAog9G6uuX1FVc7IyUb1KYwK9VrzKUpTDrCsRYaVhjGcsKQyVdNwz1n0tDnw3iuxg0YVmw4HLg/b78N4uG663IiwKvwG+WFFW0R17E3DNgTW/ZfnSi0OQlRbtmD1ThvVQghyUL+mSpLVglDl6s6vlMigTVb10uS8VsF36j2YZOIlcWKFzsexwLlciEjsRYcKxs2VgOGAUc4kcA88nozB2qGQXT4MNFPf4rg9MEHc1pQrb5A2Ya/ymE3J1l7MAyir3yF6PhxSJhvuCEnMtfqd3NFW6TrRL/7Ha5DQwPRL34Bcm5wEJma7e3YIHK7YfNPnQKhtWkT/KhTp0DktbWhxm13t+zGzNlWLHVWG1QEg2jsMjqK+6HrIH6Gh/HYuTN3EsE08VlqfcVIBP/jOoVqfcWmJmvOUd60W4lsjMWWv4+bwqwkoa6mpjBC4H6qdQy5+QgRxpHa+KStrfqJYiLEIIEAxnVLC9HRoyDeh4ezZkMzquQOFYysfpGuyzht3brqGZNrBcU2J+GfLlf6jEIrQq1jmEgky5K5BrVKGlbjmA0GUS7A4cDGXQky9qvwW9YebBKxssh6sQMB7LQ3N1vH8bBho5oQDssALZfaTRcuEP3oR3AqPvvZnMsJWH2Bsg3/KqEUzUnUh9qgxG5OYm08+SRIsve/n+jgwcyZ0ymw+h3PyS86fx5ERiKBjMRIBEReZ6fsUOt2Yx6Mj0Pi7PGgaYphoKZbKITMw6EhBCqhEAiBmRnMuZYWkIk+X/I8ikbRjOWdd7DhFIvh3uzdC4Jlz578gx4mbNT6iix1dTqxDqlS6FpRp+g61uiV5NOh0PINEocD9zgb2VgOnzkSkTUMmTTkTCa3O5kw9PmqT7KeC7grOBOIFy+CvN+2DZm9OaLmbRERxsPMDMZbe3u5T2ltgP2iQuTFtZA9mCtYlqyShqosWa1huJqy5FxhmjJru74e86lE51wjd7y6YZOIlUXWiy0ESMRQCJPJ660d42fDRjmh63CCdR1OfFNT9iyemRmiX/4SROIDD8BhzhFWn5W24S8D7OYkNgrF6CjRt74FG/Txj8suwTlgTdgilif39+Pn888jqNy+XZI3jY0y08IwQPwtLKDG4b59OMbx4yBM+vogc25pwZoxNQVCMRbD+tHdjXuQmm2YSBCdOIH79c478NXcbhxreBjEoprRmA8iEUkqsgyaA0SPZ3l9xVqVU6pNYVaST6drClNfv3Lnaa93ZZJP15Mbn8zPy+Y5DoeUJTNx6PWW5xpUEpxB6naDvF5YwPhmwj0PrAlbRCTnaXs7xpWNzMhGDvL/U5FLc5JaVlaosmR+qNdJJQvdbuupF+Nx8B0lki+nokZHRXXBJhEri5wutmHAodV1u4CvDRvZwDWoIhE4FF6v7GS6EkIh1EB8+WWim24iuv32vD7W6guUbfjzRCoZmK5BSTrY8mIb2TAxQfSP/4gg4BOfyKkOogqrj56cbJEQyC6Mx4k2byY6exa22+FArUKfD4FIQwMehoGfExPIQtQ0EH0bNyLD6tQpvGZgAJmEjY2yqPvkJAgCljp3d6cnCkwTxxoZAenCcqzBQdRQ3L+/uMCIm4KpMmi1yYkqg25pwdq3ljYb4vHs8mlWJajgpjDcPdswZLBuGCAZ6+pwTdXmJ62ttXd9mUD0eDB+4nGiN96ALbrmmryJ6jVhixjT09h0WLcuN5+zFrGWmpOUGyxFVrMMGU5nsiTZ7ba231gG+XIqLHx1rAObRKwscr7YkQgYercbDsxaXaBs2FgJXATcNGUGQi4LayJBdPIk0VNPIUvlk5+0neW1Crs5iY3VRCQCAnFyEvVYh4fzzihYM7YoFiM6cwbkT38/ara98QYCkI0bpXqjrg4ZVVwT1+lE1uDUFAKWAwfwmpMncTwiZIAODspgJhxGZuL0NOZ/czOkzu3t6dcYISC5Hh0FqTg1hddt3SrrKHZ2Fn+xdD2ZVPT7sQ4Swd6wDJqzFnOUxNcsTFOSitPTmGeTk7JjdziMccVyafXR0pJdPm217B8VkQi+v8eDcWOaGLvBING11xaUYbdmbBERrtfkJH7v6amt9X6tNycpNwxjebdkpmMcjuVZhtUuS84VpokM70gEMVtHR9nmzRofYZWBTSJWFnld7IUFOIi8w1yr0hUbNvIFBwaxGBbXfDo8CgH58jPP4P2f+AQyfvOE1ReoNWH4i5EXq7UG7exBG+WAEETf/jYC9w9+kOjGGwvKXLP6SMzLFs3Po+Zhdzc2WFlWrJJ87C+1t8tGHi0tyEo8fBhE3M6dIA2jUWQqXriAOb9zJ9GOHdLf0nVJPsViCOpY6pxpzRGC6PJlnNvoKOrLERFt2AACc3gYm1elsiHRaDKp6PfLjQ+3O5lUbGmxNvGVK+Lx5E7Jc3OSbHU6UXNczTJ0ODJnNfLf6ZrCeDyZpdP8XH199a0XrN6oq5OS7FOnMLeGhvIqp6Ciyr5l3sjbL4rHQUjX1RXkR64KCm1Okou8uFbIrlJCiOTsQlWWrGlSiqx2S65FqPLltrac688XCqvbIkvAJhEri7wuthCo/RONyno/tbTTZcNGIeAC4EJgTuTbtXFigui3vyU6fRqB+/79BZ2G1RcoSxv+UjcnsQlCG6uBF14gevpp1Ot7//tRp68AWH205m2LxsZAlG3ejKDrjTdABHKTla4uWZewqwtBi65jrXC70XX54kUEMVdfjWwIvx+ZjZcugRDYvRsyafa5hMDG7uQkCDtNw/t6erLXxZueBtE5MgIZthAgIjlDcdOm0tocIaQMmh/BoPx/Q0MyqdjcbG3f0jRxT7iG4dwcSD9Gc3Ny85OWlsK+r66v3AwmW1OYdPUZ1b8rRcCEQogrWL1BJOuFbtyYdzkFFWvOFhHhes7NyTm1WihXcxK1gZuN7EiVJKuyZJcrufmJ1WXJuYKbiHGJkAqoK9fAVV192CRiZZH3xU4kQCQKAeenGnc0bdioBAwDTjtL1Lze/J3uhQUUxX/xRQSJ991X8OlYfRZWreFnGY3dnMRGLeP0aaJvfAMk18GDyIArcG1fc7bIMFCLkOXCQhC9+iqe6+sDSdbZiaA+kcDvLhcyr7j77PQ0sgTDYRxjzx6sK7OzaMgyPQ2CZc8eECvqvYlEpNTZMLAW9fSAVMx2DxcXQSiOjkJObZrw7ZhQ3L69PHbKMJJJxcVFmVmnafgOatMWrhdYbRBCkjacZbi4KDeN6uuTG5/4fJXN7OEazdnIxmxNYTJlNRZbOywYxH1XCcRAgOitt3D/h4eLuu9VOGLyQsF+ERPXnZ3lKSEgBEjsbCRhKtZ6c5Jyg2XJKmmoypJVSbLHs/Z8UFW+3NAgs74rAHtEVwA2iVhZFHSxg0E4SSw7sBut2Fhr4No9RHB8C5kDkQiyQJ57Dsf45CeLcvasvkCtiuHPRAoyaShE5iLcdvagjVrB3BzRl7+MoPDee0FUFbGuW33kF2SLwmE0WmlrA3Go69gcunBBZhB2dCBoiUalfCoQwPubmxFAHzuGuogNDVJmTISMQ+7u3NoKiSf/j2EYUuocjSJQZKlzLpkW4TDk1SMjOI9EAmvT/v2QPQ8Olld6HIslk4p+vyQimGxVMxZXozZ3LJbcKXl+XhJwLpeUJTNpaJUakNwUJpN0OhRK3xTG5Vo5m5EbxqQL1JlAbGiQmbq6jkxe0yS67rqi7/GatEVE8Fu4IWZ3d37Etd2cxBowzeXdknnzgmXJKmlYq7LkXBGPIwnKNLGGlFm+nAqr2yJLwCYRK4uidrnCYUzCxsa1UdPGhg1dh+Or67J7YCFOkWEQnTtH9NprCPo+9jFklxQBqy9QJTX8dnMSGzZyQyJB9E//BDntwYPoGNzRUdQh16wtmppCRuCGDfCNdJ3o+echSd61C9e6vR1ZgoEACJbOTrmmNDTgufl5EHmLiyAk9+8HqSsEasQdPYr3dHaCTEzXIIWlzgsLsGv8ubkGTrEYiMTRUcito1FsHO/dC3LzqqvKv4HMWXQqqcilQ4jw+aky6FJKcA0D108lDXnzUNNkt2QmDJuba3vzSG0Ks1IH6tS1VdMwtplg5KxSjwe2prMTz7tcGGtzc5D1l0CKa/W7UZRfpOuwR04niEQiuzmJVSHE8m7Jui7/z7JktY6hfT8kAgHYcpcLNmcVNqDsu1EB2CRiFmia1iSECGV/ZU4o+GIbhixI2tICB8EuYGujVsHBTCQCEqmpqXAZjxAI2E+ehMP8nvcQ3Xxz0ae4KgtUCe1RzraomOYkai0dO3vQxlqHEEQ//jEyf268EbUQN20q+rBrxhYte6PA5lAkImXAiQTRr34FgnFoCESLz4dNo7k5rCPr14OkU+XNmgaJ+YkTsFlDQ6i5SAQbd+4casZFo0S9vSD10pEu0SiIhKkp+G1NTVLqnOuGiK6jycXICKTPgQDOc88eEJz79xfUObcgGAY+X81YjEbxP03Deagy6Kam3Oy6EDiu2vjE75drSWNjcuOTtjbb582ESCQz2RgMyi7UdXXJCQiLi/j/1q2wQyVoCrNmbFEmWXEohLnv8WDMLj9XuzlJNULXkxufZJIlc5ahvbmdHqYJexONVly+nIqqjy5KzC+tCqqeRNQ07dNE9A0iuouI3ktEnyUiHxG9QkSfF0KMaZr2b4joz4loAxEdJaIvCiHeXnr/ABH9r0T0fiIaWDrsKBH9RyHEMymf9SIRbSOi24no74noJiIaIaLvE9FXiOgmIcSrKe95HxG9uHQuX8vydYq62NEomH2HA4t7vg0lbNiwAhIJOLaGIev2FDPOp6dRiP+llxA8PvBA4U7aY489Rp/5zGeIrG+PhN2cxIaNyuKNN4ieeIJo2zZsZuzcadsi0yRRTJCRSKAWYl0dZMyGgay+X/4S/tLVV4OkamnBdZ+ZgX3i7sh+P47T3IxjBIMg76anUa/ywAHZOEXXIX0+eRKfOzAAYi8doWcY+KzJSUlWdnfjkU9WhmlCtj06ivOam8P579iBDMX9+0G0VRLx+HIZNGfpOJ2SUOSsxbo6XAOVMFxYkO9xu5MJQ5+v+Np/NiRRm0jgenJd6VAI2bqHDsn6oaEQiMZ0TWGyyad/9KPH6HOfqw1bpGnFNSdxOGRNTJ9Pkt+2vLh6YJrLuyWrsmS1hqHHY5O6uSIWA4Fomhj32RqOlQumSeRwZCcRa4xfWhVYiUQcJaIoEf2AiHqJ6H8h3NDvEdEfLb2mkYj+DyKaJ6KtQoiEpmkfI6K/JaLHieg8EbUR0SeJ6CoiulMI8bzyWS8S0V4iChHRs0T0OhGZRPQvRDRBRN8WQnwx5fy+TkQPEtF6IYR/pe/yve+RaGzEDmtjY2FOUjAIZ6yuDsbNro9oo1YgBMZ2PC67GRZbU4R3hQ8dgrPwoQ8VV5fj+99/jP7+7z9DZHF79Bd/QcLlwvVVd741LfODiUGbHLRhI38sLBC9/jqC9q1bQVDlK/Hh4vq6TvTmm4/RU09Z3xY9+yyJnTuLC679fqLLl0FAcTfmWAw1EiMREG0zM1hTtm0DiWWaeG19PYgWXYdfxYQgZ6+bJrIcN2+W5xiPg9g7fx73ZGAAx83k0wUCICVZ6tzais/Ody0SAt/z6FE8pqbw/IYNyJzcsye91LoSiETwPVnGNj2N30Mh3AunE9e6sRE1I9vbcR3a2qq3iYuVwQSiYSyPN6JRZLiyXJ7Xf9PE/8JhqQRhclF9qLJOIqK3336MHn/c+rbou98lsXUrMo1Ve1RIc5KZGVy/detsQnw1wbJklTRUx6/aJZl/2sgfvKFUKfmyrku5ufpYXETZqs9/Pi8S0dJ2azVhpbKfBhHdIoTQiYg0TXMSGGAfEe3hlFBN0+aJ6B8JzPLPiOhpIcSP1ANpmvYPhEHzvxPR85QMHxH9ZyHEf0x5z+NE9ICmaX8mhIgtPddIRB8josdzucGaBpZ+ZgZ/O52SUORHNtKkqUk6yE4njOJqFLu2YaOUiMfhcAkBh6sUXci5s/nYGBzf97ynOAIxGkXgtgRL2yO3GwGDriPIcDhge5hUdLnsHXMbNkqFeByZZA4HCKdcm1QYBuyY+pMIc5cbhJDFbVEshmYoLB0uBC0tsPFzc7IGHBHRLbeASDx0iOjaa4kmJpC1uGMHiK6pKWQLtbZK0kTXsU5s3AgC4PhxSIsvXwZR19aGe7drF8759GmQiRcv4u8tW5YHos3NeMRiWJNmZvD5DQ0gE3OVfGkaajb29RF98IOQTR87hsfTT+PR0wMycWgIv5ebnGOyamEBARxLZE1TSsV5PXG55L2JRuV6I0TxigMbEiqB2NSUbGsMA5J9IoxhNcuKN2/5HmVCLCab3YXDRG+/LQ9PFrZFjY0oW+D3Q97Nnd4L8YXa2zE/Z2eRfWxns1UGLEtWSUOG04m50NQkSUPb5hQHw8C6G43KEhTFxA5qLcpMD11fngkcj2MNOncuyTfK+WuQhe3WasJKJOL/xzd4Ca8SbvJ3UzTlnA66lYhICBHmf2iaVk9ETQSt/IsEhjcd/nua575ORA8T0X1E9MOl5z5KRM1E9FguX+Chh2Stt0AAjlYgIAtHL6XgUnMz0oCbm2HsUiekrmNhIsLr6ursLlA2rAnTxDyIxzGGvd7SjGXTlFkiY2NEH/gA0V13FXe8b34zybm2tD36u7/DtTEMXPtYDA+1DozTCdvCD4/HJhZt2MgXpkn09a9DFnvrrTJrLTV4MQw44rGY/MkSK4dDzsP6ehBWDQ0o0UAWt0XXXIPmJUTIqCsUfX2QGhuGzCQyDDz/85+DqLz5ZqwLCwuoR7mwgPWnvp6ovx/2LxCADeR6cNu3g0AcHQUBuXUrSDpep7Zvx3uOHpVNWHbtApmYjjjYtg33laXO4bCUTvf05Je1tGEDrh8RfMJ33oHk+Y03kPXa2QnJ84EDOJ9SBMzhcHLjk4UFSW57PCBfWJrs8yUTWImElEGrUmi/X/q+an1Fq3RariaYJq4nxxCphPbx44grbryx6IZORIQO5rXiF919N+zE5CRs7NQUbElPT/7loxwOzD8mEru6bMKq1ODNNZU0ZP+VZcnNzTLD0CZySwtVvuzzZZcv8/1a6ZGu0ZDDgfvnduMz+Hdeg+fmsAY7HNj4u+22vL+Kpe3WasJK1NOFlL8Xln6OZXi+nYhI0zQPEf3fhJTUgZTXptNyzwkhFtI8/8LSOfwRyZv8x0R0cel/OYELUas1dLhOCZOKi4twKtXXs0PQ3IzFrLkZjkIshtfZXUxtWA28k02EMV7KgGFiAvPp8GFkjrz//cUd75lnsMO1Zw/RT39KRBa3Rw4HFn6nE7aFF38hkknFWEzeIyJZI4YJDbfbdoxt2FgJzz5LdPYs0XXXISNlYGnWR6PJpKEqsaqrkyQWE/iM8XHYNoUAsLQt4iYnk5NYB9rbs70jPRwOZA+eOYN6b3ydm5pQxuLnPyf6zW+I3vc+kIGjoyDY3G6QYYkEyAKfD74V15LzekEkdHWBIDxzBqTigQOyA2tzM9ENN+A4R46AzDt9GuvFwMByG8nBzrp1+JzJSTwmJvD5PT35d8rt6CC6/XY8AgFkX46MEL3wAtFzz4GUGx7GI9danIlEch3D+flkn7OtDdmXTBhma/biduM8VfIqEkkmFsfHJXnu8STXV2xpseWGK4EJRNNMTyCOj2OMbd5cGgJxcpLo179OktBb2hZ5PNh0aG+HHzQxIUnF7m58T683dzLK7caxZmcR16VrtGIjN7BvqpKGKuHkdoPMVrsl2ygfVPnyunVY48LhlbMH09VYd7lkVih3jOf7x2RhuvlmGCD5OaGK7/e2bdjoyxOWtlurCStNszT89IrPs9v2JSL6UyL6fwnFMueW3vMZAvObiki6gwkhhKZpjxHR/6Vp2joi8hCKaf4nIUSG9gO5wemEw6g6jfF4crbi9DQWMn59czMmkduNhU3T7EYrNqwB7vao63LhKOUOIe9KnTyJefThDxdXk+att5DZsX+/LMJPNWCPOFOHM6CJYD+YIPz9F0rJVgyHYZfU16vEou282bABHDtG9PLLyALr6sIaPTUliRgizBcmC/lnpnWc/YB160CoLMHytmhgAGTSuXPJdQnzRX09CLiJCQQXHR0IPltaIP995hmiV1+FzJm7H+/fDz9qehoky/r1CPa5FpyuS/JqeBjZfyMjRK+8AtJy715pL30+HPvKFZCJb76JzxkaAhGZDrw5HI/Lrs4nTmCs9PTAv8t3fWxuJrrpJjwiEZzL6ChqRb30EoLtffvwffbskeUtFheTSUO283zM7m7Z+KSlpTQb1w0NeDAhKwQ+V81U5BJARDh3tWmL12tvoBNhnebu1iwhV7G4CGK7o6O40gGMSATzyevFGOLTyHR6GZ6vOlvU2Ig573Bg3vr9yEq8dAnjsKMD9iHXkhSNjTKe83iyS8VtAGqX5FRZMhNNardkO/YtD0wzmQyMRrFWBoO47k1NMulJhaZJErCxUWYO8nP8yPe+cRb/9LTMgGxqQoZ1WxvR4GBBY8Hydmu1sBbCvYeI6FtCiH+jPqlp2ucKONZjRPRXRPQJIqonIgcRfbPYE0wHjyd5x5abTjCpyATjwgJ2xpmE7OyUMmg7ddtGNYHHcDgspUulLjgdDiMIm5hAtsh734ugsFCcP48un729CTbkEAAAIABJREFURPfcQ/Td7xZ9ilVljzgjUSUSU+F0ykCPwXVZ+REISIKVZdAqsWgHeTbWCnhujI9DxtzYCAKRM3+dTji+TBjmuk77/SjN0NpanOxXQdXYIocDGQTHj6NhyeBg4bWeOzvhG01MwA+qr8fa096Osha/+AUyEm+5BWTd6CiIxN5evIeJRK6bFQiAVOPM0M5OojvuwCbVqVMgdfftA6HI4C7MLG9+9VX4ckNDGAvp4PHgvvb1gQCdnASpOjYmpc6FNNJraEAW7HXXIQg8dgzf+a23kKFomvju69fj85nM9vnwndrbEZxVKgNQ0ySx2teH53RdqnT8ftwP3lTn1zOpyDLotUQqZCMQ43EQyfX1IPyKvTamCQIxEiH6+MeR5VskqsYWEWGu+/3wJ3n8z86C5Od6pm1tsBEtLdkbA7W24h7MzUnyxIYEb1SrpCHLkh0O2USUSUPbnywNMjUn4czBVHlxLAYbrGlYz1pb02cOqlLjUkEIzJ+pKbmx192NsTA6is+76qqK8x5VZbdWA2uBRDSIkrv0aJq2k4g+nO+BhBDnNU37V0LKaT0RvSaEOF2Ss8wCTZMFj9etw3OmiUk1Pi4D+fl5uUCpMmiv1+6AZ2P1kEggsDMMmWlSakdA17FbHIkgcOvvRzH9QjE3R/T44zjfBx8smeNXVfaIuy6bJhbpXO0DN2HhjCGWmqRmLDLc7uTainZBaxu1ANOU452lyUwifu97GOM33gjiaWio8E2TSATkWn196WrbUZXZIo8HMqTTp0GebdtWeEDQ3w/J8sWLOKbLhfvS1QW5769+JYnEo0cRhOzbh/dNTGAd6e6G35RO3uxwEO3ejdePjCDjcGwMmX1qFmV/P4iw8+dB3r34IshAbtCSDg4HzrOrC2vm5CTIi8lJvKenJ39ZZCwmMwzDYRz7ttvwXc+dw4bb2BiIpr17ia6/HmRTMY3ISgmXS0qmGRzQsgyaCWB+vUoq5po1ZkUwwUqE75s6Z4TAGE8kUD+zFH7Ma69hjtx5Z2ZSPE9UlS1yOCSRGAxiHnBH8elp+IaLi8hWjkRwTZn4TmezmHRhEpLJj7UIzmxTSUMmqjh7TW18Yitb8kem5iTcdIYJwtTmJESSBOQ4jf/mxmN9fZjzlSTCFxYwd+JxnNPAAPgMw0DZDl3HRuAq2PiqslurgbUwPZ8gos9omhYidMzZQkSPENEJIhou4HjfIKJvL/3+xZVeWG5w4d66OixmDQ0wCroum7fw7hkRFremJrnYcVMWGzbKBSEwNqNRKdsvx+IjBJxaXUcg5HajDlahwXYkgtqH4TDRww+XtJZN1dkjTcODsxELuWaqDJoDTyZYmFjkTGp+vZqpyJIUGzaqFWq9UCYM43H5f7dbZhc+8QRef889sB07dhS+1iYSIMQcDjTxKOFOe9XZIu6KfP48CKGNGwuzRy4XsurOnQP51tuL66brCIJuvRW1An/zGzRbOXwYdQz37pVE4uQkAn+fD/cwHMZalkjIbK+WFtRYPHsWRM1zz4F8UxvnaBrko1yv8eRJvG7jRrx2pWL0Xi+ONTAAP+7KFbyfZdtdXcvHg2GA4OAahnNzckNH03DOfX2SlGNZ/LlzIERHR4m+/W2i73wHn811FEtRQ6+UqKuTdSWJpK+hNm3h5mpEuGYqqZiJ8LESdB3fle9ruu/z7rsYB7t3l4YUPnMG42RoCBnDJULV2SLuJM7kSUMDnlu/HnNhelqSjB4P7sXiooyxUu2904n3TU1hTip1JGsWHI+qjU/U2r8uV7L/Z8uSsyNTcxI1q1C9xgy1OQnXHkyVFrtc6Ru+cfMULmVRqXvE9YKjUdjvTZukDRMCa2EwiAzEQkugFImqs1uVxlogEf+coEP/KEGnfpJwc3ZRYTf5x0T0ZYJm/Z9LdI5FgevpxGKysGx7u9zpSpVBX74sHSuPJzlbsRYcKxvVgXgc48404YCVMxN2agrjfGwMDto992TvFJYJiQSCvIsXIX8rRf0gBVVpj9T6iKWa/w5HZhk02ytVBq12oGXH0rZFNlYLur68W3Jq53LeiKuvl+vtyy+D9HvPe0Ba9PYW3jTKNBG06zqaYZR4p70qbVFnpyxLUVcHsqwQeL041swMfmfiT9dByt18M+7Vb3+LbNFDh/AYGgLJxkXb43EQVVzXye9HZgTLmzUN2Y69vSDgDh/G2nHgQPLmk9OJe7hlC2TQp0/jdVu2gOBZSarsdsusRt4YPn8eTR8aG3GduGvy4qIcpw0N8AW3bJFkaKbMni1b8Lj/fmzIjY6CLPrhD/EYGJCEYjElQsoFTZNNwrj+JNdfZlJxcVFuqvPr1fqKVlLrcCdxhyNzfcqpKYyR/v7S3LO5OWTx9vRg/pQQVWmL6uthLyIRSboQyQYsTAryRnlDg6wZzRuqTU1yTNXVYR7Oz2NMKnVtawJMZKlZhqmyZI5R3e61m42ZDky4ZiMIV2pO4nZjDKaSg4V2po5Gsd5wOZBKEXXhMMjDUEiW+UhN5Dh3Due2bVvhzdhKgKq0W5WEJtLls9rICE3T6ohogoh+KYR4KM+3l+1iGwacZZdL1oNhBzcVpikzFbm2YkQp98ndn5lYVBdBGzaywTQxpuJxjEevt7yShMVFZI6EQggK9+4tvBuzaUKq8/zzkLfde2/GsV8VM6IIe7TMFgmB788S50qAZRcsCWXnk8E71SqxaNsiG6WGaS4nDFWJFY8/zjTMlDV79izqIG7fDnlNczOImULBWURbtyZLOVNQFTOilLbIMHAtAwFcv0IzwYXANYzHcU+4gYhhwMYdO0b0+uvIqLr+emQjRiLIbOjoAGkyNyebnDideH8ggGMyUaDapPFxHCceRwbqrl3pA7hoFDUgz57FuezYAZJxpYzsaFRmF16+jEBqfl7WwuOMR84YKaSGYiqmpkAojo7iXIlwLQ4cAKFYaLboaiEeT27a4vfLzB2nM5lUbGmpTrVOLgRiKASZvdeLe1Xsmh6Pg0yORon+8A8zbtJWxUgotV/EHa9bWzNf66kpXBsmcohwn7gRppqgMTsrywqUYo6uBkxzebdkJrhYlqw2P1nLG8KpzUnSkYNq4xiG2pwkU2OScmRvCgH7GAjg+B0dlVEKRaPY5PH7Zdfn9vbl329iAhu1fX0rdmKuCluUD4rkl1YFNomYJzRN+2NCAcwPCCGey/PtZb3YkQgmPqfdcwCeC3RdZivyTzZqDodM0edsRasufDbKi2gUDhURdhwLzcDJ5/MuXMDvL76Iz3v44cJJy6NHiZ56Crv2Dz644jivigWqCHuU1hatBpGYCnZOVWKRgzx2qlRi0ZZB28gHLEtWSUPVgWeZPROGuRLXi4tEX/4y3nfHHZg/g4OF26JLl+As9/dnzcarSVsUiyFQEAKBQqFdTWMxZHM2NIBk07TkrOu335ZS5gMHkI0YDEJq3NUFX2hqCvext1faG5Y3M/Gk3mduZHH+vCRxMtWOCwZBZo6NYawNDiK7QghkPDJpOD8vN3s1DYSGzwd/jP23REJmb3Z1lX7zbmFBEoqnT0uJ2/AwvuPWrdbLLhIC95IJRa5/yaFRXd3y+oqrSYhwp18ed+mut2GAQEwk0FCnFETo00+DRP7IR2TDmzSoSVvEjWuYEMy0HrCtiMdlMoZhYHxxXXuuz3nlCv7X3V39df94s1clDVXJLJNZarfktYJcsgfV5iQMp3NlYrAczUlyAcuXYzGsXW1t5d8kiscxb+bnZU3gzs70tm1+HnGaz5e1SVRV2KJ8UCS/tCqwScQcoWna+4loJxE9SkSXiOhqkf/FK/vFXlyEo8l1A4ox6Cw3ZGKRpalEOGaqDLraF0Ib5YNhyCCGx0a5HW3DkDWPDh9G0P3QQ4XXmhkbQx1ETcNOe5bjrOoCVQJ7lPG13GSl0PqI5YBhJHeDVne9WSajEotredfbRjI40zUaxUPt/Oh0SrKQfxZCgug60de+hsDwwx+WxFehNchmZmDburogI82CmrVFgQCy7erqUA+pUDJkfh4Zgt3dsoaeSiS+9hqyAq+5BnLmw4dBGuzahfdEoyB0iUDQqZlGnKXk9S7fNJueBkkZCuH8h4bSS9KFwPrz+uv4vrqO9aerCza4qUnWMGxvz9xAg7sW+/2yZnZPT+EE7EoIhUC4jo6CBNV1jPf9+0EqFkOgrzY421Str6iqdZqakklFr7cyayUTiFyPM9NnHjmCsTc8vGIGc84YGUGH8RtvBFm8AmrWFnF5Hm44kfEAS1lc09OYE9ycSS3vw7LeYBD+8rp11eNrESXXMWQiTF0zOa6s5SZ56ZqTpCMMV2pOshJBWI2bLZEINqxYvlyOdUOFrmOezM7ib17zMvnvoRA2/Orrsc5k8fMtMypLxC+tCmwSMUdomvYiEd1IRG8T0WeFEMcLOEzZL7YQCECIsNAJgQlXiqCad2xVYlHtwFpfv1wGXY2G0kZpEQ7LndampsplqY6PY1GZm0PwddttkCAXgulpomeewc977oG0LAtW21l+kYqzRyvaomokElOhyqBjsWSHzuVa3rjFtkW1Dyab1SxDlWxOlSWXiuT42c9gg/7gD0AkdXWtmK2zIgIBZHk1N0OCm8P8q2lbND0NW9/WhqzMQjdFx8ZACG3ZIoMjXYfNcDqJfv1rZD6+970gwI4cASm3cycyEBMJEImJBIJ+tYHUSvJmwyA6cQL31ONB8NPeLrslz80hw4+zVSIRBFW6DgLzPe/JXxLPNaVmZnB+LS0gE8tVFD8alV2uDx/G3KuvR3bn8DDk4dUoC84HTBirUmhVrcOEImctltoPisUk6bRSNtzYGMbx9u2QmheL8XE0itq6leiuu7K+vKZtUSSCR1NT9vEsBOb27CzmdksLSBKW03NGXyyWvLlRabDyQyUNVVmyml1YK7JktTlJasfibM1JViIGMzUnqXao8mWPB/Llcm4AmSbWdV6f2tsx/lda2+NxrC9CYE3JYT2xzF0oEb+0KrBJxMqiIhc7kcDCxcGSELJOYqnBGWiqDJprmjGppGYrllveaqNy0HXcb8OQu7OVImpmZmQN0GeeQbbOvfcWdiy/H1Lo48dRLPzGG3N6m2UWqAzIaos4qLWK06h2z+WH6ggyqcg/7U6A1oYQyYQhE8kMjyc5y7Bc93tkhOjHPya64QbYIY8HmxCFfFY0CsKJZa05zj2rj+IVbZEQIDJmZhBs9/QUts4YBsgVTYNcmK8tE4kOBzo2nz+P7s1bt4IYm50FIdPfj4BnYgJEgs+X3LE4k7w5kQBZeOECiOaJCfhDmzfDH2prS84y5Cyny5dBZPr9+N/evfkTDboOmdiVK5gfHg+uYTkllIkEumaOjCBrJBTC3NuzB8Hf3r2r1kmz5IhEkknFQEASMB7P8vqKhV5zLhOTjUCcn0eg3dWFrNdiEQwS/eAHsJ8PPJBTY6eatkVEstRTrvfTMGRtVSEw3zs7ZWftyUlc5/Xr8SjnJrwqS+aHKrVNlSRbTZac2pwkk9Q4U3OSbAShVXzhfKDrsoFYueXLQuCzOEu3tRVrUTZC0DSR9R4KYRMux6aZVrdFloBNIlYWFbvYoRAWO94tZ9lWJcCSC5Vc5IWKG20wqdjcbL2Faq2DM1IjEQReXm/Ju4auiGAQQWVjI8i/WIzok58sjKCORtGd8/XXIV27+247cP/9C6qgPmKxMIzlxKK6y65mKpYyM81G6cH3kUlDVZbscknCkB+VGLMTE0Rf+Qq6B95yC85t587Csq50HQSiYcAW5XGMmrdFuo4Mq0AAWYGdnYUFOuEw6rq1tuKeEcnAU9Pw+OUvQeDdcQcyuY4fR9CzZQtIYiHwt9+Pta+7W55LLIayGhyURSI4Z0ZTE3yzK1fg+1x3HQjNTN9FCJCPx47h3Lu7QQ7lK1Hl+oqTkyC8HA4QoD095SX0TBPELddR5JpXO3dCFrt/P+5FrcA0cX/Vpi1cI5pI1sRjUtHrzW6nIhHce49nZdl0LEb0xhvwp6+9tnjCwzCIfvITjOUHH8x5zNW8LeKsLSLcx1ztkK5jI2RhAe9pb8dDCJQwmJvDNVbLRBVL5jBppmYZMliWrJKG1bypmtqcJB1ByBtCKjQtOzlY7d+9XGD5MhHGYrmSfHj9uXIF98nrTS4Lkg3Hj2Pu7NmTvHGXBWvwjlYeNolYWVT0Ys/NYcK2tsIh4F2mSkMI6UwzsRgOJxeuVrMVc3GsbKwO1Lou9fWV79ydSCBTxO1GcHLsGNH998uAMB/ouqz109WFWmY57nARWX+ByskWMZFYzbLmfMEyaCalUmvkpXaDtm1R5WEYsoZhKvnLsmQ1y3A1MgQiETRSMQyij38chAF3xs0XQhCdOoV1cefOvIkdq8/MnGxRJAIiUddBJBZa640z8/r75TFUIlEINJGYmSH60IfwWSdO4D0DA1JavLCA84nFEKT6/VKWHA5jTHZ14XO4WzJvmIZCINWuXEFQdOAASKVM4G7Vx4/DXvX3QyJcSM3NSARk4vQ05lRzMwK6dF0wSwkmREdG8Jiawudt2YIMxeHhzM1nrAzOOFMzFlmtw5uwan1FtQ6ZSiCudK9NU9bevPba0hDDL76ITNiDB1fsgJqKNWGL+J5yZmg+iMflJoTTifnf1gZbEAqBWNF1OTbyyXhUyULVr3E4lndLria/JpfswUzNSXKRF9tIBpN6wWD55ct+P8Z2NIqx3dOTV5xF584RXbyIdaK/P6+PtrotsgRsErGyqOjF5i5LTicmra5XT7aNYchsSSYWYzH8j7uYpcqga4XEsCJ4hz0Wkx3qKj2OTBNBCDsZzz6LQvg33ZT/sYQAAfmb32Bc3X03gsU8YPXRmLMtskJ9xGKgyqD5p7pjn64bdC1eh9WCaUqikElDtRt3OlnyakMIom99i+jdd5EFHYmACNi0qbDjnT2LTb8tWwoiIa0+GnO2RQsLyP7kZgQrEW8ZP2wp8ycSgUyZN1ZNE36Jw4Hx99RTCIAOHsRnHT2Kuobsk8zPS+LQ5cK96+6W0mRNg2/D9fLSjduxMci0dB3k8eDgysF9IoFzOH0a57p5M9Hu3YVlkHBRew7w3G4pdS73HBMC95EzFMfG8Hx/PwjV4WGsx7VqZ6PR5TJoVa3T2ipJkM7O7Dbh1CmoM4aGSlNb78QJol/9Cvcix/IuDKvfsZxtUSwmSb9CVTDT07ARfM+5lmhzM8YEZ7FyPMSfwz6LShry+NG05d2SVyvmY/l0prqD2ZqTZCMIq4kItQpU+XJzc37ZtPkgFMJmVTgM3627O/+s88lJrHXr12OtzhNWt0WWgE0iVhYVv9ixGJzdpiYYXcPAQlSNxjeRSG7aojpWTISqxOJqZFWuRXA9HiHgzJS7Y1cmTEzA6W5rI3r8cfx88MHCxvLvfoed+/l5OMl79+Z9CKsvUHnZIiYSa7EmTDqoxBYTi6qTntoNuho2ZqwADirUxieclUMkCVtVmlyNRMLzz6N+3t13ww4RgQQqZH5cvoxHXx+c5QJQhVcoL+Rli6am8PB6QZgUsh4lElgDPB5kWfEY447N/Dk//jHI3auuwr29fBkB2MaNIGw6OvD5vD6mdkLmjCXDgA+W7lxjMTQjGRuDX3PgAIijlRCLgeh5911Z43FwsHCfiKXOLLVkqXM+GSPFYGZGEorvvotruW6dzFDcvLk67UCpIESyDPrKFfgmbrckqdT6is3N0u+ZmECG6sAAxkGxmJ4m+pd/gS267768/Sur36W8bBFvrBdT0icchq2JRGAvnE6sBawg8/sxFqJR2ShTzSTkJnJMGlZqk5Obk2QiBjM1J1FJzlpqTmIFhMNYz1hOXw75cjSKtSQQkJt9hTT0WlhAJnRbG9bfAsaDPYIqAJtErCxW5WL7/TAebW2yxll9vTWMdKoMmp11IinxUMnFtUJyVALcNCeRwGKwmteXg5yODshspqaQAVRIPaXxcWR/nD2LxenWW9fkApW3LTIMa9dHLBa6nlxbMVUGnUosrtXrpELXkwnDWCxZYqVmGNbVWcN+nzqFLMQDB4iuvhq2afv2wiSEs7PIiuvsLDyLkdaYLeLmJvPz8Gm6ugqrQen3I7O9sxNrG3dL5rplRBivhw4h2Lr3XpCHc3Ooe9jdjdqVmoZxfvkybEJXV/K6JIRUWrDPks42XLkCmW84jKzGq67KnhEYCiGj/sIFvHZwEGOx0HkUieA8pqdh77l2VXt75eyZ34+GLCMjaNBimrjPTCju2FHbtjUYlGNFlUL7/bChRBhz7I+dOwfC74Ybir8u0SjRP/8zrvkf/mFBJMOaskVEcpOgpaW49SsQwLybmMD9HxjAMbkRSDgsy0DV1WFOdHSUvuu52pxkJYIwXXMSpzM7QWiFNb7WUAn5cjyOtWNhQZby6OgozCaFw1gDPB7UzS3wXK1uiywBm0SsLFblYnNHJNPEjkA8XtlGK6UEy2qZVAwEpGNFhJ1+tWlLY6M1yNJqA9fiIUJwvJpjhWthNTUheHvtNaIPfhABXL6YmcHu1rFjkE4dPFjwDrLVR1XetqgWGq2UEpxVpxKLqTJolVj0eGrbFnH2pkoaqtmbfB2YMKwGWXK+mJtDHUSfD3UQJyZAsvT05H+sYBCEpNdbeDfnJVh9VOVti+JxXPtgEIFKZ2fugUYshvs4Pw+p1Pi4zMpwuXBvm5vxs6sLn/Wzn8Fnuvde3K8LF7AJ1dUFObHDgfHPdc24A6uKSCS7vFnXkVV25gzmCMt6s2FxEXLry5cxv3bvRvZeoXbaMKTUORKRGSXd3ZVVgITDyNIcHcX3SyTgB+zbh2uze7c17UgmMIHY0JA5a5UJxdlZojffxDUZHMR7WJ7IWYv5EExCED35JOqP3X9/YTaN1qAtMk3ZrKilJT87bprJNQzjcdilM2dwrzdtwsZFSwvmndMpxwATipylmgvha5orE4PFNCdxuWy/sBrBDX0SifLIl3UdSR2c4djRgXWxULI4kYC9NwzY+CJiT6vbIkvAJhEri1W72FwHgTu8xeMy9d3q0PXkbMVAQKbRc3FilVgs9c5dLUHXcR11XY6V1XQMdB2NVFhC+pOfQDb4oQ/lf6xAAIHIkSMIRA4eLLw4P1l/gSrIFtV6fcRiwUGBSiymyqBVYtGq9pdrMqmEYSqBqmYZ1gKBmkgQ/dM/Yaf9c58DydLQsHJ33UxgOarLBQKgyKwAi1/ZwmxRMIjgRdclaZe6VhkG7heThvPzcnNM0+APBINY5w4cwHH4XnIw7XLh/U89hft9zz34efEigv2ODmQN8mdzJmNTE0g39ZxykTcT4TzffhvkRF8fsjFyCaZ4k2xmBt/pqquwWVbM3FtchApgfl7K4Hp6CmvqUgzicWz+jY4iOzQSgX0ZGkKwOTRkzY1xIoyzYBDfsbExOyEkBK7B7KzMhuUai8FgctNClVRcKVvu9dfR3fm22zBuCsSatEVciol95rQHFpIs5J+q3JdlySxVfvdd3E+fD/ewqyuZwDcMGe+wSqShAfecpca5NCfhpit2c5Lagypf7ugorX00DKwzMzMY2z4fNpqK8WlNE5tGwSA2iopcY6xuiywBy5KImqZ9moi+QUR3CiF+tcqnkytW9WKHw3A0uCmGrq9eZ8tyIxpdLoPm9HvuqKbKoNf6IikExkckAqeiqWn1yVYhEKhFIpDr/Mu/4Nw+8Yn8syGiUQRXp09j3N98s+yyWSCSFigL2qOCbZFNJOYHw1gug07tNKwSi9VojznjUu2WrEq5U2XJtZaRIATq473zDtGnPoVxH4thQyNfW6TrkGnqOgiAEtjZNWuLZmdBbjkcsk6yShr6/XKcNjbKLsk+HwhDpxNj+swZ+AGqpFzt2OxyISvv6acR0N99N+7b5cvIJvX5QGLx3F1cBMlcV4e1S/UvcpU3mybqNh4/juMODeH8crG5ExNY77iG8NBQwZllv0csJrs667okSdORt+WGruO6cx3FQADXeNcukMH79lWunmOx4PHAWZa5BPpnz0LGvHPn8o6lponjqY1bIhH8T9PwGWp9xaYmZNY++SSu3x13FPV11qwtikbhQzc24h5yMxEmDdUGIiz7Vbslp87raFRmAvOxmppwz5iQZDLS75ckNDembGoCqZiNIKy1tdoGxsf8POLeujoQiKXyK1nZODUF37atDeRhKeLFEyewvuzenb0ucA7IulJa0D5VHdY4dVIYNE1zENFfEdE7QognVvt8ckVjIxzBQEDWKmDpRK2RAfX1eHR14W8uXK1mK87Nydc3NCyXQa+VxTWRwHUxDFyzpqbqGA/T03DK1q8neuUV3L8HHigsaD9xAgFfLIZd9iIJxKpCpe2RwyEbEFQj4VVtcDqXNyTi4IIJucVF+T+XK1kCXenmIkx6qoRhqiy5tVWShmthA+aNN0BW3H471oepKRA6+doiIZBhwgTkam/UlBqVtEWRCMboxYsgzbgLpNeL4Li9HWsHk4aZrnV9PV7HTVM6Ovi7yM1WXQdhduedRL/8JR4HD0Jq7HRifTl0CA261O66k5OQS69fLz9f00DgRKNYd+fn08ubHQ6Mkb4+1AccGUFZjwMHsmdorF8P0nBsDNl7L78MX2jv3oK6fxMRzn9ggGjDBqzNk5Mgs8bGpNS5UuPZ5SLaswePhx/GeYyMYI4eOYJrvGMHMhT37y/8O5cbKoHo9eZ2/WZmZB3EVAKRCOOmtRWPDRvwHBNN/Jiawngnwjx67TUE7bt3Y1xaNaNTRSVtEW8KRqOwIfX1Mn5gBUJTkyQM2W8yDNiWUCh95uD8PDZFGhrwuosX8T7OTGR/va0N9kMI3E8uWcVS59Vqhmij8kgkMAYTCblRUApwXcUrV6Q0uru7dM1Zzp/HurJ5c0kIxKqHVXmkVNiZiIV9touIEkT0TSHEp/N466pfbNOEE+JwwLGOxWQa/FoDywGYWOSdPCK5Y8ukotdbe9eIJTSxmOx+XS0kZi8lAAAgAElEQVTyykAA9Q99PozX555DF+Vrr83vOEIgk+PyZThgvb1EH/hASQjiqtlxL9AeFWWL7PqIpYUQyZ2gY7FkqVNqbcVS1SXjz1VJQ1WW7PEkZxlWqvNjNWFsjOhrX4Ns+cMfBmHR0SED9Hxw7hwc/M2bJVlVAtS8LdJ1KUfmLEOuhcwZgw0NIM76+wvrcn3+PNbDbduSSRTThK/gcMhGFs8/j7Xkgx/Ec9PTIOu8XmTB8Toaj2PtMQycW2rznVzlzXx+hw/jtbt25d5gxDQxZo8fx/zu68NGWktLvldoOfx+kIm8IctS51IcuxCwemF0FKTixASe37QJ5OvwMALfaoAQuH66njuBGIlgQ6Ohgeiaa4pbe1nq+MMfwse64QY5/jweSUBw1mKOm0U1b4tUWTI/eJNNCNgltxvXju9PMc1J2D7wRgQ3yHA4QLb4fOnLOHBco+u4dxzL2P5a7SIUkmUnSilfZjsfi8FGpFvLisGVK8gs7+nBulYiVHUmYhE8UlVhDeQQ2FDhcGDXam5O1gLi4LHWsiKywenEtWhrk8/FYsnZileuSEfU5UrOVqwm0i1fxGJS4s01eKqFHOCi+SzF+Nd/RcB+zTX5H+vsWQTtExNwhG+5xXaiSgEmD00TD/uaFgdNk9nTDM4IZGIxFIJNIsL1TiUWcwnyEonkOoZqh2nOgOSC/LUoS84XwSDR97+PgPAjHwGhWF8PIiZfTEzAFvX2lpRArDmYJoIWlTDkcU+EdberS0qTW1tlZ0gO5iOR/Df9+vshHx4bA5HIY9/hSN402bwZ68hLLxG98AKyU7u6IBk+ehQE1v79kuzfsAFE4sQEgn7V3+BGLsEg5nc8jvmXbt5t2oQg69AhEJbj4yDGsmXZORz4Pps2oZzHqVM4n4EBZPIVk6XEBFMshuvPBfYbG0HWdXVV1oZoGhpRbNxIdN99CHy50/NPfoJHb6/s9Lxhw+r4PSqByDL8bDAMkMhEGGvFXtfGRqJXX4WP9cUv4loEg8ky6JkZ+fp0Mui1sD6osmFVnqzr0iaoY4jnwqVLyZJ6tTlJfT3uey7NSbhhUzwumz7FYphrPN/YrvB5OJ2SAI5EpD1dWJAxTCUbJNkoL8olXw4GMfY4y587hpcSi4tYl9raiLZvL+2xbZQftZCJeJCI3kdEf0REPiJ6k4j+XAgxorzWRUR/QUSfJqItRBQkomeJ6C+FEGPK624mokeI6AYiWr/0upeI6P8UQpxaes0mIjqX5pReEkLcutI5JxIkqoV04jqBbW1YtBIJGIm1IE3LB1wrUM1WDIXk/+vrk2srrnYjkmwwTZlxyaRoNd1z00TGhWEgEPjxj+EAffKT+dc4unQJtX4uXcL3veOO0mQhBAJEzc0Zd9ytYo9KYvjt+oiVhdoNmgMatc4Sk39cW5EJSCYOU2sxqnUMq8kOVANMk+jrX0dm05/+KYKxQAA75fkSVHNzMoNx8+bSnePcHFF7u7Vtkd9PQiUNFxclGVhXJ+XI7e3wVzIFv3wMIWQglW+gHAwi07C9fTlRzCUcXC7YuqNHIQPdvp3ofe/Dc/PzkNPW1YFI5I1ZIRCMBYMI7js709dACwZlw5eVzn1iAmRlJAKCcM+e/LpTnzyJOpBEeP/gYGk2kVnpwl2qXS4QiT09q79JPTcHQnF0FEGrEBgjnKG4ZUtlfDcmyU1TEkm54NgxkKL795dmE+LIEaIXXyS6/nqi665L/xrOlGVS0e+Xah2uQ8qkYl0dUVubtW1RMEgikYDPzw9ugMI2iRuRuFySqEltTsKNx7xeXBuXS9qNQpBIYE55PJhPfJxwGERiJCL/l4nkicdlDCOEJDIbG23fzcooh3w5EoGtCQYxnru7k0nqUiESgT32eGDXSuWDpovR0sFq9qkaUQsk4iFC2uo3iaiFiP5nInIT0TVCiN9pmqYR0U+I6G4ieoyI3iaivqXXhYloWAgxvXTM/4eIdhPRi0Q0QUSbiOgLS8ffI4SY0jStiYjuX/q8l4noq0undEUI8dxK5zw0RGLvXqKrr4bj2dW1uhLZhQVZGJV31ezsk+wwDBi/UCjZ0SCSGUVNTbKwcbXIoKNRKQFLzXqqFkxN4br29EB+deIEArR8pYMLCyAjAwE4wLt3F18H0e8HKXn2LNFf/VVGZ9kS9ujpp0mUap4zkWjXR6w8VGkVN0ZSm7c4nXDMGhpk0X6Px7oZ1JXEW2+BKLrpJqzVMzMgf/J10iMRZI3V1xffKVfF9DRq833nO9a2RffeS6KxEQHQunV4+Hz4O981amEB15slgSt1o80EJjLXrVsu2TIMaes0DZmLZ84gQ2P3brwmFAIR6XAQbd2aTJ5xAwQmR9PJEMNhWZ94pe+v61iPJiZwvK1b86v9F43i/VNTOI/+fjxKZcfDYZlFKgQIlfb20srgijm3s2dRn/TiRVzvxkb4CNu2lfY6qDBNfLYQsMm5Bs3T07K2ZrENcogwxl95BWP8+uvzs0nxeLLvy/7vxATRl79sbVv0yCPSFvFYbW2ViQL19dKn56xClUxUEQ5jLeZaiMWC5edeb3I2MxFsyswMPq++HutUpnnGjXe4DjqXMvJ6bR/OagiFsOZxebJiYzrOcPX7MRY4478cJHMigY0MXUet3lLFo/PzRN/8JtGjj+ZFIlrCPlUjaoFEPEtE+4QQwaXn9xHRCBH9SAjxoKZpDxDRPxPRfUKInynv309EbxHRfxZC/OXSc41CiHDK5+wgoiNE9KgQ4u+WnitIy37rrSRmZ2W9jHXr4Kxs2oTJ2tEBQ1CpAM8wYIBcLlnomwiT2d6Zyg+8e6k6V7xzqTZW4K5plQzidV2ej9tdvU1jFhd/n1lDwSBkzDt35l8HMRxGYMeykt5eZBsUAsPALt+VK1hY5+Ywb7/whYzOsiXs0dNPIxOxVONAHes2yg+1rhLLqxhqVij/VJf5VAmVfc+W4/x5ZOkMDsJ2jI8jcMy31l4iAXmsw4HM6lJd6/l5ol/8Amv3//gf1rZF//7fk1BrgPIa1dYmmwLkumaaJq4N1wFzOjPLgzNBCBAiiQSyEVM7K6vZvJqGja7z50HicT0nJqkcDhBTaoAUCmGtc7mw1qUSSWpzBJcr+3rt94PMjETgR27enB9pEQqBTJyZwTUeGABRVaq1IZGAn7mwgPvCBGohBG85EI+D9D1zBtchkcD127IF93RgoDT+GhPERLinuX73UAj3t7kZ51Ssbx6NQorvdGKDttjvxp2yAwGiv/5ra9uib3+bhJoUUFcnm5PU18tNOf7JG3JMKKY+AgGZcVqKsb64iGO2t6cvQ7C4KLPSGhqyJ6qwyopjP64Db0udqxssXw6HMS59vuLGVyKBjYqFBVlPsZQdnVNhmsisDgaRRV8KiXQshvjsRz/CHPjSl/IiES1hn6oRtSBg+hrfeCIiIcQhTdOeJ6KDS91vHiKiS0T0G03T1J4/40T0OyK6XXnv72+8pmleIqojojkiOkVEeVIZy/HkkyjIPToqd2inpjB5W1sxadvbZae77m783t5ePtInEsHC4/ViUeJd/GrMUrMaWP6myqC5kYEQybUVy7ELyMFIOIzx09S0+pKiTAiHEWxv3YoF8Tvfwe7UQw/ll+Iei6Fu0JYtyDDo7ib60Ifyd5SjURAHExO4L1u2IAjo6Mhat8MS9uiuuySxVArbYjdaKR90fXm3ZJXIUBufsIw50zFUKbQqg1brK671bPTpaaLXXye69Vaiz30O2UpbtoBQzMcWGQYIpv5+NMIo1Zo6N0f01a/ifD7/+RVfaglb9Ld/i5/hsKxBPD8vM2U4SOesIJZsZQrMEwlZx9jtxtjON5siFgOp1NAAUk59Lzdy4RpnH/wg0a9/DSJl/XqsW0RY7995B7/v25dcjiMSwTlqGt6TbmzkI282TXz+yZP4e3AQ5Fc+mJ1FZsj0NL7j4CCI71JtKJsmxi7L5DjTpaenevzNRAIKiNFR1J48dAh/Dw1Bbrd3b2E1JA0DZK8QeTUpoXgcjVR6eiA5LlbuZ5pETzyBbMsHHii+C6oQGHNtbTITNwMsYYs+9Sn8jEQwH2Zn4b9zA0quH+5ySQUGS5djseXHczjw/MICbBCTjvwz30281lbMz3g8/cZKWxvm7MICNgVYbdbVld7354zGREJmSXPCAW/g2Akl1YV4HOPS7ca9LoaAMwyMp9lZjONNm8A5lLu0zalT+Lyrr8bnFYN4HONW18GvxOMoP5MnLGGfqhG1QCKeyvDcnUTURUQ7CWmn0xner2rZ1xPRfyKiewi6eBUzVCSam4kOHkRm1NjSp3I9g5kZTILJSTjQZ87INHiXSxKL/LO5udizARoa5CTkQJKDTHs3qjiw7IGNpGnK5ghcY3F2Vr6+sTGZWCxmAU8kZBBWV1fdRbB1HXULPR44y08+ifF3//2FBe28q0aU/077/DzIR74vXV2YrwsLmBebNmU9niXskZqhJkTxjqLaaKUUx1urMM1kwjAalVmemoY50tyc3C05F3BNJpY4sQxaJRYjEfl6t1s2bOGfa+GexmLYwHC7iR5+GKRWNIrNjXxskRAgH2MxZKeViiQJBIi+8Q3cuz/5k6wkgCVsEaOxEYTd5s24boEA7C43geOmD5omu4R7vcldZDmw7uzEGmCaWEsWF5dLAFdCXR3s/vg4jqMGOkwecp00p5Po5ptxT15/HXNlcBDnMjws6/Dt3y/9toYGkMsTE1j7uruX1/zl+c016TgjMx0cDhDVfX1oIvLWW/AxDxzIXT7c0QHifHISZOIbbyDYGxoqrNt1unPs7MQjGMTnXLmCn21tWPvzuUflgNsNwnffPtzb3/0O15Obs/B1Hh7G/cwlgOe6gpqGcZoraSQEyikkEmgqV4rA/rXXMN7uvLN4ApEIGbhzc9hk8aVahWRYyhbx/OzvlyTgwgLmYTgs11L20xm8uaeSi5EI/MrLl9MTeVxPUSUWU//meoqcJXblCmLG7u7lfr2myYZTc3OSCG1rwz1P5zO43VIJx7HJ9DTGKsck1ZA1vNYRDEr58rp1hSeFmCbGxfS0LGnW3V2ZmH9sDOOXCctCwTEuZw0/9xzmxMc/jvU3T1jKPlUTaoFEzAaNUMDyCxn+HyUiWmKbnyUMlL8nomOEgpgmEX2JiEpCwXg8cAhaWyF38XjglIRCmFgLC/jd6cTkdrngTHKXJA4oufudSi4WalBaWqSj3dGBz0wkcA72wlE6cCFqlQBmQ8jEIktn+fVq0xYmD1aCEBg/0ajs0FbN9c+EgFMrBBy2w4fhmN52W37Fw4VAwBOJyAyOW27Jzck3DAQy4+O4dizp6u3F3Lt4EcfduLEk9S2rxh6lSl1LQSRqmuzWvBZIp2KgZjAwacgOEZGUdTJhWEoijwlJJiWJJOGikorBYPLrVWKxmu1KIRACjZzm5og++1n8PTODtTXfTbuxMRAHmzaVbsMvHAaBGAgQffrTJSF2qsYWpYIzYjs7sUZyRj/LfLnmJ3cuvXQJ72P5ckuLzPpvbcX7uJFYruCAempqOVmgadJH48+97Tac68svSzlsYyOIvNFREFF798qamh6PJBInJ5GplFrT0OlEgMcZQlw8P9OGYEsLNs7OngUB9dxzyBDbvj1329HTA59yfBzHeOUV3IehodIQT0S4ntu2YZ29cgWPkydh57ir82o3enI6EYwODkIRce4c7uPICDYavvtdbC5wY5Z0/opKIOYr3z5zBuTT7t2lsSFnzuDc9+4tKMhehokJEGO9vbVvi1gZpkrzg0HYFfbTWemj+lP19RgXPT2wWY2NMr5KV5IkGMTP1CpjvHHBxKJpIl7j+uFMNqp2gUl7nw/r2Pw83uPz4fl0Y9HhkPaTuzozecq1IqtVzVTL4DIdLF/u6CgsKYRl0FNTGGfNzZXNBJ+aQnzX3Y14qhAYhpTg89x75hnY57vvlkqAEqNq7dNqoxZIxJ0ZngsSWOMzhK47LwkhEmleyxgioquI6DNCiMfUf2ia1k7JDHJRhSQdDtR6a2oC8TE7iwnV348AJhDABPH7ZdFiTUMw09YGIx6JwPE6p/T38fnwmp4e/My1poGm4bizs/jMtjaZEVNfX70ZbLUAt1t2n2REo8ky6MuXpVPhdi+XQbOzzRmlpgmyywpShCtXMJb7+uCsvPIKHPN9+/I7zrlzeL/Tieu1Z0/2RYobHkxMwNlvbgahr+7uci3Enp6cHXlL2aNSE4kOh+xiam9AJIMz/1RZcmpnZa9XkoaVtrssjVYdSl1PJha5SQK/nskeJhatfM9feQV1eu66C2vxyZOF1UGcnMQO//r1pSNdYjGib30La/RDD4GczAGWskWZ4HZLgk3Xk8uD8P85C1rXEfByswyu8dTejrnV1wf7nitB1dsLH+ziRZBe6vh2OJaXcbjjDgQ0//qv+IyNGzGfDhwAiXjoEMg4Xu+dTpzT1BR8v0QCvptqh1U5cyCA17W0ZM4a0TSsob29IL2OHMH5X3117pl+moZmZn19WFuPH8d36u0luuqq0nQAJcK96+/H57DU+cIFnC9LnauhMZ2mgRTesoXoox+FjzEyguv7wx/isXEjyMQDB3DePFaZmMnHnk9NYSOiv780WaBzc0S/+hXO66abij/e/DyI6vb2tWeLurrwYFuzsCD9dZcLc7WpCf63YWC95819JvG40RlnVKeC1910RGM0ip8cA05MyM0RbiiVmtXIqiiuO76wIMtnZRqX/B7exGGbW1cnv2O1xxe1AJYv6zrsd6EbCouLGC+xGMbmhg2VbXLl9xOdPo21I0tJqLQwTUnca5qcY08/jTXujjsyd5nPATVhn1YDtUAi/ommaf8ghAgR/b4g5u1E9GMhhKlp2veJ6A+I6C+J6G/VNy513OkQQswQkcFPp7zmjwltuk/zc0IIQ9O0KC1PVc0L/f2YBCdPwnHq68PE5mYOHLDxznsgIEnD1lYQkT09eA3v5o6NgZgkwoLS2SlJxe7uzM4fk1O8219fLzt92o1WKgsO5Lu68Dc7IKoMem5Ovp6Dd7dbpqVbIUuIHbCODnzfn/wEP++4I7/jcCZHUxOCne5uSI3SQQhcu/FxzDEm5/v7l8+N+Xns4Pp8eWVFWs4elYNI5CyhtboBYZrJkuRYLFmWXFeH8caE4Wpn3WQCy6A5C0uVQTO5uLCQ/Hq1tqJVZNBnz6LT8VVXEb33vfibawTlc/7z87AtPh/W81IgkUDW06VLRB/7WF5ZRJazRdngcslNN85ICARkvWGnE2ROY6PMunj3XdkU6/x5+Dltbcn1Fb3e9PfZ6YRPdvYsiKMNG5b/Xwici1oj8ec/B2lz110ggerqpLT58GGMM15TNE2u2XNzCBZ7epYT8nV1OD7LmxsaVs6sbGjAWB4fx+e+8AKCt927cyf7ucP0wAAy2U6eJHr2Wfy9Z0/pglC1mH8oJIn4K1dwf1jqXA22RNMwt/v6iO65B+fJGYo//SkeXV0oYzA8jOuUzzoYCsGPKTTYTkU8jkDb5cJ4LHajJxRCjNHUhO+Y4z2pSVvEY9Y0MS/n5+VPzopua8O1amrC/Pb7YS94THCTFm7Oov69EkwTvq/fL2XyKvEYiSQ3XGNwxuPZs/A91q1DnMjqAn7wfeVNnLY23Hu/X2Y22lLn8iIQgK0vRr7MpSM4rh8YKE0jk3wQjWKDtq4O60++jc64YakQsqyHw4E19s03sTFy881FnWLN2adKoRa6M3Nr7scIrbn/LaGQ5TVCiFNLN/iHRPQxInqaiJ4npJ5uJqL7iOh7QohHlzrlHCWidUT0D4TW3NcT0YeJaJ6ILgohblU+/9dEdDUR/TWhuOaUEOKFLKed9mJz97XpaTiTfX0w3EwcMrGnaXAMYzG8dmICk6qpCcHOwADez9JofkxPy86HLBdRm7eomSe8G97Rgc+LRmVgaKN6oOtYHKansaBzoXJuisBd1lgGXS2FyxnRKIjzhgYEZs8/D+nU/fcvD9RWwtwcApvmZgSLpom6o6nfl+uNjo9jMfJ4MM96e9OPbe5Y2dSUsbh8pi6EVrFHy2yRWh+x2GBtLTVaYdmkShiqzjtn6XHjE6sQa7lC/f5MLPJ6Q7S8aUu1bXAsLhJ9+ctwTh95BKToxATmfaq8dCVwcN3QgA2+Uox7wyD6wQ9AKtx3HzrVrwVblC9S6w3zBobXKzP4XC7Yfg7KQiE5T1UZH5OLagbc1BR8qf7+9LXfdB3zgGuXRaOo7RsKQWLFG4KJBLIRuSslP8/gZnsuF8jHdNmGHFSxRDsXmWw8jmyN8+exph04UFg9qngc6+2ZMziPrVuRvV8O/zCRkNc9Hpey0koU/i8UCwsIan/7W2z4O53wpffvB6G4ffvKdkHX8X5dR1ZNKa7r00+DMPrIR4rf2IjHQYILAbVImvG55m2RELKeK3ckZzl7c7MsDdLQAPueSOA1XE+RKJlU5G7QmT6Ly1yly7DmTb90GY2BAN7L2bI+X3KWmyqfTq3TqOvS1+GGM9UYZ1gV3IQqEsE4KaS5KjcqCwZxz3p6sLZV2vfUdWxixeOwgblmlguB7xAO43rU1yc3IH35ZZCI116LNTabX5QOFrRPVYdaIBEPEtGtRPRHBEb3TSL6d0KIt5TXOojoESL6LBHtIrDF40T0AhF9WQhxfOl1Wwk69puIyE1EvyWi/42gZaeUm7+HiP47EV1DRI2ENNff/z8DMl7sWAwO3uXLMMa9vXA+OHWdjT7vYjU1yZo9Fy+CHDEMTLSNG0Eq9vZiwrFBUolFNZOttVWSil1dcpFj+RA3Wam24G8tg7MwEgncF683WeqlBlNEUmah1lhcrftpGBjrQqCI/tmzyNy49lqiG2/M/TihEAKjhgaQqVNTRB/4QLKEMByWkmXuONffj/GeaVGOxRAAuFw4vwwOXCZn2Sr2KK0tKiWRyE1Waq0+IkuKmDRUOx3zhgsThmu107FhLO8GrXaUTiUWVyuTQdeJvvY12I5HHkEwdOYM1sQcZXpEhO934gS+2+BgaWwr12h85x3YtZtuyjiWatIWFQom2XgdNAxJGHZ3SyK7owNjkzP7/H48eJx6PMmdoFlStm3bcnIntWMzET6Tm4Tdc48kH3UdRIzfj7HS05N8rGhUbhCvX5856OLyAkS51Usmwjo5MoJrs2kTpNWFFNOPREBsM1G2Ywce5fApOKN0chLXjGu99fQU1im5nOCNfyZ+jhzB9T52DPfd65WE4q5dy0kf7o49PJy1UUlOGBkhevVV2I7h4eKOZRjY6A2HUXcsQxaqbYvUgy3ZIiYU43FpJ7q6ZMIIkSzHwKQib0zgeySTii6XXAt0HTEdN+DM19cKhWBvmEzkklmpcmp1Y5DBZa90He9tbJSZ4hwz8saKjdzA8mXDkGtPPojFpK3kMdHevjr3QAjYtMXF5HrA2cD1uE1TlvlRbeWbbxI99RSO+dGPZvxu+ZCIVrFPVQfLkogWxYoXW9dBeFy+nCyz1DQYepbMRCJyl8Ltxut8PgRCFy5A0szk0oYNcBb7+5MdPHWXlx9cY4jJyA0bQKKwIWtosNPWqwG8O8N1ITLt/vFOjkoshsPy//X1ycRipTo4X7yI89i4EWP+O9/B+H3ggdw/n3fENQ3f8+RJ7Nzv2IG/Z2cxl+bmpBRgw4bsC7KuIzAyTdQ/WiEosrpblNEW2USiBNc0UrMMVTKMSTAmDas1Q6YakNoNWi0gz1kPqgy6Erbopz9FF9qHHwahw6VAdu7Mfa0zDNifeBzHKFUNt6eeQrffW24hev/7VzwfC86sJJTNCRUCflIgIJvdsPyurQ1rkGrjhcBayaQiNy8gwtowO4uAbM8evN/rleM0HZHo94NIJCK69165/hgGgqv5eYy13t7k804kENgnEiAbMsnPDAOfoeuyzlo2O2sYILxPn8Y827cvv+x/FYEAiKXxcczbXbuQnViuuRsOI0CemYEdbm4G0erzrf76EovJrB/OOFP/d/QoZM+HD2Mtqa8HiXvgAOTtk5PYwNi+vfCmAyrGx4meeAL34667ij/eyZMY/7t2rZihbduiFRAOg0ycnJQlCXw+2BIm71SomYr8YHBXZ27UsrAAe5RP9rwKvx8ENjeAWbcueS0zzcxZjdyYc2EBf6s169RMxnSdp9M1hVmr4AxWlsrns8GTSCCOn5/HtezqwmbLal7X06cx1nfuxAZeNnBTTMOQyTGp1+DQIaLHH0es9+CDNe0XWQI2iVhZZL3Y/z977xkk2XWdCZ40lb68r65q74A2ABoECEIAAZAAYQgRJASAIAmIIqSRZsWJ0e6vkTZiI3YnNjZiY+bfzsiERqTAoRWdaACSAGjgSBh2w3U32ndVl82qykqf+TKf2x8fju7LrDTPVXVmd56IjOquynz53n33HfOdc77DPBfxOB6o/n44SX19cEQKBfGAsVObTEJp9/eL7OziIqq9ZmbEpN4tWwAobt1av4WTAcWLF8HBZMwkMajJ0/taLQt8pQtXGqoq7p8d0M/II8U/eSIsG34jsOg2qfnqKl5jYwiMvvc9/P8LXzCfpeKMuCTB0L72Ghzlm24CAD8/j8AxGBQty2aMsa7jmSkWAZ43ufZ2N1ANdZGbQKJxgmkrC7flGkFDo9NeDRjaqeDpiBDjdGp+VbdBG4HFeiT0duXYMVT6ffSj4LGbmYEDv3u3ea43XUfgn8kg+HeLa+j559Guc9NNRPfd17TC64rWRa59yQf6nduZUynoeJ6+3d1de515wm4mA9ty9ix8H24xi8VECzRXBHq9Qt8lkwASAwEAiew3aRrsWCKBPVcN5GkaArBCoTkvLxPOm21vJsI6HD2K8xsbQ6WaXZ9ubQ3XEo/jGAcOgF5no4A9RQHgsbQEvREIiFbny9FhIUnwn2sBiNWiKADkjh1DlTEHzdEonveHH3bONZnLgQYhHCZ69FHntmp6Gnt/x471gHeVdLxe2QEAACAASURBVHSRSWEqIlUVPng4LADFWv4nJyqML/aveBDn0BA+b4ZXsdbxUymcF1fOWuXiy2bFkE5FEd0ZPp8AHI2t2yw+X/32aX5dqUlaJ+3LqoqCoEQC/x8cbI3p9rOzwBG4M7KR8FBQWcZ584DBajl9Gnpt2zaiJ55oeo3trovaQjog4uaK6cVmUulcDg8Ug4nMt1MsQvEEAniQVlehSFQVTtzYmOA1jMfhBExPw9HxeHAs5lGs5TjqOo7JRN/xODKbyaR4cLu7K7kVh4c7Lc8bIdwSYRxp7yaAwS04RnDRCPxUt0Hb/e5cDnuotxf777XX8LrvPvPDAnQdhmRtDUHX736Hc9y/XzhkfX0Au7k136zMzSGwmpoyBQa0u4EyldAgcg4ktio/IgNYxmnJLH6/AAtDoc2rjLvahQMqI7Bo3IfGSdBOKj8XFoj+4R/g4H7pSwicLl2C3axuL20kly7B7m7btp7fzq4w18+hQ0QPPmiKZ+qK10VuiaIgwcqtgfE4fs+gG08ebdQePD8P8IrpXhhgNNrMaBR2aGAAtiSdBmVHLFZ5TzUNbcErK6h837at8rt0HX/LZPDZ0dH6uthOezOD4CdO4LgHD+I87Or7eFxUWPb0YA83AZ0cCYMeXNnl9cLvHRvbvMmjxaLgWa43oKeeaBrW/vvfB60Lgy08lOWGG8xP1GZRVRwvmUR3h9O26Hgce2R8HHujiXR0kdkv0rFnicTk5FQKfjIR9gIDio32MrdBM+93Pi+q2Lgq2sixaMaP0TQxWFDT4LNbje+46CGbFbEqxxDVVY21JlHXap/m6stmVY2XuyrZipRKAAA1TVS3mxFNw/1ZWcG/+/tbZ6jm6irs2vAwKpfrCQ/5KZeh92Kx+v7OhQsYMDc6SvTFL5qyb220C9pXOiDi5oqlxU6nYRSyWSjKaBSVVaGQaNMpFvFvnui7tiYmMfn9eIiZB4gIDzcDimzARkYEoGgET7jSMRCAglIUwe+RTCJ44vMjguIeGBCg4ujo5eNiuFKEMzSaBkcjEtn49eS9xaAit0GzqmCOCg62otHmlQ+yjD3X1YV9trhI9N3vosz9vvvMn9vFi/js1BSC7dlZBD7RKPbb1JR5I2yU5WUx2MjIqdhA2n1Xm9JFxtZdR1+mi2EHl0MfKMp6wLC6LdkIGrZ61eTVJBxUGPkVWRfxMCkjuNhsrxaLGKSiaURf/jLs5OnT0K27dpnfn8vLAnicnHR2jSxvvgmwae9eDFIxCYRcFbrILSkWce+YpL1YxL85oGHKD64qq67I1zSAKqqK6lO/XyT6uAU6mYTd5MQJD8Q7ehSg2sMPi2MyHcfSEmxjLaCGq4NCIYA59fSTquJ7Zdl8ezMRrvnYMQBGAwNEN97orKp2bg6VidksAI1Dh9wD2etJsSimOnOr8+ioSKZv1HcygGiVu4wI53n0KPbOhz4Ef/vYMbQ9Ly3hPTt3CkDRzDCcX/8aa//AA9BnTiSVAhjQ1wcwwMQ6dnSRBeEkBOsaIjy7DChms9APXV0CUGwEVGsanmFFgR+rqrXboKv5FesdT1WxJ5lDnyuirSTvjLqxXBaFED09jY9TPRSmGmjk39WCMJoBja2SFGZ7YaV9WddxP5aXcV97etYPSL2cks2i5TgWA2dhrXVmLIELY6JR2Kt6+3Bujujpp7H/n3rKdIdcu+uitpAOiLi5YnmxCwXRnunxQAGOjorsoqYJMNHjgSKJRMTkLaPy5xZSllRKtDyvror3bd+O18AAvp95hKJRociNVSDFYiW34vKyqOrp6oLzODYmqhbtgDxXm/C0yVJJVANezvJ0TUOAZQQWjZVb0WglsGg0CJqGPaYo2FeaBh5ErxdtzGYrG5eWwLHh9cJJnpkhuuUWEJVPTNjPwKVSeMb6+y1VTbS7gTKti9wCEjeLH5HJvo2gITvRPDTKCBi2Qua2I+aF26CNwKJxGnZXVyWwaJyGretEX/saJrn/u38H8O/sWRzDykCUdBqf6+tDK6ob8s474DDbuhVT6i2AOFeNLnJLUincw4EB4dMMDgqaGCOHME9d5iqaSAT75dw5/L9eqxYPbeGp0ek0QOejR/G9d96Jn9wKzQPAJicBTlZLPg8b6PM1p+jI53HuVtqbiXB+776L9di3zxo3aLVw+/iJE/ARx8YAJlqtrLMqqipanSVJ+MxuV+kUCoI2xa5Pe+oUfI9Dh9YDhIuLABOPHcN9IUIRwZEjABS3bFlvR99/H1XMR45YG1JXSwoF7IVgEGCAyX3Q0UUWpVTC88qxm1FUVQCKPPSJ+Vz7+qCTqv2ychkxWDAogHtdF4Aicyxy5TQRjmkEFatjDVlGjJhK4fsGBqAvrfqErBNZr/JUZye0SXxNjaoajdfKwgPemlU1boSoKmJzSRLDaMysZSolptVHo603XEqSQNHg9UJHVa8fDzljvIJ5MxvFA/E40Ve/ij3y1FOWkjXtrovaQjog4uaKrcUul1FxxaCNxwPHcHxcKB5Ng2KWJPw9HMaLyVY5axEOQ/FUE67mcgBlpqdFBrSnB5nx/n44SUNDUAqSBGUQDtdXfKzs+Lu51ZRItFszqDgy0uEXMwrz67CRbSUjYRSeGG5sg2awhkvTYzExFGjXLhiNZ55BEP/YY+ZbBy9dInrlFRxf0xBw3X47+MycAFKFAvZ8JGKZw6ndDZQlXeQ2kOhWpZ+RV48BQ+YXIhKAknFacqcy+soTBo6NwCLbGwaOg0Gi3/4WeuThhzGIaWEB9okHiJmRQgHBfygE4NGNioZTp1CZPTZG9MgjCBA7umhjZXkZOmN4WFT8DA1V6iYOerJZ/OQgPhYTwwS2bKnPV8gTVrnap1xGkPX889hv114rdKvPhwA7m4WtvOGG9dUlpRLAJU1rHkAyTYmum29v5u94913Y3O5uAFImq/NriqoCcOXhQ1u3gjNxM5LJ3OqcSmH9udXZ6XdzFU0oZL9tenERVX7btjVPRCQSABTfegtrqevYtzfcgPuzYwd87O9+F3HBQw8500uyjKSGpmHwjgVOvI4usiFcMNCILkjToB84AaKquMe9vbAXxmRBPg+QiqfL1xLmVzQObjFShxgBRZ42Xi4LegWfD3rBzlAjrphmjneuxDQOqnJTzLZPV8MhXLjj5lAYO+3L2axIioRC0GF2Kp83UhQFOqNUQmGH0TYxPsFV/lwl32zd1taI/umf8L4//VPLCah210VtIR0QcXPF9mKrKjKWhQIeKFa8k5OVjiY7vVw2Hong75oGxcVTmH0+0epc7agWi3Agp6cRZLFxmZqCQzE2JgDNRiXI1ee/uipAxXgcxpCF+Rz4ZSfL1e7CQ094sja3W7WTVLdBLy7CEPT2AixeXERm/aMfJbrjjsbXp+vYK+fOIfAKhVAZcfo0WnzuvNMZIFQug2fD74cTbnGt291AWdZFbgGJPGXeznEUZf205OrWViNg2G7PT0fcE25hZ3DxxAmiH/wA9AcPPIC/LyzAnu3caW6vlMsAQ4jQ3udGpcKFC0Tf+hZs4KOP2rJ9V50uckN4iB0DMlxlMzRU265wdwBX5KuqAPQOHao9CbPWxGYiVIy98grszi23wFZyaxtPtOzvR0ViX5+oVuzpwTEXF7Gvh4cbg98MPMgy9KIVzr54HLa6UMDzcfCgs/0uy7DdZ87gvHbuBIi6GW14kiRanXmICfOGW7VDuRzWnull7Eg2S/T73+Pe3XCDNT8mk4E/9NZb0EV8PYUCANq/+itnICkP/Mnnsa8tHquji2wK86qaqRzWdTHJN50WE5EZNOzrE4n9oSHzlX7G9md+sX/FbdDGadCFgug2M5uEq74OTtKUSqLVud6Qq40UI6haD2iU5dpDYbg9vFH7NCeJuH2Zi3IaCU+jz+fF8KiNruS2I7oOnZFKVVab6zqugYtiGDw0O/jrK1/Buj/1lC06jHbXRW0hHRBxc8XRYrPzmMlAoagqXiMjKC83CnMOyDIe2EhEZBONrc66jgd+bKy2EeAqyLNn4QB6vXBut2xBxnNqyn4mVpIAEjG3Ik+kJqoEOfnl1uTLVhTm1iHCerYKv4UTKRYBRHu9uHezsyD87ukBgMgVs9wCHYvh2mVZTFnO5fDv4WGiW28F34/PBxDASfWqqiJ4V1UEMzaO1e4GypYucgNINDtoRdPWA4bG6rLqacmdtuSO1JO1NaL/9t9g4558Enbt/fexx3bsEAES7yluhTYG95qGoF2SACC6Mbl+dhZk4dEoAMShIVu0FVelLnJDymX4HsEg/JpEAv+u9qeqhYOjZBLBk66jrdk4hIwDpXpA4jvvEL3xBqpZb79d/J6HbZw4gXMZGqrsQmHqEE4Ub9nSPMCy296sKKiWO3cO53LDDc4HpUgSjnnhAs5/714kBzdDf3Mym3nDu7pER4wZH4ABxEjE/vMvy7jvuo5qaCd+DLccP/001nRqCvvluutwrw4csL6up09jjfbvbzwRvI50dJFN0TQxHKinxxqwbOSq504M9qUjEYDLdumQjICiLFe2BksSvlNRBDBvN07jwVBGwKmnxx0766aoqvWhMFx5yVytw8OCaqXWUBhJQjycyeC+cYzfql00584hTtu7V3SXcUGJpgnKB7N7MJ8HgJjNYvDd+Lit02rR1bqypAMibq64stirq3hxa16xCMVUi3C7XIajoSh4gCMR4bQwd8bysshU85TlWk5mKgUwMZmEgisU8P3bt6P9ZutW545gJlPZBs0Tp4lgTIzToEdG2h9sY/4lRRHT/a6ECkxFAYDI+4OI6NvfhlH43OdEJpWzpbIMw7G6iv3MJfucmT14EJOYV1cxiMXJxEHmaioWcW42qwna3UDZ1kVuAInV/IjclmwEDY08d9yOyoBhNcDTkY7UE1nGJOZUCoNU+vsBYGSzaCP0+SorFo38mdwOHwiAQiGfR3WYnaqLaonHwc/o9wNAdEDr0e5PwmV1QnM5gIc9PbjX6TRsgtl7nMsBkGb7zXqL+b64o4DbD42+1Ztvoqrs8GGiD3+48rhzc/C3BgcBsuVyOLd0WlQXptOwY0NDAMO5arGWX2Rsb240BbOWJJPgcuT27euvd+575XIAYGdnsXb794vncTOEBxcmk2IoYL02QV0XU0SdAIi6DvB4bQ2DVNxIjL/+OkDJ227DdRw7BmCxUMB+PngQgOLhw83v2cwM9t327bjPNqSjixwIUwSxLrEjxSJsHU96TiQA8O3eDdvn9LnlpIixFTqdhm8uyzhvLkrhNmgrUt3qzImPdoqNjENhMhlUQJdKuA9dXQJ4rIZf+P08rGlsTAxGNVY4ttI6zM+DnmpqCjZIkkSlPu9jK7iAJBH98z9jPz35JOgebEq766K2kA6IuLni2mJnMqhK9PuhmFIp/HvLltoOTqkExcRt0JGIeLA1DU5NPI6Hn7kuxsbWG5xEAkZjYAAA35kzmJjLyn7LFjz027a5A/AZ27C5DZqHxRDBaTYCi9WcRq0qXMlQLIoS/iuFF1LXERgwSBcMEr30EpzbT32qcvqkpuG+nj8vBvJwpQVX3e7ahf29sIAKxoMHnQ2ZmZ/H8SYnHYEB7W6gbOsiXa9scbEjsiw4XKsdKp+vcvCJmYm7HelILdF1ou99D4H7H/8xMuUrK9AB9Sq4VFWAigwszs3BqZ2cRCWWsWLRjr1JJFA9pGkAEB1OV7xqdZFbsraGoHV4WNCK9PSY77LgVtlt22DHmdKDKwiZO4/pZYx75tVXUUX2oQ8B7DHKwgIqw/r70SZm/FyxiOB9fh7gT7mM9/l8OAdugeaffr+z9mZNA6j5/vvQx4cOwb47TeakUkTvvYc1DIdRPefGcc1KqSTun6IIzm5uT+eEpyw77xK5cAH+8v79tkG6CpmeJvrJT1AZfffd4veKAt+ceRS5omn/fnAoXnfderB0eRn3d3TU0bCoji5yKJIE34h1hRPhvX3xouDgC4XEYBa3+NaZc5Apq7had3AQz3T1NGgz/hzHSJkMjufxiKnO7dJ1wgmfri4xuMsoDMQWi9D1rIO4ml3Tag+F4UE4jdqnN2MQZyKBivmhIeiMbFYULMVilrhUiQhr8bWvwaZ9/vOOh9a1uy5qC+mAiJsrri52sYjghgigHpeV12pvZmEDpWlQNJFIpbLJ5WAEEgko8d5eOFTMccDtIDySngjHY5BvZgaKxOOBM7J9OxxrN0m0jRWU8TiMJLcCM6eRsQ26t7e1qpZkWWRqOLhopfNzKsvLCMomJmDwp6cxdfS664juugvvKZVEyzJn9ycnsdf8fnzm/Hncy2QS/FFjY3CWibBu1W3QZhyTlRWc38iILY4No7T7HXNMraDr2LfN9i6DMsYqQ65m1DQxlZBBw8s5hbwjV5a89hqC7I9/nOhjH4PNPHMGesOYzGgkKyvQRczrWj28h9uguVq22fCedBoAYqmEKcyjo/YpQT6Qq1oXuXICOnwJWYadyeWgp8xW7ug69ki5jEpVDha5+i+bFQPpurqwl7hiUNeJfvMbtITdeitANKPE4wDuenpQTVZLPxYKsKfFInSpJInJ0CxcXcmAoteLc+H/m5VcDgnBlRXY5yNH3CH5X1lBBd3aGo538CB8gs0STROtztz6PTyMdeNEr9Wg2Cirq0hmjI+DC9KppNNE3/kO7t8jj9S/h5oG8JInPScS0E979gC0vuEGgBInTohhPw780Y4uckG46tXqs1lPMhnsP48HMWI2i98HAgJQdCsO0XU8w1wUEIng+Eb/3OdbP7il0XeXy0Kf6Tr0Zk9P6w6dVFU8Z1wUUW/4DOuclRX8e2AAPoYRbHRrKEy9SdR273kuhyr6QACFHooiho7ZAb9Vleib34QdffTR9XbQhrS7LmoLaXsQ0ePx/AkRfZWIdui6Pm3xszoRfUPX9Sc24NRqieuLLcuo+pJlODyFAgxELAYQp1aVhK7D2SwW8e9gEMrY+F5ZFiCdLOM93ELMpLo8fZe5y5jjLpEQk56TSRxvaAiA4vbt7rSCVUsuJ86XAU1uKwoGK6sVR0cvD88GE7OXSkLZtktGzaxkswAGeVBOoUD09a9jvT/3OVz/3Bzuj64DiJ6aqjSy8TgMCROf/+xn+PvHPib2N1d6cDDPXFFGTqrqe5xO47v7+lypAlhnoK42XVQLSNT1SsCwVFrflmysMvT7xTE61YYdcVMuXSL6x39EsPzkk9hnZ87AWd23z1xwlk4D3OnpQVbcuM+Nk6BLpUoeJAYUjT+JoP+efhoB0Wc+AxvtAgBT01luI33UEk6ooqD63eeD7Vlbw+9qVZDUknIZlVzhMNq6qoMzDt6TSewDvx/7orsbtuvVV+E33Xkn9qxRVlYA8sRiSMbVOp9yGUCiquL8o1F8J5P580+2mcxL292N94+MWAvKp6cB+qkqknt797qjw+fn0eacySCoPnQI57aZwp0+c3NYwy1bQNdjt/24WETLcTiMilOn66QomMSczRI9/rj589J1XNOxYwAVeXBiIICg/TOfcQzcdnSRC6Lr2IO6jnvrxnPFVEEjI9Bx6TTiOP4ev18Ait3dzgFFVYUOTSTwfx74QiQq8IxDSoyAYldX7diVq8SNFW9cTNAq/qMkiSKc/v7aCUIj0KooWBtuW7YjxqEw9QbCmBkKUw9orL4XpRKoOCQJvhQXw5gdtFotmgZ9dvIkJssfOWJvHaqk6Zm0kV5qWemAiG0WuNcSVYUzkM/D4fX7AcQ0am8mEuXikiSIbMPhSmXMyi4eh+LmSj8+5sCAGPIiSaIqgyWdFoDiygp+19cnAEUbxM2mRNfhrC8tCXCRFTsRjI4RVBwe3tgKqFIJ90fTBKfOlVR9SIRrnJnB/d+6Fb/7138FyP3xjwsA0O9HNn5ysjbQd/IkjOru3UQ//zmM4AMP1A5wjJUexqmZRKKknh0M5r1yqVXqqgcRiSoBw3IZL37G/P7KScn12pLNDlrpSEfMSi5H9N//O/bgX/4l9MzsLHTArl3mgLtiEYNUgkE4ys3allV1PbDITjvzfv7whwjaPv1pAE1uBGvUCdxdEya051a81VXcN7M0KakU9hknXOsJDxHggWqsM48exTEeeAD7wyiJBMC1cBichLXoT3hitCThnGtN8uQqRQYRlpZwPsYKSWMrdCMAVZJQXTc3h/ffeGPzoTRmRNfhS5w4gfUZHQWY6IQL2YpoGu5PoSAG6CgK1n5sDP6iWVulqpjELEkYpOJGAvu559Dm/qlPOeIMo7k56KT33xfJ7fFxVCceOYIEr0X91NFFLomq4jn1+dzhztQ06DZdx/PE+oy/hyc9axr+xqCfUxBTUaBHUynBPTowgO/QtPX8iqwLeRCVsRWaz4MLYTIZUcASjeJcLxctFAO/jdqXdR3rwMU5zB+5WUUtxqEw9cDG6qEwRKJqvatLTGIuFKCTx8exT+xWNeo60Y9+hKTGffcRfeQjzq/zA+mAiJsgVwKI6COiLiIq6RYvpl0D95oH/qAdJ5VCYNLfD2eyXIYz2wis0zQBJnI1YS2QK58XYJxxMvTOnTAIrISCwdqAXD4vAMWlJUHwvW0bgJ3R0Y0F1mRZtLNyxSKX9Xs8WCMjsFivBN2KqCquu1wWoNaV2K6pabivqorgx+/HIJRnngEYuHUrjDy3LNcKyAoFcCMFgzBOr76KgOzuu3E/zAg7F0ZgMZXCs+DxCPJ5rlh0QNZcC0S8onWRoqyvMuQBKR4PAMNwWFQZWuGKqx600pGO2BVNw2S/uTmiv/gLOLnpNHihRkbMTZeVZQTWuo4qK7uBiSzjOcnliL71LST77rpL8LHy88LVim7pIqK20kct5YRmMgCN+vsBJhrpW8zoptlZ7LedO+tX9hknNnu9oromlUJrcyqFgGrv3kqqjmQSNjIQANBTq3KFfUHmdRwebnzeug6/aGkJvgrTT/COCYcrQcVaVT+LiwgCi0XY+wMH3PFzVBVdCe+/Dx9qchJtzm60T9cT5o3kSapdXYKbm9fI5xPdLc1a906cwOeuv96dpPm77xK9+CLRLbcQ3XST/ePwFPBcDmuqKGhPPHYMFdvcKcItz7t2mdJPHV3kopTLuD9M+eJUZBm6gaeSV+sFBs8ZUFQUMS2ahzbZ5Zwvl6FnGBgdHKw9cVhVK0FFI6jl9a7nV+RhNLmcaHXu7sZ6bZYvaaZ9mYeGSpJIRrhJ8+WWGIfCGIHGUgn74t138XPPHlyDUSeYaZ+uLlL6xS8QK955p6C7cknMgIjtopdaVtoeRHQi7RC4WxUukQ6FECyx0m7U3syiqgBySiU86OEwjlOrLWd5WZDNx2JwHEdG8DdVXV/RWC2ShHYznganafgMD2WZmNicqqRCoRJUjMdFuw8bWiOwaIW7iqsMiJxN9GsHmZ+HId+6Fev39ttE3/8+jMynPgXnv1EVgSzDOGkaeJ/OnUNQcuONggfRjqgqjpXNwmnhykUmvPd4Kqdochu0CefDVfek1XSRpgmgkEFD49Ta6mnJnKE0w5HY6Dt1vT0GI3WkdeVnPwOH6qOPInCXZVFRuGdP8/2paajyKRYxiMBp8KYo4C6bnia6917owkBAPGPGdn+eBs0vk9l910OlqzlwJ4LfxBVwHg/8qmDQXJUdDyDRdey3evrMCCQy4MadHz/8IXyr224DCMgJr1gMwfK77+Iz119f369IJAA68qCQZv4UTwblQJz/z63QkoT3cQu0cWhLJIJrOXECoF84jEq2sbHm62VGZBnAFtMR7NgB7j63fapaAGK1ZLMABdfWsFZ9fZW84UaZm4Mu2blzfWWpHVlcJPrBD+BnPfigM5DkzBns8337ULVqlFwOFabHjgHAVRSsx/XX4742oIPo6CKXhQs83Bq+WChAN8RijX1ynkjOk55lWTz7DCjaoWOSJOy7XE7wjjbirdd1UUHHoKJx2AgPGfF6Bec/8/PxVOeN9CmLRaELBgbW+wv5vOBZZVqwjaD02ijhjsV8HonYtTUkHcbHm7dPNxsKc/QopsvffDOSZuzzuFRos6EQcgdEhLQ9iFirHNXj8dxCRP+ZiG4hIh8RvU1E/7eu6z+r+qxORN8goq8Q0f9LRIeIKE5E/1XX9f/P7nsbyKYsdjYruH0mJ8XgE58P7c3NgiJFgcKQZSjmaLR+xntuDopF13HcgQEoSCstu7KM40xPC37HQACtFNu34xo2q3pP1+E0G0HF1VXRlhaNVoKK1SS4RFi/XE5wzTiodmsL4Qw9EfYNV1PEYmglrOVcG4Uz4vk8jFMuR/TLX8JRvv12++fFLVGFAoBpIwDMGV4jvyIbPOarNAKLNZw3U+3M7aCLOPNoHHxiHBzBwIaxNbnWc21l2Eo9Md6DjnTEqrz3HtG3v40qnT/8QzHwolBA4GuGc+j8eYAvu3c3113NRNOQTDl9GhXV+/ZBDxn1iRGwZ1oAfg6MgD2/athC0y2ELaqPWs4J1TTYNE1DsFQqwS/glrlmUihgmEVPj6D2qPc9qgr/wKjzCgWiH/8YgNbtt0MHM+DI/tv589gb119f36fLZBCwd3XhOpoF/VyJVC5jrxnb7UulSlAxkxGJJb9fgIqKgnMrFuHDXXeds4EkRpEkgFoXLuC8du8G0O8GuMJtncxD18zn5AF/3JoYColWZ+acO3oUycvDh51XRRUK0G1+P9FnP+tsTWdnkcTftq05B6IkQa++9RZ+lkrw7Q8fRoXigQMV59LRRRsgmQz2Z0+PO75RKiUS62aTZOzbp1IiCR+LCR5Fq88gF3AUi/jsyIj5CmP2WY2t0MY26HIZx5VlMTyqu9s9PcTnkE5jHbu6AMQbdYYkwYbw30dG3Olu2yzhri6m4VpbA66wbRuqks2IcShMNdj4+uuoqN6zB1WIxnUxDoWprmi0MBTGVjtzi+qllpUrDkT0eDx/QES/JKJVIvoHIioS0ZeI6BoielzX9X8xfFYnouNENEpE/0hE80T0WSL6je/EYgAAIABJREFUKBHdrev6L+28t57oOumbpUAkSVT4bdkCw8OTcIeH12cea4ksQ4FwVqc6+GFZWxOl76kUfrLTOjFhTWmqKs5zZgYv5mmZnASgODXlriEwe06rq5XAYjot/j4wIABFrmTz++uDr1eSJBLg+8nlYCBjMTj4CwuoBJqaan6MM2ewvvv2Ye2eeQYO+f33OwOPFxYABmzZYg4M4DZoBhV5EhyRIMCPxXDcm29uDiK2si7K5Ug3VhnydXq9lYNPgkFrTqtTILHDj9gRu7K8TPR3f4dA/s/+DPs2Hofju3WruSqyuTk4/lNT5ikU6omuAwh67z04yQcOiOr+ZsLUAUZgkZ9Rn08Aix/QlZgK3FtVH5XLpF8uHqtGIsvYO4EA9gLbhJ4ecx0J3CLcrAqfgUSfr1Ln5XLYP5oGQDwQqBwoVigggRsOg0eq3ncUi4LOY3zc3P7jyhOu5qllh7lCxTi0hVsKNQ3P48oKPn/TTdj/biWH8nkkHmdm4Gvu39+46rOZWAUQjcIB9tISrp/55GZncW9uvtl5ElzTwC8dj8OvMuO/15OVFfhcIyPrB/g0E6Z5eOstdJvk81j/AwcALNx7b3vrImpREJErZIkaV+2ZFaYwKJeh26xWFBaLAlAsFvG7cBh+ttmJ9izZLM6FwenhYWsdXyzcBs2gInMUZ7OCqou5bt3geUwkcHwGUvmelMuCWsznw/UMDraXPytJgl8+EMA1nT6N63A4vZ2IUOH8ox/hWI88IsBGu0NhqoHGYpFoctI6iNjCeqll5UoEEd8gogNEdI2u65c+eE8vEb1LRAEi2qrruvzB73Ui0ojoJl3Xj33wuyARXSKiF3Vdf8zwPabfW0+SSdJDodotwhshigJHplQSJdRLSyKjPjFhzrkpleAsqqoAx6pH0K+uQkn29uLf8/NQQpEIQJxaFXvNhImAp6fxKhTwHePjABS3bbt8LcKSVNkGvbAgSInDYVzz2JioWNxIDp/LIWtrCGBOnIChPHQIgfryMtGzz8JxvvXW5se5dAmB+7ZtWK/nnoOzdP/9zsikGfQdHrY/2ZGnaRuBxVdegfP81a+aAhFbVhf9zd8goWGciOf3uxPkuQEkOq1o7MjVJYpC9Nvfwtn8gz+AjS2XoQfCYXMDGfJ56LVmbV5m5dQp6Lbt24WttQuWcUsXt3LxpN90mugrXzEduLekPpqdJb2vrzUTboUCAtzuboDQySRs/8BA8/PVddhISQLA0uj9qioGGhiDzXSa6Kc/xe8ffFBwaPFglpUVtJ0yDcjYWO2KG1kWk3jNVvxwO7Om4XvN+FpcycjA4tISQPRMBs/U4cPwh7hqMRp1puPTaZD8Ly3hmq+9Fs+blYCdJ1h7PM4rvXI5nMvvfod/33wzWpmd6pNXX4XfwdXMdiWTgc/W0+McDNA0gJHvvAPde+YM0S9/2d66iFoURCQS+7Sry514QlXhI3s8eCbtglzMlcdJBCI8i1yhaBYQTKehz2QZnxkZsQZG1hIGFfkcMxkc3zg4JhQS/q8Z4fZlIsGby9+1vIy/Mcc+VyW3izB/s3HytSxD94TDqCp3ej0nTmAS865dRJ/7nPl155b2ekBjoYD7m0iATuSv/9oWiNiqeqll5Yoa8eDxeMaI6CYi+ifeAEREuq6nPR7P3xPR//PB339r+NjrfFM/eG/J4/G8RkS1CnatvHedMELOxKpOFWQz8fsBziwsCK6/iQkovaUlOLgTE82VPLdRMd9EOo1gKBIRE7N6e+FgF4sA+cbGBLg2PQ1QcXAQvzdrVBgwHB9He9rqqgAUX30Vr9FRAShuJlAXCgE0m5pC8ClJ+MmBaDwO5/ntt/H+cHh9G3QrBk2NRFWxb+bmYGgSCYClN9+Mtc9k0IY8Nob71UyYV3N0FMd5/XUc86MfdQYgMoFxb699AJEI+6+7W+yrF1+Ek2MGHG11XdTXB2dgI0A6PqaxvcTq5xlItPP5jlxdouvgiCsUoItCIQS4yaQIFpqJJOH9oZDzFmYitHPOzcE+MBexk2o7I+BPBKBG08xPwm1lfeT3Y+05oGsliURgizIZERgz12Ct6ZtG8Xhw/8+dQzJ31676usznE0CxMXnS2wuuqGefJfr5z4k++cnKYTxDQ6h0/N3vAFoXCmJCKduuUAjnOTkJ+83tt832TlcXgmROosly82ni7AvyM3fwINqxjx9H9ck774jEnscjKh27uwW/opU90NuLpMHqKr7jrbcAZh04gOttZjvcBBCJALby9NtDh/DvM2cEF9rwsPWqxLNn4UceOuQMQJQk7JFQCMdxale9XlSAjo3h+o4cMfe5VtZFrSx+P/RRoYA4y2kBBQ83WVlBzGK3upX39ugodARPfecii64uASjGYvX3HT//ySSe54sXxWAou7aTbWYohOPrOvRZIiGSHUzbwFQhxqEtRn1gbF8OBLB2fr/oVFtdxXv6++0VzVxO4eE0RoCVE7HHj+M63agkP3cO9C5TU6BksKILfT68jPaBQU+uACfCntu/3/q5dfSSPbmiQEQi2v7Bz/dr/O3kBz93UOUmmKnx3iQRHa7xeyvvXSexGJwWHrjBYOJGgkleL5wpzpDIMoKacBjA3qVLMB7Dw82Pxe2NDCamUvh/JCJ+MnlsMAjnordXAI9ra2IQy9hY7clc9cTjwTkOD6M1JpkEmDgzA/Dp9deh1HnSsxuVJM2kVBJ8EeHw+umNqioARX5NT4u/9/VVAouDg62ZtSoUsFcWFwXB9vAwwN2pKfxf0zDQQNdRRdgsq5lOI9Du7UWm/vx5OMsHDjTmkGomxSLOlStg3ZJXXgFAun8/0ec/b+oj2z/42ZK66D/9JzPvcibcfmC3orDDj9gRM/LSS7AHf/mXABSIYBdSKXCmNUtaMc9aIIDn2+l++93voIfuvx8ACgMUboHhnMjp6zPPTUQtrI/GxnD/CgUEXq02gIzb2rNZwYmcSMD2N7PZgQDRjh3Yj2trsJmN3qsosKF+v9gv4+OoQnz2WdigT36y0mccHCS65x7RXspgGFfPc0VJdzf8o5UV/N7jqT2htVpCIeznXA7HrzdwpNF1feQj4G58+20klnVd7F1O+i0uivcbp0GbaS+emMBrcRHJ22PHAEIcOlSfloB5gEMh5+2NLPE4ns89ewDU8aCcpSWcG3dHjI2Z2+dra0Qvvww/66677OsmRUEA39WFalC3nrFslui11/BcPPig6Y9t/+Bny+miVpdQSMSQDHg5EU6MJJN4Dp0k74kEN+DQEPw3BhQTCegdv19UANaa8u7xIC7kZM3aGs6rr88eAF8tbIt7egRwlslAtzEwa9StzM1HJDrNjEmS1VXE1qqK342OtldxCPP38zDVnh6hG1QVAKKiuMNrOzMDTteREaIvfME+MMy2iCsmiUQ1aDqN+P+662wdevsHPzt6yYJcaSCiHakxP4iIapNyWnlvTTGWCDNpqSThIdjIzMXICB7apSU8zMwxuLQERVgoAHRppqQ9HlFFyUBoqYT/R6PIXKTTMCLMr8ZDV7ZuFW2m7NDw9GOr197fj9cNN8AQMKB47BhePT24vu3bcS5uVjNpGhRYuSwIxWutG/NhDA8jI09UScYdj6NC4fRp8f6hocpqRTeqYuwIO79zczDmHHBMTeFvi4sIXrhK7/XX8bv77mte+VMs4po5I55MEr3xBhzr66+3f86yDFDc78d5unHPdR2gwAsvAJB4/PEN5TbZVF200eL1ionLdu6Fzyfa/NqJT6Yjmyfnz4MC4dAhUSG8tgadMj7eHEBUFCQvvF5nnGosx44B6LnmGlRU63rj6gursrCA18AAwKkNrtLdFH3k8cCWJ5PwHdhfaCUZGoJ9W1nBvurvr6xIbHQfenrwHk6gNuqY8PlEy7rRpxgdBVD4i1/g9cADlX8PBuELvfMO/KCDBwGqcbCVSonK3FgM7+fWvvHx5vs+HIaPlsngWGbbm6uP8ZGPIMn39ttoa9uzBxVsHg/O08ivuLIiPhuNCkCRKxdrrTl3wVy6hOO/9BL8lkOHKisvGUDgwNkN+5LPIxnR2yu4BrmtcXAQf4/HcV3xOL53bKz+sIVyGfzQXV1ISNjVTbqOCkRJwr5wC0AsFNCdQQRdt8HP7BXlGzmRaBT6IZfDXnO6d2MxMTgqEHCvGtznwzM3MCA4HZlHMZEQVct9feurgL1exE1GPZtO41huFVt0dQnAMp8X+lDTsAb8nHCLLBHeq2mI29bW8O/+fvNJgVYR3j/MFRmL4fk16qHTp/GegwcFjYZdWVwk+sY3cL+ffNLaHjNOh2aeRiO/ZTQqaC2iUXcHeZmQq14vXWkg4sUPfl5T42/XVL3nsgoTgPIUKc4Yc4vwRkhfH76TB5dMTop25qUlDMTYssVcu7HHg/eFw5VgYiAgqhS50pCrF1UVynZsDH+Px3EuHBSNjdlTVt3dcBIPHcJ3X7oEUPH4cbS5RaOiQtEJ9weRaFsmEtdvRQIBrLtxIl4uV1mtePIkzpsIypaBVgYWN9JYKQoU/vw81pIrKbZswb8lCXsnEhHtD/PzAAGvuaZ5GTkTc3s8eL+qwtEPBoluu81+UKxpOC9dB1jtxjOk67iu55/H3nn8cUvHbRtdtJHCQKJdINDp5zty5Uo6jcz20BDRww9Dd5RKSHzEYs2pDDQNySxZRjLD6XCPEydQLbZ7NwAfVYVtcquSloe+DA3BnlnUlS2tjxhIZN4qXbdHrr9RwgnBeBxgIE/aXFvDOTfrfBgbg98wNweAqZ4d4bZ15vIyvm9ykuhjHwNI/dxzRPfeW7m3eFLzu++iGu/aa3Gevb2V/L7cCl8sAtBKp1EV2Cyw8/sr25vL5drVRM1kyxas5fHjaPWdnweQODJSWQnFQB8Di6ur8BWJBNWIsWKR/SKPB8/H1BR82pMnsWZbtiAgDoUqKzTdsCuKgnVnfuhax4xG0XXB3NHxeGWr88hI5f1+4QVc+2c+4+xZOHcOx9m713mlGYskAUBUFAyNskgl1NK6qNXF48F6c2utG1XuAwN43hIJ7EW3Y1CvV7Q0c0sxA4rJpKgQ7OvDs8zf7/fjfAYGoKsSCXxmcBC6yI1n10hbJEnQNQxYcaXb8DDOK5MR/PzBIJ7ZaBR+Byd+urpat3uG7UChIGL4SGT9Ol64AH27a5d5ypR6srJC9LWvQT9/8YvmdJmm4Ry5+p39/2hUAJ58zqur0PGRCABEB8VYHb1kQ64oEFHX9bjH43mTiB73eDz/p67rc0REHo+nm4j+goiWiOjNy3mO1RII4FUqwalj4txIZGMUEQNqc3MAXSYmhAM2NwcAjglhzRgmr1dkpQsFXAdXWQYC+BvzQZXLeL+RI0OSRHY2kcD5cauzHQMRiQDI2r8f5zI7C6V/+jQUTTCI69+2TUytNiOcuZFlnD9flxsSi+HF7T3M52UEFn//e8ER19NT2QY9NOTc6HOAs7QkSvMPHMA+4PvAk7N9PqwdB+0//znef9ddjb9D03AfymUcOxgk+vWvsW/uvdd+BlTXcZ/LZdxXN7JQmoY1/8UvEIw8/rg1kKEdddFGiRMgkFuhjcNWOtIRRSH65jehk554As+mrsOmMYjQbK9MT0On79rlHLA6exbTBrduRZWYquKYbgVjly4BeBgZsUf30A76yOOBT8DBMVdxtooEgwI4TKcFgJXJNG8F9HoFPyIP26knzBWoqmJqM8uOHaj6evFFol/9iujjH6/UqV1dCKTefRf+jqbBnzIGylzZkc0iAFtcxGvbNuyvRr4NB/vcUpZM4v9WA7dAAMDh1BSqd19+Gd9/+LCws1wpZAxiJQlrz8Di3JygzejqWt8GvXs31vrMGfgeMzPwaQ4csEan00xOnsSa3HBDc//D74ffPT6O9VtaEgPmuBPl9GlUWd92mzNalrk56I2pKXOURWakXEbit1gkuuMO690y7aCLWl047spm8Sw7tV8eD/ZePI44zAzNgZPv4opi5pRnQDGdFpVxHCNywc3EBGLT5WVBzzU0VDkZ2anw4FNJgn+QSokKWx5CE4tBrzA9mSyL4S2SJK6ReRWZY/FyJsF1XYCHuo54PRarfU6Li9AbExPOKaFSKQCIXi/RH/9xYxupqgK85fPkyvlalZJE2Afvvw+7dviwM3+ro5fsyRUFIn4g/xsR/YqIXvN4PH9HRBJhRPc2wohu+XKeXD0JBivBROPwEreVDwNpc3MAhUZGRHvU0hKMCLc3m3UOfT48yOEwzntlBcDO5KTg0FFVASSykxoK4VwmJ0Wr8/nzcPa4As9uhUgwCGW/ezeU/NwcDMPFi3Aqu7pgxLZvx/fXulZdFxyWnAHc6FJpr1e0wFx7LX4ny6INhvmDzp6tfL8RWDRjWHUd93puDgbZ68Vn+Z5VC0933LZN3L/nn4fi/+xnm9+n8+fh+O/di+O/8w6O+eEP4/ztytISDI+ZIUFmRNOIjh5FtceWLQAQbQKcbamLNkKcAInVn+0AiR155hnorS98QVRELy5CT+/Y0dxuzc9D501OOufPnZkBWfjoKNFDD8HOhULOKxuJBDC6ugowyFjBbkNaXh8ZgcRcDte/mQPTmkl3t5j0GQiI1sJ8XnSS1JNQCMDRwgLuZ6NBBl4vrl3TsCZGnbl3L/yo3/0OYM4dd1TqRL8fQOJ77yHAUtXKYJArUDhhOzUF2zw7i3XngI1Bx1qBWXV7M1e0WJXhYUwcPnUKwNnSEs59aqr2+znIZ55DXcc+4RZorlhk4cE4vb1EH/qQAHFTKVSEXnON8+d0Zga+2Z491nQJ878NDEBvcTL9vffQAXHddc7oXVZXBWjqhGfaKIoCfuhsFgCnA7+t5XVRqwvzxzI/otO4xO/HXlxdBbjttALNjDAoF4vBtnEXWyoFfTQ7C93CgGIwCN1QKABAWlqCHR8edq/KtlDAMZn7fWEBID8RYtKhIRGXcxEQi6pWAovFIl5EooCGwUUj7+1GCcevXM0XCjVOEiWT0JEDA5b4lmtKNkv09NNYiy99qbauUBQBHBaLgg+4txfnGQrVX6PFRdiMvj5Uf7tU1NPRSxbligMRdV1/1ePx3EFE/5mI/pqIfET0FhE9qOv6s5f15JqIxyOGlxSLwlllx8lNMNE4uXl5GU7p6KjgkVpcFNObrVQDMEdgMAgDwCBlNCramkslGD+jcvD5BACWycA4LCzgPJhzwkkw4fcLjkRNw7FnZvC6cEFU123bBocrFILyYw6GYBDXcLmySZyJm5gQv2PHk19nzqBFiAiGzdgGPToqnHxFwfXPz2OfBYNos2kEGq+uQtmPjQlA7fhxGJzbbqtPXs4yOwsHeetWGOH5eTjLu3YJ/iA7wuTLQ0PuDNNRVfA1Pf88rumxx+xz/bSzLtoIcQokMj9iq7aKdGRz5OhRBNkf/ahIsmSzsGNDQ805WRMJ2JWhIegzJ7KwQPSd78CRfeQR7M9AwB3KCV2HDV5bW6/77R2vffRRby/8g3we6+BWgOiGDA7CN1hdhb/U0wObmk5DNzUK5gcH4VMsLTWnQ2E9xwOmjDrz4EH4bEePYr8xH6jxs4cPi5ZhTasPzPX2AqxaWhKthYoi/AquWunurgyYje3N+byY3mxVt/t8YpoyP9uXLqGqr5nt5cRud7cASlW1ElRMJnE8ScI5b90KX+SNNwBeHjoEYNZOFcvaGgDY0VFnQF0kguRHfz+A4UgEz/tbb4lWZyvVntksksxcjemGqCrRq6/imj/ykeY+XyNpJ13UyhIOCyDG53Ne+R4Oi+pq7iTbTIlExN6XJAEozs/jFQ4LQHH7dujS5WX8jSso7RYS6Dp0BdNVyTL2us8HQD8aFQmLTEYkKIwFBjxBmG2AruO5YVCRKxZZjIAiv9wSBg9VVdzLRjqkUBBtwddc4wzgLBZRgZjLoYXZqCs4rmZORiKcH0/vNlOwMT8P/TYw4M7UaJaOXrIuHp17JNtUPB7PnxLR/yCiKS4/bWGxtNjMW1MqCYCxETJvV4ytxBMTeCDLZTyokoQH1U55e7kMx5T5jfx+YfS83uaBVqkksrOKAuXG7btugXm6LqYmz8xAsRFBoY2NwTF0Ug25maLrgmuSX4mEaPcxltT39gIw3bGjeet6LofsfW+vmC65toZ2wokJcPY0+vzKChT+yAgc2mwW3GHd3et5naxINovggNsinIqioDryhRew5x95pCEwue6Kr2Rd5KbwfrT6DNerzOnI1SMLC0T/8A/Qy1/6EvaBogAM8PsBBjTaG9ksQJVYDO91YkuZ6ycYREUkt6G6MUhF05DcSqUArjQBO2t+Wxvpo7q6iAGqcLg5OLyZwtzBfr+4N4kEft+MXoQn5Xq9sIfNdFmtic0sr72GZNyRI0Q33rj+s5qGasTlZdj6Rm3Uug5glKsR+/vFhGcO9oJBAdoZwVIOWLlV0S4vla4DlDtxAv8/cACJRqcBbTIpeLkZBGB+s2QSe+vwYYCz/f3m/D1JAhAZCBDddJPzQFZVUdGcTBI9+iiueWlJtHgODprjDS+V4McwkOzGwEZNQ+XrwgLRzTfDd6wjV6wualXRdewRIveGBK2sYB/xQM7LLeWyABQ5RgsE8Kz29UFHrqwAoIpErHPHMx8kU3Lx8A6eNG18thVF8MKqKp6vnh7zRSaaJgBFrlpkGMbYBs2t0FbvZ6kk+ByZeqvZPSyXUTyhaeYoGZp9/9NPI/584gnYnVJJVBwyiBoMiipUK3vs0iX4RkNDSCI3WB8TQ93aRi+1rFwJIOL/QUT/FxHFdF0vXO7zaSK2FltV4QiVy2I6cjDoLpiYTsNh4Rbfri4BsCWT+E4r7c0snHEIhUQVEitKbn1uJpomWp0LBXx2eBjgntutxYuLcLpnZgSv48iIqGJspYoIMyLLKPk+fhzKN5WCQezvxz0ZGKisVqwmKy6X4WgHAoJnTFFQfZPLwUg0yvxlMggIursREKgqOBQLBXCH2c10ShKqdIJB3BenjpOiIBj75S9xjx9+uHG7GdUGEa94XeTKF+vCabILJHbamq8+KRSI/vZvcf+//GWhdy5cgFO/b1/jLLYkQbd3dSHT7iToTybhKBNh2iCDRm4MauCBL5kMwNJmA2KofuDeLvqooS4y+hBW+dc2UopFgHOxGAAeVYWfwsFno32Qy8F+DQyY451qBCS+9BJs/Ic/DNCoWng679ISbPjOnY2/K5XCdQSDIqnM1SPMwUaE54gBRU4OZzKCD9TJtN5CAVV4S0tYoyNH7IHIhYLotjD6GswLmU7D1+PvCgYR9E5Niamxvb3rByQx5Uk+DwDRDRqVX/8aftoDD1S2EhaLIpmuqriOsbHaU8FVFXyY5TL2glsV0W++iXW64YamlY1XtC5qVWFwnIcFORVNw57TdcQFrdT9oSgCUGTuXOZD1TSAVJom2pGbxYj5PPTd2hqOFQiIwplGySDmGcxkBE1XLAadYbWikNugja3QLF7ven7FetPcmbff78e5mImPNQ1Jh3weFZdO9o+iEH3969AVn/40bBufE5Goao9G7SU3pqfxGhkxVS1pBkRsF73UstK2IKLH45kkok8T0f9ORBd0Xb/tMp+SGXG02MyxIMuiks9NEK1QQPUhEaofjCPuFxfxwI6PW1cynKHnNiDO9ni9AK2sXEM2K9pudF20OjsF93hqVakkFHAuB2U4PS14dvr7AVpt2+aMx2+jRZZFy7IkIQCbnMT9U9XKasXlZVFp4PeLNujhYfHZ7duF0n/xRTjdDz0Eh7ueSBIcWr9fkN6++iqCp499zH57niwDOPB4EBA5bQGQZTjvL76IPf/QQ6baHP/NQF2NusjxlxsGpVgFAzUNn+0AiVePaBqq/i5cIPrzPxfcgCsr0HGTk41Bf0UR/HDXXOPMbjLXT6kEAJETZG5MYlZVVG3nctC5TRIZLBVPQRvqo6a6iCcLh0Ki1bkVhIcBDAzg/nNFi99fG+QxytKSoPhoBpDpOvYwJ2Cr//arX+HZuP12DJWr9fmzZ8Wzsnt343PL53F+Ph/sdDXvF095ZgJ89pliMcF9HQg4B9VnZxHglstIEuzfb/4Zqwcg1pP5eVQWLi3hnMfGBDjI3G0MKi4uwgc9fNgUyN9U3n8fHRA33ri+NZ1FVbFflpbgW3V1ieQvJ/1PnsR+PHDAvcrdt95CUuPgQejOJnLF66JWFa72CoWcAfgs5TJiAy6kaEVh8DSZxE8uUuFkczgM3Tw0tB60MnLCZ7PQVcwtb7X6slTC9xsHl/T0OAPxq0FFprUgEq3rfE1cZOTzNafJqJb334deufZa0/5G3fP9n/8TOuiuu0BTxUVPbBuc+EfM2zs2Bltgwgeo+4421EstK+0MIn6aiL5ORK8T0Z/run7+Mp+SGXFlsXn6saLgoTRb0WdGymUoVVkWfD/8e7vtzZyhZ8eayV6TSVxDf3/9SVGNzpMBMEXBGnCrs1VFJUmCByMcrm2AjYAiZ+i6uwWguJHTzKxINov7F4/DiPb3I6veLKBJpyuBRc7MFYvIJnFbtyShreVDHyK68876x+PKPlmGox0KoVrizTeR7Tp0yN71aRpAyHIZAKbdic4s5TIqJV95Bc/QAw+Ybo02gohXrS5ydAIuAImtlCHvyMbJCy+gUufTn0blDxF005kz0MONqqt0Hbonn4fz6YTnqVAAmJnJAEBk4KgZ35AZURQAPTwcxgKxfXXg3m76yJQuKhSw7sGguxM5nQon4bgzQpLg24RCjXl6dR3AX6mEgKvZ/mkEJGoaBoHNzmJic73n4dw5vGd8vHkgVioBLOMJz7X8Ik0TFYpM3s8BrhF4c+KflkrwJWZmcLwbb2we7ObzIgFqpUpQ1+E/HT+O62LaF79f8CzG4ziXiQmAasaJ0HaSEysrRN/9Lo73qU+Z84NTKYCJqZQY0FIo4Jz37HEP9Dl+HCDDvn21q1xryFWhi1pVuBDCaotoo+M1wy5hAAAgAElEQVTxkJFWqgKvJZoGPcRViuWyABa7u0UMw3Rd58+L6uOJiUq+d7tiTLBwq3N3t/X4tpaw/jdOg2aqCR5sylQSfr8533h6Gh1qO3faG9rGFd3ZLNEPfiAAxFtvFRWHblz32bMoitmypXkCzCCNQMR200stK20LIrapuLrY5TICKVUV7cFu8J+oKgDDQkFwQhDhYV5ehlHhyjaz38ckuZyR4O9hoCoSEQCeleBA03CMpSVBLsytzs0MgqqKUmvmjjCjeItFKN6ZGawTZ7y2bQOoOD6+uZxtfF/m5gS5O0/ytNtms7qKwJurChhcfPNNOCd33w3Dy5nwgQGxdpwRz2SQEe/pgaP83HP4zJ132gsAdR0BUC4Hh8Ap6TO3N77+Os7nnnuat3oZpEVCWNvSEorfCZDIvDUdfsQrW06dQob7xhsF/6qmAUBUVQS4jaqRL15ExcHOnc4mTpZKaNVZWSH63OdgZ0ol2CynHQGKguspFtHKaDFgu2p0UbEIG8d8WK0AJGoawDZdh+33+USbGw8kqSflMgKkcBjAcbPr0TTsea93va+iKEQ/+xl8gU98on4y7OJFBI+jo81bwpj7sVTCfm9U3cbtfcwXVirBhwyFhE/mRFcvLxMdO4bv2LEDicha/id/d72EsBnhZOXJk/ATJiZQiefxoJvC64W/l8mIlkoi6AEjqNjT09inlCRQw2ga0eOPW69ckiT4ZcePw//bvh2t34ODzu3i6dPoJNm5szbfZh1pgSfSkbSEX+REmFKg2d4zK8kknqmhIXfa4zdDeGp7KgV7vbKC/zP1As8ZGB/Hc+wGHUH193PSi7vuolFnfLEsnLjhacZdXdA73BJt5Fc0ToPu6qrU9fE4nvHxcWvDLblrL5fDNaoqurhOnYLd+cQn3LPLnABeWkLMZyE+I2p/XdQW0gERN1c2ZLFLJSgUTYOiCIedt3jquiB17umBomHFkM1WOs1mW4nTaZznwIDIkrFCZKXu8cDxszNAhqceMrdFXx8c11oBWbEouH2iUfsZqHIZwNbMDH4qCq5t61Y4dFu2uDtxq/q7eWpZuYz7zi3LTr6TQdJoVGSndJ3oX/4Fge6ttwrntVjE343grSQJgt7hYbzn2WdxTvffbz9DurQEMGB83BkYwNd46hR4jVQVwOa+fZYO0e4GqmUUv10gsTNo5cqXRAI8iAMDaGNmB3x2Fn/btasxSLO4CP24ZYsYCmVHZJnoW99CoP7YYwBoGCBxGlgxb225jCy7DWqOq0oXcUKyq2s9h+/lEh4iFwyKSZTpNPZIb29jMCuVwn7mKbzNxDilvvray2WiZ55B4H///fX3/MwMqiCHh5uS0/8bP1o+D1/KTMubMYhmLuuuLlxfLY5Bs6IoAPbOncNaX399JadkNos14KS0U+Hq4NOn4TMwzcAdd1T6sNls5URo9i2J4Ef19gpQkQcv6TrRj38M/fRHf2R/2nEigW4KrxfrWizC1+IErx1/68IF+EZTU+DatGCXrypd1IqiadiHXi/2m1NAh4sUZFm0zreb5PPY0y+9BH0UjaKbysogJbvCFYP5vGh17u62nuDgJA23TEcitSv9qoe21GqDzuUQ/wwOIhnTbI+oaiVwyF1AsRgoIN54A1Qa99xj7ZqaXS8PBeOZBBal3XVRW0gHRNxc2bDF1nUBJjI5bDjsPBOVSCCLwwAVH0+W4fwUi1DCo6PNFRFP/yOqzJTKsiCmNf6bwUSrwlwebPhCIcHxxxkqRYET6ka5NQtXcHKJOPMrTk5CAU5NuWOsMhnRsqzrCLCnpvDTqcOgKDh/jwfnzPf76FGil19Gq5SxFTmbreRWPH0a+6W/HwHM8DACFl3HxEG7gfzaGgABnlDoRAoFkWUvlQCKHjxo+TDtbqBaSvHbBRI7/IhXrsgy0d//PQKiL39ZtIamUoJcuxGv6toaAofBwcbcrc1EVZFAOX8eA5f27IEN4ep1J1IuQxfJMo5rk9S83Xe+ZV3UikBiLgd/qadH7NW1NdiYgYHG1aqzs7ienTvNVcU0AhIliegnP0HQ98lPwgbXkrk5AGQDA7DpzdZwdRXnGI1arypMJkW3SCCAVyQiWv2sAhPJJKoSUynogOuuE10TbgGIRimViH70IwS1O3divRpxq8pyJaiYTovhAgzuXLiA9b/3XgAadiSXQ6t3JCLuYSYjkukej3Xe8EuX0J0xPg7fyOKzddXpolYUWYZvHgg4t1FEeLaYI9VMrNdKUixCv87NiSnnkoR4RVUri036+py3NNeT6lZnv18kFRo9Y5yQKRSg80Mha/yC3AbNoGI2C57ZQABxTyhUObSFj6soYqgZF4uwz8O8iy+/DKqZm26CrXFrX2gakkWrq0gUm6SYqpY22qXtKx0QcXNlwxdb16EgJQn/DgbxsDtxsnmwit9fCYTpOgCjRAKKaMuW5iAZE49XT1oslaC0mKS+UMB7fT777WJMnBuPQ3HKsnCAh4c3NvukaTC609MA0QoF3IOJCYBzW7dac3Q1TbQsZzJYl/FxAJRukCgTiXbhYhHnyGu+vEz07W/DeX7wwfqfTyTgZPOEuHgc/IlnzuCzQ0PIxnPFxdiYOQ5L5qPs7sb+c2Kocjmcz6lTCGhuvBHtPzak3Q1Uyyn+DpDYERZdJ/re9+DsfvGLot2GQbdgUBB315JcDu+LxYj27rW/L3Sd6Ic/hEP7yU+CFyybFVU/TvabJImW7L17HbVUtfuut6WLSiWASD4fgLBWABLX1rA/hodhlzlxqqqwdfU6BDQNgJKuY1+bCRAbTWzO5wEkyjJsdj1uxsVF2MK+PuztZt+bTsPnCwTgy1jpeOAhCPm8AEFLJfwtFBKTns36ZTzF/MQJwSt57bUb03J54QLam7dtE0kMnw/P7d695kDQYlEAijxIZWoK/kcgUNkCbabtsVRCItTjAYha/f5SqZI3PBIRPle9Z2VxEe3aQ0OoLLJRhHBV6qJWFElC3GG3GKPW8VZWcLxWHirJwvt/cRHrMDyMSn9ei3we8c7KCt7LA2k4Nu3rcy+2MoqRR1CSBHdsLd3H1c+aJgZEOekyk2Wit9+GH3XoEJ5vBhh1XVCkSRJ0NMffDHYa4/A33yT66U9hNx5+2D3fW1VBz5BMQqcbK80tSrvroraQDoi4ubJpi61pAkz0eASYaPdBLxYBYBHhoTYq11wOpKdm25uZN6enp/I4XEXJ51kuC4fT77c/Fp4rExcXxfQyY/Zpo4EHBlt5PH02i9+PjYnBLPWyhaUSqhsXFkSWnVuW3R4qwXyXExPiHsoy0Te+ASPzxBP1nZFsFs58NAoeRK8XwN/LLyOTtHVrZcViLofPeb1wWBlUHBmpvCeSBOc9EEA1kZNAMZtF0H7xIgKBgweJbrnF9uHa3UC1pOK3CyRyy0Zn0MqVIa+9BhDk7rtB1E2EfXHuHOzEvn31E0ulkkhm7N/vzOl+5hlMJ737bqKbbxa62+nUWR4Ko+sAIRwGK1etLiqXEWx4vZW8vJdLdB02rlyGje7qEoPlPJ7GAE6hALCqpwf20owoCn76fOv1ZSaDZ4gIAzvqVbnG43heursBRjV7XgoFJEg9HvgKVhK83AnC04VDIdEmx9UuPNW5u7s5+KHr8OuOHsVxxscBytms6K0pq6tIZoyPA6Qkgh5gHsJgEFWJu3aZ0wnpNJKyPT1E990n+DPTaTHgjwg6wcivaKxYUlVUIEoSgvhG+kPTcA1LS7h3fj8AlbGxynu3soJ2z95etGvbbFu9anVRK0ouB13U3e1OGzIPLunrc/cZc1NkGTotkcD1RyLQU8PDtZ/PTAZ7P5+HPu3qEqBaICAAxWjU/ViRh79wq3MoJFrQOfbl6j+nRS+aBp2RzUJncIxXKmGdmH5DUaAjGFQNBLBuRn7FkyeRXN27l+izn3XP7vJAzkwGPp7DrrN210VtIR0QcXNl0xebq/rKZTFuPRi0pwxlGU5TuYyH20iybWxv7uvD3xt9RzKJ4wwOCqeVgU8+TxYm6GaFGo2aCwyZALZUEvwNRKLVuVwWHEbDwxvHXVgta2sCUEwm8buhITGYpa8PhnpuDsZN1/H3yUnnXID1JJvF/ePWdJbnnoPBeOSR+tO7OCPu8wmy81SK6Oc/x/HuuWe98c7nK6dBc+s5EYzW6KhoOxgagvPuxAlKpwFAzM/ju/btI7rtNkdOQbsbqJZV/HaAxA4/4pUjly4R/eM/wkF94gmxB5aWBMF2PT2oqgBEFAUAopMKjBdeAJh5220IqrNZMenRidNcKABA9High1yoErmqdZEsw6a2CpCoqgC2vF74QUzTkkjAhjWiHVlZwR6fnGw82Zml0cRmIvgXP/kJbOqnPlUfbFpZEUnA669vbmvLZSQ2VRXXaLWKlnnCiMT0ZkUR7X7MKcgBdC0OMV1HsKko+PvCAgJQfvb37XNuC4pF8H2Fw2g5rj7e2hq+c3kZ53fgAPy4evdXUUCNkM8j+K5OuCsKrsnYCs3Vml6vmHYdj2PtjxyxNoQpm63kDedWZx6OEImAH9rBoKirWhe1mvAzouvYN274RqureC5GRpwPFHNTVBXPYSIBfevxIEYdHGxe2KLriFlWV0VHXDAoqoe54psBRaddCNXCvKqJhPg+jqPdqqw+dQrrc8010COcvOG4KxwWg0/9/so2aH6pKuKoH/wAsernPy/aoZ3Gz7IsQM5rrnFlwny766K2kA6IuLly2RZbVUWLsNcrwESromkAYvJ5KGcj346xvTkYRMVive/g7KjXi+OwQlZVAEd+f+VnuU2bB8gEAnBc6wUMnF1hAtrqKkxdhyPFrc5cEeem0jYjmQwq9qan4dxlMrhHvb1Yv2uvxc+NPKdSCecQDCJA53U6fRrTHm++Gdw4tYQz4lweHw7j/H/2M/zuk580d+66joCHAcXFRQTasoz9MTAg2qAZ9DULKiaT4DNbWUGgsWMHHGWHDlW7G6iWVvyahp8dIPHqkmwWg1T8fvAgGluPzp5F0LttW+3P6jp0Ri4HANJJpcQrrxD95jfg+rn3XuFs2+FvM0ouh+vw+RpXU1qUq14XybJIyA0MbF5CsJ7w4LFIRPhIkoRzDIcbAz8XL8JX273b3P5oBiSurKCiNhZDa3M90DqRQHVdOAwgsVnlC4OlkgQbbQb0rP48g4AcwBr/lstVDiTw+SorFJnb2tgGWCqhXW9uDsABTyq2I6pK9Pvf45g339wY7I/H4Qclk/jeQ4dq87U+9xz8qoceMl9tWioBUGRQ8dQp3NOJCfhC3P7MVYtmKpbKZeFrJZO478PDOC+HHHpXvS5qNeHnzOezNbRrnfCgJV3H/rvcSRuOJVdWRGzIVc6Dg9ZsrKbheVhdxb97e2FPikWAjDz52ufD3/r63AFnZVkMGC2X8R3s+/JUZyeViNPT8I2GhnDOfPxIRHAcmrmP588Tfe1r0BWPPYbPGKdBM5jIHItm16VcRiFKoYCY18zwLhPS7rqoLaQDIm6uXPbFVhRRsuzzwXmzqpy4ZSeVggM3Pl6pLPJ5AI26vr5i0SilEhQ2cy6wlMtQqsHgeqdY16HQufWZS66NbR75PI7B3HzNlCO35yQSMBw9PTCO/f2bw7EmSVivCxfg/KZS4jx6ekSF4kYQGmsaDIym4Tt4vTMZoq9/HUb40UdrGwOenpVOQ/HzfX7xRVzHPffYzybNzgLkjURwf+Jx3COuXmCCZAYVR0drV3jwcIV0GhVOExNoTXTB8Wl3A3XZdVEzYSDRioPW4UdsX1FVoq98Bbrw3/970cqiqgi8iQC81Xt2p6fh/O/Y4Yyz6c03iX7xC7T8/OEfCloQu9y8LNksAMSuLlyHi5y87b7TXdFFigJ9T9QaQGImA/+mv1/4NwyMcXVdLZFlsU927zanxzQNz4nXW/v5WFxEYm9ggOiBB+rvvWQSYFggQHTDDc33O/uCuRyucXjYmt7liaPFIq63lr/GHSXZrAAOCwX4ruPjCIqrbcTiImgIikW0GR88aH0/nDgBn+P6683rk7k5AHLZrJh8yiDyu+/CN7rlFiQn7MjiIgL5/n68GFjkhDkR1qWaX7GeDc1kMCE6mcQaxWLCp7JZId3RRS0o5TL2CMdLToVbhnni+uXwtbgQhDk/OcHHlFhOeHJVFfEg25P+fjzPPh+emVQKz56iCH5k1vNW9IyiQLdJEo7DA0uYzot1Hse6XJFtZr1Zt05PQ6cPDMCeGIFDK+szN0f09NPQt089JYpDVFUMbeGKRRavt3JoSy3+3lIJdBGSBB3kYrddu+uitpAOiFhHPB7PnxDRV4loh67r0y4dtmUWW5ZFi7DfD4VgtcKCFXgohPYbo/JUFASDhQKcGW7rqZZMBu/p7690WJnYtd5QGE0TYKLHg3PweASvTjRq3QlSFFwPcxpxW+3IyMYEJMkkFDNPrOaW5f5+KNZLl2AA5uexFqGQABTd4kScn4eh2rpVOBeaRvTd78KIPvFE/ezl+fNYq927BVh44gSc9xtvREm6HYnHsSZjY+ud92JxfRs0t/t0dQmun5ERrM/KCj5z4QL+9olPuMMNQ5tooK50XdRInACJlztD3hFr8uyzIPV/7DFws7FMT8Nh37OnfgC0tARdOj7uiIib3n0XQfW+fUR/9EfCTgaDzoKvdBr6Mhg0P4jBgnR00QeiKLCr3Krp8jpblpUV7B8jKMPcU3199av0uUNhaAh72ow0mthMBH/i+edxLvfdV9+nSafxHPj9ANDMdBIkEqLKsjqpbEaM7c3d3fXBS65+zGYrk0XRqJj0bJwuevw4nrtwGKCo2bWcm0PiYudO65PddR3VpCdPwvcYG4Pv8ctfwn+zO8U0mcQxBwbQrm08Bk9+NU6DliT8jQc3GPkVIxH8/de/ho676y68j7nkjO2UVtqlqaOLWlYKBdzzaNSdCvhCAXslFrNehexUUikRp0WjolpQUdzla5RlMZWe6TIGB/Fv5ndNpfDiFupYTLQ917M/XOzC8WskUp9zUdPwPVy1bazIrpdwyeUE1+rZs4iHbrrJPq9jPE701a9Cjz71VOP11XVcnxFUZM5yIpwzg4qKgpiRO9ks6ppm0vRKN0iHXFXSARHryNVioEol0SLc1QUlYQUw46EqPh8AsOoW5NVVvOq1N/MEZU2rJB3nikOixgNhNA2KMpGAouJsuBMAgfkxuL2YW65HRx1N0CQinCMHvPk81nxiAmtTD/RkLsrpaVToyTI+t3UrnNLJSXvBUiKBIGdkpDL789vfggfo/vsRTNeShQWcz+SkaMtZWoKjvHUrJvvZkWQSxx4YMO/ws0PBoOLqKo6TTGK/FQpY34ceqpwu7lA6zvImiR0gsTNopb3kvfcwbOAjH6mcAL+2BvBjfLySq9UoTFcwMICg366cOkX0/e8DNPjsZ4XzzrxsdiWZRBIjHAaAuAEJqY4uMoiqYt9oGoJbFys+LYumwS5qmkj8cQUNc0LXO7+FBdjo7dvNB8UMJNaq+CDCc/KrX8FG1+IqZslmUR3i8QB8MwOgZ7Owv11dYqiMFalub64OePnvzO/m88FHZB5FbumORASg6PdjrY8exWcnJwGMNgJR0mm8f3AQ1ch2q6yYP+yddwDWjYwQ/cf/aK9KOp+HjgyHUa1jxq6Vy5WgIq8tn9vZs7j/99yD/cBrwlVm8Tj+HQoJINTE93Z0UQsLt+Py8+NUUik8ewMDzmMjM8KcnpIk9iWfh9/fWJ86kXIZsRK3hQ8Nre9UKxRwHsmkKGyIRgWgGAyKGQWFgqDaslIRyFOdGXyMRnEMbofmDj2/H+d5/jzec+SIfb9jbY3on/4J5/inf2oP6NP1SlCRKzCPH8eaHD4sugf43F2QDoi4CdIBEeuIx+PxEVEXEZV09xapZReb+QZ5IlU4bP5BliSAXJoGQKw64MrnK0m4q5WQolSSjrNwtaHPVxtg03UoVT5vIsGHFom4QlhPxSKMFnNkdHfXb51tdhyessyl91NTOJZVcIQBvEuXsPYM4G7fjmOayTLm8wAke3oquXvm5oi+9z20J3/iE7U/u7aGgHtwUICM+TwqiUIhgI92DFY+j+qLaLSSm9GqcEtRKgUHvlgE2MrORTW/ImcWLcpmOstXlS6qJVaBxA4/YvvI8jLR3/0dbMOf/ZmwO6USqoEiEbQk1tIH+bx4z9699u/1hQsAMScmiL7wBRyHuXKdkKivraEqic9vg0Dtji6qElVFMKeqlx9IlGVUz3Fng8cD3cTJU+NwOaNoGoJARUEVrlmbypNF6wGJ778Pzs+dO4k+9rH6ezufB7+grgN4MwOkF4u4Vo8HQKJVH8zY3uz3C7CjGkCstRaSJADFchm/C4fx/EajeMZPncJnDx2Cv1Qt5TISqF4veBCdAv6aBn/q3XfRsRGLYd2vvdb82pTL8GOIUKFtdy+zv5xIYGjUygrOiWlogkH8mysWu7tFgjabFeBJE97wji5qYeGiCyLcZzfakHlI5ejoxlV+M+VUPi/0aE8P7Gux6Lx92awUi2KSM3c+1aLrkiRRociAIZGYPN/fX1k1bVWY4ml5Gf8OBHDM4WEc3+9HR5iimK8mryWZDADEchkViMYZCE4knyc6dgznx7qQ7RaRaIM28iva2KtmQMSN0CFXlXRAxM2Vll5sHl4iSfh3MFi/nbhaFAXgjSQJPsHqvy8sQHnUam8uFKCw2OEzfq5UghIxOk+ceeE2X85ac4ZDlqGgnfJYGc9jZQWKu1TCuYyM4NXIcK6tiZZljwdKeHLSnbJtTYMR4UnP+bxw3rdvB3BWq4JAlvF+vx/v4fsgSeBB9PsRSNe6rlwOAF00ikmEXi/uwXPP4f7df7898uZSCcF2Vxcqgew6AwzUdnUhYPD5BKjJU7mXlvCTK119PnEvmV/RxDW0O99GS+uiWmIXSOzwI7aulEoYpCJJGKTCzx0PSZFlJCpq6aJyGYCI1wvqBLsB/+ws0Te/iSDkySeh242tlXZ10eoq9Gx3N4L1DayKbffdvSG6SNNgf1VVVIJcLikU4D90d4tEqapWDpertc8kCdVssVht0KuWcDsZUf1n4p13AJbt39+4a6BQAJCoqgCwzNh2WRbJ0pERe62FxvbmcBj/93jMV1DxYL1sVrT1BoM4xtmz8FWGh1Ghw+CoriOwzWTQ+udwwAgREb38MtbvE5+Ar3XyJMBMrxdJhXq6jUVV4W8ViwA+3eiEeeklAIl/8AfwdarboNkvMg516OoSCXsi4cP39a2zrR1d1OLCE8CZg9SpqCriIo/HelFEM+EBVZkMdBl3TZXLIgnT1+fOs2pF8nnEEJIEvcLgXS1JpxGXcMszV1lzhaLZZ5p5LXkAC5HQHezn+nxYi+lpvO/w4fozCcxc41e+Av3wpS+Z7wxrJtkskioeDwBOY4xqrFSU5fVt0EZQ0edr6te3uy5qC+mAiHWkuszV4/H8MxF9kYjGiOi/EtEfEpGPiJ4lov9F1/U1E4dti8XmVmJ2vkKhxi3FLJoG5zGXA4hYq/2Mp2gFAutbeFMpMenP6FiVSlAqwSAUBxPRssKsF2DyABm/H4rKjWoEXYdRWFrCTx7wMToqDBnz9szNiSwRtyxvZCCzsiImPafT+N3IiAAUe3pw/jMzWJ/t2yvX5Kc/hYP7+OO1B6KUSmip8XhgnHjdX38djvkdd6AS0qooCr5X15Glt5vNnJ3FfYlEwLOhaQAQ6xnRTKayDXp5WRitcBhrwPyKo6Pr7t1la9u5mnRRtVgFEjuDVlpXdB3g3alTaJMxgiTz89BnO3bUfn5VFZ8rlwEg2q06j8cxbTAaJfriF6E7ODllZihXPVleRqV4Tw8AxA2ukOjoojrC0zZlGQGbG90JdiWZhM0ZGhKBY7kMoJO7MGrpqEQCftX4uPmplc0mNhNhgNDbb8OWf/jD9Y8lSXhfuYz3mkmAMm1LsYjrskOWz9Wka2uCa9FOokCWRYUid63E4/AXeIDMnj0Aay9dQnKU2ySdyNmzRD//OcDXj35U/J4Tsfz9+/fXTjLoOnTc2hqqdZzyzmkaOGeXljDcpZ6vJssCUGRwUZbFOcmy4AwfGIBvOTz8b/emo4vaQEolxFHhsP0qNaOUy7B5DKg5FW6pTyZhO4eHBd0V782NbF82K5kM/JRyWcQMDIpJkvAljIBtOi3awHUdf2NAMRartAF8DB4WSgQbFoutj32LRZzP8eOwGQcPooPDTswpSUT//M+I1598Es+4G5LJCL7d665rvvfYjhkHt3AMQFQJKtZog7bczuySDrmq5DLPr2tLeYaILhDR3xDRPiL6D0RUJqInL+dJuSnMKxMKCTCxVML/eYBJLfF6UWW3vAzHR5YBnhkDqKEhHHt+HmCXsWqxpwefSaXwPv4e5pLIZitBnkZTqgIBvEolUeXY1YXPOCm593iEwpck0eq8ugoFpijCUe3pgfM3MrI5LZXDw3h96ENYQ65QfOMNvAYGYHj4vIzG97334ETffnttAFFVUfWjqsiI8xqePw9n+cABewCipsFxV1WACHbvzcwM9l1vL4yoooA8vlEWjicX7tkjziWREKBiPI7jsvT24r5zdWMLiG1dlM9v7IltlOh6ZcuDGenwI7amvPIKwIl774Xe4j2ZyUAncJtn9V7VdeiqXA5OMpOUW5VEgugb38B3fPrT+N3yMmxQLCaSaFYlHod96+2F/ePqHbdF19Eq+Sd/sjHHtyi2ddG5cxt7Ypz4u3gRgdzlBBJXV8XAFLa/koQ9HwrVr/RbWwPotHWr+fNvNrGZp4m+8AL8mAMH6h+ruxv2/5lnUD1nBkhkvmumKBkctJbIkWWRMOZOAictgCxMkdPXh7138qQYnHTNNdArTvdkKgV6F06mVx+P7//p0+jiePFF+CGTk2KNZmdxzVNTWMdEwv756Dp0Ld/nUsncNfIAB24Vz+UEsJHN4pisL8fG0MHSAnLFx2TaHPUAACAASURBVGhOJRgUsQqDME4kEMDzxIkSO91IRKLji/f60JAYkqhp+Jsk4Vnt77/8VDXc9p9OiyKOQAA6mgGu6ir4oSG8VFUAisxPz9RdnCxhwCwSEVWL9RIp4bDoeNu3D88k02j09JgfqiLL8IuWl4k+/3n3AMRUCnFmIAAA0Ywd83iwN3leAxHWxMivWCpVDpHy+5F8aZQYMyEdHWJSOiCidXlF1/X/lf/jwVP5Hzwez5d1Xc9cvtNyX3jkPIOJxSIe2HC4cXZjZASKYmkJSrV68Eckgoqz+Xm8p1AQE/16e+EwZzICANI0Me6+qwsK2KzRCwbxkiR8TzqNc4tGnTujPC05EkF25eJFKLeREThqu3ZdvixZXx9Kxa+/Hg7f9DSq815/Hcbl0iVRoejzwYndtg3tPdXCrYXFIpxszrStrQGcHBvD99iRhQUcd2rKXkZU13Ftq6sIUo4fR+Bx773Wqx8448mZVAa0Z2exV+fmYARzuZYBEa8aXcTCThCDiWacIubU4paPjlx+uXABQ5gOHEBVDIui4HkLBuu3z8zOionydoOVdJroO9/Bvx9/HLamWBTtRnaDqoUF2LT+fujXjap+VRSi//JfAAC1CIjYsrrI48H9TadF9Ycb1Td2pL9fJFk5uRgKCSDc56vd3jY2Bju3uFhJQdJI+D2NkihHjmDPHz8OX4UTatUSDCLxeOoUgK89e5rbV49H+GrcyseAQDNhANHrxWcUBXY3nXY2XZZ5Fnt6cNzJSVzT88+LexEOiwnGdp7fcpnoN7/Bd91xR/3r7elB23QigTU9fhw+JPNfLi/DF6mV1LUqx49DL+3bJwbhWREuIGDfyDgFdnUVvtGZM87P0yVpWV3UShKJiOeqt9e5bxSLiWE+DKSZFU0TXWo8EMvIsVgqifZl5hNsFeHCkkgEvkk8jt+PjjYe5OjzQYf29+MeLC6KmJlt1NgYEpH9/c315soK9MfEBKqb+RnNZMSwyVhMcCbWElUFN/TsLNGjj6JC2g1ZW4MOCoed8boSYZ9yXM8iywKjeOEFoh/+ENfhQDo6xKR0QETr8rdV/3+RiP6KiLYR0XubfzobL9w2rCgA4pj4ulGLMI+3n58XQKLRqPh8cGYSCcEtwe3NsRiUKisJrjLhdh9jObNZCYVwPFY0PLk3ErEHJiqKaFkuFnH8u+/Gua+twWl++20xxMMN7hG7EovBGHR1IWhQFICIx4+DfPedd/Ce++6rDcxMT2O9du0SFQilEoDHYJDottvsOdvLy3A4THIQrhNdBxixtoZj8DCVj3/cuuOtqmJv8IsnGYZCMMoTE0S33mqfY2QDxLYu2oxJehspRhDRzN7rDFppHUmliH78Y+j7z3++0oZcuACdsm9f7SAkHoc92LEDNsWO5PNE//qv+PdTT0F3lErCqTczibaWzM5Cn01NAejZKAAxmyX6679G4uqL/z97bx4l11ldi5+ah55n9SCpZc3W5HnCxsYDg40N2AYHbGN4fiGAgWRBXmJCBiB5kPeSrPyAhCkMYUwCITwwGGyMEca2hGfLkmxJLfU8V3dX13TrVt3h98fm5Ls131t1q9Ql1V6rV7fUXVV3+s53zj7n7HNPdT6jDJRti+wKVEpB1/HsyXKu9nItMTyM59jvz9ynwmHsO+3t+UnOoSGsj2DQ2rPPCRSXK7/t27wZgdf4OO5FISKRCL87dAjP4PCw+X02FsM5u91IDhQLIjlhzIQfryMeCsETg7Nb/8qBosD35Aq6U6dAhu3YIbpdeNKz2X3jpz/F8b397bBxpbBlC6pmpqfhw5w8ifM8//zyfSsjXnwR5/ma16DFsVoot3K7CjjrYrRy4HCIKrpoNHOtlYuODqFX2NdXWn6AJ9UvLOAZbWvLlQ4yti9Xc3hLuWAiVpZFciKRQMx06hTseXd35rXgKc3cqsz2eds27Es8SGp1FbEaD8Fsb8c1yr6ukQgSEa2teA8iMRSOK4mNEgXBIP7W6GPxEKiREaI3val4ZboVhEIoYGlqAoFo1/0zSiuk0zj+n/0McenFF1f89g0bYhINEtE6xrP+vfK772WovtQX2KlLp4UB5OEl+QxDUxOCqakpOKgDA7lkWldXZnszC+dKkjCc7DC6XMJoOJ3WjRG3aQcCOH5u02ZdEDNOYjyO85mbg6Fva0NVZU+PeH1PjxAE5tL8pqaKJgFXBFXF9XW74fi7XKgoTKWIvv99GOPubhjfgwdB7g4PwwFeWABZOjAgNC51Hdo6koSKv3Law8JhXJuODvM6T0bw5MpwGMd25Aje75prSjvuPECIycJEQuiNEMGBaW4WQQRrKHV2lpxMWGuctbbIWJFo/Hexv3c4rFUwNmA/FIXo3/4NNunOOzPJhMVFOLrZCScGVwV3dJRPICaTaNWJRvH5fX0iOcZyF+VgfBzH39tbXqWPWUxNEX3kI7DJ999PdPPN1fssi1jztsjhwLNj1KM6HRUtPh+OY3kZAR0npdraRIuby5VLtDU14flaWIAfZTaZ5XKJYSv5ki5OJxJvDz0EH8DjKTzExeNBIPjSS2gD1jRz+oHNzfA/OPHa359/H+WBKNkEIh9nezt8MNa7NjtopRCOHoUPcOGFeO99+4ieeQbrORZDQiAaFUNGmFAs9JnPPgvi4KqrzBGIRgwO4hgefhifOTODwSx79pSvh3j0KEjRLVuqSyASnV6ZgCyseVu0VuB04nmORrGmKk2scPXx/DzII55Gnw2WmJifh+/d3Iy/Ne6/qgobye3LhTRjTxe4elyScFzNzaJ6uaUFsV4ohP2G7bzfj+vME5tdLpHQyq58bm8X0+p50jNr3be0CEJR0xD/+Hxi2GU2uJJYUYQ+LOv18+f/+MewF69/ff6OtHIwP49K75YW6OnaMe2eOQAu8uDz/c53sC+99rVEd9xR2edQw4aYRoNEtA61wP+vIfNWXXg8MF48vISzxsFgrpHw+UAkTk/jq6cHxtWIQACVJdwKxqSbogiizvjZ3N5cSOunFNghZDKRdR+ZTMzeqHRdtGyw0G9fHwLZQhWG3Oo8NITzmZuDczkxIQZ11KrVmSclcusyg4cX3HEHJvUxkTs+Dp1DNtRchcc4dAjveemluffSDOJxvL6pqbyJX5omJiyuXw+tppkZZO3z6XekUpmEIU8fJ8LzGgjASQ8EcN+M1ygWQ9DmdiNYOp0iznlwVtsiq0Si04lnpzGx+fThJz+BHb3zzszkgSRhDbe15U8qJBKwn01N2CvKQSqFFpelJdi8oSHsL5wMKyeAYjmFpSXYh3LJTTM4dIjoT/8Un/l3f1ex5o/dqBtb1N6OYCwWw7U8HV0CLS0gzMJh7Cnsd3R04FlaWcE6yPZventx3NPT1vSd3W6hIeV259o+l4vohhug4/fLXyKQLESCud0ICA8fFjrJZggzvx/rY3YWa72nJ7MDgQlEHkJQyD43NeFvolHRolcOgTU2Bv9n61bRYdHdjevAbdujo6iKbmsTmoBEmRWKfA8mJ4kOHMD7lSPvwtPmh4aQnJ2awr8feQR+zq5d1p7VEydALmzcWL7cTJ2ibmzRWgDrzbE+YqXDH91uEH7cQpste8ADDTnm2rQpN5mTTIJA1DS8fi11znCbMGsdB4M4vmzyzu0WNnx8HP6Ly4X/49ixVEECk5PNzXhNIiEIxclJ2KeJCdyzq64qvR+43dhjOBnDrc4//CHs+WtfS3T55eVfGyNmZ2FD29uRCCk32cPxPusgEgntSK8Xdvmf/gnX4+1vJ7r2WlsOv2FDTKJBIjZQNozDS3gyFDvERoPhdqM6Y2YGTls6nZuhcrkQhPFUrngcjhNP1jM6T14vDAtXEZZLBnAWjslEJpiYTFIUHPP0NP7f50Prz8CAeefd5YLj39uL6zM3h/ecmRGtzuXqeplBKIRruW5dpqMdjyPj3dMD8s3lgrO5caOo8vvVrxBsjY3BoeV285ERVDIWa3sqBFkWUwnXr7d+71QVzjG3Ux07hg36kkuQbef2JCaHJUloQrHmUVeXIIyL3UeeDOn34/o1BnOsPZRDJBrb+xqoHZ59FhNhr74a+moMTYONcbvzD2dKpbDm3e7yJx0rCqqup6eJbr8d1eO6DlKAHXWrtkjX4cQvL8M2lpMQMYuHHiL69Kexj3z609iHGigfbW243/G4GIJWa3R1wb8JhcTkYadTEInLy7mdCw4H1siJEwgezznH/HPLg99UNX9FiMcD8vAnP4FvcOONovsg33vt2QOS6vhxrGEzg9U8HgTDc3NiiFFXF/bseLw0gcjwenGdIhH4Ajzcw+y1WF5GUN/Xl1s57HKBsBsaInruOZD3fX2oznE6BZk4Py/a0okwibmjA1WdVqFpIAzTaVzXYBBtiZs24foePw4fbNMm2M5S5MPYGOR0BgfR2tdImDVQDIEAbAPrslZaMRYIwKZyTNjcjPdmDXyfD+suXzU1TwT3eBCfrJX2ZV0Xcl6sWZhPWz+dhn3gIUREOI/+fqG7bNSNtLI2g0F88cC2gwfxGT09sGd+vxj8WayrwkhOPvwwbBxPc+ZK90o6rqansUd1dsKWWvW1VVUQh0ZNX47Z+P0mJ4k++1lciw9+ELazgdqiQSI2UDF8PhjEZBJfqRT+z9gi7HDAoeH23lQK/+ZWG57C194Op3JxEV/soPFn8HvxsBQm/SoBl5QHAjiO+XlsdpGImK61dWvmxOhywILesixanZeXYez7+vD+drY6s+g1TxVm6DqC0nQaA0KyDbyiYJO74AIYZZ70/PLLyLQHAti0jh4F6Wg2S6iqCHwcDjgQVjcWRYEznUhgszt2DEHMjh24rlw9yeBpl0wY+nzm9fMWFxEsNDcjcG844WsXlVYkNlB9TE+jXWbzZmjHZv9OlkEQZgcvqoqkhaZhnZcTUGgaMu2jo0S33ILKIiYQuaXV6nOgaXDaw2GQJ4XIlkqh60Rf+xrR178OZ/yTn6zeZ51t4HZZDgprrXXrcGAfnZ3FfrNunZguaaxIzK7293rhO/H0XrPPA7+3sSIxGz4ffIIHHgAp9sY3Fu42cDoReB49ijWqqoXboLNf198vKpUiEfhfLCNidq/Nbm9Op3FPSxEgySSqbngacyG0tUEe5eRJ+Bm/+IUYmNfTI7QbWeM1EkEVz+qq9erI48dhj3buzKzK8njEZ778MmzO+Dj80e3b83dGTE+jJbuvD0OrGr5LA2bQ3CwqtFtbK/eNuFttbk4UfXg8sF0dHbnPparC5skyYop8f3M6oOsgqVi7kO2U0c5wFXU8jp+J8HddXfhb4zpNJIRM1NIS4otyquGnphBDXX89yDqe9Dw3hy+emN3eXli248ABSFNdeSXRTTcJ8pPlXXiqs5VnYWICdqq7GwkPs69VFNGqzHMPuMPR48l9nxdfJPqXf8Hx3X9/dbtAGiiMBonYgC1wOEQFH7cHy7KYdsebQU9P5uRmFrXXNKFBx1mS2VkhBkskphkS4TtXQaZSlbeZssDv1BSc21QKG8DQkP2tx5yFM7Y6j44iKOjpyRUWLgepFKoduYrOiOeeg6HnzccIVRUtSrt34zhYy3FxERV/27bh5wMH8NXTAzJxeLhwIKbr+Mx0Gn9n9XryBMlwGAHI449D/2LzZmxWiYRoSw4Gcd7lOEGahvshSWJyWgNrH1aIRB6uomkNfcRaIJEg+u534ezdcUfmugyHhQh7tqPLg5MkCUFzudPbH3gACYfXvQ5tmHxMioJjslp1oWkgTSIR2D2eWGo3ZJnob/8W5MW11xL9r/91egd0nYngqjcmlI3JtlqAW94WFrAOuJWfA0CjnpYR7e1CaqO52Xwiz+EQ0+pVNX8iLxhEQPnjH0Oo/uabC+/rDocIFEdH8Z5mqmSZQE2nM5MI5dhiY3tzOFycwNM0+A2aBltQKpHpcOC4BgbEELqJCWgotrXBLzp0CH93883wF0IhfHFVZamqnvFx3PtNmwpPvPb7MWhl2zYQmq+8AnJzxw7YRj6P+XlUJ3V2YghcI0nWgFmwll8kAjKs0r2G5a4mJvAc7tiRGcMZkUxiDej62mpfTiZhZ1VVVFRyIpN/F4vBjhGJAotsktGIYBAxUDSKOGpqSrzO7HlPTSE+Xr9exHc9PfjiIhDWnV9YEBJk7e1iz3vuOSSKzj0XyVWugufETDQqElk81blUEnd0FPastxcJkVL2PJ0WX0wcejywd/mIQyI8I7/8JdH3vgf/6wMfWFPDLs86NEjEBmwFDy/JRyZy6XZbG5yeEydg5DZsgPEzGl2XCyTb8jKczNFRGBmjNp/bLYRWnc7ySvDZiWVHlifx9veLCVpckcjOql1wOoXhj0ZFBml2Fsa8r68846hpOB+u/jQa8vl5ZJ7yCW3rOu5JPI4NwLihHTyITekNbxD3gFudx8eR+X7mGRw3E4rGCobpaVzLoSFzwwsURWgYrq6C2JRlvDe39+zbh9bIQKDy9gsiPAuzs/jsfKRGA2sbVolEnvTe0EesHjQNzl40SvSe92TalFQKiZNgMP9wBp52vHFj+e2mDz8M0uCaa8TEPknCZwcC1pMZLKcQiyHoL0cT1gxWVog+9jEQFHfdhSnMa2ig0xkFrn5jEopbnWuFQACfubqKpB0H79xiyJqd2fvRwAD26snJTCKpFDgwM7aJZaO5Ge3MDzyAacO33FJ4P3Q44DO5XCAMNM0cIRiPi4QqD6zr7y8vgcrtzTw0IJXK3xZ9/Dj8ub17rQ1RCgahGz05CSLxl79EJaCmIbl5ySViGIGqipZnlkRxu0UgbhygMD+P8163LtO3LYSmJnzW9u2way+9BHu0axfe/4knYCuvusoen6iBsws8KJOre8sZNKYoIK6WlwUJr+uwO/lIIWP7clfX2mhf5spCrtju6MBxSRLWdDyO33HxTEdH8YFL+cAJhtVVxMETE2J4VrEq5lAIydWenvz60G43rmNXl5jyHA7jfoRCOMaFBdiwnTuJbrstVzKDW51lWUhGRCKiTT2fL3LyJOxjfz+SHYUG6iiKaFXmJL7HI76K7RuahsF8+/fD3t5775rTqT/r4NA54mqgFjjrLraqiqCNDS4RjHAqBYPscsHwFAoUk0k4f+EwjGa29k4yic8xO2GZCEaR24FYvHdoCIY324ixxp6mwWDlGyBjF1IpHBPrBQUCotXZ7AY1MyOGjmQH7d/9Lq7VXXflOutjY3jtpk2Z+l7HjkHLbN++wpoT8TjIxLExEKHcJjg8jO+6jvPIV7WjaUK/kL84s5dO45hcLmTMIhEcy/AwCES7gj1JwnE7HLn6kQVQ77TTGWuLjBOYSz0fXI3Y0EesDh55BNqqb36zIPGIcM1HRrDutm/PtUULC3Cq+/rMaa3lw/79qFi+7DLRQp1KCfLCaoCkKAjYE4niVUOVYmwM7TkLC0R/9EeooCxBrDRskQ3ghKHPh2qMWicWFhbga2R3IoTDWCcdHbn7kiQheGtttT4V3KgNW8hvWlqCRmIggEq7UkT2yIgIJLdvL3wNWb7G74ePIstI4PG053KnpBMJ3TKXK7O9eWYGycjh4co0RVMpkPuHDqGa5+KLid75zvznqmkgI6JR0Q7JhLCiwGfq6IBvU87zFgqBSBwfx3OwdSvRW996WhMODVt0BoDbcrNbcYtBVUUVrq7jue7tBTEUj4PE4qnC/PdrrX2ZNfjTaTFsjddwLIafeTAnV4DbUe2r64iFQyFcl9ZW0bVnRDSKJEZTE+IxK5+taXj9Cy8Q/cd/IKa8+WbEvDzpuZAfzImRaBQ/c5U1J+BOnIB9HRzMTSDpembFoZE49HrzD/rKB0ki+tKXUIn9+tcT3XprydfVuy2qCzRIxNrirL3YnFEPh2GEWlpEFQdXqXV355/MSSSEp5eXQfYZNfVYs4Ko+KAVTUPGZ3ISwQIPcxkaKl1GruuCTNR1EYRWi3zQNJzr3JxwiLnVuRjBtbKC7Ha+KdgPP4xrePvtudMUeXp0f39mdmtxEa8bHDRP2iWTIADGxrC5LC0h4D7/fNy3ri4xjIerVRk8mIfv4/g4rvf27TiW/ftxLNddZ1+rDrcVuN04f5OZ0HrfoM5oW8StEWaIRFUVLc4N2IdXXiH61rfQ+veWt2TeB6663rgxVzJgdRV2o70dwX45gcWBA8i0n38+WjOJsAdFo1jnVlu1FAXJlGQSx1StttdnniH6y7/Es/jRj4KgMBHENWyRTZAkIXpf66BW00Ck6Tr2IaN/s7wshpBk70+Li1hLg4PWiW1FwfsXC+Tm5zG1ua0NGomlnsfRUez9fX35W9piMTEUz0gWKgrOX5bhv1TSopZOw8fTdfh2ioK11d6OScWV3tdkkujLX8Z5Xnwx/JPdu4tfG9b+jkZBFhw5Aj/ywgtxXPmGNJhBNEr0gx/Ar920CT7tnj2nTTu1YYvOEEQigtAq9lzqOnz8hQX8fVtbfkmmlRWsfY7xlpdF+3IlSQM7wPEp6xk6HDgXLh7hIZzNzZmVxHZD08RQLU2DXeAuPVmGpILTCRtWTgXexATRN7+JfeT222HHwmHYS25nZ0IxXxzEw2UiERyPwwHyMB7HkK9zzhF/x9WGXBDidGZWHFrB0hIGqMzNEd19NzQcTaDebVFdoEEi1hZn7cXm1lRj6zGXzrvdMA6rq9iw+vsLZ3VHRmBQWK+QNx+uZuPR70akUqJlmdvYhobEREQrYCOaTOJnvx/HUE0CIhbD9eFNt70dm3R2ICtJoiQ+W2T22DHoG116KcS/jQiHQS62t6Mtia+9JCF4cLvRxmx100okILq+uIhNZmwM140rT9evR1UAt/gYp3pLEo6ZCcSVFZACPT1EN9xgXyXo8jLeOxCA823hPtb7BnXG2yImEkvdU10XGeYGkWgPlpaIPv952On3vCdzvcbjIAlZ+sCIRALkI8tKlHM/nnsOduvccwV5yZl0p9Pc9FcjUilUwqdSyLJXa5LvAw8Q/eM/wjb+2Z+hqsikzW3YIhvBgZXHg2e0ljaBBxGwFjFD00SFT76uhNFRrJ0tW6y3A5shEqemMIytpwdtzqX234kJVMZ1d6PVlq8htxrzfp8NTQNpGY8jkK1kmB1X3sTjYpDKJZfYo5/94x/Dn3zzm2HrTpzAdT/vvNwEbTbSaVQTJRLwf1Ip0RoZDIoKHzM+TiJB9OijONdrroEvc+QIzrm3F2RitSqmC6Bhi84QaBpiMqdTDKEyQtdhJ+fnxXT0desKV8HqOv52aUkkELq7T2/bvaqKgSiJhDhOIlEx3NxcvDilGlAUoUdIBFs4OYnrfP755ZGus7MY0NbSQvQ//kdm4Uw8jnsZDgsitblZDGbJZzOTSSRmpqYQb27eDL+Nh3cRidkFHk/593l0lOhzn8O9et/74BeaRL3borpAg0SsLc66i80ZHkWBk8Xl36kUiCJVFROYWBuCSb582S9uewmH8X49PSKzxZOd2GhFIqJlWdcF8djZWfmGwHqJyaRo0672RpNO41x40/b7RYuwroOkczoRmBuvXSRC9O1v4/zf+tbMoCiRQDuM349MOr9O09CKuLQEAtFM5Y2qimpNribSdVxztxv3ZHVVtGuzsPvQEJzpDRtw7xIJEIgOBwjESATVkO3taO2zQwND13EMPImujGCl3jeos8IWmSUSua25oY9YOVIpoi9+Eev2vvsyKw1VFWubCGvbaKfSaSQziOAolrPOjxzBJOYtW2DrXC7cV65Ksjp1UpZBICoKSL1q6KRqGq7X974HrbYPfxhEhIVsfb0/sWvOFiWT2KtYD6uWRGI8DsKwtTVz7SiK0LTK3q+41d7ttj6ghHWqeHpzIYyOIpE3MIB9uFTV3NQUjqmzE0Qiy9o0NZWWCwmF4OOxXmq511/XUZU8P4/gm32RSnDwICRVrr0W50WEY332WXwfGACZWIgkPXwY93j3blERLUmiXdA4pIF10/LZgmQSUhGyDAKRfTSeHH/0KH43OIjPqlbyIwsNW3QGgdt7eagIIxJBskOWsUbNaIizVuL0NJ7pbdtOX9KWCdLFRUEeBgJi8rLV6erVAsd8zz6LWOXSS1FtbPW6hUJEX/0q7Mi99xav8pYkQShyh18wKAhFvx/X78gRHNvgIGz66qoYQNPRYY++5TPPEH3ta/jcD30ov3Z2EdS7LaoLNEjE2uKsudhcsSdJohQ8X1DIba2aBoOjqnD43G5UquV7DTtbPLSlqQmOm9uN95qdhXFLJESL6uBgdUrmueSdS7t5qEw1iQhub5qbw8bicIhM4I4dmZUImkb0/e/j7++8M9ORTKeh66PrCF6N1/rZZxHQv+pV+cV7ub3bqGPIGSxVFRPBtm/HhpV9TXgKMusoJhJiOpiqwtk/7zyc389/juv6hjfYs7GrKj47mRR6IGWg3jeos8YWNYjE2kHXYW8OHcIwkK1bM38/NgZnc+vWTHusaahATCZhw8qx1SMjIOKGhoje8Q5BFkSjCGBaWqwRCKzFq6oIeKoxMVKSiP7mb6Dd+LrXoUKgjOqMen9a16QtkmUEUi4XiLBaBrzLy3hue3oy14Is43c+X26FWTSK9dXdnalpbAZmicTjx4l+/Wsk/cxIiszOwo9gX6C11fwezkG+1yv8O6s4dQrk5+bNWP+aJiqLysHoKDQizz0X528ED6Y7ehTXcc8e+E7GveT4cZzTjh2FhzLJsvBx2afy+0WFos8HMnb/fvhHV1+d/70UBZ937Bhs2PAwjrvKraMNW3SGgQsDgkHhOycSeA7XrTNHTksS7BYR3icWw/dqDSYrBFkW1ZCsydrejnPgtbXWMDICu86SB243bLxZ3d5wGASipsG/sHLNeQ8Mh5H4IMJ+ODmJ3+3cKTr63G7ElMbiGh4mZTUhrOvonOOE8H33lZXArXdbVBdokIi1xVlxsVMpIULLwtnFjJ2uCzJR17FR8WQvznJk//3ysqhi5Ko2FqflDWrz5kxtoWpCHZY2XQAAIABJREFUUWA8Uyk41kwmVhvxODJCxuBh3TqxwTz5JNFTT6EFads28TrOiCcSyFIbDfTYGILa7dvFMASuHDV+selwu0Ulpt+P+yHLcFrNOKy6jkzZ4cM4VknCebS1oS2qvx8TxOxwflMpBDaqiuxpBcRAvW9QZ4UtYpglEotNLG2gNA4cQJB9ww2ojjFiaUkMXTC2auo6Wh/DYZCL5WihjY9jal9PT+bQKB7g1dRkzZGVJATgug67WY3AOxRC2/Lx40Tvehe0Gzs6yiJLGraoSuDhb04nSLta2QVu/UulcnV6udI/GMxdKzMzWGcsE2IFmgb753QWP8/Dh7HOt20jevWrS/t2IyMg1np74U9Yeb4TCTHwbGDAWpAfCqFteGAAwS63N6dSYgq2lWRROIyBBO3t0BMrdI3icUgqLCwgYL/wQnzWxATs38aNuXIzhcCVYNGoqApyOnEPZBnVkKW0D2UZCZqREfx7yxZcjypNNW3YojMQi4uoINQ0UXlohsTSddgqrmbs6sL6j0axntrbrdspq2BSPhTCsWgaSMO+vsLaf2sF09PwjYaGoDeYSMCuSBKuZ09PcRI3GkUlXyIBArFcnVRFgV2bm0N1YCiEPWb9esSdPJ2an4dUSkyoZ9kvnupc6plRFGhpP/kkKi/vuafse1Tvtqgu0CARa4sz+mJrmpjqxXoSVhY/D0iRZRihpSUYnP7+3Gox1oxIJODkHz0Kh2vTJmSA2VjVekpdOo1roChiulc1R9BHIggcmpvhXHLg4fMhINi/H1WGN9yQ+bpjx3D9duzIrGgIh6EnFgxCO5GrDZlccTqxIbCmSSCQeY+np/Eeg4PWKvxWV+Hk+nwINk6cQBYqGsX95Jbn4eHyhxokErg+/ExVmHWs9w3qjLZF+WCGSGzoI5aP8XGir3wF5MJdd2U6i1zVFwwiiDVichLrcsMGrH2rmJmBXENrK6akMuHHtouTG2aRSOBYWU6hGsmgEycwOCUWI/rDPwS50tFRNknVsEVVRDqNpGWtiURVRcLL6cxt6eUArbU1MxHGpB2331slpJlILDaxmQgk2bPPop33iivy/w3LCCgKfLoTJ7A2zzvPml/IiT9FMdc2SYQ1/PTTWPsXXZR5LpKEa5c9vbkY0mlUWMfjRHfcYa76anwcFdmKIiRn+vtz7Z9ZKAr8pEcfhc077zz4RVztUyrRkUgg4Tw+jnPevr28Z6QEGrboDAJrtHJra1cXYiwzNpBjtFQKz2dbW6ZPEArhPXt77a8A5DXOX1w5yXryp3F6uWksLyNZ0NWVO709FhPFGn4/rmF2QYQkgUAMh0HEmU1cMHgoSiolJiwfOyYqEAMBxN7RKPYNtxv3mCs7HQ6RuOFuEB5q19yc/xmKx6Glffw40S23YJBXBV1B9W6L6gINErG2OGMvtiyLrAOTS5UIYnO1G1eNDQyIAJNbYUdGYEhbWsTGxqLd69YJo3U6StRTKRhErpZsarI/4yXLcAh9PgTgDoeoxhwfh9Pr8aCN2TiEZnwcZN/wMJxableIRNA6LMtEV12FzYmnUHOloc9X+L6GQmIytBUyYGUF2bZAAI5tOg0iU5bRTh2J4Jjn5/H3bW049o0b8VlmEImI1qhyBurkQb1vUGesLSqGBpFYHUSjRP/8z1hf739/JvGm63AK02msb6MdXFzE2u7thQ2zisVFTBv0+eAoc1UD21+v11q1cSwGssPlwrFWY+948kmiT34SjvSf/AkqDCogEIkatqjqSKeFyH1nZ+2GASST2PeCwdy9bmUFv+/oyFxvsgzfKBjML0VSCqoK+1eKSDx4EHrKF1yAajsjNE1Md+V2tuVl/H0gYH26KBOqLEGSPdE9+2+feQbX4ZJL8icBuMJPVc21Nz/0EGzYm95kzU7JMtb7k0/i/t16q9Dwtgpdx/vMzOCad3eLwTG6jvvFAXqx7p9IBOTE9DSuzc6dsEE27XUNW3QGQFFgd1ZW8BxxtVk8Lsj3YuDiDiLYy3zri6utVRXxWiXJGS5AYdJQVbHGuRuurQ1f1SzosBOxGKqoAwGiffsKXxuWfEinYe97e/EaWSb6xjcQJ991l5iaXAxMFPKXruPeezz4+eWXcY137cpsiWZbHw4LXUR+RnjSs9MpYkxudW5qwt/wPVlYIPrMZ7BPvOtdqEKsEPVui+oCDRKxtjjjLjZPt0qnRZbBrkw96w1OTcH4sKaVcRpYSwsMUW+vGNzB7S89PTBQPGjldIAJOtZ8ZE2LSqFpaDvWNBBq2e/5wAPIGl19tfj71lY4B9PTMOx9fWLKtK4TvfACDPgNN8BRDgTMO5arq7hPbW3WMl5LS9AZampCBZOiQAsjHodGmNHhTiSEhuLsLI65qQlk4vAwziff8S4tCZH2Qn9TBup9gzrjbJEZ8LNOVPw5aOgjmoeqIuM9PY3pedktM9PTcHTPOScz+IhEQNi1tlofBkGEIOUb38DP99wjiAVFQXDN+5FZRKM4Hq8XtsjugEPXif7zP4m+8AWc74c/jD3KhsEd9f6E1oUtUhSh69XRUTufIhLBs97Rkbl+dB17m6LkitgvL2Pd9feXR1qZmdhMRPTYY/AzLr0UHQ9EIqjUtNyhIOEwqvO8XhCJVqp8mXTgCsyenvzHduQIfMDzzy8+mVjXhe6g15t/Ai0RgvnHHiO67DIh72IWkoTzXV0VHTabNyMQt9ql8/TT8H/OPz+zmpE7gLg6VdOEDnlLixhmmI2lJZC6i4v4m9270Z5Y4X7XsEV1DFXF87C0hGeusxOxFccXLFXFQzKzwRObY7HM9uVCSKexpj0efI6VZ4+HW/J0ZX7ueV15PGIgzFrUOiwEWUYsRoS1XsoP4cKRUAj3LxAg+sUvkGy4447i04yZOOQJ8Ubi0OvFvUulYAOTSXSFFUvgsE1lHUXW2TUSilyhzkVHPh+ega9/HffvvvvKr9bOQr3borpAg0SsLc6oiy1JYrKVmYl75WJxEe0z3O66Zw+qRNrbsXEsLeHveGKhLMOB5qErnZ0gkE5XVREPIUkkhNEMBisjW6enYaw3bMhtYzl0CC0vl1+OMvhoVExKHBmBIedWGG6DOXUKDuVFFxXfdPJBkkAEBgIg88w6AouLIAR5UpuqIuO/sgIis9gkLllGG+TYGM5NVfH8bdiAYxgYwHEsLMDBaGuDQ2MjIVTvG9QZZYusgIlEh6P488BEYkMfsTgefJDoiSeI3vY2ZM2NiERgW7q7M5MLkgSdLq8X9sbqNY5GQSDKMlqYuUqLCQx2XM2u99VVVEP7fLBFdhNEikL0uc8R/fjHaP/8gz9AcNPebsu+1LBFNQLrNet6bYlEniLa15fpZ2kagkci7G/GdTQ+jnWyeXN57XtmiERdh69x6hS6F7ZtK0wgMiIRBKVud+EpxsWwvIyvQAAkqXH9TE6iYnDzZvgBZsAVTE4nbIbxmGdmIKuycSM0S634D4oi2pn37sX5HjkCHywQAEFgdgDO88/jdbt3o3KwEHigIbcQqqqo+inURjg3B98vHIaftGeP9cE8BjRsUR2C46jFRTwz3Pabj8DiwRlNTZnkHE+PT6fzty8XQiKBz25uLk5Q8XHG44I4ZP+M40+uQGQSvR7alo1QVdhGSYJttNJFoWm4f9/6FuzxrbeiiCTbBmtaZsUhkSBfmThkJJM4nlQKNsyKXrWu4x4xoZhKiWEr3PIsy5gw/73vYf/60IfMt8ubQL3borpAg0SsLc6Ii60oMOKKIjI9dhN0PAVsagqGyOMB2ZVK4ecNG2CIvF78HzuVbOQ0TZTjO51wiqwEldUAl9zzUBK/vzxykzf73l6Radc0GPypKYh/d3ZiA2GiRNdB9LG+UioFQ93Vhd8dPIhretVV1o4lncaG5XSi0sis8Z+fh9B4WxuyTrqO7NnCAtFrXoOMuJVjmJpC0DQxIZyIpiZco927y28hKoJ636DOCFtULswSiY1BK8Vx6BDszeWXQ7/GCEUBUeh2g1xgO5dOozVG18sT+E8k0MIciRDdfbcIeDkLzlXXZu3qygpsWCCA47S7VTUeJ/r4x9FiefvtGBLl9SJgsmk/atiiGoKJRE3DPaxFixxLuGha7rA4Dt7d7sxEmaoiceh0Yo+16meYndisaUQPP4z995JLQLiV0hqMxVBt43BYD5aJsM4XFuAL8uCZcBjJ5q4uBLxWCT9uv25qgl8WjxP9+7/jve+4w1o1k6aBMIxG4X8YK0iXl6EnGYkgsbJvX/EE/OHDsJfbt4tqT7NgQpG7hYhwflylyPdI10HAHj6M8+7uxmeVMT23YYvqCFzFtrAgyL9160oXhLDGXWsrbFEiIYZhFmpfLoZwGO/Z2ZlrC7jbLRYTsZPbjWeYdffjccQ/7PdXIqd1uqDr0PZfWoLNKFZFXej1//VfsKtXXCGkLDo68F5MsCoK/t/pFF16+Wx1IgECUVVhC8zowBZDIiEIRe6AO3gQEg07d0J2i/1xTnqc5br1dYEGiVhb1PXF5iynJAljXQ1B3KkpIaTd0gJHi9tQk0kEfJKE6pP2dqEBEYuBlDJuYJGIqEocGqoKmWQZXIbP2hBMJprZ9OJxEGU+HzYHJiVlGRvEz36G73fcAQcwEMAmf+SI2Ax8PryGibzHH8d1vO02ay0FqgpiUlGwYZl9FmZncY87OlAxoOvIRk1OYtqjGf2OYsc0NobM/eSkGAIzOIjKhA0bbHtm632DqmtbZAfMEIkNfcTCWFiACPbAANG99+YSrSdPwl5t2yaCEk1D+6MkISi2Sh7IMoaoLC4Svf3tICwYHNgYg+NSWF4Wcgpbt9pPFs/NEd1/P+zdfffBufd6zU22tICGLaoxNA3PDlft1KJdLp3G3un1wh8yPj+yjOPx+TKDz3gc/lJHh3VhfSLzRKIsI4BdXCS6+WZzWozxOAJeXQeRaGZgihGShPVFBF/n0CHY6EsuKS8RYGxvdruJHnkE5Ozb3madTDtxAvZx27b8us2ahorJl1+Gzdm7N3/l5LFjOK9zzsnVnbSKZFJUKKZS+L9AQFQoer04rtFRkBnJJGz77t2WKpAatqhOsLqKGECWhY682f2YK/7ZP+LBJdnV0FawsIDnkuVQuNqQp5J7PII49PvxuUwsOhw4h2JaoGsdJ08iVt2yBevOCnSd6Kc/heTB9dejGCSZxH4RConW9O5uXDuPp/h9isdBIOo6khxWbXMpRKNEX/wi0VNPwb7ceKPQcnW5hC6vzyckGcq4r3X6JNQXzmoS0eFw/CsR3UNEHl3XlRp8ZN1e7HRaCNb6/fYaa86GTU6Kicy9vXB68zkviiJ0EltbRQsKZ6m6uzMNZCqFLHkkgg1qcHBtbDSs+SjLYhP0+3OPLZ3GubGGmKKIaY0ulxh68vTTqPy57TbhkHJGPB6HDo9RI0xVQTpOT8OQu924jn19QmOyEHQdBGQ8jkDerPMxPY0WIZ7yRkT0m98g0Ln8chALlSAeh2PkcuEarayAVBwbw+94MjPrKJaaaFgEtj5BDVt0emCFSGzoIwokkyAQUykMUsnOUi8uYq1nJ25OnsSa3LLF+pR1RSH67ndh+9/2tkzdHLajTU3mK8NCISGnsHWr/STx0aNEH/sYjvujH0XCpAoEIlHDFp0WnA4iMZHA2mppya1USSRADLBgPWN+HgH6hg3W2tEYPLGZ/Y1scBVfOo2E5Ooq0RveYK4lVpKQ8FNVBKtWq13SadgZbo+++urKA15JAoF45AgI0V27rL1+chK+0YYNpTsqolFUT4ZCIBsvuEAc/6lTqFhcvx6ak3bajFRKEIrJJP6PA3bWNT9xAiRmOg1/adcuU35ewxatccRiIN8lCfFGX195VWaShP2TCKRXpZ1ekoRnPpEQnQQ+nyAOeV/nNlmWh2LysJ6TvDMzkCsYHISfYBWPPII46vLLYQNTKTFEUFVR/cfar93dxX2QaFQkZPbtqyhGyotIBEP4RkcRq15zDfYM1tIkEq3V3GbNQ6Mszlwo62k8DTanrlGjGXOnFw6H4wIiuoWI/lXX9bHTfDh1BTbYySQWb1ubfTpAiiJalhMJGI1Nm7AhFXPI3W44aDMzMHgOB4yLwwEjxCQkw+tFwDk5CYc6mYRTdLqGrTDYMAYCOP94XBBdxqpP1iaanYVR3bYN9yEYFBvrqVNw+i66KDOjPTKCa7R9e+6QgaefhuG+8UY4quEwrs/UFBzzri44GPmc8tlZXOvBQfME4sSEmN68cSPO88ABHPtFF1VOIIbDIKF9PtHytW4dvi67TJAG4+P43AMH8JzwpOdKy/XNoGGL1hbYkeJcWj7HignGBpEI8ICQlRVUIGavG0mCbW5ryyQQp6fxmqEh6wSiquIzJyaI3vKWTAIxmYSD7PebJxDn57EftLXBabc7APnVr4g+/WnYur/4C1SC+XzmdaJqgYYtqgxOJ4i8lRV8tbdXTxeaEQxivUUiQkrG+DtFERNUeV/u7cVePTUFX8Nq+7XTWbgimwlEnuB6000Y6vbQQ/g5XxWeEYEAiLMXXsDX3r3WbAMnj5NJ+IRcYVcJJieR7Ni9G9cukTAfSC8uwkb19JiTZGlpQffF2Bh0CR95BK19Ph8IxP5+VFbabTN46EVXl5hUHYvBRwqFcF27uiAtMz4OP3JyEraSj89ONGxR9cGVu7EY7i/vw+U8W/E4bJ7PJ/bdct4nmRStytxuTwQbMzycGaNxTMSDKv3+/Bqf9YaVFdibzs7yurB+9Svo0u7bB1uRTOK6ccWh0wnbLElIJs3NIU7q6clNKq2uwg653Xg/uzUlZ2aIPvtZ7Bnvex90YYlgZ3t78QwwoRiN4p6rKo5ndVVUK7a2Vm6DGjbHHpwVJCIRXUBEf0VE+4lo7LQeSR1BlsXUq0DAfMttKfDE5dlZGIjWVgwA6e01H8w5ndgEFxaEFkdXF5zapSUcs/H9HA7Ryjo7C6M9OGhteqfd0HVcYyYLIxEYSkXBcbe1iXbt1VWc7/r1uaRePA5Nop4eoiuvFP8/MQGHcOPG3HackREh1M3Obns7vpJJBNmLi3h9UxOIuM5OHNfSEjY+zmiZwfg47lVfH+4DETTCjh1D4LB7d3nXkAjXMRTC9Wtqym31YnR34+uii7BJ8aTnp57CV0cHHJfhYet6JBbQsEVrDGaIRKdTtFjUu9NaKR57DG14N92U24LHU+Pd7swgOhSC3e3pKT4wKR90nehHP4K9uvHGzMqgVAq20+s17/DOzoLQ7OiA025ngK7rRN/5DtFXvwqbdv/9uBZ+f3lVYFVGwxZVCCORyIMpqi3m39EhdKC93kxSsLUVdioSwXPn8+H5Xr8eScbJyfKeebZ5rBHrdAryiQeScKXijTeCSPz5z6GTWmpYgt+PYPKFF1BRuGeP+f13fh6B6Xnn4XOWl3FcVie9MpaXiX75S/har3+9SO6yXlwx/zQahY3iafNm4XAged7fj2vwm9/Ad7v4YlQWVbvCyuPB9e7sFHrn0Sieaa70uuACPDsnTqCCaNs22wdQNWxRlSDLWCerq7AJAwO41+WsD+4ai8dFsj6ZxB7MnUylXm8kDlkqIRDA+m1qwu9XVvCe/H48/IhbXJub7dcuPh2Ix9GxEAyCnDdzT1hiIpUi+u1vYWe5JdjnwzXL9z6BAGLBWAyx3cwMYrneXlzPlRVoonq9sKd2JwqOHCH60pfw/n/yJ/nlGzweEaepqiAUIxGhu8l6mJ2diD8r6Ips2BwbcAYswwbsBmtNpFJYsKVEss1A12GwpqZgCJxO0bJcSQVYby+M0twcjA5rSaysiApFo8hub68gEicnQa6V63BaBQe8xi8mLtxuGENuxeZSdLcbDqws43fZBKKuYxNRFLQQsbO/uIhr3dsLstSIpSVUIfb3505TJYJTv3Ej7k0oBAfk5Ek4tsEgNnmuUiwFXQepEArh81iX6dAhbFg7dsBBLRc8QCeRwIZiVruICdN9+/CsM6H4/PP4amkRhGJPz9qpHmqgOjBDJBq1Wuq5daYSnDyJAUh79yLAzcbUFGzVli1iz4hGsb5aW0UCwQoefBCO9vXXZ9oKRcG6d7vNVwpNT8P2d3YicLdzXafTRP/wD6jCuv56ZNrTaew/tahybuD0wOFAABwOI+hh4qWa6O7Gc7y4mDuhuL1dJPq6ukRr2OAgfB5O5lmFyyUqQ5hsMhKIjKYmQSQ++CDRLbeUTtb6fKIi8aWXkCgopV8djyOZ0d4u5Ag8Hpx7Op07gKYUUinoinm98KXY92XSY2Uld3ozI5nEsXi9IAPK2R/8flT6HT4sdKuPHEGCvVaEidstfCNVxTWORvG9pwf+59QUWrBHRnBs1ajkbqBypNNY6xwL9fVhTZV7r9JpsbZaW0VSjCugWZM++/25gpA1Do0Tw7myzPia5masxdVV+FqKgtd4PHj/WgyyqgVSKax1lwskYDFbpeuZE5V1HbbhkUfw2ne8w7yN4PbwSATPx+QkjmVhQcREdl/jX/8aUjQDA0Qf/KC5JJHLJZIbmiYSG7zPzs3BZnZ0wNa3t58ZxHK94YzXRHQ4HB8nsM3ZeDcRXUPofV9HRH9PRDcTkYuIHiSi9+m6vpz1XpuI6BNE9Foi6iCicSL6KhH9na7rmonDWfMXO5mEoSfC5lBpVl1RkPGYnoZT5PPBmR0YsNdQxeP4DKcT78+OD2soBAIiK6+qOJblZfyN3w9yy872Zv4M4xdPxeLMm/Er37VgsfTxcZzH9u25RvKZZ6BDdP31opovEsEGwxWe2QLsDz6InzlzZQarqziOo0fxml27YLiLBQe6jlbl5WVxz4mg23jwIJzPK68sP5BXFARS6TScIzsCdUkCWTo2hudW07AOWEORtSipDL2Nhi1a+yilkXg2D1oJh6Fl09wMgizbZoXDWDd9fUIPzRhc79hhvYrzkUdgK668Eto5DBZ2dzjMazGxnEV3t5BTsAuRCNqWDx0ieve7id70Jpx7MFiTaveGLVoD0HWhPcVi8NUEVxj5/ZnyLUTwP5aW8LOROJiaQiB2zjnlH18igeedq2sLraOVFRCJXi+IRDPEqqKgGjEaFd0phf7u6afx/ZJLMv2YWAzXxe2GHTLjZ+o6/KLRUaJbb80dbGCc3swabMbfHToEP2Tv3vJ95uVlBNvBINGrXoWqv1OnRCVgOcSvXdA0+MpcQba0BBIxHkeQf+GF/52Uadii0wxVFV1EREgk9PRURrBw+zJXXmfLNmgaYgROKrAMFn9x4pWJw2CwuP8ky3j2ZVkQRLXQnK0VNA12Lh4vPFSKicNUSrR6OxywZ6dOEf3gB/Bj7rqr/Hur61jHTz0lEjmDg/Zda02DDM0vfoEK8/e8p3LJDx6AFQ6D+OQ9l7vQDN16BW3RGrM5dY2zgUTcS0QfIqJ7iehTRPTy7371JBH9JeFheZaIThHRr4hoOxF9gIj+Tdf1uw3vs4WIDhBRnPCALBAett8joi/ruv4HJg5nzV5sVRXTLb1eMSWpXMTjcFi5QrC9HURdNau6ZBmfqSj4nHQa5+Dz4WenU5CJbJxlWUyvGhgoL+DjEn0mCxOJTG0en0+QhcGgIDNLgacfy7KoljTem7k5ou99D2TcTTfhNckkHFqPB0bbuLnoOrQz5ueJXvc6axMH02lsXOk0zoEF5XmqW1dXplOgaahaCodRfcQO8MmTaNfZsAGkQLlETDKJ89d1fH41Wsh4IM/ICL7zAJxAgOj3f78sZ3nN2CJJWru26HSDq4ALEYmahufubNJHVBS06C4twRHMrhJKpTBt1OdDFaLDgde88grsxI4d1h3TJ59E6/SFFxLdcIP4f3YiNc280PbEBAKr3l5zWmVWMDUFAnFhgeiP/xiOeDIpAqZqQZKIPvMZok98or5t0eHDZ5YtikSwHoLB6lckxuNCKyo7icb6Ui6X0D7TNKwFTUMAatXHS6VEkrm5uXTidXkZazgYhOC/GRugqrAlsZjoBDBC1/H7cBhVf/mSh7KM9a7reH2pwPXwYQT1F14IW5UPXFHF05ubm3FNT57EsW7eXH7CIBoFKep2gxTl411ZQRImHgeZsm3b6a/E0nXh505P4/zjcVQE3X9/fdsiWsMxWilomtC0VFXcD+7UKhe6jjWcSOCZ7OwsbDPYJ+diCV3H33Llm7EjrBB4gGcqhdfHYnhtIYmiesXRo7hPu3ZlxmGaJmJTvo5cYe31wj6MjhJ9+9u4JvfcUxnhNz8PH62pCfE5V3+2tcFuVlJYI8tE//IvsKvXXYdheNVIvMfjuJacIOPk7Y03FiUR15LNqWuc8cWfuq4fcjgcBwkPyy90Xd/Pv3MIq/S4rut/lPX/H3A4HPfpuh753X9/loiiRHS+ruurv/u/Lzkcjmki+ojD4fj/dF3nB7FuYHQIuP23XKPE2nS8mJ1OGLqhodpoD/p8cDqnphDQ8eARrqhkfZtkEv9mgm3DBjHgpaOj9IaVSgkdQxb1NrYls74HE4flGs6ZGTgDmzeL9hZJEtf2pz+F8b/+evy9omBzcjjgXGdnp158EZV7l11mjUA0Bh5bt4rrHArhup06hd/39uLaud3IokciCFS4mmBiAlWT/f0IKMq9LrEY7i9XGpS70SlKZqYv33dVxfF3duLaHT2KTbwcNGxRfcDpFERhIX1ETTu7Bq08+CDs0dvfnksg8qR2XRcVfpxESKcR+FrdU555BuTD7t3CvjG4JcoMgajrSAAsLYm9yE4cOkT0yU/iOfg//wcEZTIp2rSqhVOnQFxOThJ94hPWX9+wRdVDaytIIZ4eWs3noKlJBN5ebyZZ5vHgWFZXsRdzq+G6daIqN7virhjY7/F44FNxW3OxKpjOTqIrriB64gns/a9+den92uWCzRgZwV6raZlVeDMz8IGGhwt3H/h8eE0oBDKxo6MwoT83h3U8PFyYQCQSLZhut6jGXFrCvd6woXwfN5HAEBWnE3rNxnvY0YHJzGOcxbehAAAgAElEQVRjQhZm+3Zzk6+rBYdDEOTd3Tie0VGQEeWgYYsqAxN9CwtYj62tePYrrfhKp/G8KQpsR761xm3MsZiIhbiIo6vLfHKfB0Ilk1gHLEPV3o71u7JSVZ3ymmJ0FNd182ZcI00TMQcThy6XGFhj9HGmptAW3NlJdPfdlRGIs7PQpG9vR8GJy4X7trSE5ykSgf3p6rJe6biyQvS5z+F43/52omuvLf84C4FnCigKrtX69XhO5+fxVfy1DZtjF854EtEkPp/1718T0R8S0UYiesnhcHQQ0euJ6B+IyONwOIxh1M+I6CNEdC0JNrsuwM6nqsIYZWtTWHkfbllOJoW2y8BA7Scgu1xw6GZnhRgrkWh3ZV3CWAx/y9VGGzZgs1pexu8HB2HAFSW3LdkoLh4IiM0yELDvfBcXsamuWyecgWAQP0sSCMT5eWR3vF5sRK+8AqO6e3euAzE1hWz7li3WRL91HQGHLIvBNHzuPFErEhEC55OTCFr8fmxMTDjMzhLt349/X3tt+VWuKyu4R34/rk2+98luAyhEEOYrwvZ48MXizV4v/s2kxbnn5mpM2oya2KJqi/+fCeCKxEI2ke3AmT5o5ZlnEGRff72YpmcEV5tv3Sp0kk6dgu3cubP0YIVsHDqEtr7du4luuy3z+rMGopnpfCynEI9jP7I78H7oIaK//3vsc5/+NOwzV41XqwJN19Ei+nd/hzX8j/9Ync/5HWpiiyoZqrWWwf4HT1SuFnRdVAD19+cGfPG4GDrGx7FxI17DQxZKgWVuPB7sg5woUFUxUKUYtmxBS9v0NAaWmAlK9+yBLEsoJPRUmSy57DJzz42m4TwTCREQGxGNEh04gIqgt73NvP+mqvC3wmEQfzt3mntdNiQJ01XXr8ck5ELPyb59uIfPPotrwFOtq13pahYXXZTfn7IRZ2WMVgrhMHzvVArre+NGe56JWAzvzX6+ca/luDEWg10ggp/c2Sn0DNNpc2uJdTclSZD0xkEZLJmwupo7jb4eMTeHGIkLE1gigUjIbnk8+e3p/DwqEJubid75zsp8+KkpJGk6O2FH2cdyuXBsHR2wu8vLeA46O3O7zQphYgIEoiQRfehD9u3v6TSeN1nGd2MMx0PEhoZE0Y0NaNgcE2iQiMB41r9Xfved3authP76P/7dVz4UUG9Ze2C9imQSRqO1tbyS91hMZLQ1DYZn61YQRaezOsfhEJqLCwsgtxwOUdrv9cIQSRIMExOD3Go9OgpDaKzKdDjwc2uraEv2eqtznqw5wwLXRjiduOZTU3Ck29th6Ken4RBv356bEY9GUQnQ2YmJf1YwN4fjGRgovIG3tuIrkYBDHgohE8qagrqOiYdtbSAiyiFadR3EajgsCL5wOJcc5K9scEuAxwMnpb1dEIT8vdBUs2gU1yEYtF/LMw/OKlu0lpFdcWj192cCpqdBWm3enFsRSIR9ZG4OtoXJwpkZoYNqlUB85RV83qZN0CYzXld2IP3+0k4iV0KuriJAt1NPTNeJvvY1OPQXXED08Y+DwJFlsT9UA5JE9Ld/S/Szn4FU+Ou/tj7p2iIatqgCsFZnPI5nplrTuR0O+C48aGXdusx9rKlJVPrwEKKeHuzrs7P4fbH1xJ0qHMTzezud5jViWb7k0UfhC9xwQ2mb6XQiAD16FGtZkuBr8iRTM3A6QayGQkhAplKwBU4nfL4HH8Tx33STNb8kHMb79ffD3w2HcwfMlIIso9palnFtShHNra34u1OnkBB++GGQnywfcbpR5WNo2CID2Cfloo3hYXu6vTQNz3V2+7IsC+KQpZr8fhBLnGxneL3Yd2OxwmtC0/AZXK3NOqP5/ra1FZ8fDudOo68nhEJYt8EgYtFkUthjj6e47VheJvrmN/F399xT2b2emIAN6e5GUUS+z/V4YNu6uoS+5soKXtPRUXitv/gi0Ze/jGfi/vvL7/xQVUEW8ndjUt/nw37KvmCVBqo0bI4JNEhEQC3w/46s718koh8U+Nsymxxri1QKxl3TBBlmZfNnMmdqCkbd5RJTd6stJG4V3d0whjwow+USlXG8Ea2sgGiMRGCcmpthlOJxnF9fHzboStqSrSCVQhDu9+cPfFdX4YgPDcGhZH2gqakMQdn/hqKgqsfhQAuxlaopLmvv6ipNBqTTIF/b2lCtpKpw+F98kei3v0XQ8sY3Fg5WdL1we7EkwWGKRrF5trYK0WgibCBMBvKGnE0QlrvJLC3hKxAAgViDqrOzxhbVA4oRhRw4F2t9rmckEmidaW4m+r3fyz1/VYVd5QwwEdbKzAzsrNXKv1OniH74Q5CPb3tb5lpjO+D1libpNA1ZdpZTyNZUqwSyDCJv/34QD3/4h7BL6bRwaquBkyeJPvpR7GV330303vfWpMq/YYsqBFftxWKwEdlJQbvgdmPNLSxgDWZLDrS1Yb2yRqLPB3/hxAk8U4WIKJZt4cRdNniNGrszCmHzZuzpjz+O9fOa15S2mQ6HGA736KM4jze/2do+zCSrxwO/YXoatumxx3C9brrJ2n2JxeBztbaC5EynxeTQlhZzJEc6DW3oeJzoqqvMJ1scDlFV/fzzqNqenISWY7VI6jWChi0irMe5OTw3Xi/WsF02JZWC7eD2Za8Xz3QsJhLzgYCY0l3Ip2ZZrEhEDLdksK4oJ1b8frxXqfXc1YV4ggsU6qX7g4saVlcRC3m9sGc8TNOMzxiJEH3jG/Br3vWuyu736CjkXfr6IN1Q6vO9XvhjnZ2I++fnERP29GTaG13HELzvfx8+1wc+YN4ecVuykTDktm4isfcwYVhDErlhc0zgbCERKy20P8Xvoev6I5UfTu2haSKLxO1gVogVJremp7HQAwE4ngMDa3uselsbnK6jR+F0cUuuJInMhscjnOymJjjge/YIAml+HkFytY2XpuH6Ohww3NkGXtNQheJwoCXI6RQZok2bcC9Ym4QHuBw8CDL0uuuskbyc6WxpKV3Fk0pBWyOVgpYRZ9R9PrRCtrRgGuRzz+EYeLpbdgVhdjsMnz+3VWzbBmc7u3qwGuQut4hFo0JjxiaS6Ky3RfWGUkQit/adSfqImoahTdEoBqnka5GanISzt3Urzj0WA6nY0gJH0gqmpuCAdneDsDQSZNzyxFn7YlBVECOxGGyiFe3XUlhZIfrYx1At+d73Et1+O4KDahKIxvblYBC6i69+dcMW1RO4eo+JJh5yYjdYQ4yr9bOrVbhFjStK3G74NWNjqEjM1kfkbpVCBCLD5cJzqqqFh1Exdu7Env/UU1jjV11V+rz4PVnbemoKNsfqNWxvx2fOz6OF+KWXiC6/HL6JWcgyfEmvF+fCVTFuN4L91dXc6c3ZUFUQqeEwpjCXk+TgCc5TU0QvvIDqzm3bcEz1QrBkoWGLikCW4Y9GInjWWIbALjsSi4lKXa9XDGfhdceaomafLZcLr4vHhaQDy0hpmrApZmNHpxM2a34eMVmhqe2nG1wMwXEN//v4cdiEiy6y1qkQj4NAlCQQiJUkREdGYC94QJOVZycQQOwcj4vuvqUlHE8wSPRv/4ZilQsuILr33uKxMg80ZdJQlsXv3G5BFrImZBWLdxo2xwasYfrHVsR+991icxWg6/qiw+F4hIju+Z1Q5jHj7x0ORysRybquy/nf4fSC9WyIYMisGLFIRAwq0TRsXNu3IzhbqwGzpuXqGLpcoupw504YUtYx5Oo4zpBx5ognis3OIoOzbl11s71zczCo69fnrzI5cAB/c9NNQrx9ZAQ/b98OY8vi59EoMl8jI9i4rFQFJZO454EAgoxi9zkeh26RJIE4YGdkdRWObSqFtmufDxms2VkhhLtuHZyBlpb81YOKIloljdqQ1YaqYpOUJDguNgs6n9W2qF5RjEg0/q5OA7gc/PKXIOPe8pb8LSlLSwiCBwaEFuDICNb55s3W9ob5eTihLS1E73hH5jrn5BfrJRV7X0XBMScSOAarrdTFMDqKSsBwGINMXvUq2DlVBTlhkwZPBuJxov/7f6G9uG8f0Z/9mXVytgQatqhG4Gc3EsEzVC0isa0Na3FlBfuo8bl0OLCXsdZVdzfWXFcX1nNLiyAemUD0+80lH91urD8etFLs3Pbtg1/wwgs4xksvLf7eMzP4uvJK/HtiQkx8t3oNm5rgWxw8iAB4zx7zr1VVEIiahgpEo4/GE7CZNEmn8w9+0jRMnQ+F4BdVqtM6NAQf6qWXkMidnkYgb2f1dY3QsEV5kE5jfzQOquzuto9YUVUkA5eW8GxyAUAwKIaDlftZPh/sQTgsutY8HkHmW4XHgz2ddfqqVdVtFUYNdkURXSncAXX0KM593z5rsXcySfStb+Fc3/lOa0Owso/vxAnYUNYMLHfvaWpCcjYSQWXiyAi6RyYniW6+Gf6i8b1Z5sVIGGa3JXd0CNKwxv5zw+bYgLOFRHyGwBh/1OFwtBORRES/tfge7yOM/37W4XB8hYiOElE7Ee0iotuIaDcRjdl1wHZAVUUpusdjPpOkaSDbpqZgLFwuGLChobUj5MzgUmgmCxOJzMwGt7h2dcH4jYzA2PNmZgQbeDZyySQMYn+/aNNLJISmjp1YWcG17unJ77RPThI9/TQ0cLZuxbG98grOb8cOcTysGTI5CSedJ5KaFTpOp+Gk8xRHSSo8vTgWE9MTN27ENSLCvw8exL15wxvg5HLVoNsNgjMUwuvjcXF/jORBNIpNqtIJzFaRSsERZ5H6KkwVPytt0ZkAh0NogOUjElX1zNBHfPlltBtedBG+spFMYo20tGBtM3lHBNtkpTJ9eZnoO9+BE3nnnZm2T9dFG2hLS/Hrmk4j259MokLezmTP009D9zAQIPrMZ/D+RgKxGhXqx49j+vLEBNFdd6EKoQqi8g1bVEOwdMzqKp6fYtpSlaC7W+gj9vdn+nwuF4hEo1RJfz/2Ya7w44CP5W7MwuWCLVDV0jbg4oux1x46hLV/3nn5/y4SATnW2YmKQYcDn8N+B7c6m4UkIUEyMICK3rk5XK9ShISuw9+SJHxmvuvicGCNejyZ7c1M5Oo6KjDn5tB+vH69+eMuBq9XvN9zz6FNe3gYBGkd6cc1bJEBioL1yz51dzf2WjtIFk3DemctdW5fXrcOz69ViatCSKVgSxIJEUdVGj82NeF9o1ER250OaFquBrvTmdkhRQRfKhqFzbASS6TT8IsWFjDduNzkIdut+XlUElqpui4GHlL65S+jPfqNb4QNCodxr3kP4bZkhwPXhu2h31/7oat50LA5NuCsIBF1XT/pcDjuI4hf/gsRuYjo3WW8xwVE9OdEdCsRvZ8gtHmCiD5BRHO2HnSFYC0bIqEnUAqyLFqWUykY6G3bsLmslZbldFqcmyRlCq7ydKu2NlFlmL3pnnuu0AFKpbCx8YbpcIjpx/xeTKK1teEahMNierNd1SeShM2iuTl/+50kEf385wg6rrkGhvnll7FB7NyZe28kCc5qXx90hxRFTDfjID3f9GJZhi6ZJMFhicUy35c3Ap4etrqKv9uxQ2QXdR2VM+3tRK99bf5W6GAQ/x+LYXObn4djzY4MizsHAvh3rUiZREIM4Vm/vlrtiWefLTpTwHZC1/NrIJ4Jg1aWltBWPDiIzHI2NA1Oo9MJp1TXodcny6iGtmITV1cxnIQIRFk28RePg5AolfxKpUC6pVIgQeychPujHxF99rNIQH3qU7DPKytikJjdjrCuI7P/mc/AVn/qU0RXXFGdSseGLao9AgHYjXAYQXxHh/22wulEMnJuTmiIGcEJ1JUVHEdHB9byyAj8Cq4utjogyOHIrUgshiuuwJp9+mkc065dmb9Pp1Fh5/Wi8o/t7fAwzvHkSazDXbvMXUP2TRIJSBFwe2QohM8qNhDw1Clcqy1bShOOxvbmSATXsbkZk5UnJ4n27rUvmDeitxcDa44ehY87OwtyttzhBrVEwxYBmobncXFR7DF9fZXvM1xQwnJH0Si+t7TA121rsy+hwQUGqZQoQDG291b6Oe3teL/l5UzCrtpg4pArDolgd5gQy7Z3Y2O4j5s25WrUFoOqEv37v8NWvPWt8GnKPd6XXxbHYGcXw8mT8FFSKegftrbC5rC/1teHZ4tbk32+tde52LA59sChZwuRNVBNVP1iKwoMuKJg4ZopR19dFS3Luo5AaWjIXs2NcqCquW3JxswGE4X8ZTbrGg6DLFJVGL+hoVwRf65W9HrxmYkEvkuSKM1ft67yknpFwWbjdMLI5wuWf/xjBO533IHg4OhROKe7duUGzLIMR3lxEYNUAgGRuYtGxcaePSjG5YLzkkrBSc83vZg3yXgcQbvDAQKRyTZFwcTAUAgajIOD5q5BOo1nb24O31UVx7BjR+3I69VVfLbHg+M24ZissS3RMhqGv0wYScRs+2isVFxrTlMppFJEX/wibMsHPpDftk1Pw7accw5sz+goiEer+oOs9ROPo1Unm+jginLWdi0EWYYtYm1Gu6r1NI3oC18g+s//RNvhX/wFjmNlRQzIsDt4icUwtOXRRxH8f+Qj2BNM2MA6e9JycNbZIp426nZXh0gkwtoKhbBO87X2x+NY683N+JqYwNfwcGVVcpqGPdzpLF05pWkQ5B8fR4KUA2ZdRydFOIwKl3yJgelprP3OTpCMpT7r4EEQltdem0lYhkL4nGAwf9JyZgZ2bnAQ18YsdB3XWJJQDTQzg8/dvdv8e5SLcBikZTiMRPn551dvanwWGraonA/VQYotLGAva23Fs1hJ8ohjQSYOibBG0mk84x0dWDt22R7+PFnGe7J0lsMhhg/xhPdKwYMbHY7qdIYZP4fjQR4exW3ZXm9hmzM/jwrqdetQiGMWmoYk7tGjRG96E6QJyoGmQWZqaQmJj0oTCYoiqgsPHsTAvdZWTIrm59TjEd1lLO/A2runCfVui+oCDRKxtqjaxeapV5IkpgwXI9U0DYZuagrGndtGh4Zq5mxkQNdhpIyEobEt2efLJAz9/vKDdE2DceUNz+OB02y8XlyKbdRp4CpIWRYakd3d5VfL6TqyTckkgsV8DsOLL0IE/Mor0Z5y7Bic0fXrYcSzKwqPHAEped55yACyNgd/KQqO2+1GpqitDZ/LUx37+4trAPJkQrc7s/JIVdEmNDuLYMBq1ktV8dq5ORwjT77l61vNZ5I1opqacP4m72W9b1ANw18BihGJPK25nohEXYfzeugQHMN82e9IBBU5PT0IqGdnEcgPDFjT60kmib75TRByd96Z6+DKMuys31983SeTsEWqCkfdyuCoYpAkor/5G2iX3XYb0fvfL6qjiRB82e0Yv/wy0V/+Ja7pXXehUspCgFcnT1lBnJW2iIlEbjGuRiC8vAz/jgXws7G6iqDP6RTTi9Np6GZVsueytIPLVfq8VBWJz5kZouuvB1F38iT8mJ07i9uW2Vn4RG1tqPArFNSfOkX005+iE+W663J/H4nAB/J6M4cFLi9jbXZ1IalZDl54AYTepk3QUq1GVXE+6DqqS48cwT60e7doCa8iGrbIyofpWIPz8/Djm5rg75bbpptKCeKQ4ycuJmGSR9OwXuyS6uHBZ5IktIvztURza3MwaE+XD8dhgYC1Sr9SUFURUzFx6HYL4tBMUc6hQ7jGe/aYX2+6joKR557D4MzLLy//+A8fhr+ybZt1LUVNy52WrKo4vl//GnHeli3wi7q6cpOpiiISM6zD29V1Wrpz6t0W1QUaJGJtUZWLzRuHpgkh7EKGi/WsZmZgJJuaEMStW1dbUdNUKlPHMJkU03ndbkEW8oZj97FxOTxPTdQ0BMbGQFSScEx+f6YB5OEli4swlK2tcHytOocLCziG3l5RMWhsL15YIPp//w8b5FVX4fNmZ5F5Y+LSWC04N4cNaOdOiJVz9WA+koOvucMhqiuZsCuESAQl614vCEQmXTUNm8v4OJxkq+X3qRTOS1Vxbk1NcEp4EhsLPnPlp11OsK7jc2MxvG9Pj6X3rvcNqmH4K0QxItGYta4HHDhA9JOfoB3ummtyf59OI1j3eLC+w2EE5qw1axapFLLYs7OorM5u6+NWKNbwLQRJAoGo67BFdiUZFhcxwOTkSaIPfYjozW/GMYXD+L3dBCKTt5//PGzchz+MBJDF9rKGLapTpFJiaEJnp/32QtcFQZFPW1jXsW/H42hpDgaxxzscYup6uWAisdSgFSKssQcfRPB58cVYhwMD8GVKYWEBlTstLRhekL0+w2Gi//gP7PG33174GicS8KFYv01R0E4dDIIMKOdanDgBEnFoCHZKVWGrSg2JshPxOPzChQXY6wsusFfyIQsNW2QS0Siet2RSSPeUU6XHgzO5hZgIMQtXGLNGJ1c+d3XZo5XJ2opc5cjPdbF1wsfIwxQrBZ9Xe3tlpKhxojLLY7ndIr4yu/Yliej55/G6884z7yuw1MKBA/C/XvOask7jv21WJAJ7Uyye489l7UomDFnjkUgM53K74ac8/TTIzXvuKX1uqRTsOM9V6OqqeXdjvduiukCDRKwtbL3YbMRlGYuUN4x8CIdR9RYK4d9dXahms3OCZSFwW7JRy5CDbNaUYA2eQKB2GhecsQsGQVbJcmaLsq6L7Fq+IDWZFOLE3I5szIjx1K58Q0lWVlAFGgzmvwcOB1qDFQW6GIqCVqO+PmTTWZeQEQ4L3cQbbjC36akqHMtTp7ABb9ki2g+ysboKh9jvx+bE90jXiZ54AhnvSy7BsVlBIiHaEvr7c4lYRcExciDk8+Ea9PRUFswrCoj0ZBLvVcY6qPcNqmH4bUAhIpHbmrmidi1jfJzoK1/Bur7zzvzr/+RJ7DXbtmHtHDuGgGH7dvNOIWv9jI0hmN++Pff30SiuV0tL4feNxwXRsX27fdqlJ05gArMkoSrw0kuFreb2LztJnkgEmoe/+Q2Ikw98QGgJWUTDFtUx+Bnjqg27iUSu8udhaWyPdB3PYCqFLyYYWBu5o8OeNjhdN0ckyjLRD36AKp6rryZ63evM285QCBV3wSCCd/ZP0mkEv/E40e/9Xum1xQnNRAJ+R1MTKhzLIV3GxhB0Dw4i8HY4RGup2w0ir5ZJpvFxXFtFgd00DuSzEQ1bVALxOMjDREL4s1YHgUmSiF9Y4sk4UZl9Y+66SiZFrFHpPeeut3gcPzN5aOZZZpvD1ZB2PH9LSzienh5rvoAxNmMaxCjfZJXsSqeRMFAUyAdYOZb9+9FxdtllqEIsh2hLp7G+YzHEYfkmtKfTudOS+dxdLqFhyN+dTrzfF76ApO0tt2CIipXjSyZBJnJyuLvbXg3OIqh3W1QXaJCItYVtF1uWxeRKJuDyVcNwy3Isho2FpyxXY2gEETaH7LZkzo4RiRY1/jrdgqvLyzCsnZ3Y2ONx/Nzbi9+rKs7H7c4kuDRNON/Ly3C6WV+or08QiNngc+VBKhs3ionKxg1s/360Mr/lLXDsDx/GRp1PRJyz+IpCdOON5qtyOFhwOnG+rGPU1JR5risrIBECATifRvLut79Fu8/556MKwAoiEWwuXi8IxGKkoK7jOObn8TqnE9elnNYPWQbxq2n43DLbIOt9g2oYfptQz0RiNEr0z/+MNfj+9+ffFxYWhIRCczPWu8uVf6hTIWgaCIJjx+CI7t2b+/toFD8Xm8Qci4Hsc7tBaNrVGvjEE0R//ddwbj/9aVRIplJIzlSDQDx8mOiv/grkxz33wG7zQLAy0LBFdQ4mEongf9jdLp9MYu8MBhFcapoI5nlwUSgEW9XdjX15YQFrvhLdZ13PrMou5uupKtHjjyOYHhoSvo9ZLC+jCsfvB5Ho86G65/hxVBSb1XlMpXAMkQiGv5jVdjZiehpVRb29kKLJ7mSJRPCzcXpzLSDL8CsnJ/HZF15o7RqbQMMWFUAyiRiD5aP6+sxPaDcSd7EY1orDkUkcZu9Psiw6edrbK9ci5KKKeBzv6fPhPa3aKlUV1Wl2VMRytbWqFu+oMxZ1GIe8GOWeKpHIeukl3Nu9e62d14EDKAA5/3zoIJZzDKkU1rUkIUbs6sL1yG5L5ipLHiLKQ0/8/vz3cX4eg+WWl4ne/W4UipQLTsxIEvzN3l77WuoLoN5tUV2gQSLWFhVfbJ6ylU6Llq9soylJomVZUfA3Q0PYtOzOfMpyJmFobEv2eHKHn6y1YFpVsdG6XNjQ2XkOBODMq6rYvInERsSOMUPXhbZeIIAgtLtbCM4ay+LHxmDMh4fzG+6TJ4keeABtJ5deiuySy4WWmnztSI89BqL4hhsE+VkKigICUddxrB4Pzisex+9cLjgm0ShExZuaELQbn5/nn8fGtWsXKmmsIBRCdSNParbyXHD1YiiE69jSAufBjEMWj4uqjAonbNf7BtUw/DaiEJG4lvURVZXoq1/FPvG+9+WfpJ5IgLRrbUW748svw07s3Gk+EaXrsGeHDqG6KNtW6LqQlGhpKbxHRaNCTmHbNntasrid+ItfRILkf/9v2H1Zhn3ifcGufUvTUI35pS9hf/jwh9E2yoOsysQae7Iso2GLCPvu8jJ+rsbk70gERCVXPfF6M1btLS3h3x0d2PeTSTyflaw1XRc6x8UIh8OHsa9v3QoyUdMwId5KlVY4DDvD2mW//S2qAC+6yPyxvvIKrgMPBWhttSZ1Mj+P4+/oIHr1q/OfM5O46bRoPa3l/jA3B/8tkYD/t3u3bc9bwxZlIZXCM8H6pz095jTiWHaIh1XwwLamJjwvwWDh94hEsH+53XiOK723yaQgL3k4SiXvyRJcrNdYKdJpXGOPBzEQryWO13iiMvtoHI/ZZWOPHcPn79hhPgYjgszAj36EysG3vrU8P0OWUQEZjcJ2+v34v+y2ZGOVoRnC9PhxJJidTnRJbN5s/djyIRpFnC3LiJV7euzTs85CvduiukCDRKwtKrrY3BJMhEWXHcQtL4NM4oxyTw/Iw0onCDN4OrGxNZkzG05npo5hIHBapzLlhablby+OxeA0sgbG6iquJWdLPB6xgcEWYSgAACAASURBVPPYeiMxaCQIYzGQc4mE0C40DoGZmhL6Q/mqTmIxom9/G47r7bdD60eWkd3K9/eHD2MDuegi88LfmgYiU5ZBZGa/Lw82mJ8H4dbTg03OuMEdOYJWna1boYNoFpoGkjYeR3BQiSCyomAzmp/HMfP94nuWjXAYn+3zgUCs8Pms9w2qYfhtRikica3pI/70pxgecscduZWBRDjuY8fwfft22LVoFASelQzyQw/BVlxzDapyssFJsWKByeoqJBP8fny+Hc6/oiDL/sADaJ/86EdhG3jghceDvdMuAnF1FQNbDhzAdfiDP8B1bG9v2KLTfQBrBaoK30PXq0Mkzs/jq7sb+2T2c5dMgmhkP25kBGui0oEcTCQWmtg8OYmgdfNm+CThMNaly4XKZStVVJEIxP8ffxyVhLfeav7YR0eRVDnnHHQpLC+LxLAZ3fBQCEndlhbYlFLkazwOX+t0tDcrCvy4kRGcHw/jqxANW/Q7sBQPa693dcGXLnaPeUhJLIbngv0GI3FYqpp3eVm0L1eqQccdb4oihjHakbwjErrs2Z1P5UKSsP64OpNjPSIxOMrrtT8unZhAPDU8jLjOLI4eJfre92Br3vEOa8eVSgk/5fnnce7bt+P+uN2ZVYbclmwFTz6J4Xe9vUQf/GD+1uhKsbqK+I1nM/T22t4hWe+2qC7QIBFri7IutqIIQ85ZIDYKqoqsIpNTHg8IkoGByhYktyUbdQzZIDscMExGHcNatmTkg3GiVqHvrB1iBA8nkWW8R3c3DFoqhQ3J58PgAJ8vU0C41EbO+pM+H5zR5mbcn8VF0caQDV0n+q//AnH3jnfgvq6ugsDLl42fnSV69FG0ROcLzgthchKO9oYNhcmA+XlR9TM8LHQr3W78/xNP4P+vvtq8k6IoOCdZFroYdkDXsZnOz+N6scO2bh3upa6LITjNzeVP085CvW9QDcNfBRQiEtfaoJVDhzBs4IoriG66Kf/fTEwgINmyBUmWxUWseSvE//79COYvuwyTV7PB1evBYOE9ZGUFBGYgAALRjiAgFiP6xCeInnkGtvZ//k/cr2QSNoSrseyqDnrxRaKPfxw26Pd/n+jaa2FbbSIpG7boDAITAZqGZ9CuoF1V8fzNzYmBevnWUiyGZEFzM45hYgIBXr5KZSvQNCGZkq3n/Nxz2LP37hVrbmkJw54CAVQkmm31j8eJ/vVf4R9dfz0qn81UuszOws4MDGQOi4pGQQaxHFAx3fH9+2HHXvMa8/53KoXP0HVc82pJDRXC8jKu/+oqYofzzqvoGM56W6Rp2CtDIZEMKJTYJoJfbCQOifCs8WAUYxFCMbBGO9uNSqq70mk8k+m00NuvxnMZjeL8KyXQWV6K/fyODrwnVxtWq6BlYQGVy319uRrPxTAyggFzg4NEd99d3MazpJaxNVnT4DsdO4brdv758MsqHUKq6xjm+eCD6DZ573vLnxRu9vNWVrBWVFVUfdu059W7LaoLNEjE2sLSxWYdDEnK1apLJNCyPDsLI9zSIlqWrQYlup6/LZnh9Wa2JGdPK64m8g0nyUcQckWkEcbpWoW+s8HVdaEf0t2N85NlEG6aBucxGMS1YQHaUlhaEvenqQnGsqen8DTTp58GOXfDDbjOc3PIzOdz3uNxGPpAAEK8ZjdJbgNet66wFs7sLEjpjg5kybgyUddxTE89BX2h664z/xzIMl6raTifam1MkoRzXFzEZ3Hm1uNBVtbGjFq9b1ANw18lGHVnjG01a0UfcX4eQtkDA0T33pvf6VxZgRB/Xx+OeWoKyRAr+mAHDxI98ggc3HxEJdsVTkjlw9ISqoOam1H1bAcJOzuLqsOpKaKPfIToDW/A/0sSkitM7tlBIGoaKsu/8hVcvz/9U1xDvx8Os00kZcMWnWHQNBACqopnsdIkLeuQEcFnWFjAc87rOxvhMNZDezvW4MoKfIFK2854YrPLJXysp57Cvy+5JNePmZsj+tnPkHB84xtLB5eaRvTDH+L8broJ/puugxgrVs24soLKoM5OdHRkXxNJwrEQwXfKJjSjUegoulwgEK36N6e7vVnTUAnKerd79hT2U0vgrLVFHEMsLOA5b2vD+sq3dtNpMRiFYy0uEMnXZVYKq6t4fjwe+PXlVjBzwYosY302N5et02sK/NwTWR+2oaoiBjQmacNh3Iv+fvsSMPkQiSAZ29JibXr7xASq/Lq6oDNovNeaJgaeMGHIxS/chu3z4XyPHcN93ru3cr1LIlzLr30NidWrrsKQvVolvXkAEJPg7e2VD8+k+rdFdYEGiVhbmL7YvMmoKowMO2/csry0BKPS2wvy0EpVVzqd2ZZsFFx1uTLbkgsJrtoBzh7lIwWNP2cjW9OiEEFo1QlTFFxXr1dUCioKrncyKSZnyrL4nFKQJJS6nzyJe7RzJ14bDGZu9HNzqAzauhUO79gYgs2NG3PfU1XRIhiNQpDfbGvhygpadTo7scHmA2tpdnXBiTSSICMjRL/4BV7/+tcjCDazccbjIC5crupv7AyeSPnSS1hHvb2oqCqWEbaIet+gGoa/ijDKPDCYSDyd+ojJJNHnPw/bet99+W1HKgUH1e+HHTh1Cmv+nHPMf87zz6Nd+txzMSAh+3x5f2Nd33xYXASR2dICu2gH+XrkCNGf/znswyc+AYKTCPtgNAoH3a7JgSsrRJ/8JJJD112HCkSPR7Sm2YiGLToDoWl4hhSlMiJRURDwOhyi4ieRwPpqacHazoaui6Fz7e0IfDXNHiKftclcLtiJaBRyLIXWxNQU/J2eHvg7xfzRxx5D1e/rXoeqZUkSE1P37cs/8CAeFwNZ9uwpfH7ptNAZNw4FSCRAIKoqCMRKhgVwezMPnai1JFAshqrExUVc7wsusGyrzjpbZOyEYVmOfESzLIuKQ1nG//Fwkubm8vxi1nSXZewr5VbPs9Z+MonXNzWVbp22C2yfPJ7Sa0dRRGzIPpbbLeIxp1MMFHU4yiuqMYNkErbL7c6cBl8Ks7NEX/86zvPd78YxG6sMjUNIPZ7MSck8hDQaBXnpdMKm2VGQEYkQ/dM/Ie68/XYUspwOH1VRUOQSDuPfnZ3wQcvcc+rdFtUFGiRibVHyYv//7H1neFzVtfbaMyPNaNSbLVu2ZVvu3bRAbBPTgwkBAgmYEtOTkEBIuyU3AcLN5XJJuXwJEBJuEnAIgQApNBOCwbTQccNNbpJsNUuakabXc74fr1b20eic6SNp7HmfZx7ZU07ZZ++113pXU1VsNIGADCMXAsKnowMKRnExCKbGxsQbD4dCa9OStZ4NTlNl4jBbBE8kkji9OLY5CRHuOZYMjCUIc6lY+XwQqBUVUjgrCsbf7cYmXVWF+7NaE1+LqsII7+iAcco1sIjwW7tdRqsQISrm4EEITqPw+HfeAaH3qU8l33HQ64VBXlqKNGa9DaK9HZtvfT3IS+13enqIXnoJ47JqlYyq4nljtOEMDEDJ4bTu0fJsBQIYc+5e7nbjWoTAxtTQkLEhn+8bVEHw5xh6ROJYNlpRVaLf/x4E4fXX6zso2FkQCMA5dfCg7MqerDK+YweigWbNQrHw2DUfjWI9co1ZvXHo6UEUUWUlorGzYQi88grR3XdDvt19t5SdbNhlk0D86COkL3s8qCm0apWMTslBWlhBFh2lYCKRybxU544egchwOvFZba3+XsjRIRzRz4S+ntxIFZEI5FBXF4i7RKnSBw+izuHkySAI9fSIlhaQjUuXoqEJIxAAkRgKIWpHWyM8FIJBrqr4XTL6dHc39OiaGozLq6+CBFi9Ojv1x8c6vVlVQSZs3477XbAgJSfOMSWLXC5ZooebBGrXEjck4bq/RNhPOeIwE4d2IID1ySnT6UQJK4okrrnbc7yGLbkCE6xsT2ihtSVZp9J2VNa71lBI1j/Pdj2/SETKk+XLk4/U7O4m+tWvMM6f/zyuTasjahufWK36Mm5wEOvSYoG8ykaUaEcH0c9/Dplz/fXSsTqWCIfhyODmdrW1aTW4y3dZlBcokIiji7iDzYKUlTZFwQLv7pb1AqZOhVDUW0yqio1Fm5bMHi8iCKbYtORUDSZVjR81yH/1plW8qEFtc5KxhtOJ+6itHU4ScpHk0lLpvU/Ucbq7G+TVlClyY+OOaUR4xps2QUE//3xZGHjRIv3j7tsHEnHRInjAkkEwCCXcYkF0od7m1Noq6zXGFgfu7yd68UVc17nnYt5w1+pgUCof2vnE3apdLihM2o5puYbHA+PEYhlOtAcCMtU5GsVzbGjAs0xj3uX7BlUQ/KMAPSJxrOojvvYaHAHnnYdaiHro6sIamTQJsstkQvR0so6bfftQLHzKFKK1a0caSYoCZZUIhITeumOHGZdTyFRuqCqcNL/5DUiEO++Ukfvc+dJmy06NVkVBPbaHH8YY3HabLBtRWZmzKOyCLDqKwXWjQiHMoWQNR65rZjIZZw1wU7KGBv25ydkZJhOuo6cHe6pe9GIq6O5GxODUqSCpkkFLC2TY9OkjS6n090PuTJiAyOfYew2FYPj7/SAta2oghz/+WL6XLAnDNZb7+kBAFhWBQDQqD5MOxjq9mUiSr+wAP+64pJ77MSGLvF7MYS7H0dCANaaqmE/smOKu5EwclpVlZ9/PNH2Zg1W4TBFf31jaX14vZBHPda0tyZ3dU8ky83ggNysqslt/fft2jP+SJcbH5bRkjjI8coToD3/A7z//ecwXLWGYzPNzOiGvrFYQiNnoQ7BjB9GDD+JYN9+cHQdRNsFj5/FIuzmFUjP5LovyAgUSMUkIIe4gotuJaLaqqvvSPIzuYCsKFkkohA2G68c5HBDqEyZA2YoN9Q6FhhOGfr8k7yyW4YRhSUnizStecxL+d7zmJPHSiy2WsUvhSxWKAgXRZMIGrb1uTlvgzbu42JiM5SLm3JWNCM+oowPjWV+PVJ0XXpA1e7hLnt6m0t8PEmDCBBTmT2Y8IxEQiIoCgzz2uKqKz/v7QRxMmTLyHjZswO/OPXekoh2JQBEJhTBedjvGhL31VVXZVa4TweHAs7PZYOzozfloFN/p6cE1FhXJrs4pGPljNptzKYsKyD6MiMTRrI+4bx+IrcWLib7wBX3Z4fHge5WVck3Pm5c8adHWBkW5vp7oyitHKrmqKkt0lJfrr02u81tbC7Ig0z0jHCb68Y8hN886i+g735Ey0O3GfZaU6Kc5por+fhCUH36IaKmvfQ3nN5lAiOaQNC7IoqMcnDIZDA7PkjBCKIS1Fo9AJJJlP4TA/m8U1eNwYN0MDmLNzJqVfoScx4O6W2VlMMRNpuSdFB9/jO7mc+Yg2pDJhscfx1q77DJjMjAcBinm9cIJ29eHNTt/fuqkaCSCcg2HDhGtWIH7yMX69vlwvWOV3kyEFO7NmzH3mpuJFi6Mex1HtSzimttuN9bDxInYL/1+6ZDivZ3LVpSWZm+fzzR9WUtyKookqMe64RsHp/T34y/rB5najw4H7rWuLjtRey0tsG3mzpXR03zt2rRkbRmuUIjo6afx3nXXwZZP9V76+0H4lZQkFzGdDDZtgr7W2AgCUa/Z53iBzwcy0e/HvdfXJ6Wz5QnjkByyJN+yjjHYksYGQohriahCVdV7x/patOC6hJEIFLT+frxntYL0mTwZi4ZrVvD3/X4Z0cKh0DU1spahlixSVRyfhZsRUZioOQmH38cShGO9AWUbJhMUA6cTyoJWWFVV4b45QpSbsMQazBz1Vlo6PJy+pATPtasLdRL//nf8v7oaz3fmTNkRTat4BIOo92OzoRNzMpuQqkLJDYcRgahHIO7fj/vkjt5aeDwwvk0morPP1lfOLRaMTziMzZo7bXGX8EzqA6UCVcUmMziIczY0GI+R2QwFYOJEfL+nR9aCrK7Gb3N53eNVFhWQG5hMkK1cD9HovVxhYAD1VjlKR29dRKMgAYuLpUI8e3byindnJ85RVYUIRD0vOe9zRkbLoUNYi3V1I8sppAOXi+j730e00DXXoAsiH9Plwh5qt2dnrb//PghEnw9NW049VZYeqawcHxH2eijIovyAEFhbAwOYu6pqTJZxOizvzfHWkdkM/YQbrk2YMPI7PIcHBnA8bjg3a1Z6dae3b5fNOywWyJ5oNDk9ctEi3N+HH0LHOOUU6FBuN2RbvGjCoiKk6m3dioZPpaVExx+fOoEYjaIBXjgMvchslo2nsh1pzLq8y4XxH4v05smTMUc+/hhOps5ORCVm2q07FuNZFoVCWCMDA1J/tNmg83IzCG5+ycRhtoMmtOnLtbWp18Jj8jAalU1cslQfPC1os9q0qd6qilc2SotUV0snyMSJmZHwhw7B5ps0Cc+3r082QeHgHW66WV6Ov5yZIARqIscGaSSD3l40fWKnS6bPTFGInnwSMnDJElzXaMuUVGG3w6ns8cDO6+jAWpgwIfNmX6OF8SzfMsExQyIS0bVENIWIxsUD5LpQAwMy7ZMIiuLMmRBCfr9k37UFV61WKHMlJbLYKteN4A6TsQRhLLhjbXGxjB7LRnOSowVWK4ST1yujDRmlpRBohw6BDKyrG55SEI1CyFksI4k5IigbDQ2IQAyFcOxAAAqt1So9WjabPO+bb+L9s89OPoyda2hOnTqSDFAUEIgDA0hfjlUI/X7UF4pEEIGYyOtTVIRr5c50VVWye1quFRWOpvD58BxSiXysrMQrGJSpzg4H1gR3sM4BATCuZFEBuUcsacidm1lhzpWcjUSIHnsMa+SKK4yN3PZ2fNdmw77U1JR8dF5vLzzadjvOoWfc8B5WUqIvD9raZDmFZOu8xsOhQyDzjhwBkXj66fKzwUHI0mw0OIlGkSa9fj3G7Gc/AynBEY5GNR/HEQqyKE8gBIzigYHhNfO0CAZl6ley3b+tVhzX4cCx9er6lZTIzq1VVdBZu7r09RsjqCqMYb8fJJRWj0mlxMNxx0GWbN8udZhTT03uWiwW7OvbtsmIsVSgqkTvvgu5cuKJ0AMDAYzF4cM4djYaHWhRVITn43bjxZFaoylXmICdOhX1Xt98E3rjkiXZSascwriTRZGILGPEZaasVthYXK+tvFxmEeXimagqzsXRj3V1qZFhLBMiEfy+omJ0mhvqQVFGZrVxEExREe6rrExmCWRKEAmB8WIniVE3eiNEoxi/zk7IGy7Bwo1buI4ypyZrn0swiDIq/f3IzEiHQOzpIdq9G8+MnS6ZIBhEXcZt24jOPBOp1ePVwakHLgkwOAh9sb0da3LChNx2Ec8Sxp18ywaOJRJxXEBVIRyZgAoGsYirqmRttv5+CDwWshYLNiuLRXafGhiQhE0stM1JeMMYzeYkRwvKyrDZce0RrYJbXAwF8vBhPIdQSKbPcge/piZjpfjtt0FQrlghlRFFwaZps8n09EAAIfSdnfC6J0uQcVTexIkjyQBFIdq7F/c1ffrIwsPBIAjEQABpecmEubOHyGZD1CPXTBwclFGsuZhz4bBMD+e6NOnAaoVSPGWKTHU+cACbVH09xjGLynIBxyCYNGQiUY9YzDaefRbr48orjWVHfz/WqcUC5b2hIfli5E4nmrWYzSAQjbo9BwJS0daCi/hzOYXGxpRuTxdbtqAWodlM9L//i/Q7PtfgoKy7lKmB0tuL5ilbt6LO5Ne/jvsMBLJz/AIK0ENVFeaxx4M5zWsuEIBOwV1OU5En5eVYp4ODsna23neiUeglZWVYs2Vlye+57CiYM2c4Ucn1FrlZWzJG7cknQ4f+059AIC5dmtw1DAzgOk44Afeyezf+JmPgqyoijjs6QKhNn473bTaQa52deE2YkJ3yCFpwdgynN0ciY5PeXFcH8mH3bjTG6e7G2MfW0c53RKOYqz09MpCgtBRzgJ3kpaW5Jy649E4ohLWWQj24f5Y0CIcxTzLp8J4JOJggHJY2LUfs6WWyFRVhXP1+XHem12yxQPfhAAEjPUhVZWQhB3KEwxjD3bux/hYtkvXf4wXZRCJwrHZ2El16KQKDUkVnJ2y/6mqcN9OMP6cTDVQOH4autnp1ZscbS1RWQv5x5ltrK/an+vqCnTbaGFMOWghxtRBCFUJ8WghxpxDisBDCK4T4mxBi2tB3viqE2CuECAghPhBCHK/5fZMQ4udCiB1CCM/Q6w0hxLkx52klohVE1DR0PlUIocZ850IhxOtCCNfQcTYLIW7WuWy7EOJnQogjQgifEGKDECKpcqQ+H2qLvPACmmMcPiy7MLvdIC0OHgQZ09+PzzgN2euVimM0ioVSWwuja/p0KGYLF0K5WbZMdlSbPl2mI1RWQgAWCMTkwClEbHzGwmyG8lRbi82ptVUqHZzuoIdDh1ATaPJkCL7jj0etGfascIRBRQWUtM2bYdgnG6EzMIBjVVfLBi6MaBTKn8uFjS2WLAiHZXrQGWeM/L0enE7ct9WK+chRidwxLhKR0RN6pHe68PsxXmwEZKK4P/zwwySEoJdeepHuu+82OvfcKXT66aV0663n0JYt7bRlC9Htt99Pzc2zyWazUb7LogJGHxx9SCTTX9hg1islkSk++ACv1atR90sP2i7mgQDWbLIec7cbBCJHOeo5GyIRSWzERuhw5/r+fsiNbBCIGzYQffvbcMg98IA+gVhenjnB9847RFdfDVn6/e+j1iKna1dWZnZ8lkUvvvgi3XbbbTRlyhQqLS2lc845h9rb24mI6P7776fZswuy6FgF63JeL/Zy1hGLi9OPUqupwe+1Dmy983JmBqfx6mW6xMLhQNSgUaSx2Yxrjkb1m/LFwu2G3jFjBn63e3fi3/h8+F5JCfTjJUug3+zdCz0iEbZsAQG5aBFSubWwWCA37Xbo7319iY+XDux2qZM6ndCBcgk9WVReXkrf+MY5NGdOO5WXE9155/00ZcrRIYu4meV778kGGpWV0JMnTIC+P3169mrsxYPfD/0/HJbdaZOtg+504sUNOWtrR5dcYWeDyyVLhxDJ+sOcSWdEjHHGAhPmmYIbp/l8sKGJZOOpvj7IsYMH8ez7+iBPmTh2OhEQcsYZMlChuNj4WUSjaPJ08CDRhReirnSqOHwYBGJtLSIQMyUQ29qI7roLduEtt+Q3gcgQAnvWrFlYn14v9MmuruT2JBzj2OKgcoExbawihLiaiH5LRJuJKEBEjxPRZCL6FhF9TESPEdEXh75jJ6J/JSInETWrqhoWQlxCRP9JRH8molYiqiKiK4loERGdparqxqHzXEhE/0NENUT0DT6/qqqPDn3+bSL6ERFtI6I/EpGDiBYS0TxVVc8c+s4dhKKWHw59/gwRNRDRN4noQ1VVVyW6309+ktRJk6BI1ddDGSguhnDnKA2OEuTQbv7Lr3GeGnVUIhDAxmO3G6eq9PeDHPR4QN4a1YsJBEAiRyIgDmtqZAMB3tC4mQ7X3rHZZCdmbei/Hvx+eLBKShDZo50vkQg2k0AAinws6RaNwjju7yc66SRsmPHAiqzXG7/IMxMUXDuE53omYfQeD66zqAhrKdOU6WeeeZhuv/0amjdvORUX2+iccy6j3t5OevTRn9DMmYto1arL6W9/W08nn3wNORw+euWV73soj2VRT0+hmcFYQZvCrI1OzGajla4uot/9Duv80kv1j8slDTiiqawMClky1+Dzoa6O2010ySX6soLr+JpMI7uLKgqcLi4XyMNkIx+NoKpI2376aZAD3/mOJPKYQAyHZdpZuohEkKL09NOQ2//yL7K2qhAwVDKVRY8//jDdeus1tHjxcrJabXThhZdRd3cnPfjgT2jevEV00UWX05NPrqdzzrmGXnvNR1u25Lcsev31gixKFxztr6rQJzNNpY1EQPiZzdBN9PZzRcE5ufZiaSl0DSOEQkS7dmFdzJ0b3yDWRirFM9Jfew2y5VOfAjF45AicsUYpzZEI6vmpKvQuTufkSGinE/dgdB8HDkB3mjYNvzcCyxqPB3Kmujo36YKKIp0W7KDJhW2wYcPDdPfd19Ds2dCLTj/9Murv76QnnvgJzZixiM4883J6/vn1tGDBNTQw4KN3381vWbRxI6l+P+b0lCkgC0tLRzf9V5u+XFwMIimZwA/ebwMBWZ8xVynWeohEZKoyO0W1NfVTXQfa4I14zaGSQTSKcenslHXTeUy5pr22W7LFgvvZsgX3s2xZcrJVVREdvW0bshNOOin1a21rAwFZXw/nb6byY8sWoocegu5zyy3ZcdaOFygKni2Xc+vpkVlk69YlbqxyrHFQucB4iUmLEtGpqqpGiIiEEGYi+jYRVRPRQlVVvUPvO4noPiI6lzCAL6iq+pT2QEKInxEmxL8Q0UYiIlVV/zL0kKz80DTfn05E/01ErxPR2aqqBjWf6U3CQ6qqXqT5Th8R/a8QYoGqqjvj3aTbjUlfXIwosClToLQk0zm5gLGDzYbN0eeTjWViwaklqgpSzagW4DvvYKNvboZQnzZNbvLl5djAenrgidq7F8c46STMkXAYG6HPh/litQ4/RzgMzyV3jdPO3nAYm1MwiHPGph0qCqKW+vtRcygRgajtEseh5UYQQtbvZDIxFJKbdqpKzsAAFAGbDUpeNteOyWSmX//6dbIMaRiKEqX1639MbreT7rtvB7W0lJLPR/TKK9//N8pjWVTA2CE2GpHJw2w1WvH5oMiWlhJdcIHx8Xp6ZLpTWRmiepI5dzBI9Oc/Yw1edJG+rGA5SDSyyLyiQMnzeKShlgmCQdQifPttdGC+4QZpIHBX20hEFjtPF729RD/6EQiRT3+a6PrrJaFiNkMOZlsW/eUvUhZFo1H6xS9+TAMDTrr55h307LOlQ00hCrLoWAWXQeDmJJnCYpFN5QYH9esjmkxYSy4X9nCv17iWIjsqVBU6b6L1YTbLezEiTrZuxfV98pO41uOPR53CzZvxm9jmMIoC3ScSwTVoCSEh4AwwmeB40Uttbm/H7ydNik8g8vGqqnAfg4M4Xk1N9rN/2DHD5RPc7txmGZlMZvrZz4brRY8//mPyeJx0//07McNzmQAAIABJREFU6ODBUmptJXr33fyWRVYrIscybcKRLiIR2aE42fRlRZFNN7krdC4au+iB05S1jTk5EyletF4yEELKGY8n+UwjTkvWdkvWRjNyR/eJE2U/AL1j7NqFMV28OHkC8fnnZb3BdAjEgwchayZOxDzMZPxUFVllTz0FGffVr0Je5guYHNT+jX0vNgZucBBj6HSmfjo6BjioXGC8kIgP8cMbwluEB/h7fnia94mImomIVFX18QdCCBsRlRKRIKJNRHRpkuf+HGEcfqB9eEPH1/OQ/yLm/69prinuA9y4kei551CYeOdOCEaPB9Ei06fjbyGff3xCVWWKSl3dSKO4rQ0bfnU1QuKLixECr918tm6F4Dv+eHjklyzR38AUheiZZ6DErF6NFPXYgr1+P76nTRM8cACbbqyiHAoh7W7GDERJxm7Gqkr0xhuYe5deimuLh3AYCnd1NRT2VJsTcL3EYBDjyDVGEm2YqgqS1G6Xil62FKUtW/D361+/gU44QQ72RRetoPXrf0xr1lxBNlspnX46agD953/mtyzKdmfFAlJHbESiouD/mdRH1HYDvPFGY6+zy4XvWq1Yw/PnJxehx41aAgF0PI5N6+P78niwpsvKhsuuaBTOETbWUmmCpAeHA3UJ9+xBTcLPf16OnaKA3KiuhvKcCYH41ltEP/whrv+uu2AkcPH3ysrUalUlAiv6N910AzU2ysE7++wV9Itf/Jiqq6+g558vpZUrib75TaIJE/JbFp16apJXVMAweL1Yhzyv3W6sq2zMxcFBrJ2aGuPu5aEQCI/eXsismTNHGtu7dmHNLFmSfLSxqkLOCDGSyNmxAwTd2rWoi8hYuRIGvNOJOtPaiMI9e6AnxZM3qopIRW6OMns2zn/gAJwt55xD9IlPpDauXi9+azLhenKl24fDUp5nGmkdiwMH8Peb37yBTj9dPgyHYwU9/viP6XOfu4LKy0vppJPgVLnvvvyWRStXJnlFOYDfj/2MKLl0aXbU+Xz4t90O8jCXjTJ4bXLDTtZfOLgi2804zWZZtsHn0yfzuOYyE4baJqQWi4wu5L+RCNZlKKTv+CCCLHA6R9ZvjYeNG1EzdeXK9OYRy59Jk3DeTMYxGoWe9vrrsDevvXbsmunEgudQPHJQzyEmBOYD93woKZH9IsJh7DW9vbC7L7gg5cs6JjioXGC8kIhtMf8fGPobW6mE368hIhJCFBPR9wjhprE54cmmyMwe+rs9ye/HXitz3jWJfjhhAhbzueciHWP3bhhUTidIKLMZCsz06YgWy3aXtwLSB3uYuQmBdmPp7sYGNnUqNnGrFc+zrQ3pNZWVICA3bcImO2sWjHYjod7SAiN81SoQfgcP4jicnme14rdMJg4MgNSLTdUhwnf27IFgnjtXn/B75x0oi0xuxgPXaREC15SOYc4d7UpKZKFwv1+SiXqIRpGK4PdDwapJuNrSQ1PTcDFSVIQHXVIyjebOhaE0tLnntSwqYOyhVx+RoxHTjWjbuBGRPxddZEwgclRyXx8Itubm5AzPaBRe7fZ2HF+PQCSSaXaxzZQiEcg2vx/nTKZhUzwcPEj0b/8GeXznncMVd0WRNaEyKSgfDhP98pdEjz8Oxf7OOzGuAwOQrXa7McmSKbSyyO8neuUVyCKTaRp973sgMguy6NiElkBkvUAIkElOZ/L104xQWYn57XDIkjuxKC7G96JR6B+HDoF8YxKDG41Mn55auQI2Ftm4ZFnY0wO9eepUEHqx13LuuWgk9be/IZWwvl7KuenT4zsshJDXznWW7XaiDz+EUX/SSamPZ2kpZEVXFxzLEyfmptlSURH0IbcbemMolHxn7mQRqxeVlUEWWSzTaMIE1J4dkvUFWZQiOFre40kufZmbc/p82OfYWZerbDZVHd5RWUsccvmtXEY9Wq0yHZmvh0nDYFBGQHKpJ25OabXqjwl3OzfqRt/RgTU7dWrijCzGm28iEOOEE4bty0lBVcEDdHYiCtpIr0oWPh/Rgw+CVFuzBnUZRyulnWV2vChCvfrfJpNsHsuZmdqGskwexkJVIa937sRxFyyAjZYGkX5McFC5wHghEY0SMYze5yVxLxF9mcDMvknIE48S0TVEdHk2LzCFa0qISZOILrsMtVjeeAPseTAIhcPrJfrHP/CaMAGs+vTpuTNUCkgeRUXYrDl1oKQECrvLBYWVFcSyMjw3VqL9fqKXXoKxu3IllFUjZfLIESiuU6fC0x4KYVNrbwd5xlGQQsiNcv9+XMPkycO7vwYCIBAVBeSg3jk//BDfWbIEYfvx4HZjrhYVYXPNtPaXxQJll1PFeVzt9uFGC49BJIK1k8u1YNbsVG1tiHwgIpo1y2yUypTXsqiAsYUekRiNppfWvGsXHBUnnICXEdrboSSXlkJOJZPioqpEf/0rvOVr1siGJbHw+7FeS0qGOzPCYRCIgQCU5EzTat57j+gHP8B5fv5zyFRGNAq5rCiy7nA66Ooiuv12KKgXX4x0IIsFxw6HIYdy6ehjWfTee0Q//alsHnH11WY66yzdnxRk0TEAjwf6YknJ8PnHdfEGB7NDJNbVYQ309mLf1TPi7Hast2AQZB0bwi4X9IqamvQ6k7Ls44iUUAhNk+x2RAXq3ZfNBtn07LNEL74IorG3F+RdsnXAmptxnx98AFJ02TKiU05JP7rLasV4dHXhVVeXfGRTKhACupTfj/nhcOD/mepoDK1e5HQSffwx/t3YaDbqjF2QRUlAm75cXo59Md6a5efLWQSxkf7ZgqIMT1UmwhooLpbEYa6hKMO7JWu7VHOtRS4BFa9OvB5KS2VN1+JiKUf7+2FP1dUhcysZvP8+0oaXLIHzIlUCcfduOEiampI/pxH6+lDa5cgRNH5bsSKz4zG4K3miFGO9uDkmArnTth45mI589XiQ3edw4HktWZKRk+aY4qCyifFCIqaLtUS0XlXVr2rfFEJcp/NdI1Z479DfxUT0ShavLSGmT4fg2LMH6VL790PZOeUUCM62Ngio99+XDTiamjKP4CggfZSVYfNxuSA4jxzBe1ovN9claWyEUH/xRQi7lSsRgWgURef3g1QuK0O9HyEgdKdPxybT1weybfJkuWH29WGuNDdjQ+VwfkUBWSAE0nj0Io22bUMHunnzUAcxHhwOKI8lJSAQs5kyUVQE5SkUAonudmMsSkuhwHR24j6mTs0sJTFZRCIYm+5umfqdxOaU17KogLFDvIjEZNdZXx8anTQ2Ep1/vvH3jhzBvmIyIdo9tn6YEV54AWTamWcaywpOK+Lurdr3W1rwV6+cQqr461+J/t//Aznx3/89PMpJSyBWV6dvRL/2Go5NhDTm1atl0wkmJ3NdesTtRur0yy9D5l53HQqjJ1E+oiCLjlK43VhHdrv+ns6NFAYGMFczaexhMmFtdXdDvhiVwCgvl13Yu7uxLlpaIAcWLUqfyDSZpPG6YQN0n0suiR81XVoKIvGJJ9A5/rzzEtcx1DuGw4HzJiJ1koHFArnMOlw4PLIkTrbAXW1dLsyB0tLsOTq4Cc2+fZJQTiIjpCCLDODzYZ4JkTh9mZs7RqNSX852eqqiyDRlriGobeSYS+JQVXFubS1DbVpyURHGiJ0ndXWZ2yBVVTiHw4HjB4NwxJaXJ99Reds2lFGYMwcRf6lck6LIFNwZM2DbZ4L9+4nuvx9z5BvfSJxVpr2OROSgUXoxE4FG5GC8BlnpguvstrTg+MuWwTYcIxzz8i3fScQoxbCvQoi5RHShznc9RFQlhBAxeeZ/IqJ7iOh2IcRbsUUtDXLSswYmeWbPhnfvnXegMDU3w4tgtYIMam1FLcWPPoIR1tSEV3396IUqFwBUVkIh3L0bSpReR0DefF0uGN/l5TDYjYx2RUH9inCY6Iwzhhu/XFPHboeSzunN0ShIgaoqqeDbbNiUdu2CgF28WJ94270bc6m5eWRqkBaqinNwYeNcKb9E0ssZDMIgOXQIhEBVFQiPbHnV48HrRWqC329Mvhog72VRAWMHLZGobbTC/4+HUAgGs9lMdPnlxsq+zwfFy+vF3I5tIGCEl19G04KVK4fXIdOCSQSLZTjhHgzinJEIFO1U66dqoShEDzyAzsinnEL0/e8PX5+RiCyonS6BGA4T3XcfzjF/PqIdJ0/GfQwO4rnkolGCFrzKf/xj3N+FF+K5bk822aUgi446cJ3RUEim6xnBZsP8ZyKxpiZ9g5vTK/v6ZHSjHqqqZAfkjRtxzpNPznzPNpuRldPejqZJyTg9iorgeO3qQprgokXJE2kOB/b/pibo5G1tWHeLFmWWLso6XH+/jGTOtjOWYbHgObndsslfeXlm5wqHoS/296d83QVZFANt+rLVivVlNLdCIdn8zGLJvvMqGpWpykwUmc2SjM5VinQ4PDzKMBiU+x6TUmVlMsqQ51s4LGsRZ6JLEEnytqcHmU6dnbjnhQuTm9979qDB3PTpRF/4QmpjpSjIcurvR2ZGsrqYEd5/n+g3v8G6v+UWmYadqO6gXnMSIty/liCMJQctltzW3jSC04mAHLcbetmiRWPeR+KYl2/5TiL+hYiuEUJ4Cd1wZhLRV4hoFxEtj/nu+0T0aSK6VwjxLhEpqqo+rqpqqxDiP4jobiJ6TwjxBBH1E9GCoZd+4lCWYTajYcOCBdis33+faP16/P+Tn4Rg8/tlrb0dO6Dc2O0y5XnixLFZ2McaTCYZEVBZaTzmgQCiEIuK0M2zpgZk8JQpIwXfRx+B/Fu50jjdpbISm/vhw5IMaGwcTmL6fNgQKyvhneHuodwdmQhenHfewecrVhiTFFzrKBiEopOLNBw9WK24Zlayyssx97luRi6xYweMn5NPxobcHlsRwxhHjSwqYGwghH6zlXiNVlQVimxvLxqdGK1RRYHS290ND3Vzc3LOgDffhKw48URE4xkd2+PB2tQq9oEA5JSigEDMpB6Yz4eIwLffRjTSV74yXO7GEojpkHyHDxPddhuu+dJLib78Zchunw/yvqgI45vLPbarC3UniXCuO+6AoswRZkmiIIuOIqgq5l84nJhAZHCDlWwQiaWl0AG4G7MeIScEdIS9ezGHGxuzU3bkwAE0PVu4EDIkkVMlHIbTtrIS8nDjRkRRf+YzicfN5ZIN5k49VaaL796NiKPFizN3HtTWQo709kLeTJ6cG4dEbHqz05lZevPOnfjtggXQXzdtSvqnBVmkQSQio1ErKoxrV4bD0mlgNuN72WqYE4nINGUmDrkWXXFx9vc3RRne+CQYlOflbKvKSvy1WuPPUW4k6fMNbyqVLsxmyMlXX8X/V69OLsLz4EGiP/4RjoG1a1NbV9EoAoa4cYteEEoicHOSSASRkM8+i2jGdevw2eHDwztSM/Sak+jVHxxvgUmRCOTwwYN45iedNG6aQx7z8i3fScRbichP6G5zDRHtJqIvEdF8GvkAf0xEs4joKiK6mcAeP05EpKrq/wghDhDRNwlFMiNEtI+Ifp37WxiOoiJEhi1dilpIW7bA+Fu6FAtn3jy8gkEIitZWGD27dkEAT5sGUrGxMfeEy7GKI0cgqJuaZKey2I2Ha4j19qKGz+LFeB6dnSCBGxulUd3aCgE5bx7I4HgoLsZvOzqgZPBmwikse/fiO3Pn4m8kIpuXBAK4nrfewua3erWxwhAKwRiIRuHVykVBcD0oCogOjwfnravDdfv92HRtNigR2VR0wmE8AyIoFKtWpaVsH3WyqIDRhzYCUVsf0UiWv/02DNyzz46ftnfwIGTDtGmQDcmsn/ffh7G4ZAmOrweOkCICgcjKp9+PfYsI58vEAOrtJfr3f8c93HrryM574TDIEqL0CcRXXiG6+26M8913yyYtHPXAhk6ulOtoFNGP69cjApsINY2OOy6tfbwgi44SqKosncKROcnCasV6cDoR8VJTk75OWF0NnaCvD7qD3v7Y3w9ZMHcuZFZPT/KNCfQwMIBaYxMmEJ12mkxtNlrfigI9KhQC8V5eDrn14ot4rVljTBB4vShhYDIRfepTUl5x1N3OnYiAWbIk8+jKigrcQ3c31vqkSbkr05JJejNnoRBh3nziE2kRwwVZNARt+nJ9vf4z54j+QADzjhsQZrrvaDsqc2OLoiJJ2mVLn+a0ZC1pyDUViWT9Qa7nXlyc+r3ZbNKuMZszW4+qCkeFxQIyT6/pRywOH0bn45oaoiuvTE0mRyII/nG5kOmgR4Ql25wkEiH6058QgHLccXCuMgnMUaTJNCcZ7+jpwZj5/SBK580bnZqcSeKYl29inEdKHm1IebDdbkSCfPwxFs4JJ6CLrlYZikRAKrW2QikJhSBEpkwB0TV16uikgh4LcLlABNbUQBHo74dAj63R8Y9/wCg86SQYvYoia0gcPowNlhXsF1/E8c48M/FmHo3CmI5EcM7+fhy3pATC1maDEh/7vEMh/G7jRlz3eecZK5M+H45lMuEaRytcPBLB2AYCMBy0UVWKgk3E75dNZbiQfCYYGECqZiCAzSmFwsbjzFeXMgqCfxyDlVmORuQUZy1aW4l+/Wus9yuuMF4L/f0wkMvKQI4lY0Ru20b0zDM49sUXG8sltxvrtrxcKnZer6xXM2dOZgZySwvRd7+LdX/77ZCnWoTDIElMJhAdqSrJwSAKkf/1ryAe7rgDMo9Tzjh9NNPUqXjYt4/of/8X97p0KdEXv4h9O4UOqwVZdBRCSyCWl6dfA43XiBCZEYmcmcB6gVYm+HxwOtjtWEc7d2LNLl+engMyHEakj8+HJoTl5dJhynpULFpa4HCYOxe6EaO9HY3tGhqQERL7W78fkUjhMMhKvZqtfX3IUrDbsUazUY+OHbWRCMiEXMoYjmYNBmVDini6ZjAIw93hAMm5YEHS86Ygi2IPqGL9eb3G6csczc/6rd2OdZOJfsvRhqGQjODlhiRFRdlxiIXDwwlDPhcR7tFmk4Sh1ZpdstLlwrjFywZLhP37YTvPmoXr8/mMCV4i2EW//S0+v+661Ej1UAi2hsuFUgk1NfpEoVFzEi0ZGAggffnAAZQ7+cxn8pMgjIdgEDK3owPjvHRpyv0g8l0W5QUKJOLoIu3BdjhATLW0gDDiaEW9zairS6Y9cxpoYyMMk2nTRqc5xdEIbnbDEZ9CyO5qxcVSwHV0wDBtaCC64QYoh9EoBL/Fgg28owOKxebN+HzNmsTROqqK8/t8iFi027Ex7dyJKKOJE1ErTI8w7u0l+tvf8Ow50q6oCOfUKtWDg1CYi4uhPI6WxycYxJgoCs5rZHgoikxlYPI0HU+tqoJU3bMHY7J8ecrp2vm+QRUE/zhHPCLR7UYR7eJioptuMpbpoRBqGgYCMJCTUcL27EFK7fTpMOCNlFOvV5JsbFR7PJBFFgsIxEwcEG++iRTmykpEB8YS/KEQiL50CcT2dtRV3L8fJOwNN+C6o1EcNxLJbhpZLIJBRB4+/TT2gCuuAElaW5vyHl2QRUcZFEUayWVlmZNWTCQSZVbTMxCAIW23y4ZG0SgIxFAI89dmgxzYsgXrP51o2hdfBLl+wQXDi+ZzE4DY0iaHDmE9NzXp1xfbtw9E4bRpqK3IcjQYRLS1z4cIxHiNQhwOEGs2G4r5Z8O5ysRsIIB1n+umidygg9OdjSJKt2+H/Js/P/nO1kMoyCINwmGMJ6cvV1YO/5z1WZ8POimTh+mQYqo6vKMyE4es62dKHHIXdi1pyDqKySSJQiYNc207RKOQkZzunSo6OyEXGhuRxaGqkG2cfRUrsxwOOG1NJqJrrx2+VmObk8SSg34/AoECAehF/FtOL9aLGNT+W/vcurthXzqduI4TT0z93sc7Dh0CgRiNgnCdNSutNZHvsigvUCARRxcZD3Z3N4yr9naw8ytWYKPX2xw4HaGtDVErrDw0NMjGLKOVpprvUBSMoaLAuNZukD4fNrOKCgj8n/wEY33zzSDEGOwVLC7G9/7yFxiwZ52FNJlEQrKzExtHY6MkvPr7cYxgEBtTWRk+1yqHTiea9VitkqzkFGFVlbUxnE6QiHb76NbX9HplhENjY3LKeTQqSQyTSaZIJINQCJFWR45gLSxenFakbr5vUAXBnwfQptdwirOiQJnt7ERtQKPaMKqKvaKjA/tEMh3sDhxAZ9NJk9DMw4i8YPlRUiLXncsFpby4GIpyusSHqiIK6Ze/RFTRf/3XSOOeG52Yzel1oH3pJaJ77oGs+d734HwhkqnRqgoZm+0OmIyPPkKH6a4ulJW4+GLcY5qRYgVZdBRBSyCWl2cvi4S7ixNl1rnc5ZJNVioqYBwfOQJiTbtOe3rg4GxogI6aLLZuRZO5U05B5k0s2GA3m7Hue3vhXJ8wAQanEXbtgjxsboZDJRJBhLbLBceqtsu7EQYGoDsUF+N+s+GQZz3d7cZ45rpZYiSCe45Gh6c3qyp0yQMHoEcuWZJWdGRBFg3B65VR8jU1w+eKqsoyQ6qKz8rKUpf9TBxyqjIR5g5HG6a7xlV1OGEYDI5MS2ay0GbL3T6ZCNx4xmpNzZZ1OCC3amsRZcvrLRyG3CoqgjwRAuvE4UDkXzCIGojV1cMJQ700aG5OEonAMRsOI0q7vj795iR79qC5nNlM9NWvpt55frzD64V87evDmlm6NKMI7XyXRXmBAok4usjaYLe3owh0Tw8E4cqViQVKf7+MUGSvdF0dSLGmppFesgIkDh+GgJs2TT8yxenEhvbCC1CCv/hFeOBjEQhg09m3D97e2bMx7jYbPOhG3ru+Pjzr+nrZobC3F8RmRQWO4/WCWCBCfY/yciiLGzZgszr33OECWVVxPZy+HI2CkEimA2K2MDAABdpmS6/IONeQCYexsdrt8UlIjv4MhWDYNDWlfen5vkEVBH+eIJZI3LABtRAvvRSGnhE+/hiyaPHi+N9jHD6MLs/V1ZBf8aIbvV4YDqy4Dw5CptlsIBDTNV4iEZBrzz0Hcu3f/m3keg4EcL50Gp0EAkT33ovjL1mC9GWWd4EA5KXJhOPmIpLC5QI5+vLLIGrXrYPsLi/PaP8tyKKjBBxdo6qydl62j+9wQKbU1KS/Tnt7oTeEQtBFm5v16znv24fP581LroFAZ6fseLpmTfymb4oCObRzJ8Zq4cLE5NvWrag1zmRjXx8cLFpnbyK4XDiO2YwMhmxFKjsceJWU6EdCZRNcyzYQkLXxuNlDYyOeV5rnP+ZlUaL0ZW52oyiyC3Eq61xRJHHIzTO4Dl5xcXoyIxQaSRoyLJaRhOF4auDJmUmlpckFIHi9iJK22UDqca1VJgU9HmmTlJfj+3/8I/5ecolcm0aRg9rmJH4/ZEUkAj0sExv7rbeQuTBxIjowa0s25DvYgdHSgnFbsEBm+2WAfJdFeYECiTi6yOpgqypSx956C5vWpEnwqCbTLn5wUEYo9vXhvepqGaFYW5vNK81v9PdDaZ440TjdRFFkl6xzzkFkiR64kO+mTTC2V63CptXZiY15ypSRxrvLhfDuykr5bHt6oJxXVg4P9Q6HEXnk92ND/eADXNu55+pvYFxP0+2GMsNd0rJRzDkeVBVjOjCA88bWWEoVoRCUiUgEm7jdPtw7yuPO5QCWL8+YNM/3Daog+PMITCRu2UL05JNwGp13nvH3OzshYxob0Wk00Vru6YGCWloKYsvIqx+JQFZYLLIekNOJtWW3wzhPl/jweEDqffghUnuvu27kdWsJxOrq1GRUayvSl1tbQZJee6007rxenD9XHZhVFc/jF7/AeS64AE0frNaRUSppoCCLjgLkmkDUnoeJxOrq9KKIVBVNTLZuhR6zfLlxNgzXATv++Pg1xLxeoscfx/Vcemni6/J4cH6bDREryY7Xu++ihEBVFdFVVyUXoa137i1bcM/LlmUvo8ftBoHBjR5yXcs8EIAdsGsXxnHJkvS6xWpwTMuicBj2VCQC/VKbZsup5NEonmsqUcaKIqMNmTjkpiKc2ZQsIpGRhGFsWrKWNMyHWnvcvZ7lJjceiU0x9vkgM6JREOWxpCOXSWCCvawMNl1/P2RFc3Py48HnUhSsq3S71asqHCsbNoBc+9KXkm+OlA8YHMQ4DQ7KzLAslVzLd1mUFyiQiKOLnAy2oqB+wNtvQ/jNmAEjM5n0DCIobxyh2N0NoVVWJiMUOaz7WITXCwKvoiK+ctXWhuL41dVEX/+6cX09jwdRMBYLinxzZGAwiPMoCs7D7/v9qN1XUoLnIQQIgo4OnKu5eeSzUVUQjM88gw30ssv0Pe3BINLpVBUEqc2G8wWDsnmJzZb9Z891O71e3EOy8zQZBIPYvFlRs9txf1u2yM6SixdnxUDL9xVREPx5BFWFbP7FL0AMXnutsQHidqP+aXExnAeJDBWHg+iRR6Acr1tnTK5zmiXX0xICyvXBg5BXs2enb3B0daEDc0cH0be+BdkYC78f5y8uhnxNRS698ALRT38KeXb77bKOEDcc8PvxWQrNTJLGkSOoYfT++yBcrr0WMo8JxCwYaQVZlOdgApFIlkXJJRQF6z4axVpKtb5fMIga3YODSDlubDReN8Eg5r7FAiJRTx5FozCUe3uJvvCFxE7sSARpb36/TLtNZt2qKkjEv/8dY7xmDUjAdODzQa9QFJCY6ZIEsQgEIA+JYFTnqiarqiJSdN8+jN28eZBLGRKix6ws8nhkjd7aWrmmQiHZgMxiSb7LejQqicNoFO+ZzTJVORkZoSiSKGTSkElITnvWEobjvQEnRw3GkoNcHzkSiT9/Oa148WLIvdgoQq3zsLMTmRluNwjEeKUSYuHxQD4RQTaku6ZCIaRRf/gharauXZsfpG4yiEbxPA4cwDxcvDi1iPAkkO+yKC9QIBFHFzkd7EgEXt/33sNmMW8e0Sc/mVrDiEAABFRbm2x0UVIiIxQnTRpfoey5RDiMqBWLBfdudN8eDwhEv5/oy1+WRm6sNyUahXHvdiMKhZUB9rhHIkgp5O7E5eUQsCYTiGHu7NzVBSVlxgx9xTkUQmHynh4lQopZAAAgAElEQVSk+NTW4rlpvaJeLz43m/GZ1usfjeJeuN5gSUn2OjSHw9icQyHcY65S6DlNu68PERNmMzapadOydop836AKgj+PEAigkUowiFo4ZWVYm7HrPxKBgex2IyI60foaHASBGImAQDQy3pls4zptZjMM/rY2/H/27PT3hR07iP7jP3DsO+/UN+p9PpzfasU9JUv0+f2oUfviiygvcfvt8h4VBfefqw7MioKuzw8/jP9feSVSJxUFsjidYvAGKMiiPAbXqGNyfrSMREVBFHE4rK+vGEFVUdPT7UZkjN8PGZCoKcnWrSCp9NKOX38dn59zDoj2ROffsQNjtnAhHIVGHZtj8cEHcHosXgw9at8+rMkFCxL/Vg9+P4jESARkZrb0mXAY1xcOS10wmwgEQHIMDCC7Ze5cmRZaVIR5mKY8P+ZkEa8jnw9riB1D4TBsg1AI/y8rS7zGIhGZqszRgdqOyvGeCddHjO2WzOC0dW235PEUHMK1TvU6FmsJw1hwcxIi+QyYINSmG+/cCafnokXxZRURzvPoo1gj55+PbI5k14PbLcsdLF2aftTg4CB0vtZWos9/nujMM8fX88oEvb0YW58PtvX8+TkhsI+S0RrfKJCIo4tRGexAAMrSRx/JUOpPfCJ1b0g4jOi4tjb8jUSwmU2diqi4xsbR69472uBOyKEQ7tUotSYcRhrgjh1Iv1uwQHr4Y2uhvPMOlNbVq6G4sZdR28mMo/QGBrAZVVYSzZyJ77S3y7qIevWHiPCMXnoJ5NkZZ0AB5fTm6mpEHA4OYjO1WkEgGhktkYhMEebmJZkUUA4EcC2qimjLXIbkc6r/jh24vyVL8DzS7Xyng3zfoAqCP0+gqlBoW1ogY6ZNw3tEw4lERUGUTWsr0cknj+xmHAuvFwSi14v0XqMGLUQykqK8HLKqp0eWWGhuTn9NbdxI9D//Azl19936pTg41ThVAnH/fqLbboPcvOYaoquvltcZjcLwY0IvS+kz/8TBg3As7dmDqMfrrpO1pGpqsueUGUJBFuUptARiZeXoO2jTIRJbWrD2Fy2CzHA6cQ+1tfGJ+NZWOEWbm4fXIm5pgXN12TKUd0mEvXsR3TtnDnQhVcU4JiISt27FuebPx7UrCmqTtrVBJ0sl0kiLQABEYigEcjJbHZZZF/T7ZdOlbKC3F/UPFQUkbEOD/Ezbvbm8PC1975iSRaEQdGlt+nIkgjEMBrGeS0vjlwfSdlRm4lDbUdlIJkQiwwnDYFDqBWbzSMJwLCPYjMhB7b/jNScxqjvIL0YwCH2hpGR4BO+BAwjAaG5O3G1cUYieegq2w5o1stljMhlTg4Mgx4qKMmu81NGB7AWPh+iGG9KPlh5vCIVA5h46hHWxdGlOS6fluyzKCxRIxNHFqA62xwPiavt2CNrjj0fqSToGTDQKwdbWBqMsGMQxp06FQjh16th16MoFurull9ZIMWYl9IUXQNidfz7ej0ZB4hUVScVv3z48i0WLhm8Ifr+M9mRlgesIdXbK9vaHDsm6jEbRdNEojPKuLoS+M9HI9Qf7+rDBlpXhupJNUw+HZYowNy9J1WvkdmNMLRZsyrmcK8EglPr+fpxr4UKpaKmqVDAyNNjyfYMqCP48waZNiC78zGfQsVRV8VKU4V74Xbsw7+fO1W/qpEUgQPS738HhccUV8evo+nxYP6WlWLddXbKcwsyZ6XnHVRXn/+1vQfD/53/qR+Z5PJBZNlvyUT6qijpG994LWXf77dj7GKEQlH0iECfZ9ICHQkSPPYZC7GVliExfulSmS1dX58SYK8iiPEQ4jH3RZMoo8itjcCOIUAhrLF76bHc3jOupU4dHDPb0QEY0NBjv7aoKXdTphB5UW4s9+o9/hC5y0UWJx+DwYeigU6cO14M4iolrmsVi1y4QZ7NmoX4jIxpFlHJXFyJ9jJyziRAKQfb6/SASs0X4se7mckGeTJyYfjSSooCA5ehxoygpTq2PRPB5isEHx4wsik1ftliwV/n9eEbc+Vqv3FAkIoMIVBXf0RKHsb/htGQtachReUJIopBJw9FKS45tSqJHDkajktzUIhE5aLGkN9e9XowR15zs6sK8nzwZ6z/R/TzzDAJwPv1p6FseD2RWRUV8HcTphIyxWrG20nUUfvwxmq/ZbEQ335zV7KkxRUcH7i0cxnOYMyfne16+y6K8QIFEHF2MyWA7nahfs2cPBNMnPpFaIepYKAqUxtZWKCQ+H4TBpElQwow6GOcLBgagLNfWxvc+bdsGg3HqVBS71Y6n3w9DtawMG9rf/gYF8PTTh2+MqiqVDq4/2NUF4760FMpCTw8U82nTjL1oikL02mt4HitWjPSqKwoic1iBnDcv9dQbbl6iKLJ5STJzyOEAgVlSgo08lx7Rvj4o89EoyEMtOaIoMmVHCEkmpqmU5/sGVRD8eYC9exEtuGQJUlp4rmqJRJMJCtq776Jj34oV8Y0IJrq6utDAYOZM4+8GApIAKynBebicAtdoTRXhMNGPfgRi9Oyzib79bf3rdbuxXktKkk/99fmI7rkHzp0TT0QjFa1Bz41ZLBaZ8pQtbNsG4rKjA4TENdfAkIpEsp6+HIuCLMozhEIwTseaQGSoKvSeYBDXo0cueTzIcCkvh5NCu/ajUcgFIeKXvGEHHxF0lOeek3WbE2Um9PVBh62v10955mim2Npme/finE1NkAmxMischiO4rw/EQaJIJSOEwziP1wvdI5u1np1OEK42W/zsESP4/ZBPg4PQV+fOTZwaq+3enMIcPeplEdcT1TqG/H68iLBfxWa8cKoxv7TEIXdU1u7todBwwjAclscqKhrZLTkXaa7a5iRGKcZ60YMcERyPHMx153GXSzoWdu3CM0rUvV1VYae9/TYik087TX7mcGBd19Xp27b9/XCulJTAtk43SOLVV4n+8AfYLTffnL2o5rEEy54jR6BzLV2aU11Ii3yXRXmBAok4uhjTwT5yhOjNN0H+lZfDy7JgQWYKLHtKudOz2433J06UjVmyXWsql+BudXZ7/K59hw7BEA8Gib7yFX2FcWAAStu772LjX7NG3zsVjeK8ZjM2qu5ubFYTJsBz39ICxfG44/Q3MFVFh+59+4hOOmlkfZ9wGMcMh7EpuVwwtquq8JxSff6BAF6Kgs2ypERfKVBVEKAuF+ZbQ0Puanpw+vK+fZhvxx1nPO+4Sxunm5SUpNVAJt83qILgH+dwOlETp6JC1lrVgknEvj7UwTWb0VArnoIWjaIDamsrOsjPm2f8Xa7pVFwMo6i9HXtIff3wdMRUMDgIYm/7dqT4XnGF/rpzuaB82u3J1wNraUH6cmcnjn3VVcNlG0c1FhdnN3XU4yH6v/9D98SGBjTWmjMH95qj9OVYFGRRHoEbLVgsuWnkky5UFXM2EMCa00agRSKQMdEodAy9+RwMYr+32aC7GIEjdrZuxXEvvTRxQX23G78pKwMZYLR2Y4nE1lY0dWlshL4br/nLc89B7qxZE7+0QzxwwxeXC2nT6R5HDx4PxtdiGVnHOh56ekBwEGHsUrmmYFDq9BUVSZ1znMzmtBFXFsWmL7POzhkupaVSF2YykIlDIsxJbcQhET6L7ZasTUvWEoZWa+b7lrY5SbwoQj1qIJYI1CMKx9ohQiRLAXz8MRyey5cnJi43bQKJd/LJcCbEBnscOYJxmThxePBEby9SdMvK4OxNJwpUURCRvXEjSLYbbsi5zpBzqCrKuuzejf/Pn5++4zlN5LssygsUSMTRxbgY7EOHQCZ2dcHA0YtcSxdOp4xQdDjwXm0tjM7p01Nr8jLaiEZx7US4VqNNp7eX6PnnQVp9/vPG9SoUBR0H+/qILrkkfu2HcBjKCUdANjaCEOO296EQNrDJk0ca1e+9h01s2bKR1xIIyI7b3OlPVXFNfX3YqLjmRypQVUkmqip+r00R5sgEnw/3k8O6F/+sSeRwwIO3cGFyns5IBApgOCxr16QwDvm+QY0LWVSAPiIRol/9CjLhppuM14/LBSPZ6USEeTzHh6IQPf00onk++1kovPHO7/FgHZWWDi+nEO8c8dDejg7Mvb34q/X0a8FERrLNTlSV6C9/QQ2hykqiO+4YLgc5MiEQgIwqL8+OIsvOm/vug8Po4otBinJUChfZHwWjqiCL8gTBINbVeCMQtRgYwFopK8NLVUGM9ffDORdPh/N48L3Kyvjfe+YZGMxnn41mKvEyGrgJCNc2TmSkMwHS04MSMhMmwLmSaB36fCiDEAigdES6Oks0KpuWzJuX3Y6jwSCcJKzPxYveVBQ4Vtrb8TyWLEkvQ0ib3lxSklAmj8MZnRIMZZHbjb2JU5W5hqHVijGxWPB/bozCXZBNJtkYRYiRackczcfZSNrU5FSzxeI1J9H+OxZcFiVRivF4lFd6CIUQNe12o4RXorX8zjtwAi5fTnTBBfr3GYnIZpRcVqC7G/pURQXKGKST3RcIED30EGTGmWfCphwPRGwmcLngJBoYgPxNV/ZkiDyZrfmNrJKIQohNRESqqq5O4ruriehVIrpBVdX/y9pF5AhCiIeJaB0RFamqGknzMONKWd63D2SiwwGFZOXK7NZfcLsloXjkCN6rrJSEYl1d9s6VDRw6JLtFGRXEdblgOL7+Ooz2Cy80Pt6WLXjNm4dXPKU6EMBmZDaD0G1txbmmT0fkTzSKekB+P/7PmyKfY+FCpOpo4fFg3NlzHat8e71QSKNRfJ5OZ0FOxw4E8H9WfDo7oUxNnJjb0PXeXmxW0SjqLHEq0urVq4mIaNOmTQmP8fLLm+iss06jn/70Ibr66uv/WfstAcZsgzoaZVEBw/HnP0MJvvJKeHD1wMb14cOoMTN/vnEdIa4TuG0bjPZYWaGFosjok/JyyO/+fsiIdFP9Nm9GlKDFQvTDH0Je6V3j4CCMq7Ky5GpxeTxozMIRBN/73nA5qyhQZMPh5I+ZDPr6QB6+/TaKtX/jG9g3HA4ZpcLOnlRk0aZNm+i0006jhx56iK6//vpkL6cgi/IAgQD23KKi7BHZucLgIPb10lKs/f37EV2bjAOhvx/rcsIEfcOxvR3yzWbDnt3cjO/qGc6RCKKWQ6HUDNGODui2dXWoD52sce/xgOBUFNS4TrfbsqLguh0O6HPxas6mikgE+lUoBF1Q7xp9PhkR2dSEa+DxTUce/epXD9HatdeT3y8JcANH7ZjO6izIoxGySJu+LAR0Q1XF37IyjCsTh0zQMfnG9Q+ZNNSmJRcXD48y1KuFqMVoNSfJdygKbAKvFzKLSy8Z2XSbN8MJuWBBYgIvEIDNYbfjeba0ILtr0aL0xtDhgB7R0UG0di3SqPMZ7LjYtw/zWWuTjQGyJosK3JYxctpbVwhhIqLbiGiLqqp/yeW5Ckgds2ahHtauXaiZ+NRTUDhWrsxOGkZ5ObwzixdDqWlvBzm2fTsUnNJSnK+pKb202myitxebzqRJxptNIIDw+A8+wDWfc47x8Q4dwnfnzcP9u91QQvSU4HAYhrrNhnHYsQMKwcyZkiw0m0HwdnXhWjmtYssWKIixpIDTiQ2qpATH1NvgSkvRwbWjA0qp1wsyOZXnIITcoP1+nLenB4rRjBm568Csqtis9u/HPFu+PL6HXFEUuvPOO2nZsmV0YQzzywYGP3eXCxtgOg1kCiggU3zwAV6rVxsTiJEIIqF7eiAXOJI8GtU3mF96CTJ39er4BCLXwlJVrKeDB7GmGxvTj6jZsIHoJz+BIf3f/61/HC2BWF6enNzYvRup0T09iNa87LLhsisSAYGoKCAWs5EepKqIQv/1r3H8664j+tznpHFhMoEQieeEiCeLCjg6wQQiEw/jmUAkkl3QDx+GnGluTj4CuaYG+klfH9a6Vh65XKg7Vl9PdN552L87OvCd2tqRKYR79kCvWLgweQKxrw+RRRUVSGFOJTqorAzpzM8+izqJ55+fXjkekwl6386dGL9oNP0SELGwWCBLu7shc8Lh4Q757m6clwgR2fFSy4mSk0dCYByKiqDLOp2Q0/mecpkIPI/9fujQXLqH9ye/XxKHiiJfTCpyjI7FgrGqqJCRhtpGitEo9r54RKFRerHFgufC1xZLFI53WZNt7NmDObpgAdYF11a2WEbKgp07if76V8i3iy9ObPtwg7fdu2F/ceZTOrZrWxvRz3+O537LLfqO1XxCf78kb6dOxfgfTc1WtShwWxI5JRGJyEREtxPRI0R0TA/0eIXJBOE1dy4EwLvvEv3+9/DgrFiRvcKudruMyAsGQbK1tkLg79wJ4TxtGiLv0ikcnQncbgjAqipjz3MkArJ182Zc65o1xkqtywVStrYWBrvZjHtmckq7kSkKyFVFwf0fPIgNT0sgMoRAOnNxMUiGHTugJH7yk/I7XKPS7YaSV18fX4mwWKDc9vXhd34/NsZUlUOTCYqO243f1tXJmoNGpGy6CATwHJxOjNn8+Ynni6Io9IMf/IDWrVtnqCgXFWG+BwJ4BoODGOtkG8gUUECmOHwYkTCzZ6Pjux5UFZ5eLn0wYwZkkTaVSbseNm1CyvPJJ8NBFA9eL35vt0MWcSH+dJxKqoo0nT/8ASlFd9yhHwnITR1CIRhZicgCVYXD6/77QVg88AA83lqEQjimEFjT2XAGtLejcQrL3a9/HU4XpzO19OVkZFEBRw/8fuwnxcXJ1/ccDyguhqHLmQzJQgjoHV1dyISYNAnvRaMg5hQFBGJlJXSN9nboH2bzcH3zwAGs4dmzk48IHBhABKLdDoeJxQLdLZX9u6oK+t1zz0kiMZ1UPNatd+3CvSgKZHU2wI0M+/pkpHV9PQjLQ4dSS19ORR5ZrRhLlwsvrgN4NBJVbjd0Yq4RynUMuQ4id0hm4pBhMmGcqqqG6/tMCvp8GDttXcJYaJuT2GzGUYQFDEdrK57ZzJmSWC8rgx7j8QxvELRvH/SIqVPhgExWRjidkG2lpQjESYdA3LwZulFFBbIYxjBaL2OEw7Dh29shd08+ObtNpcYpCtzWEAqmcQFEBAF6/PEwxj78EK+9e+FNPfnk7DZHsVohfGfNggDq6ICyevAgosuKiiDYm5qgZOYyGiwUwobAUYB6YI/4vn1QLFasME77jkSQ6mwyEZ16qtzoKytBVA4OwtAUAsc9fBhk26RJuP9AAB4cqxXv65F5Hg82y+pqjFE4DIU/GgWxEAjgHKkQwHV12AA6OnAdDQ2p1a/s78errAz3wmnO3A25pCQ7XusjR0B2KwoM+cmTMz9mLDjFhMnEgQH8324vKG4F5A4+H5o1lZcTfeELxsppa6usZzp5snQ2mEyy2QoR5uo778CoXr4c9XYSnT8cxvznJllNTekphMEg0V13QRaefz487XpKuqpCKQ+HISMTORzcbhz3jTdAiH73uyPLJfj9MNKy1YE5EiF64gk8G5uN6FvfIjrrLFxzT4+MdMynBmIFjA58PsxHrpuWL1AURC6XlMBJx6Q8RygmgsUCneLIEegFdXVwZvT2ot4gk4L19bKOYkkJfldeDj2kuxv6X6JIOobbDXlTVIQU5niOlUSorUWmyYYNeH3mM+lF1QiB8eMmL9Eo9N5sgMlaJnvffRfzrLkZxGuuiD0mez0ezO1wOG56c95BUSDX+/vxvMrKcI/RKPR3bcqyouinB7NDPVFzEqt1/DYnyTd0d4PImjRpePkAISBTXC5JJLa3o8FcfT3qGCe7tg8cwG9nzcIacDrx22TnvqoiK+TppxEw87WvjVqn4pygq0uWm2huRjDS0SIHCkgOCUWVEKJJCPFzIcQOIYRn6PWGEOLcBL+bTkRcAWKdEEIdem3S+e7XhBD7hRBBIcQWIcSIkutCiCohxM+EEIeHvrdfCHGnEMIa871NBue4euj802PeP1cIsVkIERBCtAohviOEuEbvu0OoFUL8TggxIIRwCyGeEELUxBuLfILVisi2665Dl6iPPyb6zW9gtHHdu2yiqAjC9FOfIrr8chTanjED6bWvvgrD7eWXQWgGg9k9t6JAWRUCniAjpWv/fgjLgwdhVGsj/2Lx9ttQNFauHB51YzZjs+COp0RQVNxuEH5MJs6Zg/8XFcF4jcRUKOjogKLc1IT6HaoKBXJwEJ8FgyBD04kgtdtlCnJXF46nV2NFC1XFd7mYemOjVIbKy2XtJ68X16itCZMKFIXo5Zfb6LrrbqYbb1xIF19cRnPmlNGqVatow4YNcX/b2tpKRUNM9COPPEJCCBJC/LM2kBb33XcfNTc3k81mpVNOWUZbt75KJSXYJJ1OPLvOzgEqyKICsglFgVLr9UIOGqXzcjkDRYFhHptiyMXPFYXoo48gOxcsQGRNPHBXyKIiyBOPB7IgHQKxv5/o1luxZ9x0EzztegSiokgCsaoqMYG4YwfRNddAxt58M1KjYxVwtxvGgtUKOZqpQrtrF+5h/XrI9P/7P+xRO3e20Ze+dDOtXr2Q5s4to4aG3Mkiq9VKy5Yto1dffXXEd3p7C7JovMLrlRGq+UQgEsmUwIULQeKVl0P/GxjQJ0b0UFKCde31yuZvJ544PBpPCMiw0lLIArdbZqnU1SWfAuzzQS8igvOW5afJhFdstFgyaGiAs8DpJHrxxZG6WLIQAsb1lCm4t5aW5McwGfh8RB980EYPPHAzfe1rC+m448qovDz38uj991+lykoQZk4n5ke+22leL6LEtmyB/ut0Qjfv7MRfbtDFc4FrGbIDj18cdVxTgz20oQHPv6kJ833yZKyr2lrpgCopkccqIDUMDMBGrK7WJ+m5QVwkAnvu0Udhr3zxi8lnSu3bBwJx8mToVPX1kCn9/cmt52iU6He/Q/Tj8ccTfec7+UsgBgLIbvngA4zfqlUYk3wiEAvc1gikJTOTiUQ8kYjOJKI/E1ErEVUR0ZVE9LwQ4ixVVTca/K6XUKzxESJ6g4h+NfR+T8z3vkxEZUOfh4joViL6qxCiSVVVJxHR0GBuJKLlRPRrItpMRKcS0feH3js/ifsYASHE6UT0LBG1EdEdhKK6XyIiV5yfPU9EB4jo34loLhF9bei6r0rnGsYr7Hai00+HsPvHPyAwtm0jOukkRLXkIr3TbMZGO2WK7K7X1gaFsr0dytikSbKOYqb19rq7YThPnWoc7Xj4MK5j3z5sQueeaywod+/G9S5frp/+Y7Phmr1eGOkOB5SHnh5sMHPnSmOjuBgbFKcEm0z43iuvQOk44wxZmHnvXgjz+nqQkJmkD1ssiLLk9OZAAMSg3jGjUShagQAU/hodcVNUhM06FIJB5XbLQsfJziG/H4rdK6+8Tzt2vEyXXXYRzZgxnQYGBujRRx+l8847j/7+97/TGQb5n/X19fTII4/QunXraNWqVXTjjTcSEdHEmNDTBx98kDweD914441UXFxM9957L1144QXU1tZG1dXVNDhI9NRTQfrWt84gwrrPW1m0eXM6V1lArvD224j+Pv10RO9wIyottI4CXj/btukfr6UFsmL6dKznLVuMzx0Oy6LxvOY5zbC9PbX7OHwYdX48HqIbb4RCr3duRYFBpiiQefFrCMJ7/9RTMBJuvhnpStrjci3HUAiyKtMGKn4/0spffx3y9sorEaV/4ACew8aN79Mrr7xMZ5xxEU2ePJ3c7gF64QXIogce+Dt94hNSFrHTaPNmIr+/nu688xG67bZ1tHz5Kvrc5yCLamsn0ubNkOVERD/96YPk93vos5+9kSyWYnrssXvp/PMvoOefb6OKimpSFKIPPgjSd7+b/7LoppvSucrxDY5cMpvzr66u1ytr3mnTiMNhvDhdM9lIt/5+OGCrq0Ekrl8/8jvctToaBSlmtycuxcJgPSQahYH/4osjv6MokBEmU+oRei4X5NovfwldMROSx+WCDmS3Q65kEi3IUdxeL1Fv7/u0e/fLNGXKRbRw4XRS1QHaufNRWrPmPDr//L/TlClSHrGMuekmonC4nk4//RF65ZV1NGnSKlqwAPKopGQi3XQTxpWI6LvffZDCYQ/Nm3cjNTQU07Zt99I551xAV13VRkVF1RQIEHk8QaI8t9O+/GXM+ylToPfW1WENcKfy0lKZohybYpxPBMrRBL8fcoWjpo3WVHExZMz69XiOX/xicnoC11/v6sK8YJKyqAg2D2eYxcvc8vmIHnwQTsnzzjPuAD3eoarQCXfuxL8XLIAuNtb3oqrYQ/x+2OqbN0P/TIACtzUcacnMZMz4F1RVfSrmAn9GuNl/IQzACKiq6hVCPEYY6AOqqj5qcPyJRDRfVVXP0LFfHTr2WiJ6YOg71xHRcUT0bVVVfzL03gNCiC4iulUI8RlVVZ9L4l5i8SMi8hDRKaqqHhk6/6+JqCXOb95UVfVW/o/A6vmaEOKrqqrGe0B5icpKEGcnnICuxG+8gQiXU06BUZUrr5kQ8N41NKALcl+fJBTffhuvCRMkoZiqR8fhgEJXX2+8kfT1QWB2dcGwPvts443iyBGQAFOnxi+QW16Oc7e34/odDrw/d+7I67BaZedjnw9RRWVluA42ugMBbGZcl8btzk4NQm16c2vryOjGUAifRSJQ3BNFWhQX48WCXtu8JJ7y1d2NcHlVJbr++jV0112XDPv8lltuoeXLl9M999xjSCKWlpbS5ZdfTuvWraOZM2fSlVdeqfu9np4e2rVrF5UN3cxpp51Gy5cvp8ce+wMtXXoTPf000Vtv/Zocjo+IiL5TkEUFZAMHDkB2LFwIpUwPPp+MDC4pQQSDUb2r9nbI6YYGRHjHW1/RKGSIokDehUKQYenUbtu+nehXv4L8+dd/NS75EI1i/auqrDVlBLcbTUy2boVD69prRzqPuJt0JILP0qlfpsW2bYgKHRzE+H32s7incFhGYp1++hq65JLhsmjt2lto7drl9Mgj9wwjEbUoKSmlT3/6crrttnU0ZcpMOu88fVnkcPTQ00/vIrsdsujEE0+jtWuX04YNf6Bly26iV18levfdgiwaj2ACUa+Q/3gHpy3bbN/MJqoAACAASURBVCN1Ku4eGwrJUiuJjMdIBLpRURF0ClXV/w2Xb+nvl3qB0Xe1iEYRJcZ6iFHJFG00YqpEYkUFjt3ZCRk8ZUr6RjOPKae6Vlend6xwGGPFqcQTJ66h4467hBQFe0U0SjR//i30zDPLacuWe4aRiFoUFZXS7NmX0yuvrKOKipk0Z46+PPL5emjt2l1UVAR51Nh4Gj355HJqafkDzZlzE0WjRK2tvybKcztt/nzsSZySPDiI97lZCpfm0RKJvM61rwKhODoIh5EtJwTs0XjydmCA6Mkn8Z2LL04uOlxVERzS0wM7M7amKXdpdrtl/fRY9PYS/exn+HvNNfEz2cYzPB7oYQ4HZPmSJZk7a9MFO77ZPna7Yafv3QvdMskaugVuazjSkpkJVRxVVX2ag9qIqJTQOnsTEV2a6PdJ4Hc8yEPn2yKEcBFRs+Y7nyUiLxHdH/Pbewjs7meJKKWBFkI0EB7egzzIQ+fvE0L8nsDC6uGBmP+/RkRfJ6ImItqeyjXkE+rriS68EErUG2+A0PrwQ9QHzGX9FUZdHV7HH4/NoK0Nr/ffx6u6GlE3TU36EXFa+HxQbMvLRzYvYbjd8GgEAkhBmTfP2MD3+xGxUl6eeIPgDUdRIPSqq0Eg6hm+QkCZ7+7GeNvtIBCZJOzvx1iUlsIb1NsrFUsuZp4J7HYct7MT1+Dz4biBAN4zmUA4pEJaWq3DyURt8xItIa0o2LxbW7EhLF9OZNfs0IFAgLxeL6mqSqtXr6Ynnngis5sloquuuuqfBCIR0dKly6isrIJ+97v99N573GnyGSotLSWv15vXsmj58lSusIBcoa8PnUBPOIHohhv0leBgEB7sBQsk8TZrlv76bmtD99Ply1Hrh9ObjdKJ3W5ZF7ayErI8HQLxL38hevhhXONddw3vFqoFp74pSuKGJ9u2oZGJ04kuzJ/73Mh7jkTwuari+jOpu+p0okkLl4v46U9ld2y3G7Jq2jTsL8XF+rLo05+GLNKuLxYp/B6nwtXUjFyHbLRee+1VtGKFlEXLly+jG26ooH/8Yz8NDMABVVJydMiiB2J/mcfg9ZQNMnu0EQ4j7ZgIGSdGa5PTmrkRmZEjWVXR+bSzE0S8omB9Tpgwch1Ho4gs3r8fOsekSZJ4NDo+1592OlFqIJnmT7z2WC6mgo8/hvN6zhykTGeiXx06BP2ytjZ1Z3xnJ/YDsxk1y6HDSnnk9wfo4EEveTwqCbGannnmiWFrjDs383uRCKIsTz555FrctAkR2bfcchXddZeWdVlGlZUVtGDBfvqP/8CecdllzxDluZ323e9K8rC3F3+9XuzBXIrIbIbOyo1WLJaRkfRC6BOMse+NdQRXPkNRUOIkGAShFc8O8XiIHnkEsvn66yGbuT6i0TNQFKwzbtRi5BStqsLccDjknGDs309033041je/CdmRb1AUyKq9ezF/ly0bWUYnl2BHt5Y05Lqkfj/2okOH8Dzr6pClN3t24uMWuK0RSEtmJiQRhRDFRPQ9Ivri0MG0yEZljzad95xEpKWCphPRQVVVh1XlU1W1SwgxQETp9DybPvR3r85neu8xYq/XOfT3mKj/09iITlYHDqBg/3PPQSlctSr5+jWZoqoKr6VLITg4QnHzZrzKyyWhGJsSE4lACSsuNu44GAiAwCKC8KysRJqhHhQFimwkgsYF8YziSARRQtEolMZwGBtTPGPD5yN67TUo5KtXgzDkVG+vF5tgXZ2M3CwuBkEaDuNZZRoJYTZjw+jvx2Z65Aje4/qH6RyfyVGOtAwGZfSDzSa7Lw8OwvM3dy7GKxQK0Q9/+ENav349tbW1xRwzc22sSTOB9+0j+tOfiIiqye120OWXE512GtGSJa00Y8YM2r59e0EWFZARQiGi3/8e62ntWv21FI1CeVNV+XlTk77i29WFBiBVVTiezYbfRSIjGwtw+i87BIig4KZau01R0CX5T3+CA+V73zOWZ0z4EcUnEBUF4/LQQ5DRv/ylvvIdDEJGmEw4Xrqyjoud/+pXGI9169DYxmLBtTgceJ9TEEdbFh0+DKJZiGpyOh108cWIkHzyyYIsGi9QVRCI4TD26GxkA4wmVBUkWSgEh0Y8PcZmw3obGMDaMOpI/s47MO7OOAPRe16v7CaszWrgxnXBIMi5vj7oBWYz5AU3otMiGkWZHYcDWTHJdo83m6U8TFVeLFqE8fnwQ4xPJhFFnBbd0gJnyeLFiaPXolGQGp2dGJPFi6XTJJE84gjMdKGVR+wIqqiopoEBB02ciOtoa2slOgrsNLNZNiYMheQ+yRGe4bBs2KOq+Ov3y2yboiL85b03FMJv9WpyalOijSIaC1GN+mhpQdTZ/PnxM9H8fhCIHg/29kmT8FxcLsgkPZ1HUSAPHQ44bLWNWmIhBIj8nh7IrokTsdbee4/ot7/FXLrlluRl1HiC04noQ7cb9t7ChdlpkGkEVcVaY9IwEMD6YXCDSyZtOztZFsEJMnNm8nK9wG2NQFoyM5nhvpeQ2/0LInqTiBxEFCWia4jo8iR+nwg6De6JCIxwOlANfpstUZzt681LzJwJgmfXLihzTz8NxWjVKpBZo4WyMgi2hQshdNrbQSru2IH0OrtdpjxPnChTAo1q20QiuCdVRfSd3w+D0khwfvghyLVVq+LXxFAUXJvLJRsJTJgg6wzpKe1+P6KKVBWdArnBx5EjULi5KLMW3JSlsxPjMGVKdoR+bS023EOHoCBNnpw5QSkEno/NJjeMtjYQeFYrok61G++tt95KDz74IH3lK1+hlStXUk1NDZnNZvrtb39Ljz32WGYXQ0Rms/mfBvuWLRhHm41o6VKVzjknrUMWZFEBulBVEG+c4qInO1QVayEYhJLk9cI5olc/sLcXTajsdkQgctAuR0RoO0r+f/bePEyussofP7eqq7p637uTdCfd2feEQMIuCSAQNkVR0EFAxQ0ZHZ1xnVFx4+vo4z6jKIq4IPDTcZcgmLAlECBADCRk7z29VnXXvtyqe+/vjw/H91bVvVW3lu50J3Wep55Ouqvu8tZ9P+ecz9mIcKxQCHhYVgaSLtces+Ew0Ve+ArLg7W9HP6lMWUN6AtEMOyYnib76VUwavfRSok99yrhkJhyGYetwCGIvHxkaIvre97Df16zBQBiOssdiMFQ5a1J/HdOBRW43JsO+8ALWy+UiWrdOo8suy+uQJSyaItETiNXVU+tkTZV0d+NZ53LObFJeLqaTTkzg33qyo7sbfZrXrBEVHFVV2FN+PzCM91NPD46zeDFsx7IyBEQqKrC2qf3GNA34MDqKQS3t7dbvk7OyeWhdrjbMmWfCBnv1VWGj5Cs8hO7QITjq69aZXw+XEoZCWKfUPmRmeHTPPffRb3/7AA0OiuzOfMT++pcbDIqWDpJEVFGh5fu8z3g8kiR8x+XleFa4ekaWxVRmfo74FQyKz3OFTVUVnuXycuhhfq/+33x8xeCq+ZnNlNGYT2btbJa+PvhBXV2Zh7/JMoaoeDzoa8xkIPdlD4fhd+iDPoqC/e31IoHBLNlEL3Y7fCSeRv/cc8jgXbaM6PbbZ99grUQCuNTTg2f3nHPgrxZbuFc+k4axmBhSU1aGc9fV4ScHlcbGksnDc84xt4uzSInbSpa8rteKCn0nEf1S07Q7ko4qSbdZ+GyxZpD1ENGFkiS59Izt62mb9a//nWWSktNFWRal/J9ZV6PE11mYdDz9IkkwEJcvRzT1uefgyC5dijLnbGXFxZaKClzL8uUAp4EBKJujR0EMRqMAHbPBMBwRj0bhlPb2ItpspkR6evD+lSuzZ2EODsLRj8VECXNZGSJXPh8UkN4IiMVAIEYiIBBbWvC+gQF8bu5c834UNTW4nsFB3H97e2G9K1QVhGo0CqcgkRADGObOLTxSarPhuzt2TAywWbMGykPfF+nBBx+kW265hX7wg+TM73vvvTfrOaxkB+3eDUNdURDVuuQSZNrqldPChQtp165dVMKikhQiu3fDUL38cjiFRtLXB3KipQUGk1HQgAh/44zGm25KJwH0/cAkCfuWhwWUl8PQzbX0cmyM6LOfBUZ+/OMoVzQT7iVIlJlA/Mc/iO68E9f2yU/imEbb1u8HLpaXAyPycZ4SCQS+7r8f1/PRj2KCNR/L78errAzGc6rzPdVY9NJLKDtUFGRaXXwx0R/+kHwdJSw6+aJpeE4SidlLII6PYx+3tyM4aFWczmQikaehe71Ef/87AoAXXZT8Gc7u8njwebcbhGF7uwg+NzeDjJmcxO84K7GmBuu9Zw+CHxs2wHnMVfSBldQMbSty7rm4h5dfxn5cty73a2CZMwf4/NprwL/169Ox5sQJ2K8OB7JEjezqbHiUSNA/icRUsYJHigLMj0bxjBtlny5cuJAOHz7cdSriEZN1FRWwzWUZek2S8Bxzn02bTRCEPCyIdR9X4FRWilcqXnBmYyo5ycfkydBG04Cz9WgsKzs1Jj+PjcE2amszLzEmwjo98AAIpxtvBPGuF5cL7wmHxQCsRAJ2GWc45pI9WF4OHfDTnyKLccsWoptvnn19cUdH4c9Ho0gUWrGiOPeQSCRnGEYiIjvXZsP30diInxUV4pzBIHSU14vvPhCAj7hhA/zcAtqGlLitIoiVR0OhFCZSkqTlRHRdtg9qmqZIkhQlooZs780ifyGirUR0OxF9R/f7T77+88+63x0loqslSZqradrw69dbR2CX9dc2LEnSXiJ6pyRJd+qaTzZTcVjo00bsdmzo1athWO3ZAzJo9Wo4QPn02CpUnE4454sXA7wOH8a1+f2IYr/0EqJSXV1iOjNP3mxuhhHc0YFIt5FMToI0bW3N3l9udBSGYCgEo3H5cmEo1tfDAA8EREp+PI7zBwJEl10GEiEchuFNhOvLRgq6XIJIHBjAeTNlSppJIiEmwra2imNMTADQe3rgABTS/ykUQvmy349nZvFiUT7CjazLyxEN11Ksp8OHD9Mf//jHrOew2+3kcrloktOhXhefD31/iPD933AD+istWmS8xtdeey39DeMfS1hUkryktxcZZqtWpTvZLCMjcLBbWmBElZcbZ9wEAiAQFQXTBhtMNC07zZEI9u7AAAzefKa5Hz6M3lHRKNHXvw7H1kzicWAllxwbOeyqinKj++7DPX7rW2ICol40DYakLGNv5hvdP3KE6DvfwX6/4AJMKeUejoqC9eEJ2GaDD6YCiyIRkMt8jf/yL3BE2tuNv6MSFp1c0ROINTV5ZUKcdAmHUbVRW5tfvy6nE44fE4nV1UQPP4x9fuWV6ftdkoBpw8N4xicm8P/UIGxHB4K/k5OCVCwrQ3ZMXx+CjEYYYVVsNnx/HFjJlVx5wxuAbc8/jzVYsSL/a2ltxfkPHBBEotOJ5+q116ALmppQvmz2jGXDo44OrDlPsdZ/L2Z4RCTIKp8PuNvYaI67r+NRNZ3CeMQBb5cL6yHLWE9+jvg9TIpwO6V4HHstHMYzzba83Y7jcQ/VykprA5kyZTTy0Amj8mmbLXNG40wfCuPzwf6or8+MV4qCISo9PeilbLY/q6rw3mAQa79/P/69alXmDEcjCQbREmX/flRR3Hjj7CIQYzFc+9AQ9NnGjeb2ZDZR1fSy5Hhc/J0Hd/FeSiXTuY2Mx4PP8xR6lwvfe1dXUbI7S9xWEcTKI/5HInqPJEkhwmSZRYQbPkgYQZ1N9hDRGyVJ+gQRDRLRmKZpj+d4nfcSpth8S5KkFUT0DyJ6A4FJ/mvK9JqfENF/ENF2SZJ+TOg4/P7Xz50ah/sUEf2NiHZLksRjut9PYH8bqHhs82khTieitOvXw7jatw8R1DPOQMrxyeoTxP1vNm+GQzYyIgaz9PZCsfKkwTPOQBmO3U60dauxAynL6IPodMKYzGSATk6iua7fj6jZsmXJioXLekIh0U9lxw6A5yWXgPzz+UAoMJHApQ/Zsh4cDhjnPBhFlnNLSY/FRPl3ajZjYyMUwIkTWMeWFvMhNZlkaAiRP7sdSouvz+EQxlAoBCX0pjddR7/4xX1UVVVFGzZsoO7ubrr77rtp5cqVtHfv3qzn2rRpE23fvp2++c1vUmtrBw0OtpLPdwkdfb1LxHnnweAwavzOctttt9G9995LL7/8cgmLSpKz+P1EDz6I/XP99cbP2eQkyP/GRuy9RAK4kYoz4TAIxHAYpTqZjF5JwrHGxtBWgbOhc82c2rmT6K67YMR/61uZM4F40qvdbj6AYWKC6EtfQlDniiuIPvEJ44CEouBYiYQwPnOVaJTol79EGXlDA9EXvgASkSVT+XKqXHfddXTffcXBojlzOmh0tJUmJy/5Zy/eiy4ietvbYMyb6ZcSFp08UVXsZVWdvQSioiDjxGYDQZVvlpLDAayamMAgFbcbetQseMzEyZ49wBGjwXxlZQju9vSIrOPnnoMds2qVGHhUiDBZoig4fy4ZzZKE7OB4HJjodKZnOuUiPO301VcRUF28GIRpJAKydOHCzNeXDY+cTkEkynJ6tqMejzo6Oqi1tZUuvPCSf7agcDiyV53cdtttdMcdd7xMp4GfZlTqzCSJ0yn0bSSC39ls2A/NzVhDLo1mYnFsTBybp5MzsVhRkb43uVdiJv3NPRmNMho5A48HDaXeW7aMxpMxFCYSAanucgEDzM7PA50OHSK6+mr4o2YiSSCj3G4Q+HY7AhS5+jIjI5jAPDmJqob584GHc+bMbFKWpb9fVD6sWAH8yUUf8POsL0tm4bZQDQ0iIcTs2JylPjmJawmHxTCjefNgb+aTDGMiJW6rCGKFRPwYEUWI6K0ExvMQEX2QiFaStYW+nTD15UuEm36KiHJaaE3TYpIkXUpEX9FdxyARffX1l/69xyRJuoGI7iKibxJRPxF9mzAB576U926XJOnNr7/3y0Q0RET/Q0RxwnSbpGaXJbEmFRXIoDjzTGRWvPwyjKNNm/C7fPuy5COKAoecQchuByHW3g7SaHwcZOfzzwPY9u0DiL3lLcbH0zT0gAwGUYqYyZkNBgHMHg8MweXLjRVKTY1wuF95BQrpoougiLjcuapKRKzR2B8/s62lzYZ7HRuDUpNlrEM2BREKweDkCcxGxkpFBYzb4WEcPxwWa5xNFAVrMzAA5bJhQzrJzJPOuG/GF7/4XXI4KuhPf/o93XfffbRixQr68Y9/TAcPHrTkuN999910++0fps9//k6KRsPU3r6ZPvnJS6i9HaWC8+dnL18oLy+nHTt2UENDww+ohEUlyUEUBQSiLBPddptxUCUUguNcXY3X0JBxpm8shmN5vRiikq0MUVFE8ISnMOdCfGgahrbccw+MzLvuyhyl5qEnmQjEF18k+vKXcc+f/WxyObFeuBxa03CsfAibl15C78PRUTgW731vciSby5d5Imw2XP3ud79LFRUV9Pvf549FH/6wwKKODmBRZyfKrNva8D1lkhIWnRxJJRCn054pphw8CJ19xhmFB3jLyuCIdnfDzsvUF1uW8b76ejFwxWgwQnU19qLbDee0uxvvX726sGvVi90uyJZciRGbDcP0HnmE6Ikn8BwUMrW0oQGEx9//Dnt0xQqspZVsICt4xLav3Q5MHR0VAVPGozvvvJPC4TBdcMFmeuCBS/7Zo6+mJrtdVw4j8bTz05hUU1VR6qxpWK/qavw7HheZWTYbdFh1tfhumXDUE4s+H/7GhKWeWOSkh0wiSenTgo3EKJtR36cx01CYTCXUxSyfTiSQJUcEks8sw0/TiLZtgx/3xjdiyryVYx89ivtcvz53AvHQIaK778Y6fPKTCCYkEqKaJFNSwsmWUAg+p9uN+163LnuGXyKRTBhGo8llyRUVOAZnGVrJxgwGcQ2BANaK+wwnErCDFi7ML0kli5S4rSKIlJoCXxIiSZK+T0TvI6IaTdPMmk3mI6flYns8mOR8/DiU4LnnWptGVwwZHARQmk1BDgahnKqqAFj33w/Q4ga8zc3I5uvqwu9ffRUKatMmkIJmEosh0j4+DmOQJwybSSKB/nuDgyhhXroURl44DGM7FUB5zL3LZX0dJydxTJcL95dpuMH4ON5ndYAKH7usDJ/JNKQhGES0PRBAxGvZMmtKlqNdqiqitVbvXVEwoOCxx2CczZ8P4rKlBQ6P0QTILDItZkEJi04d+etfEVR5xzuAf6kSi8Gxt9thNHV3wxhLzXDhXj+Dgyi/z1bWp6p4b08PnvNly0Qjdu7llEkSCaLvfhdlilu2EH3mM5kzIKJR7DGzoSeKQvSznyErsLMTw1kWLjQ/lt+PY9TX514e5PNhuvOOHcC8j30see315ctVVTjHVBv8mgbD/ZFHgLPz5iGjff58QR6XsGhmiqLgedQ0EF+zqVxNLwMDKCdevDi/voKpcuIEAnGdnbDvVFUMedMLDy2IRrEPudKgrc2YyNQ0EHT79iEAzYHYpqbiERTch44ov+9TloGNk5Mo4bYyiMFIEgmUNPOQmyVLYGfmOvDKikxM4FVRkZwtFY3i99zjM4+hVdNGl0wRHhWMRUwa8qAU7pvodIpeifG46Petn+qsx33OFmRiMRIRzymTNXpicSqDGVwRYZTRqP9/qhRjKIymATN8PpBcmYJr27cjM/jCC0EiZtOjkQiwJZEAFpaXww6wWqGxaxfRr36FPfSRj4i2KHxstzuZLJ4poqrAmcOHsf4rV8JHTl0vLkvWk4acvcrkNpOFFRW5BXhVVZT2x2J4FsrLETDmFj5dXQWRsDOUuj15MhWYeVqTiJIk2YnIpmlaXPe7NgIj/bymaVuLfMrTd7EJGWs7d8KhravD0JIVK6bOafN44KS1tRmDeCwmynmWLEGmjcuFXlThsCh3Hh/H+1UV93DWWciaMZNEApHk4WGk3a9Ykd0Q40ELS5eC3AoEYJy2tBhH6TUNoK5pAG+raxgMIrvJZoNTrTfcNU00sK2uFk2/rUo0CmeCy6aNIkeDgzCU7XZE/XLtO6JpgkzUNCgtntxl9v59++Cwu924Zz5vTQ0i83kaX0V9aktYdGrLvn1Ev/kNymeNsENRENGWZTjK/f3AkdSm1tzr59gxZEtny8rRNByrpwcGLh9PUfA3JhHN8CMQIPriF5FNfvPNmCSdCWv0BKJRP8HxcZQv/+MfyAj8+MfNs6BCIeBVPhOYmXz40Y9wjBtvRMam3shlh5kzHKfCWU+VI0dAOAwOAiPf8AYxWTAfkvR1KWHRNMipQiB6vdjPXEJbqIRCRA89hGf4xhuhi/VtAXjPaRowbmICdlFDA343PIy1nTs3fU0HBmAz8oCh+fPheHIJdbFsR85GZNIjV4lGif7yF6zFNdckkwlWxO+HjohGYQM2NeH/3GKnkMF4ZhIIoIKkrAy2XjCI6+e1zXNIUNGt+WnGo6JiUWqps8PB/b3xO+6ryISiwyFIRaNnmzMDmVhkH4CPnUosTucgFd5DmQbD5DMU5tgx+HKrVmVux7RrF7J4N27EHsyGDeEw9piqAgdrarAn4vHs+K5paIvyt7/huj70IeMkFZ8Pe7uxcWr2cD7i88H+8vuBuWvWwAZj30pPGurLkp1OQRa6XHjlg7+xmChZVlXxvE5OwkdzOEBozp1b8PN72pKI04mZpzuJOIeIniei+4mol4jmE+rGG4loi6Zpu4t8ytN3sXXS0wPAHx8HmXPhheaZKPlKKAQDtLbWuNSPI+KxGCLif/87nO13vjPdAAyFkCH0u98BXFevBgnKGYr6SImqgkAcGMD7MvXuYHnpJVzL2rUwkvv6cN3z52d2bLkEwm7PrRwpFoMTqyhYm+pqQZCGQlB4uRrB+msaHoaCqqoSmYyKgozPEydgIK9fX1gJFZOobERxRIyVjqbBYd+2TTjs556Le+Pp1gX21ii2417ColNURkZAZrW3o4w2lfDWNJTTBALIEuQeqIsXJ/cV0zRk+7z2GojIM8/Mfu6+PmSAt7QAi/jcPFSASJCIqTg1NIQy46Eh9Cq84orM54pEsO+ZEEs93vPPo3w5FkPZj9nxuJQlEhENuHMxVkdH0Z/oxRdBmn7sY+n6xefDORwO4NFUE0IDAyAPjx4FebJlCzJMuVdWgQ5GCYumWJhAJMLzOBv6XBlJLIaM/LIyZLkV+twrCjDJ7UZWNE8O5sb4igIsKC+H3Tc0hOden60XjwMjmczivT48TPTMM7BF1qzB/9vasF+8Xuj7IvbH+icJYrPl9/2GQkR//jOOcc011rOP+vuREVReDjKD7ykchrOvqrCXpmJAYTQK/cADBdvacsfbFJkKEnE68WhKsEhVQRbGYqLUWU8W6glF1st6QtGMTNG09DJoWRZ/Z9KHScV8iZ9iilEGYyrhyGswNAT7vb0d/pBZVuM//gFCb/169GPNRj4Fg4KkX79e6F9NE2XkdXXmPfHvvReBmM2b4TNmwovxcTGY8mT2zuVAdU8PsGbFCtyjnjRkOoj71upJw0J1XiAA8pBLluvqRD/KkRGR2NLRUTT9ejqTiNOGmac7iVhFRPcQGlm2EpFMRC8Q0Rc1Tds1Bac8fRc7RTQNhtMzzwC0OzpAJmbr7WVF4nFkEJaVgehLVSgcEfd6kcbd00P01FNolG3UhFdRiB59FOB3ySX4XG8vFByXFHd2imnIvb047rp12RX2q6+CRFyxAiTiyAjWo63NWiSGI51scFiVRALXGo3C2I1EsG6trdl7cVkRrxf3YrfDKD18GIp76VJkfRbLkGEiNRbDMV0uRNe3bUMEs7ERir6pCffc0JC9QbhFKbbjXsKiU1CiUaIf/AB76447jB3Bvj4Yml1d2Mc9PSD9UqcxP/ww2gBceimycrJJfz/2QGsrCEQjHNRPldQTifv3E33uc/j7V76SuTk5EZyXQADGaarxnUgQ/fSnaBWxeDGIxNRprCyqKiaBVlfnRq6pKtEf/0j085/j/O95D9Gb3pR834oCQ5YnPE91+fLYGLKgX3kF97NlC3QDBz7q6kpYRDMcixIJEIiSNLsJRFWFfYv+bQAAIABJREFU4xsMgkAsRmbM00/DGd+6Fbo99XyTk6If3IkT0L1GA0jCYWBgdTV09fg4MhBra6G/HQ7gmd+Pz6sq8KampihTOpOuWVHyJxL9fmQkEgF7MhF/8TiqMsbGgPdr1qRXRUQiIEgSieylnLlKIgGiNxDA91RdDZ1TIFk5FSTidOLRlGKRWamzfthEIpE8+ZlIlHpmIhRZeCCFnljUl0G7XMnZijNxKJSqwn84cAA2PPcZTCUdieDLPfYYbIprr8X9mPVotNuxHjzMcf369EQNxnuHI30v+HxE//u/sNne/nZrJdN8L5IEv246s0NZRkYQVPX5YA+2t4vrYL9JTxoWqzReUUTJsizjO2hqAq7ztHhNg98/f37Rn8XTmUScNsw8rUnEkyClxU4RzlDbvRvgvngxSv7yzYTTNAC8LIsysVTp7gao8gSqhx6CAnrTm4yPuXs3orVbtoheiUQwBpg0HByEw+52o/zksssy9x0kgvJ77jkoyLVrYdC5XABZrxf/thJpl2VcS3l5bpkFqgrC4vhxKMt164qbcs9ZDwcP4vtkMm8qRFXxPWzbhvPV1+M7WLhQZEe1txfV4ZjtCqqERVMsmgbi7MgRove/HyUaqTI6iiy1OXNgYB46hGc1tU/o9u3AigsvBA5lEyYQOYvHzHBVVVFKRYSfjz9O9N//jWv62teSMc9IuOzYKGtwbIzozjthtL/pTUT/9m/mZXJscKoqjpNLpnJ3N9F3voO1Pvts9CdKLX2azvJlnw+Bpz17YJBv3ow2GPE4vot8J0ybSAmLpkjicZAs/J2dDAewWHLkCLBmzZrsA8SsyOHDcN7POANl+UbCevnAAejfDRvMnW6vF/tGkhBYrawE1jFeKAoyeSUJgUjOVq6vL+peIkXBddvt+X3fExPof+t0AvOMcMbnQ2AhGgXWmwVViGBH7d0LO2/t2uL0VwsEsN5EWL+qKjj1kQiOX4CdVsIii6InC4lEIoCewFEU8R4mzcrKRIaiVaJbltP7K7LrX1aWXgZ9sgMlfj/2R02N+eR4TUNVxoMPwkZ529uADalZjXqKIxCAjVVejuNWVxuXUSsK1oinYxPBx/uf/4Gt84EPZA+s6kWWYQuVl+fewilX0bd88vlgew0O4rtdvhx2Ed+Xy2VtSE+uEo2COPR6RclyUxO+z6Eh6KFEAnqos7PwwV4mMtuxaFZIiUScXikttonE44iS79kDwF21Cj0TjfoBZpLhYZHZaEQYDQ+DOJs3D0btgw8CcN/1LmND9OhRlOGtXWuuNDQN0eJnn4Vir6zEMe12XEdnZ/qE4+PHEWnv6MCxg0FcL5dGh0JQeHV11gxkHrSSSx+UQEBkPjqdMB71EapChKepDQ7ifjo6cHyrg1pyEa9XOOxlZShbXrkSv3c4cE6ebF1Eme0KqoRFUyxPPAHy79pr8UymitcLoq+hAYGE48dh4C9fnowVu3YRPfkksoeylRQTJROIa9dai5SzGfDLXxL94hfAuq98JTv+ch8tlys9S+bZZ4m++lVg+6c/jai9mciyKCOqr7ceCY/FMGTmt78Ffn74wyDs9PesaXBKpqN8ORwGCbtzJ857wQUgWDh7oqJiSsioEhZNgZxKBCJn9SxYkJ4xmI+43dhzbW1E111nvjbcd0yWQfxlI++PHQPWtbQQXX55uu0TDiNgwMPvJibwPTU2FjeLhcmHXCc2s4yPI3O8uhqlzewkc5D76FH8zmp2oSzDxoxEQALnS/LJMtZMlrG2DQ0CC7kntt+P625ry+veS1iUo3CpM5cy22wi61C//kaEor4sOhedxu2A9MSivv8dtwdiUjGXvuuFSjQK0rysDAEKM1ugpwdB2rY2oltvNQ9O8lCY8XEQk2Vl8A/s9sxDYXiIY10dAiH334/1uP12JCdYGQqjl2AQQdLa2uJmFMuyKEnmqixNQ4C6uxvP0/LlaK9VVTV1eozb0Hg8uFdJEkNBXS7oIE7waWzEGk5xn8jZjkWzQkok4vRKabGzSDSK7LW9e/H/9euJzjnHGpHGJbRNTcbRnslJZKk1NgJUd+wA0XX99SD5UsXjATk1Zw5KnY2UhabBOD9wAJmPZ58tAJwHs4TDAO65c0V59e7duMa1awGqDQ2inxALG8hWnF7ujcKp6dkU28QEHIGKCpBswSDWzumEcV5IOrvfj+8vHIbDsngxCAIub543rzjKIxSCw75rl3DYL7oI55+YwHtaW2EQT0HZxmxXUCUsmkI5ehRk3Lp1KHtJ3Y/hMCLiFRXAovFxBDgWLEjGgT17gEFr1yKrJdu+7uuD4djUlDkDMVUiEaJvfhOYePnlRJ/6VHbMCQRwH0yMscTjmIj80EPY/1/5SuZsRh7GUlYGo9NqFsS+fZgaPTSEa37/+9NJTy7Z4/Josz5HhYosgzh8/HEY8Rs3IhO6rAxrZLfj3HkOK8gmJSwqssgydOKpQCAGg8CR2lr0US30+Y/FMIQukcCkeTNSUJbhtGsacJCJitpa48+EQuhN7fVCl3OlSKqMjcG+6ujAnvJ44Ow3Nxc3g6pQInFoCH3aGhsxRIoI9ub4OOySNWtyI37icWBeMAhCIJeMJu71xpPuGxvNvzcuP3S58mr9UsKiAkRPEuonN6d+B3rikYe22GzJk55zFc6+0xOL+km8TCYysTgVuiyRAFkuy8haNvP7BgdhX9XXo21JtqoCjwc+WkUFfMpUX8BoKEw8Dix6+mlkXM+bh+FyqTZGpqEw/DfGsYkJ4Fxzc37Z0/wd6fsYppaq8+Rlnw8YMVX9VPXXNDGBNY7HRaCWAxTj4/CDIxGs3cKFxSVRM8hsx6JZISUScXqltNgWJRBA+d7+/QCijRtRDmZGBEWjcKArK40JwVAIx6qogAHW3Y1I8caNKBE0Ot62bVCeV11lrDA1DaQkl+qcc47x0AS3WxCK/f1IwZ87F5mW7e0AVSOQ5/5ddru1SYSKguvONGiFCU6/H+fUNzIPh9GjgggGej5Kju/P6UQUUU+IxGI4fiwGJdrcnP90r6efRsYCO+xXXCF6jxAhOtnUBKUWiWBtuGyjSP0+ZruCKmHRFMnkJPog1tZial8qZskycEOSEBGPx0E61tUhEMHyyito1L98OQId2YiMvj5E55uagHFWiQ+vF/0P9+8nuu02TKeXpMyf9/uxryork7FreBjly6+9hgbn//qvmcl7zmR0OnH/Vq45GCT6yU/goM+dixLpDRvS3xeJ4LsggkFbzJJHFkVBpvpjj0FnrVlDdOWVcG58PmBSdTVeU5jJUcKiIoos47ssKyt4yMRJl0QCQVlVRYCz0ECapqFUt78f+1s/IEUvqooyunBYlA0ykRWNpg8TikSQuR2Pg0AMh2HDGE1j1TTgXCSCIIXNBjvJZgP2FYvwLXRiMxHW6bHHRJWJqqJ82ai1hRVJJKAX/H7oDitl6dzGIZHAmjc0WBs8MToqgr45PDezeLcQ0QzBIkWBbculztwT0ch21bRkQpHbk+gJxXwxLB4XfRU5042HntjtglDkn4Vk+GsabBCvF5hh1sppbIzoZz8DPtx2W3aCbGwM9lZ1NYIZVu1/VUWlGgdxP/IRfNbqUBi92GyCUGSbZO5c3IOebEw9P5clM2nIhDGRyBbV9zHs7UVwWpLQZ7+ra+r0VzQK39brxXdXVSX6HUoS7rOnB1hSVQU/NzVRZopltmPRrJASiTi9UlrsHGViAsNXjh4FUJ5zDiIresBVFIAnEUAzFYw5Ik4EJRKLITW9vp7oxhuNBw7s2IEIyhVXGAOfqqIn0GuvgYjbtCm7oTU+TvT738MArKwEuNbV4fNdXchSTO13E4sBjKuqrEWTeMqbUTRSURAdj0QA9kYlMbIs+lXMnWu9nDyRgNMwPCyiX0broaowTr1erEF7u3XDQ1FALP/978kOe0MDIpPhsGgOnnpuVsaqinUp1OCh2a+gSlg0BRKPE91zD3Drwx9O32OKAtyIxWDkOZ34PxHIQsauw4eJ/u//gAvveEfmbBBNEwGKpiYc1+qz3d9P9JnPwAn/9KdRCmyzifJmI2eTiYCqquSWETt3Et11Fz77mc8gezvTNfv9OE5qJmOmz+zaBYLW5wOxevPN6QEeJiuCQawvT2QvpnALi0cewdotWoRso/nzxX05HMD3YjUpzyAlLCqSxGJ4bk4FAlHTYPd4PMhALMYk4z17oIM3b4YtZSaHDuG8K1em209eL/YHk+uxGAKC4TCO29iI78Djwf4xum4OvDidyFiMx/F+3u/F+t4KJRI1Dff25z8jMHvbbYV/D4oCW2tyEjrDbBihqmKt+XlubMyt91gsBntR02CjWuwhO4t3DBHNICwiEv3tspU669+vn/TMhKLDIUjIQvYGX48+WzEaFX/ndk5MLLpc1kn9o0fhPyxfbk6OT0xgMrIkYS9l6w86MgJbqrYWRKDVPRyNIlD5yiuwYy6/HPdipac6D2dKJRf5FYuJqix9IgUP0onHxeftdjEpmQO2TBzq19XvR5ay14u1W7t2aoKmbLd5PAj+2mzJJctE8M16ekRf/64u+IQnQZfOdiyaFVIiEadXSoudp4yMwIHs74dCOP98GKhEgkAyatDKg1uiUZBOlZVwzsfG0AfRKK16715kF553HgzUVFFVNCk/dAhK4KyzsgP25CQcTlWFQc8G9NAQMohGR/G+2lpBKLKC8ftxfw0N1koIYjEoIJdLkA+yjHPF41AymZx2RcGaRiIA/2z9d3w+rFkkgij7okXZFQaXN0sSjOBMylnTcPxHHoERwQ57ZyeI2bExUS6ezajgiJ6mweApoIn0bFdQJSwqsmga0R/+gKEAN98MMi/178eOYT8vXYo92NcHbFi6VGTmdHejXHDuXGQFZgpOcFbOiRNwEpcts05avfwysgbLykD+rVol+iMaEYlMzsViyZOT43GiH/4QPdJWrMD0ZTPHlkg4t/G49QnMbjemIu7ejd5qH/84fqbKVJcvaxqckm3bsObz5gGLli8Hrvj9eF9qptUUSwmLiiDRKBwjnso5mwlEIuBCdzcwwag6I1fp7yf605/wrF9+ufn7+vpgPyxcaI4DPh/2i9MJHPL70TtUX6LLvbV4EECq+P04V0sLSK5IRAQni1kul+/EZlkG2efxwH4bGcF3YdYaJ9dr2r8fx166NL1dRDgMvaIoogdbPudMJGA3yjLW2cK6zvJdMzOwyEh4qjOT2kwMZnom9YSiqorPcZZiMTBOVdPLoDljTj/5lwe3GPkwg4PAqgULkqsx9OL3g0CUZaL3vjd7Of/QEPy0hgb4flb37sQEBqgMDcH+2rxZZGEyMVqoBAII/Goavo9wWJCI3ELBbsdapQ7M1JdOS5IIIHOP1QULit9+g+0qbrHldIqSZV7XcBjX4nbjnhYsgA17EluBzHYsmhVSIhGnV0qLXaD09yPjZXQUILZyJYykuXPTDRx2+CYm8L6GBpSe7d6NDEMmIfUyMED01FMwzM45J/3vigLF1N2NCMyaNdkNK78fBFgohNLb5mYYvXpwDYdxb319iMbxRKuuLoAxK5Hm5uygzE2TNQ3KOxqFQiSCUW8lQqVpuA6/X2RLGhkcvb0oFSgvR0lhLpMDZRnGQywm+limDkQ4dAhl58PDyDC86irhsPNn6+vx/VuNMvL68BpxWUCOym62K6gSFhVZ9uwh+uMf4SQaDRHp7wfh3dmJZ31iAr+bMwcvIjzTv/419tEtt2Q2WDUNODQ8DFzo6rJu4G7bRvTtb4Nc+NrXxPmJRI8du12U5kgSHHRZBsHCWSknThB94QvA2RtuQNPxTCRmIiEm9lnpEcjlk/fei8/ccgvRW95i7BBMdfkyT38/fhx4tXUrME9RQIrIMu6nrm7ap1uWsKhAYQLR6Zzy0vNpEY8HmbJz5qC1QaHi9yOwUVWFHq9me3x0FIGSOXOMA7B6mZxECXMwiP6hqaXRmgbijasijPT7iRPA0YUL8b0FAjheTY21rCGrkiuRODmJLKZ4HIGVjg5kCr3wAv5vNs0612t67TUEUhctgl7h/mRM0BZj4Ay3iQmHYWs1N2d8+yzfOScfi7IJlzpz6XKmUme9pBKKRMmEYjHJnkQiuQw6HBbntNmSsxXDYfhULS3GPhkRsPlnP8P+fve7MwcpieDHsZ7OpbVLby+ClbJM9MEPJmNnIIA1rK3NLStZVZN7GEYiWJ9gEK+WFuwpJlv1+5WHwqS+FAX7/tVXcYy5c+Gz8jPAmdNmPRr539kkEhFTljUNmMpTlllHxmLwWzm7cv58+Gone8I3zX4smhVSIhGnV0qLXQTRNKS+79gB8OrqwgTU9vbk9/X2gjxbuBAgOzSEbJnly+EApgqTfbW1iLSngmAiAWf5xAmA6dKl2aNhoRBIsIkJTGidNy97ancsBiXIEX3u51dXB2Nx1arsAM2KKxDAfTkcWJ9cS+vcbry49JjPG49DgY2MIFNg3br8jFXu0Tg5CQXK19jbi3XjIRFXXokei+xYeDzinvJtGsxrFI3i+2Ay0aIDOdsVVAmLiiiDgyhjXrQIRFeq0To2BsKwrQ1GViwGLKmoQEadJGEf/OpX2Gu33po5k01VYSS73dgfHR3Wys00Ddf50EMIaHzxi+nn0TSRtWCzAX+8XuBfba0g5554gui//xvv+6//yu4YyzKOw1P7smFRfz/Rd74DR3nDBvQ+NOrBllq+3NRUXAN2ZAR6Yf9+YM1llwHLbTbgu36C71SUEFmQEhYVIOzkOp1T24B+uoSH05WXY48XuhcSCVRv+HxorWAWNPV6sVfr6mCjZNKjqorp7d3dcNSXLDE+biKBIIndjr2fekxVBWmpKLDHyspwHZEIAgnFyBpiURScTz8oIVU4M/z4cTHEQf9M7dkDcnfdOuMgda7CfblHR0FENDTgd3V11lvRWD0PkwlVVdBjJmtQwqJpEu6FGIuJUmenE/s+mw2bSAhCkYOGZWXmg1yKIUZl0MGgKDfesAHPFhOM/HxFo0Q//zlIs1tuAVmeSbg3NJOSVgnEl18m+ulPcS0f/Wg6Ucl2BpH5sC0u99aThvqp19xKiUuSg0G8p7XV+qCaeBw429+PtVq3DvZUphJqznBMFSNi0W6HXcOBUbsduNLUlHyN8Tj8VG55MG8eEl6moX2LVZntWDQr5LQnESVJejcR3UdEl2matn2KT3d6L3YRRZZhgPb2QmmEQiALL7wQymNkBH+fOxe/5z6INhvRTTelE16JBBzFaBTZbqmOdTwOZefxAEg52pJJolFk0QwPi9LoXDL1+LoGB3GPR4/CYa2pwbG6ujJPUh4dxblraox7RVoVvx/HcThwvnAY5cXRKKLqCxfmd1yjc7jdiNgfP47rvvxyMbDG7xcl2c3NGQ3ZnITLMWIxUX5hYcJ10RVUCYtmp4RC6NNns6EPYiqZ5/Nh79bXi+yco0fxvC1fDiyamMC0QbsdBGKm7GZFgeM8OSn2gRXyIxZD2fLOnZj0/NGPmmMCE4lEIgOxrg73Jsso9/nDH0AAfOlLyZmMRsKlvlYmMMfjyHp68EEY2x/8IDI7jfZjIiGmAtbUFLeP3eQkmqq/+CIw/+KLMf3d6cQa+Hw4P/d0PJXKdk4XLGKntry8uJlrJ0tUFc9rJIJBKsUgtbdvB1F17bXmpYaRCPR2eTmc2mw9XJ9/Hg7oWWfBgQ4GoXONym4jEQRhqqqMs+CiUeBhdTWuT9NE2V1TU3Gd2kwTm2MxBFYnJmB3rlxpnO3zzDMgATZtQmC0UJFlkMZcQn7WWcXvAcvi84HMKS83zQ4tYdFJEH2pM5EgE63Y/IqSPBWaCJ9jQnGqnqVIBDggy7CLmNhk4aEjf/6zIBCXLct8zO5uEaxdscKaLaBp0PO/+x2CwHfcYU7AKwrsGLsd74nHBWHIpCFTKjzgUk8aGg1PGR3FZ9rasn9fw8PAGF6zZcus+3WpJGPq/3kAk9eLvzkcsNW4jZa+hHp0VAyxbG/Huk3FtO4CJeu3P83YckrKFMFDSUoydaKqyAa024kuvRSgtncvDKlf/QpEV0MDfrLRu2MHnP0bbjDOmNu9G8rh0kvTCURZBoHo90MZtLZmT6eXZZS+DQxg2uCKFfk5KWVluIeuLmT6HDwIgm1gANE2np7X1QVi0+US2XqBgOhbUUisoLYWCmVwEH0pfT4ol/POK06zdiIxRfLpp+GMX3YZnJbycvytvx/ndbkQ7bLY5NuS2Gz4zl0uYQzEYviuZ6BiLMkMElUF4RUKgexKfS7DYezXykrRK3RoCL/v6gIW+XwIcGgaAhzZCMQjR7C3W1vhVFvBFY8H2YJHjsBIvv76zAa2JAlnXFWBIU4n9uEXvgCn/Z3vxD1nczICAdwvl/pmOu9rryH7sL8fpN2HPmSOMdz3S5JEOVAxJBiEvnjmGRx782aiSy4BRnA2QjgM7G1sLGHEbJVQCI6TyzWt/SunVA4dwn5bv744BOL+/bA5Nm0yJxA5M8Zms1Yl8dJLsF/WrQMmEmGfBQLYX/X1yRhRUYHfeb3Ya6kBE5dLVJp4PMLmcbuBX83NxcusKisTTreeSJyYQPlyIoHASqYA8/nnwz7csweYumpVftfCQw78fnw3NTW4juPHQS5MRUk+D4oaGYE9OHduCf9mgjgceOkJQVlOzi40Ex7cUVEBXc+fZVt4KghFRQFmOBwIdrDdlEiITMVgELZVXx/8gXgcJKG+vyIHCLjfNPcpXrrU2vOvKGgfs3MnMO497zEPOiiKqFxyu/E7ffmwywWc4rW0Eryw2YBPo6PALrMqtWhUVH7V1SGxIte+rzykJXW/hsM4tyzjuhsbxX3oSUbOPOzvx7/Zx2bfMDWj0aiMera3CSlJupRIxJLMOhkeBskzf74A6k2bMJFq1y6Qd3Y7stgWLEC24pEjIPOMMmYOHoSi2rAh/e+xGAxzdjZqa3HeTGCYSKAUt6cH51y3rjgOrs2G6DYrGkXBdff1AdwlCX9zuaCYeNozp9TbbPlny9jtUDQ9PTjm2rXFIRCDQWQ6PPssrv/aa9FnMhbD91xZCYWtqojUTeWUL7sdhAz3cwmFRDPlQvsKleTUlO3b4bS99a3pgYV4HIZtWRmMWpsNjvLYGBzd+no8Y7/+NZ73W27JPMQokQCOhcPYC3V11vq3HT9O9J//CWfzq1+FE5tNVBVkmaoC81wuosceI/rGN7AXvvGN7MfRD2LhyYJmEg6j59Ff/4o9/pWvwLkwO67XK3rYFat8ORZDP9wnn4RBffbZ0CGMc9Eo1lBRQDqdCsM3TlcJBvF9n0oE4okT0JkLF2btW2dJRkcR1FuwwLz0VlVhP8ky9HY2QmnfPtgQK1ciC5ulqkoMkZuchI2h31t1dfi+JiZElpVempqArcPDIiDY2JhMJBZrr9rtIpPHbge+dnfjvBs3Zg/qcGAiHkegwuGAfshFeC3icWArO/Td3bAHVdV6JlauUlmJcw0NgTyYM+fU2UOzXZgQdLlEqTOXDlvpfWiziUocVRUZjkwocsm005l/hi+X4IfDYtglS1mZGEr21FM457vfDazgrHGPR5B4ZWW436Eh2BqcnWdFwmGiu++Gf3f11URvfrPYL1yWrO9jqM+StNnw3oYG0ds5373mcACrPB6RoKFfq74+rJemIeBgZXBlNmEbyuMR32tTk3lQdGwMPmYsBqziRA6jrMZYDLaZUeJKKsloRDqexIqOkuQhJRKxJLNKJiZgLLa0pBsu3LvhuusAYvv3I+o9NgaHcOPG9OONjqIXxvz56Q3Io1EoGJ50XF4OYi6Tw6ooRH/5C8iDCy7AOYtZDmCzQclMTEB5nnMOXh4PSiT37oVyqKsD6Hd24uVw4H5y6Pn3T5mcxHFlmWjLFhgQbjeURLaekGYSjcJIeOop4bBfcYWIrrnd6B0UieD6ly+fvoh3WZkoVeCIqN2eHPksSUleew3P79lno4RML6qK/ZhIwJlzOERGrcuFTJVolOiBB4BnN90EYtBM4nEQiLGYcNqqq7MbXM8/j3Ljqiqi73/fmrOqKNjzqgqjMh7H8JWHH0bw4M47M18rH4P7KOoHsRjJ7t1oZu7xALtvvdU8iyoeF85zTU1xprAmEriG7dux19etQw/W1lb8nQnVaBTY0NxcwoHZLEwgckbLqSB+P/Chqak47UUiEQRjq6qgl81sBm6xsmJF9pYKBw/iGpcsAXmQKpWVOI/PZ0wkNjeDJBwfRwZcqh3W0YHr6e/HOcrKcIyJCRyvsTG3NTATHloQCiE7KBBAAGnlSuvBDJsNVS9/+xt0iMNhnumpF55sHwziGlpakrFy0SJcQ3c3MHjVqqlxyp1O2MxDQ2KwV7GqUkpSuHCP7/JyMVCFs+isljrbbOIY3H+RiUnuI64nFK36FcePY08uXWrc3knT4EMdOADs4QAGP188GJED/QcO4BmcOxfXduRI8uAWo9ZE4+Owh8bHMen5rLOwj5k0TC1LrqiArcEEK7dX4rLfQkm9ykpceyCA9aysxL9feQVr1dICu6RQfcX208QE7J7ycmBXQ4MxTkxMIOgTCsHeXLvWeksuRcncpzEaFf049WKzZc5q5N+XZGZI6asQYpck6YtE9D4iaiail4jow5qm7eM3SJJURUT/RUQ3EtF8IvIQ0Z+I6D81TZuY9is+zSQcBiFYU5OescMR8Xic6MwzAXibNhF9/eswKufPB1m4fr0AoHAYaew1NelZNeEwSpiJcCxVRfQlU0aaqkL5HT0KApGb7xdbnE4Y96EQlAD33WhuhtKtqkLae18f+iO9+KKYsLxwYfZSbBae/nrkCI5/3nk4Dg9D4RT4efOsK1F22P/+d1x/qsOuaSAQR0ehODUNStrrxXumM/PH4cD9yjKeh0BANG5fsGBKT13CohkubjeGDXR0IIqtF9434TAMZTb8+vvx/C9aBOPpoYdwnBtvxHHMRJaxB3mvlZeCZ6O1AAAgAElEQVRjj2czpH7/e5BzS5YQ/b//Zy07SU8gNjQgu+nzn8f9vOtdRB/4ADCNDWyzPoWTk6I00Yz8n5xEL8mdO+FAf/7zICPMpNjly6qK4Mjf/gZjeckSfJf6vc37XtOKP/G1GMLlm1MopwwWaRrIF1kWTuapILIMMsvpRCC0UB2pqtgTkQgmMZvts/5+4FdnZ/Zn8NgxBHU7OzP3AeQgp9eLPal3bm022ABMJLa1Jd9rWRnsvJ4evKe9XbRQ8PnwKkbQgQj7bt8+YN2qVThvrsLVMtu2oX3C1q2Zy6AjEayJogCLUsu+WTo7sVa85mvWTI0dardDb42O4jkIh63blvme8lTBoukULnVWVRBVTAZyaauVKhs9KalpyZOeuZe4ftKzGQadOAHiuaPDfEjao4/CV9uyxbjaQZJEq6HhYfz74ovhL3C2YiAAW0H/fsb8gQGiH/0Ie/df/gW2RHc33suZmA0NIqPTLGBYXQ0iMRgsTi/m+nqsq9uN6+/txXe0YUNm+9CKhELALL8fa1xbC8w2s2f8fuCoz4d14Aq4XITLpzM9X5qWuU9jJJJ9KIxRVqOm5Uy4lrAlTykNVhGNNV8iIpWIHiQiFxF9goj8RLRU07SEJEnlRPQUEa0mop8S0UEiWkZEdxDRESI6R9O0aJbTnd6LXYAkEgBVmw0OZ6pRxENPVqwQEeenn4YyOv98lF309sL4Ou88vG/HDiiarVuTo6ihEI7H5a3RKEA8kwHKBOLhwzjfBRdMPeHl8WBdHA4onvJyGKF6ciEYhLHPk6rjcTHgoavLvDxYlmEkc9R/7dp00mJiAqQuT1XORGqoKrJCH30Ua75kCdE11yQb35EIvqdoFGs9bx6+g7ExnIszuE5GabGmISv14Yfx86c/ndIG4lOORePjJSzKV2QZ0wJDIaLbbktvwn3iBPZNe7swvDwe7L+5c2Gg/vGP2JfXXJM5OzAWgzOoqmI/cDTcTBQFpcEPP4xAyr//uzXCJJGA806E/ff000Q//CFw5d//HcYsl/FoGl6SlIwfsRgMUJsNxzDCBE0jevxx9IGMxYje9jYMejHDDy69iUSw9xsaCitf1jTg9PbtwJZ589BzSV8mlEjgPuJx4Gtt7cyJfmsa8Pzxx5Gp8MADsxuLfvWrqccizl5RFDzPp0omKZe7hcMIEBaDGD16FA7kmjXmpJDfL/pzZctKHh8XbVB4En024SoA7lest/c4Y6eiwriM1uvF35ubxXoUq88xB1DHx4HB3BOskFYx8biouli/Pt3OVFXoGiZ+qqutYdHkpCjvnj9/6soEVVVMaf3hD2c3FtFp4KPpswoVRRCE2UqdzURPKPIwNj2hyMf0eJA12NSUXvXF8uSTRE88gQSMrVvNsUJRcCwO/hmRbPE49g0PC/H5EDR87DHo8xtuQMCQewDW1GQmQI2E7QSnszgBxvFxrEE4jDVauzZ/vOKsZY8Huk8/ZdnMhwqFYFt4PHhPZyeST0522xazjEb97xUF3/WhQ8h2/fKXcxqsMh3YckrKDDGLZ4RoRHS+pmkJIiJJkg4S0R+I6HIi2kZE/0ZEZ77+nhf5Q5IkPUlEfyGidxPRj6b3kk8P0TQ45qpqbAz19QH0uroEgdjbKzIPzz4br4EBZL089hjRb38LpfH2tycTiIEAjOiyMhzL5wMRkG3YwbZtcEzPOw8ToqdD6usBmKEQCIu5c9PXproakfJVq8QUw+5uRKj374dRzSXP/PmJCRi13OfILOuusRHGwvAwvoOOjnSFp2ko+9y2DU5HRweUt75vCU8oc7txvM7OZGKmrQ1RpeFhOCNz55pPTyu2cB+67dvFc7Fly5SftoRFM1Q0DeSc243BIqnPodsNQ7C5WRCIkYiYkt7YiL5/fX3IGs5EIPJ+1TTsQc7KzUQghsNE3/oWCPs3vxmlwVYcAz2B6HIhg3HHDhixn/gEDE9VxYuJRF4PIvyfS/85g9fovMPDRD/+MTBh5UoMZsmUvRKPwxnmsmgrU6gzSV8fsqD7+/Fd3HBDevZWMAhMJcpeij2dkkggsPPkk7j+sjLzXnVFlFmPRacqgUgEEpz1fzEIxNFR6NiODvN9GQ7jfZWVooLATLgcrrYWgUurzqjDIaotQqFkIpFLNCMR7IFUm0PfP7GtTfRNU1V8hsswc5V4HPsuHAZ2sL3EuEiUHwnjcKAiY+9eBAXOOEPgHJdtcmaNUWmmmXA5+PCwqMYp1oAZomSSIpHIv7VNDjLrsWgmiD6rkHvYcQmvwyEm8VoVznSsqhITlmVZ7F2HA/8/eBD+iFm1wXPPgUDcsCE7gfjqq3j2li9PzmjUD4ThXvCahv3/wgto77J+PTIQuW8kv9/jSS6DttL6qawM7+W+k/lWRyQSWJ/eXqzjkiXYr/kQiLIsSpYVRSRf1Neb41M0CttodBT3xBVrxcSLQsRsKAxn13Z3Azv7+/H7PIZVlbAlTymRiEJ+wg/Q6/LU6z8Xv/7znUT0IhH1SpKkLwx7johCRHQpnaYP0VTL2BhAnstT9DI6CoJxzhxh9IbDIAqbmjDRmGX+fCiPJ54gevBBRJB4AueCBfj/0aMwMOfMwXnr6jIbyrIMgunQITh0+vNNpTDxpihQYrW12Q1Ylwuk4OLFAF63G6B77Biu3+EAUMsy1ur887OTdTU1YjpXXx++I84O6O4G4dLbC1LllltgLOsVcyCACLYswzCfM8dYcdXU4PpPnMCLh0tMVYQsEAApvGsXnCCXC+Th5ZcXTmRYkCnHomkw+E9JeeYZPOdveUv64A+/X0xd5owbVQUJ3dICg/eRR+DUvfWtyBI0k3AYz3ljIzLkeBpopmdvbIzoy1/GfvvMZzCkyIowUdfSgp+f+xxw4QMfwLRCPa5wDxveo5yRGAjgXuvqjCcwJxIo/77/fuDrpz6V2VEgggPi9WINCp2CPDwMLDp4EJh2661Yfz3WxONiAnx9vTkROt3i8wGHnnwSjk5jI0rgL7nk1MCim28u0pUaCE+wTSTgwJ5Kk2THx+E4tbdnbgNgVSYniX7zG+DG9dcb6+FIBOfctAm6PBPZMDqK53btWqKLLsovk1eWcV02G557Pe6MjuLvc+emE8OcwV1RAYeYs6eZ8Gpqyo1MHh8X5dirV6cP4EskcHz9xOZcJRBANYuqosULT4MtLxcB23xkfBxZW9XVIFAKJdE1DbqmpwfXV18PHTUNgd2Sj1Zk4fJPfalzPC4Im1z7/fHxeOiGLOO53vd6UeiKFfid05mML3v3wjZatQpVCWbnTCSAP4EAArA1NXi+efiJnszn4Up2O5JGXnoJNsfNNwss4sBCOCx6LHIwlScu64lFI/3hcolhjHZ77vtrZASkaDSKfbR8Oa7J64XusrqvgkFRsixJomQ509AjDowMDeEz8+fjNVOqLoxEUUQ2+uHDeAUCwLc3vAEYl8egpxK25Ckz+FGZdunT/0fTtEkJSMbtmJcTUQURjZt8PktMtiT5CE/ra2xMd5h8PhBV9fWimbimgUCUZRjCqWA4OQnQ5mmqzz8P57a5GaRURwdAdHAQSiNTjxruqfjaaxigsnlzce/dTBIJEAyxGMhPSRL9Ea1E2F0urFN7O8gORcE6Pv44DO+qKlGq2NmJ9ch0XJcLxMnAAF6aBufh0CEosre/Pd1hTyTg2Hu9uO5Fi7IDP2cpjo+LqWLFLG9mx+TIERg1fX1QTJdcAgKxWP2ULEgJi2ag9PSgV9iqVenBgkgEJRQuV3JZ7NAQjMPFi0X56ebNmQnEUAjPoN2O/SnLMIozlcscOoQJzLEY+sAaDZEyElnGHpQk7Nnvfx/n+e5304fFECVn3jDB5vXivNXVxqTWkSNE3/421u/CC4nuuCPzkANNA06Hw8KBzjci7vGIHksuF8rHL7ggGTOYBA2FRMlPof0WCxXuq7lrF5yfcBjP1TXX4NmZxuzIWYtFegKRS9VOFQmHQQzV1lqfRppJ4nFUC9jtRFddZbzfEgnYOpIEDMzkaHo8CLjU1GDP5+uUOp3Y/5OTokciE3UtLbAhxsbSqzB4YMDgIOwF7qecOrE5G66oKmwiboWzfr3x3isrE2V1+RKJNTUgD3/7WwS5L7sM9k2hZZItLSBy9++HXXPGGfnvBY8HOB4M4rrWrSvewBoLMmuxaKaLzSZ6APJE5nBYZO2Wl+ceUON9cOgQjrtqFWx4Juy4X96xY0R/+hNspOuvNz6PqkJHv/gisKCzE/8PBPB3lwtYyPfAZF8ggJYsx44h8Hvllcl7k9sl6H0PznLm65ycxHNPJIas6InFsjJ8XlGwL6wGH2Mx7MmhIVz7xo1iaElNDWwznw9rZGaPqKq4vlhMDFvKFiRRFGDj4CCOMWcOfMmZGmTTZ8xOTIA47O2Fjp8zBzb14sUFZU6WsCVPKZGIQgzmBBER/bOuXiKi3UT0BZP3eYt+Rae5xGIwEisr0zOnIhEop4oKRG5YMezdC3C5+OL0Zt+yjD5fTidIIVZsTz8NR3P/fmQThkIAcybojMTng0I7cADp99NQ4kpEWBMu7easP+5x4vPhnrMpMC5n4HR/7pvY2YlIncMBAq2vT/ShnDdPlD0bKbSyMhiVf/kLvoP6ekQUUx12IpAOQ0O4h9bW3AamSBLeX1mJY/T0QIkUQvDF47jP7m4QQQMDUOLc2NnKQIoiSwmLZpj4/XDsGhvRw0//vMbjyGC22RAdZ0PG54PD2toKImjPHvT6yZStHAyKsvmlS7GvifA8mu2RnTuJ7roLmPWd72CPWhEmEGMxonvvRUb1xo1EX/iCuWMoSYJIjMcFScMGPAcfiIDRv/gF+j82NOC4F1yQ+ZricZEtVFubf3ZLIID72b0b13vxxQgGpJZ8xmL4nvQZ3Sez/48sg/DctQv4q2nIfDrvPDwPeUTYC5VZiUWqimdTVfGdnkolzIqCYITNBnKoGNmy3B/6zW82Jq14cF0shmqGTCS71wtMqqhABmKh5K3DATziEr3GRtFIv6UFQWGPJ91GbGgAno6N4Z4qK0VGo9uN+21qMt/vnHXp8yGQunx55rW220VvrnyzLqNRZLjv2gU7qlgD3JqaQPi9+qogEnMhDDhgz4MWVq0y76c9hTIrsWg2iX7iMhM3/Mq11Jn7iAeDwAy2KVRVlDwfOED0u9/Bv7j2WtEeJRYTJck8KOXwYfx/1SoEDXigpBnBOTKCoKjXi7YpVgOrXJ7NtoemievhwS3j4+JaHQ6RpRiPYw2NqjH00t+PgIyiIDtz8eL0e2hsFPZQaoWWLOP3k5M4RkUFEmDMhi2xqKpobxCPw7fp6po5LVv0wmR2NIp/Dw3BPxsbw/O5ahVso2w9eS1KCVvylBKJaF2OEVGDpmnbT/aFnA7CkRK7PX36bzwOg9ZmQ18tBtexMRhfixcjYqwXTUNkPBhESSobwV4vHPSbboKBumMHnP2LLoKiSjWouSTmwAGQjqtXw0GdDmMqGIQCsNuT+2VIEpQHp7LrezyaCafdHzwIZ7W+HsYrZxLNmwfCY3xckInPPINXWxsUT2cn1icQQJ+x3btx3MsuA8A3NycbHLIMAjQYFFme+Wb8VFcj+3RoCC8ub87FofL7BWk4MiKGxJxzDtZiiicNFiIlLJpGURQQiPE40fvel+x8caZKIgEnkx1mLhOprMT+2bULwYY3vtH8PH4/juV0IrsoFhOTOI2ea03DhOd77sF+u+sua3ufSJBnvb3IEhwaInr/+1HqYyUIwROYJQnOutOJtWDD+qWXiL73Peypq6/GAJpsBBiXEtlscFDziYpHoyj7feopXOO55wKPUslIJpm4r1qmZuPTIRMTwNbnn8d11dSAcD3jDODkNJQt5yszDov0BCK32ziV5OBB6LszzihOxuzevQhcnH+++ZTh48expsuWZSb2AwEEZR0OZIcUK6OXe1QzkdjQIEiNhgZgkdH05XnzsFYDA8jq5gmeDQ04Dle5pMrYGOw7ItiSVhxVSUrPSLQiPDgqEMD1LVsG0uCRR/C65priYFNDA+5l3z4EKjZsyP79hEIgD3nQwrJlsItP9qAFE5lxWDSbRV/qzFOYcyl15udmyZLkPcalxmNjqOxoawOBODYGm4kHCPH+5r6etbUIBGabBE8EjLz7blz/Jz8pKtXyES5r5qnNRFgT7lfKxKLPh/XhCqbmZpGxyPcRCmH/eTy4j0ylt5KEY4yMiGA0lywHAoKsbGrKTgJyC4LeXnyPXL030+wKfs64h7EsA7u7u7HOVVUIqK5cOe3EZwlbTKREIlqXB4noLkmSbtY07Vf6P0iSZCeiutN5zHexZXgYhtiCBcnGmKoiuiXLIPDY0YzHYXBVVBg76vv3g8DatElErMfGAPi1tVB0AwNE110H0D5yBA79mWciguVyiT6E3d0gEZctI7r00unpmzU5KSYCzpuXbqA6HFAIgQAUWrYm69EohqeMjMBgPfPMdEOVs/5aW7FuExMiQ/H550GMDA1h3aqqkLnHDvvkJNaqvx9OsM+H/xPh+hsbCzdEHQ48H243XmZ9M/WiaXi2jh/HZwIB3FdZGSKCZ50FgnSGGsksJSyaRtm2Dc/xO96R3h+1pweG4ZIlwhjkialclrtjB0i+q64yP4fXK8qhly+HIZVI4JhGzmgigazDbdsQxPj0p62TbtEozvfYY0T33QdD9PvfBylh9fP6CcxM0thsuN8f/QhE3vz5GPKyZk3m43FJTiQi+hjliqmJBNGzzyL7MBTCvVx5pXEWcSQiSKbqarxOxn7XNOiYXbugTxQFeLZ5MzCIB3qVsMi6KAq+W02bWRO1iyX9/dCjqY55vnLiBMjrxYuN2xcQQb+PjeHZzNRLNxwGgUiEIGyxnTwm+/VEotOJ75mzqsvLk4kxDrh2d8NWYZK0vBx7y+dL7jvGPWz7+/G7detyuw9JwjkVBa9s5XVcnsc9O3n4QWUlbKlHHwXRctVVxXmW6+qAjUwknnGG8f1FoyAcRkZw3kWLYFvNlEELJjKjsOhUESb9ONPOSqnz0BCwpb09ORjPPQh7e4l++Ut8fvNmHJMIfgsHTcvL8f7Dh/G+DRusBUl37kTv5TlziD76UWukY67Ce1S/dxIJ3JvbDSwaH0/eL+PjWJeKCuw7fdsbM+GAx/HjsCkrKvC71lbrfVK5BUE4DIxZtkyQoSdbuIqOiUNVxZpEIsDs3l7gaGsryMNFi05an+oStpjIKWZiTal8m4iuJqJfSJJ0FRE9S0hxXUxE1xPR54jo5yft6k4hcbsRcWlrSyfDjh0D8bN8eXIU5ckn4Yhef336Z4aGYDQtXIjPEcE4GhiAUlq8GP8PhYQx7fPBKX3hBXz2zDPFsJUDB5A6fumlU++kcATJ54MCyBQFrqoCGPv9UC5m1zY+jntSFBCkTU1QgNkiizzgYO1aGLd//jOurbkZTg0RMho6O/E7pxOK4OmnYbw2N8OoKGZmCPdGqqyE0dLba1zeLMv4GytTdjYTCbx/wwaUC86EQQoWpIRF0yT/+AemBl5wAZ57vZw4AcyZPz/ZuB0bA36Fw+iDuHgxygTN9hZPMK2sxDPIDcldLuMMlECA6M47kUF0880YfmKVaOJJ0Xffjczhc84h+vznrWcwhkJiAnN9PfCJ+yM+/jgIxFAIk6tvuin7XudJgokE9myukXFVRVuJRx8V0xqvugr4nCqKAhzl0qymppNDMsViyNTctQuEkMuFjITly2HcNzbiZwmLcpNTnUCcnIT909JivWVBJgkGEXitqzPPkB4fB6HW2mqepUgEB/Cpp0AybNkydRkudrvokTg5KYjEpiZgyfg4bCT9d89TpEdHYUOxA83DH7gXqiShfNnvB2G6bFl+e9BmE7jI7R9ShQMnPL22rS09CNTRgcyrHTtQ6XH55cUh8WprYe/s2ydKmzkAJsv4vk+cEAMH58+fNdm8MwaLTkWxWuo8MQHSq6EBBKLXKyYg86Ck//s/6L2bbhJ+HmfrEWH/cMuoeByZZ9wXka8h1ebRNJRGP/ooEkw++MHiTKy3Kjz4jpM54nHck9uN+/B4sPc6O2EbHjokiEjur6jHilhMlCwHg9BvTMpasfd8PtiVfr9oQXASWjOlCZeHM3HILXCcTuD3sWPAH5sNtvPq1TNiEGQJW0zkFDOzpk40TYtKknQpEf0HYVLPW4goSmjI+QARPX4SL++UkVAIoFtbmx4t6e/H3zo7k6NLR4+C2Nu0Kd3QDQbhrDU0wGEmElEynnzKQN3SIpzpujpksmzcCILy4Yfxe6cToHb55VNf/qaqolS3sdGaAqivxxr5fOnZfpqGKPvx41B0GzbAqOboYCyWubxFVVHq/eijOP5ZZ8Fhb2wUGYqvvALjlPuLcTkEp+ZPlTFaVYXv8sQJrFkoBHLQ7weROTgIJVxVhevx+aDgN22CgTKbHM4SFk2PDA+jn9/ChegVqhe3G39vaUkudQuFEJDw+ZDhs2ABeiiaOX8cJa6uBoGoKNiLTqexATw0hMnLw8NEn/0scMiqRCIgr775TRj6t98Oss+Ko8xDKqJR0cScJ54ODRH97/8is2XlSqKPfcxaL69gEOtks8HJzwVPNQ2Yv20byIEFC3AvHMxIlVBINGGvrT0pvQXJ7cYz8cILWMe5c5FtxNMQOUgzw7N9kmSmYFEiIb7furrZtYZWhJvwszNYqCgKCMREAkPmzIIVx45hvyxenP53Fu41HYkgq8hqQCJfYSKRy5Hr66HLuT/i+Dh0v972aWkB3gwNJU9Zra3FWhw/jr85nSDVUjPO87lGIjHNXo+xoRCuW9PwrGbqw7pwIbI6n3oKQZpiVb5UV8P++8c/QCSuXg0sHhgQgxa6umbuoAUjmSlYdDqIUakzDyE5cEBkDfe9Pq6CB5JoGtETT2B/ve995lmCoRCOU1mJAJvTKfoocp9ohyOZ1PzpT/Esb9li3a6ZKqmuBj698orwZy+4ALYiE6pcBu33i89xW5hoFPfkconp58GgKCnPZCsFg0iYmJjA+5YuTcfD6Rae/s0vTRMZrjYbbODXXoPOqayE371ixfSSwJmkhC3mImncxKgk0yGlxc4gPOCirAxEoV4JjI+DLGxrSzZo/X6iX/8aJOENNyR/RlFAeAUCILtqakAmDQ+LhrKBAAyn2lrjSHsoJEqY//AHAPR55yFCvHTp1AFzPA5CLB6Hws1lcEgsBmVeVSUyAqJRKFjOnFq1Kn1aMkcUUxWUpsGB2bZNlDVdfbWxwx6LoR/J3r24fpdLZAq2tExPVGl0FAppZAT36HKJfiKDg/jO1qzBqwAjeWYXGWaXEhZlkEgEU/0SCUwT1vdGDQRAxtfUJGOAoqD0ZmgIRFFbG9G73mX+jHG/UW6noKp4Ru124xLbV18l+tznsB+/+lWU2lmVUIjogQcw6KS1lehLX0rPrDQTJt1lGdfFBJyigGT9+c+Bu+99L3obMQarKn6mGvOFli8fP07017+KDKmrrsJeNsLieFz0KuISxukkmDQNz8TOncg84GEYa9aIoVj19en9Y3OU0xqLEgnYAZKEvXSqEYiqCoI+GETQqxgE+FNPwcHduhUYlirRKP5ut8OJN3s2EwkQiJOTmMJcpCb3loRxJB7HHnK54JiPjwOnUgkKHoDldMKGlCTRHufAAazrhRfmP8zJSBIJ7PGyMuDlxATWlqfOWw2q7t+PzPFly0AqFsvuDIeR5XjiBOy6hQvxKqAU/bTGotNFFEUMPeGffj9sFFUFZjQ3Q99WVeE5DwYxwC0chq1ghhV+fzL2pD6LXKkhyyL7/Gc/wzN8440IrJ7sFiDj4/CB3G4QgGedZb7XFQU25fAwbMdgUOiy+nrYmRz48Pvx06j/eyQCe3JsDHizYAGyFk8WmcpkKBOHRII4dLkEUXz0qKgIW70afnmRrnm2Y9GskBKJOL1SWmwT4T5isgwjRg+4fj/AprYW5BcrCFVFWrzbjbT4VKJt9244nBdfjDRwBtjWVpCU3JujvNwYuLxeZAopCox4SUJ0ZN8+nLOtDUZnMUqL9BKNQiFqGpRAPgad3w9l3dAAJ3rfPqzX2rXmA0NkWTjb7DQcO4YszP5+3O+VV5o77IoCRTg5CUO9tRVr2NeHz4+PQ1ksXYooeEdHcTMTYzFEtHp6RAlFSwuiWUNDuL7ly837AOUos11BlbDIRDQNPXWOHkW0XJ9VF42CJHc6gQV6wqKvD5957jkY0LfcYv6cjY6KdgqLFuF3eiIkdX9t30709a/D0Pra14zLdc1kZASfeeEFTIb+r/+yHpRQFOxnnnLLmcrHj6Mn49GjyPC+4w7cs82WfO2pRGIh5csnTgCLDh/GZ7duRcTabOhMMIgX924s1pAHKxKNImt71y7oipoaDHlZsQIYywNzWlqKktF+2mJRPA4HzGbD8zlLSsBzksOHEfxas6Y4JN3hw+iHumED7JdUSSTgxMfjCFSYZYMoCjJrx8YQWG1vL/zachVNA57E49jjFRXQ/T4fSMTUwXh+P3C6pQXPy759eH7mzxeVG01NxSWimeRmcoCJgVzl5ZeRSb5mDda7ENE06KDeXlwbt6U555yC+6Wdtlh0qoqmQZ/pSUPOBiSCv+B0wiaIx0GYceYgkchYvP9+2BK33mpuv3i9ICKdThCI2XR2by8GuAWDCNiuWYPzcYbidAeUZFn036+uhr4vLwcuGeFoNAof0+vFGlVVAX9crvSMRU0TQVFOeuEeiSdOwPeSJOAwVzdMtzC5HIuJ758TOVwu/Lu/H2vEQ0KXLAF5OAW9K2c7Fs0KKZGI0yulxTaR4WGAY0dHsuEXiUCpOBwgwPTA+NxzeG3dCrDWy9GjGP6xdi0M4d5eOHNz5gBg43FkF0oSnHj9cTUN7/X7AXIvvghAvPJKGFiaBiLh2WdF/5wLL8SxC5VAQDSzbm/P38Hkezh8GAqqvh5OQ7YsBp6K5fGgoffhw/jsFUsDXZ8AACAASURBVFeYO+xE+O6YqGtuBoGYmhU6PIzo3OHD+F1TE76Lzk6sYb5ZgZOTomRZVXHuri4Yxk8/jTVdtgwRyiKWWs12BVXCIhN54gmQdtdeC+KHJZHAvlcUlO3qn9eJCTikTz2F5//WW80dRZ4o3tAgCMRAQEyT1Ru+mobswV/8AuT3l7+cmwP64otEX/wiMOBf/xWReqtRelnGvibCvnE4YBz++tdEv/0tDNkPf1hkxvB05lTDnYnEUAjHs9tzm4bsdgOL9u4FKXvppcBbMyOZrzuRwPvNpltPhYyNgTh88UWsFeuGhQtF1lRVFUiMIpKapyUWnQ4E4sgIAqgLFhhnDOYqbjf2blsbhsilrhm3CfD74diZBRs0DUFaHlbX1VX4teUrPMBKlvEcVFaCIIvFYJOl4syJE7BBeNrnmjXYj/E47B4uxSxGNpMs45jhsOjNWAixsXs3HPAzzzQfhJNN3G4xEKymBjqoqgqlzZEI1qMAh/60xKJTSWQ5OcOQy0+JsDcqKqC7+KfNhsoftzuZDOJS52AQNsPoKHo4r1hhvLcmJvBsc4/gbP7AK68Q3XMPruMjH4HvyKXViQTeY7cLQnGqSbXBQWBnIgFijHush0K4pupqXIemQW+53fgbBxaamswDNkzk8uAWJgzDYayrwwFfaskSEUyZrmzMREIQh/E4fldWJojDsjL8/fBhPCfBINZi1SokdUxhcHe2Y9GskBKJOL1SWmwD8XphLDc3J/f944i4ooAM1IPNiRPIQlyxAgSXXtxuRNrnzEF/jJ4eKKh580DMqSp+J8swoPTKSlVxLZEIjL4XXgDgX3FFehmuouD6nnsO71+6FH0v8p2aODGBa6+owLUWYmxGIsiEGRiAA3vuudacrLExDEx55RXRcP2CC8wVcDwOQoSb97a3Z+9jwX1TxsaEkSJJ6BHW1QWHKVumoKriGTh+HMfj9P2uLijVvXuhoNvbcf+KAgXe3l40pTXbFVQJiwzkyBFMDVy/Hr0M9VnPR47AaFu+PJmMj8Ww1x55BPj17nebZ3MMDgJfmprEFPBgEPuopiZ5n8ky0Te+gcb6W7cS/cd/WDeENQ1lxvfcA8f1a1/LrZcalyeVlcHAtdvhZH7ve9jvV1xB9P73pxOaipI+TICDEtEo1s3q0BC/H6V2zz2H69i8GXhutn+58Xo4jOutr5/6vrV83oMHQR4eOYJzn3EGsj7r65GBzYNyWluLP7WWTkMskmV819zM/lQkEINB4EptLUijQp3CWIzo//v/YFe94x3Gz+GxY9CfS5ea9wXUNFxXXx8Ck2Z9SKdTNA12ZCyG56GiAo42EewKfj4UBY7snj3AoquvTg5ax2Kww1yuwjLyeDAEB6IZiySpcDLj6afhkJ97rvWWFERYn+5uXFNlJewivU0bjyMQFgwW1HbmtMOi2SxMADFpyEkERKL0VE8aGj27PT3wMxYvTs9GTiSQgdjdjeFy3EYgNVPQ7ca+rKxE0kc2vf3440QPPQTi7CMfSU8OYAKTq6v4fvi8xayACofhL42PAzPWr0+2i5g0jMWwtl4vromHu+XaB1lV4T8dPoxjsN+sqoI8lSR8Z/rBLcXsbxqPC+KQz+lwJGccEsHuO3AAekVR4NeuXo3EkWkgOWc7Fs0KKZGI0yulxU6RSATpzZWVyT0JVVU0Wl2zJhmUYzEoJpsNZcx6hRONonefzYbMwYEBkEwdHTAmNQ3nC4VAOukNyHgchmciAaX07LP47BvfiM+aiSyj1GTPHnx29WqUm1jNGOLSEr8fDkNbW2EAOzoKpaZpUNrcGzFTFqLfD+L1+eexduedB4c9U+aexwNChAjXnEv0PhwGCUgEpTM2hmxRznzikvOuruR1jEZFyTJH9xYtwnsHB1Hu4/PBAN64UXxvfD5FwbUWWLJDNPsVVAmLUmRykugHPwB5/qEPJRua3d1wLhcvTn52NA2E9e9+h8+95z3mzld/P55z/XTVcBjPcVVVMo55veh/eOAAyLp3vtP63vL5iL7wBZBvb3gDJjnnkr0YDAIfnU7s/2CQ6Cc/QX/ZuXOJ/u3fQB4YSepUUs7EURRgW01N9vuIRJAN+vTT+Nx552EASaZ7iEZx36oKTDDqKVlsiUSAl888g2ejtpbo/PNxvTYbnAoektPSMnUTa+k0wyI9gZhpKMVslkQCAUxVJTr77MLJcE0TfUTf+lZje2ZwEMTg/PmZByPt3QuncM0aZGTPFGHiLhoVWT8jI6KHWCgkSLJ58/D+mpr0LMpQCPZQVVV+/RGjUdGyoboaGGqz4btUFPy7kACxpiGw1NMDfE+twkmVYFDoL27dYzZogQP3fj++2zzK52f7bjxl7SIebsFlstGoINiIBAHEpKEV0mlkBIGzefPSgwmKQvSb36Dn6FvfCnJNUZJLXcvKsGePHcNeWbcuM8GnqgiEPP44AnXve1/269S0ZEJRPw2YCcV8dIimYQ8eOoTPr1xpTI5FIrAFBgbwt7Y2YQ/kcl72E/v6xFTjefOSK+nicVH+zD+5EoSH2+iJxVwCGrIsiEMmmp1O8dzoe2H39sJ25aq6pUvhFxfB78pFZjsWzQopkYjTK6XF1omiAIQlCYaN3rA6ehTAu2xZ+lTihx9GBtqNNyYbOWxcjY/D6ZyYgIJasEC8b3hYZCXqAS0aBeBpGgB+1y4A9iWXGA9cMRJ2Kvftw//POAM9ZjJlvikKMnsiEZBwhfSF4Cbhvb0gNDZsgLLwenF/TU3pCjoSgULeuROfP+88kKYuF5SGUdSOezaGw1D8+ZZdyzIUayIBp6a2Ftfa2wtF6fHgfY2NMMS5AbGmwQhetAhk48gIygfHx3HfGzca96nktQ4GcS59hkIeMtsVVAmLdBKPI2tvYgL9/fTZxFx+3N6e7nwfP46m3uXlMGiN+o1yv1fuo8p4whkAbLiz9PVh8rLHg59btli/j1dfJfrP/xTTl2+6ybqhqp/AXFEBI3fnThCrfj8yMzMNimHhsmZ2xnnysMMhDHizISi7dgHDo1Hg19atmTGRG6tHozh+Xd3UTYBnGR7Gdb78sujhe+GFyAqKx4FDoRDum5vLTzHRddpgUSwG/HY4cnfCZotoGogcjwclq7kMVTOTPXsQVNi82Xggk8cD26G5GZnWZrJ/P7July0DKTATxecDrlZV4fngcuKhIdiYa9cCUzwe/G7evHSM8fnwmbo665nDqgr7JRgUmJdq+ykK3me3F5Y9q6oI+g4MoL0Dt8XQSyQC+5oHLXR2QodlO6+iQI9MTuJZMOuhbSKzfUeeMnZRLJaeZcjCWWPcq6+8PPfnkfsX1ten90nXNAyi3LcP2b5nn538WU3D9Q0MiB7HZ56JvWaG6ZEIbLT9+9Ga6Prrc79m7ivIpCLbIw4H1sAqoej34968Xth0a9cm23BsS7ndwBGbTQSKa2vTe7VmE25BEIlA7y1ciGOMjgJLzBJPeJ2ZVAyHk58Dp1MQi/ws8Joy+crEIQeHmThMfWYiEeiQgwdFq4TVq6ErTtKU99mORbNCSiTi9EppsV8XTYMCiURg3OiNrcFBRMwXLEhvwHvgAErcLrwQZJFe9u7F388+W5S2LVwoSEjOnGtuTiYfg0FhaLW1wUEcGECvLyPjLJv4/ehd89prUEqbNkFBpjq3sgwyjidTFZKpEg7j/n0+ELIrViRHhpiQa26GIpBl3Ofjj0NJnHkmShT1xjSnqnN6uqZhncbHcex58wrvMagogpBsaUk+v88H52fPHrzHZsOzsmmT6Kvy8sv4W1WVKK3KZlh4PLgPhwPPV57lzbNdQZWw6HXRNKLf/x7PEvfsYfF4YLzxNHe9uN1E//M/2Ce3325MXHO0mgMX7JDF48AdpzM5Q/jll5FF6HQS3XWX9UwfVUXfobvvxrV+6Uvm2YJmn///2Xvv8DirM2/4nhlp1OtYxVaxJcs2lo2FjbExNqETQssG3hAgBBLIm5BkN+V9v303m92E1C+7+fbd1E02yRWyyaax6YFAKIEApthgG4ybbHVp1DWa3p5yvj9+vvc8UzVNskbMfV1z2ZrylPOc8zv3/bsbp9lUVUEJ/Na3QDxs2ED08Y+nnrao6xgbNuSN3ZeFiCUSdR1RV48/LiNgrr9+YePV78f3iRaOtM5WOIXo+edBHBcVATP37YNhHg5H1tG12eCkWiKS602BRcEg5uVKJhCJgBcDAyBw0mmglEiGh1GiZNMmGN/R4vWCDOD6gIn2z95ekJsdHbG613ITbixXUoJ1OzgI/N61K9KgHR6GntjVFasHOBzA9vr6hY1gvx+kG0dcJ3Mc5IpIVFWU0JiexnNl51Q4jPsaH8c1tLWl32hB10HWzM1hbFJ1pNObBIuWm6hqZB3DYDCyqVl0HcNsU+r9fpQ3KSlBsER0HedHH8WeftVVsKPiid2OYJHKSugY0YSe8ZgOB9E3vgEH3rvfnfiY6YqRUOTx4ghFLj9gFE1D5GV/Pz7fujVST1FVXCs3e7JapS5gscgo0PLy1OwOpxPY5fHIEgRGGykYhD1WXp56AIquRzZt8fsjI1I5i8RiwXPgSEMmDqPHZGYGGNvfj2O3toI8bGs753t0vmNRXkiBRFxaKQz2WZmZgYKyenWkp312FiDd0BBbSNzhIPrZz/CbW26JBKiREaS/dXYCsH0+/J8jijwefKeqKjJVx+GA8ldWBgLxhRegwHMnzWxkbg5EXX8/QJ5r2PBmMj6O761Zs3AdwWQyOQnl3mRClEG8FBTuimq1yu6MbLDfcEP89CYu5suGv90Opbq2Ft/PVaFiIXAPLhfmQk0NNs6hIVx3VZWsZTk2hvHk1OfVqxFdsW9fehFIgYAkcBsbM6pjme8bVAGLzsrBg0S//z2ijq+6Sr7v9WKtVFbCm2rEm2AQ3Ymnp0EgbtwYe1whMFedTihW3HiJI2otlsi020ceIfra16B8/dM/pZ5K5nSi4cqLLyKd9pOfTFzPLJ6oquwOWF0NbHjwQfx9zz1owJBq+h3XFOMmMRUVsb9lPCECefHYY9gP1q0DFi3kuFFVrP1wGEptTc3idWH0+WTKstOJveWSSxBhXlGBa5mdxfWYTPjcZlvyGn0rHovY4LFalyZV/VzJ3ByM8+ZmGGLZituN2mFVVUTvfGfsnh0KIaLGYkmeSjgwgFIhbW2Y+/kw/uPjyFDgTIeWFuhaxjFQVRAZ3CXUuG65OR03i4un72ga8I7LFtTXp5aVoao4flFRdmMZDmPfcDqRfaOqssEc15jONBWeSwrNzMiSMSlIHsyMpLLs9SJdjyQLA4HIWnjcDZhJw1zXBVYUBCzoOgjEaDLsz3+GLbZvH7Ka4s3v0VHoRjYbcM5slqnOnHJcVIR7sdvhrFUUlJlJp7ZzOqKqMtWaCcXiYkkoOhyws7gUVne3xEtueOJy4dorK4EZ8fYqjwf3Ul2d2IbyemEDzc/LEgSNjfHH0u3GeTPt+q7ruCeHQ9aUDoUkiVhSIlOgOWLRYsGewLXti4uhAydrxnUOJN+xKC+kQCIurRQGmwBUdjtAz9jR2OOB97OqCgAdXZz/F7/Ad97znsioE7cbhmhFBcA9HI6sXcZ19BiMzWYZVef14nwNDYi66e1FClE6BasXkokJRLCMjQFge3qwgXCjj0zT77ig//Cw7L6crLvXSy9B4fT5oDCnYrArCshXh0OSeYtV2+v0aSgnbjeU8ZYWPEeuMcfez+PHoTRXVcn0g5ISPHtO2UmFVDCmN1dVQelOg4zI9w2qgEUEZfb738c8e897JOaEQlhbRUUg2o3zQtMQpXfmDGogxuuSqeuo88Pd25nU4whpItkQQgik6fziF4iyfeCB1KPqXnsN3Zfn5ojuu4/ottvSa9wRDmMtmUxQRL/1Ldz3jh1EH/1o8lqw0eJ2y/Rlmw3/GusjGqW3F1hkt+Mc118PzE9mUAuBter1yo682ThfkondLlOWudvivn2RBg9HHBDJ7oqL3QEygaxoLDISiItYV/KcSyAAh0ZpKSL9siXGVRXN51wuNFKJNu64MVwoBJ0k0VoaHYVutHo1CPR8aGJjtwPHuNxAY6NsuLR6dSTOsMHOOodRNA3kgMkEUsB47x4PsJMIY5tu/cRcEYl+P9GPfgT9ctcuON87OnKDjUJgHKemoFulkJmzorFoqYXTUY2kYSgkP+fUUiYNS0sXl+DXdWCG1xvbQIQIe+aTTwK/brwx/rUMDeHV2AjdKvo7nEYbCsEe+M//xP76iU/Ers/FElWVEYrcWXhiQqZdNzXJGqxcLsFslk7EZJHLnOosBDAjOiV4aAjEfXExdMdUyi5x5kdjY2qpw0zYBoOyPqUx8tBqxefG+orBIP4dHITNqevAxJ6e2Many0TyHYvyQgok4tLKm36ww2GApNUaWYQ2GERUCnvEo42x556DQXfzzZGKDKd0+HwgAsxm2eaeCCTY4CD+zwVoNQ2Rb1wnsLYWXvY33gAYxiMFciGDg7jW0VGQpzfeiGvORHw+Sbh1dCBVKd5GIwTIuUcfhZJZVUV0xRXJOy6zuN0g2YJB/C7biMl4omnSK+l243mVleFZbdggN7M33gB5KAQiRNnoUVUYDMPDIDvDYdxXWxvmV1vbwiStwyHT2VPpLn1W8n2DetNjkc+Hen9mM+og8nNXVdR2UVUouUaljLsev/oqoqGNkYssmgYC0eOB04LLKXCXPo7Ss1iwtr70JSjfb387Og2mQh7oOpTrH/wAx//bv4UTIR1FjjswC0H0pz8R/fKXGIMPfQhRmakaI0yohUIgMI1pvNGNVkZHUdP2zBng7lvfCrxd6J7DYSjsqoprjFa+cyFcC2z/fmC11Ypr27dPOruEkOQhpy42NCx+HcYFZMViERsxJSXp15HKJ9F1YEogACIoF/vsU0+BALrppthSDEIgyszlAnmfqCzJxASicFetQhOPxYr4zZWoKu55YgKk4Pnn4z2upczN2KLrbE9OwnBfuzaWDFQUEAXsHOGUxVAIeFtfn5nzQAgcK9OOzZzBMTQEMvPoUVzL//gfuW1gwDrk+Dgi6qMzhKJkxWLRUoiixKYls4nOjTGMpOFSr8eTJ7FOurtj19CrrxI9/DDW3C23xN+fBwagpzc3w2ZJpGMIgfImv/wldPj77oPOZLXGpjovpoyPI1Lb78d1rFsHrHa7QaSaTHD4cspyqjoJ13K2WIA3oRDGZXISx2htxSvV+9R1EP1CgOCM9ztNk7UxOX2Zoz1LS5PrMFNTCPDp7cXvGxsxHkZdj+clRyzGS31eYsl3LMoLKZCISytv6sHmrk2aBjBm0FJVGG+KEluglgi/+d3vQBxdcUXkZ88/j42prQ3E4caN0jum6zAG2RvNzUImJ2Uaa2Ulzn3oEMipiy9enHtnhc/txiZ86hT+39oKIzWd4tXj47hmsxljkih1cWQEBntfH8D+bW8DQetwSIU4nqgqzuFyYcxaWvB9RcHGkItoG78fz21oCMetqQFx2NaGZzQ2hutwu0E4cHTpjh2Jo1F0HcbD8DBegYCs3bhuHbx6iUiWDNKb832DetNj0Q9/iDXywQ/K9ccGk9cLJTeauPjNb1BH9PLLYaxFC9fM8fuBOcZ55PVirldWAvvm5tAE5cwZkJjRJRoSicOBmoeHDsEZcP/9uP50ildz2kp/P4jIsTEQh/ffn146ijF9ubY2fgQlK7iPPw7cqqxEmtOePbLWaqJmK+y15yiimprcF+n2eBBp9eKLOJfNhnE1kjkcdTA7C4yoqAB5uEy87ysSi3w+GCylpYtb73I5yIkT2Lt6emKN80zk2DF0ON+1C+nH0dLfD32kqytx2YSZGehX1dUoGXKOifIFxeOBwR8IQFfo6JCY4vPh81AIa9lmi9QjuPREOAySLF4zOa5zZjbL0gXZzstMicSZGei2fj+eT2cnruvhh/H5zTfnPmq3rw9OoDVrYst7GGRFYtFiCJM6RtKQu96aTJFkYVnZuV9/Q0PQlzo6YmtkvvEG0a9/jbVz++3xS5j09UHHXrMG30uk66gq6jvv34/MjPe9D3Pb2AylqEimGS+GBAK4p6kp6BwXXIBzTk9DbwuH8Vzq6vA5k5vpdjt2OqFTOByy23JbW2b3pSi4XqsVuonJhLFk4pBT3rnm5EK1MTUNmHj8OK7RaoVO3N0tHS2aFhmt6PfLOcy1OI2NWxbreSWQfMeivJACibi08qYebLsdilx7u0y5Y4+4241UsWgvsN9P9JOfAIDuuCMS9E6ehPFXXY2NbeNGafRz4xaPB97lykoA3eQkwHX1agDpqVM4RmcnPO2L4Tnh5iHBIMC9rg7vHTuGFGO/H0rv3r3JDQhNw1iNjuIYiSKPpqYQ8RhtsPPYBYPYvCorY0kShwNjpOswLrgRC/9O0yI7eKUr09MgDycmcNw1azD2xvvmJgbPPAPipbsbhZTTqVvI6erDw1B+2GvY3Iz5sHZtrAGgabgujwfjsmZNUk9gvm9Qb2osevxxRDffeiuIaZbBQSiJxnqqLE88AVL+gguQ+hytgKkqCMRAQNZmZeE6M+yh7e9H52WPh+jTn0aaYCpy6BAIRK8X3aCvugrnSVU5YzLM4YDS/9RTIM0/+lEo7OkIpy8XF8vuy9HicmGsDx7EeF15JQiJ6OjOeERiMIjjaxrWaq6baYyMwFB57TWcY9MmOHSMTamI8IxmZqD0l5UBw9NJGV8CWXFY5PVivbABspLFboce0tGRWSO3aJmcxNpua0MUYvSaGR8HzrW0xEYosjgcRM8+i7G//PJz1l0zZeEur8XFcJTGi8TjRkwuF+6HdUCWcBgOnbKySAKSCHNxbAzj0tAAHTZXkdC6DvzhZgbJZH4e+pPHA0w0Ng4kwvU98gj2g5tvzv3aGRiATtXUFD8VlVYgFuXkoEJ2yWXSkNNIiWSXXCYNl0EUV4RMTWF9NTfH1n/u7UUplvZ2orvuitUD2DE7MQFMSpZ95fejOdypU8jUuvnm2K7PnOqs61gzTCbmYj0Kgfl98iT+v2kTsITrnlosMmWZAyuY3CSKvJ5kpK+uy8Yyfj/skQ0bsndK+v3Af+6+zYQek5ypRK/6fLAzT53CPK2rg23e1ZUakR0ORxKLgYCMpi0qioxW5PqKiyTLaAWtXCmQiEsrb9rB5pTR6A68fX14f8MGWfuORQhEINrtIBCNv5uaQoquroME2LQpUmGanJSNW+rroTzOzgIEuSlIfz887W1tiHBcjFo/oRCUdi7uHU3aKQrStF95BeDb3Q1CIZpM9XqRvuzxYBOO5wl2OmGwv/IKNo3LL4812FlcLoA7FwIPhTDOPh+U05aW2N8Jgd8QAfxTVXJUFQY7K79WK5Tf6Lo9QoDwO3RIRgS1tcnOY9HzIx1xOHDs4WEo4kSy4+7atZHRV/PzmF8LpDfn+wb1psWi48fRoGnXLqQQs0xMSE95dGTw/v1ovrJuHdHdd8dGeSgKFOVQCOvTOJ+4tgxHFLz8MhqhVFQQffnLqXU95sjJ//gPKOuf+AT+ra1NnUDUNGDEyy+jhpbbjaYp99yTXvpksvRlFr8fEZvPP491vXcv8IjrQMa7PyIch4nOYBBrsLY2d1EYqopopf37gUklJSBP9+6Njej2+UAeBoP4XkPDsk2pXVFY9GYiEN1upAHW1yMKMVviIBCAQW82E73rXfE7Dp88if00UeM4txsOvOJi6EWLVXc0F6KqMHgnJ7Gfb92aHA8DAezvDgcwOtpR6HSCkGxqAh5w13qvF1jENWxranI7Nxfq2OzxQH/iRgsdHbjGePNlehrOrqoqEDG5jpYeHsa1NDTE1i6nFYZFmQrX0mPSkCNgiTCPoqMMl3OdUZcLqfI1NcgUM865wUEEeTQ1QY+IZzOcPIk5uW5dYqcFEb7zzW9iz73nHgQ+JBMm8Dg1l8m7TDOlOJJ5fh46zZo1eG6qivtatQq6SKKyUUwmcmMYkymSUGTdZnISaygcBu7bbJgH1dWZE2o834JBXL/XC8K3rg7HTmV+TUxANx4awt9r14I8TCdLLp5wg04jsWis68mNgJhYzGFdz3zHoryQAom4tPKmHGy/X3ZGNhbG5Vp2ra2RHZNZDh9GtNCVV8K7bDzeb3+LzWbvXiiORkXX4QAg2mwA0rk5KILl5djszGZczzPP4O9rrlkcb4jPh+vglNpkylwwiGidI0fwd08P0pDKyjBOx47hGnt6Ysk0nw8G+/790mC/6qrkBi93HuSaZbOzuM7m5uQRf7ouPXILKader/Rcqyo24PXr4zc+sdtBHs7OYuO78ELMCSFA6HEjlTVrst9gXC6Z8jwzg/dqayWhaLPhedjt2JwbG+Omfuf7BvWmxKKZGXi6GxsRyccKp8OBuWqzwUAzyiuvgEC02dC4JLq4dzgMb7yiwBliJBgVBeuguBik4W9/i+YlXV0gEBOVFDDK7Cyap7z2GmoIvu99UEzr6lIn17g27IMPYp2tXw8ictOm1H7Pwml9QuD80YZ0OAzi8OmnoSju3El07bXAlOj6iNGi68B2rxd/x4uUzlTcbqQrv/QSjt/QgKjDnTtjcSwYxDzx+TC+q1Ytq46D8WRFYBE3zgmHZZTCSpZwGHu+yQSHRrZEua4DpyYm0Ik5Wk/wepGdUF4OMiDeGmRdggh613JOI3e7QW4EAsDTdetS0w14fXNUYXSjldFR6AirV8vsi6oq6Agmk3Sg2Gy5Tc9jItHYaIUbGXCjhbVroQMtRAqMj6PObX09GujlOhV2dBQBADYb9G/D9awILEpHNC22jqExpZMbnjBpeK7TktORQAA2idUqU3pZ7HY4NWtroZNE6wLc3Xt2FhHW8Ww8lr4+1KcWgujDH46Ndkwmui67KgshG4QwcZfK78+cwTWoKmygigrZ+MRmS08PESIyQpEJRZdLBpTU1EDPrKmRNRZNJpwvlWtm0pIb7bBeVVKCZ+V24zxNTcnntGsFDgAAIABJREFUm6rivo8fB66VlMC51N29uA5TXjNGYtHYYdyYBl1enjHO5jsW5YUUSMSllTfdYKsqlCCLRXZGJgKx19sLAy3ehjE9DY96RwdSclh0HXVfTpxA+nG0Eej1giCsrISxz8ZgTQ02A5MJSvaTT+Lva69dnE3d6cQ9lJTImoKpiMcDQ/f4cYxVfT02lqYmbOLGew2FQLL+5S/SYH/rW1Mvqu1yyWYlbW1QTlO5TlXF+YqLY8Gd04j7+0H+mUyyy3I8cnJmBpEYExN4Zjt24LvRGylHspaWgnTOVRdUn08SipOTuP7KSijr7e3Y7BKkN+f7BvWmw6JwmOjb34bC8pGPSGLI6wUWVVTEFvs+ehTEX2UljLHoz0Mh/FbTQCAaFS+eO2YzFKF/+zdEVu/bR/QP/5BahMiBA0Rf+AKUxY9/XNY3Syc6LxjEPfz0p5jf73kP6jmmu4ZcLtxPvPRlTcO1PvEEvrN1K2qwckMSFiYSua4Yi6rK6EMmSLNd4xzZvH8/niM3Zbr00viR3OEw8MjjwTrnyIPllFaWQJb/FSYXwU2HFAXrcJnUmlw0EQLGucuFfTsX9eteeAGO16uvRqqpUcJhRNmYTHDIxjPKAgE4VhUFEYjpdhteShkZQeS31Yr7SdQYJpFw5oXLBd3HmBKsKHC0+P3AicbGyPHSdeivup77juzcsVnTcI/shG5rS1/vGR6GntvcTHTddbnvHD8+jr2vrg6k9FndKO+xKOmHIraOIUfCEcmoKiYNrda82D/iiqLAcamqsaWTpqfhkCwtlU1PjKJpkpjasCF5V2XOjLDZUFYlUY33hcQYDahpkaRaItLd4QAOT01BR+O66fX1MksrW5meBknpdOLYa9dKTOFr4/rvVmti8s7YqZsjW81m3CO/eK5pmrS/OHDGKB4PbOjeXukQ2bIFtleucSJVURRZV5EjeDlDxWKRjkX+N4XrzNOVl1+yokhEk8l0HhGdJKL7hRDfPfuelYjmiaiciJqFEFNn37+RiB4momuI6DAR/R0RXUtEnURkJaITRPRVIcRPos7RSURfJKLLiGgVETnP/v6TQojXF7jElTPYKYgQUIRCIQAnh7p7vYisq6gAcEUDnKIg3VBRUGPDuHn95S+IdLnoInjKjSAfDMqumm1tAO9QKDKSZGYGKb9VVVCsFqPWz8wMQsorKuDNziRVYWQERv/AADbgm24CiWixYIN4+WUoiMkM9kTCjQ5mZzHGHCGaTnoOh/lzjQ1FkSnLXi/eX7dONrSJFpcLivrQED6/4AIQNMkiQr1eKK4WCxTqXD+7YBD3MDwMA0PXsVnV1eHf5maZXk0LbFAFLFpeIgScEsePE917r6w9Fgoh3cZigeFtVEx6e2XH4iuuAFYZ51wgAENWCBibxvWj61ibRDj2F76AqKN3vQuNXBYyLDSN6PvfR6pQZyfRZz4jMSwdgu3MGaKvfhX1bXbsABHZ2prab43XwtE3FRWRxJoQMDQee0zWkrzhhuRpS7ouFWCTCeuaa5ZWVUm8yDTFS1VBpuzfj3VcWopIr3374kd+qiqw0OmUjpv6+uWdYhYleY1FQpBgArGycvnX38uF9PVhn+nuho6QrfT3o7zL1q2xzee463gwCMIt3j4fCkG38vtRAiWd+sNLKYoCDOfSOFu3Zu4EDoehr3Ajlupq4JDTiXFwOPBs1q6N/a2mATNMJuiXucIKjhgfG8MxW1pw/kzJjL4+EMPt7ci4yTWmTU1h/6yuxtwqKspvLKIovYhJGyYNjWnJXHeOScNU00bzQXQdmOHx4LkaHQoOB5qxmUwgEKODFhhvnE7o9InwTQgEhDz8ML73oQ/lLvKZAx2Y4OVmIqw3KQqu8Y038F3OkGJbMRfP0ePBWjaSh/X1MkqRo1W5Q7KuY45xFB6RjLLkuUcUGd2aDBdCIeBkWZl0ktjtwM/hYTy/jg7otanajkspTJoaicVgUH5utUYSi3HWX75jUV7IiiIRiYhMJtMkET0jhLjj7N97iWg/EelEdKcQ4qGz7/9/RPQxIqolom4i+jUR/YqI+oiolIhuIaJ9RHSfEOLBs78pJky6SiL6DhGNElETEb2FiH4khPjFApe3sgZ7AZmaApnW0iI9VaEQokIsFngv4ymATz4JoLv11sguYK+/TvSHP8Bgv+WWyN+qKhRCIWAkz87K5iCsNM/Pw9gtKSG6/vrcp0txd2CfDxtrpjX8RkfhJSoqArifPCnTwevqQG44HKkZ7NHi8WAjURSZ7u10yr/T8UIFAvCejY/Lbsr19biulpbE6VJHjoDcKCrCHNiyJb2oqrExjHVLy+KlWykKzjM0hOcRCMDA4MjZPXsW9nItZyxyOt9cWMSk+5VXIt2fCEpcby/m7caNkWT30BA6MZeVIfqvoyO2UUp/P/7f1RVb29Pjwb9+P9EXv4g59OEPw3GxkMzMINX5xAl8/777MO/NZhB4qZReUFWQpr/6Fe7r3nthRKYbFcE1doTAuY0Nsc6cwZiOjwNHrr02adfOCNE0merNzojqaokZ7IFOR5l3OhENeegQcKaxkejii+GgiEdMMTnqdOJvjlZfxELfORVuQHXppfmNRa+/TkJVZdOhlS6zs7JJQbImA6mKy4UaeDU1wAvj/OWuqG43cCpeWr6iwMHh8cA5m0qJhXMhHg+cIaEQ8DhZdFOqEgoB6zkah+uY1dbKbuzNzYnHzemUdVuziTjjyKHxcRy3rg66by70m74+ZHu0t6POXK4j4zir6GyUe15jkcdDwkgaGvchY4ThQp1t8116ezEfzzsvMjLQ7QaBGA5Dp4i2cVQV9p3HA6dsoqhCRUEq9MGD0MfuumtxxjNeqvPYGNaDywVbcds22Im5siX8fmAK1+Bvb48fTKJpskkME4qcCs/RiNywhctHpZsOz03hZmdBHDKhuXkzXsu5XEU84XJaxjRoJoqNHc1DIaLOzvzGonyRlUgi/hcR7RNCrDn796eI6H4iGiGio0KID599/yARKUKIvSaTqYSIVCGEZjiOiYieIqJWIcSms+/1ENFrRHSbEOKXGVzeyhrsJOJygVCrr5cbCXuoQiEAdzwS7/RpeNR37YrsWDo0hMi8xkai9743Ekh1XSqCTU04N9f3Y6PE7QaBaDKBQMx1vQdVBTkXCuEa002v4WMcOwZF0maTxq8QRH/+M9IHxsexId17L9KW0mluMjGBTYRTrHkDMdZEZEU6mXBx4P5+6TFfvz62I61RQiGQwNz1bPNm1HfMJG1NVXHeYBDPO9X07UxFVXGvp07hHlwuov/7f1PaoJYtFr2ZSMThYUT0bdyINF4ucN3fDxJr/frIdBy7XUYg7twpu3Gy+Hz4rdkMwzx6DjMxZreDDFQUdGK+4IKFr/XAAaJ/+Rf85mMfg4LNeJYqgXj6NNHXvgbHwyWXwMOf7hoRApjJ9Rzr66WSPzKCtOXBQbx/9dXA81SxyHjsoiIY6PFwIBUikVOWX3oJpCsRsGXPntgOq8bjOp0gEHVd1j3Kh1pV3EjixRdlA6rHH89vLDp0iERFRW7ryy1X8fthZJeXx9SSy0jCYeg1wSCaaEQbhSMjiEZZuza+U1PTUPN1fh51iDNNJVxssduBN1yzKxfp30SyNvSJE3gWW7dKrBQCzp9gMDKTxiihEPCZnSCZnH96GvoMk4etrZgfqppax+ZU5ORJ6C5dXdjTshWfDxjKr/FxvL7+9fzGolOnSHAaLBMSnJb8ZpGREeyp69bF6j0PPghi6r3vjW24oSiYYz4fAgOMJQKM4vGgtEt/P4JBrrtu8VO+uTzACy8AS2pqoBtt2pQ7x1UoJMsicbZUa2tq6zcUwri43SD9dF1GRVZVZRbw4nIB1w4fhq7V0YG09M7O/HGUpiLBIMbNGPTh8xF96lP5jUX5IivRl/IsEb3TZDJtFEKcJoSRPktEwwS2mEwmUxUR7SCirxARCSH+u1fQ2XDWSiIyEybF/2symaqFEG4icp392nUmk+kxIYR3ie4pryQUApCWl0vFVQh4twIBpPDEA0W3G2RZczMiSFgmJxFRU1GBLs3Rxp7djuPW1Mjudc3N0uj1+ZDCLAQ2rFwTiMEgFKhsouPcbkTocR0ergs4NIQog4EBbMy33Qbj94034AG+9NKFPfLz8yAQdR1GQmNj5KZtNsux83gSK8OKgusZGMB1lpWBPOBCxPE2Y1VFtMzRo/h/Vxc2smyeQVERlJvxcXhLw2GQibkUbvLAHq+SElz3nj04Z4qybLEoE5I7H8XtxvpZswZdlXmOcge688+P7fr+2GNQ4C6+GBhmTLP3ePCdujq8H21cBALAmVdfBRlos4FIjJcSZxRVJfrud4l+/nOskS98AXPa6QRRV1e3MOEQCKCD869/jef7xS+iI3K6omnAFosF2FJTA7yYmoKD59gxKLZ33okxSkchZaPbasWxKytxX4nuLRGRGA7LlOWJCTyn666DYZAoFZO7PjscsoB6Q8Pyj34LhZAy/tJLiNxwu3HNPT2RjrYFZNli0bZt+UHgZitM2LW1IeIvF3UfH3sMY/fOd8aWKZiYwGcXXRTbLIoIa+vFF/Gdm2+OzPpYLqIowJtAAPMknayFhSQcBs6tXg0s4NS/9napO7a3I+K6uDixU8LrlXWTUyU3hQBZMDiI9d3VBePeGPGo65gzuSASOzuh9732GkjTXbtS/20oBMycm8O/DoeMkCoqwrzr6UkrkmzZYtHatTntDpt3Mj0N3aipKZJADAaJ/vM/oY/cfXcsgcg1VwMB6FSJ9uCJCaJvfAP78P33w3GxmMJz9/hxmf102WWwQTmqjbsvZxoJqSggrsbHsa5bWjB2C+GUoshUZW4qUlODsfN4MAfNZtggXCuaOz0nEiFAph0/jmsym2VEaF0dnms+E4i6jnHjlPDpaeilXLrMYoEjKBGBHUeWLRbli6xUEpGI6HKTyTRARJcQ0ccJzPI/mEymRsKEsPB3z7LIHyMw0BspNpe+lojcQoghk8n0FSL6P0R0l8lkepmIHiOinwohRhf3tvJDNA0gZrFEdtLl2hDr18dPDdF1KMRCoL4fG40zM2gKQER0++2x5NPUlDRKuWZXY6P8fTCIqJlwGEZmrrtser3YGC0WKOGZGKQjI/AYFRcjdbK+HsTpo49iM6iqgseODXZdh2L98stEDz0E5XbfvthIg3AYBKvXCyO7pSWx4VJSgu/4/bJIL4vbDa/h6CieL3fk4xB9BnSzWW5wug7S+LXXsFG3t0NhyFXUoNkM5XV6GkqCoqTWtTCZaJokDoNBmf5QVSVT7UymtKI1Clh0DkXTQMopCjox85yenIQhtXp1JIHocKAWq9UKRVPXYVSw0uV2IzXMagWBGK3MhUKY67//PdGPfwyD94tfXJiwnZxEzcMTJ4je8Q6iv/kbzD2nE+dOhUB85RVEH46Po7nS/fdnRhQHAnAmEGFsysrw9+OPgxgtKQE+X3ppeljHHQgDASjr3NmU6yNyB8No4ahRbsbicCCa4MABHGvNGjhWtm9PHi3CHn5FwT21tCzv7r8+HyINDxwAWer3A7u3bcM+sHt32o6YZYtFbwYCkQjr2++PbVKQqRw5AjzauzeWQJyfh7Ovvj5+uRMhQEhPTGBfXo4EotMJ52MohOjDZN1d0xHGVm6g1NAALKiuhp46NATcLy7Gq7VVRhjFq+9WWQkSgCOrF8IVhwPn8Xigr0Y7sljM5oU72qcjF10kyR7uthstmoa5YyQNfT58ZjJBf25txfVy078MCLdli0XLeU9YbHG7obPX1KAZCgvXqJ+aguMw2iEaDGJOhcPJmxydPEn0ne9gTf3t38Z3bORKPB7M36kpkIfhMHS23bsjM7A4nVhRgAVM1KVaksVul3ZRU5MkoRMJn8/YwdtqxToqKZG6Znk58IRJQ+Pv2M7iz0wmfH76NPYYlwu/v/BC4CZHNU9NYUyig0iWqwiB62b7kv+dn4fdx82tuAfCmjVwBqUZNbxssShfZCWmM5uIaJqIniCibxDRy0TURUQThKKW7yZMiv+HiOqEEF6TyfR/iOifieinRPQ4Ec0QkUpE1xPRJ4ioQwgxZDjHJiK6mYiuJjDXGhHdIoR4fIHLW1mDHUfGxqB0tLfLDXl8HIoZF4mOJy+9BIPpuusAfEQAij//Gce86Sb5Psv8PD7TNBA9tbWRylg4TPSnPwFUr70299Fq8/MwTEtLU+9sbBRVRUThxAQU2Z4eGTXJBvuVV8JgjweMqgpD4uBBbDCbNyMypbpabqBEANZU6hwJEdl1cGoK5OHsrAzPT0QC86ZYUgKF+/BhbORNTVBeFzNNyumEgl9Sgs0kneegqjDsfD5ZuLi4GBvvAjW6UgmVL2DROZSHHwbRfscdIL2JsGb7+2XtThaXCx0CVRVROV4vDEbGDKcTvysrQ6Rw9Bzj+lj//u9ETz+Ndft3f7ewQvP880Rf+hLW3ic/iaYIwSCup7gYmJbMeHS5oJj/+c9YY/ffj2jZdLGIo/RYca2vx3p46imQdiYTHBVXXpl+pDXXTtV14HRFRaQSG91oJVp0HQryCy/AEDGZYHjv25c4OojF5wNGB4NYyw0NuY9Ez5U4nSCDDxyAkygUwrVu24amOBdckDClvYBFy1xGRmDMdnUtHJWcitjtcK52dqI8i1F8PugVpaURXXMj5NVXQWRt2wbjejkJlyjo68M99PTkrlM0O0lUFWsrGl+npjC29fXQ6Ri/x8ehG61bFz/aUAjpzEzU1dXtBrHLdck6OlIz6Lljc1FR9sa/EGig09cHXbGtLTLC0OmUjUPKyyVZyNHwueiIWsCi5SeBABz+RUXYZ9ixo2kgEPv7UQqG9Sjj715/HXM0ugGLUZ5/HiVlVq+Gk3Qx6q4aCfBAAGvW4cAaP//8xE4IIWRUIHd1tlqhL8TTvYSAzTY8LGvJd3TEb1jFHaOZAGSHgNUKDEh0DiLZoZizvPg6uQM1l4XhJl26DltvyxZcT/RxAwHYchUVy7NxFteI5EhDRZGd6vm5soObsw05myQBLuU7FuWFrDgSkYjIZDL9moh2EybFXwsh2s++/yIRHSGi7URkFkJcfPb9I0TkEkJcHnWcLxPRJylqUkR9p+3sMU8LIRZKLlp5g22Q2Vm8jHXqHA7UkrPZEiurdjvSlc87D1E0RCCFDh+GZ+Xii2EwGoXrkvl8AJHGxsgNTFURgTg7S3TVVbkpws3CdWxcLiiUzc3pK3cuFwjAQACkRGMjiIAXX0zfYA8GYRQcPozNqrkZY93UBEU4nUgPvx/KhN0OYC4vh6GyUIdALuDO9TdsNtTeSbcTbKbi8+GaOUJxIW8gRxxyWg53+qqoSHm8UnriBSw6N3LkCDBl3z5EzhFhjvT2ggjctEkqWT4fCESfD92TnU7MBS4pwJEj5eVYq9FGuaZBYf2nfwJe3X03agYlwwRFIfr2t1F7cdMmos9/HhjFhBsX9090DK6T+t3vgqy/8UZE5GXSKVRVZYpaZSXWznPPwdgMh5H6du216Uc2ahpwLhTC/dTUJDZC2StvHNtQCLi2fz+M+8pK7AV79y4cUR4IgDz0+7GeGxpyR0TkUqam4AQ6eBBEKUd6b9kCY27DBlx3eXnS+VTAomUs8/PAo4YGGLPZiteLpkmlpVjzxn2ZI82IQL7F27Nffx1zbfPmWFLgXEs4DAKd9cgtW3LTcEHX8Rx8PlnjNZ6DkNMBHQ5gaUODjJju7wdWbtgQ/5p0PdIJy9/x+0EecqOFdeviN1pIJrkgEgMB3NfMDBpiDQxgDjQ3yzGpr5fEYYbRsgUsyjPhYARFQZS0sTPwr36FbKibb45NPfb5gCVCgEBMRK7/+tcIjNi6legDH8h9tGcohHU3P49r5nrUXF5q69bUsyZUVZJ0RJERf0Qy3TsYhA7S0RGrV3BXYWM3b2OdTc5oSkU8HjyX6mqJJ0KANDx6VJKHHR1yLSeLpnS5oF/W15/bpirRacmKIkvX8HXPz0vykInXpibcY4p6br5jUV7ISkxnJkLY6S1E9D6S4ar8/m1E1EZEXzW8r1HUhDOZTA1EdF/Ue9VE5BdCqPyeEGLUZDLNENEit3dY3uLzQUmqqZEEotcLZbWyMjI83iihEKIFa2oQhUMEg/zMGZBS550XWR+Rf9PfD3DhMGbjxqRpRM88A2XpsstySyDqOq7P7wcQp1F74b9laAjEqtWKTfvoUdnxbNcuEKnppF2XlsKrvHo1oqCOH4enbO9eAG4qwpFWY2NQNsvKsPl2di684U1Pw9gfH8cGuWcPNrSlDJmvqADROTaGqI/VqyOVmlBIEofczaukBM+wvHxRO+0VsGiJZWICKcUdHdIpEQ4DT4qLgUXGcgc/+xmUtTvuwN8mE+aSyQRMGxqSGBZNIHKU3Gc/C0X2U59CF+RkMj6O9OVTp1DL7MMfxnX5/biOhQhErit0+DDW59/9nSSb0l1zxvTlmhoYBU8+Cew+/3wQsJlEcPt8uBc+bjwvvVHMZoylrgPX9+9HVF4wCIy/806QIhZL8nsMhfDMOFWxqSn7zqm5FCYpDh5ExCHX5mxpwVzt7sZ+VlGBOZfjeo0FLFpiCYVAipWVYU/MVjQNZV9UFRGIRpJQ0xCpq2lYu/EIxJMngVddXcuPQJyfhy6kKBirXKVY+3yyw3xNTXKcNJmgOzDpyOUkOMuhrw/rN16KuNmM7zKhUVkJXWRyEp91dKTeaCFaLBY8c01LTVdhxxC/5uaA9XyPPD/8fmDOli1LjpEFLFoGIgQcn8FgZLNLIZDJcfw49qVoAtHrha5gMsHZFY+QCoVg1xw5gtrMd9yRfUq+8bo5ZdnrxXVUVuLv8XEZhZ2q/cNSVIRXaWlkqrPTCb0rHIZdsXVrZDQfd4HmF2dWcEflVFOko6WyUmaIlJbKlGUuhXDppbCRLRZJfkYToFarHPeaGpkSzJ8vtnBasjElmZ3GRHK82QnDLyFkxHZzM8Z7kTCqgEVZyEomEYmIziOifzG8/xcCU2z8DhHR74joCyaT6WdE9AwRrSGiDxJachsrzV1JRN8xmUy/IqLTRKQQ0Y1nz/OZ3N5C/oiiSAKJDc5wGEZycTEUwkSbx5NPygggqxX1Jex2KGtNTSABjUqTqkIRnp0FuLS1RQKhriOKxm4HiRZP2cvmPu12/NvcnH5ki6IgzWhyEoDo9yMayefDBv62t2WW9uv14rrCYRyjtBQG6oED2Oh3745f+JoJUSZkLRaQJ52d+IwL/iaKzJufR92ukREoH3v3InqLPUxL3dGupATXb7dD0eeurz6fTFPgLorl5UtWYLiARUsogQBIwbIy1FA1m/Hsz5zBnDamIisKInpmZ4E/RUVYkx0dmPPT05jb1dUwuqMxTAissc9/Ht//13/FOk4mzzyDiEWTCQ1XLr0U7/t8WMclJbKRSbRoGlIYf/xjfP7e98LxwinC6YgxfbmoCB7tp54CDnR1Ed1wQ2Y1yBQFx1UUudZSXWe9vUh76u3FNfX0IJK0vV2OB9dPJIocI0XBc+RO1g0NqdWSXArhTuAHDsg6dCYTiN9bb4URUFeHcaqsxGuRsKmARUsouo79XtOQjp4LR9X+/dAf3va2SCNWCGCc1wt9Kx4e9PWB0Fy7NrVO8UslQiDSm8tF7NiRm+7LTKRxKYP6+tSyDIqKgB+6Lh0htbXAs9WroTPNzsZ3IBcVYf2+8Qac2NXVsoxPNrU/TSYcW1XxMs4lY8MoTk12uyVOVlbifjjCkEsiXHUV6m4fOAD8yaWzPQUpYNEykDNnQJBt2iQDF4RA5ODhw7C/opt3ud0g+y0W4Ei8yEKnk+hb34L+dPvtyKrKBQHEqa1zc7B3iothJ6oqyLVAADbf5s3Z4S0TgOEwxoijiNeuxTrh6ORgEC8m7iwWjAcTh9kK1zt85RXoaMXFwKDdu3EtRv2muBi4b4ym9PnwKiqShKLNJuuCNzfnXkeKrmPIQRtEGB8uF2W14rOpKVwPO7MrKmCDNjcn1oVzLAUsykJWajqzmYhmCWxvlxCi/+z7lUQ0T2CR68920CGTyVRERJ8monuIqJmIBono34jIS0Q/pLPhqSaTqYOIPkXIa28h5MGfIaJ/J6IfiIUHc8UNNodWKwrAu7gYQH/sGMD1/PMTR6EcOwbDdd8+pL4OD8NwHx2FMX/FFZGKjRDYvCYnQVZ1dEQaW0IgHfjMGUT0dXfn7j6DQZBTRADxhSJrosXplN2XuRbi/DwM9htvzMzrrmkwSOfnAcitrZHGw/Q0jI6hISjle/ZgTBQFSvvgIO6LQduo6LJXiAjKshHIvV7cC3ct5K6JvGnz5pFNx7NMRAgoET6fLFxeXQ0SoqICzyyHG2aqofIFLFoiEQIdBPv60EilvV2m2bvdMlqPCGvnoYcwT269FTjT34+53toKjBkbg8HV2Rl/3vzhDyAOW1qIvvKV5EZYOEz0zW+CBOzuJvrc52SRfiYQS0sTRyD39RF99av4d9cuone/Wxa2TzftTFWlEj4+DqfL5CTu+4YbME7pKm5C4B68XtntPZXrCgZBrL3wApRaTlm+5JLEY2FsxMI4xQpoXR2U5HPdgVDT4EQ7cAAGAHe73roVJAk35hECOFlVBeMjQ4W5gEXLUHp7gSHnn5+bmsCnTsHpun17bHmXoSHoJx0dsZ1TiaBbHTwIjNqzZ/lE5obD0IW4S3K2xj+L2w1ijQiYkEkdVKcTL7NZlmMoK8NYejzQQaMzYMbGpP5aWgqnVbrRUMmEic35eUkcOhyRTRqMdQwTpW2zhEKIOPN4ENmag7rhBSzKExkdhf7T3h4ZbPGXv8DZefHFqFFvxAqnE+vVaoWTL94ePzoKXcfvR/ryQo7VVCQYBEY4nVgDFRWY56WliJa027HGe3pyU+/P5wOmzs3hXtvbgeFcboajDbm2Ib9y1SRM14EznFXGXZ97etIrEcV1BsPLCJwpAAAgAElEQVRh2QGadSNuwBLdkDPd6zSShVyrkQjzxpgOXlyMc3s80DcnJzGWRNBjucZhLhxIZyXfsSgvZEWSiMtYVtxgT0wAjFpbAeJCQNl1OqEQJqqjxZ1Q16wh+qu/AmDOzmLjGR3FxmPcfIRAVN3EBIxcrldmlIMH4Y264ILcetoZ9IqKpBcqHRkcRPQkExM8XjfcACUzE3G5QABoGogPY0fqaBkdRYTPwICMomxuhsLY2Yl/4xkV4TCeU1kZFGjuwsbNDbq78YziKancaKWsbHGjgXQdG7vfj3+5i2tZmUxfrqzEPMsxsbBMzLCMZcVh0dNPo07gzTfDU0sET/j0NAhyVpZ0HXV6envx3e5uYFZREdbj5CTWVn09xW3cIQTR976HQuHbt6MxSjLFZ2yM6NOfBul+++1EH/ygVDa9Xiis3B00WkIhnOdXv8Ia/J//E6SEyQRsTVdp9fthgI6OopnV2Bjw421vg4KaCbkQCgGPNA1KaVXVwmt+agoOjldfBc6sWwdiZNs2XAN3Rk8kmibJQ05TXLXq3Hb6VRQ4uQ4exH15PLieCy7AfOzultELJpMcqxxELBSwaJnJ5CQMwPb2xKVc0pGZGdRPbW6GvmRcX5OTcICsXh3ZLIrFbsdab2zEGlsO0blE0C2OHoVxu3lzbiLhWGcJh4Gp9fXZ7ftTUzKSkQgYbbXCmWM2wwlMJBsthMPAoY4OrHWvF2s802ZOihKZkuxwAMN1Hfe1alVkHcNMzuP3g0gMBtHAMEsSpoBFeSCzs7CVGhoiyyy8/DLKJWzfTvT2t0fqAw4HAj+42VE8vf/oUehG5eVooJJNSQJuHDI3Bx3JZJJOwtJS6C7Hj8s6pfGyRdKVYBDreGoK66utDfYRN17hZh/GBinchCXTlOXo8586hWfj82E9b9kCp6OqymZrmegMTPgx6efzYXxttqTNSf5buLGLMcrQmJbMRCETh8Yaji6XJA6523tdnbRF0w3KSVHyHYvyQlZqOnNBlkCcToDDqlVSeRkagmHX2ZmYQFRVbFTFxSjYPziIDaq0FIb2mjWRBch1HZvXxAQ2ClbcjPLaawDe7u7cEogOBzbcsrL0iShFAen2+uvYGFQVivzdd0tjOV3hlGqPB9fU0ZE84oc7n65Zg+d1+jRAvKQE0Z/JvORWK57r/DyIwzNn5Ia9fXvyFMqSEpB6oRCuL5eRD5oWSRwy4cDRhsbz8eY1PAyF4FySDAVZPDl9GiTi9u2I1COCIjg9LTu4EWGuPPIICMS3vhXrcGAAc6qrC+Th5CQwjesiGiUcBmn49NP4/Sc/mVz5euopon/+Z8y7r3wlMjXI48EcZjIpWo4cIfr614F7111HdNdd0nhM0KU3oQiB9T8wgMjDkREc453vRPf0TAxtjorx+zEGNlty5VbXgdH79wNLLBZE5e3bF+td1zTpEIh3H7OzssNqY2POawemLIEAntPBg0j/CgaByzt3Yh5u2wbM9noxTvzsKirOfbRkQRZHvF7sl3V18XWVdCUUgr5UWgocMK4JXtN1ddAFomVqCsRAfT2wZzkQiELgmvv7sQ527sy+Yzobqm63JNdyYZg2NAB/VRXr2u0GVre24h6OHpUpjbW1iDQ2OoM0TdZnXaihhK7jeRpJQ06nJpJN/OrrZW3H4uLsn2l5OaIQH34Y6c033ZReTe6C5Jd4PLBHqqsjm10eOQKc2bwZzlWj7sOkY3k5CMRoPVoI6EQPPQQ9+2/+Jv1GbCyqKlOWFQXn4nlvsWAfffllOFbq6xM3dUlHFAU60fg47rupCWuf06eJoNtUVQGHee9mcjEQAAYUF0MXSXdvn50FIdrfj3O2tKA8lLGUi9WKz3w+HD/dcxhrNHI0p65jHDUNfzMpWlwcWccwXlqyMcKwuDhyvgiB58fEITtOV62SgSvnSmcrSG6lEIm4tLJiBjsQAOiWl0tv08QECME1a5LXInz2WWxYN98M8HI6AdiHDwPojAXDFQUbnt0O8IkXuXf8OFLGNmyAopwLwkoIKOBuNzbbRNF6iWR+HqlHL7wA0G9rA+mQqcEuBBTLyUn83dQEoz3RNQUCeBZDQ9J7tX49lN/TpxGZ4PGAKLn00vjpVpySt38/Nu6tW2EYp6pgaho2D4sl405//y2qKiMLg0G8x92jmThMJH6/TEVvbc1Zd7h893KtGCxyOFBbtLZWRvk5nYgWqavDvGd5/HFgxWWXYd7PzGButLZinkxPYy3EqwfodKJxyhtvEN17b/IOzKEQCMA//AEOkc99LnKNud1Yo/EIRI8H3vwnngCWfvzjuAefb+GmK/FEVTEWTz6JtV9djXpY+/ZlHgXHaT26Luv4Jbomvx9pvS++iGdVUwMFeffuxOSB0dvPRrLLBWVbUWQaTmmpTG1eqhRNjweRhgcPykYQNTXA9l27gJNc+N3ni0xZLnjc48qKwSJVxbzQdcyFbKNM2ekxMoKyC0ann9+P+VdSAkM6Wq+Ym4OuVVmJxgZLXaM4noRCwE+HA9i2eXP2ZHowiOOxU6G2NrdkaTgMvYtTF7nr6smTIB06OzH+8SL4WG9TFHxufAZeb2SEIXeXJcJ5jBGG8eo55qJjs1GcThCJRUXQzTPs3lrAomUswSBsL4sFDleeUydOEP3Xf2Eu33lnpGN0ehpzvaoK8zxebfWf/xxp0Nu3E913X2YEUSAgU5aFwFq22XBezk4YGIAD2GQCdsRz9KYjXIJgbAxjU1cHPY3v0ZiunAxTNC0yUrGoCGOQLGhB12GfHTsGW5MzYbq7ZXPSeL/hus+ZNNKLFrZzvV6sd2PqM5ODHGVpTE2ONxa6Dv1schLHDIcxzxoasG81Ni55EEe+Y1FeSIFEXFpZEYOtaSCoTCaQhRaLjFarr4d3KxG4DQ6ic+q2bTDcXS4Y7EePAoDe+lapjAWD8MyMj+M7GzfGHvfMGRB169aBGMhV8d7xcWxqnC6SqggBMvShhxD91t4OUnTv3syVeK7H6PdjQ12zJvGx5ubkmAkB8F6/HkBuHBtVRYTkgQM4/qZNIGDr6mQjgMOHsbk0NsoOWTZbetfOoe+8+aT7WyYOQyG8x0V52WuWqoTDUBQUBWlf6TbFiSP5vkGtCCxSFKLvfhf485GPyIZFp06BLN60SSo8zz6LtP6LLya6+mqsb+4eb7HIQtPxas4MD6ML8swM0f/+30j/TYQ1w8NIXx4YQPTg+98fqXi7XLIWqZFEEwLX+J3vgKC77TZ0NAyFZIRbuvN2agqG4eHDWDdXXIEi55kS6ZqG6w+FsBZrahKv64kJjPfhw3hOnZ0gbrduTc3I5yhqvx/PhqOaGxoiDVw2vBeTSJybA/l84AD2OV3HdezahRfPM+6wHQrhWvgZLzKBU8CiZSBcs3luDt1McxHNxV28L788MjuDsxyEiF9SxOmEUV9SgjWfrRMvFzI3JxvNbN4cv3ZjOsIdlLlxQH394t2n1ytrRHPpnZoa2dRq48bEOKjr0N84osnlkjVpibD3GGsY2mypOxtyTSTOzhL98Y/YH266KaN9ooBFy1RUFRlb4TCytXiO9fXJ0lJ33x25V01OQpeqqQH+RBOIgQAcnseOwXa79db05iFHEM/NYe/kDuc2WySmuVzAO5cLARTbtmW31o1NJX0+rOOWFqzlkhL5StcZIYTs6syZFNGpzoEAdIiTJ3HP1dVIWd64MTU9QVGgY3CmWLrCackcZej3y/RtY31ExhVjinJ0yraqgmSenIRuzE2fmppkBtA5zLjIdyzKCymQiEsreT/YQqCeViAALxB3v+VaGVu3JgYNnw/1vbgDXyAAcmp0FNGEl1wia/p4PFC8xsdB+mzcGHvcoSEY3WvWwDDOBViFwzivqqZf5HVujugHP4DSX1VFdMstRNdck7nBLgQAemYGm9GaNfFTBNib1t+PTZa7iHV2LuxNDoUQVXPoEI7DhbWDQWzkO3dicw0GYZhw1FE6EgphPI1pAIkkHJbEISvZJSUy4jAbT5amSTJ21ar43RXTkHzfoFYEFv3mNyCp7r4bRE44LGt2bt4s58vLLyO1ePt21CLVdRCIqgrFyO3G+opn2L76KtEDD2ANfvrTWBOJlMs//YnoX/4Fc/Yzn5G1Gfl6mYCrrIxtgvTNb4I02LiR6BOfgGPE6YSil24UWyCACKZnn8V5L7sMqZDZkOc+n0yvS9QRmktPcA3WoiIQKvv2pU8aBAJQTrlJQUND4utfDCJxYgLP4+BBOKuIgIW7d+O1bp1s7uL1Ymw0TXZoraxcsvTRAhYtAxkcxJzftCm94veJZHgYkcznnQc9goXXmM8Hwz56P/Z40BjBYgGBuEjRrykLN7caHMS1btuWffoy13bVNGDCYnfx9Pmwz9jtcKq2tMh04qkpWVrGZJLZNRxhODeH/YXTmtesge7BUYbZXLsQ2MO4e3MuZHISaa01NWj6l6YDpIBFy1CEAGY4ncAMtiNGRoh+/GPMxfe9L5KYs9ux79XXg+SKF+n8zW9in7zrLjgIUxXunD43J3Uwmw0EovE8mgY9rb8f39m6NTvng67D3uRO9tXVsJVWrZLEYa5whFOdeX3OzwMHh4dxHW1tGNfW1vTPGQjITJaFyNToOobcYIVIkoTsHK6ujrSL+HfhsNSxiGS6ucOB961WWd/QZlseZTMo/7EoL6RAIi6t5P1gz8zITno1NQCXo0fx2bZtiRUOIdCZdHQUaV9WK0gurxc1ujZulLXMuA7h9DQ2sK6u2OPa7Wii0NAABTsXCpTfjw2RCEpiqp6uYBDK/u9+h/G4+mqkBGRrsNvt2IRqazHe0ffo98uU5XAY5+vsRPRjuoTqwABSEo4dg0J83XWxnmiXCxtXdFpOKsK1C+N1IA2FcL/cuZoIY8/EYS47PAsBJZk3zNWrF7cj6jKWvMeigwcR1XzllUjP1XV4zUMhGN48d48cQXRFdzfRO96B5z06CowxmTDnWlvj1wd95BF0RW5pIfrHf8T6ijcfg0F0an70UXj5H3gg1qvrdGKdGglBXUek4A9/iP+/970oaM7f13XgbKrpQaoKPH3kEWDrzp1wZmRDmKuqJDNLSnA90fji9cJ58sILWFt1dTJlOV0SIxTCPuP1Yqzr6nDOhXCAldxMFVghZBfbAwcwR4gQyc0Rh8bmD+GwrAkpBDCLuywvsRSw6BzL3ByifJqbYRhmKy4XshmqqlC31Dj3e3uBXeedF5sZ4PeDQNQ0EIg57HSZkQSD0A+dTqyd887LztnL9dICAeggmegi6UgwCP1qclKWZWlokI5VjlAcG8MzYtxms6qsTJKFVVWyFlkuOsiyLAaRODqKchoNDcikSeO4BSxahnLmDGwbY7fwiQnoHZWVSEE2OgVHR0HcrVoFvSl6Tx0cJPrWt6ATfOhDkc1Zkonfj/XicmHeVlXJlOVomZ0Fdvh8sGm6uzMLItB16BTj4yDxOKNrwwaMRS4aoiQSTcPYv/46MKS4GE6mnp6sgxjI65V2H69P7sZsrGPIWGQ2x3ZLNj5X7mhfWxv7PIJBmfY9NYUxLS0FDra2IvhkGdZ4zncsygspkIhLK3k92BwdWFsL8NU0RBAGAvAQJYt6O3QI6TWdnfDAcCetRx/F8a65Bn9PT+M88/MwPjs6Yo3QqSkoODU1ILtyoUS63ThucTGAMZXNSlURcfOrX2FD3rwZqYvxCpynKpqGzcbhkNcSDeizs9jgmfDkroxG0iJVcTgQaTU2hnHu6sI49PaCMNi1C9FbrCDPzuJ36XqbjF1Jua4QRxxqmnyficPF3pDm5kBUlJVhE8zgfPm+QeU1Fo2OEn3/+yB47r4b7/X3w4DbsEGmEp44gWjF9euRHmyxyGYE3BW5vT22JqiuI036v/4LUdP/639hfcXDmsFBRCgODxPdcw88+sb5ZCQQq6slyTQ0RPS1ryFycudOFCNvbsb3nM70OjDrOtbxww8DQ7u6QB4a60GmK0JAUfV6ZQ2eaIJsbAw1U48ckU2X9u2Lb3gsJIqCNel247ccmcDRfsb6iIkkXSJRCEQ6MHE4PS2jWHfvhsPLqOwLgf0uOmW5quqcNm0qYNE5lEAA86e0FOs4271LVaFTuN1E73pXZFr08DDW3Lp1sd2Mg0EQiKEQ0p8zbWyQK5mZgVNS14EHq1dndzyPB7hIFN/QzaWEw4jSstuxxltbobdyLURu4DI+LqOQzWaQpK2tMjU5Gi8DAdxDeXlum5foOvQoszl3utPgIBz1LS1ogJjicQtYtMxkbAz6TlubtE1mZ4kefBB6/X33Rc7FoSG8GhuxD0YTbIcOIeOqpoboox9deF1zBsbsLOZ/opRlFkWBXTk6ir21pyf9MkpcozAYxHlHRmTq8MaN2ZdSWEj8fpmyHAgAr7q7EfWo6zLVmTs7Z0Jiaposi1BaKpvREeF40d2SU1m//IwaG7EPcWMUxt3KSuioq1YB28Jh2aG5qEimPC8TQjHfsSgvpEAiLq3k7WCHw9hYSkpk04HeXpBQmzcnLgRLBMPspz8FuFx8MQzc8nKk/oVC8HSWlMguTqEQNp7W1lhFa24OvysvR12yXNTAmZ3FfZSXY3NJxVB95RVEN/X3Q1m88UZEQ2XjCXa7oZQqCkC6qUlei6ZhIxwYwPesVhgS8UjWVMTjQXoOpwn09OA58vXPzIAc4BSkiy8GUcwbV2lpekYKExIOB+YSd/Ni0rCsbOlD4D0ejHdRERSsQtpOfojPBy+4xYI6iGVlUDinpiIJwb4+kICtragtWFyMuXfiBLDGZsP6ifYIB4NEX/wioupuuAHRgZWVsVgjBDDgq1+FsvuZz4BEMAp33OTmG6WluIZf/AKRRuXlRPffj2hKk0nW1CsqSq0DsxBQuP/4R+BDQwNwMVsyIxyG4s9dSaurI7Ho6FHgw9AQ1s3OnSAPuRxCOqKqsqA6kTTAo4nYXBGJ7Pw6cAA47nTiXNu2wWmyc2fsvqNpklDllGVO6V4GqTsFLDpHwuR9IIC5k4so1KeegvF5002RDeqmpxHV0tQU2/U5HEbpAo+H6C1vyT7KJRsRAtc5NIQ10tOTXUq1okBv4Jqo9fW5zU4wiqqCdBkdxZiWlwP7PR5cA5dZcbtlreiyMuCHy4X7jVd6xygej0ylzLB5SVxZDCKxtxeR7evWQb9NAesKWLSMZG4Oex1HFBJhv/vBDzBf7r03kqDr78fcb26OrW0vBNLcf/tbOCc/8pHkRD6vW256VFIiHYOJ5tH4OBwP4TAwbsOG1OcyN3IMBmWtP7sd+iI3lmxuXtyyB1NTuP6hIYxvezvspmiHjzHVmUiSiYnulaONjVGGqiq7v/PYGonDTMTpxPVPTwNjLRboQpyqHK8MBUc/ckMWItm92WpdPKxOQfIdi/JCCiTi0kpeDjZ3kdI0KE1FRfh7fBx/J/NEKQrRj34Exezaa1GPo6oKisnoKFJ/6+pg1KsqNhefDwpadGSdy4VNrKgIhnK2Chintno8AMrGxuQbDNcVefRRRASYTKj3dc01skN1JqIoGEu3G0qysYOwzwficHhYEhHcZTkTRTEQQNoVdzjbsgXPJFG6JEcajY/LFMU1a6QSnMw40HWcz+eT6czc9auuTnZdO5cSCOAeibDRp2Hs5PsGlbdY9MMfgjD74AcxF6en8XdTk1yHw8NIz29oQL2ekhLMv95epDw3NUFJjk4rm5sj+vu/BwF5//1Y21yT0yh+P2ofPvEEMOCBB2KPxYX/NU2mJB87BtJxbAxG2Qc/KAkrTo3llOGF1kZ/P9KWh4aAhZddll739HgiBHDI75cKJGODx4Ou7i+9hO/YbCAOL7ooM/JE16WRoesgTVetSqx0cqMVs3nhsYkmEkMhEJ8HDiCSwufDfW3fjojD7dvjr/1llLKcTApYdI7kxAlkBOQiPY0I+PDMM1jHxnqqLhfIgJoakAHRxe2few5YkymRnysJBLDOXC5gsbGxVbrCWOR2437r6nJLuhlF07A3HDuGcWQHJzsWKyoiOyWbzcAFTlP2+6FLTkxAN1u7Nvn55udlN9hcNoPhaCSLJXfOjWPHgPkbN4KgXgB7C1i0TMTrha7P0XxmM977wQ8wX++9V2IF1y2126EHd3XFYsxPfgLH6q5dcKwmIqp8PlkHVAjYCTZb8jqogQCaLk1NQQ/o6UmtHBSTccGgJLC42YfTibXV1oZ7Wixnn6rCRjt2DPdttQL3tmxZOFqaU63DYYyVxSIbukTXMmSxWCIjDIXAmHMmVzrCWTIccciZYUTQrbu70zumrktCka+ZIy4zaa6ZpeQ7FuWFnDuOuCB5IxMTAIX2dhh4U1MglZqbFw5lf/xxKGdXXikLap88CaN/xw5sFJwyUlmJCLja2lgC0evFsUwmkJHZKpOqinsIBnGuZJGURNhg//hHkBMWC7xLW7bgHrJJq3E4AN66LsPETSZsgv39+MxkAqCvX59+WD9LOIxN7tgxbBKbNkV2aEskra1Et9+OTfL550FaNDWBeDSZYj1NmibTlINBuTFyI4mSEmyamobPzjWJWFYGLztHHzQ35zbNqCC5lSefxFy89VasCZcLWFJTI5sZTEwgyq+2FhGITILZ7TDE6+oQdRsdSdvXBwLR5yP6/OexvouKYtdIXx/Sl+12lC+4++5YBdVIINbWyi7Sf/wjnBVf+pKMWjQ2XCkvXxhP7HYcp7cX8/fKK4FDXBw8UwkGofhrmkzRNZkwvs8/j7o+jB233YbUvUzWrxCyMLem4TyJUsWNYjbLVKCFHChsMB0+jGjD117D+FZUYNx3705cw5c7Qns8wE2zWTZKOYcpywVZZmK3A2viRTNnIpOTiCZcu1bWhyaCgW3sNm9cc7pO9OKL0CP27Dm3BOL0NPQLIqyteDVmU5VQCPekKFizyaKXMhG/X9be7u9H5GQggHMx6cCdkuvr4+OqpuEYVitwu7kZxx0dBaYlq3tYWyujrzmCKBdisQC/uERMLvSrrVuBg4cO4V737Mn+mAVZXAmFsBaLi6HHmM2Y3z/+MfbFe+6JJBB7e4E/bW2xJVB8PqLvfAffuekmvKLnla7LlOVgEPPQZsMr2b4uBJygp07h/1u2yAZFiYS7HweDkvCyWkGiTU3JkiQdHbifxYqE83rhROrtlQ6BffsQPZnqObl7s8mE43HZGyFkdGJJidQ9iovj6z4chckpxcmEy1JNTeGZc1mWhgaQx01NMjuEo7FTFbMZz6G0VHaqDodlhOg5JBQLskhSIBELklQcDhhTjY0AE64nVle3cO2/11+HUrxlC6JkyssBXIcPg5BsbQWRZ7WCBOC6fNH1KgIBEIiqigjEbBqWEAE07XYA75o1yT1kY2OIPOzthYK5dSvGoq0teSfqVK/B58NxW1pwrMFBKLVeLzaPTZtkykwmomkgbV9/Hefs6EDkVLpj2NmJ3548CaPliScwBy6+GB7qQEASh0TYzDhSMVoBLynB94PB+I1Wllq4mzUbheFwZvUlC7K4cvw4Im5275bd3QcGMMfWr8c8mp0l+tnP8N673y0VIKcTHZrLykAiRc//F18k+sIXYPx9/et4/kwesQiBBkpf+xp+/41vgIiPFk0DScbRda+8gvTr+XnUKbz7brmeuZOnqsavOWiU2VmUcjhyBN+77DIZ2c3RMZmIpoE8DAZllLDJBJx+/nkYxSUlMB737o2tH5mOsKHB5EBDQ3qROGazjLaJd78uF9JLDxxAZIOq4n4uvxzETHd3YsyOTlnmsVgmKcsFWUbidkMn4JII2UoggCyLyko4SXlPVBQYqlyn02icCgFMm5pCNHB0ytxSCXe6HxkBhm3blnn6Mpd/4KZKjY3ZR+oZ0yq5Iyw7TGZnsc7b2oClnZ2pd4622aArzMzAmc770BtvQE/asSMxnptMwGwupbNqVe5SkIuKgHuqiv/nQr/asUMSU1YrdMiCLE/RNBkscMEFeF7hMCIJZ2eRmcEOVyEwV6en4Uw3lk8gwvvf+AbWzH33Qd83iqLILr2aJptt1NYuvGd6PLBL5uehByTDDSMRxVkGTK5xbdKxMdxPczP0+cVquDQxgfEdHsbfa9fCxk2lzqIQsRGGTIQS4X6MNaCNdQaTEZPl5VjvPh/GIxpLNA04NTmJZ6oo+E5jI8arsTHy+DxnPB7pJElXTCZJgvJ9h0KSAOYgFCYUz7UdWJDMpJDOvLSSV4Pt90MxrKrCxuD3Q0EqKYHClUzpmZyEMV5bS/TXfw1DzO8HIWe1wqDz+QBOdXXwRlksUOKMxw2FYDh7PERvfWv25I7Ph03AbMY9JYrcmZ2FUv/aa7jGnTulMrtli9yE0xUhAObT07iG1asBoJyyzEZvZyfOkanxquuImDpyBPfc0oJ7yDSS0SiaJhvlTE1B8bj0Ukk0G9OAkl1fICA7Hi4HEQL343Rizq9enXT8833Lyyssmpkh+va34SV9//ul8isEjGurFcroj36E799zj4wuNjohrr46MgJRCKJf/xrH3rABEYLFxTINh5+/z0f0z/9M9PTTIDH/8R/jRy8bCURdJ/re95AC1NlJ9IlPgHBnURTZybO2NvGacbsRgfnyy1D0LrkE+FtUBOdLNpHQfj+OTwQFVtNkyrLXizW9dy9IimyiHD0eYCrXNWtoyDyaPLo+4swMGlscPCgjGpqaZGMUTs1KtJZDIZmyTATDv6pq+eBSClLAoiWUcBhzzWzG/Mo2okLX0WV+YgKdmFnH0XU4TrxeOCyN61wIOCeGh0EUbNiQ3TVkKoEAiAC3G47hjRsz11n8fhm9XVUFTEzXsOSIKCYLHQ6Jb0SyAZLPh2M3NoL4y1SvVBQ8N6sVmGMyyXrTZWUg25LpyaoKXLRYZBZKLmQxOjYTwYnX2wsy6fzz436lgEXnULhG8vw8MKOuDvPgpz+FjfWudyGDgAhr5cQJzL/162NLMp05Q/Rv/4Y59OEPR2KMz4ff8dw55oEAACAASURBVNqqrsb8TWVP13Ucu68PczNezUAhJOEUCsn9vqQE+zITU+PjsFFVFWt43brFKTWiqrheLndQWopx3Lw5udMhuo5hvLRkY7fk6CjzeKnOiQg3XZelH6qrZVr35CR0JHaMNjXJrLdk2MS2ajiM3+QqcpAJRY5S5Iw0HoscdsvOdyzKCymQiEsreTPYqoqoOIsFwMzF9HUdHqNkBqXbDaPc7Ybh3NCA3z3xBJQ6LvpfUwNFcWgI5+vsjDSkFQXG//w8jP9su/s5nQDVkhJsWvGUK7cb13ngAD5/y1vw3bExbBY7dqTuqY4WLvQbDALkLRZsgFNTktRcv37h1OqFZGgIJJ/LhbHfuTP7sSPChsapyrwJHDmCjbWiAmOzZ0/qpIaq4pi8eSwXcTgwT7g+ZQIlPN83qLzBolAI6TR+vyzm3dsLA/a880BaezxI1QkGEenHRiF3LHW7kfZrNBY1jeib34QBv28f0T/8gyxYXVUln/vp00hfnpgg+sAHiO68M76hrKrAKiGAHz/8IY53111IvzbOo1AI69NsBgbGm2OBAK79uedwrXv24MVReInS7FIRVcX5ucnR/DxIyqNHcf3d3TI1JxuFzu+HIhoIYI03NOSmq+rYGIjOV1/FPkUEEmP3bjio2tvldQshFVXjez4fCBpOWeYU7nNYCDxTKWDREokQ2PNcLuyruZjLL7wA0unqq2GUspw+jbWzaVNsuvSRIzBqt2yRDROWWqamQFgQyQyNTIQdL34/MKK+PnV9gOuvcZQhk5BEstkA1zG0WoEbDgc+W7cuN40WmFAxpjDPzEQ2tEhGrHLqdklJ8hTodGUxiEQh0LF5cBCOYyakDFLAonMo/f2wMbq6EBmnaWgud+oUsiB6evA9bi7mcGCPjybxXnoJDtlVq9CBubFRRglzJK/FIlP+UyWYHA44Hbxe6NZbtsi1zqQZv7j+MROHTC6xs394GN/jrLhM7bJk4vGAaD11CnqCzYZrXr8+dk1pWmyUIdMrHHVnrGWYqrPFmBbMZQpKSuIfw+fDHOAmUELgu9wYxWZLD+80DWNtMkU2+sylGAlFjjI1EopZnDPfsSgvpEAiLq3kxWALAXIrFIKiVVSEDcfng7KYDKw9HqJf/hKg+573SG/lwYOIHDrvPGxMq1aBSBseBtitWxcZMq1piL6ZmiK64grZETpTmZmBgllRET/CLBBAlNHzzwPI9uyBEd3Xh9+1tSVPhUsmug5v0Nwc/lZVXA8Xw+3owP1nG/kyMQGjemYGBO2FF8amJ6QrwaAkDrlwcWkpxrG8HOM4NobzDg3h7+3bYcincj/coay0NHfpPLkQrxdeTosFyk4csibfN6i8waJf/AL4c++9cDT092NNdnWBgONaPy4XCDtOKwkEEK0zMYH5aEw79PuJPvtZfH777SAHufNmRYUsWP2b3yAVua4O39+2Lf51MoE4Pk70H/8BxbOnh+hjH4tV0LneXnFx/LQfRUEzoz//GfewYwdSHLmuEXcozUS5MpJnXBD81VdheJSVYZz27s0+YjkYlBhXVAS8T6VZTLLrHhiQEYd2O97r6kJUzO7dyWuwMZGoafL+dR3PgLss53E6Tf5eOSQvsIgI+sDwMHSBXDjm+vuRnXH++Ui5ZxkZQRmBtWtjsx6OHYMutXGjJAWWUnQdTpzRUazpbdsyj/7hOmBCyKjqROswHI5MSeaOzUTYp+vqIusYclRUIADdZGoKWLR2be4bLczPw1FljMYaGsJr7Vror8n0G78f+1d5eW5rMi9Gx2YOCBgdRXOwzs6IjwtYdI5kfBz4xMEIQqCT8uuvE91wg6yzqmnIKHM64aAw4hiXbHnkEdhqH/oQ1szcnCToS0vlfp7qGlIUYNbwMOb4tm0yuCQYlMQhUWRdvWhnwuwsCOxAAFjR0RFb2zoXYrcDZ0dGZH3FLVukjmGMpmPi0JiWbCQLi4tzR+Jz4AVHNBYXYwxnZ2FjOhzSKdrejuvORu8iwvmmp4Hxuaj9m0w4cpMJUyKMXSLSdAHJdyzKCymQiEsreTHYU1PYMFpaZNTP3Bw2lWSeUpcLXvVnn0W9ruuvx/sDA3ivsRHKd1MTNpLxcXke40ag64jAGR1FJGCUkpKW6DpIBJ8PSmZ02ko4DIP96aexmW3fTnTddfgdNxI4//zU6l3EE48HG5LTKbueCoFxXL8ex81WmZ2bk0RARQXuoasrc5LBSByy56usTKYqRx+Xi/ByAfgTJwD4F10EAmQhLyV3bi4tXV61x4JBEKS6jjkalaqR7xtUXmDR/v0oK3DddYh8GBuTBcCbmqDg/OQnUHLuvFN2xfT7Zd2azZuhALIiNTWFBiojI0Qf/zjRjTfiWQcCmOelpTBuv/xl4NYllyBKMZFxpyggzB55hOh3v8MxPvCByNpmLG63JAKrq2PTVw4ehIHmcuG63/Y2YJbDgXWWTfoyp0/PziLi8I03cC3NzXCYXHhh9hHB4bBMc+Li6lxjMV1hsuLAAYzL7CzwYcsWGEQXXSSfyUIGcjAILOY0xooKOMPyKGU5mRSwaAlkehprpqUlbgRW2uJwIErIZkOUEM/hmRlEITY2xqYp9/Zi7XZ0yMZMSyl+P/QijwcOykz1DK5TyOUN6utjG7Q5nZGkodcrP6+pkRGG9fXxCY1wGPg/Po4139oqmwPmWjg6KhyWJWp0HfrQ3BzGqbExOU653cCn6urcdqFmIjGXHZtVFfvy9DT2OUMqbAGLzoE4HNB3bDYZmfzoo9g3r7oKdhQRntvRo1i/mzdHRg8rCrInXnkF+sDb34416PHIFFmbLf25OTkJ3OSa7Bs2yPp44TC+w2WNSkvj2wtOJ8hDjwc2yLp1uSe0FAVp1seP43xlZTJl2WqNjDLkgAoi4ImRNMxVHdJk4nZDfx0bkxktNhv2Jg6SCYdl+YZsxePBmNTUZN+TIFXRNEko8ngba0Sm4BTJdyzKCymQiAuIyWSqEEL4cnS4ZT/YLhdIt/p6bDAMVOy9TSROJ8D3qaegrN19t0yT+93vsODf8haQZlar7A7V0BC5kQmBaMCBAUSYZKOsqyqItVAI5zASlZqGzfLxxwHImzeD9Fy9Gor6wADAcvv2zBQ67v7c14dN1GzGptTaCvIwF94ztxtpy4OD8NT09OA+0vU4c31Cvx//crokE4dlZQsrn1xbraoKx3jhBURZlJcjqjNZExoh8BsmK5eTqCrmfzAI0sqQar7kG9SbDYsGB4kefBBz+o47gBnDw8CMtWvxbH7+czgb3vlOaXD7fFjDY2NYb+efLxWpkyeJPvUpKIOf/zxI7nAYv7FasdZPnCB64AEYSB/6EDoRJ5r/4TBw5HvfA25edhnqB0WXJBBCdt5jAsv42RtvQOmfmYGCfMMNcJ54vZFKYiYknxBYm8ePw9kwMCBrEe3bJ5vSZCNc28vlwrE4KihdLFIUGEMHD2Jc3W48u54e2VAnujacsT5i9H37fFCAFUWmLFdUrLhC3gUsWmTx+TAfKypAtmdLxoTDIBCDQURCMx643Zj/1dWRjg8irNtDh0DY7N699PN3chIYYjYDOzKpIygE1iPjRG0txtTrjYwwdDplaltZWWSEYV1dcsNYVbEnsANw9Wpg6mKXTNE07AEmkzTkg0HsOZoGAjOaLI2W+XnZ6TWXDg5uRpVLIjEchuPM6YSz62xEWwGLllh8PtRuLyvDPmmxIIvhueeQVXDNNZiTigIHgN8PotFIwnk8qH/Y1wdSuKcHz7eoSBL16ZJRwSCwbGICdsCmTbhGjqIrKpLEYaI14fVCD5yfh42zdq2sPZorcblkl2VFwb1u2gR7V9cj05LN5tg6hksV+OByAYM5KIYIpN6qVcDR0tLIZiWcbZFOxGgymZvD3Em3GV4uJB6haLEs2HTmnGt4OcamZSl5SyKaTKa3E9HviOg2IcQvoz7rIKIBIvqyEOJTZ997PxF9mIjOIyKFiJ4jor8XQhwz/O6zRPQAEV1IRB8goluIqIGINhPRSSL6RyHEl6LOVUFEk0T0eyHEXQtc9rIe7GAQRnpZGRTVmRlsKk1NMDQTicMhU81CIXRFbWzEgv/lLwF+114LL5TFAkWZU2GiU3VeeglgfuGFCQs3p3wv4+NSiWQiUAhspI89BqPXaLAHAqg15HRC4Vuolk0i4Q7UIyPY+Hj81q7NrjkBi98PpaG3F+O5dSte6SjJui6jDTkS0GLBs6+okBtSOuJ0Yty5Rsr4OAhhux3Peu9ebM7xjqtp+C2Hri8n0XXci9cL5b6piYgMG1QBi3IvLheU2vJyEHmhELzE1dWI6hACRnhfH9E73gGDmwjK8JkzwKSaGqT8cbTaX/6C6EKbDf8yEenxYN5VVhI99BDqLzY0EH3uc/K4ia7xu9+FI6KpCbWDorsXEiXvwHz6NMjD0VFEBF5/PXBHCNwDdzCvq8sMizweGBMvvwxFvLYWpP4ll2Rfe5XvjaOFiHB8my29aJ9gEHh24ABwkyNCd+xAxOH27cmV1mgikZ+pz4f3rVY8W05ZjlcjMc+lgEWLKOxwVBTMx1zsT489BifbX/2V1IGCQegmxcVI9zOuodFRrOHmZuyjSxmxzxF1Y2NY39u2ZWZEhsMwRD0ema7G0YZGYsEYYWizpe5Y1HXoGiMjOF5jI3TOpXRMhkIw9MvKpHN8bg7XVFoqidBE+CgEvq+q6dWaS0VUFcfPZaRUMEj08MPA2htvJFq1qoBFSylcl5wIDZZKSpC98eSTiFS+8UY861AI2BIMwlYwZpSNjxP967/C3rvxRgRucOpqJqmwXA6LMx24JAMTcEwcJnMwcgmCmRnZPT0XWVvGaxwbwzUODeHvtjbYgVzKhZt9GKMMl7LkEuuA/z97Xx7eVnmlf65k2fK+b/ESO4ntxImdlSRA0rAEKGmhZSuFgVKGoUxLaaftdNpOf2UoM+10psPWZZjSli60pVC6wZACgYY1ISEkJCEbiePdljfZ2vf7/f54c+a7kiVblq4XBZ/n0WNblq6u7v2+95zzns1igU/JiRbFxdAD5eXhOBxZ6mww4O+MjInbREzlfAYGgNvl5bPXO1pVJaGo/a7aSc9nJOY3TlFsmpOSyiRiOuHivyKEuCrif18non8johVCiCOKojxIRJ8jot8S0etElE9EdxJRHhGdI4Q4ceZ99xAWwZEzx/4TERUJIe5VFGXXmd+XRnzWJ4joF0R0iRDixUlOe85e7FBIgmldHYyCo0fh9DY3xwYg7lHR3w+HfssWEICqit4a7e0gEJctkz292tuhpOrqwo/79tsA9ZYWHCNRcTpxPmlpUDw8yevkSaJnn4Xy0DrsigJw5KECLS2J9TsaGoIjfPo0gKyxEd+7slIfo83nw/U5cgTn2dQEwyFeIzkUCicOiXCNuEw5IyO581RV2fdRO2mwvR2GzdAQyJlNm8L707FwqUCEIpgzMjAAZy4YJNq4McxYTjksev31uYtFwSAyHKxWEIRZWQhumEwg9w0GkNPt7SDtmprwPpcLezsYlJl7ZWXYKzt2wNmprye6/XYYVaoqy1uJiB57DPurtRWZ1NoerZFy6BBITIcDGdYf+lB0x5oJLSIQWbyuBwZACnR341w2bJCTTQMBEJRCyN6jU5XRUWQdHj2K41VWgoxrbNTH+NNmFKkqzjPWgJho4nYjCHLsGHA5FAKOLVsGTF60aGrnyb2VvF5pWGZkxJ4Un+pEYigE3dvXR3TXXamNRceOzV0sIgLRb7ViberRr+7oUZDla9bI0sNgEJ8TCMCJ1xKVQ0N4fWHh5NN+9Rbep243MnMWLpx6Y/6xMZB7g4OwzZhMUBRgHw/Yy88HRiZCWgwP4zP8fhmc1rMkeCricuE75+XJrOneXgTPCwqAR3l5sW0cVQV+E+H1et7v6SAS3W5UIDmdRP/6r6mNRTSHfbRICYVADHo8yBzMyYHOf+YZ+DBXXy2zYQ8exN5oaQmvgnrrLQRrVRXtYJYvh92UiM1BBJx8+23YNwUFwDfOksvImHwtcwsCrt6qqppwuOGURAis1aNHZU/I9HRUsCxZIvekNstwpoV9qP5+2R7BYIDfVFEBe3ayZBEm2bjPJPePTLStjFaCQdlbtqxs9m0n7dAZzlIcHYXO3Lx5QhIxFbFpTkrqzSE8I0IIv6IoTxHRJxRFKRBCjGn+fQMRHTyzADYQ0eeJ6PNCiO/xCxRF+SURHSWibxLRxyMO30NEl4twhvVnRPSIoigbhBB7NM/fQkTdRPRX3b7cLEh/PzZgbS0M2RMn4NTFyhwjglHY2YmN3NEBB33NGtnTsK0NhBFn8wQCiFBxZEl73MOH8WhqSo5AZAAxm6GAeALys8+C5CwshLJcvRrgzFH29nYYn6tXT02BCgED8cABkIdGIxT1mjX6NcgOBqH4Dh0CUC5ePL6sb6L3ulxQnty42GTCuTFxqJcYDDiu1QqDmb8/D445cQJlzn/8IwyDzZvDyVqTSaat69kIPFHx+2GA2e2ycTqXXGkzzuaxSF95801gy9atWOOdnVgP1dVYE7t3Y7+uXSsJRIdDDsLhqGRJCdb/E0/gmOvWYe+bTLKEngjY97Of4RjXXYcBB7Ewz+Eg+v3vYSiXl8thL9GEp5mzs2w0yinIbW3AqM2bgY9sJLvdcMZ4ev1UDFkhQEq+/TaOrygwkHk6ux4GnxCyxJqbrBcUxIcjDgdIw6NHcf+EgOG+bh2cjcmGD0QTJg95Yjz3O8zKmvhY2inN2r/nonA5+sAA1vjAAPYHl/XcdZf2tfNYpKf09QHvFy7UR59bLLAVeFAbEe5vezvwoqEhfC9ZrcjSzc2FbTKTOnFwEDhiMOBcJ8tc1mLD2Bh+Wq2wP3hwSm0tjlNQoM8kdKtVthvJyQEWz1TPrliSnQ3bgVsxmM0gAFgfmEy4Nnl50QkBgwH/4z7aBQX64ZPRCNwIhZK/9n6/vNclJfABtDKPRdMnQsBvcTrlsMvDhxF8bWxE8JWTNt55B/d75UqsK56G/txzRH/+M8igz30u+sTheM7D75fBhlOnsMZWrgQxl5ERX/YgtyDggWmVlcCKZFoQBIOyj+HgIOyOtjY8X14OO4/PkSc/z4bwoE2LRep1JukqKkAgTuW+8GCajAwZULXZcNzc3PjvSTThTPHhYawhPafJTySqigdXnfDvTifWTE+PfHAv/82bYx9vHpv0k5QlEc/Ib4jodiK6hoh+SkSkKEorES0non8685qPE5GfiH6vKIq2FauPiN4kooujHPd/IhYAEdETRPQg4abvOfNZtUR0IRF9Wwih6vGFZkOGh7EZKyoAEocPA1CXLo0NXv392LAc/crIQMZhKAQj+eBBZPRs2IDXh0KScIxsbn38OBzfRYuilwPGI0IAgG02AGVFBYB5+3Z8n5wclA6de264w37gAN5TV4fvGy+4+nwwmo4fB4gZDFCc55yjXwRcVZGlc+AAzrW6Gg73ZMDNSp2nzRJBSXL/oemMsHHpoNOJNcHZWbyeGhrQJ2X3bvSzW7wYRDOXEGRkyGltmZkzp9iDQZnJ5PViTbjd+F1VcV4FBSBEY0wnTyks2rRpslfMjhw4ALLpxhuBJydOwPBtasLafeklrI0bb8TUdiI4ku3tcpK8xwNDOhAg+sY3sEc//3miW26R64lL6p59FgRiRQX6GsbqwSoEsi0eeQTv/fSniT75ydhGLk8ATk+H8+xwYGDK3r3Yf3/7t8jaZsJAVRMvX/b5kFHw+uvA5IwMXJ+LL05+yrJWHA5gqt+PcywtnTzgMjCA77xnDzKtiOAg/N3foTR00aLE9ni0kmU2kBUlfrJlLmYkulxwqLq6oDO7ukAmCCGnLm7ejPUeg8BOKSxatmyyV8yOjI7CzjnnnORaq7A4nQiiLV2KPquMHSdPYp+ee254n8HRUWBXUxMc3plq8xEK4XN9Pnzv1tbon+3xyB6G/ND2q+LetSUlWKd6Th0eHUXQNhCATl60aPonh05FhMDaCYWAd2lpOE/utZ2djf8VFsbWIT4frqnZrE/rCe25BYPAu6mSRl4v7jkPujEaYZeuXCkHKUZISmFRqkh7O+7B4sXwB06cIPrDH7DfPvYx3BeXC36YEKhY4hZDIyPSFlmzBrbRVBMnfD5pp4+OgqDz+bAP16yJv90BtyDgCp+yMui1qbZL4N6FkdOSe3txbYaGsM+WL8daPdOSaNYkEIBtZLHg3NiGqayELVpSknzpNvdHLCvDPXK58PD5wjMupyqZmcAwux16IRl/l0nBSHIw8nciec36+oCt/f2yt66i4HuuXYvkodrauD5+Hpt0kFQnEV8lsL430plFcOZ3QUSPn/m7iYjSz7wuqiiKYoi4iW2RrxFC2BVF+T0RXa8oyj8IIfxEdDOh7v4XyX6R2RKnEyQiT106cgRAvHx5bCDv7cVGLiqCgzMygkleRqOcpllXJ5187j/h94/vC9jWhsycmhoQG4lO8ezrA+nD/WZ+9zsoyfR0ossuC3fYiQDehw7h9zVrANzxyNgYzrmrC8BsMiES2Nqqz7AUIpnZ+fbbAOqyMjgRE50jR7ldLmnI89TDrKyZ7V+RkyOj1CZTuEPPUcrmZpRovfUW0S9+gb/POw9rMCMDDgpPbtRbVFUaQR4PfnI/Ea8XxofJBGVZWYn7mpk5KTExj0VJSn8/hjDV14NA7OjAel68GIbKG2+AfF63TmLL8DBex2VxFgucmuFhTGC2WDBZeetW+TluNzDroYew/i68kOgrX4lJDlN/P167bx/O5d57seejYRVnjXm9smH49u0ovxYC/cy2bg3/LHYWVRVrLdZ5RMrQEIjDt94CjpeUEF15JcgIPbNxXC58lteLvVldHfscORuSJyp3duL5+nqi669HUKmqKnHCzuMBeej14hhZWbj37IhrDdB4jHBtj0T+eyaFh391dcnH8LA0oJmAqamRvaXiyCSYx6IkxedDsCsrS2YMJiOhEPogBoMgW3i99vQg+FlTE04g2u3oZZqRgXYJM0UgOp2wi5xOrDseuhQMhk9KtlplJrfBANyqqwMZqs2AycsbP4U+GXE4QMTxoIWlS/UftKCHsFPb3w/srKiADisrw/1mfOY+tdHub0YGdJrNhvWgF6ZzkCUUklObJxLWlyMjcqBDTg7wiO3LCWQei3QWTuBYsAC6tKMDrVUqK2WlhdMJApEI+3hoCM8FArBHuB/r9dfHpye1NrPfL/VsZyfOJycHtk285JwQsM06O3G8oiLYCPEQUkJIopCJw1Ao/Fw7OpAV6XZjD114IbBipgeCaMXrlcThyAi+h9kMwquiAtdgunCMs5k5ISIQwF42GBLLxMzPx3VnHzhWyxi2xWKRg9G66TEpaLXCr7dY8HNwUAZ8OaGjuhqPysqEslbnsUkHSWkSUQihKoryWyL6oqIolYQ69I8T0atCCL7pChG5iegjEx0q4m9PjNc9SrjxHyaiPxDRJ4holxDiZIJfYVYlEIAC4OEfp07BSGtsjF0q292NTV1SIoeUrF4NA7irC45jURFIACauLBYosAULwpVEdzec4IoKkGSJRF4CAThhgQDOefduHFMIZGtcfHG4w6uqKKnr7AQQrVo1eRSOScq2NgCb3w/wb26G8V9RoV+ZUW8vyMPhYUSft26NHlXhaCCXKodCAFezWZYqz2Y5cH4+vsPYWPRsKJMJhMLKlVgzBw6AgOYprBkZ+H7cIzFR4XILbZYhl3VHKjnuVcQ9IuOZSi0/Zx6LkhGPh+jXv8Z1v+EG4JLVCgOhsBBE2c6dyIy57DK8Z3AQmJOXB2P61Cmsu74+ov/3/7Af7r8/PIvI6wUZ+N3vApO+9CUY07GG/fzhD+iVKAQyGT/84djlZaqK9R4IYC3t20f0179iva1di/OOzCK22/Hg8pXJIsNcxvTaa9gvRMjuXbtW9vXRa997vXA+XC6cV2Vl9GwiIXDtmTi0WHB9mppwzdavT2ySKwv3rnQ4QGZwqXdOzvjvysNV2ECNxzCe6usTFSFwPbWEYV+fdICys6FPWlpkL6jsbKyNqUyTnsei5ERVUb0QCiHAqMd+eu017IvLL5cYoJ02r9XxLhfRK69gXW7ZMnODQXp7YRsZDHKQ3r59wGGbTb4uJwdYxcNPuG8fE40cbEhkomsscbtBDAwO4phLlug7aGE6JC0NdvLgIK4L9+jlnt2LFuFeM5EYjeDIypItabh/tR5iMEw82d7hkMSh14vn8vLguDNRHI/MY5G+MjoKXVtUhD3a2wu7qaiI6KabcF/sdlm9tGABcIaD4r//PXTOzTcTXXTRxJ+l7TPMFU08fNFmg/3BVR8TVa1FytAQ9rLHgzU1Wa9ZLkvWZhmyGI34btnZWLPvvSdLlisrEYBZuHD2cMLtBu5bLLLPaXY27l15uX6JJ5OJogC37XY54I/7CHIiBQ8mmUzfcdCVbe3eXjlESutTRRODQeJNWpr82+UCJnKCUm+v9NMyMmAPLV0Km6iqKr5WXpPJPDbpIylNIp6R3xDRPxJu/l4iWkhE2gk4p4jog0R0WAgxkORnvUKY2nOLoij9RNRIRP+V5DFnRVQV0SwibMzeXiib2trYZSGdnTCIysrwml/9Cgbw8uWIsBw7BgDaskUSdxy1LikJL8no78e01OJiEH2JGOoeDwDH70d0etcuAM+6dXDYI0tAXC4oV7sdxlBT08TKxeuFsmtvl5lFXMKXkwMw06t0eWgIBjtH9T7wAZkFwMJ93LhUmQ3AzExJfM0Vo5od/bExKPdYoG8247uuXg0C+MABOHDr1sGZDgSkwolHgkGpFPnB0S6jEUrSbJakgcGAB1/DJEuo57EoARECmcN2O4aeeL3YByUlIOgPHcIE5KYmoiuuwP2xWOS00Pp6GI9paSDY7r8fBuR3vgMjmsXnI3r0URjdNTV4XUND9HM6dYrogQfwc+1aGOhVVbGN3WBQEojHjaNeLQAAIABJREFUj4MEcDiAjdu2jc8i5r5EXi/W3WRNrz0eWbI8MoL9tGkTMiLz8nBeekXZ/X7gkcOBPVNWNv78QiHgPROHo6NyUvyVV6IENNnyxUBAliwLIVsKTLZHOZLN2YhTIRLjzWCMRxyOcMKwq0s65JzRuWkT1mplpcw0YtIwyeEH81iUoJw8CSe5pUUf/X78OHTamjUgv4jkFHmeNs/i8QA7VBXZMzMxHMRuxz4+dQp/FxbCFiSSZGBNjSQNowX17HZZWlZUFH829WTi88lsJ4MB2Y56DVqYCcnMlNmEGRm4LjU1uPe9vdBdY2N45OdHJ4zz8qBfbDZgrF5ZqWxzh0JyUBZnmvr9uJf5+dB7SU6KnsciHYSHgmRlgXgbGkKAMztbDoKzWKQf1NAAO6G4GOvrBz8Avnz2s6iciiah0PgBZWlp+Ay2m48cwdplGyTeUvvRUfhSTieOFzklmkgOBdFmGWqrBLhdkjb7rbMT58TDNJcsgd01U/36IsXhkMSh3Y7n8vNhv1ZU6IeNUxW+jy4X1kFmJq5hKCSHsHi9cvBVWlrsLEKWrCzZz7G0dDw5yP6VNlDh90uisKcHPzlIZTDgGrW2SsJQO6RzGmQem5KUFFHFsUUIcUBRlGOENNTFhPr1pzQveZyIPktE31IU5fbIWnVFUUqFEENxfpZQFOXnRPQNwphvDxE9mfy3mHkZGABoVFdDwXR3w1msrh7/Wi6vHR6Gs1NVheEYfj/IHpsNx7PbkdlXVYX3MZjm5YWnuQ8NobdZXh7RJZckZpw4HACfd99FNqTbDaV0+eXRy377+vBaRcE5c+QkmlitICV7ewGa5eUg9IJB/F1aKgEzWbHZkHnY0QElzdNm2cBT1XDikIkvbbbcXCvlYTGbcX4ul0yZjyW5ucheXbdOlq2+8w7IxeZmKN7I662NlPKDS7kVRZYD8SAN7nvI0wn5+pnNeg2dmMeiRGTnTkS1r7wSJNF77wEbFi7E8zxVmZuF9/XJdgr19bKx/u7dICNXryb65jfDievBQaJ77gFJfemlKF+OltXh8xH98pfIQMzPR6ZiayteG6ucjMs6jhzB2h0bw3ndcgtFnUKuLV8uLJyYKBgYAHG4bx8+p64OQRfOXOJyXj2wKBiU2cMGA4y3oiJ57EAAhO6ePTgf7vm4ejWyDdes0Yf0mKxkOR7RkoLxBqiSIRL9fqxDLWHImQcGA/TmqlW4bwsW4Lpqsx+ZODQa57FoNoVLBWtrJ7YR4pWhIWQjV1WhzQAR1vWxY1jP2j7MPh9KmH0+BGKnY0CI3x/ew7CnB3jr92ONLl0K0qGoCD8n2898PO6TWlSkT+ZmMIg91NODPbJgAfRBMlUJsyUFBfI6cbZPVRVs7qEh2bPMZsN3jaaXCgtB7o2OApf1IFFVVdruVis+22jEZxUX46c+U3HnsShZ8fvhv3CgzmZDG6C0NBCIqor2QAcPYh9u2IA9YzbjuR//GOvqK18Bia0VbT9wtp9NJtjc3JKFCOv1yBGQTk1NIOvi0ZMOB8jDsTEcr6lJYisThvxTW5bM2ZPcu0+7Fr1e2CJHj8K/yM3Fd25qmrnWDyxC4H7098PfdbvxfFERfJeKipnLJp9IVFUSfGNjuOYmU3jmIFd/sV2SkSGnajNBGEkOZmUBl4QYT5CqKjCOyUJu38E7vLAQupYrLyoqZnYq9jw2JS8pTyKekd8Q0b8S6te3CyFG+R9CiF2KotxPRF8koqWKojxDRGMExvmDRHSIiD45hc/6BRHdQ2jG+bgQwjbxy+ee8OS8khJsci4D5BIWrQgBQs1qxUZfsAAOZEcHnKK0NEkyVlfL0kGPB4CRmSlJRSKAzY4deP7SSxMD/OFhlAe9+SYAb8kSog99CA52pHDGTFcXAGvVquiAzpmZ3G+HG2HX1OBaORx4X3W1Phk/nBV58iQ+a/VqGAc8odjpxGuY9DIaAdBZWfqRXjMheXkwDmw2GKaTGR1FRcg2s1hwj994AyTrxo2IvmpLk7nEggiGBl8bsxnXi6e2cjQwLQ3Ght5TqSNkHoumICdOwMlevRpk3fHjuDeLFwNT/vAHYM511+H+dXfD6SkpgVPJxtvvfgdc2raN6AtfCDc433qL6O67sZ++9jWZzRgpBw6g92F/P4IR3KCcSaxo4nbDeN+5U2LktdfCGY/2GfGUL6sqjOPXXgM2Mz5wz1CPB8/l5+vjVIdC0kElAk6WlOC7ezz4fnv34qfPh+uxdq1sR6DHXlJVYJ7TKUuWuT9kogSpwYDvNhVSMB4iUVVhCPPQk64u4BUb4oWFWJubNuEnl10GAtJJU1XpGE1jVtU8Fk1BHA7gT2FheHZgouL1ov9YZibwxGDA/T96FDq9uVnu/0AA+93lQhsWPbJouL2Cto+hwyH/7/MBP5csgX6tq5tK+w7Zq89oBF7oUWrLwxC6uuQU1fr62e1lpoeUlMj+iNxn2ekEjuTkYM3xNGYhxpO3iiKJRK7sSQQXOQOe8Z57IhYV4filpdPWBmceixIUzv7z+6FvfT4QiIEAWrEMDkp9xL3lzWY5DO7JJ0HU3HWXrA4IBKQdzcQdDydj+5nF5UIm9dAQ1snKlfFl03ELAi6n5iq3UAjPsS4kklVCJpN8RLOfhodxLdracJyqKvRirK2dWZ9ICOwhiwX2KAc8S0pkqfJMkZlcXjxZ/0Ht6wMB7H9OsuCycG7hxCXkXO3GGdDRsEHbA9/jkcGpnh5gHvtpzAUsWwY/OrK92SzKPDYlIWcbiZh75vcwEUJ8SVGUfUR0JxH9PyIyEFEfEb1ORD+aygcJIboURXmJiC4hop8nd9ozLx4PQC8nB49Dh2R0KBKEVRVgPTYme/8NDMDY5UbaeXmInmdlAcwVBeDT1QXAqa2Vxo7djqlgaWkoN55qdEZVkZWzfTvOackS9CiLdu5EMNJ42uvixejdEfk6jwdRso4OKOfcXCjJmhqcb18fXldZCRIsWUXl8yEyeOyYdCRWrsQ14QbWXPLGpFd29sxH1/QSLokZGYGSibf0obiY6IMfBMn68stEv/kNDBh2dsxmrD2zWSq3QADXcHRUKi6TSfaInKEshnksilOsVhi4FRUIApw6hfXS0ADj48knsQ5uuAH3rrNTZm7U1uIeHzlC9N//jX16xx1oFM57VFUxefmnP4Xx8tBDwIBIsdsxdXnHDrzuu9/FGvN4sPdiGcxHjxI9/TSIzcpK9BlavTp2f0WrVZJw0cqXXS6QdW+8IQ28bdtA1hmNOE+PR2J3slikqtKhVFV8XkmJLKncuxf6IRjE/z7wAWQcLl+uH/Hl98uAibZkWc/eX1PNLox8j80WPim5p0f26+HG6BdfDJ1RWwvMVlVcNx7YxMdlR2mG+tXOY1GcEgzCUeZBacnuLSFg6zidRNdcA1tHCARNvF7sIbZ/QiGZwXz++Yn3D3U6Jck0MoLjsfNoNgNL2Wbj5v7NzQj8TkU3er1yEnNODvZrspnQPM24owOYUFwM8nC2Sv/0FoMB95WnsZaXw4nmSewNDbiOHLCOltXDWYJ8j+O1RwOB8DUhBNZ5aSmOwcRSMBh90IFOMo9FCcqJE7I1isFA9KMfwQ+77DJgh8uFva/1JVSV6PHHYTuvXk10221YKzz0jXGBp+uazeP3MCeQnDiB97a2xkfW+Xx4H2cRl5XJyi2HQ5bLms1SH06EH6oKH+3IEXzvtDT4fMuXz1xPQSJJfjJxGAjIKfQVFfH1tJ6qJDOchDMFOYtQW1bM05UNBtz/yHvKhCKXOnO2aFoa1ozJhHXU14f73N0t1ymXm1dWojqFswwna9kzizKPTUmIMn4S9bxMJoqiPEtEK4modoqjuWf1YgeDMNIUBZv66FGAQ2vr+EivqoLAsduRTVFWBhD52c/geF51FRTK668DWD/4QYAEA77fj8bRTH65XHI64eWXT71fVlsblOLp0zC+rr46tsNOJEudeRpwpGE+MoJj9vUBhCsrcb5lZQDH3l4QUrm5+LxkCahgEErw0CFc84YGOCsGAz6HHU1uEjyDpNeMCA9G4MElWtH2YYmMjnJKfVcXMs28XjhCmzdDOfn9stSbe7hwVmJW1rSmxs8JdZiqWBQIwBgeGyP69KflAI+mJvx87DHcv1tuwc/OTuBMRQWwSwgYyP/5n1gr3/gG1gTLyAjKl/ftQwPxr3xlfHkgH+Phh2GEf+xjICx5DebkRI+UWixoUH74MIzYK64AuR2LGGKnWwi8PvKYfX3A0bffBk4sXiz7HXLGj88nCfFk1zQfk7MBONvv4EEQh5wpVVoKAnPDBuCVXr0Cuberw4HvpSi4Jrm507Nftf1PJzNivV5Zltzejp9OJ/5nNEIX1NZCJ/JEXS1pzdmGjF/a/kLTSBzOY1ESwgPirFZk2Cbby5MI+2jPHgyM4+qMU6fgfDY0yHI+VUUPs/5+YEhkqWEs4ZYITChxSTER1lphoSxJ1k7Qtdthg3g8CMLW1cXv2HHQgYd8FBUlnyHIw4ba23FO+fmww/S4B3NRmOjNz4cu8Hhgh+blyRYVnNHDmBgpXi/ug9kcOyirXR/cbywjA+uhuBjHjbzv3PKF2yskKPNYpKO0t4Ogqa+HHvnxj4EhH/kISDS/Hz5dQQFwhqsHfvQj+D9bt8I38/tlVhmXqGZkxNbpNhsw0WaDzdXSEnuv8/BCzjzs7ob+Y1tNW5IcWZY8kbjdyAw/dgy/5+XhOzc2zpxvFAwiy9Niwc9QCOdfXo7vl0zm7mTkYDzDSSLJQf493uCCwyH7TE4kwSDua3u7bCfEPVo5A5PLtquqsF7mQN/aOYFFkZIENs1Jmf3bnGKiKEo9IY31O6m0AISQkyBra0EQckQ8UjmEQvi/wwHlxYNWnn0WDtYVV8DQO3wYCu2882DMCCGzNGprJYHo9SIq7/NBoU3FQLRYkO2zdy8A6oYbQArEAu5QCGRdTw+M3FWr5PcLhfB8WxsAkKf8LVoEI1sIfJ+hIRy/pib5SJeqIkLzzjtQ7pWVSOc2mcKNu8LCaSe9ZlWys2Fo2O3S2Y5s4EwkFRqXJaenQ0nV1sLBY6LjZz+D0lqzBkax2QzDODNzTiivGZFUxqI//xl7+xOfwJpwOrEP/X5knaanE/3N32BPtLfDIVqwQA5Kef55om99C/vzgQdQPsyydy/RvffC2f3CF2BwR2byDg4Sff/7eG1jI9F//AccaibsuOxdK6OjCITs2oU19qEPTd6SgTNLTKbwaaWhEIz8119HYMRkQj9QHrRBJIl3IhjQepR+2O3ANzYgT58GNrW14f81NQjQbNgAokzPyDGXLDsc0hhPtmQ5HonMLOTvFAphDXZ2wkDmwWEcVy0uhn6orYUeXLBgPLaEQuGlP0Sy9GeyDIuzSVIVi4jg+I6MIIChB3nV0QECcelSSSD29sK2qK4On2S5dy8IxLVrYxOIXIKqJQ1dLvyPM/2rqyVpmJcXfd92daH/ocmEwUdTsW3cbtnHlQc5JYsNViuw3eEAtrW04PzPZsnJkWXkHOwsLwcOWa24h3xtOTs7MvjFVRh2e/jQOo9HTlTmwEdWFtZVPP0tOWspFJJlzqkoqYxFWrFYsD+459yf/gTdffPNsBUsFmBNURH8OKMRgcEHHgDeXHUV9LjPJyt2MjIm3rehEPyV06exPtetk/YIkSSatX0MfT5gWF8fjl1ZiUBobm5iw8EGB+HDnT4NvKmpQRVEdfXMZLL5/cBqiwXXU1XlhOCKisnbMmkzBCciCiOFyb9ovQcjh5PoIZxtyIMo2U8WAutNO/ikv1+Wn5vNwKzmZlyT2lroEm4hNTQk21fNS7icLdiklflMxDhFUZQVRLSG0GRzORE1CCH6pniYWbvYg4MwUiorsckHBxERj8zQCwZhaLrdcOq5N8+bbxL97/+inO3DHwa4vPoqHPD16/EaLpGprJTv8/uJnnsOoHLppeEDViaS0VEQBbt3Q1Ft3Ij+HxM1G3c60bfL6YTz19AA4HW7oZA6O3E+eXlQcjU10lByueRY+cJCKItkyCguBdi/H9c9Px9OBRvuZrPMljubSS9tD0O3G2uECNeYSxq0j2hKUgi8n41kLpfgjKmWFmShzXD2wqxFuVIdi/bsQWDg4ouxJ/r6YIxkZaHXTzCIDMTCQtznsTHZdJkI/Q//679A+n3/+9IpD4VQuvzYY9jbX/kK8EnbNkFVQWD+/OdYO7feCpJRUWSz6UgC0eVCb6HXXsP/zzkHBOJEfcu05cvZ2dj3igJsevNNEJE2G45x/vnAUP5M7aRnHg6UrEPncgHz29oQ2T9xAn8TASvXr8dDO81aL/H74ezyYCgt4T9TIgQcAi5H7u7GTw5gZGfDGOZHTQ2e435D2uh+KCQzDpk45N6G3Lh8hmUeixKUkRGQ6JWVcIqSFZuN6IknYGNcey3Ww8gIMmpKSkBUsrz9NvCttVU+z1NytRmGXIJKBIzQZhjGM/yCqyAGBmDvce/leCQYhC3m8YBUSHJKLxGB/GJcN5tB0JeVzdlSN91FCNhBwaAcJNDeDnxcskQGpXgyPU94jhRtNjlXYxCBqOSMw0QwlvvIchnkFGUei3SQvj7YCAYD9sfLL0Nf/83fYP92dWEPlZTAhgoEoNMffhjr4dZbgSs80DCevTU0hCxltxs6sLkZn6+dlhwIhE9LtlplP2AeQJlIK5JQCN/nyBGcR3o6bLfm5pmx67nNF5P5QmDvVFZij7L9Fg85OFF58URZhLOFf9xP024HWchVeESyLJknJVdXyyBHKIS1wYNY0tJw37xeYFNBQexe4jMkc0aj6IRNc1LOYvpCd7mWiO4mog4iuimVFoDDAWAsKMDvg4OyFEsrgQAIRC51KSgAOJw6BUKvrg7Os8MBBVdSgkgVkYySs3FLBGX24oswFi++OD4C0enEe3btAjg1N4MgamiY2Hjt6YECMhrhDJeUQBm1tUniiiNknFlJJLNReHKeHn14urtx/gMDUKitrXJSWnY2lFOqRnknklBIRrX4wU62wYDvX1OD57ncKpZwyaPbjZ9cipGXJw2rSy9Fuer+/Vijra0gm/XqpzaHJWWxqLsbGc1NTWgz0N4us2d+8QuQbjffjPVx6hQMG56Uqqrof/jLX+K9Dzwg9+rgICYyHzyIdgl/+7fjiar2drznxAng1uc+B0wSQhKIeXnyPT4fegO+/DLW4LJlyIJeuHBiLNKWL3MpYXc3sg4PHMA+aWxEr7Rly6SjJoQcLmIwAH+TJdpcLpC2e/ci89HlAs41NwPL16+fnoixENi7TufMlCxHiscjh55wpiH3GjOZgEPnnitJw6Ki6EY8P8eTI7V9w7g/UCLZFmeRpCwWeTzYEzk54eReohIMol8zETAoLQ3r/733sO4bGuRrDx2C08z2xqFDkjTUTkgtKgqfmDzV8mGbDcf2eoE5U8kudjiAi0TA42QdQg7m8qCFhgbYZO+XbF0WRYHtrR20UlOD6p+uLtjeiiJLjp1O2QpDSzKPjOD9fj/ez0H/ZPtns22qbcmQIpKyWEQk7ZCeHgQ20tMRsHz9dTx/7bUgEDs64NcUFGDtDA/j9U88gfv/uc9hn8crfj8C8p2dWDutrVh7nHlMhHVoMsk2S6OjWKter+xfmsg0eZcLQc1jx3CsggIEVSfz9/QQlwt7cGBAThfmYGJZmextrKrYcxOVFxsM4b0HI8nCuSLBIPxd7bRkTsxQFBCFS5dKwrCsLPb5G42wT81mrCGfDxjP3310FGslVfv56ywpjU0TyXwm4szKjF9s7pmRkQEFcPIkSLTIAQOBAKLlPO04Px9GRF8fJqQGg0S33w7Q+Mtf8Lpt23BMhwMKJTcXxgxHKf76V7x/y5bok5O1onXY/X4A2apViALxdMtowmWBvb1QZi0tUAqnT4OASE/HZ9fXjyeX7Ha8LxjENSkvTxzwhYAS3r0bwJyVhXNZulQSh3NJmSQrqop7xmShxxM+bS0jQ2YXck8UFo6wFxaGKxhVDScOuY8ZZ2zyVGruochOPGd3HT6M59asAUk0zcor1WmDGccip5Pohz/EPfrEJ4AZOTkw2n71KxitN96I/X7yJF5fVyeHffzbvwFTtmwh+vrXpVO7ezf+5/MRfelLIId4mrmiyBLpJ5/Ec5/+NHqVcWSZs/7y87HGgkGspx07cA6NjTBsKyuxZmPtYyFkiZnJBIP4yBE4AZ2d0ik4//zxARWebhcMYr8wWZ6IBIMgK3fuxGRql0tOVN64ET8TMfjjEZ4s73TKkmUeDjVd+BcMQs9oScPhYfxPUeQgHs4wLC+fPGNQiOgZh9q+TnOIOJw7Z5KYzDgWhUKyx+769fpkxe7YARvqiiuAWz4fCDxFQdCDM3feegv7MydHZv4qCvCCycLi4uSHJ3V2gsA0m0EMxJvREwjAsfT78d6iouSqJXw+2KAWC/ZcbS0c1LMxkDoV8Xphq2ZnQ8c5HLhOJSXhJaROp8wO8vtl38KCAtwbbtNQUqJvVQsHTKaIdfNYNEXhwTdWK+yc06ex9zdvRkLF/v0YorJ+Pci206dx35cswb159VUELxobiT7zmfjIfi5L7uiQQYaaGiRZcDlt5LRkItmCwOXCuq2vT2ySvMUC26i9HeeycCFKsquqpn6syUSbKWizwVbo75dBxbw82AhlZeEl/9oMwYn6D85V4QnSWsJwYEAGB/LyJFlYWSl78SdjG3J5u9+PwD4HbGepv/8cvjtnj8yTiDMrM3qxVRVKIhSCgXHiBICCp3yx+Hz4XyAARZSbCxDo70cGy+nT6K/R2AiF1d2Nhr3l5VA+7e0yi4/7T73yCoxYjirFkmAQJMCLL8JYamkBCWQ2w+idqMzF4YCCdbthjCsKnMhAAAbW4sUAyUhjNRCAIrHb8Tnc/DeR6+t241hvvQWgzsyEk97aGn3qVaqKljD0euUgGKLoZckTfW8hYIyEQrhPPh+MJ48H/zcaw4nDaMIlFpwJRITI165dWMtmM/rB8LS6aZBUv7MzjkWPPgrsuPVWEHdpadijTzyBPfTxj8t+rW63NFCHh4n++Z9hQH/0o8hULCsDdjzyCAjCJUuQicjtAnJzgUWHDxM9+CAMqK1biT71KelM86CAUEgOLDlwAO0XrFYcc8sWOPRcVhxrXYdC0vEOhXCub74JjCopQa/Dc86JPsCKS32NRnxGIuQ3T33ftQt4ygGUc84BYbp27fSWD/t8wG8uWc7MhCOk92dqy5L50dsrDePcXDgkWtIw2jWPNmiFHSvu+UQkhwzwROXI0uY5InPrbKYuM26EHj0K+2bVKn0ycQ8fRgB0wwY4+8Eg9iJPk3e7ZblYe7vMhOWyU+4ppYcEAgis8mcvXx5fVg8PXOKpnYWFyfVhDQTk/iSCjTZZFvf7TWw26MLCQjjvfX3QIzU1UqdwD0yvFxmMrBe1GYPDw3LAgZ7BmgSIxHksilNcLtxfu11O4+7vh35qaYH98NprwIn16xEQ4L6qzc24J48/DpzZsAEtYGLtrcg+hnY7bJThYay9lSuBQ0wcRt5rux24ZbNBn9bVyTYy8UowiAzKI0fwvdPTkWTR3Jx4lnO0kmLt36EQ9tfAAEgtjwffrbhYDkdhPy2SKJxjOn5S4WADk4a9vcAMIlxrJgyrqvCIJAv9fhyDW20lI9z/uqcH66m8XPa4n0FJsTuYmjJPIs6szOjF7u2Fg1pWBvA2GqGctIrG6wXpEgqhpCc7GwbvwAAU2q5dUDCXXALDe/9+kHzNzVAKp0/jODw9TAi85+RJOLDLl0c/N1XFsZ57Do78kiWItqWlSWMp1uQ5IhinR45AEefkSOVQVQViIlZ0zGrF9xICwFZSMjVlEQrJ/jMjIzDWu7oAuuvWwSlJ9anKwWB4hqHPN74smTMMzeapOz/BoMwCVVU4UGlpkjiMl0ThKc6RWZ4DAzL7KzcXRhj3d9FRUl1BzSgWPfccDOKrrpLZfg0N6E/Y3o7S3iVLZDuFxYuxLk6eJPra12CQ3HQT7uXixYhk/8u/AAM++lGiz35WTiDMzcUxfvpTROgrKlDis3atPJ9IArGtDa/t7weGbNsGfPD7sSYnMnI9HuBKdzcw8vhxHHfpUmQTNDVFxxjuHaOqstR3KljkcgFD9+wB+el0Yh+1tCB4s3lz8tNTJxIuWXY4cJ0MBvk99CLunc5wwrCrSwYb0tPhbGt7GcY78EFLJHK2IWdSc+kW9ziM/M5zkEicO2eSmMwoFvX0wOZZtAh2S7JiscCZz8+HbWS1IrvH4YDTxq07fD5gXWMjghPTsX7GxvDZPh9whyf+TiY+H+yZYBB7eKKM68mEB9jxlNbycpAO04lFqSxDQ8DR4mL83L8fuolb4HBmakaGnKZaWBi+fjh7NC0Nr9VrbSUwsXkeiyYQzoYbHob+NxpxL4uL4UsNDsK+OXSI6KWX4E9cdBH03tgY/tfQAL348MOwl668En3q+Z6rangfQ+5Zx9Lfj89KS4N/xuXz0cTlkoOn0tOBJ5WVU1tfTqe0i3w+OQiGMymjSTLDSXgwCPf+DwZxnUtLce6Vlanvo3EijJY05NYTBgMwV0saxhtccLuxLnNy9LlGXDKekSHtW+7TOQOVeamORSkh8yTizMqMXWyrFQBaVASACQTgXGozQzweGNNCwODMypLTO1UVpYNmM0oMrVZkC/KkLM5y9PlgiLOBuHcvFMaqVXhEihD4//btML6rq9Gbq7YWoKiqcPpj9SUMBtH/4+BBAB5Hkurrw88jUnw+XAcmHauq4gdJblztcuE4Ph+Ud1eX7CGycmVq9n5Q1fAMQ6833JnWliUnE0kKBCT56vfjOe4xVlaW2BRs7ptIhHUdadh0dYFMtFiwDzZtguGik6S6gpoxLHr3XTjZ69eDWOPBR9ryv2XLsKe4nUJeHoIR994L5/z227HXm5oQof/2t7F+vvpVGNlOJ9ZYTg4w6AffWvGSAAAgAElEQVQ/gCF59dUondbiAk87ZSJxxw449yUl6GW2YoUsLdb2SIwULhd5803p+GVlIXiyaVN471WthELAWa8XZBVnQcYjY2PIeuYeh8EgPrOxUWZxl5dPb7ZPKARn1unENTSZ5DCaZAxDvx8YrSUMrVb8T1Fw/7VZhom2n1BVGSjhUkAu4eKMw4lkDhKJc+MsEpcZwyKbDQNNiopkifFURVt+2NuLIVGhENF550FfcmsPbmeSk4PX7d4NR3bTJv1LebmdysmTUytf5nYOHIBIpO+i9lj9/XKAXUkJbDI9psqfreL3g1A6cUIO2jIaga+VlbiP2jXq9eJ+mUzjiV6vFzooMzMxeyqWTJFInMeiKMIkL1fgmM0yA1lRsG/b2qDT+vvhe61aBfulvR1rpK4Oj8FBoocewrFuuQU6X5tlyFn5ROHlyF4vfK/RUdjcra2xbRuvF/t4YADrsaYmelXXRNLXhyBvZyf+rqsDech9qCfKIpzqcBJVxfUdGMCDicOyMtgNZWWpO8BSVXH/tWXJg4MysaOgIHzwSWVlcvaf3Y41lJenj54aGwOe8YBArvIwmcIryaZBUh2LUkLmScSZlRm52G637DfG5SmRU67cbhguigLHPDMTIDw2Bmdw716A/8c/juNs3w4CiRuGc6P62lqZpfPOO3g0N8uJzVo5fRpDFbjvy7ZtUGRuNxSnwQAgjEXG9faiH2NPDxTR0qUgHKqqJu5TxhEpg0H2NZtMAgGQhlrSS1FwTdra8HdDA9Hq1aljJAshpyXzABT+bkS4v1rCMCMjOSfZ75fEISsO7s3JU6nHxmRz5kQUH/dRNBpjOz8nTxK98YacTr5pE4yiJCXVFdSMYNHQEIahlJcjm3l0FMbkrl2Itl92GTDgvfewRhoagDdPPYVIe2MjsgyDQdyzX/8avQ0bG0EwVldjfXFT55/8BMdevJjoH/5hfO9XJhD7++HUnzgBY+nSS4FZ7FRzI/tYpPnICIZNvfUWzrumButqsl6cXNZIhO8ZzxCnoSHg8Z49MuhTXg6Sor4e1yAvDwTFdEbYfT5Zek0EnZGbmxjpoKrAZC1hyKVcRMDomhpJGlZXJ/fdVFVmHGoHBhgMOO5UDdk5RiTO/hkkJzOCRX4/9pHBAKI/Hn3DeMCk4cgI9gD/7913cdxrrgF2ud2wEaqqZB9ozowvLEQAVm+nKRBAOfXwMHBh+fL4PsPtltnYeXnxZ/FGihDYy+3tcjjCokXT13c11YUHb3EpKxHuVzAoJ9yOjsLerawcH4yaiEh0OrE+c3L0nYzKpaE8QGICmccijTid8j7zYMDiYti/nJDQ3Q0btawM1/j55xHIvO46lByPjGBN1NSABPzhD7HnPvnJcDvWaBzfx5D7Pr/3HgbVmUw4dqzeg9yCoK8P712wAJ8RbzsEnhL97rtYwxkZwMXGRnznyYaTTEQURjvXwUEkCQwN4dpx6WxFBfZNKvZd5Sqtnh48+vqkn2Y2S7KQiUO9/U9VDV+vydo37IP7/bg3RqPsmygE/s7IiF5Gn6SkOhalhMyTiDMr036xg0EYc0YjQHVoCESbtn8FTww0GkHEmUwAY5cLhmRvL5ryf+ADiNbv2AGjZds2gIrFAsVWUSH7CR05Aoe6oQEReS0Y9PeDPDx2DO+/7DIY8UYjjjs4CBCpqopePjYwABKIJ5adfz7Iu8nIQLdb9oXIz4dCnMi4ZiIikvTKyACYv/sujlVXh+ifntHe6ZBAYHyWIW93Jt20Dz0UrtcrB6NwRiP32MjKGv8ZHEEkmnppOUswiHtnMsUmGlQVBtju3TCy6+pA+ky1r4tGUl1BTTsW+XwgAt1uTBa027EHDx8GVmzZAhx47z05sdhsJvre95Dds3kz0V13yZ53//M/wJBrryW6807cb58PuPXyy0SPPYa1cPPNiOBH7nVuv/DXv+Izs7KQxbhpE9aNz4egC09GjoZF7e0oM9q/H39zuVFDw8RrNxjEsf1+fFZ+/sSlPL29cqpyezueX7gQvY+WLQMmcRZiaen09TsUAtfX6ZQly0x+ToUMsdtBrjBh2N0t+6qazbJ/4cKF+KkHAcGZzoGAdF6MRlmqbDDILIhEmqTPISJxHosm+wCBkn+bDUR/LILF6ZQEj9UqM5aJsOe4h2FREbKoDx1CcGTpUrz+2DH8n1sYjIygP3RODnqT6k3yj47iHAIBfGY8wTEOpLjdOJ+iosTPa2QE+OR04jvyhOB5CRdufzMyAjwlgvPP6ykrC88PD2NtFhUBLx0OEEiR+O7zwXY2GvFaLclis+HzCgr01QuhEPYCT6GNIe97LOLAw8iILFkuKoK/wgMJfT5gktMJArG0FHrwqaewh66/Hj7V8DB0YkkJbNcnnsB6uf12mXHGxGG0ezIygqotlwuk0/Ll0fc6tyDo6cHvnPXPAdHJMgfHxoCHJ08Ci4qLgYmLFklyKBY5OBXd6fPBH7RYcG2EwHUrL8f1KCqadV08JfH5QBLytecWZERYNxUV4VmGM/X9uOUUV5kkK6EQ7puiyAoSJp19PvxfUeQ0Z51KnVNoJaSuzJOIMyvTerGFgIPGhEp/P4BH2xfH4YADbTIB5A0GALLPB0UVDKL0sKoKvcbeeguv/8AHcJzRUYBeUZGcIMeZXgsXghhgABgZQS+0AwcA9BdfDAKQldjgIJRPTg7AUgscgYCcLnj0KIyiZcuIPvjByUFNVSXRaTLhu0R7jxDhxCGTXpmZMOoyM5E1uX8/lH1lJRyQ0tKEbs+0Ck8s1j4440ZRxhOGepU7CiGJQ7cb115Rwq/hZArB74cDlpkZ/wTJSPH5cP8mI0ODQRhVe/bgvJuasCYTIIRTXUFNOxY9/jic6muuwXUvKgJ59NprIMM2bcL+FgIEohBE99yDqak33IABLCdOYP/9+tdYV1/7GjCGSE6Uf+QRHGfVKqLPf15OPNWK1Qpict8+rLMLLgD5x04WE2U8VVm7Zv1+YNhrrwEPOJPpsssmJ6G1JJyiyLLfaK87fRrrcs8eYDcR1uf69XhkZyMo5PNhnZeWTl8WdDAopyxrS5bjGRbl88Eg1pKGNhv+ZzDIAQtMGpaW6mcYc29D7URl7m0YK9Ida9BKPMKfMctE4jwWTSKnTmE9NjdLu8XnC88wtFplxgc7/vxgokd7vL/8BdnAF1yAPX74MPBkxQoZIH35ZThFF16ob09ADmi0teEzV66Mz9lzOmWmdX7+1PuwsthswCubDZ9fX6/vPj4bhLPQRkZk25XcXEkcRlsPo6Nw3ktK8P+TJ4FLS5aMt6P8frzeYAgftEIkh3zxsAy9hInECQatpPoKSBiL/H5cd87uzcwEcWg2438cNOO+4tzaKS0NPtDjj8OeuOoq2DU2GwjksjIkcrz0Enygz3xm8iBbIADbq7MTuNXaGt1vUVUQVx0deE9REfRyZmY4URhNFAV2yokT0PdGI3BgxQrZN1EPPHC74c9ZLLi2RLBDKirwSDSDeqYlFILPqy1LZiKUCHtVSxiWl89uCTb7dZmZ+gQjfD58/8zM8dnVnAiic6lzCqyK1Jd5EnFmZVovtsUCA9FsBtHHEXEWmw3Gb0YGnmeyTVUBWOnpRL/9LYDjppvwv127YHivWSOb3Gdng1BUFCifV16BY3jRRbKfy44d6BVmMCCjSOuwc+8clwtKVqvc7HYYp11d+H1kBIqNBypMpiwcDtkDsrh4PDnJpJfLBcOOIyBMenFfr64u9E4aHcVx1q2LXQIw08Lkp5YwjFaWzINP0tP1VbLci5AzDjmTR0scTvXzmLDIz09cYXk8MjI5GXHp84FQevttnP+KFUQbN8ZXXnpGUl1BTSsWvfYaAggXXCAdcKtV9vq56CIQf9xOYWwM/Q17eoi++EVkPR87huEou3bh/nzzm+EEwC9+QfT73+Oe3XEHMoIi153XC+P7+edxnzdvRiBCS1bb7Vg7ZnN4+YbVis/eswdrMy8Pw1nOPTe+rNlAAN8rGMSazssLX5ehEJyFvXvxGBnB/5cvB8l6zjnAR49HThZMT8dnT1epoNcLDGWnl4fKxCrRZizv7pak4cBAuGFcWytJw6oq/fs1crYhTxIlkqRhvFNFOeCSSDb2HCAS57FoAhkcRBVDXh5sCSYNOSOMCHjAZGFR0cSOqdWKlgrFxch4DoUQmCICmZeejj20cyfW04UXJj/tUit+PwhLrgbhSa0TCfdx5ABEUVFiDprLJXu0pacjoz/Sxnq/ihDSZmUST1GwlnhdTUbocWm4z4frGgjAHi4sBLEQKXxfI4lErvBQVXy2nmTEJBOb33dY5HDINgeKAnskOxv3QhuU0AbwPR7Yn14v9Osf/4h7fM01cngY9w/85S9hp27aBL9sMh3V3x9eNdXYKMuatVOLBwags30+rNGFC2VQIVbmoKKET1nmIMKyZXjohXMOhyQOueQ/L08Sh3qW6k+HcHamdvBJX59MVMnKCi9JrqqavmqSZIQrUHJz9bHbnE741Pn50W1YHgrEmbpJljqnOhalhMyTiDMr03axbTY5BWlgAEps+XJp3I2Oyqh1U5NMCzca5bSqnTthDH/0o9jgzz8Ph3XrVmzs06fxuvp6HLe3Fw56SQl6igWDiLy/8gp+37gRjr0WLIJBvM/ng4LMzwdY8MSwoSGpsLxeHHvVqslLl4NBHGNsDNeguloqNO6bNxHpxddpYADZl4ODkjSoq5vdSBf3MeQHAywRDLnILMPpMOhVVWYbclm00Sivodmc/DWyWmEUJ9rLhMlNzryM53xcLpBEhw7huq1ZA/ImjiE5qa6gpg2LTp8mevRROeyDJ64//zwc3ksuQTDDaAQWtbURff3r2MP33otWBQcPYvpyfz/Kk++4QxoxR44Qffe7IK4uugiR+Uh8CAZBAD7/PNZVSwsc/ooK+RqelOj3Ay9zcrCGTp1CD7MjR/C6xkZgaV1d7AwSrQgBI9jlwnfMz5frifuX7d0LnHE48L1WrUK24dq1ksj2+YCHPPSgpGR6ou6cLelw4Py4ZDk3N3wfsmHc2SlJw54eGT3OypJDT5g0nI5MSW70zw8uKeaMw3iJw8hjchZ1osNaiGaNTJnHIu3Bzuw/qxXr8803sU7q6qTeZ1KHH/GSLH4/CESvF/2iMzOxn71eYEx2NnTkzp1w1C+8UF+H12rF5wUCqCSJRixphYkt7nFVWJjYnvR6ETC2WHCtamrw2anYc0xPYR3CmayMnwUFco1NlcALhaD3FAW2Off05unzkRIIyAwt7eeFQiB7DQaci17YJER40CUCa98XWMRD2UZGZIZhdnY4ica2uckke/LyAJQjR4BRZWXIaM7Ph53T1YW91twMX+sHPwBpf+218LG0E5gjS4zdbmCDxQL9vWLF+PWiKDjv7m7Yyrm5sgXBZOXFNhvOm/tXl5XBLqqv128ABxOHHOApLJTEoZ6BGL3F44FfqyUN+TukpWEfa7MMeaDOXBfWH6qKtaQHhoyMYK1yCX+sz9Wh1DkFrnDqy5wlERVFWUNEVxLRz4UQHbN8OnrJtFxsnqRlMEBBGI1IX2enm/vWZGfDIebIWUYGwM1ohOP/9NMgUTZuxCAVVUVGUFoa/i+E7HExMED0wgsAlq1b4RS/9BLAYdUqDGCJ1hCaJzBzf8KODpwbp03X1EgHoLw8/HvEEh6UoKpQbKWlUqkyccikF2cbRpJMVisigz09+P/q1ehzNtNOobYsmYefaB1UnpbMWYbTme4eCoUTh0T4PC1xqPfnjYzgPnGvzUSO4fXiPKcyLdtmA+l07Bi+1znnYA2kpRHt37+fnn76afrkJz9JdXV1/JZUV1DTgkU2Gxp/m81woFmefRaZxJdfDiwxmUAgvvEG0b//O7DiO9+Bo/Tss0T/9m+4f9/6FsrNibAfHn1URu2/8AX0X9WKqiJq//zzcKCqq2F8r1gxPguQswQ5Q/Dtt0EechBmwwYY89x3qLh4cmOZ+yqGQjhGbi6eO3AAGLl/P75HZiYIww0bgJfatRoI4Ny5P2Nx8fgG+npIMCjJTlXFd+Rya0XBeXZ3hw8/4X49aWkwiLWk4XT262HikDMOiSRxyBmHenxGKhCJUfDofY1FXq8kcfjBfTA7OrCezztP9sxKJuNj+3bg11VXwYY5fhyf19yMPer1IpDq9SILW6++ydzuoK0NuNLaOjk5yeXagQCuQWHh1J19v18OWiCSe346p7/PdeGektrSVS5/54m7yZIqPh/IlMxM2LOnT2NNNTREz2YMBuUk+8JCeX+4VYzJpC8+Mx4fOLCftm9//2CRzyfvu8+H+5yTI3Wm0SgfoVB4P15FwX3o6JBD/rZvh+666SY8zxmIbjfR978PAueWW5DhrCUOw05YyOEs3Bpm8WIZTGNy0G7HZ9jtWFd1dZO3ZuJjHzkC38hgwLGXL0++rZMQuA5MHHq9OF+uICsv19/H0EOCQdiI2rJk7uuuKLBltYRhWVlqB1tCIawZozHx9hda4TkHoVB8JdtJlDonjUVnKQ+lq8xlEvHviOjHRHShEOLlWT4dvUT3ix0KQTFwD6tgEBFxjtoMDeH/ubnoq8I9V7KzsYEVBU7kY4/hNddfT/TqqwD1Sy+F4dHRgU1cVyenOD/3HAC+rAxRd5sNpMC2bdGj404niD7u/9HdLZv4lpRAMZnNyEDyepEaL/ma6OL3A8SdTtkjIxTC99GSXlriMFIcDjj2bW0wzlpb4ysP0kO4tFr7YKAkkoShdlrydEswKIlDjrCaTPIaTuf0VyI5eZAJmESEo73ccHoqMjQEIqm9Het040aiN9/8Cd1xx+20c+dOuuCCC/ilZ7WxnIgEg5iObLGgZNhkguGxfTswYds2OKQ8se/JJ1GuvGIFSEOzmejBB/H8kiVE998vWwjs2QOjemAAuHTHHeEZzkLA0N2+Ha+prAT52Ng4noDjMmM+Zy4n9npxnps2AUNtNrw2N3fyKXU80c7jkUM7Dh+WWa6BAI5xzjnIOFyxYvzaDAaBrXxunCWltwEarWQ5KwufrSUMBwfle8rKJGFYWwsCZboNY45Gc8YhEa4rE4fT8fnJ9Efk9xNNL5H4k5/8hG6/PQyP3jdYFAzChtH2MeRp4YoCAof3jcWC/61ZM3klQzyyfz+CHuefj2O2t4NcW7QIeOP3owrD4UAP6cggaqLi8wFLrFbsu2XLJl77nB3ncEhya6rEaTAI+6y7G8erqIA9NhM2yFwUJukYn7lPLBOHemXpaIWD6Twg5eRJ6MhFi6JjE+8NIcKJRI8H55yZqe8wQCGIHnnkJ/T3f3/2Y5HDgcDe6Cj2Obc+4WvMxKGW4EtLC5+WrE2ayM9Hy6dgED4XDxprbgam/PzneM+nPoUAXazJxW437IuxMeBNa+v4TGNuQWC14nwWLsR+nki/+f3odXj0KOyarCyc29KlyQVhVBXX0WKBncbD2kpLJXE4lwIUTHRqCUOLRWbi5uaGT0tesODsxMhAAHsgI0Of6hImYtPSYFvGY2tFljpzUs0E7br0IBHPRh5KV5nFtp36iqIo2UII1+SvPLukrw8b3O3GBtP2pRgYgDOYnw/DY2hITm3jTC8hQAgGg8gSOnoUx1y/HkqJ095ra6E8bDZkILKBvmsX/nfjjXD8o4nVCofUbodC46lyNTUgD3NzoeQOHsRnnHfexAM2hIAiGhjAeRcUAEzY6TWZ8P6srNiA7vGgT9KJEwCg1lYQB9OpALgsmTMMmaQjkhl+BQWSMJypLEi/f/xU6vR0nEtW1swqdc6ydLmkgpiqmExQ8mygTIVsKC1FlklPD8jEF1+EA0ckS8gnk/crFm3fDry44AKsZ6MR2FJeDuKvs1M24b//fmQLbt1K9E//hADD5z4H/LnsMjxXUACj/eGH4ZxXVRH9678iQ1S7T9vakL3Y2QmD5OMfB7akp8OZ0hoYXq8cCnD4sOzLuHIlyMOFC7E/R0ZkVHmyaLjbLR2+EyeAY8eOwegpKUH59oYNCLJE29OqKjOoVBXfu6RE30CGqoaXLNvt0ilmA5mJupwcXIe1a+XU5Jnq16OqMuOQDXU2FnlNTacYDLJELBEiMfL9c0FSFY+EwF7VZhjabBKHebptY6Ocfsrro6sL+7KhQR8CsacHts6SJSAQLRbYSZWVeASD0Bd2O3BELwJxZAQ4FQoh8BBtaJRWPB5cp1AIdtVUyS1Vxffq7MQeLC0FXs/lUsLpEh6UMTKC+yoEcKiiAutOj6yciYSz2MfGoMuqqqBfBwehUyMlLU32/LRase7T04HdoRCwn4P4eoi2Byxj9eTvSR0sCoVkphzrzexs6OfILD8i/ExPD9dTWn02NAT7IDsbPpTHQ3TdddhrQgBXDh5EEHXBAqK77orde1lV0Xbl5El81qpV4yezcwuCwUGcU3091tBEeDA6imDsyZM474oKBD65FUQiEgziu1ssOJdgUJJHFRXAmNkcIKIVl0uShT09wEIOtqan476ce64kDqcbA+aKmEzAEQ6SJ+snM1YxMV9UNPl7eCCRdlAR+9I6T3VOWFIJ3/SSWctEVBQlm4juJqJriaiKiNxEdJKI7iOiZiL6lyhvu1UI8XNFUX5ORLcQUS0RfZeILiOiMSFE/ZljVxHRt4jociIqIKI2Apv8oNB8YUVRXiaiJUS0iYi+T0QXEFGAiJ4kon8QQngjzvkTRPTPRFRHRB1E9J0zv/+LECIeKNH1Yg8P48FTlBYvlsZFfz9AsLAQDqHFIo1CbYbXvn0wfrduxWt37gTheN55IOmGh3HMkhJk/D36KMr+8vJkdtGKFdGBlFPhjx6FMjaboUAXLYJSMpkABgcPQslUVIDIm4i08nhAOI6O4nUccU1Plz1JJnq/34+mw+++CyOhqQkKWG8jORgcn2WozVKJ7GM400o02lRqJvCysmZXqQshm4KXlCSmGDjLU4jJB724XC6699576amnnqLe3l7KysqihoYG+tKXvkRvvHGUvve9b0Z72zwWaWT/fgw5aWmBo60oaG+Ql0f04Q8DS7KysMfvuQfR81tvRR+gF15Aj0ODAWU9l1yC1+3YQfSjH+E+Xncd0Yc+FN53qLcXxOXx43CWL7sMWOR0ShJce99HRoB1+/fDKcjNBc6dey7Ok3v+MYE9WRZgKAQSkrMNu7vxeVVVCMJs2ADDPdbaE0KWxbHTX1qqb7ZvIIBr/957uF4DA8DaQED2mamuDs8ynOl+PaGQdLQYI41GmXE4G4ZhMoNWiJLLSJwIj44ePUrf/OZZh0eCCLpIm2E4Oip1U3p6+KTkoqLYjszoKNoHlJYCj5IVpxMD5zIzgUMuF4IEBQUI2goBXBkclA5msiIEgiOnT4P0aW2dmPzhElu3W2bITcXR4xKzjg7gbWEh7LS5PsBAb+HSeB6UQSR7aBYX60fAxSvcLzwUAlnNE2oXLYqdEcRrIRSSAXYi6DaPR2Y2xiPvRyzyeCSB5HTKHsF5eTKwzb13WU9F0xNMMBoMWEtHjuD9b7+NYMjHPoZ1JgRw6rnnYPO0tCADMVbwcnQUPpPDAVJrxYrwvc4tCLivZlUVCMZYNr0QIDKPHMF3NhrhS65YkXhbIb8feGixwN7gdinl5VjHevboTFQCAeknM3HIVSCKgnPVZhkm6oucTcJkel6ePj6izYYATVFRYhmOoRB8WR5gxFzAGQ5gUiv2fcpD6Sqzyf//NxHdQEQPE9FhIsojopVEdC4R/YyIqonoNiL6NhEdO/OeXRHH+AsRHSdcUDMRkaIoxWdeV0FEPySi00T0YSK6n4gWE9FnI46RSUQvEtHLRPRlItpIRHcQ0RARfYNfdObG/YKI3iGirxFRLhH9BxH1xvuFu7rifeXk4nIBAJmNLy/H711dMlW8oADgvXcvFEVZGRQQN2EeHCT63/+V6fJ//jOMi8pKRL8HBuCcu93IBHrkESiZZcvg6Le24n3d3ePPz2pFph/3GFy4EA5qaSkAmoegHDkCUFqyBCDd3x/9+3q9+ByLRWYIFRUBPIxGOBs2Gx7RJBRC5O7oUbynpgbKOjcXRGkyoqq49tqHtm8XR0n4kZ4ePqhkJkQ70Vk7lTojQ/ZX5HNnRTqbwiWnvAYTEVXF92XSNpZ88YufoaeffpxuuunT1NTUQk6nnY4dO0gvvLCbrrnmVurr66Gnnvopbd78z5STs4zy84l++9ubX404TEph0cmT8b5ychkYgJNdWAjDorMTQ0PS0xHF3rsXBkJGBtFXvgLD+VOfQuT9H/8RPcQaG0E2lpbCeb77bjjqjY0YnJKfD0MvOxvY8tpr2MtmM4jANWuw5w4dggGRlyf39fAwnPx338WaqK3FlOalS3G+3N/GZsMxcnLwiLYPhAAGvvUWyMiBAXzewoXIwGxtlcNbGHOiicMBHOZ+ZUVFwILOzuTuBZOGnZ0gBHp7ZT+b9HTogKoqOB+VlbjeWsOYA1PTLUwcaicqc6kyl4PPpiTbH5EocSLxn/7pM/Tss4/TDTd8mhobgUfHjx+kZ57ZTRdffCtdckkP7djxU9q6FXj0pz/dfDOlsG20datsoI7jYa3yI87+R0Qkp9LytFo9+jf19OD8amuJ/vQn4AIPz1AU7BePB5/31FPJfR4RrgMPfOKp7hN9j2Aw3ImaauWAzwd7kjOEcnKmv23JXBK+fto1yKWoGRmz38+M7Ri211wurMucnNjYIgS+kxCy9QM/x4ROPN9rz57PUFfX47R48aeppaWFgkE7DQ4epG98YzfV199K9fU91N7+U2pqAha9/XZqY9GOHZL0ysmR5HF2djhBEWtycbThJF4vggFmsyw9/uhHgRuKgjLhX/4SxOBFF6G8Odp9DQYRMG1vx7HWrw/PSOUWBD09uNcVFbBLYu1lr1eWLDud+L7r1yOxIpFehF4vbI/+fthoHMDn8unIqpCZFC6j1g4+GRiQOjo/H0Th+vX4ycNG5yVccnKgmxMknQEAACAASURBVJxOfYb85ecDkzgpaKrXnEn8sTGsOyatrVaiL34xrkO873govWU2MxFHieg3Qog7Y/w/Zi26hgH+sRDiUxH/+0/CTbhWCPH7M88pRPR7IrqKiFqFEIfPPP8yEW0hoi8IIR7UHONPRHSeEKLszN8mIuomIueZ97vPPN9ERO8SUVo8DHBXlz7ZP4EAgJBJqMJCRI4UBQ7u0JAs77FasdHKysKNS78fBrGqEl15JdHu3TCEL7wQx2HyLzMTJZ0vvIDnP/YxKLpoRr2qYhOfPi2d4cZGkI7aCK4QIDtZsa5YMT7izaQXlxZyHwpuWpuTE58RxM3VjxzBteJsx3jSp6MJG2JawpANeCKZ6s0lyRkZs6c4tT0XeSo1Ty5m4nC2nfWJxO2GssrNTbyckh0EdgpYeMJgKES0bl0hbdt2I33taz/8P3KDy1CEIHrmmZ/Qf/7n7fTggzspJ+cCOn6c6LvfRZQrVbHo5El9sMjrJfrVr3CNN2zAnnznHfxvyxZpnHo8RA89hPX2hS/gfj74IPDqIx8B2ejzgUB85hncr+uuA9nnduN9QqCk8J138DnnnIPPNJslFvJwEB5E8NZbMJSJsO/PPXd8SaDbLaeXajM3WIQAhhw8iM+2WPDc4sVE69YhkzlePHE6ZV8lznZMNAuaM3b7+mBA9fbid58P6zc3F8GSujr8rKiYXcM4GJTN5lm4l5TJNPfKgphITLQ/ohDhBGksUVWQyhwEu/nmQlq9+kbauvWHZLPJwB/3Auru/gkdO3Y7rVmzk6qrL6A//1lG3FMRj7ZsIcGEDTvpiV5vzl5MZCpuNBkcxD2prMQ+5cBCQQHuKU+aLCjQJ2uPBzMJAfJwIr3HNhKv0fT0qelzvx+EVCAgB0Scjf28ogn3TebrRySd2LlQFhcpPFyAs96cTpzvRNk70UhDXjNE8a2XP/yhkBYuvJHWrv3h/x1TO+Cjvf0n9M47t9P55++koqIL6OmnUxuLfvc7EgsWyAm6vBa05OBUsCkYhM3gdsMO6etDRQUP/6utRR/pnh60YbnooujHGRhAYofHg+oGDoASyRYEXV34vNJS2b8+moyMwB86dQr6eMECDEqprZ36une55GAUxsbsbOBlRUXiCQDJisMRnmHIdhER7EW+xzwAZaYzjFNZgkHYyyaTPjpPVbG+mfjmNSgEcI4zw7UPqxU8x/Aw7jXbWYxLJhPRM8/ElYn4vuOh9JbZzEQcI6INiqLUCiESzdH77yjPXUlEp/jGEREJIYSiKN8l3LwrCIwzi0pEP4o4xitE9BFFUXKFEA4iWktE5UT0AN+4M8c9oSjKcwSGeVKprY3nVROLqoKg474cVVVQAEYjnjca0d8rNxcbrb4eGzOScHv+eWy0666Dg2wyoRywuBiRruJiZCvt2QPltHIl0Z134niR4vXiPR0dchjBhg1w8iNBxu+HUnU4cMwVK6QyFAJKkgkBoxF/GwyI1nH/xHilo0OWDtTWwuGvrJzCxSZ8F21JMjty3Gsmsix5LkSt+Rp6PDgnJoP551xz1icSJlyKi6eWjcJkIE+Y9npxbxRFkoQ83TUvr4DefXcPORxdVFtbO65U5eBBHHfFChh5Mfr/pBQWNTTE86qJRQhE0NPScF3y8kDaFRUBS7xelF2dOkX0gx+AyPr3f0ep4be+hfX48MN4fs8eTIfv6UFG35134jg8AITbLoRCaKFwySUSC5xOGLNmM/bl3r0YgDA0hL8/+lEcM3KaIJMOmZkwKrXly6EQIvR79uA7jY5izTQ0oGfm5s3R+1LFErcb55OZCcM6sq1EPOJwAON58El3d3ibhNJSfE92Mnhw1myKdqKyEHLP8WO2z28ySXbQitcrS3P5wdM9uXcZD2og4mtUQEeP7qHa2i6qqqqlJUug77lX5htvYBDRt7+NfRZDUgaPXnllslfEJydOAD9aWhA0TVaOHUMAdc0aBB8OH8Y+bmmB03ngALBt+XLYJ8mIELC3eAhetAEJWrHbYddw4GMqTrDTiQCL1QqSpK5u8kELqS7cX5MdUL9fXjsuj59LAx2iydgYvkNxMXSixQL7f6IAFus4vx96JzNTDvAyGCYuKxWCaNGiAsrN3UPf+EYXVVTUhtk+aWlEv/41ehl/85tEF18c8zRSBouuvVa/fSAEbAiXC3u7pwdZ1x6P7Nf8wAP4+667orde8PlQQdHXB1zYtEn2eOUWBJ2deF1hIXR/NCzQJlNYLLh3jY3Arqn2jLXbJXHIJf/5+chgrKiYeULO55NlyUwc2u34n9EIO2jlSlmaXFx8dmPddEtaGnSTywV9mEgQnPuNMh5bLFifDoecgM44zcJEYW4u1iy33OAWJyUlsIHLyqZkW7/veCi9ZTZJxC8R0WNE1KEoymEieoGInhBC7JvCMdqiPFdHRDuiPH/0zM9IGmxQCOGJeO5MwS8VEZHjzDGJUCsfKToWBk4uAwPYaHY7DIKlS2EEtLeDla+ogGFotQLMo00+On4cBvLGjdKgXLkSYHv0KLJ9Tp2C4snKgnGwbdt4EtRqReZQby82eG6uTF2vqhqf9TIyAgIxEIDCrKmRDf+ZOGSHLRCAwZSdDcUY7wQnIiiUffvgtOfng+Coq5v8fVw2oh1+oi2xysiQg0/M5rljdIZCkjjkPoCcWcDDZVJVaebnY12PjUFRcIagliSM/KmdkMfCQ1a4p562l819991Ht956M23eXEctLS106aWX0vXXX0/r1q0jIpmdwSRkDDLzfYdFf/0rsGTlShCI+/Zh/V18seyrtXMnHI01a4i++lWi//kfBDDWrCH6lzPdRh58EOXJFRUoYz7/fOn8vPEGsqR9Przngx8M79PjcMhMwtdeQ9CA2xVccQWc++Li8Xs1EAAeBYM497w8vG//fpCQ+/bJ3ogrVuA4zc0wVHJz44/Ye73AIZcL64aj85PtR58PuKolDTnSbzAgGLJ8OQyo0lJ5XrNdiiiELFOOJA65rC6VsEg7KEUbIOIouXboh3ZqMP/OpYcsigK9zf39mpuxHnJz5WPz5vvoy1++mX772zpavryFLr74Utq69XrasGHd/1UJEE2aNfa+wiN2Ihcu1IdAHBoCdlVXg0B87z3cb66qePdd2EiNjckTiF6vLHOsqYk9gIkIGMXOFa+jeAOXHg8cNZ6KuXjx5IMWUllUFdeUHdJgEN+1sFASh7Md9J2KFBTI+19ejvXY3y9bhUQTRcH3HR2VGa5ZWXiOcYrL/jlLnIM+gQDR3XffR3feeTO1tNRRc3MLbd0K22jjxnX/h2VEk17HlMEiPXXTyZO4vm1tCPht2hTeo/uhh4AlX/0qcCZSurtB+oVC8PMWL5Z7dXgYe9nths5oaoo+edvjkf6ey4XX8pC3eLOOuVc0E4fcgon1V0XFzA5eGxwMzzIcGpI6tqgIvh4ThhUVc2doy9kkGRmy739klRdXD0ZmDg4Py9/HxsYPqlQUYFlZGdqbFRbK4GlBgSQOI3uRJmlTzvNQScqsbS8hxB8URXmdwMhuJaK/JaIvKYpyjxDi3jgPE3nRE5GJ5orNKXdHm72QmQkAN5lkVJkzDh0OWc4cKTYbnP8FC0DOvfQSALehAX3NXn0Vx167FhvabkfWDROIoRDAu60NQMDGaH4+AIWzeiIdrlOn8MjKwrGNRhizkaSXySRLhPLzcW7x9ucYGYHzz73TNm0CGEUzkrU9AvmhjXrwoBYmDOcaERcMhhOHRLgXubkTT6Weq8LkQzRS0OXC+u7vjx7lZGXCJTuRSoaNCI9HlnNr7+XHPnY1XXDBJnrmmWfoxRdfpEcffZTuu+8+uueee+juu++O9yu8r7DoxAmJHbW1IO+cTmTCcUDhsceQZfShD4HQ+/znYfTddhvRLbdgr37rW9i3115L9Hd/h/urqnjfCy9gbTc3I4gRObBgbAxBiQMHcNy0NBCNa9fi89PSYHxEOjg8IZ5J5cOHkXF44AAwITsbWcvr1sEgVVUcKz8/foLO74fRxP0Iy8pi9wTico6uLkkacsk0kTSMFy7ENeA+MtoeZhP1x5pu4b3LzicRvqfJJDMOU0mCQawPLUHIUwT5ee5nqRVFwb0pKoKTv3QpyAo2fpmsNpnCszP5vdzPbuXKq+maazbRs88Cjx577FH63vfm8SiWOBxwlLmtS7Li9WJgU2YmghZdXcCo+nrc2xMn4JTX1yOAkowMDYGQFCK8n2qkcCYd40lJSfwZIH4/cKWvD+uMByil2r6MR7QZLpw9zpNAi4tlGXqqCvcNHx6GnX36NNYnDzOLJkwkjo3JKdOZmXiMjEBvZ2WNx6KsLKIbb7yaLr98HoumKj09uE9tbdh7a9fK6qXhYaI//hH6/LOfHV/y63IhqDA8jHW7cqW0e8fGkDDicOD+cGAzUoaGQEC2tWEPVFXBH6qpic+P4VYpTBz6fLIXPQ/wnG4fgzFPSxj290u9m5UlK/GqqvB4P06RnylhMpnxlXtMDg9jzXKVhSfKbtf2F120SP6utY8Yj2w2rHttgEJLGOqJ3/M8VPIyq2aEEGKQiH5KRD9VFCWTiLYT0d1nUj4T7dnVTkRLozy/TPP/qUrHmZ/RigAbEzjelMXjkZM109MRATebQcyNjcH45B545eWxU9r/8hcogwsuQOYONy3/+texgdeuJbr6ajkZcONGKA2eitzeDqM0Nxe9wKqrZV+CvLzxJXQ+Hxz9wUHpDHNGDZNe2dn4TiMjckgLlxfGo/DsdpAY7e34PuvXI2NASx4EAjK7UFuWTITXcQNzJg3noqEZCMiMTW0j9fx8KM+52gg4Vvag9vdo2YMGg7w3RUW4Zzk5WC8TTcWLJRkZ8t5HEtNlZWV022230W233UYej4e2bdtG9957L335y18mJXH2+KzEIquV6MkncQ1XrQL5ZrdjwInJhOv80ENw7D/1KazNv/977PWHHgKe3Hcfeh8WFxPdfz/2rBAwnv/8ZxiuixejX2IkMeByIRDyxhv4vawMROWGDTiGyxV9OjNnplgsOLfjx0Eg8hTLLVtwHsuXY3/Z7bLBek5OfFgUDAIPudQwMuOFDWPOLuzshHHM+zkzEw7+ihVwMmpq8Nl+vyzbdrtx7QsKZs9o5j0dCMhsbe7LxhmHc1E4Sq4NyEVmErKjrZW0NBi6RUUIuHGQjo3goqJwwlqI8Vk9PEkwEMA14mz2aNeromIej+KRQAB72GTCntFjkMoLL2CvXXMN1kJvL+wrJm0OHcK+XLs28c9RVWQqdXbC7mhtjb2XuSSehz7FS4QFg7CnenrweZWVsL/mqp2QqAQC0rHlDBceIlVcrM8AgLkiBgMyz7kHXXU1MtL6+8f3+mXhIE9GBtYzJyFk///23jRIsqs8E35vZmVlVmZW1r51dVV1V++r1JJaCxJCEsKAIDx4HAPjCRgw4GA8YM/MNzNh5rMnEMzYmDEzJtgmCAv4WD7AI8syMgKBEAgjEBJqCaRWd9O7uru69i33/cyPp1+dk7fuzb2y8madJ+JGZmVl3rx57z3vec/zLk8A50WdLznwo0LbosqwsAA7wQTi/v0Y434/Kr2eegrBzve9b22f7nPnEKRwuWATxsdxjaJRrG+Wl3Edd+9eu9bK5/G9L7+M9ZbHg0DWgQPWWYpm5HI4dhbm5F6pAwOwHYOD6xt4SCYLhU+uXMG9SYTvHRmBzeU+hhsp1NJq4Axnu/6D/Ghu5cTZg/39mBOvv16WFnPgpre3kHDmXvTmyrFUCmsEXuf29DQmGUbzULVhQ0hEwzDcRBQUQryqpSuESBiG8RuCvHWI0DySiKjCjg30j0T0nw3D+B0hxMPXvs8gov907f+PVHHIx4hojojebxjGZ0wNLe27EtUJ2SyM6swMjPr27XCMzpyBUzA4iPcYBhwJu8y9p5/GPu67D8Te6dNYVM3PY8B+6EPIvnn6aUxGN9wAY/Dss4hiE8GZ3rEDE0suh9cTCWk0VExP47OxGI55ZET2oVFJL1Yv49T80dHySoXjcfk7XC5E7A4dwjlSMwzNZcm8AGeBkWaOyKfTkjjkCJzXi+vl92/ssaviJMVKjK20mziqxEI05j6E5oiTEHISq1YxkbMV02m5kM/lchSNRqlLCQd3dHTQnj176Mknn6RwOEzBa4z8Msual4+Ws0WZDNE3voExfe+96Be5tATyjcmuT34SC5wPfxitEX74Q/z/z/4M73//++EM33sv0XvfC6fw9Glk/1y8iHv7938fDqPqJE5NIfDxi19gTO/Zg30cOID3ra7CEeGAgIrpaRCPzz0H8o6zA++7D8e2e7cs6eL9eDzl9+LkDJilJfzNvbayWZktwqQh9xFyu2Hrbr4Zi4WJicJ+PdwjdnZWZgIEArCRG9FKIZ+XpJhKHPL43UjiMJ+XC2QzMaiShpy1rSIYlOXFnG1mJgkDASmUYtUfkQWc+PxwRiaRtDtMFrJts1oAaXtUPoTAgjmZlJk+teLZZzFG774b/sGJExjLk5Mg5I4dgw90883VL2ATCRCR3Kt5925rUjCfx33LrRDKzf7J52ErL13C/Tg4iPu6USWHjQD3zVpclP3PWDChr68+Df+bFe3tsE+Li7gf+vrwnNshsP1RgxgMDoZxFvv27bgPuUpDneu0LaocnBV97hx8mR07MP58PvguJ08iu/mf//NC+7G6irVMOCzFH30+2YJgfh7XZnIS97hqL+Jx7PfUKVnBddttsCulbGI2C8JxehrfkcthnhoawnH096/PvJ7LYS2qkoYLC/L//f0I1nFZ8tBQ8wYmmxkcVOfMQTuikH1SFT6fzBY8eFA+7+3F9eEATS6Hz7e3r01e4v70iYRcKzLY3nAFGZclBwK4N5aX17evt+ah6oONoiA6iWjKMIyHiejXRLREREeI6P1E9CMhxKxhGM8RWOD/YhhGNyFl9BkhRCkG9xNE9A4i+qZhGCyt/RYiejMRfU4IcbzSgxVCZAzD+DARfYmIfmYYxleJKEiQ6X6RiG6odJ/lfzeIupkZ/L11Kyal3/wG0Skm8zhSY7e4vHwZAgEHDsDx/ru/k1kvb3qTjPAcO4YJaWAARufcOexz505MYBwtT6dh+LNZfC87bZwxw+pffj8c7oEBPFePTwhMYPPzMCBjY+VFzNJpOOEvvwwjtX27JAGmpgrLzLxeGDbOMGxvb/7oVSoliUN2AH0+WarciMnULE5i92iGYUgisL19bf9Bfqz0GnCpoJruXg08Hvw27pEYiURodHSUfud3foeuu+466u3tpRdeeIEeeOABuueee2hoaIhuuukmMgyDPv7xj9PKygp1dHTQ7/3e723fjLbo29+GU3vrrSD+FhdB3vf1YRx/9rO4V//9vyf60pdguz7wAQih/M//CRJvxw6i97wHJKAQRF/4AvbV1YWy56NHJQmYyyHT6KmnQMYJARt2zz0yQ5EX25mMHCNEsAXPPovPnj6Ne2hykugd70DWIkf5GbGYdKZCoeLCBuo5YaIqnZYtBl54AYv4uTlJog8MwE5xOeGWLdYEZS4HGxqNStvO4gmNzpDmsZ7JyIix241r3NbWmOPhKLld9iBnIJmzmd1unLfeXswt1123Nnuwp6d88skwJJHKDrG5LNnlko3HOavHfI5U1WazHazGHr33ve/9l7QJfaMLF3Dt9+6tjwroxYuwF/v2wbb8+tey7/TMDFoeDAwg47ra+352Fn4LkexDbQUuD8vnYYvKyaYTQjaoT6Vwf09Oto7yqNprK3ptaef3Y2z39ZVnr1sFwSCu8fKyXMifOIF5hf1DLksOBGRPWhZTCYcxT0Ui8vPcd5p9dG2LKkMqJUuIz53DfTk2huvx6KPwBd79bpQVM3I5rOXOn8dahcUf02kkiczMyBYEW7cW+gtsSy5cgJ0YGyO68068r5itSKdlmfLCAuyG1yt7CNZbeIR9JHNZMq8fgkGQhdddh2MolgijIZHLSf/HrgehWZyEwUHugQHMb2rmIG/lVrm4XHivmjXK/pHq57jdMgGkWFmy2y3XE0tLhT3Q6wzNQ9UBG0Uixonos4Qa9LcQkY+ILhHRXxJOPgkhzhmG8UECc/s3ROQmot+nEmmgQohFwzBeQ0R/QUT/msAmnyc00Pzrag9YCPHla6n7H752nLzP64moxtba9pifh7FPJKQk/W9+AwegtxcDtaOjUBrdjESC6LHHMNE8/TQyecbHid75Trk4HR2FA/2DH8CAcz/FI0fkRMiIx2V/nbExvLa0hNdjMalItmcPyEmr6HkshgmFVcVGRkqTY9ksyMNjx/D5kREsygMBOJVtbTh2VqHzepuzLNkMLkNnReVcTmZMcqlyPX+Hmj1YiTgJL5DdbntycD0JTigpg0SMxapfNHi9+H3IWvPThz70IfrhD39Ijz76KCWTSRofH6cPf/jD9Cd/8idERLRjxw763Oc+R5/85CfpD/7gDygH7+d1tMls0bPPYtu5Ew7K/DwW3KOjcGa/+lVk0732tUSf+ARsy6c/DSf3Ax/APj7wAXxmbo7oySdhKwIBkIcHD4LQ6ezEeH76aWyrq7ARd9+NCP3QkMyq4f51+TzGyvQ0FvvPPANnNZOBjXr720E8mvsqEkkRp0wG90ZXV+n7mNUOX3oJ38PkNiMYhI09cgSPY2OlnbJ0WgrFCIHxr/aGaRRUcoztAAcF6kkccpTcTAyaSUImDFR0dEgi8OBB6+zBepQxqmXbamkykcye5mz2csu41UxT9W8iIr+/cntERN+kTeYbLSzAroyMWI/pSrG6Ct9nYADCTidO4D7fvx/34dNPw57dfnt1c1w+j0DGpUu4Lw8fth7X2azMmG1vtxaFssL8PM5HPI45ct++8gKyzY5oVC6MuddWZyfKsjfCNm4kuEWCGtSJRjH/dXVJUmjXrtK2KBSSpcxCwF4y6cDZZ9oWlY9cDr1NT5/GxuIQqRTatuTzRP/hP4CwYczPYz0Tj8Nv2rcP1+TCBSlWOTIC/4EDXbkcCMqXX8b1am+HjTpwYG31hQpW8+YMLxbY2b4da0dz65daEI9LspCJQx67Hg9IwltvlWXJfC9qSCSThUIkVkShlThJW5skAXftKiQFOYuwt7f2CjYhCttU5XI45kgE9tnrLay8qHTO5LXv6qpcE6wDNA9VBxjCqtZQo2wYhvEIEe0VQpRTk17RyY5EkM03MwPDu2cPJhBOWXe7YYD7+4sb4a9+FQ6y1wvDc9tt6FF25Qr20dmJBf3Pf44F+r33IhJv1bB3dRURsHweEw9nZbBDcu4c9nndddbOPaexLy3BOIyO2kfKWf2J0/VfeAHPh4dlE3LOMOTMGKeASxWZOMzncQ79fmzV9GXk8mKrvoPq63blxVYlxepjs0z0Kyu4L8pdYFmBlbhVhcEK0SRnQ2I9bdGlS8gY7OiAgzw1BRuxdy/KhFlxua0NvQpvuw1BigcegFN9881Ef/RHcH6+8x1kRgeD6EN4550g0Lhf4M9+htKeXA5Bgttvx1jP5WDv+HpxJgb3ETp2DI65ywVbuWcPSMdt26ydEFbYjUbxGXXfZsRiOOZLl/B7OBOc+7pOTsoMw/Hx8vv1CCEzQtJpfIZ7MDayZFktgWP7wMRYNWOfo+TFsgeLiZMwQahu6mvrQR6oytJMGqrZ1mwf2SZyZk8t38fq1TXa1qazRUQV2aOKbFEigWBGRwcyd2oltbNZogcfxBh8+9sxxmMx2I5MBr6R348+0tX0aIrHkdUYiYAs2LXL+pgjEdkvuru7vIXT8jKymFhoYXLS2m9zCoTAb+GFMrdxCIXkQrjVejrawRy8MLdI4PlhYQH3pc+H4P7wMMjwcsDzn8+HOWdhQQr3VGmTNpUtIpJtFV58EVtvL3yhxUUovPf2Ev3xH0vRpHQa779yBQFUzpCfmoKPkc3Cx9q2TWbkcXLGqVPwW3t6QB4yYWyFaFQShxzg7OzEcQwPFycdy0Umg/2rWYZc2W4Y+B1MFm7divvSCYkd6wX2ca0Ui9WSY1bAVsHiJOaMQXXr7FyfdZqZMFT9Iu5d73LhPnW54MPV4zovLGC+Hxysau5tSlu0Hqhw7Vff79YkYnkwDMNLRGmhnDDDMA4Q0a+I6ItCiH9Txm7KPtmczn7hAoi9ffvwPJGQCo+sNmeH1VUs/L/3PTivXPb71rdKo5/JIKPm9Gk4ze94h3WGlxCY4K5ehXHo75dZGB0dcLwvXoQRO3LEmhhcXcXns1lMJoOD0tBwZlgyKQVQMhkc58mTMKojI4hgTUw405HM5wuJQ+6vpRKHdhOAnTiJ+mhXXqwSgXYkoZOQz2PCJarJ2X01esZ9GSvEhk1QjbZF0SjRZz4D52bHDtiN8XHYpL//e5D7r3kNiLX5efQ8zGTQMiEYJPrDPwSJ+OijsEU+H9Eb34hgRTAoVZaffx775rKeO+7A9V1Zwf66uvDZbBatGZ56Ck47Z+0cPozv2bsX9wiXblnZinQa9iiblT0U2RZls7BTrJR86RKcGRZn6u7G79+/H981PFz5GLIqWWaRqUY42SphxuW4bCt4sxtXicRaMRIzSbi6ujZY4fGsLSc2k4Q9PY2zR5xxac4wJMI1YNETJlPV88GReMOo7XpxpmeNROKGOst1sEdl26JcDi0RkkmM9XqQyT/4AWzXb/+2zADZuxfX/Mc/xuPdd1f3XTMzWPwbBjJmrcidTEa2Q+AM21IB0UgE5CELLWzfvr79o9YTrPrJi+lMBmOKS+56ejamB2wjobaNsGuRoNoj1eYkkwjs+/0yILVjR/n3K7fx8HrxGb6nqmwZs2lsEePsWQQwjx2Dj3LTTVgL/fKXIPk++EG5HpqaQsZiJoNMxV27UJXxyisY/9yXl9dg09MgHC9exN/j41KN2Aqrq5I45Az+7m5JHNZS8i8EbKNKGHJCCRF+O5OFo6NIfHHiOq1acNuVUgIl5nWayyX9Iqu+g0waNkJkhEj6kpp1OQAAIABJREFUhiphaC5LVjfVFuVyaJXACU61Ip/HPSZEVX0xHTgbFked1n71PSZNIpYHwzBuJdSif4uIpgkKOdeK9OiIEOJ8Gbsp62SzytbJkzAu+/bJlPBgEBP90JD9hMDqpY8/Dgf26FFk+ywtIUPo9Gnsn9WPp6aQtfOmNxUO0nxelii/8gompe5ulOYFAjiOZBIEwPKyJBbMAz2TwaI8HMZntmxZK36SSsn3ezzY36lTUjjmppuwf6chl5P9DbmpP5cD+/2YGOohTmL32KpRP56wOzpq64fFYggsDlEBNpJEbKgt+uIXUba7c2dhVvTXvobAwo03YmHf10f0r/4VyMKpKfRBfM97kIXz+OP47KFD6AvU34+x/eMfIwM6lYJNu+MO2CufT/Y6zOXw98mTKFP+xS9gi/x+9Da89Vaownm9eH8iIRfj5vs/n5clw+zohMOSLLx0CbaKHb1QCL+3sxP7GxuDg1ztPZdKye8nwnF2djamBxA7h2qzfSYOufRkdXWtGImZIOTSJBXBoDUxqG6sBroRUEVheKGuOsYqWVhuhmE+by+0UumxEdVkqzd64V6rPSrbCX35ZdgRVoGsFS+9hEzDW27BIvvyZQQpe3rgQxGBQKy0r2A+D//lyhX4TIcPrx3jnJUSDuPa9/aWbnkQj4NQYPXV8XHYI6fN89yDT1X9dLsLgwxOC26WCyvldjWYoGaAl9siIRyGbQ6FsOg2DPuMVyvE49iH1wviJxzGvVjFPLdpbBER/Jxf/ALVE8Eg7MiLL6I64tZb4f+0tUkxpbk53NuHD8MXuHhRJoawYGY2C2Ly5ZcxNrxe+Fv796/NTuZ+g0wcskBOb68kDqv1LSKRQuETbj9FhGMaHS0kDVtVzEgVJzETgqpYCQs8qeCWNGbFYnXr7t44+62KY/KmtrJSycJy15Osi+Dzld9XsRgyGdi09nYE4SrwtVqRRKzH2q++x6RJxPJgGMZWIvo0Ed1KRP0E1Z6fEtGfVtAks6yTPTWFCcfrRUR8fl4SeIEAMvKsohLpNNE//RMW5okEDP7OnehR9swzMGCxGBwG7i127BgmtTe+kdVqC0mvTAaG0uXCAnp4WA7i2VkcpxDY38jI2mNaWoJjnkxKsYJ0em2Tft6iUWQ2Xb2KSfmGGxBVdVKEPZuV5GssJsu929ulElW54iTFHp10TtYDnMnFPTCrBat3d3RUNJlvJInYMFv0ve9BNXl0FGN5aAhlNl/9qswOPn8eWUGDg7A9w8NQes9kkOUTiWDyP3oUGYuzs8giPHYMtuDgQSzU9+yR93Q+D+f1+edBHnL03uvF+1/zGjjpnKGSTsOR496IVov+ZFKWDC0uwq5euSJJMW4uPjGBxfnwsOxTyM2eyy1TLjjRppJll0uqLK93CwZesCYS+L2cJcjkxeqqJAhXVuyj5OZyYnOJcTNlHKhkqVlNmmjtIr2Wa8BEYq2ER41E4kYv3Gu1R2XZoitXkDE4OYkFd62YmSF66CGM9ZtvxsJ9aAi27sc/xr1z112VEymxGPyiSAS2cteutTaD1YWzWdgCq4CH+f2vvILMJJcLdmpszFktXLjfoyqEpPbwqlcJXDOhVIsELkvmrRa/bn4e80wwCP+5pwf3SblIJGQPsrY23MflCowp2BS2iAj38VNPwVZwa4Vf/hKv//Zvo+KLCBVkp07h+b59uM8vXoTvGgjARvT1wV6cOAEbx8JIBw5gDaeOc67EYeKQfYr+fvgsQ0OVz8fpNO4ZlTTkEmiXC/tUy5JrqQBqJqjBjGKblThJV1fxzMH+ftwXzXSezIShVVmyShhWe+zMHwSD9fEN43FcBw5Wl4kmOvP1QZ3WfvU9Jk0iNhQlT/biIjL7Mhk4n5EINm4UPzKy1nHM5RANe/xxvPfgQUz+Fy/C4X7mGSxYd+xAZODIERB23/8+Xr/3XuwjFpORJnZolpfxfGREOhP5PCa6CxdwTEeOyIgD95pbXcX3r6zAiAwNYZHOvVtUtWQivP/YMXzG50OfkL17mzcabc4eTCTgFEQiUhyFhV46OiTZoYqT2D02629uRnD5EzcDrwbcn5Kooknf6RNUSVt0/Dh6Gvp8cKIGB+Ec/e3fShuUSBC9/vVwfldWiH73dxFlf+IJ2LLt2xGdNwzYkuPH4aR6PAg83HEHSDvG8jLs1U9+Aseb+zMdPQp7sH07bKFKGkcisB9tbYWEFivInz8vW0Nw2Rar2Y+NSdKQ2ytkswicrKzIDKHe3soXuLkcvi8ahV30eGTJcr0cS7M4yfKyFL1hB3h5GU4Yl97yd3OU3KrnIG9qmXezwrxIN/cOM5cC1tupZ0d8A4nElrdF7B/09sI3qPUaxuNE3/oW7oc3vQkEYigEn+vJJ/H/172u8pLO6WkpynLo0Nr+hPk87Ar3U+3tLZ4plM0iO/rKFYz1LVuc1c6FKwZYeEoIKRjT19d6ogrmFgnmsmRzxnM9f3s+D1KJW3ksLmJ+q0RgJ5nE/akG53p6Kspmc/rVLGtBHI0S/fSnEKxsa4NNevZZXP/3vAc+TziMKoyVFfgW27fj+qys4HxOTOD1q1eRdXjpEva9bRvIQzUpI5fDnD49jWzGbBbfOzgoe2CWG1DI52UAlUnDuTl5nzL5zITh8LAz2wkkk/aKxapvZCVOwqSgXf9BJ7RYyOfXEoZWZcnrlZQSDss+5vVY066swJ+uQDna6bbIEdAkYmNR9GTH48i8WVwE4ceqoQMDMGZDQ4ULDCGQtffYY/jM5CTRW96Cz3z961iwRiL47H33FZbM/OM/Yh+q2mB7uyyzzWRk1Ht0VGY+xuMgOVdWsPCenISjoZYls5H2emX2os+Hv82GKhbDbzhzBsbs4EFsG2WgrcRJrB6FKOzhmMvJ/obBoFSoMvchbCWHuRmQy+Fec7tleX414H6VnBlbBpx+JYvaovl5ov/1vyQ5xyI2jz0GO5FI4LWxMSzAd+wgetvbQBJOTcEBfstb4EA8/DBaKHg8sGG33ipV1Ts7kZnIys8chR8cBMF4++2wM7wA7e6WC+h8XiqZer2yh+orryDbcHoa+0qnEezgHkQTE7Bp5oV4LifJOCJ8VzXkdL1KljlKbi4nNpcYc2kuZ8UR4fs4Kj4wUKjMt57iJOsNLktWSwHNZcnqQr1R/SXr0R+RqGoisaVtUToN2+ByIWOw1uy7fJ7oH/4Bduetb8Ui3uNBltDPfgZbc+ed5YtTEGGsnjoF28fliuZqkXhctmcIhYqrh+dy2NelS7jPOQPcCWNWXbxHInito0MuwCstDW9WmJXbzbbIHLxoRHCY/XaPRyYF7NpVGenMSQBuN35jPl+RiF1L2yIinNOnniJ65BFc7z17ZD/ED34Qa6LTp+EXeTzwjdJpEFjcgqC/HyXPJ07AJvh8CJLu3y+TNbiMc2YG/lg+LxMyhoexj1LzhBAgc1S15KtXZf/fjo7CkuTR0dr6JjYC/JtKZQ9aiZMEAtakoEoaOjGwYS5LNrfAMhOGjfCL8nlZ4l1srisXQmAcpNMYA2XYI4ddRWdCk4iNhe3JzmTQn+f8eUwyhoEBODKCBbUa0RYCi+1HH8WEsGULSMLubiziH3oIk8PEBBaTb3kLFpsuF17/7ndhaO6+W/aq8vulc76ygsgU973g1y9fliWIk5MwDHz7uN14zgtwVuWyc/hTKZT8nDiBz+3bh2jeevYGq4c4STaL38/p7axuHQhg01mEjQdHz5mUqhbZLO5Lj6csp9vpE5StLUqliD71KZQRe71wsmIxlOoQYbyOj+M1wyB685sxti5cgD1505tgG376U2z5PFoq3Hkn7EY4LBuG//KXsmn4xATswA03IBLv8eBYVldlo322J3NzMquRS5M5i9rng93q64OzsX07bJHd2OTei2o5dH9/ZYEMzgiMRKQwAKssW9nARMK+5yA/LyZO0tuL88FkBCsa9/WB/KhG3b3ZwKXY6kJd7dejLtLL7R22nsfKGUC1OstVEIkta4s4ULq6imzkehBQTz2Ffd5zj2xlceAAbNHCAgIXVq1Z7BCNwpeJRmHfzO1XODiRSGBeKVb+LwRs48WL8DH6+mC/mp1443KzxUXYQaLCBXs9emNtJMz9ZK2U2+vVIqFWxOOYD71e2VNvcrIyu5RKwacyDBkgKTOg1rK2iEhWfT34IGzH2BiCB9u2QYHZ5UL2YSwG38PvxzVwu+GDhEJ4/+nTGN/9/bA9O3bgPamULFNeXMR95/PJ/oalAuXJJNaETBhOTUmBFbcbdk0lDWsJvK8HMhmZhGKlXsybeZ3GfSCLKReXyvp2EsyEoeoXcVlyM1S2ZbPw97kKp1bkcrLnqzmpygJNdGe3LjSJ2FhYnmwhMLEcP45JxevFJLR1KwhCtSfPxYsgD8+fh2F8/euxeLxwAZ95/nkMsNtug7G94QZMIqkU3vfUU/j/W9+KCUU1MMz0r6yAbOzuxkQXj8sFezCISY9LHLgkmY27x1O8yW42C/LgxRdlybadmnMlMBOC9RIncbvlOYjHpUPV0QEHocI+ehrrhHAY16fW/mypFO4Vn6/k5Ov0CcrWFn3ta+hlyNmds7MIWuTzOC/9/RgTu3djccJ24a67cO6ffhoL4XQa4/ttb4OzfeYMerY+9xxshcuFfdxyC2wAXzdWJ43FpHpxNIrvuXQJDjj3aQ0EsO/xcWxjYxiXTHCGQvbZOyxssLCAax4MgoCrRAUvm5W9ObnHF2cpMyFoJVRiJU4SCFj3HFTVjH2+tY4jZzvXuzyu0TCXJJvLktWsnmbM6q6X0Arvi6jsuaXJzkTFsHVCz5zBmD9wAIvoWnH2LPq8HjwIOxaNIvvnpZdgs265pTIBt6kpBFva2lC+bBZ7iUbhTwkBP85OsZJ9rwsXYBu6umSgtlkRiUi/j0XjQqHWWLBvdIuEWrG8LBfvi4sI6g8NVbaPdBr74WxEDiiW+K1NdiYqRsmAxte+hjHd2wuy78Ybid73PqzNLl2SgYJUCp8ZGYEdP30aiRguFwIDBw7gmsTjkjhcXsZ3BQKSOLTL4mJCRS1LXliQ/+/rW1uWvFGEEveFNpcTm8uNuQ+jCr7viqkXd3e3bgKHWpZs7u9s7p/fjL3yk0lc+46O+mTSp1JIIujoWNsuxIQmOxOtCU0iNhaWJ/vyZZTreL0g31IpRLa2bpUR3JkZOL/Hj+M9r3kNjCcriXJj3lOn4HzOzGBBHQzi/xMTsmfHffcVOrvcE+7iRRhyn086u4kEHPlkEgv+Q4fwfzZUrOCVyWCfw8PWCx/uo/irX2Gf4+OYfEs1SVXl5ouRhGbUIk7Cpa2JBIwfLwxV4rDZDPVmhxAyk6ycMo9iSCRkBLjIfpx+B1jaoiefJPryl0HC9fZKxWLDkCW5nZ2wA6kUbNaNN+L/zz+Pczcygqzizk7YjfPnYXvm5vC+669HSfPRo3D+Mhk4zy4X7M7cHOzYuXN4vrJy7YAFxt/QEGzc/v2F4gLpNJzQbBZjtFg/v3AYi/ZMBu8dHCzt4PBxLi2BcLh6Fce3ugqygBUurcRJurvtRUn4uR15qWbA8HStZrw40RZx7zCr38Z9Y9VFulMCNfXqjyhE4fkoAQfeAQWwtEVzcyD3tm5FyWCtWFoi+j//B37KwYP4e9cu2CdWmZ+cLG9fuRzIw6tXMX4PHSocv5xRk0rJ3qN22WlLS7JfayCAY6iH8nS9YS4jTKdhe1hgoNkElspFOS0SKlVu32gIgfHDQdFYDPdVpaWqfB9z+avfX7JPaEvaIiL4JA88gLnf68X9/1u/hYzmEyfg+wQChcHQdBp+zOoqzt3evai2yOUkccgln6GQJA7tVJhV4ZPpaUluBwKSLOTkk0a1PlDbrpgzB1XSkCtFVHR1Fc8e5CxmJ/o41UAtS1ZbZxEV9jHkzQm2iAj+cTqN+7oercqiUYyHYoE5cr4tcgQ0idhYrDnZy8so+UsmZXnwrl1YHLe34//f/z6yd9rb0WtncFD2LNm6FVGt5WWib34Ti1UmFVntdPt2ZCCurmLS6+mRPQyTSTgYrPLFTXp9PuzzzBl8z+HDhZHMbBYO9OqqLB+0KlkRAk7688/DSR4aAnkwOLjWWFo9qmnaDDVdu17iJPl8oSo1K24ycagSpxrNiWwWzkp7e0UKXmvApLphFL3uTr8b1tii8+eJ/uIv4KR2d6O34MyMFAfq6pKN2n0+qZB67hzO0cGDIAeXlpAt/ZvfSFXy/ftBLL7mNfLaCIFI+okTsCVLS7L8JpfD9+zcKZWSAwF8L6vUv/pDhMxEdbtxnHaEXCwG8pD7KA4MYF+xmHV5sZpJGI2uXWQGArBpVj0HmSSsVHVUVfRkco1bKjRrFl4xcFmyukhnu672DuNHp2cU5HL16Y/IRKJhbL7sH26fEAyimqLWc5lOg0BMJtFrdXERdmVuDnbv8OHyicpIBJUUsRjKENVSUbZF4TBe6+mxJ27CYXw3Cy1s3w6/qJnGNgvBMDGQzRYqthcjR5sRZuX2Yi0S2NY6FbkciCZutUGEtUWl9pWDZ+r82sILd9tEj89/Hj4N9z7/F/8Cc//MDO6pUAi+jseDc3X5Ms7d4CD8n74+2JuZGXk9enokcaiun+Jx+EIqacg9/ljoUs0yrEfPOSskk/aZg8XESdzu4pmD/Njs4iTrDXMrLdUWmQlDJ/tFPC9yu6B6kJ/c95L5Cgs43RY5AppEbCwKTnYyicyf2VkMrI4ORKq2bgWJ8cQTaPSdz2MxPTKC536/VPbKZDA4H34Y/+OMmptvxv77+4l+/nMs0m++GZOWuVRqeRmT3/btmAg5yn7pEt5//fWFUa3lZTgn/H0DA4UTGEdTLl4E+bmwgN936BAmXXOERUU52YP1ir7kcoXEIRG+g8VlKilr1GgOcDZYKFRbH6ZcDvdEW5vtfeD0Capg9K2uEt1/P8j+jg6M/eVlmdHHIiqcUcdOQSAg1dlPnEC5DzcQv+sukIZ798pSz/l5md14/jwcVMMAWcA9ekZGEK3fskX2hg2HCwVeGMmkzP7jnpjmfmSrq3DCL1yArWWSkoUOlpZkj1MVoZAsleFSjFAINo+bkNcrSm7uuUVUmAXjlMWsSoDyIt3cO8y8UG811FNopUwisaVsUTYLAjGbhc9Sj3n4u9+FvbnzTpCAg4PwsX7zG9iagwfL28+VK8hIYnV5NSuLReUyGdiFnh7rhV88Dls0P4/9bNsmSx6bAblcYQuGXE62tujrc1bpoLmPoVWLBKdndRcD99gjwn3f2Ym1Q6XIZnFvRyI4V319tuS408/gmlXJwgLRpz8Nm8QK6b/7uxivLIrS2wtfhDOkXC4EF7ZskQIpySTuL67YGh6GbctmcY3UsmTuLW8YWF+phOHAQH0y3dWsYqvMQbW/qQq/H7+hmHqxE8VJ1htqT35z/31OjFG3Vjt/uRzuOdYRqIfQyuws9js0ZOlLttgZbE5oErGxePVk53Ig906dwuJ0aAiObE8P+oY9+SQG3NatiJh3dOB/W7bIkmciDJynnwZhNz4Ox3j/fjiqfj/6D87NIftvxw7Zx9Dnk0pubW1SrZT7KkYimAQ5m5EIC+3Ll2X24eAgPmvOIJydRRnS/LzsoTgxIbNMimUPrrfhzGYlccjn0OORxKETy3E0CrG8LJvS10JSZDLYD0eXTXD6BPWqLcpmif7H/4Biez6PgEMiAZvT2ysdWC7vdrvhQHZ3I0vl+HGcq64utDwYH8diPZNBluLZs7Azar8bdjYnJmCvBgelkmdXF845CxKkUnJRzvYhn5fKhdEovisSsc4kTKXwf8OA084lWWo2jbkHIZdZR6Oyf6HfL1XX6wF2KtX+f2oprxMW6lyWrPYxVMtwzaWAreYY26Ge/RHLIBKdflYLnFD2HY4cqS2jnPH88wjGXn+9XMC4XAh67NyJ7ymFbBbvn5mBfTh0qFAlfnUV9ofJNqtSwlQKftrMDL5/bAxbM4xzVdCAezgyWdTXt36ZTvUE+6CqPWqFFgm1gufFXA7+PQfrKgXPx0ycDQ1ZzoVNfpeURIEtikYhMvfEExjne/cSveENUlyRReeiUdxrHR0gB0Mh2IR0GvfZ4KCs8gqHCwlDJkKI8DlV+GTLlsr9DSZ8i2UPclaxCs6ctuo/qJKGTu512iiobbh4a4Wy5FrBfrrXWx8V8GwW46etzTKL3+m2yBHQJGJj8erJfuEFkH9EWHgfPIjS4ccfl47qnj2YVAYGMGGz08qkV1sbMga//304xixU4vHA6eNF9p13gshTDRX3r+BSZLcb2UG//jUG4v79mFB4Ychp+EQYrN3dcl9sCKNREArT05hMb7gBUf729o01kqowCvd2aW+XxOFmT6lvNeTzUnijjEbgRcHqnRZCK06foF61RV//OtFnPiMdz1xO2p2JicLMXL8fY+jqVThFAwMIUOzZg3F27JgsLWYSNhSCXZqYAME4MCBVsHt68DwclmVyLhdIBC71Y+KfScG5ORnZN2fpcZScS4u4tH1sDJnWfX3Fo6D5vFRZzmZxzVlluR6Lfe6/pfZyVcm2ZiAU7MCkp1oKqDrG5kV6M/+WRqCBRGLL2KJXXkHQYdeuygRO7HDlCtE//APG/8iIrDR46SXYo6NHS1+bSAR+USIB0nHbNvmZREISNJ2d1qVamQx8q6kp/L1liwyqbiTSaUkqcIBHFTGoR7bIeqGcFgmqPdrstmhhAfNaPI57defO6sigXE5mrAWDGFOm+7hJ75iy8aotSqWQgfj3f49768gRWeHl9+P/3BaFsxE9HimwNjQkEz6mp2GLrl6VVU/t7bKigUnDImXir4qTqESglXqxlThJe3vxzEGnZRg3E9Q+hq1ellwPsN5AIFCfgHwigXHAwoQKnG6LHAFNIjYWggiL40cfxWRy/fWYeJ58Eg50IAACb3hYKqqxE+RyYeNSy5UVokcewf9DISnG0tmJRfa5c3CS9++Xi9ZMBmTg0pLMyMlkZJS9qwuEo9cLZyyTwaI9k8Eks3UrCEI1gzAWAyl65ows8zlwYGOd5FRKEocccfP5pDBKK5bRaUiwOq7fX9wxKwUhZI9Mk6CO0ycoQYReqf/xP8JWxGKSyNu6FY9qWQoTf4ODyFJmBcLLl2VPQY8HvQ/Hx/F/zrbhhXU4jAV1LIZxOT0NuxOJwBlYXoa9SSbxGQ5AcAN/vp59fXC6BwYKswjb2mQZHpGMrJdy3DjrkDMKvF4skupRrqxmyLBzqSp8NmMU2lxebVWWbC4F1FiLegmtEBUlElvCFi0vw48YGIAPUSuiUaJvfQs2hPsddnejn+HoKNFtt5Ue25cvo+TZ40HfRM6M5JLfeBz/6+1duyDK5UAcXL4sS662bdvYTJ5EQpIN0She48BLby9sXrOBF+lq8EK1RU5Qbt9oCIF5lktufT4QidWcp3weQb75eczJW7YU2Denn3lBhN/4uc8RfelLOHc33og1Dbc9EQL3WSgEmxIMygwz9iW4ZzyRzEZUy5JVAUC192ix7EEmIFWwP2TVg5BJw0BAj4l6wUwYbray5HogEsE4CYXq4zuurmJt0dNTMIfpM98AaBKxsRDz83BsFxaw0L5wAZvHA7Jv1y5Zssw9lVQjxCV5Hg/6/CwsYLJgEpEIk/uZM0i9535kRDB2c3NwJDk9PZVCyXMige/es0eWnS0sYONyZzMZk0wiQn/yJN6/bx8c7Y1wkoUoJA65ub1KHG72CNBmQyQCsoqFQKoFq3WzQvc1OH2CEhcvEr3jHVhUZzJYbLNdCAZlyZfXi8m5vx/nUe3ZNzwMO8Zk0q5dklhkp5eV++bmZL8gj0cGNvx+ONg9PTiGzk4suMfHpUPsdsvG4lb9LvN5manIzZv7+0sHMhIJ3Cfcr4hLlmtta6CqD6vEYbOW0pn7GJp7h5mzDLVjXB7q2R+R92dBJDr9aohkEj3HPB4EPmudq3M5oocegj04dAjnqrcXlRIDAxBXKfYd2Sz8otlZ2JFDh6QtiUZlyW8otLb/Vz6P4Mgrr4B06O9HFnQ9yreqQSwmiQi2ocGgJBwapeJaLkopt2/WFgm1goN2ySTmvf5+rDWqAbcTWVjAuOL+xdQCtoiI6AtfQBlzPi+FIIWQFUw9PTLLMJuV5Czfp5xwwYHO9nb4GXbqxcvLa0UkWZykWPagFidZX+TzawlDq7JkTqjRtqg8CCEJ9nq1ypifx3gcHHzVf9dXowHQJGIDEYuR+OIXkfWXSMgmo3v3IntncBATlNstSQ/OxlGViPN59FN8/nk4g4EAoooeDxzGc+ewz5tukp/hJqT5PCb87m5EyV9+Gf+//no4FUSYDKem4AD39oIoUB3uTAafe+klTKC7diHVv9FOMqvoxuN45MUaKyp3dDTfYl2jcRBClpqVk41WDNmszMRrhQkqGiVxzz0QPmLnuKdHjpuODlnSxhHz9nZM+IEAnrPoCasItrVJkjGfl20VOMOlowMO9ZYt+HwwKCPyLEoghDwOItia1VU8+nxYsKvXUQgs6BcWZElhf3/xMol8XmYdcslyZyd+V633iFm9uRmb9nNJtbpQVx1jlSxs1kxJJ4GJxHqUNfP+TERik9xZ1SGfJ3HsGHyXo0fr40f8+McgDPfvh93o6kJGYU8P2rsUy35YXUVgJZmUbRgMQ/Ya4xJG8wJeCARKLlzAe7q7kbFdSyZ8tWDRBDV7qatLEg/NIhpnbpGgBl10i4T6I5HAPRqN4jxPTFR/f+bzyG6cn8faZWSEiBxui4iwRvtv/w3rH27rxH5RIID7MJ2WBHY+D1/G58P/hMD55XLjYuIkxdSLndCHtJVQbllyvQU+NyuyWcxTHg/871rBgQ0hwFm4XI63RY6AJhEbiI9+lMR3vgPj1NODzL3rr0e0qqNDZhiyw+T1FjpN7FTNzBA99phU7tqzBxNOMomswF27iG6/vbBvz9WreM4L+OPHsfDv68MxsErEOOVaAAAgAElEQVTY9DQW5V4vjkt16HM5OOK/+hW+a9s29D1U+yOuNzgrjIlD7jnFfdt8Pj3xakjkclItuJpm4irSaSx0vF6itjZnT1A7d5I4dw7P3W6Mc58PYzkUwt9MwguxtndoW5ssd85ksIjYuxfvCwRgOwYH8ZloFI60z4f/raxgHIdCOJfhcKHqIzvinEnqcsG+mbNJw2EsYFgNdWCgeFYNN3WOxWTJcmfnmjL1sqGW2XG2jNqPqxmIQ7UsmTfVMTYv0nVZ8vqgnv0RidYQiY62RadOkZiaQrbf4GDt+zt5kuiHP0SAYnAQC/xz5/B4113Fs4xfeYXo9GnYhsOHYQ/ZFq2u4nxz+aKKxUWQh9Eo/sftHhoFzuxg4jCdlsfaLBlL5bRIaHXl9mbAygq25WXc59xHvRoIIdWEh4eJhoacbYs+/3kSf/qnCGqOjMA/8Ple9fmICPaD5/62tkJ7oo65Yj0ItTjJxkMlC9XgBZEsS1ZFPzXqj1RKrg3M1UXVIJ1GkMTrJRoYcLYtcgo0idhA+P0kfD70CJucxKKXJ6mODtn/S+1/aN7SaaJnnsHAC4UwSYVCeP3qVfy9e7eMkqgZjz09ssk3p/2yolE8Dic0n8cxqU21hcBi/dIlGWGfmKhP9KAc5PNSDY0X65wZxVmaG71Y12hepNMYB9wAuxxYlTFwL9JsluhjH3P2BGUYsoE4l9nyeGIBFf5b/R//7fHIiLsQWDizY606XVyyzHaNhY04ip9O41y73YVqp5wdx46cOr45K1T9XLEFp6oczyUotZQUMyFkzgirF0FUCzjrTX1kmI9TR9IbCzXbs9rPqo/8/NvfdrYt+ru/I7F1K0p+a8XCAlTmAwG0Q/B6EXRtb0dg1c7+ZzIIkC4sYJG/dy9sVDoNwiWdho9mFh8Ih0E8hsPY9/g4yING2AHuo8aEENveri4cZ0/Pxi5+rcqSGWpZMhOHG207NxPm50GMR6O4XyYmqt8XE4nhMNE99zjbFrFfxOsLr1f6PVwJoVZrcOKCKj6n59Xmg5VfpM7H7A+xb6RtUeOQTmOuaG+vfL7i66he01QK670vfMHZtsgp0LG+BmJ4GJl7rPRpzrbhqBYv2nmxrv598iQ+wxNZZ6ckELu6CglEzgDiMsSVFbzP7YbDHgzCsVtZATnCCl5qVHJpCU5yLIb3Hzggm4uvJ3K5QuKQSPZn43OhoVEO2tsl8cSElBVBqJJNVrEV1dFoBXCpKjtNXI7LPZM4Au/zFZYpE8mARi4ns5VVspBIZr1xr5hMRpbLcmCAS6nZHqpkn1nVPZfDNeTv8fns7QDvSw061FJWrDqgRPKcbWQfHNWBMhOGRIXBJ+0YbzwMo5B4Jiq8ZlZE4WZAb6/s51wLkkmiJ57A89FRWbXR1gYRFTsCMRxGe5Z0mmjHDgR5uU1CNIox3ttbmCkRiyGourQEO7VjBwKy6z03sL+2vCyDvhwg7umxVoduBFTVebsWCX6/bpHQLOjrkz4R9+rjdkaVwjCQ9Xv5cn2PcSPAvVO5hFldh1kFW/k5V2xw2wqNjYOVX6TOpeyjNkvgd7OjvR12KJ2WJLwapLfarPxdBo9TjcZAZyI2FoKoUASEF+xWm1rqQUR08SLKkD0eOMm7d2PAXL4MgvLNbwbR5/FIxVNW7nr5ZRCI/f3ov9jejtKX2Vnse3gYkycb1NlZ9EubncU+brwRjv56GtxMRgqjsApae7uM+NUqdqDR2hCisGxT3VIppLlns9a9ZlTC3mozE1rk8N4/+TwJl0sKkszMYJudxTY9LZ/PzEglT+Xz5PPBbkxMwOkeGsLzkRGMV1ZuNIzCYEYksrZ8mTOmub8Qqx0S4drNz+MY2tpgw+z6BaXT2Hc8jvvB55MlyxWenzUldxzo4QVFI6He22alZ7WEWl3waGwszBFytedSMTDhqy5yzM9bUZ25ph0IokcegY+0ezd8loUFnKe777aumhACAdIzZ2AnDh+WbWGWljDOgkFk9bHtTybxHUxOjo2BQFnP8ZbJSGGU1VUZeOEy5Ub3TjO3SODAD0O3SHAG0mnZ09DrRXVUHUoKHW2L2C8iwljnbE32WXjj11ioSIXHA7sRCuGRK7t4M/s3GrXBnABgLktWS5K1X7TxYHKXN752Kyv4v50NYh/IqlJTfU39yDr/FA3SJGKjUdHJzmQkoTg1RfTgg3BuBwawYM9kiM6fx4R05AiMZT4ve/cMDSFL6MIF7G/PHpTpuFxwsJNJTGqjo5K5X1oiOnYMxKTfj36JanZjvZFOS+KQSx25nJIj1xoaXBplt6kZqyo4C4IJaO5ZxRm3NSg8On2CqsgWxWKSZJyagir78jLO/dSUVF5WiRPO/uvrA7G4ZYtswTA2huydgQGMdxZi6e6WYz6TgZ1aXcW++vpAVpptEQssRSIgHA0Ddq+zs7KIpJpNw4tiLn1uZFN/tdcib+oinSOtKmGoFySNg11UvJwouXqdeFFjJg2rgNOvfs1O6C9+gTYvW7YgI5DVk++6y7pncyaDgOz8PPykAwdw7peXYeu4hy4LkKTTyDzk3tKjoyhdXq+Mh1RKEofhMF7z+WRPtUa1kiFa28fQrNyuijDp1jLOQjSKuXt+HuNk166afX2nX/2KbFEuV5pojETWKi8bhiQTrUhGfq4zqgqhkk7mgBwHU1XCUNuixoKvj5kkVP+28o1cLrwvHpdtA8wE4SZcozkCmkRsLKo62dks0Te+gZ494+NQYg4G8XcggEg7N9a+eBFOcCAA5+DMGfxvfByvra5iUnO74TyzGEE+D0JyZgbvu+EGEIjr0QA4mZTCKOyQqn1FdLRoc6EYOcgEodkJIyosL7HLIDST0KzK29VVeXaaCU6foKo2/OfOwcbs2iUz4jo78XjunOyPdPUq7MnKCmzRlSsgBbNZWdrJiur9/SAah4dBAgQC2Pr7QTbu3YtrpiKXk9eTm5yzynK5CyF2SNXMPnVh3IjSJKveYTwtq2XYNRDeGmWiFDFoLo1i2GUPmv9m1Floxel3RE1O6MWLyEL0+xHwXFzEub3zTusSzZUVBEEyGQRWx8Zgz5aXcV26urCI4bYXly9jy+dhn7ZtWx9140RCEoec+R0ISHGGeqhWl4Kq3G62RVq5vTWxtITgYCSCOXhsrKbdbWpbZLlDJchpJhnDYUk2plJrP+vzlSYa6yFI0YzgYKpKGKq2SCULtVry+oJ9oFIEoRlqCyirLELzdWNugHuN1gin2yJHQJOIjUVVJ/tHPyJ68klECrdvRxT81CmQIPfdB+cyHseinTMQT5/GAn5gAGU6sRhIwnAYDjCLsaysoNT53DkYhPHxwgi7xyObCHd0SBEYdWtvL74QEqKQOOSeZypxqCeA1oN5QWKXPWg2QRxRLEYO1rKAWVrC9/f310RYO32CqsoWzc3BzoyNwY5kMnBo29qkAIHfL4VPQiGM/WgU17OnB+87exYl08vLcKDn5vD3lSt4DIcL+ysSYb9MMrJwQH8/7OG2bSil7usrfU1V0o4dn0Y1+FfLpM3HwPe9ulDXAZX6oRQxaOUEE5VXWlzNPaNmu9aITWmLiBAU/da3YGMOHpQlUXfcAT+o4EsECMezZ+G3HD4Mm7K0JHtC9/XJnq1Xr6LcOZOBH7V9e/0X7NGoJA4TCbzW2dkYFVdukaDaI3UMmIMX2ha1JoQAichZtpOT1tm7ZWLT2qJakU4XZi+aSUbun2/2l93utUSjuZya+/A3K3j+VQlD1RaZCcNm/i1OQzFSkP+2C5zakYLqVimiUYyFUKjmSkSn2yJHQJOINcIwDA8R7SCiVSHEdIm3V3yyz55FGXMyiQzE3buRgej1ogdiKARHenYWrwUCKNNJJBBlHx/H/7gB+OgoJpR0Gu87fhyGYs8eOOEul32PxkQC5IBVA38zuejzwchwphE7pNzfsKNDZ9Q4GSx8U4wgtOr9xZlVpbIH1/PeyOWwaOOG+VV+V9Pdvetti+JxZDZ3dYHIS6Vkr1Iubfb58LrLBTuzuiqJxlAITnA0iv+HQrADQuDzi4u4NuwIr6zIEurpaWQDTU3htYUF2DQrh3pwEGTj0BC2kRGQjb29eBwYwHGudwme2jvM3F+RaG0fQ926oTqUU1ps5+YUIwbXu+m6monbiiWEFdijqis0HnwQduHwYRl4uPVW9ClUkU4TvfQSbMzwMNH+/fBnmHTs7obNYULl4kX4XD09IFXqVT4sBI5zcRH2i9svdHXJjMP16v1sDl5YlSWrfQy1f7Z5kM3KObazE+uBKu/Dprxr1tsWNQr5PHwou7Jp3qxa+/j99iQjb+uRYW0FK1FDBpNRuiy5NqjiMsUIQisUyxpUxfrW67jDYTxyWXOVKHmEFa6ZNCygScQaYRjGNiK6QERfEUK8p8TbKzrZ0SjRV76CDMI9e9C358wZTO5vfjMc3Pl5LMADATikTDAeOYLBd/UqjEV/PxbXQkDh+de/xvu3b0fpsrlU0PYHiEIxGPV5LAannNWecX5wPF4vJiwmEO2yGnUPkI0FEx/FCEJzxgJDJUTsSMJmiSAmk7hPuXdeFWg6t2Y9bVE+D9uSz8NmpFJSvXllBfeExyMf+XXDgJ1yu0EoZrPSmXW58NrCAj4XCEiCj2EuWeam5Vzax+JQqjAMP+dNFYVhgqi7u5Bk5OfDw3KrVLDA3MdQdeSZPFeze7RjXBpWZKCZKKykvLiIOMmGoE5EYhP8krWowB5V5YT+4AdEzz+P4Gomg3F19OhapeelJRCImQzaIgwO4rV0Gj5HTw8+u7CA/tGxGOzT5CT+Vyu4TzUTh5kMrnV3txRHqXcAoVSLBHPwQleCaCSTqASYmcGcODnZOn3I1tsWNRtYFKYY0ciZzyo8Hvuyad4CgcruCyas1M2uLFkHL8oDl3oXIwmLlRdXIE6yIcjlQCS63SASq0Q5JOI2Kn/NpGEBnfvQpBCC6LHHQBpOTGDhfuYMjOwb3oAF7tWrmBwCAUQR5+awEN63D+RiOAwnmXv4nDsHpzsWQ0bijTda9wwqBsOQhB+RbIbKStNEcjJgqXarjEaOwpvhdq8lFs2kI2c5alSGfL40OcjiNirUXkh+v30GoZOuCZfSx2IYG1r5uziuXMF43bYNj0wULi/DBrjduHfa22VmIZcvs33gzE+vF3Zrfl6SkcPDhT2/UqlC9cOODjiw5vK+gQFsBw+uzfwjwj2ZTMqSQSvC8eRJEAhmMsrrBeHAJCNnN3JJdW8vNi4LNPcOU8dKMzhmzYZixGApcRI1Gm6VQegU8DHz73aSDd1IvPgitv5+2Iq2NvRwVglEIRCAPX8eY/HIEdxXMzO4R/r78frqKt6zugo7c+AA/lfLtcjlYAOXlrCxjWSbwYGVeqCcFgkdHRunLK/hDPh8mNcSCawlgsG1LQE0nAGfD9vAgP17sllJLlqRjJcvFxeFsSIa1UQRFsswlyWzDdLBC2vUIk7CG/ucdRAn2RC43VgPRKOyR6JGc0JnIjYWZZ/sZ58leughDKSDB6VC6W/9FiaGq1exOPZ64QAnk4iyh0JwkongAPT1QVXw2DFkBvX3I1o/MlL9j8hmJTHARCAvmrm8sRzk84XEoprVqL5mNYmpWYxWGY0dHZvLWS4ne9CqvLgacZJWgRAglvJ5jIsKHRqHTMe2KNsWLS+jN9jAgBQt4cW3mm3X3i7vwc5O/B0O4/yyEmEiAfIwkcD/BwZkJqgQsCmRCPbjcslMUbt7UO3rxceiZtqUawOyWSycrEhG7hc1OyvtnUoY9vXJjMbhYSjEmsupGyGK0CyohzhJsQzCVgSfmyrnLKeflYqc0Olpor/9W5yzwUGcs+uuQ4kyI5VC9uHSksyqYnsVCMjgxoULmAO8XhCQw8PV32PZLL5vcRG+FivOc5lyV1fti2YOlKikoW6RoFFPzM8j4aCtDQkJFc5dm8oWtTpUn8yKaFxdhY/H6zR1Xvf5YPM6O/HILSPUcuoaxQ0dBTtxEvNrVihVWtyqa11OTgoGq0r0cLotcgQ0idhYlHWyp6eJHngAi/frrpOG5fWvx6J0agpGJ5VCtMjngwPNrH0wiEzDxUWi556DU9DVhcxDc6lPuchkJHGYTuO19nZJHK5XGbIQ+D67Ho1MPFpl0JlFYayyGhvVA6RaqFkGxUhCO3GSUuXFmz0SmM1inHDWXAVw+gRVli1Kp1HG3N4O22MYkkDMZCSx09aGscj9vdJp/O3x4O9cDnYoFsN7+/tluTBHxKNRufAuVjajjgleQKsqxrU6VOY+hkxOCoHjX1pC5iJvLAozO4uN+6ypCAQKMxmtnvf1Nf94LFVa3GhxklZCDUIrTj9zZTuh8TjRN76B8TY+jnN16BD8JMbiIgjEbBZtYDijoa1NZg5fvIix2taG/YyOVmc30mlZpry6in2zQEtfn1R5rhZqiwS2RwzdIkFjPcCiQufP4x7eu7eiseH0O1AviG1QrCw5k8E6jMUz4/G1IjFqWxmG221fNs2vN7soDFHziZO0EsJhnMNQqOL7wOm2yBHQJGJjUfJkp1JEX/oS0a9+hbIajgLedRcWm9PTMuK9siIXosvLMDYjIzBYzz0HstHvR8/DnTsrN0aplCQOeSHt9UrisJmi3NmsfTajSjia4XKVzmj0+dbHkPMCoRg5aNUgWV082JGDurdI+YjHMVGFQhWlzTv97Ja0RUJA2CmRQHYdl8VxpiCRnNQzGdgGnw9EGxGcQI8HRBv3N+nrA1nLZcYc+CDCuQ8GrRVJWemb1fv4u3nxXO34NCuIq73D1DL+Sr4nmSzMYmRhGH4+MwPi0ZwZrIrC2BGOQ0PrE/iolziJHVGoURo19Ed0+hkuywnN54kefhj9nMfGMB4PHiS66aZrOxHIoDp/HnaEeyXyAqSjA1UZV6/iHG/dCgKxUj9GbY8QieC1jg5JHAaDle1P/X1mtWTVFqlBQR0A1FhPZDLI0r16FYkHFSQfbApb1Orgnnu8qX4RkfS9uJdhObYon5dkojmjUX3NThTGSghGJSDXyy9yojhJKyGfx/qBqOI+5frsNgCaRGwsSp7s73yH6JFH4OAODcHQvPa1WEDOzYHYm5mB8dq2Df9PpZAqHgjAwb5wAQb18GFkKJbL3gtRSBzyIldVVG72iFAxmEVh7Eqprcp+vV5rctHvl+QjZ2NuFnGSVsLyMq5XX1/Zi0qnT1AlbRETX/39sC0+H5y9ZFIq5jHB5PfLrGFWiV9eRnYOkewF5nJJdUEWGOBos/m8q+IAPFa4/L6afjpq6bN5DPIiXR1/6znOWCHcThSGnzPBqqK7uzjJaBaFaXVxklYCX5sKFxhOvwplOaFPPUX0+OMIQgQCyEC85Racp1QKPRKXl2XP0nQac2gohPF05QrO7cgI+kxXsujkDOTFRRkkCQalMEqlPZvU/q3m4AhRoXK8LkvW2AjE46hCiMVQ1tzXV9bHNoUtajWoZKGZGOP2MKoAynrCLArDJGM4LMlGK1GY9vbiJKO5uqVWcZJSJKFG/ZDN4vpzlVKZcLotcgQ0idhYFD3ZJ04Q/c3fwEht2wajeNttcHqXl+HALi+DsNqyRSqh9vQgAn/6NIzXgQNwsMvpIcDEGhOHnAmhEoebzSBy+bQV4RiLYSLjEmp18iWSky0r1/LW0SFVZZkctCIJ9aJ8Y5DPI2PO5YKzXMZ1cPqVKmqLolFkIfr96Fvo8cj73+ORzpXLhfs4m5U9DBMJ2CkhQGaxeJNasswOn7lkWe33xVOTSu5VMj7Mi3Q1ws1kJC/QmzVzNxotTjLOzuK+JSokAr1eXDfuy8jPBwcLxWH4nFoRhRobAyZ4KyASm/DOrQglndAzZ9AHUQiQdocPE91+O87RwgLKl/N5ZChyQKOzEwvOS5dgAwYHIVBXbh+uSERmHHIVQygkMw4rISHNfQzNtsjcx7AZbZHG5sPyMtHLL2O+PnzYukrABKffuS2/IGayjAlDNXjBwVSVMGxGW6SKwlhlNIbDsgzW3GrF74ffGQhIH5QD2aEQtvZ2e4KwGc/HZgDzFKqwawnoK9UAaBKxsbA92SsrRJ/6FKLlu3bBsN18M3r1LC/LPoidnSANhZAR9pMn8feePVAoLDXAWNCE+1fwgkUlDjejoVSdfLssQp5wcznZ940XCGr6P7/fHL0zi8LYlVLrbMPGI51GtgmXTpSA00eIrS3KZpGBkM0iI5r7HcbjcK74vmbHSgjcv6xIyuWD/f2wNWrk2O9fW3qi9h7k6ahSck/NWjTvSxVaqTaLsdGwKye2EifJZNBvcm5OisPMzxc+zs6u7RtrGLhG5kxGVqPm1zaTKEyzoML+iC1ri4hgk7/8ZdzbQ0PwcV73Oozhs2dReeHzSVvl9cKWs6J8by/Iw1IZDEIgc5ozDtNp2eOVicNyej+rLRLMAZFqWyRoaGwUpqaITp3CXLBvX8n7taVtkdPA2Xbq+kS1Rer6pNyy5I2EWl5cLIuQ38u9GWMxmSgTj+Nv3ri3t/rbfT77bEbeNpMoTLMgGsW8zK2SSsDptsgR0CRiY2F5snM5oi9+kegnP0GZzcAA+vyMj8uME7cbzjCX/UUiiM6nUkQ7dqDvYTEnOZeTxGEyKZUgmTT0+VqXOOQyxkrFSYgKswQrFSfh8k4+53Zl1FaiMO3tpfs0NrsojBMRicCx6O4uGXV3+mixNfysWLplC85BOo3J2+OBM8oZzioZx71sAgEstnM5fIZLltkRY9KRiXcm+9SeX6Wi36qwirncWd1PpQrNjUI9xUnKLS8WAoEqq0xG9TUuP1cRDK5Vm1ZJxuFhWaquUT/kcmVnhbasLUqnib76VaLjx3G/3XAD0T334Nxw+TKX97vdUmU9HkcgY3IS/7dDPo9xweIonFHd0yP7txYrJS7WIoFobR/DZrNFGhqlkMthrXHlCkRWtm4t+vaWtUXNDvYdVMJQtUVmwrDZbNFGiZOk0/b9GXnjFhYqWBRGVZs2k43BoPaL6gkhkGGazyO41+IBDUdAk4iNheXJfuIJoq98BYTexARUlLdvJ3rlFRgwj0c21I9G8Xoigcn8ppuwgLMCi40wiUUEp5aFUVqBhFKz/uwIwlLiJHYkYaPKivg62fVoLEcUxi6rcb1EYVoVQmAxmcthEVnE0XL6BGVpixYWYF+6urBlMlLZlDOWOUMwn5ckeEcHFty5HBwuLlnu7JT9wsxqx5yVw/uzPEixthTQ3DvMnGW4UTD3GLQjCq3QLOIkiUShAIyVKMz8/Nq+sW1tslTaimTk8ulWmHMahQqEVlrSFhERffvbRD/8IRZot91G9IY3YBFx/DgCqCMjsDuZDOx2LAZ7Mzkp2yiYkcvhvUtLMnOaRZ96e7E/u/NdTosENYjRqoFZjc0F7jkai4HIL1Kp4fQ73jELYjNhqM7JTKQ1Q1myWZzEjiS0Qjm9Bxvxu1gUphjRGIlY/45AoHhGYzCo/aJKkM8j2O1ywQ4Vuf5Ot0WOgCYRG4s1J/uVV4g+/nEMit27MUFPTqJMJ5fD4nx0FP+fngYhODgI8nB4eO0XZDIyZZsVVD0eSRyW0yexGWBuPG5HEJYSJ7EjCJstClcK+bwUvSmW1ViuKIyZdCynTGuzIJcDmebx2BP05PwJao0tSiZRtkSELES+p4SQ5JzPJ8dlLod7KxiUvVUNQ5Yst7UVZhwSFZYWW41BNSjA38NQif9qeiTWAi1OIsHjw055mslHO1EYJhntxGFKOIabCmX2R3T62bJ0Qp99luib38Tvv/NOoje+EdlQFy7IvtGGgUzCeBy2aPt23Efmc8Uk4+Ii3i8E7AeXKVupPnIZoJVyuxNbJGho1IJwmOiFF+AD3HCDrc/YkrZoo8HrIZUwbIayZC1OUohEwloIRt2sEkI44F6MaDT3D9/MyGRwLlnE0Qb6bDUAmkRsLApOdiJB9Od/DkXlXbuIjh5FJuLFizAWAwNwTqemQCD19CBLcXy8cKdcMhuPy0U3E0d+f/MRRGrPoGLlxWao/YSKlRhvZkPLojDFshqZXFbR1la8R2NHB+6pzXJuEwkQ99xw2QJOPxMFtiifRx/EcBhBi3QaWQfmMmN2gNxuKbqUzeLvYBD2Ro2QE0nyjxt2q99pLgU09w5TF+rr5VRalRObn1uhVGmxE53gekEIONB2JCMTjYuLaz/r8xVXnh4extzotEBQtSiDSGwpW0QEMZTPfhZk9b33IgPx/HmUKnd24l5YWYE9am+HTzQ6WjjmUilJHHKZvtcricPOzkKlTnPwwkktEjQ0GoGpKQhAbt2K0mYLe9RytqjhByAKycJiZcnrGbwo1XfQzjcylxFbkYSbZR1hBRaFsSMZVQFCFS6XXI9YkYxcTr2R1TiNBK9nAwHbTM5NfJc1DppEbCwKTvYDDxA99BAc4ttvR/bP7CwGRH8/nqdSiJIfOUK0c6c0vpyVFo/LLB+fT/Y43ChDUok4iQpVLbVYebFG7cjl7LMZVeLRbBrsRGGYdPT78dgqCyxepNo01Hf6BFVwda9cIbp8WWZexmIy26a9XRLPLhfsE58Pr1cGKtTehKriqMu1NrNYJRmJ1i7S6zHWKxEnUaGSgsUyCDVqRzotxWCsejTy3+agkstlLQpjJh65lN7pKCG04vS7sWAURiIQmTt5Ev0P77oL2YfRKK4pz19eL8iMsTFpLxIJqagcjeI1v18Sh4FA6RYJZl9ksy96NTQYQqBa4coVooMHkVVugtNHSsMXxGbC0K4smQnDWm1RJeIkZpTTe1DbytohBHzwYgrUkYh1QohZFMaqZ2OriMJEIpi/QyHLNYO+ExsATSI2Fq+e7J/9jOgv/xLP77oLJcrRKJxc7pHX00N03XWI+LlcUiE1kZBN11XicD3JGzVSX4wkLCVOYkcSbuasnWaEECCqi2U0JhLW/SZZFKZYVqMTyuqFQCYMERagpnvU6RPUqyM1HEZ2gduN65JMyr+uSg0AAAw4SURBVOxBIinC5PFIO+P1yn6b7HByf0Lul2gmDRkqwVht7zA7QZL1FCfR2BgIgd51diQjZzqGw2s/y1lrdiTj8HDxHnjNghL9EZ1+x75qi3I5oi98gehHPyK65Rai174W11YIXMt0WrZ4mZiAvYpGpTAKl9AHg5I4ZEV5tY+hWpZsznjW419Dwx7ZLNFzz8H/u/nmNeWETh8967ogZqKuVFkyV21UaovK6T1oFzg1k4KViJNobAxSqdJEo5UoTFubfUajk0RhhJBVBqFQy63RHIGmJhENw7ifiD6ivOQRQljQFo2FYRg7ieiM8tKfCyH+rIyPCiIsgP7dvyO6epXojjuQgZhKSfGC3l6iw4eJDhzAhM3EIS8iuEyZywlrhdqHzI4cLFecxEwO6ubirY1MpniPxngc97YZbnfprEavd+MnsUwGC1Sfj+hTn7qfPvrRj6r/drI9EkT4fS+9hInY78c1YyKQycP2djlBm8va2dk1Z/eYy5LVhXqxa9oK4iQaG4N4HFmNZgVq9fn8/FqCua2tuPI0/73RgQ8eAy4X0Uc/2nq2iIjo4YeJvv51VF3ccYdcAHF2xZYtIA+zWZlxyPNLVxcIYbZVxZTbrdoraGholIdolOiZZ0Agfu9799PHPtZ6tqhWmMuS1eAF0VrCsJSvW6q0uNnFSTQ2BmZRGLuejaVEYex6Nm60X5TL4be0teF4FBS9q1uQX9oQOKVA9F3XHl+9zQ3DeD0R/WciOkhE/US0SESniegnQoj7lffdT4U3ihl/IIR44Np7/z8ierfyvywRXSWi7xLRR4QQc9den7l2TP1E9NeV/JBsFn0Qz54l2r8fC/KZGTwODYE83L0bA39mRvZCYmEUn698g18vcRIuVzQThNoB1+B7wWS8C8AqvnYZjUtLkiQ3w0w0WhGP61nmzr+N0+aJiL72ta/Ru971rndRC9ij8+dBsLS14TpwFiGLOoVChcI8RIUkXzxeeN3a2qRQj9lG8GfYma6mvJij87q8WMMMvx9iG9u22b+HRWHsSMaXX0YWXCKx9rM9PfYkIz+upygM3+dqL6pWskXPPkv0jW/A3u7Zg/YKfj/O6+gogqupFJSZ2RZzxiGrxeZy8tq1tcF21bNFgoaGBsbdvn0IQHK1RivZompgJgxVv4hbwzBhaPaL1M9UI07Cts6KJNTY3GAV4yKK6kQkRWGsMhpXVjAflxKFsROG8fvXzy9yu7H/WAzrkSpa2LQMv7QRcIRbJYT4uvq3YRh/RESfJqIXiOizRLRARGNEdBMR/Rciut9iN/+JiGYtXn/a4rV3E1GeiAJEdCcRfYCI7jYM43ohRFIIESWirxuGsY0qvMif/zzRT36CBYnPh0j6xASyDrlsORotFCrw+dbuRxUnKUYSmqFmBjFJYEUQ6kW5Rr2gkuDFkErZZzXGYnBWyxGFsSIdaxGFCQRwbJzx8s53vpPe+c53vmqTnGqPpqchphKJyKxiPm9dXbJ3imFI9WUVnKXI2YXsGDMxyDapHHESu76D2gnWqCfcbkkC2kEIjIliytO//jVIdzM6OtaSjGo248gIejlWG4Dj9gE8nlrFFl25gj6I8Th6rS0uotdhfz98pXgcJe1E8It6evCo2hy2X7oCQkNj/bFlC8Ykt5FoFVtUDtSyZHN/Zw52trcXBn7YJ0qlCknCUuIkaqaiFifRWC+w7z84aP+eTMY6q5GfX7yIv833NIvClFKgrjbQ5/ViHHIlVSXZka3EL20EHEEiqjAMo42IPkZEzxHRbeb0U8Mw7JYH3xZCnC3za76h7PcLhmEsENEfE9HbiOhbVRw2ERE98QTR//7fGIgTExg0N96I7MOuLtz8fj8GAJfjxGKIApgJwlLiJGo2kLm8WEOjGeH1Yuvqsn8PZ5rYZTXOzVmLwrhcklAsVkZtt7jv6ipU8uTnTrVHsRjRU08RnTuH397Tg9/Y349H7nfIysvsDHM0nYk+tWRHDVqYswe1OImGU2AYMnK/a5f9+9JpSTBaZTUeO4ZHcysQlwvq0lYl02qmo13QxY5Yd7It+q//lejMGaLrr5fl5X6/7IfZ2Ynz1NUl/ZxGKLdraGjYY+9euWBPJGS1glNtkRVUH4cJQ3OGoOrTMFlYSpyE/SgtTqLhFHg8WCv09Ni/h0Vh7Eqn5+aw7rBKcuroKJ3VaJVURYRkj1wO323O9i0XrWS3GgUnUkr9RNRNRD+zql8XQlixwbXiccJFnqxlJ+9/PwjBG24gOnqU6NZbsWgnkr1/FhaKi5N4vRhYWpxEYzOCM3SDQfv3WInCqFs4jIV+OaIw6saIRgvKtx1pj77yFZAcAwOIPG7ZAlvErQs4+s0LdXVC1uIkGhqwFWNj2OyQz4MEU0lGVRTm/Hmip5+Gc20GE2dWJCOXEGazBYFBR9qiP/xDop//nGjHDtii8XHYpd5ebD090s/hIIaGhsbGgzO7iYhefBFiSNfgSFtEZF3ZxYQh+zWqajKRFLrk15kgtCIJNTRaGYYh12gW6u2vIpWy788YiaAKhIXSVHDvQyuSkYlEouJEZxE41m5tFJzojs0RUZyI3mwYxieEENNlfq7HMIx+i9eXhBA2MaNXsfPa40K5B2mF6Wn0EXntazG4pqexGFBVTc0bL+CtWHsNDY3KwIRgT49Mf0+nZbny6qrMZkylCsfdCy/g8a/+iuhjH3v1ZUfao0cewaL9xhtlVrTXi8W6mmlIJKPvurxYQ6NytLWhp9/oqP17WBRmbg7k4vy8FImZn4d6uhpg5NLevXvRX/kaHGmLvvc92KB77kEp88CArMxoa0OA1UphUkNDY+PBPUhPny4gER1pi557rlC5XSUF1TYJag9nlRy061+ooaFhjWJJIZxZGI3KR95WVyFOG40WVmZyVdRf/VVVh+NIu7WRcByJKITIG4bx34noL4jogmEYTxPRz4nox4Sml3Z027M2r28nooum1/oMw8iRrFn/COHG+k4tx55MaslxDQ2n4sMf/uj9RPSRj31MjmOn2qPHHtO2SEOjWdDVVTxqb4ZhwBadPet8WzQ/r22RhoZT8alPwRa9613Ot0U33aRtkYbGZoVT7dZGwnEkIhGREOLjhmGcJaJ/S0S3E9FdRPT/EtGiYRh/JIT4psXH3k1QwjFjpozXzhLRB4QQVp/X0NDYxND2SENDoxmgbZGGhkYzQNsiDQ0Np0HbrcrgSBKRiEgI8SARPWgYhpeIDhPRW4jo/yGi/98wjKtCiJ+YPvLzChpfvpGgnpMh3BhnhbDTF9XQ0Njs0PZIQ0OjGaBtkYaGRjNA2yINDQ2nQdut8uFYEpEhhEgR0S+J6JeGYTxFaFL5r4nIfJErwY+smmpqaGhoFIO2RxoaGs0AbYs0NDSaAdoWaWhoOA3abpVGq7XJf+baY5EW5hoaGhoNgbZHGhoazQBtizQ0NJoB2hZpaGg4DdpuWcBxJKJhGH7DMF5r8++3Xns82ajj0dDQ2LzQ9khDQ6MZoG2RhoZGM0DbIg0NDadB263K4cRyZj8R/ZNhGL8iou8R0Xki8hLRTUT0e0Q0T0R/bfG5f2YYxqzF68eFEL9ar4PV0NBoaWh7pKGh0QzQtkhDQ6MZoG2RhoaG06DtVoVwIom4QkTvI6I3E9HbiWiEiNxEdJmIvkREHxdCXLb43Cdt9vcJImrpi6yhobFu0PZIQ0OjGaBtkYaGRjNA2yINDQ2nQdutCmE0syiMYRj3E9FHiGiAiEgIsbChB3QNhmG4iKiXiMaI6Hki+nMhxJ9t7FFpaGisJ7Q90tDQaAZoW6ShodEM0LZIQ0PDadB2qz5wSibiPBGRYRieJlG1mSSiMxt9EBoaGhsCbY80NDSaAdoWaWhoNAO0LdLQ0HAatN2qAc2eiThJOKGMJ0QTHLBhGB1EdLvy0gUhxLmNOh4NDY31h7ZHGhoazQBtizQ0NJoB2hZpaGg4Ddpu1QdNTSJqaGhoaGhoaGhoaGhoaGhoaGhobDxcG30AGhoaGhoaGhoaGhoaGhoaGhoaGs0NTSJqaGhoaGhoaGhoaGhoaGhoaGhoFIUmETU0NDQ0NDQ0NDQ0NDQ0NDQ0NDSKQpOIGhoaGhoaGhoaGhoaGhoaGhoaGkWhSUQNDQ0NDQ0NDQ0NDQ0NDQ0NDQ2NotAkooaGhoaGhoaGhoaGhoaGhoaGhkZR/F8WjJB9O1hR+AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "attn_name = 'enc_self_attns'\n", + "hypo = {attn_name: [model.bert.encoder.layer[i].attention.self.attention_probs[0] for i in range(config.num_hidden_layers)]}\n", + "key_labels = query_labels = tokens\n", + "labels_dict = {attn_name: (key_labels, query_labels)}\n", + "result_tuple = (hypo, config.num_attention_heads, labels_dict)\n", + "plot_layer_attn(result_tuple, attn_name=attn_name, layer=10, heads=None)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untitled_linzhuo.ipynb b/Untitled_linzhuo.ipynb new file mode 100644 index 000000000000..9627f95eb0ef --- /dev/null +++ b/Untitled_linzhuo.ipynb @@ -0,0 +1,239 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = 'all'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import json\n", + "\n", + "import numpy as np\n", + "import math\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from pylab import rcParams\n", + "\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig\n", + "from examples.extract_features import *" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/09/2019 14:00:34 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/vocab.txt\n", + "01/09/2019 14:00:34 - INFO - pytorch_pretrained_bert.modeling - loading archive file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/\n", + "01/09/2019 14:00:34 - INFO - pytorch_pretrained_bert.modeling - Model config {\n", + " \"attention_probs_dropout_prob\": 0.1,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.1,\n", + " \"hidden_size\": 768,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"max_position_embeddings\": 512,\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 12,\n", + " \"type_vocab_size\": 2,\n", + " \"vocab_size\": 30522\n", + "}\n", + "\n" + ] + } + ], + "source": [ + "class Args:\n", + " def __init__(self):\n", + " pass\n", + " \n", + "args = Args()\n", + "args.no_cuda = True\n", + "\n", + "CONFIG_NAME = 'bert_config.json'\n", + "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n", + "config_file = os.path.join(BERT_DIR, CONFIG_NAME)\n", + "config = BertConfig.from_json_file(config_file)\n", + "\n", + "tokenizer = BertTokenizer.from_pretrained(os.path.join(BERT_DIR, 'vocab.txt'))\n", + "model = BertForPreTraining.from_pretrained(BERT_DIR)\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() and not args.no_cuda else \"cpu\")\n", + "_ = model.to(device)\n", + "_ = model.eval()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "embedding_layer = model.bert.embeddings\n", + "layers = model.bert.encoder.layer" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "layer = layers[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "BertSelfAttention(\n", + " (query): Linear(in_features=768, out_features=768, bias=True)\n", + " (key): Linear(in_features=768, out_features=768, bias=True)\n", + " (value): Linear(in_features=768, out_features=768, bias=True)\n", + " (dropout): Dropout(p=0.1)\n", + ")" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "layer.attention.self" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([14460])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "words = 'policeman'\n", + "tokens = tokenizer.tokenize(words)\n", + "assert len(tokens) == len(words.split()), tokens\n", + "input_ids = [tokenizer.vocab[token] for token in tokens]\n", + "input_ids = torch.tensor(input_ids, dtype=torch.long).to(device)\n", + "input_ids" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([1, 768])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "embedding_layer.average_position_embeddings = embedding_layer.position_embeddings.weight.mean(dim=0, keepdim=True)\n", + "\n", + "def embedding_forward(self, input_ids, token_type_ids=None): \n", + " if token_type_ids is None:\n", + " token_type_ids = torch.zeros_like(input_ids)\n", + " \n", + " word_embeddings = self.word_embeddings(input_ids)\n", + " position_embeddings = self.average_position_embeddings\n", + " token_type_embeddings = self.token_type_embeddings(token_type_ids)\n", + " \n", + " embeddings = word_embeddings + position_embeddings + token_type_embeddings\n", + " embeddings = self.LayerNorm(embeddings)\n", + " return embeddings\n", + "\n", + "embeddings = embedding_forward(embedding_layer, input_ids)\n", + "embeddings.size()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([30522, 768])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def embedding_get_all(self):\n", + " all_embeddings = self.word_embeddings.weight\n", + " token_type_ids = torch.zeros(all_embeddings.size(0), dtype=torch.long)\n", + " token_type_embeddings = self.token_type_embeddings(token_type_ids)\n", + " all_embeddings = all_embeddings + self.average_position_embeddings + token_type_embeddings\n", + " return all_embeddings\n", + "\n", + "all_embeddings = embedding_get_all(embedding_layer)\n", + "all_embeddings.size()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untitled_linzhuo_maskedlm.ipynb b/Untitled_linzhuo_maskedlm.ipynb new file mode 100644 index 000000000000..20caa7bf8b94 --- /dev/null +++ b/Untitled_linzhuo_maskedlm.ipynb @@ -0,0 +1,1082 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = 'all'" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "# import seaborn as sns\n", + "import os\n", + "import json\n", + "\n", + "import numpy as np\n", + "import math\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "from pylab import rcParams\n", + "\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig\n", + "from examples.extract_features import *" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/17/2019 18:31:04 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/vocab.txt\n", + "01/17/2019 18:31:04 - INFO - pytorch_pretrained_bert.modeling - loading archive file /nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/\n", + "01/17/2019 18:31:04 - INFO - pytorch_pretrained_bert.modeling - Model config {\n", + " \"attention_probs_dropout_prob\": 0.1,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.1,\n", + " \"hidden_size\": 768,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"max_position_embeddings\": 512,\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 12,\n", + " \"type_vocab_size\": 2,\n", + " \"vocab_size\": 30522\n", + "}\n", + "\n" + ] + } + ], + "source": [ + "class Args:\n", + " def __init__(self):\n", + " pass\n", + " \n", + "args = Args()\n", + "args.no_cuda = True\n", + "\n", + "CONFIG_NAME = 'bert_config.json'\n", + "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n", + "config_file = os.path.join(BERT_DIR, CONFIG_NAME)\n", + "config = BertConfig.from_json_file(config_file)\n", + "\n", + "tokenizer = BertTokenizer.from_pretrained(os.path.join(BERT_DIR, 'vocab.txt'))\n", + "model = BertForPreTraining.from_pretrained(BERT_DIR)\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() and not args.no_cuda else \"cpu\")\n", + "_ = model.to(device)\n", + "_ = model.eval()" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "def convert_text_to_examples(text):\n", + " examples = []\n", + " unique_id = 0\n", + " if True:\n", + " for line in text:\n", + " line = line.strip()\n", + " text_a = None\n", + " text_b = None\n", + " m = re.match(r\"^(.*) \\|\\|\\| (.*)$\", line)\n", + " if m is None:\n", + " text_a = line\n", + " else:\n", + " text_a = m.group(1)\n", + " text_b = m.group(2)\n", + " examples.append(\n", + " InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))\n", + " unique_id += 1\n", + " return examples\n", + "\n", + "def convert_examples_to_features(examples, tokenizer, append_special_tokens=True, replace_mask=True, print_info=False):\n", + " features = []\n", + " for (ex_index, example) in enumerate(examples):\n", + " tokens_a = tokenizer.tokenize(example.text_a)\n", + " tokens_b = None\n", + " if example.text_b:\n", + " tokens_b = tokenizer.tokenize(example.text_b)\n", + "\n", + " tokens = []\n", + " input_type_ids = []\n", + " if append_special_tokens:\n", + " tokens.append(\"[CLS]\")\n", + " input_type_ids.append(0)\n", + " for token in tokens_a:\n", + " if replace_mask and token == '_': # XD\n", + " token = \"[MASK]\"\n", + " tokens.append(token)\n", + " input_type_ids.append(0)\n", + " if append_special_tokens:\n", + " tokens.append(\"[SEP]\")\n", + " input_type_ids.append(0)\n", + "\n", + " if tokens_b:\n", + " for token in tokens_b:\n", + " if replace_mask and token == '_': # XD\n", + " token = \"[MASK]\"\n", + " tokens.append(token)\n", + " input_type_ids.append(1)\n", + " if append_special_tokens:\n", + " tokens.append(\"[SEP]\")\n", + " input_type_ids.append(1)\n", + "\n", + " input_ids = tokenizer.convert_tokens_to_ids(tokens)\n", + " input_mask = [1] * len(input_ids)\n", + "\n", + " if ex_index < 5:\n", + "# logger.info(\"*** Example ***\")\n", + "# logger.info(\"unique_id: %s\" % (example.unique_id))\n", + " logger.info(\"tokens: %s\" % \" \".join([str(x) for x in tokens]))\n", + "# logger.info(\"input_ids: %s\" % \" \".join([str(x) for x in input_ids]))\n", + "# logger.info(\"input_mask: %s\" % \" \".join([str(x) for x in input_mask]))\n", + "# logger.info(\n", + "# \"input_type_ids: %s\" % \" \".join([str(x) for x in input_type_ids]))\n", + " \n", + " features.append(\n", + " InputFeatures(\n", + " unique_id=example.unique_id,\n", + " tokens=tokens,\n", + " input_ids=input_ids,\n", + " input_mask=input_mask,\n", + " input_type_ids=input_type_ids))\n", + " return features\n", + "\n", + "def copy_and_mask_feature(feature, masked_tokens=None):\n", + " import copy\n", + " tokens = feature.tokens\n", + " masked_positions = [tokens.index(t) for t in masked_tokens if t in tokens] \\\n", + " if masked_tokens is not None else range(len(tokens))\n", + " assert len(masked_positions) > 0\n", + " masked_feature_copies = []\n", + " for masked_pos in masked_positions:\n", + " feature_copy = copy.deepcopy(feature)\n", + " feature_copy.input_ids[masked_pos] = tokenizer.vocab[\"[MASK]\"]\n", + " masked_feature_copies.append(feature_copy)\n", + " return masked_feature_copies, masked_positions" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [], + "source": [ + "def show_lm_probs(tokens, input_ids, probs, topk=5, firstk=20):\n", + " def print_pair(token, prob, end_str='', hit_mark=' '):\n", + " if i < firstk:\n", + " # token = token.replace('', '').replace('\\n', '/n')\n", + " print('{}{: >3} | {: <12}'.format(hit_mark, int(round(prob*100)), token), end=end_str)\n", + " \n", + " ret = None\n", + " for i in range(len(tokens)):\n", + " ind_ = input_ids[i].item() if input_ids is not None else tokenizer.vocab[tokens[i]]\n", + " prob_ = probs[i][ind_].item()\n", + " print_pair(tokens[i], prob_, end_str='\\t')\n", + " values, indices = probs[i].topk(topk)\n", + " top_pairs = []\n", + " for j in range(topk):\n", + " ind, prob = indices[j].item(), values[j].item()\n", + " hit_mark = '*' if ind == ind_ else ' '\n", + " token = tokenizer.ids_to_tokens[ind]\n", + " print_pair(token, prob, hit_mark=hit_mark, end_str='' if j < topk - 1 else '\\n')\n", + " top_pairs.append((token, prob))\n", + " if tokens[i] == \"[MASK]\":\n", + " ret = top_pairs\n", + " return ret" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "import colored\n", + "from colored import stylize\n", + "\n", + "def show_abnormals(tokens, probs, show_suggestions=False):\n", + " def gap2color(gap):\n", + " if gap <= 5:\n", + " return 'yellow_1'\n", + " elif gap <= 10:\n", + " return 'orange_1'\n", + " else:\n", + " return 'red_1'\n", + " \n", + " def print_token(token, suggestion, gap):\n", + " if gap == 0:\n", + " print(stylize(token + ' ', colored.fg('white') + colored.bg('black')), end='')\n", + " else:\n", + " print(stylize(token, colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n", + " if show_suggestions and gap > 5:\n", + " print(stylize('/' + suggestion + ' ', colored.fg('green' if gap > 10 else 'cyan') + colored.bg('black')), end='')\n", + " else:\n", + " print(stylize(' ', colored.fg(gap2color(gap)) + colored.bg('black')), end='')\n", + " # print('/' + suggestion, end=' ')\n", + " # print('%.2f' % gap, end=' ')\n", + " \n", + " avg_gap = 0.\n", + " for i in range(1, len(tokens) - 1): # skip first [CLS] and last [SEP]\n", + " ind_ = tokenizer.vocab[tokens[i]]\n", + " prob_ = probs[i][ind_].item()\n", + " top_prob = probs[i].max().item()\n", + " top_ind = probs[i].argmax().item()\n", + " gap = math.log(top_prob) - math.log(prob_)\n", + " suggestion = tokenizer.ids_to_tokens[top_ind]\n", + " print_token(tokens[i], suggestion, gap)\n", + " avg_gap += gap\n", + " avg_gap /= (len(tokens) - 2)\n", + " print()\n", + " print(avg_gap)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "analyzed_cache = {}\n", + "\n", + "def analyze_text(text, masked_tokens=None, show_suggestions=False, show_firstk_probs=20):\n", + " if text[0] in analyzed_cache:\n", + " features, mlm_probs = analyzed_cache[text[0]]\n", + " given_mask = \"[MASK]\" in features[0].tokens\n", + " tokens = features[0].tokens\n", + " else:\n", + " examples = convert_text_to_examples(text)\n", + " features = convert_examples_to_features(examples, tokenizer, print_info=False)\n", + " given_mask = \"[MASK]\" in features[0].tokens\n", + " if not given_mask or masked_tokens is not None:\n", + " assert len(features) == 1\n", + " features, masked_positions = copy_and_mask_feature(features[0], masked_tokens=masked_tokens)\n", + "\n", + " input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n", + " input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long)\n", + " input_ids = input_ids.to(device)\n", + " input_type_ids = input_type_ids.to(device)\n", + "\n", + " mlm_logits, _ = model(input_ids, input_type_ids)\n", + " mlm_probs = F.softmax(mlm_logits, dim=-1)\n", + "\n", + " tokens = features[0].tokens\n", + " if not given_mask or masked_tokens is not None:\n", + " bsz, seq_len, vocab_size = mlm_probs.size()\n", + " assert bsz == len(masked_positions)\n", + " # reduced_mlm_probs = torch.Tensor(1, seq_len, vocab_size)\n", + " # for i in range(seq_len):\n", + " # reduced_mlm_probs[0, i] = mlm_probs[i, i]\n", + " reduced_mlm_probs = torch.Tensor(1, len(masked_positions), vocab_size)\n", + " for i, pos in enumerate(masked_positions):\n", + " reduced_mlm_probs[0, i] = mlm_probs[i, pos]\n", + " mlm_probs = reduced_mlm_probs\n", + " tokens = [tokens[i] for i in masked_positions]\n", + " \n", + " analyzed_cache[text[0]] = (features, mlm_probs)\n", + " \n", + " top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=show_firstk_probs)\n", + " if not given_mask:\n", + " show_abnormals(tokens, mlm_probs[0], show_suggestions=show_suggestions)\n", + " return top_pairs" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/qsj/miniconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", + " return f(*args, **kwds)\n" + ] + } + ], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "110300" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_train =pd.read_csv('/nas/xd/data/gan_prompt_remain_OPENAI_TOKENED_new2.txt',delimiter='\\t',header=None,quotechar='&')\n", + "len(df_train)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [], + "source": [ + "ss = [row[0]+' '+row[1] for row in df_train[[3,4]].values]" + ] + }, + { + "cell_type": "code", + "execution_count": 215, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"Why didn't the skeleton go to the dance? He had no-BODY to go with.\"" + ] + }, + "execution_count": 215, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sss=ss[22]\n", + "sss" + ] + }, + { + "cell_type": "code", + "execution_count": 229, + "metadata": {}, + "outputs": [], + "source": [ + "sss =\"why didn ' t the girls come to the party ? i had no - one to party with .\"" + ] + }, + { + "cell_type": "code", + "execution_count": 230, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/17/2019 19:40:30 - INFO - examples.extract_features - tokens: [CLS] why didn ' t the girls come to the party ? i had no - one to party with . [SEP]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 | [CLS] \t 3 | . 1 | the 1 | ) 1 | , 1 | \" \n", + " 100 | why \t*100 | why 0 | and 0 | but 0 | \" 0 | ' \n", + " 63 | didn \t* 63 | didn 15 | couldn 9 | wouldn 5 | don 3 | hadn \n", + " 100 | ' \t*100 | ' 0 | - 0 | , 0 | = 0 | ` \n", + " 100 | t \t*100 | t 0 | d 0 | s 0 | n 0 | ts \n", + " 69 | the \t* 69 | the 9 | other 6 | my 3 | these 2 | any \n", + " 32 | girls \t* 32 | girls 8 | boys 7 | guys 4 | police 4 | others \n", + " 73 | come \t* 73 | come 25 | go 0 | get 0 | stay 0 | came \n", + " 98 | to \t* 98 | to 1 | for 0 | into 0 | at 0 | after \n", + " 42 | the \t* 42 | the 40 | my 5 | this 3 | our 3 | that \n", + " 83 | party \t* 83 | party 3 | house 2 | club 2 | parties 1 | dance \n", + " 99 | ? \t* 99 | ? 0 | when 0 | . 0 | because 0 | , \n", + " 38 | i \t* 38 | i 20 | she 16 | they 10 | we 5 | he \n", + " 81 | had \t* 81 | had 17 | have 0 | was 0 | saw 0 | has \n", + " 100 | no \t*100 | no 0 | twenty 0 | number 0 | non 0 | zero \n", + " 88 | - \t* 88 | - 4 | other 2 | ' 1 | real 1 | . \n", + " 99 | one \t* 99 | one 0 | ones 0 | friends 0 | girls 0 | girl \n", + " 100 | to \t*100 | to 0 | i 0 | they 0 | a 0 | the \n", + " 15 | party \t* 15 | party 9 | be 8 | celebrate 8 | dance 7 | play \n", + " 97 | with \t* 97 | with 1 | to 1 | for 0 | tonight 0 | around \n", + " 96 | . \t* 96 | . 2 | ! 2 | ; 0 | ? 0 | | \n", + " 0 | [SEP] \t 5 | i 5 | \" 2 | and 2 | the 2 | . \n", + "\u001b[38;5;15m\u001b[48;5;0mwhy \u001b[0m\u001b[38;5;15m\u001b[48;5;0mdidn \u001b[0m\u001b[38;5;15m\u001b[48;5;0m' \u001b[0m\u001b[38;5;15m\u001b[48;5;0mt \u001b[0m\u001b[38;5;15m\u001b[48;5;0mthe \u001b[0m\u001b[38;5;15m\u001b[48;5;0mgirls \u001b[0m\u001b[38;5;15m\u001b[48;5;0mcome \u001b[0m\u001b[38;5;15m\u001b[48;5;0mto \u001b[0m\u001b[38;5;15m\u001b[48;5;0mthe \u001b[0m\u001b[38;5;15m\u001b[48;5;0mparty \u001b[0m\u001b[38;5;15m\u001b[48;5;0m? \u001b[0m\u001b[38;5;15m\u001b[48;5;0mi \u001b[0m\u001b[38;5;15m\u001b[48;5;0mhad \u001b[0m\u001b[38;5;15m\u001b[48;5;0mno \u001b[0m\u001b[38;5;15m\u001b[48;5;0m- \u001b[0m\u001b[38;5;15m\u001b[48;5;0mone \u001b[0m\u001b[38;5;15m\u001b[48;5;0mto \u001b[0m\u001b[38;5;15m\u001b[48;5;0mparty \u001b[0m\u001b[38;5;15m\u001b[48;5;0mwith \u001b[0m\u001b[38;5;15m\u001b[48;5;0m. \u001b[0m\n", + "0.0\n" + ] + } + ], + "source": [ + "# text = [\"Who was Jim Henson? Jim Henson _ a puppeteer.\"]\n", + "text = [\"I went to school by myself. I had no seat on the bus.\"]\n", + "# text = [\"I thought that John defeated Mary. I was wrong. _ beat _.\"]\n", + "# text = [\"Did John defeat Mary? No, _ beat _.\"]\n", + "# text = [\"That mary defeated John contradicts the fact that _ beat _.\"]\n", + "# text = [\"After the outbreak of the disease, the Ministry of Agriculture and rural areas immediately sent a supervision team to the local. Local Emergency Response Mechanism has been activated in accordance with the requirements, to take blockade, culling, harmless treatment, disinfection and other treatment measures to all disease and culling of pigs for harmless treatment. At the same time, all live pigs and their products are prohibited from transferring out of the blockade area, and live pigs are not allowed to be transported into the blockade area. At present, all the above measures have been implemented.\"]\n", + "# text = [\"Early critics of Emily Dickinson's poetry mistook for simplemindedness the surface of artlessness that in fact she constructed with such innocence.\"]\n", + "\n", + "text = [sss] #\n", + "analyze_text(text, show_firstk_probs=100)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def words2heads(attns, tokens, words):\n", + " positions = [tokens.index(word) for word in words]\n", + "\n", + " for layer in range(config.num_hidden_layers):\n", + " for head in range(config.num_attention_heads):\n", + " for pos_indices in [(0, 1), (1, 0)]:\n", + " from_pos, to_pos = positions[pos_indices[0]], positions[pos_indices[1]]\n", + " if attns[layer][head][from_pos].max(0)[1].item() == to_pos:\n", + " print('Layer %d, head %d: %s -> %s' % (layer, head, tokens[from_pos], tokens[to_pos]), end='\\t')\n", + " print(attns[layer][head][from_pos].topk(5)[0].data)\n", + "\n", + "def head2words(attns, tokens, layer, head):\n", + " for from_pos in range(len(tokens)):\n", + " to_pos = attns[layer][head][from_pos].max(0)[1].item()\n", + " from_word, to_word = tokens[from_pos], tokens[to_pos]\n", + " if from_word.isalpha() and to_word.isalpha():\n", + " print('%s @ %d -> %s @ %d' % (from_word, from_pos, to_word, to_pos), end='\\t')\n", + " print(attns[layer][head][from_pos].topk(5)[0].data)\n", + " \n", + "special_tokens = ['[CLS]', '[SEP]']\n", + "\n", + "def get_salient_heads(attns, tokens, attn_thld=0.5):\n", + " for layer in range(config.num_hidden_layers):\n", + " for head in range(config.num_attention_heads):\n", + " pos_pairs = []\n", + " for from_pos in range(1, len(tokens) - 1): # skip [CLS] and [SEP]\n", + " top_attn, to_pos = attns[layer][head][from_pos].max(0)\n", + " top_attn, to_pos = top_attn.item(), to_pos.item()\n", + " from_word, to_word = tokens[from_pos], tokens[to_pos]\n", + "# if from_word.isalpha() and to_word.isalpha() and top_attn >= attn_thld:\n", + " if abs(from_pos - to_pos) <= 1:\n", + "# print('Layer %d, head %d: %s @ %d -> %s @ %d' % (layer, head, from_word, from_pos, to_word, to_pos), end='\\t')\n", + "# print(attns[layer][head][from_pos].topk(5)[0].data)\n", + " pos_pairs.append((from_pos, to_pos))\n", + " \n", + " ratio = len(pos_pairs) / (len(tokens) - 2)\n", + " if ratio > 0.5:\n", + " print(ratio)\n", + " for from_pos, to_pos in pos_pairs:\n", + " print('Layer %d, head %d: %s @ %d -> %s @ %d' % (layer, head, tokens[from_pos], from_pos, tokens[to_pos], to_pos), end='\\t')\n", + " print(attns[layer][head][from_pos].topk(5)[0].data)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "01/10/2019 21:46:20 - INFO - examples.extract_features - tokens: [CLS] jim laughed because he was so happy . [SEP]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "jim @ 1 -> jim @ 1\ttensor([0.7248, 0.0842, 0.0656, 0.0407, 0.0319], device='cuda:0')\n" + ] + } + ], + "source": [ + "# text, words = [\"The trophy doesn't fit into the brown suitcase because the it is too large.\"], ['fit', 'large']\n", + "# text, words = [\"Mary couldn't beat John in the match because he was too strong.\"], ['beat', 'strong']\n", + "text, words = [\"John is taller than Mary because he is older.\"], ['taller', 'older']\n", + "# text, words = [\"The red ball is heavier than the blue ball because the red ball is bigger.\"], ['heavier', 'bigger']\n", + "text, words = [\"Jim laughed because he was so happy.\"], ['cried', 'sad']\n", + "# text, words = [\"Jim ate the cake quickly because he was so hungry.\"], ['ate', 'hungry']\n", + "# text, words = [\"Jim drank the juice quickly because he was so thirsty.\"], ['drank', 'thirsty']\n", + "# text, words = [\"Tom's drawing hangs high. It is above Susan's drawing\"], ['high', 'above']\n", + "# text, words = [\"Tom's drawing hangs low. It is below Susan's drawing\"], ['low', 'below']\n", + "# text, words = [\"John is taller than Mary . Mary is shorter than John.\"], ['taller', 'shorter']\n", + "# text, words = [\"The drawing is above the cabinet. The cabinet is below the drawing\"], ['above', 'below']\n", + "# text, words = [\"Jim is very thin . He is not fat.\"], ['thin', 'fat']\n", + "\n", + "features = convert_examples_to_features(convert_text_to_examples(text), tokenizer, print_info=False)\n", + "input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long).to(device)\n", + "input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long).to(device)\n", + "mlm_logits, _ = model(input_ids, input_type_ids)\n", + "mlm_probs = F.softmax(mlm_logits, dim=-1)\n", + "tokens = features[0].tokens\n", + "# top_pairs = show_lm_probs(tokens, None, mlm_probs[0], firstk=100)\n", + "\n", + "attn_name = 'enc_self_attns'\n", + "hypo = {attn_name: [model.bert.encoder.layer[i].attention.self.attention_probs[0] for i in range(config.num_hidden_layers)]}\n", + "key_labels = query_labels = tokens\n", + "labels_dict = {attn_name: (key_labels, query_labels)}\n", + "result_tuple = (hypo, config.num_attention_heads, labels_dict)\n", + "# plot_layer_attn(result_tuple, attn_name=attn_name, layer=10, heads=None)\n", + "\n", + "attns = hypo[attn_name]\n", + " \n", + "# words2heads(attns, tokens, words)\n", + "head2words(attns, tokens, 2, 10)\n", + "# get_salient_heads(attns, tokens, attn_thld=0.0)" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "0,2\t-1\n", + "0,3\t-1\n", + "0,10\t+1 动宾\n", + "1,1\t+1 动介\n", + "1,4\t-1\n", + "1,11\t0\n", + "2,0\t+1**\n", + "2,6\t0**\n", + "2,9\t+1**\n", + "3,5\t-1\n", + "7,4\t-1\n", + "11,8\t0\n" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvVmMpUeWHvZFxH+XvDfvzX2pylpJFptksxdquskZS4Ks6ZEgzRiWbRgGJC+SX+bBMmADBox586sAA4YtGDBgwYYlQLAsyYsMQ/BgWjCgMaRZejTTPdPs4dossoqsqsyqXG/mXf6I8MNZIuK/t1jFUbenCFQABLMy7/2XWM7yne+cY2KMeD6ej+fj+ZBh/7gf4Pl4Pp6PZ2s8FwrPx/PxfBTjuVB4Pp6P56MYz4XC8/F8PB/FeC4Uno/n4/koxnOh8Hw8H89HMX4qQsEY8xeMMe8YY943xvzKT+Mez8fz8Xz8dIb5SfMUjDEOwLsA/hyAOwB+G8BfjjG+/RO90fPxfDwfP5Xx07AU3gTwfozxwxjjFMDfA/CXfgr3eT6ej+fjpzCqn8I19wB8kv37DoC3Pu8LbdOJXdMHcqPFAMZYxBDSr4zB51k2pnKAsYiz2YI/GiBG+j9APzc/0m4hThd8N/+MLZ8pv66xFtF7+rlyiLP6c69VvJMBvb/8P7/2omeIIfscirkz1gIx0q/4+8Y5erb8HRrfK57naZ45e8a5eVn0PXkGww+d3eex8/oFR34dmqeY5qDVmt8b2bOYyiH6kD7/pP3WbiNOp4//uxOda9Lct6r5fWEMLYXsg2xunmY9Pm/k3z/F4UGMcetJ3/lpCIWnGsaYXwbwywDQRQ9v4Ts0YXUNWIdqexP1vfuAczCtCsYYhMkEdrCMMDoHgpcL8YJWgHOA97Dba/APHwHBw3Q6sJ0O/MkJ3Poa4sUF3cNYwBrYq5eB0xEwmcCfnAHGw/Z6COfntFjO0XVDhGm3EEYjuJdfQLx7D2E8oWdzDuH8HMa14a5fQri/D7u1gfr2J4B1dBhm0+J5AcB0OoD3iN7DVC39jPnWVxF/54f8edC7GQvjLMzSEvzhof5N379VIXoPtzJEuBgDIW2kOJvC9gcIp6f8CwDWZNdvwbQqIAREH9KzWgcED9vtAtamOZFnNQZuMEC4GPO/+XmMBSIfLr4GDQdYPrDtNh2OGGCXlmB6S/CPjmD7PdrI3iNOJjBLS7D9Hup792E6HcRZDWMNrSGA6uoVhIePEKdTmE4HYTSCXe4jjEYq8KprVxAvLuAPHqa/ZaPauwx//4GuRxiP01rlUtM6uJUhzb91MHCIhu4bJ5NibavrVwFj4D+7jziZwC73+TMWZthBHE9gnKV78fd07QDEeobqyh7qT+6woOBHGNA62l4P4eICdmmJ9l6rTWtgXZofnns5V9+N//D2559KvsfTfOgLjrsArmb/vsK/K0aM8b+PMX4rxvitlunC9vuIgQ43bfCAau8y/TyZIEwmQIy0sSNtLNvt0gYEEENEnEwQ6xp+fx8AHSY7HMKfnNBm7rSBV15ArGvY/hIt0ukI/v4D+OMTmG+8AliHcHEhD4lY1/S5GGgzWQf/wW06ILzZ6dAaxHqGeHgE0++jvv0JbTIgHTIAdnkZAFDduAbjnB54WAO3ukIf+v47AAC3sQ77+iv0vKsrCJMJ/NERX8jpNd3GOm2CGBHHE8TplJ4lE0THv/hV/bypKph2G3ZpiSyreoZwfg67uYFYz2heaVJlrRDOz+n5YkwCYX2N7uV9eh5eD/1/DDo/CB4wFm5lCDscwvZ7tKbn5/AHD+HWVhBOT+FPT0mQ1jUJqtkMttdTrWyWlmA6HZiqQn3nbprnyYTWbzSC7XbhVlfo3rMZ/MFD+oxYgsbAtNpwwyHqu58i1jVMq0IYj2E6HbidbZhvvkbfB2D7fQCg/WdJUYlgtasryQI1BrAO9SefIh4dq3AOF2OAlUMcT2D7S+kw8Fz5kxNaN+9JuIQA02qna1uHyHvTrq3CLi8ngcCWCGKAXRmmuW+19Vw97fhpAI0VCGj8DkgY/DaAvxJj/OHjvjO06/EtfAcA4OQQpwuyJmwXh6s5bL9PB5XfJ79OLkURA/DW12B/713ApQ2Ua0iRxoXLYSzcMt0jek+Hm7V8nNW04a2Dbbf0EPuDh9lmsYV1I5terZJyEudN51zjZt/Xr1RVcU/jHNzONurP7qvFpKZufm3R7MHDVFW6pnWodrZQf3avuIepKtWk8nnZcKKdRJDLe8g7us2NYk7s0hLCeALbbiFMZ5lFAbitLRXuttstNGoxP8bQ9XkdRXk05862WwjjcbpWNp/F82d7Rz/Lz2CW+ypcYExyH8Qiipn7kz1nMa/yfhvrZM1m81gMecfC0kIxv7Kv3dYWEDz8o8P0MZ5bBK/v8934D38nxvgtPGH8xC2FGGMN4D8G8KsAfgTg73+eQAAAo1rGwMth5OEGg3SoM4nptrb036bTgV1fg11aYuuBrwMSCFY0cAxwG+sw33sb0Qc1h8nvDEnbzWawgwHcyjBp8uBJyDhyB8LpKQmIyQTGknaw3Q77hRb+EWl04xwtbm7dxAi7zJrn4oIPpknSPEbVTAAJPCOWhHVqwQAkwADa0LJh7fIyYCzqu5+mDcWuhbparNFII3m6n8m2Q/Co7+/rs1U3riHWtR5ONxyqhWCWlopNHWc17GAA2+kAxqhAiBMytcF+vlhbYTwmDdftwm2s04FhgQBAtbfsEdvp0LPL81sL02rToe/15vaX7ff0+fSQt1v6brGui+fXvSMal78XJ5lSipEtyKjzBV77OaFkrN5L9qx/dJiEkfdp7a1Lc8TXtf0+3HCo/47TKVlOrMT8/j4JhBh1v4WLC/rZOnqfzLJ80viJWwp/lDG0G/Et/DwAOsSmVdFLtdukmS7G5CexWVVIdt4kYTqjwym/b/ry2RAtJL6yXVtFODxCnNV8j6Dax7TadE0RSo35yi0Y02oT7nAxLqU7axXTbsM4C390PD8JDe0nP9Pi14QLsB+5EIDL3Ym1FdVCxfWBhGc0rALxQ8VqEkCseO9MS4n2t4MBwtnZ3DNVuzuECT3m/gu1PrDQP29+d07by7s35lwBYMaFClCwCZSK8I8hme/ZtUyb9gHYTI8hlvdDZp0aA7u8TK5crsyye+fzX/zcaiPWs3R/6+CW+8l6NkZxBB2yLrklmM2f29kGpjP86qO/9cdjKfyRRrZAcTYFQlDfW7SJabd1Y4pkNy36XfQhCQ3n1Jxyl3dUc+QaJPAEh/GYrt9ukW/W7ajED6MRLVaOB7C2yv088eXc2lrCHcSMtE4XJ04miwXComhI9nM4P1c/P1xckLbPv84CUgSiaVUIJ2cLr297PT1AhKv06fvBk9/J2jbOpmR6ynsYS+azNWq2hvNzEqpygIyB21inudhYR33/QXkY2DpwwyF9dmWoGlHckkKbZXvCVC16/sEAbmdb3QDTqtI9+IAmPISfaTCg/SJmfmOYqqXzEWdTwlrEEjGG15XxqlmdrCkRCLmVe3JC72QswukpWQC8R1WLg6y7WNcJC8kwmTij53SrK2ohxmkpWMJ4Ur5E8Api6jqL6wHAP9hPIPNTjGdDKIAOlanYpGPzPE7o5eVAywY2rTbczrZK4VjPkvkVIsLhIUyrjfrjO2qWK3gIKFItJln90ce0eN6j2t0pzDr6gQ6HmM7GWXomYxIYx1ENt7NN/jwLJru0pM/uj47V8hCgrAiTAgqA0YsnEzmMx6QhRhd6AG2PzOLq0i4DjYE3b7JcZNhul/zudkvfL4xGyVoIXsEv2+3SRmNLTEx8+axefzBIGitGsk6MgX/4SAWoPIdptWF7PdJ4McIfn6hmc5sbqnkFLJS5IFeJwMFwegp//wGBiZOJam3ZE7pGMncxwp+NEoCrGyDqvmhq8nB+ru5MHmmwgwErjJDmZcE14X3CKkRRWZesAWMRzs7IIptMUF3ZUxdO56vTIeXhfXJtxAUBijXMXRICclP403Y7+mxzmMXnjGdGKPjDw3TAJpkkjBwKPD+njWMdYj2D33+YtFOMCJMJhcrqmUp9yyEqOXzql/E9omipNrkAprcE//AwTerSkvqctt9Pmq3d1sNgnIMbDnUzxrMRhcbEGuHP6YHiDS6xavUfRQDkgzchfdAQKLfUhala8I8OVdDV9/fpPZzTA0iYQQJpYa2a3Ybfi8zOdrr+6IJ+1+/pRpbvu60tuCFhLGpxbK8Xj6saCiDgkA9KnFE0JNdw1eVLcOtrfN8sktPpkAXAa6//Z81N8xXSRjcWbmsrheOqit4pcyv8yVk6tBoVibSfFrmEmUCTdQinp7p/CmHOWIg+p0trGOuaffwAt7tD8+cc7cvJJEVP8gMOqLBLoVFL6+6SglDBxFaIYGl2aUldHeVGfIHIA/AMCQUA6WUyFBjWwR/TAXNrKwnQiYEAvYbvLCaamMKmqmAv7cD2+2VUA6R5zNIS7GCZNoIjgWM7HTWRAY5sjEYUXrIO4WKspnIMEZ7jxgIihotxKdjmXtSoS6SaMXgCv2JMwKgAaYBqE+JD2ARg8rxIJCPOprBL3WKjx3qGcHFBB5XfW66XDhNzDwTFFt8aZBn4/X34M7IswsUFfe6H7+j8wDJZi4WNbbd0PcSEtv3kwtWffgZ/eEyHNITkjk2nOncCiIqFSA8fk39PC4DIgLFEUPS7wcM44rwAgFtd1f2hIVIebmc7XZIBRH90XAhqf3JC0SY5bO224hW22yWXhnEwvQcLsPrOXQ05kiWStHcM2RoD85aIYGWPOeR2MECMkUKUIngNuR1qRX6B8ewIBUap1YUALYJhbefW1jTk4oaMogsBxzo9EPlGdqsrsMt91B99nAgr2WRXV/YQRucIR8dEcNp/mCRxBrCF0YjcFTYN42xKFoFztNENEXsMk3CqSzt6OIrIgoJfFtWlXTpcDIgCSIdWhFe2yd3mBr2XRgDS0vmHj2Ba7TmhF6dT1WLVlT0Yy5pWTE7FPEIycwU3YV9bohvyOdPpkADs9+FeflGFpM75YKA8EzVlxf06S1iHcUQEIp95lg5rIcyYe+G9ClwSXAlwBOgQu9VVDZcSa5Lmx22sKfHJHx4mToGGEckS8hkGIlrXbW6oSa5zYKxem3x9izAaET41HpPbK88nURnen/J+pqr0HiJ01Nrg/YwY4TY31K01zqkL0bxmOD0lt/nsDMYaBX5tr5fA3qa78znjmREKln38uWiBsbTYZyMy58W8NQbu0m6yGgRVb7cLP2sR0i9ugYTsCNWniIH95mt0nVZb7wfrEM9Ghe8a65rZcedwL16nex2fwB88RDw9S34im3eywemVDOp79zlEGBKHgk1eRd8ZVIUxdH9AwcFYz8hc7PfhVleKeYvXLqef5b6OKdg5ss7WinGOLJ9AfzdVSxF4OcjGOdrkkwnidEYH4fYd+o78Z5nZKYAxA19N8ozgKf6QXDW7uqIHKcdBALEWbIo2IGEa0bNr5Ry5n2olJqwgnJymiAZAVoVGMToFLqSuD2tyf/CwsNZsR4BoIRVZEoSbG7rfcrITKbkKiEEVAKxDDFEFu223UF29XLyfCCJ/8FDdYX9ywkqipdeUdyLy2kzvL3hOGI1YmDy9QACeIaEAa4nJ1umoljKdDplrdQ17fY/Q9+U+/MEjmKpFFFBAtYlptRnJbtGGFLSXGXAy6WE8Sea3dZCwrKkqhN+jZE5F4AHaNJkFUr1wg9yGo2Myoz8g9qj5xiv0GeW5ZwKKAURTVarJ/NEx8SbEB2aT1r32sgoV1YYs+cNolAGgbG4KS0/ej836/Flml9YUDwGI/wFjEgv04SMCvwJpY9tusSVBW8QOBprXoQDvZKJ03uqFGwrChemMhJdgAwxaijUQZ3VC3zMBpdcGSmSeBY5ahowtRO8LQFNcMXXJYizMaaFB6+dnJDCFMwIkK8FUVQIo+VAFcQnVYqFnDkfHhekv1o+Mau8yzTtTjsn1TQCu//Q+WV/sctE9bcIueLjhkNzbjJsiwC5AQiuMx/ScIkDDY7gTnzOeOZ7C3BD+tuQJZJxuAAWrLrKZlR+aQvNwSC1xwktSlH5XTctF/H2+VEa7lcVRjABYCGDlI6HRjc8t+Lde93HPGXxiYcqzZteZY8w17mEHg8eHSxsxdTWh89wTGZ/3Ho/7LnMDhKFpOh11DwoW6pP26YI1mov5P+mzwgURjCILi8pemuOr8POJeZ/fL/+8HFgAj2eXPubZCj5Gvtbqjj5+r+U8mj82RuMfafCEq98NqKRT7cJJJQDSphf/Sv9vk7ks12y3gBg0ISUXEqqVhFgkklnMOAX5QjILWXOLaZgLoDiZqIazTQS7MRQsy+6naH8DSIqZhsoBKveVl+DWV8ls502ifAXx0dkFcRvr5IcyUzJH2MPpKfzRMardnfQZMZuNUZReAMOUs5EwEr1fvqY54NYwjXWuGwcgD6lKaFS1plhcGbvRdDosSLyCvzrHXbJEiKSWPV+D5GS73XmSUYwJT1ErYMYRGLZk2cITLoRxFqZqMTs0hSPd6iqR62Tv5ZaeMeV6y+G3RFNXQFT+b13CZjJcSbGifC+B9vhcNOUJ49kQCoASR2SiXJ7UwRvCHx3rIsoBAaBEp9x6kBh0GI1oU1/e1kNcbW/Cfv2V7N5MgRWTj33kFIJqqYWivp/8bKy6CW5nez6cBOhiuZ1t2mjse6trIaFY7+e1etPakUtWLfj3foxwepbMTg3TJXai+qePDslcZT8zckhM5sv2evCHR2rq26WuzrO4WnpwJAtP5r9fUosFMyhyM1qVgl8wWYq5uAl1nULGliyhwNaRxvsNHbo4ndLBY0Ecp1PYwaCIRLnhkDJme70ir0J5IhJaZWBZ5i9nCobT00Ss4r/7kxPaq5kG9hkZzq6uEB9E8IfgNdyeEtRsZo3GpEh6PXJZOGri7z9IVodz88qK30MEshsMir0kQGSc1V9IMDwzQgFAkZqbM7Dscj9Nnmz8XCLOZqoJAVB+QjsjAMWA8P5HhJx3O6gfHCC+82MAQPXCDToAcz6dSbkRDOKIL2hsFs5i4MkNBvD3H6TwElDGr4NH4NTgHNF2q6vpliJ8RPDJyBJtZDOrNl1dgbmagEW5n+33i81ehOL4/4k7UVMtCQHjJhMCEuXfOfgbo3Lv5XmaNQVU4IhmZyEE8BqLO8CH2nY6lCzFFGHEMAfSKvNwNqX9IRR0iRiwEpHNL+FD026p9aS4CL/zwkS0/OeM/VlGIAj70AiCPEO/rzkbhVKwDu7FG/oMplVBsoEBAgTJTWwRVwRIew4gIFkiEBmfA8HT2TAWcTKBPxsVAkP2r2235i25zxnPlFBQAGU2pUVmjeFPzii1ms1zYe/ZwUBTimevXyeEvNtFnFEs3VQVbLulqHkYjShZp0s+ndvcQPj0HqXuHh4qr0GTjmQhMqkuZqXtdlN4bnUF/mxE2it4QqPZklAJLb4xD93kkrgiG4u1V74RhYMAgIG3BFRhOgOOTtVSUSuJ8xNy4SJaxX7lRRUcid14UR4KAIgZ4SsPraIkZQlYmQ9B8CX6oNdYMMJ0BtPpoNq7TEJSLBAmSWk24PpqOpD9vvrvxjnUd+7ynJA1YgcDxFlNYC67RZjNkCe+CQ+m2ruchPTWlq6B29pI79XYA/LuhhPkNDSbCQ/TanO6eYB/n5RQOD3l1PY6CVMBRc9GmQLKaN6c4q7ALZJ164+OS+wls6SltEAYj2nPPOV4JoSCcZY47Wdn6otLkRQA5EIspZg0/UC1FfzDR7C9Hqrf/BH8v/JVmOU+CQwWHnZzA/HVm+UN5aA7h/j6SwmsAWuFkOEEsqEzrjtRX0k6h/NzDVeKZPYHD0k7GQMjh71NYb763v3EwANSXD1G4Ou3SgZkDh5JuM054OUb9M5Xr8AfHsLv71NYancD7tqVlO+xMsTFz3+NJ9nCrlBmY3j/IxZ+hMG4tTU6dC/dJMGcRUz8yUk6JOtrsKsrcINBirtnB92triRKMwtOFZQ72+Rv93p6iKq9y7q+9d1PUd/9FP7wUPMjhCQlwjRPWxY3SHINAMJpYj1DnE6LuhtwVpF+U7WI3AVomK/+9DOKUDkH46we1pAT44xBtXeJDt03X1OsJtZ1So7KQ+NVC3j9Fru8Vq2KnEzk2JW0XabcG6LPq0v1J78Jyrg9BN78KuWbyNoyhdltbekcS60KCdXajXXizKBhuTxhPBNCIfoA8CEI4zGZWAwgqZDgVOQ5bcPkEbRasL/+A70OWi0ipWytIv7OD9XPNd0OUVZfuol4fgH77scKetlej/w6JgoBULRX7yuaJmfh+aBS2VQtXVT36q0UFt3ZUn6E399HJRwLNq8BIP4LCodWV/ZU4ysvYjpNYOeDQ2JNMs1Z3s3ef4T6w4/os+026nv30d3nVOfdbcQLTi1m7CKcnqK6tKuMUVN7xPGEQcIWTNWCW1sjevVggHgxBnygrNV2C9XVKyQsWBj4kzMODdO1w3Smrl48G8EOl8kCZGAybAwLHoAMNYMZr1FaNgC3MkR17QrNiVgpoin573KwJHU79hLQSJTrBsOPsQS73E80dwH6ALJW2m0NgZuP7irmVF3ZK2nZxjDeEeAeHKbIAfM8IIJMLAtWJiRgiP8hFvF4s61cEvzWD6GsUbClZh2wuQrcuq7v549PVOHUexuoP/1sHsx8wng2QpJmPb5lvlOE06RcV156C8B8OMeYoqCEfpez4my3m7IqqwruymXEYzLhYIlim7MdhQsgTMMmKl2EHTl2LsVNTKsNu74K/2AfdnkZxnBdh0ZoSwSBPGeRhvu48FIWqpJiJbbfhx0sI47H8EfHRVEQrcbDiHWeTu12tukZez2yFsaTIvkrDw/GGUUuwuEhzNISCdSNdYSTsxR+sw5ufTVpcnBMna05fS+ePzBoqM/Hf9fCMXk4NSMeAYxhZPPlVlcUgFYgkxPqHjeUtv45Q4BSzRfRSIpNiD5TnqvLl1Df/ZSEszFAq4UwOi/37qLQMwCJ0kgoVABVt7GOOBqlbNU8lLvgHexgkHJIJITK4V23u436kztfspAkoD6RoMpkslIo0Q4GqK5fpY3OG0RIMwBUO4mAsAxI1t/5GUqFvUXug13uIx6fwnTaBKSdndHm//bXyLS7doWQ48GAFnSWhI/t9ShHnnkO1c3rcMNlMsePT9XX9Td3CTAck2thl5YUKxFzUTAD0RA5XRsx0rvJv0UD3rpJQm1jXYuVxLpGff+BZl+awYCyJ7/+Sir3ZQzsUpfSqUWbPNgnC+tiDLu+mog4DO4p2Lm6AtvvITBoF0ZULCWcnCHOpjj/N99EdfUKHebzC7KMWLDCGqolmL2zGwxIEIaIs3/9DdKmmxuaKdgkZdler8iarPYup88w1uCPjpX1CICwJIlqZDTz6uZ13WpxOiNfPwcPAQ0lAlChKJarkOjibMprMGEmo0VkJSL1HYl27OGu7tHlqwr2668QiSkTLmJlxboGBHsSUPrkBHZ7k8HEZSW5CanKtNtpboGCQm6Xl/WsmDaR/DS8+hTjmbIURAsYa7ieHdXNs4NlxPOLhKbygWiagabV1mKYNIkt5X4Lw84fHav2MVVFVYOyFN76s/uqLUUriBQ3nQ7cpR34u1SiLNd0TY1W/G4Boaj53M3CrgVZS37XasPtbCGenAJLXU0jFnAznJ4xgLoJzKYAx9HD8UmBjYgWdKsrnEFI0RMAKqho0tgSWhlqWrRkotpOB9EHuI01hBOqHWBvXEX4gPCKMJlQRIbxFoDqUsb+EvyP3gdiQLW7g3B8oqYw4TC2jHY05sxtrCNejNXCKoqUZlZOronztWhaFoVFIDUJcotTwO0sSSuGCNvtIIwnlIw2Ok9l4DJ3UFLF3au34P/wfcIZWBDWDw50PfQdhZzExXTc9hb8/kNi8TYtzvzdGgVzcmxDLApTVfi12d/7klkKQpIBtAir5NcHMfdB2jY20HlJzhF/0b10E/7hI4QTLqv1rdcRLsbK2MujGOH0FG7vErHojIF545UkdGZTuLU12CEDQi9cQ337E7oPa1cpDpoLBEHs9XdqIi+YbmMKmq0m22SIvmIO3hMYd3KC8OiIhNobr1CM/uAh3KUdIEb4/X3E6Qzn375ByVJLS3pg3NoaZYb2ejQfkqx0MSZtZSzc2ppSfIUCrdwRvk4Yj2H7S6jvP6BD7T38ux/Qtfhwxek0+dvWITw4UIGAGOF3NxIqHqR2QFaCPScc8VAhAgLbNLoTqHaF27uUPpwJEw2JSoRAXEsprMogpLEpHV8iOBqC5bwFBE8WSauCPzym70oEKUYGPGuYHllr8eNPKQLGQt4fPKQw+FJXrai8/J7Z24VbZTe02wEubRfWExHtWmQ9i4BfW0t7Tbg+r72sods8VP6k8ewIhZzdlmUHCjPMvP4yAAKh4qzWyYSl4quyIWNdI372gPztIQOW79ymxd7ZTtmGkwlsv4/qhRsI9/cRZ1MKa33/ncRxB9V5qO/dJzLJOx+qdhEAUARNdeMaLdgbXy0KxuZ4hOVELiXtiB+dx/mF0q1f4tRcJqZIzoJd6pJ2vn2PAEfrqFhMp0NmPIDOP/5tuiRrmVjPtBp0nNWp/kGMcNubAL+3PzpCGF3AvfJieg8AZm21sNDM2ioh5v0+VbziqtLu1guJBDVYJoHaJtKRZr2+/CLi7/6wQMW1SpH8my2HYpuEyDkA5H4V2a8hUFn9BhhNVZr4HTJch0J1KTvULpGQ8IfHGh0J5+dUP4NDxymJKmqJelVocl0GgMPpGZWgv6AKX7bfU2WkbQE4SiW5ErbbRfjoDlUX57od/p330/bguqBxNiUFxVaSlv1nl8mtDBFv3+V5/RLWUzCtSiseKZNRyTaUSYb3bqt5JUklbnODDvvmBuw3XuXPcwq2c6hv7JClcXoK027DP9iHP3hIhKXBAKbbQTw8TuQRjniI1Hdra8kauXmV8vKtFNbMog91TenZFxfA27SAeeaaPFfk+oru5RcT0OhTKFNGnEyUXyDEn3B6CvfiDZh1IjtpmjQj/G5jnawW5+D/8H0yP6U82qu3yPWQgjRnZ2zt1Cq44ukZwGFTAVjNqVRgvMdJAAAgAElEQVRVIqArHh6Rf753GabTQX37jvYUgPcKNPp3P6DQm/wuBtiN9ZTSbIwKcZkrenYpDy++fkbj5XRj4xxwZZfWRMKiEuefzljolglA8fWXNEJhOUSX/726vEv74+SE9haHF6cv0WcVtO5zbcS8JBsL1Won67EiroC1FLH4FmfeOpssFnY3REBE71HtbFFV8XqmrEa3upIwJkMFdAFuEZBZSTIP1dXLgLHwJ2e6r5Uw9pTjiZiCMeZ/BPCvAXgQY3ydf7cO4H8BcAPARwD+nRjjoaGg/H8D4BcBnAP4azHGf/Gkhxja9fiW/fMFukrVgoxq9DAaFWWx+eEKs0qyH+3KgFyOx5WEFzak0Gez4VaGRHgRbSSFUiXKcXGhBUk04SZDhuVZKYR3Qaa7HHy5PT/rXOKLPFsjYaja2Up58bEsd5+XiHdfeQnhw4+LpJ281L3tdiHZlkqgkXwNiQhkBWLFp3bDoWIN+jf2j5VlOiPuv5TKF8A4Ty5ya2upb0UzIsPPJzRy224Vfrr+P/P5H3edfB2KOco/0xA8hgvsKI7QxHmaaywp2HnCHpJAV0yF597tbCMy5oOM4Vm9cAP1hx+lOcpL23/9FZi7DyhVvVnlfHVVS8XpXs45NRm2IJjITzL68D8B+AuN3/0KgH8SY7wF4J/wvwHgLwK4xf/9MoD/7imuD0SULgOQOgRVFewWmfz+4SPS8Gy+S265W12BHQ7g1ldhX7pOeejabel1uLU1QrhBGqe6foXM22+9hurKXkqk4XRm2+8D7RYRpvgQWg6F2uVlDUlJkU0xz8hf7xLQ9tWb3FfiPJVx5/uH8QTu1s3id+nFE+POLi0Rd37/QBmQAGBvXEnXkpx96xB6nRSFWV4mLOXFq4S5bG6Q78sWi3Eu8TE0+5SfJ0/qYgKTmKlmQOXjTbsFe/MaCcDhAG53m1yIvV3S+pe2tVGJbEzTaRcFdKtLu1BiD0ACazCg/hrMiBS+gZKU8vnJivKab76m19GwMg9TVVrCXhPvxG1a7qfQc4xZuDukvIcYVdNKrUsVLuI+cMUoqfiFGOFfuU5l7NbWcPHGdSUfiaJzwyHqDwmYFVZlXtp+/9trMINlreko7E0AKeQaPDF0hV3J7QYEKHfDYZFh+zTjiUIhxvhPATTqheMvAfjb/PPfBvBvZL//O5HGbwBYNcZcwlMOBQ8N8d9Nqw184yuoP/oY1d5lktBnZ9yAZZpKY4WI+t59+IOH8D96D+FPfTO94LsfE+vv3n32tyzCgwPY118BfuMH8PceEMdAEONul/y4h4+IyANQeI1j1eH0NCU+NTanPzpCOD2jzfsbP1Cw1C4taahRko0IpW+pH56HqkRIhfFEwS0tsWYd/Hsfotrdgdva1HkzzgFvv49wfo76z/4JClF9/13y20cjCpsCmvTlT06oyAx/322sJybf2YiSzFpZss2rtwjYs1brBcx2U70B/2CfsJ279+CPjuE/+IiuLZTkySTNM79HXOWIR5ZzEccTqqshWX5cS1MSjERQagOYwYCE7h+8l5q9ZFaZ29pKeytQLkQOUku17JQc1uLvbRLgrXvSFvOn4WImrAlYWFinv/X7DPpO0fvRPXpmSfJqVZrrEesa4fiErtXpKGi48907hJFk99VqVHnkjcHaWM/IMg2eOSSBXKL/n2o07sQYP+Of7wFgR21hc9m9RRcwxvyyMeZ7xpjvzUChourGtSw7kjSw/YBYZPXdT1W6w9jCPMobyJhWG/af/T7c5gbcSzeBVuoR4VaospPd2oA9PmOJarUqsu33FEmWpBsYM5f5aAyF6Rz796lHY+QKRVzOi7n1wn6sb3+iCTG21yN25dmIaM8cFjOtCv6AwlVuuKyaTBqquFdf0jJbfv8A7rWXKX4/m8LtXUL1wg10f3SXojSzaVaQY6Zl2uFcqkbNc+YPjwm9ZywknJ3BPzokwWMM/I/eI//05JSe9cYVHN3qcjn3/YTU15Qi7Dh3xVSVam1TVVoG3XY7CO/9OEUNNtbJwukvaWKY8Abc9lZq0CIbXNYkIykZDpMC0KiQ39/X8HbuUrh1OnhCMU/JYTMCbT+7l0KpV/Yg9Tdsm1Kjq8u7pLgsJ8wZU1onrbbmloSLMfzdz2A31qkpz8Y6WaSDAdzqKrl9TMuWqJPl1oPIBGKh7QWwbrX1nY1zBKSKm5SFXBdGvh4z/qWBxkigxBcmO5S9JKmkdf3xXQWJpBaCFM80rbYmOWmWImucau8y3MsvqqSurl6Gf3QE/+HH8IfHGiL0X7kK2+3qZBvnYAYDIATy+dgyILDNagKRIN5gumg4Oka8GMO02KSXeoCbGzBLXfjTU0WuhXMvCxRG55TEEiPs+iqxE6X3ZU4wsVSwlqItTM3d3oDvt7WaUAwR4b2PKMTV6yEsd1H/+DbC4REVk+12y2IcnOtguP2droUkG4VAmI1GJLYQDo8U3Arn58opiHfvYf3tEQm1FZqbOKvh1teIK3LrWsFPsP1+lnVZs6Bkf77fJ3IVA2SaFzIawd16AfH4hA6mMXqNPHmNyE9Be34CRPcVsNofctr4RYp05NhUkULOmlbrKAIEFrICCVyKzt/f19A1YiReTFbTQNwR2+upNVh/cieFePl6/vgEeHSM6uqV1Ovk7IyqWu1dVrdPt0W3WxCR6D4MemeZkJpN2yhK9DTjjyoU7otbwP9/wL9/quayzWGM1TCWlj2rZxSWEaQfSHkFmghjqCnp4RH8ux/Arq0i/tw3EEfniD/3NbitDTz6a2+SHwyg+owyIW2nQ01FZ1Pc/XdvIXz9Foy1cLvbqHZ3tAR33j48XKQKvJL9KOBfrKkBajg+peQVYxEOHhYVggEQ71/AquU+6k8+VRO+urSrpiYAreyM4AmraLVhxlOEpUrLvlU7W5RE9TOvUBLQD/4QAJuaxsJw2zvhJ4g74u8/gBsOU5s96+Bf2iu6Lbudbfj7DxAmE9Q/vj2H6kfvgd/8fSBExKs7HD9vIV7dRRiP8eBnaM7N6y+jvv1JQu0NpZ6bdhvTP0PJWuHwMLEqs4I2sA7+3Q/gT09T6T3mk9hulzRv8PAP9tXMFy1L5c+iWgymoqhCtbtThnyNJW6DMAOFA7HcB6xNxVMD13eQegWzacpr6ffJbQwRFff9sN0uHv3b3yArYX9feQi216OwcvAkEIJHuL6D+u5nyEesawIm97YJeB0MlB8Szs7KbFLhlEynaZ7ZutSSAF8AU3gqRqMx5gaA/yuLPvyXAB7GGP+GMeZXAKzHGP9zY8wvgfpI/iKAtwD8zRjjm0+6/orbjG/GP0sLJ8hsnmrcYGctQqNNq02FVM/P4bY2Ud+5SxyEew9Sj4ZOB/7br8L+v7+XvxxJej4EGlEAihJa8tlqZxv+4aG2h6Psx8B5/hkvP5POYsJVN66h/ujj9Lec6cjvmbPTbLerBULk+RYsDl33x7fp/7c/4dThZdT3H2ikBKBWbuHoWMlFwgZ0G+vALNGuhc0H7xPDFKADtL1JSTYxwt16gVKChb//4g2EDz6a88NzLVVdvaIHvLq0qw1slWWaswc5f0MZfTJHGXNV5rfYN8I9sEQMC1z0VvM5spJ5dmmJLJyrlykKwL+XKFSe+yDftasrlKDX1L68P6IPlPS2u0PMRWFaNmjcyrIcDkkJcaNiuWd19QrCo0MNseda37TamtMwx6bN2ZpZod6njT48TUjyfwbwrwLYBHAfwH8B4P8A8PcBXANwGxSSfMQhyf8WFK04B/Afxhi/96SHWOnsxrfwnbL+3QKTR15yrpceaILd5gbi6RnVNljqwvR68AcHxGH44BNyD6ROY+O70ucRzqVuwJwQBKT+jKJ17O62uiEASJr3e8T3l5AjAEnjNsv9Mpy6gKIqi6t9GAVFzrsSSTRkdQWm14W/90Axh3y4tTX44xNUe5foEJos4YgWtuw7ARAAmpOB8nBgxi50w2V162yf6knUd+7CbW4inp7qAW3SpfPiOHklJC0Dn98vWxsAiqBrf1HBKWSNeJ4Xdp2Wa2VhbrexTiQlXiMVnjJPeb3PRddr7M+53pmNtZU5tcvLxFdh0powHRGizkPiLWzTNR8TttWQY/M+8ohinbCC+G74B08lFJ4IS8YY//Jj/vSdBZ+NAP76k645N+oaMZaFLCnuCppIDuMUGWcApBmtWepStIAFAqSn4/k59Sb47CD52NIghpFg6vHoKIFpltKTVVvyYoWzUYpejMcIHyevSDamXRnqgos0jzPGFBbks7vhMJUnZ7pzNFT+3bTamuYtgB0xBAcw3a7iEMLdsL0e7HCgqb+mw416pT051680rTbc5R2E/YcaKrVLXditDYR7KZciP6C21wNCSF2wWOBJ921ZN39wQHM2nSkxy22sE+axPCzyIJQVWM/KA8VhyXB2Rqg+R148a9Eoa8Y8gvSzT239co4Br48IEvfay/BvvwtwsR15L7vUhRfOCT9H9B7VzevwH5M2FnOcGgOVCqsWKy47wJonwd2d/MmJ9mSQkvnh4iL5/rNUFUquWXBSxHIEkhUtQlYURmY1iOCM0q3rKcczwWiMIWRNSEgT5/54GI1SafKtrVSIZDbV8KGpKtRfvYn4s6/r5Jh2G+cvrlGPyBduJFfAOWB7I+WmX1zALveVhae1+05Ptdy5aCO1ZrLNHaf8GQZCw6hkKAIArCPchH+W5i1FUVbrgFaLQbtpAgmZMgwQLjH+xjUSDt8mn9y0KAU7cBUet0LEK7d3SXkLAp65jTUgxNSsNlKzm3g2Qsyo5lJLUYhLsBSlqV64kaHdlp6DD6IUUIn1TA+Q1MHwkjk4HBKeocVXLbW8z6wRETTSbi71PKiohgOgnAotuiokHuEcZBmSpt3WA+LffpewCo6CaAOejKnoLu1qX4f6Q3KHyG2l2h2CZ+VZitXujt5fIz6RXS9rU9l1FrZSW1LmH94rlyYdjJia17z5Nc436RGovry8sDiwtiOUCmLWFSHXpxnPRJakYgq5P9/rwdy4gvjBbfKvrl8lc73pVjSywgpTFSD/cHOTDoz3OPr33sTq3/nn+j0xocWKcMOGRgOU+pyzG5s4h7IEfallCzacdZpdh2+9Bnzv7TmN4zY3UgQgez+3MgRa7WQhSIZj4M3EiTZaSenigqwiNs/lsDTz7t36mnaYMs5qT067vorw8JFyKKTHggjWAuNouCY5g1B8c30XmQd2tYB5M1uyV6Vwav63HJN43GgyPuOs1n8Lb8Hv78/VZsgxnurGNaJ+17XO8yIsyDhHxVmkxZywG72fs2xzNmWezSnWR+EKZXU98j3idrZpL+c1JsQt4u8WrExpEuPclyxLkifNLveTtplM4H/4jmolAdCKQhO9nibY6MTnWnUwULMWMcC9+hLW//c/KG/NBUblPiS9OdYtTEepi6gsNs5CGw416y5w12npMi1aR8JMbnUlCYTgk0AwZZdpbZCicWhi1PmjYwR2MwDADAZaVqy+cxf1vfv63uFslEx9RvW1c3PWzBUgV0CJQhyKjN5TEVrmTiwizIhAcDvbKSuwUb9RnlvXS1Dw4DX/X9qyyz6gjVynPIjGHlGBwKG/RSMvjEOZiVkOymRC5euk9mSegMaWDGJEffsOkeGOjlNl6wbrVuYqSEUrcRklBVusFQl/ZwlyMre0JmLmz1PXm0ojnp5phE4qguVdpvN+JDRPVl3Hpx3PhFCQl/LHZE5HRr013gvowQOgk6t8fC7e4VZXiNY8HNJmvriA/carqC5fovjw2+9q1V+tXSclz2dTQnsz/ytHraVLMADSdPnkx6ikK9PpwH79FaUxCyklnI3o81kmqHxXCDMIlBoteQM0KV67PcvhrC7tEurc5g7T/DzmZ77KhyWrBi1ChD/rOE3bvPFVeowLrhFpTUpPZ94BhTHHWrAkb54qbp5/sK+WVjOPxLTaZaJa3iaeD00zCUqqJIswMUtLhAE1TeUsB0LThrPn0uI2WdOc6oUbgCNeQx5yzk1uf3KiayFuAHXlYjpzXRdZh1TsZLlwae03X2NAnEr0uc0NrR/puBwdAA2P64iSlk3hb7e1RYQ1LshbvH5VkWDleYiTCezaKispoo7bG1fYig5fwiIrdj2+ZX6BQKlHRwlVbbXJj88Q4MTQMqlLdc7tFjQ2xKIEmQzb71ONQckEbLUpzMZ8AfqQQ3Vph0JvfE26eQPB55EnDMkz0+ezgiE2K+8GpAhFUeyzIvP+/Fz9TRlagKZVJSSeEfNq73J6/kZBF9U6zSIk2bsuJLYYqlYUPr1HPjEXmZGwWRG94DnID1S+Tup2NCILajrLemTl3XJso3DL8r9lIdvHjceFK+X/bmNdsRh5psJ1y7AjU7XIVZA05ccN68pIDsp9K5ZgM4qWuzPFenPhHCW5LYo2WAe3tYHw6CjNI/9eQspfLvcBDAZxb0b6FdXBp9r9nAsvpmWrrRuyqNfIyLX6iT7VNFShwaXbhLEYZ1OqrycasNWmBRWzV7TMjWtqLhZPXlUphg4Bx2q9tvYGCL4AxNRNEVCU2XH+8BDS4xBAUezEsDYvNCeTkeRnTRgSkhHPjyTI2CwdHEDCJPSF0t/qjz6hSEtG6NHGL5GTh/jzmq+QNSORAxCms5RYJLfpdBKVXD4v77zcV/cpXFyUe8Cm54sxwg2XkxvBAG4+Yl2nordMBBMuACWb7SvHJJ83BbqFNszaXYrc6nw3B6+B8mlkvTkSU+BNnLOg6etZTU3N1eDP+oODwiIqBu8vf/9BAsqz0K/2k3zK8UwIBVM51QZaTjxr2SUED+HVSy0A+btbW9MNEU5P4SSrkvtFwFMMm7TzmNJ8l/u60cKfeSPF0KVJqpQQ582kxTti1IMq9fXcKy+l6AlvyjCZcPv6hiXADWekKIcdDJJwExwh2/j+5ExN4ljXFOdmVqVsNLu2Ri7LylBzL9TfFHyFOw/FnIcA0rb1nRRetVLbEFAfWT7nHz5K4KAcvgxMlQ5fbmsrJT4BJXFH17xKhzEGxRtMiwqLCGPP3XqBLa5aMyUVA+G+DonkFnSPAGQVaiEZOdScul0Qn0CHtrqRamNSd6ag9T5FqEuhFDmIeU0HadCiYVwA0vgFMTJPxqmrGX0oXeQYE3Yh+2g81ncQC6U5l7q3+LsSMhVqPkXPHlNGYMF4JoSCasYYNW7rT7KyW/zvvDNSbjKG01MqtrK7TazF+w+ojBqbcNLoRRHxV16kDc4Yhf2nv0e/f+kGpGCImsd1Ej5yAMTf9UfHFAX40XsUAx8O1TpwK0OS3DkKri3I08GXMu12aUkPlZY0N0Tj1oQWm3gBbm2NUmZHI/iDA4Qf/CEia9U4nWk8XNOSeS6FHVftXSZXJas9qIlZYg1waFSwBfmdVClyr72cSttndQnj6WkSRpI5mB0UGJP6eEiNBg4NinUo4Vj/7ge01uw3a2VjsWiE4AVoiNVwx+wwGqX6jy7VTZDv0f3aaiH4j4VK7XUNjSToGaO5JDEjSGkVMHk+mQOpTyGujzHU2zJwGX2eW9OieVccSwBiycI1qVMZgJTuLiAmoAlkso5SacqfnJAw+oIQwTMhFIy1KmmVnZf7dgJ6XWRAFaAAWKxr2kiPspJU0gYtI3dQJp5FePdDigrkUYsYgXvEUbcSvxd6dBYdKDakSf0tAagbEcZjRfWFey+HUTZgysqrdeHn8t5jpFwKIAFXfN84nVJRGdZktBEDpNZBdfkS3ZevGbUqEaP4d+4S+5KJPXAO/uCAhMo4cSeoluORalTL5Bh/NkL86E6qT2jpHcJ4khh3Mq9g/1+AYueKcvBhNNIokvABBFSV99Up4bR5/VsWbQoXY81KlKiC5TyDpg8ugk+S1tRkl/n1gYDv0zN9D+VnsKuRBF7QUKf8venWAqC+GXIfdkvjdFrUUNBrZEl/hHttUfOfg4d8zdQRXSp3h/GYrt3ipsrSVSw/B08xngmhAAB52qhoaUHW42SimW5EYKHOQm53u0TxpzOtYRAeHRU+GmKkTLxANRgis/ncay/rxEvNv8jCh9KcqZeD++pX4IbLlMxTtTD5pW+nJrUZ8QbWUY4BJyXlPRXscp9cm8x0F00nnZWkgaouOIc4q+1NIgRxmDUywBavUWmycHFBmodBtfrup6SFWdDaG1eSiS+CTbTPzjbsC9fUUpFmv25jveDdV1f2CkadVny6vKPuj2lVRFBaX6WoCbtLkimqIU6ktm3u1VupapDMB+ca4Ge/TinwmW+vpdglm5HXQSJXeafyPLXara5QCzmALCmO2thGdirtvQpufU0tDQqdZjUNsqxL4xzC4aHiR1oqLw9hipIJqSSduFiS8KaNiKxLmIyh2iL+wX7Bz1CrK/ikmCSkyxajgMNfRCAAeDaiDytuM75pfmGOGFI0eUGJugrJyLQqGGMo7ZiBuhwB19j5dMZ1EVvcDWg51cqPqWxZkWwj6HieV8DWhSYM+STNxdRWMKpB6XVfeUmLcOYEH0LYZ0V8XTUsfy5H942l/oLh7EzJR7bfh11bJXxALCmbuk+bfk+rMjfR9bzkvZqhrTYlCf34tkY5lHcvwFuWr0Apx0GtNsSYmtZ0u+w/Z3knmfa3nQ41UMlCbMXIN3WeI5HNU0Fiy0KKcTyZS1bThkJxPm+gunk9ZYU279OIPsl7KYCsCqhs3lLQrvOIRvaz29qidWy31NJyy/1EpJPrAoQrjScpytCM6jSHdTCtCr82/rtfnuhDDCHFhaVJZiYQpHGHWhGtrMim9xQyOzwEtphsJBsiRITJBGE6I7ClnsEsdeFWVzVxqRAIDH6FaQKrtPRWjFoWzDgHd3m3NHEBkvBc+lvrF2aItn/nfe2OrZqVEXjFHrKoglgvAFIhGb6uXaGWZcKlCKNRAgxjSLiAdQjTmYZmpcMzQCCYWGJAAt2k1BzVDrRq6UhhVNNuw/Z7RO0VK+z8PJmv4h8fZ+5UPSsT0WIkF6fdpvoOXHG6aIwDcLESagykORn8/fyZEbyCpHINoalLPQO71E3kIj5MOQsTAAkEHnl16Zyfoa/gE+1duAt5yrt+jpVFPvKSAAAxLBF8qiTOVZPkPIh7Ve1sI4zOkwslFod1hRJMN2LsqpEE+HnjmRAKQOaHyaK7tClweSctjsSzARIIzmnref/uB4lwwqQhMomDNpUNx6eK4krYyJ+eJtxAwb0khZUsNR5TJOTKZfhP75Hg+ZPfTAscvBJSpHR7swV4OD6hhqJXyAWSKk3CUbBSFTimdGwRHuqfxoj603uAVAfOXAGZIylbJxuvunmd3mEyodx/gOLfzCIFALx0owjpSZadVBUW01fM8nByWnAGANrs8r2yqcv8Vqvvfko+tfQJ5e/TuleqHQU0lb+npLWSqRfZ1zZVVR5C7lYdRiMC+8TUll4N1iUuR+5WXZUGuBmb01qdI9PtkBUmLp+legd5FXBYh/hz31A3Rlmd3kPrbvIzFGHb3CLl+6vFJYJCIicSrg6xCN+rQvoClZyBZ0UosMTOpZm03rKrK/Bvv0tSUJpaCHDD35H23sQXJ79bWIFubZVyH6Q/5GsvlrTizI8WinU4OUtmmbEqIOSA1h/fpfttrMH8s++TD/+nv67PLoBjtbtThI/c2hotYLuFWCUNKwcmXlwgcEWfQpPx88kzi2/q73yaNg7/TebFra7CbW+p1opn7AJlkQLESBZSv0+b970fa+ahHCIET/0xuTWdmrJyyKTCjw8UfRGzXAqkyiFruATa/MTY1EsBSVALjyPWNSrmDMj1TaeTniU7UGIBmJUh/PGJlniLS4SPVFf2iOYdoyL2Uj7dra2h2tlKAHSMiAePCiFhl5eZzj7TPRq4B4NgP25tLVV6Brlw5p9/X7krgq3Eulahb5eXaZ5ffqEU8GydAoRvhTEVbMkFRWGphlQ13DjL+FfJD3ma8WwIhQyoy6v/utUVmEHqnCPFKPVzvCEk9VTixGFEgGG1d5lyAsZjrbNnD46VyWi7HSU4mU6HEHXhyud+Wn5ApahLu00FUxg0av/uB+kQ8ILldf4AqIXij44xvUqazLSJehxramkepjPKa+BKO80hEQi3sU4gmRQJ2d6CW1tJ2mMyQXj4iFBxY2A6LDiC1ygAXZDrR4hVJUP4AMYoOUorZFtDPAI+jMLMTFTfOpWQk/kDyArb2Sb3kKMyupHzjRsTbRyGUsltn/xrt7FeuFuG09SVLQjA71OvCX94TGzKP3gP4eiYSGqcNaqdmT/6mATs4SHq+/uwWxuFGZ7zLcTFaT4rCb3AoN+R7inas7VWahZClK4J4xwSqYqffJauL+/COBfhLYmAV+AstuSBCPYjHakAzLsVnzOeCaFgrCVmGqAv57Y2EUYXRLMFNEyoABxXN7btVjoIWXnu6vpV6gtpiBnp71MSjL//gMGlGdU/8F61jCQf0aJYvZYwCIUNJ/eqdndIQDiHcEZaU0vJtygXQ5OqAG2iAutQ/foPFESUNGO5tj84IL8xRKrazLkc+Qhcv3H/r3wD9vVb9F5LS0kjcYKWYR+3vnNXN5uk+VIL+QpuuU+UZq7dQDfwcLs7amKbTgfu1guJeXl8kkAxPZRs8ciBZUS9CLMyYh+OjmGlCYyY41nKvD8+UY2ufT+ks7WYziYVbhGGJIxBdW1PLSR9PiHGiaXJ7ykhYwCw3Y6mSisTMstNUOuHhxxut71FuTFZeBggnMJUlRYdFiq636dUcXHvhNNQdMo2VjEbbSUgtH6OfuQRCLe5qetqL++S4F1e1vDpIsLT48YzEX3QVvQyTNlOXrSvHv6QxWn584gxpTFLMRVBfZmjILFxSQVutpVXTj83URWue+DiqXlb+9ySKJqlNBB6JSllvq9bW4M/PCwjHYKYZ9EOzf0QtqXw9YfUe0E5+DJfC0pyFai8/EkQd+USUOUhu9Qlkhg3jXFrq6n4SSYsYDkFXIqOSHSmgYKLxtVITiw/MXMAACAASURBVF7eTkzyTtksWAuu5Kh/Iz9D53jRPbO05ceWeMsrfOVD1j6PJvB6mU5bU9ObzzBXHYr3T5NnoWuURzYWPYNLPSuL3+WRLsHVGmegurRL89cAwKu9S/i/P/6vvzzRByADRkQAcBNNBdlAB0uKn2oxiwzdT3xzMundZZacvR41YB0OFYkGFiCyYvozCCTFQkTzaWPb7J4Slxaz2PR7yvKTZ44hZoh/W0OWcTZNjDm2SAKz3YQdqRwHKRvP/n1uoubUX9vtkoWyvlZYHxqLZ3eLJoxb8HHiljSWEUKSdkbm5xOhRYVsLwh8FEB4ke/KhUblGcN0loBEBoc1YsFDQFBae6vl4HMQsHBz+HBJfD8PMUrTFfPqi2rtFAIht2DU7aOMVaGjC3We2rnVuk+VrwFwkljilRBWwP0jVldI61/Zg5V07ex+QBIqSmzLBILtdumaEorf2iryRMQaEeFZf3ZPrTvFbWJ4Yg2KfDwzQkH65wmwYoxJNfmzRCKJtceaOkYrSxBpcsOYCoWENY5EaM2DccqaFMujiIEncAjWKBFIzEZNLspSZ906Ic1SzDSOzpXOqqW3gwdko0rVYtBB0mSmmPoKSl/DXPhE5lkoh58biZiKG7ZkQsIfnxQt3hFjUcUpXIwz/j61Vac1SBo7j1wASOXHhXkZY8rL6HQI+c7zP6xL+SlASVWmSWYBUzbh1dqLjlOCp1Nt7qoAYF4vgOfOPzoid6aRiBRGI+pDGiMd3HztWeuKVad7IKTSbnFGLe8DE4S0pHrWS1QrcvH86DobZrwGD//ZPUAEEr+7Pv6UrFARRMrT4VydnCdTsB9jVG6Ifg9QMF4Kt1ihzT/leKJQMMZcNcb8P8aYt40xPzTG/Cf8+3VjzK8ZY97j/6/x740x5m8aY943xvzAGPMnnupJWNKJZpHyXfoceY0AjQyY4pBpCFAyEv/wQz0I2v9R0Fzhp3Pcv8i+q2sCyxjQ0XLeMc4BgFIlSVqsCcUZQAojGpOow/krNyvzyO/l4OSx7npGxU/29wm4oklRFFv7IUhvBTafBavRtmOdDkU/plM23WdaZLaIwTesqDieFMw/AXX90ZHmJMhh1TXJIw7Nd5xNKSO0ofU0CjHNzOMsrKZt2YDEbASAGLIYP5OUGKsQincqRtJV7MU4isZo8pvMVf68jEmohcLP1Cyooy3bOCxL7NHkPlLyFr2LlnXj64XpbI4enuc8FJZYxpTUproyzQzeimUVJxMGgp8eJngaS6EG8J/FGF8D8LMA/rox5jX8pPtJLghbAWnho/fK4wdQAC8AUiUdiT0DqXTY5oZaGxq6zKoDaaUcZGa2EGVYamsxzNNTCuHljy6+sky80GwlYy9SIpRkV85J7WzBovdztFtxoUQYae0E0VaZtVOY1t5npdCsEpUklKXPLAdOkoPyd2MryXQ7wCwzmXNuv5jC+cbL4ujyuWZaM4C0wS2Xu1tQFh5IAlS7R0sJs3ZD0+ff0SIq02ItNelIsk3rmoSu5FCMx2k/iCJiq0XeDYA2J1KlVKfismpR5XOZUZ6BTPDmez9/79xSzHM3jCmtg3z/NKyGRXP5pPE0vSQ/k87RMcZTAD8CtYL7ifeTLDYNWw5SbTmPrWsqcS4kOHKQZ7DJZhWXw63RodSQXOMwCiNxwSSk+xhDZczzP3PCiXIpJhNuhEvWiQiDPHlKDl9uRsooUGghDDF4ptpRNkxGN65euKExbJisC7ExbOlIqm7Wu5Kvo6XWJfYv4KWYz2dnWglbUO6F84O0+ZuIt0Ylch8aKIHjxgYu9oRNqexqpueEt6Y2XEDa0VCn3iCBgPl95LtFinUWtQASSLrweWPU7EflVeSCy2Zubx56ziIrsl/dq7eK72gSW2M0ha5aMl9wfCFMgZvCvAHgN/Ev2U+y2UsSMZIp18q0lRwIButyqRlDIhfBOvhHh9q7T0cjnuwfHRbdeAstyxhAYq6VcWBdiJjSnyVFFSCcQTL47Ma6UmwBDq9laLvUPJDQYTFioIOf3z947QoVzs8pzJlrFn7P+se351qWy7vbjbV06GIGmokQAODWVjMQzibNGDyRoV69RfyLRn8DGFNsQAmxiUulZjkX/1Dtnpn4QKaV5aCyq6PYT0hRhbmRu5qCEzTR/1a7qBlJh89qCwFdo3YLdnm5ECCSoKSZqguGApnySEfHqK7safq0lt0DoLRtoBTeMRXyiSOmuHMfT1m7MB7PEdaAZEWpa9HoBfK046mFgjFmGcD/CuA/jTGe5H/7o/STLHpJguvyS1JQSMU0Yz2bixWnCcp8LEf58+Ir6gvyRquu7BGKy8hunsmWcwl0ZMksAEqUXK2TlmoU0Vi210tVm9LLkub4yktKKtFnXWCyC9gmwsH2+8AfvEe3rlrc2Zo3OtdaVMshtyCyg1J/9HFqmabCNZG01HzOQoCSfWhabQqhHp4U9Rol0mGqVrIK1JUIlKRmLLdg4zZmWgpfDntay6IMOsgCC6NRgcabToeupxuC/XmlPpvCIpEsWHqPkv6sPIHpVDNUZa2NMcACd0dzYdgNyQWZWIw5zbu+c5expZBctSyCIpaPZL/CML+g3aZCPVyfM3fTKGVbiGENF5LxDyBZoU2Oy5PGUwkFY0wLJBD+bozxf+Nf/0T7SQryrv9W/80qeEifmyXOeGbm5eGiZEVIC/lWUV1I2n2bqqUVhQCk66YXL1JxcxBIN27eCswY2PW19Oy5qdnvI3z4cfps9p6KOud/YzDKdjup1h+DnkWRj45jEDF1Hl40TFWRhvc+haqQzOnq2hUlBkn40z441DkHQB2nufhsnBK4KZWP5sK7MTJJJygCD5TCVQBdeb7C3DVmzhwWl7Gou6nuTooeCKgaJxPq88DXQwhFbYhiHWfTAoj2p6epJqIkRomFma0T9WLoF+vW3C9zVY+ySIj2K+WQqXSQki7e/vQ0RXXaWcHirFqTzkN2T7pvrRGMLzKeJvpgAPwPAH4UY/yvsj/9nwD+Kv/8VwH8o+z3/wFHIX4WwHHmZjx2uCGzC6WUFk+EWxkijCfFYiw05YyBhIoKDALgjklEtpHMynB6Sh2YsgrDGsPO/czgtSaAmPYaomyiujEijsdUQiwn3BgqchL5QMo11J9vl5vfra6oxi7ciyxUpeO3flgsulZHDmXn5NzaSq3hW9TTAED98R29rtCOw+GRvpc0nMkPbnXzOv0596vn/PpEOlPT1pjyObn2Zri4KCMuuvEZC8nSumVetSVAtnYFqUiwm6zxS5qsjFgmBziLYAg7Nc6mXPo9lCa5pUSxKNe1TjtBqTXLh70JwqaGNSnErPUfhOMymVC+xWhElbaW+0mQZftULyvuYKaw5goFPcV4GkvhTwL49wH8vDHm9/i/XwTwNwD8OWPMewB+gf8NAP8YwIcA3gfwtwD8R0+8gyECEKWdBqZ3WjJNux3Ydks54PmQUtiyGEK1FVNY4rOWQ3AARyJCVBorAMYGyG81P/NV3fgF+0yIJXUNu75KB3wlRQmErusPHgL3UixZ0rPFVNV27t94mUJY/O7iFlk2uekFkwtjX76ZTP08Ti+fYb5GbtIKum46HUx/9hXlEwCsdSV0KIDX3i5p2mWhnKdKQ6bbgdvapDyLIdWClIasynngtZT7q/DjOVY6NF9bsYZlFrTOlZpYCUuW0qcNkbo00zFmCWU5oYyfI04mVDZuOEyCM8Z5cLBKBWflXaq9y+kZgFTaLGT3CD7VwZB/+7QeptMhspy4RfzMhTWXuUVFmB1QbArGIF5czPUiTVmWQpSbJUEoSlI+/gVqND6zNOe58FazOarwDpi2mhfOkCFdjOaouACEgpxvEKGuFnRmoNT68m+ANmrIKvc+YS4X9TgszG5xh3I8gO8tTD1tQJODoo1h+309LG65nzQXv3dBGZZO3oveU0HHjH3X6L6UR3Jknuc6O3dS41ddr/z/9Uz7Kjbvl6/1onkriqQsWINmEZWczg5kFkTWVqAoNb+ATq++/WCQIkWZT9+8p1Cvi5L/xUNmlO5suNWVFLGSv+XAuMxPo2x/nlKdr+nTdp1+ZhiNhSnEfmHh+0liDoMuiQPAmAKHLvPh7z9g0z1VNKLaAKtEhsp6AQJQ8kju97q1tULiqlkYfBk6jFTlWfotAkjRCTFTM2amhFuBzLRnwDQnUhUxcLYqJIkrnzdTVVreTMGw/IBnvmd1ZU+ZiGE0Ii0tlYiBkiSWr4cc4H5f3TFidNrE+BTALdvoOVqulHH5P5OXikxJDuOpZcR5J0R57haCtIzfW51brU/IB8N2u/TcWWjbDQZEvbZGq4fnh1YL1eRzmNPqs7Z3OVkrz9gEoNyQovqS3sQppVstLK7EnUet6EYpAiH/FpA3BxNFoeUcii9flmTFk2QM+dOMbptORxuKEuMsq1rLxVYEh5A4sCLsGSio6asA7OoKVV1aGVKaa3bg6TpVYQpH0V78b7u0hOrSrn5H+kjCEKU1nJ9T92bw4kgSC/vSmvq8vqr3bG5y6Y4l9wQoVbq6fElBRa0KneMRS91CCwLQ4h/266+ome33KadB7htnU8r6vHldhaIONkWpNP4U4CarUr5N065FO2baLgc0hTGo1Zoyjae4R9PvNamgCVotrsEYyjyZfMi7M49BXBHb7VAeRpZyDUAjULGu9WctCQ/A7G7pHGjo2bkydGrdnLUJoADD3Vde4t+lMux5RigJvU4SJrNZik4wk7YIw+a8DEvuVWRLzW1uFL1CZK4fZ1UuGs+m+4CygSqQTPt8SD46gDlXQA6M7XRg1lZQ3/6E4t7GMDOyrKGn9QObJjRIcgupSSSwXRkWPp48S97ByXGxDzE5czNPtK78rjCncxJRc31YO9ilrkYAcrNcP8bXlxqOc5YYm/75M7mNdYTjE832jIzgF3ORuWLScVoOVPHs+bw0zfdG1mZ5gyxbNKv+LAcm/7npYorwXdjkNze/F7lIDWBY3YpFn80fl10I2+3qWsCmOpoQsC93wXhOkqApM2Vljtz6GlXzjqmLulqnfD23sQ5/eDy3Z4HM/eDx5XMfBOwSXsDZqOw/0CCiwJRUz9yE0pDUrIY/G6Hmev4FsryTSnKLphQtk5f8MlVFRCQ2yaQEvAoE4ZgLgCaVgdptqp/YAEI1Ti4WilCiM/9a+1JWKVNPKz9LWq5LVaMkj0M6TeUHzx9SN+RqZxvKl+AqzUBpfvtHh4nqO5lo/4tcoIRxKhceTk9pXdity/NQdG59Jnh5rQrLKXMTUwOVts7hXHRH+RBlD8r8wAHQ8J5eRz6XHXyJ8jQbF9N7jufDu/keZCtBan1Kt25TVaqg4sVFkb+gbiS7f7a/lKy+/Nl4jkiYWxb4dSrp1utpX0//8NG8EuN51H6cX8B1AJ4locCHUX3NOk1CUStAN0MZ0hLfFQBgbfKRORlKWV5ynbzYpVR70gNapxLbrjTjw2hUCATtes3PArAPKQ1MWdDIYZM6CmJqx1nyP6WsV55aTabfTIuFgO/nj08UQFTuAB9k02JQcnNDfVD/MHWszjNFgWzTNMCsAmk3JgkbEZycVryoA5QmFTX5HHJt5n8ImQtIDLzoqRJSUWE6P/ziWzffQVwftnCopN+8tSO4lD85mw/7ZtaFhjkbrpya9FIg9vwcjgv25PU2hJhW1NcUnIQTpDTXRZRilbmvYAu4ESUKzGPI5yU/+Jody6OJcTxpPDtCAZhfPNEu+YZbwGdvAjhFMooxcBtryURmLVzfuUsT/carRZKNmn68kIV1sXd5zqJRzgSXUHMrw9QYJOMg5LF6re6bmaxqIQmNWeaAhYAcQikaUoSb8p4JEoUxBvH8IrOassiMbPSGlZNbMRL/183MQlNy9aXkmj5n1SJ3gi2VvF1esW7ZYVYTOv+cAHYSnsswpCbzE0DGfK3nw3s814WmZP86r+tQCEPlAFjKOcgBW50/TpaSNnMgKrukoOurMO/CtKoiJ6LAVGLUeqTppej67tYL6f1FyeVWRy7A5HMiVJjbIYDyXNfuzxnPHqbQ8PHURwQW+pBFiKYZdnsMPpBHDUxVkSXifcIUssavcVaXeEUjpKWmMF9roY9vqWiH+pwmHfRmGPWJgzdsweTjykll9WSTnkNMeC7k+bQMtyYesDBUCyTyUPbvPGSqIcSGz7ywx0P27ADKeWyG7vK1WDSHzfDdF3jnJkbzuOeT++QdxfXe+brk69a83KJQNRPFtO9JIzQ99/765cyCVgVB9/3SYgoy2e7WTQAgsGbRgvNh1J4A8t0YC61EfQMIBa+u7JUCgbPcxLKwgwHXfGylCc0IKQCoSxQLEgW25KC06LuioWy3q70sBB0G6NC4ne2UAdrw+dzmhjIf032H+l3ZWG5lmKyaxjA5VuGohFusa5ilpaQlq0rzKzQsqRcwsBvrSfOwhlVTVDa9TWQb0fJatNWYFF0R7QUkoDEkyrUyHfO6AcZofobWwcip0JIjE6MmuEm3pTx0DKCsFynPL4cpcw8kA1e+I79vYiv5sEvdMvdDQ4cxMTdjLArrAtAEvjibpsxTtsI04qDPn3EPcleOr63/z0KWSofPWsg9zXh2hIK8IJvx/p33E+ovflk2RAOGs7NUXnt1Zd5UzKoK13fupgxEY2B4kW2/r81Dw3isyL5odbdOZrUdDBAuxsyWJKZcUfvAewKPWHqH8TgJIZ/ajMW6RtxZV2xhjujCcXtt+2UMTI/YmeIqVLs7CKOLlN6cZ+ChxAPibArDLEXTaSf3oq4Jf7FcgITTxyV7MJ6NUpgxBuCNV9OhzXJO6MKZHyzAIZcmU7Nc/X8qsycl6rT0/QJgzw0GxArkHImcZmy73bI4SqdDRV8WaXhrlByle6kJMkbqFylsVdtf0me3UhhWr+e0SRHxQrIDyuBgEw/xh8eJPyB8EnaL6gcHcxaSgpQZp0XvwZZW4qtkPU7FGs0+/0UyJp8Z9+Fn23+RtUJmYjVCSc3qSPJ3NWv5ILjlPndUylqb8XBbW9Re7uioAKk0E49Dfob9w4KgxGMhi84YuM1NSqKRsNpgkFrTAfNmb9P1aYbP+Pp6XZPYfW5tjcA03egVtZLTTlKPX1c6CCG5MwvGXIFTmeuMATkXbsznIiuUu/DdTCNE22Qp5oVLi4fPQppNd+Jpx4Lw4ML3bpr7T5hXeT7tFtXppGzc7LuPLXab74eGiyWdvsPoQkHavB/JQh5Cw33+0rkPQoyRwhL50EQPsAZk9pdocGEgVnuXqLDpyUlhZs/+/LeAN79GGZEHB1SOPctkc9euUL0C9g1Nu0VWw+lpUfBUSVLOkYnf66mrAWPhD0jaS3uy9HKsJd/8mpqWCXgKyf9vho749/7hIyK6xFRYFDaZmdX1qxqtye8r1xMyi3v5RTqM/X6qumSdFvHIa1nE2RTVjWuqgUzVQnX1igoENxyWIJgxRRs5f/BQG63o8zhHhWA6HTbl0/YTS4CKyNikeef2QqXgrYJn4nYsACIlvVvnwzqqlcBaXqNPWQRIgV5p0dfrabvAOaAPKFPvg9fsRIlc2X4f7uUXUwRMBELGjhT3kCp1U4EV027Dra8qWzRmpQVya6hZLiB/FgCL6098zngmhEKinoaUcQZo52nTbqWFD1KswlLRlOyF6zt36QBtbakl4QYDtL77u7DnM9WMbnc7bZClLtX6/90fwg2XKQlFcgGAotAIJVpxT0TO6tNU5uA5ASv1i1ArQQC477+r/5Z+k3QAOGyXtf0qNEjwWuDVSm3ER4cwbUr9Fh6G7XZhh8sal1fOwcWYTPCP78IuL6eU4A4nm/3oPd70VhPDYAw1SmGtHGfTos6kVLAWX7W6fImYktIEtddDffsTnovMlTl4RGFCpv3abhduY13vq3MfY6qQ3djUcVZrCTzppiUunbwXwKX386rLHKEIp6cII7KwtIZHJqDCCTXurW5ez9Y/68iUHWbb6xEXhNdVGKf+8JBK8BuD8Z96Ff69HxO3JC8qIy3kDCcELnXhj47JkjgmxRYvUn/OkNf5tE57Z8q72X4/JZTJHgI0tPu045kQCjGEFJLLzHWJ9VPCkVWOQc5fz8OVWgl5fx+22yVgUVrTv/2ebuDjN/dgV1coLTszhcPoAv7BPm12ibOzSyJl222nA/fSzVSEE9Ay29LOrSigQi9YRhqCT8k/0ogWINDQmKJEfKHNAISv3yKtvHcZYTRiDGSJsgevXsb4jZtFvQXb72sNgjCZpGzRl+hzcmjidKq9MrVJKg/ZaP6A6NFCP/f3HyB+5Sbs6gr1heTNmxKyUoxfXDytBRAoNTmMqcK2uA5uc0MFi7//YN6CYrfCLhGZS/dEJ9Wd0HqaF8Tt8EfHc1aEuggZYShVoZ7CP3xEzWb5MEqujXvpJoSara3qGTA1rQp2ZwvVznYRgmz/6vcov2J7C7Geodq7TAd/SolgWgxlwLhPNwHg4WIMt7mRMjlFSIbU6EaEZzg/10bJueB6rHvxmPFsYAp2I76Fny98UVNVnKdwxnX1G/5l5i+5nW06zBvrCMenKWtyMkH402+g+p135vLgRQMS8GjLbLcFmW45cSUnp5AJnwpr5NWJ1W/OficgnsnLkef+duPZ4pSsE61uJPPAGIuwKx+XGSeHwa2tkBUlLe3zYUyWsFQTD386Ld0DIGtmS35udfM64sNDshq4wY3OlTTCyTIDJbwsc6jhYbacmtcHUNLbG1RkHY/BYhb58FJl2R81akUsaBCjNOEmNbsZhViAl8BYVDeuwn98R+dgEVZiu91kzeRrJiFFbjFgl/uJ+JbR4e1SlwBpN5/foOF8dse+G/7BlwhTiKlZioBTsa7pZ5lE6/QzhYQH4B9QG66DX3qZQkBirnc6sL/+u9RdeThU37K6vAv7ta/QoatrhNE5V2Kq0mJ4r0U2ACSSS5a7L01Q7fJyUYW52rvMLcWyakC9HncNZvcHKLVXJHKUXeqS7w9wU1yjFoVld8F8+2uoblyFvXkNZkgZdfbGVcrf39mGWy6rTdulLuLoHG5zI2kSY4qQp7AwAZBmzEJspqpgB8tajNZ2O9yFOsCsr+L833qr6Npsl5Y0C1ULlFgHy+SoPDKSyrBzOjZ/V4loXA/CDYcJaBYMhnNbgP+PujeNsSzJzsO+iLhvy5f5cl9qX7qqq7fplTPdTVJcZoYz5NCQbYKGZcu2bBCWYMmAYcEQaf8wbP6iIQOyBRiGZRMGbf8gDQGGQXkRF4skRJEazcJZepbeu6uqa+nMyqzc33v33vCPs8SJ+15WV0MtovoCjc7KfO8uEXFPnPOd73wHSp7ScZUXlXfQtFi436MN28YjVU9KjW9NlSKnF8PCPMLiIvXRZJzIz85SsRrjKX5ujijldYW4eY+1O8bpuWNNnujcHGXLJKUuHqMPCLN9Em9hI+kvndPGNqrD2KJ0vJTIxzp5VEIdl4yO843CuY84Ph4p+l/Q4UKA4/SSWLu0izitCVA026Rt/GxfeQZLv/kN1OxV+LkFahAyMwO/tJjk2JyjNu78bz83R9Z4fg5xexvus59B/GffAcCsR8kkSL1DrGkyDg7VWLlAC6zeP0BYWkR56w4t4LqC686oZ1GPxipNLl6CehhlqdLt4VbSgNBWZNxGL6yvof7Bu6i4qWusaMcu33yHjM7hEWkg8i4TrlxE9ea7dC92J4kRcTSmF2mc8BbNwEihFjeaiYdHWUfjauc+3D6FdTPvvp8JdOrnuLNTtX+QcQbEE8N4TB6C7NJAIusAukOH1ZUka+9Iw7De3ydDZoDRlP6k8KM4ewbVrdv0/Vu3+fzkdRTnTyfMAxRquKJI9R6c1QJAlZndTl5LwN5AHBHW4gezCa/Y20sduM2zhPkBrenRmPAm9lJ03bMnKI2ApIAv3rqbS/zVVWboXJvL1kOb6NaMQxQb64jjMYkafwyj8Eh4CrGuUd64mZh3nY522RVcIe+InJBi4cirhefYsNq6B/fCE6gPDzN9RgHqNNZdIeQ4HhAfAt8mMFC9Er5edW+bJLEW5lEfHKZdK9aUzRDmoKc+i+4JKpdVXv/RcaLBKlmGLLxWenJMq+pMQrCJEdIJqLz5gXoo4omU77yn8bWAgXFEacvq9bcSoi3AnYQa4xF16LY9K4DkEYGMFVUL1hOAn798QYk3rtXOWuP5fh/17h4L0fCLYbwPqROw/TfgnKbz1Bh3OmTEJYPjvL5QAKWf1etp5OnL6zcQa5KV04pEfobyvetZJiHMUzbFpmnr4ZAzW2MaV+EMlCVEjNU5Im/J+gDIaFS7uxoWiJdTcQVqtb2NMDdHhWzMo/Fzc4l+zQxYCeHq/X1IGb6uOx9Ut0P6lsThkIrwasZktra1WRGaHJAHHI+EUdAFwWxA/Z1B3zMJMrOAXVHo7uvnZjl1xzTl195CcWpDtRTC6qq6o8X6KsZffAnx8Ih2lE1CzoWOW+/cJ7e3rkiAI0aKmQ3HXuoKAHLRnXcEmo1L1N/9Qb7z1JXiCL7dSmlWu4PGOnspsjbohpp8/PlnFb2XcQqzfVQ/+YLWefheD/VjZygV1utR1eYu4SaxZEk1voemYEtYXdUYWHUbR2M45xCuXkY9HKL8/Euo36OsR71zn1rLD+YIwByP4BcXyLhxBsb3+wQuXjyv6UgLoAJIhW8S/gklm3n85OInhSRXFKj29shzEOOiOf60dvzpDfUeJkhAoJBFO25bEpAJ/0QdSlmU/PuaBVZdCKmQjT3D4swpAglnevBXL1E6lZ+5PjpOpeFFAbe+Qvcy26f1HiPKn36RQqcnrmhFpxOi3pWLKoenzy3PZ9isGoZN4ducdDwaRoEPoeRqLCXUTH5BskIhLifWgqRuF7D5Wp7Y8tZt1KsL5MZyy7XIKHzr976O+t4O6s0thLXVxIxkSnC1u0txtNH/r3bup0yAbZ4qqSPOIYf1tQT86ALlsuXjY/iLZ1VNSJ+f6y+0DLscJbNXSAAAIABJREFUZ2MAAIe/8DK6v/tN3lXbCMtLxL/Y3UX4w2+i2t5hcG4I/94duOEI5a3bOPrScyoY49q0KAUAFA9CisWk2U2sKEsioVA9HKJ6421K8/7xd3We6uNj1Lu7KN95D9Wb78AV3H7deWUB1gcHpBq1R25//WPPZo1WRLJMWYqtBPQKnbs+PEwYQvApVcdEtbCwkBWLUfw/j1gYEM5SmnUeDYYiRqcoEJYWVJwWIO/LFUUiDvHcKvO0AYKWN2+h2tzC8VNnUb/9PsLqCvxsnzCecpzUnsoS1Zvv0Pri9GYcDtH6o29RmHl7Uz0VKdWuXn9rEvDkw68sqVfzoD4VJx0Po+bcdc591Tn3Le4l+V/y7y855/4p94z8Ledcm3/f4X+/yX+/+DA3ouXNhrQiHZiL82eIrXc/scPieKTy7a5VkLLO0TGlyZjgJOpE9Z99D2FpAb7f58Xq4Fpc31COUY/GqO7cRX14iOLUhioch9VV1Pv7qWMvV7f5fi9zxySetUarunOXQgqRmwe4JPg+igvnUL31Hrn7NvTJWHq0OOvj9HfXamPwT6/ry+CevIx6N3VuClcv0+dm+ywc2ta4ufvbX1WSi6QFw+OPISzMo7xFrcur+wRCOtaxUA6AGF52bRWs5HsOT1+D4zCnOHuGPJVZirE1JGSvo7q3QzjIn71J88giu9SIxrOOgVfUHY4UrWj39eqSq0ExOg313h7n5NkQHR6SGtY71xV0FLFcAYctkNhkv1abWyjfeU93aU0zswqY1Em4Tkcp7DqPMaLgKsrWH38X/vJ5VHc+BOrIJe9ery/6HWFlWb0JgMIzAGTMW6kmpz46IkWyKa3yXIvnnDM4BFY/fOgAPJynMATw+RjjcwCeB/CzLN3+XwH4OzHGKwC2AfwSf/6XAGzz7/8Of+4jDxe8Ki0D0ElyRQvVrTuoDw5VpiwrA5W+AhWFGP7yBYrdbbHMk1dRbW4RHvCTL9DLtrunjEDpu+BnZhSQAqjDr8Uy5LzUxyBP5RKl+SATeonjvKdDfUCAW/nedS6s4sV71KhaNJNI1NYD9UBEd9J1OvD7xynVVZZwh8QzqDa3yGhyHwcAqH6K+vx6ZvIBQPX6WxyDVsrKjHUEpM6AjaosclueHEdjNZLV99/Uz5Y3biKsLCdBkC4L1oSgOX04D7dhPLP1NZR37mrxk7jfsaq0nD1LQZsslBCg7NjpmIxJ1MZf4CyS8/RCh0BhDd+Lepq6GOkehPWIOmUlBFgULCCWpZLXmju3uvd1RPX9N2hOuMELkeHYI2TvsNrcUnzA9/uo3nibsJnhkNY/E+V8r4fy+g0UaytZM1zJmmXFUsBkOv8jjofpJRljjELgb/F/EcDnAfx9/v1vIO8l+Rv8898H8AXnTvBz7HWqmpqVmMq54tIF+Nl+QnH5P2k0K4QY+b6fnSW3qq7JhX7xCdo971LWorz5AYqvvQ7//FNwc7M0cK88mwRbBTW3wqmyS/b7Ga5hc+/wgZB0R1JvKs2FHAvIwp/5QVZdKBVzrk0hQZO0Y2XbPWcWyrffRf2TL9Au/OwTAFfkFefOIly5pACi73YR/uAbBGZxxgCAGgJXFMAzV8jome7RQqISendWsw9g89//HGEu1y6jOHsGxYVzpAFwdJzAxmceI0PDWpr6HL22jjcZOp/t0r7Xo0Y4h4eUgWBNyzCYJVwHgPA6ZP7CuTPaZVtDudEI9fUPWHuxRji9kV3LeYdifU2bykp4EK5cQv3YWfKg9g+0S7RiOUAWiljQMiuSc46Kq+bmKCMxHKqnFccl6W+sryGj0UvZuSXHGQ9CQOh6534GjEr37+LUeppXMagf/QqmW34Y8pJzLgD4OoArAP47AH8bwJ+yNwDn3DkA/0+M8Rnn3HcB/GyM8Qb/7S0AL8cYNxvn/KugrtToYualn+j/Igl3iLw2MKlLJxNgCCdK8GlqCQBaQVcfH5O7Vdcob36QCDHi8p45TS60WPtmIVWDmJLVyMekdwiAzrexjvL2HV0cStAJqaRaulDH0Zib3cyqnqN83z5PVmDEY+NnZminf+Yq4jdf09JgS9MWA+WZFqyEGCESMbgX1tdoR2MKtD6nmQ8tl2bmqE0fhsGAuhlZlSwgFV+Z8RYClbre0ruhrogwdH83k4XXOZDiICGWCRjrOYVqCFfN9QIgI6SF5SVC5htFQ1bbQPQ0JuowYkwFXIJ9WdUlGaspJLiMSMU/h8VFwgoW5rVLFwCEFQIfbZFd9kz8OZlbgHCU6v5u9tmwsIBqe/uTLYiKMVYxxudBLeA+B+CJh/neR5wz6yVZHx4m8EY+w26TvuQvPU2LanFRX0p5AYpTG/DPPQn//FNJ3ruOGP3Y0xSX3rqNeHCA0Zd/BDf/xovZYrnxixf1muGxi8TFZ9c+DAZ5Lbow9MQ4cc66uHCOCDT9Psq7m4TSc84aPiBcPq+gT318TLH38VB3QnCjU9/touQ6B1ugpAsY0AKZanub8uPf+WECzY64b8WPPkf6EIu0w+KJywiPP5YUnLlhr3Sgru5+CKxSSk08FVvOTievFAEX0VcAcJ/9DHERmHZenNpQAo27eJYa+szMoLh0gUKLw0P4556kl2jEgBsvYuUCsI5GKliiYrmwugp85poyOiXEqA8P4S+dT7s2l4CHpx4nwJE7kImH2TQIluIs5whnTqVwx1LrkbIYvtfTEvRYlonwFmsFwkWaHkgcjvD0NTIIK8s0jzMzVER2+aI2Qa537qPa3FQFaN/tKkXatdpKoqo5lJMQNizOKx5Duh91luX5qONj05ydc/85gCMAvwxgI8ZYOudeBfBfxBi/7Jz7h/zznzjnClBH6tX4gAsN/FJ8pfhyij0PDsjVFVT4pJhIduq5OWIlri4Do3Gi2/IRVpYJU7CqzHVEuHweAFC9/X5KzUl+nnPCQkudSntu7G6IXMRzdEyl24B+RsAtydU369tlp51K2eXrkT5BmRml+idfQPv6Nsq33yVgdJvEV8PKMqRyszh9CvHwKKPJ6mmF5LS8BIzLvNQXYMCwzrwP8WSKjXWUd+6iuHge9Z0P1a3NVIh8UIp19izcM7FJARaVq8yba3TMkvPqwdwUF3zeGq6pGt0Y1wkVI0Mvt887Md/iZSCFUpbKLsS7sLyEev+AwoTHLsAdHqtHOjEPQkluzH/WnMYeZpy1C9fCPNX92NJsuZ+DQ/xe9VufjKfgnFt1zi3wzz0APwPg+wD+EYBf5I/9FeS9JP8K//yLAP6/BxkEAIRQsEsaR9zkZTwGPJUhiz6+Em8ESeYGsfXeHgGOd+4mTrs9ZKGMx/AL82khbO0Ad7eIVso0Z9/vwQVPXIJ2s2Q7p9nq7sZZkbAwj+ruh9piLCNcxcgsyBr18TAp7fCh32m1NVUFT2nYsLKMYBrXitBJWFyE/8NvUp8J5+BmZ/TZqs0tJa6Ut+6gvnI28eaLIjWECaxNOS6BM0n9B84nb+bgQDEPABoalVywVL7zHqXlmCaOaFrCtVsKXOq9CwGJW/z5uTk1/lrZadq8oa6Uuq3pS4BeLsZ/RNxWyVLi1bTa8M8/deLSU9ymrtQ7dO02io31pHbF2IsUJE1I+zdCFilhr+5tK++gfvcGZaS4UrKJS4jnRidljUbmfKSLJVzAGt7E5mRWaEOItt7fz3Gyjzg+0lNwzj0LAg4DyIj87zHGX3XOXQbwmwCWAHwTwL8VYxw657oA/lcALwC4B+AvxRjfftA1Bm4pvhy+RDqGzd4Owo0/qZVXutEJDEAtvnF/1YpKfCzMtCJpF9pdqhkj64Q27mOiL4XBNaz6zsQ9mmuF+cHUir6mp+T7fVJyMr0CZHeyO4sqKLFnIUVVxemNjPYNQGnUFtyyAi5aWGNi1fjqsyi+/756Zg+qxsuwjIagje1/oc9jdju7Myv93WBLrlWkqtPmPHHMP7HzmzVhMQrFlSzo2e9rxaX2yyhajAFs0ove6+XUd6PraXVBlWwnYZwA04IJDAao9g+yYrJMgMasP7lGVgxnx9wWT5Xjhy6IejSqJN1SfNl/Mb300wAV83+74+nAP/ME4g/ezEEdaRO2tozqrXcnFo3v91Dt3EdYXaX0I+eLZQFMHHxvxcY6pY/kRQGyF5O4DDNZ4w4XAvCZa4jffO3kikZ5ZmDC6CmwyuIdrihQ7ewoyFSc2iA9A1OVSG3Ih5pylHr9/MT5mNojPP4Yqjfe1nsRQAzsXcSjI+VIqPitMSxhYV5rCgS9B/c80P6N9lnNPJ+kyqRgpa3K5HurtrcncQIgGfFmhWU8WUlKfp7WhEiHjp9bgFQtGQe0PkO9lX6PvC6jDj4RJjZAUYRA1ZHimdgMggHjIUVXzTXDz1BcuoD61h38ztH/9umpktSMpXM5uOU8UZQlVcQ6+gpImhZe9Ws/pF89fS1pLh4ews0PiC0mBkcO7/QFqbbukas8LpUTYA8FG7mSrWSClIYXEiMeD6mSbrafqSC5EIjs9B26R+GxE+jVySdbQK1GCkldxdGIUp8M7NXHlP4rb91m9HuM4tQGL5ZaKw7juES1u6+gGwANH+z5BaCDD8kgCPnq6EgLyKqdHbj5gS486UVgj2rnfhpTIPVUlJDgqcchVacETLZSrCwGk7+X1YEACs4p52JnJ9/pkdxqquik34fFxYw+bjUeNTRF2nVr6yVapadWmzaBQ6odCVacx3kKf9kTjOMRsLJEil1Li5q9sAB2Jo7C1/e9rupm0i/jxIsvdTAyj1KRqocPKN99/6EVvIFHxChEfljNz7faCMzKKz+4RfX93NQjzPYTAjwu4frc0JVR8eq1H1IV4nBIL20RSFYMoHJTphbH0Yhyx9euYPSlFxF390gIY3GREGR5KZnBVx8eEtBnGHN2wsKZDfJemHIs11MyTiUEIQbwnnuSSDSyszAJxbUKeB4HWfSavwY4Di+5dLavhJWkityiTk/MgZd8vfPE5qt2doBOh15uURPiQ6i6goUIhVoMQz0ak7HrdFBcPE/8AvYawsICSdT1SGBWBWflpTO5fDEe1Ws/pE2grqi2ot1KuIKwDxuhlJ+by8uthUchPSmAlCmQOTTIezw6yp95pqfNi+vhMPtuWFmmNSkcAs5qCMuzMgzbrMEOd31Sj8gHxDub2khISvgltA3LS5TONf0nVWjHefheV9PbMh/Sc1VIZbLJ6NoTr0fm85PmKfyLPj6yFT2QqhBtQ1gbrzuWEuN8sfZCHI2SqAe7imF5ieXM2giLC6i2d1KKib+nFX1Si2Fy9GFjXWPy4uwZ1Pe2SZyk30tcg4vniW4qMbksRL5XJeaA3PyJHHsjvn2QkKpfXUa9Ra607WsohTpaui1doptZBsn/M4IP71XdmeokjugeWQZfRG+pyo8MVH08TEIpZg41NJuGN5hra9weayJnlUZOvuFq+26XQqheF9W9HZ13iws115F6A73eRDZFsJdw9hRL0PF1WLVqQijGzqVdp7xG/OwsGTiAeCiMgYgoj2ZYZmZIL3N7W9evxXGA5LFMZCsa/TBcCKrX0OTU0Hk+jZgCG4WJ2HYacUiUiAREadTR28ac9hzFmdNMAeZJldhT0nKrq5TFMCQhYAqAJuBcowFLuHYFbv8w1V9IxZ4segE966T03CRC2ftpXk8PMTQmhSc8/AnCjyUeWZ0Cvoc4GqWGuIYglS3KaSlSOz5GhFZ3+UYIMIETWaB2youvxCE+bwaAcqbDArgPajxrwWJ50ae+bBbPcS4jBVmykn7Gzo/BQmyaVQyVBTPD/EDxkLC4yGnLRiOZuqJUOmeQMrzjhLRy816a4/zpUnM2i17wAqVo8lGcOa2ume+YnpOGKhzmB+o+h/mBuqzScqy6c1el3Wz1mKra7O2hurdD37NEIfVGcqBH27/xM9Rvv4/y5gdwvR7C6jLRjbnyUDQLi/VVCikEkGOSi33mcOZUGhpOP9oWbqqkzAVHojANXpBhYZ7cTefVjQ+PUXGNbb5S7+0l6naMWXdqee4wGEzstvK8cr+aEnNeqdxqECTeZaOjR12RQtEUgwBABUckXJT7lsyRUolj5I2CvMOs4QuYXGTo6aKf2Vxvuquae7EbZrRpVWkFyAViGbEppMpEPzdH6lBSKs4VnNX2toZU1fZ2Rpii87Cm53CUPDJbWCeboMVceH7C3Fw+llLs9TGOR8IoOPMSCqgYS3KzPDcxEeUdotcep0F0LjXolNytI2WgMD+gPP/qCrnH0l3IB2LSCf8BtIjr4ZA49gKE8d9dp4OwluTVwmMX9QVRBDxGyhM7Km+t7txFPDrKiVTOo7x1G2F+oIVJKmISU618ffuuMtLUCzB4RCaYwbl+ACT8WVeoD444jCDlHtduo37nfVI3Pjom7OTcGSoLZqCPSoUXM2DRz81pmCF1JmIE/cyMjitAC9L3ulT6K5J1wvGQObm3neJmEN9B8YuFhWSIOx0tjBMSWFY0Vle5HiTrLUith2u3qXZibk5DHzksJpEdMcmm2UbDTUxDSvtVWYnXjhRPSW0DrbFRwqP6vUxQ1xqmMBggsAFRgzQcwp3d0LDPGleaDyMWJMbBisS4XG7v4xyPTvjgv5jEUrqJDizuHyraFbNcvqD+5VhdvYkY1oc81gVSLAtk+eTsnLbgSV68xlgpd70phiouosh0c645rK5kKlD5yUJiR+7cP3EHzZhv9lmYBlsfH+dpS+EQ8DMV587SPTRdzGYKlgEwxJq8JxMKnRTSafhxAiaEWGtYFRYXUe3sIKytovpwiwqZQpjAO5qCpCdxIab+3nIR2MXO+mFKiMAv0gQ3Yvt+hv3kF0xhhIYAskaco8rcH7yVx/h8TEuf6s/i7rvUuUtCTL2/aWtCnocp6BPzC3xyjMY/ryPMD3Q3oPbkKYctYA8A88Kwkg6rD0nsF2XQjIJOHA6pgk+bgrS070ImUNqSHoKml2Awsa/sqNxVWsQ1lNIM6ORqJ2FmwcXhMNMZlInyzzyRxZD1/kG6xyI1PnFFkapCJX7l0ML3uvRdLniqDw/JW9lO7eflmcrrN4jFaFSjJkqS+XfEvd/K0nwyJ/qsyklYIBVurlMAoP0d6Tt1Fn5U24T5VHfuQsrR48Ehaw2kF67Z4l7P0djBFbhjRSY4l8Yf0F29lrXEL4wVepEXjoBf9hpMmf7UBj/8LCIQJHNX/eCtxKp86Wlde/J51+kgvvJMHiYL1iNaFGWJsLCgY6AiL9J2T9azeMACrIs3Js9ZV0nR6yGOR8YoQOTJFAcwt+YciYDKAmR5tGZDVDjp6xcJ/eUwwHU6KN+7ruIpfn4ui6VpF4tKQRWaKMXKZVqYdUXgnuEWqEsobhw/g3gp2UvM2IbcFwDgnev6neoeUbSloYjW6vN5MqnzGFVfwnExDXxSrbIiKMo9YGMUy5JEO7JUJ6XVinNndUjD8iK9JKI1YEIFeR5RbJYXSjoYAUTd1uI0dm2tInOGUQCpbiEm0VQbzgCW/pwX+VD24giu3YIIsuhYmwyOGhpz3swb4Rer3t8nibWdnclYXi9K86mp46JIisv2+PYbyomR1HMcDlF8711eH5SWFe0NbSLknLa4l9RzrCoGMY1OB+uZiseg12eD6IqGp/wRxyNjFGpxGaOpGfDUxJM65Rzp76rdXSaFMNLNk62CHGwcpOoQdUzy7pcu0I7GtRZhfS3RgE+vw19Mijaqo8gVjHR/Neqd+7qTA6TQ5Htddf/ls9I5Ww7hAUi1m3gnln8fq0qbgSihpSbFZqsyBEB1IePBAYrLF6mGY3U13SuPTZjtI148TbE2KyzX+/sU54oEe4ykIfDhZopRD4nOWx8fJ64HZz2Ki+ezOorIKVDxDmQHlNSfZ0NuCUeWDGSfyxoBkV6Xhiiu00Fx5rS61Oq18Wag2APLpsM54p0orb3IQyAfeFwM8MybwNGXn6fmPw2ANAwGSS+yJsm6sLSYpUNdq0B4+hpvEOPUMMi069M5CoF0McUD4//XP/E8k+NMGl5SjOORSgPKJilpdz0vA6dZFughjkcHU3BfUNeNgJVGPG1SK5azoLlfixs0YkklCdn0GMdfWusPMgJhY43k12R3acbw9piCQdhKxakUZok511ZR3bmbxYmKlzSvEWutiZdzCPouKUVF/Q8o/s29ihr+6WsqJqvU8IauRFheQr27T9WGwyGldqXEWMaax7g4ewb15lauzsTPqHF6syek0amYqK1o4DrTcAlAEP1WXnUpYwvkngVnaqgsf8p8NOax+fesnsToYEzDOiy2o+EgY00Z5uRYol40NnzyKkX7UcKXsLxIuhrNMZmyrpSnMOX5hNfxO/u/8enCFAAQSs4GISwu0s5zjaTSUVcpFvYSL8aUf54jGfPi1IYKffp+H2FjjcDAq5chZa+uKGjhHh3BdTuEwrPBqA3IJ8anOHtGY1UROYUPKNZX6fdPX0Fx7iwBex9+mGI8Ew7Bh1T9CKC6sJ5o0IwNiOUXz6E4taGTrPJmzz5BIc7envY+KC6cQ31/l1qdVzX84oI2RRVP5/Vf7pHOgZFjs8U0ADB8jj0bTn9qj8RY01zweQHqiSGduWUnDwNKCdfPXtXvwXmElRWeuw7qH3uOxur0uqLtfn6QeWLWU5CxF5afX1lCPJWyRq4ouNVcVGNpx3n83GMZvmR3aMB4g4a7AdCL5M5Rali1O2Tz4DoPuKSvqCEhv6Cqq+Ac3MoSaVvMzKih07ocQBXI43hE/VPbZISq7R3Gkjqc3empgS5Obeg1XJtUscIsMVzVo/SB+oQcH08WhD3geDQ8Bb+cGI0Na6vpyWmtvQT51jyvn7SUYrUZ7fadDurRGMX6KukxOpfviPb76nI2iFKyoOT37E1kZCbBEICJIpup93rSLmbuQ3e+o2ONnbOWevKskmo9Ok4pxUaNvd0dbQZGx3saWcaMvbAww5lTqO/tAOMxhEEq3IBmcVp9eKi7pPWQtMpwigx5xva049b82RwZcYoNGmKcyCJk89HwMOTvls2Yfcf8PC0rkBVSOYewsoJ4fKw6C+rpNElcdl00ajlObA3XIG2dlIn5dGUfhJxjB0RQ45pbrl06lz7bMvlck1tWhNUuEl744oE4rrcXZWhXtAAG7IrTG4kOKzsI8w/8zIx2eQ5LixA1XtEu9LOzWusAAOGpxzPkPDz+WAZm+V436TJKnMv3bgHApFHASDez3xSEtAVk0pj17oek38fxdbMtuo4LkBiRrJ84rbWb8C+ApDMpLnl5/QPyWqTtnPBMGlkDjfmVd3Ck5J5YxwSuydhLhqaudaeXvgt842atRPJImGeh48zjRvyNWs+roZe83KbWw4YsYWU5BxcFK3FO5911OnDciEaAV+VMCEgbiRgmzYOr7fuJfGXAW81ecG1K9qwxToYrDBprTwiVGUi8Ccs2fdjj0TAKgDL0lN1nqtfqw0PgXhJP8RfOaCyqbdcr09SkkcMNs30tXppQzOEuU6grqmHgzylGMBgkXj13ea627hHJqU4S5vXeXsJCIMU+UUlH1etvUZ2CLJqjY+Ve2BJhQccV/Oz1aOEJeUkIQdJ4lH/v+zMZQ1A6F7kWaSnKyyipNgHuRC7MtVv0Yp8kCc7uuaRM7UEudEvvr7YZGSCBeD6RbxBJdEaVkI33J2lm35+h9LSkna14iIQZYqwGs5M4A8ggit6lnkf0GDh7IBkbq48IH1QWzxofEXi1m5FQkWNZUn8GwaxmZpK3UFM7OJKwD0BFoax6AWwcbbjYnHMZH9242IgIDmVVmOzv4D5eL8lHxihk6KykV6RNlg9AldIr0jiDGIwlCVzGmHZqs6v5mRmUT1O7dLsbZ3JV0gXp8JBoyRK+gNNqy0sJKOL0XrW5RfiE3UW574Kcszi1oTukn5mBO7VGWRTGRxSMUwA0cuyc4tT64JB2GBOP6n20iqQavbdHikgi3jocalv34vQGfcUg7ERp9qoMndD7o7R7SXagqhBffQ7F5YuaK9dxqysV3A0LC/RSj2ghirKyCojMD+gzII9F/j6R/+eX1QWSOs80MuXzpnsTQC8BYRqpF4NgQq7VzkugW23NxEgaWofVqDrB+YmSZvUg5XY5fJPPqcQ6NwhyP/IMS+OldSIp3Gr7fjK2otUJJJJVw7hqKpqB74xgJ38382arIz91KUnHL6m4sZTP9xmVVpl5xuIR3XSW1G45p4sYKY20vkYhQqtA68YWaTQ+y3qzbNWTWGdKbVr0X60u7xhUStzRdFu1dY+BR0+stvdv6uTHcYnyzoeZtzM6u6jxn7Z8Y4KNNKaRikPrAseqTo1a5D+fyEvWWMhCIsHOCH/5AsobN5X45LqdRFyKdfayWDIS6gr1SzResSzh/uRbiFxkpuIjtlWb83DzcwhLSa9A7jndXA0sL6SYtyioY5dRT9bzgfUYWK1JUpNwDn5hnvtj5lyWap/qGvw8UZCpNmUh5fXZuEr/BMIqxmkuvJGLX1km2rZgMmycfJ97VUg3LU7p2k0mPPFYmruvvwaMxkSNDyETcbUuPaW1e/os9fEx8MqzJNsXa/IqONMlhlW/e+5Muh4/m4Yjsj4auMuDjkcDaHRL8ZXuVzLVHgDq9tjyZ0tfViCyjqS5wHLc8kJpSkiEVYGJ82uKsFlZaf9u4vVmmsxWz2VqQa02wprpltygtNr0kyg9CQA1DbiyalN+Zkb59XbXOvqXP4fZP3oDCJ7OY0qQw/oaannJOh0CXA8PdddRiTfDnVeqLXMmLJXbtdrU9eiHb+ocqG6gGYupMnU2VWmAyxPpxKa0e0JFqTm2zbmzc9Q89UeUczc/N/EsPlCLwdEYKqhrT8XUbimSyrpWAyeDznL6bpc2x/mBNilSLZBej8NMqhGSEv8MCG1UTz5s6fQj4SnAOYr5rUUTIJENhTxolm/mMMP3uHdir5s8AEDlzsE7UHj8MbL2MzMIj1OqKjz1OH1WdBCE0WeyB7IT6u0a0o0wDi17LJ2HAAAgAElEQVSYB7CLyA1dXadDO7v2QSSZLQoPDhIYyozLadiI73XppahT9V5x4WwKc37qRfT+z6+i2tlBdfk0EXzm5hC4IzTRiaPG0NXenoqFulabqgfZwxBPolhf1dSbyKppHPzc49TRemEe9cvPIFw+D9dusUCNR1hf0/y4PpMTQk2dvBmebzUIHJ7ZMRB8qVkir/PRSgVj6u7zWnKdDrekc3mYAmRgaALkyIOCZ9DQOQVdLSVaQqdq534yrjpZ/MzXLpNRHo1QX0pMUcGRJCwq1leJhNXYzeOTj9Fnj4e6dqKIB/HaU+FaaeDDArfi7Wjo8TE2/4c2Cs654Jz7pnPuH/C/P7lekrxAdCGYHZxQfYPEG8KQAD/1wQEBPvukA+ie5i693lENxfICdY/64ZuEeg/mCLisK9RvvcdgnU9unaQ6axvfkisW1tdoAkyc51oEQsbRKKO8Krg3HJJLK2KdAm4CWV5ZdllVz+GFUFy+qL8Lg1lmI/ZZEKRGsbGO4o+/i/GXfoSM11e/g3p7B6Onz6H84DYVQp05DcSa1I69Kfc1141jymhoC7jbdxTZd62C0obcYcp99026x34f7p98C/HWXdQHB9w2nlmf7XaSYivL1JiVswl2FxN5M+H8K9biyYBanYaJ5SOaEEBeh8I8Fn2OfEEn/EDCORlzDuvi8VCNkhx+hhSz1ZPjo1hb0X8Lnb3+3hu6lt3r7yrQKufz0j9ze4e6nkvZu7So++ZrlDkJHqhTdgFVBb+ypB2rPFcD0wJJdPvq7ubJae4HHB/HU/iPQNLucnyivSSVdcaLEABN6tGRphqt4o2WCwuXnDn3cThEfO1NAp5WlglVf+s9VSSiSsxDasLaasPP9rXdeX18rAVDlsNvC6cqljX33RT/CsVXgLqm1wDnqGx4Sq2GphWnsPhkoZdvv0svx/wcqicu6GJ3IVBfwbubcK0C7T/8jnodfm4WnTdT16vyg1u0mLlQiyixM7mOpM35x0gl3nNzkI7Pmi2INdz8AMWlCwkMY4+iWFuh0IS7TOuzAkqKsv016e+E5ssc0VyPyfh7l4V+sRzrTmm9ibC+pjhKduqCmsk4o8EhWSvd+U1JsuJLxjOJ41FKY47LzBjI81nDIwC5a6U0o19bSWX5LCFX3vwg02IoTm+Q52GIRtXWPe0NqvdTlijfv5EM4fZ9Fceptu6lDFU5nqgveZjjoYyCc+4sgJ8H8D/xvx0+4V6S02rcxf20smVNyycpIgDY+qVXUZza0EksP7gFPzeLsLJM3H3vcfDFpzF89RoA2iH3fuIq7f51RHHhHIqL55X842dmVGpbhDNkgdn0I3xAfOoy1QGcPgW/ugw8c0V3QO0PaVzM+sefV0EMcUcFiFIWJ6AurCpC/em3tXpz+MUXaLeJNVyvq95WceYUMNOjZq+cww4LC0l8hY84GmkqN5alXte9wF21du5rm3f6Qk0A3OwshSLjEvHwCO/96qvAlYv00g5mgVZLnz2sLCdQjrGXejTG6Esvof4LL9AzGiMhLMkwN5fwov4MeTo+UKbpGbpP4QkAZKz9YxcUPNYMyfwAYW0lo8ALa1DHgfEQqs/g0CQEHP0rn0uGUlLVDfl8gDIWxakNXR9hQB2tJZwFgNhuob6/p1m1sL5KrMluh7xZ51Df20YYkLEFQOPDmJaER96wSOUoTq1nXm5YXKQNj72arLflQxwP6yn8NwD+FgAJ5pYB7MQYBaW5AYAhUJwBcJ3uO5YA7vPnTzyc94Tq+kALEuTGURoxppSh6ddIC32e4qaa5M6Wf/1PSMRkMEC9v08NVJYXEA8OUL53HfXhIXq//XW0fudrqG58gOLcWcy+vQscURORammA6sYHZMGLAn5pUXXvEohDPQqKjXUI9RZ1hfi179I97txH+e77hDoDigZX93a0NNn3+wj7I20AQ7l4cpnjcIj6rXdTrH1wSIvuzGmeMQKt/GCA3tffJcP39DXN0ceyJAWp928AgFaGum4H1e6+koRci/QppfLTd7vAJuXbw61N2tE5W5N22Ba9CFUFLMwBRUB9dIQzfzCC36MCtKPLSySO+sqzGipIuhAA/OwsfLeD9u98HVtPdyk1a2pPJGNR7e4mz7CqEI8JjK02NxG/8T1IIyARxHVFgXj9FoGxwtBkD005CQCFjFxaLnMh4LRlVMbRCHPfvEWGVDaBjE+RwNJ6OFQgMJZjVDv36TtXz+s8vvOvr+l1SN3bc+h7CNftIFy5BNQ161TSNW79aI+KqixPogHG+n6fmv0Y6XgqS086lPXBFAD3AcfDNIP5lwB8Jcb4151zPwXgPwHw7+ITbjD74+4r9o8N0JGFTrnNWCaMAkynerbacN0OGYerl1G/c52MzHBI2APrJGisKhRlSzttHkwJFvQ/E0QR4dg6ZvGpZlRMLDlBIzafc0VBWv8MfE48ox0fxTrqpNdoCDBhhdroZQVB8ij9Ge1LIM8mgiKiKuRPb6B897qOh5+bI+O5vcMvM4USKjbz5FW4e+TKNu9VU6n9GaWUeyZMTXP5s6yA0M0tzVfOa/UKbRaigUvZwia9jow7r7ET15Xca1Mm3a5T25SY122xsU7Gwjf6gPB3baVnvbs7obNY/dSLCH/0rfy8huRFYawRjZlyb/aZP0mNxh8D8Bedc++COkJ9HsB/C2CBe0UC1HhWJIVuAjhH9+UKAPMAciVUAM0GsxJj+35f3TIB91yrSDTlEBLSK4y0xkRqcdPeHinRvHeDBmY4VOQ+jkcI58+qey0y2sU6leJaIgydOKXZRDhUOQ0CTLE7rvciE8OVmmFlOS0ybobqiiJlXoAkHW7R8+WlrJyc8uVE/nGtAuHsaYTZPhUWce09Vfjt5wumrvQ/vzCvUvZSOEWKzG1Fx2PX4A2eyq3R4tLdJ6l4ync6cL0u7XQf3AFa1IUqhT38XKIHwc/sBAQWV5zHWMZA1oPeNxKmpEIjgGJL+jln+BtyvsfPT34WoBCIKcSWnUqpQKo6VJ6JfWHlM9ZraBgjFwLQS+zcG3/tMypl16QeR2m5Z74PAMPFlhLPAKg0IY0Bay8cH08vjRYwt6nt8BDHRxqFGON/GmM8G2O8COAvgXpD/mV8kr0k6UJUYccpOuXPSzwHJKtnT2fYh9kCk1ZwLGtenD1DhsU0rC3fvY44GpPGwu4uUZUZ1BL3VV/GmOosYpmEV1xRpHQSLy6tDxA1KFEP5hcqrC4j3v5w4lxynWxYhkNUW/doV3YOYWkB9RFlXOKYDFT94RbgHcAhj5+hXUn+DhBOoAbTOZTXbyRZNhYFLdZW2Ftiifcbt1M2gEuny+s3aAy//QYBkKMx4v4BqjfeRhyNUV6/kUqDxWsrivRCiP7iZ65lwJm8yIr+2x3RjEtYmIe/emmitkKOpmBKmB8A331z0vv0BkzW2gavc4JYEzbA9Pus0tLMraw1/b7wWsAAMShNePq//idKEQ8bawo4AlQXIh207Ivf/+2vo97c0msrPds5w5xk42lqKOikeRp9Ahx9wPHPw1P4ZQB/0zn3Jggz+HX+/a8DWObf/00Av/JQZ3O52pJmIpijIOixylrZ1GRdIayuIly5BL+xloFFO//Oq+TCtVvwj1+mxX/uLIoLVGC195XPoHznPR003WX4njSGY09BKxB5gRHf/RhhYSGBXkxAknOGVQKVohgc4dSbBaQ1H5xqbWYifLsFV5COQPnTz+tOJSBSfXCE6s5dlDduJnDrlWcQf/Q5+vmbr6UFLi+rCpSOEFZWUN7dTIsvRiVIqTIV8wDC6grgHW7+x5+j8GFhHvf/8itkgJ++Rt2R+JmKi+cRy1JTsHF+FmF1Gf6t6zj8V1+GLVcGkPXfUGTeFCRVu/uovv8GpVYBZFRkeVlkLpmh6nvdiWfWtcMvlCgty5wixlzbQsbNzFnGATChi1Vzhg+IZ9Yx+vKPwLUKFBfOobxxUwHxJBHIPUuOjhS09MtLQKsF358xKtVJ8MczuCygLIAURjcIXeFjgI2PDKPx1d7PkxbAYJY44cbyhZVllLfv5Br5jYdWRh73KNR47colVG++MxFPiqa+Cl02S7YZk4hHRyeLrDQOoeLq+RqNOQDoAsras5swQ9lqXE+g2IEwC1mYVhZkcfEcqvdvZPeo2YSFeVS7+5y67KZKRjksNuEdNbm5+UHuDgvWcHQ0UbobnryK+u33gWeuIH7je7Qzm3FFCHDOEXegGf+rEW5lGIxzTlOX0gcTQBI86XQonch4iLJWpe17k7nIPBJpEmQBR43LTQPY7OWW3pAyN9IUqK6mMzANftIsqVaBGsZHwsICtd4TUeKG8E0YDODmZql1vb1fQM81gb2Y6/uZGVT7pgWie3hG4yNjFF52X5hcNCfdm3UFJfaWGNOEB3I0u/7aGnlVGTaToi69BfpYNZouksA5CXW0mOukezX/tgrCUym7DwA6VQPBUoobnbEBWtBEvzUG1LqQTXCvQQWeAPCa9+RZsXpnJ53vQXMm5z2JWszn0HFuXEtZkFO+b3PxU4FCezTo5g8al2nNZafpKegzNNaFnocb/0wbG0tfVwDadHp64NrKTnTC2Jux+3Q1g+EjlmPuRUAPGJaXNO+cf9AsQM+KRrGGu3Z5wnvw/X5eq89uYhgMtPlnrCOlGEGAktB/ARjSyogUndptohBz2OL7fWL6HR+rKyjuncTHSsF96nHaAYdDzd1nAJXEhta7EGBrZga+26HQ59Q6AgOivteD1OkXF84pmYswh2QQwrUrGq8G6ZNhX4baLGiei/B4KuzRWn/WenAtlo83casXFSI+JI0qoKPv9zN6r3/+qRQuGQC4aUSdT6W/9oW08bWyIO0zVLSja3jSYHJmegwma6V/HuXApKppm/NrRWa7nYUj2VHXCE9cmYjrw8K8GnbVsShLfd6wuqpra+rhnFGsokyEKmhraJOUyB/2eGSMgsTy2svPkbpwxiwEdCF4I3lW7e7SwvgBU29ZMKQ+OCB0fmmRBmx9TRdPfXSMGCMJni4vodqirj3Fxnq2e9g0UrVznzQcb36gmn1xOAQun+Xd4EBVheESjVdYf9X33wBAKLKTBqHyX4xKuxX02/d6abH2+wQc3tvG6NIa0YkB+MEcYozw66sYn1mCm5tjYVNupsvc+P0nlkj1Z2mR3Hl2gXWB2/iWS5OrN97OsBYh91g5c/KUyEtzTEcOT18jMZG7JAJb7+0hPPU41U+0SHKvOHsG+MHbBJDKGPDcuk4nGdhZAvu0C1KH5PPUOISQ9CnZCKpitKQkB0nQhCpR26l+QdYUn8t6R/4zj+vcF5cvTr6cMSbyF1dlIhJ/Ris7AcTRGNX338gqNQEAp9Y0mxQPD0mCUBrLssdb7+2lZkfGqAimJG0GhPLs5FljnfAvl9oXPMzxSIQP82ElvtL5OdP5yWcZCO0fadORYv1sn8G5OdIrcB4ueLh2G9Xenr5s0/LM2TllpxFMgQkmtsmKtg/zDn4wUM76RFVdU0TTcC4yb4abwU40PRG30rjxUjVHKb9ZVJtb1B/z7iaRv1jwQ0OHqoLvz9CYcBWd3kszlm66nza2lv6N0t9RQhhWopa4u9hYR3nnbsJzrl4mw8JHWJgHWm3SsWz2ZjyhUtCGd81GLtnu7l0635T5CBvrZEibPAa7FpgRqkaocY1mek/WxUmxvVzbLy4SDgSol5XhWNlJ05p+YOUokDxm+bn5MaFzMx70u+Pf/PSED5EVlV2nQ+2+2i1CbY2YRBLLNO5qu2UacBRw3S6OfvZFuGuXuS6esIbNf/MFqv579gkUly7oziLexvhnXoJwFcC9HeN4BH9qnaw6pxKJBEQvm6QKhaEXFheJosrIcVhayAU6YsTuv/GyvlBhMKBdVLwJWVRm56bFRffju13EqqZ7GI0QWWot7u3TIts/gDOuZFhZYjIVs/VeeiKxImUHXaK6/LC8hLC2ivDk1czNHP78Z8lwiBJ2TZwR3+8rUUv7bLTaOHrmLPEVnr2qAK+GgABwZgObP38FYXUV93/hBWKkLiwk+rpzSs+VsYhVpVWKrt2Gv3iOwhr7EsSayutNMRNAXsX+v/YycT8+3IRUP8oYZPRf5+EHAwq7eE60HymQ77TsngsgKPfq5+Y4VPQI167g3r/3KmJV4d6XH1OmLtVuUCZJMi+u08HhL7wMOIfi9Iauy72vfAbh6WupPkUUuGI0Iq5RPTU5inNnU+EWK2Zn8nofcTwSnkLWddqyAOV4wC5mrbSg7RNAkjmPZhsAosrOz6Uu0+Y62hpdFusU0UzAgFHNa9nzWYCQpeiVA286PecnTt8BoBWGYW0VcZ/z2uJN8A5erK2g2t7J0GxpRqty6rxDNwG9aXX4CpABuqtJyzPhHVT3d8lQdDqo9g+0o/I0DQPxtMTN991OyjBM2eEzQHmKBsO0MbNduCX+pzHezL7bBPiax4mg97R5Ns9nWwmEwSw1c5mdRXziItz33iaPy+pu8DqwHa7DYIBq/wD+qauIb7xDmQRuSiufnWAxnrD+rLDxp0tPAQngkeq/TGJKXlST+6cvMa1XftdqExjY6egLGFZXEdbXMPzKZzUGs8BSdW9Hr21zufXBQYpNgakLBwDxIhgMk1oI2xGZTkaL3j91VTtch9UV+sih0R20XAm9kUpj4fDEFUTRSHQO4fR6GrNWwWnbBQQGTV1RwM0PSKZeANx6OqAXy1K1JcC1EMJX8CIVDxitx1T+HZYWSbau3SKDsbyUdfUGqAlPfXgIPHuVCV/LSpPOntUCYjLvWuLsEZ68iuLsGUrZGTn8ZjWg6GoUF8+lFKkBfbUVW5nL3JO6Vlcxlow3YkHEJhnIOcWSCCyuaYNyHvXTlxD/2XcUWxKMQIFL5xGrWhvbUE1Mjfq7PyCPdHubDKpkxLzPsmX2UGl/GQejPv6wxyNjFCzQFeskqlKcO43i1AZVJj7LVXwhKCfA+RQfYzhEPLNOk1xXVCzDFXi9P3gN8EHde/IaunAvPIE3/vaLJBYyHGLzr72a7qminZEEWSYXgWu1Ud34gAqvmBgUq5qANdPRWjyU2GM3L0bsv3QeymlgEEkQbG3Cur6G4vJFtfj12+9rNWRYXkK1RP0StLM2qJNznJ9FsbEOP9tHeZ1KbMP/fEw7liwSC3Lys735b3PB1sI80Gqpa2ylyqUkvD4gUBV1RcZofQ1+cYFe1F6PQDTQog2PP4bqxi0uXgP8Yxfx4VceQ/nTz9McX7qgIYg1xOIu1yy7h7pCPdPG9o+fI3B5PCKCD28OWvthMij3X1iHe+EJve9waj0LMeiXQY1MtX0f9WgM3+1i7/NPTEjbazaM/y2grmAArk1VtGFuDuHKRYSlBWx9pq/XoTH01Dv1+JjGrdelepfNTepb8eRVHTutvuRUugC1ChLLBlqLMlVJ6142ukVSuJ6mQ3HS8eiED+FLU11H3++n1mMNYKfpAheXL1IBD5ATUCQMkH83GmNYV3GiaIavIR14pLBFYma5z+LcWaIAA0klR2Tk6oiwOE9KyhXVGBTnTqN8/0buvleVekmS4szCIecQ5uYIh6iJdh1WVqjlniHnZCg6H8XGOuq9/fzZjXvp+32MP3sN4Q++QX/zAeHyeRXJlRDF92dS1R1nMNxMD/X9PQUE7UsUVpYRmZYthUFupofIRWnV7i7XXsQJYFXHRYhAR0cozpzG8Oo6wj/6RpZ2k34ezZ28OHsG1e27EE2M4szpic7fUu+RFV05h9GXXkL7H34tfXDa2ErIYoFlS2KqKhr71QXU3/4BmocAzRk/wnTPyjg2TTk6ASWBifDadssWmb+H5Sk8OkbBfxEAklaiyUC4TifpGK6uotrczJhwMjh+dpbwCF5gmQGwuIBhtRWXL6K6eStLeenPNs6WhSPYAOssxKoifciKCqL0JQXSi2qxCmluYrIqlv3oOh2VfgeQ2oEJIm0ReL4PSRVW93fTuBmylcUtbAYhrK6qKEeTxDVx2LhaFr0p7MmA0po6aFebWyfG7AAUPPVLC6jufpiM+6kNVB9uprmymagTsJ0TMwBNXMd8NiN4OacswyZmoRqfMaI4taGVj3pfYhAaWYGwtpo9l703EvvJDXSYHyByVSulpLvZ+p3IuFkPRubVGAlda3x/nz7yEsf5InvtWoWiz1rLDlCrec5IpEmoFbHVfDGQ94+MUeNH30+CJuXb7yblJEBTjqp+LDGo4UvYhRkW51OhFbulkenEtjBHzqlKzTG96DatGodDpfnKPVtCU23PC2hdgVZWyjgZzKC6t6PhjpYKA5omo3CCefXPP5XmxIYX5hmSVBqNS/Yy8vXFCE28qOaQng7Vh1skngIyvuWt20m5SioJJRNVJg1O8nQK/bvvdk1BXOoyDSC1CpB78kHbs2k4wJ6CPruM0+6+voT19k72HNnzcSbAFaS4pDUu5lAq/MFBTjSKURWmtGrVpiPFsDR7c8qfuX+GKjg7lzpwf4xGMMAjYhRcq6U1DvQLViOSdvLykCzzNXEwgCjAmAIt/JJY8CVWhDXE8Uj7EwBkQCSHHAYDRLbKcThMkto+tV6Xc2n9AvcPiA0WnD3q45TNmOhlwAy9LH/vk4ipZa7pd7ztANTI1sg5xVBECje8iMhKxST/zQ8GNCbffysH1cQgMSNRpOvE+Cnh6GFkvxqVhtqxqd2iojLpAA4kb60ZC7u8HNi+lDVzM/RvTDATYFGl0VR0lSnaYsh27icAr9edBBdj5NoaGtNMkt6wHG2DHwmB9R6l2Y5zBvROu3t9eJhLtDfm1OIDKiPH60QMnXxOC7oa4/5RxyNhFKQst9rcIg+BLWksSUpKAC9VdZtG2PAhMcjGuXtphT0V3AOIWWgGXtKFBGKV6h4Kyg5AZbkA4iIASBVurDMo95NObF5S3nWzXoviEUTDauTdQphqdoeXc8Y6wg9mlfOQ/sa19BK6AElDkj0N8UBkzKR3huAg9hmIYbiQfi87lHgQMfWCsPOhHY7ksBRusDfjqMN1vb+P6s5dAlbl2p5xHG61nj2jTzuinT/9G7/Q0pFJCXAF9dXIslt8jrAwn9HE5dkk/WrZksJmzbQRNPOQSvhdQaK+ExmlGKeHQS1DoLIVj+b5pRJUO2l1O+oRqDqZGDRzTw97PBJGIZaV6gXIC00xcUmLhT0AYRXKoteBF0l38SJsfOcSb95zzz+NzY+OIL0qAWgLNRlIinkN+FlXKiUP5C6ypJYkUxKuXDQPGPVzspAzbINde1cUxMCUHRlpx8w4/0g7aLV1j9Dobid7aVy7Tci2IPjHjepBHj8ZM1uDoPepoQjLlFt3toGTwLm8C5MwKA2QGoTaDeQitnxdVxSoP7hNNRy9rqb2pG37xOJm/oLv97mzV8w8I6VfF0Xm3VGKt8xSrQCFCc2+DgC4xsPxi88aCMy+Fdo0zWtal1J3ATBXRARbmjUIZjxEHkDXhpCTJCOj4GLynmV+BDPLsIYp3uPDHI+EUQBA9fHGlfKygGz4wOkYtbSya7M7a9lzyvKKVILr5+YmshiyQGyPQuFJAFBUWCd3cRHEnhsTMMQxofZzaBUob90mb+P1t+h3HfOy6g7m9b5lQQlTUrykLP61h5F08+0WSaTN9vMy4/4MUFWo7tzVcmlRlKKxKbKdyhUF/GA2c0PpDwmzEc8tOyT0Eil0Nr6WVJU+S1qN2mFLDja+fmYG0tOivP4B4GmMivNnE6iXGRLzgh4coLq/O5GTl/WRqTbbF4XVsMQ7a4Yqlmuh9RXl2PT98JnRA6DEIiEyxbLUWhPFh+wha3k4RKZvLKGbDwnbkt/rAxrOidyzbJpI86wG4yGPR8YoRNnJ+IGsVLWAWwoKAZB0GrgDDwDUu/tpR7CfBZJqDXsc+cUFnU6luWr9fVKTVqEQLggS4VVlCFr5b3b7FAAS7gSQxeq2HHtaBZ8aJOlHaOiq9fEx6v19xNGY9BCkn+HRUZ71cEbAVIypjiE9b3VvG0H6K/C1w/xAF5b0p6B/J0DOPpfta6H/NoaF7nmotQVC8a2PjzkFV+t41fv7CPMDMhACNjbCQh1HmcPmwX/XcWkwAONwiGpzK9XcSAgg8350rPdfbW4lT0pDUbmvkaY0ZW0Jj0NfTBumGGq0HGF5aaJxjogCy71OC3nUo+Dns71AldrMWbKHPR4doyDWLkNXeScaGuabzQBUFZGCtHilTrt2YzeSyj/xJKRTlJT1uha5mF7kyMtx2s07HZaIZ31Errj0rHhD3gDHmr2eSnRLhoPOVyp45IrCIOheYz/bOVtKlEU3URZlsDu+GK6ax0YyNgarkGtmWglFKzFIVQ/Ak5Ez+IdbmFfCTRyTxoR0toplqeXmANJYFEU+9lbiTLw6uUaHdCCKjXXddZPhiah2duB7XRQbREjTeF76SvIhWpPpZkJWvq6akdYDkhCC60qysInXjPSrnAaiqkajxbfkuwIkHh2nLNVsXz2panc33yQASkUeHJAxmJsjslpD1EXnSsIjLt8XD6jJbsw2oU8bppAdumsn1BsxkhaAACegRRZm+0l+K8asEtDPzGRFLNoshnfm+uiImF8G+AOQsgmaAorEDHz3fW2KIruwH8wpP0F3uKMj4Ih6UfjZfra7+eXU1UeMTphNyLQF7Ci2HKd75oVWfnA7xaGtgrQnj49pV6iq7Jn93FzGkdcxtIQX9miKM6ey545licgvbVhbJU7H6Y3Uit5RAxTZgYTQFEujX2li9qaHAedQ71Fdhci30z8S54GMV4F6fSkVRRVFXlPhA+LBoRpARGo2I95dHJf0ch4Ptcu1zq1zcH0qeFMjbb3Lo+NJbguPV80hpAVdMz0Fg8m4VpvAa3PfWYGSD6pDKl3AtTK23eJz1tn6z4ygyMhxZ/YJkLuJY3zE8WiRlyQ+M9LbpJE/WfY7cbhEqLHqS67VTt2DjTttC0Wa55OY2JKfBDzKUoInFc2Y6yiZyLVB+z4AACAASURBVMqJN7ImzTjTz8woRqDsNvme3HtTYWrKc2TknI84JgqEhKlXJTT9pPJg+xz6OfP3CbUioSRbYthHKG5ZabT8xll5ajwlXpe/jSjLYZ8new4g+52Of4MkNFE+LbF6wxPLbsGMJ4AJAlX2fOwpNN+DjKjHa0rHr3FeOplhPNZp0/x0kpfkRwb4wvwgpeMaqRlxrwGkclIpGrF5Y+YjiAsYlpdoRzakleLcWY2v6Usc/wp3gScwzM1pnBg4ry/qTrJoinNnqaiGU31i6RWJN4aDgNGksAwgVdoZ5D8DW9ttbpKTXGJJN8ohvAYRmYFzJB7b76e0m4ybYB9GqVp2eAtU2fRmc76yaazM90AvvNRl6PmDyacD2hTV4hea9r12BWFlWfuFyhilZ20l3EYBQPOii4x7XeUGoZGpsZ4CsWIrukdeI6KSZDkH4tnFcZk4Njyuyjvp9dR7sF5hNL0hJdNmx9V3u4kmL3wLfaYqhaCMm0yGbSacNunMhzketm3cu8657zjn/sw59zX+3ZJz7nedc2/w/xf5984593e5wey3nXMvPtQ1eIFatlq9T12HguSp5WHrKrnXgLpeMpn0D3qxXYtarIVV6nEo4YErikRQKUuEhQV16ZT5yAVEMtjV7i6h8FWlfRJjWRKo1O3CL8yj3rpHacKj41SnwEdYmIdkK4r1NboXMWL88mUsTCA9o8ThIaQy4PEY0hPDtdraFs612yoYSj0qWjh+7jz3gzxK9SOSaeHrVz/9IveMIDe7Pj7OWIFieAVHUcNn2/k5r9JimireT9kU8eT80qI+o7r61vDwDle9/hbxVzjsCutrcJJaBvIdlEPJrEdGv4dw+byOneVOKK5iAcza9H/odZUgVu3uq5qXnBs+qT7Z8ns9X4yo9/ZQXDzPWZ3EHdBwjZ9BwOriovSooPYCYiyaPJCaQwy7MWqI5QWEjxMb3cMcH8dT+OkY4/PG/fgVAL8fY7wK4PeRpNx/DsBV/u+vAvjvH+bkcTikmNfEu5GLh6p9wz/IXD+fqgpdgyUoHkWbekmUt27TouLyVNfraW17eedDWrh1lSo1y1LjOFFfoi/m+d44LrWAqdrcJM5Ap0MFUKXRDQS0NiEOh4izqcot29lszG+Q8OL8WW6KOtQKOUk3iltbPX4ezhG9VTwieNppem9+qGMqz6chEV+/fXuP7m3/IH/pGAl3LVbxKUg/Qe7Xr+ZdAaOUV49H1E/RGOtYUqZE+muIF6U7a9FKGZYYCc8A9Hfx/i7VlvA6CCvL6qkJUKiufF0BdUT11rv6zIkZWqcCNO8SbsPXJW5DycAqpbxVs1FqbbqdLEumB4OYxYVzhL28dwOxjiSEw0Sq+t62bjgKRo9HqG/fhZC28Ozjer1YN7JmJh1JIeZxEicqS523ZkjyMMc/T/hgG8n+BvIGs/9LpONPQZ2kTk07wcRR5wU5QsnVcMC6fGYg6YeYuhwDtEu0W/Bzsymtd+4MyqunNVYjZR2vC0RicEWPhdUG2jVl8cluCUAR8TAY0CJeX0M9HFIJLocBUpdhFYawswuhCksHJoDFTs3OLC5i+d51MkDewc32M8zEBTKO7ps/JG/m6BjV9n3+G6drt7YTCIYEQqpWAUBy7QCX47ayOgKRzqd4+xiuP6Mxfv3hVvL0GvlwytHnKH2sKuqRyanmsDCfXugyXQcA4v5BRi2vj48J/LQ7tGwAU8hB1e4uqUEJEcmqT/PLmyk2cTjl5wfwgzniP0g6z6aWY0xeXWNtijdQvnc9hQP9mUSBHo8IxBTmImNNfmYGUVLTsUb8+vdSiGB2ep0Xyc4dHtLnDbiZ3QvwscKHhwIanXPvgNrNRwD/Q4zx7znndmKMC/x3B2o/v+Cc+wcAfi3G+I/5b78P4JdjjF9rnDPrJfkXWn8x7V626uyE+7P6dVK5NlFaigaIZf6dyXd705NRMgtifW2lGn/W8ieUGCP17sFPl28XgKghDpr1L5wCOmZj1qH2c1N1+8w4ZOeyYyguPN/DBMAnRxMw9Xkp7rQ5SDc5Zc6awFfj3BlA2fjbhJKSuVerVjRtrLRqsPk8Ex824J4powaQQF1g8t7Nz1OrQSWUEUm55hh8xJGBtnIY4HPaM1lAPNP5rCr8XvVbnyjQ+OMxxhdBocHfcM79hP0jt4X7WGmMZi9JQVIl1egtjgDkA+Ncthgzg2AAlnD1ciqLXV4id441D91sX8GaYm2FW4KTFDqlKCkdWB8cKPfddi1yUr+vHH8Pv7RAoh8xScanVJbXEmt9nrqi8EGARt4htQsWOCfPYGIcDhNdeYrlV4MAUArxwrkUV37uM5quzLjzcg0GMymVa7gcc3NkGM14KxfEAJUq5y7y7f1+qgI0+fLi1IYaYSlAE+n3dIEkoBvW1xBWV7PsRbFBQik1V7d6gzHIfQmFOSwtJuzDAIDZYXL8cTxK3p94KGaDkc/rtRiMbGZmBNtBVRHGUifaczZ+gNZbZPfmXEbBJ2PgJ64/9ZDQws7zQxoi4CGNQozxJv//LoD/A8DnANyRsID/L3Wi2mCWj7NIzWcffPDAEaB3mLUDk4owNRYTsb0pgXUezjmVKHchwHW7KN+7Dr+4yPH/FqHO1y4jDmY1bSVt4KUUV2okRAFI6LsuBITVZaUPx/EI1d0PUW/voLh4nt3aOqHizGHwfRN6SM5dsJJIfIn6INGupbempCWL9dUJ4osl62TDyVJzrt1G+MF75lokSqIZGs65Sy2EjUfrvb3JylSO74Xh6dstlB/coi5Nh4cIy0uJ3hsTyg4fSECV3XbBHPzqcsbWU66/c5RS3dvL6lOqzXu6Q8bRCMMfe5LmvEMCuuBye1FSknMRc9FTmbasJblOoxzdFa2UxmbDJpkcuU840kyQDJIyEaWXJp9LwG1hG0q4EIdDWhutVoaJyOFaBdcEJSOp1+b7Vm+LvVul/osHZnghD3s8TCv6PgAfY9zjn38XwK8C+AKArRjjrznnfgXAUozxbznnfh7AfwjgKwBeBvB3Y4yfe9A1TlRe4nwsgFQ2Lbn/BgFHXMkJYRQrxCIWf5o4LIw7PM3NtWMyLa/OxkcFUeRo8BWaRyZmOu1ogJBhbTXV6fugSkiagwcy9SDJcU8dC+s227Ct8dyqPiUqTYY7YV8AOxZT3dsprvOJIix2vqZxJGQ8+fwi6mJbtWWbR/O+HnQ8ROrV3oeGOLbs3cy3Fbxp3of8TbqGZWQp+/y2LaBZvxkPojbZlzpqiwKZ+0+Sp7AO4B87574F4KsA/q8Y4/8L4NcA/Ixz7g0AX+R/A8D/DeBtAG8C+B8B/PWPvIJxMZVPsLSoAGAUKXGAXL12i1zBkHL0ytqzOexuJ3XNsYuxQWBRZF1c5OZLDZIzC4MB74JjdVldu80pp5bWDbiiheHP/UiaxBBUp8F3uymPDQaJjC7hBJhquA2+10O9c58kvMWt3ye5tlgT69P3eoSYs6GM5ZgND4dR62smbRt1V4lliTA/YPn2NmdQFlOFIXM7qClKqlOp9/eVyaffNyClBVElvef7fdrVH39MOQqS4VAegOGa2EKosLxEO73k5qVadHOLGs7oHLIRXVggQFn4BteupOsZKXlNUxpwNRn0nEmYufR1kqBXDYh2O1tDcczdxcxYSNij5c/LS2RIuIGs73aUi9M0msp5EY92bi7xVjj74nsJ7/o4dQ/AQ3gKfx7HwC3FV1pfRla4IfJkHHfaKsDssIwuAQinKdZMO+wuwpTjZjPUpucRzp3WFuPZeawnYM4r+njaUOWkndGeK05hz5m/aUpMgDa785vnUUaktKMvCkrFmr6GGZjlPFGEGU+ZqpfYbHIz7RHsjtkADE963qnexUft7OZznlPMxdkzExqME+cT72IwADod1ZI46fpT5+4kb8js1E3PrDku2S7f7NXZ9LAE+LQMSju+U3Q55RAdyE+XxDvHdJLDRqypOcniIkjyq0FhNVY9LC2QlgAfVhwDQALNnnkCosSrXIUQoAVJdQWYluVa6VeWymKM4xHKt9/VIqriwjn1VMJsPwFIvHsVF0he3HUMch/y3c93uwlYFEzEPGdYXKSFxl6DCn4w0Cbaiol9yM/DfHh1pflZ6v19asBi5OzFMwCQ1KHM4efmyMOYEgJl5cz8bzmXSubXRlS2WVxkvCB5ZgEhRSvBzrefm0tgqL6IXsOZ8sZNxFefm2j04opCC9XkWtXuLuqd+waLcnmhk64FJhDZegU23Pp58QB6vSQJaMFgn1OhfbdLrMZOB7YMvDmeMn7FmdMoNta1wjQ9WyLzCegroGlYX1NZQR3fhzgeGU/hZfeFbCeSFuN6SMxu03dSYBOImqpNSIVR1tg9bWxMn2ukL5vxmVzaxnBs7VVrb0p6MKyvUdzf8CDCk1dR/fDtlOaUHcOIxdrnRczVrC1AWXO5tPwclhaUVVdsrKPa3DIl4Fzi20jpCerebNenbvuLTyJ+/TX6OYQ8bm6MG0LIW6pbLr/z1Bhl577WFWgmZEpNSxaD833azygT0dZ/NLAdIZRJ85qpx0npQcEKTGfvE9N+YuRM/UMYDKgIy+BOVjXbNvKx61juWdahn5tT9e9EaDMivyblqKlwebROB5FDCXmeTzol+ed38MMLi1HTOAziNSvRaGHwhHE7NzksBx8gI0DU0VQkpDp3MDuBSR/BpboF309Vj/XRcRaraUsvAPXWvXRts+iq778Bksw6Zq46KwO129kOamsZHMeWAL8EIUBIKrEsqcqvrghkY2ykvLuZGp8yYcbPD7JybYmzM4MgzxKI+BW/9l31PpRuK3UohkZuVZbFGxPAVjQvRC9QEHjl6nO8buchXw8Ng8A4iVSQ5ik7p/cqKl3V9nZGLpoQatGHdomUJuNbNbxTc39+dlaxGOFRyN+r3V2i0PN1RSCWGKHHqrAkaw3OK2NRMQTnKPPDxCT1fhvgpZ+by/ur8n/1aJxJEH7iKck/j6O4cC4VxDCOAAB+MEe9A2w8KnllAX140MLGejIYBgByzz+F+GPPk2s126fCJn6B4niE0ZdeoqIoQW8Lqifw/T7pOAqHXyYIgFBo9YUdUeFVWF2lWgvT8RcgA3XjP/tRej7vgBeepL976sqsuEWnAzfT07/F46HZcSjVKrUexeWLVHAj35sfwPd73BOTwSs2nvd+7vG0UOtKad2SXkVd4e5/8DK55/Nz1BBFlJ1N1sYuPDEINsVHu+EMG1ECOLWlPYDw+GMozp3F6OUnVORWtQJiNO3ZfWYohDI8+gvPoPz8i8m1FzZgt5vR5IWSPfzKZ1GcOUUhpnPwl8/rHAuoV5za0HoRq2dR/eRzPHdSR9DS+xGAV42ghK2S5pX6iXYLRz/zHH+O1mZYWUZYWTa8hzqtPU57yrNLM5esQzaDvohRS9Yticu12kR55iMLpR7ieHTCh/AlFU5RUEpcaOlpaAA0ALlbdxJ4A975FuYnezY2dibbUGSCTTYF+PLdbtaAJKyvkc6/fL5xjyLnVu3cz5/NtLu39ybYRLMUuXne5n1MdYubKdkppb5hMGAuRpnCiCYjUNzqBstP3GLJlU87v/D8s6IiiadPuN8mMGv7Vkx7Ng1XZvup0YxhFNqwVNeV83CtAk6wLQ4NMtCasyuqkNw4MoYsZ35cr0e9Nl96Cvj26zk4aMM1R01+qt1d6lR2cARtciQgolGjlrApJ+yZtWEZpDJu3n26uk4DSGCJtB0XRhjvpPrQxjrnL4nPMwXeAEVlyUrR7fya8v0YVVuPvpxy/sXpU8m9lyyFbadmXkRt/GFccftCVdvbJPGFBHZpA9fmEWNyTRl0y1xYc94mOJipGsvzvPJMCpOmKEPDOcVmZEFZTUO9B5mnusquKeFCfXiYMB3rbjPgZYFPO0fZ/QJ6bjU+4v47l3ZBm3ni62mKcndXwT2/MJ91kNZxM+sqjkZUV2EIRM3nqHYbc2VA6ybduj4+ptClruC+93Yq3zfgaLpvj2pvT5vOUNarZeosanovxqmnic0MaUm5pHOtuhV7J59KOTadYB60+uAw3xEEGQZ0UQoFWAp/MoaauPYNTMFWO4rsFYC0INjdllbf5c0PqFqOZdpcCJS25INKjefS97i3oz5T47mkqrE+PKSQJduFc/RYzqHP29BNoO95/R4AlR7XMIo/47/6mio723Sk3pvztIjVUNZZSk0NAV8rDAZ5v0z+Dg1muq4ckjol/glfo9m/YFp5r9kM5Dz6AsY61zcAEM6corFifUORsqt2dlCcOZ28BNY5UHUoASnNxuFaRZbt8b1u0jHgo9q6l3ARYVQKACmhhOEv6NwaD4tCBq/NYIS/oDiOeAli1MQw67DLO2OYp4KLmIrThz0eCaPg/HS2X3ZEUvqVw3e72kqOhFQ9wA1hXdHK6J3FmdM6QVIGHZaXSOBUhDMkzuQX2WYVqL06uY1ixe2EW/c/jkbaeSlITC9WW3URCSAqr9/IDUCkCjkp0dUKOUA9IxFQkWeTBSVGMoVOxtjUFfzyEmJVpwUqhT98b2F1OaWyuOJTD1nAkn6rSU+ivreT5lBAUyN+Iy+lgsOxRr27TwZlMDDy9eOEVcg9yzw342H5G3syzbaA5XvXdZ5pDtJLXd35MJsnOE//19qTmL1s9fEweROc3o3S81L0OMSgMNIvcvA2S0YpbE/ns816+b7icJg1PrIhi8yl6JHq5mjXVCNdr3oSziUcaRqIe8LxSBiFWOcoMDyh3xoXTXN7GRxTEHA0RrW3h2pnh9KOrQL+EpVglDdJEVj4BfVorHz04tSGxsJCWVWrLLvT3h58t0MvuQ9Uqmy6M8mO67tdnZDw1OOpLRuHHXE8UtaZhA31cJheNhqM5DqXYzJyPPGiDykaDmJEfH8mLdqyVAEP+Uxx7izi/ZTeFQRfX0TnSA6e0e/K6ClovT9nKmQMASCcPaWL3vd7pJRlXFwA8P1edi0VqDH09Ym6DRsaNfEWgysp96ElMvnG3WejXd6+k77KL3Nx8bwqQAHkEUzN49cpxWrnR0MhTrmKMEoaYJ9CmZrwlbC6TJiGtCGQhj2sAJ5rNST8SutAYgRqao8YjQGNVUUep5lvcOdt3+sxANogRn3E8UgYBXsIRTRWdVa7Ln9LaP9Y4zl6cYr0YktI8PZ7+jNiVHqzxKSxqqjCUhFnlncPPhtEC3QVZ07RyzHbTyAPwGrPXmNmt3tg+kEYaz4eJ2CIF0BtWs0JhkDeC7n0cTwixWKAd6GxYih+fZWyF68+q2Sh8uYtGpezVLlYXr9BXoJIrjHH3nop0vJewwRJwZal9j9wRUGZEe5bUb7zHomoHA9R3d9lEZk8bne93uSC9IE++8qztIBPincjsQ4nCD0mLSfzqDiTzHWT7MaeoJ8foHz3fRQXzimC75wj8Rihay8mVSjf7SIsLtLLzAY/K5ePEdXN2yn8s2EbGLw9PCS8yTlE4S9ISt3wMYS2XZzaILo6Z2UUoD0+1rZy9lpi8JNK01hFhmU8ppKiTjgeneyD+4L+24IogqxLd+XUrYdjQCNq6TodSi3ZmN+Aj5ZUEpaXUN3bpji73QY6HdTb27kiEcgQWbKOnC9D8AUhLsdKt50m8kn3YzpNTyzcRB5S8EhEZ83xINrtBPEHmCha0ntsft90+rYkrmlCppZIVpzaQHn7ziS5TDw9SbfJWDaySmF+wHJnnbyYiefUkqImxtUH8lCGQ23fPm0M0nog3kQsSwphDPiZFZLJvcoaNNobGag7pVhJlZlnZsjrknE7gSwlazFtFLV6rbGqKDOxtzfZcXtKYZtdH/J7ybh86oRbLXhjNQcssp4Vu8j/venQVBSo9/YyIkkwvQmoroHJUVv3FKeIoxHq3aSwowg0x3tpoowCsSn1TbhGwiKsfh59wVOGQ3LwPt9RdXcz5wMoZJK2bDo+43KiUEZCnjgeUb6ef+eKFkm/S6l0TL00EUJG/hGGpBiEcOUis+yGSrLxc3ONrtuL5G2FANfrJVxGFn+sU1w8zvEON0NeRDwe5iIudmer6Lr67M2Xva44q3OUv1Q8f5mnyA2F5Pmq3V24S4kfY2nMtlWAGARtzmLCk2a5M4RgVkfFvBR4tPiQEJuKgmpjpEhOQgzv4JeX2GDukraDNndJgKPOvfm9GATh2NRT0sMPOh4Jo+DEbRXk3bRTk0M432FlWTUKAWjbdyAZDZmo4uJ5lDduJl2GmIuIwLk0iaKazAOr5Kh+H86z8rKRGpNrSSgirp4XxWfZrXxQfnttOibFF5+cyEwAQBjMJoFXpq5aaXNRkZZYcsIt9CFxOth7kapGQc8TxlFmoJZrt1XYw3nSo4hVlVKAdZU1xvX9voYMYWVZSViCcYTVVd65izRW/FIVG+uoPtwiQ1bVEykz20NT6cB8j1ljF37mBHQ2pNN7XQ2rbE8MncfX30mfr5MStet0iDRn0pKq7mzLtmE2CE5li26F3RhSatkl3Cim544GE6m27pEHs3WPeBE+aOs5ewjobEvmw2CQmgnv7UFEYT/O8UgYhWhcUoSEtqpFFPBxZobafIn2oVH5AZDJhoeVZdR3NxWAk/NQR+mRmUivUuhZHtlzn0LpB8gTpQcDRdpo1ChKJ6ESr0CTgnrycr/+fuqraBZ4dX+XFkJkoc6YVIHCwrzm3xFrwgqkWMfiJSb9GSRdWkd9lsyQyK4lHoQBNBOYlYRk1XMClHPhQkDJY+1nZthbaynQKgCxdjyKEfEw9bIgcLLhFgP6Elm1aM322BekpoY5YTBINGxeM9XeHoGaPmRS/xomsUdWXLqQYSxxNCJuiym2A4u8Op+yAgDIkHa7zHg0dHH2DF2rrcS1LMsi3kyrnb+4NmUrGIX1Rvh9kdBHa37Kktb3xyyVbh6PhFGA8aSbffoAIKysIMwPaNHyZLtOJ2uS4oqCBkd24uGIwCN2dUUQVQxIWFnOgB5hs+l9cAFU4HZo/KF0o3WlYBBipPy43L9174xhcy88TbiHd4jHFANbejNA8b/0oQDoxRDDI0xIoTGLNoJQdgGkWgbeWRU7YDfcdTqpcWrNasYsfe4bxkK1Kuwi8yF9n3c89Q6A1ABXlIqN5oF4Db5LOIkNoTLBV5alk3vWTuTT6iPYu/S9Xip7b6eUqIjzuhD+//a+LMau5Dzvq6pzb+87yeawuWtGnMWaRYs9EzmBZVnyFhgGYgQ2EsQxDPghfrCBAEmMPOQtcF7iGEhgOLFhJEDgLMpiww5sJ7IEJE6iaKRRZGkWDWfhkBzu7Gazl9v3nlOVh3+pv869PeyxqLA57gIIdve999yzVP31L9//fUTjzzkj6VLUfpG3LlBym/EpslgVXJZS1hIVPAughkRZuSyQiNm73PgY0f21iWI0BBlwRzAZ6GrlGOMnkkLIiw2Sz0dvlxhbDkf0d5e5H0Yxc+029odRSBz/BmpmCUuLOiH95CSaGzfQrK1lSyxlnvl5AEDc3kY4uqw1ZVdVqnmoE4Qps+LmJsLSIuqr12hRSRzKnoHoRMoia+7ezR1x8sAVRFXDMa02TB5kaPJKDfylb1K4ExN9ny2vCX5gnLL5ziwu+oHjcFObj7duMw+iV9GZ6pGjhZZDkiSdIONiQrO+obudNBelnZ3CqIrHQHVxo7IsRoCZmHVi9/sEExfZeCft8HVpbHd2FMhkY/iwtEBZ92efpONKuVAYpRzrZRx7pCwBe5eh2YkYmNQzA7Qq4jqVSt5Jw5R8VvoN0qCP1R97qsjPaE4CUF1Ka3QRDFQb0M1M9EHcON0TWxq1eA8xaOL9uk6F+vK78BwmNjdukGGw3oVUU2zOqhWOCFo0bm+jjbu519gX1Yc5v5S+G98PADnTbbOqJrMO7wqtAwAFBrxg+LXZ2VbLaTi2jPrCRWqtvbOu4B9NDrUyujJkVxb8uWSmhQ5MduV2pr09hIbNMkjb+jyAfM1CQS/XZqourtMlAxg80sZmDg94QjbrGzkh1cqUlydU9g8QQMtRua7XG2oH9jMzwGBAry0tAk1DrdHSy2GrNfKd9nnIsNesoVtAWJhTLop2q7a9h5pgbF2HxvJCHyc5IPmMmQ/22bqqgj+0REQttiIEDPVRDM2NThd+aqK45/bYQwQtUt2RFmlZuO3KzahjIM8hW42R/JlUrHTNDOqHq3VacgoACint6uRxfQ8BRgZKdqlZaJ8lz1wIOoHpwDnzXZbTfGEQwgKRnGiuwsjAFVBl5+Cli4+PLYzOIqAiZVHbx255ECwNmyQM6UVfuoYSN0puIiWK7TWTnydCs7pK/AlNpKz31hbc9BTnJmKRP2nrMqjb2RKlkQSVhi6ctJLPxLt3qZNyfByNJMQAdbclNCgMgpV6T6kEDAnJCJ9rc7vFgTBiERbakrJz82IS/QhXVZpLkO7XYj6YIR5EfekywlPnKOQUA+Mce4bdXGKV58qs1vqs+HwUgu3LUqJ2W0pVbWMjc4NanAN7HZpYN2K2EhoWXKHOAd1OBvkxYM45V1a77jH2hVFw3mu8Swg9upkCWZWHV8S8xpDo69NTqE4cz3V94/JrGMEJvOrMKa3dW6VpSxArPfvOZ0ae5uYtSK1fhWoE+eYYvMSMupLkS3VNLcFNFh+REKQ6c8rsqp3CgCDlVuKwsEBJr1i6ry54BdtYUExz81Y2IHUN//TjcN1OUe/XBB73OagRZtfU9kZ4oXMHsrGNDRIbT6F4l8SosgobJuJq+YiSicgi0xGbLApjy3hAkQDUewPkMms7GZeiVlJSpBBKZNU0yWrccD81lb9DkqivvYE03s1eKLv7RVlcQjxDFNOsrVE4kmIO8z75dMEdIWGJMG6JChZ9zhgqDs9kswpLC4WXNSQ9z3NZS5Bc3oz9gZ7rXsZetSTnnXOfc8696px7xTn3wv3UkkwxUuwoNOvbvUyuIjuraYRRhpuCcou0J+tLlylZc+oE9zy4/BmZ7J0umktXhpl7ABJD1XDDqXOh3QAAIABJREFUZHn7AyJMnZpSPIKiD5nownn6nJaW1rM0mlQU4IO65PBhiO8xo9KYzIXp3tPODsXtbJzC4x/SnEmzujpE0lL0XTgHd+12ZnDirHgb91FfuJhLwSly7iOQAZUwQROQUfsX0qCPuLqmhkSrJtIbINfW6+kiBZDjc06Iibeh6l+yu7YmtMgEUjJ4eMcXOXebW5GF1c7yh/l5orIXaXkD3mrOv4XeZ58pznEo0QmYe5YykzJvQn58HP5Pvp7LuBMT2YjzdzbXb+i8kOvPTXZZXr6+dr3gdhBYupZRu91cmuWqlsjavZ+y5F49hV8F8AcppccBPAPgFdxnLUk3Jr0FTi2yYsSBomwnBkMJSfmhEHiGauH1hYtIm5sZuCOfnaBdLJw4Bm9x95zUrC9dhpb2QIZHYMr1xUuUQKqN2KcnfL6fni7iz9BSUtbzj03R5ZdvgMshUSszDVBYlQa17gLNK68TwvPu3Qxkkl1ua4sauIyrrrTwwOgJIlUbw00pXlD91gXuvuwXO6BFWpIupynHCTu2eDRVRYtednTx4pJpApKd1Oy8urhlMbbASRrmmaGJTMuTOOJ9rtPNVG0GWGSN1djvfxn1pz4K5YG0WX9x0yUsMoYq9fu5QS1FEsFhT7JZXSXpvK0t8jjZeMmzTYOaxIMZhyBYGc1lFc9poBUVJYtNaSjv8X6IVu5pFJxzcwD+EoDfpHub+imlNdxPLUl+4M3NW8WEleYaP0XaicpjsLWlqkzOO200ilwpqE5RI1RzZ51KhfyQq+MrhOLrdlC/+TZSSvBHuf3XB83UWt7CZmOzjNtQJnzUk5GY22TeARTs1LZt27IR5RgyZ5iL2N+HInSqzp7W7yx4BIGSrg45Hq0MshOA0sz7qamhCSOS9faYKRHLj5CfasjGpLZyz8S7gHAl8AIuCGv4mMHce+udubEx7dT0MzNIKVFpUe6j3AsxnJL8tGGAaeO2orL2Gv1cuwPTF2GIf+oc3e8//gr6n3ludNOUzRewkRKMR9zO/Az1latlXoTng3Re2rb46uQKXfOJFVIK385t/VahzD4HAXnJGnGdSsMT1+mOJvLZZezFUzgD4AaA33LOveSc+w0WhVlOKV3h91wF6UMAwAqAi+bzl/hvxXDO/Zxz7kXn3IuD1Csl2G1dFlCSEwHLAGA8fIa8xo0NjWvrCxfJHet2EW9mvsTm6nU0q6vwjyxzTJxI5Rcgd3hpEWF2mngPAY0jh2rDzKkHRypKBRgoUuXBjY2VO1MyqsEpoTn/tjmeqbJwiFPy7lGDmEyq+q0LJSuTp444AfEA2XuSxG199Zo2kMkOrJ1+kgyUZO/WVg53gIyKi00R7oTlI+o5aZNQh6C6qd8vuRs62bVVr8SqiQNKmeacU/Rn3NhAvHuXMvqcENX72E4+ppTjafHOzDyyXIpxcxPxTu4HKWDIbKDiN17Vz3f/8EVsf+qpoXkJiIHtFK+NOj9FYjpCR+ZzjawERc+/uXwVqd9H/daFwmu1OQQLbbawfsnlpH7fMHztXYYe2JtRqAB8FMCvpZSeA7CJHCrQiXy7WpJuTAVT+MXCTWukUUngsowDV/FPfojSIi07ZRrUygOomdixMTQXL+fMrwFApZ0+4sZmlhprw5Cd08QfISA7pbsLqOYjmiYnqHi4TtdY+MwlWNSgU9IEp36uzekvSVk5VmwUyiwuuS3RyrUUrdx6rLKbTiZse0glRv73k5NAKwzxU1MFWajKooENi8i98/mpAjQoDyCVAUVQJupXUM8nNjmBOWpE03jE90U5E8DdtOyuF41VktQsqj8xV2V4jP3+l9V7AJDhzJxXsZUQ6xUCxLAdNzbgpyZ1jkiPimw+no2oMI7bfBp8UIAUQIZbvCnLLC0yg3ZOpZjub/gA2ukvpZS+xL9/DmQk7p+WZGIrblmN2w/e5fbWtL0NBWpwmU35DZIBLHFW3TaEpH4ffn4ui82aXT5ubEBl32xpCNBdX2jKFSIrC8mUGuFDhiPDuHq2LJSSGip7jYXXwH9Tb4DJOhSKbCDH4tHYvgQ4X2Si5b0Eya1KjQNzXrKwJeQIy0dUiTkN+pqXadbuFIQfSukuw5daB4oNsL/L15rwQvsHpE5vy47ivZkh+gvFtSKHdspMdPcuMXqxwbY9NPZ8XKc72jCOjSF+41X4Z58sqzPtkaJStau3tUX5iLixoQlGOUdpD08pk+ikQb9k4DYldTnnphUSKHDJskdV2XPb67inUUgpXQVw0TknJvLTAF4G8LsAfpr/9tMAfod//l0Af4OrEM8DuGPCjNHDoexwBMidl7jbJMwU7COTg0t+woMQlo8Mu64M5ZUYq7l1m1iS61rdVIHjhoW5coeSuJXBQ/KzhjJ8bsUOJg1dgtc3gqJWG2AkkEcEUHiEpUWaKN1Ojgt5B+v/4MeLBJld4Im1IOQ1SVZJ15+6/GZRyGQSYpf6+k26X9dvaMkU4MUv4RNXGlSB2nohLZi3lhqlF8DE+2SMM6DHVRWqI4fKXAmDxYrFyInByDuvksBIwtCI/NpyJ5AxMQolF32MQZ9YvGan87nz83OdLuLXXoZ7Ms9NgUoDKJCeEq6EpcVMIptyMlByYM36us4NafwDkLkXYMMFj+rYUZ0voyD47RyYJkD3OPaEaHTOPQvgNwB0QTqRPwMyKP8OwEkAFwD81ZTSbUd1lX8K4IcAbAH4mZTSi+91/EIMxuLDeRRszvrHUC4IGfZvuyATJStsWYtt73rqs3fRjvl5hKVFCjEUxGKEVzWL7kd/v3VRR6D0BMGnXZay0NvPadT1C9X9/NwQqs4iI4eOaX7WHXfUvBh1LanFevwe471Eb7R/Q4z+iHsj7ycdhXr4/tr7bu6RegxDQCojfmP/H3W/R9yD5lMfRfjiS4XHA4AMuJXzG/X59ms+6Of81BRXc0wSc5dzcp3uMOfGiGMDuL+IxpTS1zj+fzql9OMppdWU0q2U0qdTSo+llH4gpXSb35tSSj+fUvpQSukj9zIIxffUpaiGJGWKzKndjW3vfmSpcOtO0wnR/8Zqxs1NaogCtKnIz1F81qyv6+7XHmFpkfIZm1vF8SWvEbe2EObnSHT2yKHiswVJqhzbwmfFI5FdwsKR28YQQDh3Vq9HQVQyWQW2bVz7cGixFK+pOplg1uY9ul1lPm53cBZlPQmNqip385mhlQBz39sNV3aiS/bcUse328I1Q2/LbdZYLy6UCTjBqNS1eiI2oeg6lRpLeuMwLWB72P6Q8IWvkhS99D+oMSr7IMLsrEmi++FFy16UMHDF7R7RrlnCmpSG7oeEn4UX4A10ur0W9jj2BaJRh5R3jBsc5ucRFhaUXRkp0u9jY0NehYQAfnIycxJYVJ7hQmyuXUc4vKT1+7S5pezQdDBme+4YncV1yoRr7GqrJHz8uLFJ8ODNLco9SFtrTHkRAsUDloSVPWZBY26/h93d5pXXIYhBy4Ak50L/5YVQX7laKk+dO4u03dOQyrNATrNOrduilaE7rQ9kFEX3kr8n1bXiNKQ8CVCIoaEFewHN+no2FBI6OOJdKIymVGAM85FClG0exlarIMQ5UfEtUiGyhsCWDzNkPVeVbKgq3aA2nJPuWVHIbq7fQPrY43nOcjLU3utU1wgLcwyfj/oM8/P2RXu4APncJz7CYLsREns0qeheM8+nhFhhfk7by4XK7f2MfdEQNesW0/PdH1Z3WWreVqW33WA0RNkmklvGjS+alZhpyQ4p/Yn4jKXdshqObdetLUjiOl1qjd3ehl9YQHPzJoT2S9h+2mIhlkau/R1tF152Y2JcogkSDi2hvvzuMD2ZOZ6fns4KUzaBuVtI0joX6TaNG5ukVt2udUvYNYoibJcxFEKM2DWt20yLJeaWcHPubdq4ofOX0u4uxKW73rvWcd5z8Hv6P/hxdP/rS0VC13Wo7yIcOVyAx4rjSigDqDcgyF5JhGsTnNwXExa5bne4Kax9H/g+PVx0bK5MjhRwZilh2fqzcwWrkb5fFh+Dm7SUcyeLfohWgR8fp/d3O1quEfp3/R7J1kvpyLj4lsUnDfp5wQiirEV0oZMaUENRDBvmdDrFpEkxqUhLWJhHGtTZw+Eya+G+S2KMKewBKPinpCdzIz9nd7hm7Q7jGUzOwAedmKqv0RrKD2Dc8PbuLxO9TXMP5zW7r/kde4/k/EQW0JQNNcHMHoXvdoa0Ots1/aKEyK9LU5z8XoS1fC3iDbhOF2Of/xqqU9w7EnmjGRBjtDyrwhsCMiiPGb4BZAQni87K5ljMKfF6GBVZwP19GGIaG5Wne6+xP4xCQn4IKQ1nmHmIPgNpBiatEdvRVurx3U7BtNRcv0GsTOZ9AnW1Bkb726sKqWcaTDgX0WYgluSlAEbC7HSx+AtEocT7PLTxR0hNGDsh7qBVUqqvXqMQ6uiyZtr9xHhZQkspk8ucPU0Z8+1ezsjDZMnbJUk9qZzXKajsbRhTVahOHScDLQaGE3UKHzY72EjDP+gPPTMKAarMxWAMdPt9elzJtcjzES+u21XiVy3DaukxKzBZqjyAFqf0egDg6lbmtLS9Iwo5XlvH4LMfJ2gyhwNKBGsAadKx2e5zkXsj16yvG6NoyVKssdNnFEIBBIy9nd1Lp7uM/WEUgCJ7Tbuq11hQs8d9Ci9kV3ZVhnLahFZ44jFy2xYWgE5HWXvpINRBWJ05RQ9rZgZhfo4ESrRbzTA4NZlrz3W62iLdhu1qH4agJ9fu6C7uJydRX71GOHfRqbDYCWl+YmMgLqIlFwFQAFDqS5cpXOEQQfkX7S4IEJy7aVQ5aSgZZl1Zrly4qiJiD3FTg1evQMrCcq2CrgxLi0Phie7gthpgS5Rtl5cNi9CMwQdUJ47n5q4Rn5drFtKY+vK75XPZ7lEilPNVothNL5agMaSkm1NqGm0mQkpECV/XmU6e54nMv1TXaFZXMf7lNzD47seLagAlDQdZ1Zrfn3Z2aCcXmjhXAseGFjMns22JNNWsPC4Gknsh8g0wKlF7HPvDKPDNsIk43d2l3msSLrorhUCGgkMMUX6Kb76jxiNtbyOdPpY/I8CPS1fYQNyknaPbQcOQZ9ftaAY+zM+T5xJo14/9gcqQu6pDD1pcVmfAQ0Y0RfIbzbOP5Z3a0mPxeckiogUWcyKJodSRm5/C/Lx+l2ggAlCNBQtKEsNav/m2Gpfq1An1hGQXls695g5x/DU3bmi1xcKKRYELPsONU2RDe3Q5t1+nVIRYcCTQGhb5886jOrqsO7ufmkJ1dDmHaux1kPHraWemYv857FBPwooDGe/HC9bAApr4NRd8sfAk9KQXPerv/5gagPqdSxCqM9vlmXo7ZdK430f44lcRHj2jf4tbWwhHDiskXL9vZka7bYUpTMRhAA51bZVHvyQVf6uvXCWl8/m5DLcWAN5u6M/3GPvDKHCZqbl1u3CrLb27ZSUWunRxlaT0ZJWfXKeL+Imn6EG+8mbeDeR4rP3gqg65utJQMj+HuLlJGXhuS469XiYdjQ3S9jaqI4eYvyAW7p30PKTeTqEdEHd20LlwA0XZq4WvkMlG+oRejwlkl9MOlV7zgc736OGcpJSdVCasKQlauTcBUVl3Xyo9cX1dSVMk/BFIb9GYI+XhENCwEA1ciy8hEcehm56CIjsnxhHvbhAEeGsL9dVruypwk+5EysxSKN1uLeVKKMGGobl1OxtgT1R2cu6qHwpkKndTMuz+z29mRuaU4GXTspiGTgdCuQ8gJ6ev39Ln5sfHEdfuUKMX82pIqV2fqTSSRaMuPc2GUCptZi5oiK35HaLZU6SmhIYcHr0f47A/jIIDAqPXtBmJd/YwP1dw2hHeOxZxqHYsWu4EAO5//V84dt3a1tc99xQlmD7MFl36CcazGx4eWabFJOUltr7h0JJy7sUe7WLhsbP63WnQR1g+rOcXlhbhJyaIe4877dITZ8zu1THqVhwSCfqvyvLtAn+lAyS4pQWs/s0X4J8+h/gXn0N86x2qtszP5xKu93r+zcamsi1T3mNW4djV6ZNDoYckvarjK6ivXSfDEEnU1T1xFtXZ00g7O+j96Cew/lc+jri6huaTH8mPtVs2CfnxccSbLNd36jjSLTJE9fWbdD1dg4EwBi1ubqI6Tch55SJocT8C0IYvLedKHuaJk7nkZ7w5TSTzjk2xfw5ZHcOM06BPFazrN/LcZCxA2t4mMZp6kHNDzzyBuN1DdXSZmLB6PZz/h8+R1uQdQwDEydTq6DLc4nyRQIRzGByeVm4IyafJ625ulnANsUE4vKT9OGoQ7UgpozP3MPZNSfJ73KdHl7Nkh/M+l6Z4KJJO0GD9gbIKy8R33S7w9IeBl16Bn5/LpUnzXdWZU4g3GfrcNPAT47QIWRuyWc9yaH5ykvj0+IH48XF6QMwn6OfnUF+5pknJ5mbeMcKhJdTXrufvF85ISTrJd/DO4KoKiSsvfmqKKNauXdc4NNV1Lr9y6/gQKtTE7tXKMTJM9jNtpChM4vPch5DeuEB18LEx4NwZuLcul/x/hmPST0+T59QfEMpuY7Ms9/Jx4s4O5XQGtfJXFIOfjRgtkWhHYlUpBo9VR5cLQlQ5d2KXppJymJ9T8hY55wIGzHmEuLXF/I0Ed1Yy1XYJ1zw3BQrx53Un5++oThwnCT9bEh1RGnZVh3Ajr56n1v7pKVIvY3EdYanWe9M6nvVI289cb+nUFP5o418+RCVJQK2vDk4qucDdYSZ2Liwm5xqiAICaBji1wnkAasjx71yjmI0TlQD0u8LsLJpLVzKVd2yy4CwMAWbVgas61N9ehDU1AViENZnZnNzYGJrba0X2Wi9tclJp2uU66AcOcTrU/Rl7PYpRmY6+uXZddxcBVkn5NW1vI5x7VJOUFo2ovQychItbWySqcyjncArNA7MLR0nu9nqIX38VbnFePalUD+gZML4/9ftw3CyFo4cLDIMwN7kzJ4CUUL/5Ni0Ycdcl/uVqir33zTrzPna6xOnwCIUyhUEwSUrAuPGGZ1Ob2PQz5JnF7R7NM6PoJChNoY9rUwGGQ0vqeRQS8FwKdZ0u+qcPk/Hilv6CPRw5KZ2aBggEYkr9PnCURHTSk2dLZKsjUFuYmy2SzkPQ8REbfXGO9xj7x1PwP0CWWijDqt2Zh7W8YysTLfBRYS3FYxBmGnmdqdHdzAy1Fbd2KCtdpruyabUGMtCI2IE8GyrDvW+w9Pb8dgPeFN1+u+yg8r6UEvzMtHojcl2iPajH4GuVRJ10l9rkm3oqhuU4LCwQ56CU9QReLO/j+x9OrCBeuTZUWmzrQNrnMvK11nt2+1t16gTqdy7l62MQlVxHQZIqRLq9luy9PW5b19M8i9TE4QYj+d6hD+zSy8JgJKEHKKTmjcfR9hjb2pGuqspnUOAoOrAExqPu60MFXnKsgWDLkjaxkt/IHoIQlJpdOCwsECErC2moCIZoHw5qBTxplpZzE3F1lchHeQeSB5P6/SyT1uoB0HMxtWbhQVDxElGdEmlykamX2NdqE8oQPQig5DAAPWzJXcB7ilGFdBZgoZcJLnFlOTupBIRDh/JkkWYupnLTNl+Ty1DxkwEZRD8+phDisEhVGT85SWQgreFZREd6+QX/L9UF1b8AeWvVUSK+sZWcfLCQF48PXAnoGDc8skRey/gAFOptbECqOUrt5py2l2siThYjg8EiVxpy+3IuXWpXpCFOaXu6Uq0gXA0Zlzs/9rSWfQu8BKBel04zhksXOBHpCTFzJCyS+pQfG+P8hmmiakHB9zL2hVFIMRYn7TrdEuwj5cRkWnTls7yAZQLX717h3gMu421s0KT3DtXyESBFxRDId4lXUl9+FwCUOw+Alv9cp1I4qZBb2BEWFgDniachNtT2LfXhSDuzGL3m5k0qH3Y6ORbn67SEJ0pT3smVh+b1N+mQvZ1CMEd2JL+4wJDovhKXEL/iDqIQo4ZQMkBz2dePj2tWOxw/hvDEY3p94sprQmtxnjyDifFcSvYBYfkInetgwKIskfpFOFYvqgts2Jv1dTSrawpGEwOVgTlZ6k1CC31+0lsibcetHTI1jXpH/kOn9d4iJfJKjcKzhnMCMZff60HZ3GW+P25s6PO1YZsLAeH4Me6H2dAW+Lnf/TopbHPi03W68I+eVsNHBpoMnn/qHBCjVmukYQqFoYpZ0jCEItQCwNyOezcIwD4LH0RLst3vIAzKmvBznlSKR0mPt1xBPzVFce52r2AztgrRxWi5/ILVD8tHMn59hHsrhsV1u/Dzc4i31/I52cSSvN/0T7hOl3AQxlWVXTYszqO5eYubtfxQyS7MzgJjY8qqNJRIMwrXWqWRkl4/NwPt2kcgt8X0o6BphgRvxGVth31haZG8GXGRW30j9r7csxfBvt8HTQiPGn58nO5X6xnrc+SqEumI5jZ123cysi25AE15CEtSLoUOC8z4yUnyOmxDExvzuL1N7fp1nXsY7FyR/ANDn4fC5NZ3qhiPvCZhSUwPlxgMALWSaKjUIxPOVRVcp6JMdsUUaOKiiyW3RBRc16U/MFXa8qGcPPREpZ0GtSZrXKeLsHxEATKeseji/gFA2tpGeuEZ3cWqUyfyAzMkmmlnhyoEE+NKr9WO/wBoQlLOn0RlXHY7mRCkub2mCbTCIDz/NHVLrq+T5yGCJfUAQjsfjhzWXVaIWnMIVnajKhxXGKzkXAUu2x9k8E4LfkvxrIHsSrmt01WpNr1W7uFQt1g8HTEmQEb3jSAQKc5Z50c3SwIoEU7UsEe9S+eyYU9JiXJsp6Tkh6h3g0Rw9Pu5KxUA9aMIvFnLxK2qAIdmhKLM6MswP094GNY6bdbXMyKWz1/PWXAGHCIpc7fcJ2NcXVUVBkEAeCmmh1AMRiYAu7FxYyO7kSEgbm6rCy1NT356SheCTTa6qkOVBpjJGlnNaWuL4uKZGXVlRbMBvOOpHiIfT7PygwH8i68grDxCpb0LFzPIxCwUGVotkZp7VekikGNrWMRxccGlIBORwSxpZ0fjcjc2Bv/NtzLqM9EErY4u53Pa3gb6g+xW9wcZU8+4fttKTrviRAmJtd4Q4/iV/NXE1aN2d6lMFPyVpsnIqhupyrXFEchubHM5JoyU+yQ8DAXxr3w/A94kHCgYsmXB2bBVwpaJCeIFlc8Jh4KFiUuS21QTLNmKqzraZh43NpijkgSDmrU1JcYN0u7O95Q8L89GhJCj0tSUdnYQjhzKHhnPT9ftllQC7CFoT08odTvvNfaFUYBzWk2wGHpZ3EIkEdlQxF4vTyrDJyDHUQ1Cpn5vXnkdgrqL29uAoNgYvozYID56gpJ83pTIONkEUEnNBU+M0ExTZl19OZ5abAY1SdysZUc+tiYMJXFlZMe9SSRJl2RYWsw8iTs7WRdgYYGQcocPo7lxk4xPoCqIaDq6qoI/fVyPFxYWENfuFJWacGwZbmaaJrtoXiwsUHVG4tOxMYKFg2jmbZginoHkKjRpya+LUZb7M6rprWB8BhQLoqAu9uzImHHS0CTSfLdTGCGReKuOLuc5JkZAemtSKvgSAGhDWvN9pGMkIK42qlQNuzEURTKcX6+OLmdq/FZoVl+6rPc23wfa/OpPfhd9xLCYa3eshHqcRLe9NOKJiQG9Z0jWGvvCKKSYMe1WQ7BZu6OsMlryEzd1UGtCh/4gWeFyosmuH+ZmtaEncigSez294eHaGpF6Srwri1Ji49lZxQ0orhzIEFSw4TCutMaz2mPA7nkIiO9cJjEaUbCu68wBmQw8md1HyYn4p84RtfrODsLxY4i8o8XVVer+3NkhcBA38OguceOWupvN6qqGKgAtnnjtBgGwRMQFQDx7LDMrcygWDhGjVLxhy6Ae8IxbkJKtvCQLr9spSXJ3TPeeVAIAFBT1ZrGluqbYnjETGm7ydxTCwvzcxEBQZ2lOHOp9Fbgz5yVSQ5gCIWcJX/xq9oa4jJvMhlIdXdY8hL1WPYV+H9WxR1BfuYrm4uWcPGfvIjx6Rt9f/wWij3djY/Dcgt35yusQCToZ3jYAxiZjK/SG536bwjMakSfabewLo+A6XLqy7MKtRUkupekbYFdOehgAKOwWQBFPhsOHkQY1qpMrQ7uTdKjVFy9BOwL1xMzPIZcGiwVsiF+BlutfXGNmCBa3OkrYwTut9FeEI4fhxFXmeyCIOzcgsBRSQv32O5RV58Ygwsqz4bt6nRiN2BMSXgQ5V2F70spEj7oJPbd8A0D6CmH/bczd3LhBBvLuXc0LhKVFdbVFBDfMz1FIMk3wXO0fkXtpuAI8w7jle8LS4u67m5Qt+WeA4nt0TAl2xGf0GRhPRHMiEoYG7rI0m4LOBwnRVo5BiF7rq9cgjWHaiSsGzgf4mWk6HntrQoQrBq85/5bmucIXvqr3MV64ROcs4RdvEn58PGNSEtO2S8eqhDjWKLU6efc69qIQdc459zXzb90594v3VUuSd+ehvvqhNw5zBALkXfjJSdRvX+R6Otf/Y6Q6NetGNJfezTGodFcC8I9R/4Ofmiph1ON5Z2tWVzVuB7L7JuFOkX9gl1QnqHPkkgtYx8bjEufLIogsTyfNOflBEJryjbdp4QjTdSIBFDc2hnTluuIaYq8HHF4gaDG7kkrWwc039npJKWoaaTuzGus95mOK4ZPF7VaOZhKX2VnNjSBFxI1N+KkJpIbEXvVYvIOrEWXjKL9Xx1eIA9MOntiyCJSBS5Jw3KQ2auhcALv0I4RRVGqtaVCdOF5ct94/ee/msGIYkL1CF6jpync7ZKSdg5+iZqvqkWWtdEiYRfoN07rgpcktLMxpyFmtHKMQoY3o7e2UqlWmkpRDYJ+fzR7HXijeX0spPZtSehbAx0AMzf8J91lLUmJ4u5PrRLSJSKEW411OMANxawthYS6Lohh0GyXIKEETHj2ji9ePjxFG4OYaqtMnsxwdD8uRIOdSX7mqVYswN5vDHR+QUoKfInFXd/JYTn5xptsvH87XyQrD6noyKMj26Eu5W6KTAAAZmElEQVTGeChB6QOab72hQqR+YoIMTn9QCMc0L38rexnPPFGUD8UlVy9lcxNp5UhRwgsL7KpyB2e76tCcf4tyNjdvAgzblnJkOHwIzdodlbYDAD8xger4CgN+fK79p6Qxfn3pslLrybyQ3AH1dnRo4bbLu+xpxq2t0ht8/GyZrAQKoRY/M1PoiTZXrkKFYJ57HBZfAiCrLkn4yLkg5cAQNqipSTRvvkOHffQk/LNPor78rhqgZnW1aFdXBWsWEW5u3SaI++ws6nevUGMa50ZkvpEKecyoSXM/FHeRooZdex3vC6fgnPssgH+QUvqkc+41AN+XUrrCYjBfTCmdc879Ov/82/wZfd9ux511i+l7wmezFXeeatBbW9Rz0Knguh0CZpj3ABgNI/YB4exJNOff0nqy61TA2ZOI33hVcQppQH3sbn4WaW09Vx0iqTo3L39Lz9HPzJR8h8BwqNOq1/u5WUTmJ7Dvr1aOobl2I/MH8vUIp5+FGtOXU3mpWV2lazSL342NUfVmYoI6TIMn2TxTT9d+iJBx+eHQIvXhA/l+WPRmighzsxSzskivdmr2+8xl0S/vgfmOkaP1ertZyb6veK6WL5OfRdzYwCh4snJA7tJcN5SJb8G2C9wEV7/0mVgocuu4Ba6AjxPmZjPVfmvOuKoDP0sEOUjUa6HkQdxYh8U5SpLznCEFNAOLlr4fw9FYrRxDc/0mNVUxUlfwDd8pmPNPAvht/vnb0pJsD7VsVuST3eq4va0Mwy6QbmKYnVYadc81+NTEnEx7423KJdQ13Dgh++I3X6N4ryHFHD8xTnwJUxO6kN3EBJx3ahC0dfnuXfjFeaXaSi88XcBN5Tz85GTGP3ApSeXBP/5dcN0uEYe0XVlWKtasfTspxh6TNn49/ZgCiXDuDJq1NaTNLSUDAaAUcdXZ0zSJnuD27kEf9bUb2WM6dbzYafw4ayPyAksNNYkFrnSkutZkmCyI6vgK0gsf0coFkNuc9T6GgN5nnlECmrufelxfK7AAptwnXanFNfUJrSnoxpGusSzM2Vnl5ZTQSZN3MYsW5+eQMRbiYfqxMVNJ8XoedoTDh9UQuE6XKiXHlhXzsPbXny/jfa6SpZ0duJlpym3J9/b7cJMTwI3b7B141JcuZ49risOS6anci8OjfvcKrCRfGvQJPfs+xp49BedcF8C7AJ5KKV1zzq2llObN66sppQXn3O8B+OWU0v/gv38ewN9t6z84534OFF5gHJMf+17/o6XlN6Uj7XMQS71Lo9TQOdtdUnZhgNzb5SNAf5DJRWQYS6/ts/aY4qqlFqO0EYKR8lVB1srfa88NwPC1OII9v6dKsOxsIF6C+q0LI9GARBizDRf86HyN3U19FsSx2AUA6h0VorZmd/QzMwRrZpCOlmpbzM3tHV+vxe6ybeZl/pve3/ZzF2xJu4nM7thLi5Sgcxnh2d7tR90/qz4u+o9W4t22aaf+QL0wvzhfsDe7ilmXZS7JvTYIUvl+PQ/j1RTel3iABoU50jsaMY++E57CDwP4akpJ+lW/LS3JQmAWY3mH5KEeweGlnFQCMk+gHZxEC8tHtInIvkbNKJmjsVo5BjQNmrW1IhnIX8A6k6mwwpJXILosn/MCAMW729s5AdSYpKmUwizIxTRyKW8jx7eu6iBubuWY2lyf5iO6Xd0l67ffoZhWwhrGBMATG5OXHgXBR1jtCYtyizkJqs9IKg9S767rkQKvcZPayVVoFbzI2qS6m5sjnk3K5yw9BMWHyEhRn8KIjYDPS4R1Bc1p51IjTFM8x1JdDzNgyymZ+64J1S7nXASFKs/ZtGlLKTUN+trinsustc4Pm2DWBqdOfp6W7l0bxk4cyySykltijI54Fta46BhkceX3M96PUfgp5NABuJ9akkCRHBIXNW5vk8UVN1Ky2/J+e7FNg+badYgAqiZ/wOGFqESDXKzm0RzRhIUFMhZnTwMA4u214uZ6xqZLF6Q8wLbSswuBO9byblUYHfZ4hKkYAOL2tu7O8e5dDSsUrSgTUERIuAtSav+F98HhlQjuAtAmKPKyOmhu3dZs9K4Kzu2/2cVoSsWasBtRA98tr6CGqOVBuU5VGH91z3fLmpu/q7HiUXhZcuzWNQlyUF12FZhpeXbeiORyjkb+lzlYHV/JTFeQ+ZsJVP3UVC5HG0XxxJB+SQYO5Ss4xKnffFuBWGLw5XUnc8AcE6A5r1FA3OU57zL2ZBScc1MAPgPgP5o//zKAzzjnXgfwA/w7APwXkN7keQD/AsDf2st3CGBEQDLwAYGJRABk19Fm4U2cZ+MmcdP8zAzC448iCtxXsfUd4H9/HYFpuJrVXNIM3FBi++613MUeQtF+DNBEco661G6v0o7MlGqxl7UrhJVYXT11BQ2ZaIcVqXwod27pwuNSZ+ztZG6GblcNqeA5Uk29HU7KeVNTuSohTD5iWOQ5V2ZhOrN4DbjI0ppFo55sd8Fi2EVt711KBWZAKfP5viiKb5R34FypxcEhhBq69vfahC6Q+wsk8dptYRd4AakIsLkPZas8G/bVtUyEK8dIGTxFr6Xha05Ju3gBFIZNwle9b5tbqI6vsDeQ9SOGlL55iOem3uP7AC/tny5J9+n3fpPNENvfW9RYAPLPNg9hLLBmvd17KDUZazxUZbDva1UfiqrILh2Heo4jlIt27RS0mXNzD5RQhcEsaXu73G1sDDqivm6RgDaeFU+gTTIiZB7eGqH2dbWy+MU9Ne5xocjFOYOCSKR9C0w+pziuvVY+9sh7Our19nNsH9PG//aYu+S29Lt8FozVCpjkdlrzQkiDlJyHRzj3KJrXzhfnWR1focqVeJLcFzPkZdj5y+vmoSJZAVDuTDIYCaYTW8Q4JLayyDPvmH48d46RIMuwRkOzdkfxDbY8BkBdwzA7rS43f8Hw+Q1dg7mdsgBabpvkD+S7iusEhheuWHq0vCNwW/Ldu+oGYzDIySuJ02VxW0OTEmk/Tk+X+hOGFBagmLro70gE1UZKioC010fviWrAhq7TGAQ5vgwVVpFr9ObzkoMRnoMRI8zPZREWPSHe3S3Ds4QA5v6U59jqhYiZZVv+Hg4fzuxVrfmg7M+R2+jN+ViqfBn6bGIzJDCULlwqdSB9QH3pMprnn+LbmfQzYhBUQ5VFh6Wr+P2M/WMUZHEbOLEMCw+2yk36elVp3O+qSjsApRMNoPptmJ3VOLCx9NrOobmzzkQptNtL/VzYmnSimvO05+tM2SocFv6+tmdDE1RVivncNcknQxYzMzyHmZksDeYcuZEA4t0NvTeyC/mZmVze5XOOvV5ma+ZJHO/epdKWqTRUK0YfwzkVxwFoAvqpqeySAlnijGHN+hxt8s8PG4dCmk+SqKOG9br42vMzMjs7ADc+jrjdIx0QCZkmJ7NRN+GDxSkMJaY908CbnIFoKSidPnNXaONRa0j7OqSzVyoyHGJZ9KYia83GINfqF+aHAGcA4P/7S3Cf+AjNm2i8Jud0zgtqtZ2b2svYP0ZBIMdzs9TPsLAAP8418YnxcmH6EoCS6ppQYZz1b27dzruYo3JSfekymg2TQeaJG7/32bxLaNPLoLXTDms1Kg16LLvQ/NRk1lWwBkFi+MlJOjeTG2k/NOUbZNagZmNTqdiREtWsOevs5+cQpqeyIK8JH6zXVL9zOedk+Nost2Ma9FG/W+aDo1C9sdfjJsrFHM49Cj81Ad/t5N4KSbaJYRdvThZvl3o8wuysVnlEKamYCwJhNvfchUAlZFvN4ftYX72Wk8Bm11fqdefLxKhUImSXbg1Vjpb38HzR94pBC6VBkXNywSP1B+TJxUzemluoHTNZs4R9zFL0pN4tHmqu/BTn9+U/zZUkCfdMDkLvn8ut6Hsd+yan8HznB0fjD3xAmJ2mXUBip11izt1ieMdAF6EJB4Dq9EnUFy5STN0faI3e1uLluzTWc5mtp/yCnJtQlFlvp30aZaztmFlq0EpaAkWsPSrUGMqrGPyGErOmjASk3TDvdJLL0EYqTc6VKFE/PT2EHJTYVRqZNGvefna75EzsPRuK5c11KrOR7LCGdGcojzHquO3nY5GMNg/Vei6CEB2J6xiVP2rnT+zbDc/HyOOYe6QaHLvdI8OgJehSAHAfewr4xnnCh1hSWnM/Bcfw0OUUhqyZeWDN+kZJQGLj6kNLZFkt6gzQUpOfmqLJa0IJgOv7ibv6pHbdpYSPTB7ZGbQOnJLSowPI+Q0AmXotIvZ2EBbni11A8wt2F9vZYVe/5KhstwDbB+27nezaMkOwnKsYhDA3S4bFMAsVICJmOlKFJPkOOVeejFGqFPa+Gk5EweurGhGfIwAtl7a7Uovrst5X6zrbHpg+f95lFYkoHoiEAXax26+zFaOWQbAtz4XK9W7D5Lj0+1kZjC4+90PY/hKAY365TuNFNZZCzXwH/cwQeO4/EYMQ5ueQvvJN+Pm5oaqLlMnhXNaq3OPYH0bBYTixpPH5YQhFWiEPLgCdm7foJjUNhxzjaoEFnivcAWGW+PL9+LjGprZV2mLcC3feJGv82JhyDrrJibyDyuJkXkX0B+TO2fi3uGZ+eFVF5LDiPQgByajyXkqAJyUrMY5p0NcFIoahEQIVA+NVbcsUlYWpYAluf4+ct52kPpDBW1rk+HWNr90Pxda7dbxq/sUHJtLdxZNoI1tb5ze0q7IB9lNTCNMG4+AN54Z9rrHJ3JUx4w6UJVpPmI8xNkbPyYfcNq9JWOmAzfkMUYTWhivJIS1m6Ld+hf3O2DB1XicDrLgz1IYqtAnSZ0bR/0koVzHEOzUjPOtdxv4wCvYZSAZbXpImpd5OWZONpceQYgKOLFHvAt+86uSKfhaRkpRxcwupodZepJRl6nj4qcnhHcecj6olxYZicokhJdPMf282NhVboVWTIkamWx97vSwlBlrYkSGz+aSywYzb2xQSmMy25huQd0TJlAu3ZTTtyMrgLByDAmKyRllyIF1TfeF73qyS1yVt5NJbQgcrF7mt/AidnnA5qJiLfLc1oHrv7xHemtwMHLeXC8bBeFL0e2mcrfcgYZQm5uT9AOUpInU2IjbKeyHdq5onEG+HF7GwXykaEkDzzqXh/JR51oIEVSq7lEYu7DSo0dy9q9WGuLWVPTdTkRtJMHOPsS+MgmbjU269VdCSAEEMH2HhMgJaS25eO0+8B4wmEwhw7PVyi7IneLKfGIefmcHgu06hMjx5cXMrLwRBIHa75SSoa4RDSwU7EO3cUSe28071JxTmal1mm/swICwAKn0n11bgL/jepJ0dquvLbs+ZbgtjBqDJ2iIEYKNmW5fD7HSxo6r30UTlJFCC1NggzM9plyUd1GnOBUDZwy+kLSYRCcDwPcZy8co9kcqEKfVqk5VZWEJqopUPWTyxKZCFQyGLJLdN67TmkWSuJQII+amcxNPWc+l7se3vYFkAoKjeVMce4UttAZicH4ba87mLNxs3c0+Nfoxb70UIWaDY4ckPD1VT3k/lAdgnRqFowpGY1daWwQrLMRUXrHE8W/rq7OkspyUlnpQQHj2D2B8gnDxO1nt7G4lj5vAnf6qVCoEIF41MkRa7805JY1NdM9f+IJ+LabZCSvCnT+jCpQvzQ4mqdn+DLDzRhJSkpbrAJqEo5xeOHKJrbhrqmlvfUEq18MRjmdPBVEAUace0ZvABcWMz9wTAyOUx0YwAbIQEN/V21JhSSzvv2Cyl7rjc2c71yPCTk0jcQFYdX9GdVvIdOppGjbQbG9P28eI+drs5L8PudvEazAYiBsYYW9uoZBGL2ag58ix5PmqeYIxVpNVbofBBmuyaG7dy2CWVHIN70EevYQJtfpKralZXAedzstcYxzSoC6Iaue/Nq28Micm6EIa6Ot9r7AujAKCIxYqssAyZXJycsckhnURNo00gQvHmqgq4fguuU6F++yIZiUOHcivu0iKVhiRnsMiNnyllvUbDDKTaB8kAYQB6eIJWA4hgQ0pUgHpC2rORWoSasktJpxwzRImrbcuM1ZFDiJ98BuHwYSLu2N6Gn5tF8+GTEBbjMD+P5pXXuexndAHMrqYTRURiARTy8SA8Q+z1aLJ2OwQn5/JZfeVqsegtX2bq94suyTA7i2rlmLJZWZbl+uIlXdCCEZDjyD0HUBgz9ZC63VymlIVjk7n9fgHxtsIyoxKSMoq2eDEERas70/mv3aF438wJMcLh7Em4bhfVyiMjk5eU25ojwhWTa/Bzs5ofESwJMXzFAtNRsH0xLsZ1KvIeqoo4GXjujNQ42e3a90tJcgjmzMlCPzHBOxTFaq6qNKQY9V5r9TWxZNqv222oVrF313JXuxRlS2n8XdrrPjuNuL7Bu0aLBERi1FZLq6orLyyUrdyS5dZdOocRfmpyqL26OnuaJNxGlbjMzqhqUlJeNddiW3LtOds435LBhOmp4aTfLmNIhOe9INFyLhYDwgQz7Xsq5WAr2KMGqZ3kbVc8zHlQaBSH27DNMfzMDJHRyHv4s20YuQsht0tzeCvMy6Ou2YVAhp3JcwHxoA3MfhSpjLRvW51S/rw/exLN62/ptf3R5r96uEqSCv+1MblQXRm4rbi8BYMuew+xt1PkDvgHVEKDxq6bEGIgpQwtda7YjQuEmYUvq3fSMQuGutXSoM9S91HdVr0es/vFzUz75mdmtNZP7qJDeyFagA3tSEZ+zbxfPCEAQwtVAFgyqWkXzQpWEnbZRRiWFnMHqLT5egfPEHE/NakegTZM2cqJ2YmFLEUp7jpdJclRFGvL0Np+BWoC6+USonke0tAk7roS0/JzstRuAKgqZBe8CSNEZdt1uzkUNUYl3r1LnoEcU0rN0hTnAzFeB2qnV3m4bhfOfFdhZJl/I/XIiIXjj1B/ycR4FqaREmhrSCgj/wtsOjUNmtfOwz3zuF7bXse+MQrSHy7QXhX6MBZZSllAq+Qlr5nMsM0s11euahed8444BVtJJxu25DbXWo/bLhEqw7Gcz+ZmFredm80lJInjLQ4j5k5JihfL7sEiLGntDG33XieLTDjnMuSY743Uqv3EBFIvl7asAbDVCUHGNbdXM4irzjFsc+MGHVM6NaX0C2jlRI213J+trTImrgdafZCs/9BCld1RPi/XYmNyn/UkqkeWqVHLQH9TbSo5XI1Q2QATgur3mvssCT75HskhyL3TzwuWhX9ubtxQgRbt6bDEq3rTG52romUigr2u6mjpWDYA5VwQY6tVG5/b7/s5z+bHx4GXz2P7x78b72fsG6MAgBb15qbu/EXtO8WMJJTdVyS0kmEMFj5GINeeuRPQdbvwp09k9WaJQ3nI55Rcxedeet21zO5HmIIcezbXrgMxIXKJ0dat5bwtrVgGrww/BoXZClRbYkfz3UXyzHmmdGdyFc2oM3pxblYFdIQW3k54hXIzFoE+a2regBoGW4oTwlk5J1nM2cjRTuonJ4dzKEZuTz8vr/F3tIlghsprirTsUH6lXWmpOopdEdSq7qqCZ7DlTwUzEUel/Z60s1MIs2gysh3+AGTsfU5qpkG/TPY5V1S9ACjVveSW9LNcMlbvT3Ibsck9EZr/iAWRC5oGE7/zZapK7HHsi5yCc+4ugNce9Hl8h8chADcf9El8B8cH/fqAh/8aT6WUDt/rTXvHPn5nx2t7SYA8zMM59+IH+Ro/6NcH/Pm4RmC/hQ8H42AcjAc+DozCwTgYB6MY+8Uo/PMHfQL/H8YH/Ro/6NcH/Pm4xv2RaDwYB+Ng7J+xXzyFg3EwDsY+GQ/cKDjnfsg59xqrVP+9e39i/w3n3Ann3Beccy87577pnPsF/vt9U+beL8M5F5xzL7ESGJxzZ5xzX+Jr+besJAbn3Bj/fp5fP/0gz3svwzk375z7nHPuVefcK865Fz6Iz/Be44EaBedcAPDPQOpTTwL4Kefckw/ynP6Mowbwt1NKTwJ4HsDP83XcX2Xu/TF+AcAr5vd/BOBXUkqPAlgF8LP8958FsMp//xV+334fvwrgD1JKjwN4BnSdH8Rn+N4jpfTA/gF4AcAfmt9/CcAvPchzuk/X9Tsg8ZzXADzCf3sEhMcAgF8H8FPm/fq+/fwPJAH4eQDfD+D3ADgQmKdqP08AfwjgBf654ve5B30N73FtcwDeap/jB+0Z7uXfgw4f/kwK1ft5sJv8HIAv4T4rc++D8U8A/B0A0kO8BGAtpSQNGfY69Br59Tv8/v06zgC4AeC3ODz6DVZG+6A9w3uOB20UPlDDOTcN4D8A+MWUUtGmmGg7eWhLPc65vwzgekrpKw/6XL5DowLwUQC/llJ6DsAmcqgA4OF/hnsdD9oo7Emh+mEYzrkOyCD865SSaG5+W8rc+2x8EsCPOefeBvBvQCHErwKYd84JXN5eh14jvz4H4Bb277gE4FJK6Uv8++dARuKD9Az3NB60UfgygMc4g90F8JMg1eqHajhScf1NAK+klP6xeem+KnM/yJFS+qWU0vGU0mnQc/rjlNJfA/AFAD/Bb2tfo1z7T/D79+0um1K6CuCic+4c/+nTAF7GB+gZ7nk86KQGgB8B8C0AbwD4+w/6fP6M1/C9ILfy6wC+xv9+BBRDfx7A6wD+G4BFfr8DVV3eAPCnAD7+oK/hfV7v9wH4Pf75LID/A1IZ//cAxvjv4/z7eX797IM+7z1c17MAXuTn+J8BLHxQn+F7/TtANB6Mg3EwivGgw4eDcTAOxj4bB0bhYByMg1GMA6NwMA7GwSjGgVE4GAfjYBTjwCgcjINxMIpxYBQOxsE4GMU4MAoH42AcjGIcGIWDcTAORjH+H7u0LyyqGrvxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "head_size = config.hidden_size // config.num_attention_heads\n", + "layer = 1\n", + "head = 1 # 2, 3, 10\n", + "wq = model.bert.encoder.layer[layer].attention.self.query.weight.data.view(-1, config.num_attention_heads, head_size).permute(1, 0, 2)\n", + "wk = model.bert.encoder.layer[layer].attention.self.key.weight.data.view(-1, config.num_attention_heads, head_size).permute(1, 0, 2)\n", + "\n", + "wqk = torch.bmm(wq, wk.transpose(-1, -2))\n", + "# (wqk * wqk.transpose(-1, -2)).sum((1, 2)) / (wqk * wqk).sum((1, 2))\n", + "plt.imshow(wqk[head]*wqk[head])\n", + "plt.show()\n", + "\n", + "# q = torch.matmul(pos_emb, wq)\n", + "# k = torch.matmul(pos_emb_prev, wk)\n", + "# (q * k).sum((-2, -1))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "pos_emb = model.bert.embeddings.position_embeddings.weight.data\n", + "pos_emb_prev = torch.zeros_like(pos_emb)\n", + "pos_emb_next = torch.zeros_like(pos_emb)\n", + "pos_emb_prev[1:] = pos_emb[:-1]\n", + "pos_emb_next[:-1] = pos_emb[1:]\n", + "pos_emb, pos_emb_prev, pos_emb_next = pos_emb[1:-1], pos_emb_prev[1:-1], pos_emb_next[1:-1]\n", + "\n", + "# pos_q = torch.matmul(pos_emb, wk[head])\n", + "# plt.imshow(pos_q[:32])\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{\n", + " \"attention_probs_dropout_prob\": 0.1,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.1,\n", + " \"hidden_size\": 768,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"max_position_embeddings\": 512,\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 12,\n", + " \"type_vocab_size\": 2,\n", + " \"vocab_size\": 30522\n", + "}" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "config" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.',\n", + " 'Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.']" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "text = [\n", + " # same / different\n", + " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have the same hair color.\",\n", + " \"Tom has black hair. Mary has black hair. John has yellow hair. _ and Mary have different hair colors.\",\n", + " \"Tom has yellow hair. Mary has black hair. John has black hair. Mary and _ have the same hair color.\",\n", + " # because / although\n", + " \"John is taller/shorter than Mary because/although _ is older/younger.\",\n", + " \"The red ball is heavier/lighter than the blue ball because/although the _ ball is bigger/smaller.\",\n", + " \"Charles did a lot better/worse than his good friend Nancy on the test because/although _ had/hadn't studied so hard.\",\n", + " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n", + " \"John thought that he would arrive earlier than Susan, but/and indeed _ was the first to arrive.\",\n", + " # reverse\n", + " \"John came then Mary came. They left in reverse order. _ left then _ left.\",\n", + " \"John came after Mary. They left in reverse order. _ left after _ .\",\n", + " \"John came first, then came Mary. They left in reverse order: _ left first, then left _ .\",\n", + " # compare sentences with same / opposite meaning, 2nd order\n", + " \"Though John is tall, Tom is taller than John. So John is _ than Tom.\",\n", + " \"Tom is taller than John. So _ is shorter than _.\",\n", + " # WSC-style: before /after\n", + " # \"Mary came before/after John. _ was late/early .\",\n", + " # yes / no, 2nd order\n", + " \"Was Tom taller than Susan? Yes, _ was taller.\",\n", + " # right / wrong, epistemic modality, 2nd order\n", + " \"John said/thought that the red ball was heavier than the blue ball. He was wrong. The _ ball was heavier\",\n", + " \"John was wrong in saying/thinking that the red ball was heavier than the blue ball. The _ ball was heavier\",\n", + " \"John said the rain was about to stop. Mary said the rain would continue. Later the rain stopped. _ was wrong/right.\",\n", + " \n", + " \"The trophy doesn't fit into the brown suitcase because/although the _ is too small/large.\",\n", + " \"John thanked Mary because _ had given help to _ . \",\n", + " \"John felt vindicated/crushed when his longtime rival Mary revealed that _ was the winner of the competition.\",\n", + " \"John couldn't see the stage with Mary in front of him because _ is so short/tall.\",\n", + " \"Although they ran at about the same speed, John beat Sally because _ had such a bad start.\",\n", + " \"The fish ate the worm. The _ was hungry/tasty.\",\n", + " \n", + " \"John beat Mary. _ won the game/e winner.\",\n", + "]\n", + "text" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "with open('WSC_switched_label.json') as f:\n", + " examples = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "with open('WSC_child_problem.json') as f:\n", + " cexamples = json.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "for ce in cexamples:\n", + " for s in ce['sentences']:\n", + " for a in s['answer0'] + s['answer1']:\n", + " a = a.lower()\n", + " if a not in tokenizer.vocab:\n", + " ce\n", + " print(a, 'not in vocab!!!')" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "for ce in cexamples:\n", + " if len(ce['sentences']) > 0:\n", + " e = examples[ce['index']]\n", + " assert ce['index'] == e['index']\n", + " e['score'] = all([s['score'] for s in ce['sentences']])\n", + " assert len(set([s['adjacent_ref'] for s in ce['sentences']])) == 1, 'adjcent_refs are different!'\n", + " e['adjacent_ref'] = ce['sentences'][0]['adjacent_ref']" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import defaultdict\n", + "\n", + "groups = defaultdict(list)\n", + "for e in examples:\n", + " if 'score' in e:\n", + " index = e['index']\n", + " if index < 252:\n", + " if index % 2 == 1:\n", + " index -= 1\n", + " elif index in [252, 253, 254]:\n", + " index = 252\n", + " else:\n", + " if index % 2 == 0:\n", + " index -= 1\n", + " groups[index].append(e)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(\"The trophy doesn't fit into the brown suitcase because [it] is too large.\",\n", + " 'fit into:large/small'),\n", + " ('Joan made sure to thank Susan for all the help [she] had recieved.',\n", + " 'thank:receive/give'),\n", + " ('The delivery truck zoomed by the school bus because [it] was going so fast.',\n", + " 'zoom by:fast/slow'),\n", + " ('Frank felt vindicated when his longtime rival Bill revealed that [he] was the winner of the competition.',\n", + " 'vindicated/crushed:be the winner'),\n", + " ('The large ball crashed right through the table because [it] was made of steel.',\n", + " 'crash through:[hard]/[soft]'),\n", + " (\"John couldn't see the stage with Billy in front of him because [he] is so short.\",\n", + " '[block]:short/tall'),\n", + " ('Tom threw his schoolbag down to Ray after [he] reached the top of the stairs.',\n", + " 'down to:top/bottom'),\n", + " ('Although they ran at about the same speed, Sue beat Sally because [she] had such a good start.',\n", + " 'beat:good/bad'),\n", + " (\"Sam's drawing was hung just above Tina's and [it] did look much better with another one below it.\",\n", + " 'above/below'),\n", + " ('Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.',\n", + " 'better/worse:study hard'),\n", + " ('The firemen arrived after the police because [they] were coming from so far away.',\n", + " 'after/before:far away'),\n", + " (\"Frank was upset with Tom because the toaster [he] had bought from him didn't work.\",\n", + " 'be upset with:buy from not work/sell not work'),\n", + " ('The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.',\n", + " 'above/below:moved first'),\n", + " ('Pete envies Martin although [he] is very successful.', 'although/because'),\n", + " ('I poured water from the bottle into the cup until [it] was empty.',\n", + " 'pour:empty/full'),\n", + " (\"Sid explained his theory to Mark but [he] couldn't convince him.\",\n", + " 'explain:convince/understand'),\n", + " (\"Susan knew that Ann's son had been in a car accident, so [she] told her about it.\",\n", + " '?know tell:so/because'),\n", + " (\"Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.\",\n", + " 'beat:younger/older'),\n", + " ('In the middle of the outdoor concert, the rain started falling, but [it] continued until 10.',\n", + " 'but/and'),\n", + " ('Ann asked Mary what time the library closes, because [she] had forgotten.',\n", + " 'because/but'),\n", + " ('If the con artist has succeeded in fooling Sam, [he] would have gotten a lot of money.',\n", + " 'fool:get/lose'),\n", + " ('Alice tried frantically to stop her daughter from chatting at the party, leaving us to wonder why [she] was behaving so strangely.',\n", + " '?stop normal/stop abnormal:strange'),\n", + " (\"I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] in.\",\n", + " 'put ... into filled with ... :get in/get out'),\n", + " ('The dog chased the cat, which ran up a tree. [It] waited at the bottom.',\n", + " 'up:at the bottom/at the top'),\n", + " ('John was doing research in the library when he heard a man humming and whistling. [He] was very annoyed.',\n", + " 'hear ... humming and whistling:annoyed/annoying'),\n", + " ('John was jogging through the park when he saw a man juggling watermelons. [He] was very impressed.',\n", + " 'see ... juggling watermelons:impressed/impressive'),\n", + " ('Jane knocked on the door, and Susan answered it. [She] invited her to come out.',\n", + " 'visit:invite come out/invite come in'),\n", + " ('Jackson was greatly influenced by Arnold, though [he] lived two centuries later.',\n", + " 'influence:later/earlier'),\n", + " ('The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was too hard to pronounce.',\n", + " 'change:hard/easy'),\n", + " ('Fred is the only man still alive who remembers my great-grandfather. [He] is a remarkable man.',\n", + " 'alive:is/was'),\n", + " (\"In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were defeated within weeks.\",\n", + " 'better equipped and large:defeated/victorious'),\n", + " ('When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the minority.',\n", + " 'be full of:minority/majority'),\n", + " ('Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make more of [them] .',\n", + " 'like over:more/fewer'),\n", + " ('We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply not enough of [them] .',\n", + " 'place on all:not enough/too many'),\n", + " (\"Steve follows Fred's example in everything. [He] admires him hugely.\",\n", + " 'follow:admire/influence'),\n", + " (\"The table won't fit through the doorway because [it] is too wide.\",\n", + " 'fit through:wide/narrow'),\n", + " ('Grace was happy to trade me her sweater for my jacket. She thinks [it] looks dowdy on her.',\n", + " 'trade:dowdy/great'),\n", + " ('John hired Bill to take care of [him] .',\n", + " 'hire/hire oneself to:take care of'),\n", + " ('John promised Bill to leave, so an hour later [he] left.', 'promise/order'),\n", + " (\"Jane knocked on Susan's door but [she] did not get an answer.\",\n", + " 'knock:get an answer/answer'),\n", + " ('Joe paid the detective after [he] received the final report on the case.',\n", + " 'pay:receive/deliver'),\n", + " ('Bill passed the half-empty plate to John because [he] was full.',\n", + " 'pass the plate:full/hungry'),\n", + " ('George got free tickets to the play, but he gave them to Eric, even though [he] was particularly eager to see it.',\n", + " 'even though/because/not'),\n", + " (\"Jane gave Joan candy because [she] wasn't hungry.\",\n", + " 'give:not hungry/hungry'),\n", + " ('James asked Robert for a favor but [he] was refused.',\n", + " 'ask for a favor:refuse/be refused`'),\n", + " ('Kirilov ceded the presidency to Shatov because [he] was less popular.',\n", + " 'cede:less popular/more popular'),\n", + " ('Emma did not pass the ball to Janie although [she] saw that she was open.',\n", + " 'not pass although:see open/open')]" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def filter_dict(d, keys=['index', 'sentence', 'correct_answer', 'relational_word', 'is_associative', 'score']):\n", + " return {k: d[k] for k in d if k in keys}\n", + "\n", + "# ([[filter_dict(e) for e in eg] for eg in groups.values() if eg[0]['relational_word'] != 'none' and all([e['score'] for e in eg])])# / len([eg for eg in groups.values() if eg[0]['relational_word'] != 'none'])\n", + "# [(index, eg[0]['relational_word'], all([e['score'] for e in eg])) for index, eg in groups.items() if eg[0]['relational_word'] != 'none']\n", + "# len([filter_dict(e) for e in examples if 'score' in e and not e['score'] and e['adjacent_ref']])\n", + "# for e in examples:\n", + "# if e['index'] % 2 == 0:\n", + "# print(e['sentence'])\n", + "[(eg[0]['sentence'], eg[0]['relational_word']) for index, eg in groups.items() if '/' in eg[0]['relational_word']]" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "179" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(['because' in e['sentence'] for e in examples]) + \\\n", + "sum(['so ' in e['sentence'] for e in examples]) + \\\n", + "sum(['but ' in e['sentence'] for e in examples]) + \\\n", + "sum(['though' in e['sentence'] for e in examples])" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "# with open('WSC_switched_label.json', 'w') as f:\n", + "# json.dump(examples, f)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "vis_attn_topk = 3\n", + "\n", + "def has_chinese_label(labels):\n", + " labels = [label.split('->')[0].strip() for label in labels]\n", + " r = sum([len(label) > 1 for label in labels if label not in ['BOS', 'EOS']]) * 1. / (len(labels) - 1)\n", + " return 0 < r < 0.5 # r == 0 means empty query labels used in self attention\n", + "\n", + "def _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col, color='b'):\n", + " assert len(query_labels) == attn.size(0)\n", + " assert len(key_labels) == attn.size(1)\n", + "\n", + " ax1.set_xlim([-1, 1])\n", + " ax1.set_xticks([])\n", + " ax2 = ax1.twinx()\n", + " nlabels = max(len(key_labels), len(query_labels))\n", + " pos = range(nlabels)\n", + " \n", + " if 'self' in attn_name and col < ncols - 1:\n", + " query_labels = ['' for _ in query_labels]\n", + "\n", + " for ax, labels in [(ax1, key_labels), (ax2, query_labels)]:\n", + " ax.set_yticks(pos)\n", + " if has_chinese_label(labels):\n", + " ax.set_yticklabels(labels, fontproperties=zhfont)\n", + " else:\n", + " ax.set_yticklabels(labels)\n", + " ax.set_ylim([nlabels - 1, 0])\n", + " ax.tick_params(width=0, labelsize='xx-large')\n", + "\n", + " for spine in ax.spines.values():\n", + " spine.set_visible(False)\n", + "\n", + "# mask, attn = filter_attn(attn)\n", + " for qi in range(attn.size(0)):\n", + "# if not mask[qi]:\n", + "# continue\n", + "# for ki in range(attn.size(1)):\n", + " for ki in attn[qi].topk(vis_attn_topk)[1]:\n", + " a = attn[qi, ki]\n", + " ax1.plot((-1, 1), (ki, qi), color, alpha=a)\n", + "# print(attn.mean(dim=0).topk(5)[0])\n", + "# ax1.barh(pos, attn.mean(dim=0).data.cpu().numpy())\n", + "\n", + "def plot_layer_attn(result_tuple, attn_name='dec_self_attns', layer=0, heads=None):\n", + " hypo, nheads, labels_dict = result_tuple\n", + " key_labels, query_labels = labels_dict[attn_name]\n", + " if heads is None:\n", + " heads = range(nheads)\n", + " else:\n", + " nheads = len(heads)\n", + " \n", + " stride = 2 if attn_name == 'dec_enc_attns' else 1\n", + " nlabels = max(len(key_labels), len(query_labels))\n", + " rcParams['figure.figsize'] = 20, int(round(nlabels * stride * nheads / 8 * 1.0))\n", + " \n", + " rows = nheads // ncols * stride\n", + " fig, axes = plt.subplots(rows, ncols)\n", + " \n", + " # for head in range(nheads):\n", + " for head_i, head in enumerate(heads):\n", + " row, col = head_i * stride // ncols, head_i * stride % ncols\n", + " ax1 = axes[row, col]\n", + " attn = hypo[attn_name][layer][head]\n", + " _plot_attn(ax1, attn_name, attn, key_labels, query_labels, col)\n", + " if attn_name == 'dec_enc_attns':\n", + " col = col + 1\n", + " axes[row, col].axis('off') # next subfig acts as blank place holder\n", + " # plt.suptitle('%s with %d heads, Layer %d' % (attn_name, nheads, layer), fontsize=20)\n", + " plt.show() \n", + " \n", + "ncols = 4" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{\n", + " \"attention_probs_dropout_prob\": 0.1,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.1,\n", + " \"hidden_size\": 768,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"max_position_embeddings\": 512,\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 12,\n", + " \"type_vocab_size\": 2,\n", + " \"vocab_size\": 30522\n", + "}" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "config.num" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Untitled_zeoliao.ipynb b/Untitled_zeoliao.ipynb new file mode 100644 index 000000000000..4f63f139e11e --- /dev/null +++ b/Untitled_zeoliao.ipynb @@ -0,0 +1,1174 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "from IPython.core.interactiveshell import InteractiveShell\n", + "InteractiveShell.ast_node_interactivity = 'all'" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.\n" + ] + } + ], + "source": [ + "import os\n", + "import json\n", + "import itertools\n", + "from itertools import product, chain\n", + "\n", + "from pytorch_pretrained_bert import tokenization, BertTokenizer, BertModel, BertForMaskedLM, BertForPreTraining, BertConfig" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "CONFIG_NAME = 'bert_config.json'\n", + "BERT_DIR = '/nas/pretrain-bert/pretrain-tensorflow/uncased_L-12_H-768_A-12/'\n", + "tokenizer = BertTokenizer.from_pretrained(os.path.join(BERT_DIR, 'vocab.txt'))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def reverse(l):\n", + " return list(reversed(l))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def mask(ent_str):\n", + " tokens = ent_str.strip().split()\n", + " if len(tokens) == 1:\n", + " return '[%s]' % tokens[0]\n", + " elif len(tokens) == 2:\n", + " assert tokens[0] == 'the', ent_str\n", + " return '%s [%s]' % (tokens[0], tokens[1])\n", + " else:\n", + " assert False, ent_str" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "A_template = \"{dt} {ent0} {rel} {dt} {ent1} {rel_suffix}\"\n", + "B_template = \"{dt} {ent} {pred}\"\n", + "\n", + "causal_templates = [[\"{A} because {B}.\"],# \"{B} so {A}.\"], \n", + " [\"{A} so {B}.\"],# \"{B} because {A}.\"]\n", + " ]\n", + "turning_templates = [[\"{A} although {B}.\"],# \"{B} but {A}.\"], \n", + " [\"{A} but {B}.\"],# \"{B} although {A}.\"]\n", + " ]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def make_sentences(A_template, B_template, causal_templates, turning_templates,\n", + " index=-1, orig_sentence='', entities=[\"John\", \"Mary\"], entity_substitutes=None, determiner=\"\", \n", + " packed_relations=[\"rel/~rel\", \"rev_rel/~rev_rel\"], packed_relation_substitutes=None, relation_suffix=\"\",\n", + " packed_predicates=[\"pred0/~pred0\", \"pred1/~pred1\"], predicate_substitutes=None,\n", + " predicate_dichotomy=True, reverse_causal=False):\n", + " assert entities[0].lower() in tokenizer.vocab , entities[0]\n", + " assert entities[1].lower() in tokenizer.vocab , entities[1]\n", + " \n", + " relations, neg_relations = zip(*[rel.split(\"/\") for rel in packed_relations])\n", + " relations, neg_relations = list(relations), list(neg_relations)\n", + " predicates, neg_predicates = zip(*[pred.split(\"/\") for pred in packed_predicates])\n", + " predicates, neg_predicates = list(predicates), list(neg_predicates)\n", + " \n", + " As = [A_template.format(dt=determiner, ent0=ent0, ent1=ent1, rel=rel, rel_suffix=relation_suffix) \n", + " for ent0, ent1, rel in [entities + relations[:1], reverse(entities) + reverse(relations)[:1]]]\n", + " negAs = [A_template.format(dt=determiner, ent0=ent0, ent1=ent1, rel=rel, rel_suffix=relation_suffix) \n", + " for ent0, ent1, rel in [entities + neg_relations[:1], reverse(entities) + reverse(neg_relations)[:1]]]\n", + "\n", + " Bs = [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, predicates)]\n", + " negBs = [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, neg_predicates)]\n", + " if predicate_dichotomy:\n", + " Bs += [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, reversed(neg_predicates))]\n", + " negBs += [B_template.format(dt=determiner, ent=mask(ent), pred=pred) for ent, pred in zip(entities, reversed(predicates))]\n", + "\n", + " def form_sentences(sentence_template, As, Bs):\n", + " return [\" \".join(sentence_template.format(A=A, B=B).split()) for A, B in product(As, Bs)]\n", + "\n", + " causal_sentences = []\n", + " for causal_template in causal_templates[int(reverse_causal)]:\n", + " for A, B in [(As, Bs), (negAs, negBs)]:\n", + " causal_sentences.extend(form_sentences(causal_template, A, B))\n", + "\n", + " turning_sentences = []\n", + " for turning_template in turning_templates[int(reverse_causal)]:\n", + " for A, B in [(As, negBs), (negAs, Bs)]:\n", + " turning_sentences.extend(form_sentences(turning_template, A, B))\n", + " \n", + " sentences = causal_sentences + turning_sentences\n", + " substituted_sentences = sentences\n", + " \n", + " if packed_relation_substitutes is not None:\n", + " packed_relation_substitutes = list(itertools.product(packed_relations[:1] + packed_relation_substitutes[0], \n", + " packed_relations[1:] + packed_relation_substitutes[1]))\n", + " substituted_sentences = []\n", + " for packed_sub_relations in packed_relation_substitutes:\n", + " sub_relations, sub_neg_relations = zip(*[rel.split(\"/\") for rel in packed_sub_relations])\n", + " substituted_sentences += [sent.replace(relations[0], sub_relations[0]).replace(relations[1], sub_relations[1])\n", + " .replace(neg_relations[0], sub_neg_relations[0]).replace(neg_relations[1], sub_neg_relations[1]) \n", + " for sent in sentences]\n", + " substituted_sentences = list(set(substituted_sentences))\n", + " \n", + " if entity_substitutes is not None:\n", + " for sub in entity_substitutes:\n", + " for ent in sub:\n", + " assert ent.lower() in tokenizer.vocab , ent + \" not in BERT vocab\"\n", + " assert len(set(chain.from_iterable(entity_substitutes))) == 4, entity_substitutes\n", + " assert len(set(chain.from_iterable(entity_substitutes)).union(set(entities))) == 6 \n", + " \n", + " entity_substitutes = list(itertools.product(entities[:1] + entity_substitutes[0], entities[1:] + entity_substitutes[1]))\n", + " substituted_sentences = [sent.replace(entities[0], sub[0]).replace(entities[1], sub[1]) \n", + " for sent in substituted_sentences for sub in entity_substitutes]\n", + " return causal_sentences, turning_sentences, substituted_sentences" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "frames = \\\n", + "[\n", + " {\n", + " \"index\": 2,\n", + " \"orig_sentence\": \"The trophy doesn't fit into the brown suitcase because [it] is too large/small.\",\n", + " \"entities\": [\"trophy\", \"suitcase\"],\n", + " \"entity_substitutes\": [[\"ball\", \"toy\"], [\"bag\", \"box\"]],\n", + " \"determiner\": \"the\",\n", + " \"packed_relations\": [\"doesn't fit into/can fit into\", \"doesn't hold/can hold\"],\n", + " \"packed_relation_substitutes\": [[\"can't be put into/can be put into\"], [\"doesn't have enough room for/has enough room for\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"is large/isn't large\", \"is small/isn't small\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 4,\n", + " \"orig_sentence\": \"Joan made sure to thank Susan for all the help [she] had recieved/given.\",\n", + " \"entities\": [\"John\", \"Susan\"],\n", + " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"thanked/didn't thank\", \"took good care of/didn't good care of\"],\n", + " \"packed_relation_substitutes\": [[\"felt grateful to/didn't feel grateful to\"], [\"was appreciated by/wasn't appreciated by\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"had received a lot of help/hadn't received a lot of help\", \"had given a lot of help/hadn't given a lot of help\"],\n", + " \"predicate_dichotomy\": False,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 4000,\n", + " \"orig_sentence\": \"John gave a lot of money to Susan because [he] was very rich/poor.\",\n", + " \"entities\": [\"John\", \"Susan\"],\n", + " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"gave a lot of money to/didn't give a lot of money to\", \"received a lot of money from/didn't receive a lot of money from\"],\n", + " \"packed_relation_substitutes\": [[\"subsidized/didn't subsidize\"], [\"borrowed a lot of money from/didn't borrow any money from\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"was rich/wasn't rich\", \"was poor/wasn't poor\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 10,\n", + " \"orig_sentence\": \"The delivery truck zoomed by the school bus because [it] was going so fast/slow.\",\n", + " \"entities\": [\"truck\", \"bus\"],\n", + " \"entity_substitutes\": [[\"car\", \"ambulance\"], [\"bicycle\", \"tram\"]],\n", + " \"determiner\": \"the\",\n", + " \"packed_relations\": [\"overtook/couldn't overtake\", \"fell far behind/didn't fall far behind\"],\n", + " \"packed_relation_substitutes\": [[\"zoomed by/didn't pass\"], [\"was left behind/wasn't left far behind\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"was going fast/wasn't going fast\", \"was going slow/wasn't going slow\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 12,\n", + " \"orig_sentence\": \"Frank felt vindicated/crushed when his longtime rival Bill revealed that [he] was the winner of the competition.\",\n", + " \"entities\": [\"John\", \"Susan\"],\n", + " \"entity_substitutes\": [[\"David\", \"Michael\"], [\"Mary\", \"Linda\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"beat/didn't beat\", \"lost to/didn't lose to\"],\n", + " \"packed_relation_substitutes\": [[\"defeated/didn't defeat\"], [\"was defeated by/didn't be defeated by\"]],\n", + " \"relation_suffix\": \"in the game\",\n", + " \"packed_predicates\": [\"was happy/wasn't happy\", \"was sad/wasn't sad\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": True\n", + " },\n", + " {\n", + " \"index\": 16,\n", + " \"orig_sentence\": \"The large ball crashed right through the table because [it] was made of steel/styrofoam.\",\n", + " \"entities\": [\"ball\", \"board\"],\n", + " \"entity_substitutes\": [[\"bullet\", \"arrow\"], [\"shield\", \"disk\"]],\n", + " \"determiner\": \"the\",\n", + " \"packed_relations\": [\"crashed right through/didn't crash through\", \"failed to block/blocked\"],\n", + " \"packed_relation_substitutes\": [[\"penetrated through/didn't penetrate through\"], [\"failed to stop/stopped\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"was hard/wasn't hard\", \"was soft/wasn't soft\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": True\n", + " },\n", + " {\n", + " \"index\": 18,\n", + " \"orig_sentence\": \"John couldn't see the stage with Billy in front of him because [he] is so short.\",\n", + " \"entities\": [\"John\", \"Susan\"],\n", + " \"entity_substitutes\": [[\"David\", \"Edward\"], [\"Betty\", \"Donna\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"couldn't see the stage which behind/could see the stage which behind\", \"blocked the view of/couldn't block the view of\"],\n", + " \"packed_relation_substitutes\": [[\"couldn't find the stage which behind/could find the stage which behind\"], [\"obstructed the view of/couldn't obstruct the view of\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"is short/isn't short\", \"is tall/isn't tall\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": True\n", + " },\n", + " {\n", + " \"index\": 20,\n", + " \"orig_sentence\": \"Tom threw his schoolbag down to Ray after [he] reached the top of the stairs.\",\n", + " \"entities\": [\"Brian\", \"Amy\"],\n", + " \"entity_substitutes\": [[\"Charles\", \"Paul\"], [\"Emma\", \"Linda\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"through the schoolbag down to/through the schoolbag up to\", \"caught the schoolbag thrown down by/caught the schoolbag thrown up by\"],\n", + " \"packed_relation_substitutes\": [[\"cast the schoolbag down to/cast the schoolbag up to\"], [\"took the schoolbag thrown down by/took the schoolbag thrown up by\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"is on the top/isn't on the top\", \"is at the buttom/isn't at the buttom\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": True\n", + " },\n", + " {\n", + " \"index\": 22,\n", + " \"orig_sentence\": \"Although they ran at about the same speed, Sue beat Sally because [she] had such a good start.\",\n", + " \"entities\": [\"Tom\", \"Sue\"],\n", + " \"entity_substitutes\": [[\"John\", \"David\"], [\"Sally\", \"Susan\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"beat/didn't beat\", \"lost to/didn't lose to\"],\n", + " \"packed_relation_substitutes\": [[\"defeated/didn't defeat\"], [\"was defeated by/didn't be defeated by\"]],\n", + " \"relation_suffix\": \"in the running race\",\n", + " \"packed_predicates\": [\"has a good start/didn't has a good start\", \"has a bad start/didn't has a bad start\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 26000,\n", + " \"orig_sentence\": \"Sam's drawing was hung just above Tina's and [it] did look much better with another one below it\",\n", + " \"entities\": [\"Bob\", \"Wendy\"],\n", + " \"entity_substitutes\": [[\"Bush\", \"Tim\"], [\"Sandy\", \"Helen\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"could reach higher than/couldn't reach higher than\", \"reached lower than/didn't reach lower than\"],\n", + " \"packed_relation_substitutes\": [[\"could jump higher than/couldn't jump higher than\"], [\"jumped lower than/didn't jump lower than\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"is tall/is not tall\", \"is short/is not short\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 28,\n", + " \"orig_sentence\": \"Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.\",\n", + " \"entities\": [\"Anna\", \"Andy\"],\n", + " \"entity_substitutes\": [[\"Lucy\", \"Nancy\"], [\"George\", \"Frank\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"did better than her good friend/didn't do better than her good friend\", \"did worse than her good friend/didn't do worse than her good friend\"],\n", + " \"packed_relation_substitutes\": [[\"performed better than her good friend/didn't perform better than her good friend\"], [\"performed worse than her good friend/didn't perform worse than her good friend\"]],\n", + " \"relation_suffix\": \"on the test\",\n", + " \"packed_predicates\": [\"had studied hard./hadn't studied hard.\", \"had studied less./hadn't studied less\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": False\n", + " },\n", + " {\n", + " \"index\": 30,\n", + " \"orig_sentence\": \"The firemen arrived after the police because [they] were coming from so far away.\",\n", + " \"entities\": [\"firemen\", \"police\"],\n", + " \"entity_substitutes\": [[\"worker\", \"employee\"], [\"boss\", \"administer\"]],\n", + " \"determiner\": \"the\",\n", + " \"packed_relations\": [\"arrived after/didn't arrive after\", \"arrived before/didn't arrive before\"],\n", + " \"packed_relation_substitutes\": [[\"reached here after/didn't reach here after\"], [\"reached here before/didn't reach here before\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"came from the farther place./didn't come from the farther place.\", \"came from the closer place./didn't come from the closer place.\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": True\n", + " },\n", + " {\n", + " \"index\": 32000,\n", + " \"orig_sentence\": \"Frank was upset with Tom because the toaster [he] had bought from him didn't work.\",\n", + " \"entities\": [\"Betty\", \"Henry\"],\n", + " \"entity_substitutes\": [[\"Amy\", \"Linda\"], [\"Bush\", \"Frank\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"was hate by/wasn't hate by\", \"was liked by/wasn't liked by\"],\n", + " \"packed_relation_substitutes\": [[\"was dislike by/wasn't dislike by\"], [\"was appreciated by/wasn't appreciate by\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"broken down the toaster./didn't broke down the toaster.\", \"repaired the toaster./didn't repaire the toaster.\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": True\n", + " },\n", + " {\n", + " \"index\": 36,\n", + " \"orig_sentence\": \"The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.\",\n", + " \"entities\": [\"potatoes\", \"Henry\"],\n", + " \"entity_substitutes\": [[\"Amy\", \"Linda\"], [\"Bush\", \"Frank\"]],\n", + " \"determiner\": \"\",\n", + " \"packed_relations\": [\"was hate by/wasn't hate by\", \"was liked by/wasn't liked by\"],\n", + " \"packed_relation_substitutes\": [[\"was dislike by/wasn't dislike by\"], [\"was appreciated by/wasn't appreciate by\"]],\n", + " \"relation_suffix\": \"\",\n", + " \"packed_predicates\": [\"broken down the toaster./didn't broke down the toaster.\", \"repaired the toaster./didn't repaire the toaster.\"],\n", + " \"predicate_dichotomy\": True,\n", + " \"reverse_causal\": True\n", + " },\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "causal_sentences, turning_sentences, substituted_sentences = \\\n", + " make_sentences(A_template, B_template, causal_templates, turning_templates, **frames[-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['potatoes was hate by Henry so [potatoes] broken down the toaster..',\n", + " 'potatoes was hate by Henry so [Henry] repaired the toaster..',\n", + " \"potatoes was hate by Henry so [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes was hate by Henry so [Henry] didn't broke down the toaster..\",\n", + " 'Henry was liked by potatoes so [potatoes] broken down the toaster..',\n", + " 'Henry was liked by potatoes so [Henry] repaired the toaster..',\n", + " \"Henry was liked by potatoes so [potatoes] didn't repaire the toaster..\",\n", + " \"Henry was liked by potatoes so [Henry] didn't broke down the toaster..\",\n", + " \"potatoes wasn't hate by Henry so [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes wasn't hate by Henry so [Henry] didn't repaire the toaster..\",\n", + " \"potatoes wasn't hate by Henry so [potatoes] repaired the toaster..\",\n", + " \"potatoes wasn't hate by Henry so [Henry] broken down the toaster..\",\n", + " \"Henry wasn't liked by potatoes so [potatoes] didn't broke down the toaster..\",\n", + " \"Henry wasn't liked by potatoes so [Henry] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by potatoes so [potatoes] repaired the toaster..\",\n", + " \"Henry wasn't liked by potatoes so [Henry] broken down the toaster..\"]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "[\"potatoes was hate by Henry but [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes was hate by Henry but [Henry] didn't repaire the toaster..\",\n", + " 'potatoes was hate by Henry but [potatoes] repaired the toaster..',\n", + " 'potatoes was hate by Henry but [Henry] broken down the toaster..',\n", + " \"Henry was liked by potatoes but [potatoes] didn't broke down the toaster..\",\n", + " \"Henry was liked by potatoes but [Henry] didn't repaire the toaster..\",\n", + " 'Henry was liked by potatoes but [potatoes] repaired the toaster..',\n", + " 'Henry was liked by potatoes but [Henry] broken down the toaster..',\n", + " \"potatoes wasn't hate by Henry but [potatoes] broken down the toaster..\",\n", + " \"potatoes wasn't hate by Henry but [Henry] repaired the toaster..\",\n", + " \"potatoes wasn't hate by Henry but [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes wasn't hate by Henry but [Henry] didn't broke down the toaster..\",\n", + " \"Henry wasn't liked by potatoes but [potatoes] broken down the toaster..\",\n", + " \"Henry wasn't liked by potatoes but [Henry] repaired the toaster..\",\n", + " \"Henry wasn't liked by potatoes but [potatoes] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by potatoes but [Henry] didn't broke down the toaster..\"]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "[\"potatoes was hate by Henry so [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes was hate by Bush so [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes was hate by Frank so [potatoes] didn't repaire the toaster..\",\n", + " \"Amy was hate by Henry so [Amy] didn't repaire the toaster..\",\n", + " \"Amy was hate by Bush so [Amy] didn't repaire the toaster..\",\n", + " \"Amy was hate by Frank so [Amy] didn't repaire the toaster..\",\n", + " \"Linda was hate by Henry so [Linda] didn't repaire the toaster..\",\n", + " \"Linda was hate by Bush so [Linda] didn't repaire the toaster..\",\n", + " \"Linda was hate by Frank so [Linda] didn't repaire the toaster..\",\n", + " \"Henry was appreciated by potatoes so [Henry] didn't broke down the toaster..\",\n", + " \"Bush was appreciated by potatoes so [Bush] didn't broke down the toaster..\",\n", + " \"Frank was appreciated by potatoes so [Frank] didn't broke down the toaster..\",\n", + " \"Henry was appreciated by Amy so [Henry] didn't broke down the toaster..\",\n", + " \"Bush was appreciated by Amy so [Bush] didn't broke down the toaster..\",\n", + " \"Frank was appreciated by Amy so [Frank] didn't broke down the toaster..\",\n", + " \"Henry was appreciated by Linda so [Henry] didn't broke down the toaster..\",\n", + " \"Bush was appreciated by Linda so [Bush] didn't broke down the toaster..\",\n", + " \"Frank was appreciated by Linda so [Frank] didn't broke down the toaster..\",\n", + " \"Henry wasn't appreciate by potatoes so [potatoes] repaired the toaster..\",\n", + " \"Bush wasn't appreciate by potatoes so [potatoes] repaired the toaster..\",\n", + " \"Frank wasn't appreciate by potatoes so [potatoes] repaired the toaster..\",\n", + " \"Henry wasn't appreciate by Amy so [Amy] repaired the toaster..\",\n", + " \"Bush wasn't appreciate by Amy so [Amy] repaired the toaster..\",\n", + " \"Frank wasn't appreciate by Amy so [Amy] repaired the toaster..\",\n", + " \"Henry wasn't appreciate by Linda so [Linda] repaired the toaster..\",\n", + " \"Bush wasn't appreciate by Linda so [Linda] repaired the toaster..\",\n", + " \"Frank wasn't appreciate by Linda so [Linda] repaired the toaster..\",\n", + " \"Henry wasn't appreciate by potatoes but [potatoes] didn't repaire the toaster..\",\n", + " \"Bush wasn't appreciate by potatoes but [potatoes] didn't repaire the toaster..\",\n", + " \"Frank wasn't appreciate by potatoes but [potatoes] didn't repaire the toaster..\",\n", + " \"Henry wasn't appreciate by Amy but [Amy] didn't repaire the toaster..\",\n", + " \"Bush wasn't appreciate by Amy but [Amy] didn't repaire the toaster..\",\n", + " \"Frank wasn't appreciate by Amy but [Amy] didn't repaire the toaster..\",\n", + " \"Henry wasn't appreciate by Linda but [Linda] didn't repaire the toaster..\",\n", + " \"Bush wasn't appreciate by Linda but [Linda] didn't repaire the toaster..\",\n", + " \"Frank wasn't appreciate by Linda but [Linda] didn't repaire the toaster..\",\n", + " \"potatoes wasn't hate by Henry so [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes wasn't hate by Bush so [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes wasn't hate by Frank so [potatoes] didn't broke down the toaster..\",\n", + " \"Amy wasn't hate by Henry so [Amy] didn't broke down the toaster..\",\n", + " \"Amy wasn't hate by Bush so [Amy] didn't broke down the toaster..\",\n", + " \"Amy wasn't hate by Frank so [Amy] didn't broke down the toaster..\",\n", + " \"Linda wasn't hate by Henry so [Linda] didn't broke down the toaster..\",\n", + " \"Linda wasn't hate by Bush so [Linda] didn't broke down the toaster..\",\n", + " \"Linda wasn't hate by Frank so [Linda] didn't broke down the toaster..\",\n", + " \"potatoes was dislike by Henry but [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes was dislike by Bush but [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes was dislike by Frank but [potatoes] didn't broke down the toaster..\",\n", + " \"Amy was dislike by Henry but [Amy] didn't broke down the toaster..\",\n", + " \"Amy was dislike by Bush but [Amy] didn't broke down the toaster..\",\n", + " \"Amy was dislike by Frank but [Amy] didn't broke down the toaster..\",\n", + " \"Linda was dislike by Henry but [Linda] didn't broke down the toaster..\",\n", + " \"Linda was dislike by Bush but [Linda] didn't broke down the toaster..\",\n", + " \"Linda was dislike by Frank but [Linda] didn't broke down the toaster..\",\n", + " 'Henry was liked by potatoes so [Henry] repaired the toaster..',\n", + " 'Bush was liked by potatoes so [Bush] repaired the toaster..',\n", + " 'Frank was liked by potatoes so [Frank] repaired the toaster..',\n", + " 'Henry was liked by Amy so [Henry] repaired the toaster..',\n", + " 'Bush was liked by Amy so [Bush] repaired the toaster..',\n", + " 'Frank was liked by Amy so [Frank] repaired the toaster..',\n", + " 'Henry was liked by Linda so [Henry] repaired the toaster..',\n", + " 'Bush was liked by Linda so [Bush] repaired the toaster..',\n", + " 'Frank was liked by Linda so [Frank] repaired the toaster..',\n", + " 'potatoes was hate by Henry but [Henry] broken down the toaster..',\n", + " 'potatoes was hate by Bush but [Bush] broken down the toaster..',\n", + " 'potatoes was hate by Frank but [Frank] broken down the toaster..',\n", + " 'Amy was hate by Henry but [Henry] broken down the toaster..',\n", + " 'Amy was hate by Bush but [Bush] broken down the toaster..',\n", + " 'Amy was hate by Frank but [Frank] broken down the toaster..',\n", + " 'Linda was hate by Henry but [Henry] broken down the toaster..',\n", + " 'Linda was hate by Bush but [Bush] broken down the toaster..',\n", + " 'Linda was hate by Frank but [Frank] broken down the toaster..',\n", + " \"potatoes was dislike by Henry so [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes was dislike by Bush so [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes was dislike by Frank so [potatoes] didn't repaire the toaster..\",\n", + " \"Amy was dislike by Henry so [Amy] didn't repaire the toaster..\",\n", + " \"Amy was dislike by Bush so [Amy] didn't repaire the toaster..\",\n", + " \"Amy was dislike by Frank so [Amy] didn't repaire the toaster..\",\n", + " \"Linda was dislike by Henry so [Linda] didn't repaire the toaster..\",\n", + " \"Linda was dislike by Bush so [Linda] didn't repaire the toaster..\",\n", + " \"Linda was dislike by Frank so [Linda] didn't repaire the toaster..\",\n", + " 'Henry was appreciated by potatoes but [Henry] broken down the toaster..',\n", + " 'Bush was appreciated by potatoes but [Bush] broken down the toaster..',\n", + " 'Frank was appreciated by potatoes but [Frank] broken down the toaster..',\n", + " 'Henry was appreciated by Amy but [Henry] broken down the toaster..',\n", + " 'Bush was appreciated by Amy but [Bush] broken down the toaster..',\n", + " 'Frank was appreciated by Amy but [Frank] broken down the toaster..',\n", + " 'Henry was appreciated by Linda but [Henry] broken down the toaster..',\n", + " 'Bush was appreciated by Linda but [Bush] broken down the toaster..',\n", + " 'Frank was appreciated by Linda but [Frank] broken down the toaster..',\n", + " \"potatoes wasn't dislike by Henry but [Henry] repaired the toaster..\",\n", + " \"potatoes wasn't dislike by Bush but [Bush] repaired the toaster..\",\n", + " \"potatoes wasn't dislike by Frank but [Frank] repaired the toaster..\",\n", + " \"Amy wasn't dislike by Henry but [Henry] repaired the toaster..\",\n", + " \"Amy wasn't dislike by Bush but [Bush] repaired the toaster..\",\n", + " \"Amy wasn't dislike by Frank but [Frank] repaired the toaster..\",\n", + " \"Linda wasn't dislike by Henry but [Henry] repaired the toaster..\",\n", + " \"Linda wasn't dislike by Bush but [Bush] repaired the toaster..\",\n", + " \"Linda wasn't dislike by Frank but [Frank] repaired the toaster..\",\n", + " 'potatoes was dislike by Henry but [Henry] broken down the toaster..',\n", + " 'potatoes was dislike by Bush but [Bush] broken down the toaster..',\n", + " 'potatoes was dislike by Frank but [Frank] broken down the toaster..',\n", + " 'Amy was dislike by Henry but [Henry] broken down the toaster..',\n", + " 'Amy was dislike by Bush but [Bush] broken down the toaster..',\n", + " 'Amy was dislike by Frank but [Frank] broken down the toaster..',\n", + " 'Linda was dislike by Henry but [Henry] broken down the toaster..',\n", + " 'Linda was dislike by Bush but [Bush] broken down the toaster..',\n", + " 'Linda was dislike by Frank but [Frank] broken down the toaster..',\n", + " \"Henry wasn't appreciate by potatoes so [Henry] didn't repaire the toaster..\",\n", + " \"Bush wasn't appreciate by potatoes so [Bush] didn't repaire the toaster..\",\n", + " \"Frank wasn't appreciate by potatoes so [Frank] didn't repaire the toaster..\",\n", + " \"Henry wasn't appreciate by Amy so [Henry] didn't repaire the toaster..\",\n", + " \"Bush wasn't appreciate by Amy so [Bush] didn't repaire the toaster..\",\n", + " \"Frank wasn't appreciate by Amy so [Frank] didn't repaire the toaster..\",\n", + " \"Henry wasn't appreciate by Linda so [Henry] didn't repaire the toaster..\",\n", + " \"Bush wasn't appreciate by Linda so [Bush] didn't repaire the toaster..\",\n", + " \"Frank wasn't appreciate by Linda so [Frank] didn't repaire the toaster..\",\n", + " \"Henry was liked by potatoes but [Henry] didn't repaire the toaster..\",\n", + " \"Bush was liked by potatoes but [Bush] didn't repaire the toaster..\",\n", + " \"Frank was liked by potatoes but [Frank] didn't repaire the toaster..\",\n", + " \"Henry was liked by Amy but [Henry] didn't repaire the toaster..\",\n", + " \"Bush was liked by Amy but [Bush] didn't repaire the toaster..\",\n", + " \"Frank was liked by Amy but [Frank] didn't repaire the toaster..\",\n", + " \"Henry was liked by Linda but [Henry] didn't repaire the toaster..\",\n", + " \"Bush was liked by Linda but [Bush] didn't repaire the toaster..\",\n", + " \"Frank was liked by Linda but [Frank] didn't repaire the toaster..\",\n", + " \"potatoes wasn't dislike by Henry so [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes wasn't dislike by Bush so [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes wasn't dislike by Frank so [potatoes] didn't broke down the toaster..\",\n", + " \"Amy wasn't dislike by Henry so [Amy] didn't broke down the toaster..\",\n", + " \"Amy wasn't dislike by Bush so [Amy] didn't broke down the toaster..\",\n", + " \"Amy wasn't dislike by Frank so [Amy] didn't broke down the toaster..\",\n", + " \"Linda wasn't dislike by Henry so [Linda] didn't broke down the toaster..\",\n", + " \"Linda wasn't dislike by Bush so [Linda] didn't broke down the toaster..\",\n", + " \"Linda wasn't dislike by Frank so [Linda] didn't broke down the toaster..\",\n", + " 'Henry was liked by potatoes but [Henry] broken down the toaster..',\n", + " 'Bush was liked by potatoes but [Bush] broken down the toaster..',\n", + " 'Frank was liked by potatoes but [Frank] broken down the toaster..',\n", + " 'Henry was liked by Amy but [Henry] broken down the toaster..',\n", + " 'Bush was liked by Amy but [Bush] broken down the toaster..',\n", + " 'Frank was liked by Amy but [Frank] broken down the toaster..',\n", + " 'Henry was liked by Linda but [Henry] broken down the toaster..',\n", + " 'Bush was liked by Linda but [Bush] broken down the toaster..',\n", + " 'Frank was liked by Linda but [Frank] broken down the toaster..',\n", + " \"Henry wasn't liked by potatoes but [Henry] didn't broke down the toaster..\",\n", + " \"Bush wasn't liked by potatoes but [Bush] didn't broke down the toaster..\",\n", + " \"Frank wasn't liked by potatoes but [Frank] didn't broke down the toaster..\",\n", + " \"Henry wasn't liked by Amy but [Henry] didn't broke down the toaster..\",\n", + " \"Bush wasn't liked by Amy but [Bush] didn't broke down the toaster..\",\n", + " \"Frank wasn't liked by Amy but [Frank] didn't broke down the toaster..\",\n", + " \"Henry wasn't liked by Linda but [Henry] didn't broke down the toaster..\",\n", + " \"Bush wasn't liked by Linda but [Bush] didn't broke down the toaster..\",\n", + " \"Frank wasn't liked by Linda but [Frank] didn't broke down the toaster..\",\n", + " \"Henry was liked by potatoes so [potatoes] didn't repaire the toaster..\",\n", + " \"Bush was liked by potatoes so [potatoes] didn't repaire the toaster..\",\n", + " \"Frank was liked by potatoes so [potatoes] didn't repaire the toaster..\",\n", + " \"Henry was liked by Amy so [Amy] didn't repaire the toaster..\",\n", + " \"Bush was liked by Amy so [Amy] didn't repaire the toaster..\",\n", + " \"Frank was liked by Amy so [Amy] didn't repaire the toaster..\",\n", + " \"Henry was liked by Linda so [Linda] didn't repaire the toaster..\",\n", + " \"Bush was liked by Linda so [Linda] didn't repaire the toaster..\",\n", + " \"Frank was liked by Linda so [Linda] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by potatoes so [potatoes] repaired the toaster..\",\n", + " \"Bush wasn't liked by potatoes so [potatoes] repaired the toaster..\",\n", + " \"Frank wasn't liked by potatoes so [potatoes] repaired the toaster..\",\n", + " \"Henry wasn't liked by Amy so [Amy] repaired the toaster..\",\n", + " \"Bush wasn't liked by Amy so [Amy] repaired the toaster..\",\n", + " \"Frank wasn't liked by Amy so [Amy] repaired the toaster..\",\n", + " \"Henry wasn't liked by Linda so [Linda] repaired the toaster..\",\n", + " \"Bush wasn't liked by Linda so [Linda] repaired the toaster..\",\n", + " \"Frank wasn't liked by Linda so [Linda] repaired the toaster..\",\n", + " \"potatoes wasn't dislike by Henry so [Henry] didn't repaire the toaster..\",\n", + " \"potatoes wasn't dislike by Bush so [Bush] didn't repaire the toaster..\",\n", + " \"potatoes wasn't dislike by Frank so [Frank] didn't repaire the toaster..\",\n", + " \"Amy wasn't dislike by Henry so [Henry] didn't repaire the toaster..\",\n", + " \"Amy wasn't dislike by Bush so [Bush] didn't repaire the toaster..\",\n", + " \"Amy wasn't dislike by Frank so [Frank] didn't repaire the toaster..\",\n", + " \"Linda wasn't dislike by Henry so [Henry] didn't repaire the toaster..\",\n", + " \"Linda wasn't dislike by Bush so [Bush] didn't repaire the toaster..\",\n", + " \"Linda wasn't dislike by Frank so [Frank] didn't repaire the toaster..\",\n", + " \"Henry wasn't appreciate by potatoes so [potatoes] didn't broke down the toaster..\",\n", + " \"Bush wasn't appreciate by potatoes so [potatoes] didn't broke down the toaster..\",\n", + " \"Frank wasn't appreciate by potatoes so [potatoes] didn't broke down the toaster..\",\n", + " \"Henry wasn't appreciate by Amy so [Amy] didn't broke down the toaster..\",\n", + " \"Bush wasn't appreciate by Amy so [Amy] didn't broke down the toaster..\",\n", + " \"Frank wasn't appreciate by Amy so [Amy] didn't broke down the toaster..\",\n", + " \"Henry wasn't appreciate by Linda so [Linda] didn't broke down the toaster..\",\n", + " \"Bush wasn't appreciate by Linda so [Linda] didn't broke down the toaster..\",\n", + " \"Frank wasn't appreciate by Linda so [Linda] didn't broke down the toaster..\",\n", + " \"Henry wasn't appreciate by potatoes but [potatoes] broken down the toaster..\",\n", + " \"Bush wasn't appreciate by potatoes but [potatoes] broken down the toaster..\",\n", + " \"Frank wasn't appreciate by potatoes but [potatoes] broken down the toaster..\",\n", + " \"Henry wasn't appreciate by Amy but [Amy] broken down the toaster..\",\n", + " \"Bush wasn't appreciate by Amy but [Amy] broken down the toaster..\",\n", + " \"Frank wasn't appreciate by Amy but [Amy] broken down the toaster..\",\n", + " \"Henry wasn't appreciate by Linda but [Linda] broken down the toaster..\",\n", + " \"Bush wasn't appreciate by Linda but [Linda] broken down the toaster..\",\n", + " \"Frank wasn't appreciate by Linda but [Linda] broken down the toaster..\",\n", + " \"Henry was liked by potatoes but [potatoes] didn't broke down the toaster..\",\n", + " \"Bush was liked by potatoes but [potatoes] didn't broke down the toaster..\",\n", + " \"Frank was liked by potatoes but [potatoes] didn't broke down the toaster..\",\n", + " \"Henry was liked by Amy but [Amy] didn't broke down the toaster..\",\n", + " \"Bush was liked by Amy but [Amy] didn't broke down the toaster..\",\n", + " \"Frank was liked by Amy but [Amy] didn't broke down the toaster..\",\n", + " \"Henry was liked by Linda but [Linda] didn't broke down the toaster..\",\n", + " \"Bush was liked by Linda but [Linda] didn't broke down the toaster..\",\n", + " \"Frank was liked by Linda but [Linda] didn't broke down the toaster..\",\n", + " \"potatoes was hate by Henry so [Henry] didn't broke down the toaster..\",\n", + " \"potatoes was hate by Bush so [Bush] didn't broke down the toaster..\",\n", + " \"potatoes was hate by Frank so [Frank] didn't broke down the toaster..\",\n", + " \"Amy was hate by Henry so [Henry] didn't broke down the toaster..\",\n", + " \"Amy was hate by Bush so [Bush] didn't broke down the toaster..\",\n", + " \"Amy was hate by Frank so [Frank] didn't broke down the toaster..\",\n", + " \"Linda was hate by Henry so [Henry] didn't broke down the toaster..\",\n", + " \"Linda was hate by Bush so [Bush] didn't broke down the toaster..\",\n", + " \"Linda was hate by Frank so [Frank] didn't broke down the toaster..\",\n", + " \"Henry wasn't liked by potatoes but [Henry] repaired the toaster..\",\n", + " \"Bush wasn't liked by potatoes but [Bush] repaired the toaster..\",\n", + " \"Frank wasn't liked by potatoes but [Frank] repaired the toaster..\",\n", + " \"Henry wasn't liked by Amy but [Henry] repaired the toaster..\",\n", + " \"Bush wasn't liked by Amy but [Bush] repaired the toaster..\",\n", + " \"Frank wasn't liked by Amy but [Frank] repaired the toaster..\",\n", + " \"Henry wasn't liked by Linda but [Henry] repaired the toaster..\",\n", + " \"Bush wasn't liked by Linda but [Bush] repaired the toaster..\",\n", + " \"Frank wasn't liked by Linda but [Frank] repaired the toaster..\",\n", + " \"potatoes was hate by Henry but [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes was hate by Bush but [potatoes] didn't broke down the toaster..\",\n", + " \"potatoes was hate by Frank but [potatoes] didn't broke down the toaster..\",\n", + " \"Amy was hate by Henry but [Amy] didn't broke down the toaster..\",\n", + " \"Amy was hate by Bush but [Amy] didn't broke down the toaster..\",\n", + " \"Amy was hate by Frank but [Amy] didn't broke down the toaster..\",\n", + " \"Linda was hate by Henry but [Linda] didn't broke down the toaster..\",\n", + " \"Linda was hate by Bush but [Linda] didn't broke down the toaster..\",\n", + " \"Linda was hate by Frank but [Linda] didn't broke down the toaster..\",\n", + " \"potatoes was dislike by Henry but [Henry] didn't repaire the toaster..\",\n", + " \"potatoes was dislike by Bush but [Bush] didn't repaire the toaster..\",\n", + " \"potatoes was dislike by Frank but [Frank] didn't repaire the toaster..\",\n", + " \"Amy was dislike by Henry but [Henry] didn't repaire the toaster..\",\n", + " \"Amy was dislike by Bush but [Bush] didn't repaire the toaster..\",\n", + " \"Amy was dislike by Frank but [Frank] didn't repaire the toaster..\",\n", + " \"Linda was dislike by Henry but [Henry] didn't repaire the toaster..\",\n", + " \"Linda was dislike by Bush but [Bush] didn't repaire the toaster..\",\n", + " \"Linda was dislike by Frank but [Frank] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by potatoes so [Henry] didn't repaire the toaster..\",\n", + " \"Bush wasn't liked by potatoes so [Bush] didn't repaire the toaster..\",\n", + " \"Frank wasn't liked by potatoes so [Frank] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by Amy so [Henry] didn't repaire the toaster..\",\n", + " \"Bush wasn't liked by Amy so [Bush] didn't repaire the toaster..\",\n", + " \"Frank wasn't liked by Amy so [Frank] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by Linda so [Henry] didn't repaire the toaster..\",\n", + " \"Bush wasn't liked by Linda so [Bush] didn't repaire the toaster..\",\n", + " \"Frank wasn't liked by Linda so [Frank] didn't repaire the toaster..\",\n", + " \"Henry wasn't appreciate by potatoes but [Henry] repaired the toaster..\",\n", + " \"Bush wasn't appreciate by potatoes but [Bush] repaired the toaster..\",\n", + " \"Frank wasn't appreciate by potatoes but [Frank] repaired the toaster..\",\n", + " \"Henry wasn't appreciate by Amy but [Henry] repaired the toaster..\",\n", + " \"Bush wasn't appreciate by Amy but [Bush] repaired the toaster..\",\n", + " \"Frank wasn't appreciate by Amy but [Frank] repaired the toaster..\",\n", + " \"Henry wasn't appreciate by Linda but [Henry] repaired the toaster..\",\n", + " \"Bush wasn't appreciate by Linda but [Bush] repaired the toaster..\",\n", + " \"Frank wasn't appreciate by Linda but [Frank] repaired the toaster..\",\n", + " \"potatoes wasn't dislike by Henry so [potatoes] repaired the toaster..\",\n", + " \"potatoes wasn't dislike by Bush so [potatoes] repaired the toaster..\",\n", + " \"potatoes wasn't dislike by Frank so [potatoes] repaired the toaster..\",\n", + " \"Amy wasn't dislike by Henry so [Amy] repaired the toaster..\",\n", + " \"Amy wasn't dislike by Bush so [Amy] repaired the toaster..\",\n", + " \"Amy wasn't dislike by Frank so [Amy] repaired the toaster..\",\n", + " \"Linda wasn't dislike by Henry so [Linda] repaired the toaster..\",\n", + " \"Linda wasn't dislike by Bush so [Linda] repaired the toaster..\",\n", + " \"Linda wasn't dislike by Frank so [Linda] repaired the toaster..\",\n", + " \"potatoes wasn't hate by Henry so [potatoes] repaired the toaster..\",\n", + " \"potatoes wasn't hate by Bush so [potatoes] repaired the toaster..\",\n", + " \"potatoes wasn't hate by Frank so [potatoes] repaired the toaster..\",\n", + " \"Amy wasn't hate by Henry so [Amy] repaired the toaster..\",\n", + " \"Amy wasn't hate by Bush so [Amy] repaired the toaster..\",\n", + " \"Amy wasn't hate by Frank so [Amy] repaired the toaster..\",\n", + " \"Linda wasn't hate by Henry so [Linda] repaired the toaster..\",\n", + " \"Linda wasn't hate by Bush so [Linda] repaired the toaster..\",\n", + " \"Linda wasn't hate by Frank so [Linda] repaired the toaster..\",\n", + " 'potatoes was dislike by Henry so [potatoes] broken down the toaster..',\n", + " 'potatoes was dislike by Bush so [potatoes] broken down the toaster..',\n", + " 'potatoes was dislike by Frank so [potatoes] broken down the toaster..',\n", + " 'Amy was dislike by Henry so [Amy] broken down the toaster..',\n", + " 'Amy was dislike by Bush so [Amy] broken down the toaster..',\n", + " 'Amy was dislike by Frank so [Amy] broken down the toaster..',\n", + " 'Linda was dislike by Henry so [Linda] broken down the toaster..',\n", + " 'Linda was dislike by Bush so [Linda] broken down the toaster..',\n", + " 'Linda was dislike by Frank so [Linda] broken down the toaster..',\n", + " \"potatoes wasn't hate by Henry but [Henry] didn't broke down the toaster..\",\n", + " \"potatoes wasn't hate by Bush but [Bush] didn't broke down the toaster..\",\n", + " \"potatoes wasn't hate by Frank but [Frank] didn't broke down the toaster..\",\n", + " \"Amy wasn't hate by Henry but [Henry] didn't broke down the toaster..\",\n", + " \"Amy wasn't hate by Bush but [Bush] didn't broke down the toaster..\",\n", + " \"Amy wasn't hate by Frank but [Frank] didn't broke down the toaster..\",\n", + " \"Linda wasn't hate by Henry but [Henry] didn't broke down the toaster..\",\n", + " \"Linda wasn't hate by Bush but [Bush] didn't broke down the toaster..\",\n", + " \"Linda wasn't hate by Frank but [Frank] didn't broke down the toaster..\",\n", + " \"Henry wasn't appreciate by potatoes but [Henry] didn't broke down the toaster..\",\n", + " \"Bush wasn't appreciate by potatoes but [Bush] didn't broke down the toaster..\",\n", + " \"Frank wasn't appreciate by potatoes but [Frank] didn't broke down the toaster..\",\n", + " \"Henry wasn't appreciate by Amy but [Henry] didn't broke down the toaster..\",\n", + " \"Bush wasn't appreciate by Amy but [Bush] didn't broke down the toaster..\",\n", + " \"Frank wasn't appreciate by Amy but [Frank] didn't broke down the toaster..\",\n", + " \"Henry wasn't appreciate by Linda but [Henry] didn't broke down the toaster..\",\n", + " \"Bush wasn't appreciate by Linda but [Bush] didn't broke down the toaster..\",\n", + " \"Frank wasn't appreciate by Linda but [Frank] didn't broke down the toaster..\",\n", + " 'Henry was appreciated by potatoes so [Henry] repaired the toaster..',\n", + " 'Bush was appreciated by potatoes so [Bush] repaired the toaster..',\n", + " 'Frank was appreciated by potatoes so [Frank] repaired the toaster..',\n", + " 'Henry was appreciated by Amy so [Henry] repaired the toaster..',\n", + " 'Bush was appreciated by Amy so [Bush] repaired the toaster..',\n", + " 'Frank was appreciated by Amy so [Frank] repaired the toaster..',\n", + " 'Henry was appreciated by Linda so [Henry] repaired the toaster..',\n", + " 'Bush was appreciated by Linda so [Bush] repaired the toaster..',\n", + " 'Frank was appreciated by Linda so [Frank] repaired the toaster..',\n", + " 'potatoes was hate by Henry but [potatoes] repaired the toaster..',\n", + " 'potatoes was hate by Bush but [potatoes] repaired the toaster..',\n", + " 'potatoes was hate by Frank but [potatoes] repaired the toaster..',\n", + " 'Amy was hate by Henry but [Amy] repaired the toaster..',\n", + " 'Amy was hate by Bush but [Amy] repaired the toaster..',\n", + " 'Amy was hate by Frank but [Amy] repaired the toaster..',\n", + " 'Linda was hate by Henry but [Linda] repaired the toaster..',\n", + " 'Linda was hate by Bush but [Linda] repaired the toaster..',\n", + " 'Linda was hate by Frank but [Linda] repaired the toaster..',\n", + " \"potatoes wasn't dislike by Henry but [Henry] didn't broke down the toaster..\",\n", + " \"potatoes wasn't dislike by Bush but [Bush] didn't broke down the toaster..\",\n", + " \"potatoes wasn't dislike by Frank but [Frank] didn't broke down the toaster..\",\n", + " \"Amy wasn't dislike by Henry but [Henry] didn't broke down the toaster..\",\n", + " \"Amy wasn't dislike by Bush but [Bush] didn't broke down the toaster..\",\n", + " \"Amy wasn't dislike by Frank but [Frank] didn't broke down the toaster..\",\n", + " \"Linda wasn't dislike by Henry but [Henry] didn't broke down the toaster..\",\n", + " \"Linda wasn't dislike by Bush but [Bush] didn't broke down the toaster..\",\n", + " \"Linda wasn't dislike by Frank but [Frank] didn't broke down the toaster..\",\n", + " 'Henry was appreciated by potatoes but [potatoes] repaired the toaster..',\n", + " 'Bush was appreciated by potatoes but [potatoes] repaired the toaster..',\n", + " 'Frank was appreciated by potatoes but [potatoes] repaired the toaster..',\n", + " 'Henry was appreciated by Amy but [Amy] repaired the toaster..',\n", + " 'Bush was appreciated by Amy but [Amy] repaired the toaster..',\n", + " 'Frank was appreciated by Amy but [Amy] repaired the toaster..',\n", + " 'Henry was appreciated by Linda but [Linda] repaired the toaster..',\n", + " 'Bush was appreciated by Linda but [Linda] repaired the toaster..',\n", + " 'Frank was appreciated by Linda but [Linda] repaired the toaster..',\n", + " \"Henry was liked by potatoes so [Henry] didn't broke down the toaster..\",\n", + " \"Bush was liked by potatoes so [Bush] didn't broke down the toaster..\",\n", + " \"Frank was liked by potatoes so [Frank] didn't broke down the toaster..\",\n", + " \"Henry was liked by Amy so [Henry] didn't broke down the toaster..\",\n", + " \"Bush was liked by Amy so [Bush] didn't broke down the toaster..\",\n", + " \"Frank was liked by Amy so [Frank] didn't broke down the toaster..\",\n", + " \"Henry was liked by Linda so [Henry] didn't broke down the toaster..\",\n", + " \"Bush was liked by Linda so [Bush] didn't broke down the toaster..\",\n", + " \"Frank was liked by Linda so [Frank] didn't broke down the toaster..\",\n", + " 'Henry was liked by potatoes but [potatoes] repaired the toaster..',\n", + " 'Bush was liked by potatoes but [potatoes] repaired the toaster..',\n", + " 'Frank was liked by potatoes but [potatoes] repaired the toaster..',\n", + " 'Henry was liked by Amy but [Amy] repaired the toaster..',\n", + " 'Bush was liked by Amy but [Amy] repaired the toaster..',\n", + " 'Frank was liked by Amy but [Amy] repaired the toaster..',\n", + " 'Henry was liked by Linda but [Linda] repaired the toaster..',\n", + " 'Bush was liked by Linda but [Linda] repaired the toaster..',\n", + " 'Frank was liked by Linda but [Linda] repaired the toaster..',\n", + " \"Henry was appreciated by potatoes but [potatoes] didn't broke down the toaster..\",\n", + " \"Bush was appreciated by potatoes but [potatoes] didn't broke down the toaster..\",\n", + " \"Frank was appreciated by potatoes but [potatoes] didn't broke down the toaster..\",\n", + " \"Henry was appreciated by Amy but [Amy] didn't broke down the toaster..\",\n", + " \"Bush was appreciated by Amy but [Amy] didn't broke down the toaster..\",\n", + " \"Frank was appreciated by Amy but [Amy] didn't broke down the toaster..\",\n", + " \"Henry was appreciated by Linda but [Linda] didn't broke down the toaster..\",\n", + " \"Bush was appreciated by Linda but [Linda] didn't broke down the toaster..\",\n", + " \"Frank was appreciated by Linda but [Linda] didn't broke down the toaster..\",\n", + " 'potatoes was hate by Henry so [potatoes] broken down the toaster..',\n", + " 'potatoes was hate by Bush so [potatoes] broken down the toaster..',\n", + " 'potatoes was hate by Frank so [potatoes] broken down the toaster..',\n", + " 'Amy was hate by Henry so [Amy] broken down the toaster..',\n", + " 'Amy was hate by Bush so [Amy] broken down the toaster..',\n", + " 'Amy was hate by Frank so [Amy] broken down the toaster..',\n", + " 'Linda was hate by Henry so [Linda] broken down the toaster..',\n", + " 'Linda was hate by Bush so [Linda] broken down the toaster..',\n", + " 'Linda was hate by Frank so [Linda] broken down the toaster..',\n", + " \"potatoes wasn't hate by Henry so [Henry] didn't repaire the toaster..\",\n", + " \"potatoes wasn't hate by Bush so [Bush] didn't repaire the toaster..\",\n", + " \"potatoes wasn't hate by Frank so [Frank] didn't repaire the toaster..\",\n", + " \"Amy wasn't hate by Henry so [Henry] didn't repaire the toaster..\",\n", + " \"Amy wasn't hate by Bush so [Bush] didn't repaire the toaster..\",\n", + " \"Amy wasn't hate by Frank so [Frank] didn't repaire the toaster..\",\n", + " \"Linda wasn't hate by Henry so [Henry] didn't repaire the toaster..\",\n", + " \"Linda wasn't hate by Bush so [Bush] didn't repaire the toaster..\",\n", + " \"Linda wasn't hate by Frank so [Frank] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by potatoes so [Henry] broken down the toaster..\",\n", + " \"Bush wasn't liked by potatoes so [Bush] broken down the toaster..\",\n", + " \"Frank wasn't liked by potatoes so [Frank] broken down the toaster..\",\n", + " \"Henry wasn't liked by Amy so [Henry] broken down the toaster..\",\n", + " \"Bush wasn't liked by Amy so [Bush] broken down the toaster..\",\n", + " \"Frank wasn't liked by Amy so [Frank] broken down the toaster..\",\n", + " \"Henry wasn't liked by Linda so [Henry] broken down the toaster..\",\n", + " \"Bush wasn't liked by Linda so [Bush] broken down the toaster..\",\n", + " \"Frank wasn't liked by Linda so [Frank] broken down the toaster..\",\n", + " \"Henry was appreciated by potatoes but [Henry] didn't repaire the toaster..\",\n", + " \"Bush was appreciated by potatoes but [Bush] didn't repaire the toaster..\",\n", + " \"Frank was appreciated by potatoes but [Frank] didn't repaire the toaster..\",\n", + " \"Henry was appreciated by Amy but [Henry] didn't repaire the toaster..\",\n", + " \"Bush was appreciated by Amy but [Bush] didn't repaire the toaster..\",\n", + " \"Frank was appreciated by Amy but [Frank] didn't repaire the toaster..\",\n", + " \"Henry was appreciated by Linda but [Henry] didn't repaire the toaster..\",\n", + " \"Bush was appreciated by Linda but [Bush] didn't repaire the toaster..\",\n", + " \"Frank was appreciated by Linda but [Frank] didn't repaire the toaster..\",\n", + " \"potatoes wasn't dislike by Henry but [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes wasn't dislike by Bush but [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes wasn't dislike by Frank but [potatoes] didn't repaire the toaster..\",\n", + " \"Amy wasn't dislike by Henry but [Amy] didn't repaire the toaster..\",\n", + " \"Amy wasn't dislike by Bush but [Amy] didn't repaire the toaster..\",\n", + " \"Amy wasn't dislike by Frank but [Amy] didn't repaire the toaster..\",\n", + " \"Linda wasn't dislike by Henry but [Linda] didn't repaire the toaster..\",\n", + " \"Linda wasn't dislike by Bush but [Linda] didn't repaire the toaster..\",\n", + " \"Linda wasn't dislike by Frank but [Linda] didn't repaire the toaster..\",\n", + " 'potatoes was hate by Henry so [Henry] repaired the toaster..',\n", + " 'potatoes was hate by Bush so [Bush] repaired the toaster..',\n", + " 'potatoes was hate by Frank so [Frank] repaired the toaster..',\n", + " 'Amy was hate by Henry so [Henry] repaired the toaster..',\n", + " 'Amy was hate by Bush so [Bush] repaired the toaster..',\n", + " 'Amy was hate by Frank so [Frank] repaired the toaster..',\n", + " 'Linda was hate by Henry so [Henry] repaired the toaster..',\n", + " 'Linda was hate by Bush so [Bush] repaired the toaster..',\n", + " 'Linda was hate by Frank so [Frank] repaired the toaster..',\n", + " \"potatoes wasn't hate by Henry so [Henry] broken down the toaster..\",\n", + " \"potatoes wasn't hate by Bush so [Bush] broken down the toaster..\",\n", + " \"potatoes wasn't hate by Frank so [Frank] broken down the toaster..\",\n", + " \"Amy wasn't hate by Henry so [Henry] broken down the toaster..\",\n", + " \"Amy wasn't hate by Bush so [Bush] broken down the toaster..\",\n", + " \"Amy wasn't hate by Frank so [Frank] broken down the toaster..\",\n", + " \"Linda wasn't hate by Henry so [Henry] broken down the toaster..\",\n", + " \"Linda wasn't hate by Bush so [Bush] broken down the toaster..\",\n", + " \"Linda wasn't hate by Frank so [Frank] broken down the toaster..\",\n", + " \"potatoes wasn't hate by Henry but [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes wasn't hate by Bush but [potatoes] didn't repaire the toaster..\",\n", + " \"potatoes wasn't hate by Frank but [potatoes] didn't repaire the toaster..\",\n", + " \"Amy wasn't hate by Henry but [Amy] didn't repaire the toaster..\",\n", + " \"Amy wasn't hate by Bush but [Amy] didn't repaire the toaster..\",\n", + " \"Amy wasn't hate by Frank but [Amy] didn't repaire the toaster..\",\n", + " \"Linda wasn't hate by Henry but [Linda] didn't repaire the toaster..\",\n", + " \"Linda wasn't hate by Bush but [Linda] didn't repaire the toaster..\",\n", + " \"Linda wasn't hate by Frank but [Linda] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by potatoes but [potatoes] didn't repaire the toaster..\",\n", + " \"Bush wasn't liked by potatoes but [potatoes] didn't repaire the toaster..\",\n", + " \"Frank wasn't liked by potatoes but [potatoes] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by Amy but [Amy] didn't repaire the toaster..\",\n", + " \"Bush wasn't liked by Amy but [Amy] didn't repaire the toaster..\",\n", + " \"Frank wasn't liked by Amy but [Amy] didn't repaire the toaster..\",\n", + " \"Henry wasn't liked by Linda but [Linda] didn't repaire the toaster..\",\n", + " \"Bush wasn't liked by Linda but [Linda] didn't repaire the toaster..\",\n", + " \"Frank wasn't liked by Linda but [Linda] didn't repaire the toaster..\",\n", + " \"potatoes was dislike by Henry so [Henry] didn't broke down the toaster..\",\n", + " \"potatoes was dislike by Bush so [Bush] didn't broke down the toaster..\",\n", + " \"potatoes was dislike by Frank so [Frank] didn't broke down the toaster..\",\n", + " \"Amy was dislike by Henry so [Henry] didn't broke down the toaster..\",\n", + " \"Amy was dislike by Bush so [Bush] didn't broke down the toaster..\",\n", + " \"Amy was dislike by Frank so [Frank] didn't broke down the toaster..\",\n", + " \"Linda was dislike by Henry so [Henry] didn't broke down the toaster..\",\n", + " \"Linda was dislike by Bush so [Bush] didn't broke down the toaster..\",\n", + " \"Linda was dislike by Frank so [Frank] didn't broke down the toaster..\",\n", + " \"Henry wasn't liked by potatoes but [potatoes] broken down the toaster..\",\n", + " \"Bush wasn't liked by potatoes but [potatoes] broken down the toaster..\",\n", + " \"Frank wasn't liked by potatoes but [potatoes] broken down the toaster..\",\n", + " \"Henry wasn't liked by Amy but [Amy] broken down the toaster..\",\n", + " \"Bush wasn't liked by Amy but [Amy] broken down the toaster..\",\n", + " \"Frank wasn't liked by Amy but [Amy] broken down the toaster..\",\n", + " \"Henry wasn't liked by Linda but [Linda] broken down the toaster..\",\n", + " \"Bush wasn't liked by Linda but [Linda] broken down the toaster..\",\n", + " \"Frank wasn't liked by Linda but [Linda] broken down the toaster..\",\n", + " \"potatoes wasn't hate by Henry but [Henry] repaired the toaster..\",\n", + " \"potatoes wasn't hate by Bush but [Bush] repaired the toaster..\",\n", + " \"potatoes wasn't hate by Frank but [Frank] repaired the toaster..\",\n", + " \"Amy wasn't hate by Henry but [Henry] repaired the toaster..\",\n", + " \"Amy wasn't hate by Bush but [Bush] repaired the toaster..\",\n", + " \"Amy wasn't hate by Frank but [Frank] repaired the toaster..\",\n", + " \"Linda wasn't hate by Henry but [Henry] repaired the toaster..\",\n", + " \"Linda wasn't hate by Bush but [Bush] repaired the toaster..\",\n", + " \"Linda wasn't hate by Frank but [Frank] repaired the toaster..\",\n", + " 'potatoes was dislike by Henry so [Henry] repaired the toaster..',\n", + " 'potatoes was dislike by Bush so [Bush] repaired the toaster..',\n", + " 'potatoes was dislike by Frank so [Frank] repaired the toaster..',\n", + " 'Amy was dislike by Henry so [Henry] repaired the toaster..',\n", + " 'Amy was dislike by Bush so [Bush] repaired the toaster..',\n", + " 'Amy was dislike by Frank so [Frank] repaired the toaster..',\n", + " 'Linda was dislike by Henry so [Henry] repaired the toaster..',\n", + " 'Linda was dislike by Bush so [Bush] repaired the toaster..',\n", + " 'Linda was dislike by Frank so [Frank] repaired the toaster..',\n", + " \"potatoes was hate by Henry but [Henry] didn't repaire the toaster..\",\n", + " \"potatoes was hate by Bush but [Bush] didn't repaire the toaster..\",\n", + " \"potatoes was hate by Frank but [Frank] didn't repaire the toaster..\",\n", + " \"Amy was hate by Henry but [Henry] didn't repaire the toaster..\",\n", + " \"Amy was hate by Bush but [Bush] didn't repaire the toaster..\",\n", + " \"Amy was hate by Frank but [Frank] didn't repaire the toaster..\",\n", + " \"Linda was hate by Henry but [Henry] didn't repaire the toaster..\",\n", + " \"Linda was hate by Bush but [Bush] didn't repaire the toaster..\",\n", + " \"Linda was hate by Frank but [Frank] didn't repaire the toaster..\",\n", + " 'Henry was appreciated by potatoes so [potatoes] broken down the toaster..',\n", + " 'Bush was appreciated by potatoes so [potatoes] broken down the toaster..',\n", + " 'Frank was appreciated by potatoes so [potatoes] broken down the toaster..',\n", + " 'Henry was appreciated by Amy so [Amy] broken down the toaster..',\n", + " 'Bush was appreciated by Amy so [Amy] broken down the toaster..',\n", + " 'Frank was appreciated by Amy so [Amy] broken down the toaster..',\n", + " 'Henry was appreciated by Linda so [Linda] broken down the toaster..',\n", + " 'Bush was appreciated by Linda so [Linda] broken down the toaster..',\n", + " 'Frank was appreciated by Linda so [Linda] broken down the toaster..',\n", + " \"Henry wasn't appreciate by potatoes so [Henry] broken down the toaster..\",\n", + " \"Bush wasn't appreciate by potatoes so [Bush] broken down the toaster..\",\n", + " \"Frank wasn't appreciate by potatoes so [Frank] broken down the toaster..\",\n", + " \"Henry wasn't appreciate by Amy so [Henry] broken down the toaster..\",\n", + " \"Bush wasn't appreciate by Amy so [Bush] broken down the toaster..\",\n", + " \"Frank wasn't appreciate by Amy so [Frank] broken down the toaster..\",\n", + " \"Henry wasn't appreciate by Linda so [Henry] broken down the toaster..\",\n", + " \"Bush wasn't appreciate by Linda so [Bush] broken down the toaster..\",\n", + " \"Frank wasn't appreciate by Linda so [Frank] broken down the toaster..\",\n", + " 'Henry was liked by potatoes so [potatoes] broken down the toaster..',\n", + " 'Bush was liked by potatoes so [potatoes] broken down the toaster..',\n", + " 'Frank was liked by potatoes so [potatoes] broken down the toaster..',\n", + " 'Henry was liked by Amy so [Amy] broken down the toaster..',\n", + " 'Bush was liked by Amy so [Amy] broken down the toaster..',\n", + " 'Frank was liked by Amy so [Amy] broken down the toaster..',\n", + " 'Henry was liked by Linda so [Linda] broken down the toaster..',\n", + " 'Bush was liked by Linda so [Linda] broken down the toaster..',\n", + " 'Frank was liked by Linda so [Linda] broken down the toaster..',\n", + " \"Henry wasn't liked by potatoes so [potatoes] didn't broke down the toaster..\",\n", + " \"Bush wasn't liked by potatoes so [potatoes] didn't broke down the toaster..\",\n", + " \"Frank wasn't liked by potatoes so [potatoes] didn't broke down the toaster..\",\n", + " \"Henry wasn't liked by Amy so [Amy] didn't broke down the toaster..\",\n", + " \"Bush wasn't liked by Amy so [Amy] didn't broke down the toaster..\",\n", + " \"Frank wasn't liked by Amy so [Amy] didn't broke down the toaster..\",\n", + " \"Henry wasn't liked by Linda so [Linda] didn't broke down the toaster..\",\n", + " \"Bush wasn't liked by Linda so [Linda] didn't broke down the toaster..\",\n", + " \"Frank wasn't liked by Linda so [Linda] didn't broke down the toaster..\",\n", + " \"potatoes wasn't dislike by Henry but [potatoes] broken down the toaster..\",\n", + " \"potatoes wasn't dislike by Bush but [potatoes] broken down the toaster..\",\n", + " \"potatoes wasn't dislike by Frank but [potatoes] broken down the toaster..\",\n", + " \"Amy wasn't dislike by Henry but [Amy] broken down the toaster..\",\n", + " \"Amy wasn't dislike by Bush but [Amy] broken down the toaster..\",\n", + " \"Amy wasn't dislike by Frank but [Amy] broken down the toaster..\",\n", + " \"Linda wasn't dislike by Henry but [Linda] broken down the toaster..\",\n", + " \"Linda wasn't dislike by Bush but [Linda] broken down the toaster..\",\n", + " \"Linda wasn't dislike by Frank but [Linda] broken down the toaster..\",\n", + " \"Henry was appreciated by potatoes so [potatoes] didn't repaire the toaster..\",\n", + " \"Bush was appreciated by potatoes so [potatoes] didn't repaire the toaster..\",\n", + " \"Frank was appreciated by potatoes so [potatoes] didn't repaire the toaster..\",\n", + " \"Henry was appreciated by Amy so [Amy] didn't repaire the toaster..\",\n", + " \"Bush was appreciated by Amy so [Amy] didn't repaire the toaster..\",\n", + " \"Frank was appreciated by Amy so [Amy] didn't repaire the toaster..\",\n", + " \"Henry was appreciated by Linda so [Linda] didn't repaire the toaster..\",\n", + " \"Bush was appreciated by Linda so [Linda] didn't repaire the toaster..\",\n", + " \"Frank was appreciated by Linda so [Linda] didn't repaire the toaster..\",\n", + " 'potatoes was dislike by Henry but [potatoes] repaired the toaster..',\n", + " 'potatoes was dislike by Bush but [potatoes] repaired the toaster..',\n", + " 'potatoes was dislike by Frank but [potatoes] repaired the toaster..',\n", + " 'Amy was dislike by Henry but [Amy] repaired the toaster..',\n", + " 'Amy was dislike by Bush but [Amy] repaired the toaster..',\n", + " 'Amy was dislike by Frank but [Amy] repaired the toaster..',\n", + " 'Linda was dislike by Henry but [Linda] repaired the toaster..',\n", + " 'Linda was dislike by Bush but [Linda] repaired the toaster..',\n", + " 'Linda was dislike by Frank but [Linda] repaired the toaster..',\n", + " \"potatoes wasn't hate by Henry but [potatoes] broken down the toaster..\",\n", + " \"potatoes wasn't hate by Bush but [potatoes] broken down the toaster..\",\n", + " \"potatoes wasn't hate by Frank but [potatoes] broken down the toaster..\",\n", + " \"Amy wasn't hate by Henry but [Amy] broken down the toaster..\",\n", + " \"Amy wasn't hate by Bush but [Amy] broken down the toaster..\",\n", + " \"Amy wasn't hate by Frank but [Amy] broken down the toaster..\",\n", + " \"Linda wasn't hate by Henry but [Linda] broken down the toaster..\",\n", + " \"Linda wasn't hate by Bush but [Linda] broken down the toaster..\",\n", + " \"Linda wasn't hate by Frank but [Linda] broken down the toaster..\",\n", + " \"potatoes wasn't dislike by Henry so [Henry] broken down the toaster..\",\n", + " \"potatoes wasn't dislike by Bush so [Bush] broken down the toaster..\",\n", + " \"potatoes wasn't dislike by Frank so [Frank] broken down the toaster..\",\n", + " \"Amy wasn't dislike by Henry so [Henry] broken down the toaster..\",\n", + " \"Amy wasn't dislike by Bush so [Bush] broken down the toaster..\",\n", + " \"Amy wasn't dislike by Frank so [Frank] broken down the toaster..\",\n", + " \"Linda wasn't dislike by Henry so [Henry] broken down the toaster..\",\n", + " \"Linda wasn't dislike by Bush so [Bush] broken down the toaster..\",\n", + " \"Linda wasn't dislike by Frank so [Frank] broken down the toaster..\"]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "causal_sentences\n", + "turning_sentences\n", + "substituted_sentences" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "examples = [\n", + " (28,\n", + " 'Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.',\n", + " 'better/worse:study hard'),\n", + " (30,\n", + " 'The firemen arrived after the police because [they] were coming from so far away.',\n", + " 'after/before:far away'),\n", + " (32,\n", + " \"Frank was upset with Tom because the toaster [he] had bought from him didn't work.\",\n", + " 'be upset with:buy from not work/sell not work'),\n", + " (36,\n", + " 'The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.',\n", + " 'above/below:moved first'),\n", + " (38,\n", + " 'Pete envies Martin although [he] is very successful.',\n", + " 'although/because'),\n", + " (42,\n", + " 'I poured water from the bottle into the cup until [it] was empty.',\n", + " 'pour:empty/full'),\n", + " (46,\n", + " \"Sid explained his theory to Mark but [he] couldn't convince him.\",\n", + " 'explain:convince/understand'),\n", + " (48,\n", + " \"Susan knew that Ann's son had been in a car accident, so [she] told her about it.\",\n", + " '?know tell:so/because'),\n", + " (50,\n", + " \"Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.\",\n", + " 'beat:younger/older'),\n", + " (64,\n", + " 'In the middle of the outdoor concert, the rain started falling, but [it] continued until 10.',\n", + " 'but/and'),\n", + " (68,\n", + " 'Ann asked Mary what time the library closes, because [she] had forgotten.',\n", + " 'because/but'),\n", + " (84,\n", + " 'If the con artist has succeeded in fooling Sam, [he] would have gotten a lot of money.',\n", + " 'fool:get/lose'),\n", + " (92,\n", + " 'Alice tried frantically to stop her daughter from chatting at the party, leaving us to wonder why [she] was behaving so strangely.',\n", + " '?stop normal/stop abnormal:strange'),\n", + " (98,\n", + " \"I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] in.\",\n", + " 'put ... into filled with ... :get in/get out'),\n", + " (100,\n", + " 'The dog chased the cat, which ran up a tree. [It] waited at the bottom.',\n", + " 'up:at the bottom/at the top'),\n", + " (106,\n", + " 'John was doing research in the library when he heard a man humming and whistling. [He] was very annoyed.',\n", + " 'hear ... humming and whistling:annoyed/annoying'),\n", + " (108,\n", + " 'John was jogging through the park when he saw a man juggling watermelons. [He] was very impressed.',\n", + " 'see ... juggling watermelons:impressed/impressive'),\n", + " (132,\n", + " 'Jane knocked on the door, and Susan answered it. [She] invited her to come out.',\n", + " 'visit:invite come out/invite come in'),\n", + " (150,\n", + " 'Jackson was greatly influenced by Arnold, though [he] lived two centuries later.',\n", + " 'influence:later/earlier'),\n", + " (160,\n", + " 'The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was too hard to pronounce.',\n", + " 'change:hard/easy'),\n", + " (166,\n", + " 'Fred is the only man still alive who remembers my great-grandfather. [He] is a remarkable man.',\n", + " 'alive:is/was'),\n", + " (170,\n", + " \"In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were defeated within weeks.\",\n", + " 'better equipped and large:defeated/victorious'),\n", + " (186,\n", + " 'When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the minority.',\n", + " 'be full of:minority/majority'),\n", + " (188,\n", + " 'Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make more of [them] .',\n", + " 'like over:more/fewer'),\n", + " (190,\n", + " 'We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply not enough of [them] .',\n", + " 'place on all:not enough/too many'),\n", + " (196,\n", + " \"Steve follows Fred's example in everything. [He] admires him hugely.\",\n", + " 'follow:admire/influence'),\n", + " (198,\n", + " \"The table won't fit through the doorway because [it] is too wide.\",\n", + " 'fit through:wide/narrow'),\n", + " (200,\n", + " 'Grace was happy to trade me her sweater for my jacket. She thinks [it] looks dowdy on her.',\n", + " 'trade:dowdy/great'),\n", + " (202,\n", + " 'John hired Bill to take care of [him] .',\n", + " 'hire/hire oneself to:take care of'),\n", + " (204,\n", + " 'John promised Bill to leave, so an hour later [he] left.',\n", + " 'promise/order'),\n", + " (210,\n", + " \"Jane knocked on Susan's door but [she] did not get an answer.\",\n", + " 'knock:get an answer/answer'),\n", + " (212,\n", + " 'Joe paid the detective after [he] received the final report on the case.',\n", + " 'pay:receive/deliver'),\n", + " (226,\n", + " 'Bill passed the half-empty plate to John because [he] was full.',\n", + " 'pass the plate:full/hungry'),\n", + " (252,\n", + " 'George got free tickets to the play, but he gave them to Eric, even though [he] was particularly eager to see it.',\n", + " 'even though/because/not'),\n", + " (255,\n", + " \"Jane gave Joan candy because [she] wasn't hungry.\",\n", + " 'give:not hungry/hungry'),\n", + " (259,\n", + " 'James asked Robert for a favor but [he] was refused.',\n", + " 'ask for a favor:refuse/be refused`'),\n", + " (261,\n", + " 'Kirilov ceded the presidency to Shatov because [he] was less popular.',\n", + " 'cede:less popular/more popular'),\n", + " (263,\n", + " 'Emma did not pass the ball to Janie although [she] saw that she was open.',\n", + " 'not pass although:see open/open')]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "len(examples)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/WSC_associative_label.json b/WSC_associative_label.json new file mode 100644 index 000000000000..4fd2fd1015ae --- /dev/null +++ b/WSC_associative_label.json @@ -0,0 +1 @@ +[{"index": 0, "sentence": "The city councilmen refused the demonstrators a permit because [they] feared violence.", "answer1": "The demonstrators", "answer0": "The city councilmen", "is_associative": 0, "correct_answer": "The city councilmen"}, {"index": 1, "sentence": "The city councilmen refused the demonstrators a permit because [they] advocated violence.", "answer1": "The demonstrators", "answer0": "The city councilmen", "is_associative": 0, "correct_answer": "The demonstrators"}, {"index": 2, "sentence": "The trophy doesn't fit into the brown suitcase because [it] is too large.", "answer1": "the suitcase", "answer0": "the trophy", "is_associative": 0, "correct_answer": "the trophy"}, {"index": 3, "sentence": "The trophy doesn't fit into the brown suitcase because [it] is too small.", "answer1": "the suitcase", "answer0": "the trophy", "is_associative": 0, "correct_answer": "the suitcase"}, {"index": 4, "sentence": "Joan made sure to thank Susan for all the help [she] had recieved.", "answer1": "Susan", "answer0": "Joan", "is_associative": 0, "correct_answer": "Joan"}, {"index": 5, "sentence": "Joan made sure to thank Susan for all the help [she] had given.", "answer1": "Susan", "answer0": "Joan", "is_associative": 0, "correct_answer": "Susan"}, {"index": 6, "sentence": "Paul tried to call George on the phone, but [he] wasn't successful.", "answer1": "George", "answer0": "Paul", "is_associative": 0, "correct_answer": "Paul"}, {"index": 7, "sentence": "Paul tried to call George on the phone, but [he] wasn't available.", "answer1": "George", "answer0": "Paul", "is_associative": 0, "correct_answer": "George"}, {"index": 8, "sentence": "The lawyer asked the witness a question, but [he] was reluctant to repeat it.", "answer1": "the witness", "answer0": "the lawyer", "is_associative": 0, "correct_answer": "the lawyer"}, {"index": 9, "sentence": "The lawyer asked the witness a question, but [he] was reluctant to answer it.", "answer1": "the witness", "answer0": "the lawyer", "is_associative": 0, "correct_answer": "the witness"}, {"index": 10, "sentence": "The delivery truck zoomed by the school bus because [it] was going so fast.", "answer1": "the school bus", "answer0": "the delivery truck", "is_associative": 0, "correct_answer": "the delivery truck"}, {"index": 11, "sentence": "The delivery truck zoomed by the school bus because [it] was going so slow.", "answer1": "the school bus", "answer0": "the delivery truck", "is_associative": 0, "correct_answer": "the school bus"}, {"index": 12, "sentence": "Frank felt vindicated when his longtime rival Bill revealed that [he] was the winner of the competition.", "answer1": "Bill", "answer0": "Frank", "is_associative": 0, "correct_answer": "Frank"}, {"index": 13, "sentence": "Frank felt crushed when his longtime rival Bill revealed that [he] was the winner of the competition.", "answer1": "Bill", "answer0": "Frank", "is_associative": 0, "correct_answer": "Bill"}, {"index": 14, "sentence": "The man couldn't lift his son because [he] was so weak.", "answer1": "The son", "answer0": "The man", "is_associative": 0, "correct_answer": "The man"}, {"index": 15, "sentence": "The man couldn't lift his son because [he] was so heavy.", "answer1": "The son", "answer0": "The man", "is_associative": 0, "correct_answer": "The son"}, {"index": 16, "sentence": "The large ball crashed right through the table because [it] was made of steel.", "answer1": "The table", "answer0": "The large ball", "is_associative": 0, "correct_answer": "The large ball"}, {"index": 17, "sentence": "The large ball crashed right through the table because [it] was made of styrofoam.", "answer1": "The table", "answer0": "The large ball", "is_associative": 0, "correct_answer": "The table"}, {"index": 18, "sentence": "John couldn't see the stage with Billy in front of him because [he] is so short.", "answer1": "Billy", "answer0": "John", "is_associative": 0, "correct_answer": "John"}, {"index": 19, "sentence": "John couldn't see the stage with Billy in front of him because [he] is so tall.", "answer1": "Billy", "answer0": "John", "is_associative": 0, "correct_answer": "Billy"}, {"index": 20, "sentence": "Tom threw his schoolbag down to Ray after [he] reached the top of the stairs.", "answer1": "Ray", "answer0": "Tom", "is_associative": 0, "correct_answer": "Tom"}, {"index": 21, "sentence": "Tom threw his schoolbag down to Ray after [he] reached the bottom of the stairs.", "answer1": "Ray", "answer0": "Tom", "is_associative": 0, "correct_answer": "Ray"}, {"index": 22, "sentence": "Although they ran at about the same speed, Sue beat Sally because [she] had such a good start.", "answer1": "Sally", "answer0": "Sue", "is_associative": 0, "correct_answer": "Sue"}, {"index": 23, "sentence": "Although they ran at about the same speed, Sue beat Sally because [she] had such a bad start.", "answer1": "Sally", "answer0": "Sue", "is_associative": 0, "correct_answer": "Sally"}, {"index": 24, "sentence": "The sculpture rolled off the shelf because [it] wasn't anchored.", "answer1": "The shelf", "answer0": "The sculpture", "is_associative": 0, "correct_answer": "The sculpture"}, {"index": 25, "sentence": "The sculpture rolled off the shelf because [it] wasn't level.", "answer1": "The shelf", "answer0": "The sculpture", "is_associative": 0, "correct_answer": "The shelf"}, {"index": 26, "sentence": "Sam's drawing was hung just above Tina's and [it] did look much better with another one below it.", "answer1": "Tina's drawing", "answer0": "Sam's drawing", "is_associative": 0, "correct_answer": "Sam's drawing"}, {"index": 27, "sentence": "Sam's drawing was hung just above Tina's and [it] did look much better with another one above it.", "answer1": "Tina's drawing", "answer0": "Sam's drawing", "is_associative": 0, "correct_answer": "Tina's drawing"}, {"index": 28, "sentence": "Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.", "answer1": "Lucy", "answer0": "Anna", "is_associative": 0, "correct_answer": "Anna"}, {"index": 29, "sentence": "Anna did a lot worse than her good friend Lucy on the test because [she] had studied so hard.", "answer1": "Lucy", "answer0": "Anna", "is_associative": 0, "correct_answer": "Lucy"}, {"index": 30, "sentence": "The firemen arrived after the police because [they] were coming from so far away.", "answer1": "The police", "answer0": "The firemen", "is_associative": 0, "correct_answer": "The firemen"}, {"index": 31, "sentence": "The firemen arrived before the police because [they] were coming from so far away.", "answer1": "The police", "answer0": "The firemen", "is_associative": 0, "correct_answer": "The police"}, {"index": 32, "sentence": "Frank was upset with Tom because the toaster [he] had bought from him didn't work.", "answer1": "Tom", "answer0": "Frank", "is_associative": 0, "correct_answer": "Frank"}, {"index": 33, "sentence": "Frank was upset with Tom because the toaster [he] had sold him didn't work.", "answer1": "Tom", "answer0": "Frank", "is_associative": 0, "correct_answer": "Tom"}, {"index": 34, "sentence": "Jim yelled at Kevin because [he] was so upset.", "answer1": "Kevin", "answer0": "Jim", "is_associative": 0, "correct_answer": "Jim"}, {"index": 35, "sentence": "Jim comforted Kevin because [he] was so upset.", "answer1": "Kevin", "answer0": "Jim", "is_associative": 0, "correct_answer": "Kevin"}, {"index": 36, "sentence": "The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.", "answer1": "The bag of flour", "answer0": "The sack of potatoes", "is_associative": 0, "correct_answer": "The sack of potatoes"}, {"index": 37, "sentence": "The sack of potatoes had been placed below the bag of flour, so [it] had to be moved first.", "answer1": "The bag of flour", "answer0": "The sack of potatoes", "is_associative": 0, "correct_answer": "The bag of flour"}, {"index": 38, "sentence": "Pete envies Martin although [he] is very successful.", "answer1": "Martin", "answer0": "Pete", "is_associative": 0, "correct_answer": "Pete"}, {"index": 39, "sentence": "Pete envies Martin because [he] is very successful.", "answer1": "Martin", "answer0": "Pete", "is_associative": 0, "correct_answer": "Martin"}, {"index": 40, "sentence": "The older students were bullying the younger ones, so we punished [them] .", "answer1": "The younger students", "answer0": "The older students", "is_associative": 0, "correct_answer": "The older students"}, {"index": 41, "sentence": "The older students were bullying the younger ones, so we rescued [them] .", "answer1": "The younger students", "answer0": "The older students", "is_associative": 0, "correct_answer": "The younger students"}, {"index": 42, "sentence": "I poured water from the bottle into the cup until [it] was empty.", "answer1": "the cup", "answer0": "the bottle", "is_associative": 0, "correct_answer": "the bottle"}, {"index": 43, "sentence": "I poured water from the bottle into the cup until [it] was full.", "answer1": "the cup", "answer0": "the bottle", "is_associative": 0, "correct_answer": "the cup"}, {"index": 44, "sentence": "Susan knows all about Ann's personal problems because [she] is nosy.", "answer1": "Ann", "answer0": "Susan", "is_associative": 0, "correct_answer": "Susan"}, {"index": 45, "sentence": "Susan knows all about Ann's personal problems because [she] is indiscreet.", "answer1": "Ann", "answer0": "Susan", "is_associative": 0, "correct_answer": "Ann"}, {"index": 46, "sentence": "Sid explained his theory to Mark but [he] couldn't convince him.", "answer1": "Mark", "answer0": "Sid", "is_associative": 0, "correct_answer": "Sid"}, {"index": 47, "sentence": "Sid explained his theory to Mark but [he] couldn't understand him.", "answer1": "Mark", "answer0": "Sid", "is_associative": 0, "correct_answer": "Mark"}, {"index": 48, "sentence": "Susan knew that Ann's son had been in a car accident, so [she] told her about it.", "answer1": "Ann", "answer0": "Susan", "is_associative": 0, "correct_answer": "Susan"}, {"index": 49, "sentence": "Susan knew that Ann's son had been in a car accident, because [she] told her about it.", "answer1": "Ann", "answer0": "Susan", "is_associative": 0, "correct_answer": "Ann"}, {"index": 50, "sentence": "Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.", "answer1": "Joe's uncle", "answer0": "Joe", "is_associative": 0, "correct_answer": "Joe"}, {"index": 51, "sentence": "Joe's uncle can still beat him at tennis, even though [he] is 30 years older.", "answer1": "Joe's uncle", "answer0": "Joe", "is_associative": 0, "correct_answer": "Joe's uncle"}, {"index": 52, "sentence": "The painting in Mark's living room shows an oak tree. [It] is to the right of the bookcase.", "answer1": "The oak tree", "answer0": "The painting", "is_associative": 0, "correct_answer": "The painting"}, {"index": 56, "sentence": "The drain is clogged with hair. [It] has to be cleaned.", "answer1": "The hair", "answer0": "The drain", "is_associative": 0, "correct_answer": "The drain"}, {"index": 57, "sentence": "The drain is clogged with hair. [It] has to be removed.", "answer1": "The hair", "answer0": "The drain", "is_associative": 0, "correct_answer": "The hair"}, {"index": 59, "sentence": "My meeting started at 4:00 and I needed to catch the train at 4:30, so there wasn't much time. Luckily, [it] was delayed, so it worked out.", "answer1": "The train", "answer0": "The meeting", "is_associative": 0, "correct_answer": "The train"}, {"index": 60, "sentence": "There is a pillar between me and the stage, and I can't see around [it] .", "answer1": "The stage", "answer0": "The pillar", "is_associative": 0, "correct_answer": "The pillar"}, {"index": 61, "sentence": "There is a pillar between me and the stage, and I can't see [it] .", "answer1": "The stage", "answer0": "The pillar", "is_associative": 0, "correct_answer": "The stage"}, {"index": 62, "sentence": "They broadcast an announcement, but a subway came into the station and I couldn't hear [it] .", "answer1": "The subway", "answer0": "The announcement", "is_associative": 0, "correct_answer": "The announcement"}, {"index": 63, "sentence": "They broadcast an announcement, but a subway came into the station and I couldn't hear over [it] .", "answer1": "The subway", "answer0": "The announcement", "is_associative": 0, "correct_answer": "The subway"}, {"index": 64, "sentence": "In the middle of the outdoor concert, the rain started falling, but [it] continued until 10.", "answer1": "The rain", "answer0": "The concert", "is_associative": 0, "correct_answer": "The concert"}, {"index": 65, "sentence": "In the middle of the outdoor concert, the rain started falling, and [it] continued until 10.", "answer1": "The rain", "answer0": "The concert", "is_associative": 0, "correct_answer": "The rain"}, {"index": 66, "sentence": "I used an old rag to clean the knife, and then I put [it] in the trash.", "answer1": "The knife", "answer0": "The rag", "is_associative": 0, "correct_answer": "The rag"}, {"index": 67, "sentence": "I used an old rag to clean the knife, and then I put [it] in the drawer.", "answer1": "The knife", "answer0": "The rag", "is_associative": 0, "correct_answer": "The knife"}, {"index": 68, "sentence": "Ann asked Mary what time the library closes, because [she] had forgotten.", "answer1": "Mary", "answer0": "Ann", "is_associative": 0, "correct_answer": "Ann"}, {"index": 69, "sentence": "Ann asked Mary what time the library closes, but [she] had forgotten.", "answer1": "Mary", "answer0": "Ann", "is_associative": 0, "correct_answer": "Mary"}, {"index": 70, "sentence": "I took the water bottle out of the backpack so that [it] would be handy.", "answer1": "The backpack", "answer0": "The water bottle", "is_associative": 0, "correct_answer": "The water bottle"}, {"index": 71, "sentence": "I took the water bottle out of the backpack so that [it] would be lighter.", "answer1": "The backpack", "answer0": "The water bottle", "is_associative": 0, "correct_answer": "The backpack"}, {"index": 73, "sentence": "I couldn't put the pot on the shelf because [it] was too high.", "answer1": "The shelf", "answer0": "The pot", "is_associative": 0, "correct_answer": "The shelf"}, {"index": 76, "sentence": "Bob paid for Charlie's college education. [He] is very generous.", "answer1": "Charlie", "answer0": "Bob", "is_associative": 0, "correct_answer": "Bob"}, {"index": 77, "sentence": "Bob paid for Charlie's college education. [He] is very grateful.", "answer1": "Charlie", "answer0": "Bob", "is_associative": 0, "correct_answer": "Charlie"}, {"index": 78, "sentence": "Bob paid for Charlie's college education, but now Charlie acts as though it never happened. [He] is very hurt.", "answer1": "Charlie", "answer0": "Bob", "is_associative": 0, "correct_answer": "Bob"}, {"index": 79, "sentence": "Bob paid for Charlie's college education, but now Charlie acts as though it never happened. [He] is very ungrateful.", "answer1": "Charlie", "answer0": "Bob", "is_associative": 0, "correct_answer": "Charlie"}, {"index": 80, "sentence": "Bob was playing cards with Adam and was way ahead. If Adam hadn't had a sudden run of good luck, [he] would have won.", "answer1": "Adam", "answer0": "Bob", "is_associative": 0, "correct_answer": "Bob"}, {"index": 81, "sentence": "Bob was playing cards with Adam and was way ahead. If Adam hadn't had a sudden run of good luck, [he] would have lost.", "answer1": "Adam", "answer0": "Bob", "is_associative": 0, "correct_answer": "Adam"}, {"index": 82, "sentence": "Adam can't leave work here until Bob arrives to replace him. If Bob had left home for work on time, [he] would be gone by this time.", "answer1": "Bob", "answer0": "Adam", "is_associative": 0, "correct_answer": "Adam"}, {"index": 83, "sentence": "Adam can't leave work here until Bob arrives to replace him. If Bob had left home for work on time, [he] would be here by this time.", "answer1": "Bob", "answer0": "Adam", "is_associative": 0, "correct_answer": "Bob"}, {"index": 84, "sentence": "If the con artist has succeeded in fooling Sam, [he] would have gotten a lot of money.", "answer1": "Sam", "answer0": "The con artist", "is_associative": 0, "correct_answer": "The con artist"}, {"index": 85, "sentence": "If the con artist has succeeded in fooling Sam, [he] would have lost a lot of money.", "answer1": "Sam", "answer0": "The con artist", "is_associative": 0, "correct_answer": "Sam"}, {"index": 86, "sentence": "It was a summer afternoon, and the dog was sitting in the middle of the lawn. After a while, it got up and moved to a spot under the tree, because [it] was hot.", "answer1": "The spot under the tree", "answer0": "The dog", "is_associative": 0, "correct_answer": "The dog"}, {"index": 88, "sentence": "The cat was lying by the mouse hole waiting for the mouse, but [it] was too impatient.", "answer1": "The mouse", "answer0": "The cat", "is_associative": 0, "correct_answer": "The cat"}, {"index": 89, "sentence": "The cat was lying by the mouse hole waiting for the mouse, but [it] was too cautious.", "answer1": "The mouse", "answer0": "The cat", "is_associative": 0, "correct_answer": "The mouse"}, {"index": 90, "sentence": "Anne gave birth to a daughter last month. [She] is a very charming woman.", "answer1": "Anne's daughter", "answer0": "Anne", "is_associative": 0, "correct_answer": "Anne"}, {"index": 91, "sentence": "Anne gave birth to a daughter last month. [She] is a very charming baby.", "answer1": "Anne's daughter", "answer0": "Anne", "is_associative": 0, "correct_answer": "Anne's daughter"}, {"index": 92, "sentence": "Alice tried frantically to stop her daughter from chatting at the party, leaving us to wonder why [she] was behaving so strangely.", "answer1": "Alice's daughter", "answer0": "Alice", "is_associative": 0, "correct_answer": "Alice"}, {"index": 93, "sentence": "Alice tried frantically to stop her daughter from barking at the party, leaving us to wonder why [she] was behaving so strangely.", "answer1": "Alice's daughter", "answer0": "Alice", "is_associative": 0, "correct_answer": "Alice's daughter"}, {"index": 94, "sentence": "I saw Jim yelling at some guy in a military uniform with a huge red beard. I don't know why [he] was, but he looked very unhappy.", "answer1": "the guy in uniform", "answer0": "Jim", "is_associative": 0, "correct_answer": "Jim"}, {"index": 95, "sentence": "I saw Jim yelling at some guy in a military uniform with a huge red beard. I don't know who [he] was, but he looked very unhappy.", "answer1": "the guy in uniform", "answer0": "Jim", "is_associative": 0, "correct_answer": "the guy in uniform"}, {"index": 96, "sentence": "The fish ate the worm. [It] was hungry.", "answer1": "The worm", "answer0": "The fish", "is_associative": 0, "correct_answer": "The fish"}, {"index": 97, "sentence": "The fish ate the worm. [It] was tasty.", "answer1": "The worm", "answer0": "The fish", "is_associative": 0, "correct_answer": "The worm"}, {"index": 99, "sentence": "I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] out.", "answer1": "The chewing gum", "answer0": "The key", "is_associative": 0, "correct_answer": "The chewing gum"}, {"index": 100, "sentence": "The dog chased the cat, which ran up a tree. [It] waited at the bottom.", "answer1": "The cat", "answer0": "The dog", "is_associative": 0, "correct_answer": "The dog"}, {"index": 101, "sentence": "The dog chased the cat, which ran up a tree. [It] waited at the top.", "answer1": "The cat", "answer0": "The dog", "is_associative": 0, "correct_answer": "The cat"}, {"index": 102, "sentence": "In the storm, the tree fell down and crashed through the roof of my house. Now, I have to get [it] removed.", "answer1": "The roof", "answer0": "The tree", "is_associative": 0, "correct_answer": "The tree"}, {"index": 104, "sentence": "The customer walked into the bank and stabbed one of the tellers. [He] was immediately taken to the police station.", "answer1": "The teller", "answer0": "The customer", "is_associative": 0, "correct_answer": "The customer"}, {"index": 105, "sentence": "The customer walked into the bank and stabbed one of the tellers. [He] was immediately taken to the hospital.", "answer1": "The teller", "answer0": "The customer", "is_associative": 0, "correct_answer": "The teller"}, {"index": 106, "sentence": "John was doing research in the library when he heard a man humming and whistling. [He] was very annoyed.", "answer1": "The man", "answer0": "John", "is_associative": 0, "correct_answer": "John"}, {"index": 107, "sentence": "John was doing research in the library when he heard a man humming and whistling. [He] was very annoying.", "answer1": "The man", "answer0": "John", "is_associative": 0, "correct_answer": "The man"}, {"index": 108, "sentence": "John was jogging through the park when he saw a man juggling watermelons. [He] was very impressed.", "answer1": "The juggler", "answer0": "John", "is_associative": 0, "correct_answer": "John"}, {"index": 110, "sentence": "Bob collapsed on the sidewalk. Soon he saw Carl coming to help. [He] was very ill.", "answer1": "Carl", "answer0": "Bob", "is_associative": 0, "correct_answer": "Bob"}, {"index": 111, "sentence": "Bob collapsed on the sidewalk. Soon he saw Carl coming to help. [He] was very concerned.", "answer1": "Carl", "answer0": "Bob", "is_associative": 0, "correct_answer": "Carl"}, {"index": 113, "sentence": "Sam and Amy are passionately in love, but Amy's parents are unhappy about it, because [they] are snobs.", "answer1": "Amy's parents", "answer0": "Sam and Amy", "is_associative": 0, "correct_answer": "Amy's parents"}, {"index": 114, "sentence": "Mark told Pete many lies about himself, which Pete included in his book. [He] should have been more truthful.", "answer1": "Pete", "answer0": "Mark", "is_associative": 0, "correct_answer": "Mark"}, {"index": 115, "sentence": "Mark told Pete many lies about himself, which Pete included in his book. [He] should have been more skeptical.", "answer1": "Pete", "answer0": "Mark", "is_associative": 0, "correct_answer": "Pete"}, {"index": 121, "sentence": "Mary took out her flute and played one of her favorite pieces. She has loved [it] since she was a child.", "answer1": "The piece", "answer0": "The flute", "is_associative": 0, "correct_answer": "The piece"}, {"index": 122, "sentence": "Sam pulled up a chair to the piano, but [it] was broken, so he had to stand instead.", "answer1": "The piano", "answer0": "The chair", "is_associative": 0, "correct_answer": "The chair"}, {"index": 123, "sentence": "Sam pulled up a chair to the piano, but [it] was broken, so he had to sing instead.", "answer1": "The piano", "answer0": "The chair", "is_associative": 0, "correct_answer": "The piano"}, {"index": 124, "sentence": "Since it was raining, I carried the newspaper in my backpack to keep [it] dry.", "answer1": "The backpack", "answer0": "The newspaper", "is_associative": 0, "correct_answer": "The newspaper"}, {"index": 125, "sentence": "Since it was raining, I carried the newspaper over my backpack to keep [it] dry.", "answer1": "The backpack", "answer0": "The newspaper", "is_associative": 0, "correct_answer": "The backpack"}, {"index": 126, "sentence": "Sara borrowed the book from the library because she needs it for an article she is working on. She reads [it] when she gets home from work.", "answer1": "The article", "answer0": "The book", "is_associative": 0, "correct_answer": "The book"}, {"index": 127, "sentence": "Sara borrowed the book from the library because she needs it for an article she is working on. She writes [it] when she gets home from work.", "answer1": "The article", "answer0": "The book", "is_associative": 0, "correct_answer": "The article"}, {"index": 128, "sentence": "This morning, Joey built a sand castle on the beach, and put a toy flag in the highest tower, but this afternoon the tide knocked [it] down.", "answer1": "The flag", "answer0": "The sand castle", "is_associative": 0, "correct_answer": "The sand castle"}, {"index": 129, "sentence": "This morning, Joey built a sand castle on the beach, and put a toy flag in the highest tower, but this afternoon the wind knocked [it] down.", "answer1": "The flag", "answer0": "The sand castle", "is_associative": 0, "correct_answer": "The flag"}, {"index": 130, "sentence": "Jane knocked on Susan's door, but there was no answer. [She] was disappointed.", "answer1": "Susan", "answer0": "Jane", "is_associative": 0, "correct_answer": "Jane"}, {"index": 131, "sentence": "Jane knocked on Susan's door, but there was no answer. [She] was out.", "answer1": "Susan", "answer0": "Jane", "is_associative": 0, "correct_answer": "Susan"}, {"index": 132, "sentence": "Jane knocked on the door, and Susan answered it. [She] invited her to come out.", "answer1": "Susan", "answer0": "Jane", "is_associative": 0, "correct_answer": "Jane"}, {"index": 133, "sentence": "Jane knocked on the door, and Susan answered it. [She] invited her to come in.", "answer1": "Susan", "answer0": "Jane", "is_associative": 0, "correct_answer": "Susan"}, {"index": 134, "sentence": "Sam took French classes from Adam, because [he] was eager to speak it fluently.", "answer1": "Adam", "answer0": "Sam", "is_associative": 0, "correct_answer": "Sam"}, {"index": 135, "sentence": "Sam took French classes from Adam, because [he] was known to speak it fluently.", "answer1": "Adam", "answer0": "Sam", "is_associative": 0, "correct_answer": "Adam"}, {"index": 139, "sentence": "The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, [it] was gone.", "answer1": "The cloud", "answer0": "The sun", "is_associative": 0, "correct_answer": "The cloud"}, {"index": 140, "sentence": "We went to the lake, because a shark had been seen at the ocean beach, so [it] was a safer place to swim.", "answer1": "The ocean beach", "answer0": "The lake", "is_associative": 0, "correct_answer": "The lake"}, {"index": 141, "sentence": "We went to the lake, because a shark had been seen at the ocean beach, so [it] was a dangerous place to swim.", "answer1": "The ocean beach", "answer0": "The lake", "is_associative": 0, "correct_answer": "The ocean beach"}, {"index": 142, "sentence": "Sam tried to paint a picture of shepherds with sheep, but [they] ended up looking more like golfers.", "answer1": "The sheep", "answer0": "The shepherds", "is_associative": 0, "correct_answer": "The shepherds"}, {"index": 143, "sentence": "Sam tried to paint a picture of shepherds with sheep, but [they] ended up looking more like dogs.", "answer1": "The sheep", "answer0": "The shepherds", "is_associative": 0, "correct_answer": "The sheep"}, {"index": 144, "sentence": "Mary tucked her daughter Anne into bed, so that [she] could work.", "answer1": "Mary's daughter", "answer0": "Mary", "is_associative": 0, "correct_answer": "Mary"}, {"index": 145, "sentence": "Mary tucked her daughter Anne into bed, so that [she] could sleep.", "answer1": "Mary's daughter", "answer0": "Mary", "is_associative": 0, "correct_answer": "Mary's daughter"}, {"index": 148, "sentence": "Thomson visited Cooper's grave in 1765. At that date [he] had been travelling for five years.", "answer1": "Cooper", "answer0": "Thomson", "is_associative": 0, "correct_answer": "Thomson"}, {"index": 149, "sentence": "Thomson visited Cooper's grave in 1765. At that date [he] had been dead for five years.", "answer1": "Cooper", "answer0": "Thomson", "is_associative": 0, "correct_answer": "Cooper"}, {"index": 150, "sentence": "Jackson was greatly influenced by Arnold, though [he] lived two centuries later.", "answer1": "Arnold", "answer0": "Jackson", "is_associative": 0, "correct_answer": "Jackson"}, {"index": 151, "sentence": "Jackson was greatly influenced by Arnold, though [he] lived two centuries earlier.", "answer1": "Arnold", "answer0": "Jackson", "is_associative": 0, "correct_answer": "Arnold"}, {"index": 152, "sentence": "I can't cut that tree down with that axe; [it] is too thick.", "answer1": "The axe", "answer0": "The tree", "is_associative": 0, "correct_answer": "The tree"}, {"index": 153, "sentence": "I can't cut that tree down with that axe; [it] is too small.", "answer1": "The axe", "answer0": "The tree", "is_associative": 0, "correct_answer": "The axe"}, {"index": 154, "sentence": "The foxes are getting in at night and attacking the chickens. I shall have to kill [them] .", "answer1": "The chickens", "answer0": "The foxes", "is_associative": 0, "correct_answer": "The foxes"}, {"index": 156, "sentence": "The foxes are getting in at night and attacking the chickens. [They] have gotten very bold.", "answer1": "The chickens", "answer0": "The foxes", "is_associative": 0, "correct_answer": "The foxes"}, {"index": 157, "sentence": "The foxes are getting in at night and attacking the chickens. [They] have gotten very nervous.", "answer1": "The chickens", "answer0": "The foxes", "is_associative": 0, "correct_answer": "The chickens"}, {"index": 159, "sentence": "Fred covered his eyes with his hands, because the wind was blowing sand around. He lowered [them] when the wind stopped.", "answer1": "His hands", "answer0": "His eyes", "is_associative": 0, "correct_answer": "His hands"}, {"index": 160, "sentence": "The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was too hard to pronounce.", "answer1": "Tina", "answer0": "Terpsichore", "is_associative": 0, "correct_answer": "Terpsichore"}, {"index": 161, "sentence": "The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was easier to pronounce.", "answer1": "Tina", "answer0": "Terpsichore", "is_associative": 0, "correct_answer": "Tina"}, {"index": 162, "sentence": "Fred watched TV while George went out to buy groceries. After an hour [he] got up.", "answer1": "George", "answer0": "Fred", "is_associative": 0, "correct_answer": "Fred"}, {"index": 163, "sentence": "Fred watched TV while George went out to buy groceries. After an hour [he] got back.", "answer1": "George", "answer0": "Fred", "is_associative": 0, "correct_answer": "George"}, {"index": 164, "sentence": "Fred was supposed to run the dishwasher, but he put it off, because he wanted to watch TV. But the show turned out to be boring, so he changed his mind and turned [it] on.", "answer1": "The TV", "answer0": "The dishwasher", "is_associative": 0, "correct_answer": "The dishwasher"}, {"index": 165, "sentence": "Fred was supposed to run the dishwasher, but he put it off, because he wanted to watch TV. But the show turned out to be boring, so he changed his mind and turned [it] off.", "answer1": "The TV", "answer0": "The dishwasher", "is_associative": 0, "correct_answer": "The TV"}, {"index": 166, "sentence": "Fred is the only man still alive who remembers my great-grandfather. [He] is a remarkable man.", "answer1": "My great-grandfather", "answer0": "Fred", "is_associative": 0, "correct_answer": "Fred"}, {"index": 167, "sentence": "Fred is the only man still alive who remembers my great-grandfather. [He] was a remarkable man.", "answer1": "My great-grandfather", "answer0": "Fred", "is_associative": 0, "correct_answer": "My great-grandfather"}, {"index": 168, "sentence": "Fred is the only man alive who still remembers my father as an infant. When Fred first saw my father, [he] was twelve years old.", "answer1": "My father", "answer0": "Fred", "is_associative": 0, "correct_answer": "Fred"}, {"index": 169, "sentence": "Fred is the only man alive who still remembers my father as an infant. When Fred first saw my father, [he] was twelve months old.", "answer1": "My father", "answer0": "Fred", "is_associative": 0, "correct_answer": "My father"}, {"index": 170, "sentence": "In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were defeated within weeks.", "answer1": "Yakutsk", "answer0": "Kamchatka", "is_associative": 0, "correct_answer": "Kamchatka"}, {"index": 171, "sentence": "In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were victorious within weeks.", "answer1": "Yakutsk", "answer0": "Kamchatka", "is_associative": 0, "correct_answer": "Yakutsk"}, {"index": 172, "sentence": "Look! There is a minnow swimming right below that duck! [It] had better get away to safety fast!", "answer1": "The duck", "answer0": "The minnow", "is_associative": 0, "correct_answer": "The minnow"}, {"index": 173, "sentence": "Look! There is a shark swimming right below that duck! [It] had better get away to safety fast!", "answer1": "The duck", "answer0": "The shark", "is_associative": 0, "correct_answer": "The duck"}, {"index": 178, "sentence": "The journalists interviewed the stars of the new movie. [They] were very persistent, so the interview lasted for a long time.", "answer1": "The stars", "answer0": "The journalists", "is_associative": 0, "correct_answer": "The journalists"}, {"index": 179, "sentence": "The journalists interviewed the stars of the new movie. [They] were very cooperative, so the interview lasted for a long time.", "answer1": "The stars", "answer0": "The journalists", "is_associative": 0, "correct_answer": "The stars"}, {"index": 186, "sentence": "When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the minority.", "answer1": "The opponents", "answer0": "The sponsors", "is_associative": 0, "correct_answer": "The sponsors"}, {"index": 187, "sentence": "When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the majority.", "answer1": "The opponents", "answer0": "The sponsors", "is_associative": 0, "correct_answer": "The opponents"}, {"index": 188, "sentence": "Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make more of [them] .", "answer1": "The chocolate chip cookies", "answer0": "The oatmeal cookies", "is_associative": 0, "correct_answer": "The oatmeal cookies"}, {"index": 189, "sentence": "Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make fewer of [them] .", "answer1": "The chocolate chip cookies", "answer0": "The oatmeal cookies", "is_associative": 0, "correct_answer": "The chocolate chip cookies"}, {"index": 190, "sentence": "We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply not enough of [them] .", "answer1": "chairs", "answer0": "copies of the newsletter", "is_associative": 0, "correct_answer": "copies of the newsletter"}, {"index": 191, "sentence": "We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply too many of [them] .", "answer1": "chairs", "answer0": "copies of the newsletter", "is_associative": 0, "correct_answer": "chairs"}, {"index": 193, "sentence": "I stuck a pin through a carrot. When I pulled the pin out, [it] had a hole.", "answer1": "The carrot", "answer0": "The pin", "is_associative": 0, "correct_answer": "The carrot"}, {"index": 194, "sentence": "I couldn't find a spoon, so I tried using a pen to stir my coffee. But that turned out to be a bad idea, because [it] got full of coffee.", "answer1": "The coffee", "answer0": "The pen", "is_associative": 0, "correct_answer": "The pen"}, {"index": 195, "sentence": "I couldn't find a spoon, so I tried using a pen to stir my coffee. But that turned out to be a bad idea, because [it] got full of ink.", "answer1": "The coffee", "answer0": "The pen", "is_associative": 0, "correct_answer": "The coffee"}, {"index": 196, "sentence": "Steve follows Fred's example in everything. [He] admires him hugely.", "answer1": "Fred", "answer0": "Steve", "is_associative": 0, "correct_answer": "Steve"}, {"index": 197, "sentence": "Steve follows Fred's example in everything. [He] influences him hugely.", "answer1": "Fred", "answer0": "Steve", "is_associative": 0, "correct_answer": "Fred"}, {"index": 198, "sentence": "The table won't fit through the doorway because [it] is too wide.", "answer1": "The doorway", "answer0": "The table", "is_associative": 0, "correct_answer": "The table"}, {"index": 199, "sentence": "The table won't fit through the doorway because [it] is too narrow.", "answer1": "The doorway", "answer0": "The table", "is_associative": 0, "correct_answer": "The doorway"}, {"index": 200, "sentence": "Grace was happy to trade me her sweater for my jacket. She thinks [it] looks dowdy on her.", "answer1": "The jacket", "answer0": "The sweater", "is_associative": 0, "correct_answer": "The sweater"}, {"index": 201, "sentence": "Grace was happy to trade me her sweater for my jacket. She thinks [it] looks great on her.", "answer1": "The jacket", "answer0": "The sweater", "is_associative": 0, "correct_answer": "The jacket"}, {"index": 202, "sentence": "John hired Bill to take care of [him] .", "answer1": "Bill", "answer0": "John", "is_associative": 0, "correct_answer": "John"}, {"index": 203, "sentence": "John hired himself out to Bill to take care of [him] .", "answer1": "Bill", "answer0": "John", "is_associative": 0, "correct_answer": "Bill"}, {"index": 204, "sentence": "John promised Bill to leave, so an hour later [he] left.", "answer1": "Bill", "answer0": "John", "is_associative": 0, "correct_answer": "John"}, {"index": 205, "sentence": "John ordered Bill to leave, so an hour later [he] left.", "answer1": "Bill", "answer0": "John", "is_associative": 0, "correct_answer": "Bill"}, {"index": 206, "sentence": "Sam Goodman's biography of the Spartan general Xenophanes conveys a vivid sense of the difficulties [he] faced in his research.", "answer1": "Xenophanes", "answer0": "Goodman", "is_associative": 0, "correct_answer": "Goodman"}, {"index": 207, "sentence": "Sam Goodman's biography of the Spartan general Xenophanes conveys a vivid sense of the difficulties [he] faced in his childhood.", "answer1": "Xenophanes", "answer0": "Goodman", "is_associative": 0, "correct_answer": "Xenophanes"}, {"index": 208, "sentence": "Emma's mother had died long ago, and [her] education had been managed by an excellent woman as governess.", "answer1": "Emma's mother", "answer0": "Emma", "is_associative": 0, "correct_answer": "Emma"}, {"index": 209, "sentence": "Emma's mother had died long ago, and [her] place had been taken by an excellent woman as governess.", "answer1": "Emma's mother", "answer0": "Emma", "is_associative": 0, "correct_answer": "Emma's mother"}, {"index": 210, "sentence": "Jane knocked on Susan's door but [she] did not get an answer.", "answer1": "Susan", "answer0": "Jane", "is_associative": 0, "correct_answer": "Jane"}, {"index": 211, "sentence": "Jane knocked on Susan's door but [she] did not answer.", "answer1": "Susan", "answer0": "Jane", "is_associative": 0, "correct_answer": "Susan"}, {"index": 212, "sentence": "Joe paid the detective after [he] received the final report on the case.", "answer1": "the detective", "answer0": "Joe", "is_associative": 0, "correct_answer": "Joe"}, {"index": 213, "sentence": "Joe paid the detective after [he] delivered the final report on the case.", "answer1": "the detective", "answer0": "Joe", "is_associative": 0, "correct_answer": "the detective"}, {"index": 214, "sentence": "Beth didn't get angry with Sally, who had cut her off, because [she] stopped and counted to ten.", "answer1": "Sally", "answer0": "Beth", "is_associative": 0, "correct_answer": "Beth"}, {"index": 215, "sentence": "Beth didn't get angry with Sally, who had cut her off, because [she] stopped and apologized.", "answer1": "Sally", "answer0": "Beth", "is_associative": 0, "correct_answer": "Sally"}, {"index": 216, "sentence": "Jim signaled the barman and gestured toward [his] empty glass", "answer1": "The barman", "answer0": "Jim", "is_associative": 0, "correct_answer": "Jim"}, {"index": 217, "sentence": "Jim signaled the barman and gestured toward [his] bathroom key.", "answer1": "The barman", "answer0": "Jim", "is_associative": 0, "correct_answer": "The barman"}, {"index": 218, "sentence": "Dan took the rear seat while Bill claimed the front because [his] \"Dibs!\" was slow.", "answer1": "Bill", "answer0": "Dan", "is_associative": 0, "correct_answer": "Dan"}, {"index": 219, "sentence": "Dan took the rear seat while Bill claimed the front because [his] \"Dibs!\" was quicker.", "answer1": "Bill", "answer0": "Dan", "is_associative": 0, "correct_answer": "Bill"}, {"index": 220, "sentence": "Tom said \"Check\" to Ralph as he moved [his] bishop.", "answer1": "Ralph", "answer0": "Tom", "is_associative": 0, "correct_answer": "Tom"}, {"index": 221, "sentence": "Tom said \"Check\" to Ralph as he took [his] bishop.", "answer1": "Ralph", "answer0": "Tom", "is_associative": 0, "correct_answer": "Ralph"}, {"index": 222, "sentence": "As Andrea in the crop duster passed over Susan, [she] could see the landing strip.", "answer1": "Susan", "answer0": "Andrea", "is_associative": 0, "correct_answer": "Andrea"}, {"index": 223, "sentence": "As Andrea in the crop duster passed over Susan, [she] could see the landing gear.", "answer1": "Susan", "answer0": "Andrea", "is_associative": 0, "correct_answer": "Susan"}, {"index": 224, "sentence": "Tom gave Ralph a lift to school so [he] wouldn't have to drive alone.", "answer1": "Ralph", "answer0": "Tom", "is_associative": 0, "correct_answer": "Tom"}, {"index": 225, "sentence": "Tom gave Ralph a lift to school so [he] wouldn't have to walk.", "answer1": "Ralph", "answer0": "Tom", "is_associative": 0, "correct_answer": "Ralph"}, {"index": 226, "sentence": "Bill passed the half-empty plate to John because [he] was full.", "answer1": "John", "answer0": "Bill", "is_associative": 0, "correct_answer": "Bill"}, {"index": 227, "sentence": "Bill passed the half-empty plate to John because [he] was hungry.", "answer1": "John", "answer0": "Bill", "is_associative": 0, "correct_answer": "John"}, {"index": 228, "sentence": "Bill passed the gameboy to John because [his] turn was over.", "answer1": "John", "answer0": "Bill", "is_associative": 0, "correct_answer": "Bill"}, {"index": 229, "sentence": "Bill passed the gameboy to John because [his] turn was next.", "answer1": "John", "answer0": "Bill", "is_associative": 0, "correct_answer": "John"}, {"index": 230, "sentence": "The man lifted the boy onto [his] shoulders.", "answer1": "The boy", "answer0": "The man", "is_associative": 0, "correct_answer": "The man"}, {"index": 232, "sentence": "Stretching [her] back, the woman smiled at the girl.", "answer1": "The girl", "answer0": "The woman", "is_associative": 0, "correct_answer": "The woman"}, {"index": 233, "sentence": "Patting [her] back, the woman smiled at the girl.", "answer1": "The girl", "answer0": "The woman", "is_associative": 0, "correct_answer": "The girl"}, {"index": 234, "sentence": "Billy cried because Toby wouldn't accept [his] toy.", "answer1": "Toby", "answer0": "Billy", "is_associative": 0, "correct_answer": "Billy"}, {"index": 235, "sentence": "Billy cried because Toby wouldn't share [his] toy.", "answer1": "Toby", "answer0": "Billy", "is_associative": 0, "correct_answer": "Toby"}, {"index": 236, "sentence": "Lily spoke to Donna, breaking [her] silence.", "answer1": "Donna", "answer0": "Lily", "is_associative": 0, "correct_answer": "Lily"}, {"index": 237, "sentence": "Lily spoke to Donna, breaking [her] concentration.", "answer1": "Donna", "answer0": "Lily", "is_associative": 0, "correct_answer": "Donna"}, {"index": 238, "sentence": "When Tommy dropped his ice cream, Timmy giggled, so father gave [him] a sympathetic look.", "answer1": "Timmy", "answer0": "Tommy", "is_associative": 0, "correct_answer": "Tommy"}, {"index": 239, "sentence": "When Tommy dropped his ice cream, Timmy giggled, so father gave [him] a stern look.", "answer1": "Timmy", "answer0": "Tommy", "is_associative": 0, "correct_answer": "Timmy"}, {"index": 240, "sentence": "As Ollie carried Tommy up the long winding steps, [his] legs ached.", "answer1": "Tommy", "answer0": "Ollie", "is_associative": 0, "correct_answer": "Ollie"}, {"index": 241, "sentence": "As Ollie carried Tommy up the long winding steps, [his] legs dangled.", "answer1": "Tommy", "answer0": "Ollie", "is_associative": 0, "correct_answer": "Tommy"}, {"index": 242, "sentence": "The father carried the sleeping boy in [his] arms", "answer1": "The boy", "answer0": "The father", "is_associative": 0, "correct_answer": "The father"}, {"index": 243, "sentence": "The father carried the sleeping boy in [his] bassinet.", "answer1": "The boy", "answer0": "The father", "is_associative": 0, "correct_answer": "The boy"}, {"index": 244, "sentence": "The woman held the girl against [her] chest", "answer1": "The girl", "answer0": "The woman", "is_associative": 0, "correct_answer": "The woman"}, {"index": 245, "sentence": "The woman held the girl against [her] will.", "answer1": "The girl", "answer0": "The woman", "is_associative": 0, "correct_answer": "The girl"}, {"index": 246, "sentence": "Pam's parents came home and found her having sex with her boyfriend, Paul. [They] were furious about it.", "answer1": "Pam and Paul", "answer0": "Pam's parents", "is_associative": 0, "correct_answer": "Pam's parents"}, {"index": 247, "sentence": "Pam's parents came home and found her having sex with her boyfriend, Paul. [They] were embarrassed about it.", "answer1": "Pam and Paul", "answer0": "Pam's parents", "is_associative": 0, "correct_answer": "Pam and Paul"}, {"index": 248, "sentence": "Dr. Adams informed Kate that [she] had retired and presented several options for future treatment.", "answer1": "Kate", "answer0": "Dr. Adams", "is_associative": 0, "correct_answer": "Dr. Adams"}, {"index": 249, "sentence": "Dr. Adams informed Kate that [she] had cancer and presented several options for future treatment.", "answer1": "Kate", "answer0": "Dr. Adams", "is_associative": 0, "correct_answer": "Kate"}, {"index": 250, "sentence": "Dan had to stop Bill from toying with the injured bird. [He] is very compassionate.", "answer1": "Bill", "answer0": "Dan", "is_associative": 0, "correct_answer": "Dan"}, {"index": 251, "sentence": "Dan had to stop Bill from toying with the injured bird. [He] is very cruel.", "answer1": "Bill", "answer0": "Dan", "is_associative": 0, "correct_answer": "Bill"}, {"index": 252, "sentence": "George got free tickets to the play, but he gave them to Eric, even though [he] was particularly eager to see it.", "answer1": "Eric", "answer0": "George", "is_associative": 0, "correct_answer": "George"}, {"index": 253, "sentence": "George got free tickets to the play, but he gave them to Eric, because [he] was particularly eager to see it.", "answer1": "Eric", "answer0": "George", "is_associative": 0, "correct_answer": "Eric"}, {"index": 254, "sentence": "George got free tickets to the play, but he gave them to Eric, because [he] was not particularly eager to see it.", "answer1": "Eric", "answer0": "George", "is_associative": 0, "correct_answer": "George"}, {"index": 255, "sentence": "Jane gave Joan candy because [she] wasn't hungry.", "answer1": "Joan", "answer0": "Jane", "is_associative": 0, "correct_answer": "Jane"}, {"index": 256, "sentence": "Jane gave Joan candy because [she] was hungry.", "answer1": "Joan", "answer0": "Jane", "is_associative": 0, "correct_answer": "Joan"}, {"index": 257, "sentence": "I tried to paint a picture of an orchard, with lemons in the lemon trees, but [they] came out looking more like light bulbs.", "answer1": "lemon trees", "answer0": "lemons", "is_associative": 0, "correct_answer": "lemons"}, {"index": 258, "sentence": "I tried to paint a picture of an orchard, with lemons in the lemon trees, but [they] came out looking more like telephone poles.", "answer1": "lemon trees", "answer0": "lemons", "is_associative": 0, "correct_answer": "lemon trees"}, {"index": 259, "sentence": "James asked Robert for a favor but [he] was refused.", "answer1": "Robert", "answer0": "James", "is_associative": 0, "correct_answer": "James"}, {"index": 260, "sentence": "James asked Robert for a favor but [he] refused.", "answer1": "Robert", "answer0": "James", "is_associative": 0, "correct_answer": "Robert"}, {"index": 261, "sentence": "Kirilov ceded the presidency to Shatov because [he] was less popular.", "answer1": "Shatov", "answer0": "Kirilov", "is_associative": 0, "correct_answer": "Kirilov"}, {"index": 262, "sentence": "Kirilov ceded the presidency to Shatov because [he] was more popular.", "answer1": "Shatov", "answer0": "Kirilov", "is_associative": 0, "correct_answer": "Shatov"}, {"index": 263, "sentence": "Emma did not pass the ball to Janie although [she] saw that she was open.", "answer1": "Janie", "answer0": "Emma", "is_associative": 0, "correct_answer": "Emma"}, {"index": 264, "sentence": "Emma did not pass the ball to Janie although [she] was open.", "answer1": "Janie", "answer0": "Emma", "is_associative": 0, "correct_answer": "Janie"}, {"index": 265, "sentence": "I put the butterfly wing on the table and [it] broke.", "answer1": "The table", "answer0": "The butterfly wing", "is_associative": 0, "correct_answer": "The butterfly wing"}, {"index": 267, "sentence": "Madonna fired her trainer because [she] couldn't stand her boyfriend.", "answer1": "The trainer", "answer0": "Madonna", "is_associative": 0, "correct_answer": "Madonna"}, {"index": 268, "sentence": "Madonna fired her trainer because [she] slept with her boyfriend.", "answer1": "The trainer", "answer0": "Madonna", "is_associative": 0, "correct_answer": "The trainer"}, {"index": 269, "sentence": "Madonna fired her trainer because she slept with [her] boyfriend.", "answer1": "The trainer", "answer0": "Madonna", "is_associative": 0, "correct_answer": "Madonna"}, {"index": 270, "sentence": "Madonna fired her trainer because she couldn't stand [her] boyfriend.", "answer1": "The trainer", "answer0": "Madonna", "is_associative": 0, "correct_answer": "The trainer"}, {"index": 271, "sentence": "Carol believed that Rebecca suspected that [she] had stolen the watch.", "answer1": "Rebecca", "answer0": "Carol", "is_associative": 0, "correct_answer": "Carol"}, {"index": 272, "sentence": "Carol believed that Rebecca regretted that [she] had stolen the watch.", "answer1": "Rebecca", "answer0": "Carol", "is_associative": 0, "correct_answer": "Rebecca"}, {"index": 53, "sentence": "The painting in Mark's living room shows an oak tree. [It] is to the right of a house.", "answer1": "The oak tree", "answer0": "The painting", "is_associative": 1, "correct_answer": "The oak tree"}, {"index": 54, "sentence": "There is a gap in the wall. You can see the garden through [it] .", "answer1": "The wall", "answer0": "The gap", "is_associative": 1, "correct_answer": "The gap"}, {"index": 55, "sentence": "There is a gap in the wall. You can see the garden behind [it] .", "answer1": "The wall", "answer0": "The gap", "is_associative": 1, "correct_answer": "The wall"}, {"index": 58, "sentence": "My meeting started at 4:00 and I needed to catch the train at 4:30, so there wasn't much time. Luckily, [it] was short, so it worked out.", "answer1": "The train", "answer0": "The meeting", "is_associative": 1, "correct_answer": "The meeting"}, {"index": 72, "sentence": "I couldn't put the pot on the shelf because [it] was too tall.", "answer1": "The shelf", "answer0": "The pot", "is_associative": 1, "correct_answer": "The pot"}, {"index": 74, "sentence": "I'm sure that my map will show this building; [it] is very good.", "answer1": "The building", "answer0": "The map", "is_associative": 1, "correct_answer": "The map"}, {"index": 75, "sentence": "I'm sure that my map will show this building; [it] is very famous.", "answer1": "The building", "answer0": "The map", "is_associative": 1, "correct_answer": "The building"}, {"index": 87, "sentence": "It was a summer afternoon, and the dog was sitting in the middle of the lawn. After a while, it got up and moved to a spot under the tree, because [it] was cooler.", "answer1": "The spot under the tree", "answer0": "The dog", "is_associative": 1, "correct_answer": "The spot under the tree"}, {"index": 98, "sentence": "I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] in.", "answer1": "The chewing gum", "answer0": "The key", "is_associative": 1, "correct_answer": "The key"}, {"index": 103, "sentence": "In the storm, the tree fell down and crashed through the roof of my house. Now, I have to get [it] repaired.", "answer1": "The roof", "answer0": "The tree", "is_associative": 1, "correct_answer": "The roof"}, {"index": 109, "sentence": "John was jogging through the park when he saw a man juggling watermelons. [He] was very impressive.", "answer1": "The juggler", "answer0": "John", "is_associative": 1, "correct_answer": "The juggler"}, {"index": 112, "sentence": "Sam and Amy are passionately in love, but Amy's parents are unhappy about it, because [they] are fifteen.", "answer1": "Amy's parents", "answer0": "Sam and Amy", "is_associative": 1, "correct_answer": "Sam and Amy"}, {"index": 116, "sentence": "Joe has sold his house and bought a new one a few miles away. He will be moving out of [it] on Thursday.", "answer1": "The new house", "answer0": "The old house", "is_associative": 1, "correct_answer": "The old house"}, {"index": 117, "sentence": "Joe has sold his house and bought a new one a few miles away. He will be moving into [it] on Thursday.", "answer1": "The new house", "answer0": "The old house", "is_associative": 1, "correct_answer": "The new house"}, {"index": 118, "sentence": "Many people start to read Paul's books and can't put them down. [They] are gripped because Paul writes so well.", "answer1": "Paul's books", "answer0": "People", "is_associative": 1, "correct_answer": "People"}, {"index": 119, "sentence": "Many people start to read Paul's books and can't put them down. [They] are popular because Paul writes so well.", "answer1": "Paul's books", "answer0": "People", "is_associative": 1, "correct_answer": "Paul's books"}, {"index": 120, "sentence": "Mary took out her flute and played one of her favorite pieces. She has had [it] since she was a child.", "answer1": "The piece", "answer0": "The flute", "is_associative": 1, "correct_answer": "The flute"}, {"index": 136, "sentence": "The path to the lake was blocked, so we couldn't use [it] .", "answer1": "The lake", "answer0": "The path", "is_associative": 1, "correct_answer": "The path"}, {"index": 137, "sentence": "The path to the lake was blocked, so we couldn't reach [it] .", "answer1": "The lake", "answer0": "The path", "is_associative": 1, "correct_answer": "The lake"}, {"index": 138, "sentence": "The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, [it] was out.", "answer1": "The cloud", "answer0": "The sun", "is_associative": 1, "correct_answer": "The sun"}, {"index": 146, "sentence": "Fred and Alice had very warm down coats, but [they] were not prepared for the cold in Alaska.", "answer1": "coats", "answer0": "Fred and Alice", "is_associative": 1, "correct_answer": "Fred and Alice"}, {"index": 147, "sentence": "Fred and Alice had very warm down coats, but [they] were not enough for the cold in Alaska.", "answer1": "coats", "answer0": "Fred and Alice", "is_associative": 1, "correct_answer": "coats"}, {"index": 155, "sentence": "The foxes are getting in at night and attacking the chickens. I shall have to guard [them] .", "answer1": "The chickens", "answer0": "The foxes", "is_associative": 1, "correct_answer": "The chickens"}, {"index": 158, "sentence": "Fred covered his eyes with his hands, because the wind was blowing sand around. He opened [them] when the wind stopped.", "answer1": "His hands", "answer0": "His eyes", "is_associative": 1, "correct_answer": "His eyes"}, {"index": 174, "sentence": "Archaeologists have concluded that humans lived in Laputa 20,000 years ago. [They] hunted for evidence on the river banks.", "answer1": "Prehistoric humans", "answer0": "Archaeologists", "is_associative": 1, "correct_answer": "Archaeologists"}, {"index": 175, "sentence": "Archaeologists have concluded that humans lived in Laputa 20,000 years ago. [They] hunted for deer on the river banks.", "answer1": "Prehistoric humans", "answer0": "Archaeologists", "is_associative": 1, "correct_answer": "Prehistoric humans"}, {"index": 176, "sentence": "The scientists are studying three species of fish that have recently been found living in the Indian Ocean. [They] began two years ago.", "answer1": "The fish", "answer0": "The scientists", "is_associative": 1, "correct_answer": "The scientists"}, {"index": 177, "sentence": "The scientists are studying three species of fish that have recently been found living in the Indian Ocean. [They] appeared two years ago.", "answer1": "The fish", "answer0": "The scientists", "is_associative": 1, "correct_answer": "The fish"}, {"index": 180, "sentence": "The police arrested all of the gang members. [They] were trying to stop the drug trade in the neighborhood.", "answer1": "The gang members", "answer0": "The police", "is_associative": 1, "correct_answer": "The police"}, {"index": 181, "sentence": "The police arrested all of the gang members. [They] were trying to run the drug trade in the neighborhood.", "answer1": "The gang members", "answer0": "The police", "is_associative": 1, "correct_answer": "The gang members"}, {"index": 182, "sentence": "I put the cake away in the refrigerator. [It] has a lot of butter in it.", "answer1": "The refrigerator", "answer0": "The cake", "is_associative": 1, "correct_answer": "The cake"}, {"index": 183, "sentence": "I put the cake away in the refrigerator. [It] has a lot of leftovers in it.", "answer1": "The refrigerator", "answer0": "The cake", "is_associative": 1, "correct_answer": "The refrigerator"}, {"index": 184, "sentence": "Sam broke both his ankles and he's walking with crutches. But a month or so from now [they] should be better.", "answer1": "The crutches", "answer0": "The ankles", "is_associative": 1, "correct_answer": "The ankles"}, {"index": 185, "sentence": "Sam broke both his ankles and he's walking with crutches. But a month or so from now [they] should be unnecessary.", "answer1": "The crutches", "answer0": "The ankles", "is_associative": 1, "correct_answer": "The crutches"}, {"index": 192, "sentence": "I stuck a pin through a carrot. When I pulled the pin out, [it] left a hole.", "answer1": "The carrot", "answer0": "The pin", "is_associative": 1, "correct_answer": "The pin"}, {"index": 231, "sentence": "The man lifted the boy onto [his] bunk bed.", "answer1": "The boy", "answer0": "The man", "is_associative": 1, "correct_answer": "The boy"}, {"index": 266, "sentence": "I put the heavy book on the table and [it] broke.", "answer1": "The table", "answer0": "The heavy book", "is_associative": 1, "correct_answer": "The table"}] \ No newline at end of file diff --git a/WSC_child_problem.json b/WSC_child_problem.json new file mode 100644 index 000000000000..33336d7e6cde --- /dev/null +++ b/WSC_child_problem.json @@ -0,0 +1,11443 @@ +[ + { + "index": 0, + "sentences": [ + { + "sentence": "The policemen refused the demonstrators a permit because the _ feared violence.", + "answer1": [ + "demonstrators" + ], + "answer0": [ + "policemen" + ], + "correct_answer": [ + "policemen" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "demonstrators", + 0.4118339717388153 + ] + ], + "score": 0 + } + ] + }, + { + "index": 1, + "sentences": [ + { + "sentence": "The policemen refused the demonstrators a permit because the _ advocated violence.", + "answer1": [ + "demonstrators" + ], + "answer0": [ + "policemen" + ], + "correct_answer": [ + "demonstrators" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "demonstrators", + 0.457832932472229 + ] + ], + "score": 1 + } + ] + }, + { + "index": 2, + "sentences": [ + { + "sentence": "The trophy doesn't fit into the brown suitcase because the _ is too large.", + "answer1": [ + "suitcase" + ], + "answer0": [ + "trophy" + ], + "correct_answer": [ + "trophy" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "suitcase", + 0.21058858931064606 + ] + ], + "score": 0 + } + ] + }, + { + "index": 3, + "sentences": [ + { + "sentence": "The trophy doesn't fit into the brown suitcase because the _ is too small.", + "answer1": [ + "suitcase" + ], + "answer0": [ + "trophy" + ], + "correct_answer": [ + "suitcase" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "suitcase", + 0.11347327381372452 + ], + [ + "trophy", + 0.04299129545688629 + ] + ], + "score": 1 + } + ] + }, + { + "index": 4, + "sentences": [ + { + "sentence": "Susan made sure to thank Alan for all the help _ had recieved.", + "answer1": [ + "Alan", + "he" + ], + "answer0": [ + "Susan", + "she" + ], + "correct_answer": [ + "Susan", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.8059180378913879 + ], + [ + "she", + 0.10031098127365112 + ], + [ + "alan", + 0.006458722520619631 + ] + ], + "score": 0 + }, + { + "sentence": "Anthony made sure to thank Donna for all the help _ had recieved.", + "answer1": [ + "Donna", + "she" + ], + "answer0": [ + "Anthony", + "he" + ], + "correct_answer": [ + "Anthony", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.8589648604393005 + ], + [ + "he", + 0.035839419811964035 + ], + [ + "donna", + 0.009961705654859543 + ], + [ + "anthony", + 0.0026284847408533096 + ] + ], + "score": 0 + } + ] + }, + { + "index": 5, + "sentences": [ + { + "sentence": "Wendy made sure to thank David for all the help _ had given.", + "answer1": [ + "David", + "he" + ], + "answer0": [ + "Wendy", + "she" + ], + "correct_answer": [ + "David", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.9703136682510376 + ], + [ + "she", + 0.012762513943016529 + ], + [ + "david", + 0.002392230788245797 + ] + ], + "score": 1 + }, + { + "sentence": "Daniel made sure to thank Wendy for all the help _ had given.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Wendy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9681608080863953 + ], + [ + "he", + 0.01262774970382452 + ], + [ + "wendy", + 0.003302064025774598 + ], + [ + "daniel", + 0.00175810931250453 + ] + ], + "score": 1 + } + ] + }, + { + "index": 6, + "sentences": [ + { + "sentence": "Daniel tried to call Lisa on the phone, but _ wasn't successful.", + "answer1": [ + "Lisa", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.9892734885215759 + ], + [ + "she", + 0.005904461722820997 + ], + [ + "daniel", + 0.0004344168701209128 + ] + ], + "score": 1 + }, + { + "sentence": "Donna tried to call David on the phone, but _ wasn't successful.", + "answer1": [ + "David", + "he" + ], + "answer0": [ + "Donna", + "she" + ], + "correct_answer": [ + "Donna", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.9855420589447021 + ], + [ + "he", + 0.006738866213709116 + ], + [ + "david", + 0.0012104340130463243 + ] + ], + "score": 1 + } + ] + }, + { + "index": 7, + "sentences": [ + { + "sentence": "Barbara tried to call Charles on the phone, but _ wasn't available.", + "answer1": [ + "Charles", + "he" + ], + "answer0": [ + "Barbara", + "she" + ], + "correct_answer": [ + "Charles", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.8587782979011536 + ], + [ + "charles", + 0.1335594803094864 + ], + [ + "she", + 0.000997341237962246 + ] + ], + "score": 1 + }, + { + "sentence": "Warren tried to call Laura on the phone, but _ wasn't available.", + "answer1": [ + "Laura", + "she" + ], + "answer0": [ + "Warren", + "he" + ], + "correct_answer": [ + "Laura", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9781970381736755 + ], + [ + "laura", + 0.01614491641521454 + ], + [ + "he", + 0.00039897472015582025 + ] + ], + "score": 1 + } + ] + }, + { + "index": 8, + "sentences": [ + { + "sentence": "The lawyer asked the witness a question, but the _ was reluctant to repeat it.", + "answer1": [ + "witness" + ], + "answer0": [ + "lawyer" + ], + "correct_answer": [ + "lawyer" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "witness", + 0.6564255952835083 + ], + [ + "lawyer", + 0.012273530475795269 + ] + ], + "score": 0 + } + ] + }, + { + "index": 9, + "sentences": [ + { + "sentence": "The lawyer asked the witness a question, but the _ was reluctant to answer it.", + "answer1": [ + "witness" + ], + "answer0": [ + "lawyer" + ], + "correct_answer": [ + "witness" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "witness", + 0.8160716891288757 + ] + ], + "score": 1 + } + ] + }, + { + "index": 10, + "sentences": [ + { + "sentence": "The truck zoomed by the bus because the _ was going so fast.", + "answer1": [ + "bus" + ], + "answer0": [ + "truck" + ], + "correct_answer": [ + "truck" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "bus", + 0.2043217420578003 + ], + [ + "truck", + 0.18831151723861694 + ] + ], + "score": 0 + } + ] + }, + { + "index": 11, + "sentences": [ + { + "sentence": "The truck zoomed by the bus because the _ was going so slow.", + "answer1": [ + "bus" + ], + "answer0": [ + "truck" + ], + "correct_answer": [ + "bus" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "bus", + 0.239765927195549 + ], + [ + "truck", + 0.16296519339084625 + ] + ], + "score": 1 + } + ] + }, + { + "index": 12, + "sentences": [ + { + "sentence": "Helen felt vindicated when her longtime rival George revealed that _ was the winner of the competition.", + "answer1": [ + "George", + "he" + ], + "answer0": [ + "Helen", + "she" + ], + "correct_answer": [ + "Helen", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.7605838775634766 + ], + [ + "she", + 0.1281837671995163 + ], + [ + "helen", + 0.03044680505990982 + ], + [ + "george", + 0.016294078901410103 + ] + ], + "score": 0 + }, + { + "sentence": "George felt vindicated when his longtime rival Sandra revealed that _ was the winner of the competition.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "George", + "he" + ], + "correct_answer": [ + "George", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.6007376313209534 + ], + [ + "he", + 0.27373355627059937 + ], + [ + "george", + 0.06088083237409592 + ], + [ + "sandra", + 0.002873124787583947 + ] + ], + "score": 0 + } + ] + }, + { + "index": 13, + "sentences": [ + { + "sentence": "Edward felt crushed when his longtime rival Barbara revealed that _ was the winner of the competition.", + "answer1": [ + "Barbara", + "she" + ], + "answer0": [ + "Edward", + "he" + ], + "correct_answer": [ + "Barbara", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.7010877132415771 + ], + [ + "he", + 0.1804790198802948 + ], + [ + "edward", + 0.008347589522600174 + ], + [ + "barbara", + 0.0056170192547142506 + ] + ], + "score": 1 + }, + { + "sentence": "Nancy felt crushed when her longtime rival Tony revealed that _ was the winner of the competition.", + "answer1": [ + "Tony", + "he" + ], + "answer0": [ + "Nancy", + "she" + ], + "correct_answer": [ + "Tony", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.6629055142402649 + ], + [ + "she", + 0.231082022190094 + ], + [ + "tony", + 0.03906760364770889 + ], + [ + "nancy", + 0.013350573368370533 + ] + ], + "score": 1 + } + ] + }, + { + "index": 14, + "sentences": [ + { + "sentence": "The man couldn't lift his daughter because _ was so weak.", + "answer1": [ + "she" + ], + "answer0": [ + "he" + ], + "correct_answer": [ + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.966475784778595 + ], + [ + "he", + 0.012883448973298073 + ] + ], + "score": 0 + } + ] + }, + { + "index": 15, + "sentences": [ + { + "sentence": "The man couldn't lift his daughter because _ was so heavy.", + "answer1": [ + "she" + ], + "answer0": [ + "he" + ], + "correct_answer": [ + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9816145300865173 + ], + [ + "he", + 0.0035426830872893333 + ] + ], + "score": 1 + } + ] + }, + { + "index": 16, + "sentences": [ + { + "sentence": "The ball crashed right through the table because the _ was made of steel.", + "answer1": [ + "table" + ], + "answer0": [ + "ball" + ], + "correct_answer": [ + "ball" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "table", + 0.3629739284515381 + ], + [ + "ball", + 0.08679845184087753 + ] + ], + "score": 0 + } + ] + }, + { + "index": 17, + "sentences": [ + { + "sentence": "The ball crashed right through the table because the _ was made of styrofoam.", + "answer1": [ + "table" + ], + "answer0": [ + "ball" + ], + "correct_answer": [ + "table" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "table", + 0.4074442386627197 + ], + [ + "ball", + 0.10976675152778625 + ] + ], + "score": 1 + } + ] + }, + { + "index": 18, + "sentences": [ + { + "sentence": "Tony couldn't see the stage with Jennifer in front of him because _ is so short.", + "answer1": [ + "Jennifer", + "she" + ], + "answer0": [ + "Tony", + "he" + ], + "correct_answer": [ + "Tony", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.5132592916488647 + ], + [ + "jennifer", + 0.40244361758232117 + ], + [ + "he", + 0.013166015036404133 + ], + [ + "tony", + 0.003285476006567478 + ] + ], + "score": 0 + }, + { + "sentence": "Mandy couldn't see the stage with Charles in front of her because _ is so short.", + "answer1": [ + "Charles", + "he" + ], + "answer0": [ + "Mandy", + "she" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.46862319111824036 + ], + [ + "she", + 0.21981821954250336 + ], + [ + "charles", + 0.14085616171360016 + ] + ], + "score": 0 + } + ] + }, + { + "index": 19, + "sentences": [ + { + "sentence": "Sandra couldn't see the stage with Jason in front of her because _ is so tall.", + "answer1": [ + "Jason", + "he" + ], + "answer0": [ + "Sandra", + "she" + ], + "correct_answer": [ + "Jason", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.7260995507240295 + ], + [ + "jason", + 0.2526448965072632 + ], + [ + "she", + 0.006947671994566917 + ], + [ + "sandra", + 0.0005759962368756533 + ] + ], + "score": 1 + }, + { + "sentence": "Richard couldn't see the stage with Margaret in front of him because _ is so tall.", + "answer1": [ + "Margaret", + "she" + ], + "answer0": [ + "Richard", + "he" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.8138208389282227 + ], + [ + "margaret", + 0.1297387033700943 + ], + [ + "he", + 0.02292880043387413 + ], + [ + "richard", + 0.0023241350427269936 + ] + ], + "score": 1 + } + ] + }, + { + "index": 20, + "sentences": [ + { + "sentence": "Lisa threw his schoolbag down to Jason after _ reached the top of the stairs.", + "answer1": [ + "Jason", + "he" + ], + "answer0": [ + "Lisa", + "she" + ], + "correct_answer": [ + "Lisa", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.2535589635372162 + ], + [ + "she", + 0.0745818242430687 + ], + [ + "jason", + 0.034438613802194595 + ] + ], + "score": 0 + }, + { + "sentence": "Zack threw his schoolbag down to Sarah after _ reached the top of the stairs.", + "answer1": [ + "Sarah", + "she" + ], + "answer0": [ + "Zack", + "he" + ], + "correct_answer": [ + "Zack", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.2084319144487381 + ], + [ + "he", + 0.10264766216278076 + ], + [ + "sarah", + 0.0038962233811616898 + ] + ], + "score": 0 + } + ] + }, + { + "index": 21, + "sentences": [ + { + "sentence": "Joseph threw his schoolbag down to Emma after _ reached the bottom of the stairs.", + "answer1": [ + "Emma", + "she" + ], + "answer0": [ + "Joseph", + "he" + ], + "correct_answer": [ + "Emma", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.23867610096931458 + ], + [ + "he", + 0.09107589721679688 + ], + [ + "emma", + 0.021801337599754333 + ] + ], + "score": 1 + }, + { + "sentence": "Anna threw his schoolbag down to Anthony after _ reached the bottom of the stairs.", + "answer1": [ + "Anthony", + "he" + ], + "answer0": [ + "Anna", + "she" + ], + "correct_answer": [ + "Anthony", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.3054933547973633 + ], + [ + "she", + 0.06062417849898338 + ], + [ + "anthony", + 0.00862197671085596 + ] + ], + "score": 1 + } + ] + }, + { + "index": 22, + "sentences": [ + { + "sentence": "Although they ran at about the same speed, John beat Vivian because _ had such a good start.", + "answer1": [ + "Vivian", + "she" + ], + "answer0": [ + "John", + "he" + ], + "correct_answer": [ + "John", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.4357670843601227 + ], + [ + "she", + 0.4087676405906677 + ], + [ + "vivian", + 0.028013162314891815 + ], + [ + "john", + 0.007432900369167328 + ] + ], + "score": 1 + }, + { + "sentence": "Although they ran at about the same speed, Barbara beat Tony because _ had such a good start.", + "answer1": [ + "Tony", + "he" + ], + "answer0": [ + "Barbara", + "she" + ], + "correct_answer": [ + "Barbara", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.5490840673446655 + ], + [ + "she", + 0.2430657595396042 + ], + [ + "tony", + 0.01997600682079792 + ], + [ + "barbara", + 0.004922997672110796 + ] + ], + "score": 0 + } + ] + }, + { + "index": 23, + "sentences": [ + { + "sentence": "Although they ran at about the same speed, George beat Nancy because _ had such a bad start.", + "answer1": [ + "Nancy", + "she" + ], + "answer0": [ + "George", + "he" + ], + "correct_answer": [ + "Nancy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.6856573820114136 + ], + [ + "he", + 0.16068877279758453 + ], + [ + "nancy", + 0.027285361662507057 + ], + [ + "george", + 0.019552595913410187 + ] + ], + "score": 1 + }, + { + "sentence": "Although they ran at about the same speed, Sue beat Edward because _ had such a bad start.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Sue", + "she" + ], + "correct_answer": [ + "Edward", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.6439886689186096 + ], + [ + "she", + 0.201904296875 + ], + [ + "edward", + 0.05457816645503044 + ], + [ + "sue", + 0.00406282115727663 + ] + ], + "score": 1 + } + ] + }, + { + "index": 24, + "sentences": [ + { + "sentence": "The sculpture rolled off the shelf because the _ wasn't anchored.", + "answer1": [ + "shelf" + ], + "answer0": [ + "sculpture" + ], + "correct_answer": [ + "sculpture" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "shelf", + 0.049739278852939606 + ] + ], + "score": 0 + } + ] + }, + { + "index": 25, + "sentences": [ + { + "sentence": "The sculpture rolled off the shelf because the _ wasn't level.", + "answer1": [ + "shelf" + ], + "answer0": [ + "sculpture" + ], + "correct_answer": [ + "shelf" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "shelf", + 0.1008094847202301 + ] + ], + "score": 1 + } + ] + }, + { + "index": 26, + "sentences": [ + { + "sentence": "Betty's drawing was hung just above Warren's and _'s drawing did look much better with another one below it.", + "answer1": [ + "Warren" + ], + "answer0": [ + "Betty" + ], + "correct_answer": [ + "Betty" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "warren", + 0.11010950058698654 + ], + [ + "betty", + 0.07763160765171051 + ] + ], + "score": 0 + }, + { + "sentence": "Edward's drawing was hung just above Wendy's and _'s drawing did look much better with another one below it.", + "answer1": [ + "Wendy" + ], + "answer0": [ + "Edward" + ], + "correct_answer": [ + "Edward" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "edward", + 0.14753200113773346 + ], + [ + "wendy", + 0.021199282258749008 + ] + ], + "score": 1 + } + ] + }, + { + "index": 27, + "sentences": [ + { + "sentence": "Paul's drawing was hung just above Anna's and _'s drawing did look much better with another one above it.", + "answer1": [ + "Anna" + ], + "answer0": [ + "Paul" + ], + "correct_answer": [ + "Anna" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "anna", + 0.39766207337379456 + ], + [ + "paul", + 0.17563124001026154 + ] + ], + "score": 1 + }, + { + "sentence": "Lisa's drawing was hung just above Anthony's and _'s drawing did look much better with another one above it.", + "answer1": [ + "Anthony" + ], + "answer0": [ + "Lisa" + ], + "correct_answer": [ + "Anthony" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "anthony", + 0.20052659511566162 + ], + [ + "lisa", + 0.06912633776664734 + ] + ], + "score": 1 + } + ] + }, + { + "index": 28, + "sentences": [ + { + "sentence": "Charles did a lot better than his good friend Nancy on the test because _ had studied so hard.", + "answer1": [ + "Nancy", + "she" + ], + "answer0": [ + "Charles", + "he" + ], + "correct_answer": [ + "Charles", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.4398093521595001 + ], + [ + "she", + 0.15170268714427948 + ], + [ + "charles", + 0.08861381560564041 + ], + [ + "nancy", + 0.08683475106954575 + ] + ], + "score": 1 + }, + { + "sentence": "Anna did a lot better than her good friend Jason on the test because _ had studied so hard.", + "answer1": [ + "Jason", + "he" + ], + "answer0": [ + "Anna", + "she" + ], + "correct_answer": [ + "Anna", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.5284304618835449 + ], + [ + "she", + 0.1605355590581894 + ], + [ + "jason", + 0.08630751073360443 + ], + [ + "anna", + 0.051893241703510284 + ] + ], + "score": 0 + } + ] + }, + { + "index": 29, + "sentences": [ + { + "sentence": "Linda did a lot worse than her good friend Thomas on the test because _ had studied so hard.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Linda", + "she" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.4308488368988037 + ], + [ + "he", + 0.23555852472782135 + ], + [ + "linda", + 0.10451061278581619 + ], + [ + "thomas", + 0.00802362896502018 + ] + ], + "score": 0 + }, + { + "sentence": "Daniel did a lot worse than his good friend Wendy on the test because _ had studied so hard.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Wendy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.6460021734237671 + ], + [ + "he", + 0.13338574767112732 + ], + [ + "wendy", + 0.08289165794849396 + ], + [ + "daniel", + 0.04040371626615524 + ] + ], + "score": 1 + } + ] + }, + { + "index": 30, + "sentences": [ + { + "sentence": "The doctors arrived after the police because the _ were coming from so far away.", + "answer1": [ + "police" + ], + "answer0": [ + "doctors" + ], + "correct_answer": [ + "doctors" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 31, + "sentences": [ + { + "sentence": "The doctors arrived before the police because the _ were coming from so far away.", + "answer1": [ + "police" + ], + "answer0": [ + "doctors" + ], + "correct_answer": [ + "police" + ], + "adjacent_ref": true, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 32, + "sentences": [ + { + "sentence": "Tim was upset with Barbara because the toaster _ had bought from her didn't work.", + "answer1": [ + "Barbara", + "she" + ], + "answer0": [ + "Tim", + "he" + ], + "correct_answer": [ + "Tim", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.5925723910331726 + ], + [ + "barbara", + 0.10750548541545868 + ], + [ + "tim", + 0.036800283938646317 + ], + [ + "she", + 0.034948937594890594 + ] + ], + "score": 1 + }, + { + "sentence": "Betty was upset with Daniel because the toaster _ had bought from him didn't work.", + "answer1": [ + "Daniel", + "he" + ], + "answer0": [ + "Betty", + "she" + ], + "correct_answer": [ + "Betty", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.5441405177116394 + ], + [ + "betty", + 0.3130474388599396 + ], + [ + "he", + 0.015271657146513462 + ], + [ + "daniel", + 0.014954675920307636 + ] + ], + "score": 1 + } + ] + }, + { + "index": 33, + "sentences": [ + { + "sentence": "Joseph was upset with Sandra because the toaster _ had sold him didn't work.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "Joseph", + "he" + ], + "correct_answer": [ + "Sandra", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.3242930769920349 + ], + [ + "sandra", + 0.06303571909666061 + ], + [ + "joseph", + 0.01616159826517105 + ] + ], + "score": 1 + }, + { + "sentence": "Sue was upset with Brian because the toaster _ had sold her didn't work.", + "answer1": [ + "Brian", + "he" + ], + "answer0": [ + "Sue", + "she" + ], + "correct_answer": [ + "Brian", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.4483914077281952 + ], + [ + "brian", + 0.14752180874347687 + ], + [ + "sue", + 0.04900128394365311 + ], + [ + "she", + 0.014528470113873482 + ] + ], + "score": 1 + } + ] + }, + { + "index": 34, + "sentences": [ + { + "sentence": "Linda yelled at William because _ was so upset.", + "answer1": [ + "William", + "he" + ], + "answer0": [ + "Linda", + "she" + ], + "correct_answer": [ + "Linda", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.8594950437545776 + ], + [ + "she", + 0.10877512395381927 + ], + [ + "william", + 0.012823620811104774 + ] + ], + "score": 0 + }, + { + "sentence": "Warren yelled at Wendy because _ was so upset.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "Warren", + "he" + ], + "correct_answer": [ + "Warren", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.8749997019767761 + ], + [ + "he", + 0.09160665422677994 + ], + [ + "wendy", + 0.007091708946973085 + ] + ], + "score": 0 + } + ] + }, + { + "index": 35, + "sentences": [ + { + "sentence": "Sandra comforted Daniel because _ was so upset.", + "answer1": [ + "Daniel", + "he" + ], + "answer0": [ + "Sandra", + "she" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.946452796459198 + ], + [ + "she", + 0.029977431520819664 + ], + [ + "daniel", + 0.014466170221567154 + ] + ], + "score": 1 + }, + { + "sentence": "Tim comforted Anna because _ was so upset.", + "answer1": [ + "Anna", + "she" + ], + "answer0": [ + "Tim", + "he" + ], + "correct_answer": [ + "Anna", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9258339405059814 + ], + [ + "anna", + 0.03597695752978325 + ], + [ + "he", + 0.024506375193595886 + ] + ], + "score": 1 + } + ] + }, + { + "index": 36, + "sentences": [ + { + "sentence": "The sack had been placed above the bag, so the _ had to be moved first.", + "answer1": [ + "bag" + ], + "answer0": [ + "sack" + ], + "correct_answer": [ + "sack" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "bag", + 0.14206381142139435 + ], + [ + "sack", + 0.12494820356369019 + ] + ], + "score": 0 + } + ] + }, + { + "index": 37, + "sentences": [ + { + "sentence": "The sack had been placed below the bag, so the _ had to be moved first.", + "answer1": [ + "bag" + ], + "answer0": [ + "sack" + ], + "correct_answer": [ + "bag" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "bag", + 0.12820377945899963 + ], + [ + "sack", + 0.12242510914802551 + ] + ], + "score": 1 + } + ] + }, + { + "index": 38, + "sentences": [ + { + "sentence": "Laura envies Warren although _ is very successful.", + "answer1": [ + "Warren", + "he" + ], + "answer0": [ + "Laura", + "she" + ], + "correct_answer": [ + "Laura", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.5644444227218628 + ], + [ + "warren", + 0.27615460753440857 + ], + [ + "she", + 0.07276368141174316 + ], + [ + "laura", + 0.003620448987931013 + ] + ], + "score": 0 + }, + { + "sentence": "Daniel envies Emma although _ is very successful.", + "answer1": [ + "Emma", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.4373820424079895 + ], + [ + "he", + 0.3135783076286316 + ], + [ + "daniel", + 0.04151993989944458 + ], + [ + "emma", + 0.02725609578192234 + ] + ], + "score": 0 + } + ] + }, + { + "index": 39, + "sentences": [ + { + "sentence": "Jason envies Susan because _ is very successful.", + "answer1": [ + "Susan", + "she" + ], + "answer0": [ + "Jason", + "he" + ], + "correct_answer": [ + "Susan", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9335176944732666 + ], + [ + "susan", + 0.04264418035745621 + ], + [ + "he", + 0.009751184843480587 + ] + ], + "score": 1 + }, + { + "sentence": "Sandra envies Zack because _ is very successful.", + "answer1": [ + "Zack", + "he" + ], + "answer0": [ + "Sandra", + "she" + ], + "correct_answer": [ + "Zack", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.8800366520881653 + ], + [ + "zack", + 0.09258320927619934 + ], + [ + "she", + 0.007650280836969614 + ] + ], + "score": 1 + } + ] + }, + { + "index": 40, + "sentences": [ + { + "sentence": "The older students were bullying the younger ones, so we punished the _ students .", + "answer1": [ + "younger" + ], + "answer0": [ + "older" + ], + "correct_answer": [ + "older" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "younger", + 0.5788522362709045 + ], + [ + "older", + 0.3715261220932007 + ] + ], + "score": 0 + } + ] + }, + { + "index": 41, + "sentences": [ + { + "sentence": "The older students were bullying the younger ones, so we rescued the _ students .", + "answer1": [ + "younger" + ], + "answer0": [ + "older" + ], + "correct_answer": [ + "younger" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "younger", + 0.459501713514328 + ], + [ + "older", + 0.3885803818702698 + ] + ], + "score": 1 + } + ] + }, + { + "index": 42, + "sentences": [ + { + "sentence": "I poured water from the bottle into the cup until the _ was empty.", + "answer1": [ + "cup" + ], + "answer0": [ + "bottle" + ], + "correct_answer": [ + "bottle" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "cup", + 0.16094626486301422 + ], + [ + "bottle", + 0.10395961999893188 + ] + ], + "score": 0 + } + ] + }, + { + "index": 43, + "sentences": [ + { + "sentence": "I poured water from the bottle into the cup until the _ was full.", + "answer1": [ + "cup" + ], + "answer0": [ + "bottle" + ], + "correct_answer": [ + "cup" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "cup", + 0.18986396491527557 + ], + [ + "bottle", + 0.03942202031612396 + ] + ], + "score": 1 + } + ] + }, + { + "index": 44, + "sentences": [ + { + "sentence": "William knows all about Sue's personal problems because _ is nosy.", + "answer1": [ + "Sue", + "she" + ], + "answer0": [ + "William", + "he" + ], + "correct_answer": [ + "William", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.4617686867713928 + ], + [ + "he", + 0.31756243109703064 + ], + [ + "sue", + 0.10323674231767654 + ], + [ + "william", + 0.01918354444205761 + ] + ], + "score": 0 + }, + { + "sentence": "Helen knows all about Warren's personal problems because _ is nosy.", + "answer1": [ + "Warren", + "he" + ], + "answer0": [ + "Helen", + "she" + ], + "correct_answer": [ + "Helen", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.37865328788757324 + ], + [ + "warren", + 0.3408011496067047 + ], + [ + "she", + 0.21000434458255768 + ], + [ + "helen", + 0.012840399518609047 + ] + ], + "score": 0 + } + ] + }, + { + "index": 45, + "sentences": [ + { + "sentence": "Emma knows all about Warren's personal problems because _ is indiscreet.", + "answer1": [ + "Warren", + "he" + ], + "answer0": [ + "Emma", + "she" + ], + "correct_answer": [ + "Warren", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "warren", + 0.6146198511123657 + ], + [ + "he", + 0.289546400308609 + ], + [ + "she", + 0.02142639271914959 + ] + ], + "score": 1 + }, + { + "sentence": "Alan knows all about Anna's personal problems because _ is indiscreet.", + "answer1": [ + "Anna", + "she" + ], + "answer0": [ + "Alan", + "he" + ], + "correct_answer": [ + "Anna", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.49282529950141907 + ], + [ + "anna", + 0.32425856590270996 + ], + [ + "he", + 0.07345326244831085 + ], + [ + "alan", + 0.017393626272678375 + ] + ], + "score": 1 + } + ] + }, + { + "index": 46, + "sentences": [ + { + "sentence": "John explained his theory to Wendy but _ couldn't convince her.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "John", + "he" + ], + "correct_answer": [ + "John", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.9100954532623291 + ], + [ + "john", + 0.017341775819659233 + ], + [ + "wendy", + 0.004638417158275843 + ] + ], + "score": 1 + }, + { + "sentence": "Wendy explained her theory to Warren but _ couldn't convince him.", + "answer1": [ + "Warren", + "he" + ], + "answer0": [ + "Wendy", + "she" + ], + "correct_answer": [ + "Wendy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.9247599244117737 + ], + [ + "wendy", + 0.0049832225777208805 + ] + ], + "score": 1 + } + ] + }, + { + "index": 47, + "sentences": [ + { + "sentence": "Sarah explained her theory to Steven but _ couldn't understand her.", + "answer1": [ + "Steven", + "he" + ], + "answer0": [ + "Sarah", + "she" + ], + "correct_answer": [ + "Steven", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.8895952105522156 + ], + [ + "steven", + 0.09927554428577423 + ], + [ + "she", + 0.000530878605786711 + ] + ], + "score": 1 + }, + { + "sentence": "David explained his theory to Susan but _ couldn't understand him.", + "answer1": [ + "Susan", + "she" + ], + "answer0": [ + "David", + "he" + ], + "correct_answer": [ + "Susan", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9552003741264343 + ], + [ + "susan", + 0.025168264284729958 + ] + ], + "score": 1 + } + ] + }, + { + "index": 48, + "sentences": [ + { + "sentence": "Daniel knew that Margaret's son had been in a car accident, so _ told her about it.", + "answer1": [ + "Margaret", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.9160689115524292 + ], + [ + "daniel", + 0.05031977966427803 + ] + ], + "score": 1 + }, + { + "sentence": "Amy knew that Brian's son had been in a car accident, so _ told him about it.", + "answer1": [ + "Brian", + "he" + ], + "answer0": [ + "Amy", + "she" + ], + "correct_answer": [ + "Amy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.825965404510498 + ], + [ + "amy", + 0.11254064738750458 + ] + ], + "score": 1 + } + ] + }, + { + "index": 49, + "sentences": [ + { + "sentence": "George knew that Sarah's son had been in a car accident, because _ told him about it.", + "answer1": [ + "Sarah", + "she" + ], + "answer0": [ + "George", + "he" + ], + "correct_answer": [ + "Sarah", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.25967302918434143 + ], + [ + "sarah", + 0.1378738284111023 + ], + [ + "george", + 0.1081177145242691 + ], + [ + "he", + 0.07801171392202377 + ] + ], + "score": 1 + }, + { + "sentence": "Susan knew that Tim's son had been in a car accident, because _ told her about it.", + "answer1": [ + "Tim", + "he" + ], + "answer0": [ + "Susan", + "she" + ], + "correct_answer": [ + "Tim", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.12469684332609177 + ], + [ + "tim", + 0.1100628525018692 + ], + [ + "susan", + 0.08253230154514313 + ], + [ + "she", + 0.044477976858615875 + ] + ], + "score": 1 + } + ] + }, + { + "index": 50, + "sentences": [ + { + "sentence": "Jason's aunt Betty can still beat him at tennis, even though _ is 30 years younger.", + "answer1": [ + "Betty", + "she" + ], + "answer0": [ + "Jason", + "he" + ], + "correct_answer": [ + "Jason", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.4724120795726776 + ], + [ + "he", + 0.3619353473186493 + ], + [ + "jason", + 0.11430627852678299 + ], + [ + "betty", + 0.009248387068510056 + ] + ], + "score": 0 + } + ] + }, + { + "index": 51, + "sentences": [ + { + "sentence": "Alan's aunt Laura can still beat him at tennis, even though _ is 30 years older.", + "answer1": [ + "Laura", + "she" + ], + "answer0": [ + "Alan", + "he" + ], + "correct_answer": [ + "Laura", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.410331130027771 + ], + [ + "he", + 0.3431159555912018 + ], + [ + "alan", + 0.2048305720090866 + ] + ], + "score": 1 + } + ] + }, + { + "index": 52, + "sentences": [ + { + "sentence": "The painting in Mark's living room shows a tree. the _ is to the right of the bookcase.", + "answer1": [ + "tree" + ], + "answer0": [ + "painting" + ], + "correct_answer": [ + "painting" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "painting", + 0.2549212872982025 + ], + [ + "tree", + 0.03998008370399475 + ] + ], + "score": 1 + } + ] + }, + { + "index": 53, + "sentences": [ + { + "sentence": "The painting in Mark's living room shows a tree. the _ is to the right of a house.", + "answer1": [ + "tree" + ], + "answer0": [ + "painting" + ], + "correct_answer": [ + "tree" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "painting", + 0.3817044198513031 + ], + [ + "tree", + 0.12644894421100616 + ] + ], + "score": 0 + } + ] + }, + { + "index": 54, + "sentences": [ + { + "sentence": "There is a gap in the wall. You can see the garden through the _ .", + "answer1": [ + "wall" + ], + "answer0": [ + "gap" + ], + "correct_answer": [ + "gap" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "wall", + 0.24062421917915344 + ], + [ + "gap", + 0.06364461034536362 + ] + ], + "score": 0 + } + ] + }, + { + "index": 55, + "sentences": [ + { + "sentence": "There is a gap in the wall. You can see the garden behind the _ .", + "answer1": [ + "wall" + ], + "answer0": [ + "gap" + ], + "correct_answer": [ + "wall" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "wall", + 0.1855088472366333 + ] + ], + "score": 1 + } + ] + }, + { + "index": 56, + "sentences": [ + { + "sentence": "The drain is clogged with hair. the _ has to be cleaned.", + "answer1": [ + "hair" + ], + "answer0": [ + "drain" + ], + "correct_answer": [ + "drain" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "drain", + 0.10474126785993576 + ] + ], + "score": 1 + } + ] + }, + { + "index": 57, + "sentences": [ + { + "sentence": "The drain is clogged with hair. the _ has to be removed.", + "answer1": [ + "hair" + ], + "answer0": [ + "drain" + ], + "correct_answer": [ + "hair" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "hair", + 0.35679975152015686 + ], + [ + "drain", + 0.06430690735578537 + ] + ], + "score": 1 + } + ] + }, + { + "index": 58, + "sentences": [ + { + "sentence": "My meeting started at 4:00 and I needed to catch the train at 4:30, so there wasn't much time. Luckily, the _ was short, so it worked out.", + "answer1": [ + "train" + ], + "answer0": [ + "meeting" + ], + "correct_answer": [ + "meeting" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "train", + 0.2332829087972641 + ] + ], + "score": 0 + } + ] + }, + { + "index": 59, + "sentences": [ + { + "sentence": "My meeting started at 4:00 and I needed to catch the train at 4:30, so there wasn't much time. Luckily, the _ was delayed, so it worked out.", + "answer1": [ + "train" + ], + "answer0": [ + "meeting" + ], + "correct_answer": [ + "train" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "meeting", + 0.574749231338501 + ], + [ + "train", + 0.2624363899230957 + ] + ], + "score": 0 + } + ] + }, + { + "index": 60, + "sentences": [ + { + "sentence": "There is a pillar between me and the stage, and I can't see around the _ .", + "answer1": [ + "stage" + ], + "answer0": [ + "pillar" + ], + "correct_answer": [ + "pillar" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "pillar", + 0.5279375910758972 + ] + ], + "score": 1 + } + ] + }, + { + "index": 61, + "sentences": [ + { + "sentence": "There is a pillar between me and the stage, and I can't see the _ .", + "answer1": [ + "stage" + ], + "answer0": [ + "pillar" + ], + "correct_answer": [ + "stage" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "stage", + 0.07283679395914078 + ] + ], + "score": 1 + } + ] + }, + { + "index": 62, + "sentences": [ + { + "sentence": "They broadcast an announcement, but a subway came into the station and I couldn't hear the _ .", + "answer1": [ + "subway" + ], + "answer0": [ + "announcement" + ], + "correct_answer": [ + "announcement" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 63, + "sentences": [ + { + "sentence": "They broadcast an announcement, but a subway came into the station and I couldn't hear over the _ .", + "answer1": [ + "subway" + ], + "answer0": [ + "announcement" + ], + "correct_answer": [ + "subway" + ], + "adjacent_ref": true, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 64, + "sentences": [ + { + "sentence": "In the middle of the outdoor concert, the rain started falling, but the _ continued until 10.", + "answer1": [ + "rain" + ], + "answer0": [ + "concert" + ], + "correct_answer": [ + "concert" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "rain", + 0.3882569670677185 + ], + [ + "concert", + 0.0404825396835804 + ] + ], + "score": 0 + } + ] + }, + { + "index": 65, + "sentences": [ + { + "sentence": "In the middle of the outdoor concert, the rain started falling, and the _ continued until 10.", + "answer1": [ + "rain" + ], + "answer0": [ + "concert" + ], + "correct_answer": [ + "rain" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "rain", + 0.22699223458766937 + ], + [ + "concert", + 0.07272675633430481 + ] + ], + "score": 1 + } + ] + }, + { + "index": 66, + "sentences": [ + { + "sentence": "I used an old rag to clean the knife, and then I put the _ in the trash.", + "answer1": [ + "knife" + ], + "answer0": [ + "rag" + ], + "correct_answer": [ + "rag" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "knife", + 0.7708435654640198 + ] + ], + "score": 0 + } + ] + }, + { + "index": 67, + "sentences": [ + { + "sentence": "I used an old rag to clean the knife, and then I put the _ in the drawer.", + "answer1": [ + "knife" + ], + "answer0": [ + "rag" + ], + "correct_answer": [ + "knife" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "knife", + 0.5724927186965942 + ] + ], + "score": 1 + } + ] + }, + { + "index": 68, + "sentences": [ + { + "sentence": "Warren asked Sandra what time the library closes, because _ had forgotten.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "Warren", + "he" + ], + "correct_answer": [ + "Warren", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.4140302836894989 + ], + [ + "she", + 0.08503930270671844 + ], + [ + "warren", + 0.03423245623707771 + ] + ], + "score": 1 + }, + { + "sentence": "Emma asked Thomas what time the library closes, because _ had forgotten.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Emma", + "she" + ], + "correct_answer": [ + "Emma", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.42612558603286743 + ], + [ + "thomas", + 0.15514008700847626 + ], + [ + "she", + 0.15142855048179626 + ] + ], + "score": 0 + } + ] + }, + { + "index": 69, + "sentences": [ + { + "sentence": "Zack asked Barbara what time the library closes, but _ had forgotten.", + "answer1": [ + "Barbara", + "she" + ], + "answer0": [ + "Zack", + "he" + ], + "correct_answer": [ + "Barbara", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.691577672958374 + ], + [ + "barbara", + 0.11628566682338715 + ], + [ + "he", + 0.09651367366313934 + ] + ], + "score": 1 + }, + { + "sentence": "Sarah asked Joseph what time the library closes, but _ had forgotten.", + "answer1": [ + "Joseph", + "he" + ], + "answer0": [ + "Sarah", + "she" + ], + "correct_answer": [ + "Joseph", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.5978205800056458 + ], + [ + "joseph", + 0.30730757117271423 + ], + [ + "she", + 0.0433766171336174 + ] + ], + "score": 1 + } + ] + }, + { + "index": 70, + "sentences": [ + { + "sentence": "I took the bottle out of the backpack so that the _ would be handy.", + "answer1": [ + "backpack" + ], + "answer0": [ + "bottle" + ], + "correct_answer": [ + "bottle" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "bottle", + 0.2538537085056305 + ] + ], + "score": 1 + } + ] + }, + { + "index": 71, + "sentences": [ + { + "sentence": "I took the bottle out of the backpack so that the _ would be lighter.", + "answer1": [ + "backpack" + ], + "answer0": [ + "bottle" + ], + "correct_answer": [ + "backpack" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "bottle", + 0.28798893094062805 + ] + ], + "score": 0 + } + ] + }, + { + "index": 72, + "sentences": [ + { + "sentence": "I couldn't put the pot on the shelf because the _ was too tall.", + "answer1": [ + "shelf" + ], + "answer0": [ + "pot" + ], + "correct_answer": [ + "pot" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "shelf", + 0.05657235160470009 + ], + [ + "pot", + 0.040349528193473816 + ] + ], + "score": 0 + } + ] + }, + { + "index": 73, + "sentences": [ + { + "sentence": "I couldn't put the pot on the shelf because the _ was too high.", + "answer1": [ + "shelf" + ], + "answer0": [ + "pot" + ], + "correct_answer": [ + "shelf" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "shelf", + 0.09407572448253632 + ] + ], + "score": 1 + } + ] + }, + { + "index": 74, + "sentences": [ + { + "sentence": "I'm sure that my map will show this building; the _ is very good.", + "answer1": [ + "building" + ], + "answer0": [ + "map" + ], + "correct_answer": [ + "map" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "map", + 0.2211541384458542 + ] + ], + "score": 1 + } + ] + }, + { + "index": 75, + "sentences": [ + { + "sentence": "I'm sure that my map will show this building; the _ is very famous.", + "answer1": [ + "building" + ], + "answer0": [ + "map" + ], + "correct_answer": [ + "building" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "building", + 0.08651192486286163 + ] + ], + "score": 1 + } + ] + }, + { + "index": 76, + "sentences": [ + { + "sentence": "Sandra paid for Tim's college education. _ is very generous.", + "answer1": [ + "Tim", + "he" + ], + "answer0": [ + "Sandra", + "she" + ], + "correct_answer": [ + "Sandra", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "sandra", + 0.5636617541313171 + ], + [ + "she", + 0.3318640887737274 + ], + [ + "he", + 0.016400793567299843 + ] + ], + "score": 1 + }, + { + "sentence": "George paid for Laura's college education. _ is very generous.", + "answer1": [ + "Laura", + "she" + ], + "answer0": [ + "George", + "he" + ], + "correct_answer": [ + "George", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "george", + 0.43826061487197876 + ], + [ + "he", + 0.2907955050468445 + ], + [ + "she", + 0.09768392145633698 + ], + [ + "laura", + 0.026110105216503143 + ] + ], + "score": 1 + } + ] + }, + { + "index": 77, + "sentences": [ + { + "sentence": "Laura paid for Tim's college education. _ is very grateful.", + "answer1": [ + "Tim", + "he" + ], + "answer0": [ + "Laura", + "she" + ], + "correct_answer": [ + "Tim", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.3613061308860779 + ], + [ + "laura", + 0.2712564170360565 + ], + [ + "tim", + 0.10081641376018524 + ], + [ + "he", + 0.09770604968070984 + ] + ], + "score": 0 + }, + { + "sentence": "George paid for Emma's college education. _ is very grateful.", + "answer1": [ + "Emma", + "she" + ], + "answer0": [ + "George", + "he" + ], + "correct_answer": [ + "Emma", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "emma", + 0.5662250518798828 + ], + [ + "she", + 0.16104619204998016 + ], + [ + "he", + 0.07634122669696808 + ], + [ + "george", + 0.037439413368701935 + ] + ], + "score": 1 + } + ] + }, + { + "index": 78, + "sentences": [ + { + "sentence": "Mandy paid for Steven's college education, but now Steven acts as though it never happened. _ is very hurt.", + "answer1": [ + "Steven", + "he" + ], + "answer0": [ + "Mandy", + "she" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "mandy", + 0.4452275037765503 + ], + [ + "steven", + 0.20133669674396515 + ], + [ + "he", + 0.04494181647896767 + ], + [ + "she", + 0.010965993627905846 + ] + ], + "score": 1 + }, + { + "sentence": "Edward paid for Sandra's college education, but now Sandra acts as though it never happened. _ is very hurt.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "Edward", + "he" + ], + "correct_answer": [ + "Edward", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "sandra", + 0.4786634147167206 + ], + [ + "edward", + 0.3283962309360504 + ], + [ + "she", + 0.05131130293011665 + ], + [ + "he", + 0.004538827110081911 + ] + ], + "score": 0 + } + ] + }, + { + "index": 79, + "sentences": [ + { + "sentence": "David paid for Sue's college education, but now Sue acts as though it never happened. _ is very ungrateful.", + "answer1": [ + "Sue", + "she" + ], + "answer0": [ + "David", + "he" + ], + "correct_answer": [ + "Sue", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "sue", + 0.333128422498703 + ], + [ + "david", + 0.2768923044204712 + ], + [ + "she", + 0.11641097813844681 + ], + [ + "he", + 0.029392829164862633 + ] + ], + "score": 1 + }, + { + "sentence": "Emma paid for Tim's college education, but now Tim acts as though it never happened. _ is very ungrateful.", + "answer1": [ + "Tim", + "he" + ], + "answer0": [ + "Emma", + "she" + ], + "correct_answer": [ + "Tim", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "tim", + 0.312907338142395 + ], + [ + "emma", + 0.26578396558761597 + ], + [ + "he", + 0.20920135080814362 + ], + [ + "she", + 0.02565154619514942 + ] + ], + "score": 1 + } + ] + }, + { + "index": 80, + "sentences": [ + { + "sentence": "Lisa was playing cards with Joseph and was way ahead. If Joseph hadn't had a sudden run of good luck, _ would have won.", + "answer1": [ + "Joseph", + "he" + ], + "answer0": [ + "Lisa", + "she" + ], + "correct_answer": [ + "Lisa", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.4793993830680847 + ], + [ + "she", + 0.16311348974704742 + ], + [ + "lisa", + 0.1321823000907898 + ], + [ + "joseph", + 0.017298907041549683 + ] + ], + "score": 0 + }, + { + "sentence": "John was playing cards with Amy and was way ahead. If Amy hadn't had a sudden run of good luck, _ would have won.", + "answer1": [ + "Amy", + "she" + ], + "answer0": [ + "John", + "he" + ], + "correct_answer": [ + "John", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.48962944746017456 + ], + [ + "john", + 0.1949043720960617 + ], + [ + "he", + 0.1438501924276352 + ] + ], + "score": 0 + } + ] + }, + { + "index": 81, + "sentences": [ + { + "sentence": "Charles was playing cards with Betty and was way ahead. If Betty hadn't had a sudden run of good luck, _ would have lost.", + "answer1": [ + "Betty", + "she" + ], + "answer0": [ + "Charles", + "he" + ], + "correct_answer": [ + "Betty", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.559443473815918 + ], + [ + "he", + 0.10665259510278702 + ], + [ + "charles", + 0.08594903349876404 + ] + ], + "score": 1 + }, + { + "sentence": "Sue was playing cards with Charles and was way ahead. If Charles hadn't had a sudden run of good luck, _ would have lost.", + "answer1": [ + "Charles", + "he" + ], + "answer0": [ + "Sue", + "she" + ], + "correct_answer": [ + "Charles", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.651694118976593 + ], + [ + "sue", + 0.13403257727622986 + ], + [ + "she", + 0.06975802779197693 + ] + ], + "score": 1 + } + ] + }, + { + "index": 82, + "sentences": [ + { + "sentence": "David can't leave work here until Margaret arrives to replace him. If Margaret had left home for work on time, _ would be gone by this time.", + "answer1": [ + "Margaret", + "she" + ], + "answer0": [ + "David", + "he" + ], + "correct_answer": [ + "David", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "david", + 0.4532376229763031 + ], + [ + "she", + 0.3844938278198242 + ], + [ + "he", + 0.09111058712005615 + ] + ], + "score": 1 + }, + { + "sentence": "Linda can't leave work here until Thomas arrives to replace her. If Thomas had left home for work on time, _ would be gone by this time.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Linda", + "she" + ], + "correct_answer": [ + "Linda", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.46403148770332336 + ], + [ + "linda", + 0.46336105465888977 + ], + [ + "she", + 0.0296529158949852 + ] + ], + "score": 0 + } + ] + }, + { + "index": 83, + "sentences": [ + { + "sentence": "David can't leave work here until Sandra arrives to replace him. If Sandra had left home for work on time, _ would be here by this time.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "David", + "he" + ], + "correct_answer": [ + "Sandra", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "david", + 0.4930424094200134 + ], + [ + "she", + 0.34252968430519104 + ], + [ + "he", + 0.06929971277713776 + ], + [ + "sandra", + 0.008408436551690102 + ] + ], + "score": 0 + }, + { + "sentence": "Linda can't leave work here until Tony arrives to replace her. If Tony had left home for work on time, _ would be here by this time.", + "answer1": [ + "Tony", + "he" + ], + "answer0": [ + "Linda", + "she" + ], + "correct_answer": [ + "Tony", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "linda", + 0.7818251252174377 + ], + [ + "he", + 0.1578403264284134 + ], + [ + "she", + 0.016681527718901634 + ], + [ + "tony", + 0.0018600979819893837 + ] + ], + "score": 0 + } + ] + }, + { + "index": 84, + "sentences": [ + { + "sentence": "If the woman has succeeded in fooling Sam, _ would have gotten a lot of money.", + "answer1": [ + "he" + ], + "answer0": [ + "she" + ], + "correct_answer": [ + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.66971355676651 + ], + [ + "he", + 0.14182616770267487 + ] + ], + "score": 1 + } + ] + }, + { + "index": 85, + "sentences": [ + { + "sentence": "If the woman has succeeded in fooling Sam, _ would have lost a lot of money.", + "answer1": [ + "he" + ], + "answer0": [ + "she" + ], + "correct_answer": [ + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.48567670583724976 + ], + [ + "he", + 0.2748803496360779 + ] + ], + "score": 0 + } + ] + }, + { + "index": 86, + "sentences": [] + }, + { + "index": 87, + "sentences": [] + }, + { + "index": 88, + "sentences": [ + { + "sentence": "The cat was lying by the mouse hole waiting for the mouse, but the _ was too impatient.", + "answer1": [ + "mouse" + ], + "answer0": [ + "cat" + ], + "correct_answer": [ + "cat" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "cat", + 0.8255143165588379 + ], + [ + "mouse", + 0.07212252169847488 + ] + ], + "score": 1 + } + ] + }, + { + "index": 89, + "sentences": [ + { + "sentence": "The cat was lying by the mouse hole waiting for the mouse, but the _ was too cautious.", + "answer1": [ + "mouse" + ], + "answer0": [ + "cat" + ], + "correct_answer": [ + "mouse" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "cat", + 0.7318105697631836 + ], + [ + "mouse", + 0.070926234126091 + ] + ], + "score": 0 + } + ] + }, + { + "index": 90, + "sentences": [ + { + "sentence": "Betty gave birth to a son Daniel last month. _ is a very charming woman.", + "answer1": [ + "Daniel", + "he" + ], + "answer0": [ + "Betty", + "she" + ], + "correct_answer": [ + "Betty", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "betty", + 0.5413283109664917 + ], + [ + "she", + 0.4113282859325409 + ], + [ + "daniel", + 0.0013550656149163842 + ] + ], + "score": 1 + } + ] + }, + { + "index": 91, + "sentences": [ + { + "sentence": "Laura gave birth to a son Jason last month. _ is a very charming baby.", + "answer1": [ + "Jason", + "he" + ], + "answer0": [ + "Laura", + "she" + ], + "correct_answer": [ + "Jason", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "jason", + 0.593578040599823 + ], + [ + "he", + 0.34084823727607727 + ] + ], + "score": 1 + } + ] + }, + { + "index": 92, + "sentences": [ + { + "sentence": "Paul tried frantically to stop his daughter Sandra from chatting at the party, leaving us to wonder why _ was behaving so strangely.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "Paul", + "he" + ], + "correct_answer": [ + "Paul", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.780010461807251 + ], + [ + "he", + 0.06307154893875122 + ], + [ + "sandra", + 0.03193315863609314 + ], + [ + "paul", + 0.02212286926805973 + ] + ], + "score": 0 + } + ] + }, + { + "index": 93, + "sentences": [ + { + "sentence": "Thomas tried frantically to stop his daughter Helen from barking at the party, leaving us to wonder why _ was behaving so strangely.", + "answer1": [ + "Helen", + "she" + ], + "answer0": [ + "Thomas", + "he" + ], + "correct_answer": [ + "Helen", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.5904063582420349 + ], + [ + "he", + 0.12378611415624619 + ], + [ + "helen", + 0.04352760314941406 + ], + [ + "thomas", + 0.04339068755507469 + ] + ], + "score": 1 + } + ] + }, + { + "index": 94, + "sentences": [] + }, + { + "index": 95, + "sentences": [] + }, + { + "index": 96, + "sentences": [ + { + "sentence": "The fish ate the worm. the _ was hungry.", + "answer1": [ + "worm" + ], + "answer0": [ + "fish" + ], + "correct_answer": [ + "fish" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "fish", + 0.37108519673347473 + ], + [ + "worm", + 0.21286211907863617 + ] + ], + "score": 1 + } + ] + }, + { + "index": 97, + "sentences": [ + { + "sentence": "The fish ate the worm. the _ was tasty.", + "answer1": [ + "worm" + ], + "answer0": [ + "fish" + ], + "correct_answer": [ + "worm" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "fish", + 0.44388917088508606 + ], + [ + "worm", + 0.06959007680416107 + ] + ], + "score": 0 + } + ] + }, + { + "index": 98, + "sentences": [ + { + "sentence": "I was trying to open the lock with the key, but someone had filled the keyhole with gum, and I couldn't get the _ in.", + "answer1": [ + "gum" + ], + "answer0": [ + "key" + ], + "correct_answer": [ + "key" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "key", + 0.8628509640693665 + ] + ], + "score": 1 + } + ] + }, + { + "index": 99, + "sentences": [ + { + "sentence": "I was trying to open the lock with the key, but someone had filled the keyhole with gum, and I couldn't get the _ out.", + "answer1": [ + "gum" + ], + "answer0": [ + "key" + ], + "correct_answer": [ + "gum" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "key", + 0.7175930142402649 + ], + [ + "gum", + 0.006937938742339611 + ] + ], + "score": 0 + } + ] + }, + { + "index": 100, + "sentences": [ + { + "sentence": "The dog chased the cat, which ran up a tree. the _ waited at the bottom.", + "answer1": [ + "cat" + ], + "answer0": [ + "dog" + ], + "correct_answer": [ + "dog" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "cat", + 0.21951650083065033 + ], + [ + "dog", + 0.17522823810577393 + ] + ], + "score": 0 + } + ] + }, + { + "index": 101, + "sentences": [ + { + "sentence": "The dog chased the cat, which ran up a tree. the _ waited at the top.", + "answer1": [ + "cat" + ], + "answer0": [ + "dog" + ], + "correct_answer": [ + "cat" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "cat", + 0.18947550654411316 + ], + [ + "dog", + 0.1664084941148758 + ] + ], + "score": 1 + } + ] + }, + { + "index": 102, + "sentences": [ + { + "sentence": "In the storm, the tree fell down and crashed through the roof of my house. Now, I have to get the _ removed.", + "answer1": [ + "roof" + ], + "answer0": [ + "tree" + ], + "correct_answer": [ + "tree" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "tree", + 0.27868902683258057 + ] + ], + "score": 1 + } + ] + }, + { + "index": 103, + "sentences": [ + { + "sentence": "In the storm, the tree fell down and crashed through the roof of my house. Now, I have to get the _ repaired.", + "answer1": [ + "roof" + ], + "answer0": [ + "tree" + ], + "correct_answer": [ + "roof" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "tree", + 0.5251078605651855 + ], + [ + "roof", + 0.1584283411502838 + ] + ], + "score": 0 + } + ] + }, + { + "index": 104, + "sentences": [ + { + "sentence": "The customer walked into the bank and stabbed the tellers. the _ was immediately taken to the police station.", + "answer1": [ + "teller" + ], + "answer0": [ + "customer" + ], + "correct_answer": [ + "customer" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "customer", + 0.5774991512298584 + ] + ], + "score": 1 + } + ] + }, + { + "index": 105, + "sentences": [ + { + "sentence": "The customer walked into the bank and stabbed the tellers. the _ was immediately taken to the hospital.", + "answer1": [ + "teller" + ], + "answer0": [ + "customer" + ], + "correct_answer": [ + "teller" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "customer", + 0.7133771777153015 + ] + ], + "score": 0 + } + ] + }, + { + "index": 106, + "sentences": [ + { + "sentence": "John was doing research in the library when he heard a woman humming and whistling. _ was very annoyed.", + "answer1": [ + "she" + ], + "answer0": [ + "he" + ], + "correct_answer": [ + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.6243001818656921 + ], + [ + "she", + 0.007973955012857914 + ] + ], + "score": 1 + } + ] + }, + { + "index": 107, + "sentences": [ + { + "sentence": "John was doing research in the library when he heard a woman humming and whistling. _ was very annoying.", + "answer1": [ + "she" + ], + "answer0": [ + "he" + ], + "correct_answer": [ + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.2894514203071594 + ] + ], + "score": 1 + } + ] + }, + { + "index": 108, + "sentences": [ + { + "sentence": "John was jogging through the park when he saw a woman juggling watermelons. _ was very impressed.", + "answer1": [ + "she" + ], + "answer0": [ + "he" + ], + "correct_answer": [ + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.6197863221168518 + ], + [ + "she", + 0.028509652242064476 + ] + ], + "score": 1 + } + ] + }, + { + "index": 109, + "sentences": [ + { + "sentence": "John was jogging through the park when he saw a woman juggling watermelons. _ was very impressive.", + "answer1": [ + "she" + ], + "answer0": [ + "he" + ], + "correct_answer": [ + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.7331407070159912 + ] + ], + "score": 1 + } + ] + }, + { + "index": 110, + "sentences": [ + { + "sentence": "George collapsed on the sidewalk. Soon he saw Wendy coming to help. _ was very ill.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "George", + "he" + ], + "correct_answer": [ + "George", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.9086498618125916 + ], + [ + "wendy", + 0.07171561568975449 + ], + [ + "he", + 0.00464142020791769 + ] + ], + "score": 0 + }, + { + "sentence": "Nancy collapsed on the sidewalk. Soon she saw Brian coming to help. _ was very ill.", + "answer1": [ + "Brian", + "he" + ], + "answer0": [ + "Nancy", + "she" + ], + "correct_answer": [ + "Nancy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.8744707107543945 + ], + [ + "brian", + 0.09346448630094528 + ], + [ + "she", + 0.012748870067298412 + ] + ], + "score": 0 + } + ] + }, + { + "index": 111, + "sentences": [ + { + "sentence": "Steven collapsed on the sidewalk. Soon he saw Wendy coming to help. _ was very concerned.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "Steven", + "he" + ], + "correct_answer": [ + "Wendy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.669244647026062 + ], + [ + "wendy", + 0.28963056206703186 + ], + [ + "he", + 0.009827366098761559 + ] + ], + "score": 1 + }, + { + "sentence": "Betty collapsed on the sidewalk. Soon she saw Daniel coming to help. _ was very concerned.", + "answer1": [ + "Daniel", + "he" + ], + "answer0": [ + "Betty", + "she" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.7216044664382935 + ], + [ + "daniel", + 0.1329873502254486 + ], + [ + "she", + 0.07653984427452087 + ], + [ + "betty", + 0.025548135861754417 + ] + ], + "score": 1 + } + ] + }, + { + "index": 112, + "sentences": [] + }, + { + "index": 113, + "sentences": [] + }, + { + "index": 114, + "sentences": [ + { + "sentence": "Thomas told Margaret many lies about himself, which Margaret included in her book. _ should have been more truthful.", + "answer1": [ + "Margaret", + "she" + ], + "answer0": [ + "Thomas", + "he" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "thomas", + 0.30783167481422424 + ], + [ + "he", + 0.2996409833431244 + ], + [ + "she", + 0.12280318886041641 + ], + [ + "margaret", + 0.025127053260803223 + ] + ], + "score": 1 + }, + { + "sentence": "Lisa told William many lies about herself, which William included in his book. _ should have been more truthful.", + "answer1": [ + "William", + "he" + ], + "answer0": [ + "Lisa", + "she" + ], + "correct_answer": [ + "Lisa", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.4036584794521332 + ], + [ + "he", + 0.16349658370018005 + ], + [ + "lisa", + 0.10439618676900864 + ] + ], + "score": 1 + } + ] + }, + { + "index": 115, + "sentences": [ + { + "sentence": "Lisa told Edward many lies about herself, which Edward included in his book. _ should have been more skeptical.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Lisa", + "she" + ], + "correct_answer": [ + "Edward", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.19039444625377655 + ], + [ + "she", + 0.08063376694917679 + ], + [ + "edward", + 0.07449514418840408 + ], + [ + "lisa", + 0.016218291595578194 + ] + ], + "score": 1 + }, + { + "sentence": "Daniel told Vivian many lies about himself, which Vivian included in her book. _ should have been more skeptical.", + "answer1": [ + "Vivian", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Vivian", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.13308386504650116 + ], + [ + "he", + 0.02119334787130356 + ], + [ + "vivian", + 0.006614150945097208 + ] + ], + "score": 1 + } + ] + }, + { + "index": 116, + "sentences": [ + { + "sentence": "Joe has sold his house and bought a new one a few miles away. He will be moving out of the _ house on Thursday.", + "answer1": [ + "new" + ], + "answer0": [ + "old" + ], + "correct_answer": [ + "old" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "old", + 0.5963925123214722 + ], + [ + "new", + 0.08838000893592834 + ] + ], + "score": 1 + } + ] + }, + { + "index": 117, + "sentences": [ + { + "sentence": "Joe has sold his house and bought a new one a few miles away. He will be moving into the _ house on Thursday.", + "answer1": [ + "new" + ], + "answer0": [ + "old" + ], + "correct_answer": [ + "new" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "new", + 0.8057393431663513 + ], + [ + "old", + 0.06867457181215286 + ] + ], + "score": 1 + } + ] + }, + { + "index": 118, + "sentences": [] + }, + { + "index": 119, + "sentences": [] + }, + { + "index": 120, + "sentences": [ + { + "sentence": "Mary took out her flute and played one of her favorite pieces. She has had the _ since she was a child.", + "answer1": [ + "piece" + ], + "answer0": [ + "flute" + ], + "correct_answer": [ + "flute" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "flute", + 0.8020106554031372 + ], + [ + "piece", + 0.0065211085602641106 + ] + ], + "score": 1 + } + ] + }, + { + "index": 121, + "sentences": [ + { + "sentence": "Mary took out her flute and played one of her favorite pieces. She has loved the _ since she was a child.", + "answer1": [ + "piece" + ], + "answer0": [ + "flute" + ], + "correct_answer": [ + "piece" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "flute", + 0.2698434591293335 + ], + [ + "piece", + 0.11442672461271286 + ] + ], + "score": 0 + } + ] + }, + { + "index": 122, + "sentences": [ + { + "sentence": "Sam pulled up a chair to the piano, but the _ was broken, so he had to stand instead.", + "answer1": [ + "piano" + ], + "answer0": [ + "chair" + ], + "correct_answer": [ + "chair" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "chair", + 0.2117273360490799 + ], + [ + "piano", + 0.0348532609641552 + ] + ], + "score": 1 + } + ] + }, + { + "index": 123, + "sentences": [ + { + "sentence": "Sam pulled up a chair to the piano, but the _ was broken, so he had to sing instead.", + "answer1": [ + "piano" + ], + "answer0": [ + "chair" + ], + "correct_answer": [ + "piano" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "piano", + 0.14480875432491302 + ], + [ + "chair", + 0.08749102801084518 + ] + ], + "score": 1 + } + ] + }, + { + "index": 124, + "sentences": [ + { + "sentence": "Since it was raining, I carried the newspaper in my backpack to keep the _ dry.", + "answer1": [ + "backpack" + ], + "answer0": [ + "newspaper" + ], + "correct_answer": [ + "newspaper" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 125, + "sentences": [ + { + "sentence": "Since it was raining, I carried the newspaper over my backpack to keep the _ dry.", + "answer1": [ + "backpack" + ], + "answer0": [ + "newspaper" + ], + "correct_answer": [ + "backpack" + ], + "adjacent_ref": true, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 126, + "sentences": [ + { + "sentence": "Sara borrowed the book from the library because she needs it for an article she is working on. She reads the _ when she gets home from work.", + "answer1": [ + "article" + ], + "answer0": [ + "book" + ], + "correct_answer": [ + "book" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "article", + 0.7929431796073914 + ], + [ + "book", + 0.03670453652739525 + ] + ], + "score": 0 + } + ] + }, + { + "index": 127, + "sentences": [ + { + "sentence": "Sara borrowed the book from the library because she needs it for an article she is working on. She writes the _ when she gets home from work.", + "answer1": [ + "article" + ], + "answer0": [ + "book" + ], + "correct_answer": [ + "article" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "article", + 0.6547066569328308 + ], + [ + "book", + 0.049485430121421814 + ] + ], + "score": 1 + } + ] + }, + { + "index": 128, + "sentences": [ + { + "sentence": "This morning, Joey built a castle on the beach, and put a toy flag in the highest tower, but this afternoon the tide knocked the _ down.", + "answer1": [ + "flag" + ], + "answer0": [ + "castle" + ], + "correct_answer": [ + "castle" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "castle", + 0.3126690089702606 + ] + ], + "score": 1 + } + ] + }, + { + "index": 129, + "sentences": [ + { + "sentence": "This morning, Joey built a castle on the beach, and put a toy flag in the highest tower, but this afternoon the wind knocked the _ down.", + "answer1": [ + "flag" + ], + "answer0": [ + "castle" + ], + "correct_answer": [ + "flag" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "castle", + 0.14584790170192719 + ], + [ + "flag", + 0.0925380289554596 + ] + ], + "score": 0 + } + ] + }, + { + "index": 130, + "sentences": [ + { + "sentence": "Donna knocked on George's door, but there was no answer. _ was disappointed.", + "answer1": [ + "George", + "he" + ], + "answer0": [ + "Donna", + "she" + ], + "correct_answer": [ + "Donna", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.725192666053772 + ], + [ + "donna", + 0.21122732758522034 + ], + [ + "he", + 0.00751360272988677 + ], + [ + "george", + 0.002388492226600647 + ] + ], + "score": 1 + }, + { + "sentence": "Brian knocked on Sandra's door, but there was no answer. _ was disappointed.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "Brian", + "he" + ], + "correct_answer": [ + "Brian", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.7136160135269165 + ], + [ + "brian", + 0.2146453559398651 + ], + [ + "she", + 0.03952759504318237 + ], + [ + "sandra", + 0.0034710802137851715 + ] + ], + "score": 1 + } + ] + }, + { + "index": 131, + "sentences": [ + { + "sentence": "Anthony knocked on Laura's door, but there was no answer. _ was out.", + "answer1": [ + "Laura", + "she" + ], + "answer0": [ + "Anthony", + "he" + ], + "correct_answer": [ + "Laura", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.3706660866737366 + ], + [ + "laura", + 0.23670922219753265 + ], + [ + "anthony", + 0.03675343096256256 + ], + [ + "he", + 0.03366513177752495 + ] + ], + "score": 1 + }, + { + "sentence": "Sarah knocked on David's door, but there was no answer. _ was out.", + "answer1": [ + "David", + "he" + ], + "answer0": [ + "Sarah", + "she" + ], + "correct_answer": [ + "David", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.40272143483161926 + ], + [ + "david", + 0.22155331075191498 + ], + [ + "sarah", + 0.08200158923864365 + ], + [ + "she", + 0.025603963062167168 + ] + ], + "score": 1 + } + ] + }, + { + "index": 132, + "sentences": [ + { + "sentence": "David knocked on the door, and Helen answered it. _ invited her to come out.", + "answer1": [ + "Helen", + "she" + ], + "answer0": [ + "David", + "he" + ], + "correct_answer": [ + "David", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.4498973488807678 + ], + [ + "david", + 0.4179869294166565 + ], + [ + "she", + 0.009854797273874283 + ], + [ + "helen", + 0.007285397034138441 + ] + ], + "score": 1 + }, + { + "sentence": "Vivian knocked on the door, and Daniel answered it. _ invited him to come out.", + "answer1": [ + "Daniel", + "he" + ], + "answer0": [ + "Vivian", + "she" + ], + "correct_answer": [ + "Vivian", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "vivian", + 0.45176881551742554 + ], + [ + "she", + 0.10893049836158752 + ] + ], + "score": 1 + } + ] + }, + { + "index": 133, + "sentences": [ + { + "sentence": "Jennifer knocked on the door, and Jason answered it. _ invited her to come in.", + "answer1": [ + "Jason", + "he" + ], + "answer0": [ + "Jennifer", + "she" + ], + "correct_answer": [ + "Jason", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.8066680431365967 + ], + [ + "jason", + 0.05348130315542221 + ], + [ + "jennifer", + 0.04620116949081421 + ] + ], + "score": 1 + }, + { + "sentence": "Joseph knocked on the door, and Amy answered it. _ invited him to come in.", + "answer1": [ + "Amy", + "she" + ], + "answer0": [ + "Joseph", + "he" + ], + "correct_answer": [ + "Amy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.7397094368934631 + ], + [ + "amy", + 0.09842552989721298 + ], + [ + "joseph", + 0.02913120575249195 + ], + [ + "he", + 0.011561447754502296 + ] + ], + "score": 1 + } + ] + }, + { + "index": 134, + "sentences": [ + { + "sentence": "Daniel took French classes from Anna, because _ was eager to speak it fluently.", + "answer1": [ + "Anna", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.543056845664978 + ], + [ + "she", + 0.28391432762145996 + ], + [ + "anna", + 0.1334146112203598 + ], + [ + "daniel", + 0.004943103063851595 + ] + ], + "score": 1 + }, + { + "sentence": "Susan took French classes from Edward, because _ was eager to speak it fluently.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Susan", + "she" + ], + "correct_answer": [ + "Susan", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.6854918003082275 + ], + [ + "he", + 0.16495540738105774 + ], + [ + "edward", + 0.040629129856824875 + ], + [ + "susan", + 0.005385664291679859 + ] + ], + "score": 1 + } + ] + }, + { + "index": 135, + "sentences": [ + { + "sentence": "Daniel took French classes from Nancy, because _ was known to speak it fluently.", + "answer1": [ + "Nancy", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Nancy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.9642737507820129 + ], + [ + "she", + 0.03015826642513275 + ], + [ + "daniel", + 0.0008225942146964371 + ], + [ + "nancy", + 0.00018977400031872094 + ] + ], + "score": 0 + }, + { + "sentence": "Amy took French classes from Anthony, because _ was known to speak it fluently.", + "answer1": [ + "Anthony", + "he" + ], + "answer0": [ + "Amy", + "she" + ], + "correct_answer": [ + "Anthony", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.4824458956718445 + ], + [ + "he", + 0.4505062699317932 + ], + [ + "anthony", + 0.016775252297520638 + ], + [ + "amy", + 0.00974208302795887 + ] + ], + "score": 0 + } + ] + }, + { + "index": 136, + "sentences": [ + { + "sentence": "The path to the lake was blocked, so we couldn't use the _ .", + "answer1": [ + "lake" + ], + "answer0": [ + "path" + ], + "correct_answer": [ + "path" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 137, + "sentences": [ + { + "sentence": "The path to the lake was blocked, so we couldn't reach the _ .", + "answer1": [ + "lake" + ], + "answer0": [ + "path" + ], + "correct_answer": [ + "lake" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "lake", + 0.08149494975805283 + ] + ], + "score": 1 + } + ] + }, + { + "index": 138, + "sentences": [ + { + "sentence": "The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, the _ was out.", + "answer1": [ + "cloud" + ], + "answer0": [ + "sun" + ], + "correct_answer": [ + "sun" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "sun", + 0.5122198462486267 + ] + ], + "score": 1 + } + ] + }, + { + "index": 139, + "sentences": [ + { + "sentence": "The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, the _ was gone.", + "answer1": [ + "cloud" + ], + "answer0": [ + "sun" + ], + "correct_answer": [ + "cloud" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "cloud", + 0.3546683192253113 + ], + [ + "sun", + 0.04581490159034729 + ] + ], + "score": 1 + } + ] + }, + { + "index": 140, + "sentences": [ + { + "sentence": "We went to the lake, because a shark had been seen at the beach, so the _ was a safer place to swim.", + "answer1": [ + "beach" + ], + "answer0": [ + "lake" + ], + "correct_answer": [ + "lake" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "lake", + 0.5537887811660767 + ], + [ + "beach", + 0.12069465965032578 + ] + ], + "score": 1 + } + ] + }, + { + "index": 141, + "sentences": [ + { + "sentence": "We went to the lake, because a shark had been seen at the beach, so the _ was a dangerous place to swim.", + "answer1": [ + "beach" + ], + "answer0": [ + "lake" + ], + "correct_answer": [ + "beach" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "lake", + 0.7313575148582458 + ], + [ + "beach", + 0.04965415969491005 + ] + ], + "score": 0 + } + ] + }, + { + "index": 142, + "sentences": [ + { + "sentence": "Sam tried to paint a picture of tourists with sheep, but the _ ended up looking more like golfers.", + "answer1": [ + "sheep" + ], + "answer0": [ + "tourists" + ], + "correct_answer": [ + "tourists" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "sheep", + 0.48821017146110535 + ] + ], + "score": 0 + } + ] + }, + { + "index": 143, + "sentences": [ + { + "sentence": "Sam tried to paint a picture of tourists with sheep, but the _ ended up looking more like dogs.", + "answer1": [ + "sheep" + ], + "answer0": [ + "tourists" + ], + "correct_answer": [ + "sheep" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "sheep", + 0.6432616710662842 + ] + ], + "score": 1 + } + ] + }, + { + "index": 144, + "sentences": [ + { + "sentence": "Margaret tucked her son Brian into bed, so that _ could work.", + "answer1": [ + "Brian", + "he" + ], + "answer0": [ + "Margaret", + "she" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.24223224818706512 + ], + [ + "he", + 0.22981160879135132 + ], + [ + "margaret", + 0.022159870713949203 + ] + ], + "score": 1 + } + ] + }, + { + "index": 145, + "sentences": [ + { + "sentence": "Wendy tucked her son Paul into bed, so that _ could sleep.", + "answer1": [ + "Paul", + "he" + ], + "answer0": [ + "Wendy", + "she" + ], + "correct_answer": [ + "Paul", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.8820493817329407 + ], + [ + "paul", + 0.020039597526192665 + ], + [ + "she", + 0.0034701882395893335 + ] + ], + "score": 1 + } + ] + }, + { + "index": 146, + "sentences": [] + }, + { + "index": 147, + "sentences": [] + }, + { + "index": 148, + "sentences": [ + { + "sentence": "Sarah visited George's grave in 1765. At that date _ had been travelling for five years.", + "answer1": [ + "George", + "he" + ], + "answer0": [ + "Sarah", + "she" + ], + "correct_answer": [ + "Sarah", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.5088940262794495 + ], + [ + "he", + 0.20025378465652466 + ], + [ + "george", + 0.07865126430988312 + ], + [ + "sarah", + 0.0399525985121727 + ] + ], + "score": 1 + }, + { + "sentence": "Steven visited Helen's grave in 1765. At that date _ had been travelling for five years.", + "answer1": [ + "Helen", + "she" + ], + "answer0": [ + "Steven", + "he" + ], + "correct_answer": [ + "Steven", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.5841214060783386 + ], + [ + "she", + 0.15333987772464752 + ], + [ + "steven", + 0.12337502837181091 + ], + [ + "helen", + 0.00795214157551527 + ] + ], + "score": 1 + } + ] + }, + { + "index": 149, + "sentences": [ + { + "sentence": "Paul visited Margaret's grave in 1765. At that date _ had been dead for five years.", + "answer1": [ + "Margaret", + "she" + ], + "answer0": [ + "Paul", + "he" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.8265026211738586 + ], + [ + "margaret", + 0.11342242360115051 + ], + [ + "he", + 0.023298852145671844 + ], + [ + "paul", + 0.0028004718478769064 + ] + ], + "score": 1 + }, + { + "sentence": "Sandra visited Zack's grave in 1765. At that date _ had been dead for five years.", + "answer1": [ + "Zack", + "he" + ], + "answer0": [ + "Sandra", + "she" + ], + "correct_answer": [ + "Zack", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.5330711007118225 + ], + [ + "zack", + 0.4511242210865021 + ], + [ + "she", + 0.0025638267397880554 + ] + ], + "score": 1 + } + ] + }, + { + "index": 150, + "sentences": [ + { + "sentence": "Vivian was greatly influenced by Steven, though _ lived two centuries later.", + "answer1": [ + "Steven", + "he" + ], + "answer0": [ + "Vivian", + "she" + ], + "correct_answer": [ + "Vivian", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.6800739765167236 + ], + [ + "she", + 0.0814879834651947 + ], + [ + "steven", + 0.0334942601621151 + ], + [ + "vivian", + 0.00919678620994091 + ] + ], + "score": 0 + }, + { + "sentence": "Anthony was greatly influenced by Sandra, though _ lived two centuries later.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "Anthony", + "he" + ], + "correct_answer": [ + "Anthony", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.5291610956192017 + ], + [ + "he", + 0.24366435408592224 + ], + [ + "anthony", + 0.07931230962276459 + ], + [ + "sandra", + 0.014960510656237602 + ] + ], + "score": 0 + } + ] + }, + { + "index": 151, + "sentences": [ + { + "sentence": "Warren was greatly influenced by Mandy, though _ lived two centuries earlier.", + "answer1": [ + "Mandy", + "she" + ], + "answer0": [ + "Warren", + "he" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.6331958770751953 + ], + [ + "he", + 0.14606720209121704 + ], + [ + "warren", + 0.010313055478036404 + ] + ], + "score": 1 + }, + { + "sentence": "Lisa was greatly influenced by David, though _ lived two centuries earlier.", + "answer1": [ + "David", + "he" + ], + "answer0": [ + "Lisa", + "she" + ], + "correct_answer": [ + "David", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.6384512782096863 + ], + [ + "she", + 0.16565637290477753 + ], + [ + "david", + 0.0723688080906868 + ], + [ + "lisa", + 0.006370751652866602 + ] + ], + "score": 1 + } + ] + }, + { + "index": 152, + "sentences": [ + { + "sentence": "I can't cut that tree down with that axe; the _ is too thick.", + "answer1": [ + "axe" + ], + "answer0": [ + "tree" + ], + "correct_answer": [ + "tree" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "tree", + 0.025083722546696663 + ] + ], + "score": 1 + } + ] + }, + { + "index": 153, + "sentences": [ + { + "sentence": "I can't cut that tree down with that axe; the _ is too small.", + "answer1": [ + "axe" + ], + "answer0": [ + "tree" + ], + "correct_answer": [ + "axe" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "tree", + 0.4419287145137787 + ] + ], + "score": 0 + } + ] + }, + { + "index": 154, + "sentences": [ + { + "sentence": "The foxes are getting in at night and attacking the chickens. I shall have to kill the _ .", + "answer1": [ + "chickens" + ], + "answer0": [ + "foxes" + ], + "correct_answer": [ + "foxes" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "chickens", + 0.22372716665267944 + ], + [ + "foxes", + 0.1705324798822403 + ] + ], + "score": 0 + } + ] + }, + { + "index": 155, + "sentences": [ + { + "sentence": "The foxes are getting in at night and attacking the chickens. I shall have to guard the _ .", + "answer1": [ + "chickens" + ], + "answer0": [ + "foxes" + ], + "correct_answer": [ + "chickens" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "chickens", + 0.3232119679450989 + ] + ], + "score": 1 + } + ] + }, + { + "index": 156, + "sentences": [ + { + "sentence": "The foxes are getting in at night and attacking the chickens. the _ have gotten very bold.", + "answer1": [ + "chickens" + ], + "answer0": [ + "foxes" + ], + "correct_answer": [ + "foxes" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "foxes", + 0.8538748025894165 + ] + ], + "score": 1 + } + ] + }, + { + "index": 157, + "sentences": [ + { + "sentence": "The foxes are getting in at night and attacking the chickens. the _ have gotten very nervous.", + "answer1": [ + "chickens" + ], + "answer0": [ + "foxes" + ], + "correct_answer": [ + "chickens" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "foxes", + 0.24852731823921204 + ], + [ + "chickens", + 0.1355128437280655 + ] + ], + "score": 0 + } + ] + }, + { + "index": 158, + "sentences": [ + { + "sentence": "Fred covered his eyes with his hands, because the wind was blowing sand around. He opened his _ when the wind stopped.", + "answer1": [ + "hands" + ], + "answer0": [ + "eyes" + ], + "correct_answer": [ + "eyes" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "eyes", + 0.9919928312301636 + ] + ], + "score": 1 + } + ] + }, + { + "index": 159, + "sentences": [ + { + "sentence": "Fred covered his eyes with his hands, because the wind was blowing sand around. He lowered his _ when the wind stopped.", + "answer1": [ + "hands" + ], + "answer0": [ + "eyes" + ], + "correct_answer": [ + "hands" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "eyes", + 0.07590554654598236 + ], + [ + "hands", + 0.04639185965061188 + ] + ], + "score": 0 + } + ] + }, + { + "index": 160, + "sentences": [ + { + "sentence": "The actress used to be named Christina, but she changed it to Tina a few years ago, because she figured the _ was too hard to pronounce.", + "answer1": [ + "Tina" + ], + "answer0": [ + "Christina" + ], + "correct_answer": [ + "Christina" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 161, + "sentences": [ + { + "sentence": "The actress used to be named Christina, but she changed it to Tina a few years ago, because she figured the _ was easier to pronounce.", + "answer1": [ + "Tina" + ], + "answer0": [ + "Christina" + ], + "correct_answer": [ + "Tina" + ], + "adjacent_ref": true, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 162, + "sentences": [ + { + "sentence": "George watched TV while Amy went out to buy groceries. After an hour _ got up.", + "answer1": [ + "Amy", + "she" + ], + "answer0": [ + "George", + "he" + ], + "correct_answer": [ + "George", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "george", + 0.4222693145275116 + ], + [ + "she", + 0.17023402452468872 + ], + [ + "he", + 0.14838194847106934 + ], + [ + "amy", + 0.09143561124801636 + ] + ], + "score": 1 + }, + { + "sentence": "Helen watched TV while Paul went out to buy groceries. After an hour _ got up.", + "answer1": [ + "Paul", + "he" + ], + "answer0": [ + "Helen", + "she" + ], + "correct_answer": [ + "Helen", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "helen", + 0.3572254478931427 + ], + [ + "she", + 0.18161025643348694 + ], + [ + "he", + 0.17783011496067047 + ], + [ + "paul", + 0.12632130086421967 + ] + ], + "score": 1 + } + ] + }, + { + "index": 163, + "sentences": [ + { + "sentence": "Sue watched TV while Richard went out to buy groceries. After an hour _ got back.", + "answer1": [ + "Richard", + "he" + ], + "answer0": [ + "Sue", + "she" + ], + "correct_answer": [ + "Richard", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.36730772256851196 + ], + [ + "richard", + 0.24268296360969543 + ], + [ + "she", + 0.0852513387799263 + ], + [ + "sue", + 0.0603502094745636 + ] + ], + "score": 1 + }, + { + "sentence": "Steven watched TV while Lisa went out to buy groceries. After an hour _ got back.", + "answer1": [ + "Lisa", + "she" + ], + "answer0": [ + "Steven", + "he" + ], + "correct_answer": [ + "Lisa", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.2513202726840973 + ], + [ + "lisa", + 0.21226151287555695 + ], + [ + "he", + 0.15152567625045776 + ], + [ + "steven", + 0.06623411923646927 + ] + ], + "score": 1 + } + ] + }, + { + "index": 164, + "sentences": [ + { + "sentence": "Fred was supposed to run the oven, but he put it off, because he wanted to watch TV. But the show turned out to be boring, so he changed his mind and turned the _ on.", + "answer1": [ + "TV" + ], + "answer0": [ + "oven" + ], + "correct_answer": [ + "oven" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "oven", + 0.33234283328056335 + ], + [ + "tv", + 0.24399203062057495 + ] + ], + "score": 1 + } + ] + }, + { + "index": 165, + "sentences": [ + { + "sentence": "Fred was supposed to run the oven, but he put it off, because he wanted to watch TV. But the show turned out to be boring, so he changed his mind and turned the _ off.", + "answer1": [ + "TV" + ], + "answer0": [ + "oven" + ], + "correct_answer": [ + "TV" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "oven", + 0.5511050224304199 + ], + [ + "tv", + 0.14227940142154694 + ] + ], + "score": 0 + } + ] + }, + { + "index": 166, + "sentences": [ + { + "sentence": "Tony is the only man still alive who remembers my great-grandmother Jennifer. _ is remarkable.", + "answer1": [ + "Jennifer", + "she" + ], + "answer0": [ + "Tony", + "he" + ], + "correct_answer": [ + "Tony", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.31883949041366577 + ], + [ + "he", + 0.2727121412754059 + ] + ], + "score": 0 + } + ] + }, + { + "index": 167, + "sentences": [ + { + "sentence": "Tony is the only man still alive who remembers my great-grandmother Mandy. _ was remarkable.", + "answer1": [ + "Mandy", + "she" + ], + "answer0": [ + "Tony", + "he" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.7409354448318481 + ], + [ + "mandy", + 0.02154599316418171 + ], + [ + "he", + 0.008621525950729847 + ] + ], + "score": 1 + } + ] + }, + { + "index": 168, + "sentences": [ + { + "sentence": "Daniel is the only man alive who still remembers my mother Wendy as an infant. When Daniel first saw my mother, _ was twelve years old.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.721801221370697 + ], + [ + "he", + 0.14972272515296936 + ], + [ + "daniel", + 0.004093638621270657 + ], + [ + "wendy", + 0.003174440236762166 + ] + ], + "score": 0 + } + ] + }, + { + "index": 169, + "sentences": [ + { + "sentence": "Paul is the only man alive who still remembers my mother Lisa as an infant. When Paul first saw my mother, _ was twelve months old.", + "answer1": [ + "Lisa", + "she" + ], + "answer0": [ + "Paul", + "he" + ], + "correct_answer": [ + "Lisa", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.8270816802978516 + ], + [ + "he", + 0.06970749795436859 + ], + [ + "paul", + 0.006479764357209206 + ], + [ + "lisa", + 0.003468103241175413 + ] + ], + "score": 1 + } + ] + }, + { + "index": 170, + "sentences": [ + { + "sentence": "In July, Spain declared war on Italy. Since Italy's army was much better equipped and ten times larger, the _ were defeated within weeks.", + "answer1": [ + "Italy" + ], + "answer0": [ + "Spain" + ], + "correct_answer": [ + "Spain" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 171, + "sentences": [ + { + "sentence": "In July, France declared war on Russia. Since Russia's army was much better equipped and ten times larger, the _ were victorious within weeks.", + "answer1": [ + "Russia" + ], + "answer0": [ + "France" + ], + "correct_answer": [ + "Russia" + ], + "adjacent_ref": true, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 172, + "sentences": [ + { + "sentence": "Look! There is a fish swimming right below that duck! the _ had better get away to safety fast!", + "answer1": [ + "duck" + ], + "answer0": [ + "fish" + ], + "correct_answer": [ + "fish" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "fish", + 0.7521501183509827 + ], + [ + "duck", + 0.09160765260457993 + ] + ], + "score": 1 + } + ] + }, + { + "index": 173, + "sentences": [ + { + "sentence": "Look! There is a shark swimming right below that duck! the _ had better get away to safety fast!", + "answer1": [ + "duck" + ], + "answer0": [ + "shark" + ], + "correct_answer": [ + "duck" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "shark", + 0.39164668321609497 + ], + [ + "duck", + 0.049340344965457916 + ] + ], + "score": 0 + } + ] + }, + { + "index": 174, + "sentences": [] + }, + { + "index": 175, + "sentences": [] + }, + { + "index": 176, + "sentences": [ + { + "sentence": "The scientists are studying three species of fish that have recently been found living in the Indian Ocean. the _ began two years ago.", + "answer1": [ + "fish" + ], + "answer0": [ + "scientists" + ], + "correct_answer": [ + "scientists" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 177, + "sentences": [ + { + "sentence": "The scientists are studying three species of fish that have recently been found living in the Indian Ocean. the _ appeared two years ago.", + "answer1": [ + "fish" + ], + "answer0": [ + "scientists" + ], + "correct_answer": [ + "fish" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "fish", + 0.014301100745797157 + ] + ], + "score": 1 + } + ] + }, + { + "index": 178, + "sentences": [ + { + "sentence": "The journalists interviewed the stars of the new movie. the _ were very persistent, so the interview lasted for a long time.", + "answer1": [ + "stars" + ], + "answer0": [ + "journalists" + ], + "correct_answer": [ + "journalists" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "journalists", + 0.06059985235333443 + ], + [ + "stars", + 0.04318194463849068 + ] + ], + "score": 1 + } + ] + }, + { + "index": 179, + "sentences": [ + { + "sentence": "The journalists interviewed the stars of the new movie. the _ were very cooperative, so the interview lasted for a long time.", + "answer1": [ + "stars" + ], + "answer0": [ + "journalists" + ], + "correct_answer": [ + "stars" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "journalists", + 0.06477633118629456 + ] + ], + "score": 0 + } + ] + }, + { + "index": 180, + "sentences": [ + { + "sentence": "The police arrested all of the students. the _ were trying to stop the drug trade in the neighborhood.", + "answer1": [ + "students" + ], + "answer0": [ + "police" + ], + "correct_answer": [ + "police" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "police", + 0.8427444100379944 + ], + [ + "students", + 0.08074833452701569 + ] + ], + "score": 1 + } + ] + }, + { + "index": 181, + "sentences": [ + { + "sentence": "The police arrested all of the students. the _ were trying to run the drug trade in the neighborhood.", + "answer1": [ + "students" + ], + "answer0": [ + "police" + ], + "correct_answer": [ + "students" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "police", + 0.5480837821960449 + ], + [ + "students", + 0.25696301460266113 + ] + ], + "score": 0 + } + ] + }, + { + "index": 182, + "sentences": [ + { + "sentence": "I put the cake away in the refrigerator. the _ has a lot of butter in it.", + "answer1": [ + "refrigerator" + ], + "answer0": [ + "cake" + ], + "correct_answer": [ + "cake" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "cake", + 0.3875311017036438 + ] + ], + "score": 1 + } + ] + }, + { + "index": 183, + "sentences": [ + { + "sentence": "I put the cake away in the refrigerator. the _ has a lot of leftovers in it.", + "answer1": [ + "refrigerator" + ], + "answer0": [ + "cake" + ], + "correct_answer": [ + "refrigerator" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "refrigerator", + 0.04797044396400452 + ] + ], + "score": 1 + } + ] + }, + { + "index": 184, + "sentences": [ + { + "sentence": "Sam broke both his ankles and he's walking with cane. But a month or so from now the _ should be better.", + "answer1": [ + "cane" + ], + "answer0": [ + "ankles" + ], + "correct_answer": [ + "ankles" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 185, + "sentences": [ + { + "sentence": "Sam broke both his ankles and he's walking with cane. But a month or so from now the _ should be unnecessary.", + "answer1": [ + "cane" + ], + "answer0": [ + "ankles" + ], + "correct_answer": [ + "cane" + ], + "adjacent_ref": true, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 186, + "sentences": [ + { + "sentence": "When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. the _ were very much in the minority.", + "answer1": [ + "opponents" + ], + "answer0": [ + "sponsors" + ], + "correct_answer": [ + "sponsors" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "opponents", + 0.1925417184829712 + ] + ], + "score": 0 + } + ] + }, + { + "index": 187, + "sentences": [ + { + "sentence": "When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. the _ were very much in the majority.", + "answer1": [ + "opponents" + ], + "answer0": [ + "sponsors" + ], + "correct_answer": [ + "opponents" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "opponents", + 0.2790956199169159 + ] + ], + "score": 1 + } + ] + }, + { + "index": 188, + "sentences": [ + { + "sentence": "Everyone really loved the cake; only a few people liked the cookies. Next time, we should make more of the _ .", + "answer1": [ + "cookies" + ], + "answer0": [ + "cake" + ], + "correct_answer": [ + "cake" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "cookies", + 0.34039416909217834 + ], + [ + "cake", + 0.1966356337070465 + ] + ], + "score": 0 + } + ] + }, + { + "index": 189, + "sentences": [ + { + "sentence": "Everyone really loved the cake; only a few people liked the cookies. Next time, we should make fewer of the _ .", + "answer1": [ + "cookies" + ], + "answer0": [ + "cake" + ], + "correct_answer": [ + "cookies" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "cookies", + 0.7632879018783569 + ] + ], + "score": 1 + } + ] + }, + { + "index": 190, + "sentences": [ + { + "sentence": "We had hoped to place books on all the chairs in the auditorium, but there were simply not enough of the _ .", + "answer1": [ + "chairs" + ], + "answer0": [ + "books" + ], + "correct_answer": [ + "books" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "books", + 0.7032318115234375 + ], + [ + "chairs", + 0.02748037874698639 + ] + ], + "score": 1 + } + ] + }, + { + "index": 191, + "sentences": [ + { + "sentence": "We had hoped to place books on all the chairs in the auditorium, but there were simply too many of the _ .", + "answer1": [ + "chairs" + ], + "answer0": [ + "books" + ], + "correct_answer": [ + "chairs" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "chairs", + 0.31335213780403137 + ], + [ + "books", + 0.28027427196502686 + ] + ], + "score": 1 + } + ] + }, + { + "index": 192, + "sentences": [ + { + "sentence": "I stuck a pin through a carrot. When I pulled the pin out, the _ left a hole.", + "answer1": [ + "carrot" + ], + "answer0": [ + "pin" + ], + "correct_answer": [ + "pin" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "pin", + 0.24921917915344238 + ], + [ + "carrot", + 0.02873871475458145 + ] + ], + "score": 1 + } + ] + }, + { + "index": 193, + "sentences": [ + { + "sentence": "I stuck a pin through a carrot. When I pulled the pin out, the _ had a hole.", + "answer1": [ + "carrot" + ], + "answer0": [ + "pin" + ], + "correct_answer": [ + "carrot" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "carrot", + 0.7155035734176636 + ], + [ + "pin", + 0.04343157261610031 + ] + ], + "score": 1 + } + ] + }, + { + "index": 194, + "sentences": [ + { + "sentence": "I couldn't find a spoon, so I tried using a pen to stir my coffee. But that turned out to be a bad idea, because the _ got full of coffee.", + "answer1": [ + "coffee" + ], + "answer0": [ + "pen" + ], + "correct_answer": [ + "pen" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 195, + "sentences": [ + { + "sentence": "I couldn't find a spoon, so I tried using a pen to stir my coffee. But that turned out to be a bad idea, because the _ got full of ink.", + "answer1": [ + "coffee" + ], + "answer0": [ + "pen" + ], + "correct_answer": [ + "coffee" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "pen", + 0.07221017777919769 + ] + ], + "score": 0 + } + ] + }, + { + "index": 196, + "sentences": [ + { + "sentence": "Alan follows Emma's example in everything. _ admires her hugely.", + "answer1": [ + "Emma", + "she" + ], + "answer0": [ + "Alan", + "he" + ], + "correct_answer": [ + "Alan", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.44828981161117554 + ], + [ + "alan", + 0.3871767222881317 + ], + [ + "emma", + 0.0232782494276762 + ], + [ + "she", + 0.01241056714206934 + ] + ], + "score": 1 + }, + { + "sentence": "Donna follows Jason's example in everything. _ admires him hugely.", + "answer1": [ + "Jason", + "he" + ], + "answer0": [ + "Donna", + "she" + ], + "correct_answer": [ + "Donna", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.9227645397186279 + ], + [ + "donna", + 0.03128309175372124 + ], + [ + "he", + 0.003405218245461583 + ] + ], + "score": 1 + } + ] + }, + { + "index": 197, + "sentences": [ + { + "sentence": "Vivian follows Thomas's example in everything. _ influences her hugely.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Vivian", + "she" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.6024318933486938 + ], + [ + "thomas", + 0.21580076217651367 + ], + [ + "vivian", + 0.005271642003208399 + ] + ], + "score": 1 + }, + { + "sentence": "Richard follows Nancy's example in everything. _ influences him hugely.", + "answer1": [ + "Nancy", + "she" + ], + "answer0": [ + "Richard", + "he" + ], + "correct_answer": [ + "Nancy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "nancy", + 0.7275211215019226 + ], + [ + "she", + 0.23386697471141815 + ] + ], + "score": 1 + } + ] + }, + { + "index": 198, + "sentences": [ + { + "sentence": "The table won't fit through the doorway because the _ is too wide.", + "answer1": [ + "doorway" + ], + "answer0": [ + "table" + ], + "correct_answer": [ + "table" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "table", + 0.07816523313522339 + ] + ], + "score": 1 + } + ] + }, + { + "index": 199, + "sentences": [ + { + "sentence": "The table won't fit through the doorway because the _ is too narrow.", + "answer1": [ + "doorway" + ], + "answer0": [ + "table" + ], + "correct_answer": [ + "doorway" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "table", + 0.06917010992765427 + ] + ], + "score": 0 + } + ] + }, + { + "index": 200, + "sentences": [ + { + "sentence": "Grace was happy to trade me her sweater for my jacket. She thinks the _ looks dowdy on her.", + "answer1": [ + "jacket" + ], + "answer0": [ + "sweater" + ], + "correct_answer": [ + "sweater" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "sweater", + 0.2597585618495941 + ], + [ + "jacket", + 0.2361963987350464 + ] + ], + "score": 1 + } + ] + }, + { + "index": 201, + "sentences": [ + { + "sentence": "Grace was happy to trade me her sweater for my jacket. She thinks the _ looks great on her.", + "answer1": [ + "jacket" + ], + "answer0": [ + "sweater" + ], + "correct_answer": [ + "jacket" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "sweater", + 0.29831069707870483 + ], + [ + "jacket", + 0.158711239695549 + ] + ], + "score": 0 + } + ] + }, + { + "index": 202, + "sentences": [ + { + "sentence": "Helen hired Jason to take care of _ .", + "answer1": [ + "Jason", + "him" + ], + "answer0": [ + "Helen", + "her" + ], + "correct_answer": [ + "Helen", + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.3049941062927246 + ], + [ + "him", + 0.028502047061920166 + ] + ], + "score": 1 + }, + { + "sentence": "Tim hired Lisa to take care of _ .", + "answer1": [ + "Lisa", + "her" + ], + "answer0": [ + "Tim", + "him" + ], + "correct_answer": [ + "Tim", + "him" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "him", + 0.21020644903182983 + ], + [ + "her", + 0.04846358299255371 + ] + ], + "score": 1 + } + ] + }, + { + "index": 203, + "sentences": [ + { + "sentence": "Emma hired herself out to Anthony to take care of _ .", + "answer1": [ + "Anthony", + "him" + ], + "answer0": [ + "Emma", + "her" + ], + "correct_answer": [ + "Anthony", + "him" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "him", + 0.17034678161144257 + ], + [ + "her", + 0.08058315515518188 + ] + ], + "score": 1 + }, + { + "sentence": "Daniel hired himself out to Emma to take care of _ .", + "answer1": [ + "Emma", + "her" + ], + "answer0": [ + "Daniel", + "him" + ], + "correct_answer": [ + "Emma", + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.21644917130470276 + ], + [ + "him", + 0.043456241488456726 + ] + ], + "score": 1 + } + ] + }, + { + "index": 204, + "sentences": [ + { + "sentence": "Sandra promised Edward to leave, so an hour later _ left.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Sandra", + "she" + ], + "correct_answer": [ + "Sandra", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.4670681357383728 + ], + [ + "she", + 0.18557576835155487 + ], + [ + "edward", + 0.14714860916137695 + ] + ], + "score": 0 + }, + { + "sentence": "Thomas promised Betty to leave, so an hour later _ left.", + "answer1": [ + "Betty", + "she" + ], + "answer0": [ + "Thomas", + "he" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.47173383831977844 + ], + [ + "betty", + 0.22963103652000427 + ], + [ + "he", + 0.14014899730682373 + ], + [ + "thomas", + 0.0091405613347888 + ] + ], + "score": 0 + } + ] + }, + { + "index": 205, + "sentences": [ + { + "sentence": "William ordered Mandy to leave, so an hour later _ left.", + "answer1": [ + "Mandy", + "she" + ], + "answer0": [ + "William", + "he" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.2989388108253479 + ], + [ + "he", + 0.23829956352710724 + ], + [ + "mandy", + 0.20623540878295898 + ] + ], + "score": 1 + }, + { + "sentence": "Amy ordered Warren to leave, so an hour later _ left.", + "answer1": [ + "Warren", + "he" + ], + "answer0": [ + "Amy", + "she" + ], + "correct_answer": [ + "Warren", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.4589509963989258 + ], + [ + "warren", + 0.33637410402297974 + ], + [ + "she", + 0.05308223143219948 + ] + ], + "score": 1 + } + ] + }, + { + "index": 206, + "sentences": [ + { + "sentence": "Thomas's biography of Emma conveys a vivid sense of the difficulties _ faced in his research.", + "answer1": [ + "Emma", + "she" + ], + "answer0": [ + "Thomas", + "he" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.38616475462913513 + ], + [ + "she", + 0.19750751554965973 + ], + [ + "emma", + 0.14758290350437164 + ], + [ + "thomas", + 0.08441972732543945 + ] + ], + "score": 1 + }, + { + "sentence": "Jennifer's biography of George conveys a vivid sense of the difficulties _ faced in her research.", + "answer1": [ + "George", + "he" + ], + "answer0": [ + "Jennifer", + "she" + ], + "correct_answer": [ + "Jennifer", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.7952712178230286 + ], + [ + "he", + 0.025763899087905884 + ], + [ + "george", + 0.025489602237939835 + ], + [ + "jennifer", + 0.00788148120045662 + ] + ], + "score": 1 + } + ] + }, + { + "index": 207, + "sentences": [ + { + "sentence": "Emma's biography of Alan conveys a vivid sense of the difficulties _ faced in his childhood.", + "answer1": [ + "Alan", + "he" + ], + "answer0": [ + "Emma", + "she" + ], + "correct_answer": [ + "Alan", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "alan", + 0.5420495271682739 + ], + [ + "he", + 0.4210248291492462 + ] + ], + "score": 1 + }, + { + "sentence": "Steven's biography of Margaret conveys a vivid sense of the difficulties _ faced in her childhood.", + "answer1": [ + "Margaret", + "she" + ], + "answer0": [ + "Steven", + "he" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.6349072456359863 + ], + [ + "margaret", + 0.29832860827445984 + ] + ], + "score": 1 + } + ] + }, + { + "index": 208, + "sentences": [ + { + "sentence": "Wendy's father Anthony had died long ago, and _ education had been managed by an excellent woman as governess.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.9348182082176208 + ], + [ + "his", + 0.011819146573543549 + ] + ], + "score": 1 + } + ] + }, + { + "index": 209, + "sentences": [ + { + "sentence": "Sandra's father Tim had died long ago, and _ place had been taken by an excellent woman as governess.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.3821287453174591 + ], + [ + "her", + 0.32249218225479126 + ] + ], + "score": 1 + } + ] + }, + { + "index": 210, + "sentences": [ + { + "sentence": "Anthony knocked on Betty's door but _ did not get an answer.", + "answer1": [ + "Betty", + "she" + ], + "answer0": [ + "Anthony", + "he" + ], + "correct_answer": [ + "Anthony", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.9353936910629272 + ], + [ + "she", + 0.014528683386743069 + ], + [ + "anthony", + 0.0021569491364061832 + ] + ], + "score": 1 + }, + { + "sentence": "Betty knocked on Thomas's door but _ did not get an answer.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Betty", + "she" + ], + "correct_answer": [ + "Betty", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.8701193928718567 + ], + [ + "he", + 0.04268043488264084 + ], + [ + "thomas", + 0.004556684289127588 + ] + ], + "score": 1 + } + ] + }, + { + "index": 211, + "sentences": [ + { + "sentence": "John knocked on Susan's door but _ did not answer.", + "answer1": [ + "Susan", + "she" + ], + "answer0": [ + "John", + "he" + ], + "correct_answer": [ + "Susan", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9418527483940125 + ], + [ + "susan", + 0.05125227943062782 + ], + [ + "he", + 0.0006008930504322052 + ] + ], + "score": 1 + }, + { + "sentence": "Emma knocked on Charles's door but _ did not answer.", + "answer1": [ + "Charles", + "he" + ], + "answer0": [ + "Emma", + "she" + ], + "correct_answer": [ + "Charles", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.9730058908462524 + ], + [ + "charles", + 0.02500162087380886 + ] + ], + "score": 1 + } + ] + }, + { + "index": 212, + "sentences": [ + { + "sentence": "Zack paid the detective Susan after _ received the final report on the case.", + "answer1": [ + "Susan", + "she" + ], + "answer0": [ + "Zack", + "he" + ], + "correct_answer": [ + "Zack", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.6660929918289185 + ], + [ + "he", + 0.2357940971851349 + ], + [ + "zack", + 0.012386161834001541 + ], + [ + "susan", + 0.004307710099965334 + ] + ], + "score": 0 + }, + { + "sentence": "Anna paid the detective Daniel after _ received the final report on the case.", + "answer1": [ + "Daniel", + "he" + ], + "answer0": [ + "Anna", + "she" + ], + "correct_answer": [ + "Anna", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.6424099206924438 + ], + [ + "she", + 0.2567521929740906 + ], + [ + "anna", + 0.010955804027616978 + ] + ], + "score": 0 + } + ] + }, + { + "index": 213, + "sentences": [ + { + "sentence": "Brian paid the detective Margaret after _ delivered the final report on the case.", + "answer1": [ + "Margaret", + "she" + ], + "answer0": [ + "Brian", + "he" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.8936680555343628 + ], + [ + "he", + 0.036272548139095306 + ], + [ + "margaret", + 0.009478574618697166 + ], + [ + "brian", + 0.005012798588722944 + ] + ], + "score": 1 + }, + { + "sentence": "Helen paid the detective Warren after _ delivered the final report on the case.", + "answer1": [ + "Warren", + "he" + ], + "answer0": [ + "Helen", + "she" + ], + "correct_answer": [ + "Warren", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.759939432144165 + ], + [ + "she", + 0.13307538628578186 + ], + [ + "warren", + 0.012190349400043488 + ], + [ + "helen", + 0.008577443659305573 + ] + ], + "score": 1 + } + ] + }, + { + "index": 214, + "sentences": [ + { + "sentence": "Lisa didn't get angry with Thomas, who had cut her off, because _ stopped and counted to ten.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Lisa", + "she" + ], + "correct_answer": [ + "Lisa", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.7895767092704773 + ], + [ + "he", + 0.11457893252372742 + ], + [ + "lisa", + 0.03027874045073986 + ] + ], + "score": 1 + }, + { + "sentence": "Edward didn't get angry with Mandy, who had cut his off, because _ stopped and counted to ten.", + "answer1": [ + "Mandy", + "she" + ], + "answer0": [ + "Edward", + "he" + ], + "correct_answer": [ + "Edward", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.8440133929252625 + ], + [ + "she", + 0.03659467399120331 + ], + [ + "edward", + 0.018313562497496605 + ] + ], + "score": 1 + } + ] + }, + { + "index": 215, + "sentences": [ + { + "sentence": "Jason didn't get angry with Linda, who had cut his off, because _ stopped and apologized.", + "answer1": [ + "Linda", + "she" + ], + "answer0": [ + "Jason", + "he" + ], + "correct_answer": [ + "Linda", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.4764364957809448 + ], + [ + "she", + 0.37486517429351807 + ], + [ + "linda", + 0.0429224893450737 + ], + [ + "jason", + 0.030886851251125336 + ] + ], + "score": 0 + }, + { + "sentence": "Sue didn't get angry with Brian, who had cut her off, because _ stopped and apologized.", + "answer1": [ + "Brian", + "he" + ], + "answer0": [ + "Sue", + "she" + ], + "correct_answer": [ + "Brian", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.5377354621887207 + ], + [ + "she", + 0.31687992811203003 + ], + [ + "brian", + 0.037937115877866745 + ], + [ + "sue", + 0.014928928576409817 + ] + ], + "score": 1 + } + ] + }, + { + "index": 216, + "sentences": [ + { + "sentence": "William signaled Susan and gestured toward _ empty glass", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.274255633354187 + ], + [ + "her", + 0.10120938718318939 + ] + ], + "score": 1 + }, + { + "sentence": "Sue signaled Thomas and gestured toward _ empty glass", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.28291237354278564 + ], + [ + "her", + 0.14910736680030823 + ] + ], + "score": 0 + } + ] + }, + { + "index": 217, + "sentences": [ + { + "sentence": "David signaled Emma and gestured toward _ bathroom key.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.08032070845365524 + ], + [ + "her", + 0.03398525342345238 + ] + ], + "score": 0 + }, + { + "sentence": "Amy signaled Anthony and gestured toward _ bathroom key.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.095477394759655 + ], + [ + "his", + 0.02509940415620804 + ] + ], + "score": 0 + } + ] + }, + { + "index": 218, + "sentences": [ + { + "sentence": "Mandy took the rear seat while Joseph claimed the front because _ \"Dibs!\" was slow.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.4607595205307007 + ], + [ + "her", + 0.11643649637699127 + ] + ], + "score": 0 + }, + { + "sentence": "Charles took the rear seat while Helen claimed the front because _ \"Dibs!\" was slow.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.4100673198699951 + ], + [ + "his", + 0.139830082654953 + ] + ], + "score": 0 + } + ] + }, + { + "index": 219, + "sentences": [ + { + "sentence": "Jason took the rear seat while Vivian claimed the front because _ \"Dibs!\" was quicker.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.30036041140556335 + ], + [ + "his", + 0.1332821547985077 + ] + ], + "score": 1 + }, + { + "sentence": "Margaret took the rear seat while Tim claimed the front because _ \"Dibs!\" was quicker.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.3551889657974243 + ], + [ + "her", + 0.10693569481372833 + ] + ], + "score": 1 + } + ] + }, + { + "index": 220, + "sentences": [ + { + "sentence": "Mandy said \"Check\" to David as she moved _ bishop.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + }, + { + "sentence": "David said \"Check\" to Donna as he moved _ bishop.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 221, + "sentences": [ + { + "sentence": "Margaret said \"Check\" to Steven as she took _ bishop.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.045481689274311066 + ], + [ + "her", + 0.04472532123327255 + ] + ], + "score": 1 + }, + { + "sentence": "Anthony said \"Check\" to Sarah as he took _ bishop.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.04094506800174713 + ] + ], + "score": 0 + } + ] + }, + { + "index": 222, + "sentences": [ + { + "sentence": "As Sandra in the crop duster passed over Edward, _ could see the landing strip.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Sandra", + "she" + ], + "correct_answer": [ + "Sandra", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.23987726867198944 + ], + [ + "she", + 0.19285492599010468 + ], + [ + "edward", + 0.07019305974245071 + ] + ], + "score": 0 + }, + { + "sentence": "As George in the crop duster passed over Lisa, _ could see the landing strip.", + "answer1": [ + "Lisa", + "she" + ], + "answer0": [ + "George", + "he" + ], + "correct_answer": [ + "George", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "lisa", + 0.34604838490486145 + ], + [ + "she", + 0.21167317032814026 + ], + [ + "he", + 0.20678868889808655 + ] + ], + "score": 0 + } + ] + }, + { + "index": 223, + "sentences": [ + { + "sentence": "As Thomas in the crop duster passed over Susan, _ could see the landing gear.", + "answer1": [ + "Susan", + "she" + ], + "answer0": [ + "Thomas", + "he" + ], + "correct_answer": [ + "Susan", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.4135798215866089 + ], + [ + "she", + 0.15865713357925415 + ], + [ + "susan", + 0.1331108957529068 + ] + ], + "score": 0 + }, + { + "sentence": "As Jennifer in the crop duster passed over Thomas, _ could see the landing gear.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Jennifer", + "she" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.4583258628845215 + ], + [ + "she", + 0.15161868929862976 + ], + [ + "thomas", + 0.1475401371717453 + ] + ], + "score": 1 + } + ] + }, + { + "index": 224, + "sentences": [ + { + "sentence": "Richard gave Mandy a lift to school so _ wouldn't have to drive alone.", + "answer1": [ + "Mandy", + "she" + ], + "answer0": [ + "Richard", + "he" + ], + "correct_answer": [ + "Richard", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.7928639054298401 + ], + [ + "he", + 0.06139402464032173 + ] + ], + "score": 0 + }, + { + "sentence": "Barbara gave Zack a lift to school so _ wouldn't have to drive alone.", + "answer1": [ + "Zack", + "he" + ], + "answer0": [ + "Barbara", + "she" + ], + "correct_answer": [ + "Barbara", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.8156458735466003 + ], + [ + "zack", + 0.10156332701444626 + ], + [ + "she", + 0.025199728086590767 + ] + ], + "score": 0 + } + ] + }, + { + "index": 225, + "sentences": [ + { + "sentence": "Nancy gave Tony a lift to school so _ wouldn't have to walk.", + "answer1": [ + "Tony", + "he" + ], + "answer0": [ + "Nancy", + "she" + ], + "correct_answer": [ + "Tony", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.6183673143386841 + ], + [ + "tony", + 0.19011403620243073 + ] + ], + "score": 1 + }, + { + "sentence": "Edward gave Wendy a lift to school so _ wouldn't have to walk.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "Edward", + "he" + ], + "correct_answer": [ + "Wendy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.8526315093040466 + ], + [ + "he", + 0.020969539880752563 + ] + ], + "score": 1 + } + ] + }, + { + "index": 226, + "sentences": [ + { + "sentence": "Margaret passed the half-empty plate to Anthony because _ was full.", + "answer1": [ + "Anthony", + "he" + ], + "answer0": [ + "Margaret", + "she" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.07039020210504532 + ], + [ + "she", + 0.0310561191290617 + ] + ], + "score": 0 + }, + { + "sentence": "Thomas passed the half-empty plate to Sarah because _ was full.", + "answer1": [ + "Sarah", + "she" + ], + "answer0": [ + "Thomas", + "he" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.05379188060760498 + ], + [ + "he", + 0.045447368174791336 + ] + ], + "score": 0 + } + ] + }, + { + "index": 227, + "sentences": [ + { + "sentence": "Helen passed the half-empty plate to Brian because _ was hungry.", + "answer1": [ + "Brian", + "he" + ], + "answer0": [ + "Helen", + "she" + ], + "correct_answer": [ + "Brian", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9241517782211304 + ], + [ + "he", + 0.06978235393762589 + ] + ], + "score": 0 + }, + { + "sentence": "Warren passed the half-empty plate to Jennifer because _ was hungry.", + "answer1": [ + "Jennifer", + "she" + ], + "answer0": [ + "Warren", + "he" + ], + "correct_answer": [ + "Jennifer", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.6595138311386108 + ], + [ + "she", + 0.324116587638855 + ], + [ + "jennifer", + 0.0032959093805402517 + ] + ], + "score": 0 + } + ] + }, + { + "index": 228, + "sentences": [ + { + "sentence": "Nancy passed the gameboy to Brian because _ turn was over.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.26922306418418884 + ], + [ + "her", + 0.12208054959774017 + ] + ], + "score": 0 + }, + { + "sentence": "Paul passed the gameboy to Sandra because _ turn was over.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.26440608501434326 + ], + [ + "his", + 0.13414087891578674 + ] + ], + "score": 0 + } + ] + }, + { + "index": 229, + "sentences": [ + { + "sentence": "Zack passed the gameboy to Mandy because _ turn was next.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.4155150055885315 + ], + [ + "his", + 0.2723301649093628 + ] + ], + "score": 1 + }, + { + "sentence": "Vivian passed the gameboy to Paul because _ turn was next.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.5038822889328003 + ], + [ + "her", + 0.15782448649406433 + ] + ], + "score": 1 + } + ] + }, + { + "index": 230, + "sentences": [ + { + "sentence": "The man lifted the girl onto _ shoulders.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.9872719645500183 + ], + [ + "her", + 0.007788238115608692 + ] + ], + "score": 1 + } + ] + }, + { + "index": 231, + "sentences": [ + { + "sentence": "The man lifted the girl onto _ bunk bed.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.052843790501356125 + ], + [ + "his", + 0.028196819126605988 + ] + ], + "score": 1 + } + ] + }, + { + "index": 232, + "sentences": [ + { + "sentence": "Stretching _ back, the woman smiled at the boy.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.9602349996566772 + ], + [ + "his", + 0.0329311229288578 + ] + ], + "score": 1 + } + ] + }, + { + "index": 233, + "sentences": [ + { + "sentence": "Patting _ back, the woman smiled at the boy.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.931027889251709 + ], + [ + "her", + 0.051477789878845215 + ] + ], + "score": 1 + } + ] + }, + { + "index": 234, + "sentences": [ + { + "sentence": "William cried because Wendy wouldn't accept _ toy.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.2313782274723053 + ], + [ + "her", + 0.04676021263003349 + ] + ], + "score": 1 + }, + { + "sentence": "Sandra cried because Alan wouldn't accept _ toy.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.2570785582065582 + ], + [ + "his", + 0.09622883796691895 + ] + ], + "score": 1 + } + ] + }, + { + "index": 235, + "sentences": [ + { + "sentence": "Thomas cried because Susan wouldn't share _ toy.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.28240013122558594 + ], + [ + "her", + 0.10179656744003296 + ] + ], + "score": 0 + }, + { + "sentence": "Vivian cried because George wouldn't share _ toy.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.25874245166778564 + ], + [ + "her", + 0.18479324877262115 + ] + ], + "score": 1 + } + ] + }, + { + "index": 236, + "sentences": [ + { + "sentence": "Edward spoke to Margaret, breaking _ silence.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.004641450475901365 + ], + [ + "his", + 0.00293560978025198 + ] + ], + "score": 0 + }, + { + "sentence": "Wendy spoke to Jason, breaking _ silence.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.0020169508643448353 + ], + [ + "her", + 0.0009562345803715289 + ] + ], + "score": 0 + } + ] + }, + { + "index": 237, + "sentences": [ + { + "sentence": "Tim spoke to Donna, breaking _ concentration.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.5251883268356323 + ], + [ + "his", + 0.34837156534194946 + ] + ], + "score": 1 + }, + { + "sentence": "Sue spoke to Richard, breaking _ concentration.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.7294524908065796 + ], + [ + "her", + 0.18369422852993011 + ] + ], + "score": 1 + } + ] + }, + { + "index": 238, + "sentences": [ + { + "sentence": "When Helen dropped his ice cream, David giggled, so father gave _ a sympathetic look.", + "answer1": [ + "David", + "him" + ], + "answer0": [ + "Helen", + "her" + ], + "correct_answer": [ + "Helen", + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.5764134526252747 + ], + [ + "him", + 0.25476816296577454 + ], + [ + "helen", + 0.02986416220664978 + ], + [ + "david", + 0.019353149458765984 + ] + ], + "score": 1 + }, + { + "sentence": "When Richard dropped his ice cream, Linda giggled, so father gave _ a sympathetic look.", + "answer1": [ + "Linda", + "her" + ], + "answer0": [ + "Richard", + "him" + ], + "correct_answer": [ + "Richard", + "him" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.8484610319137573 + ], + [ + "him", + 0.06817058473825455 + ], + [ + "linda", + 0.015336349606513977 + ] + ], + "score": 0 + } + ] + }, + { + "index": 239, + "sentences": [ + { + "sentence": "When Anna dropped his ice cream, Alan giggled, so father gave _ a stern look.", + "answer1": [ + "Alan", + "him" + ], + "answer0": [ + "Anna", + "her" + ], + "correct_answer": [ + "Alan", + "him" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.7019764184951782 + ], + [ + "him", + 0.139887273311615 + ], + [ + "anna", + 0.06648413836956024 + ], + [ + "alan", + 0.008537232875823975 + ] + ], + "score": 0 + }, + { + "sentence": "When Zack dropped his ice cream, Sue giggled, so father gave _ a stern look.", + "answer1": [ + "Sue", + "her" + ], + "answer0": [ + "Zack", + "him" + ], + "correct_answer": [ + "Sue", + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.7724469900131226 + ], + [ + "him", + 0.11578436195850372 + ], + [ + "zack", + 0.02440289407968521 + ] + ], + "score": 1 + } + ] + }, + { + "index": 240, + "sentences": [ + { + "sentence": "As Donna carried Jason up the long winding steps, _ legs ached.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.7337371110916138 + ], + [ + "his", + 0.2596256732940674 + ] + ], + "score": 1 + }, + { + "sentence": "As Warren carried Sarah up the long winding steps, _ legs ached.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.5732764601707458 + ], + [ + "her", + 0.4222981929779053 + ] + ], + "score": 1 + } + ] + }, + { + "index": 241, + "sentences": [ + { + "sentence": "As Helen carried George up the long winding steps, _ legs dangled.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.6082881689071655 + ], + [ + "her", + 0.37898463010787964 + ] + ], + "score": 1 + }, + { + "sentence": "As Tim carried Amy up the long winding steps, _ legs dangled.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.9631314277648926 + ], + [ + "his", + 0.011471277102828026 + ] + ], + "score": 1 + } + ] + }, + { + "index": 242, + "sentences": [ + { + "sentence": "The father carried the sleeping girl in _ arms", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "his", + 0.9978468418121338 + ], + [ + "her", + 0.000320874823955819 + ] + ], + "score": 1 + } + ] + }, + { + "index": 243, + "sentences": [ + { + "sentence": "The father carried the sleeping girl in _ bassinet.", + "answer1": [ + "her" + ], + "answer0": [ + "his" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.19996562600135803 + ], + [ + "her", + 0.04508880525827408 + ] + ], + "score": 0 + } + ] + }, + { + "index": 244, + "sentences": [ + { + "sentence": "The woman held the boy against _ chest", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.9982455968856812 + ], + [ + "his", + 0.00023115644580684602 + ] + ], + "score": 1 + } + ] + }, + { + "index": 245, + "sentences": [ + { + "sentence": "The woman held the boy against _ will.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "his", + 0.945933997631073 + ], + [ + "her", + 0.05019375681877136 + ] + ], + "score": 1 + } + ] + }, + { + "index": 246, + "sentences": [] + }, + { + "index": 247, + "sentences": [] + }, + { + "index": 248, + "sentences": [ + { + "sentence": "Amy informed Brian that _ had retired and presented several options for future treatment.", + "answer1": [ + "Brian", + "he" + ], + "answer0": [ + "Amy", + "she" + ], + "correct_answer": [ + "Amy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.37087374925613403 + ], + [ + "she", + 0.3327399492263794 + ], + [ + "amy", + 0.015426949597895145 + ] + ], + "score": 0 + }, + { + "sentence": "Tim informed Linda that _ had retired and presented several options for future treatment.", + "answer1": [ + "Linda", + "she" + ], + "answer0": [ + "Tim", + "he" + ], + "correct_answer": [ + "Tim", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.5563133358955383 + ], + [ + "she", + 0.13216964900493622 + ], + [ + "tim", + 0.018639085814356804 + ] + ], + "score": 1 + } + ] + }, + { + "index": 249, + "sentences": [ + { + "sentence": "Brian informed Sandra that _ had cancer and presented several options for future treatment.", + "answer1": [ + "Sandra", + "she" + ], + "answer0": [ + "Brian", + "he" + ], + "correct_answer": [ + "Sandra", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.5297118425369263 + ], + [ + "she", + 0.2422800213098526 + ], + [ + "brian", + 0.005271288100630045 + ] + ], + "score": 0 + }, + { + "sentence": "Helen informed Paul that _ had cancer and presented several options for future treatment.", + "answer1": [ + "Paul", + "he" + ], + "answer0": [ + "Helen", + "she" + ], + "correct_answer": [ + "Paul", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.4575677514076233 + ], + [ + "he", + 0.31825608015060425 + ], + [ + "paul", + 0.009974068962037563 + ], + [ + "helen", + 0.007482711225748062 + ] + ], + "score": 0 + } + ] + }, + { + "index": 250, + "sentences": [ + { + "sentence": "Daniel had to stop Jennifer from toying with the injured bird. _ is very compassionate.", + "answer1": [ + "Jennifer", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "jennifer", + 0.2903973460197449 + ], + [ + "she", + 0.22931936383247375 + ], + [ + "he", + 0.16045786440372467 + ], + [ + "daniel", + 0.08556315302848816 + ] + ], + "score": 0 + }, + { + "sentence": "Sarah had to stop Tim from toying with the injured bird. _ is very compassionate.", + "answer1": [ + "Tim", + "he" + ], + "answer0": [ + "Sarah", + "she" + ], + "correct_answer": [ + "Sarah", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "tim", + 0.29738715291023254 + ], + [ + "sarah", + 0.274274617433548 + ], + [ + "he", + 0.18724749982357025 + ], + [ + "she", + 0.10372157394886017 + ] + ], + "score": 0 + } + ] + }, + { + "index": 251, + "sentences": [ + { + "sentence": "Linda had to stop Charles from toying with the injured bird. _ is very cruel.", + "answer1": [ + "Charles", + "he" + ], + "answer0": [ + "Linda", + "she" + ], + "correct_answer": [ + "Charles", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "charles", + 0.752829909324646 + ], + [ + "he", + 0.14354054629802704 + ], + [ + "she", + 0.02448778599500656 + ] + ], + "score": 1 + }, + { + "sentence": "John had to stop Amy from toying with the injured bird. _ is very cruel.", + "answer1": [ + "Amy", + "she" + ], + "answer0": [ + "John", + "he" + ], + "correct_answer": [ + "Amy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.28404945135116577 + ], + [ + "amy", + 0.20439286530017853 + ], + [ + "john", + 0.15464074909687042 + ], + [ + "she", + 0.14667406678199768 + ] + ], + "score": 0 + } + ] + }, + { + "index": 252, + "sentences": [ + { + "sentence": "Sarah got free tickets to the play, but she gave them to Charles, even though _ was particularly eager to see it.", + "answer1": [ + "Charles", + "he" + ], + "answer0": [ + "Sarah", + "she" + ], + "correct_answer": [ + "Sarah", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.8693797588348389 + ], + [ + "she", + 0.06461245566606522 + ], + [ + "charles", + 0.048112157732248306 + ], + [ + "sarah", + 0.0034832460805773735 + ] + ], + "score": 0 + }, + { + "sentence": "Daniel got free tickets to the play, but he gave them to Amy, even though _ was particularly eager to see it.", + "answer1": [ + "Amy", + "she" + ], + "answer0": [ + "Daniel", + "he" + ], + "correct_answer": [ + "Daniel", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.8007415533065796 + ], + [ + "he", + 0.08351122587919235 + ], + [ + "amy", + 0.07764580100774765 + ], + [ + "daniel", + 0.0045530772767961025 + ] + ], + "score": 0 + } + ] + }, + { + "index": 253, + "sentences": [ + { + "sentence": "Paul got free tickets to the play, but he gave them to Laura, because _ was particularly eager to see it.", + "answer1": [ + "Laura", + "she" + ], + "answer0": [ + "Paul", + "he" + ], + "correct_answer": [ + "Laura", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.9574117064476013 + ], + [ + "laura", + 0.026944546028971672 + ], + [ + "he", + 0.008284908719360828 + ], + [ + "paul", + 0.0004410938418004662 + ] + ], + "score": 1 + }, + { + "sentence": "Margaret got free tickets to the play, but she gave them to Thomas, because _ was particularly eager to see it.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Margaret", + "she" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.9332942366600037 + ], + [ + "thomas", + 0.03162537142634392 + ], + [ + "she", + 0.018393704667687416 + ], + [ + "margaret", + 0.0010122362291440368 + ] + ], + "score": 1 + } + ] + }, + { + "index": 254, + "sentences": [ + { + "sentence": "Steven got free tickets to the play, but he gave them to Nancy, because _ was not particularly eager to see it.", + "answer1": [ + "Nancy", + "she" + ], + "answer0": [ + "Steven", + "he" + ], + "correct_answer": [ + "Steven", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.9163604378700256 + ], + [ + "nancy", + 0.0480802021920681 + ], + [ + "he", + 0.021462248638272285 + ], + [ + "steven", + 0.0004176660440862179 + ] + ], + "score": 0 + }, + { + "sentence": "Margaret got free tickets to the play, but she gave them to Warren, because _ was not particularly eager to see it.", + "answer1": [ + "Warren", + "he" + ], + "answer0": [ + "Margaret", + "she" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.8333559036254883 + ], + [ + "warren", + 0.0700656995177269 + ], + [ + "she", + 0.06793110817670822 + ], + [ + "margaret", + 0.0037946717347949743 + ] + ], + "score": 0 + } + ] + }, + { + "index": 255, + "sentences": [ + { + "sentence": "Emma gave Edward candy because _ wasn't hungry.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Emma", + "she" + ], + "correct_answer": [ + "Emma", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.6763647794723511 + ], + [ + "she", + 0.26191577315330505 + ], + [ + "edward", + 0.023742079734802246 + ] + ], + "score": 0 + }, + { + "sentence": "Jason gave Betty candy because _ wasn't hungry.", + "answer1": [ + "Betty", + "she" + ], + "answer0": [ + "Jason", + "he" + ], + "correct_answer": [ + "Jason", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.75534987449646 + ], + [ + "he", + 0.1928008496761322 + ], + [ + "betty", + 0.03130156919360161 + ] + ], + "score": 0 + } + ] + }, + { + "index": 256, + "sentences": [ + { + "sentence": "Sue gave Tim candy because _ was hungry.", + "answer1": [ + "Tim", + "he" + ], + "answer0": [ + "Sue", + "she" + ], + "correct_answer": [ + "Tim", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.7316045165061951 + ], + [ + "she", + 0.22841434180736542 + ], + [ + "tim", + 0.025842225179076195 + ] + ], + "score": 1 + }, + { + "sentence": "Jason gave Jennifer candy because _ was hungry.", + "answer1": [ + "Jennifer", + "she" + ], + "answer0": [ + "Jason", + "he" + ], + "correct_answer": [ + "Jennifer", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.5606254935264587 + ], + [ + "she", + 0.4133855998516083 + ], + [ + "jennifer", + 0.010734654031693935 + ], + [ + "jason", + 0.0010448332177475095 + ] + ], + "score": 0 + } + ] + }, + { + "index": 257, + "sentences": [ + { + "sentence": "I tried to paint a picture of an orchard, with apples in the trees, but the _ came out looking more like light bulbs.", + "answer1": [ + "trees" + ], + "answer0": [ + "apples" + ], + "correct_answer": [ + "apples" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "apples", + 0.5211644172668457 + ] + ], + "score": 1 + } + ] + }, + { + "index": 258, + "sentences": [ + { + "sentence": "I tried to paint a picture of an orchard, with apples in the trees, but the _ came out looking more like telephone poles.", + "answer1": [ + "trees" + ], + "answer0": [ + "apples" + ], + "correct_answer": [ + "trees" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "apples", + 0.3111271262168884 + ], + [ + "trees", + 0.0494505800306797 + ] + ], + "score": 0 + } + ] + }, + { + "index": 259, + "sentences": [ + { + "sentence": "Margaret asked Tony for a favor but _ was refused.", + "answer1": [ + "Tony", + "he" + ], + "answer0": [ + "Margaret", + "she" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.3978308141231537 + ], + [ + "tony", + 0.05781383812427521 + ], + [ + "she", + 0.05164272338151932 + ] + ], + "score": 0 + }, + { + "sentence": "Anthony asked Amy for a favor but _ was refused.", + "answer1": [ + "Amy", + "she" + ], + "answer0": [ + "Anthony", + "he" + ], + "correct_answer": [ + "Anthony", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.4784584939479828 + ], + [ + "amy", + 0.06777182221412659 + ], + [ + "he", + 0.021794931963086128 + ] + ], + "score": 0 + } + ] + }, + { + "index": 260, + "sentences": [ + { + "sentence": "Emma asked Joseph for a favor but _ refused.", + "answer1": [ + "Joseph", + "he" + ], + "answer0": [ + "Emma", + "she" + ], + "correct_answer": [ + "Joseph", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "joseph", + 0.5529801249504089 + ], + [ + "he", + 0.43354299664497375 + ], + [ + "she", + 0.0008864352712407708 + ] + ], + "score": 1 + }, + { + "sentence": "Warren asked Laura for a favor but _ refused.", + "answer1": [ + "Laura", + "she" + ], + "answer0": [ + "Warren", + "he" + ], + "correct_answer": [ + "Laura", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.8105427026748657 + ], + [ + "laura", + 0.17909826338291168 + ] + ], + "score": 1 + } + ] + }, + { + "index": 261, + "sentences": [ + { + "sentence": "Mandy ceded the presidency to Warren because _ was less popular.", + "answer1": [ + "Warren", + "he" + ], + "answer0": [ + "Mandy", + "she" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.5756611824035645 + ], + [ + "warren", + 0.18201638758182526 + ], + [ + "she", + 0.006012094207108021 + ] + ], + "score": 0 + }, + { + "sentence": "Brian ceded the presidency to Wendy because _ was less popular.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "Brian", + "he" + ], + "correct_answer": [ + "Brian", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.708384096622467 + ], + [ + "he", + 0.1238713338971138 + ], + [ + "wendy", + 0.04093684256076813 + ], + [ + "brian", + 0.01032228209078312 + ] + ], + "score": 0 + } + ] + }, + { + "index": 262, + "sentences": [ + { + "sentence": "Betty ceded the presidency to Edward because _ was more popular.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Betty", + "she" + ], + "correct_answer": [ + "Edward", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.5475196242332458 + ], + [ + "she", + 0.19534984230995178 + ], + [ + "edward", + 0.11332083493471146 + ], + [ + "betty", + 0.011675244197249413 + ] + ], + "score": 1 + }, + { + "sentence": "Anthony ceded the presidency to Mandy because _ was more popular.", + "answer1": [ + "Mandy", + "she" + ], + "answer0": [ + "Anthony", + "he" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.7501657009124756 + ], + [ + "mandy", + 0.17399102449417114 + ], + [ + "he", + 0.03566601499915123 + ] + ], + "score": 1 + } + ] + }, + { + "index": 263, + "sentences": [ + { + "sentence": "Wendy did not pass the ball to Steven although _ saw that he was open.", + "answer1": [ + "Steven", + "he" + ], + "answer0": [ + "Wendy", + "she" + ], + "correct_answer": [ + "Wendy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.8957375288009644 + ], + [ + "wendy", + 0.028812197968363762 + ], + [ + "he", + 0.014717331156134605 + ] + ], + "score": 1 + }, + { + "sentence": "Tony did not pass the ball to Anna although _ saw that she was open.", + "answer1": [ + "Anna", + "she" + ], + "answer0": [ + "Tony", + "he" + ], + "correct_answer": [ + "Tony", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.931627631187439 + ], + [ + "tony", + 0.03243102505803108 + ], + [ + "she", + 0.006165023893117905 + ] + ], + "score": 1 + } + ] + }, + { + "index": 264, + "sentences": [ + { + "sentence": "Linda did not pass the ball to Zack although _ was open.", + "answer1": [ + "Zack", + "he" + ], + "answer0": [ + "Linda", + "she" + ], + "correct_answer": [ + "Zack", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.1047290489077568 + ], + [ + "she", + 0.035551343113183975 + ] + ], + "score": 1 + }, + { + "sentence": "David did not pass the ball to Mandy although _ was open.", + "answer1": [ + "Mandy", + "she" + ], + "answer0": [ + "David", + "he" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.10433197766542435 + ], + [ + "he", + 0.09989483654499054 + ] + ], + "score": 1 + } + ] + }, + { + "index": 265, + "sentences": [ + { + "sentence": "I put the specimen on the table and the _ broke.", + "answer1": [ + "table" + ], + "answer0": [ + "specimen" + ], + "correct_answer": [ + "specimen" + ], + "adjacent_ref": false, + "predict_answer": [], + "score": 0 + } + ] + }, + { + "index": 266, + "sentences": [ + { + "sentence": "I put the stone on the table and the _ broke.", + "answer1": [ + "table" + ], + "answer0": [ + "stone" + ], + "correct_answer": [ + "table" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "stone", + 0.10115251690149307 + ] + ], + "score": 0 + } + ] + }, + { + "index": 267, + "sentences": [ + { + "sentence": "Margaret fired her trainer Edward because _ couldn't stand his friend.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Margaret", + "she" + ], + "correct_answer": [ + "Margaret", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.731697142124176 + ], + [ + "she", + 0.17442825436592102 + ], + [ + "edward", + 0.03614525496959686 + ], + [ + "margaret", + 0.0032051822636276484 + ] + ], + "score": 0 + } + ] + }, + { + "index": 268, + "sentences": [ + { + "sentence": "Jennifer fired her trainer Thomas because _ slept with her friend.", + "answer1": [ + "Thomas", + "he" + ], + "answer0": [ + "Jennifer", + "she" + ], + "correct_answer": [ + "Thomas", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.8891029357910156 + ], + [ + "she", + 0.055782753974199295 + ], + [ + "thomas", + 0.013204317539930344 + ], + [ + "jennifer", + 0.0024945021141320467 + ] + ], + "score": 1 + } + ] + }, + { + "index": 269, + "sentences": [ + { + "sentence": "Sarah fired her trainer John because he slept with _ friend.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "her" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "her", + 0.7042596936225891 + ], + [ + "his", + 0.0390113890171051 + ] + ], + "score": 1 + } + ] + }, + { + "index": 270, + "sentences": [ + { + "sentence": "Amy fired her trainer George because she couldn't stand _ friend.", + "answer1": [ + "his" + ], + "answer0": [ + "her" + ], + "correct_answer": [ + "his" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "her", + 0.8472513556480408 + ], + [ + "his", + 0.0945512130856514 + ] + ], + "score": 0 + } + ] + }, + { + "index": 271, + "sentences": [ + { + "sentence": "Paul believed that Sue suspected that _ had stolen the watch.", + "answer1": [ + "Sue", + "she" + ], + "answer0": [ + "Paul", + "he" + ], + "correct_answer": [ + "Paul", + "he" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "he", + 0.23854734003543854 + ], + [ + "she", + 0.1008545383810997 + ], + [ + "sue", + 0.07258161902427673 + ], + [ + "paul", + 0.06131039932370186 + ] + ], + "score": 1 + }, + { + "sentence": "Mandy believed that Edward suspected that _ had stolen the watch.", + "answer1": [ + "Edward", + "he" + ], + "answer0": [ + "Mandy", + "she" + ], + "correct_answer": [ + "Mandy", + "she" + ], + "adjacent_ref": false, + "predict_answer": [ + [ + "she", + 0.14960864186286926 + ], + [ + "he", + 0.12885059416294098 + ], + [ + "mandy", + 0.05671042948961258 + ], + [ + "edward", + 0.04502331465482712 + ] + ], + "score": 1 + } + ] + }, + { + "index": 272, + "sentences": [ + { + "sentence": "Thomas believed that Wendy regretted that _ had stolen the watch.", + "answer1": [ + "Wendy", + "she" + ], + "answer0": [ + "Thomas", + "he" + ], + "correct_answer": [ + "Wendy", + "she" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "she", + 0.707285463809967 + ], + [ + "he", + 0.11299549043178558 + ], + [ + "thomas", + 0.02341422811150551 + ], + [ + "wendy", + 0.011723235249519348 + ] + ], + "score": 1 + }, + { + "sentence": "Barbara believed that Charles regretted that _ had stolen the watch.", + "answer1": [ + "Charles", + "he" + ], + "answer0": [ + "Barbara", + "she" + ], + "correct_answer": [ + "Charles", + "he" + ], + "adjacent_ref": true, + "predict_answer": [ + [ + "he", + 0.9224457144737244 + ], + [ + "she", + 0.0191626138985157 + ], + [ + "charles", + 0.006952487863600254 + ], + [ + "barbara", + 0.0011777096660807729 + ] + ], + "score": 1 + } + ] + } +] \ No newline at end of file diff --git a/WSC_selected.txt b/WSC_selected.txt new file mode 100644 index 000000000000..47c30cd309f3 --- /dev/null +++ b/WSC_selected.txt @@ -0,0 +1,8 @@ +The trophy doesn't fit into the brown suitcase because the [trophy] is too large. A because B +The trophy doesn't fit into the brown suitcase because the [suitcase] is too small. A because B +The brown suitcase doesn't hold the trophy because the [trophy] is too large. A because B +The brown suitcase doesn't hold the trophy because the [suitcase] is too small. A because B +The trophy can fit into the brown suitcase because the [trophy] is so small. ~A because ~B +The trophy can fit into the brown suitcase because the [suitcase] is so large. ~A because ~B +The brown suitcase can hold the trophy because the [trophy] is so small. ~A because ~B +The brown suitcase can fit into the trophy because the [suitcase] is so large. ~A because ~B diff --git a/WSC_switched_label.json b/WSC_switched_label.json new file mode 100644 index 000000000000..ccd4a286c1ab --- /dev/null +++ b/WSC_switched_label.json @@ -0,0 +1,3005 @@ +[ + { + "index": 0, + "is_switchable": 0, + "sentence": "The city councilmen refused the demonstrators a permit because [they] feared violence.", + "answer1": "The demonstrators", + "answer0": "The city councilmen", + "sentence_switched": "The demonstrators refused the city councilmen a permit because [they] feared violence.", + "correct_answer": "The city councilmen", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 1, + "is_switchable": 0, + "sentence": "The city councilmen refused the demonstrators a permit because [they] advocated violence.", + "answer1": "The demonstrators", + "answer0": "The city councilmen", + "sentence_switched": "The demonstrators refused the city councilmen a permit because [they] advocated violence.", + "correct_answer": "The demonstrators", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 2, + "is_switchable": 0, + "sentence": "The trophy doesn't fit into the brown suitcase because [it] is too large.", + "answer1": "the suitcase", + "answer0": "the trophy", + "sentence_switched": "The suitcase doesn't fit into the brown trophy because [it] is too large.", + "correct_answer": "the trophy", + "relational_word": "fit into:large/small", + "is_associative": 0 + }, + { + "index": 3, + "is_switchable": 0, + "sentence": "The trophy doesn't fit into the brown suitcase because [it] is too small.", + "answer1": "the suitcase", + "answer0": "the trophy", + "sentence_switched": "The suitcase doesn't fit into the brown trophy because [it] is too small.", + "correct_answer": "the suitcase", + "relational_word": "fit into:large/small", + "is_associative": 0 + }, + { + "index": 4, + "is_switchable": 1, + "sentence": "Joan made sure to thank Susan for all the help [she] had recieved.", + "answer1": "Susan", + "answer0": "Joan", + "sentence_switched": "Susan made sure to thank joan for all the help [she] had recieved.", + "correct_answer": "Joan", + "relational_word": "thank:receive/give", + "is_associative": 0 + }, + { + "index": 5, + "is_switchable": 1, + "sentence": "Joan made sure to thank Susan for all the help [she] had given.", + "answer1": "Susan", + "answer0": "Joan", + "sentence_switched": "Susan made sure to thank joan for all the help [she] had given.", + "correct_answer": "Susan", + "relational_word": "thank:receive/give", + "is_associative": 0 + }, + { + "index": 6, + "is_switchable": 1, + "sentence": "Paul tried to call George on the phone, but [he] wasn't successful.", + "answer1": "George", + "answer0": "Paul", + "sentence_switched": "George tried to call paul on the phone, but [he] wasn't successful.", + "correct_answer": "Paul", + "relational_word": "call:successful available", + "is_associative": 0 + }, + { + "index": 7, + "is_switchable": 1, + "sentence": "Paul tried to call George on the phone, but [he] wasn't available.", + "answer1": "George", + "answer0": "Paul", + "sentence_switched": "George tried to call paul on the phone, but [he] wasn't available.", + "correct_answer": "George", + "relational_word": "call:successful available", + "is_associative": 0 + }, + { + "index": 8, + "is_switchable": 0, + "sentence": "The lawyer asked the witness a question, but [he] was reluctant to repeat it.", + "answer1": "the witness", + "answer0": "the lawyer", + "sentence_switched": "The witness asked the lawyer a question, but [he] was reluctant to repeat it.", + "correct_answer": "the lawyer", + "relational_word": "ask:repeat answer", + "is_associative": 0 + }, + { + "index": 9, + "is_switchable": 0, + "sentence": "The lawyer asked the witness a question, but [he] was reluctant to answer it.", + "answer1": "the witness", + "answer0": "the lawyer", + "sentence_switched": "The witness asked the lawyer a question, but [he] was reluctant to answer it.", + "correct_answer": "the witness", + "relational_word": "ask:repeat answer", + "is_associative": 0 + }, + { + "index": 10, + "is_switchable": 1, + "sentence": "The delivery truck zoomed by the school bus because [it] was going so fast.", + "answer1": "the school bus", + "answer0": "the delivery truck", + "sentence_switched": "The school bus zoomed by the delivery truck because [it] was going so fast.", + "correct_answer": "the delivery truck", + "relational_word": "zoom by:fast/slow", + "is_associative": 0 + }, + { + "index": 11, + "is_switchable": 1, + "sentence": "The delivery truck zoomed by the school bus because [it] was going so slow.", + "answer1": "the school bus", + "answer0": "the delivery truck", + "sentence_switched": "The school bus zoomed by the delivery truck because [it] was going so slow.", + "correct_answer": "the school bus", + "relational_word": "zoom by:fast/slow", + "is_associative": 0 + }, + { + "index": 12, + "is_switchable": 1, + "sentence": "Frank felt vindicated when his longtime rival Bill revealed that [he] was the winner of the competition.", + "answer1": "Bill", + "answer0": "Frank", + "sentence_switched": "Bill felt vindicated when his longtime rival frank revealed that [he] was the winner of the competition.", + "correct_answer": "Frank", + "relational_word": "vindicated/crushed:be the winner", + "is_associative": 0 + }, + { + "index": 13, + "is_switchable": 1, + "sentence": "Frank felt crushed when his longtime rival Bill revealed that [he] was the winner of the competition.", + "answer1": "Bill", + "answer0": "Frank", + "sentence_switched": "Bill felt crushed when his longtime rival frank revealed that [he] was the winner of the competition.", + "correct_answer": "Bill", + "relational_word": "vindicated/crushed:be the winner", + "is_associative": 0 + }, + { + "index": 14, + "is_switchable": 1, + "sentence": "The man couldn't lift his son because [he] was so weak.", + "answer1": "The son", + "answer0": "The man", + "sentence_switched": "The son couldn't lift the man because [he] was so weak.", + "correct_answer": "The man", + "relational_word": "lift:weak heavy", + "is_associative": 0 + }, + { + "index": 15, + "is_switchable": 1, + "sentence": "The man couldn't lift his son because [he] was so heavy.", + "answer1": "The son", + "answer0": "The man", + "sentence_switched": "The son couldn't lift his man because [he] was so heavy.", + "correct_answer": "The son", + "relational_word": "lift:weak heavy", + "is_associative": 0 + }, + { + "index": 16, + "is_switchable": 0, + "sentence": "The large ball crashed right through the table because [it] was made of steel.", + "answer1": "The table", + "answer0": "The large ball", + "sentence_switched": "The table crashed right through the large ball because [it] was made of steel.", + "correct_answer": "The large ball", + "relational_word": "crash through:[hard]/[soft]", + "is_associative": 0 + }, + { + "index": 17, + "is_switchable": 0, + "sentence": "The large ball crashed right through the table because [it] was made of styrofoam.", + "answer1": "The table", + "answer0": "The large ball", + "sentence_switched": "The table crashed right through the large ball because [it] was made of styrofoam.", + "correct_answer": "The table", + "relational_word": "crash through:[hard]/[soft]", + "is_associative": 0 + }, + { + "index": 18, + "is_switchable": 1, + "sentence": "John couldn't see the stage with Billy in front of him because [he] is so short.", + "answer1": "Billy", + "answer0": "John", + "sentence_switched": "Billy couldn't see the stage with john in front of him because [he] is so short.", + "correct_answer": "John", + "relational_word": "[block]:short/tall", + "is_associative": 0 + }, + { + "index": 19, + "is_switchable": 1, + "sentence": "John couldn't see the stage with Billy in front of him because [he] is so tall.", + "answer1": "Billy", + "answer0": "John", + "sentence_switched": "Billy couldn't see the stage with john in front of him because [he] is so tall.", + "correct_answer": "Billy", + "relational_word": "[block]:short/tall", + "is_associative": 0 + }, + { + "index": 20, + "is_switchable": 1, + "sentence": "Tom threw his schoolbag down to Ray after [he] reached the top of the stairs.", + "answer1": "Ray", + "answer0": "Tom", + "sentence_switched": "Ray threw his schoolbag down to tom after [he] reached the top of the stairs.", + "correct_answer": "Tom", + "relational_word": "down to:top/bottom", + "is_associative": 0 + }, + { + "index": 21, + "is_switchable": 1, + "sentence": "Tom threw his schoolbag down to Ray after [he] reached the bottom of the stairs.", + "answer1": "Ray", + "answer0": "Tom", + "sentence_switched": "Ray threw his schoolbag down to tom after [he] reached the botray of the stairs.", + "correct_answer": "Ray", + "relational_word": "down to:top/bottom", + "is_associative": 0 + }, + { + "index": 22, + "is_switchable": 1, + "sentence": "Although they ran at about the same speed, Sue beat Sally because [she] had such a good start.", + "answer1": "Sally", + "answer0": "Sue", + "sentence_switched": "Although they ran at about the same speed, sally beat sue because [she] had such a good start.", + "correct_answer": "Sue", + "relational_word": "beat:good/bad", + "is_associative": 0 + }, + { + "index": 23, + "is_switchable": 1, + "sentence": "Although they ran at about the same speed, Sue beat Sally because [she] had such a bad start.", + "answer1": "Sally", + "answer0": "Sue", + "sentence_switched": "Although they ran at about the same speed, sally beat sue because [she] had such a bad start.", + "correct_answer": "Sally", + "relational_word": "beat:good/bad", + "is_associative": 0 + }, + { + "index": 24, + "is_switchable": 0, + "sentence": "The sculpture rolled off the shelf because [it] wasn't anchored.", + "answer1": "The shelf", + "answer0": "The sculpture", + "sentence_switched": "The shelf rolled off the sculpture because [it] wasn't anchored.", + "correct_answer": "The sculpture", + "relational_word": "roll off:anchored level", + "is_associative": 0 + }, + { + "index": 25, + "is_switchable": 0, + "sentence": "The sculpture rolled off the shelf because [it] wasn't level.", + "answer1": "The shelf", + "answer0": "The sculpture", + "sentence_switched": "The shelf rolled off the sculpture because [it] wasn't level.", + "correct_answer": "The shelf", + "relational_word": "roll off:anchored level", + "is_associative": 0 + }, + { + "index": 26, + "is_switchable": 1, + "sentence": "Sam's drawing was hung just above Tina's and [it] did look much better with another one below it.", + "answer1": "Tina's drawing", + "answer0": "Sam's drawing", + "sentence_switched": "Tina's drawing was hung just above sam's and [it] did look much better with another one below it.", + "correct_answer": "Sam's drawing", + "relational_word": "above/below", + "is_associative": 0 + }, + { + "index": 27, + "is_switchable": 1, + "sentence": "Sam's drawing was hung just above Tina's and [it] did look much better with another one above it.", + "answer1": "Tina's drawing", + "answer0": "Sam's drawing", + "sentence_switched": "Tina's drawing was hung just above sam's and [it] did look much better with another one above it.", + "correct_answer": "Tina's drawing", + "relational_word": "above/below", + "is_associative": 0 + }, + { + "index": 28, + "is_switchable": 1, + "sentence": "Anna did a lot better than her good friend Lucy on the test because [she] had studied so hard.", + "answer1": "Lucy", + "answer0": "Anna", + "sentence_switched": "Lucy did a lot better than her good friend anna on the test because [she] had studied so hard.", + "correct_answer": "Anna", + "relational_word": "better/worse:study hard", + "is_associative": 0 + }, + { + "index": 29, + "is_switchable": 1, + "sentence": "Anna did a lot worse than her good friend Lucy on the test because [she] had studied so hard.", + "answer1": "Lucy", + "answer0": "Anna", + "sentence_switched": "Lucy did a lot worse than her good friend anna on the test because [she] had studied so hard.", + "correct_answer": "Lucy", + "relational_word": "better/worse:study hard", + "is_associative": 0 + }, + { + "index": 30, + "is_switchable": 1, + "sentence": "The firemen arrived after the police because [they] were coming from so far away.", + "answer1": "The police", + "answer0": "The firemen", + "sentence_switched": "The police arrived after the firemen because [they] were coming from so far away.", + "correct_answer": "The firemen", + "relational_word": "after/before:far away", + "is_associative": 0 + }, + { + "index": 31, + "is_switchable": 1, + "sentence": "The firemen arrived before the police because [they] were coming from so far away.", + "answer1": "The police", + "answer0": "The firemen", + "sentence_switched": "The police arrived before the firemen because [they] were coming from so far away.", + "correct_answer": "The police", + "relational_word": "after/before:far away", + "is_associative": 0 + }, + { + "index": 32, + "is_switchable": 1, + "sentence": "Frank was upset with Tom because the toaster [he] had bought from him didn't work.", + "answer1": "Tom", + "answer0": "Frank", + "sentence_switched": "Tom was upset with frank because the toaster [he] had bought from him didn't work.", + "correct_answer": "Frank", + "relational_word": "be upset with:buy from not work/sell not work", + "is_associative": 2 + }, + { + "index": 33, + "is_switchable": 1, + "sentence": "Frank was upset with Tom because the toaster [he] had sold him didn't work.", + "answer1": "Tom", + "answer0": "Frank", + "sentence_switched": "Tom was upset with frank because the toaster [he] had sold him didn't work.", + "correct_answer": "Tom", + "relational_word": "be upset with:buy from not work/sell not work", + "is_associative": 2 + }, + { + "index": 34, + "is_switchable": 1, + "sentence": "Jim yelled at Kevin because [he] was so upset.", + "answer1": "Kevin", + "answer0": "Jim", + "sentence_switched": "Kevin yelled at jim because [he] was so upset.", + "correct_answer": "Jim", + "relational_word": "?yell at comfort:upset", + "is_associative": 0 + }, + { + "index": 35, + "is_switchable": 1, + "sentence": "Jim comforted Kevin because [he] was so upset.", + "answer1": "Kevin", + "answer0": "Jim", + "sentence_switched": "Kevin comforted jim because [he] was so upset.", + "correct_answer": "Kevin", + "relational_word": "?yell at comfort:upset", + "is_associative": 0 + }, + { + "index": 36, + "is_switchable": 1, + "sentence": "The sack of potatoes had been placed above the bag of flour, so [it] had to be moved first.", + "answer1": "The bag of flour", + "answer0": "The sack of potatoes", + "sentence_switched": "The bag of flour had been placed above the sack of potatoes, so [it] had to be moved first.", + "correct_answer": "The sack of potatoes", + "relational_word": "above/below:moved first", + "is_associative": 0 + }, + { + "index": 37, + "is_switchable": 1, + "sentence": "The sack of potatoes had been placed below the bag of flour, so [it] had to be moved first.", + "answer1": "The bag of flour", + "answer0": "The sack of potatoes", + "sentence_switched": "The bag of flour had been placed below the sack of potatoes, so [it] had to be moved first.", + "correct_answer": "The bag of flour", + "relational_word": "above/below:moved first", + "is_associative": 0 + }, + { + "index": 38, + "is_switchable": 1, + "sentence": "Pete envies Martin although [he] is very successful.", + "answer1": "Martin", + "answer0": "Pete", + "sentence_switched": "Martin envies pete although [he] is very successful.", + "correct_answer": "Pete", + "relational_word": "although/because", + "is_associative": 0 + }, + { + "index": 39, + "is_switchable": 1, + "sentence": "Pete envies Martin because [he] is very successful.", + "answer1": "Martin", + "answer0": "Pete", + "sentence_switched": "Martin envies pete because [he] is very successful.", + "correct_answer": "Martin", + "relational_word": "although/because", + "is_associative": 0 + }, + { + "index": 40, + "is_switchable": 1, + "sentence": "The older students were bullying the younger ones, so we punished [them] .", + "answer1": "The younger students", + "answer0": "The older students", + "sentence_switched": "The younger students were bullying the older ones, so we punished [them] .", + "correct_answer": "The older students", + "relational_word": "bully:punish rescue", + "is_associative": 0 + }, + { + "index": 41, + "is_switchable": 1, + "sentence": "The older students were bullying the younger ones, so we rescued [them] .", + "answer1": "The younger students", + "answer0": "The older students", + "sentence_switched": "The younger students were bullying the older ones, so we rescued [them] .", + "correct_answer": "The younger students", + "relational_word": "bully:punish rescue", + "is_associative": 0 + }, + { + "index": 42, + "is_switchable": 1, + "sentence": "I poured water from the bottle into the cup until [it] was empty.", + "answer1": "the cup", + "answer0": "the bottle", + "sentence_switched": "I poured water from the cup into the bottle until [it] was empty.", + "correct_answer": "the bottle", + "relational_word": "pour:empty/full", + "is_associative": 0 + }, + { + "index": 43, + "is_switchable": 1, + "sentence": "I poured water from the bottle into the cup until [it] was full.", + "answer1": "the cup", + "answer0": "the bottle", + "sentence_switched": "I poured water from the cup into the bottle until [it] was full.", + "correct_answer": "the cup", + "relational_word": "pour:empty/full", + "is_associative": 0 + }, + { + "index": 44, + "is_switchable": 1, + "sentence": "Susan knows all about Ann's personal problems because [she] is nosy.", + "answer1": "Ann", + "answer0": "Susan", + "sentence_switched": "Ann knows all about susan's personal problems because [she] is nosy.", + "correct_answer": "Susan", + "relational_word": "know:nosy indiscreet", + "is_associative": 0 + }, + { + "index": 45, + "is_switchable": 1, + "sentence": "Susan knows all about Ann's personal problems because [she] is indiscreet.", + "answer1": "Ann", + "answer0": "Susan", + "sentence_switched": "Ann knows all about susan's personal problems because [she] is indiscreet.", + "correct_answer": "Ann", + "relational_word": "know:nosy indiscreet", + "is_associative": 0 + }, + { + "index": 46, + "is_switchable": 1, + "sentence": "Sid explained his theory to Mark but [he] couldn't convince him.", + "answer1": "Mark", + "answer0": "Sid", + "sentence_switched": "Mark explained his theory to sid but [he] couldn't convince him.", + "correct_answer": "Sid", + "relational_word": "explain:convince/understand", + "is_associative": 2 + }, + { + "index": 47, + "is_switchable": 1, + "sentence": "Sid explained his theory to Mark but [he] couldn't understand him.", + "answer1": "Mark", + "answer0": "Sid", + "sentence_switched": "Mark explained his theory to sid but [he] couldn't understand him.", + "correct_answer": "Mark", + "relational_word": "explain:convince/understand", + "is_associative": 2 + }, + { + "index": 48, + "is_switchable": 1, + "sentence": "Susan knew that Ann's son had been in a car accident, so [she] told her about it.", + "answer1": "Ann", + "answer0": "Susan", + "sentence_switched": "Ann knew that susan's son had been in a car accident, so [she] told her about it.", + "correct_answer": "Susan", + "relational_word": "?know tell:so/because", + "is_associative": 2 + }, + { + "index": 49, + "is_switchable": 1, + "sentence": "Susan knew that Ann's son had been in a car accident, because [she] told her about it.", + "answer1": "Ann", + "answer0": "Susan", + "sentence_switched": "Ann knew that susan's son had been in a car accident, because [she] told her about it.", + "correct_answer": "Ann", + "relational_word": "?know tell:so/because", + "is_associative": 2 + }, + { + "index": 50, + "is_switchable": 0, + "sentence": "Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.", + "answer1": "Joe's uncle", + "answer0": "Joe", + "sentence_switched": "Joe's uncle can still beat him at tennis, even though [he] is 30 years younger.", + "correct_answer": "Joe", + "relational_word": "beat:younger/older", + "is_associative": 0 + }, + { + "index": 51, + "is_switchable": 0, + "sentence": "Joe's uncle can still beat him at tennis, even though [he] is 30 years older.", + "answer1": "Joe's uncle", + "answer0": "Joe", + "sentence_switched": "Joe can still beat him at tennis, even though [he] is 30 years older.", + "correct_answer": "Joe's uncle", + "relational_word": "beat:younger/older", + "is_associative": 0 + }, + { + "index": 52, + "is_switchable": 0, + "sentence": "The painting in Mark's living room shows an oak tree. [It] is to the right of the bookcase.", + "answer1": "The oak tree", + "answer0": "The painting", + "sentence_switched": "The oak tree in mark's living room shows a painting. [it] is to the right of the bookcase.", + "correct_answer": "The painting", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 53, + "is_switchable": 0, + "sentence": "The painting in Mark's living room shows an oak tree. [It] is to the right of a house.", + "answer1": "The oak tree", + "answer0": "The painting", + "sentence_switched": "The oak tree in mark's living room shows a painting. [it] is to the right of a house.", + "correct_answer": "The oak tree", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 54, + "is_switchable": 0, + "sentence": "There is a gap in the wall. You can see the garden through [it] .", + "answer1": "The wall", + "answer0": "The gap", + "sentence_switched": "There is a wall in the gap. you can see the garden through [it] .", + "correct_answer": "The gap", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 55, + "is_switchable": 0, + "sentence": "There is a gap in the wall. You can see the garden behind [it] .", + "answer1": "The wall", + "answer0": "The gap", + "sentence_switched": "There is a wall in the gap. you can see the garden behind [it] .", + "correct_answer": "The wall", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 56, + "is_switchable": 0, + "sentence": "The drain is clogged with hair. [It] has to be cleaned.", + "answer1": "The hair", + "answer0": "The drain", + "sentence_switched": "The hair is clogged with drain. [it] has to be cleaned.", + "correct_answer": "The drain", + "relational_word": "clog:cleaned removed", + "is_associative": 0 + }, + { + "index": 57, + "is_switchable": 0, + "sentence": "The drain is clogged with hair. [It] has to be removed.", + "answer1": "The hair", + "answer0": "The drain", + "sentence_switched": "The hair is clogged with drain. [it] has to be removed.", + "correct_answer": "The hair", + "relational_word": "clog:cleaned removed", + "is_associative": 0 + }, + { + "index": 58, + "is_switchable": 0, + "sentence": "My meeting started at 4:00 and I needed to catch the train at 4:30, so there wasn't much time. Luckily, [it] was short, so it worked out.", + "answer1": "The train", + "answer0": "The meeting", + "sentence_switched": "My train started at 4:00 and i needed to catch the meeting at 4:30, so there wasn't much time. luckily, [it] was short, so it worked out.", + "correct_answer": "The meeting", + "relational_word": "?immediately follow:short delayed", + "is_associative": 1 + }, + { + "index": 59, + "is_switchable": 0, + "sentence": "My meeting started at 4:00 and I needed to catch the train at 4:30, so there wasn't much time. Luckily, [it] was delayed, so it worked out.", + "answer1": "The train", + "answer0": "The meeting", + "sentence_switched": "My train started at 4:00 and i needed to catch the meeting at 4:30, so there wasn't much time. luckily, [it] was delayed, so it worked out.", + "correct_answer": "The train", + "relational_word": "?immediately follow:short delayed", + "is_associative": 0 + }, + { + "index": 60, + "is_switchable": 0, + "sentence": "There is a pillar between me and the stage, and I can't see around [it] .", + "answer1": "The stage", + "answer0": "The pillar", + "sentence_switched": "There is a stage between me and the pillar, and i can't see around [it] .", + "correct_answer": "The pillar", + "relational_word": "?between:see see around", + "is_associative": 2 + }, + { + "index": 61, + "is_switchable": 0, + "sentence": "There is a pillar between me and the stage, and I can't see [it] .", + "answer1": "The stage", + "answer0": "The pillar", + "sentence_switched": "There is a stage between me and the pillar, and i can't see [it] .", + "correct_answer": "The stage", + "relational_word": "?between:see see around", + "is_associative": 2 + }, + { + "index": 62, + "is_switchable": 0, + "sentence": "They broadcast an announcement, but a subway came into the station and I couldn't hear [it] .", + "answer1": "The subway", + "answer0": "The announcement", + "sentence_switched": "They broadcast a subway, but an announcement came into the station and i couldn't hear [it] .", + "correct_answer": "The announcement", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 63, + "is_switchable": 0, + "sentence": "They broadcast an announcement, but a subway came into the station and I couldn't hear over [it] .", + "answer1": "The subway", + "answer0": "The announcement", + "sentence_switched": "They broadcast a subway, but an announcement came into the station and i couldn't hear over [it] .", + "correct_answer": "The subway", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 64, + "is_switchable": 0, + "sentence": "In the middle of the outdoor concert, the rain started falling, but [it] continued until 10.", + "answer1": "The rain", + "answer0": "The concert", + "sentence_switched": "In the middle of the outdoor rain, the concert started falling, but [it] continued until 10.", + "correct_answer": "The concert", + "relational_word": "but/and", + "is_associative": 0 + }, + { + "index": 65, + "is_switchable": 0, + "sentence": "In the middle of the outdoor concert, the rain started falling, and [it] continued until 10.", + "answer1": "The rain", + "answer0": "The concert", + "sentence_switched": "In the middle of the outdoor rain, the concert started falling, and [it] continued until 10.", + "correct_answer": "The rain", + "relational_word": "but/and", + "is_associative": 0 + }, + { + "index": 66, + "is_switchable": 0, + "sentence": "I used an old rag to clean the knife, and then I put [it] in the trash.", + "answer1": "The knife", + "answer0": "The rag", + "sentence_switched": "I used an old knife to clean the rag, and then i put [it] in the trash.", + "correct_answer": "The rag", + "relational_word": "clean:put in the trash put in the drawer", + "is_associative": 0 + }, + { + "index": 67, + "is_switchable": 0, + "sentence": "I used an old rag to clean the knife, and then I put [it] in the drawer.", + "answer1": "The knife", + "answer0": "The rag", + "sentence_switched": "I used an old knife to clean the rag, and then i put [it] in the drawer.", + "correct_answer": "The knife", + "relational_word": "clean:put in the trash put in the drawer", + "is_associative": 0 + }, + { + "index": 68, + "is_switchable": 1, + "sentence": "Ann asked Mary what time the library closes, because [she] had forgotten.", + "answer1": "Mary", + "answer0": "Ann", + "sentence_switched": "Mary asked ann what time the library closes, because [she] had forgotten.", + "correct_answer": "Ann", + "relational_word": "because/but", + "is_associative": 0 + }, + { + "index": 69, + "is_switchable": 1, + "sentence": "Ann asked Mary what time the library closes, but [she] had forgotten.", + "answer1": "Mary", + "answer0": "Ann", + "sentence_switched": "Mary asked ann what time the library closes, but [she] had forgotten.", + "correct_answer": "Mary", + "relational_word": "because/but", + "is_associative": 0 + }, + { + "index": 70, + "is_switchable": 0, + "sentence": "I took the water bottle out of the backpack so that [it] would be handy.", + "answer1": "The backpack", + "answer0": "The water bottle", + "sentence_switched": "I took the backpack out of the water bottle so that [it] would be handy.", + "correct_answer": "The water bottle", + "relational_word": "out of:handy lighter", + "is_associative": 0 + }, + { + "index": 71, + "is_switchable": 0, + "sentence": "I took the water bottle out of the backpack so that [it] would be lighter.", + "answer1": "The backpack", + "answer0": "The water bottle", + "sentence_switched": "I took the backpack out of the water bottle so that [it] would be lighter.", + "correct_answer": "The backpack", + "relational_word": "out of:handy lighter", + "is_associative": 0 + }, + { + "index": 72, + "is_switchable": 0, + "sentence": "I couldn't put the pot on the shelf because [it] was too tall.", + "answer1": "The shelf", + "answer0": "The pot", + "sentence_switched": "I couldn't put the shelf on the pot because [it] was too tall.", + "correct_answer": "The pot", + "relational_word": "put:tall high", + "is_associative": 1 + }, + { + "index": 73, + "is_switchable": 0, + "sentence": "I couldn't put the pot on the shelf because [it] was too high.", + "answer1": "The shelf", + "answer0": "The pot", + "sentence_switched": "I couldn't put the shelf on the pot because [it] was too high.", + "correct_answer": "The shelf", + "relational_word": "put:tall high", + "is_associative": 0 + }, + { + "index": 74, + "is_switchable": 0, + "sentence": "I'm sure that my map will show this building; [it] is very good.", + "answer1": "The building", + "answer0": "The map", + "sentence_switched": "I'm sure that my building will show this map; [it] is very good.", + "correct_answer": "The map", + "relational_word": "show:good famous", + "is_associative": 1 + }, + { + "index": 75, + "is_switchable": 0, + "sentence": "I'm sure that my map will show this building; [it] is very famous.", + "answer1": "The building", + "answer0": "The map", + "sentence_switched": "I'm sure that my building will show this map; [it] is very famous.", + "correct_answer": "The building", + "relational_word": "show:good famous", + "is_associative": 1 + }, + { + "index": 76, + "is_switchable": 1, + "sentence": "Bob paid for Charlie's college education. [He] is very generous.", + "answer1": "Charlie", + "answer0": "Bob", + "sentence_switched": "Charlie paid for bob's college education. [he] is very generous.", + "correct_answer": "Bob", + "relational_word": "pay for:generous grateful", + "is_associative": 0 + }, + { + "index": 77, + "is_switchable": 1, + "sentence": "Bob paid for Charlie's college education. [He] is very grateful.", + "answer1": "Charlie", + "answer0": "Bob", + "sentence_switched": "Charlie paid for bob's college education. [he] is very grateful.", + "correct_answer": "Charlie", + "relational_word": "pay for:generous grateful", + "is_associative": 0 + }, + { + "index": 78, + "is_switchable": 1, + "sentence": "Bob paid for Charlie's college education, but now Charlie acts as though it never happened. [He] is very hurt.", + "answer1": "Charlie", + "answer0": "Bob", + "sentence_switched": "Charlie paid for bob's college education, but now bob acts as though it never happened. [he] is very hurt.", + "correct_answer": "Bob", + "relational_word": "but", + "is_associative": 0 + }, + { + "index": 79, + "is_switchable": 1, + "sentence": "Bob paid for Charlie's college education, but now Charlie acts as though it never happened. [He] is very ungrateful.", + "answer1": "Charlie", + "answer0": "Bob", + "sentence_switched": "Charlie paid for bob's college education, but now bob acts as though it never happened. [he] is very ungrateful.", + "correct_answer": "Charlie", + "relational_word": "but", + "is_associative": 0 + }, + { + "index": 80, + "is_switchable": 1, + "sentence": "Bob was playing cards with Adam and was way ahead. If Adam hadn't had a sudden run of good luck, [he] would have won.", + "answer1": "Adam", + "answer0": "Bob", + "sentence_switched": "Adam was playing cards with bob and was way ahead. if bob hadn't had a sudden run of good luck, [he] would have won.", + "correct_answer": "Bob", + "relational_word": "if", + "is_associative": 0 + }, + { + "index": 81, + "is_switchable": 1, + "sentence": "Bob was playing cards with Adam and was way ahead. If Adam hadn't had a sudden run of good luck, [he] would have lost.", + "answer1": "Adam", + "answer0": "Bob", + "sentence_switched": "Adam was playing cards with bob and was way ahead. if bob hadn't had a sudden run of good luck, [he] would have lost.", + "correct_answer": "Adam", + "relational_word": "if", + "is_associative": 0 + }, + { + "index": 82, + "is_switchable": 1, + "sentence": "Adam can't leave work here until Bob arrives to replace him. If Bob had left home for work on time, [he] would be gone by this time.", + "answer1": "Bob", + "answer0": "Adam", + "sentence_switched": "Bob can't leave work here until adam arrives to replace him. if adam had left home for work on time, [he] would be gone by this time.", + "correct_answer": "Adam", + "relational_word": "if", + "is_associative": 0 + }, + { + "index": 83, + "is_switchable": 1, + "sentence": "Adam can't leave work here until Bob arrives to replace him. If Bob had left home for work on time, [he] would be here by this time.", + "answer1": "Bob", + "answer0": "Adam", + "sentence_switched": "Bob can't leave work here until adam arrives to replace him. if adam had left home for work on time, [he] would be here by this time.", + "correct_answer": "Bob", + "relational_word": "if", + "is_associative": 0 + }, + { + "index": 84, + "is_switchable": 0, + "sentence": "If the con artist has succeeded in fooling Sam, [he] would have gotten a lot of money.", + "answer1": "Sam", + "answer0": "The con artist", + "sentence_switched": "If sam has succeeded in fooling the con artist, [he] would have gotten a lot of money.", + "correct_answer": "The con artist", + "relational_word": "fool:get/lose", + "is_associative": 0 + }, + { + "index": 85, + "is_switchable": 0, + "sentence": "If the con artist has succeeded in fooling Sam, [he] would have lost a lot of money.", + "answer1": "Sam", + "answer0": "The con artist", + "sentence_switched": "If sam has succeeded in fooling the con artist, [he] would have lost a lot of money.", + "correct_answer": "Sam", + "relational_word": "fool:get/lose", + "is_associative": 0 + }, + { + "index": 86, + "is_switchable": 0, + "sentence": "It was a summer afternoon, and the dog was sitting in the middle of the lawn. After a while, it got up and moved to a spot under the tree, because [it] was hot.", + "answer1": "The spot under the tree", + "answer0": "The dog", + "sentence_switched": "It was a summer afternoon, and the spot under tree was sitting in the middle of the lawn. after a while, it got up and moved to a dog, because [it] was hot.", + "correct_answer": "The dog", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 87, + "is_switchable": 0, + "sentence": "It was a summer afternoon, and the dog was sitting in the middle of the lawn. After a while, it got up and moved to a spot under the tree, because [it] was cooler.", + "answer1": "The spot under the tree", + "answer0": "The dog", + "sentence_switched": "It was a summer afternoon, and the spot under tree was sitting in the middle of the lawn. after a while, it got up and moved to a dog, because [it] was cooler.", + "correct_answer": "The spot under the tree", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 88, + "is_switchable": 0, + "sentence": "The cat was lying by the mouse hole waiting for the mouse, but [it] was too impatient.", + "answer1": "The mouse", + "answer0": "The cat", + "sentence_switched": "The mouse was lying by the cat hole waiting for the cat, but [it] was too impatient.", + "correct_answer": "The cat", + "relational_word": "wait:impatient cautious", + "is_associative": 0 + }, + { + "index": 89, + "is_switchable": 0, + "sentence": "The cat was lying by the mouse hole waiting for the mouse, but [it] was too cautious.", + "answer1": "The mouse", + "answer0": "The cat", + "sentence_switched": "The mouse was lying by the cat hole waiting for the cat, but [it] was too cautious.", + "correct_answer": "The mouse", + "relational_word": "wait:impatient cautious", + "is_associative": 0 + }, + { + "index": 90, + "is_switchable": 0, + "sentence": "Anne gave birth to a daughter last month. [She] is a very charming woman.", + "answer1": "Anne's daughter", + "answer0": "Anne", + "sentence_switched": "Anne's daughter gave birth to Anne last month. [she] is a very charming woman.", + "correct_answer": "Anne", + "relational_word": "give birth:woman baby", + "is_associative": 0 + }, + { + "index": 91, + "is_switchable": 0, + "sentence": "Anne daughter gave birth to Anne last month. [She] is a very charming baby.", + "answer1": "Anne's daughter", + "answer0": "Anne", + "sentence_switched": "Anne's daughter gave birth to Anne last month. [she] is a very charming baby.", + "correct_answer": "Anne's daughter", + "relational_word": "give birth:woman baby", + "is_associative": 0 + }, + { + "index": 92, + "is_switchable": 0, + "sentence": "Alice tried frantically to stop her daughter from chatting at the party, leaving us to wonder why [she] was behaving so strangely.", + "answer1": "Alice's daughter", + "answer0": "Alice", + "sentence_switched": "Alice's daughter tried frantically to stop Alice from chatting at the party, leaving us to wonder why [she] was behaving so strangely.", + "correct_answer": "Alice", + "relational_word": "?stop normal/stop abnormal:strange", + "is_associative": 0 + }, + { + "index": 93, + "is_switchable": 0, + "sentence": "Alice tried frantically to stop her daughter from barking at the party, leaving us to wonder why [she] was behaving so strangely.", + "answer1": "Alice's daughter", + "answer0": "Alice", + "sentence_switched": "Alice's daughter tried frantically to stop Alice from barking at the party, leaving us to wonder why [she] was behaving so strangely.", + "correct_answer": "Alice's daughter", + "relational_word": "?stop normal/stop abnormal:strange", + "is_associative": 0 + }, + { + "index": 94, + "is_switchable": 1, + "sentence": "I saw Jim yelling at some guy in a military uniform with a huge red beard. I don't know why [he] was, but he looked very unhappy.", + "answer1": "the guy in uniform", + "answer0": "Jim", + "sentence_switched": "I saw the guy in military uniform with a huge red beard yelling at jim. i don't know why [he] was, but he looked very unhappy.", + "correct_answer": "Jim", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 95, + "is_switchable": 1, + "sentence": "I saw Jim yelling at some guy in a military uniform with a huge red beard. I don't know who [he] was, but he looked very unhappy.", + "answer1": "the guy in uniform", + "answer0": "Jim", + "sentence_switched": "I saw the guy in military uniform with a huge red beard yelling at jim. i don't know who [he] was, but he looked very unhappy.", + "correct_answer": "the guy in uniform", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 96, + "is_switchable": 0, + "sentence": "The fish ate the worm. [It] was hungry.", + "answer1": "The worm", + "answer0": "The fish", + "sentence_switched": "The worm ate the fish. [it] was hungry.", + "correct_answer": "The fish", + "relational_word": "eat:hungry tasty", + "is_associative": 0 + }, + { + "index": 97, + "is_switchable": 0, + "sentence": "The fish ate the worm. [It] was tasty.", + "answer1": "The worm", + "answer0": "The fish", + "sentence_switched": "The worm ate the fish. [it] was tasty.", + "correct_answer": "The worm", + "relational_word": "eat:hungry tasty", + "is_associative": 0 + }, + { + "index": 98, + "is_switchable": 0, + "sentence": "I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] in.", + "answer1": "The chewing gum", + "answer0": "The key", + "sentence_switched": "I was trying to open the lock with the chewing gum, but someone had filled the keyhole with the key, and i couldn't get [it] in.", + "correct_answer": "The key", + "relational_word": "put ... into filled with ... :get in/get out", + "is_associative": 1 + }, + { + "index": 99, + "is_switchable": 0, + "sentence": "I was trying to open the lock with the key, but someone had filled the keyhole with chewing gum, and I couldn't get [it] out.", + "answer1": "The chewing gum", + "answer0": "The key", + "sentence_switched": "I was trying to open the lock with the chewing gum, but someone had filled the keyhole with the key, and i couldn't get [it] out.", + "correct_answer": "The chewing gum", + "relational_word": "put ... into filled with ... :get in/get out", + "is_associative": 0 + }, + { + "index": 100, + "is_switchable": 0, + "sentence": "The dog chased the cat, which ran up a tree. [It] waited at the bottom.", + "answer1": "The cat", + "answer0": "The dog", + "sentence_switched": "The cat chased the dog, which ran up a tree. [it] waited at the bottom.", + "correct_answer": "The dog", + "relational_word": "up:at the bottom/at the top", + "is_associative": 0 + }, + { + "index": 101, + "is_switchable": 0, + "sentence": "The dog chased the cat, which ran up a tree. [It] waited at the top.", + "answer1": "The cat", + "answer0": "The dog", + "sentence_switched": "The cat chased the dog, which ran up a tree. [it] waited at the top.", + "correct_answer": "The cat", + "relational_word": "up:at the bottom/at the top", + "is_associative": 0 + }, + { + "index": 102, + "is_switchable": 0, + "sentence": "In the storm, the tree fell down and crashed through the roof of my house. Now, I have to get [it] removed.", + "answer1": "The roof", + "answer0": "The tree", + "sentence_switched": "In the storm, the roof fell down and crashed through the tree of my house. now, i have to get [it] removed.", + "correct_answer": "The tree", + "relational_word": "crash through:removed repaired", + "is_associative": 0 + }, + { + "index": 103, + "is_switchable": 0, + "sentence": "In the storm, the tree fell down and crashed through the roof of my house. Now, I have to get [it] repaired.", + "answer1": "The roof", + "answer0": "The tree", + "sentence_switched": "In the storm, the roof fell down and crashed through the tree of my house. now, i have to get [it] repaired.", + "correct_answer": "The roof", + "relational_word": "crash through:removed repaired", + "is_associative": 1 + }, + { + "index": 104, + "is_switchable": 0, + "sentence": "The customer walked into the bank and stabbed one of the tellers. [He] was immediately taken to the police station.", + "answer1": "The teller", + "answer0": "The customer", + "sentence_switched": "The teller walked into the bank and stabbed one of the customers. [he] was immediately taken to the police station.", + "correct_answer": "The customer", + "relational_word": "stab:taken to the police station taken to the hospital", + "is_associative": 0 + }, + { + "index": 105, + "is_switchable": 0, + "sentence": "The customer walked into the bank and stabbed one of the tellers. [He] was immediately taken to the hospital.", + "answer1": "The teller", + "answer0": "The customer", + "sentence_switched": "The teller walked into the bank and stabbed one of the customers. [he] was immediately taken to the hospital.", + "correct_answer": "The teller", + "relational_word": "stab:taken to the police station taken to the hospital", + "is_associative": 0 + }, + { + "index": 106, + "is_switchable": 1, + "sentence": "John was doing research in the library when he heard a man humming and whistling. [He] was very annoyed.", + "answer1": "The man", + "answer0": "John", + "sentence_switched": "Man was doing research in the library when he heard a john humming and whistling. [he] was very annoyed.", + "correct_answer": "John", + "relational_word": "hear ... humming and whistling:annoyed/annoying", + "is_associative": 0 + }, + { + "index": 107, + "is_switchable": 1, + "sentence": "John was doing research in the library when he heard a man humming and whistling. [He] was very annoying.", + "answer1": "The man", + "answer0": "John", + "sentence_switched": "A man was doing research in the library when he heard john humming and whistling. [he] was very annoying.", + "correct_answer": "The man", + "relational_word": "hear ... humming and whistling:annoyed/annoying", + "is_associative": 0 + }, + { + "index": 108, + "is_switchable": 0, + "sentence": "John was jogging through the park when he saw a man juggling watermelons. [He] was very impressed.", + "answer1": "The juggler", + "answer0": "John", + "sentence_switched": "The juggler was jogging through the park when he saw a man juggling watermelons. [he] was very impressed.", + "correct_answer": "John", + "relational_word": "see ... juggling watermelons:impressed/impressive", + "is_associative": 0 + }, + { + "index": 109, + "is_switchable": 0, + "sentence": "John was jogging through the park when he saw a man juggling watermelons. [He] was very impressive.", + "answer1": "The juggler", + "answer0": "John", + "sentence_switched": "The juggler was jogging through the park when he saw a man juggling watermelons. [he] was very impressive.", + "correct_answer": "The juggler", + "relational_word": "see ... juggling watermelons:impressed/impressive", + "is_associative": 1 + }, + { + "index": 110, + "is_switchable": 1, + "sentence": "Bob collapsed on the sidewalk. Soon he saw Carl coming to help. [He] was very ill.", + "answer1": "Carl", + "answer0": "Bob", + "sentence_switched": "Carl collapsed on the sidewalk. soon he saw bob coming to help. [he] was very ill.", + "correct_answer": "Bob", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 111, + "is_switchable": 1, + "sentence": "Bob collapsed on the sidewalk. Soon he saw Carl coming to help. [He] was very concerned.", + "answer1": "Carl", + "answer0": "Bob", + "sentence_switched": "Carl collapsed on the sidewalk. soon he saw bob coming to help. [he] was very concerned.", + "correct_answer": "Carl", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 112, + "is_switchable": 0, + "sentence": "Sam and Amy are passionately in love, but Amy's parents are unhappy about it, because [they] are fifteen.", + "answer1": "Amy's parents", + "answer0": "Sam and Amy", + "sentence_switched": "Amy's parents are passionately in love, but sam and amy are unhappy about it, because [they] are fifteen.", + "correct_answer": "Sam and Amy", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 113, + "is_switchable": 0, + "sentence": "Sam and Amy are passionately in love, but Amy's parents are unhappy about it, because [they] are snobs.", + "answer1": "Amy's parents", + "answer0": "Sam and Amy", + "sentence_switched": "Amy's parents are passionately in love, but sam and amy are unhappy about it, because [they] are snobs.", + "correct_answer": "Amy's parents", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 114, + "is_switchable": 1, + "sentence": "Mark told Pete many lies about himself, which Pete included in his book. [He] should have been more truthful.", + "answer1": "Pete", + "answer0": "Mark", + "sentence_switched": "Pete told mark many lies about himself, which mark included in his book. [he] should have been more truthful.", + "correct_answer": "Mark", + "relational_word": "tell lies: truthful skeptical", + "is_associative": 0 + }, + { + "index": 115, + "is_switchable": 1, + "sentence": "Mark told Pete many lies about himself, which Pete included in his book. [He] should have been more skeptical.", + "answer1": "Pete", + "answer0": "Mark", + "sentence_switched": "Pete told mark many lies about himself, which mark included in his book. [he] should have been more skeptical.", + "correct_answer": "Pete", + "relational_word": "tell lies: truthful skeptical", + "is_associative": 0 + }, + { + "index": 116, + "is_switchable": 0, + "sentence": "Joe has sold his house and bought a new one a few miles away. He will be moving out of [it] on Thursday.", + "answer1": "The new house", + "answer0": "The old house", + "sentence_switched": "Joe has sold his new house and bought a old one a few miles away. he will be moving out of [it] on thursday.", + "correct_answer": "The old house", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 117, + "is_switchable": 0, + "sentence": "Joe has sold his house and bought a new one a few miles away. He will be moving into [it] on Thursday.", + "answer1": "The new house", + "answer0": "The old house", + "sentence_switched": "Joe has sold his new house and bought a old one a few miles away. he will be moving into [it] on thursday.", + "correct_answer": "The new house", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 118, + "is_switchable": 0, + "sentence": "Many people start to read Paul's books and can't put them down. [They] are gripped because Paul writes so well.", + "answer1": "Paul's books", + "answer0": "People", + "sentence_switched": "Many paul's books start to read people and can't put them down. [they] are gripped because paul writes so well.", + "correct_answer": "People", + "relational_word": "read:gripped popular", + "is_associative": 1 + }, + { + "index": 119, + "is_switchable": 0, + "sentence": "Many people start to read Paul's books and can't put them down. [They] are popular because Paul writes so well.", + "answer1": "Paul's books", + "answer0": "People", + "sentence_switched": "Many paul's books start to read people and can't put them down. [they] are popular because paul writes so well.", + "correct_answer": "Paul's books", + "relational_word": "read:gripped popular", + "is_associative": 1 + }, + { + "index": 120, + "is_switchable": 0, + "sentence": "Mary took out her flute and played one of her favorite pieces. She has had [it] since she was a child.", + "answer1": "The piece", + "answer0": "The flute", + "sentence_switched": "Mary took out her piece and played one of her favorite flute. she has had [it] since she was a child.", + "correct_answer": "The flute", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 121, + "is_switchable": 0, + "sentence": "Mary took out her flute and played one of her favorite pieces. She has loved [it] since she was a child.", + "answer1": "The piece", + "answer0": "The flute", + "sentence_switched": "Mary took out her piece and played one of her favorite flute. she has loved [it] since she was a child.", + "correct_answer": "The piece", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 122, + "is_switchable": 0, + "sentence": "Sam pulled up a chair to the piano, but [it] was broken, so he had to stand instead.", + "answer1": "The piano", + "answer0": "The chair", + "sentence_switched": "Sam pulled up a piano to the chair, but [it] was broken, so he had to stand instead.", + "correct_answer": "The chair", + "relational_word": "none", + "is_associative": 2 + }, + { + "index": 123, + "is_switchable": 0, + "sentence": "Sam pulled up a chair to the piano, but [it] was broken, so he had to sing instead.", + "answer1": "The piano", + "answer0": "The chair", + "sentence_switched": "Sam pulled up a piano to the chair, but [it] was broken, so he had to sing instead.", + "correct_answer": "The piano", + "relational_word": "none", + "is_associative": 2 + }, + { + "index": 124, + "is_switchable": 0, + "sentence": "Since it was raining, I carried the newspaper in my backpack to keep [it] dry.", + "answer1": "The backpack", + "answer0": "The newspaper", + "sentence_switched": "Since it was raining, i carried the backpack in my newspaper to keep [it] dry.", + "correct_answer": "The newspaper", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 125, + "is_switchable": 0, + "sentence": "Since it was raining, I carried the newspaper over my backpack to keep [it] dry.", + "answer1": "The backpack", + "answer0": "The newspaper", + "sentence_switched": "Since it was raining, i carried the backpack over my newspaper to keep [it] dry.", + "correct_answer": "The backpack", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 126, + "is_switchable": 0, + "sentence": "Sara borrowed the book from the library because she needs it for an article she is working on. She reads [it] when she gets home from work.", + "answer1": "The article", + "answer0": "The book", + "sentence_switched": "Sara borrowed the article from the library because she needs it for an book she is working on. she reads [it] when she gets home from work.", + "correct_answer": "The book", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 127, + "is_switchable": 0, + "sentence": "Sara borrowed the book from the library because she needs it for an article she is working on. She writes [it] when she gets home from work.", + "answer1": "The article", + "answer0": "The book", + "sentence_switched": "Sara borrowed the article from the library because she needs it for an book she is working on. she writes [it] when she gets home from work.", + "correct_answer": "The article", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 128, + "is_switchable": 0, + "sentence": "This morning, Joey built a sand castle on the beach, and put a toy flag in the highest tower, but this afternoon the tide knocked [it] down.", + "answer1": "The flag", + "answer0": "The sand castle", + "sentence_switched": "This morning, joey built a flag on the beach, and put a toy sand castle in the highest tower, but this afternoon the tide knocked [it] down.", + "correct_answer": "The sand castle", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 129, + "is_switchable": 0, + "sentence": "This morning, Joey built a sand castle on the beach, and put a toy flag in the highest tower, but this afternoon the wind knocked [it] down.", + "answer1": "The flag", + "answer0": "The sand castle", + "sentence_switched": "This morning, joey built a flag on the beach, and put a toy sand castle in the highest tower, but this afternoon the wind knocked [it] down.", + "correct_answer": "The flag", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 130, + "is_switchable": 1, + "sentence": "Jane knocked on Susan's door, but there was no answer. [She] was disappointed.", + "answer1": "Susan", + "answer0": "Jane", + "sentence_switched": "Susan knocked on jane's door, but there was no answer. [she] was disappointed.", + "correct_answer": "Jane", + "relational_word": "but:disappointed", + "is_associative": 0 + }, + { + "index": 131, + "is_switchable": 1, + "sentence": "Jane knocked on Susan's door, but there was no answer. [She] was out.", + "answer1": "Susan", + "answer0": "Jane", + "sentence_switched": "Susan knocked on jane's door, but there was no answer. [she] was out.", + "correct_answer": "Susan", + "relational_word": "but:disappointed", + "is_associative": 0 + }, + { + "index": 132, + "is_switchable": 1, + "sentence": "Jane knocked on the door, and Susan answered it. [She] invited her to come out.", + "answer1": "Susan", + "answer0": "Jane", + "sentence_switched": "Susan knocked on the door, and jane answered it. [she] invited her to come out.", + "correct_answer": "Jane", + "relational_word": "visit:invite come out/invite come in", + "is_associative": 2 + }, + { + "index": 133, + "is_switchable": 1, + "sentence": "Jane knocked on the door, and Susan answered it. [She] invited her to come in.", + "answer1": "Susan", + "answer0": "Jane", + "sentence_switched": "Susan knocked on the door, and jane answered it. [she] invited her to come in.", + "correct_answer": "Susan", + "relational_word": "visit:invite come out/invite come in", + "is_associative": 2 + }, + { + "index": 134, + "is_switchable": 1, + "sentence": "Sam took French classes from Adam, because [he] was eager to speak it fluently.", + "answer1": "Adam", + "answer0": "Sam", + "sentence_switched": "Adam took french classes from sam, because [he] was eager to speak it fluently.", + "correct_answer": "Sam", + "relational_word": "take classes from:eager known to speak it fluently", + "is_associative": 0 + }, + { + "index": 135, + "is_switchable": 1, + "sentence": "Sam took French classes from Adam, because [he] was known to speak it fluently.", + "answer1": "Adam", + "answer0": "Sam", + "sentence_switched": "Adam took french classes from sam, because [he] was known to speak it fluently.", + "correct_answer": "Adam", + "relational_word": "take classes from:eager known to speak it fluently", + "is_associative": 0 + }, + { + "index": 136, + "is_switchable": 0, + "sentence": "The path to the lake was blocked, so we couldn't use [it] .", + "answer1": "The lake", + "answer0": "The path", + "sentence_switched": "The lake to the path was blocked, so we couldn't use [it] .", + "correct_answer": "The path", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 137, + "is_switchable": 0, + "sentence": "The path to the lake was blocked, so we couldn't reach [it] .", + "answer1": "The lake", + "answer0": "The path", + "sentence_switched": "The lake to the path was blocked, so we couldn't reach [it] .", + "correct_answer": "The lake", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 138, + "is_switchable": 0, + "sentence": "The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, [it] was out.", + "answer1": "The cloud", + "answer0": "The sun", + "sentence_switched": "The cloud was covered by a thick sun all morning, but luckily, by the time the picnic started, [it] was out.", + "correct_answer": "The sun", + "relational_word": "cover:out gone", + "is_associative": 1 + }, + { + "index": 139, + "is_switchable": 0, + "sentence": "The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, [it] was gone.", + "answer1": "The cloud", + "answer0": "The sun", + "sentence_switched": "The cloud was covered by a thick sun all morning, but luckily, by the time the picnic started, [it] was gone.", + "correct_answer": "The cloud", + "relational_word": "cover:out gone", + "is_associative": 2 + }, + { + "index": 140, + "is_switchable": 0, + "sentence": "We went to the lake, because a shark had been seen at the ocean beach, so [it] was a safer place to swim.", + "answer1": "The ocean beach", + "answer0": "The lake", + "sentence_switched": "We went to the ocean beach, because a shark had been seen at the lake, so [it] was a safer place to swim.", + "correct_answer": "The lake", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 141, + "is_switchable": 0, + "sentence": "We went to the lake, because a shark had been seen at the ocean beach, so [it] was a dangerous place to swim.", + "answer1": "The ocean beach", + "answer0": "The lake", + "sentence_switched": "We went to the ocean beach, because a shark had been seen at the lake, so [it] was a dangerous place to swim.", + "correct_answer": "The ocean beach", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 142, + "is_switchable": 0, + "sentence": "Sam tried to paint a picture of shepherds with sheep, but [they] ended up looking more like golfers.", + "answer1": "The sheep", + "answer0": "The shepherds", + "sentence_switched": "Sam tried to paint a picture of sheep with shepherds, but [they] ended up looking more like golfers.", + "correct_answer": "The shepherds", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 143, + "is_switchable": 0, + "sentence": "Sam tried to paint a picture of shepherds with sheep, but [they] ended up looking more like dogs.", + "answer1": "The sheep", + "answer0": "The shepherds", + "sentence_switched": "Sam tried to paint a picture of sheep with shepherds, but [they] ended up looking more like dogs.", + "correct_answer": "The sheep", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 144, + "is_switchable": 0, + "sentence": "Mary tucked her daughter Anne into bed, so that [she] could work.", + "answer1": "Mary's daughter", + "answer0": "Mary", + "sentence_switched": "Mary's daughter tucked Mary into bed, so that [she] could work.", + "correct_answer": "Mary", + "relational_word": "tuck:work sleep", + "is_associative": 0 + }, + { + "index": 145, + "is_switchable": 0, + "sentence": "Mary tucked her daughter Anne into bed, so that [she] could sleep.", + "answer1": "Mary's daughter", + "answer0": "Mary", + "sentence_switched": "Mary's daughter tucked Mary into bed, so that [she] could sleep.", + "correct_answer": "Mary's daughter", + "relational_word": "tuck:work sleep", + "is_associative": 0 + }, + { + "index": 146, + "is_switchable": 0, + "sentence": "Fred and Alice had very warm down coats, but [they] were not prepared for the cold in Alaska.", + "answer1": "coats", + "answer0": "Fred and Alice", + "sentence_switched": "Coats had very warm down fred and alice, but [they] were not prepared for the cold in alaska.", + "correct_answer": "Fred and Alice", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 147, + "is_switchable": 0, + "sentence": "Fred and Alice had very warm down coats, but [they] were not enough for the cold in Alaska.", + "answer1": "coats", + "answer0": "Fred and Alice", + "sentence_switched": "Coats had very warm down fred and alice, but [they] were not enough for the cold in alaska.", + "correct_answer": "coats", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 148, + "is_switchable": 1, + "sentence": "Thomson visited Cooper's grave in 1765. At that date [he] had been travelling for five years.", + "answer1": "Cooper", + "answer0": "Thomson", + "sentence_switched": "Cooper visited thomson's grave in 1765. at that date [he] had been travelling for five years.", + "correct_answer": "Thomson", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 149, + "is_switchable": 1, + "sentence": "Thomson visited Cooper's grave in 1765. At that date [he] had been dead for five years.", + "answer1": "Cooper", + "answer0": "Thomson", + "sentence_switched": "Cooper visited thomson's grave in 1765. at that date [he] had been dead for five years.", + "correct_answer": "Cooper", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 150, + "is_switchable": 1, + "sentence": "Jackson was greatly influenced by Arnold, though [he] lived two centuries later.", + "answer1": "Arnold", + "answer0": "Jackson", + "sentence_switched": "Arnold was greatly influenced by jackson, though [he] lived two centuries later.", + "correct_answer": "Jackson", + "relational_word": "influence:later/earlier", + "is_associative": 0 + }, + { + "index": 151, + "is_switchable": 1, + "sentence": "Jackson was greatly influenced by Arnold, though [he] lived two centuries earlier.", + "answer1": "Arnold", + "answer0": "Jackson", + "sentence_switched": "Arnold was greatly influenced by jackson, though [he] lived two centuries earlier.", + "correct_answer": "Arnold", + "relational_word": "influence:later/earlier", + "is_associative": 0 + }, + { + "index": 152, + "is_switchable": 0, + "sentence": "I can't cut that tree down with that axe; [it] is too thick.", + "answer1": "The axe", + "answer0": "The tree", + "sentence_switched": "I can't cut that axe down with that tree; [it] is too thick.", + "correct_answer": "The tree", + "relational_word": "can not cut:thick small", + "is_associative": 0 + }, + { + "index": 153, + "is_switchable": 0, + "sentence": "I can't cut that tree down with that axe; [it] is too small.", + "answer1": "The axe", + "answer0": "The tree", + "sentence_switched": "I can't cut that axe down with that tree; [it] is too small.", + "correct_answer": "The axe", + "relational_word": "can not cut:thick small", + "is_associative": 0 + }, + { + "index": 154, + "is_switchable": 0, + "sentence": "The foxes are getting in at night and attacking the chickens. I shall have to kill [them] .", + "answer1": "The chickens", + "answer0": "The foxes", + "sentence_switched": "The chickens are getting in at night and attacking the foxes. i shall have to kill [them] .", + "correct_answer": "The foxes", + "relational_word": "attack:kill guard", + "is_associative": 0 + }, + { + "index": 155, + "is_switchable": 0, + "sentence": "The foxes are getting in at night and attacking the chickens. I shall have to guard [them] .", + "answer1": "The chickens", + "answer0": "The foxes", + "sentence_switched": "The chickens are getting in at night and attacking the foxes. i shall have to guard [them] .", + "correct_answer": "The chickens", + "relational_word": "attack:kill guard", + "is_associative": 1 + }, + { + "index": 156, + "is_switchable": 0, + "sentence": "The foxes are getting in at night and attacking the chickens. [They] have gotten very bold.", + "answer1": "The chickens", + "answer0": "The foxes", + "sentence_switched": "The chickens are getting in at night and attacking the foxes. [they] have gotten very bold.", + "correct_answer": "The foxes", + "relational_word": "attack:bold nervous", + "is_associative": 0 + }, + { + "index": 157, + "is_switchable": 0, + "sentence": "The foxes are getting in at night and attacking the chickens. [They] have gotten very nervous.", + "answer1": "The chickens", + "answer0": "The foxes", + "sentence_switched": "The chickens are getting in at night and attacking the foxes. [they] have gotten very nervous.", + "correct_answer": "The chickens", + "relational_word": "attack:bold nervous", + "is_associative": 0 + }, + { + "index": 158, + "is_switchable": 0, + "sentence": "Fred covered his eyes with his hands, because the wind was blowing sand around. He opened [them] when the wind stopped.", + "answer1": "His hands", + "answer0": "His eyes", + "sentence_switched": "Fred covered his hands with his eyes, because the wind was blowing sand around. he opened [them] when the wind stopped.", + "correct_answer": "His eyes", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 159, + "is_switchable": 0, + "sentence": "Fred covered his eyes with his hands, because the wind was blowing sand around. He lowered [them] when the wind stopped.", + "answer1": "His hands", + "answer0": "His eyes", + "sentence_switched": "Fred covered his hands with his eyes, because the wind was blowing sand around. he lowered [them] when the wind stopped.", + "correct_answer": "His hands", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 160, + "is_switchable": 1, + "sentence": "The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was too hard to pronounce.", + "answer1": "Tina", + "answer0": "Terpsichore", + "sentence_switched": "The actress used to be named tina, but she changed it to terpsichore a few years ago, because she figured [it] was too hard to pronounce.", + "correct_answer": "Terpsichore", + "relational_word": "change:hard/easy", + "is_associative": 0 + }, + { + "index": 161, + "is_switchable": 1, + "sentence": "The actress used to be named Terpsichore, but she changed it to Tina a few years ago, because she figured [it] was easier to pronounce.", + "answer1": "Tina", + "answer0": "Terpsichore", + "sentence_switched": "The actress used to be named tina, but she changed it to terpsichore a few years ago, because she figured [it] was easier to pronounce.", + "correct_answer": "Tina", + "relational_word": "change:hard/easy", + "is_associative": 0 + }, + { + "index": 162, + "is_switchable": 1, + "sentence": "Fred watched TV while George went out to buy groceries. After an hour [he] got up.", + "answer1": "George", + "answer0": "Fred", + "sentence_switched": "George watched tv while fred went out to buy groceries. after an hour [he] got up.", + "correct_answer": "Fred", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 163, + "is_switchable": 1, + "sentence": "Fred watched TV while George went out to buy groceries. After an hour [he] got back.", + "answer1": "George", + "answer0": "Fred", + "sentence_switched": "George watched tv while fred went out to buy groceries. after an hour [he] got back.", + "correct_answer": "George", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 164, + "is_switchable": 0, + "sentence": "Fred was supposed to run the dishwasher, but he put it off, because he wanted to watch TV. But the show turned out to be boring, so he changed his mind and turned [it] on.", + "answer1": "The TV", + "answer0": "The dishwasher", + "sentence_switched": "Fred was supposed to run the tv, but he put it off, because he wanted to watch dishwasher. but the show turned out to be boring, so he changed his mind and turned [it] on.", + "correct_answer": "The dishwasher", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 165, + "is_switchable": 0, + "sentence": "Fred was supposed to run the dishwasher, but he put it off, because he wanted to watch TV. But the show turned out to be boring, so he changed his mind and turned [it] off.", + "answer1": "The TV", + "answer0": "The dishwasher", + "sentence_switched": "Fred was supposed to run the tv, but he put it off, because he wanted to watch dishwasher. but the show turned out to be boring, so he changed his mind and turned [it] off.", + "correct_answer": "The TV", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 166, + "is_switchable": 0, + "sentence": "Fred is the only man still alive who remembers my great-grandfather. [He] is a remarkable man.", + "answer1": "My great-grandfather", + "answer0": "Fred", + "sentence_switched": "My great-grandfather is the only man still alive who remembers fred. [he] is a remarkable man.", + "correct_answer": "Fred", + "relational_word": "alive:is/was", + "is_associative": 0 + }, + { + "index": 167, + "is_switchable": 0, + "sentence": "Fred is the only man still alive who remembers my great-grandfather. [He] was a remarkable man.", + "answer1": "My great-grandfather", + "answer0": "Fred", + "sentence_switched": "My great-grandfather is the only man still alive who remembers fred. [he] was a remarkable man.", + "correct_answer": "My great-grandfather", + "relational_word": "alive:is/was", + "is_associative": 0 + }, + { + "index": 168, + "is_switchable": 0, + "sentence": "Fred is the only man alive who still remembers my father as an infant. When Fred first saw my father, [he] was twelve years old.", + "answer1": "My father", + "answer0": "Fred", + "sentence_switched": "My father is the only man alive who still remembers fred as an infant. when my father first saw fred, [he] was twelve years old.", + "correct_answer": "Fred", + "relational_word": "infant:twelve years old twelve months old", + "is_associative": 0 + }, + { + "index": 169, + "is_switchable": 0, + "sentence": "Fred is the only man alive who still remembers my father as an infant. When Fred first saw my father, [he] was twelve months old.", + "answer1": "My father", + "answer0": "Fred", + "sentence_switched": "My father is the only man alive who still remembers fred as an infant. when my father first saw fred, [he] was twelve months old.", + "correct_answer": "My father", + "relational_word": "infant:twelve years old twelve months old", + "is_associative": 0 + }, + { + "index": 170, + "is_switchable": 1, + "sentence": "In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were defeated within weeks.", + "answer1": "Yakutsk", + "answer0": "Kamchatka", + "sentence_switched": "In july, Yakutsk declared war on kamchatka. since kamchatka's army was much better equipped and ten times larger, [they] were defeated within weeks.", + "correct_answer": "Kamchatka", + "relational_word": "better equipped and large:defeated/victorious", + "is_associative": 0 + }, + { + "index": 171, + "is_switchable": 1, + "sentence": "In July, Kamtchatka declared war on Yakutsk. Since Yakutsk's army was much better equipped and ten times larger, [they] were victorious within weeks.", + "answer1": "Yakutsk", + "answer0": "Kamchatka", + "sentence_switched": "In july, Yakutsk declared war on kamchatka. since kamchatka's army was much better equipped and ten times larger, [they] were victorious within weeks.", + "correct_answer": "Yakutsk", + "relational_word": "better equipped and large:defeated/victorious", + "is_associative": 0 + }, + { + "index": 172, + "is_switchable": 0, + "sentence": "Look! There is a minnow swimming right below that duck! [It] had better get away to safety fast!", + "answer1": "The duck", + "answer0": "The minnow", + "sentence_switched": "Look! there is a duck swimming right below that minnow! [it] had better get away to safety fast!", + "correct_answer": "The minnow", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 173, + "is_switchable": 0, + "sentence": "Look! There is a shark swimming right below that duck! [It] had better get away to safety fast!", + "answer1": "The duck", + "answer0": "The shark", + "sentence_switched": "Look! there is a duck swimming right below that shark! [it] had better get away to safety fast!", + "correct_answer": "The duck", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 174, + "is_switchable": 0, + "sentence": "Archaeologists have concluded that humans lived in Laputa 20,000 years ago. [They] hunted for evidence on the river banks.", + "answer1": "Prehistoric humans", + "answer0": "Archaeologists", + "sentence_switched": "Prehistoric humans have concluded that humans lived in laputa 20,000 years ago. [they] hunted for evidence on the river banks.", + "correct_answer": "Archaeologists", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 175, + "is_switchable": 0, + "sentence": "Archaeologists have concluded that humans lived in Laputa 20,000 years ago. [They] hunted for deer on the river banks.", + "answer1": "Prehistoric humans", + "answer0": "Archaeologists", + "sentence_switched": "Prehistoric humans have concluded that humans lived in laputa 20,000 years ago. [they] hunted for deer on the river banks.", + "correct_answer": "Prehistoric humans", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 176, + "is_switchable": 0, + "sentence": "The scientists are studying three species of fish that have recently been found living in the Indian Ocean. [They] began two years ago.", + "answer1": "The fish", + "answer0": "The scientists", + "sentence_switched": "The fish are studying three species of scientists that have recently been found living in the indian ocean. [they] began two years ago.", + "correct_answer": "The scientists", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 177, + "is_switchable": 0, + "sentence": "The scientists are studying three species of fish that have recently been found living in the Indian Ocean. [They] appeared two years ago.", + "answer1": "The fish", + "answer0": "The scientists", + "sentence_switched": "The fish are studying three species of scientists that have recently been found living in the indian ocean. [they] appeared two years ago.", + "correct_answer": "The fish", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 178, + "is_switchable": 0, + "sentence": "The journalists interviewed the stars of the new movie. [They] were very persistent, so the interview lasted for a long time.", + "answer1": "The stars", + "answer0": "The journalists", + "sentence_switched": "The stars interviewed the journalists of the new movie. [they] were very persistent, so the interview lasted for a long time.", + "correct_answer": "The journalists", + "relational_word": "interview:persistent cooperative", + "is_associative": 0 + }, + { + "index": 179, + "is_switchable": 0, + "sentence": "The journalists interviewed the stars of the new movie. [They] were very cooperative, so the interview lasted for a long time.", + "answer1": "The stars", + "answer0": "The journalists", + "sentence_switched": "The stars interviewed the journalists of the new movie. [they] were very cooperative, so the interview lasted for a long time.", + "correct_answer": "The stars", + "relational_word": "interview:persistent cooperative", + "is_associative": 0 + }, + { + "index": 180, + "is_switchable": 0, + "sentence": "The police arrested all of the gang members. [They] were trying to stop the drug trade in the neighborhood.", + "answer1": "The gang members", + "answer0": "The police", + "sentence_switched": "The gang members arrested all of the police. [they] were trying to stop the drug trade in the neighborhood.", + "correct_answer": "The police", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 181, + "is_switchable": 0, + "sentence": "The police arrested all of the gang members. [They] were trying to run the drug trade in the neighborhood.", + "answer1": "The gang members", + "answer0": "The police", + "sentence_switched": "The gang members arrested all of the police. [they] were trying to run the drug trade in the neighborhood.", + "correct_answer": "The gang members", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 182, + "is_switchable": 0, + "sentence": "I put the cake away in the refrigerator. [It] has a lot of butter in it.", + "answer1": "The refrigerator", + "answer0": "The cake", + "sentence_switched": "I put the refrigerator away in the cake. [it] has a lot of butter in it.", + "correct_answer": "The cake", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 183, + "is_switchable": 0, + "sentence": "I put the cake away in the refrigerator. [It] has a lot of leftovers in it.", + "answer1": "The refrigerator", + "answer0": "The cake", + "sentence_switched": "I put the refrigerator away in the cake. [it] has a lot of leftovers in it.", + "correct_answer": "The refrigerator", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 184, + "is_switchable": 0, + "sentence": "Sam broke both his ankles and he's walking with crutches. But a month or so from now [they] should be better.", + "answer1": "The crutches", + "answer0": "The ankles", + "sentence_switched": "Sam broke both his crutches and he's walking with ankles. but a month or so from now [they] should be better.", + "correct_answer": "The ankles", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 185, + "is_switchable": 0, + "sentence": "Sam broke both his ankles and he's walking with crutches. But a month or so from now [they] should be unnecessary.", + "answer1": "The crutches", + "answer0": "The ankles", + "sentence_switched": "Sam broke both his crutches and he's walking with ankles. but a month or so from now [they] should be unnecessary.", + "correct_answer": "The crutches", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 186, + "is_switchable": 0, + "sentence": "When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the minority.", + "answer1": "The opponents", + "answer0": "The sponsors", + "sentence_switched": "When the opponents of the bill got to the town hall, they were surprised to find that the room was full of sponsors. [they] were very much in the minority.", + "correct_answer": "The sponsors", + "relational_word": "be full of:minority/majority", + "is_associative": 0 + }, + { + "index": 187, + "is_switchable": 0, + "sentence": "When the sponsors of the bill got to the town hall, they were surprised to find that the room was full of opponents. [They] were very much in the majority.", + "answer1": "The opponents", + "answer0": "The sponsors", + "sentence_switched": "When the opponents of the bill got to the town hall, they were surprised to find that the room was full of sponsors. [they] were very much in the majority.", + "correct_answer": "The opponents", + "relational_word": "be full of:minority/majority", + "is_associative": 0 + }, + { + "index": 188, + "is_switchable": 1, + "sentence": "Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make more of [them] .", + "answer1": "The chocolate chip cookies", + "answer0": "The oatmeal cookies", + "sentence_switched": "Everyone really loved the chocolate chip cookies; only a few people liked the oatmeal cookies. next time, we should make more of [them] .", + "correct_answer": "The oatmeal cookies", + "relational_word": "like over:more/fewer", + "is_associative": 0 + }, + { + "index": 189, + "is_switchable": 1, + "sentence": "Everyone really loved the oatmeal cookies; only a few people liked the chocolate chip cookies. Next time, we should make fewer of [them] .", + "answer1": "The chocolate chip cookies", + "answer0": "The oatmeal cookies", + "sentence_switched": "Everyone really loved the chocolate chip cookies; only a few people liked the oatmeal cookies. next time, we should make fewer of [them] .", + "correct_answer": "The chocolate chip cookies", + "relational_word": "like over:more/fewer", + "is_associative": 0 + }, + { + "index": 190, + "is_switchable": 0, + "sentence": "We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply not enough of [them] .", + "answer1": "chairs", + "answer0": "copies of the newsletter", + "sentence_switched": "We had hoped to place chairs on all the copies of the newsletter in the auditorium, but there were simply not enough of [them] .", + "correct_answer": "copies of the newsletter", + "relational_word": "place on all:not enough/too many", + "is_associative": 0 + }, + { + "index": 191, + "is_switchable": 0, + "sentence": "We had hoped to place copies of our newsletter on all the chairs in the auditorium, but there were simply too many of [them] .", + "answer1": "chairs", + "answer0": "copies of the newsletter", + "sentence_switched": "We had hoped to place chairs on all the copies of the newsletter in the auditorium, but there were simply too many of [them] .", + "correct_answer": "chairs", + "relational_word": "place on all:not enough/too many", + "is_associative": 0 + }, + { + "index": 192, + "is_switchable": 0, + "sentence": "I stuck a pin through a carrot. When I pulled the pin out, [it] left a hole.", + "answer1": "The carrot", + "answer0": "The pin", + "sentence_switched": "I stuck a carrot through a pin. when i pulled the carrot out, [it] left a hole.", + "correct_answer": "The pin", + "relational_word": "stick:leave have", + "is_associative": 1 + }, + { + "index": 193, + "is_switchable": 0, + "sentence": "I stuck a pin through a carrot. When I pulled the pin out, [it] had a hole.", + "answer1": "The carrot", + "answer0": "The pin", + "sentence_switched": "I stuck a carrot through a pin. when i pulled the carrot out, [it] had a hole.", + "correct_answer": "The carrot", + "relational_word": "stick:leave have", + "is_associative": 2 + }, + { + "index": 194, + "is_switchable": 0, + "sentence": "I couldn't find a spoon, so I tried using a pen to stir my coffee. But that turned out to be a bad idea, because [it] got full of coffee.", + "answer1": "The coffee", + "answer0": "The pen", + "sentence_switched": "I couldn't find a spoon, so i tried using a coffee to stir my pen. but that turned out to be a bad idea, because [it] got full of pen.", + "correct_answer": "The pen", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 195, + "is_switchable": 0, + "sentence": "I couldn't find a spoon, so I tried using a pen to stir my coffee. But that turned out to be a bad idea, because [it] got full of ink.", + "answer1": "The coffee", + "answer0": "The pen", + "sentence_switched": "I couldn't find a spoon, so i tried using a coffee to stir my pen. but that turned out to be a bad idea, because [it] got full of ink.", + "correct_answer": "The coffee", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 196, + "is_switchable": 1, + "sentence": "Steve follows Fred's example in everything. [He] admires him hugely.", + "answer1": "Fred", + "answer0": "Steve", + "sentence_switched": "Fred follows steve's example in everything. [he] admires him hugely.", + "correct_answer": "Steve", + "relational_word": "follow:admire/influence", + "is_associative": 2 + }, + { + "index": 197, + "is_switchable": 1, + "sentence": "Steve follows Fred's example in everything. [He] influences him hugely.", + "answer1": "Fred", + "answer0": "Steve", + "sentence_switched": "Fred follows steve's example in everything. [he] influences him hugely.", + "correct_answer": "Fred", + "relational_word": "follow:admire/influence", + "is_associative": 2 + }, + { + "index": 198, + "is_switchable": 0, + "sentence": "The table won't fit through the doorway because [it] is too wide.", + "answer1": "The doorway", + "answer0": "The table", + "sentence_switched": "The doorway won't fit through the table because [it] is too wide.", + "correct_answer": "The table", + "relational_word": "fit through:wide/narrow", + "is_associative": 0 + }, + { + "index": 199, + "is_switchable": 0, + "sentence": "The table won't fit through the doorway because [it] is too narrow.", + "answer1": "The doorway", + "answer0": "The table", + "sentence_switched": "The doorway won't fit through the table because [it] is too narrow.", + "correct_answer": "The doorway", + "relational_word": "fit through:wide/narrow", + "is_associative": 0 + }, + { + "index": 200, + "is_switchable": 1, + "sentence": "Grace was happy to trade me her sweater for my jacket. She thinks [it] looks dowdy on her.", + "answer1": "The jacket", + "answer0": "The sweater", + "sentence_switched": "Grace was happy to trade me her jacket for my sweater. she thinks [it] looks dowdy on her.", + "correct_answer": "The sweater", + "relational_word": "trade:dowdy/great", + "is_associative": 0 + }, + { + "index": 201, + "is_switchable": 1, + "sentence": "Grace was happy to trade me her sweater for my jacket. She thinks [it] looks great on her.", + "answer1": "The jacket", + "answer0": "The sweater", + "sentence_switched": "Grace was happy to trade me her jacket for my sweater. she thinks [it] looks great on her.", + "correct_answer": "The jacket", + "relational_word": "trade:dowdy/great", + "is_associative": 0 + }, + { + "index": 202, + "is_switchable": 1, + "sentence": "John hired Bill to take care of [him] .", + "answer1": "Bill", + "answer0": "John", + "sentence_switched": "Bill hired john to take care of [him] .", + "correct_answer": "John", + "relational_word": "hire/hire oneself to:take care of", + "is_associative": 0 + }, + { + "index": 203, + "is_switchable": 1, + "sentence": "John hired himself out to Bill to take care of [him] .", + "answer1": "Bill", + "answer0": "John", + "sentence_switched": "Bill hired himself out to john to take care of [him] .", + "correct_answer": "Bill", + "relational_word": "hire/hire oneself to:take care of", + "is_associative": 0 + }, + { + "index": 204, + "is_switchable": 1, + "sentence": "John promised Bill to leave, so an hour later [he] left.", + "answer1": "Bill", + "answer0": "John", + "sentence_switched": "Bill promised john to leave, so an hour later [he] left.", + "correct_answer": "John", + "relational_word": "promise/order", + "is_associative": 0 + }, + { + "index": 205, + "is_switchable": 1, + "sentence": "John ordered Bill to leave, so an hour later [he] left.", + "answer1": "Bill", + "answer0": "John", + "sentence_switched": "Bill ordered john to leave, so an hour later [he] left.", + "correct_answer": "Bill", + "relational_word": "promise/order", + "is_associative": 0 + }, + { + "index": 206, + "is_switchable": 1, + "sentence": "Sam Goodman's biography of the Spartan general Xenophanes conveys a vivid sense of the difficulties [he] faced in his research.", + "answer1": "Xenophanes", + "answer0": "Goodman", + "sentence_switched": "Sam xenophanes's biography of the spartan general goodman conveys a vivid sense of the difficulties [he] faced in his research.", + "correct_answer": "Goodman", + "relational_word": "none", + "is_associative": 2 + }, + { + "index": 207, + "is_switchable": 1, + "sentence": "Sam Goodman's biography of the Spartan general Xenophanes conveys a vivid sense of the difficulties [he] faced in his childhood.", + "answer1": "Xenophanes", + "answer0": "Goodman", + "sentence_switched": "Sam xenophanes's biography of the spartan general goodman conveys a vivid sense of the difficulties [he] faced in his childhood.", + "correct_answer": "Xenophanes", + "relational_word": "none", + "is_associative": 2 + }, + { + "index": 208, + "is_switchable": 0, + "sentence": "Emma's mother had died long ago, and [her] education had been managed by an excellent woman as governess.", + "answer1": "Emma's mother", + "answer0": "Emma", + "sentence_switched": "Emma had died long ago, and [her] education had been managed by an excellent woman as governess.", + "correct_answer": "Emma", + "relational_word": "mother:education place", + "is_associative": 0 + }, + { + "index": 209, + "is_switchable": 0, + "sentence": "Emma's mother had died long ago, and [her] place had been taken by an excellent woman as governess.", + "answer1": "Emma's mother", + "answer0": "Emma", + "sentence_switched": "Emma had died long ago, and [her] place had been taken by an excellent woman as governess.", + "correct_answer": "Emma's mother", + "relational_word": "mother:education place", + "is_associative": 0 + }, + { + "index": 210, + "is_switchable": 1, + "sentence": "Jane knocked on Susan's door but [she] did not get an answer.", + "answer1": "Susan", + "answer0": "Jane", + "sentence_switched": "Susan knocked on jane's door but [she] did not get an answer.", + "correct_answer": "Jane", + "relational_word": "knock:get an answer/answer", + "is_associative": 0 + }, + { + "index": 211, + "is_switchable": 1, + "sentence": "Jane knocked on Susan's door but [she] did not answer.", + "answer1": "Susan", + "answer0": "Jane", + "sentence_switched": "Susan knocked on jane's door but [she] did not answer.", + "correct_answer": "Susan", + "relational_word": "knock:get an answer/answer", + "is_associative": 0 + }, + { + "index": 212, + "is_switchable": 0, + "sentence": "Joe paid the detective after [he] received the final report on the case.", + "answer1": "the detective", + "answer0": "Joe", + "sentence_switched": "The detective paid joe after [he] received the final report on the case.", + "correct_answer": "Joe", + "relational_word": "pay:receive/deliver", + "is_associative": 0 + }, + { + "index": 213, + "is_switchable": 0, + "sentence": "Joe paid the detective after [he] delivered the final report on the case.", + "answer1": "the detective", + "answer0": "Joe", + "sentence_switched": "The detective paid joe after [he] delivered the final report on the case.", + "correct_answer": "the detective", + "relational_word": "pay:receive/deliver", + "is_associative": 0 + }, + { + "index": 214, + "is_switchable": 1, + "sentence": "Beth didn't get angry with Sally, who had cut her off, because [she] stopped and counted to ten.", + "answer1": "Sally", + "answer0": "Beth", + "sentence_switched": "Sally didn't get angry with beth, who had cut her off, because [she] stopped and counted to ten.", + "correct_answer": "Beth", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 215, + "is_switchable": 1, + "sentence": "Beth didn't get angry with Sally, who had cut her off, because [she] stopped and apologized.", + "answer1": "Sally", + "answer0": "Beth", + "sentence_switched": "Sally didn't get angry with beth, who had cut her off, because [she] stopped and apologized.", + "correct_answer": "Sally", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 216, + "is_switchable": 0, + "sentence": "Jim signaled the barman and gestured toward [his] empty glass", + "answer1": "The barman", + "answer0": "Jim", + "sentence_switched": "The barman signaled jim and gestured toward [his] empty glass", + "correct_answer": "Jim", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 217, + "is_switchable": 0, + "sentence": "Jim signaled the barman and gestured toward [his] bathroom key.", + "answer1": "The barman", + "answer0": "Jim", + "sentence_switched": "The barman signaled jim and gestured toward [his] bathroom key.", + "correct_answer": "The barman", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 218, + "is_switchable": 1, + "sentence": "Dan took the rear seat while Bill claimed the front because [his] \"Dibs!\" was slow.", + "answer1": "Bill", + "answer0": "Dan", + "sentence_switched": "Bill took the rear seat while dan claimed the front because [his] \"dibs!\" was slow.", + "correct_answer": "Dan", + "relational_word": "?", + "is_associative": 0 + }, + { + "index": 219, + "is_switchable": 1, + "sentence": "Dan took the rear seat while Bill claimed the front because [his] \"Dibs!\" was quicker.", + "answer1": "Bill", + "answer0": "Dan", + "sentence_switched": "Bill took the rear seat while dan claimed the front because [his] \"dibs!\" was quicker.", + "correct_answer": "Bill", + "relational_word": "?", + "is_associative": 0 + }, + { + "index": 220, + "is_switchable": 1, + "sentence": "Tom said \"Check\" to Ralph as he moved [his] bishop.", + "answer1": "Ralph", + "answer0": "Tom", + "sentence_switched": "Ralph said \"check\" to tom as he moved [his] bishop.", + "correct_answer": "Tom", + "relational_word": "say check:move take", + "is_associative": 0 + }, + { + "index": 221, + "is_switchable": 1, + "sentence": "Tom said \"Check\" to Ralph as he took [his] bishop.", + "answer1": "Ralph", + "answer0": "Tom", + "sentence_switched": "Ralph said \"check\" to tom as he took [his] bishop.", + "correct_answer": "Ralph", + "relational_word": "say check:move take", + "is_associative": 0 + }, + { + "index": 222, + "is_switchable": 1, + "sentence": "As Andrea in the crop duster passed over Susan, [she] could see the landing strip.", + "answer1": "Susan", + "answer0": "Andrea", + "sentence_switched": "As susan in the crop duster passed over andrea, [she] could see the landing strip.", + "correct_answer": "Andrea", + "relational_word": "?", + "is_associative": 0 + }, + { + "index": 223, + "is_switchable": 1, + "sentence": "As Andrea in the crop duster passed over Susan, [she] could see the landing gear.", + "answer1": "Susan", + "answer0": "Andrea", + "sentence_switched": "As susan in the crop duster passed over andrea, [she] could see the landing gear.", + "correct_answer": "Susan", + "relational_word": "?", + "is_associative": 0 + }, + { + "index": 224, + "is_switchable": 1, + "sentence": "Tom gave Ralph a lift to school so [he] wouldn't have to drive alone.", + "answer1": "Ralph", + "answer0": "Tom", + "sentence_switched": "Ralph gave tom a lift to school so [he] wouldn't have to drive alone.", + "correct_answer": "Tom", + "relational_word": "give a life:drive alone walk", + "is_associative": 0 + }, + { + "index": 225, + "is_switchable": 1, + "sentence": "Tom gave Ralph a lift to school so [he] wouldn't have to walk.", + "answer1": "Ralph", + "answer0": "Tom", + "sentence_switched": "Ralph gave tom a lift to school so [he] wouldn't have to walk.", + "correct_answer": "Ralph", + "relational_word": "give a life:drive alone walk", + "is_associative": 0 + }, + { + "index": 226, + "is_switchable": 1, + "sentence": "Bill passed the half-empty plate to John because [he] was full.", + "answer1": "John", + "answer0": "Bill", + "sentence_switched": "John passed the half-empty plate to bill because [he] was full.", + "correct_answer": "Bill", + "relational_word": "pass the plate:full/hungry", + "is_associative": 0 + }, + { + "index": 227, + "is_switchable": 1, + "sentence": "Bill passed the half-empty plate to John because [he] was hungry.", + "answer1": "John", + "answer0": "Bill", + "sentence_switched": "John passed the half-empty plate to bill because [he] was hungry.", + "correct_answer": "John", + "relational_word": "pass the plate:full/hungry", + "is_associative": 0 + }, + { + "index": 228, + "is_switchable": 1, + "sentence": "Bill passed the gameboy to John because [his] turn was over.", + "answer1": "John", + "answer0": "Bill", + "sentence_switched": "John passed the gameboy to bill because [his] turn was over.", + "correct_answer": "Bill", + "relational_word": "pass:turn over turn next", + "is_associative": 0 + }, + { + "index": 229, + "is_switchable": 1, + "sentence": "Bill passed the gameboy to John because [his] turn was next.", + "answer1": "John", + "answer0": "Bill", + "sentence_switched": "John passed the gameboy to bill because [his] turn was next.", + "correct_answer": "John", + "relational_word": "pass:turn over turn next", + "is_associative": 0 + }, + { + "index": 230, + "is_switchable": 1, + "sentence": "The man lifted the boy onto [his] shoulders.", + "answer1": "The boy", + "answer0": "The man", + "sentence_switched": "The boy lifted the man onto [his] shoulders.", + "correct_answer": "The man", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 231, + "is_switchable": 1, + "sentence": "The man lifted the boy onto [his] bunk bed.", + "answer1": "The boy", + "answer0": "The man", + "sentence_switched": "The boy lifted the man onto [his] bunk bed.", + "correct_answer": "The boy", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 232, + "is_switchable": 1, + "sentence": "Stretching [her] back, the woman smiled at the girl.", + "answer1": "The girl", + "answer0": "The woman", + "sentence_switched": "Stretching [her] back, the girl smiled at the woman.", + "correct_answer": "The woman", + "relational_word": "stretch pat", + "is_associative": 0 + }, + { + "index": 233, + "is_switchable": 1, + "sentence": "Patting [her] back, the woman smiled at the girl.", + "answer1": "The girl", + "answer0": "The woman", + "sentence_switched": "Patting [her] back, the girl smiled at the woman.", + "correct_answer": "The girl", + "relational_word": "stretch pat", + "is_associative": 0 + }, + { + "index": 234, + "is_switchable": 1, + "sentence": "Billy cried because Toby wouldn't accept [his] toy.", + "answer1": "Toby", + "answer0": "Billy", + "sentence_switched": "Toby cried because billy wouldn't accept [his] toy.", + "correct_answer": "Billy", + "relational_word": "accept share", + "is_associative": 0 + }, + { + "index": 235, + "is_switchable": 1, + "sentence": "Billy cried because Toby wouldn't share [his] toy.", + "answer1": "Toby", + "answer0": "Billy", + "sentence_switched": "Toby cried because billy wouldn't share [his] toy.", + "correct_answer": "Toby", + "relational_word": "accept share", + "is_associative": 0 + }, + { + "index": 236, + "is_switchable": 1, + "sentence": "Lily spoke to Donna, breaking [her] silence.", + "answer1": "Donna", + "answer0": "Lily", + "sentence_switched": "Donna spoke to lily, breaking [her] silence.", + "correct_answer": "Lily", + "relational_word": "speak:break silence break concentration", + "is_associative": 0 + }, + { + "index": 237, + "is_switchable": 1, + "sentence": "Lily spoke to Donna, breaking [her] concentration.", + "answer1": "Donna", + "answer0": "Lily", + "sentence_switched": "Donna spoke to lily, breaking [her] concentration.", + "correct_answer": "Donna", + "relational_word": "speak:break silence break concentration", + "is_associative": 0 + }, + { + "index": 238, + "is_switchable": 1, + "sentence": "When Tommy dropped his ice cream, Timmy giggled, so father gave [him] a sympathetic look.", + "answer1": "Timmy", + "answer0": "Tommy", + "sentence_switched": "When timmy dropped his ice cream, tommy giggled, so father gave [him] a sympathetic look.", + "correct_answer": "Tommy", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 239, + "is_switchable": 1, + "sentence": "When Tommy dropped his ice cream, Timmy giggled, so father gave [him] a stern look.", + "answer1": "Timmy", + "answer0": "Tommy", + "sentence_switched": "When timmy dropped his ice cream, tommy giggled, so father gave [him] a stern look.", + "correct_answer": "Timmy", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 240, + "is_switchable": 1, + "sentence": "As Ollie carried Tommy up the long winding steps, [his] legs ached.", + "answer1": "Tommy", + "answer0": "Ollie", + "sentence_switched": "As tommy carried ollie up the long winding steps, [his] legs ached.", + "correct_answer": "Ollie", + "relational_word": "carry:leg ache leg dangle", + "is_associative": 0 + }, + { + "index": 241, + "is_switchable": 1, + "sentence": "As Ollie carried Tommy up the long winding steps, [his] legs dangled.", + "answer1": "Tommy", + "answer0": "Ollie", + "sentence_switched": "As tommy carried ollie up the long winding steps, [his] legs dangled.", + "correct_answer": "Tommy", + "relational_word": "carry:leg ache leg dangle", + "is_associative": 0 + }, + { + "index": 242, + "is_switchable": 0, + "sentence": "The father carried the sleeping boy in [his] arms", + "answer1": "The boy", + "answer0": "The father", + "sentence_switched": "The boy carried the sleeping father in [his] arms", + "correct_answer": "The father", + "relational_word": "carry:in arms in bassinet", + "is_associative": 0 + }, + { + "index": 243, + "is_switchable": 0, + "sentence": "The father carried the sleeping boy in [his] bassinet.", + "answer1": "The boy", + "answer0": "The father", + "sentence_switched": "The boy carried the sleeping father in [his] bassinet.", + "correct_answer": "The boy", + "relational_word": "carry:in arms in bassinet", + "is_associative": 0 + }, + { + "index": 244, + "is_switchable": 1, + "sentence": "The woman held the girl against [her] chest", + "answer1": "The girl", + "answer0": "The woman", + "sentence_switched": "The girl held the woman against [her] chest", + "correct_answer": "The woman", + "relational_word": "hold:against chest against will", + "is_associative": 0 + }, + { + "index": 245, + "is_switchable": 1, + "sentence": "The woman held the girl against [her] will.", + "answer1": "The girl", + "answer0": "The woman", + "sentence_switched": "The girl held the woman against [her] will.", + "correct_answer": "The girl", + "relational_word": "hold:against chest against will", + "is_associative": 0 + }, + { + "index": 246, + "is_switchable": 0, + "sentence": "Pam's parents came home and found her having sex with her boyfriend, Paul. [They] were furious about it.", + "answer1": "Pam and Paul", + "answer0": "Pam's parents", + "sentence_switched": "Pam and paul came home and found Pam's parents having sex. [they] were furious about it.", + "correct_answer": "Pam's parents", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 247, + "is_switchable": 0, + "sentence": "Pam's parents came home and found her having sex with her boyfriend, Paul. [They] were embarrassed about it.", + "answer1": "Pam and Paul", + "answer0": "Pam's parents", + "sentence_switched": "Pam and paul came home and found Pam's parents having sex. [they] were embarrassed about it.", + "correct_answer": "Pam and Paul", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 248, + "is_switchable": 0, + "sentence": "Dr. Adams informed Kate that [she] had retired and presented several options for future treatment.", + "answer1": "Kate", + "answer0": "Dr. Adams", + "sentence_switched": "Kate informed dr. adams that [she] had retired and presented several options for future treatment.", + "correct_answer": "Dr. Adams", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 249, + "is_switchable": 0, + "sentence": "Dr. Adams informed Kate that [she] had cancer and presented several options for future treatment.", + "answer1": "Kate", + "answer0": "Dr. Adams", + "sentence_switched": "Kate informed dr. adams that [she] had cancer and presented several options for future treatment.", + "correct_answer": "Kate", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 250, + "is_switchable": 1, + "sentence": "Dan had to stop Bill from toying with the injured bird. [He] is very compassionate.", + "answer1": "Bill", + "answer0": "Dan", + "sentence_switched": "Bill had to stop dan from toying with the injured bird. [he] is very compassionate.", + "correct_answer": "Dan", + "relational_word": "stop", + "is_associative": 0 + }, + { + "index": 251, + "is_switchable": 1, + "sentence": "Dan had to stop Bill from toying with the injured bird. [He] is very cruel.", + "answer1": "Bill", + "answer0": "Dan", + "sentence_switched": "Bill had to stop dan from toying with the injured bird. [he] is very cruel.", + "correct_answer": "Bill", + "relational_word": "stop", + "is_associative": 0 + }, + { + "index": 252, + "is_switchable": 1, + "sentence": "George got free tickets to the play, but he gave them to Eric, even though [he] was particularly eager to see it.", + "answer1": "Eric", + "answer0": "George", + "sentence_switched": "Eric got free tickets to the play, but he gave them to george, even though [he] was particularly eager to see it.", + "correct_answer": "George", + "relational_word": "even though/because/not", + "is_associative": 0 + }, + { + "index": 253, + "is_switchable": 1, + "sentence": "George got free tickets to the play, but he gave them to Eric, because [he] was particularly eager to see it.", + "answer1": "Eric", + "answer0": "George", + "sentence_switched": "Eric got free tickets to the play, but he gave them to george, because [he] was particularly eager to see it.", + "correct_answer": "Eric", + "relational_word": "even though/because/not", + "is_associative": 0 + }, + { + "index": 254, + "is_switchable": 1, + "sentence": "George got free tickets to the play, but he gave them to Eric, because [he] was not particularly eager to see it.", + "answer1": "Eric", + "answer0": "George", + "sentence_switched": "Eric got free tickets to the play, but he gave them to george, because [he] was not particularly eager to see it.", + "correct_answer": "George", + "relational_word": "even though/because/not", + "is_associative": 0 + }, + { + "index": 255, + "is_switchable": 1, + "sentence": "Jane gave Joan candy because [she] wasn't hungry.", + "answer1": "Joan", + "answer0": "Jane", + "sentence_switched": "Joan gave jane candy because [she] wasn't hungry.", + "correct_answer": "Jane", + "relational_word": "give:not hungry/hungry", + "is_associative": 0 + }, + { + "index": 256, + "is_switchable": 1, + "sentence": "Jane gave Joan candy because [she] was hungry.", + "answer1": "Joan", + "answer0": "Jane", + "sentence_switched": "Joan gave jane candy because [she] was hungry.", + "correct_answer": "Joan", + "relational_word": "give:not hungry/hungry", + "is_associative": 0 + }, + { + "index": 257, + "is_switchable": 0, + "sentence": "I tried to paint a picture of an orchard, with lemons in the lemon trees, but [they] came out looking more like light bulbs.", + "answer1": "lemon trees", + "answer0": "lemons", + "sentence_switched": "I tried to paint a picture of an orchard, with lemon trees in the lemons, but [they] came out looking more like light bulbs.", + "correct_answer": "lemons", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 258, + "is_switchable": 0, + "sentence": "I tried to paint a picture of an orchard, with lemons in the lemon trees, but [they] came out looking more like telephone poles.", + "answer1": "lemon trees", + "answer0": "lemons", + "sentence_switched": "I tried to paint a picture of an orchard, with lemon trees in the lemons, but [they] came out looking more like telephone poles.", + "correct_answer": "lemon trees", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 259, + "is_switchable": 1, + "sentence": "James asked Robert for a favor but [he] was refused.", + "answer1": "Robert", + "answer0": "James", + "sentence_switched": "Robert asked james for a favor but [he] was refused.", + "correct_answer": "James", + "relational_word": "ask for a favor:refuse/be refused`", + "is_associative": 0 + }, + { + "index": 260, + "is_switchable": 1, + "sentence": "James asked Robert for a favor but [he] refused.", + "answer1": "Robert", + "answer0": "James", + "sentence_switched": "Robert asked james for a favor but [he] refused.", + "correct_answer": "Robert", + "relational_word": "ask for a favor:refuse/be refused`", + "is_associative": 0 + }, + { + "index": 261, + "is_switchable": 1, + "sentence": "Kirilov ceded the presidency to Shatov because [he] was less popular.", + "answer1": "Shatov", + "answer0": "Kirilov", + "sentence_switched": "Shatov ceded the presidency to kirilov because [he] was less popular.", + "correct_answer": "Kirilov", + "relational_word": "cede:less popular/more popular", + "is_associative": 0 + }, + { + "index": 262, + "is_switchable": 1, + "sentence": "Kirilov ceded the presidency to Shatov because [he] was more popular.", + "answer1": "Shatov", + "answer0": "Kirilov", + "sentence_switched": "Shatov ceded the presidency to kirilov because [he] was more popular.", + "correct_answer": "Shatov", + "relational_word": "cede:less popular/more popular", + "is_associative": 0 + }, + { + "index": 263, + "is_switchable": 1, + "sentence": "Emma did not pass the ball to Janie although [she] saw that she was open.", + "answer1": "Janie", + "answer0": "Emma", + "sentence_switched": "Janie did not pass the ball to emma although [she] saw that she was open.", + "correct_answer": "Emma", + "relational_word": "not pass although:see open/open", + "is_associative": 0 + }, + { + "index": 264, + "is_switchable": 1, + "sentence": "Emma did not pass the ball to Janie although [she] was open.", + "answer1": "Janie", + "answer0": "Emma", + "sentence_switched": "Janie did not pass the ball to emma although [she] was open.", + "correct_answer": "Janie", + "relational_word": "not pass although:see open/open", + "is_associative": 0 + }, + { + "index": 265, + "is_switchable": 0, + "sentence": "I put the butterfly wing on the table and [it] broke.", + "answer1": "The table", + "answer0": "The butterfly wing", + "sentence_switched": "I put the table on the butterfly wing and [it] broke.", + "correct_answer": "The butterfly wing", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 266, + "is_switchable": 0, + "sentence": "I put the heavy book on the table and [it] broke.", + "answer1": "The table", + "answer0": "The heavy book", + "sentence_switched": "I put the table on the heavy book and [it] broke.", + "correct_answer": "The table", + "relational_word": "none", + "is_associative": 1 + }, + { + "index": 267, + "is_switchable": 0, + "sentence": "Madonna fired her trainer because [she] couldn't stand her boyfriend.", + "answer1": "The trainer", + "answer0": "Madonna", + "sentence_switched": "The trainer fired madonna because [she] couldn't stand her boyfriend.", + "correct_answer": "Madonna", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 268, + "is_switchable": 0, + "sentence": "Madonna fired her trainer because [she] slept with her boyfriend.", + "answer1": "The trainer", + "answer0": "Madonna", + "sentence_switched": "The trainer fired madonna because [she] slept with her boyfriend.", + "correct_answer": "The trainer", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 269, + "is_switchable": 0, + "sentence": "Madonna fired her trainer because she slept with [her] boyfriend.", + "answer1": "The trainer", + "answer0": "Madonna", + "sentence_switched": "The trainer fired madonna because she slept with [her] boyfriend.", + "correct_answer": "Madonna", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 270, + "is_switchable": 0, + "sentence": "Madonna fired her trainer because she couldn't stand [her] boyfriend.", + "answer1": "The trainer", + "answer0": "Madonna", + "sentence_switched": "The trainer fired madonna because she couldn't stand [her] boyfriend.", + "correct_answer": "The trainer", + "relational_word": "none", + "is_associative": 0 + }, + { + "index": 271, + "is_switchable": 1, + "sentence": "Carol believed that Rebecca suspected that [she] had stolen the watch.", + "answer1": "Rebecca", + "answer0": "Carol", + "sentence_switched": "Rebecca believed that carol suspected that [she] had stolen the watch.", + "correct_answer": "Carol", + "relational_word": "suspect regret", + "is_associative": 2 + }, + { + "index": 272, + "is_switchable": 1, + "sentence": "Carol believed that Rebecca regretted that [she] had stolen the watch.", + "answer1": "Rebecca", + "answer0": "Carol", + "sentence_switched": "Rebecca believed that carol regretted that [she] had stolen the watch.", + "correct_answer": "Rebecca", + "relational_word": "suspect regret", + "is_associative": 2 + } +] diff --git a/mnist/processed/test.pt b/mnist/processed/test.pt new file mode 100644 index 0000000000000000000000000000000000000000..eb8ca2281f459df6e21995e56b04fa079fc276c2 GIT binary patch literal 7920431 zcmeEv2VfS(x9<=Vdg!4ektRg}2~|KMO`0@m3W!P<1Oov@5F)*+^j@VZy@PZJNPy5g z1VT$f2bJ&3I`wR=n{6m0eg|1$}9M*rx(7*t%Rvuk5gKxm#zl2VkQ_0b2WMH3UC?^3dpPm-Rqm- z0iG?c1ALY#qRHn%RS*HS)twTWe{t#M!BZSrvQ8R=b zObB(WSFcv9TAgYEIs1EpHPFqa*_{~R-73?>fZWtvo(=(dCk5n#H1?qRDu`buhH0Ag z=u?Hp_0@76_pew`zpOY-_X)VTVBKx1!AdnA+I;AmN8}+$q(32K28*e5zDBtlH*Q?d zCz^caz;wpP_)>leRw&Z-u>?Xtl9;z8SiLmzz63%O$wB(|i(K~esqcySlsAU#kwL98 zV(Ut<0{6%|36wd6+$kf$$`kUD1S<7_49g_JCKAH^IE+|>csVwbkUJF^S(Y40LS?@V zEB3!a2mbJz%Qe4;D6EZGb+_Mef)u(oYa7PjJFpt*__A*2da z9D1mfnkSdA2venpr{G{(@Csb(6#T5AfKORL82>DRwk6{gxx`q}C>$w!lY%jxDb_-5 zQt=^)#R6yKYLhVDEKx(L7}HD>I>0Iy1m}gk3KlFkfByVARt5p4x(z?A)2UIWjV(Hd zKGITBHVz-od~72|jT%K&mW&!z(bRZN7&%a$d~J}9XBVY|gJ&=%#~GC4`A*_|2hU)1 zB(fJ9p|fE*4Ke%Em)x|oOn*;u!ldoQ3~3>W>b^Li%`R^EN4wSGr(P?TI%CJI82Fxb;a}MhXJlj;UWd(F z2IkWcV)c}(bWQAMNXfkhh7I*;V0-QXwu^(%ZH!yAc#N@{IXr{{)U4G0%&}pR8(LmJ zJygc=cE3MM!^FRB^DP;hKWxs$-e&yY>8<`iPj|DDjtm(2OlQsAV8=X97})2R?PYya zWs)vFRPo^z--*6uG$)SQu?;CTb>aLj%3j*B=b>V# zO;St?8mo|EegPYm^@f=C%zn=3qZGo9qGF?Rx)Zn`e?6g?AsgxyHzg_HBA#U^N_K;3 zKHu#K4xv?w87mVqh_Q&|b8&Oh4$Ew4Io&B-&Y~KO%aFN!y8?d}i9=SK9v( z87QlC3p^sk`P*u_(VmdClKxuO5JFl=@~kHGrzH@YM2M~Mv?NcG)M}QGquwLr1;=1K zLkO9`csX(ni7CM`EKhxfgjqhGYD>sso@4pIr14=}OpPj`kjr+S;qOeyc!Rb-2au?O zcAnwiO3v{GgaJUC=n6S$`FJYxaVU-@hUDf##5SH z;43NyTZx-8K91}};;M5D#}(aNmKz)nDx8H0<26ZhAosju`itnuk8TezF5uv*j1te`{acq`2>z_TpfSS)d0i?F zU)&Eb@3SIK&9>wi%J$_Q;`-BRwli)A3VSd)Vl>4p{jGQjc%m?wZ1D`LGrm}%)4Gfo zB)XEpGN1WlXgv3qy@?l^Jdmt8ogPJUi>#S&aljXA@8riqXKQh!6hdWcDTlZLp z$Cv@xiE2r>yq#zIhmqf9)j0CGO{$oJcH#{;Unn||=*%3$K<=pe8t2&!rL!EtX6F3GdIH5VJ8}le;!|0|3%_3jJb6&uZ zg}&$w4@O=ivuwu`ayYmuBiBS6nMVwv?l?@=-a+&67Ks-9M3Tq8D?w?mHe*h=k)0}4 z>SQ-QT~9Q9MA&*&nQPv@pJCw2XovO2&0(Zgbz2=6Lf_%Eg?_(cEW)aT)*tXg%oXTm zUr$Y@Z?$E$CRupbGkh;dprx{U%qt{=Ui1I^IZ(FF)IU%6EGJNWXJHhbmLus`7T79+ zDvM$Xd9-d~#u@VDVSi3_5$GJ8l?|aI6@rt)tVS0?*~VZJ8KnN;mn$~|yG$ddc>;M{ zi`vQT8~8AuxK=Y2TB}$R_Vu(KJ2qa`5nJbMrHey5rXC!m)Op1oz zh>)b`9qs4>U|&1BW5+J|>21|*<>w^azXUW4Jc1P0=6sxH9b%5jOiCxMIIJPlGq^{V zaoBOv&-BkH*Gw9S(sy6JXZkzx*ckGg2_YMH{bhYQcG`k$dO7dNu`daWttOWkD;(w* z!=;_Y{MM2ao{V0jIMZh4_2f})214liHLWXMW#L(3pVGNb&h4V^IU!L?ZMAFr^Ymv0 zr$l|n8Kj4{7lbD$N(>j_98bbQz_Zp9?26j@(Dj&|N*S!ohu=3yQ65c# z#?20eP0k7>0700_fyy)?GdXNOVC7$6y#kwgmaWKw@lZ4euc1od7N63d+TT;4_q+0k z<|&4mj}ak?6?m5Nz1p!llgLJ;*nJw8q9MvLZ`Ars8kan@AMd1ZbL%oC7vn@8LM1NY zlO5{T9e+x}*W0rZp>)xkFuaT5-%>$eE^oi-u`{MmuV7bt?f;MDz`MI({%B*_oUI+* zIIkv;)n94lA>7>_bZvNX+cs_5`_t%@#x|^Sq_UrWWyM02$ur$58q&#bOxk7v9g+HSUz7ID=lS~@iT^&5<-<@o!M;QJ+R`a_YG{Q!d7kuS9^vk zfjoopt#yO-IAi~L7{z}EnXl0_c(11wcE;B0JMFzzmOHUQ^qn|N|2QysuN5WGYq9{V zyaOxuDtjQWS`o@+n_>^_N*ku~rewHmqx5>kw$e;OjY>PnQnF zVO-1id*;gu#7a}v=mch9A<)GStnOn{Y}ey4{^e$|%lI2MI8-gd%HpRHwkCfMYz)IL z!5cU=Xh{Bwq1FM{DEgUND6qKi{n$wemG2g%2)YABx5tL|gCA;}V2ljqskKv?I<*$t zreh7i0(6k;h%^;PTrPhZ=yJJ&++Z>Yfu0l#a&OaJc>f7Z8c%m=_^a3vH)(f+`9pZJ zw1b)qqiX(=^!dw_B=WBm+i${k7*G#cUD1}RzOzC?Ff>3HG_wKVB{(r;R^JXz064!Z zAwoW7`h-QjAqBt3(iQ<4MY{R<`PsUKnkAnw8cY1UAT~bNAzgj@hJ+F9&~2bM?+bo& z6koNc-HK!1kSIUPXQK*Uix7mW3%wr_#h3J~a=~lPy3@oLVUx5I6(g^*tN^CXS!#14 z+a2hD7if|`ef#c>yvlViI=FDu!bQh6!|zV6&C>ehrr8e{EQr8Yk1iNry}B^JO~Ka$ zn*;u{pSaFDM<+m}NU(w*-h8fn!isBj!Sgt*SsqmK!WNG%))@2s zj;QDwMUM0tWUONxr5_M@fg-IujUy4 z#6c*_Jv^LpijIJhecgg7Q6iok>_2~LOn>Of&o z9-9$%NHoIOVbTzqC&%81!AE3m8!##TV!Pl(@rW^mxd{gwAv>M~&vWqpy^NMH;!Tp) zub)!1U445l^jC-R;7=M+P6d4U7K?lJnmk~@(4$9>Myf)|KeC`fzcX|wEPNudc?<^s z%vNRzA>(+S0A|O&#oqpSgs%G#O4}di8K))a8Cs7DAWflzw{mW0;dEy z>)PFTJp|U^ImT-ozk>@`rV)AX7{M{Ajb6!te1j+F=+bC{Rh6c zyga3bT!AG79ENh;OU4;#;Am3L*hgJ^?u8{>)SVbD7%wSOZd%JRUCU*qre8Zg2R3x$ z{fy5eY7FD!Nk8Jm%J0ycCVqnbG@t3ETo+P{Hw3sU_6l4EdkoThvTA6x0+M!mP z3{`n~pVLo~cf$y@P{8#g19$+TtoNc@E!_npWLVc{1oA-Hsa)B)b7wM1`HbOHGTW_} z!wXR&oW!4^PuAtu3YX#up;gMUe1`5NUu=s4iG2*(QVb*wERT(Hhi!57wn8`<6h}_kn+87P0C}lU_=Wwo zUkvT6{vQSd6lE5qTF@Sw73G58cQ>foK3i>Av6pD~rd>;XM(PbKhLiy5Dbmua?Vp82mj6St4LlR{qQ6VHODnf%cL>rQ^v? zNprq<7`ba9Rv=p0W`Ac5w6!9fj#A<2c(Wm9e-^sRkMy&6pxfyv ze%682dy4zAUXFg|+BJ>N8{YrI`Kmot=hd#jG>O`K=JcN8*u9@L&D!)gMd`!=;F*jU zsVwgs&WR~=24sm7`^u#)U3xbXJ14tVD2riy;f+&@($gLu%J)cF+^qd$<avxnOwz*TSV@=G)?lPfa;VGRkT)R|>?&z_c⪙ zoM$k;nXZ|duWskgGi?#xqz6|w90tv8F*dMGF4xey;lYeW7zoky>bmH2lS_nYB8CxN zVy2q(k}lPn4J)b6o@~-GC)k#rV9M4MI@`0av&*#!Vgi}dIXv8+MMKq;b?ywQu%#WM zRB|Rww#yZ4*V3X3sxxIj2WW2EGQ zwIR8M_O#}Fzm9=rys*{BGjZIu#?ltc+H6QNeTSMey)FGHl0~cyY z2>2;S#V_lweI9=bU(?|WpWDnFArMhS;v+*-v# zaSxl#JQ2pr5Q_8JuqXIz0hLuc7V}WnO~lwYT$K1)>RgZL&iNap@A#y|x{MID^F9;T=< zc6J=ScHljz_@orruFcOT!v=7rBy9dzt4 zuJSNRZ)0?IVDro+Ol?NL#OzIFVv2<7$bdVOs# zFE8gCVW|JppSN*NX%cQJ-KE$WX05+nsO`CQ`%7zyv`w35d2H0zN}P>jc|+Y`W87dX z-C$1?+|LSur)utV{l;?`-$?wJ@$uw;0=tHvm*7LOe1Br)bIZq5BmW}ie?opN4j;m6 zA2bpJj=@S{Ohjv}_o}O}VHzl*f+MR!T+j~)34t?SoUQWq3uvpl;xPpeapUD4Z>?L#QbPH7ic3;b^+*dC^#bQ`wn(M^^by8;_%;xLa<=<@et-wAqGsJ)x>DT zIYfM56@3E-S7S`TvVMopEUZXc<`rSRzNDG82KraO=Wqs=bMt1Hh$rEZomc z7u}M2#i(9%(&^R+W4Mw{-43-?iUp_LBmYEvar^e#y>Obdsa0U@PTH7nDrnFe)|=uq z=b8i!^j>7&i(n|By0BFB6Vt~MS%yGVABoa{N@*jK_qww3I$cI@LMs=lInWa4&!6wm zq{$x`hx<7|jqx6wd-R~J1kAh*w0V7VI32*)_aHY5&; z6)P=*#l#rjvQKSiF1cJgDJr6`w-ta!rj6;S{zCj} zrK#*9{z=mf74gE!Y0Y$7?w>b)JyU}uRrS3qU@5MquRW(`eZyPUahlFg=> z&Sa5E0|7fCs+#_N9M&e5+|OoUc`mS6ZrEmFeFxPDyWX}eA)Bo(C}3p_8|cGxx89j7Q`#J&G)u!1gC++@mj64GFPp}fIU&@^Acu?$bXQ8ex1 z9{i^?U&>jZnxO;Fe8GxxX|S;1%D)YwD5~K=Yam#h!I)u4Sc<4b+6JU_IL9ry+9&CX za_=q14ohCUb*nAw|EJPre>id*##Q44mH#<)CkfP$>CbJc>l&AVAI^Fg%EAHI)&cJM z5U&r&t;*-UqHV4;l)J^?P3ADkd=C3E<90PKLk`YG8g9~XsT;ekG5fyw{0vs`9ZL%} z#<2{+0G(|jg~A0r^f%sobHzSMdJfr3;8&<8NCWdm-z`pmyXsV}>V3IF7He@DW^LW$`KH4r_j_ zG%x&*^LgLC^u8?8Sq>@tWf)vUawCfj+^AqlV+ets9QzuR4Kkbliv0JhmxdkJvY2+R zVEff8CIkzYBk!NG1{OlUhL_S!=KTJ=)tRTfwyq!z z%G2>?`p>yETKk(d^szduRB%cRd2A~#Cab3l*E~$fso|^+&_2)hAm2Xw(q8WT-0_MA zkzPR&BxAqexAnY7d+$e^*{rGF+JyWupm|Oa^l#xcx?fV3)KXz&tgPy91bJ$W?C=(L z|6j1>ytwHDJ=sF?(y-5Trzyx2lOebzJj?LqI0{&8!^c102FM*2%{TZ=WvX|;^zj76 z>_eD_1Yl=nZ(89SB)OL%XnVq*P-%DtF3K^mDb*`-OOBzTF4qsXIQ)COtBe9okmOs= ziDXl1;xm(U5N+IGjiO{<7?@$lHtkmbGG-gdV(rS#RRNh&F01d#s!+O(o4B-z%xV`m z{XuT>Wvv_R*;UhogLo$Yjj~2^qt={iEjJga^ue6yYtR2%4ix%gH*wwj$~kygBIp{l zz>;4Q$40o~3xIk5+@WU0Z;&r-p;t~NkrmW|_s_`?8-_+U*Be-^$w512`acu3&~$V( zsbI?4h%6zt!_OGJFZrJFv1Em?^JJK$)mI@Es*m_1AF}c$J%fH$sm`GlDj9gS10w6Z|K7 zM;cc%H*+>&#v4;xUy(HX;QdYGY?m1%);0~B`=MS`cZwu8Y2X&73-c1YP)R^8W0EHNby8~1e08=$j06(q&VB(O}1fr z9vd`^>?Wzd*Y??E1`}PG=Gw$@fx-)1WQ{M! zGCYN^z`!c>E<=Z8R z3rLiWz-Q`6iq`5hg)78wPPzSbm&RdhL4*|=P!&IcVgC!<6bggqxsLH0jGrUVOR-`< zCgVHeG`2ho*Pz;JRL$xabc@3VA@n(&mHW{#@TBU|35{{i2Ca$>go!~9F3zt#S`Mr^ zwy-;tgMNY@w|=ZPEPC$X$Spr8KYjYX-?wjry^gZYS{vCwsOMnnjP8=<5ft7mU0jV2 zEw4kwitp8L!6b!>ae~(ePJ=UXjyl~C|Gae5-sHi zb8n32>M=d2SLm?-ug@+?PSN{{(nx|KSW8p-%s zvJGHI#icUxge@1&)5vt~A%GoaEirU+z+wc&k}3jwvt%ok&<}u}VhpilX}|(m219!d zj!cj?7#X?0C)s*SxNCn+aop~I+@$4!1o3D{PiRSG9UA|ISQEHehu)X93gBe>JL{#2 z=)*91o%?ngG^%87&srIR&}})EGfs|uK;$X>fRq=6*Ssw~jbQEWOb)EziumN@_;2gs zo(>2dglnh00uxB6mjf%2(2w%kliT?nSVQ6qyf%r~!<|!yCHH?0Ys% z&!cfqF+^c1?-#%%Ray4ifZ4(`^yo=CvePhN^MfqBUUWH`Bre}m>}fe8 z1n!xOVjpuX%R}(WoRYfH68a}n0oROJ=kzlu;~A+Kl%HeInzbLx&oMHE6{9uor`SiP zTxP2pws_hqYHYTu{S^D2HEUxg)vGbyh#7ra8#B8r*ZhtxU@=Q?A*__++t_A!bo=U6 zs3#bA43qKDqf#$bvd7aeLLXOx7SlC*PrL(clU1)(B7$RA-l$%^I_+wiAu}Nwq`N(U zk&3wfr@Air9&xwfZFZxV<9BE8&xq$gtz1e_Mu{h6G zeFV-f%RA$G+^yygumMS_g(fdthjEw#J3-VkJXe@;J`N*sLOZ^@Agp3#xEguVHH8ud z3E^u-$~-|1cZF*vTZ?|9AP8t(+oc%KrjoqN)|^(E1V1dy^EIE>duMJOYa#oML>jMo z!W<}CzyA13s=KnKzArDLwprjuP}>t%N^qcBI~y3@!C~EYP}i$u$&%e*>nD#{f;|9R zX?Yo{$RuhV+R-*w{L@b(;^{(Z{B=7U)Z?ld7n~eeg&UFmPK8uGO3h(aN5UlC5_OKN z`Md|vE@Ho5A2{;W7{h$`A;!~LMV77xn;KX@V!k^6WH@z)agF1CF&ZGvAp`m|5NZW? zuI$|TZ6mmjA_B*s`R1HO>h&B_uM!*7Ynso2 z>>pL<8Jf?d;kUoVC!GD#hP~^9ihO&HxE=)!4V*)P1sw?;2QW>G;&vr3X&By}d^Xt? zNorgIc^(!^q8-Dna6QGJKfhN9m70|v$-TFrn}0zkb;$`FGDx;Md+ECMLE4PEBUE6# zd5LV3==nb;k?)9fa(}reojkKwkR^&2?>BtGeYkpT7GGq6iTJd1oRSo`ueYcQuk!8( zrTNyQDA0dAul(X0aguIa`^fEdTbA9`m_2*m_6Ni4Y}J1+bk)AEDhr{UsqYK%2 zd{cq}lp(9{r(o$Vk_9i~n71S*VVq~41cDoU)!Iv?W|s%E!K&SHQ5EX z%Yi#M#wyr!%sUw4b4TU|ZA-!T#~5~rb~wn-Ft@8tTnxHlwO|OoNX52btalo}VKFr> zEOy$A_)6*S|od;@O8?-+*`vmj7tH(5Wn7+;(0Jf_~W_>Zb9 zYKHWh_`l^qj*_1JpWq+uBPFU@CuJwh=HTzW1x7}}_{!WmSoz6``N5gkeY2oN$_6L4 z31e4BxVIpbUH7AlZB&#LTExT7JBK1*y(zPU^T@zr2|BN?6RQZHk7}!~^|~9jXF}RE z%>8d7wpJU=thZ5@5vG!}lFNY=mPxv2pOiMun!5b6CG^DaR?r(Y(RRQdM@Rvfb#o zn7TXhj=ZQqqa);!^PMjgrQF!~5RNHuSOoR)^wb08x>F0VtRKYU?fvwYpBdD@f#{BB z%92^&q+)Go#7** z{ZQ?X5i1R=8>zlX@z-y_S7^pc52e+K6Lo6Wez#Pq>X($eTncmn`e+fQe8YG-65d`Z z2D1z@tWTN}-;y(Ac>)wAxvS;nsPa+D;$9qw@yu4B-1>LAk4Qgh!b7mMB?b+k(^5Tx zKbK=EEo4|3@JdlzjTLK{}qD)X7f=TV-UsC)YzOPi7Hoz2?eupm>XAYfh{& z>Iqh^{=Rs1=%XPa-RV>0b{esAf+e0~=zoaaSR9jAj3D$2 zJ}ZN&#u4dzzXvB-eHh+A6@sVn9Lu+agf+K(JXP;RGoJCP`m&8$ElFC(erF$we#QJ1 zehZ6@Zt0vKeAjLaR92)8PKN0y<|2zGBCWQTdi} zHf#VkmOhn!;+VjmN1o7O^zyJhl>uWT1*h6-xOEY5T;A#`-dVdPVN!=z41#bj z_ZYk491YJts52=JrpHzHxHPW@zT(4XT)1!{^uj2+mP7J2<9{LtW|4EhpPtdJxHjd( zS!{B@eal7rU%W^^UXtTe&$^QuYgl_{O@3{KL)>6wy(^ykqj>4$afX=lxglA7`=&K@ zLTJ3Up6JkY0oH*G1a7A%p9nCIlaC?ti;1wcHJJREDSN2k5@~Aa7}@*BRoG>i}UrBS?Y4nP@ai~^;P-mi3-p5^-r@&^dvt}~F`+@G}<()MIQ-6r+ragcDJT4}VO4T>? z*k|ed)n4Lw*#P6$)-(mHMCq2X_>SFT)y}Z|E+=aB5=Yw?rN$)qpyC#hPa;#>*w8)_jb=lt67`@d^p_W*k1B zgNvQz>4Kx|*~iK<+PKeQE3F*l)rdoI%>cb?(naShlbXD161(1d={^@Zjseiu9tPVGgZx zVftQ>Q=RJ7ix5^2`&&a%?HeQ1Q^P46C&y}w!&CL#VeJX5@{qV++?<@|7JF!wR(8`v zzq51xetwTWbEJ`~plp?5*OUno%xg~iPqL|=cFLC$E!bpv&lnsmXmpPa*_H`|H8RK8 z=;+M`S9>lvr9JCITSQ51z=82=RBz7H%7#W))40yS+mE#0ZM(A00|m!%YO8Ol-i9u^ zM|wd#hh3VddJn1_(t`PK;?hACyBiKY<|+x}dA*U;Tk*vegmPU_`1P-sj#8|RG6bP- zl}&ux{F1u#k78}p`Pp}b2Bg#9ppEitg?lgRdr=#V+xl#=H~NCM-qes81nz7LSB@Qw zrkLP^s4^=-xif27SZ{k(#F=>Q`3pJVz1LMmqV~xY9O3LYtHOO^a4N5sy`x^;<~)yW z%aCjBPi~_H(W&#(16*LmBG=T`84Z^{W4p1LC(pWA*pR($F6vM@RWWXCK=s1#j|NSj zEavwIKhf0`HazI>WYzL7`4&eLXbPR|1s`C8dIxW0@P$mK(F&mHX=%`Oho%o39MHqn zeXaQUX^b~jwPDDs*xVoT`s zUe;=YTe;;`ht%Fb9-zbit{~TuAb&?v{9*hV#-OQlfOK%$aCVTI1am=0Kp@CrRbxA zJQPHZ8<>l5F+n~lWTu6+GzS*o6o%IKNkmx#TSG`sgRT$&$B~Cxx&Fp|lDdCVulFZS znsg?CkjUxm9CnG-Y9^~$nmVSqVMBk`{{6s#s|OAo_`X|B8=`rki}%|7ujD{pZ|}G5 z0o~8Y$as>Nk)ecMjEmYEWc}hGxEl^VWn9|cmA$PhK9{%Zy7rnmY#JPS487d1?6y_E zcdZRCU=N)T17b>#@X)z3)Xq>$<&`Y~)u{tVZ(KB)FC>}J3?ipP2a zvV7IK8!oaYlh5$>ku*DdEXZZlTYxyp+f=$P%qq*K`YL;?PKl#m196=lXT2L*g5OkcXMQ&M$n7Y6q86VC zm0?@Ea)=fM<$l3CY^6nqJ$v+`AoEN|uhO!UWlvlu%V(p8<4rb><*oJ?u~BaH*5R&J z06dlBXo#%y=rt7o!3$fyT$tJ7rm{V2jmxJll+JPp&-Sn+f%4rBujlc(BeSBhIJz7M z71@Vx^!*d|xgA)SoH3SzP+5G|8@`iIqd=PPOnpjR(*z{sA=!xcxH%)SpN&=cB>Px5js!_)H-ge4vb zDo>+$mTP<(TF`m{$j9`uL^n9)KmJpeW71{fL2ah#<%#Qr>^Fz=cnIw!DOMxbhP^W0 z!gpK)WQnQd98@$#q1Lw#IGPx=9R4;K>~_0ttKZCcLi(`m$Nvvu=Vg6dcX{nE&(B;T z7`HSNWFuDMqipA#MSbG1v_s`FWYauW_BH)q&4Kda+)@>avFQM)1#SvHUoxk%GxOBlR-p!YxIg22l^3AE+hhN%;eoXsW_v1dM z$3~3C@}c`*@N-AwnyU94Jb3U?oc7b;!RzgnP6x$2^2j<%zzA}{GkTO|^1gZP4G#D8 z#_6p&2IKK&`!@`qlApQ3Cc44G`E#B)s|0_}`B~3j#oEXFv1b0RbgivV$pmra8bx19 zBJuS^V8!SQHQ$^gxIPDjci)EIh;O{GVbFX4v?P3^TZwE^Ufz}W+exq-H^>4B^!_cf zSzKFZ`zf6yIYzrQGvlFYK#qz{zVqPauTK_i9V2W>QI!&p$tK~~Lc#2FiLG5uxw^}C zcc(!*pZi`qc{<0REVg51a;O~7E}_KUXv($vJBnqVOUM?xT8X5KWpfqz} zBfrD5*y$4%Yl^R#BVH^Y=xi>Otw*C`XrQnR3zT&(90Wv zXV+Lpj|Z>ez-lGoi?F8&hD-$|;a!aBDB1y0G%I)S4hue}I}GZKU-3*&2?ot6+gP0? zxE$YdoLH!%72;DqvIKc*5f0}WmM>eFu~Ew68B|V;#eHoMfbrk=Mo8jW8S+bZz?R2v z_>4ZbXaw{6spWw02p9>11)}`uQ_H|8aP&)|PP>6zlP`G$PBdlR=T=UB!SaE=&-8LT z>Wjz|@7#et2yA7r)DY@C{$4+D&^F8Cz)ZQ$XDBw)^fLrpy8~{b=!-9UfU_@4dPE&mO+1_X3YXG!_Pc>sB;s? zgx%?*)ZjDmWMUU6BJkB>j3tI#1y~!#&ysmZ<8Nid)~wtsNsrp%mm6hk6aB6rb+8ii z%Hcm1WsMk9cd?|DcYq&a<;%r4K-sY=2ElC&iVwd!8+X#^6ilXbC;}}jnH#>zqWBkcm--BU++`D*~{`~8M`UeDh<-;2=_U~3f!aV zkD^knQ!zM{IC1?=Cw49e@;E@^TjV(Jz`|XVvSp$BuDd&Xzx@c=+MJL%1Ja43X!bPM zy6hFS(I(M2lBj*6-c07^F_H5pN`4A9Nv|U9kw1U!sYl1#C!ry!d3*kI%cR7~ljb$@*7?j#*7#o{*! znODg4mzm69CigY*Ka>OA{_ub64U`Z5bGno8>&EWC0srlHOkICRuEmD$N=t(>*)gcI zpXh_WNsb}c_fz+3^;b)UG~+|`xs;~&qI(fina8@BOZdJc@nv`{=Vyj+C^^JKj4zbz zVSGFpO4{=b#`hPoJhxNdXRL5!ee#I&vz}kwU>p7#=6#c_XMA;%qh9z(jKG9T0v$mfS7LDWSKM$tBuRDHTWV*@|7% zlaSf~P(u@Ed+K;Ai3<{V~v8xz}E z&kY_KC92mS7_ZH2O2W$3J$RSiD1DcXRIsm9Iq(N*vdw|~gKfT1Y=eevgaLJ~D5Sy~ zMsH8lrSveDX;?+SDeFxs9fBj}G5+(XmCxy-HjGCZZ1uTJ<>`~jwmTC!Y!|0iBwcU6 zKsDwfBRC9oilRoJ{Z@kxbu}-@H|PuOy|wLg_=G+LEIiCnJF1r8YO~Qu30Zg9R8Wd>& z3$gJ9Np%d1GVl@c&r>KF$Oc$;u$I6B&7oFj$dPSFE z*|Di*_bSSZzGZdu?4uw(oCsX}B4=xFk)qsO)R7M2YKuTC=d?6?E5FicV9ALUlX{fg2=5RuAowEj^gLpVSPF@!S;CJD6Qj5ffId?Wcdg&O~VnD1;MJp^r5 z8ksDxiJjgEEplz~na?kXE6q2b+S(?Jej6P9A>-x9jiSpgHHkN31QP+eGPIcLb9NZd zY&Y046Kj2TiLH0BoDkJ!rVg;M+ji@Mp{Gr0-BRZij38%dHuGP?&!&8SlfNljkLSxv{nB$+SIm+-Mx?5|eRs^AayGbhdK$efbC9`*`ySe(``_%TjZz z*{0Oh5UTwQem{I|9n6OP?D#T=(8+gL>KGB2#Z)kf?12+fN&EzPsclNWCfFSKmfT>y z96bVGv~J{{@rY!VRVFasjaE6=E(=Jm>~m}1gvmWO4+8S;kY?XDh^M^ z1?}1QHI82fWw^(%^b|+kU+5RL&GQb%&UP5JlV!*vIAzaKK&nA>gr8o#4r1<0x^5x8 zmpvxb{}NUx?Z!B@rvUVP+tV{s^?g{OLo`B{`?2%|MraJaBUGZyarV++kW~UaV7H@! ztZ(#s-Hyk1>A0CrYmX1in~AH!s0Lp>lzP5H70S0f0f+DqLU*1|`}EUp^KRnQHI9bl zYRE09Z=TO)M?&;qi;Y@~gBMNm)xCfFNA8&q+R7q%fZMXmN%bPX4HGrLL8wM*Vg*jt z@|3!R-?4lg1*cy8#xWRAKYW#MDp**7laD2%Byc+d-eL*bsN=Y|jbnNXyHvI6U(|E9 z*mu#Yq2>)JVE3Ey25|zguFuKMfxqJ>2G4i`2Ky`*7e!O>W`k!uPmuY~U(jKvDfml+ zXFPksT%5XMdnzex@Qi1kix`ha-USQpO>$OqV_`q&R%lIGYk3VdIACOOoZ4KvDO#t5 zDz1T7`~GK^_-pDvm;+e?6CNbjL#0M)bIxo?9`la$%(lE}zB`Y7ST?0|Z=P2N4)pR0 ze*Cr_LY>bPrMyNVtsD^gVH)LCPIy|yfldEYEdl2VZZ+%rn6^*yFBB|C^?dj_)KpE5 zKN##Vh~9ltutfa@uCx!G5UQAV0pGijd{zL#YO0f?@=i{kCB%R^m;?)7T!2cZzfcn| zP|bYjvY@oq1iwiXC}=GI#L+VBv&dgPW!RPbvH}aCD?iAzP?1lauYpwfp9l>8;fEiV zFaM#uAnwcPC_EH*86P{r-zi32%FhlkTYn8As_?o)JuFMhVK_ADe-k?baXBF=329tp*RreFOmR&8sNP*M=IaK_1*cHB?)~@m z+}ZrASiuW)@Oz9TGEXvah6F?R0Q*DKJpx<1ui%V~Kg33hlv$LK@rfAw*K^CkkI~$j z3k_j}rQvQEsCG6g_Qc;ndGEutz!rOt+UI9{xqGG~Fo^A_JwCglTquZsh8crF_P~7M zu8D%k_XSq&+UEGOl)IuNPe3{6Lp)9(#I?@KK`0a85?eZ${vrD1LPf^x9{BViO)cO> zyYlrBE`1H-L2q=6O2gFE=L&wtte^l})ZGUWI~4iIy-!wNcZsh2bz{zk3S4 z+kj!PWZuJrY`+4FzOrdLQ|f#aE1 zNh4ELS@{>SXlbr_O$~g-`wG%569UDj)Xh&_`6=&YwhO4IV9>Glo!`u5;7e=gWumQq8Ep@VSPmm`{R8f=k(S+mk$wxfvQyiEgd zz(fJ(UTiQiRAVrm576C><4gGd{U-p#Jw3jyX}x+}WkvNVw!S3o;5!|~K6A2F4q#7Z zFCbtEwdH#5Y`Vju>=nBa1dWS9+n-s!pWMXG`@8ymmc^xv6GqOnOI%#=eZ0`qi5A#^ z6Dp#-J46?n&&Hu|fkutz-#PS}C&W751zpJJQi8L2rC|jx$=0&L@FjWZn6EG_#>lrz ze2ve_hI7zlH|waXX3NBQrQU9O~&*_2xX!jW}HqZ$OhOH zGmU`-a+imcLrX9|n41T)fX;Nv$`g+1atGD{rgx-UV|<4nuxx>2v^8Y8??H(3Sv52i zKUY6l-(vvbr(9XkKppA#r~tFj;P?qg2=B`0wO6PJj%~r&^q8ozVTB;9-sK=T_~nZ& zNmz+ETId7pJedj3TkhN*6nySKFJaR&y@elyo3x#1Zd<*};v1yv_7K{DU%bi6vh)VW zk((Ck4*Mc9p06=2wf|LW>^)h70r@|<(_a!7@8>f-9q+9!JK_=lez7K^#ho-N;+@cg zmE`D739^aDa(88@!lmSRO7>&5uVF09cObZb#y1{kF7WN+=M{q=r22ch~d zEfSuWIp5njHdv?U^BoyMAo!A%I@9{z?v%Kk?YV!&2cpT=4-WX;<+@XI+e@ zhTumR@i*7-`Rw*UC#T`{6&LLB>6c9G3xK|a>bne;&(ikLi}yIicVM!ktj_t0>}N3_ zh{ibMi}qUhfNiJ1(z_K_44R~{?XT&GJ2@^RkBHMU9BfkR`*Ah z`5KcxwEFg2o)$Tn)dITEbeOi@5p+8SKYP~(Ayn|^$LY|PN;~wi1EP%gn{OOYSBU(p znT0)3){-T=&zw0k;nuCTOjh*WwCVYdO@FAX2%v?EXINO{=d?#n@WBlmH?*(Q20w(7 zR(Hk1@R6H1q)mw|D#No)0Rusm2;70=7cQ);X2OZ@n|jvuHH8_XmKqj*GPyCs)Je}0 z;A-x`BxRcYvowVL#=cK?NAHaJS+x>PRB2>%cJ0+x*awq5`3wi141k5?}?Ls z5=B2p&^df#hVVyn8v6Tl+J(u#`PKIIXH0Ug+p$htDjD!~SdzoJ<7W9;_z8Of0u@?H zw(7FwURw9%Xso4pmtN)9!`S*zRB$PNtp7YtEE%uRZO*gl)tpR1jRpoR17&P_eUeOE zYbxf@s-vZZFxVXR3yZrObK^R=m-v8DFF`2KWx!!6u(F=MGVo`M9x{E@dbe1CT=}yU z=vmjlZQG4J#)u&VRV1s&VX*wk$RUnTJ?`|Hgvo8f5?E#5s`rXS!TN zcpXf=Yw$jte2$~omWyVkK^%VCwWjC0JDv9}y_))ojbBlFmy3oT{3jx21yCB=T5U!66{~Rc$OT+HzfVY zgIP}CAn4#ymm~U+Mi_r*lXV6;?5b_J>qc@#9c!rkX-MhM8xcBD`Z1Yq$C8_C@8|dUZ0gjbQ^)7m-#06Q z-eu?1g&+6y%WH?Df8buUT(x!r@aK?U`c^^jhwq!ug0%p_zZcQWEPg@Qt|(x){EPs` zTq7SDG(5A8@Uuo-N~}7)h{1TW%u^}m)saZCQG{OFE_6PR2^UXRs1c-xO#{WMehw}# zLU45U48CdJ<2D@aM#%GskxAqPH;+&P&PR$JJ-X?eUJVsuJH-a_<)|v0Yd_Sw-1lB( zzkU&2i__#{XiNkX6>qpEr5%k<%NVlR1C5TZNj;j&50R*fDt27{l60c8n@yRzD)aY* z>|5~SWKg#*Br5e#Zx)Wi3K=UaV%{c!N!!Ew7|&ZoZqpr>b(|6}uQq1e z>Srdv*Q6u|3Umn}E@teA5zBXu_9(-w^4`MUKTYu7DpT$VMsQ2VVzR&+z4NViX-i(C z3Y;S+RBGHk$LqTYE=KhBD&Owc41C3|2V3~?y(>wyi<@Z2V1Ja_^#v@*juqQ>lbk#J zbv^WqOtE8dqf6ne(5x<>fSWoojnfSOHEcB@Qk$!=d_B=B9A91*mlHTyy6o$OoA7>i zlZO5{N*Z2)kPl^1`G@es!{rfm$+6DCb*WzPP^WfDS1@IkbU7gu>{6EqY!YBIU7J(| zO`FrL>k2PP8ADyp;KDVFV3|{)9#GSG0+YcmHU3~yjS#2n(oKcar!7Pss|zOU2HUbH z+~wLdv~%Z8aAVRojdG3A-4r9`nKXmWqydmXX*-CBU^D8-A;LIc5%B&m1xjG1;;+ONW$IWqi zElveI6|mNREXZB-t4WiY51p|)^ed!0Gp+idlTRVU~&2!|^MGsg5IvQ0jya@oh@lwXEn z;@n0GaGsSNQ4vg{Wu?};guIYpftVzgcSJ>FEW?6>9yO>5G}4Ai)ZhwqQb&w=!>Xql z9%AepNV}-1NTuP{24GFUgo;l2Qi}caf$@agShMD*hN6@-I~p7u9ED$)!$o$X&Tv+cooD#lNsqllaP9RY z7`YL-T#sEb-9!K!d$bP62&Pl1aEtpmR94tQ)v-Zr5Y9b^b0(IGzIIh%NT@4H+8xb0 zDeXlwnOzis6PdvtUaSGeKk*#XS9~vao=~8pa4u|oF;kKwny26-ZuOOcb}ri?fh3JI zyzKMSG&s`fQhSzV(mt^``E_U8%#QyeF=z?g8*%9q!RwT7PX<=#`qn_FspB{ypn17Z zw&Ujo>|ohA?HHB<2k}Zf_7he|HuJ;U*Uffp3s%Qi=>f2#Y*@AnYM<8=)?X)8w_#`t z#j?RCaoXPwp{aO#W%Mgp{N4efQg?Ai8phA@UMGf%9ZyX?G;oCw)5P6le@H4MgkZgu ztlot785XoYweae@=`+K(Db)k)13>~+R_2>-*2-@Ue@mwK&*q=QYrB;!>3DC|L}?o) zAG|F}VUV_&QaF<78FY35)fMTfykaY{u(DFYPD+4O(LE-&IR}?4SyIq)C{TCP#wfbM zbCDy+4mZ?|pEz<{DLYmyLEA_gRLG8if5E|kqi)tUty82m8N!M>4Iwa!5I!sDB50C+ zF4?#?;P@|Mi`?i5Blx#u_GfR);A8leA{{z>FFomFUfA?idYJyT>EQ|A@QlGc$Mkt_ zR;Gg|b0(8x5rOJ7w8y627R#VYJ-k!_=r_m}XP-xA{NG*?O|n`@wQ@no@}ydDKT)qU|K!>I=5y21swgd8?wz!6!p*B}XwZ^#hw zC$|mK@!Un`ICwgvTACcIN8+^sHi2^a#3KUkzn(Q>t2_(NY>{FG!sXaE`VzZxf){(K zK2$XYJ5BG5Qh6UHA9G^bE!ah`@aL?ma!u4l6$QevV0&FQs@LQtJqXO{cBBRcyo6za zicSbMfJ-dM$*1R?pC1UfSsQtxQp9?Jn#QUp7>_fAzj1>dPpW2!Ii4;pa~yoiAdy10 z%5;a#b)#2S{&C6!d!>*)Uopuk&d@MeNbWHHcy1NnUUJgHT9HPU2UW~)4Y9mGk|4{2 z#uDW{%X^&OB4RjLr7+u|;dzbRfPr1zeM(3RgNElhLTVV^ETQCKcEbbD?+8i$ZBpK1 z6^i)!HYJ3sv2q=v#rT$osn6p#0Kw0YHH4m#>K@KdwqxjfSc*Yi!hjhhxhxYLC7VsX znL(aJEvj;woU%dGTfI(pXnvj+-*B(W|8=aZAUu_o^R~KSN(`SSpNawC&Ipu3|6ZWt zqL^Dv#K~WbZ*9AhTuA`tJ&wQjLf*GTd3}(yp|cAopxm~*v3L-LvR)3dBdBxY6m?Fb z3Hi){Jv`@4dGNb`V8>c38Y|zE+m3?%ly-Ar*2C!y>}n{C(AHV?3uK=ILd`OsO&)VP zh1hTIQYHNto?SC>lIwO(r=G?cL*&)U7}r#p8d^=7%dpHho~Rih!UvM2BDTsK=jvvb zC3d01uDJSkp5YI=TF)R~&1bG($thu%?Apwo@w>vvN#~GV;WNbLA}^w2lG0Y$GR2>^ zG(x)+D_Z>Bm)Cg=u8|_CLF$lH6LP?d1wD>|RtJsqA$iFSdsGLlc6vj88R2aLwnn#8 z_$C?4nna#0=NVy4AYp>#BdTr&`@8ny86!uQ=TqG6YHVz5axxtZQWSMW)5IsHDrYHI!}uRC z94-QR`TOsE2fy{!TWgi%Hl`8~fb};NZJkOV^zV?JLj!NG}&a+k{&n8C~q2UFELcpwQO(&%dBFn&Q%FKaF7uwq21QUZ3gpw8qmCa%@7^37Kk7ymfzaqo4NZ;0bZ=NUN ze7nYi3+1VLJjGT~St#6gEpH7EB@adKpsHP6aWj0M{*Vd5My5x|T3HCWxk0cpJv>2-e9i>S#${w z%p?vz3!H&1d%dTSnD_P8xm~&0-I&^To)Or6}SxchqIFd9;iXuEZ!uVK{`_`u0Zw!5%$me^Yn9BkjD`c zFpJEvsln|fWNc2*#*p2+^t`3FYfm4wubn~Ul?;DydjR>lqA-hls`WJ8}hcj(ja9*J} zS&{%$6Yd*g62y^!wdNR%r$BI`e3m4?8|-U9WO9`A#q@b*#6 zdjS@Ow+%4A|HIx_z*lj6|1L?;km7E^y*QL&DJ{|hg;KOoytG)MXn~fdNO3JttT-+1 zElzL?o&Z4u0pbw%ow@JK?p+zX@Avxuz4wX?AF^l8_nb3wcgN)jiWXsC;yGVM;zQ-o zO+n(HW9+{+dtrRW-p zknJtYHx}=;JWBrKIOS8*f08}{sS`9gOl&Nsx;|~vaI`tDIu?I#$`RtMZBr~A9$XWE ztpy}mqU~`ZSaJ)~P?W#DLtOj3~e4T4Rr_%{3_ zE^)MFk_ddTH!||j^~lJ`Kl=3f*id=<{10=W#auXBCWy4r8CRtB3OHCBA%C{sE%w2- z=LC2(vEzG`PX5-r9})l^oluMdlm=T!QwZ)&_pOncM&KYv4f(r-pwLwc-+^DzgJIK;(-!-3qhrHk1GH!7K2L8GJz=h3kj$c zx{Xw*m&6WM)Jm}#BJ9ULIbr^?bGQiGh5{~LgiBV?UOwZ#ffc{R9T8=Y*U0H7k4zs5 zmft#i4ip_fe*AHA*d82DU(F6EQ)9_>BKo+us!|n5=Tw5I>YCLj;ct+=%b@tgs_Jf- zmw-0!5LNw~nsXzg@~5@3@7o}CXAyge38x(Zc&3h0bbpfivMv=9@C<`+Qg;NXYD^av zQi_}*aY1ldI|nIBp`TI+wn02B^@WzcZv}cve%Lz>`LaWV^@U_CN>Q&0-s@V4YHUvB zvv_qNulR?mP6BR-8c&xkz^nICzcB+Yj^}1*3=C#yI7~ULs?cPucubAsY${)?YRcMm zkp69aTne4l@+IYr=wngZPEygNHoVsB!|@n-A}=g=sM=)l;#y3qO7w@Bna(q>!fSJp z8F?%P@2E-2?XdS-ZB`Ynj`#ff&K&C!1#R{sb3{u*t z*CG01*ATvvX_D5n$45~}O$+!ztf@4e3#INZSu~X(S5Ys42}P ziq%i3VPeRmMYJQPDTj>)PKkM{dYNBR^J#3u=Eq`G^*A%hLu_=`3W>l@Y?V*2cYak> zzY)xjO@LR?Rao#s+yH>du1L80Nt7n9rDtKH`Sxi6mSdGxNOlrHTAm&sF`~Qxt3x*K z3iyNtg&iri1TO1z5)ENjMwtj7U9Gd~zP3kxY z^F@K)pGuAm+9W$#rkOJT0M=cZrJ{(9M~D>V0Nc~}u^QVd>s}EC=~J84+yoiN=nd6w z($fE2&PAD2+z0E?fXd}h1_HtN!oVg{uM1kUiqhsh!S>Vk3||pn_4o)|kHg@7r9(UyU zz^FtZ$+rTduIQkoCO!_sn|x)XhXBV6NVJsk(9eWIu-c$OaH`%e7~Qd)2aGJub+6G_ z>jNP~6_vRlCO@@^AX~(fVWgA8NE$HO)e1ruV*6TmUX+e*QQt1H2|vIuUZ2C`c3CST zK{p6|;DS|SZrdQLXtU^e>grTXyN#}M47%VX}oE=dV zJ%&2w=SyQob_43eA`lWu9UTxa^hR;sJ2kc@UpMPn&=^iGy)&eD@7|(`o=QpNoMX6{ zIw|Sc+yiszqOSIaZE%FV;qJ0I`pL6r&yGG_5&{BARPkvE=2!>UT9>f=cB(k+M@X$` z=UDUru({jv+9|hSz~co`_nzt-r~oK;i^-v>w717nr{bY&6Ed({Z%pDD$)AhljW|P?KX8kX;e^$c zeWdeOEiKKPh}c|~tvHITsi+dp?9U-GWuD@w`AXF=yf>>&#Yy&p!&6#?sVn$_MGzQ` zGcshyQr3VK5`Ll)Ubr)ld<@6IcH73TQw$FrwH*44CS!s|-ro9vh`e6K4X{OShux?b=Dc8VKZ|B|NpMz*F|7t%)M@iSU@=Np?o1dR#IPXZg$YUK*us&+vk6-Gs(HO1i zhc+-aE2ScR)?3Mzc$C4aAp=tcSduZSD8Ld7ONsjo%K5B@4D5q+HhmU0n@gXGwNPWM z325DDHI)7#p{jenw-*e|#`DAQ!vpiyb=GnCwuU&vV)W(|qk=!`h^$V)Dg zy#0ka^G<=lRdeK+ z$8r=e8^{FdjBqkJbT+NOqD+0P zuFtM`3}G?Su{|42MyDaAbgrL6Ba{k{)&tc28gdMVr{&J7tCh|dvnv&*B*TQWy9EFR zshU0^=CA3GUBNc_yL)>*>=~7EFbmhJurS+w{tL=kQ^gG4feNjp$DgkZ>jhekLEG(iR zr5C!Un}Ie!T5lRVYqU%@AoilP>^HO{mf)xj747$+)oP)sz{py0BCK&Dl-*59tEXh` z{WBTZ-_0&s7^-zd;g92r(cCgs^JydgP|_!AIb-rQqF7);LNZ_nX}0P66|fIYA4L?0 zWnYUaj^#Oq&~n+=a1H%c(UPR7cQa58ied9qNx3K-nb1V8$>w@&2L3H%f!)_7HN2wy zh<;_>2s73{#I2R3zy8bAk4!m+*uh?xXyM)UaSw}OQ8}N;+DdRx657WNav7RI=~U@% zu*tJnJoEY3z+-~3Dg(ykI=0*mx_TQ7>-i2onOSM{EPU3cp%&9g^}s_Fx5M!tDeWRS ztPx;!P$San=P<=_Uio$du&Y1gu}f+7CXjk%82Q7vT8XbJ36GO-EXJ6qZ@WFMR!N*D8JqFg=2u- zOVMLdf68z7od17}EkeuP?cv+$Pts9myPu-NUHlHykuN3tukyHg4VV@VHUBToxM;b* z4=-%e^XJcTf-lwJ0m&-p`O!W;K&*X<{$R@Uh3284jicD1k})QxG>wR^N`;wsgVnp+ zf*Mnp-Qxm#=Ta!$Y_sWgM<;DQitLz%+EEPC<9iMoMSoTny%giqaK>}kn)i{1DQyzH z)WEJvzCJ;MlLQq-ACUSEJr#2L%O%nJk$j-WToHW)yqOYXbHT2~_ z!mi_grspEOJdfpZse$F;`5?r8(q@u=MSDz|B|_!*tyfQyH^a7~aB88H-7H26?Or=w zMt+ZjGR_fK#x85858^x0)Xj5Yvk2Z?!fxj+{Xffr*2|Wiyp8a7u2WfggFk{15%O;! z8^i_&bWw4HzyEFiMELa)zx_76HVjAB;q^>AI}m5n#E{y=q-g@C`S_;3F4A$Tidxdr z;A;vgbN)LyqB0E+G*So8K&G{S0N?WWk3@<78zv02Dm-03e{C3%IH~&6)-2x!9KnQS zVjUBNl?}lQVD6NEQ*9pFX3`8%7dfQev8gJ(649=@LmrxPOB$Np!oPwZU^e9W=ma93 zXK?nkmMWAjw8(o2ZqN>9fnQ23*#}te*r}p!g%}h)y0u z$l8r<3$*b41P>3`F8Ya$XOP;&c9yZopB?%Ifuc`SDk(~T6eU`j`7>PH;;*86h9Ud2 z@GgiaLN)C?lg_&E847Jo{W>Q0$`B=ctbqRC7Qt9_<~$d)#G_+vxzsdAC~eUqxbqDC zNx#*KlJ5*U26KExKYxKxd0Mf^X|$)C#+rfc_I}V~R$e<1x^?R7{{8!JK`8VCJyzOZ zx87&<+|vHWQjMuRz*{wI)~s|5qpOc4D0ON!#k0y>0k$7KfNQ-rXb3{bsWu3dw2(W|29`IxSi7Gj(<7A0#JX$4g6=cE#;weGNWAFKE3RAf;s(e^f8x3 zwo158)zsOt7$)FZISI}Ml({dYw=#jo@C?4mXc%%o{n#M+r`sF$&1A|u`RL#6Nvnc$ z?{3o;C(ILoonz3&)w>YRV24o@<-3^BZ@|=$$geqrx$nh$Ys`XNTi9)m3kJv302k|dDlr0crdwT-72c7rqmL?1Oncn|aoIbQll`1RA8Ifa|BB7wR z5eSYp`ctq~sQ4kc4=e0!$-gn?`|$6y{4{T|EXpH%fibDak^Fsx$66km@(Pt7^!c&q z&M&9>FAl+dU<(-D^T~v+sh*LjM-L6r^(T<`IS5rod#yc_P=d@2A9-^=ciKZLETDIU|NQy2_?{>((FuUqYQ98x|MqI*tQ{E)9j{BaRo$^@T05C=0JR(2c zEO2H(i*_UT4mkAi<)K4|X3aV@%a$#fCct)6H7)JrA8Bc6aQ^!$8&(bDwOFf6g(oVHe_f zi7v(lcL!NDO}ldr$GN$n)sR;!A&-dC#W9k$WAk-!gfz5yX>u#Xg+DpdDbr9xX$70F z%Q?q6KAMKWRzd0vOxfySqf}z6k%ER?I!9W;gs?xx+;cXgCaDu$%qWy_SYl40t&Xi) z97@11#po%@$PmZYty|&8;C~@lsy>(Gi>}RSzW$6XexhsoPvx!;oOWpUB+{@-AtISnnES+w)@ zZJB5z!6rQ;^B-e=(*AcX7q_L@%)hpzTe+!Ir@ok1Ct z9#x8yGbYu$TRO2reR;o%f7tu9dbTy+-~8+*m@4nyxDXc!uc2_5+=D(GpD@ZpI1h|| z0xjWr1hC7)n2xkA(-9zWDRC3((n{dVc{V9Un?-P-bzEyJce%Qs4_%&4+SivkO^wlY zxg1lJ?NUAE{rfVk_>bvuu%0}{KMT%E`k5PJ76T(AXw8NS2u zCE^Urdi&J?*`9rZwdFRXK*aa$*F8g!&*8+%D_zNdHj4MM*0U?2VriCY`Z#-n5eu%MYS25iZU;9 zSpmg!szY>fd=sPw``?02Jy#6)-fWjPMjFdC z#8qibJK`%+Y>x}X| z<9%bYXH{{;lvT-=bODP+L;{|ojaX8;H+Z>EVg+UG2H#p}e#uwO81QMg( z`uA{5>wXZ1&AE>Tv-pJw0x6Hl81J-6Q)C?nchsSY=YjJ>O%Fq4yNr{@lrAmq?2!r= z<0#<_QZ}f@F#QoEU2aS80AI9#Uv?C2@;~SgUQ^tuA6j zX_a)9nb$Q1+oU8?{ZkWw^V#FlWCq8kq;;}M+R40;i88I+e%ukOhGvdoc%L)Hc?%Y# zQ#cA^ZGly<^_yQ}eBdiXhdeIW5-jr8|Icz@{hS|vEb_qzU;MaW>rAHTss$&pptOt(6&~QI37>U3&-i=5 z9(a_-h3y5AOO`B|m5(a40ozlgh*yy!_V+LL6C}am-$CR))yf z-S759)Phs7EtgQ=jwx>077x$X;^4u9ut;#etQiuDBj2aAY@SfejNkre*ras1-cpPO z<0ZOXz^d9pph#EPyB9w7qJ;l-o&nLq0XHq4TU6`SW+T2<9mTRtzYn)e--Hw&^-s&g zP?O+p9huu=j$?8Xd1IVdwo+deWY8?fb*#cRm|_~1n?m6(EzKXTsv&;Nh6H7cHUj&D z;}HzRvYQ;Xko9jhZBpujtN; zDmCP53HBzl-O7}iykN%$zHwfC&z}A86T$Bk#^nz=c0|XHa##XNJ`gy5{E%)Xn0Eyv z6Xe%?yTURj%Jl|7!=-xl_Cu;y=Lc~C)0_jHpKMeWMtr@<=1p+qJq-Va8RH!?TyrCa zUqTM~wa=YGQM_S}dyaL1{ee=LE>!vVjLhnV(m$Y#HH<>eA|Tri7Mq4p2Td{a&j=l( z)Rd8su#+oSR-bSZp_jvGEXxp*bdvUz-5=7BqGW3|AI=iQyXQ}4kvH9+=~6;tSss+c z_%FbUeEDUIOsq^v{1^(X0pF!jfIr?pm1Yy^(-~;1;(JF ztUCNj5z=DojrnnstWN1`xDuylFm7S9{c5nx=dECQ)8^I#CQD2$ST%c-t)y+>Tk`)n z2XZzYKmIfC0!*Q-nJFq&yhlnV1be#HF_IA;<6{q}RR^3hHeI47u#D{ahAWV&KOd#VfWOt5((Y#a6=n7;@MjM8lW zg*y@v+HH<2L>ObWmJtn=PdcYDMA%&Xn^L@9z3RUR^nSxf0$_M5Jr%E~4TA3pykp^i zp1lhf;q_<1mpEbqbZpCl$Wj*TGp!_H4aV_XWsUC%l8d&8-eeaO{?}b%pAvPE%N-(L zmD$?CEdVi1{OG{auexZ=W!X1o>c7T>*BxVM(w0bfo##v6ai9wipn>^Ms`p4yHbCvh>Ak0_LkUxiC0Eq2m@)#rIE^}tL0cug9j6CpCCop3_{ib7Pyys*jdOwh9xrN2>54Z*adFyog{_Ln zDUHkkb%+#ek#<&!DW{TZ%E31g>47dzo#x{uc;gl23K<<#)v$%b^Ke-+S;ye-gW+ty zva^Y)s#YD?vmk_G9E*WiiN=iw1rktzDN6QZ1e&Hd`)x*n^n5^|eIlsd4gx)_ zKr3jzdU0A@_zww|V8xSfxGP`~(I0>3)!OvP8=4WxZ= zqhls2)|tA@AXC3iN40FT!F}Zj#YRO%&0GZpg?VK>dv?3r+b3?;Ryc}cw~9|3YvhMw1zX=qf^q=Fk0xtLEq+c4y?;>#W$79&gFJd6 z6kJ&|&HWhzckKxpf<&(F3zP^G9j2?e`0ic9vkxV=H)uuaaw8gDBYCSijH0w>;lYFb zLqpTi@4c+vI7SI0MvOQWt<6NQ?VH!lsY4#^$*-rm4b#io0l+eSJPVNUp9f}U0Gs}s zNxrvo<;wJXct=$(`89VX-Z==@IShWD*p>x5|LUwrD~4WXF*oB2$h0|}#Y}%2*)G(~ zrF7g(7^+yQpon#ZhEd0DGf^u8N}m1Q3|}K^ z4;o~S1`kf3NP~9Yi9hH<#EzB2RAJ!O+14TcDJ{EQbky!_rni1f2a^V(^nJ@p>nk_x zkkUNT^o~zHM^{OiH#<*Tdv|}#TDE+77xw|pa+Si;sIW9^*=MH(E<6x>`7l+?838p} zacYIuJv11v+ml>oc9n0HlVrBNL+bG438ExFiP_&^T(TO3S}(&gh9KCM7y|uAtmh`}3Ih_mE`|&m~`{7qMu9 zb5MNnQ^-$}IgHEg4|CvN$Anl3=)U?pO7WZ?w;cmSY>k)4QD2HRxj|J?l-!}Ua=l0_$BwKM zz7Uk{f4}EYFKHazrfB0cLi`h4MaU=2R(P}vOi;2qr6=L>Qa#sL0~dPb|LfSiJ6WVQ zZyc9GWzyuIN(K222gU1&T(7BPpftP*&vMJLTT)1wa7d25$w&dX`{UNs9HJ~JuwL6E zyaSGKnABUf=+vum`Q9`3`9Jp={@NNE5IL>{nK&{&3%oMy$i4+Rz&Y66 z4tuM&iw6cEX99Z&-w4jmE6bQDJ>MHnOE(V4=2I7dZrZwtG#-G+5+<<=aA7mhaamT4 z!*bK9VuNtNu*$ApwIsK=#O_IxuvNSfpBT<|R=&R1>#iJw^|k?4#AwPT2KPqL(w5Jq zo{R8uhsoojY*Bx(LU_ZdkKbz_yUth|W>33Ej+&>*u+11dQ>W|pNGHgX2<~(gw{a=3 zpEByVvibKgdx+pjfH2Tm0|R-vF>}E*ykb`YTL+^xr5`@$!W(l7z|6{+M8RCL(kKX) z78c)ykBUYJ+wH{oI)YrmPEF%mxOqKV!uDQUTyV$4l+(jBj zsy{I?c%8hZ%8Z^5S63Z2<_2tOo0SZcm1H7zqm8MP?ZfF3qz|X z6F=CnNlhxFD|m4MZc@|rPWXE_=debHC#h*;+>~sK;?tY3m{Rtls*Ypmj>AyD?>XaFMD8LRft= z&hg(F%rt*PH0}u&z?@TGR3+FpmCF~UpZdIfj+{9cWvFY22<6JgsE=aF?{~i-#n(Jb zfDc$8SFZr-Q+KzDg69eIg}3ykacci`BZz+qAs0M*-$_C7s|7R0~#6USEVtI6LmFp)m1pS zp<#r5)_96iX0uGgU+p6|wkEs|Ls{)KzIG;u4 zAxY*uh=ghF=QS94-P`B_dT~-%xCq5xIi`=Fb{e;@4(>1h9o>TmYksToe#*$;F()VY zlZ;9-utRJ{BN^t4PO?z8DbO*jlQU=ChZ((C%zM(L2N@YVc4lPU7nNvLkHVFo85uCn zDRS!xCahe%p&DBQhg9_D)q0-IIM`Il_B$UJML`)yNqzZK#tu$zHVW3N(w{QEjUJ!!rLr-%Fztu%Z)B<$9F^PwiaggkcjOQ)1 z2(ftYUONJMabdAiZ>GP%9DG}E)pO}D3(cFPWgMF@Mg-v(BgzS(DQRd|aUr7ooQ`0V zzRPR2Y6@Cx+*t*4}+rrN#gGl)qBGMku)_^m>C4qLXu~-+nTw zhgat4!l`N5-KCacOIOweQ>n2sXrO5bxQG%U-$tlQ>f2FljMkZGv;%=*Mm`g z{CGGaGG+XPmVA01!p}z>PVLBoeaQ|0;xI~N-}<3CqHR`Z6$?d#A6{Lr-sHpZCCy}w zHm*)M?mq%1nG+uj;k_))>S_MGFmZ_52qE`xAufKNLJZzAgxd&Q2B@78 zjZiBkuL0!eB~<$iprnrpRP?i96RF6m}oT@MPedp^56(e9<` z{_(Wm?)xRp?xX4TG}h^cIf|91R|bvs#7{R4?3Fol_JPYEVCLZS(#~`J?vqsBp@UHJ ze6s3+wzGV>cVE#^M7bw-@kB{A&X{`bycHh3;9du3A}he<9WT0c?kp-@7rK@z$s1 zK&D=3iL6yn7>bzBCHXWJuoGgeFu6-hg7qYIgx+;#l{=jT>`oq*t@*E!GVQVu>Xb&X zuY_3ND=Dd0qxtm{M7U10ilQ3`)wE5a&&5y^*c7TR7Gj=cM{ArAQkDaxt`%b^2`2ec z0DHJftfm0=&3Fm+eWdzevIHZMnIgkHMjexX?J}iThM)6qd12i=CFWgeLc&z(Iu7L{ zHLbf$F{i3Zi);5?sw$n2s+*>6kQr5us1ICVNeyLSPguq(!<01+B>pf#qYP4)OBG#V zv((faGQ~3T(nSGG_G&Bcf2;D*pxtVyEIg%6jNmK)5g4K^Qqd z%xr5Mr|pok9-(eJBg;yZOpOx#q@o$ls?vz3DxuQ!eSHg*$kprk05?h7g#BXr1 z^Nhr60XY8@3Iga?IuGsmTUwL@d4@cNfr*_R1Xy-IgpSQ0bSOap4o44GW>yrpKT|*B zH19jltk1svZb25jkG|AdRi2+^v9^iNoz0yNVchpTCMon&P^h-AX82H6QE8iyv7wC8 z7|ouXmX`yoZbtDZr=kP3kYHp#QQp5fj>rD!xX*H6P<8ug6xO||mjh`L5qt1Iu0d#Z-B6TjEgS?V!Tyw(g? zM_Vd7HQIqDXjJEnM7A0qjS}C}r9#n0T5-UglzvXmd32S=u2~HU%YswHhHXY+R6$xH zBEcLM3v*nfY_?Qqn*LC9$fOC;(&`lrNKW~X!bYe@8PG6MolZf@l$$wqMnO2nhfGx4 zTuanN^LfEMdK(*`kQ3B^qIs0hhQSZT)x#}S_0f%ku_}uFjjO-C?vU=*&3J#&$DVH= zQa5*=>B)rk#(PIy!j2owMcI&fZP?V}ogSUmg>(t*BLXXvhE)m7 zenFOKITzSO%)CXGnlhiOZ%nX4)JT(NiNpBHv7OFukj0XNj~+XRL!2)$jTXxV+ZakM zxo&s9i)PYIId7FpJH$coYZEdYfO4U7w8GUPDoY@*zhF7 zxympdA(Z|lPXkyXV@=_E)GK&ha=qDB+CUwWBg2aS4 zKS6|a%ufM~i;;%;5=amuU^+AbA1eBqhhW5U76J9qAsA_I3l6J7ywx5av2iuh?X-TJulp|Cm&FQTJeBYoU~&xv?cT%j-h|T! z)2(vC8;S3dN5vFweVw8lg#(SjHO9CIc~b5ueomSgzu>3uP<-MUrrmIubs0XxL5k;1 zoOa^|oOSHWV@lEWp-_3q?wZO|yY4qQgb&VXNOb>$5k@b;-4F&gS#URm6U%u|-ju9@ z<#$8$#<7JB^XzjuzRa>rfBzWSgp?`rFDKrI%k8754$?;hskr8Exh(UePSRQ zdY-kT0`y!SMe;+(!kSW;mKz2(n}QUQ8^oc6l`DT@+QWl22 zHeT*E<+LA0esuW1wHcejLGjv;Kz^j%WKO{D?&?1f!BAN{0JI$&$6%1znhw$1$6$5$ z?JHZh>>3T9#bDsgU4D*spz$s?E`a$Fd+>h&r}j5VoA!Spixs$N#^q&e2DD))tS$q> zk{}4nFPwzg%EG*dLCFB&J^B%j`ygT3jGk4)t0?d8+h1K#yst5OXW(0HSf04=$)Fu& zvs3_Z^t5UDaS#g+i4P^qCqNmxUN+QXs@ zyc(X0>nBPhdJQ8V3D{A^_yaN4Wf#UznFV=<62 z9E7}0JLLqB^tA(R26eLL4?q0y3_t!s@(XhEZy8n&^ju`oEY*CPJV!4-+sulaex!b6 z(hM=l@rZBF>oN@!n8nF9)rqR$5K|rhD%rML)usZZ$37HCb1a{)%3T9$f=E3q`>ubJ zr>$n3WY+}P?W{(M+EH4F+ii0fW)yUyPBJ_3U&$cKXYNlwf`;*#N!M=sMcqlV@iv?{cmBhu8=gdJ|k=|1`Wd4t*xfo-Ttf zn7Yv*`DgM!#2)-Zz2s;<4hCm?vO)3BjcLXdA&+?r1}=E1SD8~QytFj>f}^fX*-x=_ zYAO4}KxR>msipMA0hWiM_RH^usulH;Oxg+E0{O*k%7XMxLLFe{e)&iSDL>-*GAzr* zSRWZyj=nLT68ql8!t6jioRYPB0v#?exnAQK{pvEiDT7|(xFzj1_X^{?6^7m$`l6KhkkG0Y(ja;r92NSiVBug7k(n2} zmJ+o*Sx=&yR9Dl26u6lg1)cI0EkBrt(B*G@uOh!(HhCvm&bJnf%(xFivgt^Wd;B;j zuju4FmM$6sJvmlA=CWWcL9hv-F!EXSGUAaMz3lp zm>aFVV0+`L(BO3#VQHawD!Cd|YcQCG6tXMg@H+qXu$7Oi{o%wd5=HWd!}6SvV~S_# znKP>v>?6{12EPO$_C9MfVqkc!>0t=K+A%EC3mDy(HW6ho(${@i9E*Z=Uk5E8P4!0V z0h(j;AvN-gtll<;joboh4|v|j#<58EJ`Z91I-A9KZKyRtt41^`R;c4*zKzl(6?X5V z@aGtj<)e(7fueSve{^Ek&w}}!2I#bsC1++vL-!5w~&AAQWeRZ=KBn2@`lVQLxP&W!9E zh@yNLf`zdq5+yg`>6WBUX?Ly@ayo}q2)o=^7uvyL(;XpBY`SBoE@b}gfuqJ~@hf^w zI{@7T2(c2%vajIMlkMmhSCM6I9fD94oJsbg9;Ksu@-7aAAOFJp0_b&M6&gBW!`^KN z1;xBlZJFH0#izgH8aQB`3BQ;MQ9H=ZK^7}pgo%>aV-i>ftj`S zrV2~^jczeUEs4L>L~qMSQ-8TQfcPI`6{4hTG8H&(b`Tu_%Ll&*n|2c%t3E7ddKkj} zpmdUnk$jcB-oG@lqPsVks&E&W8`2b|cz6)?QA8qNQ?EN3V$y_&M4y}fRq^FaTE{GJ zScFBx&0CN0O4HxO5oyvu6i4V|)87vtHEAHap%+#Vo3K?>1D5>^npCN9rR=1=S2y*% zyIoJo`x4<$bUpOU>C+*61FvoWe!8hBu4Q9d8IhhOs&q7b7qU`gD(HmA5&3~+`H}4u z5k{{Aes0cXGLUis&0<-m|2ASu2@_G2+oBt5ocQe%;^weT{q-etwSq&w9YKQ9uHK3l zF9W-Mj}E`XrarUp^T4m(b^qwe4W>l_xAL5hUy-ZW4=2zeuJG~A@c+EokB`yyKDk+g zzUk+@6koKlHy4yrHuN``QgiooV|Bpa8vQEZ>a1dqH;Pnra38br)NZA~Y4vC6AXuIY zXt@;3IRL#BHP2JCWx|z#HaP1+I8?b4P{7VotB}zqT zmrz0Ln%>Gx)TXKtEo;|q1%o~)oVAOc2TGm<&D+e18>IRZb#nQYihk2b^G_s-98tMI zsXF9bKaA*gay`Q#j=>S2^&3$0OdXAYYq|96vJ`*JU3`_J_K4qp`)x`N#oq{}SFRd1TMg|1nY%y9!Z7d1olR*Mh+(UA)61^ru8o zX%r=`#OueTcFr!=YaEUGiII{kULtavoyh$Gebu5O0C;6)-9eB4fSO0>3d5O|{BV|2 zv~W5aC)5IFJvD*;FfGB{$Ivv(M^jDEV{e*c`n(@Gx22mLgUCE6BDA4+!nD!}^n9ct z$2@;YSyGi@z4dB2P;lgllZ#7=G9%Y`=yD?UAycqwqO+ZS(Uhb0S=D0q06Xt{5dQ9F zv8C{NwaW_Ye+2iT1v(H}e%Be^-yy6X+*CJ-V4ydc#V#Rrf5C#j8A#?N@-{WjNWelQ7_sRm!N`;&l3+wn z{Rh~mpeD!{%~IC!e!oh~I!RdnF1DNZ=*OwP;<9xaWF|(J3kYJol#Cm~|JgjYRK;jP zEjZRBgMSwDt~dhq$8b#`q+o*B9^VtVhaR1Vu+VY7TcyBgIr;52^ICBH z$!NIC=I*H1aY~KLzyA}4N4=?J*c5HAL65Ky8*@p?qLrb1!}MfuP|)f=8=;Qa&jshB zcZPHB5MYLIEji}7(SDMup`bs1QNtxY&N_d@sNHE{r?18z@sN&auIeB#xk(FL+Sj~h zjkwhKxVX4FSpPJ&pC=^UK_Dfm61@bG4UPt^LVRbtL!F7wFu% z^NcGGWc%?ZW?+sdcdSxv^ z8Zy7H-$r?b$0{BmYn&pF9pjn@9>2iC{g_|g71f=v*#IA?##@7>*)tGMn=7uXU_DiE zUy+jHF$)gme@_U(eOVZ@#j#VeQ4CJ&FK$9-`V-?9gN4IViYG}j#tYf{jaZ$dV>qx7 zADf#{Gj{I0RCrzMO-zP->R@A2hF$xnwtjrO6w5pp;b;7tt<1)ckDr71^tKyw(wY59 zL__-sQ~%W^?7u?T5*Ao`%W~#Gp%dIUVB}4nK)s3V=>?9-^2#{CBVWFe+Ws8JZ&?i$ z?YRm^Z*{&K!jwe{h=S;&-Ly!QLof=ysw5x3!1sJ{~F~chF(Lid*)K!T(a`6FJ0`*IlCWY z%=Yx$zJ%@e;8Nn_*R`kh@-7B`#-{15O3-}b8wt>#&3Qg>-2cY-H%}o17beHetu$cd z;j@AU#jp5MBE;`uY#jIN=ZS~lg4<9{2-e+Q|dM5>+GO*ea%thb_@eC(6DhV&9zt8RuwXw0% zoi?j?o4Xk%^k;V*zh=#vGpQK!OVd1l-9_At4%rwbqAFm~mfv7s=ADIpnIL>Wv;J^| zbk<%@qziwNSJ_uVKaOZY_d5emwbu>KoBUrVH2!patIE zAPZ78O%;vUg3x?D5`ZmYu_w+Z0boo&U@U6o6kg3?MW=c@F|a{RumLp3@&U%?nE_@!B*#90yp!m8zCf z-Dp=wVyxH|jKAZoIvGAGc%2MWe!zRA-MOMq@N}w;Ww!!p;i78baGw!dcZ@rEa!U)+ zuqpTyFE-@#XG3i#_U*xKa=}${47LO(?08NxZPz;j?5>Mx*uKb6%Rgws9&>rIam zUB+haAbiUk!0c0AV&~|U9ue|)l|#Eu!g~lDa>J&t*lnC~TEsf*qwL4g~} zms*NPk9&@_lY3-gnz~l7Zz@&&$Bh_2?k`CGw^7<{W=J)vY*VK02yKNYlp!c%rpeWa zx^aZ-bhl{?=J$vTUb%8FTzy=Y0!f8}cGQ8-s}T^FDXd}|LO*GrL3S8we?Vc%pk4L# zFQgWP%wTYn;s>q4)h9L?tklFOsU*yoH{j25+U8;c7%pj;{Y&~nHTe27^}vDAhVmW4 zdJ#+s7}%eH^sQe)t2_+>0~-c6{}d=OpG;{aPaggN&QV6u1_o=sP>`0VDP;aEN8i4E zt;YRWr=?Uu$x{c0wuz&fZHCo4FVa#{u8xs($ZE>QzYO)aPc8?VjNRnGv19qF_?tD6 zFrZId;$AOWtx$jtXn%Lmjp4R&&(58j)dbvZSo++FQY_-5&jtYVN4Uw5!YohDi%7c0 zX8}StB|m;nxSDILWyMbAh0|W{ma}s#x)vltGO^$898za`SfVy62jsvio8Lw@I{?Rt z54JIEHj!apvILHiL2%10U2)h1-A-)~wfZ!P za;jv+70`W$ZANIaV5$$zu=x%IX0!PyvWog1<+pn_o|m@hs-=8vm!#rL;q8ZE!3dqCtNGEWhf~oq{mX2)II^29eo7Dc-L$LWl_s;J@NZV;D*2~FyYA-?7A{=4IWYqtf6oRf z-;$p@ocw{?=+C%8(h37@gG6g9e%_4j6L1^-TAOZGrV5oPi4;lVY&&kL>w~|X_H*% zm|*kKWK{?K(%R7h;p9E)BWy4oBprZkX`<#$h43MO<%ps_6y0v7HQFuhTfN5 zi}#fU6j%5Bp$%ktr3-?q_)=qjpDa=f`C!tbMFS#t^4R+b-lLOyl0_#TR@&6HgGVOi zS1j&65M!6m)8&UffTxm90?6bDmkfUb)(Xqt+-X6A!6j#y)4sC@{-)7&mdR6mQk7yG z9D>~@PHBG>DAOwy;XpEMs){Dduw}NbcdSeVyHCLq=!nq)%SThNPhlXX68R$6 ziPn+tQc$MKH;+~3c2k(4DX`n1qvfNhj=}OH3tJ=qN|dn8b5ec-<;28<$~H-gT>tl1 zl>e>gf0_fHJ$GzhwoLT%PV~P8>*Qd&4fi9qMv4CO1`ZskT;?~SY;Wll_jhq}lR(c* zhkt}~^3CK}gunD-Q7R|MJ{Cn;hNLf)5+N-Llmh%w7iLrjO1JbVp11t-n{o_M$Hj2L zRB6GZRF;2a%GdIuKsn&ggl~CU3zpy-=m>e97$X0MXSNBkK|v?mWD~`uHfcp-EG#9n zj-E3I7H!8%UYHy=p4m0pmfUtXP#?utuS_5pmXtktMZi7@@BSZ`=5+ z20$GWFUXp%<&%=%wJcFop+Ayg?}W%z{V@jj7Xfg=Ln=-zFKMzD8?zWKCDYJix5Uw1 z3;@^jS+K+?fWEkvRI!=>GrGHjc&yA0CwS}ym(!yU71x6C@V~?bSMc(aZh2v_?E^fP z!<3p=(&J-RuX=E&Ade{?Kc0Jp@oDliy^+ql(cNvURy7i&y~wXo+G3*%Tl(bT0c_8ev!6$_S_$?vvkVqeaT0S_*>%^xaC_pg0Gy-OmGb>F4 zP|`=7Cd^IW0_H5lpVbU!vWmFzZw|5`O+GeP!d5=XF`j3Qjo zp*e!7!4s(VKI~t)QSZYChbGpm_sL_G-cC~_SiPA?DGQ^ubStW zs-Ck&L?auAsqxUq0pq7XW-+DE*_7l(?NZd#+8hLoFGw0Li8@G%lFJ`X&@3v_0^TCf zlVC;S09z>5YpLG&_WX;|BG5Y`wVN_Ttti4~sdJ#37Gpb9-{Ct`kBWv{l^yUCAi?c2 zBn%BZ;3*1D`C3)~`aX*gdhMCsANE)a&Gy!8LMz?~34sefh=U)4cC|VL-8i>&>5TVA z@t7&u)&;gfj%9m^eM}n+kpsV!)-GQOZlp8Rm*5W#l6#)Rc{!ewQ8?0hX^KFgF5WI| zniA2i>B5hXK-Ciy$wTNm;iulh&jF+_;f=c`?Ya*gSbFYxZ&-~f3=5dMaDbpsqDzkp zts+xN|hb(d>9h zv6p6V_|K!o=-1+%`^QW}jU4AqS|ff%^$f-?%+wvF&^~t^Y?^@E8e;m>V;r8MgTJEV z+^aS@Wp7=OYxMGgpccq~1s~gxg3WCUl;P~%cSJr+ikE%2g$g~g5<@A1rQEY*dZ5sa*O{}M7uWDS8P(d#ns{GBSLjdbpI2$76m5Bx6Ze>C2Z^6(aAeWFHQ{~lhau<85VA$F`bgo5wDSC zJ=yM+9SlBs5_{+fj5EL6{DHX|j!)55s7e?}>D6(-JPhZIM+U^m0Z?!#ZDrE+x2Q$G)`3v=?~=!8x?QOYD#WdYW5wTvexf z(Irfy)e-8^1x1T0t5m^llcg$>H+NvVx}7p;^Nd$rV&bJnpg&#}cf*P4@oF1e2sAlf z*6k;Hr*qQ6ubFSdKxu*s1k15H&Z8nl%B~hPv_`jch;#@K4vCcZDd8wfX$5#oy(P7| zj5}7+3VoT2g%|%+uMSGAWQ9Oebp$i>hQw6)ag<6O7x}VGeyk)ps#BVu1%e%|jIg=q zdiH=%PU5v?6nJmO%8SoLKVkVzPql#}!Bl(x(;9+BSJijH_%0eVA^M|+T%Hwzm6K;b z%dL2Gh@!N`=Z9qx@CmCe{#t?%EPb-@5*HnrD?+o>hJ(CeeJHzc z$tnBsv|aa-d|Mz4J4~7WGR|Xc;}b0|eMi=Px0`Mmn*d(Ra-6wFCt@Ior_+ z4vTN9vjRA*?sIfwV6$d@4j+z3d)ZHPf}V2iFFo4V8EnsopQd$n=mrTe3Sm*+@qe<&K{urBCMb45Y zHc~ggQ17vy#J2>RU9qA^={C3P(~1pmt7_6vtp}U; z;rxHXjdiLTNX=-0p0DE8kLak$)0`ipQ+b}Mb}PP2OT*Ppc7s4WXB8oRv$-y{vzTz8 zzKjyg;iZ#+RP}Q&Hx{e(NJEbEg^QvrAyCX}=rr>#mSDSiK5&YXlLyuILac%o+yEh_ z^hpD~AW40@;AMP#>K3u0qIj2DHbjQKsr(P7>`O}Cx2vZyvSG`IBS}!~z(!{Dw5^S+ zlTT0N%azM5SLK;0DmPbL#ptoOkBjl-G!4c+BwBK!ql57mh8Xu8gt`MSSL4Rt*r5)a zLSjNflTczzOe`FAkZ57(ZKP`1>RR z*+%4q6!s=fVhDQo492jEz~ld_c_=IJyJc?m=d5Xr^*AVQBs~IV3bstb%S_LkL#%O; zRLNFQO=IAV%5u#``vwmlGI;RRfThJap>pftB0)GHW2d7ThbdW_HB$- zDk|KZ1*}@iZMRBccF#EJ0rkr0w2&&6Xmf<1TcNvhH&L*?WX>`zCShe&z6Q*|#q}?_h1L2u*QAz{>xWO>% zy^^{qt`a$x>GsCvnmdZne)~63X^Hb}AM!JCD}YNa)_y)fj!Z0U#>60U^qdav=RE9K zf`Pvx&m4OfNMl+7CyA?7(5QfeJ!Og&@KPD1%$GH%U;yLg3#nQ^d3(2DP*@?EUT?fr z$u4eudmhDgJ@#D4D^mRdTHY-&7Om&67J_@^zbm?MFmt^3jsdlasreatyIoeq8JT$CdnywBc=?%Fkmtu^jgj zM@mYFLI?3Y!vgy}f%RjzSw8roDw-@{6ISn7jPER(3bO@TpV}_xwcN;|aV$Xc?%VxxpaI zGrkakRtWA{AxU_66JYU$71%rRl(X4hh3(i%B^dGIu} zJ54oQsFZGSY!G}Xx=0{?P?Hk2c><$Puc4VJ1;W{8*M^lH5F{A$QU743^^^w79^LJf-U3cOEG1_ z-Lg`!^pTxX>@C3MfXB#ahiDxD5u8EV(J32hb4rTW{tQ)3Uv^AQ^z~*@?ds8%%1@wd zjDi{>Q=z51GOJP!##LFYLNq2Hvf z02Zqmj~)j=P*+k^^$??{wAWO+crH*?eh?z>VE+KHwh$TjII`M`0(19+d9KdcFSrKP zkPTPmqrR@N2x|b$Fl9bn>AAwLx`+$>ey06bl7I@cj&A_jS$~9$|DcHF`%;pwlZ`=K z)Aje4_|o_qtcKGcFq&^hIiUtA^1e&+axpO1i-x+!wX|baz!=*Uoj;^s#aAEW5Te!MM7M(&MdK4 zl4>&uX1*L~6&e0!T;4OJ3G(c!8fLw!hDfUv^~KF@^%^Ft6%3a3>^(Ib@oZH0SUiT> zs3uUeXm)s`D(b@O5*yV(X=B($c%J*@acQi|u_g%ZwMWfPyV6^ws%#J4RK2dMFt{Of zr5?($LGWA1^!_*44XRYKg*-@2`_|^A$U(k+DgUeJA^RUr*A>J(OSR!}mL6q0cVBt)I_X#cWsAxChk>WNjkAlm_1xBQ^WaB1|{rejUqB9aBc&w25qRPQQ<; zU0EwcVH3w}A)sV~6GH9_XYt^$Ko}&Fbz*%no+P%Yz))CtF)@}Ma&w6of+Nf@&g@yV zXuZ)z+2&+tID!EG1sM*m2d!R2zqS%iM!$dK`#vu13rsl z>w73k2q6^dC4%%`L^?=7s(>I(5CjB?NKrtLB0?0T7ZK^bC`~$w)X-b#y$1q>R7kHo z^L%Hv&d$y}_kMow{oX4u`TeqI&i|Y<<=NdiQ+5U?7ZYG;C;qqv!COQSnu?Fb5nNY@ zb%9PX2^D)irBVSaDO5uUj{iH6Rg5);L%$A)Aw=uNC3;K12Q$z(J|Yh*i8MdKIIi3d z94cy$hQX6aZh*Jb51PnS6TX2w|7%Da_DNXb{0JdUvI$k8oXVXYp zpL2v|Kn1qrJ52>$3z4CJAg}*V;M@du6Xd*lC|&K2m1My*!c5iChkwbV9Gcazk`xlM zrt?ij>FofA4pk?{Mkz{gE(fSH24k1xB?`wzEE4~Os_IO2yyJ@W>{-NVcPJi;S|1LD zrDr#fb>Rlh@8ZI3Q|K*2!!=vVy)*F4`}pVwH6cuYf@iXZ)iVX3=?zC?oYsW_DHd)F z-WGXgQv@s`(3EYAV@(<%z?eQvQ64L7iB^+i9vf{(#Z^hhBg}T88jh=I8G#NJEa)4g zwhURz-?FK}8N+L#saiW{&YX5@anzT5wO3gSD58y!5r=+TK>)pGxvzoF zm$%gvNR(WZmX?NzE6(9o^tlJ~w9npotHBo}%C0y!8m5}JjHV4o<`rZJ3tm^q{Sk$= zIle|g_QS`c?~X7!G40|>dK*?RdYK+;I4~}GrR{Bwj>V|2zq|wE$Y}nTZ=15l2cf!u zl5@SCug^fzs`rVw7i&bFi+&^`fn4sy=E0=`MY)`cn*~HY0e;rcWsW^&!;Y+#uPir;GN(>|9+MAhC*0!QP*U;yw z=}V_?c9Ds!ib+=q8uw)XLyk5gxo6V&{I#>&AFc>2_DU}bFvlr z<`GHx)}e*azSIkMV9N(lmjm?$gp(xsv_sNZ2y!o=#`KGg@p>_L4#9ef+YQwB5ijcZr?7X}7fy#glri4of22D^aQ zWw9BuBE=qJ)dROU7S-DE<^R8jO>>^AZYmyiW79nr{Mqh5KDEa%A$SzBC-$XmZ! zBt|l5!Kd)w8=n+$&(Sr|bK3wuV%smyxzCN{@z-o$gIRK$@ha$%?xL#&9N{kLcw>?v z`XzJ>S953~L@|#$1dF`(5g5k5wvkg=1$vb-l6QRnjO-Rbu&o7cr-Y}Hf_RJXW_5F& zclzaqC2?Lfl*pSEbl%Ot+HY8TXTyHRr$q%+6U>v0`xyChTrc6pS!Cm?-(ft@K7MAY z7l5t_a4gs} ztrUQ~7-K~yQz!m51_PinoAunJCt7r9%yXt#C25>2Gvg z_AvB|3KI0uP2HE9@ZU=&i+#)-dsD!vKke+w!Do|yV7%&-*jrqT(>_OoF?MrrgOoGY~R@l#Q*C0F%~jtTb=mW8bi zAdusu*I>s3+DvuoCd2JA-LdgXGtdfZOS5s*p*IraU20F|&3imnu1onPgrq((BL|Y15xm!82sF(OAKAWf+`;^FNJwtd-j=3h%+|B7X_;M={yv zylydiFA3&JXp!CN<$)7amq~iz1*6@UK~`rpJ$Kj|5AhFCh@LqlDFZ#LNOH~(c!URE z(Q|&5M-CQOB|>m$Tl%`WbH_WU>pXu>NLY!}Z{1Fhn!&$ezQz~Jm3Vd#s`MegQ8Tm6 z_-%SrVhuWW?K2;9UuNBjvP7FciL7D85c)N#krka|zcc)=UkotsKA%UawjM_FR1!S4 ztoF3$*c(&avI11+gYc3()3Y4%8u!H6T;=O=gno8LNaXkGIKHV`Y4o|^s04f}4JVJY zBk0Sd*q{l+VNc3h5AYgOK_v=ZKSj$;L-{b=UZeE?b(rH!KF1erK1{yzmyC%Qg#L8d zr$d^>T`I5J7?XOK8{~aIK4EwXsOd6+Nspo0?O{M1PC7ODCQM0Iumd!ff83fgm_&?} zIAKnO*BpepjA&A?knok9XG0`)UZN&D+iCd1bm}KJPDH_Nwr>dH8(kuwXikVK-z(|9HKet6MByy&6svh6ne?C#Dh*Uah~jLSK7vSh?5q|3wYdUNdIQ zn6YCvU1QcDQ1zOg*aloUR!*wodl zudH6(qbP)raN0zhUT|#e#yILKLP)nms+{lWL-c#YJH2gMFHxk!jcb)8#aRg-;wO$4 zf*s*|b67Mi!iv&4hUAn8W*a+G3j%kqltt zEL|&u%wyv=`hXj(+i`!J?CS`vfwsfcHq|*qUv}anSSAfio|U*(Tve4&cUnJw?AWo# z+*)Zg{3eb++*$2%%)~qFjuFgQbk{BM>$ZzrG&`pov1@}ZJ(wlX;(j9&6z$*%6F0CT zVn|0KDQTO zAnBVI4U=I22P!w5;~IJbSUF}-iit^=vLjR-D`OWkq73QvE0k|I!(d211;-DUk zAxB%psJ^^pv#x8OJXyPz9}kBDx7w^|u6IVT=Ehi+FericIB>$P2N<8X_Y$%MV-o+} zwA$rRw#}FnvUGrgkFk%H(Kxd(cK|i4OKYk@WuRAi(>B;O+?X!RF@p9JZ12~+p%*o^ zVQOY=7+RF7Zh7DjvmLOveML>s_&<_N_C;?!ff4_q>h2u|U%h^l1`Z00N-gZ^A`@%~ zM7o92Z0ye3z^MnP47Zsup^XRXLGXvXo)Pa$tZi%!o_@_4PH-=dXGE(&hV11t5L9aj zCTDryR7b}~VE!0lQ;+uLR+=$8;qwh9GXL8y`BKF`cHQ=q6sT|%#`@Zxd~J0f-4KNn zF>k2;cb4^G8TLW*Y^ROgk=Nk(_J)FXZ4aIF@|4VXpZ}mO(=v?bt5RP%c5U>;_E>9z)r8z=p~ZYr4F^ zqN(%>UAuar0w9rH%dq4BC$KR(SDB^^VExPpM*voxW0}#vixo@2N9--QX%e9xw}16y zqW?hhDmTQy6rpGgNoS%qvI^|7XJarCz^q|JhEGY_Ip$bqw1#~5IyBi$deG07c61&R z`*#**VldJkMKT&Nah9x+Mq=1FOT)r+DK?If-&t9f-cFL5vvG#b8!zvYw1QqXBWfc7 zyKG}Hk&e=>`4BoH-O>;CiY4-;^^Eyfj~oc!+bvdZ&F5FPXqSyQC))AW+vv)Kz3qR$ z4VT1vb`bT1_pug|*K-h@kfR|9o8NIj2plj72kSTyw2CH(@dpA3!KVJP0NZ;xx*+(F ztB;Gy4)_BcTntJXB(T{i4zGsQ?5QmTSotWtAsnV01rS0o7Y75X zUQ|Miy%gL)dQyF$s3^t}_WlmgUpw3$1RRPgL^b?_T=c?*KvN#1SOBD5mNbtAS`cz# zrky|+cfPk7>4ZOT(h%^cwH9c^n5#dOkp_Q;r;|G3as>rCKut;g z&ttS$P&<%afCKHS)RvxDkSf9`0|SCT!?8%PCxZ|Ql0%k-mzc^w`73GZdb%{lUV8qkf!_=B%`6#;a4q&}6pk&$Fl^)v%8ZG5#Vp&6*i6;Sp=@nX>lK~EqHd1#3L-FKuh`5G{O@3F90-z<(PC?7+p#l zX+~M1Ml@ux9m_H4=GVbLS(3?&GsFjUR{uJ~V913qCU@y=R4iAiQUQ}EA85!xC=X;L zJoaEL?Zy*)!9EgJ_mawmfB4ySnCG;GvOmFK7v8e?m)eq%Q=9bb$iGtqezTy_oh6j4 z2T15i*Cqi-AsE^A3w10|2A<2Ma=TIqd)TBy^+3jspy7Hhx`JgcMaZFQkmfYh&#o7$ z3R8P77uT_XJc3$R6*_6xqM7ugN++Fa2+?#P6ObcE0T80*Hu;@&g>n|vXg$as6hNS+ zNr$@ljF?s+H7@@qgicC+Adt`sX^FDbEWRQcaFbT0496n7hDvi{3H`IFZflQK6PDoZ z9k6&AJNwh{e% zkk0F|zD}ObsrIa_1k3#PlQmAL2F-l?_4wEuPHb6BWMm|HEc$s+>6v@iEUhnlBROro zbetM1PrPs~FCr>ee(jK)z0RNBmqKcisub> z=%KkuN1K$WK5=I#996~Hgn1X(H8q8tox4zgp&Bbf>b1-b$7bE*@@bj*kPvBK?L+cH z_)}1AXBjM;<(AC6GeZ=|I*N4)9Gz@$j_ph?2$;DXiO5FgXMlV@a=g= z7d;|4RQvUr()Gnh=sPFJfU7v9FvF*0qaixOcRdljeRMGAp|mPG>AbX;9q$C9b*xVc zoQkIpIe7+W#tnmVUi-?r?;zUuX)dP%EH-+3Y~La)gf{)5&Y(_3SoUjLeTN9zzbW{S zzGVi$*SS01w}Z1uJ}^p)o2s0km+V9%7>nvr3R z;&x8V$mnI|4rgTiV#bbUWL#w$x5XJ5Rs#>KNv#M%ec;m{QxA+3M*nBAH5QG~U z8OKe(9sl>noRmW}+|nD}u~ZG%m#47Sw3Pd#u~JeES`a{m`QMO-=l zN2Ag?T6HEfNRk$v0ri()ZXl{A(LzDu8DT1JOwx)}0SgrIDbF1SIg#qQDFMx_{HKff@pr{GLd zqu@XZ_EQGl3q7>{adB}=Igtuc`2HY-K2L@I1>aA59TAD!dBIRGnx7{~OifT}uY)>`5xz{c|WPF z`PjK5u7{Sl`Ebez)9YX}Tqhbol=!pR&*LbG)|IaqURu7xx_cq zI)V_CFTK7QvlH;utLUR9Rmk0*oOUb!eX%V4*5mmf@^5i1pOur~)|H)j+588JroAUF zQnT|=UsD{nwI*C_TpCs$Ivio$5D;GS$~QcO-VIm6Ur;QP^T4R& zMrx7TJlVjZSZ95>a_`)=>xz=F4EgbmR?*T0a_8*?FPOyJPkGN(GgVqOEpE{=`}ADZ zthu8zv+H;}(Tr5K<=Pzd(NCP!0TazMq-9+8aeyUb0a??f!W6R2fuW^< zHH97J4n{QM!K~xR{f2bBwBm~>9)t9BZ(x=K8$g0}cVHH7ZC5OFjC9vIjR<$Uv?Z~| z16!SJwChbF(FVhTZM5bKtCQ=x2dGJBJEv4J^tzICZ-b`S0nEpQ8_7TxVzEle(a=?5 zLj7Awde5lZAu@siC^?;IlQQ33CI|Uuyg_>M!rt}jZO7z*^Edh;mHvF>(I=w!WTTZg z37JxYOY0SiwmmXX`i}U45Wee+@^#3h)(&8f_gN2pPa?oZ@l{xvBpQ0B1(GJ?4d0joSz(s~GjLeut#JPEnx(aCe+k<~ z{bs6YM6vJmT~8Yl$u{~R2N-A5vf>V_okpfxk{oqWKJtMslEl)SxEY20uqv4mj%caK z&zwMu+^yl_4E@uhm1mMY=3JFM^WVXVJapW{8JexTO{cCOuX8T;@K2`GqA+@a|K!0| z(2>KWS^k|#F#r3G&1x&?5~hZ{4=<%rAk)ric!}9|3s{fG;@Kg$|%yve$vF0q+@e z*{F@~f)i-tpSeksCVV4M`~k+zQLP#GpwiRtF19uBKLW2`G1z_sr|sN_@k$stF+!dz zc;DBZ@|_OZU8o?+Quhyh%vwn?2d8u}AYfe?q2JTtn0(P5zX?KyOg5(4e8TNmQLjTeIM*D`PZL-amr`Ur0@`lRFcGZD-t<#*ZZ0kw9AE&2B0kUrcX^GW^*ZRh6R@|b> ztp$hpl+9t+!GgcSeo3j51W=BFkx=q0≷D%kRNfotGO6lJcIW5E2$(J;+ub&|a|C z)YhS}Ko@yxIQZV#-x)Aq&98?h8t8I33Uu$@y&Jaf-FxTk8TxA^#Ti&3&CyqXqLidv zE62B1+Y$|adsWhgwQ5*sHa~{q>+9dEfmVwaMG$;ss6e|Th7k|?H+zru7S!be2oA`H zP;t<;z0W9|@48X}EA)^EH=tZcgt^QgOw$^w1heuwy#=eIYQa!ON5G2OrwGPx zJD|0shsq0Zdh8Vve%D?h0k{RP_YMwFS?@$R$MR|_bg#Jlvm=zTyc$A#T$rwheJJYW zCF62m^ie_=)Ik}cv75io!sF=9d*@P$QeM}w2m7$tB=Ypc2@*GI z@QxEFqV5FvuvpH{s~*D+Qt9c}LRQ(lNKMF_>=bY{Y&3D)?xy7f#B{byo=)U=@CWA< zS`r1dQ3#8{Pz5upGch|^Eyx~!9i#3qtV<(dKa>}=|2beOh8iA}ciw1|pgXDs&atPp z`tBEdpf3sGcVQjRd+-33j6NtL1QBWsik1EYnBzvQvQG_k)2A??Y)@znntdzGV)Nqx zYq_oP!0J9wA-@{C;H3=Vml`!{IDExHT?%vutOje2p<$pvitUzTRq2l*v03cC97AC9 zJLhk!WoY!8Qvdia$-xUu<#OZ!ENI+ynFIVcCXDU@Jcfzc$piZSl6I~Zb7K=W-uOzS zLU~nS`GE|}aUS27Vd#Jy^E^Qw$n+pRsZDoz0nA+)_Q=x9eio-Rl7XESA}u_+@7gcZ zL-&asYZp6Es`nb;Yrwn4h>j!Xk0{IYAwKFdeB*U=^^W9kcrfodvazJf?DE%CuG6_V z(fYP)->>!#Zp=i>l5eQJi%Y(?Ff@G{6M>wtzW9vkHp~{`^b9PQPhKytTYZcudo6kF zW^C}Ly)ZV+hc|=CgxR-jCuO7E+qqbMK=Hbx1(a#%f zI!jxPen+>rqEEz5@Tb02n+!Z3xXL zzyDMd*uZk_()|P{$Hb(Uuqzgf0e^u`qQJIDAMrkT&hOSfPl5w<7PPV}nXx4D%%nM@ zP6k=RvCQaKSf5cgIVMp%5~qt^K2!kaK$1*BjyR0*QU3ALMRLKgw{s724J-)0+gADj zio*NHw#d9Ck@!o)tEAo%FryPc!k6o^6@fJ|G(3G8uPECFutm%7cb{j~<&X z2v&}0OymC!OA#x>46b(lRM}xLu+qmM4NNf@?l2eT^ghRvq;~gYC4?Ok&AHW5Ls_@k6a$ncOw0O}68EuTq{hnUPYN3mxOz-h;<~Hx8UZoNkrFCt z{PUcw#NXch>8E#Kb>R|Liwbyr`I!E=SXp0?Ny|{JJQ2dA#?~)q0RNzC-X*TX4aNEO zIsmVUDEdNohLITWAUH~>ISU77836kTJGBs+a0aS)6Col@<@L5^bsaMG++c&d9J~bYe zX#R?A<1(s*PriKgRpoIqy@{n^rz+yZb_NssQ+8v6Oq%Qjqw(oFIinPd93Yu8}bzKLuArWSsX%b}$+n&4|P2ra|Y++agwSk?!a zeYR|3wJ>&;TbKCK4fY=Xf%h(Lc3+Z6wiQQZC3*jd!u?VMFHhBl7b=RmutH_^QIvHW z<_*i6^V@8GrYL)~-(WK|)(-4`PAXk1K~a9P|5Bj0f&K=WHz~?lJA?pJE!BeS30rFL zjTbCf{|lj#j}#?Y^D7tua04^W_ zQ8C*Pttsb`^O%BnNuHJFV6&YmY9q29P?UH_3!sVQfb<^Z5I8*mQw%G|xf-+durk_~ zjuG*?e0O%Wrm{BGkorenD=&vrFo`RqtI<+hrO0*n^hfW%KW=Fv*~9f65LzDSs|pqg zA&xu3_)7FF+z~6IBMEUgs0Xu#^FJBKKwOdy|ZF(l=`tWtm~YdHszna54?f zEM;$dgLYi&-$|TR)WOvmUK>f=donQF)YJ!W$v`yN+$PN_(ou$aHs6)T&tChKpa!aZ zA5KVIU+xFq5WH;J?&q*p<@j*Ne9m~f{NwcR!#heIO=q@VE)MKU96DS)mH^xKo(vUl zzYDwic7;BIaBJI5+Rniz?Hx$1)@ErN-iC@WO~TL3R=UIG`~AYsz2ZXnb?tgmq6QlQ zLkOKEQiT1JU7NZ>-8de3gobb0M7i}s`7M%}JENYkYIK3WS^SeuoAvbUiS~}(1iL5G zT&fo)YbvSk@GRYq8a7>)+!MT=mo2_sZTka)T=UyH-Bpo-GZ!q!qf{ROXLAr=PRQ|vM@$Q6EMVLKVUvDD^V3sck6oyCR} zV{EF}!v@)5dG7Rw6uV^UmAy|(rRtDvr}X#x5VeSLE_rJmjl*Wrar>EgH?Q|6#{Md=29Bm8OehcOXgyR| z60v~+fP`Jhc57ZRV3+f-U`be#pi4XSV2ta|o0_l#TS3UZ!YW2T|5?kLM9ZOU+VY+< zCS?e8GC4!x(1te*wt6+C%fo_ruIv<>3{u`97{A~q)hKqv2bF^7;sxJt_WB9H(q%#j zjπZ^C080*8d|D{jk&7J<5kgS0xrqcAyV`?Hc0-O`*A?>vM1l=Y})gy4Qnp`c>-K%7a7Bv z)M+o2weh@@H*tD^0908%&yBN91rl#RO4A)3C)g?>);^kGbyMB|o>V#%t5!hlLcV|4`G-FMJGN#`4|_Ij3BS~lz#x~b ze6UknkQ+<}Avb&5{R>Q*9Oy~2`L8g4Sw{aKY|2d1yadX?!2kc4w9?$=#m%OSvZB4> z{OWylr`cOW;j#kj^P_<1{FO;x@@JU?8-M5PuFaG7Z4DLwG z4zU?{lIG_6XW&?yYY>Q!d}bPQ*`~s>&bD?YEmmUIJ!`_7?o4W6xhF(ttS~L8#Dt6= z>9xH7KFF*C%UIc9#fsZ%K{yPBFs{DcBtpGoRh77h85z%b47DGBFJtET_L99+3l`6c z3hiU|pXKyni`xSn%ZN6FzDIE*!d+M3l$qH$o*pf69^Vrq2(8JGV}*{mS;r|e_`k?+ zJ8Zi-!Eeuo-_Zo+LV|D{yWVN#WSzpNezhymSk^%}{%|qaBCd%O8>H`jtPpPzN6vH4_xPeV-B|!hTbfx}LuK6#-T+ zQi%rkMy0nCgdR0bYNImKiFJkbLKMTcXI+!?4u-9)>g7EyN)L5|PI1I#MTq6?7Xm%% z2)i3)rHz$)Wvtk1>VLZi$_^WT;L&%ET;y#!i*7FG!imhN4t#UbapT5KFn31BOz^?F zmRh|oUC!ylC>J(tXja#l0Rf5aFng!UE9=T@Qzn*L#-m4%oS= zd(p!gH~nnZ*FLq@@14ijY?@Wyvxcb(-Nt+Qj+|+zTQY8HMtEWucDfse%y&4wkwKeR z4^K}|m|H6A*b_2Wz%shLV%M^c1!B1UBHyLu*22Y@B-@>zGb(=VkRes76&NxWCaM$6 zWGJx)|6#=2C2`n(3#${4?Vgr}Wj_ZSgc>%~>wdgn`*CvLgKaYH!#=%JaUd0{8;SL= zLsb>+-+r92phcUd&#}_mQPb6FmzjnhjDkVt?7a<;$yFWqgdy;9Uq`Pz3Xeo+4o4~T ze|=J+gAk8!2?urqCoh`Oqi)?d?v&%Pnkm-`Ydmgd0@hT_v3ADb)v{wOacf{NZ8_$B z0WXxzq{2Ar+;6{~v+3J!hxqx~g$iF)ZwL5CM_LYl!RDrhy4Bjn1IOsA0>b_`8MNGY zi%P;exU9u!m=unqJ2Ie+EWB7bFTbS{a|>w0!18aFaH;mrI7_==%!^jtLdXn@!%#a&GgR!y7auY#lk7?!eY)*Yy6A<5+G4nE zQ+k=QHlpJXm>jin*ho6Dy5lUL(&^%J04S6>^tev_`3u(+r4C=< zj}w%r#RDt*=1FAdbycbC2M;$>{b26|r2(&J#K$SOY|e|phbt`g`-+LOWae*`n5ry; zq5CU}bP8dI@_?V1Ff?mmWuQTGSDzj7Pc#Q9Ns{plR3=Wk|7@leic*V9#fWxRl#r(vi397YkPR*Fhqb%uTqoE2#ob{Z zho08jOq`!P52R;0e$p`n9H2pbasx@+zzG9GsYB#wbMhX6MR3U^dVUZ&#p|Jbhe733 z>s+Ut>A@Z@_3PKqiE0V*V%Py}oI&$f!1nSyBks;7ys{q{a*pc`H`rP?ST#3TEjO6E z^uBbX=g9c~2BXJa7unp?*>|9MfyDz5t_sILYi7@${gW+83gg>y*{``39}$c?YEoHt z;C-CD8TH;Q#w)Xf0#Wp&no$F9Qx3Qa4BOV}ks-e*B0@RLHkF(aO7 zAHLyO8ESxqHsecDuu_Cz%HPl|l5k2gApjCDu-+{*q|IxN0cmFhLrfk%K0dv6V|GQC zrqXWp>T~LEd!?Ic!yxvn0KPs+Tw{jVOMLBm>^oWMDm*2j)_9R!YA-n_*gQ*>>6r9; zw&1CDaU&K+y7YM<>>!|W30J+2k;B59@E6!FsK-6>ypLhWy5_h`cPH|mM##^O{$GBQ zP#GjMH+<-9Ao7!knvojktxrC6vjJp|PBn_O6_Eh&zT4p#J<84GACYbxwFm7H)k-yZwe$hKiOrAmH zi6&}SY{@B^w`fSddenrSBMj?8Jdo%v7W zQ-x3B)gAsAxQV_sIQk+wjrWTdkyWZ>&nR+;QBlc7q%>T!ex5>3aj7BLzq%+w_4mL- z_6Dy8*wW!=(p_YQpf59rI$*G2r|3POYwR)j8sUyWizeZ5j9h5vNK0cBB*J5~D473@ zcK3=j$CId1B0lguPo`FpK*-o?U4(lrJ|SZNH}WbSk<8yhW{(jf9T*(se*8r`Hq+FN zULV-qRaQrVBtzCagnUNI)BqbM!}^h=@-pmCZhKw@u^UjX87jJdl4hurwzV zl5u%di(H=BvS#&ZF*?qbF|n9|mW(<0xk1CV+~B7%lHoT->NTm=KoG1z^A}czKZRU@ zfk95#AAq31K)QO(0a7K(405hs1C}li1c)#J)|VNJ2YF0QOc&)bOAFD=Fb36Qc#SwU zVbE}8EwVHf2?SApN@oSO8fJR>j|K&A;5wy+?;3=QoHhJySl zNufYWFaZ=nT>Ft2wnhS`1$$yDNEK-abZ7x1h$32|BKS2=S_5#1+*mQ#@^iW+O$QFl zRUmLpcsLxF1%Vr`^gN_4J<$GfdcIpIJ9OT>>59^pGl@|54ckA3vt^g#TTahL6aH37 z8t+ik8OxMsG6;^+0?cQyHLK1@Vr35MK75|D*O|3aC0Ij;9bFR8^_vZ2l}geEu6WdH zR)7?Ir6`kvNtTFFLKWFEkN0{Nx+BBD!ZjD~K$>O)D7lhpDb>1x3v#0(N#n!2PH5Z9pN(UwF!S6x%_U#=CeEh|M z*zfY#As7nLU5Lz$UWgZ7s0w3VG~yM__(<}zNpnPrcp~*~I+J@smjX-_*^wgqxUSp- z`G&tgk<>0+28?K}6k?8o8a(}4CW!nY86@*sM0QCYF|TzbO*WDMo#P+5M2zUWab&BR zn3v5%D|U}uf|0DuzO{xd+q?IatvPE!$ndUxX227lo^)lr-NmVrOknSQf-fzuWTawU zKf4{Ze*L267UPwpejFn&vU9T7lx<5A8k!M~fcxwNj%7yU-Prt_SjA+y%`Y+8Zl=u< zzhN?%W0}!s#5KT-a6}l6=QvjM?_<|3BX+7-G`BMY1H;$qGFJ-ajF4k!ha0S3iqs~P z^s7Z?^6LJ>U9}0h{KFgeRyQAo0VdlsX1^?vBRE*Ch9P*Xn^Ynd&e_}Ly;;6Eg zXypWU6Sz6}q6H!JGrKj{clb}+1VL3sGIx}^eKNygNPisv6BD(O*}6x>Ep;?~hRD0& zc&Bu|Er6HaHYE9L*_HUY;H|5P`K-h@+w&Sm+-H^K>hL(p+Og?l=92ICa| z%^=xpo1sHzN2lSTEDxb9qehK78lR?4Qjf}P$1=5^uJS_-FKhxBWD z@_bZ5u8>)Kzc@LiQ@L_g`<>!+#qKcY$b9~*_wj;E`-!PQr)B|oX$VwykZFyI2 zC6V>~3-3)|lglvATno1!u{}=PIh^5Yctj!2QyC*b9^JXD04^;$q$#o@+^m3NScWxrVmrp!}tz-C* zeG9(1tgbJrjZb9fvG(|;IxXafu{k|t$h6gW>h&Yb43^_s8%ulJXji249l0>Rfy0!> zfE|GsN}wtSaIgeIv*2a8LjvZmH8U=Q?%FH~yNP+uuS23>6c%Df0t9$cwdf!E-(nvf?uVTI`Wth}Z#oR&GWJSrPS$TvJzmylm+0}Z3N z_pQc4ld4OS)r3kzk|jCC2_#PC{3gJT>ZhU?cVf*`^@pUG6U%j;C>L8-fwd5ioauFZ z0SeFd@BbYVa_GcR(=Rus!XA+j9C~UAN-y3ISO8Z(J(|UH0U;yA7z`#5 zBK5+&2-z&t18lGCw)aXTq>fAxrs%(yVXyhN8hCrcvZLWILX0kih2{O`W(tmvgRdsS zXRtj0kSIJGlUsvIzxhERyp-owv~+;#g&*`*8==g3*JEQ5lO~bvd<>s8`+nr-}2jdM#LS~$&KCuBHwfSxNE9mp1)Q|bgn%&WX|Cz$;t zm~)hKO~-+{tk*THQ^utQIonQsk9pLIB+PwI@p=z2f!(v#tc8s(9kZi_&+GZbc)Gt~ zO~01BYhpOPtqt^lfyu7g1q-$+=GlvUC z;kA|^@*NEuHe6ZU!VCGf7`oSWz_!BBw_6gemur`A!T)o-tChd&vARzblJ?>I5aiDh1eGxn75MBeOAsfl^7#-ZJu8kAFR6;6Fu3?cX> zDoLQ+L3onZ33LjK!nbldxhf~i5&W41LY47d83fqmzlD{2zUIRXG|YDPW!gd4T?X!Cef-t5_%9!gba+g~EX<7cNlpQ_ez)4SL|G^9f_?QsQ4Wi- ztc&eC3$s$N>ydJdWmt5Pi?ElBq{mG6JKpYm^i<`_uv>A2>`___>CLy&uu*=1J+5YB zS&><=*65KHwNbg?>(;cN9V0Nh%r-c|;%R=Hf))833L^1t5G^E+HEyix_J>!mv5~T2 ztVrz6E?v5;4NX&&b459Kgcgmids1EmSgn+qPEC?6zlb;qunvms}T1%gm;GxZ1kBo6ZzIJ%OUMf zKfeO4K42>WMEVD*oV(wkc@C^Vv@ZqEh_LMURaa`ngE`R-J=Ee3)hjS$$Pp*zb7Cw7 z;S5qIhKfGc{LauXH5uFgh9R^kT_)un8&{9Cbe$j5@A}b9A}rGzD>ffoT}}kO=E-WH z>@QcPiznt_vO%V|5z7Zd0MlNF0%bQ?*1t$9*L5%r6aatMjBvz%1anD;a1o@pkIRA? z{TF$eWeRcx=ndjnX0(9I`R$(py47=IGk3T=J+$#MH+N*D_EKDP1a98virL&&^bRSh zjt+{KwUs1iSFBi(AUx7L|15Zg!WtRlhXZ`XaNnKrp zw*~R6Ee}CHAAi%*=_BX4te1cs_>A*4P+O9AW?A6y{{DN3W5HC`K6>9E`?U16I2QA`aF8+5jj)(EyTq^I3-TB9GkII%sPC>zAy-&u z(i@H#ZVRFNiZBJL!1gd@`rfD%xJGh6yvKMQyt1enUt>%zUwSftbP$xWXv-Q14NSYp zJ0h@uN6bi%fgsQG(5I?!3_lcr71fm!6(5SgeYgd+(G24mrY(b5qhSG9 zFsLvb&(6_y;Ib5aPxbH&74=%-F@8#ik-|jNOK;6O7W(V2ANklcUPqt?pu73GtRiTC z?SC4hKhgiRO*i=*4(T0|q&E!oocEt5Ofi{WV>fyT(wiws4?aJVrbjV%ze6#ZO_*qw zVsIFd6dR!I6F1?* z-kOSikwBI^TL94eJzMt_lHunxi2~IhVJB^o9f6jeoNwshQ%3I3l4pIU&IAeJSAd!S zn;2R@E^_1puC#eZKBI^lwiL2~O+$44k+$!>_ZADaUrYU2l74(nA?8-)aV?GsZ+Dz+^g{@G@YbRa$qY6*#|Ct%P9jK5CV)m|EZg>A5$AX zD1Z=t;a!1yoqeHRaHp#XspROtCmK|fFNhtH;*)Md4LD{4jCc5ULcZp+`tA7Kzf@zGP>- zj=8S^ukM@Z+hv_#ilWSK7$-m6n~aa=;cb))#o@hS3aiQ;e5D2lj>b>4PJ4k1_#~&< zW#@8Tx3sNigzSWOJVrfN5_#5sje^+V-YZcLShq2(%v{tWDJ> zA$xL(t#(KOMOjszvqYVd1rnnayH`&Ps!oig zzH`IQXhedcK5nr0BjtK%wL2`diS#)V=l^BrzCUC7^oTP-(}Q-OaTGNS20Z9O0SMNj zF->Y=vV}!+%Lp!l%HCD0>VDL&X_bnc(ThrW0oj*(woV5vr=1>rpjxfg!ksb z6*{AZqKx3NXRh6KJm7JM)VT} z;_GLVHzHoupx-C%OM=KDa@niV;3=V@p}!99W~k`bL*(=xc+IOpN&JeCzxxHqja{}4K+`tuIkf)YU9$?>hrt;S%tsFEZ(y#K6J8UZd*_>jD?s@7v648%2UqN$FDPc^zSRtg`4vg5OX zojV6YrN8KEtM+W;D5`}&EQ7kbXP$ghuEIwgXWNKhBupy*RPsF+NtWb2`(N-Ww5_&G z!TjoG&r8fWOSFV89#$r^EQ4+YuTFe@yb)!u#V910RiZNED6}5#*qk$FG-H+EyheJO z&k=7_<@<1qdkdm{XTU#YMqc`{#%$(3-wpB5Ao!OAJtSDoTA#@aJrhq2 z8Pp)wMrC!Jre}q}Z2b}zd%V#GAqIQSrbW$W%C$%}`E=I^=lmwh(S6LC?%m~%GL!LF zm8=sZyt&otSW1Lm1;t7wBv+ACS(c;Lf&yNo1G!?mt66-le9NZ>G13iJ8=WI7%~vjK z4!WWj$Z25*5TFC(ob0yv)AhWr-H;g@o=#*?xirc1j*#zD=>|65>&ZE86v0gFQ~4fI zwNuF&rp+@|DDfNFC4;=<$V{6o6Y<=CM()lra<3@q={xzypdWwyvADDR;}2^e1>xH; zW@Ha7VbJl;ygq&U+`@FQf(O23R4mEQqPy0#v7yY%v(uDJa$bI zVP$a2Ky*j6S0yY##Ydq3F2f?q%Q5`34D&vScQ;MKeMNae-{bSA@H+7`@n$HL{3oFr zLVv=CRb0o_8rmSN{VdG)rhHmuOv3c#GlzyskOQ_Vvb~RKpBIT#11&S|*jdTO~cLb`b z*Gs~e4hS6A@4=k1PW&5jsl1#~zqq#2f>oAoDTh#VH`otuv0BpfehAMe$8Jg?^ur7} z_Vf30?AG7K8pv%fH@nzQ88_+WkC5l3x|>h?hq}QgyTJyK=Fa@-oa$E`U2v)FD+aVU z)<;(2%sYwgy;P5B5ULP6HsDS}^EDVql5Mw4?v3QZ?NwuH7k+chv=p+5OYReMK{p|z zIShGtSFJS=LaljD%#ITMSbRWw^_M1tXXpm8m*qx-< z-MFU01SuvvDwJY-p~gia+Zz0&vIuy2dEFmi+3ahsyGoSo@gJ-xt7Me|XE(UR&ay+k z@1HtgM%%(K!{!C{=rE(+M-^pc0V~DT>@--DNbsDk2ib<9CeaE$`-%Qi9T3gxA=D@y zyyVE8BPw=TuFg9$DZshDyCNY+&_Rc1jLRBiBu~$tb1vSvv#w_o@Uv}tdM^@mCpnyVXqe({LE7BOC#@uy}L= z1opr;+?e}V|4=2*Q|e|1}d~Va^v?!iz+xo^9KYcVEBo! zl2G0T=5KX`U=lGqARu6E2=|Tg9+2PM<4sjQ0Ee@Blkmf_W-0*$GuXHI8q z9x{=UwCm+tsHLO{*!37CAcGxyrkZ$#1pJj5;fO`@tu8x8C}TNkBU&@UmS=;lUL%z2 z5?9J+3yCo6$EJf29G=vIV;RwJiFBhfD47x*ur@e2c&#CAT|tljx$qu~XHsv!J#-;f z4liVW6%+d>5IN_=#C+6O9-_SNpf660zZ7ACCpuQHT=`U#2t%s1j_iHQiGA=Nz~;(r z=DZ}ws^Ifn=B(&a!B-Oox)h83Zosq0gh+3PZFsw3fxqU9N&J}S8S!mc9V;l+z5BFT zBMqi@t(%6oj2#;h9!Gzxb2jWP=yXAF;pkKS`W-80!+r$d!uIV=o7!Jls?3l0w~D?t z>DQ5ew+0H={bFgPpiZ;B`PG&%x(H^T&C;A-A;79iEljsz_cUg5b$gr9CbT$cAEIP(t zh0v5|#WceFKiOu94fBZmWZE#|h^+B>K>1XUO5YTulCV}d`6ORMw)gI=iz+?Au5?-ZMjt%UH!|Fq4 zZbfDrSBn%n4?pYkIeh*#u)y3WM_5Nxp#R^&suM2zZ~&o?p2&v+J~|`Kf38PztS~t& z)$2uCt624#PLVMW;PvM-;jfI8ZygnWCKZ10-(SSt+m-qkuX%d|?7o=3yo)EAc8kLT z;e5?Eca#3_A@oL+ma-`^6+Sv1OExS9M%85cp9%NK=Vjuw&!b!0=R*)W8SdGF5cLV_ z9`P2V1mxo|)Q%jagOOcguGt~PrAtdou_`L<^*eFJyM{M`igSiHPw%X{LWnqJUvvIN4b+^psO6$X zJ$r6}j@7$%*^XLQn*Kk$u#p{`O(LK#4WWXaPh(ss+Aa{ur^3K3mDxIC7|SRDY4ua^c%=w}ftEu)_(-uNOG~9&){-X^kf)DhaY4H9{RD z@ucj$h7qqBj(Zri^J*JvpfHn#i3$?|=my)R3bxl0R%RQ&P=&P#cC2Fp?Mz25TD0f} zcF|{>4dq)dgb+@D`M0HIU={vL>HLnn+RSLj5Ukj1#Du;j5l7fsH32vqAtd7Mmi+5c z#}~n{#v;kDI#g+dYPMtyF{IjP#&26jI4byIzM2p?t{TlBk`PRv z_h7+Y?Q@+(bnF-~JJPmiwq|9Lf)`S%B|q>6Ja_`Ht5SQ2BTsMsj+JjI7$C~;7VLr= z^V#BZ=pj@*9EW#AJ(UQN7gHe;y4o(RT2_;0|Ghc!`n82ESk7zOZ4K0abY|J|W!(io z0`j;W`Nz}~k&($eYCB9c&|UA3qGKH2WqBBmLao~e9f}5HIN^uqb;P5=S=aGehM0NH zo-bd%QNbi(OfHjU5Us9h-QR11C$RPD8{0N;eWmSW`aC6g!WR^`>dXCShpyqD~a#uJ6V6i91)1y;ibA3NC zgkbSUdkU2pF=AI(SQz`de>cH}yM8lWT?PXGB3oM~d~d?<0D=Cya&d1@cIXr)*){Ca zXU+KxRfZ)gM*^!V7z&{y?Z`kO1RJ@1K29}GujTu9n0@G}s)j`!rr z|5;M}u%Zs#_Y<$uF6g%ypDM(IpW>60<#!|zU;Kg_>HE~!H?mDoEbeayKgEp?V}%5}Bu zI$j|Z_hCeB*mS(R9)oR29%05lPK&VhcJiE0{#pl%&&113IhCllC2dGW7{l|ZdK1T1 zv17=0M*`lkV#NknvDk@&Alh)mIv8?I8^J$fPRUn{2l5!J5 z6(#*Syw1W)a3K9UCHmmk#o#Ov+}Ms4y^58kUm-+4d%45C&&OkR=|{FRj?Z2Y+NkWK zUlo6#T(V@;Fr6-F&zHyEydd`{O75lc|oD4=6x>e zU+~f|TfEk!$fX^Gh4Sp2l9Egk&k06V^PM52;Ts=sAYuGV3BexoH@>O^`)*AjcO37Y zw))nmK4GK{pXPgtemwgoCx*iG?Uh8>hveCSOfU$OF3|H@M_kkD7Fvc1K4Wo`3 zBu?CVj)Y!%s?i6wWw!E&2*A>uqYU6CC6a{Q4ZbH^?5&@w4xdOtvsyWkuuX$*xFQ)w zsp8ke%IF;H;(b0rebhx|hdpZ-fn=6Hxn=OGc7aP_P|G#RQOlM^wM)e3=0=jC7Kfoa zT!#X#@?toz5b5DdLpS(<8iF>MVU)i1AMl!_&4(In>)sjA-tl*2S)Bl1OI`1n{DJT~E|cZCRi+z(Uh5(s&n#TiTe zBxnmb#Sk_eDdY#2$;Cc_qxyGVi!&&cQ{!*-C1@Kg%( zSpW{#j=6CohQzdU6e9l%+5*t9-GQOf#ou|Sb?Xh}so;6nq=o6}hJF^FE@S8oawcc$ zRg+>TNMR|KPNZWkC_Tds_M6lsI#gGVy#&Y&+l${`Aluq&JA@+LP8$bs(pK~a7Pw$K z>?XYmZm04T%RWch*NEG}0Jl?s3+=*8EI^x*V>lKW?3{`-K$ze(+X91UTwBT4mZL>V zup#ESE|Q<#0bjS!fe&HG?>a2xQ)WK-3V5l`KMU{*@|R{f(~LAp(+?g;9PyPY=EQ#& zb4hJ_9g<_kFzGAFOYX~9`f+?w@akmg6(vMkFQ7MBk{kj|s^@#ct)A4T*Ea0v+8XJ5 ztiuNBxI$i9IhZ;lM^Lg1f@2*=%dyvps0ONQ%#OzzI?!Gz+9+UWew7?ZYOCE~=*NlW zyP_X(u+g=cxA`e~sy&xZy*DEDvmK$m|)M-e{(FemzOr+QJ;TPW-GZ0 z4&_nv{wUZ6X6|zX&NPW0s$%`{RHl5HhX8Wk9Q%y9KyNuMQ0SJ4AQWSry_4xnfJz#I za9vJ_5%Yq>NmvLCvtd6Oa_Y5oimBI!#Bn!Qf{9He(Ka=NEG(4Fl45tsWhpk1#M`oo zN~hd3guC-!iQFPT7#NfPWn+VeMVzW_uEi&l zXCz%oj$hTHg?-BOB)PhGdh_?|HU8${!8j5%k{vCocy^U(EKkFqUR-NzM&avy=DqG& zb{p9#aQ>gl%6YJ_axoOj; zQ2OtrtE(OKt7pc$x?td35{93Y0Kg92B*nVAhP%P6q z9L`smsRaf9d$}C$rk>r_CHK>@IdPZEP4b_WG4Vf1W-9a}`1RFACUf+HIhN?BTJO>> zkozP_zdco(*|8(2=>^#0ljG^pw+~}HK@8=;hjB9r6ol`KjuD~KgRyid@6!~#UE<5W zaRp1y!m3296GXE3X0c^yIo)2EhAf}W-HgYxgYCI*<8LTZsy}RG24NGEbYXSGCU5_A zn29{ud6KrtG8KlPV)-Xye7jYvLb!TC# z?QF=q>q!u?4ZGG>v#_u4>ie)rWLY&v4NkuO;(>}nUUob8geartK4^>&lYN`|>xiTV zx{s6qu$%S8qf)Gqkh2Y1V`$k!QJ+I<>mLZzdo)6p z>r!FPlUxniTY{5ZHOylfc^dtRA!om~A?fvt*x$#7K)D1m&7k?~_asKPcUJjyJg!XH zeBQhYjgKO6a3BM@KE(;9)a5?8#fPJkOR$Jx|}D;+EiR>fft@Li1hZ$_HXu`2Gar_%T8dwh2zU{UZHJ z>qm7QcqERmi5ka%azq~<3{kg)T?JUu`#kmo-caP--p>JZv`F;4y2vy@L`xdHS0<|n zjwsBVgm|T&e)m%SSX-n( zDbV6Y3Pt-Mg+eLC-HLm0D-g6ua3>Iggcu2N-y9G2h4iB*A%|?%o zEN6@V<092Rfl!{$cBX8f--eMM7&l(RH4F+dC^PP#YTI{Tnq8%)Sw z&A=h!a|FP>_B7#y%w{Ubb3Y->N}OVwKi6ko=YmNTzq{Er&Db)qn$?WiiOqx@WAuuD z386KJT_g5gXlwiw4TF0y^c#I>N+=BbX4Vr2(LNBjhC};Kk2ex}NrCGtSFU#nY%(x7 zCY0>#{?3O#-!s6~W~nwYw$X$3lJny6|NR$)+?KMC5a6+*bJ zc7MfWOF^1S(O2viM1>;Ab?w1xLWtE>3DU)4@c}Jw4t()ljWYk9#}Cv-gU8L2s%aAd zq8rvGqx4McZ)K}=&eJ671E7W*-5RSzDJO}QHo4ozSQkPpt$ zsQZ3Rtp;I*W&p4O>syCwkw9sX@O2ll>+oKeYB@pSSoormOcXt70-W!t(+yfJ!WUK%dbI>I>x($Z-vK>lT2O&|gmAB=%dd2^1n1e}W2J z!?Rr~8U@%Z`Wno_H@On{5C#`YBDc|Luj;aDsKCrLynh8WHTl;TWWT4c5uPV>d$^Sv z>G#`5**J@D8GpM3LSu@_biE0-4-Z)c+Y$V}C2Awx2_9@?SR$a85hndEWz9gZKEcvK z21t+lARE~M>=T1#ukDq%m|sH`v3ezPa&)+D8u_B>=>dpo;b%@JKgXAC19 z?NE&bqYaq($)8N)yTwCYw(=dqItF@BtZJFuDBG17XsOsjm9Sg;_9ad(idvDrHh@MN zZn?CeGK_{_Ol0d6Q?#_)YX!}omZls-xXdCWi$2{kp#{;!@ z`8&Mdj+MiBpw_&~ahmm#xgWs?>r?R>Fg2s0T@O`zhGTd1>GKf0Yy8IG@6j$E{r&dy zUo7OAV^ka_aU*3dWhSA2Tr|^XOHMnVOerbK_}A(~fghF!8N;~fGF(Q<48 z#9ht(C%LO`o!FBRb1ND=oSlFcn0S*fwDJ{==vrjil6Trq<_UC)eV>em0pm zI`TubY+g<2lO#R)j;L_j{E>{Wd^T8s)n1c^LuYxQroVA|xzCWq6{R`0%BVnM2Z#}H z!ajRkM24Y_5a1b=@%Jn33;GDw$0eNKOe@D>AG|?!sG=U`o<&6=>ay-)N5u>@0}+kHEQ{^ zZVeig-$~5JQIjc|VvG_bkVK|=H;&*_L*S6HT0iYD=0BN+w?zG<(;Ya>6hawezq$k& zsss6g;kcq5h&i0$V(Qe78DQI<(Dz9g+%CV&Ed+qsEQ3u#WIF#l{6%=GG~o=k9W4o) z>Q$8}j>Z8+G6ZY)mtdt5IfzAu__?WMQcu8h+gFoM7y}iP7RSKbdgJ z>HJ0H!iNLN)o|69Et%}+0-AgLV{S*$U$AE+I zGnL~8>jXY#uzU}qR1VnWFw{wV`i5Z~oR`sqGlNvlF^t&?$&`dqvTkO?PP9wM_l2%~ zm?F9gr}VH%*WChPY6%!@gw)pCpl`K~eaO|ZaBrdZZ|h;TjN`PTW~SsF#&OF#ba)SX z5fHQ*jrd{BU@+-J(eoVH%MJm`_`Sl$j+|TZ`r$l2X z6|HA5Nv)dfxO0gX?})qF0f_0n29I+OI0!Ac3CVfYKcLLwv0Uq8wr&kj0>@~Rkr{y= z3;Y%|W4bDg$UiokFMs~rUZRSjz_K%`1jmGit{H7>FVH)^3SO5pr%#^-XI<>?pV$X) zhvK?w_bgwDuf~PoGq$F;dwW;3#ALEcR%-8z#eyFYx_K>s{yh%+*Jt$_ZHYJ<0Gm(# z(cYdHD)$81`p&pf`B@zr@3rIZUHVbp*pd0R>cT}oo_?F)OD#pZz{}QVD^C8y@_Obv zJZ zo)6kofL)Kr+SS$&=QD@;<5Ua%TJLo066NCY676eME_j_?3$<5gzEb9pr|fUu9$$xs z4TOAGzE-c6KY1_UfZ8;k|BB#=m=Q)+6h*m?zO-jV)%ULU2#4)igg0BPxyWqulELM_ zRs8y)cdtX4ZRX!;s{b>-{?QTqfyF?XY)|Rox0$>@JhFMR9YLPk z@H)3*J$J#-XEg>woAIl*JkemU5cSPcD}G( zkzy*RJa}oolVE7Rq8ztlpTRG#ak`k4Az|7?lv;0nUW&kR3VMq>-wkl@m<<%rg`6u& zv9?>cZXKNO0ASYoPsPBc2JE|Ez#r?kzDX?PzzP5LKU<7^&}(0+vU~HAfts>a59O;{ zw{AUJG1RMD_fG|fv+e@J&c|@5#wDiTY+zo;!LYE?0ut>ZS27G`phvNhMhff|&a$}9 z@{D-R)zZ8eBLBc^7WbOlrcN!_Oy8olC_Xh+NJ}M@)U@A@gg<3 z8w=&6watQJaC%8I7DD-`+NT_wGBS^)SpV!*+EE8i1Dij~i$Wy&q-)N-% z*V8O1KQLiyzqxMk_$gL<{52A*_+>eVgW$V6*1WuV!L{>Yx5_!WYb*C$bujsC|ovwsCgc*BX z33e7Uv;=!(`O+P-w5_%L*aQJldDJqK8_LqeU6ig)EgGf(bm(mL0vRzNy3?5rv&s6o zrcwmgFYU&^3nDZv&R zHDm^BYLwP~0t);2vKYi+i#phgO#r+etcsK1D-mk_avJxQx!+xwSCfF#`8H!VSe+R# z+%2o9if)F}9pKm&V#l;k~Tr0rdN^Ug{W92vA$yOm{F;rxgRx8-oqG2aT6FK%NqnB;g z7_)mbn8AEpbEv%TN0zcB(%qc-(eY0lV1p2B)^v6H^yxn}n4L`GhS{OiLLDr z$}||}HbL(l#$?PqxkUOc+j>82Y0o+pT&%a0Q38c~uOvSj5&JdIpE&Mf2|G`Zd8t5bq!VWL*D4PU|AE{5w?XaTQPn_{??0N+Xw^N;NhN^><1ido(A5 zV^;h#IA+B^Lp|v$k22Of$=re&tr#!ey%5#H^6k-TDY&L-gdujyk6EdR<;SdaB)BnS z$&A9UU=+H^GYB|*MvCRXvt3YC8JhouYmSd+K6DCw;-1amNJR+K_}dr)BV>t=F*nEv z9=k*$2Ny=!gV@DDRC2`mZSc1d5vJ$S2C#KRS_^nYN)Jmx^+~AE??@B9te!_mDK5Z* zZlTAY3T`C+d>>V}5G=ZJ4eNrFrBB3U60aNJFTaV-?b5{Du8@y-1&sr{I!QnBa9kwk z3o-0KN4$(dv)55%vpdUs6XLo3Fb*4nN|tCcbjXk)Lx)%zO+Mhhgb?ujc@%X!Vx^_4 zKw7I1@F*Y7bnR~W{YyAhP{Tq8yOdO_(+OQ?E(6f$5FLB9oC7o6(lH#`iUl*#1hw?; zu^1W(4V&xV`dkAqCYu-Jy=LE6kn{YY%VCD0e}SDa zKW~Fk0&ZSj)#*{BvtgdZQ@<~*!@IfYIy)NFj+}i*-@+PVVh=3eY&btu3%VY*j(M-r zpeM?KZd?1obbc#VzM&dQ(it9kZ`m;;zx3K4Y*_UySiTz=-?!w&0-=7Ow$jRQ(Ph#A z6FxEst%k10dY7n`Dgq~a3cLwa1Wp8HrwE#wWdY(=$LT0+1%;#EGexb$m$W?lSvf9x z9bk7E|E+<>5ggszh%na^M80iPwpoX3G2*XTwA7W&;*rcxx5OnA@ySm!lW*;UBd7ZC zMd9WkqqCyCLaZxU3*SqIfL6P|YiX(kE~VjYaru-e+uI$K59g(NET9-I}*>s?Z@ zozUbHU}@8b_F0@d{G?#T!N<30GjVwK!=n2u_(8XBA7n>DOv^4{(k2X=kioKoUPPbr zr`xe!U=T*S{2{Bcua#9nr!yUuoIg$RZ5d$g&q}@of<)d7R@tTG$vfg(9g#|&kM|W~ zBh$&PR*fOdUet^cs7}Y5^pK{HTp1#;;WBx7ZT$FVWj-bBTA}+X8>$ph1!ofSzM-LA ziy3ZR_fYaIhaEFxjR_fLMi|0DNEL=&MBek5=p_1}BX4sDY^`h?YP5*FbNW0xE@(mjFOg2z4N?+v zVx_kPLSu1MIT>~l2g{(M3HVnTHbmju>xS&##R4+0`9h9m4aLj|vylMD^@R7@pZ-CQva4Z)!55&Ng*J-LXDNeWd!@2dZsOy-PbAYa?3WXK{+OM1M^h+t6NkVpq;q#b!NLci z%YoJQ7L78YP_xTY3{JO~W6d*IIS1GfCLJ@{96!%yMi`>GzWj<|tI_88q=>C!UH`vh zQiK2FK=xswJ-;{*)PCy@8Ge|FIsyr{#NdTJ)#Pc?s2f-gdDqNU(*s_g&25*Dz z7TCXP)f^X|^=IhWUb*rNlc!gLV?yq(uI{p22ghxA9~HWY*OWkI-Y;)!YR#i-3=6{y z^kOb~oyty2xG-$VS)7BA7sd+@2jlxCc?h|EOY`_Z1VJlm+MOqTxQ~v&%InJ-OC+s* zSRL>TOR-`&BkUf1CxoGxQ=VQie3tLR>Q;(zyTQ85XM}y4!7)Y|>3yF;dKELkiv7*> zis5sdgVVUf49l9x%d_B1>0x4Y2P&pdWuykzZSvpNBK4LOmO$1|=Lq@0%(`kX<8H{a z;D{!idDU^PvM_Z=1Q~l}tht=uA(9U9Xs3_L6rV+h-G@*!^`8^lNJjn-vvU(yoTuoJ@%g zI(_T*dh)V113|PFhh~ zlLdx{TV9U-&hHF4dJR8miS@@zEHTv4-x6C-x?5s45+*fBCnrq9<888*2uw1t#B5}( z@C4gCW&t~f-u9|)79VL7io047TZA@GOr6x|izon`G zt1u=goorogKQ}>@tMUwnC7!*Pr5fS-zEwiNZ~7CooU`mEtY>NcHYD<|&VHvHE3zO$>V=l2^*_pgx5>1yrTK(Oz86D(@zBS! ztaIyh$p&yfi5jl(-WRlLNk0$Axfeu!aA$?1B&Dw~QDByPPEu@DidFE#bP{OmP+CD) z_9GcdrW+*7u__s0<4Kxy!0HOo8)?=|XmqY#5)OBku{vNx+!f;Rg989+l;|C zA^K}@?cA5~{a=d-dU78r%0@b82A?g@6~*_!A6Tzmy)jR2G+;qLTcRQ-WPR@ZlCY5c&n;e7X$gnBMXI@Dn_ zcf3w3ioIOW`nZqiJ!Nly8RHYoD_A~Q>07_W)^pHky3YMZRi0>bl<-->2vWWePr&cK zq@Al=tr>cq=}lNrHRw0I%h;J{4L@T)QCmQb8l>LhiU;dhcSY|vTO_d3k;XhPD+4WD zjU;+rwh9gy!1{cItpdG&1M_~W46I&~Nm18ZrYJAs!fs9IYJ~~xz@2v?-O$VV_*OJD zw^uebVYt7}_vv>+8I&7UYO*C%i88?pN?ekHFYY&9n%r%+nQqcuRK?*_-M~zPK!CYt z@XY=w!aj#hG9bVVL#u{H=V(%r684u=gN(mzL^gG>Kn7TrgVH{gVfyXWQUaMezH&O3 zvlX~1km-B!V$fRUTZ^XQH5XGu7X*~2nA ze)sNUBErIgkk_JDFSd)Yh>MPw|l}TJK5|US8SJU@wbZ)ROYMUd29?z48uHk_4}LY&C6hx z+)o+U%ozKV%b&r>SZ}i-#$Ef60O{*j>=miTDHx3V8DNLxtBBBK(%LY=T|e8*xgt54 ze>@|{v{QmUt`9i-P{p0f9YOy>T{||Oh$c3V4+nQCI6t@Z#WGxV4=%+|sAYSo7_N*1 z&MCpltQ>dLzB{bUQX5=0y=lr0nmdb|*Mz|>Oyx_2^PNU;3s0ePqI-KE`>VMVt>@~Y z1c95fqF^;1LOoQ+H8`(NQp@&`y=Kj+>UzE~>Od6)SUm>+?%bU!z+equO>l(@-NKjE zJu55rZ^Y}tFVKSLYMhGk&XzI^jSKHC#ok!Jr`0KfBf`fE3IHA^Wopf-O8hz=ysK$c zjNqF#8;uVjgUNXHDIf{t#O%`x~PQFe1{;!l$Ia?$>R6mmgmkhr`s|AJQIu zyXH>t-GiqdAF{L67>t`Jhx&)#7C*U-VHv5wo2=P^WkNWNxi>R~R`AG2F#TQwJf+;Z zjl(J$QQMWim^+zq9zy^t`BC=UMhO{Q?dpU+S&4A7WNjc;*3H?egbO}`u*I7{9ixy8 zvgY4$d&w|y$=DM3=SFg!JtNKhmx-UsFt<6RiwtWcYO(9W>*bioRnBi{rT`l|)i)yy zF^L3;dL*jU(+pM>M98s{v2yGyLK-qTFr#NlKt40V5NF8+hGRynE5go-iq|C09;P5e z)FkBZVpm5pwv4F9YH~#01T&=Gv}>M0E4Bx$Sh1oRf8*Z<5%MDNNCq!sJjRIm}38a3fDDRK1i zdvn!cK*l8OOFID-8XxnSXzt`W_1J(7d3vR_*2<()o$ib=kJp!B1fe zksrU zd78zLW3T1X36~L5=2`~WybQ2{&%`%i8h%UsnLYD4JnmoB$ zjvTB5)Z;H$0hZa7f{khe>5Qu+Y4zmU2x;BkE9oLs-;fSlU9J_(f~P4|+CrSGe}dMXX2<$>{#J9pziqAZe^oSiH&J9%Xb-{7-L{G(%iR}p8Z@Kf9w4 z^gAePm5&X>4K0e4YzV6@^>B{)sFkJDjA(fAtONVys-hu53%nV75Y;hXQAbqA@Cr{} z&-?R-n$t+xjkX-k+|Q z`*mjHWv|Eg^BF(MHTImHtXT$;azuiqxg^C!S}uVxtLu z&la~tmXPzp_X|V{B#XDY0x0V|yh8N8Q^VCTc6lWz!xA0Pn_;2Y)e_C-qL0XCDu-IwF&NAy9%N&Bla zF8V<#U;ncwmuU`&%#*AbZe#_&vOyT{ahc6a`@{HI-3k?!1Zh&P)=zhpF@mO2mF^FN zF@wcuBj}k6(QRNhn7L8)%%QyjfITs5EQ+~$nw22tI?R@0lT9njIBc)cZLj)-!+zI4 zD`ns`RE!Urk14fzRP7aI8Kpw(J$ziLQl(zks8Z6{F=z5v)!CHgkr`X-w_! zJ|kBe?!MUq8sm9}YTIK5m^6TU$#Qmmj&F8_(7_OY4X?R3IRsx%^+t>AQ)K&H6uXI) zEhu{z(G-daF`nwfg`ykvjj#Ck)?{W7j)vq{TD z!`v4u&utK#eP>|Hl_yMNG5cPuE&8ZM%ajTIoOCT$oxM1E7K1=kUCX5?&jlV2)LdN; zbd>3e={9=)a-#b$Og4D)ZyKi@tSlzZ5j_O={k>K>;FNE8aK7<*aeYQjq5139wsm*^ zJkj!rHL)^oKxQ42k~+*}*@;nb0+5|!#-2eZ)nUf0MAlKX|C)T{$dQp;+u&Uzrxxx^c6#zYDM?5lnWI>rc7Qu#4uWDL_Dg7nhSy`>DgV^c;p*;Q=bnv|iBCldwnv1J4 zUo4x<>lZJ2=g10)d*1Cp)Vj#i);5pp_DhqssASytE{28b`y9Hcht66!CRreM1<-Yc zSn>3aC>EH*ly(ul0x4ZrxYTCJL5dZReV<~qWgbmg7jx18u?SC}vy;q{gup!m+I_j`%Xt5&U&`uir#MQ#G2o-U* zN24Vlk-U+&VKO}ZJ_$n2s6V@A67b&$mU|(`FSGpiW4~F!J&6P^xd>PS1w zjEzw6G&5o+rpGAb1W!E(d2Wg^+f8;IR2$B+7$tlx+&_wUrZRqLUAY#NO8{*V@}Wks zq6C)Y`M~)(TzNi5n8A`a({LzL`nrj(k1<{ibdJ)a-C3)@!}@mQS*@!-wlBw~a)6yU zat`vcQ*Yc^lz)Ilt+b)l+rl%*taWD2JTbFQ0b!9CLa+06sPyJ?EZ8r_s${V3+cCQz z+-jrwNi9~U7W#0)gbANmvDqgeR^-y9`$1>#LxmlF$pseqv-JA~(Bb>w7b1^#l*4MeMWh+ZT90{{ly=HeDL9hn zc(|Hj1pApvXu7|nzAJ{D_;MjV`u@tar)I*G2QIK9YIpj*si}XAv-@`+#z0@Y>>syo zJsnwDm9f}FtLLjj;i>G$iprGFQu_AGmoEoe<=@iQ639CEWIk)$MQ0fdTgQCsio2*R z)wV+?g8c5{m{iuO6p5JB)Z~~%)+vA_9TlZUp`@eDOi?RQ8=wtVhKtVn2T2lU5JW(Y zRwk9}*RSv4(oiW-dtMM#T~4>lU&1&};k@hdXd0cW3L(Uv*L)f5%AhmieIQBhGaiI9|X8B{6vA;8o^f9{i>spxVQTHNK0ZTv9B_5UUM z?utX!FRRt&yacFrpISKvU3F0^K+0|-Zn;(tr-%~Gw?!(?eNO9fMY(Me*GSKOP{+Uc zI#f}9WwCP5dQot|CHNcN#SRvjN3Cf#nS53Yp^%Ej&K}sys#g=Xv)8d3O#7x5e9P6~ z#5Y(k#2{7a@Di}e`5*w>JEchWTnfHzdrN4tdER{&Uh;zXlzY}TsWn5>6yT7TTwQv6e#2vINmL-;>JfED`V>FGvSWOMe)px+4 zq!ZKh-QaB)O`w^I1sy&5+k{HC1R>HJurx;*mQCYcFwpi=+*R=iAc;a9?Uypef zsY3_rgc!`!I&a7NUZh=S2#uQUq!p0m`;-4Mj_zHj&ctJXCIbMsN?TQW_*7%TDrg9a zch1{N=p>z0Ne@$ue>S#_p0js_GoSn=mM2pfhRx$UWX|i1?wppl$`pL0hV+5Gj@DVj(hNPO8%ieaI z%M~0&Rp7tEKxnJR2JA0$RNl~D9IdKE#hnyX15IF4wN>BMl-!zO;`O}xIvh?vhr{8^ z-=3e-41O%?YeG(^g9E{yf%~$c7FYEhVhs6#vKaHFkQmcaoSu%kN2Jy^#Moc2nHTpA9~})_4wG5(w2MtXnskof@MeZ|a{mVCEeyYKNo%5+hv=^g zOe)2RV{CdBxlwF-Cgu^698}AU*@#-Om`L`nz_L4Kd#4IEc_Z>Fy2DqANw;QrLLXlk ziY$+{j&|g=pPtnhN0?3UQFn}aO`4$(EK>vr#lmK>mSDx8;}kV@pbNBNnft}yk;*(0yOm{n-)DjnVp!0x4HEDr73`b9 zVF>2lMIPG{8UnqRy^J0VBmbO?<3mG2Qkkby6KvX}CJ@&YPR(RY$N-xz$4Umvu@*Sq zG|v*_l$k8cjJL=Ds}dPztBgz~N~};?+v5K>Bdzg$X~tTo-^&0?njixgr>D=6VL1J% zWKtBW4Kp@nYWuM?FS$?1u_5U=UG~#bOs~(_RAI)n^OpWva9Db}U>9;t>STKQ3AO{P z>o*BaPv6hl(&KZ}<=8yOPOB9XFK!Du-BiT$FViIq4+j`h$F}D zz2HWPKsetnvZIDuCGtM6nC}Xi=!Q@e5w_!1BY@DJq<1;JW~7_SyZwlR&<%%b-H9c1hJ%lF~A@ zPAPk{1C}FKu3Vms-?&8V^&EwV9XuFAl9HDB*bTfQM^2ISYwLTpu=8o`71=$mqh25L z=$pZ*a-qNEMw{Z#80#) zNZyH>ip|d?R71<~xftA9h?S1H=P?(b7GiDbqNYQN(4*Cs>~Vw2N~l;M z66Zo?UPZnmvO0l`MMXmiUr&Q@2^?Q_BECWE9WHnsNKZ}+=Sx!)ynrKw+2qXp-(~nZ zV3a|eJzoKCpBnMob`z#WDEm{Jl}p!JtMs}wn&Uc}+dY%!m5zqlxOezwDGdAaQT9jr-1)aJ?& zVN(h%Ou6_5ZdZRJV-7!IVL@5Y;_`FAug(RtoE;qG`hf(PTKuY6PLFay!`D}!<_DNBr=c+b zVjdrtU`Ci9fYc^^i5xB!O8HVf0R7Y}(=^bT8U%lRExIm@-VFo`s2Np_X{3Ww)EIuC zXDxHRto?kUbwh1h^<0Hb5o>bPmYxX}vRYKrF@Hion?V%=RbOaPvE`y;ulWTI&k>!5 zMen*}5FBX3J5eZ9@h)_1$5V<6KA;sYaMe*kICv+#Bd4J<#zR`e#1NcmB|DG?^?>h12?X`ZbZX2H2$%_ z#&;*R9Kv6LE4pJm)qB!k_-j<4M?8rffYzM7rT?uG@F-pShewl3zwc9w6CZbq&ZvC& zXwKvK-Mf2O;bJG#DWoV@V9`%#=u{hcA@=InQN_nX*fRdRzfNC{E8$WtQ^}+Yh93a~ z_071ISfCpJ*2+StfqTP-K5gzKD+x)lKQb=FP?+F)Q&HvwRprML*1{}ZtURtHY?#m3 zt>7SOW4MO1ujS>kX9qTcS;laTXo&?tF9Cjvufw^wp-r2jmAlQn|MW*MzC?ag7N;r7bYZut)JLTfl)FMml>BSR)9Q7o zrn#zEZ#1YixYJ?3b;_ho7hlykWy7?JU$f@NHjgx8w1o_iuT4*H`9MYh;#v%@_5=@6 zGg_(+yG1<)_8|C*Ft|sWoI`+7$mL_R2>?VjgnE8j-bI*0FAcU(sBOpuz4!|5+(^fv zN>C|F(2B~iYyp4-F0`OE2|EHYC=m$a!c1N2V*CKU>@s+=c?khBXLt!&-3;YnWbAg!;l$do11NUb z*=o$^AzoQ9$0}iZs6;F+m2>>K5>>4YcfKL7z~mdj%IXe5FXyc4`^M1mM|Y$15%Vj;6d(X1q_(Ppv2Zcl-+akwkD#i z`}BMekgO=L9-J+~z&_<*wIo)aEr(@?_DL7W=PK>-Vr3e_TNK5vN0(Se{?a zO#zDSGGlh4RivW)VQ0BwbHS$8%5w1xD$`t84(r5W)eMI1+A0+Csf4u_PFZMmFO1&D ziB>ihBT{W4y~oJLM%;ew+?lTK9O`Z78nH5KAl)@ajJ+OEtjjHIXr(|I)&!c0_JF9A}Jp~x_8f}r9~QVbDS9LC&|A+{`F#Isy1cupH7m* zw+*WH`~?a+5K3Enh+X$xd>ibUdUiw|_iu4pOBY+EuHx%WKLV<68vc}l$^@)XojE;H z)5h^_GF>?1b>>pPo87DbgOjLJD5ui*4h{}aQfK)3x5{2`CQUP-{r z{qnKs-c|9@$}A%Z;3}N*AFysb6sN2IGvwpt$S% zDSbGe!T9-}`nfZr|KV%SLvxLuC704@j7LhqnXm`ZzRx)gm9YtjXBTw0DCQj`IbRI0 zMi|>CpsL2SKR@9e{HI^XFKE+LEz&MB-i6g_=kDTDDjql28Q;e-bE5hg{r2*6(~^_Z zY?VY`d{3JU`y0Lid%S#YHQE>drAF&tgPA%U=1+ZC4bre*_9p35Z6EtG$?8J%83b2B zn<8xEe>9)Jf?gmADdutZ`$E>_5SodvK?@|1oTwXu*V-ZEc>!OYQS~`Av(k>(JIo;1 zED9=V7<1dleF^|9Qtmg$mDN`UG6vs9|8@ym;ELnAduXMBtNi<1(!!tS071?=dgm*9}8Qf#_#rLvCKac@@&DxF7*ob zRESX>=%#y;gs-S)*JnB?gUj6-#*)}(6)RR;M^9^CQOAnFM({K-HC+6f^{Bgj12?9I zXDkFpD$wJ#X((>D2(i59fgOMPbRwG*z&a9g@B7vW-5_^ay=>=*ws7tX{xIyJgxv9< z3b{#KIYx0TN&G}*RU^slLpqiy-Jmk|Zt#MvW7N>Q&j{Juy*s4JmL^D+4Wjo($o-Lm zx?H{Yoju+#cWmKLFMTTUlOs5Llr)xnJt#JIs$TkEM)zn8tpFoX%v{AqAGbyZf>fKy zL-e=+3-h&L^X+=%H|Ph@K=o3GYBc;+(=*nrQY^}Z&?j{NUveIfNr6DU`)MOx;2MhQ zp&h-ha$$Apo27*njp@~bp{6RJT)*y>xekjJ8SoNVN#$USrNBW(4_Ji@7uK3k(>TnP zIK{3rtuOObu*y@C292!23u zs87f~F#-q2-Xl+n$v_z9k`*%gn^?{Za+{D(X?p(xi;&%XM)wZbeWrV0mPAH+-^j}| z|4lho6Gq*dnhDqmz}SILQy?QOQ_sLZ1$Bd|`_CtQ=~#+GbRRG@qXiy?@f>xC3`984 z*RUnP3dZB5)hN2F+d}yDZCy!yOnTdxebnvOGNw<5n^VhR7sJ zbS{xd3nsZc#JPuYGc`DPi;y`79gP#^kuu?yRc!~8BGpg}5mKa-!(v-i(vyNgM+khn zZ!pJWx^usz4uy`uV_+Z(Zmo``Cy#DDGo;BkHMdJt5s#} z(P%H_zJRN-h6=aZ*086^QnmW=a;z)<+gP1md+&^3IxA`(&cVp{i-|XjEVvn};(Oh_1b1Ek3Vyz4&lP;o(m&9}@(19nFff+$D?FR~ z(W~ISs#F1ti?LQG;^_u9hQ*fXSmxbWilHq$HqzJ)dmO&V+RSnc&&%WH?&V0r!Q2~P z97f!>U5q%@BM7s@x3GcW$G`vnWt}W&tYp7KjC*h=0@wXM{QP3RY*Cn_Q$PuGtE=ZjxJTI)CQcu_R*mWzB+)u(pcTQ!>Xmy z`8or%u{_6rtr%X1o!w<>?_YCdL%wGNmY&^9b882)adk`!f!5>I*h-x3%g?80b7}Y6&Kbo zgSv4FvA6c_sym#sV(~7ish5wWYJjc8TuUSS8BLrX z^}r2S9mKKF`WQtw_2;n382>qRXnZ_O25R{^TI zg+HtCDT8FMS+>hD*z#7=BBEQ~O7}_r?_gYAY~&Zxliq{Zv=dxSW$3+O*X&K3j#;~Q z?bXA-uN_ywe($TO!_x>apDnUBy_3m~#ZBtf`|iyBdcQ17NF^`FxxCv2eyX4uQeVAl zQ{luq$)qCW)=?qb?5SE}KMH1S7%+H!43fKMgf+`R@2I)^7-zChx^o7{)ERwAbV&(T zCyG3lKxhPs`apseeI|DUP9({VBx>k7*(!sI#gPRWU}I$%x=4PKVs8Pi1U##^?o*U< zvsH)C>6;HqnIay$pf3|L=C|L1=vbKZ>WLHkO{`>em%HTQu3fvvcF7GPiwVFG)=lXT zhwg=N)sU$fbIv3=Vp!TBj%P5k{gOVwpt)=InPdvbG#EM8l3oVQU2`7Y#qmr=-)NI$ zi3;)D$e$+C@{it+(mrOzwfJYS6h$^z;ql{l&^LTj!+LGSz3}$^&6WBb3_AnV1g1|# z4uQP}lqIyObjY8_e4Hm$rvF{Ow>d|jm?TJ5PYoge1idP8nXaYW(QNtC^uDpxEKBiD zXfDBCbax`Y+ll>c*mnvJ^M?RC1Hd|c8-#ogMd+*h6V`QfC8blvYu4<(WXT<69fuf< zrM4Xi46b%PW!r(kjuC8+TVq(U#%%OAPGfk~##SS9M#z}ueamX*9ye3xoXK{<4 z-}`7H=L=HrAvc|VK#q&nakyV&OuV9dqX$gJoWQuF&7rNmhEAEEkdGQy8<}(b3Jtc}x8pB~Y=| z(w+J@Yp1QJ=hNRmp6+F$+Ng+6x@?u`0Xx{-nWMK^ON6_8T0V!gU0Mv;oytkG%S~{E z#eR;R&TvBtp&bg|VLqQw`-EG+Y8_9(o-i7k;|>XT$x;2{-R~&z>nQJzT}w6Y(;srW zqtz)^O9fH(sdOhATUr{R{%r;Ihb3wwPl4We8^?^SCntUU#Wixrcu1>}_^YhtFv57F zOmjeV)N0kGqS~WBX-P$mU(l+C^5d}n`9XV%jjKn-2N8T1AF@}PhG2fE9fui_w^wTk zc>fY`V}g}o&;`1Da|@PV-7?~?Yi>srJT4Fhx_CO(S6z`7`tz{3@|78|E3A-HHdK1Y zbKv2~Xl)9&A<+?&qqQO8eG-@`#~inm?LW>43&V*M za;?K^Pu{SI+|O!R#C=fZXa++aD0c9h&vKx_%B~!yj!q03=t-#(0n)bx{U|>b8tqql zvKEba{iK_@44S=mQI4}LGwz2wn>0(DNQ5e090~;P6$8Mn>^h!?lPSEyhvU5ojM^Jg zog_unZp}6|Ez-|#%^AFmuZ_DZyXZ&9?F3oOIHypF#EWXVy%SFe`;L_*D^zSS%$AE| zS_au~JywU>29PzYxn4;v@;ozW<|W@f;@nc129c*jJ<&R%yyT}^WomyqEjlWVyzHnZ z%>F4hF^R~3_?z-&J*^Xlu(r(jU){a(dtgGSmUEOV z!ceox0EXj=hCAPPMHnh3kiPQb5VJ5m{+def1t`SRJC8J6ecx3Z4h~~L63AzUzy3^Ba~&r6LP^dY#n7; zl#sb49M@9VB^qV%cMc#V%mSgS7HlR-`NpM%&~UQeh*o-$YX3Ukbd58Fkw`-fuEnQZ zO?TbIQWI-B@%HUt60muwc@G6{Df3{<@O=RRNrXK9y_W6eEx3;Md`VdFzU8B6^=S)k zg(|ctR489wwGy-;ZzKPi5@>e~evE?yOA4&l3?X!&7RT{exj6jSq!|O3FJHi6*)HL3 zvbU%+-kXzC&=@7|KjhvlUDV@bd?SfgmIHV=g>qJ9-aOz9zq%G#>m{rc5yC&S*i$S&|w8+g{x8Uw)785`yj{~3SP)hdmi8TJ1JZ-Nb zhcB0VbuzI!W!TAqej49FuZ$v{rVN`60T<>QvlwNo0k-ThNcIW_Se6k7NTvokaTsFu zD`Z20&^z?C3mY+-k{Gg1nKq>LE2JdJ9!<%?NNZ6#8DG6$m=ew;33*VnN3X15$}$3D zmm1Up|D*b;fFBR2HXIJd)EgCb&)fFrpErOb`ZPPp?lJMW_K}3Yai3U6$g;Fhk(3KN zI(F0@Rf=0Z^1AIyKHK`1r3Ff^+JU{rtTwbzbua=iEv@$mi zf?T;Uv>m_rsWesj=%d3lzl$wj?nYr42VcB+@quyhYB5k1{wGg+onGFJS-p44k ze8$Io#bRXT?e*U*fwE2~S=3=t-ZphQbnwY*FVM33PoQ01Hnf^7775&7{XguSTGk3y z`S8OJ%d{Q*VarZC9)iehD`ugm0LFQWbbLR&5?@YIA@^EXCql4Vm z1LViP3R;3a0P=6*O593K1Z;$rVW9zAA+`t|$&2iMBNoN~4YJm&$K}Q8W?%nGQEmva zs{YiYK2L-dSxL8{Q{qI=#C#YLPzMrzNzOX45KsFxDepL_oF zd-w%@`0pk6^9zX_Z0Q`>q<$fjX}r@HHm(-=g#-c7D>+(*d7ULvtSt#$Bh%YUjtC(1 z3yJYX5-jIw5+9x-Idr{U3T#+maqQZR_dY|&X*%>R3e!kRFA<;erjbw?^dG_6CdLlY zCX5M^g(*>jZj~lj;<{_1jX?D^W;I;~{eeUC?X3dsezl$9F#ZEtF-*vM0e0*yS+f2C zZfjR)M?xoC6;C+EXdwh0@U}ASKE9()fcQe0$?COA&=0{GgF7&o_bt3n_0#%1=CCTp zkq}MsW3>xx(KWEFM{#cpTO|!_Fvi?VuVWs6;z8!{f}yWtqw(E52Ftu^m`@-UctCxw zks^Tjt)cc02VmiCV5@YkXyDzaAF7M5>`KPqZ;NfmN^YmIAKE`hKqz z%JH(K6#Mak6v}e1ffTDwyiwUrCx?jcZ{R8KS+s_*c?5Jz>vkM`*uCNR=^|`@@(y^) z@+JteDEhkhNXRS5(LTrvETrW=1XOftWI33)ca(cGDOQ~v&e0|86H0O+%RLerEH7+M z{*7l;srJsOWdu$Ks>BvW)3LGm8102(908q2Yv>NHNH`5TCFwYvuM_QKg-}llU9Z)k zXA$`RthTqqJRT)?_)>jKdVvsI5;I+DZ+sFiyX_c5aX9s#CkJ9jVW#_ z=;`Cr0lXgg5%VUMnZ14TH8qn^+IEZOkLdg~CH~}lcI-p?3o2*hmVY+J4$xTTuDu3_ zp>kZ+$4kCx9Jdlv9y^`)rWE4J#;wFky|i&f*7;TukeHXV7tj-#u6=4Nv!Zu!>g5u^ zDh&g%c&VEO%)Ack`)i=m-~h$e?phy=ZhaaLr78!8Dxf zn4>wIA3xB7p)B;>irUc;^7jQ$_UF2A<;s=m7=wnjx9VAFUe5&rcAM5cq5#-J5uft@ zK6X-SQe}8W*Zy!b#pcPGx&G|XR5w36JC_s#Iw-nYv3(WR+Til8i6B! zKTX}OFPB+IFEwl{E&b#}eXB4!G+MaNPuDiVXt&7GdnZE5Ln)MJGUp5;%pOh;JMA}wU(uut_zl0-4wV=p7Vz{+hK zI^;HdU85Sa@(8t~_ov{6qE`?OYXfX~c3umiJ}M?cU>k*Nbd*_gKwSPZeIPxt#|Km| z$_{~pq}rXpffd;#n?N^a$WZV0L!9^li^1V}kk;ck1&4Beq>1p;srL}Ij8#LZ8mvXc zHwOt>uiXX<09;x>W%X(lF_ODqN zl8WVP6%Ge1q)Hm|-j4_ocbT&`I}Jv=@a0+Lv(;w-iI}MRWNmmp*yn?g(4Ez7TrJ{5 zp@&5T2>2;?ros6nQzT7|=BZS5jO6JZ@BqN>`Gt0o_ZV2#6D+F($}C7ANs>enf+M3R zh^@kBn+R4T=9%$TpP%Z_ctOZGPS3-i-UEaS`8W)HdYPVNq1 z^3up)@hq1-i)gvMEG8<4`+&f+U7yEtK89z_;l4kVe}0QxCgfCQ*x`EwuU3bUKZSz` zAnH$|WKe6IB>)4tbTrN=B3~sumfRA)=~QzudC;z1JEkkGnamypMM6kSi8XvFT;iFAq(w?y^uFZlIIMm>4mr|E`=_|Jc>(YEx9d!X0qv$dN+OCM5 zf|O-ykg%U!*cHnV5+p`*so#Ukh)$XJCdi3Hy)kA1oXY~W>5ADX3i;YNW(00b_EY=| zNLC(@OBnUjz24Sr2}s#uMsT{#&YYZ>L-#9_Nsz19iwL->#V zF^UyH>&rMvi#=0&_)PBP^PySYp`U-q z-2%*5j3gUmZLJ9;B(Fe)vOL51Z@eM8nuN)!$6PPSSB4mST|rjKG6Fpn`}_c_?y{@W z$_-uOe^FC))?}0Xzf5FykUO7SCqP&-3rADKq9%6>$0V~INSOF@3jSU60~U|kiqM!8 zZB>G)p%VkC?`U*d2HXB#Bf+ea8Sg-%N|_OsAhK=Cun4*VU}&>C&Z3Z6hIi zoehgbX9ffWJPZhUg7+R9YQYM^bP_d?6LZHF%I0Bxv)z8jPo_MD-;7NK{w~ z-TYKwGoGxhGU}e%uj2IL$=0kW2b_!u)eif$hu>lADmY7$hLdW~+I1)48e99DFx%!U zszJ*c!rftTATfCKY;FE;QqqZX>-*xUz*Wd?avhgRO8E|io;Za3*Ga-?m3mYD_{rLy zPyq6_B0cfYDJdfPRuSrs8q$`e)ugY(&tWz1Fx$aEF-e11C_PRGracQjvE5f@XJGu%?Ivb`lRkZ zoWpp5`qS0-wYE>2(v8D#;MYR$b)hlKCe{&-kr>Io$=9lVtTxHl3XkIU|VQ$CO zxpkeO?Y{2=Kl|R9-h^TuQb|PZ%(?D;ZPOb`$aeHW3b|GTq3zKvSZqeVzeogl1je!F zo`BvbgGo{~ROolST7ORsWx(nmBpY%KxaVBMKnOP7gbr6kAW8a^`QYJ^?pMrX2NV-n^M`^X4`el4r>?jGyH8 zT0mesuVcrLA0K97p25n->6;Tz97)_>vkdb!Z;vm7T*K>&1d|IdU^V&d*-c9>;wJ9r ziZE1PtbD^hUxrBLg@h~;x*0&it@|~c{!2+imbsSh7ldC5vZ;xcTuolKXEfjpFpcB> ziGm&M7v1zBcM7yG6#|{-B@I(e6BZhzes$h88Eapeq(%(IH)b>~1L3E8NlzIp*JAZG zqJP4=F&N4^WXPWD5dI%~?*W)a(d~^7gd`*oT4x(h^9Bv0#S)c(y>7GGX&ETkRN5; zo6{(5qH62+*KB!lBbYQ~bS4y-VfA2ARDh*uMR06M{sK2)B$ibm+*Lb;wq#SO;yAg) zj-Z65q=+$>N!NFDyg`2#*)f@S3|(M{)uY*BH?y%5rjzNHkE7e{?9dJS_>g}#*dYE~ zBts0v+8;G=Zzow}9~`ypElhj8Sa4AjwnI%|x$<02^Q&32Tvaz;s{`ailrFp@JuP;l zsVo{oKeJ$$uSuf4qDJnma|~OQ@q0y!8IrL6bQN>jxeKPjl|Wz6jht9wi`*kUhh`YI zjx;Lu4Y(Y$-^R@xO{nebxrpAaY7ECf_sk#{wWfhV4y5a&EBh($2`Vac$-JJ{BgACz zIUP3FG0Gg4!WE<>h1l2uM#v4DryH<+ub(i)_rmOQpmtZ7t{Fv}ahC1j7%RB5&$o({y@6^!io;qw_848KEaubJt?$13{2fOX6!%;}C7wtmlax>IVWi!;2g zNG!>wXS1No_m$nyl5KGBJ^&NeigT0Ja{ue+pMU;6C@3fj{)-ASIoLNecUB@^vu;WC zx+q^8r~U9ld7p*Rj$JBXxo@YL7MUW*b;%xcr!=cUg9e;w!O?JS3zQSaVXL*|M(*gx zVIKzpcsGR7fr78I030KnYcPES&28~Dm_8B%Ak7XtoQ>UX`}3y}%yF@e?;6!xC%n=% zdXN`s{3-i+C#XbIflsShzC}b=8duLIxfP$019^qm%<;j;XPd@TH8t1$B(aUgnTa`s zKbK9zyE>?4;7I{jMB60;dNj!$u`A*_c{{xzPT^G8=h$IsY|4?r8Q8YT$UOdqI5%LR zF3Rdz$^n+&PFHIW$r1i!giU}IN8Ywe2D)dT8$Ja=UeEf9O_xA z`p7?%=oYT}_m8_&NshVFWgOhjkO-Kl0u6ih>JoR~OQkLMZ{C>ueoYF$LZ7VR@}6&C z#!w@NhNl>?>1J#I-d$Sph6=1qepAJuiCnf&dSPVgd>v+-38iVnjS%EnyAx^!D4oA* zM&Eg^#E)T%7ELQEcutS+;M`nTOB=PlI*$&!gYmjXjT&tW#$jChwq63BD!)Upjr0h! zVTj|RDrlGa%KRa|B!89?>}#W(k$`*n!iG^_3w$ci5?Bo~p<0 z-eGu)!uw&|-xxPMJE3blQLfT0PSZ5raVvF);Nb21;r9y~U<^>Ay&lQyr}v6J*#h4N3Z2jL*XZSq4h4%!742-B6Yh*ECkuOx4dWWrOq~BKGk48n_mAgl^za0I=ZJe6>;d3By&~e(dosao> zbNmJf&LW8uj;4{6s-`}eHUNe8`~?0c-Mt%6o*OMk!ftwAs30K|!42DK!JwkaS+ZnK zRBw6;dBoYt!>lE~jD~q9H8||Yx?gu{G?g6#WU3F?Zoja3Cc!ZKA~Q2}Ip-C9!S?fm zD`fST3tsmz1_|^833>(%-#Ns5TxgC#nGB0(^-1CT@`n1VaajNohjo>!A?x!6D2|rp z*`E-7s!7F6bG`(TOGu&H5YKt@J}^dRBp z`TieDc?C$?;ln={S1pu#m8ER6&DTp!4i=~Lp8YT7fK#umTG{sj_G!d>lXxi5%iOy_- z-2`;bL@k9q3O4P6KYKUwok#^?R1l_5JbJ{|QSUM*Ht(b4EnhW)?>bMTZuiWtzA5<0 z^tg#PFa<8rs|J>laLB84!2zsMd>>iGyV9(5NJ?~l&I}CQS`8RHd%%FtT`kZ*U9kVD zsP!P_O0}2N=t>)N%H;sH-H)tL7^QaQi`!X!E|M`kMmzmYgZT1F)yc7iKCtT-DNd=W za8zyBJ$uX%UfQT^pux`e8H&S;X7_wx_pF#993%N}(qjAUU>6T{mGA;AQe4AJ&z@a6 zv%y09y>CAVvOE9JcT*+_$mbL{8=yy8A2^H`4N)YHk^1BoA zjr?S_06QBD-|R%Xtg{vS5l;c3zcfvhN6#gdgH@)HbTJRWT+=s~KnOGG1lWAGt5JpL zLTnY?Qo{Fnbd<=hKc;asqw_?V@n^lp1_$r+g=e^Dg%rs|dMX>tb}1Bu8D~>FvJ=Ma zhP@%GMO643Nr@Os1MNO*R6Ax>5!;mhhXbo;)T_6;jkq)$4vi;*lO_rup;Q0G0h@R7 z(=-jL?)Uo}I5U~&fj!m(+hRp%q&TGz`eL%m9EZ-$B*~R^&O~)0IKU(@Fjb-mebC7u zFp~9FJ-|sFjS>?*DQbt{m8c?zHXI)|DND>2IUQA!Xk809QTYu5h!yMPATyy!(t|jx z7}|kJL_h$+JIv0R6hW024(NlhZjK^>g=b)Lzq`Q7lD78(EeCqiSSVk`*9j6+4!KzN zGLe)|uy)_5XCgN&*EzPc>tf-0i!p>%8%ZK8*GaO(4*QcFVk03!y9jB;QlS(m>Atcg@2{{v>%={4bcbQtb_o80zU!R8Hh zQ`Pl*S4=WU;_&FKuXLG4&4MObrS2qL6Y#`da)uXa{9f{zMsq}wVCxA-s>*1x-_~L3 z9jtW>sOs<9eb_crr;X|H_R{Vq9++CK6o~-aa50|**2%EgRZpVc5>_9!w^Kq;Z=a_t zSc!)gtT(o|8%`B$qcuzoJ7UG4RV=4P!d#lE>0tLH1J<|gd6R>~utN3ge|;nx)|SV# zDa+Z7hfVR=(rWthxDi2LWicU5dU*7fB`s{JdQ#9x7?QB2vt}9%?;wR_#ZbQ=rS2s* zm&1~0TI_#LBU6Jrv!H{) zhk~;ejH<&jV>Q<0CO)Szu(mP?Cur=47?0B!go{E8;B>8bCD#k=Z!qha zo}{`axmumTDTe;Yx(Rr+s@Vv}n2fUoN8u#dQLoc}7(3PlJRtR|O-N((=@RJMcfi2K zb+T0j;JySOb{ZW6`=K8@e(bxCLa;HB$8hwWSbU?al+uy-iE)_u0>rTq`hC`^zV%V13e34+pfhg<6`O=RLx{-OCe##|6{q2 zIw%<}Na1smlJeR-0Y}rCaXJ*nb1rh@a4MX?`uE8sW-#-v~DEUGU#Z2vXP`k%)xz!e0igec z_nH%_Y=J%Y+kRJr9SVL_6}fxvy@beZ4-Npvtwu)s*x3zXPik-zfCjVmNi@$7M z`$;MHCmxIvb|_TC17NiE&8O)Qw}**#2FCFGa|LcW1{ zKv?P3Nx8LdQt)No!lz*;YMP`n;~N~Xe0k>C>H-M)()s5$4iipLa-QbcVpDMx-H`Am z&RY~7ayoFO;_{b52+fC@&nHUw4!S&Ap9__UY#}mqmj*;1&kQBRL%<^ zQd{MeyHo91vt||Y=mniSS>_KZ*Py?df&A=d7o>oUC|Jn);f7WMG%gaK2Hwa}Toe+$ zUGr7lUXa9ZisVB}BrGoO`glDta4zW$;D$bB*uk1Ljr|aAk4f_Qu7_b77A1!Z=r$6y zR7xaE=P^qe(M!cRck&)VgH$Ak$JCrpT4h zc_~=VkJP|#gHysT!vGQ4xS>+34REd2e2xKG*mp-c`sB9*X08f-xTp)WVlZ&ex zm|s~fzIK5SeZsE4s_^bH(-EvNvfq^JC_;ftHXdf6vM$+{ZtRphK??#M` zl?#q1QB+(K$xgGjftx_CSt^NxHDrY$gw!{vN@SqYCm_UP+Dkej>@11t3{_thI8WFT zW*OLi>fEMH&?#U|3-X=Kx~v=|p(mdd#&?G8peBshepHdlyDsZW_FGFC<)Js4r}Bfe zwp#6bKE#~sP%k01pJeB84)fR^hf-sdh9AS+v(X8bVaUHtY3S}T_W)ePOGKTj0CRN{l!sAnT9_qZdh-G^))CS&v6gSC(i;E+chPiB0a-kW ziegiy%B ziE-J7CYFeK*+*3Q^(`{R*WoIizGd zM6V0-m&CG$DKU)kXTP}3`-w)DM)Id7F!T5Kxg<&pd=LKqmmudXHmU$X(Q78b4o6oz zu(V?lDs7X}ODyMX45gIVB!~S}r5)lgaHQi>h(q)nvV@Mjez?L_Sn}XxurS6(}b)wy+dU7E_}3N; zwQkQ^%7w0jJIKeUMt>NvTPnld`vTU7lc{X|?6IiIsv>tU@qj$zL>gQCo_Xz&1~6hM zS!3e=F^p5i_RE%?aIAKazgaq#0n@LvXGbxLnUA7mDose62zjSu704Ori4a|F+xErefS{Abd*MN{pPfr?dI4DwIev-7+lJ&XFvK6n zH08o z>^eQ3hz-3wg-N0zsgKQRGd-gPd#J^ZVA-e6utM~)&h9pc8Ho+^8Ji{Gar(Dfgd{Z4 z?a)EP)RloZiJC`}Mv+_OUN4EN1!vCRHarjr3-3=%d;H|_Ne&Q0dGNF(g`)+5XwHLviljMr@`q7R zWT)T|v=V^PfYHst%90dWi9yX}lK;yN4iQ6Acw&ed`SBsiJj7%Z9s=aFI6QWIiA~ZG z1ZZQF4J4&q%6~sKzqRDD6l#|_R`y(Q!Eq?;;-Wpx@-ui!z{qu~yTvWxGYUFurb=omH@Dj~Js`&zJa=r7V*bDg=@1&5gP`UGX_ivMJ2` z-ry@mbxk96G!x^K6DM4FVyWT~ItLy(o3lsACq@&A9vcSNt4GH$)+#Mtrvb)_SI8sC z8EOh^n39?kWcUHK@x>V~!1$pUs<4>g%N;m%V2k(Z)8{!RNsX-#@`tJc0cMf z?b&?HjAVMm3|=5LRLvTXh;f7ujtrWkLI};KyLE=6+@2k z$@bWIO2_Cy6&(9%;oJ(F>too};wK$rXH(wX*5N}YnFl!(=AmQ$a#ki?7**@fEJCB& z>QJ#)BzEmSz?BT|t3wF(NdFGDemktJsc@uDEvcby&&cNm3J-u8-Rcizs0WUaglI_| zJ+1wy_VacPmQp3#HcgOB()NgokT(8=`ggO>MJ@XGgeeF7&W~^1T3oZtPPmy&XvB$u zf?@DmSn=)R%rX+pms2MXxRpqd5^Zx#OyE+WWVT_#{Q(7RE zMaOU1LiMs)Sv@;Vngb)UtrvAfB$i~01pBKi%5IOY*_urvt8KA?_o~}sZ#~f0k-E;u z<|(>IMU%9>YC*{>xePf*_-aGfDRerUHCZT|)%GYNwfCKUdO#-XDtTkuRmlpPI6rnj>7Vi*_iG zl`0czs6Nexm8qkWS)y}bXIn@BW~_>IBcPm?(d6sa5=+)8M#*n_^WS9mt}||a3t$f{ zA{X4IhjnXz4%!d#FYq0cSYoDwZ%XiVuL;)QqA4txVRm0xtxys`fZ=3=Goh$`!Cd*I zWcag!H!K(hCefdaWyW7{pjQlFe#jMEeSDe2&}+cJeH#zhYXNpL7c7efEP;Es>m@me zROlXsm2jM0yL2LLBv2+y9A?y~a+sF*PC!~>Jkd9zwB!K{e~C7UFa)D7F#f{+4C2xP zyRpf6jj^Z<854eFT7LjCQ(QmPPsEG7bWJq5x6ZW3Sa%oP$_!0EsbjZ|*cwQbp&|I0 zj=5~iOxRo$URL$08-v%$o_fWl_|12!SiVC#H!-Ry{QP^(5Guf4qY(qoIKo!0S1h)Q%qWMMiSe(m4ww7VM`f=$usUV0@aUSq$lmIP0#b=AL`1s^E@tC}ZPtAOFfgLHOE6O?mfm{bHk2-|6Y-wV)dC&ci=RnVi`p58< zc~jBmX*fjnGJIZ|Cw#L#STiGDOr7etIU*Hj4mGCB7vJp?%6?i_Qety6JYP&=d9SMT zm&288?&60KS`g)}{4B+Ch_B0F*&l#$kL`Az!3vyceXZq`eNXUlV;T+g_o)PDEHsQ~ z7%+d5b}y6MnW2{o8kqYczK4bdV-j9Zlc~g)I2ppr_vzG4YW}GRLKpFJo#Chm%alV+ z!IwNLq%j=fi`Q@xjV<~BTWfs^KRmVr-DB4Z z$Qu*Eo>6#x9VPaogv#%z@Z;%i<(F7`zT6&$d~5)l-|GH;j#b3pRm%j}*~m~VyPSZH z9yF{T*qze2Vs~MEipGrsJG~Z|3tUeX`vlAk^DY33^j0xu7O5uXFgDu=vb zJuW762y z3Ak7B}lgPGwOOjxc> zD~n{o)tk?n&w`j(!me|Dn2+Nbl=a|# z9Q>_dHjD((vo%nI@3vwiva-gtVCpR)fc0iOmkJeJWC?^2ZpJjOAw+10vG@dC36iZK zEn1j+>}TFJyer5T#c&Kn*INt3O#C}+t<9t&W@q<&42x@Kjz{JGU3|S&MebhGCw8~Z z@F%DF&awSpIpV)VdSgL%K?P)+={1t9`Iy8MX~GwYy@G|T2SL+G}&1)(KWN$?bA>e^k9pLP&z zEn+7!-?~lItuL3)QeZ3!lsN zS#K4S;**$PnHI^4UR=e59r_m>vMp7Crkt&RAW513Ax#3|atLZU#RS5kd%NPXj$^SPwQ0@W@T3JeYDJ|>L!&>G3KC7HH zVQvdk)`Ab+R8(rsls6}8O5(TjhF#K*x-nT(LIQYfMsQV0G@7J!=CP~OCCNb87lDV+ zq3uw*xX#QX8TBn#pRAy<{ch1T;UPamZV(dGVOE5=aBbPG zP}TUm^OL(CyiDc$5nq+$?@nj$@*<7*5sf%0=%9?6njTLKN|t^JUM%sIE^QXd-zH%} zzFS^Pe3|vZFH35ii5M3I(_=b<$hYUzsiypK^=GrCrnSe;d9a< zghmtjba%I&Fa_$V*+p~P;E0VqcARBuf+>fj06J}jSun#+0C&gHR&agUU?LA|IpW-#})K9Q+4Y$CmC}(eGioJx*9k$nH|<$%U81vRv9^6k1xvWV`$-F4Ua&6B# zR&ge7A^^*WhQoLLmFT5+xpteSqL2tX_PRU^te*(Gx>ky3Vr*6EZu)aNqM0W9!uD_=emB--x@KI94$U%x)gXA;|Mq#)p!uYVwub99UT!)%cU}AH+0m zbMh`0?7rq96@R^x3p1K(f(!g?xhTyJo#$uET{mK%X<%yEX#KuV7_M1f5D97#1P%k{B z(Uxp4l|<(<;X`KUWv;ABCei4Je>QIXf;?>8IN+Gs_FHhSrKJPx&bKWqOc?NM0vz=a z9d&oJ>W>-C3$4++u8eYtKA$bN&Z4gf^2G=$I0Y+A>|4fN3GuWG^ZRVDft1?X?asz7 zd+gVoc4>Kw@|!`Xkq_zJ3NFFn?wY_r?4waD?!Hv!#~9>5Hj1BlF=$>9 zvry)8ou45ROEMpaolk&Jt~sM@?fwCPul>_Ef0;D49c#=9uKlcR-7YL(e#(5c``#<^ zs-@MeaOf^pcTY%v!g&QC{CHo>YQZ2>$D#ChHM)Px(ylsqjTwHlHEWG^bnq(@IQR6!v~65mQqVa^ zKPHz)Ej3rQhDhH9GVk2e!*Ylpq~3k#uM@R4LH!w}+eV7Z`37lpfvAB1R$g~#P+@Uo zXu5-rw}H@pngHVu;wzfQi2;P#WKs5>IJ>x5pP~z;BT=z2aJE(A6#j()tSlr|x_;sU z2W$|WaP@px+W`-zaahB2`iheN?0q@3mBSFkMCVJwL;5$RD8Y$da!-N#jSalrBo*sn zoq^|ejk0~Z^L~~bWo^y*X3)5`qh8#%nn4tOq=%#1wB9*Gv`(L|26VU5r)L1(lcF4G zJ^p}$jujzZN3+-wX^{)LetM?+5VCmBLHP5h)w181=AJ00=V7|UiYbx@woA6kzoh4E z%z8)CBzRp!SJ{`8UZ^8N5bDd`mDJs$5)w6O{Nph|LoX~TCNyq!A(C15u~u?Sz1G2W z0QcB9pbdK7p!9VoVYtwnupr&0)0G(v$QBd+T40rXVS0RPVSEjH-K1#^M9`3Ec!t~F zA_$F7UAuOzIAetR{{&&7fh$(5ICGa=ITLesg<+lrJbTg0(mDm@Pq-;Jn#*e#7#1Da z-Q;b#tYz5Uld!RG7p~7AwUE|6Tv8neQ;>f0M2I^gu*$Z$ZQDlwhA#^p?1B)E%jy(M zS*-{EB)E#saMV^D$Vqh8D>Oo96iWT@N{5@X1mO11Rqc5h{EO?G(pdq0WBI4>#SfLI z_O-4`fXxTLF3n7Rtuw7^Lw<($^37NGsMRiKtqAt>#H8Rz!N^7HrLh1KJX=k%>F&K8 z442!r08OgzBGY2Ss}45LRStd*i^Cx6_Ja9!V(e2miX!uh5NjDj=;n&;MA%p9B(9S) z8cWvmX{kLmoLps|+jdKnqy`NkHAvL-UQvyH7l}Ub?p_sp_1{S~fZCWfJiNybM^Z_AzZ2GV z$*Ac=R=NyFJq6flfH1iL*w2Q*ByztaV_CCi&8x!n&_O)*n%tB`9uF}O!5ZoK)y!@A z!LoD?pyYIkQ=}qB~iX&b@I^Rs;#1gw4y1|m+%mqJl zQ7&O{&O>0wim+7M&uZCm+aRbtTvuXT(F)2E*EKlA7VK)-*`l2mjxXj4*oyjwt`@9W zzy>Kt5h`()w?m7_)iBicm*%c2VVOxu2T!Jw)0TnC!mpl4j*{0M63SaTmn$F#RPreu z&IPHmMW(zq&(Tu>l)D|AE%Z0%YshHMDTJi-{XkPS5Y?ZNtYgY+V-QOu>^^bBn-?m4 z(<3mMdR2ZKG;hPbWQtNHv%6vK%9x&SqH#{2*Is$E*{qP{Nt0{;RurUI$ zB+3rkM}o@P*}dg*wsK`n@7}cqk1<|ZqVnw2sTq7zu7kFGC5trWZOfJ|+xo-I4i*i}<-8Z-U|V9zvGCGz&}E$54a zd&W{TPG4kEWo0EjYo^rLs?l?0`BC)Gy;PBQ2P_G?3#N&NEIRjEBg$jV_Mc4Ts5s#- zD10{6v1UT?1=nwGoZ>TvoUqg$-D0OtXCK%c^2qcX<=wbv?LE2ZFCI;nn8I|L9=f)r zRI?XeKoV>^?i)vw@SY|!jcIU!;IA~!NaUOvL&Cl`N;J9*94kk@68ICKF#sSqbZ(vK zTdK77;jR(qN4(5XT_-I>MmXg_IbF`m`9@%?SGCmj=a3HfV60nEP2)5Pf?1AZ~$H zhlASd)!6Z*rcJWGNu+)@(6=e^v&0im^8S|cris|9MHo3Jd+0o#XLy)nws=BAo0o)y zE$hKs0AKS-Cdqu1K+yrq*&3FH{QyL?`kXw9t=QQWO6!)M^ z(q2!5Of?{r8BsBeY`6F}Zn2_)Fsar)sj_K}ZH46iMRWBKcuL3UY$vLMGEa@*3r zRdk!v#4l~kTwap#HjtY?2^BhSpkJA0erjV@{5Dx-10g?pTU;?Bls}4mXJ=M0o-4(S zigOYN7}>XyE>dsx+12c-=gz0U(~C&xjFtY$FPuSPHN4L1zy1a}kexIuu;sABl1*JU zZJ!d(D{3Oe)LpW-#Mdc_S&oQ=j#X=GbfS_Rg+>9Hy$R*={zh*%I9(_$zlPf<|o(F#WednWV=X#*nFpJqZAO3dLOL=M$f)_)6E z(1@yh$T|1W)aqVdO;1vqJePB`UQy)c#PILrvpMt;zd_FQySSyApHg9W59h+d>Z+ zunWcq?u4oCq(NFVcMvt07D+egu3hbP`uf8{5KQ?G8y{d(ij4KuZkElbPMsnwzjw_l ztHlOHu702`T_Jx|%V|Uy-SD>*z@k_4GeCH~e*vVRv!u6CgwwmxEseF;ek(P=>#>%>n5LFx!7}-5iSaAT@i9Vp>9?mM0 zlF0NOSX6+P-AT^`SFSfhw4?u799g$8a(A!0!;+sx=ovY!2w8T6>`#WNSR1}o(kV(U z8#*~GIWzozl2j+M)T$w9_bS1xM%fbZ!jcvcHvz0l(nLX>quKu>i9GdIuii;kuQn99 zN48Wwy- zVDmS@n@#ExQ)G2yGQ6-{|RE5BzUC9Hu|)H;;G@3X=BI`l>cmn@W>-G3L` znN38w-1-Pz2wRdxOo?)iV&NgZjz-oqjnU{H9Yu&nR+g1z5=h#p{SWNs3kFCwUUepHDjByjFpQK z%e^Uatsy$(61ZD=a;Ju`v(}m&#h-CRt6V5wjUflg>(NFlM#BKa*%P-3y*$&Khme!c zYbdbRe;_%w7W8cq^dRkQle$mj&nnuTvcbw^gKfqMAK66ccHAEO65EFfQ^A?vU0)RJ z3&3*EJQsG9A7B7whRuZL3=SA*F%2f<%2Rpk);T-~c5DjhweuLKn#;Q!UEyS;vp4Xb z0xrL2;v3rM#zM%?jCvHG$!G|{m)+It6NY^(b3F{_s541phV3ll;Zdf{4_7eOzf-_m z$FifX@S(%(FUCFP5Y)e&B_W$?3|CQAD&GtJ5e`BLduE-&+iYi$juGcOHl3`s)&`_GMSD=PNTwL5wvurPBm3I)0i;%<;#~>AI3&wdcoN8 zUkA|j>QY1{i>`n^+fsU@74eBKI_Dd0^uV1<>IhK#jhG2RIS$!lwd}q6>LD};Dp%3v z0V~~&6_7!v^(#s@o4R5FbnfBf<1^+8rgSS0p@OU{7TQ43^|%aWf!11g?%c)=6S&XP z5Z${=9$z9oTMoCJ)@OVmm5<1a4zXZmlVo4ki%z#-gQz_=HyiARg7ufMxJ#D~b?oS0+ksB$CzjQ(cX{7b*M1^m{2c4EipId@tf-gJI+3N53Q;0EPQM$ku ztC$T|Fk9?~ZI}gZ(#Z^*E{5e1JfIv_FM4pCU8s<0oM&p#EcNo;ta9>JJpB^fiOqt} zg#7zi{R~xc>bHiBkjZ6$EUjLBLNreLh6mS1zdqvx!rocf(zqzB{4(EW;2@L7UX*T`@!MLG*0PQ%$^S4kzFZ_PwJt-%8f}O5-Pb_cy9?K zhES2AX^R)1I=y)D;&C6?J-gZBo#LF!&UmrOTl7e|%RWd;_1hzIPsjlk0p* zQ0$_nJyE}(y%tju2F72r+SmqzEm)~G6wN28YN9fN%>%%@pQkjuoB#k(dz$cot`)Wp ztDd7jzOva!D|&EXoyiWC#s#UbEQi&AO${_xfy0&%@=~jz`Vn=La48bNG&AVutf9or zZh0aM2i>6;&x}d&fK);WB3~2IWAdvs+>Ka!=-W{{mzhfLyM#QFKlIPj3At~|&n^rc z1pdGGY6$*ALy$nSBl$=|OiTjY?(lUnvy?Bv0`a2L0wwHMEf35gzvuoBbD;NQXpPaN z-)ma!mcdk;2Q$Cjct5Fy1&oFLzgXGWjAkz4!9e=vHWcwbu%&7YkM*OOSN6H1iS$j4 z-*~Llb9y87ueKLy7>@w|;j{Lk&+gl_Ukk!cIui1OeMZMN)M{^f53g3{W$ClY_}#0eVJuE_tX3sFg5#?UR0W}51{bceMAn;bo7F*Z23(64Eu?0(!Gw`tq{u~NqE>M03TKq!lL$aa zW!$Y>Pe9|jZlF+rbwjA|ummyY$JF)+uz8u}g*RYBNrGiu2EjA@UAJ&8xbf0B2Ax7;pd+Tc^CZdq6&4IVvh0##66$uoh0R zSqCgZ@$Y8iMDx-7llbO-4u`|9x%H7H05HdC3)Y;8{g5A+`f;EkG>5~C0d%^#BH|-- zI8=lw__06QWiUg{Pn%;r%~B$ZSj^2eBZ&ZQhB8Ep*{I>w_X`U$ccgzTxB^O-5d$n={Ft-#>4ADBvNmOqdmqNpT2ztese z{r7@@n*(1D>R_Yu;oVG{{`wkB=d@luna56P#vCi^_gcm%&3rV|WLbVzCJo#3d5s!1 zTAiRYYfc3noe@ImL8YfPcY6rnh2G}Op!B@vMCJZGj5;Q(hP?>gV{A55+M##vucEY} zst0$MX2CR6Z&Z?M|v0LMvk!s$7{14Fi6l zQ|J7c1TlgSVekV<}YjHYXq{*rpf6q_pT3)8|fUQtz z{+=BModULY!?MBZz+~cLd_)SL8@eDwzpVt%r8|q**uBf*+!L2Qa;%4jWMTqPC^4S;UX^v!St5FxKinG>V#yg|;y5Mt>> z%2A;2k2|4YrrhZPk7=JcV5=;rnc`Hqg&vXNNA5 zJO3f$cx4ATE{T)r+%GP0waw4qNwU6FGl;wAKbs8QCBmz~vGi|+0356Ht9^e@Ut&1` zP75V8wz)=|38$G^{7{spP@SYIK9MHUh|ZSn%QOhBB0oz^-l9bfW5+VSinIly($f2c zY*2>OHN)oYmCXllJY17BsZ3NS%L)#QPG4Bi-90&r>$>?MHuD8Z{hBFmCv7;xeh}CN zR;hG3%xyb@P|j_HTspq!R~VHE;1h!?Uyu@V>+o0BS`L+3x_VQW3Lacs@7e!$4ve|x zxU#0Y(0me(e~D@GXvJYR=^Uc-QK!GC@Ze5%ye-O6?z!b>hY-GI80>iQDygt3JjQq_ zhu~hLjVu^?87(;|(`bgD1zZV-9_FmGErrf@w_xMwr5_H_JFxH-hTAOqXbL!CWlixh|-nfAfZq3%0+P}pPj+~D|unXZ4ks?>`I*A9g-Dy z;+FyoCMq#HF|LaZ))C`9Hc*}8_=t@MS@1PZut|u=8H|6>Ld;#Vq@lE%fbor@D%M~Z z?7Q7c<I>)>ta1-Oh$^16JN^;t7dfTrYo~i*Yl|X24bM zbN_x2d2%(&GAB`1E%boc?R)1j5CYy{2~iSsCBZ+YBnYuDQ$nkua3Pjsc|>L891$b3 z`<5($VQ+c6C=M^2^5z4S{{Rup1%M@WzaTV(1n1&x7&{ma9Vi?a^ql}g`IDobh5|0U z*lx#D|3lgb!UX<566WT>$nJIcxBt@9tbN0kwtAoYBS<)ly zmGt;OjZY;#f1XMcKIQ?&7X(kE`y)qWSrN!&p7+QcI}A=l$q=UpEIuYD1dq~~rJ_g)44V;Mb54C z^#^>23jdR!zg2;X#L|s|CQ#jO-KrJ-ohAsnTZ_RQD(M<)jm>%Col|gR9gP;2ySdxkAqhejCYf3Z?aIVyhQVH}R#BsydiD zK2vG_UM2z8=4Edq@4hU8Ivxn#33wQo8FVO&2;GSeS)mPceqmY_tUkTljjVPEeIh(S zrw)k)wNJPML1ar6n{xIA=l4L-`Iy;tgt7^O=C9u~hj=fJA|pg)Qzx7epK`yd@E7g? zTkKEf1C#j<2_%q&@HLo(wM)O!#_flg;BPEp=2@7sk~xC|wN79?@UBYdkaHgr%T*9L zHm4{}Tc;lh=VX>6eU&f@9O1Fn#2~b<~O7& zjyzs3cVnCIytAQK?e!qmaC)1s>04}5Uok1Mq8-?p5WRKEDg8)dL~od+1@lHZZH@J% zw!8A8o>b`RO19Z!&pafh8b3DEB2tJw^e!s~Yu!vCStB^`2pho5zdnU|XxF$hb`@ad z*p#=qt&S1yo#{z$<$pylv;KtJVO*F!X~ty|{0T^VW^A-z5MDtLx*j5a9OlKm$Z{a` zC)cWT7-|i*iX+zVyn`;|A>_JM_CD!QL2+N=Afd@5W`qEORJ5YKTG{@FmWbX9kbCJx zi}n%60D)uRu|w+c2*4}7`HX_Is{$LX#8crsDgJFiemJlcaxLYA;5?~SX2WKVJ6@_J z5V}DPm*+V{mC=p-Ex-M;f-gR2_)Q6JWUxDmjo-%_JV?jJlLVbXaJH1eAK8va8L`pW zgej%9tWny4dECUdSZP8`*pFnL7KQr-vmJ>yj0J7Sqcuf@el|7XtB1wc)4+BahCBl4 z9Fo{V{@rr@_=*IY%Dhsu2tMA*$LG6Nu*@-33qm2-S!b*>i$qT6>MBt19KC?xzy*F< zpB``h4)g8cYY130+VHw*4-5OgNnL=!<1~>+UpmQdwUIMo3 zWcef^&h%y)?3zX4D+bm`eiDWM(8>xU0Ea;);6F@XngI@RtPzxCvceViMU*fo8%VEx z@Y}w)c=6(;ix-z)x@fMha@Ak3VBvzWYYP_)DCJj5>`5EKdOOKHGdtNPyodcJFeuPw z%R>mPQ#M;3ZlP!FqMMW?+*g{Z7m;GCvRW?_^*|PrzY8N2Alf^-Y$V$}vK|q|`9RvB zbtfhf0TcW8*MkFU64TF9Puj3D@-PIhUr-pdMpf7@Hn8--+$jKQq&wJ#m4@khs-d!P zHnTDX2l!6V513em-JzSwbiv-{_H_72umNJOhhQt1!o#v8o#hxu^Ia-uHov zkV`yQo*f|=mLv1^=zy96TRKUCzKIyen!mpsa4fJic*m-17*H@>L*Wr&cXDZmsV*i2 znoZ?T;U|w1A&t+pC)HKf#z@uwGjkE4;7$E8-Zn(g*w*deR;nHh9Q`J)!0W|94&$Io zqDOFYf!q3W+CbHm`gA^I9GGXah1XAl|4AI3f2IM~3yC$r0eA{~D}?$|fO`U}F0n}GDE zetwUsATxhS4DJn~mbc8nMraB7O?st26JUMXyRx)6pLtr6-9^_@Izl97vKFbPh5tsi z!ttS|IS>Y{z}Z(-4XlwYa3RH5z#E}_XG4w6cq3Hv>?=E~`~jiDsu;}koe8U948=$v zp#zPqiGFn3*zsV3(4)W1ypenK!rRE2=uyeBhnm^d4K;RA`t-~e>4!2|{R5a1e`Gig zd@6oWztcDF&~%$IedLn6RZwO@u_Z_^P~ZO!RwnL|U7ttUc-q${$f~dC8Jkum3a1ga zshk->&zQ?%Lj=YDpvMiYnaq8Mv@lBy+?H&feMpvFyBVQ#8HPa2&p6q;h$;!9-7s10$pBp(EbL>~q+G<4^Gu)Bq@2TnFUy2gv6Agyn8@p_(f5 zyC&`lOQRWP4yR7uM{J8TE>v*@dW@HDwQN#zaqj#+wtgF!5j{$w66 zQu%V!vJgXs&?<*rrGq|Cqu*%+Inzxo^qp}obB7p4xTb)N^k1}G#nS70ZWsq zgJgvKV1^sA4dK+w&_l$uQYpQ+vb-l;bzahNbJ1I(r3TZRhz*oyZ2|J={Mb*+7@>CQG1s2l zhq+JB+gM5p@Ah?3@zS>_6-xqb*+R7DeNM5!(p zZ-<6nyzmfjZ=?xz!lNwot4_k^@nRiDKcw1XrC~c4^Vqy*SK<-mPmrj^<~b<{@@}uC zLkmpX!H)L?@0EHfw2&C#+F}u_|Kfh-tvr3k!$>N@7w(u#9@;I|CR6!-3Z1bIzu;w*cL*=1%51Fd|@ z9z(0L!B7CihXdj56#7*CS#d(1c6r0 z219J&kpp9q9jYh&7AJ)btHK-Ye<##G8%&VEcSlrcXc`S0m0R>cHt zPNor$XQEoS(iT~r{XI9T2gO#017A}oTY@cKd<{)xKi$~Wwid8z2K|ExT`rnOt3c$w zn?9D?`vcSXU$+^JQ@+eXuldg3o%)GTTew5U8{;<()FjL>&wh4$LU*bVn(3IM(Lj7d zgY#Q#`w(Msbo59m2#mgY-%uBz2|K)Ft| zC2{gFN97gZi!L{sAyhK%)yx*%Chh_c?m^33Y8cABiQ?|P944r&3y;~9`g-a6-N?8+ z1J-$?V^1%0Hfu_3KO=fe^sS)EiS*j$V4BrjQ`U(uDb0_ZI$JlBL&)tsy$K&?ebGLj zU(>XD5Xgc|L4<>)6R2Axi8?@c)0liH-<_x$dI~hE#3TCZ>$7x;CNL7ECcxvJF?oAB zoC}s{_}O&OxIlN7jXQ)sq$%^_#iIhncEUP_ongX8LVfz$9Ss$49J7$Z*V-a$vz|De zT27-2zd8dcZfZ&gFfN0}k8f81<$gq8^N`Bt&t@Z~ z?66Xl+O^owa7yc|;lH)_9KB+P@l~VxFukB@#lI2?R)~`DxusM^)4j-b8tZM6=*)aV z7wepfDiupirve&5*t+OPBX6KTfF0uvtce7(t0sZYw9X<|xwlpW=TW*;W6VS?*nId) zvq<9(!Fo|QRJcNg3YL6vhm`dCeLLF|K5`B>8d3*@Pvvf0LTYQFNd&{-Voh8UQO+LY z$3tA@y_K0=AB%T0jfF<&>0g?=nnMK6spia>B{ThO>UWF!dx4w-p3@!F@n#lOV{Yu$hpP`;JrP?_?|IHV-P<0%9T7u z!F&4uS`OrLh3lK?r>Fn1-XC^}UOc_6R*bsCw(H!b)#MWaNKS~3j$Sg1U2ss)ajiSu zY2d(t4Jv9+@PZIKpSNuyiRb(m)vQrGc_Yz^y0WW=By!3Q%NtzINzcjG@(L#Oh@Hq!z zV~C{R9O2s9by7Ra0mP(QqWe~@M`8kH9mC(>WXx@spif7^`cm4)U?Gz~r?Hebi=!_K zTCh6l=}UgR^=2=Lqb3Gv~MY%tdPx4DK>Pa6b5d)m%f zWSHm~Y=ioz1H~t6$RJpV}! z>J!3mG0}dF^5#{YNW@K&9C`Xg5n}nm5UO5h<`zgv;u!gJGA6cJnpBe|4>t-Gx@t&l zY%Cngma$a&LaiEwd%%XyXYJY$&OZ?Hr`1T7s zkc3(vU$NV7zkhPW4AR}^A*$UXdu_U@*S{o*T#029$p47A+L84uY@7l#@Z`2rfnx zT)s*seMN(sq8jv&7Bk>y)C??i#Ss>pZgOIVs~GZyuW+UsoOG}D@CO!*OVOqABt7DL z6NY@q;nhpFpN0o{(9Dd$8KJGtunsA*;xoIZIB)Tu|NoT(#rDFay>*oYVYp6=BF`Qk zj82$r1)-~CCb-X~XGWS{2}yB#+HkqiFxb*?&i5ut3Cns4Y&&ws8jm7rM;2y-U63)S z<#+hzW}eWbMy%oEJeb^fkseAR7fE36A7A+Rcig!d)g#oLFuo zX(_;D(Ga^`A_3lRkGcLy>>81S!qRPOJ>T2KbUwW!|;NRa(^WYGN&CBLAzXSH(?CvGvTRWE%Z0xO0y zj3zG>yev(i|L{f@RLQ&YSxjr)-Qtc~%?I1xEf^}qUKFR#Lr7dlD=15#m2kigbD3k0 zp*sJ^nDeKz{9Moo`iy90c2YFe64NSL+$pP`3{SAFNXtuAiGYJUDgJy%UXQ73zWx%^YmE+MKR39fIp&hFS?M^C_fBCJD!xW zq-84p3{Ak{lb_)GzP?@m*kx2WfPXxh7F+;*aU%-?zWTWly9tsD(vRBp!N7#q!Pk5`?NrwS)M_QcN@iKZ&yQLKafl=&kPv)9s3yB|95o$ zAqQ487e!yN?`9a@H0_zFsrAGU4_~vv8V@OgT4OA9wO9avY2on1QTsKF^}=v-UR~i` zkJ*i1GY8ye{2FYN4CB}4pxq8SwtAaI8aEQh$t@O5q7j|r&D&jS0JMJY$m7=rkxJ${ zi?Mf}(U<3p-u9g;Q}2Di|2!=XT{~{6GUfh-)QllGJn&`&=i!vNAz?dP!I@YUz07vA zp@nvITn)2O;hH2Sjj{2ch5GM>|KmAOyO!0xP$O}W%UgOW*EHBe5w5i=#vEPlQu>8p z8D&fE3MDI5JO1t(lrCx*OKRVfDZIMMdnS{wRhqwlYuw+=43>LA>YF7x*MXe2wz*{3 z<7A4!HI=bh#4>wV3p3EZf4X+seQWDMG2B9SYe8^CnV_tHaUzX->p>Gb=jt4{;gXA(}?h!F8FyyTU)EoF4C6)VI95@BWlDt}sId zb16Z2gwwfvs50;L?K4Vx3$c3hAzIPk87lD`I9u~QMc-nTNaprD*|zENU`wDLi#N<4 zwqYZzc1}3)vjtTI&6huMEatrik7>#{PGQUbwYg8;)TV08O7k-X>q!Twe2HJ_DV3J) z4K%Fi7@BUbT0H4WcjWAp-*fOinz7SlhCD9P$NMiIhn+_#-D-xQOJl-C*fxbe+W(no zD{GXmLcNa#-6(u0@A>~i4%iLNGSls+PMwM zv2@iH@Uq<`rF>PZiaT=*0le*G``^i3o1bt7+Z#OfThS91 zdVu4nJjNFVSb?iJX;AYloH^72ehg<2j?29kz8JpC5p{ZuFLib;2N1T*A>WGAK7#4z z0A1sM-&_Z90z|U}u<3ksE+-^xFFZpN9z$DkYL8CM;Q3}-AmnwM`F0L+n2(LAmSodc z39fE614+(ipU<|#0N$1j_Ke(7`UWf^H%TGJ?gtazp5H{)fc}EXcmr!9k7Hu%N_~7P z*xjW37BahUNrP*`lxNU>LOBSB!Q$$VZ9s2uQn<=n*L+Rc871Ni0{!2>UU-Y6V-G>U z`EOu-v4ak_^UH%FQ0o^h$HI17v%}c-HtZ7>U9f`AkuCy2)(YG@I}F{*2D?D9ZA-xW z$ts)Z{sCf-;zLfK7IhSPEZlS-<8b`ik_oPh1E8?G-LJxpG|TjZjZhA5t6310dlJPD zJk=+7Zc*mVU$ll9u8ft|iA>@fqn{+pqg!Rd@EATRJ@GOos<;-fvGkergz@K|JugP$ zHJazHnXBW^!k(5qa$nDec7lR_F2PT3-h}OiJ6pidQps#^Y-(S?*wQHJiRIiVa}>|h z5}^=1)!f)+#eB2mWi2Iw1f6oPr48Cj%*BG^u9uPcHLWKGVe4T;aIk>9wQ_Xx|Bt=z zfb*($_6;4D-s{2&xPWv}aHXxHAc`OesDL1X6ai@pBBDzXq)KP$Rp}i>>e8$9UYEL! z1-93d{NCi$Bq#a(@AbWVp90~-p2>V?CgpcZGHGH?XuRmSTd?S&z6^T7`=6-+zYq58 zS@f>(ZT0VXh6Y&13E|S~Y|8$3bS6GMefsqEnB6olW5v4|C$AfE`wV^dGEHS~nm0k| zE^x~>(QUQCyKI|Zz(R@@Rwo`#f%x6AnPn5k%be#Y*K#I3*k69BGjLK34zdcZVA+hu zk(ErkeCK(OG2U!N5%S<;22^s!Q^-_AKju+_lYFj>Z1v;FQ)w8-Z{^R#$`@yp8`g&m z7itSU+D`z~PVfArp_K*ZTBAvmChsuu7vz7gfo#Qs=$fq=?oUIO?{-?9+fPJ41D%?* z=g;jUx5Jzuu{qU6J6Kh}%islcR`@t%`rML+#{L(o+!e#pa~O5;Vy<~jjumeh%nlmj zNb*#Oc1v`2Spq+KQe6{AO{`Tys_R2#LIrPHFMG?5ea*jH(>mEPj-Z1Ryz9t@bHZp5ggsQ%dutP1;7Wg?2 zyu*KfsOsV5(udOG2K)*u2XOpC=QV1J6*`Wu59kYP#D33i^DLq{CNOTBe?b~v?rOmN ziXZ5&xo#sneW~mLXK;5!qI(Z2tpk=4L0H>Ywl#N+VdC==!c8)I&cLY46*d zf*HvIGk1TjlR*YOC%n8hZl0IB9xHV_2QQhSvU10VW~=2z@|#90;}XQz?QqPLOqM*?|FsVbUD!AETbF7Hjbz*0L3ak@zq)i`#4W|afW$QBzcwcJ;Uc_sz003rfCMj)JO~EX zV~KJg#7gzKz2@HQ{48Q6l=LzOX_}_h66LKp?4t3rMT=LkX|$O{0OHx!YnW{xb0X9J zKGvQy#6-ZR;ysSgbnMYRSB$t#debZE#bzGwSeX1X4d(}G_@O!QZRf!v09(p*&n>oo z&Gi&((kF?cKjS1-*9kCXy>JOUH<6|tJ9a#>|3t@*t|7Ogf51s6Mo9i6n6HpOEQDUe zVJwUZfIayr07AoCNrVhz5QMsuCq`p7%kWzwmZ_pK>REFc*i7om=^2rriLk$-sD@Cf z#*Mp%>qyE#@rLO`74#4$8q5z9UagRFt0D*IPtuZ%KqW2;-IeZ!Y}R?d0eGWZR!-H5 zWSan^GsMq|3fED9Z54P{^c61{Yz@fkReM7ZfuW(HsW9JovSox`kAScfR&XQ73>LR_ zG6$iKWIE~9zWoU@s=eep#-{LswrU{LxZ8BLH#`m9ES7a`e?9Wt!H~f{#)gDNRJNGL zwN=9EYT4bJm|b_wY3hAQY8vv^-w$$H6q-+r$HrzbgjejEV}nuA$xFvXjvcR_ zrp8*4?`=7eXhr&oEIa-&dBvthVii#jn|i@A-BRmi*rdiX$K6m?OEoWNg>{mg3uqOk zlb2t}lKJ1fej0>5E2Rngk4lPLQBvBb^t-K{Rg5*4yMpz-x+Nz4u4sGTlkkD%e;e;@ zseo>1TckZa5TBxLgpn>;$lP0*4dkogPh~ok=Zh!79N7U0RXz8Md0{1vT;*z9eeN2~{-6hRs0-6#uj5hI|KPUa%uwh4CC(2Wkq-_*k2HGep zz1;IPX?uz4&C;}(rhFo1tkFc+SVZyK1!t_Yvs82bCWgA!+mQinr{BFB$+trRJ398r z;lokdgBf*&-j%sCY}i@zJIQ7W+Dn?&UvexKEA)b9Y9RN^*(;2nK7If6Dh$&k7i*>; z;z30b%&-qS)A57-##~HoB4T}MM_cYw%(#PGUAJ29l7X{3;vU32c<|t-8aXrYHfz9n zh<2D&i+h%a0kCmJn|k%8ZlEGdjQ+ZzU*Yb$nwfMmW8v8`9@(L$hM*4|*dX(1>1du? zm+9f#2VXS#WtJ5ToN~>X-NcPk*HW6|0|eIEx~bb z3R*OJjv_cV*bSBVCV@gRA4{O0DFSJ_q2k942** zgefjYcsx)9v+F?8lnDn@V}tE?nISdMP>S$F#rA6R`Eeq;a}mDx;T}4*=e-B_zhmrX zh6$&5Q2~@ye^0-sMKj-|U#XV!b5FtB9YvVIgP9?ap7^n^4FYyrzsn3xPmCQSf8u*Z zZ9#ZnGgzK;_&ft~SPkLC7FKT>)><-p`Tk_`G7Yn@n!xK=_ca;PpW@V#+qku4UL3a*xugOqC|I`7Cfov=<|T!<>fgDWt+0K5aV-6myF#fyXny{5@e!)OF-G6X>ropQSc0~p^x%G| zU(w6AxYeL_sZp-i0bmK=(>6xOJ10b|H*cJO$7mSU^s@VKG4hwHuT$a=OxTAJWy))% zQE5F)Z08!A#U7Yg_lHpa!Iq$YEoK}M*=jWm#w80?lWAQ_*u1sj^g#N>&TGI_&kr-z zq0ZtCeaN<>Ot4_^Dtz;VFddOg_eDfe1DOVFfgO<8){-q)3qJ1r-Vdw{n{e*#b+jBi(BtgvL?6wEi<7;q=P zS&E6WWSunE#_cwoahFofmiZSDrB4u#+}Zrb*1zD^6+9Yxi3;~N+Na~i^5uDH;932a z!dS#|Y}SEItKlMI`E}@UzK^6BY&E;FEm|kT?(Q#E44NBB5-eLlAkAGDScBtA&&+lf z(0k}S3?^5H$(bQ?@r{|9h?c(T_)x2cGqCG1>j zSMAiOciWA+Ti0Ql)W?9q7MNE?EOhm`AfGhs{3=K?%vpWQx}vmRI@ymZYkGO6VCnD9 z$~?<-f#Y-C#Vg!d?;H%3otyCu(O;aaV%;;oUy5Fz0gPqZeZXz95z*UU-DNWxX2$C8 z>l4O80bcj?6+M1p2er(HZ;c_6DoH(fKE$%0zNX(K6W!;1qA$!W97y$d>0L{Ew_g9x z^5%V<=z`vfzYnvoXmIyLVIlLw6@vyXfV~ON{V25h(#ZzBk+qJjzLsrUkQIFhic^et_N;+_#$hsw{N(xD>vRLlIY)9bqoFMW@e=LODf=jd(s-40e za&C$2AUB{}c!fJ0-NZh{$+dvI!XK(`fFsFeN+_@pC3Z#c{gjO~k195dnSaA{Y_YTq zVdQ;;0u!WVUj%yj;6ans*+{ak{2@Z_%j$Zh{%E=uUg^2XvKqkXHiE;$%xJ;o=i>L(NlYQT`Xc2>hES7yej_)?5J%cEG z(B_#$bCOttl3i1T#cHtQ=^9US3RQ-m-e~jFm=Uu6MXI69g(gCG#l8FRZ{*yxU3xy< zSa!N-87H(WIMt1zddD!nQWc?JBp5<(1Ayy)4po^=i{= zUM9P2S&WMA-@$^Q3~Ie%VPDvC|6JmmZ8?;g`$pfuK@Lw-o=b{`q^Pko8lEFJh|pQ= znWDl#ucI1sZ}VZw!WpSyDm7Rlr^etI(7&Ts@P^tZI`cQNv+BJ3ZJXZmG9YfVs_f4` z->3S_U7oFPqqGupN^=y7jbMJGb_HVP&EZtvwGw9Ufa+~eBG^p|V8Yd7Ea#Iymn>(bQk z`tWUpN|!x)wUnP=5k4+AQqYI%Can{7bippksfVijXLl(97=?DTH(GH$G&zk@>b8`y}acBWNc2o=8u2_2FjW zMfqMEvE)x}pu0yh3qQI^T@0t~ME;dTh93Rpju0qKTa1P7n^VNa7~6NC!!;;y_>2*G zW;_4}kh>|c=J4>qvmgyHcs5%Kz+DMmZ-sLOje{kYFPVBddkt?n{7t7nHw_N3HK1Y* zz;6oSK`|?d9XQ=E`B5nSjcFKWVZ?4WZ(P zAR4u|Co~u@Ux2E`f9M^31ApfcFzk@HiTj<)>!X-Ddhf^AZG#4p?d4CV((ud6QZJDp z{UZ85SOZy`Eu$;t{*WY5X$LgSPv6GdTv+F6j~@T|W%**4oUM>7nRiL*#xf9rhpmvs zv##^V&pNpe^PU;X9BCW@QjeXwf{q^bV$)1Xp{HB(j;)4pWHsNWJmMMHZuM%9 z9##t&WM2=H0`v;vvm3DbhzIl}h$**PTG<8|aL>bMgSEZdBlE=?5(D+$gOzq@-+QuO z$;4NC$!WVI>QXr7pDn84ZbBZ-sVpnhS1IxFFhVQcs%+%%u*L3-D>zO0^?w5=l$BYf zy!Y@E6@t|`ENxk+aZgw>Rq0 zfuVQP@fGDK3C?hQPo+2r$GZE!rtlzqSgO|j+roakvF>zs;Y0ELQ&{n#&J1qo#MT*I zIy$36Sc}GTl=cJDo3}1J11|q zG}l_i>;vNP6L>UX_LA!;+g2FwfYx=JWUPHAI#`rbcq{)D@Y&JaMHJ^ERS$n3oF838|=q-KH*t*Y!iO0NDEFa4pF|xZ2jky$kGer zknd$Lx~%n#gH2Yt-I2wo!kVn;tJfa8Pd&~CXC7xk2=vlW5I8sSv!5( z2&bn|T+`M#U$DY(>Z#Mt9;U5z99@O?f_)py`S^*`!7dmA5OoY0A-8tbA`u+_2jN#c zo?DBw9`9DMDca&N2166@+R-$mc;Mx_y+SxUFRDm9H3R{tT_}&*YVqvcy!u0~(y(yO z$1qbVOjGtd8)#~5x~4U;v&j?wk2Foy!|*wvZMRF#tD%BtwLpPoM{8;t{8sW%;<_4> zYy8u=b^c@=d_v~dxX)U$BxiP8;0+5VFh zV>8GV_XogCB#LYkKVVk!*`sCiKMZscA$2S{@p_0vy(IFi_#tx4B3;)*p3Bao&7+mz zY%*1P84i;>@CK0wFXfQDEEd z8$@VulYBvFSyg_dWhw+2kZ_y3M%p+aCzp!V4^R+ZYh+b_RkmS@g;DO8uQ5f2*=88-h5H#!=GF1h*ndJt6$GM zUl}l+b;y&nr`vxW@Ln__c!TQ(re@mS0KJ(`HXO=l1wDID{sgW91n-nRoY^MPa?Nne zFjRX$&il$f;ixLqbh^R|M%VOyz?fl4*h%d-_RGd%o5*bEyUhasD*EkavtYppxqapf zSGGUVpcPGGhc=XaP$$sy7|2kUj?Tyh6SGs^mSeCHqGag7kSz~$KUF^Q-k>JQhpq_Y zaPKNoL$_fig7i2=P{;?%Cdls{I@FUX*SkpTg^yGuK6 zk>d5GXsw^fv*J}XFBn#DeFJ(6EgRz1t4)pVxbT|go@j@74inp@&L{dqey+H#-9mE@ zU|MFqVLm}?EwL9@?==t*(C)AYwux`ob`tz2xNRwC5aMosoX-6_w9+=V>h)DC=|BBg z0(=DgI<9viYV#5OSLzT>zw2s*8HRih6MRpBwS~0hkT2wuDDJkypmnH}olTYqP;0Ha zqtg0&Y0+{K#i+2JLs^Rz27A;wg!36yBHj$+fh#0M~}!#{M^(2VsjV_&4g}T6z^Q)cP_eqbh+y z&P(o1$9!tl(q|p4bL*K&ycC#*OJcpyNV9j(}M>OU51U}Tv+us zZQcZCsiE2_7iKYFA6AQWT?4$#C4-Z4T=Evb%3aWHREl;GEEwOC?)oz7Yz3JbUo`5^Z)Ny zxwlE%bu@u|zmrX>gkXO<*}Y4}UrmZ{t(bT)<33UTcn1g>uSjiTIvFPO4T5-ISYqn( zLz-r$!+cnU2dQ!*xuLhFBq`1#q>qHHvrZ7gw`UkZ8_Na>MXrx`SSJavSu^& zFiquNcl3Y;CNTRUAyoc>fkf{EPcMYEtXU`@1ke3tXLVw$zAVGckb&uZ_>;_J6QOU9 z843WTAA7qBhrzGjEeZT!G2Ob+kJgLuPpp9w-Fy5VlluGbLPGD2PAQnbz}XCmkZcbJ6^%`T` zLuC_sNy>bV@KU~(Ui2U@in(Rp%csiYbHLBgfA-^V6mN+i>5CAi*hxaU=+Qp2JaR1m zWQ0N$dMF2~t)0s*v8c1w64i%4+mw_GDz(idOyvyuJcT^HJeF;^I7!z!aVG(`O0Mc~ zSgLTPSAQeTSPn<~CynOfTqI^A7v&-`F}5>_{I-sOFY~1F_ahZNRrQY z$nHVS1|4}yI=Bn(Lsx6TXn3crE|ahu?rXE6M^sa^p(XOqJ}XPHx7tm(czgW#VmZXZ zmiR^QEz>^-#832iEfS9YKBNnr5I&m4tG)!La(r+Ay4sqeFOy>nU z48mdT${qHz!O8Mk>?>kHjQDqeJylHF%rXuNc}S{PtPAX$=DFbR?v(v>iRn++$vI8I zO74@?%>V)Z+_&0zruEV=oAKo0#nFJ>?<01wvK1);#qI&vc4=l{+Dxnm-!85I;l$*a zmlfDISUb^0ffc?0b1zjN^5zRy?#ZQ4e1_SDYmW}r-Tt}*oGWPIli=81Gkf+WExr{8 zKx8!DZuDb^d1eb(rN|~0=aLJv5QHv^SnKWGO>~%RV58DHykB=ymWfPoeI|T57=sI! zwC^4BHnk2nL@=t>c$E!Va~}v#)kX&~!L9RVg0tyQJavHiIG7!9YgB z$w~~zAxFVLjjMtk_}@;oeHilV2W87j+dQ=%(pQ;wzMHIOUfWGEtUdZ%QU#fPd^!#t zo1~>rbIqwSr5gk*Pcnx&_G;|qbxN#WC}gOvBsZuS_y^&T74fC3i^AZarbWu%b3f{* zv2UZp9fnWBjRbi|Nx{q>zB$%-KbYa;JCvqm^g$f|3v976!i zL0+Y5bV(=_+;dOXq4w3Y8Zc0qQEGnmJuVk~M6WxZWyjiiQEcb2#SFr#G>ENUEnow! z%=@l(|AOt{SBGV?P(}N3UE#XtvD;OUrpuoOUOIu9|p@o`Z zT&Y3Vu3cqs&-QQ%1D*Ptw!!sf?MgR?IeL`VSx?dQB8VqXaw%~IV}7fB!N)w^E8vLwT6ahuFV*4 zl7BX3wqEf5Lk*P6j50KfI-F4^7Ty)TopN33fiE8Wa=D#@`be=i?iT!WEK*>*2dzg6 z?8}6^Fh8fy{p{|%^1x{pm97NloD9iku+9GU^Xd7f*c&X0WDR34~8!uSppnc)oF1dsU7VJOO9q$f5iP zF+P-EhUFLrpR0ZHJMB}bFX`v1$l|9dIOSJ~R_#BofKq5fF{#XjTP}i4%3x81+d)*F z@*$*2=808}rvMz#6|wn?oLMqw$o=w!}Mg zh-rpk^OTJZ_#+YfDM`~p`c;NGv!|+y7#d6S8MmZDK=RuZL@r$^n6f zSnIn=Q=H5C81jNWtt>m-^&QBIhJWCARwOg^M5_i>OHJ0awW>kf%;SezMqXV1V-1vi zui21gqq=o%H)YxKW#>Y;7qfoSr#=`&o*tc3nzN-362&H5`|Fc0%@2$X=Y2wTzA!v3 zHrF5u5)!qMJdk%h{&<)RwekERs2I^NpuLo_7K|NALd)1Qvc7{MIb6E+ynz*tRehuY z9~xUul9s`$tDF!9XH}fPn^UP6lh7nJZp-`Gg12jym;JiM=DHPOwebR z>dge?#3#O}>H^p6^OI!Q90uC*)t=zHqHYxQ@1QYJ?lLv;>eZJEn+3VJxL z4Q#9|$xV0K@rCfStkM3?WeVMtG+-e4;&76Wa^sj`6uT-uw0fp%LJtGVZqdvd&+;ek9Z_Q&+<=zD1v~%>7~YGBhiq8EiE)$-#4x=_iUj zK2^60kFA6#Y<@Iq*Zv>|021^fp{2ZgS4bgW9?>ye9-Q}CBu*xJDpYGx!Hj3w4SSQT ze)r*C6zgfkGgV;}{h@q{5OrHkQRx-GEyXf5fbVO8Yf@|iPCRe`-dQr6^CABbZpl8W z#p!;^swJ<*VUz3C)fCRbj5%|Ir+r8)&+SkD`@|;oK33i`1Yt{kWop`OHK3WsJEWWz}#2TvDK!F9b z-x)zBSgRy(oM>%fai)X7vACKlC*W-Lq8I!(^_qIo^On!rUiF5tMdIi(5uwW01p3R< zR5^R_dmN#z8IO7*E*hnNFL62h_eOlSu#F+U9E)Xh5B$fLqEd%t*d^SCVqIj|Jx>>k zwZjAHg%5X)_jvV~0X!dKzEOtFwi26Tw9R_EZj2j)MRP_vN8IVP*0d=B0oh9UpL6Ne zkD`tz?PMri#k|nX{HOzo{%^$RGdJDEh5nC&lYw~%4Zzyj&)f9v+ot*hSbbt*a&1 zc=KJX&2@T1a5E1LKm`Mu9X@h62JY?1%9bQTkKsnwRvEK&>3#p61EE@U|4RBKXnXsE zKXNbhgrormZlru*HU|%}3TvyW7q4#CBHe=!rlGrOg%c2>ssGQO^VkyxfdmjUb$jzE%PWCgw-R>zj(nS)n}c*n|8mrBrlXz{DDXORN0aXagu95#{jdw zMI@^&46FkttFzfQIAV4T-uDbY4HGLm_Fx>uGFW;C#$jxnrM+R}z37$kg5}$fV*}YlSo-s1_v9rT569ya4p4-` zz3i^x4TCKRgX{zZqUtTYU0^xUYIkD~Ix&H&Iq6q{^GrqCU-5X>50VwB%oW3dPyL`` z(4Fvbm&&%PJB0Dppl<>DR?uoQ{y_@_Cizhsi#E zyqOmgDO@wG>73Js*J%x=5NBl~_7W0;@7@Q=APZhRe{1wg&*52V+R;=Jn z4PP&4#rSJ~s87XLwKDWaHuKU}EE5dcs2WRjMd3J0P`CnizlOlGqEMBKE!uT0zp{^u z_Z%|{4PDxK#L~ZZ?IxaGJp=fP=t+n3t&p~@G>hgQczbR5;b{Y_H5z{^Tq90roE4(< zVe(L9+3^X4*tAG^$1aHCc6@>=FMdr%Tq3u6HVL#vEh6_e*nC0{@h*o$;M1@$C?D~} zUUGZ$=wSD9a`PQO%aU+a<^|;bF1A)xKCl_#QT`5tG$I=T)HA%4qzhg*ryNZZ4?B^6 zFqL!rgbDj543>A2>Yb+@%gM6rS7`DV%*w=%%1Xc}{9s76@;CKq{XE<@oNS?Qp8%XF zyhO9?BMA$2;p&7G<+QSl!_oB(4ovLiv5)bZDyFcAeNLh+2vx`2S+$kJ6HJ4kTb(<> zIol=jm6Q51Qq76vn2(Jd>Z}r*W0~$_OUy2qTOIqeqt@^-W{iv@XB-H6TjT6+kl(`e zt?Vb_WActEnY-$0vh_7a4fN*eoxA+qE@3=0I}6bs+`J~OM(;R}J-go#p1m%#Jw(02 ztGedrlpvC+3(P1WTY48&_G3hi7xDj64djJJ_$W!!CVSg;A+Sze!@P?kW09|?Mu4+F zEoSqNu&Ka%Y#KwThx6X~Jx!oR3sXnCu~@{t>Fr)A20aG|2k;;EeMRG6FfHJV9$5#7 zN+EPXHNz85eveRNV>CR;FyQ)|<1f`rRD_CP>0YtAjjVe#<+rL(l6u$h8k)vDzkGIn z(#{s(IZkYk7jIUCHr)~AsmgI$C!XWP=4t1RU&CS9RO5s%ZTfj4D$I<6lM^wtrCOI+aCDfUOa?hA<329?@~!)wb5RO6|(bs^S%lwr^%9&$l}?b9CR0c^EIuQ$P$(M2Mi zxwZq}sfb{!?L%(8w^Q*Vga%=4YmExxYmzP}$QpP{A630dvv>Q>1 zw;QZCHlWWewDzb}zFF7rtlXpFJz01iBbF-<3RJE)Kw0Ohu_BNc)fW!FILfb|S3R)# zjVznM%Lc1Ml-&UIL&(bty=R(Td;c<{e3dG>${DE{b7oq{pA<2eyJT#k9_;pRpTr{# z@%_R^@vx7qJwuM{6HRusX2`X6&0T}}f2MSI*CzUt&8A7~VWBR)lLQVw3=XE-*}L@U zPCE48nhx&G_bUxM*}Z%B26X0=e3u%U8+ufLSOzm*m~Jz#z`El#%Er`5vd@)I%gjl< z&s9DPYYoS7L|PH?3T2!v@~n6imhW&w@s1JSTVl`AHDBn_{6#N&h-ZqsNmvr&m0#12 z8Q$h2R!Pw~oc_tCO(UY4t}^=$U5*dV&;X3<`qnNaP?zXb7P) zf{29~5}uGi*1XBIFDwR%A%Q_bK_Lbj!eYQO>;xJY0b`>a4SHOhjp)fhdMwYPjVwTh zECzG63n&A1xe!nfVl+4sKou4UdV!oU3NaXgG*KZvFyw*k!(Rxz7BZOnUsqxwCK%#E zzz7%&gv*N{uL0WoMR`A2fA8Ks{@19!`pAtVy~c040lQqo8bVgP@?PCH4}Z3A-n^hK z<3MZ~4f|fh!JY$r3ltDvb|DlwQ(f#!>xSW=P&gg5t>mQ(`+-+!343*uv3BBvrMD82QG#k2tgo8!ccNoQ`=pUa!!ib%$43zTZ_O#hH?b z&>Wh*{kqZYi&DsR+dL5Zp89(3s{BRB-O4Oh1@@&SDbw4{n+L89(u#$kxub96Pc7g1 zp<)IeLm6LgU-z9+lje;Qx=n)E^BQg7iQ_7otp{i}yvxQJx~?YKWyrt_?1PW-21eE) z^T52&V>tOchhtL(_QO<+K60b|al)Vs)ul6o%7^M38aK_-#t}-(V(-3xf`<{! zaAHzwAMpi)I>YVoe#U(jif_kN1+4A76n601!(gxCvW_5p zfI=9oA1=pY<=8R4uX(*zY+kDH*wTkgfpRhv*kN0N=($V^+3sF&Iz`#n$Jrx~R3 zLP<-uV_Z{UN~_lNeG3ui>jkH?*1MOtRIx;&tZzn&aw7 zn`;oe?L*u;xb$qS@wsr(Vcr$5r(bseRSCBm2__NbCHBI>hY8v|?oKtt3XFqKPI$K; z=6xcn(ReL<>K&Bz`%`E8xzM~1BH`Nsp+?j}z0Jr-^unXf*r#bz89tDC?q0PY*3D0t zmLg!j$<(N!CS?G9>ax7| zXUa*jJ@{5EzCLf>#V7d21h-4M=#m?-=zKtHsYBUG;Mt_IFmEcRgr!?7S@QMfolBO? zt`30#5Zdv84nD(wD(qC8BLgE@QeIUJk% znilQBXr^d31e?o4@U!C%QDRIAVAqWsGso{|&dhVLCbTMl0S{l1Zx)0_@)>FZ*@zfF zJ|5OV!J@pd6^<56he@!1hevaa=huN>Kc(j-`O0kWqhbgYuGaX239rB6eij`47nGz1 zUhA5?QS#me$x5?RqA;!_(LvQ8h5uAGMvnP4E(1r1hL@4)Q69lRsi1nECv-xbEM(qG zB<@>7vLGg%Wjd7i1}4f@0i1)U#Kw}S+zOjzQ*jpsg!~e*sssqOcP*sSD;9}W5PI3m z97k_9;heu;ltv5UZAvWbsx$Ies8ZwE2ihDSyykEX`7P0#zR28L_Ue_A|1`xO@VyG7 zx_l-)pqNat7z{h;A@R;zdYhQ3;11AT{DOv5=mF2?rwaUvuN!`XY(q}MLV%=mA2}@m zkFy1*U#nJE!2Bk=`$!xNQYtZ*ZYOCaIU3)4!=mAu`!0jkx``is^O=F>`sSOR0ByEq zt6ogN38(Y`vnTPji*Mw&F@!qr0G<)1eNR0AY{=(F!+7{Ft2kEj1^s_r1ASp9#MJL~ z*N14Ue*}E{vG$nGR271M7;P882l-0@fM^3i&Q5EyK>JIM6$MwzpI6-P-YSnY4KTDo z`@s$F*R((|4f6rTCjvHljM5&zo)gwYKYZDp;^%O1P`IXryE{m*dDI)Rv<#Abf}Jek z&|X?o(QOg30h>T#?QfSQvYVAq^%egV)J zyUz;Pofa($v}n;gR{K)|>1YueVJC(P_+< z&5@VKj2Sy-OmKR7ocT4dBue|f`I=5wNKX&9nBw(@7c5eZ^-V}mcX#{^;~StPC&YBj z_)z#slzH)z9{R|Oo+7P(0lVR4ygxX2KTN6V;L0uCUWxu&Gs?$>!Ld&;iKlxd7eEXIi(Q@4i6S&H{5F~}+P7QY(|8%fm`rLfi=rX%U4j1bGR zpH6IoDN3y?U3P6j)fDO_a&|4K7oWA_7E}Y61F?uOiR?fe9%0ea~S#nITq{fe;Z8~jEM;a~UdSX;~eildFv>3_vzzkEi`p1p71?0uKu zFf{cKVrBOEy0+}JaeSwlhb5iB)@L>R^a+l7fTsx!*E+kB@b%u6Dm3;hd>jwp>Z@`z zzVmu6gXN23*tS;A^?05AlVv-E*_Ue&-e5xrwc^$toMnd}P_eKmr#JpX`fx7w>)1}v z=NvcufY5bkk@QG$tERCIhOwD@%Wz$1(8`0EOj10j)3b=fZ(170wU~o_fG>Z=bwZ~( z)3>tpj={ed&SdFktoev7e6?+GMoO{QDf;r;Kf+!NtoJw9rx&!au=JzcWJn!&8NgR?UWf0fc7bm z!QS*HR{WHR!Kk%~p;g$!>m9cB5KQ3au*Na=Zbnt31PpdMvhvvs^71NsLjtx3)tESO z;-rbN*c)p*`ew9y~OoZe8%hexhm4 zGs~E!BvTpz@s2Sy^xx8hovmE*76X1Gi*#L!pIYbQ{o5Fm9#m0g`Kq>yy(2g|sIyWW z!-#zOC0r*-vFSJtMkOZ6jtTdV(vsm-Dccy%XRW3$e)E;sY^iCpX|kC&yYn&^Cm7!T z1@2Aiur}GqZGdL9-HjOi`zbzazB2=~2M$}O2H3~!x^Iesp2MbefHUA_a#+0yN}HWs zoA5QV(#w6?g`pqAf79!KuB<)-v@3lA0v15~%{_t3|B(K8;z;YsXLID!0*?PZ5#-il zh5p@i-f0JaQVao}`tKjZ%`qVtw5kCERt>^?YWP zv_&Fas|{^vm}j3&3q_{KdScn{J^%%UhCeLzWpT^*r&kH(nj{4*p_<;&=EGJT+ zPYm9z$`6_&ImEZ={BQM?$|tZhW_648VENmfT3HY(d)0+?(oz#JUQ?^rH5^gZN#CHl zwjua>r;qr3NVLuYO;kD)I&Cd}7axz9NMBwOZn;|42uSMBxascDyOd7h|^ zwacY=mKn=77n9^}QpgYdMYrW0DF26=w#n$li>m&2v1+IIY=7Z_#9 zTfE9}G+1W1>nd}!r{G(YCW+lBu(^r`sL#WKFBmm4JK~2%>b_jgCh`fI_}k?PE$m@W z9{o4P%8XX7fFGt_0Z)f+*2&vV!=P2rueS8JDg&(oXx+#fIF;5ZTLn4S5oQ82U$>*- z+2c8O3V*9yanIWIZ252q4wEtT3Dw&GAbk)>IquVRn!nSy~qg87{KT*MKRVYuyNJfthO zv?_V@;WiRES<<}ezmE z*Iou7?$O0~d@A{49&8UtSo_k2OO$!{)%y`;Iq(=EW2~E@T->)TRy3OI%w{uAe`k|G zOeU9|W?9bLpR(8ybM>aq>rC3QSP&U)M+@8x;rcUWj=W@H88?v{7A;=iCM&XwJTqSC z8WHQomfS=Z>+MjR;Slep9u}Vz3oLb+w6$pQ`ZKv9eo`!v?5By$gR8^+$Z=Im5p^Sd zEfcP5-kr+kr%U#Kkn!dRAAHdL@b8j2a{i00wZ&(|&uRS_Lav`P{{l zb#-#+tkPo>*Ynua!&z;{fG6CYgbJ0kAyi7+o56_*)M`>h;5bn)Sg{*d+^s%SvoqP{ z*s!SFg#+lJziupZr*CdV5t49t(SEYck~Xd-cN3DHc6aep4W7}_yleClA>Zja{|qp) zo0|v`Oup8IUp+=}(45q?9~rYhlPz`fqH+siJ@ib3Dje2+a=;vG33+%U4wk5or-dsN zhCg&bpRXR!Gm6tz8m!OAX$J$USjX9KziM*wKO`K+MLKooqR&L6iRTgjp>;~-cLYCB zd^Ou8;FJ}PBujk^hnXwJI;zBBtngFjg#~GK_}j!bIuj-pl(J(S;RAD^=Qtea)eXD? zunwkzg_T@ER?az zHNj^v0FD|S0@>JD15Ct@w{opt-!-yl{9VXFC~qg|78@a9MqVC+agbohKgQ=ila7ZM z-g|vpe&tI-wDltHwFXL#xd8h;jj2+lO0)fVl!z6z z*3xJGX^8G)ez|VLU{nBLn0hT!03MTOuhQ|0y zRhL0tT^Jl`a(nklXf;T}+Y1*ijN&UXX~EpJRYbjQ`Kng8x;l%d;b=e?Sfj*KT^4+C@LPR){+(X{A>l%r$((lfveJ#-E9&U4LL2b&An7SX1u2NOW~ zRzudsmd&nlfI;)!2`|F{iJ_+tm2en66)K`SLS6NlsvZ_=1co#%;`+5XV~B;tU@|NX zx;=XRFJrWgWz34DGh?~*UfrwP+`1*)ogT_L_sW$kqhZ9Ssk;nzN!xhAkSje~4R+iU z%fMh|4#EOK$pC~QvQ1Mj1!s)>Gs!@4J3}X%bW6h^C(2U#Zij&^$EE}6wuV7=lp{g_ z3JK&`R)ks%u_D41)Km~s8iaj@T-z}^b|E<@g7m}#Ee7PoB2gfuO@qZ?NHDJlJ8KLU zVn80&rbU~Ot){1Lf(GV5v%0=~w%;N2qi^n3}-3t}@KP z_d1$}S_xPYoNhsAfq;!nY-eiad@nj?HP-?BsNWMVmtXWAjH>!?{LOptU{|?#?hpMiVNb<%#46uPsdku1H;d1I z4#tcI6WO#3|6SyK4pi1d4m*}is_t>vycAxw1jqS{APgj6a-dIMaGbs)V(^^bSh5K} zkYOc0s}16{AHm1brDxj7FVnNqxFAW-!j@p%!=lA296Gr~9US&GxVV7Z6fu*9CFYwo%Dw~!IOzOr}u0IZ#*2kUI^;~t!E z{`%{=i@$RR`kGg&$m^rvn|ragU%3Lp7vm0cMOad!xz~?bvasfEf<+70+OewXe5ih` zM=_lbHG;K#id(mSly=#gaU`ULAT7De82N1RoU@xgg4);mxrqS&Y1)y)ho|#=BUTX>OaeYzhCS=N+29Hp(W_T3 zcR7onO*PysmwMC}9+@nosK10(DTI~$OM5EiZTorj=+RGr2x9G)r#m`n`VH6w)*s(2 zHW59$HTMm;rofwBz3)h}BP++h(5!)08y=9hU zmHQa`S`pYe9zH-lt!OVz3v~vtzIdu>TM97PXp1hm92{7W>snE?UeheB>nX_pZlD$hAYgjzsU7^z5pwFwvJ2KkP-h;Q$M)?{lTCH?Pfo=K2LZD` zQ&jm8X=B(3*i9z|N55uUMCcBQnphaZ&ksrb?^ULg<%JxuY9vjDhNn=={&&^ob97!% zObyJ%n=>;}mTV5Q=$$44iy(9iYb$w<9c!Lyt_!j`HsSXW+Z$NeOp}1dvb7O~2+_?s z5?YB|BMzH$Xv5_Y-2?S zE%!o2Y71b?O~psr7s_@|q2_Z)(`G3!1nu1cD$H+_CN#fPk}vpH4HWCx@#Maau2($3 znfn~q-%PivS+e%^wO@1u{#>$oCQ;%ZAxXCy1Po0giJuE#SrRs~3+3%4WSD?ut>|ZP zB$y>y7i^1q7S;`>b*tLTfVuL?=&7&_y$Jczk`t~upzQ27g@plIDf@&|8NgJI1i(CA zFty$slB#NEp>^U{k;!NQFIc8I!q=41``42dr!8Kx_~7U|u7Z^RW*N-Lry*rM4`yBg z=gFlcq^BmN6Ovkw1DgRdtsH9Phu%6&VvBRw{Fpta*K<&cxK&2)mkiOCOXJB|W8np- zOCyk#2Nhjhg8|qnle9yr%d>)EWz*N0FP1Lmm^-o44k~-X;>4 zvI*Ca>eYT3;L3-|Y43{Z#Q;sUF#=4J{eC(lLMQ+U3>9!Q?k#vzVBU@$&P|@|=bNImvl$ z)a*9ABcmM4Gc`37l9K5aIEe4i=DY-ZeLp?MU5Yh3jYIWLfLpILEYg2?f`;D{@lEq# zq*fs0+d&suSm95DY5&dE&NDbCQ?@vxS0*Y! z+z&Q?kg#=D*5GJGlTfActniE9HQ&vW0)0q&Nw_+z$R#zF<1|q{VF<0*FMajsMz?HN zC5M`jDN1ZO`CN%@@OZ&UIh9_fW8qmt653go`TQ^wVEx$No@~nQMh9a&7q|hBw!20r z+NRsh&K#36|7kH6 zY?h9l=zPo#leNUg)K^_#K7WMbM%ITlhHP+*AhZEDbE1v;HAoxq8xA&K#F)7#^Z9KP z#^e3Ao`3jbd(?t5TM|;#1bxnVezD~!k?T)<#(1?&jDEr57};Ji_#_yp0Acx@?5L(9#flZ{4G$mJt}#rM4b#hjm$@Ch z2(~?=A)ITTm?^^}Mnl9W8QodQTWJog`iC&XjR7Z9(b^ke=C2%t-3EGX!%vm|r3UGe zwQhx~qtZ2MOh1LOtL@(TlC~YDkU&UsJxXTz;F%WQ^N`8Kps{z(x8=&^cbB2Yj)U)H zbF-f#PW6M5+r=#ZDYcUtopKF8+m%-AA!%tx1Ok=`R}@%wv^Kd@$c_la59-;UC{cY- zC`!Zi1xt1`0H@ltNPI!giYz;Rko;)V0#P=R-)xM9D-ks|f~2Y5185?NQTFZklXEnTeaMtuH{J1Un-+=gUVJRw@jg-9j(gidxsaC~lwr1a zciV_aToR6^V)0-vdcj`xPO@e=8V;)B;%sEJdM80t+lyXpuX>@%R|xvcQ;SWXqnFyd z0&;9U(!(RTEf|pos=b;SndgbDm88$KA&+O(a25MCXdoLQ+3m7wIDhHPfddDQyq2D> z7`Fg>OTFBp74dzuyXs09HN^NMH`m}y!jF6uSdlojfBt9Xk~>rY7XPUxJmiOQ2-V%x z9UAmsE3yI`yhxgSx-j&E()!EQ{GX~?ZYV>4Sj#1A4uU1xpMjp0G<3%Jkud<{hQG%A z5q7KuV5`{pvqrxgsj4x0Y@+c-Zs>kDHPrWRMQE60U&G1fs+N=PuM6yVZ@kM+x*HW8 z&0S3^#q+zH(i#so-<|6ud$dQIW3yIn*9+U6QW z1KE--LFT!O7F-TnH-$=DwGHp3MgB7O+P9KAX?o!Z?e|TUU~ebwsZ2G>Z(SdpRZv|( z))|~dm<;5xZsdAi6C)nM<@$@Y#V>Z(y za;%1xar%C1kD0*+6Z9W?{oujxnhz%XL^T@M^SM+#M%Fa;h*)sj%o^O*rUk;E98-J) z5R6y|)#d1pzyw@q@(_hDxki;N$tXP8B3;)gS5>-1o>fMXE*Cx5mdZp3vBzXvc1upUu1QM`5Lk9JExo5ri^MLY$sn?y zm-uYAPv0tfBkEAixX90nv)76A1g^ovJrxi}<1U=dgR)<_Ec*?AAwR)(Nz!>4MdKef zL-{U9ccS~{X?uhk5b`>k1%vj*n;?@H$V`dTcmSzeui~D6r?Cnvb3?ruU?1{@``uz13fU^D z5(BH8K1h`sYN&iLl`8)}pnShaJ9Epjou%6jn6OG(xv`9uSL-iVa>~`N%?5i!nn7VDr* ztS@XC@VJVQ7DPXyIe}2u4WTMJ^5_GZlheSaNVMRXo~NLgP)3TO8Gxlr8j)1GHBC@k zqDB)?Ei*b`h2<0Wa*d8#zbmtff+7?|Xjg?*Wa9tCv4Gde&~c;o$7BsHS5 zHm0X5TZ%Y6{bp^sVoRLw4_5F;O*^1NK8Jv+P(yy>s&RHvb-#sGG*%NbebzJ zFJ;1jqqE%@YIswPK_^?+o8EMWXp^Z2SG_Qps|*a5cdw97217kI@MT~z)Xe&|IPP;B zsk!R*N%PJY>tHOruSsI*e6D#FD9=tfI3hZogq}@bR7+4BKpwBJQ=8FFkOgqeZxEotTmBL7>2d}YO}B<|(f17!)h zXJL&}`L<4mSQf zH@aOWKRBX&VK?TPZ&fIgyF!HuQ__g%PsZEqe;jHNR@h#pf5~m(3-R`j8#*8UEO6{u zRGtQOVe9bEePs<(OX$UwtAUKo^}ydax_7?fw}#9fW?vQRkNrK7aoF4UBi{ zceo?qd05kk|^Q;m5=>f-*<#OT=W!O>!Jff_cj2yMC>OVe}kae8uf5gVgj zpe)}AZK(*s35E}85k8j9HLa6O*4M6F`8bywApB+}A zG5YLg`W~Fmma5{7m>9YVw*KR5TKbm`Sn)QUMGe8kG`szRP;UdVu)_(12NCAPv|UjkO*koiT-d&7nK--+F# zYof_otZ?H8#%kL6uj|y=x)XkmmV!}w2CP-rB3AsojU_b|^ib~j>zT+88 zEZpw*FievS@9O4RoUvXoOXlBxed*o}RefjrS-s~&0304vL{WCYRwy9!uH28Qi*NgT zm=EkuB)0Ocf$r2Q=b!c+#9yR zfJmv3ZhZI7QF~^n>Cq3~mlvjB2zZO+uaW}bZ2n`J^j%o+ z6d|J&!!{iW9;>M9>XBr;JR1moLlXQISeB!(*|8$DRg8a8@tNdog`cJzUOrgz&JH0@ zqexmzlBDeQssC(e0IDRxJ_Zk0ceq`O-gej7GD14hWWRRnRS6@HD1=V9v7sbJ$G%ES zcuSXI{tUs9@h_naP2(NcnT;0z>Q8d_YjDU(d`P*$v57hTCx=8*M4Sm|ja68pc6|ro=;if5gJqdc%2su-Xnko$E+0Nu_W?oA!zoTI`v7a0>Cbc6IEE1NHqq|Or@T8 z40}qd5`^vB-&0|*Vi&L)%-4*wVDG@={*D>v)NPRY;CEIK5I`BPsd!r|PE4-NNoWv`%6iG2gG<$w z9x8V9$(HFcTBq|5vI*%yv_McQzR(_>zUPL3Q?pJkR3uc6QHA>I0Yy~!wpy=df*SK? z^Y3CM@2k^Om0hopfnM}H-e#o6nxiL@gyXDiDy=>iw2r!wP?4ifCmNcw3gO-4zupoDyx^0xSn zBn@_h({>EM_XKw2PB+H|Scx|2*CNNx2%?2_g$%_rX379(OwV#579)^MwMf^sG?A8F zmn%)aamiZ@Z+iKn)HZX3s<9&fhrRcJ^Xd5d$H%hGTAgUiM(>0~h+v5tA|a${NeCiD z2@(XKs1YHA=p||pA|!fQomid4l3f;Si|u{wo%#IF+&VLN?tY(Ne$Vs!Kf(2~_nh-S z=S;cxGk5x=Ib#KmJ7Y$i{+)NVS{fvcJB8>aLk&y@!eOSts-a8j7K8vhRfW|9Lmdr+ zoGY#XIaR&YvppT+Ld_h4qmUCuA$bziHjYC~G>0zQ^b$S0s7P%-1-pXyxT+9^B?+`J z!3bO!m>mI7b>~#mce!NG6|A1-3nqD1aZ3MJio$i)uzIg3N_1mZz|gy3+|yPW((x}% ztU*`CL?z)M=|gHS3yMu0B!GbF;bA3Q7>9;<>fym?xlq#YhRP5fWsVsJBh3Of8|<`E zSi2pBXJJ?Q$Z(j#W2nbGxaPyQICNxN`i&^q^p8JboLM@tn>vFb{7(g^CJP5+Uvx6; z1YtTo%Yr}ghiID)DG?Yi*|y5iXzBcZ7%Kn9`{RpFV`>QHkiW!%elv;Fi1UEJa5!S6 zt*OZqfRWw2$mHt55`nZfCd(6aQvT<>$mIT~Fri1-3@_A8+)i=n1@Sy+YVridWK}+@ z)dbdJIQc{uox|&pLC7sW7?Y#nWt$vNRE~tfNM2-d@N^yHVre~@l$U?;X@^(*5@<`E zcUf1kIu9wciHN8GyF<17Jaa_)ZGn9nqi6dH&NSBdkfJ!f zMP(r{CoKO4MY%dm_-5!Kl%aEUl(a+R#=mF_v(QQP+d)h6HU8o_ZPB4{U44*5=VxuN zZ?mO>`U7tR7&%5h5a#pAIXFA7s?-vM@C^-;V}2jPiE$#<{QUV6wcc5JO;H}WyahY> zX8avTEPr(5r>5d#0BjrV z7nha>ThH7WDrV{n8TeLRgi7~2cpRsE!#}9EG1f=83RIrF`F?jcpMS%rwJH-U)aVkK z_at%9us-;X-9VRong>=2JI@*Ny@=m;blMLmH1%*mD+FV_%jx@9?7J-MY(|@dBu6a& zR3*-7t_tidDSO}R_CoomE2*#9LIJ^7S%FhStyv$xhv^nds*H0t5&Tl=|F1wD}15pb@wBQ{Y$Oej%nQ|(d{^HQ7Vi$Vy_a?TjG<7 z`ezdI?W9SQ`U#`7Fcq%MW*VF5=uC2}ByU}O5C9RI`gx$1SHuZNLt#PFFIu1Q3bKR$ z43r(S@de#e8$yclPA%@AVw0VHdL1EYYX7ksNO6-CdgRqGII7kAA|KdMA*I5 zU-&haTsk{beXF~#hS7dgks6eny7V#0`5P|Con3*359406$IO}cucUuBzL+hm4V5SO z{_64Ld?9V6b$o0_>N1OEDBp=nXy@S>6&aC9zD>@QKqdcZWeOM~Bvbu;`P3T22sN^H z`pNu2RsStn97ce?)H&o(`=T!#zbtF0dyb4Jk@49rY#voX(GOrU#7KF~1@%crHQKhM{z?PKi zcJNv+Ro2Pf%#QVcr2cX{6A6ZPhJe)jt`uv$FZJY`y@){ z(|v>%)RE>0oCZy+o-1VOzN4haL`P>xPvomTc>$O-U6#~NV(F&}hu|cqBG+%b8#@h} z{s0k@V?JMARq%LOEv5XhUuivgxa|i~b;$1zX!^kC^)G~&Hp-w)hwE3bUW>$dJU^`1 zEK>i7 zu;XEobQ6)yTo^1<@Mx;@ueoE6>^sex|2ye7NW9|{=z{Ser&JX>i=8_75ITY%_tg!b z6F>a}uz4=d$@|rK_f0WAqgCR)Q^bu$%U{JgUY&y(By%jEVmc8)g4I7%mY?!M7`0+|y0HIc!)gJe#hvT+oNBQp3VJ zb>b@w2>Eq@^JvtX7FO(Sk70_kiS}0x9a_oe7%<0g(SN{P)v8r1YI6tzu%mG~+(QDw z=DXMpJIA=M+T+qSRk>0HDn(URUkJ0Aw(OuA>~g5SQHzhAhsRK z?s;IPE=cTJeLjqqP5rU^Pu^GGu&@NI{Lrb>$y6nx9*|9Fl zP^WGWo5BB1L8;M6?gR3uRlB3ynJ8Vp@hNdvsB%GFdQ$wCjaIs^P)Z@Tec2 zdaWjH9nDcvN|<7u=mf((8^5nN^McI|6sjH4%BDwcL^I&M+RVkunx5q(&@+)e2fPDZ zbLQ+^`lh7Uzx@II6L4axw_x}?ZHKLB+O+AHcNMZP!=0uc$Ywnz`uzFF!Zt;pRdNsUGse@uv6Ko`K%sF`28dhdxXGUg{ z=dv0#{v9@gX=O?*0-pf7#IKph%oGS1LI?0+JE+RlOJF}pbp;(~yjxqsCd10)YFH4tYWrE2 zRhPc`ei0{GB~~mNb|P&J`>;wdG(t(SqFZ?JzP?Q<`aB{^UZTGye&SaoX|H&8h{zI=q z&#!As?C?j6w2#KT1LDU6_UG0M{`uAiz;v)#ml<~xfK8IzM16?@!n8XBA=u$d#WqR` z!8tgRmZ+2ABVc<8=cqdjRZn#7v}4P%8zEHh;UDEP?BTgj0(38~bcuU*J8}|E=!|QL z0wm#`ix`y{+#J#(!REs5wDe;JD^+dreD&l>utKQdNqcxyu3kpI8a#XdDi6D6&SRsf z8UCJi!_j$Rfl)O%-6x7^>rRAMLwb4b!1y~UqV>TzVK9y3@i+%Nz#ce2=sLz9IAJhB zq_qP!SHbJF&MCXX3hfYWI{=b@h?P6$?6Xaxq8{2U3$N(L&%O|`4NZLF>@?p;#5pgJX7eer|Bg2-gw!?>i$h(tP;PsXEqEAeF7 zeD&~Zs8+u@(>E~Qw_-&Hn74gf|3+G{4?VV1yY9VWi8acj$gnRqUt2h=&0o@e%rqr9 zz3Us%(BzZ;8RnDBpG0r^1LA!gYj2Y13Voc90V;UGd27Gg_<_6@&4&B$qg@VBHkO&d ziW1w>m0)$5iTNj(^+D}|gISFrTL><=^gRV^m?lu|rC5*}tV@Qeh}#*GuZz(f$}wZH zO^_@&kg1vE1S0C$#-^@gvmIxXC%?T6rGaY#iYSLn6m`2u)YghO1v1m|!CM^jeakM1E4*|J&Rw z$P{=bF3OcV`X@r7c&(5o2a0pGw zRnlX#6eYc-9YZtKw8zUjX;FcZ!B{yhg(RN-oub06W=(O3`Aab{AMPFL#JwhP5Xl8h z!tAXlkME+%=^kF~B1xhRoDVw+(WwBn?+SY?!McHL5~lV2wImspxCqsKM7HVOf(;2_ z=kP#9pO}3bBGx*AL>YeC@^=2Potimdv5`DtU#BL7Y|XFRy&6Z}GF;I6QW9Rx;NcXL zmkgTTw~`G88`Hjh z2YJ5(=eRsESMlO*UmnD&hQ@q0M}(3Nhjp%(rPWvur3ZCMdq5# zepcWZMRI972{rHs%#UdwiLUPDQLx+%1N_7Ah|oTg(h>O&0=wjHn@_;m-g{Y$To^{z zDUkjMdDhv^V(sX0WpHI{2TC?j7&`>#hrzY+RoztzTe&L%BP$1nnGNYcE4XLWKh1#> z?MJLxyOY47yE|Qtc_+or(K74Gg$vteZ@Vy-$2Jk1>#EPaVy42_z8PyxMkHK$Y?-+R zzbC4jeBPMzx8d77!fTdepPFR`_%J!pq(x#Ko+*kn$3w)MK1hSTsTCe0J& zYLCY3Z-hm^CHu)aZ&qT_-msxRvDI{SyzEp=?4_p;dJj78WM{em-%Q<$aLP=C1}HfL zoZ{XlNeOqt=o(&D!;DfF0b~rqD*bWdYFSDUA z^k!%?H)VL1gzW%@*(eqY+w&>MEtaFo!Ln;741J#mHpi{c%i!E;OkQ@Cu#)81_Dzr- z_o4^TC_$0;B}gLhZxX#mk4-0Ju5G#kB!W)ep_gRt1j@pRFaHcHpfgXsY3uZFu!GkB zUyT6Mw;l50HRuVt;eeqQDfkwheIdR2Vf>R603l#kokj-%OL^VF@IUx;2=BS(@%Xm9 z?yb)GmVaAjZ-JA-?3+vaH*7dK9tK|EN{IiwA-&8jcuf^^e-;`kIm3xn<|_lE&o6wp zkB`rrC-m!6vz@*UXHT&Wf#`G zq0Yc30N>xCBu=!00XOkZkT#~19>i;o7FIb~NjOK@Py0g7$g$=A=#$8tl;)yGm=OxE z47@fEgc_Zyc$3b&Q8OFNWxe318Y z&3Sy)6Yud@WTeTLh_+}|82QMYrqNRoerFT$bltGr6=kI9LnS_e2_othu+iSxursa| zU?rN}RJQnPTGrpXcjFfH{P~8G-bd1rRCjhVPQf%NW8j&r~!-+Nid42gHb^$Vf#Y|vD`K(2!iY*PNtd~NouHtY|5z_ z73-Hc=%#rzQPvD;(qOo$gNq#I3WDr(QP*muf;doT0H-coGE9$^0|a4;j|#$r3jnx8 zkE&4nV@the5)2N5WPt%3Bu8Z0Pob<{Vi`Ww-e&X8do>oYPT|H7UMDPILB|pTbVr>q z^qsTUZhXin#s=c{EP~K(jH_yr21y2`YjjJ-Kj_8#Y8=T$rSMrCS+U2(TelZhtDR=9 z%+u^(`@uh}L8Xr1q(?ZSJQo~PuO4UO-hO_4;Olau8;g0sp$R0TG8OfMdMNjKs0!L= zN~zi};H+;oN;mF+GY>we(gl9S+jXIS^X<`Ary64CX%Mj1y(4dDar5y_^LbcOjhc_o ziz0*fJb<&DYEJ%;7^m<$V0^KF;pFML=kJi;NNj=2D-BY+x4@J19PwJnpS6fk3-jd# zYPM)+{2+Q@gEBNeFqJ2&Q%?;!+~Lh`sI$9q7X|?G1C?+}m@$0}9O=UOEDP_DdJ+6M17GES5C#^1>-^hW@Sl1> z+6}PK9&pu#aq<0_&uPGp>dF;jvC(^~NxWwM`Ig~m3l=)^3;^z196O*8+APF{G0PKs z|FC0^3G3p?qWxt<7Bq=fmY=+teDY*H4|{q)hCM0hMZU2WS+MOqzCQa0S|~pn#l0=4 zS_01M=ZpLrG&lnj`z~{zhhU6H=;64)aTeR}LGVH2N9%F=(tdo4Dd`FGl^J`z!Qc3h z{{DkAf_s@!9~@bzD`w8QaFfd>RwEF0=pwOZQdVGvt5(;_#%m4b8Y%dIpTW@kuNa%` zNjO2ew#mWf0Ss0U#yu0~G}gaz^|vZ`ilyn%IT{ijdU4^%F&8hwaoE94EDQ>YF?8Cb z)-iIlD;GMbc?}pe>*R@5g9eo|GKsZ)M*lbFK&g>Ow_&oFf2(!>unZCY#q0?QvGqm2 z7)$VkJp`U0+=b{YQD8!4$q`4WwfU0iI@3TO$d+Ii+g-3LxD_jNOQJnkS#0loss$Fk zrs4E%f|1I?n+N}-5b6jahP04bA#@b121=pEkUoO1%X;$=P2Y$Z=7(r`=uYq+ghI$- zOJq_Z_*zN8@DWpD5pzi>FawFW0Rz=&ft6Z-Nn=_o4sR=n*2TqIt}Lp9g0HPhiydxB zEUMI8H*`abPr$%CEM|YnhV)-`_n!=>kIj~JGQi}4F!HGHI_0QX>L65PRs6+1Fo-Zw znIL{4Jg<_IMb#X*Ny-X2QIbUK1#QRNigiA>wFVV3>8N_POadhs%Y z`yeYSiku5HSoZFHEwe%3DRNT=E~3Xmc&#R~qnl5}(W1rc06A{2nVO>vH^#fo&TuoOFLk|?qjpFtL8eS4YOG(Ms-!PWSor>X$COB}292gD%8%1%Hy_=L zK;g#&E?xXld)AdcPgSB`RF#ZBgHFFpNw13Zobc6#RJ&Igt2(R)h4T8b(!~xvzf^9z zY(ECo;Y8TC_$}L;qB^EK>??TVOMGY=SNx~_>Ks-{zJNl}x^<7jN$8uUrhs=krYLue zpSS4#-9w79%Ly#JTT$kV76xDXjIzziux6N|G&dAsd))rNOkb1;S2FyEX|=yFzp__p zy6FX-s`UESGDBqt>DStaTDz_YCzCPtU*-gH!2j9lQ;gHJ8nltln z_q#YF`e6(_!{nN#&>+fwlS%U|E3~&EVegGxKOb}1>z=I2Q%YAnRL(KwQ_|EjU5d{p zYou~2%o}T$hg}|626WCiTwC+NPDMKyfjIhM9@xP=uo|GI(0F?9@0^@7yJrO^{i8N-GXCLQ_{YrWa6?JO{bRlZp!wbG z?^KKLdb~XwILoIS-&4OTnq&?pO#jmC+)b9^C_cP*@F^>1n+e`*X`%`zte7>si*uO( z5E^BDFCo56Xp95U;zQ#w2u*57a|c4hCpI(D21}~X{$s=3q~;3EOYPqYCZtiP@a9Nr zd2iF^rp=l*n{_B~>t1&%$C-Y>W&5m}n_vmpsGmo=+PdZ{WLikOaPbz3gBXmv*(Rp%7 z1I4zzt_oPJ(<5vJX>k0?wSo@Q-{j#T)NH?^taB=1{SV|lF|oXZ*Wov$cI8Hng!Z2# zUm7lmgsl=G4XM9~9;e+`pV5iq>t7HdI>j;d&Nu8Y(o)&1jCkGRo?NO__a*8jsSbC) z1M_(3KMq?5eWkSTQ~ehbQj5u&?r9;YR0zCgF-L}XXwLvZUdMA$_`Zf(3bf zorC^F2v2^M#7bI7NXS5G&uE-c=!RCRB$|&NFMt3D2KW&j|2hZ@7ge$zy|N-=lVs`*=M8^o2jLm_S)w`A!O z==p|TWdZA^JvaKdml-cZXCTCn{!14-wy8qN5$*A>M;6;#9ftL@yFCXg4;;8~!9aVr z6hb~zZ$m2<)eke z$(&G}!;n9m!W$PGiwTL{$Rof_g)`vPOZMF?Ib{m8d&x0Lwt#6FSiky_976BFn%$1J zz%&71I~<@Y;UvQ8rJhZkcmB=`E1O25FCTUY@JETckcXcXRaT}fY)m8^^MMkz`FY#(=d{}k#>o3S0F$GsX%<0VZ6om3Q{}hio`hH9#M)FTYoYIKXB|O`yd4`f^UKR8jf+0 z96{)n6zBcJV4I9(PIhQ$9@tSk=0A2$AoUgaz>dM(m(WTmU`VKB4>XvSg;V0`^6G20 z#C!Boa}2Cy?W%meRvf`AK6omBNPUM5`xVY$mNc6uhQW3uwB7Z)t@a56({NFY?FiCe zfP9I@4rkjHI;!5Pfo%s?z|eVMfr}KJB5f!j1jA914c|4tw_s@POC|`0oC#@+ zki8QK_Q8boO=NT}5;m8IG+I1MRfG8qVXVNSTSX{1da1=TR8d$`m>|!R9(2?Gd5o?} z213yR*O6hv?9cDT!(gR7qr|YVuv=X51{~|u5z+&T(^CzH$o~|MavHRN z!$sdP6$N4?zRwIdz0X#&3x${yKoP2VJ(r!S^geNSG&}|VO)@Yszb@Vvair14e*P9d z6A+F~4CXqY*Ueydc1GiOunfyT8HWcI-i}wA<)~!`)bB-p!w;>thlRnU?&X(o6f-T) z#A^LU-|wiAMx5d9a}8(Rn)LCLYP<;uNMZa_rpa9LALRhkt|Zp<>&#e3;6a<_~qH28YiL|zjC zg?DmEKSPhZS6T2_A@AkmWE%6?JvuXQwk)EJp*sk!6>6JCG@Ta_v3FxcZ0eU@B4Y5R zR+5#D#cPpcWVI|z)wpmtnQ3?t?|!$)dPCNYFY?jnOn;F(W4yPa2m9@PoO6L@UuNO33WGCk8U~Eii02x^!d>LS>wcXuGX>rZ5#1Mz!mHYN4}i>zO`dH zV6%9d1TPIaoGKmLZT#M;9O!?_9A)q6{4j$=F8QSC>T@(d|Mi5@E8< z@9@Jm`4^KV`ZxIPFfp$K9+KGan^vp#{?JVOP75VRMrj|AGc8Q-4AFVraq`z#wwcC& z&&dCl9C&&9gjK7eHm=_Fp{a|7Oagvbt1(Ct}UM3qP-To>JN4-0I1yPwq64TJ|!QVap zAml?{WOA<%a!wyzG-WzbF@dDk6ondJ7=}AumqTbQ3{Di5W7Y1FtNMw=p zZn=C>!l=RabUT>}9)r-+goAxK0mIA*b9^+6*8e;5ooSFrcX$vO%J+Y`1-^loUFgFO)~MlI=VOQb_6GB#5c+Kt~SDL;%y=ZsI(7w++s>~ zqMCXy2#fe*gG5Z_eE`BO1gP#j^`gB*e|QNP3>E0tp)NVb%I~VOiW4wQX+;^rup9}Pyw3x)YT#f_mt`g^3s{z=eeNmtrh~4~Q&F5! zfO;y+ol1Gu{WJQ%kOM`E7q2+Be)oh0vu3@@b%C@|zw4V^Fe`%$fy zuJisUqblj7_s;mbtd-BP7^8vhy(gA0u}fz6F;o}l_BKfEUNU>C-h6473rqRA%jXzL zJ-=ebib1_%$-2#pgzEll+pnJf?#({#dp+NLQ~HDP-*LxC2(U(|mt!r(!}Zwe zUlUyRp_|>yuM)R@7NTzHZNJ4g-Yf)tl`XWUEUZNAY>N@7?qs(hvDoKRcUjE8l`8Ym zcYnf!8;lnUZ9LR%4OVVlxNz~pg*!^dTWtFLmnI+D)=um0E;}wFnW>|exUsKI0ZaEI zrJcq2&*EPHGAw3kQOfTuX6$(ETYT2(TQ(pw-VsVy`tp8Eu3zSro+iT)em~*!4sECE zM;)W_cCvEbAsXG1l}!!~C#Q#h=)r|9MS-bYDN$I~iyT@!-S zC%nRA3GLz9_drp?w>4!EYDb4G6#VGtFKtov?F`t;S)CmlGrX&3oIM9#&mLzNY7*ax zILn50n{g=+-uf{ZpBAu6GqdpppP~(S!JwDFfE|UCj9Q|a2{`lpB0N;-L{?PWisK2Kkn!~KHAmSKkSvioVHsU{Ky{&KAEqbiwIM0Gf!uyqw$LJqUH z4r_cH^N>XK_Aanjtb(EHcXwCyYdRw3=UQZ>;L_{xT(w@){c&7kQ30FrK##y+a^922 z3LG{%y89BcmhFQ;=yjq$(4wb)`#ds?Gi>-+E8p`iO>K$1gx5cHu&V1K!#JB~%zq^Z z<~Y|TVM+Zc2Nyk|61K$&gGKI}oUngr7jV*z9bBTG5S}9@U-+-8pLAYS5BpuRn;h`o zol{5m$=u8jKOvx*|3!dn#Em8A|H;Nu@kzidcnj&!0a0IdxV#;fm3QH(mRAYh+L7 zeZ0`16v-Dr_i#Acbj1(_+I-op^e0)VlP9|-k74AL45WLeX%+DEwu(&QehU^{Ru0#$ zUE5DE)7XXBp#=f(Ld6+dks+;3sZR44dqH_&Zs*@oo_2Zp#D^T4_h>_yv};0|PfwVz zaKj%Dy6^MDsag`-&%dnJv2B%&eB~F@aa!2(SUgu&Js1ez`}L#Q7&asjt`D>Dy-u~p z9S75c0#xcYj&0KVm>Qgj!OA!F$~m8Ivs+A&>|cKQtW<;z^WUAYr9N$LjKa=m!EM6X zK|)*%w)i7_z@Wu@C0J4@$_#!A#*V$CxA1TBwm3rXW9%^h1EGyLv8v%-yr02?MUlZb z!6`KiTD(ueF`~%i`|fq>(lAy29}<=Ct{LPMTx(by@AM7)8peov$_?AXlHO~2=`3n= z0<&JCQ0HMO_oaezYy_<2Z?i5-dNC4MgV_G3J z8nEMU$>VYdFj%Ty)Ak($dktfzG%`Lf6LRI_<5}*cW{glLAub0!(HOUE+_2_7LN?F4 z3;WR8?NH4~4AU{)4}}l4uG#5ZqWbqKkpC;^^9b1uAW$BLgkC6#4;rHJ$<&+@Kse@g0T5!4y zGa--Eh2Y_gCQqJoH{t~rS1S!WVvTWnO-qxf3SM)5cD&}3$<1`vaZFfe?2OIBVmFHA z<}`Nh?a2f4yXbs&?g!X8E=QcPj`8?}yf8<#AK^#stvGWO%psi52^eN6KI2psek%z( zd`}UAiGGehhu`oSUnT^WtdZ{g%dCs|7_mx{?3dJg@wD3_gz9LI-1h_-V8e7lV{%9sv9L6^5XW|E-OOt~mLgAm zne5ml+%RnyuWNCIk3`qAIG$P{Yy!ogmEx0&X{<+$CNpNt=)qvq)cxx7`wd)rnh@pA z_iT&cMq;@lo!7x`HL3eo_j;KzqT3|r-isz_f6r;Iub*JhW(wImtEIe-#i%_anH=zZ zEkEVPmu6%->9bnfz53K9JJyg8wH0$}ryc7;PO2rH1nZFbSZn;8%GO^D)4WkQS*bCn zY`?L=gnVvb;)m=wxdd&{7pl63oFF-y!n!hL^ZOYjYQmwg>}0hmKuB^mGc*LXb?t(B zIlXRmw6OcYpE>w(zp_ zTD$}1SlRLnl@^kkiy85b;fZ1VZ{^`+CoG@b92iD>789ArZl&QB=ykleUAoOnzFmM# zn#3;&zl5Yk}u-dT@R!KO{U4qS{@z}j9Mz$@Bic!3!6*-Lx92QJxqqy;Q8-%{l zdQBx;-{k9`szgIHAq{_ugJ<~^Wnq2Tl4a-?mZs+n!eEOV#n!P=%h+xv z;WvA|pus{&w`=H7!66^?Q_H~~KS#Pcq`nhmTM#!-+igj?t%om4O3A_(> z-|;eo`vzW??GBw*^oKIfP~`9P>5pYTFEcp$BfDaMT`27JGgdNXwMf9eg0#u{dH{ms zRvq_dqIntZkSBcsTSdc_Tr@8o8W0WO_|!}C1fZ^PM#^A`J5_W-aUKY%H1zPZABt1P z+2yak_g)2PJ4i3OvLS1B@7^!@+I!2%fmKshg+p&E3H}4FLEel9@+M^hJIq?TbW1{l zLf8_Uu+uO+qqEs|Lgre=$sof0%HkQUY$AD$(L`>Ox`Ec8S6&gF!e-YPBi;N z;n4hdrf@vVG;>_KgU}r3hPZFoJP+0lOHaypfn`~`@GTe1a`d0h^Ro+uPvTS=#(z&% zeTL=8nPe)*Gt96pIW-xUB|RVK&SZI(?rCkJ!-}62I{K1h&kK5Z(ZpUCpYKDWmW7ZF zfsYde(8As$gnzYbC7E{XNmg4f7nhLV^u}nBlVltRp?G2x=QRltssI+&O~gLPHSM;L ztj?TIDBbtBX*1{~T#rajHxYx6m~rvpy-&BSxO$deu;7o!(Bw;Nx@v=T3y9mr`D7Ru zA=ep}Be&RmTJTEZ7Q(Zznt5VkJT1E#inCAj(YD5x=2Jmc{BYG-cXYb_!;a9q5$Wg0 zKVNE0M_Wett;JV5*rb}EP$>Dz0fIBs(jM>mM0;PTj(2`mv+f#rP2Sc07T9V27FC^m zz5^HDQZg1n$Ki8#_!nEn3%B_0%EPG*w&>kZtY1o(nJXXLRrNl0#%e~My%{6#bS?Pc zc(F}HGSCd$l>c?SsK@SG`mdXh%X(Ow+K61`g&OyA4pd&IOZ#;EEG!V79(>VJV^?@L$%O@grfEG1Z76-7U@e+=Ql{7+YQYunTJsOVRf%-fs2p`r|03%`g`y zFwF#iW@}{M9Mv?ozqAKB#Tx_nVH*D0 zCN!+@58hI&qrzf(AFET0{Q zmG2S!v+(;dAXLKsuubgWL)1DtqLgE7u@ch437n8d;H0J(jRnuV+IV_K6ONg{OLeZ) zz;$=vq^7M>5YB4q5Mw(P%1|vuPp~o={!UNm!m@^OE$!4RSzOj>CxLyyd(yaR5E2QM zA+XuwRtW2wKG0xOX*m}{l%EL(x&?c|`Cg8bgIdBVUE7@AIMg@>iz5l8UevWa#=1j= zCs{J|TFCf;0|(BfPeXi=rRIjDxuN&hjoJOs&BWAP9D{#d+`gtMc!_ddM=6_aOiUMhIjjQ2Q%11Bbcj9 zFnZ&N`z?lL$$*>q0?V^BRJ}&9JWKz99}i%8mcHkhC8%+d(-dQblJHrp>c#p4n&1jz6TlJ&p~O+{@0q$MP6-#V^@sX?qhx%5Z$sB^%oeSEHOOU?sXM*4hTZu zGDUkCC7f-Kb;Ey|bw}7|VH@kKf4UO#eS-$&N+bUUM{#;n7DG+r={RKg&AqU5vF#+( zzH9Vnt0;?#ab}b$QhLm+zjn@=)zgMN6@s7KLmboj6HXcC1pb7T1P83N%Ng?;;EX{d z(a|S@@K!p6M=|kNYpVWZ%eu2rsd?qt4h{8H(fN*AL*8u4{SW zsJyTpiV`euCBP7nqQu!tLCtlwFvaOZ%!U1=G66>hIVG)9nBzXcbQKN}JCJlglL`4_ z6Om4n7@tEHd3%n!ooKItSAy}|*5F}`y;HmrEC*UnE6dN@F<38iTrEVOC)b2@RDf-a z)m|yEdn90I2>Ds7EWPFyv4`YQ6-|9T5k5&>vdLTxY8oZR#YGYWHEaus*C~xh%s|N& zZd4ucj@kNPi1)USM0I+wVYignW$637kMO*RV7c@QC( z$CyG#P~4A~%6<_eg5i|ZrGY|N&)EN~94Iny+qP{xZT%FUwFWHT6`z&3`3g7f0wK?~ zOD>Si2MgYXC-nV&`r;c`+fx^_!?%sDq4A3j8gjUM{TX`3s^j}USjb>J*@%3`3m9%Z z5ne$CTN=(rg#i#Mm-H3KvrJpZ%^qPN=R~G<#2Uc{GLb*>0*32HzF;_>oSY+juT`CL zkz5svvl~iAb3Dro&8p6_9PM&;i4NW5R5@ndCXRi2m>`#n9>wH_zd>B8gEYAc!XFM( zA(smbf&mikT$*kWKsu=jtiKcrvRIb-4_3jfE<-~+f*6)1ox?&9n3I*u`7EtGqDb?@ zDT)Xp!p4iG!KI^Furmaabg^z&`k!JD6-S?}|NrfDiPxjU$ek7Zlm#`?71rLv8Q;#_ za0=TKIvHaZZQItwpnNuVy5v*05bcJ`Y)%dCR7mqE)%Plw2JoYi-?QPMUI6~KFZdG0g4NY(VS#nliM#zv~MUP!RmEoTb(rWL(HS|55-LnUdd%bV#xoDoA@vcAAjq05+Cj2wzojR#Z=^M%!M#_?v z;e1)4GOxqM7DI#{alawMa0Z-Pr6?|gW$w!_CPNyOl`M__NS9O$GSAT2pg8hw()sBU}pnQ3NnvOh| z#?&oz4PdPUr;s1 zL#Yczv-I-Zrzr1B5h%+yD9UCBtQKUZ^jC&Zl}K2m*jQ@kx)0B2od|Ue3!C)OnH(tR z!wZR6LkNdn+4ea~$fL^7igN7CA<1`9bo0dWJ=YvRK25sjbyP52qC=wjs;Qb0--nSu zdpGSDivP@S%a}h%m|9nlC!IyCc=oyHR9U>Sw%O9~`+JbecqNdp9xT2`AN&<2(O`^I+H)&f^C-T%~jmLKYT4ejkn;$yBxS!%=2m6`t~t9JPgo%ES^f zdT}l}P=O0bWvbISz}I%79YQJ=cdo4jLIrogeoiH2$TQjhMGn*(`?K5rPNM;py&7)L zAQ)@=w6g)cka71q!S@e+A(>qPKZ3_`qf4Tqk|PDXV6E4%2aaOhsq|!gMJ>a>u%?2V zI@{A;SLubqQFT-}>~j?=81A$b6Q=wTY;QZMR)FDawlZ0V&_KM~AZ_=bNe`P$7kDPI z6J&X{+7|aIPP7<-0z3QXTi5xNIL8x~wK%4sz|FHeVjwS`|#ScR7W#VlwNlZXgB@17b6ice|S)9{KZiU{;#ZHwM z-w+(HeLC#6U*lAJ<3LwCCuwEsP-n$)E-8WuuccMB%FXAe<)n0Bhf2P|m==*WmZZ>J z!+4SIkKP8*nYkX5GH}ZIFDrNX2In-g!17rT-UO^HQ){24Fz#bv=qP@8@^SJfnxrB( z`5X<7hfuWozVCo*!iw%$fIXc0#TQ>3g=X^&q3oVV#bV5Ppdx6KQ6qg3@n0DKW5~VDOQR68%St(HJtndiLG@t zG6r8c{oAl*A^5U=%Xkf9rMPH7c> zPNP1->)_EI#**&qwFJ|5{t8~Cz80L_E)q*W9WCykxHyFafZ6Tdrio^f6(Y7ve}PIp zv`v*pyY!!5Ka8Odn7`(dls8H=o_QJ;H1Pm%<-%#HOJXldFx31oiCEYM!Lm=A9W3K0 zPG8wSaI6GVMHLkdAh5ngo10V(=Yw#6H6rwVZrbImUiXowWY{ zl^1(^MasT!-tHoc#Y^PiLE7^AQy8+Lx+VJ+@$f0pZ{XGR4l+|!=6C3tBL;i)^>YL( z6I-WblVw@DYNpc;H>mJ6WhASr(LO!*E^kz16WL{hO7*x1d6FGU zBE^)IebY>f;E$qWLCy zOnal=$RJ@=K91(AyK~4s=#%Q2K@P%i){C!xuP3W~oB!-4t8G7Lga%>yOv!37_G&!e z2oKrRtFVmu-v`|RP{PU!Hv(;k-@ii(~&T%g7+bf0nYuqF@5kofLZ~cAN|s?+}v%b z=;Zj^^OKlHO`(&j9sIcynfvGa-zwR&gSDOor?N4qZDR5PV0w>5>!INnigvA!9387(_M2tUu zdXB7@l-Qiusi?oI+EC;A?G>=LVc4=1YlCOs>)5wn4VN z^4;#yBQ1Gh_y@z8b=TYdVX{WTms;Q7Em;M#(%p!W_~p#c>b zoik%596s|kC)Jr3)OPrANflbA{Y1%Xja;%szKFWJw!k>V-d9v>8`N4tLPFB)%b?-N z0p-YW$f26{WzbNHchmB2iS3AlP$fjq)>zxo3Z(`P)Z$Qz;OBkY~e0_^r$JyuQfv4}4-{CX-figzob&c{fNUO)BO0YUv zYEQ^~$y_*uUQ^>(Iq_SGp)PtTsfZZbd0=&tCmC9{dmm|BR5kzKgf*{JTD^Vyx^Qc6 zTPq9adc`VA{PLc~4k~=Jn3`?EJ7>ixxx1As_PTepdl0G<4Q(VziF_GfF9*v(*?n%P zJM|ikm2jBj5?##@F!xfMVM@l8VYj)TmVxIlUAlB3^xj(W3uoZZ?*B(QP;VU6h5g5k z+e>R4aD8T3*N;|Glao`l*^}@@ws=|CXTYl$ofQQa`=}T!V(Zqei;GxhNW(7g`{JdS z^m>H_Rya>Rjk5$S^=2kuX|_6#rqY#KW_`fwTXco#*?{)UXGvJ9J6)74>DEzoiiBYI zkE}LJ7deZw^p7Mf*68V2GVfPclVJg`X#=c)?eP=beWpY&Zc?mri*U&68UjWqw<@RZ z&}T&Zt@vviO*mXQWiAg;?re^V3HvANdf!lN7t?EDxBquY{2E`!N9D7{YHfo|lUFGk z$3g{YytE^_RxEs~`47996YB`RYp;T-@Psr+E7&Z;vGRhjt%_xaHo;g_VMIi$yELpOogQT3N)fe^O9m((EMZ9j$o|33L!7YWDAk01!C71+dk{R%n;vmz&gu(2E8 zW&5d=h}N+kjaY{oUA7lY!A+U{qEr8c-Qwwycps+24+{eADSmxivYOfUom|QuNv99u z+Ny(g><_5DY#mtRIn+%VD)*)Sg1ezfRqdJ znOLnLU*1nJe!Z3rrG8Z4jN8zCyinsxKUBhfKTnrplN4oo;}}Icc?PC#-^^A{7L)k| z3@bb3l^ejaMu-(K-N^?TU&@VSf&3d~L9mwAC672P&V@?`f)N1lC)j2QYi!*?FpMMt z0n+tBM>KSSk$S;mTZ7ak%uOC0O(72qLS~%sq!}q*OgWbkUptgnEQ6gB0J&l&lyyq; zQoDkKSUHV@E)S-67Xv~R)JxCPU^a=m6{~Jp22-;ji{~f+IsO^*U(A65gLh*0&Pq~k zm!d4*sR;EbP4j)M^!Iv6tVe0sNPNE%3Q*4T-+mP<7?o5V`Jcn-(2^Igp2{NH&u;s! zP`#~67xdZ{tcc$ZfEs5i{v+vuQW6a6b#!=wt@D_ncGo_QY@Nr%P`6FAE^@#UuvBA; zwPGa}Jqf~dSu9I6gF5R8vzEppG<{eRhr4x+a*(#gUc9=&LHe#6v~VvGsobwF$P6|> zQEas@3!D5T)UjTk0b493N?u*hD%T%tV^-5_>1+<~3MTvK_4$q1I!7C2C9kPff|?}e zb~G}}xW8buvb#CYxJ6&_%k&Lf^`4Z6ov>v9YuA=M7He7n_nJ9#=Ev2=W%>X#Ujav) zt7j$(%k*IaRT9RJkAF)i(39=_0HXgMf**8(SxSJ7?plToAN9tBwlxMkz*wyJRJx6$ zp`&ON{2&$-=8O<}laOr)O@O#;7ZAYk#gY~F!7~bOX2Z%{zO#ZpqdkRe5FCR^A8Yh? zJ`#v-=79HAmLX5RtmrF?;2;fheNiXd3qRy0%}w?CUC4;nU{n*whfNtZ>JO~6N2r+f z3`_ov@zwt7OX4?ZbP4p_*{fF8p2XI6+u-s|jNv8FuSpnZ_AnSUCW^%h#bBJVNqepp zjy=Yy!0T!S;LK`zX(J*6TJV;N z#aS(IQ=xeR#t-1N#oQ)VZCclz_-E9v+it&->O3p>!O6ZlNL&_x`r z_wLm=E0o*t)B46xEFOW=44U3MV0_}&!LLy=sO?`o=5~#re zze<1TjkdwO?W>_*v6X=8aKuE&;#Bg_-zI|fNwB;W^M3!4%@|Wb-1bI2k=enQ&T%qKk7nL z@0X2l=)Z^ozuw1*Z5c0UHcf{9i^x49{IXlmIROO}T-WAvM!JK1_1~RVzrLj2$_DUM z(SFmG#9oI@?RyurC7X6?YyYlI5Wtb}DJHRTvFUVE`wlz^gAz)kiWMu?ED6>}IIJaT zFV-a8VJm&kYYRpjHo6Jn43EMf2=pK!zs8M23EsnD6-U74@@r8oEw(K<454)pj`5Fr z;I5jqTCV-$!=qY$p(HjWWMB)h9>G}wvrUOre_3F!r^nKOArzHa0^wRxjWW_j2Ps4h z!clWlW;Y@R$Iu}lnH|hi!Eqg4tOT=bY;i%|)LenX1!RLu>q64i+~M=nh*!;STYnwV z-eC;MPMG>*Ci>(JGXkAIY5BWa5~}iW7Pg0 z`9XvbEIEjN4V8`{M}&eNG%u13Wsv7;Opgx|uZyHD3S3Wq6y=n^NG4XlOTPDzVPi7S;7U1&6K6j6eqGyc2iyKp9#inyeXrf#e))Z>xc#8{~!;Dm5B5N1Y}{=gsWw zm#91cNrW`u{rYAbYe+mVk{LW!jKt`JMm~u|sGkis<`?@ zBlgneiP9ffk8m)BLwW6`8Ff&sPoE`s2zk|XCJ?X^Y_cFSS-^Ul3{Nz^L;mI^7I%E?a+^E?HT?= z=xtfXbscD%Yu9*2s*~Lw>DVt!bHGr07vtmaQtLW~#JcD6@$p2o(k{VNEodM+V&1Er zG1%@OPq)J1DZnC}>NamfE9yI5-Qu9jAP+3*9ZQp^KEqBQR$lK3<4SBX8ppPT4NSQ5 z1(au=4T_0S$B$P3sJ6C;a(houwVr?IR@&rSjf` zdS&SKoIPUUwYRxuR++>H@E+k%b*&asE6V+W2%)j+MwGtol23~@4Nx6Bs{7~}zYkBA zepIT@b2UQEY%K>f1pn~kCM^;{_zh8H@_)vOX)~e5Sr1KGB>KtL5a~)gugYtY0M{YO zuZgY6Wn2bnlcNZ5$CO?SWJi5KS$@0X?l}V3NtMD?0Yngh^+3``L*6SH{i=0Ycv>1W< zr`Uo#eBO4(dS&gm{W{Cnt2boG^rJ_!ZRd}9Oi3kKyH?)F$k=H0cz!O9+X1 zs#uSKJINGVW~y0G29CDH?laN~`=96E?OpdOJ}N0kMswbVJ=DNS$^(;aQoqvs+s zyNkKp!q^ZAHe0GAfYb3W+KA?*3Eu5+TnycKwZ<<1# z2#CPp&>5V68NP4(%AwaE<2%jkEx?aQi)O%&f*x*y?~If{u#v<FR?rxxA3J!285hJM9%_H0SdJj@7%cUtPLOjj%Ih2v1c5m?q-HK1bGZ!45SV5(k$jwj4Kv6Y zxO5BcX1E03!2nA!b*i6$={~^>Ok73)y1DiMv}m}5hY_rXs0AzdRF8+Du>haCe>Of8 z(61m?uF`Z)CB1@e2o<=3;a`vxdb))kLw~y>uQL{Cuoe10m&vlnbC%jSYR3wcE!%}; zN4cWxc2%|za=t%I@VREk-XPgW%0oa?lk791{NC*dNTF_tB+=e6MUgo(2}x)tizaFY z(VXefoT-xtoxk&hM!4an{)%Km&OT?b!oBWILLA$bZ>5m^jt!w?=lUNHAO3N8S1~huDowtDGa@EUn!F|_W&rm(`TeRWr(I1| zi{6Sdgf*R_q>nR(?n(<-@gY{bwKT>n|H(l~MzHDIkHFp_vjLh;{w#~riB?1_;gcc+E z+KfTM2>oL|1~%8y?NeQe>x4-cqvG77mC}zOE!yz=N6t)s~< z-`}q$NLL1G%Kf92gdb&gRMz;947wu2;d(nY!m$`ZzhI}&Ux9Y<5ABf+@J3bNS$|wn zrV612-iS?#i%Eg+PT~PEa~i70+`u>Knxt0r=7z8ZaLM-|5(4?RvUK&8D=0`7eWO7p z18GxCHI*0!tF1Jx321{=XO1m+P`5Q2Ef-=t)I#!Xa_6y>4U(uvi1B2QK~9ZLm_nT= z7n-|nwW*)<_tuA;Rj1PFM!7fC_;M)y1#yyp27pMpq?Ovg# zoPnV8RI=k%AGy8V)vBsJ@dW~MX`_pfM<3-E(Etshe{JpXA3^xTCqY49rrWS4kKx#y z*3{V;+vK}e5Rf*!RfMEg=L0Nv=r6qzRVXo!@v&|H49kDW!LIS#F<%imRt-*vhs$d7 zm=X3Id4{AYfSn04Wd;EUiI7B!k>uuvOuyGirDAB^?;~WD@P(XDR_*{OricG0m)-Mt z!y^Q?1ibw#?Mj$J9@g|^QTqJ!21OH?_Z2Q;*K|R>@abGH#hlBl2CB_;*5DcaPjkSl z)$&AGWE8n-jLn1h*YGMt!j+QKL-XVKS?;hO6Yy+O$O`Mk`rbh6UR( zSCFo1$3UXim-O6Yed=kW?$nD7PQX|*TFqiE4pL)jfVM{%6r?3Bn73iWeUfR9PjlRO zrmae(CixZm33u3wyA2>oB&&`jZ@lT*3D-80l@bi74bWrP)`Ks5~6kfjy9?emd1HwAfPHaXGt~c0y(COLhe`{ zm8vKpSv~nDU;85HYjHgNccNmxBnq_>7d*pJii^R4$Alo>se(qM|^yd%R% zO^T6SQtUdkmWz>a8#aOF=1LF1q9%yp6^GT~unYq*xF+y%LG`JS1fPIE7bNQ@1?_(; zdo@#gF(mPykO{MeeOfHEclzWXOmbj4SVfFi*zCq&aukF`PvT1=HZc>AElq_*Q?kG1 z!4Gq?XXp}GS;}EWPhpoK5U}#6@FufSk;Kp59*BP`V3?sK*u%)WI;K2gYC=i(m>+LZ za;L7P*fi_1#h}@EuEn*8#XT*qVZ`==CRcbb-e1b((B;eyCesYop)%RoH{1Ambs2s) z5ufSrVQQiwbhppa6)VmE1I8JWda3zlpnGxVj2X9K_yOj5h)YWTqGI(5bBX=JWshQ< zoE&wjZ}TdKE9+i%@Ze6bGx=g6>911;M3Ub>!^7VbYkswC*fQMrCy6fihlfLx#c z+T68kC$IgK!{Bi@2&ymr95sKq$gw!uPl(uQXt;$v?H?J#e1=TFw@oFAY|0OXSHQ4! zc|l)iUxhYrR`TDoUXVny(4WvJkdu^4mbLSBXy7KiQFRTBCs{9Fr8$+53ReB%}*aoxHELL$WH3N4)#YNMZs zOYXE-y*g**we2hCh(AGjl%F)IcYtfoO_x>v8tJRvZ}V5$=!DpVUHuenmJ8cWUdPIQ zFGF3wuLJpPSJxtK@cq65ggzPdo+|p?eNu!B9=2Kh)u6@u1j&|~x(;kZG*MJHc-U6* z6N47-FvKE?C||JWgar#Aji*kYTws2)bVWMWO-GvH|Jhc8@g(R+NX6+BM~xgQeV69Q zx1>_N?92mWx6>4YgdJ=)Ny7rY>R7pZ!8VgacW@KZ&_!@&u)UP)&Ocd0=}Ej7{p6ES z_s_{MO49Z^EJvf){WE8#h-EWuO!UQPpM3_WD#Ae=FLB0Aa`0IC3GnO=>#}ePhrx2S zFQ}lv7nvCEZq8w^J;sOofMh7f={v-Ca3IFnlY8FF!7~eciv@bweNgeD@$ljN=}cP) z31j&Ys&(LG9k_x!NepL0+~401!49<*6eW(~wXIO0Zy?yY^#s%I_@O!pwH<5))0@Xy z#p2bP#A^*Us#dy6AFJjy8fWl!fa#B?z)#lRv6@chEBIF*AIR=Tzu3YbSQXiInF1AF~UMLjC^IFHYDvotNrV>vWDQm2U}ma6bIY&>-!z|v)@;rj=gJ=LuI zsijM?o6J-?%Jo2$#9OU=nI>%i!Y+L1t#7YlXk(?8LBbyHAtp@;!W39~r2J3uGr9`G=fzsO9_A_dQLFUPg!0t?mPVfG(D?lI3s*fbM?4g%B8sgm!Y!5D_cIK^VB z3(N#g?*|4i@HuZ*&~2`2&m&GY-C=p>!SaaVESOvU3$!aHyUogXh*jKV&6*(S=wN{{ zj2cA_^=;Rb6?pF#mO%4l$Ho;ardFdJV2f+2^ituro^9CJjCqa*DrBG1DZPg37z)7mPn+mFpweR{x-y#``v1 z+xtPjw_7%@C>b0Q4?}J+aCp!wq)b1Ff%Z4hT5B(ge4Qk@}ce4`(#4j2mbRCC{|(q z{5ZPf%lMKiO1E6n=yJ^793kOckaBoq0(Iw_EDT8QaMH{ zYkS#B8iSUIRLx|3Lgx%tFbH^`;gem#{TxYkk2GU@5}C9D(wpLwQoYE3mUEi!mx@Cw+2h_TJ#wzc3| z_6j|HqIqrC(GD@TgzUEQYlM45IEdSg9JKcOH7PLpyGZw2JQWjTEG-wEA=3`>y&kZ5 zTnHIvA?d--Nxabx)Ty$kN&?}InNn~x2~t{2W)T`HAA*IqU=p!RR~X{e5@K5zA+s-c z*m5)BeaKP*orvY5%-|O@CNd$Dx0(2CPc%SiEf}F+h^@U__O&vN+>qGLCqYe>&BfV| z*bl?;`YUA|O%hZOrj$XT>>(uuSr1~{Y{70!R`~n-2b{@ds zJupwVqFMPO^>B)}6|1#nwmewSL*EH)<$xt5OvlKIh9_AE>vWER4)IswpuH$HIrqC@ z23p__<0Zl`$hyG70;%`p|CyGv=c!T((bnbNCJW4B zGe~+>g;G@_=CRz|uk?y-HF=uXBsY+dwm_)buwnn#q?ZZGf0sn}-xL}vZxDQK9x|w< zyq^#6?*{YPmiOqx7v$nkqdtbDk07LiNhPd;a8uuMe=>(1*<#r~mf$D=fg45=M03V@ zUXVEgDb$)sO$Aui3uLDNLSW~no(Nm!xNN>V3}Zk38bF5Q?ek_DeE7Gm50@@&Q2zVM z+2p}KBaa)6&w1#nXm-2NP1dYT6zX1B=l=T3ZXB*0apYluBGP#*JT!C{4)U? z#e^BJ=L^6*7y{$<1?W{)hG2Mez&Q`1b_3lO8(hfXWqq($BhB(UXmF_{LY`{@^EDea zd?aYNgGqjJlAlP_AFwF?LKYAD)-LD2VO5}McTZ3zU_XisF{e%obpt5AycRNF!9o;S zVkO^v>!`|74H%m>H0LC{#;*>(ak}e>ztuJ1NqX#i^9|dLOt?>)o|9+sES< z=eo;l+Vbs(6V^;}**d9T`I2Ct9*z>Vxh%Q!{R^h89@|#Nf_ddta!OY4+BTPEXs7yd zHfyc7X&0bLWBHv`mul5uQQru&h!JXh8OQfCf@WW57~MBhj8K_JVhlABW2FKaY)R08 z&eXXodVMiIrpNGD&N9YVH}n|ZsL|MDoM22}mu`JhS*fV0`I5s`1Vbm5yD@71ao+m# z{qG!@?!rlT&eJJD{$YgN>TU;nJgX0uB3o`uPPbttV@4~qihee%R+8MZuD|Swy@%WV zmCQbqJhxZ!Q|05H2d3<|B6^?M-X7-^cnkx7@4*39YUlL+B;*GE&@AL zx0p$KXjxh~;hlp`&jw2BR@vz6=n~X3guoZ#ELkbP^(F-64Gn`-ROgs0L1=vjZD3U= zj{IgB8p;T#?`?H*#{40W88gUG+(>ID=X|#mWd+2a_>9nsFy~BQ%eVvM+T*KGe@L`%E!z??Nfre z&8!7<8etBhGjBF`kWR^TNWH^(18b!|qE+B!-f>_{$RAXd0Q&);kDl=4Mw5X2Ici)W z7dTZ;{@vs?*tof19%P`=fXlZS?4V5HLJGtCUqJ~JuVeb!4cw`A0x0_=JevjKuz||D zmPr`1ui3<%_?(V4NWrFRr9YPD>fliGYKQ)CuDIT7Xc~vpmk9|gBMHYZe9bX&tb(3Ddc9g z@x@>#tQ*-33^v!9M`;ZR^_C)qAJ^Ve7{h7y-oRVU1SWJ{s>p;)-p;X-Da;0rN^9Am z$$!+k_QgP};UsPqPC2Sc`#8-rMYf&9Y3izKf0vr5KKteO6TB{!o$voSWrB}52{TQf zaWh|hygAH<;vcaglfQV9y%(-A49CteAC1j+buQ;jrxVOE!4{83_;1AL<)mED^?O>> z_Um{j_o1~D3^~I(4z@@1Zc_^O`u+HKy*QtVvI|Zq#u=vB3+QS>*v_9Dmz$jO!am%w zRc+|(Cm-1b6-urrV$6rUEGCjWB0lBMEl3}ovPsV-ca7$riwQ2CD$nI9v`$x8EO#K; zqB4Kj=~Bwq43=d9c>%-o*>V;iekq+CF^!@vCuBsc!P~CE@OI?kZy6yt$W~q;LdcW* zQz}_&onD0C^!SyH+)NTmpk&XUFyQgt{U4V=XChX3p3~6PxUat%R*i_`tLCIRF#)gF zVzyo9U|$6IAPWK$Rj$Nxl8Hpufp|){iKm}pxs%W_lEPBQz1Q9}f0ip+L zg*d))(O7C`QCZm2bMSm{FJRyG=ANE~7}))$y1#+$V}Sq2kp{Sk(*C-tEf!DQ+EB-e zB}mf#5-yNN=~BBAB}zaYqC1cK7<&%h4{;^#(TS?ZQ(bh9@7c>TyJ8IJUL8|+OBJj< zckao#H7s*3R_*V@_7Z5Y-~>!Ck=s>l(9ko`DoTC!EQ};tza*m)$%WNTVHhOW5@Ox6 zb&_0E+gO>lkv?XvRRZbAA$9rUUVWhW?7w?#mcezNvC`{$dcf>)iN^iR6g}j2QK&KJ zHnPUvvXdpV%^-oiMhXSLCxN22+r(65H=7>2;hB*1NPU}gl&N8msc(G7U79iXR=;eG zjO<~;zDP;#RJ`ub7a~dMrcQZHkWV;Sz9^dDv~?q`8?)-kP1*>pjmnCZk0Rv7#*Vz# z2=yTTZSt|q?~uPh)22=LzntYD`@mx^&%s-nF-5%P8>3Wezyz$x#TsB!3i!b?j;k7n z(Zc}j)(9F&#StS$T%)*w<*HiMTa6)0e%J+uQ^y$*8a}YX1a785(0z6PCGRj^Y#+eL z`*D~og+JGsbhl$b*>)Y##mZu}UB9&fv8)3=Hdeysl6SAA=@7sqME~EXBiKfd!IpaqA%PIgVu#BDbiN7ltb3rJ!LRsg#*n0O zCF^g0INR3wD6x(Bw4_LCkeKEG*E5(7iJv1Pu{X>Y?a4L!BRzGt8U<6K$q1pOFA#G>AcR_52-{ zo0PJz|Mc#%o|+*Cx1l@3PrdH+9eli}?NV+smx#K0=QFQZuhSRcX=r)&yO*!FDhH$VS#bu#}Jt{4m?{){hj zp29p=UiHs}TzBFPcEN%8C?!^W5ykdIWj@y@SZQ93C0BD=B-`LqN<~oMyvgG6de)%-3*vO+dSPZG!%7V13kr*wO+KX2ir~ zTy1j-+xDooOU96deb6AeX{{a#+$CG#O=?5PBirZqB)$k!W3yqASJe@}%BRuC>z10~U#BDfGc9-!f1FT|h zdh(veS>E>w&p*|;pVIe&b>q%xjri=(aSIkf=qJrOR<_~rQ*_cFGd`{4lQ4!|kZRn&DaBx=vUixWG@|FkO}uPiWoivJX!1XJ zWeT!^60gKqZ6~%jeiH8(Vb%Xr{c!A(uPE(Kj`W1%nuKEiCCo>ZOk_Rqie+?)y;&Cg zoMinCqeD(qI>UUN$T_=1&g7iM$Cm87<*)U`K{j!-oO^p3)WqrBMo3>U>9--yFjU7X z=(~M=K{NwjWN9XUBOF@XL|_7qFc#MD&at@is8E|f{`fsbYinEI zzvv>!BG}g)VD0CWJaZ|8B4^tcVO7a~Wte(dG3Y4RT)|eof5mrfWR>9hShLJ*=lB6* zTh~G3nuMQ-R^??sn`Ue6X<|R%7|mC6~meu|KpLaYny zen2QwR^EMI8b$|*Jjig4bktf(^x*9;u7%~Kc!JJbBBzT;9|Qema{ln zS5IbQf7;@;qsN@2qrfSpSUUB)eh;VWTwAn^oLOOoAe_U^Eep!|@-GgglFqy#w(yR4 zSZ6HBE{t&O8T&wy#ys|=t!tq{XslzM?zei%U9=7zS~>oy;r92#uJY4f=2Y^$e9%A4 z3>IL_F4Lg&+aofg^1kOTkmZ)sso`K-7{V*NkHjB>r>V6`FejmdL=ztN@W?iD>h0a^ zS2yoi*)+zd%5ds+62f$2hmdW|cL$Cv9BgQPLb@6ORCPi6F+Er}DTT$*aPmyYnugth zeyHINkc;||Pg8Qs0Km7HIGSjLrk2BN50C?T5894R*Thh@q!e905Zzy}c^FUby6K!~ z9Z6s&=L-gtd3pz?Y7#kVFd|g?nf{&^yGPEL-`rBccz@qdP^HH0R*-n6G-U+^$3Kft zdyte)UftkzF3L9g&V#;uRk0bO}@I6{W|WB^`=uKciUlS zz^eVFVc*z3gzY2f2#Y+-f)7_QsYC6rAD#-`?Or{54p`=}7_mXjr}*o%p=Logv^Lc? zxUa$Gp329GYC-l|(qDLTM7dDMdUuAm<*T2SkjLkXpW>fQw_*kk?^_(XRPqhQk+=G= zQm~L_WIT>Je;wmj(>M)KuUQ1guKtXP=e<`h0XMkuUb~l8x_EOxz3u@+VQyC?+kkTZ$&-}@Mkno6&YpOX^eR&Gz z7!eQm$d(qs`-L8&OAMuhTHMUFdi9wUyTjfd1MUokv((cFzxVy;CGhd8yKDWw^a0#dMYGNR>;0BQR=czN-Xp-_bKI!#qDLLUOm~d)dw3~(?bcE_T=!3qm zThbt^zAUmy_w-TR`R<&}Ho@Er4(n+XlL_9nkKV(vz4;(QANW0tZ7c#&!{q%!Ec3Cr zMj~()j;+JPTn2B9%fKNVXiHEqEr95D9BlCg3SG7@jHSG8o#wZ0otq=|PLO6i94Gj` zHo8TE?j2vkUD7z=USP@u}Nl1SxVZ+K$h{z48Cd!0@p*ZhziiIA!;@7|+YQD~NEedsU zoZNQ=D+IFJWYr1c-vc5YODANcrc1wO2is=>RZ!;bB-%FmR1(B!2LR6cEu#ylo-u^n zr2|=2Gp<@A%oPlBi|bUVFfY;eCS{Wg4RB(sj0_N4`5s1u#RP)qDGW{|NebCWqzr( zjv-X)1|7gwUFrd)(WT>aHN<{UC@NZI?fKNy^XL0jp|6_V^%Tw9+gaaJV;n9R+MJHk5Z?QQrVLd_l# z$9NG~a8ykCkGwChEKm<)rdG{rN_n;ic(|dp?;X<_BH8iU?|t2 z)UfWfIt7>GFPvho?9*S|DyggvM$sGIKC|DK!3#|D|cib$ILC{_9z-9c)j!+6% z_u53^LJBHv2lE_+A&5J__27&t=B3B^3^%_Dnu2wbbXU+s zYxhc$I4xaS@`99fuB4{Je09Al-7!;)P)A9+YJ|)_z}f@l=b5Hi3WW!3Aa!Va7EYqV zw{4?O9i^w!Q{-3UJ!i!*SMo^uf8L==Ganm}q|YH+5(C4K~ zmFnO3_Y5!;#z5fhvQ`VP!PrOhTd#Y?SP`h1L~<=K4zi62D7szt6FkHkjT#;WnJB== zG6!J1OrWw0#xeXMPK4I+mU}BvWDUlVwfV831w?rMiboI@TG0Oy3pdfCG#v4XAU41T zh#)jQT~H)KiT@DjI*#0~%-2yng(Mzo%*D!u;(JvspCpYDwo~@j{MKtY`Q1v=!sQY$ zJL#a2_h|%A*V0+0e!2^cSQF)OSzlSh}8YV8bWx={Xw{)?n z%)Xssv*_3iAwg!a2&My8b$4Cc^%NQw%}ijPQ0q-jWxO!(2j-Lry7EiX^a?S&D|-zhCd4v~PWLdpE$& z`%Y5wO<+u>n@gb3c`Px#H3rP#8!a8^$?YAM+aXD-trfK*TIH0K*w$J_C{XPvhkc$) zfoeoZSIm!?o{&l>rB_UwU#Eiyk`V>ZDA%2mUWuTIkPOdh-Azxes-sIho&jmW3+y`G zZcD#^6qypsGk#M@k~)k?8L*d!4VN~dlgH3)+`*>v<0M?M0d77QudqR=t0Yxi_F$ig>sq<9Zx}@J`N`jwX2jVW76?y0n|QK zx?E6zEs&&f0tgNjzQB7?WcCNrbdea?s>HrR!Q~k^zNtvGSCkafmXmpzzw%d-blEf# z#i+^NBSKotgw5V<(kpw1T4r(mI$DxAw+W%%14c;Fi}Bp=SsdKI12xQXXdyTMxY5GO zT4Va#UO(!02D*%3Qgx=iP^M&L;0$m$BgpoVoRYC~mx5&kSta{^oGX_XxVyl>juNqj z(9a3B8jJSM-Uc`texV)$a;89J#ieI zdV@2zF_`A<+ow+iEz}+w;r-Ql33$&sMv{In#$o#QL>!I_j4Yc)3 z#s=d@-^dU2bzIb}v$rE|m`b`~J=)5(aDI*1i9x_Zp@K&nWIKo+d%))Mx4FqNo`~(J z#caK1j|j7p^l%FtW67Ql!G3Jg+z6R{Kj8>rFCf~9u|VR)SRii>U5&LX!Ar~uFhbCu zIbeh=zP}#1TPSZ)(0$xEzm%E!6UXMPJdD>ty&2DG!4x;e#P!62aky8}b9=K$Mh)d_NY5o!y=qc+>p)xsocDa`)?bl2KQ zfniK(Lynn{Kj}}aN_3IdsB|b6+j}!Kol5@f7*#65+?wv(`H+^UwAmIPB~*|xds--# zTgF~hr+%wbFk9YbHfNZ-Jj`w@7e##|NaxKjtWmv1;eeg|0T`Oa08(C*(-KklL=9Rr zjRc6qP(vr!S5C0mZ-`ZMBKP4x1oL=w%h^4$cgM8S4-gz@L-7E|ERD@}9rq3%6si_N zef!cny?74VrbKlJ9du%U-ie&oGjSFEF~(br2+Y12_UT!j0T!z^&;u3^Oa=(C&Q35$ zi%{<0V1q14(1RsI@eOWuOF2HrSTv1*>cBj_uEpYUIfau2yoah>T0hWvL6@IthCsC5F6t+c139j2fXHdosDP;ld znP8B&4Vb%XMR_>xE13Q3%Ar%zZbFhe@Uc3u{(K`JLTf;!Jqt2(jW`lDI1676cIBSn zBdFN%lfw%Lu>YUQ!nOo#cRC|ZOYa~d=6d;4AvWQdps--F;3hnS0=MUc^^r9gkFPiU z7N1w5aksO4WFD6+OY|Esp|I9;GY~hlK#Id#e*ejiq{r2Aa?&ES+nfKxU zUI|o4akLa^UqCYKpI()D7davlD-^|UsMom09H);{Lv?eHMwPEUW64VJ%qGum^-|79 zQefXFB9_TZ?@@rXR6^JX)N{iL*RP#@jA=|4G$Ry`I6nCeDa5HM3b zaNM}sWg9Ogq=F4o2~){&(`&-=T_!)WLDt_bU9564`BV7ex=hBgYFIyPB@)%+Xe>FB zndN2uon8-MgYW(Sz62`V!}mVnvrS0AFh0nATpEH=QTU4-!I4~mrBmOxJcW5ZlFMXg z1>|;@;IHk18}P?q764-8U|*BFzn-Qsar)dp+(UnJ5l1k`3+Ty>YZVmFS%L>WTWJlLN;z%+HdT(3q*K{B`k;HT9*h)x#)VK} z&?su_wgl|XvAONqwX=VesT?@S!=3In&HZ7&o_ZAO7E9X(Ov3;5T$Tgr={8AJyfV1S zd`#vZCdQh<`U#uP0zHnFM&-{_0|%1U$kU>&BS}G*V`;xXy}9*^4j4GVcGy=}mY22R zb2Gd(P0Y2}%-bxfCYG$Kmi1g3e4mI#UXm zuSh9i!rTKU1SuxWhL4X}5GMJYBnN?3P62>E)!9K%r#V|D4LME;`1n!>vc5LC_k=er zfub{K4&+u4sK??v@C~(h@xaF3ukv0}9@gU;CeJ|bH65ZcyPgSf#*G)4?fsXT4xxfU z_*i39aSh&SU#{5-AM`+{#P^ADT4_vHt$4ux7*~i5wF_vr* zVfE6gDP{ZgSHdz#xV>6c8>*UX8D;v}a*1|iVUs`%H{9JV;SlWUb={0MzZD%!B> z6BT|R@iq^XlPtH%X@r5~8_laPD@Suk247GK2<;pANHU zVFG~#GugUapJww<;zwu`V)fbp9l^Bw098pX%DQLGyuL$p~V#ykPr?#WB(Imal#KrzRSa)fMm zIQW@|3^+y!G9jy~>)^(xMB`9i3QnA`2#a58GVgXst;j)YMGzHi+Y1N%yZTbI>T#JxTx8&3jyYNG+VvP1LQu2Y@VV9UstHhzuZ9LuM%*{;ioy_(XPCXr5> z*LE%Pptp_ok0a#l|Ilzauk@3AAM|Bi6Zf0u&@zq>Q-oMk@U81vQ6{I z@OVs;CKuN@-(UY{B`|9KIXWJ~X&20QIL>YF)~#Cz2h;|0x^dbC8s_OZM;mG;7os)? zx^ZIc=1|x}9GrGRh)nb3h#}+|at_)9qqKNU5hBm+j&qR1QD&+Zs!Ow{1?*S8N`=n} zR#((^14(EP+T&3vqnu##owTw-oM7A%Q{!`z1r)-0B7_P5y8@-ibN-hQ65I$^7AAYq zbK!R+Cu5b~D*rv*$S-i;JK72mY9{i{utj0w8KTFJh0(c%2$v(Gb~Y1VhMH{_0|W+w z&~Z_91gBJ7TF7#m{8g|RTawP}Ov~cg1NWNLuz_4A`&TRi#=#@Ynh9@XsP=u~GmmNq zh;uwDP%O7YELSf1giz-vjv+#9QYvpdp3Gi0Wxr6Y9%&%N7T)Exq-6FosXq(FMp=)s zGdK%AIg{52nSEW8I1L+>jS=4=v@hWK6H!~U)UxM$K_A`FM&$K@6N+h&V- zQ*n}4trDuL+oAGEz8cDM#W>d@%fyVI*!aBg1^xR_6TkS7#a82KTCm)6+(`4&tLw8g zbya1SubyY@Fg>Vk@GXV4$Sxc@ft7;ec@-@Clo0#^R&beI=3qRtu$@U^0zmRpadJ9IuGZC}} zEDT#8Cg3VMYSbS9zYsJC3&ReiuUTcR|0cGdS*_x2L8Wc-LB+;m<4t4Lf&arqoR-Hz z(}G~iP1vqGf$?08&vNaRhGR-uXj%}gU|!bz)+=DP6}T!-k=OXVu(myFJ!IIb`0o=Q z8&Fo5n9JhLbDj}mtR{Iw%<*P&?VQ91TL1*L7|Qy9_=&RaLdY-?Hp~e&T)e*l&g>$b zPqGrreDRu6uSjJ|j+dOCwuM~ciO95tWStNz7iFsUgnVxy@If>Yw#lb)Ok`+9 zFbCfj-iA4Ny~bv{Zc;|etMDeF!xXus`<&H3&hQOCs11lD3Yh0S-L^Ybnks=!SRK;M-d6=>JR3`K?)1t{Vii|NB`=|?# zv**p*V?gDGyKc(u7+^QLdBuSuO9B-@VF`C6}Nl;P{s<+s$r3^BSzJKeQWJY!HWWYFlsb0-jB* zMVC7wX;(j+E`{(THa~g{Td_x{MUP(AK=BZ!3l7Q0Xfb(RaEh0SzyvaH#st4*qd^x(ad32sQ@pME2j%&^6GkGiTz=^_1>Rh{crY=?a)p(ytlM!&46_ady zXbd{|I>CMFZK9}wVl!?*kF6+Oz-4hc4nWT;)R)_C_!Q$+ZHia~-i2U~&@a_&=ILnd zZ~m&Ebh7W6r4^bjp3GL|u9HRP!iE-kqK=VDrc%s$n@DO+a-FdC25`B+c4YOI0yfAb zhkhmLofOJ-^4!wUYEDS7vIg`zxng;tDuB}0F!zwTS%!V9@D}(6Y^>dP2V72=qeCcP zBv2JM*ovVR$}v;`ceG)sH9gBU_AD1ec|Yp=QNtKMMpYGn)3CYEH3heF(n;ym0hVYT zyHF4rv)l&_k+B=@M$qK@Br?2&iSVujhRTMw@GtiKdS8gAdrc%M`G)m%`4KE#NHL?n z_$?iFtIRg_6v}{Ij<6Y2+n5Ky^bMo;+XzWI^r=Fq2G~*qa|5X;Z3Thrub|ez`ojJq zrtuuZV0BZ>RyAUz^Saz_DNKz^CKZWg(sDzRQ>gL&%%t;MjAv?exO%~$r5=P$LX2F# z?W~nrC@BU5E6_)cwb~}EZnSiqSs%n=pGHg1*v1doI9?)a$>+5)M0)m}o)GX<50#_` zFoZt%GH5u?N&(mmN;f?wCRM^=O_;c3`P@yf!s62gvHn^93UEztDnRy#W%;6X%7yw+yI@S0>;DifW@;8$Ct5?^x#=MS@!2> zck0h`6U^`5Sv-PbrQskPaN%-56)Z;xZPU~w4*$`8`|gN*$=u3v7z6gfGdv>;ZV+>h1MNi`eS0X4tzA8VZQ)xO| zq*FtBE}z{>ZpUEgtUSlu1xN1R4+nqFVj)yLGGl$+cE8Ju#U8hl6Kmijrrn?C*X5wgg&^8Pk@}H275tA*rusa^8u9P!MqNqQVba$}M z1Mc2q>a?i95~q3_jEjL4K4DM;@7}#Th3(N4?6*G>-1Y7K`UwYs4OQ=oufm8mYd){Q z%Wbx$&?hE1?)(@J8@wiE5o}0a566#1O|pWdr%Z7vPt+ESnT$~R8#i7g&*kMoIg40n zq*qe?BQBEb3g-$4Fo;bk2eFCd>OP}(V+1;#$jt{S?uH;xMPtLAxjMJe z*h1=XF*!Cq1{(5Zfr4%B|dlAUTzM2+>r|5n%7hq7sk|JAj1-4(>;H zI4I87$AtU%0ol*TM>gzWu|nZT0fpPg7x)-KFciUr5K`G>8l=O7u>p{C__74nFK0jm z`#43B4EwR#SU=6BFH11_%~>-+2>Ce?^!;C9K6lkh6f*9o7~bGm7lE`Z z&exJ|8l>7FE*}o`c904OI;M+qQZWHPqupPwtCot}2)kl%9&&B26cC}=Jxzpx8Ed&= z#KZq)*hO2HLrpZKQ)n9dKf!+E6$;S6yf?l^htYVBF8wu6^cY;Fo{2FSB)eD0V10{x z6-I=E`Ok~>I9c*|p6(y8;&MhzO%7P32_+81QN=l+Ov+N19OZS^6#jX5v`7#Y4tpXN zypDZ@f@82?R0kwFydgG5Y$XzH;0_O0Z{NNQ${(_ovzBuq*fC33HwCjDX*D;^UY~CD z#SLisaIjYdm~!59kSBd@d5_!9r}|peS~R_T!7@XMV;koY{q*3$gO{QbP zi&YE0#ePXxxth<}$qtjwY_sta(`yEDXOwY*8Vj-Izzz2x06zt{EfV&DTi&E90IKe< z9!v&gZ%H`KOm>HjRbo0%jVQ(@O zg^ldgaSzrrHSImlM# z{a`jfEdX}BiSfDOnK>%UTu#NY+mt8K0=vPJ7Asgmmm8uQZsFI0F3^g6Dr&sI=`uL< zdyUm{Z34y;qzzCwJeO;6IL6WZ9y}b$3keEmUra?smWn@aI&c~=PFd4DP#5vF{RYa| z^B+d?67sgtGJPNE*jqCgy5})C$tC$%Jx|t#@B~c=erxt;ZyF%DO(i0T1kghtfy)PoByy z)C`#m#`Z4{LS3GNwvzaHR*upx=}QWuQFt{6LSAQZ>hG_$Id%(2wy}`EtxSDs!Qbg% zyBJsnBXDu?dPBv=5x31o(g=+*UTa?4HAnmz8%-m0mTlK-A@g;Q6Ko)PYG!6aqsUDr zWcKcNqSG0++=<-kH^iLfy@j;UoNzW2=L9?81Y6_;8|DOKHzJ%pZOEP}?tT8!MN(H5QwyPsfB zviF`>1V5W&n@a}lS^#YDNXOXL1_KP*-80*Ne;a>gBvA3m*bVS+!uxqx{1Jp2Jhx+Y z;bV2%8`XJ29LBR=r$DUq17vY4X=(@#tY^yu7=#;~1fReM94U*E_rd?H1Zw+d z5h_?KZC?zobJ3zjzyHD*!IAkZ!nuav7&%{B3lLe#{wjQxuJt?kgV7Z>kX63E%pt8I?IQ z2rUn#c|XX-U_q@ECR|iBL;6J^1xCuHet#RRjgzzp6Zv-nHm(whRN{+e(Y;a+|t$g7D?e$Kusaw^<(z@zRp{19}un_r|G?7dC;SQc7rODs9=t zx3E5*UrAG8*tA~^ZS_U2ZOnE^vuwUfvz0$m%J{jx~^N-3Uz1ITPiQLyH)pRKSRi-xX2iEGT(K7++wifL2)x+GoYR1cXtE>B97 z?sVfohJyD#O9^-k`jwvEd|=R^L2XP>lM5FVI|KCViDNJPtlwCKVCNUcSB4J#*GB3A zSH%$hs$WK6_H3}5IZF+Bs_(9+fg!XK>Km{ex)i?F_;7>LETs5b?E)lmbY44x8tnw= z7jCDz5k&Q%Sq_d6LR~Sw3r`f!`M$>Z+jg{)u)Dbs8OHa2;jR7oOg@tiCOj;agRG^* z2OqRO0yYR^&E;vtPys3=KO<=NwGd-oa6hbaP|#U&e6e8z3{v2~%$gbn6r*{kE_tyf z7fbM?8+2MG@O-06W+{X|g<+D50|yTLzzV!Y;il&uj)nF)O2}c>h0!=V1|QDD$?Y&K z9WPom1~1AA#cp=h6XgCu!`JxM^I~QQbyBr$g#x#fcIHF4zsx-v7B^Qg%T>lIhUVbo zW(avkXq%l6*)Y^qN^3y*8>Zt^`j=W$@Cy!J4T<2S1=bS51bY013-B(5aprvoPFxak z46=|Yc$q!|%$iOuRcFkGuL0Wz9GTdy}#^h{)BQd9~Pc|^uPJwnSIC9x0Sq!Y4kVkPi@Zw7w zHU_>upSre8!r?Xy_N!f|t%A|SvD+$l5i1tV3WgBtnudWSrHjn&e)pC2>GdbRil$z+ zC0Jgscc>NHESs6d+46ohDtXp+^u?nj^$Rf~{ko#t_>EL&iYvcRH-j4xQn8$O@iOa2 zq(Q1I*XE{tI0hpF-Uex;f4zEBh$DdWSw5lM0`BQ|v+#HA+Qsq>^;CHAXi;RK<+G#3 zTc6-ROKE|(@alaB59fX4X;#ld8@a6@&tMz_huelX6=twUfu)uL!9z~4s*kZWQXq#G zVd=4l0Bi{Db=nu_I@kmz#C#s<;rGf8@V2fellKNUBkQW>C(@?-$$GxDBySUWFmB9gBIAp5m#{rIQU@< zs>)o=9;Z^WjJ;}M609GpkSVs)0@1G^UFYBf-^0l!sT|v7b<=a8I2NM>w0O-4ga4`47-s=6}wlw_zue~eFP5E>0)GxQL;myyw2 z578v{(L)_f@j)OUmxg&9!WoZfXGn2?89nR`kQ*lNP$XL9y&zSO=4e82eVLIFb<*2= zM9-6cQ5hNGEQI<&TJ&4+s2U>$<8;e|H0+6&kqnjRqXT;R# zcm4TAV61fR?Adx|yxhnTW#JjE-wL>mHM&3zi6T(vF-I z8BFzByI0TwQqv+y){#I@tvpknO|qy&IRj+5OI;dU5eS#7L!Ao;c~26QfXlR461JT? z(vWi;xx3(0QgR)R=ueJaFmBTfq zzW#6nANw$IAIc2o=y-C!llTwmQdWC=54M8JvGL`KCnz9KC;G`h>Z=zdP<^AUsV%fn zYnY9|jX5CtPk2z~X6^NrjiNvB|)K;yL2Ov6UeU;L>QQki;Vq}tXPTT7~i z?-|l~3zq$qbVDHxl>9(7>k8{brr;~cA_&dI@oEwZV{DnFogr;fnQPeO3~Yw<(9(XH zA?;M3&6BzYE!GB-R8{sjNwZ;jf~Aml6r3$d@>LU}*T$0c`rP>O=hEV*d$M%uulf{j zgXkU=-u6hw0<2OroVgrqV%c+&bBlP~Zx;=AnaKUvM)qvAQ5*YG+;SV(#TnEv^adF>ytna4&2Rugd9uLX7o-o&>M41){JW2v6lVZ0UBO&3vd0G?pc6vqwz` zYzLBdS(2{=-Tk0kHgF--2C}wFow2iUw1F)+tGF#2cTeci?B`33q>nD=7QjXYdV694 z>M?Sp-lbCGq{)z8c3t``IetqYb2_SMJAq#M_cJ4~h-%*xkV|{=%rXwE@{JgAVxU#z zeHcnWvDYOVpt6>SAEm0!#{z0}di8aJSs+CDH7jOT%uh3H=Hu&Q#b`3Yx|Xk%E{Ca7 z>UgMvz^|WORL3}=Q7#UL)QeBGkF^kC|#fqDrCJx8jOIqw0Aj({;Xz{$*XHjAdHN=nY zooOu=@thghj}*?OQY_BalrVIP=dNMC>pP9ldWCs1A?Ed5^0o5oVVJwt{ZziT~gT-^@XfDi~S|ifJbWTbq4uI&1KAb+#{jXt<0QAD8S~ivF{7sZ=4&>pS9YVcvcoa$TQx1l-;yWEA zWz2NG&BM%%rd384NLQv>kvoxXIu-)_$GD@qk$^$pB6US2sqqa8#jcMJcO*OWFRQ2e=URL3AN zzNR>%0~0iPo8oX&m<>3?wmOm9hm))W7rNTku};h+wtOutPF=y@+EZ|bxmC&}_KU}` zsF`0qv`WV-C*xZk8E)MhfM=to(xW8nLR4UAmVu!qHKY&zOy|};t#A|_KUvSmf?y=1 zZ1QV+)q!d!<6nxR;rOhsiSfWB;O3^0*qb5g-t1s{9*d3_cZa--jBz7Zz(kKrMZhAs zoo$$3z{g`SzlU2T{(hd%@M%49j3>t$FsWG)(`wM>JTM+md>$Ta1Ay=?&R8CSZx-fZ z)bc_20WO5v-Tq^Fb)L{$L(AOf)Q6(X6d`2a|25XciO$}Ha9#!_1+xj+CQ8c!Lh8L4 z=5Qw0SFF=9Q;d-jPB3A4eoh=h%=I)0EiO{Jo)BS=Y&_9+#oDC{KO$#c?PQq(*!P(Q z*jr7`H5XdRr+F=XRQ?LS`|U1rp}xHU8V2FDdFgp+QEG$4U~xT#&(ik%&m1$}6Y&GN zF`H|1VsanLXY!VE3>--INXO>EL+^0;q!c-h57U!d8Id8>jWvbZBk>}$l+Nt}F3+%T z#s`g1DU5R(A(ZRbO(Rr_tTF=No8aiEhf85I)*FZE-%%@;c_%KZ33{cZvGJiy8x0KY zGk0Cf;LAqY%wh9~ytYF1syiQJF-gvXCXDstXhUTDY)dNvL$+yZ>1U3?dGF9b4l;%rl74*RfdNXOe3_W@b8z zF9DN9SF~xPhR_-@BKroa=u6rJR;3V3&w)~%2W)su>92);0LCg>01bjrlr~`F>Sw~5 z(v7D{eY$p|-I!(=r+))|b1hqY(+M%ST;!T%c@)mEd{YIe5fS63um-qwXjSFu>%&G z8q7^|2jdq!=kluaCop7=k27VqG;KIN42cH662@<RD zD&Ld;_a#t$S#-?NMI5;@r~FcBH66jht`ICmESwU|!$zN6)fPnjc$li{n{<9(l)~M_ zJovaJ@rfUkBFtP$w83m#rka;SxfY8zjw_V=H;>fna&-eS7V{*bxoQV^|3oVQRQh z(GQYHUzC-0k?z`V#Wb=VWnKgjd1V`+pXQkDwVIH~P_kD`fqorMMabRmr#YC*qy!?Z z_AV7qe$n|2Pu6VE82XwJQwPX^5rVu6v32AbzbOR@(#aE64ePHik)3Rq^=~6YSPNWs zj`d^pu>N+p<}%Gv7J2W_@99}{H0ONd`rmB66DvPe<4lE=qv^8ngp0FV7NOMY4i@v? znRcbG-ocx5#K7FAC#_=IP|H zz@*v$=80uH+M4(+Oou^!z^9DoR)eZ1$=EhLDmy!fBE!8g#axr|50h-|;bO1w5V!2m z3HPs{sWPr$v?=6z7~bP$kaVBh(g@n{VTJ>ANcMc;xM53(#<7$5YF_I#%Nf$oO4Gt$ zU;<-ye76(N6Fu?8<8T|k5S?X66hUYNXZ})Ub_+}s)>HZX1r@(AqQ50jdeCFX(bc?G zO6K0tX;%_b@QO^fgcm)CPgF<9GY;Dxv`P_pwcK=x#MYZwY!@C+zpw~J+KylA`tl<+ znn;`NpS8`k1VkRU*12w4;-*P0G%oA4Kos_|(zLMKtw*Bg2^D-TXwQT22;5IoVZD0C z9JHpAvear(5oKF%f06Q){q1QAj(-}06C0V6QqVUHhHOsl+64zAV!WdU6Oqf6jE8Fq z6v&3WHfBs3lRzRj8Q?g45r(kx^gJF%4+X30Q_+CX%ov=Kn3xRa)+X4$Ee%$#OvLy0 z^`)cYZ>^)pr}}YoM^{C1mvF*5M|$q64_68aL?|mtLZD$=}gX9 ze4tdQ(-fg~(X6j7=pz@N539ycEoTb(0jCL6vjGr@00%1wK|guXuq@$c7F3SKRmE+Y z^7YfwVbLk;2b$*C_%uJP8TR$_^VNdyuWw!g`G2}h?NSDHwW%o70fx5m^$90qQ-@f< z5AI+RyJ|3;U=?WHt5_el>d*3`{5|nyb9-@9_mcI5-OhO+Yo#N_xl*p?+6cy_4&vFNb{(Nbo%Yni}M=uM4{E_?YSJ&Wc zhcm(me(G&dbYHUd|*WLI$?bV;a3w3tQ(*q}d0{#kd zSg$}e2<^n{ss9B|tgO>CPdJSy`*sIeqEU?NL7X&q&S6Z{vl`6Q6v#A4)A0had(IcVy}Gkgb0y#0|@aENUk z!)fx4B#tU3f)Q{HCueLUXDa+HA>|EDv#)xb7(*Mbi&UDGymcYhwkznzvo$AU?t3tK zdi{E6@`lDXbQKP64jcTvXM`TLVU42?DzptZt$hyIw56_l*nkDoupqjT2(fJYIXcx8 zoWj4_(xMV(6V69h#=L*aAUHal8F$ikd=KRk5gtRxT>I-jKW;NjS{Li}kX+aKHIMtp ziqCs{kocjRD@qW^I>RpC(4w(jm!hvzCCtr?B|G4V>RXm!mbz`)j5-<$El}#Zm`WuRU1CICIv6a&=B5K!>W0P8 zw|4ZYjDCs#!!!hwjhf0|RZ><}`XiG@dJ=6S48pp7GTcn3q2d@{Zn5?XEMuCU(~6Fw z(JAhl^@$oP(_{RiVX}FwMG)c(ozW`?7!$^Lz6Hx%tCpusD#Wp{r1Ab6%)DMu6N0Oc zJuNzVTpn`PgRI9V4X?|}5)^+nxG{yHWGtmAgJbZW`L}V##7uTEMAw4DAQ%ThsL&ty zI`*|Z4P4HDBvBm!;SE43LnU;BwLNDr)B(dNB8);@3{?7xFo@?r#bkM^UvrvHr0Uk_ z^!h)<{16P>_%MP#kau52UK#LVFyyC@^j{WZKssb47m|U~0U|oW9EU=AZ>_CbP#a%RrAD&$sbOcAwmbOcy(b^<5vRyqNF)2w}rFuYsgZkBxB zB8I{+G_S!GyDZt7=3(lozPoKE>JSPKm&JzT%l2XOurP|1c_hu1c}zbFwq3f^qMV6N z17S4feX$gKtF#Tkr=23Z4fAphA# zw7Gc3P-6DMYWUS=iV@m@x7$A~3j7t0S3CX&`+J{K0`1lZ?7qb<4EH}@lcZO8F$c^v zh2XgrD=*;(DdW}BBBUt z|7k{j6IBfyi14i&_T3X&;5JwM?6Yf2o>j8ZWx^gp!hYdH?*MhLuc)S`R$dMYOTf8x z82>ktbHGfOz)f}%-#q7-C=VW&u{2W`u5a76ZF`@(*=;Pc z8Etvo^Rlf)wC d2{#4*RFE+vWN5 z2YXhyPxG3%$G}i))x5cUFYvu-3|JlR5TgDD-TV=>q8ogJ1Q{kzV#_P9I;%n}fk!`w<{c3$2s{P3SfNaptbw zPUCGw9D+7>Ik01ipA4`?CKHarI^DI_X&6 zig+Xs`vJ#7n;ml-XKV2$u$)7G>`oqn_(2_`u)uT(;*$jaxn4KJko#`wrbR*t{*dzh zPTuXI=nwSP+3%_>=+^DGt(7t>I^Nn}m(!lYybTm@;Dm)Wp+Y%l*q?a0P>$fnZ-TWZ zG4@JMRkV&o3sr7{^U+1_v}1(`DwUQdEV9*DXgV96#<3p?bh^cg?Lc+HSoB82&gxkL zjd1V~=D*NXV8>C>xCKHhCUUzR!g$^pAa~iag8N?X@N+_vHWlF&1z41!j{Aw3MnVqV z4CaRjrJ_C#3=MTs|l7K|2R*?uL=X;CKS`KAzZh5t=!b{o>!Ul~(2$)FFnC(%4a zzX}0&g&9#O)B92?MGU72W?uuxj>%4<9I44?k{4(g?E0fFdDpM~^1~dyDMnaKNuqW( zvX2#m@P)K>!@z?YsnC+f*fg%pX}iyo6-$Cu(q_*PIeZ*oMn<>#b0 zSi2&3`PdqONLpnc*fNR4KPF@%2g|yN;5li8%;sPn2>J68DCJ?WKs$s+$V+H21qcb{ zj8*0iQ?U8==-ekMke_`;j@w!V8dbn1=5~ybvvi!+)dpqS1cy4-hLasR%OL3@z@g|f z*p>a4RW4^BU=Y!FgbcD`un?8ZfeH+;k1SZRNJ3)atKoH*+{tRe>Veogp#4sWt=};R zunq{dP9RCPSq+FLy#^`>n%7%2z7HxT(2?|e=6KGlmka!iaTpBVd~PqQlGkub{l@3P zrcwN@6)6-c6etB+ij=lUacK+11Hma!q$!-k6B2o|e}Q~K(X@pv|i1>i-7;1-9qPPm>; z$EwA#t1*k&s`8`oIhe;}x!U-VQBBGHgzF~z)7pM@D89hFW!00h!B>mM#V!AU>WNLv z7jIxfLmscNUSVzZ_%-bhv%BH=0)5!C556DFeZL{^AK;bwv(^v9iIQ7aJQ{8(#@D2+ zi&}f|!QZ-g*aP}Mr602enDVTIli5C7nd)A`s&G;L=cJZlR(dyyXTD@6mcHDdP+wQ1{ z6aqCZbHg^%mS)GY+62Z%Biy2F% zZMTh8wm5jOg@?#MYdF3R2rb3L$I#=iOBD>m3~~o{&R80DF8tK#9fKJJ%y*9oIGpLt zU?5Z@RCq^Ng}0U4p4Bns8B?7*w_D<5M>~}Arei^Ar2V%vuw7|je>cw*;R9|4@`uZ@ zri>~lIAdtNW1ZLZ`>iA@CSHV|52-77J-U+=K&bHn^0^GkiP8;y?frPL1k1ao`H7%5 z=#&hbsJQk*V{)nttMWqy+SNF9sKifQ)b6D7&{Otsd!H}o$Ft8kfsLJe*&$y(n6zLA zdDhgXYLYPNkQ_=$E@BF7MCQ(&bEfl7bm%svimB~w>KwW3E+??D1tj|r7;wfj2MtoZ z<`2}{@*;%LBDQ%XQ~3{;HFOEJQZu#<9qa3Kj&)jglCBHg*M?ZW&XU4u`MEuf@OJ&@ zVC52>;{tQY9rG+L3|6H%+O5H7jLtCgwi(14=lSJuwoDsCO}MTJa_pNCbl);T&i0v6 z(V{=i0mrpT^9;PF9Nt1FwBS3ZPusJl;Td(B9Gu0wxj8>wEE@EW&7M8Go!Et22-m0bi4jO-HUJewF< zEEs+{oH}ptS;VMv=DaWr=74ok<0H4zuv^lWs)mu^1CnZyjuCP|tihD%*>l-a*j__6 z>;_Tw@F>tf2Buj!O`4)(`|L=9l^Z|8K&2eZQtc2Sk9a@bf1qwUM8#kDfaF!Ph5r0v z1)x(o0yOZRS0(|2?a);xt?=e+`UMQ4Hx&yr(VMqMQZ0IqQ^AUgT*uptGNj`cu7jo^ zR*XXajMAISFB2>Dm@`9-U1xOVpD}-LhntHcwg~G*hvU0yAztp=aOHVhHoV5LpT+nQ zvjQWapuEU`l_tO$DKMA%c?^yd3xqtKrcQ(N=I1DzSs!iOZe_BKV@WfetXSoU^Un2c z)36)R*r3_k&cjxV+c=K5O z6s1gmC8=KS>raFlK#4&7MGUT=xvJ!l#t#)`p0X|disZ|J8EOZ$jaMFDDrfn?fQS8L zl=UCnzFoorQTDDo!iFW{##LS_YZr2~L{4_MP09}60p^KVv^;1@6A?)DQf zgfflxId#Biu)73$C;HcO!0pF*6BIb$f~ zzs3S3;i37O-Dnw>VUHS5DTeZnI0k8uW8j$!Gl#x0-lt`k76w@w#CT+5<|&Hfyam9N zFKxPZGA(R;8g}{NMmhP3K2zSG z8lgm=ZY`;n!w8Y`s!wVAT`}pdSXm&J#u_}(b-?M11G_9aF5E%r*TmE-pF5R--IsBFZi z^NJM@X#pE04Aqvnkpl0;jic~$F)I@t&u`!yL)Y^XApAPfevT%}RrQvl+`00rR?YuQ zxoO$eIHKUFB}R*dE^4zdV9Y~HK|0rl!3wwY-nNEo3kxfNu^$_;YuNDf8zri&L2K8m zW_YuN7LkR8DePO9>(4mT4lA#wTW?RTiBMfMu}{KbYMpEEtXZ>W&w30LPCQ~oE!Q7c zo|0bF-##T^E2ve@na@uZy~JVF;!gn7?G!nmy8;d=K=mwli-bl( zx6P^?r~=_j>@xdEYINA=u=al}Zf==qRIzrgvhz>}FUAm)aHCPczqrd%fY!G;a~a6}31 zxWYL6+_?>14eMoim0Jd{PB#Ech)H_-iKcfN| zKP+mfTi5*K=WV)sylqM8Fo~u1R#IigKE8D;`1J_Mv()KYW2omBo{gsqIpeOMnVxZa z$`=A?3c{{fpKw#C6ThahNH-s${UUOgBTy(NO~v%PW}7rmg{O4!QHq3$(@qiiRC3VupndGCik%^t5OE zK$rat&fAs|$~Pk7w!JyFz?^BBWAtM@%MPJl{%zFyp4&&i;lR3f|KZRe-=s4Wn)cpu z9LEi{VrT?Zez+gO=NC4Rx8e+~cULh7W;7LLnq*H*im&k+e9pF;+dm~6jSo)QlyB@l z6i*=JGox>}V*GF$mT57GJZ|3ApUFHMwwREWRnqAKuP|b3af z%{E52iNt?pVKF4!sLXj)_#Bo)PqbmKlx5RSZ#s1C+S8YDuvXzp1q&M)e_tD{iV8nA znUJ++5l>Yr_P8H0qJI7Q#l2AJ6f)kjVyVvwX~;@UF8vu2!PT=&tUJ^|O@<{h9w($X zD>AtzgzV2?ax5{D1R1%&0>GU~3D7F20s=c8u3=tHiN@O~Dmni6UDxYjV$v&&e4MO( z$oul(w?PyLo*RJit6@w-{QbwN_|b3G^5j7Ms7i#*axpYF8bSg7iQjYBa2w-93tJ2; z3aVv-^A>J_JbGQ{q30|t2}2)A>n?O}@RJ=&K}*5*4M>9UuP0K^g34JI8ns)i5>fEJ z@CmCktmP?;FT4gYP5|Kym_S^kdQ<2ZcrJO+?&5Y(c5lO&DI~N&@8W$xWIrXx{M-TD zlGIVtwg38Hyx1MN?R{hy>U2rS>~=6E?5YGqCzA1t#g9{LA3vLxH%+|M455+%3Qm^9 zL^JRH8>I0+-DRk<-6f2{YLU)3ktRL)7qf@PmKNw~QQc;n%pd^^-472`bS*<-T?^pj z4bj&M#v3h}L1pMfZ*5PgUP~SdRVm$4jJF!<{B_a45i8fOomv(Peir`vd>F=oW1$oW z%=YC#=+moup2UCBBo1RH@$jJI#AsR)q{3$Y519rMV7qFgW>djma6dE20&HSIkn~ou z9t;K>#o`ChO+*hT!}ulh?v^>J3XLBoF37_tMg!KC{a|VHER3fJjh=o1Z|$8cJtuz0 z{+Bth*iTEmHd`nune*RB!)I$!7V0xHNyNo zWt`TQGl1U%r8jZS(DW*plwr3YKPaQoV}%8y;pPrsGw^M0zI1p*W!;OTnD1Syt@}t1 z6Xr1^T-2A4?@Wdx{=iqEUsdWdpL6cwY@NpLm&HDD*>>mruj<-*#;U!ZTbP#w>q(g6)Y}T7ZFh)C#oLOX z*7GkYz}ilSrPYn*hACmy1p_MR2>IzFuXtCC#maVvIg&MToHo_VtN5_2oK6iTcAfva z0|(}gsj+PbAF3~19(@AenetR}kB2R(&~f{cB}3&mP#XVtLNfI+1xu7ma$5 z!b7Mw(GJtCope{gw(6ZelU+VM)&{>;OX}P)uZnY+`(AQU6%8Z@I0$`4o~UnLq2Nei z8nQRppsM?jyLC9bJTKG^-)0Mw$$8^@V5kfymosMk;3Vv+cZ@IY+)m>$EmzS_rr>IZ zx^XS0B=%1t=T{$+th_D_p2cq}-6%C$GDza%`{R4iSds0Zq4`}P{)xm)!={o+Mg)ZG z?y#bQOc%JF9qI(3QAF|z>Dspr(-z=6C*(lUIcK-ZbGzsqIBdyvRDl6*JUr?Jy7uQym8zG5IQB5|&C5y`lSJ2k8 zPHEUmQwPbg1!O0Sc5!JjvI`A*gdQVoFMV`*ztcn-S5;4zH7orQ~MO6PD#jBPUxk`7*A5_QoSYQJom!5!Dd40 zcOeJt-dEP}OTD^pg54Zd^=eS~ve;K3(MAtoOTF_<^Rdt!=wR1|LSVq5ALC_PLSA~P zl20%pOe-PV29o-traXp_I3|@l!Ayg)guI9Oq!yJkH<|)iElXmjia}lmGTm7g3R_?j`#6t< zz~m6XgfFVD0NXOgv*SvZWjB)Y59n02;`?`~UU&!dyx9G?lbZUw69|2asXcAVy&gR= zDkifztV2|)xpI0Hhe3z8%V>SChRF{2Ys=4x(0yqP!SQzg1@@vUc+;fQqeoF}czG|U zrmlkXoK^2qS?oB3PGeyGm~m-3_(p;OtZT*xHzo_s@TgG zX8O8;$%*_Lt71n?2ncJKtqG0LQ9EYQq8*0~ws<>rG4<%j#WUI^7X4_cMZZl{j{X=g zl6HrbS#T3(Pd7v?fqlFtOxRSowgBY_RPg1xO~4IOKN5C@Wy-ZKRo1C9G6To4 zmGXOW$)CTNZ1%sD5OYce#jY7|8K_i`Q_OT$!qJDBy4O8x+DRoPB&Qyj=J7h4of2XO zMu|!>j#$=h$^o-uxssA>y&ecnR^mRe{Mmt@(ZLDT75&4-94+5jQC6xwOVvBi3{@hh z*xNdpy%iTS}=WL3!_$?9x2lKj~Ch?xH6cs{>Ml`6Go`iA3+rcftlG|`Ew81tCPSLHT{ zGyxz+;7{$WN_!Si>s>iQ13d-o3idzPr$>($_)4f`m8>7gJ@2L+(_6{w6lcrPWVWKiHpqiRYLS!9XhwDe%duIA+p; z0l{(eYj19T-(ufPDo^8A@jpvzpk6;bqE(I~+GvA4^_ez3fp_9gGJYUDhE-p}yw8C- zeX%(6uIy?2aD6s38{=R3=PAn$oYE9R*mWa$r#&D_kHd5uVUI$0Fh0R!Q!&n0WMVX( zZ3;T91MCExDF4G59HG}_EW9&K*u$zhZs0F0p+OZKI`n;%(s0 zh=LDJ@ZCrf_c|seDLLfIbaPUG`YnQ=)Rb)x{=EHo8JsY5%}83kore!EUOsfMSqbcX zxQcLKb4|3|D5(>>y*7a18r0sxhXAzjU z1lW~6)e)?Me`!|Nb)|wIZQJUFGSmh;0n=2n)9?g8HS9ZQtmierqPFsJp?tn;G!2D} zmb_i15UftZu8U&r8m55HRMRf4P#jWI-$v+jL#Wu;I2DuC%Au|gPBs?|b)fe^QIdYD zUAy+iLtU9$F;Ioz2l53Rlf+)hs?5M5TH6!%^?;kNqhB1*?BbO`J4Wd|?`Ix$EdJu! zfV!gw^4MF-dzK%t@WjFo`Pzw^8}y8nzjjAHIH;Z%ZO@<#lM~7H5*bjzd4w$IABqlf zS~sk_KTP|!TT!~xShd-h`LqPnb@M^6f}M_4f|FSsDk2DaWRK};{G|%)g(R7wOVvv6 zAS9gWhqa7-Ato&?mZ3cA1SQ7o>nHzwAT%kKkRE)_7#>^&e;sOC??czG1C|4hCv*KJ z_j4s!J(pM92LLoi9?c(NDc_k2My#0YvS>K4+x#Li(3{S*?hHq$xkx+7L(vhYaX!C) zKLzg-J}h}co_6dA&vu(YyqV9Tu6U9vYWh$-N;B6I+CnWdH5tdY=j~L!%@vH3G4ulLe*jUT`S4*`WYe~j zZu!?^#R){|H{hpsZI(`U#(F7^Siy)C$qWApoj20w5%y<;pxk(9+C6v>kFU28v8(u( z3$WO-j8n#l7XMgDroDS*B~yCZc<7Cf$eKz&T!gwqf^05X`X7}0$juLTm1M_oe6~0o zOM6Ucl^`@DbxlT;<)*Co8A#~MHH2TGN&U|e5C*lHoDX7zR}-R#=Yz%s=>c3`(SBJ_ zfrOa6)DzyVb!{p;*W_n>FXiNfI=h0D znnWB5<@-4M*TPv^x?K?dIv_w+><4$eirt4kBL{v21h zaN$NYvIiKf8!W;woid2Q&^#L$#zL?WNur_|CU24So_;s>A*^f}OGi52IV%Tht+*c$ z5Mcb9@~macw%-@3Hq>Y%FXHaqDJHf;QI3NQ)7&6ZQ| z-o4wZ<%d>;-%8T-d0ztNWVQT;eLE;YYJ^f>?zxAN#`;h{$j{feTZGI>V}<@$qxSg zGQ;Q+M5c2uriq~v$wc-^(G+$#V;K%PV|mC+d+Bcl2GmY*4!nU6NtQM{GNni9zE8!= zB`wBsQLQSBB+;`CAMDqn;bAc(cCKAy(a@uKqou{Zql_F#mvzbY1_r}kE3Jb1N#ukH z>*qAB(6q80>*yOpXaxp-2#z8*n|bCnZkRdYFm@% zh_)#>rUWN5*@>7;Fd2@h4o%$hoXlX`L1a4_jCTFjTfJs%90gfYiNyw9+q1nxhY`oY z%HM387%B~6Dlud;!7sBIBJ0|G{4wY~3!7ig64|H>y~}3GEGe#RDsMb_-_?!nrp{7i zhU)rwX6O@v7uvEXU6E^W2U1?rXKhrrWf*6(a>o;Z-}-k(pZ4#68{eITWAth<)$p|T zJu7hwY$sY~fWt4Mg@eBb0LB%d%5JhfNOH*+#V5g;Zo9r7S!?wS|TWxt_Sk?U# zA8(3EZN=McnWBNMqwoeQ%r-lUk4?T9yixy31;lXUd^7PNBgFx@fDw*%{SEsLqpo1L z<*C=X?x#G9A^zavQt^$?Su<#NWXjZS(y>XCCVjy^5WL=-%eT7S)G=|>NKa=hiEpD? zsyCikG)EPRFiU<8L8t+lD##2$nwZPku04?~Owv7Fv0p|t?-Y5PjlSjS=TW%6#o4JcUqoN%B%KR@I>Wv;-4M!BvSi8XzSP<5Xy^5g zl`HqqERP7-y7C(ig8|HNZ~+x;a!Njl$1zieI5e3n|CF0kf5-lpIWYH%qe@rhmWq`x zC8}H|>Mi>+VyuYW)F$2iCM$YPOdJkDI_8&9Oy*~MDvY=wLSUDC;>3V8DNiJw?2~_g z8Xunka}yUy3{}ypG`=jWWJ^$WkJ7T+lZKxOM3QvP&yVqW$LdRWVY3n|LEk!etf5cv zX~%8|lt7%nfCu*()if)h|3oVDj2ZTdHxtDI_^G^X0_MK7yGp;2iF;;#FJK^lzGgZe$pOHYT5{vh z9yC1o5uG~~6~IzV)&4FGtYaFO7}T34sdnF7cF83z$LK_5htLb5DfL%U*A(USH8$rU ztW1+42rX6cOouY-D8^IdRyo!uDr_~%((A9pOal+|cE1}ok}J4cVtVpI)_DnZ_^dtC zxnKAu4uHDWWI8a1l@<2pcE$tv79=^h+Ii)Qq>s4i;8@a@z|6tQ#`y{t+o#F`fEpx+ zcJsWcgqAREfT)+Cu7{hZ97LlO2b|@;gMOj=XTDitRXa`o;->C~i1J&=Dg@d0f zfm5gN{=$!x-&K^b(9i@WI#GFj*s@Wn%*)j!a6zRTcd|OwOr6pjlog*AFxhv+zmNkz zuW?r1#oq=PL@+)J!QQ-G`f<1Ps%db49veySYoffb1+49z0UA~)TEH3*y-Hpofv+W_ zZLuXZyB0)fIv!c4LM6+smS8aHsp^EyNwCoX^PW(P$uB0KP7F9P_`N^;R1fSw8E0JD z_!&)pkcgRj|05Xt@|j@)Q7YD<$pTm%S9QB8L#MwmnBf`b%VP}tj>-3j%k^s2By)(s zmLu7B)6q6UWHqqSWbaU)&J(A~?CuWb%6*%k_gZPpFmc+(d$Bt9a*WMDBhv@$SN&{* zqXi6YAbp@4GyOyoCt_LVr#=|k5l;V=UX{BkFo=F7j0 z`8kdN!pwe+C|lh#^Ei4Bu_WR229=@izVHea2g>U%PLsJo%IhmPpF}^6Qr5|4vr1W=Ztl5 zfKXZo&h{bL8){l|2Pczz%Mn;~|C^#ra0HhruN@yV6qLq6wt?mW!8X4=I(McIy9}%G zLiscUoFp0{+6|3Xw~DR&0+UWQ&s1`|f>)zLEdmwgx=>%rvl2(0c?|QHc8TQ+LKV~# z<<~p))$swnX?%}6;~bMTOY07j;w|FGOXaHY(F3!KR8V?EDhV<}a6S!eT3VRvL&FQ< zI?Zu15u9Y;f~JRqOWSUagB3y_k;{%)*1$=Q7`nGH4a~W$M)v~XeQ|KNT^q|fK*-xg zYB*sD1NVg=zbbJ%Uk!} ze!C5&i}a<1v`H{k!YxhE;84wIWgZo#g)`2XfSzb$qt?7*QXGJfMw^ zS8FAG7frCT_2Z8}{_5hhTzuGVlkm^#tRK%EH!E@Augcymn#jFPRu(H4W|r%yiEA~} z3M%--EZ5PGSoxT-ysDJY`9hcRVYYcRTzN6I2gEQ}4}T?`i>bRe)VsrjL+G)%yBQxT z^W)Lr;8a&~B6g^4bn4z_sAHcpwA7u?mT$Y#xi8CBZ~7gRwGI|$7tJ`t4gq)W#|=3Y9~gZGFsX2J$7{$ zuzbhX)~n=R=&piA40Sw^ka*@1eYV!M<3&5afUc0bbv;qtHe(amS$Z zvV}ZV^tz)r*7UPF?8eZH)c)4lr5X**&$w9sz8x!y5CXgXbH>OUa%0t|;q9eHZa%w|8n#dU_w-GRf^ltFyWCchq3UWlIp4PrQ*Mcf;2Y%Fay(?58*dH0!~FSmGr z@)e&@E7?gY0Op0x+FNYDfy|G0GFuK5odYL1$j^VEXFPyAThyj*kU_4q^-#UDvO@&s zsK-AbIM1Mqp>1Bz>N1yz)pKcwLKKx?#z_otXn_!!t$G}`ie93v`gswusOaH!kpzd3 zmM}OVLQDdJ2yX2H$4$sE)P?5RS!upNCd}EowVn}QGf!+pS_d{jVr-fmxiyFr*x0RG zZ45`Aox=%itn|Ly@HdZ4muK?uu9F|YAoK@9;yOUpL~|nMejp+B<;$zEkCKQX)buOx ztg#$ZgK3B3Dhc7~f5+1csbmGYs!p4lZ@^LA#Wp)57|vVYl~x z0BeB9GjaO|GG4>Opub<*vO)*cPp+RdRrCw(W%Z&9ItL`xEM2J;Cfx*mU2wwjAhoQw z9glj0>2glTueAzuw5o^|AHGjikHv7cIv74oRC=}Fj$m5FY6x?bX!W{Q5r;~$ZHq5W z!RrzXRf)I&(a3UBIWLJ#ZKZQwuO|@K%BttgPlg4d_s%FvLRUtrGd5dv(qh{5!U``IU~a>8!x zOukuAdCB&8k`6okAME zOxCgXlJuRxS4&XCrx*)w#0rc@6hrmzCF4M$5k%8>WgTp_7h7Eo*Z!0L5`ffgw@Y=p z;IY>f@)f(ts6y*Kc>Z_JGj1gQy%D1PbRO#VUeY|tPqPc-*|LOYUmi-a@Z%fmejbje z9po5#S3e9@W?eiXg4XQiE*6WgyP+A2HyEUFjpa8dv@}Mh;yMkD#YHrL|y&Hc$)}CrLh4DBIL^`1g4uN~Rah-bw!T9LSzKcU!vq#w+4FIFvOn zsqGON|KbVk_4u+O1J;HcbgpB^#s#yN?YJKw5ip~vxd>lj-rujm&cbjlyCGf7tz((| z@F}KJXv1<~u4QS%=HTQeb}x|)OUAGo&hENmd_k)y4OH-MI|9>s7yPMp2N!*f;~KG; z$w6WqoBkJZQUgw{;#b;7(3DujF1*TOSgPb}XAE+n9;iSMrrgQ50PALL&)zdg>st4KOU`5x3IzD88olV1zd%J9!J<^Jc>#9wYCDXJM zhB_?U2G1qm6bpXCsfIf@4azJ{V=G_(HQ{8S4Eyd}e>XHn9OeSuy*G-%Z!LxGi&Q;n zaaXN+cO?}?Kl4|kvWz=UW*0F{vVuE?*U~G!hiJ3mERjxS9}o*_BN97XQs%T%=W@a<$J-$p9=JW=bLaQmHf=aRUb zEYc+PZbWb&vkEDRRRQz-@qFSI4nlp%ZwP((QwZ7iL3++dl$WF?CgSKR)g;q<)AbG~ z_k4KYcpu*J|HC;@u|Wf^WGvF4!BiY(53SCP)YMHsfg8Dp9@8B4nGGy+mWsfsr#q*n zGS!hq_w87yr_B!bmRPoI*#X0DB?GBUv0lBt>2(P_C@W$h$uuM~HFcEy&22z~?Ikrs z>j66JP>9krER&m6f%dIKjj+i>up1*at8)+X#akZ9b~Np6rDm||H5Ff`Z<^@xLLBil zQBEbL)4<>?a!0$tfIV_(8fE$^HPs=z#I`Q#6}OR6qVR-L^3`Wozg`h9sJ zVxM1xW-4{be+o4lxZRq2J|uwe@qo@-&AlFS?t`o)n6h;;#vvDm-t+5GwdB=i12C;` zneGGFf^_No(12m_R|f#|G+o#on>rk??$(|j0+gq zGKvmw*Dym!@9jD$RZ|^2HOf~bi32Y>o z9dBaeZ6x*4+s4~TEin2Ep|P%sg#p!s0l5U&6Rw#-^ufaWI9S>YRWmc1oUh)l0LaRe}c4gcTVah3s)LAC+yQE$#)-268P(Su=izZfPVW!z=uKm88L#m6@>y#v zg{h<6i_3C=PRN8mandM4ed$br1AYDdeMLi<-nzXy6-#CdfSqWdOTbQ}4tyx;5KNoJ zXe^ObQf@2s%islTEk(QTFbkp;og6C(*TY9mAEZ&VL#UDe(>f!PVdGkV_D^?^C z)iiCZPkB>1{a26~g0$>l8m^%xUem}|n7JY98&I-J$fh{hd67=_ z@aHx~mRx|>u>yJCnWM4|lKn>nHiSGe3&E5(k_pp`E z^!^k!z3sfS2SmW+nH|EoP4O$K$}4qk7Ebt)G0Hh;5m@Z+1a3Lz_JC=kyxLLyy#k;oCH-K#pE*NkQnpM#dgc^<$~1&VDYHEDwb=$A4sa<$>}F`95^$f2 zRg4>G_*@q+goCvBvekXc&69JWrzi`Y&ncM;u7=T0Q7#)pi%g)v#4D*zX7IsT!>gM- zRyvwAM>OJgCA7i$&Pk8LR5b=EPfFNS8M2$AcBeBkgV}P;p#C?mXG6Kxn-!?nE0<%r zGn}{zS(+?$hD1C0>Hdh!V3jQn76#O`IF|aE5U4Q7-Pts;=h;-NEd7TJ;o7igT_-7& zdBQ#TA|g;I9elyit zHm_3x9tChWGVlO&h{qH1Xyi0Pn4Tb2&ucotKNUdj2>D&GgA>wdaSN}-VIKPyPDZDN zBb>*c#C7VV+ewt3(9KaS5MslW@=(ANvVnTlkj6AxZGV_P>saQ6@HVXG4od@!9<0*B zMb=dE2##V5-B%Fe|M{y77?~O<$j)q6scB`7m+wNs=1oZnKL<$8i7TG)G}kj z5rA#sL?#Q^Hj`nA43K?2ZK6V}KPp{L;~O4?NZG^7vX}&iUYy>k)9eHEZSrNlJ6XmZ zrHN2otWeo^Yc_rQ^asAvr?-Lk`i*sYHo7i2RK174BIHkTt{7xRrt=Yhe4QCi8MO7`&qeoMaAL|aJ!kJTd~+9z=VvxsD@~g$pdBHSavXcE4_HsA#CXXNq78XD@o6UW%Pq)X~C*xL6BykVGO%HhR z04A)Y?6&vX6+e0g_G(sL#F3st?Y3f-DpkIyR;5Y_E2wwWzdr|Re7^SZX?U4ja3hYf zkJ(=e$X@@cx|guusx9!_*yrm{vgi{v+}ejHnU4S*tT~7oESh3p$l=C7sG`#w2toDc z>Qc7QGy2&dTpIvnPZCmwm6%+STV%D#aKu;=YD)qG7Jib-=8FwoMwZ(+hAbT$SDF#n zm+rfdY2Mz-IE8=d1(`E4279kHKO!f7Po&82`!nxzX4!#z#>Wa~M|igI=~M zM!2R1Rz|8c-KS=_DOCwi*Eb$HQJ$jhVTHhRwh>$I4;+5x?pD|)7>j$W6x@7R>te$5 z8?io8E_2h_zs%mHL_-^0?m9bn;i5IlEV&V!_HtJdT4RRp?~2mcp!w@or%ls9af|cL zRB2+P?iAsJ`3LehU5>pF-l+t4a7fY;Lc+!A9IA3p=r36#H>&`3nDg=yCi5vc2X?5` zEW-u(f~-a9M=UPK=klPBAv)(dY%M_1^-xLLEv5FoTKK17 zgv5S?+@SqR$n7uPECiwFun9iY$465LoIT^JBoOj-rc9qgUxVuGZ*?U@s6o+sb3yYN zs(Yq8x|w|ei=EV=kWHVbvqyx|nJPV`=yZ82;4nacN;{rl;VmJ7t$6QrzFW`+A(I_c z-#T&r1~fzSSMR!VC71T>>t2wDckbK?hNYaC!~W1m-k^NF!98o^5^= zT|1_wp_gT$Q5B%Vcf0?$)AvFz1V5?Ut$g|NYR7Ql2>dN?X!0A`1#(OiWC`AD>H)FW z)_+$#8aK3KCs&zVKSDxGh7v1ds;Ack9YS%+00x6KJKi))JeNTt7cdaY^c%*n|Cq5c z0+W;<`E1Gb}!&DGS-&zgWScLw`O4l&3 zp?_k1zPN71Z$eJPs-as+;)!a)&S-r<>QHW|ylp z>^U~K?^wFMH=i#6yVRY^;8&6_K6*@L`GUq$OaC!KXdv){Em!NmcIP(n0#5} zc~Bp|(}Cv>f*bm&UP_sYjR{Ux-LJoV!+rjb>CFm45S;r8t*NnAm4|x*qkT;;ZnK;Hb zEiCtIXS-RXAD5YCl)9(fVLm`6fHF@^@GEJtI+cz#016!X2L_R^T{Z zl^dby{^E3;bc>?~W(149-2^kYK`HI2uUcV~JnN_P-t%4a$JciuMmsj6}+sez@HXA!RBu??Q^ESFeymC?U zBB>hQisIDk*ey{xoY&@!oy1C_Ff^g#aHgs3ji%_Q*tNj!i;d29T)|)2cpI5xucCaz zys#Ds^P;X>97DBxrCcebA8GBWOC(} zD`~v4rrLivk^TFX+wQrxb%pX%aC2~CSXg)rPTVE7WG6<_N4CuT0Q{;RZQhw7nm8f=5QC{_twnp6cfS0pbb%Xl}pmpqRF`&Va8x9bnGml#t zirf`q9>P=|ZTPI{AA~%#!EXxLWW!53n*37IBCD7X{Cn4~Gcnr-s3pAj9%|4I$4crw z-gigAw5Qd0tC&X>Q<9<%cPbK%p6z$~`FenMk<{^sR;=4}w19So2zx4Gn<|@+}4#BjZ z&!}ew0{H2sw47h5g|lDZWzr0FJYXGFF0&us%L!fkm{xlbYK0@YUKr}~Jzf7!g1or@&Clv#<)P-_}n7s1E8_S4*l>->bX7L0+1LL65G>J=n{0|Zk}ag{snEmF2GNVcxsiG zj8l^Ed>e%3!u+gUS*WYA3HBzgWyjDyJ^u8vmW5ERb;cedS1XHOfjW!9WcBXvddglz!mhf`cBMw>cxHA~gRnNXum6Ae1K&W(w7PB7b+6?Lnw`Pzl~f z=g@#K<|H>pX z?-k>Bd*X~`KISja66!;?V`t?Npf@Wq?E*En-CGzSt5VqMMXz!J?nDGI-HBn z(Y7q1ALB0Y!8ud( zfF|0rE1qrz2Uls443ZqsRTNSH9vf$4Szf9X9NXn`I=%`adh8WVh13CfRtkX7>AWne zf7S(g=U@mvI%8WMv3ig|C%Z1L5fB@BcyK$on_%g|?U3GiRU=5dRhITU3bhJbI;=Zi zh->)*NAkemE&nln`)X}cGrPQY!2F!KuoVrRQRKR9D`7i!g!wsP)v0Fn>cf`YR{YHY zG&nK{W(ApkG;-lMvu;D@64};5!n~VxrXm{a|Cz-=$dWF46^EHq+BmkQZBTIV5I$fq z?3Jc+vKdJRqbEE%G$1POfEY8%7DLaI^s!hw)d+G&ItvMu;MB`7yRMCthkjLX z=+K4H`1U-fc0?)Y7NOf^$Xp@lPmy8n<$Tsce@Ue6Ez-@icx%mvh-RXH&1o!g#M&An zc&NA zq~iwk1!h3MoXpQw!)8Q53Vmf6{XGB}kB2&~=+YIwvtd$cSp{0ueM=;s!`2&aMUJdY zqN~Fh(wd_qQn!A#w~y)JO`20jtCUw;bDOqLUW6|BM0L|2!;x6vPIWWEBJY`G=8+?B zQ`8jL2)D1MCJC5Z<;txFRM`w?X;BwwQ-_@ks7Q+oKiXn>IsW1roS6jDINO5J;CA&!op4 zxdwrmhFjmWM!==dzI@#}-*wBf%fI4+{@W&~{yNGj$yJ|`7@?rom3Kqqc$R}9V37{p zMcIx4=3oZfayTuFtQ-Qf{Ozxi&5J2u*2>1)Ns2LZLoCo^i!)XQpxDBeu8n$+9<4gr zCa{q(7m$R@`|=RQyluL6l476Q1t#sWknY$o$I1iZ)U8M{C%fX*%i|88=-GtqY+(lf zj`(loK>D6DXU>d2D!cPuv=a#&Tjr|1w!RH}5M8(sD8UNBPAkWtl~8nD;%2UfTF9S} z6Y3`emcngfqt}X%WNj=2_Enk9Vr>YSrb-4wY+5o{@gPDbsge-__6bNd3^pBj$`%H{ z0(Pfi_4gX~Pa^z5B<0QlNa7>tFNxzy`O2zTTRqOj1(tlaK6#n+$e+J0tRrXRNu!t{ zgSx{Bq)){3M5VZ#2O6Fca#U9nE~e8YYKMHORyr7%kdjwdbUmApGA0lIpZ<0 zZ{J`>zgXAHu=n)+ZM98_NwkBSX5wzPGW|hK3YRzB@M7#~=(=J)qXn-Yugrqv#B(UQtO!4a^v!ETJ1J^3|T z7Yu12l&<0*IJ%VOn?@1bLnTT*)CrryxSDzjwo6Z&s#}EWej>w4hkOiB7C#wQ8?Ohf z70ld&3+HO%myObQI){ISRf7fqnQy}WhnI8-rxHePb>!FN;UMn$Q z)~Um`RsfrX+(#)&qNKB+nX+toh@w0kY4ghsDM!!c0cz1J>3cg&fm74_0R74Es1^JZ+iwY?s=JEWj zdiT~z{6tOF_dG+04AWvT0Ot2-l<@2M5GT-3Wv(5T71x^P2#m+cY^V$-Bgy)0C{!m2 zf0vFD5(f*?^Gn23RPZs55y}=__h)0Om1vv$84h!3RiOgnE+(c2X=6c7`DNPwV~Lz? zXWV?Y-9=8$Xdu*W0@deT{rQ4Vpbb01WA$z&?%%&Zh8nKmF_a%Vi<;0G6u50ic*$4Qf(=&=bcibY|ZE7mUL+rt|HIqwcZ6q)i%5BSwtE#Ox(o7p_H$$x>UQGSy zqmLHBS>8BdC>NDpX6kPCVyuAi@KNs$M1$+DQWbMdzJP;zvkMJ*AKq~O_sfn6%=ajv zYu2pNPNZtr)kfv14W9_s9pg#j-D#`B!^2-coL_)_)u7j7wPsMS=dT^uJMzGBa~p&v zlQ}{-h9J=Sj6xKg26i(I>??9Qz2QH9&32Q_cPi#l-z2?-&s$M`hqxc5q1OGCYra8q z*YV-xuskvaH(;_@Ru%kd;ZKi9TzBc6n+Y2$|KiY$&bIeOKQ8pQj!l1Yr(>GikbrIu zV43GaPmrkz-9Cw5nH)n@2Q$e!8&wB(BfaWyqe{Vx^ey9&#Y}fLLpz<#O2QsY_By`h zA)L_&Ugoe1Y&2kgHkKhfrGYg~153-#G%=TRTr%z@DfOAy*_gV{X-DbCIOdDZhkrEr zqK{+ryCqb1#MaZk4F~r}8d$==AIqEM@Pa|~+K|s3BKh~R4r%zgk~kF-^l)nDw0oz4 zwIO31(=b1cxJ)CrguV&GqoT>K{st{vH$EvO$o@fs@`L@>wa+7u@ayQ6J!U*;;&`u~fzf%1Ku8jXGiT0LI;Wi*QAGN5b~+zA$cUAd&U#%`cQ%b#&*H3f z%Ulf3j#)HM2}!Ui{9O#D$cyRI{jKLb;oBDSTSQjxM%_TyKt9cL_U?soPt`^9U9o4d zFAQ{Rj;{`H`^CL@UFx7;aTeR@WCc+W8+aWj~MgenVud^6MI(GRAh;7 zQt>TTVshzV5~vgA4yjKI`^xl%C8(X#XBzgLS?$iMo7{HDO_Sk>zmFw2^Pm#bD4taQif@)}ws_^xh*COSeMuwQdbH2JmyRqKNf|9~5O2ye3jC zKnbDYOj3e`8g}Cd%`dFn<)e~r8`kP4F02lj+wpWTunTqZS}SCBiZaaWyM3WhdmCoA zp>!uj>3)UIH^n!EsLZDYfopX;?AptlA=su(xiKnJSw-^nR#c)-foFh;_afaOwHEcW z4ATSI&#p{mg5Ib6%J6n(jql!P|INL`>FGs{*DNlhKKW^HLm)}I(t=Q!5eERQ1% zH?16@xoXczE1s|xPmLuTLj%|DhTKxiOL{LvSLAb?+DVd^qUJwV(xSz%wTFpVP@D}8 z4yL=tkT`A1ku8Cxs5~+F@XRU#gwP>;@#E??Wjnc!47alkeG7|mFcb)Gk3K(l?nhZo zio9w$k;dm`Cqvu3_Mjt%ucq~wXiR1`5ro{q<{!RC)}&P%`t6kMquV#0LsX88(ENU4du2FJZ< z`-%_-L+*9_Nc1^4U}Zd-%3}zXT0!5yPMOgH5knr+25$1sf>4MAGg3c34QwDGbqqcJ z3fN>`X7K+7=GgC8=Xfi}L3qROH|<(yYQWC5;HHT4zHY*SJ1GIwJt)X0`qDbh^T$yXCl=x^d zd1P_|(Ionu^=9(ubW)NRnY@S7uCSotL9Uv5JdqYwGYz}xuED%lI-g@SmJRmw88>d+ ziRUEcdr7wXtVt#0^aA0d=@7yjBfhiNIVmy3sUrs=J65+c>&F9P2{xs$RfY&+)u{U$ zlbAH~<|Hzw;ZdoFEVjg)xKwC7935p;A5`_-BqH$7Sv_mj8v7`D<8}t?glSQ&x-0Dw z8{T#D$NO;14|PypGuX$3If0PD-haS!y7YHEMVk7VV5CR5_9Bi;vyn$2yU#OYe2C0t zcsp~*`M^kYAPww0*HgPU44r8~3d6riOpVu2#g@JDdHMvtRt`OttvUGfI`pC}&(=VB zA-o*)ghFMvJ1VM(>(!3~M349bY!jD-b6`<&6pckre;3!7D-?y5Xj=>|LN$d}*Wv9hpzoI}Fsoi<5 zP;giqkbD~@o=xDf7B;bIh^$vF^q*CjZlh6uuP!|;1c4yIr~vB6b= z_|u2CMMP>d!LS=q%kR9wF9isFw0{T)ze^<7MGPcaKAaDoKKAyyp_aAl4RyQULuwn? zkgC^Kcj3{6G{C0DouKl=xD_Ct+p5({Sn)~*F$hB4!@toU%=Tffi=4Na%|~_;!4nz7 z>=x%4&0*^-3|+)O+c<;{7c$wBMBflumvjstS4$_GJa?Tl^(ayLF;4cO{hQgQ1Y`0w zgP|r534R$6a37YVoSe!v1Trp(*7GIMtchCIUfny-Tj$%ZzXY5 zP0vBOo^p54Vr7ZU40+PUsrmujf5 z_-o##SXk_KkS)+WkK@p(YBOaEJcmu}adTUV|AIPA#zylVz%!cKz>awZW1lu{mK>vH zA;zQa5JC?$DSk5bOB}~_F%5bK;E^HC5&9k*m44IOBYXDjw0kzgffU-D>ic3wqW zE*0}l94oTPH}YD{|2^fo93B99$=p$$e=uAUM~^iyJM?t8(pG}elWTUnpHW1}V-IX9 z3B};_=K|)rUD0;5C}IvlnL03|0S`7ghVZ?CPSbrxiu=?Enm(m2%gWm*T?<7>&yrMRpDc!S{-w z$}ey#Z6X5_FUYNK8JZK< zY$4$#)xvfBI*cC*pXz=pwk^{Uj9=8`Ea|%BxQCTcmv~_oU9G2psrC3F0yYpO*6_vKsL6Ie(Qr7{I?20B&Ok3#UHfF#keq>T_~i9OfA$T5 z{p$bk$7&eQw>=!4uAzuelA*Q~82|bIx zI~3=Tio0q>!xDzKJA3Mf&^FVo*bmPp>GCZaG(+_#6#@7hNw?30Y@1*~7 z4ipXgsX1)iHzarN^yzZ<>dV+yRi{7D=7TRxv^dIOXafoT^7GG!UU&o>Fvk7HVl|@| zsseA4I>P8}F*U9oRKFZ|$Oop#B(9OHK#xjUp3W4R#A4zNHTE;anA2ebKy;*ilnu!R z54+HyJ5{6DYJ(N7X=C3D`l`U~&YdSDa)9vUQZVD3Igl#^hu-KcGj2py)Snca!sVx? z*-#zw@6HePsG!%q$Bw-aXs9{RDF&JIaY!Xms!KKz+54`6HR56&?f&6F-pK<{`f1F* z^k#~3UwvMt=tC?i>k!I!?gDTqCqLsRe3`rC8pFH{b{rIaUj+ z*d@u=J=0D+p4#n!i15|ug7_JT7UR&pd-vX}%*M1Xjy*Kt&`YgGQIEyyXi^+@|KPzH zZY-7?Dv%dLao9(NS-Hx&eJ~{F-ZW-r?{yxvMtg(HOMFyC@5di^g3vlV+Y#IO!ud_v zdB)KU6-i@OgR|8?5Akim#yR8C8~U84j7w=TYj@w6-T6B)cSvQK$2h5ss+-@W3{yXh z_i3~@#)}N8dW9WUpO@4m_X+84$KJb&lfTvl0T?sID{RC~>)omYtcpR?D-5X((D_R7 zm`Sk)SCn^!RKY1LR=h%Cm-E+ZE^#=S6#B$tNnmc? zFP+bWNmmC5x%DSbW=z@?Y4waQ2 z=vq7)e~!>nOe7^S&_}TU#GvQ0_!9Q2p z#MQ(p^4>0&w*v-{%K+YO)- zUUCeMhE3=%hY-{k9y&mP1=cgL>aZ*6_K!Z&=DLE=g%=pmhwAy`wzH#%j@6i+0A1#) z(?1so{G@i7YCP5fxFi`K5qu;cLbENz=I0b>=6F&p{->r*+fwWO`3*ao_Cr4&$F#q> z3k-%ln`Mm>=02%=7jgMAojlaoFrwF9I;LJi#^khP8A@z4&>N?OT2uA`!4ypzAZw%} z&jJ6Bz4rjjqWJbehd>|@LJz$}dIv#zuL1%hh>C!KC`c0oL==I5bfie{y;teg1d!e# zA@mSJN$)+`neUz1_U%r|z1Mf|dw+pZvNPv*&YAM<&YbBTyXKYs_|{0?`TzGy;5;#3 zR!wO!<1KLcSy5`)BC3|8%|F1*6Cn$25L{G_HNjl>$Q|16MW7-D|TP6Q5aBB!&Xyah#aIq#C+t*lo6ND{~= zQfKgYthTb+{QlAll~B2uKiSnZrf6$N7t_yrmhP*~lHP`J`NfVs%r{_WyED{Q3Ht^N z81NaY&6a6>eUK8T-3#lBQSM5$1l71dd)6lhL7sI*Ddu8BX>=_k9uhGqSCX4uP(z3v<8& zjwa@>V!Gx~Z4Zy5gnYxwMf|OOD!qtb9u6bkEt(@#e--J-LdXXqA^}rFv2|a!&Q;et z=)T{aIn~b!>0+*7J`Be~6EF4}0_uOytqitM|kPUz&kmc}NvN>tKZwWZB^nmf2Sg0xaqeK4J* zLD^Yd2ZdC2clR2zFPUT#<41()Y(E(iw98CP!ECE_2ptanZ5L%nnV^AebvB$a6p znP|s)B&okTB_1OS?ATONMkn-5B}^0F)mT-L&4)Z;CWA_7?E~GG%zd2`$*j{s*M4@X z8cvcJ`=vpu_C_qX5XfZ^EYG`{+&*%MoV8CA zTja7%ydJ>4(k7nkGh>W42@OWQh<>OqA5{PNHQ&54=>cuH&3j ziQx-+L>rnC56BRM;(X>l5fu>;5l?(XWrnJ*BZ*tuOB&5AxkPJTovPnrU#D;59EW(@ z8%m`3nHcEC;TYdq?8ktLm?yY0`zb-J5*5;12GgU?OS_XeE+7p5I`wD96oHXV7zFKx z8jh*R{Te9%?coxkvBB`HI>N*W0iiD(vszvRXc!(V!AkmJ{G5KBA~)~?jK_W^LV%Wk ze>lG2DFIP;j1S9R#QdOE*1vVzD8{n7xw-uYWh0WS{{jFQ75PY%n6ni6OWcliK8C{w zwi8Lc>9o&!I$%e=bBw8{UW>v0ML1iL{`Xw(YVX|P+~(Nr=A37&9Drv0?UM$ZYRDWfrsHk27p zhzY~lnin#h@fZ+&YUepxDNet3o+GDGWq?yEcYv&BI5|aBAI)3I^Eg8!IZsU?O|i37 z4RN(h)Uw%Okj$r1f<2kjF)4#Chk6Rm@znVn%`<-iQzh`zU#}6Ar;}#-Mr$P#tpC0y zUG>o1slTJ0{1%7WdFh$Y-}D%3H=GW>IILga#{E{osyw!9SoIZM5CmskQD=S$x~_5q zcKbddr+4?=PGSVTJlEWXvY}jI`uYn&;rEg+@1{3jRS#?zkx>hYrM!N@YyWV7{I70{7)%Z>*$L)_`6{xQSv+WPsXpc@pdLX5In2kGdxwL%zLTeAwtaK7<{vSLUXCWF395p zA>_6fpa5ZS+YJsyQV=PT1l~Wy70&m?K)FhizCHm|VMMe%D{GED#paps7{ogKu;^S(g zF=xirzvVbJjy0DW;&{5dJptpn@xIJh3SD;rgF60D6K1@uXipWaEnNBY(%)M(YxNwr zu|u%eF0ryoa`ordGyIjZT!maTG*K#qM0 zzpPB|OT0q2?qnSQ61sdeW!uU)vkfSNGI&*P2L~EskAH=*>lDFY;G61P1 z4Z)MuNNE%Tg&d^m1VmJn6r_#{^Nz;Uk|)10lgpd&8?cctR z9j$r@Mu6yG5Xr!)LGCv21bNwJMVmHlzHhS(PSEaX!+K0KTZ9VF$RrzP4P-KK^LYx1 zHI-OpUfAG zjq;!98VhW(tNw|QH8hbqJUu-+5gS%0l#uItz+E5&&K$5|u(#FXl5N=RAc8MEz8H7; z!iAl`|HibBg=^MC1+tXOYLj>uFiW78YLL`tEe^o5jtq^3rP)8>D3jUnc(fxKUnBH> zXu?Q?WIWx55;)qPPq0@Zpp2guxlSTA>?@7oDd)FBDixX1n zy;)U`gZtSeHa2KX6D|_~`Q@BFWGWq(A)UD{8spe$^4UG5!NU2LvA%SU z)^H>M5npJ2y5miL(q2^xarZv%wT7G)FLFTWf5$)FDuOO)w`l3dT&81ekLBl+%dd ze(>9C(GRBs1vNHcgFqsGYhEn-QVrt~gy^n2DkpN8VQpc5TL@foC&&S!>7?$J=o8a1 ze18M~KK+~w8% z=6di&(e`+%`ZM4kSj=T*9L_j6x2M-;e451;!HU>slvp{H#q!+67^eTgd8I^osUGvs z?-;MjK|@)W;S8ohT85o?d0*&~4}Xy#BwyhfP8HM>syv)2;A1MXd+1>VGO@ow%+=0rgbKld z|Kd*p20<{sENeUflQpTRhpgi6fCJiRh7ZZFD=M}0cIn;@!QbHhCi zr#EA6APCgt+>L`OmN*!CnE8R0$GYrWyjS9<3n}ncXV?l zPHoQUy@l6ee1@*GPGzf?g78kmX(okto<2Q_kwP5+N^Z$gwJ=~Af`(lMT~}X|+0sfR@n2qP|5JF56wdo zl(xWS9TQD<+kOE7(>sz@0&^Lwxgvc{bvNg!Wh6Xjmo6Er3xnZ}X45Y+BWm5+_ezxTXp$aN*{Ktu zCIc1>XsHuE=MVNXSaV$=qYXd%{Dh3+6c}-!B}$48M6Bd6Y`Ut;tXYmwIkd9gPNYglZj)n*ed)W zOxcx8Ebp$Fzhc`Gp0`2a0?h5#xTK|E*a)!tm&t27YWhj)cKViET-E`x@k_mcklpWL zX$u{^E>lVRS1RdOZn&}sIjcbxo^E5!;V)vfGIl#k+S)ZjkD{a28=gkCuwn-5fK>xNqYANXt3!oi(arAD++iJt)rmk;q$unZoGQ+e21Ppryr{>d^t zRDO||$@K<%nmRt0=B}xDxLoC*k_omp6KrKB*lD7E5W@7FCbC){q0`3U90JMHq_cpk zk~||{!Da@rD@E85FehJE`4UewK{O1ji)Mxm5#KMZN|xeB>deHH!r{XAnlcoQ&aBLm ziS{h4s^A56Hm$D8A8DaOtiDnMFp9Q#Cd z$Dctue=^gFvR3;Q2&Q{D%920m0(`Jx1MEqoZf{*dcQkwH(k&a6E-mXHSyTJY|NpK8 zayEW>ZP)h6A|*`@Z|s{jdy6Oec(7{5Otr1eXZu-IzS2H{*?9qtQa$yN3_=C}GO;oR zS+3^E$F$yJ?-ZsQgoAH3MBkdyxj=yeul0lMY{G8y0|M5r^&^i(BMB;Jb27muVGS&G zw6X@R{^~Phq~^wl@mH*@HvhMoL>DL@=t7a~JfubIfq>$cklh>R|-Tg_> z;;&0lQk6Io|A8&NIo#c}unUMi&pu)4cES6$P)$wLEEe*t+I$17(#7{?TI*NWroVr= z_8@GJa1h6080NIP0;(qUPcW-3Yh(53LAq2-Fep%E-nZU#vP4q7WKSgIQ7LOwPXC`U zA?h51b<)9?KZFSHD+A~QSauj?&6h>617!LeOW5iKEX^9W`d$65cd>@wRDac7jyv6* z)~+R+*=njcko2~Y3~!#<)Zk6Tx7guBdh{tEH;0T69C=Y95GRMg6=iTpJ2$j50VfS^ za%`1=(8 z6th06&d#$^v3E8mm8c-}xz0tx8nY+-s9YAh9tzy%a;y}Dvvj|`d&(eJ-Vzq@{^yeh zyxc5Vq=fpuHg5%G^YIxh$h3<|dl(1uUmg`L@c@$esj0-~SqoM2P8-Dx^n~QM6*YXoF$=Jj-j6Ph z(OVx=2s}psQ|}PHz;%>rh8h^Zj;r&M3Qjp^z%fuTBIO>Tv}Og1 zye8U_#yj~7c4|Xx>PIBNh7&S}>MBS0d&%KIZM6|tNqC)y$thZS&VvO|ZP>KzQ9r(! zVEphG`phH8D}3%p3x;iS=u!S80rn9=nYCb5BClu)z;5JQH+pj_R%_xG1o0X zWWR0UU(T(UzY~I(-XKzu-j`m*!kflBmo9-3yGJzM&m*Yv2E31UxCHZ?ov)_%=jujH zMd>))OQ1|8O(XkE$hE({LO+jh8;y|LWoCZ#3ydR2sb6f-i2T=8=|BLzXzCEOH_`0EEfAPTInVkrmXi`iIcU& zA1R9cUAJhzuS^tnQ-G!L%j5y@s9B>%QHy})9j^qUdP|pLMY%SF0rSx}9vrM%!0fq4 zdFiqQCGJf1>h+!|uk3a-#S)Kqq}s+S%o<&ajnm?35v?52hI;jQEf{*HD0y_U`fy#V zDEAJwDh+|WFBl9pjHHQCx~cKm<=|KV6-$YZPE?fZOk-W3$?RKkbOnr}T(##xi@V!k zijAkSzH|T068Q8HAxmt(oheu)>52C&-U?Ci*#t^CB1mA{AT%3B4ogOhY#WLVbh}9o zvVB8U=U5UJ8#z=6q3qWkQH{)$**%jYxvSB2hJyPa{224X&TWLw!k*7H;YP^z>>fK7 zp{AP6WCP%%B*&p5XprH@yqdt~aXdh+BTi@rl})g+e#gsTAvRFuZ7jgb#0^j*$`>`) zrcVtlAX8~u>~b`K$IwYw(GD${bv>}jRcY zn(=G$<_KLQ!4+hJ*T@rTeFb~!|B}l|_u{t&`&u;2MOEeTKScstij@|DszA1<9?laW z0rp`hQwhbcnjyP~Vj>%pa>4lw+z_-O4RZJS)=xtL6Lk<&5HQgW6cu|fNPY%GmDh3% zUBkZ`>EfO*=Fv9YJ4)bXIob}+}x2*bkkSn<-1p|aP> z!FD?B#Bv7o3c^Vt0dwZe?JzaP&~LI-oqdBuLjK|3pC-}iX;*Ne_uwa2m%n|z>U<*{ zIJB0tB&@!T)G`fSBkDHR3stRF>;qju#${Pe4@g!INoM;4S?DRjSourE?V}~`AO+Z8 zdCMJ+SCl_(aWA@e?IgfL??ptq(zJ z4)kx;SH1$I$1(s6*gi9U9$R3>z+jIsHYcCG{JHo{u?vs~CO&;#yysEKJ2uvnQvpbe z8ei3gH`Oww-6+FBe0Z1EJAxjPukqQaa0ef)T;MOr4L3xzr~4|k%-~PxlTmbB#OksP zU$TSB?5LI3N`B}6XC=^O>eQ+Cp-!f5fc<;Obs2s@(=qnV9JtZ!?nrRU(&bz3n?~Y< z!oqarYzrqPe=LM@!3ME2f=Zo>dd_rjaIgAeoA-7LLFkZ|xrm7Y% zn)B%O?L<8_6$AKAdp^SK?^Cx0PUSFK0+uItwR`xCFn^SDAjVSj)F%_{h8%03j_kM#L9jtZ*)C`F?*qfD4*O zaEMMQ>O-zd3JsxONtn%AvM3o$9Ahj&i`VO5nrw%Eix8ZC+{40adR@js9;TW>n+I$( zXhCfCs)=7Fw~ss|PX$&HTryoP2P%9O?>CuQ&j{=*&H4yTB)t-P1kOvzpdG3Mmr%0N z=wYvuIE=A&TQ;l!uCupy2#y-Yh}Day*{1eoh}oQ(EEPBXMX|p}mN!Z7JVpr=esL!1 zhicV?-+ODdAy$HW@>}4L`}s85xGVUosMc!lbN?w7W*P`R(gL1G0h5f0e@cHvL4+V% zYA5JiDYE!cw)v2j^u|W6Y|mpfox<<0#4?(P+cs`JPtK4LTMpOa`hL2`{#fPzo)8WF(1;v12k|lf+`*Lh^Uo29ce7*^Vkx zL_esL<6q))sj)V|ubwcm)z6Xi z*bMSw2ttc7{@petrSi>BSq1lGrs1msi@sPLV3~yzt8*GPLUBU6Ngz~};7_{^ttp1# z=qXGRFA1yWfOazbSKZV2V^JGfNA5J1AQ0XY* z;LB4}a|A~=i96Lx8c&EgU^4SFVotusJ}bi|73&9fvo7K+PASOpToT z@MAyiHtvP&s#tV-hu3rrV%df#J@wL68IQ%K(RBP}wvuab8rw&pEO5fv*_Zf<@F&gM z=rzW>W#wW-@FqU%wP|y^O`E2unqY1hZd3plH~nrTKQdFjA-Ek$a2WS0*^wk|-~cdb z->?HL&MP1*P&i*jidFiD*p*D=Udpk-uq;uQmW_nGk_~tv_d<84mYgm?&)ERC7E{vxwspC9};$oGU^?YG~`ntIE^Hip<%t=KQt#NT-`FM);ftJ3O(D;H(L(^F+wrCF(p zqT0;7?9b49l&lazj};}NufX;JErp@;EAHT;BDbZO%L?dOD*gCW0Of1iF}^D7{i2P~ zJY3~^PO6$pDX^4C451B>wdumh&=;|aa)<47=&V1&mBDQ9K!@r?z-^0SjUM#g+{I$- z6M&YfJwP7s3{xO|d9p_F`spv3fhiODH`0qwJR=)7?FDstl-N{mp^)$m;w9gu{m6=Z zm4g_=Kr0#_vMfgdAEBXHDlnu)-#wcei^|Z4{E@Sgmk2>0ri4}&0zjM~TaN)3WG9DL zLisjaxbPt_>;q!?=*gObQLtxcJ@W2>gEfWNPBg%gIIz6{Ym>MWT}%AB;j7!Fx%dW> zopmGsayzSDD$Jk*Nw1H|`NhPWq0`_%@*`aza?eYEeT5$#ge50poAnv&f|K26Ga@3O zmq6b;5|qGZMnL!~xPRw;mmN+6UwNRH)Alw+Cc{3et5;N%Kv zTEa59h500wFYp05*~}RNET1gznPb=8HjP{nvG#UL&J4C{AX+I+~;@#fIId`Fl@ zDVwW~u&&|*mZ*pS1Z$(S7|Q}{5CrGRsm%1Oy@g^iM9%}1U_6J(^7+7}+%}3c0B7aNFjzk##n4fCe4bZ8PS6(7NTHnZp+e5+tv-sCvl6U+ zi0^A_*y@LK5)WC!R{w^OUF)r3t3O}O5d*B@x5wWNr|!!W4OmHj4`Y!xCvtd&6qNw8v9$Od72ur=;4;^*uy+T`>5I>M{kC}yBh z1bNxg4B0#zu_KZl?Kc>p<4&GU5l^qXl^U_&DT$dZNhk6golK?}in!;8Pc!OrM1$}x zS!sB=XICQnboZ2`jD3ixHaHRaUGCBYoXN~}-f^m5kJlGO#Wab`gz(s-g;dQrF*lZhiXP$Cc@5m zLZ*vyy^A6+kjZ0NJ>$umNpPgeS3K4fh8=6diTA5{2sZJP^Dt_fCbHe=nE~L^L?2n9 zB>@4j|M(AqN|m$>=6+=u9N02mf>lKf~(F6M?xf-`p+c0_PRqH$&+0LsdHTh ziz?5@;}QZ47KVBkKy}Q8`%ab|D@gcQ7q|%Md^$HV+6C)p1r&&8zm@lsNkv^r1aYi$ z>VxfHQ}9G1d;}+_k2C`C`~p8WXAdd|PR9Ez*e*+lvGVV(TT)C;gaRzr0_Dtu#^Hia z!Ta_~uCcWR39v>0yU*|?Q?5!Ji!Cy-Cbon@m%wrz9*dm`%x%iSc?cHsvF1av!i3;( z1^mG1RpgnJn0DAH1_xbTf{hKI1M~a8zQTb_FCzQIS0p1mJUki4Zsg6(BCDfex-n#A zWlL0VkvHGCXAUy6w&BUs8I7%!}jydvmllotU9^|lTh5FVfQr) zq=5emeysh0;|#o%g>Nb!abjppB)&M~hfO$|hY+emFE=FETZExJcUA+I{%dv-n#UVI zTazX}kQ?gcBIr9p1ml%nPw4BN^}1*)%^IxEnf-x-xCl$Wj?aVYltTybHV#`tv)1D$ zS3ki@mc!&Jl*^8Rpy128t}TjByQy~CoE!o8(4n+XyY2^G3##n6ek8cwjjz0Li~dehzp z%Mr;SQS5xA`5ENBlGMqm1boFGM(P864ga@xe1Vi?@h3oVx)F zc+;jczpbj@WBmAIlg4*f{qO$RN+9o~S<4*cK?xfX0@=#{v?>bfY>eZ7vtvaX9a8DA z4QFRVJM;}bISiKE9BtEz8M`TX0M6n{+A_PAz$#w{A{UF>HR+)*VPny?{MoaMOu_fm z3qmn|F{~)RkgAuzj^Z6mN~q=*lg?@TngX`)Z5-Tu)a0{2;dPQuPn7L@3nw=bCK!kX zZeqT{)tR%bl;8AF9PY1_=?q*KEB7cJ`h&OfIK*k1JQG#gw+jVnga^Uj+dC zU`1~yx9Q7q;>y9{`GvzMCeOdyQ&4}EDumQ#Gm<}8w`-U3E%iA3zQ#_tF_`u#dgHx- zn{MqK5~fG;H({0%)C!4ft6`Oi!;a-RhEM5YwQ#Wg1^pNY8tv0I_5`9f>9_Oga^aZ$ z&er2cLsYO?D%P3IN4|A%EYs#SYdZZz4(7>ek~L4>flp#0qo|3AgRV0ed@4nA7wGDZ zV`q2mz+oz3B)%sGfI1G(kz)66usJYU8>j3u{j6t=wc%sHJK;hDQ{{SK>)kPe|MFm# zlB)@M$~BoZS1xeGD!5;&&nm_iw+`V$AEjTqyC9df3=9Znd!|4IJ;-Xi_EQxm2S%+$ zs3-JIzHkbbfFmd2bj2O0CZ$z)g72Cg8rJ|78euS(k9P`|p-`X+Ar$FcYc&;)D(hrz zyDV5BtSvY6sZR?Aud@v+73Z{r9>ED_$1GOFe2mTJr#DT@0w)M7NQWA6xT@KE{=F7{ zZ)O_4*VDjIaV_r;C$~eWEA@YALI{2CPt`*E`0N=RxQbU<%M+E*L6w8u7V16#mRafU zTbmeF?=pZMsRoXR0L@nZ*_tWEUEjKChH8`RTFTz;ZJ83%z)rD*zEONFA;#MhFJmaq zU`xe(Nt{I8mpRsrF@oW@jTYZCJb_Tn}PjUuI z3>|i2%uqA8cOTVlw`9qZE2?Rp;OFn>_q&PF>2;W&zPkh5Sf-ELW74Ea-90_uWIM!J zX8+N?fiMXTv(SI_=TrH0TH^DC&41lPCiB=zZSPyIAi)c)V<>ADl)s~;D@wH(7_8hs zXB$@ptf#S`Zn{6&-^w1R%fm;s1Ci}GRu*v;+AMMcrmqhYp8<9u8mbu*-K_Bga?$LQ zT3NP`lytI3yc8n;4OnDtZF#JMu!inQUMs=r&zlSd`lB;!_4OtZ<5M$qv(O44l<)PU zTIe2mS=mljL&eCQ9H>q*86&`oDs&6qO(BMUCMna}J|@D7E7x&ICrM}_&(k81StbIWUEbE&3@h>$`#lO5mXv0`;g1w$S4&aZfc2s_|GfmDH;x=u zqW&oyRe=ZlD8WE%sbE31d6OCvgdag znErInhq8HUPV#Fp0`G$VxCBPe3%=;sHJX!eG%uLmH0f|$oHvgF8>#eNqequQr5K9{ z?E>sG;NP{25rUw@u}kgN2RnFBlR{KAs}khY@*|US-HBeP8nOm(Im(Aae%1S+xnt_XzQ!A@Z zlR~dC2twGX-2D7F?9Mf9__D;y?HtxE!8Z>OJsycp%8XN{;eksA|yVS7oE?WW|>qrlnwE zMJb1JoEMHZe6Rcr9G?iWzi?IPJM|Y0ox*?!3>frLtY-nL>3}~ym2-tZy_u0R&>&cz zEn$lvR{RC+G%$Swo9;&0$F(h@Z-qCLErLDC8EFypCR~m7{a$_0pT}Ag{H>X)?}s?LMOH0vgq0hCkLYY!ec8p*BXIQCG6f4}FIcb~cQevFb&(3b zN=G9JQyJ8S0S0jDpQA=1^rzbyYV?FfAL{p$8MDdaG5PMbb?-yR-0nCV3WO z5|E3_WNA1VyNSBdeL0Jjc?ccGys*ubKdajds87nH%HP0MIR4D+=a+;es>3UA(hI3) zQ|fY^q-nKPmX$09d*fjcMRh$`Y!Qhvs^Zct=HpzSn)56ZpARvuq+A?!2#QN{Q#qYm z4G1kEf17-iSn`>HW%t44n8`;y^~s;wm`3g?#Gz-@U?}KM>LS<5WosXXQaNEz^`{Sc ze%v?7nE%C;PumbIiT`ay767NEI80lOf^DknX1_Y5KATR~bp!bxRsxJFE$yti}s5PHYh z8aq)BLA6AZ$xYk$WiXas=R0f`QAA7KRhHA_nZe3E{p1(*<_jjnIDVZ_DrR?n8TRj> z=ks-VPuV552h}sYmFUu9pE( zA&7F7TQA=;imFUci8JgtULMMhA!gZ)Lq~i+VhUYh$C@`2A&J^=1W!h;N{ETw_>jR+ zt>JJMI>o)qu+Y0OOt~H>eghc$MJt!@{M8j)JGoMFopdMlF1`Yb#Rjw3d$3D?g7RvMSqx(zXvWlO}b7-YAaPD{3>??!uYqk++ z3~LyZ>Bm=Y_4D+j9yU=pd@!k(M)@7%C049iI!JH5d%1Hj2=UsqsC2~w%<$Ta{kHt9A7+s{1!>v-M~pSd=0nWI2pWk zj@~IVsBh7;>$+2pjIMl!tBpARRDq_N2uAEar}W$X7quzE$yEpyBnY?geYrTVS=W^|~IVJ{^r>o3< zgdIm+PQM~gCNe}LnB!w#lDdoUb7^>~h5=-j!OA^53NAdarZsT+X9=*y@ny4QacvBH zy3Oy#)LD;^9rQdil2Fy88J_H`C;+$Izh_V^PuJ$%);`-Z&eKAAi@Z(9NNH{ll29qO ziv&qAkBp^KtTmQn{fQj&&IJ4WA7US8B8Sp^rFlThGWeRn;9i!=Cz>hdSYW8&o=?d+ zj%E470qpowH13vnNU~~XuHbFo#v@ zogbF|o*yqQh8E2X|xy~4}D|Yn#Wol(r%!6$(yaPp>yxxt||DX+Jx9eb1&?V%C8YZlrdKz z!OiRvW@spm_{_}=**%N#A{RTw8ETKoiV~9VJ%u6^(1wfkDaLBdPC>@+jf4oXH) zE*jo32Fu^k1(x#(Om&)PWD?%OkdVG~;Daz6qxCT?3|At1P8y;tf{fZcnByxrtcpw5EAmfiNsRsRO~uo)=JUu0p}NDFj$1seiU0i z4*`>O6MDiBO^Ena%CQc_Bp*aifP}|@K-x0FvVJF*D@Y-U&N-Q2w=$B{RA-O``Y*6UW2JI`6_-Kp=>Js-RYk-CyoN-xv*_sCvvPInNd_WwL%fv75fLFG} zTNI+6uSg8vr&2j8$B;z3`ELqVcumr{MngyE5h8o38;6oj;w&SyhlCb3^)nvfb{Cyz z5BZAWb_OfVoFW_Mb29z=eN(@PDl5rF`;=&y#1%TPXJ__4kk}{#(ii$)6H1}?!e^oF z;&Dosb%8}?SPeQ={7fk4vf~;gBk?Cud}Z;6Ku&Ci1h37o=k#q)Y%__nFs>@OF{aDB z^w5I>xhxHi#Ka_!G2+h%6tyCf<`1yn;;f&uJ=S?K_OLbdQzlr$xB^yIyFW^v7PMVI zxWg`?g*r%A?~1tpBWZISg45a6l$Na(fpN^`%YxbKIzeC;92qujm|y^Z9!y!~5WEpo zXAI2M$w~n*Y26fq@8p%p4NAikB#`Gt9L1Z@8gnJsc`Xs6_irU0IIy{>$QV4UT1yx| ztinqh7@ovqEkC8sHwmXoOePqiz<4$$GeK(4#Y3k zh|3hVrN`8jB;*~LF9DY(ix%y?zuK{zuj`6U(O(zt#wdik8xS7O>2zYj9Ok)k&z|wE zT2027$8_ex{|DGFndpSW3Z!X)gL7nyu0bm7f{gwcGf&qj4t8hkK zN+Miy&$Y(xBk+?iQG?Qp)A4rJx|y;4Zh1AIP#p@I4y_12OvN>&h2h6tl;&jh!A}Hj zj)s4MaZx9y-S^M2VBT)1^UWo2125ol_DEoyYXkK8HOJ+>6ONu=t)mY`S*&dg{ti@? z3l?BYaZEkH;Dg{R`la{*Ks!_Mj^j9ShCMM$apS7PJKaNv6{;jG3VK@M}~KJ0+_9r%Y563>lpzz&E)fVuWcO5#l3lj=JNXrrW9 zwnujff1oGfi`29B>YzmQX&pkaaJz@;r=ALAvoq|tZ(C6GvvvEzPOQ}#I=8oV)!{Nb z)(ekx>KtXqiiW*#Vt?B)*!R%K086ktL%i`it?F=V8z0Tsj9Cwo!`f z38)ysK};^3!kNjfz|3xwDih2|&MNn8)6?jf1NQ+tzf9egVFVv@MnHXoXt`Xw7Dmg* zpH0ey1OmSS{1?{UE=5C?M}=Y~Z250&6UTGDag<`?moGmbK2o?^Zl^l%Nhb1{&c2wu znml^+FX8uiY&1#i2Gn}ibEyrk;&S!z~wehBjUbc_LUhUvrZ+^O-*K}rvyD%-+eEMqIL}9PLq#-;Q<8ChmxNUb7f_Z!!ftZ@SLd6XWqBP8%hBm$V2KU!7E41p3n>Xez>ui@f`Z zHmb1H>O2qS4;LQFq%!uz~vT7e$M$+yehao zNvnhWGlU}vi^-GRWs{!R;xPh?;lQ;q8@$vD6e?AuB zJf3i#<@t~#%7BwXZcMUZy7zr`-b0=;Ug9mL6dJU1=gznxf)c2`J_%~i`!j0uScgZ% ze_9te%^YUn4din$O~lSWN>*E;))_O!GC=S;GkJU&b{*CHcwH!S*#S) zkdy{f+d4MVtcDARn{p*px#EG^69Pq8tVZlul?VQKE6P>s?`_1_NSSM3Mm)t~@`ci> zJiv5BS9OrS!K#O**Q3!|sGZH82Vj~Gz!u+uIyr1yL0t?1Rv8ul;fF~H+NNfo5eA~> zOWgoXhm%Rlsm)FVp{BPre%cDGZ)HWm@38<5=$qQGA#7*3%s^%^$2BEd+|2`)6PSEz zax$LQ$=H%c23&^kn^|KZga%)g)_NT8n?z{sXduf@*1xb6YmMdD;r|otw)D3@98FU48 z^H_pkvtkIn#@9|9zYpW{f-#-8$Ki7Al;wYuIlLS~`D>T)L>r~6kPu)~L~<(48;h6I zQn0;s9+1({K9hS?+GmoMOfhnSiNzUgFDf$~&J3$@V3SkHztHDWan>HkqN%3gV#z|^ z&Cu|Ji=W0?&;{3}<0s>~gFA}bTO`0+-yc8vv8YO0!eF00!4HgPeHer7#t+P?p>BA; zP3KPMCYdbDn2R5aj_PRe=EjUp1Ayn}ncQDBRepUH+LqYdqQ&Ozhl6ZkYv2j~(HgY+ z2jWNcuThKatziz1s)s2jSsfHtNnWL_c2>jz@`ZtwW4{s za{X8Ae#vwp8v4wfm`Br}ZLn#x8WFxh&ys6p_Y%Oe8gfB0){Y83edZ-Ag=ylu1t`16 z^D|QGa{-ZCv@c!=raQFwe-OPb7DQc3r5k490aIhsK@>X6ptIRgpvrWiu7PL7|7 zGr=U%+VnG?R_UpdfiRTQU#_wsAr%-+M$r9FvOxBE)wXXHF+|iS9COIe(AhZN)dB2IRmZP4>6Ofl?pbUlq~3iM`}@d|BiBSI*gl*K8~B%R)oYf1L+o|a zYW$*%O_3!q8%Nc(1a02pQFvEb8^sc6ABiJ-_8!4Bon*I+ZvUVNXoB;87t}sn8 zo9r(*bp9r6tZ=eH2zhRTbx{n>3>JblUrgRiY!JD(_ugJEB`SU_taPqDc+Uir+3EQ~ zU7Iu^fwN74Wrfm=GFILrm{47z{{r2gg>$*=b4Fj8HeZm-DifZOduLbd#ST#k6sq&v z@-z2#FXwbRQ~W0S3f)Zc{Y7HeRDlYFn1h%0+`Cp@zn+{F|LByHU~y-gVoNZ$3Wt(a z=au-1TQFo`XsP@ZYc%}-0Auc#^C4dUQWQO5eIGk5}1~bF( zb8vt;MEg9Yl}+h$yv_)h3TNVb9#_l2PAK-y{b%Mrplsf7ai_tiK6{$!riaSfAh?V{ zk7Lp+g*}=$*UR*Yz+HS<8h$aDHDLlAFXzph2m6mQD39HJq5VFJ!b1pcRew9Bi(Nzu z)S{-kIC39=fXz=gSg!KkFb1^-%Z9mbys5QJb> zB6pDUjpBGJzYOELBPP>j>Fz6pK1&r@6T0Y$XGKjVtmjf(MV4fQ%O;*Pyxg;|@F-_g z>V4oGmn!TUZ%n+oetkkHr-~9@sQs;fip2>R(QOBvVPRP5Bc!or##=avG7J(2bPz^d7R}v0&9EPqz1@o!HLv>FGyoDx4Vj($j4iq(#w| z|52Y(-U>Rok5ak2R&0@}X$gnrnFA!1S=C^ZLwP{*00mVn*=`jMi&4nYYSpSaXj&ZG ztq~$LDoPbm|3r_pV`zvI3o%BPO_m-#wx_3S4BJei>G7-r4pOBEFqH{r;vLE&ah*3= zRXnGssmO6c*s{lLmEc5hBxZ1yrd5@LXv2Wm%Z_~;#c;?|dg9Z+K2=(V< zu4SnY=O}24%SRdP&gc7gVNn#!{|T?|%=P}rlAmMzm6P4>YmH$6ti*Za`w|49^>|t) zSi^sWwU?j&iE=&OAk~Qmq_f7ZocB#Zx*T;J+|gfH=N!^*fX$f08(MYJBc}H2H}~)Z za)Af+!$%ACCi35}oE$5CU5e%MCl@6h)m;0?F7AETexxt&lPO|zu-K)vcX<5Vra@%V6_N6AbF>Se0hPuWg}EabL-JRs`cxjW=y+7q@n(>k4ODN&*XebYu; zGobnh!Uw3fM+?_~!-0+G1|=nB03I$F7pL4GJR&#haANNW|ML=XnGC;zV}WRtxe;8C zL!H0RDjf?p^bfL3z8qQv}Q0}CrnmMD`b zDO=S?%qvqMu<8=5ue#VlnAa(vdpjkB%DJtM=MC_}{uxtI;aTBI;tKV9ql~8Osf6sr zO3J49O^VZ#Cld1aP%r}q5v_$6X_=GN>YG5zWuBE{`g0~JyK9Ap3VW!3;`2FR**23k zP1Fx}16v8}R~4J;sHbA2nhXcCLO|uo_jD*c$KoK7J?wY0@JAQY#4{d#>TkP>Go+|i zxS&`$x>!)Vs8Rm^@F({LsTG5&kVhqCNg57&_4yY<#UTlOu_nV&byr^i=S%tGNYaQUO%m8ZtbY8YoI zec_0k9YTFba?X|MmrFJYy2HKLo#`5+iK$WPM=LN=2$d(3QR}I(B%VnJWz4Y=-z2Gr z?+Z_o&F;N?a&6>x^R=K_(qr-3dld#&-?{(u5@@g_v+ zZ^28f#pzIM&EU`SLg*~P-jJgi_yyNaFC!VWu7jH+?$C$Lt->MhKyZ7EBe-g-&}(va z?3Z8u24`STU&B`Qjh0Y*fo|Tx+!x* zgeCn4hI5}8S3qbA!V!|!p}GqiDR_7DEl(n8N47pBhf8r;8UjKWV6VuXH_*nvZ zxKg!td`N_Sd0xI-aN3%IJ7R;Nx7Eh?DhwGrNZK#?WtM?e**pJ#y9BbfX=CeI*1V(FjXA%W?WZWt zO1nnT-V)oY7Af-K^gHpeqcVQ8bE9?PVC6NMM=x=r=IMj=H7&7sP?Xe*$6{c?#@3k) z8rb`(a4T-g!@i!Lo?NRzH}~IZYf)qKK2elMo4Z!;TEA@9u3Z`Xr9Y%VQKFTEa7at! zl96B^MdM~@0jA#q#SZY3J+Kf7ocf22G1oy5 ziQldY2Y0ZerKq~mC{TF{$H?u1WT?|8#cyE;)5oQ9 zgK0FdMv0Z9*xvvZq`R(X+0(KTu&@rO&v{w^OgB%>L(K1L{zkFi{XDZ=eC!$_l=r4y zo`+Z|0E_)XqYC>>^c$hhuK`=mDbxtX{u;$4L&Ex|k$?1-=g9X*6?0?WKuXMdO>3P$ z-p7mQBN}$PCy%vGR4dIIq15JQ+$8PI8@!RB)8PL3D)CfjDOUU@Uq2dhAKVm(X*ykx zh_MAAQQYyhQ0^)moOwBxd8akb{jlR_eX~H37#vM|>|oom2ZUI@aMCZ!-yMY*8b3Z4 ziV;I9H507WCAr);U&^ud@=+VP&>Mq{X2wOW8T;g}HDvdMuPEUV{DH5i ziiaYsBPma@ML72q34!;7>1=gj8Ukf_*oQMy`Mo6?>djGVQUJ|lA{;7KmBDE6n4%ne z|I>ziY5;>?)E<}mXOU`Bk{3h%?&~;U~YPu9Wz7Y(v&TE%#h7f7%NfY0h_EtZewMKa7eM}I<-yO zJWBBEjx?I8EqrA?5+7@U8cl~4up6t}QUL)M5B0lsU!*9HSN#l8{2#&+HyL5}*(Z~W zCeHpQZHgw~Glf`HM)=x%!^b~AkxKErZz5%>pUsr8Wf3dwY+-94Q!K!4yIADv;hUC_ z-8+==eXxz6})&|5^0DrC!e;e;xJ1vQ@{99rJOV&u=e; zX@(K4q@+ZZuwg~-khohnPamH-vz3hwfr2|oeba7d!1g34JE~v5zM!Y>vWBdh{~Thx zJivvKLV4AMB;Ac>rhqBmc)&7-=E~}}i$pSVH4+GU)RGd5kYuLH9zn?M@+!YOA@)9k zYtyL6dMbqK6QcXHFxvcUwtTvG6%${{IHSoyE|utyvIB=LX28ku7ym*-gnraM*zB)(j;D){m!g zQdDu}NvFy4`D!oE9^YFMD){-vR}L~okXzSoQ81E1a0WkjR{C#DQlIYLoMGRELX{K` zz<4K}%zBLnvr12qlyNF8gs_tgJqi9pg(@ascARJjd8V28?J>T~=sZrwXp~(Td)u+1 zM8|roJhjE$-Vmf~wnDxFNX33Szp*L4yszFRo8MX!KV zPYcQPuBD5&A{Pm|Rxr``lHi$dT^FKW$Byn^9XtMcd-Gi~L!5k!Z_fi^ubFZ+O_du{4??8xV9(UA zm^jQ}35PZxViLep=zK&(WJE+nJi*bg{`lh$TjmSULV5ozUOyS!-$^U2f~vn%T(bJi zSB-GK?PEn#_kUAO&FgR0&h|*v145N%y(|nC+);29WmP>G*|Fwg$fg@4ZK_ zSv)r1K8`@~59w&Y$U5BHV934=&s+o6(QM{vvu0i%HosHgdf7bXRt3SS#&#nc=AKe8 z>hucZi0xf9L)ua{-48EiegdLza|cI*%X{QW2qij~x6gg8Q{cYDM0b z95MMh4@qGQ%gI8L#7U(b1b1~Z+I>A7tQCpsY*1M$>`Hvh{s5>+OaqUPKmP2JXkmR5 zoDxM%r7isDfbz6nopfMz$HtkV`ml zY;FMn4MRFkp`C=n%{jO;oSoH@QoG!Tm&)!sA4(oedyECIoV5cG>a4vD-voNM6C}_b`d_5`TmHsZQ~cN7+tc zyec$mrzkCr=~e6jtM3W03Na+HMunLD0|i(c41;y^@Zq8YtadQ|u^H4>KMF8(3Hx6s z_^{}wMdenHI~&qbYBh<}y(P4I-r=xR=Q~kuzfMyJb|wn29twWm=htoI5kHJu@&P#j z4NVIY*N7E_8*D?NmzICOV73*GvHltOFOsy6Sus?MJcG}u9p>+Upqqrqo{wtWBsa5i zVyK_KL13xqy)O6D(K|GMhu-4_5vqBIgpYqp9t*l2E~`n}Kvd{9ImExB9f^91dRIcY zSKIX#IY-l2gpf&0jIQH|Hd*{Nxx;qTKP2QQ5X&((DT5u0F7SecMa)$ooAkFE7G}4YmcZiSeV0glL#n97n2UGf(o;LFV6M%yt0QbkMPm@kP zgVbB!o6~7L8=VG@skgqG&-ek6{ovHO!$LD+kotWFLo}RmQ8d+IT64JyUyWaOEB5i?hAfQFeP2 zRhX0032U&R$TaL*`O(rf!XMiwj-2Xih4_hWVK_wnbr{W|(5*TBuQ#&Vu00lYcAzkK z1s>9OaEA~>`=4EvV(7iqn9LW;jfHinQ{Bbb86tR%bXK@HqN`X6p=#kcX-{p5(nj>X zzAAo|vQ?c5H|1Os^gGn33aoJuZE`~pGpr7gV(?z~6NqS}i+HgN>yVD^^Knkb|A)Qz zfX}LU_Qn?o2}vly(2GQxfHXmbfOMrQNC)XiQ;MR1A|j!vR6(iI5l{#n>Am;fLVyqm z0a782)U*4%v!|ae&;4Kj_kHhA;P4^O?0jdoowB>LyR*5z66R%a5Qr?pII4stYEa}_ zP|z)clWQ6b+b_7ifqIGRY-5=uc)o!ng5;xqQ}CrBO4VGbUOfa=c|`3%(Z-l>a0%=k zyMGR@aAK|jGAeC@vY?szorVJvXoo{|wXm%?a^eMl0b3t*n7FH83$XAK`-&z@1iC2j zFY1^2?Jb@`odYfX-;sq2n;UHP_q)Rjy4PsFfUY>A|8|L+m-b`N9lIHn?; zmQYYQutdAyAAf&ozI-NuA)4#*Idc4O4*2$1cqC>aKdgc>Rn#5`(dizgps%a`o5Yn} z)4C34X7GI&xJ5AL;8ZlmmvD2WFAC^M)L>~Ib8ehX5b{{V7PONv>d;0v1^Fie#sTL* zwiJwzxL2t@R>DDpPQWB{kJ%ASzC^3Ey0Irl>EPq#tGD~pmf?G1Bt+3bWn|4VDU4Z;EtdHH-WYxla zoY@Ps96ci>B;@&%VEc1V(;K)`wX;0hym?E~W82ci>^rl*BP4OyrduXUOjs6WyyI99MqgulBUM`K#gs>KXKysPXVtt&xPV zJNRiNe-NU499ScQJa~(X^BN($fm!JRe?(yYRI*zg#I=lPkH_^4CrPEXxaQfPamuPi z%%c=1k&Bv;@%LMjVAxA1k$9&8G?M6JScE1Kr*GE+@un|XG?`p2XhcVU8xRxA7s2Gk zhW$jISGB9z^g2W{YUuR@JG6>Ac2nCbW){YnSOhaUsXrfL7OGOJ$K~q7nX3F|gXoQ>6MJwMK zDYL%~TzrqmkO6C}L9)NTH=LV6>^S6-|Mu$w?sB!4& zz;)M3S>~4$az}!7NF+(`i?Mg%3nP2t1IdGK-eNU0gak~{FaO=KhP3Tht(WZENhcf6ARpb$gR+e$=R~DAMM~!jCei~0 zj3{3H+H0WX#FZ|W>w2ebcBV$ZPK~kjn$OmDj&iqfMl2lW3fJQ7PE9zT>w0@sa%RvR zIEu?T0xT7R=j(=)PO*5VLvJ3w7GN+guvoMSq5e)R&)s{57GklXc1yog&m$Py4A2uC zapu8xEF9a{8v*u{nO=#gU=K3@M{dKx=ti)_1w724>8~B@itqT@vFyuCy^)WdY6#83 znG;pvuha2ZduqTeg>mMb(x}+E%efxe#o;ursPP0ujM<>@J zr=AsR|K!=*R>)4}oD>^tAJ*Ej88}v=RWjHW-M9ezHmkaABQS|b!5POURI$gU(pz!p z%u%Ce91FvE&qxOK_E)?5$lJfiO(vrXa=9|vD#K-=Mqt!r%8(UX2Yg$PS)b8h;X!hPu5)Y8% zhY=AGhi;Mxhb=S5EwXkH$$XxYPGaWY+F!_4pE-trg@jzH1#4tZ+|6qPfb5s9WM1s; zLz$zQl|QW_2r(YYN~sa0?TWQFoET-s6i1wc(QLM_UmWRU*K^QuWSt{y54go#XV|Z@ zsTwD@>h;TH@@Xm|uLzRJeSmcMW5RCQ%Gp_OncF3kKba@qOJDfdHkDXTMvR0SB&`e# ze1C5idDxoo6?D1$9PU!uAND(EC?Ztt(DLQqSiu*Rnwk_KE!kA^xfI(+-jQP01XyXk zvn0UsT)gh9#wEZel9lS6FOfywMz3j~XFc6FlAktG$<8o9$`RzSr3^3zKZ9WzV1o!P zdR^}m16xWuRZUr_bG4shWT!^lAv>ZX>N>D&-{PgT|5O!@6Wi;^2^IT}BwYLL8oc%U z%Q>`YAlnBg<6HzVM?Oq3?|0rQuiSRz-^3_!{y6{W8Ulw785H-MLy=?td*v8vHHC}o z#bJ!NBm3&0{+YySG_*?nW+ZPg)lttg`g%-D+N3@qWV7tPULqM?KrolT{$(?jz{U4{ z?Gc^ku;^<7C1bUm93zQkY$_^QooGYmljJ&QQMNF`jeP;z+O+BT6)_}>Lripo6^>D!>rDuw1;IxO9?Eky z&VPZ0y3vc2VUMxvkqld*;Kyp`P9RVTP7~`R;8RvXn17aG!(f(KhPBC%V=&~F>Y*`i zun*i|DE|Sek(w6d-+Z+l=DK!hSVKV(0!}2sO#sjDn;r8}R5Ba*u~$Mv!T{gQYIanV zx$tQE4aG`a0|v~djMg{};yI_3*~%F02D~ui7)3J(*laVv5F#vKnD*_zjdhO%mQKJW zC29%n()9#)@Qz^)$~J+zBYRR4p)FiqX!#CeIH00oyt3AcO{IRtxCMf>yTRafn|(cJ zD+hc~8}Q?XmBf#ndd0((4}mi%5wI_v5GtoAw1uif>zcJRl*1UXYOp{O(hGJfg5F2I zEu$6X>UQw9-q8U9_T&)6ccBz2*xb2t3;9uxqY4fx<)u3sHh3P9jP3f_`xS<6@{~xzZI=KED2J1LX@j)tZVTT+A&7~k;*m}d!l)4%6SN5 zb}*AaM)lZ~a|+yIR;{NJNBfDj>FsB+dMO$3;`WB8iO0Y-NcwMA6Y!H!0<0E1n>cD2 z_)8Mlh`f9B=mDdOW&%AU0|VS(yWL=u++f1I=n1;Z3t-$mGV)nD&aICr(dX4r{dfG1 z6YNCMb6z(!ll^F!W$HtiPmhV99ydv{6>?I?35!KP`1^fm&_Z}SWi=WO>Z0T{>avO-SEGg1*u3OZ$8!q61?X^7djnXZ*; zvn@nHY+$dQ*vM2{2^^_+tebJiGta||b?Ir`!10dhxqICcc0$c7PD@t=xQxUD%R>i@+OM96fY&noYEkrI#b>W3V7o{4w(9NBT7A?is)L{Rnv~+IP z1i|X*1+o&LbLOtpiUZltC~S^U^%}s+?HkM}=nuVC=*~~&7iaXaPJAro!0!lk#kdVF za6?@uj^LMH{RBHdZxmFE=;GFP`E0nMoD2VD;J{s?-JcD1Y3se|{#O3#4!cHgNcN2K z(yuuGtOg2yy9&&WN0)TtzdRm$NLF<8vE!LIv;`aaR7`%RyjG`hI5S>*D+Tw~x16y?r7JCr?D#591#gH5v?T3^~n@v20ug`OSDs zpr^8?;Y%_IZO7BxVA5_K=mpC3a-~1^kYPD4stu$Jeqs5A`p*CMJUPnM=ZD|zOQLi7 z@O@m#79OUX!nTk6pz;yHaJtcihVWf14`bhn{B)ceQ59H*YyTYEV=nqeKL~%5R?RPjA5)IY(greh1z5}htwJ~4-F|eRq?Ta7A6xb2SOzuMmgimcMq)nkqUGhP>?doi4}%ne=PbJd9x_idC|C^JjgFC z(kcQEsr@Q8ubvUS!D8Q=J3C*Gip*<>X}{l_262lrB-WT;>BAxYm~c+UgLF6Ub`glx)(THPaLXNMJp=?&-7UdA6` z#U63J?}*Y2)Mz!DJf*L-@Op!66Y?pu9hoS_h7hSO)?>ePItR9?rWytSF6uGl6vs0d z+sQ411j z40e;KSin6V%coZf&@R=?6hB69($vyG4)$)N*WcS7VjMASq^*qg zTg^6%1l4C}rgXAFPV!g$jgw&uwZ^GUZ9xb5T6-MDw73?YXP4YplqL1zP&q!I1r{58 zxGDRzKoRqYT*=tGHv}u9A(FpeC2%|}#?S=6ZYCkdLvH0oDK4Pf)W+jF1 zpQy6$KFK^_JTr{4*I{9APL;}YQ^~q}cib0(o(4ii=fW!s%YyzW$i%1yJwEzq92}l| z{Sy%gJkJ)fN^&;|h~9};u8P-ng9e;eC`^(@wqAg}MH{K?6>em4eMN-2r7vn(Wv!y5 z?`Hanpi+1pbc(RDzY);fmHnOj=VyH-cqTZ>7n0E|p@y_vXUG~i*s=eYSm_udO|Lc) zt-e-smwg3E5xvqB%umP_SrGsmC&R!ou@w7(Jx0qG$qjPH#}>4c9f`n=vo6q;xZbtP z+Uc(BiC#8v4iRnR)&!1|(>6&bIhYJ}GG2xL>l%1{%!UndAxl{MJSdjid_FloK0bl# zW_olyke<4Qeyl!Zv7B>B>c$o{)trAaz35^`$QCg9!+CqkEjH1WMN+*QA z-J^XLKZ!}7%Rp*u@Mjh|+svSyzZIkL2RWTAGxRNN5!=6d05e+A;WmH#m73;C{MtDt zF?CU{j`!I?i3Oq}kM7DxtCPqOo2Y{<5Gun8et(x-7LI1>eiutprm=G<5bbMCHh?3c z8KMdA;b2?a)>HgWA0xlZ8cauC|K)*(hwXh`M`2pVVCu41I=`R7n8} zUc|~|Q_xA2gC3ar&O6y^sEvYQLAdbpg~iz)3K4`BL!Fe7V6e#jvgo0v;-bazdNh7u z=$kExvf9ufXdzEYR)D&=IKv;ep-}F zlrc{5{lx993P;k{uFOLc?TmH*RBtdtrotFDKWsbOJ<;A3R;LtBkOO;uyQwC7zK%0q zR4PT~KmPg>AvfzY;79ZTi=)+%XZJL+m%(agkghq^Pdpsf!1PtdlN&iSaj$dQ0u)o( z|B>ZO<{$|*`IIPS?HVi#GnNj_2aY||8kF`SkSPa-`oe*a@PW_YI+PH0sc}(=32)#2 zm=<%IQw^a{pu*HEb9QbPLp5fq&~moQRKe`se;hZwpk7K&^~GlRpCLV>#kMyQtp2%FScJ6<$@w(-Ttg8A=R(wd zt$N#uzY4)wr%y!v)`)*1K)BQ$d_-b39R!byFgk=Q;4Z2b1j)7#4baeXvu9MwuI*6{y8C5Cgl8->$2UzWfnijM`TT^FuGSv zX$`>J<8$lQ@Wq2P$5)1 zmN~jvjio|kY6)3OM3|P$TT$e&tUr$~3HC_qx$BrLk8>@Ndr@9X9_lghKWpV@%e|h# zoegB_pM`^f%m70?BcZJrmJzIxMwS>f`#XlXWLV*F@|e!vi!Lx-NDO_j{@@DfBGOTL z?=F^OQl%FG$o9slGl`q`w$|+Q&Jv9wDVHuock8xuevAtB&-|tc*ec%{MV32t5ULm3 zU1MdNr7*+TTwzNM>AESk4O07UNP6gu@|`1?NsWeNwTAVL>wJuv!Sy5Y{r!D>-uyN7 z>6kB^QKB4k$kVuc_u!>o)`@`-@)!coEjbbvEo_ab_`6S~hADJNe*82dYdyHsbjEm> zu+O8Se?Ac11QmKcWrQq7G}w(Vfz@)XN$SnKvN(s`{744Sx z_hrnMCQr;`ja7|19~~8Yreh!DAXcxp(E*AyBLM96kE*qiWr=Wtb&|E+4(w&57=d0L5w?0f*u)kJ5}uY}?Gu@x&;5d4QdDV3f= z7OUkVmpBM{6;_}2PHq+r^>m9(=i}5lJzZZ*u`Q&Z6x;3Q<=h>~weQk+UMQgaQ{sxB zUrY4Td%`)I^x7dXiumEU8a~CpdMsMm?1xp`MLj%$uPGf1_=i{*{Fv|6`{8flAh=Iq zN__>F;9y+QquXtql|Gm+;kUTc7W{k-A0fm78~JfaS1vl0@dn0oi-@6OSMWM9f;^^T ztzHE907z|%fKORF(uUv!F&3D%qp~c{4S4roxQzVczZrD1HKu@t|EAI z1yr{>&hF0~cPWvw37bUFbSNa|4poXCIM0IRd~1zLrYTMmth|!#>k*H2`SwqSlefg z7tAJ=zs1R<)e<9pPmHxLl}%nF^DmFb-xcE6l#zc6P8=$R&>)=HQ>cVcn`hjvBwaGk z#|ii#_wuQr?+%O)NizQ##zMc|py>HGKGsT-k74|VD@*dPpSh2s1-_zWHPC4vx%Pn& zEVerBRJ#?=^Lvji&*5{Dg7Tw0Q}fq0{1I3Z-`vo}r*YVOE@Mvg31QRRa!_wc+GTN@ zl6UXcqW6wB{U4a=>6rI!vVco(1zFgvS+g#|WFWe{($vu7+6e6!!RgSMzqEqE5b~~C zwRzV{@WR~ZF;iHeXJFO%4ORw(%BRTVEEFlns$n_Cm(NTN%I9Wqd}^UhkRjXS(hTQC z4}S2+E;w&byVQP>t-$k0@+&Y~E27rOkNgQS zuOTgYHP~a50iMOkBT?sE#RfW$DKet)z5f$J4~R$&Y}+|dExe2|kQthA^idLHkFy|j zj+-+z!A4JI%|6U_ICqAdI+R!vB{hSg8c>RV!}a|x`9$P4?U4}{W1E`;=C<)RQ!|c# zh-KR@kF$K59P>IP$11tVBr{(OQHjXQ-o+)yR=Ck~i@BbcWwKxdb8aJB4VwKe0!8W``=jD}uKlE<4&jd(8w$5o~z_;+JBdu@Sr zOKPX)cZJ(Pb_uXQK&^ZNk1Yl)wHHFLtBccnD-oPEUh7<%jyJ=!ELeZ9P=}kK4A)4D zt5F@@V2C>8l<1*6Z-q%Qa3MI-cRFMxxfYwA7QPPgUK2y;3}9;|7|ra|e}F;d;Lc*b zR&L@PNinv0*P|&&G06xC9cs9PWj)-9kb+F_!aOfQ=QMg$0>DNi|%d6iC2Iw zG~OOd@S}E4075-*N_GG2`TSSoQ5-e}C%jIXl{l9c2u&rfPbuctkN$ODJuqSR-dK3< z>jaDk{P7zvHUx)%fMC4SkZz$@w!#Il3b2p>N`&NjFS(y16b4shQ*2Rv7QL zeR<1b9BsDw-r$qFjFlo_tF6$V4h+(7;=pW!M0j+onOKQbjH{R-9Fh%$vXUZ`*$EpI@(4Bf^*dH}_B1$i>;SYl&>m-DrKnr)eHvONGwj!;2CD<0gm@ zT8X1QkhibTK>c%X*Zxy~bHd zG#CQa#Mpk^29<%u0wTTrSc!uES*F?q+Tx?+&~!Ss;En;%q^3i?+*l|ci#MEgcco;~ zgGu5)H|SeaR3$XO19yR6QPFagf-Rya-?$&XE16&TJ2ss9E*)5)e)2C|ktf4z@(c7K zYGP7@1$}C4P-hD^x;gckV6i7sh^wOfY--;dPKT8Cl;QMdd+)>!K~GGo*B;8)%pq(B zN^K+?_|j?cLIq!+B>uEk1aGihooHHP;Vcw<{oJ`#f9x7q(M*RDH(?Kv3+hz=x8e6M zE&K-D1*!+X*C$O{aCpIjKmIV33+{5=sMx+evZU=~4RH<)<(Kw1n^)%ruuvl`fU5zo z4s&6lMj~{|In$fRS)6s}i}I-GMc%)nXXG8Nf7Ou3%rx9#Gv#_dCvk%9_L|XAq8+TU za4>9v?d;LM7MABEj;mw^9aKjweUHk-;q&5;C(6AZ$4Xu!G(*z)q{$AzvDHxXUXw%N z`Xi?!BU6*`AN#_g|D|4IY*?<*aDU)>Fn8|UK}Dv_we_Yv#{xfQ=DV*6y28!rv7+KP z!ejr0KxgW<QTkPby`*lin_y-VUx(f34gbG`y(i8I?4xy4FP?5NkDK!P%yHE+w{hvV zO}@eLOvadNCiwyq)rMUU78k2!sCZAkXSq*zL@78iMDRj<3zId<+Myo_Vhn&;E}5?Y z@FTE{F*unqG)z=xnE{sQr(BpV>qHe)KezP5I(!&R=Q*zeWtRW_H$7YpD`_?(kxi&z z^F^T%it?@OZ7LNc-^&kc!d=^KaXH9xQojf&V7}BZ!mn`X-fTxadLUrfAs61v4)e0L zY}qUH_CrP4UYqM0eMWDR`2L{=6cgS*QQ9vRuZ4E5Ec7|ZF{YPYq8a6?*X7to@TMZu&m@qPiGGNORCo;D0-X|sXilwR;5~>am-MsGc;f7*ns}okI&OUiDcdkh3aEygl)L2|oL2#H4g8s4 z*qG<7sO}VbUolsN#u3{cqEh)2R8J9<PrPTmYcovmY}&0upyj#WyPWA5VoFR*RW zG2oip_n41?na`J$sB;bMwClYDrO!4XC8-w>3gq>u`CwXkFGSi!KH)0+m zXSIG8zgru<<65f8A0Y3rip{m-6tXo*z|C1~xOzTe#Wfg%pLyo;xUJk@7n!M~;Smf1 zLH}VVBX&-%enN!l(kF?yRRK6p+I`t@1m!api13M`25zv=tm$n|b1~t2XNJ%S+|?kt z-%f7QtLp}HR|YPT|8>Uu1EcqeGg0`Hc(T=K5u74%lU0a z){H97h>XxELVh!7=67-y*&%seUP~hU-Um&6z$y4@Z)Kv=gGWhZj0F2Qj?`}>!O{uI z8z9Ce5^~EofSiOEo4e)^G7<$4A~Gk;A@L2-AaY0auFN41N}|2u^dQb}bM1Et%Lf>} zgjn(8P-7AdyqN&x>cAD?72|)r2C_+8Sulhggtmmh1%@7c z&{v#UYUok)#diV;7Y-G0Da*H|)N!Wodr&`0VnR!0;;13I+D2e_uqXDjIIHX3pv)jMf2wBf4jLXSa~v(wHz6GuYUh!HSnwM zQJBm28@<(crVlCBOD%@}hO&@b<*&*WW$Z%EW@ zrizm&a8ElT*U8mFUyyJSTjkA_p9ftqi%`pe@Y+ds%O*U$uM@+R#Hn^8(wX^eYgymW zmbSa833pg&`4mx(Wh7J5f}@6nsOxd83|Lh8r|Yynuf=+asL~tZ37#Ol^NYgZvnkvH z@Y>FF@^Df09hiR#{m$Z)#V}HR4<|9Tn5Xw;9M_04>#$hhHArWRD*p?EReuI6Y?H>Q z*q;pcW+dLOw^DiUn5V?6qA)Sm#8{^>jXz&hmq935zMQW`rfZNX#}HTXGke=$N9&|I zCavudYKpTyb}(##>GBo!Xe-t#z$R{xrP8pt^9%wd5^&x!h9LX96(1kP@{I61u~S7> zMFaky{tcLb56iww)HU`!al1=hV`Jq^KS6e~9nxEPK@Vs)?P)Xsv+5x}O%+2eo+x-Z z7wc@CI1rdCM7^H|+BA^gL9B4&Un8Q9F8rfGbHCEw4@f$(&m27+hf8i)(v7c~({~MB z_pE2MR~l3Z?bWrUg9mVL{RS5*2)x)~k7C8#?z1)FbU}wHZ3pre#XJB7`;2 zdd6qV(p`s^3C33WV)c$nma~(h#?vO_a#Oe_alWxBIzlzWenWy(QNf=wi5bR+mPI{+ z$sCqvgvXL=MGTtx{rGu$D~4qR>s*(1DT?1AKg*i`g=D>~iSP03jKtpP@kQFB%0|M@ z-yDsJ0?%x&R!6>Z0pF>{~#ujO>&!>}o0<5H)$+3To$tTBzmq%DH!J=aCCS}y9)_^cSq z3lMq#zmL7=Mz69PjHb7XZEp1B^T5d%f>uRC>uQVhQKtE{xZP8oE6GreFp7rioUH)PQtZ)lQU zwf_jCV7#Shrz%nKik)MlVav1BSX3M^+i0fqak#ow)0Be%yJN=lO(+DxkK8=fH zOKfqfwL;O;-TdlAQev#3*Tq)!(<-#Ayn)RI!KXKG8e143WDPoDgFZbpsP$d=RWI77 z(ywvAc)NJBPhvC#@cX-Q7b|S14#cC;Skmgmj0Wt6UD~2!>mt86QrBYG zs2DJ1ZN}nmQA~KLR*zWonXVgylQMCdX;ZMph|mX*310NJgY}{Z3ag!&TyMVlI$zR= z^LzFT4mwFl!e|a$MjLPSI`?%q<}vd-O31xyaKXw-vc9NOw?NZj>cB7Wj{yGe#MDp@ z-)|zH0%rR@no>2?6k+gaax5aZHsajf)?!)IyU=Ht{h5cwuv6Cvxja?esYAs-0z<$GqDOzvO5B%6nV{+@adQQ-$Z<_qR6Bf^q zFRgeqs^B)gYD5bHihmVy@7^;iaG2H8!WF;!aOcp3s90T3uF>b9?3{&~ig<;&yOnbIba?N~olq(P&OhU)yu8Su%(t?E1NY?gay&LZney^}#JBATZ91mP7fSzu z)AP8dHw!5|=5H)@{%>QSY3T^{`urp8ZR2RQI6j{NWbM?R)bJa;lxtaXFI#rxSz5}F z;B@nZFD-rjuiragcUW^*jHx0$-C%XyV0~RZ90}P2o!sd8Txnt#eX-~XF3AuNidmHe z%L_{$b9dGhCeO;4G)s`%OgGpP@FJJ307LaA-!U9Bm_M99WXk|c;=6*kRzp9v8B?_e*1ipnaVAkPcBCCA=Q!_sQWcks3> zxmW!EUJZN-qe<8?b70wGyZuj#;{rMT;K73k5J=%HHvvDF0wIs4O^1^ZX^H`Eu+N19 zYAveGYEMiUtXGh+v$!yst z1SW|5h4BG%I@v6Hk1D673c6TYL>Mekxxp6xL#&4zy-(d>!EUggZZO}6yF^7( zdA<)r4#~h=x25)7RO+TnY6U73E`M2yC&)3hK2$XNlV$G}UtR-y;dtp41Bw(WQlcAY zt}MIZo;GiRMW%hY~dTVx;Xx;U%3BvYP?u*in1N*8l@XLUv} z8K0FJMia0;`f#ey&}i~NYG!#NvVmz)_{1hjyKcYWy?i|J%Or!OD5JnLEVQFYpV%3j!4xjmJG*Ktbrv!%WYF4 zLouc|9efaP8-UPPF8irjLlk8MocM?p)gAH(Y(KFf&lP1ptYyT?$23dx^t z?^VN!&ZIoN>rFp+P}+?#+;|Rav{Pd>%;GUaxFwNe(-osc%d2z7ft1gx~`)iA5I#aF3rDdq_rr_NBDrTu#6>0~`P znm=fy!-ahfRkRzAq4yWLRB*6p4MmZ0*WN{_@(r=k`LFPgKi}9?+$`tamvK*wi_yV{`W2SULU%-b^>Ksc-9!>vh}FOaKOr3@SbbPpBEjB(vsPA$ z%?S;o33=9yi_&ZT`pWCWp!|Ze?;}Lr`cIVQ)vFgrs7Q57ow`aeuR~vdy^~m2V-wJc zF&36Bmv#l6IB_D2kW-&ahC*W}O%mKjE1p-BS_9SQN-LsVWVqD!P#X?sHwTk%o0JyU z&@l4o18?;y@=Kk?#9w6_9A?tz=l6nY{VZ@n-~9$5QBTP9PhByL9t3j-{XDz=`*RPu zI|eEIOkll}}1W#b3&EOi62JN5lDwj@v5dy%hfEQPlVgGi1j=G-}`O|ko8&Nq5 z!?}MAhbYPK77yTHz%sAE4#j&BkGX!Z@9f8kFmA^1KXnlJS^gr=v&*JrUg`@nAp#bWvS)RR;Nu;^l}7D9Vqc&qNm<&P%$V@5b`%sRd53hnNR?x|dOyM^f4iBmiR?U){emEOEEk>NRJG8T@0ZjvG`#T35K3Lvzx+YQvcz6zn1Ftab#pOHm8-~ z)I_=?2>z^Ku}LZ${v?D>Wv~haXRew(d)&JM1|0msZ*G& zeOqE220e_!#a6{qQ&#PO{P%OlW`)}JyW|>Z1ud!oCB0%E3DWF3T@~w$1#j3eT!Dfu zMSg0AX`_*;qSK1Jbi@j9WJA@PF#=54xU$&ygAw*_CmT(AdDeH)^-c4yHw^d-5suuYr4aUAoUjtBor zUHs`N8xE9q(P)OH|! z<=MK1SXyZJ7RUGIJE1wdUdH6o;z6Q!jLpD{7xpSyvf~dwwB(0e$a|dHIU?qhY8Afj zX_9ncKnIV~$+{116Z+tA%$~+-Yg_I)>1nblQ9C-km(KWtJ+tA~IHU0{8Ac{K)X+#X zZ->Yxu>lmJ#tAaJDe`+7-P)M{wY}_a;cD4`x!H~ z+k|oqyh{#2*sJ*P&1cB--}2b7d2p;(K2+)JhlIrZKT%zh+DejG*}HP5($n#J`!iyX;jNfB$+!Wbwd9gr)J}WHs4qf}D%1ON zG51va@rAyDkKuK@4yDK8Iq-K5N$h`sn+ChAZpMBB=fCBjk-)ScDmFEX7Jeo8JpTEIavzb>&r&}|m+_7GM>q;}o!3ZL;+{m+*d?%!j)v?*Ll)V@!>L3=ISLQi zK4)4ZKOT9-`4&FsYTtpY3f~_y_kZy2_0*9Zg3w>u$ujrP^H|qZtvfte>B50qZfdN0 zf<>97I_ToJws3kTWAbK`V3OqE>-&entNB_FijW8a(H*`q9bL_83_Q8TD*qHkAl9h{!szdFs?7C%gsW6Lh_tNpn%dEuptV<3pc@hW^x2 zb!Vyz!O4g_RF|+?h2y)nNix9bMPD-d-{JaI!-gJGHqGi#X{<9viXB*%FJBoSC!dBW zR)%M*9EvTUJ)4fH`AakJx~>@yn_Z%67-&Ks*;iAQsTcxoT(Od^^B(Tu=FAD5?_ zohW_0=tVJjw0D%V<%#m>rD5>?4I4Im*mXLLF!hknv@l0LmA~^D zDZp<<^~?;t9HHISTv>3bp+kp4rm!;CiqAq{ZmR5Oz1l9j=Mt=z%Mk<~dLD)aeLa-# zA9$|%t5Z|kW8|pAEyEl^d!Sg-0DI6u?>;6N7itm#aWZ28LNnz4z|r$_judQxobz#Y zThKukB^L_h%O^HieM2rLfa^?AAFR-0LZ-Iu`$*&_vP z9giD$+k)#y$}0;W-nur$v0!opCuSNagxHZpKTpecxcCU~k9f~kkO#u$BADoH$RgAg3N{Y3$P;f&+Ibx=3CWD|rb$e!@E3mVR z%jitkS0Eld6ZXGxSg?!61niS4;fPkl=(af?o2h1{W9s<70 z6&it43gXZliDDFDUu2I}m^<^zD! zpH#Dn>*QF9;5&kme}&n!(Og)Zc5l?Hv00tO{uvZgUv^4jIaPRZhP@8SD52fX=LerMM&7N8Mfhc;rk?EnAVS23fXcx z+4q}8NOaibsN-L$yL-kvhCV79cWu!!Vf(ExT`>AXt&=c&TBN-9ds^jyx3t^AfS|u!Sgg zfYu8%F`u!>tMEUrflpkAe&Llpdyl)k|JMr#4rEr~K;P3OVaB6~I=xN|;4tLBqCxA~ z1<^WZ3t*S4e)G1h5v#URX>Av^)AJV&w+HR?_;bJ8gLb-g;`@#dybWuVxYZVNk`1FH zs@cZJPO#$bxI2@p>usGAqM`R!60_69q1mVY!0}ARU;9jwC2FVEW?4qq=hC$72F?8D znVM9UVbNgoPX`T}ABKeuPVx53qLZ(67ihg4tlCqPu3X?r-`N49;2M%K6`qt1gfJ6zfL+o$bLCP6ZoukhgsC0pc#+r5 zY3gE>_cDp`-Bz=q{qec+U`*M5N6Ajn^H~LUNW&!=Ha7jW+fOnKB5(fx9y2*@WrY4>GBEdSL|Fr>$|RHI|o>mQ0dIa zL+SD#^9nYwY^~r$F)wuwy@@qf`45|a@%#9xBY#(qG?;AYU7*JvgY@W&heF6RC=I?MZ`y@T`Ww(n`M?a?iT7c=lG4V`G3ocfQ-Z!s-sI^- z0F30Gf5dXta1N-cRLAhm67z<9$QF-f`|iOKtLiPC|I5@5mc5%zDKPl~%QC~A6nR_Q zNxWb|)$N1@eI7m56^a=>OTZc=mSu+536>q`px-SlzO{f4R*tJZdNUpy@yPBk%*LlA zR^C@RU+sUuR?kX*7?$d09UbjeqmIrown^-xp24kL<$gO$3|hqxay``Rm6l z)HMxfj8L2JrOfCLy$KP{VCD7jWsEQSO0X3CsH6mXGaY|#Ks9RBa(rN0D+U(0H48TK zEieS(w-?s2KxzoZ__@)P0M;N=!zzFyrQ|gmFz#tnOwrDx2BT~8`=~Tl+S{<}I2D?) zvJp731uAk0C)*(O2^<@r0}Y3H#ati3OxmY*EH@NB2>lINq?^{Z=eA?0Hw>0&2JPUb$pPXrbCJ<`21ROi0{^XOxySt(!Ilq$U!E47hu=V8I0pCKWA*F4m5(Wrr zd>!0jw8`m6k9wJCgFJ?&DCwKnnR4`%qNI0SqTsN$4jnb%xri?QQIh%L3cy}VDYk*v z0#2@F^f7bI;pc3?W~C@cw!x~PF}&vRcqRS4ywkA~%eQ8e73Fo%=&vaJtj1&|nwBd> zQQqbvy`!u~sQ47DY~mm6Jy0*Xf21pvI5kw5mJaUG5w6By;rJ)i|A}&}0Ivp|FMm1s zOYgiw=tW@WJG6XSk-ovONR2*kjw|0CT4S_oa9m>t0^8YC_T~N`d~i>RdBXv|6-}}E zw4$deN)-pTmPR*6WdSzdjtz#TYQ_nE)8TO|Yy&SrHiqkA&{J$}OHFXinovWC<=+nu zTFm#rsaFkRd2FWO#9)6gUTa{!uz;?g5kNV&fnFse2#=wyd_@4Vx=)WCm|B&F+BfM~ zd05g2fk!mZ)8ENP=}=O854|_Ewb5!Xsn|Vu1*6JaYOo+Z1@6p*YSo6*T;a3O!Lwc8 z>$i^PD$WU^{Qa&`HoX~F&C-~a$i!blqUmbl8X+k+7_IS_8s=!& zDQgH|_sUZ0hi4~GItQZFLIE5|u@yjEpoDcz238CWQY^}Rh*g0i&|}D$remM7+%U@)V8~k&7=|tA1}mQ`*Xu;&*iVuZ>1e7gq}#kl5Ywo1f7E+=EKK_+7N093D zf0kdGs$8>^o01}^qjl08xvQg2nD8x&9#f|*Oq)W{6-aP|ZdqpG!239hg*xGrojP@z z36s#gR*4SNvoQSY*n!nzV}2DjYamw}*o$&xZgrDk5oOOP&)2TqrKGLmMphNW@l{x7 z<56&f(%Vu{seBKVQ(FBOQZ_PJ6GdsDu?pFG;Tq?F>4dZp=aehT?9K=3)>A9up8?C& z`uEvE>kpbz208#ZpBy-F;5781rxiE2+ONlmBCk~jvJ35GUuQr~!VY&dzo6#WSE4<4`8LF7rSf*B$htAx;g^mdFj|OVpesBybmjDlJJuDc$avJ<|#hw ze+!F0Td*y{XCwa6%!HlLurNEzpsS|h)!8<3TeelWWhQKp*od8$E{X*7?71!TqEG$! z4cUx%wBP*So=BzzAJQl(y@wMj3F}Iu!zqZ6c;%qPC(06)aX3wjLP-x2)@ai+eG+4b8COU#aZ z@f16s394VB*R!|C+}jnpOMp$IlJmm&2DPHTz4JQi#)nBNjGX)b=(k!KjeotSse z(Due;pZN2E(C0Y5wjsy-dK|+m7?v6AjWt!h z`^%tz6TjH4TfDJcFTf9kNXOy-6oVBP(l}$}SbkVgBhwoPD+wf6(Fby@CD|j@tKD{j z6hml~8!W#Y%=eBgpHSheNGs`c(~T^YVzo&U|4Qr9)ze8Asp5L_H{Z$9rSm4b@dGW5 z@m~)VZVOvt&Q0*)3*t42o>&GJY`)J5t0xrYXq`Hr;}C9j!2qnRR=t>Dh5JYjaGfaZ zmj@x;gNifF-(zAzF0E^SRCIn$$!IMvPq^e@6jP{BiS96w#r7DC*h@l7Mfw^c=Wmb_ z+%Ynyp_8eFx=~LwwUih^KN8)bo@hLRj8pCG>T~oi+eysFdP3={it^rekblTcEtV6? zhxX_w9cZM(tsJ2TVXIz*Jl=hz4on=Xl@pXpy?U<$$NXPA_-bIec5jtWJ$cM$8@=z_ zN(dlc_yyy1jUk&{sN$etVia%h$n&K)*CH z?eIZ_VApeJ1}j9jw2Y*^p$&vE&(c6@k5M~c6(8W4PQ?eflEJ7LoweAY>2F}#HS6=Y z$92$te>-W@B${}GtGKaEu`}sp3(X_5ZJ|zd@sfFc;Bd9q$+57b(7h;A4*Kxvj@2lK zF4{0Oz$ybm?UKjau|njkRU3afO|tn8nzyIWMsmP8rymfKnzlWtW1+w)Px1W<_9!X+ zC5*+?&f*fT0}A7+-iPC^Zk$$0Zo+1x`_BxQnoMp8EFLto?W5s?uuGV2-x~yz8x@7v z4FzBCE@(Vxj0CF=!~}X3ld+40iK2P=`>uEm&_yN!Z_u^h>kNmcI*k8@h3Pyk~X@o#_*Vfaok&W@V$4IIys7e23L)0QOyKlfxUVE}kw^kgon9IC=X5F@&!!6_u_&jcrhV zHX$|a*}hSQBH4t{OU3NH+3^_K%l>-$66WDH&}@TaGk!1v%x@PW-Tl}&nC!^Gh-<-Y z?IOr#dpF!BRi2PXl0MVxw+I<$6Sa{604;80V_0Mk*j#kHfEBh=Q{c=`3FP&Jr0MOB zT|=eY6Zuhu!DOTCjm^10HmnB^wZzqzOGjrE+kH|0kO(ANoE%dq#~YGP@>=p}H{o7b zEtc#Hb`fHIh6GW+tStY-t_kI8v=SD-or2>(e)O!50Q3YWy1Vj;&lLOw%uURg};osOl5tDEFmotth8p;5jRws~AfEG}qC7F}Pfqa(=}wuKu?x zdz)4(^m?^T3g)l@aImU!D-!;&tGywK8hfGTO$*3HSZ;lpO}0vV*!d%*r_vxamR$07CS!#H?wDR@ zEGBr{RzKn$NP?ZI)9pT>M6SqmL8obMVzWvfumg)+&c$oO4)wT^=xri8BG&5*IOQNB ziiC)BI%-)2xm1~t@?XQrJAD>h4MZQiY8T=A0oOEvRiLQ`DauX0yYyj7*3B_3$6Qfx z=1}&*nATz@y-UTReUSR0ZvogCSp|NYA;$`a%dygK;@m35if(mbTu+dfA}zL1JM<#9 zPf@)8uq$vN1^vLXPsOq4MxEhsw#A~;SlWe^?X{ih8Q8uLf?z-2CP!;akKBeUvmwe+ zV^f+E_k)k6J4=JUS2+!K-%(=6n924(2H*qpbN0?RL8lIyn&p4_rMaW!_Hm?X%Dp1~ zJ2lX`eEAZBo&iKLswfT%oAU7FBrdwZb@zkR+mG*44>FEx72H7$gQ0>0L0>HggNSS4 zj2Sa#ZZo$dX(H8CmE!7S3%fP#J@Cm7vGUA#_yAMPNPXVBui(EM8{q+Vj0%34+kg-_ z4zTpV`ei*;s`L9VZGsVoR?|+auoAt%2%>LO6@9UK;NS!(x@(n#mlkR zQ{-54BF6@h8M5?hg}DUdR8_j@esYv;7>#I#yQB;3il;t>QM&M|eVMEf0>GS05(Uq- zDqTO3IHs)aQGA$@)kr#x{K>{w^fgIEXkg0xQYc?KDeJ^es|QhZ z`LPu0K_2-#u@JIEX9SZ~P6&=`&`a#`gtX@*c_xGk|32o- zV95yqC4*fjgM(cWq9R4OW&-;wmjF8n=NP~hD8lqg79D|L#AKYWV1(_z;=HI5oz>$U z?7|iuA`0>&&uMlK3Q3%px1Cf zgvDgdfKPt_7+ZNgob>}RCyB7-t}uYg!X7g|FU!<(uy2AIALlZ4$sGo01D77f`h?+Y zSy{b=SXkDP+9GVZtMw+x#vy!wQ$x$}^{nJE=wQ}<9%~EP7>2|c>b`$}Vbn22q^HFM zl`4o+$H22#pXGdtlmmKMS#OH5>UTx;qRY|6m=zOHX~W_MPtED{I9 zZF=Rr9Z_GSjKAMO83L;X7DEkYlVt`||MhHfI3X!DGd@B|3@gK65G=d%!L(~XG-tEP z3%-DyvJXh4q~PVkp@(uoT;_As{{4`(qNuWEA5zS5_@5C+S@23083_)?CK(*-w+F;m zt4JGgNXFlxpVjDcflty)mV!o=io$c@dktp+;tZ|FY)Qb@q$+A?9maz#wn{-RGz^@1 zF<9F)9IfSn*Za)$-p6A>SogZ@y$7c=mQ|R#P;1%ySH27or;0TblpQcw8{!oR9vbvl z#wrKw<-YS);8v*XyZnuS@~KxC523}XW8U<;%qL5Wc_=t9SQucX@{0N|Yaq9O>C&Yy z5wedn(0exBeiv>7U7vif2oq0X?FIq%oa-~F*ts$Fe0+QuE$~1egR}lFOxay0aNwUf zN#os3I>oHZE10TdeIemOPEG%(Dpu?}dVm~*fj5h+G0XSE6DYuXJ*HfB{WYhDeh7!= zG(K!Ebo5CA6lRhCY%!3umScE$~M)eZJr zChjK73p$2JNwJp__yM+EtJ`Ba`v3^d9kHVQ)T%%G0N7@>(ue|s*~q5 zbtrGUZosx{y@T~(2L9ECpz4Xw#_8dJNBEhenOk8x>-U<^IEzKYO^iA<9$}9XToSL+ z!V4g;42EvHe)lg{a_}P@0Zmm+haM^qj_GOn7L*4EM*oMs?*P#0`1+n;wZ$sY+v>eV z3DGuDLZU_RCrY#kAw&z2;8CJRizq?#BvuJQqFcS!#j;qdEZgncUhd5Eow;>p?%d~n zzkKiid;bZO*n7_ToipvZcY5I=dMLjVv}IxA?6Bo|vxsFYHLjE@8*Xfe7Bzt1YOfwl zEq@Poe-&$jwK$o9FhmpMz*$CSkmi9pW z%*2iZ=WTLJSS$~m^lj~P&-Fl2p4T=sn**fGF}PvC95WcCVy2&PWVUj%yWV#w@F#G0 z%=SL)qX+kJ+kgQB2MpLx=|!e5+M*yTqn`tHeN2q{sW~0HlE=ide|2j8vKQcBLQQpR zOvoY{d_H0XP5Ej|#8LG;VC_6$aC3&EpMMqmT2byhj7%Y~4~jbU%DCkG?=qd#{+cun zg`Z;Dmy^0q%D%i(0B*qvRvh}9u>MmCbFe~n!|ms17`neH4m*M1THK`M0fw6JtoB@i zkqPfrhrSU2U>hr`jmwXMWk%_z#0FZ{-|?5(f57f%)9%?S@xh8xc#@)YEQ$&|eO#0G zcBZl?+bX&x0j}y&gr3e!Wpm-Q-E*1Kz#HR-&%W5SMFva4;L0+P7)3sy58wID)V*7_4>#Ip4kAoJ|`yZXDRI9p4F@ zP29rUY#R1RKVQ(S6HKW}lm80FD+4e`EuHWtM49e%Yu?HwlWZ; zvvK;{0$2uK>lpfm!jKTR5C@@Bx8QARP4#V9HrP3g7pcF_Wd70}gjxZVSW*qf7vqB} zVf=v;BKPTUw1DOLBm>{jte^nq?O-HJ>1=o*U~s$7G6NFr02{$#H}jbss+NS6^z`&U zmMmFv`RZnfa@&&DxA?CN5HKz?oOyqJeBSCg0o?fq2kB76{@${}UQNSgvo&ait5Q|@ z^l>PhK*{GBgD&%c!EfYf_Xhk}j5n{y{~`yxr!NlKw0Ln7+b`R2;_v75!I?q4A1wlt z=nHdZ)hf7Yq>#2IHqjr+zTr57vz94?(rb zL*rLB4Yy$cO0J@j<3UV&~lxsQ|H%^~=yv*km? zy2H{7!B4DD$P!a(Ho>cSiOIdMxYPQY97p8djLBF|Vlgu?USQN&mQQ9c#Q zAA_$n7Ss(EMzR(fwD??sf1zXIe|MK<(6NtcQ(5L(!q8$p833|BU|YR?z)@B9I!uVu z0N@*Nfu)m|fH@ae|3TOfgjn^9kUenoXbVAPvi~0Jp|2T$KtOoE3nG(k3~Mz_Mj+mB zJNqf9{sY<4_Z;8eGQl|MMMIkAJb8t}u+JTQs|-bQv`)l}U!#=nvR1o|V_H!r7c{vr zW()1&FdwIu=ef7Q^?}2K8LY@eoHl`4dH)JKavD*}a9N=`nMIjAFpacTjgJ9k`3g?4 zrmd;GKf_&xd`F=?wCZ#ycC9d;Fde7U-V0d8yl?nrJg4JmAoIu|1a=4C?+e!%UALcV zScaxnb$7H`K*K|LW*G@>OmH`(L;i)K@wK&5mHV=3gq%n5c5ehzc9IgN5N&r3NWt?Z z9cu5Zc+jOTbWhr!9?`R+SOFOyv7(W8Kd`l$G<9wj@FA@FZiMN@%LlKQpXj!J5V!|H7*RIpt*d03COeQd5Z zJ+iohO-u!|UjTGY^0FZGP9{JkeMMcF;X4o0<2Edce^yxr=AbWT^XEH+0)kN;K(;xw zMPLaDA>T5p99fAt9$TDaGa)~6%4m{W9Koly2GS@ra1N`(TY1|bCFIW58*i(hc__T+OSBXu))By^liM$7+3lp?m}Q7gvtcrunt=JxC^HUwMSVPFL<_Z zU)P3RBJdM!$&qE;;}I=(RhQbu5^GesZYP3*9#YWZdnnc$s-51VnZbYR0V{GX2lYQi`kxjVfl+ZNKZq_El>g`c*PJf%BARN z7|R@P!?M9LqR9xI#n@jg>9b9QD+o)YT$jO9@tuH1)?;Y*!0I53^)k`)8nEDesAVKT z$GlCcMgWG-{szNS7_S!~L^0hx7HdZXqbs|_@UnLdOE_>~Rr8(_4CWowA*J^LQ`?JT zpukhivDXZk%b`n3?XWoaqWkX&%K>LdIoY+PBVvES&n%xs;>AMyQ{Fs*3iLLn4GuX~)8Nog=et*aZ!HhuDvHMH*J}IwAJA^Cao} znpf9{sW(X{o1dLAIdG0BV?HKypjvRQr-a1!K~fB5f4dVjzdn|)FIPRvD@mUbg4bWf zvfj7nnc*ke>H#yA{+@(u3_ricrebR5O_t?o>0TgR12D%v7hr2Sj~K><@j8a(NKbZu z6{{QJ92XSo92XSg!Ok=Gr`guyQU^>(rtH9QO)C_;CyDw74|ewrT6`|_fYlAdABg%U z-}HDbr)V{oZnp9DESn7S9~V*wmzRd{pTv91iWky`ZoOt< zyx1v|vw!RS>!QBSSg!=^IDELz-pn$BuN#LCICPT=?7}bXwU}lIvlmXGRlkOBw=lft zpFTHm;#<7P;PSx|)!z(8cy@=8C#Scw2gZj5b(00`xc>EJ5qmQqz?4oHohn(hXj!~z zp%WGFrz+Ynyn`Fc)8Rf}Lq92AKR`#c{d@B{h7G$x$oyfF-~EmCT9)9Lc48Vk(F-#& zpF^IJ2=VuYd8$+2eu<{8f*C7uP4FZ2>A{`>3)1=xECWiL~9f@{xt$oOam1k8WdtTp-!C%()!#Q;+sU0%4ONj|Q1 zH~XmyJ-*((X;a%!SUuVqn^(h#&#R}N1BcxUe4R4m5X_u?=l}vn;(MVsqa-tVhX{;v zE@_rXBrnuRGVVM{4JCn+7b;g~bdR6G-|n(7e2JBSdL2}h zDV&@#uUK6)oQzjs~~I#qb}F`**~er#oZlx)SL) zC<5CU`WgX<&vS}m->Il8Ere9g5Dj!5*2+KX zKs5TxAv6!pIF&T%sJ0)x)8n(s?Z(lhjrV{lzEUud+9`K!A0JhIhLw=+3HDR#Rgc_w zKbq>son^jaM*!KZVzPH4 z>k&NXqf!cyVW?d)3EfBJ7^(sH3K6HSeWBK^e;`$8bfxY?2S2HDj(-F8+JYCQr4gaR zlF8DqQ`1jysvQ6h5B*A0lKib3b4()r+lX=%n|~9J?_hsJAqC6efNZ!mYRd1Q zaT{M7+@{hDTN||gBxP=3vb@{TLkaPpI|WHQaeIzG*Z@7vaX)vkg@&pR8ajZ^wtcJE z>Xj`s!zSFO!&a?R?uc=LV)t9^ZFq(caK8FITY>|#YoaOmi7yMb#e0)Z>4FgV`TZQ34kKez4e*i$%-dhu`s8$ckfeVdIkwthl+H>xx zUv}vmVQIah#2k3<0`_NC9kDPBZ_BUHfrd}KGO5jl^{lo*7dWi^gg%IuVsO=uFWR6; zv5okmH>_7x>kz{)3I#m38>=NGIm9{RM zDk*ktqtL^6Kck}t72p1q7jK2WI<3_Y-5zWbhv2`_&**v^Ps$=#d0m*LN?QJUK`YZ4 z+}j=4r+Kv|1Mh5NggTkUKb53DR@{?pR#c&C_v$EqlNgrai_f}H+VhvXvZox|X5KrU z`v4t|NPVNiYzMnLVqV`$2elpb|6xGIz6kBUBS}>A#p#(i{lP8L%LcAUS4aGzf!$lg z1_IKoP@zJz2w5y*p?B8QqHk&&0asV(fAzHs-GkMWm#7@R;R1No& z+aiRDoF+Fec1CsMiDZ@UFZt@Y&%e$-#e0 zM&4kUi;zb{^Y2dTVe>XmxjQ5UiV&YY5&1;0FCnR)Qel~-19mL!6IJ&5?Pw9Jx@s_p zvgXTIi`Xz#cj!j=0W&vnxF|>2qk~fkRL>-qtvYRtTY_m zF_#2;k6!GEf0Q6dz4-?&-+3@Vk}rKmf8D3gr!cB)&llaVx25@_gCEKArO06wg|>(- z&%7_FWk;_EIPo(vuH*1%IKFiwDnDvLBj*k$$2ToMb|ORt0YtYEw6&eqM83V`j#kKR zA}55roEV``q}EFy%LNSWRj*9U*)3Kw#PkWt9FB5sCq!$>aHbHK%#&wGa64&Rq&*y< z{K#Q-2;3y?bj@`6l=QJF7AC6aAo6Aa*8WIZ(AHV{(AW;oovown;{ z6Y{o*Rm~vk0K;fPYzqRuB9GMEoK4cjROC8AZcwkv-zU>VFVRGj)Z;bewU-2Fl`E@I z>=x9}-@=Y9(MPJ3>%(6zM?`$7H8fePzYV>_ebO=ZhcLFi%zDE5X5xL)R|xQ6jE6a; zKMCJ+3~oCK;A~f1o5j$0*!G|a;GB$WM#MBpo`s1S$HtBwJL7I9j{nK_l}(SL z(SV(@Z*e|qOxfBakK&zkja-muyqu!ko1k2sBx}87Z$>xL5d7R;7b95c@ZjhE1AdNY z7nf-n*!bC<;p)%UHr7^E`v)4MB;Vo4@?3^{FX_^_o+in&8E@tyRJ?KTgxIzk*c{`E zoZ8TyX1eD1oK_KP3b2jnxT(63k4ldH7WQ={u50R1;%ywL)y_G7h{Bur?;*zl zJUKt;)LMt}B_2ZP8#uXU;K0>;p#ZVGPwRS#g6@QZ%)@NsErg;wY`4C z>X^FS6ruGP$2F7zaApjwxa}i{>O{lI0kRSjMp9r2Xw)*PSq@l}j%}THO|=3*d-V^y zh+gXJo@5z^afbH2WNq;5Cg=6nVAesCz*ayGD+^WbwATP@J>msuu^*=|>=VUbSN!m+ z`w2kcRk;~I=`qdtQ7HY3LuWVQz6cdlk@Rcg2vn~)6-YVRzdPfbPF5IqblkXc@7sY_ z5;X@ZFF8p&3T}HdwDso1v@3s(ZC|u#QL!1?Ha>2N{2fH)dU@Nnb~=V=tkiM_SsObzqdk+2>P9u8}C2QN1e>xV&|SVJ~WCji7ob+}?f;?BWS?lL4GE!^|h?(qT+c$@7@}!Dw=1%`~!*6EMseY_*yg zF(tF^BuTFeGJ~xPS3(=K_ylZ`C^LA#Dj2l*gbfLz$l!h9+Dd~KpS~D(5oHGNi$ffT zkbGr#f$4@>W_@RP@#^{C%YhE`y!&I4UI)s%I1vY(3c*qKas6i373H%+sJKgsvaJq* zMF&G@(69#fs1Sv`?$p6ll$VAnV57DEd!Z8#)+$c~tOLH?1mzxiJE()?eD;e<;-jZZ zP$@W@UJMWAo%iU`rk>zi6I*yz5OChT)@ZUsCI#4NlMx8OWR-xb^dH4{EdZegkx3u0JWC%}HnJ>B zZz9K7mZhsDV!c<)N;Nu&*?!_(zfXNeqZ(G48*JBGFeUP}!J)E|)~w%5=pPasWm?u( z@Ee+9;e}Y~{l<0$n@jhC@IKv-m6)co0k)RXS)oO$sqCXzu|AHw>UKok>_(J9JHCDEpjr~4YKO|uY!QOp>Fx&xby4*K$#6Ft9Ay}cQ<1)S4ahL|7>7xHF zG_yf7u73=JKK<{QBwq_Jyf|sdkR5o384EK=oya{S(l#h1>ih$FpZP!haQsbq!Zy=+ znQ-$RVwEZ;9Jw5ntVBw|mN35FD%NQsICwKexm}R;jia}T7gRCmhuYQSjKm_}^MLj7 zfK^cfEKf|zxBnzaMG-8)d~PVpxr$IfEH$-F;uxLFdRTX^GS3tlL`k>-{W83sN=#Wp zWIjK`%A4N50d~X`nZ$5{p$7qL%x%>XtU<-f>>@6(3uMQubW^Nk#ws{DJpMz|FOyh9 z<9W6*lC{E$|EXO2%K7&({dh(EkK{n^Zd;z-pY1L4s|Q@78J!?IgFUN%CSF(Gr%Yff zKcGr|Sw^0|kGfYuz18*GoWH{|W9oolss96Vode)-%ZCbWKetJSUbBdmC9%-8m_i|2 z7osdVlB>%(a{dFjxKtdgEF4D?;K;jb`DN38ZErq5GqwOKNr+@RE=v&_y>H1KV+2@; zE#1Dl)+RFq7fAzy6rUY&qT>j~0uQIuoO4>T4zqX}DYDN<4SA9MH!xz9`-Ph}C8aLc z`T5M`kW}SAUs!+L1jk6OQ^fP>OjTbf&aB~fQ%s3Mu!KN)B5x%RSMbyjS^0_3L^zEa z);?p-FO4aETe;)|t2`C^So*}<$}@OXdMb+82`uDKqcOa6>CSenG%eww+N6I(yZqm& zb97LY(+G(!Pf6Do4~D8mb^bZ{ zT~){Y1Cw=nAEgqWo7EJn#3%01(kfBtdZ@D zN4+ejxKy9nKTGgkIv88>#w}K=(M#03UrSxPt3`-YP_fcirL!_iaO#Yi&+s}~d0qS_ z{nW=u+GgN=@tH?wmX}#^LBC?`Inee#ajRoOc4$E2y+L;m+T|b_kZ`OV^1mj*UhAGn z_tW@CO0b^fUO5o^Kev}>tuycB0jN%jeQncg5gG6r75eNLi7O_0`Xyk&-kS@TueXnXs6I(OX{@Vp%jAfobATqQgl_2Z?BVauDaI91 zlpDa#1YRLw=N>O@_IRrddnNn7&w&89+a2JN+W7%QU4WkrHXuMn zTLuDC&eDVeT&lkes0!SE0jhVDVZ5cfZa>)nuga(=eugDw)IeOCK3Hl5CjLAvrpXnexJwr{=-;!wkW%>RJf2V*jc6?7lUGfEUW}L40Ug2UkkC>$%mH(}lk^<< z&9RLUq@QN2`qP}RIV>zoy}c>V*~B-DG3>I9gjf-OHh>$Xhw5Fap9oPdJS6>%NW!xt zxvz5dz^EHKCt%vi-FqRKF$oHXyXYSu&nIPh^lgQH|=r7 zhW%vDL@{bUT~AOH#{{XJUk0IMz7I|V29suMWeqs*E@#8&z|GGx5TWXeG68%?@X}z{ zc)-TWvA*@dn696b__?zmLX+TS`o{2|dHxnYqzOI5mjA*ug+^F;0n2}G3>J%?HXrP{ z4>o{d{BR`W8!9~>PE(^!#c=X_3^+nVFn)UWEUfv%#~7@95DvL@>(=Zp(2w~5u*VFB zD)cqilThp?i!n4{nNB05l_%a^$f&*|)f~w8#mX(e!)iX|XIqAJyGBUBuK6E*^sj6j z_RjT`6igBZW#ObMGdewX|Ne-nY>8_qwZYq8g8_CYBMU-b*G2yXJZg<;>MP?idfjjg{+? zGRVQ-VUi_YmI1GS^6RfJ{#;!^G4H;>CCHohT)QLg;}K#lK0YP>ga{ z8(qQ5Nnu2|gQ8r370=)>#HFF%xN%mAeSwzO>g0p@=LamOsAgV=$ba6iCuAmP`Eqd6DROGR;D{)kiNlA80;vuN6=92F+RIN z{^OpnjS3*{v&&^eZ^h>0J)g|ph97@wOLf+nnSG)7&r|tMw_97Kv>hv6-T}$!`hSwy?RO%>#d@gHWl!MkvzzV3d)X)&T3!>D z-OXIq%BWim@vEnY9O$1t#oUkHmAr)WB z?bZNvwx|qiu_pttK|Hh~JUo1ve*_$-prrK_YR8{JsQpIw{CF#b=&`mcb`vUj!R2^& z;lf=?+`_^3L197j@65KV^4<0zd&OD&g98WpJ|z!g<4+5z%NZI;aC-mA-+WPg?GphT zOGt)ZL2nYVa?p3ZeU#p@RV(3p!7l6UJ8)19d46PCl1?X#tTX5mo_h0zhmc-!(r+F6L%sI-UL0AK6ghtK0ymp*A6-F_7g+nwKH5o~M7K zbnaQ#Ggk4+tQg%(UJMvt-l(y5-$Rie;Sec+2#=&7AK0!PQ#!>jUV*rzpq z%^(rgBvru_nx7=KDeIX*7aATxo(?N-urJ%Q`yGJC88mi6$Y+YYZM z8hZI(DZX;MK4j=Ru6<&u<-dQSLHzp`&r&}|R-Kq$l9ibB@bq!$_eCbl62mjrqKc`q z_5>;y`%5k~eK*QgFjw{>tPRjPSEUB6%!~{SjR_5Y5x7!-D|~eaPyR@CgD%nj5a$B_ z;8>O^nLdzZIl9F&p@3)5UrsQLKxRx71Qwf*IQ=}(<99n_mJk0tD#x6s8#Zj%2>*t* zZQHg4m%w7`$RHgZr2qIcqVwJ&X(4l;?YX>d-rTu!FX!b9n-b?vA#&f(Ti->)>?97P zBLpL~saklMr^S*9}%)1hc)8?}foNE?h{H}3yQ!MY^*swnAMA-WEE+!Vd#!Jf$RQuTZ zOP9{Zzw(eFut5r1JwM%1l-(zcx6#NaSi!mUbiCTVXe?sGwPq`R(m?NX8%D4WVh;`r zIxIgNrIB(f7s}fNTxH8Zr=BX)D=&qOcUXy9Dl~alVCDEDIuJzv?c_{zKc$05B*bkK~g1oTG_wN#6yrT`ltx!E&P6v{@-CEquu2g7k_kq zgRFMoZzn0&(>BDZrXe4+$PbZg@7fboaP=dY%-WBiCfd#_D{&@eC$zase_r5|q%(ZG z)fIoUz2R4r*kuMupMEcPGjSN4Z0f<;rioWxXHI{cWE_xN;a)4?F zlW3P5EA)T_G?7E7D!ygSJ_$MnuRLKsCIKvZXGK|I6wK17+&gAeMT-@vCSxK!jFy~? zk#|d|Cnw20!7qa?J203;8VvW$H}oMKV2{e983!PC~uY@#j5f`q-h>;^yU~k5FAB0+n z>uf=(;2APp)r}G3=+!wcqrE!HlP`|TEl~fS=sWQ9tssJ3^+eK!dRVM?962L=5Mwh& zy_T&?)7gRK`Emh55ow!FU4)^&do8tENsW~L=Y#ts=+LU(@=_pQX~z28`r7raRR;$mdD`kg)(|z6Eep^1BGq|t2^+#LmH@3wI6IRp=G5!AogBRk?n@| zd>b}ntd3QRu)5^BX#Y;F-fMDdi!CnA6XG|oS+nkW#&${FSaid-ZQIUn+a#|WjmW%u z3OP`!Y14d_nl@dwX3dGILSf$?mSTpgXCjj1RO2Vp%^yOmmX6Z~{?@5(BfiD)86E1w zL09V8f26W;aMtK|wgEuZ&%r|5ijC)BOlGq@OAp7SHOsSf*0aRL@*I8A*-unCBIR99 znPrA&?3I)|y2euOELheInqjAI+VjLv>1^M3Yd{EU0+SYq7N;;4LmyZ^|NQ>>J;HkV2u9}_Q+mPt5d@29hGJZU8XN7K8-QKg6g z3D!=<(3)iaV^B2>ELu_{*G#2;`ko-x@RH?w>>n^Ce3k?o#jJ%O6nnkGxXkcBKVW4B z9h;d<_Hg6>27>a&lZa2{Z()(cB-o+SX%LgHTsQsTi2Bi)|B7AAi3}#s-FqeVv>PJx zITmi+?yu#UDbtBkF_GEPo)^BNobqpw@6cPyav22J(4v7Ueo`#Y!?fq(T3J)Er9c)IZk=)>Dx71*TV zPL-AeYQDIgrY!7Uy+o4SO`En_vtZU9vA0IEppH5NjmcemeiRSXu}C}C8CpHJz8~MY zy00Dk5zn^^HA&uw&p+t8W=#_r{we(KP*tY}x$Nkd8ir*fvT&m{URA!(hNqG%aOdOL z)zr6vl5>c1>P@LZ?zQ#+b;&@7fm6*-Az!ANWk-&6;(@tzW*a)f3{L=tUgUKN{uO`@roD#W)H%-~Y8P!-GgUiPEs`*ii{XL@820Tff6B{L{$q+x!B$b9PihQVu>DKiLN2DXO8 zdIq@tCHi?{4WAciG5r{k51jRgc1%hD;1pK*g^b>+;OmiYY`)S9kAEW zkzXAkw2EAlH`x(-GfqDORbsor@pePxn?@!}EL71F_jxA>?IAOqutKq9_SmztrOmT3 z+92)(neESj{m?p1+NQrs$l*L?o*$Fh?IIADf#i1?1{W%>?UQM(R$_IsZiQvR?i&sn zI`Q(|t-h@KE80^IyfJLp{?WsRwUp@OeMW0rSVs3-GhY$*vGxMru-$O$7Y|l{YVEA| zM9UJhcUQ_&x;Kn^U>m0Ec5=kJ%!a#+ZdDNd1ir`RR9KA^SW*HF%~0DDtAuG^RkJaq zgElxe)RY)5T()faZ}4)@kziEhJ#!&Wo1V=99Sz&SCEWx~`$rELoKfgt_xccsE{Elu zHH!{EbU|Ox^Tqzi!Nw&&Y?_XXk4t@#i32w+;UMG#+SCzYlQ*@`F_gNyc-YWNtamR5 zoo#r)3)nWjt(Ig?a*CE`F!DA;omORY1g6>2ky(BQRcLmO^YV`}0 z1#o|vZ91eAeDA7D8E6ZwosMnqZ-Wq0Gv>}Gl01Xx&ptZ4rqiH@#IIK(RC4@77^Yn! z$%#Azg&UrtL?yCvvWlrS~IE)3; z5|TRa)P)21(z>k?N|yKF#i*jG>3`eeRrCccH10HxNWuKbP2K<;w&B{fX!2xK{$uz} z&JN|Bwd>L8IfMH`;{0(f9%Hz1qz}XK{V{+Y37jHrmP-sysLyCylNxZ+>pT7i`6!9zZkq*#h#gVE4a= zRSx?-Vs)LoLyRsjDV41ntGe1c~*>Jq*iNt2Asl{h%AK5xQi)bBsD2x|{QC z-Wq}qL18X~wmtjdgEpBV@QjT!)NIeE_Sx&+BeY#=>y)pczr(t!LFqUu>{h>iAE)^9 z{S{Q@N17+p5!{Ql0s1Q(*1loGhKuP;bJY3s+grDu=WD3+&)fq|t4d4oqw^0UX-EEE z*v|%r?&E{==7*(Usf^0M(fYvtPdXWS2pUxvrsLGhPG9>+!<}~FnV!EQ{%>-?tLdVr z^h(F4z!cF@`tZi~9T~skvY(Q_iqjyNMkBAi3?3YUU zS~puvh=7$dj+P&tO2o0>e2+A{?r9{^wvcKybPy2wJpJ~)Te|1gV}SAn>U3DyRO0kH zOQ=)%;AUcXdKXljxNI2md2iA%7&$6V>e(?}^4GB;9{lX!0kgg>QE4!-r`^yQPM(WD zkpZFF(ZBIS5GL~XA--{kPySpQ-ST%8TBb!wdaP%SVaK7OW#!xIVBX$k8*#*74y<

bVJEva$92U&tTh509~yOLt~u2l(SNq zT3^!%rgdLevqP^WvK)AgA1-Y*$0`xL2P8DMOme=Pf|Cq3KQsue4o7Z!$ncj2HXRrX z>jzw%Inw}GMmIx|4&KDRX>u^x6lO9$uqx*(lcU!YE;708Fe$~ntuX8|%)q+C>So3a z4)ZXvLcws7F#An~z%++uS7;wZlKJ>xeJ#dmw2o`^*)4z`bFIZJ>);gQ#g`Yy;bSov zuQ!6$o~3VtJ`_50y!+cQRJh*y_3P)9hC$<-INmlhVR!_mIooPE1A{Y*1Na}zKw#!( zoiNyJL2!yg9(9zP6}`kXOi&M78#e5-VU@&8@cBufpeFdyJhRx=w3?|uE&PGE3d66+ zI^XY3eS7I!aP(CYFq9=fQX56fFb*!vS{ZcdC3{H96sA};0EF75Vtlr@#hX-(k4^!E z54ABR2I0N%0RZ4g+=&w{sv2VT`GbaNX~6vc@f)z~@8&Xa%a^H}0NKXK`r}`h)!*3C zHBVr?KOg6<#k>yzG__cc`W`0JwKgRu2Ij4YQ0-1+q&2h)QnHu%W6u*P=@+qGmS*^L z|NgUPtxIYM3~q= zgD6(HkH4Gjt7%V7lO2%D)UB~$wA_T!5Nc#QhK@uo8qyzqkd$Z@>ZS+NYEyD~hSPA# zYeUoGnwZ)=u^i)1d5OujO2p+&}W9vgyp*V2N8L<-mnn6=Q{K&)R+ zXBw}-Pt{L(z_JZ^pHO+MfF@LWLLhzdA67IiG{O%mDb1bYivkLlsx&N&f@_4LPVnPz z%vRq_COJgE1{C#&9k4r)DGpd~y5^vj+>V;fW7;N+Rv#$g9tpi(1BUk&&oCI_34Mzv z@{(G?&47mtG*3Xz@0ZbHL4FP=5s@X zFuye|1f)%WF(AB>4YDd2hQ^xMNESn@OgRvlR>P4h)lgqfP2qWe&J4hZ^oIbK8OmF! zdV|)`uOUo=P`JWFyzUdhzgO)4bPl}MV+AbMfWuhrBM@2WCI(C!Ft=V8f~8PK;HV~x z;q6wd5C-o9gN$mAw(LrLn=h@itikCYXsW&|vW1RMj3!5ZknS8F>`row3$y{8u&(eGI$@VFUMXGq1d*x}12-f8Bi)-Zuo8n;x=e4XpADPHtrdAW)-}SVyqNUL|Ry)31|btAdZn>p1AyPQ!2qqm%2Bh@aTY z0$scA1x3=r)WK58%5W!N(T53f+}IMQ2p2eVJj>j4Z(&)MuA5++3qgpUj+nPdw^$|A zm(^A2iOK%{cj0F}TfqjQd_(EkeXBeEV_RAFB>(p$J)wU1b@}pob?Vq#M$>WHKCM`e zu~pS&@bj#>!S$MMKQT4OrbMj+UijH2TP)h+o~o>LTBHPb?^55mgoH@0Im~XYQU>EsHVyg1m`gD6tbldEBHR}sUzqTXB z(T-F6w=*8LJE_~U93tRy2YA>ZMz64RIaq?&Bj$Ft3-E*mINIqKjLLA>2`qW36n(KU89x+rTZ_%DNIE%3K>3?(U zFqStoA<#|mYZzgRPl)F;QD*Rf%{FN9nd62sPL#dk9daNS9J5}h&h%Dw>cG$rous(G^0B3$Len-wi_r`J~F+OT>9OboJ zQO0u;i+NK~4mflpYD6l^1WS{nwm_^L`VgzJJKftQ%A;sZtR|6VW7$Vw>`IkdEcTIEx@;nlQtz1?A~r52=$>hH#NR+ zC{`>hgn}@Mtfs5>0ot-c=$3Nq4V|wBKCmMNsIWOM=Dma9izdg~BQz62c7WhMBErOx zwJUrPLNh{U0ib6>Dvt{}X{gY=iR5BwAgC*Z7HRKqQJm&TWN%ZGBSu4LT{(%xz;Ch5 z;y4P@=9DAo^>;@(QD|=e`Bx$>f5ldjHtZ zMZ-~mZLUD2wJM@=owjaWVfme{8%%>lE})f0g*iZOs>NDY{_YIM;R~{T3M26`J@c>- z(0M+DJFTz5lG+`W1cb7Ax}JewH^!=PIGqiE;oH&|t1h{ z)lEK@+`Mys)cEQFhw=QVE3+EQc6(PbZQsyQ=cM zG_va>xmkzQGA#{dxMfs+l`$7U2iCUTsoq&r8e$H(}$H3kO7Y^?^cJh}t>>Dzq zU;?ROlT*PrB;yDXKOtSSz9LF!;F?=cU+j7X# zm0<>Ne~$la*z2L!?S6rz_Plv3!W{00_?nQETja9TE@zc0<+At7aGsUQzA{nToKk%& znzB*qt13JZ;{kI{{p<0Nbq=nDV(a9-n_bh*bK34@Y(Rbr=3SK3(&ph396P=DXG;&^ zIW`FH9HSQ$lWpxJ&_7<3_s^-)0)i$Su8VG3xnswUCG5G-Es>B<=%vrsw0mthjjkXM zTJY(mc*&`8T}j+W^fw$EmnKd#6uxfs&qtC!gzDuB5~>F=h=?`8O7ryjqN$_{7ZbD+ zY9rk(Au9}0d#;Q%2Px+Wm{+7TmhHxFGjhiSyX^Gj4b2rxCCoY%kY&4VVv;l%Slcx6 zt?9ky(@K2NEfoq}{EZ7V+#5{W!uoti3%kFgf|qtipv0yOgCizbkZWtjdZ= zFhltr4_G%3b6``IV8aXBbG9OF+EBeBu`y+B`nq6;^Gp^Bz%C~<-`Hd=nG%Km%5I5N z6Wvw#uZva0&R9V=p317S^k*LIF5={ptS&>>h{FRJmLvU?0NEHHr}H;p=n1?5ezJ(F z%LHIsAqK}4lyU_g^0CXRaOf;51o%nZbSG-+}($V3WB5&&M(jHKbYXb`LezbNGA z2Vj89kA>7&Xg{0_R9q~EK;W1ku$+YRh%FazCe6Ib@*oTBTj2Iv^ z4j&cTHCEsOc%jAcRO@)#X=A3se5aucgeph#^Ma-g5KHhe$&a9EoWw&}RhDk%eprCz zS$Y>)!?GOh@r1Xqs+{gWkSV_o-{>JtSLH$KN+k(a>qqs*^(Xu6Sp5^~5)0Y9#aeaw z#Zf=Ki^$mKSPuuW;HdT>%H`_7kE1k6QgG7O>Mz?@5$D|orQmz&hg9e=wBXt>UIKX- zEAdx9?c4V-wC;k0H_E#|M3Xl9;Li}=47eiW0-q((0n#ltNEN(I?W)VM5dekAA-VwM zt~z09$Hzfj*4xFZWRDxCI)v6N2`d{N%y!wc#MHcM&k_UkgI$sKEHTiR;aPeQ*~O=G zxYaIH2}4>7Ol&`@r8H z%n)F^$9&okJ+X6VSp*};L>Sb`2~Mpvn!!2qPZ%?ngbuElod#Sb1+YI2j(@%jP?~&9 z8Bt95g-qj-ghYL6ay+q?kU(Bya#@cN>AhrBp+P3`a00FA#XpnC3zzS(Z-kl3ymeOG zq~)L~Fo^^EFKT7$98;td|0OdU#$p}SYP>DKq;Qul< zOQ)MJG7*kL^910&4?*qH6>rl>3H(?b#RWOKWWiEapgaKJ2n} ziZcc=?ql=r<7aB|FT;w#l8O#suv#*~Stv$PZqz^%Vw8_ZCNc(l#=a47Ru*l+0EpH#&_FUz7VVBfXu; zpm-?9Of27N^1_1ZWs;G9m{>Wkf|yKx%9_{seth;4_O`#tWRc~`3MjgnHt}QR@Xqgm`;|ucu;o9cCNuZRpDfB_Xvzhcza%#=>>#AO z00G;!Q>RY(+eVYK;;5;vn&%2hdB<+1NmKXR5sp1$VPs<-MYns(SeXt`0MrmRY&3rILH#M=G)x;tk7t6hf~1|t zupOgm!$BXQ1roan4;5t%bbe$QDpaZzjeLNI-K49Wx+`F}TiHU*r7nP`)4?t95Z*Ko z;T4H;4iEW9Ep-SE^7}`{5&Mq-s%;1%yIrypEAN;W_r{Jr8oyey0`14N(Xb`V53|$N3 z+C~=8L2cE!42k)q5ZoCU01s296IAA+G>n+5PfF{~8WN{N?!0sP={)%D;vtix!I}(D zP{@xL8Jq`*M%GXho?sOqhz$0xL4M$&pW%f?sS@zfgj_<5n0UbMUc&?Jsn0&Bzk~oG zNSfhXyp=j_q+({KvkHDLD>AJ7C87Obq|<3;)Grff{uOMf2fGjtSg3Pc@;}OSJfLZ6 zW+uMx@N@k|EYELn6n9IxpT3!ynJ*eSV{7FQqIQ3p{T*J3Vz>n_GdN#pzIlp^qn#%| z0rSskgup-Z^oz)JN&~O?GI8E_dpag}G4|82dUlmS{hq2%(k6*u@u;U-2jDQaHF!V5 zpQ-AwNymm=!VOdmE?$32^z+^$Zz`$=vjw&>q0M~CuiclRa)@pl<8g<-5M~X5~`DG%N8@}#u?67 z3v>0lscsV0lKz^VCqJ7h&VHiP9xyXj|G7lP<#SH0pHxQ{!CJ8T8eFpE6kDVn66$~uzefJrIhG+RSW5?3Rco1PWz^EIFE)d1G2xA5;i1e;#WVmU%;a z&j9PiW3UMBh$?9YQ_-TITQl3J*jh<=zFG`?FGGZU1V6KlRAYW26DRf)AcKVl+E)h6 zKRq>y8bAj8;n28&49FCV0o~_rNr3rLSCtP7xc&fX8Gd&yZ{F<$WC^`1Mf-CLswdrL z`yz>&B;F6X4-Wq9wSFnJjg@&=n(i4is7q2vZMPk_yfK1$^+evicDNsgEzB;-iUxGI z47f+t?BEQNx~xEf0;6R&tLH1B=5#Oe(BWl5L!L9mHs^W1sZbgVRf?`q_cX-in~KI9 z1!uNhjVSrfs9sp`;Ekzm`~CESY|p|Tmv#;fOlKL-lQDre2SQH{#*UQ8Gqh4mFb{9%mlE1 zw5kM5Tkh5h&G_%2_&lnXpxVqsX}+CWZd8aS3G;%JDHi$r z5I%=SlIKIpqH@EhcCG8fBM8NjnWD(#lkp78lcn}OFTzWZj~NMtub@x`;TYI7(FCAZY=E^V1)(^4@V(xP@A}gg~`e7-_yZ zrV$Xwx5J-{LDJXrT?LwL7v*;K>0-=_^6=^_L+Cj~(zu|m)lhvLC5;P>SAEB`k^sZ< z@ctWi()`rzr1`00*!iwEi04hJBXjk!Tb_1M&b{3sU#Lf)M)i^Tr^=c;uS|Ee`Hup! zx9WcdLtE4CdT(0_4V7qLJA#VbqwSaYF%l@tSAe9<5~f5o#R-a%F}=CO2t)~r@*jl}n(TkthUIvdt}y={{@F1Yn;LaNZGN4x z*-=6J=U90h5+l3j!u3MIk85>T_GrVvta;%yMVVd=&MONvN4-pV3B;ocJW>&yyub|aFS;ME}sfshm3AGmF6|L`+T$Edn$q*3lA^B z+DoM(XIPKwKc3aDEc#GUHu4og9(tJNB2f3>>4IQ+gFg=( z&l>&&u+4Tap-@uBRsifv8`dsbIo_dCd#ofh6R|R}iZbr-BL!djmk7}eR$Y248-#w+ zG5&|s^acaAYDO2^hiCWYZz{=O169dWx9*M=FA`lWx+Mq%hu3lRAjFWAENw zRW^6+x5Sj^2_%2o#=CW;O5oWz(ZIxFI?<1y>3i?JEvob&XO=$%2ZQFB$G*tU!3)$V z;$xrpoO}+>+2`K+%6ooX(x{r++RffRfoyRcMyhv-jOBb~nO^+l1Ph@o_nEq7gfWYt zsWeEjuv(dXRr(9rZ~9Z0a9G{&Oe+KG8dnBW?W~Q$$pX_1Rfr2y>qRPQu#1pC*wKQ| z$%z);xzTIhv+kvk)IltSDy)M%OW&{w`c|h0m$W=osT{QzhSDtE25rz+j?aP8V;;NR zTYD^M(u9`-*Td~TqpyH@%+5Ojw7|W!^j2ea%vR2Ft9toC3~phX(G4kze;P~Z?#gz#8da8hZzWmY3VU?LrtU}AY`Ly z0;1A1Nrt0&Y;kCe6%$p_ZT&84mKtUn=-#>j64ztFV=HZ%LX!o?Pv?Hj2Cbo`w{C@C z!PfHaKa{Gx_q=002IrGI70dMe_5XPc^S3**S@svhD{vTg=&=4UG@R$5WXjjRqK!D} zh5IU_%#cm{6c}gQDr(`r50q`fu$l$J3D~tPj;DGkiZw0HL&*Cg3=lUIgb0n?uwi1I zCbUy#Yp3`^OG#~JDT=RX_nw7)EMlnK+#?a^Tt$Y@m0lQWQ-3AUb6}ABlw)2L<4p#O-J|2dDF$AIAGj z_$0&eWYk~8c9QE{Ly-0Lo`>{Z!eltB%hKIE{?uB>|&ND2QbY7Y6w-a=?_bT5X@Xo7^wO&n5CzhSzdzwECyx)rWyDj;Ky>7 zmjJPb0XhT6@Bj(U^2CpF>PmK14u7ohR9~nV90UY^Z5XVA2SmV70QFOq+c7G!oaVE| zGZYP-VL8$h=I6l2LsY zxhN|*Kh+Y1@B#~vZtAC=Q{=LN2rSi?-fm~6MPdd1Xp!}^`v{T%>Z=q{%^V;#6)tBp z=JR5eTxv|@cAhXAN%oUv{Zt{VykH?U1rAYx{AUX;&g}2Q)SkHJU}!!`d~+`iN}`)1 zZ9_<)3#SY`*trNlDk!mA_w<|cb@s(e8!$y-xcda2E3u-Y+}B?$bbwGt=i6=3aQrzp zfWrDQ36oWGCdpeHxxS_8yVil#x9H{rT_^9l2U!Av@?rOG3m6KG6eSjaBB{E?2-Jk+ zx`M=FgGncgK`6)T#soo*3dcwomjiF6;$71_XK&uQE*xJ@TC-+wCF_jmu*f})B;(iz zAKL~ND}J~78YWk#RFu6FyhpD%CI`H|1}t8jLGF}fWEz>Z$GJlUpE>kQvO|FGcJ5O% zCwdxt?$iF}EE5vbo z73xEt*z-~kKG@BV*haGG80^|27 zgzCX951*=({wF^n4|Vb@7>VD^Vm>&)=w(wsT`V>l@7CGeE-@~f4XpGPfcSWt*f2nn zcB^HA;qOv>h<;lI|A33?AAfF0wWklJ-}KPS@NFIu5{_PT;l#MO4D610N60U*Ep>^; z0bhTY_fO+G;2p`BOS4St?=JIkKOgUu1~^nq>1V4qRqcv*9>au}ti=RpC48LqwY_Ab z%-5XX-nmn}7;(ukI5wP&%}v6L%AV0Few<{^_RbkYjG=f7YaK*L1h89(HCd&jrS8FQ zm>Mc(8y5eakmqU%xrHpXJX5I>@kBd-Jm+(=QovyAO`7_}4kIF#`vK8+?_40nkGC5L z=j0TpqAZt4RCyi?CZxJ5nMG`QmO%)8>5HCI$ayhaZV=*)%1sO*WUC0FF-c_aQaCw` z?3Ap|y$EtbLhKD92&u{wfEIHtEIzg`FIV}&x;GqBUm3>3*H*T_n^YYZY`{TZk*D9W z+kR{eil6E&g8AXjKw~gn#MJf4P^r{?im`~ny5?PK_0>*M#P&5{zpDC86y-a?5U>@h zsL&}HrZ-RgZ5YJGz)Z^U8vHac<+jj&Vlhcv=tm2Ou|BjN$Ze#d?$7oE-XJbps2SW$ zXUmsK3Qin=>Mo5^5_(Y`*5&vXD{-gk8jvxpSf?MQ)88TCSSbmH=(3ulYI9PC{@rD@ zzINa2-9nm*3U_F|`B2h$LA65wS@XTDJ6QpsD_IR416(TX#Dhpi!uI~c3P32}_yoa^(`huPn zn>g~Vx8CXw{on;GrVebVw(1|DnVHpR^Ftjx>+>3K2i%*zs5{xKjSYDj1Oq~dyQe&% zW!(75G`-9dG|Jv4PTj6-3*b^*?me<>;f=a3_Yh?}VqKSM8E6z7@tq{f3_b#1$!pNU z^PM!jOAr}s@#`3OF&N?5*zqnfdcm#j)=ks;7n}r5uzapxuLO#Pa*+(YABM?No`)ym z4DM4w=wpm$paMttm!u{A4AVE2fO}cHq59*2-iC2M9)qsP94g5=2;;ThJeKPmPKOIu zoBe_9g94}?WBix}SJnR0Zg%$Z=UU4)B z^3Hc}`@T&9wZ|#u$a-4U#svkf6>4FsH>_8~`Ei+mFBGkG{+&aac#Q*w&`-`--NTP6 z$?b|wh)kDzS>PLJ7DULc>d{mrOfDuvRSa$}l?^3$H)_=JB$)P>8GY8Ca|}PWK`?H%f9TX3w{ehIQ-SJZnskh>w6&X| z6)Lp5gakq*@tuGr&19J((|#rUf6jq?jsGO)C4H9i(@vd=g@F%uq|i;RJ!L~8i9h-C z2UV(^;1(m*SP_#BhZqmk+Gg*u_oMeCX)(X`E^9?g}K= zmjfVe!^MSH`#na!|~)F8+o4L+NIZHIG$V<%<~LaBxWST@nla@ zoEKPJ&U^c^TO3b);9(c-cgao#2tvCi@c#TSa`lfBTv#4{wMf{%5^AgZRppB$GU=k+ zvRWb@RTa&E?U;7A17CzjtGbQT24dBskJOIP{Wpb!B57GEI%-#VBbF6}C<-568HB$U zO;r9}NF7$B5Zz=NITO#!Ekj|G>8RW@@J(4p8IB^Jx7O-W2(U> z$yU>Sdde?gMkI;N5t?DPJ4EE+|*~Vi|?5YgO-wZ8d9PSLb*1>7&RSJo@>Wo#->f1HbWdR zs$WM@Y}sP?1DH6CZa}CG#`Z3=j@D6*bDa*;2#E4gPozy{RcE2%Tx(X2@MZmZMSISH z&YzF`{PO@f0cI<&=e;^OI6-|~=qods1K$FP_9{_~@5j<(Uo5NzX9rud*DhM5ih{+# zd#?%=j80~-63Ce`%%FsnJ`Agqg%>Xw3PUu?Z5u@A%IV=?ZX8iZ1V6Xp8PQ&-TlzhQ zb7N8=9WO${gUbk(Wk-xa5Pv)%Ki`zo)o7UA1QUaWYqlKHmVF{tWND+86XAE5X?P(# z|HSUSg2-T7CMXYF1|vLoDdDmjQ`HJqMhMz30b3;_Z9}95TD59L$9A7O?{fgmA!Hb8Pqm-XY6R~h(z2Ywg`YW} zM&?V1w5>tyd`T32NL_ofTq>u+m9`UQOx3cK#)=>6lhCuinX}Y;*{XUp+!>Mt+;!jXmLq^03k?7 zNJt>AJM(;J)^}z$?{|Ced+&=3KeA`e|C}@O?2Zd;lC{j9n9@iVm%I13W3c$;%5I*JFECetyPFluH5sz3 zyuv62Q+l@jSg>*4tY@bGP1rVb7-ky6v!ua_C6zM!&Ghl-(A9fKoiBO4$ZqxlF2}`> z2Z<9#F`Oc<15Z(mJP|f&OGM+yM1p6V-cBQc{=LgphZ%FGonhczQn_WS2DlHOG&~H| z6NfPz#oKIHPP9>kWf@1$T00vgubE<0r_-5Nbm)9KkgAownh)&Eum;>P5ImjxA$8q4V0X*rWWa+nv||(PoOB z=lkGPFk6Q^_Hz`P0iQ;wE(f(fTGPkyi0=2VC}j4u8@2{-vKgs*_?qBEzH!3QY+4)x@!o`^hD{ zVxneFsCE_0VDawxARCd#h1zVjr1Z_ItTOFWfc}r4el8uobL6V6&DH6o z;ha6@cH4fRcY67m9+oF4ovD@Y&e~6{*e34(23Wt}t~5aTg0PQWq?+QS+BR6m5N+W; zF9561_@P);EC4?f6_FGjkn*wuZ%pQ7JZZZU2{pngby0>))kUhow7=qwW2*9CpQLN9 zaAhctsls8ECENuSo+ROM9E7&uq*-S|p-mBV=4j_#oz2fL#ic#jGp4AaUH>(( zuk7)|_^&;EtrcLFGdOKsIoAw-;BXH^L7_Hbc{O86rn5r9Zi)B-Z3w{tlXYATcn+M< zh01imn5(Lqgifar%Ft}7-R~gdAOHMM<-nJ;l*o`PSCgOi^xqU=X*M-?tj}L-_+r}T zxbAHz(&T18=I~JkG-byD;0lzD1@S23Mhc2ua;Nv`_|?PyM}# z;C)sFo2K#&dELe>_V8dGL1=KQ{l$*x6uDwMP*Ug_F@HQJlR(yZev?ZYm5{9sOlV=1 zR(xG3=oTa#0G%Wc+unrsBIh#f$pgH4(S95Pv!QfHORa~(d@CAzxq9ztazB?q5B&ze zPufaxnVWfB`~kaiPGsvpl9#{EfdjL}F>4WcHIa}=Q|YJ6wMc@CX%0Omy>*UG0OVIA z6Z#_l^|v}tBaYvQpuZ6sNsehO?fJ!ynaUg1Hu|x~)1ED7sh`18vOweMPqh=-C6&DV zL}yxvuju6vVz3I`7DEJ9!N5WShZDw-l@?p7=O}>-dA>OnQ;Y{Yr@XmKR=ABOb9rnP zS#kpUGi^yMrV5LE70Pm*aAPw~NYL>&!@=ALa-1~^H@PpZR!6QB&~ zDDw(UTf<;*Rrk*->r~p}ah4zX%Os+xK~+v1sf^}FZ#p?pFhWqI)BMK(cE8-X;8$13Q&1Rbo!<1XsJyVy}KJLT>d5Fj#XC1ud+BOEt z;-4%J)dH2OTP|K)J2;Q;112z&H~6Z_ zVp$}^(bbPINCiH z!|h{aEBlto!n^4&4_A~e;#4zE#)QNl{gVhrQgVRGsitT#8Jd;T%MayQRphjs1n_T@ zue^=9C}1h>Gt-7b9E2CpbN=2n>9a$D>$B? z`3hLox&n62gjIh53*D4<3*3BW#o#x`*Oab!J&4f#p(Z_Vh=&5ThTGY;l{7)9$y@b! z;IWBP0^8W=CrJ;gWX?DUO9|u5N|Y{ioyPnRCK{Sl+cOX!h=!o+1pQ$-Upi~D=I1c^ zdO1>lsUJWS5_vrs z+LdnAs|WdVv5>`}?D906i__ITbE0b5< zXu@50_u$e$S-rq{Ex#VF;!CCfTk+*FuGF56Ps=^xE&Q6AZxZ60(qQt3++kbhh3{b> zIR?M8+mhitO11oNp75lmEMxr1?H}J3d@k)0xVed}m&mlN1#3+A$0V42U%Fy)|2|#G zf%&w#-l2W%V_T<_J6zgO?z)3UeS-==Iejwn_V_8K)+(dX=7nQ968^6XG&VHemdz0BgNzJmIK( zHhl=~m$5vjMc8^tdfTqvAim@b?g_xr`1;m8(?_9@l&qmL_m)nK3xx z_=7cK=>6el?RF3I(`Rz}zTE{Sg6rX7%G73fRw5xPTFv~PC- zmMEs|rM0S|1rDgHYC)I`pL+Ab?{*c!8q%<@jZFHzNBUePtR_?uwk3am%iAajv>&099HovxV}fOj_-z_ z+P;ULQm`$Ct|{B7^&iGejHlbEZCpQxpg2=y8;Ccg+gN&E*ku>KIGjzG80S9pzVc~8 zY$_p-33N_Yx|Or@sr^o)6n)0uV*m>Kxdo}Ggfbx5BnO`6I`ZPAz7L9%@lZK(kpT@H`H7rAi*MHY# z^!(%#T8sBOKVv zyu%~tpkynH@y}X=yA%*a5&YV+BJMNTPi8nji&~QeiadGrXi7(TGUedlw{N%g%L?*2 zVOCBskV!4&yo~V=7L$gjD3}y{)Uv>GjJM@CM9ox%DEvt9mdPSZm6fb!agEM$7TezB z_dA>+rO7eRDlc&~`z2^1UEoY`jb@*K(S;{MHxc8`LI9XA(!pRam#tnG{6g6Hva6MFkM0*FY+0{Cb-8llJM)^oAip`r!4l?af9}GGggTpU07^W zYHyhZhiluGXorPMIc2p{v5B9tCN=-?boM&0(%Mv-u<@*r`cz!wg2<1=cH9&lBjWxo zs8t{Vu0{Y>YLaMOr7ChewTe~P@O@#r^4H)h)Hbq~Wodrbd-hnFM0*Ui-7PE~HM{?- z&usg~*@m}>#ErKBTf*|CJLSbc#07#+!rCTf?Vd%y&>4yRPE zvX4yVzzVO3x_f^SpQf;5uE>@C0wB_%;a zDSz}H0fxpe1#a%Q^30(KM_&`J;jPOJj<$RzIv)t42N>r*oXWgy%Q_iM@VJ$3`8w5bf-sm&{} zwY4QIE}YMok)F@tIv(hn1Qs$h3@T5zK(NSEQ#yPHu$U311n3BYg(!)0U!`mpyrS9Q zw2t-kN`S3=*P{kl1gt?S-r-~zQz(ip0}>75k;9M^ zOxVz6kQfVMS_O{X0Qb5(7Z(Vs;Di+z&lWD`U}N|0`CT$+Zq|3(UQxO`-KW(pT=bKj zLpwu5M0GzhX{K!yxOwL#oVm(v!YM?NnXNtxCxjdCssdQ#S6@Jb>R=AWBx(j2b+Lcu zWFeGgRium^;1J5FwuOS>;#O@o7_TCvolp_&CU35h*FGY!bQD>ca}SAZA^@w9+u0F- zQG&0mqr6w|(`eF?Q_OLhd_|dCh#%9Gf*DGpV80SlkX0;49Crq7y%q+IUJi4AK$Az^ z9WF=FFa;r^!xRckeMo{r{^*n`0~_4C?{CQ$j9Q}l;y`wMQiITG@||sFIEbwpx{(f+ zkPb!yjKX&C-;a;|X!->mP;RO&&&$J;&XA`@9iewC-~tj@7v(%OE>i6jz}DlwnwpH! z#Z2F89OAEsS0cG5aGlQRHQ-XxNG|}cJ}v^_z6+XOzDTmGsEU4(GB9(Id9NpF7|ORZ ziJTkJzkin!{rd-zJ0xk54gpbVX@sP_gi=gQWHU2F=_V~@C;G-%(U1QB-yGm& zrU(X8N-V*&@tsfKLTH%ufO6z6ydDDVD;T~%Ku7v`tUc5N%jBw-!%Bq`vQ+tI^2ISF zIuvqC)e_Jv#)t!@#;52IT5iR>O;G-bYZkp5BusDX`nmGq^Pt(k5=n}LOdvxz@;H^ONY*IgN0asC1 zmqM9gzy5ivlF9eaG5aCHmgJNv1S>hyvD3;h`DR-0PBkGk&y*zr7N+WHCmg#FNxpBq z#{R_d*ix=)DRkePOkbDTn&0%y2fOX53vAC#2xNrPG5oBI&NpeuY3`8!o z*xz)}5sveiMu^@%(PRLl#p6&y_Om4@Og$60C$1AF`^sqI`qS+`Av4D(kj2d4t}IXt zZXYFNE!SX|!4mYivemjFD{&F9NGnV8^}sMjE#67we2M%zlaMbpQS-ATA+=VMIAJff z4+$8a#-Gn1tM4K4aFmJBGBn%#jV5nDovh?tBY+NwA>_P;j1gxFZ|9xlG`f4K2{ed= zZg`8Cj^U!W1*FUGjC9!Kb-Ca->z-d^FEx=vDE;hhU6<0ipYGwl6oi&3^GZ93pkjHg zoXk-qT2K(4RxlJy_(TjOOR`j`P`!WjZ63=yhmS3_AE(Fm~Csvrz_ z{;um#0OxsGU&67^nBOjmhYka0ayWn?;VJQ-y!xZ z>wJgu%K!{m;>=tYldv~Yb(D&EyKa9g9Ulkdr2)67yM2ppA;(cqwVn-Z@ax|{n=09? zKe(m_q#O81*yKQ|Mz!H*aKF2c$LR^X(4@U2I#I6~obufUp;sboP%2JvL)GF0SnF%# zZA*k;Xx#dVLEyRW;y4&}tP+dgu&;I2v&sgYx)={;qL~Yzx$&t`^(W15F2CO>49jTD&TEmou?BusN)Y2u{ryvI|%&YPc zzp}pc-s8ai?B?u(GTp-$HEYZ>%SxOwh~a5oSojpC(d^UdAl}9DG=FW(PK9d-y?btj z;bEv7wkI1ff*+K(Hc0}MeJ%`<8ggH5UIuSkmMmzAZClIwQuYqWxpFRZ5i z?|kiV?63`dH{EU`b~O^>nu-yW|D^r$$YyfoAXe;&6QC#;yT9>xF#rcBM%Z2zjlQwJ zMml{=pHnM8t|t@lY}IDJ)d@IFYvQRg(DQAFP|Y>+BrQ;8CQPJ$1`;9J?v2tuE~ z#lQH5VKN`B3o_~sepHNFOiHyjX@1zxGt zX!4P)7Hg{KXMhfSiI5M0=e|prDRR>H@M zNN8RjEB2Ivw>MSbAvjBL=wBvi#JFS_h_yqEMkmj>I;pkr9!imEy zJk{g6jU3L3b_i>pfg}hzbR}H`dbLv`xmQIK+dvLzB>VhS3S`P@T_V#xG7)7Fr>zqq z8-ibiKA9(UFiBbY$0sko+t*oDjKDZi6+a z^2Lb1rMFFaaQ+}I3o@Q2qp8>83J`kgrb|ci!aCqVguCPbdON@Be% z)-+GyljO}GRW#qnCzk_sA*hWjlxklBZ4vCom;0$O+?RBSGuT-j6#YBKgTt1mR;0XA z$tyW1Pxv;Ox9buAUJq3Iet88ek$S=#|0BF+=NzRulUJdk5kI4P7kq#pbUd}TT-#t0 z7M7w6uvv67&=1e+mgx9FMJ{X1E4s)-=sJlm8B-+__KQDhfQLjE7McTQmKUe(AXw}; z#13HoFxLnCz6kLV-(iNCX7rE>!@L!ygDtHp#6Eu}5n0G>A{8W)S;0=-_uC1qv z_Q&y)Y_xvF(RK!lMc9Ugywmy3Y(o0aWjptJVyuf}qFGgvZ2K2Gq#brYVGk^Q!C2D0 z+i;j#OXw_(@Qky+cxQ|BwxlMSgO#>tphpG0lq^;RYMHv2Sk z3-YCzDQz3KEyKWOF{J72%??w-=dA&HcS9D{u8s zL^;ZwCfJtNIL=#^-yOxbzmF!Cm$9V}<%i|Zl|A4cH{X4SuZ1mpwnaH3)GR*qWEmc7 zPo|bYg&vS@JcL{W9As+{5%fD?lfvaAM~+Tu60nfh`!%4D%$#?J!#c;RdCX&O0lii6 zl`~nr+C=U2ejm!UjB1mSvUrQ<16VbbJw&c=TgMd)y1?mbV_zR$yfUU3~U|Y=R z-+(zBK6c@y6BS5;pHK}l2a@i^Vm@F?bqoZS49D1{rW8jhtD=VadC|=Fv49E&2sl3m zqd%Pd0|Ms7*rf6wolOpSop!`dua!}RHj9-zj=yCRfN&OR&z^fEi7U@QcFZ*xf-fsc z2L*aEtBE}}JXE^;rBJV;_aP~=x)4I+po9Cwrbx@W=mwmPYBxTU2f*E8qmTx;cET33 zPeXcXFFMOsuPL1WeY>47ywZ@qH=aCH$h+#VFL1ne3%psN;C$(|BwZ0qbs)3@h6DcS zAgH{-z(mQvXa=*PcbcwvPuv%PMD-2EXT)jCx{Drc_^lA6M_FQFqaAIeT0$kXF%J6& zsLcbbgdEm1D^K%vgRsO$M52ap7-ipznxORwhdpjUef##!XJu1gH+r;WfH-x&5Zbhz z_)o!6o$drL=nDtGBKNCgCu6m*emG=4ozg^(7zcZD$6)p~4)(;-cuhlj_H_g(M6I)g zy&(dQq?`a?!z1)4Osg7jgGs<2^6{Bhx$!f!A^Z&dcK*|ZzXNOO!|}J>8l1K}^t@== zteLujF-5S_qw3qleapaIPTRrvnRDfm^Dp~J<$g9%X6AolixuCVBHoLSP}57=p)-ul zLCcpvCFeyo6+&=YFiQJoHtX8zetcfk9iC|od$bANDC9xcKLzT%a<=dFYi$y zDPHDMy}EV|O;TFOv}v_WT0j9cMl+Q4JIHYcMmyCJy()BaugYlN7;jP+8YsNzBFpky( z?l0l3riNJ=(9|(lbX`^V!0?nAdxj^wn6Qj+mW1YQnS!mO_Hf*XhQS(C3zjPcKeEFh zJX#9Nj@289C9S&)*FodMrfRCv6CA9mA$lU=4y|35xn2-{T3*M7&=X05Y8Q|haH&g- zxj2Wkg9{#8q~5A7K^Q;QwScG|A}_C!B`^-DY{sC@hXX`pm-cvQB`XA%JBB8Kd+>8l z7WnA@7dcRJ(nDCQx?Uhv_6cl^0QZ(JLBEBwT6WaPmTfBzVHM}ZfC?=ghvEnZD+h1Q zo*VRSSccPnuz=-)V7Xh#+?2NwGlPUn08;DyjmDcRtCxnrwkd|P`@xW`*}-k{+FfT~ z;}>QGA&QlgS!E*dSq?kqCbK@l`hl#f2&v)(o0@M;*OPF+w!7dHr4ZjbTZjt0X_ z4U58ym0>b7_x+)rtHK(cgt;|DDH=mFhTxEX0+8T8zZmZarIP%PS_S;^Fjzg)Gz71; z@~N*QK1v_cjiQ=*RhQob2srJ;Ph&98VUKa-=L}Er7M?(`^-g$Q?1yKV>?)~yEyOX5 zeX>|Mx~Fh3nWK9cBKIBapP%9B-kC8tu#fIzh;|7i!4~|A;0J>CkYd6ok@yQHKR??* zhg>&ctW+=N;Jh99$HL85tE$oCgD0_lie?4yvgRBpx4A*6szUDNr?2d7;6M? zU{XUdwgNCeL6%bKAi&0n)nrUqoT++BUB)Ye%?%lNw#*4~*zX6LOYE_n|51B|GA#eg z+|IV7wZr|Q7Qe|;BDRUiXCY^(mZLw`k(AYZ`GZxR=((s&-pJ*ia?0<%1>5N6&b&?}4(;_~5&sM|DT^CjAa!=@9y*l3E4AhaVySxxN zKbe&&;|{^Qef&CV5D2r$C$q6y2=z-X-zLy`Y)Ba%LOI_4`d#qCm*NtnUE~>JQ*8=N zePsQ2asZ})Y}z&QJe@;mn<~M?6rBfRl@)tFfcbD3aJ(p=pLe1h8WLbW+$0!qDCXq@ zLNY~ts?&u5^3j+&=0_{oO7u*XD@WJ&n@f8H781(!}!d)b?ac{ z;}Ba@_eovcm^N44I-lfjk{+h_T5E)cGZ~uMFmzaI&47mYF#gW)SShFDQX4DB@a28V zhG$@3V|#2?y4V@Rh?UA29b;P^Z^e78!iF!?Wx63)PH_jv#SSAK^@O0~Ik4*qo8CK=qRb(% zTFg;Qw&vKu8+|@s;a%jxda4@Q;TXv(s-eNwc}>WW(6AkX(pAMSIxg}huN+>zi;j97 zcnn>1IKW;9h>H=BPIc(8gXWjOrY<7qobIy{e9{g4e;pJ2enxEGV=C{@F=yrr+pV5E zo`s*k5b<;jpZflZ@e9hrvJFY%upbkpLclB>r(OtW5-9fIMkDI2sEwYQum@6i+4n$N zVB#vIx<|niheMc*!&2C!z0YcT;>8RA-s~rzJsVlh?WIGwq=CwNOA)r+pb7RXunRwt z1cO9M1mG|ah2Z~YJ|QjVxeBL=^wc_#Y!aL=UAGNxKE7d#Z4u<9W>%D!8g})(M!k>E zJY{lLt~_-~|0PQz&yMK1gubl08yI(2-TOkZi)wxBjluooj!f~1-DltV;?nNAmg4`)ewSwiB*2TFi#c( zf7{!jdus}lI)UJa$ZGwdBcE(_^+PN2rxOP*P{tZt5yF+%IqwC^;!6nOMh^=S1)C_C z7}PMZxtk=_O^Fb5$;W=pV_)n&#DEO{-8x%OGi) z75nKE>d#l!Uy_m*@eR%zmm32vuQGvek?s%VJwZX z8ZHZqMiWl-vV04=M81)yp_tqx_~2!cMkkVCE|193{mo-G>u^y-p$er z!(*k29kti{QUJ8913c2c)I`%#}Jcnxc3DW>F_rMm^8^n z7uAUDYvSdYY~Oxl@AzgJG`9TA{#=cu{8(wh(2NA&-cPxAa?&FptQaa@wrtrs(W`5c2|XRiEKki}eoTn*;}M*r5CeXleBc#LLh%;F-9%AjQd@>MVwe`XQn z0j3C9S2CC2W6pAmoatFY08sOdJFvksfxbgtpL2EWVw?Lh4zk03B>0V`+h7QKMv%z1 zhSx&PhdX{O48!wz3Xb7^A{Cy4mBk!}v_Szj+VEMax!jv);7{arI71UB05XzcQ`Qo%d5mu*Q}w^E@ZJwS8Op@T5pTNrUN?+!jtSUbi_V9)E7(N+9~!WxUVgS zr6aZ&Y>lvM^FVmm7E4F30qAwL3ortUkGrSxupz_tm+*x~?KK;t!=d4G)ds5=XRn9G zWB+e#^xk#$eBu~Y%_b4^pgap$(_e^E43^tOoz&JTo1_|zfaQ_Y9nWFnYGm$Ox9KWY zyia3TpFMU0cG=3)d>IDXVpWDwn?9PP`I#>OkaJ(CU3oKtDpP~!_$Cnu6~9HH;udk$ zQ{gEnvUx5t`Cg(92RtpK=M0S@;jB+kU48GexQt=xs?Hz&nyPm?Yaf4 zj~X?~7sAD-&Arv%B^>+Y`a{Zx^P=v4ZmB?iqZd0;_k7i=R%VNoR({(vXH5-GR^-F< z7oL%_-qeyeXM#6v%|{J0voyM6GKskk?froo!+5qzB$taL&s!udo555lm&;@?G#F5x zAkv-1N<`jjEb|7F-7JPGP%Sv<@g(-D3vFo)I!b(3s9gI}|P}iRiKhB_OA@B*=DfAFeqnBZ`mAtDRz7e;^colhLctQ*C=@ zUoLH9uq))vp`Xi@|9NQ;A+;H73hhG3E^P?gkj&h6^AmsqH*c=bXnpkllN_iPPDiDb z|MDc7$;c3S18GzSfeoHU9fI`Pyw$Z|N%(-J{MVG=`jWeF zd9dNNQirkQpp~Qh-2Vofy3b0qguMPI7;I*8;1*U}ny(SvI{&5SvpyTeNI1r>(t&)j zi;LCDf2glu>*(Jb2+Btq-8Hmy@exM6eoV?*LXHZt9^au~2$>|rfC*S-J8Unx%NAvt zXzn*;gGMvY+~KQkh^9VuVTB zLJlOv_NC9C4pu51Y^vjBXGmXHmNs`xy+kLPt@5~I7nfHt= z{PjUcTttwlH|kBtQNRW9jc@lP^5p1-I{@;pXvQxqKu&rHF*)-xE+%-Ppp62c^G}4t z+2rsT7}O~s#>Qb1QBVxEg9E&y=PT_kR^m&*2npc^f@HZWjhDja$+-x}Twg|GZ27MseN)3;KA-iAUbI6%be}T)q!O5piosutk_*3a} z8?osr4+&$Eu(cZZ`#86YhJY^qT*VOoNd32Rpo2I4N9K0m`>-Q%n)Yv`HH>=n{1)S% z8QlI<(@~ygO^2$p9Y#pDZv%Z(394$%QEXA4*{U~aYL@CfBY3+B^ft?G!)eb<<1aLh zhA1DRfmuTY$@T_jwE~jo4UE&n^>omxHy7e*#LcRQMw(^KG&M#wx2qj#Mh_{PWbXXA z^X1&t1D6S^ssB^+R+kugQT;uPywx#O^gB)0;Jr6gkHdc~YFMgNDR)7N;QkzN4je3~ za@?v^8GaNp&4(+P6hpJ{i*7a$I*Ik7kqx!<+xsj__gBRWb($s0#@?~DiB{k+o5mDu z#rWn%SVz{H?k^rsTIwF1$f=aMp9Wv!n{RbDD`M?Z_?~0koobHEeo;&}rV@2=bA_4_ z!*!st?My5!gO3HnWZqKD7htvQ2i`Owx>K_ZazjBp%yGIpsN0p{`9LYT=D zsWEaNoY%EfwK}`GdjX%-c3TF&4fQ#j$nEcwm#{Fqlz&)0b%s zqsoIW_U+U-|4kfW)Aoiv(h)HCD{}4O;?4oAK~-=Ojmm5$k}4)oY2bSzlgMRg5ATv| zVuhH@>_UF919Kk4eeAH`alE)c1MAsS?REs^tec3>Wf7We43jT^mN7%QmcQ~x8MBob z{}3iU_E@z_LDP8UDVimY*wM_00APxHyn$;3yTG{waBb?ulFXZ64);B$oia~=?%4f8 zf@EeHrDR+HKXzDz&W%OChURNoR*^!H^NOMp&v0)BbB2xmFXXP{bxtoY71s^1B4kEoSD>)t64J$?gbW17>TsQogAcvqQ#m zyeli1aGdN9Fd2xkz$R+<7UMq(J;Kx#;BvVYZm3NRj^xI5s=#f?wE6?9d00ij z{3uU^4SfTpV79s$slUfGx&p zZ7J3rq1>(vevY>GM`Bzbjfr5tc?TUZg>_N=e?TJxkzH5Xkhpkc%`7{FNd zh!K_piqwb$jI_yHd_zr>?_DDEE}|>#!YgK}4r=%-_pIr^1YkX-VES9=6j^*fnkFY?UHW8n!9ACBj55fak8bXOo zX9ri9#5HnVyz+vk1@+We#&gh%_|&zf(55)@yTR0`9G^C&WUD)=`)psSTubq4O`dyZ z!^-tv8~}`rr|dgQ7R>y+Wyn?&R+x0r?73fDS+#i8jQLQ$!c{xLk%c(XNB=xso2=d! zhR+6`415m2)x8rx)wJZNbIGv_H(X!6aN)wT*(|{O=IJ`=%n)IkN{x9y2jYVT;AL2{ z5w>t0iM8e#m7D=fllRs_&O11)d_Wp`Q3ooIGTdE@<(?37KrTRBJoFz(4fg>db8Kpy z>1no54~gux(Lyj|Vbc?V4XY$nYwBffclz|fdZyHmAzCjp>ng|?l4h#S#*l5wd)W9a zNjlT!F!|X~gzyScU*m9+Gzy{RW~@IZLn(HFB#%NaqaK}DNA=#R?h-&uk8A;A12(NLVm;wkq7q}TmSD;U*c&-#TsomFG_0sE@JX#z#S4cP=X zliO)=V4k1AVZoglp6-2t@hRQI5dN^PCpr7-aFATO_8r1v} zJq%ee5>1CgWapztOee;}ra*AXH)wUnI{A3hYo@xC6?jMdS-aiC?&7#s41lFu;yTq+ zzFJ^{Q12{UM^JNT+&2QSAvxm?4He%20d_)EeE#1SC!^X->V#UR*PZZV66$H z%jj1oROI&-7<(-Omg@>CVNBNfa+qzXy?MY@1d9R6E|Z_3IgvbJFOmgS2d3(~5N6vHf=)oq3ac5Pq| z4Cq{^sh;29!M39TjKX{7bvtmay-kwJO^~o11~2_zdBu8gNYWKc^VlSIEuDjXFt)gkoa)8tY5O*sNsG4>ufLOPnLIcqJ=3G* z&0xP{)1gey$pu{yhznAT(cgGxUc5muJYJV&u=>$BNbZSK0R}_M^-I1p_s7r6={98I z4|uO{eqXQN*b|ZjBg7V$`J40FH?~i=u1mQ2z?l$N=FP3;tg}86|E?UU`__SHi!!?9 zzL?}hzkB4N^~I&}Xq7->PnAd6P7|i2L#TBedH5BTDVR)#(Wl|c#*zJWG{EVzhr}{w z1H4~|KePj#dYqx%W2Peeg{(xM4m=5~ciScNn3O7!m_O?}qeK?#6-y${EvyIDTVobO zg-WRH&R*mhI~1)&Im1D6S)2B>XDZw)0=~V5{sJjot>whI} zMBb^=6w@b@f1Gr?PO;FEs6Z!}`&=tY^qo^&!M_u_XG6s{sW01il5u*R`?ch+H8J|k zX2Lc|f0!Xu!h~VT+O`@mNqVCKOV&l9h2_AXnQdl!jhpCxEDh9YAUaDi#>gDD z#$}qc*$_Q%!G@*2g7j-{q4dxgO>Xog+?<>BBx#l=S31!+(~R;wQnacn^XTZP&#f)q z)o_5^PnA*0s&`^;)zU1e&pc4kNGT^GrMM{!0^aOh7A%MhU$8(Q>EJ~^a+n;rwts)W z?0Jh7E6nhzm$r^?K9i*Q?QGqS5S&<~*6tDcS=FMOHB5Lc@sA@%j0m7NGO&7@f4*dY zs?keHQo5v?u<41Vd)(p)4R(a^y?zxdtR9o8iJG66?T>pb2UqWyMa{G~PHScMn`v)T z>(0yvIE3T8iD|Uy5Sk`9hEzlA*&n&7iTtNL`7snDX1-?( znx%Y2Z{UQh-%vSUiIs*8&;iP2ncV~@u6U|fWO@otyr`v~bm1P%?v_EwQ@eKbDnDwY z>7lFqMzHBpcyT#~SNRh!Krf)1C!nTFLABJl?SwNjq^lb$nl1&^FnZPJ)i}B+o9y)T z6nrlgmcOFfSmH;*sEvjTKr_6eVa`Iqm8VLKEnLOpYco+Ux=cw-QyVH8OMB+o?;uabZOqK8VWV4ZP0;czb(thBFj^UA%=tdS zGt3MVeU9)Wm?~Tc6Cc`#5V*qk$r5K&sH^}&eMn$~1{VV3o(jg7cE$f9kr24)Cyq;B z-RO;#yt;T+{d^DU#+n_GM!zEJ61ka+5s3=vQj5Htsz|HSU7sBEC+{f zau`|=*UC9dt!)Y9u&L>(n$3TU+`bPzr>(pi6eIqy`|(BxJq8vcf8|5lb6YqcJ^wlf z>ib1M9^)jCD>!y9T!<`5+Y7K@?TJsJSwt~uKZ7+qN0G$PapQtwnNgJTj{r%XN*nm) zuSriVb8dS93X+@t#b%{yCkrU1%OpzDF1czi5tagCznVf^C`pe?$^I6ANRs)r2dumd zm7?(k*T+xU>*$F^e=n`d|wYwylOOn!yFRaxE2TQ!QKUN$qmLf$BSUF+PcPeS5 z&`R}_B({g43uJjB4beR;QQzJsEBYVhZ?w&yI7s4!ANW`ek%GH)=`wZ@S;k?NULLFu zOxJ_lwq44V#eYqjXX+PPEDTHyvG`4%uT!7@Wb&HGtcy~vTD}AmRxXh*s&#lzVpM0{ z!xA1VQ}jM5i=j*_Q?{C>!mW6&#U$7=!C;0n9V3Iyehd9Md1CRKJkAG5jLB;zoqyy8 zpIj#^0(sy7zc-c4!Uzp`1{IW3?I91~`gnabKoxOc{(9d&IA?)GkG3jNpL^e}7q)I4 z()(lmz~_y^ajNXanf}Q=H&C!l)aBm9Ge2J9@8%y zOTM?rnmid#r_m2k=ysWRms%wXye6mDuOG#PqsaWA#P8atRu$Qo+Ye3z04D@do+?#( zT_Corvr)B+#O|yXgz94UfT>za0YU@b&SD#BjiEU1V5$o~nKW!Nj2>IuII_D=k*vVV z(j!S?K9!uW;i!Q}H+J8E#?&^87I;3_4%sD_xt1cz*?F_jV(VRT(02N1pZBW z`dqsfj{2neV$9@NL3-YTogO`>!76R|Eax;BY?%T*_7~D6ik`R4OlsKa6P|=2QmGWqL}|?1JkIJJqeyh7U|G zHhdPUKolY0SU85Ko`cw)rCt|$N4B5Ck~m+(%17$Ilmk;qKTiJhsUv}xdukeg#Z!$K z`9cD?Sc3nB366xJ5V%<4kk(BuO7cchx3R7N;tEaX_5NeU1fog`4d4d;LmI@&=?P{uSX%YDtOPV*^Nn%}b zqyg~EORn=VSMg8zW5#vOk?CNKNz$R|@GGvOjH9von18FaCM3nNHOIfG%Pa%>fS z?TSp6D`{*c=i%WYW9@G`9#{<_R692LP69Z%iKst|p=z)-m%3LAGIAIy(q!}&LUvW; zk&hfx4lLt1&uZWdl@_CcfCZ9}}n%_x&=DPj{n&=kiawSRm96FFA763dG~OK^$$ExJ(nIlRUk!lRJ786_mFXrNFH0Dj zr*bHkf_gIVtpa9VhaC^wYl7D20$6t0%F5Dw*58E4lrI;M@J`|Hn!V@jSHHK)VvfWIM-OxC z7%on9Cw~d!x79`9SoxS;93sF@s+*l7c#Q7BUD*_VULI=&&kiqVDHLu*Ws(@aUMLVa(sxF zEjA$?>|%OYd|8W4(?!8v(HATbTC0zrR}W_IqNwqr8qE|J*NG3v4z^yY;eW%Y>()R* zB+(@SHKrwyTfW~`wg&d0`*Mz>Cz(0cRp2wC+*NYEU(4p@{h~&(IgJ{TAh~($GCYo3 zJ=t1csPM&xt;{RD$QXBVN$hU@_!<$T_@2eA|7>LHyA*zyzlwQ`zJPy-v9lrnP6^XC ziRLN6S^Y|LWRbg$ESc5k2#p>D!)HwE8A9=I8jR%$z$Xl0mu-;)z2 zpOs7xYjCE!RrtO0wYYq!v@lV<*F?ifX0&NWdZk%un~i^KY}rIy}YPUxpTuLAoz z2|3b}dFj6dX7Uv{6>UN}u2N|Li=iIoxZ}@HM?uIx#=@*1_w6ZBs+LT8SR!ZgG$ic0 z9s_Jh?ie11(y^ND*2MX**89m+tf9P&$ob0$boJItV(BI{B-dOU4uBQpByeQ0g2AuN zOMn`ZlvfnkT`Vg?yyNcM0)%ydhU*s=*c+MG>`lM1ck7;&V;1kTpi7E|WyLJM^v(%GhcCkYN`R3I7 z-O)I{<1`lEXx|=|Pfv~E=LE)KS`^oKNw6Oq8tN=#P2p_Kky@nmXP&r2Zm4lQ%umlQ zI#c;7bPUbKH&4CA2fR*220dfvY@C-p#pHB;Gz!1WY-ngytvR1U`br!crZGM~^&A)& z)lsKe;yjtpvNV6iNPFya^3Sl%_Iml?I6&LD>?g!74WB$GWP%oF=DE&690eGj=3NJs zSuV}PJV9?Q!_vH2p^~%Km>Pmm2RQpuE6)wCOl4R_9LLQKGZUT(it6Z+CWeWm*glir zOj7JSGs8q@yhFmunEV#fedSz>{{!>1+2pvw7K3sYYv{cF(* zrg`M?5NPv!O=9_cJikt^YdVtGJf?8qQr@<9*q7vtwfkTQRu4@cX!xwuBIW2*D^u|` zjyq=a5+bj+FRF@EfS3EJ?HUQRCUt~d0SZ*VPWBUUWmc}xw_1JK#N3jiU~AGyQ7e7% zK@Ek{{yLqb7x-nUHuXZpFLK{Z1K?RXo_y78=0Rw+3aa<3@Tri9{q@;Oh3c1IeQ#G+ z@z|5e{72H91Lc4JJ?Yh8K}N$>HAytD$;Q6T%nCAHK8YNjR~_mA63dMu4I%3gDh4Zc z2w@lCxx6Is^K>Q8X7G1x!bCV=PDOINr;!~@fTLuLGPjWz{{<{3AxbMf&s|Q>=@hw1 zx6f9A4Y8{ko2V%vEAn^P5C>`CMnIjXNhA)Fq~kS`f)S0vaa;6IK(X+;B@IJt~Sz;=xT z4;aU`!?NwR$EJhc=i=~s!LQIm47uNj#YP2%Sjig>e9ESE14nBo*jPltSoC(%AhN?$ z^kcyY8pYB}_K0+{#1CV^1v1nkY7mM8O3M`gXO+Xj&GKtfu#|SYMl;WEh;5djwFLjd zi0j_ZNq9Bg^O5+U$bpPMU3WNk2n&f47vj%OKSD(BZl=8ie%nUEV(>RI1In@LqUCU< zLoa26NVg<{`RhFx+B_K=L_3}pV$k;PV^6LTHhr5z00}T7UWpKQg-3G0Z23 zw5y)Hm{UWgVZ`QWE0;rWMa>QGwRPaANXJcHP34SBwQcg{Oh;{!qqnWeqY2{jgDSj@ zuvNVQ82g1yKL2p*`5-D&|qxab3*e{Y)zu`r_#aJ*pC-P%(p-$5e7_#nGR27-YLiH^34T&5JPA2Kkk10#{;Zw;%T z76K)=*;Uc+6z@ayW3p9&8amdG!+doN2KT3$EyD3aW~{Op%epL${6!n+Cihhg*#h2t zW1#jJYvRk~X%d_tefJok1a2V72RaFFQved}uAT<$v#|GHG@tJL#n|e3W)is;WCNuB z#u7FE(e7rgl&knWda!QSyw(wepXa=BiY*miHdSm|Y1S-umjrL!tFm5!-x(;S$#Aqsg9vfSgN8 zX!-<9?L`;p7i)wpivV`s10m;%yKlhpIlW|__NV7-NqV(z-DddxVvn%XKo!&zZt&Z7 zn!NEWw*pobCY&0}j#n8HA25~gPeL{{7G{9wn~<9~gG38_TKshR0*t|AKbFFc;(8}P zCi3d!YW(i34P-rOMuQs2V|`NnNp6Y-$9T|(#hoJZW`$O%2Q6&bQzwc{hVzn0R52by zo_9iruON}_1rS1&-oP;woL{ES=|Hng_D0uN_DBAgAm zwGZs=6=J!ctp{wf5UWN2%lT4Rn7hC9FNMD1&)1M6K8eK6dzm2THY7xgD64{W1s}}mQtt_-a zxnKowPA_YK{yuYhp2h)>oSu6y!M?t}!#zE-25^U9Zcq-R#1dR1GfhjE@uZy*_r4RZ za`7}ouHxl}hoQK5n(zkrjLFB4cGsRzF*tgYkv6<%)yq~4jzJCgXDb~8dq1cmyKaaR z;`#NVSNxcdQ>KBlgM;JYy1r2vta>Hq?}U~q%*)=<^Su=*|a!?%lGB4%eQYLZ*8l9kx|N97S&ktrIiCivU?gs;$^)CSE zrUk@2^Tpa@=vzX#>QB?ppN^gY+pM*+j*@k3JcCcFiGJ(w(adYl1LTI>1RO7ga@C*H zJjj^&^EVNR`w^h(J|Jfq5j2-zaAM|fFG<+v&RQrRpQsGIZry=*wGiaRy)4Wfh}W#%vq*k_;1c?Hpo#~4@X;jRaCOw zVfdl0*MA6^Q-agX)v!^+5~w^V>)j|;1~A)<>l&FBQlC}O{9V&JYvji#Yzw}kkA14H`mWiA9Vt5uz+<9!VkV;Ps9wGR8wFrS?jG|Cd> z!{l0qzjjI)!-MjL9ya;VkwIo(;3D1U{KfG%f9gIU0t3~~WX4|0F-h?@W8?7lCbheE z?K=8=^xybgBQu0x1GKzk^l-1T5nLC-spia4jq>Dy6Z%qYo8LvB*naS6dQ?qIU?xv( z!CoN^p7t=iMzYU*Ne5V#?(ZKcsKQnB&;nhIBbL~HKb+`)9wX21%dWu>I6+V%k9}JoYB(p@&2^he)ajUM{SH`PW+9<)nuvhG{eYm5YUXjqS z;&xbj`y(N;N2b|Kp(8X4PqDLDH}O>w8?4B7yb8Vtq1ymi9enuk-2U9Rl5Mwy6OzNj zVaH)=$i7M6ZS^n=Y{N+-Yrr?zm`^&GpFQT~aM%XtlP+c-&2-ezKgYam0w^B z0j8IRbbdZtd+!0@;=M8?dSxL|N;01yDSuu{zAc!QDH%-WRe{X`(jHE+`sn}%uEL>9>FIREaEw3fAm)6X#NNS%_IuNn{=8Xyi;vY&qOQjkL9Ww$(^5}8*XlQ9tlVc zPv@?wqtfrX4VE~@pSz)p9F^>Q0qJ22($OpT%HF0P@OwxU4_(*XZXmLN&x1Fiep{zc zpDtW3R;unV%a)x_Y0yyj1oyHPd;?E8(w7WwQBQu*J+a-bFg|Wq-%UWnO%L84}}qh4#+yqt*NXAI#j2JQf%j zj$F3%Ur&sBC8doui(BY%IMlAs={z4}VcQN2G=np0gel3;d}$=cyDVWS zo{VkQ&@?7l)<>vveJEms^;0n66%QGwY+lrN^DAuov7pIPiYQN&aBt$Rg7&F`^~HFv z8awmDsYspdUqfH}xS1)__2)f$mG~4kp~m;)u&HwI8{^2?90UVkQLn<6FP-fnfZib% zye)0)qMM75D|Xn=gxI!T#@U~-+cw_zPM$269Cz&o`ARy-k9IM+MB@1&bVayKoWpM7 zHp_ZKzO*q}78=iXCILH=0cEIEY0*%w6oqqQ525_CXw&=2*}7Kau<5fsEJ{~g(hLg- zHix1rcgUH&bOYLJ%e$TNFOpOSWi6ZuxfY%-G3Oz}=G5Ct!Rz{CVq_7E(N7Wy37a;` zW90H+5~X#)G>N(L!3_{t(q_IgA8-kPd&@@AiSdu_-3LrAQ8+!$OE(QH^Axx)d2Pwz z3g^o=&lVdPa{20doOHN8<>cHD8p*u6=m$`piBP9g(kd20PC1%}NzreTZkNbtGN_YP zf5TFoHgBwRH3HH%U89-jQb$N2zAgL;%SD9LFZ)=0>)L#}rf)=Qj5j+$4Ld)BBpSva zl4QzGHPkLjR=J)KVoJrZUx*!+Er_ts!lbTnQ(926Ko6Z&e%r@Bf?R9Y5Ax+uKiko5 zHO~Lp513awKU_R+Ga(g+NAQPT$mxOO-)>Hdz9veWM;x>$2!0^KX5+tFv}h46EbIr8 zkX*<;X0k}nB?^Cv_Qo_7VQ4_|@iXKPA%xIQj8_-1!JrLtD6<&L6_R|@amDhr>w=SU zpUhYAF?NuQ;$`D+WkEH6i%5|x{3dC9Q@98@CW{{voRL)z_N!5MmT)G~RHa4ad?C8L zEMxw2Nx>?SU^7>tUn^K=vY*ES0IO1a7UnlUAP8^WR%pQpHbx*+@ELg#>ep(KYzX>rV3NuI`9~YG)OoNK$fBLqJt>Rhx4mac{|2t@gmZsSrFM`mD-(57hk545B z%58+H?fZR1*)cE;UY_JaS zIytu4>kZ^SFh!PzC)QHp`A;w!mw%%7?}!V6BcAPkBLuf=+x;@{={DD(?=O|0n0JtLMwT)EsVmX;@!()d>SSiibY1B| zn>M?ka~LVN>Mgj(OFC5WcA^w&VXK}Mk53FkO>vkAlX*?WdNQ^;9c-@@WNUM;H0~c_ z+{l`4XRl=6E#52Hj#i>t;YvqcH}qi;WtTjA^V0EB+TDsxZ>9;MQRkK{nFvb-xL~#&AS>kn$t<3pyQ2S-UurNXs{< zw#|?Hs|bnN-mxe@paW7)7sxNRP2~NN33p1HO&N6FdtP5YxFfDMy*I;AHG%t`3~7T} zKON}e@ye%duw`oV*YwdZng2EsQZN+DsF?J`*z(7;$NzPLNUvhloB8$Hygn+z(11wj zI^E^Rc4gtVyH2gQfrQ51A75pr zh9_a^sWlQNwC>ah=~z({!$Q_Sjc>QMaLk^)@egb@(IN@H85`Hb+U^@!PLUfqV#J8O zan=$$RvzG^gM4t$!?P1=zAEycpFe;8g7SYcSD4uZ{gM68asc*|k*08vm!SHlKM{_H z9%@qTT-G@K*%U`&7cyW4I(REPg5UnefHiB^_E#~{6m;z-;5LKxS0|P*nu@m)U1p6V zS+fdQbsYr*go;Q8Z7@_7%ti?EKsNOaoW&EZ)rE}lZ)k|o3{&;~D=cB7yir6tnMo3C+DjOdmf#A1`5i{Tzz(^RdD{KCq%& zcNSeQjjc#nFqx&9^3n(-J6X@lQULl_w&`W~&6KR@umO>epTps27B|yW)fS|InuRSi zXj=RhkHa=L$R`~vo$x@-COn!xA*KN0^idUXK9*Rk9v?41v64vmJ>+>FJ=feWS-m7F zxuFdR6SUa2%QZyePm$N`{2ySp4JL@oU@czkb0~HUVR@Q=h$QvaX!bco9W-G1)So^k z>~+Xy3dgS$nNxT%N7BKR0SuwQsdO-}bZiQZy;IC?|Bt<|fY0LS_FhOr1OkEJ5TJs4 zX@MXm#p#QbA{C0e7b$IlLXZ}xXmPjVUZ6;T;%*@%KuAJ}kr4NtdA>8d&+g95&OZ0v zeplWC!;kDa=YP)Z>^!?8XAIfCwo33$8CiHnp?m89^ZC1&rMDIKL3R+Q>o)6jO7s6F zw!q5s3%T_-pS(1Rjf^LhV*1BY8LEHyd162ca++J~IETM6bxw z2zZEng4cnK<)6bpNl{Oh}R2*~&ivQ`jk?8P~PNj0G9G&VMQu!RTvFb@A#5E*PP zJRnkDtvFrH@Bo;GYvIQnnDuJ9*#DVlU^c#Kj!Th{4QCQQ6T5S2VZ3oJj-1ihY+EH3 z<9D0}gyZa}>F;uI2Z*u^Y;*I)o?QI26ARig5Z3C8Z?jmdT&zv{b$|Gr#iYORiz2G1 ziD`#@eb;{PP&}KnbAt^o712WTuFTF6Sn*Z$$-&RvI6Ja*j)<;e?8ifI`M;L~ZZoD- z>O8w=ks?J*<&ShoaU+mFr&c#%UgIjg)6lakB*0m*2+cBPba?blKxm_nl9*73h8?M#Eq##(ZVElqQfGFV#rcgJoS=;|`iwx&9cH0kheRI2lm# z`y&J8nky;0(vVDar8sL~aD#HJm+DEYQKn_z!ubZu`pAffr8;K|#`~RA7mw3!0ahrq zJ1JU9A^|3~LUG5AwL2rk+-Aa5KL~ME*c7PTxGSr!toj)W1W|C4Odp;|?cZ8f{6XZL z^5PWcSr27luo(OnM~qIv+wzJm)3W+WBQUNkz`i7-4uzhoB^QSWDhI=k#91{t08SrC z$|he`FRU~jSa_g)>);qOR^Sm{Q&XxQ6tY*LV5 zBcH`)sUoQW9RVvl@Jz`+S=bTG0+L3-^EI;o3&Fm|2Rtmm3$iSDK2^EA|L^p#ZV|(4 zEdF@6<-;|*hiY4ZUI%O|`68x>y-BbZZ_CG-dF+xD=LbHj@fAB`K(pv5rrO&fmc`bebc)Q=VJ&xg=>4?#O8yY$Dc+5<{p`t#MX+ zUS{X>th3%(BwxfHQ+8QI^H!|nK*J1mm%8+U1N*UAQfuoArCe72 zW~OHk%0!793u!;XBnG>J5{=n-MM6=0CF71g#T(hu?TPTK?En)HGJdEayjR6Z=;{|jD)))jD-b5Mdwrl*J1Q$70E{qGK`!fn)4e0g(-nbwbxHy^H7Qb**d! zm7?UijKrhk&NlWYR988k>8n>-0~sBDbaEp}s(MNOoHp~00*Hj1qwUVg(M;7+N|v9s zsMBl54$?%6VcRH$9zl#h^mUj10*r5h75a(982y6SO{VWgXs0UM2}-cDJoc8i$btU9 zXOPWEkNev_freU%6hzt#Bm_1$#0upEQfGK(qwi!4Yg7LktcnCl^W(js}-%-sB0XXo);mNH;$eST6|M=eW zW%H_67Y)|=tMexjzV(GEGmfD6shfY9I`wo+AdmTGB4Jh&y>95a$=jjXcgJTm(scdN zJXWRaEJ3q%nkNF#XkMiAgV7^XNuYu6hud^FlP1%z-ykGzV}VBA$tb*nuE`O8NIPko z1K^uJi5^>3VS{XDZx%%GKKvh$h31NUqYr(HFU~^Z<2_&_A&mYkYf1tU3`FSc7>kym z(BS`2n77YH%e(tp?+xaBL_L&8WIF+8E1f_A=5iPx6NnYj1e|H*(a3iQ->@=kh^?`; zIK97>-CCSV#?-u<4LfKP@WN8+@M>dCOR=<_WyK(BLG3n6Tv-X9N-XX&ABM z>;Qvs=I83}Uy88-qz(jZFnd464qA}}+pc?GRh{Kf6Wee?^!eL~m@h0!D2Z2Yx`Q*5 zBpp<@6=3h^{N;2wB|D_YKjZ~w6aRn2O~Ry{ll0z_SY56vZ%Ng_()Akn6{`STp9aCl#u(Vw;7vVAUf%ALv0Zs_jIe#3jkIk=;aiM1 z372oeyL1YtR2JEQtO&gG7Lc?6Tc7G2hO>(es4ljI;fGu-i#_{*#cxNkf}XbYVG_RZ zp_C)~BD`T%R2!+hEZT6UOty@Bz88Y;3%V>tdxYTw&oJ&IOz2+nTC+|mUC;9+U>46O z^?wyR$|A4z2;M}ZH@5Y*dhQiCH?)u#ESq?C0sc;m{g&IaUgD*~BG5B*wFJfd7!lT! z9F5*QXTJzL7(m{>`$;|m@aNh@I0ugqV5(@2^r7Y^v7?oel{9k5qw2n zxr^O@%EEgEkW?Tx=qgV6L0p#ojMHWo)f4uXFmk}d)tCNsNWEgo+L!E|VU-D$}y6}f=m zBeV$a{y7&cAgFk*ps|*q*Ls^(g(XS-gwwawxVBkiA7-V!V{ya&5lC~ravBA{#cAs} znabwx9ft0XGePAg?@mjC5nceEVLtpE2Lp|nfxd#TPwKknQTm#Oyv6Ip|Ad}bvwEK8 zxw#9iu#e+&*H^Rx7s1(poh(3t9kIZM!cu9=m2<(lxuKkEUXSJsoHuB7CRRmq7U6rk zDnsO72G~|cWH7MIO}ynMsEh==c#F4_V7c*T7c_}k!E$qrn^2S^jHCqurEQRo>`;S3X@3veSYXr!B>A7p$q5EoliwEcZaae6z{F6v0ss1 z=%-(8$VIo9DtRkHE42(?1v9ECM|P0_w9s9{+-HT*#~W`)h`z@Uxq+UVrgRsbE~qm= zB%&c2J0LfUee?Pm*iiIJQ&X>BqYzCX!1T9m2mV@9Q?DzrO%qH<>e**P84Mk+KFoe%$!I%L9 zN%fU|qu3eWR zB1{?KyWoV(yTY5l2p2POqSA<<-j(LNZa#MT%VH@b_U)Ke}52S(n_+DVTl-X z?keB#ihCmN0_Ix|XR`Ma+>VHx*W>$c7MSZFwpXPsu#UDnITntF`e|{lThq<+uSiVu zbN?l|-HXv{1}gTFu`hx9ML6Z80lp4chy}J71{hNAQBmn+1DM?66(^pKS~mVn!L9hN z_~Aox9^)*%zriq3OAp-9H9*Xhs_4{B4H+3+GAP1Yr;AMbo%(H zJ%T01y^*}CrnCD*Szc!{dxE0j^*ahsaT7L7X?WXEkZ4S9@U2^EGJ4j+WTgt$SS`DT zH4s@H|W|SoZKD?#5%zL%?QbV`(eSQ2bLgJ_?5KRza`ireJd2xVx7~FQj@l-y;BF zntDRd?wE^T($OjOl-cCX{3a`X2i5zbwHnDeIkRbjL6`XxZx%UXLBsuLY+uVq)a%r( zYgpx-15dcWXweF-Ds}zwPL`ZZ&DC-yIR@cqHteVV`0nV+)Tfc>yGuCse$*dVHt*~@ z&@@bx$Jr^blaxpNBN;b;OZ|7`fa`=*8)_wt$sHy)BU#XJg~cmtVvlv|E)NjcoklPH zVEjRJzG(HNRA{z+6tE6nh4JGn(8jJK$U1BHqfe!}N02SM8I848w)faBuh>NDq?t4% zwU&REJX=3eCOyl0+42xd_&cyag@W-eUYH?|qUX%1P(zl-3p~6Z!Aj2Yq z{&%iRY{6DH%F|E2X@!+Fd_g9aUlXgEWOhN`wUJhkR2~W2xkNwj+8ovyL`C9?UQ!%O zx}w{xfZ|+*b8}P$1N*Sm&a+DmuMNN&R(N|7aj3*xraV}7%5wuLb$5dpv_nq&NXQ+WT+SR>Y%~F-f->-7#OHxntsa;YnmBQR^LtgK=V=v#U zMc(!{?4-|br|!?Zt_l{UBDTBZJ?kFIUH$#{K`ANn?Gk)N;9O=}Fhar8zHqT>Hc|I^ zOa2e!fV<~VID|LLh7OJLghmV(6dL1Th0!_K#E42LO_m9C~kbhf!H_tY7da6KWvs?3UX4i>aqIT|E?S+=Yq*2yszooz{4C!f{h=ZNB|)>z(6 z@-LkFKZ`BW_!zcr7N)t>O;W0E5@C4`B6(Y4Zp!xR=H^5V6gwG;$~1(g@u15Uq~umT z*g$3q7q2h6uQq53Y|PEw$%4P2Pc*@g@{1O95m`Fcz$Dn5*hN!>YkL&)j?R|2jW$qV zdqmGeY>wyy&)cIxx*0U?80=u~2bS3JEDDl(pj%Wq&tQJ9m~)5rpi#PEiSrq=>0#sc zMpf(;f;Q@Ugs7FAVfXL3A4eyt%8!79&`$8iI=%CKYQ{HogamW`3x%v7aSWl8g73)n zd$KBYQbpc~7{2zwbyGjfXY_u)-x4d2Pg`QHSB&NbuT&l@m>=7gSGCHkvowQDU2TB< zu(H4{XaXN0@E_vYRjXE?pYWib8MJTJg29<-3VB?b4DIGpHk$u34aK^d@MT+sre>Fb zuIUiV`B>NEiKbD!#NcOGHc=&MV}zl{QO?oxIElgLvpK+`ML&aK`2a^v~cH z5bF`ZNG&?Ab1YE^TF_R#mX=Ua{m!cE+@BC<(jdL1rppNtgm(6OB|h!DMJlQ%bxk}{ zgfUQ=Z_s5JY~FzO39!S66fi}uKH-XTq8h4T(gBfSC_0u8R1To0M3W5<5c;K%OYKk* zRs}X43*QN+Lo8%%6s~_5*(^@JBY;5EKMX|-6hm*Nf*dHg0*;W0u;FVH@|(~K$M*U3 z&*%2ecTe}4FkP@I$Fe8?QL^>HmSOj-+T~L1G|L#J?cst~(4Lm`AM`}=M2|4@(`h=- zP33@wNaL?twl&;ytn1Eit=HIkgx=6&=ZQ|}YhI-Bo}sap&;765&onjuTIkseUZnG_ zRQ+9;PFuKIm z(+&68mkICOj*~00`3K`rmsbt!($P6jD}0!Rq+I;Fy(c`L-$7W)y`hZ)Tr;h~akpDZ z%}`=vE>4|2hUe-uPsE#dIMY?))3w-jkw(0mmZ*`Y>u^&lbrrV|{E^OZL<1aOo)hWp zTzp)odEz$q<3$=@DGhsTG=Hs&<18zdeh$`>w9VFh&3ugi0RGS3)`>g;j&vgw{gJNa zS!^TD(Vah%bb=lRaXE#bdm6Ev$Tn!HEXGmP&v62OV}J)>M_GfDPT)gYECqVx;+Hik z4A$r!sIBmylSO27G9}kNuxvGO%9LesWb2#-tb4xN=wJ{+xE_xae5e=|vdGZQvG}h^ z&cBP-rxx(aCl$-a-}7b~UmX8E>|KnTYH{$_={9U1^57A2e7rUG9mZ#enN1XlS2Px{ z+9GJZxSj

|Sf}AC_BxlKDc5ET7#mc3a#_h1g(w*7vL;{U5;)yEQF+Z`@n2J%a}>hSww%%EI3jQVg(e}D>Jzx#j@lt@)=e@bAKS3W9g$Z%hO!jpdT!2 zIoLG9@^_-+c>U;JBS(%ZBzUZ5y@EqBVQ?*UEMHd_>knJ-p(jB>!4dNPigcFdDRzqt z$OVx2%KOXcdup(N>{`5jl6Ipm0o0Dh6>iJ&1S+196!t)t?E}S%X|ZYdKGfoXeLmz7 zIs+3#cTumKje9Mdy)w?fLX@6jA8gzM$up@aVQ0S-8e?DQ06DsrrffqoYE`8OyaH_0 zioJd*R63i5%4iu?*nfQW{`dB0_ktOV><+{IWLc?)iY*F&?Bjg3UBN}PYt(OK$L0hM zlJdN_ft(T}-#gNvoR&oD`eB=&_qE}FR|Q(H|z)5E!mV zd3+6e4zqVtU!|`0fznzpcyF{WF%k8m=&y}~JEu3|BnF#j!5vWvqbj(Eb}}@1YQfLE z#NdxwWBDVx8hR|1*Wapt;obMaOOco9onF5`u)XT-#>VrO`wwy;k9%wX2mF#|r-III zE`@8rCRwmUHrHr+Cv|^_ve+K58(idWH;DzDV*nednBMz(fq?NM#6*-a4)(p3F{pvdZ z9>jokIP#~TMw$~dWK))Mhz~-1rmjmSKzKO(L9e)~;3e8T%-g$QLGPvrrEp!qlBMiD z*IEcYH{Vc^c%MSaR%PTCgbrGm)lEiMn~5>+qbRtr7?K8{q%SO>Zq&L|R;5VKM0A|{ zo;8h;2;H%OK2Js`)Fir8;nLGN1zjiKNxpZ!+mp;r9Qq^;U2Wl3#&_*Lgu>W&${nUv z?Ds!ReubRntd;aFk&=)WY^skTjS#W|zY`S_6xN61!*c(Ujf%z`cG z*R8vOG6!?nlE3{DdGV1-beUdS-4}(^zx8E$m%3;)*NBA7CyLS8VYw&l$xuZnC~N{9KkWMWkinQw4&I$x zdYlv3&+!SOo?!xdO7$_DC88)}3~&NMM#<0=w)Ur75&2#sr8%hF?)8%yO|{Mcce$g_@Su)!;Bnu&fJh@0rRK9{{lvv!95I?zaN`UN|BfZ`0IxJ^FgG3 zcF>e(ep<5q%%`NQ_wx(Te+~T(FdGb>7t#lRD4|aJ2LuH8`|0dk!pH%i8OtNrb!3WQ zJLoev7Pg2+f++??7QY*5AZ7C>8UNIrYO%$p~5`tZM6>{e`4g+_7 zbQ_SlP0BFsAUOz;H9)@8u0dM(mifOBN{x-pL^wf4Yq>bRVwB`R-&+j!t>7@J?DS=4 zmrjIoS%7J}gxB>sfqX=bXq->btX zMVmR=(UYbDXx$8UVm)jyELHZ2HRj0fe+Uz`J=FxCbeNx(d0isV+Rhi-EbV-;wcR)e zScQPT*6#$H^=~;n2b_8=KN2Z)I+pIgKRY2!dN$(B6?<7AQlsqoPFC3UWN#}df7miBNUDY_Sz>u-iMr>O>i@Ptg+V87b`z$q%!x#t z{t_vp2Ao2k!>5KetXA%4?8^bbR%@upJj|P>7CIT1mDu10ituNEP>cD#da2P$il?y)5`60Ujo;JNNP-yPEqMo)}u>yR{=!G_@T z#*3Tp>LX7>Q3}9K4DKg(^O%X$G>vuX3+d;RhTvcAcFxPP4zjc4J+XYfTM5|vY<@Ui z#=ZM_2gYF>6C9kJ9XiDP#Z+t;fm1ikQh!7vU2iFI4ty~eLcoTdb5o&R{vDg0~<2YqMlVSBHrP}xGxjjji zv;RCWrl*b($`n+03{K#&b+|l;nuhq?!F&%_T7icG_Wixbn09KaF;q%@ z`o2{3I7|W*)NAZz%l-Ga6f=T`?mchNjSkTAusV z^dc`f@Y_(#lSh_U>nwYSIIMf8>{zTLgT(@;N0J{V?i|*KzlM@hTgS+hDEo`Kc+ny_ z0G`6&P;}I<6HFr_(|eTvdOxTaOv{pCy9%O@qR+tfNg*xHX&@tkUc zw7{Sj!}A3gEJH1#pN&BzX%R{u#EEov5$dbcZwVy_I&DZ?M-Lp)*>VhOj-6e7gkzj5 zgMZm_tq)FJM(P4C{Bhu&ym@DKX9Vm9S;d0NnX!>%BVm91O0)#N zYtBna+Km$ggHqC(r#mFCQ1L2&d~R-1T`a~(3Z^>17U649L5jmg>(v9zLWvyCs7i{KDW;v@!pXyv;2<23u7umP!=;`wyF~@U z=geVC3!h4rDoqFo2v}aJk`EQ%Tk?ND2lBf5ht4R^_${A# z;S?>wVYY=D30L<}j3f2;?jmCct|02n)c_psZWt2G_-w=QPReP(WAyzPYo=aL4CzCPzKS8ty_y_Z$>Pu=6qC6`U$p8X@8|0Wabv_g!I_p=MUuQ3C) zp8xuGz3y6UhH;o(ja=ZgUHlaMgG%@uCsneOaB*3HGm`aI#udE6fTX4Lxwh3KaUTQg zjiaU*FG2`@XfV|x@nu7?Vl2JC>jWG}H6w=L8wCx`3HV%zYCd)Awmtdn$&)7^;5<IE~W;+q<0WhL#A=WyBvdr_uc_J*8Lmk`U-+(n~@ zO^X%!?_!sb&yWQRgz53TtMs-{neGLPLSW=il~t!OO+O-3Nh$eU5b-s@h?$32|b@zg^KAdY0rTH(|cGAjShrHZ{RnA_LAgG z+RhN}eUqQh$V#xUPv(q834q>qWkBZ-U`l8dlx6SszmtOo<)Oh3V85o*_MdK6E~0&> z{hy#Pdvggaf{Y`1B&Q#qpp4c=G~XIn-l-6w?ll6HZ;dr^{SdmLjPPleFgsc!r=zS6 z8m(NvMNc$7QlD;Wm)te(XXAE~?Ve+7_Ob#!d0&fzT$iChy)^Sq4r`ok{w^2^ionga<&5Mcx{}m0vw+EBA^iYekBC+Kyvr@qx&+1u#g8Q^r(+|KV^_Y4g!KT>k*^l*~!gybl*eV$SP)(RSyc-#r92ptu zKNPmgO4(&JZtP0L3*_-jB1-y+vC^120TAIdjbpAY&cVvb?xK%6|AIJ#b{1f?HKrjP zLA7331xV6Tgud7G`0Ejb=*^KC*#9CzOBe~o6u5ydQEf8{0rD*RQ}h5tsYFnO$U_E5 ztEtiAHQ=7ZPQjG#@EXLN4in?!;}zHN?&`Eyp{J`q-JX%AUq+HzpGD|da~JcsWs2n= zAXskWyJAM7{jk5ma8xCHhm#nrBW!>JyG9N$M{!od53Q;=sS=LSM<|RGs#GOrCl3~d zDIN4=3dKrxV(A1Rh0OD8_F{4^QGH;wT;GxGzh zXPybiB(UuvL-P)d5VbW}h9aX!7T6aKut30q3NtZj%vU*p-OxDpIuhFRuUfG(jU(7r zjp44_W%R;@li69{6l8lLhNNH^QG+25QSgM(Nvln|y8)CeGJ;Jk{{U>N7$akjvKW#G zW;HMY*m|qd+;xDgO^Y(eT=TSrH{GoI`bj$YBilt`lcB^Vvbl!5Qt-^9V#sfV$PfKy|j^6#-UN4pkb0SLEfU zIIBWl`@nYI_XT#Ir{L&-a#El$E$v{*Z{WsP@(r*yg;uX1&*VTszn`f7uwS0{rODd~f6+cx`yV&tnwS<{aCt6m$v zi>^$Mnbtfiqkc3`(Z#OHr~$?6WWI|1uR_h@p$k-^+M-2^7j1;JM$^4#g5}u_ZC)}T zMR~phADS@OoTg2i;2?NoqBmMJQ#zg@c_Xk?M9mH$bXK3`!D)HSeTt5- zdFoYK*QrX+^8jgA`V2k}Ta51avKw|9$;<(P`4+OA8N9aLnsy<rL@G~Tj;9PswPhC=72`U#-s@#=|*<4u_BLh%3X zZ3y!t&DaE4K2TGVwu+8SOqIzzzUmpW9L2?1FV(gPj;QL3GB29;>h39ryhDzty4K>h z>3%)s@ihnDm2Z}kZkv`lG){XF53W&oXK$Nd`F2;M=O{;82rxZucXW4^F474{b|S3j zyNaoA+B!W7oj|X45PF};PYnzBVEVC30Cm*0Zs)#NmOqhd%d(#?G6>JzvOH<9{M^eB z8I6S+HtyApXhDNERK9l7v zV*mquIX8)B{u4H|8!DrP%JNawHbp-63s4@>vb>=x5YT+r`<9L5sTCy2^MGt`p0vx9 zp}D38Px%?VC8V*h@`c0X2O8Eo_{A=m4<*anRLLi4@-q!{Uve$EfwW70YOihptD<2N z9FH`!=t8a0UTVH9tB2+mVmjNY70e1H_x0I^gf*m()f^f zO?eg_9TT0DAg9C}9;i3!70j;uUa_uS@5{#cE{%Z-9GN8#*5V}%C90U-j?g2$FG%c+ zFK0ZG(?8eDB$zU5>~YaD8>LUyA*o>3u6oL4oj8#4Ms&qz8xnB)lK9{h9~O=Gk6y=wyFIs-afR<5-(kgJ~= zsth%H%^&(N!vOy@W}ntXWfNYq6&y+!HH#J6x%ug3B=^)1F&0x$a=sr3rK~Bqo>&Sy z5QX(L0U#KR;eH<3BCODZ&CpG8PZeRUbIE(2pPG)ON1pH2pM(}-V>9Y6Ju=55zs($H zk(3uvv4>NS7ZYIXam={#Qnly{c%;dNeR`4Nz^oLCBPQu-;D`Y@)a>`S>vXYM*2pl6 z)vEr78Llsd4iP2RF2Mrlg?7Iuu3YL2w##vYe#5Ag8P*S+obE)M1yJI0P# zre&(-+8s$cKx9#@R1eTbl5{|_DpHo1)kxxhF?gN+OGwU;d>=H zna;Xx#rJs2uKoL$P!!((6W>-TU4J)ZUF`D4jT<-l6!QlwI}J}zGgkSlo7jnJ5AKrF~K7R0%r!TP${!9v(RUATvhuU=alM9oy$!z( z6hBtGa2S%xULpe9$I0j_3`37Lfu8N-vY%~s_dX)eH(_wtv*L8|5nwhHS(_O6ARG5m zz=~_RwGx+)tRHD^kGsTk^r!030&KQjXup7Dg-Qa&#c4UmO%S;qKs1edURWw zEvJ~Oz~ax5oOm6E81D4ptbnZ@o(+B9qyyrLVZc*)ukJQ58^6ht{+DvLaeh24J4Pb> zDEYh)tdxX@LrnHJ*i+YB-1+p2!Z>5g2WCX-4NL#AaFeJ42W42Ivl?e~ zG~G(tNN!Zl;{@hjT+ploR-`bVjDt*ezhk_KczWvK82-s5z}^AKWimD&(s&)?Mnzf< z*@7`W3s#LDRs*Ra<^$9HASon7ZxFO3J8e1pDEo4E#=~cd;H}_4p9AM2R;=*zmfY$r zUeTAg8c%+PCzo!+-#8x2<1y%ukR+mzI*!K_zFLc1IOR$Rfh#B%N7k^wreWI;7Er0@ z*z#buk02@a#CA@9V0=j2gObX?CuV*H)p$n1mn4o+l6GRu)nK}2aacoSYS-A&@8Mel z7n(5afW4@N08H!NhjZ#!U|twsvw);w4zM3_l%==eJ={cG-&oz~-%j52v!SPL_b=BWwuN$IX&K0$)2>}mq!wOf}!*j$b4f=kku_{oIX zuo4vqn}6MWYA-u$pQv-_H0&wHNBp=nzGeS*4&)KAuZ=Rcp){pexe_r8Nr?u`1)8X6u9T75{V?nXVWcu( z#~1a3kgVQir5wnAOI0y?Se{t!RTixo5fbX#7!)(8>7?sOzRm)K+X81dqO??uJ~v}h zy%lFyQ~^5yq=@ndnx0Nqt!I8Z9UEhQIvran@8O@$z|dfw=82W^AYP>NGacBKUtw*h zNATZ86xf)%ubM?T;`6PHLZJ>4}s!ycEX=(s$FWvG(|POS|^Cn*&Vg zX$$f8^d^yP+{GhvHhr|}@1eRI-P{%PuGy_9<2yZ8fqGCO%p zI+ng5=PYUWRL_{k#VNJLcs=RH_&$x{y{*z-jL9e1IKjNhr*s(O=WTqyON<(B9%^ow zMe1-{Vt@W-gsO(p9Py`^~%&hNkM9gXdZG z5+-8YPSfMAc@APSJ}(UK(Yq~h8l!MlDNdxbqpUj@(kKTt{O>sYVlq5C$$)2qioSCD4b3-aeDaAnPr2K?W&c}p zpb%`c1%Z#N!*K}r$q$8|GFYBEp}C3}{$wp+oE0tCY5)rRk!|9&Bs&+Nt9z#I*|V`2 z6Q49Z6_A`B{F_3Q3PmE6d(-5$SL{Ckvq@}B1{aE`ZEOs&LS05*auS0r^XQr=9iZTx zPwJU<+}%*6s9C)wseh)pm8tCK_h*{WhjfvYOVd$fDk`09_u>PoYq}UK5gs!Uo?d7t zy&nqM`Jjv*5ktIxEbx$pa{~0d7~Qvwo&&|JB)o($mT%63Lis<`;tVCX)YVm@-`YRz zMI97&Yn6tMU88Q0vH)Hw2FYhZH7gpxVMHVlEc6+n^jQ7K2CgJvv~GMGBS{Yl+&SF?kqRS;6u*^l14fIh9)9!lzdZKJ48J_XRF_cSw! zU!gl}DD}7)f(>@k`clcFNsq_+A}FUaW!QrI8-za2=Oq;^ z>^X2fd}g$nR3!$5?uq>MN&G`ODQO1-Nzw!5=an;~hH?O~)!>L%v|*qbcq{oY=0GV3 ztzoyIVZ)l`=S`J?)|8Oo;FmabnKCch(1`8dziW+h&_XKq#WCIkMYWD*;VOm=NBw@A zZD3Jwk(X+ph7#%II6U0D9|@dq*rUgpGs<@VG2!9i`*d}MsJZ3P%$LV~Km3p?G%;2ygfwmAI`OJO^VGz9F1$$RJ6dloA~}Ea8gxfG z!}$VMVS?3R24HXk<26=x;48Am&Lu`$**zM+A6sB$V>`~V!q(j@Iftx}5QJ8^t274- z-}>@NF(oaqwwbuS1lR^HM(?7Xx1``hMO})v!50|Jb&2Bogj$shc0HupZQxbAfS;}T z4#I@Cb@$`+N1JKOB8~JCpbEa=V)a=AMq4p-#q2BAo%ahCbBaj}!)()-h-jw2IMZmA zH;XPdYfmVgP5pS5z#ViNrN+nK*%+UlZ02J0A0OGrp~IhpCU+fDnzTGQRT_n|;PBQB2ei%flo6B%sn>@fzzQx{Uo z@gkkyfI8|lM>uamRuxFmW$1t_r!IMnC$73`$Izq3JS0_pTA=XP`!Y~K1rsEdOHKs8 zRCse?=fCdZn5E6E>ke~l|2#?cC{a6DeU950+#41l_%+AYJ9s`v`Etm?nBydT$|5)6 zq&FOH>4Yhh&2556$8ySM?b$!&U_{{WV)VV=EV_Eb*=yE(Xntnb;-hb-A=qV|?}|A! zU-=y0K0T%_%n3Wr+WirVU;NUQ6gp!~*bm=-X0J+MlG1qAPUlL)L{+O1?1Hed_BvgY zCCIE(t5(66(6q6N6Nb(*3^x!PXS8Uf&aMLUp0+oI(z;e@+9t2pu<^T~6$#-!2bw{yf*P8ZWb6Z0uC7TnmKp5Z|gzr!^=CE-!m{r=dc$L^z)9NNWm`)CU@G z2FFs4uuk|YHnQ3VjX8f_0WGxnUE&GvD7;d=1<%f%44Xrob4%#(B*vm zq@!1y=Sj<^iizk@RgGb^Kj<%b=T*R5OEy*z88a88HSG)DUiz<0MN{61~k zv}d`U1)wT=KhwI*?wI?)vdmtE&RR9v3k4%{oYj=ux&LB1SUpeAJ4$cEqbF=8>&&Jz zpE^2M4ScE__;H**=o3&L1pej|rbg=%v~$6xY{(eFHhkmN{JQh2pxpzFGT3*ar{1Gs zQ}f1iKGP58Y{))bUyu=Hp5W)FBO$Cx;My=F6Mek{rq})Tw4Ze78 zm$NF zRCsG{sKq|4EuTGU;*~0FNVZDd4&R7)VfpTz%e(Tb7_%KopCAzwM-2G4W=v4PSn_ z%_c6GT?QmVaUsO=Zd6JcAvR1cfJ}uJa(NpqUU_`6xRem-zcI4f6F0mdBLmC%8lXUrJLxFy$i#`~ zlhCT>m5Ne1^1(xtm3p!|kyP3YnLgdXO2?u5ej4i)icm|9fzyG|eQKfIZS=ITfiF9|Is~J;)a|6a_2STtZoW%1$p|od9yEutgH6t!6KTwh&ns4} zSgc!529p*5bkUxK;%uX+sIr`CIje8yenKb9!f@pdZ>7@;sV@qevTv4bB&p zooV~QdgcYD_j(07T>;cvM8Ohich*iS7>yEEl!Tmy7UP|&99ZoMj0^rMNlx%HMDis} z!NKR!(9_?>G=}nSFlPvChiyupA+*elNmBD=8=j&Je~WcgB8#^&n0(P`d?(YdOERYF z?9<7R-J=AV)Flm}phk_(eP_l>1mnPuba4aPh1lkH@KJnR%os z^>ORg-GULmD{6U49y>Bo=&M<}CQZO-_tJuE#h4ABbCC|urqy*C`T@ZYlfTq?nkdq- zQ#^7pey;u|9N>E3?Ios zyA}w(rifkL$9CroRP*k;F0t|GTz80UfzHu{FWhN?sHXycT`-Ce-blp&zGO9&=d*yI z^o-n3r#E5h;D}V`VnoKx^4nIox9a zm_2@6RdU~me&ij24PomPrK#g|0KLnlry)wTOPXd{V^Z=ClU+ zI{Lo*}Q%Iu|DVn{*t})+DtHYQnO*&#l0Gr*J|AE3gZ7BsQ<( z2%CU$8(!beJBQ+nwBLeO>x(h>&1z`=>ACo@{o~bSaQz1IvEgkS{vG<_e3)}00yf*( zT*g#h5yj?1+jSaf|KNGUe-i)MvU{~G((ADSRul-z4^SUPrgr1t1Db0w%p|hrMiD2VF8Hzg9GieyU3m%j|ivV9H6ur1?$O$zN%=RgwDhS20 z*h?KN@;gfF&430*Jho~KngVQ)kz?FJKHtjemOxwK@or;6vCKE`xK$NXygVrDg(Je0(dT> z$7>a#Ze8LKI=cnk_4VZ{MqS}8!Q?=LWUZQ@2^`IPhNoS-!tOZjp<-JYxzh!(H1MLYKT@Knl)OZ`-1vd(en;~gL^E( zWYpCHDLo*=5`zh;$E@C?Xmpx>aj4jRqH`_I=!NM=P;XYIbZHV6GPkFBiY|Erop7gk znuMdKBdxslfQ3|}l_~m><%tn_duE}XZj>rTRz@hPHO159Hdwt!^EBNbUA6Lo(Q0od zJ>V~^A5f|ugR+K-bH(*hTpK)2jNO3oT`U~uaouIRTv)Q*7TNidjeZMbt(QxyG)PZt zAxZV{T3V>m^)l015enZjVcnkMC5jN6?gwihepO3;lU?x#2ycR&*eaAP`R9F4$@L2= z-g5Cu!-b4wVf6I)4gQ|pdiGoa>&C$a8hJuo(@C4qQj0GaCSHiny|Ull5jGpor4q@K zzS(nF0nMFqP>Btt2SsV4*PJeKE)LuNtS#)v`jF-+GVKPTiQ(3HS8Vb=IOWQbX4N5JqY4>8W zN-5On>u&b{CEe3Ke6o`)MeBp%mbsC7iC>y>^dzj3wa(GPnqRKw_P191Y zX=t*>JD-SRD^WtkwO}(Ze`@=a8NadR^X{e5(RAzn@lYS!n4NZgZ-Mvptl)3v* z@Dw_|X;Wg#+A8Wjn7>}5poUvok&(StOa)kf`{R$|N16;fK+E!>k45Me1w$tq3&1bs z#61UK8@>cVlczu6Q#JO1m1k7if@e^g z3^^&)GL6N=dt55!3$4@mp?xP$<~DX_ue@0#CbB`cSSv_6rkx)k(70|x0;ww696Q<) z`*#AIoqPiVF5$z1_H4doQ=TgBy1TBX6gO4MPtsCeD#BjgT-vSA19YPR4=zQ>pUCo` zLru(BA9qEz(~K3Uqe7AZ)8Z+3&1|P(U!mt(i%Jt|*OJ+mJ8$Iag)Nt}eU9wgxN7kj z*PeG#bOnQ@slGWldjc)c>0%=?5niaX3~>RiZ0p?F?f~Sq9+RK-;gOat zEAR+3Bf#^bgpgA+>esJdx-hLW0u37%NUX_si|$|Ew{M6Jk3i5!D%7)Q&vg+IWRL;^ zi`lt%htEOil`&YL*y)<}Q6g24j9_;7sBi0~>p`!{lk$H0+(kVpj3K{6*4R~)NlQr*I?w(TU7=Bua z)}?6JO?4E-(qw_#_@TuoBfW>83d>Kh&$EdeYop@Khj9mrWypLuv?wE)udee`9NsUrp{~dgRb+EiRR>2VT2 zoBaeQjMpVP(J=wb-K0|MaU%aBHo7inbSA0D`!znH>nlVf7!LnQ6@7$5SZq1IKPaCn z8pNOfupE!DE7yOOp?ZvT<2m>}m45GpX>*@8I?g@PJ#}8-O@Yb?= zWIEwF<|5?E)1QStMajL>=g;5N@8t8-&sO?KrT?5||FQHelcY)aKd-hncd*xhn4c-B zLbgnTHbkDjssED3q_HEPl5|9Mqjn1W%IV2z*07OWR~0n-y;t8{cG$aClF<*B$~w{sMlm|1T%`=7gM#(T3m}Z>}#X2kvaA^Qq`!1zcy6oCNkZp zTDXUSt-WQ?Ksm?%V(`b<=aV+X>$Re1oWG$*s4>Q|E7M;Y9%4nQbZ}08Rl8o?4wW$e zR(g>$j&L8v{Y5>F9WQ-8_xKk>kLTyJBk!k911uUA*+QL(!#hAFs$(p52a@Y+jh1QK1A7Is5ev5 zt?B~wP{O3rp2Y_}OE>@W&VO}L4CaW8W;RR{KRd}QE7S+cCX)H3chQYc%dt@+@6nUHCO24GBx>^1dRv*uy zxMrBf8Zt-4F<9|K$?sBjc_WQ_toTw)1|*GeH`iWoN^S4r9r+CasP37E6+zLZX~|?C z118+W#~PIBv?UU!^k(FQsqu`o6!Dd@l}!+QU<~p*tX+M)zEo4U-x{T1=KDn*Rx$Varu$V$?xSM0DL0TkrrF5eoT*Jlz1gr?YwFa- zn^*)k?bY`3sEs!A7~X1^n6Y=Uz28%MqRFnOO{w-uORX{flZ&$&-UfMA`r#g^Jx%G{ zk{fjU&Lb3mGY+-l?BKN3jT<-p+R9rRD!?>l!SiX5R2!x1G*7q(ney6D8SVfxv|caj z8aN`mvxScKfJ>E8&vTVDp1QWoP%uP#3S96FQ%6gY;9P3g^%{1Jvm)$AimW}--fy!? zNm>5hELA0QWqG3*`+f~1R%ll}Dhm>HT2#k7k?rMeunV~$PVabi*!S@!)0np;eG;b( z3Cr@M7G~3T<~6KUv*upede2VxnA}sG-PHD;t{`$LS@Nij|0JT&{XaKt+I)y4=vgV& zFiQQ6$QX5IKNgaDk+E*|$DqB!s+MP;-|wZInKP%4;PJS4UQhP(SC*bdX_@tYqS99m zu(c`gTV_^ttR*Db;w-T)*xIh2L+prUoO^LoE38y>aycukHu}p7f;PJ&%sMHv5&za2 zw|I#~#gc-z$gwW|N1Cf5J*r=Rmu42ZH(w)$$)y#=rySMZk6*o$jVorK}yY-RJv{3wpGcaj-=)$5}poM ztX9u~(o(^uPMYnXXo-_X^VhEt_T^<7pKmtV8vS((6KuA=7SHr;?z0U3XS1tTjf{P_ zXyrX=5T4Jk&bsn`L-RqaanD`5uEUQX+p7!}{clJsr`=jW7OXgkKP{`vFq=tYNj)x@?#;l`ICErxgf z=L*_m>_%%f60Q~2t~Gw@kJ6Fat)Ub&vMECEYczj_Z`Km~$$qdYZv%YUXK0qy$bDU8 zpTI4!tBY<}dTQ&MXD{h7EO3DBLN|Y922gY>IA$28MDbOz1_Sn;M)TMD4o=?Vbzd9) z@Yx9^3l%R}vO$fKbkVImUo_PHPtujPlxg6%*@?)|$m1uDubi!{u;%i^r<77eo)lrK zs$aG>))}W+z1QVlSpR;oV_69<9Xbm;T3BJl)6q_0^#I2Ga8@-v4vxUq>kzwPzAJ6m z-p6~n_Lq)z%e8DPxo)(r*Y!A}huMv%YrxV#o#u%X=sqvf`I+mjvP)O_cOZ%!wXL#h zC2ogeoNEQ^Ne=uEu*IftK{X|IroBz=u{y#g6T98|?HR)5H^4HLb~Gbbn0dr-wOLLi zz0(29;Rn&}y0EQ*pi$<{sI6*g^vIhDaMr3869CU7B5YEvQ@X<$l)S~oeKUI z*75~Z)Akk+7bR?^ffBTV4-@uQV3`BWW5$>=utM~$!X_+#VCFBACC3qA2kcK9sPr97Ji>WS@*P-$-VY{2w^gyIl-z;$ zly`Ujj!a2(^5I%A9*=A|UhYCMr$mxGwcqnI>ES*;&`O>G*hQ2J{5{UmRH(evGy`Ls&+i>7%Z7nO2*QqzKny!HlR}q*v@w)=i#?+ z5+{8MQ%rsjl85tGslIzeK6@(kh9xl&Zp{DENR6k`*X-}2L zQ&*4cay-Q{WH(v&Qf@HT1cMxZ|oZX+g1w)3*iy8inVJe-(wgl!q z(jUEC1bRF!?5WOEM7@NpF`m*=ZJe4yB=@^`9`I2jYy@864p_7RD;uevId$jf3;S z(r^dc0<^}0%GRDmtI{gjDbvM0;g(6J33`g=7~8>~wq=@{>3RTLHKe3^agl79L>qVg z%NnEg{w?X!u$9tZ?ZruJNJ_eliJe5K`_Bgt-h-FQd*fyeqfYN z`_^=wA*&F|9oHyVHT}QloDkPioeDS1LT3K-ohy zNCM1WNY@9iDTLWNBt1ntR5xS2L4}8)t=q*)b$sF%W}N zv3bIVJJ}}@_B>o$rLdu|QKezK5+z*Q$Tu_Lkc;!AuT8=vO`p0Bf-x2dR9;hHhfy%6 z7G+Wrnk+OeGc$=6yeV|w$Ez$K^)`O)0DCDKohJINQgN(R&C&zoJ63V-!I*2W8=8^$ zMRkK?sYvT4!vGntW0ehVG{!9rj-?!9cP%T9(+>K@*?$|G&nAxI=3AWjMN~#Rzy`^U zsaQC2=tfTPmbK0S@9!3@hH_=W_)f}r0j=l_T{JSsjQrj{wgTE4 zn%xkb%MO+;_ve#5Uf8-SYJxxA9N1Z5UyT_%=AMi;Y#Fnql2KVHk&jT9WRqbO95;Zy zUyUU786RG_(6uZJ!8GfJt-@q^7}K$*bau)z#j)frbcPieoa;$>oWZeFb2-fFZqfo7 zI#(6}Td(eDj~-e^ImYsYY*@RL%(wO|?)|!ntF>FP;^nIqD>|5p$+|z01*S?+&iXT+ zJm1(9*eW(G_+i+by(nA>3xZ${wz%saFlFd>cI; z%tDfa-b%=lclqNA;2_#eSuIhU2d8qghDzQ+S|vLQ-Bg=E z_86UJ%ZIez)8h|iNI|=o)C^G_cVEO5$_weK3dK;WZX`)XGpsEvW?!?-21}wjHVr9(on z@x3J>2YjY)conhX2SL8n|3f(jK*m3tGO9?tx-UvRnefkrQaJ7t==@I3#2Yz8k~|;0 zC?UBV!#U3cGtf%;N@W8uK4h{Yf&%lip}1Sbd_s1`c26;mPszf;U-3UX%r2J?cX08U z01LrSnxie~L}Vpz<7c9175yf`c!Al_E*XMzEt|saFuk7!7--)*knM0T+kcp4_|4kk z9Oiy?)8e!;rRYuWK)Ygr_*zZ!40#(}#h9zb;j~M9tN-GbaN@jaCW~vA7?6^X&`-$& z=9a}jUoq_fK0T}=BYn%1tUUMJ(sN@38PUieI+hS#y~l&~55vi#7#dkvIZ~N{VGVoS zuY=v8+xZtGC(N+D-#}dX&f=`@CQK1HZ-;H-#gGR;_^%J_onS_XSdkDj$Nb{v*ZcNI z7#oH81xH@FauY10>zTm(^&v8s&!FiOOTFZbn&)YZ3o;UlX%z2Z2l{Y$Mh|8-|nkSZAIZP@$c;3AE^X7fs5!|sn zrt`4kS*LlzfhW`BqP&$?*LWXUo~P0L^#(%bZ_KWQ*Lhk49XZ0L@ zHk-c%<`2i%im?Dd0{nz#fY`){M6851a6UF`<>yc70cL0Yh#G_d9R)_A{Q`(w2|5^{ zCdAJ!S1y_%L=@of?++?^@Y68H0APPQ^JvhV1AY*v8nnpXUjHp~z++$nK0a{Zz#?4g zylPLqa?{?K`;^5xt1}N&FshLO)?c2fP2)iKH$H($1Ul9@64W0(eE8|V9`0%Sj#PP} zQ4chP3H<1wtF8*mi1i^Rn5Yn1kAmFNQGZPlM$#y^SfN%YQHJhQg?de=E6z9xH+cRb zWtV=ZW5s8Z$mbLi{5qT8W@u%)mTPK+Oe5UeG#e9Q6{bB5ehpT!IhD)BEcdt1(F4tCR6 zPbLRgipjAQV8;Eih?-6*)(k&@-pAK92DI*%HZA+kON*+i=p@PGgWurcXo=ak+Yght4@F?{qiRaiCuOpuizyU(Du&#$_jbW#srdQ1QQ=^6 zh3yLhHy=!%to{^oM)RFImN-rl<1=HCQZmCA>H0>*90L1xK#C-J;|m>Z^KFe^)kD=- zfb!U!fuP_(D6wMs(gpRaT*Ply1R=_JdkI2!fQAqzniW<3_j6?Z??2kJOBDATC95@M z#mN;(^t{~{D=M>h)+7xU4L~6HWdcs@!hkRyK@M)8KD}MLg3T~VW?xZ{eEFPjWe-f! z8Z(9lQ~W*_^gpSvCk#qC+8CNv!m|w|DE57;$Vq#)521-|YKJ`jh*59kfE_|P4$%91 z^sBHmK!aX6NboE%hKkkOn~a0)1-3JmPRV#*4nd5nXb$FjX)TJ=FbVz0!ovc@x_xG; z*`M!scu?)ESd%DBq9Gd3MyKIM($$}@j?-t9yko}>HD5?yU94R_{0`FWf(M*@vzM(5 z$yulCuaoa2F1JoaVeQ{>|93f1yhe>0!(KhyQaK`gD!~( z3>+|^gRd__fexder9&`QmMrORj=Tq&Cr%MOfJs zR$ZuSb!5=K@^i6Z8OJ_Dk0+KY`FWAfd$~yE06bJzvt3=J(ku8T^L(tf!*QUMW$2{} zw2vfVDGro=`+J11lUTh5V!ycA(^qVrURso6Kiv;_Nx!$(dkAl&O2?rWl89iy+o@ga zB8ey@v;<*mET8dRRgq&OT+9@AjYW%x^dT)H9FJwmM3=}B8TM&M{)5||jxH#}VyMC(#$jQ9?701{D#{J3kZW7PzZ7Mo{$BRPigoy`@2kWgP1Q%r zRkO0+CSDnDLa0on($8RzDG!*Y&wM4=z#RCrK~ti$WdSl)PBB=vKy%?Tk2QIvJk*s} zD}OU(2P}AAsbke+lukNLuL0JD%Kg5N6X-G~*x7Z8OhUca;qBV%Z)kXwxDpACfVv1q)^OYpO!pJ)Q3h+;>LV3nwt>mK6$atY8mRgh&eWejW*sHo z{7x6{%`qCQbT5HT1J$5)#y)GSyF?UYLURK`SJa(toan<#WAa#YwKeT+reW{QnUzf& zjjGdH3y{_C!hbvm^1|wX;lfl@*bqq`3o*A35=mm)!Xm8XW|H^~LIXwE1agtSlE*~Y zC%>vcy0aq8nK~C(w(D}cGURSu;r)Sdi1c_o+HpKrW`;t^?=mdY6TyU8r}B7`EFBHM zNw&*eB0`uiEu-gnBJ7f)I)3C1qiSV($=5xgLibl#RbNZm-P3={JgD&hWJ`UPMlc*j zyON>TA<)~ueE;Bwo)}Ju3?r{uO+B_;a&v$WnyY-V=8YkWx)wgdAl)W!J ztA}MxCos40>qqq7?`8%9wX6dtMXS$!>p;G~YjyHQ(pmF%Uh#CgZ9Xu)S5H_0 zMZ@(4wmZ-Lrv|}6hJAPt26^z-MveN%!*n;kak22%D(W}C6AVp_=M1yyV}3B2_r&Zn zVzu0l5z?9!nOq|xZ^q^jU^O>?^bt)?4u{Qd5S{B6d%91SYBsyC>4Zh--gK zoBeYM^TOjK&FmMS3P7JP;2CwBni?Yjr@kbQpmW0S#c5k{ocjfNQUlz%FS)A!Y7FOo zui+m6W)p*cJhX+)5NJ0ZcZrwP9Ycr0eo?Y; zQQk9!W|K)WGxVeF-c8lI{}3}hyq?r7n0j{h?B-d1_T+DNgr3#rt!?JP5stIoBSv)b z4&B_v(S-v;9p0)WbQU_x8Fq0v1)#CnhMDs%Lv5H5Nf(EyMx*hb<(TD6K$p-^C#7Aw zghJ|Pp)Rw!%sT4`)e_}Y@N+mej{ulzI2_Eqdxz3B2;Q?cL+CQg5o*K?rodXtc` zocdVLo`qboI&{Y5Jz_It%UQ#>nSgiHzsv!zmJ#A{srmx~U@Q$+=RJ7TP)Fae!?L@U z*X%$Dv-jPEvAT%k@ZV}RHZTxI>tMWY_5hEY#A2m+u1*6~zP2e5-TAmQ-eVHk3Zs0& z&_glD_c(?61b5&>2D=a6Flde#jzjWuB7==k1RqTe9ZQxNYCI9>V!SO-ocpSaK-+YD z)AMW>@wpn`3vgk#4qLj^%&1-?s!wci@;*1EK%alqEHkl*~0mIx4L~h=~{K)gBxEZ$nESurd@%yh1<9xN^_7W z(?q>UAD_N=FY?~KXZYI3!oe--PGj_lob?^MO z1x}E)DYG1nZO5xS`ONdB$Es&sgtw}#ae?U|d_w&R3ZO-Ce`XViK~#Ec$~eiLRo)dZ z&SQisKYrET;?J|H*)FIU`pT$Aebi##z6&_i*$+TZTVMB4Q##N*^umQyobdR>#AWnH ztcK4qPSCca#CMi{QT)B^Isn&<-KIh~acJt0JRTPD+eDTK_O}&u&igO26 zA3!fkU;zPwU~?Df0HhxXdngMYFNpi)-FJdnQ@aV3_yBZQ>=8OUNMb*+S>8}WE~1=E z_U^TP0#I#md9eFM_#5`A+G}ZXu?Xg?HwT1a=1Xt9D-NrybwC$;Ovr7%*Dl{3$K#Hu0bSKx zo->0ZG47D`m^gqo2!4iHM*~2}twJ_45M=22(Bb$^2#M6+G+9Y(ErOW4Ykfmm#|TWO z@FlFsy7CSwk(G?H$~2+W_bH0(>kdnE{aIy$bKk9;;NMyu9HJ;~b(+8KQ4~1O{K}Op z%WW0jRXFSiZHG)Hwi9cYEkc=!deLfduZ<49spM1{VNNeXTn6NOU^WdJawl*@bzJ{` zjZEQ=UD&Qy{|lT;QTDL6c>t?lj@FA{zwL2sD$#xg$|KKT6L7+I+wXn9(xrL#Kt8bB%z+eT;-WtDimh}%*$>X}xI5S+`3iv0%uEmTUnyug?n>KCQ zMb(>`om8doph56=oV?E!ZBlkRec3J^K?=1NhN_Ap`@y3v z%2lBa6-M9%QY>7N)Ljv3m;R8ubJI&_h22ZeL=egutq6uKtQ!AuI`3ZMXe>-crarLA ze?0d#I5kT^(ev0(Xol9p(YE%wtfu>;i@i!3xxiraxe?;n5UT0|gLF#mbgaaYN;cPk zjm!Yje)tYl_}SnEn*($OQN5?ujR%}M!%}f{SFqfMw;Rn@!<-)9*a6;(qj-!V(~0ae zQt^JMrF@T{7S?6vb*_5OZ>xP_nX5 zfT1Bx6SaqH2mRvIv+FV^{nQONbz!rw|2tu7m zDs1wd07B?aRVu!aT?A%dL4VBG+KDh!Zfv_R4#kcZVyNJ!uuqipQ!dtcou%2meP`_s zob`Pc+fDdQJfodupiJN}?*p{Xp#A5Y2(SZ|a_iO6MvZ1-g>56S& zsLo$!*lPzUK_oksL0tHBeOBGc!NMlRKbsIjuq#?1%8~_Ypx*w+jU3c;>GRoi=+LG+ z^jUG83Fh;&W53?kpRKY)7OyxpZ?)9xd%N2UPlsUk3G zwvi3|95#b^)gL-BiP{sx;Im;XjQ8>+!A!x@j2xK4&`J4h@GUU=oQF`!SZ8#$skWec z!Ufh?H(X@%3FC|xw|0lAsJ6~lU9|#W<8_9+y1_QHw>X*3W(K=wI>TLa0ro2=)7e2T z;-i=?%bbR=3lEXC?_nQL>3Q>Ak1hK^kNb7KdIpkhlYK?C6xc8cs+icaiM4r;C6@-k zfs1z&ANDn68kMJa5>}>mYKn&A6&zM&AI7KD4qUJMf714>8LGU*k6SnsaT)($0&v9n zKD^&3{4V3UR_r%?%>1;mSkuec(o=QWvZXf45s2|ehMQ8)u2>5D;)Ku&iZe_nD|HgC z^RT((0A)VM++PdpCh7H{ufbwB2;-Ip3p=V!HW<}sf1Pa@fsb3OH`e$zVXS>zoytXb z;J7VXy`?4`kf+v-bU$bqJhlCOvmy6CUg75r%^ac%ZsX`P4SybvU(B_=yqWq<+IA)G z)TBwmo?65I8%ty?b06jxoNUTwnRdIr7+8TlxatN2f{%TK%B9(`opADDxmMXwxhEL!V_PNF!4us-$rsj6KH^&*KfJ(rPqvaz zaeS2VlQAAv30U8G67~cfQ_&EaL{sR8g&=HdqHYwrX8Dzvb|^E&@b4KdB7@X0c1wO8 z9E)-AK-f3%cU@q)o`8g+PU$$du|?=4<1vn?hpu59WA6>R0Vz4%_;Us0OSbWZE^0b2 z1BPqzUNflYNK%Ex_I6&zJYR0X`1sTj?!4LC%a4eMdhqI!9)cXG6s@)$lp_Kx-_U*g zPeX+@xt{<8QMLh4ISm$8<~^oG(~7I8Hs2chd(=5}KiJ;TJdw06tOU{je3VV$I~6gj zS)L~V`tV@+zLiRV%o|cm2jzqT_U;WUFGT1JEbQnZ!3qT{Scai1t}*MU!|C2UfwDezQ|H6SUK zbUpssz_uRL)L7wSVZjC>`4ofs269bY#;e#gGXjqKIZf-q=EQFjTlU$ViQ1f$+IX}P)$dBkd8YrgB>2p)CZc5&xy^R#WE|pH^FGWJ9}L}O zx4SdZL0b*F)?#)-f7kul-W-H7ex;?6Y~vB&Gi2_1`;Q3|dh)F?f$G~Qf>oi`m5xjX z(8YtB8Ht723~LIdUkJZYZk3|NaD>#UAC0h!Mb#ijsOuO7(ZR}08aCVB2rz|}ku(S$ zA^2syV$6#*e|MYdAv<)9{rvCyFFOZCP-109 z9pxLio!o)W^4~gk{JJL#eMa}5h~L+v6x-8El`6u193%RbW%ZrhhhP=bR|uh^_pm~6 z$hdB{6jJ>jAB84>@y+fTgw{2C?MftMrL1ny3&sNkty|4ilOU4vwa_aF^Ij%bWEg7i z0y`?lKE;j`VxPIbNG3On3$e<(VK}F~0P^kh)k`?5ucjU9xCBlDBO%|4GPHK=uT!Uf z)6{PC)<`~bU}=kb6;797K5!_h3~QMF4>9a`D9iW1((wZs_VAx!pS+UW`9t4Q14(?p zq^INha!fj}6zo<>%#bS#(z5!W*tzoAD?y$XG&a4iEWS5E-q6uddK>-@|9^xb7k0>U zG?mS{tinJQ-we#(cF(%tn2Ss^j`z})Em!GTVxZ$H&-^8oGwQnGF-rvRNJ|d5=zH>g zAn$vEb8Vy@MJouA6`*xt^|1_VKi2VBJU;}IJAhoaB$_2x$ornEza-MWr*BE5sLr7J zUhJY@>Q<7p52v&zsD={4Ek)*fy z_P#%K^$|%eF9czzJL?fb=Sz#jVuc^mHuU_`Y=deVR=4PffeDf+1PQ5%bjNqvd`MoO z$B4j6RIKoEts(L99bnKtVx4ngHHFPLpQN>9B^Is;*<|5ZvIcpUm6e!W>D1#U!%+jJ zLqR#dPme9lX?w34>Y24sBmZX(;?F_QtWr`_>9dWRESQzB;@0}V_l>TrO$4!-zBz)a zi|q3moOjnVSy?E%(Qja&@}FP`R&~kjd|<#>hK*OGY3YQOFs|`#c$w$GcMXOmV8xxX zofYXEU2zv%Pv_VxU2)fk73o}+2#l}h*E#kY0fV<my%J;VOBGOZ#yaMqJap4LlSK$Qqw`WG%0W0xiI+(nb>Y(o5ce4kVQcb1B61wXj z-fA_l(7t2ghaX@OFl0H1RhA;;8&8-4dar$!^aWyO(fM%ZY%ju`MzvI#ZHe@z5@_Kj zVRG|>;+nvthl9!0>|5c!!UM+)7%)KH*^vDRcF=Y;q&pkpgfSMEDp`Hvl5q9uZ;{>} zZ}N8Vxxd+hCAF-tAHj>Hg#T>Mhz$MW=rl4#c{I~DRR_M*fNiAsGHys9H*7zk*?}!r z`))@eu!;SX)&kfl_iEUm^-yuBg|V{}G;9bRLg&}ymwyCvWqmbQKs%V>4Y2!Dk7cjI z&VI6DYg}NZISgjm?$LdEU2zyRl~sPI#Eo#i*k~XdAM%A8^w%sim*%hxn*f}rmLPn5 zV9|x8FdGi-`}g?2FWAM4yv=j{}cocWF&bxzwVis2KSoNI5n{Pp+1-H|uZR znZbkv7Zco6!{h179sk>c85>2udzrZAV>m~R@ZVzOcb}|NeF?Cw@r$+A`+ArX!G#IW zv`p@rxIZHY!5Rql$JIF{xt$Ht1exz^6EFm@_Zc!)&~l`jg>H~_T7qnLg&sK8+Ju^* z!VMzXvdZnVM8clMWw>x2_+s!DqR2J!sF8)YkiMbhS~-o+TYnFept8@%wE`6K?Di*Y z(9b-FQzW{*pI_4@Nw7}p!t$2P-M65f3=onZFKL#^5|v7}TpfLA_3F>7@$xr`cPkOR zwwL`CQ*UtzY#v5dix&ZCM@f&ezGHI;0&SHBB-s^}p?e&)e} z!5dYqXec2CRm%LcLhoAvL+(js-u<+Yrr0c*kFgLj+SvC9VTYkd$+2AF23GhP*}^2$ z^Pz#kc4Q09Bm$M?ppFfNLm~z-SU%WmO%)7`GZmp&~ggixpiV}?AS0Y_c{ zV22Qbc~4sSowEWT8Q~xf2#?B&o}OFh8;&OvO0rSC>$B7ns!HYY)KgC$JjS zPjnxjr>Rx;#MoD_{0A3hHF_#fR;~KDaN*Ufpb-%TOLd4+6sEe=%rf`C z?p+o`8{6n^^6cd7bO4oIb5>CTy$#+VG8S12b>XlxBB&3oLr+z!9EQG=D5ADyZuR5k zD&Ou5td+ueyb#Rd={YG%Nu4MJLD(=tdBWt2Rq?#+{y<5Ni!tdPRS|-1TukL@p{SJ=aQkk`(osp-?ZO2d7bhh>JL9ZgzjXN*lEi}GJcxN#{ zr6unS)@orQm9G+SN=r{v;}5dgM`T519cGxiYD%#_$a_gM!Nw^Qca}0L+|0C{n4ZAPYY|WZA z&@>SsZ;iIlX4>+7x9N~#UPfiDcp zo|)Z*={f}-oITsMt9=;ZI=)`3mc6)AU0=uNbL410X3W?zt%v8xWQ`3W)hD=B)3TGT zV>_{f*G~t-Vs5rHr`XaqCERmm%kR4ZM=({6AQEhr#0MPftTA54mft})HeW_Y(QYnh z*u!F9;+{H!+%ID0_fjhPdJZS(z5pk&UzSUFt8=XTON^HrK2)N88s1B*rCI00uCRP3 z1jwS7FJB&l@p)Um=K7j$3=Vm=NmO&~2$@56ekrR&vuSw8Idfppk3ar+3JyYe$UeW; zeFjEGrbBMiaGII*Jt%?74*XiKTm{&J!>A#t{`Lhuh4Y(e$(aS?s0vIj7s~IPE#wB< z*DYlrlYwnckI9-IaQ5^krlyrDHZ47^O$MvPq<_TmvQJj)1bo<3WT~S#p(QIZxE#-u zzA+e1d!I`6yZ(lojL{YXMkY)-; zH?6f7Wjgk|;s1>%GB!CsfW67GgM2hW#!u32u(Q7!hmy7`2GCcmRgG)=|16`5vXPlA zlx@d+z3A^3QiQ>>ERNNi2F;VX?|A#Tl1|-BLF;t~PRaOtPU3?@4>$<*d8GY#>IdEX zi7yDfo;=*QdB=jk5|Vo8&dv0ARy)3X>o2j6A50NT6@M~L(z^>gzwTmsvaE)k@3Dn| z1uM3Dl!ar+tP5o21Jq9M*(yr9ZTaYiI%&JM*lH8$f`a|oUNc?(He8D}_;SwbU1_UV ze`>#5buTj7)rU{ozPEo-`QHHn(0^!qiW&D4(jVSFH@D5ZZC;BWN{gdEANOl_Y#5y3 z{xr4;3^9oh5pSlv%7a!5j@PD+Mx>waog~_Rf`T(4v9_u=1t8=nBvt$IYP|JtKSE@$ zO$k_pBUwI>b2N!lW=JzFUJEgcB|dyzE(I-Tk0Gappu`39Z0Uh|X7 znOZ#3XM0!?ggTIzK*H=hW#UB>;Pj(UnNPb34hs08zV!EQs=aMge`q3XEIvl`(QQZv zJ~ysYL@m|7($|#n${8-gyu-sF6AQ$MunG#rIx9j9hr_PK@Rb+D=dn3?ROfxr_r&#) zsZXl{%*%t$rz65gS0hZhb6puJ#8A=lc{|Hbh(pKtts^a7j>_%aPQ?jsL9^8|z~aY3 zy2NPaNPnSk10v~fn&=jy&_Xh(;Q`r$O&&Ip;I*Ku^nSEs4{!dqe`4c$968gQ^C5wGsRvt0Axw*|*^X9wIBN z(mVQpmIE2Gd~tkY=`30J+BLP#e}leg@V)I}L-T5brWEC8hh+MWO0}?#Z6d&8A3{=2 z_v;56hr&i6Y;AuLh{i#zA5+Z1v=Ke;!%14S@E2e(CQLq~sa3JRnD2kCFj&h?vAT3( z13LyykJ5^-i*h$uLl3F4W8}t(s{q(B*w4cZTu-KZBN*CrhV8ccM$vIllT-s|Mw5uL zmM&fT3ZQ&`svzvkL8l)`ux8Zh9H%08QL$y5(8;=03n%1#F^16P#hoR65HgE@i#%() z75EzSIvCNszfwuuxRHCuG!!PXUJwGX;N__8ED*!vw~8XHlv0HV9Bt@vg!fBj0Vgup z>53HdfX%c=8;UGZ0Y-?libUQ)tAc`V1X+q+nDDIDlfFEz4xc%2Vl~6q8_sJ1yNTh- z#YqhsG`OcImIlpHMVV3da{7yYYWZJ-sWt^D%3Z9yaMrO3g<7jr)e~qXtClkoNZLFj zKG=L7%IYOLUr(QltqFWX6#R>`dinkn<${;4N3TOuv9i|>hFJ3V2*!!r)A|l3F)DXA zZAwyqt?U9EpNtK~I9XXRKIhu+U*F&v=@MP}fPCa{Yrm9UMaYUeHS zN%K^kGq6w3h%TXGm+*jK7aL(p1c`eyL^XQQbrH92!k-pQS%px5b6o_KJ6H++)Ox>O z`vS+z9x$LDl?~VzDL-x()d&yHZ?$CT4x|OcGt5MJ6A*oX8C8bqp)jn4@#sN>cCd0_ z_Dv~6GqBT)%&s#g|0tcB9n9#SX)ny-{!T;B6U6#>;|MNd zzsCfF#U}OD=40Ln7PS%lg@53I2_sYs?I&R!k5-jtQVZul@W2Ebqw!A=qi$z^CVm^w zIxRyvpEQD^9XrAEz%v986aU-C{P`lUBHzdBAjaEmy)sT~f}cu;ow9sK(poWbm`piLR+$`2)hCX!timo@_a~tNa)Mv@G7X<{8~hyd48ncx;|bVi5R=5^iCAlroAG@I#|jW~6-M53 z-*Zee<&=VZfa!sdFIl=K5PufSaRadK?W=Wxqu}P{U@=q^dXQk=CB|Vp?Y&6vFT}TR zFJJy+NzUjU`@hKn`hXvgt|)Nf7n@EeJSwXz8DP(zJ+)~%Iaenu+g9yXEazpy+O`f( z#nNRnqYq&PT^Zf5P@EF=drh6Am=a=eBcZYQqOQ(%U@+7IrfKeUc6LmMMsnJhx*}YQ zO;MDm^c~9H9L5t;*}jybR}^Jm7Ua2=-UHvxFMJ(Z(NiE|MOkCJcY1aLZK990MCByk zqjNyTfh?&I{Nc?aU-;{^?4wEug!IJE+)Ql?RqnU&-#T0Pw~4H@KlLa3 zS6It|aqv6&P?8y0E)cR<)(71c44GEA#mPr7kK<7FnM5RMH35e zB>~e$A*@0t{ZFy1F#e#9YzTa!078a|U4VFPGRM zc!aX2gucJ9(%CmGvwoxHIbZaX-e3O2f;^TXqf^rO8V{j?daHKvc^mdzuPg*j;;}_r zbxDe?u)9{@z}o7R^O`5nXsM*|jqO28LCGx#gfXwUMgW@rYW;WLT_y3)?!1WNTq5`W zGmdWQTBe96nrFjI-Faaq%~SLK;w2^@wA!S3>fr=lV)74#gYzn$x61(DKsml%RX2L&6Z4}LnzZ6^2GFS zp|WI04TzxYw@SNqldnJB_LAHvZP8ZA+|Gsigp}tYw2>t3plhKC39Zb7hso4g_et11 zIB(*1Ar7R6m68)3Q0@Z?S(uLny}tkLw>~~pHv2i*##>Uk8r+tp+-=&_nfJQTxVAm_ z@Zmy(dq@219H_FNR+qW(>16dgaFyie0GM`{;7_s233e>krDz|j-+~;-M6cH1?>uaF zCK+TEQ@U(CQM;FNCfm>3Z9_t{Q=Qx-+V<1koYs&+FbDLOdbRwi86D!&yZ6cOdT+3w ze><8Gg}#OmY)ypr=_ECE>!KxuJhpe{6;-=Y;cVP7mY5jwbCM!0%LkE{jINa#M2=cn zhMrEgFuawy>C$$jl*mY$QtF_OSjp2tF!FxuR%LpjAfh%jdWX`NYfof-$7CH z9U*_1RYZvT>hpem6G%`p`6HvP-xS8jj*;M5spRgebF288o$ntcwf#cslsMO97=APF zfa&URc6IuT<1ZGlKiurvrX$*{wbLhSiuY2Dn z)dZf8!zBoaZztR87>4pMbBatGI#wj zAd%orc{r)gmi%79(e~ej6D~HJ+~YsEnaexDO#b9I-Hr45p5A%X=Z39EA;RK?6n#KQ1)1GALURBA#Ng8*jW5zAc12c7dcBkv%Fyw)PIh~MeJ{rx zUFDd(Fz@Q3=GGwfyv!wh1YBTpt2YVh;AkSdoor{g9gQuDKjSO>$3sW+B;Km0)7&-x zNj!uT>8!^Y9Ab1C=|b(Aw+Y65S&`1=gR{b;?U-^Hkji&RJZIXY|0ruSeb! zcuS5=qeWG>`scBKX7sGO>Bpcxxf%!El=UOM4T(-<`XTn}C%}9m_(I-F9jbO2h_DvU zr}BruPWOFYG(O}6584|*x*7UHS`=*diPo^&?)d4^EflXXqVjL>KqFPsL1v}RZun!Yy zB5APOp$$}?^2-d#QX1=`WoetshL->Q!4>Mry zb&=`mK_E_#I@~=veUmj8)`58IcKW9|>};QY*u;F`1-w6l9+Xy=3V}5%aZ4bU8F0Xw zvw`lDp59Y8tO_aEiqJ3jojp2MY)X3iX{f~Ke$T0F#UOQ-$RR$9Pnf2`bUF3FNA&0r z*jX{3GZr^2_6e}xi0yj6!tvj@S+Vg>X4EP;(QdSXAan|Akr(XU`xfMo1wp7&LVEPk z9!HN}O2^3$J~hT@G@YaBlYu{%zGaLkQ{e%9YUxqkMD3rdlbw&pX7;8C8h-N0C#SD` zl2vd&?V@Oli;#`{I2Y*lq$i8gkW|iYnPaPlkzef?%C+t~tf_|+lLZ)vHp;OU^xR8w zL1gC!+gw5rH9g#ZrO2J;@bcTjU;QvPC75#)H1FG}omUT-S!(NBg!3fujX?Db3?75jfra+31DDL~ zH^6Sok|j%ED&4u%yF9I@528y2Wr(_adO3qx&rk=2h!-&X8gk5&DR2&507^AXtx#b56`Agym z=HF11FI0(-512EfW$lV)W!HI+wXw8FLgQtNCcyUWQ)w%0RQgJ325vtqs_Lrh`BHz< z%rcd;^`?7a6>GclEDkZ7Bbxe1TsTkTMVrEB)%Dq>aNf`2Rj@AND4nVD6Xrg0HG?qT z+f!{b=8xuUZ#l~9d(Y>%IZBI1@VAG&iHmL~H5FJ;k^7Lufda_i2ZSB)UHIwS!o>}x z(WeQ|D%t=Lcs)qDl=j5-xz$w5FOA$l3ygQ+U*$mUYY%Ibs9Lr9k|igh*0AP40gFK| zm}aUr0MyzkAwO8KPhr3siqDXHQ$~y!F+ZAZcZ}V#Wmc0W9-8_%{e%UJwN8#B2|8)J z)+EVAY(l5Ni;$jjOlcv*hLSiLgr2eY!05TadXab^M%QEt#*oD($5NGueE52x3(SX* z4YF(jOnMKlutLxl`jt(d$^E)!Y+;joEvY~5*}e_>eY}sA+B(f&2VupVm+AZ@%$;kc z18@y;f!%Oyv}iJ9)i^B0et-?o7-b8yNs-q=0Bc}TwUPxeelB~F3MfjDRo6-bw#v#| z>8jSXQ&s@zUtD0&?KYTGH(1!1WRSsd#Gi`NhZ7lWf8{TO=7|E!3-Y3OJk0@5{~NF^ z(j{9(1fUNdKm55)9p9}N?O?g66Z8k>zEyCT?T?t&LJIwUY4RqxvY{)1dQ01oOBH(C z`v^-Wf8y3P;Y40kTQGy^_TKpkQ|x^@s`o$ey*g|(2IqECyq6upWU@xwTcM&RMTgV-lVc^`mv%N>|HF8)io;=U_W5An6t&< z6&&bPvR}3_2X9(%-?7l~6dbs(o<*jS^|#@KcoK07+Wxk@$zQ#Cxxk3(*{k1F;>+1A zp+iUQa0_$@@@A5vc2|wDcaqWLQ`MLPL|b7vyMY2lTWC1&SC9y2tXy)STTR_0#D0UY z0ZOm~*1QIYAXv{m?D*E|f(Os}e;e5vHMZdZ(T%Hb6IMhsn_Frfk`qN{OQDl5qIq@a zd(3Jqjj+9axCtebtLlNdh8=hcWKc!qfTYO1Ossz2-ue{e9m`)?J=<0ISrB$;8Vx^w#MCNS|5N- z(Ug7Spo5h8)xgmn&Q82;7++v#bga~|9D(>$8x~tdh-O!ukdM!@`!5=H^YG)Z@Wou# zgj%quP|HCkRL6p0e32QMXRw!_SUswCY8RK=PK^7r5Zwxv=1Yfb7~3|Jg?x!0)%S`* z&Th7KOSz2$1IUpM*}c}M)Z(0G>bK$Mqyn_tDU-)*Ucuq+>_5d;3v%4>w{{?z32AkQ z_8~1t@0lW<%6NoaYF2na(Ak(~y2!ZtlQ8;%!oaX?%&pEV(gmO|U}W3Z(03BU$Vuqn zq|inBe3>wekdoB{UO{ROGIGk~jUwp^NrX0#puFpFD*VC1`l|`CkCT9DeovJ7GTE2G z=2H{2Ch{G}{7D+LgM=YN5IG6&{w!0A;uO&eKPNtgybyk+DLjQlTfDI3 zcoJjlV%Iftu8Flb8FlcDy?RfbKmS}fPt$Si0@F0hY3q(DQ!##3$pFh>Jk4O1g<$;5e4o4?;?()g=s*@~^CUGT5w|il z5&9|=(h#+>QP*xMaX(b5`JFl{pyS>fU<^SGw%;D8WbyhYo`SFDHP#KR*Uxa=xr-Pl zOcA_JTVan7_x6wp>zVje^HaD7Tx-GX!sb?Ylr9meVyMnF99NwKvtM?e!tQw=A7wsO zptuiT(n^8z7?Kks9=BC4(LM|&%*HSLsGxlMK1NQN25~s9d5IE(BOWqeVok3l z{ZPU5N&y55muB3>i+&UrleTEy4ndKUC7T|P{a#c|l#QV|NpLX#x&%}%+qnOFc0uuK2GEJEGkxUKmt2wR`wW~%xYpqzCo&AdK%+^W5>y#Zqy zI!*BNX^ot*z|ZfTHNw0rI~nX`jN=T3BRXTOe8$Oi_B|MBkySSHz=r?+x*~u5gFC6u zimz~i)&4hN1uo#bwx5`up!Z(9VoE|?u3jgOWZ2h@DKR%z+;D^&X--It?0ybHSF8kU z7B9#4L)GRtiQQ8|o}1qdMyU?WmFvbxOlBw{5wcqVEZE0XWvF0S+@FV$m`ti1>w;l8 z-#X3Jv_ep`A^sNLN>WTV`uwl3!&XNYn%ecX@K&-cWak{Kz)BBLq-jCuHy4=I$?Hy! z8z;L1PoJ>I5-j`Hr^+D-=B@17?J2~vx4(!JJ{Cf-T^@er?3d*fvX6zsd@684jjaKr zOMi>PR=*g}`ED!I8G(fvtSGXPI&b*gSTq@OprY(z1SV7FnWD@z zS%w-8=M)J#c2%7b4*AAshg}SpK6Ziaz{&|pelh8K{h6vU(xrvfBXJzp>EXQJ%(cUl zkFZ@qMou(?wKxXD5+Clx{*vPL!)N$VURGP@vK_})B`+xY7{|)K0d=3_fw~Lsn*A{T zOA;Asfp5#8LJ@ca=gDAw@V(r1hHa^12uvc|Mw}D`6BA=?&3+hXgr7>(nl)kSprdJ` zQd98DmIYC*BoVd<-vON+_#j&yRP89%_Izq^f6gCedtfCl4TlKpW*PcGLu`C$fz>xgkTwvw@A@&1*h>?*JgwDuoK20&ZrT;FSzFXbGR%O8RnC?LK3hAA^SWe*wWC?Wo@cPFHcI05V|0r_0$~il$sqSy`)!uG5gDI2-$L+cfSnbM>Pc zT?E}@qhO2YaQLqzuC2&tRmG*}Db-n8!5Dpd-DC{LAd?=uaM8dqT+fTBD+ zuz&wGp#Em=BTuCt=(D8?O5)5C7MGOFRABJ*BY<7^VG_b=y{>HDBL|2hV4PL~;BI0& z)Mz0*`;LwC@%>@Ddzj48ZO`!qW3g!S z4G*Z7(-6iCuWL#99^(T$pl$Kk-az^#8DGm?j_z%6Hn%n1l)jFm3pIfpgK)hq2QJ4i z=ceNLHf^9QI{x}+9&Igea1(ko1RbyVa0~P!unrpgduk-ly+KVpiTU3kl`?j)q zzkUKabz-<+ywUHRT6|#Tp!SBFS(Md3Nl9Dd<>fW^g>u9406?P_9C2_?8*C~%o0~Jd zP*Fk)I=y(_Rl1oD5vsqqkI5E!7E{{fI4Vdo9fzu|lF#c#gIr?f#>ZTAXs`pbw`ftA zg^##fSW15U%bxJ?h~HWlxQ$nH5P}02oMkee%wfB*lCWUGdR2k{)ZHNWYE-D8J}Ae% zVyq#|j@NvKZN$o27CWI~7kkqPO*IKqGaK~v2aMfsdJddJIiAb0=A zn1sx+O`)R}iy@;Sv%eQumwKfbQA-j=s4;n-;DZ9ODr%>=!W3ySKUWFmf0jlRhm`o52E!49 zUf7BOPUAn$=G_Zh40RPJqdIM9rSI_*q28A$h+hsC)t`&kUa3&@$}qkLt-AV!?vI7> zFp*zWBJdSp2|rppPE5tlBWROG*1}x}*uH|Mww21g8^EJhiG_B11fYdyNFJ-!PYZ?6 zr~M)=cG+ehIr0E_8ZI4yrZL77bVutc$A$nMQ;&mZF(WN7W6KtFJ9o92RV=0s@U|7l_jRV9L%1j%6U7&Zq!A3gfm=rN;52i*5z zfpUvt)h-M5S)O39KI)Xcc)GIe-pfDPYS<$Dbb8scrQR#My>g)vTmgDnUFOBOGMFJ) z@KJE0L-12+<9i6kbBk!9?b=#wuX3d@=ZmJ^Lm0czv=Z&2h=YC)WmcKg-K_xiN0E+E_lK8JD^o zabRutj*vBN*GA%-B`q$2Y^cudrN7~{APz#P@F3!hR5ZcmCiTw~JsT-hCS@j^%w@@4=z zrUZ~x;_6AoJvi*LGu91THeuA`z(YS-oFOwhR@g*ePS6m>3U?c7h8%RhOneVRF4U@mTI^;t2> zQuYqQhb_GX9piqmXy(0vo9m#vf6`^+dq8zyF4TH&N@T9I1D|I?CIE0#$P-D?L5X(M*(6*;WBWj_{q1swy1)0bzp3 ztO1-tLdamQ<)LckI1fn7YUWenbkXn(wb~$ZSR#T#QH?*`YMbWj0XGJr|FDN`Y;VO> z6(Ua;S-)YL|Hd&Iw#c5yhT5jZVH507mcy#mK~cZPcoo`LUX=bh4p>`sO_+^n4%orj zLBar7Ocfyly9footS*7xc5%i}94BSHZWZB++C!2-V{pfx*~*Zim@_;?^2?(8D*j~X z@k9r_fEO8j@t9kZ*g)kd)<#d-?6ZGb^5XznBPjjgk^PnOz_cDzFIY4IJ5vvwcK&=C zo}S4_gGpqX8V;*PrMnR2yO;8nsmxMd4}}G}s#MEG=J>n7*5Q(DBo=O=WUd%hDfjZS z^g*HTj=h~fneK~ec;*mIIz0eC2nff@S~6HCr{EshAqcx-gR!r!X1fL_n+*dV3_iw7 z48BF$(7dBYeWh2W4LJ~bY3D73L+@Lq8r=dqPy&DIFiKPlnSd{-@6ndn#x}#!%e9J9 zH@w4!>4JnqTqyZ-($(Hw|78x)zHo6Exi@*&)M<;xZao*U zReRY?J*@(w{XJlcRjS&srAtSTKe2xE(!P;_9A>h)lFyk8L*;z$L$ZvKn9Qc=-^uP8 zHOiP0lY)byX-Iu>e7x=VQtWrFVgyy0RMSGI`jKP)2M;wD1|ADiolb zmv{fxRJKrALLM(Yu~hPk29m^!5(s^Jw6ev`JM!O_12yO=2@{3xeIu0POKu8Vs*^C? zSZo^>*ujYm)fgS8cQ@wf(!D$n^uB#2weB<<0zV9!m_ zQ*gptZ*FG*w9gO$Fs}23m10Ov1z!SCf5fgsO5ZHz5-KGE&sJYOF2s?Hoa=q z?c|6E!`(8WELUt;3Hsgm9Xdc)kd$7W9i$V^>n>9!0G40z5E_*ZpaLhvKNU2%#{dTV zGYk_|&ob8CN5baI>!-Gu-UV3QRLyLSNQJkHTV-d<`YN~hGs&UAFxB$ zRMGPxzDFzV)plp)?Q-5D_f*;3UN#K&ed(-XUxoJJ?RMa`YMZxrIBsvpDuJlp9)hE6 z-Jd&2(7>fPNXkw!i#J1UVP~84-9P%?5FM;q{)Znvg3ezOp4VpQ6l@o`bV9x<_(Pf5 zM0{2TWe>*R$*^+z_DlkWpU94ibL<`8R5SY{92EVBzy?J5p*eQS-bbb?XIz3O$@@0M z{$3}k$JoioC)XAAVwRr=%S~WDLxiBM){3@ZqZahu|J?r4*M+y~Ih0s=F72^r#AW=X z0+s${$7;u6t@6Aen*S(y9m8$iRcG~ZRnF-UjGZm%dbSOg|H3~z8#I~EZDj4fPPX4ERE0VBVSpLUuAzTrOk~f#~Yh=Iz5|Mwxitc zn6SlXOHC`w3jAG8CMl@UV{IU#(rSE~&lR*Ou`fd1`o2h*X@7gmK1zQ6JRP5D#ro5@ z(lBXi&d0VMXp!oFyR1f(@D6FRdxxD6mlIHBfBCeC?9PUze=mdD#7c{^3>(r5%gj2- z3r}?IrmYy)-BeHLpV>e1xc%88vachKLt%S8uN^)N!zzt}C)v*wPPUNzp^GU~bBV(>mK4z`kHz>0Ca54oX~7Y?ZFaT>*R9 zfs^U1yT9zw=^Agsb)IDVBEQbZjwUN?r9ivi4?>a@96hDB;GOplSFZQ(ccK{5z=oqb8ib;~pqec%V-#i+%}Xyw+gY~_V|8|=83h@)== zh2v{Bum~(6>I-!?pCbz2{fkh?aas*#ocxR+w8NHZGr`?f=?XEGCDy~qKB22Jt#p;??f;Gug^pXlm3`E@w-ZmxmL9{nVL?Q zh8+pc4OZKjcK8 z6Fmjmbr@DQG6}Q5Ctb`icgW9iL$B~TNqG!Q-%@b&nWF>6bsLzG4IvV`o9$s69x-U- zOB`ZH=+cIuTxho#s~L$;_6QSWsM<{$;R2CQsAT>;J!H733=ylpMN&BS7@rV*A0Q9l z*kkx7J~v}2Ec+j@PjI>p*hQ$P)ahZ+9zE#liGTroHe+SL*qd;`^G)rP z9R{Y0gcH{JBCi3yjGQu%${WHL4SB#hN3(7EnqV8;n=J_%1VbHyL#tH`&KQ{>vs(&7 z0g-sDFutX5t_=Mz3Upv)srZZ|bwK8XIGqDvC;$%Sw&w@LF#s#Rv+)*DY{+*TtZ$H= zFjG7nE8@Hq`g-kzjb}Qd?)!@?&{w1H!9un>!kLVv%A*f{kHvQd)g>(ty2RmMq`7eu z$I7sgsiJLMsCM7@^z^QRrYOaFV!T0C*5@9RfTbS-1pOt_PJz4!ae4>pUKDa4#f$9n z{-Nq`Xtei3Z{>BRCz33h6QT{WSw%6|+e7PI+8ebR0guX_}W z`*2U=@OXTuzc4>NE?~S);Lsk$TP7KE(n02GU76gSXK$yria+MWl+E!wzWiB-^}?O@ zX5**OuJBkuE7|224yOWsuGvImV!w{D^^aqA|d!X#%Fp8D`G!`(JZ}#l(VH6lROI!`|soA0E@sv zUcqyg;1odzHS`~)Vb2`r@hxGi>k9Tjd9UGG7FPy&1(!gmKi(;NO8t`Vc*F5R2l&B8 z)%YL|`DM4HN!gyeG4yz`rKx!^axgHuJ;jnEJ&ZxOZY_yLM@8L6w24U`KOC{cm~CA@B{dBna4bPPyZ9r zq9_aeWlb;MNec!%o)O!pkHWG?Jw6ye-otZ`d6;pzkfY9H|~@B z6Cuwe^%GQwI5*=KJeZ7Y$ytF|6OATG@5{i?2@IS`LjG9T1uT2DYNGNQ?IRIa;Do%O z301jXHE_1fxO;oGs9YK$Nt?d=?gZItkJdkN7p*;JJQyxtcCd+v8{A-*`Ih51yHhyk z+ugm_9wO`!s|m@0Anf0R17aausw;8{`|A_3U0AUbs=t21st-w&xJm65K>JMpr#Zwvj?@urH|KfytEuUYToXQ2Nc#`f{0>Nu44umkoD@3KNf`e-TxY$Atc zUyo<0qR;JEZJgFj#ctcNf%v2fb%l*{Ix5Yk+gsXPi z*jC#==Cs=ed*X0K0lKeYm7m~LExDHDXgkqaId;Y$L{|HzhZGhuG#Mh#Ly~N(3pq8aLzSFSHkq6uB*|F>=J)%f zsgH@k=8%MpQ~7)ij=;y~aaj|DM24wNl6>@-MhMeP3}REwy1-JmXRT_@uwa?PNn}3I z>;i{0E`kztFga;daI%0lKzT32`HggT$#shzU}It8?m?)o(_d|ubQXiQ6tpf>Xks+E zZdSv5rN_iTYRGkUi(3Qi0LgHMTgAA#8_LvS z!V*FPCiKiKYz65~-dzPbFg`$5oj_<8yTOswy5*}|{8KRCxp=NY^TZu)qaq7l)^Q=b zg=NU!$svZfG7rfpD{H0eBt92cltF1b{@JQ(r3;5ThFN(lT?xyV=}*IKRnTIW`Lemm zlSQnOIbb3+FVp#d6ZWm{pTA}tB|Bx3*L;)soF(h@p4+x$NkP*o?_t_hh7h!{iBUE> z?;SQ3J=~u2TT|2t ze!L_WFVfl(rn*YyoCRsQz@|l4Sxt9W>@5CX)p<#~1j0qsWrya_;{4kSA}U^B#$KhEChA9fey1Xln2~wCQUCx7;W2c^#`%scW@LdRV;t2y8Ak zQpa||5!YH!yF)O(Z28W=SEBozUUT&DbqVPm=-%G2>wB{u6J@tFBl*v266}lU?h*u{ z`DdlowqnuiOf$Bv4M#Kg)UhHn|JF(Ex+=cBQ{c9kgm9R%st>zlk;qCc)-wJ$RCj0? zN^E8JLK4zIt;YjaTGKNAW?qWPgT+TLUw%U39~e@d7~rgZnd^dd1g;tL(J-1=fBhC1 z$f3mEn9((cl8!oQyY_L>x^O!pn{Whf{DPBY4-yt5Mkej(!4yuGhzpNPB)8_kg1>j+ zf0YCDAeC97V^m-pKK&q-5ljqS@Yyrkfhe0ccE+0+tn&8j0hXY4C8BRFjOuF=|0;y#0&SDCwoOpcVL{Tlo z!`Y4t77TXfgVy11!)6om$ey8Dzy5kLyupMRt1-D7&oYaU6SOUB3z_TgA&J7dw1q#~ zOOnPmwpoC{dov*q2Z|6>`Vk?~9sK+jLLcu8KlUc4>y1?P`jn|=_kXMkUmm0(h&-EN zZLIp#qM?Esp%?Tv$;w@nKZ<-HOcoV}5$9LUuF>(O#HY{2kaV(E(3opKc+Lw*@ha}4 zopbo)m>3w4yMLxnUJouFA9{z6r+t}K(5CcpL=1ZE+vnxO$-|%7M{Z<+It@N`n!#HM zbxk8zG>yWzh0d_on$Z~Fg;tJQg=3*c`=P%73^s-ftiu8@ zEFG*j2A=9wN<*a*c!Z!NueL$Z({*huguaIIJK}$n10B>dQvGv@f6=_5HTE@ak$t@z zZ!p_0GN#dz1056jz- zw@5J9vEQCE+WluaPLx`btf-VqBJ5Bz_0cpUruW#ZL*O%3Ehe7Zu`H(m zi4P{C_>lX&-)0x9Lxg*y(MVBELaa42Ri^)`NrJiRkd9EhT_(d(Oa`CJ z9X}1${lACSV;rc?Uf1!eQRA|s3;ean5q%^2fG8EGNlZ`A-1SAZ;f&|hQdwk$3KL=(P+(OGlV{RS?ZU*~xv5*b z!ZOcJF01SDSGU9R?#(8IB%j(d?o-j2Mo&Vn_%>Tlw%B_GP>#`~p(7#ddU8x!WM>H? zGx($!d{Yua$F_x`E+NtxKoba&v_8tLRmjaOtV4IT`172c0&`gT`q}P;fPjFbu-pHl z_ieXOr*ZGij~}mS=_af2vC+IqoL8$>KCQ%MPU*dh5~N(%`XEY0W~d8BD9YD5&0kw7igeH$HbI-m>+8G=yWDV}_Pfvw zk15JV-35Pj;F$WnOygVK#bM6Zwt*#YJ?cPDR=9%0_U`=)sK4Sa>^1C{JM)v~sro-` zh>p=UNi@Kq;<0&i=Q6jS>%yOZDo5Isg1~+lsj)B0&_dYQ(mlVs{=dwD995bvz7AVh z+v;Fdd(IAm=XZY1b#6`N2fuDl#p(Ztz3+hU>3aV^MiNA9YKvK$QYBxC+SM3UqiXNg zDxqo>rL`5cQnUmuVz1hpP@4#1%aTR5tb5Mq|D1b2cb$>n@7Le&|NXY=c*%Xv^M0P^ zjL*GikKnsL<#M8W4Av|I?-|rgi{BjF&mPetMU2+*G3@-L>=LRkPL5T76)YIH(QNc& znmrcFuCuYXur*lotF^T0b9HS^i?mA4y_7=V-h?&Dcpr;hyFaRj%QE~v%DIGVe@{FK z(oc_Yg*CO|_8zRE!oRZS4F4thz*@<$r=Er!Lv-d>)$0=3)?>-X4ntZPi|SKV)fEQ` z^Gmn;cX*bF9Oy2KXEj0w$gr|;Bvblwjv}~)OtC*9XJlBOOgV-!{>@n6|CjJ$U{F=; z{vf2P7=atTv&5duhK2tNJ$ZOz$aQIxP8P>E{QqeVxJ~>K+}0b!al^c!&}oEr`E?gt z&TiTDbQ*OV7A!c3&(U71&<(`LgnY`}i;WftE3-0P+M3Vz2y-R5uHG0g5_Byz^dNVR ztgeNcq{*>ac(bg9Q#wrPWY}Pc={S<%nBEQYRh8{CuJD6kPR#)9XWC$>DE-h_hEKgw zN93K3sNMnvja4P4ffW090tH6VH_+Kmu?O6Y?uu8Gm#gh;)z?>rpefvu@A?G;HY1QW zgZURQSUFDhp;@ksW*fY#y;V;BfzX7mCYlg>Igr z$VP1F0hzM?K@CM2BD4q0_c0#Zqel&4qkTF3=CLwIq`OwbGH3E29A>E~7ob3R&Q~5y z0UP6nT3%Fk@`?@|3rWZi2fXqa=pD*e?=V>Av7&P_mDm)3hVd9ee(D#&R=1jD*&WKS z!Sk7#SY+gNBj#W`}7Cax?$7p#&rg({X!2f zFJZA_j}6R`1;*Xb(vIkQV@XdYJQM5mKg4cTEDNr1=?n**2(-G!Pt{pG@;DWSd947Y zOSEm<<@oV|ZQDL1yIIWe&*I`@K(Kb0O@oPfXMvegZzwGXK6=2dlQyyjPTu<1@Gu0_ z0V5ce;oZPaWEluFU9!-dAsEckRY6Z07r>;gQ^0f++%rqeK{$Dxk)@va`~_9jD~q(l zeBxQ%KKsmlmAtIXGIjrKOoYv0iZ{pPvc37GYavwZ0+FAuSZMh{W2Vtmc|)l=P#=28 z!z%EZ;WGHpA$99X${}v$TS3}wfm?Q9(majT%=Z#MzjbRw#;keBa8R_YMGdw*M`dlH^cYwt848HkB!LNEAuqBa#WMZwS(M%(SMO^@H@G{c3Mg_Y}f=Q zemBMt$Nr5*q^NejZQ43<0#i0o8^+tPBoedboAw1pkc^Q9*b$%9@w7dg_hz!-i%_Q# zU3NZ_L=feE^73<0%&Ecc52PK3Px(0|-Aaq_PO_%=yT3~7A=I83A<)hJRi8zDPY?Z} zw`ioH+Q#2!)k9Uc3ktm*Q9r1qf$u3cSw#;CY(R3-E2D^Yo{& z(5(yK@ekVWl)5}w7dM{0vG!YxjZ)tpgHMTar_^prwJ0t$iqfSK<)Wrgl5=BjcR^!> zS|Hjb`t(6g!^x;7JNp~L+OhHdJCc_)YGx5MOFXDLEV(KSyglJ_1w#Dc3H^mOTo%Qq zngi1Jo#eFfG23AUukmY$)L#c){)YP{Z3k58LHv{F;xu~tD+lY>5Mw`MC4Pjs(_JGT z|6EKAx!sl=qYHubQud02La0KtA}a~eLS?o%EQH!8E8HBq9>fBiT3x5v=Q?FWl|dUi zvuxFml}qsoj(2|bHjx@I7<7MqpwimL)jZ>|@~9%}F2)>To{&Z?*1HA<)(Q1Iar}@r zlf`jCf$BimCP7pX^8Q6pF3!j$#NIHaIgrQ0L)_@~7`ZqU<9`XjoOK>T^Ay~s6$3k4 znlBJW&gQ_5m@#M`w9qlWZhePyeuMF=<0U|dF89#y3{~Uhu^XUKDmm_!AKc@(Ql;si z9McSldSMCv7W!1(5R9)_D)Dj&<|2{ozv9%7bUApIjK@X~aW>O;U0_+DKych!7Bv)s z?;B}=drB=(*%RsaJq36%`bhtRNJWcbi9j34&ZI$)!NQ!&0%#>BF%gq(}{JAWA zN`93oJm^c6$^y$XPp;QEGfOO_F%t!+x4_fP%-doJoxz!zTm#H0OR+*?z2Pr$=6K_c zw#&@Jj%SjXpt+fNwq4rrHM}Rq3ddz;CixhWHliQo$(h==_uatn02Xo4+wfb6?@|D} zTv_zWqcs3!N}@@zr4~C@60oHnR>m7z&w)kseCU8hUb^3WmI(>y4$eQsVJYgIa7cG2 z;l+XernHa4QV>#wMFCDVcsO(uPL`L$c#o`N8tUUz^a^nBF%1C4GCl#003Jde_-31}v}-))YiPdlmv$P#dSjIQ8!-QA@khDcwesAK_@bBK9|i*Gph! zu`R?CbxiMN`RZ)+E#51s2H^7Xb5X@iD|RZ+d9(dxB0b0Yj2#;kt|UG48Os#g6V+R} z)uWyXzGr)f3qRBH#hE{$rah>Ioq2}OZP~K-+)P`)I>Cv}fCf%ZrjbK$r6JMJtZhHT zY?B+xrD%SdT*EyYxz;lz-w^-l9B?bxb?|!y^YWv2xj+6bSe>hl+GNHtUxmT5rj1{4 zk33qx;6txrUz^`(_V!m*>BRNzO>rkRm)x3i{ObBCg2@p$XVTA;Q*bhhohHefT1wFD z#plFlJ{%=0Bi;I(BpC}!Nt98s5%)tEHIkudcyj9Z($BV}U;1(>h^Dgl4p;(lyL;8* zvy%%_``Q`0uXUFpsX_MMpAI4K7;?F$;bVxr1>~`0L|->=o;Jr;7-hFLapgx2JPhyY zQ!7uU^L~ETd36ML%(drr_01-kaJ>Lq-ubG~v&DtHNfP^d#}aaxHO=rx;i#m;$@Jv)r?+c>;LQE4Vs^8bf4{63r>qAE7V-G@u{a3 zoHI1em1Ap+5m#D>wIuRy*f1Pa=N&jV<@7b;2(>j)^7Z}k{2z3jL~~zR^QtrDMFfL8 z5ctD0yugZ;@c*b~OZ^xB#*SI#P*&J^JlZB}^@QO{RH^TI2mMmrarbx+UOnF*XFl)T+%aSH76RB#g?YV zG4e{&V*YhNwLMG17JmJmJmqX{T<%Sa(CDc3zeLd0VZ9y5)t+@>4D0fhobUF-exp; z2W=szHj#M(EYPj}t6%c{B05_n`cjUKWZo$93$KPQl5fAoguG;HKPoyl)A8eT;t>B5 z3qgxWu8>2u7T=ndUl7_G)}PFQhW;enPx#3f+?15I(vaSOENGW6$(Cp4?Y_oNE1B zUCK)fJEw%Mu5D}tZd$23eM^+>GneJ~|nTgnxhrsS4*@ku|mWwVy= z5JPSxJ-K)>fxj_I&8MbiP(7G%%jhJ^wR)rCz-+R*4uruQfkALR7`Ezl$2b6|EfBU| zbL@qYrPlmx|WvmsRxtd$BMr;_%QC!!C`i6F5b>c>jHB# zBAp#vont&5=lT3v=b@(X4wLtNT+Yix-a&M(!$|SBUx0TTK>-_?+^Nr{= zu=lSnh*o-({Gq9#QERZHw@P&j|AQ^fj~G|}9?`Y}T9jM8y6SAsmALwXZP-;e3Z3!N zOM?*_kIz{Q+R5qM{tgp|OSnysL9LqArcIkMuY_3Tf!b1!F^062@aX?YQTEGzEvw{T zmG+o4$uV90CKfzJN5!>EquJ=M*G9fY?On7(xjJ-5nsQ#yxXFKp7LOxRlm@IpSm=3L zEjnk2FtB+ZH2O-gRBx1bzYy!2s+?N}+fW7JA@rFx>Mz1RxuWj29L+})jZ9P1zA-zG zji%etE@8#8%2pTpGFefQ`W1dVQ5nJIOOT>m>kopEFIciCED9{(^TfP=X`n^4W22W(ZCIed4je!API8i`4$>uE(Tm%t-Yqn|x=nQmeSz_A zy;Zh_IeWiQcQ2zgw?)bhb}_8_YGK{}*x;B1 z)pKCs9RR5QD!dI=>c4UShdJPL#aV7vn8OaG*3SnX0k@XgO%63qdV=GN80;|# zrG1;0pUi=2uuNMA5$>P}e)23KL4koxa7!&li_yCjz`cr(hhrd#z1MsUI4>71f|kuf zpzPu0^BMPvHt<=W!%X{=0DEP6Z4}r{Zg1n59>DIIK0EbiG1#8F+HT48x$nIwn_e-6 z{?63Qd7tbpz42_mdTITy`Pd%xxsIVBv{mQ z`Zyy7X12E*b(GEW%sD6L)MUpBY!d%ePZ@t$-x?xX-wJC()wQnRG4AdTf6Y>NWAUtExr~OD2{23>5X@%K4uDrk2wPK85xN}K zM>lNIp=23IwgiGjs<7ynkvF`MFV3hMEQ4@_I7D%zIIQ-CY-3XGRHXUR-62|x3hAQ} z=`M~=h}!uPC!>rbfCgsGa%X7p@Pc^yLn1|)22rIi#UfMsb)&w9J-r)kEe0cnQ(vu} zJo)S;H-ljz)Ww^%61lMw5UCRX0TuL#wutMb7gn*lnQe5A`82TBCQqlFSSOLqn#t5= zi%6|Z*EO8ad)|ebFN|L#Tw`}HEF5~Xzw!kys&ku=pS}>TBIukF5ryAjLeadP68Ds> zn=vQ52#leFp2vvDWSeKD0edHQsi08yrfSfs!UNT(?T_~(bS-Jn=>_rV zl6aKIP@@<4+>}$~rNAZ>1+(@it`l7Djcj>D2hoMo-xZ(o>9zt^$++GWk z@7+aKi93!~0qJJ_h7#>CsUb%!N;#6OQk4=^Qc?jWeY%in|bdA1L*OvjGex6>E` z^cObl+=ix+bpPBIg9h313N*YwF}zlyKs-d_SUJ80210|h$X=qOQ>@G5OnBT976E^m z5hX{BIvPV>xXtDw(pmH8oQv58s1J$Jdh^hK zh-O+$t}98zjB(@UK7cFqm;qc^+Cr~wp)Oj`9e44j>j&@j5|^H~$otdwpvvy(feB3V%Fx% z@-TVb``U|pKM}Pyv*2~pdrh8sJ90t8T!T3bJ$rC>OIP|HPUo@G`snC|WIa+Avl^N6 z+D4A2Gu#4q>m>Iqp0I%9>5LW*7>t&<3GrNa#gLrvgF$k{gfSe;U`!CzfCl=y64@I( zgTcP9p+@FiRhZodkt=3#Zhj)4Ob zRK^iGRyjg|Rd`PIiat@4nT$b%-i}Qvhbq9Cm9gx|8i)ocL8qc&nk#}+L#X3pIM(U< zU@S@>%6;UE8mPZ8?V73Ga?CSbX(k9yWmQlVYh7y-18jheVetSaj3*WOFR&gKGd8mD zgPX24#(%)G<;3?r#O+zQAG}t@B@zDpYz+`w6w9ub9^eCuKS#$8v`O1MUF3(_BbR{P zT77NPaC*wi4_Zeq@yA6f8gFWx9P@b6RSGsqdsm9(f5cV+rs(^k-ii~RAup0$V>1wg8k{l1piLszy1~5~&bT$%T)Li_+_3lf)xrLU zSABP62pye!B0tD$`Hkxn%MCSF!!X?QBI1K{$Csbc(Qw*Lj2!-Zv$!RP{#+mKCob!dj1t zR$-I&ysjwgTui@}x~(Y7`QDf&0cjg)l{M+gP#H_61BxDi)mHUQQ7g4uQC_sQGEBPJ z3q@&adaYD5`Q=AhAuv`sZVn*!Sn!;zvC>=z2B!{Us(;=RkyNXdij|=*J}l zsK%Yi`LEE!cAJpoz^OlSHm@s#Cmx{*Imkh1s+v9}b%UVO+;}}r z`3q-<@1l|+HX&k~eAa3YNtr|3gD+GHL#yQIcnO9W?=hUTww%dnUi z7=qa>8Ves5TLcW}IXdd;GS;ZlT-J`MDZ|aX`TIk@K#=NrHC82{sUD5Hk08Ijz*0Z} z%zJ`9=YSgkv#ESuQprUj0a?5eoUJzuwB*Ry@r5P%K##z9{&?}UN~L*$;3sY9N*Wgmkct;9u@RBE6o>B~;+dz+5tsnVZ< zS2_ykHwE%Xx#Y=hY01Z>(RxK90LCx)|)v z!T4!ygihhmf7uj^IS=1>TpPiwbHRr7qFTFlcM%aH_JN> zF<32l^NflQu*PP10tLIi3dwO9sY}S6qjB4Ed@|yXoScILzerax_;ac(16Io<4|^0S zF!Y;mZj*bScCaRStbb!W$SOP5ofz$m&sfZtl+uM0q*#HGnGVLLuJ_(yLJl#*Xnn}p z@`cMcT66&#Ozdyu2?r@XR#SMsogT39%)5XhTY6P-Ggz-5(S^*CC8|pjR;r0Xy2Is^ z7^((Z+u3(T6NOzn()~9>VPA~48i_OO9z>+Oi+aO=2dCg<_+qkMiYZYvj&!>v=kCzG zMX-m81aaRV3`qe7JB&nwm9QtNDBZsU|G3f0Amzzr(7N4A;a9>#JmKFIR3CGDMqm#V zR_Hwxuvdt)*#(AEquah4q93&eox=lu!w@-&&{a$ z_>NI_cKl~N??TA;AjtB4mC`%ttTpc#2lQhpPJm- zkYk88Z7`)!}*{L=-QPi7Mg=(d2unYg)eC^?A4H##~_$$6SaTBH&V$$dw z1K-H>Y~8x`kXXPDi+UYsa55BTN()hL)ObZ_kLK#{uuY^GoR8udW@DKiFR&T=t>lGi zv;(fvUR}kMwoxVKD9Sz?$KomZNa6SX>p1k)pX)UH{6W0BiHgCsF2a>h0M*|K85+Ub z(){$&ZoyqKISQk~2j~xVf>-m89TiLSdOKI+pl-m1yuRPsEEWv?qAHeR?Wq_TDi7yw zn1_Lw{J$7g@us}qD`qSH>=B=E-tM>hdPiFNgH{0O-rNbRrhuQm@6%)%)G;DzxM=V( zqP?@(ixerswp^W99oWQ3uFSCaAyh2q_+;|<+O?O&zVPx#u$l7*vZHPRxJ{0^qO&(( z%gIG8LhbJ~H6jTFU>{_LR&=rgdfBnB4;q(tew1Xx$|;%%>lJe*QdDo%_Yc);*l)j4&n^jCA@RnL#_FUjpMn{sMwc)I=lRiaKstVYY)hLr( zlt8EhQRiob@F^0kg)2Z`kc9%S%5r%r+?}Lit+26Fo>zbICC~e(bKIANIWBb(=7Q(5 z^ng)M=sUwX_x;h`pb!jhl20#14H374;p%r5d~o0agXtuCk>6Bm#=F^9SSq3L~*ggFeYy#(`H-HwysmqZ_DGLq7cBt5>D z_Of5@3x60qgJ`<+@^`CBqQW8aMs{VK6*kZ?#S$|}JC{UUt@gNY(-r(cxy0q~uc#Ag6^8Abiuf**>_VML^0d2S= z9dw@YoB-?KzQof?`EY6oRlSXGKERveg*UI~83*wviNpA$gY9f@Pe?JkGe%ejv6d{8 z{Cpr1fP=oDSj~{N5xEEMzOcK8jr9-nR9^Jd-cxm^KYNjir{ZvGAwE0G%|AeYse9b$ zV$Knv2~dtc-`$Vz=YL04@M^BT1m@owSauz`{{EoNCOvp+UxEEZtT5v_h39yscXl!DoW7Ll$ZA$ht>V%=X_M!bxt^k=~fzp z$qjjRpY2&6PAiS9YGdi1KCrtbn!Yuht3K)#Rt~8>6AoJqV~z>+IJU}It&TOX5Eic0 z*M%iQG=Frq;aCG+4**=^#@GKnZaN%kgPlmz7HA0hevJFv2FNmM>D@I%JKPjiXEI)KR09XHS#Ve z&1I?iBn{7&V3pzc)4gndX|hfBsWro$p7y=U$ydQRuDeBx zrs0dZzg&2(<{5L(0~{sW9%MVvi6FQb`$wx@RbL$L=jV3^uyClXE?6;CbvY~)1D7_| zy~6GIk8Bu1{qDoP-4mNL+&A9;P7ah!;fp%BtxYXgC&mlPNSCmq)b5%20_(YmFL2%N z(4vxcpN7!-yHgO$2Y=yMb+~GcXc%Rxwo-11pg1cSO+!NsF<*6LTOFfTHNE3$6;Q^u z?)gK~6?pmH{w4FfamP;FTS9H)*7FbvX8F(Oz5%{bz`Ndub$RD!aJ<8gqd^X_E>dnt0 zeK23wP?j$h!}KF;1rkRcf%ZDuA_Id@?^wJxvRM{b_U|XjKTeyK*UwY9R&~^ye`Q>} zy}t>1^gJRca|N5`Tnp8Dn*NDeXKD3-T&@MceEi^4moCd6q~jenv(2Ca*Bc+OU3!nz z>?v4}pqIFxV4P%Wqs@lh8TezTaCTT0zROUY1IxCj^)Y_A3m~Xto^YeiF>~zS3|S|i(h@Cy7QF&)qD|M z7r?4?i<@sNWlA@P{UT2HU>dDIt*&y@lQjMK{>itkY@Pn_qmNd6T^sd1F)e|j5xB=lc^!F*;5AojBzswRvp?m5(q7V_e_FSiHMGoVH*=i zr%JH8i9?~B7uu{6;7ijW#Ng_5DMl4M!{vF6yfbYji#-7CfLA+D_sx&3YZe$f)A?+6 z<)omQ%m}@n-YNFt%9_Z|SQ%{fTWMJIEbFA#h=Uy}jjX~Z-JFhj(6&48%H5}3$`d>Q zoau1H#&hn5DpfSs0VTQV3FVBf&~+MFqbMEF30R=U8*O?|2`P?#6k@k%G)ll%Cg^8F z^k19^rGqzId+|LwoTHBET;ReRu3{%{DatSoEA;uYdey6=e6a#d7rrOm1*m3DC0&kv zLdFeedAc94iaO0c%La2p?5xON!e1clhOD*NGzxFCbsEhG=SxU=pRI|VXs*-z;q1C% zR~%;RP3nAjy5E)G%-Kj%41!v&J@O%-?{K8-=V_3J$5;Zlk%LIE&2RA(Np)^h>lt$^ zkA+XkUgWeou2w4q6J{(v`({#^ijxwT?wNkKdom6SDaN)vBf?tS!+7CBee+Xk%6RpFf}E_DOv;@mk}flS7Nx zH@p2S3aH--NjhZz@K2G@nZDad(5~MIdAjR;tKl+fq|fkJaw!jT={~fn6@fuDYLP_3 z*e~x2Jq2jCt^Z~UjZGk3jb4|@enVxQ11^1kdEr2I$XsgJpJmkt&G>H)HM;{J%s54H*%55lEGCYoJ4a17j`++fJ z>aKLYdy#90ngXJg>5NgA4L1Q@)0ZzssG!R^l30Mz(7o>vbv5O&qg7 zbdw~dU>kotJi7$U0rO}w#SPFj=qJ|e3}Z77h3{HUZUkNjHS|{EIAgwnGPhZ7NMDKV`{B0XYsMf2V7B^c8@^=( z59c85x73E^)3Mpk%m?cwEvs5C;EWH9xS;MB|E5>J-WM|C`kN3!pJV)uHevs1I!?27 zI$$Rg#yje`yZ7Chg743;YEgQAtn-Jx;Oq)o1)2r`81!9fON6cP--j-2 z!QUAkhS;h^dNM5C>v}>7)M@rvOi`w?JlzkC2Ds><26bG%z*u9qO{wbWXyA`b-xn|p z1EuD|@)f)Tu#_w8*Z}8P;dfR?D!mri1=TS)n(yCmXsr;zB^Us_zrjN9+3)p>y(7RpXLl`$@*Pfz5n$Ak`>ZgWVkyV1 z*5L)Vo~>bl+=is$UG*$ggNaq6hn$_YzqLAADH7wIrF0+j%rWr5uAvOi;;l1OJWZmB zeDP3{K7eyw7-+G>kXxe|M#;Ag#+NMCA+D>loX&BK#n3gp>s_@E-UDAXOgM=$Ta}ck z^W)mB%*5MR4568~oJW#1<1v)ieZ?}oYhG=^J0Xz%C$ZeWg(2}zg(=RvjTWI1LJXE6 z%dk#quOcR`h)XnEIi`i@$|~>-7ToiL+N8ap<4cXw&YR*obzD0mUZhvy`78BZ`&wYL zkplMv!J5ScWutD%cs5d$sH0y#N>T(DAiV>9a9AfEk(SZHkT-}XdqR~bN4;)}?i_+S zi<sd%515}i&0>wgYfrmF8{^&O%VECw zU=y}Yq)stwwKP|QyPl^ljhH)rkEcy*z~$0GXn|R~6jp&)C5CI%=s3Znbdq~wMf7oL zVuMo?Bah9P{x#P*qVS;OR~48qe*Q6Mk}}+3zPMko(o+ahW^>sc0Th$B@7yoRv9I9- zA8~kv7NyJXHmL-Y>A1T{E!UVtto+f;U4(Uo-|v=W+zNJRoaiD_0^X94VG`s&#eQd< zEabdX#|p|URl3%GazZlLhrT3Niiu6u85+38Lkyt-xB5vC7_59XK!(+gIUsAzdTzcY zEgnZD3P((7D8=`lrjPs;^-eeS>8|Mw4^-xx%a2ct;Y0m|d{g==%#Wp?<(lQi50icA z@vGPQSA3g)LE%K4J+3r>_T%+n^k=abgVj37)nl}@WzYg<)tk6#{Yko1D=y6!4aUR)L))83adWB zk;F+OsjFqeRhvvni(0pip7p4?5hnI9E;SN*=5LL@twMpvEWPeI7;7uUOEj3;Z&ia5 zmJt^;5>DC9SJ}!jZ32eRhF#vdb4+%V>7=UCMWr!GahQza$4X$lX-S1v^+u!$`YV7z zJmJpr)SKMWn11>z>y@~Z4Y4oIXr}SPcJSC~=NB24QkMZgm|4cj87G^t0lY81!dBFV z9XL2mjj_R?MDFi)?)EiqR)%4Ey(6LZ?9w@4zhGDBoo7`Ld^D-i>FrGgjp~+Ko1WTuxSq#D z7-_P*N7uo>iH-=2=MMWIQ=rY0NqbJ?vA10fRI^U>q_+1vS?&o-^UnZfG^6rJehR$<`_`0h*Ao_$yJ_Tyal$9hv!xn=#+a(1eTJ$2Vjj zOFf**jWs%haM_M$$U^%Phsj2e@;$-#WNL+BD*4FJcZ9IZPAEEY{03neQhw&XeGyo& zAJ1v3!fNa%v`U$cq&b7oP`p5<*C$03o-6$YV3K_)^SejFxC&<| zYfksW$|vcV;xa2l1oQe6C#Oj&2_{<62OzYuqW>czRE{F2QkZ%0EQy_436-or}j zK#=s7;?7slQ?mxI*GcsWWk|w8?OpOr$o!GP zRvp36OaV8SId87;i&W!P*}yc#{4E!Vq$Jx*HDa+tp4bZQRwUM_Zd#FRwwUy>EY<7d zxZc9@@xr-a&2?FqH6%UE^2)Tp=V?o@*r4${uiwTb&D@TM&M~WLT&EWQ87(o+8I+zZdUM(lW zvZ+{GAw+MC790&mWvc@uyP0_jK+mg*EW$t@U?WlWB}lq_#;Ro)r*XR zKaj>qyQb@UU{gNad95g4*ucsZ0_=J1QSe-1#~>scRy#y{oJ(yOJrA7fwT1g56oqL> z(zq-S?p1Ok#cXPN`rz(h0oIjMO+T(TjK^k?(W;(%6dBKkx6@fW zH6@l4ku@RLC(Z*a+VWTf^2mcq6ZHj#k0RVRppgTS0DFe0FjOd7!pM>|D*)n~=sLKIM5P z@cC)T3i8^({K##|XgXXpO^9&ff+`n`2$Z!64co6FQD)YxS>gA3W)mc>IP?Li6Lqet z#ez!!u&h9lvX&E)qOK+2@qa~;u#b5*aB_beNiG)>{}q9-%It_%WZDDOU4q;wOEv3p~u?<-JWiLt!4n4CEgPZE0b-~hOeFej=|`^SqV+(wSKX?IJ-tDJ*|6=2a(Ym0IdLiBD(d%B6t zf>ntlqqSeh!zVqqQKUuB#Sj0eLAif|V==s}=MQ(r4>bF^50M8|pf6)K{c5E+`!NkK zlf&@2SkE7BgM(DHnMsku;e~HS_Ly(RQaleZ_n*m=kLdF*u`I*tNA1tPi_cc2>c#P8 zOOK=t3G^c*bpl0@$5GNsCA2@DPceQvrLyL!gJUfa>=m5+xzSsyBR`uM`NT@5n!(z& z2%AZpXMPsgfXMtdS*xdPY?#&iH=`FFGk;Px>LcX4piy@+krg-m-HE+jZ2&-YC!4HZ z8}050vH7hY7m`xR>bKI_|HxvC>4Yq>ZpL?JHK)-9$zy35pZz>h-)vqBIKPpvgnY^z z%@3>@vhT{Smj(&9yYd6Kp=Hz8Fv1cY$!Y2Dn{yi(A?-iB6-azoV{iPz9C$nWTBr6^ z=FRIQZoi$xD%UYwihXjQoXKmI zHR-a?lykXEuZ^0{+`M81_u6k)u|jAiIbaO0*#Pk5yGg>OAB*R15+()TTcm_aLDb?* zxU-^QLj-@>EY5$+0;{lCs#j$jkznPP#z0%Lh9DMbOcK=I2@OTi>%%K@GqJubHCu>a zHEMr#WTj>%*~Y1LSAL_sA%w4a-hND`QEU%+#x=}g;z4cb?jetY}oU4pJt zHz5Yh!NeiOI+N6PGQAVzrSvsBk%i5%L^fuJ(Dy{?ED!Ih3_>SDt4OiGKd@Qewn3W@ z%G0-*^pk?$V9^wiCcc?}Hw`XyaZ8TD_i!kmUEK7Qi+&-mjZCpO zl%4~wElKR6QINGzP@`PHO zswfTZ0Qjb-eM))T1X!u3399%-CF5O{u>5JHsC7-=;IwfTu0}Reeg(pPn`jS5Bjwe% z^M83J-rq5eo>~bL1rd*zeqz?X-{k- z3C}x~JTD}{&~>5=kzwD-^IE3z`tyD9XeW5+51 zsIq(&94Wz?5~*HMI0qBA5$YAagOewV;sU!0Kx>0g386dqDKi^q2yTSbp`!L#=Az~5 z*RS8smo8bS|4#c(F~rfqC^bj4e8Ec8my=DbTC`K+>4q*{hT3hSvi0iSrt%Eisr?;j zb}=nksV+1uE5oGSgB*CH*dXc+TCyVPC+wJITCr2TSDh+r=lt`0J9bFZTr~Wl6ziy@ zHJ5=M74eQODi7EZnck)>u%il=p7;ltQd45|&tk{0&E|CjA`%+bju=Hfnpzu)J5C(=#H0qp|`-B>XqyJrEo&p(kPUnT+}QbPxNiek|ih zmS^~dyovr!GJRr)Ck}$XIQ!+9>5oy8ghSdPuEbh!SS`Ao+xaL3= zvcPUT6h#sqx&?Z&%%PY#ylz`w05(sUK$aIdR-_RLi5B4wEnh7bi=~36)q=;#I~s8Vyk2b9gpm47;)0VQchW2;7;gv_$Vw!r z58#Lv&jE<{AI~mLKaAsRU&TkKc2&O^s}?Gi8qpC|?kN0Be!#o9-&}MbZT@xk$(Mw1Al{cMOfCBDptR@5}Vg<(&Af2udkN4rCDG}QmlZV5+eDC za*wecXJ`v{9>(Kr4Aql=OxbbceoxDsC|boi8IlcGZ1P&bDKL1&sTIQu39;9K>E72! zMS-Yh2CWi(Lyi1j$PN=N4c2AdqdV%P^SRW}8<$j)#nQ?-IlH+owPCa9ORes)==Rma z8%<#Ko!z~w+dLI$2f&w2o2hc0=orOgk^Yni3lr6;4Ld%F_*L#1bhK-_9$yRWx}M;q zuifY9ak4-_dVUCh&fm8)t-fHfo+@%*+JQ$Xc&XKjjdpz^$0{@XH>`@4vsi;x8GmCH z{fE#l9e<8ksrEzjyD&*EcaHq()u>3ne*I3}JcvNB zH2}x9&2HJUu|L8t*V%XK%-g7tfxOJ}Q38^*kO zR_wq`n;NoW0X}l<=Pa;(J8XJy$4)W*{p@jBmTW?(--}8XU-5fCT70F_HoKYLi_r~D z4?>4Y7ahzoBcq2ELZx1iZ#1*TzbA8S5FCCMMV^oQuzug~p5v`thpg_e^mYhB0=h6- zs<+Ha->8+n{_*3kqO6hdYBs4;r_QI-9Qy_MPiln==MD>IrFN&(9P7$+qL^8 zHCA1?s#(M4Wq~afUM{!$5`AC9O_be<#pIZ}9z06eeA%7)9_XcCaD~6D+nrDdSn0pA zeCjX1g#Jxepp`p*0^NUv%GwL&9%7v0!`6OIVUKU`V&W$r#Dx{ua|rGvFzfa? z?aBHROC6?5<^C4yZ^%M!Y{{w#S%lfPm)OkBsbylipSLHLz&1%ySiNOsA*HmuJEj3x9Tz^k16SH$>Wzs}Oo8wF7+a^6%~f7*BhVb*LsALE@%*O zEH9TvxWUX=@=={saxvFoq8`v>3lp%OgzVZ+$j3H5^-LuPZqxQl<|4j}>jt+9K`aAB z!$GL*fOYW)<)u6q&>O~oBL`N7$m(#H#bjG4iG_v4PjA_B62XLH>5K-Ma?DF|RV~%c z8e@C>dT0m@%VN*VD#Cvzy5L+)>!tA4sALOWq{3gPfIRQB~qt*tl^%Av^_>ml!|! z&KLr=NX>;-a@fwR+yD!R)Odl(6%Ul_k615@f<{8O{{}4{*W#TlR`Dr0t@0X^T`V>M zXAIXcUaw2|cul-9k0B3dmW&Z#RBI*tKO@2J4nglbh`s#KLW0$bfkh6Jlg!WK1n=M{ zSau3QJNRu635GSOs>`&LyOI{P9_;J<%vWgIBG?3YuP~R$>Z|GW8Ms7t^sUsyCzKy@ zq)QiO9I3?QM*u|5|G<+oSK<;N=ev~W05~fMu6q9CW6}GLyy5)gKZFQEtHI#Uk`}>? zcmS`j5Eq3V0s+KVR|>!Af{i!s1vIw5xIvh01U=5uGSX^GPtN*bI7v9dM8$I6z-iJ~ zt!fBPc-Ll3^%Pg@#IeGwIQre$R1Y;=F2r2n)VM$3dddj?heg@Gr0K`$d>;)GF2$G6j(2> zTwXcozdjYp0S1`it_ri)YE6j+V4xip;#}n)uoAySSbcQe2yyY}G=R}{1zeke z6DH76SGy~IJp+QGX-K&}=`A}}ht9gIdw%HSb9-I4F)Zx&kt0Wq9C<7S^efsm4c`dB z78^c0u?R5nxIyl&aB$jc;YV0~EohzQ2Bu(KNwCRYVR%?kh7=cb@O@6!%rNyfBjI9u3~WTY4Ey}!RbMKe>z9c zk|m+MF0_K|5ol_xYzL1@u^O>btoqT+?h?IsZz$cwP{G+sx&*3xo)G2AMCOIp%*2t1 zn>TMhiRmJ+`cX|>~g*R)NzIeAejF?~!>r$vr>e$EPg|;E9%5*$0UBF zi`k!rMnqg~X=mlpye=PyBnQymmDL?zK5W?RVXH5vUTSV-t9131aE<_ZysIIHync*Y zy9v3-6cu_Z`_h6?FxE%$*)cm6jHTrToOCV2JfIC^!;1L%wQ&YX+ap%YWhTa#ofx#l zqO2IL+AWw`$v8!;(N>!iYY9yQOFKFbU4V4*Jyo#SX&idelJ?pFJyTmD2z`q2a;G)* z;SGnH>tmaT@GegamL1wjFn+7L;VF2v1ww8RX=iu2^&=c;>u>`$MU!oug7+1+rVTa3 z_zM+l4~@wQR*O*L!1bclV6)R1I4^bv({s-D8OEVAW8)wt4@=wCV4+HvWx$7no#u!t zuxyn8n)d;#^bhiv;rfhb;>#%0ObY>qbZ7z-}mnQnCq3Ez2FBIN3GAn>S+Ev=ZI`1^S%89M~k)owM)K9`V~Y_FShO4 zP3ftWSpZt*jl)dVsF5!Wx|RhiSCa)z=30 z&=&rfG>V-IJ06=En2GIJ-N?+-ef#EZjN10ynTeTB>PBtQ6pTH=>ue_BOVN821)gR8 z!eEAXdS+%P!(%6M{gRn!=a@cENQmjPQ@t@ZVr54VI+2;#m*wgH6PXX{=rsF0k$H?| z8UC!WlY*U4PQ`YynXL^Q4ADO`vmC=Ryr3t=(24DTiTbE`o%dF*yyJK=jxWkT525cZ zIOid#M!FEHpNW%#gM)wa$;+!P#L;yvqBe3N4z>BMo~*Frx?T>ZoeTzct5~V&zwJNz zTW@CcWg!mB*>DeZV$$HVx$&_zIMe~-AV}QBf!R@mr8u;v6?{wG!Z%$lS__Jea_J82`s#bbHB*4n*6Ibb(mjMWUK^F}Bmt0VL+ zKuuT-CL(eC{rhkR&Rh;csIxX)zE}VuRA$C+IA8)-sS0KPLClYWh~pAJUj;ef=Bu7k z7ypqUH@<-iIc-C#=)CkIH_7j{bE25cmb_l4Xwm_pj|AI3LAF6^edPXJe0*53u=c1e zxxo&WXd%p6oAV5*$cIKbqQ?qkCO zG^|Mkj_&D#R@pFb4ZDWv?bPgiVh_(-J^uSMe4TzrL1%0goi~nv-o{OQ z6`Qv+i_4iG$8RRs(K;g81p6;JcsX2tbQkM-y?j7Yr}Mnrilg@$!O91avQ%3 zke9L_k&3)=|93gy1$9c{ZruX5^L2}NQqr@K=XAC!X_q~~JZ0dVdpORi{Ze1SGF8f^Jjwux(=DsX}loCKI#0M*(H3psE?eF4-4j^4uyejVrORfR*T zJ$yG_30I=eAMR#Pn~G6f{hwspLDp>S*s(rmaKgs1V>gCF8c(t9{la(emW0sqth=jl z-5In_d7|cHH-%sEUFQVkBji`KBHHWLZ0yBnkWTEwCq+$L*LA;i#|9h-rnA~P9MUI`p4rx4p$wDtHn|~H-mPL4Q zZj&^g3l%(o&0^gTaS^Y20)fIOPZrYU-aL&Q_<@k8-+&YJkQc)|9E^v+LLLtM6gqI5 ze|X3BE4Wn9Fy$oRwzsErBr?ZW+_-Ab4E&^)DpsDu24U>1Ov>X-`!8H67~@%*_41fG z2@FEh*CBFP48|WgBh`l0157VbH!?ePO2Qm8|R5`hq z;Y^htQtagJZ{zEnLks)5;EB9JhEoUUo9VckyVxqi06#Z%O&Adp!0e z9NiARv9TqX6kLNoquOzVKNpzlvqZ!1SDZc9=GRM9K-gO=*<>$Z0gRp+M6-Bmcsd&% zU>;*3F7XSQh^XG(VG4dSmo^-DcOJ}*^x*lFGawYAu|`tdd5nSR$2AjcA~X%U#nL4d z4W26afb4~+{3}*^$jmOp%Gv)pR`NP_+_lyd-re*n*!!ZQ+_jY-&y-i^=XiN}%?Ws= zC=ab#2wi-VNPjiRvyf9=xgm;=#*BHfLs9-DpkIHXwj%#b^D+Jshzhv6G2nG0S z);#eR)@(a+Uwd!&<6bP*iv*~weD{xWukY^;?IWp7=CW$7(_U(kS%|-^%7CMAaKCqI ztXm%lhogPYV8dt;sFs7L-_uj0i@1J4{@8Wk+jhI~dpe7IULkVqau#|qskJ#LVpdy)opx|LoYaNQOems z9jl&WW2&B7i|IHu^qN0lF_#k1nZ_vxzxW~-3st9EVv-MXDj?^&ACSo+1i5~M@#BH4 zE!FP=&;xM=fP64M+gPZDTz2BK`q~Rt!UsplpgiGtnl4`QqmOKp-X1tgEBK2|xcUg& z&*f_5RQuo*B%fIrI~PBsA)9BF|`=Z&N7_S4c5mg%ggB|k#-pggfFHkHc!;WQx zV`(j}uO4UhS>UP(`IcmQRRzAiLD5rdzwMFDruD}2f0_e}N}j9-2d!3V=5uoFkY={V z#*p~u%8QV}7o+2$LQaog=xu3FJXVxDp;|pnE9=XTEPe4G(;u$9Yhnw}H?YJQrV5<( zyQ&v&ZEL748v3g{PS8L0q5JcRJxlq{o!qlj-j38lsC7P|1`Nw+&WmDJn>ql`{}P*E z5w?&4G%n(-N++ZrZRqM%U6ks+snCcThWiPyT=&1rj;ci3 z3tgw&te4QegYiY%e6WVO-x&aem*5&kgl5Lkp%PF0rPGY{ac2?r^$?x6U5n6fxk3sq zXI0SX&J-*00E@7Cj==@qe-QmHp>+Z4roa}A9Yw@(L2ajx$N}**>LpegTHDsneNB9|CSE2R*rqp4TgfTg;pfF9 zfghN0`(15%LmNDT%Z0gANBz%Z8(fkD1ZfELr}11Y7zCZKrD3c9LJeaftmGM-L6va>!b+LJ z^?)c=@*a&Nj;kWjq~YD||BCEkhx0&|V(}Fw5G?3c$YlvAOZ}%AD^}{E|nyU z0z^a9-?pb9F2HIHZ9droEwRSy#4Rehg_x%C2YgDFRQDjVN`}>!-FXEHV=<9dr>B)5 z$-q8>JGOq11vgZFI~3YTqGW1Cp9pIeRooX#*JzD^oq8kU8IF5_)74Dym2VbEpk z%ku>J%2$LTUxghg&@Ce5kcNg(R9RE*A5E3$+gH-+MLG7pIOA)}oKKJXIcKeB;o&v} zbxb|AV)w_CH%*z(jDgRLa*oTqed(rs$o0c>51mln&|9r-7K^{y;p}d>Uw_rm2B8CS zTHTht_I-u@k$2?CwM0G9?uT(O zeko{WA=j1oT#MXelVVwO;Qta&hTc@o@OuKx0Sf@#r^d%~s{lYY^vSkuLDBol2-Hxu z1#!PE@Dd?!c>n$!$kB8cSt$;-oIkW0#9guS4**gci}c=seQrtQq6n%GOp@mBqeoWu z7|i0o60$UZ8rfNI;HzL}TCEIRx*qc!0;I0IT`}iojZOb9WSd0=Ruec^lRVr1l_&E( zgOTjHa&#s{IEY7s=-@bG56R*iNRC;2c5)8cWM^1>Yya)oVN2+CaxEeD(#istIk#BY zRJ4e^uB6AJMdA2cQRBv=AFPyyA&;(n(wp2=lr4Q4Jr`jK${i@_z0(t{13{VzAIEGU zYK6mM)h22W*Xm*vzSiG=Xx7CUgM&rZ0z#cz22d)6SWU=QYdye%P z+pQD9*F1QPaz-mSUabOoxJ$f}EP*^=mQyfXKy7$HpJW$rjB*N}!SOT2kk`pS6BfFH zuhG#2p_8Tyq-Asb)R5qJ6Wad^F#C=g<-n1n_$+9!=6)(2tbBZm$k_?^lget*S52kXD2iR!^lig9=Mr$nDXWu!26 zHVgk?Pqu*vh$FNc-!6a+YXP)1ahC|1H`Pv)j3dK}fsT%73F?JBQt|lgIzh{b1wjrv|3b@d&5Zy zQ3C{B1h7;11*q*}-WSb&{+|e*IWsDy45l-9jGth?M>|yh=|#k;b(HoX#$Dr?SBA$gzA6ZCGh{i~WJbf-Uil`uzhF zv|=AX%bp~g)c_o1;f$xpab?AlZD+`CLlNF+4XgQ_+{%sI23bx4k0EhQR6#$IPP^x@ zD%GO5L#6A-YNM@R*f1^ZHpDTS3hg%==xtvGmZGd2E6952;pX`2F`NkLbjQeEmFh(Z z{bpB^=y!Ao&bzQ;gJQzpH6XxJ22mgA{ru<=4*k}I03%5k!99c=Ax}@)h6^fQqWPpb z{!W6A`yY>v9@M}8`B?QUwAi$e9$#r0WMRD_WjRo0(IRy{U*e*gtVqdwQ0c1u0Oct= zu0K}etN0#9(Zhmqt&QEu&%bF_1=Xjk9efx?)JU7orpGx7N6Znb5)QN6teVqLH_Ck` z#N1ZHxWBj`;I@*cK|GB6IZc0*Xx0s_qG?PJ)S5^QOS~x$%~JDgfhdkm=mtRO=LDQT z&sAj!#_yn%W^`fQxi(Ki&T}Ih`fn6^$WkOZ^}W^K_FQMJ$;%jpmfNb1xf$jg?|+#C z*<1!aT)94PD(mFK9%pX4Fu z@db++{*qZNYU@t~vs_NipR&M0uCU`yMsO&EdjSosbOKv`7!YblXe}mo2eZH)KepDw zcKyf8?0&27@mQrB1bo7_%UyPB5S?z_slThvguds5)T!9m&*&R&IM~XjIa;jQFSE^~ zo(4d<8g|~INY}eTKx@}t)-Y|izh+g%I=aA_EPYfd9AN$+DyB9TvVE-W*)ZGE9<&YO zY)BNkMLiabT5@7&EA@0SlAzjLsxAN1a>&%v(m?ymo?9PNHS3E58woKE|NZyhA5sEG zS>MGHDhvK->HFRY4G0%)t)&y|Z!foDaf|9eFR+pwLOG{7u|Kx(?{AK(n*lxB#uakz zAL(4bJ}ybRYxBcIaVDO#X7#abw|K=1;^wMcOZ?oceaYk)wIAPGbW zA+9^~yl2*)9ogL9?fbv?w!rWqJ9ED0oRMdDA zdTH*2_|CV6!xgFPo|}`R!94AzO$%98l(!8^IRCLE*W1@*y%ROPa|mf?m+<2xys8aW zA)45>wKd7#!(f_A-i?PeY$L?WCMm9mNsM0A=I^_D2Gg@GZA|XvUv(RqTlf~0*$NiM}sth7J~Fmi|7p(JRPNewHOdpCVKv(OX$JkUb%Nh#iRHWo4~#w@R1Z{YydbU>qWAcZ)6`SOw0#r!yjg ztD=rbE=%*^I>MjeQJl#`(D1J&beQZoBK>tysVT6V@^C2AK~b~%L75VF;I5@L7?<)S;srsP6}18gvS ze#mr;&u8OQBG<_vs5+}nU*~e8>$$erBn&)-cmEcL zr?LQq8sLQJuwJg{Gn^n)cRj)0QyO?O@5EhrLFoLCQE4N^CGBAFp`#Kwa2}6PpO!yy zczA0X^ay-Z&_Y(dS22uXz^ym#Mo~lBpDm;-cuGm{Q|yV?WN{gqfcseZ4R66<9CRN) z`pO71&+1q4`4K`g7?!s=PzA0uFDos8j|YWAMKVo_jmGy!Hh6wVhE1iMR&$%@rYQdC-|9)ReJ8rr=>ntv|ii1V7?_Q9gLUTiCr@GB()}u zIhCaz*B6WlHK_eE;REL=`JNDLqseB6Wj?5213w z1lQ*jBBWwN9%9FzLeq%gRKmzLu#0cKmR44FGQ9*ZdLTFmn3ed%FEP z{lrLkaV4(EW)e-vN@3(nS&x$gm0@j+%%r87tlWB#mp-D-9)w>0nym*pDg3tHiDV}o zZ@671zPzAeLPAwurg?CQH8E&G$WvAluzlK_G6L3yKtIjmiozn0>7SIWS8oa29OCF? zLBI=UFoK`!MjZ~T@j|6Lz|N(u*|3V{T}6ohtXZ=De@B5_OUkBKo z0N!$W99EjiG#0v+4htHBn)4Mh<@G)mcMRl|Gu%vprl%AtRqp_-c$h3xOKCkPKX=Ta zpQ6+?#mY1(K#Bd7^cEJ-)u)X!R0%E$b%xM6rLQvt*gR(lMO?6Ct3GDd!iOs>IvC$T z(-7sN_0|0%K*33S$B*|Nzb`x$Ut}$=wU?Rq!z$aXQZ(Xxg)3HH;E#hAj8vmWq1?HUAVc+~l@+ij;uBePcGy0vKNMT+G3Lgk7y>unA8> z_`aaY;^weV%Qqy%HZ4U@X?3Nk=-=mAJl{UeXVUndwUhUZcp`uaPL%I*Q}IHtW4|&P zdCzasS4raJ7`HgTVBCM7&Ae8ri0LykGgSAG}C5yd{)YLL&#SMbxS<8N-H_8Yr z5fNe0!g(*omEkDP;MNS}YVLFLy*0ijOE*QPZ`w4B)=sROkp%k?R2SNmMPM#~TsZMd z|Ni|4gpy}$bzLi+tkk<6#p4K9U(ZgTqiOOwNuKeQYXx;FLay;KWdE03d^G4%r1vA@ zxKdPvJ{@qFCexSi)=|z-EeAJc+n}eDTiRWV6UvK9HA)ACL=Cb78$KY4ztE8B+}Y)$anV z$XH_OYHL`PB(gOVa&aFROK$P)cynV|J0O8<0(Jy~&q`X4VvQQDIJmlbPiM^Ue0&MyIS}b2`7lGbZV&No1FL-?;d%oj zfZqE)20!R*1YtTm$!u%#!Wni?iyIJ%-Ga{dLb`ZKla_r90}&}wGLJQAOS7OHfUn}Fa4rHrW6XZKX>d-yO+9q#IjmHrHb z5Lh?C#rA!F9uDImRB`Z~q}PKRpl0elTRf_U^?SCY*h3sqLkd7bUxxYEKxOD%87ef{r$ z(t<+zw&D+ODGG0(a2d8h(|ugTjPm^jW4^XFpdYakz*m%hf62E7a550|gVojHw~}FRa!5ZOZL)cDCvQ|^EL{1e{K$i_v6GVWj89a; zEAZgBE80wC+c@Dg=PEcThsJ&jU*_8Yg6FDOttiK4Ugv!!xfjqr4p&}(#$&~9E6L%$ zYvUBzW`?4-)m=tW-}6#5TyO^b?#pdQ)H0DbpH{dM>{N5y7v^Un=V0AaKb2_VQ$e4k z;;232+Khjsh=Zp07t)mE*Xwjm= zd+5^^kCRr2xzpLp3;P(HdU6n(>v4evFxyW)Uk2D*2P@~+%rrcF1x5@;XOW1DdYjVw zE}XN_!I?7f)sMKnv|YP)LodWP=4IwquE)!+-$77!;qvb{sw$Wf=Sd-AC z--Q7J@H8VqFnqX3?pgQ^uZp30WQ#$tJijEdFmj(yezwpIZ{0Ll%2F{VN$vg^MB}-K zgm*tf>Kj4k>3tlQV@zhvTuz41k2aGxxlWdMzW=NQd@hC0m@$JMg@yfR3}j0cM!o9T zLi@9uv9z~iFoo?M4Zd{glyd9j>L_}e1cxCH5BEYjvw6eKSjwXwR!fnQU|5|8gB@=p zXnlI_iCI6V3vU;u9G@KuRt{QOoqo^75LG8<*y`Is``6p86pO!77?g`&77NAVt$003 z$eI&gV~@F?vd8u-N`T&TGIZtEsulPB4xG$cHA+9|0|WMAEl)un)*Af!a|WzzIrLX3 z6#re}0=UAvL$qH;k<=l%^9-B5Fl>4c_7~-}|678^qgL1^br(t4I!9jne1pm2Z>J@F zDUq#|Oit%S*&pqfyt%&nMw)3@6CTTYid@td4pvDZJy@NM2p+9bVAm+u zKpr7_16?*m*lhcd>{P|dA0pxWSoNVcqh0bixynOG!@4~oN3={@Q$w+j;D&%5rL9!W z-!~>LF^zb&!a|7zI8@3 zVOa9sYrkIlMM7*X*a%%5Wf9@LkL|Ga6bGuZW*UE7bcoS*09<9wgQi22i5+#lLk z1ub6MilJxrgUufzrEeLHF!u{vs}tO~!?dKlVCF#QuOQS==5H3G`n4Q+1g_j#OrKB_)+haNQ*<)RBs?Gb9t1FRg z_<@*unpfSoNr$O|yFlB%f%lksndm)r|Sc$NV5(X;zRv?t4NRi2*%I{7wG+a?? zfXO<_Ae0V8t3Yf-8UjoHFHxI$gzMvGg0F&Vg@E3B`9TD$zkzlX84s+nm|Z1?9FC z^O*N%4Np%`t*PZOD<3cSe~O)C^T4FVJBZ02gZ--m?|-*t)r^^+O3XT~;nr?&FhT9b z=WuEakd=@m_+wq(sMK6|agvDavYAu26!qS*uas7ch^@#*I%iG49FAp|7v$ z_4_I%Mpn~Pb{NJl;l#|~3mj-&2WQg3^IKYcJ!{zFZ;kPvmY~&JJycm~4O{#l!f4d4 z*@#d=M%i_yu-(8Op}h{=#1aGJU5S-tRkH%AY}Go02lr(#Z~FTk|Lf2p`fF{e%wPz9 z9{r17T!k;3EIl?WO8oTcmFzOYs(Kg7T6M+)x(95gq`=IB_MUVX3Mvxc9X|Y{uEVe5 z^fo*=qL(%}cz+|d?VM*nZi{`f2je=tP6&I{p9M!+D3io)51J1EIA4hr(jfCBK89u5 zMQ|8jtin(&fgfIA>wX^#0^a874{b*Z=ru0Pa$7>L6C|ar;XP8d@wkQC@D>YBmkibl zEPWqNArHb!4K~ZOLd=VfJ;L$LMi!dsRZm}hBwyQ<1*)T8My0-r^$#3R6Ts4(2*xZ7g9sR|I* z!+sd2eq~9@L4YP|-S~d6oZ|-zgkVKsh-x14=nT-M;v5zZy*E@E;=-6UBGHwI3mde) z7Xr`J(R5_ybbTnh=F)$2l2u<3?GR2tFIc*lI+N$=7%FzT^Lw0>8f@O{WUpRel6~j? z-;}^t1O6oBRDW5=rlqpc$`r8cAGf@knhwBd{paPi z1BagD)an>LwgNwvW3{KkOUPp_<8e~YpI(F6K*Z2@S{~xyGvwuk@KEA~%u5H_P414oiOlrvpgkK%MGjIx}y7{rbi2BT_k3 zpmf>yQGGe4rtg0nD-ar1KvFOo=`PXCVKRn{v9>Z1m3Eidc4=YLl0DWu1I#wEe;6=N z-j$-M^m@I{HnHt(*RU3;In)j-a%+>_`c}Gx(;pv~#s_Q6o7%~3Rg^l(N*9@2J6MJa zL(U;ZM6fh0lBQT(sDR~zBM(MYnS^otCIK6u9-{z90x*3gjqSU@&d`^t#2z!iXlSB@ zF=1=qggutefwx#$t$r;*R*KUPn5`U~2eI18$@#_vd2y6?L0JimJv4Fb*s*Otm0{4= z0hgYhlCro2kJDo>b(eU5sCC*1OrrVoH(R9kP$)<2qe{GRp~8hH?9-$}1rV6sy~n{w z8_t(s#7nASx3aqcOsyydk=GOe?Y{XURIOYNQA{>grR=}L@V>iT?)_&NC(9u!X4esM z+YLqAODcPODh*+4%lie0PONwGD>ewm;I z*qC2D9QZC+1mN1boC3!&tc0vtvv$pzs9TAeZNN;GXO#LIsehulBGrFCd~)^b)%@q~ z?hDq`>C?Z`EPAH8cOIhz{2jiAS9sE;!9D_2CHTPVY&%JR5E9lXYid*(8_eH<5U7>K z2aA|tJ+eGLbv3xZOpGplMzH?eM^s63<_ow)%-7)$Wde(-MJa%65~wE5CV@UQ-EvIL z7m}BUy7U@i6q7+$z-L%gzIHzw%{GWiosUgiQs#F=X9<)qMg7xARVT^t6^V)&1hf7J zBv_7{gsg(~1w?}Ff}0P(>{wQYT_^Ehfch~cku^sGtz06#iX9b?C+Cd>m`~W8Pp7Cr zWowgWcmS*VVVxzgbxB;NR569z*Dfm*F?5}d!eK%CSvn2Ixom4T{r*R1lIqRT&EO7_ zVETCvEI;Q-M%ahgU2l(2cS1Ppv>`>Y^d`;_>+9~g#}X`|?$QP88pDSP_HwB6ev6j3 z!<(yQ4wR>4$u`yI&P^ltiZGe(jW6#GgzhCQZF+*aGwOQ-9bCY&ag_`2=MI~%7P4ye zPubO#PiP~DStH08qu+(p6-=@}Wd2)hztjkZ4?_3Fh~PQCo5S#1o`p-&a&g?7nbSg~ z-Wosej)Y|%;9eYHEk5}Jz|aikvMdURf6PgF_>CUj2g;>X1U||^X0S8H-ps@zv1v`<`_gXsb1~(#6Z_H za=uA%dgye&+HIZ2&Jh7ePP%@6ZM*ZpFvcmM`P9`yu-Xrfljp574e7f=?MGgi-!`9p z4}M&C0Db$iEXDC3S(WBo;neg4RyJ6%I*@`T1_3Ll4KIC81I+xCISh{XXl3#`@EOw& zlgnU|GJ~zKvd|15)E=^J28Up!mKo6GjQ7js4;Djb6?1LXKm}i6#sSk{sg$?a7-C84$pAnIxtvt_AYRMh;7h8-aZods|;ZVa?)X^DyV)M2ib;btU+ir+A6*`Zfv}2{S;e+7GS0wM=-u6t)gjPdOv2r_Dsj?}FPDOIX78!o zX9p0P+S-7joHrC_U(Ffae2T$ha2u>)%^uNGY@F6>x+_a*j@PuV3mfE&#p0_yFg$vk z?byk}_@;S%eBnR~aFTq1!On0T4CYI4s+=GSkiU;a8zq5^4MH&=Tg+c>a8&tyXiDrP zDF`-U8yJ!b&JOjZu)mEc*n~3zLDWvIdcK97R z)?{OBnwRQvFmxVnQ;4%bcG!O(s~!uDlG)*6OUbjZE5Lc|UC(=eO&rea#Izo9apm8b6ALni=mpd7{wCDGhvR2ly z*fVN^fcWs0bxE$1ql9f_B&s+`JJDmsuStKrGY zdboJZY1Oha`6`<;p^kFQ{k&2EwUlG1o$~0&bsNmBX}qFbu}1UG?<|4*4d%~>8=mOS zpx#a@^;H{wAHF4w6L*8FZN)OzfhGNEDf35ods)fQ?XFyTB@Wr%M`Gslxrrax_10&> zNyQ~?hJVFj;Zv|Mfu~1HPvd;llud&f%Dy-ir!prXn-F;Dx}VNgg2kWjBwW8{2{Ycj zu)d-@L$L(%-o>}&p9?UZ##kn(ey!6nUSrW?cn|jkUq?9>oHPd&fc+*T4Q9);4_40I zgtb!dTWE$i^UNs7`va<3;u@Yg+#tV%{uYyZF9dgAZNvo|E*wA#{S57oVP-Ol%1?=1 z+N>bBF9Vdz22p?dDTX1cmlB+Z1^vv5%;P>D$YAbQqRj9>!o8yvouAzR`}Y_9ee72= zZr<~&L*A_ezCur5SLE4^u#a-f@Cwh2u%#Ku`QgQaE}hWwtaYC{%N4FDwhQyFDF;|) zOQ@W(z!Lh`dEMLJqLu%t(R|8_l>YrPt^L8pea?W{rbK9T_3u5VFI8GcE+3%72h0e* z|5ODd`;MjO&);RM$*mYK)2@7mt~obe85a1>MpYCV9jmUNH@e zTW3kYX3ZC$f}KJ*VY%Gsm9K9ApyRl&(@>OeF@WqV<2`J1Rt<*xJJ|)=aP@YIZjH-! zp2PlxS$^Hv?FN;$#qgRvq*@CeVE+)>$#sw1nl!-gpa~}p(1X=54r^mT zNL_9bX#_W6>v+3Jk&@4_j^!yEjd4+fPklBwuzsL^ul{N190ukI>EFe@o;tP&6mHMX zXoOjB9M>G>91i`ST|5LB4&8f%#>FWF9iN2KJi@lsA323I*bH_-W4u$|187iPIt?kA9X#3n65c8_6C(0~efpW3a&m?GK!(MpZ+t7ekN4xQEHuJPiM3 zsbI2QgUcdy_j#Bjb(#^NPiSh?7Ajle1!?$!Gct$j)Zwq`Au6pa=Uy{9TFt??;o7?Mfup8WTlKd)B9SJ0L z%gms)!j#k9P*b=*fesaVF&LWPn)aVOyu9eVcf46yvrMQS2!6@YjNnW~xh-p{0PhUO zuCWFm`z!)!c_DnbDo>G{fK6uE^-$Rdu=;M76dDR~;Z3r>Qq~dyko;Xb#J+1^0ix{J z6%J!HQ*5(l%5wiI?m83eKEOUf#fudyw)Tj^&CNdsY|T`4SO#_VT`HoScWv({sRDa@yjg`th@K%V zQK`Za0I^kpF6GuJ-eI?xmadaiLK?H3C0(w~!Gnk3mYJGHS zo4-tTsmVTN}t-@W;8U zc8dctoZ4*5)1JOS>CN&|7^c&$%(6;elKm_y_0j8X%_WSB+^NNr*Z4z>(Jd8XbOUuc&%b@c_)tlBh~Hs&D*(7Z*~6 zcQE@EiY>zvKTfsWxvED!A9u>uD)tgJ9c3TFw80ri=6ZwPMZ7Wnl zQW@~7-o9{?vko#tthNetDeb!~0jI_W3Jbp52hj?qXPaity9vd02at1ZHDe|Zf^l%L zxb#)y`U>ObJiifkO}EF;YeN%dXww~UGff}cJjzF95juc1afk`y}qnF&LFpHi+fL*(!7luR}3%< zHeWjvF=01nfy((q|jja8Lmxh_Zd%zFl>6*`Gtf|NrUjyDmD;0g6j42Z36~K^obCd8TD>r2U8g?=g=J zc)mO>SvzdP>)6Jz_K5r7hWG6G2)=2yRL4M{PIJWHm-|#;LW8>NlP7;}|2fMO@upL| zlLy{5dHf(8to@5l#Ky+Ojvh3qJ;OCfD^c}h!8m2K75p+$2UWW`PHtrd_35MgM__&r zoYm~{9?YfPY1F7uan!I;Bbbd&vIx@nOkQZ0tUZjYaOGm!Pt%C7rO8 zi(J&gu*aXgv@ZFh(}7xAXbHVwR&#jl$Dx{SlV;RRv8E|^Ijvt-juy~LOKeVW=@5V} zSYtD>EURdF)-c0XPcC&gcLvy{0#eUn3*$gqWZ!V=-q_lETGu#XZNHYHG2|7v83`^d%Y`4_|T!vyvS0g_TrET{_8TJD? zKqHz&ByuOU#X#$1a_6G{k1>A4MaqzoFS4t=-4{h z@1SEH@N;=J4|p?tPv;UJ1&SRl$TG46Ii4kxuSw2wiiexyq!n;a!>P4Lg$~oNd9rhvpDqzd96kUbU9(MUWx( zEmnJAFU-zzPO`?p=B3gKtxB?~vnug5uzkC!Z$9xh2;B(G{i)9L^$d7sd-BK}{;!EO zlH7xQ2UtJyy~YZEcRV+|Qz%wG;-ZH^K<6x2LF9Hl#)twq92P83rWN=rQwkyC#6q)A zB$F%|GtRss>B)rmBlmeU^b1n1|huNbTgSvLATHEkXP_gGcMmF60v{LvIz2e zNix%ErCbFEZ4V}?>%Vr-Qo4(=UWJi<^8-Z(PMP$9 zA%}#X2=Y`Oxxh(hB+Pipt(w=RUn0*pO7rf1z(FpX--uNRW&auU$$Jx?Pm&M+P7Y^f z`1Qcnq;HYS35P5lEmHpkrf*0OQSRf^tMtWQO(cy<1M&+%ZqZ5lcVU%oKzhP_MjiD$ zHY=U_%f-em`}G(O$AcNAdkCSHjPLn@Tjh--;{-K^hGM??#{ZHDTwgypuM$(x-uouK%j>5rQwHz6| zbH~8`m~22fTDGjn3g)A|$nuzcz>=Mz7MPTChFITOGL0oTLygmH#?oM`J&%K(jI6I2 z#(i0e8G6qTzk*VGqn+2pr;cTXq**Mnmj1qG7s$#}5~hAHE=XHxrRjb+96Dtv9JOKX zV;O8^F+O1U`6tW=e96;{@EZKQtl{UMEz~RLn(x>Fp9SxVMdARj#jo&sSpx`y4`JSo zzKw$OfQ@c85cHb>vsv!;6|Bsb?qx&B`!zs#uMia_K)I|wV}mWgk&SQLU~BLduzAUK zu7Qn+_;Gn@e3fWY8cQKmU@?By%h?B(Grd*R9Fyk_+cWR@nfhX`yFb8b_d;RoLrfoG z+LNRX{RrhL)%aj6xx|ALeRW-)k1%a^1LvGUtB3Qsu31k(d>02~E|jpEXLh^=V727#eow*hdB-o9Qzs@1B3N1oG6J z6+4Uhg-k`&@6pA^?aZ*#Q|Ff?eCE#>88!}ftG9G-uf(!CJ>dut|MbPpLB|5;36z>f zdRD|Gb$B{Fk{^-uUQxTYIs~W}smydHfc3>Hf%35c?6+|w+r2Aw;-zajRMo#I+G;B{ z9yRoR(j{?-qw#s&yJiP@-iwjjg+cOy?IoyaTtDk!cQO&H9}c9 zpi@4iLd{>{-NkLh-aPU&2iIlFp2f`M9z59eQ_qKq%UyKB$H~@f3W3<%yo(TRBuVU# z1&cLuX>$2q@OO~FN-7=mgg%U}U4KB=MaO#bSgBMTqxXd#a2r(7&#;1yYIv`E_m?=P zf>meEzi^ZnDz|WnI{kOv3Za2;P;<-kakR4m>lXFuSLawysTkis(XD4NVJ|z)dX*wi zXp5Q~cBtmF>V%#WPF$=G!2#QDg`j04*VT_5j$6ZIJ%eSLG5&p>Fh7HiW*|=UVdR{F zLZLX+8Df1|&f(}{EXf%v{&0vh@b>tsK~|gXY$3~V-Q;ECHYMDW4)S2;iQMfewXvWZ zYT9R_ zWJf~oKy_VNn=fJUpGay=ph&T*H#$&eDW+?wOlIpo@i9oTpPcYd6!~>Z{WSHnm*Ra% z4JjRno=G;wHCUm$fwZy{``6R6^bfwfadKO>s;0T}=y&`gPLGc#c#~1x8<}kri4X1` z+6V^BbFd%Re%`E3}C+OV`dXD~P3zq*Bwj6ur zrC70T3f|(3-%FY3l=BQ$LM@etuO%&c?%~+#PEK?MJJact*WwA~_{U!A`5qyd9z1ihH*o;HOucYasMcyEh z^(ek73hI=}Hq%5D-e`wyJ8&SLJ&VQE4;41Jv1XX@%zFh`;tveX3{S&4cDG~6EaR?FZGhY!V0jjH4Htm zte#Lwo>4HxrMmnt9DMhCDv9Zun}XelFu|MMpO765bD=_~$SxuO4Pc2Jxpop(y*;1N zq_n2r{Oi&794#2ti38FcusV;BgWI=nzhg=mo zfdfy%IUv6a!=t(bo4uxqcu`%*7&=DiHQ$j#Ev=l9I`sL(i4$wOiZUj{JCAJ%U!lJU%Tl>SZ+P}L|B=VlPKXRc#_B;J}|nqHtjoWyq1c^mCxJZ#fn z0EsfBnXOz)>|u-je$f^}`)Ar?k+vNWRFO0Wxv}?m33Vr!xg1bQPkh|%tYk)`SwtSx zFupOGH&2YV*?r{txIdC(XVLHBAR?0+u>#%cMKOu>saa4vb+PGTNy#;f+Z`N1%l&XWS_U29+B0X?2ya z?p95hR%45a=hUVKTQLS46IDHM%4AEHVun27!?ZDvdV%rGYIHJXz|&sAA(gBIr@zW` z?0}kH>fji*oBCY1+oXootvoP;uF&~+gc`TMqFfzn#prDlV22*I>uC~{`$#K&69nE7{%1>|ar+MK`R}RhuxC%7 zK7FSC?qSwGUd}G?n-iP>*z{q;hYhpzU)x;6F=vv_j&>S1jdW*U9iyzMgrq|OL zhMtj!T@63;Tr&NR?RV=Zem|yc?RMh#V}fsqC+FaEHiIja_Yw)KB`<~?GaRXwcaveN z8Z(NkuuRx9!EOYI@*jL^w@@zAe-@c@sU}Z*Yr?Z^?Dn((aQaiR*40a<12oZgh15PBr`usvZi@{_n%I#2E8(B=$&3qQ!A zT^Fr3ZIR=c@LZ%8}P?+-S?%lgVaPO{wb^Tya14^7K!3^dMux`nUO%K4e%x&eW zB%xGk8AxYSLp%HIb{pTY=`l5f(}nx7+(xKBR-V}?EO-suoEHvTCa}Y;yH=UDY}scn7DmAIAG9%84;AHPGbad`R>ghzTE&z*&f)A_;~drP4ty|c z;Tv#`jwxu!)r`k4y%8!Bt(;cvy_5m4KJ+s zEvL$Tw#BNon-W#4>g^@D3=#dArT^^HfW4kQ+olEN_}>Np2TP#i*jZ!~tN(|QBS-$3 z0#02ornU1r#|vW#8CcU{fgRJn$6~y85p}il=lA1|dVIfdVe`XThuL?<5_ze(gvOR2 z<6UgODlhkGd+Y=Jx3LLK{FVUd{LT_&ycuDQaF{p4YzgcV7wnnnE_?H?cQF3mL?5d0kbl!R*t;rh9j!@VdZ5Sro+EAf31RrD}v{ava{v{qyq%2m~ zMZI#Z_)=lU8a(sCntd0ZKlKwbClegl7Nw>b~60TxN&6* z7A&tQ{K{98w~%6g)lEiNIp%m)Q=RHrYp=6XoMb{=mu{~p&sasy5bQFxn@cDhg5&MR z&A%v#ve%F5b-$>DIrX!?$ym9{Qp`}1P#om!BAR6CahZu7OBjkX07dzFfSWUH^^H=L zv^ANn6sP|z^yb)#%!$oa*5`AE{;|GtCv012G@2Z@P4{S0(iYoG%-*)Zvrl$Bmc~^v zVY9$)5SAEMME8A`)Y~BH&t*C`7)JLIT&i@;FJPSvcN#|I-ra!0eT8&rFk@WhT_lGLt&cIJYz7sKZV^F%xPq`DFcW9MWq?c29kJ53NaB0Q^3-__YnpT<7}qg}!FXAKGU zY3A18rOz{M+qH$KIekdw=s!Pw>Jz2`O}UwBEbUBQmzFoUMd{h?)DXkC>*}ttmH>qa!;(c9Z^%*%&d=Zv-T)2dpTX@bR4kTJrv>1s4ApVN zeiih-uR=S@NaT>$CJOF^8eMc*qg26#A_CVwL-J?6l%@rZ#rP6$S|O_>=l2+rmJNm@ivgX+CzOm zQ=U_;{MaD@rsy0{U(c*lM_%L7I{WDp8mlCK>f#W!wrAqf0&2Sea@Mxb%JyF^^w1j+ ztBC4{_|6DKjR5VZvqj-}=rRwOS)P^K-dh-giI?tk~u?Bu)m4ssm#>|B|Xw~N5$BG~X#}EMhp0aSj9)(|V zdX{2K8WnYg`1tRkQ$r(uFMKZ#tJ4{RblNT`0_;a8C+h?3TbAMsL3#e}46#0tv-?_T znb~4_He9lekB#9C3wc!Pzwlzn!j2w7zPzSiQ(p}Q_vA2l-#hTifSGA&3=UugD_y~g z5~W(b2jDYId)(j=Rd-C)wU{|2gI-gJJ8j39_A}aG(vXR7yfPgXe5EWvs7JVRn0?bc zK82Z!aAi5_5vd%P83)!VN}F)yAV15cMlha!4)diDO;GYAnL>~RL)R@Ph0Z|7bX&~h z8kCuh+)m|qcO_Xeng-1T5B9+hwn&T!u~N`S!FJgGOG>!6!OA@0cTf}?Gwg<-1*0o6 z-2d2si?93&QJUa>iZa3`;bouOS4yz7{$t7T0W`T?!RcddG}cj+#WoP?t|+4YR%3>S zb)pfiAhJK_yJ*=5)5iA5 zsL%b*s?*MifSB2}gMfad?F5Q1#jD5RI5`}_Fl>E)S>?2EYvPW^^+D$mPl zVU58C^znE2+m{Z#(%o0C6(SZeGY%g}u^G_hA$=g=50MFwap$@e0%;Hf$XC7 z$aI%f_$0pHJsOApWbj&_MN=Rl>0G^PF!TZ}nC&YWP^Kj`2ZN=p-1l(!UC(qp%HXv; zy1ErPL{#6od91?)Hc%vB}67O;9L`eh77;{~h> zPFB<4aztESe?&j-dnUg6J|Eu^`XjjaxQ}nX$3y4{4q3D2b=-p*Qrx(hE3@udn-In&=IBdf|6WE!OB1#ot@%btJD`4;C;gP%5eYBV9-!;{UgGJFRUquWW#X~pMo zBdg%g_^z{E7{g$>lB`#&{qo$)BIk<_Tk7KTH!V<+5N5V8Jk%oB7>9$+N_SZoD%}k~ zJR9RMGnBO#o@WMF?8_xMn5obkV}(}ZE;&5MgyG<_Rx#vx10P$yeEDCnCNF3SUzne( zhxNl{;JujA(iC)>Gw1c3Io&O3XB58~flQMfS?zMt5o23ytUcB`9@B+2GM9NLPN^va zfYu2bV;czF!ik^SVEMwd3l*HNu#<5l4tXDC9dz`?eqlLIo+sEB)r_QFfRj!E%?Ew< zZ>j*aXA@3kz7&8v;Ka_6_+jyI^O-^567d63aQ0M{{{+UO z^|bWuDioAr=w~|fl_NkVhjP<*VG6w1vSAKDg#&R?EqKZtyigBibfCd!^itX~!l}!U z`weoj(h(S+mM6rO9*FdXTx>i*+q~hE5MBF3`qJa`2M!1?cDp1MqJM%p!S`MR@$BI_ zhv88C3CH!N)8Z00SQ_dZT{ z(kio63xdy&#hI9Q`J%H*`(K8E>>&m20&EqdAay{sn~Lkss%kJU?ri2n-qIT{0~Y% z@A6wYT?wRD-;hrR}I!AE^*Wy6i@nq(%x1;CCdTpwB;pI5MZZHiuk1By;vuH#+ zGWE7SI4VU7mRGx%r|DJ1f}1y%l8P>tT_-#wfGwaTTYYPW;n4V4sQy$ip zUjarwaO5^i*Ft%Jnj4KT&TA&afR^1u@;=z`{tuHoN8RpZ7e(MU+n*P`wy$$hjBP#c zzARm^4H~h#``Op=dCp<=cQSab&uw_Kw56gvd+~2pR>r?~yX}uKy}v{3(doiZLU7Za zH*a;Q!zj}NPhcbpA7NTbM-hC2kJXwo1(|dxxA4l}h5r{y zpvG7nvKTuS@tsrH!7}#|P6vn6XRzrg(kbW>C9Bw72CI5YC$BsP3=CG}mLXEA_yrDw zQ9UfJpnp1gUvjW_;0BpdMIGmLIx#UVGfX)V^H>O)o;HPKh?p}!D{e!Acw>+O4+aex zU@vTj#(B1+DbC8yiF>8wQSiks6sJb#$iy^8EyjCb8T#l4TJ6u;Ctrq`ht75{>raH#R^q%dYAS1 z=D?6WRvV@oZ*Vt5+e4*3nBap2>+vw2wv*)3i*bG)C zr`t-gq?MmkDC7!NIc65p0e0tmZ7`ZGkUJZo$I~_DeEdSpO?$g!%DPY2D%-@B~a#uVt*Kp?|DE-Y?Ho(d(S}E zMWsiMF3-r0cydXb^&%OW36**T*hm4JNk}79KZcMHvDcJ+B1zvA zONgIrtl)B;Mz)@_nd@rD|8@8L9%}5B-#2#MG4jR62Hn)b$2$}ITLxH0X_=5g z-pglzWjTLE`1Z`y{2azN#3uAcdkUWTUdvyOsX||JiE*}9C;W)(`IL&)u|k(HGbIel z<{M{%)rJN>3sZXa;U>m@D&=cfG{!)1k)l4)k?jn|y%?-j5{}mr@GCU)YqqI5k82BA*a9wT1irvL{(2yY~A8BTmc2=wnZ5gOrwGgIlLK|DL-L#u= z;>ds&s0YS(*`DGQoYFnc2zEi=-Yln-nBspEH9z*)*T^OJZK#6C#W6*N^c2NjnEp#I@~2jPENYZTVkqI z8R!y1JFFahV@HIZqOSKE2-?~6CS`!F!8oo#I#pWtYlo@9wo9MjdR z#^OKV;E$*=!NVzJu}ziyZ6e+#8W~hcmxnme&S>+qZOwxU#*%w>7WlE+ZbLI+R!=N` zB%NQUJjwXET}n{1Q<5>0Rq;Q=@80Y9gOw&=mN2p@k(S@ z@0bgc*R2k0yDJa(g+-qfYU~|3O7pHuPE0v<5>MW zJT??IH$Dtn_T7jenEdAC5Nr;-nyk)lijOiuwqrkDZF(--gHJ})Q30@<{-4rher zc>I%7$^V_N%>6B{cCnAvr#B^dhcvv+M(zVx6Ffp9LP?*)**yH(2!r(k7SBr6v6A<3 zuxRO!^r8MsEa&@WckkXk=zZ&tugi5l4t;3qwpgqJx2eu@W3**- z6pVq2TX)^laIhZ?s`2Yr;G)wpKICj8A@3BKuGPwP;=|97L$tGw@rwppaW^;%0TZjL zVvvZn)WyKid5M7OELdGhucIJ$bi(;)14^G_)J1^jKYHeUxQe(Jd}FtI_3G6FNblVL z&k`s*v7fDmCehDqF?3R~zI!a+No5gBu!I_9fK~b1ShC$mh{{A@S$|MV(IR}pk~G%4 z$Z?V-SV9@e)yP06$`A`EVu^zFV##p<2FKsULNd_V{~q7NGGcpspZy4VR6@2j*AnGK!7B_*1s@zQs6x-LeprXJsnJvsf%1N7jOM+fAwI2A^WFtE$<4 z5glwtj^`{X&vDX@tS!<3OA$t~4InKiL!svr)SFdELqEQvF(vF0C#wKFPq9a$5T$%e zdrTo7Qg9@dBU{-CZ;i7MEK7VGOR#J*s}WY_y46j@e`XT3Zd6UhUtrlP4-Eq|nZ)2a z94m(og+sYW`ez@gD+{1eZYjoxHmG^P$7Ekbjt&9%YSlS~C1P(nsqA*y+@+T5%ET~~ zk15Rkg!uwZ?1_V$ny5?+tacoatstTLoB0Dd=Ef9mo(JTFMyMT2CNdBjM2uBETL^*P zgT<8%CPD5WQMUx9s99_dAqgkxdrjR6HoA{BDtQ9W@b@eV!J8jwHxKu0;0@EhzAS{Y zg6WJdnkaaWkTM)*1P2pxh>gua5Q6mhI75u@Jy2<9JZlI^vcpCYvfqW#aa9No>i;Pyohmo8Q3*dHIFiLRVLr>DrN>b&ssu$<48uZ zWFlT~Gt|j{m*AQPANTwb;(K&xy!7kM`!e7V+z<7zAt$2-^FojBqu;~h%E~~M_8p#U ziw(!2wiqnRu)}=P`PoL3)BO)@mlpRW1pAtdR!{zpuZTltT0>=r(-!boiHWG~`9vtQ zNNG>`Fut{V%@F${vBv!t`ZqqX&2%y4j4jsML3>PcHzrBe5^KCmqwQ)>xQEK-eiD$( z^E5>?#A+Jzo+EZsZgtNcdA>lNMl`C4%dI9h7+iIiT-O$BtJrC8p2H2`B z9j5hLWeooQGO9*>HBNgbj0Ajso&BW`6jTLodrIGoY>j|k5uakG@5zzv$Os5`tzw65=QFJZ7r*=HQB}WCp zK*Qcmg!RYpQffBs=8mo7`JQWu(MmW^~8Ic*S1UwFwS*AZ!8Xrx|DCLt-#7@lXn%ok24d|pd^{ZlxUn?=g{MQr@4 z>2o6^Q^*c+@KIsN3n=Tg%j?>k5X}_4ah{yRhWiiuUYf1^{pe2H)Tisj7eD_VMcGiR z<0S=0@a36vzmhtyD%4qPu(I5fRXj{l9&3~xrcdW+xC@`ry~8nnYL)YZ+ciJe2~G_v zA?FGOFEc7}4qFVTx0=7`bw#=1)L9K~mv)XRAd{A%&@&w4gl2&e#)*BOY9t?2(NtL` zlOgiqMg%$G6b@^-0A?zIyQX8B8jSF?U^G=sBLD@V%TtotPrcIm;dAuBMr@bScw&L4@1WL3PWA)oor9c16C zK}H>G=Cj-kI1U1nbzrK7%ARqbgu($Q@!J=72#DWag+UN%jvovy$gLRey&`n;uq? zjhE;2X`f53Yi+(YOLH(}QsufO(a;V^A zXp5FYYb23F+BLnmJKq-Kqfu1o)2B}XG+T_%jK7amPJ{dWO*yy#S@s)hO7GbB51=LM zYbK2MRKNXiZCmo5wOPN3(45DFtn@@#OAZmb1(o8#NH=}ptHRV)+Gb1Iw5g+ zZR7xZZ37{|#1*n@{pIE$ z%007!>sh4((q7%ZspGr7SqyztA`7ZHovg3buN^n|;~3w>;1N94He0J-g$kW0gBjjG ziRDQ{kB}#}-H1D6jG+RRWj~6R$z-5`6^n~w+VR;W)*SmSBqW=`2hWzNWTzPnW--|2 zZ8rO(6|&kgmEKPwe;C1B@a|Z;eYqmY=3J^u7x!joh$GCy)Q|d;SV(o&yr27O?~}z& zRN*B#oTG53YxF&fPJ*j$En618CL~mQr%$ge=nLEHoElNq`yddL(D}m;fe2VN3x>SD z`sIhB-WugB3AHWrv*e0Z%<9kmLUziM#*y!pWZ$(eobB!r$yA`|r>f!aFhDohuTo=tZ{uxP)E)V?L@e`q9fRwBi}x<^vln&7O+E6xByKfK}%wI(M*6*IsrY;V2SyWf%5gKSFS5Au3J z)NnZ%qXS6XAha%ggBcLSEJhGL(nkF8xL*d;YSv}J|_TdQG95+6fDfze3iqG7nL~I%( zj1myawmp?N{yLaUqDS%lX!qIVTIIZ%P@aa%$z~30^k|S?Il3Gpmb#7>P}clrF_ny; zXZi)t$@2oqB%BO1y_)C!p{w-XPQllE7_7j|*C~YjRfTqpijiNfSpFSkXW>?GRt@c* z%w^L#BUbIy)lJ=>4S76>FKm$;j3;TKj;ZGg)g!(Zs1d$mye6HJ_uNhXz|tmfigm92 zSe#5Aow7{mB%N?7sq`x4VmoKBR=OS=kO~HoW=;frug)3KRd_~zVB6v`WOBaj2xZDQ zAT)k33!wtDF?o3C|6}hx0JA8*z2TvT76`ot0#c+2f>J~v2nt9?K#^VqMS7F+7lJhD zAfOcK(m{F`LJ6US8cGN)A%S$#L)y+f@0o4S?v%Xu`hNGjf()9SbAIQXDbMcoa{Lrg z&b(tYs1iMW4wAHO+Zyu7Th8Cffv+8oJ>EZo3%~mlTMMkDV}H8)m1z`pjDDE_+oZuI zV7NAmac-40#$YViv8F-!9$;LGQ8UPm7z^(Z1>6-@uD3DdnCAwJqa`Nahoy4%*VCyB zH*}qbmr>*j!@#Jx{fQ8S_CnNlqjpZpL#vaBG3|MXTqB4H+i)}FU{yC$SQ!W^?vI~& zn3Ua9k30OtiD!*%7Prcs>i=|KA3_$?6i4zTZ1BRND=i&OQ!bBoOba>O(qx$)*dcd% zKg?<16i<_XMd+c`Zoj^KE;%F8n*I>N%X+Iop!U?yr?1!*c6xm z&mZhTz8?eo-e^mST6k(t3B*&IQG;_>nVpAjYI|NC1ZtB+h^?u$0ED01*9M4!8NEN? zw2m4c+W1f~-kQrA8Njrb6kHu2%fu5Fo@Fdk8$6Ih43=v>1o%^VS5&$d#t}?m50=0k zn;Qv#msmrie)X6^n2^KxDA$-O(%}|t2_!huT;VDT2y^z)6Ed=3)S8upG)=LC>saMg86}7;;9RfXX?RH!*5vE`ND#E<= zfV}x+KqR#Y3hv#7bZc=CB;POzSKMm)&e(#Q&f?PmnWYJuww-zwH8y<^OI?o7Y$F07 zon+O|HG5^Ngy>l^7QQaRXnYb?{yJoPua4S#;wap7K2pdK0Yl}1ZJK`(j(=v|A?`d zM6Wm;iYF=Ri$ecFJWy8a6eMvspQ0R&i%i2DeFxbE zzadVVGlBhHa_j(pdUW(0!3zitUK}HQSzt9#B2H}~%fU@J`tz!6By{1nabWeY*0n^h zCu*m*l<}#0BFptZ|Kl#`hDf@cMO#gWOSp22G=WzP4)38FI63~^J(n?E>5SZ4pCktc6UULx)HUY? z9vOKZx&CJst^LFRapudHzu4i1W5$fxv=J7qQRiRN4gyu6K*dUxrolllF`gWzF(zY4 zmE`7mH5o?>waTA`(5}xDU^##E11MB2fm!$~8poT9SvIAo&_d*44FS}633OEF<`I2; zZ6iQw4O397CdzlChtn(&6%-ZesRzCj1tFoCPXM}M9Vs@YD#IpVe6gHKTRkw?hF{t~ zRwoM8$t6KkK^2&V{h98(Q}2J*SLb&J*)6J;%XMBJo#J!2lpxP5oQL=CGf})hI-Nis zjTikE=tDSvc()KiO<*&PJ|n;y{V)!vZeW=jT`rnPZ}nJ;$#&6e1e$}=WYIvm&dawk z=MS_Tj>JT$>kB#749Z(Z+)3^OEYHUS2d=-cb>KkzcT^0TrU?(%9bWICv(XWsI+b8t zVo)YdIbJVsp=zZ*y@5%j6{F{c!<%?#U#A}XQZdS-`TP4`3VMKpeK&TuzDYCSmrmTeb)omd zg$oxgJcvWbIt#t&SDb!o^033XT!{$+HNf^8f-HD@7^)4h&=zmiSlGt@iG^W$J5RVy zLVKE|)l&vOH9u<_OtALIk;JEq_`@EK{SJwX7vvsDyi6N5Pvc#I($b)DGP%u6@;G%v z$VDf?`oc&@ca~?+`9}W2RO<%v_9@MQhG)->;l{N!>6sC*PFi?pY0jTB)jKxt3M%CV ziV}1B%;{9+Xjv{$tXzUOwsL}^3}dnH9oOI$tGN#29xQ~0VV`>4z33699XM=6=HomppFhAc+FttL1bpVQG^J8_m+eVJwvVvO)e&xB`%UhLTs($ zS$X34LWI?fBU{IjR~{m41|jR8lHeAizI`vcY8_m{mgD{-+3}h8yDx&_ysdX%y^3$z zn6tcugm65Av5l-Tyxemek&aLx|17X)Szrs3CDZa;=x-V$|CccOvcf+8pr^6$Ih-7? zDCY_b(!5`ZX;kko1y2=VHx(#U`zScM5eIraUk<$baBZ@!{jAEtoEm-ZaNy%AZT$mt zYBlS(K;yA;%*s~%FsGLK{5LU%I&a+cr7Ok6EgLYfLlhS+ki3zOtsa_}`wQvo%`tUG zA0UvlvjtcA#2= zkG%>QD8Tlst<4%-i21RyLs|hac3y9?S&}27t|$q)>iiU=L+>~)?3XAabd$VlAOZ7dlGw@;3`S&wBoKlfJ<}xEJ1ylx;B~ zlWZI((Tk83PRiyh9Y*$*uyIVHUM9IIX&5w0CHHlxDbp$Kl1x(7?6^HGZNsL3p)e%oCQAdJ2l4siT0pdG{6N7 zuFQS$aNs0yWbPK$H;ppM`i`}%fxPwq{T!$>!uer2n5uS!a-*$o`A2-n9>xeoF}iO{ z@c<4xqjQ$xC(W8!QP5L##!{^89B#!59afZ=ZB!0miVZ`>ufWwTYJvMBU|v=|xS)`> zBvck{RM@fNH=zl#t2r=7g2#@bV*Vf>8yFZE$>||fVN3#y2xz@+zRK))hGO0;6y>IL z6Y){(ILw4-l1CIaPfZB5iNWC?I7zz?@n!HjlY{ zFnjh>g_hZO?wtFI$I(kdb}wJvyNm!Tn@qM!T5t3=-dX|`m31NuER&?j8v6w^$saP4 zJqXz(!&Vdd?XX?(Rq2N=v-f83vkwbf+fnUu@#%r~2_Y|pzh9M5oPITfJmz0`xL%Z8 zN2tU)vPtlzjHDPUb<4hgSPQxneo+y86-nf1J}wK%lS&A|;L{Br%K@V{)2GA6N?ZFx zm&>^b8Y6gHjcmLg92XNy*oiSyY%e4}V_y-Iws`7f{^`~algmvlJi}X$Kz-65P6rUI za#68dlViwEL)!VQr_HLYAg7%?!{>G~oi@-0i7-^?WeSWVEEZyDbP`V3PAq%R4U_aa zoBqDn#cjzv9oD}1PMCPBg*Vpk{^&kG7^J86C)h|VYQEOEzuG;7+{$>!7bSJ+^ejn! zH-$f=J#QGfzxO4a+$g|WlFW{%cuZQ|6h}=atLvwzcNC5!`%*cZa6fJn5YPP^ObM4` z^yZSQxhN}_e?mP5LTAVTmE{^3%0edgF+Yr3GDz3kOh&SLaMr(SGxuqdPllBs`?z8x z`#DW-KKY$hLui6yH!w>j#kJgh+B z=PpTNU+bzV#1EQa^q807j7hg(lHfsk=SiYFgKZ(C9c8_rMz%8$N+eGUP~J9@&MgBB z)tVB;!ig`c$h6SLkRC-)=V^Yh&;L%+al2L5QzZ1J_NFC1S3|bo1%C}Akx=K1uV2a4 z!q&a6jfw;lZcC3L_jwAbWBA$UY;r+O2+ODRY_dwkR(Z3DmlT_&{t{x?%~$K_iP6`H z>-L-$qhifb~DC z$p?pNPwU@9`cEFb$;wsz`N9@xyx{p9hE6?fSBkz!&%P|hjY(F4lS4wUT)mR^^eJEa z<*D%H@Zlq_lHsCB8#SCC9WH!$I_D^nV^=P4HHT^E$_dlUd9K`-7v`IoOJc0b%~Psc z$+vzp2Xa>J{L5qFxX*V4-yeU5&J^LT^-W>w$-esOiF>fC7pKQ8=x=YF=UInuoCr_$ zUo(_@m$I+JcS<7k%rL@ui(K>iJ^ zZg(BqeySpTD+=FH--<^AUHMXr?)Zh9YQc@=iYC`fII`C8=YS?NZ4JoK<|pv)r9O(l zN!%|8AnXth5620jelaTa0}bsr@o(Y=i?*-w-?A#)99CJg`;K)h73l(O+(~G&BaZER z6YmjX+wnK3KaLT7E)`zBtd9!b#=8VmL}hF)A94qdyA)3H%_n4I)z&cnl$#H91&M`bThnKPqbEIHk{MKC3|Y)3Y}Mw5rZCbvn11ly)%XfPuk=UqEojUnVP|B0<3OV6tdrru@Z z2qYZz2QJ8~m!Js-;gJhJw&0b3Qzd-;dTw|@DET@wKO^5sqd(blgd{6;ZLjEkSEX8s z21a%LA5OA{OxiVQj_GGTgHxoE{>y36 ze9z-E^=htOq+6Xh=Dmgy(`OJ%*C)Hsur#i5xA`WR92nt(e&=m&h8DTUvoWZ80$=NR z!9A0oy>uV);-sKIy_cMN8oSF8Bg!1t7MDoMrEwyNrkl)!zY@3ll0-`)|8HlvA2W8$ zQoh8c*;3SpPSL_WDT1%1u{L$9h>o_epQzxFphRW!JMOi5xfiwP@JQ z(q=Fg4~+(P?67c5Z(U7~iM|Fe1nm9=9NEs4Ha$64W95E1)GaEKAE5ajqBs#GpD976 zyy0>4bKph@jfI`w2Fv;EiWR2$o<4T*OM8sFwI9E{y(&hn=P@zUHN`%ksq{ z^)K{R_&F5L8{H{L`8z`camd4m59jd(P}>ZgGLe1=9?J_cnx*~ly@8aM^8j~JR!^L! zt&JFgU%qG8D}T?}Zy$|s*da6nXXaN~!*K@tWuM0DvQeyoH~;0r&DpR{AzzLC_+~Z6 zBr0(ZKR9sU0&FA|bc~y&&`$;P7O9oW)vH%OjUTe z@H!}~hE48$2d_bmSS$%Qr|;m>v_9E);z)}Ucz5Gppj}=1!6`IJy_wyLzK1cq&ZUM{ z@05wzd7|tSGnMnuaj)_euVfqM(5J}2zvO;57_WZEYESpWDP=1T;vhi_8wSZH!8Xk0 z+$fl;nSCvg{!5zkK=iqz39!Mf*aibwH0W>KY z(6f@XbK$&pj69XTTnY{rAcR4IXmw@x!lr6)bZc%LQ~nHAkwa^!Yim^kKVYx+<`ZNk zVE+-^hiIq+=F{CEm}h?oPlP##j$$ZX6*#f+oERSKos1AZvua=7#Xc1A@I2x89YF_>CJd9%-7AR1l`V?1ZNU{ zr{@dyYso-Bx($8?dA6y$@T=y5gRzR zZ4C=PJ5}*QXin=kt@i~4#v~|D7ijG`RRr?OoLy-~7s#%0YC`(3S6`EE9&7m`@~woB zQUiZ)tGS1%2?I<)lz&Zt{+rVH;KxIp5cT!(g5OX5&39dS-XMqeSt;Hq#w=FBqV8)_68TVK|6( zh^s;uU4Uu54LF3c8?Q%4S)1JiJr;ruMuFY>?V#6l^4Jr#G*xB|0sA)@^|v zs`~ZdTFskheITSrPY)%lgCtMjBrYxnA{=Sc$TfNxIng+Euo_wkircN45qh>mxQ*?~#MGtaiVF zQ(aB^pzX(Sk1}uK1&Lb0K9=Uq93{azl)6(XXBznoZc8)?@a$CQwNy^gXH3*~Dpw8B zPZWy{%IvD#H?T#@bbC|qdu4%vsUtlG0Z+F>xT8U0MQ`)yj73VMxkm|y+UmY(FBIo| zB(|NAFfAQl&25;3!2&##{%$$l-QBBi!wJ^B&bJ#jVC>wv^AIh5;(e?+1Y^ZZ;CfWG zZa6TkrfJUbv|G4f!GezE%GuLtpl_eT94K~3JM%5?iq;&ygpf*+79JY}>sf_Xsjv{0}hrxA2vCqQj zq}5;!L%l$S1WY3t@ADWc(W+WCmwM#60Mb}fL`zY1>DdH2&JuTv$l72lpKH@#<$#wp$N?ZTTBazzo)9Eal z1Nv46S0eUS=>kmxGAdgUIMMGIiB}a%-(gSkLg)*)Mhm*&W$vg~57`wFoP=?+WXWA5 zb}a)?5_ShHI!t1O1E=}@A^9)aiEG_RC%}Fd7z9?O1ga+F;XZ9fx>e1Z+U442>t^Uv1q93cuQhEKKk7={S!l4~NgA3wZSEHd4sm9lEi{^w5(v?>*@P`bIUi|GTBKeJZ`H#qrb{A9d(M0h zR~2>vNJ$k8<^c*V^oNZk_v9ogPu@W*w5~1_>Ug#1{P|plO-VQ#XQgl|8L&RGXaF`x z5m}=a(fBmcNf;`W%bTAiR{|M;NWAQh9j@QjzdnQK5oMF0$X65aPi`%Idg`$h{4nB32luNR_XyXotkMM7RcMw(s4+fVTp&` z`&o(%Ycnh3fmxH;mEa6-?7^^fa`Nx#c(f&&x%%ip*};RKF+Ca%4Hs8n$;z zTMT}FwHo3Z|I-D;K4yO3RS%}iP zMva0agoUeERPiSmPZsF`uQ%9qmtdnDcyKleHkZUzl0fJQIVFRB%oLx5Nag>+QOx({ zwDK30nnY{*3Hww|<$t_y>fU^9R*5&xPffxz+eF|9Q5x=Ja&Jo#!CiTuyJC;&^e%wD{GLs@sH{X)6y(gOT@=5kK*HmhC*b zUIf@nlhkn^n?PN%QEk;O<@OaIbZC#(R1jbvrnl0}tV!{(*#lxW(Xi^V=UGU_vK7et z&Z*R<95#h4av4fqM#Qw{Ae8qJxd!_Y$Z2MvOO?#KDlRT`Njt*4?-naL_Xg&)kcRi& zTXZ~iqG-ox-rI+0?bcs}O%7ITz=;XD4MXO$aD>_lt?+n}$ud13sRxc!3%bSBwp5@% zTw zA?$oE1!!fS;^~-gc=uD_rV|&sOYC>2yyp7~ZaEl4y@l~|=ErckgK=1Qise4Wu8W11 z^>d1VE033I9^>z6jO*zB^7t=ei% z`)jAz8X>^!V*-Bg0VTU%$02Q;eAU+@0jJL#+2>dy&gjHI>LPH+YmBD}I_j=R0SH^w zK=frImv&bUTDni1;kS(cb`I3I1O@0;ky_2|$v1u|_g!)|9-NZ0zY%;6<)YiMSnkD{ zOSF>gCX1DQ9Q(2M?$*j+v6(4NbW07j!!(?B8>H3}w*cngrwN zLbfp+C%N#|XHLTItCwMxzIFiCC2SSUKN;edVuXgvV~MsW(ngWcl}qC`I+=1FBn!;(vnj`VJV=^~AP`Q?{m#NoI!xvIV1FVJ2+nO&`=VYo=`3>dj}MCa;{{nkDST~m$~fB#WK zh79paF$R+~O~B%NH`A?b!1!0gAUrd0vRSk@Nw;Hd_B1dg-+2P&`Q{mgKYa+$Ho-TM zd;EDYi1$H##kns50C&BoKu^cu%n^Rbpyq*yh@V!{A<%F^?MQ>EI1rX}i#8pqahM63 z_GVG`esc?G(aQnrxBWD){x|On<2Hh}G)NnU>i(K|XBwofzzu+I+cAXJCF1n-bQsG^ zUs{yK(8OcM;65dcy*Wf>l&-R9VwJ*T?DgP!!DY!_UZS|d_0p>Iip#skAVrf~rBl3?QCs4%@~*;}OLNp&3Fo+6AQqMMtktg4npOuRu;7$8;ll$zB+ zDkO9etd|Y2kSqqFn6eNZn;N3=gI`sEqq(KgO$(`n+DhE zxG5Q5ZRs=#L$UENUP_}#|4gyfxd_cn*0AV}8~IffZQ<~9<#I_nocGrK|B?d@H=JJ~ z4yfub7!k^}{jj=Vu9XBUuP|=MD;D;FX^kQ6aq5R0<_42vQ}ZG(9K}I-H{i^E@M^xq zp&T|r-FfB;*GO}n%J(wy0ch^6gsR`@KAY-&a1wkFL!iZUmuoQHp$kpEgBwUO*KltS zXJEb?LYKmkuS{FIr$q*igfrU0((wsR{EVOAWHZ`U$J#!(EPbVkbn;N3oe6GrWh<7d@Cq&rT8+I>G> z=M*=6-SHoAKy8RnZ!4~kT+U!2b{*HR26^(>nJ1=62yZKFl?@d^uv!QDbC3Hwg)P1s zVfYagKW`nA1N|pXyg)iIOiI=p@L2s?QYx@u`Fm0HRk`+ruN~UZOTw>hYFgr5cu$$G zC|sBx-JMQ;xqyt>OV*5c96D4h-36E#d?#Md#OQnoW7EL$9mDugZiBKvKLItUCqynE zjO`zw(G|G)pf*>)2NoQ9fHNe+Pd@`Bs%t^53T(c9CANreLuk{**q3QgbnsK6s_-aK z>nT=4fCW{OVD;l3^p!xbAA83@X`IKC-BRpF@{vQ-Fo?2N3g4VXvXcueof)gHHr^&D!xl0I5H!G zsUc7s9IVHpxZi#IFlY5hf={~)0J_l%UPq1sZkSLtGj3hL_EW8{9D z$YdLY&>lt2XVh#lwrhcfW^jrb*#o~{(~>*ZK>ro~`jaP5J~M<* zYOC)LB&5)BjThByV7=03Ltsa}I<}#N*Ro)hE=L7X1szlRSTNXEtvRfmJ#pehU+Zt7 zVXu6BFSX%n058xA=+xR`$>|LNEJDy#p%SXi=vlox6wKyS(0%pc*gDnW1>HFi{RS-t zaBwidP)`=Ex<=Del(biDKd6fm(W=b1>(zXDHQBCtP6?pPcB^fLo8FaI_PO7CaKZb@ zmMtrLZlSgxb+c-oP=iyRrfbh(R;(4AvIkE49h6ARFc?Uco=gut(6KvKHR|shpZN-~ z6eT^D>-!_uG0i9a@I#|uFIMXW`T2uE4Noi)2Hi=Kt2zh2wHcwgDw@N11SSIl?Ku0BwAGjVqLDB)L_Z&91nnr9M z7rI}xk&R^%%>i1N%Oq_cxZ^cg*5><)gxZTuo8}ureD{2*EF~W&M%ljxi{LcE6pt2c zrW|v7PMTOGZQeR0x`d5kA*K*%EYU3S24bpR_yzgMV#VgIOCIO3F)YMHvdco*y|cB0 z$n8v>x*}M)YX}}Cl4=eFmJ!Jt57>6{o?(J}UU{UB*>QZzxDqI2tIVvhUYq55Z;}6U z4iqj`>dO`l=g(g-fBs=;h&&x&{!*1U!J$lQwQl|~-}`UiZgUMwJqGT$k2+JP2kJg! zc_J%d zVKU^nDaU%SB7YIF@+m8B(ti`n@3?82U_ImUeaS!=Y_rA6Dpua00Xt^+*=KVs-xbTs zzMgdPD!msjT-dh?`$9GB_T4EMB&05Si8X0C1|5P)Ja8GIC)RbfmxyjpDRAM)&{kFr z&EFm?ODk01x*aO`6OQE-bdDEJF?-^yQ2rbEg|zbPi!sxo($rgT`~+o(4R_o4(bhKc zt6`o$Cv;5evq7O7SREnA86cP+b6~GdojOhaHj%#q2*ISL=6v}<;ZILy;zuX%Z`|&| z1qY0GDi=Y8M8I1f$~Ev0hvP2$($b76|MMd?zx_+H*_31813=QE6EK`wY~$P7 zuLFV&pe$AzbbQ@GUWlb>MXCTR?yo_vyD^qE=wYefol^Fw7!=I)iLTwDup7))$qsLA z4(slk8a9|GgvQNI>mtkI@oM$`W>jFR;7$S#tBg>)72G#ba5BaxCL+`^3=d`WTwxX@ zyn5N6gVOLsvrg4y@*ju1-gq$v{<08S2u#&&8O&&DbMk;anM*tPjOz)&iy1R2G3>YG z|3D7p&#xMFE7Ph~6}Ir58~DYK+a6xLmvr>Vy(FyxWX7Nyxtn~|L7oR*JxlH~ShfWV z?#^i0GCwMFm0u)bSol>uEUdyL!jR&h!n3LFx@AFv&q%kl?1-cv4*0VD@+345l#FReWBAVmnw=94 zQx_kyW%Cd}+mO2v|KfYK4Zpt`4Ck{MtgTc3@mO(!lQ(yTzt*98O|v*?bwR~9!**z{ zSZ;&qW@PwlEckE+hE`E|n7qIWUkTg?`TCJ`^R-1m_uf;6R6j@KX`6`9Ky5Sgxkx^i zu-t;`{8V3w6y?}dzbVzx7<`NmPUl22Tf8lTLx^p<#Dc(G?D(#Ywh;O6Ic8c&n|GEt zma5FEEMi&zET5M)!>sm)dV zr)SD$iFuh~oaX{t^;slhB;&ADBuO$f3Q&b-T`flJ-ZL>=>&q0lC^v~Njx@zM&!lfT z*1w2RaSd@q)fOdq;8R%QiT~6W#n~jP!l6f@i+{*zW9q~Wj2B3{YhR?})_m_z(`ynh z=xiGH18_f>SlxHjpsmjUe62{>!$}p5Y%2XA{L+4v9DT^jYi#r0!4=E6eGpi=M=D zfT+k3zy>-+tv>mZ)DwW~H%`HuY&?Si44uX|4bt|!j+<2r zm0;cR(>*w2hE3iezJLXd_$Py6oost}nryrk?aJZ~3G}-tOx=E4 zxI2PPrib3{25cYOBn;HYEY>OtI|DNkN2oOw3_^IDvDZBv6P1XEfq{Wox!i%p(8&b& z?cjGhWL-dDNDWl6*Z9te%HJKk-0{oKMtUsIJZlrx5&xt!e2x19eQzVf)3K7+o2>(C ztU2w~%>{k7>~yL!-(t`1trMusvU4od2>i(1LfX7lqOp&7@Dz5QL9DnpRM(y($MRm2 zW6R*Hh=Z|Efpd?8To5Os0xYpmB0L02Zk`Y6*ECK5@WBkacCy%CWbPZ@A8*%ZpL7PY4 z2gG5n*U3#+H5ixcB+1_7pHJ|!UF*B<+_~#77&|U!jm&qcu%R3J+1meqSs_GERCZ!x zZP=y6KgRyHKQv_i*fMZqw0)`ACuZo7PC*Y|GX&|}YBOme0MpZHVd`FY>6#6Mved)R zr2R^F`~x4*TTc5+8)`^$;X8OWmWi?NGsx3lpOh4Vz2orZBE=v4A;4y2;Da!h_kKSf zgKcU1a-qU=*XZpEtHf>mv`D@QaB6@+kEDM19UhDpUcKL3kM5sw%65m;R|fN zZv>vpA4?-rFy)50Zv@KuBc~fCUe9M2f9Ysk_Dy7oEK#M2{Fs?R#9S8BXeE<#E1lRb zGB$_Re1QkfyEzsRV(Y6GCFy1xw=c0@CsLFInPymQxQe+pp4hk=`aI39w}b@cYrf(t zEL@B1HX_xIjUuTOxE2e4z%4cd08dfM@#|fvMsGh3bG;Xo)LZRQxIJd|Q1P-=bUQma z%o#uF|T&q%0B35iC(M$`BD#jI-9V|I8->mq>Q z9-cvEA5YSMhX@H=!R?r7>zhKb68HHhCZ&4vOkXysVL4Q6Y$U$OylTbaI0S;D4_+fF z)AHE02GG-t)O;cRbi^D@fLq@wc5??Ndn>BosGEki57aYP|I-F;(}42}=&(kqD6?@_ zph%G-S|jQ+f1K&pFlYN9Q3CVyO~K@G8eeXyVRXG6of#}r(_#Qi0{(rjagQE7gsE=q ztDWDYE=RIS^ayb{7J*uiMUGuI0Ek^7i}Yb7cV8CVs*rDQo!s{Q5L zJLj1ttW|6h>@)!<8fBQANir@hJW5gpqZ88z-QLiLB)@AlrumDvXi*5x0V5lENaK_V zAzw(a(hJ0g#e(>+a0gxhJEE_fITo7;psWZi*82&0B+-OZW>02u>`JqYFtdy|qTF!2 z?z>647(CT@o2rsdb!!>!59OA~yrGy`sQkndC$6li@JtUb{eT)?>LMg~K7 z@DV6kbCiO$;N1QdSXA+R<4AAXs{fSLLqi^@r6>I1F;sLb=sY?punBewe>bn0D_n}r z#l;9CD-4B`$A%pDgf0ljGZ=pt+e3(9f_uWEaKWx~O)PH!7F0;Oi5Ac07#GU_8lyGw zl?_8Qhu^l6Bw{t5$g$#~n7zrsv{DW_i5*SK?xC10yg_md7P;bEMeU{x3f3#&vIb#) z7QF^mwUHFqLd5rg4rC zvfqkj`;*+FZEKVrR&F!r5V+kUpX7kb;e!Kk+f51yvGo$5VBEcNC!9JNxADCdgnVc< zIxEiMAdbKb8|td#IyMZ|YBH`#lMy+w8zC_^l#fVF7~$A zGQ41Ox8Y}>fTe4LVJz~Gp{txEj+@OzeJ6x`GM_z5BfCWH8_&!c^zL-wka#Xkjt$d zrkLp|vVLzSdA`P-@XL_gV$%Qo(?6KR6E4eKFJ#hUx9}Dc%+*zW^rJdpwlVH&GaSux zm#BjlwNi&p%)|@q)5cE-rQbVwKR^0#uX1&2dvkCZp$h~)-R+%VD zu;iEWS28kWBTRsul9(L(QpxyH63ZPKQVdRga%>l?x$nrxP_~INnqA?NSW?VitX4S~ zFmbwRmMD_6(JYZ=CB?Stl_wi$R#{moi)?1?yrut3Iq*^2En8sefzM}*bg?c6g3@uU zukTe%hTE}bVF$l@zj9?Lb35Q`TBE}h_|z!*bNKQ7IHOYd6wCXY4-EsRNz+q5<5$zq zdS<0IVOa+4G5LGL%RP66R_1sH!|_l!eyzfS%E(Y_LYf<1_E{*F(6*$|6~$M@jRKI~ zPI?P1zobD4AL08mo(Re=J=xKVXK0Z&d zveJV|&@`+Bx2gvx$AQcNdoQ+qIu6w)EOHKgu57U?x?ID~0jat6UT0%Pd1lJiiMJgU zXv3x|*vAxv6TGc@7Zuym!}_WCMLtb7=eIAgqnkw!j)BCx=^I_NaVMJ27FMk2Ijr0s zFz{l4a$`r7C0?qGs~^Z?<&Upj(M1-6JJo;PS6>z5*5O(L5a^lcMJ3jrp(cXL?3QD2 zlD9p5PBl1jT*0=q|5vemUI}%qvagf>F9$nH>5Tm;!TBc!+6rg%H~j4LM~tO~=SCdC z6#h=_Q}%b=2_RG_5?@#84u8I9I zUGO-k5ysac<7b9rA+K=xX#wAQZ8=cp33MG>Uz}$fn$aXC1Q7Thh7&?Nmv)!y3JHLI z_;4~Ln;ihEA)#%kT;8z-IS7>`sqh)SOE&TlT1&oFwFQ{#qcqy-^$_VbBi~SCJpmiy zL46iCjf|Y!d(?_BlJ=6=>MD?#Mw~9Kf<+0uFnp%Dq@bXwOx2m!3-;ek|L8YSTy!gI zvcL|>v07M;jUc3xJ&sQ5W0LZYld}8fh-SQXkuEQn+l8&voh&e`-2b?L-%V-3i_*zH zY53{n#NWZb#zfnW$SY@?4=+V4o=-VF==&nZ+%8J7Vy7r1)`JVesXHtRZ#y9`W~LK* z(Fo`2g)Xg$ywXWn0S?j`HwpPGrvzLGL3%T9ydj!%Hh?Gjuex5hZrz&prMCxh9p}6- z@Jr(3;Sbr&DvqRF-B|{Z)X+TOh*{mGK||E;KAS+@%zYCkNIwa?!oP~Dv+h;{af0(N zgJbc;SkWsu?Be>eBE3?ZGp`mC0l@oGxQ|8^u9F%lQ9{KM657hJZ{=TY@mNxYs^u^G z^@#d;>;^_?9mG2Q)w@Ca4*Ev3kNyxb2XP@K!{BQJWn%Zu={V|g#s{L-yH*elNkO}H7`Tv>& z9>bQVkUbT7GgbQ^P%jCxHrwAFtX9u+>3MSa5nRn{Y0|I5zPYm12vA5``1pJ-Gp$&y zSd1HX1C`^n_uAwYj`1|ZTa8CG>c!lSgP~}uy;g@uLt3(dU8Ud$)IA7~6 zGzR!qHB~t05uDl8R73P7iupRX#(?{L5}gpm=FtWib+yuPz`L4P{rl%xv)Zc~<4Emq zfh^v0Y?v5WL;%AdG+#T zSQyidMPQ`l=uuepS|=3SCW~!y8?pS7QCNUb-6m`yHsV9sEu__3`mTI)@nVddSY<8# z>^tz?A{N@}osAR3DyW}fw0tL-TZE!YhS(-puS@8{eer5esq{^qQUZm!XxH_J2TgL?zCO|EoJ6F z&bv?gnFQm>ewZkKbO3ko#EHEfYz-6`q+F41v~~$O&c56EmJA&_bn%FxLywV{!h(wi zwVSYW8fFCgVA-q{Y7&z!9r4;B?>UxByCIy`ra@jNv(1nh&zQ_erk`yJe2|HIm;~dQ zPHr+BlWg=-z6b6YIVY|iU>SH?APimzU9rb$vX2OjBnMr7h)~<0tZtqV^68L zxojh8Q%kWLZxmha$Mw(74izV9fqJj(7b38$qQ3SaqV_3tQdOt);x!+T(1?g;Et&n( zs$7>0(yC8s)K`T4Ois}^;s8mqO$VrYLFBR=ml|wuaSd%Oi=M>B)0!Z zk|dl48;&ctzK-BpI47pIndU-@`E^ zLe0kmXG$Bv^Gl*0Aw=l95 z6{qyezKbvVKDs!cb}Q|!_@6i_3djB#j;~Z7ZL5ggrug8LDIP7WqL#{r6kOV>HwtG= z)LSk-sfwSiVsT)t3!c60?@!q2i!}VGPs?{Foq~n|zWbilB5Vbs&4GvXzvnn8cH6q< zYWGExDGe)yaAsyk>b4c9mR<&b^j3@VLY(&X2c_Xdf@S6(4fMm|V@C&{Js-&|_4OMl>I!;oRw?Gy-kgLfFk}qn0|0Pp{(X#$oU_WPpg;$h;S8;4z8CKxx1{w5b^K%sW z{D-rP6GyYDbnQ`V4c!~@^d*U5Dv$TC&^Bw})-UqZJVsjE726Qv)uIKR>&W>Z7Ax5E zW4&KqfUua;N>L%zaH^q;v6l9ag%94Mna}JD3$=(`v`}_$MCRvqhLh@&>FXpI zpPy*Yh$hoPypLT4J310_F_uhnE%7w{jHgyCfucg}){sL|lLv#PH7YtdMQrc2;&zT$ zZj86H@h#_D=qd z5q6T_6AvfB_|_1HVIfb-PqxVw&rCjB)Y{3IL%v@#TKT738&)6mj|i+-^737i5T1`#R&M+A%%+J!sY9^-S8VfsQB@bxxg zwL*JvsC>D~?Ezvf)Gk^uD6GjAylR{S&FlV-17%;t`%%e5c?Fe|e>0X03L~@uzxqg` z=5jafdkKWP;}g=>C0uY=JuNXqOvJTl?T* zo7wq5bxQwj>C&akmeMo$Sav&jAjqr^RgMUl-5=brP1#Tz;}zxL@LH(Mws?N{)a9or z1;<}}ir2HDQM!Z|Y+m}UV_p&Vrt>O}*%n$+n8fP1KZV9{Xxqtv`bBNxqZU zFmf#&9_o^bnL$%vc3N6Q4Jk$5FhBu^zY)d;n4>dq78GOI>XNjHLMUe;xZ`k=5GqY) ztH`w)0?<7UsuY-ik2uKJIfbuYJay&56_~<1QGip;n=^av!ZoJt$MWS{E_ZQy9Zpea zR9%Y4uvjh+jngOq;IMfBooLJ^9$v@E-!DA&IBV2tVHbh?96a3>Fi8=Rt- zX@!adt+|6<%yU$16%}t3DLHU&l*WnyvrePFYLgX zS?KYQ)_LIkw>KP$(&#_tP z?aV?itK8g4pj|6*jeLZyR*Ce#gWYWLhQqYY0FJ5N`#hu7ZB&5wl<62VSowgJE4wvv zhxw|dI82hMweMmqu5)sKaUI{S$M<|8$185Z=|8h=0_~S@e}td(lKd$9U_|R=UoqGd z2E0h>UNKm$MT@T!Gd45rJ%~3e!-X7uTOwCTO$jb|Yxa1k_O%us=9%ulQ=v9l#9JS-j z2Iz%D`-N^|xf)%5O6i)Cqcf?%ccg__54guqOXr{wxg#!?s4;R;T7V#b?&pyP|NjmY zh}mu{AFLL8;>7o@wAFtY-?oxge}hcS6%YpA8E1Ah{LC|t55C5*OtL-BD6bLO3Jmfz z*{Wx@dFabXjAz=hZ86&TOYtdCGi|kDwbJxO4zTC#NLZo``^IrerHeixYtiKt+X&2H ztm%!y$8(}f*fw$Htz)O~8d(2i$NY6H1+ZM#l58*Od>vZ~SZC(W>lPV->P%K+yrxJr zo4zyHmyS&2*as_vZ!jNHvsirNE2su4JjBVhZOH?o6`Wfe`Pb?r#!g0Vs^Ft@Angr8Jq+C4IlUH zoFp2s0)7hIT*bkOg%2kO>DTmH*{NM%auDqqlG9#Jp3_&e!{83bM~hwy zr_8_3*VuQL^uncG4!Ehww}&uKdN>-pFYv>u##-IRq-y^VDR!+;Imr8SEhJM3?uD&tO>?qfsr7MD#AEpmjwT_L;dOpS7< zh%dePig&vliyUL!g;)=;2GJ3!Edq_k+~r)FdF_fVJp-5!d(e>7bT9yr?v4=n+e56V zUhbu83lu}(DlT!-!78Lsm;~O=TMo^Ee$Td2=j#aPitF6h)ItgV?BseoInI+6-Nuif zMo1ejA9G$*Pr0r@PV!?AD@sLaP;rJvqpiepB5Rx> z6p#h>(%aQ)=FRfMU=VfQa1#?aGi{#qY9=T0d`0UWHY>AL#983pXYkUvSz?faHSqnBmcSWcjzKSm}{bsiSoc0-n z;~tFhHhT{u$0VHg1C2smda9G%W>JhEP^cvwD8ynA+DwG1{Rty8OI|U04KcoP_^=Pg zdkdjJ1_PVm;=KpLcu*kIhtD-9H0i{~x->|@R;W+spGxLT&14+L)trW0UyO?we)b92 z6qaYu3$S$9_=|9SS1>}_z8vycmX2{{!-VrWB+dT@%+1{GE2v!lR5M_Vuy4`x%#0Zx zx%fB2Y5AY-E7_#o`6f+-u`IevO?ht-24$B>%07xrq4FeYK-H2<;m9%z2GJPtr?3B? z`_#!uYo6)Rul%9z5nwt34ItL0iToQq#oPY6WlLLoCTsbSa}xZnFMKbhe8=TW(IfF2 zYAp5jsxl(&V;0;N+Z5I(O}h=sK_l#CJh2e56$V?qfa1D3Lq4#b+uVNveN0l@vw;oZ?D;flSdZstj z$u5_%pH&Ok2cj1Y`Lw5(*I9C@3tP|^7#slSTxL99+90QH!1nl{O`B#m#v4bp-{SLP z3p7-C=N6nv?q9z2Fib6CYk2$fJ zQ2U(3iD)PG@}bjDeO@t6IwsKRr@liLJq9Zm^VBJOG1AtS`-Tj2V#{n7l6{zNjoMd^ zYfi!LLE4$*I;Yfq<=VTNzuY(JWQ(mOS>ZlO-d3+lmHu~QNWyFz1i#GEG;Lrb*#`COIOsMlYBAUUUIyXg!V(j7m`yQ#OjQI?DdxEhN}aQ0|nH zVANKrEM}z!WTE#|Q96j?0=#}$S?z3{*o7Wr(Ikp0vlcrZdf256$~8cd9=Z9AqFgfM zm}k{^#a}HUx-$S2Eawy@amVSfu&~T-3|QhSZ4=S<5>BjP#|lT8i&(?|vO{P;{dq1N z`xG2gJs@;b!Oj`T{cr|Gma?ewk{?*B|mq*^R&LcU+ zHU{TH6-WOhtaFYLjotTqr@Y~tOD0k;99CvaEXd5_WP||&^f1e~NQPvinsf9+7eQwtu-E%T5 zzL}&Ksx~uyf`w&x^WYe;muqwc|EZvyPt}!1`8Epj1uZ5Cy`hHm6=AI+2#J`soQN>= znIBx0N*ptc7}%cK+swMMt?TRDGqxq?|2raQpADD1m(s;GoGbhrp%>YX=Kx?FB7{yg zWC$?0U=uEK^@#W8u`)>%3+$Y^n#aadh&sUw(;3*e;Vu%<6=gnvB}TuB?!}wz9765s zAE*t^H8B$aqbxR>tb0Xh4OWXxVax0A z=t4K(e6U>kHjyU{?22WTFw{CRbmt8?Ceqywp^hXBp(RPF4@uhB4200#_zDoA_q{~- z;`SlIxlvtza^2YqHT7LKkkF7<d_#h;i7U;;dC}K~HVN%UDFN3l_Y2J9+Stcb73c5YASb#EMUY=g26`RMC#u9Xe zxVMVYAIqkr5uV=gQXml`5PnlwHL3e<1$CdY4K1@Z3vJiIOoAJQgNvYluriIoOtLJm zXJBQwW2Lx3*q=EUV0uHB&_Q$lq@+dEKT1h1P@;qgofe@efyWdjeCN)cEp2wo!k#p3 zZyD`BrJu00wP`f){X2KQA2#mJox68nh}EfCC|J4HGnYxj&OFnPQ1z;owtSut8)gwh z`FAVIS}Q~IH!BOzeXw88)@9c)$B)SUkpr7!XI5?O(>FrFr#-AZ!=D0aOkQOl0yMBu z{;8)wF$nfquqw;>m(xq3#q-NACvG_$3%C~cY&b_(cN@5Da`#YOlSsUf!*s^S_@!-B z(JHr4ej8)9-PkhJV^u<^CKg_Qp$cusg5HXzo;yx{+2nW}VEIaH!PQK}BWw%{;mLKE zO)!5Do?{Y>2lkPQzGzkIC|)h=1ALr{&p^LJ=nlX{CNm{!$hlm_L1herdA={d>IId1 z{*CzKVr=}=NtZSFtU0mDL>6`eOMl&}aDIdImmiSDMXt-`7r?sSR-(!=aWKe!igL>E zv(KH1!hM;#Om&RUu;K>2O_86ift8cF4LSCSC1-tr+*p!Yj}_PHqUW)X1fmz;O7pV2 zBEQ^rAl@P~377uFqmDQ3+`&ZRv zv3~Dz=3WU_?pmf4dz6`(nGzWp9XYTX(`J2dU_4;p;Btjb?}65Fk1Cf{;A;Q=6wA!C z4%RlIjJQvrCazj#PkLr%+WmoMw0@vif1TV*3FkTpYRR{jjuqKX!N!In#he3G18o=` z&0k{(BKvxctn{+NhFZg`G6kp?b&VjXp0_rvr00-xIm;{>Gw-#-5&B)vAtOOBYe_N4 znfv#th0M$-OIxM-ZIuOoRLp*Oc7t&V8VcBpaZZC;gg$J1fTB2ayct6yrf;8H&aLV# z99@HsUJ`~*<6=<>iqMuQ=suEr;y!Nu->9Z#LfD?qegym3IVQCQ!W3fF$DD)k@KjUM z@C+H^r^XZiWN^&q5UK(H_6SOZrZk55ZZBa=nWjygGPrd+tCZ1P*<*&!ct(S!ASRmB z79wiibe-xqwfa;($8*TjMH*(i9+@hk>$%6va;}OrD z!rKAIXdkmDiDTL?HDbtDs(S7x+%~`7Fj3H>y+@ro9Z4n|lU)5$;ku|->FFsXMb)?c zskdawlEc1m@AD=b+d?cP&k9>etG8?<5wt!viD~4itb>bgkzcK5to~^@LeS_@C9)ls zhvphW<`0l;CCwK=@LKjaFv4ti-o9eY;QxD`J7l9JkOg-v>u{JH@rV#%Ya3CqD$)BH zX&_stdr{_ar4xPFT+L9e-@6mr*eU_Tq9eiM7NKz1K&(W`<4{OnF@622tJmi*0|7f0P+D&06Wol#SXtRch3Dr(*c;TYLiGeX}x zPRib0bRtd~TJ?xK!jLF)r?OCr4f1X##ollrTal{ssQdNcJo}Vt(=}_>(P>)E9dnMW zBQ!C}V5`rU)&ZeCHi*o(X5XF{BgcPW;69!6S+Qc!a>-4x`^zi1+Yn7E+t+|)%oUIL zm3T?y7lOh~t=#Jw())1gV;SB=%J=ySPpbBB{fR2s>o1!_#kh z2z5}NO~hgJ0Ps90Q7jV5xCj6KlgwK z;|5$&Ynx7jeW4{E{;Ucw2;=i@Nru{3^ho>dWaMls^T}1Gcva z8;%dspppbwh4|Q-08JEKHq}!*LCQEY$rfnOL`pV&sh^p|V@+VRQV`w=&|4OduZytD zNx4^&mtBo>pKLZSWt_pmy!b-EzW4Dg@-d~eALyt}_Jo>O4q0Jx3g>S6a4<%$5ivgbX7Tn;PB z7d)tS{K|&olRTz#9%q3~%3@T%H`khQ2GKPOo6Y4|6K{u4?i`{|KF91xSTXG}_+TMt zAi8hD9mq4B@I$CFi&?Sq*|iLspK8}cN$p|Nyr%5>>MMW6_ae9rOy?s}X^7nXx7p+k zB38LLJzAl~2=B(y(8SX+DEAt`BojTz+j;=yoAv5jfgWWQ+oK-xEkfJgCclaJa5kDhdD1?o2&=RqC4NH* z5rXEX<4c0p7nS{l;G6FVmEa)RtF(pfxH_?hKpGO6r~7KM5=&@h%}`O1nE)~MY>XgNa(#o=q+@T&;x`}5(r61LP)YR@Bhs1 zySp>9Gw=QW-sgVb1sNW)bI$LaGiCSPoqFccNV*JXowG-YW@z70`M!y1Y5Qoif(;Ar zQ|gO^s4pjxLM#CBg~@HQ*S|{Ao1(9Y(LA>Ws@*3M$mcrl&@-*%-bqNx`zFO*-`xQlCpvK~lc;+JwsHJ! zQrz{kr-baz%dy-<{?!R2;m>?Bs5>0Vn((O%K~--Pvh{5#l;<9aU!(W79q{`hgvhgw zK7a#^kLPk|=!}De>}({5-cKXDr7K@Rd^kC*oFMs*{316Y`i`o!v8{ z6Fp!*{7q~tY09L)N3W1?c?Lsy%BM%{xzVR#OqtQ#_nyCQ#>J~oL}~?*XVRaN%VyMZ zJ?I!}wM8a-@JHqeJ4lp^uh9_~bmkNxfb3Hsz}^#}#$IkDduWvMw)-9>o0O$rN)9T2 z_ppgf`Mgy8`?*J<(o=e4UFv);^^nh{e^>8++oq@VJYXHJUz2ybtXh2) z`5)Cl@d5=~ce#S`fdQiU#2_34i@@m!OH7c^(paMN&(7*LY}Fo3Xwmux%$Pp?b^RL- zi;ce!&02K1Cr_mve_h}XcJ8+@HK(Z;TB9%zSfuNyX~J>6<3aClVm+~IvLhXXK^NDz zQ(&+tKS?p&NRRH?pio22u=5{|rC>fKx*`!CBcA zC`HGoIBgIQ!9H(L3~RR%TwQ%5LddtpQ$QgMpyL!`XasK0B75id68ZmhI!|Y&J=B38 z2&~RLyuNXmt*V++Y#)z>58xdPR%8bLIkQRc!nl(eN2n(Fq8wt9jbd5sjr(v&W*0Zs z1ZK(h=P(7U-+-HHsht7BHrW}dnbsgI#d4Zz2(akt76sUHD_aQs-2G)jS%23s?q^c4 zcN?~V(Z@V<)~s271dA-TAIQzUdi6R)`4H}#zbTNXd0_+ld(g{Zg9r22$str`SZL^t z`=OzsUsO9Ob5~i&=!5T*VQxE~ux=jo@`NUIWV6D>D@X?rIgx)9F(Anm%-&R{@C}l1 zG)^taaI9$NQ?6655%;Q7i)%z)!=x-Y*cdOcbrP^v=ui2-@hn9mwPw%0eNQ=v zf_7_N6^f|9xwr-@>`N_F1?9e^#`o(Z=Id~b+ zv|~n%=03(AD*QF5Xj-!I;MUxzJz)Bz?VssbYlLdlTKPoNxW0$65+GpUdN8gz`#9uqSpxW8X{!19yF%!V>f4dsp_T3T9K(5H@H7|7A(q%{2X8m~mDVnMK#^t(e3 zNmL~#XmoQ5uO@d&J3)ivJ%JpS)_G27iM>yVqq$#T>(;HeJ0U-qQ5Yc_EeV-?G;MS& zA&KH|1!aNR2_vi*)nG-<2=K)QA)>4k1CPwzrd&;3sD6vebpF{q-_I8xVjQTjmGRmJ z*tUfSuq-oP`8bYf)&5?j^N~kYqwq<1hAQuW;+%nafEUtMJDQ3e>k|HOZ8JKcN1fmP z!{85(2A@Z`rygPc9EO#zH2i{9nD6)$j2%Cg!vvZG3ncX-sH}mPn?H zdu@x}It8*i&zYXCO#iI(fc@kFo9Y2ON_tuL#Yl_?Jx_V@l-|_K1;u1u9@;M;c%-5< zwV!G@N`Zl+)&B@~P?26W1jT9A7IxlMS8UCj@P(bmSUIGdg-eE zE9fOC)X=|yO;g!~d#k$b;3UKYrZV_~^8;J~$`XKwHnWH36f(T?>F)O$IxRE|aJzSN zLMA7`WyYM>7Xi~9)XB@>_Ino$wG-@=phqjYgR|uHI3McLQ0{)vQ@zMF^c29JETw;m zHT3XsC=LEIfXXw-jt^x;El_U=JrX4Tg5z7AZ^aRO5}H#G&I+xjucuHhxpPSe*^PAw z!DuYS?ycGkzGZM-CQZLB^h}UPk8Za`sKAE{xZTj*snXatX`h9LI7Y9|a|&6*?*STv zZGfEbx6}8po5Rqje=oqGs!j2+`h;*@VHWkYTRT8)8M9HmXji-lRoo4Ac1 z!1$*UC9;>uUUK1<6TkB*)}z&eci{ z##17M(l?km(Ww4zPRtVZS?AC*u`CnRdeb3OVtQ`9Ua6XPr?zQ?zg`D5@sV&#bb^tm zZDQFC>OH0ZXSyli$iQ}F#Z|&eSZQ! z{)ATo%4;FUNzd@TiOf{2B~m3zmnYJp{Y-qUy}UdayjJ0K88#DMlGKq8 zw+zA%971*4eS*_hITYK24rLz0&J$~orXSJoPMLUb-S2*+h;6vE~fT+SB#>*3K@KnYC9}k2R3ZJm1a# z{vlEDPjiu2d&k_{8;RO5L;O!|f}podduqJ?yw+*L8_j#CHrtRcs2$3}>($px_a5Ik zR+8?vx?LOImO^wvSgh4u6GVbAo-VLVvRDj$Xf+K? zru+ID##;rJMS8-ZDW%l=-2?UqA=|73gor1bW?o+V`uEA=yRt+qzUNO5Pl8&Fo>Gdp z`U$wf%v$u4F!a8tLPt=`*GsWFu&Cuyl$-Ivb%Q^zOc!1iSC~~EKt1?*$ zPgFt3Q#IdDen+V{Ryky+RQZnq`Ez}>2c{JIGaW-St)?q)T|YD>=y7_Sqp6uMk~E}Z zMUH3-O>y_N;<=5PjB(7|y}Sf$`*rhc+V2MeLfgMGIpz16G57VtiOMF&>mb_)hll98 z-TcUSva>0sU*FMJhZwB#?zw7H;D>u=459Iu{|TPoYhiUCq*`%3vct+{#y~Qh$I`4i zY)!`N6Y3V;5}R0oTW~ZM7kXN|2|~zbp*fhtZL{DBZHoY*amI;V1y7S0f6gE!ZeQwN zaZq3?IbY2Iq4F^VPWFmfEB&dwd-v)Oy^1=OUUB}d8pu(;{J1mQDu_1TYq@mSF4#s4 zVLSh0`Scb&v&|irSrY@gf%(9WzjW!+H;ZANPFdb&-thSP^`!sY&ox|7(iX!XVa-kimR4TDtGVxDMvEC@zxm5J}eiG91?+1``q_ zVe2e7zEAlh%6s4!d(cm1;6>njb-SVblELYtn^a{0Ou3g7Fy$W2e}(a{e>-)mx7a4R z7{%V=I5t5s#kd-D5Y&4@LGOX8YXy3q>P3lVSWfWkcGmdVzu2Fum_b1Z_Pj3PE!h-c zBW;S0dD<)cYA-25%P)&B&|+qLph}APl=`RY?`x>xvqB>UwsH|SmOD0z|309M8&i#m zqYUFnfByEMcgQM(<4Y3EhKE}u`!3>sNiQKs1hoO=M&@PU{QRe&_$dOz_U!s?;?I6G(SuTPBFjE47^)x8YvoN!r9A-u1qsb0pYv|0^Cn1d?08Z6lj;lnbvQR2p0o}+^=5F#gAbwu!aDmWE3+nHgy zsY&o7h<@}0fc9y|z}au={rg6Ky4!7;sXAu;IoHvKkPo}HZhlApmzyEa z`0?ZSk00N|+uNJbF%x}t{SVbZVMSvTlFN2_jVe*^_4Y}blWN1ekqOx}Ezu;gR@sc| zSHNbO46Kbeqx!Wvhn-{_|ZExLY!-frKHg@H{$=~B-klcsK^{{0Nh7RR!MKyi1!B30ck#&ma zlS7;#J3UyhaD^>T7SJ=9DOrW7i|=hvxvZoV~@aP~q{8>AQFaOHIZ4 zR3FQ-;-!BRd+p;j4-+FuEDLW6og3q+X}4D)P2v%dU>m&=-7jcddTjP zVEn}-KQUk1MJ~nF;EGWE%=7DR#sJuE$ze@2Ew#JODGaWCpK#a~c;EKZIUtqTmBkt+ zz&=c)MGx2=7D8=6*xjS(Az(Q-+dEKCz>+vdFB|w&HfP9dL~Go>Sl!p}qgqtjdkL&t zGdeE1azlM%r?zoY15{@dSZK|d9BH*_=p+ip?7(TW6z$qN`aLlwQSQCL=%K=&=kXas zQ5*_8Jbz;$Bkofk!rANl)V;T1TF%Q=^}e-S6eD7JA3u0e+ZHe#!~lvZ)=> z8^Q{S-^dlCDLy85vDiCBIo;n(|G%$gZA4;utZ({C_ux>m2y%^6LufZyR+_TBrx4Ob zz;XtsKHL2H=VL<1b8<+)z#YJmXmD6{{M-5tn^e^2(@)`VO=5mN9qNE#{$tCC)Ff&r z$%P(~yNoCwz3u_qs@L2oFCWIKl;{=XPD)Ry&e-nfK4{hxP zxR~D%SDb3ns$nF4kc*SHiRKz^WetDXY#PhFU&9S}mPHlNG^KZ&0F38af{w%v@2*MUiq6-C}F`hQddC7PVK2Sz7P3V40eq)xix+m#E$A@GOw z_cLXrB&S^=on%cm~oQ8F>Y3f<$4{Z2Nxe~g!3RFP6(LUTmzWuE>cYB z_M2+xUtqlzk2ckV)4k;3U)YS|2UKkvp!bnY@iD*-t46H;MS9AzR|f~?s(L|(Jz#}* ztM$;gBUN?Am*}OUKHBKown+M7s<;zB*|_g6wwEJW1?qQWvBP&eu- zdl<255vd$M%dl*xDm9dAXKf|+LIEAejF~2$$MD9mVZ$PRo%0;LIXXPc^rAd72+I?$ zn|zF)e!#zeDm=kAsudplPGJb*GSBP}@G4cEbxKuZUtu*i6XVCHPMuo&K>>&5;_+rS z!+MDzb=v9fy#TUkA1-jY3byIS~-8^!;XV@pbkS#aMdL8q1%P zHT>_HNubJP5?YI)xv0-ca#GbOLd8})ma5pw-;fBKfLKP9F(dNwLRsGIvFs7q%3&Y> z6%w*3c<-ioD5G{o{3Lxe{>Q&A#Xq^dY2cfj)+@qO4S-{jhAKP&#s>pDfi4x;5Hy2T zAox{LDk4Zzspla#!Rq9|Vu0MF;r>OMPg(#Pq#$_eX-IVyW+5@pzI>E=kg5`c^uVw* zfSQy~nTjF+0tTg}1E^uJt07$ei6KMb9~QX+d-~8WP-cF)MHcF!ordoa8u^rKNqa2@ zc2W}j+3edWKAG)Dczub}qJF7W>#LtJh9yH&*h`}Lb8wV4C9wdz5ZUQYvR2<26tq+w;Eb7Vf;x>NC(U__}r@m2Lm!2gE-Ie!XmEYaESx|`;B$fNkg0X&g zX28=j91X?fpqTL|^}Tv0<0rSDVe*xT#lDMjf_G&IuE(F0fG$h%5+zNUes?Crl0h2i zp3rNPC#T#SZemR#FL+-dgcUUQG%%2v_ilH*Ze63r`exm_b?FGetMD&tpxakpRq7~{ z%K7_+!v_!EPQD;ni?Z-uCwN1*JBxpFYPL35g-#zIQPGJSoZN&th=CW%Je)jpo8SSU z#$f6lRTBI@dzgmF)3{X)o#1SEP9iUyKY#wgp+htIj|cj2$DqFYW8Y;I@5M|oli+-U zEr~eX*NO{~Eb;iHz%ogAmtboYe+4(`Rd6SqB9YA$jD5VOg!|)LIAF_39J|_h#3^1K zz8G^xK;+{o`u=L`XF|bjLC_tJi;GKvwIdftzgjxRYU7R=hsethghh zb|XV))Ewd#cn(q~>29nkGzBJct3bXm*%;rhlQW~04I1(9?FPGbdYc3O0fg^o z%U06$He0{>(E37~#fEJtcdxDb@)|tXS2~zX_jM3Hpx^Mf1}wuXGVq{xBjZ^>DBmp) zODMu{03L_AoT%I2KX;F?i|W z8zClE4St!&Gn*85eJd7gfAQ~r6R!v-ef??@{I$$}=)3bQlk$bv(njNXF7Ac0mtlU` zHP6Gt4s?!oBTn8vb@I}^#|y1Y6%B`Kyna3Kj`_Q|G2edY6OIJtp~@G zVJ7|$z2*u&&`MSGWg6b1z-m5JW3UEBsdrV4bxQ$E@zNR(%ab?Angx(Ox^($nc{XR$ z*Qgxwhlf|YD97HR%eMQ=v2B1oVEVPJ)OKjvEMyr>oazl`Xf{f*gq|$Nj#Esv+-L-( zhvkQUp&~b_9&Oi2LWPI0z+S@FSylV*SCmhs@zU_Kht5!z<#WkqUsHJ2|2lTWZYr3W za9>*zQdeMEB<%fH{@6Y3{m;Bzy=56Kb)C&+r65E+?Zx+qsr?sFzW{pALr6*|0qbFX z7X*P(&{!TO@JtfU<(98G0fCGGhy|YZK=xUA*|lQAL?4AQY&yry$+ZPxHeGh^&^G@Mj^RB>AQQP`qK z|I5PICpG-<;XoM#M`ID19NoLWN&TakBrVL|IoiWzKdG zHMVEJJ?tPD@K00>Zi3uA<#rhO*z6Y!G33l-hTx-R@m`+6P)*4qhT@~&dcelIv63T4 zHWoi*2A1iA1ZYOr<4qz1t4fl4y#M@XVRX&FCMUs??%kveuUMYYv4_bK@Mo)tW!jxq z1t#s|p)vJL#86MNIs@|Q6t(*g?VvYr6M4@i+e&5kt#*&Zz9vA>&|i>BZidH`QxFpDQi=G>=T;Gu;YOWGmwydIV4#@fDy7+I(+DJ4xoM6Wm>2UK#Oup zp@Po|c_Qx^7oz+0QlxL>7PrXV6C}h(X7V&4uXiWsvr4e;&(glhP@G(oE+axIrV(WpWsAW7J?Mz#Vk#4g;B+USiLm*B9V@!(6dRk$@TNY=SvoOp@fC%A#YFL3zDIQD;qYDJKgWo+DA&$5ZqhB^m9aYh~dEhy5aUR=`HxMT?U0 zBE_t|kj5+WKV1V^t5&TVxP19?{^!(Z7lhqM;U?;fcC1X)8*~0VEQ8RW>+2!(T_0p( z0m(W$V%oGHr`4+SfIR%Vpf#VDOk9sP_cJ7YmXgGFrV?Chbm?Nf7k|PJ70q6spB_c2 zUapOC)R&AwHd-?YPhe>#4zB!v_h)D}dLB<@NjCmT0`0v^L-_<)uCEAH9lkbg!2(xF z2b&UNyVN#O+k}Yrg1AkV>m_et+7d59Y?Nz_GMf`sEAK!f0Y6}yE}V^PSTkEj9G?;+ zv3AA5bTd3*%dpb%X~kr$^-$RSM#IvBA*eWDs}*W!0CsWhC{_-pJNmOU6R)4B#y;1y z^p1=y8y#yo8f3Xf99F-KbaE|B*0s<<&{L@)kJyP1m3l7@(BWd2po$j zmiHi3CPh8aIe^5MQ6)EnoK`_7j3|G7Z3vMrM5VTtlWoGFsGY(tvbouu8q#K8Q99I0 z$T?Y7e<0-Hq3f_RnC)4(tzIUNtD(GS3HjDe#*E!3;Shy`*~gn4`)Xisr;|1|&y3wC zck{xw?ZkDGF7%Z`gNPuOY?dY&-ZuHNFujQ*&@?Id*sX?Vu0V>zI-GC9-qWqC~WEC~)CBi&*y zhX=(-m)ZGsW<}o}9l3fnxX=Wrmc^~4XrzPgSyGp9MMg#r;lSb@(2(M*XU;qZ3D@Bp ze3qQ;L(^he5!+9u#j+xQ69d1Td;u(jo*iH!$z5Pn|DjQz^)O~94|%qeKq-K{Sn=N?T zevzYctxg6&gFpB9hsOI#FdRg6pjZ7jvo;tdY}u<$$g?$#e05`Q2%pHUMC)OuB48OK zi3Op$g5IQdR>3oG4O5QdS0f8d>yB%1bSVeV&G?PXQb5^PljDjnYq4NguwrHG8xP4c zWn);8(tj7*cd%;hWX^6Ean!vEvg}qqh(p^JE}Wy#3P;DW<5Rp;e}V?%hlP3F4o~qF z>~OoaT7u`PbU zdRrzD`ULN{+alf@x!w7G$JsS_1K9Ks+JWcWX3FA}N;bt~8UDg6nS674sM<3;&<1%7 z4Q9{L6|j8!V8@-i9vj8r(M;+Hb%HU2lMNAS(dpzP{2SjY%wA?L#>v;O!w7ZE34cxv zhz!N(qA2`)R1RKClzT-xYQQ@%+Sx($ZXQX;@xaf_*tNNj8AXAIgYo7vl+i1sAEQrB6!h;az{wYrb zjOoOG4`WZk`WL52pSiH_2X-l&iiP1=ALgk9EAhuL~z>;eW`iWmkH)pr4gFbpP|?=;3UjZY-QeHE3}K>msF z#1lM!Pz5Kt1BX_xUVTECmbhF5*J1OcJ`ummf%!qp{BqY2&P;v_yWTg2=L=iRYG}Bb zg=u_(6%u!t5F)sb71txLo2j7+SgX%tHWf$?*aRPgZRu9ZJOabHSUoOKLkm+rWb1^| zF?J!BqZpEl_VKX2ybliLWLYB6!`AB%)s}mNN=Bb%t#I*@2l#uyfiDyhOvg;*A?HKM zonK|hE|s`3{b8++<$CbMu^u4TS>vu2CE`~Fp=G3ruGfzUUllmjDS4OiW?beRWm!T7 z>1tJ;UlUseHB-pro^&vB68S}!Vg9TpTXv9`pWZ?tq&dUZqfaA>`1XHHo`*hjtO7(^ zTYyO6e&E^fzQ3sFrt6UVj@G9s+KNmwqmJuX57;sn^PS=~bKkqCZ0Yx-ohwE7flN{$ z2z}wf7l~5o1p%5raIKtOR-W0q_d;PQ&SL2jo{ZJ9zBMI`+*DS!&%4q4?xf-SQ3uy&ary12?> zc3e-ft7bLe;e;nEUpm&@o;ZT-)dB7t8W#qmlSs3zmJYzpvDNSz5DgRCJsC~Vi@kdF z>NWVU@2B~Z$6yPMwa*5ZVX%_){3#m?=3W;0&(Y>Moj{jtY0g(>$(AixJF#Ue9P9Nn zW73R%@IGW7@+HG`8Nkl5lYDA#~(TI>Q_?HdYRG`>>b+`P#-I2b@v)AP|w|Fzg!)SDHA;izKsqfepU z5Q_CKtF7K0Bgi8zOc4CcSNb;^}%e+bqr&??8;adx?}|K*zz23yDC z8nG#T5Qnw<xxftA_x6T21Paa8Ij_^CeRv=!qSnFXsq zxTgb_gCpeW!Xx+to~TRbZPfTGzRka#e!v$^OTClu?S3XfuRoZ_xI?@bfK?cf#Zc|L z_zu(L@5$(aW-^{-cl~{E82cRce1@x8R-x=?ECM3q8HdeYLvZRC25goRW3MdD5{6@# zPE6EPM*f?lag%Am-Cwzq$0! zxpq7RAKaqj^=(q)$2rg_{*NRLxouR(#=Bu8ASUCj)4y^ohrpTqV|AZL5(ery=CwdPWAW65O z(O`_8vH~@*7XDe`yp7`Vv$-sv#y7g~S^XtF9^(Z9cn8O~(OJGnG_3^(HhG4RxEXCV z!P(a?&BE$vS{SFd3lsDEUI)Hu9M)dLOWX|5yTf65AFwug4Bf%csvFV{Jv0v{>}pc5 zIBa3E(stXXZN2`L^VR`BCmR2jN2u~1;KkF{j}t>a-^J_vO;HX#FkNE^oUI233S;uQ zJ0ZtqtzAbB4C=wGTLXZiw#4obkUbE zT|51V=nsdjSe6_N$I;h*9_^RyBEtcA_^c&=iV&;> zB52_Tzmm4YRm0HtNaZ{#ES6MmMV84kbC-lCCasWTb(izqqMs_cEa2GW_uB=6s_%ow`A6q zkF{$|t5_HN4qr5S4qs|m{2up9!V!8(U9n5VQ2lUiDYej5OZ`Z<#Qw?t-oObBQQp1U zah7Ywf7ViW@71*LOq#vcfVDvo9?057SzFMtnf=1gR@W}QUc;8TG!T6bICh%Lg}6o{1$l^m;kPP>m#?y5LxeQr?= zozqfw?!2H0>zxd-bNa{TVo#?QLU{w`JeXD~o5S7<$nYL8EqS6m--vHmYXV4D zS(h3dv+p5+`Z6DH}n}f0*5X{K&9Pr=*@+_4HYmsokW~1hWT&+YDHIa ziv;quL+?CUgGP`8zoy)F4hU@`N!?Kv%~%eJsd6Le1voU zaEjcW(j|9RQR@}`H*3JF=N;GO4pQZ!%jw`mSQp7dn0+k9X9vzr!zCP=nKpvc>>>#L zhzDmBz%oHNWio9Ov`oc?c&yAd7^gH?KjJTW>^FRFRgl4I^?Z(iJv3I@QtmAgi?C$# z-xsm_bRmZxy4frJ490KRdMF)OmD_irY1vvI z%*6C-hHf|TRU@+;{}llnO6nlr_P_RS?5K+>bC2TaqapBFjuXJ_EucZ6H&WowCSH+x zq_i+@$U6IAXuHJEI6(i<$%OTc;zCe~ejjD~Qrn0IQwtWB_fzQgN7LRx-na82nB7Po zW?|sJRI?l?<$}DNw;&V<*naoxHdhE>?JTSY-H7j|ikySlu1OYzmVlc3S3CLvSRZdR z4RrxJwK7PLjevOujV^Pw!Z}TghA)QC=pabys+|@U01i|{wLfXS%oIK=P$jX0;r#;d zif)!McLXNR^s0RNm$M~Y_{%uJqF1~rD(Q6NW$oJ4mLjj1iW;b&y7?0wlD$FZ;pA2n z^bcR|=m5TlNeIQNOU?#-9g}E^!831+!%)H<<{MZ+x*kGIvn6po$ph|RXsbbNzvaI~ zaAbHmU5b6qv}IqX(UT7;cB_}oG-Fvi4joD{oZ87`aaW3MB9a~icyOhQ!6!XTt;Z=C z#3xkmou7plfr0e|Om)0WJ;2UN>`@lz9S9ez#Vrf|O2|DGMsSLw_vh9Fn~DQ2U?U0S z#rZXIE50))!r5?hV=w+?^kzj}!v5Pdd|x%fvH?dJ55BVo@}{iFMjp$n>>XSI7GLYX zCWqn-QtWe;FPdj7IWVrQ^U9}CL4GLLwVHmWb^N0 z#Np%8$_<>bI=~`?$YN;k3M`B4o`R2Agcu2rC@r#HIJ)r8lkTx`XVxp>*!)he!Fh|_ za>ff4y>1-A#&dP5XeiN7jgml_c9Jm1m%}YL6<>oct~69ieBN0Kz_z$G{9Zd&tRqgA zw+oQpgiGWZoHc28F>JkDdkBX0P2}PB_Bm{>JNBLHRJQyB#x0M*a~wU@P|`q`$}%v~ z@eK&QZVpX^hKfeR%m;Iv^Hhz{NaNf;S3SN-bcu-F=WO$iQO_ zcY@8%z70|cx!9A3pa^>*#ZcJtcB!xkA=HTG6r58yM+88&R;P5>AeY>^y;Bc3sk-LL z&%7ll_#Xb@C%{7;4>q_^CcBW=Tmav8D0aetp@M7D$a)6`>7A;9yc#5vgt`uJ9wG5t zx6=%Lhf1nOBK-2Oa@B(41+H9~Ia6%xmg^pL#psf0 zIEH`0)T2G(=vBjN*X{<(P*-u4k)Ua(S{2Y)gGFq};1;Ir5SM!I<6f+FHRXgWOh%vA z=dcAnkVP(PxQCOib5_gT5*xBr?r6#bQDCBdoWdeZv?~t2K-CgRisD0@9VUZEDlGo2 zX@^ve@*qu9lo}x@Tk*bqTX%umIJ0qa{#yrn&>y${b19qH5qeC-s-_&4_q*vcrhi$i znB(imNxkqy$DdtM(n6G+^IU^&ULOfKHVLmAp6xH$3Czu5dona`0`FyU>b)5qwWu;G zn{?L+!J`YKskwJzDMsZ#!+5An4|usx;N7_u*kb%t{+WY`gjl>)q4j1gzHa<}1%W)i zs4ITz_^NRPsE9D>06oc@@|zE zFJz}Kz$sc-JjOpwi_!OBFE&%suL;!Nsn!U69Up&dKot&yfw1%tqoKv|DKUt5tLwmD zF(fsRsndiB%OWO}^m1VNroqNJk_>KI-W0GbKV5(p*4#lQ8m5tTwDH4)?9hms+mSMk z6Cw;9dhd=aZ-^czC&dxMnm-#*gGXd5J5FhE^}l}LADe6&VGjN?2r9dbknq#D$W7-f zHrr7`2IoW{J|}Om8hU&tA?s*H4oQ5q1Y9@#e)pDO$lVf}D#MIaO2m+gj`Z9N$Po;d z$-^}wnJviIyEn9H#-&{rYYhgOj}UUc=-71D>w#&xFt}Pxtn`C0#ChWZ zD{{@{y4G1}mzq{ziffm!+gDdQ+pJKw4>u8VYU$-`JKt|032TuI&(T#X= z;^4u9q0j!{5K3gMffjBH{qxU$eCx|0_m5;0oOwi5?jk|PjDZAif7Lyk;J|#xr##rG z&|5<{?MN}-HLghL;VhOo|9&kDuP+P9%)yTCZRO+mfS!T6j=^-_4fv$d;jNy6?FUYm z{v6!a^fab2Hi=7ZKY@>;;cSLZGLXfKcb}w*8==*dxzPy;(b3T{;Ik$+COZ0BNfXkq zCG_5T=HvJsj?EGsRL9bRP@X`^5++l58eL$b2va>c6!(mMrLYJ;>4VCVc%{yZ1FTzH zlD~CU*7MJT+24n4Et-ksUk49;U}6ZvvZ7S0Itr0s;EpC~IgIXvNyct=VBIZD7m3@I z8qs8J1z1oOE^)hZP+RMZD)hN!Xj^&EBQf~keCqy&tmXNXnh#w~{a>h~d=+#Zs)xx0 zUbAf?4($wHa|X?uHxFwZmY?9;?l~F1b%LXpKG-}6y23h*_dQi3I%$+{ht{aD0PmpN zQBGSZUGzXMHP{mhbcMmukjH4T1X$}cDF<$q>#nllJCtXiqOuIdg3|Z6qloA{FCq z0+x9SAlsqe+xiL)M?A z83;{RVK-4+q|o5Psi7?*mIKJzw4gOaN?yQ_0Y)YxaH6L%rxG*j+2%y z-MB9jD(vZ1=ovr0XmxeB;Jwgx%IsU9{yn`yF_RbK?zOjo6Tk4)-7w8=k3pTliGhQH zA3p}<#+TWA^1uLq6|x>TOa)E((mC3Z(OVCW+h%FMib!jq_!Kzj#^oYA>WW>wCNqpX ze-mnbF0cDtn)ZBNbANyTycMS3PaDC3e?GLEG(CmW6Z6^44z$_n^3SwWD(Z11GcH`q z+lKi!0Dx`Oxc~`SAI0nGlYL;Wi;rs{X*%zL$ z_mV+Rb%6Rlz?kKTc4`o7`W$OFrJsHPVPnV@PMRSyf3#0J{=$g7irO{c?USwLq)9Mu zyx9J@Q`Ecgu-SXgrP38`5SZ@)Oug#MG@pP!q~kq;1?)A9(H4s1F+ea`*&%Z%{ow)L*g!KM!PE*^8peTe2D6{{wHdDDW;` zj3JQs{OG1E&BaSxyP=pZ0kO}pbH2dTE`v9iQO7mYoCnrGtpn`LyLv|6{d=1-^%7F5 znsNPF5(gSTy{w~BMaP@j!*NP-;_TU%l5t8ev8DF5>Au1hetFzhyJ;m~t48YJU7D(oYyw)qj>s2o}R z2(MI`ge`Y!>^S~LsrTaobFfb-@?Q>Q{Nk?blw>Fxj)azzV8gO*;Qwe!)Am$gTE&;W#|b zl%v-*I6Rk0PZQExgEh0Q<#P(BaYJE$U~G<>72!Ak!F)CB+%$$X3Y^Cgd`mRvC^*$( zZR6_bZ8(oXY-Hu^MjML>C*fuU^Bp;w#Wtq^gpk_M%rJA!T5KVB5}fVSVq{+CXu(UI zvtO>L>o9h_=G_AQ({P01-SZ8MivPvgv52~Gf(brvkz8a8ym;}$G91rMe3cyi5u7D0 z%S)pq_@cZg#lE_RAH9LzkYR=H;785rvTuA;Ot0V(9YP4Ubhi?~vG}p^8EYY)+JXX~ z;h}H5@$tru8~4H?Ev#PN&uO8pz+uDO?5LX%p7MJA?$R*gbN!VYh#&Jm2PTCD&_`lO zE?Nq!`(}Xk=Y$y|R|uC+26;)NAN>6DgE{6)i!WmfSW^jA{FCr5rb0Q+;pC(A$n{5a zO7cqJKym2wcfGR=8oBTRxjN~4wv)MGVisR5DaeMF`~XW2j=5=CqAO|mn$Vs~!AYj^$HV7cD+2{kfoPIcTT znqI-j3sDvlX0~y-EOm-2fff;IUfxLAi7FBDbp}qsAi9$GvYaNDrN!G6lBqj+o()Y4$tQNivc23w=sZpN#NhZQm~s7l z2aJWL*54_NW~PSAmMzm=6OjXSRrd)7)1y`DpSp6Tb-rS-TJ;kVGwG{DvZUJp2Wn~z z7Cvuq%+R`R4kfNrVn5tW4)kvNn}l!$>=%J$k$)5OyFgO)9+YLsj^rX_qfPNK@Iu># z=U7z6b!w~`+y#{$UQ=c_;lGQSX<;{2hKg*V+v0`sz-vtSA5{_EUUo!KquadNAyn@IT-`oi zO^G6jn$`-wCe(`!))L2hkG^lgtmeX(TA-e4Rvp-!E- zP(EkV&ALyk#M=Z_=e~!h zdny884V?+;97ru#0eLLA2Q@J1A+-Q?YJW2$N{h~^8awS^rIs!86305N#&cRo8|^a?AD+^j!!{;X&umHr*yT^NrMBo4c0tc=!xq(-9 zvo<1&h}C|K_cm)bDk6S|kVz`Imwo}XNi~)h&@}ym-8tF&`^4{R=sy z#A$yB&)Gvo3 zc*@Ji_AxUG?H8I|pyl@)UHkh<2O=iJp3oJ9d?zblsqRI*y}FVVkvYoE*mrEPeN`C=PRw?Lqg7!1p}F? zPrIEyhe-%rAQH`@HI`P!pNg)nWR5Ggwi$XS6DZm?riK>iKbt)qCzC&axyhv%kSo&3k?ljJHHV( zJy@I&x<&d{+*%s0jA2z9(-Q1$lGPYcEwFS1^Qh&%@$8R}><6>PV__@iyGcgcRIy@q9HHfeJ(TxidmHmwsj=Jq3O%%4O6CWzPE+&SqNq2CSpi|v z=oKqq|9Aj{Ae3`VybCtAz}6Px!sEqTRjz-h$@IY8JN@c$TCWJGfn%;As(LsE6ru_QRsn5X%?wCm{e#{ zOsR%CC{t6Kd$E8|Mjpj3X}`Grndi{4l5P?k1;^h~ETN#Yuwgm`9qOhYus@vGw{WuM z&e@^WK1tI;dOWtV5e(Lz z`U8h>8$74c(3Qc^NF7Y;U2aNfX!Oq3{4b5(ht!{RamVb$6u_>rmY8_C+uDQ54E@iG zE_)&_ptI^AUj%vAB7{g&S87dxWs+Wd$!0SyUh5L#9M*OV4Iq)?_uEoGDLG@r4d%K{ z-m>I`NCTG#jQl6C$EAfVSY!io%8H8-PuM%@=eU+2ryEY@%;Fdf0Xu%rGb9(SOe6=o zxFs^pJ?Lx+bJ{OD;oCZ{931B7D=SBPZ49tOmN+rrrI$6z%^NyF1Z&*W!l&!Zpv1yF z2$O3Giw#x~<{HOnNQ}0#s(TVENaI%4^o(KrLk3x^L8%?iKV=t#1-v`H8wrs zPBhm~XC}*9V2vNov$3(McvDF`F^IK>1-j#l7jL~V>R!SZ90I3n(MeBu&%+K>CWmgJ z21g8Rwd~99+p6v^WH`iIxL6Ek{iEIbe;_8t?_ep1-V^iOgaOsPMO2n%R09Y^E z2p@YVjVM0>J;5>x9$V`eaL9~+JsqNog>LDqK zPuEq8HXqre%_`*t{pyeY2Hvmb*Ek#PBg1~qq${lE+PXUH8`IM0YZc9?`|5ki-HtD~ z>HJ>;=6Ab=&hd*TX`KWt^VNNHY^YOY@+La=$c2pU`h>JYpQR>Be-PP2js{&?t+@5I zV5{tcg~sp`XA_848d)%fyAo_~5YoODwyPqBGSH@;ovG;ZvKHpOYiXUsQ{!a->4J_Yx#&Z&NtFfg4ku2aQ zKmIG7^Y&Si%6?nC0E%mB2{aCek2{~vkl^svg*jH@MdnC>@lQ)Gw^0_4;^hwgg zHgcMK*|#KGeFMpJG@a~oOBt7z=8-`4F2Z;%+wX;Q??`eDkjlLLM#?R6kpFHr(@5gX zd2#XNSkqNxIA;=mUizVk$H(SHP7D>VHhb}h^!*~iOgq`a9X3q}6>zDs>^Ibyr}R)) zvRE>ZVx*b%FS5=`{UwVGbX8N9XrPDFYzE?|sxd(DIDprxjP^*wXH*!v`yaqId$9SL z2dsHgyt==6*5QBFF4I{L+c3`x=fc}s2>oZU05%COKGMV8_5V&eR>IkM0g2@^)R_() zt;DjDZrP#G zJ1&e~j}lsFyLM45`^~8^33X4vcItYc(_PRXJ{D{m*jDHPl?a_Lad zbtQ8IV+=_W#Ac}t68wfu2(cTFiwm4rB-DWKaa-w&-AJT&N@c!=CSOis94x&?*9;9&2>1@nO&DI6kKF$t3! zzZRnQTPG30z1EmB2f;H+Yrt0Guxv&itiM^j8y*37n_Z@*JI-&UGI^RGq$|NUS@L{j zF*KLj@GOgp1HBXSXRQ}W`T7EeABHo$^&I-|qvWoK*W)!=QK9>Xom!~mQ&Jz;e>~Ld zKoE$5qWO$XN_BLsKrRNi{vO;~_7qffawWaDDPPDSlywqWJ@!p0^x`wCZ-+Vii))5{ z&$Xb9a_x^ z$kVC*PQ{zh=Sb%#q@^v&#tPh-79JVLH}y@tSUjnkPQVPb9i${~XNHu$t)XLt!J(KmW%BPSm zFgZXXC5qKZY$b}Nly-u3$Yo&GH%`b9-~ehe+X<4KM*x7V2KzfR{y@kkCj^cZCV71T zCtyh5FxwL8zQmalHH3;ihQ&=Mq!6?}CnqgY4ty(gUUs%uiK#2Tol#4Ca`j@5f+add z`^~)B%~=UmLiD)|pG&_xvBOIY-qBS~EX;WFGMx=`U}aK_*K}dx#Qc*DteFHuVYR3& z@8Gy#hfOp+vOGeyWBR52;KaOwQX_(Iyz`diFbY$6>P<7|xMq8_&%rYpxjmR{^GNSP znWF49(}{a5$;At&_2X!kSQyJveBAXNPcu}X6zN^pC6a_!Afxu8NBz3YpFbbk(Ccc5 zCCNW43?@H~e76=)`Enyqe!c5-sM@ZMH3xa3G(AMYYvWg$QeFG1$oaa4JNYmKY*CTS1p=8xC!A zxi0kAs?U3vXtj`7yEN_><}&I}1b|-WJToJ|vEJ2hoy(cttXb4X1t_KS2mhrDFPQJb zF2|V?ppg&u?7|MydCGiHvoAu(zb-6LkyG%V#)V(?fiZz~)=QX+q!(IFwr9p!*SPeR_M4>iFt z;;RAGrxDKd^2RTsQ&Olgx6X)izzx!u zh4t%iFyN{PC1RH;5QKhEeg{y6+Xs|wlx2_g)|Sj{4cE6aHszIwI4-F#T{`>WB=@f? zx1)c*)_tx_?#VI31k(%1V9KenhlJPVA@5(wPnl5mhT$o<`-#OUgh{}6+iyPK^S&c3 zlyfN^S3BI0xAu>rGUWb!Pu$cDvhw=P#KEn5#LL#V`p$atF{pfe+{>xh(D094I?>s< z$@TanD(~Ggs;Wb;{X@F!0@Wq=oI@KG^oDij4R?1t)R6b$I2cZBf4Np`Cx&vYzxigV z!_r|C=!u_r{!m;QV%f+RL9VGjAFUoWK9M4h_86MEuJ=Njmpqq(E$=`HGk+y1AIv__ zruv1hPL;IHmm7`p#>8j;3q)AdP7DCA11pEkc6Gd~{v_);zDjeqYi z653n*4ROi7z(l4@3nm;mFrm1t2+QGoR|r?TOCIY5;7TX$+?;eWB%?#M^u04BTNOd= zuM!w8QG`#)Urt50Y(GN!D%4uU6U78mjyZ9V*EvqTvfH+u)XO26=&G&*@aJGPPNC1EuOJK*Zw(Uv;|naN|5 zD7$w1!fQHR;v}qd2?NVk$PRmi;vSs+`s?XWKx-yfcAqn5(cl_Zh*g7+X8XCZaMA<~ z;Y`|Y!x_9gE+m10i#zKdT`RR$5magZWBt6$-;F!M)JT&Zsd1a9ep>gPS!s(IHjRFg z6w<4Z!5g<#!1lJbegxx0Jw|ko8haykBqPX2M?7*qoNkHiksEkfhHCKuz990DD}K8i z0Pg4{#gqnk`6l~SYTluj*vFj{TZAP)SwrIWN0MPR11fp$s{3W#q%{QnGwL?$b2hzR z-s(NSJK;)?iFtHvF>8JApO@H)8dL z{@Qmko7Mh2KNwE$a&{=)!gsVS){j)w$J#q0%cOIRxaL!6S}lG(IIC=VBRT$Y6sALb^Uq0 zm9P`>bIK~R=74sd$9~ZQ%sz!rDKo~4yxdgQATm+XFx3m)4tiGI6vYP@>ng0mGw70a zm+RF_RqLU(x58C6!CLCy#uRz^H*BV<%J=WsR6DWpRQ4QcD!r1k;V7TE@?KB}m{Y}y zO^kU5EYL82tg8HGzI@y~IKuUKU$372rCMa z&j=Y?&|>uEuu<-$47jhxytkVtCVysWA=H;JgIc@HMcsx#V;o~d{1<={My!{k?+LNiH9Pm_H80pV8s zdBNcI@sXuUl^Q-XOcNa&m!9vwvxM9oE8cmZa+AX-ysw;Ht!66!kZaJfV#<=P!k_S1 zhojb3f*>-T$8fqOy$TEKAm9w}cBVAJe2SoV#Ka66LA6bqo*iz+;f)41Y&#&EZeoUw z=~iyx1&D*(Ae}5=_1c5p9d`=Tsf{64zTwaZke*&g*K7}ZMw)IzP%6+|6$Jl|LJX&~ z-tg<((WMO?OpXjOvqrDAskHUa%B5Rm2(<|Rs0FK*Sar9BBX+&;=rKN@97s#cl#jz` zY0X;V0id9?)@^WrFE|6HkYcRY9AB2Uw_rL*{#8ZuqucgTOTQAO)o!V6)VE zHE;-@J%*~GwP7eOnm;_6qgi5>dXAw+w0aNfL3L`Q$pnN-)~MlV(j(M15w8siiPrGL zKsFCF4pVsqCxy&{+55HvHX80h=jyVlX}@&@-E`TL z9r+CF_3%Tb+74~L62scqzk_wsD@U&RwM((G7sO}ciE<_2UcwDjSkWjohQ7bXj|r=c z{2%gt3I$9Lg{Q^!@NHopDCaU5vBBE4vvvtO$ z);Ys8;~8e)oNn2g;EG-t^01^HxNwSmm@|8)Bz&rgCCEhAD>w2iPp3HbnQ+qnO1q>4Tn@W|w8+ZR% z(q@x{W8UWK@dBlPjDQ=3Q|?Q^{iy`h^i=^6fw z#a>Ux$z=>i(W^MQGK;OS-{L1R9>GAF>cbr$Z!lg@z`^V+7@UP=4Li-nob$9QkFhp| zer$Yl<*JyBBm5bY%P^jdN;K%d@&xE(Je+~r!#RXk!sv-$7~0(!vu%~NIu}kUJUP7Q zU^o_%QA6Q?Enn17Uv$z5^Ls`ceN)5RJ+$EShiZ5mc2Z+}$cMGb#AoAJS#wI4*n}e( zNiOX1-8l4F^Ke*!K4pVB8c@BF1pcVle5EKD8iI>dv^*Q)rCB_~EkYVhIS1cu*-?v7 z8{75nLCl>Fb(~f65p*))!>-}zqeqAP3-|}O?%V?Ji@Ly-(gFzNr-KF=%HbuQAm#X9 zfn3#=V<-p=zb(gF!0|)Tm86(2w5L?Zqz2N0bdstKp&yZ%GRU|66PR}EB%S`PN6UUd zriBV_28e`FAfD-nihf-DNrcxMT#pa{k+U&wow} z!$bC(^{%x>zP-l@QSUGUxm9vgM*<>YJt*3e^5g+kJFGZ`Rx+33Lh zJb;z=>o`GQ=BRS~({I*Zr4ee%>lN{%Y#Pt&&Qa<@bCg}*eg9pAQj=FR{57KPIn{J< zsItQlb3C8Rv2t;8Y=V*|*2WQz&H%moX<*WLPEZoRlIhjmEiOM~^8YD*J*J7z#$x23 ztl#EyKPAWVU^!MJ4Qzy{DW!**J4kNxYx_Bswm4F9xV({^CN@HPYv5nEIUMWVATEwt zJpF_%Fp7;J@~uF_F|$69vD_G+a%UJePqusV{6sy{z-%_&k^ede(*58vx~DnHjviFD ztgW@#6~CmzFV#N%{4m_649=>2-EQLbWBz>dBnGD@CCwjQqJ0T#RI4`?4Z7t!aA0*l ze2?q+TF)lJCNlC2NENpvsFA}-S*n2(Y93au(GZ`(5n;T`br;87nLK$ioZV{g)@x$F zombQ25r(_+dZxb}{?Vj)qIMd?oVC*!sjZFY^QH{H+ZH_9p!sJm{7TyS9g4^E;)cI} zY63feq5nCb_R6#ykuD7K86sW?26*Pqt|=7q`q)5WeR?ZRe-2b5cj$&K2kD z8%svi24<0ACRySt$cIXbhstIR z5t;^@-6R$p5-jUC!nQ$wi53hc#mUBcyri2AQBNFaWB{sBV;K{tJBqIw7;MRd;an!Z zzT{5N8l#tKbKkBV6>O2B8{^D>{ynnVAZRZ+b#dv1Ej>7^1o?{#)C|k?H z(w}ERF5>6`QSJ2Y+GQFzmBCi2jyN(Jw=u~a7?4%upTBSzHzG)cu z4WQaWS1T^KfDoX}pQ8Rt>HujB|7}3&)x;HSFRaXv20Vi`tS@Iao*wq0$d>nl1}H%Nfwtn8ne713FYq=sq@MAP+rE3I>{Q!Td9FHt!*B3<)lf|=!ouN8 zLG}K`cnlXB$`^{?^lsJ45924!2GgK;+LQw4Py;iA&&1-02prplH>vvTwXAsp`w1b+ zJP|iohGn~WSq7obSdN_oEJJ>=Dqz`vl)U%naPZ?)$s_}u;wBw`^2W~xh(r5laA{LZ z(x8CD8GL+V%?5xyy{#~TYJI1$;d5GDDpf-fd`SZdo(4sA4eY4j>4GO!uXu<6^VOPI zo`C}F2fbaaf7KR3=g_Qp@HSBJz$}gqe3-; z{M$c0mxYo$qOJuj{DOuoR>XzGXlR!1lq|ek2D#i*Zw~YM$*(&9@VQ)g#%P}a5|RPi-^8W9lxVpdu>VED9=FI z;z;5;V_Ulf^Qm@9a7DwS_R6R z^}XZovsC=8@S<;zpVkfP+q9#nqde#dxeO-_g}|HW--*kTo_e|2@YgWM7n60WQ7Rk@5}+gN>n&8W)!5c z2bTcV+mfbDbczc_AuQsfiaGy4hgvog1SjK!@@X>+K)pF~hY~1!2?><(a7v9@D;e^} zlfLbcKSFF7J*VcXOYjvTv`mRz54kDCJbmf6A{jEEM=<#da?^;=KlSNx%0*krKBG^K zKIQ7prm`r!D*B|9f@9g=qP~JJpFMl_$>kf0a_%fU@e9+$g~3wUEP1+gVJ*U93=QMi zs(+h!x|d=#VwE{4PuH?#yE;hsi$#DMqZLZ zXufpl-mSfo>ZrstJ2|G|xYlBmIUZrWOETP(dC8e5Jk?FC2t&=$SeyD533Q0xEMjZC z;Akn9Aw-P1H={FvFGPB7UcFF`fRHL8%qy`)&b{K2q*Ow9mwotJ`CEFw@}hNsaFI(<*xIk$hbwiRFH_cQO3LbPrMoQ|<6KLWLs6c{vLY=k z`y06)`u<;GIrm2SmT&}{<-8K)Nrz39D-H~7Dlp^JV3QKx!3jRaI6H7}iWYzdD#}d2 zTAfw)IuyMUmCf{Z$)P-RjIE*JaEGCaDf1kP#T4Z+WG3WLa4874?}Pj;LqD9#74v``TSjWcTCuNiC#8<(prDCFHNW<+7R$>r@y@$c$w~g(=xdRkJX4%U+d;`b|u>z z!m3yeTvdI-6*{~c%C*gR>xbpq!VWn>9Z=yAeF2k6On!$R%$<3C(PvBAseq|HHeCWY;+*iHCqbJTX0LFbYm_=LLS8HSkSxeS+f@C?Sb*9PTyW(s0QH0%PO zB{*9J2HyXKK{=munmc*_6i%icF6rwq1mjn-bix#uw72MolZ&c)M|V3aGC!QCLMIe_ zn76$e)5&DiJqqLNJoW|DMj1=4h0{|aoh9Wnz39bvcr}E61{LbITUC!GG$lyI`dAzr zRfA%Gh&vty0D8z3^M>kFj2}s$W>BYWH{`hIPoU<=E?s5;#^X3~(;JIp>zW>ph{ZcO zj^#aP?!K~k2GwGZqm(nC|HQNAn^m%4)1OgVO0aCZ$?p;f%^<;AJ?|7K6whAtX_xq% z$nR2KLym~w6@qePz0wse-O(@DXmgpC=Kw}d#lWBMO`bux@1h_fVc&AGqyk0OQs@-lVl{N% zJq0;X^90!=nF5=T1kH)a(E=sp6_3fI?RRW#X;Z3vEROmjJq(8&75qX+c6)+gi=Y?p znesew@F35z{Oba_cg%v|1f|?IA4~oz$1?fJv3A5&nKfkkip<6&u&3#@6Q4h!o9B|g zvGa8LYZ$q?`^8sr$%CBWS&S1}!OGuI?7$YoT|M7XZVj@S19QP|d z^*k9&8nKG7Mtp+K$(wk{odL@RS%)h36W?{m$iGdV#v4u$vWLFJyeqNkmD>Ck70oB1 zSpeS>UkZYWOf%q>NQikoPw+wX02RLv#P!j57kR+P!0`VG%RCI4d%B+@!evHOEDuDn zA}4Qny8!lJM30`L>L0cu&|=p`_IzQ8n@@PnAnEi^>MvZ?f%2_6a{o!nE!b)*8nl87 zxU07;H8BOtH%KhQIFxQ-61jm8Az66g`(}fY2gHGCIQwX=ULH4;SGd* z<<}Dxjv&t8;UE-)9`JgO6}&G*-|{co_(Sym%oH}m>CqwUbw74V0arn7g z?+1`)np^0Rj>(O(2B1E3*s=8AGuT`^HcW+HO}s$A3UD?o=R@$v{{(e^J9+{RgH@&e z^Qv$!O4{`nQ@;fJfnwTdsY9P0=w->9o)^YPqrxpSKl0p)ZZ;0zmZ zK{IAp=`xHW_uP|5WyoNTHk={CzgQL-xPUYuNjiMEhD>(^r!(B2q_Q&w zHo@6~TTl)7nf$i;g5(xg6&XqhZ6gCM4@+fEi1>izSiUJ_isj*`!}394w^M`@w!F1T zlI7v3tz;0#vAkag{jF=9Dxq2__3<9((J8$YMQt&_(E!)gzMPe6bVpGVXlsD(#pl~$ z&w}3Doe++p2Xt*fmxChFpGD ztSoqjX70_pHwwPO+C*?PCOB2#8V{iiGjvS!LuIHnD+csd=d%L($5DmHAJ{2Q)O)ky zgDwfb*>v^K&8Q_-LXDo5ksv6;LFdvXL$>b>gK|8x2RQqEhS29scf#PRPj|nM8Nc0= z=_WfQXvfN3wEI}POB&da1G;P`>R7!InqKGA&`u*M-VAt&V!c9B{f;kLay~e@81wWEZ6Vv^unhKYOyl-%7*;}|os`vIxF}R>Gl&VFO$$)j9zNMj~HPH%YeUZo7Xei~c(~TE) zH;&xRlx44r?E3wN1MCdDA@pm4=lF;BOMD67cBCd>PqIO!0IKC zWqHHNOjP+MIbx3prS}qi_$3KFoJ2w$iO55z$*J@2!>hrW`-@DnQ{&dJo!a{Xe_B22ef z6?Z$X%~uq@`>+qM-JM@=@B%m%0(ChtF9M}_QeIr$R2 z>&UtHBS+Zzl-^DTz~6iK>I{r4#bfJLo8-`kFK_V>(!%q9@QQ49VBL}fpg8j;#2Fky zyU3FvL++4d(eLy@kV1&^2S2Q#2k`YD=W08`ddHCFK*370AL2!$D`iKSE3qB2eBN+g zy4u6Ly{)2G0u#PNf1d6)iB|71&NOLaoHwjimdmx>y+9hnCy)!s(JW zY%&bwls2&j7~3#Uuo=6ul8!>GY#7Qz;}Wx9?MT#^0gG}M8>9pG2a0r_XQcw`0bvP zX@vKeu_XDgb282zIz#6Vq*&Q)k&%%v_*$njIS)0*Q*vTdEE&&eAyk#v74aSLR!^XEsjvzs6|0KD)jvVi{fmoAxrvCS-WXpni2Z?Y4 zwRRO;(x@D!xJBfyw;GWn_-q%5sxq61C{Ei7esD zQ>Nn3;30TqnI2aK1uMY0vGQ8EA-Q;`;gBJvkn5_tsMZY0Mtml!0Caqf{BoU2k@?+g!sEdNp7oFNH}*c|@|L8?1x|uB zP6P9%n8ajS7*%sM7AvZlBrbmyQ{y7Bc}g{!MqDHbRP|1Y_0q~SM8lKlshA`@qy{Js z577k5Y*Iam8lpy}*jo$q8a~{0d-(7XqH21&HhYAh2)0*`(J{dx^QbtT#G-ic2hM!; zY=}@9!0tIAmD3)u9%3xpDcA)r9B@UbHH5cctX4G?rlAjrG1v;NU~zZU(;u)Ef^ld# z(ds%)pV(qQm^$1IX%x6`Vjyi$mkC_XClHTIc?AfZKtSUtX$_BnPT6llEtHN9=!*y zi<@hEyYH*-$qlXatn)(x4zpBg+_!vXzSPz4D`Do)+j8Y@d3zW|?kV1OznxCMA4l8$ zcDk0L(6L^dD>_~GlzpivgKPkhUG?f_VmMazy0h33>@yeKeOUDUdqEaLO%t@=NC}$G zt6hS3l@hBZ-0q4ZZJ_q)TwoP`E z!Mx4M!G!p2ikjB{y z40}nV!o{TxAy>bFgSu7slwEwXL*u&MEP;88AK7SX*!A8O&@~dmb$=;#V-am#hLC5h z8v1(Yy)x?ls4o;Uj>C|fR!FD6OTzU99lQi;FPn}7$^P>D_;TJB4Q6T9`w{s%+GvH|#9q z!lQu~tw-yNMM6xAT<~AS=-~&lyM9IkhS{P(3k?3AOar5Fk?H+aEN7R<&#M1Z8(JS7 zjPbqt;`ah(?pnlvkj>CV%{%Rsqq=n;9J?wL6?EUaoG;S8Bx7_F{axIoL4lj6OzUs1 zn50U~jk4k2^JcbGIGIS87s5o)P*_d$yo36|SWK0wwm10Eqerg@_n`om<=fYHO2ac((m_rK zW>XLMSKlu8#LEuMV2o6kN*F%o>Hd`DXBak5UB@9ACYbdWk&UIK|CL;`zwf3Foa*!| ziI)xCv?EDuy=c?hq_0-7u?%tsIWCKThr~0s^1x6~pC9A+aty=r_TB>CUD-xh#IQ6&_Y)2J;TdA`#=@mo8uYYZy`Rt3=jMK48nUys zcUJ(5zkDhs6-uX<|GA3yseK2tQPHQ7Yc+^)rpjJNN%12QrNxKYrzk)9{!7 zR@$6;qxDANua74aR+D%W0iq9s<+%Z@R~IktTsjd59|l8TUGCIL{S4rQ39^&L44>Ol zz{HaUs0ctZtXmq`AAlXmXoSE#v!4V^^0~JKXdm0^F?El@xgASQA48OX26_^#1wf<= zBW`+BjPJ(jXba*}zTw-mCPtD>BOC!XrC8$#Ifn9|GTO?V#ebK#)N@In3ZYWTWThn7 zOpl1!sOLrIko&T^fFjW`O?Yv`zm?qyW3cJ7NMxks_d)14@|9hbq3?v}V*EBw_UDp{ z2xKa{KDSA-cFtYdSXKTJ266Yy47>1?dry4Bt`6FO!6qoXpm~C_$R(nG#S@}VR zfn=!3)QPGI(Im1JLK!BL&v*=-C1hSX&yOdQV16VTp^xE(PlzPsbt8uwD)pkn?gIx7 z{3iVVHag|sasHQcpvzNlBg8M}8I=Ak6%#c|BXgXKs>_1;4ie?(CX2snIPWr17gXEf z>?6<6Qjof<&O*81Iuh}eVxo87y>ij)0|~iCn<*lgXGmWBIlbe_1h7IKd@V`FUXHP$3_M_e~H1w zPZjz&{N=W8Y?2En#p?xQ&j_MiW%`_h$wfoBJ`{!ChKD}45o`U%NJ7F3Tj0maO)K)n zpgCsiUQ8qVEWr;`pV@Chm}dV`i;YI{&n!_NS69meRKj!1`R$w)7K=5J$pI*QsrD-+8Qd>V1G*TCU*FuJRCCj z@WH`{Z(^S9v>Q~dd9-xQFj zp=Zo>G>lZ)@FZDbhOXd5M%L!ZbQ{01c^MK8>Kef?Y@QSNMHZXaPF9S>_7PD#gkb7o zkjnUM;hj6DY~L6#0V@iRp}}xo9-Pv|>y<)oL*ZVepWDK*Ydp3v-B6q`Ef*?}F*{sT zIU3(Djp4Go+yfN+gsU9~V;q2IdDb`urx!M5Ov371I&Jg#ax|O=rS_B8^cG=a>a3Ts81y+75kjZt*6gmWsE zBFd9 zZ_sdSNPc#_#jnW?^*eN*fgK&F-Y<?)(T62^23fZMdOK+}EuV7=4_mgFR}&eI7Sma*8MM~)l`3Lr`F zfF!KRXz6LxN0qy@18N*03wX%z|8>ljhRsyTP%Vv%v}v0rX2kd1lg)w56E00+Il3=z z#bvOJ?zjWXR;JgoSQ3Bw9%;{GhXaW#Y;))LYe)X+XbyjO#-|e7C@-%nT!#0Gz3v6xYP&Wypo{ zCRjZZN)s=1i}5faADHi_T#-R=cEdL^?EM6;jI#+gU{2N)x+|_@FgJ#fj__-Eg7F6nN}xW*FMzu>gB-$GKjGQK3h8zoT-1 z%Xu*lIei5`sbH8epZVkPp~tk#e7%LqGYB}7dCr&WBFV(b*$t-tbQ_3MQ}EM@@736Y z7jYO$*Y)<6$+XsY8%3L_@7(_|2S%KlOjiqR6HElbJ;~Z$h6u--mhpQ7!zWv@A*K6X z-T$EB_gKu>R=3~t8n+EDU28ZxgX$dchC6qeEpi#*VoksvkD^5~U;#NTqh%FG`kwiLq4G)s$t!*g{28i4geL4$k;h1KV^`4H>i%Z-oFt3AS;ci@y$*PXjUyKZ%2XeoWu zd_G380u0p}NxK0k&gBTt2){*&WTPnvoWg!t4LR=FSix#Po@1-t*%)^d@hNXFJ}+xe z6;H&?Wok7smc;}$#QUYKf|6MBQpf^&8~7DQ!(o61*L;;_Dj<=@XT&UcNMi1dA|)szW_1*3*JnCefp4OJR8bT5p*m zNQ0(^YT&Cn<$Tmoe4R{F?~oMB>Mu^aRN>zSRDMYg*@jK*;gqI#d_>u5cN5Gp<$-$Z zMr?bNr4uu*5e*hJ1n0ZDO0{)%AvA6M{rsQ0oJ2VJjI5Hu+fh|&xN&p33dU{Qyt{>`95|4=uH#}m^tV&Jd&faSn-CJMO z#v5NoIxgdY&5PvC&e@;WK^+~~Zu0nBb!me8YR7S1?_c!PLK#R7Ibx%aH)RMA4f<

1RLL_jL?1;Xpb`?Qoe2u1_Scz|Wm+2G0>ukiv-YIC3aGr#WAl*FCJEwt`1r@S9~# z8*l{SKynwp4YA8GIVAB%F$5bnvNiijhP~rEav*QHj@Mo|n?)bCtGwVy0R1eUb4_}; zx|a!^pN4|cv8r|eRUna9I&_((O(R*seH#Ht^5P1pc8!7LSGp|6bj#tYT4gOvCErW% z&0Lr%BT*pCZ*@SPwMW6R^~PIeC<1o5+fM;>XSE2UZ0eGDy-OOO{#|9*GM)vdo8WkZ zXFlC?=KblXf?GgBFv&-y%D|e$s5YiNLresWHSxg#;oIzME<|%LX-I(@v>|1PN zv*NCGu!=g^0q29)q|;>crC_b~Zm90S4-C=#IE-1SQ{WjMWr&U7`nRp{0kblh#bTaM z@dRD1c$Ih-%W@vCD~!;G?I)d}8@4wY=G7-`5()_jfTctPuS@1IGy@hQlCWbVq3P-D zPgiKyuAMd#7wc$*SwWL#z2d`hP2zctZVdWsv2 z6*`Y<^EMJIz)VXb%%v;-Z)0%WoEc{=3J?Qt>fn$%2d47$Kl*U3kzn=2J5?2qu;Wa^ zmN-Mq+ld(vSm14%5OT)F!f1>wA4~lUtT8KX`9RO|a8z3H8mylU0+n_DLF zZDdHgi^QE;2=3AAAFRf$o+Y)06xXP_@r&iT^uxXUQm_f!o*;9b<(S(R`E`obNlZ?O z$wGIDY|^msJ!cO=w*pt^UScXt%X-19B&dkxWvJEU8P~M5;1T4S*+R+CV6X)Mm9EcY zW%Hs%i?*CwwC((SKF{-hHfGi$t=qXOSMUm zVpZ;t*m8F1Z04uc3YI;Mu|uf$MGY*u5V}wc*`Cuc#IMtrZK1;SY~rH+<0!|#*K@lGyRt6TSw(D3P+21|#_yDE4aW71L`5T?j>EW@q?805S^ zw~!@mQgDsMx#?ZD2gG$USthaN*D{nYh@(21Jf0|jk4+=8M{g@Px3_AZP-^kS}|+Up7*)q0PDbQ6Ux)ATeqHvXJ|b}59JxM1#SyYF#y`f% zt?Vj5XJ7Vt6SWQ~;ET_2nB{GwB=L$Cn2b+b9*#=J*Ex>mO~z*}4@>1qme10T#-VJB zAzS-RXV0FU3(><={)e|U%uC|B12`cNM|=uPy3c{`^S-Jy z{8@`*Mt3=$ilYERC{x>Q+qU&Eu+A{S1MYllgJFLbUJKBy%y!m0+Q@;dXJCDd#HBy# zD?xz$ajYCG_nDs!aF zX?vA@Gb#tKk{`8zR*^fLwB>D-23C_qSF|KqD)aBsbD|K+pX$v@+kEx#A2#1R@~`DU zp(nS0`LuvB-sVxDfUTIUs8>T2nWWB0i6y=Q8t>FR#@29urHl5P{R!&juW6c<_AvJ>~oNQad#G6GyJ94GC zr8q!+yN?OymY%7Y5@~+}b)#coX~>+pFo5s83+KZKIDH*X;00yA!Jj_}E0IkQ%Cia9 z2F*0%rxKN+sXI`mmMfUMOnWO}+TeRplhU>8Lf2u7Mi+%nL>-;2J`O6%z4vvD*E!A(gn95@ajevgJ(Ufj|xzflcVHq155NB^*_pij2=Hvo3?6mKX-?8UT?U7 zLE%Ys%+#($PDeB$|Gqb8!KxJG21iCH`As~JL%ftA!ym{e(~Z( z1bu%G7>f)oMY@<`lJemGg+5a(rbSf@due$%>Vdr~WwHKo(%mWbVjtVO@T}S%;#h)h$<`HV+XhB-kE>ljj9&}>(+OfTz|-0#%; zmD>DZ7OFheiQT2x^0FCz7YrwFSFtuNt~u4v7hb@u{K(Z?fO)=xVxsW<+rpe%6u)j& z{9~p{F-^GbBV?P^IXC(5h`*Qv>2}|jYQAr+KhBblm2z9S-eAA;Z9 zWq4p^y*cgp%aADBn9cJllWS-zN>`!B}QAa)5!N#zWpOdvV-#?c8?1(gJ8B#{c zu&g^Gjn1<}q&WG`!P6P;hhk(9D&;t$z!WWhC)}iY!aLzpo@MxJ%UA1{Jsn)a5aXYn ziSc>z2+DNv72n)5WZb?d>kOKI_9G$h@jS!tCH#a`H0Nt>CeF~I&*OwGIT-Az^o<9- zW_D4Ao|uLnBlu7B6s@!<2wxJs)y+?y3{m@Qg2BA__~5k@Jw1O@1Xvff0;rpy-3Bho zvYpBa5u5TV1*Lo|!-AA^5(q9jzf22XfrE?AC0ErpJOaBgHw#pNrEcwT;e{mx@K0M> zHfnT8QNkApK*~zr{{Y;m$hB^A4%4MGZBzKMgvN^2;zKCgLmn&aAO4B{#{cNz2Pg_- zMQgTx7!&FECFUolUZ0dNUzc#Dp);b5V0@4E#Sc0m*pk(pUb_C=VNoReHu3TudD*Sp zr-DxfnhkScB}WuFC@LoFsLMQrr;%oYRR_^ydfy{Qo%z@{IVh$Z9KF0YhI^GjbR(JE z!3~}hh%+`flhse5#^cuxz08mC!m9Zi4!%n^Q*Fj&gJT&}VLbylXIsAoz3q#TvwIzT z=fFn&X+)XU$}P{E*Nj2cldcyzO^JY{vJNmad0v?^cM592-ug5_vDD=by+Z+7|Y3deY?k%xNUQ~a*K3zlu zS3VT0`I=t`LAA?75~u`don*76llAcZtf)^Syci;EC_+yY*Wo8lY;j6cG>`P?fLA)P zRiUVP z&t=nvH*%+KkHiVpb*Lkp4UpGva|906y(OMtyqjs?7?`{FYe?iYyBY$UQ~KAhKl2{_ znj+Y5tVt4OQU~X8A7a$tP>whX1a0hGA7gJ0LxuW!dyjz>!kGx4@tE#+JE0v%E`rnF z$ItUMJ03Pb0A_$tePO3xDFFtjlw7SAn6{;_UtV)M7qxSTU5j+&)NR^jWiv*+q3= zfyngf)7PuidMiR1^@>XW{i4^~Q(xWhg(?rf?GwKZA6Z%|Rc+7>ik=!&ngiZ>|5Xl@ zXjU+5#oiOw`fT`>6)jt?!*de;3eNN;`Rg@f2I&l-x{$ zKW&Wie7@2}_Hq!K21hWY#={M;WJMt!%ezENcnF*Y;&AT0e*fdx?;Y%4obB8lv?#ezfk0*pUN=QvJ(*bgq+$d<6 zVV*fji2E^e&)G=_shY6)p$T>zFQw}5CKce&5fW97v8H+cq*z5lS_`nJ6w7c?jum|^ z#HNq~H9nd}a0`J=kJsvt`?COo)nf3=hkxrF6Bi1p&C+I_Bj)39R;$YGH`=$TaXqeDu`q}u^)DbXX!ms53+ptGv z)W$?b5wvhB>08}j3$nCGBu#t3dabzN;&@z97A}-c<#DoakJoDh%q)prr`R9F0B}!Z z*A5wYTEW{jtipO;CJejod<4B-PtUuKNw=0$;Cy8NLx+6VV}D+c`YS+N1J+1b6#(_x zU8g&If7(L%Q3MM?$XDKZ+Ua8#WatWxla(!a!)bW|>wBk|CCE{}Ph|~4I33!T6Slk+ zVy{{rp7NFJ6%XCOOPl`UK8_#H#Qr`+nW(PP$j%eq=cbCg9hPGmN%VU%n;FS18HDN* zZz(pLNWa1l6**Re+>pNUTS$9ZaOIU`8HDu>ee?E z;~OP74Z}O+CV&tdp=i+XQH$< zgk~f(B%^QKaO7xa*ws%l_+OD94N@=c(J*BmXBRO4BtPXzWTL;quP6fS=a$9VRBrG| zsbB#HlTvDHeg3bU&33S;L{Z}Q!S9sbG4R+&OGCsFM-sqF52^@h@D-1z7rsR&F>eaL zcU0)~bx@WqA@n?>D1ov!yB8?3laU$Pf=mB#@hYf3V9YE`C0JMvtFm9;2-K$SO4w3g zWFp1Dsl6mcVOlEbCfTv8Y!Zvq+vu09>G_`!^x*qGPzDbgG)P*(+amFICCk04=O&DM z2Cr%x2>DWoeM{E&A>tEK#wU>Vd7?;MHK$@3IQ88dbt9ys1Iy||BARAInbwle9T<#V zsN*jE$Q8bmSHzzjQ@^|XiDVs@j2TI(BQ;yU5W;?(S+Cx^rUz4m$0n0hqmAgmmXR`qc z?M@_o#o`W=iX{F{3QT@JE6b>Xr{Hxugaj_gnbj!&f&~dT2zgnV*Lvsw>p76F+Rq7o zqDcnW9-&TM3>4YU0~4T0XJ=(}V41)B?J`N-`+nWeoF(f#_+8^>!tGCjw)tUro#1nB zpCrKGm{Y`e(?*XE9k0J2Bu4%u~!;O=arEl21@3*qLm-{HAIn zLh65UjlP7=n!}TjSMc_J86?2m4}!|w=I99#j1qZ{9^D#p`3Wg#hQkpaucBlFR;UI! z$4OgWZ&&Iz=kK85(;-F!EK!E)NXTeMzUUI^W*?V!))*uI#h%JR5z^QNDN!XPU>2;z zRFz4MW zx8YgS)km7lVWgi7D;-73$*^W|H<*TmU9JOJNxfhGVrS~~ucSXvxnG4iv65jig@Id~ z2(V$=`M~YT5vQKdQ*{)58foRgO2(e2yebJHeDe&UCN!3rng){>4mH3|6e+eAiqF*| zjKn4;-3p2N(23=k_~M2Cm&IcPosiBcN90&rT4RZw`#MrXjKGl{sj?l**!jN$&Z zOVB77kceM0buK;0IP^EIg}gig|8BSHrQpzp2BZ4@d-jIIc_q4@0UcPhEqa;qS=a*`r`abQq zyDOTpNnd2S68&uv=_h87!hZpsK8?#0)(??JF!u^6gtn`FTp?avR#AiW*3Lo|%Jh^+ z1T7Qv{R~4}1Ye$x)jDVhIiKHqIe7->i0C)hLHY1Js*^@=t*4dv$S}`8Tl*hdJ~ubd z)%>mZd!PYJB-nG{Z?u2EmRttcFYfMRBtPK$yCbj9aJPitQEBFY&$yzZ#Q~}gl-Bpx zI0_HVT%IkjF}Xj2DZ{OR^0kN4DZDK|OBISISDBK`4)>N%Bp{Dl(n$t{E?}w6x}rU% zdZ2mkV_6yz>J%p)SyOe}l0@NQ;-sW#Q0C@ zGHKHJJm#kuL{}YgK*q z&l9o{p8on}*AN7Z^%`y!Nrq{hpIlp@Om^#~kQKJCEcXkt(+yQ1a7%=HHyEilbkt|_ z=VVp$w$DlO#=C?(;=ZwRPvF!T_1u{7zBYrJfpTlsTp?u7njvKvgYP_OA?zh(dZ=ce zY>G;RvNbU(>V(NM33JEso-j-86HV2xCRCsO-zYk6zOJAMcLSNy82|W z1#c*CZADb9!%sjY?X)T0q0sMY6Qmg>6$_iDs%gCy9#i*dZq~XF6pR1P)cZCHnhV?E z1*NVz&`}x*e}_S}rzjmXf63o~w&IB?q+_M#QCf(VRH4`nrcF)nr)JHXHKzuZ=uIYs zG>mdJ%HM*}9seW>fK##9eKriCD>?{R?6bWL1Ykr2g>gcJ6%Ct+`rH0yW4t5P9LVQW zSeg@k_4BrJo^TGDAG)lm4Rzihm+|6I4cmCz(fcS!zE-geerk!&1U-ppW1{T@^V$!# zL*WnZTr#u{IQO8N%BU2#nghW5fDXat?DmQXnqd$8=g;3A_mI5G@6_uP6(4nTVgX4X zp*SdXB-)4O)J0itL`%DD)ui{zAv8MPHtNLM^$4>*SQbI3GZDV=s#s_FU^?pT3gS(f z{*QtM8D^qyEs@b5BZYmam>#H(ZHp78l+6QHXHy3MI zhS6~12MZy%M2zay+!gDO`C+m=ckr!_Xnj(08(+WlhB4z=6$ow4<5CE@A9wyQZTeao>^Z;`-np*fr3_BHLh&<(rK zB_w2XXZ5>lP1qMS^P$b1jc&+cx~o#`GTyoc8B0KDm1`y|Z279EoXu|eSn7iO z(BeVL4OZ6X+e$9jd<>mgb`slT4~LiIcUI|HE_xjK4+=I5j04j0| z+xx#qp8Kg&4|uYTWUKjUC_A|nQbcuGEBLs@#n$8{jDr}8dbW9>g2OMyuv@s zpa1YgX^KX~1~^&;hA^y^%V5y_^Iu>e^YVs&1aS>FX#NQ{jklDC5MYjP#Sj84Et`K8 z>uK2MpAeq21kr`O2&u)(8~(fGi8Md&62WP>x*`lMrJ?uNur8;Y{X>d+BX{|yTZffT z67`Yabq#!6Z) znRb!iCEs4QugT^Tb~84*DS0kvo2UYAf2KCINit+l+d`-kE3RF;*3*jdbZfCw-9VZ( z#A+|!BBeAt=>{dGoE%pE2Mfy?XkZyhN^jT}6l!5bLk+AK9dge6H92dQzqg1s28M=^ zL8$yL^4x;Zc=AeXlYR68zm6woJZz~LNywj7z@K|6EUCTKi}@(hkAj{5@$qoT((|7x zF$gGRZ?s}X(8U$gYulCr@!GQN=?v@|!5dyR4faeuO;b`QWeQ55UqelKg=K>`c%5n3Z`4 zb99I%^$l!b2>vv4_VZ3`Fyz+8jHoo&Jzs*gSst{u`CXuk5UD|m5vfm*J4sR>W#ZC2Qg zG^$|U%Xkkhua@9q4n;4lb+Nq!*zQoRUvM|nS=#Lm)J%O-qp;&A9u)RDl$)hL?{PR` z7$0DUad#r3BB70s$r>I5f1UdM`qh7m!*UBS$|@a!TS*`^5GzF`Sm8(b2MGj+!@hRB z*t%@V@bHE*wO`0#8H5(6NJp%Y?^&rDN?9z&d<)94?~Q>ExyXMr^2RmC>PNB>9S$!_ zYSO&%Jy^EtYee57a4FHz0i!B$0&ocM#y>S2$8g!&E)IX0x#7y|D_3sAu~+M|nlIGj zTcG=pp+r%>6Y&B^-Me>C+%lS=26o5RleX-(jKjfyhGQ=w*tdOo)FB*?w8S~;cO27* zW0~H1;!7-4Jof>7*A(Q5D$!95c%JFsgLj!UPwc?~9INTq+V_)T%#)Ov95zI`T?`IA z|8^@*_2nRhUh2P3(hLWL(8zF#2I_4_fxuhMS_tP|-TVE_vZhVhiH1zW-m8%e2S;n} z!8Cg&b;k#D9>gRyHum}9#ok%$WqJ*`!y!x7E?os>YyO)!dAOv9Hy9@`u!mryJ&vTCerxF@QM~)f%n(ihkfdENh-T_D_uRH{tx5I&$=pq@BMRIVzF|Lou1BA#M`?_ z5%-)~P{HNQb^z8s%%Vx__&*fA;l!$_KCEmJa5WZIVr7;59yn0IcRw3bRjI_(t&j#t z&+ok1qDNlp>AyaO$EIuf5;UlYv*~k0J%RnXHl5BX7Ww%+oX5R^=`7aI}G2B7hB8cESZX}&&SaBBE(|pRJM-; zjBn{14otUF|Hj~5^JAN#>9!f)A3U!!ST@kI^ae9F=TJy{KjFzh=ubPweMp{uw9=yo zZ@_=P-;vj{*(V2U6Q%q4-o0t9;7maLSkfedU7^CO7^opQH|96apy4e6Hs>22_UY*l z5&DVc8NT^6uMH3P{7sNHU8F=fRvz2b+l#eKr zhqwAx2Ul<=W+6R^h359*G7j*xq6A;<(q$9eY2d)R`+P~Qc`3>P2c|Jby^>-*==BP- zg?eAnxV&`61%#KRQcT=U+D_BZLp%cf4gDIr3qwO_?aLTNlrNfi3&p%l)YQ+aPihua z6d#kR6V>z%Jzzt4?7c&?R2CH3&e~&6BZ}zEKpK}he7(nsyHx|X*J{t zR^G5}U|lYKwjFTyg*E={RR0Ha#zhd9pSU?(3x+V^$crsqoXO7u2briYwXXv#NP&wh zHo=MjemoTccCwipY^^4b9PNpMBT)j36WIvOf~!I$3cHNM8wnrgHFi)`){F4}R9Jmct(6nV<21*%oP z+Y~svlxpKG`;(!5G<27@&zw2aGdEvB&ZCV6-My~QX3UA#OFDtudFd$#9Otl&n!oTe zz*chDkE;KZ>#)G?SMGzzM?aq2)1klp<$J7_=7Srj6yJQp{&xDSIO!Xa4)EL$;b39C zLFH=&@y<>=0I_DVG7cIU}1I z?pySy#xE}Y&NgSFzk=%YP{(!so3}6K0KZa}9Sw`3ZH*vDnf#Tqsf%}&D#Oau(vho$Uz7bjnTsJ^N zn+${RNKv##heLNFU|WQrA42<~y)@jRp)p>8-d^WBPr?2P_(qsARHRtwsp6BXyRu(| zK^to<%5+<)DFESMgs}+Spnn{$ZX7+0z)zg`J<9!&1EQ2J4lQ8hqHQTQ;IM zr_*^p0Hq#wLpGUFU@>`GV;jdJ3*1mwHMFoecB=Dm|5O}f=P>jgoYIwHfTvJ3ErKI3 zdC6nzaUYfSMUoRE`2P0Rt+&&BIm7GSrJ1X`ct^2R&|ioAO7d#3eyKp!`QS%nsF3ux{2>g89~!GYNvt)_pD?YGGu6B z*zfFe>J_nR@R0t?D|s9uo4UA*eoE zhsWKY)FxlPF4t3)I8Uzf_w-h?1SR8tDLw{&joKx&i^=j^fbL(OE^f5N*;!&G1?-$7Qg@7h_K?C^55xGwP;vvn55Hfi-+g=h}z9uf2fG*M_g+F%Ytr764fVz|XI z82hl{sqy~6RSs1Rc8Rhm&lB?D_}4gjjw;ChDUV4Y#I`TX)qEx6AhP#6h#-i{{cRKZ zpHD3LcjVS};R{8?5wH6cr`mVQ*rh&)*Pci;&!>W(SQA2{dIWE^8&hdDG*$Ci9Uhzu z1O8i4SE|W(0LRd<>YyU$;MtkgD|+4t2lQsMSXa=}I@z;<;xGtjjLM=RvN5H4nzUuX z&<1Hec0xTpb|O733>sf@&ah^LqQ#Qt={fFq>WVLPt&3=Gl5<*oEnOPQvn@1lcrB#m z<2fUZmJX$gbe;_wUAUZNW&Zg-w@hQEPW73Zkx8jr$%$awSim z#c%-18?RBLm==1T`y`y+Z5;N}(TYYzV##NHgM*KkH3aWiFN5RX6!m;%Bd-(#WRtt@ITL&f9!JC_C4PZ6g4@%r_BX$SDnM~b>86A zF=NJD!?&CRZv!w+f{ZHAOwihgmC(uAWVyH$aRp5&^+YSR>m1w3FlRh7wOe@uI`1nN)+=SO-aY?c za$uQOGXPqB`biMq{wVeO)N~CET{(^EkdoqM>r< z{tfr#G;zSKF(T8Hk3CT`#r;hEnz#=Fd4=~jP{)!p!9&{r^lt^ng6x^Y7u^t z0q68%V0&i)am2eq7vUIJ^5~K^Lr9pji=cv;FOzsllRnEb5-ZEl_C&ZJjhd_%Ob(fa zs2&0R0he$c%AKojT|rwb>najmqmv(8&C{Ok8-Z$BLN5ForGD0qw6}$=$r|Lym#nAA zJwiffR(nhW`L7mkMVd_dl|aoC`9?b&8ABpIE|V1%xlX(t?W|SgHbkiKZ{)GF`$Vw< zL;XlV88+46^SDY-~!j$HhAGKS5Aa~D-Nc^}^l ztNKd)h15TB<+xasm`3-ZPB7@Lcvb??w zTuV~+$*~A&h7GtOji$`p--$n(kj34K6%&>*o=2h2g0YYAmv`^jZv(6tYb#4EbTEW^ zRQ?7&CR6)_B(;!WnGfRy5(t&TN+%h%8~-VTsu1zGJ(Zv7y6va{bUU?^5+&^rl1AN3WPDN~nc6b>weamyllaogu#$bZbQ=b0OGNAc49&Ok={_Eo zrp|6spa3)cs^tV-bf?Y~Z(YA`-MYF}t5(foWl@u`0iR4gbVywVs7kG{^*fprrGjOu zd{CuIl_l%;DvEU6W2qt-?b1RiDVcYo=r4*=MU!&={Y43o?L9*Wlpr-~PAvon5l<1Z zDX+0heueW`EHBT~!fxTalBO`K6or?|qVg4v5%yT9{2%g_ROonBh6@in!G6gN7LgSUuF1%APB#xTW zqyFOfFkI5xBQRZM1DylppO%b~+SeSryPYQF&k&wbNY{#D7ewjpra znS!S=49k=4wvr<2BYY^@_Nc2CJGD?UB4^qDk5f5+bA?VBESly@*ZCTbk50y-%FhG8 z8d(7iNP0eR9zW)hu5YS3z10@#kH`Jk^yR~P4|K!2MErOJ)AN{O?G9?~lZbz`gH!CM zzD&lBg9P%uBZClo{vlMGHcK>^DX??0?S9@|HIx_0A_J?YY!4a za0@OeR_AvlBtiMuB|^ZsXc-`$;^ zoym7^@BiKV6&Tv=ne&`8w)@VUadv2~5P)U1LM}H1wqKcf049L3ch$3UpJ9CS3o}Tn zP>62G(%g#tS_tOf3}06L=IPVGHD9<`l}w3umvSxPyMjq;C;5gpp$dc0??odL>0QRC4>xt)kZrkAqE zg-{RW{=9b54xC8iZQ^ApxcHz$Jn@uqzB+FDLXh3ky8(K9>s3l=J9q?+c^v7Ea^0C{ z!#+$(8~e@xONEfVHV7v4_mYH@fO`or zl;Pt{x%Ltw{0OQ1M&fTYM4W!J0O@UtXd;~RZ2zHX0RTn>Rh2mXw6hoIn?AVD{+5yVm z0xZ>1Dbmz?MBzTdyW$zCFxEgm#u)j|JI&w$RkXK4_S!_HNs$ zIBF<8V;yj^?M!=!lvDMWmpk6-$pUeFTJ{3(B$^V z%E9890pu%egsR7o=U^~-Vu5+oRZ)lFJr#j@ls`y4+f<05*6O14p&~soGxlSmxXGh3~){xKjFWM zmb3o9)y$%c%Do{j9D~|ijwC-B!2z+!sdJu=AeHY@oW(Y(SbR@W15oW029ro^(z0Q^ zn>6hm)Pc3$`{*}iaVwM4l9Q8RF$=b>booYc_SC``PIIv+A=K9ieI+=fUc*)vQB539 zFK2st$>B(jt9u^+c3(0$+9@g>#le8h(nH~%?P;I|IHuD}G2Bj$#Y%=!sNNN^8cGlA zE!S%r4wz_`vSq)YA_00V8Xbjmbiu{hf0&Rq6-#4=DVX$rzZdr3c4rvxNwow@?1%Fu z@a^AlLQ}p(vR+W|$sId;9=shsA(2fB7k{6bs=esSwec)?ctO;Xv!YZ7U>;xqiC0zkWB+@`5sOu zb5y6i;y+Kd=9xHl;lk$_FXJ?iT zp~={&#FE%YW zw3xoz=VJv3#UB2$u8b|Xw~0}KNZu=C(mhbCe1-WvcTUJwnS)cxO2Izz4bP}A>=Tx` zKIw$%olaWPOJ_P*ks#q0p{A~ad}$L(AL}g39q36RRDq;}rK6YQUNgDkxrtnp$%w8G zlGvt<%)3dpJhw(tn`IdTryg#wmP)2R4YR>OU75|aZRu^r<^pTaS4${DNNX$R+-gCR zKk1|c4%&q~cCB%hUI z_$tNA_n9^&^5uiSlXxQxo`B`&JWKc2A*7E^^Uq%CEQ{UjcxCGqI`#9uBqW9p%jwVk z9CiXrFtmmQ$g3=w(m#jqzBYK{Q2Rg$%|P~V=qaDevxzeE-Suisd;5{~A}pH+a9hM3 z6=5pR{bhU;83-qsc9CITl7W3H4|65b8f`bZW*FLB*o~5iES+_46EcVs*S)aY;)!KE zM+d+dOe4Qbewk%nl0y=x;&~EnhGC%!&2c16w{Q$kvmlcCjp4HpMMnuINK~2O#~yfC zgc;As4J8=gyGG{wqH^hdx5?w`_KbT!#7ZC?225&X19vLH*MFbVsq-`CuOeTbRe#T_hVuLc$pGu6M3nN#*4?giB1uWA z_o1J7Aregn3}qe@bs=iTQ|y!oLI~DFIfR3)uzWQM^cHey)Vu{D8H#ONr-qG&WUR%C zwZH5PC0vQG(GV-cMS&7Lm0r;jEW#cuo8h2DB}jzLQ_?n1J*_+!VIFtXa#0K1hUZ$Q z+`@Zv*!cf6MsLzfmgMpz(My7Pys{rPr;F~BEvkgpBlxCpWasMWOYgi>gIzCRx3uUuUE~VH*a1$xGu=VK88xNrc_|3Jn&>E;C-ekirK_VVh zK`1W1ssOw34NOmzN*rs0P|*+6dZ3?ZpN1yg$q_5-R=Qmf*Vj~W3cfGmc?^ zKF`7*_C1fI7V7hPe3D$o5PVP+r7GCqoOq-`1>KJ0mV9uA-!o;OL90ZO8m2!q(OPQl zPh{7@&-r7LE63iiq=Kc_#N)-fnDhBXbo?ow2g~Qg;;5xIGc@jJ0Lta`tG=fhuq1lReT1uFHB1aFvPLCFpiz)M-;!B`Nn>&t6V(Z*XUG|)?pbW2r3XF;)cRNk^gYd_c z!oi`phS|QY*1Pr4+-fv?G;XA5s!1G;v0SX4}*V737PJ#09F=o_8p zpQZd)7vyAZcE9&PF71C^s z7u$wcoPq;v$Az0AoKFXXw5+;)`_HDPv_Tbx3!$mIZ*WZFYYIeO!ST&ao=(AbWxTIu zuJgiWbc3#Zn-^t2Ex5gJF!S7)(zQ5=ow8u+J+hRjd(BP8AzXo`Fev|A&S@uxg8BU#)b1kXsuyrdO z%S9YNu{o!P4K(cVC0)D-E0GVeSk@X-sr$GrbkQehZ$$a7SvDCBgA=$_QG%Nx)Eg%-BR4wMjr<9n>be*YH3M~GxqS(pIB6ij za{FRJ$6Sx&sG6ppCv+cF*Mjm+I9{0$1Vb>=?^nXxKa<#csh% z+RMnYD&_Wx6_TGip5a|Htph*lx6q(XR~YiYRG zS;a(?qdBX>{l$NtRd9Sgd*)82;`LeFT4Tjl*O!H=?haLm$8?W1>&iZX&DtuXv7&JA zahIZ;tFB^&;nHi%*y$W>oGIzTopcH3I0k82pbD4IGB3+@6IN#HvFC(~It%F@un5>1 zcbuZ^F{jIO?qSXo^T0~T2d3J5MNxA`Ic;89+Q96-isIpv?D|+?QU$#b=sanW=iCVO zMUcgWfkcmmRG04y1rWBz8G`dM4c^+rKmMR6fbObdg^(NU3RhoU!WZ`6pX=CIz}9ya z4o+|Zy^G$`--SEK!%BjzyKjZ59&icv$^DN0Fv_%h3xIuj#i^-aYCLhz(0Mz)&S3?p ziA|0Jw>#!q`TA$^laF7KTas<^Uan;pkX{24W317frhSX~n8s#*ei0BQye=2fC^Hwd3(kEfd-1;v3x8-4JeR zTGz7br|Tl{Wu_j`BL0oOR60uN%Txo-G!@)%9kA#{iwZayZ`&jHk7r@b^l>@CU_lkw z-Wl=&vTrXI)B*>6Q8pKRZUQXdW|*wVaS2;%YO~-9z>L5+)5}tsV5jAuE-c5SCt>`o zjOk^msc@`8&nzrQr*m|Pqc8W!m`diDl#bEk3zE-ACn5g={D(Mdn8|4Ian?>go&Od z%fXObWtPFvfE{MM7V^_{u=R4x^-t-l6XXK5maUd>Mw;y`mM-Tn0&ShJ)&kv(gV-@{ zOAh{*JyjR@IIwqSQLL`VRYUW4yFmm;U>#Qu4yji!$X@k8NS`Tm3UhyIYf-2wZwk2} z#RAx=0jpGrP~64JF@1k3uUKQr1mG&@*LW-IXK2@zit;7nXGvK4e4q8Rw2z{wE2>zY zMrUhJf4Qf}F^mX(-%MRWm+9NA2?)3vwHQuiQ~!?4x@z5Q$aPjBK=s)uDNR0 zcpDM*uW68QBr)wfh)V>P!Q)%@zJsdlaZrgFZU*z7VoIRa%)OZSg|3EaT+VfZ^JJjM zcp5AITR3Pd+=h(feJ52MP@tjj04oSur&l?@qXJy}Ua=uCT8x}&nAuiUI9);su}n)C zc*Xme?CE59S)yVbR%S>-90hq}Wm)=j$lWn6@dn;$z_Cz#AFM*LD_PS|S;%FMk?a&Y z!)&-1zDm{#_HDrP41dK?Ke^`D!N&|iN|Y+ac#kRqM;&~i~3Pw+&OH?cP;VAovrPri02vv&4FFbiQ@Oy&!{1_*HA%Kuu(l6WM zA_j>d4`neWNVn!W%ge?hhdiq0L&_5UtP7~Udoph!b z=D)yX`SSuj8HT)kd}Ku}E9SR@pR@aRs3C>5NX|pFUWynE8J+P5S3AMnt&)rf15_;; zU$Ar?Go8bDe(hMgXaRbv%nb;%z*fQ5fbG8kF$IQ17FzXArs3qISuk{;fRi8aV_LNL zn)FlmWE|F;hGTL0M;xOm#UY~h1{Ik`ho59-5gZzTgITM?40(78zK`)vQM>t3Dn8@3 z&)T(jDrQ=QAC*FRLvV<_Z;@T=zwY2}m{v8%U`*|#U$D~7OoEdduPS6&hjB*%b`|;$ zO<>-FHpo^7{p^(s4ns3H)XJwmNQ>&$X0l@$r%)(Xuil9@yp())=t}&(sRUHU z-IVcd_~UP3I|mN6DppQf3X7=xN`Tx9e3ARqP9~JUlhO>JqT`1*v4lyN_=Rb6ASYUI z2*kJp<0UzAbib!oKpgxPyx8kEa71q|GAgEh*B2XeD(}4mL(+chDlCSfZ=m|XFGPz0 zro*h-%WzB{d)PIf;Fp`r=08S6Z)ijC5>Tj1@Cv&gDx`kackyNGcf?4-R1rTeW1zp` zB^sX(bxE92okIER~|k!0Kin2f}szjc7~7oOnMfeeDaN&?7vdqwsJAF~jGNf%|C zq}O!g^uf*+;rE{ZQVFjxB30>0$YGi1{`ZqNroN7g1uFma79J_ldgpS*D=dz6`P$xTefHe z!z}ZkL}w3sFx@>5n3)1sR9(INP-sH;CU4HC5h5&@He?Pe>ER)?nevb;f|xW`9&$4s z?B&-Ul7Z8#a3UUg-SMQS~Rc?{kN%EwB(7?j17-dqk!-X^g3#h<$oPw^uunD0+B{Iff&-pI z=MV};XonW+wev99C$g^jNZ$MZ%O#L)pQTIk(G;UMnA7u!x=zUmYOB7Ty3yC?;Uyk7 z03fE3_=%qkSi3d^6Xn87^*$T}&b1bPlZ2$cd9%P1&5q%^jSX6W(^mNG;MThtApj91 z$3BRaV}s-yjL}YYsTCWENlztXO%F%SC9=6eRPf;w7f#yn4kddGnkR0B~uEImRp9PnxDhFli2 z{z^ixTwUrR=*FS4BvRI(7Tir%aUmJro+LyvpNgs_kR64G3>o4su-Uas?jV`l?b=T4 z1tF(%81XoXF6802luWS(U8S(D1Nu3{ORWLbTS(VCh7mJA|CD|70l)Q0jcHhpnp( zBIK1$^H0E9^E{`&$}4h9P*!-AeD0rq@r(rM>6$bJ%^;NewC zH*ugNNWQ9MnGnnJ^ja1#(nN^4!I}JrQ)>t@m&fG$l%qljA-GpS@seOgPlmRXK>s;x zZ|Q6zLOu?8I(-~oQqafYEyd(B(+K8ZrE32J%o}-mdpmptNrJgl!+CL08vrFZT@~|z zSz*;#6@jaksJ9OVt%`u@465v9(FA$@RWNc+5gL}71CTPpaAIB*1m{Elcw52*qnt7| zr-yDz7@EA6CIZFg<7G;}r~YRp;5umJpmyGaY-VQp4ny`l#ISt}TkqA)2OKkq^pBGA7^SY)QC5JB)&bvFi5vsu>R+|5XyTS7BhMq zk}UCY1aa)m%W@1lCk*}mC^2D1;AV>7VZ%j@tYc`te_i`8Y7<4?QzbOZl$BWZ* zJ64-?BPc2cKjb?Ka2pt%>>$a{29>sGQIE&$&36xO^6p~;-Wo=x1-F=w)|#z6gv5=J zyr--_QPCtJAz{~o1qG~H;LH1AqurRq@7}%JKKWF6`XE%GKt7ueFkDVMu8R1Sx1L;) znKrHBqnb+83dRznBg>17Bx`ta*FcT};v!$v61~&a}apv0l)6p=|R3z2) zYPpiE)8n^2M+h;s`;ym3XlKnHo(*LfP40*$@5hmZ&D#k#yY7tBwc|>E@_Mi>1@8!> z!S6Q<%Cb6xXxEvGaQ9U5r--leo{-DAW#D&&Nb5Vmq}`Q&6ZS;*BZK%zcS$C`gQ0sF z28Ucqv5#ZqSeDmBJ|4L?iiET6oh4m;2}!mv7!NE#lVUKmEybF{^<_*j?@6WvJOXww zK1x>mPVX@`P_|pK>H$i1C#Riqn6Y$#xl}Q*BT9G)i((BH(1(ZX9<$-iE*YS z|1Cb9fQ1|z?g-y@_Fc|)- zJ$%?On;w%eGgS=JN$yl4KeTf-&Q9g941%2gFJu1Yq-ptQ14FkxncTaF&|(@C3R9SH z@9JH94y(|)hYRpOwy)2F>Wa*A%MVMK$eYTX>IyiR zs8}tSEFgbyY6#*xfZUH068p8yPAPDjMEwR3`JLASzq=0rg#2kY_W-N}L&=1+6R06{ zm_p=xTWlcwB^>4K0M%i3#inrMUfhuu@#KLWgR+YM8lgW(bbTIdlAz|@6%yNn$3Tr7 zEl^+~JZu=9M9^Gt1zvAB3=OJoLth?3sCp#1|B4*nB>X1q;_o2m^W-VETss%!rl6JTXU~8k@QmEEO(;6S#+WQHR>E3S@ z>oNeHPoLd__S;6vS^S?)XK&eZYZAP8hiw5&o_TPN_2WashE>j2(;WNJ^4k(8Eomru zu`TfuX`!^l{A9K%x|NhQJsh?5SsspKdbeIQX`Y%K(~4&q{%ZGQXB!@#D6kav_Lt(h zPJgDtdr91S+mBY4F1tG{Vs$ay$3KhBNRAY(z}DnyKf~6cAXdFt>{Qmv(iN^L7A$`` z?PD)j&--Fr+!9Mub`ghMz61_Nk%C8Z=2^o{eSBJ6`D41(A`Z3HFiSPMPmW!~}b28fW#H zv1=q)&%n|n{KQzr_y%YMJF?7(O*w)x?y1c%OtO692vqF4wU?%&HAn%}XR+?HK5LL+ z)oxmTTqf?a?!}$O)Zi7lOdIy7FG+;`Q+U~PWu8KF-EPO-XCk~0mus3kMrQLvgFk8=r8y>)= z%>4cz|7o)Y^53I}t~$G_j8Nqh==c)yn6JsHtUDb{4~us^wRcC|>CyHlJ;07GYYTNO zA!jCkh+KonS3EZQmE(l^#lI%=dF%yA)fyr@)+*jPHeWlD*IOG)E~^~~)SmEI81XNy z#RAw5miUIHk)JdM+)QN6Ls?AXnrm1MLUvnPq;kZV>)1nxwd+)qq&3sjswa~}`skd- zS)i{%%6XJM{Z9qIB8xPk#f04C4AgQ?ymkIgoKQ+zf~K4yVV$ zt!}6*J$v%(NWolC#?GMt-4dGDooRTNxH?NqU{|Vzdy3wM+gdDtX)%4 zkehnWA`2AQ$sZm(cyQeJ?LzQNu3Ke>Q}q|@pUw1Islt(Xg0-$=@P>(4lpalDvg|Gc zfG6V{e0668I~ikZ^ACvrPAB7AMGQeo6w6*?`(IN%fbw{PBdSoA?y~#PV+ioxEU<3| zHpuC0`pn!PZ}CoqotWMk3&1)L%Wv=x{BQt>9EL4v^yWlo1EXmZ?RdaiQ8Zv124kKz zI|peH9^ARPrbGV{+%vb^0VhHq@#7omXfVd-Pg33!*sgak4ac4QOovdFWw2`(vd~+t zKzj6UVIY*43(!%uUu9vx_x#_KKsN7dOZk}dukVlYdwR}*Q|iw1SXU+K!UH%23{H-- zVcFn7Y(<&>eeqYgH?L>-107uqnj`WDh1%9->mpr+mzis5S7ov;#y#_txQ3?sP^zE;JADzex8RIPoxk$Bt%PaGDn`h`0Wn87WU}vmg!BQ<-PbJdqx@UUtGD1hNZD zOAO}zuYLiWmr(&~^S@=Jk_R`jN!m3IydrEzrt1TVgcFYTT!;(snutQFck4R0! z(o++rL{qab2{j^z5WNhKl>i8wj}TTNidt1vALI|51k~gK^%iJq>gixU!U$D0A9+R~ zHc>jMnhf&tfrZbKywj}7UY{2rvbfY_zQunUjQj2JIHAdtYcNcj67o`Df}yqm`~_Qg zN7zfIa#)&o1J|0qBCPtAc2wcGeg4@9=eS7EiKc@!!?DsykLKj15j;l}IY&~aay;GJ zG7)CxkBj>ysAcyXZ&p6lq^(ffDfnAE@rf$_Aa}o*BAe zr4z@~y}7`&vE{)DwuSq-WY|&#uN03=pjI);ZP_^NCPkU0N6kH(g(zT$G-%p%+vVXL zl;ac>_qe|j=<5jJu-24G%`@fsz42D8@+-=Y4j9t2r>#5ov!bL14XI~UaQd1m%32}t zt}y4t4$#Ij1sM(@q@;jNS#6<>kYTXx@V2BDEF3_jSA=`OBBc6~=l~0nK&Vza*kAwq zST9*RAuWf~!KC>Ey)#lh2WczC$lt@hcHES`Sy@!?0KeMsd%GGzK6l^!hRbdCmcdZ< zL_T`-2rEgCeyPpEp8ygVuJ(+9!a)pJ=^0!bRr?0Te1;7>g_X}u#h-xbeOJLx7d50z ztT3zI9svgK2WNMa#oDWlSmI1QAgr9zNi3Gc_qr=eYORuXM;5+Af+ z@t-aD{2EIoYhEG5uz?OJsK=u365&jJmB&10!?ad8SBY2j1PigRPT(^mRE_NHEo z%br>D-p7?Ke8y8LCPZe6WSE4_FP~ANqzjf`8{v)<%5&m|cOl+l&>T@RL_C=6;^IE| zCm5<7Jb3UI7L|${H`3jNsw0Q8TCj$Z)WzepxgUS{p|Gi*gpXP@7*E%v*KHWDh1`wz zSp1A9M+~mTcr9e@`{0XGiR%9UJv}JIY`q6l_+vfJHOdIE=SBTMpC>PBP`Nb-E~> zUz1>+;lywY)+rT-YhC3k^qMUThOS|}xjKZ})em2P1!th@5zuE*xKA*2-N5rvIHnP# z(>jJ$>?l1>74ARp375BU7<_%-Ux~wi6hI{)Osk$6LBn?N3#tIx0!$V77g$TnVa;Acl8n0c_ zi>}iYac-Rx8;v({2y#8*#JnAf(A!|3r15MU#4k~+9K zRdBm={zv#E#8dJGeqfF8Aq!>&xgX-o1w=eym4A_ zE_3g_q7rZ^UApv;Ma!Wy9eB&476n{&`6I)W?}VBO3C2*P1m=tANX2s!IRI z%5zrHl{HCS7bewaL6*+BC!sX!H|a8G?>rM#pKdu?t&C24BRd783u4u!)2nv*4D48j$M~h6!odgLLZNoOW5(_W5zsI zHoKX8O694&Fp>_3DEF8BDJ(dv_`Bt6G}>p>D7*cMP>HU;N7GV^pk{~FjenphPtTt_ zcU5`K*J!=4l5mR_a<+rfg{@k7;NrP)l;tshG9B?^-7f4xKM5xby7nM3o!SMG`gkJ6{t|zJMgBYt>w2XlH*mR} zeBo1uS@^N!Q-jm9W7F9OxB$O2a>Wy~aR|q9-RNxgvL3f#4U^Azq%}tlxY2qGr-!~x z#cv+(e+*~#r+&y|sPSD|EO3Xf=qFLI#flXxl>OCgTJIVE?Gh;65uDal<#j!vX#gwh z@+1!)LFfsEsC#5Lc7wz2-HTVjhb4KTR)wAaTu!?@k#Dh+MmILxRXgbj$PAzIX z;gn>4dRVkNKp%6Vy)DKD>LfC4a}ok)m$AYy?+Z?CloaKqUw;;@8Kx+H-`A;Ar`MlA zC2wFc)OJ`Cr=4G;Nt1>a=)LEEuLQFHMH~y-uHCk6hAqyVe~`U5$o_!?7vl~*IEFlQ z%{L(Klk;Cp15i_@b%a`-=L>k5Nql{W;2UhHgvpz9P%Zk;}zLXt$=CbBQR^y1f1 zZH!@FHq`gDtOTm9yH7~UT0yDhT@(s)7IE=7_%rS`paQT{@fv(-S=J@u@z#)AzDc{> zKC8-Gihr|UqvPaUNaLZM%YfnHH-| zM5MD?Z~MbV*lY?zq^8>i+blPNrEwefPx&TWv5ceX1}PA@Ii(tUVZ{)t`VDnZg&;d- zh7VX{#%Coj;H6du<7rRKg!ZBf4XM8)0ONg3RqiqhhZ#SfPK|#F zJJ83-$s~+dv%$dL9xvVR!{w@GI6kFgrwMmg=MzG7%ojh>N%dJH5@Ve~IIJ7Sn@lW* zX-IR_*pIQXq7icZP`B0H+#A5J=B1miw*`DrT4}iUojDfc#iex!l~VT*J=oZ7(ak#` zh8IDVZ@A2Lo>889?_Ag~UMvJMdFns{;3me!pV>!uVMA1Qa7IY)38n--`Qcp#Md6&sNYYSST&iN_H<&alF0LG5Hzf%SyEI-9pQ?+R zJt4uipSuRZ*7DJbvErUTmFSLN=hP+nXMK!CU#Kbu^IQ@v+qVuvOUUl>e(8tFGo}L3 zMRK;EOD8E;TcE55Lqo$tLnGj|MsMajNBO>6_Yglnvu<5WLA$R9`?f!Gw}lH)o{*~+ z(^SoLrsl6xj!bGd?93eq_aITwB zC3S&bKduoHo_3b+v;uWk^+pa@nt%mUSjO zOGpn9I!F-rz9ownFMb9Eexjra0F`Ycfa=SL9a)AcFIA}X28x9(TsY98qj|D_{&|bf znG^^_-n0JOCEzjV8Sxd=Oa(`mZu5e6N-U!~Wgcg7z#IMd&Z@^Iv|j_aW-zLz(i7y9~DS^L$n< zgr-InhOQ1&yO?~)VRaI3G>^w*-xsCV*swmNH>k{_pQjDm;DCdPJF9^?xG+n{6MS1U zy?gL_%`r(B(4PJna{7gFMKFif9zplp(6vg3xnxr8&l^?IN8ZU;J`%(!z4!i$66m_q zLnd*8%;F4rLvkY?L`MicTMb)h@SH?DxC$i}931+4iO1*>-Gn5aTr;S-F%smInW_+P zFL!rAtAbEyY-?>cfDaG+p{oQ;CoA-Vpikk%u90U`s$>=GW}gQqnBV9sL5q6bOd;DP zAVT&0NpEqmz^zLdBaV}*Y{#-xqooX{`$=N!zyJJ1wOH#NC1-PUA))6vQC7El3*zxs z8-$XM984w-NM^|0g_MD`&u<>-p%ov@r zKR1cG=uWY~nRa<6r{r_Cn`RZ8`OxZTeVaD1J}bRxqSep(rlf)qGOkOl8O3fmlYcgVBp1W-8|`qjPOV7MmwbTV0vmL9D(BSfV;q9^m%PEfestX zV5A%50z-@^(#f2s?2H!(V}XM!FDBeT2UpGvmQIi;ogn`%mR>=ZaL7xAN%8+J>C)#x z+(yAT9!=FiYFXd&5+?8{_J5N~UbGj1RhMRhn{n|EB248G@fnx@3hP6n8%x40e${qY zxgmKKCzdxn9PtoG%&W)obnlc12RT?!_i<16BPsX>Z3u)8_8s&R0>CUBY#qE}<%Y@i z1}0-4yTO=ea~D)`Ji#e~!mf@}Zzn_l;x{%1C++G>-)*9&u!~+c0AFZaL!kAZ1tpNV zeEBtwJKRixRx(RY(NYymU%QNYPABWYeaDw!^*0zF9`Fl5r+Gu9-D`ZKajrhW&r|VO zPOWlu(xhCdddQOD$~msrQS5bKIh6T_kj1Ed(g~|t#?81kLUZsE_>kf`YzY1%fBDVv zpF(J^@n2c>j?t9gQ@`jw+*CD$1_Pj)8F(xnLT6pQAAc;S^;SI7Y!;XDL#LERexpjMcWT|u*`{gmhFo=<`jr~C+PH1j$Ok$gQ(j{(Uav16YWHE9P zSIkZvhJP{5Q{P`{+8FW&m3^d#W)N z-?>BAWrE$I%EP!#m(H4|i7lX8eKF}mIhv+{jn-t(7pEMn-U4U(C{m)Us&}5!)H$^v zHiVq%RcY$iaz=BkhhXMjkHJ$*Z5p0SH8iK`b-keHEs)8%rf2?TAZL8KmKhffb)K{Q zRZS)?ig^a;I)OW=-{R`&aj`M!5}rGD2JGBnjY-GgDN|a5IxgHJ2tFx=C zSmfUsPpR>EJvqS59jUp`y*g3dzp}<&7HhQqJ6H+hdt_N)*YWuYb+Tove@Gc>RV;Wy zNt&X)o52caC+B~n3~@@Y;W3Yx`nu(OAeqxMW2oRSNT(A%sK_xa$EG;;nBiL~_t&_s zm1FuQD1o9zlM3`tHL_{SYgDHFiUO2Nl`8e>@o%HMqFh^b@uF{Zj1uv^Rk3=Ew#O(f zIevCND}*j;`;WpFHZI5^2>nX2&3%OxU3cZr;oiAyD(^a@BZj(1;%+J_Z6pvq+|_Sb zVBo7j%`G-u|!cq?ZZA5>eij{7p))1sVna7L37+8e;E7GK3BhXe}UiSwQ`$fV!mYyD9J2LBn+!HWd zpX2G?!+`nd9`0EXM!ce1!H&a{Kk)4_TowsAJT|-DLhL8#BEhC>>`1^^*iUfpc8kDS zQ?6WWx_9urbsy{WyY?J$Sf1mM%kDC8Fun{uQlWFdfe#4*V8XGdf_JA%yB|?D+D&#X zpaY7+G&a`2A1O*hE64Cv3$dPyW&l8}RGxAbq=62Wo_0a66k?8oH8eD0i9=eJa1`vf zoV4NnM8O*j4@VqPd}OIaM=eLeS`-__DzdkO;OJM2EbD0*G>rAWr=2CxFnxSPq;s8$i!zdR-D`aT`SfxEGOo~Zk+WNx?* zFntQPBTjB)(F80$yT)<7imij~fW_$@j-Tz=GCiP@+|DJ?^D?m$I;lPzhZ<=?CGo91 z7Vso)sr#X6t)tWG^CULn>x|D@fAg*Il`NWYhBesRqJ|nJ>s#qMVJ;7_VM3qbS&id8 zt$L_Ph<1?9b|uk1Mp5lXM3*k(ucTm+>DK19`f|?;e}wL{A3vJi+1^fZvHxSejjrKs zJtV2$dLdL%oXdlFkv7>TzEYC*2yAH7-S0K1VdadiUzyn(_CLnQ7iklZ*YIFnC8T$i zy%V8q*^qd#U}I9m_XAz+Ht}3z|4ZO z()5n9Uea}ey|~JTnQCz5t}$ytxfd~mO>uN#d=Q`M^Nh2eV{<|2Zh(6f>j={YMK|ek z&P`OTWi}hfj-l30w)PGjKiLREC5qq1%JH4ecf#dlN>3|)%oCqCLov83<(#O$ z-3;zn%!M6GndBKH=)L(~!Aa2<3K=||(9fHBG}hS`=m0!*OdWM)_>_dRXcC5P5T_H> zXi}f%&o(Echw(2k;rJ5O1wBbU2uF7u6PAk}af92dE7 zd$hx83N6qHv-Ea3SJv$kER`FrVI>@bwQJq9lsHAq@F-OxP)$o9(@vNIY8uRZm;j|{ zCN4@=7It%7yl7ZT3moz#f`RfybdWdR;xU5WC0FZ~j#@WCN$Oz+%46$he>b`o z+O^9dZNvg;`fZ~BOh%Jyj)#}pi_)HD66|e&jkY3e1o4@(#OF%=$zM6`dQ+%KAub#JkW9Y4jUY7QsFA-4gl{?fJkrhh z16Qo$rU=#04`8aAX6;o$uoaUZsm*(}>qY^YvHnEp7;KL>JM88XDsquTym^zlLpTFb zZ2UFyV6=-F(pyPQ^lK{1SB77sWDqJv!G{@IO?N9A~?)1Ntp%#dXrO(Jji7w^7z&tAW;^`RDP2@O!MHkn~%I(?nARbi7v zARIA#8v4wli$7Xm(gV81aiWhVMA<{r;fw7tx)bdZ2w%bNoC~qGXl4txo3))5YQu_? z1bTYPef5DDoxwbPLrXF~C+R+*6Qz7ZY*>rcv{XV@uMRoJtI}$_p_uGp z!_w(mr$d56ruPtk54zC%=YPEfzVe)Kk({1jYivIn_PbxIb}m!wMQe|;SFk#U2Y+A= z2oJQxML8H>+%RGUrQ$3Tv;?2|YgHX++{;qzS4$(_w23yClxZWytizjn1i2u-lO1?N zLqjRHvzX-*)74OxgEY*5@wtRGCB?vPHN+Xh>!+@x-w=n?1QZUn0ABn;TVoi7TOmFNYd$2IzxXJt~mH6APIisb&mO52EQe^d~TS@ zF{yb;jzoOPz5qm(@S5Pc^Fvei|B|ZI7fxwuDf-C|UP2E=!D$;i+tYVgJ(2|eY_Qq- zupj8e!jqr}XUEtTTa-klK5xOE(!$Fufgn%d^45x?1EELA|8!cvY)}`3t!+HqxI34)NUba-- z)vGO;BWw;pRBACZe{?FEsnYsGHv>Cvvi*L2eMl;w^Jrl&VjQYy9x-VsKo+{iVb zHf5bRU%ral*~_0wU1)xiY+OrSA|0EGV}DB>V<^jT)}K<1p~t+B9Xs~*gvO2c6CyT? zU}flECh0 z@4qJa{{8z^4W^Tb*NP>@yL};>?dIa*QuZY|ubGX!B0`@Mhqs-paXuyT!-_v8f69VH zYsp4gkmz?JA9DTuvBb!dhV~x_xE5|RZ{yCnbKBVF=c|qX3#K^zZ`?@6doBHl{N?w- z%;&l3pTYcQqtC1d=9a&!_|B_p3ro#-bLFz#W^)!vb9_a`3Rmqmw;Lx_cc=Nq1_`m;lDV{!-~bO@~LvEtv*r}0sv zqLto4y&sjOF!lb-Lj>MbV03nyaz~5-*X>Z+Yyqgvh}Vh7pV`6Ek?IFHSD9eP(3^+f zpbMi)SB4;AR$J)i0|vj3j0Fo8 z^z^2#xG6?2$LrPDYX|M#pF4Hx3Qp{6B$r~qh6F9AS3tO~$L3P38MLwvy7zrqXHbI( znXZSLz3+}49gFEcl>43<3Sax)HxKj>j(+7!uqoZ#eB9wvjK%7;fR6NJV{{1eDBQzvHnP&_DJ zB%B1DB$uoPikhbkMQ#w1ngVAH*|S)LkOzwjyB;BeqrX>>SG4xX^?;n?6+cVdq*W|e z>{v`f7Z(>~nVu1$c# z1Q-2XacVkR(oHG^6$ojeqqHx^zutT@x zIt*_s)fh7QG>nG1sHP^`@**M3xqowSEM3|wx1N`xU250Y>Gw}r31oJ4?KXWnTzx>u zJ)@L0VOO;RrIjeS8%DXR;2e#MqoZ+B*q7G8Cj%C7bMWBeB?h;!BJ>b=97^llLLRmj zhn{H>yBXYTd}MR|!dA^O&iK^F^YIn~JM$V1jJZa~9PuA#~P*mEqY;cevK+JJ{Uh`A(M88HyqK_^fOe= zK#X6BZGeGkaO|rPa$OJh)bGOXyX#@FwRQ_9Jlu}ZqnGWg`5-mf4#OwdSNxH|u}o?G znG`eRm&rJ81mkDOHsLsV5aVaaTFE$E((%oD6(_f5L|O84oboH{XX($Sd%WP-f|W&C z(fH3xn}IAU=~+Z{AkT7`942ATQL;Os0b*j_)5nAd&QU zkZBs^vOCv2JkSo-{1zZGv7R;52kNqs%ICknP(?x29U`6C)Tn-W#gVrG}p&%I(A$41i+{ODCIyRr6kzheF1^G^i1i_l z`#ixxks>`reR92kVD*lhGF6KY-!3+i8ag(pu!Sy#A<2B0K~tDy!fVech!% zVhULy;A*T{%puQv_MhdL8tJ?Hr!BU(#0`D4q03*DgSLX{qFkpF3?DudVE&3i z&9+Y!Ip(7%v-mK(#w9PLp9*07;BVHG%5znGo^pb>2!BzOoho*VPODY_gbDT|IC`QV z$^%_Vig~OHV*1mNIwfkwpU}MBQhZlDS1vJK__B|*o~F9M2jdHt+O^ziaBzeOoe2ru zM_VS&b@}qk?ob3BIkw@wWzXNg6>A3bL|;ip&~mMZTv+pGqy@PSTqZc`!^GcWD)VE_ z02gI3(CJ^_Ie}hv(nLj6Wex19^WK+PYx9cx@Jwlf3&Y- zV3;g@A3P_a60EL2iEAmwhQXv8?OF<4{WKERSilEX=>QT}MGT=0B$=<}b;+jDv9iGp zw`*j*F2+9>kmKcfp3`3+>R_9Oo9V}ImENUYZ^5ueJD6Q&mg@u8N%I3xt)EQq|{`Y6vTVEo^90IH-*p$qEj!Rp-AeN_c?3zkd`~uJSfTfU>?O4Xn{V zI4jW>s?G?+0Xk`WE>$F78b}5xiNacv1`?pChjZA%(=ch6wIcBryUvur0C16ty(&j_ zUuxx|L>=+;$nTk-Q7-?&S!T509-ddaFqo&JoErH|FI2^f!Ae@_@aG(do7j;-TS~3u@z`d-rNz=5z$lH4-D1q@o(mjlYBjxuP zjE?h@jv>`axvNFwl9P+jt>p9z&WVK9Co@>Uj4<2rOp|wg$aOHP5)xcPlWs)(Ez=%Z zrjj@(lyw)^Q^-k-7On+h_C(W=z#@8j`}WauJC5ECBWDX)lA=yKs5T1xIc|Ya{`G`J zMr^tUE`Ga6K{3x)bBIkly6H#m{(h`pXyBS0hAN z6;kzTBw{cVjD^fFJe^@ci{wAjQ!e_&f^w3SdmM>Qr(;}rp?r@qsz6Ri0!4sHUm$8k z_Q~{I{~%!E2wk~d!gWZQD@_0S=hrbyMRvg_>Sryoh``8)U)deP9UJD1IMZhz6?Qv7 zBwZ&E8kf#^!8meXn10G!M-Irag(O^*bEvLboFV+#OKKo}?|*S1ncNV~Lzhc|uFTc3 zmccPSVz*gmmwzHEEnVRKla@fqvcht3&Eh(IUSQOn?N+p4lZD&1J-Z(O_3YZOti8ZZ z!Rl8Sx&0?EuIm4!m`}4hSB}TR8rwFP{&CC4S^`J6rOc#S-l;7+}g+XSSdJh7omaN*co@uLO7} z*qIjGl;(3bNvkLUE5;BX34~yg=4TSDT{5|+e%6@>H04D$IpT|{yr0Nb9t$I7QG8sX!?6(LR#OZ-i)CO2Cu!8%ztv>W4x4M7)3tb~>`?VlC7Nok^s$7s@6qQ+Z z&~N!$G;Eqp;4pwrf8)-V1F8);?1>E3r&{`ljMyC0L(W;}#4uTY1K zqyOw>gMd+~!IA*QB9gcX0_Ov}qswlGoufK>8)R3s6^ z2g0qpG)4hfKFY-#ZDWf&^<*eYpc$1$ja6{M z6nFQ|n~z5*Yq|EpOVP*BtH$VD zYAt42jg{Eo;E*JEi7~c5+hymw4L@1N5*zinR_f)m%xBp*g8IcK`;TO_xFi$cidF#Ay~!=I>J=bxYO zaMOD`#!_ioupJL9zkoUH)e_%XR-opO!fs}mCva)ggT~{V%ttta#ma2o&z9SF=5@vy zzkX?5B~muvnlsG&(=cAhgb(D%_#tXhDIroV$#50>kpbkc&JrK9)n!2UgH ziM0;5F(vpc4L4-G7SbO(8d(^OCp|sD7BHd~60pM-2IHBOcE&pG!eDO;IcSzRCpEk` ztPzcEqsldw_iLBeT8%q{$azXSkpsi%T7@i%t>g_6SL1bQF30}j#%5W`YbPh>_<(5^ zSS)+{_MPVW+J>tbky2~ci<>|ylX1ua))-{eDEXuc$6&nk)4^`au`goFGl5viJN>PG z@MU&d>f?7aO_5V7=aO!2IhvOHHnN6I4Hzx)eM{|Uc9zZ>}MzQ}`hG3;rK7=~N zT(bA5hdL%hL=AANpbZ&$7svi+O@->~8lDTD z`J%7@bB`Dg+^p=?M5fg2q!Zp-PAR8Mj!9LTN(UnD(2(se`?O_&>zdg4?>UkZsJ1@F z5oG_~K|1UDMDpxmV3c##z@p!or1o(`xzElS)YZbLp6Wy$xS0tv3AT4so%Ez49SFH& z`~6iX`{_a`*IUL~B`T^pk4Qp|jA9X@^Ws;LZqTy$5D``?EMbb*>69c9h6+Nf`KJFx zAqH3c_9|OA^rrClKoeD7v=slSW)C))>?oMC!I32R6d z&HG0$J?8)H=Z8DifjJ^}X9(FYMo`&Ta%>LF;C>_4b3F$b9qkji)&TiR`U-G3MQmq* z4rKv$NCJ6<$T4~-LU)NC#bj+jI#{mDu(U+dBdG#G%DT)ef{JWOv2e(Y+V z%7dCrFXJ9LhKf8OGleaxq^RDr|3wMZd+td7*)sKDD0B(Hap5VRhMytYB}IPgp6#p% zEA(hBSZ!NEMP|A8J<2`2X7C(a#ak<}Z%$}54!^_+>Ub;@8JZNByLV3X+360xXIQpM zPdbPeEZeszH#$GvhBb)1n|8BR79_$@jjz6<)8vKI5PnL?MczG zx>!_Z8rnCdx-P~)Gp_rKXBmDs@o^9;-Z>qthx|ri)Fbw-AG0#b@83+gm9E?o+^68&3N8f9$;lcos+3KRl2GPjRvPFPg z4uKXEvwLdOnC&DpRNLWj_?jWRXDHYgqq7PEcO)5~Un!tdQg^uGQ39cluHKYr1PQw_ zK$(gU^nYCfnL9yG`6<6~6eP19a=csSwd;XENwx!|8`RYKA_a}dY%+sNd=xpQBr92+ z9EA!Q}Ta}&ekYknyN30o!7AS ziLXdm7MuC<6Ce!@Z*Vb|o55~F0=>P@rPXl{y}*hg)CacfU9JZCJI!P0qx!XhT32LH zN9XQG`U&JT(nLbjBz6a53W))r9(b-6xeysm_K*KC@M83zQB#;{Ft z(V`q&He2BExfPpkNX1*YE`8~@_(p%|z$A9&UyCKQm!Yf~FDg&4T^f1m3oa&=a2X%= z6e9>NNym_4o76}_4@}n-hOh7`)Uhw`;DfRVQTHU$UJ7o+A=2uz+FK&YAgJ5wkYhvB zky|duzDN^dou_3hKRg&;(3)0zPWt0(@36!us7t*Nd}4^G*0SsPj|h3paSV_pWc`dh zN1BMiiOUgMEM9-;900SX!>0@7)Jqi>3wyi$p3u?nbKCAAL&w%Xz}L*r2-=?W=$qU6 zxQ%8D3>$0<+5#6O(^l8x^oI?kTx`Ka&ynHbrgl2*3F+ke-}kz zd+hly>HG3BUsSlyFV8^Qw+2@y;;!Zq{l7cIutQHa;YnX6J z?YO@d+kYZCMz??rvq-4k zHiQJ9i@o)8)$<&dpPp%bbN?E7M?%?s{#^)O=8-R3zUI3K`Hs<9bEV!6%_fW0lYSOF ztKO^3cv@Wsv>;Az9ulag)=6>t29d?i0ORvZXU)w|v%btosKH{%e~HK{&4ZkkV*Q0D z)iw4G!NPHcRM-C)Af3WP$j9N3MeF5o_{cC2lVZOAwn{HqbTA9)guJ|Ld{zwnw!B(W z=}R$7qAeK*$Okg()aq+00m#eC*CK|TI%rg&#VG~>AEY|)Au6hc=zk{$Oc3yOLN*N2 zXobKIr^DAvk3`C7lrBfCsRrh&O$k&$#IL;3Qwgjq{V<~z#W6eFu zZ<`6h!f<6lF!r%yS)bk;*Zk{QVL0)p@hq0*6&){wdp^AOYeo*`^0*IILIk|V_|&~$ z?K;5#Oc)Lvh(2om^-Y|7Oq*WSSu$-?@Sj>&ICH0;c{Zr^vCd@JWN2;9a>5KYf0* zIHjQxUWKtXy{i%G-L;J4-7aHgKOC{8yH0WqIQA~(C(9;Rj~8l5|8@HGX)pp8_`RV} zeP-%?FbvbhnfO}^`tyC5Vzo=vu3fu=P2@v>mcWmWY0`q2Pn4E2@DPztP>;JH$K035 zF|_D^0NbCA&e;EL?45KaxllriK1||EyfcXv%{HryHQq(>0y?ELx!pwuwp2t@tvYw? zy&5vP_kupiti`zOw2f14^J4&&t@{Ny{AsI4O=<7b^t|X#M`93MOIUTITzr@}N zf8ESfDON^W(_s2%s+jndfg7ygxOTM3YxQVyDMPF@!#_EV#>Wr*RXqA%VmmB#yrB}I z>8hLpvroMHO2ZEF2%HJLNYf%PrcRm9{VVK9Ymv_Po>ng%%UZQlgALcZ!i+9Z>z;W+?3jvO6t(f4Vim8^P%njfbCLxT zlpPrh{a8CpdHXF3Uc(RbQ(DDPN0_G_Y=afOHm(q+%(r1huH%z=b;=;+n!6SJTEV@H za3Mvpz59O38CXEk9D{j=TUx$C*migcio}qDZ5GN&Yu6u&#KgQ`*zR`rj8)bf*vC)s z9&0kIDvD819#53Rw%$)wjI~X0E=}MbV?%@X1f8R)ui`F68E2CMBBW(vi|>vl;amN! zajBA@N2*PO($|`J6@h;Z=V0ae91kP-;c1pYmb>jtKkNAok7Y?_cmy}-G$B+q9jqe7 z@;P~}zBUA~fSOj4=~v?;_93GIj=-%DBI0?)SJ=0vJ9)=^dYUBM@`*zT9$C&%WO>$o z0MoIs&01)5EMwzIr|9-VS+(3TIo7MNMVZZeD3yD6O?)l>$n>)w?{p?yy|MAJu~PIx z@a8;Gr~Hske4e{AN#)*i;LFrD(j0Cgak8Jb`17>W1;m1`>&RPvQbXfi4sV&{=j%tJ ztG&6)ZPKA~-$zF`gliQA8w}h=#9ymLuUr&h$H)m!RIYajxpslM2Q|l2a;&Y-Z3PmO z`ZCRGCIe+$2)h`=h;nOE02!RGL0ji^7R-JEKY70X6G42g=SjlyrfR>9PfG#sqIya3 zm=3_>e;fOibaO_|__96!ilKZ6N=m@3<<$Mp$o_4;TXDO88sBh)yjaz2;q(QwAN;_G z-@4p4hfb<3k`2;1PCaOXw=zZVB1FEAV4G!4g`5Cs{&v@6&YR`yF2~ zm|eVw3>nhdvTL;)jw!E!U*3aG3S2<${9cNO>Bf;NsMoOr_`JQL2>Ib%)bDZ!E<69} zr_lizFK01tfM|1+`;2iPIs~dmrg*?(2*%mrfzUmCNqwsSe#L9y378u^K3NuT(TTpo zA)pKnUb~}G>)yhV3(N2+$1NPvsacEr_{Q!ONM@3)F>4r0^QF1id7nCCqrUnVlQksZ zH^D$|Qk9;|m-nn9X{YU)K7?oqeC>da@Pir73fNgJ*{*9PyREcJaRhD6+hyUixwz zEL$xT_Q4>cd~i4La8ZPmmSJ4lGY=Vv{P7ei){!@fl%>PY#wx!D4rk;tPsJy+d4NeA z)&;**yI`o$Z9I#S>xl8Ak>I9<;6Gg%49!(fN>i}$OVnOV5Q9>kU$%sQ z=lK_nV!ww_21W>i6r*LfjTf7rpksWuuE0@+mW$$uX1kwY{Ukv938IJcv7sFr#!CTj z-2fV&KAXqNeypS}DxaC9zE|O_E(7MwNlcy7fHv}W=X!NFj1Xg<#*&p;>gef@dFZVR1yg9y2#w;RV|id(^wf2EP5S|^nNLfc7zvom7HiX{_E-rHH_noYZJHDV5FF?AL@=^)pfDpAe{ z39(f^MZ*akrpR1)iVxi0LY~=Y=0=B;Ti0$b@xSK3tyZmymNZju131v5I!mX`Wces} zyIE^r&FUnd>M~hBc+3*W@i9#Q^>REgUojIwm0pqS2puG%`)aEy1XqLCU4)_GgtS0u zLh)qYK;T3N0Bl|+8~?@FRbyGvW&ajmzhcI;#Q>oqBV zFHi44d~^DAcTv~7*bCYeEBFuo?aV|w3lvlKb0d$k8blX-xcQ!9XV0#0)#~T7fIZYY zzFcXQruz$o1CLVPF95p_Um@o@JfLZb7S5$#SJN34y=&1Bb_Ks&tFJzz4y) z=2xvxQ6WWP2F;~{RVppBuy)SoPD|7g13TGJBUt_qd__SVH<@eqfvM8zgUambjV$c{ zByY`W*b%ziSmCwi+gyI{-kIxB>%a)Hc@nFVW`5NiLbw~<8s+bNWg*1@I{ z&A|E!X5LFU*bbq3DI{h9>~I}*jU+hxj5^a|0zV!7{oZwC#1N_pme#=G<6ayDdu4xI z9kzNVtlGTC&d1>;%bj!AKF{F`8|!(hN&!fU0pyT~(M|d3sg#JR+y5!%<->_nmA(L} zJYJN^=_t(yg7Dzt)i5~uK%G-W^=X&}QF*IVF%9CAY1nHRzL0lC1;9z$2Ku=jQbdAO@Dv80&_iz$l`DnZcaFT8CXVFmE zfzMllR zQw%@z%(wuj_GM^B5ZcsRhM#?wz_=YtGs19FeSO2vJj*?mW9=~B;mYtELBM7ke)b8N zz4>ApK7>UjFx5deiReI^b)4+o{q^Uq1#s3xa=oDIIg%)t>+4HRT;_sHN%!%BCrL~$ z)Dqfw!A60T)G{Vqnt5K((_c^4AoM38dwG>`y)Dj-?ufBjaPMPrPqlh@`A#MO)~XFJ|o&L3Wtq8ZBXY zBA@Cx%=MD&G^ds|a11%57k1g_ws~lP^ZrF9>Fjw(5|hhv@s3MhxVYr()$b@tU@+wQ z5R52+O*xp#mc9C{$Uh-m@V|yD(w0j+M7LCeM54@tCx(ih0$a@iYv$9(JxhCTa zOdd3}O5anDN#ZEclw+S5c#&XB_tj1XEt)j%pj4cC;gc$}g5K>a!hucNYc)aNfZLY* zGHl<5-R30?o-vqC4p>|jr$5V$Xxl{XmxtoHi2p@rmVL~B>Xl@ckpwusQhaJ!`r-3{5ZU-`#yXIItIIjaHGIxK%naNjTJBvZ@H(g3x!vjQMk0=b#vLp~9Z`EpL~wD^=76@Uwmxb6Kz;L{dPE^1T#Q?8>ZEx*wkWKE3c3gJnETxCX5ap()gU(-&0@qy>!{;oNzF(7nXhD zFKi;8_pKznJW%&y`yH?TeHQLKEYqSbi;+7G|gSs64je;r{uYjG8b10B{SoZo!J4ODDqsZRw2u z?^UB$HYb2k`2f7TXZ7mS)Zan5Z^NdmWj{Qegrm*_7^O87T)oi(tgPgI0nmQb0WrPo zWR1u4H^j=>p@*R|u`8%oj~+da0Q#{&FC`TdVYz=%-`Sj3c)40}Sgmq$oW}S!Mkl0m z8}uS`4FH{!7_34###g^+ycZxoEiED`nYs^XT9jKnR(Zg#n zzNvR=>Q1FUm9x{74bJRT)!6b)Qh&wU`3;p{Ls-YaoZ0Ib2+lGv_)Y!Qg{2Ay-{M4% zR#6rVb|x*MeC}gGVkFd<7zY`05ZzDI563O=RToq)4m;2Mz|xr73;Y(al`bEhr!0mX zV8>wvB+o4%e%yf`?77;+f{R!46q?LG6=SVs1glH{ogEMh(zBmrSz z6sHUpgBePUf1H@MQr7uKtuPj@Tu^OU*5aFDtw1du9xBDkN6E3KSdMMQGi5qICS-yP zYm8sfexJxyiWHBw^As$YX}m*pG1Mp9BfutL9Etgu*Y`|&K}pQuiX0e^Q{mG}NyRw4 zZ;lLhI36Effn&$k^VzKEAF2~qo7-<_xba;7TTVLlx%?24V(jtD!F>{T-VdSwml7!Y zPmn-zb)G1in%O5?A<{Y0(y%ic~?0@xYHoG)H{UU$wm*sIBJRL!aHwN(_sWV+|H zu%x7OSlP_HNO~44Rzz4NrokU$@orj*ZouaSEo7e0diVTpVT|Kt@2($%E2u{Uvr4@W zJW{um!jMaKZ_k?h9zND6@E@=%t5?@5?aUS@=fhC`DZx*|R?L{uLY&*yw6aT?CIpMke*E|iNs#tF z%M;vNC+8E5UVJ&mf0^(n3PUaInYk zc=`0{bkZ^HrtHmVcb$-GoTN_p6vHVGiTg#0<=z>DkK_`HdCbB1j<}XDy#un}Q6yDr z&TEqRjX+_cz8Auv7w91n>O)5zH@f8zKnTvyuI-vxg#7JjouZ+aEOt43Z%OA9eokkt z_0S!uSb1fJI4+?6oXGbV4CX_>8$Rxt?d24XW)Qr{2*b-gXUeYj1cw8RlAZpE2l9_6Upm89U$N*XF&C`_tG_APpT`>h;QyB;;MRDzBT)R#WLCG( zA1y1=QH$=1A>>8L(mcA9B9STN;$QrH5m;YJSy}HVVECRBJfiNqt3=4H&snTSDv5-i zNk)G%j)k)AAxbw&yv7?3gB^hWD*rXIjFr1f64cE}4bnKBwUUW8gq{Z(WaQxR+-{Y0 zo!{;NSS^bEqVU#aLx_4QMBONX<+N0C5k~11o{0=orIMr}rGAWtW3hZc3pQEBCBPYn zH9Uk)(H{Z!tue`0gMCu~2^l8nDFWPY{rMHno}NhjJ)t@9B}qpGjlgMGQvaY41P9d> z7eT!pI86qnBlQxe?GP(Obbema5YRNHiN%Whft;k0^aH7jl6?Prv7wzH*F~I?dXTsD zViQXtB+na|9)vO>SS(59WTir-c1nJpE*J4!vBnQnc?o1|cgNwFD#Tk~iT8Vv`j-gv z3YrFMbrpgHnCB&JvT9>x9y~Eq>$ZCHou=|L^!cwCZt6JO8T~u{GBt+P`Rz5mi@f0h zhyAfp=MLD%VKGBAtVG;PF1{GO7w_XpY|F;?$2^tddM=3{#&(Pvo)ys9WCbe);a*RI z{TJ>W_-d#CLz#0m$(0S=6k;0x&0!)r9ZOFxJ#4qDRO#0*#r+AXz~2SvwNIK-kB3T7 zAsJeB8}{E;LxNTfOi|)`7KaXi$StAsFROm7D#DP*ul}%Vfbj_7P%mfERVP5WjZhTU z8Gcfv2Vgv3DzUQM%uC9GM`Qr=WQH0`a0P4u(^2E+5UmIAfkbf>XX=VnYawe&5&w zh7aO8a1hEg7giu)R;n`(0cE(a@4|0$3ZeI#nC-RW5IgQOa_kM$;avIaAjQPpA*g$T zv9iuk!aTh(NtS&?Llk_GVK;(#AIhW6hMR`!z{kF%cY5dp1b=SYDDCW%5 zK2%Xeg8*P}t0+;+qQIh~U_NrOa*9%m`tvzk6a;>F7&3pwmvr-Iy(QT*TW(CpOTFx~=Bx?8$ zLS7rZ&S%dzP5Z=o(NXle%8kE z&V=YbuxjL4N3?tOQcnG+=@WKRU1&LZoE5hJIssU=IX7BZ+tf4aaq8~gnlc#CEDECdn*yJ z5%jxv7Bj8}o)e69JcJI~BNF(LK{K9iD+&G`us($FFLpPgRswAaIce~l&z3le_A`Ek zIy<{bG(3ONRJc8TmrCjxB=fnP__?7$WZX^x);*a-MW!TI+9^7p)cq+~$NUVIHh7(| zx4bJIFz-yq8pBSYt6{WLut4sRuWgTX}8%z7li(lnJm2HfBqp;8i(> zTHk(VVP(8Q;$^oI*Qc!w5jFf&JnM>^)8(bcMDYFv^DKLnI8>Oeio+hkIQ6subDbTh zBuuWlYYO@$0Y8p~y}Jba$J76NS-lhRy`I%kx#~UdD|n9} zLY36(tOIkuhR$3g3@cn;GJknMYxa786UwnV8~Mlk`>Ver-?prR-;n-^PK}o6xkp(U zcD4l<7aPGpGu(1r=mts73%|ut%_P`yEHx@qClx=^Ds^5KY(dgrSmX*iNQ8J0i1OZq z!GK5xXoW(E)b`61*;FOS-NP3o8qokkWMj^ZNANC5BGDLpp_)Wxwr8yE9w#Fl)JvyG zMmZVnz8}d^S&y$+1o_0y>1 zAFWzwB}lM0)7$V?H<9VG7wwW-m88kBl16L-$(^bk=&H9vleK7tO@r|FC8fYNH2d~7 zy0y;S07(7LF%8{X=iKT>{mx9*gQZ~S7CAM>E@q5sd`5`MS++W=@oAVh-9(6Y8jJ`z z<o50n6qpe8MjZ+;3_qw-9W^4K@@k7kBxRx8 zb)pV4Li839y~-V|G-AQeVoPYGJbyiBCyG7`F}NEOwtM5mvT^&imz#1~qVF0i^yhFB zLtCG?+CisI)S8{}v0~xO{Mu)!#^;z})d9OoR3TxOPT|vurX=g*^M<_j%_`)#+*H!@ z`2t2IjC_xhSyhnhjCbcb2zD48cO(V{lQqI=0rwWC$$_sWOArEOA4vaJ31oG5cdtKV z#>^SF>9p$>=eRQCw~L>^5EUHVnn2yxW&~jJKz9bV$rOaU5g1Ir^%JC>SRl;Zp93QS zPOKjUA`c(_qCo?X1`R$%c^+FZmul6jS%k02to z5ejD#FL5=6CYJduX0D=es)s}FQVb5f;TBF-i!bvsSbI8^)k1N43xgDMLx%}cEKsk! zOrq|gm=8PzfGs5+%MV+AVQU@+ z3rxI&m^#BOgV;(GlqUQg<%=2glw1krGL={Oeo?+V879k6=Mbsgib_x`_YupLe?z8a z6W4Rue#5tA1LkQM7ZNK(*{{jRYp3zEdJWbNt6Z6#wn3;rJqfM09@p5f;?rb+t}k48 z0v_SL?9q-TZz`#j`a>@%cWhX$SNMCA5O&-2QV*DiQP;ewe@vrT^L_{t8(Sx!PxO) z4AZGYsEBqSHy$Z^<=Z~QDGP^`G86Frc|3>T#Eu)oJw-Y5*7iU?5sjLgTo_QN?qS&c z=^>J&w7iFv)zX&C{WShjCJ49kI0va56ONaBW?&5xD;GF^o$%|whqd!{$QJaPUW5v` zjwQal-TnM#)uTIcn!+t`_-aKb*6yNOlqcI3-${Lkto@1M%Clj^hDB**&74;_t3`f^ zZUbb`D@4Ot^J?CAlIS)-WuE;vTBsbPCnj{A$|b+mnF|}K@tmiTA9q<201hj6SM)P5 z7*D`8$-{=}9lv42OevG&gXdqC!0ysAmh5Y>3~TMHL<#y!R8!+9Wrw80+ZZeRB+$Aj ze41|q)ReUjQ=(dm(+F|#!*Gq2o|*9#OL@Sa?%v|r(d;YWDoIh@3Yyj`imzA-RSlP3 zIg}wxc`K^}et_3koJ6>xUQr~OM!9_PVVM|QY#BFmzZmt1RFov9ximQ;zUgM*@9ObN z;3v+Eyo|y(3@`V*oDLT9?_o9K9kQZEBa|3fE1mb5a+yn>PH3ShqfBhz&70HA074TK zrLi8YxC83aYuQcE%@@b(0l3;L)E{p)A=FG!=IEiGic;lJYzHT{Sy7A?*kg(^S6S(V zz~Gdkcb7bA>#@hOqq9JQiNO|aCEnV3D+C=jZJNks494-bEE-YP^O~Gzzg>!Q&MF05 zQxxUQ#Gc1uq4n6Mb?=;_S=XqIilS`pW=V#QXa0N+R-RWh`*u#T55E725@@lG8p&s8 zKWR+4kEce>o;53Ss36*<*e4H=XTva%buCi0YZ^q@xQq0N?lniR@vL|Moz zmDbf_L(^btrdii0dpWk8L2^D%q-~#lZ+|d*ZGy`1(K2|q*GAiq9yvw9_mF&R3tIxk z!cMqYf;R7Dyw4W42G*sE^|!Lx{OhP08;QG`)=GkaodVGaUFW`<_KQ?*UE*LV_8$*4 zTIA~>C!3WKBy=mLbE2?+zB3P=1WP3g+H6S?8E<##mzPe5{w%_DP2Z%0-6xCq_;gAv zdD2}5z5vTBzh{=91N{g&@QDO;`!bM(HJ5-W-vW{*_*^vhg13d&%V}U0)_i^KAI*mA z6ZW!=MnKHI+q~)3rt#l zf?R#skCQ&;=$4M$K{@6~2m5#Pp03Vd*?b-3kCc}rlww*7$uqd_CG2vdld0s^Kc&r> zlk1=4bFCTfxOnaGY{9qUHXAw&)CKUv!-guLg4~Y;=Tq<*pFgQp>Of|GFelgnrnl#O zO2Ml3a?ZF7j>!yy8KBC$F=n^0mP-SHck%Iw@JI$8o7)6L!^MubHy@ShCRNj|&1w@o zjd8d0f8kr_yLEnzv8}V8`!?R~g0j`89mU~{DTdk>+vX+UoKA6zQY+>H2I{Tz6M(JC zp!1dhtHr%7as?kbk2%qG#4Z+$Cg4v0JSbn1sSMjw>)-G#;&YYRm)?S*{ME!^O^T(`|rerkfE5(+|vCKh< ze1YhSzDlR%SSs&F6pZv|J_TpO8k3360OR|ajASUzpg)l|>@{Pev~EO(tXXM4&gw>y zJv8{y4`8kCEb}RiQj=0Koc1W#j*p793?+f>mk`3t4vc~-H~S@W;Um{GWFPa&jDq8! zv&e#vz|PVmMhuN2e`Hxke#$r@F-aRJSrS_68CfuhoV!kfye(AS+n*3P!s!UC$wMgP zxJ#D;FO6UpEd-1oNdNT`$TjvtYYBI*^U~`hKH3`C>84=p3z{;{gkx8i#aIn|%}s)3 zKN?&L6?#KNY3Y#yviOwu{PJ`|JgTf2ozk#)rOfztFE`iR)xM9y-7|#(vXdHYa z4)Rz8A=k!x?-AjpY?QrGJPD-J2?FP`5)*dUoxuiIp+LC^U9O7+%0=jMZNUL8ga|@i z@f+z_daK+zU#Z{+Ok*O^|DR6I=;K%~S(9;@3~i%6m}9ds4*DVqm8&nz%>rP_6AlUQ zt%`3Och-r;2o<^j<6Ds2{vxy{1(4~@M<_%mC# zfHwUJ#)NACvpNWdzsDM}1W*%4PM7H*jyJ>*gTbfu$mC?Og&3PtzoXva3MLOTZ{x88wluZovf}_q$fBez!9sEiUm~ScLI;~#= z{~ucWW@?%`-c-To!DF+iVcWmFOLtG1;_2#Y^wMnL`yXgTT1qpyAf3zF{7H40T={tW zWoA~s;eu^A1|BZhhGSqvy3ZfM2|0s{dv2xOvy#15)!-0RJ|0)kzW_Gzgz@uaHSx=Q zu$5}U#CZM+yc)2L3g7F5kUxI~-gG=byTndVIyIC51Jv>q$kl{Wc|+Sp|CjmLl-5v= zq7smc&VsA#%EvpV0e^l6^A)K&I$>oZYUGdaaVi0x7_T1r5exwV>;%V>gi@;Bf9}6b zqs|VK<$i+TS~8t?Q50S;5z7KwBXL6fN>PKfIc>$IB-m?|#J``F;zlD>ZOkdyj>@(< z88&INiJ5+aJ)Sx3(K?Of0Z3mQi~GSmod7$Mwpjr19=UGz?^&aP^-?dJyuUM6Z2B8} zjeui26JPq+E29c8nQB}OrpMAg4R_GI1#Vil_G+Yf{6=e@=i=S=mJy*jaD28-7F6VN zYB1LbfJsA`@mTA?ku~*boDV1s>hAOteJWK#@QH;BnNoJjzW2T&JHg(}eZg1_q59CY zgG=H^)fv7?!h!R=2ZrDST$|et$E={G)=A+yQ$=qX$Ji1$th2fIScvIq;IZFu)FIKIg&@mjbhI zY3;cm2)RR#mbytMx5ZO+1$1{OmbG`=Eckow?Z2O9usU1yP@+fttul9S-wt`uhlXsf z_`P?7Ykl=gbaYyLSGK(WFzPty4KttF&_qlpD#1a&c&p~q|94HqQF*G_fSAv5ET1oGlza{aJX6ejv4;l7(vJ^tU zJe5fybbF%|tCT9oyvQ$7IUhpn%{uG-YV#}$)j6lXZgjocj01Q41*9R^4HXPAUR9GP z;0nBE5sM-GRSF9Rz|!AfZP&#R_RgMw(_k|#POJW}{AsFFJ%=EjH_vFa8ZYeFrzsmt zq>a*OGLGratB*T09gj}y!FA2MWoBL0<+2Ph%*)WmYG7ozgk zns7WW?o}nBoJ!nq3DyrKF0b!mb8y13X`RWXss1q+&3UZ|R30Bu?RQ(o$r1%Y3v&=~OmPsQ+2ZNzDbiF&`> zanBzlUvy{aTCiZ=EwDuWRt!Ra?#Npl`vdo~=&Gt6hRdc!Q#usS3m~*FVh7;OqGAY^ z=VN2~$*^qaq!WQzSHf-BV!6skpai-wSjQsy!1??EP*72QTEEv`043@C(xZn7H~59TjH}_|`;IWLcrT8d+NcJH zn(L{WrgASue|`O--GTWv$ZIA3;b{pho3_O42H@%L-9$bl>-65 zpl24uze<4Bj=<*%e+#uM`toLZq{ImZr9VgE}QP$U& zp>Sd+^qlJc7zqzsS6FM-X|<#}U#kvU{af5TD^|4G`WG)=(Ctky`8&2*HY=w2V^r+v z&pd*VhG8W%^i_N48`@l}Qz4pKkl(=T9XkaaJ)kOSB;24*0B2JP%l5glXV3N7eu|_n zv|~f2B$R^be%}A0;p?L@a!= z0LmTvT7+f){z4wuts}xR?@!KyB-qG!+SVK+Fa%~@vFF!-)HIEZVG%GEOF98@6A2Y` zZI;}G_b2bY%g1;zw0b8H7la)YVN;(K&pRZ%{X-Gf1HXDnd@?=~VW|1H-+r67A-%js z;`)>R5(L)z)3H~)$-&IxS+s0QPc9zHTjJ7{ODDbw{&Jm?sQyvpLM^6?>fbD77ad7X ziQeCgD~vKfzaX*xbG1#Cs~ANdR}*Mc zNuwUoewNscj%+0cfLiugq^LI5__I9Ir=CROTLMJXFIA%7DG`=-?b~w2cZx4~s&zE= zT~f+KSCJe-<@(I@5F;O`|EdHsW*$Cus;_TTmM?3?*|Yc2<{jJag#xy0{hq62^UFPEXBG6e!t&bbSz7Ah4j}Ah#|npg=!BdB_?Tsu0jPy>$Skd2(>?@ad*z$!A#8HL zcm}Kq(A`aT43z-TaJSh^I>Fog2rx^Zry%&~z#Z*lw5Juhmg(*0no;thF}&|nu>5j* zAe1~hzizVm-s<@q3|s3-WO(>n=%7AkUWx}8pKTB8Y9*?*Z~sR?Nn45h0z)|C?JbA< z+OVSMFutJAA(eYr(1xLsPl;oz@q3poQ{VQMmU%+3kJ>im{p@O_zkRG%A^?supuAo8 zCu9C(Opa?fe&bbmr{>mku}27@3h+*l#7XRQGvzD$k`9_1aw0&e6@z0IJR#5QFSW|~ zSp-S0jUYigInezqPN03BCW5R!hVf5?w~~ng912tItsC>=1r1 zT(mc}Lx&CrU=FREDWQ2XeXY&JLS3_jfxzy~XK+wfEf@Bk;8_38gkj5`;EtjUR2$$+ zEvWS2u#z`UMZppGw3+;jWYH%ep~Ro=$_b&OrQyJT&{B4ek21P?Clhwb!cdTDUmRX7 z`2q4JDVrq_%6u^$OA(WlWIkI)j6DdxGQs|384&D4p?Bx`4i)#pafolTGwmK`2X?2TGQ8FSlhBL|HHeqxuZZ832r!BNSQXl36;}R zd!0_;uZYY0E@89!Ej$zqsO#t*n}=i*t5XlVtPu{HRdg63yRwMoycDwEQw)`PO~NE^ zeLsbSurHsXWG*2gqQMHqb50{E^#i0>MHCSAb#wU{{lzvQy0LPw3>lEJwVI~l2}DHw%^N`Ce1>s4D96<1#E$Hh1gKU6zdd47y<&VcoU zBRhWc!A4G+>GNEJ!^VwMn;nz( zUV8G~xFXG0I}-8Vj(wAk&Yl0SSSxL8x04*=(wRH{iTY9QB)vJTHrYaHu2%_Pw~ink zD3*;lIIQq!WiMgROG(fYD7$Bsh2=) zGSW?z?&Fn|wpOtM*HzP6>W0g#Vfe9!1snn+I7iAzjZ!PYc0D?n2UAjZ7|e5(i|Tu< zg#q(!Y(S`vqI_Wnzy#O+?-=x8+IUHQJeE}tc6(x9juiRa}zY(k4xoVS}3K{m$bX0Gi z2`ks!4TT7-`Z?cmnilJqv)N)&kXjgY_Qw!{SAJP`P0go=ot1)0$ql#BoudU+bsVHB z#opn~J2VN$9y@kS{So!5#F?BW`fsZosOuyezEX2`!0$S`fTg}Lpbt-32@GEQz!AEf zsaaI!+<&IQR2{)D3-PjR;RV~(WB3z1j>B4~l88PT5GsySPcfa>OtAgv7!`24NX!!k zx`O&V9rg+^)Nd8Rx7x$xDKCdIHl-^l%lD=M zrq2NANuiJG33%^noC=s=wLIsvbqgLf7wFU!yMA z!_Z|s2V>I4@UzcRm@H#yMi?;r*Jl9mEPL{(F{N&y{^xnSo#Sc=Bax$1NNRN>V1JH* zU3;P%k%8+pbcOvJdf55ZQ1QKB+|QqOUU|0)^xY`N(}9xbIw7~1g$ILi7f9KMwFZK! zClSKD>?ZaNAy3)X%>d66^`5jjCy#P7Ox4553SjdLaFDx0m}>G1LcXUeI$eRBjLc|g zQ=f}SbS>4Ba|VEQY*-g!EVyKFZ~peU4XYVJmYRg;XHBo_IZu=;O&V9J(zx-|E6G9S zZD9Ae5D$41LI0CoHVEzydjpneRF`y`@7y#zaAVEt(W6H>OfP(h1&r3Z4ZGmdNG3f_M4Zx?fJNtzdF{wkQV( ztxLO}2Q~0^@;ZIhLN7z=^9^@WoW3XbpdHT8TGRv-is}b^ZV^SD+=kC(UQj0VQJn)l z41(pEA1{Z^U1Ga3xnoa^iTUFz`-2S~k1@P9tjnn`N=(MF(ng#}wxLo@4!Jepo+MtM2xX&0?)S+yj;IpywpfG7 z<>vhS1VZCsAO~G3yrcmuIyjW>6Cf8~z`s8(+R-=o#1))69_1NyD*R1A2`gA98N+$q zQC5=a&lCYsZ4TuiplQ>lt+s4|mgS+^wKs$_n(sk3&|u7d7^wDav>cX#rt&X6T%k2TmXOqefvOv%E!2l5^ko&M)1zUZgF=R~;1a+jwl^-l-tY-y`@Gy+cMGAuk{qD@PT;JQ{;n?GQ)Eocpl#51fx zn}4a?0HM2I2tO;M3%4TMZECE6U&%OY(B|Jv#@fQxz~%^PbZGMhE2rI`E*2;qHlZG5 zjO`1uYORbC$DscbAPn?~04MzREHPE*gTbnj_mf_HIg9=qs377*Bis@Bl+rgX`s; zw(M{qC~}&(ZY`{4z^{c!WsZw+bZ9SYoGZ{vzrfsL!W>HBPpp(O``5m`*Ujcr?U{sG5w~B zTx~0<4LFJaOF~A^XHQFt6OaM6N|TLZj6%^Zh1dv~UpZJ=2#ri3NlVPP*TzyZn85Y2 zLYHwGQKqR#re^085`MBWjVDB_>^_G%ADDHtd?^KAl2~;X>lc_U3VBZ8k_FS1A?kaQ zt$UP%objketX7=?s|t+mLEW^B*|w9{g-tQIrGa8uFFMFnSJak}R!#`5QL*VD<%&ip zl0fSmr;544LS22g@d~+SNhQ+c^1(5p&N~VDy{tteLZGcVnnZI3b76J}K{`)mX`w=a z3`8+fW(97$)+{)Gij$&tNy6J;^I|j?eu#USQCS=d92ws<(q>Yn_hedU8?q zm4@?d2D|yZ@S+sl4AJp$avC;ihR25_@85r&B#&3^aT`?anPuMn*Z1#__Gq1U#SUm8 zb%DJDUMs>>+5pm9hGn~(Dp=3axbq3`cGR$;>0o2hx%Y7l5vcmuItG=GL0?5pAhB^P%0W7})1-PHFBhSMU%TGa88P9yAm{ zsK1|E!L^6sa}u~>ar5pEbP)hRa@`eTX@%@O!xCfI>fc~!@Up^4wS!|2EYE)1Q5{(H z7P{Tgre5tKgizOI2p!lY#_X_0a^kEkOAVZOH$vE| z{-CVMi3*-Qm4%ngboCS!8OZO~M`$CdK?S;z4ZPgVV;Lzi)1yRB7W_E&dyO=ZKgZCV zwAC<|$Y!kE$*Al)Dbl{A2-L_3gFEt$;WM6*k%n)9=`$#i=GQad)L>#}EDzJcA{QF` z#`8&-(Y=g>j+)&yOl_+X%Ewl;BM>^UQ~mTZzrMjiDEsXlP$^}dNkmiIpT*pp`13*R z$IrBbq6XKAW2fwc;3N7Er7R%NdrOkGPyr)@!Vw_q8-{-i#yax;OJYOk(}uz9J^ z%EMt3*mJ|VUa6wFevR!1jDO(-bixn#P-Yo+TQ!_{oR} ze7`Vq8}SrBvnz#i*yf-jPC0yG9cE9O}GjX(gh~N{2p)t7#nF!j)r}ivK?m;_t zLAEi!#&=e`ozf$&yGX7!CH_DJou;$uPASizr-BOmEV-N$b%=_t%d14yBT3{zOuiOC za4z&LEHzfjAjCcp|NBe8(`&^I7&$xdXj7xe_OqYgTE942HQk)9z5!;;IkXkrmsdu7 zmW}O%ZlVGYn;IPlQwBUGp5yD$!Skn1Eygz>yKsCTm>dMRk=0lug_7gXU4m)e^$ZAe zyKstuPPxIEjEy$6Mpr=D>*vbUbJ(uw$-?$sXSBO96FOE}#0s~*c_ zQxuCiIR~cVHO`RDmkH7$Sw^9@ar^{5S1O!)}YPrkc;`GBbGh}Iq>oEvc;nZytLc_E<%x)T3YGE z3z~(3lnAP2m>2v65-c4E6pEz0d}vhS$W%aPI6!$F&n<}e#MkkGtX9T=M-yVa3@ z5yB3Pcanr1T8F0ynQ0XQe_?NE32o$=S*_4#4U5GhO0Y*M=Kzaa!J6LYdzjj(def?OdtZ zuzLdB0QL8`6~M<})9~G#p{vu9*cZmN(i1?w0Pe56Y$6ZO$QomlsZ|ds`v`1bXt3}BJlJ~h|yPq2BRREs|}yPA6{?_0PbK!UZTQy$o9+sGn?zE+{h zrL8pGKbQ8*<9qPG0YV?c*%cf=KxNEd5?m&y{A8+8OMlt>)c=c#m4x{pJeexYvMP!~ z@Fg1HNU)S}gC--(Tos}J3=H;*Y*PKOp~G+-264SPdUT1$Z#KE@>YE4qLyu<9m20#` zC+suA%V^CH*uz_zR*OzBHT&q%BehH^w$szVOp+#o<9p>cAoSTbov1&0nFx5wUWPh} zx_6f^|9H8XQ%Yqj+fQ}!ZE03jAN*mZG3e);380vl399iM%xZvzG)WcmF)^w{ zb)Z&L;bme51ew;@oDiazuhyRjpO23z1RjdP!YJCu$vrf2uPS7NIxB9~V!CK>t5>kQhQR zfRHXHzrlOF)cjK9!KJaEOQl#p} zjkh6HVSPAJm5{$2tUsI(W9mGG04sO$`)Man!J>g+cT5#J_Hf|nU3_A|Ug4mipx|Bg zWwHG;>G{fP`SvZx=YO=HM!US2$M(F@c1`XJ;jlb0L@VSA%xV>IHX)=0704SF%g$J# zCJuiWij{Qmay3#fQ3#b3-9+_9#~d?N9^1bS$=x-%7jaqxMdN-C{-c^K}Jw(E0-h7+Z>Gi3Kw)GX23iF#;)GEhjT z#0f8@Q2N+8xm;s&&O*-fcSIVG7!LEPXNRlrg)IYl55?*x4U=wr+YtCs!xg-yPMtb+ z>ud{GW_jAtx?PN;S8Wx{?&UXGi^I9JI%df3DGs$3|AJ~faJi*SuH73*RSvrTwY5;@v%m$c+&)sz1G%?;#p*<8Neblq(aw{K5_>?ayo~ta*?)m*N>@>& zdABfs@cvgyAb;ce8#hK?&BXG$OuIJecj!@o;kZI9)|-&~ep@FrT|} zPOAP&{$#}{c8n5#)sGBW832pWu&!3J>i>?!kD#9LK(*fkUk(qQABBh$fdlI|S8LAdGQz6Ary7xYqCw@|zd zS!J+s&qYK!|AK0V*5LU6Rs@$qg~r4?@ELdhg+XA2TCGLyj^?s7N^Mylf<0q}!$JT% zP`4bl9WB5@YrCQ&U^|*^kzh*SaW^xX?7-IrJ9xmv@tPh9_?kL$X0&>|py|9Wf~a9_ zaHALrJ?JtTuxDb7TJ^>fo6Fh#m56v=5bLi%JPBAW%~>Oq~Kml02|E@#YD zB=UgMp)L zVf$qEl2?s0lONcp&xY%XU!5XPr7q=#(@gdghf>xQ3uBiNXx=4UI0W_6-4Ys16+2TY6?uZv;@7Mv#FX(GW! z`6yMo6%{bNQY5F+I?LqpFW4F{Gt~mCx7cbs!>WClg74w51!|hCbi?21=$k!;pMTZ} z6PJz3Ie-ZBuVVS`vz>j5q8fOsEvoYITaC5@)nHfsk2>!6%BHcmVpr4i!LPT6j$j)t z2*0-_QqxO8c8pck2Z{RyfSY>>uuS(tWDP$Ldi9Qnez3TY)vs5&>&a&%am(wIgHu+Z+j2v&+u(G;nEr1%6 zq3+f<{G5)<6zXP2Cz7{|a|q(4NiVmAkfnUh+xY9zwd@Y83eH0K`FuH>?d4I_Ka;BO9lCF6SkZBrebgo7)Ye5$8g zlAk*&S*o>PDv26vhY;FCZv8>8xg&mESqSCmv7M0POJ;j=Q-B=n-;+@HU7$4K^GHBC znAsQScwFD6?#RMXbpjkL_%$8upbYyK-uu=PupL~9!hMzo?+HRe4L|#=4CbZGnwbGT z;EkBd(2U@}ikLdZ3~tEh2-EhW;05io-A`brF#YqqCi z3`XWjs}dQ;u)dGMFC4OW4P`#3?XeeSdmP@u^~(*u=y=(0ga)RbH@Mj6r|)ndmS%(} z;HRYwKl5}Cli#y43g41`o#*8i@tUW+`Iw2t3@*T{O+Vwwaa%YxQn_a1OMGji$!EHS zr!bn#;3rs)wboBSn9LT>418VM8G0qRL5jTZjkjp|r+EvV>wT%$rCx#`$~8CCt<(u> zd+0Ce?ht$8IrlRIB4m@jG;^PHLd4IG!F~jD zWi42+-!Nxvz?9p9&9e%DKZExf6+M_UXHI^dBnRA0Mg$`cM#+buy#$KP$FX*b8S;u# z-Y(Mm`!!;NDw}lhl(?ZpwbBTM{ggwtPX9SY>96ztp**p?y9l*SPzLJz&I&w;ws&jK zD%W(V?@eWwH8RvDLHR}_e4C)Wwa@(yQsS$snEP8rQ3nK0(Lu@q?Q`^l3H(D&I`s`w zwCRVIFiU^CupO)S7ACni{{@qy*Szfrgc?TB;ufgxI>uYS`*h8kYp_am7TlgO&)=t+AwS2lC@uB1>jnf_}G$miZc{tw;JOFz(?#itXr@m z-f)+wzKCrhBhQY%g~TM&74y&sy{rH#zdaGAHzEH==CrI*+}3(DgUx|>^A}w)DQFX+ zf#Z%x3xN4k!n9Kq>+-YOh;El3jc~gsKN?YjDQBwDa8(6HZB5L%1Zj}WXN44bd~j;} zn92Ab?K$VLter9`jgFL!91E{D`!I|Qa+!%^)hdq#AUqx8n9el>0GL!sOY>it8oz<> zxT2b&shhzFK>~hl&ORC{vW9AQiM~q3o0%Fr(>DB9K9z3{W-p`YjP*_tD#jR6f;&m^ zHeEZ1^+}C4+A$W(xF7E}62)SfF#cMGdErEDumanE7U4Ks?#tnG#`NVRjK45c{D16y z1$Y+6xAy=MEO?M$DO$WhaSIeFEycaK6bi+qNDF}iE$;5_R*Fk-*91aBAt4D6C&X=M z-tWxryEZ$M|GoY0{k|geJjtFpzjMak-H|gUKOG+92?}FDA`WpgVQ3ysUReLLAq(L; zikIcg5ORU5jTE=e`YYvBc9gIFMva$I{^aGCz%z_*iz;1zSaLC(uZAvUfQ`!l>y`ml z^f9*mB#6)Tf;cUXo?n5#9cNgA6L z9qVNYQ^zt2bG}8dQgT8LIWglU{6Og!+S3M)^UBdXP%M#5SBheZ)ls3L!PvKlu3)ET z!0kV&aL&zrwGU^IDC{YBvwpJ#NM$nrc;e>Nvck{L5X^^2=3XI5W%wD(y&x?uZ9X5X z1W+0uLjM$lMS0xi|8g{4#POm3ge?>#lqzUDs3CP@Np^sW;^J*Zy(7chPr|KD@n*4t(?BTaiEGMDtl$=H*dqzV}O z)w_R$hjo8~*L{ZEc-2JCC-|vg1fF#d4i`YE6i)qx7ZdP``{TO;2+hQ)BI7&SiX(Nk zf=!x~)qP+%TA=!B?}f7kUd?q-{pcB9uF%VF&^ZHei_5FvOeM^^d*5Mv?f|$H-B4B( zr_Dev6gk^c9uxOX)eL3Ma8!NSB@mRl8K`2ChGqHz!>^W-2_xSB6&2C}3%*&7z-t|J4%M z)JiPrcP;~L#y`Y_buvPJPcsNJBP^|=P|?p;O^ih<9WkE3KTby z5z-@GBQ9$`kR}U4MChdCA;cOdD}xrUz)3Fm!)IoxHm6&6ZyVDL%lR%kl(xigf7N>+ zdU4FeZ~Xm_%BCWnX{U~)$m3!Q9~fWxz2&iG-b`(-z$!8m_p&nWoSAt0%#K5vaMJ>F zBogG|&AEowZsxwQw2^zmX%iR5WBS5kA zaJnE*amH=L6f?OE`dSYS^PdThE;G~%Fy}+?`lX*L;Yt%Q!Gs~mANi%Hy(7h7BkuwD zaKZ$683e^9*mFQ1@HCGv+4;&tPbUq)x#~qI zImO{Q>gYrZy7eH~!a>~{jrEC;OTgt3oX)tHTNs&tq&1B9r{EZ*DN3fd-I$3W;Y-z`-{eEUdGsGAj?$zKc!$?nh#Y2lj0D; zP_jBLjhvnf=J!1j2`G)F@$$+Gj3=7I1`H}lJH{CI!HkK0>cEBao#EVXGnUUA z&i7WP-Qh@aGlqbp%$+oeuwdEO!AQKngJb_l2;9@07E}(7635S9z(2gi)E%U9wT|Ok zaypk;+BmrCG>4Pt)l;)Z@)~$1l22Z>1adFivULk}A;f67k>O!Vy+i+7u+_j!O-M+O zUe$-`>m$@1jzp>nBMUVS<8wM8)-#*z0`*`&5dS-ZTR-4(abq|}`T!wP;{Da`MxIJ1 zDtQR+r!oxB!wN=HdA)|J4U1GoqX?N}P%x2g2=}HKS*AT9-t|sKZlwQ7R3Fjb!=u|1CD;c1f}Mw@z9lX zN<~fZtF2qBeg*fGs9687xpU{P!~t{XwkbqM_UN>ZsWR%*Es!LrH2Z9h@m!W?_veKb zdbI^uVT_Mj-zY^Gu&n|$w2GvNY+(fnoyz390a(FCxQrViGKQM`@ zjY_oL^x9I^m7?(jxvx~z`m?uFJ46MnH`TXOYt;7SA{${ldb$QU$DPTR0Z8F@xO!_i zzI6j{U)ph;l)mea;{+#L_i{rX=m!l}W(O^UOvqRJ!{n?Sb|w zHz&KDbOfQpc)ji==4B^`>D9lgvtadAgf6&kt9#(cD$+sqX5Y_jlHP-FW>vtlhw>kklI?!EfdfjYLD-*D6G(bQL@dGYMp)m&D(m0Uispf(sF^@MQg4aC*fN5w zmy09`GX+>>a;u{D;%G8sy6+>Ou#7bef@@?u)V9BqQuP z6O!)Dezu+N`N${_+^?`G%O2_Y-UYz`*nJut-NhM&D`AogxSpF4CpTDVdCSa zgqiek)O5L*WS1~uC9kEQ_E1&xY%^i#dpMX(O%UXd$;13jS1?|?wjW%@MLThNTIApg zH*S3EIZlp>fBqtYoA+rWo4{9cfr}{#$_V@ZfVC=Dv*C`%is~!`XQnaVrm6*YhgXahL>t`X2Js&U*s~gRG-ssjHhK%eWquQ zWfz=8E9MgR!YHAV=GMbW&Ai>f!qu)S(O@v1SbcrQ5vl~PWWR6?d zcG%!Il6#@E#OWi;B4;rEim}FNs`rG3K7sFF$87#h=4lN^8c45FCnnS^$*^lpf~eV_9!uKLLbpN#3#n$ExWx5=#>`wuh-R z`MrdvDcOfjL5q(y(Zt|9u^8!)eMY$Gu)if!;OB9aBAL72GyJ%yK?@a+kw$~RU>7eR zDRhqsf(4MlGd-vO6)oYYKWiG5fG!5}^>m4Ru%~&f9&!k0yS{mB)Wa)7y(JS5Lu_VRJc30DFe!9+stc5KQ>HZP~Rmg9Z zn9+kh2-orFLD`b3Jeg(OsVSUozQkaOn)^k{a-!;ABSO^EC% zQn6z51{Euce-W$7`^2eofLs#1P-AE(hBa&}c`NxYY5k8o!cxj|vif=KO5o-VS;N7c zzL%NxW14e7g*65*7Gd9p;<0?p;rDQy!ZYf3=)Z9rCTXTOMGaylWDmCg;~aGc}`62J+||> zu~+bXT~MW91`yH-e^XSB{%lDXqmZ<;qos77Mm1@>%`z zQ2ai|YhcBi@=;*ZnZ7Ut4gC_uy!-RmpC@Rj7YvGRaZC$@rk;dEI4*$|7{&qhBRpGA z+fu;hY2HEUMyxuFlF|pLAS_TZ=%J>dsMYp>-8HPADq+Ovq`cC^$sy&tXCptVVZx?W zeASTbIfgLNEePd6Zgps$d65yL!*7i3og26w*owuElr34K65$$m{cFj$U%7$ayX3lK z#{fESNHs$B=p2Gt*2lk7Q>i?2o}`#O%^9SQXf%n24}Vwm_I|1HbfWA`Y@0E3sGbZR z`p7AIV>evf%_#-A>RfSN3~0J0oY7RS7gsL|H!I4Rr-%KXb2A2ED$#gQT{EWnyZ~Yo zV+X00mxm^4AmjjTTnNzs{~_dQh(agj05gENsaML=Lk~r#SZwL>Qi<6EsxgTmDRBsG6()$czBzR zrvSEA=bI>4t6}S9;^>}JFswEQsbMa6 zBx#xEGZU~6LlTTB;mR!G)>c@nfiIXt(tL1zS7bxYXC~mROOgwZ}@pyFg(?}Bm*p)Ck{3I;;PDr^mOmHA}U&aA59r+wG8&= zNI29uCngKz@eBj&QydrpEpJn~`}BJlS+Q&+mQ;I-JABo*d7>>@&^~Rl)hN zaAcUw@Sy!L!@K73M3U~x<93fO`yoE*yr$=H1)?fZu;3TdWdjRfe`#1HfT*v%Hi`5yTjx|0m}Z}Rqk zWt(WXZ!^hqAM^&lJvxcuD&9c2(7b+DL!Vfe>Ys|!yXsyO1wP4dvWMg-^9p%Xat4PKEG7JeUB6R16N z%un$R@rPNmcZL;E8rsXBRuXR;X$&Lb^z}^N!+gjn_KE)Qlz^A8LrHt79{ixZXeX5m zDP3Dn9_9%;pvb{!FWL(M&cPH79!9l1AR@rvzsY&1one~=110Lb5Xg9%lqg4WUJ#@Q z2lMjuk_F5Vq(EWF`YfjTK~tkyLQO8qr+!N^bs>n*L-&~}z|0JzFC)y;%P9F?(oPc- zi0vqMxmc}J)DVFeS@Y%Cnwpnxh2pSA7LfLmL%z)nhLe39EZnm=Y#HKWQDdk)SZ118 z^fG0mtk$V`wqUtH!Bp&5(xN6a8YbdM!5Ev9?d;7igwddclzqxZz>uIuPxgVmQ zF{;RRk0b#qXP%GIhVL*p9sf4@T_Gy>D%lH=6Y_tE|XI)*O zE5AonmMVedHb1=ue}*c9J0z>Q!;j!QJvkFT*>*vtMlScahFEDlYcFa1yKj9g-YAI~k!x z=|nX+!A53)8TAtXs&0r46@EgJw1hT_el#Pd3qTP7clQC7X4?vN4`jbPH9iJ%GJquqJd;iQt5wICwTOgY&2b3_oBA$x!6M$6?1a5(oK_sQ!z1%&Z=H@g4Ft6QUpR}ThvZQNi`PkBKOMi~wJRX`H%`KvSq;0tF(x;;<}<(> z6Wc8T=KKQ3rd@5!3)C52qvoSt$F|~tt>O3@gu3EHD^@iCM?L>1C9JK zWHPG=YjDrNfCLKMdcnm2f|pSF5s)BOZw!f}ZFINfO zedlfa+jDe+Y*RXz;q#A(3{xdh>w=ECW z+Nml}e^!GojU!mogWPnUkvinV|7?+Ku>|6qKFm7!b!t_2)_$11U>X%U(22CO0nN_s zEftNC$n+6dvyl`HBM5TJ(#3B6^xfvxuEi=sLakPYB4x9bg%C=lS@RB;8gHOj`I{W9 zR_rDE&bRTyhvftq|J9ZcE*}itpMgfUOxMOyzqpTq;r-v%0dl5q?@v#rYhPAb)PUjP z19_LWT7EuRw&JDB2j}s$KJkPlklk~k*H8!KzHp)CZ7X+;c8ffnS6Q3Y?63@Z4|HGF zLHDK&6ECU*|MgJ#3!k%Z4%1|C85U7~Sbwm`5E z`bC?;5GS|$Lc3VcT33XnfhHZ8Kqctzj6}W{lcj_I4E5NBo2YG!#8qn8}PHOMsxsp&S zA`E?pF>5rXVf^|XES`tN@ZL1r)uBUwf%rb-MAknU0C3#+Zc^k$J&u(Gp$`4M@v9-6 z5M@^DeWK}9k;aF_FSIIx*!uBusZsP^f?q9GGUYTRLw4a;5{!lETQ`At*&+IEBSDGwh zX80ra<(qHw|BavjruU(Dji(qU7gV_d3lic2dcY>)du>&g`Ye2(+;5%>d4OsnQ&ASa zhxgO(&H)Z3Bc)XZ<=LOaDMV&3LUx<5Qn5*`?bvlfo|v#2B-HMoNUo7{47Nh?_e_mE zNz7khh2)p=s3C92xtd9j@|yI}3~~~h!@O$~%Z-#qnIYsFL?W(U4Iwi!9VV7RN%`%m zB=z>hJmts%UY*^EGS?EG=|YaBLV6h2&OpKQr}iVY;TUK3!MT0YJ9P>ncP(Y(`a(W$t6&g` zw_tk+Sq;p#go9lmgjVoy7rRvtj%95L)4|txnENXN!-s~DQmY<1lqPK%Mz3DyU})l1 zx}ygcVp-A&jLZ#YA3b`XkIC|RB5_ZiqRb0Z=N&l`aA$CD4qIWR*&c{7;%6OD+oiY5 zNA>VkdlSOzq{+fL;c!2`7F_q?w)i&t89w-)T~@721{o=iegD^?TqkB7}zI=VJV&W8!q*R zOhCC<3?4LuTs4=&D&w=pz&;kb%3n)TFM13k^Q@J9?c?xH&?(O3+H7ga2kFX~bx8wk z{=#8B@BiMpGYkh9M>oHXXLxpRIarOeg!>-B9lRKya^|Zc7*GnVIr7288wG0g&|>(+ zxGwV{<>+S@7wafJ&pps{{cb72Z7Jn0e01jlUPebxL#wscP>>epC znI!TBKXGXZ)L*gV@}px*^K(k0el*69?)%}$SKqMc*mpSSJ12)6%}bl^8DYIK$T~<BAd3Ycx$X&iflzb29DF1tMls%GCCdF+w?_Qd8jiq`*Q}S4&-5A zI^BTKvwggZej-kRwxA+!I8!14UfdiUixtFC1_x|FEABMrMOOynKy(|wUB&^y7U=_R z2X|S}RG9ua3|K9W-Y+oFhVe9U<6wEN!Y2lLJPc(m^y349ukdq$&_*IYYi9_-#W~SY zR^~GVi`p^AXXFL{gMgJ=5#*#GNaPeq9ufu2K)oo-sA==iRJ{zrc+h=1M!z8pP%vRy05W0LGhwj1#Tcd$lOZo7N2BHJ za3K#F^3)^^gp3%{uS0Uil%orv40S$Gav}hN@}apfVU(de4A&stncCJ#Of+`iopCZy;PZzm_D{6#BQt_&6P zbq+>ZF2CXQE_|%IAGA7LD9_Yn^5z>(FAJdtmvHJXLEAqCWAENos&K389{5cHES>cl zGce^#jY;scPu^P;L34L_NDg_~5Fxi3zL6}&CR#&Q-g*#qhx=*>wefH`~o^~#(5 zkz}Px`=W5dVXId5&g<8|!mnpp5!#ohR_LCz4DRG-SNW;+3#}n(9GD`_%bSx z+`+1c8bDlca!$bIIT%`Ei>vv)?Gz6}XfM8-8pj!qQR!@VG5(fg!<9qIw)8bW#E+cY zW3#vbirf}sWhFXk%y$*i`FzUlodGuJg;?*eBVz34Ph#w^46qAgtO4QKDV1ni>=H*e z#z%}T*dfOHJ{49Ks0Aq_RGjdA?%sxa| zYMI0xq#XshDVbemmoo_8l7sR{^=5*UFPxLtjs6%?-Gn){Zr%GKwJ*h5-lp2o^0*0; z+mqQhv_b$asTYa(wxcOD@YH_;Ly?q$S>X&DOTQ1yoA{S65!%heU=Vj6y6nFbTN^e^ z$DN?)*QgF`WUx+$XYCWFq|=|*lPYl}8FZ5bZBDffA?tZIZ#DrRoj=#WGvP^7xE=o7 zbL9c|bq<(m8D8Y>z8I5R)=_NVB)LBBlSGzUO7qpP3Tv8m*-X1Q`>1w^1u*Lx(G zR|o=LFn|_H+VWft$ zlYm)V;AWEP0tBI%uZsz>4*+m1HSIRp%`+UhesvD&5x57zn#+7wFgZ1f-~>2`8x z0|!`uaSg_@jLR0#6FAM%V&&$80qNS0!ncJxKb`mE!<_FAWv)`Cw-3JPz=S4yJt6gQ zGb#JV%UBr38y7#vp*%fDxt&=-xO>ZFg>TZM%kea2Uc6;vMf(xcx@zVK{=0US4cHc7p3jy8E4@zsRkv}6hFM!J zKeM2F-NzG{;nylJ>46k38Uc6sB&9bTnYpseM_2m4IkN0>44bVAPpYE9Za}-v>Pq`o>yn4iAX$bQ;x{Ua$IOGRN65<+9yS zlH(L}31{xJQdk4KbTg*TUQEbUwZHE4G{6|9!!yIB(-mV(ST900YO>A99~uqBK5|E| zI;W7aMl6st)x7ybSZs}kjVI#oYl&x$0lpiB(7L*mup zm0coJAF|@JmJ1h#M8^|L!{XBBJp4q2^l7t*ZI3`57P_xn){q0(gZ}g|l|ZH`wmZu_ z%9SuN?H-3fT6yA_Q>Qkyu~_WNy-1f)_!m^(qW#4WKiu+8paLP4Eg)soY}#~8kRK3j1pjKIL3zx!pd21LFaom zB!pe}Y7b=;6zUMuC!_@r_5ys`ZfVe%c48IAk-1r>;?D`|V)yeQ)FefCkO@L(-arHR z5xWNKUf6!;=HG2KtaHT=IgJNu?2n%;zJYH$TNR7$OS|Bb`3OE}g<#eRVj2re!Y!D? zAJV;?xi7-nylEC}2!8ODyrmi6w8Zz4o=H&_l8GO&>1_7)T>if66#}Zuz z2=B})%jZxEh8;dDns3Ft#YWY4!Nj{G#Fm2zQuX!|cTq}3W8thuLyTDipBiF`0PG{` z*Y?HSofxv}UYw!^VR;_K+)Kb^x%yI?-gsIx|4od3&tL)Cb#7hpdm4`4*s}nyeVmhu zuXW~TqrycAKdi-t3O`qO{#)UUcm89MwPU>S-dlt&;)^cUh-6OVI68}7q(#5`_vg1@ z-uWXK&zyAT5&ax6zTC_d!V`syaau4?UM5V@xIJRTfGkH+8LSP|{WE4L1y(EiMOmXF zV4F1mbNsDF1Cf0_PG6~fTovY}hMV8+x{!pg;A3`f28q$Tak75iK2aE-Id<$U$Q-cz zxbx$ce1!eLDWHaj0o=}XvW$uPME`e606v8?^Y{v7Q+`DL>0fcdbvQn^e}bhaMP+k6 z!zZ)<8P}4lcLNrTHpbg{SmB86uygJ${Ij|q@<#g`T)lDf-u-p&Kr2gG&!0@6qU)Pc zz#f5}OH8=~LuYe(Z-n&vzQGp!AOKz{5?;s@YiGLdRbKoWu%Z{!B4ysCjKpvM#4((@ z^xd>+R-6~FQc@x~en$CVOwrjr$E_0=n%D`OWl}@KGSbTsyUH0E+C!aiTnqj^CBkjT zL~Uvj=oN6s36Ry_;C09d`%6$9R8O?dm|}x6&=bU02wEgjT1o=+zGHCUE9a0srJPPv zOi-SaGQgbH09a34)_;oL34zMT!EWQbN0iagiR3lD!pgO0obC2tDQOG}1xdPjjv07OG1*3I z<3EYz!*#ksVoOpHiD^k*2XgUreqxMMV*OENAi?JuA75tx@8`rpsSg#OZx1d7etbc{6n~_<)2I5R}Xpu+BgLp}z8w z7+kd2--K9S6-BfYA&+>|aTEpYC^tZ0jwNZG1z3&%Li7 zKx!2z^oGQn`(?UJZ6ZFzrMAsR`*vIhdjAM>@)w7R4inS3h#T?y%*;`0Gwt&7`t3On zKKmBnXAg16x?p4y{%(O31#H!P4K~L9H>~^r4O;~Wsg=?tcW}^hAw^ji+(IxKv4^T8B`bB>b?71Ip!ua(2Iu-;OXqaI&W#+?IUq;nnkC;Jx#e34;4v7SmHC z@Z!aTKKrP8Ok?kNXG%i%ejA@OMfWk(CFu=aPQ!J@o=W%fa1mf$lcWW9ERX4R0A@Xy zE~bk$;9%be?3M$knG%kd&G~S2`=6#h2tvi-%#?1<_1x)^@9f!(Zg3b&_@9#B-Vs&| zHG#uelvDI2>&+Jz=__HA|5^HrVZBYFG#U8+9+(G2d9cLv`mT;Orsb=_(ZBD&}$qu zrT7m}{rb~sdJ27+pzgiN*7Y?uQ~s0T!-wC*Fpw~~R!3n6KR(wLCcxVFaW-003iXSD z6`*q(L2t=zWI|dGgA!UsgPTh^Q=ekni$zb&Wa2!xG5(-&$%Nz5D1ZAWvpW z`t0bm@AW_^<@!j167xO!1pYNQL*T16cz5s#a&luw(df^j@li205^~yHjqBMTp6)N~ zIiaVAbwQST+J)ul{-;*sk_t8?;_mt)j&(`ZJL_FoB`r_$;v^GX&Nk5GH+nY52~59m z{CMIjqoj#$NrYqSDbHF6uNxHHrJ0;ppDeH%t>QI)G4}^r=R#iEbde zBE}^3VR{NE-@#MD4!Iz^dz6aP*EIIC7sH`onc!hnV^irUp+pF04bK*ghXd9J;~VyX z^asqp+A*KJI#;Huh2zLF6)Ft41MPo%GnQ>5#_>DBBtRX5b�~miDb#&xo;Usr1H1 zXWXvO0n6zvvl=~rJZf1B7iTn>lLu!v#kkZ#V~Qxs7t-K)S#`~9ux9k z<|kLXu!X?dn}XUgX4{*$aFm24=U@$54GKkgSW6NkhegPKi=Oj?$-r|w{#+SVn{l}{ zX$I*Lj5yH=OrnaLbu=IB3SFUj%tR&Fap_@ZsXq6Y7_WCwedgyrsL8E`BFnfzh0ww* zt@<3-6P!|4^_icAA#Z2REY0^lV68NtnRrO-_B=D2`rIIIg{*9ulkF+?brE1_xF~NT zh4+eIWRgDl)$satQ`%<|-Rg3HxytFBZIUXR^BFOHFU4X*wYs=2NjDi?=Mqm<4ZR@Y z8V!V7M6&)iye6vARu<_>4(g(2tgw%v!6*=A((6l}>y1zc^A(Pph<-ssfe>Ok*#hp7 zcs9tc*_xPV*M7n9N~fP#Qn6yzc6SNsqNfX}Z?D)Jz`Fz{%{!Se5}gM3s{*9!fcrVmOm(oZ-UX2`|(iO_lIrRu&@EQ4sp6Gch}$i${Viz9!R^o1mCF4 zDXg6N!L_@MLj>kXXalAtzA4AiR9NH4CL#7Y4iK(t8;+mopN2UEmy7s{nWOvQD$r*< zYZpksJ*nosK)M#9Gm-|ck!%%_lTmwVgEVS0O7O)T2I*eDkE-_z+yT>N5g#F#oXY4R2R70 zLB`;p<+X1~FYl0*gBeo-XjW`qam@0eUdtyJHbwTy^S@I9MLKRidiHF6j(wup(FkZC zz|~=6E;x_wvLUBnLI2;4&0xz1SPETPB!@$`77uXh8WXq?HZRy2yI`x05u2Efm)b}4 zS>cpn6XuQY*r8g-A=;rvJ#YJAnpLLIJxyk_@ev&JgEOi>9j1!GnLid6__SWai82Ix z|7e+XYyO({mx7{~dk{^V2QH7rJM5}k!A7P`kBWt_@6~H~cgb4zO@oVn-;KzYz4QJgEa~GDC5R4tHdK#b#g7s8 zvf;hbpY_1CgbR$ZuaX%x4%8$<{%z^+YrSl^!3D~Xoj<>)<-O1X_;883YhY#acij9n zpzo3803um*@hb}PF<2!r*4cSEXS|iwGd+1`-qn{bb+pC@TOWK;7YH+MeqI)Z>tS1< zdVkUwud|K+O?(>Uvo(JN+n`fVS2e2EdWE+r{sB}q@CyS7Qv`M_bHPoJnTRSn*egZF zfY%6&?d$Dr2^G1C@9BoahOj@xpa|(SthZ>7@o_y+z*_3Q#&8(2?wd*TuDMyJFrBBT zC;w)jC2(jQgtwYLYv_3f)X17OYv*mdVMWUVEeuN34xzbLTnO7Gtbc>fXn;$*QO~3$ zdrD2D(1hMr<=ewk<`_u9}lj-c}W6J zc%ZW54}mRaoLLhN|H_voE9KoF23wOX1lSNtgqzIL{uQ_f$3bMy)YF%c$Ceg8 zKOA~@Z3iUf0ozBR`ip2DlBRJd3zkxhZ5)+ICu0(ND=~p>Qz%$BktCEw%gH%Tn7fG7 z1CB(xLuxC*82*2U$pq?cMs^su3JG}!HMsgw+RwveBVCQOBp$XHhB4U>TQ_*1ZA1A(h4Wj8;wB}|m1(E-3tci?2tD*QfjicC$!kJvg_$w(P_L>AB31}T=g zS0HUtxr5Z7CCP7O=gvX+rDaUnDph(&Z4*9NnmEinM##Dm%eU3!_*))b9L}L6LH^%X zIw75aRdV~~HeSN}3?Es|Lxm)1|F#H7%dO(yL#p=aitf|s_?xElhATp)L!?k0gZFYC z#e$d91fii)s`=}DOz;}JbS36ucu4+vwY_L7N#3Sx%GW+BiYp}P1;nd619nJ~49x?G z=vWU(mAT(HoM8FWb7&D|!(n=OlxhWo_eov4PQF5ODt}T29J*Kb0*IZ!zT3G@*|GJd z4H|YbS6}~!*neI{LqS`GK2A>dY96cZ6I)0HYxXO_27(hm_SkK?@C~6YDc)mqW}!Ft zSY~5;gdS8X_+PEdte?J6y5paRC%d!p1$rr*pOTs7X~4E)of40-T7ZSsf=TFwDMvZY z+#I~D(&Oi8fAQ?CE>Wqj?FJOK1_&JIoA}nifdi{q!Q4w>44(M-%Gd1s2a8lL;OULe z+_LI`fp*!u9+}ZdE;brZ0Tn*x^@P?NTex}&v}VZrl8ar7^FW!_;}N{HjCgyc{yGfx z56?BfgOgV>V-cR*N5?A_X6%fcv%gt7DKqji9UIETcI=3CX+k9|Eu@yV zXj$rSDOs^lTQ6A@y4~>Ro82SWB~;C=V2M}ewm}x^Oq-4ueqbS;YgVGZx?4gd@2$He zsh<^t*Q{X99CswCAP)mxDe+_hn#T^84PgLg7>pPIApa@05+~aSALj6=PyI2h2*n2R z*fI}GEri$#Z{Ea{Q2gHqlpFH^+wN<&A7cW`{Vlhtp|pZxU4SI{UV(o}KeLF#a2z+b z7%DgOjU?q^z~K_!EwhT;lkPCHS^Kd3IRN|^jD}o=xeksEkz^=$Yd)r=@0`RvJ)3N-3yeqP<#aXeFd!T4}&e zDO*vEEfZOW;rL5kx|I733~a-oJvKY|c_fMcdv4}apZxP+De<9P&#-ur(W5Vn?#6OI z`DqD^=rj{A;ul5LXx|X&F&EnyEv;D*=E1>oKEcvVPw6@bsub3>ej<5N5#7~*;YeuZwzKEVo*luYg)Z&HbSsTK z0TDEL&R$(DoW6e4-Cnvhl0MVNs^G?S>W^OH<_4pUCzPJ7_0bl9@7y<^DWZT4E3ezv zicGClOB+i4DM{_r0NH1Ue~xWu!&3baCTH?cLCdXsSx%MvxSq9REJhox0HzT>R-h3* zfTDvYXC%rWN9eJQub2J4D|##l^SD&XE!ui{0u8!${6mMzWVSIDjUEg~vx~4sqyqYx zT>G`H_HJrws1Yeq&YPN9F6um$nne~w6Y_FKV@|7jPCkH1Hu|XI+VcrXSs6_@qYjWL zwWtpA6JRuejIiVEdMGVMg!&80g^EfkCSTz220==@fS&lb_=hP)*E9GniglWwE}ONORDST@ zFDG8=_uWKrmfEgaWCASMq!S4wCeqJT5KG@uE+NvN)XDa76>l9$$eT8e8Z~ODa>=Gm=z8lVpg?8SFis4adn?y3Tg}GQnVH|FIbpn%!Fy)~=Gc2NU(_HG^FB z`xGU9lZqRd8d-jBNHS~-dN##LV;PAKH|UN`euD)|UA>rAXGLFK**V_aB1QhGV-=Fj z*z~vk3MgoWg^=1!x+F}22a~&h$?g>-<*IogHzkecO>vQIjn`v>e7`m!hbQoJXN>0k zqY@$vLvf7K>LM7jcb?bBsmtI>8H{~KEx$gWrh8-G0Btg%WLD~Wi z_QgnhDwtuaF>PNkLtg{typtI+8?dSBVBNq|$-R>B@Lm|E-c?8Is<`?bDoK4*nt6Wp zjx$WnQ@qXIy?cuvm#lZu=eZ+Kg}}cUwl`HzJ<9{eCF~l=6Oy#1?jrb&0_z`@V!t*e zqC1R$p2Fy3c3D&_1c$FRg847O;Ubd1{3BJvas7-KYSQG;^wG+1ghqd3f-1? zdwTFu<+5*29_VQU9eQ6mJXj}Vz_fX>2xTf7%x&a~Alz5(Nkw>i^fGe~_(uh-4nQw2 zURq>P$Okt_8HD_MSOZizo*5{5+CWpF=w*Z3&;?Nf2B0Tb(~|}$2vx@9e^ymb8lL>m zia~fD@CO1M2N?v%0VoUdCoUR+&il`XPRkXehD^iMf*p$)!gdCSXqY73 z`^ntjlC6!SM~{YCWRNOq30Gmb`$3~?u{PUE z+p>j{gZ+W`$X}&fj79Hf+X^L`mSi3iUytMkb|Ys?%O2DR-g!~}!qvxbeDDGvFKkwP z@aps_*h+&FUeQG-%}pTe&-6Prk@B{YDbq`tu>6Gz+2h-atC|p_r)vgS%M7rZaNN4k z`9_p;F?Ygr(cYp7_H=G|Z3v2?Dmm!_A6j^CF z2E%*Zca_&#&ay-$VDsFQ7O+(HB7UIR-0i7>rJ@Nv5h@RR6&5fFtQU#Xy2Ir`ci|O0 zkkt&rnPC7q!oCD>=GkO8?D1_rdYUl@8zk>+sGq28axm*%rCSDI*#f~oL$GFS1&qHF zp-iI3qXc%7LrHl#Y4}?mS6jny-%J30F~O9+1QsIUvUH zej(P82wyWd9m+NpuduldwKyuX0T(Vnh>m%?q(*;{0V5bCfx3_t!&^e$*& ze7J;%rzec!Jgph@pd%{Tc`=|e*a9UFs%i$kV5DhhiN?58AtOvQ{-b)L@gG2tDi12c zb1=r`v1MKcK|*FkYEU}DAcaF_Igy@%AR#g+Iu9!fg{(TWE;U=oPAzd=*TYLe%nAx_ z*YVJ$b&6)oQ}=$P)bbmn1Ub*@C6Po|KG+rd2WOc+v?{rr+&pUDhN&W`V)*frt9?`Z zY77HWoh(7<4`MPMs&MtBQYic5q%Nx8_^cjVV8ms?=|9zFL;ED7xJFY9FEU%_?VuwZ z33c$YCTS!_+#rcZxXsGoE$QSf|MrC1Pe^>nR#H=AKz4dp9JyExRVN)eSbF+cXq>Aj zm*-(Ld6}!f<3MOzK;PP^(-~hLhK@Z;4US6b!NpM9O=oBH;zJ(?x8aqF!i@GMqRtIH zu1mb+t4RiW8HKq&1HE$u#t;H`jtFLULH-|OHer}jNaRv`V`fX+ypS*GjG;GrAu+3{Ar!-tI(mB|;gi9Rk42cT8wyb;= zXDhY`pQw^0vy~5=nyDA~{d|P-MMMf;%?{*OZg9Y?9!e&U2iL7Yfn2OieYw?;|An#d zZ;_F9x9wiE_%coO8>z>Js`{OS#aK}i=BCOq&-}Z|VTPr7TM<%M^O%VWQPQux&$DME z^o1{B*3#Nlj~;LtM}lSRn>jG>`6R-P@@*_^nK6%$l-`bf>|^GR9Pt>BY|ANuCVl*= zVH?L?EyeIGG@&K4Y=_>X$8&S z1vM7-305L6mS^`@#Y%tTn54D>RJ zZzw$&NEBb2<9O?PZ*1kiNB@|cDPN!GJEE88;03Ts>84!eV6D>?ES`h?M0`&U@*&)T z_D^)%|5ZX>aP&5k13ibrio_I7Z5K#LxF3yjs8#U`c@-le&#e$bOX&dxgz!5JS^Hg? z5+%SOFc_rs^#HqS%K#&Hc|9VUyev1!AN0v{wNivfv7($02&Yt(P#O}lkQW~1Rftp$ zci`cL|2`lbu(*eC3Yr(l|0AC3N^wLzFLJTW^qoG$$0~zuzF_okJiRPiz)Dny@TMkE z%eT;ZZbEqVV6OWQAhc0jti60I&`RFs2-o=IG!X$jy|3g0WV40vOk}IyK?9a;9N~PM zIfH^w)=BXFaWGes9w4uMGCBPc#57jaD+Cq5ZL zXeJ5k>}03eM=e4wWn!6jf4)_b)dbLo%yyYP`Si&-UL5mUdrvsPXZf--IPFO(rUZ_| zF-q4#CHpfR^h0SgxCy`OE-#U21H0#cH)FYKsg+K{XE@l5>AvPzjJZA(W4$j6v1%8e z3b77n&RVeolP6D}GI??Y-1+rNPZ_1U{tk1&$`m`s1C3ah2XGPC?H!y(mGExca7DbY-?D3(BJ35N zG|A9?bg9QTMH>`8k;W3pH~vOUPa{L4%TBo+G|@82*}f$z-~0&i->H5Wnmj_Aq=01n zWLQ=MOCvY^-M4QIK{XfCUK3-9`l(`U5$2AFnMmyP!K?}2-XZ!*gV^$2nfzJ+gC%2UPjjZ1kb1W^s!TvgEWY)G0|cq(H~a88wE zo;io6_hneBxAYmjR;B+xK7VQMFDJjV%JhVVW>UFZ|_ zUn_yezfFx=v7%e0N*41xm~`l}Uus(Pp)U;Ma=N;H-*HLkyF|&)oq<$uY1o4^TlJWq zW$wgC_!l!z@%;ja5@Y<>Vws{S9AhS3{e=smVPVM<^KKe~ADA3k%-}VX=cE~C2K5zL zG3Ed~M)J-H-Y6ZSb_mt!4FRi zVVR%&y=>c?h)f!XVbr*@N^$D)6=#Ib(jledUXe?un;T2Aw~8oF9NkYxJJIVz;$I)0 zJ$qu?0iDW~D_2;@kUt@-${YMfvN0jmjeaAYeLqR;E~-28-h@q^B5RN1jU=*%S0T&6 zPfsO#xb`!O)_Y2BisD4gd@>j`w@OQ7)@)SOhbRY$k1=ZqJ<=N6c1a|`jFI0Q9kMt& zR{!B*JR$eZ7#uYoe&7B}#I-hKZRt-dyO?RlA3&CJ?!WPJ$nk^I8#Cica}b|=YzbtU zaG2Qov0T~TXdOxPP3_FXzP$DBjC+>DUB`03TVw?oNiuEc9oV(wZ`xsUh)r%}RXiO; zhbk+W>u43Zsbmsz>J&vht!gN1kQ4|;q)5vvL1o*$AxYQBS&ka8oU&)jLDujw;I<;I zgxENuz2Fv^Rivzir!rOr2){nG>bfdrdFFa0Xud(RjPRx~gnkqs&kk5qOFSy0UJ%=Z zRFU`MnZH>q*f-X?a1uKyDE#W2&F?H{;lnoe)A;IW&=|?VPTy`T*SB3bm>S6d%=;Q- z6t--4SH;+8J&C_=jmm9g&W|_f_JY0{dA0C+ULF_1IZD?a^3H>YJ5cwucS0_G;xYHT zmLvF8)K{b^bHkV+MaT_LHhN9;m<*PRKfy~)veYx}Vl(IvIj_UP$Q0$ zZMQ%ORi_*C6H$=yCOrAE(2FBCP%LNCZER9h(>TR z=>vMYQDWS~4eP3Ed|2JICxyK1=Csh>(A!dVEFYZc5!(-14_Eh}z>S)%_rWQ2qP{L_ zpz;E=jp+ueFr0opO8_BQrkYumW1sto|Fmhttb=7Lm**VqD<=HG>L~si-;UTxZu2qV zdWx|sA!4jfs(4oII1%4#F)?+gFe#`ge{?5S_<)ciGcUc^&Tpto!X-daXSqhzTF)@< z<<2jLzc8kD-GZEtp;J=A4r&*S=iE$wL%#Z_@T_zzRx~IDI#HRw#W=|FOZ|caA;2G? ziFj__<_6qd^y;4p!Qt=l1n`+%OC0{^i&QetTb?#BV?`dpdmYq2o4<|Ilr=khc35`w z6@Fw%iWQcAo_x3M3geI~{^bQ+F2$mb9oX~eax zR&BW52b$^Yf?lTU7o+^7cz%TrQMvm`Uo$ak-f!cDSk7eWwY4`vHJw^Qck#`vS)q6_ zQxe&V{6)JHcBjQci6-ZP8?kI{zh95{gR>`ftfbrT^gPS^pDV1RI+kTd5Vhpp>|`%c z*C0u&fwR2;B($SCtS@~-lI#IMF#UHg`9iaZyH1Lie&M%UP2t@8y}VxwTGl@nFJ8=V zv-G5Yd{i+)cwK0@Al6|l#CD3Y9H;PR{?7x;u(9wuXfzY2))M>xWuD_C0fbuM46*AO z=#3Cy`ToSB9Ww~-hx5deqs-C}XXhIqwob_!TtgGfQvCyUN_4 zWp)Qwn)guC)QVnsc&V;tV0YP%{Z$O)qG!mH0d`KCq=PC3D6p#T{ zGvH(sR$lXessHR6?|mamP1wch9noBrUM-P;F1-9yyO~B(mw(2A%A86ewrAWDD-Gv7 zZtrV+%QXE`7fE6#et);a-JoBaX@VwVaNO3)CWgTia7>v@Hn3E(R6=u=v^;ZM7R{1? z=yE|h(NHEbGvvmQ+ix-Y%(SOC%+LJ3HOm@&t9KYY1~Q9twyr^528My`02^2C^L{fb zb0t7rD26cJce2TngXAn7$XZ=zZ>VNDV@f#SWm25H7>+ZhtQHCD%=Wep)h@|3ggXW& z?5Kf|H(q66+Q}`ut5C`tbAJA;)TZOQIxU>m_*R!|p%2E}t$fPaOw%bCr-ID~i^jK| zMzw{bZ8`ZmN=FLbM3^D%Mf%jYF>&TWd>gIZHlv02;Qm*w@SZhtkLJ< zS9vrH-NGGp&!p723c3$fz{=_(%BmEPCmA4=Z8xs1`q$zMa{om2qt=p!MW(X(O_-y~ zk>e_*J`>lf)T2wrlu+)C8!EQWVvJgfRqQLAM7vSC>+@C{H0SlgCyM9@>K=)wYTmpd z#HaJOC1ii$D!U}2mM!JvrK@b?&r=sh@co{q0h?pnEqfn61cCI2H`*FYS_`{&?bssN)2Td8LyJ;vxxsYm%Sxbb8}Ji1My(u9^ORX&>te0jEAcHEngT;z7MqE$v@ch# z`PT5;5Ah!6i+6?H3gF@nHt3FVVJ5=r1Mc3vdk_ZF9844aH(?j>J|=%!GGQ4cTQ2`4 ztki3>u-8&aHoq(5aV(pJD+jUfVkKHWxdckG7o z9qTx}bC?uTWBFt0Y<)(HdcO#fLXz+tQ!+F$de}e&v$ot0dcb9h(i=_EM9haHHUA9f zn@1lfOwC*I)((@r-Q$k$1J(5%44^D-qdaOVEVZy8)D%lc9DMABjeZG*;Vyft8;_%A zWJ6WBVY**{g~X=<%s-DBL~fWmVSgSKLymJd#{H@JJ{H2o@S`#3f9F3Q4X>u+rZLwz zz;y*`_X4hQFyC$ni=h4TDQd;xb84lAL7#wKun+DicEx~ETkJx+zc`%0c-4S)f#1y@ z-&gdQ38NmxUSHeU`r7qt@90t;Bi2T_5kp?VL;w9?2$QBoo{59IQ11a{vO&48g%p5; zn=NQs>KgS>{@r_a`|jSor=k7%#={w1ILMr z&S6J@C4Qreny4mt`c4z$!}2uQkHbdrvgAI_KbpQAzgj`p$H0$%8Y?ZaU_aicIuDk- zkRB9ZKzBMlt-NseS*$hX#~%B+^aX2}6gviuRIM;BCfnCRhD}SgaQii)&#b4sjF4jc z)6}_#JZG)*nS7+ta>8erJ|mfxNm4##xXah{NmH;1#&isy$IJG!ENl3eXqWhLnti1v}Bbrw^zf;EYj_80=QlV#z{{2JMCv^<(I<8Ch`>6i8Rdr3Vt(gg%`Z)2T7GBh{ zU<9voL{(v<@x+DHgOs|T!!!G3M^rS3Cu(0@DyL}^5tRwHTj;0 z0S|UpKe4y07Ktr5n)l1ea$h8_x5$5D{D%@KKGPe1L!L#b_}nn4%x^W}Y?%2L7WGJp z+dnyh?y6~eH|R0f?XI8jYDAR*`&oOd!PLJA~2*FJX5hb2?PneE6g`kTH2 zhZ*$DijUhT=k&Hus#Dp2gp0x0)n(3#T-WB>9NY&#BKUEKXX z=3Ua!GH?k(Q!$Qlv#808_5>$dN5wK!DcL4m$5{mvcBhvX{%lNs)I4UQ+;d{FW~mZj z3LB@==4Xz+DLBE*vis^y2CXpb=m22H%}|c`pHY1Lx? zMEsAGfOFv)^xQGqMYH7z!giZ{)_#x+iLPvp%Oene-GC`ATC|uFhzFanpHoTH)@I6_ zRhj3fjF?9%_R_mMx$_vY*(5>kB^90@NNh#`_U*sMo9i!Zw{6=K`c9cK7nq=x`!6Y{ zU^d;1p{AE%Df`x~TPvc|*oVPTwnByS%e>R#b$gB%i6^V4`r#CwLMqKXozLPk#)irW z7siHZP9p$xMp!oj-8+E;Gg(yug#IbkO>0?2A^!{b?YwN3F`PYFP2!}LxBchHhE67> zd5%k=)F2r!-_p6s1j~zmq8MjP3FFPD2>nu_lb00AP6R0!!~?o)SK~)1_6IoyCGYDC zrIjSP-j~Ol)B|H?g{S_9G3C!HeS*2U6D+q{zK=6w?c*lQJnlDR#;P2l6IdS)pI|nu zne~RM$&#N2taTWZhXImg&jXB`8O-$o#w(#5>1nf;adQFq3BsQF2k=g|%``ih{ys29 zuW3q%;wk9~C+Yt569@TlSWQ-o^Kxdm5OaDe#ys#p!<>PH#mI^vl*4Bk)V ze=Gsl#YeI27=k=*DL1kg5B|-JfmT9dZH0H;g6)&0+r=$d^~87= z1uGK3>eW>jsLVA-~rtNXHCCXu?&L}i{3 z&$kDFR0kNX*r)SMI@Hr1Fz;!M)zmJPx$bs2xOlWh$Id8ng%HEsqgiYq5g&Q+Kz#b} zQgNq!F-Z~Gfjkq1yPX${p`|45d;V|au#EVWG3Q71IZP(^Dybgk=}GRgs{=HNH5-MH zCi8(1b>`U8uJ+_+rV|`08qP&fr`Ir4~we|7b<%Tp!NLOu?7H%tZ@_z_=+1OqS!hmhq(n}vbJ42V%l=227f>v`(nww1VlmeU!vpU`-`|gh0B7cJ3i+k zYS5pa|BVtT)}a5K4d8y>5IVx7=FsZtfO>3;Td4km_3JOKU%$R-E|b>BPcw{q;bVkL`nmh_K)cFi1x| zQ6{bj?-S;sYq0IQD0}=AzJJ`34{f3qFsLoYCq+5>516M|FGAEmgQZ3@L~1BhjP*|z zVtM}$d*1<=Me*%BKoTIK_ZEpDp(}z?1R(-~s1#{R5fDXbf*^<#;iD-6L1|J%I!Yql zLJ!sPM<^a?L4Z&wj8po zKM#|hWJ%dAuVlkGooq53LeOveb{;t zDvH}3C8&QPsG$HNuD8(|ir5NL9ZEqN+EdNBTU0*-Q(veXfT<(vx}Yb3T!MVfngoEH zVX#$;f;5?m)S12F0x4qh-_v4g!7+9{-ND+8=}B|RR>WumLW6^~BIWC*niOoHy35~M zU+w;c29IXql9j>}Bd>7Cjq&IK11bn|9FU81A>dOZ{nRlsyNciB$&>d22KeSKc0i{a z#AwDVo!FPBG`pqEd8`Gb1>;q-c{$}*(x{e-5FN{P`H9eRS{}kg80z0|Go&S{vk(N~ zN06XCGB7qbH(mxdxCyD188(t&T~@AK6)eX5pj_0#5%?_hlUAM&1Q==+Pw&GGnC&45 ze^6|Z002>igZM!|$88tu{==ouhjhs&P2zRZM+ka-IjBIr7$Pcx+P~8=sbQpt!0G&h zvwtrRn6n;Qc!W6>1FQBI*`xYupUq>1mk_c>#fA}n(#;G)c9v4HnOr&x&5I$I zG^pYu4ttG|YYnuNA0l@OYn1l4Su9EEu8||NZr8FyUONdHX+Y#tJLI{B5XdtPBQr@` zW?Z-^A<=4=Or>dA#Kn&AP9#MA(7YK=ZjWLiuQU?ljYal44Z~B>C=#>e`yKy4*80?ueMUzt-$*y?hF0_q#C~0 z=sO#x6$?OEi=YJoSnx1F`!~R!iMEJzav$FJR*^Twn6H2P9zlsBtbFIrn_#y*2wCMg zpC9R|%=lw#Lk>dcR1+NEkq3a+F??L`eQZ8FEKHq-Jy>7}q7t1Ti&MlHLNG@@&W4p- zJ%kJaSG$ohN@>v*g3}5u?-)E8fD5*Q_nI}AtQF5F#8+AYS^1Kh!Qc{ zTu9ARGdL&H2ukMK`i6h?`pU$KS~Xu1JPJM~nwuj(+ovHQg1~$3@yqx!nN{#B|Ur+9?6qYxD z1%q!U{VKEUawdbQ1!Rj#C(A$gCrM=&IRN4_3C?!h|A3H;HytKZXx<6A`X@IVj4IZe zu=oMl+*j~rakzOZ_#Y{OA(JN$>^ph#Pm}vQ-G$THPcQ{4J%+=o|5?ee105b*(Ved! zG*`%YPTOD$!_f)@42HdWg%IMhUd{|yUJlX9h_J5F@hx!iy%>v_1wSpX$WKH+u#V(& zct=DFXJ8eWflqA6k<8BWI!H_Erg&(qV1pTdF13AZnCv}e{^v{J^F%k^&|K(uZSwD* zhQ!`2DgZ|(4+Uv&(P8a%66pMiVzbDP4!eA7Z_yVS?1p^6fpsQhLH5!^LYx(!zla|| zaFWVd$E@e_cr-km+pjeje0io2=nD8ere#0J-e3rYW&5LkiQl75#H`DhN!p*?Vs!4h z3T3WcVVeO|p>{UOURMweC!0-mi)gwUnk)G>k>QqzrTUV6tiZ;N7c|mz*!x0cRhuS5 zPRQfjtF4Llc?FEwI~mT~Vv57PvIfE4jPjudVdsC7e+c7RqMAi->u;45%6 z?fM)YNK3%pl?mOSp=u^+LTHz!-cw5BQisAVbryt?etR@D3Th(?&OTn77Np0}O2HyP_G(s zLMZ04%T-zxQ;3@LK?g;UBq6#7HIXjfoyNOpY;G~8LZU*`$Ku4v)W+!~PPOQS+0)BX zl9&)JF~WqZ`3ngUVl*`}NNn(!OT9WwzXH|Pb>FpeWc1rdI3YAN8D`Pt+?&s#RfnyF ziE~w+Yq<=%H@=os+l!3K#>DAYcl9+U(ho#;;y%X3XtJd-xh|@^QH2j+Ua6_b5eu<& zi9@mLSXAGyQ3qVKA|%ck-Ct>mqiUfA!pS4sp-56Uz=ZGxulsRnKt0`53R|Wd;w}R)glR!}2(Lro`Gm-r)8BWqi?Zue$q7(hT!o zaOTPvL}>mafWg)duLwX`7q5m{PRwI3Aa`bh+gBanrvTlqRbWys-tNHmV0@4ElAOk2 ze80y6=s|p*8o){cZXrtn*Z_Nr+Ft|D;Q*>*g?bR%K#fh~x7ddc%q#j6&0}5=+bPWq zW+VMz`2)%eTg`uI-`sc7`6?E zCC1It6#60HLb)sFd%&4g{0z9fsDe5M`1@{QC)em8C zVKuBHc4pyay7TbR)P}nR*ckVPqO0-HO1A|2#?-;eg@?<~3(7(32WBStmJ$n{WYd(@ zrobKK!XQS4LjMbR$B_}f3LFRVPrpP3UUOOvIi>dUKU`n9zdg5NhNDRh%MIuR0PMTowwrd$!>PF_h zZk-Hb!{||q@8p!3d4+U7uqzCt)Ce#;`!_Ml&c0v*=7KgvYInATWw-@#Lk`seD z9-p5&|3@lGmJC3{0c~U#SIM%nG)EMl4gF>4ScZbt4W})?y6nxfd<5&Pt!{9y)U?dg;y#a~-7Hg*p{-sD) ztNTJ(()%O|C9YiVEs{SjvN9*9$+A){fuz3ig7Z}lmHao8)pz8*pKI~Pl~xck3pT5K zJ(%39#)6fWlgrID(JT7=S3{xPij=v={Vos^%Dl0M9&Kx=A)l*RqV%ZvD`dB+#}i}8 zYF=dUh0i|Xd%6q=O(aWAnjnM>r_k6(4KFKDTvk&CKGI>)My2=Bx>GT7cYew??#aMv#GGc`Do z$rf6H6Ay5mz8Y8rDsEjD5NL}#Ll{&oORgirR?frg^XFg5+9*s++mQ5>aRlBCHct@I+vbV$e1gv|hswSG@oLRpX$4msU>^#vuEIZGA>7~AIyi*uk z`xtz2dLDV>lkqR(-<^GHRW%<`qDwBJJNqaH?ZXSYUg^D1FFgSj(7n#OFg*vZWYIY% zu;6Sm{}{EOb&Lo@b#KzXmoaYPd1q?GVmmEOW3ce-H40X{&K*amS*U-H%Fcm9&}q6~ z(!b<6OL?d_QlFW&rnt==Lc^8V04k`|Zg+HSAbb?8&?8m}1g_-!;Y#|PXDvCUcBn-% z=Afc1F6MuANI?F|DsLpY5yF^YkC?p_2fU47GLe%L-yr~8uh|w{R z2jFoObo~*T_Onf>kssz}PWPqcz|=Y%I8I6VR1?*AY=nG* zjL@~a@-5XmsUdpvz~d?2oL2%5u(Ri70X5(ifCGTHUo zi!V-3BM%)I>X=5m3-I|qW5{OCCrsTMw0--;jtG5Y)bJb{sKR}DhwGPu&R@ercy2#~ zDSTIB-PO!Vi=wlP2@Mgf6H}Slsu)8Z0Dz4(Kilr z51@s9twc+EU-H;`(mzf)ZaHBo*m`mlE3r7hT3H-JdHg2XhZVG-gYYh+Y-6A!_9Yw3 zkb#O)g%Q{oH$Eh+iBJ`3$0$ORr5&RPMdA!;g+0ohDZ`qjG6$~O(uhzGMS6x7V4bA* zj&btjF}vwvwbYfuhSj5833O6eqWZq)ism!V0)1D*mcYk^EfY{K1&7a7=ZuiIM=@1Y z+qrG=$lX_?_MC%vd~KYgDY94c_S7cXz!y7dB_F2LT2r#BV< zAdyw31^;`Bvi&1YsImT$c)M^zZG`II z!`u9YMu_hBD}!3Z-LVD?IP(zcNEL#8m4_Dfh1s7ZIE$Ntg&FuM18vu6E+aMC-R8A7k$(OTPw>N+4e#dR69w%7NT ze#rzTkG-h$pg}#G4ubHxdt5a(w_V`%oepmvHC&&@jLy`(t;@B`6vndJYWi6)0@FC8 zde6TKVfb~53wztu1J5uP|75;`y&tj$sx^BiPK3%=jl($2(f^`q!TymL59SP1w(f11 zyB$+bg}k9bC%4bzxxXHip*={V&x~Yk-+OI2;0u zCE$;_lJsuaN3HB$0!tp#RNpuVcCpSF5o)=U#uwX%bE&dR)sYL46;y9%I%QStt}y1Y zN#v2rs>WcYs|@Vw%$=nw%N^B#(y5IG+Y#gJq_CM7k)tXy-LY}vaReDsYdYMFaI_uG+R#2??o#Ym(4)aID-X^OVsm6@D zU1*;C&l6WJ7bn89dqz?38c9BPU=;^2AmdTF&c)g-)3v8GB3AWYo~I zN1P>Q*!@4emN*h6uI57;VEeb9WJ%de++Rwt%8$qcVdD?<`w)5OA3V=XBrZ`pA)Vyd zqsnqDN8G>xgS>pg(OlySe)JdpTsb->VCMQndhb3)7ooq)kzW{Q#Xo6R}wDDAH3Egyv z53QD~l3gN9*UbytO`7r^4Sr&#w5!WMU3>@^HC>2tbHjyk?X_mj+QSQatWDSV&otyP zNhK7zkOYwpnp-dVpa zu%F%=f|DFp;Jr;cV2PLbxU_idEj{FtPRp|=?TMsY9pK+OW-)m0z)MYrBYYLCzX~}3 z*uRSfVK<$$Aq+tZmVQ9;#IIs{>m!o0)nYL(95Ks#@zVYq{xrC|dBvvDj5n5b`5 zRRT=TYRS5Ou{P>LpMsq@s6GdNW1G@M4)aWbL$ zef)+hXrAG~UdzTX!r)b561>rQJG2+CAF>(_SBK!hDo>_+T|k$O;=~YYz70ahXR~oI zlM*|VjsLQ<44p0Vsc8)5H!rXo=3!SZ8@uePc6yZf%de^cCjGSl_MY93oh~$cm!x0c zuJwe`&lWV84JqMZBF>E+=&8c=CB1K3LI8VHW@kQOSOZ6d{B|2Y{(cf6Be zfXMc=qfnG&?>@+0Fyv93QeVh8YzQdLK8&GholwFwNs|iNd0-Hs&>a=R!E`cAazb9S z(LDo0C3lc+F&H{p=J1J-drx)mYADGmbQnoqqJ!@%w1nX z5?APl5t2B>Ltq4=HRS9E&c0Svw@Zq2sh4jg*(S4swMDWz@?FSs`h^QYP1Ly_Y=Y>H z;VE$bCW%??$VHFq;k~L=toPctA$fet7D)F^t*|&EcP1N~!Bsdzl${2{TnoH)lf(~W zL^|X73amK{sVRc!HbMA+R?&3eZLgjgR>dKGDlkf*@v2`9(snJoBD{m|H(A2I+%e=P z^oittBltn|iNAdTb`lb{09V2Z9}E1&y@MH9v#Q!+XUL4T49hSpbH8W%Qf+97pU6RJ zWw+ocC3}J7#|aavqXka>I0o~y+w#2;_r`_L75eSoOY zrmoLa{@nOL+2sTqW99dz9;ifcdWhrB&%h7fRO`X>lo?#n1!mww+3M6FpX(PmEC??$ z`niVj+gS!Fckk$l7>Zl5hCxbBYh5x_Z(ExRwk>0Z@{>pM#H_*KVQxo!(+&T8TJmp8 zGfKm2?P>O#RpP-l!_3*$5Txi>sYIovp{8F0jNNkPV|F|P@Dh7cyHT}(Or?&lZe0q8 zWPF8C(RsOF3x4s%cBKaeT~~Hk>Ncua|7%LfX96pm&cB%~<37Huj3fizN0P~djWr~w zf15+(mh_!nAf7mGk>Tk1G~CIcxof=#g#R%Z8dWcmJMS0_bIt$meR4tE7yCLKZ}o?x z!%DSook7S);*Sxno{{CxvQMoUWyv*RgoHXDGEKp&#$hte)a8ldBwA1h)3oXk@)EDF z^My9bFwgwGpz0%jnP1osV}QHGE*C?!FO~Z_8=9W0j*Y2nFi)@lK?zitJv$b=W10w_ znEn@G-YCo&Qoi|+zw=AzoYKQE4++B651D8_N>lK`j)l?l<937bZTk~kH$zc=FQjT0 zya0~vT_1H}5bKZ9ny0$0=HOj+r|ZB|{8W9x(nV#29V@+-rseJ~KM)2umYUZ2^adpH z-WO1i$TJ zvtai|Nm}285|Uy0C(1DtAj9g@h1nvXMX%!l3M{VR)$C>#$5JP8T0K?*ix_6LYqxeyFs#{f-Xpp- zyE>gin;yfMc2VyuP8;RVh&5(GJU+a7sUt3d<`XA!p#WK)=}LE(1cdeN?vM~67@~Hf zQ`-O@hb8bXkOhReUF>>$5JGGLZ~;`;QW@=!%WX39B!O3Pg1{EiqRnL`AnmX}914wIwlkeESPNs|wd%k;q!Qiq@i_lDE{hqB~)5n0OW=dph<+92Nt z7>Pd6dL+H_z=nx;)>17UT{*Ty|6Qylmer)dc^>;CqwDIv%Dz1UY>6<)Fu)2AN>nnx zF(lR%D=)xCQ>O-5-9i?&K?xq1vBd{w6rjW=8E;6et52{3{Xo8#l(v@4 zq&np)3kM|%JA>%X-wJ*()zoE(XBIx3T7{83W&VB%`1S~#(^FEMN8t#2$#V5(ZunA% z;!u(0MzES)8HBbEpl(D#Bp*);VB@MHrN2ZqOaE9U2X(g#Sc# zu-^w*O6*{jDp(#7+ks`bIkI~pGkF~3J%52?Z{6t&oX>U9pI~968jjZDa#~;)$g{H` zVEpJy7Hp4k>~|GFR`}yce0O+08`=!kkbb1|{h+Nn-iA%Vc$?WT3J3kD7u-({CijhC_ zv)F#i?p`$8qVK0z*bw}t-R@V0qSM6nunk3=$z(CmR7-m)b>d zy{?Xx=01+!{mazMKSfzt(0gt_=AERY4M}gZEBl@#~Lybn2p?eG>QXsnZE5N z3b4iGP5{;U*on1I%K3sqsD%Ubg2A}lxVw|92{6y&$B)CgTqL5Uz$bX~X*?_fV24jN zDule71TW5U>5TJIE8(tFs7qSNM$Z6mVLKX(ci_yQrI8m_IeLbr$Wv!BhSud}2LDD5 z8Dh{+&ht8_tSxo;cS9xDB9*Njh4qK$_2Jo0$6oT`-Me{a;A*k5|%gU7^-s% zyA4`Z`NOn>){J86Ij|c44XlQ33ynXy_#mCX>1it)#`%Q2@29T<2>ldgITV8}K$&Tu z;Z~0v8}f9=_!_8o{?v^hwY1q#GM`JyymtK>+`|XX&v@0-^d2Y=mN(+8C|h;-@L<<) zNx!#1|DP)I4YnT-&ZLr_2Oh;pEC!}T2Zma#or3wt_6n;Vf|JLk(}jKWmrHm1gW$%o>Kpv5-2++gxvYAXC;A6 zjoa{sd6=wRw3@Sq)|>YqE?YLo@41(^Ugtl!zPB=8qH2Z5R=%9eJ*6%sS@rPiX;c-u zpzNX0k)5hp%RBZqxTdi!=T%BPm!UYZ6t$9H=Dc#%Xvdpg-^_WB(%)mHo+&ek!wSX5 zWU+HfH1zxf*rjJJ3>F{pGStoMxp@B}mtep<{U_%v>z|caC97x0BR5TLi}2Wdx+{DX zu8J^SYf(x=OP`}g=7Fud<-uuNY#8onF&xzqpZTjdCo|bo$~opcYyyu1;nU^F(RSjD z42~j~AKob|%6r4~hr@gtrtgQUkt3`lO+dDiDB~OuTBmL_(}aXOAvBxNZ~i7?_5#^- z{L*5oqVdY_&)8%pxr59vcJ7j>Vuw(X8#y-w>-06-8dt~(!SpN@^ttN3$M?$^G0r86 zA8smSaLl#P?E^k<=Q=+eRH7htI-)6PuogT`#x$Z{=@X9zOF*r>rdhMe;J^ zL&*WjM_?dyMUxP{ImhIw;z7Ef3Bd~(smfG33VU7typ-ToPHZg35ig)BB5YtP-rW=x z_=@1^4!dZKTfux&woTLE(jkg&E!}{XrcbhV6&j zwBB?+PE(4nfNb2Z{I@_vC7hBsHj1)$Vz2tY1blmN;gI@wB! zg~(k(E~L@@T`V9EpLt<<#up&HebQ_{0YLrDZsJZ8j@oop5@+-dBu53M5Rj7C3!z?u z(?U?KWCCw-pFJedX*ZiB!iS;2d6KZ?RSqqgtj#5bVJUKt!`hLX^xIbDSHM;}F#2hm zkw{M5Au}AnHVaAKOo^PK#w=;|b;n#`^5uX6k_PP7jGS3~{D#w1{JV!ibJuz>p9FrI;?V0CIC@Ri!BTNC%#bI} zt~1S5oxkGoQFa)_7RLuzyk`|vsh9YuhE0_rJK+e1w=r*C6<~vFcW%*rbxb3SLXXSU_Q7Dcx1NQlIAdmbS7MnUTgle^@h}sY$T_qMm zPRo9xC`A70sFoo=Wh^@P1-EI_fbBB3TnI48n_L`&csyytfAD?5+A2WPC z@z>Q`wrn|;;yyWFd%l_SpsiFj+%(#O7ToR1k4+)$C%G?KLWX)agZ#`0Y|L_UzmAQy zlYXg0Ht!_gOcE}8KA$H!vM)%{lg7``9*;(MA!L+Os!EEbk#n*>x$Y#jgT%}uTOM0= z^02hT%Cc-StihZKv0nn7pDeR>7Dw62XSC~^rK+P}SORZ6Iz7zAmn#3;U* zW9e30{9ud4@l@-~4|tKqe;?^(F*;RBzfODPOzhACD)@YSbB7s9Q_G~%r4vpFr5zvB zw{QQeDQ^m}QLuy&>7N;J9Yq0=Y445$eS^$E`4B*?Op_ePfV$`K|c9x+beulR*d0-Gb z6NSwTQX+!_z+-?-)lTLCfk(C=Y6Cnf%)DQpN}l-*FB#x4exnem1f!956J2w<`-r=RoHS*dE{^v=d(h2oAQ1b+ou& zQjfq9AD}ZsSqrZEDp)YTfZ)xIs=^UE^Bj>OG#zHN#lk;`(-F$f3lEQ@`ICf$U?+xr zHWN7JM~q!kHhqS<52~iwD3-)F+AKb>Csx_?jFv}-*N@$?FdsP9AqPR(@YsfMA4ZBX zx|&N=CZJsgN~N8sOhlgkwKA`c;g4PxSEAoKO8bx&IzQ8>Xt#9w;e>vl7x;|(Zw0Z| z_Y^satuA*^Pp>5S>Oo4((!S@Ky$0=S(V{$h<2{&tY8wS?PY*Kvx`D3UEZK&Yr6-|X zvbue*+pvzX5GER@nP2@+vH25hmyPe&Ej(g|%gEV4Jj2Kaw3OM$VGS|UG83C8AFApv zCRp+D*lJrIc$WC{GLeU7i;7f#AR|Be^BB4t12ZsZkH%sbz-g6M1d_1}3PzixIE zy^V2@+FWI%8dKyi*i)do0H7i`Y#Pg&2&mw0Iad3w6Z3D?YUF#3&~raJeAfI;Jt8*o zw+QGo=*gyK^26kqm>Bv&PK8;LTqr^70)F!n#rtH$8%FhLGW0-ItvEs`rx&%B3zwm&MnGXJn2;8`1u!vyR)`G>39y+_ zQY#NtgF{qSgF{>*3`zuo7bPND}Fk;A^1MD zCiGCbXfncS)-;7IDTo><(cTX1vox|CJ`H0?Bo7sAokDJUR49pJoERJzNlt7dQL8f? z17!XW^{!?&A;UPIMT72c-~My+=FO**bjRpQk;$=yUFRZzw_)YOrlO^T z2u;q$ON<67XW346WI00pBNb64g*x!Rr`(Z@F8N2|6B5Yp9**+o;y2i?(tM#7amo}! zjlTveN)=wF^F`fwC@Rr-2W@dK<8)@@%cTchRg@Fme|4N97m2S-%)r4-y-tL#CCseR?2s!8Yk@l?%$QIazK;C-Fd3@GF;E*g&`{vIX2QA=KKQa)+5QEj2}BQ zElxUR0YyaEH5qzr_GX5+GyB}qVY4Equw9d(-@|Jd-p>4pd)Qe!UFgORS!)Y5q%+|q zVM0tb34+jsb5aPMbjh*z4$HB}0jYGGoRDO{7u|^`W3A}f9eW#x2Tte`9d7k>8ii3U zk!+^lOy3_Ly=utxtKSW*Z;4%SRqD$uIMa59$jWr)dsO%+wtc+W$q=3K9@`gc_D%aI zWG(Zk6u)WjZ(nON(+=FQuHb0gXA>-(_% z)!Lz@i$O0+of~+K9fT#v_;aY{s{!uCV4b8FH(udqK&Vax{=tTQ$BY}T!#Vvduv~rn z1HTUA5f;W$>u^?QR$_8KdvKh|a0Ju{1=tS@UWNdDNCFIcth8{Ra|Nu4owVgaS37|5 zqA%baRM_Wj^|PF5XN(Vd!DeK4K7hbs9TM@qUm+#6IJwHcPH$nZ;|6M~lb~Dfg2;-> zd?!wnPgIf_J(VL=w?~hV{rmTS%$7xox28;)9|L>RU?t_jUpA~nKoD#hL#w>;`}U8h zV?$8mJyfhH3qPw<)h>s@qlwVP0YGteG-Wh=_fcfGuuf4t+*SGX=1 z_!SH?tF$%kRtTji5%BFm@3K;jOHtB0A^#xZD+_#PE#IZw6xp4l$%N#Hu#($U>|xgz z1!xBtT!wuzFzziFsq94!Y2M@8@TTR$K)go%Ej{9Yp|1gSu}p{YH{m*qGoum{>Q?C2X_MbKV`u-aa$yTfM8>f>?x(7H2?F=El zCWm0Ln^~_de2m~F#Z9cj4WgK};b#chWFoM)t9=#*%+DQA$OJwAAjwt)o1jDWz>cjg zTC}Lss733)2>I1iM76fl(?w}`q%M=QW3Udd_P486ZG^Q#ZgLvdB-re94+YB8P~;gx z0xX{_wSYtjeu0|KBC?fLwzvWt$q>FOWuP8AL}}5{5hS*Sp~zo7M>Xd~Pc*-4&qp-> zr35#qPlmF9V&~#NrxzxKDi75fYl`!=RP(NKR@F^WPJ1&($P*4?(%zaWj_%0vijt-_ z96RTTu)V6MA&LX5W4ut|JHdBx&QO$%onUHO!(=DcgT6fP-Hf;g7v8Q6Oa#|H9T;z5 zvw%>^j@v`^SMoPJ27IAs3WEW^@H+`5mX$0?b=Ib z!A=&x=f3Kw^ymu1akA{y>A8k!$=f}mh4_ZOC2z;trDry@^ESF#dYZ7N2r5;Q)O~Gj z$|hOz82-f8y=KZOF)i~8hPRlK>r<9n980~QDTUCKC9Lk_%2jZ7X_#4UmTp!+OqoG! z!LpYULTB>8&XT`n=Xp`?vkS(uhY*Fz_rFH><=fCT%f_!8IpwdgK3s~)4g;e;2!4-u zW%7jWbv5NcRLcW<-~Fdum7%xMA$>_`lg_p6?0T;9cJ3+te^mnO$R&agE?wIGrA9At zy+J4(LqkpfFD5*EVz@1)aB|?|k0*wQr_v)l-0+_r(?1NgmMl521ng~Ja-U10sUMnc zUj-kqd11(<5DVF~v^^u#na}hz?i9}TZwaZS3q1OARX)R$cOOWh>_dRc-j;98kJj?( zoq=a)U)i#6#1iiPOv^DmeCNj#p+g9_Gh)}SEq7jq5~L-W7VhjF^={aH351bqy_Pk6 z%Kgm}C>{1AwS4t!u78ONd*X%kGLTH57beuZ7pZoKjQ?US02*o|9ETPAm>YaA3R4%p`DS> zwX2@IOIQl@6@89o;MqKcHVo86S4e*crVBi;U6uTd5NeL)@9Z#`v>^+`(SKxWzUsbU z(mXLwzC}UNOQa^RZt%76E%go>y!~41N_{)~@1tLcmVX*M;OC?n>VV&oVxM7XarnDB zdI&T=1fS1Fhb1)@U>%O3BGK+rtIw8ofi} zV}UYk-!W}%#PM0q_~Js#-j~^}3$1~n7pQ)^FuodiE%FG9;l?{?4Aa1FAbJ;n=8O(? zAaC86_CoSW(Z{M;_JjMGSCXp<%n%v{zxVqcgb*syW*1&VJGh0xYgWW?A@J`I`t6Xl zolxZr94>hwRX!`|BGEJK{}A8dD?2(=2qx4|mXu31jE|Oe2B&#s?X2rj<1+@ zXjv8xh2gI;1jj!(S^ej9W_9ZbSc`D*#~)!VB>e_VpK;lyZy?k*oPOif4;{X$f1FIe zMS8;65@2cHHI+94P3@<|e^~-`)?bSx?)9|=ioMkt8?aMp9VghA-Xj|B)pdZ4ci}xS z#{fdK6RdMT;~|cvYgHVeD~8&HJx{?qtXCK8rb;n11^y;6*c1vatG_x775t6I;8-=h z%m)?u9%h+vSWjw3Km1S+p>9xhZ!HD@`TY3Q*R3)JlSVt#pwf zs8ph2K`kp=G*Iw`F!&}1xC4TxD4TWcr5I%=o2n_sB!)tNWd2oGVLnb%jH4ZXRQ92| z%11^7^g0Dju%+R-l(g1>G1V{^*070q3POu8gH4I5pxV)Mb^7oyi7v(^q-CLwwX~OzDr=1~t&#VFZ$N5iRbu@qen(OJreVx`nI+Y!HrYAL z-fZwIR%Qvlpr7A`;RR@NpYP_dgP+&}1lDTz8*IYu<0$9)s4m!O=>%j}al50=D0qW(b`rELEht^1J zVLTyf^}lQwA#d5_lmx6Dy>=wTQTraRZBXhFO9-@t*Z_9#!6@DVND2F60JU0}B#ayi zR)oNpg$tvon1=H{90D^W0&_^}%~p~v|62AagS_%Mb)jD#*ie%5iX%E*FqEVekzp_l zbYZ`(@@dyA0LAH+RnT8ay!(9#yY~MsJt9cn#+{M0y^=KcuahFA7~0^NP-E#f+Lzni z;yCJM_bS1gNmu$^>CLHIY!hXt#c-78b~%PVy~4hCZMFr1)h|i z@L4Hb3FqI}8s;-AUOCP_*TtK}hRvBhdv*xC<+(K+BW|cKYWQ>JbdsWcWKYR0?InI9 z5C$|Fj?BR4x*D+~^xo>#tA{^dUvDwgxu7J~ut1h7zfy^#Z;YqGEP=9${Np!Uc(9IY zS~*TWYV#hEZ=rFHbd$XYI^k4V4Gpa%tIQO0MEBen*&G}+ja=rmO}2PkLSxF5@AQEw zGl&)19I46|NzRr+hEThD9#R*4R{WD(o+lb=9&K5-%B zz|N7c0Lux3Uy1{}NwKO5{e4xUpBQ^ML$UfwL+F;ljTt=n0$imAH6 z(PAMacmMofNH)InnWKxklE=WDzmtTUuDF|o4P zk1sA?{e=d2wA#|MDU{ftoTvh!&lN?vWRtVxRd ziVNxkjZ|A|e|cqL!w$7NqAWamG(*GgoI2gqM1b(_RANpv#JRp!l`5r+>YpFG!c+Qx zvIH6=Z=>!?kFDbLIzmYc>e{Sbr09`9s{cF%SfyKXtQ}5<#|FdMIga=W{-w!GB!>Ue&5Kh#=`u9p*#d?fbRi zqYXR)L&)%wSBI8Do!CB{^x#2I-=SE5Reet#4){of>7Mq;u>u$Id}n-`q$f_&MjD(7 z72_Pct(i()^B8zM<4%^nBRjd}lM9!VyKL9B85x?PJgRMR4CQ?SM=$~#1IM)wu(5X1 zCtaIvW0x6p5sam6ydrq5EN`d?vzFcP_BdVZeUT6)?&~TwmM)e#Cd#be9oobr7X*)4 z@kny)S&t?pM)}QQS&^)R_D_M`No1d+*;tWup!##cZ3W(NAW?4+Y*2L3o5zOGwMjmM zBZ**Vj>aVM!^O8~O8?}|kk1h+pLh5SS?|D5!{K+%^)6g0o^*9$x+Feb3KdI~W1Yy~ z!(8OPEWQF;g=bKz>Yowvvdr!?67D6%BHxffkAZx2uq_k4X4)83BRR?Jy!KxGt;>$V zp(n*PzTgLE*#m7$T_TsYjvlXWgsgwXZnlq*xhn6u9#(WQ-7M7-h(6@>1tGEa{z?Q# zQ|t56#-@=zW$g};cMjR9)=$P{JB9>&^aXPrQwa&>)#(5vv>Sih5qkE1;`;901J7dosGIqV(S3B%woCPRV__^F%7H<+g|1a=J=T5~ zM$FG7oHUh-oZ4uJ)oYClwu(gWWTt&sw?`lkceBw%|9>G1RFDnEipibh@vzcgdUewPo|w`)3nyom+_4#E7qO9Py_EV3jb zHy7WH&&_pWTXG?ssyao0)xx>CNA{LRB_ebA7f`KhICqnJOCxfx*JQm;!fw3{z7D(D zS}%C|Lm%pBnuKpMc94RVhF~R&Re_Y7x4SgXvbWUzAo+$FLO6G_#lT!y+}~o|c(d&x z1UuWW19EEn{rz8H2d(&6pQuZUd5m|3L+<3xmLgD}Cl?=QAmle0JOwsD z1NPAy#bOBcIg*S~X8toS3M9UW18KlzO>w(gj0 zYwC?EhmcHXQ(!9W-G22{0?As%CQao6V`#zTOc6i`75gGMVtsER^q30^4f!q1O~R@< zvsr4?X?$p0ua9F+a}{q`A9PU(Z9_+=XX0+0VWC?Xny@q!#~~VF{`HAJr_+P6eK$T; z*gg5q7f|Ugx|Ss63^h%3qJ2ER*#<4fcWduj%wwpuD=lX;iK&GOJ6@5XTk{YmP8;3H zI!rPoJ<$bk-0pstEaD$P)v!OFgX-)R?@PI!4k38&#m>hQq4k))KI%k8l-1+6T{H}J z7j+!3&=>C9iFf{PD<+;&z5Iq9O%^(FcSoaq1-j-O$Y+a5Cw+nlK6(=0Qpf!raLw;_ z+*%`&ry`Utt*!< ziFPXduEkiH_p)}+VAOOI>-1Q#{=@nZugi+nYw(5`#Ed#^PZvGdo;pLAj%HeK;#|Yq0V4zqsEZ;0eN$oGFp1@?&HhUB$ z(umxr&D>T74Zjm`sBNuOrg5*8KPp*cE$kWCg<3hWdGnUdC#aT^6KG**d}KP6(GhAT zCUWk3HVDYhLx+w^NJ>aZm?>*;v-*!0Hy^uWnus44^gS)I8{(eRisN@3Q53c|Z!4L? zQ{$EXHl8Ja6z>D3D)q>9_hq$h+%RX* zC8@I^vaa{>jdtrZu+<#5AlNE_MinQlMRo`S=(yTXZL@evLJ4$jx!{ERlJK=#DUptl z;f&^jf|{O{wRX-1#Zf0RRedkxNhZS*J!7!A_t3MzECu6VS#6Cgxo(@5nyHMhqKra zSTeNK5#O&@E^N4P6Ec6ff&+u`HZ`1X=YUX!ttzyGZyKta1?SISdS5@O*J=7BNZf4C zpgqeC@L}N>9&}2;UK#J&b#1iAGOYY=Ao;&O;X!H)J|}3Ro8j?%qzY; zupmeaRQH7;C@(t&?-5tQkUwk#`KHhzLe1d2V(U3(w3?aA?ijJk{HZ8&ol;E#lL)2Q z9}2s!%I>3?xi-r#eeCFRbFgfwT)-vzng2+X<*E@%RL_r+g!k&Yk~yvz686i@z{+1D zcOdJE`F;{pae9ohNAFrSWjX;{{icZ;q5wCEQQ}+k`Z|9=fwghsu#w=)uy{@cmW#x9 zYBk%Ox__Dj^*N#BjP0HQ#r42}m4gTHGuT^rrvQWbgMleZRE0$XY#&~@2nVAsZurB8 z7-iuo<%RAkc%L5+!J@k#D;|%_P=4bFA3(Fj14yD0KS+3YnmokUWBi1|{`TC>ZNAG5aT33;#9m-{qR4cPow6%Nm0G?&aQlL8r&zXg{4)FEDUn)dL*^ z5VncjY~e5i7iDnf2%Ap^;|4=G%p8BC=Cr@xa8v8r!SV*JUR~y-a-g^}gZzcGhu25n z{Smn{7%N~R;P&jDG6n9@T%!z3l{V2JhWnTLsfQ^uiRLPHkR28@(I=Sjs4`6pkKEzL z_<&v<-7o0XQ+g@Ilu>>-%^?R`9$Co=4_r*<{I{PWnSR;3l$1VZ!q z=kF!2;Y!T(Q*&mFeLFQ%t`Wo84MQ08pd5Q6%YpgmN$<84<4+hrXl6oc{PIo5AROwQXbm66jjwRk4Vz{2#uhlMEG6SdJ|E%OZ9kmV0}VLlPcF?q5|$N8 zK2`{w!k6u($=IL5nbHc=LfA7$_65nm1fML{Y-=jCRFu~#JzwqFlS;@!d#xC-n0+L?3-#6uP9U;3cmRW-LJ0M z|15P&8cSeN6{1MG>@n-)CZU!lOTkhb=pYq_s!`+!*V$w0O(oI-uM$lTh|3J72NL=2 zKJO4R-t^BAqsbjv=D=qgPWuUB^R4b7t?<=P82(c}aak1KG9OiIEXMo^)CPX#-({Mv z_nB@8MM-W&#dAaIC8(7Sfn%Sk5hPqtZO~MkWY!ee=$Pz_1@P;CO3lz8?WEY?9BGZu zJMxT&%#K-`iwOBA@4^lXR!#tPf0) zP8905g%(QA&w>`va-1F(80Q#5P%Z0r_eY&D?!fyq_+xm9y&h!?W9huG^Ev*k^1qfV^L|G@?VtWKW5$euGZsX}UFgnZBTxQu`#7z-<_`Io$2voW zp!SzhB)1Qb=zOV5nX=ndATVcx#0m`{W($;6@hpihAC-I?N+0=DbQFW?phy(i&w8?P zzq`|Hty&uZD;TanI2Iegh)m`K@>+-6SHz#jGe--cHsq?QYa=Sh&IE3G#zdRUARDNA z43^rJF34h=gdnOmh-?#pXL2_->)SPq^cK9*yV9HIe)vB3%2MO>Y<-bjzww6=|KoY> zB3&kp8l>Qjl1%5Hq;Pv!TZ#=}%2O+gWvE}3@#iGi0(@24k+&cA=$3?`L&w zSIe#?*brFP+NtVcAM>zc$qcFyJ+!mzW=y6V66-ocDTB(wjM_flmdv2~;@Vv=dl4dY4G_hb10fd4f8Kd2yLdZ?6gb;G~M80lG4%~q>nIexgfo}I`F@(UQTV@9*00oD-n@KF8 zxOzs3O9cgkyqUx;#Z(1>-@GvO4oD*O4W*?fNomjEo>9U(L=!OD9VIanB=4~j`CeZu z&Ce(}3r!6*9F;Bai&$+rBfm{6c>B-rJ@r*qG~^yPl7Q;PXSY_>-zHmmvjzA=Rpfmu ziXWG%OHO#Hm_I(mn|)%O_Gq52raOmc4&;uY;K-Z< znvVT%i~BhTR(#SYfg60+RI2_EmjpwceeDJ|y3`zeMAkAceOk}IP2V7=kc|Zln!A=y z(eud3Dcc;!38b26ki6Rh_0sO2)b^hNv~n*K)F9QgbzLFf?iRKXJ}YWcQNyE3a&uYc zLIo?iG~LocamsOtnXjT;mUN~fS01~12f{W`5|;?J9^Np#>-1s6oB2Cb2E(dIT8G9; z+|g|u3TaXB_BnH0pUg?hiHv;94%6+CqjW*h*^vncT3BegINMTZ*vUIO&K7SFgQ1s| zewN`l7VE5}+KM6+r?mEkeh3=McRtA++den~@^B@nU$bG&rpGBqKhd=GzZGAy0U2yuEwQJTKUaP&GZMqZh(^LGCPp4s$J=rFw z$?mlomm#XatFOK1Zr*(d!s@7aE~P5jYJC<3f$%$nJikCITuw zi;&fYyAgrQlEFA@4(wp-_|n3sY6H0qUz8^4O(HR^o&y`I4o~(VR|Tn@ zjd#B>dtv4=QHji^Tj)j(F6nRxf+njE&3c``XClRasm!x`erd`l8e1Ke>|38x%74l@ zDXN}wlN+ro5KRW_>Wh@a-i)Ouv9=4nOeQmN12)u9ev1&MQs0>nv!lQ0EwasS_^bWY zs=@5o?@p3MJBYMUHHFxJVs2*Kb_+?iCDj%k*uIpbovWp}Ng(kvr!;C*%^Q`Zk4zjn zXr*TOBie^aQtw8@#6(0yz-W6R&4~Uj|LZXoHUBW9^!Y1Rtk`Gx@YZmtSTRvrqe3V_ z-_g@@Y*DjFwsg$SBSqf5h+1UlT3&d{L+X>)d=mJI53X}hyp`)(*m-Qafx<~@H4U1- z{%wr7|L1-F-E{t=(sG0^Vw2DF?DW5x_rk$5wJ*FG%Ri9tySa9JBT2drLB%E`SPU+~ z``}dL4Z?QZ^KTZdc>^;u-54kSx5$ICjKs!#P4HJXmLcm9yhYa9K|vTxANxibSW>wG z|H*hW6N{ZmAzSRMoqj39I8xd!)#&kpv~+mqop+YN|1iP4W?ja_?@$($G!0OdJa;cF zY|_tuhQeYE&@k8^^w{v4RSgV=L6R;_oC}!y%B7FGFh!aK#|y9dof`LZ+@nUZup0@+ z%GzOuC;N3ctW%U6cxhLAO8>_t;63TAnRf1M{+74^PJ!gak`zjD(#P_4wwITZ97mz6nE*D^14GBf5Nuij_L znTDp!BwiyKLtr1xm0BN^DOL%u>5z?#$s!1O4g`pw(XE+#!U{Oz7*o@*o`gh@Oh1ib z{}zcPXX>#tX-$Q9NpuN+Lf$k57U3O5w!yh3DOD_yN%bO$RSRzyrln96IfaIkl(wd_ zMR=Yk!JTp?yKN33Fz05mRS&ex;Le>Szd3u{>>B@m`mHVJB$;TqK0;B1nBTAJ=5K=U zW`hp<)jl0%sKan$3iRp3FKnv_Fxohu3I}3i?0ng6xwER34`3p@BE{5be9jAe8VUF? z4=f-r3|}-{IIjB8bi?ueoR4Yq?3_2>IvN8dl=yu^}b zsI-N=j8l0c*=pFjJ9Yy_0bAYeFkeuu2zp4p*E9EB}9E8n1?j&KKb+bLjNKlsYd5tE#EicGmIS{P0gwz z3_>Tr#CxlL=KJXr!C|8KuN z@a?y41+DExu#iX%m$}~xD!nR~WQ2|A*6qC*ql?NYwXz|Egf~{XF=iK)4sIl*sa~n} z3cSel5|+P4Mwnmr2JDeGjS2D7J$Su+%7LBntpMTmd9ZMT#mXGg(@)6V861YnjXMkm zmkuAE=f8*~*4F)-m!{2|tAl)t$UalX5uSVH*lQ$KP~+1a%pzwvPZpcwK4>u|e01A}h*(X7v!$z+>01Pd!M*=d4R;83AKed#k;8n)qQnwZ{6HlL!`m z_LU47*M{@C-q9j*{GA5tp=3V?!0tK>bipY%Sti3032|2FbY;N!H?EyCPaTe#BqeI#KP}6}PMYH?K^jTm*D*KGOj+j_)I;YVd`kRfrVh3+lvLlf9hX%ha ziyt{Ga6-E?C8nf&X=s_(j!CrHRcu{)FH>X^9^-BVlY5I5* z@N0>kaMWR0aUo&<^ltn(&2HOMP_PhKb&tmBQ+SUF8(!p|!b1r~}CZ zJ0bF^nUCAexM7$RA2Y0-d6s<5b%2>@k!V=%yp8)k>*(^>hNW7a_|DX|6K!bMOu1`X z7l0iw=|B3Iq=U!7D4$MWqz13|sh$C|XADE>>w)u~^Vu!~H($RV=0rO7=d z{;Lvb-)ADU!bx_YVPrxdt~d55ZKN7u5$lP;4zpOjrh0fAj5*BIte7`;w~?vI5@YcF zCalEddS^;|n7m+6N7nn)5>n!5!fH+nY{g2j_(4MpVDmyVYL3W|$My!ae_!L&4R!@q z#HY5v$NMx+H`MqmoEs>`?&pmi<$W3aB-{^r+W*<1LE6KGvKPxMQ0LCsJ-?kW2l-## z4y{V%Xb16IxzQ(k0Y2VFXbVRO%}ONar7y|0ImFrNp?mt0q*NC>{q{&ISt@|M+D*QI zN!At7JMwkd=7L=BD6j$%ZB#FOMT`~tG&YT72bC0~sQxC{N<((@i}cPV(v$2SE030AC18IQr%%nUH=KDb=Q9=qk+84tyYv?D?g%6=5@oQ|Tl%3J*kV=w=Qz3%|eqWJb6AP`!lR|!O< zgCv?7X|PGiPSbtYPcA{iEvrf4ZNDGXg*7wEabEL^-$4_U7qa ztpo6;N%rpvC;!qCKH5ph?e3z{QK^G;N(SSnzw0?r~bT}B_B>zilzN#lH| zP~%J-#lA1@|vTv}S%BIpa|U7L>2=gT3;l#;50f({a_!15RPfCNM6 z5xxztn>dWdSo?(X@P`RJ*7H%b_aJlu=(x=g2IA1y*TdFNSZyY@lJ83Xs7a0M#wui$ zyiWgL)j+-PxBTJ6XV^9iWOJ*2s_9So!z`#%FufTJEFK=R=ck?wr0vklb?<3Ggid20PIM3 zD94tQ)Ka{JN+}*f21+2bn%tFqIZ&Z6c5>6DWG(qcs{j|th$~c@5Z<298MC1{-doyl)atS~u|;$vVi4$I#ekIN7fv z@C;1BpW5#?-wkrKibmRuH`p=M`e|d0QtKJ{kik$PZH!VR4PO)1s(a}nVI)-4^Q|!j z&Iwhw&9FL)je7>eCPIvpO|AH9@Vl|B*Wgfcm)E%(pQiKZMb0|{y{s}cUTe5s9p~{5 z7BkaD9+UUYgb^uOUW={A+*qx}C2igwRY~8=KHT%t_0KTWE&H0yf2I$ahLD?V(=-7G zbj+Q*&Y(wG{FbMDo72gy+hBwU`N$}pgy}N<(&&y%+sLwz+QeP zbTvp_d4B@F2IdRy0hr+L)CeNi0EWMJfl3ta^zZ89>ATa(tAxGudf3TirY3zBEa>Xl zRqj#%Es$-+r|t&)MJiRAsFVh?FJCDJ1b4z!rinSTD@wS@#zwL$%Fb+xLY+Rmn!&Tn z0_@+#M|ksH;5a7i*e<|4yEs*sB?R-5s?@ysLdgZNgcII8UxLYeRxRW;kJ4zK4Cdq1 z+u|;et35}bFr$PtU;X=|i&Jhb>WUefDYuT9F%vW87ML*;(@Tkbjq(}@LXeBvneaSM zaJaoF2=Y5eIcdIZjndNjmqR{KD|&fdI?J7de9qCk)N03t(3n3+&_B_aN|og5#E|!S z%$L!?P-C_xP2}Gb@mQPqd~FTkxUj)(GPmJ2Zn~e|Th8CfT(AumWvUYp4L?*ZdLVtjR2DT;A}MU!bsGVO;{UOl-3XV!PS_!OYLfzV}I zrj9>MA#nIjDCSEd+8^UKZ}uhY0NVvlqQ2smwe=;70lNX)7#5NYW>oSy387d-VZd0Q z#vad7-$rOgNPhGiS)}z1fmaX1$s8!>x;Oh{et6L?KCua~6}m{eb2o^ppK@#)GVul( zEBfJccHDLQ`I_n?$jJEh)m8)fs%@M*ydq!C2)#Q^Tl4m3Rhs}!{Fz14t~Q?aG?|>w z%YxzL={uBG{xIpmVwJbWYg2zK$WazUNHr`XI2vLCk7<-6Zzu^Z7oB4lDVKs zrAn2m&z^lP?nUN7Lxx_9O`+2eTDUf~p%sG0F8{b25CVoZ%`f_i?aZ%E>WyQ>8Q5H0 zBQ4abTqB%@Jxs#dE+^zqzNYg0isN#j9K9phm1)4*296n_64OWu*9Toq$R&z-#&h3^ zif}5z7ZgK_Ndg_KTf$se!>YY`;8LQm1%N21oT*U&Tg71wWLPxG(!YtkTnO2wD+26C zyUuGS25VOAT{pDHz>0-(*lGj&2weIXx9jXr(zSu|8ba>aA>E@rnl zGOI+@VX&T-lxF1MnEH4Un?!$J(T3m33qa`Jr8Oluu~(fi=c)5cNgeoRVG{QJbo*{! zl{d!_2mXUjQV5(T6$9!Ak1pJKEWp6(J>kHg#Y!v^U@$XS6M7V=J=Py^OR3<5rfJQ) z|RI}lc-0=>xWZS5Y!7em{MQB{1|`6$}Pap)ER>On7_YSc(2;wsT&f_ z*-m{ip6ucE?z_hY`>VRbU8iNd$ingbJ-CmD*&L{sB<5w;%2j*qq==`(`F;Ug>X$ZM zYz3Yzxw)KcVc#KrN(I3K_9Uk04KNGmk5ZJ=EYV0WmSg#!DB>gILAD{}*VfR%T%Re* z&HN0_NMa?PcECm9J*?an(Serds1vW2U_%w0;4Q}9_)C$B?NgMrN@B4Rj}>K#1UjiG z_rwqysVH}KD=x=zMp1fkM2#>QP9BwY6b~tiq>K_}|3Y%vZ?+QBLR4^%#i^O+lkf=v zR_Z3cQynZgzPIbnWWZ2E5C&v2t!X%jyPeKMPTri*m z*Lng6$f=))v>nY&ek0;OJ#OD%SX6re$GvaRT-TE7^WxU6(T z`)33$Vl`5pl77yJpS~6$E)6ehtk#&=ZlvFfTeJK3_dQ4M@{5~L<2fO)aPYUjWenx7uVxLvVVXo{&7?hVoW5yV9SCew zLS}#X;Z>D^;DDoTOnnfUdjLrjLBv@g8LbgjVa3>T!PB0#&>{m&~ z7i9|w1?ymPfdO)D@mISAId70e)>bl=yzrvz{fLA14y>Wf4b47V>N&Y(rPKI2r&Im3 zt_kGYrpI8t_s&yWrWR$31IE#KvS0S3{YpqRUP7bn&lckkL^ky7C&5OPyH2>k zRwc*s3KL4*elBd&XqD_GBwSK84ICuVPmGlbAPIb*UE_Tpw&94S5E?9h`AXd;yDZPN zO#>8?v)bqkC4$KBvcb+^=X1tpZ)$ClOtzQ_CNhWw3LbZj>84!ly+raJqsdI}B-dqq zNS{Rch^)U{tZ|a`G*)O?l$vJNOk|T>jNyEpG;5&Yr@z8JA}5JzZIbjzp3Sf)i;%0Q zVfP%1^#}Td%4PH97|mlN$e-E>UjFavp|@hl8du65n@zHs+9|HoJaWpFU}BRwk18&PABdkT@h^x~3Z5(} zWx46W8N(!4hyy=zs-`{MLW#2qD4 zD8zB5lmzp`xQ_&?8RCeNKy^bLj_)McEQe!VK{3_`J9bMTI9g6Nm??bBaY*uYD}2J? z_(hx-@^UzC6_aAOq1B}~ggpbmnGFHyK zZI&6!HBRCYHZf~rkaWHWp_S_4dsc2U{?!ZNnMCM|K}EZV;XutSYjVS_jR=U(!p|KT zTZTtEUZ4JqH1yEE$`&zHb}Eef@vW)FdC1E4I&RcJiB+q^6w{^{{#b zBX}>Re-rIsfUzo;uE~tGJ>75!qbjj-_=wXGvpw4-LaE$Bstb-s)Q%oB6;GgY^vh2* zOfbo6#2fNiNn@)(-VVXRhAXGj5_p3L?OiOUr3(acxtWaMBa+Qc#|rF$T&J6iw#YXi zwOc%I*i2BDx-30p^0ckCOr_p%G$nUuIto&jG1~gRi1$|2AC;(Bo^cj+ev1s z!ReTl%t90s`$t9^o$4$sSKCiN1?Q5&nS|Msu#29d1-IgK<# z?sl@!eKJNS*H7+)uXHf^KqB_d9p}@$LagVWbP`#Ig+4pJV8IO-tEFt^r^;dd6oeN? zK4OI+?RSf;pIqg2k4aE9|3gyASq}#aROHH;uf%UK+SYp&E{-At4_-M%B1tCJU0S*z zbexXP)Bhg+R(Kd^Lt0Aq%x_f@n8Sx!B(!LrF?t6@fEmm+GDXjYhBhKrbE+YsU3+AM z&HE3r;s2rByd>Fh06cR>8l5zI`DyB6oN%qC%6RXA_)|r}N9R-);lJ##v+`cAP}e_+ z_~EK;0jIWoo=Z@suhf;1un&46-(=NJJK3^Gks)Vp*bb!9m6X!D;@gPqvx?fjAe>Q3 z7X~v*0Na(H0mtoe44XT0U21RZMUh0PW>Ohz-ZCF1*nwZZdD9QS2` zPT~`2mcW~k+6Ofy^vGMk0~FnlCI92n-<{%{N28GU6y^T65(D}n-%Rjq6i}rKr#ch_2Ukc>JZH>F)u2_+_^aF8{)PDFgpI_mj zyI{=dyfyTcle>q?uy9a2zk%HzjtZ<$;_r<3=w1fkQA{~MRuuZiHixx^u!OLgt?(aX z)q)8V#zW9LjE7n4^kZciYX03ltQ;tW@-J8LuNKJ?2bDu`qy|1fd*)v8_!kR?3d2f2 zW&03KS2O);Wq5_-Q^DcNvJXoNYoNsF6YvX#^cI3BPl+kFm5k$J5ccUjSELW&=qyE% z3Rln0XEj!0Sc8tvIScMVVjW%aT*2Q7zYuvRreQoom={_P#rRPO zsm16agpj=$wkEq76l1PYjG{+v#so0!p4An4PIDf!eFml|%25rQ9<8jjH(V_)D=${J zD>-a&wBz<$hA~3@^3j)sSY}ORm4|KMs8Ych6`h;%=eLDRG+63JuQy+~0 z2FFm*&@huYY)h=r`xum}7_1ChrAA!;=8~s1Y3lP#lHlngYq3vjtJk~4$vvMsYd=iR zaf2WYD+$|rymU6^l5>@ltPu5Gfv*wNX<3F}Prmtt@Xks!ti)xg0KUIV!9o-|o>SLh zzkCnSJ;|u5bUgV>0@;=PJ5y!H!|y)+4}7Z|Q~tY&iOEW8Vj?}NDXY01{P;K!AyDi| zbvuSUs#dK!onnusa!(RvodH-_9Y#n`ZcvmtRm2biOoAZ54oR`qit?EZ^f;%?lws%% z>})Rsb9`|=W4xq6K*-~?a$IV7EOJ~qCh6D0Y~+@NQBn|HREEe31Q>rvY_T^7ZrHeC z!-g0o+}8AflA#au-%rV!#_H@g7Q*4l3Cg|iSm+f`yDd$NZ!a8LxQ|WT`}J-j=-K4? zIx&D6J|j0XmFLm-w>wGG)MhjCF9xf!YsJVnG#ZClSR>hX+=_`TT{<55pJDZ0$mM*c z%Py!N2Dw}le!+=(6HN$PFD3*!|5NOm#6SU#cMWl!!6rfJh2}_Cs z@Gg*yw)M!33_H>CHwz%Ur7dgm-C{$Es-Z*x2{Kf1*QPL;x5l`D7G zuP?W^S_=F+`hQsio&)ydZ^4Y2M^VIU&9nU-h$OiR0b8()5Y#6XN@=|`6%z0oP!mG=?|I^ z?97(+waVUAcIGn~Z4u9#c&B9aQ1+&>Un14vF5WM03lO@iTo)Tk5SomyOY%Zho}FxB zE0`kiOn-m(SP$Q(cDNOP+6kO zDcf1Ok;-$mpAQ{#Zk{3E0i3y{UBl65l$!-vIW(H?mVpKo-(q{$2+eu^+qKl2f!D63 z8l`fHUx4arOgjv{(=WKFT5NO{?JLp{`JB}{8ZXiy6dBD9atAr1t7u@9(pl#+FVRXr zwU(>I^0N%^Hm_;Zru&gZUJMn2{o3&HP?XW8Dpw@;-~(VWo?9cQi}X5XtAVZy!u@Ro zBjMv4?sSIlG?LoY7j^Br6P!dk!xymQW*;Y_ZX$R3`q)KiimK__m8Vn4DI^2YGaFBi zLO+$dB2NH!iZcTaA3(!>WqBgFY37!#tP8U7Er}LnBk1`bV!Te%ji{${fwgFA+}~fV ze9!Q34gx1^@S}l)Pl-=T-<{#|N)u@N_mOtWosIg!gDbfqcnYPMuhUT9EN&%Q(BkMOEq~+rHpnStSp9d z&v|i>_ND}(+g-RBcbhaaMBwgX@Z57aOANT_-Q9tT20n9ZTcx}Bc8`q&Krb` z2V#R~B!YV^^7K!=PrFc)2x-I#qIZ8RCB;l2-UbA2kBTQxW;GwBdi)zRWS=hO= zy(y2=A?@;PTl4o^@^Dw-K@i~FZ7syQu*yAqs`d2QgxJ_vdeqh<7iNpq{o#jGviI7? z_&V`l*MR#EriVTgB?AEHyR4Qw<5$8o1yT5Um^ z>RRBh>yu7*KsIbFJ5l>o2^#~O^#^SaQ;Yv_l(?SW2x_jbT`Mi8 zvW~X5fDN=`Z|nw)e*YRh<>XMIKt=KY?BfNIuxyI^l6@2plGGNY%(ttgsb4iLc8dLl zRvGhdr*hl)7KEY=lFm*kAo%>LlCS^$_iCW(`0?Z6;2rg0T0_@$xWd<|^q13rKzP?` zxghkN25CR8q9nJnVAtRw+x-=+=z#F^?%h_)VwVi%LUjwPH3~+>xNfwsF9`lLJO4d< z`s>zOD+~DA)WVI5+@Pe^ngm#k2mvcYIS`>9V{dLdNAE#2y`tuE3f{4X*4!-dJc)`j z)RMME$Ai~OSt|>78fC3atKdR&)t^Ca@UHfPc>V>qvfiL-*FA42*W0wo;0bas8sdhX~)xvv$DS6 zU|0aBhm4;YZ~!cKGlIf^BLLX74gz&l6k!)^d+|YCwLx-k9L8d(aA}RX+udXiQ<1(4 zZ_zkl@W<;yWdzG>Mfj&<>E z$^U05<~IC}6)XE@k2m!&YW+4S(~pLh{2f()Bt|iv5HTmjE*Mnv8fS>1Lncj)I7xyD zAvA#=&P!nNqk8#k-@6vX%>5p3CgRNZ(dQtx?Nde!p`S6n`fDO!ar~p( z0?2CU$%&!d?cuIZEbm@h@QvfSUsL|qYal1>9!tVkvGqQ!{ANKRs3#C5Ml|rUbTHS zJ60ZC0*)Gn-A|OUP6Ur#;#)8?4STZY1LpW~|{Z z;H8gU**AILzICiIbX%=QEPVVejegy=IdqZ?Ry$N844>9?9-g#tn?;7zz9J zjhz_B(uqYuXby#xh!x%oh2%{$suDQ!I!ZF3`1x}j)l85RkSZtQ=%!)_t-yG(1nQK6 z*X9*t9bpq~J26x`1Ij2d^wHl|VCqm6+a_9E0ui zjN!>8H!BcCrWk@jvm)K% zmL0a(iSJ2NQk{3Q!KB~tX4p@&P{@Q|U3&c~8#aVGiNMmHZz^3V5aBo;g+EL-8^gK zhwXfQAK={r!6vFL=``lYn+Ee~yv2yJ*Mc|Yeq-k2hx{9+E6Bp%v8wcRndNwv#H?86 zE)JCZyk)NAI})fXEQk|B`NyW?U1I3HXsq~&OW!08M}00S{3#q#R05$?{0n0Xc5yCu z;FS9-M$zzofq|o1yAX(dcsySFY1RL$Z5X(xnR_2cQ@0LdYS$Jv2n_!#lPq|kxAb27 zk%#{N{-Or9z-)&)MA*l7hHFrdRciQ{Rs8N*LY^&{v?YcR4m(bqN9a3Q{+R%aAE-5D zXLxK#4LuhDrXg;5CZ{C{d%Ye%-GhQAiza>D^?AHwg4VFGet+uW>-KvrJLjin&H8VJ z8%$zH7qjC!sl0XJv&xvC$|fDs)pX~u&g3uc2gqBW;P&?1IumktK-KE4{Vox5%?=^J z;8+&bb6kd&v5VmYbC&Nfz8M@$GFL!&*=H?Ega!+KTCI+}Q)0@yYReYuM6kDw;7W8# ziIFXeDiItr(Zy(w9hR;mgWHGco+3d zT)uk{=ZAMBHp_UJ-3lJ#+J@K9?mroh3t4I2PypliccE*8bElL5lZ{3S1es~?;23*3 z8<=H-I_+)~L+@Zs?wvCvi2WrhM28kf-u({8h&&oERQ*H89PVe=r>2Te2OF5`u~`7V z!ld#&f4S_8_Z8GYfyMD8^YP;(Weg8~L;l#*7@;Z;_VHLwH`S(8;GO`}xu+SYkMq)K zUluXpXLAiH%@Q6pepsOd!IJa6BJ>k5hQFW+?Vn0{P{RRuc= z!B<7thY`?aC4zGWP>+Z#j1L0_uM->K#K83RZ)5VP0E-~>+4ha~;e1@OoQE{ZI80i~ zu!)#3OH^H)*Wqe1Fp=W)`nIf)j=`yxcc!qd#aA(^+~c3#6U^FIK8&&COh|hUuU@Lb$)d8G zem7cmNGgJ>z^dg%A^@TMu&gw;iH22S`fs1XjGOieDEM{Ur*?T*KD|00CDs0oF5$L@ z^3RkAFN8WSyBZ4$>^(SewwkC@(+>kODMq9~d#E9!Tm}(&*RH+dk3UY+`eCuvMy>H!7ue}! zgcpp3bPWK}PpBC%YY{u`{k;P(tTGA8@#4H$0y9Ft(lpF8DXz#bDw4UXl8a=<>cU(j zUgc$`|H+Y3zwMM3uL+U9)_D#F7n8}2Oz9$na{U=3gOE=)p1KZ`K2o_>O#QnBjKvrsYLtI-DpE#6lot7xFIa(iZKQ%=50Le{#-P6*Xa zNap%zP11;V+~B(;kQJm}Xw?p14c&39g~1oF9yGl(?R^Vbje7h^$S?io{`QbOW+8;$ zn?3uM6BYyhc)1}Q{u?9(fq|>_x!ec-lGS#C)VbmhMCwA_w!zy z#y^4xeL1x&LN~FbuYu5daz!@LT%6$QTxJ>}*C_H>)FZ4tY{P{BOp-2~89Jk7kr#097wC+y>z}N^-@(zinEu` zl4^ukSW@vzZ+-=5t$#mxNmL11w@spGg4$p{fCDjI}@M z4HMT!h(1)vs0A(Kd_A|)@DO&}SY<4w%CVh@4<7@bJfOE(sdp^gt|-OUon(i_8cs3U z#yN^@bg8k$086WDqqq`o!J_5DF8rm9HJGvLOzf%>qWkj(-=DjJl*0n-9URsXcHrXF zYCPCLT@mz+rIK(%KnI0g8`UiFd7BS-(D0 zl@^wlJvzmS=jImQWXDu6zswecfvRbS_F#OVFJKKt{zz3$w}O*Rt_KF*e8Y;s{xC(k zSO66n48n652yMdn6I5tO3{LKB7lPDAa4Sh2Xo}WXZd8=6kHEjasI_aQnu(6O9)64F zvLRqXTA#;4aYe!WiJj3Rji?(G<0h=l9>>?qXeh?&Jk#OUPr6iTvGxf#j;`hKTmzo_ z?O=;cB}E%HfIrSi8&>HNR{eMu_;Mb^Z2iwdP>ex!>U_2l)@>_s_Ew}c-1SLnIaBcU zKDO^LYzF~3`qSOt(98Oz)w2BxToBBi`!4&-*vj9}UZ0WSkMlAlCWFB?{^hsbs{`57UcMZux%d@FUGXs&Oqat`%a%FiB=2L-KUH9m!e z`Bdl)3o|Bj5b}&8STLcyBmEg>06XcNyM)akA6_X9Uww7~9G{&VoMWysq zlu^ZY#43T`@n{DnxX=}~soceknGx!s?8}9fDdo!fDT&OzAp!@$YrEC_xh@e_zD4S4 zZ>UpN4l9i{%ts04u|cT&5}>YEzGksxdf+^qq;f^O+ThVj*bX0`9@lU%v?EM#|4aQ0 zDBA^-pQzYs_(c51<;AG@_a>)L620r%{j5#9)V9)W@!;5vo{dEAZ&O#RGPj?zeFR{k z_@2;u+5)fzFG#uw%4{Ob3u-M7l8W_R`bboT5%A5We=!8+=& z6!vvgR0CyCR}qm_+8ABOBXeaKI7&GueXqfZN+X%ze~Q5=?^2yU z{~=c3qFg8X>;DNRexYe){YA25_9ZlxkUg>r^$K&2lwtpPy4QYuTI;y-MePJ1&2v0i zrR-3G8w|hz}EO7a8Y%mV? zX5;Iww|jx%H?r97bUL=gN~|fVm!-iUQ84hF-@hE}vNrDtj$g%1^F{}%mNkg^xEl7_nK6P3M* zovS_FfKnD_qnYDKTGF!b-?3vy3LLM>&bZdUtBsA7YYQ!T>8cAioSz7?E6u`NvV0x= z->(6mFK(u7U@b7EHq0Ir^vD4V`Up3stoK;&7?7JS*=G6O43cnk=oejmJQ!mYl)G$b z)>&Eci{2$tY$YMTOXLbC5Hh##=Mx*&;u$Jm)r%QF(d$hX{sFMG>uZ+6!coq{lE>7v zzpEEQdDq8AL^$R%k{)ksgi?hH)w%E!vv$kEyMo{2VWKVND;i;4>J5{Rjm($VQO>g> zhbF25x3PqL#Hv!$x!Ro}WWNY%*Y`G5&~*{?Qq#U&c4iy7)Jk}d{`dccIot#xSfHR= ziN+W3QlTL15?GXhCrGe|7_Z~s6@=cZQ3wqlEbL~rPPio+OsW|ijGo<6-f{-w`#V3B z6r{w5r%B=p2?)N+Q=ON}$k4h0_^=E^AE$EzbQkXqIhOCL99vADxpdfKg|;N^<3B1Y zOVKkpT5NpD(>*bDjbyst~?m8-xV5>0>BT-~2x z{Ha~AJ0`SoZ?Kn^bAuflP3Ruy9Q66Bj4>n!wjU`FRhWr>dbhI=sVSA3aFE zJeE8u6hNM`t;9R2=js=5|7g`9*j~(jkCzc`V((xWA)nioHs2eq{yx1n6B1q6j_o{q ziV{kN!<-^J#+XRrpag|(fsKN`D2<~SG zn}Wpc;y^0_=O)vuH3SDO1X6(+!8oj`l}_XNVQAXya1cm$WFeaN4u;LuRGJSHp`5Z! z#4}(sb_38X3i)@_veMfSg=UALUZx9IgaP|U;DJNFNxV}^Hmm3-U`3RlN`o!rGHi1S zo+idB1UUs~h<5_!68&P}7wpd6e{A=WtLUlK69o#(PY3%~n}7YO)%m{tJ^1hC;;;DD zjK@E3&)O!qd4x{TU;OJxpn zwIR#4@W+Cn5AXtO(i+e4SA@hEjnG_&bmUlH8E4gEjW>!rBWwTjMW!)dH<#eLb5H?YtCCPnh^_fq@|JjOIjFd>-F=>1xuOZbHJ?j*ZE?fskL#1QW>)8%Jb^VIx$X?6XeY+Oz^@OIs7w$-`3Cv^8Fx z5Lr8qsyi=Ahfdk%=gh7w{~?yG&IrybY}{jZ_vaZYzjw5sEHZR(*B|ef=V&ht;bZ8N ze-GvvLHPJy#^0GFNMzNi5Qcw7euvLJ6+AJ=$)9;pt-Ss5FivOTd!#od77YD?!>SRd z`eE=06JS{TXncTqtXv!c!)VhV&f$8TPB;xEe$L8Fg8g#xSgD`D;sYJH+Y3dnOZ~9a z^{9Ki(8}H)Ujub-o@P&!0AjIo_)D7AV1YBX5%{KB(be$Zl*Ja#>RX*g;q^8;B$_&t z)aTFp(is*)y~r<=mh;eyK>{oWX#Ec1(Hw;GCOEdvxlLk63+e@pg=*QSoyW*azPgmU zXQ&xd96AyC=F~1KmUDCZ2>{9Zq8b7+lD1a2pOTt-7VUSIhzyq2&t{{C6eq5(~EPg zd4`gQZmq?#TUEw@^~*7<}xtfap+emgyg#E;jtHWVJuS zm$ZBc#+P|ArBt}%#Jk!FvA6Eyj$5ILdHsmHuuSLx>mqY1XfO)NV;QQmp zAH>=MCzm*2cW^wls@1`4TTmzzx+q@*^mZubnx2i|U!x+*+3k^{9^LKI2(j9!IDSH{ z?HGEme0T>=yoCPX33na>b4Q;=rxvx$BZ6MjxEk=7*?!Z*nKMg!2pXjV{!q;{WYRti z6V~G=_hRo2?)eQvr^!#jiLu&=%FSD)exweL8#Wz#`1p;!Ov~hc6t`{M0bFj;8Q$l$ zZHmiayfHZnz7Pf*PsfFA*kY?7>e%f+DaQ*V+oziY9d%2N+r!RB~<|sAe zq^r}?6x_U&a)I`kUpo29PO+rc;6UMnNLi*~EH&VC%?8_zpV&HKmh8GG+sA98yB62c zBBPRVh^=N?;_!XFdNrt%fA?dkBYPJ#cf+5-Sy^&&G_Ac!S`AsU$yZ>)jB|Ly=&diS zA11$3&QpGt8@5E9S`eXrI_6Yoyeu*h1qehaM+-ZkVwwPe0?bdPWrLk^3NrN5Xu|wj z0M$<|ESH^DM8E|_0cKT5lpQQaIi*SoilW}U2DacbR5e0fi!!7#v}S;Z6QmeGG*>^k z+Jdf=viR8mng9VU@Q`s6B7}+}zf*oK)W}QwukWcUvU{r%dr8*pcs){nlZd&k#s~O@ zUSo#s(Qit`U}N$E34{hH%6Ag1SE3>l^N3KaE30h^Mk;g&Fqt=X0hg05g!fGlo|SM5ZoI;ebDCr2AzeS`BRWh>Eeoph2&)5m zd!A61a&?!+D&c~U_1JXf&J(OW?`ap&QWw)JPzhgepIBY^<9DiJ-gzS({~bTZucq*2Vc*RxekAiJcBt3GQFA-Fbv6 zCT~!&SvZ-Sm8z+3)JID*@o}!CH8JfAE{3za_>NyqGAB=`C(hL=gdb2BxvW6PZc3@7 z{W;ZqZU0K_J>^#uEflCU*q-3BMwGk8gm`c?oiM~9odSe089R`1Y1w*#>kpaW*289$ ziwuh5DvaZKO|aEKp6ipq1u-Ao+zU*)MbVYAlT|b;Osf+qD4-C9xdVaFApb}tk-6R=S!eZ8> ziVVMz+(7oNGUE1Y{^@s#?;CcSk@^lw`-PFPU%|hDa0@DM6$>QfiDYSZYtZOt*JP$n zI8QE-j8mGfTr7BFHOa0g7X4-FU?N=!xx$dlWaS^Sc~A0P&uuckLXnBFt5&TVxk|Y7 zr=z~C>GncuWnseR344Mj1~@S+scFDKkfe*0>ev71G>+ymgW|-Tnbv?hVZ}DVV9?=O z0hVFO4DAi{B~=!7BU&O@=zL0r!68(D!N*=V!vZdrrl;Yo3TY|Z!Xhk*7+R&sPt;h2 znG-53N@C=tL}%>ooGelZ^0OsviT~7Dl}*V%IFWxA?2adQg%1<>ig(0-LtR1f%iP3q zT~VxH9u~PB#4rWx@eB{-<>>LD>+>GQcX*4=0VoFP-Jhh^;>5aByAwX0fq8-eO#mYGY4Nn6q@1=v z2=xy)Fu?@i+sl{#eq;Ia8~3_d^}UY&4{E@z<>VtL)`+^NZgtM7a|Kg*?QiXYAIb4B z)ov?S`91)j@6WoI&p!vxV%HEB4W4SM!4|s_XCWqEmh|%Z z0Z!b-5sVyQI6<4!z`rn9m4j*%8F^qX<}j4I#K1iR+vG&+#{TL90g;3S)diM5i=3&3m{E+k$Zg8MYTE@Ky~O z^UFmq)9L3BvaD@h(On%^UkLFz%sSRiB$s#agl|S;evVe>E%XrIlbLu2Vf?E|B|^Eo zW#He1#e|tLf^P~t2A_`qHO-0fq0fG>O=Zy>KBLXD`o{3bSbPRvr^utz!y&xKmZmhk ze}Aw3ls$(FoARYR4ZWz+Usak4}q@`=OJk#8)%B^xuL6v0YFBaiH{9}KpC`nBV^ zn$jYc2(Zsx+8KAnb+HpHsW&!@e5vXTMMG9tSefXQOlc2vbW*y^mNy>D&skRFyTDMA z{I^Hnu`;17C`xHfARwu z!BScZuz0Otzw#W(oeoP`H{%Dig?yMe^jmg7Q0z)ZXMo;^Uzk`r-c$;W!;9g6`C!^$vseJ_ zW0bs28}n3V7NsJ=(BWRHHuM{)9!ppWhnbXJO*13hQSY-zbX&DM1%3!Vw8+qC1A2}d z!H!L^=7Pmgf4br%ek5vx;{~6%_TSQHdJ~CcRJxKIu^iipr3O-PuQ}JHgo!!HNQPo2 zixBy0zi$cdX)-dAGUV0t_cS!BiCPm)jumBU1Qkir`<|Eh;p|sfJAkAD;V`cVyirxP zg5N6K1Z&6s!UhU3n%F`qCpoNkhWh9mC@kn860d%3Do5aOri1WaoUW+@#(owN8a;t8 zXdRUAFlPE$O*8TOFM9Rrh0yQ#4kPvlSe@uAbao1F2Akwai(N5$&nLmXeS|D8DRx0Kg5IK>s`9z zyN~g%N7zA|bt6o|QFWmOP*kFTe!)4aNqa8zT+bl=OF&L_k6FxQ+ zIc++@B!=+;17qa?!!j(_N*8tj?{_o!=+*6j3+s#RyOltv+1svo9dEG8<;C~jGShW% zKshr3ewOhCSE|wze8~kiJc6y=riQ6FV7T^H=jf1#57<7B?>@nJ>CmBXHLNkla^t$@ zx2M9iJbn}zjw3eOq*VO7-n|n6UM_uIT;+S&VxIn87x?cKuNqpQtrQc2{`xX9QRmy~ z+}RcR_=XDvJ)KTZwF9+cRKxd zIz^z5)9DK;cZQ4f`m1;58Ji|7f(8-5I_QaXw_*LD(ecwLmE-Iy{wmzTIMDb7LTy;SyEt=Nc|(yM z>xDDN8VEw6c(c}8s-!tM{ouiaJsUS}>;dUeyw}pQ4~CLx;nEUsz^os+T+@#pJ$hb4 zqo=1c_Xn!-H)_=Nz$KNze(y#}3U#}P@k5!-;46%m8Jz6(zrd0TvjTb=^` zhr=$g(JCo>^-+gi-|wB=trV+NeYPQ!MKN>pG{43(sQ z#A)bl#bEY*Qn-?E_ioSO6f7cm9Z2)$Do_CYon{E$+) z>@fEMN~mbHgS}M$($pWxuvS14VBkyp6T$$y0~!kfAZCXJJF!%5Bv!V|GAy%2iIui< zNs2OGRv0kp{3OF76lIGHgUuL<4D$r6uLSgj7e$JJTzi?^e}Tz#mQBT2R%x&kT+zQt ze6E1~#Zxs(&H0JVW!Ni9_w?II;%KwQhxUhQ>loJs%tdUdYAlF z)42u`)n49)3bYK*#{YG{tc=fitvY3){BURVKDS)MrN-?Rm`C6p4 zH4N7(Jiy~bm`ZCO_PG>$If3dEt`TS0PnJQb>pt&MGdm%tM5FEUUPX#@oE<|_OS|~( zv9I_;3QdL{u!_}8Fp&dfLvDtoC*SxTPC=JIrwLi_CdBfegnO7#Lx>^p2TMp?Ju%o~ z8Jr{*KST_oJk1{v<$DQ;#=%jOGHf}KPmujhqGThleh$tDEzN;;^lDuqnSz^mGj2-t zq5&jpil8JVqv)+?_7Fe_Ra!|x&%Y&vUIL=mW#|Vl65dFOlMd`~T>W{V0Ilqxn8T5B z?Id12Y2_4%FWaNIUKrq~hJ$z()`*5}PK8ey7UCwlWXYze`?!^}zZkKxy{mJ_LW z1;4}MpVbPt+#l#F^qcw{ssDa^n{7xIX}{6>g$pg^Fr)Ar{kSy0nS7NZ1$*}Fxi+S! z=ee9#<8buH7Dr&&d3cRyPO@{YtsqXOjE8JU(P-{SnZx2n+|;;XLA*-I}2*a zS}%Fm!~IJDPdxn{fK2~gwL!2Lc!z<-b+eia)O?!sxJ~7vzEeA} zW}#n=NTq?xmYrEPy@urx({DWQx)d0R(vB-X{Jl%bvFY?5+ui7#f$_=V?mnISCveMK zPvIxph`8uI4r}Y!qh&miIJ>ZQKSC=)M}jX~+guBqH>@dYXGvS4-r<<+6!yJQ$1sc^ zh;8#tq0eyIqQw&J7yK*39mZ^0Y0NWc*NsEEt)Hq2o5Q-(IYiW8)*7$Py zviXH9N@MWhu3hVQ?K8MZikIG0UYHjO?%j+ zR|2QMm4}jw2Vm=8P;cGz=W@gRgE?NZZ^i$0ZN#w|59w?`JlA(GehC< zc-o5IHKtS$7=3lV8L*{Uollr=2x7zNTkH;;+d5`D;Qd{gqTU0|Yk$7UV08Y?Y|N)Z z9#cI%3lC89qWQUA2x`0qJ$LlHl=Hh>73e-KR-MnF*xhs6TN`<4*OGn#RCZtg&kEb8 zi0o{yQ~!%KP`XC*=Br`d=6ObEk;;<~#H7Gsn|u8RSQ=%@)iRV?D8e^Qm4KMd>8#ps!At84@(dI5*e71eI*q%k=1#L8Lr)sH0!mQD?FiEf+dEACBQON!E7FHuV zlLXU(k}U?oa@CNqfkiAdBl^wmsY7Rm2^$K^QYbjo;N-52$YhRY5SC=)Qgca$(YG_W zUDvx?U2!H>OOa!JNFRpVm27fGJm_+9`~zaSeNK%-sK}=Ed>iSuholZcc{VAIA>7Y2 zmOQTnrT@g|+h^R<9YlKSHx^{+v8$v$>1T7xu=%NGU*|7Iu2}T1x)egJ&bP=!DK^-_4b=~ zM(rFjkVOy*)^-tjC9UDHdHQ~{$iJjm+2;dzY`&IX4^o@Q=HXkEc>AW{9;!#!=Ac*qHhC5cf!cxaXX{6uxY3Wju2tQA-D&G z#yVjj;uPHBECeAGvxWRb*wlK4Nu)oYPK?tF*33=W@4AlZ> z7Ev%6`~Ju=T>E*F5O7NQ1?{F}wr0eaP)~D(1Jx~U#~G|GAyW&?0V#5sM0nXjip>V( zV&N7S$wzjqMHZP_nmBJ1K{+?F7`QH2Rhp2saOxgOf6p$5T4i9+*#y0RpC7NFa9WVy z{?EzjVvHCH4M{#@?SM0;l4uN<`tAyhW(vPK%hFO{3-(BG6(oYAXG#wJayb>ag? zW!aFVRvO8lp0{NUxlfR#jpps1*Svg{ltau{V1a75f9}BXA*?&VB4Lb!s8Kj{XyBplhQ>y+;mfRH|t4Ms>a#xozc%afQr&-?}B~FkJ{= zm5dkAyejEY@liip%iQ8~2!3Bz{QUDK=#58&STRf7`)@+T^EbudpzP=UnYTrgY`L2_ z@9A@B7F{&@UNRwp+MB^3DBp7O@EgfTbuGcN#Zt3~{Lrh;Po(F|z_E19xQH#!>-2xK z2AVssndW`FXsi8+Sh>It(18ow)>C^rGqzR5!EJq3Xy^ON6Q*sY;3?H@eHSpctE{$v zPONt6VCS}t42k@kaVTA&I}s)X*xr_>g0~@eAAfKO&*=ng-@N@$&UhgP5(>W3k;hO6 zSaO1K2UIqYD+@x~w*{|!le)X-@}uQeS5yGzMH8X`*iRxlrDcbC-NmP+^Km=m=MunD z@h!sFoo2X05%;1gwt58p|L+YSZ$fTWON+}t`R=D5lL-BL&ag}-OH- zQ~`NZs#NKdDM?uLs%W}4<0&?!*2HEkw~0JTC~IZ4#)}IbMQI#!$apKOEq;jfv!yKw z_dp_=&Qdvwkv}b*_GmF2YF&$B1B>BobmB~z)e05EhirPRiDB84r6$g*WaYKSk6|L~ zzM%`*VB2s+WviZlW*kmh1Q*_4iwd_Ugns{pJ`sn&sm{T5=i-d2oM7okscZAQqgOytU=(eeXu`A(+Q<7+x!|> z+1z*G1kMy&qgJh2BiF9Ih4H&qUK;;I_kw(LY0F$J=CSN5Y)e|yqYw+cPFrf=JE!=| z3M{2>XEe2N+M;Vkjkz|M9HT^WkCWF~KUF*mb1i83pzG?)*DOa0*A;GuRh3m@uqJLT z!U?Q)mcTjcNGn;5kHX_~f~`3k{|Of+G)ln}--MHV@V4>m83@d!X*lF>@I8Td)3FH? zDy;(`>=&^!$Q-4%OC7kP(n_d0hF}z`$tt#W-Zl=mJGi}#U`gb`DO~rD9ale+Hf?m7X@lJbmWw=@wDE`VcurrgrDz$K4!c%h@wVucNz`oM z*Qo8lzvD3Gd-Hn5bjC2HB?+hHZdKlbwWczi$1wI6cWeuEj>XT!>%FUQz&QRBVL?3M zBu&{_BC`OxBFrrBdUzSOi$DCWLF!CBVP?(1oAFNWZB|*|2M=E-xych1aytteztvv6 zu7haU?D{230G6B@AAj{)ytW2*Q4TX}_samfLXU!ZObGU$ECA%`J@^+qwR3KlkcH)S zR8j*A@5oIFr<`6ADU{DIN{Y4GbwY~Gx!6(s&_G5%^px8O*Ja~eIbpG^l&D0CbYOw5 zE|ypsV4K{Fj#8E5ebsN75TC$*ZcM(-f;oE~9FKdNY)mBA##0Q%m290Ln9kSXZ@%x( zwSk6YyNKRaR$^p$6Wartju8kx_>XOQ-aps?1mrQ+VOqvuw>q${shx6$j3IgQSnbxEL zqH^bGoro|h!`HvYS?&v(o3Ktqs{W0%&&R;JQD=mpZStI=_Lg8L%38W_ps=Nf;2D5Z z_6@F9ty-&n2d1KyM;@vxfwbGdgp6o0FFEZSQ92wlzdPd%%Aas};@~ zifRPJccIhA&f|fDRc(;{K@^T1X_qW>1t$$ILuoCeF>8(WgbveX$1}cSly{u!yje+9le_V^Lh*XHHp^!|xsiHf-6vgaonLU? zI~!{B&V_5cuj0sE-7LcSZ{v*TU~yeiyhhP7?QG9H>W0%kpSpkkzVa4+J(@Q-?H8V^ zQRd?PGN@!Q-YmnG;sky*kj{Jq|2lU0^2YV+=jWtLn)}g$uZ&{fz75eNe$AOPXV0v; zjw4z!vSq8%&mx5U-Lqaa*P?>|JM7zDttBXWE2@fBVy7$dNf7SkN)*J6Bg zF0=#H*!%#?U94C>T0Fp#ZTCQldiXS(<42)XY7H5@*6SRsPXtez2T(a(M&#gH30dwRpn}%?)*~YQ5~= z4jbd^#Q(eodOMdDLIvy8Q9txlOyt|UdOwHiXt^vvk1s%G&9;J{{eTb8P(3mwC!1urzk3OvO}*&e$pQ?q%uEBGlt z*N9M?AX-SAuzJ`q_-5I|TfN@fML`I^+YvQ24&P`n>lRMZ`Z9KgNA&F5T)72}67@fB zTZ?ED48?NuU#ND7jE&z&ght3)@pIX%d>x0SUmG~8DbrBTT}#g2%+da-gt?+0Pb+MJ zxV`dH@41x?c0!7|-yS8!3K2QhHXCd#5x)yGqd-zjnqS}{sr9{DdLOA+J<>^v%~e`U zv5<>WsC3%rQfwxvE5iyuJHQT>P1ag+F*uo9IJu(A{(f5cTAF%a(MW-@F@!u}I|W*0 zjH7KJ34dEqHD1B^;=pzTGmi2}Gt^0rsoi>; z7$nNvhI%q=yP0;C0}`raMlxn0 zdhuAO^Q|m=BbH=-CCrb`MTT(QQjIm=3j9bgG8F3hHxhF;E8Hm&YC$hm^{=hz_wCc(=DnO1s~1I zJ$r6gdKTZ6&2$xcgm>7KSrTP%GM(HOhB5f6kPbv}pgCBE!8}oC88$N;tUcZ!89B+c z{ePpkxg05&aHPelvIP8utrHfkS|sc}Ua5b~8ID1)?`IH0)01OC;XrZ4Cbwnr1%#5X$h2lTgQh zOgKUU8kRbt2v5y`4cUqVZXrU{7PN+eKLqjn-tq#u(`USV-QNFU?>*qNDz<*%p@h&v z4?Pg+RTQKtB?5vViXw1C=|zz$h)59(P3ax!RS-f)Is&2hUJ_ae2_Xqd2&yQtU@CZpa4W-F2| z+HSlb5AxWWPo;8uVB%}&2{Yv^~JLkIPiGEIC%Q$QsRO+(*@w2`< zEj~lAV{=?@*;z*{c2oUt#Go|4H+goZmmJHvjNs&Ua%>QcwdKYqb|!#$3#cB3*LkpY zjnRGllbw0c$e{rQdmTSsHdUL08Em`h<)~d*^iW`IH6JUOV#uc=KP1ii7w+2_7n)$AP<^1Mw98DTo47qKH5g^o? z(xeO3fm@r}u(G}*6=O)w_1IU`)BSJJ$2uuKi|(KuM4s-SK_iOjwD9aiLd6D$NtA9@ z9W{@Sw>5rmtq2QyL6e^*(OE)39t&fs(szM#p;I619>;R2yF+x-=vuYjg&V)FP2Q6Z zN3vZr8o+PxVQ(Bjs~tj3uI_w44;n-}OE87y5$t@b%Ga*mPHJe~ zGY==MLgG{>2#rmz?TGzy)DiLyAM1z>O_D7SQN`EJa8#@I>{~~y&vS1_Y|VT}s7Rc{ zzz{ULq&Qj|(NxFbA40R%IY#&22o(9rIaP-erY~wUNxUo$L?AAJNUL!Y&&plStVNgAGkjKFFRM^G>maM*^3KB;=_d;)O>MLeFvyh ziu`;65HE5UpK}`8{z2j^I)qq>;2#{ITvy2-*&VRT(J_@BAe8UEGv=i8Qt{o!QF{L? zdC~1)gEF$xZt{SouMZTA+_8hj?~}B!O>D>gZQBxq5rmx<;59uBw)p4Z%dzT1a!F}X z*cegh!ocd#PZjC!VXYrOoGJ2%1ea1nnnK8IF3kF{u}EXU;FH7Lc90~n_9#xoiW2h< zMOcQ;)dqm+v&5yt$RiIe2;~8o-q-nykRetGHPf-uKc|of{MR&>km*dg%`8|EF1)FL z-34SKy8-DtE<}X7!Q#j8aE6d^IRy;TqPd@ha)uok3sva%el`g1py)X9x6Ko)$X^H{ zl2^++`|Ot4UAk=HUL&mp8oM-i)?OrCTw9o%?Q+>Mr1C~cF*U4ER~MU}m&$>VZ4jER z%DY1C5b|=lz`8U-5+Vq9*#e+6AuOa&*A|y7=L~~jWqD%|1nZJVr(v$fij@5ii_l3E zq61K_$&zx`A*l?5^w=WH4pj#e=5*k6pw=scxP z)6-27XgFVa>Vf2&j;Z}(9foGF_a~*#Z8m*H@kf@6qIwwIvpQUxKxsn!2-zf9r@3njISW#X4sfs)VGj-ipGuN|O6%l#K{KZH6 zw~=S5Ov@t}UzcL7uYr|NZj|hoj&W-E$6`|r!4w_$V7r@=*T+HFX_EX&G4voW@hB>{lD z4+Gp?`eJCjtwgtZmd^Gx|o+&{G6nB);LMwf+cJTNz|Zv>0*4J8P|sP zAtF}G*qk%db`xkVqD5CLBJ)E&DX13tg>g!L6iRH}zFNxu@Di8d>+LS6p=`U;XU|>) z`&v_`XA?105{}vfcl})(0*vB+5VEeaFiMjNzUFZyP`*F7t!!iPT8@uutvP>JDR1^C zgu_0AF|X#*1`VoV#d@meW)b4Q)=TYL8E8+~c9s^fsp+pBz}C*Y&zRODo~QW=?PoD% zu3_Jp=wNgThcCjW`Hw^dp*n;-8~4@>I1Zzg4a`}*LnC-&cBPPnb~aFB{E$M9<#qyL zA7CdZtnfWDiLVN_`strX_Q@ov0jGG-SYuQY@}dm74ZJ^zP#esmaAt>aFL$3*^00R9 zoVjzuTwbQwlZ3nz!ZxaNw+yS{=J`dllaMF%jF=3fa^C}>bhWPpGGtytqS_;P|LLXv zZ_il3T7S+xQp%B#&@}Soynh|eNT}@N)o^(HY*ozRyLRpLuhxR|V-lHNt)NDGR$Z!S zACh2`6@-v(&e&Yx3sWQ&y`;`U`q$UA-e_SL^%KFpWi*Q}fLErNVkuRh0Np||ID@_5cTu|`sh z>T9yKnnR%t=Lg@M)QQ`im-ATnAkJdWgMA6x z@60LIY`rue<|}5I z_ndPF-`Q$y=mNHNn-bN=v-}hB*?Yxs&>gK>@*LS{ZV=MD!b1q#Pcj-V= z7NgV|xssxIaBDbYMtgZZ*O)E1ApsR60s6qgnF9y3-C#W4K8>94LFksUi;RbS zV)5SGz?vb$v>jeEiRG$tUY+T!60#JiAQ(g;dZFVp>%w` zA_~L{?btX%mNzQ}z1N90>{EirdZG~+`{lD?u!E@DTU+7Vtzm=EE%o(`sAq@JCKcN( zflzJM1&eV>iv+ELWK<>?#ve8}h~Ta6=)7zbX6qLOLkTaEVQ_`dbTGNaNU-8C;|bCH zZb^l`{p`nbO>EXb)MUXI+|>! zY%9NUPy>_B4r{H-iw(Fa8<40nY5dsMs`yFD8&)qzFFnb5t)4MSj_=t}oWut68P zd%-c0RqgvM483XB3mddRG)ewa;F#V$5gw*Tp!~#fh=BhyyoKujxq4D5X3RT`8;5J- zDGNPI)UOt)&r#+7ee(Vf_^f}J&|hUNhdQPbkL}a$7V}QFV?StEO;$HK=z*n@2Jj<+ zTo=`TS)njEr1g6~I=EM@E8{d|^<5Dj>rL+EVVqWgsg#ND)$UbW0@zTKtx)I4BIOwk zm@tuEH;O72-?nVE!+X5m9zv=Drc5ttUx+QqysNe$0)(1B2h2Z*$X5NWp;c)k zhhVqidgp$hlg>YZ-=%YxGiN(@DJw}UyPtvm``nJP`xe+gD%s=C?psj*h1eSpKV6S@ zvW41+%;@yFqIueesSH1MI80+X=zQw}+zre0Mo9J4dl%#o)1q2hy!aAQVpB`TZ}V&p zQ*UcHTh^;{=gva;=q0M$ydc~Wp`=lXk;TfDj(*RETB@D6*bEKOIxCc${yV^PMp;e^ zuAl?%J$;q>SBpHEs&FCEk4{tcm8HM0mt3Wr6GiUA|g-t|;o{ZH}xzUf#{--}Zis;?P+?fgddbi?_sE?Mt+E_L27`gR& zPD5*Jz6=3FohV)Cgf%d+>tYLU!6s9|IMdkFOBOKC`;<;I;^Xxi!MPxMA0tE1TTbal zRIW*rk-h%>lepr#H?j050gE~vqI@dqA4{hmFvYplYl0|UW)urz*z$i(>NC4;iS}@? z*uP2?FtHp>-SjJO>tlLdYtl?yr!ri89&|o?ih1C%c*kDvElNe>nxQ(G+G{i&EO>=Z z)#+E_>Hh6;$F{N{#!m%oP1k1wB#P6>{elv>vrfw?r=+09(asq9_Of%8+lRJy z479I!k)%bkV9H#JPas!56Brh6R@jeO=vjjJuO=%8xST4jeW?q?uD+g?eHmM}XI9mH z-1F1q$P#`I_PPk#ij%c?-pIU`+v4TO1@vRiZ}H@MObc7Q9GQnccWT$s7jyt8YxT^c ze%t=Md1*918Lmi-e?e(ROiWCApnZgU4i0N>2vS{ev~5WJ4yEe2YqtHwggkdNYeM;S zdyjHD?V&{crlhx7obJoPz@P15qCClTU^`cB-us(_5=y@bK3= z3jI?3IZp44YG5y6C69R)#FAslo1zZY?jXr?g=$6LA#1;1k}^^P!i-eYim1W$$f?KW z9V3L^h81Iymq`f>uuD!aK43)Jp90OSuuoxgo`YVGNLYN}fL*)0yMVXC(*HEQ$a)<7o&HlzcU7!DRtHo7WsmGAnBdhE3ub=;u z66pSbPIh{ypTR%?mh8*iWW2dbqcmUH8}Icj4Sur?(k;X_l`Z&nlebC2TuhbmVic`m z2gB6e24{%`OHr{98McVcf#mC#Dl@@1A&)C5dl_`2mo?gvnJ$`k+m|k~GIhG;=JEAW zu46JiO=QajUDp2eBX*w7kzu(@sZGw7=em^n9H$=Anft6HE#1=g_b;9YPBxdNr7u)1 zSNv|1CuUeC<@v!v_@JIh%G#89O>rgAa=~3!vUC8Evp1^-$#Y5jjfM~$KeM6tu6TR@ zrd6W4h^`5Vuz^QOY&8~p6YcJ5OG-Q+5Vb=D*bxh#k+t+wGCp(0`bXKZ5`m;|;lhQ# zVfmONgo(;2xg+HGd0Tu4^}Wxsex`{1hL6 zn5i8<_)eUU+eqp9dNFX|7=u^TwCb%Q^zIwT)1y?QmCS-4ZUxiny*D)3;-eq&U^=x7 zU}`YXsJN8NuTHb)2n!ZU=UO3DjGD7gA$E-F!s97_$>;Zw4;`zL zX*K2N@(rf+cO66N^bfU?2Tq-RphdnlFetKyY=1)OH+(m+g3%V&D)^gGls;IsYE>lg zVQue=#fBCT1Bk*^|0MLXLI`~mrl863@j=6^C9O(*^8>hYyvA$a|DXiC??vzECYQ^9 zk*>Xl$4J3XT;T-^FUb%VL@S~N5?%0(d4{Z%C{Cg0nKk_LIOydFu57wG8ug@XEXzB8 zy1yvncq-R8a#&;i5P@Qu6FC4p%V}?obyCFgK004W#R?~UCFo5wj1Qi+t9Jro3To1x zDV2D=H?<2<;MVocXLtxMgYK_!^3W~F4YTa&3{by6*JhFVA! zp8GKBtMDa~*+1X7eyu0|9@t6(p&b9(c6NJjXET@<{>%I*i<>%S@57^xtJ*xT(QDQL zo;8SmG)?@`b-39J$?^#e{0gc{T~2%g)>Y)`{@R}aES<*N zze-iVUBznhTO+m?JI)YVHNdQk*WCM z>d|LW4jujN_;}qm_<&6Bce<@Q+!-t@5p?Mp^lR$LN(73KVr``d_&1?98(vP-W;H=1s5h_Zc5GbN4Aj?1~4?ttq2u&4x=EaE3aH$h4w z^4Kwm2wcX!v`_6AD*ceAjQ7g_V^T#s*qa6_{kfE3Hmr6`u-YrPW7($Q&Z@i}`&_?K zsC3#pVwisfY=sxd-lQ?IeU+FPkC4A z5e?Y-&93{YAM$*~S8iGmrHQNGl0dIntOOoP>a<>JhxZ+_&Q?a9Gt|!4x5DM(Aei^o zi?WLR(WhRb-WYA6euIpgB828Wuc7do+4mpk3SOj&Po@DS1jYJV3f%sp^s0c>!`DIF zz2z2)1M&+PI!f=){Nf^fNs?~Sn=n`BI{%|T9U*Fgzs|~^yXQdr#a*VRWSxxDvOc>a z@ToA$H?p59<9Kw8j8+HlpPS$Q<;T-VQ_P9^Gg zi_A5wG!{i5y*JQ1Jjd{r-AJ95FLi>-E^4%_N0ECS?6LtDWt)M9vu$Wx^Gc}h7W!Om z3XGV5*mbZ8^Sa%Xm5V0WJB!WwGxUZ+leIj`q|y2ouS)tUU8UNg^gwA5s}T1Qu!g44 zFxw}M*3geCOoz7WEbLpT}1#l^T(^3J73l zJXhs>iDQMAt-ub=Am#H6v!Bawc{=U8fS)Qx5+69RjI+(OfrXaXhl!SbhH;qn=NJ_Q z&|GE8urg4sjqre&4~%2#Y$9NfxtF&RV98IPJ{>W1$X^)mwW^`)0{~=BIg^aX;J~Ia zE8^qhQ(Z96pq*0BDTC)7rYGxcFu^Ral7Kzb7oiJ*jsa|xz|*|ms|j`*=nTOmN&78q z%7E>+F*OEYgPpL(N7EWRVgGIXg1`Ujl%$gTf>M>r#4b>4GyJ$;*!hf8|2;Sv&jEwh zn565*K%4q*GS9}-7+q6|@SPZvt>8RWhc*Dsb6vJqb&6)OVSmvXMi@NNAZ7KV3Oq~q z<-Qs9xTEe7p83UlxlDZNVRFgdyfNJEQ#g`iP@_hTD!7Rmtay%1)xm^6iM)J&?ewme z{@eHQDg+pFX~T1wacxXdcyTw@uiH4}(DWrHg3xyfggo58Qfjh#CwgIC0T8+%X(aceDyA&kA2!heDOMlSRSIHa6MGi8&#PH2N&a+28L>_WZ|Tq z2@E?6%^lSCoQ>kEz>C0BTPw1ggR~&J4xjMb@Zn~7uc`lG31sW<^3#7WQ3a003#%aComqq$o+RX~y;sX5JmGeT>+;5<2%Ix?wXh`^lPq`vjwg~s+2Abv=&q)y zm4d`Se%s10=~Wrzu{`mJol*B#>F=B38dXL)4?d}f4FColvo!b1H6-OrJDB4*Ny~?- zWsuc&tN|gP0CzVD5c`)1O(Lhj-c$AoiBaYiIpwWn18P1Q_Dx8_+)AP^WWskJ_710_ zc*X-Cmd#9%^}xJ>&yrccvXR_tCnl)|!xkg0$gnZ8i%APbZdH+9;i;JqzE! zy#$uwt%I>>PBpNhggAWC2(8OP@9$zm@JL5PmyxKKnyCKMV%HJdpjpXs!{^M)!!a7p0p0V^q;V39Y;MX-&V`peWnrgt)3 z?*N%0{KF}aty{5Tk0%w zS1_Jq@p2?!@_s2N_1dGAK#}V%cEk{kp4PtzbZt2|P3f7ce{Kji3@b*uaB8S;h(+-> zkD=NdCfBL6YB+Sxt>aKm$c+Ua&#??oHg-;F8^g;Ha4S1WbmLgMr{V*^X6rug>HQF( z2>IYB5Fl7{B5@VYV}QPNmq2JX(|Ym-`eyj>Uv@@BSWHxTjxsIc7nIH(kRtQjh6U}W z%UCdQU_mozxZK`wnf$6fk5C=i^!)UI(d`owb`%9}?(q`4oxz@4A zY8Cqj)4sm`E|;&bk1Y#6%9Y&8AAbS$Wn5p-@bP!K_%#_!OP2Z{{yGLR`dD;; z1jrX+^I?RLR+b0|RZ(EHRT2E4Ac+cu0CUP2D`L5lHSm8f?J?=9>)E6Mvg*-Y*`x^D z8>c~ES#Y`bJ{mS`N^}|_L6rqa_kMILmF$&;s|Xw?L}nXQFsRENvEQ7rno;C=1wD5D z=>bMk?mD#82*Dfy8>>p) z>?{s0s&1Jh5S6{)eGz%O-zy6}cbL@HQZVPcZX&mH1Z@7b6me>bb=rtxJ zz$wgHfp~@!2ET8JBUUGFyd(Bf10Rn8C;KM62Azdr9Dz9`o1thdEU5s;W{^%>S5`nl zjZFb&;HOA>5S@h6|AC)itlhfoVB@6T#0Ra~(0hX~j^nBMQdyU2qSM&3!7@iK77=|l{Y9ECN+#rw8|2BNB4PTkmd6ldDwY?$IOwmC4fSQArCR-EgXX^5(N2+ zmOE??Sh_N=jeCEEeal+Dab0TFst&tY z9!M_IRHMjyRl5FK0hiNNFqt5AIj@{_>{<7xj+47p!zn5&39#UT)nVzBrlw7{gTgfPO+h3Ax4{Pleyf; z#(Jq3g&NHEPnbRXD=#lE@dfSA7WuF`2L1=~BSEhy;QibPI@k>7JE3*r2>v(+EIPXA zTR#kEu-4ji0WP?AdNw%;_0L)1iX1eY;7O>->6##Y2B*GnDgo7=;HcsX2Nnta#X$%y z!`PRxN+)70z5rfuLKNc-AmkX6vAVotF+QS%ZCz-jNqF4A(Jjzkgz#Nu+oc0pVi|89n3P&s|og<_!w$0WQ!Ckpb&|2``I1I7V$ zd&)5wsLf<$xzh~l<)geOI!<$WUxV(fSd(idFcHd>RFoG7`;Gn+m}JX=k^mOpJb6+O z>*_m98;%FPn{u^WYXKW9$11aL-3enu3kPf+=taCK4|5-2p_1>5Ni!@^u7>tQeD@r% z|67<&dFTW2EpkYwLsYK@JKxx2u7r`&4n@=FN(->p-aXCZ8x^~u7p$GZPa6uwly?O_ z^$r~T*Av!phI#WKboDzboZ8Tj{+Pq^oxl;Aq4i@JJ1QeRUEmjUsc7Ei7`NB??70e` zH@f3ZFqoROxyeo%-`kX>o3>yfvGBgm_(AH zN^~$$BvWM*NUF1=jPLKm=B(_hz)~m202JZ`d0*tqm@HAe159U_l*TbJnVzpErA4cU z0#9FKzD$@ovtVq7)1sn~dVB!+iWsB-c<@*D8v@rClTUS1 z2v`nF>nvi166`aLA!-|9;b~<4>m=5pV~0KHeP$k3iIk$l`JVLH3{K zEqa;yI;D9TiQK65%tetrm(m< z&bOc0U_u62E2+k0i6S$eoErAA??diz;vK39whleTL^`KkGHbh`>8jeKICb`G0Wmth z?va_zl_2+qD-Sfo+}+xmoK|_^2DVmZAhe!p4cRsgo2e}DR^WB|CXyKm>bPk|TzOq@ z9ciGF&B;YZxJUk_L#U@do9}U$u-{@DnQmaEUnKWbJtgVWg6K!rIZLUHO(NSGmIgS- zEZTQc>NyyhneNjouru}A^=sE2LwR1bXelB+*7~t2n+NOGb~ek)RDP+c&|Qw%>zEkg zh@Fud<5cm5&Y1gU=M@5tvszhT!5VKnGr^iJi(Y#$_Hl+Cr^j*|2n@ZB ziSUl^BttBL>R9bKob(wA(Z2yjLc=^x;w8}W;jz-eN_@-7N!HB@eNn{{CK!ViBW(bC z$2undW`)pD99`DyrV>xlKw)JD7@}{i!SU~bVK@R`6#8#Vn1KuosvgTpQYkJ-@GOG? z?#aeIuUdD}>N4*ARHL_SXB~1M3C3@{*))sZrIVqm`aFQ%t(HST2h-b1o#}ls!#J{36Y2H9I1Xqgz02D@7SrqH zG%@dJUNPqu+TDocylaCs#yT{zjDhu|)DmdUt@MNeAs+Lf)?UU``q=W$c+hBdvO`gR zOs!MR9`vahWVt9>#PlH#%eI{IH|ZbNWWGm@FQ?p1y6p{%8Y)X)R8{kX$(4<9}&g9g>G#-)UnO}qMWa&E=T|H2~;}s`5927kw3d zxtb>*l@%K+i=MD=uA972TEIy?_vH}!6F#!9nF4MPi)X;B)q?k~x8Yh$p{`#MG6iwRi$FoR_6o(?m?7 z@nIQO?I6apYjr9s!HU4_^)v~eu{L7-i>l73l6ndzL;2L;NjRoy?SkiXNcZvsR1x7 z=4YUD_lLDs{K_YWX@f3U$ht{Y(EjE*Vx$wWsT{_Zwr;Nv^9a4Kz>LpZJXR+J;}`et z0f3*5b>}fO@jS3u9wNAbg(8(B*U-uFIBoLew*{qF!3(D~wsOj6uj3?rtP_}{MQqA= zClHkmNV?$k{-W|Ps8g!~=d9By4&MYsMu|B1GgELc3+#_9u+v#!F6WEs8q#M%UtUX! zd$VS%=>aoc29&Ls9x6A#e566u}XaqYV;dH58ZZWD3feG6A1tHq_K$8P>|+{7&@55<&eyF$br z)AiYfT*rv;&AT-oE9XGFpWa^IaO^>X{?Y3;Zymk*_#B~_CA`?0E7 zggNYQV)L@l8=nO>!RbJF$o)g|v8=Qd-b2Z4E}F1=@GVERukkQP>@R05`!Q#%HqH`T z?G#_Gg_oNEi)S?HW%2RkHT&V@xAgs&m>z+;NcRYwSH=rFMvrxs9fU} zx76`))vf`5&kCA*Fuu^UDs%H96x+Fp`^3lgD8{@)&wspRm&s?;pX$L&rS~S|Lj{y+ zY!g3@TQJXTSeV|$ofav}U_(gO3Ypl?~1++(W=}y?4S(VR^ogq*MD0V7<5`4{AvB z@l{#g8Q76TRa1rRf1yifXR4g;B;9F2V%s#bkO@_jm?@^?jE;GlF5LH`k}cq}F*xG{ z>__MC0Z_%Jt0rUrsoplVH{iD;cxNR`*VB;c457{Y$oAtYc)y%?<8l_ zTYXy7F?02)QZq~OiFAmR&zLK-!d&*BTni}Mda8HRY(eLu&RFg&u%Z7EY)^Ju0yV}^ z>U;&zK|0(?4F%j*nocPmK<)Djx?sS~+&XD{24vCa*<_ttw`so0j7`m?xo^&XpQVYi zm$yh%cyTtVDr;8ZfY$B^^^slHaDvba(CAmB!L|qo61s%NS1`nOom-7`dO=-=afyme z&Kat2Ahu(vR5v5rv7Pu|S|9Kz{YXsAs254MZ{OZLVZtGLe!_|lJY4U<3!1176zHi= zJcf|hJ9URlpYBgLzhmp%XriO&0#V8E|6OcJ7GYk>0=sA|pD~hP5O1AvY#a@lmyWod zNS++8Su>|JV?S@+ym+{sL!?GBPmn(B09~LJ&42g2< zGUv!kl!-**R)(ZVL^>um_bNjCMRC<%X%+N+WMSsc*)5ph%&#PA@j9~~$}_??7-J#2 zf1HHzM91986Y(l=CkIj*G|&ybJ01RTuI6Yq154<}`RRl{|JI6qnM`Qp>PnR+DFWoK z6}v~s61D=VEg>oJ<`3erBZ{|9>XRmf?$dhys>FT$3hbMwx=ojL|2^L|AlD?*PddBSNUklV`Qz+yknuLFe%|T>Cu(sq1^5tNHxM zbwa-9lc5Xlf`j&K$xy*zP@V}@bV2UvevOs&Nsgy`3OsYgwmCr;>wfOJ4i@DPA?cMk zrsna8kDR%W(7`ecH9egHhHu#y#>59-&`VsZ{10b(gu2pK53DTBMUiCIEr?qsT|_sR zracC9nM^Z#&YU?KKcaA!hSU}QBZWqnlS1tyD1E9MUab;tOOi27URTx1)9GT6j=Qi{KEK1aU!n43QO3w*A&07F&I!zTi zU@BDdD>!iHxM~{^bW6d##tB1(Dv8PDa2pj&$wq0bIUiCVDUAu0i>CB(Q6Un|TOfp< zsVj$GbF(S|ui0l^Tja*_5p374%Oz`!ySQATjnQoT24aL7yIhLpHq>Q*DQ3Gu8PhA& z9;lZZQR7fagb*8O!CyJnWi}{nkzfe;kQy)0wCAw#me4JbHNfoY)Cx?ES6+HsT%mFR zxLaJav%qBKsfx?8pa=9Hz@W(O#iGU6ICO*_^UL;hoAUGu937VNi9KVUtDy;haX0-% z(jprOJ9mR;Rz!8%-A@n)s`XOI6Sc0M&7WEUfvhL#S_@qvB#9qgCwyb zkXa@c#jEA;` z&a(yyCguUk&4{djLsIJS7(!p{OH55nO1!d{NUgu#OukfnijibdA4L|Ag>U$DRP)Y%ZfUuz#!=z<5cww)9*W zuarZx?FJu|a~`GX^$}`g*>a9@xpNWI&ccBmRf*IM{P|A!~7MJ@9bQ-EK zM&U>iW3$iNd|HTzJp?TE%9Zg0=M8)=Vqoktoe*EqAu~01m56$lWQAm5@d?Rdrg=F% zW(kESC(s8x!{W;t6TWwgUY!Guwg!vTOGY*wb$rxZSLUcug@lZ?8yTgZya5%Vu;s!> z2a?$l4@bDMM|)OrGB-AR(*VNPb}II0P)F#6K*i40gymr%PLzGe$o(+6!4Exp+yd-o zFEDos67rj*m$Mckzx5a!bu$bFB2zqt%9k&{_{gI2P8|cg#!JIln#E?yad5Y@Q%1Y0*v~f)zi$%(>_86W1GhtE zc#0rkF{KgI)+EYi)|sw^xeTz4q8i+B%hJNm8}iF0fQ^8;QpNVNu94L-3|`86fg1wDets+_M07NCw)ADsS9m++Wpu(4435^2q2%@VcPQ2A$6 z$a%-$&otpF_?fN5^l+9EG3Po0(nV@}|3sXnn1T%=w9IcpqMzNS>^M+oXJ9k#nDH%PUF;Z&JshT_X*Kc#E z5U`Oy7+DAqqy%&v@`jLe-k2VrBdd=%j$!^E^iEr2;A!dE6THZOy{~QC9`{zZ1;?!m zE;D)`I96>b|BroQ4vlLBvC2&4t50*@{~j<_kApmWS_hYE82~oQ&7n8|b3hQgnb{G$ z56gOn4Dol7#r`heAw#$psXI%hnaQM) zg9i`Z0yp|N#lO|*+VLlHVO6w>9?bKYH>!BN*6TShRG~UB6rwSo- zpToXLz3HJN0#@WcnPNh253PFNl9)0k)=D`KQu9|oN@kc4T47D+3`~ldnA?#=(}Uhk zvtrH2S_{^LY|CbPpKzD5_aIwLs8{Mmt3}I-^-0fEhf11s4-&3d`#$Ny)h%5J`BV`r z+~;}b&pFKS8FiN=_sfH_cZGR|Q#^uDU6_}6be~OyY$zdONS(AH5t`Y6$4mZrHf-_Y zw|VBP<;xT0>zLsY()v<^R^gM%iVO8mH$K$ygvR&#U@TZv z3Ax*n$NnJEY}8r{AV0C)%u_<)c-$tCSh=e}>E(QK2(2Y#rUL|bBPmycNnuJ3O8Jc0 zn@o1ZUR9tMEaG%+UD?x?{|d_k!!P~%>$G1l#m>ylq3#P($sNr~K8^I@uwrCGb-fx~ z^1L>Ox%JY=4!M2PMsbkodGBzvujwJqQy)XcWAEJ9j)KCnP=P20!=| zg;Rn*y!xQ4RfVHV+>LkY9w78)@=i{e^90-yz9b78Kp~JQp|JrUi_jqNhb?gtU@DsK|M;VptI=^iOAk zDG2^a%`RKO6a@cHkC5bXi(($y65=u!y@^tdz>s9Ok!VtlLtKv48QPqM(PN9t(OAMv zS7IVmzZV#SL{p9~$xJ~`>2!e!h@KWrU8-iM&k^cWw$o{O`Dme!I6KqH(8df`)_6Pf zzd>WGDT$okVkt?#$JYMf7S*T*=BmzTn9(X!`DOInb^6>iS&g2@XkBo7Y%tLmUSGmyteR)AWnjV!?UmhGt%`JV-1~>% zT-#8i~CvvESznv)j6nU*nDY$U-;i+BF!7+hIT@Xgt*+hsVo5IW(x@+0Cc zb%YMpAvSV{jc$SKI~npiQ3SBigHka#RGB(;>Y*9Or%oM~(-y&gHq?anib!mI z8?wOaCJ+*tdG$)PM6cj=vZDG2aG9v&+K*Z>#1|4#G=eWU^p^?Ce-5?7SA#2-_YXa$Xw|TwJs<1@AdpL-!Z%%$?Y7mwa%;O z^IeH@T1JL;P{)x#mGD%4$ZUx_m`d$@OrlUGRn3bQag8i=l5VqeRZbI{?9_G39z;V* ze9%Oy*@e;vb7=Y$uo{c5zy-RwaM78E=ok@U$Ag41TW#K;r*>=-y$sA;tEk2Fs!Oeh zP0J|zI(o%E(uSk`ilZKP>GlG;u=#9H>BwV*{*u>Z8PpqaUk1JTg}vrs5=-cdQ5NH{ zq4b)_vIKh4vzr|HK5my_6Wm7o&&R?mLL)y)FDwuFd$|0d?nWtABKaKf?^Kb2-zBq( zXVC9%cCb*0(xaA+3y`rwT;R-CZ;loQnPP+lSZkLcmdnL=N@YA%PtkJVQ)uL z`kR~EfOPZqt(Kr-WgxD5WjmdrJu91O)xsPI0T!uwl+G|yg3wHw{vFKKoT8a!M}^R* zT({_5XoMI1+V}~jupDBG{@JME=73!&noBoRuf^%LHaO!sL&r&)aJRyB-)Puv$7C~o zuc`mO63A7jPMvWV!JVmNd6Q6=h2YlezdW3V@~)orj5KVrRf-LR6&D{&@eZZ^EPj*B)g_41OSw#jg__7B+-G5!@;R$MnU=FZkN@@l?%fy#KY&D1n?_UK5w^38x+gMnM;|5(_+hf_Kjk9KtER+NJIj=wH=Ayp3g82M{oR-v}id1_VHCzBa?TmFM%fk4U$OzXvoL)I= z_;>>H7W@s*GJJzC={Fx6EQ4_WlvFSFEzAhvyoy?`DDR6EX7w6*y+l2ttd`2=ffSDPn8fR8Hkb zDcwX2|EO>}5gf=via~hs5Y%I$Y+-CMc4Gg1Hi;)$7+d~SJp29R3u93qyyfQLH^sQznF@C?6TY0W*zvRZ~`5 z4-z)w3qCZMTo}aSd31WUy#?qP2;m)WB!WK36mYfOWp@TO<3AbJJfYw z^ni`9QBG~jN6R3cp}#q`4-;ZxUdE~Jt+D{(EiGnU_xoYV)etH;0rL5gE@ye>^lIVH z=7B6MgY2OGZWj%Pg>at)S7zYD-0x<>dCPwFzQoXF3jC9)-Y2`h_g=@9D_2&s=i;K; zlc&_)7cQ?u`|SP6zI6HzKm1U%Xi>>PeLJmck4NR?z4@RZ%KKgk8D5PBPuLwqBLWu| zw!zi(q|n>dMX({I(E&gGFlu~)z1QB1o>XhcHYwEh`WlR-)?3?!;EO*oS_1(A@9F1d z>`aYwI@oauMInBDJQqZB3MFK7!{;H7d<72DBQ^w~T?xBF?uS#_N`kF}g`9Ablysy} z<%_o^S}#8< zh=mM!em1nLyTLMu*$f+wDi{n4v4df!@>@6tS@AjbyGrGkX4In3-|X&)okefP$d8|| zMIV$x=jbLQ5(|;*AiU8I7|fTB{yyDeRI}&-mXYC*7W4)?SnZy)`ax*4%XPo3HKdo1 zuC#fiq{3G7InAli06sx)IJJ(IpVDIFrKS05TaPjI93!>zKYzOQ1`Uj9I9zu1GXuluEPbP6%;Cb&N8<1fV z?W;7`Je+U(t)S`COE`Awco@(26*`>(9?+x`YGU-b26ur&*Ow{F?YaI)WJ~al_+jL!l=>1V;4K0m;v&_IH z?{8y65Nh$s{v=9Ai7L7u(juMGU^rmh=dA0n=K)HuTm4qLX@)a~M#S5`6szvbN_+lJ zuS$kuEW0HyL;EmHp7ALFIbc=8@PRbj*o~`cnWDm}j zCEEVQD+yCM06bF(d0*jG-5V(e8%U05mXN9BxX@T78b|$gCPWw_h0~2%G{q9dYiFk# zdWD{l8+>ZMB(YjmPy+5S;W5t?;;V9C{p&LxgTwnSs~pJ9U;%3qm7-XUD+b%riO>QP z(Up6q>Z@IFEw3fW^3ybqy)f$7e4AvVQZtmO;W+sBrX8S* zyk)s-9nb7;+{SoaEbn1uZ8kZlGc3=d+qVy^+I9Q$WSN0Nkt-hPybtFyl3*J(Yk?Qs zBaKf%;e3@tmNZz&)(PaAq}EkL;t3JI6iw9!rnK+M)mo=ga!1l*0L@YfP%c%iu^V(F zKX}dRTKhBxRQD7VbLZBrTG?xZx-sl0c*y>|5DdzVm=-$?1Dv=idn04QhqtAB_wHir z7(hr;=%7K3jp!{z09kG`OIYC7eU_%o9?%}w-!}BeDgOViQ56UCd9d`dy&a_byjDKyEXe!j9^k=2NtjC(;CphEs+d6fi zgAaN-SAW8WP2U}g$t8D{eM1?I%*XBhjj;ndxtE~mya2W)= zf?<@zdCS4^phtd{Vjohv_J!OC;c)_Pwg@L{WqRL{;~q}fIx-!>y&64adh6j%%Vkua zzjY*P8zu5CSi>kN)2rN%UEaY9n)Aoa<3DX{UGh^gn3Zs4G;sV z*;g0zO9#=e0?Y8$qtvmm2hy`n))MrDt}?<9h#oW}yTCHMy|UXCr1rk27W@DjD{aLXJm`geT1iuT{ctFO+T&sM zCk-2a3kJ#K$6AHn-V9gnS=<;C90-R3f!j3a5h45MfHRwyZ{QH2%|(A6?uH5!E$VKn zFe(jn6+aq!;?S>Kn#R2o3Iz7wCc`?bygHFk^6&&!%VTmASg0#s5TOeZZCFyCY5G!IR{Gk@;Jgk2;MlAJ{ZYebZST}5ChDPBhqw6$Y7bdQj zV%mk-))g?TKC#VU0$BHug8gVjVmJI`Y&76;-T34PJ50bD!>)%|Zm zkY8d5sd4Ad@FT*mJl?H^g@wPWi=w{a5w=4|NelZk!)h~Sa+RYE3_tD7Yc_y!HX--B zqC5kiy6%^=g1I|~kjHD9D~6uQ1h2DVdYGn~v_ zMDbVp9?qZKZ+#KLE(YT!a5bMmio&^cg5Jt5aP0DS_TmfW0+^on%!s~92*#hXu(?Rh z`;{&RQzyzTT)6Sx3cR6<&6K4}yu{Dea4DdR&MT75p2uv5$>{;+vK5+KucJ4w$u?JBQL9~E4jQqzdSN(`s- z(Z?xMtSo~b&TO|^pUUcFG=;v$4kxsIwoG{^+qBgMR*y*BaJGu7tsMK3O_fZQW7+?N z``uU5CXyf#svnC}$O(tHzTuX$%k?i?s{M~<7P}<&SdHv-%%HK$!Aa)snu?}gMbove{8yB6 zU4!zWlN7SNg&hAq_M z*iPvjH%ojLELR2%S0)s6*u+|&rmhn@TX{0<9;-NfVLtK>*xxKJ?*;%5PC0lG(!rky z3qqCI9jB@rYSB^2CNV1F_ok$_D=-dziLJF9%@elJUM7aeGANnDJ!Dzh5KUs9lbE%3 zEXVlN@a124^_sQRjui~+q%cRyYPzo#$RkLGsX_S!I@H&2x6tE7tJ7zyPO6&?{D zAG63-V|jK^EaGWFW=1Rl*Xpu%ZCD=*C=Sr*qI71 z-yJXx!376Tgtmi{Wxa|*CknaEB4GUH+~rkz2kAX9&TtSaWYkmJ!TiKyhOhW765Gh| z@k9$kuJIhx=SQpuZ<~Ceiryr9)b2UQRy?5A#?DnZonDam#&WFCJ+R)$AvBPX8^u+u z#4tZjsC^ts>J6M+Z;bdo057v*AHj5DfA=zDRzi7`NX~%T98Q5ETX(}BLNbGETeZ-) z3YP(KE1^rpITcI0`$I2|t$6BfCv(P)D{BW{bN-DbuyBFl+E-t&Kzl3H2$Z>3_1DV) zb6;BOzP3ipciG`yoQpGmT+i>%eXqHtnv9_c2lDH5&H@G6GFbQX&(0SCisE^?ZzNMQ z8oj<>W9C>BA-FCRhqv691%cHd*{8Sr6d_P-LjL>x5cG1wP zq0)IfEeH;N0s@Qen8NV_Y?KoQixy5hVW79j0c!%7BrQzZ{ZA*X`K*o1&@xpP<}UVj zvX6L&y>LvsRQ!jcF0A;~jW=SOi>k~7EG{^B{`^k%Z;Tm)>`|$~FNAbByt;6`pLIl)LwJzZ2 zO+~#%&*vztf{XEU5j*Rraf;1P6W@tVh83tQPJD;g%xidaKjT(I8+?VhEyF6zTD^JV zgimhRv0}|1D(^4ku>~JcnZHQl!(q^KZwt38a9FMxF*v@XDm@C%D`wSef$uNUD)BcH z(>T*j{rIcpHPP&walBOvZM|xEVa2#!LJF^bBBVie?H=I+Ub=@pN8|4lZ{BvlrQ^i~ ztPtvx>|eWfZJ$ALkiTz@AT$wQ$S-p@7qrO1X@SS%%K(fI&FRSpCrbVE{obSC#^j%* zmcELx^b4Hq>dQCoC=ekH>?HsLgv23DoBps&9B#sZGm|7a44DgECTW6U$q0H0A>9oR zPgKYxR|@hh!&i}zxrRp|77%`hzyeo~fHjP@)*e25_($$FV`m5Y#w5 z-fD9Mv3Ccw)kep&=_FpQ-d!4|*^m6v1hwDkA8a5FuHcJ%Dxv?)9c#>Ed`@TST=kjP zG_U*7k9e%S1q%_ncHiq*>4Nd=cr|pEZ8a#~v*+m4E4q{+0edsou7$m@u{$1cMp`Ct z7K{_|cdz`*6P*nZdp)%pHEN_ZfQ5o)8i9#Kf9LgJ=s}v%eu`@4Vx3G7?6BG2L~+A^ zm(6*|-Dh-{m;*zw2^Csz19^oBA76ieUwQt0UCc=_e+6>+OF+=__d)R2#}0y)FL2?S zP#Nay16*HOpgyX+JWwqtHE7MlKOnVg036##%>(;u%ZCX`K!ki)I;A;OW01zDLJ%ux z%N>L%2Y~x`F_cA^@IyGp2NC)>gD*Ye_3`g%!t8}_tEGxNmKuFMzByk46&ED1O=UD{ z+gt7*+B#bAh5lHrTD20qit5XIFBRrm<*qyJUs8@BbTJUt<8+aBwJOn-rF>IqTr-L8 zXnHr1E*h7lPp?@;swdNvJ~_~28HNV-V?FOFH?0aheM_pR$W%yh#(tq+@Znf|LFcnu zdcGhTkCr4VDtaF$AgyoT(b~l^V{wM$Mo(GoL$ZI z@ziI&H_5(AJkR3ma4Yb1Y-CoD0HAbKvqa7VjZ`-9@|GD@}XF3?4%z zC)}pN2Yg427_st!-AtSFt-iB2A9)h@U~?-=_^-)-QVA3+S+eBJ+mB`>f;E>L9v1Ga z?0nY^mbERJDtZJ=pWxI#*ZWx-mcmDLcJ$h{jo##DY1#IEP`N4F{tml`6q9K$OEfxJ z_y)#dhju1mond{}T|dbiPA@W7t6D*YF1*jVb*LGa*~zA$Ga{ZjcG=M?+qzd>i=9v2 z&GZOVR@lQV^diKyyL!0g>ePucRut<@?a3}54;Og4mtjIjLWfYn>A0ui`Tvo~QF8EJ zlH@<5w_xsINy>9ld7I*revmY(??>UIAAC^vCw!HArPZu-=>wJ$R4>7CYbWZCh11|w zMfMj?(r{ffy&MH6X*lY^DHLP}CvAAD#9R`YoWu{ z0@SpxGbU`ewJqp(Q2A&B4;+|1=7TT$ePErxzow}8$X1+eP6I5cm!#X1V-zF<|0x|X zm;4iw;qU_1-UFDtuY_g*(1F)`<9UYGoo$zSgom=tH_l~UL8elSB#p4#7x9g9FvWB+ms<}Nzl`sEm6R+|1K|(g z%qP5DqD5KLVWZKja;$Cy=v|j%>j^nS$Zrxb%W4ge2zZ1OneMeEHV)%``OrL!3tAle z82}53>!CsqWY`XURTC^&49Q{3n?#uee69$}z73}aiV$jraZ8lzAA&EsAc_qc6p2Yh z12G-O&T{2wZy;Ac$*B-9a|-iT=u^pw5qV(F z6tKLIeS5^5YLD^HFu3#yY%+V9$Fi(Tz~ce(g(Y@<1PIQb`>PamYYt*OjB93RFSZ`X zO$6!Ohv5(+cCa>E<@xXu(cd+Hdk;QUg0YwtCT|~1r782Ij@5A0UZOXh> z8Qw&pEfu4`D>(8|G!SXyKVwWHW?5oLC!q=6`p&5N$KERdO6O>nxt%Yh>$L2HemPHp z-58(ZVrZ)8+JF2UB$-W@ZMYnb=o&URYzR?o2$zQrmZd;}0t(0xdN!zH2i}q=B+r~Z zr#%tXrC@gtI4o;!>}2i zuSV)*V=ALf_(cela}y$rB6ncw!+6vbREagj%P0 z@#`)v%JAuzlDLiZm0_?G_F8GQ|CTEzAl#Q+4S;1+iL#{}qm10x94}EcvA;+?cZhAt zTAEe0-ADFAG!KzKA#Hgcbav~Z;upyN`SUN!Y$8;2BJ7?!_=W6+keGT}SBinU{&bQBz^C+ND$#gia+XXJI?&=cY<+=Dcu97zT30hLJHa`0Myt z>R4<})G0MeHUL^Z>04CfJ|XTJj^2&f6unQ#YFU_*Z`CXWd#swU!C3UIk!Zy4H;CnB zpKqoQM&oLFq$4wZZup`SyCYa}n_ddzLu2pA2a}hk51x@c$`<8_c5uaAsH6+73mqoE zOUeOG|C#jU^DVaJpJK&^fArDhZ@v+xAeLUlQE?-op-B&u;F`&B^B){{*vPjjb-lLz z!DmgU@OOCz<6HWJ&=z2@Vec!twa_ovd7olsa-u3is~osNCtG*e@z<%t+f%P>|E&UJ z5Xkqo$KHqNhpZZ~5te~=EyJQ!Qea8wtlD`pqpU^0N#O5^tMa59BRZB$GU^|L$8|IP zF5||GC{I?$OLzw3tBwzdb(xJ;$41-9U<7>sk(26Tm&gEH4u~?3W8egD+T*JJ`K6P= zZCR|!1=^w6yJPz)XrTtP2+)P!j)6@}^tZ(%NvvD4`1RV1NmRd!-CGqEDr3RSbLY)p zdrJJ1q5ibvDY`jVj5#S`nJS3Y`!1PIO2Pkd;SEKt;QFTc$&=}_d~FbKaWwt;LV*Xz zWbqgC`A$s;H|2A!(X<0q8O3^9=oG+OQC2+&lWm{{OnwROyY8(^Xa9r85NZS`WE!n0 z)DiO^1lol|>zaYQ6wTR0{;dCwbqv2D{4*0qtF(=5)d?37+F=CT$GuGJ`h&)Mjlsx1 zTex0~V&;tYFl{FPc2aDct~V!s4i6z3-pTB!^OTKzSXA6^5BxSe;X1Pi-F0p5k6$GH zZO;5!p5vOH;(us=z2YlFo)KP8;@vq^mX*pXZiiZaT*Nf+OA}xgQ42tI0444Y!`wzIzyXdU_i@85c(S9sWw`F(pfuta^oy3z)AE37V$U`m^By-Sw)m zhXYP9{8E6x`|?!{_GACFX|Wpu&Ubge6NdPtV$T&bOS^VK-fQieN)r9f65~gRTR1~N zhsIhz0(?%f+{acN1{E=0oQ7|0e-I25t9b~gPAF3*&&y>>7WD51HyT=4#ZjY1#W2&M zb#FS@aXk*!c}96_-eEq7>X&qIZ(kbwBL9HrqSGR)@&GmugS)>i@1P^_jILq@N1vUS zozqeJCw|#0ECh7rk6;Etch>}jdi$D~w%pyQw=j(V6f{e``v~;@C{DL|KNK*1=gx8; zG*ymi3-XnnL{k&O>lK1>C3VOUJ)Os2=CRy=fV|;C1qdNMJOG!?FUf0xuR@#IfPC1- zE)ZN2&nF|lzkkpaaQmjPZ5KT+dYR2AsFH7Y6>?`Mt%_H!T-l`QZ7p2Dd|!F{rI&Qx zD(!@T*aG`GnIiA=d;m9zYMP|;Utz}K zI1N7-XSKI%gN+6qi={gD`Vt#KXbQY#9w9jpkIjcmLD+LD3}hvv@BGW&zAcC-g6oji)uUUz!Y<@ttqlhI4euzBozQ$^20~-jcB$f=4kv zp1dfI=R0tbJC7?HzIq+XIc%K@)QsXbM^LhBQJjh89;4kgr5t4w`$#)F--Xpq@xBj| zkU6VyCr8Dgg7G03uEN^8QCCF>)k@MnMCh27C|e-fI5uh3=xds`HLpt#4rZDG-`~2| zWspSr1&hgn9x!sJa_UO}5mK!S23y^e>#Hnwh~KD!Dn=)&pq%q#-cn%M=i{*o2)%>n z+KqZardDE<*yXn*3T;U+KNpK*KYg#@3ATqPeAkM{PC0ldJYH4uv`pd`zdK3@oxC5w zdRcmAI@`5j5mbV2s&d#)<74M|rYB&BY=l`R`GRNUK-My4N>eI#neM;sSb$IFVlw6f zO-l|2ca#n;Y1&^5gubU7>Xz#mr&l&vOHb0Y)I<4OjEI1H7+F2^$*lGt9G?0v@T$gY zS5!4fV@+GcsX3m^-_e#$raZ1zZ;s;C-h~Jat5#dPS;RL-NfjWp00TdNRFkvzcC z(*V!wLi;-x9Lq!p%C&#mOUz;PxK`(aZj8|L`%2BEbV5*i#uG5;P`ra3U-a{e! zmi>W%xyDmXurFW{mZ12|2!k;`u3O0J?$wqEBV8=|l+&4JdpoF-0E?nes7l?2@It7n z2GCPtKA~z1{p!A1&5qk-jKvXl8-p{slo$-5DX}3LU|=&Qzz%^Y=ow&@c$V$U2&3nN zsq_$>dQ-=?A`mSf<1keZ2yMVvS>R`c!C2s`*Mxv9ug_FGEw|-)_MVj^<|=;&I6e4^ zD#d`^`h}Yiwod$>9!UI(g}N7SU&z4m;9&;&tZJ3FN6_! zLH^I?z)O+j#%$e16Ec7H=lPl7=vHRd?P7*QGJiUF{_?ATU%h(uXV_B@i^%sgiX2&Z zA@;~7N_3%;N#g!EMt6<6?UOkepHwx63&VP9#tKIQrhFX%6Z#{LDqx2kA5Ue3y_tdD z_o@?U!Tk3){cS!J$9D}UI3Av=m4w&v9LLu-gQQQz7i5L9uKXD{v+3CTze44<#pUf6vxhLz=LtlA?EQdnEf$+Dh| z^pN-?U#JYw+bK-CKih7Dz zrk|m`akCDLWi@)DEy~Kpwg6lxS3`6_)fE)&MaSicwZ16m;S zy%yOV9=Ye?-R$@o)y}rq_{x6Ka4YI(U3pETX{sEi?RE8#%43?|>JRWPo|XbT}t zv$ahwEmSK?`we9)kK-G-)mmtPmDj}embxHJbx$3St+h|QF6hOk#Bbu6rms;vWZ6L} z1c&`;T2N^P_KdJ+UoN3aNtI}lKJ!y4S~U`ShD1xa-pvjFP9f^FIl|kCrol2}%Pr)= zN(nmfVWXu>HxQw-+7hlBy4(B5oDf#Fx;Nv?vtgEn1I|`ij0I$%MZ&Yp4KNv7&g3j0 zml>?&RKVt0qa+JR68kfEOee(dZ~#_{QS1-P|1B*01`^LeXb#vku^hj6d8|Cd)5L;6 zjMGDKU5}1suXhKs?N`<&nyQf?_*iN}t`Kh+2O)GF5QlEvv4{;@rOTS^q4T<^+WY>)gpIk_X z)(N>cx5gIy1Fts`ko3r(>*qjuF2ec5oV$)M>~EoSs$=oMnTlPk2>gVXaayb=Is+^L z_h3a?x^!}k@?|>Yx)9RVY)rh81t1387(Xg$3kt+SJXzq_-pc9NUFDc4EQk{8K3gwi z?6j&+1&gd)RV`z4giVXY%S)9eMbW3t?_Yb$UfQ~*Yk&CO(+9A`*lb0?^DNu`{1Mjt zXggNInZI@Gj*HfC-1~O2^(EqOTiI1)BQ_d9Iu4yT>`k#cEc)5o=I9n|`CfGB(BUs^ zGYHO1vN4BiP{XtxRsbS|;+gPxutq#NZ}qZx1T{LW-ITQT$9M3n&;!;Rxf)uaj%97HhIcMgS{~_d%(McwJ}-bSO-kP+3J#&>Hxo!YiX7#P!HC0 zsW4Rhk9#Vcto{E^y5_@2JyrJR!|1kEA__8XJWyWCOOfh{P_zH+BPi(J5^%rYDY3(B z3hpE1LQ|O%LT`IW@*8p}`(i>`%OUixmte`Ht}gvM@vyBV*22qA$YbiSxAA0=;yFA60D`r!YF z*e2rLQ97EO$&%xf6cK9}M$#bDZmvBJcDwO5VXv&^Qa%$Pl?7k(oL@_h6sSva+^tZ*C#`>LQ+!m>(kIn2+_Jxp*6ZPE*Fe)77UDCS&oA4r}~C-8k&0b3Vqmqw0+*?D{t zx){7GqOXRBnmS#QqeWNTqQ9*ovkNu;ZNtkiXXfp_@WJ>>ix%JG9xaSUxRoK5r%s(( z3AJBr9_%oUtt7(XNQcj^#aIVB;7F!$vd)4y_3LlH!ciL76X9qY*o@|tAduY6kAc_e zRMxslTSc>4R5l_&+hXrpaX}3u^=O=)N~7^5=!#L9%ige2^s^BC!}AH9xEpea4QClLGtB}#ZlI>e}PmC zGhTF+N>4OQ&?7TW(QGi>m+^qj(CfC6nzYciqTlrK5w<;VvFUTr!$yj78O>792^ZP2$sA5$Z5edq3uWC*ol~xSh^krSvn#!f zLJQ4MFEDHTcSih0+`Y{iL@(M4My9>Ss!%###CE;!*N%jW5Sl`a zvhN!*-Gv<{jdk8q(#wTCBKkmc!Tag%cj*rKHUJd*aYMAG1z7i!bne`_2y*8Gmrc}T z$L;9ba4bi>J1$h%549nrk6X>)j3$wJRoEV~TLqzu#H?G~5(UD&ecfDxQ^FX9P|d!vs%QhTX!CSK!5#3Wwr4s zI_N_0#Kf*4Lhni{*@0H?E^MX#Ud#0i`@_IyxV${?3LCdoCHCQA&TSQy{2ok;UngKiDVBZCU2L?x zIDASuSpNSmY#c=0j7xpd=4&wjRm_M1#8Ze1%(dxhM*-&v3FhOO_au2j$CXM0^tc(1 zq1}We{5f>kIS9C`0HLC%^&biToGv0_sJJoxNrup}OLW~Xc?sF{xw7^U~1}T zy3o+bL1|pjbc#)tsUei<<;P%Fj-gVINxJyaTB6lpYS*I0XGU1-4D{L(a#gft`F|#4 zu|X@K#QTdLC%Ts0tR=BmnfCcOR8N4T)=4J?z~#CK!5S?W8W`{2|!n^tLGr zgxHNVXt&;XWS=PpdZ9HxDEytJg$m!oa~d}2y|wq&leaK5ED~-xVb+8(O8PGp-@XOU zOCK;VTj_mR+c&3qvs|wiDs)MMd30{bs<-X?9rW$M1mbrHPhi0UP3!JTXF%ZaXf15p))QJ- zfCw%~i_xx?g)`&Uxh|op0tb;z&|4HaH^mF1K3%ZaD#eF-L-=}Nux4M;R2gecxe(84 zPT%z=kJU@m-m_&V@z~#NmqNg{vrC;PV=laH+Cc{SEH>1I?Y3-oi@*!G zN@-{s&aH!4>pZ|uggpC6J6Ru2)AazVum%T1YEKHZ`?t3>jSR>bm4z4qFXgwEJ=Mf2# z_j*yLE#w^ksyo`%2|a36?sk$>+*`s(y#i-a?udV!^LOH+ zD17`STfrgnmo8Ry@DW1HD#igUD)V6cM5d_Y^*sbi1i5>kD6z~7h&duAs%GyTOvrel z&D)ZG}VPsLO0yg6X@jsRW zWt%rIgqqiM*)Mo7HWoSv@v+{t*x1-R7iJB1L}rmQi|7TLx(hmfJU+?6*6}^>ytf^! zV!AP&Y6({)4mOM2<<_T+BI_+Nw8Cyl8LSh`THDpmX3uOneKHpgBa>-QS9b@&PU1pk7GRklXr%KaOo8 z0C0{lU5z?-?%Xr@nAoLmlmg2Ka>25peK^@}QJV&qW6w}ZuElV}g5Z|pCzMm{4!*z+ zE9z1eZ)(%Bpu+R9#_Vl?}BhU8zGJ{3z5$hDiR;gYj5%po~>|>gepl z_IkgN7b0+q?meu%FHO=r+U+XK6iYm(Xs3PmYO+cfPGP5cit9>k<{ALYSwmGP$IQ?Y zV?R6H33s(L4A7_c{djjJhf36| z=Zo5E=b%Y1y2clmV&an>mbIoF8nB4= z@96)Z-*&BE#k=?Xcoy_rcs0pk^#VL zOT5bzMOL{ma$FIZ&n|MKpxk2Sy(FDBYcgeX>1O-Gd{?@Y{i1SXFZqksC}r=su|0(R zGJQq*S&ck-N7Q==^H_#+wfN9-XqnwQ0gJ&`Wfj#>juy1l`2!)Y){-e&BaMub3<>Bc z^v_`}qts zp1FC`SkFJs;Zy2O>or>yBXork8b($XE93*NV>B7htD(6>Umt>U+$P(6Tv$(?Go4&6 zEOmvZmnO5+B>s^KPs*xg>9_gJ>Cjv$|X7{|)EdOl7#$VweGZ zL8@5>rxyBNc1=Av+OYP?@d(s894T-dZ$^6m6WBTYKvlNF`Yqhqi5X7?XMlCd7(2vU za(o>;-nouXpd#>(0>|-2U{!|;b}!*XdH)X78y%07^>rM>&ne}%{JQd`_*}KE4)W?K z`8ty#%PPi;Q*n-9Epo~62vq*-Pm~pW^;Bh>0o5XjMqgF1N4-6~qa|E}HJ?;dVObv% zccaG?euo@UwQSH=WS+_-T1MVfVxi;>6;?0(en}PfllN~Gl=n%pJ})Z6eIHJfu?^me z3^29UQ-pX!Tr0us*kdi_XXtcF9UatA9ZKCFjxfT*6(2<9MKI{mTxt`ctiwZ;r=7r{ zm3CR7huUKm7BCi;kGf0OfEF$0UAqVIeB0g88DI?BM9y_X$i()@B0{gOrW=K1r}N}% zy=l{CdJNO%!ZKA@sj?aJMOB*T-=j<)$`AY1-RVPU{?+-1Z)$jVO-XoftcTxEnm!P2 zh%fYakI_o3Jk2cMe%>TSA~Q9CalQBCiR%u#3S&!1u}@Qo_CP+=&@Bwdd?Hmsh2a*T zALJ0My;GepoOL=T7Zh#bCeXY1Qf@KdevEr({$TdhHVuXD3S63t@%23I>5(4fx;SL8 zo{%@%YhV|~jKAegH-Zzq={-~=B_s|DnKlBx1-OXl*Y-6hBpwr*%Ok*A`tNyBwr_}Q z&W-A|KsDOIvBm3{F;zX_i=a0pgq|I9(p92w11@z@!$mEG-ip(q;HrG|4PWDB7+>j@ zTLwKJyh`CAied>>fir(3Gg&lWvTcSuZ79v5%u@lHO?$^~2P-bgJ$Wtu>O;VS+$xka z5Fo`O)tYd6k*68TQ>3U{^)FDHl&j6D4nY!7oY{@#L zSf&D<|GYN-Lq#3V1@jDgO7*xhQj)CKeyrc?$1ozD4v0vC9Rin$coc+grFO2e9XbS& z*f%9MDJ$pSs&}4_DsEG?uRElsv{6{hc3pDsyD7VxY%iuz%XgiqETRSEAE5|$jNDbO z0!QesWJ8^$`DeONn^*umhY(@Hu#&HhmQCX_CGQU@y=)8}VIuSPrYN$S`6@b+(0cSk z&sVQ|XnNY=j%?Ouo&eu19DREa&Q>`mc0dY^*S{6-s*die#R>Wa^hSmnI}Y3uP7iv(XT%oW;rWV4^E?5RNH=1~*}1k!c~h)|UEn?@fLaRY-`> z;ec)N1!IKdOS;6P9ofr_njgbI8G>ION;QRfPoml6P8S;xp4i?*Nf! z`C-1innjDxPGr5RHIX}*OcKQ{eb@Ko(j^^xL$E4I zlV}*M5gA~gWq{=hmNh1n!Mp(egB&RLeHihskiLWy;T9ZlVG;|IJaFK{(9QUU8|#pc zZ`a6LmZlHYdb8mj`A0J-zU#x8%f>xGm1yxw}q-=7T%Xn(KwNXOM6K;tT4Gy#@#MHQl=ySsx$ zlL&PLdw?slrK7(hntJdMAw^ch<+wBn3a7|TU3xXm8ikvp4i5RN-w1`ZXNXu_IM(MsanBPv1wj{AvdwQudl$F}K}(O^cqlSS(=Hd}a$_b{p^JM;!UnbB9E2z~ z0>n$gB?u3N@CwpP&_Bvu;~Ms!a!nBGr%9ZK6Y+Oc<}HFR`&vDUDLq|U0JfyqqedfVU*W*2yZGb~^X#+d;Xx2%(B8T1piBGAXk5*|(sA zwe8X@$-7rO*Re7kS9@07C(Cy(TC}J)(?fMqN?$^w8hb@Qns8TLxo`ctwgM2iJZm7ZF_5v_6g`N9Dh% zMFOL6`4Svk_rN4H#Q)1P*uCa0(;B!&1+F!LiRgDl#Y|8i!nG!}h;^0AnPzG6TWF0c z!OThTl^VX_dan_>W=wjYV}@DnfY(!da9FwwYZL}p^5sglFiXIMcaZdFWrbeQ|37jd zOT+1@UT?y1$q-Zh&9saGH%A;?%hVzaimmBQ13p=iDy$>OI}PKgU*x0V!!W-4u{>^{ zq~Hj}x+b5?I0YITsN(D&Toptoj88*J{uRtN{~#KM5_12v2MII*^F^#0a~WgZ@Z z@jnA-!Rjcz zP|}W8>vbNe)lJ!H>a$wX;-G5P=E5Nx{a>xdXU1Q*9oWDtZBvCVrJJzSp1uF(7i+r9~kg$ z_39PMToxA%2h<&L6Dkh4N(1hjn9kbN>EewSFHWR2%TW2Ug~COP6e%JWW-co)7)A~h zDKlx(1MJ=0ub9yOELHs%J(u)qju%$3eN1BcZgZ$<59DK<%O;Uqb)T7mCwX*g!dfF-LT z6CxLB+G0BlAc~LJ18i;E)~%h&7lSL>SPYgpHeUQrHJ$a1cF_DZcnRv8q+ND`6JR(H z|5brydnaje%7xu^v=e-JW^2J#c1@eicsbHHMAcg6#QxuT-p9vP>*s5RYsa`(hl%A9 zO$%#Umti>MV0cYb#qK0c3v^x+M~6};aEh`(#@be1*zv)*%^b(aQxP~+^{aJAKhAy? zoL&ddiKq(jyH1)k$+ak|Ks4PNFykV;q#@lnErgmR!`B3V;>N{kvBd>20&7cmYS4p~ zY>?Opjrmk8ln6HLM>$dK0>{g5__aRJepCyX9MUzZwmjjF~# z!E|r9Q=YIwenESNDH}zs;B!Xn14-T4rjn5XJ^}CU!JdaV;_&G`;u{kHHwT;^-3Za! z3WOeDu^rcEmez}3H+CShx|z9d?4T8cMP7WGDZZ&fSZz~nAx`UZU%Z@1Q%7P={7u&83ZA^jGdhs^7>AY_P*eaB;S z$USrN1N8Vc@3n!B=c%Q35CY|p)O`mhCVeVJPj%n4I`Q;F;clB)n1e3r%;Q=42UpC4+lF*N}&(uu#33dX?NmQ1?psy3V#I$dK(cMoP@^- z0C)j=_|sK_QzZR^Lg(~&-ja^07KYnU@Sn<_gFB=boD6cHdi0rmDtHeZo;bH%xpL(s ztyaJcw|RxDjRM$?tp|1Z>O8?XV7XC_>eV|h3n9s$^WYwG-Ynen4J0X6drX%pdDA)A z`(;9Ev5K_`@wfalUDy%pRnNSfT;j&|Ym;S`+9+?rCl;+geP>urn&uv|hJzf>`yR4g zk$Gjq$lhFzBukaQP4+tV4U3@Sx5##dR@R9m?qyEc@eCx7TRT3EniNS~W67pKl~nRb z^6ly9n`yh=hKUT zR`6e94ZY@_MXW88o`U~Syo4wq3OABy=&V5Pj=XAwogq6kyR9jzx5rpy+5V;4Rht%w zA3U1S?XU%MpV2PlwS7DROFDY-9LKjDuXa2Fl|eT5z)2+qY1#dHXZe~SS1m9W{hyU!fa4YPh7H5N|-(Oa-B8)KQZhTL>#wa#`Qn#F4f;Z8g1lVA^ zBrb&9+q4-r78J{uaf>z0!dj;+v`FL0U?Vga_O~Ux$Bo%7a4%kDiRsTmr{Zis*1oW5 zAc`K-{;~a7YiZLkhI&}rXjL-wa%m3+h^{;(S zJKKt}k5KP)?cSRxd!=tK}7toP!-we&l8tt!jWt=9M2qeqW!3-zpnKNnQF zA>sx`E7>^$Lg89Y%f~+h>4=B|I|0~r`9}{!CfFWI;w^TDD&qPio@e^<(2*PFy;!5>M_X(834X^(M(HsZ>a_$Y_S)_e>MjKe!iMKM%scdFykS0{tGLS6pnUak{JmG~l)v^Vwo+ zA=DMq4O4OlgHv+gx#s3wl2-kV)@7u5@Ciw;7iQjsD+mntkp3MBk@ZGjOD2ZXx+NgnH>6%$hwbuB`pv9#r>>vcOO4e9w{ z=Kr1?gd*Gbn{U1mn^S#apjDoH=sWt@+k(rEKsuLUyS*IN3gh&k1`lw;s3S+xF^?7B zj~^E-bS@G4vK`X!9ljk>^l;q7^KZ38nY$c^06Ckm6!930Wpzg{L7*492pIBd?ZMi* zRKR4z8y)q?p6@SvZ%WZ=22VH9pzepot&n~hRG_B^Cnrm>Ot8J}tmG7okLE>E ztS$ugars};@g8@0y#TBH8|-9ox1{{e0tOp6&UJUI!S4X>@!zf{B#1Vnd8N9Id^lb+ z^cilNW%_U?ZR>`0lN2$uPprFd-5Jp4;gugBKBlO9W=YR|{~LfUcmEKS^DfnM_h2bB z@E$-X#E*|6*+;|n8--d0ieS9kTJJ&SEvLWK0EQ2-ILx!!?|b(?0`R`jbhAXNZ=|5m z&a%K-H2obcpYVizJ=mV`=CMYwu}6iC07!;4ZG%eE99`!ADPBoVji9AcsMTs@LaR#6 zfm_V*EHd*3id^YpPrX|JeRjIKbZmgEj9`VHUb;8&9w3YNMiSy~_ZU0mXx=OmKZ=5j zDBE!2j|&?Z=ll>J9=?0o?9I7^oB@;V1eWcchwnGBJpwTg_eZadU(rKgQ*WuiaopdR z_T#-jcNNjRx2!n2UwS_qg7Yfk%VBYq(J z2z7bbz$71+L!}Nu5iG@8P0*M8aoC8yeZOB75fMR)ZH&)<$VLWg2FIN*!a|6_F8K@1 zx}V05-LoeY-x}K`>$CgTbGadSvik?k#aE_?&18@&@h#jzL#N0j$3P#WeEt6#!5(S_ z8--2mkbu=p!QPZREq%|zIOkyj^9|ZY@3;w|VTv|=jYc=U??w_Ai0Pn9G|csaN$U04 zq)!1#8WgZX+=%C8N!rmAGYzvPHeb4Iq%XZC17?3`?|u5(l^8S#g2aSP-v=OX=0&cN z4y|ji0{`WDI+^P`0c#3=E#c1KL4*FhPvevPIuqb_eKRO50x_QF*|oMWowt7j(A)MB zqXttWbW^s0?{JksKD8!KJ_-1qx6NS+PW3tVY~AIqF|6ze*SodZd;jLHq+uAAc6p1) z#&D+_E2x^nfurJ}qTe-gjW%?%?GcyW!LsEW_#l2GREb(T5srB{~*NA`}CI8g3&N^6| zYZ86$v0tBvzVNd-PLt`wBi@_W=umrWl;`6qTzBpo zdDu7y%G?)@cg+uHFg9Z?Cy_|n&Mgs6KHEyP<4su%PTLHk@9a7nrZ7(XV>%&Y^B|w5 zFtDHgGphwOo$Pq9VmnoH)ekl1(Ww9^lu5YceQDaWXV11LiE_bW zQ!sNT2zxd)FzEFd_c6KpquxV2%<^}_kJzHH#$)UZDppSjVPpC&PON6BAv6uY<9J?w z;#dT39{jn3{fVR57d;Pih1#IFBB%-z>e!0+#KB zgH07MG!NU$O8N>|&M0ihrQp@1MwWg0%!B`NGG+sRQchbuz!B}v-AD8J^|)6ZEawW( zVXLp0YimjxS1dVVPd_!rTSt|M@;8MpBO|yO_HzB!%gJX3%DPkU%l#!8*g$V%9I@nP zDqil^%)T9mLe24QDu$6&!NGutKA3tHUuEA`DwP8cBIrj6INV+w@qy5G=ylBqyfGV< zaa@jV*gUWPDxT@EbqdttYE!Cl5*CJ^KrOC4g^C@2@14LmxzCN7f`0!MRQNy&#%4i6nWoEq7JFhI z!wtXHd@PppGzJI{i0wUHz;`N+8rxf<ImuzZ zw_@$O>JyS!j|Kl=$K0;q)66($A;R7oG@lS>01IW=iEn-LZXsjnFUOx4GZ<=rl~&(d z*7xqUe*I~JS8|_OiD4Vy8#3y5a-D-{yk7fwHN}?B`{}7~;IP^JpQLkFnF&Mt%fy0} zYFAkU!w_(S(RR0~?$Ieb-!7b|dQ|$GBAEM3iZL$wi+e@%N7jjVecf2W=BA~UUaqp| z?1#AZEIc48R4jKb2nEX0V4{IqUt3NjMyuB)yb+~|($rt5^O$K-PqcGxtio@}#<0#& z7Y6tA9UW1*wWiI>E@Bn-rF;fF=?d&X4WJ_H@a|VcErjZ)eO0982`x0h4I#9hjxNoU zAqW*bugz=iiiTYFx#Q+*ye2YYs4Ur8zPz6{y;eb?!9XRO^?{D)i9TQUF&$gTtfEyB z<9={Vw@ppjSMaMrmg`*5dAWxsT(S#SM?t6BCcAG3wM4F{ZwEzWx+Ud)ZcA+KW}2LD zQ@kX0@#4vi8y9!WymydZPy#OY?(fZ9m05+l;3mvYN`_Papj9Y!z8zKx6$>j?Bjq9M zb?B@w4+|sVj^Cjwccjkd)0olrJx7PW`<6_jhW# zY&}1W_deQtGh|Y3NrHVlC8nJ@lc-G)v4HO?tkrfy312tHb^OEv9A%#NFdhq)4jkbf zX*RwZ;Z(kYfFu3%7CQ~fi<`0`!cC?TwjXO81}DNeZ@qwlp7WV6;`QKg3~Ckxy#eN1^@IYKe%%uon#p>A3d z&tQCQ#5J)THk0x3WE=7U&tQDr`JJf@LWh29aemg50hTvSt(T9)uvIW?5#=KxoS*fS z@*ZNn99>>Kw}C;kop`LAnet7J;ztx2y?o|O5ySdFNp_pyDt7F6b|dbZ)&hH|&KCxO zUH=X%7O&Rx$Lf2>0TbuVtXQIqu)qxTdJ^xyvYAnM{}wBms!ku|wQHe@o%kQs`H5c3 z07KVD+BRMgTn-f9N#~8_Zi)KtpgP#A)Pv>JO6)7L&KNO~gm{v;T4$D2_tb~>=)1+U zp7Ygr2W5Xu7k10t4%K&Su#Bv4OO;@GN(+*_n>Xo%4^3S~B03&Lw zCyADgg6ZZ*y6&)bLLHf)d}C1T6Gu*X=UxxN@?k>!4GcA`4)?G))4pH<&X>2RT!8k5FwJuq zebzRap}ZT(pHEM*$i?Q8^d1nO=1z2erom}@ruF%9>a>RR9C`+uPg7^6Z#8`~zvCN` zx+2Xp`v2ypnvPBMF03mw^GrM4T*$Rduuu?mBKPd=&%~e6enI~4sny*4UH5}*!9 z!N9##B?!TDub>!c8w(OK2SR(r03Aah70B5Pa%5fc3=FbF1I5rR03k?+E#`0y$_ZCQ zAdX%a&tyOxgH)I+X^vn97Bh$k5;Mdx2uV}M!kDxY0-^ z^e#|3DQ0lrgS)GS%Nz7rU~YFTV}&Jugd1zz<4d~4t50y6q6u0$5-ZPO?Fi@L`LaPc zwC^d*u0L`BpuUBq9bCF}qO93Ycji#{pev_BJ(b~Fh=ir1Mvb~3?HW+{05(VHgG6WW z`=a719BQm4kzl*&g%dDP_Putmf~aR=uVb#FGNcTwHEe%qDXO8du(fK+1=w~cY2Xwy z()Y+UVM?tO{Bqi(X?wnH}ER)JbQnrLgrpBH4v8oHsGNUW< zD_Y~13;5m-%0b7LyY8%aXdedE1QVm$VN^t1hxpQX;KS#x% zVEI{ezg(^fQ-nT-jczxF(ULc-_??x#g>QasR7DNMrOn6jNpnFI?BJ}!{|*<7<4_Bg z7zwL!UD%{HZQ6W&mF`2`Xj-tem+I-FY2cT^>UjOF4<0{>2-{DjpHazIsux1*gk`Xn zU3gX{!je@6TS-z?9l)ATtRtNnd6R4-zW`82Gse8iIr`d(iM8D!nVfa&l+gb*puq8; zRZ+^nj|3~QI!WYgc{%pRelkxnBAMkZIq2>(8)gQO?egLbp@!*OUXh1|a^LopK@F!g zm5ngXB*T2h!s3H(+`82g4pzEK?u=S2N#A>^wfB?tMNq(5SHYI=M(SD|1WPVn+u#~$ zX#^qZ0}$igHer|0FQA2T$Bb~rWgJPMYdn1aNqXIld1;$1=NIHp7lg(U+8+)gk&?P& z+?|ryeK)1VyyjLzHU3Gv2~k}xf#49(sj$Q2D_7d2vQIJ7@6=&s>{qLA9qd5n(C7Qtu>@ zU;5M?KuDm)ah@fi@YLPG3IPt+pz^^ff*J+WqutGR|DHV?0<^K9ypPZcP9;%&@UWio zk{FidhdpUMELwQJtC1y&vOMbnqMRFq-{HQZZbx}es<*PC-;;$_A`_n#(-@CHu6Rpe zJZs)V!IDbaOysWA8p`B;d`vp3q01li&Qj`)A!@8c1{g};s`_(Y|`!D zVcvhK=Lt}Um!^c!>} z!K_R8N&x+#DAQT_FcDYL`Q0Z^^pQaro7wKxBl`3eY-|0&P)Zo`?~Wg+?#|G{=I;4r`&XXrtzru&f9^skW@`P6`@Xe&_r$oS3M>_)#@eY5IPC@p5y(wuosoo($Ok$D z4`OmAr&MkDO^jF39=GUxzrOD!q4h;J^}h=vXYuo8eGb^dh@+S4rH@;&et2tDL(nb! zRCD$XkmV>%Qf}CMz^pCcQdwTZ$Dma&b%1S>0>Ip&;j#*>(GzWvYG5i@)21ra5UiDu zFDyZ*`UBT7mX?*u548B!mPdHPI+n`<%k~2HqwV2|^4RO%=xmC#$v96WT`EH{gZx7O zV6Q4KGs@@6$JM_9%D<<-{Ilef`ds>YJm{rNH^Em5E5HEnF88RSAzS9Uy1wm#)mR_G zFHd4aK8F{uUXDJ8hjM<_a}KK#fCAGnE6LGt6(8qkJ=@jg08FGyhL#NF>KIpH&9LJv0R#`|qKfhe2!xRJoJy-%FNFMHM|4Xba9Q)T) z79j9o#zvMtUAkBXn9p9K++^zmi=tF>oW5|5pbDeEpAu8V|7l_`pX8&AF4pQQvH99) zB{uWlVtCBIvYC`Ycv$;fWwRRAlpTms-jyn~B6n~n6&9$ukKnOnKUE)l)9|s_ji!t@6WDS`GKEKa0y?XUJ=N&E`d>d>mYda?y zjeVbj1)kh**U*jL*;uCA9Tob|Tbn z3)OLDm|-LTUx3`3FYn&__T1l7IRq`n;TiMK!Z$zjE#@an)q8ZeRtSz6E9tKt1?=Fs zwuiK_F3nb{cx^RMsjkJi%y!W>=b#GJHO=)QnPWu7F5=lPn`gBNu)Jr^MeSO77dA>u z*|sfCOIhj)4f?h{Xc|@uZFS28U@Q9%9XeD}eFSTUt+qMf!TL8hk&Uqlz@gq!!olX$vlb||&*8Qy3Yd(&smEzX%dhD;ZlFVy+|t&KM* z`)`wE{VbpgpPsaYY>3_*ckArgvk$cG??~DWMZ2%mW=tHWT+_zbd2Y!1Uh;Wk#<2t7 zNAz;X`E!7&US3aj_&Rlw$+FrTV7WKOr(vP^KO10U5I@@4`D<{M3Vi)_4n%KPVDuQ$ zrw^Fu$uJmlAZUfii@e@6T4qO=(EzgcRoEBwpt9s+DhJ0^!eOn|d3oJe@E{<#&l@f% zONH6@VY%PLl9^o)`i$!Al(iLWuBP`C?Jn)sDP9L+hi_N4KNm-&)DA!rC(F8i2(A!= zSbXaUGZgKc!^LGGvau&P5fkIz$JJuQZL+}I;PTksr-Jak#-0<(M|m?8_B_Y(m0s#m zVa=~;+T^)Xy&mCMo1VAeD9Z}-EPV|QewEZJROAfo5YErYGUOXiw8VytpCNOD+6>0e zl2xDzm?3ZL7ra1!VDI0hSb3A4LaPqgeS8r{1_T!ng|!ED3(wFbC2Jt4Kz}RmFPd06 zK#S)Z*4_qN9V8g)M{v?>sQ5kEMR3g_F2Ce$qiIIdkB<)BA|8{ZiFJc6l=sgRnue4{ zyo%}Td{x6&W#6+@`uSj1tv+e?LGPN*?k_uU5Hvq^2lsOdt{r~dyhyHGxnB3U4zWhL zdW9L%X|fB{3h3BWd`@o|31+Fc{3F~&!lta+_wf>iTH{mrPf3}JP^N6t9^;U_*|KGF z8EvuLOdnqIfsn#danLNEci6y>8l4PFKmYb&<+7m6S-~y1gFWs_z!da5f+t%#uIDRi ztk_vMR$#W#5FCqB#R{&*ktwuu@bQ|6)NVpBMH6th+yO(bB&E8m#lq0(0vGm8RY8e* z^G=*~AZnJY$tsb2!Lo9od`F9d=iAF~zQTAfCw*%9igbv^7nl}!$8_fl8VWziQA-e^ zSD~vt#Pq%k^iF0{8Rl*+to8%wAcj_O^nSoN%6u#5g4kjQLDSRmVDn2K=7A$K8Za0% z42&_9T(4e(o-Q+$MUTYXkOf3P`(Y&*6#C2r&w;ITxAY-{s1|%VVl+0W4#r!Vuqa6z zd6pX>V0mc&^>SJWq@+040q*Yjcq;$aR67YGJf`yd5&;INXQy`aRV)X=9)!!em)nznyhE-2d*1gCEV z+P-IysQ=h|yO+Gt{?-F%erhMBYiGXJmiPT*pLSc;HqV?3S}#89wF_cTuR%F819KeI zzTxw-V6;7v8l=VZSnvsR5*qeTpX9LyspA~kBRuwbasviSD(!d>ni0YHj%Zvb{6Zvy z9ZlidDCapnKD^fS*Lm!7?PJ^MV2!UmKG)V*6;0M{^t>p>y`836`7%Qb69!Hv zXovN6cUh);(#6h2&du8CkE>PdzgfF)RlAPaeDr2Y_-%JtzlQ_CWkMa7Xs3RACmYLq z+Grnt`FH_MhrhN`nVgKUO+v`v7Aeii6 z+v9Ay#M(FxtLKa-Rl*yWL$l-;TNZBaG^apXT>*PPA98FKjn=eAx?tm*VDAgG%EA2M zbuh5)@LFuh(&!9>VSG|ogR^R2#bP{!7i5J;ZzQcrJ;UkiME|e0hXyEi$Iq`q4+xiH zi7TD)Um9L|WMr(Nqn-HPG6+w9Xf4sEmi|BGa|S^u*BUDvO*{Mr2f;Y%Zwb1+)pcb* zM)5B;grCr_&lA*Mc>iS%RB4O4DH?>=Q#@5p@}-;|$oTjkVPR{}92;YE7@~+z;er8S zM7j=wiVY?)KQZDAS@OGNa-%uJuu1>6$6>|7qt-UVAznHi@r1B zb95=!HAe}k;&35%vl-p0Ar{yj53e=d4%X=-|h!gPk zk%2G!I9QoA%%K8bFUE;~RVi804{*QgpIp`EvXjyCCrwR?CwJz|nR5%aAkA`Y7*xIT z182m0lH$V#@*kNk_c1?KVDn!P?i`plf5EIz8apK%BT@RWzPRV{l^?(P!nY9ZdNK~y zXj<+z>Bj&-=JqpP=`n<~=P}Fo>NY|S6tjHn^Hta$N6xbxn}(C{Ny?{oNp15f@lp&~ zTbtuBo-O34`{EK4FACf0mX2VAIg-Y6tvp0%a#UtPLT_ z_9x2dpz`&DQplkuEK8?hH15+AB<1=95$PU0cW-cTOw4-8Z?K-Osk|C2on>gY=D@%= z?WU_}^?C8<-*jN##F|VA<|I7uvHtF}wZ940UJG}x-6vB%bXVmCq3jKBS$6$M$Bsp1 zSxm^i*HHh5%Pfxb%mzViKs6pcF-Mae1ZCSu$j!3o9=XXd4Kn9_LOjh-&S?CZ3xi_@ zJW%ovAuC)EItSNFBUI;!c}q1bP~;{Fg*Mt?a>Jb`YxHYzXD4}kuo^nu8txJ%tV*&uZnvN_gLc-0zAG_w+z^FR~g2#qI- zm_lnSib&p2BkWP?xV#>h+Co+O{zSI9<8E+%OS@A@flb0;T@}#Q^ynZtl)HGGx2YUL zW7fxacYU&^?6@uNl1gFbDQ5R}HB0TpG)aHt45-*#gMfwB(^MI^02=#>mPRGmQ$JrY zWqIq6m~p>b9^qLB4rZinY?%Y>BN?Capm5!!z{=cI>p>ZsQb(?r11hAJatIBAGr+8o zBvIrLxlmfHZK`L>|1@H}NQmS=!n z!r_Vr6GE_7K-DVvFJSjG2v41cOBtpiBfT}M+V8)R23%g1*)a4wK!tskF*Yazyn#u1U;-OU^2pTZqjfWRb-}X>ccqyEj9yt zr~hw;_iy9*ALw0DHNz%rIJuo7f!TMf^HZVnf-TR1T;1xvT=C6r-5OTp@yb1?Tub(P zQq!PE?MX{YN}AU)yCnfpx)CI$7pd@jh`yTgDtq4QdP9Y_8?wpDh6Ld{v!inm!%F7mCZk77!Ixz8HG)d}&DI@|PmZXc}aJ zQC_9b*6~x9D#2%#pYOC+nFHf6ZYE2(Z|yRuuM~Ub-BtL0&78O0dKG5C`c&9r z7j0eyV2*!_#H^)oGXK(4fD6|ie+7lzJDEyhJdjl^1zRlFnjLV!Rf7xoN7v9LU7(vg$@`rHo3`oRRtg<-s z*O)&i1maoKH2Mj~ySUzQi&%Wy7*2ibDh_$W37b+a9^vpk?E_1+e}wmPS`_sE2l6@z zHYXjDd@b2qj=zAfepzp$QB6b}qaFgZV(C(t zK076>H9n8YjR8K;N6nNcn!i;y%UDcSSik5>g4uQfocemws-dz+5VC^_5wJ>@*XPGH z5vyQf2t|n4=Qj313Wxb#A=(Mj^JUS5EQ8=7}$6(ek%FGr5^C+Ai z1eUkukRe0nPiyFxC(4D{aS`I_@F~To;XjS}$GJ|uwRKw%@~Q0+h!(_CO<>vHg2yh} z^s`3P+D(Gz$P?8x_0f?dx1?C$rL%9MywaJ`MwgB%+C!-1m9q^DbKkgBcU!lhb?_b) zf}CKT!d*U9oJ%Nrb$S*Z!{f=yuFu3xU`TDS9?!G{l@x|E8; z4?8oOjgQioJ{|rUPK&x^X*ShQ6M)TctHCXR!wLdlvLLhsKc4eap{AqC+Z>1R?o!n^ z2&F!mliQKxsnHnUX>K*ccnIZK4BP4Mv=F$Kx7qPDoHC#9;aC_#HAX$bQIlvrA#=HZ zioh3CgPh2JD^3_KQ=_~rbv?nERbXk)9;aJl2vz^8aAuUbaM9_H_#O#GyFxc;O)&ip z=DA{;w?8BvW>XUuTb&v<&@Xy*>C&YZ%XyCI67yCVFIzSrSE^TPsc%!}tB=o!qcBCT zKKP76um2YRz0gYW89~w;1C(PKIV8?x20*WZs(nUCTl!?2&uBvQ7v+q5^-q67?&_b; z8S+RRo|$E;wR%jJ6ygVx@Mmjs6A`#j&Sb+Q za>pASgt7*0qV5P_&3MH2H6moUs-xOht%i0IVvZWvrfgy-*_F-q@WdOb-XNai_}~~p zZfL?m5Q0@!BUwL7`!5djXZ_C&opr2w<-s>_f7*wNoS+AqEL32A8DKdV!I3b+D`uPN z0E((Qw;pVPR$*vP##lsAI|!ZtJ;|C_Lxy6Pd2!p95%vi*DpY#tY6e)jTWUSj4M)*3 zM(Vm@JWC1y^SvmXKHOc>8R8$tVJvj396KG?zb#fr4)`omhbOV?&Pw~TX)K-mvEyx+ z!ZjK{)HXTTW_;f9AT$%-bIO&YJXSUZ+jW9(h;Sm;X?)0Bwv+>oqU*`pL_c9{G}da+ z6X&{d*gMeNg`YIr$o&A_;vkf5F2c(VXtnbxOQbz9wZJPTz8kzsCZ zkZu$GN+f-q4&>BZ(Al|uO45a@x}U@?oRD<3zS|^1`9>0QEm-+w%2b{YUWxyYy|)0& z;^^9j2a*s71a}SYE`?%&Vx>TV;#OLuIK{2dpvB##IK{0LhXi-G;1D3hAWC#+?*Gj0 zy)v@--?!iMd|wL;ZT8H$&KbLRN6y#~Uk4ljT1k@IW*1?N(%wH_ysN;2UZZ1``y;ET zLN%2we4lqV93(^EPWQC@`+sUcNZ6rw~m zwel&Q{S{u-;oK{%gm>p5gdjd8Asj0QLG*-^&r10F$ zpAjKQ{F@nR?-AU4BY|!Mxi_V9HYO{TVZ(gy4frmGCsv-9u!2=!X#uS~v-PescO&{K zs})oAtPBg?1oT>4{8n-~#A5YZ=^i3Y04!C~CZH*Kpo5yi5gCAm{U)hiVHHR;ye#0v z!z&+Y05gZeJ$Rewf*@r(;qUiy`5)4ji zJ6RQ>G(HaTj!HNe8ak|nc0)#l`Axu{9ytuTj2k3$n9{6t{=m+OcqTo?X3V&xY@N}T zVSZemoZY(*gY(k6w-K|Iu>-8j1BYWyp5)dyWjq0F6-zokfo;rl9tHl1h6Sk0zy;bJ zAj#XHO2JDukrOw(5Y-aH!x6iZlAZ`XGp9@wSkpF@X}>JWCm}J9idz^KGV66%LlP!=4h_Xbj*N`BNrFtuLKTW?t)?Co#^jw@*wX4wp|W&Ov2=?&2#{4TOvc{YF)s> z^j;3R-^OR0cTNZb>N-_{t1&1RXoIcWf?wHvd#7LG`8I0kG`7bUVSg_>y+fB`_>Q0< z`fdDADGbkN!YqLfhoa8EKip9HopgqF@)be--raH zS0y{f5niuQta|)F_EiAI7Ba(Asd+Cy{5Ii2aKheK}7tQd}enHZ3Rect{R^wALrDuhyTr zKpg#r9~Yr7eW8+k;hz-QiU(5+P)J-Htg>qqx{b#c5Hc@&_RysW-Qck_{^SREwc9U6 zY5aMt0@;@mf^yGSem4;@HF=)2(w@P^SAis*=-1^=EI^wJa9F8$;HoZ+ow=rR>VYf{ zlK4!tRetdfPAIyz`TNc_5;t=}qL(CcT`9E_5*Er~brX##Ljl`HZaAfLL~?qm{0WQ? zs7tw@U$d7c&Y3!wyoB`7q>R5a$x>&{ArA$j$zRKs9i;^@nU*W#`od>RFSdN& zN3Uosup6Cw4?JMg$FvCkYsqZ89B*Z{Jk8L)*WO(c1Vg2o)!f0~BDD04Fc_oYJ!%ur zhnuT{+@El;dZUc;>1!2Bxlh`GQ8BcQ$Wk*vHDSszE&6RCFfS)}8I;#@0Js@(a+uJ> z8R2BazZf(_lxoyy3>LpW!()+10hJEqBcKD0j=;3%GCm&jq{RS{`q^w1Gf zTMoIcCh`%`xBJjw{7SC11<#CpU0NPs2qp(T}_+t6cw=KPxs@VS?%h&)awX$+OHAUy|+s%)mJ<;WDegoI3k~&h8 z{rL>u?k-nr3w6N`(KMq9mmE8GHTl!#eFBMA?*j_ULj`U_ywDbNxfCawzIEwyk3DqK ze700=4>iMnHdzK$1KNRX%idorWN=KvW%8NJfw8~J8;I{$YO6{T=&VTGw5S;K@(=3MJ5(N|#F zj0o4EsB$IHIGVz&oRa3P3|cRk6q;f*kG)N=l~O19tPGQGO@9M1jjF(Xh>a~{L$5W> zpFE8Sh0qB_8`s5etPS$XvrGEE!G3h4Ah_1s)FawMh6o619id#`x^?S*B}A}KcwSd7 z)21ln1I33|yo#@Dt<-ksG4&P!taR0U+mwA4wo1ZHZ_wl*R4YV0trRQs_Ec^*WJsi< zuwM$u(}@7+Ey4d=)o`qTUOT5EvE+(@GRI(=D|qWj8HU{Rw#W;)#`aeXcoN$y22fr6 z%C@gE1mBc4;xyTw$s8)P*Y3b+(7TA&T64|NOXXujRpy&WyM~$x;-BlOIBV7w=p2xV zIr*+b?lEt)*8<*)xoif!pW~3jlaCB;*s!554rN;8Q3+&>zK}1&6U#LY2#rX<&CEVX zk!S18K;8Ue8GHEAyXG%EhC7z;2sXx*nciG6aI z%oYH3)0{wjO2o4Hf=)i@V~5WaKstRp3=YnIiLce*z?`uC=nieZ$_L=c0xSrpwK%Q* zaKH*@paIUh6sov@(LHcZ=|cwP40#mBSDhvXUN6TpxS7!@#$!bxC3~rNYR)}>UeAjSt{t&CSR#M88-8()`^f|nKcNG$kr_6Lcp*);^9f*hu6jWN|Ncs zQk}EMI*=&4dDt)C@Kfblcp0*xe0PbTGr4;F^qH#3$*40g$(2f0rbfGMp}kUJGMs|0 ze`pXHVfH5V0Dhy8HkFuc=}++uiW|wO}*uL7=>ab?i}+Is90^dIQ-o2YvGpgvs_Jwa!*jgJ7j_j zs5?d|``L8lI;-4rcB$LHzsLT3e#+%4y7Wc%D#E5Q$|fB`7nN{t!-G)w1f{Csh0Pj! z4G$0jCRQyFu7qQ;aZYa~x&)TNHbHNEOpVIkW7LiM>?VG<2O$07LoD3zz5wo->tPKO zWv@-g;g{ET%#TJWx&^?H$XC30akak=>2z8L3`{4o-?ztF!5#NGbwTdgTT$+EEW>+2 zQG5&!M>I=#T99Lz-ibaY{Si^wXVC-mVrI@PBh+=ZVz3f%J)T;M?kt0s*y8P`xDiN2PQ^KO;e~4jOC(#XM#~ZXztJCVU{#R~JKV9(Mg~3)RC&v|Q)Tq%Ey5M^ko0c-`E?+qhnTG;+ zq_6%mmD8pzG9zfwj1k!l{OYiB;NqgmJ{51)sH(4jqd{9;eSCn{ znyH$;6Zb5qI*y+mU%C4nBR($WQ|1&b);*eViaH6Avf15Y)z_@qjIlVF^|RpQ)A>_&W**$x@@@Dfb(rXG7i~cHyT6 z%@Z8vec2SqaFE^5H|Ms2<-Us#F+bD(*UkmOsM{<2inSm2!imf0^eOn$oU;nPqfWCJ z;h>bW!n6Xz@8*c5lDAFY1-=XV6=g>Jrt(KlrLDYtIn1Z-Y%R&>J!mxPzvvPoxC_77 z(7W~&>6S~6N^~^s+;SH|4o)*t)s7u9rv8zIx>)!NN?LYW0ZE6IQyQhwiZwqh>@Rb-nC4{>Oi^pX;Q}D zaoYEx&b~J?xEgWAaSzI)HJxkLM>U2-EBM{6&{YD#gAJZRjEh$1-eK-u;z~4LhVM?c z`3)rU|5BD)uSqtayh{nN6Z%U**9mG(vPG8X5fq9Iv(6CdVs85Zy3@#u8(L7*~a9*`Sa^d(8GDCWBr}b*`2d07DC7ib`4F`F`6}uhn7~yTVHno=$_HELaz+m zn^WC#Yrze`&ll7fJmFE?2t#hf7Y#UdP?9l zj?BMZ`|GzVu-QcFT$q+dD)NytD@Wi*He5qHLGMM_E3Ka)h-Z8G@bT6q}WKDcXQRtE(Z%5N)7B?#OTqPiNQ? z`kmopi0{D&cA1})*CeuDh9ViD4_6tj?64*S#-b0VFqe;aLa9imSTLjCdYVQCb|Pa?QxZ``hJ8oU zps#H1Vjub}6+(nRhg%C}&T)AE?n({-gAMch&Ov>;PBPa43r5L~6z)Zm$PP(b=8(v< zHzMGIAPH9O61D8x-2PrVZk`1QNs@GWq*SzDh5*&Wo;Bw?I3Td!9nUe9g~%)RP-|wN}$xraN>yb5z8WT_X7$! zIiSa_0|Hk15{a0e1KRNoiL7}L_RK}TAEONbhA=C5AdL3-y>6Uc%VC+{`5P9lT^!bw zoG=nFki!bSdC?KROw}DGmkc?TD0`1Qf8x7$>eQ)oW62g4LmoB99~w{Ha6T#_G_6J;=)+8O;JwH zs^XG6TEsH?<477rKFlm+R70(%D8ncL&si$N@@I~sSDwBM;jQ=1|7_gf$PE0cSZwd~K?i zvM8qMR9(6C7LSy8blkk@b!GR;t z6C~GHj2JOu`DshpCdzBs3O^42(&U!`(FKi0Lx56k-1g)t&B~1xjsnu zR;%Lc@f(}h8Z}R5_F)e`WvAAWV4E>ID*3_jmvpcVr~Kc=PrxW8bu)2-P$W*lw2{~{ zRA#leWB%qb11}J1-#HnFpQkkhIpP|IQN4{L*vke%==NE$-n13|Hv*k{tEsLxNv!A7 z?e|l$t`htFMCZ=8p}3}y>ysa}y84Out>ll<#uQbP?h2CyU*h#@P#q;d)o|x(gvF9K z)QM#cOR6R$MZ;j1!g~QiU1^xzVA<#&B9`vSpR4`h{0VNBWd-M!Fu6oh8$1y3bwRF9N6my$FO*-C4*VS z{-va+-<+!A3$JD7cw7j-x=zn!zL2=hAvT80X>ikbtg=xTwLTl+{dI>735Y6hWjg6? zXQ{nvh-~v!j*v-ID3|{OaZKWKS*w@kC{7cjGdTLV>UQb<>PsBjM4p`rZ?Qd7bEcR-?Wkzw0dHxn+TlsUu5+4}|A?0~5l`L!6jrkbw0vror!D z;A`GqME`o`5`Mm;7jfnf&WabYpR}a4yC9f`dy$ouD_8Ea_#xcou7{xKBa3$5P|Ss2 zPYD>xGGyzx#bkY^ z{`Vy?2*&Q@!fT1e1ED9{08e@z%MrlN zTt+728Q|j?Svm!lxwI907aHaaAwaA(h#kUMmwWn#&b*IT%Q{K&UO)Key^E zxQStTih0TEQV93hr(MWg(iqgk`umfa?(H0(4V?+T+j}mggJ5 zp4Yc9OmZ2u)9QUOlTE3%n1obXM%ca7PLV-M2w2Eo%kqcLsT(b*?O1S?W0gI?^p#;X zFrMI^?@toaQ&2-$9w;%?u4?q}tRida?`LC6r@z7dPM=<1s!b82gw~#cmfYepzPzjZ zD!k?f)W4bsRC_0}SY9|+TG!(-FF00O$2M?!UhvN9*mLY)UQw&wQ(n&!CXeNOl9c4_ z98vHXf;`~Aey<5#x|R`Km#cjeU3P03CoIjqDrWshe0EXQNsVeiMP zU7OT>UXXQ+Ug=16>N;)hxuMV#W7i!vC2K);RxlxPYj<)-1=dV@F>}p}h|6pH=0=BO zyqGZ2z(-Nnj~A!B9I;_6gph~2nh3bb%?URon|M9LKP0J%LG#4&Af99Rb4J-?1;`mg zjwcG(@03N!VRh9ro%zr-{|Hh`4gfbf%vS0DGT`#{sih%~N78=XZ?qHx>_0FL7W!a4Fn--8^{x;2K`BlPydi4l@CVsMLa*m4XtaZjcEQIgcu!`V zK`pdUV@FC#bTnX*6mP|Zr+NVMFFhG%ZLUbMSEW3MKn_K$9KHMT3H&d?P;(j?Yyp`m z>Y<8HRcyHgf;wr*SN#V3`RVnFq=lg~Yn(sN*$j0Ab_>B#CN^L@$I$JL^QNek3UHu& z4u@WiS`pZ{?9l#axtj01Bi~TF2mt_R6X6`kcEDvpYP{sJcD9NRhds94vE5cLxx}lO{Q7G-bm=g3UbCnfIYXjv$b5&VVlECgAJ+>s;B`HaYIcV!wNk8*$(;#@zYgkxNKSAd~Hn1rpxoLX7(S`1kC2 z@X8-O#m>egtx({v(vL5-Dh5W#C@$=j9Y&9C{zZliRYv=hr1BhScn1*aJ<}A=d6V$h zp6F^-ZW9t#OZUOk_1DLb7Y^&>Ic(TNxbfw*6+(rbJ2=#|{>4?>?&Z$FdJ|>o(xt=7 z@wu~v|C#(xl|afKll%Kmo;*1-KZ%*L`wV(>gzB{EDI>~s!*l@V?B*J5N_4yr?aG@A z7be4#IBseqa!tZz0|}j@ewM8%2G_5ft{Blyk4^g)!9gba+m<6=#hWmu6C(&jI3uN zR4&UiAaq^8-~^D06;;Eq408rlH&&wO#J(Y9I2WJc1+1vy;fUn0NyI-JCvJEzkUtEX zCuSyt@v{G~{LSHDF)X{K9_8?XJ(DmobAkJ5A*H!s!zW;{adM}S?m>zYy%~x{D?}SxPIs_-0J(D#`)myb{H9zs0q}k|rF^ra{BI(=IdQXcQu-8Xh@pU;IC#GTW zcXJ^ldX>1RLhm-zJ&&wg406~~7<$cpZg z!l*J*+aIsQH{;PEbhEtXF7en%;6GSWD$D34FN9k`0Q*s!Ae$mgngSO2Otn$EZ{ruL zX5Ii1Mm%^htUk(GqiwswY@8desY!{xbqh`uc*VVLSt}oPrW9PL$<-+V`#KiiZ%*aCUJF=XjEkv3O~vu8xiE{p!(RZa z*v0@nor7RP8$T_HvMq$83b>quKZ}=_IdDPtLZ*AX-7* z$pAIm-w%>$7bK)IIW@c3P%>&h_8~%Sb_s!e+a?5JOGb?ri4Qnma6UfZF&so^b>0R* z2`A#~13x5-z+|@%{J3mbjP9rEN!@IPV_WB9sb%?xy`9vpauLCr>XZ|JeMJmro$lX` z0ql^7t;Ars>ij1h8qQC-!I@)2GlN35MCnwP7Sy6-u=Ee{MlnK-^F<=I9jVt!Cd^tm zs+>)jDYxN3(FU5YRok^=eYRmdN>p1<3lp4w9udN`7%MkdKwK!a*WNjvT3VWY|o;Nuq@chsLvP@VPBi z0%n(h7aKhlWHaSMPr6cDPyfzIgc&sp5BsA6|a4ZaKv%;FHK0KE1zR}4S zu*04<4bXJb(|=5C7!E3dP`+x|sT`{?5S0W6bv6;6Nm&UW%FcLKa4^8CH6# zj1(R9Gx!a>8GfwMd0~1wlfhPrW;p3bm1u*nz=)f19v8Lv+DDm(Kp6sS@vH)1iU^NA zme=6vM0M!5mfaLCn+r$Tj??a7{A6iQ3N;#ja(G)kn2+&UYCJWuyzM9Ety~aP$JB|t zetO1I{>!;@H(+5Q_3s!z8khx!et8~0;R79sANA3AKPB>=+P+3bwoT|>XY82G8I*{b zaU_Ek4U1`H3NlpsE%rxCeurc94};MGPoogK6>UXZhTsnkd3m_(tNpfZ^rXlK;xdTz zM`(FccWPn5g3N254%VZ93x1^*c~TE+xU?#VgWqzZ-XSoaTWy8lG9-+nrhH3znFb9i z%V5xeU!?7=%v^gfwRAsy_?-Kw-A}41-XsH|d4s&SY$!kh z)%nUo+c8e+#DMYmUNNoaNp+Z4?2@p=DVyag z#s?TZ)J^MWpsXofh}H!EC>}hTRZ1BW<~%ryKz*jUd-4$P86^YOg;Yt{1RJ- zW~C0!^NeIy1@v&{O?wz!Lp3F3M^FQj(?zg-J`m_V?uCl&9I8rx{$nkHikkwgb6f_L zW|Qxlh?k^+!LSf8yPL2uyY$$t-2M;ec_9x{$s(?kJFn82jwOVBSyVJfM0a==i=OAI zdYL~%;mkjjGVvaXa03~D-O^Bzd;)3^Nw66Q$s(|$uq}7y_d$ycs2b!@WlC~ z7A)84EAzA$a+~u(_HCkN^ab-s>@HEPwx9N*Tu$#7v9wSBq)ZQ4d1fJMf3Cf;`PHJH zg-oNqKC<#m(fc4n7?w5dzVz-Wh8CH|P1;tgdPv}pxBWlmnnd1u9 zzIVMKY#A4nd=zGxg6IrOkIhm7+rMR4!eANh@K~6)t~eYjCsxlGExOGGEYSR+Ak5I3 zPQ7&dXr*TMy(3_)w>Bm$TfaV-;;k6n(sO+^b#Rok>P$VlWsY^pVdfXJ>LsfMH(lsC zLa4^;*RRj6Y)RXkdi5TH;8C_VHzd_Fkvke*hRCoR6m77qC+)F3a3HgEIXDgd3wkgR z6OF}F8H&f^WyvZXZPLPu{bPOKY<&HVJaL}m6%s3(QAMcnLlQo&f>f=^9dfh06hT?; zlVf>opbKOv47R0iBC&f-kbCTVuHR;cFp4xWJuHt;|sWjEl zE|Ro*_Uvh8WJ?`((RKw~?B$<@nl~3A!`hAWxe9PjOK>XbvPaEB>ZK$mE03Y7Nznxm zD)3C!2%uQ9E`R=YuhbXRUry-UWQmD#MYZ6>_3n3fSXC%JHOZSkQjR4ng;(NyEH#a$>_jB{$}5wL z@VVBJoXP?5G`*oLD*tSi@cz-5P^w8u@nN}CQu61zBWbbO+AsoXB6>}XJD!%|>7GA# zxT7(Nt37nT<>{p~1>X|#qlKrF?bM!2%JXY4q1d3*FdRdzja^M;mv$5YShkmA8eMfEC_cTw=Fd>6`whOuLQh(9o{yYx*0_R zQ)`HgIfp_%h6_m(p!K9}1 zG{{F+(w^Q<9nfWg&%S?92^4SHvK_4bB@#=?3^4VmPPCLvPSTJtU%_ls_=;2OAj&^` zER)k2bjI}2^g@LS<;r~v$B(gszf-L$lvDTu#!HzFkcxes5jDQ-kMC4rJKidWefzBj zbsuYhK$i|qprL|GoUPWr3_e?f@Ii*Fc`DE`47fLcOcBxa8#E9n#j+MO5G@1H{62kX zyzjqbRrBA%`0W=6ef<`|sLl*X)3S(imH>f6MJ#2JB1JaJu`|@{raDniM=*XaglS;6 z*#1=M0XpK}qD5&&?IZA{Xm`+Waz!w*NE|F|2KRQ5tldxLr-I~FVTs~o4I`~2;im4< zWB(h9PnIYGE8`KsEF(=uD${j)40VUJY6E0ONA=VogukrZ5CV);G<+-p=Q3}S^(Ls) zUxdKxD|g9YZKLehL?1IiQpKy}EN?5S*42xLN*Ep#ctlP$tOB$=enh^+OAjb90u$)wF z&FJ!4h8@GWKZr@O;||i_dn{~1dM?xzV_?!IHjY64j|$OUQmb8xO_yQ`Kb6>tUl$Ru zQp=9^u7tc|@Gb#zGRD9G4#{B4lEI4GW4^Y=hA}v|o!Y;HU)DFfZ9*U8oib1trkaCyZ;3`_TpI>qXrC~LwY;h#uwo~lQw@RMcAChAun0nP@y44^J3EK#6!`YN z4q194{a^t&tYXpbs-xr!%j@=&IRi$a$P#*N^a0WfQLa5vteF8M`ULQt_ij}73 z(!|??*#4I@fF%&;VJ0w(r|-rkpRG%l^7ua>t9->cwcD=;ci#MADHYIA2jF>9U4x?v z#L`7$0p~4XwSBs)SqNq)>$dk{%+>iV1ZP%b?W!9z@5_oLr)d@?qc6O>UkeU)^B|=n9Y$`SyhJy;vYa0a{fUeWN@SvBipV5G=Goinz8A4(x!A zOX@Z7`_nECG)Ph>YXOxW_W_5=!bCN8L0Yb{wn0_UwbzSS1&6hkbT(+!33(XI zzADb(-N#&{`MWMLHB*T^{eHQV_^Osu*nH?C-jRx;lR8*4(n+NpCmej_ZL~t(N;ubg zcpD|C(PXxh^ozjNlfH4fw&Igs97nu<*hQhs37P^#rviCX`w&-EnPZ?xc@_S+tk zb(_3q?oxagRgyICTpXXh|I-r4H|f;k?$QGFo)JVpvW=3Eia&);!>`wpo(hv1C=XWd z(idgDB3e?G;)m)`c!&6rd1LL42H0P0se`qsov)tPJLPTo5iT{}$|G7U_f?`Q_xnS9 z3E}(t5i9FBCGe(w1czVWiN#855kqJzUE$;i&m_Z8wz_qnN)9%6%6bLKZi&%A@f$KD zNES=x3}kQRnXGzI1NN33d*F=HTXD8mW)cj_`=&wutBCdAPGyiFjxR!h%DD+T8+UCBB?dcihIoxNIGbRwDah0i5}jZX#}kPOy58BEOF$HS>R zhdO_}Ld?>X>vVWX{}*kfYn83wd;rTOD0-+PF}UjWvH(#=mX$CXJuQ3>6!L=W3Z9M0 zLP_4iRkX@|F)k`r>?KxyRhRhiO6qkCwqwS;xA584qK!xkB-hp#ilj`OF=Sbx+%G1^ z=Hx6RuglniE0kk)aiT0Q)N6O8y3L|(F!y}l5^m$17C@F7YnHH>u7(%*abu)HqPM0_O73HS)tBQP_zP1$RDIBH$8%_iSPHkFHp@?B&TLwAKcs7!Ej zGJ5^~3)o%$dIvKpV1VMf`6dQk8(S>fOM49cf|r`1aMWGLGLB<eXN7qGey@Ax=t$B~>~r)T8u z+O^x^jKBwL?~-jyeCNQd|KP#Zv15OG@E{SlWw6#uepEYkl)0X>N?8Tx{9P;-OwKlL zPHZI`1felXS6i%9+%3im#t8m|?HfQw@ZaW1J3RbZ^ zzf3z(pO-iSPekGdk*5Q@LbvjhHGF!+ezs`bWn^m|yH470SK6tlQLtP{qi zo?8&SjkQ*m+-ZPkn(!l!lx}VZ0bY^QP1+S1534|`u-P_zfL%-5cFUH92FE0dLzow$ zpwLW~L8Sr=TtX9rV-hK7=?JHQIPsKQVChU=!?J8@eWt_`XaQ?w_w?)Ax1ZSgY^N`A zAP;Zdx^;UJ9X#t!TiXLafoc-R*lL-oO@A8doS3zCtxfq;w=Wy{=l=cofjpU64-p}X z1v%gH!t^tQp|0-o!AJL8_t4G477XQ}ACc1mw$++Y*P1nr4-T-6x*Ydx0!u7xF!#OC zf>`rsQJn=TVe)QbuCO894y#R}6Z|)(>DB@$#%7d6^{$ywFcig_G91%Gu^FnJ*W~F` zCAzf0ZsyQ^Hx88dk#v&HCq67YelJz}8Fn#_aEgYc_DXn`7|^A*=c+9%*w)xgrJu3hM(bG7F! z6@rZkr{U8ucXm>6bOQF#gv!Bch}s(I{0lF$mqw;*8-(M(vx1TMpfM*l9b?tB<-}Vj z;#G#I$5G}$fu2d$jh>CvMTUlKB;IQFJ_fTG^en&7KgizxtkJbx5XR%wPs_E0KaMJE z1W1XVups8~Ja8M~z@U{3giu*pKd3IKF9!h#4FI^naUW^7N67I1g5lx=wHdePeOU|fGbs6nkAPV8(I!}M9=UtpScG_(&K1GO$5+UeXWT0Zmgh1Q{$sUX67*2oP4uUsPBOIcXr@*z*k9U+xo7(R z{Pv!9S>O`*DS5qN^O(0yhSmLHauBwV!GAt7MPJIMThc^L*p^0BXt?yrIM4t;)e{wc zs5mHtV|1v8o|vjZGECKhKfZ#VwhPV&RDA>tLiGVIB*t5UsVux|Y#0T|H^fwJ96U06}O=+s}w4&G|OLX>|Fdpl8<&Xr+0n4OUxufjc#9AcB zH5~O5t**0kLti*gWjBs)ED4RWe#Oyt9o8c6jT1I_W!F9UWpSSA^f$tZ`k+1Ek|j$z zS;g|>M6Gk>(gmtl9A|AN(&B{LRCd&PIIR2BsiW4BK+65WfVgZ0olux}oEBlNVK-51 z8Z7x9OWU_g%xa_INw7%l2|l1Mz8I6V+uEL$jSgyw(rKFl#{_Xr))t&}XM~`@K(~N8;YRi{8ejc;+PY*TQ=`l30&qC7KA>Th$N2tl zMi;&ySTbSv3n7J8iRC=_q3>+ygyXAF!kL49W#nGeHwrmjaZ=lr|M0u1XI zykDy6ZtXz=uaoN;6eVp_wyhF2zuub7u}RR4jyhtt_=_SwB1r_L=<8mB1G@56H&KG=lHo z*EX=P2QqQ)g`ak}lhg2d+*m6}F}<$pVT!3DfcfRngfsq*KlHciHHgBeoL^lD;gBJC zC7o%JVm-8gdI@?yI;T5~?tisL2Ww5H;P~Gti>BDfsZ*wTkmGdCny{<{wy)-6^$=Q3 z-)yzQHoj3qq(WzV45iFG{@#Ook$AnkAaCH?jUC~ zK*;-ByH*~sdsfMREuC9ZpbfP8Ki`aNLbi%Vzf^f66xRMinJbj{DhA6(yQ+lc&#wO& zCiFoqdRoM0m|6ca!+f32e}XEQKNmFlAEPoB zSBXxk-CH!TVXeJ5xK*uMeYQ3;(F}9x{D{RxSbK!2I&TXA2PG3tpJOC_oSzb<>yWe< zPA7v+!ngU{8_BAMG1CDv03bXc-nG@U%6+D33H;L2EC-jI?0C(8vWZP3&Yq6O`X#|^ zXsg6tvi=xNlo?QuYcB7@_g*>;&$QPq7aQ*;gDp_*hi_XOUhj8DEuDMRBhVZnq`vjm z+5mbyKWu2B351zq$Vto)n}#1`Iw?6xFGKHPLM4NyMCt>MfX%;9x8IlW7XO@kZcsOW z(rWS~E2C!doFLsTK89@RIAbj=2D=v{ojjs49TR_HM6I4RN$lXb!8O4nO=*gZ=ux!}wb&JL@T}eLGv#&>tka2($q& zXosGV#a66%G+o9}Fp=P}X{~<6354KPBXG2<`_~hhJWdQD|8q=@8Y$>43fv?^EoFNyEhu+?9z(_p)PfvgyFF&?o-c{`5o)m8WinYZ)}&y@ zedKHgGY|{qwK|EARThSYgq?Fy;Sv0uCQL=KQt|p~foUP?vS_W7T0Qrv2GrXlO*fMTAU&qb#Z8 zF_hBtt8lDg!oVxt7O4N>5EMd23*+B;nhwF^h04X_sEWn?@->$b@Mfcjk;a{EAtJ!Z zc!7+z7{;VBA33wo;IOmx?j5WuUqf0KYjvbIr7AD2$cyniNQ(mXG;1BidZ#ahWEoR_L;jB^WCJnbbq2d{K zFg|Fc1#vL2oF10*>F$S}SX=yxt+MIhd#EZ_;x)$nsI0oS1h6bXzeB^yxa#UOck0tH zi7nVRs^i$gsQ3*SbGKr2sK;$7?pO8|!3nzr2o4j4g}Si)cA5l2=saLCJ>(XVY`5{X zd{V8?Otl1tIBb`#myC=lDwa|?wZUB^o;HBcfh5{#YV|%=sDx4s#ZRDPmSUe|AW)t> zF9d2$Ns^$JF_?G(ljq;p^o!xP*z{NWP(i&OC~w_wr{shj5X?yl}^)Q(c}A*rMYWykyfyA zHAOJjc?EAQ?lqDK6)%F}cL3$~AUy>=AM#2aWA_kkgiV#VY8S)hoOR2M7D8)sL?vpG zS3;1R$q$s5dKc+0U^B=?*EE@aI!HG09UHjuGl3kwNwX)m5A^avlCU9^1RHh(OVBAY zX3T&tk**dNLlzAq?HPu}^96aA$>L?mugD0-Z}n^>%-G!ueHm_#O(1^{`<6@;1~S$- z|8LVljs|v7_O?HIF5j1p)$G*n5FZ-| zdP;BXAoo*bxE)rC#0w(_U3M!>uB7jI_VH@Tz~dRIUn7vd^_z5Q!AbNW0r8|y%`P6tM65K4dIph&O(z%Jc)c7kiNA(K5;$pA z(uui3LN{NQTLsY9H2vg-Z6}P6=(Arhf#&Ovgi8%KE{%^;yN9v#R9Ap!?zI36%ROL* ztA(kN86JTdDIav)MVEa|(!9dJ?*I74mn@pPm4D(~V0jEoAPMZ;E~=_tlj70#9!v?; zV%1Phy7C|1F_N$*8wbHkz52-W4k1b3^9Vv!BWe$VYfaAa;Zez|gidL{K+V-*5UZQA z6+qDV;n;JHSp?Sn93^pnetxI?ZjdnkBZCTQohtAC_Dxn+G3`@wQ?>beE=nB5LZ}W2 zDyFjhi9Zak7*~hfrv5B*mAEDh0GL8tX2&Ux&e(ncl8QV|z_&~Pgn6P78 z`iV-PIseTPsN4vgWl~CwtLso$<8$*y1YIKqoUe`)B+)L&scx*bW;Y z0;N|)Z--;bdaL~`UD|v?NM|QEVuvU?s>Kp>V>6#V5XjMe2DsmCj^frrxG8Rv)c`O# z-B6@$S?=A#(RUGYtgF&`XoPZG_}Xch^Oay&9@|z6p8MN2$$`VVaZKHN{Kk=7I{o>{ zl|XB9wi3tEy*Xj;mBd7^!mvv$l(#rK_3kZcZrTa1-!020$BZ)X)X|jH}>H$qV=v>QKh?Td51U z54tQKmY|AUz&#KO43zYU5X1*Ln2&?hCd3*b&~ueLE`V9?-L?oUzz0^{!FZd6Wsokg zTnudKV+@9sNHxrN-n=TdLl3LyM@1L&vl{`xyv);=mD=XD$?h;5qs;Xzuw#S--%G34 zhmVwX0+y!m9efi&IP_P*vcnR&9&qdftgnOaH|w&4%GTrR#sc9|35x9riJJ!(7AU@H zSUvZ%5Y^KkQTowO6=e#Gp$Q5;s8+f87lp?0?_tNXy7XzsR-M$IZB80fmwE78_MO>g zIkOOd$igVjRl*xO8I8H4%n%$q9R54)Mk3UY$IxlIhv?SgFDfh!6VlmFYs%inDG&c} z25vmk%#TycT2W%|7)*oc0iddU#9*03u~NGM3#iF=&`gO>k;=dM!nlF*jCXjldP#VU zd^RU(JVL`?a<8Tq%;LuxP{E)dWnt#}aM>005X`TtXx1RIxc!j@?c2+2EbbFtL2v%j zow(RH3&r0r+b}q`I8Et+vz`YG5TafA&{O4kZHyMcLx-H=uJ>>9iieEebvMDbV`831 zkFkn55{$3MebaUp>qU$L8y&}fNN9|K4G9~>s-ZCsr{1ElrW^!%X@Ql(ZBeKI!Ke%J zP;VL8!^K6zNcZT`4FAV-Yr60OQh$pF5v64Oe<1J6Gb`*;)%Gb#lD$kI@AZ<9^~&#Fn(d3P+KhDwI;}G{9}AbP(Ed zfnUT}Ui}G)Ers$;yO&IZim zIk{5>)lUq`$?8$88=T078ono2SP1zLvaBC0WLXqOge`?&FNlYAe$-v!)Q~4lqPkvV zhhWY^tzkhQxEK9oJ;`DtFF)BbOH|@x`0W3ml|bd^_Hz9bHLR?+D6?6s7t@7EKF`o? zs(jbPW};pwG%V0hyCJ+1zzyw4v3icq^uf7MI=;z#U3v(6XmP-Xkwlq^HxwGG5;0^S z7o6%1J&4lZiA|JZkMMW9Vto>Slj)VXMf|$-B$C{Lw0oB{=&-$IKX2q6i9Jh;r6keY zD>2r}+$un;#Mor8%|uq3s&?v!5o%x38kA0Fz0h7KKh|f>ORvSQhL+hBn~0y?uT+3Y z-$7N;kA&DX9|&E8+SkVA4kSJ{5c-9LULsBaQ`}xZ!O_h|Dlb@k|fM7Mr;vlr@m7HNxPDBP2;Q zlsko*o*rozCLhcv=C9H2oMVj|52uc$(xM^0Q2Z@@mGDj??##t0%*u`|ThH z)?Vx@f`c3+a3Uln^FaaoDwb@{ta9h^SdMGtdK#6P^(v3eA+NRBGt_K0hh;dYAA+CZ z+%Fu~NFiNRR*JQ|w4f~lVcJDTUISj2uy8eUK3P)My~dsRtIk-h0>z(_4^PRvu0nuR zsOagnYdht#ihrivFFL{}P3rINE@_NC!N#Y$XX1Dau&@)M)KwM=FdsHEb+?k)`eda4n0nO5n?d@!}wS(>DSK&gKW{ss4nG&TBHE z3cYUPW&BX}ON_6mp=CLa`2oC_j-kwNc)LNiXHGqYo`><%HaSM=#@Odr9YzW1rHtn| z!b1uaYScLl-{4aUMuwk%z7-h<^DJWbu0o>o7ye%C8|8io*oui0vx<;3`hOKO_oDO1 z7nK)``ZN!1&Z*{!+f5`H8b*kc0IQ*|)D*#C{xQDwMlt+@2=C5)TZ_McipoF3uy{xu!Dp^C zXHuK0E!<4<4X_GN+jTRV9euz-P!U74uc*WiCvI8wraP|upmilO|8f5E7N%G6B2KG! zT_-*4%2x?5UZ|l|IMYphw^vXs&)g;DRT1`2n&9+#zWKe1+{)kxJ6MAiH+-21u4H&v zqWqaxSZu{!ai;`BwHLg-7fSBm|a*x2Pl zU{)!Xt5)^2wK%J_RPf_u=6|Qp^@#Z^8ONThWR=JoK%6Z@og7v^rJE7w+)|E6zJHC@ zl9SpDP&dN&uhH+s-;L_0*h_>rbeFSV?m%)scuGpq}9M$?%@3O};5&kpOiud_w+~@EtIkMAa1|)3wu@W=np%ExA-kQ zdAgP*XWt!$`*i~0G&!fUnnB^!;o&~tN@ zz9|i0PvjrxPhRgZZO!BYmLyVgk)A$yzD>=7dw>`I?&8Gr@513elvY+S*XuWbbanm#sba)YUA*scf;>$EwKC$MIU*ZiqL=mS7k)lo#V6EXVY<smf{6ns~!X`IqkB5>ltIS~mMPCdj|EI$y%o4xI(mfKStFoBzHM7gS_g>9?% zw{|Kj)O1EdJ`-XI)Gn24_QD0=2Ipe?OYZg8&~vZpiX3n|tk-H)II1xLdm0fQgM&63 z;g*MU(ZHQ=-lR#BoK>pSY*NyI=%qnn2fnK%{a66ICvW=Uo@*E~`komoAIErYrtuw+ z*PSjU{#X@;qs=7nR9|vbnjBSbS2Ei)%h~VoK;=nfIX)uIUv)bc;_I+k{o!Eot%fiVYp>ZsXdrjWqeZa#vvn39ORl(R+aV|zsU@;rWmbjyehJA$A35Jk^7zXu z3c&^gp|=EjAE4Um~gMnP_ zqzP7OhHm_!DC4(!X8T!v3|;W`YQ}H%3`w%oD^>vLbK^M1XYYT$1akYVU%!5OqZZ$9 zSik^rl+*g_UNrL8lD zYwY=IyK;o`U{FJFaHu=KXsFDnvRXTw=BzTqHiL(4wzq&n4UBC|ZoQ(Y9cD?m?njkZ z(y?KK%3TL2O4v`UZtPXt5kt4?uYs{q+IndGc829M%MC@Mo`dheae;wbnS~(b;l%kH z*T)Tv!ZENiiglh18`Ao{tAgz+-rQG|4_~rMhHtE*>^D3tk^33ORautqbDPc_fv>aG zXHG?VRe|A{o{@^eRaPceNSV&|fKBLAr?L)uL|)92bu_d845#Zkm+`E~B z(0o1JUh3LJ2L4vZE^)0UNa@&CBVJSW>pLpl{I2CoH_&&jsCKCI+w5|o@prxtg%OFW zn{xQWH^ZgIUnA(xgrx+=C2((+1xq9e(SA)V3=8?)c`#ANhn?xyub*g@N%vhGxvEY% zg#`u%ZlM2LRP%dfoVQ_vwkDbi-LPO9nZJ1PALkK=gWNQ~07Izeu1Hwyao*Xe8Ei^) zqDSrB>@BGczCQ;_Bfpd&==*3wZugRp@cl_dugpvohNnaHMZ2{xU&Yv+#EH@$C5NPq zB7_TP_Z2sSXNffL$w@o4pGkuF3pmxQyl=|}^zr#JHk%H6@!>qr={317lSd0MPsBZ< zE*#Hga-MDzetWKULzP$I^l=8OX1V${$6Enw>=gF6ix)9^1p=_ImVye~@S&0nhEiYE zW~*Fw;IOhR1it(6P-CUujKg3A%)9>hWJZtm_@K;ggs%Im0px5qHnQ3u=- z81DCdXwz|Xq4rI&CRYPVhm(#bDQzSHA~X}9hwCQi$goC<3C&TSSNC&Ez!{j1Ebif3 zB9=cSsi%rXikL5sqs+lr#0tI9Hs5}akBWL90VnUob(fzf-I`FTCO-^7-~B;?c6S~% z<*&y{jrg4UM32)N+6=4S_ToU#EIK1+uzig&!G57Qy4BCFenJak@9Cj)&qg1}O4&OB zV#Pwq09Q`j>GgUMJzkEWqOTsyUrvOIKaI2-`MMmyJ~jcOnPi?F1ZzsYZLwOhkBv^B zAheBalbFCXu@ccFeq|9sMPq!uA&Nwty7BPg!9C-~2@O;61*aVmYmXgzw5peN`o$)! z&+Oz%z@vP5`3wE!j=)ej2R?8~S>g3;9Y;v?ZXciH;f{-ZlblEnXHHKe%(06zoQlDIdoQ-?W~}l=tK0ofHuGi5%9&_-F2rFuPtw3SZ*Gi#z?fjZ~%`$2OhFdEA3XVD<(;F~Fi(BJ3`C~})1D1= zK03#If?-B;v3pFWliGgzbmw~Y>U9Xg!TcPpA=@AnpEEo>u@Rd?YZc364qcmJ_OQJS zzK@L3sD$w#Ygj*HytSO#OSV#0=}0ed>S>0{14!cYA3iy010d{wp8HpiFQe__w+o_v{Vp*Ox z{tyC|`5At$RlT*Mc)eU$-=NR|Qrpj3udC zc?RI?Q?sFASTYtJh7Z$<%q^r?g)z&fu>n8ET2H;gCj4+9HwL_k=X?p)qf8%^H9~j3 z0#tO-M<$$>T~3-Zecu%~;rdTRcNpq2{a=PIV99u~aevcbX$2M=;8eB2Q zn~UyJ#nW%|p!@R0t$9M=yS2eelB)b}aSrJ%S%@p2Bc(K7cIs}-#2==#D+|95O++7!bttghpJl|~` zY&INo6w48)xo<1j&_W2XS$Y_*e`4m0=8_nn)G;4eg`(5+33)X1AWv1S82ByNKIRRA zQwWW8I+(h@f-i~dX#|56i}luXr-FAF5ZbJS)YN^8ZYj!YOL3M|l!#sw%su2Dq~o$K zN1vWI=wdMc$S8k!hL~}wGS$bPReu}!EzarYIg7FrW6D5>JI|VRa`vn$Og?q&^OG%s zTqo|fe5>B81|}=VMy66~NxQ42+if*V`DCo=>+4JJZ_-?B4K`djFm4FA1QnGJnF|*3 z16xbtawbkQl*v@Jh3U6ad8h@-219g+@OQD9)>tew4HLe5srzqX>!q=wEbz71<&T!x ztG-Z+tS? zSIJciqfI@rpofk6S7$n(|1E64Xq-@Ebb<9-HbyHrwix;-sk2LsZWP0(?~mn@ zuX+0b26xg)u?+NUxMlNRw>$Y;XAh~`XXgL11YAAcJ$+_J(^}qx`R!f%mG6u%(}w(g zJ@-<<<*ngX!_dNmBk=!^tMS857H|y(aL}Ub*Jzi@H2#1H-6<4ysv|7nDBO`kffj?$ zV2p356`bo{3Snqh)%UVSLK;F;wPT_^lViF+KB1f;fSq!FfKAi>4q; z4ZreVr;rDZwp4LJ{?e+AcAd0qmc#?oJ*3M@?TQh67a{X&%?mGob2Aw;;1 zcLP1*Ek>UCtd%D3ybDo&cK?AANZ0;0y#N;DHL3Z~8eDnat`t=?G&{U#&ywa8Bn7*Eh@`dSRslG`I*oM)BYlQ`x9*){;F?DcIhFe>h zo&*Q~v%Hzgm+!GO;yBa2p(!lct=rj$w1T}!VD2?(?2qF=+FvWMpK=^_}GfC zyf_Wjy9uAkDw?u1$>;cMnF{6AOT>q&+JIj~1>yS=%daY42$n#ctqk&cV;pd&vj9VM$*;z)#8V(P8O8!)j<`yg=Vo{nwwPeebR6Y_kEN zK|elG3sn8H)8qs7b2w!l*uM2EaD&*lA{K`)Yn)a1c~pIe^Nw>SFsFy$#z3WSGxquH z(IvS?=O{i|YVZ~q+EaIf{hG?W!4dlTbTFvw#e{th8Mbp*A{I*;MgFS4Z1!PF?mpGy@!$B$M>WjpSh2nWE))|-78ISN1oz$Ki z^!4^Bn$#|k!0j6CQ$%P#>Nsz2 zFV;%DM0_`CsRou}3DMs+BkJPw4Dj* zW3Vhl`#0ou+36qNbcQCs?7+foCb72Tg%b{KL zuiP!0E9d{axNrhVU7Hj)dZ{Qj28E6=7}#W^M(2-=c`R0D5ezU^vn<_LECdD^)pZ~H zoDa7`b@gO7jK<_;7PSQ}8lw0OXX(2=>kJ zV!VRp&j&*zn>3;k_T|_sQu+VbdlUGaj_-ebEJ+Zt)V{~QS5+xW=|)vcwbm}G=%Ph! zZLJk+m0F7`T2v{q6|JI(UF{KqSVAIXC5h~L?#%N)bJv--GY~!sP!$=qTAtU`auSq7@bY- zId-MT>8B>ZT*J0)Z+3m5P1lkR_6)(fH`a}RrhF+!W>Eu(vkb$Mnb)!x$-yS|RYGqO-T;lhmWt|{IJ!~B6Nr5K^sU~2e;giYOLX10Xyl;vNcTNu-!P$xod03a99jJ?|g&v zJQlDhbI{2r=$mK}Gt=1$x}liI*1$I6V<7AzWXbd!-WWE2K3{C6`uOC6ck`n^csn>N zt74P+?^Y~E4O|%GB@gV8)1ptuu6eQ=`>XNgY1ijGSDsEv{@#?|Mp$sPp`I)gjrQXB zft%BA$R;Dd#kAtKyQRTbx*t1wYnok@fkJ_pi5n?VoHkQE6z(pmpyjx`|id_SW%3{7e4H=n{bte z>o`GNq~!bDSNd}ey&dHggpiJZ1lvBu+g_E?Ag?zh4@_wYc1pwcfO%C;DX2_M9!^mR zfI$kcG&L$L&(!>1PL0iE`zfbTR^_K2hNy|JZinv+z!T&5pJO+Ig~8C<}3iN z!^k*>C5O~iGfKs6rY8b zI1G*YT?1aWoUqrGB%UN4K73d*9ndKKi{<2PR@tVD-HCo=c}jVkXNj6H>bvnOD{<)0 zNU1txhQt5EsNxk~n+HdY2`eFJA(S5-1`BSW@?0+#$wy(ZnSimXt+#;nhELVC*hQ1U zE|M8UGPI@+8`d3_+y_`w!OUd4Kzv&yeL#ToPs1d4fZS|2q-C8PD!2=l`IVMqZ6FU5 z=q`V7nz&-A0|81GfQ3!a4~>BHqN>)yb4mjzXFx1<7KNfY) z(xTUSkdXRC8&@1RHardI?rqCrurx*wFt(O^PWX`)m~)W??{)v|_2-6!%$+;8dUZuM z*hv1a^!V@ED3gBO^TS`l#(5--dBfAIDIS%}qR{D7VSzAqng=Fy>m5z7i*q=h%F`#@ zFub$DC0g)_yLH z&6rMR#gs1aGeD8@ieEqYQJ%>BGr?>!%(9k*?Uje^pT`ax_|e$jMo)Zjff7)Iba(19 z9hh52(%-zBK!wj3w=ToRgXgtD3)jC zWl;D}HMSMDofs1+wJQrtcT^P)+=Qy-j|DE^TUDeE5t^=g^x&YWKk?mi3bPt;^p65U zH3+$4U^Vu@FxureD?6HCH->VLucqxm2uwQ!FuEYG+kI%eZCJVm9{m2cVTo`YUkJSb z?Tz(~@}mO%@8jHRHaLi`Y&?jQ-q$6sXX2AiU!nL_98oF`|Dr=rUBUOBv(4aude}!t zqgbIQf6c_%-!c%Y3*UdkZN04VKDb=vnnVaSIzU0%rVam4AIoJe3w5LqEcxY$60Gzg z{jV;8H@L;N_tXn_`U;kIu$ejX(A^5;o*U1~WQlbTxhvhp7%TLY?C9O7jkS2YG?`t2nn)lB1fb4ci$~&)oLyo z>4*fXXC7Fg32zJ9{~)%H`~*u{0^O559Tg?fF3F?BV4=k+dsU`j4@({92qKdWJmJOn z<%3#f_CY&&nB1&3UGPy;jqMShFH4i!eQYtp6`FQC1d+u;k$7IQ82;+NQr!pY1dytK zL@{oG3*&YIyyf-BjFDL+6s7Vfpjfn}C|tJywn>m#ETm8KMctln}}b+nOh&UQRjdyLP@NACt z70oETlQ)Fj(p8w>DR1g~rgkW?M;>*_OE~of%h6fPA4SE)Q71!)kHMN?0ejPqqwx$v zYFO^|tN+o+K84|Et0u2PU;6|HL2a3VFP#mAm8#HWUnyXy(Ry9}E$q(c!ff4GBCr3b z!X2x8Y;BupmZiq>vO{?s6*j_?;&guOm<(bS{zH&BY|x1o4)cIfMV^{Eb=uf~0B3l` z%HShU#lb3MSoN&+5$DMKLO^PM-Wl~2-`bs|-TSCJgeB*x%5=6}Tj{p;tKr@MokReK zT2Ud?;<%O=WU&hXy9KwT8Rl!6)59#fnl)^7S4&_jn@)fwT4qx?NWunDnE$3y6hHDQ^yKi?Nuy&p4Ry}z~)8^W$P>N2wtjIw~Njn?6scH9~ zFuB6Z09xv2W3b1P_L~7h32EAQPN|>*Ye0~EdPR>v&(I%=h2Zz>hG{Lnx&3|i# z(eEv~Tl~hV@aF7ZhS^dqHqpl7TL$!YcAEG`J7H}so$P9*jPvX@>b)LXgwP-^d=f8j zR~DRBj>Cfu-}YZRCxdUj=Igr&>))f=01z<$oNSKzN3wECr{n##3pSfc=Vo?@*r_l5 zsi;7iT;+~WXaL5=MLUZhfWKGHBWzNCTU{~cvQyhwzRc^mJobNCF4?TaG%I)o_YgeU ztS{cEOr@>#ze{u-LVtPh`62Fk%0c(dDpiYf_46WhNUw?`#mO}Wb1go4&4!w#ZeAPc@y!&ZI@{zr#kSbZAx5Xc zbv>Q)7?DLbfxVYtg+z$Ovsc*W1MFfSMGgErb>jV&p^Zz3FKEYg*z9wk)qK*e;nP1I z)8pjJrZ)ZgXngv=&=1+zYEv`QCiUIYEQCxf^-#xYm)_?Pgh~viO|8MN2;zrq9wkuX zJ)_T1`IMJr@p>gUVq^GWKgnYQuKHqoRlJZLDcD%nX`RddV60u8pDZ zEa2ELP*JqxMtzE{(Q@EC$Hgy~>jhXH$4I9peqsp5V|=)jfLZK#oHNj(#p`%{R}|U& zc>J?X3qw}9m4}hw7El)%0DX|*?;@?{p%l%$5H03 z%4WSqR``<$mZ*`>SgB4wa^r4Ggo5zugyc#hxEzlHQ4sF18H@E*iG*LMcF-=LEkqps z-HV^ovF&K{ZKgv@WyOinE$=!AZN6KcN}RBsn9Zaj$Q9qcWP5mF^Nj+I4Ny&U?3wJE zUg0*JgWs@p*OAvP(zx!x7T+WzGti=qYov|+C?1(nJZ_tzQ)H)So6y6pp1xVfeCLyE ze076RrQ}e+3VnPLA92m$p|iOEW9@#xNn3<|HuY8~ole-tHx?c0F|~&g!qxS3@^Ad7 z$Tnqr4~-==RXKZIyDzj`Y)#+O>ebF~l5zYUWLu$^a*XL)M`BaOBFGNsW`3k}Y3BE6 zLx}yh{b(C}?0BiOZ8w)(FKIB<_j&Z0+6xv|Ig#ws=>h|i$-Pe>Yeh(~g|#EZ$Xgde z&eujoek=!hYs_Z29U$P+dqlvvn?v+H3og&$tYzV>nc-?M334VN4 z5=nEc5Q2&44zO?7qgRNQNwhuBI93QfjY;Z}BX?-xwK%gDvGF%xnXMku+uJgmC^K%t zla(t!b!4wCc}V)=@BdpB#m!|{|a@!IbP z9)VqW$mG9spIOY#f1R&4aNxj&@E@O$eC5iGUYM4JbCPKj-Nx$HXwh;`FurhfXYby< zU+4qS_ZGI~Zk#7!&B`au*;2rw?e=`FDfP;l^#-UH*pJym6)Xq(wKKSUmXkQlT8ytb zUK}}4rD4CW;he-_ra?_1Dz}t^MAqsht_2Nw)Ro)|+^f{4RTpeD9Jh64_ba zKpmnT{m|F#@1f*BS_1tR(ignuFwi= ztHoB9WjPH)vB*Qw1gr_|JzKGuhHt6{vjCfKD+)wS4Yv?PHoHK>?w{5~^TJ-y_C44S zXZNi}DFiMHA#xR&q5Iynw_OUVB z_w?@lC<6dVAF*R=8uLP(t4+_@#i@&Bcf?lsQ1aXzfM;8eh2x;}FVDcDh92?Q8>(t8 zmETHmYHP=Yr@Gt`Ke4UzxUEs<20m&tl=y?`GlU7);R6Lt-2wySG3}i=VIKa)CzKY>>5b{+$+;Lz;{^vCF&@WTT(l*XvXw|;tW-txs98^bueB?msT zCKRS6j7JmW-^ABw{|`SL^dW??;Ne5g&|#{^0v(cmtd0&4eDPk5PH zVFf5>CMT~xmYkBJ-yH`m1fekFA%Q1F|DTWr4mJr^wld-D$u}Gf1+-eYG8@9#h09=1 zf9s{sDCi`lg&m3IV7OP67<}`q!dm2D5AB-B0&JNOBa?$H-$eC<92`9=Kh6~F1`)hl z)vznqC5{<_Rz&=t64#CK4#_8vtRNh_fCtNRQLsrcK=%^$n^7?Sg#PvirLVa%Fffy` zn|WV3rVS&(if^u4U;_%#Pnz99hxW!Y)H-bW|(`fM4Sn*7UYG*(!~|AM8?S^&n2#NVP| z52%JQj+oTTM{!f=d3^ZiUt9tuUtMz7d$TL&wMctl%P!lVMGnoYQivV?2pD`*oB7!G zG?F~`DOOI+-zNzl?#Lo1K6Up70&mB5&hl)MRpV$nSyt<|ye1EfzEi4D73$j^I+8)m_<`^ZFIJ}`*}$?K-7F`eBPU>)X~Z*^p40vE4#IZmtM@!G_x^uj~UweQ`4ea|Dq+CW0;Sn zIX=6=YQ@D>wWQaL1eCj}rT4JXG6-B&`CR+a$d?wDx;SjVblP^{o*;9vXBG_o)>oyI>Ikh@cv`As--dR<{uVr#X| zH?uTtb_K@@PQ%F5v_H0O%MOJy%l)=63n4U#MnVJDzUL80LAf7)gd)|n%d)So5o++& zb5A`bee;N(9#DRjqEP|aEqp3M|AA#W??Fg8nVibT6T;URj$-lCX3IYc^aqkEo1USVS3$vm)v zm(_N@M2-1eA^TLb(`XJM%De}XxlB8dPv<|FD;0DiZsxn5`@#w5V>GJ-KaatQL5<-Zx6_5S&(=EY-ITJIv_CC<mtmpC$9u3=^--78 zvswZjIQ>jZsqMlBWWq6F9mdKJh+RN`TMZv*?=k~HPr5dpJ48&T^*5GP*g9`y4Zfph z=BB{3czW9#ol7ByA86XzrQ5X};TF}k#%d=@paLzjA|*}tvD&j#Cs=lVxd7^UzBNtQG>Di;W`7g-X)rD(B@Ey6UJ)CiXik`+W0W|8HYG>N{!XDZlBD8 zmWY-$r>!thRuLLQ&^*e$wgb%h@N~GQ-PribE1&UV%Dn+!e~KwEv3aW1CaVa)e(@LX;JGGz!Zo9eKxgw3%Xi@H-7z|LuG$TCg(m@EH znUMaAz1LGQ{tkf}jagd~ zMAHGA%*x(!eJS$O0Lc#y!)|9ce&{bnoOu7)RQXrFBZ}7YYxLH~xi7d2sMrv zJmzlPbcNJI4S?}}p}GMtaUec}!=}O47=q8h9psYH3wSq6eA!RMxmI;~Yzl8z>Yn{s z>Ko|-HWMcq&HPd`b2H0xc4ado^l{XVYvCdMnuE}8*bT5?pAE;LtTVs1UM8kW7*2_! z-#QVTVZd;@;B zDMkg#L;@%tPh!PV>%2$Px>}rg9iV9^MVZOhTnqzj0v0%S><2}Qj$NDr5$+MNH6Wwq zLc?$Y>#j=y+xG3Vz5*8b>$jZ;p2FJS=!A432mb}OPz^KqOr9iGuRZ8fMjH)(xYioO zOVY$J-XiqV%VFHLNRf~Ii$D-v0#;U)%e=6n=dr8-ZMa&1&n#QEtZ^}!Uc}cmTL7IxP%;|3FtDv|Rrm!?0BE zo=+cnM7*PQFXn7&@KVV;dG((#(M&_m53ZjN27_MS0U-;kPnvosOpT#m)mVWXH8vc3 z6r)e{=-E@Mk|}o_f26`D<8*Ekfz=Dg;``r5YsTWeHX{(P<7{_(&(QHZfoBWaHVX?m z^1_sJj^E+P61Ee8*a|H;RT%f9@|C7C`QMWVzPtQ5^eN-Ii%IjTyepB`0ST$(O986} z>xOXTmPuWF*N9l{RFbfuJ$-e~&L(4cyLy0G0Eyq&0XPXSkOS+%`9E7IjpuN=UpaLQ0yj2KjbCL zeB5ZEn>cGMI*zgXnGX1!(7j@xl3|ed9nfw8Y^clUD@M5hW{gCz3M_~u9Fj?TwD<9a+~)3?oM%Afo{3Wm++sh-9`_Tq-TV8&qs8i z+8u&2uFVZ6V`S@JCTcrjhB^^Tiu8@l)wF-O)!En1_FOTY=wmrw;H$RGBua$gPxXjq z;LK(MI0J_m35;^tb<{%4wuu`Xe!qd~C`w#3TThEIUx9tht?!*E$6AACey0fT;>am= z?Tpzmhjn=;`5scs>}`f_!Edl;Pj?%lDcHo?V%KL`qlke893)wF40Zc&soQb%#w-zn zb6nGW72^pcuF_$W(c9LyiJjyq>Ujyec(%kL+JxT8z$C-v(9ozCjkh*-l>c#5V6b<2 zdugsK1w}y}phZbqlEu%#OXQuFZGOF9Pc$ud4WOuB3Zn|Cp>&Xt4c`JZw#jhlIwWGD z(NqJ*hb9>nf1>yx%?7jDhMz>-nRN&=Sb*sXEbxsc!}>sLtM?HY<`n9j>0ozpP8+(I z5hw62QRVykH~jG3C+xxBgadt6c&G)Gi)X?OJf6k!j|X{Xjs}aiI-}V*!N`oEQ3s%% z6&~*#*aK!WAUkGmbgr-gPPx}#`BY||pq_%8m6$_l>?p`n0=!j@vO+hP;wy>x#D4>nvE7YiYB6oiZm zLb))iE7f}we@d>p+ggTcjbx(giMLP2is8Hh{cpIMm}W}Keva`bzKS!E(!(x$@dkKn ziJ{-Q(CaXX)LR0fb|Dw=4_`@tBhk$R$_E8`L)y#o21oVk!Hv;VT#X=NmJLOD%(Mw= zkKBjH22u4Ost;5My*eSpl28Zj9XX}i2L%}dFf%EGXa9nO_AJlP012sdK!Ajl*ceTT z%?Jdz{3~X8WdLFe5@NAfFjHax<%zYooCsI&se%N}|7~`ycd{~pYjC>RJa??J~-JcqS!`TE;-U2reXv>AbT0U9HM$Y%4xU~>(X-AnKh!*tsTPmF@5L=|3S zbMS$iP&3$20XW_YnrPDS37k{+s1!jhptUG81Z~C1a3+|-3<0*&R^*8y5g7l-i)_yK z7xjESYO`f>SzGfV!InU?sOZO8o~1hz@)66kG+@hEo~0}0kk473rNQncmS^eCBwP7p zb|$J@9@=kz5&Mp4kFoKybdXn#btYMoktf6Yb&{=W4WYOHVmkB6-+XeMO*Tj0A#ZRz z%iI&U7i7R6Zb=907>x&&tiR^UvQMW}lVz_{^5W+k2b09P?s2K6(QUxu)y4hdkJC{m zE{xOL<@o|ox!WrQ%SNG1E!Ey+v_%@%G23mvz#js(^kW-CzY5qjX8J(H!kq`b^j)Eo z@TcRl#};95jls@LbM$n|!5YU@7O>;iL*jS9^+x~BN@oeuPB24b))|tj8^h?>Di_9> zBV2DuCN(P4!6z8QO_tPFzAKLb^isqM&YQ_RopWLS{FJrw8oce&oUOvpnas!ESXMrv zzcTd&zRgl+eyQthAjeM-{>@;=C?IrFG;xQDpNy zU`SROmgj*fjUHsc@3YU=cuC4<^kvV7GVgAugDViyKjiODbGwU$D3d{S%-#vL*4WV0MG z?Ki;gEAE)WO}>C*abM#M7zWPLzT1uAIkHv+PIkTNEsfVP?q|{B^)F&w!*PT>|FtH; zaO;OcGzA)zFIVIF?bl&d--kk1q55ikA&j1#9ryk-f)#?bku-eOYG8U@7ufU%CQKg#o0(crX9!+*8N* zd@MBQtt3xQS~2hbXBNj@$A`fk5fv?aFTH)8PLV}rOWyRY_3xR>B+Tc08BFYQXsj1H zMI<9F{qEKSow4L(8JC^U;p-Jq$sjGJnhT;wNyja}<~{A|$xzjf+T~NHW=qmY!IbTO ziaQW6F9~^tD!D?jMY-n_6_4x$(ruk$vZPS_$wL0A_gwC%;A6Tq_>LSI<{xpdI% zBdM#l#=NgS`Ah$-cKnw+1N{A%jCWgpFayH4mP~_c47ok3QPpBk6?W8ZYAu;y(<1Rv z9$4eVM6rf)%x92I`5lg@%KS+d$X)@uR)c7A;7xztz~&n4BxJAH&9=}&gA>SAaXQ}u zQHhI0`gN+VQ1r6;OK8;Ab5NEQBaIhH2|EghIMkBTa_qa6r3;qnkSMjQe(mnrWI_%~ zYaPEin>HOARLqIxzfAS`TAhGrsK^@SRoa1Z(e^3W#4i(@74d4&9?B*3zKz05_^ zX0T=I#BHv99FH*<5otn?*G{0a&E1C=gHJJO&T9s$vtI{MXs-iVhMa>`k&qnY=^da&AWRFJcv9 zy)zgu90`k}zvKiA(;*LR1||a-RgS!n2bM^@bvb2*Nx-LE?|2igkb(~}nj8sVs1D); z3Q;2VxCQf8r(2hU;L@MMBIE$C_<*g$^kPu}T+&CMZuRT=EA3ENFGiUrTBF;wD= z`YA#uvYgRX#-UE0z^eB@LMQAGkVPwm-oXdmLR0b!KJV^>o7f5EkPeMcHQa+rhO05S zua$Ncud1=U;zM8BThY3+3F$oUmKqYkVw)+zW026Z3asYxWf6HauoYGhh`7;hLL{3? z>$$s4$Iv1tOC~Gp{zQzke1^G-VMHW8{eGco)2?8q!)$1chSk#gNY-{2R&Wu{rriMe zzQu(Nwf72eVX%ky^*V-g7xq5BZI1O6J0Pq$dNI{L4j6W#<@$MkzYzQ6ylBE7`BEHX zt35t28(%lNrAF)s_CT^0n~cU$4NR$Vfql#j(xTAo6gk$@OD*JBu#O#-`V5{;?YzPCuMnzub&I1iY<9G+9Bf>8 z!(hW8*sCX($IOUk8?FV+NZ<(XQI}y)UB73v*Q+O&v!ht6Xz%P1GM``(J)#QgDN76L zsYf_lFCEUM%@`$Tvm7DKyQyIo0jF;?$nu*n&cfNHh}c~ zOIQV>9Oyy?4%`#l>rNb-NOy-}sHZEzS&BCkn=&GsjIIY{@7#H|fFWWihGuwVi%S0d z4Q3`#m8kQKzC{)Z4{Zh$nA3BbSQ6&i=q9;vU{w@;l9Ab@-)!hLB|oUQd_a{!v-hWc zTFTC@O$5AimVUlTaMTO7%p&H))^!Q%K3^Xt=~}(>_1Bflf+Bo`^S-6;x*j9y0zHcV z5?1jBZs&@}6u@EYDhRzM$%Cc5UcDJoz*%uaJj)27r6fcCv?ElJ;JJ<>M^y$B2d_VhNg`i5bgh)}`@%J0IA>V!!>>bT zUxtNGUw=?p|1CN6A@eUSfig8-n+IVX>A|=y{9MtR&waP`rv4jUJ&w;YSPguI?yZ=# zbZMhTjmi`WUCdzB?q+NnGp4k;RHJIl6b3_2upQ-=!gwsZ1ZNJW53n?p$vn@E5*bQ` z8q?4Yo|ejueR;cvFi=VFGaS1o23O~?vF1Gpm)%3zl`5d-(+K`l{n?u}UDfxi?@>eMMif0FPX z^ZC{le6|2cgMkG(RzTIeu0saaOSswUM(QBg#kCfmT38qP=+td+me|x*Y+Ri0hm52I z8gyEWn@i*%nt#UQ@%$>qmSa!m9Z%ZZ60pg6?D=Ylhi<+lhUMoy_?sef>Y z@W&M*Jk*`suH~hkHH-UBlE$Yys_pSyZ|ibt2-d3d2dCt~!t@;qvw6yLLH;WNQ%r#^ z2FP<^h^){iV~Sx<>aXtd-l1>0tpDlMiLYDQUB{j~AAdY}uWnqEO>SVU2j8LngVHr? z{&aa5S6M-k$bKH(+<&3xcvaTXL;C+Nfu~nP$b#jX?kDLzID*i4o8`DV$Ns%%?Yunk zX6YG; ziHYzf%{{$>;o(~Kf$t2)cjZwc)C>;dRdw-8L8KFThc*`on6$$UJL8?iMS zKK)o-)ONxW1G3V-WO;{vd@D))$YB|(#l{SLss4|0#I2?;A+3CBOV3%gD%ZRU09g2sio*W%7t%k}ma{aV5MF3# z&`s#TQ+rO|WZDBJlk2kfiX8-X5F%`!hoy46Jg^DL1BApXy^48e75|^j+EZ)Arg*eW zpk#Cvs>TLdlB&%B>Cd7nPx#T~4#Bx*(UuIOkA`=Fvn(LmmHrXF`ns*F5rt62HQhg z@qtBcRQtYj01;r;r)U(beH|~!XW5m3bX}{hbAZJpV#f^Sqn+k^cjkTc(MQ*T!uUPr zr_9&;tS&SE)MFs<=GPmZW*ROhgjM7rKnwc#^qthtr=U+kD;W>3|GpAvJN)OUJ3qfK ziJ;~pP5&_RxEp)yPeQT>b!m_;!G0y#K^5RQDb2o%ZTs43as7cAi6aBLPpM>!b>h?P zDfD{l+Q63CcLnTgqGL4&yb?)f@n+~f&ki~aTQn$_xaSXdlf{J_2HkN12?U}7sDehE=U!0iP3|h@KT-bQy+>7dbzwrL77$!nY+pi$ zJ*1(~CG~craE3jtuB71uLcUie#drRVS*oN+ojoYR*2|Y4j9U%&#Q;~1YR19)3WiZ+ zpFb|gIBfF)imegtN@U`o!pNsosYKVOm?gd^8OGFg0w(;hBAguL&C!QeN+pvkLch2P zCWrKPPgm$xI`xen^T&8gE1dvL^jRa^OdP!Nk12lM67Y)uUd)5ZH?QUKgPRGEIm61&=68l;zlHhYiY?dQFh7*-qa1w`suWyyZ zc!8k@Xv6h?Jq!;?^e(OB@E2I^ zQIiJ)j^ZKuEmR*yn8d;<9%$ZOd*L7tSCpnBxIx*;2hP1e3_wlhBn+|OmruK=> z{u{8vdH4*xqWt~1AM@|XG@kGiRPHgdUcjU9mZL$-UgXLdbkWU_*iZxuORmo6<(=`LNM;*3+he@kr5BY%11-REhX`!=76S&Jb& zI_CAo>oH!;LvS9M9by^?*zGJ>1xZ8B3K0U$#^dhbCHuzJ5sdz3tlwwKS|7n@!r64O zu_Sc72hW4iICr6&09r0z7t<<+knM$C7Pe zl|t@c5U`7=?8f`2|G4po*j5JYVCCbm&Z z2q^q%Hu3OHt%W)^vU`;vO7Qh((S15duEJO8B8KK&GC=xw4;=$wgKxiO39u<1Ea2TM z?E(kRA)ZfF?-16}L)s~U_jmX^3{Mq4vXU1#oZm7{F?@>9v)Xrx#|1S{(^S7t;orPh z0-Xq0DqypgTpg8c!pclKV56pugc%Ag&u7OQ7}e1R@V?PSmgao z`SR~Z!Xj+}fvs&|&pUnNyI9xD^$uW%Cim2|?}P^ooZP_&UMY;qYq#{y1Ml?<{qVQn zw646^;Xd-JPn;`@(_1>4JT*$W$1_5CVeRytJ9u9YIrt*$vSQgN6i!J(PO8f2SwiAf zSlc`>@Ts%|>^GH9z$W~wv0j9{r}Fs)xh~c>w(1w;N1GOj#d%-}e--mi7o)NH1fm)z zLMY*QK3h*D5>&M~DBfx=YX9ST-&F*f8TO|c ztT%`LnsohIHMZotl3?X?N-GA;6mJL@|7eENiT=^NzW4ao5T{H5iExi(pR zgl22LkwXRma#FD2?Lsgw2QJ_KA%?6qabacfqb7#kSejwyAAZ4wq26hFnJkl*=!EnO zLx(KB!2br8kKSqI{05l6|6dL@fAx~E#g9vqcwX;S#m#)$jTXI&uSY~gWa5k6TwvKQ z1L*39zE^OZyDw^LS2>T*2DmIuLHiu_dQ-SzB7Iecff&F3pTuBUoGQL*u#!&1>V3I0 zd1-QTB=o1Z`Ecp1w8I$M)(dJ^9fEm=F05fX{`K`Ds9?AWUShEnJkr0- z*RbWEwxL$7UbDEiYiH9SR_NeRd%s6v*gEE$M=P_=9@1P1)V|8GEK_Jv6w7jSfAyBC zek+Lie&Q^2rXG%UJxIl#GS*ZMlq>~bWOhwwxR-lZvl?v@Y>$;X_fqf@5oB)v{%s&N zU>C%va2)Mo(+ZIO*~?+o5;A54ef;H@Gv+2^{Ic-aHn7Gex=NSG8;&O9Wt>Nr*@8b~ zS(XmCNm{c!OP9v@FJj8cYgBaCOg4&#v|a))y_f1GyJUq?u?ehF#`tgvH(2hp`EJ_i z!rpXVlD`N$wv;pKDjaJf9GrTui}j@=-@Y_ixJjzOw3?m%CT2j8vF$iNv3qAnA4$p00U92gpZ|){%qt zEf2!Aa*FCZQG}Y3-I9n52SFrA@Z_*7^g zHzljgr9_j+P2ukKTSNAD0n6f3?&oy3l4V_eH)-0PJ9m=EoxYZcxz=42O32xT@}HN{ z`zMkmLcGF~45t)oYgmc3*6vnyG&!olb!{FeV3`yP|m^ z*7K=K(gQ3n6%=w|y>#HFYETRvguf~)oQf@f)(7Y%mCpRlaaYoDYzO8Yj!_V%n$v2YxmC?By@ujMV#FMOL!!R{FEmX>vik z{#=6wwiBJ`pk1H3b7u+^SNtb@VM5z0N&o4>R-I^H(yV(N<5Jsk>{olsB4fPEkv}-p zd%aP+5yK&ja5V|*BxFXVz%K{4SxnSeKFhr?Y8P)Ez8HGz7ARzX&V!Y^S8jqTmuk|a z`z$c#F^B7+!UBfFeV@|K(X^>5pVDV=cSl=b6M>^IfxE*UT$w0RW!xo5VuY*30H!nr z_|!1>)ER6dOIyiZZTAjQYFiYf;H65A#HLDZ19wYZDWG`3hnkku-MQ;+8z4del8^rB z$&e*nH-}s$L`6p(=wSxd`{x&F*5IG{X9gQ#c3gJQ)N;uzL0;H0iCy53A^HOen?hMGtZU#|O}iH{qFUc9 zEzFXc*L>%VJMjDkEtBi@1D;RQVh0aiNbgWrQ!5|FFTz$O7qAyc2rf~+Fzr^vm0Q%# z{To(0qu=qdOAlRg|Gx0s;jqDvLhUO0eDL{vUuG$r&oFnpQB?vyp&4JRFtq2k63Ty2 zjg=&MVW|~WP9dGGDfUQ>A)krUJtp=BUEXt&X_Qd?k|Y7@?>DkCf1Y$-JomCUO-t#x zOmKWh#NMMLXG6(P@J&$S5py9r^+&^d1O}WAk|z)vc`aQ=`aReO!YELr7|`=jq76iDs_R zhwbIcN?W7BG z^QZ~e;RFKJ`QUx%+h_$6`zH`)g7M${#CmK{DI>{pq9Au=O|2dRhtf0ZNEc5Sk(Jh ztTDWnKZ`lr>9IPQ)6NN4+4OfzNx3)yD}FjD(8ON%zRcSNIcJrB8RN%cb<@)AH{+M^ zLT7^C=Jc0rc0G^1Oql2sdF+Siy0#hOvGHVu1HDR~br|Gx;)vCwE#O;V6?Yc>OXL$> zvsT;jC&}ic%Na9t=wz7^CHjooe=j@v;H-9JG>hp2zp(Yv7mtJVJJOuR7T>;od*-B? zMrlO-F4SU-X4G7U;mNLAXI{W?!AZ_A0wbnmamf-$OXVF`#b_aa|Eo`pDf{0M>vkhs zRj<&R_(@qF%fcq?5VjYTfOT?D4;pkVhcuL6)hAHlc=cqf|Bqym#15gtjT*tKDVa~$ zJd&p6m^Br~nFrD)R+#*b_>!9S0^K;)vAi$7Mru zs2#i=UQpz3-OVa0tY)V7-mJ4^lJs|=*(0PW8@)y6-$nqgYL;y+;S@U38%D#OTkL+U#VOAuZ^h6 zH21ovs_7|BD70R~QN1^K2>#!0$ zl8worr{Eg{ZHdju0DXNTPGPSd&SLhe4yKUFKH6zrPx#N}g(UJ$3 zdaAab;Dc7{PwM)gDty`dhBE7u$bvjD<$YN4jBA4z+f4&S8;mM+A(w^WBijspVJ+Qr zL^c&dPT90TRLh`aNb*pJsJ{YlPShK+d_^+Ep(Q(lQ)Hh_3q;jy^=BG2^7w>f5V@^* zG!gofD64?Nm&sHi1vXoikRY28hdI%$h_?S4{WRIMF4i1bf^Gg9t<;Mc*XD$ow-yPOo5M#a!HGdit6F&l^k|v zhG)2pD|heSJ?aLm2EjMEQ6xvP_prUNUc=#0&q$|B{}!a`FoX5buJq_phyFh$Dow*T zp5QQu<+`R_*Ap8vnSoH{?uQ}o#?)cX4ZZWlz@3K~*u-H280kauFP1=0yuFI*7VH5( z!yoGhPgxJ=|4nJdM=)LgiRe#3|NX*&J+y5f%$h~zU$4lWooX< z$n;$0GFCRi*6Lr63rR58IAs9CJUt~!Z_mdWF=o2q1LDGRR}vMJ%l3gP*p@t{F;ubG(I zwedln75+T>CiLEGtA`9A55mL8ICw$aL7%~DV`c3rFBj9cwyaz%OqTcmpP2umYfP&D zcgbG2y$dC6Xh?8recaS~TXH#Qmx=e(yeS(YL})j@-WsjPlQ;vD3BUU;Dw2X z^k!1|S}xv2yYxkC)qs!4vh|5a3;qgYy>aqv0?gUOa8St{yqk7ID!l-- z8^3t*_ujBx^k)>qXJ(mB6#?M8q;Duvq{zEFb62^+;-jlmVa>bBVL*gVYNomMp72?t!HTltZlKDvw-~IU5$dM!a`VT*l zd!Dlb3wpw^5vH;J4BF?>udb}!fWPfnz>Pg1k|*~Q%=ahlj7^Dy9_$5Kud(bIkEX?C zY29sIhj;-xx69CgEE$%hX~UpPJx_v-C&r0vg=;#lEb2Vg#IX(w8kU3Cs@g8=wKQs0 zr+s_pjI-f3jR(9l3W{4zNdlR4CvYKU3XJUd)@M;U#n6q z4!-B{LB&?#EnKR~0@f;1+d&m!6pBkv!5!LdSXus!3`0v`0U*YJ)g7_ln_N}t=#jRrtSEE6+NW&5~zPM{53^U ztWMki?MW%-zlnS+1whzL!*RctmZDEz3}5|Y!bTZZ=43cjRKuhnehxQ|A)IqjQkBJT z(7lzG^dQC=2S6aSB-|CF9vhV|(L}6T{QIV8iL19g)m%=C&;gg-#r>w))8tLjC$>s! z4$UPWEbVIXzw-ca*c|HKw834V-i}ngTKLUwE;AG!S09Ep;_cM38f9)IEcq_}q}w4? z>K3lWe=CPrAOA?Yz|O16#$>H@0wt~p+tgTKq8fv#>#r0Z5n$3bFVzQ3nU)45OF1Le zfNWJohZ=bEz{qjc&?wlc)AA1axtuD(l>~;S6k(+|4~)2HIxIJn^T=P7JFo$$D&+C| zq36~4Q@MMfVuM&rgJTN z18&_PWmce5Z3Xe(Q`I@Xb$`fBeZlc0P@m#dl_e^C7PhTMmN|+R zbsQgtVZoAzW#vL}WCPUnFpiSsa5s$cLAj(nZ#iPF#Xiu>r5+=CNYWAr*mkI*sw7~4 zFJ((o$5Som3ALM4m-(+i2@`8IJ#lVwHG6o4dT1Drbfkun8f{<8O4w1n4sU6ANZo3WFhB`WpUfHuetF6M(GYdAmx@+sDOL_9 ze@MK&T>6IKn|s(9sAYBXkA|J2aY}r`(V$jkg<1f{&*+$y@h4^dbF5v!m2;CD(9q?Z zZ@yXh&6h0pkp4?05b)g8m8m;d4STL^?YT4gre=%1+y-_UI77C$--E^Wk$bI*{6aSSi&nq~o*{QH zkzeHZ{3CY>IZ{_*MMd-E2Z&Orcmk{_RW$Wyl9UYZQmW+&4Rc8Q?j%bZ;TZBqe!r9Q zj=(8;y!IX`)=^7@X!gLt*Y5B#0Sr19vQC1I^^=#&%OtsEKqPs|?Gd4Rd&%KQ5+s8V zs=AiMEmGDha-08#w9epH*WUO*8gtc?bg^)3eHr)-i4UItN7}P8>t%~uADeECLF%Gegj~_VYBN2A9O#hGQiN-z^MqXO zjGFArfULY%fI)z417PM&cs9vzH3SISAQx!vJxd4jHk2z+@i4_!x)JzD4*(2qUvYzD zQvvG(Py2n>Fj8Gep4Km4!y9mBkqG`oNG?r8!)QW&=j-EVAts~a&ePvwJhIB8%svnHcs!de z-nsgJechvDp0%}w{&v^JU_!A|*RZFiV*+>Xud&pf=f#d4>;EcXS1_F#n`@|h`TY_j zsJn?~b6v38btx5pV-4sF7;17J?=eTxyNcKl5B}IpoS2qA80&Lt01t&!ae08Wn9l(% zoOQ+7{6%>BnQS|cXCDWl2#;Bzw2Sq4gqM?rHHR|wunvK~Lbql@ft~2Q;c)?rpuddq z8|`5il~6TE=amTkH#+E=OBlb``04DzVf|M76Mmyj9bXh3vN{iGSqY2`_3r!1_0rWf zf7EV{4Em6hwfM100OHgo+jE*NjeL~p75Ed<@68}qVsQ(Gg>CQJc-fr-$*jwV0f1F zKgDk9!6LB6oMfd-t71_5TpOBtgjct@%{x%%wC8M=BLI8kr1+qi8i1jWnNXyX&>yfs z@{I&R=#`Xb09z@=(3~s1Kb8%3>Dq7pO14Sgta4v}Cuz?S(Ow#6yAoZ60!M>;_6+t0 zi(s_(Xiq~H?HwV2Uauu+<&CyT^BU|m&0v#8(Pd@J5r@$yMW-=N^52^irUk9YnA2aWJxjoWx#DfD~_ zPK4#EZ*y4j+umc)gM0rn96*{%I0%);q#H;IZ^oNo&3ZEqgjRXq;^jw$dVVa4&I&$X zgE5&HOxAUUf&H6!B4>x5-?ek+XS%2fk)Mn~!Kz7kI&bH2Fapfy!GTbo7?FH}YTAO` z9L5bt0ycybFw9?#uS|?O59k=a@;DO*N4~b}TaN#qV@j>L@EUsUk~iKm_C;Dvhk;Kyq8Kb}FAKrpb5k8YY>z_&H9e`R!-sNMjT@^S2ueE zw}O<)H#RA~IuF6hz-VYFq83w0_NyWUr@to6pT8rQoM`Wc5NZpbP9zL>bvk6K4`ogX z1g`Qz|Db@M{*yRjpsLQe3Z1`=K0o5q{ErJmQk!A9{@35E{2mk@;fzp;V2qQ7A@o?1 z3oH0D#-VVt66m|7=IH&;U}Mjq;G@`^97fdUfIhsGXs4A z5?b3*6s}wH!1iOTT7gy(axhYGWwGtRWkZV*u7Lf*kAXP~fj36G?*|9|4^yqT60&fu zG}2b^6%LMSEW@5oC3yX3?#2!1&bW)o7}{n%{Ug7c;@ZKf5lcDf*X zVOJJRT3vt^7XTIf5_e~Zcr@5U)MRv{GM z?E)V6s%B$v(vPR;aba67Z{Bm*(TEBZrB&rV%+(zV+ zU=YjWSy_QxWDK($&to`_e3K;jasr0gM1Ej6maIRKctdyJTfV$JE7j?Fka>cW;}4B+ z`=xjNk}hr=YFI=6G{WUh7qrHa#pDPq*mE|-6;;aJ#x+El#n(?g>Q0{t{)AUpYOd?$ zKZP3KrSYE@H1&Gi)wGd_PvN~|&d-Rcs&ox!Y?cp_mHz^#31j89br4QhK>2!jvIp9F zJW&h|OXMXEw-BFJm1wmzYihz#w593`TiXH2Y`c0Y&FZD`1NU;Da$~PIqK7Cv$1T8dLK^0z=oS^4X^D@V?nH7ixa$J{YDGDPc`CWxrCjz8;@g{x%X zl`PNDkEG&6p<2<=7QMbcbQ#CH$7zx8=b3sIZb%-c*K`E_Tyf7zje*I!AuU=!SBCqr zT92(sa4Y&~dg!{5-u^h2>3AD5>u-Nav)y_=3Z}c8^mCV#&`qDqJ?E+>ZsDDD zI{SsQ__C`p3_YuyUuVOnO*f6UrWHTE_WBCmois25BMx4rd-rwoU#hL@KsbsIA{99E zMx^XWUC3+YO(gkPX8Z_QwpYT&-{p=H;`)hTH{9bSv}QrrH+-GDM4u$7P)*T2#og6J zH~KMNt@~c@1b2k<3A~D*BqYJ;VsHxYk>RNJZ$!GEP%}^3Y=|t8Gq9L3gv6{)m1DZj z)$Asgu6QjP&GZfguvQ*EpU&eXnfd1Ceu6uly-N!~2-U*wwggd$luUQOxa}R1`E|?M zQ>2Z)Cr)Lw_>OPwXzdI#5$SycTq zB!!cYr!)_ zQpxFB1sAEl4lLFCPePWudIK-MSo_(ziG*bJcDJ&=$;^VMA!ckXF#*6o8Uv>@eeSlA zsQv>*Azt^J$1H{)50}h`P@%B)?qca_3_VpOZmeYDw|b>9C8C1MF7l{eXOxOv;DVmY zFz(D1txkKIfUFgkxu4+BtpPft5Kt5q04J!Z7^Ls zC|j9(zbn%v4h_+}*{TH_$oJY7rP(_6?P* zu-fhu$%MD%XDfCejKpA@En2*8#hJ>6)>a%Vs@r_tn7U@%s@}-i_Wd^{n#Af;PVXjn zac5u#*4ymMWy7BX|3CKL13rse=@;HmjKP@R4S~=ST1X(Y&>VUT1PD0^9YScK2M8Tg zLvNw?9(w24Wi=8Xdf1ds!)I06J#7C4r;~Fkc3(13HRLAYyGqyeyjlYr4%pF#&e+Z0 z9I+OpHjn*6TpQ?EW;hHxA7$q;x77p(TpWJ?HBLEe^VEL0f_4tjR2<@k)KtdYpAQ>W z_B9?R!8Fo6XRK7D^UPc3C*o=pCWm`aFHYfN8rX2W+ez%7OV2U1#e<+XW2lc?3^gL* zVSz9WM%6+n7)j8@e>H~>$yx}AlI0vpP@jh(WRoD6xd#btrSgv@#Bj*#^0Nr)rYIS^ zc{hDR68ZP6awK)r7TK&8MldO6lGnwQjNlcf;RmiPm7~cN*k00qN}ZjA9M8aE-N-Y@ zKU03CTQYf7i-VMIWU)#Z3j_83Jfve~S^~6BoYCnaA`elE-bG`PORX5n0}_# zm$#oVv0v!Gof|%pIN{i_<6wpUNqa0a_~Ji2mG7gW9$h$MTTYWsBNaMP--P#`fM{2c z({M|v@v|Ez^!6qE@AEAqdk5s8V>9q6smpS5@eYz{F@qs3tfPzjaSRdlnwDHzSe`V> zQZEfmE6b$Bvt_wr=w*R7xe3@W8|+vi+B_b3SSKv5qz!CGuB3Orb3j=jTS7u`gWO=) zbiwOwa*EfI=-LMlD#|Wm$Kd?NOXm(K%33VJ@@~ZVTcuclp9E9fCq+kG42T!3I)k&& zO6>Qmk$8XoPu4(tSMaA!`is0KGn_Exnz@_2$WrA|A_>SOQq}aAVbu0kn^6JJFfA63 z|4eR{_riEdx{O3>vOmYWGbkA`_7U{ao^SFO4!j$q-;FJTabnf zy(TwiQ*T{7L)F&9W#5j&jj8)U9u0M!an!u=F#WQ<4~p>$=xm#cAOsCA!JK~ zEnD^^V6?@$?;5}#IJ0mLRach19M%Zd&3|vQ4uL6(!bU3h3&b9^Gz0XTSP_`A*m3^6 zW@1!05Bc#Jq*Z^Z=NVeoJ!V(vc}5+);t5r&_)rs!_%k*bEhp$T|3hzJhAs@9^04m& z9J^)8Q0%ZNr4*qCV4=Z-175rstJHw}7%xngb7+&vN%KBurs%=h=r`kTMGUr4$Dz}; zLB%SF&u8Qc4UV9GJc2jPUJh5Gsc628xj#*TC7Y@BmRRFHm|8Iyn$LpY{p9_PGY!J~ zE3JW!;)k0|wd_R_gFwgkqIxuzW#fp9jD!~5i?Y#3c7&SQu{+eXReqOXRbHu^V!Q7` z7x~u~_?shDXDx*G*i`D+C3MrvhUGeod|)^0nB)OA2-Zr|`|E?kC6H1Sj!QY^lDk;) zp9+jXIJ|*O4o;$Ia0H){LqJ`GN2P(4{|{iy>nvzrgd-e#h}xUbLV^7qNmg124GZ4X zS7PvczJ&G#0)D`@W!ini)2s%J5;~_7s>1z*fgvOeDPaZj+E>VDu6pLB{n=H%XqEw< z2@qG$%MtWKQpF_i5#{_}VSYB>C{>voo_UP-(x@1kKcL;jv(H32EN$&_7U~S4nYA`< z+*pyrOa4Y{hTb0y>{wv_GdNHJf&?oUpduE=crRw^kS@1>xY5f%wiTZ+axd1m;7T$z zNCQLt2G+DKANf2C!0Ejl#v`1b_lf^W4SZB}@#1?f@@O&dw4tIkRi_hu2jAG11Hcyp z_}Q`{6CbAHabh-rO;Y^@k@k-`CgMnK#398ZG*wb8egs`@(-Ps;zXfHnA4_vq>&KAICV3D$57WbsQjZO8$RL)E&_O4j$0bUV>sxcZbsk3&%X1%A*qx z+@^H>KW`Kr04hTLXn;14-^%M(^q27#lzoc$3D=Az3<##{5Z=e>OCEG*QSp5k-j zq*-T8Rl`u@=#Nlv<18MHo1BGDMt}`3vOI-=X~SV!Ulc>jEwzteF;+7)}!Vrv4$Dv=IsdQC4sIdgNj-LW~>ejXHdWFX8Io)DFg#frn6=0 zz;hlQcuBEZaNJVg)}d0&7ojhdLfy>4Eu(R_%fE$^W8X@KWJX`mf#&9WQnv@iN^=8I zQ%s@Q-Dtt9ufqZ4>NWh6#mmMP!@UKv1SVb(urHW28?B7dJ*P)zH^C2bu*_DxjbmLZ z6{66Y9%!h=%fwb8RJT}=>NH@eYP5`M&|MIA)6uwQBUGhWn^5WfRY52S3}Wg1W#|=z zPR{Hl`|ZT+-`#Xx*AI?2cf~r;PvrR;IbvRZ_(Fb>Ur+nuZFaB2^Zz$E-|B9r2yORq{D$vo3PF7-i;Kv(Dj2xaZJ zUYgnkG$bBwAfP2+0{L{67dYig5{lmVF^gte3PMrnM7(>VuQF3^0>Q>!qb8yq*?-bj1;aR&``fKz)dOS(byb!(K8 zKZ2i0S&A(eayOXwVCR(69mYO-4qaf9`gbEY^;&2pnn%YunRmrwyd^J(DWz`XKfeE{ z37ltu<4f@ne76#){72K>duCEMrJU zv=01e5J=272F19#{St>0UZ+HWTReHU(DK4l5ZyXMQ?Ku@gX}HtXYhi&2B|vSzXjc) z><=*&b}Vw&_2)X0f@3=vnZc&?+^6|JV!YYH0x)LG^z8d^%;zQuj(Y}EvW7A9$)^e7 z>f^ENsrjxzeykkbsp%s_DPWBAN1@nQ11ph;BiLakVAlOFGwxmEK7+4jHRKdn5F4}B z^ivg$V!ga>E1@1EdS#{V1h>O?jH?u+(-&CWfe^Z} zQgi3}0(SP-kN(+4lld$BPa{(+KnBMC6Pt=nLLk@gyV)ac3jTbSD zHnuOE8FoKn=F|ipPlEdjBr`b!%ZDAnP$blO$HsOj+I-qfU3%nqp`&2%(xK>kCdox% zPK`^miB;$dn`Glf9>iIF8w)^uGdt%gU>Jp-7f42O3H=?61b_VuHr;Z{uN}fs6M1$s zH5ED6WyO;%;rDx|gL{jMt_ku+qRe^PxWLGgj z%LMGYC+e^__l^|&q=qE~v69I+g$_pQT)=3SWxHrRKPKYm^~$&M!=a|dV+s31;bNol zZR%MSL!IMEwCpJtjSh`vC`qTuA+UF*C^gfw-4z6d3O zIpx@7SSXFIf1go;dZ(tGEcII=Sp+YqE!6!INY(tw!@@SmAnYMqji~MV(aSjgJz_bg zl3r|*iw|+e$_J3|SYDrfX0uub4n#2%lxMTCSh2#Gmn4yQ`t&BJm$YlS6RWb=JVRQVm`)Bb_yI-<#NV0IO_DAcD%A!0-FB3zqj|zeI8F!P^fxO__c$C>fu3cl@nLGc;?JW%SYhld%4UDfJ?d`ISgH1;y1I|O}dZ$u@xpmSyJT4Y3fi_2qxe^ysuHEEYMwcE9I!7b9gJn89-x&ZN zBJhcfvdbx*XSP%d!Cu}8JtQD_o?sh^$l$$_VWpxx0N+gM-1ns;1n}F8SCsR6WJoFjcDZrgIu0I|$8qb|O{i!a`}(O)SoP0I zacKgBp=81FnA>N%_s{!u;f~U3_Mp4j#K`SoWduChH>F~VvJNoG8%Vk9z&f8*4q~w& zR!ok0gBSWLH-lmF^qW}8VavJ0NvU~4Xe#pq|RE_rpS zx6L2RVoK(ut6$&1iz^8Q07Azl0Fcsug>Fr+E64szsXo3=wh^^(9J+FfxTJF4zD|gu zP{>DK4bDQUlw3%mCG>W{Xl4#&)F43Zvg$okLAxyiwhIIw1?&dV-cTW5S`ZuNtx8b{ zZp25u8hr3qu3aOec94OvE_JykmDU_xMA4@`u8G!6ZpxJh^oN%m%9RAo5Q;uSG!j0I_*Z!E;z4JO#W#Z~D@*C;K*uFc6ffdE1t`Qfn8O{kid9VxzNIy2o#Sc1f>7*PW zFY|KDOkxYcC7C1_T|umMC>#KZLMOI3yX8dY_i3nsqLr5}B|F+k>Z0eN5a`~QyuQj~ zZB7qbcADU;qd?{=kClPJ2uP^&O?jUQR^ zJjF_-m7kJESpaj?Ni8BP2QikGpide~p`?yE{#{J*6%04Aum+*Gm&{*TjcO!hV<&Nhh^Pdl!#1WXpPTZMEanT-eo184B9 z^(T0%x@LpRMoYj7)N3c!=aL|KH^-iD+-J(2Ym!w;qj1F6Ad=(KJ)2;Mc&zm_yX{yQ zKBF!(sT^=#lxvs}s}8a&1>7zsV#o0cO3HC2xrqqDL3eA@DIS%BQpVUIWeY50nI3|Z zM%y7p`6UWYa~WM&2EFsNr`)1T{&t^CvnGu^KBeTYP6077pfU*BEv#bvvPol6guJ2^)8S9!(Q(J+1Fhc1%wTDER}oD zh-u{PHEX1X*8Q66fCyIL{fnWv4WFKTeq<0FCRbgi?!>pFvZ=hq8fRdwF$U zaQpgb$?bKx6qOox%hAhFD-W;heM+r?kLvzBVZww0vf9WQLdf2^MEgAihN`%86Swbg zGi|@ckfj5}2cEVFVk|9ea~g8T(!i$cScdfK7Y0U_MZJ`~gC0emgs|?&tt)XaPp&ke zvxzZFcZ>=>R2o9&k4l&JYTLqG3|PYh-Vk>ey%BkECl0eG!2U&;%&61!eEZD#?JDoz zQJxv49(zewtH{GD;?!8cai;^FUQ4;Iw~3m;GH9wLw%|&h^G;|bgRqnEhE*{_uIZTj zYvNX2s{bty8qiqjl@nSr2&r<#&M`wtTF2jh=*v z9agpi1q!Hb@)@$#@fp2t6EljbDA(^fH|f{^u=w7`{(cQqckMqkTo2;fyb|==0X?i0 zvnc$@C%o}IR16izDTvU5D&BR;Z#D6hKE_w+kI9MVdv`TfHDaeNLP4n&L^wINnaX*1%CZV>x z%!CkG;*1r1hX3S;K9+2;c-e-wI^O7LLyPk*j4+ z<8ya=t2G0J&dvSM4#4hAH%Uwr8368;%dmOAq!5(!6)eKFT2!7XZ`3oU>F2S`j}Pz! zHr4Cygr91ZFW>e{mZ--)_GnFc@*k2X(PPYw1ye><96+8(Bvn$u>%`$`(hRMj_j@dr zE3^jk^cUL~%364YKS>Q3EP*n#eg*>_*>9&5Tn}H9T>e6qRl1eXAx)MciqhgSIr^0x z`iD>tW4u#-tDaG?P$_Au%y*Gx2f`a-5cA3}=kJFXdgW?9*zy&CYO60ta?ughY z!DyCB>uJM0R-ii{QOt9*4O@be+Nxr(C+h_@V*R;yf;+;{wMn_`Nm24g_QBNE8GzP_P z0tZn5I%31nmCh9@(T)|YS5Nmh*)dB^+SqoBQHTX3ndY*9D9XwmHqyIK$lqq=%9Uq! z)XZhS)!a8yViUvR`-s3EHn0)#DOojZ%a)_(m$YHirDy4CY_z>)j5HPT7M z_HtUhAz@Zrj13AEDOS4X|3}z`efn%Ts2(AdrFZf|4?RcssN+`NYV0?%qnbwYAvQy% z*XyJw)2DarcQSdKy|?!IVLR;|H|U;aLGM2#X;iHJcD?4@J^rWkL2ew3;Cmt$vdg5a z8XvcLYS%ugqwH8~5>*G*DZhMbhbrQTiRxiL(WPwQ=VW$<{QJVlt@ie!eolgY3Ax?P zCIp0bgd|+8$hdt?raW^Hk?$j4eM&Sr(C1aO{dM=+p8Rr5?hin#*gbge35^~~=N~dH z5wTno$e~&^+iW99OldQJHL@x4yAKqlblcy8(J|57C*eKMUATbB<7G{FAxO1824Q%I zZ*9PP!hfm;j@wPWCPA#=9OBQ?V6Tl*<_!`H^Qu2%dhZtjc5k>4XvwU!}W%T#2&1vUKS++P!w& z9?5#|%F~|WxjgEaw-M3+1+z%?F5g+anJU;1nMU>b1pW{coWGCZ9F1Nu6BK8~B&4lm3-8Gh% zoBLdIzSnvQI~0xJu@U%KB?uGm)7@ItX5GSz?Nwc8$>TiwVw}gKYq9S-L#VDOjffpH zcpKrPb_+!Z8#xW+0B=P8a`O7X>O+SCAjoYc&RAD+Mb>YsrAZ&)d=JWVf7J-pi~SF} z47o~Nv!wUi-~yZxN0P-hnerCCPokFhK7UOz7nJik4*CSv8ebMCp+RgTAq`;XNvR3* zif%ab;XQ&S4eu+wRB3VtlO&0w=oQ9C5}};eCHF8yb0NL4_kPedeD%vOu*;33fBtuT zOI%lBv|}+j*uF)z4xFfU@RsMk$>V zC)zt4llQ*~+mc2(7pH-ZeFWy4L-;I>I&0{1uFrDpS}#%etRFH1bb{KEUR#(s`@FLaK#MX^< z?Ji6vR{#mWbNI?7LY|X**ZAkU`zK|nx#L!*%y@Xw7K-<6=x~SaVI2p!1tUl&gVA=K zOnTdB2BBse*sAc)4L0`rrKghphuHQk$&Aknj)^08q=Q36$+PbFZ=LSW)bLM>6T|59eK)j^32KV`7EAH$mDR_O9+vh8o=*O$Uz4&r3N9#)4)cjfgMQ$OG{^3 z*mZkC?9ve^WPAuOh~Q1R`vE1#HcZ=^(`dKjQ`6 zr_k_%u64i*KISnkbq15L_Wh)tvBzZ`!!>}6JZz-jm`QTc*Z2~bW)pX@vjx%~pJG}0 z_&IW>HBYfp#V3>4n={H;1TMBD2I{4z!@E>$7Szl^hlV6wk4qR!ykwgCe3x;clT&EK zV>l3%D}~p&$f(H3=*Y-O@B?Ze;F)-?uW#Il)wjaOx0tR`=lG^~pWcHH_P({#%@lbb z`LO$%HEY(!J|>sp`qyE$LJA&%Dvo?`p9c8xU$9u=MT=@yFQHPh-^3BpcLKbs;rLj2 zR?LdmionM`tRx#7AD+Beu)z#?>>Iqxhzr+QC{?n{b&evLl?+oz(gJ~-CU0ZE?gud0 zFM*Wd)KVm_m9iUiD@r#+Cpdbly@yEG9j9(swD=-yA$79!2fXGMSl#5`^ZPyUSnuFo z!?I8tdgD=e!JsRv>G(wtSx?|s4z;07#o zyL*>EtRMJk@Zd_q-R1s?uH_3|@Ov^GH@Kk&hkj4zd?9FmLi8bl%CaQXAZrXEO)N<` zke!u-!)#3q+~L|Og=)t_|AdQ=bSiLlk-}fL0*2RNUEmJvh1hBiSK*ZkTu1bw-{YF1($&e|+{LOEiHe=mC6{fFsk^26)kPQ3U5jxcr7f7vV}@rXffKFBXyQx zEPcc#3B}ME@(u(nq$SJF#ItqqbA{$-2wZd_k*tr`IS!B)xj1Gkk^K%iWu>@SO_*)$ z$5E`rBN&fC<;cS56ud|ZHCXc~1-FrR!l$8s+sC`rOx>je$pN{P$?|qbT9FIF0KmE* zA3`+eLyds5y(}_~rMpR9X|BxKgq-KGfhNU;xQ?rXGRO9|PdJ6YiuKFR9*_$49D zb;29Mow<5$mP61*0UAn!1gYZ zYpprEW}@ug)7LqeOacSqk4o+u=7{!o&7ky>%tL>J2wkzMq_elYnZuEfIkV8L6sNZ% z`(g!KrW9prN?u!TuHaXkoN|#oUorG^sy5@?)B!w}>pPf7AcJ9H={mB>)-Y$x)@4ud z$hon>ZOuY);)_YjHn|(gZC(o5!||GlPoI+2FXdQ$}Z~kPmGLcN%BkL+HQlvJ2 z3%VKLnka_bimrjZ2}&evvItDU4u_Eoh zqyNtHLj-!uHMX2j#p=H;ObyHidzSu#jqS95%nYx_P5+*2`)ymewzULnyr5EBHB~hT z-fBULQvF-t*9bM9<5VYCALMwB6=UK<_}mx-4$dXQ0S_ihrFgfD38f*W&^t64xk!=o z1P9RK*J#(So$xNT11W%pY=t}I1_HoN>#|)ttw!}aGW60i>i>*7G9a3p`tRIUTb0q= z=)Z4;Qc&3%FF@+t5JL@rt&V5NWO%0k`c%m^Ya(EHx8_G%Nvj@w7BF>!ccm$zVV?-# zm^TabMmqP^=REc$8E85|zE0t>%*`z$@?!yGIr~3kQ(U|ea}X#8z(y0#<;@+i)w#7( zY7YbSV@Ugqf+9Vc`L|c?<%m-7-cx%spz>zv60_Q2U011{VO4Y!O;p?Z!sCh}O-pAR z5qU_nFm3n;ThK5YQ72R*?rutmDi4}hOpFU z6#N}g$En&Feea|HrUpt60&|%hohEr?Cc>%4c@sR@{5Ny%;H`6 z_po%Uo#l!V=J~U7Qe*d$8VD34S>z}_VZ_C2S0Y_O*uNKyfu9oJEFypAt|^41q@)sG zdv|nFt!Ef&>zytudy<60$9NF#7h=h3{3LmyVdT-_!^}%W!IP@cxpV4eF)vE7_^BQq zI|zvt_a^pSacxQtV9zuTIoL(KuJ@^bUjttMnzxrk&zm=|N%3L=clNu~SxIN8;pEu` zJV?)t#haHeU%npW^{sepGmg_%-hYrKi)oMPESvFfC!Dr3`36t=*$KAwsnWXEUOC8*avsErF4FJxPIozEBJ$3ME4pGD4a z{USv_d>rGaHq*Z)t`;jrDPc@W@8OS$XS2_G%>hf7wci_@Y1-V+(@=-Ab!c(_Bbd_}Mv&i$H0~jddMO^^ELS-ujo+Q# z@aT7K{P-^M| z>@$AmG*%SiZ`j46{})&|yUvrB%Ms;_HRZSL;{?;j0;#bf4b8|SDV-9Vl85x-ZdD0Q zYT;Mn@9wqy(X-S?kAF63#cV%GPLq+OekA zTrXvZB!;Mdt;YJY8O$wjHdvKwn+{Pq+~+*Le4D&vxS6P1pACu8wHd+VnodV7Po%R>Wv$CmP8mxsn`3dYz-3*e zj7T%mWr;JE_dZ!=@Y$|=$r>BYApCvIdF$7`7B~zEjjx{Dlv3!uo&2S6VQ`H>neK6e56CB4 z>rk@1B4bA+dwaUZA_s!d!4ns6QvINb3|{p z$xS4YD(y5mZ)@(xlStZhluRJA#3n?^GLtL^Y!W$c&rc~I^Dw7U2L0JWQrWf=ynTcU z9Xd=|mf|8~>_so|Ao9(brcDpOiP>L4L_fN$FIXFaUmDGj!Lu%)rq;r_&ByF)0L5X& z^8xK?7>aQ*LqfY&xf+ij4lWMQ=^PuTC}W^4eoz6%s(3%wep1RVP>oYz#Jym%+=*2xHSjNi!IHvVA9QCaooQd(ON=lB4c&BJkbvp4JPor;<{r=Qj z=uVZ@4Hma2t{Q}2)uj!5#-ZVNzN9=>IFAFhl~x1s9gC{QIwxTI8r0b8A9;3zfc=c| z#)S(Prr@((1q8NX-3KQl!B4SM;#`7F%mdf|@WcBK#8zv6pYZJ&ScZJJq+LPQB`4!x znLujloviL6x(moEmbz<|Wu8#3u1`TE?D&b}PbkAUR`8oBpzLS_q|c^^m=8EH_11O_ ztOjA_3Or3sU9IXVPYcA^eZ`;{*NZ8G#`^$MDt^LdSAdq_<w#bWTJcq!hJG) zIuLTHgzT2qV7#VmRU9R;BS*%kPKSN=u;h%x;YsRRy@uF+2sI25R4X5rl6Mp{%(Qt* zVW4F_ig8U5)6$GT0K-l%N?O=Dn4(QfZl)|Vpp}9A<~v|sfQ4B;Cyp!6^E5gL+5s}F zrZ~asfN91bM^+PABQbgeek*AhpMXy0lp;VJ>DU=NNxT#E>U~c2>FcogU@APGIQn8S z*^R0gLbqtMEe0J!cO)H4jy9q2^Fg>L0hJofR16IlRnqh~8g@d`z;;d0Fxf7cr?vcE z%1YW-!~A90c`brL5XNDj%RuFHG`$IFIThuG4C~vMDysC-j%A#mlr*n-^X6|T^n&kj zvr`%b_5OzOMPV_quCrV- zKDn#ypwD*w>4&j6ES?eoAMHYL;n>4@*zDAJyQxtSq6gbeDI4oMNXS@oBX<2Jzp*^j zQ8M){!L}8U7F4~5)E3Uz+FWvsJ}>{T>t)}E(z3YErLL>Pa*MvD>eiCqgo>S$TYV}f zuNNgPOj^SCL|Ow51CKnN_XY$+2Lv4MELyG&jy^Rz|7QcZN*oY}Q1p?#&@=2f62TvQ z)h{01+@?+!gG5hmiE^Hp@U4~!oOjxVHCAdWZ&mL=2&VM(fYA~oO0W4Zq6Bj=i-ohC zVLVm{uecncPV^m4%PSdm%7wTpJf^fJZ8eHl0$D6zKIC~hO3J&E zJ?d9us+mgS&Wsy31J;8R+v3r2v`!$T^tBG{HFRhD>DM2ZJzFxpuG{qpbuQWfxa&&$ zu~#PklXc3mNi!n()VXLQ#b5K0<2->$l16#G^+T&RHhLueJdek0*GJ##zjNBqKtjy)o8X+B)ilEDJBhNgr$JI(Q-rK)fx! zsZ&bE7%_t-XK?hOZnf2MMWBc&v#52wfld?$M*hhTfT;ASDEjESUM9icc+pXv>9a{U z>9_+%9!8I5v~Z^_;-$x(sC6(~dc=qdee{Mq#GI?L-^c^i8pvsx5+;6- z%%t&5uPmF#!1|D9#b~@f*=>-FtH%SPz0^OG9R|&~RwvIXX3mU_h*C@u*vC!StK;46Xxr@ z?d`u=MgN_XN|1BLngv&NlzVr9GK1&=qbpZ_D%@g*FZbSq$sV;8j33Q`1@}|({#}3e z*mV^1hcS8F!Wd2)R1KdAm~bPxJQ&~4uPG|}7~kN{f*+H=R4SDLG~*dUN^{vMO68)H z6QkD;S73{<^#TM*IK>C!WdS%!u(Bv;iHmo`Xko|L#VDoXX}|;rr^N{tVT8lXU|U)* z5n`QbqTLBzmx$%3X)GqVCCt~&wKB0{BLK_1jf7YfE7rnAR%HCqCErOY0ah`=ekCVm zokwH%4WR<&S*n;=L;3^9NS54Co-zYZld}x-KRH^oa^=Z8@zO!`0Tn|CxXJ0i*!68h zNV$5oCk=-}F}YjWVQTlo4tEjO8g!dH5Jrb$N3Uy{5L8*dM6>`WqQK0gdMW7 zl-UUn3c;s4iXt#Jc&6PWetq@o9Ge}Y-gldxJx5<9*j@*Qwn-?qwGp>n=Mc%jOXtc% zPX==e1Un(hXuRD4%exc1I>@n}R~>36?_g*v;-q(wchr(4OBzX9A9)sUA2n;AHD~2+ zq-?bpgKh9yc1wA#knmAsNW28gbA!C8l=&&~kzoHKC#%8HfGM)2s0Ev3RZ2t?-Y3QA z7)K(qGf6gDIx)%VRZ$k%?I=UESxTVO5+!96;k!jc2Ck)|U&-Dum17QB$#C+~6A2Y~ zf|V+m>agQEgP<4> z4liva8d<=a{jutcyoFv*vkPX=H>}-s@2p?Nq&hoTs<^P@6mC9@4%xM8lr0#AI(>70 z3#!uTt$2meG^jE@d`=CT()+Q?kEher;m0+U4|^dLG|Z0ugwPRMIYaG`;<;0s3~wgE zl*-dD@14G{tPJ|c(@Gw6`O6#LEaO5+=&N{HJDCSut~>I1g)ZR72(&Wu_>r*6>6J13 zPOEA)XT3tgswp17rV@L{0_UX6P}-iQ16h3#Z2mIEVe``K4`Az72%@9?OO;CEsk2BN z!{*uq#K0rvzLsE0o}B}R)pvt)iO5~q4MOIbZV>y>UN2O6Q0X*I9SHuaOlINv2w+h> z#Y#0O8x74Ow`nW2QY?c%kz6@St9OjR$R|=n#2r=Ki#G437C(4#HND z*yfKlSc{x<#PZz6_>j#xtO|Y%8*9FLzAalo=f+m`Q`oQ1%1i_B5X36z~rc+Bn>_oL>JlMj5u+ea=f+c%Zajf;y^h(7+)Sia`&H1q7_^_6s ze@9|$Fse=cQN}X`m_DOO<@lA0JyY>Km;x&FS?@oS0o!Y7gjgUru-C1FQ-fSF0RbcV z&bp_zauO%(VJk!zuP|c7@9Rd4ko!rvEZ)sTl}!sJLrU#lAAmvINZLEXp_otO2)WY8 zp;Ah~1Z`9)Irwqn+L!ia2^#Ova&R_c(zkL!*q`VTndpQmC!DbyDb83<601L{cFjG> zQ#(<~khAoUO|ym&=9xCQiql;P$Q=^Kzq0^;v@bUC>4KRsBzY|uMCp1wAh2m~aKFEDHBk0PJjTH)oPQmbxcW<) z7$rw3?K@#fSDj;<{(bRQ+Y_T~R##)vKO4C+z;<2G{=o|563RjN?qDtt?p8lZ-jZF} z51Gzku^gLeFw%;iB{{_}37Rs_nuYRE{N~f)G4{zqp>jR1for==wzWVdTK79Bv8mA@*?%_Yx z`qchRH_D}7^EU3L{YImjGz2EW`4`5ljYiH^pG6_$ae!|@fj z7utT^ES|-uF6>|gE#y6y*h6^kK!e+$K6{Q{0dy^$*zLs#nOZvc8cqyBudx5tXtI_BMzm8WI z?SWAcI9264YjwDfU^gf?E0=#(EW_{MEgC58KeKnEO}2bE3MXp7PF#3nAxUiwNyRZe zN}RNwMT@5?e26j>&T5EH{g*}5V?V%IvmOv{mHLNhg{8ZSQ#5P$r0ub20vo4j8oco> z!Cg5Y8+#XId4mPJ?*zs)HyRcSSk9YxJAJ=sSjcV6p(rqL`dvdPw$+HLR|a!Ci}|^W zLQhP&tmd%BkUoKL>Lu@jg|a~7fYtemTt6WkCz$+sPT&VclpOVZ;m5dcC^N3L{=&~M z)2*d%_cY&p15>iY);~1lH7QIa^S7|J=4N5A!`_GgcQuf?MT`1uZs~vX_g_&IeuVUH zzk$~^`II%y<_S9jK=`@-l51)N{uq))Zo+}iEhdHO^b2iaAASRa?FWKBRg|+7OITi% zYnBO4p`%#9-Yim|H$w=nE}TSDpRS&(xAzRT5aZrinKT>C1{t1kYFTrfaCSi`Sx#ZR z*hw;b8rvu+m1D6u?P3)v5brkLYl}!@8CLXw0k`yJP%_-1^(DuYe1nHCZ}I*`;cJto z()ZiA`R?79=Qn@zwfX$%Ts|?dK_6_hdkEIcMSQ`Dwn=`}_siKoc~xxQqQwL9oPDrL zok(nCroSVE9kg_XiMX!nuaLR&ZwCmskwz}~u9Gx_1$fi;J~_Byr_i;)*^GW}qwkVU zg4sh$mGccD$4SD*^pf7u?JC^CvARNkqutAJdUt|7q#>0~sfT8a)KdK4`3ZR2@7O%k zhXaG?7YfTsOfinCCdws{DvGj>kUn-S-OHE~it>F5nPSJ3o9dShE69Bb_FZV|;xZrH zCXpXXz)}km$>Q^bw3lFt^6frwqtI-n;j=a80DM4-z=mHqc2!PG z2^*V9Ld&peCVl~3D8?k2XsH#cm(ACcp+mIOGd$ORSCl7xW0KO5XEsy6V$A!FOhj=z z7(X_bmE>Zz@M$j1Byt7B{JrOS6gj;xNksJt6=r+`T*3mFjT16*%Hm_{JZl zJx(saSChL-5li{o6U%ULm1AM6IZya20YRTQ$u&>f?F8j|MC_vnow*u`0}DqUT98e0 z0Cqk-rxxva50f1-Q!?)%ZE?5cq?o)Q6LP5M z=ve#0<-D+j_*5mR)~n``Z)P3C66;A?!q%9#aaec^>>hW?DN}_I>4?;^X_?WIh1pB- zRi)@;C@CyI7xP<+p7o@6H>m?GU2n}RT}mZF=G2D8h*ycQ=||<)@L4v!JDAF}t>`P$ z6J)fo6o<;}6crql#)9|CW(^sdtZQW?+5N4IdS`hjW0zJciyeM}XR!GGDlA^NFL=-U zj4pO3`1yKPK##Y+i$azx8JI@`y(^@7Pf3`AX`mdRaTo7%Y)NV-8~z(fT^zxFPFj^I zm^oZfko^=pe*=+UhP5BO;^zw46u`uhOwM6+V-<3v+iZ-j(YcymgCP9-NA8V^3p4OSlg-2DN)=X1hH zOD~Ss+_}DE@*8FQ=Uu;sqZ(Q`+&0}6E-`AVbb_H1Y|tBn&@T?6N{KxvuD%o48lhHy z11q%`-7hGSOXuaa49-xnmnBQKjL=EI1PaFjJVnJTZ&d_^?fTLdw?o_}+6eR&gMbHr3_h+-iGVmI| zIyPVi%Rl#8vHt{^r^Vaq+N!{#>1$fm@IT^D!Itt^4BMmJpZsw0{reaRBTM*R!q~}W z8{)kl6+vMeBcF%C{Rc2TQhyLrp}b9-K1zgq{U3HRSc_gq=)eR>?bgck@cvn=Q7(EL zp{Mie)C~vBr(ZuqM!$YLFM`fPV_$);B|A}l!SazzQ#G&K!kue!aF4!lFMcv}0yale z%KAf|iz?dke29F&zq=1g{JN|Ns+gj5z8{U&3NN(+TOod{@*hAjv(E>Z@IR&2<3a4& z&qGR#<)^Empr_VeGIj8y zKlMpM0E2@Ydgds<$UphzZ?j*%-12f*pAB0WnG9Qie>y|3qUmcA@@i#&i@?Nk6LQ1J z90$yNcNh^h3fKwRV@tv87YMo4^K(%|OJ|z?ije3H4$iES)AxmtyXEDgaP~up-93@s z7{DAOwr6vQ-XnY-Z$Cli)ay=)XOA97g2{Zfzhd*8MewR4wEB0KWXWp$gZb)Dv*#D_ z?V@O=tTYHFolV8NO=y%n#pwn=iE{P@^(KxOY;v92#6f3HIC;kbQW~Uzje|vWPI7>a zO#_oOa~d~%MwG)rt{AL)b;9PttcJUT9GnI%8;7dgfQ@tz%lniBTYa0rbdI>H3M4ZL zI{zm2!0Gms-boEj{qG}Y4dh(~&%_nZd^WHqFfE*XfrQ)FYq%|ljXmG`Bc)4mgV(zD z!}p9wGyAs#4t;4MigL=_AfsahK3j@~lv9Lkqm5b9o5WwU4=lKWKPC?+*Pc(J`{`p= z3sb6Hqq|+;*rp84jOOV}7ezp*T*>->ORkrlIpS})h~ zfeKrI&HQod6^Fj_$B^~k*(Badg13*iW4V1?F1aBM65g&fKoE5KIH~nb0|P-(&fCx< z%6S99<*UIEW93wcq99AT3>EYWNf)I7DBc6)P9-Q=4c?Sr3jq13F<%X0>jg;ODh5mt zSV%FFKEMP))1flcl0niaDuCWPonACms*L`}`kgGy$1JQV>Z`G9_2L7pzQAMzNcu2I zgZ%!QMh&#h>Tdvbk$%D@;c349Udi&3~NH0syif`E*Czo-Vck3Y8n}a z-CxOiJz!jW*MJl_EaiGOGo?U7_QJH}3&Z-Q3zkI;i;0Z%9MptN>;U~sPi2A_C^dv(;A76$h^R@C(mPP-SM3M+zL_|{x+u@;)0 zhG#;1D&Dl`)-_eTnTpW5spV<-=@DZ6m0lZAaJMWU=(=hlc7ALw=l86R@@A>7zo?2b z7cFD*?~Dd*vbNOjfZ~|(#OjS>kolQ`;&~kzb7xdO$0-!)Wh$D3*b_v4K&Z0`DVgsh zKeJ;icmsv7?5zd3V!t}2K`~w5YGUq$!MdEW)QZgfyJOf2Ag=TorJ21G$Y+G8Eq(IB*g0vb6y%v zjR?Kf>5LPI%f&nk?9B|P9dsv_V#L#Df$yMWW7`{P_SyoLW;=MD+;)LA!SXWk0vLzu zeTR}EH}{Syu#rWm!8#C6;pT7w8>L}&mm~;VVF2bwv0OER>8)_iBEX`%bScn9T_=u@ z(t*4gsD*^_Vf8P@$2jbRE*kk|MK7;#9ALh+s&Iuxix%CEUPK?UH@KOp&x};kXi`jP zdV{06a+T~DWnJ$ao<(#`f=v87}jiL=HG7Fms5Bj zP5#glpTK-V$etS{*fjl$ywOf?RLTXA#7Wtdp5&SJZ2Oa0R4&62Li>hv``Kd^{k8ns z5_Pxxi6pFwnV;fM{-SRyU|{7}jpH_2`W?QK2CPyd%s;qaCBIoxic&qCgjWE<2ol)w zjd+@5^*|CIuwddzI%jb5Q{f@ZKF=4HrLSJ<)39EbI?SMp)&4#%tAPwhF3S9Fl+_#d z2pi6tFQ$CmJ>YN!U#CehBL(}!0ubm=qP{n2M&vIllTx<$Yw}oFSo6Vm2q1c<$PD

SQv1N}d;Dl5DhX ztn8?Im7_^AdHfN}s}vrqhMr0W*l~b2ufM-T?|={#69Zd+bG=x*WT>p|bkj7LyCnO$ zp;LGAy!jW(5V~g?4bf~P)SZxP`(gWNl6ax{9GD?I$&{rOR0@Q|Q2Gjf{NPd%22)B5 z8+MV5Xu*=+$N%>=kh|XOQ?qAx5T1Bd?}!)L0D>R-s?ctHZesQ7)kg`#Vv4m$Zb^rr zg>Ff((&}T<>H!W?wb=g@dSLr3*p5`1e`mE8VW$j)b@^-|!Zzreg5PnKM6O92Oe&t^4av z_m~S`D6BNnZo^|6LJwg<-yGRpWy+g3Yu>ZyzA=6jd8)leCq$Z&euLub8FAsdg*bl4 z@>vW%QA}XhlipX*YbTB8MK2elVje<^t#LF1&}e_`depU;K-7~t>W&RYw<^g&c%VX1 zoD-&uN2t34Sn?S{x8<1nL&+iKGK|6>O0XQwm%$43n5i}sHAla#>I$Xc%62J_veZF_ zCKR?q?6!3hcIe5PrN?OC)XG9@2qYQqu5{2wqQy>nQnzN%7HMB=KvWVx=-J zBB@OsJv~bZDQEHWu?!2yK%T;+yqvKOQ4UyU^#GQxj21oW)pOb{sAKetq<>Slx+Q0& zZ*#R4W6uvQVtaw?8T|KC>c)NSRLEQ*KvUJ9S%ag@b8 zl8$PRO1XQ-K2?;X35?EG0pXs?AW~IWikn$S>Li!1FU2?K2%N`I0!S3PK|-)=eBX z0il2CSk;#0Pa$^yQ?M4sJyFBcSQG)4Lt@|04LvZ8o}y!OS3iJ#%ODt7hoeUsw?lP= zPJivt!vN-JN&U1lbCSvX2u{nEaRQp3wD6zf(uEOXiwXRBazx|Av_oZyF za4?ueYM6l<>M{MY#X3=;cqHd$QIsy$_m@N3Ry2A9T@X%Gn4>!Ti?u$F0`)FI$KW?b zKX>ZX=~xhyc(>Li7}=(W8DH)GaPV~QfyrE;#Wr}>T{!X8xV{FvcJS7_5!a2%a$IBVY*aQN3s7 z?tq42oLtU8*i@`hhr@>x;I@Af2Edg71Ty?N&3*f)YREb41jT-DZZTp|2voWjO#o?Tz6uR?kYYY6Mm1=CFj1wt^3X?<^943tgMKlU z`T(SJnH<3G>#eT|gexDYE-mmSQMr5#jF-_;^yl^Ukx0py-_vLfr0eYu4)cV@vfB6^ zRs^kBn;grvxf)~lczg`pl*e%myWk{@iv#tz?3{*4_)>Zm`${Hvj1rGy)3C942IFU$ zm2|t}<4apKBUUON4^lqFSQznZ@JO80cNTmeXfU(abQ7Lp*q^W_OS9qyPP>TXXXRUo zx!%f>&|>Zh1UoII9*BwKei&OZnJwzl)1Fb-{uz;uwSyIa)VCoEThcg6@-K{w$z&+4 z+4+u6&|6N=USRkP*ZvtZBs0_l9@DNC{@=DcQovFOJk+pZj~gg)pfMmYYNF)K3Por< z=P8WDQKP}5cq~K-WzCcj@wke&(zikyW+Bv73IMUCXopygnc-7o-VU)aAGk?6(zS=o zJ}{P;Wj8T_v)&olS8^9`wdo4#g+j&cvTFlM9WbbFb(cyhGoTp7q*98K4?f{2?|>%zi&*P-@g}bQYm{cC64Ngl-ng`cQ@`YZ02FeE33!6$?RVQwDenB|2wJ z0mFUDYjnl_%oOQbq&j^;Bjv4Y)=0p1*h@(%AIt=-iyX^Fb;^Bqp6BVO*K%x`+E{Fo z>HH2hJpi4fCD^C%=-z}^TBZ}06kabl677{(^ew~Cl)}nmG*P1R5_(=F{XmTDvxbUt z35BoSgzz?52XP5r1Q=@xgAOf&E)Nlk|5cLNyF#Kn*OK4!+Hc3L!|nvNh4ANnpOh2a zJSc40vgQ8hiOnSPIQ41=ZIBuxG~cdOqvU^%&O2esO=qljvLoj9JCZ&WG@GFaCDfMZ zH!sq1HSrv7LnB@IygFXx0XRbR1bwU}^#Y7{)jC73nu)!)8Pc%UDV;o$RZqiV^00LCmG+@@mmqoEZ(B+|;V85X2|PWK4IX3K0~?cf}> zmLLF_If~G+oOj`nc={x4Q_5U*rp4Ooz^l4nwLD)!+GH8EpF>n99uphUv7;CuSC&QGHbnjso2|L@i z4f)el2`5wFF>ut+#~%-w=HsO(zj6luJ?1+;MH!E+c|t{*7p=QSRb9>SFN{v5ad9TK zQal}k!5+$YN>({Y8geAjsxd|#jrMikzd<=mRtwx#@|?@&XE(qc5BU|k23@^wN&{=_ zxS;}w2Ge%rzdz*4l3mH3%idiSEcwmyRKKw0A=rn%i6Yy#!}pI`SS#3}&I5m%)?6+lum%{keaDuZeAZi&p~Rjyf=e$BOu(Q&Acsq^5E5mK{J#7a2$ohhWA?> zLFnxyrj3@#kTfv(aKcgUEM8(vO6sM})Ihi5(_g^933spn+tUai)pr4Xi+kPKE}%R#%qKai4Z(>EKNWNH#);SW+#yj? zGbDG;Ov+?(U6e7>>F<#VMqIoOC&6}4p3bz0ICu&GUqpA&cL=wMFk@)(wInj)JA zXY&07_xy>O;v)etoWW%8Ubw#pvxRDgAiR#2K3gfwT>R=iWdMq|7tr%LeDj?lx31UV&#ae`6G+!*d07@Cvz(JGE>;PLFCZBir4@GYYb z%_*iRW6w3!i)Fuz!z1iOoia8JtO>sDC|3wSP6JD*>;$^4eB=bZrSt>jZb!E0<7Zf@ zE3o5>l~TS=4k~3P+a}_m3T8@ai*Z*gb&Zn)+nm9Mav1EnZDE( zVZi|b0jnRUz@A=93=DR#Neb%Uzs|>bRSJ|d#Iy-(O_)&B;Dak*v9*{q8{Np>9}7Sn z>e@KXQ9xA8(d`Fv)}ll~vPCk+e+V=)ITpu26}}JuqZ;riKp)iubhsyk;@A&mY#QWqI@wuhS1D9=@ts8_05IX*_*Uf7`&=WF3JJy%AZ+bQCQUJQF5cJ#0uLF zQDZjA#+xQMkABCa-&s~JK3+Z9m?OPAi5wM2Ty*`hSoUt#hhZ%ZuSeT%_v4!nM}30uLp z;p}XZjWy;hc-&%UjfE3?bmpKmY8@4Usz~#!f6)u+UEI zr;UVIopHgRL$Wsxw5(DCZjFA(4g-9D zb*_PQ#n(Lza=8|MV`E8Ie2x0!!Zt>^MX;ZWM8ae;_S0SK21`-+k&>qO$zOa0fVm8+ zcKrrOqaa%81UybTcq}Wp^qVQlhcE{mS&xU{@J)>SWUUY5)$sZvq%?w!iO#|V@SBD< zNKt5xuJQaK~cJA-6+H00G5b0p0HDA zl*DDCg+~+- z6g$R-V(-yNG#ZU!ud%nNi6$}ju8B2@H8$*Blh_iKV2`54-j&#UK@pLTf^^uK-+N~3 z?CdQ6`{v%~-Y4qt;kReb_nev8*>>hkljRSPa)#dbOW8~48Ff}~C_4Qpk$d1T(n39Q zTqDtBk}~uD8RM0=+Q8hNLic88GEJA=K-OyXHzceoa@`TCG)sZILEjbD8OzHZwJ}Co z8`u{lp1ycRSe}Q-3+g!^! z{uiz7UV4-zW|P2@e-mwYL>58b8G(6F5g10XPQRr!ykK-J?V2ufCXQIvTHj4Rmc?@9 zd*HZPSJRM>_0kq-J?HKRGhQ@j!Kbg7=IQUIC6RiP?u=xvpaVwCY4;Vj&6GVT*uXqV zYa;^V@5o6bI^l1vAe1*WgN!h+XlrPWS*>E( z>f9&k=A}W=w5M_{bzDlwL(Zf_(2!kNnOv%rksj2 zO)=&c0PY}vadw{Ino1BFH_$-{hC!$xH~*bo>OTOzOYTc|>RwY-j`HdGKf7t|j4Zh@ zOvWe<{f=Cyl|Y@cna}473OW+>qWW8PXcDx(W^!q%QE%w{w5b#151n=A#cFinWZQ{J z6#KDQKKx)1m^Aw=zafurxXG%0%=$M}iw zQdptBa+3=gQQfHxqlFU~-!6m7cahr-bHed1XuQIT$~hfd}caV;KAD5g;xy z9T0Huea2#yf)l*8IKfBE5BULOlptX`IAr+)MhAod!$z7fOs!;ez;NvE;`cs1fMw%I z){Vx`Sw(1Ljn~qoO@sM*gpMv`F!x=U+1ROd3XWk~U7xH8=roNZw_Qq zLG^dsgKKo^z=2?Bs@>rY>YV*IM80~J6!}|!ad)~`Xp_bLP!q1H(fy zmTwZZdYLdRIeFT43G88nhDhe^ZpOY&?1DTl>;>o>EX`$kT} zp)%dDX0hZ5#NjX=l?m4*&3dZOuLIH{Q&Njx4LUu(W|R=>E~!}VKO~9!cxYISJ@5hG z9hTs&TL~f7ar6!5v04x1?}juif23teZKpg>R>;7 zsk|QHi2cvt^DhpyQ$;HjD6-R2huOX8(9I;f&m3w`wiFa+2AlmjD%n9fj-=b3z%YE) zP7STWz3s5(35JEp%j`YHbM$!2gmpU25rsl`wB=ZO^s@aJ4RmAF0A22FCJM~G>If0O zXG(TT0#g$QTl_)Dbso6<&vqGd&ph*mR+IN79J!zgxLcZH{*o+-dOcqm9?=x9HC1WF zjnZk&z~M0GmH2plO}J?$doMbl#fJ=UqNl0#a@c`R#t=x-B-*#PDPG( z!V6#nE8#O#Ac^`?e@wVt)~Z+#XEuVR{<@}TOom!9hl2Q8F3M?k7XMb#455PB&_a)? zDf~FxyytPWk0Re7?%^=AX0Bs6=JFTv75z>MF=MFc8n~j-k7>X>hMWsDJ58@R#)DTfHSwQ)bhU;MOOgy6f1{$E% zDTm*64E5cjeoJzBd3lY8fq0CfAw{W;pla=)S7dra_hAvUxE=$&R6W8G{~;{12bYf) zrRQ)*^7XaQ)sE;w1ltQQL1n%C+Im4C_}zKE-MW z!DV-4LXjeJ)7f;^w2`VbE&rb5!>P{%NWs8g`5cJs=^wPqh|HLB(g3u8x z#d@F$i+3ES%Ii#x>f2aS%;cON5X?R$z_A`eQHCp}&E@En5Rs2_rCJ+u@1LHULabD)awNy6(Nc6hKP+W3PCG-Y zn-YNFOc29dleFw&MvXww{yMqD}{iZBGM~CDX1~u5}jYFqDv3Eq(r2D)@DOp7*xI zi*4R?_8Y@;XHLuYt5~>UV8*^RR0<#&tD9aYiPpACm6!6~Q-cYqY0;ZW{-$QuMgdkS zIrTGuiasNe#d*D2WG7{9CCdI+Cb$+X;_Xtuek74s<2FI47P&R$I!X1tCcxYe!>I*+ zl<%Wd@Cy09mgW z&(h&30!x)R9~lKATkc8!}l>f+Jk6U$Ir|;5fud8&O|-=V+l9#E|2t5yU>pQ)DJ5 ztw-~}Otd`f8rY8T{pT8j&@$4@h;Y=yN4C!p`ui(R_Q*yFCIyDIM_hA=;qesv7?(6M6n*>zh6i34%o!Vbw z(3CA4-eusxAPCVo8sPSL5j9p-H+UM= zF7$<-~Rji7Kp5t4WTjGGUwSSw7Pljl*7e5{b`9un=@ zEU(ZG?qt8MVbPn8B&#K_B;SXSZ>$-~9M`|e!Q3|3k0i?0Sb$9*LpN?*UlmoeD#Ktz z8j^yNf3#Q)*`4!^7_skeFcrvHnb)ceqoNx%S_GSv95IHRn5CR*hVh$-G6K_h>-F}1cUzVr#69uadQyemRusTlf14hBG>Axgd#!uvinH2pI>hal! zZ}2fbL+DFP39VP40E`wo$YUtSFLYuD1bH|v4_6ts8K!Co#|To^{byb<2uZ>Z_jeb(BdST#tB7R4S6FUc)HC9GN%YY~STuXK<=kCL%1y}}hoqP0 zR~ajL$22UPMX1Aahnc~|u4I7?{fF4FEF7zT_6}Jz?xr?-)zYrczc_Ikl)6NbJ|oSe zrhqwIx?TS3Z*HI2b<*NNE&T|`y@ zwO(TIQA>f{#I44HSlaLrQ?>6N=|lJ0I0--2Q`h&+;4vRxx>JW5I6Ys7FKn~IF_kDN z3Hg+HlG{Rr5zImjAYVq(MEXMcd~Hy==?8^P3R(mbrNKvwb4MTFlS0r(RuGoxq?(wI zHAjPG#f$=4Fv#YlFD)3HiF~BA7NC4u@X>hsQA4b1AObhT$&+@KrYG@^5?vn>vUP&+ zcxs*C+hQpV899YD?% z*4nlkxuJsd@Q_jRJ}RKumeZSu3x#5}m!JWMz1Y$KYs3YELt-|=I^qq}Rm?q*+o&>UjDG_a8-}lQ{@7pf$9?29KTETW zRGm-G$xyiv@`swQe(+99o&u3h5AhxAXWW;h!YporFO=8ibt2ckRJcfFyT}@boy(3~ z+R)#cpsxKE6W?O>iN~_7 zk`fNc80;op*qo+^q>Z13tqIH!g8ijiDJ%Ma0NKL)b@Zq-sqqyZ9WSM14mtKeNb@7*zt|Tr!(b~>hn)(q-_jQ^l zvcMWUu&r}@DVCH+jZY8afT?w71()JmrLEkzgtNvvPhC4RuLOSlzlI<*7cRLGGgDb% z{nG695bWn^PKk;A511b#Y9gmf(#x_YjuGh%w{CSKYNG1A#11#jo)*yw6ICFt?HM z5{{agQ-G~`2@k}g27t8Z{3SKuMoLwuMDE0u6J22NpsoU8NKiMy+s(zk6$l!n33NpZ1$<; zIDiwh+#hfQmj+AHI1T&FjJ1C$h3I2F{G`){Wm0@~I(}hzfZea-ppKq$@ckRUXqoKC zxC>kxxCZL~m3CTY^09NGhF#lXxqij^EL^zIchJYaM#d)P_YwOVC^Txxl9NmF2n1?x zc>Z(Z?usl5d)n%o#q2?xZDctb|~|-y%M{>Ity$t_SLqC`DN; z-g;7Mo18F9Udptnp(2;0n1--#h_sbY5#o*RNRfYGn~i=vV0JW?l;(^@w*ehhD8_O< zlcW&osd?m}n!qQpq4UR*uurY#D=DRH{yXfR*?O*HBxx|pby|c$y~I^RWlei+t9sd> zI$utn90RKt>M3bNA?iJ(=NBVr3H+vFsyV6Y$j7h#+<0X1iOyw2Z%C8iI~yqzeB0N0 z@->beflu*$LY{J1wi0Vz;q-7=s@sb7BP6*qs$M<@I)fIN^}bFc1QPrhdeO*YClgi~ zpn&Y?BdYcI0~6#l6H=^|qfInG=}k=#>J7Xp2s-*8oG?SM8V*VRaEmhhP=AlBGIRi- z8g}sC+dvH=*K>18qI#zZNr*}WiG@6bP`;i$%b?YS#G9JuhFq&mLio0rhW3IaEw2_8 z+)NxNZN{Tif!$!leiC_{7}=zy&mDasyDc0~i+Vx@wA3PRIM6Igz&)GW5H;L@g21+2*H{9qq z&7S`RN#1D4&LOFKWJsuau--%RtB%bk~a)19F@xcH!TNQI>h;eT-nN zY7afh&E)ZQ_^parf4sDwa`hQSmhMSrj=ZGDNCGY>9%U(OCSJBkjI zc&(kX=mI&#qz~QTA>?aUr$TuO725SCc7G=$GfLG7Aa@QEs2oC8vqqyVm1EHFdt)R* z!tZr4YsoPew_@KJxpSxgU(y=07DCnO@-~0n zgRlQe@n_s+@Cln)3CI)nma|#kru_ry#mbM+ z2a;s-UzA_Rc)7J)93R&o8|^eJ;t`beyd_xY<*vMrPVrmPev94HL+&H@e1P|B2^q)k zQqosmu%3>;MGH1EIE^J(Q%1aYk9!bYhYkWQBkgyV%H8D}+`w0TjfSpX6%8+{&4+Jw zmPULB{>t;~)?JmP-5N_ff(ad45x(xlk}Ydee|Ao~D8EtjJ(Xr@^2)Jbv~*SZ2*3`b zHB6ZEUP+>FSEnB$GNnJvR#ulx=>om3?nmJYZ!@VO^hT1$s&|+Q*h~wS(5&#%C$zQt zxACP=gjzv`K%l#n{KTmtm+x*$32Q%x&4g1mhXNy#zdAIFmPnGomXf91(k03CabR>| z56KAV(GdnH=Qtq%UW!&5p;@41m|iCJ?6CA*YO1e^r$rVJa=yrA@{{H300L`CMsrkn1=($BlOWVmN~{7R zdlSCVQeuuf$;+0oIdaSchNqF0pAu=?n*Ah6W3b1fwC&^|$5@_0clRe}+vhXl?Ia5!zE%xE6JPZCYqlO^i9*XkX}$H!0Wu%nJCq;g`?+{~?r{Lf>+VJv*Zs-(>FHLx zc1xt(zG)VA%W^w?n9!5v-8=n_H$9rd4^a?xpOfU+U}DRW$|+S#_PV*N8TrzRK_?xK z8J=zK-E0D^@bHfLQE~gd;LxA!qG9F)@(Wxx7z?` zrG0Ef%v6~SUo*pqW#4|)_E9L}m}3aO%~T%TlsUZ;Kdxn}B#*>mu%Y-ThNu}Ek#UHz zt#(U)7=qQ~!i@;*yUK1nw^m}Y(yyg?hUi{tpAkV{NYVr&y4U2N1Z+-Mn&?41G z9g2|H^V^4$me2rOwJU)+_paa)mIIbTkB)=g(-{nP0+%mrAGdB{^%AfRo*6^g+#sm7 z7Yu}C^|X@6#|!@$V;lOWB;9UE$4v|-GG9t6&O}Y5-{M}T_}dck^z%Cj*EVQ|I;n;| zFWQDpJ$Eh`8y*`SuD)YtJ#Yp!#=#aFMU||@V8Ey>g!CKp|iYBaK8e#d`C{Xc4X^l-eU_IERc6!zv;m42t zVDQ1xIl&cB1U#V$%ZQpt_cM5%ryFwjtXs$WO)YdE)@a>%4VpRv{m$}ciZ-3C?(5*% z?`M2-rcB>Q#5K@L%m%Ley!6it7O6jddROa`hr1=|+-uq#g`07dIfZ=+`{9ZeF<44J z!hGs;EQD5S#_jE2$O`4h-QI3!&Xc6Yjm>Ud70fX&Q@T;g-N}$Os1|Yw9`4z>b3}fF zt57pTY3XEvqxQ~}(^*U`SSdyDiR$r<(oUUL2>52mA^%z&!58MG(#hB;Sc^AmZlLMX&F~@XS-mIz_i8{i1lh-z zrb$OiJ7kK+v_P3^@YQ(w@uZCS!r*Ny2E&tmeLzx(DJcktUn>w2r>TH|sZ!PhjA*wq zRn9*zifxiv7bUA={xb|llG~OAE`}|ZRXO3x+v@%6fkLBBfhQ%Xvh_q<#)ROE#Kgq3 z1n%vRP?Jy`Ij0_|)V!8F2Ry4xC>@IfWREIB6(VtA20>^J4#=f3`r{uok{;cXnQ?XQ z4`RzOU~ZhsI0lzv9}^bmZbUm_wl^y`X3~T`gti)jDBE((cmg`%r3{8Dy?(u}jM7AM z%GS-4A2jJq>18THW>tW!g&5|yShW-U6ARL%!7l|@W2mG`0T2l%lB(4f;`EeXnk zkSYWpi;@mn&rOxhLJtaJnCam1z417zsC%a%~412kUP|BY)HI(Bje*L8!^Bj8Z6+o4l7LnU(oEdxn zd~B?|7Rb%sPP!TppRWLECEV@J8^hV0i_U<}gPyeL&D1ih{hk)oK)WHZ__G5i4H=?b z5<|rE`cGg1gNlmsdV6^}>cHk`j>F^KtfyF$ZY4$AV-XE z9w)^VidYXuUejSQW(?64V)>G6thOj3A)Kl{+B}GlC(@s39wUaa}?CH zHSg*6fl_%U$7PcK9Ob=ik5vH3qz8A8`uydgkAn$AYjMc8?(Xg_=UkDW2R1)cCW?xy zy&9YzD)b}m@PIlC|LF#g!P2zdjWXA^N3R{8&3|g_be+_i^K>XFIl2VNG9tMWwl@%AJrCV+pizvUzKIrE9-&xNune0 zhMClycM$ri+TkFt9vmZgP2OKOLPyFrc}-%zfVGW@@o@qLmzPiSqPAh=x;M-N9I-k%-4~y~ zI=MxO{6)?L@>w<7k>D#|)S4F`^N+UcL0R_eJol47N5Oz%K8O* z3rALX|ASD~4R_hCI_RaQ#=7jX^rX zmI8IKi z4`R?rke?9|rU@@6lQhzDT+YtaKOr9y=X5tj9zXYTPysdIfv0y`B@Q(Z*D|j5oRW>UQ!L<~|ml!8C<1u-ty3YaV z6Xw5TLvY+p2(-8OXaTbt8lsjTmQ^dnL8$16V>AR|!BjR?b|Zc)`m9hi?-hKVPf?3E z#YuxTnm;xbEHbOftir7{l0Vjnu*bS$Y}y^1)uoN2%PfPT0efm{Hkq&u<(TL@Mpmp@ zv-#%Do3|`-FHn;`bstn?ow7~}G#{_rg#J@447i?lgD&<3Epg@NXAMEsQW!P}T)Ji4 zQ`NwEOGjTvjvqhX@)bX<=o!*_k_gp4CTDfRi{a^HgH3WVj3Vd=CCdB)Ma(o@pC%BE ze~lfM8#~`@MacUNj{U(bkA}y~c10p$TJt`{eZh#Xlp%4ic@X{9@tP`(BgE6Mv4QM~mG`u=7x$5W+u}x?1y$&=2&8naFvT zOfz$gSpH}BGmH$We*;zRGR8MW1+6yv1P+013I*T5T;L*1Xo_++vEFEO%S7$lSY@%f z-8@rD`rJj$YC1Q1W~DJEDBme=M2<0lI^QBG!rVMA6|BsD%QrGkisEnXiB!7C_s=D~ zlXvQ%yeFmI!!E-7>8j>J%H=Bp@7LEuMYU3U8}zNdrDYFC*fR09m#h#N!n;08ZH`Ee{iAQ;oK3Cy zfl9pq7zutt!hU>ya=hxs8`6y)f+`V8|Ld4A!Pr6e4-%EzJ!a+y^@feJzE?qb9-b^x zk$E+e=i6c^Vu3w&@0dNdAl^#@^YIs>wc0UTVD6fihcqeexauhV4i$>K_octZPWdeU zIQWR_pYTL2uW9o7u~~A`)owIq#=6(0yy_D=(gTMDwvd_XPfJsN-|l3wb*B8>gI6)l zjm;(ubtCtU&mM=N;`hi}^*dYqFMgze`=a>QGbrkOJfR_*yG%FRni(>_Xyvo`I|~Gi zPFG+rB0NC^z3181z;!ar4ukCx*4tpEqX}+ogY}w!&2G`u!oTMsb{Hz!i(Iz-{BL6x zN#gR&`+|JVvGiyM99~$Da6|{Zi{lv4MdTwR!coUC$1tK5-q>TSjUgk3f=X@3qRG4g z_p``rj172+Mp}+pV zbOd@B&fr~zKe>!|iQX^epW>7Zyc?Qpf>3!~ma{>@3V4GiFQ}gkw)mURVJ3_9t6M!2s$ia1;&XeN;tiS&!a3kehBEnShd4G%U zLIs?c#m-4*9@@T``)Ata=Q<Zez@YWV)7fcsTpGu0vqWf(5c`mNQ;UbFbD~Vil?wX?;#2Sgf!Q~R?yA}`8ILw; zC=svMDeX%<#nD3l=?0vZgvE|%JvtIcTF+gTsIm)3^L{QpA-7rhlpe7V)_O5S)=CD=Q}-MXN}!=)pIZtZnw-U2oTKd0%nHld^n|URU3&iy_>C-$SECREG4IgOvDSE? zPV+>RaOVzLs)_^KSqmP|@E?3iTKr>7YHKuq^p>L3A#jZr2TeAo-db*PQK*Q29 z)e-FRh6dtON{Vy?EVlmE;x4fCK}Zlix6-p6QS4c)m8ziHwdHRn*dkG;dgzPqDdq6k zg_EeY!UVTF_zrNoOnHXybY}Q6StXiUFYvdR{}=;YY8KRrw8r+@^NGEW%QawKGEA?S z+Q})~m$YhCRcA27X4z&S3FfP(2&BLY!mu82k{2Vdk%U~zpR-&!5!9BDKQ%G_*vmow zXj-B~3F?pKLl>neBy4(49ztk+a;gIFv0~7R*Rf;AUa(BE2$Okp?6KMs5vB=x?UP8d zpe%rtTAEHW28*(5w(b?Ih1|^oO)?i)z_Q`cT&ap`!n_I|D|-*rj)OZrki?baz=Z(yqzxJGP{Q44 zlVMQy`rNYoHgdzH=b1qC=Fc{g(Srp?Ly9|9#x_Ds<^jdpsaQ)Zb|R08{phghZBe0` zF#4BIQ^AVTfx*u!t8((8S|WKownR>kAL%V_hF~QV;E{j``pZLTfU>_4v}M+r5|mRN z8clV`v;J&W8eL=R$*^@(`D)hCxBQs1>~k0%`jhA^n;xg5Dy5X(7O?5jbY+O7l*oG| zeUpYZ-Z81Dn;R?v`U$5v`@G740Zz8qO)J*ovSM9$!R%084;4{b*v%wsS+wk7q|a83 z=8m3;QliOpVQ|>rLVGG0u1pStMT^ zvE_ZJ>oH%{HFIe!+i=*dm0qKyr;{h=GvhGVQ^Dx(EHmaULr3<$6kyqXr8SE`b4DMu zPYYYz)~xqFh6?*cJJ#~OHcGve+>TFW@IAXSl&#(EgmF2O&Iv4re5>%|`lvwiRBPR~ zzMZxzFGBmHc%OLh7cY`zf4*nf9$xKpx`0IL+}zGf@W(ucsz+Tqhw=5{7%SE}D^PA% z?OeWbFdJi(oj28Oj8D2ay&u*Xt|{JGj)Ocpia`(b?l9DZPZ4?;TG zhecdiwoG{k36gyqSf#)E!!bd0A`NC7ehs%9k7di*bKBDt*!?w)$6VU42YHx`u&4

jvel#y2f&=>*CY$h+tNSRx=gj~rJ@eS@VYDI4bIh;3EjL}%y(JPT3tDzwXeTlVs zK?YBw{zI7Uixu)aEglI0vz?%_tq-nR(rsB_u;z|lN2++XZ~P#v3`&PdR++&-G7n*S z`ART9%e2~ng-3uL6}EoavSknNRBf_sS&O&&&Nt5c{}$B+ac0GswQHkJue~RC=Q*P8 zon{IG9Y@CBsoJI3dt)oXK|w)V77rW<-XwDXht^CpM~_vxhof6@1yDiIg50cKh7|Ue zOGj`cJt2eehVDk%9rw&?l!QUU^(;FzLe?8fM6#+h&Uvh~{T=6`{uf=x_ zS_rYI0V$Ci(*;`Q-M#9@#YpbA*v9FjfUtCl<6gFXHe?lO}J#c(*5`A(Itif%=Y{$;NJ5>1ljMxnup#2x##*o*k3vxN1mDd>z(P9h! zdC6G&CzBCk6+F{L8?6J9$EjB()vUzk7jP$hIOC{f9r~sRi zEC6Vp7@G%mwpaWP=@*Zs9fC&;Wv}56-G7g~L@9nPUxzcBH`lk?HN#|#{yb>L>&nGf zF5(d$L*;{io)4i~kq-)5u(z9$yJwT0P}hGhsP4|6XaU%F6+$HZ-{$Jt`=8&CsYjs=dv`eJ4bxwdOZKN>!#A<=LSQ=)C@Z1oc&$o-2XC{Rp80oF7~ zel|A=AXivlj}|s|j1_dh4Ors$b*CS%V+B$7@#BI0rD*!GD*dID48vB$VXA~*c!?o& zUBb^yPNweT6_+q7vOG<~5vCUIZj5PLB=^_!qvSBZ3*eoVyt%`oAo)U_GYV6 zsYc%L=GVlEKcG+OBrS@NhSi!I@Dy&-d-a&S*GY*#jvX`RZUX2eEd1DH+__(utv0aS zA}n4vRPT>q*c$v?w{A>gMwZ3u)iXVG2J#kBIbDj9Eo>8%Ik$}y10ryg=rt${xt+n` z6&Z08*)k3obal*+S3_~e&ZkMAnjq8_U!{!FGoWqppdj-2jPa8dy#IwP zTn;dN`^>$i3^w65ZEKY2@r?XE>IlY5SmSj7zE-l`{78&1QGH*12Mxsq{kH%eXAcQXRV>KDcZbIaB2l{p6=>C(n{w8b9Y8i5;FG(L%@B!IouF!7ytD;2* zABFDzSduu zoZ>&v=G5Q%Sj+vXb~VsE`Ig-`vSj?9YCG3bLEabboO}pvlV67x6<`$D_C{c@%aYl5 zr}h-7P~Okxy|7rZZT17iD<*DZUbd_fLcwWO6-LGJ??h@1-u$K5$F;pPraRZvX z5spj%`mc}zsNWsSKJVSqzIOE{ZAx7uXROz6#+&;gFlQNLW9Z3 z`aSgzYT#agtrGMZSUt75XLq3rK_dTlU&ZGi6eLKJ!0=G&{SPT@0jDUA*j<8;+{ZYn zGL6ilI-rF@l4m>luQV!{s{s%saf*iCSR5wnTf zfMTmMELCo;FjdSu($5yNru5cuvJI9eMLyCSiN=`~ULzaW7*Di(sGT-aD4lj|TRste zG0s>%q)YLuup5ezm_jYVN-L!W#!pNyU4WOUjTFEz|Bn3V*TZrGB23Mr!fygSz+4wh z{4*M$letwv<^a30(Gb;y;b|n@*bqYWYC&VIZkPh%YwTcDRkO@TA1w?x2Ld*IEXaNF zYaI8j-Pf*7JjMmJLU6}&5dy4oc=&>$i^J(&DHgq7)p9~B1KLpLP+P;kGnVtLo z*^Dopot@w2rb*2(>l;g}qSA>Gyrm&SWykgNeUyRsYI6E9*N98$P@x284AglVK|6l& z!7W2t3+()n#9`ZN7=d5G$R=?ZfghTz9agF$CglqC9x-x+kJX?kM9U((Xx6YQ3cV5L zN2h)N!+Aoi_pZx`;ibSZ%JDt7ArPBN&g)sM5aWxlTW>T~dxTZ5uV!6sCsWxxDBb5x zvt0DpBOP;1AlL*v0q^^wLWM;!bUhP3d=>`1sZar%^79Cd55IgY_;Pn4Bocqm`yXqd z(ZGR$K|z6*M_^uSSrjIgXrn6~YPosO7O{q&FvrbB2R7+D~ zwlFt_#VFf#SC^ff$XPUQ%ndaqF}js5$rF|DN`as8Og#=W!|h)#-jU(~BC>XuXnV61 zjTV@tTArr)N*Yr>dJK#b7>X2X4MS!^cykZXDF*CJ^kgv@gBL2G*4`DL{Mj^FhG8v3jttmauB=o%L6k!?8@nWlRUDkYqv`dTRjA2p>1wq0Bo=j z0489z*XYwMun)FwwQI@PW%Zu_zf%MGD^@h@@tB|FT%@8k!^=wk@OH>Gs$+_@80*((ytqYyJpnR^xeEyg;%&2Ipt1 zhwfeFe8yUea4an9Mq%*(dt|}Y(Zpf3lc504!{vEYl75>Rg(|v%kaM5cyR1(nGa$4A zW~D)6)6a_K7=@q6)n&ze&XC}Waw1mDkB~u1`movrlMyA`ofxEAtfU-oGQ3+$4N$1&F1OchSYU)ia_FkCyVbUeOeXQMP^_PynkUWl2N2nSvf&y%H6Ipgtd zxrxiE&}eszg9L1u)sK+GN;cqOd%dc#tjymwYBRyNJHrNRej}6Aw80Q+7H)ItY&HI6 zfDZ|i-v@$XmxqbD2L*g!x%>e;Ab@Ql3PTCmDB=UJ>_c)Xw+%Lx1PR?$RD26rX`_XT zg-OHhu(@Qb9fTf}kup|fWiS3b$|b5xOI>%6@apCihLbrmV+x&vywHp-BC{x?Z7R7O zWrO`fo;1(k_j>EE=-s*E1)~8tC${U|{qz~CUce{a`mvgjPQTr*LnDc~+mMz5ElAxs zbm$>MGP=o8(~lc$hY2A~*t&2Xcafa$Y{GU#Wpk8#WxcwV|?A)amQ)4!4!Q2&x~GA+fW&0d_HrG;f@E|f$#1;9=S$=kS4>c-A0pp^gj-Y$5C~q! zVGRQa;+AUZ%9Zz!v(AdBIYUvn%}vzNxnM6fC1$i+y_!_NNwGG2ehzqRqzu_F%DtnkP!h zHd-rAO45Gex#gMzBT8>_FKbmYFRW_BuO+TRd5%DL@-XYuK;h*udbNV3n^IQ%{1t3E zFV^ZncMAJfP2POy5ChOUGf$0u4qA6QDvd5qpyB-#DYPudRHE+vwuZ}}903}CTzY6{ zcnZYdF;?S|QIR7?b`YJl7wjhmSN_e|HWoDZ>WGJZTD6)3H?O5J+D0*ZvbB*UORGe| z8q;(wX||CfVG_U|z%Wp+nf=I|DnORuNzy!gy&oKXE&! z%AEVb60RpulUeys-~)CT>gKp@Ev6=orB)hgIYwrIowQ=vMvN$pYK|BI#t+s?=<2ZUkr*#$D5xgqfOw@yB_hVH}5JKf1k_%gRf~`fO zt!>qUL$++$P`BJ`%gA#*k;UYKR$iT_5tjwtEFFt0pppEsRJbqC(&Jspk2=j0TZ#DF zLglswfz!$+Y~5l50J~Kdn7!7272^EWFTebCC5AW_S&G&6x@-$e&v!HZx~kL@fDX)Q z=3`L;#+NX-+H_|!LVuF`xtOSlOeO&Zd=GUr@zls*O!mVXe3D>Y=G^ybDbH?NOeN`8(f7NM*?Mez?$+{uFlFG4cJ68mjANWptoXu z-)K#Wsf1KB>-8lA6~@P@B#OK5JK$sTSru4Bq#w*`2+b#df|nrsDnj1y5b}T*(!}OB z0kVGHQAc>xp*GhGKVvl}Tz)pVfhECrfswoD*D$%-fuAlg`mVI|K2EI(nA;eC?Rr0r zryavn0|UQk(V{|a)Oei6(~jZc8f881&jLH}hJP0u`r*m;*Jn9Qn=U^2$l=4it?#t) z$)64gk%BfIk(wBZsnm{yc`3K%=SD8Syy06%t}x!@YFk+@n4jqVrG&4jt&#Ekgzcr$ zF0G+r!3xySOE5l~yXkcVp(lJRsI~q*agE~3dGvd=edfM9f=NRri(S3ek~+%W1Ejh< zhCFUdkAM4e@O^2n>1(UVeK0?mUiYB_$db_8$e3umss%zj1%|#_2Oq!$PrK^ygeS=s zgZ^eaY;YEOeX_v(vcfPxr_Gc@Lx|wpbtQx5!rZ|0z)Va%djA0yHEkcJG~1!DO+WT2~V9WP>^VK~~v7 zs4yY5?65K9hFy~AS7K{pR(wM`*(KSUytY_Fn(QhPkiGEe(VkkIJp#4_OoN9dSf)z< zPSS}4-qRie43=w-Xr4b_gncTJ2(Wl!MOaT*@&{#~gJT2@_-TZEUvv~vyGzV@22%Tl zSO>RKDSrTBc6sXG30AYn9z83SY4GW}1nBlts0S{ft$MqZ8NkCX5>9Lu>#k%BU-QRWNtAi~0F*l_6+Xn2TPJvE3#hWs5+_?d8cM-0q^9H4TXlr*A(+0@*MfZr6MDj7?f{OqSl-PON$l?>VJrtG@iR@gJgSs{ZxsC!))c!&XXorU zwcjt{x$qlWt9?^-2z?d zX?p+uc#OCA$f-ck{aJT;SnT_51+6;%;c>vJi{roAclWD0R{dpk=6v!4k`mq)IS(@1 zDw$;C)UEA&2G^Xq5>+x!)c26$Rl6nI;Decu`mhQ2C2zD#J&eTmH@&ZmOXPfcDqL^* z-SA%}pV|WN#3brZr2)<8>WMXnGr^wdgkY z@vJ0CXQ+(J#`Gg$90psilFk$?9|Eh6aZh};*EnK6t?Mn|+2QZ|M#+-&I@0%ArX=}K zwE*inX$63EqeQlQrNC`@+I95-pdV4TkrmqYIOEwbby4 z*Wuw{O~hV5G43}qj=_o_#Hr!y=P#Jwh`#CPnlR+D^RO;jAX>R^bOutr^S~%d%*$OE zGIYiGT~2JAp^JoJD783r!jHuOY%CO~4MDd`w8W9Rtztsm-Cft=`0@4Y^Bo>IT&0(-;yWdNuXy{J{qW&TC7BnDUY%-{Plya=Oqe+Xa%*P!d*Fm*a>9 zcoWCbqh2AIWAq3|)CjYMILZIwXz}aV(c7kcuoT{o(e{`P0z=;Hy{)L&Rmon@)b2Bj zWtHYX#j+|3+KK(lC17GZC2Q}c2LDGeEVj;Qo;xM;$4x7Tf@M`sSW(R;^pWs;ua&rN zmj7JQ3VabunS~PsYYo80;TNGT*-AB4%({zk3@}>ZtAf6sZ8A1E`AyaZ(XGy*~H~|1Hu*f5&TenkTN{Z9Gel zXP&TjU~1sJ85;F3J%0D8;5MS?GI;au%+#b$gr~J29OH}r8$?*O$jt3E+?_>V>A|sh zyWn1zQ-MWXYKW4fyfnPs?wXcQXVg6Q{WQ(XNaSaX3+b_0;LE(Hxe;OUuh0w~t8yHt z&cfg8qK+pzRuNW;oRdG|j_jDE0)7%!o8P&c!p=jbU@e>}y5gZhe;zXPDpEwRF2IJ>^V7MZih4{zM3%1km_ob1-_8i zNDB?C0L9)`L4O%I4I}a8H4N2_fl~_lv5gnyc+4Z@v<@Lua4*b&BP9O$+_}4%bddad47cbFDE3GuiY;03`Mfch_CK$eI(cVMnq#wUBaS97*oO_IVea~CF@8#n3!tSdAS}hatGgIpFT+S$py8h zS76L{oECqbEPsR685;x}r`#*)cFme!1Q2{d;O(k-elsjxlDdWW(aP$zzd94cK(~DfqEnKgn|(Y17U@=s6B| zwn-8&9Me#6J5c#@bSYs}cU-UgZQ%pTKjq zcGyBz&fbz7H!p2S;8I5#Occi92Kdm`r#%l?vmEY>|GYW)c}$}5Rv#9Q_| zb2*A%U;U+4=kDzXSg;Cj)CJ-ThFUP!VM^`RfSub|(^{|dGTkpj!&i*Kqf6cT4?fVP zb)o{au}MVHX*kyUeXJ3S=jV1q*<0FgO^QlAv-3AY7C%1JKL>h-8qo$DjR%dV9W7Ws zFWFwA_&|PhfzO@~YooO9yS$#GrJx=^gR_phw&d$;*WxYb;Myt%P+Bkex#48c68Hhe zw@_@k=z(x<=}X?s{y2vw{I5KgUKu;9S|w4@^Gyn-U6`p`tuJQR4xv#V9$oK9l2YZY z`rbzow2jssHVS9ilr9m5JJDn9B5Q~RK_|8!X@FdLC^H9Wuhu6^$@V-TnQQF_oS!>oI9-9cYDpK z$^vZgW~JfCj(gR_j*+D4U%0sqC7Jm&mVP|8y%weSlH=C*OFp^XH!#z7flQ~vj_10Q zR8LYNj+3-;97~Iij3+|JFyQX5=~`amP$$@Sktokta!X)<$mw{+8S8ym5)S!?*edeG zl9t9ObemuFMnmAZki2TlL`|gYeUdOBckUliLatxS{hO|a*aQ5Gj5VH)6z~Ygn_exRqykE_Xt*B8d7WwLdfj<&^4^Z#mTPV~ zkN;{$wvsb{fyezLK_LsQhf_~VSR$~lokn0Bzg&FHzlCkf$_SDJR*AdmO9W4lEW89i z6)Qmpz!qUYu`KS6V{Pv)cN}JyByz_WvcQJu*rzS_cV?elcYH;|1|&iKtYAK7P!=x* z+>{g=5O59a#yza$bRS=qu}_omRD_1I82ScB(`xzPJYE2|xEag789xB9F~;;7tvBhR z5_j-}9%zq@Ezaat$}fHwXWV#z@xswRXX2hp!Sr7Mwb0MvGsw|r#uL18#*7(-Es&nT zJ4uvYd5S!e%^1t+`vgmec0`EU7AVJGZ|dbh`2!?#cd492HN`|OBCW8bh_b@aE_?~@ zl}cFDeFUcb=Lia9ZOg!rQC}&^_ikn%=Dsy@Eb>G*?26h| z^=}iW{yxgpz^C%gfsQNfI6jR|1+Vsr0T(mUJ6l2Ue$E2!YMj)N2b-nfE7YUvxf%E3 zu>#?Ew9K1n#lWK~W2;^#SRc*p3KoGw_#_b;hW7!pNumg=oEnuMxj%t1N>)8I8(-Z= zy{*Rtm{UtQMF=4R42J$z`5cTMF$N0#vc?3DpOOpc?H1;zq`5o`jDPraQAl&C9^nZ1 z{Dp8VBRVy6hY@*qs1bXQg_E%DQ1$?YD{+ugKdDE8%*OJdv z*5z9~Rw1Ri%9{0v$Iyj^Dr>hDn;NXVQj5l{wCL5%P4;81p87Cmv@3ZWWN zGl4tB7{0R(YN+) zcUZgSL1f=Hc)#T1$HyzWz24Bb)t=vslo)EkLob9n1u`6ibenL`$94HcgJGg7!J4o( zcC<hRnGot42Itq+NsuJ4 z+FS#$yBI^csxFMXZ0CSN=)Ucu+u5hZ*kSqU$k}hq8IGw{y8QH?e){QGfacMsmkE2e zJpry90?b365E`}T%ze5pRm%06meVWR>s)SI%K6j9cEDSRdAUJIGEQ__qoO~Pd<%(VQ?8KDjd zFDqzF?U?g}o01fOiX;l>_PB1Aq$6*nm14tZWSRqqRn}7CjtQ`mlIY%rkK7k&(7x@) z$t%&XCCTqkX`2uWl;)vj(%&L%K$4WZ`U^33Rod1yLW=Jw(z`0fW#S02Pwy&RrgLpX zTF?a>b7_{%*ch?G+rtg@?=jZT-%of#p$<7*xZv+Mwg=}cQZYrs-=y9Hn4ys7SiiBL zW_Ho{0K_EBM0z;P=`aw=3Pb*m`mC&p&QdYdVOtnf-(m0MrNuFy7n`Sl7Mk@PS(Me^ zF_uk-r9DG!E63B{VW-#Qg2SdP^cp!rZK}=BVVfCSrhh-(lAq!ZJ0o0DI(BPE<4CO; zte$A?5Oro;BbYQ~K6!80LRo2xO~81u2`d!}!)@dyN5QB3+#qmS#nz+Jt|wunpypwe z)uS?SNL`uA4~9`{HJOxuicQK)d#YM<;5)^;nYJpphwjNj?z3i5C;c)*t#2CiQbo`J zV@hb?Fol^J9-fSG8f#?_x~xEWJ**N2OI8_40#&e-5?p00$b=b@n$K}M_x{kqMKD!J zk8lJmLhw(qX1YN{63JX?GE!AN&Y|IL~IQ(Qef0v`c z$MJ!F7Bd7KHUQn)Ec{9%UnzKg5ld<^W4a@hw z$q6t&-ieN31zd|>5jBxuEm`Ts8Tff*y$r=#&`T%bM}m4m=)(y|0885Yr8kq6PP!B+ zGJpP#pWEq-w}_}V1zu`ocYiO-ITi7R8auZGe&TrlwbN87VXdbN^6>Came!l?#lErM zl~dE|`UZc&CR_g5aU|;XE11Lq0Hs4okt`BCoh}9G2s(bi||Uw5Z@x{U!d*TTQxC z62!lg9zL=xoH|pH&aptk^Z7miUrpUwJKvAF537q%k%QI^m3_m>VSr$TBMVjrW>MCVlXCf! z+lbi2Q;!}#3=dBLn>wDu zma8N0N$k_1{KcOnW2+Ebg3=M6HSAY8O zZ(~KE{E`%aG|V^jm{agRA(UOt3#Yhs&|-YXlfM zMVmc^q0W@PLsl=0+}OJHIJ-=xfsUq)8G=ujH&{BAd*S()Z~h*}Rj~#aE?mjJ??e-N z>yN(RH}Dajr4Mx}IDAEz44o80C#lj&krMi!ARl`zF(enmSE!{H-q%+E%jKZOgtOxk zR@4-XKMR!$DN-quqO7LW2PI8;`T_&Vfl?<;dccq|9}1b1L@FjD93*23V9twX<3kl` z5M2aS$y5lcBnKbglcMU<;CJ)rQftYYLA~eBtYz}%$aOKA_RY%SD&K7rB!PXE6czOt zV15il{2v>eHLF#!Butu5;H@*QMcb0tzUte)Aw=8^M?SEj%>--zIW25;*slC+LE$CL ze+znO^9!MZuR*IoTiPE9VWjDG38UcC7XPhQ03jC|7%7y8bw%V5ahHa4a?8Lf0C4yB zZH*e0ka>&Psoe$7J)6YzN%*pukpiVW!pWazjvjN`K?M6JR?Q1ex#l}Wv#XusLcbrk z2h6F}jN?s9t|PsIBxsNpHysNOUA?-!&DX^w_}?07Fr93jz~8%aVRQ6*ofwsbk5G3C z7mEFf*H%SU50RU^F@&nzN?kyuyAu46*Sz;s_KYI5pI!clOM9;Ey$vRX#Y<}_0~RX2 zyJ5cfHjF1$nG2cV;;s;Addfu1MJ3Pbqmx5@8 z1)GLjp*%2=_EP?PcsZBmy;E=pIZsQ*kCK>Wp%kI}d*tKLczB!e9-p0mDvjZZV8C7Z zp|EpdtVm!KgwRW! zg!cqj@b^)s1`2)e=fF6K_mxnImeALndhT3G1b+pQ=MnIL?x+nD{ViDWTT((3>XK@o z{v(qOB?sdqm34t%P_;dd@2p5yjNZqoT}o0Rw}6nZ%vk&M=PJY3GVQbCt2cgi=+|Ky zvF^9K8r*94f3DvzF`9aW%%RwX9p_{(?f^4ijk%SCG31gE0;VTU`s>YjK_dt-U+K$= z>!g_?)h}>V1>`B-l4uM*2kDCTU4?mwncx+zf|KCa5}qe@LEk-)%$-20)O;L&K85Bf z2=0CELuN{ANC3aBtn!04$f2FZUTVG$tO+FqX?BiQ3s0ou2Yb^nnUKmFQ$7Bzy)heD zF)vld^NH=UP2C=lc=gM}CEVecOhP{Am~u4FP1%A;jNj1K@_Ba$7nd4NHRY9C5Akw# zcFs9u)gywJ3d{*vzUr@-95TC`nRLF*Aaj_gnOvNi*4NBoVkhj|>S(lsFp?&+8rXj< zqwdii<;#0|mM`DnES^ zCIOrBJ4$=39ldsR717C8+4>B_`!jKi1@-ti3O4kR|DsEwF0n^TwX1P zV0r_=(XAlv;oTP~h#6SvQ}o<|Cew2a=(84R1A{fp)U#VW5TUguJ=lV{4`|*wHHykZ z?vkZ;)P%->-aV#f*z{?BY|XG(Uz#^lYb;he(q0cOc3=lRTTvJYdU`$a0w1qQ+QRd+ zxLYayZKxsd=CMh%Bc-wU)T_VT)#}te;cK-}#$qRw=RxRcfo9+%s?s2HlND?BrX^+m z`daW2-+E1!-z~bTf9#}~+oK7xi0Q}m`B)nNmUx=ja-j=UIbX6WjhPtg^RR zyv20OlwqYd@3Ps9uItwPf!75}|Q$E=UToG!N*C_47f@ zWq@EGO~A$gR{Yu^tKYvq#s}clCmaO;dKm5{VQ~K{@&9A*JpijHzCO^QCX~=S1R_m} z3W6Y!78{^|6ahiH(u)G3($q+mDou(MDWVWS1VK8X2Bkx2p#?%hNJt>P?#z8>cJJ=a z%+B2Z_x#@fdr}6?o^yWZoSB`wJ3D=F!cU4q6SY36X^~Q&;H>$K2XHubgWOWTsKTyD zP1~ljePJ&&kj6Q0U-#uzArfoRVjIYcra4Sor}rui#mA*7?-kCC#tD+&!*JxIJQK9I z?;k{b7OVS1=)GYBH1u`}4WUor{8wlsX=m0?Y$T?!-8${WteG=wsOpKL{xd#*1K;se z4o>;p$N8L9fvu{I@wNqyZ$LW=!FL_PG%*u{uE#Iv-RVO*htAQXSfylLs@?!L6?b5! zpB4WQYv{qQn+MEOd@EhVIp}62G}o_cpJiqD?!LeOg!MA>LAX-8C4$Uk|C3K?lMIZf zg3l(V6X7~9Zt@^!K`1Cane50zu`$i$w>BQ?o!S5?RzHRutl9C<5?THEkcL~Jj?ngS zRz6D-ddlKSf^Tz!0eTd3Xk0auu_md`f<;HYMIcEHOh=@#VXdhnr6t43B}geI2OSVX zupGJWRkc2m<%zem|z^Wh9N zc79<4V2|rmBU~Wh1`w{r7j^ zVKTxSx)=JVENm=j1ZoH25cBRfIcUh>0oAmxfKmZ z=-6|d$YOjWG%dx-DNAe+?;YP?P7pn1Y?VDkwuvdtg@O0ex9>PvSe7A8N%~my)<-hP z>l6u;$*F7!-k48;6@Nt9D4_gD^`m~IXg&4vQ@=>Z=$GYUD!!$^VwS)rnz}Nj_eC}4 z5IS^GV&E5LY<)LX;Q_4n^jQkkKIhQjxA=H2^ylu+D|dGe4St7@z#s#R7cX^U)5%fY zdu`{?AgUU1s~CVj>%=n{sYM|94h|B%jU#L8_S_%uJ=w9b8RV{ee1^kNp@F;Om-SJ- zExhhC?w{s>7j1pkZ_#4J>b=mj9mTz2-Q%L~-Akvf2XY}4lXuuSd@d0TOKkp_KIo;~ zWiZj33l?7X?YEn|8NfcX%g0BR^cyTDgIFvf~fB z=JK|qhjb43hxa!i#o5L&BOP$kq@36B9raB4|Jx%E$N{#)j2_H z=|Mrjup>PDLX6tKmn{D2vfrSz-q&A}#I^2PaOT^Nfk@QZjbZG}xON&&S~_J4^p*^9 zdTrf~)@Y%$Tj<0L31HV0*z>T~Qi_!sdm;@|E1I@rCxQJFQNcH5fNE z4J&jkXEzJHS|7ep@G{%g9;nZ8Y$8~q+`3a7`XrO_)i(-U7c z&7i#m6Q!&`@WEO(1Y;n(DMUZUIPs_9LX9y`!y!wT-oqD{4p+a_tg~nIf5?H{pLX>^ zJ}0G*t>2lfv-3{kFu9BO7lvKjkkCL5g0w6i<^enXe~d*a>(@C~<5tSVRC6h@T%+$O zeU?4)&+cyoR@;4wlbBbCPx0$Gp0AiP@I1Vd;dpW$bCMH}AT&>Ml!mDDFXk&PIn+{B zd9Dv#A>rd>{i5`S2JD35YLe>KTEe`B@hT7++sdzh%^3C9ALd-BTy{(rN^x7U*LPdW=)u=6Ug;AT5#S2TJlmkgx=7!UoAzRsF$kT3!?CDO|z#Q@n*GQ2O_)9!DFMe z^ycLQK5iv>vtNwU_M*ek$9ZQ0Zv)%}7cPmmc0>72IeTtGv1WMNpoI#CjWcm7?KYr? zor@UkA-vvD_kcBfRUhGCHjUTRw$G^;a;e``;onQ#@;jGa)K{`c--7CF!&g5hQOVynkWi_Z?JIN}SG~N%S0O z*}wlO*Mw?9Zg@}n3j!2o5XK6H7OYFQ!`X7IW%q0yNm-SYeiA6IPSKM>G4H;L8v0i_ z_z0gZ!WeD^XtCLu3Jq2J@h|clK;x`Zt|%O4Vc9`%X$G@fg*Rwg*f$tYwHSoDve;jE zJ=-w|@mY2)^10EePr@mxcz7RV==y4-^8F{Ykx`oX};N|6YS$;Vg9f?xVFje zrtWWH1x8b=Ev7@b77oIz8o=f-&4ynGr`jxKrlkM zvjNfnxZXLDF@g4pIKrzRL-^1kekMR(W1;URl-p6p%$1G_`Y7xrs}IElVB|SjJJGjX zxiIYwTjr*kY|}!Z9@2i>$}bNJQyPk$($3Q{=n~#5_!}@C(&2&NDO;F$9u?TIq4h8I_gT_4eGrs1B+KwFyBiD=F zXXsge8$QsI6Vf$p{)ay8G6g#nuo6N?T5@y{eOeAYW23c)uQ93|c}WZ5c$T@Osk<*O zr7G(N=+f=ySvMSgN%Grr3Xd(*=Q5NceL6|f?>z};L%=Bq>eFg38v<5l;|E`VeTph< zZqFjfdu4WZ6ubzpPJ{TS2_)b;!~9A}?`SHld!7+bZ08rR@)>uw^bRa|yuH>!F@SfzBwKGpH{K&8P6` zcR$l#0l}j=Lk0CB8D$k%sZ;Wv8LB=Sug;|~E1Qw1Ovnt^M1>W4Df2E@t6}xNSEs-1 z!>Ed^DogiMAJLfmR7z!5m8DB44iBd~-W!5g)o1koCN!bArB=Fc2jb@a33(UOL*IH`Gga_VZSoM zd?##hNs@ldk=Zb@0ZOd}D-tRzAK{7V1cxh3=k;ywZ$hlknJqP_t0ewKQRe2KPa|s- z5b`JL#iz3g5k3sI7f5Cuo8u|ZnD!E{ZFBobqMyz2RFPdHdBM}e%_i3+&!&F=jWY?^ zCeMi+f09Fu=A#_Wb-A!1Dj{!!RemzTS%|J9$+U?4LGt_N4%N@ot)5J>YKxK9C1fBt zhCKndh!6s-pw~AU@YFkt`m)hv4fH!fki55>bbyd!(CH%v@70m%`@VB&%|$@xi}S^6J`G*KKJT# zyHCBZC?nR)?zZv6ZC^!>0--`(mIGzwHg&y7eu4&57yu!zJd3$1?e@o1~C zD|8)pWmNQ#dehGiePbk{KD`zC#z+Ee>ZHUL(G3R_c8kIYxllmj5T-*s05i6OiqYx= z&?AOt$ck_WsyVfxU^W4vRvo6$o&z@InN1UU^5_GNxPE2Ibo($JnTd-op9Qn$|0O_3?m@)oW5&)P-96ta}3U;R&#Qj zkucW|6oJr^k(uO5j7K-zgz<7yU|(w`;`0SiXANgKlLAX8`heyyaFe!yo7#Xe?M$c* z_u#;~V0{vNDVSgGz{h~TY9k=j# zVO}(jd_iLNl!yw?ymsF18R2gFtxzq@Io1j)IeR>x7+tMk(0xBnUuSw~8gxz+xyf|F zTS^=CGjIa5YtCYMKE4WtS*2^(S^s`3URw%#5M7e&6^~N2?Oy2lOG#6mPyI(Q?%QGm zc5K8=Qv>7Emmfi|@qNknaWeF9-I-AAI6h#d+a@|h{|y7%CF3tR>wKtxIvtMlj=gCN zecMJr;pigpcZ9Z|lj=-2eaySq)s#1!*hRYMcd-lHhUjjsx=E13ovz}geonIhEv`Xe zTFUE^8Xqbdg0=KDFFTE>q}X}wV>$9eO;zbp6* zyhl=OB0fv&3)Q%xIm5+QB&#w|KIffN^YZL7a-%oSbbJI}HdZirU&MPINoj>o(MSGs z996-AZO|8nS0u7Ce08kTE%H}shZ$;xPj}fLfiJXjLWmwP1EIA9Lg-IG&iG0pRBdwf z56|jR^1MMQKPmtaU-U4U5hv7B8e%BTRpIXpNr~)McBxnAz-+gPDwlxm{3jU98)~Pr zi*{Y}Q($mDOAiHvCTQu-dZM9R?zVPMWj0Qee#CV3-8flghIVNIYV0n3JLO^5D!H6W ziw<{wyVctNRwU==Njt1r0YV~sKv|*q;cF-1)jcI;HT4ie)=Mhoy6-+DR8_!KO2M6l z_$~G|#b*c?}@*Q&S((&d}5t!h)>%ecK1>xY}6`gpAaI|q_n8xEln&Z^IN66g(Wi>mG8G99^E zB?TWE@yZuFNqSGwB^(qPp-;g2slF3}>gBk_4?+j>?QEIeGui(#2fS;~{0)AG^ZY`5 z-6@?&tNr=ayIJ3((=K)kSl%UZY4`8%OVw^)khG2pjXA6x$49;9XtyLKZ0=fKT`C}$ z=PIez8PUKDDcFwbcO!!F|tZ#vABwW^(4|d;cv7d{Ra8Qbi`gO z(k6W%d(eb|j&fIypNk@ncGVk4{6MKvv%g7V2}7It+c6>Pr=V2$1$r|=lkBrXKZENB z`7H7B0ZpHK&QyI8uWiQ$9~>LB^Liig=6r_*Lf5^%IybwG0PcW7IZ@z)@ z6o)N|F~0wX08!R^UKE`0^v?4V2z>+bwN|u%pvWTQYRbXhw9z%^A&H* zC^$XAxje^A-KbxPOZwnb1vnv?tI&5YY?`5pH}J3A0~NWggV_Ol7z@pgx_hyaQ@)?4 z;zx}wCpuB`d;Os;2Vc~aukaA;JsYvKaG4QsnDFm{6;<4e4_}4}fKgRME8w@%QJKV@ z^1}T6DOf#WP2%jy7v+9;(xlOfW>^R<+2iY&nNZLthe;w79~T#wPL`X3+oY>W8rS6{ zuC7~ho6He0;%=S3maN8l5dkZDlbGE(fL&c**7llvk}>P2Y~gx6PtjCgv9aQW#C7!d zUl?|R0&vD7Gnft-8#Yz5%}}1Hkveu_&-`Za5ftvBG90q^>Z`OG)ysj|PX4d4e0N?N*G#~TX3jCWDbt2&CW49#h$#Ro?oewVUubmFo(Q@b1r4_srlI|Sc@=d7q=*00!rYGy# zA7{-6CigJn?AVAfCZrF;E(Zoj*y=A#kn6ML^$QGL<6Fn+ zGEFN5Zeju^DTg|(Spe(iR*F~)L1~G z8bb@5C-{oVe#ZY#b0APZz%o#x?mpR4IDC^Tx(~z*4hVJy2!<32)Mdf$tEB)?aDW>U zkJ5y=3`lovnYgtB^{WoKcns`<1L2fSxWIor2B|Yb05a3WDCjl;Adp~|+J6VL+&c*K zTvG=C0uNY#2P{zh85rN5umHzT%NYLK$(k_r%oRCER`pqowR3&upVJyR?_p3{${Zhr zs>eoF7s2{z+E==)ae`x-e2_I8=yH@;ciEuPUKAR-I?helV4p#;?x>+;{oSB#GwJSW z(;-nzSb_1uH+$n^MX?Ml!dTKC8 zxd}8vJBYGQ3s^B#e8q`Njp02^ON{qWT)pipECqISbXmp)?^@))o9KTF3QMN3$)vV_ zCM^sjN6SWTMgl|&%0rC4N%sHvP!h$$O#yfHyQ09Fj~WSSap6d-kIHS==I|XTbM^RI zaISzkWF!OjkZR$$iOxE9?_4L*2>9wZA^E46PA67p8cl|xOwIcWBtM!PAF)lnra(IH zDZHYeAU&t`UQ*k_r0T5%kl$r}0gfLzY9xeF58)Mbxtj}y0c_b%bJ6_6VOt)VVydu? zZ#Qqze;HjNtdp40tw;PuO%9A0p?=5A1V8TAdV>!Qc}sc|^;X=2{B}0jK>0oRB{CnT zNw895XzOtpY6W9ZLMT5J%Fk27WK}J66w1~^R7>s{wEXmN97l2*Fpk}Dl@`LL~e&AGX=GB3>iM+Ue zCrl$GCU#rzT(-7J(FLKSind=%wm7Q|_4fTrhYHZAuG1wR*P+F!5oyf`K~voC7~ z^ebD)wXg-(!ctQ=JF`2_8_R!+y7$xAmjt6{EFA8)O`Qup@MOtTX6VadU}Cc( zz@cr*LU(|A(_&ZvsqA~9$2KcsLvR?{L?z~71K}m|4TN=99=2qL_)e;#^R$&S*sW38 zNjFF~v}>x4>H~P7D@N&Z4nC;F2C9#iLnSULb5rT>i3c_la)j>!vTqrd7UQ^a@)m+W zt?=RyX~C55cZ@rP;dE&sxftW}Z=S^`omCrzD24`M=oE4Wz&=8-Y)ye>4^dzPA(`JP zuv~TO)XAs7^c1wlnN6HY0ZGBO>!6`_VV$I{ntMOZ8QA@`hr`nAfB_wB>wr*>@9?Tv zoYcz83Bl^l%DK65188Ozk+l>82-A#aT!>< z5?)aX=7Oz`$ys>?rXD~M866F6d_r93*v2tGWvV|nIFq9<)rWADEdQ>n-dwO#lcVFri4%h-_RWSUwC%O zX@;iKhtowQ$095=2mCxL}rQ7rA z>a~d4XDwHppUP(~qQ1Y`E+tmrgxanQ@r0>;dbU&h%(GpM!S-j$dq7>T%lqq8dG&P2 z%hjAcJ6K%cKyTg4zc-u^4#yi$a%4oCQy`}pp69^s=<>TTrQxWEeVXXP(O=c~i^3$b zfn9ac)i!B30p?qF)cp!0gRs|8!Y7@Zz^T+&TgX+GU@FEo8ebw!%VGh7Q&7K-ri0Az zzwA(#;+$sVhR}wKJ|P}_bvC`nQ4R?GW!#^3Lh^Mi`{iCu+os)? ze<5J1M(+3IkTaU6OyUzP4s82(HnYH2gJv!p+QeG@LrpY&11=jqrfKG|?FJ41Y6Cz4 zW{zz+un@Zj<%?Zs*dNyy=Je=(x^zAaub`IJ+V%?L*0WJ@|96hjrvk8ZOv`H<3?Xkg zs*CU41?*MZjGp5T5(o!Il=a!qWAtoF7hX3@PwQ-cbUWX7zy4ajy!)k`#oICNVc8ni z)^P%siPw&>EJu&@fQ@p#N0zN8yOH{KSe7bBjO6l#gHXNws_}VV@Bcq;G~VqfAYx#RPWn&RNubs%DinR+qf3l9~Bk#5b{OSG9IKZ z;lP~qU<;aO8hlrjC!295PZ1LktiIVmalSLF`d^s143mrl*(g{#(44-_3f(kd5~(2q zEKmjhFMO(8qW@A_Jl(@TO^XM+044TR19`j#O^kKTn>f+&dC5hm0VZcBZ%^DKVwHc! z34ecD;j*Ngz0b9bzbnAWDAjUlz;uyv~Nb5y>D&+0wNfSnP> zlfQSbVxAm_@hZX2jkN*@PZ6+@7*8rysnvs%u=-9+XCXM!>e8*axYiJ#h@lt1{Ns;5 zzHE(-uz^6B~wm-ToS(pUB>PB3Sb3&bE_sqL)$)E7mM z2(=~W+s}thyk#TJ-Y^(RLno&hL^br2PnMA#${zncjzx8rm(H1+Em|OQA0XWYk;OJA zTevX^3jiWiJp-h9R-p2^UXB?6x_q=p-1w5Muoi2R$XNT+w6AZ?wZz^u7 z>RnB?F|V!-XFh9(b4v}2+{Dp0wOUeam=@RY8#z{r?luM*tiLdm#2liM!%Z0D+QMK2jL*@wttLN>AlV^qvJAk#x4*9=OkY_oewR34$fRlzu0fbs6hICLsmC~}_ zP(Ve($Vvr-#uMeV(RZ_yo7WYJ!naf&zsAv(6&UQIHv^!z_8oC{!H*#ipuI7W98Wmv zuwF~|BwiMM()X65hqDqnUk0WtPJ_9)>qNUnAog0aD;N3}dyCi+7)`8!OQT9VoMY@q zVdid)ji}0P{iq|}axcuzt=7d!xdnZ4mQDD|h5NjB|AvpTJhJPqv zgUcuqJ#1K4!xn2yfe*c~8l8DYdt;#@HaC8XZMQ|!s^oEF(QOK&9~rymiQ0~rP{}`& zG%cPH8^${{?dIGwG@X*KPL5#x0~jxX;Na)&G#!fid@qW@yCe&G`o#j*tq338PB4E$ z_HpQy4jqpTxjNUiJ}u$M_9y$=;We+u{Dw zu6!j)3mob(3|~;(yHx)%6b58Xsjo`*I1k%(dcsb4uuCFw6;$yhkth}PZMJh?MpO45 zP7(T@Oa!5OILT%N$^-ThA+iTackmHBX@Vz<{Rqcdv`B2j>UzdC57WB$6`TV;x{Z0C@z2-ab+Bsj=-veDDtDrE%R~t+2E$3&jb>Yk%SXN~kg7L$F zsObFXoOZ2XT_l)%#C{yyS~*5zycOEK1tgst?O^YsDo$^@1j;i>5vW6T67a7QZ#uRg zt9D^UMK0mfe*OOXE7fU zK%cSkIrW00#ssX;1srBHIwoN(w#D~j_nE-6VdG69HP6HJkj(9~XV1QmQ=bR_Dlxn;4~F((>8q+SBkDinX%5t%9J{24@S__!GafpM;NK?a)Vx<>2uutjn__Y7 zAwCy7j*Fo-8t&e56C6@ffnlL z)-jx2H&Zekvny;$Y|>6zF)o4F)-q9)3@7zWc8L~qFx=9Ft@x9%jlue%&CCll65qBo z={lhN6-_S)#b{Q-U>#6O4I81Wr3P56xPFLT-%~R=mi;{QtFy+jy+?4jRw}`D%~(9y z?3XAx8F#c|qeT7t`2L&$0|ua)15P^DO4Ynfe?9#l_Y3JB@^@c+FlO=M#go{$INwh` z)6f+!yUD@@K{}GiDgdwDq94?wGVHa7X8`iemS9ExBD(;qM96Nq@S#SkzH?292c$m_ z0Jn!E(XR^F1&CPBY|;*7wSOjQLWzugV5{mzb;q4ahmnM3f*n1PlrET{;h=yuhC^2& z#HPVo2S=4+e)hfaxlPKPB{!L-k?EjLQ5d%@7Rj%VHbHuQ&%@!kYe={ctIN;>lgT88 z<;bgquJ9R@?H9@&>A9Xa7@-K8Ml(KDSE& z5LUzL=~5o;va^F#zaQ8+PD3%{_lQAj6WXfM;L#4^3#3haNuYMwiYj4&g=!47yYIpZ zJA}3?eg1Q-{@*R7)dI;)Jq@CqRVTx|1bvX<-sEch9S?y%nfsBEkx`M*QFN1U{jSg= zCKS`v3w@cS)#VId=>+|hMraiE&{5lUL*=8i#ip8Y^;)i}PR;5Jdl&T*)ZOf0tUYY4 z_-)6+K1yBXW+(vqp0a*~rj9J+9XlfvUpFfx4vlw0wcm3)q;A1lO{=QHN?ep+Wt!&F z^$$s~{n{Xk6}uq8!i*E?`fInXjJM+5sA)g;?YlKe3$R2M(a60)(;nGd-3(^+YEc8d zE$wH-|0D-`xvnd|@A6g+{M3m5dST# zgOFgO2>FxNX>uKQ#@G7TL@%12{Mk-SPbbBQdXtd+gw_e=VX$kY902JcW?ibN^xwcf zRmWHOI#G3B(31m=B2P>s<-hQNRXR+o*iToe7eB6UQN=BHf_isYNJz+x-Y+;ba=&{m zi!QW;Rm3|aC2Qk1TWs8j0UhYDGz29|%p>sVE5bC7*d~P)LaRO4C8)8sneKfuC5{h~ zgW~i@Q_Jfl`Q4<&D=hN+NR*lUN93ZcB-i1aiY4h3%pz}@F2w6wm=qReCO@D2W_+(q z0dqa6SZ+^M-a8~zG#IFUn8ai=ImV zAmi5%P>@2tggC9Jo_|QlC~1ZXPM%nHo-0)T@kgk^7H%#Pn*|ME4$@!Na1@ImMCZU5 zRUBSUxv79DIuED8+^1V*ohDR5=NiqGLpmm%Yy|o+5jR+2_7&D{DC)^|ZelI*J-OWu z7$2nbhGgMSnAa6113(6L(JkdzfnZHmrPGyRZkIAIVcwJSx1;l=_A7eU1}19GbBfHQ z?a+c1xngQOx!2Nv9Gop~Xkpx~SI1cTyKmbt*V$9_BRre*`NZ1!1ww5f&Pvfv%vz@{ z9tb$U$wZSxSGxOLl5!&-l1SzqtPXK)v~n4q(}@;?{9(mJaht{3QR_#h8%wZ_oTb`j z>zC|-tut11c8Hj@C1>qKUGmZpZmj4n*4VC~uvW~BhwHP9o{|G*|1 z+8m1=q-irvCjTdJ7E6$w-$mAG3GM;4{!x&hf%!~LxRwit%}8d??lF6IBGf^JclQnV z1|jepUGBtMQ3v$`jo)wUklKttH<`P^frP}FGp&4dYCN%$BJ*6dQ)ku0ied*vj`vT~ z@drIzs>D^>eHOy@?4M2p=*&5&^RK22Rx^CIZt&om=yQz2%Av2~VQWSfq)Pp6;51sY zR=$d{&rCzS>W9xBi5vS^)^K-Atj%xd1Hv1x{i! z|G}rH_>@=&59x$WR#kRB$JH3!yjErRfd}kez}ne&%Td(ltDMAUMtH!e-C$dlqblAe zBviE-4c%b&Wlr5@nh~;7HIU$Y)AgmT`P5ORzj)+2QdD}|ub+duDQ+djF5`#ack3X9 zzQx$86blLkFJk2cra2^|r=V`Kz9~fSwlaD4It!C-EYHvdFOX}hU%ej2?n)SA;3i?> z^=nS4E-Cha96(K)z9fU&V0`}y#y4eOT)^;Ob1&i{62q@ZYE7>yVMLZ`TWCY%2aMmA z*o`BXy$hWruq4kJ+Q1CQ1LU%EvIeN;x%)TjO(K8SEEO7Mo}gAq>SRmzO=jM+_1!9l(FqjpnM zzdPH8Y)bL9UjFz&#)|6^HIzjEYHw|x2wk&7U7uMj4DeO z{yVmb!Pi(NRQAz__!L0zHym>D(Rrb%=9`YQ;^N{mQ=$1#iuDJypV4@LopYv%5GwL* zXwAqM=u&AFImJM_r*T%h5+* z<+37Fc%a652pgmgVRN>aCUE%u*kxJ6yd89Bsj~xF{H=$OGlK3Y8#4^&LYc za4ge>$2bJCgnFNGR5US5@#O%+mZ{3t7$3tk&dPyWSE1j^wOdk{7yc;&r_|03uUoGLcO3+==BPBrR2#j&((Cv+6m(qndDvoPMGm%82sLgrfiKt?JT<76NT zyu9cp>{TZ8M}CI0fBRt1S)&jYitXIctxCf~da{Xtp^ANu-#Y$#kGwutaYAJy9`v48_mS^a~x78<`e1i2|6Buoq+=u@b?#{vjGO@D5;5!^u$5P~pO83v9DL1_tnV5TMJ=KY<(w`#91N?7nh4Vd{4J zs98X;uEkm!l0f8!Tr6e@bt^tX&@)XOfbPR^tVgT!%pdbcB!)VqJ7)9^l0wuSTpWfp zvH-xS4qUiki9m@1fC;p==?vzwjOy7KP=X;yf&+A!ktP-nfCwRpfe7LYWC5K9p*uJ+ zD@OwyX1X9CFj!(F*L_l?USsB)?dw#R&^UYn>wDAFTTQ`t_$nx1=C0l;Oy9hoE&mHF z+uz7o@HxPs+<#xk*5S2)jpVS!_7H=J<$)Ua(4wQiYWLMwU%|(Wv-72&20L)rD7XB^ z->X-{xD1CubWsyNC{iT97lL8J?ET5k?SOAhNeE%%) zooqD*ztKfmOI$bJsZI-;hR0eFh{T7E&!(vHc=F9%XPnJ!<5uX&3eZQ?rE}*Bj(eK{ zgVsl2xJ%Qnh+THoZ)-TI5Bi#pY->T>1B0f)K(ZPr8 zDfa!eYu3R7{%i5KY=>;|t(q3H$lu?8+MsoNwMZ6%Qzo{;vUBPYeB0?S}EE_2lk>0T& z5AX0()9P^8U0eRmg&zGIqbgD_xq3guKX3(a&U)R7nEs#JM~?WKjCd_a$W7~g6F|T& z3+b^m0Q=cu1i}MW8qTMi!l>un;%AOK7nw%L2DS|G3ctPQMbPb5%>NYRLJ7tUYVr?A z*2UGSBpud*-+EpchJJMy%}%m8?EE);mT@i~b7oWo)Ck@63jS97{aqoh2+8zFPy-{F z#2O@d9(-X+>}=kV#RaLME-vYOQEKW7b4@K50uka0k)%Oa@>kpz1?4k44d2!s`v-*t zMTCrE{YMx%rRN!~NVAa}b5m(+EVdd`6b*f+nRF>1rxy2R(a#(lJ@aD%4l6&jd^mm(DQK4;w1?*OyvCvMkJug3K$ zJqF|7-7@oX)vVos@2^au`wAa+qp$@`fa+uIvR=lOOLkzRT<+<15U<$LIRk4wbyvR# z)BZpR8y+=6O^zLdlZC|dq}pV{a_l?$`CQs*;S1R2A>Hqm;OH#EOe=J!w>qt%#C9sa z2y14w(7uyK6W6b=M~?xJV1`!pc&zVVXxrFSXY4$i%S7QEu8k%wUOi!T5)L#L^`G$` zav*Q}PwtS#-ZG6ocl57uZ%J=t=PW|*A39Gm=n#_-Hj=IFiz4q1o&TM%xQ+-K%<(#CXJZojZ^^5^!k&h;`+TXE_7pWBu8wq%Lv!nl4; z=9+?_oBA+;$)Zv>(yN-xj$o5AuJ1GFY#-yX+#8q&e{CGsXl+E2p0^ymlJ&hs1F?}z zXV^Ut%$__Dj>V_h(c~&Y4_~IL`P;#t<>7p)%l>w+PkGdM>@8HdfBXch#)J~{BI8eI zkxz1NCVx6AQYcrmX1#jNIEt5)VN6(ZaLgW-eMYNuAor}5e(t(e{$gCOB0>$}%W(Qf zJ)9x?YjaMDZA{g_8^)iX3vwW8@Y&9Aa%v}pU=rteH&OXI`l}R3_VZ>oS0GtBF-TYV zhDav{>DU}{)ONyC-Er2tyu{}2tLrGAWM-?(e507R%XX$y6A58n3=XUoL4s9%rrU^% ze@$#l?}Ox^^a~Cuuz7(hk?1>eD4*?xr$%`=!MAj9Z(jNF@nUiCvD zbpD*uB|1Of112^d7}fJafzLqbyxOi(ni{K44zXT1x;hcdTpO-VYT1lHdBS>nu=~IR z_M!)@x~s2{0-N=e7LV8^y-j92`d3nel$+3@Z5i4SRhsu`2j5g+A16I(u7FBi)-Ea_ z)IrmBsj!V&vO6}Pntr@elZV=8RN~WV)qd^%D!vY(X>U-BuIkEon32e?42{sjDp3rY zr02V$f!v)&y4UBp@I0um)Z}s~LSL|!cPn0$6Rc~pc6~E-tdRQ%?GGah&oSdHA34Be+{hIP;Cs4J!lK_L+-+{+(n0Khq=1Q*fj0IlA1M_;A@*htQ<0p z$I=5x^zi^Kb(kqMuN6)i&38?Y*_4{s;$MFG<(Mzs8EXokT|MSNPE@$t%8fss%O2=Z zd-25Ym&oY@Yd&%y2zmdY-D@lKq1bAFd)Up&1D5NI+OAxN8Y_HGjg2B|?6o6lCp!tX zI{PLnzkh9EQJWR0;!A$CnlSqoK$9&DnTb$cnCPbB@QKagH45c~SkO%=Pg7 zZsH!x&rJ(uG3?y}&t}ecsWU_X_`PJ$lqqY8ba$=2tq-Q3{{B7EL1w4dT>>}C;+yb3 z7?i*JiNp+j`UOb)B$St7O+N+c3EAKv$h#v{HH#X{LyOGk>rajkJ5iGOj;RY0`$5~%e)hD=g#~) z5t)#dE5%rhPRTIyS`#-;D?ZS|GCyXmDD5-CZ8zHiiKJ_s7%5uX#Cdn$A4q{M zry<-6Dk7kDZ-Q9Ia5nc;AXFokn(W`V?-VG+aRuzmFTiAEFYs075Kwx(UvNyZ!|-M( zuukCf0q4`Q4~PRyNQ(gm{22#{-Bs99WeEKq4$0d76X**XwUW^_$rot8q~CbM@B=zR|NXv{#cEXl58BD71=+RJ{y84IRic z|1kG=m}aw{eErYO{!EtjVX^Cs5jZxnqx<%+uO!@f)n1#kvwQdICG_u^$$57Dr#Xy|51DY7>CA&e~9@z2GMQT{vLcP zv2H%FkIzioiB0*y!jGh@IM9|bRHG}9Z!zpJ2m^M2{GQ109NBv5R_2Z6pnn%5KC^7< zaICYt-^A&}1y#V>auoz;PZQ-2g%-dNpt|uz4)G3DzN@riFvYH=fS7A50e!c z5U^lK8J|Zx&+)y-#=+8Xf690Bq^7N7by?c$2gf898}?V8I$-NOeN?SAcf!Z?cu6(@ z)A?L>DABNNbf!;cQsd_by)cwG_m3`?Z3(GnhOPiAnmOX9+)n)oovP2A%qu@e=RO;5g?-?*HzCFyiVX2wW1H>qOTY2)YpRkd=7`b{U|Q4UL# z2Rhy$_=Lsz>4fA@vHLhcA_h^B?s52LMH%+asB1WNve=X4_tF>h=KZYU>~qeZx9W43 zZor3QgSm#i%=P0c`y)}E@>|Nu3aGL%cqX--O#GyBDqNB1?hAj@@%hhxj}}@GN+)H~ za+D2STpt-M9I;l51%U36?e1Ed;lx&KaVtYltzefoa-4xxf>&O^YMWiR??7STz>Fzb zK8KuGwd}Lw2Mn0FF_P>&l3h(m=MY$Ike->k^>y!1z2xTL=bAT0w1cQ7QI2!M@p8*K z8# z`Z30X1(C&u;bj&r5YScox*#&yTzm1L{3at@i{sfUNYMNjuq|C})TwCWuGLF55|Vb6 zkOFl&bV$+knGFJ5Z{=V2^q!rEMls94^&V*2&5+|Efhq0<4Gh*5Rxj!g#3k*lFe;w! zw3abRSG}aUmn~R^D>Uu2!OYRb8783J&cJ}0ZJFolb58%2K$bMHwxQUYho| zFuZ$73o-Nnb5o3+TLNo9#De~kW;CnDrfab;TNVcKnUT&fV35I4&cBtS4J`~SvNi2k zQNawM(Xc>v)j6yk)SD(eTwzKE?XlbWCNFk#9Vctr7@=&DDn7x&MR&h)W+}bjQgt>% zjbf za9R8;Noyua9~BLQ1GrReh)Iyf?0Hf{INB?1__%vPvSh9yXQ5-QDv`_%EgT!Ew~)vP zr`Kj=wJszf!b=3wW~7IK5$A7E;Qn|ehE~#&AV*gsu|q8*nwKB4k+@bk<3ngC+&dxH zr0X9FO(EpKG(FO1fBv^Q@Cu$>zoxs9P@q2VZ8CfrlEY6z*tv7FR+9rK!;q7C4miP= zxvy)bgO|Y4{I`k2sFRWd=-(w^@9ayV2&xI^z$+@|1unsf?lp8R$Dhp*=NgAp7nFpw z9#lXu3LjHXj|JovY>bxS29ih)(kwyds8Rm1@ih4ZcrZPud%qjDh zg-+1lp#v|nxI@@Q-%e>5p*epwsp4ZS%vD65_~E^pY2xwaqq1WVlT%GX;6T9|+Qe5??62>vp>J}_m@a_Cx zK*U@f&1dd!Rxe1uS*>%3>3PN@)B!d+*(J+}&gU|+amu%RSr3X;MqEtH!f|t&iQkBt zgRjtMVq0V9w`J}_{TEzh7x8wCosQ|)2wP%P?ZR{{Wt`;sgh%1-mMur%WDsW?XTXjf zFfLZ8V~h-RyN8D=$~mxRfDItpzIHM=>OWxV&ceqqpNZ4=aE?%s=iHfFJrZB$A)n*8 zxGpIdHKVpnpdkhuu6preYF){q4|}02>GY$nTa#zR}>InUmHI@0na(0 z$`Gf)V<>65Fm7Sop@nswNiVe-x-ICep@$V5;O82So7$-4`|Gt>A+zcB8b9jIhY^x$ z?W+$KQD5zo*loj1?~}4IDnT*+kd$mZP&E8msoX%E(P~+`%^~1 zke_H{2SsGgqCNj&sF#{t1yxdz6CU|IM+?Gh)6~asRgP z13T|w(4YG6u0;$qoj+CAk>oo?g#k`s#^QLCoi+dP931L%ob83D{sXp`*S0yZ+ir6_ z1sGRbU{O!;!TCTtSY4I|yDKcu(p$0mSamozNqO&pZD#$jG+@g3{ukIOHV&3v;US%@ z-cv=78aZ-gunT`b(%D&JY&l5_nU%t)#b?o7yX=Y5zZ6!c(dqq3;ot&UgmyFh63zKdBawPRCTgBz(!ac zEZInX*WwU|&EmJ3jIb6YfWDBHJIpE(x})b2+a>r6w>Y}$g2m3;n`Ktt2AJMk=GN}4 zY5UzI%^~eo%L@>&S?0ll2sIx?tD4r1o`yy%(2g|LuE635eeA|E^;rgs;Zm{^FLdjA{fswo(1)3s z=IikmzRtIER+#6h=lbGyOh3*Ht#HpTss!WVvv>%tBy?b+-N?Hx@<1piz^=W|$Y>m~ zl{hCTeTP#X;X7Yf8BQ)bT2J09|GKuXIhvLl&%Fv}%1Q9+1Y_o>{oXa8MB zWtvm_5~eKB?Ytr-*e()x<;=p5N}C@8)^Hc8!@UPQR+?owdN-k!eR=qT9H=EnK)M0n zR^EH@4LDM4i`tHUAd78ApqeIRv=l@Zn=6>SV=+8YbQV6Dmlv5_?~6p5mWp-8pMlK) zCHIhv9{n13x~nWd%V2V%v(ZjBBY1ZGZ{$EzvJ(ok>VpUWst=9Yn~FhXP2h}_^XKoF zQnmwo-DdAhEp%flyOvB;V$3B+TNllRGjOk-~Vx}y$$p6LuIor@1=g= zgU~8XbJyyb4C|bA54Z+clMJSI&US5|5rbXV{1^k1+-J1^Mw&c#{akPVCG>xRlj=-u z=!u>B(aBZ2;|4mw(OB!88x=s+?`tasFkg%|%`J*{2_K|iG< zJJSL}u%;bp=V!S$h)F3%ejW;xRGCUXH+}!~>8+K0j)JdetUCvC)v5FLB3k)z?RsC# z6d3G*@aL*kpLB9}8rd4*shfJ%YbgJ=ELvmhu~fy0&{HM(?WoQyto#t8S(nufi&;Sk z&HrUA8;wQZ4JtS@L&MT`YD&-u{OLUWx24PwDe;*{yqVg@3_e9W{}C4I z!LD?u+NUzICmQhWJR9bmx-b-@j&KZiI-&pWIGdXr?0KpiL_0V?6K5ZNej) z!3yxtafcKdW#o?Y4t+aQ8-gPoF8$ZLb99CX&DJfz>Zo{c{(5fG6n3gWqh*4>JD&BT z4d}Rk12G=m8uH$mHn-nKGZi_(#QQ{$1EO3((ux7;!$O5el9 z#5^e7Gam1ypPXZk!`kyg`M;EY0IFo-1Lb(b4`3FY-aS+uCuC2`%Yr`p@O7i-s9bcT z>6q3mtk4T%bI74B$~h^Et^Q2H`L+|6Q zHiOWMnYV2=-}$%(HV1DEgF$ZCg`o z+qTS2bDo2FK&`txcZ2=I9OJk0n^q6G(T02fw@YzH)S+^M&Pg*Y^PVWxjOqrpp5y z+sIM!=rOc~(r2MGF4XlQ&YqcHj=@aLALR%N%*N9c-656EW9*f8`D|2fx#KqkXh4Uq zSW8RC!GdQxY5QdMtkkFuSMU)5n*eu>SJVUP5D}|+13!uk%n2XB{fSs;LctVWqxP~N z$IcMGs>kpp=qReW^mJmZSR^-!z$X#v2wRyXyeT9E4aNA%YiASjB6yp6qZ4#J7688$TK0$fmdXo0O*Z9m>4u{LuTSoM=rHK1m6w#-eR1_KN3|s z9Ht1xc5IFhE5}&+!IWi~f4pb(o(T=|qW9v$-nBvFhc%uhkp6^^m9{{Ai-D_VodLa+ zhy!ixXaY_fX0hl)oM183ZjZ$w^n6BwRYlqQV!z^QN9Acvt39^tT0Ot8*we9ffkwd*6Cw)gXfdj)P zG417Zg~A^QoEfMU?irNmN}?M(WX^t`Gt(LW#J6e;9Xj+wC-O}4|4|MMKOS-E^v}aa ztXloSg^|rVxJWhI@m6EZ8vZ7eFnUx_D;ryzl``|>qTP#j!+(nwJs@Y8ULPM?Oq-$b zO)}7=#p_qnAnD9m0a=7u#6g|Zh35k3x6< z9!c{-S1#P+G`ahZ%#O-@=EAYp@=)*VbOn}obUeYUC1oHuno8e5xkJ?PNEpffxugOu zHDZT)ia9FiN;jMN4*S=MIc?DaHO|5xIE03v;BNfA1j_kYGgNIm36Vgk+SzKo9+ElI z-{JaY7&)4iM`qR&wvUKb{PM45?rZ8JGkSt#V`ZnRyYFv1-mSdT{{}VyM^;fq*a+iS z{|VN~gWdKg0DH^BJ$TBqinp-4@h{2Mua%R!B+5^N$Q2kE5D*}_(|}-l!Z!qHgNk^d zfxus&1TdIl!GVE+u3)(Ejtx7I1qL9Ofa!LwV6nxkJ1{Wt3pRm)!4PYJE~kG2Kr93X z3=ZZo!9QmlY}--Ch_%!O%%A^^1;EV)yBHIlq;`SsM8lO0dRp|`57slC#f-EB2U4f> z2jN11Zb?1szBvr?%K)U98-yP!K(L~0KwtpGB|{|2PlPCM^(mn)7uh(okn?t6HL?-T ze_UNeUD{wjKfjM>9?Ha#T?KHU*(4~n_kNVPI>6TLgQL7{j;G4wOtJGR=Ue0JprS9o zv*JvW-A(Vd%8POKkt>kcr7!Y+fXgv>c|?3NV6pw=?Fzq-k6(vY=wL-V%i@1~rRV{BuH&R>Szl7WOM1V9}Hqf-lu7 z2v?utLw9Ee7v-?rbK>#oKmPdR>`i>c>cy}$-dLjl`aiVtvP91a$br$nT58Tm zT)!gZAj3Z8WSfz&%=9dFof#=EGi`Gx*#14IK{u`wUuqETr|agwFL}yn4VFU zAn%}=1q)8KS&Xtp`oQvA2o}#0ZS)K{#fnVYXD`J<%9=cTU8KJ4x_2pdgXzYz4e1(O zRhH;KM!3`r>6koAP=(Kuv^(-Ffrwl0w_|@?sXEJ+t+@Y#v;b*Mi_Z+{(^BFdKoOM} z-E&q`&=)WrHoGx;TejqWB3VwhAe855lq0|L-QHSDKQ^Jg#&pyhYQxEf0^9Nc-O^c{ zZ2?hUI==4r@KOQZtM}={W<6ma5ytA;+s90NEno>uJ1-A``O^jw{X(1vSV;Rn9OnKWf-nnU}12w!P(~Unrxg3qUI&J zp{!vTZ=#A*UpCa4p)9XG__)40U}|S$!pTy*U>=L{^SZ%Q;-gtL)6!j6luA=yWk6%gHFoL>*{%}Lk_ImCue(_klN2uTq`16a91`@&G$(4qcL;F;t< zsmsH}WT`PQX+q4N5=UHAK<$D9rI3yV$e{pw zbHQ@VNJ^j-1S=Hm=y%gq!6i6^4l;=$xCAj6%CP`FsS1oH2aFv7;?qNb0|9{t$jCCO zmCVyKnUw2$7Y)y8Q$#+8ES-x7qk~pBP^( z097~f9@;`bSM1yXy6k6>nIP=ViV*q>zj1L|gr$HaY;!zuxPW5!0 zUfJS!q6OwB60_($VeKD_wa2$umZQB_P3QQ3G4nOHYQBzCZqRl+WNtx;(3Bw#tUy3x zH~=f)gf`Xzp@~{%Xy|oKTV~WnIE97y8piiRWeKTzcYlHA&C7G@Ci58{ZIa@(_Mg*PywqC4VZp1B42eELrmPR81KxdQaV=9u!n3ToPh4zo(oL3Daw3~~Gv&{LHusGBpX5OO z88c@Di(?GBVZQec)9#Q}5--)4!S-6acE+wklh+pK@y^hBG!=@-4_DO|OP|^aIC=;z zJ%3BtCt%fMaJ11m+X4DZ&T=kcRkHD-)Q^OImdPS^#vheyQ4}C?shbaMbDwhdwsuk5 zJzK<3zWZ=%+Jfl;d1cGs0!EM48^1lV>mMzjlle5${g1JKo|f@u+~O6M`JEAE7XOYg z)?oop0^vW~6%r(Gc#WD3@-7jxoww;5WQ^nZ1_e355L4eb!dC$OBTPXTM_t)vrokU- zx4c(>Q(1?2r*237Aud;l>A{S|pZfF-aYc;cZFD@ySF5hS4e`)hANG6g}5Z{ zC`9woUzT0Sw~Ky9zUGZkZ8Jo;(;&e{x${eAH_9;cjj;06bO`MOJtzDl96tc4bcyKF zB?xZM)@G>LL9U=Kio0Xf9%r(|^yxQ#p6;7Zat|G|pl1!jvBFL;!hm36o&)QjZen*t ztnrm~*=g${Del1X6-O1yp_lH;FzTn^*RVYiNt4c!>rOqA31W1VF9W9$K{z9sCRYv| zy6DbmX&*W)%U;mU;7^LPdQ+li(;d`~kV`^8t?nmp<9OY8wZkhFEz-%W`2jR2t~$*fl<p6KYE2>{}=(Y+21{2VcL3Ik*7Yvco;81Io^3im(+^U65H}v z-Z5JAjvar_eC;M?c7Qc>s?pnX-(O4K4E?D$!fCU_^`!uz9k$(evE^Z4VG+^bce~I( z@e$ZX4?~q+Iso~7K=7Jl?jS=#<7_T~CR^o}rv0AZN!AB+Q!H=t^vCEKCL%!R6uS ze{?hZICX44u0nK2C15%sIg1Ez7bnYo8=Eu-({H)3Y?GfwsV=;2a+ae;LKP zEvD4#`p0uyC0qHHZw?G{CGv*rF%BB7SFy@tbH%W!k*{Z20Tjwlb#tqAJ_GCZhRKYY?F6eUA4%NR zT6F^aUH^aB`wqY?if`Y65PImnMuE@;L8M8M4pKA%f`A|$Y0{fOq<0WOdPk&7l}>2V zLWd*}AoP$%LVDYo@15EGw#?4V_kY)W-+fXB&7L{GbIz1+%gmX^-5B`_c&(=^17nBl zkF}{h@wPgw_SD%d%l(@Pp&vm9LgS(tQQo4%SNBf*I=hK(&|K4a*KgqWrD2qbp#d+o zm53UGqpMpm*aaaZ$*BxAZT~jHEU^g_9;}-%VZu;G>3zgy4HW;`-*KXcNaWLBBI)y$ zyqAAh*U;w30eYSJbWk(ns8ZaybI`r;wwt{S@3Y1wQRbtBjJ0F%qNZ~L7lZaH0T#V< zsV|&_PI}w1Su{O0oTk1jCU~naR|+0v_-dr$uj?txTsa} zSNxi`n!C@V?Pu)pDQp4vDZRAVw|_t{2rCyX85*Uu*Ci`9r)OChQPeuldQ3zWaN#@6 zfWk25NC${2k90F=I6IecxOLDiJG}fY0rYNKq6|4qdC-JmSR&W0`LysU$&|r{LFJg` zvtd|i&AqjB5v=^Klic-5$^njNFc#M|$bTb|shQ7N>JIst&s;Y+1n1f25wCEXy*HL+ zcS`KWFX8nM(}kE(STM4VT>ezGCBQ!H=B(e1^3}j70sHfL(Krtkd1_9XKof%`+b?CJbCZhHdg>qjIZ$Iz#_ICNJvH4m+@ z{fJbLkMy^L`*AyF$#&thEiJKkhHQFY(D!qeejmA)LsAi0V97#N3046fF@2!HF7m&P zjdGEf_26)o<#RpgX*ZO;1StP&(33nXv{!$}gHxf53>N`2KPik%M(X@6&#;ULV8j)6 z-qNiwlz^amd#wx$?F!3qnOu;Vv{-n1$)Eh>Wjl$lNWn%#dN?=wj6_OqCfK)^+>qI< zlSIURdr;U*NL!iS-y}-=Eb#($;>cy5t8rSAXqfOI4%^9DF#z+VU(2y}#IaMR2Md!v zmtfiNl0-X#EQWuym^A28HEMLC-^zyDk z_cT4I9{%0&7SxNkpWpbtefusTb|1V&c4w$1!jkz(7|SqY-jDDyGiIf-O(Qs-X)ze6 zH_X3Kgi!un&_a2f&ychdeX$ZYRHy|ThY>7!lY@n+$^x-PYQ21bzo^EvgtK;eB-hLz zAbrZv0<35j?0-v63&8PT*|`YiujlO-2DLJthfo0BwAcTTuov#Hge|KkydMOH-m}yi zaL-w=<+5eVUWHs-R*J0>-}6@jpU_V~4M9vBt!y}n3^u9D9p>FP zjIfv`g>orjrksTjWRW{W_U=VKO0CH?a{rddlk`blbNJeuGGTr=YGFT_M>;DUE zx{LHmhRgH9W$vwFr2kHPCuM5cW#G;W)EjC9w;AMB-SWMB4rrd&P%i^Ps2{x{^bopd zpXH`15u@?(iMc+tYiG77AvYL6xj5|iDb)pincM(|(!LTI*QB@?$sa_6WZBslfCVCRG))IA+ z>FMxLpGXpzo5#L_aqiwJBwFMWsHki^0^_ZJ@LJGU358$iLJe`fRNQf%8GaQR_*d|T zpFQg!x9vV6Eo&h-a>R)B){PX+ELRv0t#$Xm51SktmF1=!D@3GjLo`U*)JG+5O7Gty z0a0~r8PKC+=!3-iUUUd8`>SEWS`QvqFc@~i>#6)mMdWexxn16j7b2pOVGVaXxxf@u zsX~K{v6{ndy=7TPB8xkvbB9w`k{NQ}dSP_V=iB=_73L)zZ=rT9y2bO4QeFSVnCsW) z?G8O=nlq_tJ}|I&cBu7TWrFWKb)~(u3R=sZ*XW`g^Lq7M`tt2y9}71V_t>dOeA z+7z@=YZOVR13W(a<8{xYO$nh-*ksI{ zXbpRek4~>A_ngJhT8z8Puuo(0O()h17Oc(D<<#qO*em>5a|ki89XH;d+X~jF)nW#w zIg+vP-lr;b>Egv_=7AQvdfo9fKp&yuOXIK$9W$@DT`WnsjpLe|k}UN_91dY}V}+ZC zV5v(Fopym)jl2zX;Q<3$spY6NceRr;iuIYIME5HOQP|H!iN5i3Spxyj#gTYLxeB*0 zTxj@%>FSLI&Xr=Qrr)$_Q9v?noE$Af6veM3g1e}z9Yd%Y$Wte6&O?e4W9e9^NjHGR zzC@W%fZ9e&UNjOEkA8a$ATb7mw~CT@eY!}GVq?45kZJ=a(0kW`la?|!Jcwn0&0lE1 z%5a+!LO)U@h{_*tiC*q>|Fk%(LS~04=Pgq_vkAN(@BQo zLwzUsg@ZrRn*&Q!qpT7;u_E2!8r~gpZ)9qO*+a5wfl!jby$I zehgd4Q#hl_X+s9t5HmXIxp?RoB(gsixKf;&za~^MZLn1F2isYO8B727lh$U8q0;|C zM9zCvrUyAG%VhniD7|;gn1e{|m{?h}rS~fm{MA=bqxMjE@{L5*@fLd&{2NU8hC1*b zZl+;nWd=bFVAgr?XIfpe2uw%3OqNsc(_0<>gt-7$`TG{iTU(L(~hzl>5sAW-u<7%JX-pOZ9m-Ca}&QF zA^WdtYo0_Uab?J`496_3JM%sPiCNZc1Kl4#RCDeN*aO>`Mt{vxo;%d?QC3mI-2No^ z!Y-WBj{!Ao114v4S5LyvnVYyjPFr7lYZ^Wc-|M!q>={mZ>CAK3=1I*)i{3_GNi|+| z4?r93tvx2)cQ#Uf!$XoFbhvsPjKMJzZr>JEO_min{Ayz~2n$}HlgWKAP|5kc8>a}f zmcLb*M|f-tKB@j_9>F|z9S>I38etKp@%|EEH^>pt%e&$gX~y}**Wlneb9TZ6yU6Qz z4%lAj4gBftP6B6tiVFYiU!5&S;qMag{ifQDIr^5(PnP#plG>OAm2UQF>&?`o^HgKq z><2bju-x|Nvl&j*Z6Z5{u8{}M{B^Kxr-0B$&vEk4RXj>GJdi|wU<(1w-K$W>2T=a_ zVS-na&uy4JxUgv@yVm=-tOg3UTM74!u2`mEQnY{Pyu={xPF4&>` z23T?B-1L`utu`s0bzhVh>eEj7ywMkS2zo29nIL>R&)A+7Rj|kw+G`G|$Z2KmFe4Z% zkFN?E<<)(Z*9t76^5|#Y-cJ3hF;BPQm_86Ij_>ATjjmUoOnp6q^0KxMWa~QbzSl|n znm9ih>qatqnN}#z3+S8cyGB za2M$!!Hy(GzUDg&k|R3ubx?bIM=gtjx^w<|kW+D;52rsaw<8Ic>U+ljWeuovC-Ph( zJ@wa+s+Z}Dvqyr1lY&o8`kgL7voyA{b%iBxmo{yhylK-uKn~5e%(Cc2Cp&2k;6{YZ zN@vZ&b@Hr~7SH?}dBDEPgNZ(h(3X(lRxRkxXK|XzaEv5~Mp&qLcS6>%YG&+55>wiY zF;v#u+iJB*aNADnfsjz)*72Lr|PPj zn96?LEmn#@KWm9u$;NA6;#F3LL069?j-;pLxUIoX@o%G`CEV1l+w*CLv_V`|p7f+D zKgIDMvd-R`SUFc~9B*whY;nYaAZKHRLlD}JoRr_Cbg>OuP;P+#w644GW8p7ba+y9jVc2?4{PP+}x0!_8Cui17>BO{b zz+k$L%b<&@g+a`l4x!F4-#H>;cf_R|Fx8=VW-FS01x}rzW9XJRG^QNifEHm;oL4R!7wE1*#9b7pwhai&>q7O*gUZ-TU9bwpvQ3 zC#7D&=1PWPi2!z%f08tT|CE;w7CTn5!cKgJZPZ%Pe={9;-&2~sHTahgvmc3xjfpv5 z&@Pl^H4Yd`{W2Jb4Yq^XR?$1AT-mbT>}l+(Ty_c$1hTu}Ow()~F>VN0o-2Y^cELb= zkG6@92{7coi44w-GN17Q0X}TU0i}LT{elN5XFFubM+_m@6G>7-wPUgW0WA2y<=nh8 zX1!?87Cl;WwOx=?S>_7J<=kHfV z#>H)eZq(T!r;1Xx~tfB;rol5b>VRMbe;Yxv>fzapZ9KC%KZ_&~0F$7{WLoZkuGZFH8RTGSK6 zA#E#IuJ!DOC{`G5rs>wWN!Qs#@L8kRX7Yh5ehHJ)MHrSIX#r<4T*$A-m}|DZaD%d4 zKON7p7UNTO^%#5I1X^M!(;o0usqbCT_+mgtt6omfny=o2sQBsEm>Et6EKPf0^TMuV z9QH`HQ=CE)jPBxgv6r>chrnh$G$ZmHd=13s)|^1+7sOA_m_bL#PPAtsloh%-G&pdy zplZGcYxHZJs+ZEL-Ksx?0jK)cv@+k*|G5Uf2}&I%mdfk{^J5MRv7+H*y^k2n^d}jW zsh${H8P_j8`dNszOTG-R!5u{O{P~fZ9XtAvc&>p4c?%?QaNiR$Q;^S!>lS{tn}lAz zEqF;%@f6ZyB;ndG6iGK0j@~RqJSlAt<>}5F?L?dOK)0U!kr|C7mF+qZuaio=;5e8F z!F$Q=AUW@bN<0$Pb$t?B9wx^K>ud@MfVs0t&zR@gne-I$qRWZcuCgJ1|wVTJvRC4RO>F{JbpH*L6humf5xl_8 zbjIn_*Lq^CKBOke32cX;gb5!$lwX~~Dz*sQ1;Dh|jqprx;Stn2qvle37Z`3|?S}o=4~u??x|eZS@X_n$!WpwZ z3SN(&mj{&$!GiDfO}fiyh8=i0)0R+m3)2@Q`W;6J-e&>P`A~-69g3(;`}|v2D1!x# zO0Y`rz3fNHE}72;Wv#dU=^!bJimi*2JxE~ri-dM+&V_%zO5nRey5LMfFTsg@PNaH6 zlE?(z0(;H<8zK8ymNQo3$MYDU=RX5^sy6sF6$X*KwHBkP+u~SoIBkN3?B{#T1vj7H zy=(5K?(d%wv%UR@$@> zf;~`9&6qL6yHqRNBLR~4rH2n76ir@ATQ<;OXvrnyWWavZb7ffed-4fB=qgE;wwC+| znItpnEptJD0-RqV>M~PPIiT=s#5VICCuF&}nF4Et$N@o%Hh1aC+Y(9g9?mIMtNY1^ z^oKd}DW6t2@MCW7scCOTQOOTye_OLGukr?SCK+?{xk5BgBvm-3#^{|u#xkBtQ?7SB z*_FwRS}C7+@(cG6KAkWn} z`$;ggin4w_#e9a`-tpF$Bv(X5X`ApAr?-smQg)HVtsqHU!|pg~gbGBE z!Ba>O*AzJpO9D5OtHmD+wy7CPeuqc1?*Ve3emdA&Gq5cjCRYar67q^q`BO}0WkRDJg6XEY&XTq85pP6di*R~F z$z$j&XW8kv!$CPi)Io_)3Gv~uuN_yRKV9Gvd9B|#rpQ*Z93p)Pd2aHYRO!U{4^ft> z$qoV5jGRH4=g`K;YEI7^&H>m*QieVveK_nJsuJZ>j)YjISUII~t&M*@qbM5aILfI3 zqf}A&vr$lCPT>#YU+^D4Csv6(a8mr`2ZtP+;sWdA*uWe6*Kxjvd-JxBI9v5vdXJd! zdZ)D3P;1!^?O?AP`ATe6#YVWmjska;ZZw*`Yex3n)Z zBU?*R?i@Y(SWzPRCVegCBK&rRTSO=qIUnb6WvXhYN1DP7PSokt=l9=7101VNW)h>3 zLCMN7=+T!-RN8Xbc}1O_)LY?gqLC@eG#G-|t;7i$QsI@xw8iJdu<2<6(ML_JY% zYHdP0p6@bt+-+j#s&UWh7ZmKrzve0EuLQ5a%B~E&qWiC@n@XcjiHe}F^QE$lD%6|V zn9q!lhC!XZ=D-@MX<85NjIx@-SCBu<;xlWj9eVJ)J$&VKDDH^|=~vN_7*cSiNjcE{v`eZ*rVSqmxT-l!xk=e&nM zI7rCa881oFIMyDGeel;a+Jqs2!p~8bVbI)*A%}Q9nB}pT_@>Jp`bdQJAP?YG{#b}D zO=%A*LhPfoSG3cevNQUKKZ796knf)95cO3@)%v1Sg4l{nXAZg0~3m!DNqcB2BJ1eB^3L^af*M z-y*}1JcY?OMua86YwF;89hyvSn6Foe6*pqtVe3sJVk7+FAW<7jk2ZicA$jzO?V1S= z676K;>Cq0{);2l<o#t~L*J>=ZN;)k;l#4lH< zR~?@HCPl(2mhS^x3EG$7al{; zxQG95jVZ-fU`g087XB}3Q+gl$2Q}bUy2tr;!jER&fw01#kPuJaYQ-25wqRzhRU~$e z&2@+hJV@GH0yNwQ?Q(0~MTWB-Ibmm!2Je=-ovE}yk1-XxrFFS9 z`L@xotS!k~oAd%wxCPm%NvVJ5k%pGo7tHy&#UgxZCtM9#mc+4>za}N$-_RFwU%ma- zcoMnH);!hK-e1`oXtE^e_a(y$pf9I#kJDl}h!)<2cRD<=&kxOb9wvBRoiup^yk=8} zum-y*aVs)W)(Y5%mxb~~J2wz)4jy`2!=Zrl<^9bw99N1}Lj|;18l|5p30!wG{h!K^ zj3^_#srT8mAo_JIo}Tlhg11%RG4uzHo~$TAT(MQrpXh1@Q3su(LltGVz@Wm2))BMxRQg3c^ zfPZ!U6CJf;=!1ZOfc~gry>s_en86GiedO5aWWest6!e@641~5h79Yz%mo8zvt(lR6 zL6i?lq|j2^h#cUVXWa!L^g-+FhOj}br#hH^TJ53D<1|3747Pp=oHD^-D{i;cFvwhI}a6Kaytm0z{)Z0{W#LTGkB9k9OP^tUa+tJhr9MiEejt;;jT<( zJfABEoGq_KifwUHGmJ;7!tT(X{DDzJg&!#=D961$UcDL)oW;6@Nox8NPh%2om^8XmL7W93A>v8}+vpuT4CjT2J8)6(!99}R3=aMd1kr&w82$!b7QL7P)%W9c{1tDqUMi*yi9t?kw&=F*F)~uU;*G+;3p*-W6c^aD;~{D!^Ll$Fz^;8))P487&2Yo`KEe z7Zvuzchm~;czN3SV3--rn?lzup-eN#D3hsE>+tDv#VeWcrxYtkw^VENMh`pI-GMaQMtwyJmhZ7~U@U0t?&)P8$Jq zRk|d&!cL1mD^5G3MLU%ln7<@7I7A$$4wQlJt6tTSVgHN#BIB-!Ch0&9N-dys_HgWB z-kIJZkRtTvJ!sxoTBf_Cz$qfj%2wG0cegiN4$pfybeZb3AC-!CvDi4gsT#y0W01X%P}#g+0h2oLD@Vz@mFT$~gWpQFI!f?&^>9@yV-9K%@L~d@B--4h#Cslbmavk-B6##m? z6T*(z7B&d2QC-C#kUYl@Ayj$nSXeBI|7yrX?>SHd)fN!Py)vSzsJN0I1RHDrC8#L$ zA82@1gV*~8=G&+tzMIy&G(-w?c?CdtfI1Mtek2N9qAIKEqBbMIt^UF~|Fu&LOxft1 z!=0L`7L2iFj3E!~3bxZ|XKciHw2@X}==dHqTV{Y^1N#o+m@kbOvSL}U;`lx$#9)8I z5yKXU!Qf`LW5!$ChE;!r?|q=#foU2Ry-%U+K01Uz<zANkcOTMtWGVOjap-itspm*&}pQFT->HlM-V+Z=r zfzQL=+DtxbZ^dcmzb9L*U`KfUInHg{x^1g-JE6HI+93_kXl|F*RR1zuy^EY-jlvT{*fnd7>UEngA zqLbY9Pm;*-bjBQ#Y(5t{(|Nu8D8a@tqF*HwDF#dKtk0dH11+u9iNsITnnPL3_>xq? zCQ6_@>-G!sqNl}*g-j!9`^;~U1pxAscAv3~w=-7y>622jlC^ZmkC86@ME2@|-GqpI zwB{lxT7=4Sj;HVY_<3hTL37z$sG} zre__P7$9y>ZKiqUx8GM)KVBXe@uMs=whX)@(RRLcPW~xwwo0~D_wL228G`)hEL3$i8gQh%ddcQJQRc>DgDq*R;62lh9cveB#Ukrl zjk4*P_Cclr)T@y#O1>a`6P!D=Q z3GTsGB`tBKlUJb!2LZ>QtZ1u(la#GuX=%q@VDU!ZRuk%?>g^0wmA|toewmjtexkqZ z3t>~FM?BTDr>9w&tY&Di&7>MF7719~@q!}ElV)g~2tlRkr@$c|1?xe}9%Filtp+Hz zvz?V=(iF27TSrZ7-P*NkRp0L&*~fBI9;Yer1nEy z9inqA*T&CZK;5L-5_1aFt$T9kce2b{jJ&C2);{2G{i%#7`#IOqXF}v-M`()*;nWVi z;>Xb%h7a5Qt!`DFzIhO6$|w%J^o#aRQ&lfmF;A^YR?q1< zjpzJ(v$J6lh@#gmpv~Wkia7nP_}PUXW?D}5GIUNl9@eY6)!cjfKh;1PcpruO@=Ynw zYtRXnX2Rzm7Kwf4~ID!?OvX>e;W)@-~9&3 z5f0pfX;3fq25nibvj8+iTr0FIvnVeV)T&M$gc`_ZA1d3$eZTiL1&4LrQD zcjsM)&nf)$)(?ZatKwPu^4kk{Q$}j0#`9Q*w1ZhFSX(qaJrnN&2VrN}0I#8D!1{N# za=8+npI-!#>L+kAeCcdqnsdaywP2@$!_MV+m6by_E!fIRd8qP& z1=zQW@=LdFGp=I+mg%hsBeiIlO+<%1^kT8@x`-0f}0Zu{BCnRNNUZIxz zY}ug$s=GCjn>4Cfsq#d+qiSJ*oI7Z7DgH!A+;?6}c2D!_M_w!Y+1nnK(|y!K@bUrc8(b`($z&|mD+GwLmnDU zA}W!WLL}k`AWOa^?Bnt|tP`4BrZ_^yzJn!C?5A@fA@>j}*!v7kHqhEFMhLL5fv41+ zSjlJ>LdDed;LpQ;dECq_s+5)&LN>FXFcnLeXUY=CwtgAY+jQQZsON))(!%g(Pnx1l zaLRNu#!?@J;t1K$3~CaJA89XpR!NOD4#zPifSl}wqWxLAOw~kJPyoj6h4R$~oZ!k}$rqpu8y;rb1&-Xku<)B*j{q=O~ zmg_-UCtI~LTG;Opna-oc^ao^QWOw#*>)ORbiNilAtw83kTd|-twqG ze98;W3!CE)t`qy2^R=J(4t`XO$%z>mg%f4Z$tV&egT|z#**+@Cbgw%C(zqqv>u}JJz~1y>?jtTFuYaZWdRo zD$vwB1S_?yoa#ooiu{&>*>!~hP%ir073mLUe9Hbz zUeDpT+qP|69MsQc7J|_w^|ynvhkcpRnwUz%Z+CL;+_`PpUzQVllNlppgL+8vKOVYj zX~wWIBLo||o?i6DDq8N0Tgfs#3+B}){9vujsMsbEhQ`H_z3bqh zAj|w=QLr6be} z(H#y1vl-W5W#v3StOT{=)R5YBQt%DoCyZ{6shqMq3p69GZ*T2UfOhTQ#!zhT)@$V0 zsYQzx^|3dL@;ppFcI?=kW5=LL;Xi=&^OYZ}HGEK|O5a?=_lL-;CgazEDFb96suq7! ziuqtE=J_N})S08EKDZwxdO9gIC^)h)y$Zt0=^ z2%*ehB_z#|7~Fv4zZEK>%o}1;C2u73m2)p+x9p?;uzil}!{B`RVwEcoI*2dX+n>Fm z2^IVt_Fdl7f%}ko_zVca;R~y<-5+t*-coLzr0KTat69)-ic;2$St<9;ua&K~mbZ>i zhEK;wdc<}u4_FZ!Pmfk`fx#3}sowt!>{oCv$@1wUy{t#%`7BC%Bodnq06WW!X6TiI z(0agR2lY{GqA6;niUcXjUdi)U9zFq+t-=;MuU~?+dt(uMYe`>+kF0Dy4u_+m1pH5! zL=92B|4q!-MS1{9^Wp+)=mMj~^O2PAKVcFz1SWl5VA7w6W>c0IU%+HG8~RF3%2eJK zeuc14q($i{IrW|@d>rwYR1e*9g~@i`1#`E^E~(KiO`Kea<=|MY`fy% z``OMk{;5r>ce9o_qZCX1T8yDP4n>h+w_NA}c1$wNfB=)#8TzobbrFUnQ*Sfdeb{t+ z@iNqRa*A=zy!5NCIOZ2z*qcT!KP`I|(Am3jN+xBM&O^Dw}t(OcVI3TMf9ZLFXX-re_4!qNb9U@&28ioU4$>%h@i3R&&rSF0; zB@CXStUDjs=16$QIUt|f7*IH-9%oA^_v5lIPLFBzP``Q>ge5nv!20`(1!%16DY+sq z{hlMMfvn%}Cw51kQ?~H~_zl;$+Y9%AJyf~?Bf>}9Z^8WQuF6U90@ik`6EDD4V|*kB z%6wI@H0f&xiO7j^93|wmJu!5ar2T|y&=p9l1X$9btr2vDT7&@`%78K76<9;r6bsJ5 z*+lgYoITJJw%=RHLmCJ4M!CQ~mS9~7{+$lIiNZ`G8qn7y&pG6qik>By`!eeG&yu81 zb=rPCOAgpsM*J*$44A=xw~2;6zP=9luc5sf8d3*~7VQ3#hB}{K?Rww=(`*SaUDj9b z38VfQUCe$3H9Jd>LzaAW+J1GB8bDGt7k(nBnuhjNoN<8c)n!P!$Ox$U7;-kkAx{m8 zEv*t)IRVU;h#B>fmd%uTL#e!Fi^<+p$oIyt-^+@10dGu}y&C&Mi#*{>DfhC)c3K}z603p6M<0b#?3ZePHVr1k?!Bon!8c&S zgmnk#hN^Z9j?sZ3N|;#!YaK*`EV&DPgI}ga*n1^3buZYcCTU_sS8GmmdK}p6KaF%n zb+~q4=Ol_veR0nFb%HMLytaU?VIcU1!x6zXZP+5Z@Pqh|pXTK?(FUQCX-d+Lt|jek zE#6w*(iJPb=Ryr+t5Yql0#-K&^#yhuH!7uLJyJy9+z|;a7 zPHvym*ghwW&hm#TgrAE>kiw}>Tl*k7wd^(-wwyU7(m`knXaxyxhl0P-9DZxfnnCXb z1miJnS9hyX&|o?VIt$zx9&gFWqG~%zM_&zRinmASYuCWy7S&>7w6I~!B^8zUikj~Q zbc99EB(r$k0qm&Ba8m9wi+A=@ZI0wHH!oimNj=5C3Q)m=fZaO8Hx{XxbVG)Gl%2Ep zwlT8Kkh=aW`A?KNDJs42$s?%=&nF|L-;o`B??JcHD@c|WYWG4u`{PQmZh*T^O6$k* zoQ%v@MV$Z*oG0J>+WlUVr_AJPJWvMZBKK{NkSW=d^fDtXRrsZ&EXy%tjlzlEiO4U23^!=_A~N&k=c8L z_-pR&p8AO-zb)c0Q4Y!87A=?GCod$L2#q9ZEoC4$_;*XNiV;Me`z(MYId3WlIF=;(0jyL(L zPuN&Sx+3(SV+h*((r*V$2X}$lR=ipY=^~$y9@AyAXwjjbKqhXD{8P+T`C#hy63M_l zqI>^wU2r`^GX!()b?p81zgPqA4MtydLg4C&$u|@((tHGvM z2XcRM-@bj9;5wRxP=GUOhuAUnTPQpwFK2#M z0-fWJjI1*Ahq82$Lf&BF!`d`s}3!aSmj#oVO1b78@!g^93I{?@R^lWw3 zldKAsPnkBJ-uDr?c|G^)o1!0|jwDw_V-^S%_9&M^q-~VXN!*9LNsTjwT$Dj@K)M{; zFYBlwR8En5&?*qQ@1iM*=KRol-X@VNI{9v1GoN)VlaxHiF^nUGy;YR^5Psn8Ev(ht ze_<@{$HH_#{9sr*acX4}u%xSva{hwHb3IDUO1kCvW)ZPLNGz$L1VVAi8)eYfX>(-I zhxd}DFZj-Qu1pPG#U3)OLb$K+6HVn?$kqt~HW^z-Kv?TlqvRM`KZO;x#;UgDhdHeH z8$x&606PsWD`m z4(+AHV0dZY!w${O>tN?z*G;6KyT?O9N$38fnDzh*qZp3 z265>v1d~pzaRPqA+>L<6c2e~U&BD04(}H#Z?5;+^Le5?6jS86aTk{jvPhZ!S0qdsH zLlW(32(U{O8v<=NHZ|D0PfM?MGJa6m{z1yR8mG-bgJ47CF?urQwImFp#-`$jz4bnn z388fPZ(#g;FS|X9#C!6;R0HWeL=7csBI}gvBx++F(aSp1y_fUnuenXmmFCmxmq3S5 zGfYg3;v213CTsFFBlVlx)bFk5@GAMLKz+FY+yNG zLZ}N!>tPzB1s=88I&yhr1{;Plt_5&o=gys7w5RMk zZ(O|P+C4#zrP|$O%ltfT7v0EDZG0NtO&)LDICZdHMccFI_ZYD{%tNQ`*Ss#~Yq*+o@*l85 z_H^_(=t;*0(O-_ix}5!*J6X0*8=?p2=CRA`@e3}net4U^F8A(Tclpc9>|!AsB4JX! z@_3mP^Oi4wL*6d*CXi|}oB1DMDOO#yaL#F{I=67nOrg4qg@La0THr&b5gWB!>1*Sd zQG&~x5gX;|S8!NcovfZWzQZysv3@S}^7+g4EGFJ5a>lRH;*JlGD=P!@I|dZcFt^S2 znZ$iaLTL@l{mR!ibg_~ApqmUKY<~nDCQc_2oWMyo>0;W|f~_XD8}TrK@eDN#OCdX* zr1Nr^oX~m`S=JGIdaxX07X@pqfL4($FK*jl){wuye+q3ebzp6xtcTTkLC=r&4JZ5v zOW{#FwmfTsJmZ2g+w|0^JG8Otl4BxB<;@TchB&295$QKRSNJ(e%Lt)?;_WI`qjT&v zZOPbBB5Ffh1peh@jnvPiIrJe?EVG{+D@oF7%53^bw?#!+!njQa3@fb(F*=2aSS2NfRk=7IX#DH?i)h@*5)*U$T#G5o zU&oQhRBkI7JDeP_-Mzo7*vCoa7xK#fMn9-x`yeCNx!T!5v3zMHWe(rX8Armu`u-Kc zf?-4Sc|3jeND9pm7h2sS+d8F*G31^#9Xd^dmw9t)8sn35FNa8*Qxcu`Yeij!eZ(>82}m#r zBtn!IXCk34JP@J6vTKSiuso6Evb_j;yoZZ?=6mHLpR(VU8m^~^e|J66fBn@fY{^Jj zCYvexscyVP-urS4U3Y=?Qy%cvoSaqIIi4VpxUPf?y(Luix`O`{sHm)Ain<}N5bov* z!Bk7CO@dg4SEm9p~w36ZC6Q9cUfMn{6N5_tg`nmWkQ*% zj~zSK^ziGV{ZhJ2`}{s6cytlhWIuuNpbq- z^B-a>T zAUdRdPO+CFPv(9?ABFz=tnxbDPn|=yScr{MvGXF#{ag$kAQEDEHCL7dqumFw-f#yr zqAL6rF52IFBgxYCGHug)QgtTedrB@QkRyF(3A(;jLE{8CP5TS5vI%4=edXj9&CDA) zMC}h}yet0-pzSWOcG`~rOh)xcYf?ogxohi4b&5U5f6w@@*FcNq1Z&ey?Yj97!8Tv; z&)W{5Y+XSotZ&~5aVWp7pIUwwXiTL)&-nZs+0E0k?IO5uKGhg(faaKLH9Jk+@XKFn{t_a@?R%Oxt&W!cbb zAYVRC?)`0nH)*-GW>llS!<2eFSL19Vr(}?K9QWlgM3>{oveeLNWxOG0Bl5fOq%Uyc z5%23lFP}V@w$$IgXx8r?WR>`nlWA+hvOjTNL7DTe=!YkvPD0H6UcwT0luw8id_lL@ z5MyIi$5B2aN^f;s1;~Y1uX#tBK{2Lf{U2k(y!`iUwiMQjW^=R)tj<5q%g35=!QU+B zPI?O18mnqZX({$L0~toE!E{oW>8XVo5fR!X5M$R>G%o}i5_-6|Z(lQTyXtlGH0**J zTGxZ%30#<$uVY@-b;^0IN7maoM%3%Ee5!u~BFFxAfnEH^SXy@@V=PfKl7zDyGxiOU zV{q)%7E_X;=u-6_49AT0hg$!i#>xhh7t(v)YgA7&^*524VBCFN?#sk&=Xg4!9qy!) z-1R$rG2$tGF$=<SW=oQt+rH5w zwrfv<*FXWs87P2x-{+B?gToP_$ z5oO6(7fWLLC;3)nr7f|RzT|?)Kcp0E=e2XC!g%ZyxT#3xB=Ui`=;w19hwMx2H`{76=$N9{Ol6+Hp9 zEuB1(H>82h=oE4i4y2>rf^YEGHmnzkMrbv~{z|T6!`$}3XLAW)os;I;AcR_x@M5_i zJZ=&%*zYRaUh-(fVQAdk=if@m<2G$;hR1)$nFL057%6{M%S!~k!@MfOCIM7P{+2C6 zFScAYvjtx{8^+K>CgE(dlhlpPhQS&nKKA~e24ZC?@5x))x>TuBjlgju+vFwJNjWyw zh2CFq*4wN4Y%ZO#2C<;GTL|Sk2;~!>?UBxxmc5inEtk5_<1a$DO|Fx)^g*ymC;fkQ zR;&IzwPK)rv>Z^cmfbfiJY+FNfhW!xD!}qY2(YP)_J8mqOF4_EiqzhL{rmTiVPD(j zrw5*G-lBQ)=DMl(*Z)=xbcOfMoi2irIF!EQEA>a3D6pR!);BJOed%}bSoW3pT5(h| z03YO^u`c*hanNX_FZ!`+ztGmN3o#O@N?Nflx-L0m!^#ftp<|AgELPed8&fk#D1%je zhJB1$@NTVQd-2~zV98#o0KA<0(1p;lXNApex6ol2CJaadtkqeJU(>>}VJ^ngM}k&( zW0nuG@-Ja`eW>wp!L3b~%R*SiYaw)+A^}rv^RHC%E$Oh^)epI(C?oS-yf7#8EL+6B z=xk}@TKI1V`J6abEgs}08aYGov(a#Ufu+5#mpb2d?+%-iVHo;JS)FCO*6_KdJd-xF z(M|lDO~H)L{9ned%F`>I#1HRgt2m_%y~S4GQ^sTB%zWj)p~BAll*oCH8-p$#gHNyC zi1CXZm>YwxgkNSr>At)Ii`gca)u2(MaXpndh4F2B>uecbPqA@nFMhjvT$M8a%)$71 zopSR-UQIx5_CATn>O}g>KL6Gfw@@Dr_$zUOyw`7$d^^dmUCGYy<)UrTVeIVAPWZfw zMqoDi9fBVUMyICAYUMOHmSsrhhcPrGVk6*K9ubxe=Gs)p_F3DSu0Qk}c1cnLjS1Wl zK+YtwvPn9YMaSvT zTaonDigK+1XAOJ|j-p9Gd#u=F^Vww@k%(WZXYShspLvby}%5>PBJ9 zqf`nOVeT?(cQlDIzDn-DXs*lK)$`LwsRoCI_Rvt0^U zPW`2>=O80>QoRORW}POouGBh77`o2Rup0lOlk^J9!516x`S_^mqs#<@_h;#J7cJy? zgs&CUBg--C&HU&Pxm%YOqi$nZqk7I#4Zy4L0+R;;0Rga*I(97!L0`J}#ZDMH(^ z%nRx^k>I70pJ*Z`MOGtKq~~3CP_WBu_< z`nVRtNyqK?wMU@RovLT)+89-|x#wXfJB1+R{W0+x>zHY#tkEE}85}`fowRnzbUXG3 zN@bgscqh4OdliBZF}|$J*{;_xUN3wNA~YriU*nR|)JLV^^%AHiy#0II5^+W|>;p&7 zitO11Xog8pPgOVj`3dT=FvkA#bA1qn`T9VBod$C|Et}pL)}bW_*pOtr+F%(345*z( zf51j%g5RbB{4zlRT^H0#4%LS{e7Yc;@P6=r{A7gWlWL^=RueTMh~P(3i<|*mcG2+C z7KL^6DG|RyzNP+)#L5D#EQ3?1T9g2)ewZRcEYl_62QL<4>4$~m4W8h36xl>2Kg$49 z1jQK5!&2ASD?vV07U<29Vc`6|C&O|-lVWWIp8DKHZ$RMf(OHu76X}r*gLAL<2mB5fZ2}h=sFk&nL*c6sy#sKSJ z#uzH&SvlqjQv_vtpTqOz%~-NTy7`KngBF2zkNok}P+6gK-d1jD)!dKv2bk~)9izQF z`Rf&-n0pTfQH&15DjZfBD;MsGv21@jqH`CmKd?D;;mA=FTDj=$v!Rn!iF1+V*Z zyQdocLQ%NKL6@6sbU<{Dd3A-Iz`vS;HY!wUV&fRmim^#vM#M(^sGP8I%;-rumiZDs zX$rDbTSXbda?IEgCANYYW2qozJK(=FY#)Bq)Vt3tZ`z{$9XvFWP&_D6f*|xUmScxh z?3)i*WseS3zV$zG6Q_Lp;92r{7AuuzY}1J^e92;2n>6vE1IfzOs~rX21mrm#i~0eY zk){|AX3d!~*Vwa+rX))>#i^=Gf#qs3u(?3Qr#!%<55Tp*g5AWP*f<9qCM5K-5W z7PB}e54V;P7q~dSSzC-yJ?Za<7USkJwXAV|G6;F4{3XRIC)!*@7RlXMs+ak>9BV|L zfxpm z1P(v`Rqo1?D!m!Nifh_SC$pfoXOV1bA%^?$;C514#mb~jq2$Pz+oSfUL1Pcbj@xEN#T-H2owtq{la0iwb-+D}_JIBnJUb?k5* z*oEOi&Es`E?T+z7En4UfK*^IWm_H6vn@VMt z-GrU1qbFG)mggaU zcnz9G>+E+tl^mvK+}nfG0>KxkfkGjqx%5J5c;G%_j{K7UqTjJ>vjlobBu8_zvgGa9DTtMB0Bn zgbYjx*MCXFz~^Vc5%jE4ICzTqw_TP31q%|lcSPNW@2=LfN25>_70_VlQ@RoTx1G&a)N#p(W10P5l+6Ks8L z9iRsA{k)c_mHaRWD{T9`;z(y}$1@0OkHNgc@WDb5zM(@wu_HaLhF}0*D?9bd>ErEA zfxO2J?Aa7X3k2$3cIrK=X0@l$**eaiJv;W~Y|cB#i@v3tGC#~-Dl3`~#s?)>W*9r& zD#kKS$M}Ky?q`JHre_XGF+s2AbWG!{$uOyIk1@GCE+&AtS!iA|zTPJntfKzN6xXPa z!Xc$u)$?}1xSb8l5egIJ=qMJ1C3Y-~WnJjxjPL_K8SZNh1nIbIUZjtnG0t`c?!dvhZugiPL+nui-d|W zX7D5RWm?bm(aks553ME$N!n^1ovmJ-P36Qs3|EUdvGoE7t$MAR3=^&dsM%*wcjyoN zZB;C=-5Bz#^&IAOSh3OgzOxrbAv=bHK6Zy`R#PaHI?Jl}11yQaJ65kgsOH7ippQ|R z>Yvo5<*aH5ZKN{<)Q~olMIcsnR0y@JEbqZVlrdn_(g}i}TqygNF`IsQsfxHrW!J*} z@T(YmN-J87b)vsRl-+xznrW)uU|;AaGyQbkbWv=k7Ec$|F=&UH({<=l$+iac1B_Id z7=4Ei)U|s21u+w&dNIA-GG;=k&Q~uWqAb%T;fyL8<{ZAA%gVnGk@2;%*QyRy}AU65;F;_K^r`wh*WVWbBSzu4dsnPv@Ae$_G zY^SAxug=#&sMt>8;QS%kA8yZ?<&&*fR{B5G9KDvr3zF5_Zr<&a9c@2m;c8^YX{)Dv zLdoqX({Z5A*nR^Z7)cP=)FsoO;M3DFcNeEP{JXHNdX~AXI}!EAG_kfWhBc-TzBi^D z|BYD}puOJJd2D3-;Z#tXI+Zb)=Xo!3qH2C`1%jc`|wLf;y3Hka!Xviuy zq?oUb=@fya!~k?EK#4VE#z0L?$>f-nGbf@X)toqSA5%l4d>xSSh7Emud>sxBG=#xK zLnC4*Tq*uT3^HR+MUMj{t01T!z6?HUl>s97E%cfZ8l=_)_Vj$bDOX>Dh?PC1j( z6-|yw{dcj3MtZ{X`Dpfyg6hd31mX=L))1~fCf7*;(-|6a7;*uDpUW3uA71G_M_2fX7QE!DQWMW|n3U|^Ew7Z)vkLEQ!o+D;o)GPiz9MY-0`V$VW) zURRWSmbjIK{i0r4<5n85LDsmH9wOV*350%Ap0>1)h2$zT?;s7d!59qJv1QCwnz3h< z+GwP8u+mIwBKXbLt%u>2SBrjGv}n<(VC(2_;ZmjC-P>TLiz=V9u&L&x7GXuwkw*Ei z$+0rn!K7ogTSopHAixA(JWV^-Am5x;J8vmH1dn1m#|4%d^B79sS0b1J>I>#!HE?hH zSZbumv1Aj2ak=6aY`mhxeWu6Rw(Ag#KFLMmcggahtIKjz5#3+wMS(Z>vL~7+r3KPp5Rd# zv|7t`=1fy-{f&fk6*e|@a!Or~DPn>R2>Hw61@f`38>>wjFkH;I02(oU2l%x9v z{J5Zr?ZZp8NVbN*29d~xB~1v`cMb{`Jp@CC17K{x5^|g-MNzhvmmOrE{riVt<>%T~ zPjJ|-TFm=H(}webfDi~Fw9tF+QUp{GAtE3k zMJb8`f}lu8kX|E2=~bE_Rgfx0kxu9(bOIp+k`M@_k&s?@=Kjv?-dkpN=Keo_ulN1F zM_{D^Uz+GDv+SX(>_^H zZHQ2pyfjFeVRMO4&jk1+m3_8W03omI_nVctcaHrv>x#{8J@5~gjWQRzW~!Q zToXOL6rXmzYhoW=k-Zj){Sl2$ufhtQ+@=7q(n!fycjsc|p8ZcBn8 z=;i{Oo-BITX{HBU*tx>?q}4Fu<_Xt%_u9{#yYpEkCfyk78nS-$3Q<^DWU8`MEr@R>D>Av65aVQ%WvR&o2TD={ z+hoxF^dtdx7!-WOH09n3Zp)kP*{$ZRR-oYAtKG_#fe674gMxFfY9-T>m*npg?JO|% z{4gWtt^*gbWp5y_2vP9ud46;v&t-dlwV9*PB@)SFtq(&l%GpD60h`NVUq4dt=}sQB z)vEO4um(}fOXLOFJUGZVCx@wQ9_VJ_o2gDc57@gYVywsrRR<`fyAbLD!(hSUss6r(8j`WvxP!fU=h zfmKnq+ukEEfi(n-4-6?TygiJk*UW!b0G`hLee(O}M3?dY)Y zD^l66@$O+Pmg7d0vo_TFuL0GE#wGpRowntMltxa%HD!l?nM`Qo-kn^SS_9v}<`--Zk zrP3KnV8{Ek#J$wH^3WnONLN^GGTzX$5q^TVpsuuwRMbh^wRH48o6Hb&Pw8yXHlnlI zg0zYMI|UWETdb!NPW`+R9i?;5Yq7?&R;%Z8+G<4z4WzXqn4Li@M$ieOhf&cnqR<3>lyr6o(9&!#SSM$@f|~tBWA(=$Gs&vQqvc82x=Vm(3{pY;GbxJ`9{jA zwjYk9bv=6ybWeL^I~s#RBPE%yT_XLr1L?KZw8A#4@zjF!+OXBMKDt{?s|{-eHAU^8 zsGd3S(3LO}y-57^gFTSxDXFi+|6B=ldqEs$g?$h;FDP^YL8ws?Fe5Dtdm;I+Ng#qF za*A9e#5WI`NXP(FU!(F}AcStScZg&Z<+0Lm&>-}dx*Z{hcnB>d^!4X?jMyixm53pu zbD-*UM<~mvndYG?$?E;?LfD{**eC53K10QX9GqvzQ2rfo?pWy1eACELTUt=A@$b@k z)6(N@h*ctYDw)ViEZl68sC5)t zWI9=L@?lZEL5Kgf*GgZlT6JcXpg$G0x&XTiLr9%q@2hMV96Wt=nS71@bc~Va-1F81 zDTY?wbAg4)vD4v_yWrJwax{q;X|r_ee;_ba&4=ybtq$u&qWt{>NZx5WXTDh4;DzUtL8B7i1~lZfJM`X4@+Rbi05&@%yr!*L1fTPJ;p7lgzpS zU8QW_bD&?m7z6&W$e{8Y=-?bK(5? zuMCMvgws6J|BqLW;y!Zuo|5#rEnALiIqCY?Csnk3&jMPbX@I}+dX*1#Q# z!nJ0mV&xqbE1j$;do?ZnZ=+M#*NrlRpzUv|ma2I380El(9XobFTJ5#M>WiVQX+DlR zBi3E2*HSg-M<@r%+TUo5)@$ZJDuKZ;sC(;Uq3Vb99w^Ccp?brGoUrdOK(VPxP;vDR zTkzuazWv_4Ktt%6;Xg@ke*;z>p^uZG8|e*;5s*b*;Ab$DyjNZP!#6T^C;_O>F7?3% ziVZuIsOj_vsH8wA4hx}fNm?F8G(2a+&=iW@gqJ+^&W9F5h76%E@*VO95Bfr2r~9cG zmDNnAZPx(X#)YPeD{QDESUUPN1S@*W#&qVSzH)(~OL99@>Tjt}TO|Ka1jXk*d?0?i zA~$+=Wi4T<8tfox>&cPbf)8uy7?RPyPCOwY`%3Y)GYQ>--WOT}#GeBzL}+7Go?W4V z!FAIAK$Jq7tImWRVL$UH$#Q2bp0I_hk2S{1k)*xO!%joHbedkf5@Mvi6^HG%VCC&t z2i=bV)6;?km~*EngnDy6>A~oqXikg4Ca%oe+#9xvy{SGzbzxtq6W)5<>UAR+UTxK? z)z%DvxYkoUz?|U}YXzsfU2U7q|(;Gn=Wl%r_HWYl=ye&ST@49z z89SYpVhJbCJ&sFv;?HegoRXDlwOg?Z;0t<3w#D?NB1>Jyx5S-~Rc{3cDas~MZgZ{0 z%D3w;mlj}k7AbhmRMbTPq1lQumYoJ?XcbCOmKh976gsCwG-O2vS6;EskT%3Bu|zpk zfRz~B8==Z(gW(8u%LDAF%ZVvl?io~ku0OGDy+N@F039y2z<$cPh8@p~5LS9pO*Vkt zID}>iu^|~0TOq_ym~tZTpey(xUst5=!xZI3hJuAZ>hq9LC48B!)lcmz+ytl&rCx{s ztOUyY!p(=Ut${gp@3(-m&2{d8oZ_HxgTK zSB+0{Y05+FnBhf=6{w7sk^n=`N)$L$w&`>G1~;lo*gN@8lReIetwt~k6j%hhp@lyd zugByFNgB@TJGp%Rgd`iaLQbXV&b=~-(|pC)f}Qssy(`Ldk#(2o4o2xe*}>}jVa@d~ z^*c4*HlP3G6nugsTB~=pmTiydPjR5u#{x%;9%H>0NQu|K`F;2upN=Nzkk?~=FYA-Z zWi>}dU{{VItj`@7TIg`_)sPsdY;euZWq4)h&Qo@(dxcD5%~0<1>MzVe(gmj{c=YqX zadPO4p|JO)>YcMy*|s>+*-o;f{c(isBM9}QN5ZcF^|B1lusd@~&N>hC6)03rm18Y& zs&u@r)Nj8FyuB2n9OdRbaNM3Fs?1lUJ4iy9Z_8-Gm9QZUJ{|}=j`F>g9c}<}cUaL+ zVY8&P0gR;=>^6!=(q?0g({K_H(-f!*&|6v?+6x*AZLNkm_hS5ov)y-`Ust~o43~GL zAGnXQ`Q0UpPFFX^**LX!%;RoWk19RrOc>Zgm|}xKP;Tl8iUqe3fhdm(W{wwu)zcr; zo{^0+?O!BRGLs(j)-D5wR^lyl48;#2%`oSlH5{n+9fQi+>L2yXiRlxS-btwgK~bnvEl&00aS& z59N7vyD)GkoZU4Su)}6}W6!XazRrxfmt!OJi zq+xTOms4G{f9j}@bI1)=YTECAew2;nbG)jM*;rfvv+52eYhQ-AdQ zmWE6xx~E3W8gmnl^LsH^7n#>K0kC1G|LQi(m)eA1Vyg7|S<>9SNzU?vV}|aVgtRai zj&Oz5O_kf_JtfC#C&@8%@KHrB2?kp=T5k6yk=wb-!#~9;J(Z`WPKq3J6<_&BayxX8 z$ono@kl^uxZ@*e_IgdMnU%j6Ksy*pCahzH3v8~Dqiz#71O%0iYj7Li+LP=`(!k-MD zbt)@st1fe1-^nJ0xpx@bazIj1J;3Y#Fe%XLjY8LowG z^v{g$3&&&Gd%5Tfxy!{QjJ8@tp=B0-u%oV(^P^-EHTa$CI&WNafAj;4$91N)c)Bz-pkYN)kJr=T}3nCxBI zg{ycOmajTdrTOyHr-#ktCh4f9G7oxCXgDNzTuze13l=Q+D+|Br^C@41C&^CQeDnBx z7qK-By9bc%Q2#1?jilM@Z^hF{r(BKpldB)`E`j$B&Nx7_X7i)4nr6Khgy=st-qtIY z+>_jWPv}!NM!q?_H;MmZ(JWO^bH7Z=zD=Sz1C8}0q?q>uG4?gNpC64*swOg=0Cw(I z#C8;u#iwD5L@p5=%X)q*q0>j~!EGI6{X}j%Kqci4kt6lR(0`w_6HJJ%EKb%N(4SI4 z*h!6A9LCurwGJGc?RAV7+Ju_m<9HlYMS?xSS>i@ILQNCohp3Ij@+0EbUC$xDx4c`@KuXKxW}3X=o1Ab2x*sVDhBSCHuOZ4SL}ust~I z?KS7J1Ym17KOeCM>>B3~@3N=vq6a%pQVn0uSeH>_9t4S>rVd)1Az->EpMQoyRyd!2 zGzpMSb-y_u-M#Y)m>zftrda6^XQZ+e^h35B00v3W18=B7evlk(PdzK{14h2804N_T z0yJPw5l|ckzMQ)x+A(Jy)CirWZm~8~>U3_wARjc9M!XF4N-%DP%5_<|aA7SzvoKwF z$Dj9LySa1s6dt2<8_oNy0V=Z0}?MB#rR{ub26?9Ed z&Tw_UX>qsI8mZTHMd35(zz1k&2h3?tu~i~rGqwXwoA$kqPdLXhEg7qDj85HElp$PP zs)~16-v#r(Eo)JK1xfF1MwhcS_x&ymMd&ZG%_?)!t5ssDB%=E)m5ZEj_+;=^;WM zS7pKWhX(XfB~=a*(v8JTt_iHLGdY&>4kwR=6){k&NXQj7m!3vLrQjYC#y*Sd&0g5Q z$rHwBk&whMoY8g+Ca0P1zA|wnavRL(8@_vY7Rl_(rp{6>>0hxB`psEp7sh{ChJ#R{ zufsA{uKeNi96a!{@Wt2qJ1z<5A)#CcNH)wv5>9^kfxzjw0|;U7oK`4vV!G!*@Hli5 zl#!d-Pj{VsFThmMHwiK<|6iDp%**yJ7O*QyNc@FV5-959EpTCdK~(#wc+OC6dSl;= z%bqSv59&oSrC5phEcRvD<4COjoO{J&*RmRpip~shcM95bK97;vhU!lw#Gol*!J4PB zv%S#~68wRx>^AZtzsR=IV-mI)ehy1v#a>Kf#w9|tGxhhxu_hb@lZ=0bGmJ^buWk5m zj!pBm;6E*aLT??wjy0lR3t9!UW#N;2%syJzbaxt79<^?B?2*l|BP{4c32WdtX%ljTzO*x_@4tM5sC@ke;d|uGE11Jsg;?Ycj z>{isiDlfW}PvK^<_E0W?Zu478;1H;iFlMNJLe`~GqY@RRCRBa+uj)7Sw6E-yrO-k+ z35m6X0m|;(yVLqmkaAA{A@VAp<7m-qLRH&hlmTx=mup8zEL zF|VWWeyLAW>)%LqedO%VDbd=N{5ASyuL-d{RygH~vm5Idti9SyjiUIB##GCCs=rBf zbO1T4k@d)4U8Z0A4W6gV^y?UH0uL&jf^9eA5`IHfYmM*2ENmvc?RZwqt7y@p zb^q4mHQ^5k4vnPE4x-0vVhH9}(I&}#f^D^SRQ=agd;5RY)#&n}uU^gj^8;XnVBnfMnG*E=)-If{D4b>9H_bq|SNR{a#EO#)O>ydjKd0*i3 z3qn3a&_^%os$ED9miRt(5s9s6H>~#J`IDeGp#Ij(jv?Q;ux?PdOVxgdoI)As?{DVf zneXWW8%LhndTDj{<6PK{7uOo^f*z6i1IAvw4cLcvB*n?<; zy_%tVuM?0pT-K-2jYQZ|;1sxBAQFcNwIbnyG-!r{2sE(s6e(A(bB}WTQ#OeFJ>mG3 zr|K!wrw6k!)1}|U5w@mp-{zAqlQ3(ouW|;gJet%>`{lWJN?K_FJ!WVBVX4mjNvc`g zx;3{jwVpDV1wkJ3NoZlKz@%%z%#AK4YoRI*rn`RdS%lRcd7AFaP~vq;!npgEIHf;Wz=!N^`drme$PFE=uI3O^Oq3{?CPY;kHRas*(qYHi;%yjAdRp$@!Y zRCq4uNoPA^e6F|7u-A^TQKYOs5sC33R@>le#lxZO2FDOp;h5TOl0+VXmE4jq+_+SX zk1>u6=1cf6o)UlGiul2cy11dq5S=i-`JEdh(wXLvwbnYrUHgDX7uZTKPG4tXRh8v; ztV>^Cp#6$!*P&YcM>-2nkb-}Ls@0I*;H=i`|d&w**HiE4E zhgiCs%y0y8*y>-p?g;X`tUiVQd0PHy9$eWyljiR$LZta~|6joR!HzO|`SI7fgbe3p zI-g@^pr{K%hhNR>LdO~Do1nk}{6boZY>VPw!N~x?u57a4P;0ZI@!3Ja0;| z1;w!h+l1eGSAx06JSjT^UlTr|pW%II2Ijwh+Jmq=<6YQQEL!xT8<>?kBM4_K5%|m- z0yP+zB`A8Ba_z;xeYQi4p*;C=pp_DgI=h4?ihQcFOZZbc7R8VCo2r+hOq!>DIl@a` z^K~OP$qKW|6GhRg@Z1G5McfO33k?nohMFu zTjmpe5+Q~DJwVz0?@1H8mduc0-4f*(?3*pKYYvONj&Z854D0>WF-ewLx7Me#Z0#^Zxfxkx&^+-* z>hHYBD)Szv| zSr^#At9fnux?mtFtCO~C%QNz>2AlH#O~D%%xoUzX^6&!|h9hHLVQ0miIn+fgk$+7X zYzbSK43@NuNsTM)JL}3!&aOYXX!@~XmYo`t;7lS*s2pKAOz;U|e=LC(Y?x&t9<^U? zVC|-6kW&_y2z4S)YNL9C2F*yKlj(vhSi#1zBsSzZh+*V@ZwfbN((W<u(JP6>)SMq<8VZmKrVoN6)*CyK< z=EHV^7QCC!@(|_RXj^A&k-pQ8pT%UY;6v9@eK?83uZHg3yjGhu>5H<}Cq2gTeM})s z75oL?6sD1?c^wn%S*6<#Vor^x(mXnZmh#w_vvust=e*CE0X@|&u3~#LG5a2XiNY)J zgP?;!LC?sO<+d@1Tzxid!%;5|ePc$f$MX6LCD6k`RtdkRBNq+LS~ua+Sy3q!J_pMz zTWr51!qAZHOR@2Pa-HRxW`R4~Q3?G|1UcS=GhKY*nSdX;?Cw zR?ilpF4%Qbr)<}^(!XS6wat^_TL*4ohYsiCCQjYYpYiRug1v74)hai@RYUi&R@9{G z;p|HjryqW@oB6ysouPJc^5*c)wtf;FetrG_R{}+bEW7Bq*HdIvYJ=Jxncmk9=73!; z)ey3_8IRTl;Kl9Rx1(TKn6KgicE1i7ya_s+IK$lM@F|eNv2{_^57v8yVC)DSC!g&bv(h2X_5xXnD$QzLvx(nK?s1b zx#)0Mr*d;VUSzk!M(e=zWQgGj2QV10cmSg`th+}{>E#1gZQf#ZV zBL$(eL{JfNdUA!GbNn+qS3b{1(l3NKxWH|4CphtGu1ynSiV!=4Hq|Ig}sGgN=FeIzv?!>$kD3oZrpPoiUloBrzCJnySJlocuwZmc4jE)s zdsXRT?cjXrm`0-Px45F6;B3blttQcj-m7q0-;B?q(KT8*^(I1lL?=yex$+)pPA1W{ zECx<;5{0@ZM}w^}OeUuUR;ucjWZbsJK%rGF?UZTKON6d!`{tXyX1Y3Mx;K^$gwa!` zuZWzgvUXUU912DYjy}{JdF~M%E?=5s}VnIECB2L-nDDjpJQ-DSpleu zrpxDgquThSu*(Vz^Bu+0#V&L0hgC+Y$wJGaIQtod?2HfXwqM**s}b{X(nogCDVc}w zi@L2;G{3ziZurUB%H9$;!16A!Lx!G{@Y1VT10M5z--S|C!&$t(41{P|C(DRFFyCbEKC2vmDtx1Ic8YS=xNw2u! zWLT@SHTAIdf>!rjW-IY#thnI3G%%2lf9XHagfKL%~nxC#YE3 zG3J4B;FP_M-Z+3s`ms@?kH_LJmftj1wl~@tt|+(EXT4Pj-esBwDKW6=h_c`LjFrO5 zF2k}cyf^Uv#zt>L&3lSvQbBdg&kxc$3}ZI677l(d7LFyocF8f6PyaQtHm^B*2~0ox zjJ+X-iuVB+;=OO&RYML$uJhzkt2v~pRi@L+$;pankZ|tWH(A@OqNbsu`8&-LZsb9A zVLNg`b!jyDI$sY+%O$3ZOpEU-@%fpKM2lJh>cLlA1gBnsX}ibd=7xbJOCRvkQ*T_4 zSm&1*QjOqF(`8UX-eGtv^S^;P{ukm~F;P$fvu5PqK#%wH`^tP@F)8ja4&I1!8IjI3 zy++@XAv()kZzut$H=a>0RA!`ND$zcaZ=GiI*%vFHtEzpJ)MhGS{@IRiYrm2u$~04|QXXOcOH`tIwC%&Pq{rpn zDz?b}%AFFTrNHZo9owp6s3`3>$h@gJ2ydn4G@=_yY1G_CCHrAwIJ z2={8+H0;^K>~NeNGSAaAuBMsnS^QqHMYZ;V?awB*jbi;i)O;1Ahjr;#v3>9(nxS(D zrumqahW0cCCRF=+cJ^|erC7Mmz!3@A*}oc}Gm4qtnl3mywyU8D*d8NGT_SO|Wx35% zob;_zvGxFrV>%gDZ~|}kJspB%WdCJ>46M+$i0tgxdraNjY4_z$C;&?`RP!mS&%udM zILqI&It02slmq<@;mel7aq6h$0{7uK-*N{$-@JSG5|i%nhr1izztwYSNL~}p5_tRF zb(fDWtZFZh+}|F_Qg;!KpT*Y9VfrB5L;lp5&Yge1MqYGbDls2qkUu{2rqgOr-holf z%Crhsuw@vz%(M|^oVm}C)75ph1UoHgxn*VaXHQcr>1y;EXl}DoDghs2UWb9k_Q$1n zW6bu21!8BGy1~Xc^Q|6X4=-(7qPCGRg*A|c(5LC?`^QZU%)&8u>=T>dM+`fh{q?o? z;|SYl+P&S_v11$NMBm{*IF}~7PPzjFLVqR-o_eP#i8g)klq>9VN?%^x;K#d2i=p(d zCAtU4%F;eHmBdJ}9vNYeu8OhJ!S^fYw|o_>TBqrbDfI@h51^*7h^#>+77-$NJLM&$ zb33}uJ*te=nMx0UmO}w{kV-n(>|n}MGx%k~o@1v4m?j!aNC_F( zg~;bn0M=S&_az}RDDQO=B*W?u@~#kboBc^J`Q7YevnmavZ72SHG2*<8VM@3$V;7@H%OQe z=-kElfY#a0DKriP=#cvL;1E>fJ~iv@;gN$!5PCo%8V1|5XJGa`)O?ClM;uiRGr!=x zE}*CIb{qurJTZ>%#(?j@KCF#FQdpgvIFG?vfI7vXJr3uh*s+hR(l8H>H?(7FLexJj zR`6HYpv@Ul0+{a~#G~i$+`5m{c&&e0cUB9nTScqzHBCz(&qPT%e0(7xK}k$FDSE1p zDyO=Z-f%%VZq%i9C#8>ue?q$$po4F#E^}V19#yueWQl=E@w=JFzR}I|7qq7Zp(Bbi z%wkzI>9|>mD1BCWVQFzrRJ3NVre12g5@A++CMu;ZUQmhamcaoIg8}n2qxarn)Rr{! zTG*VAif^#JCpmvp_Ue&bP2@fo8_hQLL}j~~2Wnu!KF?IPS|{dKj5h7i_+aIdr5OUP z;759V2$jF8#ICMYi@xJ4*P8c4$@<#FQ2A@|&}6={Y2(ItB`rLBu?2z|?mx%JzkowC z;^Sv`X8 zk;TAC7XENzZ6LqE7d`EuCdqTfMc@7rhb-?X_j%%D_4!#Ilk0#3nUBm3voSR=0kaK= z^<+>*)e`cU&V2%MO^JInqkjGRGhUFC&rJ7Ds%MPaxW~`z5JJ^Qo*{U ztF=8DXN2}I;O^|Hs*W>tyYHUhM^p4F7zm5r!b^3`ak70$orY_P%NV!N`C`^iuRIg4 z;_Mm5=&-IsuWCE!f>mPB4WJMB#1>>I?1wK$3cTj_f2byOCfEAj?f zgR`Ui36lq%bYa-`q1FB73B=I>(^mLSx$%K6GOumVL0c^@WVVN}L7n@fkE)rvuN0N1 z91Xs`gYcEnY{nbybe=&5!$GU6vsgGCBEr$zVYF_5_1OZgj+u$ykC|V#IJ%2haS%d} z)q_s*{GuO5V)eRLo!`)vKY&D234-|z&1015Rs)^xr6|5IXR55uGuKtI*b&;15t&RY z^Dq@t=%mWU;DizRY+_Y#gwFFgAjI-q#na}c<7pyLox?OJEv2gf1PsO`*!fVp8el+9 zW#&rh7|a9vAs-s;!0+f1%N6FS>}tA1eCUbyY4skix2T(>SFic|6<@B_YQir)HPTU+ z&0`VsOS*vgvRI2a<3+ZBL>tv3RjI{gLl<^Zvb?%M+`>6j4CMPf)`8U54L!m+yA{Ov zrMib@8G5Sz3iFhLCj2(6W6ixbn~;a>i_rUdLN8~8aC#h@PI$U5Y5faDuR9z~^mJ+0 zoZHAvS~hj}zSzp!A&*%PmAHNJ=`VWM6`aUkY(fa}Usf84w{|U1g+@>k{=z=`XeWmjji;+DUWJ%DSBkrvAC!e}=a(-gn417M3B~3nxTrD!;qHt~l=6ri|*2582Nm(jm_+ z+u*up6c6u z6uD)GoRYC**+0V0@E;D-i}y3q+~ioQ3P~u(N=)uc`DsR|vu$RRX*Y>1G#QTir`R#_ zBj?FvZ@B0ac7f%*CAX_VlB=2#u$0%q@vPwgDOYsXURkyFZP+dGnmMp*O=c1Gc&NTs zkwL@BC)XE|cu_?&ZxRVE>5(Q}|D*&O(5*>SCp(iWSxx%4Xwl`Rzv5>cBx*~He za0H+!#Tc2+j0fmiQJrJ2&@PgmB1y4fth&L$@Q}H3*N|#NqXfK2_QvH@UqZHg?;Q@} z*!E*}%K)mD%{E`fL8%4q-+vUZ%E{!s=+9YLIXkvuAvmpJb_UZ-&oK=vC!nP*3X|}Y z_98jR+`<&=H#ncwXGeV7V$~w7o9>waTs^mgEugcmD$7FSwI(9 z!63O^Su8&j1u$!wSt5f;POdTd$csavJ+^bl#fmSPwD?X(P*-uD+~>j^iAPK5aI!6Q zgjdtB$2ddqC2tXdcjQ80_#!heLG_R?6vLX&`e~y5HzwofFc1!herVIr#F-CO8cJSu#N;B7hVc4)e?wjVT}Itd_zro(TA zoQBtdAmnKI1fLK?pnX_&N-wMfkHC_TA6-!$BdX5Q=yP3x1CS&kFUE@{5CTlvwFFoR zncd4HFHk4wZDDT8f3Wxl#zO3)d$e~k3LaBiXafD4ICc*^cBX0NeSi=4>?!V4%#Ve` ztg2xljB9^1sXV-T?O_sq2C?`=DT+BTzGAmR2(aOm=HW;Yc7)t6h&~`uA}oqNX8o{m z$Ri5(Km~4y(-M`{9M!@2JCVs zMTX`=t!_~@A%wQwn^#7Ryq4x_@m_<|@3K`QXQ`C=QEgi6YicW{91UU!&dkirCTX^> zM|n6Rhkk`?ZY4XocW;Y_Xh@k`ib5I ztsHiO#oW{OI0bIM@aG4WBTg(gY(_AFwcAMI=qIY^yUPiQ=Gx5frjg_kCtf7elOZ;< zW(cj;T4LlWIca-(%l(i7==KJoWF2n?yhnwu`P}j)hDx8(iH?Z^GgVX~?3DQ31Lzpy zBQrx=i1a&FAn^z3_=(its}2aiI3wAL#v7!=&iHCZiEN{_gARTn=_wnvNV&h{t)0#I!GahPL!w*YyR=_sdeeU4RA3C?PBOvi` zvm72F)OaoYXC>hAyF=P`nujmT`V_pbXB%^w_=wNS7ugQV`ooJ?ck-pf6=~JABMy*Q zA+IRux$tN*&XBz#z2mr*Y8L;yaRB=vGO^O(c!|j|RIbJNeg#HiGM*SqdY)*rd?=h3Evh~FT<>E1xGfrmqf)s>1^SYsPv?$sOUA`jKYsF8#-isL$oLz zjM;6EJgzGEz8Y8czX6MCYcVVib(fYJ-xVrTfffk4pHQ%deFl5DKk9D9;80x^D}Fs2 zcG%|zJXEaEutTs%(Fwj6<`b~-^-1iBzP-n*@2#ytRr7{5;XH*NUQ5p+F=s2FW~zR-QC%)qMS3xU*8_T zM{$xF(3vS4PkKHla(|x&u4}4BFxkTBT9~e~?N&giD~YdRQDw-3WVL%?abu-yB)M>g z#0owDu)IM{I}tuI#jiz7tu=*YN?T5a37N_y!omR7&B9vAd_R&@!FNSf8RJO&$f~Q- zh19OEnW-7=Z4m6)R3#0n3Y9!pL*YKbutyX zi$mRng^kb>~2Yz)HI}z49&bIuJzPSCqHM9@-RK zXDPgb#i9G%eT47z7_~_kZyDXL6|TJ4F_N~pA)H*(-P#GYi)traRh~m@?pupHN=D=7 zZ+z@gW{9Y27o{xcv`zL;C53Ilm=O9#k#E*tTv1k9R9SMksBP<1DHI}V+d9DjQQOvu z9l?+Iw}27r5UdP07z;7DjT;*35KV7E=nv&+kBeCR@hHC?N*~|$w74?KvPTu=;yWhK zP;Rwr^Fu2P{x4vvuX*T*TVw6XF%x})?kN+1e>5c~6&f?BGJH4_MUBep)nUR=0+wy& z*!B*QPRWPv64^(*Bf;U~sy;$}2wv95OdLz~$ROmYtWH;b^7XjPWir30+$r3N^=9GP zNvE-b(oOlw33Nj~WKcg^N0dyx@Yoo$--kt{^YJdJ` z|3gydjd0j22(TWkOW@x2r*ceIwGrK2oBC^ktpv)~e|r)y%;R^XL&;&#uamIUR@H{N zp|r>!nAjP&#&akk>nLHJqM(`o+tjT|c+Lyp*g(W}l+XxsL)IC6ylEl|%Nt_vgh z-h2@RXyJPGBnY3X*F0AOGq-U9s0%qO&N(jx*q+`7Cp2}>=%=?cA|`u+?}I^rc?+r$4^9ef;6EHMZ8D4q+@Yw_dWEQu=KY z?#|0}{s$M!@isVQtpJ49>*FZ8Bg^%F1KW^Q*AfFuu8*tA3M|}u@n$os#`-H3MUEVC zmlM1?Y~5eh6h*nXCajwMJZnlz_F@Q}VItgrz1q0%@@c!yPhGCSt(wLtr6JU~;FS zx41lG@J+#ksTwy-lW!kUJH^G86xy~L6}ohJ+mZ+;37c>DwSAIEaQXvVPv_Ta6{;Yh7r#@3?Vr7{`NRthUCTr8f$<7D1>??-e`*IcOAu6V#_kJsla%^IE{&p%}*h_m@=GwOT0^!?f^c&SU zFhS6}F?}aM@5jBk4;Ma6?}zfP$oPEgC>{WQ^qrYcFTPVEMU+nWj)P$CZ9igcacQ&P z?q?Gj0>#%Ld7?{rL0+Wu`2vMcy9(EhD6gyW*BnQ-^CE-ql+?(edE%J7M)X#a;N7Cx zyFU~avxen;E-Gd|-hVG&)IX@mh&d+&JM)%b06iCKc*JMVm%engaFN40&_$-sFoea* zQ>(4@)d2?nmF0F2jzJfosw(wmd5_R#R=J&Y&*B!C0c2D=a2itKd*^kHTkg zTt%AbJ6^y0$V7}Y`x)+aqUtw++AZv(OU&!%S~-s>EE#DvHU9-v%jeQW=06rB#oi_# zNU<;DWpkSmx_v}y*1^$6iru(2{mEey>4M5xf9s^} z`hAMDm0B|JoK0O9^pv*((C$e1U5i8QH2IKs%k1f5BaoJPzTHgNW zsTN@Nd*n2Cg;if9w_{`ff6R@FCV2JgVuDl*T!i8I#mW`i8>-Q10u9cXXa{zD$QgEx zrZ#uVmxoQHxq5GJh>2k8tuf|WfT~q=TN+U#1xHzZ&H@{p&$_f&mqqnt9*tE+U~dSzZCvw~N9G^)L4R0N?RI(;CBpHY{5r#3 zVS}c{oXB8*!SU4$#vmHBZe0WQRfIdV?t{&xg43|Dr?xK~4S{irui?l_6t6e??%i%y z$!l6Ift=N5{O)jUVH;LCy3Kj7_nbMKX@O!~E3dVzx@kiF?+xor0eGmjkbY|LayUP5 zp~bMt_R!GK%L4`sXa~akEM`$tv2&6pY%_RHW!P?r*&3hKC(KHeVMRj#6W1t;9S3Mn zZmT1M{sGb&?pipr$s2OY$B{PE;i7YmB3b2hvg5a>*oghG*WY*V5-8?R{xTQv(6ihkI3;ks=}X-oJ9U5zDI z)ujbjMi=6vtVKKh{U`PFof-U3#HcYDGM$*^0&ARoe_Pi) zx+Zt+b)Pu=1z$~7&9m{;*gc$qg}t-d!mwoL)UQ~9$(4?Zw$6Pt0fb5g#J_3fEp*d> z$PO0PLgxN4{ffA=3U$id+smjST1;Lca@RiDokuw@5lOirlsnCi&3soYx7@^z`8#K_ z2{Gpi;k+cmHqX=FiS;GX1^K(O)WGcVy+y^WmWN!hR_(F6q{)tn)_OKwQZtgpn5+PcDOxUdtI8TCiQKgDtd5lbUS^JV;PqI_)7uZjQ9 z5-7bHCS2~UDAKF`f)0w3Jsx&2_gPpe8U^jcEp}`)*nH9puxEDc0_;I^lF zJ!DbM%Sg!BQd*3b`l#}j?1R!*9om9_5*vcFaQH*noj_;`J}fmHBc4XC>W^_TchuDr z3jI^_1rg@1IA+Y42pnpk9*S0-*M3Q{-EDU2uKmwp8aavM-;%}C;aJik%d+wFt~atd z5azw&rQ-=sdJB2n^B>Q+1?)k2*r<&TPb_#4%eE7aIO47l@<nD3Mksi=H-siD z9s!&bZkgQNFb)sTrTHq-a3`QqZy26;;So*t~Vsm?dA<72Eu)uv~ke&zh8*XT6Wx0*B zejne6!ejJbPVTzfurk;%L#W=P?4Xqpx~*Kf4Z8HWQRo#3bSpLpDG3|QlGe=!j8#Jo zoqxryz2Y3!{v2!W^FbwAhQTWSmjQbu>%@fo-Se~-hJ^;~6AR0buCPgRJ9ju~L*}z6 z6txU1?gE2Prqm9wL{UYN=4A}I?`-KYIeS@{O7VgdEw#*5iuYf;T%1pj)BfJ>>}TCj zob?z+kQSCH?&DM4kU5F|>34u?vHcQ;Wt<$ilYCAk`^c^Y@{oPj@?Hp5l|2`I*(QN3 zVhk%7vz9#229nPFK!35UVEfp?ZpR({#4-qQ8?UiCjX7!Idb0CIqpesS{GyyimBX;5 zI#oQLwX}4NVTkSQgV2nN03kAT-__<14i>T#U4Ze(#$i;e^wGU`bd z1W1pDdog+5mlYbE$4%I3yoteb#QIcX+r7Y0nTka_7kaD7DDV`A8Hzg5+*ur3l zivq3U0z+H3OJaMu#qQg*IX8`i?Uh##azM@ePQgMq4|2$f+3!;i4a;>Wm8tfq`a{Vm zdVPcZtg_ZW9)U!y(QYJM%Mg@G5Tdp@4-2tNIYA}=(p_K$-B z29ah4%@dE}t+hP{&GRIX;jK(xGTX{B^!q6vGW=_XmVkTfgv6neqUZqi*68L!unDYl zAo#hcC6^c0G93K|{=Z|lgpTbi`C%_19AmH8L51Lp8h-<3pFXiV6DAowfjVC%zQIXNT4Qme7-?kw!iR-Wk#N=4&Hcqs^vYaZn*;Bo&hApz>7}RVpSaq%RM+vgC?m%nv zQE9E$>f^tYt~wdxCxa|aJtLW&*CwfxmoGxgnGaEP&USQUCidqaGK2uT*ga335Ukh@ zk1G=)D%eN(Z}ClU4ci1i6L+S!j)QsGqB=v)2D?%LQnJo>unm;JPD$G2Y(?40r__yZ znyfrtUc1vJaKnl6@Ug75*Chzt%g($*L^V8 zf`jQSdV8TFRQ1~cI%)j`Gnb`E_!8ggkD?OQ0tn=q0^PKGOR>l5@7Eer71**E-0fN3 zN&2<2s=rcn{R0k?D(-}66Plcytccekl6e`&m7jlU#1!E{(n3R^U++tvCC9Y&!4Z zOVXc-SJ)Zmv9%h%C->?3E3y4(b<;U`cPX7VuDRX^vcRdV?Si4!8Q1Do7;+ac5Iyex zBr}7=^`ezbTc~^pKb%+DCjRdfl#lyTny~tKqZBLuT#kM0!fw9&9CH+k+eqVk_7Abh z^fzTbt0(_Sp~Ca$^|7gR#&cl~&%#IP*$EYSa1+Ir;|JZh;BR?sGtB;2L)MmpnG&{{ z3t;zS;(YkTov?KFIvoIZm^O=>X2y8&J~!cIw`dA?nuBqMN~4SyNBW>VgB;FrXak_c zv+Thhb++Nefs9mRhG*iNnX+-{1(<9fUsquDS|l$42bN-^akd;|mgR72F6% zg}HRSlx%@oj@zeO=Md$s*sN!?FXhl)L4Uy*y3hpU*vIYdmcQZMJ3rkC=MkQ@VO4&c zLI>mWej{A8rKx|9{q48U>FJDg^9fWc3rj1Eu*^+%b3I4kSV8{O_?kpN?C6Y`zkECm zujXYse-}THyytUv%ibv{Fx9XSR$A*GxU2gXoZ;o=_H|pITpWT>dyJLPhjfk3AGVr3 zEMteDz*MDZn;k5I!`QF$(1pMAKTU*sZ(h;zb4eC#j$TSZjXHHE2a6ty50{;!CtC@& zm(IC4Au2NR+O*+Z*99$~@y}byifKcF6zYt{9V^t8CVp@mzg)s9@I*Lnt`oIzzl}4I*J z*dN}4a%eT|J|18z54~zqI^?VkGXxV7${RFK3~<1Wl!QgjnLYxzZ0udz!>gBHpGq{zBaqzZ^IB zZE;%n&A{o2j_k$=)k)gOwynJaaLN}op5X@-pf!qHG0`o;Sv}RQi#7m8j{`D8p_^*; zIG3-Y%tr0Ou_eGHTdghPhohVoARVochL3CUmrlcxblk%X=djT!47p@lGanE#M^|i} zOqe%0bG*+swy%1m_2{2%?CiV!R;(=?TVx3^2nQM0Lir=?FV`C1F1(cKO{fx$??E{t zlr#UJj4KQTBRmRzu(s#)q1!Re+TwI>Ta#dPSu~VakBTKs0>+647 z0-i0Foml*-IyHzl@xDZ!oC(Q3tAAZAc#%sHU*;RMC{rEDv&bpgD+_)&ohDDNTxYG# za`P#tayLhBCuLm1^%rqBM+#K^m@ru#&H&M&37cM2VIbt=T#YpCNqLVWaTQsxU)KHI z%XU8ue-|npF?+f6ROrxQ%-SE-nrYwIA9Jym7H&w^CvtE@Ry&I-M{Z9P48A#a^7&tL zc*#q`7aS0J(^vcj9H^f6Df<4`*iXCVh-d*thsPklyZDS?L+XJ^ zu-asjC)zH+))8`%eykq|u)!~`R5cjrOB>wdFuuSON1?ZNi1#3Xa z#HzrzgrhqNxj?gMgu`S4^q9h?%dq5}kaS<`mueNEuZ|CPCxTJ86NE%hD`hl*my_k5 zKF6{Md9t7|%H7&8ojm(XcUldKpN35|QV6BKY_AdY??;fj@Fn$_M40GHM3r7IU8?Re z5eJIf%&2$}zRTQlvqan`;795=*Ay94MT~t7h9gGe^wyk6XRANNw{@DouE2OIFVp$= zw4KFtmbt#;0$YKTTQbTPW(5wia4fk3N5GTUym?9M7B*IB=1e}ImGHKlV4JJea#SBi66wQ8j-!_x?nb#zvNGY(|E`Yj1LD7XVO7VoPh z^KD6V6Nz=(NLFbF$&$5*i$sw}tg^|$BK@yTj-~dKQ>?(`ioLLp!|5n&FwygqWlysL zmqFc!3o{4_RA1)gxvd%v7$ISQpNGG;x(i^jGZ3nMTYy!A#Zd6V>YqXO+A2#$V+eUL zymdCYR+38zusdN`4T5kpJvfXALh7e>E07d#x0(cY6GE?r&ezG*wL^bWTKuIum()49Tsc44!%2aw+xRe7SOF~(f3xW!={fcR&atS#HWXphYVx^ zLvBO26&J=$PN0Sl%q(*XFF#x9R269^&yYvXN~lexjRJEyY*I~d23|}z#aKJ2Vau@T z^o1s|gV!n%toTtQQL)bA_*`HmLa0x%9W*%p5mq{kwztGSk&Cow*k%`bkd(_MnobGU z#Rb+0u}&3Yx_5xmUF1N0-;L#S&mOU9kVkmunv{F4}RKZWsJTQx*= zng0S#nx{KwuK7B_8X`twFka9>8g6h_BLBh*7~iO66**~-?(ofg*3C@-dHcir_>AD= z4Evnl#&Po-h>H-GBZc)>!=UTkIk$j01HoCHSTO%${A^Y@UU3*_&iY=I9#;J|_n($P z{$azC5+~Ab7%r5W908wj_|!*z#UW^9INYbqJ%8*;#mNH@?PfB<$W(Zg2GaV*S2u8A zvD&>21bqw}6dWn0@x_kf1L#K+^M%@m6N0%H#}a)O57I%eB+>!Ar}=_m?R<`3@G)GX zQYrW&ohvmWDS#>NyEv+~1~$HcUwo$Psn=eaII3fQX6CpU?*z zc$Z$iM})iBf3Qw?0@r_JaWI73vv4fg#0B=I9P>I%WW8_s50gFO&mYRQhTOEg64aEG zYCWiR?P|#92)W;$O&UVKL4hPEK30g?v@%pmO!)QJGh4~UF}y=V<7FTUEPCwtQIf;& zX!XSPS!U&} z^lyr`s@$WpRjSf`)0E|u7;-RP?-0{*QYq#qX#MQCw5J3U0uH} zqxX;AsJgnuygmbLpYukUQjKbV(x21yxhZ)xW_ zN28-*LmuAcXgVbSZ0XX2MB4(#iq9a~{@+&z$uH!zRZi(ZazPX2IZx-2FyWgndYz_q zRyPJ=n5W|z*21_AP5#`%GUPmRga7_H@%(deg7`&Id-wx#vI*k`nA!zUZcnevByy0R zTvKDxjZN3!n=+bdK{??*sKYYyqP| z_>*w~L39ouh)@(LB$87ZU^0lh6sH67MKOt~6BGOO^+i51LwS09s56P3FD++q=|j!A zKrxyePOP#Zr;x7%1ISMVsmTz>M%5(=5qf$p{KqBW=HZ#g-91kpFRvl9<5%X;{dkr7 zdg;=A_v3Gzzi@+gJwhm5gT&tT1affwM+ee=-$0K3bs_V zs=NX3%aU(Y(H#YwcDl&8{x@L{M6E7oN?oM0NrF6o&>=p{$SX$xHi#1$tgDXnPw{W=ivo zBcM1dGPqU5ufD;s#5>tUZOX7xjoa-wuJup|z(X;%mZm`KWfj$~|6`zoIMxZq$NHt? zyBi^7;MHxo?Dx;kUZLJ1j~>5gv)}R-894LUv2Bg0h5LqEj3Mlyr#v|lowkNbE3wb$ zF&ym+6ReLv5>#G~#lA%?gzM_wuR|d*rXm#k*-6u1{gsZ=RDEpU_XeS#;QUnNz6Gx{KE%|G7E*S?il%kgkM9hjXv$2_ZZ~nV zT5e8t<3dkv%-U7Z;H|{K!}!qvtKi>ESBwwer03g}dh6{QLg77}$FQZ|Whq z4W`!1N)0?Kc%Yq`eM~ZLH_0i^xjK<^VJRU9*ycF0OjsG*NJ#TSe&j(m=^> z9@yduDyhIkk^--=+3h2zWMyz0VJus%?Ne`C%;TT7hWYJXuB#Y=1p#Jp1`d%9QzGFp zr;}uj6^69<&;atPfH|3f9h3{&;UI5^Zy!;*SUpL`=ZqMt{er~Ks@myds=TbjpiQ7F zD7!Bi0D=xOw=%xAaX47sZBJ$7N4gpJuxx8dq(_(Bt_T zj5)ujYtlViX}gg3B*qhUlJ1c)R5}hX(Mh_;4?m#(*6|7ac&yyx%*KuY-nO4O)#VT^ zmtl1}#ECFe6?WM|YaFLfYuM!wD*AB%dAg{pk@VJ2OTeY`Iw-d7qQYo*nJxtht`KnP z_9_cYPp3@T*^QNR-vuJ~MsjNbly4f?-5o3#9so3%;80eT8m^a&PkC8j8znrJLbVUS z`jhP{FO=jjq45Ps&KS+ z-K;lX5qXsA^~&lS1a{UGjZs5xSg_4%qX*T=X3(xRH=Vg*pY0V^6?VmMoUcY>^QY^>ew#X8Aohlk`rWrJ7iYE7DmddJtq_7g ziEZM3Bn2w{rq|sFg!_VqdLg`0l^AkXVWeBy;wgpEU zh3Hvpd`umibJzlWxRT1vVKH{2!U7C>FS2tx&cye5CiYUX8n7Q%^(v21SjVQZ`2%c% z!sT)l$5uAUeVwDGCEq;EP0z>R`}DKT*8!~TvET2C9Q>em(MEgWH0f-UMjCibs}69f zT{sBU`JE!t!zw%k_t8w66z>0(2zmW!r61p!>sPWQKL&uT!zLqoMZ$wkg0k`OKQ`_7 zu`804vC^WDJnEdmPsHPGkZ{LR8w){n$Yy@cbiVSPH>GBc(}Q-;s^fpWkfcZ7+bMS6 z4ah_I58{M;I0r}8v$Hb3Lurq{c4TOJaK-~^Tx~tXc#8Zf#ff7C#=>Xt9}K@eI2K>G z2h6?}Dao}=lvWe+Dq+`YvC=FPgk~n5ZVM^!Zo5{JxKHJG2|u}UBNNJ{71si~e!3j2 z^GPY=jE%Zk_dg?4V8K&rGf(KgrL}>@2nfaimKV>g+g4;7&JtE4Xje%vbY*QE%ziBCA6!j zu<>YcBHH4-NRK_y_iBjaEffE6h+3y{3{^>cj;0Z+Vr#4o#hk0Q@$>s$>l$0hHunHt_wM+J87vb|CTo-dwvM_!*;Ci>PLqvh%orkR{FIM| zldOuGSAP~zr=7GdfjR&lzaTkO#-N#gD=rKd3KVZ zv+?O~^oN_CGmRIkvK1h=G1(9JA#TA-@U@iNM>2hQu?1@!>+TNy%O=o>R{gR1=8S49 z9tskIraa%17mXKbggBt`sQO5xQI6l`@Ie#EV(M$49mQ&2;CMe)5Do%WQfP4f z4&#>LRSKne28($mX%;I>V)hM~jjyOZsh{M@f1_4H-c^F-<7OM_)K6|Z$s~_I64{oc zquMCAPRJb2iuEJk%cQAf4-28zHo8PmZ8iBr(CwqkhC?sE8Y+NL(4EOQ$P@E;MAKfx z|J=sGYzj5-jd&Isab|=?0StKzl7iEIpsWNuffg@grDJklOJOLQBA00>1gJ2tteLkr^>0 zW6On7sMvLo<6c~u*DIKsXAojuH>BH#lZA45?nvo!eN4B zZjz)+U&dknu1MhR47sM|FX}24f`e6%IbkPR5Y3xKs@eW52@&-oTO12Y!SDvcT)L01 zxmbPZ{Y~^=bosv6*1%L?K_C-6y+MQEs8Mi1sc8@BdzhSo?*ySBDl7YRQMX{MVj$0U zMtq|23^y>-9YPEylr+(Xujs<>SqbmbD28Xvvv>wb1)0;YGPHx-;b0+z-1k5l%{kN6 z_N8*W^`Ob)k5f0p1;3D5&ee=G(<|-9JCor0u1>)k$=H60-dlvy?Ynr@H>;XHzd%!8|(_YC2DVx3%xubP&~gh zfNnDK6Jsk=q4gg?{6r-f7zoq>1{@%@g6_0L7`0SWPV@*W9ahV%KkHk>QtaW- z80$tNbdH_x&GD6MWtCU2i+2+)T)5c2X+xGH-=w>=69ToQl)S?{iCyn^O5XG9s8RGX z>6Ru*uq%(Rip&3-Ea^}gF@zpV534GAnpUe*#H0~H3eLkVIP@Z%r_twklv~r>UNP@g zlPITC{n_FRWc3sefLtC*%Zu|O3MEXM z`s2ij6Dx~wsIqP8TZNeGL+Pcq+RTW)drI1t_d&``hAapBODA2BTjY}(JorhBd{g54 zFYj`#7&;=okY~9*lG?L^H4-F0nbwKN@&!osP_M5WZcT`;!^(lqs9o7ovUI#T2cfE4 zrR&qDPj%-WW? zEbWGR+9xHdfeD~8_}GU)D;8?rszc+ER<)J6kD0sl?$G@w*uNc(Wd<`4aN7;tT=@q9sA7|=>FXO56b;e@iv~ytmG48PHw#A)750!2-zUNjJ@S`A++e9vVsj3$`w+Q2 z`~?FY6r@acwG(vcXQ<`T9{ZZIKm%A(5_ncH)KRYCZ65_E3pq#A=X(rG)9r1h&a+1@ zm7vdcg2Cf9UH>f%)HmJh4rJlFG4^Y*l>yv-gw5c}#LkiDK&RgM=Th zWT`W<8biHoa=vT9I%|^le7%6fNs*#piO{dvC zp0uwsnQXCB%)WfrNp~~F9{Q9#Wy;x(%_742EXq(Mg;@4^JKK&s*p--lJ;^jP!4Nt} zS{p(pZ^g9RuX(eQ*VA+AoH=KPc{-Xh4qG*=G&u;bhU}OQ$AA!-dj0aru3fvD`!{RB zs2_>%`;jxF4T8ArOwqrAftbq(xmM@c9a!=6DY7_bEAL$`LR^ zm=&%xO`14dAQwlims5AjJW$OG-xmmMp48|YE)R}pGoya5Nn5}V$V;{kEvR+ldysG~ z9`3o_Vp9z;7RwQrHPunvmJ3F#v7#x~7~K1`f=i!9Xc#?H^S+kPa>LMlcn#HKL(ZA1I9N5Zt!D5QZboaNr0gO-zY1Z@XN;OaA zDJlv?Zq4iP6*ksEW4>iu8 z|I<}a=JE}!22p>5wSmLtaU5(2rWee}zuz=NXHAtZ-DC3i2?XD+YVHRcbib+Iv4L%^ zvfesb%4{J9Js!h!`Av2S4x<{ppL z2T1zvYb-?^nAV1YWlWvczoWma3X|hhDhM-A)baIX&5037HY{zNC};zy0%2Oz=>N-D z&0OM}mzO*#^7trOATBt zv*>48V??jws7^~3UX0Va$(ierY&e>#=yqQSi^=c1qmE!MYN#nX2oyX8Sr56Agz*X% z0-F|}tPT!N4-R;wuDx*_4bd#NCO7az<$@((L0?LhO~B@%wm~KOPhe{v2|K99X#Wm= z=O6ztFBcmU1(P&e3_+u}0rU%`%0`OaKNN zCX!QhKFe`1)8}g_54O8eaX+TaYDL2akaTj@9Xa+-9%LTA(<=vp>u)5>3il!*=24dy zbY~M%hw4aoVG)dW~eTUtjU?D5W3d@@`FvrTup3o-*Y1b zgyty~J;uKp_!aNxPzy%v9y2BuCvq)kaX&nrwhe8t;1rKzQMsZYD#FxQ;9eU+Vr1}3 z&Lo#A1KYswVv*T283%juR`;Km*pIPA&#u%>j1TJ*ntDXC=Qqf|#UyWiFb=j*{2jSI z0*!M1A-!gWF1xf%Atier9bm>f!|~`o2<0DiI2LDCG-2ICaMnktz=->ho`erg&}U#v z@5=X=>3vLp4mV4o`9P#D^89!%7d2OawV)R(dRWbGn<9DR0ww0WSj%=Mv_fbORo89x z=hbNH)A=wV(aXheMM)6b!0>B9iisveC{7o`tm?Ccgxs@ACSV6N{p=I4^(;*d=Y2$M z%`GrzNJ=i)zbp4|>2w5}{8ni}kiUNm>rV*R71YYYVHEjM^Z&h{W8jnDYmvkNI{bUy zUWk^WJJ0YoA%@C!>vq5j1Bv;$U<+*9#X4bc(?M&wxe}gjA(!urR6%Ubt`}+`eTGM+M4zfMr-CXFYkgzuTs6-I{1Z@TAzDQKLo;G|=8O@7n#=IbLWz zqUyWcN-S@QsFhY&6G^fx>n2jFRfnfotkla&WeN4}91-3`I>|Nc8s7}*H`wU;-FGcp z*Vjn;GX=MC0Mja!R>N)N2BuQbojp1X2OCJb z7gibWm5LK=OaqQMs9a=b7Av77S75j?#2;j zWQa}yka=nR_=oUh`%8e`qaE6k<0PE)zF8|^N-O3A3rJhVSa)hTkJ&Z^a_xcJ0c@6K zzhDL!fWc7Gc?HH9b(!eUx9K>uNSULcu%9_H8u|(2#eHGG*;6nE0!uX1wdSQ@zV#)A z7K`7P-2m-{^oZOrz~+euV+ii!g=NfYA~8hA%NPp>LA7AfZ5ynY))fh!!1y*)TL%RB zLj_mLO7R+zV4iNXPCviZl@|G1_y1S|wYF{@*$Lc&=dV6tRb7COkGcRterK?XSuz5f z^I&%n(oVZ!2cDoTjGb1^J{Km>>RuOunEloVRtp#?PzeUkybntKZtEI24{t{{(%W!>sH)vNtK{*f*vdzwt!4#(dq{#4Y= zm6|_q-aNmuf_K8K=5-5IsZC9E$BpKPztc}AV<~NW0+z0^nXd8*woXhLTk{qCI4p*~ zkw#TU1)oWnJrx0*PPL#LQ5=4R$()!<7?44Z@o7=P`B)0}wvrqaFJ%m}0?VF|qybi- z(_AUzYby|)vtdiMWx$Atr686PD_ejdmu8#{GO(4ogQXZ{u}r6yQU=)d?n7-dLZ`}} zD&e%4drSm_Bv`q~*N&fqi-cFhZv-xBBhxFY98Sp;TgxZ17Tx3$JE|7_wf@=e`}o*~ z7CCq?^I0Pcs9+4?x8W$f6)%#hc`U?QlIz^CLS-%gILYd*c3y8e;g8yoh>{kOp+AM& zXl3q-@$pO_%C2O#*c`viutvvx_v~RlmsAyNel~}YY`Z?{%aJjMt??u~hx}s3p2*mK zLN0cD{<5eUn`b-X;P?$Dn`=Hw{mu-b%JF2;3h0U5yAj-hfe?bl0NJH*eN0#e{}QZ; z6TDWuvCv}-A-BX37t3o!IMKi|I|H*UXE@O<>7b?DEzt%!mHU?UtZB)ocFd*szHg2C z+eQNO^itn%rD2^Ve5?*&`6Wpo1XoCx;%MCt zSSNU(Jj?AE+Am4Bs@O3!&VbE@k8{|rmEcv~x{O~TjG+g4Qa%-&X!&G)yS^6pol3Rgyd2@5qNw%!1Mg()93#==> zP%YSvAqU+IiJ;z}$rX8uwn2PWV+N}5oXn;qm-~cUooPf8<%E1qV!8IQkus)l8)qBC zXheu&4xRnu$P#A(mKX{b&f7!_>E-t*)%mpk2*uL~0h!nlZJ zSS{¥6%QWq`Ppkgu$;=eb}z&$s=@cciTHoeRDAS8LXU!wL>0$aH-9QOgkt_1TB zhFv^gmZ~7AA?qB0@h|McO1yt=$yc-)Ft|f9bTugG30ypwGtbodJ1E61Z(JXGkwq)k zpOB1i8V9j;jEVOM!L;QOy5jfQp@7a-VjF(qsfSFS5^$58c%C!w@HCt}*U+lSa?PPb zn`gigOkTD#>4AXzt=_2749Mmbe$ZS2pFNt5Q+{=IV5PuD=|+stjaFyFc=(N_IA3|O z=#x)|ZrQT(lTX-nn=j<)4&_hsy}qV0`q6+9YAej(%HM@4nd?0lf6!>kDT1>b7$CSL z>&;^8+Tfu3Y82&4HU&FbhDuj=w*}CpK<5*JDtUU3(YwTQdd<^56uPNK=aqiprq9 zX~xZyGJb#|Zo^240jTM9X^~8v!eP~7NrLi*?J&(-QucvTLTh+5=-&KQm@IDp<9Dz-1reT1!NB}H#j}**+Ba~Od_P7P=Z98V};M9gm zHz{&^OZZN@;8S_cQ5MG1VdVoFiZ_@cx~pi4LfW5Fm&bf$Qls>3ECiPMhungM)6phG`o25QyJ19<_yS;bjup#J-93{hVrcgY*}lrXCPpGOZt~fpj`K+mb@2o zwi~boSleA(u59-UaOH;q!#Vi;j_qU6jwapDgFnak`8D0Xk^K?O;dgyg`h5 zn{?~it?RtG+tIun>x)#nW1@}m8F7SQHJqW{eaKoPs>UI5qkB#c&vm{>r4}2DtC-E)+EOo8;#?t^YJN^ z(fFwq1UqyWSYhSjQ;ov|6WctTWC|MtA()wmmBGAIrh$vb{ERAchY?Ex?W72FZpGof z>cZmUZ9y_`z!sMeU*R?RjIpc!8+hke(fE|`jh+JMyYX7lZw|sAot`z8Y4!x_Ur$o8 z!6)HtmY*PV^^d{SJ2=51m?{)%fAu*lX>VX57Q{< zqylB7rOO`47;z#YIeV6Ms*c<`ExHK5v$2mh^~$m;dK6VJi42G9@ayO)Qc}2~6te2t zIaWGbO_=9=a8I9v6TdP20t#pMVCj$HsnEyX!z~WZ&c?qwqbYONgRNue^cx)v<05Ox z1g~FnY=@1pmcJmW5a6@0w8m8z%y&WxucwDl4@vr250#Xpjd}nsJD(-R>T@Yaq(_wv z7|MHE(kGEp@nie@K$-r)Jv82r;CjgsT7W)}+c#ksJ_ctP_8R(#uzAGJIzARmCG78~ zCB3Z?Lq+`PTJfv*6?QWQv<|Cb%lfOvP-o{2z$tc}vai%H^nk>H5ls(D(l`c#5%6c{ z=?^7EEr2?TbFOvfrQ#TGj;<1lmGHEJUSE34r4i(Xw=jRc(X?jCS}15&>&3##=NUK> z?8i&qA(;d6p*lxNgz>GG`D({0W`^9(@ile`30B^gf!XPF%GT&!=tr_vkgMijHg5!Z zM`iVR#H?GiAUcMoGredd=9>#v$5eU35S-l6=OG<}adTrbTaep&(ESnlP!E8o1$m%- z45%fEF!gX;Um4S>?Lkzf7bz?HQ1cYM#iSFJk5BKH54C;RvR(km{>T^|_zw^=e{gkZ z{t16Z++&RdWC@e3zqndUZrn-tXfZHx%~zFXgd( zw_yk{Hbs2Q+x1~qGM$nXq!To4PEOr()h5OOE)Z-X2Usa9oqsdTajSJ6P^r^gH3-T7 zhr6ady2~>+^LlWzL`|R4c^>5-O#GN!518w*|Jz~0V7A8a&paQ}17?UW;vL)J-!qUm z&4-lj+63l7WL4X7&UwXW(o6#jAYOBPI?EUu?{+t`n(YZG$H!hE3?5U(a^A80xZuWn3 znLLbDvCJaJ@P3Fx#5A${cC;6UMiDNc8;n~$q#h()vFaD+S{R`&ewMX8{)D`broHN?!PVY>Ds_y!o)fG+$Pzn+5Q5s(sn|2y^mHN=dpKAkr&P2?Hil+2@5*^Mb69p zo*rPSx-Bf{8QdfiuDlKoTdTjH_L~7g=%Idsrl`wdvk7|l=R_a;mduVZ?Z9e9p6jzU zgULdZ%HPN#EnF*!n7_?#J~G}jr;&p!Pn=AIM-gTLrvKo$3w zHXAri-Yv>4Bqo{`P;Vj8g2rcsDE)Muku3XXS?|d#1!f)eQpw!rozmoLU zY-(C0JujTUaK}d^N3hYeR}PU4>g{KxXn06S$fXz(Rz!pWt$GaUX90mRz4Q9?6vOjA zA>Is03l@kZ7epluI2b03FRAe{&%EZ91rs`wL<(9Pg(ZfckkVv7#@2nQGEY*hQlg2! zuFtabw&AQr0RguC?{PoxEtv79?qrbtD1=rHw^Dz8hdPu$EaKL!tJO6+ecsCXQVx3F z%8}w1jde0&W3!`%L%7rdDRN!~BS8J*rKm4atD87LFsJ44dv->L`_k{G`AuEHbV*9s zsE5p+5CZL3bvh?zu9n43e@fG1Ca?%I z)I?PSjzbm(N;@lxp#L3O#S~?;oFI0GQ^Yc%orN7!S&3t?c^2KMxeI}d(!|c`c6Ku{ zLa!>=X9c0lme%=Dr&M{gT-@}TsERI-k3jFmm{9IhLB-SJN};c_NNDy_F4i%ygkC)+ zZA{(>ej)1&Y2CuAw? zHNGWokK1Kn{8HQm64YtdP z(4sbAFzA*4a8VAl5r2eiLR(h_Nm{)kYb>lhpTIj7f`O?|qWwgpc6?~qJzgHBs#it6JRl+BvVn5=p#lP|GuWPr zTh+ON|NeCS3w>ZG5T_#oK+XKIs*z3@ciD_*{Q11vVwMp-K2EOymilSBvbG2PF4 z{_EJm_G}XVapAE^gsg>`f6h4%SAO3c9D>~TKvhm%)-N0g_M^#zJs-eDK{1tBa1*}& zK6GnZgCy5iZt|nt;qipsoE)aqU1z?e^Gd*F+O1o+X1Lf9gx*tEx=WmknDx_=oZsy)FIW&z zuKsno9!mF)G)?z22o_Z^KXnmo-$TO^lq>lHI9;@Jf9;7OMpt=_tCBk3g(euWJST2? zf}Poi>iFl?ZPg=3JJbdsu*AnQy+eU23KN#K=O}+CbwN@*oQS_%f?Jzvu z3pMK$ou+z39zIP{Ziu}&l8Ja`aW)mE?*f)O%W>4>Yf$?#7 z<2aI=Vm#;GH51ll-!4-%n&MkLDsgn zB;qmTaX1U#>j|%H0**Dc0kV?DE#%fD0mn1TczP7>NnCt7)|NS&F zqe1YzYC=%mmkGyue)LgCzhhv#F=w<1jJ`BY4Hv9?jyyAA-R0>&h15#Qv25wkY-S6q zQOopPuT!fI9Z1d@L8+x9JSI2}%S#6DKsDFlDYANn4 zcAA_SHtfhN%8}fz1j=vhf^R3w;GFj=Mf%m&%d-r^jZ&Vq>+}*XcAVX=JC!zK=%yk< zJ4BU7^lektAcxwe0JyHQvB9*%AI&8j1@)Yr;mzpL4 z#ha%On~_Ue_q*_g>zV@j`NhFaTAR@@Fx=cb{WCmsqQYEpA9EpX@p#ypJo=Xv&D{oH z#}A5_RHDHbBy#`mGV(AfbuIgPBJ}B{Cp){sPrs2FY0EnDx_Zo}@61KBMm1C>@x+R3 zl2uIrR!t%WP?Kcg`t^p?dQfcB$W~siYE~d6cFS(aV?E*KD{$MwcnI~pOo?R@X7ZTZ z=_`(4`EcJ6Lw%xg!F=)c)~z2#^Q{qZ^i0pP*%Fz?Pm}C6k6aQ@0BRg>>eFM%rbmRF zD9z-*ZkMmWz6fJWIy&sgU>Pu&Bse)DB4kcG20{%+Z`|0Xjp!9a=-W-q=V%b#gx^IT zb;}!vp*k9Ou~fs8IQHQ&=0gDndamI(iM@i!UG81#N8&aG`2y3bOghzRa#IOD^@&XB zl`7xzXh64cikhe#ar6Ez@Nmtp7!?il%tX>=QqNLA5rLiF=!3JK)Y8mT8C zbcAbg4G8&I3Bm@1?+gHVD<)cF^|6NK*~QA)b)udBH(2QyGG9%>4pt8BCl@+qlE6)#1uU1XlQ_DM03)aB|5E!G;W1*||VELk&|_X0{20Fgopc{tWW~ z-Hw27kG>t!M3w{N45tk_bjMMS^tu!B<||aF(7QwTJzUGY*pTrB_toDvm7NCE430(x z_*CRes6UzH)zpg}ktlrqEe**c^i3|dv3r!aUMnPnEP8{x(QG)L0HKB3kdyj%vfsufvc}vxnk<$ zEg=3sc^@ayUUqif*AXthgS!u}=mf?CTdyZGBt6)kFe54*L1-e$GK9?DUF4LRU=KA& zi)UJ4JJy+;u?HC60kWN;*n`$V!V`z|M=PDKmx(P$yXa!>zx?$s;+?c@_-Tt`+%KG$&pJ zpi4E85UYss-E#TsJr~K{z;H$y%!&%I?$LlXl^1_+Fk?X1H6Y*;Baea99QXqG)l2=0{F_+LbI8srptrRuDP;wLySYN`@usdS4wDU=F|2 zAue>!Ch&4iNOUz+JR{N1mB+eK8y~AlFpnU#3{Hb~i6iGk*e_(VcO+2^hqHM5R6;`I z$Y7Q(hd(?p$L(I4xX%s@rIQkbVwBi{1X*G;nd5y%#?wUnBT$~xgj)yEMBURbKuaxl zwJiIy&{D59WKecbt2~x^ zCcYb&@;A<99xoTnC6HLwpWR5DWiqFb%~q*IQ*825mkRRN%u4h3 zu#I+f=N5K7249_c9RJyb2~`Uf5{!N81ZBcLe++eDUoV4<;w|@wlA74TzqDq-I_k!4 z!J-rzgYlif(Yx?vRtTZmu*ucW0p&T1+i@TaAYRdreFbmb8wM9?Ur>QF(r;XSFb&IJ zL-|;Y2e3*zWhBsC*Mf|6Vlgxf?}fH~01Wi_#par^c&7VI*q7do69dcaFzy2PivWU2 zIoPO+G4lfnIbR>5TicD9^1Nc?(i&{8z&wQJV%Yln0eP@;Q4?^V|CRG6)6eplq|F=U z4<(~nt!lX5eUd2d+Z0_6wq*MY#cJLqB#Bun))*5Yt!tF!0*$0Sy}@uPYy>$qR5!Gt zA@J;;sATeK9|O_uE%nv*o3It!B2wf!Ac{P%WM?<~s^^d$W{M%SirLv^fKZQr56ico zmCHMM)v8r}n>L-W9gMp&Y579QIQ^S?jA=ddPT#O$14S-xXm3o|8|Ck1<7TQ0&#tQ! zK`+c8Dsc>F5q$*C-1NmUSkbHBQ5`_e*l)(b$G$ih-tjKhDYWbsW^)>D)SQa-&>WrY}Ox zTB5nUd549z<)Fa90Zk(8Qf$EpZU1z24x6IyBI2-0arzF2BCK3b`+`&v#TczUBR%D_ z5ptN5TR`+ys%!$2&h^*y4EHC@9=r7~T-6Bj2i?kNkBj=IlR*k0|MDcZtZQD+8Pg1U zH{&jTZy3~%6GWv20yXBP zVUqThi&(b)E!YjVOPeiXdDekmrh&Gzz_nLor^WA3J_NRzt+w-;e4Sola?wOF1V&(z z#H|LXc!kSwrMZFE;H~<}P8)f__obZtug1Vo2QnG8q!&{{^<}%R@-{~(q2cDCK=qzO zM;*%qxwItsbKVe@>RtW_Cw^GEef#l0@K|3PNvY10WlDR?JOF&tDt~}o!M`ybB6|$$ ztnFvnncgg)SM4^-mmf@2ZgiGF4?wDYjR+oD&XdD!< z7EW!zrBj!CYz4s-t~J&>7iAEx@nMPlttPc^pQ|VH3?NZ#?%q44Hrs9|ISgq%e2>TRe4ky@beI|*vv8vY zCc`z>ugOf!%RL8KZj40*kH!i+6I918K7YFEvn1PB4=|o8t4SO~f{od33duDzi=Ei0 zpLJN71oGnLJR``@kU$6TdxGIeb7D)H(|;)(Cgq|-=m$903VV%%g~eI<_%o6s7{dtk zyosb=`FnoUV(|F#PKK~V!AitUDPz1vX?bJGVhoFh-Nos{#9|{dq`O1KP@9)ha0xLq zB3-&&QieWdx7G~Hkk*%?P_e)aW?rFgmLyf7kY|t-R-St7ZkWXoGN)39 z-g^G^5-2hXEKbt)md=mbl1%mIXYyQ-@+U1C_MIBsXZSHpG(N^LeLHtnI#qVi`KL`J zyl4I*1??n*FVJi`!hj%j-nPZlt9kS0qCVe3xSBc!razyH+MKntqK5<}wKM6H17*gI z^KM$C%zB*0?c~sy>!sm9&CfmekylEq#32aH#>^FX2A-=p)@t}$I~6ZgdQJv@)jJmB z4|u9ffs=kj3>E4UhO-5e7ezk%Y&*4^wpt(tW;~(HqQ{En8GgWc^V&B%Q+b0xx3O_3#V9o=6q!l3|Sv$B8hds5pJ2A^>*w2nNO#eK)_PfBy&)qOkb96dRta7iKe1egU`aabBE(wXg<*hDtZ=^| z=%NI=3dF|Fr)3?;z;UJ4~^? z0J%Kb$jSw0TqlIq$bI=^aCeq_M&Mm**RD;(cUZYQzoN4Hm2DS4ve?xZMUX?AcV|Iz zX@X3yB{^IOU6Qwoo9J?2BZ)tjoDs7>(>w^5vAplC-afK+p$>v8)ip(aSkSbn;L_Z% zG|Mi1LGb}VS!qGbTMiH^p9|I<57$!6JzK?D&d_kY|4BlH_2lGJi%!pG`Z}dF6h=QW zaOSuhB*tob0y!VS-w6dN@f~74+{}CPoTVK4ITvhvu(PG$0_*tDYHOYD&qbKhQ7?*j za?uTmAiwVK;)rH)X13E?KnhQZemF|^EAL@_&VN~&XDII#^bdyuH2DBl0~{p8R0OcHMc z|3e8l`&}e)zq}*jYJEoTG+Y#vb-P52Bm6Rx(zu!s)rYRcje$#^p4h?ZEVvg(%y)8y zGi&WRY&FK-2sy&(+}~IX4o)AZW0mTUaPk)nSRX%A)^uSm@Gyg|*CW;tL&F^Q zV0NS2PI5$HE*i?6m(k@wCmv*>6R;GfZ?F@ebEDjOXY=WVSu@%&IL^U10lp=Z^Nzy5 zL6tQRV*ADf&;VHb2)=%u;G`w|<`~5i2ubb4Ng?zzXoKcxf&fB}@6L!_;qES&eGzfL zhBR-R&CeoR09k z6~ekABOm24Ks4Y-X{v(+XkJdIi4*ku**RI2#-i~vGJ3OOb|s+E5H~^rx|}zpN)O19 zf*Nn|c*_OG7AJ5kCCLbBlAuh4P}rOP3Nqho`^SC87R$Wtk%Fu+A5mXdVTL=A`&fyE z;)O7oE_5~VG$9>`?jhPCoQ8V{jy5$r4b^4aNwAQMrQNTLRqtp_HO|0KH~S#pqQ#yV zM?3y7JzH!c4px&R+b`DQCufjPD4wJS+sj(ifDc|(Gv!QMjq|KA&Ay~TC|wGdoqJ!? zEzZ8U0oJAZN~V)NAh#!^g(5X0)jUe~#eLkSe@L;Kd(2V@`Pf2ap<=6}7RoGgNd2>0 zg7o_YJ+Y_Njus2DLF4|ElaV=!u6i}SK@B_eTi?G{0y(6a6{AxQ`N|4|P0yBCFJiOA zP`0()e+K(cq~$-MlRc(qDEaIxL%{59h^?_wIdoFa!ezg20RTB0cB;Iw&aKC;KmKAy zn@VB0|M2|L!WsKSlR7QV#|?(=es>;oU1*zA1?2NwYx$1zViOkG0XdFfUNnAyNK`8MPH(EQPbxp;H*L5}c6HxmoBO z@xr0=u85bvxd_Ej-g$&rylQ!WA_xAwUr8jF*B?wS7ugrxTL6AZBA^FVczL1#>>RAT zeH}6ua*`X=Z^(H_I9pMmA?H-~=Hy#euu*Jbg;XOQ;x#*$xfhi_U$>ZoW&}ccen?o^ zrAzq+tLwA zmVPtw8UoF5l4XzL58LksPLtO?*?J{wgp{rgSxhoCFkPC%(Nsd)bgS(xRLmL+v)m?* zP?$8`D!N>;4Y|l!D*XEaW6qr6XZdI{i+uAOR+qAu36fmo5XLi`H0g}Jcouf$(-}b1+@zLCc>+)d{WOyP zl*!5;7L@hDe4eaW7f?I_`V=6@nlLJ*X)uARUU>?^lrzG9aTc!X+KPb)7pvo$< z86cQ&)OZbCnxM=L$)`MqxD=T3E6z{jw?6|EB*5EF(tWZzdlq#%cvMKwz5$cdLbduC zh^kkOO^7K85u_hvHJ!Xh4fGR2uLrU2h@WBK<%$u4-2C(kdM~tVvyQKI7fVw5T^XOt zNwye1yf3Od{EmbVahOUt^6z2p0oHP#Kw7^R$2SsM0JRIwF|36AiRXr$CtxX^9{|Z3 zszSL~Kwk!9+hcLx#tXI)Kd!?iff9;Qb0t3sAp~VjHxUpu4OWmXGWOddq9Z3f3&<; z@beRS)=E;q^6h}HVFz7#K;#tsw%0&*2NNk^59!#h=zvSyH&{$c@>ST2U6z>J*A`3q zcL(1Y4C4)M3D)1us@QhefFQ3pyWA$`JF6<`82tv<8|5b0G03MmEpVyz9pydZzroUv zB&i)$R4WP!ff@Y5y9=26{6~UsP{vyBqvg$ggYZ492#~)AbG~UjMIjpc8{Ix!iUv(C zPb9^X?)EiN)c~!_0y>G1w=_WsG`VXedK}8J_iQ~^ryJ+32NQBZ=dDLLg=y1Y(2oo8fvQ~d6= zZ__rM;B`ONX7XHn7p<=3I!ls%Hcw(t&4^5jJUC^_)N7Gx60^6dR!dY_RW(q;r<@tJ zTF@J`o0Vz^^ue(Wx*TE$a$LQuagLL4OU=(bYd+JAt1$osr%KWto~ls5WRAGc1gXrh zp7S{>Nq6&I`-VLFlSc+uW^v0R9V1xNpt-8{ z7~=)}3WJ>C?oifNIX{;R_DssM8jhi*k|ksn)$2uf@EW-E81n;r6mj;b(Q*9N%g}qs zIbzCh?H5sx!s%}QSAqU@s+b_;yq=J2`}d8kpWjTEL+iDHktLG16^vBI>RPpCD-RJd=^K6*lqQz-cK@%CoTIy}z6i9U8Q zgzCuV1t|k{fkp^!2PnAukbL(eSQq(HQ2l&D}azYd$Y8uL<))vxAr_Bi~(p%SA0l4o$_)xrh{k!_@3G z`7E%HaEb+js-JjHzdxZ1$r&r81F?Rx(l5*3xG`6`Zn|9@b=`33QZUB%nc-&Pix=bL zB^-Bf^5hxmnQn~s$2j^_4|#5PJ6worcD3qNR0yt@jUSPTsrVoGvY=|BJk{cGJX`mu zvJK(r-M1z^TAU!<2Y-hxw=xMd;&tZEm`u8rs8k>ycR1LwJ3$P zGn7l1MOYMPGEC?Cg2b251B@q5+?-Obxr7+&Xp>+DStjb#P@dX3!UbemdDY3T zM639tc1xJP8df`v&_R%MXtLa>QN10BdYE+@37`>;BLgT|acM+382CFqW$G|K?uOy# zYL^q+5V(p&;yTXn?IL>(5F8jMv4cCgR!>gxze_Teu9Kz{l{iK#Eam^t+>bSI`@Lu6 z$Q^+HWT!TC4R1aFl@f6DE%4I@L(6WA)DQPr0yc<5u5UcWxWP7MZIMJ?RO}_ZrngEI ze%TT=#;>><&CxdrM?;fSHU_gjEz8_;S~(!w;!zCeYwat*`ehoo^(X<1>c- zGIXkpbn2gJec}X-Br8~UJ^Tf}VDH80RK?@AKCB)?dOd;_qPAFOq@neRAGBIE_b3uR ztD1WhVYXc4SW}cndDYybk)-?mbBRwiFRAkyJy`mX27Q8pCK<`HpI~^@+=EFJf3^ur zKFB8pOMS{umsmlFZwtY+OdC=SCWobCDayH~zMPytOf@UUHusz{2|=J8%n0M@;DPf- zELJnc77_$=auq^S?JbD7ObwUo5tY_GG}~! zeS+XHn5m}$3`IfaJ9z)#rRU$WV!kwWp;)%7s%bMmw_s^HI|@+o3Q^YPz57b|j8Toj zUn~?0UU!ATSCmEt8V#SbL5tB#E#X=W9l%yBX3JO;h2xD9KO?T7aIEf(#>YHs!qqYj z7@8JbXv6HUtwHF+kX^d}HSkopE!UKyoRqsNNp~xY5QJcBgVah4xxo6;pInEk2A%oz zge9buu8f##y|CxC5c&W#j$9ncc&!9erzNd{Qi=3*bp>%J&szg z@0s}inE{s#t2>pnNO}|a!6OccL5g9#T=>hD+3`3AI^a9F@tvZoP_LT=j}@y$s3fs8 zb>;K{5g3?I6v3YEWOmL*ivqA%i?0&BlR)qV_RZA<(UjC&?&N9oB%_7S$$GZoUMxuu z|7y9p5TV=nqRwaVbQs^eddX+_vFN924y(+tJi5fdu6t+6pKYSBx~fAr5m@{X&ffaY{Uq)b$` z1wk((rx$;&kc5kzudihw;j0l?JB_kzB6#- z5oTuJ&I|4QX?w`*qk7F0dkC=G_K?w6_XuFajTE~dHq2UKxoqtI680e(*W2v+P_bZ0 zV_Z7}#qM29)4$jrHuwt3n^+A5gO_eTx5%6OO2DoOTXAKBvN$1#wk!I^U_(^Y8wPos z%h0soc}d#$r50eG75pUY_LSlMn+Ho)ns<+omx5L7@&{oxHR0q;Z!QO(M_=0TuCFU` zK*5nGpw9a79S066zUc|ZsTX}Y04o10aBsw@Isyctk1_T&u1FY}0JH44cs{~+J~c8M z{q3@FP%|UJ=pQyKBirIl0=9vfiIa`oc0a6Rox+Ji$@gI>;&w%B4P!TL72vW8yCS>q z_6=)nNX{?F{R+Nh=QjAB-mG&LC$=?E?B0Ii7++_GVmkWn5&tH7;C1vkjJ9nlZ;`Q@ zP|GhAW8Gn38CF+}{RCq8C0%3U-6M+OsBd@#)yYWtq}xX)aFpQ1e~80D!f6+N;K)ig zNW!CJS{DEE_r}?^WNa^gWkqkz4&XGAoVwFvnn=zXTcGU_;dNGeiD$}5ah}cVyn!=h z40dF2AMhUv<_V)R4(lyrMFVj51a5a_kx1$C(#v7^-ey^~`OoKB^k>*1HXzaoNAxoYXeSiyPj4L!(21I8fQ~U9dUlc_*@J-j*+XVuE*RD6 zZRXZPG%I?5@dV_80c0unKVW`LG+OZAO(xBPl}?IzYY{Nde>0gVm*~LSpk=8rvH$M{ zXNnEkDot}>Oag1r(jn{oCsaE%~W5;e^nkg|?L(NczKk^s|M`{r% zPdIBpyZO?K>yvg#5oWB&cgNaL=Y`M>7Bg`EyVy-OEe4&xUibjOcSMZ{`)y|}J40%A?xOt+>_r@qkT^p0@CJ{MslE`1IhX`A&+?n*P z2pgkd>qI8E#}K-@;CO|M=HnYf?m<1*mXObR%>7Sty6LzC!Y_OR?>jH(R=`uDN)n-h z>&V8A7Igt1&+A1geZ%rJ*CaT0zJ0wgyBE`?wDD-Z2rGo8h=~ZToGX}zn2#m8nDI>N z#z}evC}%pKV;*z#$ALvqy=7TZ0-YnVbl{V4e4;j|5(sg$bA!c`B@HNu%ZS9_0z{}= ztqz%1djxVRXSrIJYB~qy@)$0q6KQ=WJwes(OUa@x3dImr{24FV13v>I%z`f9G1s81 zK?uPSIni%%L3-5m=q>Tt&#$Sq2&}Xej(^}k+#$K>hfJM zx}_OEjC+9vU9h5X1m#M}I#aNqO9b}D@PyvGVX=zuE>SFzMu=Z*7Dun@x z+|SNx_5sFCS!o=RIHHK=XP(s(vt}_QJ=pNHm6Xo%hIy)Y>C$Dsye~SU3sW)Axk_J9 z)upRLWVv|0iOT_UPJrw#!BX=lda3oIC%NX29-$BljedwbYgik25$;yXM}vJIw1C0? z>090!)&-;@ygep^gAd}5VyKUXAVe|zLSBfaK2yt57v6M(GhwLqsMOTd=WR~6X_Lvy z*|j4`@C{+(0X%?N>{7}V8wg_vtDST+ax4}ZXp+)#xHo-@T<&Rk`LRd_X!+Bvh=z(evYv>#rlfu~_S~PY6y- zOw1Cq zpe2Mvchqa#C*Ie5uievgNH{*Wytca_W8LmS?-IJn*Z5^Mcd)%DMa99N3Q z%2&+q^leEBW0qn)!X)Klss^c&v{DeKOlk!i&3>`~o!6)uM7Y;0d|Q+gnfDGHa}Wtp z+GH$EF=L)Xj@=4hzI=Ik7=U2Y{w0@DYPnE#%gxqRc0t}_BO@b2`#7LRX(p^V3|0Kp z*<`r8#e{*Ki<^4%kWOQ_y$YN-SNn)g^VsoBJ=h4m78=Kb-A_WyGjtu)<1ju8uB?9b ziVl%dN5E%qa^HigKoF5KHVZzNTFYXV#RQD1W|DXt_*Y7x-1DZEYzu5VEis$zIgc%n zY2|FTo#i-CS;!HqRCL*FycB9`8$(qImw|f7YePM37rDq_LoS%c^WS{Iv4EVO;(LWHuyxopq%d+7zK8c2!v??GX`IToQW{)>kQu1X;Mp`bz>MzR;ggspD+eh z2jSc5^h4z*__4Y29fY6JSuVFvS0%9!>MG&=a7lI&Y>-@CS&LYE(ha}hNK|)6jif&v zheTY9UbLuUNuBc6^WQH4KRyA ztrD5!|FHKRfK?US+CvE;Kxl!`A<~;vX@U?NMUW;{S_DA^qzM9|5FjWZy;r3wU3!Pm zdz0Qm2_>C$LUQ)Z`Pb||vuE<&^S}4KD==vG%=*?^Q_kK~)-x1+qqeq~Cy90(-o52;fW3leVujXj( zh-PTj|H8U&xZy-xr1j}Cge5{O+s`RDZMtws-E2O_C%zX+A-ceI1(Wb6;&%+LY>DYB7#o3>ZqU{H zSfGuPVlX}^vu*F=QZpAs_l zJ=0Z^fQ-}Ou*dFV@C$gUBO>{FRpqUiLRRFg6xmxO7)0*COIcmC2;{AoWVT3z(#qM7 z_2!rY2tBt*?1quFl41mw_>nC#2+l_m%@b?vuofdr$2p5v%@NFpmm}N0RKNKMb`(G* z%eYc6kklkN1^l`*-erW`@9UG}v&Tu!*Sq73D7BnV6Q@%27diX3N5*M*zjKs;JZ{3F zQzuBIa271zTxd0kupWTqeY@w<>TJ$rzM;rVpzV<(3q>^~NQ{Of8Zf>8*y-95+z^hv zh!oU?aInL*d~lQmuHg`a!za$=L-e=|2iEq1dWW=7ZlQLF1jvCj=N4)w?MxS)fYUaS zY^+%`2zC)y;G`hBzycBQm-44)h2D6SqLF zZBRB;0S@#iFTl>>Yvavhbsl80xJ>+AHKf9QOqJOuOjW+Cwk+U#j*CH z_??G-YL-31+jCj>y-f~kq=D|~99DxoDxr}c@>ssRh8S{SgUCz0dC2*cG-7n-2_bA?qA31jF$U4g~wl6VF(3IJRK7To4Q!9Jdt&%SNCT z;(Y00f$7Mlhxw-?2lf&!1-4*%i3ygNq^LOL(58j+riZ1M3n)^5PL&l*FExpEOuncWvr^SZKVIMIe;7u}T_DNLL4@ z5%S(4QE!Q{JjX~9TaBB1d7cyDA(xclUAWI@lF7+=MnZ=u@?A+anC}GSQfPJqE%_Sl zA*r&u6=j}9Tni*>=}Hgc!6n2DPD%%xLlR}JK!EG{5K{;1`8ZTvNzM{!DF0hCG5I5- z69CF8$oh%$LI|+rQJ!Mx^`&O72`BSmvN5QHqYNrshardh&(Yx>54`? z;ha8=NAUL?ap*L;&e2o)#I8hyu!F5KZxS95sp%oY?G`Fl0bdix1=P{f(*RNa2ZBMB zuBfJX7@(p->7??8XmF(IOs_1za!2S9J0E@61uP5$3_X~zJ@DRPt;)00{saAuSCNaG zCFwc^_O+zX#9%mJvN`YJ6gwiWureP63|AH^g?VjE&InB&mEa5;OkPeEft>-Ohie^n zEU<&CCUgu7Y)K~eqM9Q)5nx*WQXQ=^Lcdc8yAuQ(Do{HL-4m@|LMZF67;liY z#Et~KZiKcAj}Y8d^cJe8qC#E2QDlgKQ&I6b@%f=}DryAO))SOON23cy6ug_3@Hw|J z0cDnVO*oiWHEgWJhfSjD$=;P1wWq^)vk6)wt=WMyT-jP1c#S$f$dK0+Lrtwj=(Smi zaMlRZ)RaOE33vF&LWoUQv0G2AnN)~vf);R?e4wU|(1y{YjntZAV5(E&Zzwot7EV*8 z7#QD_jgDXF2#y^5P7svLN>i8V8LYR`0tg{EhZRo3b$)tOIv*U5{Q8=ga&&~g;>-`T znB{2md`Bx7f}7b$hS&EVKHRi&{|C{%4T|+#f%np8V=LZf(G1`3>e<)6kHdouiuG)b z??PY{{?HCtmUYBa5%n@{7n7GoVe!|j68A00tn-TB_z~p-= zp^{UphM|d~`O6%5HvM52;+{^qOgr%LZU+vyqRTolRQ?hC?s#8e0rZCSKPZ9R&Buj5$ukwlt*So7|s9W3}Tqpw}Pdi5#w z-7zq@*tSulMsS>8XlWq9#h1y`Y%x+U&-|^Fgb(wbh<7aarfB|+_#xbqj>ibchp-1z zQ8sf5sTjD?G(m4`e*Q1b%^aSnhbfliB?i?}IA2i+s%gRfg&6t`j^%XYv0@NTg2u|V zqCzlxm-RQsj1k8u6nKq^pSp?rGI1Mo0!&G?fVY9Vn}W`K#RIS`fx5Yjh#tt>r~e(m zR){d5RR>Jmio?kOfC)DIAm8fMYu^TJO3~`otDB#g7Qu3$s}6RB;^*v|p`kjYJ(8E% zlT?A8GmG)vQ*eqMxRZ7aW$Og%9nR!KMQhg{yrL<;v=k&hVc4xe?PQGeTS3Ox7NSW9 zTQ9R#f!rUAB3t0Uz@#@97mUJBbJ_GT-m=%E@iBb==Yeb?L|m64R51c?mzntH;vVw2?Zs|rD3>bWzRM{?Gj=@-)Rv8>o zUYD!;EVdk`fx+%rCn990cgsDib z=HXaUHDv`;YqMu z-u!vfn$CMj&J=QhI$=AO-g$~REUUjw35(_3JdwfZ-7bdv9p5pBt+ZTb82~)T!+_`~ ze@gKC3Ccx3grA1tEL&>Tei0iR8xQA>;DmO}Tkn0Do_9d=o_6_ifXZ+CGfBnVw*^CK z8`m4}zorB{KbYo*&0NCn)C4+$gJGj?dbCH_AX39{+;7?Jbm|WVnQcXjZUb5KYz>14 z;-a)I@Y)|TXvXu2qSQj(GhyYL^1eYcp3~sa$&)Y^1;m!8bc!(4J4*e;AU=m2 zT-`YFi{sz?CX~}69`ZM_-s1Q)rRnHIe;50^@!b-Xr%~ozlpE5)hr#oI`>gU~M{xp% z#HG3jz9tw5)Y+&n$++6VAqqF%>h7LnVcO>kS=Fylp+d0i`Jh9vgr8csH-k+^A2~pc z02pz64La|Tbg*-TToVlLspNZ!g!I-`@Q+r6#Mj}8dKi{f9Fst~?-2J!3D$v-B$-OU z^is)Ge)Vcr0bs|AWc4XhdD$8g_k_ht!SWZf;{jcOjt8(1o#fGf4Uv_i`|z7Dse8&x zy$PpV0=|vsP7sgAJB+#yO>!frbhE`Uvqqb12Ud0l?ZI4_^ksBXRaUOZ{1|+CPW_76 zkv}(rMcwX_urD<3v4oX+|7G}(`ZxPdgw5DWxi%$^Gngm64)n{4_jM`OdokP3^Kg3y-Bcn#+HWw+*c}dMZT3GdEi&q>`@hTx`*XAh?j}NOB{km5k0_| zdCv?weZn42DYhpaEIpkM@CLQFW{=14KM)+6nyVbxgUd7;m4Y`j<(9S0@(VYf-nnq$ zDa2$?6DwfP~CJbla1!9FV` zk>lb@9DNu}p1s3z>!D&{Pu86iCcZB6Bd)J%2&Ja)N+yfB@5f-wlsCAhw3;%Q-aMHS z2)*AM!kq(Q9l(qsLl_8cQ&Jywxbi}?&M2W@+P@^9ttvVBySjDO96JVwax-AN6>yYX zLKjut>{Nxb?hgTDkD^8ONU>WaRoc(6wiT+;MqBV2ZkT{jmP$A9li82rZdS~~CRGi= z+2G2vI>OaPnfn9wKp+F8V$|{^#_Hiitgz(V%Y7piZqQ#ebnBIX2gl1HSj~7ThmHeBPcSTUa^pO zVICj@jRp@6SvHtv=v8xh-R^; zG0Gr=;COzRbW>R2sf-bHU7N(6kgf|tXonoD7Nd+3Y4qyX?}r41o(Ac31L=~W2Wnm% zV3vvSx=5A;Az0F#qD+@m&2STAio#VdHuVRTD0Vzz!@SPRmM_8T?Gs8r8>``k7A$kU zo#ORUhsLbi4R5@#Tz-Z#N0lX?3d_aN{ZD@O=-qpc_=@TJr(tlQx~Hr1uvx54m;4y6 zD~ojlTgdV@p5Sty;}2->hUXYB!!W#;m;2Tr4CCdp9A9CKqa7G(5vz{~GY0W;aG!~e z<>s%LhPZO*9fL*!OixPnC-@53b%YLj;lqUhbkNiAd?UdYi&t)N6L9KJRVfj} z1b4_@HTd{vuB{1}r&-}&;w=AvrVmbL^p~UzHl(`)B^Vso7$}iTXRCU8TioSwrMul8 z5+X?=J@HTm!It?z8J1om)0dM+m)^dAT9kpo;<5&+?i{K0rvS}_AeWE@w|ekqu)kQ& zkaeI`64W}y9Gq_m|Gg5(-gqJyIE^FMZ8DyP0@eGL6eYybq4=DRw{Y06w;m=`u!*SN zBLF>ZR~oijHQ*rx*y-{Psz&Gya#JK&&P@QGmY4{0Y=N|d-#+R{B~?~4UR{>aRG_%R zQ+4!z(dgjWSjvULdLcKyZ6g`pEOTICi3e7083fz2rJ{W2l@}`~Z8XEXQ&CEzGgt{Q z2-Y*lNhLU2t5keZ@5NXMtN>J$7DX>9OuJ~{Z#_|lT~w5Fv_W$?NDH{;4mu^gN1-l4 z2xaQ~Y_4wxG4}dUt44GaWVTR`&d>u5B{u|E5D7ylH_U7}u}%tsF3%t2sKemu+x0nt zYvO80ajUOEhc7I;peJv@Y>Bz}O;_y)6HZAmLsBs+wHL4Q5|~BbL)og_C9#f#z?9+j zprCc2_g4|7b$v)X2R6az7X=HtAYYCjKmHhqIu@&FYP{AEGE4A<0h;9(LY`K3#HJED zz+#L~#Sr>|kmz?MSUgE`?*eK^t;UeR5jo@;{uwJ4aC*a zR7X8v?k9RQ8wj^}8?arvB?Pb(UT&C9kYhQP!*q0nSnfxN_#tcFh4@sRp34EN%ZSl* zQp_U=pcH5y?XHbNwnIAMKxdND!VXYBluNTl(_Mh|=OHv31DT$dd!d8_Lq~xQ?hI!P zQ5oygd2n*Jpi>GcbzYFoUrN4cp}?y~obs2WUt?s^KS??>kMOI5z3O>L3@$ipdit<%u z4K)6+FmjRrTnZHkJ$6gE@B9h#Ozh|5{U5}I*oKIH zAabO8ceTb^3BoRQPF9nq*7;+l0|H8;9AHg%WBUS<52GQfYcAKd;1i%>MMI|JFqS4m zO^eI5(Vi0U=PpsA#4-(ADyk9yP`hO5@7uW>|zMb zUsNNDsQY@*pB3CehZHb;b_B2?-5o-&J;5U=jm)E^Fm$e?EMTwt)TKZzpA^YsWfJjv zFG`%t&Jj@(oJ8;yeU^F@`xbrL-878Vu32BfJBU{53Fw9fwwwTqG}l57;)e!7GbE}6{wV<9^dAagA1{$fB*djv7E{t zffZ3pO|hZ`-xR5&wAlo!KZOWCAU+dFWj#RRBt|)uCzSjqQb%d!FgHxIG1kHt^Z}cV z_ty@1Y1}>kCPQ9xYWjIGNgMh95DXSS|JOyZE`-Ij=0r;LnAf5-5!QT0G2}H9Y}*r^F;#z({L?zfUwtP8 z7Cc%k$~|FkHs>;c<_aNLHv3i7Y}@ptNcSsDYm9pK7Y*Vvy;bK#1guRydD!`;<$+#? z=FSf0ist4m{NnsM_y=pmQ@PjMjgR(H*~^T8lVe!H15FGQR;GnKW^sBs}e0vxixbwbAuz6}|1#^3RMb+65gbIEiZxkGTG8n8a^lN_%+y#90 z*fB7Gi(KA*wjqg#;SKHoqy&75wVF08vQ^^dfcfwm5Ce50>{ z!7gXoVr*Rtu3z2mi8#XglycYl{FjzRiyEKhBYfPD;-3xT$sV3&gik0b!Z#G~x8syY z1{?pZrzk)2G&6h>4>kR~=Y)LGp3hA=2JsEyRT<%W822{({1fDOk{SNH*g70<>fk-= zlr=ob2p5P{L~~UtocpHYG}{=0|Ac3T1v>}k&4db0p3K_dY1*?;%f|Y}U>tXh@{mWE z*1;xs1*5Xs#2t|c{clk{SCEhaPe|Gqc?6{cSUe$}1PEMuxEjp!pJotY8A@Fzq=E>6 zZ-M4PjJ0r)>6^q@(Mx!cZv*k<*+Ft1p$6i9`Q=NHtp?451Q-1>P=c#iifq1eTZz*6 zl^;Be#OJ0tUwEw;pbv`M*-FIj1uRU`{q}}c1b^CjZT?o!ACOh8eW9t4^j#4wu8>xP zw8^nW!Fb(RTGbT>xnCG&D?ks)c*hDdJ~*%0d0>aek?pA)UlhJ*2(^c1a4nD-3zI^#5_;EQF9GMz(@@sXWO^$u|fi%`t}X-F)SRI^5chhuH*F?>>x^|NLhA z_U&P@C3$S(bFE}>tRVY-!-kFAH*DB2hZL{n9~y?i*bkDV7mHPtM@~Bt<@UXhyyuFi2q<>~*&NUzztaSguFAtSBleDfY>yf%ZLfm6ZJ!BSI0_Hu3y5YY+-wm)&G7 zz5AhI-lDXYE;C^nyFLhK#)s{#gpE*?Z%q}{6KGNy72C_nW#7EHC@M0aVxyd&*xSf=Hzu+D zI3YcFQMujU(N^hLxU$46cSf-s9J7Bu{Euov@Jls+3F4}v$o#eRkVw8<3`Nz>O6w7X zvVWIq?NrhwY8#ShFFwdtAw6Fh#)T$VF?;NG=H2*D7&D_nl@5c!&a6ySUAZ1YSsxm? z=`sC{V!6UuZv944>eROxJ)H9&sQx@yIXc4rt?L{O<|M&6{}oNspiS_NH{BBG(+7^c zsz4Xd_F;Od*@NJ2IsKnIVs{_AlCJPOMI2rbKA{G<;&ueJh0CemV<=_-ZvGk1L}4Ou z7aezlj}3x@9GS@N5Nh}!a&S$yQ)l7jufttMV$%~aRe=0S$4=S0U_~kkmy^g-bVQI^ zxL}&P3dTK0YDoX19rZ)Y#!l7z3-O{Ri{Qk#(M|}}JPhMBMRwO)Ls>x!G`%7H-4e(Y zl(2i@(4pIR?-|u|VB4WXtJ@T1fyGONc4z6IWP(rFFytNZ?bZ|1jw~B-Vp*3p-)>!D z$5{WW5p38N%JHa>EyQ}eUuMJh&`_B<2$|LVt7GDa z7xS3e74is9Ys`RUY$K{x_%jYO2MNfDSv77e%+3I^I_EPw{gQVXd4S8U0vHS}!2@+d zw(}_+S*%jhe!Y;lINO0$IFNGZ=$pF9ixq=HzU!J_G<)|Q_y9A?(b#&xiW9g<^Sdm( z6b)DX^J@4!fslyzpGM2qc>GN|!$Pi&&(C)W=foS%g%=6G37Xp;(O5hSMnTchc9ae- z$79(YPB~g1!~3{toh+4A*X9^pJH+>Q{pfF}x;5rIrNsevKP)@}E)LK`_9n-G;rY%- ze_X?lzp+smZ~jp6RYoe)?R2nh>0m#ngKc2*o_&$6b2S}f`@kyerN`Zj#EwtH%a}1z zXY7hzJb3WnBAphb;lF$hKJ}TQ;3c)Zl3j50BKxrep1J)vx_TGi=*YhjjFMM6Fohr7 z+Hy;d*aDo_E$Ex-EcIgLJ+?C)Wok#e~@M7s74`L3T}i=6cqi~o@&*g_Ks zZ|t$a352V~EeK7Jo=^@8ZAm2?C+por*swkHb2``r@`0U|@qbHhGhutcBSK!DcD^@$ zvjlpcY0)C+-O^usbKN2jPoL5IbmNnc){=k0N^lh^P)Lj+w4H>*EwhTh>wM>EIwQDg5FJym zrzSYExIibWF#$|W=}fZ+r88X)7imk)PjI=l6gwh~FZ(8usc7^$D5(l?0rxd$4&1m; zep;3fosBqLYW)B%w8k5_FPbW;5UKul)*#8Qx$A=K*Cy1kQ~rVevLAj38xGx}AF^Fc znv?RU)Lth1*}xCSGJK{&sjztYMIJ8K*(h{*>);_1DZ z&{H7~U!fj2cKLE^_D$z|KN{nhx7yr<%pWPsqp)v@uD_Z`3*i$^an<`6C-z6)3jsUI zk5%a~XiHw?`6oQHa)Q~n0&#T?v`&DbLOX!Ezu$ThhQ2!sfbkr@Fg?qRgNGV9PMR)C5X2(_|RPao^F99o^M#4{Sb@u3d(`qMNk7k>h9i8gAHp$3fKy zn@FOp6TK1>Wu8QAB}qz1lbv4P7f#?i`nZZjlwJ-TDr{J&K%NUYP$pO^g1-wUXS2K- zbM`fkyIHdxyRA+MdJTk9`->~lpK<)qo;_ED0Q87ok(p%LlkB(n74|fj zkO-!S`CNCo8cXC*>1(deGVBfge^vtTwgwji{jeCj+}vM(Z9Dc??G|%*@n7_`z_|*{ zwL!CPx}_HOt4Y*7HVo{H7{B}r-13reXdaHSFSZ&DXM<^5?V3@OYm}wZ=F7UAYQ1fv zSl%WS;u}C6K1rc*? zpquVy@O?9#gQf-Mf`qO-OizsGj3_4Kc8t#!F+;4!cc)Y*%lHor%~R(s2-)vE`mdn~ZF$RKh9EYLLe5k7k{eon^@2#`uJ&186FQ$j##ZGcq(-A7tK3~4UaGJ38 zWiYaX?&G_6AwBy9uk}qmoktl7Enr}x)?=?KcWrZBfn0mQt~POw)POY)+?{^MoK9e6 z2gB)@)mf4eYLkEy#UCDO1)s?ZgO7cBL4W9+WMuFiq){SjE?$(F>_U?!BVsxb)R1V2Jr_`jb7Ao zUTEDPN|z{~?{28FJ)1p(_>OgUF3m37_e7+EBRYuQj7!uuiXYaeMqb{@l27>>ZG&XM zCZk8Z5Dj}30k>00m30@c?HRJe! zA#4krf8su5{a#%sR8PGS`I+!8Eoy;2G}tnq3zPE?A=VFee`)V$*pl5K0^ZI0f_EOF zfN1r_jxA+l*S%TyD$3qwqgJ_ItjWlu%VGMVFc4?M;l3Q!HeQKQ2fiMAlw?+I{$wRV zpF}Pjs+?gO>u(fgf}shnw^lXi;S$Npqsj)>nZ;oJ>c<9zIP403VJ#WyjIm8;)mZy3 zwlzw;t>#{)DAr_sl|*JEF`TMwVma0-DfSVr9Xqc?Of{1Q9>DZ5MZ@iB%4$1=n!Qk7 z&dOin``h90a)*{>FjNj`)WOGc?^70{E6i1Q< zvEmpUCbW;f!K`Z<3znz5mo6p=7LZO^Ii+?LZ{%@JYAHfs-(dAwp;083t7kl_R;{X< zeEX0jzHulBR+5`j>t*i|M{MH?Ogu-$OfnC9S9#AGL0N#8AwD z*Ezs$iP{x}x)D6%3E5@x+C6*8T(}s5P#YWXd{gL*_egwz2Otc21gtTBCcq$%fW4h8 z!q8s#J#XX_BgEPfe0a)vp-zNo{z%*aL40uX;)tWmC&`BILWzGEar#Qhpb9$Qaiq2^ zH=mR9);uxGR6LBH#VvN@Nopf8f^sDjt!~U%j{72DGaAwFvhG1{GR*@V)fGebtF>9l z2ZVUAx_6Ri#Z}5lI1V@igB1-^hN*;xG30t~2Fm!melYnL(T=k-;jDy|SnA+Y+Qh}y zl8{h(_RB3o!ro>yBGhEl&N7tLjW|DClu^sl*M!vK#Ef9ho5XFkSq4>m)`0^PWIy2w z*)a_}Z-|QW1ByU3LmO!sv@IJWLts3d%YERCN8Zh9S*y)ZI_P9#_NBHr9bKgzLO@t`gH8!X^%i2MD0SOd5jNur{eor*u`*$+v!d*e+KA*(&4*Y1xS1-+ zefAkENgtuuKZlsJ|3T;yofX($N-ldsk{-=I8m~A^Z*!AK`a>ZVooBQi9Y{4qq)er=d5$ktm*VPMZ~`@oFTc6 zOf@tZ2{4{(@k}#fgQh*R%uJohQp`}cwdAVMh6MB86Y+JuC>)aYQ752U%tI>G-q;cjpJSrl6Y@geYKWh zfuWhMgWu?Z z?%#X^Q(?B~XToITt{vcZ?TDvGDF@h6{dJ;hdD8zxerhVDo^I=mgO{K6@6ST8u%gth zn+J#7ELBSD`Z0oU0{_zz@G0}j_o&rvVQaf0Huk}pkb~_-I!E6oJ z`CcN0ls1{%mDS;BCJ_xLRZWHBNv{uEWqHr15^{{>CO}2!BGIXF$rqxcu1~gCY+328 zEiaZ#eYgI*@4h>6Y3wXpA1xnT#J<@|OP83rIn6|8pVY3P834}&GR+=j`~~Bem|>qB zYIL*FJOc{Mv>vh;KsAmkvRJ(H}D}jzI*GK(UnV7 z|KT*`)V`Ly*|{_1vOD=sVnPZ!i~dp&?0g}KulPq$YTUd44$yRnWlVxx{wcM6z_ERHfg%2 z+(i|lf3D8@!0c73=mJVjY1?)_omb>87@a~%>UuE`j|L&N7`2rFdTP}M4Cc8INBq;* zsWKV*-w2ex4-Nm0{-S|nX}Y}u%-%l>!1apqc=w*&XBB5ZtOr&e)1RTSqHw)kgoa_I z70s3BRlD_H%V(Hd>&Z99*fC-JOuvyDbZWLFO+@``V2cFU&-g4@xV(Ok6JU+768-F1 z1U2A04P`s&I|$u0kvZ9G$i<5nXO4nB6}D6`UbyAZSuQ%q$aJu(iXv>{sVMB~l?;9n zT9J;%d;#+15GG33#^0Y9FuTo$o*t}(Kg*7g$d6HI7Hn-xc@r^V*#b1ZE z0&5+LZd>B;I<5}wOOgW{cU({0=g1RtM6T;?jPGKSbn@G}!(RH^qEfw$Z+cg$QWn0W z@clf5`d-vXebqYD4i8(n|B@CCiRWW`FYe*T8YVECmdv9;El4@LKE~heiKJSFRG#0< zu-XF!@lW<3<1dK2F=2Z^#Y*zI&^QW`5y)@-M|O78pZ(?u|A(@VYztgC;b_Km(L!W_ z3^J9!dY;@>tM)j1_Uz%RRrOcE$YPy2b9U=pQ$ltcRCq3V`I6oVXu1>|7H(4MVaM#v zhgBX?%H?6hmZ`I6WQ9!*<;V%HONZapOQ^_bevDLYpB3drKlU5bZyTh_;rTRGi0g1qW!03v^2maSmaB4a%}!aPV7S;9jDk)8!tlL(>Chi-{D@Y?hN(| zd7y?{4Ucq_(+q@uAz_UwXK8dQ0W^}8ELQUcaX*HuBEh9~<$fhJMJ-h-Bp4aJbDFx~ zDxR#uH=*=O;HTMpPu+2!aCR9=w`dVdI}F%4*IF)A17IWj9j;n>pDq{;pW3HS{XS3e zH4cO}KUiDs@H1>uv8O7> z0kN@SG32*r!7R~$Q^NkAN6zN0Ij8B=qc#i~)jcB-!?{I`6}I37HnefI(G172^R;K^3b6_LUbc z9H5G|q^a5B&4Yl2mgq$>T$aa%s$?;ixj*a_)to~P4xxqb)%6To9rJy+>CQcF+;?zu z9uBtA7%$ia{vFsNCK6i!8YDp;REAp7a;#@c+C!NfdN`wsbcAG!`t|bq?Q9!F za;!gjT0o|A6geY<03TpZcR^`F)IE=%RNYl?;G;m zNNU`w2>r9rK5C|$Y-sBAKTMynENrx~VMbKi^UJ}3um_6%p~5Vthl;5)9)pEg3o4hu ze|{QkeTp3xilJ;P0F(T{U=)bae<-o=Kbh)1DtPb7QJ?WyC=WGs02n9Wr%#QaUeXSK z5ffgmdNO@QuY;`w2imbb2k~$)cO;Z6U!e2=jIY}<)EHLq;1~TUEzdO$Lv=TvdZLdG z&hQurRMa%pjS*lPgxc`&>2&&l(LI|M3#$Qxa1rKD#h~`RVX>;dVn4^nr^F}3Qv*~7 z4pWD}>bVt|Ux7U+8OLqfbW^oK-2RA_yMeF1jWVxMG5nC}Za|rxLRsDioe`&QV0_pv z2sis)t^h;)sHHVf{%zL}*)asn7%QRG8KNEtg7HoAV-W(h@i?9742jI^LVmZ+jD!un ziV3pou{2F>sh`($fOSuiv|AJBZrgTZIFB`WNRCzDiCWlW4>@497A#L6a@43$hwro3 zx(MY=dZvFWsBH?V%*ai&mL2sa_ZT^kuxMi_;_(+rRht(>wh@`Hdou>|OR*?%E0F!maIUbM$y%FDV`Lt{KyS7duk znWY9=zU*ov>fVc0sHf!9i%tlQP~VdgZdJ1YM@>^UWfajVZCR4Dme6@WiVM_zj)%|r z4Gx+?ScGdEUjA7r#(8|V!SkDRnL8Rl#u{Aw)9V(N{CWs=#%FnUGyHWDTOXOgKgZ+! z_1ELo-sfNZlz*|{>$JnF_F7+zGcDpYYd#m0v>0&DhwhDuSCm2a?5a5W1`=w{KH*fCX71s&5IUQ+F#` zNp8)8IhS0bZb$u6yWnDP7PCTyPRTKg>lO8_`d*%~E2GlER;Po7{mZe2X`xb`KS|e{ zqC$~!tR%+GWI8XoPcrYcjjyE}jI|PXmOL&Zfr6Bn3KFPx82(WLd4=QOB@lWar*)QK zxsTv)BoJztvR`cgh4^-9qbOv5^@y1YcDyRHo)&~kX0jy9Q((2K(GBNVV702UoTC{* zSgooIFaqq;D+11;V@YP{cc=(yJt}ZM_v9F?ZN)bvBa`nHC9#1(ACNqPF_wMNu)b4) zzMarf?356J2}Qs@kzlaalv|u+GJ0Qwp|KfaJzs!Ig(aDx-p2u}Wd>Ofq;nZdu|kDI zmibztSJT(UZHy8f`Kys6-SnFKC<&3gOK3ESl68}7gu&8DiCaLnNDzc}kw6*dlM*AV zbeR^^ z4;hRB)anNN(W!g+JNt5H%$jovzRXg)hLEK&L48xS6ZITf2>s;zPi8sAipP;laVz4I$U|my zt1%wY-e}U^DTgw7fb$}8Qu9((@~c2hCFR&bK9ylL$zy3RWtRNr(W*+SOr!T+GDn7W zCr=8>u&KhIK;w=fS!H5q#df+-;FWcUcNtcHXBKypXVN;N1R){aogym5V`{Sd<@PUp z#Bk--u(~wu&-`N4}|(yP3T=j>)ys+N=AtN`mP^(dTg+f9b?OJOrJmJ`QL=K637yG0^@nY?sxtj3Ql_x5n9SwR*hp7y+P zk1sCVPy(pWa$xMCrltA!;Kg`a#-fAIH&Ho}rOY>X)C=UaSWVpfqLLa9uisIuY^`om zb26<c1fd-*Ge{r^7 zY7N#0t={uF4318|qt@@0mfVD9qP;yeaINEV8m{zAt;=1@{AfsXzi21ESC7!z0B9gr z7!U#r^KzIcKcOh8d%Jd>5w0kAVOXQNI;!=V+FQS+glb^z4ACJ(^AL_GrcsJNHhd87 z6at)`%$)Riq1bx;Yg4skB)wm-V2gRM?#Mn}GLilS>hGZb`NfEiJ`0U9ej|!Syk*A# z9kJJtiyF>C5c2f(?JyZ!bEe{Pu)UIm#)se+pW0cJx3(#2d8dwWg1L_B#rc9=Mh2XD zw!u$yb7QS?0m{SToMdgdxUyDJAbzMQ-JIA|l@#E_X6dheU6^id$;rV-I}%9QdI`E3 zFohfoTdX%iiX7b+NQ<6_MSQo%54IPnYZ-BfqlG&Hr{`;Oj@~s-o-2C{zxw>y#L8?_juv9D z?#f}clJ{Pe$ewEsT%FUD&9lM5SADV{{W0vW_d{AN@Vf^|#&~w-SIb{?;+!Yv=lHXo z7A=cKqcj7{p<&K;+G7x`gbt?5`4R_4DI9jvWV}rb=w$N0|T<$h~_(GXaXQ1$Ylg3FUgd zys3@YopK&WNdT1+rDYJ_tT%fOIiFD6Q4`bCSwauN;|#u1ynOkp{kwiS`4GNa5XKDF ziI@aOg=%{y=mv;q$LG(oZe^g`-@=aX@7c5GsQcs;y^DjG^LSoWey#$VsQWG@FDlpW z=bx)+LFR9#%}kI9c(q}IZvub61gfW~qly9z1ihk;X=+2<%k5kySoxXO2ku4JZ?i7j z4WgMw4>*tW`iUG-NBp_(II(4E4OB(t>1-bBvc`pKg!WD>kW4Dns#U8>aHcFT_hBkY zj)zw-IV#z)egZm@>z9mJvXtKc@E#i*ir%0PM9Q8d9E3_6Jwq_dTLjk#3c8-SKTv9Bif;Yy-lgT~+{ zEx8BBv2SIu`VWl5#V-DsCyN~`b5J3nJB}PVGPX&61^}i7urc{7JG0F{kqnY{lWV1^ z#x5JT&Aa(Jx7@^ry_3f0$pRau4zmK5FIxui-x5z;@Arm%u&IO{oa>_Qp6KnQmq&%h z(Yu%TyGVB{4!f^PLR$Pcd_fru1-QYBL4Wg1zXYnz53efWs0fFfhA$P48pnrF10k*} zkgOP@8nduq&c7s82S;Uz`5~l z^(p!TdogYOA(msFbp0+uklq0-w-p*FJWxl&(~}#Qj!q~yS$wnHIHsW$JLBt{UjE?c zkm*EK=gt-N+8E{k_km(Z(>{@;BFj#=Vomgd0zaIWMDS^0RZSVcWym2(LXhW4yj_Nsz&JpL1>mb?XP6)~CLc>a4OP+flNOg1pn50+?wqqX=W z8%<7_d&9Ds9{BynO9t>G2u{vzDq%eNA_<^PIPSQz6=ZxPF*(l=tU&%}n8^AL z^k&mMp zK{$!*q2cGBW7EM};_&`F|Em=C9U2X9;8NjK`&g})qHN;kl4<_ODp6y{z$}?{KBQGD zH4j3!oC^1}Xr_<8DjNW6WK!&&tZ?Y6bdOxV*b$6x+ab+ zFYTeV6-psEDbjr>Kr+0jM7Mojoh^|ZJ7x#$)ASRg$n&_OpPb`lXc(*DwN5fnvW|v= zadX)SoINgorS|P1?=b7gwE@c&90Rk0kj|8_ew@nufwN!<6=3YXRfB8LoK2(Vd?fhI z4Te|Y3HNi(mvk!HVmJq;oiLLhrOx~CK0YI8`;pJFX9$(SShMZ0(miosDRu~FmtuET zgLSkFj!>5{u`1EVo64}xoPceKkmm_3*5rx4%O-W_&JX=r>>(Ty9~-;;r=J8p`iJD(#w@oL+DSIS2Pk%+ zbEOzTXb;>!DZ?_Zm0?vn?}!l1gqQs}I*wjybyU!k3Z+E>rZ%qjS0f*EEHN_jd>c_^ z1%r(;vIM@N|GP?{XxBg8!D0hNmD}X;-osHdol#dDowmIvj2wF_AM#-BsHh)kt%VAP zcVV&oOQR0e(Maw2D;Exu-8ppbpU5?6d@L8F%r=aXjpEsnPDR%tL(1n8d;LSU9mGgl z;B#_3kEIVx#AK#Exao=sx68H|=}lQZYOa5(kVTM1n=1x8Z0deGbbaj4174G+xX^S#nVO4_yjA5-CcLLU1%L8Aa>QnGRoCZq zOoGkRGoC4A8-h^nqcxfE>l4WQaWuJOyi#1YC(+KSxC8o5f|3-ie8&mUV39H5O7x&g z%0dCw4=blWK$VpJPAvOf5(}?vC3==bUJmZ1#C`;%Vrz5y2Aa#_be?sJUd3nsLrHs= z5zKN(X-x^)d%+@I+?l~L?^3{Y)}$Y-R|SmgiLAphkD-_1#%Ws}oqb~|>cJ2E9i9Cw z3&X?ij~Vlg2U@ONWumhO*8N=!AGNDt{OgR>!3s(i=aNYHNEzo(!UMrAd#tX3VIY+CwA%HAKNFo5nn#my zo45A}C{;mk2U*d7Rw$iiSpM?GcL2#2-vt8_>@O??y53C!rK1p0jbeo=6ex@fX2#^n zrwNfr{a0doZ2tcKtOBYMFn@SZ7tElPLf10tjsY#QhS~)+ZNY*5K%{;zKR?3;9SHgjL}=F(>dn-SuiV%Jf?mY9s32e3=u z)#8Yj9C5XjV|u^P!BFxZ!7UtAo$!IoDj*YhZRmwY?`4LR_Kg2ZB4s~)?nh*`oz>>g zFpQ*Du!Zg3=IOi?$4OL0JFm^3=f3+FTafX7PLj(p1Y2M=a}&A^Kxh%!Anh_7BfMqI z6fGQa%Et__o^o4c-8O`Vl3;0Ud!^Y%XzvX+4qND_)NgDd*8412Vtj`aqK_?Ld2OLQ z4`n}qjp>#5=DWDYk;iO7Z>h8vWRe4WmmE=P^KLs05ks}Ztvy38I>fv-Yj>XX6fC2t zMl@`Y;3Sl4hXv>GWy@JdC;KKp;L(kBr<^xSLV|I=RQnIN{XC+i_GTeR&Y6yteXLrmnqKN>5`SmW=jX>>mgWU zY_Rko-y2@Xvq3uTL!rBa9Q^;Ggo;sDBr6(FW?1T3T%7DI^Wg9-&I)L7PAB9=dn3R+ zJ%51Pal0@iGXT{**&|Fz)^Ttp&u(FhlXW&o?dFX{s!mS|#aA=++dV%3biJmXV)|>* z`+NJELAxgxT=JXHBR8toym@n8uMcef`wZpX1efiSn2YS_el%Rbi}LOTgt{1gw5w^J z0lO2188_Jy!sG-nyJN7fZW!CrG47pp@TWi1P-IuF8oKC}oc1ihKIg9tol7VAvJgTU z3XX@Xg_e&W??8CYH{pLt2?Tr##>Ha}g9w~<)btQ`fx~b;F_&u~lZx_@ zl>GGL5+%j~!vQ;1{x%g^SfA23tXd@9Zof{28i4PhC09Ab<%;j!P;D5pu4m;AfxcEc z>kOJ8s~u>U8$r%T^VHKdd0k%i+wO{+AX;I>H}kr*UVty?ew+2ar`(|=J8;QwQF0~ ztqY$6TwNet825-29Xa1 zAHABOn(>ci?@NPt*N;r1tpHpjCxd$a#eCkD3@W<{D;I_g?PMeA-eP^9LRIqUQ7Bwo z-71?M_vsIx$k{JwRpQgG-4~1{u)UHry{=&42$gTYz*bS&6~0=2fBc&?L%Uqhs>;9+ z7j7uScDm#Tj{3XsJ(=7O(EAx90Uo)!doxX{B)8tVZ}T4wMYCCa)s1&>I}g^l2K3S}(YViAn=;J?SSOR*WR zw*|VThD+{f12c4{S1r1>{Q~a9%QT#<*`X+hH(aQ$9PIOs&RucX4r?^p0)zr}fO}-z zf|WLzIHDdbi*d|*VhDMihN}h-b?oT0EP+6^ZEETxS9K7;83*3h@+RC#lec#B6|n07 z$4h!y8QQ}UOfT2*4X2UHX&}1L2yjo2=@>I3Cp(_$vK;&PIfwbL>|0nBZhIjXrWdhU+o1j}nz5)?kZO zh)~}IX}(c~B|P`*6RzQ&n^Th8%u6xuD#2ibSPZO-DSq}{C&OeMORMv>c!U#stZf8Z zE7)1^qf5QSEnhMo=a4%X@t^<@eX&62%1M7ve!#94;dL)n z=N!h%I0ylD@AT^6l;gqOVdg5{}4BNuRI~a2~sR~k{laoJG+!u zFa`7Pk;zds21~2m$#VN2x`XK;Pwei{jYMKsA!=R*F#@*~l3!#{#R&csS&Oq7ykeym zmhrPFmaiEOSqGM`hoVW8W*9&IwCNVS-eNa>fI(le7EY*Rl1vX^P@08s3_lkF9NB-z z`)Ycu7w-hG{v0QSw~NRUkS&T-mtd8zk+ipkSmsa8665}7o?$X1Xus%#$uoZ=>{Qq% ztOx7UTs(rdOyH`$q~I)W{zPZ|Zel>yaMD5`rjdM75*+Q3!JP30;Ra&{f-?S0WY`z5 zNopHcDSveYB)x-fr^0<3oaLu*W(!tV>UcF?ouFRS4&aH zpzQ2Z4+ltWPlkfm@R`9Aob}Uev0eA=J&X1iHdWW(BL8H3+$bRLvlIe1S*7FwE1+pr zJ%?RSo`eIoonjxwgOS(l8^GyxaO^~{UcKnI^)ZYMgfUrp#HnQk!y!Hn>XU?U^=@h4^~ z4X*6(y=TDF1)tJB(A%juoE-3tAz(cLdt3~4eSyOqTG3}1Zv;-*=8>SRlaW5QncQ)0-ByFM}`aS_$MbPcyk};9zo8`@g46!?!AAVF}j2 zI=6bShfPkgEdTU$KI%-J5VxU~c7^bLbzynCSu^j`bxzp8R5`VGMkza0c>}vf6&hIf zUQ=J-BEuG5f%gkfT!z)auY${%zR%7vHKW*nicI9VkNiE$cnlrV&|>S zkhWY|QSAgA+eVa3xLg!E=9lCUPW-c=0L=$d)QR%f9_aCBVz7OMl%b*nj@#S-45uLm z!S*cHt^wRFbO4{W(KN4jXZ1Nr6ko49G<`KfajG+ez3}LK`D#DLY2zI#QFl1RjJh*U z2u_Qo;LC-jMHre36NY|5411T{HClOY*n~$8H3F z#)8c`8dy6F%ce~;AH+COGM0NEDysAydn$V@3& zvZT{uj1b&Xab!F6L>`znFe5T`8Az|3Q(+})S~HWVdkVnh9<(UgJB8o}#W*l;Bu-Y> z*tT>zXYzi>xR=Vm6p!WP&`?Z|cLTQ%J0>owB;n|0U^xp+J8iDtHRY$IV0`@GfrNE* zzLIyHpsWdAVY9mN9ItP<)lu!o5R^dcL=u(bqgm^nqbskmE|U5pSGl#$W7V^)C1hva znwe3Sqf7e>vys4D5rHr;e_2B56f6 z<%@T{&uK*H2XZ_U42zGF9S#U(zDw2=LDfl|s58~^0g2eMnLjd3S5kiweGgA<5_IBhu1$`z>FOe3@6)PmLRcpb z%yE?H*9qNt!QWHToVc~#L;-~)bH8wdB+^k;wG2*!8|t`01} zY;G)3!W>xj%a}ZOlanb*nEsL4HFsTj_u%YiDZX5ut*9@o5bL`MR&kbMg#eQcXMCfHU}L-{T0Du!PmmgQ^s9_k4F5b|_iO71 z3R+DyBe%f@m~gyVMNzK4x_Oh@9`D!7?m#nC{4v7-^#+qa`DV8fh^%Xb%BVKSfw}CW z&EUxC_>h^%qZGBu;!kZD*gTc^J{2kese343mZeg&M}DF6mbl7bRU@$Nh~tqk8nBuc zYHzh-@POM?E|xIDEQTsTK26&)hruY`!l-@M&;idzU~iSkHH*PYyqQC)Qyar%DYI*5 zIOM_l1}S!dHbfQSz;5slu$LLEsiaP`?Q&(E4en$Cr~XD$_{A#O7l%H+qN0HdUz0TWxTYCeYwZ<@tbd1#K#L+Ed0uRk=d zbqap+Ld{=0UJSv{qt+qH79R&z_(6=Kq{cq#<%EE@M$EKc!neVp=MCY%RRRTOd*z*N zO)uMJN?ye&FR?2n<$SkpIqd-4LVi_k{Ix%457m&bg8k*R0SGls zCF^ZJ5QD+;n7f@BiWSHX#=}%uB?Jc}Nf$qfuv`^;FYi#Xcx!rXL=!6x@KyNW0?>#% z43;ptLzvg4+6lTC+HfH)TedVU@wurHc6}N>5s99OL|vevwh18z3uO9CqiTQ6lABJR zmOBl-JyJP>bXNZ02gFr zsKI7Lf>4K(?$Gt2?rHT5c(4vjhfvv@BwxOm|*Et{DGetLRB8( z`(~t%@FS)V@%AHY%cUDnx1^|VhSl%+f9!n+U>3#p?*f4UA+(T42kAvXK#(F5l_IDh zC<=lgRS*#=iWDJ0KtSoztMp!_NDCm+LN9?(0->Z5l8_!|=6h#$zuldgoyooL{@?vS z1xCr9bAIQ{%+BsNJ9DPFa2RJ-;Es*KijHcGVa~A_{bKS}AL5%o=mUx%@ocyQKV{yi zFJqy(^uxDntOa{(~iJ8^63J)1v$8Wfjl&L(Y zGM@<-UEyCyZ@wtZJ-}%zWmv&v5_RGWtJ%$}RQnT8a}07B3cmO7hpZ|?HweK$*Q+8H+LAk^_8&749k**FX53U-!bILu@)u+*WToS!Ff*zAt{K=w6XkG zGTcLS6`sURD?W+co}w4tuPYYrefW#An%7zuo9RA?a*D?0dgbC4C- z63u#|4eSu6Z*=}GQCvGx$G%Bhm7}WWy>(?dJ3^p(;fV2pX*l5OqplTK=j9+RN6%3D z1Hz|fzUd)0!k{tLb1gm}sB(1iF+F!&_KM>lE@IlVYymW-&DSB>S&^IecqL44+SZg{ za2%~3ev@D@m4l@2yGYKno^(Sm*Dk>NYo(8U;IPXz2_VVZRH{hlAzfGGe=%Si9kCe# zz@9WvV@tXpIdWuyUh%p%h#y?;3h^y-jYYI)-Kp|NLv-i4*P- zm()f4(G*&n94zC!$!gmk0`lbtR$IeXDFfb>)X9Y<^?jM1Hzwk}<7`!iYD0v2^j`#Ye$`*4_Gf>lnU$KPnkM z;xW$kQ&dqdPJ`z};?o<#d~l-7 z>fM|F5^Gv5TFhAY{^1+n@C8yN2%sU=`uB(T5TCIgouTC6IqLmvK<4zki!T@D4NcBt zNUD1owJEW$MKMn1S_~Fc<6Z)e@V8ioC_Viaj-1U7;+dfDc)?m|P=%H#XH|&$f z`c(5-FKwBAu;Sz*o7~KkU*)FZ^%du+TeTCDf;N$6&K*+QvIv}7e1fiifIIx7Mvdw` z1YGx#@Wbm#n|1%-Feti@GWU3+s;blasMix{(^e>B)PmKi`QA}ugQC?@&Y!2o$apn| zjh{jLU|Uw!w> z_cv+r8Z2E(s%w=am>*AMY=^maGaN^Hhh3LWyr4=w@m@}sWp=yWVXVwed*60;`AxO% z>3mgY%IS5=ewO3ucPI1w-;oeoWf!^)odId^a>Wmk z0w6r7p48SXb+gJdQ#_b&UNNz^K8t2EEK7EW9)-d++6^Wteah-GbOd0>_WrRKf@2J# ztNYoa8_S)8*xr8qcg~*d@5gtWn3$hiGJA<25}xu$Y&%H_jChD|x7Kp+N}OC+M15m$ zNG%W!S%O!I5AsudRqr7dFMfZQ(A%yR5nj@Wsw&0;7Gy1>9E}h1?{=xQd+ztIb=rC1 zO?(-jF=8wkY;_0B+nHg7%aqP>!hw0;!~JzN z@HBNa_1)JNI8=|(XFA^LDPS+-F#25lE~ln`AV6C7R`~9sxtE`un@#g7glxV`ub=&E zSdJWm{O`zCi&7qsS3N?#jXG?mz;`C?d+YpEz4-V#nEBhPEHxz)HsKQ=fuT?dri>~e zZ5}vH1kw`7Q?=^Az$e)CB+yY07TgYViIW~YUA+@Ue#d_v3SLL| z4o9r_xU1zIbp1&<*MBM!gAN~AbjC-2!+N8=^c!M@B@m_AY%6>T?bItb1NGc{=C8C1v$N z^AANwm{&f>j|ko9q+8}$781oTMDZAS3q7f-X`e5@g<^)45GtYXVS4;SIOFcn^u~6| zZYoEW9&^qmqP;mC$a5gb;XQCC#zBFNtT)WM=^h*CAe!e9$2#;@XBXnoO7neih zkh`s7X%vG8_^n={&O}$+thb&eRRHX;u2?B7>DwXb0SgumM~{0$Yc}Bay1Lpcv1pO5 z=>F61EZj%uAm02#wL& zC80Y#oQ(sRjf7q3uJGkBOqejM6@D4R1T*bBgm!hv2hFV2Xr+j~bPI}QTlel?#__*IU9a+VC>Q!{ zZ{`;5fX_qM-QkU#>sq4rj}?u-zU@;*=Ig}|>6F+^4%Y0fX;c4{w5{Fh`5q|!jhc_z z7pb*5CQlEfxi{;tyc8dD*sA$OyiAC6x`M8@gWTEuqfkA%?OR{%ti3(=%-3Rcl+UTZ zD5aMzl!1oK=Q7t=;uTwF;Ry4|3Ul%C7+gts>0!^07zx&TSqYFfN}VIYX0G$`Y4cms z62}h^bh{>k6MGKx*_GHotD+*qkCVg0Mfaz1w>_ZkN$`_^mz+1>BSptxkL>qEuvZdo z>TcN#8Y#lh$sgLum-h{Y;s;37;$bn*lJ5#jVb)@?ExWq-JgxBlSINdA%Jx;g`eBC&5{Ya~%F>hatW zMJ`vib$P199+JwmOL@@uj{1xzZ8(YKyB3TstQ9KGuq;_JT8ZWO43^m#KN;3Sr-#Ek ztoRUo1p7feso}7of=X8jNpLokDbyHt2}!Wtd@3Zc1_b9>9xn(42uoqTZidMcZD5E*dDo|_WI+e z`og!Tk0oE#lDo*I@9QlfhaFLZAbXEP$)OQsfeZs#e$S<(jRJ$+`7(+svG`Oaq-BA< zoc6oY?kzG~iA|Bsv~_F0ni;6H`$qtSqRCaohh=2+!0|}FiD@8xVcLhtPMxi4Oqj}B zXGEWoBS!LNFw#|r3cRk8=siXg!N!B5OH*buiq>^(0H|sDO3?O1wpnQr9932Gz2orC z>k(|mN9qp3d$`C~)}-htm3MnS z4z8+7aXuVzhZWoC&WDi|m*Si;y74PUVnG}EYELIVT?IFjEWrI4PeTSi^Rl839JQ|d zp7XCnF@+uXUtB9(H1OA0_>2pE08MLoL=Q@rt-v?l$6CH0&B+ljy<~L z^t+Gu$y&6ap38SAxz;F9QX>QC^?+n%kUMpq(ZZ2Jkmh4J6-#FM7YTl?-WO|$Y$id~ znYAFg62x}&im~Spk!|1S)@n|6i~1Jtr{3{6$2do|TzkW7x@C@c$s^%Wlw3#RKc6tD zSFh~^cd(*22$=7rx5A)B6(>FkKR6bGE)91@OsXN60Xur#i0R?$+dGcEbb_v#W&K$7n?nLs|J7TPe zEhb_wkDm{PtcU6TJm}X+7o#QB!O0N$R)q?FmUV?w6iS=|_f>fc9katH$D77ofXj^S zWU!rMA*{1H60p_BiLs`la1ET^ro13}!T!%mpu)=a#C3XZ!FuCi%R{JX5+95+Bdm53 z9@B{o9G?#BSEzRif{CrfF&!%m&%|-p$Glg8hQUEyP3#)Xg?^V@@2UIKO`-cb4nHhX z{9Uo@YJl}J$c0vdzQy)}#5>X-tt8|g6NSmGF)|-JXqVmwIY0A(#Ey#IT@2^yE>`&< z@*g3t7*%U3_mCKzEN{R-#I=v(yL>mC$wA#XJcnU{tY`N&;MbaY}ECl}}kj)rc8 zylqhKzaGEhv>i?0)(iGOfulJHzQpeZ5gZm83eKy{p9Kuq`b*;Av1WwH@4;)}ib;~X z(;3a*RFeOl#T!Y~O0v??-PG#Qk$(M!ek^AGi&(O6O9$Aa1?DV>*d#nY2bHx3 z_6uF|Q5cRB{U~nLk6dJr;uZZgnM9P8)z&_rY)!-D4qnq%Oiyd3*RT4I@`}4AwRHXj z@rn-{HR`wllXT%5H~3gTx8D0Maz}UYTXqZq6?+MWJ1vyUqAyfmXg;nNoKXTE11C(Fkm)b0v-`n+r%>n52UMVo@>|6^TE z@@FQTIw2A3BEX{klsyJmZ<7lU*k?*3^rn)VKkWZ03J%^B_;?#Q4{_z;8TxPp7wY$trtW;Bht2TdEqW1TXe zw6}Cm2zNLsGj;sydTmv3R>tEzmYz;@N`_BnjmlcPbNKN99@4be;DA4zdH_1Zfm%;Ge7P9&|@tVsx!yw)&HY+)vu|K&DvRq|WPL&%-{TJ|?#?-)nu zKnNWS$QF=fIYTU+DWSJZ>CAaYZJsA&y}NffI#}#Obg<4#Zk1NSip(GeWmrGw=q>_w z%x;_P`jN+cA{JYM=>k@Z*{VszM%(i|v^jzugJq8vs`JsLo0;AhM7W2_#LSCd>L}sf z3x>O~q6x5p>~~3j=$!j zSf=PnH*|E2yu=&0IRle7X#s;hTBl}VC&#iaSKH~QX_3Ru7A8$4A6*}wA*n(rxEzKA z&dcqzeLF28<~3^3s5lmsI=4Ia7Hd`4=Vd%J-*k#{VFDc?%ze zwPg^#az5O$cVXx#j)JSj=zl?k%&Os0b#!#B?Qk)aO2(3m>CkC@|8dH9s3C6{K=hNV zUWpV|F;x;}-+ec@D2wze%v9&ajQgK_W%sCN?&I~OjEoGDxeNYgJRH_P@33LR zER^nWZ3he!?fx>c*PfCkbISYZq57OT%TwR?v6{nM31M4TIoOFjQ+dpcPQUtOlGVyL z6Aa^4=-wyJMrVp{gDHD!RiDlJrwCai?TLbMv6F-Zzv7HimlWTfLQb|;fLgy4SDXa= zLeEFPRC39gTX(Ayx`EIu6T)w+^wy^o>x)C?RVmUilH4gPSOI%ipI|^jIyxaus~MI4 zG<}xpH?8^0Y@Q+6o{7qvsV;d2rgHYH=3tO1v9AU0sj;d^jlJShV3LOz}IS9O&mG^bI)D`ah<&4G6?oH4vWt&)u(I%mx=my~cc;!*< zeejjeaw|LL=a4EnCY3Cf*Vj3NVH48Fv4-NT`sL~0Peq4bhl~+Q}0u+OA&Ap zGEPgwzK1a-n_`031{R6BdV*4ZXwXj(5~C+}-v7QtH@e|YBL}AShA~_^P%Fc^jA;q2d8QT8CiEm|brIHLZhin{*`eC_b3mZP3eE?=YYv{t;x;wBLCrN!_>l~gj! z*(=s{JT{P(sy^P^B&i7>k;P@-N|epB3Ix}-6a`{<7EkD`y7%`cPA#K(wVv>%5FKT^ zk{eoQIOaEHlF$zatS?!T=LR`cYpY~&#CbAyB8je%b+sZ6j2yBwvIH^r4V7LWyNSZfg$cMV&7pYFLjC*m> z2J)UG@_!F=3|nZn-4;ijzq<#5HxLI_DxQS>IjJjcHHp|8h&(=XCWPGos_;DltCxxM|9*kzS?>3nEXULT zDK;vLIBRd>)A+}6Jycx;P4m8p-dEiZ95JmJyw)_pRAyR3jFqmwR}$`5QW@4r_*n(P z1i=Iq=CPBTNW`g?LTCslU>LwuZEr104C^OfF)`U>075G7XeW&Bs=CaBFluH;!c&7? z56bWon;V2fR8hh-sbjXHKsC(*6I7pjc1VKq*E8fPN>8vy-!!dR4Xe0@(+QQS_oj7) zY8OJ0AxU3Z*hlFUq#@+fb|ZJ}ht0AqOiMtKaP~O_m~Bc!N*f!yf;JU?`|Y{Mk3YD5 zW^wPeDBOm$?a1xctX3|!Rx^^rDqksYYrcch$J-o7<@^A}(seVAF!6)o8zC?8$C`?e z=OLK+Y6M4h{)>4JlKsPGxv{vV?H$8zFIC<=^Z-KkvD8AMT@m_R5LxVDgxr7%yx!hkiozHK=b0x>EiOg(>9aKwTgp0XY#4)g1{iEgFf4v%fjx8uo2 zrZ_Ha&RZ{AZi;MO^m$nThR+}Lb`kCa&|5b-cV+%NoLG>S=Y_a&sGkA zXdZU1UQqw9O5mlD3*=GdYp^9Y>djJ>DpeBu0ogy^LmzM2qm1O_>%YImnU{zomv`(~ z(xF~i&7;HBi#%AMu-zt1IBB$-?aijU>Oy zjbV$CspOCXYZyX~N_rUmnl@aR@-(ciBtMPQ?~#oC%?rsQY)8m)WdlrR@XX6fVZ31K z)Ty1t-vYgHzY9h?|NM-G4eN>};oShj^s}@dkS717c~^nWt?^9J(BzNf5R(+Im15NW z@NP)i5BENYJ` z-~YKvNeG>X@cmrxL4yvcPoeUOyr}HiZ$g8ZjPc}OSzyQUU|yNwHX(J3s9_S@Nn?yC z8LsYE2%66g>s@$AqU%I#P!;DL``vbTH19awQWe|~##M{f=RX~q4?U|BLU7zW^YLlk z7VN^lS=F;v{y*um?T%ccfUTl}Vsuy3`+Qwr{wZFy+$Sh0DG4OJrrU)W3l@8K(9@4%@Vx5TdMXYV#H)3|WSQkO7(0Df6nD0m3t zb25O+;4YLHoIIh#ATO8ms3Oh4xP=OX15}k5tZDzFhO>dEN0q(y4ZK>_mdii(P-j(w z&!oJ(D|%dC&)z}fg7_+s-s~d!mg%9oDY;BP221GXJwcXlh+kB z_8!KnuSb4Z!P>-;7cEbNslWeDx7FEI-T_u}-yX&b)!2jA99W5+JLkRr`X&58IX(RZ zUgNNG3mPTkQ7UYRa(5|BJN%zvC2y+jnqoXm-ZF(ns1tt3rpo3&L0Pwe5rc^|adop?KJSJY+Gz_@0ElXuJ}IqWjQRWiP3Sq$?v zHfQ&LfxXGb8B~DFO|~HT1kfP{`j10^De%G0+cB42i6mI-Is}C1B@#QYK5w4Aw(--KS`pG# z%!|o?M~J^ki`T{E9@hnD@Cr%NZDy&4M<9viD+1f@J>uLg-9(oWWt7@w@>N&T5wJYbJPlh7o@E#&oQYf^%)^gu9uXVsgV`7fz&Y7#B25A zn?;esn+QHKKd`Rg z9$Xm>t$FzG3apDn!ppsKPangl0|&a^30B@)`=k|0jJOXRktkGEuW&3AO*Tm^bWs;{ zxU>R$Q@z>?)>95tSivgHkqSuLqn-q^8Lw2moFnl#6%>f~s35Siv*Fu^T`&}4oowM- zb^Z|-dpgEQe5Huy+ow;TmBDwCFq${djzfbJD%}4?2ahnHq#JK{l|J>2^9I&Yl_nF> zb4TiHP+UO)!a@{Hqsvz8z?O@#4kakSUtcoBEpDMpa$Euax;8a7D7Ue_>V`rAZmDqz zaP!n&fFRBwD?9$26)=#7ZX>QfqIy9zG6-Pq2tfwo?*Jev9TIb)E4m?Rlr$R<9bBC0 zflyCL27=7U1P}oRW&O1<8m%QY2!D4%`uztuL5K~E6uB{OG00yqqpV>RAVL07B2Vc! zt8okC(Y4-+n|UJ!#*(3vD+@v3WWW<-2)u`Q-C&pE1OEW+ABHc;`;Al4-EkN-kVZNc zt-Ffvmyu)8=C${(;Z>&6d>-RvCfAo@OHGcydVm*YhcJ-UWev2gr`9V~Dga~AGx`9b z`|uB{SA?KJ#f7P8Uzsuu8hk~uOC4w@!w#KM5_JmK#VF)wj3R#=T&dGl6ZJldgWDE- zJCTHeO7WB7PjKXWCZ_ppOvTsW`MBpB*ZP=?w-=mwy}g&E%o83ZOX`jWUiyOjFO)#f zsH0;VHx`DN-Rbnu_gRlv|NZyh=N6OhK{mD-yX6k;!1oZb8l)$P^7+(GGPZbS@k-<; zoo$kiS+P#{bT!eheaI09*5jVukk7s=vzZfnRD#Ot$o2)u-REVBeUE>m7g>1eJZ2j; zoXTRdmE&1vrE14;4Hh=V7iCphx?309Jvjx_TL z*G+;iL4zDx|J`ZFrwM04;^5$saGGRrlGwYii>$scoJa^dOqg%)tpxYTdm+9>xQ<&D z?v}^kP~-6i76{Kn@NA55pR(AV=2z&D(=yrAB@q5fc1$W0W!|A=pQWmBXSByH_g%D` z7d3C*_`J-mJ!53S0UPn00n(fD?Fr?q7;oH$(88827yc+QY#N8wWy_XLf@n=Kx&~vk zbHIl$2CuCcb=KOPL{TCFTN)v}6P|a|L?phuTD9BA7<=A@W{8GAnWvBJcFdYBdmjZD z>buZ+{#D9$8KrhnVF(2p5Tq-l*A$1j8%mI_p=AE`+KP4>G>qR~GNs0~B64HCW6@cm z{xLD%a~QSc&ET{a{S=h4SFp=W*V4$j3_Us4>Zkh%Eu)vpb-Yov1sr`B!;aVf!1i5Rt+&`U6seGr!C=M{$o_)nM_Dw5VZ^f;oh^e@={%K~{n@TZJEyrSm3H9(Jv@AVk@ohdpRV zS&;}tv&41T1<^l~Z7FF{xbLKRin9-E-egI9J&#F?*Fbd-&~tmbY;aePp#e@6W3u>t zYOEQ;-&%SC(Htj<)u*M=93QY~k=TGci6WD49hctLq=jqKC-{^gve@nTW_gR@iTas% zFE6pVarmy;WU_?@<#iu7(8`HYgZ~!eeLMe;?-8e$d{Gw+51Il_qHzcLTQip0uI) zZLv-T;)vIBP|E8d7Ft?)PGj?1Qxb>hN|tduoMKk*CGia&n};8ndgaC1U>=@mVn2ze z@y@gN2^6s$XRPxT>pl_IKjeIf-JiGuzuTu4xl^&yn~fcFZRg>`y4Ivj{Fa$1^ZFxB zqGaa`yx;L<$$gSex%(^yKNJd#TC~c%8Y0oT{J9Ek&OV zVb5r#FAsJ=RXS3%o@ytH*7GF)_OT_^^BBwVbXM4|EbNZ`XIPm8wOtk6$;)TYYOQe!JGrP%Zd3WxX0Fa5k5Vd_#-#A z+vR*MRu?p~HFDNOr4$&Ch~3qST@4sYb$Mm7?1__ z4RL)Ws9P-96}A|G7=c5TUCI-9m!NI46Y;M$^L$Y`J!`fYM}tt~XHs7)(2;}+tDn=?ep?4uo>z0f$lb7tPbnx8AG?~j7Z_a6_r>*~w!bk2Xt#8E8?zsj&2xfF+$-~={P z_>!vOqG`QdM-0X6-rhn1Vzj5k-aCMa$vUHxi!;4De!qV1oS%_P<^NrFLBM7l@<1y6a7@rcI4dbYkh6nhjh~*e^5P+0TuZH6dTwe4% zdiW0;HXx_=GtOvga_SB9D!nJOV$p48HE1BonOGQVeX3m#2nE~`!%|aE^GXlX<@mwy12-; zF0Fd5gwBk^&T}H|xf2|X*EujvtFrO>^)vlzr>u}*R8#~`5K>{#jlx-A%3af_-MfnP zG;Ij(pv0O>@4--qL2RX6MM=4s%30cBtot`iUH0l5fz@uSwYTK`bT)!#kAA7+Ir7^( z()+4(fy7?Fm$63zzI5+e*HT)6;pvr};F+tsFUR}9LvIo6i0T<4uY-GUoZ;$gZT$ta zSyCi{Y|qY`dK@2Qu-=_ck&FDuR9>R{-m6cg=WNztt>8vr!*RCebY(!b2Z%3UCg?udAR1PBKrX*la6kDu*Ra_lc7*KD z>pd^+N3-e2;-_LO=i4LS)YkjvnuhzxHhGD_85Ei8O0zN9^tgz_4Q%c?q*@%BsJiRo zX-KRCE!7h0ZA`TP29{?h>S84>60^_*QDpI1V}B`ca5i>1zD8!GMUY|`0Tl8h{HCcV zUICja%1r)WU~t%^JmibUj`c^D=7j$cgK3xYpOO{xKbXip;)uIZ;k=1D96%t6p>oS#BnvX&(?b7D&!RhovuJ#(&q7wYr1yy$4CP z!Qw1oTJ9f^pY=%Ek>B82Ff6Sb8|NX)xi`xV|v zd}0mhKwtYtbTs z)pqr>z`ku=^cBmq z^m}NLszTHLLbF*_j_$R)8pl5`%xq7sL2n2{cCHm~`R&M=tEh7Zg4i)`Os5aH!(Cdr zG6DRJ5LPc=o&tN}3Qk2Aj$GQLiHGJ3vptqGHk2d}^oaVZM9 zu4ukr!)Th(W!APYB*dz1qKFaxDk6Y%mw2FK=1W-S;5rJ=BDmg-q2Re zzXLXZwOO7j_7{$|oDnsLa)lTO4%zyqdVvko-ZZQJ*WbMkGcZn=kfznh#Cuk(sFORl z-wN<2L+EW|T8B(sgFCi}hBdY?F9z>iOyXyzz2t!vMo2^fFI#P*DlIh%gJY}wXp zCfsibXh|7GAu{VBWh1iC?P)-@Zr=gW-Hvn?eNp>xn_+Uef5lf@8puv7_)42!qcbc zkaH1m0>&n1dFl!;4NHI%ql@xZ7FXafAtNkKAUY72(DTop6Z{rAi}vZWFo_Vu?`+u& zPhGWYqmfe*U`Y+)E4Q3vgfFgkHj@MCJn$vGNX*$%MENT-;nkCTN42kT-ozhD3$k6RlR z7Y!r7@Yr~35e=-h5ipND=DXe(eiyu*%?%;yRUGad+sX`ef=F5%IVv>{3=G_rPWHV{ zKWj|LG32yaY=ndiWe`o9Vj~GVcJR*V4J7m2xiN$4|3dbdUkb~%OfAFb`!nfd$wVS3 zt(YjX_#mr0XNgRrS*Egyru9Dh4{@uSH{-l|&cKqVXXtq&bjE4%udxbQ*!`x)%477T zqawZG7+qID+Fh(X`lIJljJ{CV-G$Y#3M^+NcE#3|+tDqF%?`e(5sFZvD0A}-6A@aj zz&b#b<<*$VOxumjHGodzvk<3KYDfT6dZ0f;sI|)Og3&8VpdC$fHpz){J)+ic5&RoUY0RrqN zdSODPV<}fx>-;gvW-c$gzY2dsh7_SuY^>v}YN{R-Hxn=cO@qC5RJF4AKF-f&+h|(( z)%a!^R$$X*?qZdH_p?N@R^|E~v1o$u2<#}IPl|5(7T_BabS+#~zJfTBY@v`K(Na89v92b|?>M z9+RJ9as?dik^pWH94YTIHipATiCD+Gqk!|7R9omagDi@^EHmK)1Sh;?GW@knJh2v& z@(BH~xH43gY78a^G%fcpA+t+BkChLA{RAHtIu-Ru6CToZtO_QX_b@&qRHDl;xzX$c zOg<|77_*}tdK8;oKIHrc zvO%#pN9O_*3;!Ac*dOvI$Vc>o``0CqfB#)N{Z7+%eW72NKY9Nkq$%a!L-FEoa4Bp* zL5Ge!P7rabOT~L6Q*V`*40EM3(E(ZU7RmTU7Y!w3B#-SUL?6z8^C-xD-t#{I{9GP6 z>#s;f@FV<^H#au<08RaqlELbw(bBlO%wvht@%%f|FYyf%w$~pa&F!VIFAljz&AK1S2hRoLLe=H z0mFyGahCdFQojhUygpCC-9ZE0;Oq(C5AUx7ZVaUkXX9?QY15?2M(DID7NxdfL6)8! zi;lBANAE)^l0Lky(hPRzQVrvtL@1*h7m>x(k3i^##c@O(*aaGW&WS9hE0j(QH^^o| zH6bIXZ z`CT;N=Bap(JpX`CIF!qZk!$!E*s|xiXEVTdTxgO*tq7wCMu@k63iPy zEm$*{A*Bb%2IS>D2WdW63=saJ$y{oncgVuV@K(UJqP;OaIJ!BS)^Y)S8en>IO=)dj zuuzwkW0WtiBc3rwtxp3m7WBE=5gMc7G#z_TCTR2Y-(DRT}xr6NobtC*MJ5^NRWP=yw~( z_XFtyc4HM?%VRXY)vq`udnJjH*28IobS16w2BBe5`Bs|fdN(v-@%|+8uE1-0kfch}?IHUhzkm`z3d1bWcyC9}ih5nW{ViHs39xZ(bxbn@+;@Z;k{jd`~&6 zyAF7*zNlSJVx(!G>YkZ|pi&YPPEFTCh!e{nM()2_aTy^gPOO+d5?O$dbxy2s44p~z z8X@A#NmXIIdwA~UB)z`V4lr^y82nih2o~HyNa^gZhIozY;9pAL#LF!1jeUz9)tLo8 z+r)r%uDL({C@an{={BAa&=ThtwI9e=Oq(_>42M?{%P04wK0dUr&L4nhh?vFK%%X8x z6W_A*L?R2jLff&bNu@2uXBEz_LSMw)P>sZXfiHh9X28w2jl(VFP{9R{6VEr2Vg+ES zkL0&Nb-j1OPOH9BE3aKJW2Oj&a+VNVrbA$zPo*Lqzn?pI4L<19t~o6t0j5>%ht4se1rml(qg#j*N$Gb1v|NeSv> zzWb_vw_to8bu*)IT+gGj4w)%ft?o-}pCd&*VH*Dft{%;Q{q;V+|Aw<=u9ceR_OdwZ z(D$w)G;4sbZ(DTKagSS2+A!MJl&vJjXuqyMAFXxRjmIhPfYAE}?(e|7#-O;e&=Ww8 z6Qw}aa}x^6Q#}TK=`aI9!ANxGFLcS-`K8LQ$6}QHw#*D<>s+cW!*efsg3)N1nMcEW zC^iM%kzgf$hI4q!w2>}IKZ--AESRcsO>c;%tpjgknmqwh$p@ zTM)1nLe4D~uz?mM5JR)TY9O>yP`B7`v(C#DOHm;Dqci^m$Ec9&e~-;kuH2{7;n{BM z?ew0(iQ_atg%Ip`yw!#tK!+DBxCHn(XG$J*!G# zc$v#6%5LFvsrsd$=+||vnhhFsT^&rncJ5I06w*H^mFFE#(x1mx6VbGH5L#TY;E3P^ zz0wAh!G`F{@F)Gkg)e*dyp_WA<-m@HKLZ--ag}BJ>3K$_qmXIu*%`HydqHWX`c9qd zg2w*)jYn?Rq)@3#7~Qphd_Kl2tgF6%3E_EW;a3`TFOq44uZP7A zJ33cw3(s#MJU2xz*O6|8 z5!g`zb+Kt2bJe8GYv2`=nvYD%yw1m6+;=wLiowL-wCgK-Xx&luh{KMas_inKd9?##$ukhBCU-3yt}-aD79FiPG@efSuTW18r6q`Wi<-z#15*HBo}HnAfA z!Opo2D!BlN@3XV83Ddz1Z!>jTeSG8HRmOW%quY^7`0g<);k*yHj&0#L%9gY8DDC%2tZ5l*2YX_JEc zDzJ7>@FoS+J^|miKQ5e7`*B1ty2Ii5PE{M@UD(=O`Mp zZ0vszy46SB*R9*(B1z&4&}w@oh5?<>ZQFJe-T!Fi*Ka2#`}=kC%?*Q;ek9S71L1dx ztSyq=kmTM>zGAU?u^+n;&F2+;x*J3=S92Ok-P?)9Ud!j^np}tctY;yMrW482 zm*%#3o5(u_pfKhm#XwtNGo%3LFB3HK&V;RP>e{Ldm1ibNTjI$GY%pOv<@XTGj->4v4PVg;t;2DM0BQT+(Zz;_CSrWpOT zJ#~(aP}7>H+~o%w8Mq@}$Z$M4R(()C99LJGSGKv~=}N3D{KQl>!C2>>qE?(IvcxV+ zztfiS--IaIeFHci2TO8Os3-M8ApD4H_vnf~lMuczuX*z@svpDW2zOyrIdUR8tgMjF zt0y0{%i<6!Sdzgd!7$}w)N2Ylp&RmHa`5s6qvcF299dL(BDbb>M;DYgHwEqC;$fL7 zXe!Hc^e0O!PX;G{KA7SGFz*M#V6(St-FBr*u)-a0TMIirKIm>qb)sw-LLuKb$fZ@B z5QhHbFpmWog+Pm!hTa*c-5x=M?+=yT_XeqH;pk(Nq}L7Db|o4Fa@%%9XoCItzGG)fG>k!y+*>c^7%>j1D=3qx77Q4sh1)Tm2);r@A z<3I~X5%%x3Y*=(_J4!x*UoZ=CSixXif-%$X;W+&Z0J4VMvA`gBH`@GUjD$HULVIvE z>`m})!-hW{PmTZG&Xp0h&+qy-4B>m5*|ZGW`&+%e@U7!@aH>9|lENp3D(~!_ERF_j zL4<)GCYC^PD2~Avq_IvC1^{yT7M^Fh!%8ov*3hNK`lVH7W8vrn2RN2v4vytmjycec zV_D{t=LiGBuY6NKphV5fA|a7-U8TnG!Ku zVpDE&M%#fwD*kRY2d3G%v$fpHfCU&N#9+$ItA$w^HW9lx%%ZaqeG#`m@BlfY)ciq6 zSE@U60u~gcfm%C)e-I!64)OCM=%98fdK`PKYSd~|m4ioGg+%q?u!q$vAATmM-=&3K zqJ*R93&x+wnUhL8Z*^eDQrx}$NxMYMlMHu@b~&(7)@EW(Y`3dJMXduh-Mw3kvqlU~ zj!plex>hmW5vTUj4{%T~NePWsop(~d^|rk#3{vvR3UllgXlKm_t3O!Xvp4{Efcimc zEsompzo7m|=CV{uT{F+UwnTF*s%pkai#CW8YYLl^;n#%5NU_6@#=UHy z{bJ4eNTzn~0FpMEw%ZEFT{UIaHCv(HSJAnR=Q8A5`}lk|@8ZQ7O)d2o#Q$~))EYpS z`a}h7yc{&(8=<2XO}(=aXs-+Z?#pEjqkDlZ2VJ|i@Xu@4F#5e93*t*ks?x>OG*0Qk)i#Flze+tjOu!@M5i*$kts$9KJgT>guvjWqfY&pE-ezueYedgsfVt!bS5 z2jP4WGvK)*d}}&=NN5I=5Rf_+Rs)<#fIa5MkV@PJQDoJ!6)RG^h1{p0B1q7oneH_C zC<_Kr=NR>n!9U>vwV`R+FRbvh7!JBJiD6A#}w$dTp?(1K{{xy)#we&_V^W-1Qt22IbpKRmOD9VM(r z(}Qjkxs>;A`?g$oO@FQ^a-nRx%I5*->#x6N@0yAD*(Up@r2N*xQ+|(h)*9K}SPFJr zm;uB68NbN=+ixw0%`kAR9E2UgVcN|QX|yo+r{`)VrfHvNfsIjPo@dm%T(`#8`4MkB zV>$m+?DhdFvoV&J3=EE?sODq%4Tc5Jk0L|5I|g(-e|!MtsZWpDC$#R$!C)yS>pFb7 z53bAX+yUje0rp1;)VGtrHsrV*Tk3kYd-T!9fpO>~R503GDW0KjEj%Es0IE zge_w{iSRzS;aux+%xr??uFUfHAum5?w_{={h*i0FCb;w;S{(w`2x!=S!}XdVGuab3 zp4=^Ea@_Tur|9EpSl&MAfbVL4F{$EkfNnn-FfClZ6nY267U6iI<*M6J?4=ldKcCL= zf0n>vSU5&?F)uZ^S73HBQEglN#(GTRl?^aibkDvFwrq64hLzGArEWYLWT@``qoBXk z6#Rfe04gxLMWoUYpdf`EM5%%x#w?($5(C2kX?lB7)_tK@+MvYk`l<9_v5~LD93@hrmbHFQ?T9PFBZ!KTaBlmJAZf( zgm#4s=d`hG@52P~8K2n#hWeUDwfq%EVv+?8Aw8M+d5#G~8XS2WJG^4WIq~Ftc~jrK zx)MIo4XQ75C3AfaQ$fG}kaooxt*Nn+bTCQBwGvsL%^`FPx{_eYH+AHaQjMlQLS(tq zta8fZSVA&mmq@z3`EL`Fyk7oA)jad$$?c5pg#=2VFLtRMGq7Wea$XS36H{Wa#$AcQ z+@B?aHbmTn}yx~Hnu5?yj;!_+b@i2*adJ| zdAgnk6TX#G_dKtwvClF7#!i5zHsb_v1j@r^b+x5sh1EY8Adm2GC9Tl!K>T;I9F_d$ z2t83Gv%Uj-a2R4niQj!8eQtV+HE&uifoX3Mk0_TfB$lMbqIXgXP zwXeSV>R1Zk@!cE=Qh^^`fcAwH(q;pcB8R#IL^5m3!2FjfMm~{YMvD)OR9;@y;~>r*rlxSMIPGX(S^r#6 zduG{e^GIYR#oe`sN?kEZq`}&sJ0%r%;FsE^fHZ>dt7eRSPH?Eo>=wb>6j(PzqExd^ zZesF-!VH=(NwT+$s>7jmzbnk>sDR4#R4)NPQkkt$SI1z6RX$-D^Vp#JY5+Dvl^kIE zRCh(bT0Psm`2mD)`iNjBgqHYfT4UI#wYh+eNk*4w$Dw+HbA8;;87IIB2HmjB zQLWW^PmjoZ3(7Dkon`-cZ$d~h$d_jeZ2rpX+H}2WG)exW^<0jH{aG!m()&=P!U6BO z2q9++(y;s

4G~Sg~*f>_e8EkSP5{?4;xCSno3D=)QonqFdqKSO6!xyj7^y27c#1 zII;xq_t9oy6mt=!eZxH?SiVSCLHWWgkQ>W|G(WsFS^pGy`}xVsh0DMT=6_lOx!+HV znmxI)%%4}meeAQucTwfO(Sjy39qz~yv~w_I0mbu*nR^9

IS|%+dX;Mmsr4{T5?^EayN z^@%&jvkpNBI&|oqKEns$rp%q_pPH!1$hcVelfq*k(*U}@P$}g)gu?X?1!HTHZzJS< zd)?qn^&-w*X=t+d!w6WuN)$V|3*7Tc{JMzOR4?Xm5$sSO?X>f?T;!Kl$;8zX!C zqStNs%tpQFdp@6h;*xhv~P|(r6 z7^iPKR&3;~I&K;!C=`E>tVogd=$vgcdsFugfN3kIfZ7~7*cvs5h}Zy9?9Nl%cO zhd01ystc~`H1pUOp9`c#E^K!;O?@IB>jrOTNcOR%ER(H&^1MaoL`l}sG9 zW5|$%#?H)WS`+<*h!Zjh4$S%{8sl^YYD?U}8-`xT0PDX2k|8v8g^iB))lP>>?M z>h$&eP!5hnDR&W5O*2|~QqYd|3Jea8m`^du@*{07Mj7!a?ec>Mmpd`hQL@q_ee)vy z8*oLy{OxZ5>Mmfp=EG-ke+EXA8ra_kPUkX?EXWBMW)u!~{)%*b*sq6OXB1dfSl%w? z--`4*6jjz@1j095UY@$zsI`Lj3)U=wVzkDS1ivbiuUx9qOY(RNF1bhN`h6eqM!nTS zFCzccyU9yjmlr&a+;u*-DF4BlgVUC2@B8MfJh)lQ*mZ0>v(Z+9w^&*D8sD+#J`E4z zhm3AlY)!ImvOYF_JL6iadDd=h?SvE98K^Owc|OdH^E&QpeGolc9X^He{hB65+y^C= zDbr^wY(qrwaXXtUaoWvEu`w~hiS)-5x3DEsZjE8~94!+1C+tWgGdkm1v&Y;&k1crw z^9M6zBO0L8?WfI^B@-_BXkKvtb_rBi$~1EYt5Ytb_@HXqESNSVs9Wq95+Q4#P`u0? zGSku%h_-}G_*_0{QR*!16`yG(Sm^8+3c>uQ_ncq}=!ie+@Y)g5*@-nziRl1u?EB=f z6VqPT+ugNDm;^IKt+T+klW{7$3J+y@F|;R>EAB;f4(q!2Gv9Xz4MF7x_r z>Sl67*6Qg_u1$#~nJpw{nsx`uazR-s^c)Ba4scyAqt#k2xmDj?2p_DgMelTC1$PUp7=&(B)hX;a%I7z9%iZ<6%&v!_+V!F$N9tCZ)-^4$jhi$s ziJQM|3n5O-R4|&-vtk1C-dc;*rn}sxN z2Ii`={VrHX#9-C%LFi?e!S@tmT2M3iGTnuyn|d0o3F2B|KUkYDeFGba@-E<rwrW+=u(7?vZ4Ve}R!V3=9Xtxruf z?=>u|cqyFw8#tYLAq3$&P;T+|G+3iUl2)HwxR8HAHQ#aLKCV9)J5MP#)2oGX6O$IN zJ+ik@oy5d|fAz;#B+}U)Q%rd&_FQ8*y~Jk!*Ki=|CS7 z%GGIb)^c%vQkFqy?Dt zjob7sy9lL;gW3?y@!MnI$Tp-O5h%u5XhZAOPcb@~O9b5fEsRukT^AVOUF0FPD{`IQ zAJeK~w7$l8;3YhqkyvEKJ7|_R8_lr<3^4+Q6@de=A{dcH?xcGY%CRDklHk)S$2y@4 z5XAy?*ow#|Iy}voQ@m5Ee3;=1ecjRZJhr+`b%5V14$fx_SgP{0Ljgru!Lvt?zADy_ z);;>%Cxa|TAd13-QbA;~TM79x{eZ=C#13+5Avw&6Os4uR(rcp}s{zBzrRCU5vkCe& zw-l=pMqtiR#SlrH)h9!{W?UQSj63pD?G`{r5V4xHx9JWd=Cza@_=AR2Nu1sv8`J0D z0QEiQ?TXi_gj5n`CLd17`z9@30XrC% znCFD3y65uJT8evZ3iWE{mHG4Mw{0=6Y15`Yx1-ag<%L`1|2YBZ#()N0kHE$N_JYo!!bn`(>D)@X@c+MsC7+FF8|wThUbwMSwL z5s^fO>~){>d#`ivbMA9~&;RN3f8V#p@sayn*Y~=vGk*7d_AqU*p2oRkwP3=A3Kfnd zM&>9#9}0=7k@1vkw@ zSa_?MBX%t`9p8t|xt}vUgSdqc``yJC{S4anteFfmgb>$HZ9K!<8I##)EWsk|)oh%& zHUr1kuI z-pV)PWi>xS&2sy&(st@ZwrB`KlX#g-wu@^1V$Z72O7~Vcu_5{^dtRWoG*bQU%H9ca z>h-|k0D8<&>N_!Xid-1zH$%M9p*-9iNXQD+vQzb)uHlZq+{#kKw^`jr5y&4=5Sh8(@=YtlfQE9zu1zO>nnwH(2}% zyD=i2C1`DeJG7#4?O?NJcqb|u(Gb&h2F*NY$h1HTE`P@gBW)6ICQ!W%&X|A%XkF;G zUU(TO#PK-H1tf|zAvD?|ZxoN64V>d7K?|BVb99A%LofUy$IbZZp4tZ@8#j7$z6-`< zPw*I;Z~TJnwh2|PLp0TK;T`21YOow}=zhFzp0v><(0G_wrSC}Ft!OeKZ%fkJ5*pWn z;!Kr>#k8`8{DWx0B<_8bI!aD0kYGzl#w!!VSdA<)4ox7!*|;Cbt;&E65~bl++T5KW zPD4so4H;HFdp@+W=aBH_XU_b}eJ^dv#zV*BAc5eLYO;ZrPJjhUz=s=P_cvo9xX3mp z;eJ9v%BL@hM*%C8i@(ULm~;ao$4cIoW9XtAtlwhO{$tO7mILMC9{0#eOpn=697D@% zxL@6%t*6f(8_)95_yR5DR%SR#Pc#g} zKG^cZpsaUd3CfBNDH4kf6iy%7uJ*$Qe01odBS zgTX&%Na`^vcU->Lv_nRMqeeAMN8uTU*YVWqBnO)^2DpT^ttvYMUl8h0<_VXxelvtu z?5}EgAK0hgD&kt#Kp6eDG5HBg65bSHZ=}V(Mfr8#@8}rAUaW06_#`=58@9CTznHSU z7+mpiFZmNYSNDHHHX~STDs1n2Y>kIa388#nMbmsAMryZK6j%gS(R(=aDKSJ_Huq(} zAgnxe(YIURrX4=gMMbg>LKi{Mr&PgeP?XCGyY5hZ&<423K~IML@p7nv9yIl#b0uHTdWQ|Bo z<;^0J$N;*!;B}c^8|A(XLcwmn_AOaoO7w~hxPR7Lf_)A7a&^Nf;eZli~ zt%^;Ww1iWpf+TiPyMKli`ikT=7Tfe4PBPT0+6ns%Bji0Nn{paQlDzTSbh=pJ5#>I; zc-^JNL&fFiw>Uo`8>h`FA;_C3JR3C_a}-BAI}l^?F?|J#PQX{o^O~2iiXrbX=hB2; zghXlbu9UKzqIWZ#qt)SC@RC*>Sn>{T39Pq9!0h%84nrGp%Szo73-F!DG{=WA9Zx=p z@tl@VpwIY5p(lJ1X+H}KUQbxSdRmB}YH;}oUc^U1rQg0vPWatBBf?(4ia+s2iK6c9 zCpT$_|9xSvKMMcu4O25}+Ih24kj;MM@gY7RsoWf#k(i1P3BPsEv1jmsAtEh4ga?`a z5Jok&3tQgxm&0T~#(O?);7DI(b@MGn^9B}WQEymjsSJMYwE zLk*T**ljXcHQ2mn3lFeVv%diy6Kq5oY^{gQa)wEt?=jAP!k`f9Ys2b;+K(1Q<6`Rl z2H5vDtauVG(BfHjxq@*nRK1pi)B59RInWHU6<=dJRz+t6IDGh)Z1^$G`&&AiZx$#} zmpGnB;0BI&e}W^`A}5JIYNz}o!SNlu`Q-Pmd*9t&^j&$rte6vIn`(xpPpZP^ z#}iF~F4>_&hrMv`LOcvi3f)uf?idFIIB}oDILygaIi4_4{i+c2d~p{HK#4x&WwP2U*^Fl!`m!vTt)*>cI ziiHIsR|{zh{9RHA0(|f>{|I>+9wWjW@T~ai^uOboNhjausq4CY#TIp~QX9J-Jsuyp z^v|Jee1%zy2PI2HMXfFcV@!lJcj%P_Zi8oFuJ*@bJmxu? zTrYTc9-Kp0gojYw>;WEdzXw_EKoHuH1``^DtZgF3UPvaV3kx7PnLQScFYhRV&^UTp z;4;Y~p4zW(B+mYpVJ9!Ej^X8>?<%W!mPt<}vP?!La|zdEHMLMlvc#ENI$TnI8U*Ow zXkJG&Py)JeFfYk#ZH2-3Ufx88FpP(d2&7}KWRYNKzs>L*qBb)NF7b&Df^N8m;iP9- zuxlE|=YQWow}9d-uC(|Q7ep6EQR4_{7W6%p?8+UEb94kp>nht@B;JA_pE??~OWbN8R)y=JJ$WQ+`Q+`}15NP<+5?xDg-dQd3xRvfz=b>02S|8$ zh&Tt_^bo>bAx>L5=bx!TM5HFeA(C)2n`Zlnq#;lPB`_>f)U1WL0(sEP47fs% z#ULyr7{|qI76eibwLpzyGoXt=j<^$qSlMN5fB9)+A)tTZp4_Je=2iiD~ zz5ihje0)_lCyd78xM312Z4~mi1VV4QIhgk?5-)4Dg5DvSNx(Wwv2Ehze5(9$Iregf z>lK;J&E#Ym8FtRiF~H~Cw0ka}Dkn1;M7GNyPbkt3)sI*(-mRODKj|X~NM$un-)2BQ z6)Lnc{OWU`**$HrL{UXH&O2dCOK!}a5e%DPfNg{vhl+lMQ4n-z{~ zXFcxAX|0)|e@0y?e5<_oRBIK40D^$Goz%W?uO-S~opMUM^oVU?Fy2PFattMrtMjO9$Ms{V1=wk? zxr{m7lp-|Amo8oU{;RJJkD$j9$lSPm(pQF|d5&0l7dC_klH+VY_x)V6!_KinlJSO`vk zyQ$`iEAQ46XC3JK*3xZcM?bbh!q|RH{HHn4X8wS_)4q7`n?>(^_TETFX9pT*LRXgx-3Jh_cZCQl9S>iy<15o-R}iwKbX(URP}}H`VyWoNyamXkX@4Tvtl>M z{QySTBI@QQ2?k|!{0&y}Vj=Ja(^!QbYsV<3ZUub>V7Kyd}rGZ%}q8|ZU zZ0fxL4YlqD9yYYopC?Yh6&O##IiQmm%pyueC`t{BWPF{#x(r(j*knf9A}IESMKZpZ+}QMJ zE}J~3%VnQ zOemH&m_noYwy>dv(4EgMKj&+dCaK{#x&PnDLS8}hXjA2vZq9O`l3Fxo!Z>!Y1FVD# zB8LpAT6M@`<4gf72~T9|MQwX0hF;dnw@NDo7&YNtb7BI%U(K>+`ii{{qwV-gJCkAa zgwUvl@=LHZfgdOq|AVk$P~!F1mxSNPadd60&^1_|e%H2OkCW+|5yEk7Jah)k1zmJ3^+RRO(QLu^>tbBgDA^I#PezXqC?tR$ z4OXN11kaZ&`91*qDY25VqBfru<%i9uTWMPLkHW6?Y@@e>x?6M%XcTVkKO)Ms=* zcD_z<&fW*A*a7PpCL>M;RyN*=RlTO^jkX=%Way#4aMzOM=giH8bAZ1znYw3!T0+uh z)|{R^_BvFWxl{I&b7oJ)k|^Tq>stbCHkOuJfaxQ0tgahu%0I{XJ* zy^xf!NAH|H^9OY2fyq%+r@nD$u@sEIQg!~k-K1+tb*ikdVD&f~@+ zsQshFaUndgr#O2{naL zYJY|{4Q|yEfIeq%TI6($cL}iWIJzb(e@=*n;64a>?G<8P3!vBBP;65T2C#vG@Kn}2 zIPC=q_F|k=t@s{%U)I>4h@~sYD<$A4aW@<_SZS#Rv_Cw@_7;2X!uWUfEqi19dDwP` zJFahbU;hbV1?7+Splci`FcI(+gqZUI2-YfqJ2iYb-G8jQ`le=2)gIJDp8g+~thfe7 zOwLv}z(^`P&wNh?0(IWN)aira28BYYs6o+ggL&7G=NvTzI~Mb_MwM6NWo`YWdQmD= z;v0HJA_Q)JhZlg#?T;F@ZM#iH&U|I%TyVp$>(HWsfm1y)cb{!ogOnu#WnyDK_ zSi`;W8~yZ@?WH!Qp1X^alEpVX6}y5{*XHF76O~*8aMC9jziyhbdp6-i$8nDN=G!5( ziN^6mhGi183_T|*K&ix1j1y!d3DBItiQ@3O;*2mT`^_-yo=rHs@J#%(on`trDIL)( z_<%{7ojR4v{^E zeaG{V_yjOjZiDkA4^zK4kS->#L8c^56Jb&rt*rGYTo^>&cda`(m97D758$I3g^OwU|$ zR8;m;a5uU6lrStfc?nCmPnEn(_Q`&Lm*j`RB3PAFR}vb!PEH$<^yv2c{?Dx@3Ic4Y zp*9@`P|07m@%HQFu#PQL4u!&jNw(Dv*Gan8AZwl+-w@S;g;j5_0NbMV37p<;>}v|2;jp7-2L+By8fA*99t(Re{%@-b zu42cCF556MmM>@wy@1`(j#>7F_(iJN^XT8fpEInM<(MJY`C3V4{Eb;>LyM2!`DaR=?x3`ko*e!hA-_nX6L5{}X8NL* zoX0$J(-xWqfG>pPiCg<{u+crTkCC;A=TgW~$!KMX4dj6NrCA!PuO}grz6>gRPP!r% z{Y;2ttP8zSK(;c2PPP!k$t_8f0r{SHt+z=s-j7LcGlpR!mXIwriuEobr&xxKs&{9< zjd}>Z{&nZxhF)bWXVL6W zRUIG7dLvK0O_N16s?skwLm&3x;Tk&>C3)Wno(**2?yz_ST>cOzSV2)PebK4YLcGR_ z6{%B)zVDxkFkO0$wzbEp3v=|h*qh;PGKGIrmdlFe28uDRWmC|+HKG-@DsTV@eRwC9Q*hq~a`{ zO2d6wN?Wu_QD*Q)t567a=A-X<08G(0&a8D1z6rkWCjX9fY-M<&5}0DGHbndBIF-Z^}*ra^H`2W zO_Cl_j?jGUYG_HazM;~i##y-slPcAC?%ZF`!t~cfe?9>XcR}&0Hbn4YV|+)GDYYPr z7QGtAuCFh3i?WmUhIHyQ4t!(nMqi~WvuW3$>~-*Uuw!LYaZWGFXb1&1zqhkaYjxQ7 zby^qfb~eCEhs4Lz2n}#fLHNh3@yuBv=p)nx2%<659u31^_9(49aJWDX#(PHW1wCb_ z5JW{kKL&Qq89c+H{(KF#Hwnk7n?8-o()}8oJS7`u;nj4;P9LRUB%n&6aZ!dcT#eYL zVHfz)jH0ye#LBKG1!}0|oHMKD3>8nyh~yt3p8te%uz4a|u)Lz;beP4vzU(&c=*W%^ z=ket!CA`qL_*)M1UX-n0;V{gxCUYa+SV|QyvKLQc^(v+sm%O#YTzF+q-O~%sI^lQ^ zJDl|l{zkP^Y0P1q=*OC@p=^Do*%x1IfP2vQ*VI(n!ymY32u3XRdCxoR}bjePn9-0yB<1rG69tN zZb`cg)h1nH664sH){FiO5YL-u1bx}J2WG|W-#^eX6wAi>G3CgCZ}(4g%3G) zq2_&uEKn6jI^+2{(c2iFdy?z3R?A#9&aLo{zRvaF-z4ijH0gm3nxj#=oZ2JR1S z@|hvnHNToOE*_uKcCa#Ee}g%JnG_RfQL$kZ6MTFocDxj4O(k2q@ajw0bxM#g#kXLk zSv|;{0Zv7K1@A85H5n_ZTxA5JW3)c%>^$YRFR!^)!Br@4wxaCiu`ujXu?En5Yt4ZW zjo1#Q-6~4T<{t>Mvx}_t z6UNkgLQdL-Os?kFCA-q=Mru0x%oMF0<=n|;*k8b`M=-eRvp>lc)(!yrUCjBAk+l&c z&X3^~ty(?t4Lw zEyqdt#=^L466;KVPke6KSI`6AjU%0(*(tRafD2bh8zv%@2+qt3e!en#J_b86G&-B$ z_|qhJtK%aB&4wYc7kYUhHS*Z~=Q;4?J(r|yj%w~8>_|!>8J7 zyrUa9Y%tzttU0T)P@gq0L`Ld^Iw~DtaJA>BnRi<1<0Q`<a*yjJmZbm-->>~lw)+{9;OW1T1?%y8ZvC**m_0l)hougV8ZdWTH06A;$H02 zjONStjC)C5zK1g#+p)6uZq(H1p7$_&5u@kkf>so&JeqDDP4Tv?jm#fG$u8;)19T(o z?%Z7%O#X3C7D6lwgZJ=7kD*tKShuelJmYzRTz|sw zbI%58t~DIXB-`Ok=`cj`TYMAQRC_=?qvC#QV6^G^C|AD$CqqwHUnw4f0|SazJCa(k zxv~?{IJE}m^K-j4(IZ5v*ed^6F`J~_>m4dR8KBVyGTts~`8_9QD^r{wtt#*ZArmY~ z)>moK!R(J%mW?XB?=tg!*&u|zAj~JrV0FkyhPD%5(tSh{cO-|K-m~O-3d`iey$Yj3 z0Wo()lb^*;ZdkrjcKLhjqr|oEwL+Ht$G-m{2MU#~`Q2?7$s1Fg|DAk;%#Hu2_pp{q z!R$27I(F>X9Ju{yC5yp+s<_Jt>z=mZ!S`49+fTdLz zg1wcDL4rn|DjSW13w@0h;hLfIcr2=P6)zOMz8@B3O-BQ>wdo5!)Nwd{M~`UC_ThA) z!s8&K5LI4BrHhP}W5}aE+{P>JUI>l-E1CWg5y6s(`A5LnRH0%p6d=i&Ruqbe2ovgo z#V~)ku~y(fEe3|vMU7$q7?+aKD}4hC}(kHbYnms8+6DG>tht zIqonRS(P}CoM93Kc4iYvLm4#wDJBi<;RVK#Tdy>4?u!aD3pKR#!e|e;YiG}8oIQK) zd-f%KVk2G3X1GpV234#+c=EbM3nqV`3M>AKa-c!Bg_VNk41#-(hV#EUmO&PckS{)j z5wWw*4_DKS!sI){2Ky}Z9dzsqvpj?H!dQ`Y5`L4nv|h-@Y0g<~)o7J17{6th=bp1* zvA46Ks0zK5g!3gIUx`Ed8hXweC81S&T)i^C^fAfzDGArGe zktk8ON|i7CBfo9HW~R(V!tLI)fjh}&$*+#k3_@hRV$_nj8raM*UXO!$;u;*Jik#fY z$l3{SqK+5YS*Cv>Q9BqWZS!~@CpL=pj+V{`7i)F<2tPWe>iUFUh1;f5Ce{yNO#xN> zEV)BS0nE*(@BOAW3;#sOpX8et3OD}Z`&g2-boetiI2%T-cKWJ}QePZQA+fe~tY-=N zwuC8LyzTeBO#)Te*G21c=`6{+Zz(+Xxz7QgMjIkYWCxK@Z8+!t!o2v5X9eJZOxm05 zAlzToUoBc{OJ~$zcF8qSU{hsv$cU5;guz}nBGW53bl!SphpgU!5DAuz>%)%i_!+Y3 zAhd(LAqC61Nh3NiPpXIJ$GgGy%drHhO`i>p{ePyJ?n-;pZ+W`UZ`^&@fy@;a$MOw@ zDbxM)L|T^2!|tn3ev>A#4awx2%BJiBl2XYebkFGBPf=fkd=kz>zSq>FGkms?Xh+rZ z(rp!kg+-fqHRw0cU$xjil30hwDxD@Pf%gV6)_vOqR+Ib}k(c*pgxE@44SyzsTp6(u zRzwlUb-d+HQ7$?57yL=(YO>jcWX}4im+-q3Rs>Q^Jgs>CRPW72kmNzv<3B!GN1hfO<~YzNFH>YtZe5C4as} zy~8cD&udUJZ4o^;Jr}62Osg7}tiSHisJCrkqC=(_8?|36N|<^u7L4&$t=1^~@nJjG zFb1ey+UHswrjx;KG4%RTYX0-+nYNp6##29BOk`juRPxqZ^-NjSk24L-rO~#(u}ux^ z8yi>k-nNFWdNU{9!fC8c3@vz0VHB6!A@t1As~Vbn^ypFhLAk2_GkyB}{6n8U@}7V# zl!we42p2Md6Qn9ITpRuq9QIEUszXHrIaLa2tPp{wDQrra9Lp18Sg=@@&n@P% zh5m?<6g1iI0ygR^QlgVH#)73onC2(IMex~MiQ?y+xd zlB{>LXd$XDvKgmHXPq|V^IHFxHAkrmm+*0>munNLgXQ5>PnBbk_9ZqmjQ6P&IaWDZ zj-fHq>jN134=K?;$`w&foVFM8prL#~h`pFe_W%C(DIvCo^hVwl-qFVDIf;GbNi_D# zCSexO@Bv;>8jjtqc>VX)KjyPG5LpSoN!PK5bBU0Mw9MAI{R*i%i!ez2KZ1Oo{ ztl#J7{C5p8?YaH5o{0^vI?im~PPX(YQKZ$th#WG=i&aC=FCqodq9P>HQQid{q*+PG z!7q6&FjDf(X-hY!2g^QbE||xpnghWw4h?%azZPUi0}Si7VHDyJkNI^uavQdiCcrMz zw|T4|sH|x2wMBHc&n>_ZnyM&*1CMEQ9(EMKMW@3YqxuzJ{H-hMti~n#)~%IR!`le_ z)iY6t4j(%7H$>bz z7C@&JX?U>D_L_Z|mf8!NsrIFP!(Gn%aXTwl0QCDq!Onu|)icWVh$C>vacpBVTBgTu zo4P1pw3QU*J% zJHzg$2c6hy%^xu2yPMs6+y|phYz%N!H`|GA)FIJ9C$H}WFn#3^;Rs8~7stOV_(q%| zJc1m5SFpb{*)ho!QwSPnoy{GNtC{3h&5(WVKH3fEeI|@G#gEJuI6_iS7-HRT5z+}3VtM0 z%=BnWUtk%QATljtK&%D)Mgl!p3`Uo;xx`Tkj(}BGV#o~nQS=n?^7>@r#EJ2d6Vpz- zXU)+U`e53$X&1D1tM<37nLAz@BRwf8>FCg*Lw|GGRzeiLb0(fz0u+Y12-5?8 z!8C%38v2x)1NjIWJ6Gz6G*UdbJ{ix}&>n4nbR0J+SLqT56! zkzqFKU+MjrzKAYy8@PvBsU~k1Mf}+-uv{BPyk`#zR_?C(>A}QSAVk$PT-9H)LyXFhkYj3?~HlSG_)y41FUt-tb)SC#R){39VIf4%UDp03G&F1(&)OMqhTicRwT)Ah4Ziw(wqZjEZw8*gaBV~* zocXMcWW3##6%1`BqRbgbJ6HABmWPJ=AJ>xaPy$AOIV2MQ_wgdQ0X$m_pUakXHbExD zx`Cq(Kdo41*i@~~^3PSMNhp;wBb5$sBW z(|_xtoBlwkIfrFygQdmemcy+>DPP)cPSWF2Dt{b8PshO@%Nc1XO+pZQm0e(HVW9GE zejQ5-q1FTzhkz?h09$t24x#c%T4%X%#5h#$8dnfRAJt^T$DxI!HKT|25G`YNhrFG? zkcCiJyV9q-~!h1Sp>(@FYkj*`CkzWg0C*T9Wg*%8k6pwB8o?u5Nm`sMmu zaF5CVb`I2p=EO|eM6Nuk5A(_c>klP9S?La*uN3}9yK1-6Yj@03dipiJuI#h=7HaIq zD~sU^&BqrMMK8Hkw)$tSLVxXXbd>i~i>vvb{Yw26QvcpGbxBf~16-H1ynz?37rJ4l@j?ZY zjY+e@M}FoNlfTh9Ufb65*pj@#+DvLMa*4-E?IuwlB2;B+?u}=74AtC7a<|P($yrs? z0l|{k_AsDxm2V8{fClHZ?`U=K07MD-@KsN4Uhqc|+JjSg$5N44ys4I{g24i~X61eXL7 z!FB-r9#ijzQ;TU@AT(D$}2;|JhBPzsr#Zgx=ee zOw%ALv1_Gk>D!{drA$BwExdmHdK$bhr;2faPS#rh+6NrXc^&;A593$Fig04!X*^Me zdG2yxFLv#$Nq>QPY+N>0RzF*~L)4$8BZ5oUS##6TeC-S>dkTX} z(Sv-MR`Whw*3e09Wv)NK8Z9=~W$b(?btjX>zJ{Aunrf_J`MX(c0xaLr-^{W6DCh*& z;cA+6;Yc2vf8TgfW{}maNp#OB;0NC)9a-$vY#nQpoBldYq~)GWAp=yZRFtDI??Ha| zq?qqvk`ky2S$}q1Q@isu&yl5$Hhm}=4uUQ2kwj+|5KImsR6m?7W22!OE`Rfm&*$mn zobZDlO@Gu=)UeYvJmEUoL8#@FeUvypAI_bd1*151he_9)@%FvvzlSro)V$oo%- zMpg8UOH}HX9*mXiv(xbc^>yPkQO)HAaM7X=0#R5nbwgGTR)E(0^;Wz+jSj)#6LHpS zLU5ci$ESC8vJf1nK-CwfED|Y>Qy{A#P!YC{V!oHp2(TLI7_eG+jsQdPpa&OJ4i#Zr zmGB=^72$7R}hj zkBAi7LqW~qtMypz7xMB#=FXiP^3%;FH^~LAygQp?2p3sHIvIZLc~+@wFuo<+i?+ZT zD30K<9^{&?=M$?I!G;xh7Wu=tqTwsETC!lHeRYZ)Q|mbkF@3cP$X6!8d1ezOfMXft zQ%PjG;pd;riFRiS&j-35)~h7}7DCeb)~+Gd@d_+ZmbgpuJGA|hNc5``wbJqV10~Rd z!!Fti_PP_-SV4?iUn6I~dAm~_ziSdi8|7Z?Ni|yYFB2Sl`bT6H)mR-THj6A(AvB7- zqj}7~6%tSC1Ewc4E1O)+6HK%L`l3s6jqbWB@vat1lk;Rw5tFHVO5Zs)<=gG4dE^rh z9->#az>zs?=O!EzRS^Mw=y>En+}@$*(f@MjM9STN(P4B53DM+75Pl}F^6f2pD`aeL z4Nb`WJHlMUafH8t3yrwyrOADe6=Evro)Ovwd4)%3ML0T7ualV|Rd)+HQju3f9y<$m zrKIG>e&on75G^wG-nw-?WL2ue)JCTeUPCqMu+lLEg~NZR z1GRAAiZC5QqD__I`o>5>fQFjLrlBUnjE$0k&bWZdKsD+i`qP#UGeexw1ho)dO?xtG zx~XuNjjMS>bW@-&z-V?shB;$`LbTw78LeSpIZ#z+{-|6tYZwSY9H|;ZE#-28NF|;OPzoEz|mMZSe*NHZmTEP-ep{ z9`jjRka7Priq%NvvGN%AYNr;TPMc-Y@HDN}vdX!0>5VKrvn4e5Ur5Y+o|9Fk@Fh`AT8@fZZA&DyZ@{RK_#yw`wzrM=Y$pM3s*ywx+|#1 zK{MGlM24L<6!AUu_X*0^;z-&dCLhn6y z#nXpd_#oT)bEU`E>9XrFN2{lt=9p zV}yng(Xre>hN}@ehTr>NV(XOaB_TYaUb=FseDRKOV^Lwpvex}t-M{7J=SW}q-|8h_1iQk=v0i>S<9oaY1mD7E3*!a#!uA ziW0Y1Jlw5{_Hct0yO35~WKZRt*4k1+{4_R)Tpjo%idC&sr;Z?fZF2HnnsOH!HyZ>M zAk2ir9*0fmaE^13unZi~wA3G!{S;@v=m@c7=xcP$$Lo~fG8jX6E*w%Xab9OddLOGz z&ldPtC5M`4^abGg=VQUASrp%@^h(Ihyv4R^+b~e%EWQI%NCyp?d6qv1HylkBP4_cm zj}TF)^l_IfVX&8%vlUs0?%!A4jqiH<`Z8aO7i^+gGGxf%d-tFT3Ok;w+0dftIOA>g zmDdjP!uFpD4jjhoD|_(h2$}K-;fO@B4U{w*#z+aX(;o zN)vp*({OSlsvx?BYq@?*Fl+~R41xZ0>;!}s@M9ic=@|SSjBmkC#03~%fK2Bcq(OCp ztAA0UE>RR);QTN-Bab5K@881TKM4MEiElwKD==Mzh582r5EB*zTcjO2ARlT;GQJoW zv(cKt1fw-3?hb={6M}+*!`Lm{hNikrm?l897ur9FinS1KKQ;`+xP)y<6?Sud1l;3b zSm2%zoaEMt7I6JV1fQD-vN%Z1Y(dM0-p=6?C!7oQp(N)L(pi?U497w+OA@fI7RC7B zNXj*W7Kkd-7i(kwjDk+=#-a;eRWRT#j?n8OPam$_eGRLvf!7u-S`?8V|E0YPk5sH? zFLh}i6kN^h!BT82T}Q1hJ;bpLrq71oKQm;=kbUe$(>38HIyhwFPql6+vzzH0gH4Px zYv`uBGWW}Y-o=haqYrMy?qdt^iHQZvOtN_#gCUfWK3)gm7Q7`DOhM||hqK3(0M``` zyUcILK&X{=@+4iFchk{eQg35|wEq}P`|+GBF?r@DJTq7@pTh}0u%v&CtbB!|ctmF@ z=qYt~lth>ty%1!jZX99`iqxCm(#f#8S@MoAi-nm#p8Ahfk? zGLR8NcuqG$HlBK(tg&KmAkZ!9h^KezXeP@79(CV{5pU}&XZW1(UJ8wqwexmfcjHYv+78+$>WmvO2PMM!8@ADs0|YioNsb=y6*#p!MK0qSsyEy&OEaAr<+ zTwEL+EV|Uj2k#UDuXaQFdw-CGdoWn3J1+C+p3k_ml05bitiQ=G<#BpwC&Bw(D1$sI zj<^Y@t}r&ySM(LT_uCKZYsNyTI=o`wa_+&O0UU+P5sa*DfT7=C+JwHdecGA4R*uV ziZ$b#p1I8N$ua^DE>U6Btd;9$b?_0TU>dwjkYmRt2RPBHk#Suy5-m@m%})E)H3@CrIze4;EzBnl5KyRdKHHH3&u(iha)V3r_l zm43O5Z-4vAF+myIAqr>zQBj}+TmR3KoX>;^LVx40WF_S0yhw=>8kxIV98~#EU+3X> zMQUviXVT-~^L9G>IYmd0hO4h;mx&?y?0|q~=LLMeJbL~f*;d?X_glOTn9mW%)^V7z z-i`ZG1%fX-^q#@^rT+m7k?6tfU)KVX^`Xe-ncg!Ka6Z>iq=MR=>i92Vq2$r$w?jX* ze~1TS9a&{()EpM_dvFOm$MnyEU7ZS!oqg6eilT!NEV3o zQiH}U;G&8R*4d(EIP~j)7v4rY)YP?%MoLkb+#+vEcBGD3Z!d%VTb z1B@fvy(*1_vw*)SX$E6>;z<8j57WpvO9B)}lIb0|LJV|{?d{SvNu*cll~-u7vr~lW z;r>(X6Eet%x#QVHen}&0Lh?oJUDZYta?xSSV7SKwKasB3#7)`_+yB;Q%^&HOW<0U6 zAcFe+hPYsR83#Hc2WO=GO-r-`4h&VR?q8)?^fn;*usBuH{(|c~I$0tm9?+MZuW%z?)#_T2{IYg4zV^ zI+un0;H@3!DaM9kd`%sahbB0`j2y82Evmfy>Z|qB9X0{ODL2wGGT=1wyIfzDp0#Z{ zuDbfc1i*8GZGr_IRNeCB2Weska;Y%Lj&88$06S<1a?jF7;Ls9h8KX(9b)&c#u=|`b zgM9WMVzuBWNj8k|&t7MepY6Ixqsd= z5RgL1UMN_nn)47ARyB#7ps!GM;w*WakxLcel;buh$$=u4hUObWjyzpw6m6qjb2OOB z#gJTjaULN*^J)nFlmwTuUHI^VATCfuj6C>lrJ97)b?RxH-sH4oCKFD#C97m=jdQc5 zSKK=GrC$=Ums#?enfL~o+m$T*C*D!Ih^eq;oSj?yrWl+V#7+++IUGHyazM%~S zc)y#6_ZDY0E$Yh*a@f}*SzlMoEz7gP#n0dwHj?prp1|`MhK=}uwb|sT^%9l6hfl%h zZMvdSU+G_Yv1WhZQ(AHibgZ(vK6NjNPA4378?pvkL~x6TA#Xh^jGTkl&D=k;abb)1 z*atb_3rCp30*l?ER&=@4goMO|RGiYpnN>wAQeMSDIEig**d&|b%%^N5^#;S$hBIJJ zv`-BFg@a08q3b-_qaO%4!$Gjy=Q~)?kn%$gzTg~Vfo773DYo3MbSw2#LfAhe6oLQ1I2&qHf{QzQF316 zL4z)nh`Sqp{@FQSij`T0*YM&x?R`X{r($ zC1jivBFOVQC2E)$3J6yc_=cb^`E@K_FM$Gcm2FlxfwAlvuFiNHyi%X318o}lx^ho# z?$muAT%Q$J?>}RRA+%h%J#p90i96w#Z*cfbdkaDhZ);PAbTV(#vgg>2RfB2i`=(9% zq{0&wDu}bpX6WJcdVCh|IxhJ+HsF|@N!3N^t}w4a8R}vCbu6L66L9=UAZxHaJXN3v zrf2tg4Nm*ok~e%|c%26-(hlbdzOdW)Md)H+{E;DSd)~%pO240m!$h;}ZI9yE(|Ch; zNT=)p82XgWgnWqcAqiIb3eHpqoNbXXyrb~`x6-m(7^MB#=pHVQjtP#Q0-=$3Ng=?5 z1F;7n?KP9}D7!7gPxECKz9(Eg7>Or58!5RwU?lBN@3DPAhCz6i9Tbaq%7#R2a*w3< z$nky4I#eleUW$N$B*_sHoO1{FiGM|7m{*}MWfssi${khz zQDM|wm=r%)l-QzQp3BTyIqRYTEB6=499CEWK#h7-`Ab$v>?MnYI>0P;GrO9BJ@XP< z{=7=I>QJruIkD_}RyFCmI=%e#@tllB{8Yg;av>0!QW@lAUBkBdY_x~q#XsZ3uh_6O zywot5S0itj!i>j{ZV8GKHyS#SxYkFqvsMWzh(ut!};c<&aq%24_GMl1I}Rf7bC$ zcy(F0FcQN(PR=@&H}jab=fD`p&N37I04qs?E`o{=$I1;;ko5$oVx=$3GO4xD$CH?> z00Wt8OhMK|?FJoFvAd2n2$VZ)FC5HN#i5}x=#`4+#gIC-J6wW2nJT{v zbSaz{C{aV<&<~Jd`(WVP4K_!H^~rHFwmU0E+!&M@dnow7T^*#mPvOaS5nxtRchncv z%bs8s!_jtZ3JlHTR9K-y=S4A#p^EVjTEbQ>N*uoqOtx;hYq z*6CPg>fn#~>Z9!HGq6HOi}8(6M`7Q4;J{y1ZNWk;Eu=T$jtEyQZ&r^*N4P*Q-P!I_ z(Uvehd{huys6j`jK$wowoXWOVS5c1lvgwuUzjZ|^RI%zGG~@DS+Q)+eE&yxalo&02 zGi^$!FB~MKITy}dInu6$1{n}OyBVtIou6z_lbufXU1Y4~S1#VZah!e2Dnpe5PXEI-=vxmRdfmWI(4IBtO8*cF2ki;= zRA_Rrnc+kgQF{tD+GH#A>Qc^?_V@QHGWfI-@gxVpCGD_ZZS?|(=VS+j{EdAKH;kr{ zCF2)`Hzg>_no(6MT1>-Nt$B;HN~l5c&s$1fAD(B>x0D|Zuj3hW*ugRw{oq(|nHwhP zzZtUq^0;5d0O)gz;Fq!E53j%c7wZrI^;Lic-Hh9QghOAtyMS zuvBIE9=h%j+yn;(j9R@zw!yKtZ;CL=Yft_Zcf0`mPBv%-BT4rn97_w0Ao`GrhL?Yq zSRWt2^9;Hh5qz3Dxbcou?K#(Xh6TrSLaf;d!0a_=TR=aHZujfe79oZB6%yiz>0C3T%cq>Bh z;2TfqvbIM}d=v_w%GX5;b;e+|%`y@%vngoaCvM+RV^}fTiM67kQFs21eFdG$T7-kt zC!E9T_=OjxzpP=wI7IVUe-~ZS{au`w2AkM;b+Npq1U?fxe^vYPZRn!A)m17WcA1T< zc^Bbn)DsYip^MMC%8~iwVQJF>EE;L3iwn}z3-H&XPr6W*@r&`&9)&o2j}AH1^}aN* zqe+AmJ0(5m1ff&TyWRQadA3iZvlgPs_mZgtU@ji-~Y)s4BkLB@NFrgRGR9EJ_>=DO0o< zA<~y=14(51nx+zXqU3|h?yw56L^|f*n&j5E2VwV5BY)dT#{Zjeu2B>D&Dl&ebzg{g zG$Bn4eKFed^S(;*xbUKnX)Ona5EpIjHb^GZ*(@pfYr|9+TB?p3!1l8IE)4i{0UW-E z@%RP_@Hg!>8&+l+MG`-Jx!Ei#0UZL%(M^%~DoFdmE;zhjZ2{?MQP>2htnq;9IEEH#1CEw9vo(ekOw`|JvTQOcKU%U_>%!wsZ9OP1a=;wIX#C>b61<%2ZE@D z4s_&*x*Jb3236vvu3fuc2kdhvL^&Ri%Dhj-*bo@|eNGG^z)nga6o>By%CIQ>vkXGJ zQlFJ#Lsm&4Gz2C$A5u3W-F04VLw{J?kwQ8uc>YH2AGu2YD!#n)Y)!A$(Z)dIg}?TuWH(jhU5i2BN8*O@GB=SiUDB;br=OP7FJp8rp5g$ge6$ z_lIAV+}Y0lv+Dhx-hW86-t)&z!pFNX_b z0=ptGzB5v&hT6k0bbh!PL(}EET~V#2;ssa|Qx6=wa{phm{-!T=Q$FfX_EXQ8$eW3d z7aV5S3OoaAd&r&7PP@4Q}6!e4+%ZUiHt1*(CcLoh<431+m?& zUMZE>S3CJ!C3j7|Zwav%?j>&!Vqh;^CPe*eb;d%7mw~-UNVff3zG^#rY7ucAH{|H^ zDp6V+^sj_KKh$(xa&0}R^(+=ii1nd`yONujTBu4I$*>ApuxWc|eeV)c zEv&Y@9zhb!!G%KG2>GLe6@t$lGwB|mLAsgV$58TnQB}0aI{+yEOE1$T1jT;L?HzgNvAD$-NsvLF&{g zXgK=rs@3->Q)}M(^{|D-z!c?cOOyI)Gy%7DS31?tW&7y5U~h`Ww_?>a>g`N`j=v#- zP&hzW#P#EQuuLhklTZuMGz=F)Ui(}ae<6g>50JhKW&?+Fn*m$czJ@a4G79@mm@z6(=|` zy%P;%Odqgdg;YF6;~d5*wuZ3EOT;PK=aGu<@%0sqJbeX1CCaAa9Dd!;chIwKH?rOB z`Pq)RAn(nzBdR(+o-k)f7X(Q#)FT=??=yS<;j{_yC|`eaqe5t^5Yy7P*$oyY$DYY@ zoIR!4gTH_=JsuOFo*yNn6BIisSw=;%pX6~tL)~D0`+HLL2iKKqFyg)amrm7iq`)I+ z^Eqv~+vPSq*bLql72CLQRAmkD2GzzB65^80n#b#&&7CLXxs z(h7MC$FFO2$ZVlqU>2EpYLkV1`Hrn`>f19L+puodVH|JwIS=u*VS$RWtkX-?Mu#QD z=L3RoceiY!vD#pV0lz&zUpBmuzZWngbq_?sDKK;#ylr zB0z`xb9V03D+*S~XX07}BMaOg;-_#~*d5eX>cJ$5`ZTBsKRCl#A zOuy&XaCYW2VXD2MI=(+e2*Hj!e7B)#gz>b8LgYP$V-jV~;DqO_AuW?nJ^S!oW)8;= z-oWGR~9EQ4FEO6OS=R4$ypYmuDdk4UO?X>HX8Zb`xHBpd>C2 z0lRd+&DeF5tuysxH8}yDKdjvFawhY+3}yeD^;+Ig`a7@+r?S4KrQ;?g#(}-8?C_+_ zK}wth^W3TJ_9=BG*Uzn9)q?izw&)DQ}ogFRJ|xq_w#rE``BCYa+}|~3Gbg`Km5b+E-jMBGk&@p zOZZ-n#S6#3RQZ+#`e=hdyRA!(y>XW7z}fWMCj4!qSZ`aGw1b1%rih2tSPPFNRd(`e zS@}`;d$O~bBvaavOHWB4j|0}lo4iOJl3$JI8T6-ujS4ze=A3w=0)=amgmQ)n{`r;o zhF&UG=1#7p`Hj$fB$Bse&_$2RkNa&v5{+`%5I3Kb9Q&qC2+b87)oh^qh%}bPBG*g0 zIIuciI%No_X2wW55D;bu`S)zZ=#hIC^786F;Rfv@tmN~%+&t(O>TW5Qs~-UW{=Jz) zh74JXaYZ)Qe75~GNc()cI50~Rdd!@jiIupFQzh@3FD#gP(-dSpC85(PIm@_C7(_Ql zIP_Ep)*>c^XWlN$*wTpR7$2#Fz7fXLclOp-5&9U97U*fLkMUe7HdT&26^921^!j`b zOi6x*xu1xXvBizmOm*4?nBqXWOZ3AxLSH zco?Pxcb}gRKqXhuO=*)_v>25g6~JnGZ-rxvCQP6M7`?f-w=CT3948tx1=;RkZ-Q>= zQ*O)zus`(a;BI-DA2Q)}Cwq)pj=qE|?G-Y|kab`M7S>B4QA~Nz-NI^JB;rrq>G(VIDCkG}zX5fy2DJ(r{{ zVEd!~0A)UpV9_6Sm#f%S>GHl`QD1t;^yXK0+t%KJP&DjmZM-*!kc_UyQSmFmc0Itd zVP_IafV#tL@v>SR1_&XeP{r>r{KdST)FyR@tByZM6s`-eW7p_;>ZwoLEvj+RG~sU# z7DCO_3@Bl`qgW0+rGj^Mw&t`bS)%Lg+55)`YXE`tBf_fIsImCfg!Ffh#}_(C^P$!8 z#Gz8KT%;n`tep`h4HF&54P{n+B5z820o|4MGPUwi2{NeF@dR0D9ikH06f`ym-aBO2 zv}zCNf8sbc>L=t%s11P)n;!+!VDK;D#0tv_jz4i6WMSdOym|B5He^;`wAw+j0n+rz zQt+7n|9KAdimxdR6D!U^Q$yGd))PnBTM~wb`W%55Ftm;E{=;RTfVCk|<15nBk=lz)**>Y)r+fAWO4Cr2%B&udXSudid~n*1#FIR6W$2vHPf){1ZV!t(oRV}fr095Bji~K`0VmDc*rrNXBvxz*pfsI*c1cp84Q7j*f0>aQLLAS z#&T>F1QAZjKrInA1iUl?u5ed)2+P(e^>+^xA&&?zRJ1)nOFQf;ko_L8J0L7noI|kv zLDbKt!u~PZmIRSvm~6iR2**e*!lr=;YOO_Rn7_knkUFdgfeMBfwapQ*TOr07Sx7-} z5QUs3VfzDpn_%;Y2tzGEEi_nU6C&qN4Tg$09fYbGBih9Q2VtoD8zO{Rr((h4pRfgN zD1lT2JM!iKVedWQvN*bb@lga7L`Ce161&D0OVpSsc1^KsG-_gRi5h#0O6mc6*RtdbzlUVZ3zs-ip}WdXnP13FG>UoAX+B?lIJ2$1ps z% zPcm4z9n;#_EOy+E4W@!+-Y{~olMcBuc<@VY?@WItoh~z8kz0!o3Vzxn^hc3TMfJ`n%M63CVvT*;}_MXG%t zGjx$Tv+1&9*6A3X-$z|qR8-WNVPjyfIF8b>dZD4KVCZ6y)@~h4+353Tb-#jG+`z0> z0J+VHh4bge3lNlxZdiH0fe0$Q8KB$3{+XsQ1s#hvI|e%ipr~%5B|&a~P)OJb=t`&Q zilH1E0oqztl)&tC;{!ioL(Lho6}QglAz-Ax1gQrM#Rxd<1hK|OknuEt%{hG-iX)J7 z0k>a+1A-p9xr5BXe}muG*I#5~Lef+-Q(~mjk1ci99QbH}P|lxX;@D_p{#I=&1t1>@ z1hM%_AmndPo)1{`9Fr~vEYvY5qy)miVRvRw!{8Sh3jP#F4yR%u=I=vkfT>sN2SuQJOKLCj#R7tPYtK6wsBEgBNBiOWUoC-;W(C=Z@T=SCXcQRy z8NSx&bM#4rJ(2DW>Tvu^9(37EFnQ8FcaF1UCyyBXF zCzl6y1wTHd)8yk=x?5_NA66`R>j|F8(xyvR)mzG5AS5O%!!4|g+G z@j9Q@b~=VGDs9Xf!GG~T#4h2xc1@QoPq$g;tW4tLU#8VcvSw!#ePBsv6Ij`!sv4zO zuzZ0^7&X802P^Rnx%d#QFq#7M*2gN!PdtS3A6HV=b%RwyXS8x<7|O+|9nRWy(Xce`s_>SEX_DKf`6h_EjP&QW|li+*MIY+ zAR>+Qar$~G)|>7%=l0p?4x>hmHkz__?l97<=%NQ|=Pij}RFu&XPX2sCo-S_+hlP%P zN`e_M40Z~fZ-0B-7n8rthFus*0vWq=K1Ukqez=CI=auS&nq-;oh3oZuOcZB>O>d{W z$q%d>h-H0G&JK3V&5C_|WSh4Zj}=>RMnkAh{$8z48mZl*Qg@Te>1_6^&pq;TQsKgd z8$S?Cy(}6GC2E8JmsX34)AKe4-C{Ak&7$L@!>wuDEt?E>k z>_SyyfU9&85c%1eZDeP znO2LT(?D4KpRMOdD9Hl_oh4zAHOL>k_`$B>bFjT__|}Y4IV>tsGfhrWR&vv?QNcNB zfSvpE&s2D(SV34mow2dJD|~BQJKR&)+6Ru*)eG2thth`;e57d0${Td;x8GKeHIkkSdhXY$hrRp`| zB>cNcFweA*+wlu^g3E%$lDePnjP;<^>y}2iG5#Zq9>}^ewSI*dH$8~Fo?*kH>VYpJ zv?iN@p-b2>={HeqtOG)0@ku>IC}wB@YDb5hjbdik5l8AlRZb7kt3SS^2j_Bf%@v2v zrZ~(|>%(4X&rCzT*^lFu#;tK0{S?PG(^W$Ca2c=CB5}yyllx-}9B3$_2+PpB3FW0JHv$ zrJIz(T1m{uqKC%-w!3=;b-I*J)32qUs>u&t-A52<$=uQ%e` z##79JsJ?t~0u>9#OcTT`TQw02EivFJw17nMDV@`W_EzO?b)8tJd>_W~yZ7vdt|D^N z(wc@fx%Aeh?D@gk@8h^_Ji=K;!px3bE}{&>bt0z#qi zPApjsjUWT*^@13yDaW)Eg~W1xs%jDDcHfSzHn*i!c2p$%&BKQe*UU*??4%LQzdfnZ ze#AyZ>9q5S;?q@Rie=K5d11ei|biyFwse3Kg`qsnW4IY=L zI}HCj)|6{s1y;$xkt$fs@Y0^xQ?MN_ozu50mqAD<%YRyhN>tIU+|8N zpl21I5teqteIR`DOExww)DV&pXKh$euvHu+BW<@2ZW`YE9WbiaBnvE?G7e3)C;=Gam2ZE=bk9ay)i6?JUe!bp~Z!jSE8FxEG z&=>jm%P>j@XHAU1O4p|zGO=k>{bUaW$NG*2=gBuja(^K`@4IF&IVUNQoVN&hEjESA zA0tN(iVqQO8AXofoJan&Ds}2c(uTVuQ93;qXgg8}u>4oZ%TiRC1#=!5oAirja`Tw` z5@K|HP36jE9(i0-Ph2$%MqX{$;M<(Kf#g_oT0QHo#Omv`N8fM}tfA>%waZ-9ttI5z z1WC)In&WgMU9EAgMy#)j4rVS#bT-SiMBq^i?cE}jJTX*~q3r$RNs!QhL0O9t;y*|% zw;HylF!kSB*Dju zK=%{u4{~CpRiVl|ZRrqeu0>kjSz5MD?8ZLkj7}obgNn;OA-I8=*W{l;$R<Jm^*4gHz@e44o=g&3lyj2d?7i*ZV+ZrpZT( zrY;jrN=Qh^fNjZGY%SSP-qUk@D6N)H%w@6YE$YYJ^CWpxgf~P=bWwS0B@-}I#BLzj zZXHq7Sbs>6?u}aDF4-;Xdiv4!y0$njc#Sj`!EDJ((&Q^)!wAegGD4L{~)%o~qG?7IHa#v)9#cO&0!Y(6U!p3;x1Rr?U zxgn`He`&uZqm`vp%HAUfREzxTZXRo%l-x%%cdt(5u@lMqK!62v3*Mk{d!0$PG)s=H zQ0?(TaNKQ0UgrREyx(`ruDmAX2aA>MV(IrWN-gn*&M%;t-MAfe2`c_9d^(q zB9WgQVu*cAP8)vSvr=kfBD8~RS`Pr)Y7F7lE^99=K(c;Lr%)UBqD1%A@rMVi6};uwv^nLVt+e! zdF6QuMv-rMnmwFt5y_B!TBbR+uysi17?KxdE3z-09JJoMHDuT7dxR+4t+(ehMZK*D z8#^=^zU*iBT--DMb3rXe1Ss2EmaB;1_*j^0o7;iF0h!8`?K!fn1hDAl z41@}lRKr6cEy0qnc!L!DMpP53f>UtD@2o~s2xe&Qs3w@qL0Md2g1Iuw*~D$~!eKu! zFSekGV)Ewdcu-MhN+fe_0!ed^dGX+eo*4Kb((ths=97VQ6Bd+ zVPz>ZIQ1SWkC|@30yGjkwu?Vf(WwHRQajtNnO9AV8EMl07JJ7z=DZ_)nl4gx662iJui-EG@r+*v?E4lSkUvha)G57 zA&=wAEr~*(Q_8Kc3`VoZ)7O@EK`528b+i&HDUYe};Pz9;2JJtU9XiL^pLgwrz{-pM z4$QgW=s9!ND7WTN=Uu3v^aJ7$c@KR}lT1a%=0DGEu2`9DhL8`wV-LGMvb|C_#Ug1+0QTy|*JSf(go zM0u}*N8&jw$7CP3`%3*EkHG$YzYUnHD8Dc&YryPjm`4=?)Dsw2VK7>=Vr2s8>I;Xp zGZ3O*jC<9nod~`GJQl6BM7+Y4Tg;acp<&-^A35}`!WFYg$1?aQ_T zNK(QCRE>m{b#iQ{1;|7WEok#B~JsYiazC`QTWo(3Ju#cWspz zBs?KV;|~&_u0z3QNzXhqChKn(EQ(L%D}EIlb47T;DcDzXH&B~rk3^qM&&~)nOvNL4 zO*FhVWIOu@pUq>5h2r5`wdtABh#BEZcB`q<0Aw!g!h_vi}@|gNi_B^_|djRh3gt z#ii20d5rwy2(Z3-nDE~egP|`W zlKx%z-jMB<*@L=ZUounoTCRP`c-q<#y1wMJ%sNAL@D`zrN<4g2YAB=1N2Pg?EBt?f z6q$bV2U)zU6(v}3cXO95n-2kYk~1f$8tB{@?+ks8pIdc)_Xe;c(DD>uR~045t3K>e zVYRmU!s?e&&d^aAU{P840cdk`haW4pO;K)@%2NNDqHu2tLWS=uN=5Y9NoW>ZUcXPk zHYqcTnkX5~`1r;^L~GyBZksDS1nZJi2iQ>y)>XrxAG)Ij%f03%94hclMdf*63x-g> zzF(I@)0GDTNFz;GLIpQS!@gF6sfi|Zg)`Ba<#%~}LS^q3vB#}lMvoDfvp(>|a1W^S zN1J}8wLliwDuu_s0#bdz^3eOw$&IyRp9`?3c1-OX=j1ZMhNpwvl@lotchT;fhf_?Q`E;k4una<3x&WTVqvJcXDMcL~}*#}>yB~W|t+~pfLZhCps zX5;M%4|NXpy^9wvY_k{!PBTc&GG%C+-zmUqG!XlTra-I}+h~87hgx(x(mB*-mDACo z(s^_U9V2aYHvZc54dF>f*q0nP{JiIpZ4gh=!!U2}pPbNW@Xmr9JGDY|D*X-mK+jVVXD4L0NW@7ul;Po86AfRz}VMJ9zXgzq$Qv}kb z%v+B=6Jh+QXLZB6Yy(d0$CvClH||SjN0t0>LU~Ji?B_ zR`~8_Hc!Y~IZ7z^1KkS$T0ax$W#8v(SfutHNcqzN0yYmqHEA^;KW|KMrm>=I23iOnud&1Sl3Kqk1hXGgl&%yzSx*J+acGRN*VFED=qs!w zOriw9Drf-xot#ea=86?(4sVD&y?mj^%WVEk3WYS{NZ9M2-p9B#IURBcRfaA8F~#Bk znx$-Ai+7th?U1_j7v)6}PA6e0W zb$(lR2-*&GXyPUV=z(HC?jg3FdWgS%jFao~G(G$=eyV#d*XH<~g{Bjhu_x;3WcB(x ziD1I!z%rcL#~e2MYr@eNvcZWww{eWOnc3|BIZ1BVnfd5of@eY zkz*}0!477EZMh&QGHD9l55Q&AYumF$!cN*wC)5U>pI{0>>0o=~Z=a=4ZnIE5%MNXP5vJwhk$i=gFGVF+N7g|J#6P;Zk$!6fVpsqFl8N z>(@uC4-DIboxR)PIE{>N+&`3j!7R9rJ`YLje5+Kc>QMl_N;5aMp`T-QC!;&=m3`A= zO?t{Kvz9R1b#svMzrxp;uqn_t8CzD9+TnVMN`Uxtg$k}v6nm@2q{~h9Z@@UgM5NwQ z^VbKiUq7zeP}r2)hs7G(JF95n^kZuS&uAzYAgez+Ycg_$VPMevqcwJhH(M*2P+vII zcP`eQj;Rf?G1so&Qyv*_wg)Uw3EtVvQ)hN>)=X=GQ9_L) z52ddU%Fd1N=o&s;|EChj{ry85IUp)o=e{>F4nB_m5U5xO$7nV4^mz2Abs9mfBs?QK zLRCda%N5)>fZnJFc(g#LN~)RqQ1H=Fp|Vl9olLBkWamuaFP1FbK{$UP-bzOuMQ$1n zm(<8vo24tVd5Ipv*?OA(rTAe9QA|MViBoGypaxNC10<01S!Q!}hHDyLX}vWnhx_2< z6I^$OF6p!%r`6R1Z}qi6%N09!Oc#FRCO*Yb|A^++my940{qrMq3S09&UBS&MwS{8E z{=}pOrQQ=f6)hAT-X5?TqO`zN(@0vYR_rc#)OLX6q5KsSu)U{=#$dRKk1DxF+yDTK(fC;3P|m#+(IEn%LWc^t04k+DtAkCQ-pJMA&2mB3nbQlTAsH?htf(_du4hf_{OND@8(_}9oAIXQXUIJNM zx{sLmk#?~-_!jBdqd((SZ_RAhBZ?hGvd_)aUF6+uj7^QCDh!( z

DvaQ$Rb1Q%6%?eY2&VdC;2cJIwvhkpuJFnoF#=4Mtt*})sOZDeG3&DgL=l;W0 z*TvbSkCFcn5R`!Pgp;hTYvSnz6YNYu#+w=D9V3^6>HPB6!4M@$@Bz@`g@w?3qu5AL z(^NUuCqs^9rgJE^y)+`=Jo^+J%8~S7?r=EPETd|6)+Vn&?FFkGLOI66W>0X&k)=lf zYWYhP0hd05uOst4)e!o7$eq)B2zFyWJbwJNTd*zjYNI08m^?T4)oh6@tuibFjt)I_ zW0NX7LaZ-q1li6~9HCXP&8s6seI@KRdscwR7#15I;)*fJc|{+cBo>-E<0cs zS7O~p>^n-OE~O`zKbS$bMn%Y7!7W5Zr>ByH&3)OZ{-q(e6VqfVb3K8h#Kt1Zb(Ex- zj1xwKFFqg}=gJcYZr_=vF~IH?-)wH|9t<^IMMP>J|Z zivj+X?Hp`bh)`|O^od7F?S|kwg|8=Z!}c^MP2&>>zRY+b?4Cel;&B2Dmd`h`Z1&XN zl=|q05^qB%r#aRCX8+ll-m>I*J|VMYSOqM{>R=)@!e(PKLZ)*Lu^F~H&jWJOv}A@Y z$NV}WhvrCpgP)3GfKjB6;paV(((}6ziZogo+8d?d!g9xJew9^&M67Mq9asWCT_q;duprGMJ1 z*Q{tI@mOsd;9TXyv3Gy{nj^lK!B0gt6Lj@Zw@mQZ=Q*Q7MGgqep9SBl*vz5oh55;& zO(1s?9XQx^j>_8idqzSFtQ<(M*+j=Gy1r7!omx*3hCpX z4E7D%D#Kt1Nrt&U#J1%Uxq{G-35{c+`>$YdAg##Spb3EZq}4TGBZZ07RKzleevMT&X0>ShjshIb_&Z?&@-zOyj$Yb(T8hjnKxT_&j}Sh|X-fX0nwBeBHa6I6rtDC6KpN zsZ!M!FaGnN#pa25Dqi~v42wdu5?s(4<|8urRwAVWmb7x^d>DQh&wd%M^{%@ zu(MrE&A_Iy0R3Lt#B6wT(WorjdugzfFKpH&I%q8%^;Wu~84q zo|cSoMNrMy42+MjD`L4vg-)EJQ!?Tk2_jpns>6E(5Yn)lqQxj_ zB~rncHnlh-!1}>Nys=bI)0X-sh7dZ^Zq)y8(M2qWma4?oqd zD6G_Bu(^t33K558hiMf?n~=j`lY*1lBM91f3}eUpVZ(LJ@%>}ks(3Qq<6_3nIj}-6 z9H~-S&MDD4>qKQA+e>lIu~#v7>N-N_^~qZ07UPq;2KyD_t4_V09x3W(mu9#N94+ui zy+6)j<+Y_|@;m^u5y8dnu|Np9|Eyxd$H5%I2mk-S638+nB7Dg9ZNCp0I)pcf-B!`N zK#LnTS)a+OE2~7`zaOn(iZX}+^PX&gP=lYqQG79jnF2v_?0eWKO6{;UvD>``V3kpr zl}srGu3;riJfJlTc1?X!Q7ASG;(8+NR7Haz{b6FMLGrj-L0oIaQV3p&Cv4rJrzuOH zH?p`;7AVG_bVlx)Wjn_H98C{S%0zClqFm)~xGvW~@s&Y3%Uf{mLwBLuW__$7=?#0I z#9{Psh!;Vv^om={5xorxKG~o}%i+Na4r^)3XO@oeG@Qgr3!vqNNBe#j1N6SF&`mt> zW9_y#h*A6uY@~7vAXHkv?eN$eSkQB}oEhxC!A3m|V;pkZu{m7`4K+OiTKXKKLzMV$ z^bm)^tK^7-!xlsSbTMSZGYmg;%rUQ$uVTu>AlTi{^!bC=SbuB_`~#2oN@#T%Zl+@Y zUeH&`;L~7ug|P4U4Tt_gU)xEBi0W~j8>}cPF(9KDW$NIlIOBe>5_4ZPH;ppo{Ryh3 z5AJ`p1d5jHxL|`-sNdLCX=&*hm=LBJSIZAh90j7?F|$g?YQ$sXYk7K3B;=r3X|4`` z4K7loh}xR3K!~&}{aZqgndQv>ZG=cZ9B`KKzY4Sc7t)!TPTQ$P=7KW$d%-=4GKJ0F z@`^1{+SAw8f25iBE%G~6{F^q$Y;UI5;8UG#GSn<#p`kCK!s426=u;)(m!7#nqDioF zF()fI<8g00p+q#lMXOt3oj2zR9@7!J#7K^A`#$U(o&h6%2=tJk1`?hm||tFk@BJi*yO6v_`o)#;g*^#=|UepYw_$z&fVm z_dB_|ZMpHVvP_-3S^1oq4XrPB&Ut=15^nTj?=kYn9W@%pWPU+&k@W^vySO zPQqqnshc`!^xe^qec}k021Hxb@Gu;3*t&!W?A%3*y+YDdg^N##(PNLCA;MMl$qo2bQN* zSZWtX5QQ4^Ve<4lO(NQwAT*L(Z(pof_0gjz!kqX0oy-u*^?S1RL58i=doi5_l&#c) zO`Fbc+B9RMZo4wFZ&9H0IUDX=T$EtHtvCbz&WbP_bVAd=^8!hn(XqokD(UENWL5YP z{G92TalrMS;f$@0AmgL)F$5z}kEV345j1=1QK=DTisAQzxWrOk=j2kIXwEVWC1#Hr zm!B|aYFu`ydRzUNEIQ)q1o5&Zqs3KktD3_MR`mi}{%T4I=3`aMUrp&*%U$RMa`cZ) zg_e=x9cYXlEi&e8zOVkQ-*0-vwn>eW$hHZpiiJkd>?s7>LA1t9O ze4bnv0+d*A3AeqsnKNH{x@C~kz`JHL#G8x!Zt(G*T$$`FGMpUY+4b;nEQ+sJ$BtDx z9!e(xo;si7+8Vahgu8n#kAr0RvUI#n$gK_nE6ZT{;Q8M#flsH7{b9=HVU0U?s*$a6 z4n|*aT1pC0A|oSXQ<9&MXD7y&cfbdFeey}$<`B;N$=J3__eT)_2A?}n#`no7k}i3v za@O}F!kxg7Q^o!1;rmUUI)=(`dL4$-Sws)LXY)vMdrn@PuNs^2*IY?^-!nc^#mmWhQhOut@v!nR^EW|>I8c_z@PRZXGJvwg?`5AA1k>H zOb_jk8Uc=uSgQucLNQ>kPBca%$av1t_=H9nHB`h#m}b^kO%&KYQZ;OzLo&QNfjej3 z7Ep~TBLs4y`5du!R%6miMf-K+pDh=hVUD$4h%Q4*$04I;ux`f=+8>kM4}t$y3Ai*} z3};Q5n{Y-<-Y~@lX3c~d1d|7j|Jzcz@~mjVM5RUe)wi@M-MpyvBYwfYisq{IxWW7n zwOzDx7u@L1lXu$x-qouNbhl1K*I$AbESond#D z>95a7;wqnSR;@Zsh~?{;6hBx^z-V$MJD-wu%~VQ-H*t-5NDu!(F6v(Xn(YNC#nbfg z5VBd+uu|cB#8+qIuOEe96`FOF@9#`jTTHs1k5}~}OiQ2+-PB>Zs4Viq2O=RMIgRVa zq^t#J;`kro8-TyG2!476U-ANKqYPi(;w>}_->IYuJj3HyL8n?nz0BaZy6%C) zHGBOY#%H+B!*N)9c|M88=}lRcr~|(JgA1xRJKQln&)~>;4CC}Pm{g173L8Y-lV^Eq zYU&?9&Bfwg2w=3f@JfIoF#UuHb~Wrw`-k zH267~dl$x$GXe;q9br%p*ft7l$()6o!5)P8x%M%zi1)=;<8gdN3!M@oafiaUu_!fw z?WOC{PYLCsW+2pttP*08%K*a?43{kHhbIf=y5lzq_-AJ!mU9NV-bD-v`QJif(*SE# zXU~Sqe$q&mqZLGsrINkYR)Aems^sngTry2^hX7kmRBK9@noO{YL2|h!uxpV}9}t_^ zGQl#D^Y}+D_n+qBzar{ zZB8K5%kf~|r?pkmM^oQ~Scd8h!WVJ71XZ?O*Bnxv*J^|d#7s2&h9`@C>O{a)gQR=P z|C7{5^^d)xlk{uFmx2EzsyFuZMxAEAmUyutZ8E0t}K>(s-2dm`_a~i z$jy+iXf6`*L}n+W5cvY*);43#D<5HpgiD2ZnmybuUSZ!72Va(rcUn0@tnVj9*h-^J zKc()^%`zLIx~Va>i~#E?eBhzb+5@hif^W+dqMN6ESUvA-$gTUS72RtJv)3MWh=xCr z%?qQV>R)6DUb4W#2nBEN)~&_zyZk4jz)nme+N%QEuSxb0?6qytrQzMNc!zF^N_Xf+ zu-7)W#A1)ICZy2rwOpoa`*T;U$)_GTYbp^XP(?T@^^R5Z3g{DUxqJmJ6|EP|r1@v1 zKU%RoVtb7p)_urpL6>oX{;*?uptXadrjk&Bswwc)Du)i)Xguv9KIb<)wy00kz^6=%$h5M{q6}@|uLXT|1QlUAmkFgYkB{5R0(!U7n^&h4M z`cb6$gHtU2Q>?1&2?CvK{uAu0OyuA`NOfk0Ir+-vWNCaK=xv4!&C}4D(T1&BJq&`S zD^FsA{xVgeWx*Y!%Yk4*c+CBH#k|sz(x~%?Rc;MXZw2>qsPzZ>)kTXMXq2)FF73eb zlrCL5zaAX)L|H4bm-0SQlu0@tcLn`0WGr+`Y&b{=Krh&C9QLOetL?Aguf-68HGuw- zu7pfho>juiV~Nz%U>x6H64^loOU>1P=yERgf9Q}Qv@v0F^VEAp?+N^$Gy&jsYY}w+ z{(bHL=aMY;A@qNy1PZoTJm7_m*j6nKSPHIHIa32(+ejc7?w#Fjci7+U=FOWo*xS?F zyZ^j-&Ad;gVLaI+$)v5=E$ldNfk7ZpG@V-!XJ$ylOUyyWp9xkb0}o+%O@V>39Whm|?gDFo{&`3`|T@b3NY zuU4RA)i_K)2kCcAt3VGFFwv=(V$bgf!4he#9LURp2bB{)L468qR-w`rm)k?^PxqW* zl&^`mC`;A1+`M^qMAWNM7SQ<&l(K@4=A4{xh5Ov*IShw^j_NW1>f_ByB4bIH z{sW%*E}F73+m(b`4!t=pD~dW+r;@6^QC2w~#66(UG|0L{QTpnFZWol~u6h8jxfI6< zSHCLCKPCue-QvLDB{A86z_rS;z8)TQ26H;#kh`Toi`nGN@pT3RvaSQGdqjIvRZ6aX ziW1SrUUPW)!l8`&av7}j4N?B++O#)S zRH!p5JbXHiVzC^*CS$y(6t#KE;B>aj^;Zzu*h%FtgYjQx!Qmja)&3;#*nEuNd~0Xs zuqsb*s?kj0u!$HuMlyQglmVvrAZHHjHj{_SFuwe~&I)^>ne(^Cw2PH@AZCt-~D0y~@ZU}|nT<~Hb zSQk#o;7eR8a@Y+)zvx7&Q$~n)*);!qL z`7^d=0acF1U43#>qF> zmp6ljobMuWFf5UKrWyJzCQUNuuqqsrhVgUtyU`Z5>N8=hlL5i%83=g-Qo(0npS+|( zc-tr_&~8u*<8((KzIry`w(5WsI01(U;#BQZL1q7f;KPyhCiDpfZ{ms)hDJnyKn2vV`esMy$G;JMJwjDVF7w1~@(;5TNa!~D{CyzT>8b#ecweg9_BZjTL+ zj#M+Q$aNjFj%_TU(7k@GPh$MKJ|l$?EhG#@*%&TN4iIVwWsCRbMy{)&!Z+ocYM2BN zo=~jGVYv8mDr?43P<3f7ISj$OrMdK9cnG1b&}#w3zw|pR1fwq#x8Ws4M95o2%kj;e zfH`x@W)&rQzc#UXn5f(4xqZ^}FoEFnphk@v^-CZL0<63GD32kEZpT=7mJsrzg=i<- zBWZQSn9CP2BuosUwvblK=RxEBES%VO3p1a!YXl)nJ`$?z2}b0S>_X@di0h(@2+Dbl z5d6309ipt>p&+$PB!tj3IaD;9kiAY~u_B-{d~rv+tI{!_nXNhKG+b<`y=kU#WE%|m zCgjDeSsgq)JlxGa@`}{tOfN=lyru`H1hk(Zx&S=q3|6X z;3mcj-cjPpilL$_a2)qVF&K|2Ng@*j@PZdol~x8H>lumz8fp~h!qj;nqm^6ckpiE% z64kn{-vDiEXac`jpQsDZh2FNqN8la;+5TgUrNA~bIyvg6b?es8tJ2%3x+(X?IdeWO zSg;WDn&^5zT>tNuK>hmlFFjy-ko5RH#}IteA3w1_9Xgp_iyXjLyBE%Nhio=eso(YQ zxCd==fM+4`rD3z%j#onKuiKf0fDTPio9nA5%RK-SpxiJ6Yy`7?nU8UD@<)? zJ5L+BzAtobYxEl)&55Bh!FK~%K#f{0>I`pYA!Lsv47cXR?BNPTdWJ>zY51)0n**Yd zAkI`W^cTG)*#Hw#bDf@~Eq3E9vjZJ`8$-p7M#>>SrVn)^!rQIt)h6CMqWFL7%Z2gK zJdz|pub^^PVrXQ)2h~r!@T-GRkAGezD$?>sEtQ92V*}EWBS4YF2s6HuvGi3nS!;)2+a>Y9Sp_JUSNuz)MP51>F#B{>J~>NaIOJQNsD;0P z@9;n|1ijCIl^4H7!vRZ<%Log5(%X{5f{y^yz8rNds=tGsX;myrZRN3e-o8UVYWLAE z7tgWe_dQgl+d*Qx)Xmg4ZZDCn9_1crZLW}dd?9rPAbjaA3iD0F?lJhq{HiEV-J!5M z`&?F#B>n28QFd6ct0(Qe9>*=1p``;v$m!IviqI$WN^A&Mr1|jG8QJSNXwv^EY+97s zk&M$Fy{?Sd2v8_#{`5$|I96QE=Yb9;`$Tz08x4F88rQ)pt4ftB?YauCkBQ?PY@DA9 z`NFW8-8r!Dq30s{$rD8bE}uEm)q(w}v*Xyog9o!kqhZ(g@640iAz=5F3)=Z&L)X$4 z`Uk>)Rst@65!+SCm(wG5$_nL*hg9(-@H*9oH4)CmJ;h~r$3G+!HqwKPF{=4-3?73lPqMNFoB5rA2f6Vkxm0d0T0FR z5lEIuk>|aX)wtAC0ux_lZ6JiUgo!_lAY44%Vy_x1OJt&QSg^2aQDxUOHdMUTp8Rds zo-x-}j?5H48lE0Y9t$2p)H8zw%qsqub;Uh$ABqnagi@;;SH+=8^W_|Zr)%Z;k>$}H zM`qaB7yQY|wNs|p??Sg^M;EQiRO+F=_hqgdJ2GqJ2q*<>wDW=V?L>1VA8Bbs?=z5h;DUHMFKEGn+T63`x%z?K zpoPwl`|O?Hq2P$EP3zXJJDB#cgqRC(d9vbb?~2J*ywS;YQ_buJXZV;|iD^cym!jy8 zHD&o4D-NU3^O>^OB=-l7DC-E0RTM|szD~nE9S|z|)U>?&JbrG1U}3eA_`PPAWS$i2m;fgDyIcEeI$@FXK#F49~M z23hqKeWKf`ES-iRuU4W?IR|A_MN}06!&)WfTwHOTlfAn72JRi;#M1sXp`7k5+`(DX zQ>4rib*LX6H#Z)I0kGsCa4-aYz5^#q?saTR`O9{^VVMc&Fom-H#t%V%Uet)ia|K)~gZe^|i%6u1k%JlJOs9Gph)PymkRrp`=B zC6Ra6kFMwGSrM!IWte0;w*Ach5LK{X4mRlJEbj=hzG|7s&CUc{jxR{7xk$X4jl>aZ zLx>~5`8wn49K{G`zaZZMY#0vXO3V;LWAI%^fb;E>ADB@(`~mj~bIATB+^s~zPitGl zIhakpo=4vHagg?>P7yp^TxkW;MWi@$jH!VFhYCRgC;FidL;5Qrf-=^OsU z%X8Z&fYdaR6wulQET1M#zeMI;A{UNaEX~erMfymTjM*j?TSxwoVt2#6Wms!+QwE{+ zWP%hsF2}N+HTJKthD8Xw6=gwwD2dWtS%(h~bGIJ*Fs$C=okz1XmAsI^~AVPC- zdQTac^C&;Ek*A){o97IN<@sB;hVuN)kBBt2mtxrtXJ8`oce)Ps+7t&BE7rSrM|vC6 zxbJ}1Uf)!8m1$bsd{#;o?FQJ{anf3liROI_Obo0b$aZ@IHwx?~uB<61Y)rA8Zc>43 zSma=v2x@=T)Hb(ZV6X_LQi4^^ZMr5UlG~~1b1~FSG0Yk#IyT-Ij#=9VY?kIa>k7{9 zA*P)uS8#Gz2?R5$fB%hvfq@Z9Lg0Y@1HRDpv=5BDORcj+z(~Z#z-6y59m$3IkbHFz1H=VU2iLAYSS9NopPRw(c`vqzm-aBr^J5C zg6)+1_Rm5)MY+Rbn{-W!Pgt;p8kW0xJS21`E2mj~A)0OAO$AFEM?ouH6R5`)Q-IZ<}yFFMM7AzUF23Z!T zHHviEc+q4 zi098t>KF3(8ZiN0jt|OZFs7aw1N$oGpUduSZmI@(+TEeMx+y_;{`PPx0D$STNqi`1Y_RGU8 zk38*}!T1k4zS)w`m>u~pOCxq&M^Jp?o7 zT7NxZf<9CXGnHU*ohd@b+bWa2hWr}ay)!XO*VuOHY?kX8&X6}VoY6<7Kc;UK#ZL`(O@rx^109KQ-r>BNg6SUNQuHNzyOqXk0fJCYF@ zgReIiKnRV!h%b&QB!u2q;!n2o{lFc#e!8F9$TgKiTUfoIyKB9Rnh=COeySt%I)}lK zb5GY2>!=H{Vg@Ij?a#>>SYg;NprH|BJVj4qS+m3gcKNz2zPlbEg$FW<^gvONO716Y zHo8+OOPgO6^rX;y;RKMPusu)WA#NI@J+>YoHCFYz<^6P<-xhOMCt&x~P6%(9_r=X- zd4?aAf^A^Fe()TSyZ+!e-1ixHtcy#IJya%b1Z${tO2_!hJ&HVCVyQw@I>z^ZVP#as zWhYXh;euguBi{Gd<5sxWHr!K?{}NNz!;}qhUs}NF>SEtGSPjOTnWfIDB7xIB>XP`1 zlk1^&(O!gCp;J1K-GEsK_tkETRhCuRN0p(7Y=}|>_ZF%gg!`^0EpEzGGkg{=hOw>{2 z{ONuLht289SD<``-q!F+{9u8XWI76c9`IRlW$mk$S>$h`d}pgYZ(bna%S9li!G2h8 zc(YaK^@BJ?AAi8BpOa$!=qN&{_DJcPsKkPm+Or#9(?r$0oz&+6@;J`|AvjT2&7Trl z&I%&DcR=w9@E+Y2U@8e_O4}rPK8SvbA1VunL-aSPVZ0EZ6kC{y+`>%czQ{xlc6MUNw9Tp6!HsE~vFVw}l?;EH z-^|PS4_ObCF!263-0<_B0k%x;#9iUB9-4~w30HVsj&QpT4*xsk%j)V{#YK{zU!hy= zf!_$>z^8p*CgDVYM|e@SU*;#oTB;t1r@Y!5HIA&6#0lFhW`d0-r)6^9&&YQY%=uUH zTmr%QjKUVYi>nhFnLuues>rA0xL+zEGYypmlJZ% zVqa31x zdrqzv5`Yz7;Lx5qdhVH&HB{V5``uHT_XzQHj*p%LHdLVUeIWf#`YU5Z8=gQ1I1;>tzEm6SkeoOHSkDn%Z-gV^$pR@v;^2z_Zw#0;=tIk(_nXl45w zZpLHTx8SWR?NuaIY<8u#;aQ%PP&4H$DrH7c#h13D&71o!Ub6le32c6>t{J=l4`2As zk;^7NB`-#ftjkpLZCg~WT7)w9Bck;rsv3_-B6>4btT4Hy*CcA#{8Jb^K4oS)_5YM; z8DP*^N`+g>M29|Hg(Xno=XLAPOfY@d4KCN|ucICW1(V3_>P2yf9p3V*q^-b3E5y)h)}QeQ5vCOERSW|7OTBo-^G9#@)aYOBkCH2 zvzJ+rc!3ap=caZ^gX+yc`f|%RFbv(35re?8XmV~uMVPfsqGf%Ou6N0GUQ7?yBJw4p z+ek(}osYZbk0kpzk`e4kQY#w)&J#moIEoSUwvn+$fb;x72=h9d;a^Fx^z|!34w_lt zBmd`X*PfZ$SJX=QbV-_O1;<+}yYFDaMo7yh>xgxt0G+V03SNk;_Z%~^_2MiWXWw71 zTRM4MOs8ts@^8o`&3Bo+;CudqNQCxIUbePNdJytG70myfe61;P{Cb3uw4cjV+UHMp zW_M8SKG!M9Bqaql#BjDiK&ViCKmcGOh|+$}91F-qj_W6KaQ;l*aQ3AGJ8!$~2(Z3# ziA0JGBXSHTh;Vh1LvOd3kkXFOJLhxp4VWNoQNyr)09XLAjjWFg6hd!|2Rz1D*u-sf z^*dAqjw_Ir6=2*nRR<@G6YDnl>@++yXJJJu$`nAi>PQ5-G(9vMvUm8awJaay;BAlG9F*;p_O41x(BG`EBB z<=8a)M9j0HR{2~MR9!`@TDM*+XRMyQp2+v}`Y{u1pB!_(Mjlwxq9vdyk@s?fO6W8Y zI+rjK=Pg9&DrotBUdu^T9*LM+w0!aZM3PZQB8Co-{W7Rxy3IP4YG;RcNbG#r~9zUxqUr3mB2*L$+Uc|41VA9v=+Pvf#fX>ze>l))- zoHYeo$!Ih4rgnUVquH9CPT{cEj*WoJ3_2f#nFsa?KKo*f&za(cY7BSPlkf=y;_~Yu z1X#H7W;qXo+#E2fZkX$5t~M*fG&Nsc5X_y6x}RP<6Ea;7!)bv`qrEf6W~{%?r^>OI zIX+~TgT99cre;IFL#F8^G=I0-=~`<;xj)IFhn&U)Lw+}R2Er$ux4_gqTvdnQ+Iu$; zaPY%NvFf!p^UkZKp-pDoJ=F5W%2{jr8=N+MdM!rAr2B*S|5OR&{IX=NwocW2|MBx+ zReGKdJde{JljL;Ri<`ScwPD&aIIVNO7Ax02l%$?nx^2XW5&KDUB^Ek^Ryt31Rpt#X_a*KG%Aun>T{YL!I&V40SYWVE<5;m-=#}D#RykQIbisC zPu=hlJjoG0Bgg7zNU@yX5$T8JOPp5Np`Y{JIl&Q3LEk~9z&qs4R&ZLtkJ*iS*qpO0 ztJKH(`J6e{;f~@eM1LOfa|^SsG%y$;WWUF5@r0y51qUWQfULFAAn0-%8h?=T^GTAPm_o&5n`{()Ldaw8TdYSg z9>gT$2wy;{JoMBV*=sWptIm>)5MVonb0C2OFqsvJ%4``4X7sal47qg#)U2^L_eYBNd=7GfIze~49&m+Nee=ZVrnY54>3Fd6na zA-!bSD*Q}?*w>TNTx0Me6&v$dV=?_U$0@YmIM=w0!zQZcouIaf3tnfBVbrjjFdMk$ z7U-dP(wUdb7J*~KVgJ2|Y1S^LFJX!+%!CXQe&fyqmiU{vpP`xmqH11zOz(d9t6iAv zn&&Ob=%QelJ_b`YcXldZfq!_TV(_!Z`sx41S3A84E8Q%D8ll)=tV|YT1$#oD)etdu z4dQzy=|O_ysqwegw5W>K)5PAIER3;0)8FXaHpOTHa8b7%c{{~6S3H6XthJ>X0T3%8 z!oD|vieV+TI2V;YSnM`d!g#2uT47ax2+y`<8OzC(jh#Agf&-5632$Dma|X>jxO)|N z2%)KA8fHa+QYQ*4iQ{?mQ^@*O5>Lstp@ZD~4CV54Lq%b}3iJ<5pj+4pLFj955r7rz zD1)6FCg%l81QATKlVQ{0osgskru12+WN0zKRyD+WYNv|91~nm#e)25~*JLwt;M(?YEqpuwR8PP`&)l~=1~t(t#Ak1L5_ zVuPJXAU^xwG|QK2CzJ^M-Cg(vCj~**Y0Crf)Ecf<eg4bfjL)Fs_X%l<&;o9psQ8=o zYH(65AuUkHv;27YO0q`9S`K=h$Quq#B47I!0lBB5#nqpuk~lb0k&r2ZCR7{WWI!IY z5F6j0jHGFiIEe2D2}JXtwv$9SV4XyCN&{@23@a8U$56Ew(#Duf-#bC~vDs|?zP`SK z%uq;kzCIl6t0VNv%KG@5F`K_xltRA#z77t5L$8_+8uCRtY+y7tBLE!cAo$G~G6fBl zx-1Bqyfz;_K(8h_U^Dns7E>6!3`XP7)$o`Hwe5?X4jwmWebGCI8?@eNwXc^#qMEKFL8-cr<8xnCqSNR`V> zGV4JNhzj{$q0c-{WFPu^igMjgl~F7QRF~7}i3_*GGFwI?1nS4(7xO9<(c|S|8isjD z8%1=WWk04UT_o6OMcE{Q5Ukl2)n=6aYl5!{J^-qw5UgyKsDv_Arb;l^efYBUvnY{y z%gEF;^#OAf{yAs2S*bPZ%R+i1z@M7)4CbTSrqCn-Dqx0XOy#LQoxsac%!e|83G3i8 z2!Q%(kj|w+DmQ>OHD1cXI;vK6J}g}eWdf;!{z55#RZPzaqZbf=NWP6BY5|b)r&$wV z5SOo7I`GRo6{2E7%tvb}@Inv<35d}sQ-%ZLqfVFuHHmx~Gt%!x!1d9Y&t)0yO$b|G zBj;HIv~kERdkE>u%E7#PZ9oGCq@zkQSOXX?HLzn0lyw$SzJc!sI2cW42Phg5aztbH zOd(NVra4^JV!dY@HrIo5?u#(U5{~?$YP~z zfXT$XQZW9KQ>6#JFhD>?wzyf<#k-dGdY+u?1F->3tfg4BKn9pgVV`GTp_>}-{M z30e6KA)~Bftzj$AUy8Y3CVyJ6(ojdAU zE_0Y$63Ga(S6LjE2ljV8r7PmFF|eVi{=!y$9cH$dyC)LIN{jwX9tzwuRjU;fh^hUU zcM&1i4IB9{5~K~J(de^OCFG`_qb$pDMr}P&v>Y6>KXNa(rI|-K=MXa0F4pNPc`@7} zg<#)4x~q3XuS$(qCy)$wm;tc+moFI zTaEEj1lWX1-6HXMrjeTqKBaJHUg1{}FcGPtA)YfP48?X?n4)={Z;_qut zhRT(76h$sgcN0}|oSqNC|CJJGe>F8VHQrQ58p8GB>5MVh{?-bPgl=kl^!L>;Y0O~P zJS8uuVjR^pC&~()Ml4qHCI}sCOo@v)tmF-V)~W_Yb}(eja;j8!%|yu$TRNJs5}+`w zwcUD|gfmR78LwLaO||oW`iefRx+{JgR!-=TWu2Eep@fbgYL`XWA4}I(p*Zaq2UI8x zM}DCNUH^cMf+sm3DyB)fH9v+^&Uu?4*vkpiK4`b*M=^di&Wu3A7h~_j#VC?;(Uc06 z39#F6fEdQH%qK;~;wc?=eVbi`)u)DbrKF@>7%i!j1pFUJ{|8E-c=t6?w!puv9|BrjHKPQmqO#pH3_bn@f(69t@ zNPQcYkO=O}F)WQ7QcbhQ$>jfI?=9f7IJ*7u0YX9&f`#CLV4=7bD8;=v(H6o&%E zN(&SSg`&lZI}~UkNO3Ffu1U}!ArK-2;x;qS|IFI6Gds(D-}}G!{@#`hAF?y&d(N5J zd1gn>*liC^uy8y*22yVRW8YBm&^5SZ@&1DTyDzcy@8qOl>-S2+$n-`MO|te(2hE!| zZ$`B)NzTnhf;hTKUsMulTDS+vuMZ0MT6Adu0e5nKBj%0f&VLC{iGyI!>PsX`H-_rjh9a^b zzV%Bw$#|;Rg#?-`wgL#L7zhtD*bPss1V!nVezM=8$tg;=R#NS9hD4_4U&?`I$=}Gb zRF!R(qMHOIy8e`X_wIR>N@P`lRlw&8O_*Qbqewyz3+8i~(#QmQVOtnqVKc@hG`zJ( z2^c3@*N@bT53h_+=?5{rt$pQTbbo%gA0wh#SRz9R?3)jF&>emf2qwqiliqF&oOzb| z&ndksuXvirJRkf*eqC+7`{5m+4S*qu#T7oA+7T6qP7oSJg|8olUfoRjWr}+ax}cAu zrQ6k9uI_6$K9$a7O{(a!-(+9WEE&Ws+Rye@w=WB#uK(chR>w-))CCh;Yz!v7ZRB!B zkbQQoBOHqkLrSUhc}ea|0q9dqBBYiL))NK~HnC;>lf1Ek&>%wYsT$pC)#6Pixr515 zrSi|)2ga;#PMITy4Kd?bxb8KQ8Wi-{+<2BuA!k{azTI8&7zVn{%}YeSB7_--^4uU7 z;iJuY(|q(1V9eY!hbT8~1!!lQ0R{K~`nS@$vbLAYYZN{4J3}E<%$TOlp?< z6At0v8`hzOoFD3WhdhlXsWbAKq`;dCMmnmyRf9($R0=NI1s7ON8$VeXG6^<0FxxTI zwn6~gx2#5En%ESB9R^bj>g|Y{NEKpJG5T;M``T((9tV86J%O zq`Hk9jM_KYl%(9CvW|^d4Y0@Y;~Rr9H>jLzgm_OSn6)s^?wQf$aEOgLZ1(>_2ycaT zf?vQKLvv@4^TGYv7wkGx{)DvSm@@;W9LRdn@r^0SdD{~5J4bK^vY)lb8bK-i%E`+4 z0J|cLd<`7xUAschJ_x&StQ=Tz?Fv2EeJa3F5hw@2tmPqTcNkZN`i%{vssVH4+Y!ygLoU3KiFOlRUy(Ym?_$StT%VBMT_Wt ztEB{9IQJnO0e2*%$f~&c?9$nxu;ggp7+UNzN+j@ zUTA%Y#)NL><+k8IG{QVA-29b48LLLlJYACUW4`?6iNK0VU)XD^aT$6WzQ#*nSLc!k z0NoIJDES@{dLNnx2b8sihJ@xR3)?I)-v7;d9AW8!y829-IL61NS_(cYis|8>FpiLo zAQ;XRPu3Z^r{|}TmZ$PYqA@I1WIZvN8-hs^-!n6~+_%_wq0vO#&8Gb`CzJ^CIEsu%MGEn-_nLGK17+*{UCyn(k8*a za7EYB3JRfV6r8GLw%kGUenSyLXbjA2nTNS~VIHBBB9-k?D(S&>0$lcJ$0d1hA~AhT zae+4%9KjUW-yeBgH63@Pv%u&8ZqgdK4$6F1on|~Mtz^?Aa9yG~83vj+5uhjX#Xr@c z2Sbu0+8E4+r&PczvUe_sb~8wZ$32L|R7Hg!kU0j)@GK(aeYi&;l1Qu}M+vEbDr|&C z)%p%FKN5Zsa+y>$R2d$R-+>Npf{Q_NdR)g%|CNMg8m*i;qWcQWhSkuk7QuMa;`)YS zeB}((XrnDqxlkPYm%E#f&$9HFLR~n=xy^pTt4rou&3$Szxo7-xzb2Y{KLt#u-2X^P zpgG39_?|v??-Ea*m|KV(QFy<`>bVoAA2l~fjZ?7N@Am9-8yn4!%3UT7M}x1G+IaA_ za+xP=fjBtUcnmZr1pHl}u!ZG#|9xl#Y73Zqt|pTvPVDQ_0%u$h+9RY@8PKx6GG~cd z!xDmz*%=!)JBXbaWXaL&W<4f9G!UoESz?0FqBn^;8hmvM2c$bfTAIkc!a7pQQ4trSTJ1?T(xD3 zy-n^d>-pQgWj+5bf-Q4aHTx-vfqfXldVZII&!Nb}6=SvG*#*o@z8wrhk$Q!gy6=OW z*|Oy>6o37l2!1kV^JZ<|1kl;1;lwtBccGfsDt1Z7;LCzlG4Pp1%^XovCu&c2B^lFm zP?B42KWzrr@dH65Gx%TSK$$lWnl+uhcCPHJhJ7(gbr+`g>p4|k`w30G3I-EPCmPs1 zx^yj%3I}ucMot>7k>An5m>ODkJ~~C)k=F&BAUb<8R=PLV09ndy)$?N7R7&1W6f(mMp)7r`1D3R-d)=Q?NEFwJ1U|P8XJJ7Hd-qpjGsd)(TL6c7 zgiJ9$bWZa-5GYZzX7^>wwv%PnxzWz-+!f{DmtscLgmYJD@a5n7A8=T#K5&N3R`oO! z>zO9qiTxqL+i|4Ywuq6zX9DN7XhR4K2&dQVx53ysFEm&kR*P~aUa~h62HHB)hLFf8 zIE_XR@=uTA-CvTR@;uQ9`TS;gVh*stwRBdw?PO{Rz~CJ%DP?Eae2b9JWfEk0#m)|8 zTPK{*WBsJd2V*j&KRcnPrI9eh)9|tbJ_qZ?0t!O|ki^^Ueg{LxKipHO@~l|}E$>($ zd)2B{VMivmSVg>t-+|4DYKy%_kQ=U&@#S?NR~D9xiirB z<8|w9<7exJsKyIM;+$6j(e%f`nE|^TaA`F9oa2xB64+zbW7gTAF;=X?UZBVR_S@|= z5vvfGL7((=fe*+}w4@ZjOB2q01OnN|4i;+3wh1)4yP|5iWt&(sjn=BUOEiKvf_-e< za{5^koz5qvJAJMYvVRL(_TJ~Qwj`ll_39megB42j57BM|d*3uiEM2MUzp*oB_YI{q zk=Lk%a(R1uXUR?J012j$zNFZ;#@-=4vq}-Gmu7!D{R2wvzDxu=TOQdB(T`J_TE!-v z^XXb4!)zG;!^!<)zqd^xEFt(eu?{o9-stj|Os+~In|8`i$Q`TBJ(R7|fh|0}ELas7 z#Cjk!fk+PA4xq20Huer92P|S`!{}ZhE+)62%5%}SoN8QfSm(at2(2PJfDrg7r%AX~ zGOWp?8&)~!<2lnDw7m)PfE5zTpo9HM+VQ1X4Bm>+!#h$4P1!NNnn?(}?#s9A^v;H& zNMctWFhUJd$!a6Od%T{|2!EbrgkTiW+6eHT@^R#JKAvQRh7%&U2_xhmLAcy7WZn&r zTOn|HW$#+`2cknbP6Ix^`HnVX77c@(P`L$8?EatB< zFe~o~Cuv9%3QR97r(GD5rDDl7Bfxw7?qj=)tFzA{sy!f^SD`{em*WSpnJS%)KzPgB zCY5~;9tzj{N=gnnvA&5)z9`+t864(0BU#C_#EGLvpMQ}K*e&CmVGBwW^R4;^zZm7z z7zDpS#Pt~UcL-VD#fd1>ch9P!N_`I;7}uhOkouwP0^Zr7vN@05=Fhs!QOXX7-(-;u z<_hyxeQmIX@Jn`A!5>XMB>Y_1*ZD?G^vG3-|(#CyE1Mh_J`f;>lNNR|Vh-Pwt`Q=u1Qapl2I^lgo8;$9lY2WJQe z!=pbXj^U!*NgT|yfwf3niv(7p$ngLzgBTq`KYF`je?jOZ)W3?nQ|)-Fd?Pi3nJtC4 z>Xc7l_8K2%e*s&VQ-t|GBJ|4u*o|p4!xf@Md#KN89&XEyG%??ZP9;Uhdp!N}bg*gIHDisJqdo()m{G7xEnt z3q6yltV5Nh*ON$aO&BY1uFNY+QXV~eoCI~{5e|Xf&m?X8_WSTT1W)eC+5CYo{|YFy z`G+}h3qi;TenHn8e!=4xVLxQHupPwcnH<$7j+^@Sgi8DiDs0w$lY z0k}YHq&BB2yxKbvtXQ!ZD;A#!FWU-L?7Cg)1Y52^=$-zO-47A7d!oMuD}C%$=x<%R z_`rGx3kFstpo3#qAlM8ZOTZNf-v~+3f{lYQUYbXOZvIASm}!)}=oxgHQpb zOCPVV736t(|MAUWSeucLr#eH`Fh1lA@xJ^?_>QpfDNkda1(r!P(*4S_VW@FAg#`0~7Y!hVf)I zIv3m$OQsYY3FKE7pfF9cV6y?b{1Ng! zMUJwbh1s=EB}of%0c9B>N4?Dm8W~MeRZ9sRvvHa$Y42yK8*|{W$Yik%s11>o1V!FI z!h-3v(VR*)@td)3-8xt&4rd~85c-_aG?GO2SXs-X~mi zQ93zYPa+2-xNb7lyui`S1=uxl23o^&EQJw^I0K|&ZU8-pmQLn6!VB6p0xlEn2WqI` z{d-+y3jd$cc7@wkTD4Q@2%B`dgwj{C9}w7G=Gkt$Mja`gW1}%=9K9$OYK=A55<+ zme7QdKRG{X@(ypw07zXQz^~zBc)|f{wFW00W>Z;W2os>Do}bc z2i(T~GxF}VFqv{4v~QI|s;bc|--Frz)gsP>_AO02)^`K!U4^aXGuQ`ga%^uqbIG?7 z-!qXFZ?=xV(aS69*Qu0MF@%Y5X87$n(C)Z{Jd*cPdMB{fvx`K&$iO#B%WB13e6K@; z8}l?0@3P2!!_>vpfJ2L4^L+z^eqgr6pFyIlx+&8nJD%AjC$s9mE5^f307wCZKTukR z?{LzmCd}mAp+dRcLOb}wpc-TjyJmuc6$aUhlQ$mBFK{LId?>IJHHB`wF*$9jeMbPaUB#+x0_~q`eC)9kHn}R9)QHVb^TR5* zKrFIr*C|h*zJZrKZI(ia=~VhWm_%-LCPUHOFH*%K7j&_P1j;+EHRt-&sqGbFNRt+%=*OSYaFT?YM zXhW*GbZJZ0C`Q_@!eX)7S%o1dg}9ul1xubamsNN?+|;M!wv$`;b(iFbjzRw0X@pLx zXjRjtSWenwPOiVbZ$4ZsyQQY|HGYL&I9R!5m)pYfBsyVyD!FGarC$QHNu4_Bm_lOOnpF;g z&8O8Bf-fve$QlKz4SSIOtrDWnCcv4Pi}K$;9re3 zEN+CS00GFb*FXGV0sfYRn-5yqrF%4`b}w0z(0J`97NxVUSJqI7WFa-h*(AEJtw$no)YRFa+E6ZQ&%UzFa5i zqpZmNlWXvuiQ8$qP}&ETzpC`kMdRt$l$P)bgwxdCYqg#3;I$s1FF!m*W2a|@ZFi|3 z^4JWT5=WEg!MU~5>0KT|5Fe#uV5Rk+^rE{2TjxD$R4hGeF?*M|uO{))_eyt>m;B5@ zpT|ZnDZo=RL;rg@;Nj(EQ?kp?gGOLIoJiMEj6Hje$6ED7t_wZea@%wSp4VMWk}kC# zDp3605j`%#W>k|A!wdS@%su>!@x$FvPNP;fFoiI8m~~=c$@FV-Lh-Oa{Wu6g6SGOj zvOh9Qv85nHA7`Lx3KXwdfr^YtC80(-l`cNfh5|)kk2NW$t3-Dcxrr=XXly71HaIix zGX=YaP?NDr){HM?h#?o)4GTML@7;ryu7m`XH6mjyW?NT)P%~vMsYnvCeRv^GNYU+C za?YGiwetxw&S>9xpM$)tYLf{Q2#)*M2Afat9UI8!8Zk`gBFjGLp4&8JjpE@ZWphu% zB)b#FdV5S^lef_;z`iySOx|Hol1xKl6T-Us7z(1yx&8o4!Mn>4gvvtt?cTdAm;~5L zT$x*M|K7D;Vsb(KZY`24?cW>S2NOhTi-bb>3T~xdYg6PIHeW7=&^^lu3wE6URC=}f ztW#leg_<>MHcD=9o%xhiSd>(<2)Rc?1SZl6$G%qEMiE-!s01giz>KYAeZ`Q zrBM1rlFo}a1K&rvp3z{T4{hjJOA-ZtBcfo?gUXx&>^v{QFABPx5953L8 z2si@z3snL9g{^)2U?FXr2*_*Z(v@aVg%!%}_9)Nq2~dk=K2_%c1TjvP-C`S6Tgs2eV+!DDM%Bd&)pY^L`-D7lr@21RJfm881>T7~}>k>dK!8 zKEBFqHxmv~^ZF)_)qKNtR&`dE8qe_KF|>)vv3Gyg)Y4t5Ia9%AHnvtgf|ktSzmWqq z)o#rO$@b6A+ETvD)-^I&b_(NiI@n;U z|BF0eRR1bob7?S+T)OlGEX)(%O;@l%whT}OVfkT8olSghx8Fz$@20%ID8j-Jn~cn8 zkfYz)VQ(|Wo(!^$%}(9BL-!bTgnlD=-GW{Ic=iI!BEML$8q*`-T>ICY_$JRD~m>FN19}`{y)ukf>4%g9YkW8>m1qee4|e@=T>^ zS|6TbgbKW(wx#Ju$5De%@D!X&4_WP>D$`QS+4_cXk-JG%i~#R(`HtR~wfc;!A&vi( z=XQqn+OIkE+)wSgp6Ejgb~PLK&D&1IwvqYIB>PsaI&lMaSO;H~znY~i@BzDcZZ7FL zr~VQH&Hoc-ELks<&~-qI+}tczJ3>z7<)l!lRI;HhXd0N1xK^|t7KtM4(`pt=rt?B9 z^d(Me=h7&ite340y+N+QczT2Mhw@`at7kT~HJGiQS>sYDo-iwL$ObzCDs8T6Xq-lV zeoQV(1^1E3S%;J7#Uxg37=^(AEtSdyao>pwTWe$Qw1k4Q8juH!RFv z%pP(o_`CbwZ}{Gj4$_yXvoS9I6-f@iW|}Eb89xqrrI|`dG;hYu_d7dmh?0}7Kf3^T zaQT@O*M|*t3|rs^tCdd^@`Dr04QEo4wBX=qrLXac8OsTl8Im>yq3Q~Ic|wlqa&CtK zN&rZ6fEhZ+0z{hX2tvb6*dge)ndkogbU4Q9oM7(RnN1HMG$f6rw9tcqZP)#%_+%K# z8%bgJWyK9uZ2_e_LDNHCI9tv|EG;2>n>TNMi8Z(6a8*MK@;jNzNZ^>E>2^QfoNzo$ zfruj}xUW;6CSANokAq=hVPDmDYRmMQasY0F_A&*{UTQ<^LUQ4y<{w=_*%% zpHUnz>&f{A7Fg(h@d@QjdUei8V`M{+5tO`hq`E8uII^ zNYlfR5*y5Q2jpd2osWO!0w}^}kif8yd3GbjFw^&A(3$7Iz^)YFxZkb7;1v$&YFeDn zv8bphSiBTwK~UqPkk!mtv4P4=D#KDf5e31x3GP8)08F(?u#A@jvY{4|LO*i+cs6{H zV!EEomaPgpg8UwngjPm~_drst@1U~4tuD40G+@Gsc&bcRH@6OuW!h5Vtk9epZqPF2 z?X?r=ODsq*x=qzqDoexwP7E7Z3w;5T*`sx_F{+UI_tisK29<2I$jTHDAt#O>XALX3 zg#Nl1yNHpH(6(6-s01JZ9V|D`?92r(s`ZFLa@Y6!CE_My3hNHhJ{zqNzP}tY15{;)d2HU zh?Bs*9Pu_^FVPlb!rKb*joPoYzeRe` zT-c-&mI2=Xq9eH97>kfEb75$^zFn#H*8oZ$Vv+*ydk@q}QTQy*^OJFmujfLh?)VQs zc=J-3p?@t0ydG?^W&BBcN^723Adu~jY#VOgGX$`KB*^^3YwFjNXt;LhuB6B0{$0i! z={@E5N5@*JbUzkQV4HByYhJjN`sHMkI ztLMZcr{RF6OGmyJlcIzx5;{&)s4-^yjXbt=<~6J?T&=5lEsyo&f`z6LS}OS>McsC4 zi(@5dTk^p6WB8F+ZQ;6#>&Hw(B%PS~{4a8#MEC8%%a(;m_CNUaH%^4DAt-@;5AZMY za)M<41Dv@rrACe72u?9=Ac&#z{gq}2_CGks#{!RJf=}b{oN9kMMR&`|8-`j)>t#vf z$8hOMtD4|jrp`8K(}PA7P7l19GCk;|IDL_Lo3-&)V3_!nobsVc!d{D(P93~&s-!m3 zIAD5@=XHiWw?DD`FgjXOo%qy)e}|{9Z__yruJu<_?N+zv7B;z`V%pH9BEHkEu=N0u zn>Y8hydaztk3(j+myXHKk)8e)0gZ4Lk5GKxbuEnmI*VBq$N?JNkaxq$VEc&Tg@>(TW%yu)E>H4pLN%g-|D(fwB>?sqFV}uUyM!tJUoKvU)QYB8o4NQlYqpPG;cbT~ z*JFA?`GGuwC^g2Rs)B)()@QyPu(3iM%#5Rky2Vz zqZyA4aB?esG8;~zT_VgV0?TLHHhx?Z4qHvJezmHC&)D_}xvQK+x7t+bg+u5I>-Vgx z=|ht%$rZvCr+Bpughtb=c2LEqaZT;8zi6Nx^g;UFVs_YcI?)b7`*&G7thT&=V<1mq zaJeNfkZ;XuHgF{Oz7Rq0ez#bSegA4GxhL2xYn*^S`~68%{ZXNCGL;kj5=H`q&MkZ8 zeFSTq%~;-T3?ejbE?b_)W4#zc$m&mXF=h8jj8kVRWwq%wUyTCmrk$8#30j;_Bb1LO zGY#xl7&zSRqz7G=(lld^A?qrzsSVa4wg=ofsb3sYangX`s<7A2!pOGwMNTit&|=L3 zVYh{;DSJqgBH0o^eu11 zt9l9tMX<U&Jd>buRpT_$Zpj19?1dg|1gDLH2DB(TD6Dc+Q zup9`7MvMk4q126}w3-xP%T4KxoHp1Bnpn#QaydY6+CXS7rCn{XI*Ig;EOM-5G>w98bXt~5^d6+(u=^wYLJPxMR(wgP7*Fpz z_*y6AzZ*X>`tkHAfWO_aHf7Nu#Qy$hbGhEHfmUe!u6$uE*-N1y9nrERTXwhlO#SlcmEmyH1^x zC)4-e$N|q1?@vDfZlfSu;=>lp!&sjq^z6Fo99D82Y~Z9RM*}|h7KeO=pIrN6+_%k* z&Vxy=$eHwJrl8sD@f3e-4x9bQ*l8CwZg5QWi4Scsls6#ZjkVHc-0pedJ{P)ACO9=b zYHy1w;z1rN=OvaIm+2;%+&4<^Dz%La%Q=4k{!Np(Z&}9n&!$xfbYN@Ms=RZ>aFW(t z{`Msv5xc$kB^QU2Yr3I@mv)0yc_-v$tr*nsPi<Cb|& zGkKXZ0p{}oGme;?_bHHq@v?XS!?(%PN+ty5K1ayI{HW83TS^~btGS?l2fHGwpgGW? zTVAKm#$@waI=8cI0nsn7Nklssk5-Q}W22(Uggj;6kc&zc%3&_2NL!r9r+b_kLZ5Uuo+N-c^dH$QQTxm;o?e?A=CqBufsa#K29 z^Oe_9|A<>+Jtj|vRWac1`DVBF6`e6;`u_KGz-KC{S@R<}{7&3#iOP?EOrSHN{1fJ< zmq$8C;^qDa4*cdI82^3 zuUq;O5TOUXdikhI&`IFj=WurGw0a&MSx}Awp9(W;EmN_Q-@YGgi{pe?;3U436BU~B z49|bxg2BnDU-(?X8NIVxAe8+C94CNrFDn9+){xGZQ)T@ugen6zODctYpuKU(Kd>)@ z@#RGEP;f;{!O@?j7Z&;UICRgZ5w9=cGVWnTjRY0yKR;Ck4 z5A7!2_{l~1jefVT#YF5@d5oV+uhjCI6@t(ISWuoRnbf!BK&3|esl!1pj}`5ncNOFeN;{Su-fqo&yST%4fm}f7mX7X2#qo>6hNrSVjr}1K~qf5fMe~Wa#@N~aPPfMx~ zg=;bmwM%2clvH^|0D{x$3?UL{@Sie2ov-_*%MKc$%oIs2d@-;L5qFv(RiKHfTD@tB`MH@IazLak;ZkcA^8 z*ZxZ5#BWd0nxzyQp4*I^P?<#f(ylQ1CsR6>doyQX6@5t)OF6?%UzTC84f-J+>ZCY* z6)A3pcF}cCis8$#hpqtoDt%~BoSyzP0#==jrD;x*?#mHG!NlcpTUPAL&}2_k=rYYv z2Q9jY@+_H(NBt5>)7kguUzmen5i$Gy!n8_8z;d6bXFJ<`nF8zII`~oKWqJC`vpeoP zNw5*h$=Gm(g2bsK1mQL}jV~nl^0=us=T&>a_*HshxF!n+!3d)cJ#wG9(v_a&M=YyZ z6ShtS>wL~9JD!I9ldTVBr+CA^ZBA~dulq}aPk=#I+BYxXA9~Rz-+DgwW4+08s?>ZC ztIgXfCzRV@Y=!OZZl@{Y*2xP@A>KP*T_DL5wb1i< zQgSBoZ8=cz(^E~6$Dl{nGnRZt!IAFqVb8%1_=~6kwz+|$iLhU+zli-5*aciykKf5j zyRzmJZru;0t64>Yis^pgSvAS_a90#WY|mfvq_#T=T{(aa8kWqaU!U#7td`oPXjEMp4oAv7N^lmkF* zN`$LPOq{Mq@gda8L@;~5!|6xTtkt!`;`5Z?Si4dPmp58k09CQeZ0J_ll)@RzekR3S z`mx(2@fdUBbpHXcboC>+uO2o%KPUKDF8CwS>G^=Z&g=W9ayE;j)tw>E*CLs& zhf%J~HBX?&MeB>k*Dublj?6wbjUKHgQ-}OEzbCTF+1FAI=8VsSV1$X^@Ol?6>{SPDKQjothn<=vt+`y+7K#u)S&J{@il#8ueGR#fpZ?FV* zMUaQe`d|Sb zJy&f9cfOdDYc)MSkA_wrI78B>@2geIM36?9WQs&hjtR+S-Sbv;cH$Za=t{>7jG z{oC?BX1X4zE2J=5>GLpd&+Tw4g;8n4($yO!3?-vM$B#w`uyuMMe}`8jV~nmIvE%tP zENh+}AT?KKgeR=lzRZR<4Mr>N%L=o}wa*)9NAKRf%WirgX=9xVnS6gnWDch#i<4wU z!KA_5!zry;r;m3<`orS#y_NlVYG&wP$^q{WzgkaLN=$*Cg%`keu;5mTdb~b42V=RE zyOZx&uv|MpAmhYGsC=Y|wPvIGQ!qMcd`{FkIU3_*tym?#MU1Z{TpBb_9n~{zv?(nf zCw0hUR2;?+3z)FN7@t*2m+N?t!umI(Z~%4!JhjFiV$ejc?I^^0oy8{@q^1aGx}&E2~jd!5Euyy9KwEJSdUY|zZ`#RUJQ^9fJCL=q*PrG#nE5S-Ri zVAq3lF`lXWh3CgWJ2afnEZqcQMlUdsa@olV48Iz^fmW*QsYV8`t>0%RxlmNYWx zxJ_h`#ga24SS)fNQ5m1rXDt=O_|T$cPo9g37t3!d3*R{xmJ8bmvq6{ZjT^W%8ow?H- zgwPu0T#hF}+h8P7Qozu_Q>Oyj6-46+nIl44xX@FQE;R`NJ`T#SjTnMM&E+2%^tLcb zWoBH7D-0D+fP~ISjp4*fo64mcSPtzH2_N8c$$*h*bd42rl2KLXaxqF~qtxO5q-XAY z9cIjUCpK+I_8(#Mu0?0d z^LHi`{v9g%BV3oA@wr@46GGONu!y;8&}+%;Xx2|p4R6;DR&IZ05z`1G{+n2%49iz! zMDbyU{n3+__^Pzij-vB%(-qh802wXUmJ|w$zpTCigKrk0W`SjGfPHZ1L@kUA$kwLs01|6;VtZzN`ls&7UxY&FJ>*wgG_|2z9g zeD9LoX0qa+g0Vk%e#h7{-?}hL*&FWip zKyI*ppUnBcA`4`6pt-FeVPf)i*18zmwTm9x?9UqTWoId5x_>tZ%8!S0eQQn)3APB9 zAD@sgZUfsi8YEyo+m%Jg%0la<0@fe+L1O8*a7U-v2CuO7?_ZuheW-OApsq%;%~XeK z68mG2w_EQy)y3eR)6TkIc(VIW1(Fe5CS7E$!f)C7`SzPfzcthgo)B&_g9G7c;`|)J z87L7cU&PNirb?H`E3!V0NT&|L*WdoWQi1dTHkfs+^?FV<1-YATB}(lqBq&$kzN;U? z3It)kN8w^N5pV+q5hXa{+_`g0?vbrBjM4J{N^aUcT-n0S@GwD1j3A0R89*5$GYwg4Sn>2CN+^@3JFT~IXevfAz)s8fBv~aLDj7% z&$xaHGh?X^(n8`Ynw2t&>X>h>8A6NT6r}>p6@jV6z5M9c>o1ZtrE=xU9nLw(c5!@^ zPnlE%eTfULZ|((Z;l7WaToSo>GXrnQfo5aC^^q`i7#{`39YWGAEpN#Q%nEaN9L(q5 z6UOP#8zKqket@xWPt!FxigsUS2D++v8^Ku;<`}cC21q-I-517#Cd_vsgYK)g9*{F* zA229nkjf3%_a?dB3{zSbAbv}d+d8ow@u0AVX0s_6LS8x{?@&0g!mukHAg0CEUPoXp zmtm>;BtH3aDMM}y+!@qU3uS4WN|gSj76wfJ>T#13S3rprEgf^y!{T3tzr`xujQZJ)HUc*K?rjQMQa{ zj6|Tv!BiS|?vi9HdyPG*UqyuzJ)%jpE3-OQmV6>T-@qBQ%t=S9*u3?ONHxP&6o4VY3Zxv7_eZatLe3_YzT*ZOx7iLut$DqGpa6lq(_&?V%SRhLRB zNh7t)v2rYSoVOBHN{iGWyB?G4Df>GhMv*`5G@^Ug?N>M13jNK18c7$l@@7qVSBxuI zsS3pf2BUV^NZ1F!Pa-&#EW&t!GsOFDnJa1@>PT<|PccGpdmNr-ggB4uN*I}a`CU<;8nc3VvZ-XP?ab=&q`G& zIX7ZF){NzB&_J&^7h=4E`v|)j*LviFl}ubCz!oW;Q3SnU{nG)H*t&bK!O{cVReS&b z2t0q7VuPhZ%pJb}hFOaEwM{C8Q57GzNXfz42E~CdobL+4Mj&vBuft!%$N8x#GVs>y z#a!bmXcobG=ZNQk!*5bajGsur zLKpC&EH)}L$^S|Yyr-9Po;g>U@z?L9JUzx!A>`8Zdv=&h^zm6@HS5~>0;L(rYukE= zLX-b|N@-+AS(P^(be(ALB1*9E%nbZ{4WVnM^W9Ol1nD9Ed512u?HAmn^lDa~-3Waf zNS|=uvW^t)pYh+G$}tFHW3HW9K=-?sS$Ut*gfH~4@XTJl zx=f|Ol^OiEb71W*iHJ{yd_b+5@Y;%Xi@wH)TO>dKmoaoWKrP4{YpZ;k-Yo#wQo7Tf ziJP4JDxBIL_Qwr;W7z=c1tlV7@#4ksuo%`_D@95DGs2{fc}F|3h*|>Xl8d=sl>S*( z7^To%!%t_CCT=}V)k@f0JJ=Ly|o1O(46$L;q8k{-)X z#t6E2W}OVHukkj1iH~zl9O&Gp4ycMnV$9d}Ri9wIy=zyOZeIt%wRJ*Wz?QLN{D8op z6#|6HsUTo|Or1zA3E2ihcL`4&>#3yG^bVO`B?nvzTk}i-N>^MRh(D6$QiXo0?01k2 zN54?^)I(9MWD)!lb{nYua?7y!3kG3wm@{ zqRTo8-(cEEmBY+q+lu!Nv*>3lD%Fr`mUW8P}fC*>r3@ z#!-{B*>2Y|jmMSI48#o2TCkwE&X@W8pUi>%q>ci0M&JwuW?TRV@3qGqm%=q5RKZ^DXuu08 zp*%yFYbZhfhNOOvY|kh1hfcw8n^%I&OMfRNuE$n7~oO|EkKKZ0Lq zvs9|v1B|Z>&gb2=Yd5j+{}!S;R~Yra2|wdy)65wx>aKJL7AY0W(;aRhfk-czIwIBB z$BLi*0{uD#!|R>VcGC)rQexPjE>6rHx><_Iov}rW76qS4j@d;S_E7oE!Do`I3)u*i zv_7E91v2McF{e&2*)U9L6u*H+P^;G!hA@_vJ4_+`M#RBQy6t9iW4df~yeLT{X3?)8TXEmJQhr{iDa*ZkTAbS!UpL#yh<&UtLb`>mt%0TC|p-1t0<9IM_5sPonK{*Dt^6l=g!tu zz5=Ni#kttLH<-3mFf&pCy+J@FVF^kMNT@D;am5WmMk~N-_scq@KF8~N83yiE)P;dR zMKSkmpz%YnERH)l%!osmVb8jWDHC&=37LLt4oq>3t7N6Bl({5KZbw0=!d*hf$>j=u z4}0y83&m4o?Eyd6%ldLTw)kSWyz4uI?If~^jxD8nJXfwV88Gv(*Tl69pz+cn<(FHb zs+Px=zYiRDK*&au9>d#|AvpX)gJAL~%e|6J1e13ah@F>bNt2a?Y#Ue3#O(A|dPZV* znz~m`1fd@Zw<^R8l}IALG5ep)%_gCri>E!vx`!#W7Fr?Nt?oIinINNa3V^d`tnmA~C77*)i|p<(fuypkK+bHJQ9=_MBf z3m7KSFATXeoI&@K1>6vE5>%i zgxs%ezazBKejQ+e(2Q=zdkUV}c%49T2H{pmXW&2I_bD?GN?d{Z^=~Jq&ytL%v-Uir zUUa@cmnc_eI&?wRRnf2N3ZP;qQZa5b0%KE-jf;NLw<}186ypWUd=IWV*v^^i4LqiY z7EQU)uV23bboqDl>@K-;FWSiFH7NXlwlH@V zCtPDGkQB!-Z~@L7U#wE#uZEG-C%U9gA>>KlHf`GMeH;}XEn?5V*C-XMLk_7j!@LlJ-TxM`x`ApX66O#; zBeuC;p}_`uQ4B~*3c6YM@dFg5u)~Q6VzmYuRZZut+xS6FVfWQ}%yEXn;R@#hA+|YY zs_OS0$xv`%5)f>i-QWO*z(6r6nw~&wLW~$>3DLljmRB>Rka`G%Gi>sWl%F)9aL8Uw z6YZvEs7X<#_y1=Ow27u0KWMUIWdlJ^R?o5O3b75Ukz*zp4tQXN9L^=n|nB)6I>DR95fud{Z!06X~9VY_P}Y?R}YS^7fo zFqHsPz;Vqu%o%{2uVy$yoG<4ia?_kh6PRTnc`BX51Rh_K-rvM(_GUXl7Ma6le|uuN z4^oG#z7fwL*Ae7(ko;-{1kYFGSwVrM2OB>nHp3j`dNO&d&0C}5w(IJ2#s7KFQvKJi zU292JUf-S*H$8gI7K8FwnGE$Sr&Z%Rj;6(a#~hAr=)YGY^ivBhJpQ z^KHjQ0{~X@3Qm&db6XIlK;%_x3#Lq1DQKVto2$?-!(S`LZ2lR3t}uaS#XN_fdNChm zT_eNPNInJWUY7V&0!*)1jtbOR$74eNkawp$!kpZ3$Ejg)TrJ%~HZ6gL1%tm>eirj9I4R)QI&&YFa zp`%rAYstZiR<3^n#nI08Ee6pcR&0(kWXzKwUUUweos(i*;qf(jB$hN(^e$l=(u>Ag zOH-{!G@%uUEf;%ca3X9fB_jaxi?yC#aG1R4#Jx z_GSK(f#gkT3)Ugh!TKriXTAkP?SE&rIgLA1+={^wQDxSX1Z$hAvSwRKcF2Sntv@04 z?6Bo@gB?^eHr{SLf)e_JRrKd`DDPXOV z6sr1%!(0YHFNC?IZQIr~;VSfsTNU8-u%hDJY1ZaY1YeCNe_Cg!i_8F_yX9Q!S-L22 z_ZmQHA92wefnx0RqL_)+wvBPPtY^dYbEOP!&XaQloNH@481;WcqRVjnEYNy;@7~Z) zYLi5ITCgh+SMteGO%llx3+6P&S{s2|Aje#aZ1(_}y9bGlzB9SNZhk(8brCwvyUAJD`JMVC;z zue>!%-xwvGGZf8EeX0+J;*|Cl)M-rF4gh4+f!P6KpNYzpaM4X<(?gmj_P`icWHU`D z3^!t1(}++HO21;aWy`Q5^r}Z*xQ0=J6_2MOqfSt~L6**q?B&QPX)^Pirm0H?NuhU~ zXiR+l?$|11MU#|y>Hwhh1F}NEpypL zgxukaA>24f&N0%o4DsITEO0E|B37QWhCpYTFKRI2Oi~uYL9acIj|>5}hZQ0ZFeN0E zf0?vOgC6Ux2&qb@>$4Niz~93ccE&E9)fT3m zw!!>25iG^L+HH9PyW@IEbNGDQqaOEWs7FyE?BQohZkhq zfk54gif)jWO+5As?BagBpo=?lSx#_&9&1DxFiLGh|;3HqIk`-(YHzZ|CdetmpAB=;Ww|~lBo2k?O zB#(2dHLx=+KRx{n7#=&Zaj-oa^5uq7c&m1~$z8)-H~{PU;*`kr{SV|o?m|tECytSs zsw)nI&2I3Mw6MhT$-!jya&X%-*QYi^M+yFoBRc~{V#s~@&JR@NGM4YR0BP9K z{Zh2y^3kIEpCvVN1vwb?<*n;*a16?_CbDJ4w+cxMoL;XOtgO~@xaga)5h z2l^GEM=U@_Z~`F{i~#Rx6-S=t<4HzntKEJDSc^h!EkzBf<3Vvl2j_7MC2>L@OUK=| z=*PI~6yxdf6(Pfn5bvo6c7`%MNe>mgN29q$N(Z2GwvZ;&bp|=#H-rkUvlE^{4th94 zyl=;yf;{0rJe0jqcDodo*^PJE{7eY;Dx9`jbrelA2o7C-_Qv%eg+T)J99F06J%A|Q z_L%K!sL!D1khFXB449(eQZxptWK0rwd;}mswdMo_>IBc3yjo;F`HLTh< z+~!oSiZ@}|V39_Gxr#qTj_G2R;h2p2rYgQ>xbun&$c=Td$zN{~tB2!fM&`ga?iz?h zS5oy_d2ydOWtB1^sG|foa3b@0%bdcc^^%hC3cY6%yOmEQJspZ>c%QRvrNjt5q;* z%Qw!%8;Vymx!0DStbu2G{#!Xvxcw!^@4xQYm`#+3sgHqAD7_ey0OwEM+S;olXLIeA{w9q)+&#N_b4x2< z((-VMLmxqttjkNB!Z z!k9^tIL%vR)G0v0%K=CONUn6R?3mLS&~Qv-W-R??{A+-w46j3BP5du^A=CDUvJ_^UfRVb zXvqxnIgq8%U1cQ5Q=xb5?(PGt7G@($mm4P^p6Fd_^Mi7s&2!V%@FDZ=S@Q4%$_~lfLMH0vkvPVa4PK86)Vo3gX4@J zSJsKzvr-r{Lo?&)SgV2G=X<#I<;uLdH7%nmLCZflSU80KY4duyf=EhjIhKDkN!}!f z5Li0**+Ab>@~n^)D>gBMM%R==XeMkR=qZJY%>?W2EGbk}If!7K3@db-*{f#C>@ScT zG^slXWi1ZA5Obvmxj~XE0_3HvMB*+qEeuxLuK_B3lcdg=kVFDab!;_4PO?cer$$_#IyJ!4rm7RT->qPor*xga%_~oZ z9G!22U4q5SrqW>IDzgCWqOD8>lXp63Tq1O9H272+Y}YcCA(K=<8hJLw-9&JDCxKLR z7Oc~ugD_zE9Fnn!Np*;YJ3N1I%7AY^q+>8bd3!0x_oaPr24OCIg$K&J6XxDd?OI9_ zpe4{-W26F_lyCnzek>3N$AzU(5y%n86X`HuRxlnn;R&9S%_3N9YeMR@oaitPw$ujh zuW|GQ5Lk#);UnW6+?S^e0bos$SVC((z&Fbl(YbAEb6*%&^mM8{S-KkhWNm+|)W&gWUTms0KHfgUJfW<|l8mIR*W$oQW ziD0`3rQeFv*^kUSFX*qwZ5S~k)^U~xAoLk|v!*IMpOP~c3=L)-7~~rz!xZi!Yq2c` zQ%qqtO<-kM3i_EfI!5t-jwn#Abt4&sq$_@A6dU6zq)n5352*(23R8VR}QX+ zqGr8P*Z(Q2bCmzdGr2Ji@_VlIlfp)f2!s9-ueGisvlL!g(cR7*rT-aB0zXg+bcw|n zk1%7%BcQ$hh4}5ljX3OG3b?{X54k1KC>6)sz1~pzaC#l&_7@EoCoW)s zeVUbtj+FKiQ!;)>QPvl#5975k?JcYxWq(yGr_%-W8bx6md>}hg7nms?;C5#)J=w|QF7@t>7q-Lt>--(l< zEt9&53HVbffDl~FHQNTNeUt36`Bw6s!f#k7Q{u9$fm;?ObVdUEHMW6Dyv9$zlVe5U zNZddW72>bDTgE3a2#wpHa z*{U?$U!{)qO9bN-;Zp%@vck0kr-;8JU^r+>Ei@HwY~#|w0?@Z)W>L0g9sX?QaM#a` zYrEj9pUPpdp!buBN8z%>i4!Mw_Q@__aGTI299G&wRSA$F%UD`tE&MEfl#LV`FG;@6 zdr>@US_haxjXzG>i6FFu{AdpTWBoM-4H~2vJB2qaGydky7x2T!9GDxr1pR#vOf?x(UwUFky`Y8MM8XO5!kA zSm;2=YJCJ?#yo#jAgvSSIw75e89M7Ti0J*R;^23_0~~Nn_iAw=zuVLi)6kH+37l>8 z(0K@S)dQ$K*n+QU6|46~7_l67c2-zU?N&Hz`~ZvL$x)NtjbRtyyo>%%Kmj4#+0ip# z45m6tG9G`)w__|VilbzWkqXVzTt!}O7?8{I>E)_7`9}YG^+aQ$sNx?I{=*U4NB%0= zV6vI4m0`Izg+TtTlMKXb^k9dfkadSO^+=hG;t)MsNp}3T;(CgaP0|s|l5T{Q zt@t5>Spi=n$^mwL5OjVvNwB7yslLfGxvt_~FBc$%I7f82ca;r;pR& z&;bEk-WE=XSsoM=G_Y;kQaT2o97%uLOFH_gJ$m$LmWE9C_8bVb>op=cUfUjsR;lUYnFsL&UNdC>cSb{Rt(}%oh(bb!2#spMyiRn{(Vax`${rPSMV0Gx{_DZ z#kz%c)4lKPvj7~N+f@Gc<6%SBBXzxwi6LL#MYnI=f>!0KGL>XP>PA89pj2#&MeBV7 zrJAJd47)le3B?N&reGDVQv#;TEk!=p&?!@DKxOB?ki>h7f?Bv?I@x3cp}yQ4Gsji@ z4iQ%j>3Hr9aN@BZ5T4D>lGI;OHp}3$)~#E&;N8=2-3sEH;;dDFh7OxLv=A>oQTla| zXRptJJIck>0s4>=pmBK9j3cu^!#J|D=hGyT))E>l!PQA7>_oC_Vmrmyd>#XmzN(5K zq6Ga9ljrl^lOgXEZ71zy_r6*8kui2yenM=fxnL0;As^bwg^)*j_grKt`&zoWMPVCG z$WW1A4?`KW`%r38vMH<1Cp@RqB%|LVK<`nmj^@`(I;comtcdo!Qb94Odf&YU@L zgv$2<v_03Nl=F#=IN(WoaHSR<6-vHCWm^_>P1-Z2G3oo-2OfNg4{u+T$ z{kYdlgaJBSHaM*qFgJ?Af++|gz!cgR$uu)qU}M4L+b&_3q$AxforVwWKvQa%Q=$9Y zD$~Vd^&tOj5AP6R^YwKAEFI#MIZ6^^X?P_W)Q`OBB& zH1y8sy-o{@&eh;r`rW2(D93HuLMQ3Zk#Fc!W+&=E54z|y?KuL!Zpw;#@#~cDp}<1E zD0TZn`7`t&lQz4S^r0t&zjz9#OPcA-|3P|KgZF#yPowmpwJUOh%?fVm`iNR5*iq#L z`=)hp?Lt$foe`#b7Tw1lGUpRvKWp^~O;=6WR>ACBsck#fmA6NsW zV3E(Fi>+x;DOt|Hs%eMii`r!e{lB8uCW$tN6gb>hT2-)=HoHZztQQJUkw-XglvvKx zw}V44;%t7Uc6TuzrE*#RULaUGVA290v=dgpmXOeaRQWlp3XzMiweYf)OYqYD_TaxP z^)jp|+KB2ZE40Ev-0b>6HTYh;1a*2a*o?57zR2K4l z7dSbn<|E6t11W@hV%(0y;HsWbwMm3H#cT_4kQVT6P3KT@ifd6p#R!6*Y}v!A^EZ~d zr?9qSDrA)fg1j2A3&+hKAdc_2RK3fA+)Es-?B4$;lG4BigS`jWY#=xVlx(-dBJ2kq za184+54oIwB&_|BL+Eoj_NJE{8v$ET|Byo-a2WS9`S3BvdKh)u)RI2}v_ovC)EMf4 zrSm~ad2EMZn}f|KJtd8#HkV6v0*%w;(ED+447p`UukwBbX*@0$Lkt^kgZaNCCvwd#v(k<-}&%>3j;Aw{F>DsCT= z`#GjjoAoUY-hm1i`%@V1-*VoEwGVEAaIQJ(1)R4=Y9p22@a}u_>2hvt+NF&e^2iOR z=bZArT1N{fgR?mlp!s}#s2{(tO!2VfUP)A!L5 zTIivdNDoDjj#2^wq9`C80RgFsbVLM!&;hS*eD-RErijdu60B43%5LZ^^hlrY1b+N@6?`9Q>ap{@!Em4I_o9UcV$O$mae}OQ6V)+b%osHoIT1cJJFzk4OIc{TWNkwm{!IDF{Db z^x+2UOqje&{9!-6-Jgv)D3++TW@&}U2N0u4U%5g$JE1e2>FD|o%@kwR|Jf9FI zyg?bQS!_AF1p=qfy`c`?z(UezDC7E#>-SJiAj5H}rFn zes_3VdjWb1)zae{>$K(SbV+;&XE&5;8y(Wj;e=J2vp|peHhv;#YDuk9Qa;ettk?U3 z6}?0c+eeiQb9|h*FaD218#DbD=aWr_Q09b5k2g4p#SG3JP6gR&a18PO9*p<6F(RGG zcM;>GJb#@eaFEDler28ythQGsiiPTpw^Zt|sv|)8x{rV}HIFe> zV#5TSNvs;~Lgb7qdasFEu$jl7us7Q76r6SV@KubdI=u<3wJs}leTf~9++jy+E4DJ% zu~ZyTi#*jV)&g8rr!ewY`UtsBs8FuSLHJDt zO-?S57o4H+Ely*6uRaAy)!>j9bc=*cjE`tdE?r?6Nl*#5dKT1$+BMI_)7N3<{DKAD zsT^8#vf2OE68LP#)r*e(rR;I`-j@JJ3O$mUCqhvxwF^O$XlKJRn|oXPs-^GZ&QYY|F*t5t38Bf$*YanGJR|PX(Xi>jwfbPQQU4+WL>(qTxwO zSX^Nb-eSLl`U^*uDlFB&Smac7x`KVJcc4e(hO=7ewDmelSS?BKC8Tw*s_Xn*d`~B> z*XAhY3#&}$H)0>1v|c~Y3Rfy0s~q?m(P>owhEAF!%8nF?91_0Lo{Y1a&MGwki6=W-29B$W}!EW{D_z9i?l4Upe_}VBD@TGSt0Q=J?3kaL(l*S&9;-Rr%CozO{2IDS{kgx|8Yq*O zK5&P7?diD=kAg`h7@g$Y0}S%?Lwn~4yl(cm{;rZT#D{dS9Vh!$rv)h9h&Wq&(rNZn zoDmmCd`LD!a8+XRynt`!J{zerr+W)&@c@?Ip8@NWl;#pqIp|)PJ{=I$B-1eW-OuINZ7Mu+{lrlPP#?? zZ_k#j&on{J`>8N+dk{Ws@;Wts$>EfA2S%Pbb%}8;2F(o;<{1)`$n)DwpU_Yle`Sgo zs>XL|_NGscB1MYimil|+)WyXaZD8QgKzwRvB#u6*KUk*5VkH~+%`j7BPzz#l;7iPF z_kc>}MkPw@!nX`%E72P#)M8|xuIt;kt19V<6RCFyWS1ZpXrWu_a&FEi@%7rIe_;gZ z8j%p2gs%qS#{(GG)opxfTU5HLkT%9JQHU>b(j@7_?rQ*jV*Q>vU&BeypFdB;_ztHD zHl9QnfAx^9AR%7o_aV?d7&g&t?yV(IYC3rQ(yhM+m{giPnbc7b&RQdw0nUDObm`L7 z$kwp9lnIb8czp`qM~4`@?xAG3U_Gg{iY2oClGK0aEg-cwmW5Uw`Z z@?SO2E`epc#K@?%`%rdOufy&G5c+Ff&FRQj9Uz8S|5OkIY7&;&TTe{FA>@0xN$;R; zKxyWq_(^q`lef8ms+;eZkc^)VGg$DDi5`{Jpyh}?`+1@9y~x)Yq1SyVGYLj6)i*LP zSjCt=5YTCJ6J3XDyrjp5qbPmx;A*s)1Rs_$C1#W9#DP5-0GQ+I4WgunOj3$kBKdVt z`cn8P*+Y|Q5EzezUFRPlY5LKWH&6U*H=4Ud*Bj*AE0kvKMt!{Etnv|uKfhVbu9EWh zd%R*!GJb9u+W8#5`+*;Ve!Dl})~@Oh2R>LBpyD^N)@(B4Eqots1}^_jbdRX8VJ3S0 znN<7=;+dJ_e=WKC4A3K<;SYK*9{DvMx*(&Eq270UR6T|b?puay=hgl<}c z-;}0>D!n8Dle3cI=ysHf@URt{Cj<`<_(wLIXLCbRQ3JURHcm~h;T}wCbOxu?WLXFj|Z^}Q{DyaNLezWza8shO=KQ};GXfg!hCTXx#4 zzJaY`NuL?2C@b~_R!6w{Bv5lFG^Nq#3{H>6+QLb_cRGUO5+$gVK$S` zTgvVYDAVpsseUPRX-9V$dpcz^(*!*owiD`g)uQS6k6b!qxsE}Y=~qy2g#@%ZH^tNB zJbRJoa8sP#L#M6RjmY0B()rIbqiX83^|}pl`k0#1Ht~_x)@c5h_!cSCMJY{rgX#7x zt=2XMhqGNn19gkWp-iLIK%|B+#5CDtX)4zRjK8!!fT{*eyVxQ4**j*Eu5G^3zkX)( z^)*i>gKq7wKp!!7w$h6*(ktqT@%a3GVqwG${%>r^2>}b-{NCG&ameA8pN6uSs~^S{ zr(?%*(yIT9#b6NZUYnGdk4S^Ad>V_vC}jUcw35Uwt+1pAC2~jWx#!%1pD-JWv{|MUjz3t&pLJ%BLVr&0#pZm+m?>lx^HTU$jJK&XZqwx*)XL>R!s_*ws= zylEhM(%Dx*3Ak3a7Pg|;Y~sfsPYGiCe_9Mf$c#7$(VQ3$s}Q&9YIXG0(`&@b$gzXn zDvQGjx}vj9ay3Xq)>#HQ>kg<}L#o#F5X88_5@kVU!#raz zz6gZbQuh9)7747m++m5&WFMkyCS#%Ag0+jY*?rbm{rHXqpTQ<3rcT#0QAWhkskbBG z9uBfSi-!*$$mGVz>eLzb&r0jIZFe3zU zlX;b@??!0Px7)u~{lN^D2c~oHF{8PO&Kiu<5^&d;ADRLWQA-1>3Nxka7+k^a=%o3r z^JJEM!jQ=tL$O6HdR4*TnjJ%d?gj_1_$-5Qf^4-mI0>HJHah2Y9%ap->T`#Qb-0W& zXX<+73U$u8>GdIe{?{9n#X!<`q=dB))SkA2KK23~IX~0(rOs33=QV5AEU8k3eZ|-q z-hFN^^N2C`J2F(bbrl?BFE?S7O=dH!@wC@XDvo4r`HQKpQ!^dw@@(#qgEU37K)@I+_wOdX3O#m0ahHgL?0x;O2eWarhP@} zEr#d!0>#rLIePjBT42&WVNugs(&XcWNl3nI)&{IX>zm=Wt{toKx90lZL*C=Z598j$ zRb>TOMsUcHwl;i+x;hMo_TL<|g2j9ESn(19l=v%V+=)^g7c0y5o~o+Q5GMAEuuZTr zrRAHV$La>@dFu>&t>Ta5l+Re1#<}^!J@9)v)dQhTq0YavnpS@fPud!uzty>UAV2|? ztQLf?14*Uauf~JM{)=pUXBZ6&3^r&b8yEWYB;itUa7YGqTG4pO2BfF|30>9HZ1Prr zri@O0<%Vi$%d)S>W*dmgNAm*+)U@+^VAwL!J( z)*W>Zpj&pUu8@7@X|lgYl}L*M+A0XWw8dB|NKWv+=nZF4rOvW_0PFSn6bzg;X38?B ziK)i*QkHE)WLhd!BV_qUTZ)RH!~(brI?i!34aMyM9fJ{0J;Y~Z!AzRCZ@&6!bsQY^ z@REY0SD>o~a_^4@>NezBdjy301V!??5rRsIHuy)cHA{ zGqy`l-ew{x7ZAUkFv!n%mP5@+ZC`BW#Apxvx504E^dfrVRjx zw}}>15+|1y(1G3#f(Qm6vvYP6BwJq-kE`{xsu(^^*1k4&kVL9t;dY^CH3<8?iBRwsS;vIofWvK3gbK^G7?aL|6F&}_MthiwkP$DPBPr9G6r&6^15c}}G#R#c zz*wz`dFgTJaeJ7l>rp^bp2QyF^&nRgGz_df72eA!wZ9Dc`;88vYvtREs>K1{8D`dX3`{cD|L~|KR{k?)@05qI5^N}_wGF~>;J`M z>-2=uEe|QfVDN=U>@cm=;s#6@OFcHUMT-_*s1s9oL&=0${92KHgTiTSh_acuPY(@4 zCRXGEbOd|{%+q>?-%w8Fg4am;8zjBA^B7&$?Oc2?e(DjnRUOcf@;|^C>e~nkFge1n zl5{3>qyp9pMai>uGifzKBoDJ9LEC9^2nr%Y&RT#wR`ORZcdnKvP~x57r{)ot}I^^jS?-AW$NiOZ3qQeT~=ap z(8m#B1sviTN>ELnG$Uatz=pCClY_n8+M66pg`tP~%gF-3g*)!qWSRiJIHyI}&vK05 zVX#rWJT5 zBv;g4)0{2Tf_&`jjem0t{1(*vhFzHHu z2p#6!AJKsIXeUffhMEj(K0FwS!Tgko65AOZLv#&5aZ4GA!Bl*Okl;nBa1TXqw9Y5d z48MoNQ;aw)1Yi*dy1Tn8!wzoltq$xk6$ZzsKi};w5TbxipvtG_bJ)!Zg5pv}S@G#t zO+)awO@TS<3bt~}FsZ{78hiKYQj>ooGvOlY*lxA=Jav`?LW67=eA-hEA07e4YR5{p zY}r(jO2O}M$CQYQLSyA_C0m?CkarFoPR{9gNYdch(3;|$JPK>v!G}V^1Wt@!DG0b* zC)vTG^;Qn7S8rr8O6hC|RSCFd2Z^xm2#tLUwoZhBGuDi=e%OsKO~rLE5x2R)PDbX0 zrd)r>D3bcN0OqT@%1{u&Z(9;XqsY$`HH7+G{^39I8fqnsGMMr(`6m} zP}}OidJFZnFFb8|CNUJdow&rBE-zCg5zt0d|80ZzGYp+_m;cPb*bp z;*yaSMnbL1Mp?eciYr%?Gr7TjB8w?pgI&AGrsqLQm2JmM!Uoy9>|#|i1KTDf8me$c zwP>!2vNNoq$P%zw_i|QZay=1N`ZT7*q&CZGZA^}#y2bkmUzXj63p2WZV}ype!qFoSg}`>-2!lVFd_O?3^HA@X#64RZ=N+21@xt1(QuLvfqh zbG=LXzBn2I@B_L|rs8h351J>jvnUBozSrdvirdO{%z;`#SQlHGR;OsUP!U$)JD4T8 zjdfgjj2q`(V%#{N1jwnrQdNuWQ&>!zO8gTL)?11$$LF)|5c$hl1L%DYscigBNau5o za-ysjLYoAwQ>mi=3AP-mINBg2Xm?A^U!m=q|AjJ8NpB>YVJ1PJV6To>kM+I2# z41`7qu)zog8p^pvwlG4E|3w5?-Q=NqmghXNUi$5-96fLv_%Y zNGtkbJcgSg9v3@q7lU*ITe( z-hyq#i|EWV^ds@vNI&Acq7OjBDDhED_wi|w*?^3gT1@ID12v0O`|v}zWS!IoBi$_D>;C328S^dmw{Pr7j2?s~=sr>or%g%MJXi?0-Zyd7XM1t_p8PflHlsOC zZha^RkxGn(4gA6@YBQ&3jcz{%;wPtgTerc{syLuwzQ#OkKTcf%uR>4G>sK!m&x8b; zr(pWarzSZNUjtv^Cn@t|_>=Ey`W!aYORD%nqa83`NWJ zynMl(P{k6gF4q#b@E>YlWD&MDy(eNH^+_ok;cI>5*W$aACiVPm(r?f3a3u}uPrC&2 zD&S}P&ZL#4#471JX3U5}h4R+9o@|3Of%DIJvj`iDgG6oDuEFtb1!m5t&^!U;bR8cQ zK+;tFnD54e4RDg5bKQ6lRjD*;D>XK1m-}f0S&7M&!Tn7po3fNZrT$o(ZDs-Br+}Rj zCEEO%+xhQ$-$(Cy(9cZrQ`JMI>J^FH*x;rMCL&w?hB92^IVlE0AK74pL_lwl{ zwCl-8c}_)X8hTVyF&JmeY$yP^+g1X0I*!yw3)UKT{b3(RfTT#drIySZ!%p9)5_@Y< zE4)vmB&2B>EBlr{Hts<`(yCk1e)532?x(hpLV8?ZK8~0sx%wdLLk&x=jR%_Kd77RW zT=&T+Vkz7+gp>XIHDIfrZazt5*GbsL(?{zjQI=B826I-gp3{KbWp?=gE`jPXxV6Y= zh#Y9`;_0fNrpm2!+Hx&WBDm7F}U1kS!3K#j7jc{|&chOx%DnWPJDiqfzxQ~M1d{;e6-G5n zt8}>FKo7WI`J!HFGWvrDmH8Snacgi+Iv$m-coCNRBn{;CU@O2VhkV*}?$-X;O}8%# zw|k(i;Yu#pDb#$Sd}aB8<`6CF?!Myq8;C`>BlOYDBy713_vd*hc%|`6G~5CUl9Yht zw77ZSvE?%A$8~V<>W@E8`B5}AMo%OAYL-AQ7y?xX^c}}W6*lFBA}fLAdv{?fD!ebx z`>q1~!G!{rb+gf3=oJ6Mb;Dn|(%cKOLK6$Gr44&VSml)^Mb! zl1%QS)D%@UVK`#*ONFWclgKT3fn!szC{6g{LAE%h5wiM#l})l^E-+6cagsCKC$in2 zRD9|SB%l4U3xCFRnIB>0D%28X)yAyqw86(2az~EtM0qW7p%(l+rc){pYH>AEql{ByI;6)Vg7{+*T8)f z;>lpuZ!1n6_;Y2)Czf{h_ZXjD31Mjk<@sjpUSK?s5m3zU2%nl%TJW_lWo-(hlQ+Ie zV^ZNc!5I&g#%jUS*wI(2!TP2?^^^bVU%&n_%=064g@Pf$zakT*%9Qok>xEDKX!o9} zaK0+SmxvSDzo)2q5>w7}CR@g#M4G4Q_hH7x?-WmyFlQ)YB`q-NIxu~b{92vc2w) zS@=dnsU@bHUj%bI1CX?!^(&lf;VLeWCO2e8vKbV=|H12@=y zL4?u?`H|)GY-m=9NVAlq0ZC;-mYK}om?}MW#cl^)#k+$kFx>`b41Zq7U^TL z&Akhu%P=D;^3Id%2do(E`v=p~zk1J!ZKHr%qfnF@iBL(41+Y20M4&6pi*k>f{~Bgt z7ncCz6wVBkQeKjB{Kdlpm1TqlgZWq+NVO&GGGfomR&>1hduy}M2u_2r2drF#iA@uD zKVOdF$L>WguVat!pC$Pz=>yRXFGg5^<>;J+{jGz^Fv3~2YU!#YF;26VYR;c;!Ayr3 zXw^Po$B!WCzBud84I9GVZ1A)mW*T{gEXcuXC zKe=9mXI*x{%6+k^_%shwWKH6d1hq22z8Qj|gw4!QtT4_&_>3Lvc#*h{+QenHv}23$ znWFi7gqp*JluDy09R3(*X^YY+fRNSU@a@-wEW&K|?IloXX-A^a!O_C5H%#5)daeBg zQAr9=_OUJ!fT!5(8fRvF1j5RRcC6qne4gl6OSNNVFjjm|bujL2jdL=vKa> zwgCrsB%@qB3>HY?*GGQoHV)%It#OvQBa?T9gsWCelHRXBaoMtE;4E;rW2%Igo~}C= z`*D5A1V4(8>uR=Z^jokOZ^8WDg1s%yXgt`K2VD@2d+Fr6c&#*dn&`INBQ;N_T>++D zs52yBPO9TEjk}&C2Zd^3DKjJ5)ergTGYDWpLy%5`GECN(ZLlZx=@%rH0{d~KkwdUD zVgPKva%?Bjf;l2|48X%whJAA@5d@||L>hewB9KRN z5{CFB0?GS$E*;Q<+@dG}2Dy!3C!!e9PQ#JXQhmyYAyo+2XnZW3im{rNYMc*l09*d^ zv8ia^v?Rd-Kldm&;@&7#OVkZl!xWh8U@ZaHRmc%EjMx5@avf7V@ILl-6daiVBd+UU z|I-`x#`nN1`G}L`{9Beh#X9)gGD=QbNOA!Cj~OGmYL1FU$=b=ib8Xnq&;f6xsM#@? zAmO3La9xfqrc(M}rwMJS*=}LnlZHfABtrhghOJU(3zamd7MLmr-hyefjK*;6MqxCXMAC!fxA_jK zugFZv7ESTV1eTDU&{<#{!tmmX`^9^BOP>Jd_$!%4Tg$W-no+jPWG2D zNdmo~zDZ?J;tEi0+p%NE^7UbLDDCifYC&~eVQgaq6(>y=g|Q7$hx`LbuPUuf(SRKi z_&KFf;-QohemLuWDjJ#uv)wdL(Yf~`#ObRk8gL3lB6Y8nm6Y!#O6*GuC>qR!&-?+h zjE^6_#poc6v2X)42M2KhNot&q6O}qtfd8$ zlt-`hm(W}^;l>qK8ei-Cf$_FH=aC8*!&J}epyj*1VrF<%{2wQ~>_n=K>>WO##MX9^?^%mu} zJp#*EZhv^n!&P4rS=sYPSt!qvc)tp&sBK0o25Wc~t=1xH_xiaDgPq0t<|od398A-v zWEdW!HP!Q7M_``BtF;M{H+ny*eos#laLmHcfUp+{OXq+c4->aBeO1@+PzL;X?@)6Jq< z!D)B(rf$EKP&X>dHsNW5b+%tBd;afK6u+{y`mRh#VZV9w{CZ}Jq^A#VAAi>6LvXwmkFmE)Njwh|t2K$je`+-e8}o|Pa|oT~-$H`}X*<4U z)w4M$f&5)yf~ybg@j1d)94@eU7pCTsf1g{y=CXWuX|ra{V4;_-B5_;%mGX9tl4b5& z1{(^EM9Bi@ecek)uo$oY=6E@I04K(>#t6ztXByWPtZFI?2FeRhpBi}b~4&}*wht=p?Ur~NnZh1=iJNv-uz)qHoykqQP zByxF3`K|~@ZKTSwyiHURi)Hy^5e6p~&|d~d4c53hGXjc1@>+^x$+uvY--3-r;>l0@ z9Zy7_lqN~YHjzWm&rdS?LZ>a)+!y7*To#$m!Z??x7f#MBEv@TWu1+^O!!?>tC0UNN zs2eOi)uRo@LY$OO^FJIGy?2_;`=@9@RLPz<<%gVlM9N*#Ggi(FpJXqW+8!rmIp#dm zR#LU9PJAPyr;Bv=2W8szFK`6y>`O@u5|+jXO%k|eJY@9nM{cJVwz2Sp(*whIkM?jg zqN0d0KdmQUxQL0Aj3GyzjzDM*uLnWY-1_>UJJ4I_hkRZ#-K#3;Mys)dWc!)Xt%EW> zYkCRg{wmPhp^i#wQ4Q&A#94cQ5rO+-*_>_!6P8x% zS}-IUX-t5_=^*pWt4(#4G~C&AX65t+<1nBXM9NdB1vUR#eS}xgQPT#pWb7+o3t&-;z-aU?GG#C&0j)KNxkOphh*=5tnA(5 zT95fd-5P+i66ZI)AHeZZ{1)r)KX;!03+9MFt!P@Qj-zTkOj9{7#$0cTv9F=#+Q|O_ zTF1(=m)eQ9DZl_OvI!MIdFlFc`E@sN73$^w?>X;7EZt-qf2y{LVVpaWJu@1sqP=y;SzVy>%|vg zcjDB*AFEm5Iw-9MY-}<7_Ujbe9_@9|eO0^s40O(7S9-S=Q-!B!p#?M8nJAXiL{s2l zQGAaNfQ@6(HMXf?MEGG8@-Aj@4B--mt_q;Kr%>Y9mm zaUDqTJ&Hn?1bwk$S5Xwz5;Ic*s*dd#GZU_ZQY)AoOVvRmS;0HT<=vFoT)(Ah4z?lE zj4HF$tYbXiag@qrz=k#T<9a-p<@mL;YFt>0NX!U92ICz0>+FsQ4~O$*<}guG3|&H$n2=qv zP@tf8l7_xzV;sPmTB0)8p(w^ISwpH4%`>i9B<~8Fx8o|juRi~7;Hif&iVHSF6V{zV z86G^a+)o9hYOnB9>WO33dSlCeK{SlfI+|tZw`21eU5fd^f$C5!O}5LxE1hV8N%sxG zfz<0|0+KW_2nF$>l4ml}OZd)lLf3mp{*7N@FU&+y12`riY77T8T;Yz8!1Rv|utoms zsZ+}uwFMnVqiGLdkAHM+y@xw3*69{)+irb0Mx&IQ;l^0o+_KY%FQB-RcM&#;?~TX;_S?AzEv1WEj_b zDi#0b5x!#d@2J#D_uLi_%P`fRIwgm;Nk`Z#Dd13xoQzaqnw-F~mnWC81Cmrf&DieI z24BY+KatQ~Y5Op6u~TF+2MNAib1(=n`NwYF+;QFJ&EYs$R3_3QjAvNwbbc$oE&2^$ z+Skvzn&nz@34Zg5MW(XF>YvAqi&hcmUh2Ks+dCX)3y-l`6^9k<5N=Jj4b$0F|9OI5 z4z8m_DTtmpSXdxBHgPB&~rJtndOaRAh&+t$i>7XEai5 zp4KaP8+p?_(0aEaKg>n4G`9L)Tfe+6gqaBrwBPa@{6>md3CSz1ji%!7O^03sI^(rW z=t#0;;$3AM+~h5QRPXjDIh?H~wL-{Qa!h2}G2ZB~hsV$0;@(}$R$8NceTnD$eysvl z=-XHDLxlNGtYQTuX%muDmb5Ns2SDPBP6&TGSTFi;X*I5yBu#~EM9&p~RX6&kIgnRv zL7S-YE?5{Uc$Z*f^JDT2(adcL*3o_^Nc623?EP1lv8!-misn=Dcwue{uBa4)9lv9q z^e3&?4F3Vp{$%UFy75{{d4~sk9>PV5_Mi+|N7Rx$H+vSKFw)t7~V@-IF`^5 z&Xd}Q@f@p>qE?iw|&Ikw`opX;P^_oyv^ z@lmN<3OBt1*wH)BDx6^XI4CI;z-gU+$Cwn2E#&dRS@_K&zJI0VtzcpOVvFhjR8Tu} zzA*jH!o!v%X+H80+N~5W*_EUR$=oh1iK``V?<_5mY3zsuopiZZ=lIVNDD@Sr8X)$+ z~a_#VhlkETN^Mk{oNT(=|ivC97(2Xkk) z(OAA0c&p;BYLpog;0R!w`}IR{*!ULCc~7B;bf3z!8PNHD@<~VW2`K&eH%6`~l^QKt ze9I<9fv~D=Rou^vAe;HmmOy|X^CZyGe1-yCXr7|;Ji|i>`*lcrN~)4QakBDE?7`!# zSk8lZnIhw0r7%|8N*t^)#!3yCJJcTMLcB-u59PsjY!S}*opd|kBVfzRpfm9}eOBGF z;Aa|S&8H+)n)@^h$G|#p>bpm2H5~TqR(wy;&VtRJ@m*mT_7wJ{B4Wu?_#0M0asLz8 z4|tR?pKdt(Q!4p?2-zk@?Ox}qY#R=$0UKSAq1kfX(ZxEJ;#i52>yTbrOPH21hs9uW zK^Ij5d!|~jdB%RIKv}T8#`yI6Rt(NZ*{mf}9$9AS!WwUV^!0|-?x8vQY8w-Nh_31R z2CS-1D_389S1*lZhvkhp4!ehF&k)!tm4abg6qb|wEma%^fW0*23gJPfusoXgNvXDQ zoylUbA^v%oW(zZ>5ZbFJO{rAwyJN==xIO(&DM%&XJ_aqe>yU|Von${_X52$y-&;|I zXllJ%RDQMP>AVhoZo9EDs*9wXEZbbN-Qs0M9k6Iicg+PRt|^#Xs2s|6Ii&swd8)}= zLm?_*{Cy%{(X_AH(nH2fI2$(XE!YHye)LEOWK9o_9+|DCz1wT1uP&82Iw z51RGf;fNLJq$UNE-s(Xk_Zso}ADQ4*gJu+WFM>{kuUxru72+IkwbOaXi~V=dK)`f0 z+x2^dgo7clbnAxAKoht;5a&f2{1!|U;oo204m;N76x>GsR~T~!&Q$FqPw-CyJE`>_ z2}#1LWx#XH^H!;G`Qd(|NF~3wY$@vZmV;pZ#OalY6l3$T7@LY?$@h^PrsC~fIT239 zqyJObpKr0dCB}+`;Tod!hU1O7MA&9-&t9bcca-Pv6?Q?8?=LUH(KB4^y>lr3)z_R4 zxFmH?ido~TxdK_+oc+`8exQn~Yga?zcl<=NDHt@@kSfG5gtbm>4$t6^S**dS6r8;B z;}Vc;ioH==YVf8P=t|jE$v?1GI@c;RBxhj4Zt~0ZiElz(UX;>| zu!S+cwYiW~!~fwzrJKixv!(xEB~bptrcKB0Uvj`xadT5g*0dSSKZ7x{C;tBaG3b%S zThbfWTsNyi3_7B-qR*0aTRTdQjhJvb7iI;&XBR7ykEltv7L{@_%&IdQtr?BZa^HBe z0ZjS{{#VZR+eg@+j>V+w9mY7enaR`C5ri%Xpyn~?yx{pP6oAh1vjN*OqgZR5qbKN| zl+{b8Em!AI^ovDgu=!D9RfDk*U%h3D=15e`qW$l}c6MNXR*K9?&m!A6a6+dmaJ1B7 zyR)I(w{xP?U}4N>tWDn`L+*rh0`Duu-hsw7-Svo|!?~bT zr1SPzl=cN5gkcDn_-$fEH}|jPsn? zy0ZU%%(fKt1h&^-wk!Z4`5V(rq3SAYiNHQ1>{|;2yBSUk0|bS++mL^hz~zx`8ztlZ zC(H5G42C9(k2`hY{ybWu)A$-KhB0dzD?7|@K;LhP-TE$T{(6+|UrLT|jG8cx!jji)MhRO1i zZ5=vH^@5{S>+3mFuhruZC2NDwryH=4RQ5$(*Ipap=UM1sujMSd|4jCVV|Nb0o#(!Z zGL%LP2k(s1zUGLDs9Gr6CxE2Ra5$g<%Lm`0bpi~`kf;H0451^UjyPZIaS0!;H^>!}!5GPSIo z!LbBjOLMUzgWD4Et+2UjDE-}u@nW~Y$;=CE!^XJR;@4!+g#8xx@FsrCHRqz#%+dVU ztMpnNJjjTh5JvO7)O{SvK7Kv!>6(Ay2XsZ2r}^#F0Xo(_Og`U6WeU4Zd-yzRemxz6 z3E$Un!iw@zfq~}(aqy^;E_YoX=zak%4e`TPJWo?bevG`Tt@G6d!uZ@o3ksT_bF@c?r)% zeCE)$uZG=nUewU)IwpLHxAMo?WmMj=--Ypqv_ZGFO1A;t_Y#oY)&FYzx|bTTY{a5&u$^$YuzNfM zi(HQ6b)Rp?*bx~Lx}xq z7AU$qA2M={9qp@KQTul|_Qym|8<;?P;^owvJ4JZ|v&alOgaMqL2x zQd>^e|8AmdA;KK*aqJOc6&wx`B<*or6JcQ1T!bxoOOy`B1d-W~Qc*RJ0c-DcvsnYAb>M=!w^oB}@8Ms8Aud6`Vvo znd(1JE9U&=u3Z`?SGR(|mnWg~TPEtjgd)*vQ8!qA#fuZ7{T$8*9KlHrM15nCtSz6Q z6^d7=u;eco9h^=JReE5sdVk~XkhDa*_lM=}VEM(1YnCq$`x)E1zJ~5i2Y(M`MZuhK zW#}8k4r8L0Au@;r4pyNgf%6}A*at9&p{U(IHt%*-Mt-&y;U7=5`@2-zh~6NIG+rDJ zzwL0oBgIgACyCN%_o79Ph((JQSwE_hR2-c1;GKu?3-8|D+}gJvdS4FXVTx?Nd`^UU zq+3@d8=8FsQIeqF*!;O1ZF8|GhRvrUInu+3!ypFUzjrTLM*Dc(ze&oip{G3zZIfuc zYtp1iyI`#A2a&rn-+o#C!8Bkgm%XywlNFgQ~^i&Y|<7o#8=IPHGy5OZrF2tONeTOuP#fvBiF;MdYwf;qh4*Yi|@!s?jz+bJ^rkB-6BOP7JU zCne7&-%SSwI*X}dsr^s8KbcyvkL`JQxGM$HA zxkXs+lPIj5u4lQz{Ny_o zq8u%-f^3`=RIHGV3j#=bgl`M(OM-pRf7b8cdi^K^r7oB`({tv`s}W7CAgn9bT1A|- z+_g3+Sn|r1#jJLJBi>bT4n4VrrSult>^(I?;%%4aa<`OL>|HVPVIwlR;Yd3m-4q$r zHjE6~Lb$%rO!v4~X(+6wg?sJh(i30m|PEml3(x)i|l1sSnmmd=+n;zVw zU<%9HagAWh^tG^+IdczEf7pgx`|nY|in@t@Z8dzFkIzet^n20e#;atF2%TJ1>5@I2AoNTF#n+;N3q#w9e5+JObai=^3AP}F=yUr zb3c5yla%Wq9%(DKigD3Ppk>wvW81iP^El-&&pfwq#vqHGYaD(_ni_Df^VLplBPQo^ ztWE%*N1op8jG+ro?g9d*567|2cp0|W5*I&tk50s3%g%K)hZW;huZWt!DM_} z)bB4Fr!I8onGVEvbMoXMD-$g|30oR~U;dl8o<8Ak9-`b+Uvx}xZxZarEozXHJ*tIR zJuz10r5O7bp_G~Yytv1r08uqJ40h$^TS?Mkl9i!Z zgZ1F%%u*QGqgMBUOBNyHqqG*K7!Cd6XEKvf=2fFk$LOH`?7>(U@~3wOpM`WEY{T0m z!pvXH)Qdeu^8Kmp3py8sd4lM`*UVS-n-HRo9+DN*zMq;#3RU*!iwcS(=jtg_8hPJ? z;JNHWN|a6hFO-1m@NHAsWEwSWMCw4-@oOB^AwooFIBBat@_{xlxItGNj}jpLBjLay zAD^Ts*!k`xyQ>}?9ppV0bZb^@(7@7yt`v#quII`$RRdbP)~?Y6wBsrLX-X z)b_e17n(||;oBhl7)4peea#pe%t7)tleJL&QIzE#Ooh3!w+QRzhnAX(3e`#}CD)}s zN#=1(x(XZs^my$>()Sro7qS9ZTCLvSK5G+FGgjl(WBLbQ3veF~r9j{WD?!1yuZ?6+ zu+sJ5!GY77sP3i)RBE^eeyC(0>ks7$UBgJ|I(o0JsYjt-r;%>0kI!&UuaR`a=Lmk- zjtC3CaG$_yNp-LFl+-IceE9L2Pne3@(8%A99IpCutKc^O`@O?Hk*Z(rq0vY%lzxv$lV8mE?QA4(*^e~j#a7VlFP|{S za{0?%B#L&?>RS?JFMFI?RIrA}mlrFMzXU?4IEz8!ozWjhY@H#6$>m|F-yFjfLBUY|lIjdG~I>LVrU7)fO z^78JuPMlJ1-iOB6f8Bal(8;x1NwJ=7X0sjkQ7$;}CjYpb;@wQ7b@FYSohHb0RfyF- zknCTDYnS_nbAlseT|1wbW&hDd?Pi0=UY6x!>aIvM3g=TPJ07j0g&N)Vner&fyBl#p z*E--_Ix5RaeK{Zz<;veVI%9zVl=2LbQ)~0VDu2i_?GbP;SWxL+=Pp=qa=e_fo$md@ z&yu_j!YT6HKkUdv=y~uUnUDeD;fl7o7>F=MNtffj_XMxHP5qq}e0bJhaBoF^j7;0i z!<@V9j=@Kp@Su7yDfVS^dufC2gb4g{1h=@0-@=K@c(H+O3r=mPLwQS#^{4$vD{xRH z6>B=@F2=8E2Zz&1oHP=^)+f?2PMO0#Yi@gS#*UWz!CiE7eO*0v<2s*gh>-Z5!Ba%u zam2?|ost-2?Nd1IU^>@t<8l$-cau(Vv32+e_~IV(usoOXAc+1TK42tb5G54XnsXq} z&gll;P^r@m4Et}`!?^%Misu<)DM(k91JUEeY^KMOBql})Zr25w<;EahPgzn33nw&7JB5B)UY zCb1}?AZu4XNZC)O&b%~OL(rPVq%m;bkklz7sY9FXZ*0x;iJAC8hGXcUOBq8gX25<3 zj#!LhS93?nJWYQ71<%ji=A=y9XCzut8yH-rA0JsJ8qh0Wdm)yV-|Vxq&z6N zj6^8GnwJW)yrX&Z-|m7_d$bveN)_J)6P>ZjG`>VE^0Cy7h9<0wTWByW(JTXPa$-d~m;1PK0JY9C zR~W~e$p|P0b`dT~u{7B+Q#?%k5c#V;?0RDlA6~@v(I09#|vqi^ z;f!&LZ$*P!Cu4Q^*m*%(>ReJ~QsE?y1_yr5nKzRs)S|=+37?KDMc_4jz`Ms!|HSuS z;Nw;sl`j&6@k4E3z^d_HAQrX5Jc95u{bV|eS*4Z!_2%Qb7OBEkNPk^O3c}psj$d#u zsYM1Kn+lUZI;ZflYk2jHWc-I-rcAPPiML=BBQltxxADsNxmJeCyFhGDXX`8Ko@%5( zkqg3j{21IK{IFlVs@^3D^C~kXo}O5Iy2(!LE$Xq9e2pja^C3x-FzzA3Vz75!0ai5) zGam*@&1o-ADNFG*Srv;9YS@6IEU&9!32&INqtnFU_{dPS5MN_NRW}S+I-Qwd%V517 zj^2!bVtV8F;uM=r{s&8-`tr*T>|^&-f){&x5{iL66t#(`bbRHn3ByI$pZe4& zyF$Bo%b6II%65F2;uvy5R=Nixpco$%MsX~825n^p*&Li?{TMsKSFHG{y1g=Q0h_I= z!QMCShF&jTye%DeJpR#EitnweL1ZP7*cAp?h|NwDe2UO?5jI zQsB#y02Ac|uz1mTOq9~Umb)DhuC$k6>6lg*+T;06_On%UnpW8)u@hwpLY?iAsgl2B zS@h|z4o(}<2lp|O+litKaaeCBys*Jb@Gi|N@4QT9IgSB$Ox~x~ zWjX3Rz=zo}ip5&vx_~FftEdN;7%#@?c*mTQ%Xu8qMo(6cH2*^A+&)@$E$srY%Uoy} zY*?uu=B}F<*JcO?*_F?dA<~Ij=Q6gR#ZPpWzUJ5t{ieD&*8Xjjq=xt^h<))Vw1Gx1 z$fyj|Q684}@iu^JWyLw!?W*Dpu!qKeZYSOO)()xmQGBj|-At0cmoG+SUE+>sNY01w zYfqlhKS0(8w$?hfY3VSY7rw@uCof3rCh0qSK{!{D@-=Jr{f5kV-mk0bPeMU1cf}J2oCW?nL6J9qfoC-69UoV19*Mu358h z!%%;onIap74hXUQ=&lg!jkYsbsh(zMf461Ju|{cfviE4^E3+yqrZHnDb-NuDkK!*+ zoAxy0RdW_1T(wb~jy*${#&SlE?8?~^r39d<9y`7^zd7i1o_zX!FU;bUwbZj4nfocD z)T7O*R)$%swR(8ofcD8#LF3i=i}f-)0n{`F>XX+FVJ`trZRZa*g59_bBzmWvF37>I zOd=+;R+hV%97DBBL9-Zv$+U}=cXKOjNotZJ2ibhWs%7mnC|oem-0F?|Owe+LY>4Jv zkZe>lb4646Zpx8@Y)IcRO-I@aRsbVeR8*|uJIVD-e_wQ8RZc!r8c<&QZ5jnmt6ta- z<)b!i30505t?)xD);}Xa{qZ>1UhSA(sTH;j0?xsyKPw%l;dp{IPM1+(IAc>?7im4N zV#Oq>@|d739Jx7(hkC8-unG zg`xww)eBMUioGq`CfgUEG#LxEQ@p#YG!K7o(KgveS>7h|&!O@;UJD032V%TP;lc*MWZN=m zBZ&e*;+>EO<2QmQo}3VGuL`tCTPLKnH{!Pt)9^-%#9%*qlP*l{Pt5kw3?oSzne|jO zPEzm+rn~f%5o~9I?+fQ^gl2VTbZO=}+oq$TcZ1G9fBA~#%a{L9CXfAo_Ce3$DV%5X zY^^eAKr0l583v0ammWP1CBLxrNW0wyGgWs;%5SuhwD=7|3npu#XQ6bD=1Z73am;wy zpP{*?Vdq2?{Gpk>2`I+EI;9wA_$sn*^ps&A0hl1SknT26vsSu6KbrYuJU7RUF^XW` z*L*L`rPdg+-JTIB&hQFYuutQVdGEm}X=5=X)1Stm_2y7?btvEyja2acbus7?{df<4 z0S9m0UA3;)?|0#RvbF3ZToY!^kbu#fc~w~m>W9)F{sv)rC&3uIk(+Gdzo7&g^xdEw zr)WQOxABp*w8+R`7A#osEag2mC6~wei8hS9!+H>GO%z^9)vgv2Xg)fMs3yXntJneb zCmW?C{o%Mzx(4Mp;CWU^lD46Q>s|9sMz6HEX^mpjUL$nZ7j5Kr5$eo&46}w1;(zF* zLTz6nf6>7GuQ*Ut!B&Y7p6na~2Zr zm(vHubA1dX*2&^s9{~G-%GW=TZ1wzh>qFb z_dDc~bsw%hwt4ToHXh(YLDqIGVD6%dQzV8i|7-D0&!b;2*tA|o$P zs8P_4WlR1qN}zF*CWUL;dJ8rConJc%JWc4(lb(ILIh;JRP&&$7*nOxX%NdZRV>!pctdL`UwiynQ9%zA%RYwS_Vycl$VXz{U z?VgS`?OvhSx_TVS^(Io&1;&AHFi_K!Cx*AE2Fkcbdsz0P8%Dw8gZA0|FP&9eXV*3I zKB}H@BL_QPuUN52#fsf;-A=#Qkxrt;A!zj>^oaZk*-0aW{_x-h0-zwzidG2toQ+A~ zAsppw(Z4Ezx}LjyN!@heGplCt+cL)I5B>7h%qTyjUe%PodUR~{FG^c~6#mp=m`nfW zJNX1wuwVu|-E6KKGL85wy;zi~C}4t=`r}#&sFSmfng1 z{o$}3_^e@hzQ^e!3_X_k4$C6X)9?ggHP9wW^-{BODO{;Xc!i*?ROBT-QGjCtqN0)5 zkNpIidNos$YnYsc+L6J0(Jg2;+hR#bg!LPsluETFA@Bvkp>+E}E3SocsaxxnE4MS) z@E7UjSnMpmLEe_ecW&w;{aWlg{)1F&IgZ#)L@RV1`zwu)+BmqHuCHCI;#7rlzGq)n zUlnJ44q!fC{9_J_nUrfT&iH-RDsP;rf6yq6TytRU2ZXbf%p@z-sq@7fxwR=^soS>v z8~7KgN!I)uSS)9MPYqm!eTo`-Eb$FabYmq3mp2*PzWN$iU@bnZd_oLmllVw0Yg1xU zU+N=4rs!`-)lDINHQy~G-Rzln3-XW0C>&|Ts$U@jnji_c!lHkx*oZD1XHcNuz1Fw)jH8EhoKqkXfs$q`q)Tgi*?Om zyMzGE`P$PFWPKw>#QROn2S?n`PQ%}^Q3CgIEb_m1KLf?A;1qN5A9th6n|l_wS!D~< z5*QqikdW|-_jw&1nss2)rUO3fIYk8rox^9>xkuJ;3s}3;P4Fyr0%=ne%wPpOfsga` z_4MCB3a1A$SSN(Cme!IwlJ|_o^38jVGMDMf4Au&kk|rCFRGE%56lNe%5AYUrLXSe) z%Z@*|I~+ghSRq!Jg<6hjkAqnp7<(oU3OepOe&>=(mH zRdRoP(jZfl^t59(HGxrrvP}-$H@1LP6+XWXn-(CS0|#JQI(jj|cym;=%XP>rdJ`HF za*8v^&}G!9Q4P#=vZ?=i3A}gxu^M{Y9DwL%8X<=_aC-;AalN2WPc0VrmAOH)8m1Vbn-Ve&}(JfzB-_bC22s3_pT z>wti9-Me?EOx>F_neLT_61+mtb0roEQ^=1ywUlais@#bLE0)dwua-cIjvafQA6eg? zX7hdbNY#Z{%-|H}b2fcVuox%O zlM-mPRw*fF8-xacJ|tc-G!|!2gJ`VXaq$eL1vtuR$FN3H-XrLq=(askJpH24mJL$S zF0=hcBk*-WD4+)`(z!VpKhSB*wS+%<#JoQyp8qxu7Io`CMCqKbx@tRGxV*}Y`yHoB zKTVlZnfsk5=PN)s!hJ%^lkHd@+O}a=3hQ?m49j2lRKx&I(P4BBD($K0kPRz;8sB^m zq;t?Zs~6Gv1bY1eF=&IHSQ;zN{wPX~${y#}2#ry(+t!TMc!dJgZexu^#Ljpqc@JlN zr$t4iYk!@7MVaeV+AR#NWU#i-?9pnKp(um?#z@7zQR)|pa`CS+Q>W8rg#%E+ zEF#F;Y_CQcaP??y4#Zd}>P?225IOgvq^6QnrK!&xD7i~s1}h$bQr54(1vVMSEQKYN z4g)cSFi*~FI}|2Dp_T7h$CQ}J{{c*u=rg3J$_)cB{*nuTaF-Y>6o3QBqsPP|R|S<)!SqY@ngw6Bf*h{V)yV6U_T+SV;vV zqDJd2Q&akmQH8LFB>kowI%T`FB`Bl)il+y%d~Ap$tweZmsbbETLaW$7I9dpkm*^~K zRo6U(UV^(%>V_gKSPb(WL+SzHO%NJo!CFBhSrHYzZpEquAz4#DU`{Dj?OQ^xSc~ZZ zie%!f8feavI$(+O7L1SR$_E`xUdS0oLp1FBjKo&D8eFS@uVAP4#+G@+?qL8QBV#%B z81$SeGw=jl*P`)AM2D#urBcvk9;OODIEPL%Z<;4U_Y{HqH!0{014#+cahf}2%a$#$ zb6_csC5Pk3 ztbpQLzQvAG`&*N>=FCaB&1o{_`nIOj4PW~U(c4dGcRCXXyHy=mL<+a>+f@suh$?N+ zaNDN7<$`e9HYJ8|Y;EEEjJ5p>JW{P#y8y<>GWq&!klLHCEmXBibn#pHeI1vbXSoJcb;I zJjXE}pbAdoK;vChBw!X=NTK$obbPe{8?;_K-{LN419oETzXlK99b_ z*Y^Qtx`ZwfW}@OxmK=>g4<&WW;S&-A-3fG^jNQtFj&s+M9Wa9}KP3k;ilbo9mUg`o zQ3u$Q636rW0IY=P6{%8(8C!0>9U|MLe}kCxa(W@|Kfu`FES_JWVt1h*9S|e->qxT( z&VqnNc10h1gO6)6@@BHo4*j?z%TUIG_R7UVBjqGhH~PG*8JnHW^@>C^z9d#r=Vc#KoIj^)Li69pw;(I58C&N;|zuDh}*Ys-=ul_V$Zf8&*&b08yc7G zceWy+g)x~<`vgM#!nZ=)Xl1g?sEU% zOCVylI73zxn_iNcRg!L}=FHFqE0X!gd0F0D`5!(1^$soC^cliWs~i!(*8Nxzwp%#Hb@ zR?$~ftTDT8KBY;rrqT?yHuM?4zQqQ~bvb9QVPo>(vVBy3?vovst)5x1py^ue*U%K! zS=Sg%3m7;V6-UxzQVS-;T{y&=2wsuQzML%$5*tP@-YbR`=vFsr4Z$mtH7;IyUi1re zo?kD<3tox*>gGq1U+}!a{Exv;ANBQ!abF_aY^!Gk0h7%BEz78AfwOc*8^+oPh=m_!o1LCZ#0vwD{#3>b_#AULJIc#Pv(AnMJcNfue9AWcB4JC| zUfv{Tef`+E$@iDv%eo2;q9TZe7*;ONVKm7S5V)$+9*BP}C!kw-r9#Ahc78K%QHul98^ zHwbHZoovu|hqL6NB(0QQE)ViDO%JukxwVU#GdlD(ohW!G(2gqK_~#{xF;P@IBg>^DXEw^BIo`HL)AVeUu$})b+s{)T6Ub zWI~^&=CG|NzjQkSP-2dALKbgzjs10nxxIH_l`Jgp;&Xdim(8)7b$7zPh;jBDv;oG; zmv^-@jKV|NI=7dWfAS5+Zk{}e4V32%7%=qW&DGXCg(X|{#rgZK7J&cGk=|;A$W@>= zT8$4s{P6w)YWn~*au>sk9pGMM1H^>nP(3cLLq6|3SFFz#e!Tb)T}4=vR~^`KHGPY} z-px^Y+RM|vnT8!#-wP_Vl84FqAgt(d@?8*y*5`=;EZX2LfEz8QJLd9bv+=;ab9Y6F|7G4P zEG1+oE^mu+cLH5;@ZiA>w4E2jz_z@EUj3rJu7&7*;J^W1o|84bB3^EL_ zh9a46Hxp8TqO;EsvTLGla<}qILM~3w>c1+SCS-%q$12*W|DR5@iAZX2U87OO7A;%A zeYoo1y{b5v`KDhzn0ArSZG?RNU=atv^(AmDH)in1g_UO;9%(y4;4b;!DuJ9OJ{`S? zp5p57o6kmW>R$@#2H0i0CrXj8IjFGGl;Bn;~X*bju@XlW9rOIi;{$tBhe|Kl)|$1#}w}l`1v{t7T%0 ze09)l+<%^?OYIm8shyXs0d>|P*|`-km{f0eDNVMG5-?6w5sz)wV~KFy;pO`xA8*L6LW=v?inV7GwJfxD#@%i;#JLy2=lR z;!f$7^Nm)pbJ5`%&G4kQsgZK*qx%hGqvpiV$nky6F0Br;w&@*y!MFFM$ zdeSP-tKEx==%17>ua#qtQ`W0Q4BO(ge;h4CC~0pRqCF*Ie482Wu0CcojlUsdFPrT% zNj66vO&7^()sD!_m7Zc$cj^DQ1mfdilnMJujUA*3*!Giga!ev5*nXOU;#MNE_&C$L zQnVQrV=xUfSBe~$jx)0p=lUIDrJa+Ne#o#PnAAF5Jv|PN$lqfSm5NO67CxtgW zFGOX*xR48?jATr(0@h$o-s6y2S&nDH;(+ktH%!Na^YUKlhhX~1xu(;V^~zw#6xF;E zR+_i>@BOxJMKj-nwP*eK&G)0#d}Yv)(am6DMVBAL3b4Mw1{1#=hIr?BTp0TDi|DYH z?mUmH8HVU0pVONeHFJVgeN6y{q2@pvE5Up^n9mvA$M3Hnqiw1yN`V4a^}Cyo6Xpz95r0UW#lz{Vt|RaSm*ZVE!MeNWh%zx(zrWcsW{+UA-ct()hp!q zv(P%o`AX9XSb&nc4t-}`3v_GPr*Ar+GYusxddI>WNxIX*|CmE6mZIxnm0GrWbvn z@j5I)!Lza}|PJEH5$|N>&E%X295S9Q$XiyMEyKZ~mLJIQJf9zXo90KW3Tl24Ejx z|k$=BF5YO9VL01sTh{$=F_>?M2r6_L(T#r>icqx1P$54s5Ls zfz$-<`u|r;pj-d`e5;cXyR3d^Rr&5dw!2bA&O~RemcY5mmWHEo@>CqXBhHzReKBr>1kSLhM5wU>H@QfVdW*-TwxV z?_;o{c?Ru!!vLV0iY+u`sa5g3i9#fgDEn(M5Vd0vTX0VQovZwYe0 zOMwMXOM0M<;Jxk0?C<=9&93@JwH^G1+S{nSfLjWf)&!)#TsKvLVe93$+jqP~E+WW- zVyT2LCuHx_;C%2&V-S+?UdC4o+otPEJs*M304`xrKG-KH zLv17Pgar#mJrQF(10!k`bJBPd(t#MIGo5hibs-_GRG#g>7iQne?YSXQf28?U7Z!{t z*SP@|0@ybS%kgIYiQH`Nc$8}iLawP5h!dn4?mXxgq7Rc{cFpAk|65*P=o~uKSzFez z8?N$tKJih1z6@u2OstN$f1gnwM8SH->=u zA?kT~bPNt5@jQGjyxe&>;kdk5RzQweGb{MmWQ>a~wg&Fqh-~uEiDSgNvuBBH*zi3% z4D{=gW)e7QPKxt;NR70b#2D0vB39-o8n1^;sVw;3u89+bk3sC1mFK)5KX9_ouO9X~ z+Ru|>ltzsdLQ>zn@4owfLPL<+RTMJ}o)_-;b9h6BjKU_uu^VmV!ZeKR@i$DA{-k^C zZTfJqlR7?E;=jGUeW>r%b#A!I8UJf-WBdgOl6wqg8ic{tbGbUawWDl<#~xH^@y8zH zWJ|t|0yaW@>{gJR|E46PyByr{LGMd0IUf01`Y_Zl3uT_;>yOuL6Z%sc*D4KIdkp~A zr^x@7!dmR!%fNi2Wix1v-vC|EN*VZ&NkY|N>`6Uj%4sS&Gc@A-t4M&{?ZS@g(X&U7 z9=bNQ@#+M#db#wS?*;vkS0el!Bvk6LqfnaCQ^${g(Y*PeXg>yqE2Z?V-6*z(u&(~$ z!DH~U^;YB@Zw%ztI3DH7F`xF(4pSjGz1aQ1SZ(MQXDP{4;l|Z)8*uLriCA>2b*HT& z@s&%|61TWaY*7tQum?Ev-hKDot;mKM>hu5?T!oWa45I^Vrl17#g{qI zhkx=kXj_`!MHKo4MvC2QxMRq*qrpFXeIsq7`xyR87Zb1@$)`9!Jie&EmU(jhzyT<6My`S`5E14YY};n-*yvwhj0PYXdM@+`erL1GA=Ms$9x;Jr&aCD626_w#5aN;-b~ z+WFwYLkG>lHlYgE6iONX)bW@2buLLR3kD80_GKjrG4A2eA7e(>9sQyVV9on6Ku5Id zKcf*KvR{?3{3ez(Myn=i#A|n}bF!+NQq|?E^%Hm2J)Hhj7x}*$w%O0|55sh*VRXfg z18TXrA(3|IXV)ha$g}SZM@v&x@RyCil;*MCwsMB?(3ovzUX|z2-M&Bc!dA+O7zUIJ z)^kXl<}26xq0KX&onnz-#&LfRtyJxe4j^;AvIe4o<|?8 zn#-sEY#b!|7ooZ(MN+ruO33^CJ$6(*&so`qwMdre8z!dAC#{UNfX!{Q4WIX(@* zo-FVIrXz2@qR3U^2i93`tO8-Po%0q#zR|QE6@TF1sSZA=yNv&<66n?c9-~Zu+r1~H z+9Q=_q{Gn0cInqWlaARA)4irSq89Z1S6@}B`W1Im5yZhz^U?jn&ejbD45ml39&iHU zI$prabSa%pfFhRR_%^{Wkdas^lwL?+2xRy|%Z@JUSLDg)#%`5oAPn=rM$IK6Z*`Y?nHwZj>V+wcYi}L_c7yWtQvv0~MNPw$a3Y zrDT*FP$6Ra-QFK&M2pGXDC0Thwz)U&dXy(zN?4t*J4txncH3alw_(GE6B$b=og-nq za@|xDte9^>Nmxr5RlH->@Qty|p_V9zI<>pq>&8(la*GAbR?t3rlYS|F1cu>a5$Anx zlY>3IhMuw}xV;oDEZ65r^tA7_09N04WGkAv@}7WAHNw)jX-PD(pQ?`o9=3)T*Dr!b zN)Z18UqWsDxS|qT)SFKTVFeO-q14qz2>?hFJ1g@XAI`Et5j#Hlnv*}+Uu2%^tF(}= z%IW&2IY=BDZ7YEAfKyTk3!%~7=E8x2W#+ZS^&)R!Pelmg}qj?W3W|saQZG?s~k%rC(Kt`KYre%H*{LkRmflc?}_L{urelNvbJ$G}k4{UkXw&|uB za-EF*xL`)jSI?FC!MC#Rh?ODgD)fxJ9)%5#y? zJ0GOLF>-uJ1F=%5VEkW^l?cZg>eDN@gwRBtW&^?7YLqWdEKtn{Y%FGQMavgXIQja} zc_>=s9-SLt3|F$aK8Yv@g-&9ClI0Cds~wa=yPkSnAvfRkN(5Id1(gZM;uR&BBYa4s z{IjvPm@4lb<^+_lzyj_K;XWl@<OhF|aB|87Gs zw2Ry&f=l4#`1zr2J>u!A9z}hDFbBq;5PlMOwouUW4cDw)1IOnD$U6#XdrR|O$wq3i zrlXQIm}ye7-F);bRI#s}ypW%AtJp9H8)f&4gaEmkH*fyl@hiBI(=qo5e2=U*pWlN% zpN3Hd9j?$TUTBFbIFQg(skdJ-+6}<%N*-~2Al5B%eSYk?i($VqS#CYG8+{Q;*d87cUa?0UuQRx|r@Uiv)@yDLygoJA_{T zZQzYoPna%Yv9nxnz62uGyCn{JGsqv1H4$z=5Mu~!WBa?Ll7S*r^*p`mG*KUisPt|x zBV?!(R+(@ufmgwSp1MH~d2gf6ATRkPOwM1FY>EoNP?VzrAY(Dzl_LndbNL1OnC?8DMFpi4 zx?&dEs)1l8(NO}6?gr#wSI3JO-|shd?%a8E;YOE{+WDe@Qre4wJsKNdl0BYRq}p+F z?{N=`ESKg@6qY%>=(Aozh>qqS@LaaF^vRmSZ)20+k-#X~5ukr*GKBYGdbvr-L=?W@ zy~Smo>x)E3XSwS$2~RnTA<}vYYca|3#$eu9#)c-;w!oS@kXdnLZx~;a)AOD!SMGy( z{43lh-$i?FWX2t^Gwq%D?Q1);)dzOtk9-Pb7^Qn-oQ7$6sT%Nw`iC&$)cs%FeDkeI z;#{9Z#NQf8Rf_d3Y9pDVYg1EP`;X;@KQWxIW&g5q5#M1=)qk}+ zOlXl8g-Lh#LIQ87cPzDRK?{jkdEU0qdOe@<{54Put@qptP#&G#qvf-5Pa|N`uyQgD z&5SjJJ-#wT`wI|wc@}cxS+i_%kxzZr(-o~ z8L-XWyf{P$=`f6*7LBB2sSeA>)now}U$}_<$>Vf#M%dfu$co3b&>hb#({mNyx@hO~ zzLKc+y{&d6C*?k^VZ4n~LDCZE4B+Om|B?mELm#pnuWWPv{FO0aS3-Zmm-7)H&m?(G zjv2x0X^dV!gn4FY=~v598pdn<>mw8DjUuFriWvoK4H!_`FrfFX;lnIO?HeS>a3Md| za*qoTE01z<^ag5>sW=TFU^s0cvyLi46>Er-!j$jX4T7&WXrAGbq)^b#uQ}HddLp2z z{}C%Yy1Vhq1d407%<+8Z$d0C-?;lH*{^Hw7Y@Igy1JUL(y`@WU7;{|KW7RLPP>{XBBQJ>K3BR0|`Z6~JK3Ebb!9$sLPD!ZB`1wdl3 ze=MD~&A?-!(0-{a;oM9$RAz8{3pfn#nr%LSYxt|=@f?ba9jv(%#;3A<0mosgccZHj zb3!({FeM8dq2?OW0a(lLMCDv-Aj)Upd4bX+>P*698>^3jKoLj4y5?8}dku3avfGCh zh1eD|7;Ik^ITtH*EEq#xPADoEE@w`615@vzB`~wW{K$`SIgWM5V4#Y83kJvjFpPUq zI{m~hBoD^1j8{Ix?o0=zo+roh@Btf&gjzjD&hlJg4#K_Xu{^2}3WR6s^mVZzCbUY9TOlZ}#sW>4t3; zeCC%?(}z_VYj;k<7N}T`pNO4xh>;0y0-PvHY^*6d{oCv)>=3{X_24VOaeqk-Brzke zT`c_hq0yCH_WovZ61w8)oH7Dmwz7k;r^siKVLs&V#|SGjod)IVDQvqEfK|o#*57}& z0uNV4wPF;o#gIm|0u~9~yr$VOLtuSraw#FKNCMlhjw&2{YS0)D0Wj9qjt#kNVu-JU zjT(Mzx9{7uODT$J6lDFNXR4E(hcj!|pzZkwpkE)V1&rnzMZVale!5ZGLSK z>K1f|gVM#@4Q zVg}aI6aU+8##0q7ziwE;!Kx6OY~(Ilw5Y#7$g$ZkZ^C)F3KM6K(Uvkh0y%lb7}!@3Fy!~_(1_{gnJP&Xt=gHpWRSp;sSE> zb6M%3OyiwkCdZ9);1WuSShWyM0+_vsDwWSM^88IWHmiE%gw`{_?$KR@ktKjAaC< zr8@8uk%s_o0?W?!XUzR}T{b74x;d*RWA8{j$MZGgn7+sGH9N61D80IPLS$N2CmQ+M z6}KmI?kHb_73lMhR4RF^1e)Qza?~W-i~9?tCH7~cdoUy5A0Fr9y8-QwX_2hh;vkaz zyzU)~=oXW`>M)``psT!Eic3+A^P^zAbKY8Cvq80TdI4f5t^93J6PyZcoP%MEA-cW5 zUNsrzPZI^(=Pp(rqpWB$49M*<#a_u&lk>38{TmQFa)Z;!?^Y}5<;KPaW{|`(9@nCP z9Vw8lKPBg$P$8Zk8MFw`XqXS;yVr6@=h)4X7^1{J4qacELu5L1>^MN$3d9NV_rJbk z8s+totS9VT$7PtsLei2y^}W{N{ijWvwu8U&Wb1vpyDV5{=0<>9w4h-WXm=TszG&^3 zS^>1Qotmg;Vi#}?+hjq_5{O~yI1s~(xrBAZ;n}=1@$rg2eXxuy*-Nj|Dcjc1ym#E; zEDxIk@6u`0zB8)=&?NJe1CGfg%bvt^TDCG}FdxTV`dkM?O!m9{)P9a^>rl;s_)Hte za@56QeB^PCSQVgmvK;%ZE#V!QOS4VIu`9=S)3zKv<&9Pz1U?AV*)jepQhNhad(pfy-* zqehKhIgez0Sj_Jyt-K_}hs#kJ_4sJh%;(Pvf~|>=j)h$xbdQQw8#HLp;Chko>C$t; z{zC1Q+YUpxzRQQ>f-9Wc^VB8eKwi%qwxGG^X^sSi;eYg*CGJo-H(Jj#t`8zp$w&4S zN96Yq>+8j07>^RNq(uuTMXT~PQYWM-lpLReMUEUigq23*L?uxSz0QZZQHEJA^VQY} zrY+qEr4X7jsJgGuD#voy_n#_(dOdq!4$IUmuCjVDj@aublg-!G`bk~j@Nr#;4@+l1%j~T3*v0_b{14hU|`$%!jYaE#zS4Lst1DOhzh1Eoj)Askkejq_jBPPKH28b=ppr`ff zne5m*?WSK>XU4ZVzse-`#Gq?}oOqkv^WyXw9yRI!DfZwE4?s2cSq2>#m43IY>V-S;HBTTNdNx z^w3TdDt1jhN3Kj7%d|Qp?HPMPj`9cRWVy&4j1`lxav3bu>MIOl>^E5`5%`+wy4hLoW`=jgF8n_4>8-Dm}cY7 ztb54;;hf&Ad=3ECn+FaYJb+mXI8Q&Hed@7~plHp_lYY4Q9CWe!yWiWFZfK1*bHbg|u-{B7s? z1u7>X(pg{#P#ywE|zyd1l%88WD4(PsOH~5Si za!jrdTZ1ofJu=aXP})sqIleNO4oPk3_~h$5$YhY_3@gf^Y-)QgD1%93t^SIT^>t_bwRac$Dj0EanR65E-x2zcj6D%_6Gbjxtr~z8+C)DHfO7Yxm(^!g!B$`5IX)(fQiU5`m@J2sUCoAY>QfXnG@bP2ed0jfwg400cJL6 zA0yjDO5`|e+J}LnTZNhCHIm$HBz5-qmBr}PsTe8{lfXUG{Ac|B`G6<`dLS0B;BcoexL|@j zdsZ3{@8frZVqdjxs>)fFAm90fise}b&PQhMi(ndC>Q|Hkbil50myiY0Edo1eSGh&@ zlYdM3oJy(l&7r#}j|8T=t39(1P)7nDhS;4L?3jTi#Bw?eN7=t=Gwn-59C3ENSK~#V}k|Ks}%pf?kMGLHTNU9=>VbcSY1{@`qpH?BmsAR2xSfTAnlpcgf zv7)wL>h|Ki$uzZreT!>oAQpLQvp2X^O5`d37B4)68P`Il>)2MxXoLU@sAk+)_IGot z?GP=aq+%FPVw;aCSPsqTOFk^T6-!5)-9ozg)=B1QWD48o6T`$V{TSRSEKO<~%z!x$ z(&Mig#ulc#zpCp==;~?~y4lqqsbPGKRY8>bqcp>2E3=p$Mq{OS%Y%kThH=kX)>JQK z7>y|nR2F^Uojm3fZ#Edb1ZPJs&V>7>Qor7JXvoo*hBYG|N=_V?ZVYV!Jcg*<)hj zO?$px;pz<+`^jvGd1L%$tO9<=J5lyuf`Y*igKUZ~UcAX>gi$bK6-_h;6ft-+dMe;! z_JQ%a))LY~!Cdd`U@U4IA>X+HWulzMe$WZ=gVqkvL|?|eyyb*bu6rrjmsjCgUd-r+ z(yHm9@z|>^AjT(9UcYIjjOr;U(ZNk2< zbm`I~#{Rw|ge9EHEj@J!@22gRN?4iiVS8Y@o9XGlca*R{z(0vo+d6ji^=S=Yryi0* zyPnU|=-Hrl9~#<=$1TM`)3Thsk{HztpWsx{g^=P z!|7#o*{Co0tta@8e{Y=3Z<-!n>hG8uxjzMR{)^&je0Tl9B@kYEXoshr)V+MXaiT)nYQ^^TKs~7Y!8fcBK zeyGO^p*PPiKTaF{9`eN(TgB z)z;Jaz@cV<%>R$<2~?|1Fmtq>tP0B6kaXWNVJB$oboICb2f_iZ4Vd-YO=@rk+!Jt*KE z$Itr+x67m7Xhv5vY`Z){xE@Ay#rpDB(;OvOdt?hBPU!(OYy9h9!_-0GbCTQa&Eh+F z_x0P*mG4!92Z@44M7xNk#LM6ALBxxBAjS2*VC7|)!sp&^?R=iobj7*>OXY|5BnEWh zu(l~hu@MxLI7^c%h<=gAo@HX=Xc#4`J2196yC}l zY&OA!rg?L#%9Sf~14{K4stvUs4<5#8pPDw`c>DP+*9~P_4#PJ+EG~zXkK4%84IPjW zUEE#Q-omWMEVp%|E1g1-d>(LJ-6f-QCfzG4o3j-adJ$MZ z-Pw(b?;a_%Pj%(B)kVcQ03SxCxzW5L%jFnDE>E*{T%SPk-`5QYA{_60($@AZD!#V$ z5_UN#B4S2muGSy~02&v2F2xOyqs}?7QJ&;fMVILk5p@Qo@%7WnXvM{EYog$o#Vln^ z4P7U>2v#s~6M~-~_m{vut1OIe)O19`a^=buiG>V7O9YGxnDf^3uhDTSGZ9CB{FvL9 zVD{tZ&Rs=bmTO+!XZX+%8*XR!NrBOG;lgW-CJ3*w6e?yKrJE&==y^MXO$(AVhQQ!R z3@p<5uG>Z=9y9ll7~7NT!wT~~HBG0(E?8Zx4{rM83SFnEGy4`RHUTB@t{sDWDFl-k zUfDtY>wiWM_cP0k_SIEcSsxyKW!311b?<~5`#+tCToei#1{qDrbG3u+Z&u*31K3$i ztP!OMvSEr-VhEmUXgCC~M1CB&-WNNu5~9v%JF-utku$mn%W+hq3!HH36=U0;CNF0L z70SDZ9JOYzYkjX`wFuc^@!s%ZJzZ?351Sc`<%F_$juod*F55!aSk{L{Um}^!0_0%R zn__2u=8HDrUMijW)217QyUaU^XnZJirKJ9j-$Yf?OABRrBaNPZLtj&rg!S5cS}CLc zQA$+}pdB)NBzCUXN0@B^EJ_1LurSu#;;-h+ICGq#=}z6NW~Vc@(gCmdBaisTswI$Hs4REoJ_{c*8?8+slzopf{f>2;~gjxB4a>FJWO9XsR)v(qUEd8B-K2 z2j&?cx=!~Ng{Ez_AG==kjU~8=a+m3)C!{#D%;I|~V26rnN9k1=GK{j=&psm~117a8 zk4jS9(;6Bu?v_;cL5S{)Utn$WN`Qh%BXE~>>k^3Un;u}=6kZ>_R^B=Fn>O7$1#Dst zJYG_&rCMiz?06Z9%(pL-F%oz$hhF2Xh`QLI=s_`KFz-nmVfJ)EDcDqOdB!&=3VRKM zY6asvRuF7Zbi};Mac1vy)Z|i<)clYlXBas6J8h$5c)1$M! zheZyW0Xz@!5R#qY1r@1mXk1dNh#ZgRmP%bbuSk`|bJ*{xq(!LIF>JN&^wUHD^kf{Z z-B{r{UM!C2?a=D=NAhu)%Dbce*`FWyCBy6;J2Y@$5n1sajtMN!jV~&qxv$^6XgO;- zsFhfVk2+ez`#bNzz++;-J7}~;?EaC571OOSv`Rl^7Zdd87Et?-^1LFIA8qPcoeBmf zTFa1=fF5W!K&SGH5xI10Ok3S)wy^2K~U>Umx4O*4TQvKb& z@_SK(aOaB>(L~fAF=7N(p+2ET>G;16ozSTVO?Uy5dvuNrzb*)lQVe#Nwo4#9=BKNp zYQ)573cDgU9pOD9x^_^kT3(&jURZ>M@f=T3XDhQu6v~#pc=6(`u@~6o(yFB6Ur$5L z9ooAVGb+|@F#7_zpuVC;r*+5IS;v*W=>@kb*xQ(S`Ti9jWW2oh)X6k@RoA^X19!SX ze+=wkze)Yu30NN{WZxpG&&uiLI#bVP#8~420d7HlcQBt#RPEF>`$K@8l3Kkipvz1_ zZl|PTJsE8h6I1gHG;gcbn*irEk_ zx5j-+!Ok%Dq!Z6mER^8T{CX=n5qn>W6IeGpo?-_by_U`B3quXNG=9U(nx)sWv1c)4 zUd-vjols`4+g$tdCkE2f^BDzj%HR{TQZ%$63>x zeymWhXY533QyQMxvT+UFte#22F=XMtlC{qdUIr~fn)#K~e?ds_NuCP+ zW<4Y@Z8GfbVOMG5FzcXiKYV9%u$#=Q_(ZZsMOB&4UKNMGhVeOS5IXh?oEFNRq`j|& zi8!gNCEssBK%}<}`0EPIX00hUw(J+5!)sf_Toa9@VI%A1-Ppf}gXi z8>wja{&d-tDO1*?8B1TIcCxY;;lrL>MOtC-xTBaVYWwp86yIGbSg8u4SQ`46;tI+IIf*|8n@cl>42Ou_S*9zofRkZvLN>qNLOdo-*LO_*c|5k1+Qu0Ui2^8tzC zM0z%Ko>EVoIKg|1+?{&Fd!e4e*%Msr`Jx5kcc826%5N?$dSDQ$5la8y&x*d~++gmb zs9QGTw(#lI%M$)93O|ZTQ`>5mdM%f z`WHbrHijg^~Gwk60e1`GTL2SkYzHmNe)@Iu;H z>9{z5)oNjb(Owt!lNrmDkaMqFQc+v0p1s=d=$tqFbT4&n(<~DA>M241gZk= zwLj8G+GvL(TvwQVqqI>1%Ozv6hMFF1?fUN$P6@O>6k@+geI5rfhMINW_4{3hM|{dh zWN`C*)qJ*((Way>t&epo)4cE|6^5ZBy@pDzKcy>W?17np(z#Zn+6|iUumpY#$hQBV zgRMtJ>{;G^MOwW%i~}VM_84@#UE5Zy&V%}1 zQX>KDVu$UII#}w#0lQ&o?z3aeEZ_T7Oe*U`&HO#`uQ!1GU?L4WySJ#JTMBy7U5C z`5H)1;G3LImuj;49!+|{D42fpISqC{Khtpuo1uY>sJ(Q5YkEw2rQL9&`OUrRdL^PI zrV+F;B2?ux7PKPUsEz7H`*LFc*`E=o)j^e#;+_sP=q)P|CjahTE$CMWDWN)M^n0<*i9lQ&8}?B9IAne}^~8wEp?kh*Nd zh$Hmoz(f^$(7uD!?=)cau$-Qet=6#3o4XXr%J+-!qhPLgeDE17#%x9lxB+FNP6|C3 zDYIPPd&+Ry1wedHQ{sOPiDEkav0bv?UajkrZ;=I9)&1+V7kKj z`+AFJngcIw2H#>ewR|wM9bh`SNdC50Wjd_!fp37d(_s}auy_+A1#yvF&RuM44sa&3 z-y}ZwV1vDnamjr~Q!V#kjMwn_nL2e1CNSQWdW~te+5yHVIeIg8KQ6MvM$MmPHH>vQ zMnwkT3!lf>tae?lF!qWMGakgW26t!pov7}?k2bUIENC`4tk8puy|2nR{#eFZIJ9~N z7HC@#%QC~%@Qy#%FFK2S2fdB2_YFUAV3@uE%xjtvTwY#QbNk`FMvnX$2Nj_LPSAp7t( zZQ873=b!bpRd%ofA28Nl5)nL+Uu9m@Xz=Y2+nG<(agZ?6GlV+9++tFTg?=5hw65IcotABE0ynDr4 zU8G1wn9poxOtx++^xcdZYj`i3j}s1;l8S1B%?7so9oZh>xeS)XPhI%-+b2YQBo~i8 zOj$=M9@i6w{?~;f7$RugQ)UhlX3VJU?-gJqVrMaBlKONbK3P2*+35ByGCLomRoO+L z0e~y~LGZ+&QD_@uK^++0Vd^DE>G?ERiC1k{gS~1W7f}c^&1#%&t!?+Sp&`5GC16pn z(j;DFy-^6m{8(sLhj;ltvk5+(T)sc;=a+yPRnGXq_Gh!UC1!*|F+RDL zRvr+<2N^at3Rui21x8l*?X3sa(ibiAf|Nq|J>|n77@E@)Kc_-!oG6hw0J!r*NGzr$ zvf{rzJ7;!om3&&>|0-r!g{qD7j$roN=Qnb(ZyXzElV-X?DEDynf}b<$uhk1K-Hanf z`{4lGx<0vmsIo6mwwImvLH#IcUG2U>lu)@bLcoV98^pu!qt|@Bx9Wse15}R6%Zqt% zE(h%XKiTry|Tv~O_7@eq<;sKFEy_69-m{DC?TxuSq=qgV6Tt`Mv zq%!K`b4EwHrvQvZ^jK)F@ty7om~!NEJh=io!De^@c8U7o>Z>T3o6FC?gE-4+;lR6H zM%o8qB`%P_q4vmNJ0rfaMSMV<*)YEll$VN_UD6HTc~o<5fngf#Q{4apVqGXXT2!Bv z>Zu{yeAJKk#H$@Jiy3`{(BI@k*+%OD(Bb>n2buQ-)B-?8jkiV&xpB6_2}7SLuM#J&Y}=ce@ebGRki}pC9z_yxa(1f*1=!A@pbT^gx{wWXRa2` zr^WA6IFS|U#gJNNs!=_5;Xa>|a?pl0xyJ~PX$sXbJ=IEr3>c2@pKTfJFH(yo+A{XW zA>jl4g%VwV1vc9pQ9P(ll9RdXb4nmrQ#^7STHMK3DTfbo)*}${pj=ZByTV{S#lTv< zXI&sCov5s92fQYmikqX}N0Vi&N=hj0O*{1KlrFW;KVR7K@tN^jv=$yV9fT3!dqv{gupc7CvNoC?ifhh)mpVfv(q1o|5$`mlAYV`2p z`}awox`+JTsMq=*3jMpAE?1>+MlpBC{9v=|CIaiV$v$v6ht7Qk0}P@LE{0$lHla=d zBRl5Elpe=}uuM2zgGUxNOTivIhzJ{6=}b{}tz9L@8sS2pPb(neD)5 zh8Qg^UVa#lNbPBtw%8EQJI|8qK?L`QZ?0d7hpy`e%Qi#7wl8KOs56X#|zA7+c zq=(ySkbf4d;9mB8K#ucoVVT+&9^tzL&*qf7z!HlEMEM?LT>_x8=`7XPG}vJW;)u-v zF=H%aorAEmEa>oaBkx7s5e`;FjhTgoY4S51O61DlOrM^d;J=XtjGe!3>gaF!$_*IY z$-bCWoUdlr#NN$sMCBP_+=cVB};MBB_onjfmk z8Aff)3&JHdL&QG!@J>LIrL8Z>UB-W<1ahxBUnD>-=Qpg2`m%-h9c6}og=N|mw<{cF zPa_vjVY6MPMcjLYrJ7Y)W0v`pjOF+@v(NmP$S%r|(G~VW**LGv8Max*p18@5THWAI z>PH{8g4w60gW4;P5lS=mqZLsjmvSPm$5;=G9_&&MR{lCW+PXAe%v?v9Z=E-exMgg^ z`t_LO^nGI4dqBW)$K4XqI*X$nqV9e))Tp1ju$mKtPd|tf* zi|EG{1m5qgdq{f14;gvJk?%2H_8W;iVH;-pcFS`h*m4lx*0nAey^HL2Jti^MyQA6U z%0m)(?(6)Hf3|8Qet_<@!77Jj+g&K1PmsTALo#m*-26f(3j6vFp3F}l@8{2Og<4-3 z?`;4Z&o-?$FLA|%_nC|Zj_<0Ya3$2=$=e`tT2OW>qz0WbW8^tQzYY>>MQNP?tkN~Q zTvKX1bm4=H@du)D*~c+D%B<1-;MYrBu_GFr#10*q$1C}Af)VqyrRGHK>niq?$!3{LQ>hPI!?8u}YZ@1PSXmazNaCg3(Qi^z z7LykD=D(*-qZB$rO|JMwmezIPMMON){Wjb%@m5|=zwdjm5v2EJO7{=(>xo?HyM(R; zdQ4<gPj)9NN1+-VqH$ zx%1?_-<}HdW0)a3&!{FZn5{DZ4J_bA21(CuWmO4i^SeWfp=GK^+snJ{`y*Ow~$?gY#>P6*O-De2s9-g?kbZ~i1k?m*i&*$OM< z@uqzhtGns&7iP^uZzNz=09!<2f+_HGD0V#X7e2f(7~eK#SiNG{-_<8q z+cIE6C7M!Qh{hxl7gwiJvcuLui2*81nKf$`-lbY1Q=~C7F-7!CG}dkgzD~XTD#-zk z1!{~R>z}#7>f~d$fe}(7So;9`qqm}PXd>>fiGrC2xo)358~3ooH(wC`0@Tm^-p~70 zPloa62wRy6;Ohx(eoM z;2VIhs;?6|bd;_o$M8E)6?=zfuIQHI1we~^y|53>DQ1Yx@lSexNE0H%F;lWt(?P>( z=C{j2U99<3jEL=&WYU0%=C}A7={7=3A?B7(S*W@P8xLCuEI^E_f9bM3VoWYQpYBNu zT1YgXzA-xhi%zF6V#P^SHy(kAIz`W&48V-eP*VqCMhEDG>jVw$g%tkwWCzUx9Xr!` zb`$bgzzsZvGedm!t`(N=H@Yf7EDBZAcL7-E!2L$K0T9^|B!((&Y5>*;`>+PsE!0S% zt@~^-_bibGb4|MG=uJ;gt{`I=3yd4LZsBq)7(y3E>pJ@M z%xtr8SWt1tn75G=ebM$=StwQr>CWd z*dP8jKHtQn#Cm5&sxdur960BEHIM~q_Gpp4JiNlvq%$jA}i%lsniQ({N#1oDk zT#FZ1`udNhgpLI?L!~kL`%#L=^Ry#mwQr1K!Tez9Q#}IWoNA4C6c7og(*G}F3+i$b2dsIi;(Nmmz-^O>NQ(V~*i^#|kBg*;_CE#7J zQv!we9f~oG2g|^zW7witQWn2_IhL7Xq3MqjS^$vX`a7}Vn&o2?IK8`De826Orxkku zeF1HGrM@*Ho-ftrz0h|V=hV0N-C!qkdT~CUextuTc*WwsjUI$G6W%DZL^@;7iI_*< zcNCT<0sZXejHNX4f{IlBB*r?441pd3RO>8n>gkHqePppv9DU9 zljfkM=HuD4)E?kec)E{JXb)7ZSgGROTHGnD|B-94+NRTVP6w~U;WGRQUs%_&xSZAi zJbMenb*KET3^@5)kDjGV^Hm3zL-c?m>BhsiW1s2z6oPNZuCP2WwhQ(=GIh@Zzj?M3 zg6|~k(8{$m?&W)hXL}pN9NaTu&faM;Hv>2SR{g-QU0g99Kiy|-$#0d-SFsKV|Grw$ z723LGhSeMbmVD~uNz?3{E*ddnl911Z*X+5K3nv$ty`jb%7C3T7t>#14t)1o=$GGgf z#DB8{-b;oS<>m)D{L$oarV%dsdb^R+d1Yt1HTe`tzRMEbF}LnWTol3D=IlddY+?gD z@s*NXB|iH=DKK;IzKSB)m?OVzH#=Xjo0il_92=0$8pmm{6sP{wU{{!&W3<=J%ln+O@mr!Ds^rF-RS0vMUY$67C@V-`gcv-a-8$M6s)Jr1i%UcPtV z*$Hp%qV#wfSQv^CW0%znr0}tr*xYC2=q_evgXWdv5w@SAwue?1mPEY0|r7Ypo0g ztH7rqp=W>#yQe?)wG@>QV}WgtI;$| zR**pjgGsPIeF8QESo;AriO^oq@vv-QJ0sB}~Y5Q+bXb zi`-s!XyuycoO{fzf?)GAtd#XJZN`9Lto}7ZwgZ;&6y3wl z223Ov?HLizigY+};j15$RJKiGK0_Pu$!R%&FC!BJv zd5Hy#nG9nQW6hM{u6H*(5L8^oZr0rmcZU(N4cdLXnVtEzrQKB#ZolygXV95cU0`#v z+zEQ^$5xdp4M*oi8Cn=?oF(|feS_i>A!qSUBJ)-C^QJ)c3m0{f2ECxhZ}et8Gm!rW zmfdUpT$7Xc3`=pC?&YRdFs(zjB52(wtjb!Oc zht-XwHD&W$k4!}U#*%!Ml^q1DXa6mS_I&&3Znf*|g5U8y-S1rY$frN?R$$88z9J~P zJk$IlD9cpe(2f|o(yjB~{$&1fI$shjG#{Fq@5|-n%pVnOB4yiKg_*%|grFpcg$8T$ zS`l?k3`vvTxpq@(LHWiZLrD)=!OY(R$Of;A?;nmp6kC7`E-S`1S1(++kYX->U@r;~ zwuv2J-rD}jU9kKi(N|Nx@%rmLJaYAhB<6YYp#*ApUWxjE1};&Fy+{)SW*Lmvoc*4q z$V^Y&5W8p>j|yUm%FT~drtNQlwHg7C@mb&!6$9ARAhCZSzg*?Yx?Gp3*7mJ+7!FEU zt#jADxpwVZx@iizU2c@Q8K>p;&iP2L4qK(sw38pf6)Rx%WV}d=T%j2ON{t7w3&Hgd zKYZh!a4)z+J@2Ho`3Z;RUJH)lZftrc-5lXE6{5_|;G@TlALvFUxaZxf+kwG?OWq8` z!Z%a;t``ZXy1i%lvrfTrDb`o-2KeThnenpFUt~V%axEf6zj^AZr@n!iDz#(q0`Rf7 z>5kR*%_r8H$JH9Ae$<rLw<3N^bItG=_Vp07c zTN!gyEnWmU4rBNbV?^v_!#t)#@CF+0m^xVoh@YtcQ24@1w%Sm zHhtpq9HK-DOWU}S8&ml)<9&Vy+-dq7S(Iu8bN+Byz!du*p5X^RDMV5R0JXt#|;*+U#s@aW^ZoJ4GJ^_V4;(P52Z3K7cx?}kLS*@3A5pv|E9AQyd zNkr6Q1;%?B!wE@F9wa4Z7#3DPiCll7yft3%0sxy}gh4+u*W)=9umerjQL-w#!||?V zFcpk@m|fOmdDM80#k&R{9snx$MRoSXh0AcOrXO9eNJK2*Q4*2m(wNO_I*kx*a)Zg7 zoY=VP9XGH*97gG5_0c+k<&vYwy2z@8XvYGB37LTtWi>T{VU*;%WRb&eJQ5M!JCz)M zKw{k~p6Hl({w;jsQ(i+&e$x6D=mnoC+yMTKY@4-~e=CzpOJy}61H6t=My}$;@%$Hv zVC)$h+G$%q@C9!P6+B6pzq#kLb5l6-xrdDrP6CeF39OcfJq=SoCymC~WNMQzBrUcJ zX^d(OQ@BxEaF0xSp^AH^ez+HBzcVM|r!6x^vh9S%^v*J4EM635hW#A@<;qPct1CRm z`$O%<{nTTtfi>!w(c{QswVHFp{_n35 z12V@4r8+wJ$eQBGbY(!1VK-g%nY#%z!XWoG*C!KSG5T3HndSJNyU8-e;j6>PHRoS6 z!#@N!17t@B`lt|8Bp<_D^qk1>=<3)+X>?e3V9H{n1bSo> zH@~1%{p78wtPowf!jECJ4Y#vZ-l;w;r#U6Ozlc#XjULP6<&aZ_xzvGT;pL9eo84u| zh{mP>^!Q{9?K68RkbyA_cgUw7G75c&o1n>~AI|C%yUY0BDS^jEPWwFi*U%z=>`$%Y z9djJUk>SI-UBw<@Gxh-9r(ik0q3mMyY)143-zo>A0b>_==d0izc1rEH|G`)TK=)2y zzC}h+C)h7|A7XxHqjadqOVVH$tgj2IlEp6tVQtus zTVP38_MwlnB1U5DL_h=Z*cGPTDqYU;ZR~rjUcGv6hr0UjF#LUc(T_R_h6%OxC{fe- zuu>;j#@a6J_)wM)6-0+gw~S6;;31|J6amn9b>GA#Yy-<|u0R~)53e<|cFUJwV9;&0 zxxse%pKsX|tYy0Q8atzF$htE2;&1G<_KnGdVK%!SFrQHz*5hjR?`CNV2H`=YVyuQ@ z%QS-=E_^-x9AjhLXe8qLwcaa?b$c-!yE1bQI)l=denE?K3oPGOnp(*(7g2TW)Tx-|NUG{nvV@toer8s;Ra7K%m~3+C z62AJYgXEjcI_0nQBY(BS2B?3fQaVKK`c$!7p%yR?4d~$*#!zg+p(N>gfem*(oXF=X z?tu-FuyMOx<>ol5oG;U#erksui4Q=|OR>{unwwx-+~FSi1`T|=8DEVWHJ)HYA+=2{ z@{Rp;=@#F#p^?ANFC0zi6r?kj^8UB=ls>;AC~x;oCc^@-@Lx&bnIQioQry>5Zw@Pi<^7MUg%_u1K@k!qB$LLf=+L=U;`h8U#Eu&Y?1TT*1*rT@bc2we@* z@$sXfz7LcS-mArU;T9OoTMq=qc`NMjE#z*oZ%pMI!S?{OSkgWqFWqS`9Xe>ea!w8C<|!1B2sg#e~-JnuoW+Vk9ARQ^{! zn{9TBe*8>T%NRnB_kh~F;dR-r4I4JVxQ-s=-CM!chszCrx%ya)utxwSGVc+ZA~8e{ zwBl_=zevAH>35=Eq@nCQA^JsnFIGl~evt;&Mf3}Fk&`s@8Nn}-eX+5h=m&kzu*Adx zJ$gL!2>SF2mKXLG+-35fy)sxC4_4|4K5Bv+bDz{$p%k~*F)CXawq1Kc=oNOMbVKgq z100Of_08PsKKD_qEjgc=Mcp+o4smwE4rRe$03c11G58kI5{joEZ(`M^ccYv9k16E z`k7^9>7vm0xXtMS_LpKgpMu*?;IR7Pu#Ki`#fqJ`(zQHvSc?hesJs#g&d&gpbn3g` z55i#>iiojW3l1}idj&N;I@f;DDV!vUy>&r>2*4@z1eO-9mu55G0RpgC)mxJjuFgU@;juDv)!=HBc3mh3?Gx`Y*w+UHqq{2}hqXe7D&e%h8*_Y^vX+0DQru*&A&6m94-t{R4cS)d9MILvvv5 z2fqqFc$9^Uj&XcFd*h+rzOZGYjuEAIGNrGog$ff$vgt_*j&cq|Y z3AR}e(vb@dy0yeKwK(Y6VP8PqXky}ZpThB3s$X1Cx54$j%F*Rg`gdvXcm z0=9N3dT8NJ+_>Z4o60qJg{OP|Vl^7CxakmDPuHVhGdz19MlFZe!W!iUiaC+;#yD#vFwXkTj0hf*4)o0paO7 zW=2L6YJ41!6HDckHQwL!>g3|$VtQZXvQ(TymuIi+ruDAa0-gdS6;@vOTUf)xUi%Dg z*$X_RT3Il1BC{p3!up;7cS*3{lh`_q>|wLP(%mx18aB?-b>c_}8)xV*VQ#p;5&vZ2 zg$oykwRD#`{h^f2HLUWrHxPvoaLp?>Dh@WE;^vj&K7`!fyLT@vLm}kRU%`YtGwf&| zlG+kPN-DFTAi&%$MmtQd1L#1wnO(aZLbr*uvOfgx6d8g8x{R&>EK8)xbJSTeu8s=xz_L+Lc#`#3n4MhjODi@bE+wQHd#lwqwT=Ck!h zd8+P#&(BcdUvo(n1e?ZZ$o>>M#*J5S5Gp81Lx9smR%X2VQ7OQJr_Bn7xtEM2Nlv-xW3%L`~&r54eyp<$@;`<)%5AnIo3U(4F@V$g# z`ti_t0{NZQ2*Eh5+LvspQ%W-O4(FT7P|s>YN^4x@n%M`Fp#C1P@8=~x!b9LmZ9pi- z(W}bCqKh_76x*H=$us1QyfzyL5HE(UlI0eK$n!yi`6U^epo1g~(rDqDpWsdcOON(4 zKOP-h`yT8w5>ZGO{7C!{Yhd%H?gi1EAk#!2LOoxBb-QOw8tEw}m8E+UdA=e9V6$6@ z5~+0aO@%;`TGym@7~gY7+2APVZ6btY|u*gY?t4f-_4vR_w(DBL_ zAd74w1ci`;b&WLywO6A}C0DWqIbrh0ktJT)KRGDB?bB&!k$*1Xe?X)M$b5?R?hu=rz;=<0Ezh zDAO^XC+1FzPsh<^HCnu$#}5(uw0~n$uNVYh+fH~59n6K}nixWQO^=80W$VT}M z%OQ4ri-OiAURsZpg_}u1vm0d5ISldRxw|wYi%b@lER(ZR^D`MZT1Xe)DHZ};s>D!<$ffuauqbx=uv!|>*baX{k3jp9pn3IIl*(x zz813hr(yUGGu{dcpI?Al34S_j%!+7?XA3uToeYOCDq)cTLA1v5ixj)s&hEQqR{20U zIcF2crMBAh;0rxKuFuoOc&;343k%wUpMc{y3sZ9fI19>!x~Jh;X2l6Ol`=j4N~mH2 zRSY#q9wlOBUuuIZp-=M)-~z0j=p4$wOb8W@!`GBvh0|+EXech?^j308E@QAda-b(1 ziPtK$hiP@wk2qdYt9=6p^WzM~qwzplEjM^57AEJ*TmkTLCa99Et~6BM9vg z7Q`}ggJ7V`d-Lj6MH!w(KA?FId35x!h1Ih)?8Thw1@a=d3wA#jIK1s$buB5=wJ)*7 z^1i;v8--()8FWaa`1U}d`1aTyXf7>VwrpZ5&)<>J(cUW@>WC%tGE}vYu%dsCO?i8UVBFLOdjxCz6;s3{ zPzHLHjZ9pH0UIe_e`1Ywg4H%(T0?Z-CVsHf^y{M1#lSllgxJd#yDe@~u?VzDi)9-5rxkvrh2Zy_`LqUDtMHBAdA~xeAdvRRFrZ2d1)NUVL7Am z7M0;V87FchNdsX{jeh2x^N-kpGahkzkR~3ND_5u4P!eew524L!A5ThoBv-iz>3%2=UoJs@iRS=r__Fi6I z{it}}Bs`N!s4Jz4pkZ zgZx;9g>*4^q_D166@(R9v}Pt-=;e4w&cm*Y1Y)5%Q&~ke35S~%Nraq_trn+RcUBzv zZ%x=^F5#_XC`awRI9O|Xn1m}O$ZMXyHP;_4UVj_Kh$ zm->EU&+ixxtrY@LC&wqSQ`j+Bav1=Fgx*o6u;aUuy5oQX#KkI1uO0okO2Y9 ze-it$pyykatq7cE!D*_>>(dY(W@IFOqig2(SFz71s~;$Tr(s$)rmGAX1Jx6yf-w0o zUmYN9b0s4|`F*H~WZ?N)G9YSLREpjg8Wx%Htg=SSH_yN-R&fK)_(g|cJvda!rNT0! zCag(~>&RerGBV!0s7D!vUu0y&af3o#2sz%sXd$Fxc|0RCGNO8N-Id0niryAl zsYdn{^>a`W{p4rFWkUviGcq2?kEe;8A?|)2w9Yazp0VZ91PVU~Ea9|K8yY~bHNU$c zZW?FdzZVU|^u=v*T=cQzYxl7j#W@M)6BvacHrjE;hzQi_6lI)VVAJTJ^;RXNQ49*6ADF2c6EX}O14-N_M}}tY4?jb);zPK$bfzJ6EAJVz=5#v z&C#$dur4t`iwM^eu)MW`z|*3DP19)cTEf-=vMBk%#hu;U_*qY-2C@_>^4Vf=+?2Yw zxlkqR*Hc&bG+^n4penCFmZW=2Zrzqd2Sk4)Uw?3ZeH$=Nvh0(5`9wYHW!GBa#nLSv zV`7Wth0zSdAR9)DdC{@D@%GMd4r0mfcQh6|w(DtdM0W3Z37-|~g^CnweMYXAnDy%? zm(R*6HGuOOCF!;QE$W6zYR~=*i^cFd6&XaBs zgeA=85sXh|;D%4<9{5kOk`~4v2tWFj6GA^?ERKo{@GV^$Dl5lG*uyDendPMi^L#C`1i;MwRN-5^PXs&Vi2F=c2yatVRq!S4=yq#WL`%!69Q)M9J*LLj=gbMu? z1Ovu6Y$nZVGknZ=cXRdao3EB%;=D@ANEU44(94iF5(gGVIrVY-y$qHQ&u8k$1-9_q z&|BOd(ah*`FIanW&Qr@E8iS*nYLTiidU~39Z*zs>$YUKrwz}6bSbPyzM-!yiPhl(^ zOE+%FbIs?3CTS2XN>{^j7*gg#^;st<_GDJ^Og!*`#j*?<#5^*!@D-HiwjLb*Ay&r^ zkvnA;e7(f>dH@XS6ala{Gzh`~Q#a^wBm!3R9Kq{^B!^2lwiEE^Rd|BcVkNv7AooYg zmC4j&C8?u99H2S z#v#8q%@1ai7_$9=vCRle)?aY)Ps$jRs8trUypU6qCKf9w=y!11fdDBr>^J>mt?Eyb zv;J&-2N?H1BYZ-y(9Dmgw<{VZZt&lp{J_&$`L3Q9F+_ivN)WLtm-Qily6M5rnwWeg zSg(u&co_$QpNsXmC?{Xn?KnoT(AGgsZf-GdcPzNBtp z(-K(^kVXsFVHtRhZnS*Sf$gT3e2x7zEBUioDLA0Lp$pr9W-GA))G-1CY5*w#oB%4L zjR&cZkQ>i1Hn8Rj_SI#A1AedS3YBMIpQnRfp6eM{y7?t?9{vvRGAz5QF=;Ik6#g~j z!5M7D;6mEn5E_Etpi;5;JmkIXO1Pu10hLO@@soC9{I%;G*!zi-dN4oFG9XGrP#g^9 zrJvv$i0ljDWtRiNL8FZH6sq+iYV*Ou-_fF-C`x{e|9`B3LV2{rvy^CdE?&0@fa`Ym z(fWoBJsLLr{pUl}0@$cY!nL7n6@=&oY zEk%@s(@P|aY1l7h*CF7`tCAtEQC|2wkP9tcfm8~>k*oGv@1#McR?-P-a~`2LLc7d< z1n+g#ZlYf+b%JkkrG)e6u|)}}Q~>00CJr!bBGj4Y(Y2P9ud-4Rin|i43Gv#}7WwuO zt@K>z#41e59D9R>UL55{K+oa}uZIt;8jn?Uf;wWM6@*$tt@MH?@iF{MHBfy5_VuT*vp3fr*~M0e=yx^8h$y2p2uD|Y?g?%BU_ZtLwn5FCyLaDIOWl` zPBtAmghnM%E68m`98NM>a6gcR9XqZLhWz{@-VSA32JFD|3-Dv!(w7BuHCsDB7aC7D z*I9>L!BI9AC_)QFrw2?D>+tVPj3e_TKhup#4uHsB+s)j_^{&INS%i&>ujsGdGTg%3 zE&0H7i?(=ls&KxT1E$Agm(G8bKQQ!#hjj+3Y=%X4Q?0Sb@KWIPUL$?h_ZJ0vQ8&Q& zH8o!|mh)gGaCw1W_FP`SNRi=>GkDEs&?9;IsUlx`S1_yS5B=LYdY3qV;tB(tlkrEj zky;0Wp3|K6i3awUFn9YrZwyC7>+v6DG&y?Bj}6QrY>KOeCB47vz&Tkp_h6i&$KP;R z$=~n`<9(aTVlD@C#~)OA0fUu1fYTQ-pYuO)Q8j&+iQvIIK))FfQ}LY~ay%={rlvn( zv=FKnjaM!z*>KUKJ@61rpAdN%7M_IkydRsOOxN3w=bfE=cCub%lf(zWIOp)TE#-SK zPlvsp_rH&M+T`VZNy2V?8!hC0?md`&E~aZ^w_R4=gE`()I>?EAnxJQQ zJLGVjv&YVP+F{+uDRG+o!*ue?C(O+%czdVyGb-)O&?v!dx` zy|T$XDWia%^U3#`m~bt0p1c#gGEPJ1moGnk{rV(K!sRhiMn|qQxkAA^)u+t#GsplI z|J%K-3qmej28p-dvaM70z=Ta+`v?494P|cJcn!we*y{eI`=@w@I_Tuu{sP_s#-V*0EdNja+wC`J<^>NQiIndg>ND`)srx&n-;Mp~Hk(8KKm-i^YC z>q!<@DYu5-9*L#HutQ7fSYMUWyrUAb-AMyA49Y;rm9M`TolbPaJxCR59z{0Rr~Tz< z!zJuJErD{MDz9v`p?7Y+2Flm6^CScFiD$8CaIohvy{-$SRMo*w{lm#aW=7wIg!fax zPPftt*{qpdl$WV6_-}?0xf{`dkUGMeg!XWHuN2Tql5&-=Av z#bQi~8o86iwbW?gnmyirjrBM}+6v-Y)cFz_ZF)E=Sc(v#Y1gz6nntdQ&qf1FJ|kag z^vA1E1C5xKHv-foJ>3~Om+!GNF)>kq3S7gu`-Drffq;2z63kD_AuQxbBjKkM1i+;u zM}FxbzVzTKJSOJz-NwVs4bjG$fS%e!IGH@+%VBrM6gk^pCq!a>Om z^~oYuyIY_7eR{Eszbjqp?JmPC6biAQ+^~LQU>Mro3z+*oa#2V~kG3MQW%US8RE;4` zc#a;+afAfv?~Kk>h;AfY{uCEG7`s<7EDV9$%K6~6;20g!)L>I;P|__r?bjEqEW$X1 zr;z(QI5`Ns0ly_L=XFZC!G6opF|rw;25-p=_$)^ec21z=+vg<^sufM-#iSgTc|8HE zyjT>u>;c-HQ!g@w$w6ojW-fV7S8sJrCd^L&b*3&SKTjtxs#ShzGD)Bfs1`<$m|3&- zkwfKvj)HAe3EZn)PH%63xXx<99Qdq<8oIl)$x?K#KjbudvSxIB+jl~{|Htcpqz0V6 zdrlg;DWUSOzxH4Z)Lfh4Lq>xliVf8jb%ny=kgM;U}gwiMsA+Y>&ZFGL>{eo)|?) zO`fC2vK++MZRP~B{DQHa@lzAyho%NXNwi-Oj$fju&l9kG#GmKru`BQ#j0R0-%S1d$ z?3|NlX|b9q$`?(GvsdSY6Lyu%iv5?+q@U@NTjmNYnH?F$R&%T;tM z>8N>;bwx1OCOCN|ZE?X|XUTLC^L7w&4wCzsgezvhA@C(=4TI_|7D&7eu0nNzTkS3f z^TOl~{bqBaGw6}%Gd*0z{xV<9iUdF1F#-#ryf~;l(SwTj|O65 z`QzI~-qk_#$OMZU)=l;s06R^sFgJg?=`;ImGQzA^k324ca?OA7hsC=#gBOB?P}CTg)lt-#|#jf(Bj| z3pUz?kg$o+ZyslQ>2n{)>C5v%Vs(?qUOvsbuZe$4$|?kg#cv#z=}vfG`8{!hLmUs% z4!IG^lg}aIRC4qcLgFeId`h{#c)DQt4gjDGrg!kORWCyxKHN8MAxY-7Oh;DghLxUps^%HY;#Kdnej6 zpv(`*X}h;@0<=mXQpUpcDH%x)Q#H2iG&vd`5Hg2eds1Z~q?0GP1(p`=Zg;?_+?NT| z#Kh~jME+@uY&kxk*dMDD5%*9W;?vUb%m{0t(c*OwAr@_sB6Wg1VY*tP=HDaU@rK+j zp7pk;DZhoET&6tt2igHAjKnDAK<8mNOdIJp!1-9VB(C6*22Z83Kk}y?-U6W(6J#?K z?>*Jko@GM@OQh3j4|N9%BWK8+TxIZmehD6q6>&Mo+gMvK?B_@SLa+%!D-D^XmH zHw{l>enFg2({Rx(;%MpTRZ}gMAq^#Q4pK zeAAp8iA65(ql6()Csm~3ZI!NaA$444);GfuUvT8i$pC_J0&q;oam}($z z!NW9^5rG0jhYnSDU_GzKgL&yWy;_*c*&=yQDt!Ox)0YF)msM28kyciO=j$>x1;;UO zY2#23ell8Zi+wOQ+OkHlUncf@{pVBV6@wiHt%1xfmKpDGPdL4{7n3!2$g?Kd598+= z4cBjBfIn4>!;T#mgRB_$3rjY<;brcBCJ^JJg)}{M80#;kJeYQp>5Ly%8>dRE{b8@r zo0jZY(P13zGo-DLPdeNQzhR6|NST%|MV`(HyEIXl{)1ySl(0$|xdy#Vxyv6qbZB<& z+_r{~p6!ps|GWl@uZ>7P*u_e|BYMlCO%{jd4ooGdy2FRdc}GTD zG1apfqvY>uq5Wy5S&y4A>JOp9Ig2!J%DvF`fyAP3arvY(a%l!j8eq^z3?n38@4Fc= zHpToZb(v<@s2xQP=?s?0(x}u1^4w-X5*2(zCbQBkJ%c1`|M%oP^F3e_gkBeUYd4XV=@i*!*GI@17SxDO=%8Li=DTyJwD4U;jRE%0h8gfk-QClC%mG8YW8< z&3aX&v{tZ+E^)1u=~ga&oy+Ig#*JyXwCmYv~9gVH2`qmt*uBx$h}46-R!sfGb0-cG9y5HTgG6qzcSQiNN*?-9{d zY4B9D%U?Xb?cNAp?!P(K-Wxln(bYd<@QjU3fp38%T^nlpqRpYrCdDMlzoej8{mr{Q zd%QmRWCIu#;`2kFsB@xudqgFEDJUAzlV(L7JZalEMpZ(k`??%YI4_mbEo~SO>m*4J zcxfXRfO)?I27(@^OZ*~n9jmrHO$w>6M^&Oq-cBWJblL)qr(o83Ha`?{UwRfs>+?eM ze5~HLX|#%Ikn7s-6~+3MQ=4 z2kDv*sih|x3s7(cJ^GRO|5*br4h9KhOy_>tLq!^#rjdku+XnGJg>BEe($ zw_=JkUh^L02A{Bk;MYz)Dx?jw1mQ63v^1Q)!~)Fr0zYZd;wgUK(G1p=ePmVvuK*^j zYBU~|3888j>)(G}rZbMKigGoJ$Dv|PBeWZ~Fw{N*YiDZc;yQ5#haZIboYPqu#xu(3A}y#Htg|lYTPxDj#RRtgn@k(q5#SF@87>Yrg(jKb_B}3 zZr!?liFw$u8t75b`!HvAqSj|h!+$mQU2A%!Eb#5-`%3O`LMK5e`)HXD zf5iR+O}(M-RrqI7IPKOYEOMe^a6`z6a5oiGDqBm0zgkq6CNSEfY#OH4s21g}SItc= zhySleN;s_M*p)1FAb;BBrSN@14Q$J>lw7go1Jeh`SU&=U`o|JGqqSxb2{3(*)mv;K zQ6}?Bg+^p#2-917wzAwHx*1VU=PJZtay_3yWuBh;pbdwPr+b}g7*GAEJmdxxuF9B` z>vyRn<6IOOst7876|5oXtZNL7(iSsTmxPtcf{Ojg*PX0a^f4LdjM|+eDIIvd2Xl%{ zA%TUu^?a@FfzaV~aHrICk`C@S$gO^C!vWip1{|Yo2-s?-vYyW)LN0Bz9K+Sq|496+ zHLx~FnO3#XYn4HYTCinSPhyX4Cs(W{5~yCE^cZyv%AD|iN06DRaAp(ohaKieE;B|A zC)G3A_%(3=^dX***M$Y17KO4|55Xf;4!jyzPFI0$6G9f**)N+(YBeo+;o3cnST({_ zs@!X0HKiseu!z|Df5~x|Sk2POYI$FgoibtZCr?mn9SinH*1uf?4Ub;Aa^>okD@RN% ztNT!8{D_VQ4&%Rru%gDm1b6GONCy^EYk&TN9)S^#!r)U-qhd5v`2$PWm~mrwIBqR; zh9(*)NnZ{ZY4?#f;;2*^IvKZLNDp+zM9+5sFl;xKoFug z*XrdUn=26NPg8>b65c;sT;}4w{nDk&mmoB-`-HG}`7r4=Nw!~XbcR`|Db!B?G>btG zRQouHm3fWdau$lBx`6t@S_vKngp?p!B@OpMZh<7k!nT`1k7FBVdFFcU6uSQOHnwn0 zQS=l^>4Mr2vdMh6;RN?XP&VAogtnA8np4aha)Nsg>n@|~UkN@kZ_JpXg*XV3sNUoVq$_f@v>W13yXL!OG<9KP9llSU zXAMAKCOpgzLbI{AE%p)kztup&3J_dHsVOZ7kH2~q3}s>(zVV7v-xs(DJ(oPP_sA!I z{WX15!F4LweI1eo%TmuP7nmu{SPbEqSEfsWJDL7;`-(Beb5dTJP0|YiQ=^%OLHV0=SWfjvRRSCuk{x+i z>}||t8Z9vhGW4bvZ-+sjWAu&Nx50KxpUt$2vU-r5fB18@0h^pmmxLYTBy`5WLZ)H^ zoV9%U@)n;XQz9QEW7Lwz4svWT{}|MoP#x@5v8tFQ887Euh3$`4SlK!#51hev#|i^y zm1p52TEPYgp#xt7MErM_6fPSp$3IPKbSQMN*z&SXs!@W(a|7K)6uPBGDf= zZ@!ITQad7>1&C0#Jbe!(W801n`riH&BeWF9h(AB|9tG#7oBeqxST4v*s5viXmUk() z?z#2!LuZ&Dg5uFZWmEVJDig>2z<-W3sh&_LANcfxRu%u+^|Ko!W}TIaOWX7EHpZFe zuTxdnCPZ)`{P{%C%mYUe;lRG`T`<0_jwb06v%n4+o(qoF#isL6DiX)D7O+5cP_WrS zaz*^6e*XM@Z@|M(($i9j;!)JLk)5NNN87!FFn;{7?>3xb(WTDSs1dwK?>!HNoELAW z#`E-y3AD3)ppc=RZ1n09w z7(&y)8DL?L>9Pf+sdvN|DpdErbcz0A!hXZtm};q8N(VyjMf@oAOAe;SMZ5!l_X&Qp zX7$oi)2@w6qQc*M-Gf!U=Vrcz{{NI#%7_;dCy6&x+|W1^zsv1y6|&cDSe z=kvq(2R4n5HammEyl4XZ%ouX-qx?kt?H6dHBUo%ZXlioknRvv~E`m)x#h+N5-KA(9 zdzSdEi<*LZDN_bjZ`pF=`SbDLea_n`u4n$d;eJ;xyJ>~I8~$|=D&6*M#GXBE#ZGhP zIN=xZf=r*q^mC^}!JV_ml2&4{yj0Eh-JW1Ppa)m_ z74!{EzSCSSUi>o7(Bxnkb0^}mPVcKpzTBx%%9W<0aU5Jj*%kbpj@CP~_!~_MN{XnK z4jBMYqzl1DPGB0JxgUmHvh~vN<<+hw;3v`*0C2VRA|qRvVoG-Jfkm^%uSq})wBaAF=i zR9J`(F1;kTr*{=cL=b|3o7D|-<`X{1O2Xd|sTF$*hIV;PqL?U0mLk->sdX4c-qz(m z#)cd?nj?4G8*!GZBA4#&rP+M*ponB&aZMhY+F_k?#RjusfS*}xI4p6{qJSF=pwCc9t5pjfYW5OWU97>l)z1Nc1nSvTB8%Ftnoc%$B z;240dFE4KNZf4iXF)Ms9oNPWfm2kd>>HYOqYLx!<7Ahp3x|&e~7CfNQRSD^jA3vrZ z?Fre!CQDrp-=U^d!?E(qxT(ILZk}TRIG`-*E<_CSpryHO^#j*GWP?FX$4Rz$m%{#7Uq%F;?^oxrADiF5rS*2$07+V6gB5%v?flLL z18*4CZzsstfa6u|)LKZAEw=gnSQWc8f0D*J*pYY%AF67_21;LlNk0I=;lix6^s;D-vpb|HE+xkV_j7i`{z z763w9gJ>@OHuN6{p#sPBzF35pDf=T=J_L=3m2&y?9Dg`O_K3u$^&>EI+@x0a>>Vyb z&Cmrf+ccJTb%Fg;D#mYQ0|97G0K2fM8N6g$GzIlav87*u*_~sVlq`NHza0CeB32kH zzKaEAIa%@)y;9vHOlb$9D5E5sdNzL zN|DUo2vihyECEJ8%4PZhwTV$|rPQal=h!7Nv}T7HSUH%Faiqb)Ug}Dvy#|Ef`!A)9 zD-xtUjL?~kE#-0&urbiDZh2O^d2EIUqa{BhC5z70+*knU%)6v}++dV|e~kV+HBe|p zq+`G3zO$?oUeF=Qlqs%ay6!)P1Muz%_^3M}K9RowdAht3jL~Cuq=qKZ9=yr?Cd*eg zVO{WE<#SyWc4@Mfz5nXdBRMl^QV*}HHk8+l}#-5)5Xe$+*w z(}2|;Dsts`jt6iGZ@ZC}SpFxZc%~`V*kpV=yQ|r!y`0WL*nQf}273(HAX}`99rk(b zYwG`!`BED>UV%5#NDhNzP-kpsGf>y`NVdys=m2#P@8RN1#Ob(fKW?bT@HEmL9C-qL z<;~X`$GFbG&*;#e)zJd5`cXE-EU^~KL}h&+Pb00r9pyC5QQj`oRk7gmoDqbB!U`}^ zmdq87kJ(rmu-7@JA}edqnfj)vv%3aQqq1WB$}X3%b@(?;PPkThjsGen^PGAZQXJ^lfvr{8@E zzcbbWfQsdMi{C;?1T0k^m6?eX!BEM4kk^xbpf`x1wqRdypy^lGxL;qKJmW`HE)HKC zbszS0bIVServW34E;gdUuTUmK4WTjWA~HZO|H33F%eb^zK~(}~muH9SSoM$ezg7cT z@-{v^*+!)nRJDIu0Q1!mB%DWsHvt^q+O71kzk)aMBYn!$_5CS-(kF!vWHVH={G14! z7nH4po%wVyugvMG@aLU`Yfl|(EOTS7%?qMq+$Mi-Uo$W0{MlwD<7fhDcq8z*0U4{zGW{ zA%>iN5A|%+!DOZV}c7dVOjUaZ0h+x4vo!6(l=@T4SC z1Rk;W{))*qfrFOWwt>M5gW6Y2oF$>palx()Y=yB8E6dQ?PUEl=Oq?aBV7#A=v-Co2 zJDQx+cFr1HRf1D-HW`*qz{#e8GZinMgdeb?EIri9TZbyJ1t&ISWm&pm>I63WPo+DN z(zZoAVPC6dqHv&%UiN+VgXZnw!)0^79DYPT7uqV-vG8^7VFdv1I>Eceu@Y6Z{X1g! z7J9tKpAke}Tm~?W7b;P7TXiDi~iizxCZ-LtYj?Bavcnj^H)WF0L^z#6_;V9dRX5 z^(Tawo3gH$Z0vD6kzfnw%CqU?fqd>3dmV6h1q&Q!F+zrFTp&qn2l7U+Im3T@PQ1Un zO&J=-W4yx}bBlvIWrxFcu?Em%1T494+nZNYk$d8ErF@Y^2fEyn0@Zl>+ zmj8|xg2CAIWz^&@>79%dTIjg|f)1EIQyIfC_erc31qo_~deQqhmeJb)ue&~AQ}m%D z&cFsruqjEm)a$`--oU^=TQfa&1adqgKKTD5;3 z7t7Dp$q9SC1g&Hy>+0=3_)BJQEW2naa!`A1j4Bx~Nr@g1{Z8s@Fl8#s$QP2-2S}$) zQlv0MI0WX19?^lEa*`w*L6aS}``?w{k(rX{esQoQ#VD^QU|sn80cWeic_YO(;ITuR z^a?DAb_&+8I2>=h#ESkUNeY|@VUL90(d)!N;&gMRRVsbSXrM2l94_g1{qhYIkOoLy z4LXK$^*j1F3AmB4M(c6Jz6IO*85pJfCF!+1W@jF_%lBB4gsRkahe^^4W?Vw&15pc3 zZ5hNe82WQ~5_B}yA{4kTJvIg`c!8mk^as!R7<*3*ybTy%0gmYyUl6q)KYqOaiIp{A zonGJ%Kg5xDQFP^A>J7F(dJ#BmxW#~lMX(=}fg+u0m@$n0eF(?Bu^1zUTEV(nI}8@2 zMhM26t_s*{J;D>!l5KsxRE0&Nw``1x#ZXRa`dI|`$AnzBZm6AxgW66D9bkP5&@H36 z;e-YQCeJi*TsczcE-d!bmx}QCK~M{}8Gf1xo}h;F;(F}1ediDLefqAJF8E;)Mcv#> zbX>6DwIAQZbssum*RF)yFO~1-MefPdF6Ut6RkB?g z4yj^hQ;x?$oH5lJLY*b)x((zC{?|v@VBT=#7yo<=L1_Dm8!?W0U)e^zXQ5^j+atfY z293JWg`BZAKo48H`H47~#qZrSc;27cHv zlgn7>BLr78u;Umn1=jo$g_}WwIE4M-_N94%(ST{tIf5|M&;qOTuFO;Zq)*7iVyFz1 zPYoxUa|lFSV5ZS`@#4k(zbqs|ALIXa4b*PmescR`C-`w9nwnGZ$BEFYLbzy3{7VI( ze@)m{$~{5T0OW=BKxai5XbKrjFqJcIaSW?ht@B49WIj5Bh`=scBgKSUmnsnWfBN7U-PIIt7%KaiJEG?I2suBoS+hxh{(00vHWW6}1S*$$dLPYd z2d=fHV4$)CB6Nr||09xps6Z8K)#6*MF`7rQ&Ku#q_h&5!=f@MC0`xDWxqy)GfvVGN-E(kBFu}koy@DL3cNnz(0d!X&Ol4p0&GbhJCt*XW0|UkP zehk%waJ8M0nobpJlR$R&sbExxj(jBkjT*?DH}9~+au}+QJ!;96)|zlwkW@!w%Ga`2 zz~BYf!+Y zRt8t0^tBxD9WjTTxoNQJOq<0&a{ezhFfnk09PT?pOud1L$|sBdWxjz*f*!MAc;&6U zAKQe%y8J9OY$eeRY;K<|n#{I=5VRBgoP{A+;yE!U1`M`Loh4+xz|x{k-;win9Woe5 zE3C;0*R~mCl<5Pa$Yi}i(i#flS`=I>|De&rwMr6+V7o;uT$hkBY@DSBkvN-{AC(QU zb*+rLlQ_G(0T#*Lfup;Vt6cnV8p&2=Fr7V1nxxvdOfkmZpd;*b;AbMkmB|)ql$}Ti z+pmk5?6vq_GwQfk60!PGZ%0 zx#ZjvQ=}&vmZV}RFSP=*!*mLqGpdGVj8|oZW6UF{DX6R_mwi8+WF((6s&MjM z!|Rk1RhbO^bVndN;94MBTGy@XcU$+;@;zC}|8VJnt4gsmHkmqH)8b_;;f&SyqvKKt z1NAIvS^FnmYfQT3IITYjri3L&g454FyK$4LOwBju$r%qq-ZcU20z8c#aze%* za6uuTlm%F#hry;)u>f$8@-s{oKnH(051~1rb{Tk0;97;poWQ|G>Q}&9X2!|@>oSquvJZ&E7ch0>juc zPQ(A8fx6b1gUS`G0zs_sKM7fpO-oC-{z<|r2rMn?eutdbXz^N=-pwXB9lXKxQv{(b zdVvMt?-KR&_C9BGoUnS-u+iaEoW%^QCH0o=RboAib)!0;W*t3gW2k+`tA{)`8Q z6H-K93f%ud&CFOF{2K{dR)D!8vofcJnM~`T)kxLjMUP%94FC-Y4278a^ARiIZF!LP#P=WM@M=L0cSvY6OZ1z>VpFzIy7%Bf_BT>)+p(p47}hzI0~twq$!cKei& z$cGrs^;yrmvVqPQ-Z?*Pe~`B~Ug80Wt&@ABkB9Ctui97yJ@AzMObq6aon9SG)9e@GWST|@?LgETrf#t8k_NiKUi4`^zzbS*9FGP8m!9uU; zYLZ4cx||tXNBpy)&hLm-c!%Y&$4}oe*a8Nc$X5Zen(==1fc|FXrx6lQF z7*AHX$?+<%rSJ}K7r_GC-~&D#eQ4=-h{JzXLuqdwHZ-M=Gk*y@emw-x!FA^GIQHHj z0G-*RUC;{4CNx`rI>acMhd126-vJ}5Dd&gP73(M8Jo<`;3^N-{P7?viI5(t}r~>hZ zutW1qa|-}iW5_Mb_nk_gwmte6)r+^qG9MxFb|1QL2#I8;&)GbE4<(B^)R#^rn1b81 z>(nvoN$$lpq%xOiF*Wg}Wm6>!mARK*+mIHh8KxbID04q5)A!Q56yBjU<(4DMzu6cp zft%W&O>cdsqmW5J`edP!Lipmy^WB?2HR%Xa|NYUGcPrawa=W>{G}*Fg_SiCFd%k^+ z7p8%7Ek!h!kotOrC-MZ5qjEQvXUnmR#LqluCL>N0GBUol(4efZVb6dK1Vgau+0?Fs zH>DEC0jAF~lf)}8eAyN9yFn%yiTI|smLpjXf+NU~^%-QBj#W!cROr4Wem0!8c7r*b zx;aUfKl^!}k|WU1{evWw*Y(_v64{;Y5OUo)Q;oaeOIU~KVK3x(Q-mgy)77RyW-gXt zFsIsA($kZY(ukA>P*3rL^(U-Vlta`+bKTYRIsEk4rp3*Kp#&!NkL3SG4HPXg=pepz za8Q;!9oY`4d&7pEcY#k)d7$OsV<}h%T{k_F2WD`@_?c4MDI<-GN@0G|OM{Wb4N zocYVt8kP{mc0}kWY^rkDH-UqjL2}h%FA9me!bt0ZiZXMP*sq*#?3?g?!Rsx7jm26| z`hIdF7KD8h>EqR=zj1no^4V7fMqvz}aV7M`T$)wGv3~&-a=pnrbDM&b+pAD^*e9Xc z_movT0S{22+_2VelX_#B)ec81B}4gOi}c29s+@fJRa+D23SKsZGY*fZDw35U!Ht4> zGhfEajflZXD@w2l0^KgHw0nik85rMeC?E(Gx`AK7v%@FEo&}XG2tdS7<#U;|{&tLS z9J}+|WZKn_B->e2y$Jc$My*#AF+Spg%m&+yh^S;LxgfUOmKw4WlqWx=;{{**s=yQ#TQF9i;3XzF3} z<1OheYn}d#SNa(H->iYlVZZ;r^~LWHRugulgytcEew66CAP6DC1fROoOU6VuU|GMJ zII-=-iAAcqdf2-NLxuiLthl{iK3F1dYT(q`><^}zodE#YIGak({=~j>wFoS*O4fS0 zZe!KKrWsF$4SwcdgDlq;>hm|VhRlJLWc!#OB`eh?gQWk+G8lR>cI;%L9Jxk361zxquyZ&UQ@$LZIepqxT*)$jJNd=53QAT@7J(H-OIB zsJ-WIG)23+owH97AX_zn{*8>#Jld(f=Vk~nyBdMTD7KJIP5raj&gFexKlai4wnpKc z%FKc08^TYlA*|rTWPtt|W&*bWH}&;}!FMyvtM-?Y)XQJdB%YFo;y6>TJ~BcvV!5VU z(R&|uG^>(5)8B6s*#RUD?v+5oY;Ly_HsdklPK=uSPXL{@9JtAM0?HpkSC@z(&nUS* zXPb;d*YEZQ)4GHZ^mGW<9cv~Zprv5&cel}B$-GxtMojiETeb}D=^#_}8@k8}Q48zI z)?&WqXGpTHC}W3=ey_84M}2}Dup{+M4^&U~Lm|qP={#>IRN(=kz?qvbJD^xF;GdB< z4$7|4EFZjO%`jdMybyq|uQ&51e($Q+v?j4K<4}(tT7v9Pikxzel@gi}8 zMmf5H)`8Zz&U(ksc`1(9xb#~1@GY&nz66`{7K=@QO3B$cXSGRl!qahx58Lf1ATJ%D z<%2a?d-z%Q>{}_HhQ$3{J=g?+&fad(BS3cdEg=9OqqGKG3VY9+8;F+`ZX?u3mEoJ= z1R7=a+DripQ`mQIf`HQ1)dkwoGjjG1tDbkHBqa%NX&(u{83O(AzR8l*R@YF7Dshhc z@ZDSvF5jC75JI!Ur8U|6Vky?g1i``Yl5`o?9CosRkn;f;7)^q4FslIT1FwtOQ03Y^ z!1#uh4)7jGv5C@`mf%jv#(wFV6;>t&Z$o*{hgo5Lq=Z_qiY3mXk5C~3kA-*G+i}~h z2n!wO*Pw?y{bj~#$10C5-2*w@@Z;HlA(uw8GLHI(%%JbU)L z%7`_CU-MC$VX`x@iMtph%aTyG{cN0}yJtv=HjUBys-%j2m7pE=Rr0lcmCz$CZK^~* z?$V}8D7M$SDP~If;gS>X!1l8WR^_jFOM+IH1eq(g+KvQRVs>C!oZ?W4QO-&?KE}_e zjw(jtatxo6Fwle776oDoiC{)Jfsyl)gFG2TWwPFM@Za7_PcS(un>)pKV8Yv5dvI(^ zI=WJLKKOAxM=2vb!M#x4tlut(gqz|&4L+rw;2TF%Z>WQ0!tWLi+?5vwMFtVFl~+TV z3lH0IXju7tZdY)cxrI}N=cnU!f|?d}xrx)gw1{wBOO(TY1U8N440Xf^t*|b&2HWqh zzJ?Q+v0`0?61kq*dgnvv57`qIC;#`1cnk?ko65gvv>>&{Y+1BFjkccqgmO9Wh*O$X zz}~6-U`-?|w5ibKzL*#+Nza6idbX!h=&>F>vV0yXNz;W-P3HOoOF$zA0iC5fHU@T;V!jJ}1s?qWpIxsz(- zlR;M#U~4sN)b~p{ou_fFNs}hgDf^Ts+-Iph&7vHz6xE+e5XeF>i>!ouODggZfKwpn zw@xfvm`g-H#%*iBX{f{TaQ5t0`SQV_MZO*ngPF&akA73-uz$@Om>$KmjQ(iW%_^i{ zn5ns|78-}wGZNA%SazN`uhK1i%whxw zy!B5;s0Tmct!U1W@HA+^!27w`Zass~IV0yra2|zND+ryzOHr}eG&km=pTWW2K@?hG z%1f14%E$POzP45`04g0yk?3Et87zbH3dfgb*|kQ7*ngh-X=*qff7`}ItWq2>44MD=hQioA>M_7W;?UH=a0t{P?s!d672> zy}=_Pq-E#`Ct zr=Qg#!nGI-^aw0HdL1VzWy@3{k8sy~G3pYXid$e=6!+22eICD*U-mI^^s9DAPY#HB z7)Jb2rY7*~OML)^f!>K0N*|V8*;fXYpn<3W#(gvd4uAna+|Idw0lR2x*($S6ao8^y z=LaWJP}SAf(FQP}n4t&mF+bT3hD!KDYKSFlVOv$e^pLcMpJssOOAB|uHjxgUg|>>b38j|2{yc%-us;R9D!L5bH@PbLbChHs8Ej;Ol-zHnR%l zY=q8*Zm#npb3pA^o~6a|K&Qk`tsi8httQA{tAaIo*5+=Y_S(E|Th^}(KXvYh&ZN2y z<4~LVjvmknYR8B&WF9~Gu9RaK3|Rp(Vr42(ksmR>!iaKY1+1KX#4-P-kqU?DB&c;* zX!8GJ$Q`%GX2wc((_lILB-0sOa++{d^!IRfx_L$e&>!<67<8Ox+}of$JitMLbknqE zh)NVdbiRCnASPpBxw`JF(ObU5uQerqX6s4F__5MgmE@i!U+B2Nxus=1{J(gL87q_ z`yPFi8fk;YvzkC!dFYiQr1Q1-dRv9bdCDmjL9iDOp$I8LmYyl$2l;tyD^U#SFTfF| zkRtL^rH^50kMQNKjg?%^#3X`G5TV|17eBv+poPQz{QS0fd3DxBKu`QPQUhIm9>TnY z{BJjwWO{^#$=3p)tJV$2r;&x`JZdsfkET3o*aZo<(rDr8<)A~j)&cHj4FK2Afo-uZ zwp;ORRsK^zmU;GFyn>SS((=O!ne7653au>=R4`hSM59$J9vrs>_P1sD9OIW|EfG{M zgr9I?q&(oa@{J3_V8~wZmZ|wKCiYdq^Y9$GOEL6*Xv%%AOWF|Qi!_xgAz-FBaMGtn zlAiCRz0|xP3mKA*9@9@{1lA`hQc5p4@MR0E^N8q`CCgALMK=*zN_5Fj%|9gR@oLCx z=Wyw*{>m?-j=`qHOVXV$z{Tc8Xs{OR_p5^8H$E9U4jn=JDdZ*Gc#B~IGq5D`iXx~Gu|lkf>?U-vuOgY{?fakA}wuU_u%!+eI%F~ zs9d9WfaB8Zehf<`Kf96wuMvclz5+Nak#-kjo;-Pygl`M2HEis}hX+;wjq|4Q&-wV- zcbREg&R1ha6Rb*ytjb+Zn%wUyd}ui~;Z&xJsi(?|X^o!k(_Y zcM0}ZlKL9sr~ynH;C70fsH{NlaC8K>&hvYGQ-Pen_Juc*tYh>BXN;m+g?l}ahj|0_ z7YUeile@s8k>fD*dt&ne%pc!~j?tOT&=Ui?plY{BXc^_!>R zc0;F=Q^+El>=z8h0miS@NRCn^Z`uz1@`C>ru^hcuK`@MDJyVtZ{1lTofoa24v=TL> z6a50Pjz zi=c-49;OThR#C|Uy=8Mh(a&ok(+OHgyAuVrP*Z>9N}7#_y48ccEWL<|sEB}~ET{;AC!3ZH3(i(r0_kM=#-`8DLGB!pku6QB2`Rf4W-xXqA=+{xK5YL z-FEH-nlj+|y1%2vJrbB*^k%jtf~zexuear9@X*mdI#;o&?zm93EAe)Br&jG>u>9aN z6dT_K)Z?H|3a|twEQ~pH_5?P;8}|BZ1n5c4`{7ZZhOIeqI_cru{|~}`2~n0Ve;@n6 zo?m%tZF!L}u!uj{pXm9w=@^_5g)T@xbN|Tx1;eR`@^5>=hCiq5fZntjg1>WXw;S(Cu7%ym{CI>gof;% z6IGWmfyr+Bwj8CjnLuZO z?l`*NBHXBw=3K1niBY`sYw1`Jr+$Ld01wW*Z>x7BxiKnGI?oMA9?WE4lSpBUO0E;8jy>%q~C5C5V<=(RhdzTeYOT}?AR_olM6AI zyD-$|A#b8Ha9 zJ|;wwl8YqxV^s+4>Bl#iP_~z$9X4LHVR5`J!8VS~KB&MCUc@k(9)?ot`i1xerp`Jg zVn)#h4H`fq&%BW=Zy7!8BT$WY@B0wTlNSK_4(CPMlq#krr)?m=_0$0t(oh+zK2nZgg6N zZF{4GsoB29EqKjd#hw#+VaAQy=&E^1lc$B_!2WVKrsSz~ox~OwXju!s;V7BT1*BbA z-JDyNB8J@{<_iKJ-osVw3SPbp8(_%FJOb7=_-=QPl@zjB>y73j*txI1$}ce8W`PXL zcKDXKElu;q7Sb4B>?9rOhrMFjW+K%HSvCe}d6mp5_Xp@Hzh=Il($9R@j5-130!BA# zKlO4(7u!#-W7K(d%hu82*MbN+F4HT9@geKzkJWP-EKg%frx=aT(W^i2qw?$nSTAEI zy`B?>xsxP;16Z+76ED}o^`(mB(-;=U=g}?5;7fW#8X=xdW5w8FWbb&BZkNhpv}0Jx zkyE%RKoQWgO?RZ)Rx%sH0~XK=W5?F8!HLU-Vv@#KVq%sG_p`@fxE-gfgAtFR zaT|-+8v79Qws+##bnoLd^%xWP0`Q+A`^Ek^h)2fz84Sm$W{Lgo;{Z$-(?Hr`TR}UK@+F6uJ5bOmEJ1e4X)ozAgNQ%(U@1ZG=I+3Ar9_9Gi zb2r)G2ETHXw@6;BDt2$X5hcD_xK&=ncDs%IGr85ki_IqPeR{1Eq&i?5cyfd6S&ZyW z@iuP0;bpULEjuxRbxkMV6d@z$0&G|3?`WSRi+N%c9{BYFvij>M{1knjsCS^Z(x&t7 z%a^P7CZ&C4niB@*w}Zd{<~3mLu<&Pf4Dh}!jf=v4v7ad|Bc$XB^r0SWjUGDlhQg|b z;LG**F~4rtK$;h%;<>?)Sm1B+{muL`^rOSvg56=B@Hd7G8S=WeQn}Xf`Q|ujO2y*7 zhLMlYtL7`5?DWFe3Kejq-XguS-g0;MF3v*_(!?4cNrov4-g5*6Ze-@ka+i5?_TNGShg+&|Da#Avud^W)=OS&X!fBa|eSTx)6Pq^S zWR~~EAp*BH^ZVzK(1H>o&5g7F^wY}~S<^SiiAkSzgxtFb*)HX0=X)PBHL)&A2R7Ws z3Pi}No|rm|?s;s)J-K%;J92kc-dob>R_dqFs?{ERmXKK@8>ZQIYzWfvK7}px}ELHfdfJC~lzWA-SA+-dnnKPOZE~p^uNCf?|ixujOO$!XmUe5ZhaX=d zC#=|-^?+B%CJTEsYSF3T&{7WgN+*)BEKmq? zKKV$J!{W)+=Z(sPxTz4DTHR%0o{v2159`*7Smtq;FQptFRR7TvI=z1G+)siZFLg8aWVzx{#Zn1tL37V)M`J+KmY?f~@RbGF<4i@%~mMve;8sM-{mWT=-S!%V^ z85jnWrG6vku{Qa|VZ|x`9sbNyw!wtJ2ii(T9mWT-HA;&$1GGZlU`3%oBCE7qMq@xE zwVe)p<_1Zgbc>|u4z^yTYD9&=kfz-sseHhAIhp;K zUDEP=;aGC=c~+RmlgKwxIgL+m5_3d}I>Yx7`@U3fgkJ15FvmwpFM{2&PmRPvBsuf0 zB7TbT?$FRq-!9OIIAGdhj9PctQx}wm-Wb4kd&6EoF#j}h#ughpU>Fww=ta= zc`MtU{x$=UpVvT*x0nXQ=8KeI2n)l?a+`x6y_4aRGqY@W$#1tZFq?b>ZfaI;4wdg?`yaPJPkhBX~R zQ{Hy@-evF3^MCz2E`)a!#Ab}BD!hy$5F$zJnJvRUDpDlKanBdB1+vr`jco$o%%wC= z-U^U;0$vPX&cSKn`@~eR)|57WJbQIeQi#97tXJ7xwIxqK{VVA@lSB)Aa|oFZ!W%~O z;{{Gg7bVq+u7&6>8?di;(quu68gD!(R^WddY8dzsgdE!D~I2*ww_W5?!M zyIgFh4iTlk{yOFdGIgNX(qi)WLY@}LwGO|cwbJ)x;Sn*c{h`X!C?`H8$rGA3J;kOL z&MS5k{gmsh^7X)5{3)NL9<(sL#l1-QQIes{}Ow!Kx`0LZ-9Vt>r|h)_R1V7_U>R*gTl zKSY|aQ0tptbO^psX-*2kSB7k>;Jko;?sIg&Gt5fG9Hkty3`Q75Z?ZiUS~p5}M$wM> zAHqgz3j!kY`!)n7cJZEwe^Jh!o~VNNFZh&Q=??RMpYK{JCvW-LBg7_8IquyQ4%_}G zUsBf9c^)MTbac=@xJfO`M=D?VM@q;Z5QW^k-jjb0iH6($%bLB9}2Ys3N9ew8aO(MAVlxj0<59 z_%X=mzpB`?kg-b{WwaRN_&$bF_^gg^J0a}1Fq2#@Cns71vap2_OLX!?=z}ZHnbkRVUY- zNd^lt_ZZrdVYyF}HJsr218fz3j~Pd6E@ycU)>N^^J`S2@NlA+Z^3yPNdl-k8=4<+% zzQ_>2=S9K~-Oe-vvv9q(w%B)g3UoJnvvgP`mzoIXiZ`@6yNtv9L?hTg3{Eze%Zy)1qBf z466%Gn$#%kgR%I)3hDS5t$T>eya)UTup0D~(ky;uyY1+aPYxdrfnlqvO~^CJQS_Zs zYGo;Lag-r(rGjB|-Ikx4fm}!yCyd&JR8r#Ggqh|qIPhGp+QVvuZ0pUT*}CAw-c=Qh zG|k`Hb!o(0qhuF}UN8{U;LFF2LW+z2}DNRNn|_7 zpqMB6R9WnPKt%|tgQ0)lq z6})iMqZxeHNleSn{Lz;@d3ulLUIf(g-)p2{6*#N<( zzT}`Xt$Y%E>wETEhcp%C8wQ*&STeBae8!U;^Hy^5$+*xorNOS7d!X)paCRl;&WnlVu%s3UD@K*o|1#*F|0&lfajWJ9?|}D2KAdc6N9y8fG9S`ZnK`s zn2H|U%Y^?}6>RBzROvrHuDuV4) z!<_)0^@G@KENc+&%pZ4v+I(G-0SO!Ii`dvpe?T*EsFSdx2xUnqXVe`Cgv^tcMS+p) z7x_xbXP)Bo65%py%dN_;bP`7Pz9{+GzGeB`%2R=R-oM=f`BMWcfB2zQjd%JNRnln7 zXWHyfX9ZhAuRQl$=V>YQjP!D0c-W-l5x+jU)lp$9L@9JR>3`PU5m$|4jjh?Z#2H18 zchBBzzXe2b@u@~gGu^{uHi+-c4=aR^$qy@YiIB&f^rdGF{NlA*Xv70Hg)4F; z9u{m3`}&%ZipTsJX)>jp&N0j{KVWHof)6lxcIPJl*{$eoZs49L*a8a!{|W{q-$E)+ zCxa0dvh`iP%VW~i7xj=4ewb3<46%`}p%0(&I;C^{uu!tbe;do2NT>Lf6Ls*d-$I(^ z*A*BGnHeb`2h8s`2EI`FnSSrc_#o9+Ch{r8?L~eSJw+^Ejg`xtWdgUNJ4&V-x%0PQ zY$+io$k;g$g;59y|Fi!wN~VOWjG#A%-vADMYTE)`_iJzd;r!H*Pp+D8@S9dB4p%a3m5$T z?N(e;6U3I-A$Dff6;kbTT^EH+H7t9iM?s`Kb zm*-dnwNyGI@((gZS?rld2wTv`erolQ{yeg~7IK~p>`z&ao@d!AdlQ%}(dS7c^;m&3 z9wKqFxRH;9GFV3OvY{%?ajY$ z90YyS9zwYC&E>H?k&PQS&V~BvFdkzHA-+@9(0n)irVwb)rBX41!6{^qtg~{#o+0?$ zNVlUWyyTGMlVbwx1qLJwO%1m?{R``4yzLgz-ZJg_TguX`QhXShkG6#6P`|!7<>d zyLtHid>$_7+@55osu^~!(``O>y!i_Wd@fYZ4U{=ynlBe{gMw!tb}a~mV4x~)hG-HD z3cd|!vl6X(3p6W`rRz1*{64JJOB$>IxOUhhLsn^oXofo~%5k0&G#}@L zVuz4II|0M86Mv@-_5+fzf%Z|DhJ@^_lU?MSYVlP*Yo^pRB<#AmhzVv1rrE|YstA0Q zQ_c4P{YcDBnT*yc0yf(`h@V5fYvilSnWE#9N_xw=i(#cMo8;wESmzw?g^ce~%=P)O zJV-9X>eVFi3pKj2YVnWP+$gEtjLcXU<=F9$)z=&L;)q@5#IL*M74o_l_z$!I#uY3u z4;?b3w32vrcU(ErS$=)4xoy0|jS^=|Gil1p71~ang3EEQ2wxIROVqQ!kz9NH&otxy zbU(XeS>N$L&&_(vZ>6$0!KN6Gq_5L~*p>24oPhKk>UX8QVdURynr}$ao#3|^*-jOOuw6>JW>C_ z-g0M-9SaDui&NNHQ*Sb9$xJ;bkJ68vg-I>j9dn{v&q-__896y-%t<_AMeG_OJqs1W z+%Pv(^b$6{b8*(~8b%)MFOV=dl^>C&S3Gk8+`WLrS4iTE4Ohl8`t_QgxIu58#e`gQ z*PDZM_!#7KOK5He^^$+loI4k`b(7z;kbw!350s-ZS}nE`QpjAQ;*a9o0}~Z&bPT)y z$%(V!5n3iITg};59?J#HnZgta_Iq5H6e~amn#ywKi5{|y`SA@4n$T8gje7y!0?{$i zF)=YwN^3-6E12zMFo>ud$v8_i+s>zAQ8CfcNGk?VjFKNG_(OaLp`OdyoF*5Nr-z&@ z7tMp-KQRuZmeb%63X7-02tG!`L&dE08Kf^M+j-{)ajqyU1@W)7c~S?l@jPoS*)S@nDA-D}5o)D!HSX8&VSV~jqs3(s7fX)H ztI6-Bk(7R{qsRUyW%};y+yXdLDyNZ-D~U+Tz!~c5Z(gXDzI^uCCk$-Vnkq43^POc; z9M}p8>*rkJ15BJhu#H!jt=P>8c}?Q`kz6mxNN=W*z4uEP&O62R|7iW;ByzKn1R2?^ zio-s*X0bU(>oMPvS!2djl)3JXaPi}TPyK2NMdu#A1z1)QVgE~&Nxt_5&;PTe;zlFQ1B`Z(Fs7_xQPR@oX0QfcxQ*ZfTb zdov|bPKY=UgT8vjcjnJ=$}~*NRubKKyj~d2xEh)1XNS3<6TmqmU5Zsuj0;W?3stY~ z`KYj$i0m)UnO^O(9b0`?ItgT2mP(R7&tjx6Qe+6Uyv(`NmKB)ZG|Eux9c$bnyS{1I z(5)r(y2*R?@%ZHI*p`Bx^AC$mE*)F^lr{Hqax;t`9NYc2rIicPnJ;r0=6t#cG3ve0 z|9=Y!jH^`-@ zj4abr$+>6U_?D+YfF?v6#xQJ|UDr;+ex;-@Nc&Ni5hFybPXZkdQKLNOmLHe@Uc}~b(W?TWp(;7~Q+%0GLoupM~U_U~N@kpLOAK7+MvGRRf{;iZx zBiFj-%JmLAR`68@4-@nDv@3B9hb!c5AU3wWLB3?!!fE-NByIF(pRw`whJ0Dk!@+H+ zbL3ri{ayR5?C^&;Ade%djtcJz*&r5l9J%?NRr110S)RrIK>n>4+Cd0g`tZ22IJmKI zI2=ZozUe#w^A^M*2g^mPzm?p57_{TeyXwo8lDPwe_dPLs^zOs%*zK+1^LzMuj&}3U zX46bb!)oQPUIxqGmY92M)b4P}{7uF75R>(r9W+?@5jul0G$BOR0UA-Jweg~f`DeJC zXy*N7H|ri-Y0`w%aC1^r)XekdG?@)b-(9F4TZoO;V7u8T!4{!kRzRd_@tNkU68Ll) z*vN7;(1URk_G6ZTGrnPD)RlH|5=` zXqV(!`D;Z_!^-J*;?ECDKcr}Tnz7z}!KJ>^CoV2dsDRR?~trylp zv`mI^|1m6G_+Zshxz9piigL-0I~aUE`4z(y$q#!Fkl&We!Y5#Tk#$Zw*PHCBucQCd zXc?9Tq^`^@Va6}WcIB(K(SpR+9GUUIz>-S4xr-j8N&L#muqVXmZirz`+>q$`t2FzI z(cKW^`@s!~o(!13`(Y6~{jpGK{uLIRODuyEVtmJaUf_KP{mWu>bPdruN!@$?%@znB zIvH;v@avGbRLS%=XP7q4X~V=hOW}*;>bPl3m#yQn$O}T|5H|# zNSwdvePiKmVnRO$3HXjOL04TnYg4`ES$8M2K8w+ZIkXsE+K28;6DIpWvKcL6=a zTSI;wz2(_JvfOpPg;3g-*zq1m!tuUMyrqUtk8W7~vF%NzUy1=^JFZkZ4etGBC==7Wab7 zJu7(f#lhaapO82Np|8CwpkaiRFyyz}&I7wu#fyW(_L$BUM&Fo;)xAYAjFH5)&HmU0 zM>KRJAf=0aiyE1p$Hl>l!j9>eVqcBHpSN8G*Mm2}-mO{7r35`0+RT8>!yfrF21$31 z&)RsWbQMwdPBGS@$@|4Dn)6p|s+a(F!5LB9(wwr*3}oieG5PIjW4q*HtXRrlKt2P6 zwckw#+6Xw6!Z4caqJ-Rd-D4Pyw~m0JgwYIP4(ygk^EU(*BiAts+aGxnytrawZaVPD zH3TKfh>DKUK&)(zQyP@L0Lw**nX!-s^4hE5-9X7yGc_>Vr=p$FiNs~og0-)(4yKI` z%dww#K054SENYy_VHyqg*j&>*S)r#6i&&2YyJK}t<;%7J(7;T_zckp(fWCxU{u+s6 zYrI~U8FTtSm&fPg9wET3N93SXyd?H&(|&V_mZvDpBifj`LBiJH%+8$Y<;wL%1R1OF z!}8Zzbew$gyJoF0=796`>cjlF6YYwiT{4VDZ}9BXLj<}0y;zdk%lX<}`nOPraUx_? zvt*gJsNY)sr1D*~$$C}bW9ht)c3G>3o=L(iwVsoit@yHn&*N8?*wTg~emd?%!V{97 zd94j26ngHt={wEK%xk;VXsT{7Ch%kzwmNEhv6o=7!Q3!+E)K*pm$bK^!(OgCGLC&~X-+boKHlb-V!cS2zdo@+Vbg`kfT+c9~2T-c7J_eOOyw3WhztCu4a# zdnm3qY$4h?>H0;N;PK#EX0q*#db<2x$2TS~u{xZ%588B0R#hu2%vlPvS2Qp)i`jO4 z{IRo@9UeTp025E6pm+VB#G!9Ri#6s6Xr8A)ksDOMp3hASa%@VWwP)^oG7&y|ya(JNcN znu(iI(kM-SiWBWW<>Pq0`Jdzedcq5#_wUOa4B&jt{>XIM;M(cijHlC*2K4U%XiIE! z^qc$w!$EJoD{@2E)^^-A^aDNDJ*uV!Dl9~&dvN&h?vXiVG;F2S(V^!$AnWg$S_79x z%s7bWCW#Sd2)M|TbD?Q|E@9|dx3cviZ0le>zSq^qvEy}RK|y}8UI3rqZem)yfrz<6 z>ROroaW2P?bK-b-$DQ6(2*DZ+dCqS`!z8tC4u3}M9C7^eGg7Hr zFa~T23=M`vAKK*i_9Dp%MPPfY-(?&_z$c5J4j=3~t>ELhL-0K7kzXG21aDJs_!vU= z=vO0itwGC}+M~jiR`GFMhc$$#k%Y;m2FuUn;kvMGp<>L)%jy~i4o4{cCo9HEOgJ=r zc~Fe25ZrQ|F_%lPDc33#;}yJ=f~NV2^lsX*VlY~LWs&v`d?#NS1|}vbP>+HI-x@N+ zZ5%8Un|r2B-8ywDYZo-Y)t|CBDKpFwZQwgF%_B~h{)J&{Vh?YD{<>BLuRw%z`1$ka zFOVfy4ybQEvjZnt>-j|>t%gVmhTuZjV-oxsM^ zbdYEfa#gCfl2=CWg+sJJv(NVg=2a3Sbom(Wcxoy?0(MToI$6iU(8DqpFJM`hSX8ob z%n=zg!VA@%FkwQKLSeblDK8cHf`Lbnz`Mbq;0uL)@6Y$(WgJd(l|@2|MrE)`5||rd zEZE+6LxQJvyt}7LptHblNYZBvsEPfiL)m0UbrrEOIE9a9D#r8|f2d?e3EK`+$942r z2sUE~jtyG6IhD6uEQwaBcMYXv#fqw6!)qTlBHq_<5mU9w>&SMKb>ecyLQMlQ`*UgE zo+aWB%!=3?*YwPYIAHEl_*gNH6*s)A&2F4pC`B7sA@ZymyBJeco$ucLPt#o39qx;` zZ+FKzAh*Wi)de}nm=NKa?QrK={ZNsF?K`&jZs8G&5TR@bU@yGzf>uERV^5QuT%>3C z8q+K;(VQSQ2nMxg4$*$rH?K00Q0sCn9jK+>BmS)x$lvWEzKV&u8D-=?OH^K>CY&Eo z!WVrmn3_#{Lrrrj7OAS4<^q|qDKR%b24a2)=rZ;mC0ycetg*h2lRF&4YKg-412H3E zy>;*{Q{5zpALj0MQ7DjUUq|K1GtC($#3QwHSRa?dr{bI zLY8=Qf*;nz^ta~~67xN)U>HAzNb`5c>Y=7Uz?2OjPPFH4oL09rJK$~qO#fTpu)ruq;5${^2b+%T zCVU|FYJIW7huCFkce2B@EZV1jF_?CV^E5XipOCpB!NcZxaM1$M3Pgb(;{#gLLxx5v zoS;U7$Uqsh*sO`5jJfeOd>~m>(_<_tc z*;tNQ3?XE$m(jvF)b<%HPkZ$O76#qwg+}2S1pNvvzs-$f3U@M7sF^75T4Z+w(WNChv1dnq|~tkcj`a>%~j+Kpf{ zBF5oXF46IXb>N(2YH^3+d8RA4hmdKd(tAkvynoRGxtk0gJor}{xb~6vL*h)0(yX?| z-*K*z-Ae9tKIOFG%0d=-j}o$_X3d(vb5z7|jCnc}_H*O3Js~3Y8zK0@m@BzU#$dc? zNd}IkgI-7EW9H31&kHdBNLA?frs}s}NgrYDbC1J&!aL&C7X7vP!&`!F= z0%?9>f6#?sT|}sR-Ag!!$2besIz-4NtkHWM8j74;^1)_QfczptMz)_pQ-BO`ZKIMXBj`oU_@dh5gT)Gh0~gK=#echYYnW5;6_{Zc|g4=>++W5(d+ zKxz70$Bx3Mgk*V-b#8S#jb5tQ0dn?W|NA|82feUE;5T#_e}P3;t@_QczrI$rs`RVP z#>^HtZk_Nc8QD%S;Og>(%@_vA*{;EYz}No7&P8uMY?ROOQ0r}&JA1dOV$s|EPB1)> z+(E_+uLb?=D&9k$PpxZGc?Wz65P8Q5;n~l*YOfH#Rd>3#p>q@SP^V6vV&Y&U6SwpV z>ew(wvfbg~`8+AY&Ky%)TW)G`0bzmceZL{I`Fymmu*06O=x`BMXrSmAh@X~= z5&$loS}3EiBVT2}R+RvzE=GEWalUr&`X_16i{J2M{vg zu~26Y#(2u%WxwP7Z%?vznk6VTZGXyHLc38-03Vrp?UvoeEE&;XfQ&403_1Nto;-OV zH;Aq^xK2FbcA{ReJghqo(2N@_&Uir5ehZiN8X?8qfaoa+QK-t8L^SLdjta&v>~_V&ax=gph9+Ssvdu)8HpSI{i3yLDB7j3?(h(yn>Jo1T?)rQUqHbmkuwNL@t?NWr1Qjm$h&-@-c>{E70#q!hu(x^I@S#N?##7f_6tmBVGQ1lg%P zonsiBwvTt~p%m0g$?8P)=^_T$eHg7K(iI1^s2D%KC|)3KepXQ>C<;R~AKXyED5UIl zZru<^b`GX3Jp;9^C8u&5htqebCr?=e#3s29hWSOurP>o(r>4cQweH51uRdVzS%=7< z8Ok5P4OCCcyH`1e`9o~GNFllt$bNvN${Xt(>;d~)btmk7V*aqqZ*>S5x%TU?W2(yY z7$oqhGcVfwZH))K2{M1_XNE0bj*Sp-=e|)!IYcP;?IKKA3E9>-qs+^~<(kgHnq2Ti zg%sztL_!8hG$+^xeYY2@*1=iiDL#UA>z;OvO1xstJQ{B0g?YdoON`7I8WS%v$A^Ml z&4Q5Oom&v{oiHY+%f69S3vP1X$V`p`z$x3kr+*8iZ+Qe(_=Y^M`C3~3Xf>%b7Yrtn z=ZBksE^Wd~x-1DYd708_=i3#Gr(uInT43r*$nJK0b_xTo9|n_yufRb=0m|+xcfa!EX2??u`NDlt;%Q;rVlM-YY z&7gfE3B!&G99R4!ajUVUIWG2HXJb346S`@aFyY2(sMH zi+US}GbdD%NgbS!_+$$WKDj-L-*b|Fhg}4I&wihLOF$=zh`HFIaQr%xB~`K$aWdFe zIsx(d3<|PSKZs|-%encC7~KiMmhApFoPhisO%}_f+cI4I`t|C51@A}cKp(6=@x^j( zgm89H&)1pBZAZ0O)g=1+Mm=`lYMNNHpC0Q==@4VP7JJ5|zhyKIQmm^ft{XiGx#S?~ zm+9e$9~PvoGV$~eBY)Kd8o&1-r9_YwyHlFD^MWOOo>}(1kZezjOzD}gUKA2UtX!SZ z4~+Pc(pmzGC-5kx!84>DI`aY(X8c~bJGE}h_R?&B-V1b}hRjKoDOD%hcH~m~PKiop zzeH|Z`Wq8ApJ}fvefmdtCF3<-Eu#Tz0oZqgibH@EuY5c%9f+8LgO#}y#_^Q?p3^7| zm6kHDK9EWi(bDOErAs{0u9X6Qdz0boMXB2H0-KjE-OnaHAdm13*l9_+ZXN!#kV}%@ zh}aK0+;WYWeBXXbcBc_~O|v--`9Z*MOKD{}O(WAmdH@nnwqxu7tK>#d%Dc}48f-qL z_p#^)=uC;rFy_-^d|Q(b9~&CFn6$gX*PhZN-J175N4H2zFNm1|*FrECFRravX@tGG z3qSPnk0>eL<%A3!2MieSdjO*MfOf7_Vz)_Ow#n1lb!Y=wPy({$YdCgndZN|VXq$--}+)RO*6_H*W=HL?c9%g!d`C~lyYm&o;`bY z@ltL7Pmna=&@SX(#U=dVGs&#-eD|v=pS{!uuEW7&rg^HU#OMUG!w838sj8gSV9mc{ zijJ^l$W`H6W7apyH{S*5d;W`ZGGWg(=9NS7tej`n&JMfFc^xKd-bU6j47*lMt48o< zaF_YhhqXQq?b}}6TEYkXgVBoKEinB}OGvm$_9;V09;TMUcKtOfW5!RRudj&~Zm8Zi zSO^f8k%1j5DZYjGF%RbyVB&5f!x)3D92|pe9{;q+2aNB|YIsF82MBEC6Co8_RY z6gn;otAhz5*^C7^p}zx`SR=JG=JD?_ES80|U6W*pGBP7z0A*4DVAqCxSIxJ1;WZelod0z(e;B!g+>g7)u_?DC``uUW(pfQ!~Xb~%Q*xswJ9|BIY51I`tGM_U97@dIC z5Yz01Q>pBylM5pjktPsfivia7e#Le`GGQTocEn`Fau z&-dR~8sLKzhOy6y#P^iAp_+%|7)j|RfKgb{MQ49v#bCB^^nzCbo_7`2%*K*arNEFI zpm$hmMaaQIgSO)b1GiGaHgdWKn*#$jK3FwKAADTlcn=}X_o1~Z?(%&c2zbf@vFwyp z4i-TyOAO5R1Vs}O!|)f(@9jhq=b2l*l1#`PJ3q8gVjJ7fADB1nvEn|47813mXcw}v zS^4ti+a{q=JA2uTQiH6eAl98FOLHfT!dN|L`hwK;4FoP8C_Ic|>!cr_8t+b|gh$jK z_zi0tS^muZ^vFwAM}fX#4|Jp+$F)mlJkz4U4ydS9{lPTjzia$}QJrB@$CUfWaTSnE z#Z%Btjnl5uW}FW$E`EEmv%Nb3b;_>N4dcP_=+J)BCTPHJn3>R{n2xRGE#48{7*jw+ zD_-N;CA5n$#90yBp6LAk`|s~D6}6k2&S$1M!3{_rwB7)TWCybj$I0u`9_+*EPT)z{ zfi}+se{HaXpR|OjAIdZt&CDB|dD4l=p0F-;`cili^j+hr~gn7B( zPaod)B*O;O(6^=({k98+SryLs?n2U6uHnPhfXL(!b=L*2DNNr1JD~X@VAPbvzEfnY zxke*njv|3CF=@O(wl0$MG}c=(599(h&n{*P>$1D{JEvY%2y=P^d6`a;HvH-RbDENa zg5LG>?99JB8>FCcpQ7hn@m#*C(k z=G+PuW&klaDC+sI*g69HMVPNiWkIm$C#D%Q;(}>bQ87+=&fiRw@wNKvb5mL1k3E=X zp3CS)6g@~XPNW1wz&Zs(q7UW}l|IRdfq_$Llpwa$uPDZ(5NSI6|L|w}F9UP^idZ8k zy(&=#_+uqb`(t1ula$0P!e7|5*ya(eg%rTINFaCuz?yr4f)|+IH_bG$e%Rxv!r#QC zZH2+oU}w|vU`X`U41u96DQl#Dz~N@)^s^tru+K%suES=eTTG71+|;*?*WR~qP*<7jJOI1w#l<<7wPaL@3UfW0qa_njbQQvt(3=X%YO)`AfV z5V9TnlC$Ic{V+(ie8AWM0hRuIWn)5~%VcwIV-U)s=?L+|{NuwUN=9nFiY#28O4nwV zb7SE*6S37{UP&Ef6ugY84b?&hN)H``TyGvX(>8LnXKdhB=X5G-RYKYs<(3elc@G>j zTE&tB>MSTSmVA#E`CNO4_D?s-i3u%7>8(j@Ksnj_lf_6@ww!ODV%Vt1)q>t3l!%zX z{eD%6G|6{pk>r#w={Y z(RS8|4>=#Isp<=M?2yM516KI3iIrcZb5u_GTp+DR*80#nVp=V%p&()$*>2#X#v8pm zE0ugcnH*_<)x22MXsKW=tvN?4Xj{!eQhpXT$}qa8n&C3W6;@wmsHHjOfO`?qETaS${y^#BqUm*2Zq8Qp3DN9o%TVSZ zhsc34inQ@CL%!~~3xA7Bsltc`&XnD6MB>2jClcd}fR3}y^CPTZJSZ|U4ZXEm(O0+9 zoWzuis>vh1Ny%bk=8#T^gV`9@gjB&;Y5T-|km~pbCM0@DG}~n4K~Ze%g(PX!+k+uL zaV0$z#CW)N;W2R$*^v=@jDhJ(H+hQP%{1!;~ih9m4xv_o>9 z{0uIRW$QpEK08Jnh;lgajNKoPGd7DT7!WeWB6my42!Y(kc>C^ zD2CaIA{hZgV}QUJna53nvjkXyI7xumS!uqLtWTT|(=dLQ)`MSSC|;h^9~+~GjMliP@LD+^5EpQg zXF_1BeK2-qq969sHGd2{qJ8;{KS*GWPkxN=T3sIynE6%+?2-@mEcpDe2d)q^rL_;^ z7|2Wme6TDbFeBEV&v@vxZ<;6KjZkdyWIfOmW+KcM1SC@50<6s)FUX%bts@@mkC-DxYXxm0O4^QB2gNs zHQIz;kJcbe^d@oNR@Xvof9pm)VwAc_$Q!uRry+9^`#zLp|K`oxP(MPhZ2r|Nr!bj@ zJBGon_N4D(Y;y%%lIOQ}@FF>X`t<1|EnBr5aT@2qg^er^ycc{ok&sj0^CT*Go9?-C z=PHYYn*Q$sz5ZZdOyFC2@`vTy0oVDv(PD;53KKEum&z@)mePtr%K&}ESV?Er zuKnp&Iz>!(1SRotthdJhi()Oq57_h@ar^p4ifjc5-7;m$QF8HNk26GGr&0C+ z%PvC!md8|btA>m?;ZKRbez0~3tnd{IZI_SRPp0@F1}*|Rs;p{!>8}4QBni^~mq(JE)8vcjd?`&_tew&U%^N;I zP1AVzEPmzl=N}?!Sq$Uh`PO?_tqexUB5Rw4NfRc#Dra_^g}dFH;#cCj*Qw8U4kbL@ z>L)GKxcq*ksU_I$MMV;tm-IJblyvp+vjuqmUh1;Ma?{)382<)P6;xwQ{!ARxmic1v+z1{vv4a@+oPAg zLQ)MQ&ARGA;;oChbO;QBmY%Ol^5y6JFk`_=!+7WxIV$Dl2HRl)#SKUvY#s5%wva11 zr08yNi@LwX!HUHBW0f`gVjRAaglL-@c*f&Iw3g%W;F%fk&rh?MK89@5Xf-VE7fEMN zGPkie&$b_ZOaCdKwCUm3vHe<UhgU_o*2_j669^wshf6;zJIx^2*(o@1Re9k85 z_{f^jRB5TsfXq&gkZ}g)3PU9}$n1fm5zsr~6i-zd%P@?R(^ZV>=gDX4kd>?NEpoB@ zH8Mly;$bWbQnE$AZeNA<^!m9|!$iiXpCW7}OCL#+j`TQr(~FTtYm%&00=`!I-Z23` zuz_C8Xik1{!uUmsBUCdc$XV`zYb2$i6JXDe$@gw>3ZVyr)08azlh3hMvRvs?SabN+ zDo=q|=ZWhG5kF&QoEU%L%k}YBDM=7_#}>}h{SW(RJ+GDeyUtjsGhCsp>fq>PeRn>~ zouScwHGjqTK5xVLUtlRwJ{eZR5oCF)=|>uiSiZ*|d+b3eRgP7BX8K-;^odKpf5xk(05)LC6;@QV3*4W7RCc+6 zad&9O%mtS3f;-9J*r|z?(aaf3KRpreid=LU8MYy)l*`>~1sUUD*|(4}!h|qWcsd8W ztDiUwj9vF<-p#0Kg;i`TG5#+stb(V=g&8xLVUpddP+Kn=LQ=-cXCy;3-b9)Zy51Xh z{e`(9o7rwS=&7*&I4_UxTYQg~)0Bi9&KrsP!QjeGs+nJP%lkHp5>?^bJ6rulSp-0yd^Q5m~I{T?j>_5C1N+I`;_ zTm0|EmaHpl7)t`3HTi|@Kvp@<>+|Eq@F~k;iaWhl(4{%=%hOmEq8Ibdn3C(43C%5K zx`Z#s@jnys#d%$>R66#d_xI9c@2^&xE$8)Z`1BUj4Mqbmi{&qu7teXX{M>{P*pk3T zKQ`m75PZ$)c8y$MCDoj!mGDdS>0|!o^yB$Ip%3^!$@PDpX_jZ03zr%DUHNI$x$8`R zqhCqbQ-Q0X?%K6$`iL*fOISTRx_w1;zQ|)0I6yc1cjA+8CQp|V3kIJ%Lsv`sfFM}p zaG-lIatFN z!La*PI-``qJt5M_?M56FV(%P;h%eoUq9=SKA^NQoxLz5S%IvQ;xBS6;OKCrrQuYmO zK5(?9cMz}_s_La#QaSm^^XXey4xA4^zp>3yC~MmV%LD8?9L>Qsyl;Zom5^_O*wYZv z>lm=9)(fu=JhT%VF+&XY%Zn zD*dC_^qPPZU~s#oIXc#Y$u{HVjvc?j^2J*YhxHu8G3JK~ceH|8roY+gI2GG%#nxh< zTiAyhzKw+}>@x-Hy1<5vg@k-8mL(Y4BYp5e#4v#QY3OSuk>kNBu$Kudks&lw&@eqJ z#&$zRaZ1r=Ts5#7G}F^XxIE1BJ0Vj9f+sLM1Xk|s9!ZJfVf?@F7PxZ4XAFTth#s-^ z|7yv~(^)FfrhG?L9gGcS+@4ZW;mh`T8AcmSRo!B?`84VHi^eNShlHgGoE|>0snNaVVcJ(CHM~VvWQjgX`+LU*r%d->qTing40M9xvp*z}A4HN9s*d|Y zHtG_@1#*e>)U8VoJ28c4clv(Vk93_ta{}FQ#ZQGe{RXZYiHourtxf$LVG^BLt6*xf zlaBDr_a}5@^teEC19_*;PV;|tZnS%z|9uPOc<(f3o0mUPziQ*jla!u5b?TPp9vou{ z-P;CV^hXIhvdU$6%{*qQdA3lc-|a~^ThX`B;F^}5Ku>yvD@F%i*&@w+4I{^Dn!JC^ znEiw%z)FS*hw2xi#~!G|7y z)~56)Nzb`p19SIDGq~?3e3luMs5YB@W|~ujQgzs3bCknK%weYl>vUh3JA>FL(Q@5u zK`Ypl4BAG#@_l1Mf_zhF3T9NlFb_G{DDzgbIW5>4PsFFV-&AoJy!F(f%6aoQhYg2p zU@4ERuzG>}$6hoy)(T?Adskq5W7B9j%w$sfSN1@-(qt>sjvy%IcN>+Rld&4-pIbE5%wrG%SZ^nu{0xEBy-BX}PCWa&?*_*gD}nkr z)cM+oqeqXThR2Vt5V~|sq`gkK%)zc5Ik6Wml_bCFDGxC7{M-q`EE?TPonOCl2=CJcSR?o5L8WV7y`Mza78WmfQ-UID%TI#8HxJFFd3hONb!b%qGNLq8qJZtTmY{ zil!0xpv#FV2Ow{)kB<(y~$kA&JutS4h z%gJ-S_s81;OV&qtgMxn-eO?HA1Ao$<-k{^JKN@=0K628g3$@m&G;*G;7eRX89lF|T?^(dW%dx4p|Oxaq3$5o)K!}GoV3&U>w znAHQoo1s3_9z|ZGLmn(9B2Fmm2<_qcmFK>Y*h5Nuhp>;9aJcP$ z-jA)=1$w~`s}#aclChMM?=-^(Pb+VK)N6z-iYcj=hvI2pBZX`cvh^osqB?9Awa`Y` z$|y5(o6C&YftWJpYH~VI(m?{rUYjt2m~v6)lDXM{vXUyTgI3v#*8@|W!7YAn(!Jv` zMaR~yY2{r~&{MSkxN+lZKM*9`mcDea?>kpkU-IxmOryb7n>bZ>U z`{{XgX~Bw|N8N4VrqY4ZmTo}upfCT=Va?a9aa31MwswAbX5!3py!3m1$STV_Y=oc* z<1;%v>=|*G?!t$^lG1Ow!_sGVFJ^SarjnwMCDGr*22xomiMFQk=O|4+iStsU1vXsF zV{NHr`Ryw#Vn&9xQyCpjfepIKusjFMl{}97hhf&n(MigVQd~tyqFKzG2bHztvTv>H%%!VH)BMFvP4WO6Dv{ja zE2jB-B{w8`Fj=_fi-p)}tGSNIO*kYL;@XT_A?kqoopCdeJh*aki$waz2Kxm3w3&tx zO^!(AuF&JBpQ0Eo_j$5L#Oku!5hgR*M0!x%$&@#aBrRN67tjN-bgszuR2pf`DOq-t zvyX@vEGSK4l=L{s&_;rcn#3HK!6>qr-fF0<8AqTO|GL0WlzuLAAzW+|wuoRymA3E9 zJOKhls)mb^@}Y{li-Q=}oTR3Z8%>y3amz^m+E+JBZFF|t8C1V1qkbYyrgWWte)tMBP&560eqtW?LVw)?ksAVm zZu)55xCLJA(rz`z^m;%mq@511uPA6d*pql<;50(j_+Jm1dtVRCG7Myizlviy4QHiM z5D*+Y!8$DRbRe+dv^GC0`YdgJ7PcXvtvd$;Au(N1ESkOwe~Cqg;NuPFlVi0I)iXjg zi*Z`}YJGC~XOXjEM_#`JOfEg3yg#-yX1iH(m+Tzb0=`Y|c(eR+=1h{s__L+ZMc9{?$*Btt7DrV`5{TWC}ls)xsgV+`*ve zgDx`^_K^^~`k#L~S|IQ}=*7a8V-KT6s0;I%LYmAJ{%Nc4A3(^D;ubq-e96uR;MADH zzke^l)VR2~G}yb(;mr>I2UufSjwx&fm%b>*2IlrPlV2|4W&DV&p4_)@A%W#yz-oa; z9Xc!>(P3$a4vpj%DNiA8uzvv(nBxI|T$!uH$id*LmpV$o`jdEyyFFFzM0wNr4pdnX3S znhX3L$T~yA=w-iwz5O*(*0W2Q+R)qjZlZUAC!)o{01f<{UsKgbmsEE$|`hzDx)3>Ex7PW?r>~D!IR_0uJ za6J7eU!PVjb~VKZh7EfKM?)bZETF>+WCvkapSgRah+H7glUsjY!c zdV|#fuQ6U)1FS>ZSwElo3~J++o$kjaj0ZB%|mNZ=WqT&ddq zvhL=}97oAYu=H1~a)1qoh1g`o2V07-Hv4?CN7dUril1xvBzC}TyI6Xj=FO}|7m#rgdsvu&7^;xxQRmZZFc2)Rn!W)_^Qk}T{2~os(4<>!_4#L_+ zoOA?{zr^&4FeFeuL^(76sb2Hy<{7=-r>}5h{DVCezD*85UJ5i-%a{ebez;3+u7K%( zHrEcVQXUhpRSIV0eIB%oEwvbrT@A^OSNV*rHCM%=$6K0J#hyS<#$2LSKC>`#S?UIn zOqENQW;DxJ5uIexQ);Rf1sk=N_+gpHkreHZo-x!Sq@Ew6iUp_85*E?&VB!;YI&~qe zc+z}g7lt-lrl|~QD+XT2^+v6~(kJ%HralHsG%n7nlH(+my|dltZU zDaWmQz>C12uEWUd0OLlEd?`$V?uuY|!MA2%|K!KH)Y|4+L$I8Msaovg3fK~4j+wCv zXG=3_XoU(DdI0YsGuk(DW~gbJU&+`*M}OcX{8|*uj++T)Z2YhoWwHxN@3c4W^5o()e zcf)8sw%)hu3{N`J=S}GZ?2F!$1W^=<%JjCzKU2cc#|E0 z*lVIVrOavxD|>!ZJx5#(f4v8$d-t5%0_{mJ-$5E@emWVY-Kc`+3)9@{XXZG+Y3>ms zdji0MmMJ}S=FN($rj}~IYJk}1Z+bgOFE7JtdI=ssuyafj)44vTIyrLUMdADO%P-0# zzxhq3fz5Ezke|R#%8F4Z4zNSw&JYK|y^0~uKZMFJ^M0~b{Cx$}#7XYqo{;GM>~Oe9 zxWhu7>0`b%>P(|UU>Y&Yj@>!L=GU)7V88lc&o#tm4IgZ}naw!igPo$`hEJLWl9ID# zyT$l2C_nltG`Zh8tZmn?-}#dK9b#XX&@N0JCqRUEHD>L7vFeVp)oZE@gA_jJI;1o`AE!a7Q z6=aR9nBj4wp)|Dlg5EHYx%|ivsJa=-nz7CId!QtkT8thx^&ZP#*`z=yC zo~ii=9iebl##t2XiNl|E3Wk#k=jOI;+jdZW1uF6fS<+acT7-$DpHc!lYEBwFY9n)3 zr$k&r_C}aPPpIlDJHpdAZs#|m=7!lDc?#gBTksl5@{`UC=$YrbFPY*1*_n3N?kOb-1fCyQCuwTJ+C${IAyDqyoZ_@-1>8|poZ*$^! z{}y3l*JHInhF+FjFkZ7XQ=Z-Nz}z%dMW25&{d42ln*b}SVBU6kLBE1~i;wJ@{V*8S zt~YBbBm2X109}-Kyk)8L`=xmhZs0~suPzKG$t)K?=3xmdZX-WEuMQ9`fo-4g?6b0{ z#FBV{(yR9OSG1n^JIr^HQs*1nEY;z8>?0SlBAC~-4lw6j*f|mj={#Zm?){%jOaQEbm`0!Ei%RgqN5ophG8OPhoTu0h*7bq7>)#@ z6v$#x@?!C9o`8lci0LwmcDOYlgRG=Og3&yh<_{}Wl!nep0HggdR#6FyijJ}<8jR%= z9fh}ur(9ByTxX}?rX1xWx?)DhFgQj|(B;0(JrVChatWM~`%Ye~u1uE)1J^om6Iu7_ zL})*UYU=-a1N8hEqs^<8G$1DxKH)D@MC_7}I0RFHd5W)sA=ei%@v_vB&Kr3vOcE^IS67S+$s|hh^Y$^V-v5>|kgE*>4952Z@#s_4=k-wfAPi z-IzJ^69NCm(wkcCEgD8I48z?P{iomgbD1aM_9k>h8Lg$UJ{oz0w#J%oAg7$1ye>bi*Q& zoo!QrsjFB>-=xYaZd$RpXqGhQvmqJ@ny{YR^?t>(>5`Y{BoKL#|{O4wPyDfiad zrgU*P9LiWE4$awom1HbpND5i>3SLoIt(bta+kFm37F_eN5+lrSdF&*dM;^Y~%G&J@ z8N!j+=0kBs$1g)45LWmc)_YI21AI)gQg zspJu!PfIm7W7?%iU+f#Q46m)*_Wg6-QeIz;>*VOp9Z5`LdRa-f%0;f|TAM^fm9Q1D zWXqP&XPwjE+{vOuB=~>u6_VnWvN-wI_TScrTUTd0(Uj*@KO60cdC6`&g~>2V(j&e_ z85j6S!(ow@(Z7d{qgW}r=R7UY>dMKrAL}L^FqO1{;^08iak#}E4({zmXXb76#VMu` zxhZ1bZ6e=f04YPO_h?{(h~dt3dw)^-#q@g_b1rbmxIwaU)0AEh(Zq!1t+5@T_&$^e{)zP~ghyAgEbftGfAS5u1-2m_7LSWhB zXloxXC8Z)((M>E}S4VD5eK zqd@sGd;|;h2?=bMr>N%xR{Z9UCU_LX<(E_C<(VSUK;Zg?jaqsAL6Fkq3%(p$q#K3v3rXY>U(Ml# ziVEg{G)1?P^%|CA*u_C`|Bt=z0L-H3)*eV8BoKNp5@}MUNpGPDf+$5m5fG$zK@cf| zp@;}bM|wwkQ+f@(g(|%S2n13I>2+t`|IF5z+1cECz2EoWPhgbnne)s!Q{LU_bLM0E z2aZ*IX8rh{6YFHMqJT^N_*r8^#oOoqtOWK)RCf~SnnZqf!j6$pt!nNzVuZMt;262A ziCraR5w9To4QH$>Aw#s#`HK`07Q7Y{@-?r?@+~H5zLt-pGOQx;9E0&>CS(WWkn${rb+GJ421%@3J;F(*tCuO?tt1D}VdLtlLUbZAc^$6o_w(c&RMuc*sPT1R|WvAIy6_e+}yUQjV zKiY%O_*-APB~W*0(2KdHWI@WEgi$USlM`!Q2;1^0c`I#4`Rt_B%i*A90?r`kIg) zPICQ-%K^)}E`pFll3x~7d3M}z`q_r}oRt1!`1Nepd0I(dh#kAih_Dw1S|XI{lFmN5 zp6Ot{Tq*i=5wDN>dfKg&nt{^8hNmNU${8yZ;&RM-SuC1UGgE?^W9O~e({Q}3$x(%; zNzSI~T8CUGp-wXsU=P93&Md|5!mP2(dGE*L<*zk_?(LiwnXcE8S1tLWI1n)M+4u=b zlXQwHockaoV{SZDtH1(hNb)*Eh5D=%4>dB~(UAKYN&10npICDy8s-rQ%u_SLr2kg?TUbmrE(LSD zl8y!{*aq~04L*BoL^Y36+m%r1QXFi(`w?U}YboIWt|P&DOUIDZIy_tTO(Nm%ph1NE zB*EaoMHf_>kOLAd$9Q0s`3UR!q84UHt+G{22Z&6|rxCdA|_7Jl2ja112m90QRz} zCv*c5pTvlWnen_WNd|(FTw&ayCB>&T&AElDJ zzsM6=nXb{L4$ZBjKI{Z&Q-Hu}zj>2GA=enNDGv3jy5pt~$ax;32egN zXQ2Wn(KkzXP4O#j5{SOv;XiUeBE&Zv=3P9O!;JDyq4BQ;GfU%8mUEcIj&e7Y8PA@n zIAs5FFs9Jn;4sfq5D~af7?w$T?N5TP#ueK~s|6TG<>Grw$J3oDM(~few18-5e52bl z$it6jJQmRzKgjXkN;n}{*Wwuz=xl;YfL@6pV9UnRX7H>L+Ip&Kp?kX|SVLG6rF&VD zWWRsT-n;Pe?jJa0--_V1q^1$l!Xaa&pJF`S0c!*0=_HpKCQY3%1T(Z_9duIc!r#P# zo$9myg-%;TWuy&st~Y4$3D`Fx&+r45Ub*~##h?@F7+=XJ&X|#xfAX{U)1Z7R~W zeKO-ctj3`;^D%@Xn6jcN8rht{AXXXGyP2m2P zDLgn(jV!Jv@`Mp$1dshikCjE!(QTG}B-)1sKZmjA&uG!(xxidc_^YeozV&4=OesOb zix`-?_o001(#2f7PDZW>%noy31z=S*jqm(PNG$j9LNRZn?TN?OoiM z1T%|7hUqB<{YJ9XX#F89b$(jZ@UR?>Pj!eM_2b0Ubh?1;4+_QX(X^S47t>i<7*yH z*lE1R3HriCsyJc8$iWOw*iI)~<8Zk}0{PTQ>}z~WHXc!fZfcHs5rl%K2~WxvzQp4Eo0VDxbREZ9(7Ec{Rfj>q7@ z(WSgm@$WEyq#mImm^{}y3Wa3Y1}&cLI9M2|4kh|ggE966d4;>&_iyZ9)jdDdXa|m20_tTD7@}WGK4CVqep1QUovA|!`!Oo|%5&RrJ zBm6w3PM@ck{OoIbIbs$49=_mMrl-_GOcqLONHfSkh1hz*m@Q&b>{TWg_5DPaGE9xE z^n^q-1@c{TTEz0)A`xfk?9kWtofm`2No{M-UORSNKY`+#kZ4;G_=&8d(bT$a7eiG^ z@+g=$y+d|o5|e`5ekG~v`=pTNo;C<3f4_r{a?p^B5(u`ty&~js5h+yYFLES7zNYWK zCHW`!9wg;6iD3C8NG4h$T{;_li3)s5WUKQ(sF=qqB3VcHAnALMs}WBmYkcmTlczQr zeUn7VHd8@$Mk}<$ax`ASxfl865h0IS3+%VvzgYr>r`%Hwp}5qwXjaLWosQDqfrP@p zTPy%O{9t7_x_RNkg>yAe6IW@6LGVFp@UO@-A71V>T-aHYvNB#JViyM1v-_!`TaaL} z!*rV*(H5A0AcuI3U{1V~)~U%BOeTq#;qOZ#gblL>f-;{bD@>0-3?#Ufz%splWRFP; zM1~t=wZJmHl?dr$dIVxJi7P6wOz%_@Y0@GwResmE8f+?wQmaW(2K>XGz!Zza_%DJAja_q`ZFI&{i(V<-_4FgXK}N=upzYfV|B^qXhXYX_MI?* zcn)j+VZI_*5hmH6eNr+HoK3UUg$+PzC<848%B#dR#Q-l<>QscIf*%l(`%ookvwfeoV z&w7Q0y?czuaz8Z|EHbx&g}`-{tmshYJ@|&!dxSx*a6z8uQH=YbcRO`j2v;YC{lxuD zIkvz~mHVOUZxkW^M(z`+E{a7N#bZTT7`CN@^UEr3jIo0JBd8obc3`$7*+j30(;}>& zq5CAIUA8R+Xm}BW4!v;Cq zg`pRx-8`%SZRj@F%7dTytY2Sgp zJSTuXow$#w2#>XfWX`M3(rpmnLe=1k* z_glP+gnVhsXWpr5;|YHj3YcdH*c_xfHl-WFKDf9h@{#C5 zkb1mII(J_Z>{Nrhnpe~Z{+1MhEvzpjtw6TDduEj@cp3KBWspcxR;w6{D?4BaEDMNB zqKD7_WLLb1Uy#umKxZucSchFWcOmcbG zU3@DmV2x#R&$PQ4VW0U%TVkH!dceySE_>xSoT9^(Vz7PC!zQOOCeZ_)a#teI;gVDc z-VIK?I(@e54jIi+AL)p<3zO1?J~$&L6GC5suRZYjLPUYzXAi!wx#i{f7Zl z0}DH)s9Xr?=!A_WVcZ~&4fm7t1R+Xi@~}i4v31HpZR;UL;Idxn=EAIZNn3=blADrO zsT9$$0DcIrrgJSJ;ZL@~E}spRKAhT~O*-;;sLsvke^zr?HA151Z=*Y0VaoXHEF4yq zT*`yc0z!thXu(waT9~P{qF+ExaT2U2K%8b~z?aTgwrFRgP3_5j#~)~dVXuUV#vt?G z7-NwC*k{%$qKOtOD_s@w%2f*^c)#vpr(aYS+z;MY$Bd^bw~k=rB@!`u3%U_b#6Dnd zKo_wo3a)0ziOuz5{6u6KLD2~%z@$Zj;J&DM*D1ESN(k2;D|y?8DLB-~2P4~;;E%N1 z%*_;;XkYa<^GPj2aTk+k5Fn?PCp-<7`OJF@dOVQlyjJO$7@7j(fGNd4nBua_A-Ihm zQVIWLeYbKhkc9v2=>+AIA;#m2CjY}{imX!lzo!9@a>~*PWWN6AC`=5FLCj>0-Y-$khN7rnc_29<~dZg>}Ndgy|k9><}2FDd!L$ z7^@M-Xhz7ILVC+M{C3`Ue9EdCe(Lj9BD9s2}R6?<>ilKkgW?nRfK zB&)m0GLj3%zTh6bD*^ig5D)+Uq}#&ac>`)rg`27>*aW@aQ(4C`u4}`9;Zdec z8JLZfeJz#u(X_~PqCrnI=vE1v&i7$Jc?YhO+HUU+XW9WH`vz6~n%N;#10ZRU!0at7 zuI#qOqcNx$Oe@uG*RC#V){d{0r-7-Q-)`K1(R<8|M0~ebW=n_LZY}-h-`}mu-os!% z->Xxvw8a(>hk+9u+-y>?U~Z3s1q(J`0O#a38(Lwq<8TvZd_$Ln46F@~Fm+H~CWzm_ zGPJB`klM5EM7~eRqi=m$3Apu|GUeEmDJfGl*N!Q9R39cW!Kstxl(=9OT7f{yV6X@S za~ri+QGWPg-r^3IFHyJd@M5!)^`j!AjF9|Ojio-%GkkzWw$Enx_$Ocq_a;DZU*fvb z_>{2ce+;pM8QOsbHr4I^z>cDVW5%q3SJ8!6NkCwgUloj%mkxPB=z*ey3u{OP4MpyI z6lJmDQJ-Z33h4f(kLYEutec`7R=qwgX$gJALa3V(+!5T7Aoz`<=kO~U-g@rfH#*ar zlY$*FOEqxG?1KEaPQ!T=n+&d~WDqB4`H%KiTS#^e7%%`THJhsfYsl0^?x^o0fK?u8 z5cHMtjWJwZgJ4-&bAVyNAdQOMDqU>U?$dy!&Slz`kLeNA(2_Kw+@C>(j+rb}Cp8E4TN@4cZcK=RgCBU}{Zfkb#MRlK;tfEjtq3dluv94n&=(^Xx zmX(aR)W4|&Ji9Gjy6il>V!}6=DQo_H^i@#ZeLnI7D)ZQpBS+w@=?NZt0NAz?^w(~V z@i054Zg$87?~5=T2RY5AK~s!H%W2=@Ra(md1`NbOzvs8w`{M<(oP14S#SMKUz9zRI zv2`v=oOV^87XoQHc}IkAao08(5^2@%JtvYCzCj{S~WD( zk0M8C|EU}y9~(U5d6F#2N-u_oeV#K7p7D%KD36-NUb`AcQX3dN;~5E^waRp-Eoo)2 z%x7dGq;Cqv?7z}(a(diPup5{BX`53;@4$_U)TP!iRar!Z?i1H{KkZ7eI0ALu(RLqf z1%Ki#gf_iL$Ptqkh@3&Bxxg~L1Ic-(4;meHR@qu1Q%oHKv53Suee9@y^mrlko8m1v z_8i=NxqpCUJ+9?5tpSh>wcmS%l~Xfj#6p)q{2U4g<7eHV^gLlVU^}4{D`NaLWqF*k zV_)KUFVDuKFVmji8e#86MVwGIL{AL--||?2JHStzJC}CUZ01vZwQdNN z6w?X2$j6*WUbE&JbWv|E18b?M1Du-4VHLF2PvZYI#|hQrkkFxvwzW)mH${glG3C#%~(Fm7M8C{@xq5GPn~ z4PX)Q+ZCY*I9PKXsZsD3UiVdtEDTPu?liE0X*j$_G1%i_bQqW^mZj9hn%fd<8wZ0y zha1|Nk{6fjm36igmL)I^Gh%?#J+M{P@CjJv3m6ZVW7Q+!gE1gF1Y+8?RWO?KH8D6t z8?0rv!Dnk8DmZMm386w!@X?;5PA&2>vJEw_|M(jDvj33IFk0^4ClQ~2{dSQ4l5s;9_W`r3c4Hqkyu%4 z(C{n_DKL``*dzu+GzCjFhUZ@KO1ctJIC4$X$`#)E^rV90YqN3)ZB&1Pq+p0SsV5I1 z1e+E0S-!7C2)XsxM6pf3_}HK~hLMxFB=4@4{hrwQNY{w}A@;$JUrT`2+|aqPb=rT& z_!2@H#)0VoTk8+4$1OO11>cH&r_N}wL-6^^G`yoqM%(X|`>a|MUZt&$%@w9|TEDs5 z_>@tEV#nmzL}*uR<9ba?rn`7Y!FU{4P@)u0+gCx&qwxj_)>@q$T85)N?I6fOryK^x zR?BAw%6uPB@TAy&lVuT*&P!ca$gyIu5CSf(r4`(w$_4=RVxYx%OZ`hqpw0qrNX<6C zC4v{R?@Z=fUzjmwTxoV|R9-R*}tG@T2Q-&?!gRId`} z^yZ=kmEpEFR7`9dcP3LWxJu#HOmuJmZ-C*`%ryRyJxs`-XGD=98(MpYdeb?06erhNaFo^_7KL8)4XMDm@I? zU#5>E@}-iCPS^snd#wXjE`dZxkvo|=UAhMj%u#pMfAHYRXZXs#R6Mym(cBCOEgIuW z#DYQFHRN=U9pJi_XAmGgplMs8Y)wM%|X1?cJ{)d^CI6oaXuXawi-iA0L!XBm2mA zTyV?tJ*+3zvAi7R`3=FV3vevP1H;@Cg&03WwsFlmL)ObHiZ-OK&qasBgKc69peiKk zT}G8jW~OEh_Sy`oYxq3)BzHOFv1fewLN^`qnD0?&6uE7mPFA&6zl=AlvlnI>-V(F~ z3g2~!b4zByjK}!jfmJgj5D19x2Z3dJ0prKLCW6qvDV={e@8y`JapZrIzb0H@#`Aac zcMz|0oHh-U-yg2VI`e84CiXXo%vYT{7>a&mTcut1Sl#q|vm6RDw}k5@6X1es_x7!T zxV{Z-o1O#k)@s$fyimJYk8Rf=1h}@*`PZ!5363u-l=51v1i-xGc9`}UD?kXXiz9e3 zY|f5vXM+%Gr=?Q{RX;&DXG`rhkArRCH$ifdL}LI68;9}*Sliv1FafGWUPvv&)XDv1 z8>OaTGRy|TR`B+~^tvhAi8}?~hTj0qvXv&4*rwX0hb`zfov?Trj=L7m*H5;E9HADl zh5Rx6iV``5#)Z=@<&14{xr#Z-0oKV0bGe>6 zLB(9IElwC%BTWx;j1J`f7uc^)U1z_wC&}gd7X7N4KRs(JgR`!)kPp{W_-B)Zaybj> z`4;}zQU#dGt@EuDwxt-2RE)3~RR+Hkh}q&pG$pEgDvCj-zNKk|lu94~Aw5rRk=cvl zE$6>c0?n4fRwH`r;IorUmo?x7eCc$g>7uv>l-ls~Y6fEAdrW z)%>i^#_4p2(!+XT`~j8f?am+ znZZq>+P(FjsQ6vjKSyhH!Kodr4`BDJW3R6RmQ2R_tRGLysXiw5ok3s2^{DeQp`)OgMcQ23U7n#Y@YcL`{u|ACe{>Xa z$(Gx|O8h-_`X%1iUO@R^*U!|ZP3Np_Wyk6gqFKcoX@9!`()9_M|pnvSZ%RcD1CK7P?S~ zOishH-*d+D203FTpY-IehBYN?9p|*1 z((xa|&wCyAW02K8k_2VHrqv*_<3Qah6b)Me?)MR=w+q5H0$6M-JRR2k>k8m(3eknQ zPeJ$h9GDUIB4`-;5Vi(!gJW+1=Iwl}wooII@V#tIY5@x^mR+CgIf3zbMr&D&ADKam zT;_Ix!k&f6CPpvDvc3uTlQ^7N8z~rpH^OYF<}wB2NVa1F>vHB)63s#{BOp9q;8Rv& zAU*~Ib0N#DMhh@lh%_9uO;%b^hre*@L<5=(n_TqO5tRkynR=}R*fyv+_XR*@&13?a z=PHz1Ok`vXZ3wP^$wC1B229N@<{D|LHbci76uLLDu$4qLx;OlfcUNfmUBSN=m6XGD zx)}ie-C1EfQqwdMD^E84N%1=s1<`{b6Zf%u(UHfnazfazNi7NCnIKRd_6r5@;2Ds+ zHiRnk+Nvmg8$VRR*Ywcd*Odq^wFi|L^SD>NX#5kC9G~Z`6(~3jUfTkBOHZbyA~gVD zzgQt#8&-@|7FdBAZei6qY%|8pz~EahKG;yg$Q|M2+Ot^yM7)J58A!`IBfi#;lwfW( z?<|fT=>cegHn1TphTo;M4a)QI=FOYKX}Ovuq^ZhtLjP@*_*qO`8tB~*e%Aoy_6&#F zW+OGP<+Jb@=q9`HrO(9NeHk4c3*`cZsU%2`^#DJE*cKyj?f@mBjp0EkT2Zc8{oEehF)_gUSRwOXWRH*m zR^P&4=8AbC0XxWHOy`_#b1>^`gm&OvR>=L3&OoTHb+?_34?Yz|G1J{Mp2b?m1Lkjt z9a7>xGH7^$=`*8TQ0FM+7z3fN0PCT4<*W9HQXVml8kky31f>_hLgl^&?T-etVz9H7 zf=R3CZ4hVI)3T*oOo&A)TqQ1i4Pf?W7-+!OS4!zc#4$Eohc~0wWl3cE!%_+E) zxlL{8OxUg+4qYXJqy0qioy)uOmTP%37{+QZ*`J&VS8^lhJ;5*xvQWzjC!Yeg(qJ%8 zdMXZdZqLr}46+6c`~mA=__=4^_Wpp~Db6uXPv&-@_b%HzqL8OPg2{HtMf|M(5QVzj zKbxCA5$Xt?6#hM10Y(W2XdrYpH))jq*ALFU1vOFoT~*T1J~UM>)EWkZ?uY#K+)3_q)6u`J5VkKjLt za!rv1zNKU(Q0_LAXZYf-!mmezQd>0Yf7L|6tkuEh%C^3J;jaw?OEk(h&{mzXNMpz^ zfhMdRc&ba}7V9=zx=Q7=1&i(2zF06!TR;GNJND%c)V@898Z656HIg7cVL3ppwM9Pl zkCQDU=m7&9mIDCJdMjOPLf_~bY>&m5*hLlV0$N+4A7z19`Gc=lEeN?}20L^-eVysW=Zrx$m`*ws zNryp845VcwlWdLzYzD_*JP;opB1s*{HI@RvOh50pb2!NnNz-72g)Q9%X?v!JEqPYK z7XCkt@dI(r+YRS3$$ZDj5Cq)Sr{G3T*-RJ1Nj040W;>hk&bZ4N%dZ$%5u0ZBeHxbg zVDOC}M0Bxc!fOLG{1Y||b}i|^lLP0-okkTZ!2D*B_Dp-0gOEp?L*a&8 zn5T|=`Yi4l)055?vj;kLb;!9oqksJIM?YU~dL}C!AULE`&1!m>Ps%p7ICwgGC+}x{ z(){TGPMBkORzjn{3Agj!2#(h`Fum!*{q09zGJW$*tF#2OKeSk?QY7*&*bBOmRV=2m zU=>bjgs8os?jnXh_-NSi+z8cEl;bu`W4O;(lobvbSOd0>G z(9jsnPD1GlGJXdQ%GFp*R@*fWq*(`d-wx%xtHj;Cdv{O|JLEP&QSAGcv~ZBCn4S$9 z4BESQ-`;f%8dPMZDHfr|M;iepVlgwu{YK@}KPm>co2)4_m<3XvFB@4(bt9KOSCp6L zXb!OD@EaH|_X?%2xzdnZS%axW`F$TU8kh}LK1p9U_MW@eP%LvE(ul_ z!6aC=d&IGm49m&QB_b+o42iR5B!xg1h|_m~&^_bek03+6_sHiGuF7(MKv%Zia^#SV zbktREdZFE4_RlucLsEEf3V8%`Y(u#BLyK?Vak9<3#)n~~zZmg7vN4*_iLRaGu81uH zZ8vB_PTH{?aDUk4%9Z;rjgypXlgA)Q-9Dxzfdo}I!tu|nJIM~SD&iqjn&6fK z%k)kn!6q#bim4HH=ih7&TZav4DVBHYj%%;j=>GSmkPgAsZ`hG_aL3v#@f1g!m@0<~ zPHUlIWx{!#hB`of<|x;y8Y^cc@^0ag#liwRP^#N{XCcq+gkpy)yQh7SdHp%vcJRerS{%L&iZggKuLZhBsrm6oK z|CHw)5z_rN$a)6^Y&YEtaKzB{C}(U(I#`!jW{lyi;>|-cx15~Z-InbJbLYN{jD%gT z_S3sXbt84;{#>DTha1&N;+(nlYu1GMBAZ)G96!re#CbVt0*N^i`KSCnTBr6iZWp)3 z1&qK$uoSy@+lGKo;PJ(5qp?v`-An$@)3^KKY3ALz#SNFznds`VUgoO()r&N($BcbmIMOrAyx;$2b|ylXHT)xi^IA2r{8Q-b~15 zt8HVDH-TJ2mOEzio_Uw8J;*&Q{^(kmjL?5_!tz|$=k16QSMJsH6tTqR!6dhz!*LEJm7+SD%n3Tw! zyIQp@9OiTP0Qi?eVmUVB>6Z=$8IixAAfJc0hA?V4GRsXem}9V>y?+zykd7Ry|FxrM z5z^QxQ`a#*o(@L)8&dZLY5UXG9bsR9z8R7U^rxPDd%NI^Mk79hm3H#`8VsM)DVn!#Wr}5J=PS`)4pJU#0sOV

3A4a zoh_b4)Qi=A@*e`7^^PU+PbDfv9GlLqd)>~>}h_iIk4~V^7&fmY&q)9Il14OXs zb~Uk!#(F0uu8fFPR8zWYoP0M`r%hC7yiskwsj9MZHKymYU41GsinJvAscL_XaR12^ zsXou@W^0@!YV0>2P`>NpzB8Oy`Y%-4fs6BGc~xD^$2q#x4OMj%iG}vW#yK8Ux!?KJ zm{%-8k(j7HZy|E5SYhhDY+|Om&(+SFis9;4Ci&ODhIt)>fTIAhPSN85^Isr|<2|AKCQ7)`&4U%gq`B4=PkYo9= z&eUG-Davf2sr;GOJedEe*LqkbS5NO}W9v{ua`FjTw6>1ciit#dsCoTvBN^6Lls9AP z*gDhtW-RS0ErI;!Ty?!ES7>fbcawHrgUJ~uE8D=c%qCC2;>82lDq{FbAB6si5Z3_p zyxULSLlr;l9+_HPRLVN}Ihh4ky<{@mM}(B#VPp;7dd(f2RhMCZ>V ztR^xSgNN{6mfg5_?;g_3`&8K)g>6ZP%D}<;n{nC=R-1@Ht)xZoqsQ$~Ec^OxOix=^ zN9lm6u@3AR(u=MO=2+)AUfE|DdAi3SrTk6$LN}gt?d%INJNc)odSnTuJ#|X^yABCj zz8nF|`A#xDKhk>Hm(VD?<53S<+(8mG>64~bn#^CtxvDa5vG*?Pd>`Io`_;_7DvC1u zT?;4RGUHw`j8k5<40n83iwrUBGdmQGS&$XIO6gYpBgs_1Zy0`uQMR?x8(Dd_goQPr zlF#tw{_BxonIX~P1PnZUIGSO{w^yoE!Mc@2wCaiAs;VqFjbJ6v?wr%vo_T|@!)~D` zR;Sf0t6GF;KX-wnXPw!j#5e_er zluwpVn8OtZB)Vpf`t`kmlMQ1IH0u%V^tG2pO_uciTcz-pMmVr;fKIg3OD;kjd&(6? zlg2Vr3ZZSn6XBI93|G01VAh_fhLt`Gr(?p(O^jq(ec$rU+98bLKaz?ncB=pV@m1uVn$}UOMUPU_S;VB0*m#z~4L?+O1jrC5L3?qxM0pF2idfjEszGXUGZ*+4e ziK=5VdxGUX-4>l&HjVQymO#MuI6W-h9W`i>pfoYoa6ai54*T$GimKkLh23os%FLTx z*v88JuBscpE@(42YObnoF2cn*vR*O{LgnHDiQRzDeb_>4J_J6Cymy7=?rG?XhMbjS zO0_v~;J_t@J6&CdK!IlKE~#N!lVz%4m2(x-Ia@6@vYgFl)LwPCQNs_2bRI#y7aJN^ zW-VfoU)4K~K2X&jk5qN_kVf+#sOq(fVw#Flc>!gaOjTdF{H+k}_1Vpsn3(gf@6VY^ zTKr!sfrh>GAQ{B$oXonE=u^hWhBZk+1jSkyLAMX640oTKR9n3#-tNxbGn0& z>%DsQjUptpim0V1ngykmOHtRO*%-aQ{EgbRYZtJ!hp|1!wg!H+EXI(!c1WAsu1Vx< z8uSMHRPq++Id<&WFudRUY|S+4f3*bCX z{j=$hF*G{cWl|U^l|e7~12I)Q)>XRKxQ6?|zw?bP$x~%EQ2N;EmdyMr3)9&KUCf!p zhtkumXE@<_2JMJ<6Lt0jhG5&Xr`xx0Z@(;_hTHvTJ?YZ5YUy3nFCF9PmD~7RH^=h{ zt;ZC4!3102(Dm$=Ac!8A%{#sXai%EP>gnsId6mF6+i)bfpKl~L7V~@*Y;W`6r4(v zx;o|ccHno;?e&|+Go@cjb$0jlsBW&C0_l&(MB*) z-!AN+kc#oDyZB1N;9m)mo7#d#A>E?iK2UGB1#65NB>*_`BSKYAYWBnxb(VnnH@~mO zo@l4>eo&_h*b-RD%M8w0^(7ATofx6UE;H-mDQYhp%QQn(A2u`NH4;_J_o`&&1)qH;siFJL3oTOyfx6yg(lLJ^$u8ASJm0PDVbVNK=?d+c6as9 zC!a?DdnJ(jl=IEC(#d-~HNjzHn^^v%s`}WBh}Qy#(LZ(>(wa;`9Gw%QyHrFSMQI+Y zs@DZ;!jdSA4)C*9R#YH1I!SU+TPSPHCp@Zm(eq;)YSDgE!{wU9V^=Ftq zQ9~3rVtKnKs8@Ak%7w2})ljEVV+!q7)%GUsyy9G-mz_K#-Y6;QOX-sVAEaI|KX;dQ zuzJ)hCrYh^c`o@hhFJpHs{guAz4+@OGtOPxUWCoS{&75=%zp{+fag^-Ua?9giAAdyEhdA-G4bL^{60g4cD`n;pMVbk3SSj$_7B45DZcQ zQjX(i{kwz=p|p(Gv(zKR6C3Z1WyLZTFTHm#B}aG#?Ryt{NSsbb6RfsEGFejxec;`h z<1wlliG4DB%{0X8ZYdQ)a-HPn--`h1~~9v>O(S<@?Z)w|BD zF5X;=DQD>ZG}YC198^!B^~*P1z0ub(E)R`g)#po>T~TlS!r$AVGro-{kKIvU0)bV$ zOqpVGB#rxDmVoct)Fclfzq;5Mv9lb6OO+E@3v&>WVbMyx(B6lFKhkv6rDG?6+)7 zvGMQ+?WEaPxm7 zqjkiC9NJ=O{6GWC8)6^o09Grkw+k|VAsFwxafV4c@0cmJzC!nyG`n6Q2Td((WALyp zk70X+?%2S)O8bU5$l;;b!eP{ced^IP5!)!-5S?9qg9l&42HtmKQQ51MN^KQ%JwBfH z=ppZmHE$h&{rfU00cFiNf4yjz4bNtD)fmSNM^0c78O+5*GL(q9=h06m^09v$ow4R7 zZCCU;k{|ICya1h0BBAb=9=qA^Xsi|1YUc-mJtU6loeIBG;!g95|9xwJjSn3=%`0Q= zjTf(wpM>8bYp6B(V}tXwk>ciV_C<~)?-5>YMZrhGUQ9nco2wdaNJtGO;G}r*EW(Ji*T!R8oQ{4Nz>mWq_j0dqN`@NOPgIz?QxX zUUvL`=>}ld7Jeg~hxs9&U>f~@ zrvwVMoiyp?vJ$&6%aEP=a+I*SuBx>tB@4e{;jz7t#>`&kcUtIV`Qr~wp6goRvNtxK zdSd17(jHku^TP2Y1?0rx9-fFlPmjARj)?4+&nq#Bc&*W(q zIIF6goYsaeT5zPQ#?+Im^;gyCwsNRj9FCKgL(1_~b+hD?X43D+sxg`$)U8?{&|EiL z<9w>B9<8R5^QNkL4OtCT)iZ`;z?Co@!+ThhBMF)Bz+)UP_h-Rzt*R+vAID7ME+B3D z4U@rLu|vT$nHj-}{5{AFJyMTnkv>Ys8kihv^&$n4Of%qje9UZESI9dZyB#-ju^Gd6 zKUVNKs#ZfVGyI=Bzu_IDUXFJMMI1z+?!ZU2TAUu*=NE&ev99)YquM?bb*W&pVUl zMhoYP2x@@S75etutCY@r-zTGS-?YoWRsvaDr_$O=uHue2hAB4)g?(BZ{+QaXqzacYE+P5S%X!&pS2AQRN0(H;&QwgoT~o!Srm*KGl$D|cJks)gg{-v=B`ZVI$y0c((dCx;tCp(aH8PfyxIv&EfSJUb z;5(D~vXqMKOb_y|br*riJ9JOX=ej#Y;Qx&xej%xse<&e+pqyJ-{qjWSO;6X0#y9gX zCoP*+l1d^Ea-0WYB!pX&kbr9o}apoc5k z%x&otW--(}5F5YpZAVS`Jw1s{)h5T$LuTDfE4LK9n>dE9uQH(R6YVTiT|u zCV@uPl2)wQuycU(a3Dhwn}*p3HQI?Ws@yi3kV03AOg$E`l3r>%TaMve)ZEGl`b?62 zWg0y>`HcxQR)(=1K@p_)%hdGer8IfuKf+#;mG{5TtF>(Tjqq@x-8T~}_=Gvx=?*i_ zU8~I3H%66V>!HK+I&ty_Sr;Y|y|kIqxr3ZlZ-x6bs!JC?=GmvaTV)q?TT(hhQNE;y z`d`3C0NZ#BY7Z)+Zcc)Ss3z8X2Xf$LRkf?fLD*v3#$Ji!Pq$6KoOgS{Bsy$Lw(Pni zp2I#!rVkow*xO?+B_OA<>}$_Xn~c>`L%rG!rWg7 z$rmrqeD~dV#p$+PyJ+D(E1@*vzgq$=P`1rIls2TKq%@OaxmHjwEZ3S8n)3Lkax%RY zDZnnv5CvTbIO=6Bl2ZN@?nPI@3*!zw0i`UHLakXAQ`{rwm?;nnkhN1*tY*p zB?nK7*6Mm69@6t&S>W&@ZQ886q_>;wS-7@CsTZnq)H^%$Fx1p5@&{%NA-p*J13C&~ zxX6Hni-%}u@XmNM9{(74jDt>y6XN5s z{`jP&s1e#2!^-8bP(DWjBG#lMg4PFeW47eKhZQ@Ffr~44DjZczD?DokijGt{f1>;O z^XJhOqc0q*+-u*l9{uRITsn*_p*`R8$B(DJ;V2YAzwE7r^mzU~gmBJP>;QTH zE8}*UzeK*VySag}B=R*Qk(c1_y26TDA<#Lxb?Y|%$`zchN)qZjFeBQRlJLfIsC66yIh<7 zE?u@@0o*TENbF%H_XeA;Ed;v}P?`8X^XCV z3)ojylqX(COGJ;_pEHkb10)Vvm}sWaiGaS)-Et<=xDIDpS6+2+wP+vKPCE~j&;|4T z!Jv)OjFi*VI?7U1ly9JRt)?6cxJpM=mqULwZnNIKKa%CS;=&_G*c*7nZ8o*htzMK* zh(oi~xfkHBT8%&Fi@mX+HxCcP?yVo!%ao~Jy?WK(j-=5&IWUQCH0sAJnw7Ikz>F%q zA>R5ItIBiU@%K~o-B!zN$A@^&@g6489hu>Lx`Mpy%fqF|$Rm{g(LECWo}UVc9xGs7 zpn!0zm1JzQiv~@4*^wNgehVLISOGWWTNgXCve#OItwli%YlZTZVDLG8qm+VU&FXL1 zX~SI1;eSD%Ci7LX5Gtt!jv%=U_aAqZ+z#uodiE?-OLvpmcS@to5_oCk$dTvueKbs# zaVB&&7tt8G)#6n3^Y*)nZmH;5n?dPEm`Bu{)s*)f#>gb_ zj1bqIzZvM_U+lj^PwwB34$m+L#G*x-`6)S$(fCFZ3@pDDG@i2r1)(nZJ_UvyY5bUu z)gRL48B~^wG|^pKX<)5w^tov-BKr;$+52KjA^4(vQT#|3~y$9Q}Uf9uM^qk>ii?Y=gHlY0;o;FCFJ*J z`IHL|OrL^#UOTeDapXh;ytrtg%4(h7y_A29c~3}WFq#~n((FD1xuYs_z4L%XHM8$N zki=LW)q%)2Z{j0veemp<3Bloyt!m9wAQxoP?202b&Y5u$%T)FPo04k;bco1Q^BXCT zA^LL`q)qu{ALggHFIod(T5Qg@^=^({o`ie>Gu95THETBK_sdr=U&jAI+>_c8Y1E&U zz%6>f=*&8$GWy?1xlz-})#JH#rKGt1pBh$ZOH|7FymGZN7gAD$N}dzzhM)Z-F3yqp zE~TVwE66c8asj;b_ItzuIC>qYrcaWZ%Gl;Rg+@vyYcPFGrb@jbBxFVMokafmZ^l9} zr)hUeiv6;405(v+lj2z<`vGa6t)QVrdf`j(c(lx8Y05kpgt8Eb!HH2a06bvZq~kam zw$G!CJreu-u`>u&i}-x)BYyq$S7}>a<11~ozE!c>dKsH1sA~M& zx7Bv(OqP8uUbk*WrPQql-#BJuSQ3XkCzdMppCtFORBn9*Meo^O)Jh3Mdo4Ybx)}g z*&v#b-x_eTHrZeUG9-txZlaz$Qu!{YMDr%tDcMw&I~%0guqFONREJR2^JGMds=2oG zSvrKKQnj5FQkd33sW-hiv{DbswL+ULVEqM;x*t?KEv^ zojUlQsfFv1L;8IVA{VamEcRYI_D}kJTpDTQ|3(SCjlE5`*7WQ4ktDHJto7b{^F{I_ zgwIXp=aZP@KD7d!t^xjsqti!WczMLD7m7T9-`s$~*VzXJWFa#I#|$J#o8U zRw4pX75V8R>8>y#IRAh0=&f{(q37iJQ1V=+&!w#cQVhm$f^d5~(jb<4?uPN1wI;}x zH>jF%^iDY!S7T(y@Q}1E0{S&dq{q^!GQ}#l*sl{R?H8^ClK7<*Qh@FA_}OH)`3LcQ z8_u6UziM73V-D9tmt^x->4O1THqBvJ-fC9a`j5FAyKmpVY2}oxe-ta{UvJ@Add*aC zMdQrwx9^Nccj*1io2|JL>&-IMB6vdY5H_Z zk+PTr6(aU>n0^ULZ+~-(9?k6>BVk~kY3LoN%D;w;P1y5^W;xSg!9RxHxlb=>_MpzO z{uV30CbnAfQ*^Gyv50QB;=;zU(sfG*eKjjwi8d z%opCrJq(Y%jNDJ*8616&(m9;NibG!BsnUlfIR-~gr>VjGgK?1mB^vt%7w5IG3~}`nN&)1u`8kiU zAd(jOH%s8{R8@Qn>~#FL(^xONu&H~BlBGD>6U+E{B7NM%5)_C+sC<7AICi8JPBit% zWvhoY{&QPWps*BUtH7`#S?8zF%jSn+adl!MCKU~L@XRP?6-Jn}<2pQnJ`j6Nra*?? z&ncBd%FB4_ec4S(;rcEnxabE83v4Zdm8*wk<`)Ao=jlWVw~EI361VH^ft9_&pMdQl zl*X2nK>eVqRwd_vn?9q&<7Mh`0(D)aLtcwkK*PU&EPWuu?veF9vQ?1l<c2goz%UYb>z2a`EjoVF zbHnXV$Pzy9nZJJu4Q%N+eE4u2-pONio-ttMgdCZbx{Gia`lp=Ut7jule~ck*C2u9{ z=y9J>cJS4_??r#v%k*#Be4DC_uL0q)tQSyv?^qnJ9!|o&icP^AE_=PTP&LCn@2D~NSd zqm*MIL+*XBtc_}NAvu$qyLs*`)GPDms^8z+F&av$GuEJY+ddJeT)rfygtehesDbfdax$Bfx*# z$Xa#g@XtJ+4(}!2V&mV3SO z48*>aa!-S@9J@W`lxL*S8M@b34t*6z_jo{Gqod%_J^B(ImZ#Ff&Wz>XsABwOcgu1b z-LwbeWRT(upB>)_ONIWX%(B=XlC5+Lmh=HxhfE94j&R8>lk3>-L5yQ8zm4a^8fE14cKQ@z&>0~+kqG9~`W*TB@&kf1F#Gy74j`fMhJl&PqoT=l#z+7YeI zy7W@DiZFVvmXShr(1=}gbYl#`ikGqLy&P(e1Yh)!C78~4H>G!_kdlMdu6hT_soD%? z2(6RR$!75`tO5I4YAe0L+8ep`@&O9*MoW2dz$$&#Rdy@z7SdY*9#9&aD}gdG+_*2t zXJiO8WZkbo(lPWu;GajW!wO{ubJ?DUwTuUhZfH75C--#)+wcWxqtx4VM8hq;W zg0jv|099R+C_aj$)6oC(zeqP_5R=T@PNl)wmF(}|rHPJiK;?Z@9hR;2A6Olk*j&^q z6QkLX+MkUgq_o2KuhKhv2OOghToy&imZO`L$)n_mN$BiQGozWmS7)2F^E!}v`m(ZJ zRvS9S&G;nxi%B}Kvzk zUZBi|4QL>Kbl*?s)b~6+6$?ZEO{}oDp8pvyEYlBn@f<^heEPguDWj69(~>pp2|s6Z z8m-V_FZOe&a7lag%|92g_>91|A~5&x|M}qtPA6D@O@q?G?+YsbtVo$|-M*)(4crf% z%YQ6ZEMuuKYBopcw%c4=HeXQm4_tC99xD1OtT^6;9f3v1#^Nj{z;_W2u%99Ij|B@B zbYs7v;ACkRef|2E4RRqbP`-8jWg#Q2S&Xe%rYXCezb%82=dG z^j$aESX`m{ldoe%c1oyb^)YENv>r7X2?u>9a?M!Al6O+*a}QAY8V_>9qs@ZhA3-mQ z_D^8!IU2#)8vc4+;RW@bJ}v^gZ0D|#@*J~+MkG8JXRJ~I|~!OSltprvurHy zmQXeR)~&Wpnq*d#$`R`GZ!N6wacEc;Q3Jk_EBTqK9{AAeZWcbQKD6@kv8w)VzjoQy ztK7scVDDM!E5ne!-937$s*Mb+bkp@u)pK9i{>tbS_4eAeU*zh(b}csOQ7;Ofgk#`X z;b>nweNc7x?v2*4^Lu9ojw`Y96WG_o9&Tx9;9RUwkvBqWL{3MJyIIl!9bi8=Vu*qiEyL{pB02bsXlMN!r zihU-my0zFEF^S&oCUWf9B#$9lTjHNf73&-rHs!m(LKO=IRtyx|W1o5I!u=Qmj89Hb zlhxIH8To8}J{9|pvQ01%-r%9kv)qR>8hD}g&qnZ~9G&?r8kVIWavY2FS+Rco`jcvk z-PTx;QaMg@9W|w+Y@SI?x}a0HmYE#;dUCHuX9>qsIKxT3D^(+2g0)F%3h~lEJ(4+* zzKuQi`{vXnSw0mddxIaQyyx${S6cjkQUX~XhG-R?PoYIEo#~XiO21^T&nkonHK-s*A4;MM%OOQM?LAQ#rxS1TQu{mc+17HlWg$KpwvXfY z)8@dUBQD_7V~$~w>B`^0J25Vu#o!2Id%o4~`?a{rY!LQetR^#+?fC~zbvCe(Tv`gY ztYd+a8GC>;kER{M(C@uDb*j?!0%odei&Jf^d2sOXPA%q!Vcs^s<((ShtMV>o>}w!R$|s9bmsFXIP#4y?+<=DId} zM)7{>ej(qm-Dp~j$1~m(E0=U^^FF;i6E6$piPW^`)9`UZ&e9_PVhJ?pB^PY+#p3Wd zGFJi?_yXg*^zbEnuSZL$A*$c#_5r!3q_nko2CQb3mdx9bxXAXcQTUae9cvF-(#>IqRw@H#YoS% zRQSXUY3>}cWd5UL1=?HL%j~E%0~bs)vErc#t5>gnzpfb%IzKUoNsmFLgjy^5U7c|u zcA5n#`@%{n%Br|a8kFr?D(7HQ_7e8#RP|?Aw^O8NE=Cw(F9|j%zYk-d))GeMs+~_5 zt${_?lkHp&UE@t7v8_QgJ5PUe`&H-Av+w4d;h1-B+$Yl<5(nF7OHm^(Tr&MiNo+6U zqY)5zh6i9xse@-k>!Y>3YWoa$p~e^zPwmfhEc#VswiKLHknP}a=N_)v3`-Rt}3vZ=|^Dt_a z`pjWTmzhtFYL-h-?6bz2u=OX?5_%3@6-8;ANWQVS8j)!(Ijot`?cgZ7FTSF)$r*O9 zO5eaXI>X+5D`cKeujHvWV+LCv_n@i8)`)iqdBRLHe7UzB6}iHe#>HP6)p84Y;DnSt zyLW$4O;NrecRv>sv|?pqyv{CBux>EOk`swC_s9yTMQ2KUPRWF=!jqYZQUN|PR~=xW zWgkZkl7F(6`d^61c{25TkL>0;PU%_?Y%sP%^5}dO{gozk^-zO#vqcUS{wdjOL9o(* zrX0vDS1Wy;c9A1W#^32l!}4)Tq#sA0wQ(|yczLZGE(PCzNY`6tkwcD2o=(PInbe$(C_b*Ud z$F}`hw{)N2w${;?@3Y@0_JXV(s}1Dg zr;eZ8NVGOxJ2ZoJgMTQIt87_wkjzm6>C&-fhv}p)Cgv!C!O_E^f@q7me*imjgC21j z0hvZHojJ|&m80Z$hvEq6L=Ip~$N3LRm624v&u#J6+m*qVhYOt0&3}&Wr{)6W5xq9^po<++q69;|%4+O1D zSh-vuWZj$bSkSS^0Ry;Jputo<{EUlz+cfGws03=Q*5(#`*-Db9)vVey(=40jcXnJ(SWB5pDMC|eHgPs#6u(ePJ8^g5$n2lth4*;0cX4#1KPStPuOFa~-{j&vIoI=G8Kq!6eO!f?wdpK7 z=o7E5Q(mvLfT8|pn4S7xh8mW7K<>7~6I34NWtf+Xe~uFivVA71ExdAuO6EfktWy-dwx?v?mW!`L9KPa{X|n`>|k76+;pFG1^sMus_|3I zYRb?OtLxbJK5Z~PWSbTnX;fZi0@!i882Dnj{g~-D(@142tdx3lVf7^r*xD&=ygorOt+d$xpafXAE>o5grAm!@v7nU0 zXk_nrrO=-`Y#NxXZ8uG5>xn(Y3wDvXIyI1N%l&$=CjiV zj9N86oBCLLz767AI790`sp^w>Ro%vGfi8)906R#2P$z<(6-PnNZy{4XIsJJ>g-!DX%|^e%+PW z-;L3jUi5mTx8*Z3H1Q*Z2(OZzMyVr-pwli{g+xZ5(G!O76KY z%A<+SiKmt}nOIHOosbJ2)=e8i?mC)gGat%)l03$WIEafR$iewLMjNWBUfov(28@R@ zuk@fB*k*l@Ya|vWG%ki!g>a)xaTV8hS|iTDdm>iu!?O&ESb`;*G2&YrGpM?6V>Yc1lco5k0S86D&fb&`=%yYAm?)WD zQQ*xtbLM=r6X27!%_H1fVZHPTBFm0tT|%9QIG4_3!bPzp)}-0BcEGt2h(mI*+SbShEy5Cr6GPHQ%11x%Ehd4Jjj8dFX*8B`xV| zDS@cB)j+O&-Gk@+h7FHA+34dk91R?`Qxqk9U@^wtGD=A1@ zk(am7YaWoYOnu?e@l_hdB=@({5Q#=l=uVMi#j?hDj$CKol^XxHB`6ZZX{@YU!GzwA zPZqyPTQmCws+&Stg1$3sF$-KtAJtNn!p&A3q13TmS?MG?8gjp=5pNCN=Ge!kFTGb> zQAVa*%cW#{C4%;}(gP7fAIz;87)}q(oeSToILomqI4m&JEowt^UJc(^-zf*d-#cYW zd#?{#R7i`NB~VAbf!{+KvW%v56xUNKD z+cJIevdO$)Iob?7iQT2>3fS!df_0RwpII*S%K7t=Tz9~?E1X#@>@K?&e=qb&XWyr> z2H@Dls!Fz2l}hjf4S~!Thj6cqEpAYmFwu{NqgKOXi@d2J4+qJf3;@OPW@);C_w*;eJ7u zoJR0Z=zPE+Yaq;hfZk$D z&}Tbcz`0C-U9dXKD=FoNyVCVW4?(XWeOAz@0YX!j3+6;$Ru9*TqES_>Qelz(Og^D?_TF(rrI8I@v&@CF*!$fc(<%0H#orBIC(%VD4-4sD1a3RGVa&9Z6) z9&5JMFjEqa9(_Q`Q5(y@5_Vf&Bh|DHZ6g^d4 zjJu&mns;>a%{aTCJXI#a3LwxFbzK3vcuHWPrhs%ESYSwq{>*{6qlkeM!Z=!~28tMj zLyXcE%f&GHfJ4HeWTb^6bpvAZ|J0ao@#3ExzcN|&_)T|eGcS)hv8?Uah3Ydh$;PaX zX<@+_UYIm-;w#1a^vN(xuu`gqq|7wyvw}ezY%2@NH%yGQeEQQ#C*g*TEUaK?^k@N6 zvTk}YQ?FQqh|BTTJ2ku_6W^eIFKV&aCUP5hY#Vp;O*d9?Cz-9ZjVA6Y8?wH~$=$e1 zGV=vs=ew$TIYOQ>%@)_ zt4YX23D$~|v!VCNjtUZNr1rbc(i>|D{*Pt_&Su9$>?qnMRo}xGnNY z^s{c|acV>5;x^Bq8b^Cg4N;WHq*qFFH%5m35-c?e&I`by1`AEVRE# zXIV_0D5YL!J)?35RCSsIVw)|u8!~Zs3|04Y-6lioI1CtOtH=iV^8UJL(S#0B{4P*p z+RIeW;fx_Ee|Wuv)t@|nT};P{WjU+LUU&_ktZtY2ml!rBISRj!G&D@6?WF*i6V4yA zDlIRWG=AYpI~|4aVPB2$^1!_*s>)*-x?W6*X;!%Kkb~Hc@9E|qJhsG`3W3X+Z^bXL z6;Y?n2vbvz9vxZU=_qWPqV~?1qk?4AFlzy2yQ+T5-@~NK9LuQWI-s7AO>66W2U59D zs;9G?()M*H!<4Fb)ZcBMNu_F-^0j)>wX$p4@OzSv~EpyQE<-^fEL^{m89{}N8sLi2#x z&q&@)8>ivfy97$PNR|B zWJ=$(NLmeLFByuOp3uD^?3-Zqm4ZCZAm|Sf+F5Yvj@! zJfy59kM!3h@FsD74HdDa8i( zh0G60pM;0s58pH)JbZlcOjrVDn9JOe2u9^3%+pbF*QimWQE-i&J6OQ7nJ`n!d2K@J z2q({o*A4eR`DQ1jl6q28ta6t|aM|P&uW+9}V6}lPOjXrOGCp`$Q)omDDOPD_3Ju46 z4_R1>q5C>AK&f(6^@2v+MS0roHm9Ct+-~KPb0|G1$J#zd;mNV=Gg!e+lIgv_fI+{yyQ7Md8AEC``4^`F!&1o# z3kTEdWC=2h0l{oVL=nvBpfNoxn~euC`I>qip)(86ed+6&;bY9lxG%9@kaS*Xd2JE$ zGoam4i@sSD2Ju3&@mVwJ&U0CcWy~ml?TR4_7@1Nv*m}5`*wHd|HSE0nqh#1K`JM;}sPOUi{brFKb}*qA zy`R z8;%yvqw$!E30H!n*}7f++xRMev7$UteVZup0v;2y3!|A2Chm;x%9oX zV*5HFCFO~{rcr*!u^EvbrQwa0oqIDSWsW$+U?y@KDXwyNa2Z?=hj%>dZwd<6x9$Lw zL-lX~Ny<>^JDm?ded-;l&%Z?w@^PoRa1%39m7TJ(-;D8B-_IXDPf58hE#jA0zK0{{DJ?g3gm4Wt-k#{}w6^8Y6(GAK|;$Bz6-ipYo8QwMrK z^?!AivsU_qOk`YZfm192d0Xie~ zC}h%Y_QjH_+_w!TeSJMCnO+c0CU$%DdE;PcwZ1|xI=XYdqwdlhU6@R%D|ARYMwr1D zTMUO`)iMkH#JpDCP3a!9_IxjypSoQM3yH>X4AtMNzGe(;t%^)V=NR?GtRtOY9ix0v9DH_JI;!!JWvzJ1gT3Y)0E#E^75IDv2?X+Sfkv`IoR2_}kMcCTBOkYE?NI{lxJ3m9AwAb` zfnPO5%f96CAg%>jE5Uxcf6mON;#XE#<>(}?I1X1}c-HpqS(Ow(2{*!EC>AHA7|5k; znv5g(rD9r*qV%AtF7J1pQ*<{*JN(X)vrL;0c|%A%OKK`{O&jvtPe@BZn96gES3wSo ztMpU@@chux7pL(AtRwVN8^ym)o&A(N9LVcs4aLC9?DCmsXTfl)TGH@+2m}e(d23$a{j`4d7*M+85Kyx>l^y z)#ljL9QJGr@|LtYHid)CCKhu(n+^ZNsiE6vdXxYg%hKLa368NWN(A%46!II6W<2$@ z8Rf14Jul##A40ctJd@mj;vGJq)3Jw5b--IlD>a>4s zp)%LVW6N%_*^KhPNgf7TtU66C62p7pl$`0Jzf4)WY=|c&790_!e@PE+3>`Z3I!+!U z(@jj9xE&c06A`0PsaOkWWq30o>tJ4%SIU1l_|&OWr^j(q+5?(2k@$|xRMW11QUWc` zp7(GlD9V1SPWDm-_O%CgF_A9zkzxft#o`AKZ(}gNhTo)GN>MBxV5d~c!pB%DQ%we7 z&pTMpQm2igyrZhI&E#4go>JP&fQr8%c*x!XbU^F);Cehbd8yfC(3zm=(UjR;w>s#oZ2e=8;s`HqoW z9*}|^XG#mgc4TNWf3%U!2L;E#I)TAO?ipuha4dt&G@H&hrs252KysLKG>Gu8+L;+5 zFD+K&G-|mig9pn>qK@$@-MzD~z0q1JhM{XHB-1X#z?yIkX+3T(v@5D0vuHG%ED0yzG32mI% ztExH*yr0zP?>V8&8`SM^&}NNMgIv(6RJKuRi4*D?hYJ^-?9`;Xknf>BeA%g%|AfkF z|AthZ>V)zfQQ2;Ih0m($EhlzTjeidlsy1ML??NY*V9rW^Iu{udL*IcXFJ1<|xtho~ zW4TmylWmxpT0c$_F~#nSIlH(C(~QC7X= zbu*>Fy^#*-zh5+ipJ?saPnaR^X!W;hd8IJkY8KWEkf0rOOjQTlX_-`xE?s7S^Yyp) z)x{>qbzSO>m5oq)x#SH-&1i3Ig6fS8RMiLj5XK1!XK&eZ>EXk1#*=XEPNufqFB;sP zzm2R`ty(%u&!?C9;5!;QKHAr=o6t-Lq9|AhqJ^!2E=bw0!ZEsYMgx0D!n&I>1#{{f z$^cs=jrwntKyH+^y6l4w>PvKTVY&|s_cw2@D;VWWw*ItfSTnDM9sOAoA%?28PhQ8y zy$H8MKNd!bbh**rZqiUHZOe1L@_9U9DTX!6k=VXh{th(6-T+VE5wl{(b|b|DW<d}(jI<>949c7$JOL$>e>*dHQdIh=v(+Cre?{jQH(fZZ3r)I(&bLVJway3+KxB1 z$$qY8ifLm1HiW~CUw_@-Ovt=8V6zzY@T18yuDMwGvT$r@PUml%X#oSyb?)rhL^u-r zr$sXkD5E`cre>};)aM5^m|=OgsR@o^DgT?Qu7u%J_@Syg46O>cRW%d?%3ZMz^^V}X z@~M4GP22%9%OC5ImWj|9)Sy}me?e83@^5dc^;=Z+$h)iqFgZr;&DXFm-B8u%n>8!B zO|-g8_~~yUy)_M3m>;cP5WneNdUdV;?JB4#>FWmv-!XB^ZD2or2{afV0q-oTSpsN5 z_If~hp^{Vh$iQHZLxveFQU(ut{Rxc(Cfd=?2%)rcxCuFgo`b%N-#@R0l4vU9{O z;9nO0Idkt+)p<>Ljzwq1EPqu^X<;#JBByr3oT~1&SteB-32MQO<MC5s!NJ$Y zKf^*-BZ$jwKE^k$9zJjdf1e-dE4-$iAFD6MSIww=ud3fUK9=@WJ>OVS(tn8sI?gt8 zyBdeCRP~Xms%y|Q*F{#Zya{XTx2#;gH8R~gbyefNRE_+=HrXth+KDXlOXaQGjq|@v z4)FLatrXG-NeL7mvw}6C?)MWDuOGl6l5m@BaH-*RUb1KO2YGYkcb9nu?Dya?lAw%n zoz80|U0qx)uH)hfmq+BqTUF-PtX>t#;R_M=8G9+kgN0+CfNT1w+6(I3*4 zu2M8yc1X4+mvJk-;8xH%6U3A7c(K?14}0GMpGC3ty_66jgq}dCkshiNiu9mVDFOn5 zbkHchDhL7(T{=i_3W8FkBfW&)LWdA)LI|W02bK0wPK&1(iSgEG;hKG! z{fJ{-LO!MHu3a_?R#J8F>>gf%aDxPMnA>MtQsGV@q(?_j=3eX$&?NA8KXE}=4NE4^bjK~ zrS_{WTmV`96R;g(81j_k53r&C9@fOk94#f(6^k%3-l2(HR%$$k?JhZq&QyMku*2qA zg|fX-Sl48U$`4Y}ElUWFO2z0Y%=fSeu(TRmf9mPcsQAWL7B*6AI2tv6pJiID!6$g+ zZ)F6FWDyDwo(F5iw_EDcWZ^1)$5icpYL14Q?RS&?r8i6YalAU?P9k*j$dMkq z5o*U6DP;Dl^t7a^FP;t;+YhR$Z}c0xc{3#=n6rZUn6v+a5T6YL{{|sngX5?=N$7}G zZx&VBh8`8*lo@7uY72(@tCOp-b+Z`O{0_F=8BT&}pnGiWR;0j#o!G|ezDvRfhECM6 z!aUEO?c4dM*N8q>*5M}rV00O>7TquDGe)43*}I*^IOZ3=|42nAf|2!RbU9lF0yM#ykz!1gmfYpN{j6^3#p8)8(;BqNwVb}=+Keo)_kN|+LR?uTHh#U?WvcQkZ z8WMx*07&dwZ$rRP6cb-N27VjK0H>dAw(Zxbz_J;Kr5UXMuv=;)$xBKst&}Zutz(oI znFiRH1<34VUkdA9VHfCs-mTVN?R)p`&5oc= z!1!yZ4qJYHIy974SFeB3TM9W6aAfXgg979ONCAT2qTL&qp;*{bL<=j671XPx)|&9i ztXZ>q<>3~EW^w6)Urm`(%>|kznc=@)0)<*=wRoWxLK~~&BNRpR*X73bN7Mmkf@cym zQKiX0M7#n2cHL|Sk)+Asd-e4^o*EM|#_U#9c!Pc4G9ofXz893*@~EtBP2-H+ZtJcOm-Sv^Z%Q z4vB_VT57~3!3fyvFgy~;EgoWYsy1(~G-ViBCMlPIOM~fYPQ164)n}v&Je}}hqFvR^ zg{5IAtcD3JG3CmYt5>eTF9HKs)?oxfc9mF@Xml=*rIky+7!+k)ht>EQp_oQiR=pp* zhI>d`Ag}Kc6rdL{ZQ8Uu=o>*!*&1@&rp6mQM*ohBT7y&2D6aL(DnK`q56iQ3(Z^_$ zZkTKT{_ZSz6(PM@<&IE1Q(M0O0L|3xvO(XG-sM(rR6IgOjA*>?q3}ulAoL%4ACO1G z*x&cFP4J^apug?Yh1!QpHO|)m3B{mXeE;$7?Zx5EjUweKzqm-tCLL&b?hzNwfUwG> z;xvMF=v5PXWkbQoa)(W|Sag&XQ##*CIB~bQqlit8$x!Qvi- zYD;x*qtPPN@&Q7(I!m6L&5Ld7z|zhar6p+xqT4QWp&s;(9f8LI{Gafp93uI}q5Bh| zhH6QlrUM)X1#x=i2cB&v!=XV5llal(Q3#!lqbAVh(~h%}q_1Q#{nOQ4#vKL?8kBP# zPW)If(%4Zbd8Mi5P{76*?bXzTD-3C$HCMBWQt@Z8bp-WHRxW`WFswEVM%GM^w8!rI zFq46PV4`02;(z!Jm*@|RBJT&oFvCR{xM5(}=6DN?twD7I%X9ikoflv8(Vbx!5nn3q0dNiV?W#vYPMokuC?3w%@mO$BgODdTZ z@_2ZB@a@e?HFV#O{Ku}K10zxZoMXi+_p?F}258gM92C#d0CA4t0Jj=@?68Ys|<0~CJ=&kZR$duVUq58#veJ`QmHZa`A2Nbp}$??1SofN%)>pTl5Mt(L)0 zse4BMrv$gk&0;{89ztD9G-OCm0mx+kZ%Uw0Ak+j6t>P{+4?f*5FIx2KxX*_P(M$Sz zTUh1Yg`=)^v;bfbWG9XorXV#M@f{z1WAQPi`!KJ69A4|n*p~{%r@eu9>30oA4e(CA zTOa0)?!ggt-s#_e&0_!}){gOH%)FrLh@js(xCgwI_rqWYg&fYzfdOUF^(i=h{CL{S zQ;6`-EfaU1#Wp+kgU)!8VE1NwTtTzEnP?cY=p`J)upHSn!PI8bad-=v9w}W+iE(LI zed#$dWxTiGYitp-3Ke$PZj;Wc{gvp#-`MsY)PIQ+EwTzOecLmk@C;aB^_6D>hnlg; zVHA7%aE8g3ZoGo-`+zauY?NcD_ZlkI2@_IrfEeKi!(mYB2Y8JOK=c}vTtXnm-v1&tt<5t7~3!mo5bPt9y(j{0fS|S_AdK{zQACx z&l;CHi>2WZ)?1(X20zskAh^CxXZs`we7I3MPw-}Wpq@SQ5AtXgXSlyRJK&cvRh&E=-2aNjLO)e(H%Il*yl@A=_uGV*#uSYDtGsPM! zauwr|IW4go;7i8RW}-Q`uL7UFwpk7m`e1JvXARK@TYC_BjmBWr-16g-@8=jC`aNGS zsJ8hw!_hgF`G_>GEj$wJbEwJTnr#h6KdO9ozeS72Ggv>2A1Z9eiPV*jnrJ*xD{*99 zij|xqH$Jw98fR7cXB?$(T)Am*0LJAqWy&;4e4)3xzrioJ!jruisMzt6Jn`V#m;N0)c04+OwG3B()=)V72?F@}hKxUHvB*vH4Gl*W~XFGi5@t_+1r^ZAAiZHpH#zIsC(PMv8$bh<2c1t2&vPPo!p zi$c9t7&q>=j7_(ECIs!bnT5G9PGz@6@h&PqfQ3AkO>VdPu-F7e&Pa`KFBoM}df}H= zhhF~^JeEIzHt`nG=BnQOR5hBws06wQjZG6qo8jnw54DZU+jWL43{hhc;w+DG2-8dk zhgsM2faWyo_^@%(9)JB|lJgR&+ku`oNe3|hsy9uU7VJ^#_%f+IJmn;z-C zFi;+P9Oc^wAa+rWfqB3JBYu{6{@4Ie#8KgM(9{ zJcEO$o0{NMq1O;SKeB%2pZ`t?)ap4hnqXq|@)^%^Ck(Gj&1utet2y(Tpf`0|jo3K8 zla^s0-|0>q*hphBTA;o|9{v*&F*-S1WkI1+A_#OM`4DAB4@U?YK10*^ql!iY$x0_jXe5BaYy(+D3Dv;)$! zKIC=;jD<(H&{Q+8e^Lq5fNzWtRb`E*BgY!8UMFh21*Sm~J#<%Rc%lhR+HA~=G|n3q zB<|E0;aVSFik5;*V`<%DgL&VvS^NmL=b*0Aq7bh6VN~3BBYE(T?i)M}yYK5nwqD?4 zEDm+8)u)@*)J$mT-=lGiJr0C70@^JlI~{z{rYRrr||n0y@bA^PLUksX4Jm=OhYGYuSLIT z*x^O>b7=9Y*KBTX!%B=V;O54d2r8MZZ3$FiJKzPah|YpQWqp6WetnfSR67yAKnamI zEi7|IJJTp=*9F;_?xn?(3+fP!mfQoiY*3LatjRyFVQe;FLgO8TX6mnS zQJA@2 zSoFbzl7v-SW?8@tDmW410oF(g>H*!0mwTTnpzu9mY zt^60)_|3c=fi`>P-6`N;x#cFq1}BuABF>>*CQKEK!#3SPfWw6F3Kn*`yA+aw(c zrqgzL*mD%Q3wFuyr=m$0FY1q@58M}Z^9kOYJ^NSl0|<`PvqX2n_~C}^{OsLF{U3Tz zo*FQEQYAO|gL025Y-01i0l`G4s~aILw2Ip7`I757og$}ox(P(%tHq^VJ!8=2bKf!% zX#l-ecs~crX43zI5;#pK5<_s3qb)>rn0=~+GS+g8`fnYYOb=+Vakd3BLW6r6e*9M0@vbek4L@Rs=n*3T5L^JP|7zbn# zT3eOYWZLy4PHfU-_+6+rCyLE9N&EfME&58nglZAOtLa)q?6p52SH_sqVpabBbcNVm z))O}1*8LEspC>W+Oa_TH)+LO#PA#zxq4M|G3WH;z@J?z+*Ut$7#tXO73=U8>U1d-> z778gl;Hw+5G8m+?mA;x%zA)1{KPwSlkPF6Y2f;E_@g>_TR{?bV7UR=Qe3WdiE`ft@ zIWlFlfQN@iQxA_b>|!Rt{sg*Zdfio(atRiz5LIlc{aY&?WLo?}YEbt?o9Y!+2bTX? zG}0BYpzU_CVgi3(zLP%W#oc4+o-0=pcs5R%y8br?(sQxk-<_a4oQYJL4!Q;T`_mXb z3iDX*?Un;zlH_BZKDG7;O{~PnVsJZfk{#v)9^KD2vHHZoLr?HZ(_PV+OHEsGlHQrw zR_W_+ynx_SJ&iml)Pg|eTJsJwb4gV?g-O4-BkP06g>QC;M4l&a1$TwvL2X$&iVDW16hAK5Crb*H#P+b>mS7Bi>jtP z@nW@gixSp92py?<^mM7^%f>p(5*`C!zJ^VwuLrEL+@~m)FF$Ypfw^oo2R*S0)>(1e zcNy`6$0iTbt(7N2(5gUpjObF!Mi8YkiA8q#9a?rihDjyu%9kIfHUr?5d8&IBba0Xe z17rLVNRI|u<;eekny5tyZ{M89hF$!=--j9yP(Cdo%m_ZyvQvH2|K_7gy{&thVx4O{~)hz2ZH2q0Lm<5iR%{*IZ4 z49-&+4Ujigc5C+v$8jG7cUa=kPL8JyylM`a(*9&$7C2U+KgW2zCKayly~Mb+AXC}= zJ8|?<>vvvig7FJApVph{1t-ck&n03SE!NhUJjsfV>a_Xyd)3Su#jyO=~D1mCK$T-;>4VF#0b zP!A^k?XtCudrTL+CB~~*03Dx3B$712@J7I&W7DSoo$ifHM?p+ll1~siSyPKYl_0b{lelbcN1@|A3i~ez1RH#Zcl|nrI;pn=|B`+- z{W^t5fVULAVnqwyM$2C2_1`XmT+qWb*v5Jid=LiNVA}yRo=r}vDa?=9Yu&xn4rU<4 zPx0c^HO333i$BvC;rc1`r_UB-8Vha@ZmKc-mF`V!gH?~l_}pOYPg*so98U5v>0I47 zjFWYaC+0$G@FB1YMFKDmw&~k$2WG!n8Num5uua?cPpq;0;D^O5v&N(#h_j6~Rvwme zUALL!Q5E_%`dgd*Q=~a;iU#h#M2KB+OF4cdv7N1pD9 z)6G7-{R z1n!s;THxgI@VY`i$v|0BdYAr=hS24bK3g9G_Ot-(tF-k^lH!wrB8h7?{8S=NnDhg| z7q`Ah$488chVFBWlQvhBq(Sf!CWL>)yoEKs+p=YOWjUpa?YCrp?Ui5QzwnoCl#xO= z${=^dN3guI8wULqO^bnR$WrCcOCj4?m*E5J@6(C{9Xxt0A_lU|Wc8l%cj-k_Aj=T|N8nerEr*m!L6|Vb?{I z^N4*XsLLvQ3|a$e{OITQ=x1 zUBHKVyH64{tZD)tz+t6RaGK)6XBmlK!0&t5=^71@Iw%3!0)!k$X7Z z+EtXKJviOYGcEoSM{041S8v$vHY&qibdo z|49i9FnSL0vKm}WM`6blz1NZ3UB+WS^j6APJUu_i=&6*XEQ^#L$E8Dtv}-?vU#bVa zruu-B$5o7G=*fAXg9w+Z8_;>|hUdwscBX()u=f6!hMjYM)Xk(JFsD@KTHE#1u{&NLcEJZMw7aLuWJ|%jhy>4Y*I6 zUh#i*Z^*_GmV2(5Bv=x#rFQqt>izZUcP83(+4WzY&TlE9-%Pjo4EXq5(s_fZ8WIl( z>^NhHG^)yT8F^OURhH!Vh4C9kVEm}h%W&`<3iRx`JtUNFTBe1MQt|6{2Nrc56C45& z1a7&DH3Y7GQ}C;($28*jAFCCTys9yn1Z`LvF8ye3$QHj!k=P#44iH0U+6aeUS|)p% ziWlrgv%ckHz0T6)^a|e2hTIZN>FdTyWx8-WJ_z6NkIf_Ak~9&=(HQ{X*9|w>UBwGv z4M&SuoKoL}Iq{9<%a4NJV^QU#$v1!#2AZs3D~P1j)YJ=Kdssl3qJO^x@>b|F`A6rb zLgpA+ELJy#=qO-0N1dZ@5&eHP8;>=+0PPl z96f2=vGDL@W`7q&$whX#mFMEAU?&6{t-)_@`g51@xfRw+jW-jv0R$&xX! zyPXYG_z^y-57G%beztp~NaaIuTuDJ)V<%$U&64WB#z{64K-_QP*B@z7@K+bu31JN{ z(z#YJ)7D4lcmkR};xC{p6vx|2=*(MAcp4ZrKlm&ub1vnmOwx6Td5 z=%`^<_Z&K?J(xaQ_m@G zoCtvNa+oVCIxu-=!43vEIWlsghehw8Yv<0L-{<1WWP}oUcP2ig_bCe4@U#rvNsy^* z{>iZ!c%CIz^hicVhCbB9tMmmZ<5Uq|sB(Q_O6IB0t)QIKa7M-(VHoYDk)%mK3}9&^e%Q}i)pzp>78#0dM_E_xNPDLFZHjiE)dQe(Jl(Z0}lf6lzF z4B8p8pYhBZTR^d6j50%B&cKO7txHmRoPob(R5MAT1WL3O1R7gtWK;%zt#Rx%N84w# zizclmD^%!G>i|e>^(9$m#`Y0%Z&-2Zb0YSPg6ijU`nXF{*=Ol|1Ko(kWg7`HIG*~B zJh!W@J;KRVUK#xO9Xoo`UdZ-@yeDIB?KG7(8Ib+gpB8N#pCKQVQf_WI(XjJq$F?*= zB3_YXIJ9BLpgCbQfe41x^z!8=W^8dD1?&i? zifB>D*R}AdM9-K^>E#H0%waWQt_cnF5yZ56hYfDuYyngGQA0v{pq8W9@Qn%<<;Pm7 zbhe5W;X4uefdvF2??m%b3{CS}gkBicjV4vD^AXz4OLQ(DJoepmjw5nj#wfKsC(;?$ z;}~_8VzNfo@Q6;!M)tixM*Lw#Xg`Ge4F$zvLq-3RRJ zXdHhn0nk}1k3*8Y7GZo*=(AFdVKyShMthu#vN=Etn0XZp=mi}u8GRT5Lw*Jwpc5IM zA@dx7>9`EflE+}D!3wOvpqs*oB=_|&pcXI;9cJAd)aEtD@58(ki_kt6_MsLlZ&j}^ z+_hcf;(fqaSC5SvumeJuAq)RE=+eF`qhoqnrR;xDUb+)yQF0sU^hpvOgQuH3rpB;) zUG$0`rA8nuJlK+S3M*4kYq7iSsY&~;=po0|6GfM@$_}bztzk=4J?EB z@|pmXP-(V1(emV{1N$T@6IVCF6(*%_XMY7>Izg9Cm8CiKA>6Mp9fkT&pud5<=OFAS zxLsa0B(}dGa@&$w^sCRD)8;>N*S-G6NH4d81AE?5=8gtBzCZ{W_IJ3mn!BUa^mITP^b+`{+yXBXl+tAWrF zpNq8u+J&wGZ`A#8An07GCx9xOuV)<02(%b`k@1f&!Up};hAJeMDzY3$Bj%~-q;vtxvK(i`#x5T*VsR`~E*tn-&b14Sy=bAFk$^%KngR(yxcjM# z-RO&G@;36d--PnbP39&X{@^^ts&e!zGLqvN zrU#C;c z5oDW{oXQ;JO+g#1a1-+hYXY0ryCoptNhHRR%UJtEJzC_3^1{Z3-;3tAp#c$All z-zG9-!hV;AJp@07hE-g(19n%dMZh$13O)DcN+1Vp@&O*bj75meqkeRT3dLTHH@`9E zr|-CaX!i6bV)e&GpUM31OQ68T2ewAjY^Nqj^)te`DxAhqqP8;p>cCUsSSc>nDo=1N zDrod3tR(miESBpCeo~wYM#?kqxT$Vi0&leq};x|~^87WGCfir4#3m5^9WicsdoxXkheu2r4 zRGOt1hsjJS{6hBZyu!>_KfFs87Qb(WDRotLv&SgSv6vC1#*j6@e%G;rI8}1XX-;4%kT1GDcZ$4H?-q-vYa*qeXfkg0g{V{j5QLqe+tvZ2D-DX#&U<3kERv zOYh!K)1yTgU~tsT;3TG)s1<7lcA%^Nv_LwH7@6HF0pKE}O7gatG9dqitX(GkuS$S! z^=T?m*@yx(us^#JoBY!$pcp-U_~>s3zllS@D5O3MegZ}zKUtkd%_gYxaz1&CTG8hP zE;O)ak|tCjAurmUDYim3>GPyyMR*2TJ&0aWVucFr2TA&w#j-@qC8Gv0ayP(05|}wy zo}mK(V_24i7;Vh}vdtve`LXe2(s~Ju8VMcyPV?;hl3n(O(XmnJl)NiUqNoQ$#mayc zMmIQTs_a&35{vhZ4voWSn(B!FF+7->tgAU9kCZ=<-}$a9xYo{3Ar?4p{#PB;4XPA)>xgpx0$Or-%*}>Zkd}I32t`CH&%T9@ zpVY-k4ybcJwHR}D*$byRtj{TB>x#%6O)6ijo`s~Yw3X>oWI2m@B@le2liGGIL0&Of z!Sf_zxX!x~qSI2{Q^d*ijm>1S9|>9IuB+BNN6zTXXhg;tr7`UViFsec>L-(P+T9kd zb_NvxshmG1izW^nChUfU}qW96htlTJN<9tX3&e&U*A&EsIilMZ@<&5(*( zO6s*l?|E`)TaK9wBIsnYe`X0(oCqN}X5zc1NUMAUn=r^>oro<@Q4x&8d8~REUH9;0 zS>UqG7|vzLF>s)c4~EYC2W#FfD7i~6US7F#?!Z{Xdci7&2gY}&G9JU@NRerOFKUU=>vxZ+ z_{Hhdo0`G^MqqIklSR9j0upW+F(XQs2OvS7ei&d{>h?u_+x65Ze2xC?57Im`2H!90H^((+PSoT4yAqI zXEqI>uBj44FhB#~Dqz&t)dP>oP=E&V7)S&BKqR9M4x?rilCb~|lKcW3ih$br@tDfN z{n3iF3 ze!kNd`XD`hu??90IeB6?l8}QCZyPh|W8xfI%*7gANywLOS*@{I)e=G>W| z#S-;8O5F{u77JSx)ZY5I?g84Y>K6sR0ZaBKP+jDElVV1s5K;QCM3ni zp?7;qtmend5e*{bs!flobcAGB-y2x=Bjar{@^*>+(#ajh`{XiT3tSbp(a3_|LOpkc z6&Um=@JOE3Yh?%w%I!J9&m0ENQX^rEXc{Xp=t_?OD<;jEZHP3=WgCnw#Z{6%`bd-L z*K89Yk7@Nj)CCMt2OvC?5g24M`fvu!w90?k`>?f5^Bk^Hr6C^|DPx#W>Jmh_2aX;5 zViit_j-A1RrN9|{n9pSelnV_nSW7sNA+D?E6?yCou$128RJj z4wyCKa}JOtM|t>p@I}K>Ci0R#2y1gPPaR5q-y|n$^2cd@4+z2_(!sf$y zDGxKEwWXmdyc_n{kQ>Z>Gth5*?NKlZy=)|_-9%`Us;^!?*Ce07JaYkiKMln{g76sT zSfj6bJ88@#xeWx5?$b{N2-t@0AV5Eh-E5AY7)|CgX~eMwr&cmJj%pK+f93=Xa}+V)Fx#UX4HtOXWaKBMn@o0{$5DGaEQ$kyV@lN-{K8q8a4RkB%v-?IaEc z%qf?cRW4~{G=Q}^P*A^1GyK<*1egj%&tHJKz%+~&jz)`DFcTgKUE>eTDCDOras(YD zvw@^PfZ%6vaPb(-A0#G0KJ2njQ&Xb!gUAE?j0lxSo$>(4fd#>gvT#v?0~j?xP9Qb- zs|7y|QKWEYr5+f_NJl|Ahy?>2MtmAY%M${he+{I0QRWKhl1$>iR06d+cdl!Zblw58 zU%W^q|9%aDzj z1=Nr(UsLt=)d~$zuJ?9-YPhFQVqz|oDORlaln;v0U<`fmxyt1JvL(KattNVQdZBr&(=wn7*cV$3Z6urS|UuNUc{56AVoUseK!_L&B zc#Jl~@t!5%m=~FVuMTFw1_x7d%tCc2%=H#tXke}05W=jTT0@*V_8kmY1Q>39`6oup zxCB6(N@|*(pNHU3eV7b(_AacJNB$y5pat@}sir7x!FYtD!~5^g{&h2LJ;$79n&I@w zL?ytzU!PY_Hv%G?@2&(TOrKUsnI_4?ne_kP5^$^1Xz9rZnC$E;w{)4r{bpZ-_L$r# zLmL@6?0U2qb|FAfkuxVvntU}<|FBY>DpxRi{BvhcU1jPVL9xw*X0)ca7{?leMicNS znjEerX%HD9$k9KQ7 z_2%FC{mJfO|aq`7`Fpl}<4?qq#uzY)9 zF7?-Sq{1htDgLo3Gu8mzroYO4FTSv^-kFa%52y4~WrxdmAnE{LBR-j$g3>3$iu;FY zXPPt7DN3%lamIoLkMJ0wPNAr>CnXGH%l%V|zW(=Xn!mUotsE53#}qrQt1?72Izn!Z zHHVkv+B=q5ZWs@~Tp))f=8f_B!jd%>gdY@<3PZQ+*Gv{v(uprhMHazcRu<2v6DM4H z2-)myHj~!NH<0nE)s1KE9*oz{(nsf4S2FNkNUp26?f=C?< zmqFGJqI4L|aQ-#{(?bAjMB}zcpaD-UjSerWo*Dj6OTed3eTctgpFZ=?uNM-kd4gml zCnu-T2J$HZtNKK4Ha`FDw}~Gbj<~Fpwa<*gg(q|?EIMESdN{~2AtIgqg$OhJbVQP1 zGTtzT)yN{P1`Yc*fsmJXcf6;`wCi@r-!qs$2jNvmO{iXL^%*watK7n~6#i1cR5ok& z=_$l=c(6Rx`0PGOHIGj8RtAKNg^(MjmcYrCO3ceGuz9H^D42bX1y(ckzz@xu4LwX! zILB0uEZ;VHQ-6}$Rf(Jb+x;Ab*~)q;9?9hXof2>ZU&q(icRD?ccLE>5grGa}VQAol zVx&9-nu4+`1RO3GeHS}}G^u>;M739}SW&7}%jqb(C5x?u<9q4Rau8tm3eM%-NUeUB zp$V{ig^x@rf9RpV>QQa5hscu!92TYJ%;NyQGhc~Ywe<*%QQIVU@xew+gp{mQQ}OX8 zX!ZgQtZ%fj(}jS-&LMnS244CUImzbGKqLvuqbAEU^aMD<&Vwrv9faLcR(J%4a`&cz zcX7gj2R!fc-J@ z_++u;P_of;sA=_20SuVDrt`G&EyXyspHw%td(C9wm=*8a(8#?lNtFjnU4YW!qSsuo zrEhBFAXx+$_tjpGQBr4B*)J7UR!Mp(ejB4NwTh@^I*VmLNVA~^I0@dN(Qy49AsuQN zj@bLFm4JRwH4BeT$H`1*P~E81u}WGM2Bg3aVQi@^MMq_;;>%+ZdfI?Vi*DSrNGe#R zeKJhth*R#+fS01w6ZdG7_`qQHzGQ`-wA&&+a_0MddtWhb0^1pvHR8#n{#Pa7G7fr1 zf8H>~VzM!Gwm?-5KZ$8|vefp0youZLvEfK;etADb_?A52e@MVS{R!G~Ta?^Q@6Y9O ziQE?wNS~H`8=mbM%7PIxcGU}HMd2~{UcgpWt0p%o9SH4aACK?f;C0%(gSH5*XUsb4 z*?{@kPMpfLJAI#_NbT_}a0(}}+1!A_wb}2!#}HRDHjYJOl>~B)dW}$jc7{bFdQ9^! zRoMdjOWx|jv{sQGd;|zb4k{+|J{U0GFht<$kH*y?%~e6g^)*# zO}Tlizgbd$+V`t}+qoJVx(Q5EJJ%+;aV!6Mg-F_#+=kr-1A0&|lH6fhqpp_$OT4sg z{-8>^atF1g3vxrnNnY7^q3^SMPc9q_<^ngCYsTBuBTE3qJUXq)e z({2iNjuLGhTBx5fNibyYHIElGu;{#IRNiV*_9fsBCOB7!_u&z!HdF)IAp}LM6@F5f zQl*1nOGQ3R(6*F3#h-Z&TCHFhSypaLus?4lt<)M_{+KzvTv0luZD6^PoD|F^M5`Mv z!p4s+c&t@4nWji!`gspu<}IRL-gbqTPl4yQ-1H~-)Jo_I2%?)l>Wy_JBFLNZZ-tPa z|G_{A{{FC~#P zM#BfAz(AX(>_#Vcp0s&u$73|j!artW{%4Y&RjMpKh{Iz$h__$vhZB$0f!Z+f_k%r8 z(W`|+Jv??H(`i%lFzQb`2)$1rZPBnE^`M=VW%quv+;G;#ERpXe4yeWo47$r*}De>zq3f=!;qE>%x?6x_25 zoD{HCtaLn4l4J5LINB+BlB<@Cc6D8yK=1u2*W}kg>Ek6&FSIMFv;R!Ox1E)%nf0^l zqetIMA{n6-#A2yRd+-TKf}Oi2$(4w%kar^-7(z(cH#Pg*BjjUU4n#J3K6=W+5wxY* z$9at#707;@psPw#wa`VfGb?MCb>ik`DnEb_)0?Y8{t0BhjZ<9V5V>pT@IxlwVH2aY z_tZU8r?#&S(BLe<=4bi~mOP?&N5ew6jhf#+KcE@s8}NdV-xMtL`ugjsBwY7Lh7fYI zMg;|~*n9xaN?Fm2$$)M*H6$eDsQDA1 z>7Jgo{Q(xH@Kz+{BT~hua8$}-8FO9yW;}0JU?7fHD)43` zQTRSpPbd52FJSoyamX(J8S;zb>JB1rgr{Q`QFmZ38$puPmV}yU-ZY}P)vk-+-R;d~ zrP34feEQ%@l`8qe!-7X%io6bZkERC`lYB-nXh%;AH$DvylRR zm~uw^%4>0Z1_&o z;dl!RSyU)YKQhInvKsN5ld}pKZDCoKZcFeWmS^Zfk@$EahG$7AFSb?BLefkWFL+Tp zT&;(Um+VAQBf(-_QglV&szJ=onbh;Ugs}ipLQ#^PtIZ9rB>%*tC{y?w_g%&$kW)~ z=KD1Q*2chgE#R^D0$(aMA&AKk4l8&cpU?%TNJX879cphAW@x_dxgb9c%sB#nsL2`! z*Y+swxWh5_U58`i3z$Ct4OiHoUZW)?m*?%p%0dlHx5%g#)p0LWz;~Qk>k*;5e##th|3RCsUcMXYfT+V^qa{#$n=P zrbW>?$r#?&WZE^|ZU+V_+Z3FbPg4`Fl`uESokREF=awHjP->KJ>fqB&2VmSF_!pgJ z3AdZ@5Yiof2$s#5H=Hu##|jL(?KAws z27;pu@hU@;quz_g38uIaOPe;%y#GVS8AGOuvtu_T0FtUrzLH6DW^ zq0yaaNDIfG$8N}5Wc*%c4pepGU0#>%% zR;bdGz^R)(yNJ;^x6sKH*_D7Z#a!B|?k6PHuAL{9BB^zRD05F3tbUfsn-2u6pSCex z1rjYljlfe5lT~KrKIex%@V0U4> zPD!Nne*9W#t80m_Qul#`3<1TuEU@>){&>yVfaBi8zUES2Od0Z1`}Unf4PQx%RJ(S= zsdF@1yzaq4qDbezA$N6JBrf6^_4k@O!elLo*8!8_t`)5br9NPX!6u^^rQ+e(K%m? zzR?+;$i0t**ttH?691OhHn{C5$*wcxixf1`P~@qt_V)%o5NMrEr$9-l$L!JrY=zw& z@QJ^LTu=OqU6-5hJ#<&E6};m`?=?65PRovD6=xcr(D-ESby2m zpr7Tquosx5er{myHxZuOx${hzvRMIUzH$!+98Ddm{cwc>xF5>>8baES<9^zpX~gc= zjTS9*3d}PS1M2*c`b+JqUwy6>?%H;GC z$ldKnr!fD{yaQ84uLtAqP%i9HBkQ)V!;_>+rcv zjvB?JQW$TeGA;ZDX6H+~QPu^%=K5O-NB8uBZ3%kiP!t_7J3)1;sGvX+zO4B{Z8C%o zw0ga@(T|47IPD`P0@L3<%=}mZEPCE*X|Jh^1kUSFk(s(Cn62mSuPw?|E9P{Y{0iGgkmC zx%4yNp0Wg!E_5_uRHy`pfEh**X#kJP77nYelKcRYvk;)f%4SDhOi3?t2w+kSP-Sp2 z-35)41{xO_vt|$js5=0F#hL;3i(&zCP#uf#M`kpu7A92mFU*8Y>XFcUap)XRKql={ zlK`_bqfz?tF&Uir%NfYuhAPsauI0VBG(CLxIZ3eU>}qtHeqac04~A8Dt!EnXRgR~D zPjv73^Yb}e+nq~maNyumpKm+(Hh zm09LwTw-)>z9Db~5203FQt=CZ1R8`lF^qV7T}@4$V{UDZeT9cLj1+o=<@DiCk637c zt0U=}Ouv2s_pn^&cmnnWAUCzDhlgN4n!~T~0;UFI@Hx0|gIBm7BQeN1q_4D>SYuQ1 z;d!a*p8tl0Le))$65gU#o+8*a=0A6T5J%*2G*pgdL! zmT8h`A1a*SjOMUTa47t5J(P}~K+MgxExp572-=D{TAbSJvtngBkc*Pw1v(E$n(H(W zumCmCAM(-3-`{@$&@4uelV|=N*0D2wcNAvgc9^Gb05At_bS7;zR^kEAYETFs24AbQ@(d_l6Wz}dm zo;&nl2$e)6dzK?Af#DVY*+}I8H1{?@SL?H^DyNO>E@D$dVf7nY{19 zza&J)DQKD)rzE{sse1kTD~?6Mo;hQM1U0tG8jRn3s&T?KH_SP`rOS#`=RWTrz`9r+ z8-%=d8i*n`^~*5cXlMkzvk^z>KL1X9+h|C+On_msfqFcnp)YuOxx#W7{wqMM zbx4xpwK9>f93<8G+W2WvDr+T2Fnq##re0wqw&+sH(=s-Leu_GATo z>O4Q9RJhSO)#wqqzjoQOC+FrINqYX{vR)0D(W!k$OJ?DKCFD$ilIe+Ji@Xfi5tTEK`i1Lze!WKqikk6(7{p)Q*z);VEW-i;F z!t|*zn8)(a`x_cFf=u#HD1n^$vlh1g4JG%*vHS6D>H?TT-w1FjFzk9|5unS1;KMg? zTQfEfs+=A9q}gPE37ejZ!$Io$7}qvoPwowd)`;s?qv2qv6q378CgI59hK!@CC*dzR z0mIz4KQg2?$>_>xvSj@i+9;qQt+6O3=IrQ7gI~Vv!_@{kfn>s!5*;qyDjC&%QWsyW(=O|`6r3b|;J zWL_;wpyd3$;@+mJR<*(Rpi6nAg^g5?9^QFmi^XFt(XMSr3CpHc6DL01#40+F9mB7y z*gzFt;K1%C8r?;7=4*6PUj6Op_Yizd%)KMrUoS8r6N}1@Zoih z=tuq#eny)@mZ7)l-g7tC6i*45Yqu@;RID{jbmYpckTIkJX5Vo2P9gkM_1e7QR`_x$ zgkLDV{o|lLFoH9a+^*w<;1MGh#HParp*#dH^mVmN@EW6aqUF5M5*b`OCG$PfisVnb zW`FOCu~YbVdcj|NLG*RIZVLmKfm~pdD!7{r9=iDjBINS^F<*SlJ%^u>$JGhR*gGzl z_~S~IlAZnsiE~g^HZFzEdxjqdFB*ohY)*uo zj3%+`aPqLHfx$_i(aJ~&$m$UiY(QSDS(!bAJT|bKupg}YrOq`o+(}j&joiX-$gAnH zX6_GJ@3heNFkxCl!P{rwf~fV#v07m*v#r1sfjZox~^ctXdqe6+ovSo17LpxUI^3RbGn)yQ4iCbq<; zktI~g5<5)#$=D-{X2}y$pJIi})4zOpH~pAaaq<9g;c9TG|ziuWDEk_(EcI3&L;ybVKSbIKGXB zK_AiUo^nG)mUx6QT}9n7y8~p&7`(%Hu!GnINgh6R9rh1UuaorM{?{KrK{q#T#=947w; z090L!?S@_?IAmqt?E##+&io9&#|4}E_-CBDu72gj@w}MqX=ndgLQ=)x53Ij28^%X^hlubM=Cc ztO8(9t62dcn@eKfwSh9l7A26q;OOtar<DkH-B+vIvvBS3nRI+1WYPReU^M*!<5&{f)7nK`wR=CgACV9BMg#s9x2&5D`peS z^p5tlk3^S9YS$aW?mKi|6yM~h=_#S41K~KE2UwCm#Q2rn7mqF>uxtp?h7rqS4BrxUW3QoQ>yz?v=)YxcpsS48# z1!(xiq9-?Z&j-+6ob`d_D6M)EZ^Nb7y?eIV+|Tx|@LI)!?XiYjuMBSo*d|_La68GX zItIs4Meh8OncBqQEM&$bh&B^krcZqq3W=!aiooej5lK8DcC~r0535(z~rWdAu*_BUV|-~V#^MCiH%m>V zegdA)q{ou(doZ?}LDCK5gLWUZ?HGT@#>3EE;_(_AM_Gc^f29~zmaLb6pV_o5JdW9C zvN>eZCND=}!8WQ*|zgJ-Fd zkMR8|<{@uZaSiIrrk>m|ud5bq$Vbpo>d!U;TlchZN(S>B38q~LX_3GXBslyPe zLaxcr@g9dd*5qN|@aD5f>`2~B=UlHiZ9l#}?9Zui*^77UaR@{Q{7}exdJnpFYM(KcUVC-c(Nuhm>Ci_Je}(fa_=| z6N9$2Xz|4%x)oITL2u1MzLpB7sX$0x-_GRUycx3Ve-9#PfJnSaEFP5HKbf)a2j7I;G4*Y zI=>zT)FL)QNlM1Q=5T!v+O9A|<&xluK=&myO&bD6@Iz&8lx_^zr3)9J9;0O)wu^I9 zii5+0apJC;o&(@~Is9_p`0++dqSyck@;AQNf+(tIvw=+64_5B}gUzC(!tZder=GFD z4Kek%4tDoa_}njcQ0?XQ%bBrOmp+5Bp3BkP)1;{N4Iz`H_wJGi?kA*}Ti2%qb%h}x zLdJ+ujs@XDNov!vMSO(d_O=QoWNi`Iz@L1@8J4_9jx@}oh#K&x>v}&TSM;u>ay+(y z1b(i^)8x5YjmVOw2`_u;kaV8i*2#4n-l{`c^S?}F9E&+5!CS{_6E2&#$oCqQb=+&R zNzWA=OPUZv2jU=P9e9|ee#JIsj%LV%4mnz{i6!VHUkjWeL0|oJ;>1NLw4IHV2=u?* zQ$Y&h(THaJSR>V_Hg5Im1$FCMeE)R&Oyb`wfn4tH?v`UZUcDFJhpK#_DO&IDbhXAo*EIGJLVYy4*|g_yQs-4YL5yC={rSVbJsh7# z^K?yzB!}`DhQG2;gwq+%J;y$(j1r$c3mr1z4ocP&pb6#fOG5*ovQI*$BbBtQyo->< za%~yS277MW`MU!lSsTnJ60qJ{{QUI^Mz7jHwPh8K!!Ao!aw^N=<|b5scA9@}dC7bC z^4sO`R}}4OgH^z2stqIs;mhooj#YyV#%8iSLsy7FH%l-)OZKr@)dMAMThZTh2-D&ph*~SMHe5D!M#2}?M zpT#88PZ8;VnStn!UV-%P!GlYhLYM&qtIU(X9Ux_+4>&jK6$z_mMClE4lZf`Hbm02w zb6tSJ=L)Ki)#43#RNOEt1#@z>N5$)kCLLax|!Yh?Z1xJxE7N@knjB!_Lj@-+y#!dK9`an|1mVJbIW zPKhs|O#5>ZgP8=_9)snm7Gz&-rW2jR-WsORkSOAGlHY$YwE`pwK1@om=#ZR)(`S2s z^zK$1BJ|t9oqu(dRyHmRag5M*)Jo+;=ubD*@UCtUMh2wgl%eWVtf@<`_tlJSHAm>C zWs-4@G{Y<&^`}g^8;5Zu(^k+x`I@umMI2#QSxHUa;3}Lt%Ou%jP5;2IKYqr&N4du7 z-D0lSGbXSpNNx22=^ShDQx1}T)vyXTU<884+T$aG-+AYquA4Go39e9>MPOqoCG4%w zTLD-0mJA&lq&lZ2g}=WbU%wsj&J$wZG9u3xw`kuz4Ic>Qum}e2;mpC+Q@%D~0ib@Q zL2hU(!;}rd?gCEwTK#gj*3deZ$1@rB1zR@ zL`}};!*@jN^EAkeau0U}%nQ0)0NcIr(p8KE&(7-!Nq;=?J+Sb)Nu0txG-~IkMg=nl z1h+`o3fe7-DSIc(gBW+*|QfdW!oMrou>9)%2&z-wMP)TEi>u&pFxZpJ2yB0M#jR2Y@ zw#Q-(M#?4zLPC@+iE+HIg`A3@?B?1)(tL!zw8MI!$!|}^(vqCFYfrl!!MKdgO)i8L z>Fk5cs==(a=Rrs?F(~fMNP$^`uEg_Lh=gJ7bszC3h2J;Y1r+%UcBSgrmQ;kb|fc_>8Np zA?Y~A2i~>Dny2EZ>ef)nD>%~bp`L{CF>5PncnXegW{nktTD+q*W2 z*fc!06@|*rJ(+TlAC)R6<(n)5;tqNp&Vn zfUPy~!wF>tAd~$cmOwS~qn&2X6ZW%iTyNn3&aR;GQG%~t7Zw}(;5!S&(}z z{#}a#u8W+vjYp`&J#vP@psAm_hX%*qJ$s-XZ`=(uC*bR^1f@|jgt3!c>wNp|w;_>{ zkq^$pLwrteC9^v4^?8otMW3^pL^3yyw7)6VEo$ZF`Ju#X@c9VYO-G_0wLvr+2?RAO+(kY(IicO;l!kiY#`S~na;N& z_ceOe)OIdeGzPAI@kIAlM(j)>OKa-j#6)t~OXs9+*GSsBY0V%sUzbE44dOgWw=Z5R z`6uM{a1sGe)(}^e%3J85rp-LX_y}*bKqFRy&(Kio0HKJEgDZa^kkC8 z(CcJ$(Nk{u1;BNu!2M-!FX!+pc zi!nBGrA4b;OUBvGtCS9))7g1#ohun-yI4=!g-+OvO-KcunCrCA;{)O_MxV1hLpMvu z$zvFvCAW%2!hn-dS5uKN@Y_#juQK&l9N=wrBYsEar{bjr_(dvuwQ%yJFeEy)lGGog z!?e>U|IenM5H`%4ZTC3%;RwBB-mCpbTz>q}ZH3R-Wk)#w)Jxt`Z-xU{dh%0*LMJhf z7PUBxpM34N@&QUce%$bol&GYFH|3{(wq-BTuhcJ66@|-B^4lT^Wj5>B^w1ukBqRR) zQZzjgf(Fbd2}il_fP#I1ZcyU3)dCI&ZU~UuL#J?O)SxHr>dE;ViZlNRQsLwz$K?Gs zGdVs#$gU0-$ZNLxtitw5Xq1S>#Lak9{J|m&@Fz#Cs=ha4TKfT1Qz|8XD>;g zr;$)-g8Eyn_#(tn3Zl+-h?rehM;pae7)F%lu~qpmO|_EBvIeg<+G48-(^yfos*by| zV)5L%lJBc0rFlD_9VsLUc9$aSFN#YG{30{XE~@DJ;YwIXYi!@7n4eWwcXy@^PN>|b zf=0O#p1%Nh>D^vXoD+vXAmrSl6@f&<7LnxG*ff&js0#DimplaH2!9PLKY9E8`;H-M z2HpEi?&zUGnb-fU1TH_d{0`Dc%Z6h3bXkXv*d9BLV@)ot8jDvLzF-|8>;w$^GyI#_ zVLLm2evFG#dxjqfPrMG-isvU}=l~F#;K*{8XKCmXs?G8YT`?IyE64CG`7OpfSe~UH znP!j!s&rfQa^mCWPsF#>I_nQkxtolQNu%?^*pOYr!u5o6k~vDvGV^L%0;OT`StSd! zbnoxZLC-!;8Y|WwCBKKC7DwE_51li@?3rV6`04r&KP&?A^^>s*o%N;y!TWvGbg~!D z>N|B^B2LuObs8fGd0KCS$^HSO_0E>HI7EKYT{~QUhLbmTF3q$@3*5&6E>fwfS74lB zq!zmtX^X4)>f9)teyA}!|4K!n&j#Za7OoB8;{b}cumPxL+UsdJ)mKY`yPm@{UC-cS zLXpTSUg7BtB%hbK4rib+HRQ!7%f#gtGUyUG9_#x9N<`Q;l8Jv3k=Kba z5`&B&wl2t*g!C~KIV#s~5^v$q$~v0}ImIa(Oo4~&#*l`bQbP#o%}aEydJ@@`Rpvg0 zDb+1?IVA?Gnd}w>yCjqJFBq^;Fu4iMo2=i-T~n|LfD(tSF^I_fe~o~%8p6lGpKHuB zyqb_2ptK&g%oz&X5hQeG;#4qKx+NuqJ6#z_0_@J^%hzQjLpa>IcZe*8Kli`TT`bMG z{H#3$&HB1PfxmYvR=eFl_3Gygu#eCFG)YPNgCipWvxw6nTfkY9W(=dC4IQ-Zsfq)c6dhdi1dMF`*5VEuRpEKKLW_Mrj@4er>3Jm1kne&`;rtI$Q z%$bH~F-9RdL8uIcIee-o#Pbp=m3SmnO-?uj79y3%T%gJjV(z=^#P4|iLSW21Ta*m;IZ;P~G6{(V@>(%p^wQ`tMte#S^=F2U;1L^gMjEvCFRba(K6{ z?PxWuvkgpqUg6gM{1$zK>UBO?ae1bv-BWtOjl@LVI6apPs~#8Grc0$#**)Ytgnw5F zMAmKAtXbDNv*)yE)=Wrwo^o2$x~r*nd)YYXVs($4EcnQcW5Y+(MHikN-T=$x+HY(v zS@Z!rC|#EsJ3LRA&9L7{I`CNs|JS9|=ah)cGi_e^8vSv{j(-@3xYblf%ux8`z^2Z`!RUAxEF>g)(h0f+@$=<5f&NJtapOD6pvugqiEps)233ihBal^@L`5^A!1(yN4XM$SoYR?lAeg zI2fkYn~vW_@;X?qJqXP>di0Ga9OqPs_r?Re^hs7nkLam(7@&Un4Uy*f%f=9zxTd&6 z5j`dQlIYIy0V4^uX5vkoAPNZntlu*|b$bzkB6w>}NY!=ggCLMC?{-~($xAgUz!vyp z`8!kABE)SidGzZb&g0Cl5ngP z95JjXbCrWG`Vov9Q#9Dnty%eus1-#8(} z&dbOmfHTR=I|zg9GO|EAaLg*HXAJg%qk}xze}LrIG_Ha}!FEd!0w3TGoS!rqamiAg zuRPrW93)mlmAXB`!;Qqs0XfaNg$3@iTZOSB0b<$&tSu-N0AfTZQ0^av8OG6oENK6Y zbRG*2Pzs$v8{TVJc^in~K7_*3-|+tcYPh!s`ywDQ!`bS_1p=^Jm|XbriP*LN%ot&Y zv7Ot8PoS~8_7@D^N_HNC-^LXFHBnhJHP_jZLN>p74PS?KYP<^z$zC#6Y#m#kkCUEf zo&!9x7PmUS*{^soS51h6KSCV}@;{4(7oyfe8^*@C2{V1gKU&K!&ibnUe8#G)7CT8o9wOu#X{hn|$dTD{=z3d^kJ zUYf%6>1M&pEEM_}n(h5bR5TA3p0M{->Mb2E*lW%CNs}J+wiIzTXB>Sr(Oh!dBX&^~ zOlO-KAn<|sp|`*WOgAf*AB3iaBWSe}CJ9Xt8?&$HeB>_7wdrohnuhRp#O%Me^i8TGT~EWv_5c z!6E9x9{TEQd6VQCUoTm@WXX0sq|{f{C#vbeiL00kuYXddYL#4GjPkeAQ)Ct&Hc4LU zCqguAlDy=98iV0#K#HFuM?Tr7Pq_hN{IUMlD_CmOPcaABVAw%2w2MG50C z$mmF-&DZsFrA6>zEZfleF6xb7_K`6yPp?Y=55NCDOtNXui(=%@wunTL&i$VDF6y|( z-~aT}PxHs*RHbg6Ft&~xr9OLB?y}(SVk)PvYk~XzurH$BeHy1CDdsqvvpK}1J7)t} zoq`juCVQI5CQf3WmbE216+2jqmLpfARu~&t#|UB3TNEnmiv-snz6mQ4I2K-{UankH znsPxb1;fHQp5?3mk9I4X$q^(BV*t5Vpw)Bc0QIBZ%4maxvHJOzF{TfR(h8yz%&d+N zHb~-FEBy8+c9g?OCr*yd8w`w~XD&15zVn&-ks#b2Ku=%6+HT=yWu9wdeLKH-@Tv^q zxqfX9M`^|OPxlE@6p5Cp>mY2Wlsah8eL-Iq&UWYLKUD(s==7$3T*HP9l{j9Z4+gIa z6R%vM4UFDyRn}(drC(mVcHP>w=MH0F(Bz_4F?YT6Mf_T)Ov{$|PZ}JoM$e)a7hPIN zm;k^#0#*GLHAyB*_MagaVDpbeinseOhYF{z$E$KIcBn4pAz-8u^TE>t3_g+jAQynW zgM7#P_3{wsabUc8XU8vG2@`^%w>P~>B0=!?f>@B;D8l^vY8tf`5~>M`1TV%Xr}}(t z1&)7)x8(B^CmQoVt*+KC*f?eR1#9laXf>&AaopMd=d)+ezQHh_lED&*#tuHcs4f|y5w%ms(Ysx(l;P%1@RV`o87H81R4_5`Z3HY+?W^*EaAUFcg87xc z58K)%NT12l*ztZvwH#4zVZVZuH4=pNvnWOG&X4fEfMI=j?%M}^tlf0q@!2I%=&^Ce zkx`{e`83d~V3PqjgROeBu+45=%j3k#sg;|5L0|XdRb_B1W7o-|kpt!zc70WEL38Cx zEb(cRdnec3*cI)@*akCHE19rE!n3;ov6y!o2b92db;Y#K*Rg41?fjU?v5KIp0))LZ zXpmoYpqh+EQ%C{fT;RpO6E$TEo-`)RX z>dXI+C5Cyw3}#w0mKu8KxTlB8vEtKFFf6XBPs6nM9)jRzzb>@Nxl~SqE^&~tnUZBH zBX&}{v9=ms3-0E$7mBMRNNY9iC3bi`Z8^&J_2AVrafD%=-FEav^Uu9kEA|wYx-sVD z<^u%WhEVY>2==wL;+4E0)QrUwgoAZ~ePZ*`72T+h?J%%EZNCqe5aohV7a2p!Ob0n3 zEwqK|9;fKW0UK#EYW-3fd(H_(Y{TADTVAG5@Lex&0`!H`lhL%+5X6&v`t)f;#n|gY zU7%&?L?p}YenF6es_a9cmb+;~#3rX1ZRRl3Ifd+`=C=3bT9kgp?f1#WF&PDVGGLO< zGAitV@9lpK6Ivi*N_l(%Hpl-KHd~Cv_5a86_rF}8LHG9Yh3qnK54%~uWqb|kxlP~o z=9}IeeaS7U)JOeD1#4knqQrgsXm_HcO0!3MT-R5^yjcw(J5oWB>}pkmi_za4tYCJq zF0d0N?T~!U@e|VXhD>upqkye)Lb7Kx`qOh{k`p4iolb~*iodrQ?w6ujW_aSOcm%md z-loq$I?qVC?~bzEilJ%5g}=unm2X0(K=yn3Kp*5D^3+d^^%j4*?f!i=p#k7j0IH{T+ zW-$*6#4>fhs^9RfCEHAawLPh=Cpr)wNXE02;9sGkXQJy@{9A-DW}>&U#iv|&EH9$~ z0!&C+&I7@ihJBqpa=Gf5jXWPL>ks-Eim+CaI{ct%A7b3$#hf|c->j#JU2vYh2YGcy z@6j$EmVR(J5F9%@C`uypK=`9;^+TUO9q{4z^51ThjGv@`;TdPn(E5G4gEaZ2l2RZU zUNoEH%Y861!tVz^FyY`eQ-Od@RaA1rKIF2Y2YYV-hP_(@F>H(D#a;pN>Y_z-_@+lE zw)VE&@5`4j|KuJa(n>aBUDpYfMW*{7TDWi_`WvQOUS5zhy)bf~X?8E1`2tAzkBlvo z2tptPRu0|!Ai2s&$p17}crT0VC?xHU_rFjA_YImv?$P^dsz&pIm}zbQlcx^l=s;7A zk~eLNGtOah%{eied0YnOkODRCsxeSB1?Jd8QkcE$^9jKGX#Lzo#I{=0W%{3q+XQtQ z=34voJIK<7xWw7qoFe>8Vta$8HffV|RzqNwypx!rV9#vYwCQu+eDTVi=XqN*Y0?^T z*14(ht{M|p+a*a^QQb3}lH-nTT4FYgR8T8lz|5ovxJ3xBf8<&vlq^+GFj$cFZ#1@4 z@iuF?f(i*ZAPO*;&GctFdgBQ}H?MGcpH zFXPeK)bC+Idt1a7MPY36LQd@Mw1XUBPtl@Ea_$m=VtWw;M$olC-{D`avzr-5(mp#V>5RpMV|caTvd? zauxp=<16en8`5eb3zpl6YkJa44uq9@*1@?Z1Dhg1ns(pZ8#gV)o+n!)ZH6eky~bQSBwx$ZD;9ti-WrVEn-1(t zS(hEU7m#80uWXWY{hL_XEr{>ifI970M0Zv&Iy;fULs(Ef$+3XE_k`F6bI4UxcWd}F zc3VQnDV`eRQ*WC?TxgzNZ?9ywz}lNkPyFn&@mP*{O=&?th>k-O&j0KUWw~WoJiFQ0 zR27xNPCC|kB6VTTc6>0_r%Lx1E%Iv-#8j;51@%Ot$U~q!P^rxiIFE>ZFZKe!-{~q6 zkJSa3$?<+TDG(hFOEKN2nM5-A@43PfzB29i(l7;}OzYX@+FI7U_YcC!U(IB}=GM|_ z+I^7Cl$%<}gY{hIM7g$-1YL|KL`_h!+9o0IQXlLTFa278PF9xW!j>?$WWwa;>mMLY-ix&Wo=J9X#tiC)!^KES3#~D!?Bob|6#H($H|FChWGi0E>BXQW zbA<{O!Zm-)jD)a0QhaWp1!IScxk1s_7|;BVB0=!?!UW#BLRjz?-HaK6LRj>!gqSh` z#D*Wb!Po*jpj<1SX9GQtgu?Sr2xcl9M*u_^a;hMf7{Rp(%PgDCcXJC8^x!NMB3;CU@_vmX9NG5Yn|8p3X77T|GP8# z!R-xl_+@1-3KLoPE3vxPh|b}PUcuZmmhWCb$L1dPVi+g5M|&0<1EqBI13?>)QKCWr zvsm#RK01qVnbjg=c^Q(2oo0VRcfa+)(g>=soeR9adjN@k>eo!#Q1=m6bmpq z01PGQhuL}vv;CIpX!GtwM%@DHB#^&VMF|`$z1kBjDiZ-CX)~&z%-Q^hJ-2Ew8 zjR&6OM6#)pMWKh3)O$YJw{PDGLT>E)vz616ae0az0JgymOTP8MI!hEcK-fXAEr>G^ z=5rr7)*ldS=jsuCbRSG>gh;*P4_N}aidG!W-CYV>RGE%Dcqfm3WbA3!n9!T$ZpRi0 zdj?A-3EQ(~O~=P%OGLHHBv8M8eea;^)210{+j2>l8GspyoN;sG-5%7&7#r%r+703k z^F!nm3XHI#r3-z20ns#C7Aj*coz+OduFKuEy=-H<++2PyV;@S2G%Bfi4RUH)J@{J6 z7@aJG1pfA0n!%D3drv#FP=FiP18?Fmui2vwDnEU>f?s=PW1GZ;tRPK;#1(` z>Qlifp9h&zP~DQhU*CmY57x zURi*V2FvZ7QdJNe#9L<^+WU2HXm(uq_td6i$+G zV-K4)j@h_zW2z^mU9oW2cJVnyIrwwcTV`S#o65I9;ky$QOQ8CMwdgU*C{(9?E z%<@e6PHlpA!mTmSQe-T?xFp&jfw6(qIeiwJj_?ss;}8=`k{ZP#9`~ZDl;<|2x93o6IM}Cj}D?X*Ipb5%Ieb z*Hk13{%4rHpMwBt*m$D47#94`pJn@{T28=lhvo}G$-Ca#xJV+JfhyOG_)=O_*GHnf zU{_jxT>ls|68m{Tj7j&Xi%0MxJElrDImME@Y-T%Oc!VXWcet2gq|7voMOwr~BSukL z(O_vQ#>s+OR3f{kU`?q1YkY>@NvdbsLMe{T)3l-LJP%DPMf+W(&kG-#Zd?|dm|Xqu zNWYPKmKh0El;{wAGnHE>_V&%@#k9IZmb2ubKBW);9n#+}fzqFzL;Lfn)J3(Fbw7mW zGupI=-t=g11v1Bc+SfaoKDkPjst@6C5LK?y6}FRll7+BC(KH2Ym6pDZNY(Hp9#JrC z1wgHcu%U>wqJlx^p$ILCw$=2+2RZ%Fws@XcMNHHBg~)>zJrrYYi;)z?s^)0PwaYI) z6E5PL78jFdgE$&BjpSAeVbR+RNf{;*1V70IVfX9$$)NfUW#*|tY_+X%+D%3~aNA!q z3{Ox0c>rAbaMPJ>W?nAg^puEhtZP!u^s5Mve~4R_b$iFhpG{13IRuQj^3<&P(n~LW zg85IFs_NVO%`p?uCB-CZMbMPQgxEY5zOeK6h1gGN~Vy|xzZTT0AS z9u8}YucLnHaR^AD?}NTsyi3`?PUI;6(CM2+djXVp+D#y^ z)7w^xQas*VUAi35yLRak*fMug_mA~F^*gmqCs*)EU`?y%d*THzSnd?=Hn|(+ykPwe z8$Rt$n<;(i9p~cQg;xSRO#NdYS6~gmQa%8YN&tH;1h%z^KS*+{i$7NI7_cw=u{@iA z)t0a#gT8B7f@XtfqE4rbQKs407qjqmDrw;u4$S!IQ}E1@RFcWfb>(I31sCy@OTHfj z@T+RFV7^%iE_%U!^=+Qd&YnHHwo|8ewn1jIqLf|3w_T`HoslS+I#^_Usw8GDq0SNENihP###r02^WRiPy|I z!!murShPs9{8_(b8x|u)emeW3GYV*TZXdZRCgwXwqRFP?M~|c$r+r5)ie%@5&{LG* zF(--!=mIx#LZ&CIuvN(CVM&v*a?9APLYy?!gHc&eqKc&jOiYSg3))C<^ZQNTp9h1O zI_cykVAk;8XgNAGF&onmHI++3SryZ?j8CrvwsUYmW6CRVTT$-0klfIdVXMLYnPI3M zxeT*zF6K9WmKUpxm#-dlJ-oz=wXm=OxT-o|HHv4u$8fjuo_8L_gF zWA(jQ7LZQ&gNubnu?i68xHFw4r4nYWwH|SkB@7GB&%uqw+SkMv@yduUPaAWtEb?$t zq>KK)z^+ynnFap8l$GmMRyP1ViFr`_bX;g<>&NJ1o(Ud7YixzE3um>}fkZpY+)}&8z z5Y~tgf1O3wa)@p6G?VSUAc3#<=D*O~M0N$^kj(eNuKVcyc`zP+)~xUa=?Yb&C`2u4EL9>*0$vU-n z2s8VXN96aq(qKx1i5-(06n0x5<$^a}!m85r4qab0ddw=iwh*Ix9fY&PilNHR(G=@S zVpPl~?9p|psZVl=<`=3v3QfXF(DaqVwF^fU>wXQs-l9%z6<=_%bsw2`6PGGu8ho;e znZLP`6auA&-++kDu3zfsd80M0-EhL1szP_dVhI$8867T$wH#%ho%(YA%w@`aI28t& zuSD#g@904qgH}Cvr(G=D=jS+yTD2@;&6?rD!}b`_Vq@xmc$8h9Sjm-vuK<~RrqqY8 zM0NS8*0iD|#;$zdS?Pz8g4}lXd36E>WmnYd{u=sKPg}#{dk6IM6_OpSb~+e)4$&>Q8I>zN+EW#p9jt^IOgrp=a{V47 z9zztG70ijGurvNx4?q`v-aq0dOdU_Owb1yA--j4@Z!}+a<+K^)>i~!)JtEWW5Me<& z35)Z5+D*y&Ke7Ej7Drp{Equ+~W6)J<68YTtEPOZa(0PR+DJ2Usc#W;bQb> zD4C!^+Ps@}oooZ5yMLfiK4cCKTUpt`j zqquMdLWC7o6Uc604!Wunhw%}W@~$7dOOP?W5wk2T#sgtIKSzJao$8Xw2fIW18zs=8 zXU|Bi+wR#@eUmCoyl@i@m=QJ6lRf*gq`AG_!{ZZ3rCVRY9-BV@bsU~hCN#3jpCH1L zfo02<)QUBRH`VPQP9ta}9y4-TV3KsV=hLu*hXZLE4KtiH`7{m7rm6pGJHigx0jfGa zumh%?6O0G;llw^|IR|?cI+?k|DSOqb4KW-dbUjFr{W5#@oX;kZk1@f9{jN!|f78ae z+0&|gamk|JxQ3CSFWq#JuTs|u=ixRz`&iemmKdSUZEjS|r) z$96l>aukA-?CW;!bBu)5g6SWqBS3`zgquoF{D%BCw|kwH#FBO$!rgn{r8&O-Z&%ZD zd<9{LqIk%Bq>!B8H^7QJA=%Rkm|trNTt!a?_JB%H)%DpqWKCu$WA%khPy5b>G8W2Z zd$mF{DetR4nLTHAKh*cL=j#U?jHa>B(<%Ho*vBXndaBv11284*K8|8?u!0xQ%-TF_ zR_BJrt52U*TPxU5th*xeYE}>4;lJbgZyRV~3bPoxGC}5MLGGa8Q2%SrH-RNbd&rzX*p)i|*p%Q3^s}3RSOxxJndYN18<~$-`U0PZ za=sNje;0h9@<%wN`#@p5v8bPE=Mz~`Q)+et!YW5e?e_e~O;G=B&6+hAj-7o_l;@*{ zztsXOG%5FBrkI8Vl{;|ky`5V%<%fJ>4S3th?3!XAwE_}l%m!YfG;^F0@?5BgF zI*Uw-zmVp!EVi+$adD$t%AJd%F(fy&XU`|xcy22nw*CyVz-zRXXFy@lj-df^*f}(C z`%)51kMY+TLZuc$jIaQWT5N1EM$wU6G&Xqk$eS3X;goEeB$6g4OPVD9t76eM)x1h_ zp)k#k$wy9ewwWbRQmG+hv8D)qqY+e`g~dcGbPAGWj1T<|DWC)*?O~%i``fE5?0xgQ z5P|-jg0*A%3!H?G;9dp$2D{#I(g^G+Cu7ZSrZcl2jShnP`9IEdb6Opid44C#WpCB- zB6iE;iJ>K+B9`~LS*hsM|I`}|GpvuCC}Q|9UZQ@2^B4b~_@P65X7y@b#VLIc;p86y zTPJ=4v&S%fL5cRCncJ?l_jF;+6d=w`a$4LF>2^c1@4FBf$}>=o1~+6)ZYVN@TqrDa zm-xW=TgF)kx8kh zv^9o^DOa!!Xu8a@6pc{YFVsfqYhewUe!Zz1VRh^b!s@x0v}qp6A@AfePnP!>)cUv> zZN9nIWHW!G_M;hf6k8pV<-o2oYzDqHAB6dRm@gX;Yf+QV!s73T%sJ;+YMl42 ztuc*bhhI{JZuj8y^ug85GN@m=h+G(1=diTHH3!D7TD2;E@0N}dI5Lf;!C5~m@(N(j z8#b9U9Qr`O`a2>V>nA`_{82D}W>0%rKrqQW!InGupr_B=Fu{s1p}&|6Q^7;=b~t#qra;ASmSzhUf&98%zZt%jNBFmC}zMtjO}T1lW#(iXPk0LOG{F15JFk6kfK8%?;|U$ayc|Y#Sree8wpzTg7+=*;k~U$ z`QD|8Gt{_tW@Q7K0eJg2LCF>|k^cif01UlBxCNTRp_Dx4q;g%h~vQ94U8o3E}a z+gFI`OKiV-Md1WuvzXpa<+sBP*%|5cZPRaq>xliRo#OopJ7Ow*s+oRF96Pc~%jJYHhkZ^-qOS9^j^h4Ycu)uVQfeXA8@{ZGla62a7eD_mFw|0j~_pN z>ijV8OI>WjCFA_@;|BA-D^O6jCG`2{&s6W5KNG6SeBM7RQT>b{Jn2qDg?=QQcnO;Y2g^jL)6rc=%*pXhAw6x0naEkr*{g{1}EPWwuHZQB%krL$PVrv(a(WNA-&!TGE$h;LyPst0>3nf;RKsTr92^M_~rr7fbPSynjAS2oW> zODkvY&p?k(EfOPVNnc^~@G&o@Wv*GX0?kA6!#Mlb>_!70IU+U1s^$9wFwC`@9TtqO z34k=n9Sy?zW2ip}`!jfOP+N!@YC&@KcKq8n;S0*yf194AOqr(!j2IfJD9X}(+1M4d zM;hGa(GnPeJ!)LHO2o4M&iCXeG~GBlP3%WxnMF|A<;&}qd{UvLJhV-_&=|)b5jENV zyOW{Gxaiv;dXmHp)_$(l{M`n<7yud zhLzYxLUff><3>#nwqU-_V>1qVEdrYMIhBTCeCcg`;@skQjsS{_@~Gs5h|)2`pYn(9 zP$Rqk%=-BjLzUO5E0FBda?RfTirE$LX@Z{O-3N3byx1%0Ecp`IX41Ww*0N=tvJ~GA zzvjLcxs0%)zUf3W8JPERBIdGtXqe%YJ)EM*Po}i`q=neRe+4#I5wL^ka?{yEjthTh zgu(WkPwgWZ+F0)()?q~F%>FRRi8{$DYQ}*N z+CAH84w-++JO{+Pal2VOCN{yhto}E#50QeP_=<(VDB(eJE;fX`9%sshDzi{n5Ann2 z=r(owZ}Dkj@xIlBiN!d2M9;G{X>xu*6AW`TQ|pV|cl;qsAWxIe(iaUKI<%$SI^i*12ve$L2g3r8K#aOiL2`r*cC<*ILa^njM=jb66#)fd?}fl- z5Qfi-pX1nAKSa|A+Y#Z9<%nTB3iv~}2sP7-M;XiEpBb{3>u>)}Y^N&MZQ+h6828a+ z&`--)_zW0!foYidt#0%32)_JViTx|DoQ;LkE@(<;8yjbHIlnwC1$Gkg`C-e1AutyE zu2dhql+0Tp_K$49uQPAy61byCik`B>_qqR+u!@u!uj81P%qcXrTBJirRZ7?bxy70uZ?4)NOU#Q=9p&qHOzmbtZ?&7G4R7lDbxJRH#ps9^{V`KA587Hu?Q95kGrnl|k9IY*2M2D#-nT-cajqN+ z4KC>{O6caM=B^a^?pwq`reB!wq>Lbxr}6hc{q$4s#^pW8Ekk(pUEN6c8CgOG8?U0; zWs+Z3tMQ$|SQ9^t*V*UWNX=)PZ#8KgZHJ_5*gC@S$osfv1pN){qY!eRhQQ2qtuZ_$ zw9A3$KIC%WYFR3M_ua<%^s2e;i8KQDjWUQd$BqewsabK zo|oh*{$YX#@qJ*Mm0^e+i%k%}2U<&F2sAotf@kM@EE_=aA!3($sWP`gxYJ?7c-=pr zgX!i5V0)=B{jsM~f-!#gt}8W?6?;61o$yb}Ut%Ld$jMKT!^m}h!-Ks)`9$ujo}zKC zcrE(<8{~1SdCtt`^u!cu9x;|CRLYvhF;GoResYST31i ziXJn;k9ttSD&u6<3S9a&C8;}g--Qit;nG=B?}wdS+n&fRWK&H~dDZ_tME7`KVEjRX4yw7{V`eq9UAk@s^Dr( zIj3V_N5!xCk2pFrK3t)G9tr%Fuy5~ey?ptv>_qbS6-3bdRuKbtQax{eA3#sNNuY#j z*7xCb)#gFi@oG7L@nXd|E%`8iFU~1X=?}zjx^reP!%gdW2l>)tZH~Hzh2v+>j_h== z%kTJ}WNSQASRC*+^<>M{W6+>gRPh|^C>O!qqq$+wG#wssx_-ozcRz1@ChR}J7nM{O z1+#vK6aTuk1Z^}iNtl-7v5(DLM%abYqMYN;Ok1`ra)OeFcPsocto8|#n{b6=*OUyB z=GV*-b~L?9NfA+C!gZE@fee}KB@d=m`|i7{WhlleUW_RJe^|Dbix)5E^Om@r^u+U% z8Yq_VFA<$Q>PA~X>*pu8YCVlSF%+@m3Lhq#ISQ?-2b1Q-Vkiq6oy8HcJejHvMBfh! z{c7Ing{x%~7>I@|(X>tR9nHHB-^zmW|$U4VjL~hsrmslvB{D!!? z93L%a50G%i7Fnu8#***9M_UzS5KNJp0jdN;@#@nk|3%#OX{H^G?p1SZ)f z*qqAsjSzCa`LpEz3cDoOuEi)x?wZ_ha^PYYaLiq6!N%tx@N9sffeDCyZW3lsP7m`# zurbiD366!&pW`1*&4gaU#wYxf7(vFqYu-s0oV(GVYq7F^u79^ASGE_>NcqfPt)^l7 z(-}b+HBsE52bqh;Xe-GiCq!7lSgRIF&VOxL|7H=IhJ|pjsq9&#t*>5B5J=DW{q#RZr!>I#@xD2 zM6xIR3n=!T!wbG_>vTP}sVv}x@=eo|YB-_W#8dNA>OG9h;gj7`Kbm)NO+GJ3Ga9xp z*{=I+pjGw?unt!hq?!*&?gSMaP)!)sAR6x1}{PycK>QkAakNB;Cz*3*mJqz)=7ibWi@ zpL*>0)KEk;I$GV9+o|?ssXV7*J9W&2@T>}@86q8^3M&#kH3jxHXTLRX_a-TJhd0c4 zBUU)^P4@H>>dmmy;(I1?;ZC#u_+!;OdF2e;2?drw(GRY%@1F97OJkP_j05%XGd@kj zO}K=GkMDXVD_v&#%o5rk`paG{8aK8dx|9_&d$HoD4A$REHYqPM{VVcijcMg&S&@>q zwSS>kuyNOeUa;Y!Gv?ED*{`v2|5)>BQl5B6O$;94Agn(g;r~qxX*umb;G=0s%PuF; ziU-)u2Naqe43&qw4(LDnRj;<}KmMAr>>(^F`K_@}Li6`Todg%}(=2ifecq38ZwzW& z{N>q32fUw%s0&a>qkrv^TBs4W1GJwS6X6?=t4|DJJ4gVxSDq&aRlr^Y6pd&gzbuK!R_km25>@)R{q*g%N^yWwdRJqB!3<9ld?qMNF;`Xx}=Df;nXS|q0f zS|=N!xsp5s#*oxTzehriQQ|0 z-hMb&MDd;QSE+?cXJt&dN(uS|yb!P3X9owUzU|1xcHMY4plZ>Uz!*2!zeFmY1h(MG zl`EQf@qF9JiU)VDhzGQmECY-Qf$5%kAg-J-KovBx_b5hPZHJgx>D>gXSe;8mjpnIU zF>NMcXRgxkTWW*_HWE3V7BwIAm<*b(CXl;BJ=K!UI>1^d4ZNwUR?GF^L@HL}+lf^? z7zn@8BIS?rAD@@TetQ4bl6us?bhDw z(~ciw*!+&A9aowSt-+s;$vx&jx!tgyOPF$ytRs}&Y?6Z9y4ka^Ef6z4bFsQsOzTQu zUGO@RcIJ(0W^5-cO%$gaqZyl>Jf2o3Ml*%Bo>mlNOFKq0eRil7rP*mVnQ{)sb7_Zs zxs4ljEGS~)mR3cloT2FpAomw3;#@Vy%a-|Zoof!w0;Hk9p zN_dH9O-bwbQ(MNm_TI3L*s7RytB{_Wl;`+BN>D@#9LNztz*_Risx!|vD2 zo4d%{$!n5K5Z%{unwIO^t>RsJn~*)UPX@3ty52`ny$29h%rO0INiF9pT{xOk)7}TR zBA@ou_!?S{De%t_2z2x+DHydR{6+{_vR z_9m?z;?FyN;-!Yqt7#@bf4T?B-B_|DESWZ~-83B4uKytD)3jG_>L(uJ1^G3wWfF!A zSvUVj+i~5MLsgfMZ2=l<^%{xSCnJ*2kXqBfENRFL2evc%EliIr-yvnhZ zoC?B&QGLj%7Ct}DTaxxVOF#G;cSY6wb;tRlyx?@bo{VM8bD2N#996Kph-k{K7*tZ0 zd&0z0UXP5FXBgzyG<;Cd+kDA8M*E0`jhA)Vq4p%VvzQ%}t`%vW(Wx~ZC886+fhRa< z*$K*?!SoII#rKKPvJRyDO_T+k(3ij#I3ezdtZ0Q_1GZa!Kx5BYL)K&mGY3o@;aFY& z^=EPv-|w>hqQn;Bha*ghuk=)UC*cV5d{atb`4GpB4h?srvOOicbV)uQ%l4PH3Afxe z`q|0>d1}A=`i}g)kqq*%}VA`&H~w5OUY5H4-=CG;cPk3>aOYaqo}3 zbWRxqY??ooZ%;5*if+9B_vurm zZ-}t4nqn81J|6m|b`QZ)7WL3~f1DdGD0tKSr0Tye-*tf4ZnP7?)kHBLZ0=bpV0W3X z1U>X{sRyO|T%z0hOP4NP!QZ7z2LfsYLDwBGN+4o0tO%>S+jmeZlV_;OfB~t;B&roy zv3bRc%@|&~*9Xj!6;or{VB9IA4@jgijH>wwa`rrDe2+WTw9-+{5#xJ)IaFRq|P?a-3p~WUX!79WaimdFab7 zSr2mfNp;k)(ka_``zniZfxi9sU21KZyqVH6?LAej=++vXPN8O{du&xgz zv6qohH9ix2aUNzod9VVsd6d=H?m`Mg_XJvJm>;=3QI~q?Cd=cKCr^H$thU1sGdZGB zI-bw5rT-xuw}eiHuLHK;7Xa};ft6jB6de@bzk=Q_1~!{sy?S{Q+j^&I@9-WFRCWme zM4La$B@=x(jeEjbKU0J*XLSs5+1Nbt2}X~x^c?LgIh&<-LqgDUcQJnEUsosZP zhK40F2c16pQN(l@#Bg(K<+ez0Pdg)sAoV3XfGhf@A~srpBut7NOeYu<<=ljMb&6Oq zjKzy`Vp6D=FJhO6JBew5WG6VC`_=sYis{v>hW5%R{-%BHaORA+iuvLRYTaRDO2OLo zqTRnU3;f(9M+~0Ei=6wA8h4!9xPr^ovuDrGp>A_eF~tJIt?g}{{&rvnM>D-{5QwFp zzXV}l;n>w63>M2hMFT*xrz-6Xhcg!<{K*L^o>`dqqx9+>j=Gl_Q*OC~(WKGW+>q=8 zwo#_IAz-`nxeBQQSZSOy2J724&wm##=!hL zU3g_M4X}d9e8(TM1S03B8*}{&tT=U3S#pezeCDMDF?MsV7i<9fj`1Jr>{=}kh$(gQ23#X9>Vz)GY6(}U`3!uI*uW>6G_>2LU#N!<`wR6?+v zHYx-*8ttDs{_$xAs5N1mLRB8ZMyW(A9125x0o(1+p+cc`9u0VONsis)pBRcSJpiNi z*FkbGz)%*1X|Qv>;T>D@Pr&U%9mFcPnNG#c*sfA?w(UdW=n+;Y(|tvEfyiErFS=tF zX3UsTwF;c1b1@g0EYYk$4!Y?`#xTXCLom)d(=Tkr&qH2G!k*NI>ALqDKyqudX<-X= z-P`fcF^sQRl%wkT!Y+8bCH(9>D59qM7 zmK;l}<0;^BwT5Avq~+Hcd)0%Pgu<9&;nOMMU<@=j4v#=>De4Vu5x7h=l;RKAbL z?AHK{gax(c|1Yp%0eOf;I)iGvx+%eV2vGNbLT>L_Rpulk-|xYT6`sR)U;aot zVpXxGS#A?JkX9Se7&j>SfL&E4aX5HWjNm!}#e+|ODD3)}R=G1OA`~or1ZhDFV01w* z*aSD0w*|X+u@6a%S`IfH+o!|y2ar|82IKb!hh}?#U8GoNdzGPEN~+X!UhYxqIYx%tkgwpot#bN7W^~txY+G;fy}+nhQNvg zdsY>&!o~5btPfC1a{hBbuvyL2U<`8@nf_@&ggt=;%vI5H{{=QLz}`x7Gf#q89H@^?`?RYLA7ibSM?3eHB@@&Gx={pY)>{QQ(!bbb5#1@&5TM_Wl z300T>B{sl6LN4cR)p6!5^YJ*Ms_M{!#s#sAJj1fM-{u*$@{4^3n^>XF#Qz zcN?Io{&K^q+Un_#jeu?NN<)8))q?@%+&mnieg*vXOY+kJji# zmfRmzl;re_^rO>OHhKDlr)Y?}kePT*_g*$bMN%elOosMj1Lo|-c=9;`639WpYH30v>IrC>a2fJALtG#s05+|_bKJO ze-awwku`<5qz8)yIW{I*0}rt1*l2;nQ3f3C2yq`!#1`vtDyK40bR+T0#2XqV*rsLcF?T#kRcFMEs4Y=3*- zTr^zID@Z?VEWRqUj_GWTHRoS^Z+gI7qn`^5s>=cl_In%#%ut?=7&yN`^Z-ZTx?KC5W@CdXI>u5%=Sy3~3tOJJ9iW%r041Z^YZ5VWsG* z;f=(b;KH}MZ!C+=5|GDYDLQ*N03#bqP&4_Tgwa}|pmb9IAqZ=amdlucyyJBWl*5en zK#ck_LGckb&--vv3bHK(7GQg#eiaKaKZK!HVoS68W+ERB?Fvi_l}l4!v0I&3w{G33 zQ{DPj$ZjMpb4H~--CLfo(6RTx{01)OprV@4s~7G6CMYw#U#{a1L-uvLUQ-3_suZ_S zt;`%&V7;7x;+f4@K>vbU{DbBEK60jR`uHfZI6<7QljsB_PsHmem+vGJ1?qmVe#82G zyxcat-zq!8V{M)jSW97*Ctc$yY-7}|paIMiKmEGr1SZGAA8%u(%sF1BTAjJ;mbPr^ znEL8)hn~|N_g^o8428!1u+K1#47f`j%F6KUINSu&eW@5ya)F$70gld>+mla?1yQw(;b0) z#{1vCAMUAz>rMD{OA)mq$a(L*KXTaf#&ZU9vWq{~ADh#bndm=cgZ$kkWI^&i&)DY@ zK?oo|DSrZ_0sBKN7ZIz7n#uesiPT%eKh%h!jI=k5chn3$sk5W+zB}wj8cS)YV4w1} z0d#AxHBq3lXBhio9$Pei{KN9M11H2D!9t-dS&C*=L@0=Q@p#h?)0PeF;2HZHl!~g( zTmo^bzamQeBcJ*dGi8UIWT|T;u-{E~a+vvDxIdQh19=^MJBzPn2eSUmlElX;a+w2Z zT77&VY)18(b)j<9qR0Tj51ep0xehL1zu;haF>SB(*a34Ing(0vG=NB#h#}*Vj(&JL z3vyZ_+g{B6Ax*2DOcdKCc^(Nd#(%WG;?i_K zD>F~?{a4xPpv3oPYkez3O@P zFy{?*u#U-W7uqL9k4V_jVx$wgsW~!_ePusf8svE2r-IIAWY99+b7+@qgn0t-bq9YB zh5^8gJ=w;`NQvnXH(QKm*)WFP?t8K`QXi=}<}!{brC~YHl6m^|?+e&M{5lv~kGF(Q zxMdQ8jr=EaGW~cr>JIBo4O)BxhBQ{h?ganWN+1@)3ua_7FpEcv@sgQbbOHv8IGsG^ zIst=NY%CvJh>aohcZ`g=K`^=j82Cj)xgsa1prMf1XptcJp)v@9eknRZN*Ga)s62q^ z(!ErZ5+aov#G-@bLaU4oAr_<(sSFegm2qH!f}yaWB>uzb*<(;OGrt|cqXwFT6IgB% zt|YqbDcGL2eqN_eb6uZ2q=bl;JoSESup-(yp)Ys4mnOR&4-gn$al`EJ2xI5JfYa^m%0-ez-5wm&k%saT^ZOvWQaanLa|o zR^G&>{CxQhUeKxHLthN0-ywV+?xiiy*qciM{PKJnc06v(xTL9lChGhY-YL-s+n4=;O9WiJft=!VD~TJDFFuUD~E zS=YMg0-BF{!!_rs%HUkap0+5_Y^VIOn#(R1v9Pe2%B;S*Zhu9~wt9u6RK&FJLt#l$ zjXsxM;~fvK?0b2257NnBTaNXRF?61$JB9V)KIvhLSjm`UV(2HQMXQy__L(Wq{M4x~ zQXVh}&GZ-|l^Meps2`AAzp$H!hQ2cTeClUTf6EaM=l7j$ujAEpPu9l64*rRiaFuK6_OpyjyhhQ9cW{%Le%kOTeJDpD<))YR%vz^nDhm+ z>2&?On5g4l>o@18`Sy^gmqX4AM#mDJy0GbL#-j;{0TrMs=(4*$OJ3;WBHCz+YF>o7 zeZXQQOb8&tXdx(h5nm`w;uQjjPR)aZdQ_Sv35ghp$>oBi!SV9KRa6;ml@{7yoJUM$ zjH`rWZjh!9S_$E|A{I(r$(ZyQ1fqE|KnCb$-i(E-iy;jNgV%Ou3i<8hq-Yzsa}6p1 z92@>?AcpOeK5q~7jVv#|@p)q6Xn`@uY1Cw?@$vD-sWkZ5O%W_T={KVB=?5!eVZ0&; z(k{rOFb4Kvty)jOOnAMUgjs?6x{|SVg96=E;r<_g{0T!8?ArU0GKS4ht@w65AtQK3 zZra%K_dJchcJIOUeUI#w6I4MvTCwe*UX)G*o>z{>F_PI;te*c`1$(mCgAacJCKe!F&_)R-Y+DeNc{Ljxgf$M{t(kT~ZXP7}@23}Y z7_Zs!IAc>QSI+W4oX_TANo*FcG|QYB^j=a6S!ojc&Lr%F>Notc4$16%i!c?NouN?q zob6KBC8>2rTwgNwX8t|s!XLO#7D6b?3U~K4tYV3LPkMhF?n@2SL;)|Us z39(m=n-v{Zj%P3%R;5ad4Zg|hJ+x29MA!w>%w{Y=W!54Wn{h((7gqg8S zm}QK0HhxXT%xGwm+v5&E*@Zz+O8n|k7ujw!A0(IgBgPIj1*z12cAxSpVanQd^EG&Z zvC@)Q*~82}k2GpG8zEx30R3*aBcd)I6w`{Wrcc_Crk!R&Yrp(4cAc71miv@_OC1K& z4V8y&i(O&P8yFVP){9LYEy2ZJS6lu9Hh^8qZ>y(knX9hc0Cquyv~FyY)6i0}eXNbc zt6(o&p5$f$^IF`wALXW|Z4*oznSaMOnxC22r_a>uY`g$rDc-02u9`ouI_YpCy$w7a zg2$b(3_5U}D+-IfiU$=>2)R%?X*@1SCymDiVSh2^_V?sMjK}>);tMsV_!nvMSd*>$ zLg_pgV2dDZt@JLqH00$9+xIYeo}5M{ zCp8q$u%Xr`b~<6_KPNuR8T^>NEID5|Xt0efzf9Bjy#KC^&1CzgOqud0MAAp21@_Kq zcI6Qp%huR&ywwxcxT+1^x&F-($k1-UA?iOE#^@HJMNZ3*s~ydHO-@Wqq(Qeo!`%pI zK7QhbojquI&GS9b$7t_-aq~jv0zG1;>j_Dx6*8Ko?R44!IieuCdaTf zSTVX^ZPRD1T=|okKp5+9b2?Yv+$D%DF5?g_&w%4QcYpf?+!l63Y-Mry?mTAuruZnf zQp&xkrPx-n2__=&_q4l1@K=7il!O*aW_I|^^U4WDFQhqGD|S)trSxQE_u?+YgtXzd zpRN_-*~d<}D3ic$VmCKK+ieM*Y|e^Dl2|+E9)a3{=`(PbqWUa60(@Au~^)o>Jsiq@(*>9AnIf}Q4Q;UW!09_HvYz| z&p-Zn2j`I%WWNtyXIS^bQMI?>2rlO{NyBpH^y+-@<{yPJR_VVX^~w*OZG*cl_X}(L z;NUBt_kN&i=zI}=Gjy+_Ybly&_j`5NxS+K8Q?ajCECa?8H z2FL#flLQ?)dD1(3BIl^ z)9d&GMEouUmKconHd1N?>0H6q1wq>JV60gx>l7r{?B>;KK^Szlw6Tb~^1Y2bZ)2UY zw?$l6n~$!`^hBg8vsKz^A0~DQ1|KhJP`! z(M~dGGMemSY%CUZlQB95lh8-P&^^TLa9U!f}$g_py>W0CDBUaoM3QlRF;8-@)ywsrP7J^pX|xs zVBE%&2?mSJoqt>}xq%(CpDHC<8ng60c1&smMPAo$PI|Xs!Gd*G>d9=nl)?VGZuJM@ zOOiha<(%~{b9Mb5NleRsnei@vrKwCE(a^N#^rY%qp%|v`^mOjEE~)I#a)0V^?frW1 zZ&4nmC{fuF*FT}_Ze!i1n%AP#6dCBJQqw-r-~U3#`e{FRZD)=wlh~hrg2j`N_~J}& z^EPiJngO;A9`oIKytk7`jGx{Y@=UVXrE)x?Xd+bqFlBI zl$p)*FSv@+h?V4qc%`Z039OVL7liRS&q_3IFoc};FTqen2Id`DjGI~67Yc*QAUTRI zTGr%*fW?=`%kZ&3Qwk745_Q+b~x zrhEl}b+;lO$4=dCdHE&RY!;u*B4C=q5D}{_oWLHwoXruj&f-2V-^&=5z(v};xwiyk zrI}!Rf`A}ba0k0CeH%NXkj<`5CrsJvVXNoYJm@HY6{+QYbx8`l-b3h<6I%Te=2LFO zghaNh6XzCx9=XbIAN$I003y$TF>KC|(n>jt;;K2HjZf&6EEv05*J zskzSqa+;QN_apFkcrCYU%wC}K{?UqZ#gO60M5R4n62w#)nkV7ieamw7i!eZUla<~;jQPRpQc zsUsdJsTI5XwbShXvG*N-S=C(sm(o%SlvP@`MMl|zAV}Fu1Z2n*1qEcIC>sHR3Miu# z8L|->f)v>xdv7RvmQ|oF(3Va*pEk+!Ke;o>y|?f8zTfyOkiv75^E)TW&Am6{BsobH z8{D3-i`}sc8VP*StX}k)Kc6=6dj=QQGWDumn>%%_qj+ns2h7V!H6EC%u^Ng|IR7D> zU{_pYFrKbOAzWRKiM#p@hGrOZx$kX6`jG_j~w)@;SVffj7HJ4hCz7aWjQ;g>2Bw68k6%f8rul$_g^# zoT$ky#_3h1a?diE8di_<96lkH`;BWp02?O9at_~X_zd67X+%kTifG{5;9yAr%KVOn z;Dd*rspiHrLbBI=sRE_UudjdIBF`%vo`?_G-CcP&H?N5eSm)70TQeq7(yDa>2gQa} z6J|=PJf45u;lnR6 zO6_NR#^!QSQ^<8#EEkuxQTtW!TSpY%>GMH*%4u11Wb9HhN3DdT*mLa>(XUq zISL30iEF`rHNtjXG>*Px56no+ zAZIm#aV?R7YC>oR;nw9S_+oOOde)N|C2ah9w96uOX)w`*)qst9x8z=XBDrcvP@iuK zab~oZd*g}ZE|0yHL>FysUfH&er#Vi)AuC|>1GrE`Ubf){A>``TYuKV&5r8wsmN+h- zWRl*8e|HT$k;K}3osx8wB-*}(GYF!O!_r+QiF{+ka3xwkBZVQ+^4TibY4QmZ%WLMX z{<5*{9akfP{~p#`>2F)fxgEPF$2Hy}&JW11GB%9_i0QfhMt)JT_e88Uxu~qbnMOpc zZiuFMSubKOlF0@oCa>orHqz<5Gxg(-VQ^l@`CMoqTyl3>4;BF&4_ECZ%B}GE@hmcA z`mso2iOHM=_gLJz7RLdiFKpCE+Vwq0R8h?@UK^9^B1sQ7CKq+T=xIzQiX=VU*j`1i z^ZcVd?xjnYu)cxX-+{5xlzGa~lVkCk2Yjq$3nA5<{ zYwe^GDaL7TTD%QUojTQ(N(5URu%j^rqu({J=^AXD<|blbs5L;OX<;}Oj>~7wZr!@I zQ^BX`v6sfzWZk(ZNpR1ZPY%)oS%Q(i`dYe}KC4M>I2&&}m{Vvc<#|fNifdw$zG$o3 z9VpAqD1E688JGlyQz7nI1|%&@J4n|`Q3vOvBecy=3CO<#o@A1pL6w7ocG9(XnDFY9 zkH7{iT_S+O#&_*1mnkFa+i4@Xu`P`pGT<9;HYHGH!G7X&?l+C&B-eJoWx!Ja7u%GV z&+!RZvdq{S*lq9^A)@u7VX$x_K<+FwaEL>JC3uYz(Z{z7zu9;_%aI77)Zojc!_vJ195R>sVtszR65Z z!<#Lm%!{Mz^u%daS%LF}J4$7vae#$jM-%~HE7ePxU1xj=6oI#Guu+mbOu%rf7}Y2` z<7;D1!0y3{<|w5Gu+SS$<*I4{(UrM4ZK7?z%~IqaNVK21rwg=fZz!7?e<>TRY4)oK z0_@U*DDAN978n3_)GkWE?4p#iNvN?YC~ZsZXf|2NCQ6zWo7CjG(F;cS>IYGSMMcCdWrhGTiq+Htb37IiTR)=5BHX-)8f3MwH8+4lO*plMVbI-XZ?rlDJLy~-Fbl8PgA%t+q%Nis8g1K3sr%X?GJu}lK2wSl$a@(I`~ z9V@U!#E$7$9~3F84pc&+2k2%a#qYU3frFqBAE1{z`u45;<*+bxPQOuAvhPFaNueZ+ zV#f<(AYiC4?HPa>)Mvy?JA(7J%zfd_)WRZpF`%V?nj0xg+SX z>TP-p-7UF-ooUfA*OTaGX{qYV-I|mn=~$pVspFrfMFT84hSARu?4~CH0WB|$opiD< z_j$H!)Fmx$0Zm~jT@GA+Bs$N0WYVNm6k4;0Gzwquaylt;Zsz)0K|2z*xzQw)>khJ# zCorMy*~tCJSbTjZg*RTg1bPKM#m-2p!KfEKz69ze)5$@SR2__RL{F{v!DC*bLnHJA zrIdW~Ot2XPrBndrDHw`5MG&QJK+2(mb&=6fP&#!ODRU>FKr-otF;be6qZZgPyc4=v zd3J%~rh^ib@e6SUl<6#=j%3PX*uWvE{N$j6sJ zbQ&^Lcq?l1HMWmVoKO{wBlUIwbWMwjLRX zBrQvRhYhm+eD|KSLC!w_+haSj!FG~hE*>UO>=_=<1UYY6W+gcXK%f^+%_GvZ@I3ni zb*1OoU?dyNnGKem+-3WZUCZv@;M&ePXiQL0P@U2id4bd36eacm6F8VoKI|B`@f1oI zdZ$eerJsE}WcJJnAp(^1j+Y^_%LuadWi^5ZDoIj6Jys zXn$SXEiC}B-FZ1qV3qeQ1Jrkm*)Z#e9nsnhfKIOc>4@!5W;JP-jF6Tq6>Ac{c!cN3 z*)QlP&$lan-_=uiYJiTHZ~q#`w9O@BUPtMK0oUdPT~MGVkPpCi>UjXq#SnMNwRH0& zNNZ>9+K}eXI(i+m6CDiR1DXlth5Rwbbaq z4yEX`d*lA?5-9iGMRG)42+9k)^#r5s891pdPnJUiFb+N2l|7tUXR7`bpQs?^x`xdY zvAH+m-7YXGaOnX%)Kny!<3yNDti1<6sGvusdA8$&;4Qq_BE4d<@eL_k0DfuuQYzz< z6#C3zu}HEq&Z;HVodc$Jl)e~c)Li~>5*0?AS%kc+k@TxiBs7Z;JMY3TE9x}O(|YZ% zlgC!8a~nT5%c(ry;Mp3t>AKq029>&I8qmW=vjQs_Y9xNAf0iM%8*!fOh z5qpfcS*YHPOSPx+sPeQ>3sSfRlkc7xi~V?9YKFP2L?LJCk?K|($f zvE1$6lS|SH(|G?kupce*0_iQ^@YT?vQG_hh($=np+pKoTjbFaz{ME6d3ib7;qU-bunUeaE`Sc=u8vX&${Gc_L&pbD9=m~A|m0zN9kD(XP+(4+^7`>NNZ3montMvnb2kgc$ zy`&{@zOMdSxG!dVN&dl*<{&LrINKJr(*lzJCBOo;AdIG$XnweQVq_du2o~3vUQ(Wp zB)z}R3X5!g^nkP)u|oxnPU){?p4EwHD5Fzlmb}!4k@`R*4!Tzlhm_7Ed6upVOEzE$ z4D0fog6DH87|zrMvkt;{EBSqqOzAj!V@p;>^%tLW=XPKRCbt$mZ%C#RC_OUV>D**B z?2!B^;&cX?WF)D3xbuv^)ZMwsjDZxDu)<0!5XDA{DF&%=ZE^-VyYsR7JHusee`ipT z6Y5#kbyu=iI{Zv`=NT3N|0X4(kwK+Lnlc*X9I0@3cRIza04Yf7-o1N}(-|&ADUCb> zlgx@!GQ}~J_V0css5B&ORb~ojxG5`o405`9i1&0?%YdgUp-uKtN@udk${DesnaIyr z+#Lh|v%RgC5*Qm!*K051Zq|ih7?r`_O@pTR-is#qF+E17atvopj-t`PUqogbj>M+r zcJy8alD3$RUC8s661UVDqeiM%y!47D(IQO=d+&`#(M+?Ua!sW727jA{hKj=4-Az+@ z`Ag%@mA&T@ahIvgGjUH)P@^KZQ1S#`goXynS@(WK*cL`+^H%R1(iJi9i8^MI+dCIZ zS&qOgH`m!y!SdcR$u)ulz6XL}=PefH(l|sd7t_;&l!^>ratogNv2W#6U&SA{CS&8n zb@dH%hxz;Mc}%;YrQSHC5eulgEVBkJmbu7MN~! zDGw3bxccNTxf3bn=s}38z|wN$eTkg!ShHo-mNVf|X+-T>^aMs}Bn9sOl10C03>YsZ zWc@g^>Ozx$bG0aeqTkUI1W#B@(&qp63Q1l+;|7T+FUnPeBR}_60qTGxrmrn?HIBsR zJLZ#!5-05C&4Y2mca;CRvd6? zDuM3yCksj2Ft(78Nv;R+T00DE(tK=(jU`W+rCA)8TZsKa9$3e^fMaF?E6sgYHe zR#p%ELp>uDYo(UCUy72|YRwEU#l+kTQQ4Lvx<}61ZNcP2Yebp|JutDypt0^HIK`qD zBEvmS8Ys=>2V02>Grvlpj3Ja?0OLTi*}{r4ZRdQY%Y|F z4VL$oQ~T)kR5VX*=-FtUEsdsKmtyEo*|_1hso4m;R^&WYS}eQZT*u#Yo%j9x-kpBz znY?%M7aohHt*zqHcEHR4>#k}D*`QAzX?PGJAbRE3wuNbTi*vd5lSOaUuxN>3rVS3x zJzaNvw{LdsS|Vz~a%?7!soT`7ROe!pJd#M(T|}ZbOxtAYgpHyiLCp)niJBA03r@}t zkmIVprgU;Fhk2b0{Z?1A#-bJ+$OdA~+GZX8x3FAZuBu?!6d}%v=gIM1ZDbUVWc)~v zA3PqLp%dJiN_zCmA}?~XSgysONuSuFbm>oT5)x0WbMY>X$&;>KK{0!ee*88R?&0rgEu+K2CuK`LFysnD3ndOy8pm#>Ui83>BkXKl4NdEie=!0KU(8cbA3v3NoY9<4FZ6o?+jl;j zi}3BQ-_dWXTm~Lpzv-F;jCVs%DiA~sOaenf)J1(m#a(|E%~t7=yqcbOzB_*)ZRdBx z8g@f%o4q!E)pT@^u-9G)3 zSecUY9bIy42t28z9XvmT+HSjcoObHN)WJH#aGIKAqS#emhN^hS#p5_QVW-DroXC$K zSWdsFG~=_CfjVPHYv~MU&TWBx0}HlYTH0C@Zh$c}jd10938vm~yNh)`u*&y>{ZNZO z#bdNMBx z(A|IXKqW5_q8G~BvB!14=&6POBkbMd z*fB05cq~{P$AJK*27*T60voc3->|ow#MhLvUaRyIdLc3)1nGC`3 zmW;td=hDDF!%r(1A>J2gAEgv!Z~je!Hh^tX*ho8rhQZV?RT;cOLYuO@ubO|UrK()M z%gWLA1JTYTo5z5Wow_6M7JE70DEomgD9WSlNw^NVI#K1-iyNN%z#9bkgr8=Ve}J6VFKC2St!OnJs&t8h>3;sW`})^@f?ns2|#!K z8z#tkVZAschX=P(w!g1VsZGkXm7pxj_Pc)Aev46|3|aeV*G zKL)iB??&hS<&G$NuaqjtZp5<%-GdG;No=m3vWF6p zIlY!d>py;M%1cWp=_|`sPbD+OoE*Se>pFS+eS8t$G3h2e7dSA9OvNOlmna6|W+!NQ zMt*4ly&+kZK>pc_mk}rYJ?bOCzF&Z{Ms<#695~|vPQH6|cph*?Z)t-R|9%%$WDJ>ICs;O}?#M0yua8IS$dtoL=jrr5$sG;30TQRA29MsgUEHRI3 zWGE~Yx5SE()e!eVGD1y(y%fVMyxm5U2yd3C`aK_#$eY+^M|M|G3E!V-YEvwtd4)*> ziEWox>R`68*ez035q`TfP%M=T+Ma>MCb^3DqEzMKebH7(37Dr-28Fd^2|t1;b&-%P z<#Sy{GI{JIynSC6reBdXhrmFWb#VlxB9gT)pzk}|$TSv_q!k<5OHH~3)0dZ!E$>eZ)~wDE~m8Lmha{CRN;3o?yg0X;s3TYvF!eb)| zKA}xug$u{|&Ss7%K9|n-?VjN13R+AfggDuauD5t>Acqs@K4?rm7B0{&VluxdM zA`#v($o3O6#rAh3xYq;swq?%VzC=6pFAi8WoF(HgA6hc(4!+gNEc({9@4t|mtiOg+ zx>z)x^~*~IKYI*Qqjk)Zl#-*^J$%?20_t2GX@~iz>4%?~So{)jfQhIQ@`c%AId@^y z!z8CD&PrpvT7cX?KL70Y?I8u;e~#0cX~iehz4vK(;#(gJV#x{q&<87>1X%j6 zN$r}IC{aQ$H`(4zw_UIvV9OTD0PdtFPA>fPQwYKte}QadumE$cgIr9ez)qg9;qXSe7-0zMyibwkeLlgZ}f30NArw~fsG1{owDN4UX6PwQLEM2e1 zprDV@J*^8Sok>;`R-irzEmxy(`H(%i3y6Or-L_H{}hMVGty+S?HKJZMSb3IsBV5WCgt*F z+Px~YCI@FaK|JWjbOiyMWdu*r{H7~54H0yfy4f7JWlB$$`f%u1Lp{uSfj;y^IBn30 zQ#)*PCU9@HaUDM8!5&^H~$HPxU;5=R?N; zHCX-;U|f3LRHbL(iO`9P-gnsz6t-&BG3zpOaUHcDjuo;m&rQN14ou|ICRM}6(lq}juz+LdZpYXm zl9ZJVc5a%z+#BTIEP?!kSHddQ^M%b~WtYP^I|kMOiOVYA?Y=D?U+UE%mqhR^Ud}fS zY&I!7=Lp`)VJ#EDA{W}ehlB=3-{)*2hV7Sn2S@UJH! zEX4Uwk{Mi>3HT=1t=^TS-|TnJRY=BPGO@5;_h5|QVhN1D2xeEyG5~m|<1oIBHsA(C z)H55{0d8@wK?k2N!DobVnvQ=dJOUj6&zB^%6&wC%`m2swu_7^2)Rw@#xO80)+iz1+ ztqvJm4P((idw`LpAH83)Fh>gS*am?FCfpf_w%@c>%Q-wEMgda(2dJ9;O$OF3aX z(av`SISJOSk?GQKLZ;>xAsG9vMvn6+wVTkpRvFhpPJcBE$&`UGv0Dcq*m)la?Ns(aFS#?2&!%oC2YTfhkLS(CG@HgT>_l4V@`2 zx1r3glc{15RExb`L|F>W8#3fl9L8S@pz9=<-=y_GuGq z4O5euvLadLvIDPXpAsBtjg#*UpBX!EeiFXZ7e?KN%TbIzH^r^ebEx7u+&V%Tf-&76 z%IFz1MBn)S{St7Q;{Ui>weqg)g@+NLNa&fvDB!LFCH$w4LE74~QWV$ia+OWGF+p|*Y}>2b6QQmgdg9#941-1ra1pYZhZeW?VIWDCWjp$FPNI( zKr%bXeZ+Ov2a|Ss98z0Mni(N!%_F8ZZ|@|Z8(5p96GlMtj3k%o$X<3Wl5R3-gRQ3| zf-*OJ`nK2GZ%@cb>#ngW*QWdAeb8a>01x!!AqbTnvS2~*ons4z2yMHG@o!FOOorIy z&~-1?lzJu>=%xs7k-@SL|H;?Y22?wW-|A~1lJpmL=2iztfE95b_^t@x5M8E!64qN?NooV8~aN`KD)z;_>?gWq~D5?V;o zSkhF$zL%t2Fb$*@ztH{vL{Ev|*RS9H$a(T@bLLCYH4EfYED0+of`0KNY-xoO zxxChpO==HaXIVkMQgoS~=|mJfj@2ftn&X-Lg6mR}^j1?Ea4EPhitAeF93M~L2if^W zOb$*o$;<>J*MvOz%8ZRXd2+;8)xH{bo7``s$0T_2%*lMrjzxKRRW|36&s2}&;w6+& zJrZF>mT5m{i_Kx=${#&6Lw_{>afBU1GyzM9ni8m99NEI&eZFHPskR41RJ81(coNSm z2*IK#xdC=Sl3}aYnvzUv)ay6uEGrDsaA{!8|o;Oup<)>%@~Kd#&Rdkr{S;2*v@ESIJcSUA^7ap3w2t8X}9KeA$yQ{50(wtoU(XSpucFOI}< z-rl7qJ;M0$4{5^A>iM*L2rhAOc_|pDcjaQOwIw+@`R*)wUmxAYDHYwVo-TkLG0uFj zh!fQV1%82JoJ`tn9e$NPt(;<~)wtUtWQ`Fpe0k_-D-XGBP;_63i~+XTW_cH5Nh>*z zo8&W)8*GKuCb#p-*q?eTy62+Od{45FtDP4?*Z<${-pGBD@?#Cjol4}bLZyH-~`CKPAXVjES)t7d8KVb^E1G(v`1U(keJwI$$ zs{?slTfquE7WY=?-bKNV1Ioh(t1c0!>*{?npsGa znmTS&4~r?!6SdIKB*E6Q!8b%*?V&O2*W3df$>g{m|Blu=Na(6K#eCkN|)n%H5HM|2kWGgd6Kl2yd2@WmCy(nH-V4_QjrJr&>a!0oJG#MdW4Xj@YaYJj6(ZT8{Ly2 zs;$p>_1jXC*^pxJsT56E!lVT=9#`n0cz{8-?`J_VoC{|20dqndSRy^X1t(Wa#&Y%` zkA8?0S9-Xefwkj9-Y$C$-qA*)2DE9M+}eQs^0~CF<6WtrHUN63r&`VM;Oicm;*5G< zcvtiyc?N5`*@2o4NYau!9rwmWC{;Q`rr!Q3pdy@$q69Jx_D)0HpkuxY)iHs^ZsL%< zK&_e-O^17&n~jjtV*E-Q7T#?_>H>l?II$KF^~PwK8kfl^)C2syg38?o?d9Y=qK(6> z^M;m4R1>o8Pp{iOCay6YDTY)Cu`v$V+_}7cwE>;0RV&0p z(jb&D8Y*Nf*CyOUmQyS8m>F7GGf(+L=3!$~k$5&sm{5V2=4Z7@u?V{At zXS-8PSm(&;KX>jmz_!ipW~(&TncsMn5-8d+C}=0_9>9ad5-Bq+hL&>#Eo(u;IT;Q| zLo4gm^R3rOJPLff1Eb&RNE=*V6mL}Ak_0vD00p4G{1LuhU74W^98P!2VB~#pIGruF zA4O`D*u0RO_DGSYg*#gu)2m_Q5L&1Cg=-1(5xzP{FLRZoVI@Movo2O+I zxWsP=_c1s*AC#+I9;IyVEzfCmTWpK8cnjV!4&l>if6Hrezp39WSg_!T6S_a5TdTAU zuuED*q-8I0Ru~+nS*w%@lFH%x{${F7Y4$Ky>%fQ{rEXvt2Uxj+b?@TDci$~$ffWGV zE_IJieqC9B-C{wR7`N|-AND2T=Y8{VsM}S%ysb>}*>yHH)SsJI%v0BB!7BWPuZgv! z9#e0O?QTYr9L82}e_@>8ISX&nBFVh{iQZYFv>QyEyFr^e+vr#o3d1k-(yqK1_FBgr z8LW0mVd3RXeF;0Pwrn+G-NUpj2e>P#nb>huY^Uo7oKXty$!}Utm}~9|pU zWV!ZI<4fe0uNh1scVS@cnMr1wut9|Mr^F8AsxTCgJhl_monpC8Dnm-50APF zO*N8n%{_I-3g^8UT~sB70leP6azppRywut8=5C7Tx3FVPb`hP#{$e%gq^$q3Oqm|H zFy1Bt!SLo5&YewaH?r2`WeEhM%`;Rf~+-M!6Bte`f`RdW&1T5NA394{5 zc`0+p{vKdVX`2^+(6QLv`-W_=)Bhm`eSO=!&^YbNg<^K)La`-A339$3m(Y=avI40; zd!`I`XHv;jG=rxYq5jBLD_A`Or3-p~U2eNsMaf{PY+da7sWDh|*@d3zd@uvC4TTic z!etSQdSXL-{`|fkH)^E?DKfZm!NtblG>C9+L*U+PKW*$mRbR zbZxRS!UC5d{E)?p$U9T73~UC(LJ#?~4o*Tu@t-N`pvD-}4wvTWadpR=sG$Sc!3~n8 z_B9kvDfWBk+GW{eu%F>QEiK^+`{NRY!HUk&5aUI9K=7==w)^TTJ!W)Ef*5qO_6sCE z7=(=@=yamuDfSXaT6c*gX%EKD1$Hf1{TV)K*&74~&`18R@rliYa`x}N!1cinM zb+qcz`pttwb)aJU(|j9W!u%LMbqXpiy~fpUtv1LkDdmx;6dYZ%O(Uw;+s>H9ve)wj z#@cvQ#d_@1REb`97;~mV4AM6!-R?n2FpI@K83x8quRtsyX(-o@sfJ3N0Hhckr2qbl&ADXIEG_@MpUmDE%NuD2Bvb+ zrWyhy(fKy|TsMBs=1}2st+N9i2^^$72~qS-INK8VU|Ia#N|qc2HjtF<@qELtGFE;< zcGr>4GHV|67&<4AC7>tIL!YzY8l)tBkP~R`4Fv#9bwnk}lK{ET;07W%l1!zf+#3nE zB~xZwA{#WSHv7S2GuA9Cecn%3U!E*~){IHrLvGyoqlQ#D?VFV6j4v__a$cwh(W1VZ)5yJ;hoVL|Oj8H}#Pb zBSO73lkK}p4RKamfn5(y!{>Fs;At3_ojCz(Z5Bk)(}90;6{6CD=dj(5dTFG%fkTsl z{e%(ts?h4|V4mB!gC2M_J#|*>bRHTiPJGgPZMN_Q&Pq-rzvU3`JohXIPCD39Dt--D z=P?)W_2lKR@^nTAyn)AHBplgEA$@`G^H>)guPXmMb_tlzbA3QDmk3?#W*Dn__>$@_69LUd?%b+CKq)F>}__^=PV`FjR*5f#G>(*_5fVn;1ZNg_H zH!pL~6}a9>(O+L)20|<4T`ljJ=#;Py|4?@Mos`>ajg<`=Uq6D+rekv8Dc&#SQK}G5 z@X3K*UO7Fdn#Rmfe_n zT4OU^c`Sd>Fot85b1M^SfRoDV`h!nW!pk#QWmxBNd`!oVE$E5a>3BT@fpNkGx8U4y zoEh^X83yS>l?A4C$E{cayPZ;33=&=kE|R~0z%#ch(f;Z_4}Qe10aO@%QrbV9g8y zRawpzWOJS=gw+uPTYW;YQRG4{X|^>sk9;cS3XK-J2a4RojG9t@@jxOa&i6C7OVW?5 z4H-F8^_{T8Z5$i~;rHykkWC3p#y%?4iR}3>ELm6W>URQ0C#OnqL{bDZK-a*WQ!xq$ zJs!OH77k4EpKEVHf9*-$O_~I(Izybx%q5X?mNKay-`|Y&B(ZD13~bS&j2Wu?;)UJR zg>(XaXBJQ>eX{tvis9?|IJs@%){7QRH-DWaqe<$vCz&xZsZl0X%4EoX=w^5y8pK73 zpUMn!e}qyG{2=y;q`Wn?>MvJllν@?v;5W@Bn#qvA$x%rP*%tp1k*7oTH0SyjQ-6F^{NMp_m_jm=Qw~yXkQm9{5zi z{a(+Yyi&gWHAcrf|LkQo-xvssDyX|5t6{ji?t_yzjvP61Sv*Fw#9`O64a(b95iBOn z;G{qUqzypb4`TbKe+EvlYm}r`{yIN5US`;$P05p8t) z>Se}{7y{1~-=a-!nH~6dMvw}>@~$IUYj=-5FQdtRd^${-^j8{w5Q^D{iU@?L^AsAADg&qJEy(Xp?jDMASVX9UO zz&-dVf#Mhha_*9U+-9*1ie7`USOVVjW9&xL?MX#p`hgDOXiiP8(BOxuFGz-6WBqRN z`*%z-uREbwyM>{lvnrY=D)YDB8YwrN4{$vFqSbpEI1pvGudF4an}F*^UoVdHB&^n96p2Z zC8j46$5yyi{?f4Q6r*ZujBQ-Xo)6~5H_5WoIIXUl&as@+XOQX1;@($)%;*U^;Y z7){hTx$CHmuF}}7l#U!x33!JDfoC?JZGp9mp!YS((uUbbsZRGTWq(^oQ3pG) zUbJ@9w3*`XP1LKn4)&I=8@BG zdVEsdSg>HJ_qU&ucU2Drmlw&wS z?7V>?1ilL-lnXNf|19z?6Xd)5Hv$n$u=ClmaedppKC#c>?u_-#MGPd0_4tVPU=rre0@%2aquamtYQ%s19B3!u&F zgt7oP%iLep%cdK$%i3@&jUj&&Y1XuRH_PT7tPG_=is|2*GAT6%yYBa=P1_wu7MZ%i zV3+m-+Nt&p6D%bGZQF3Q_wS#XE-Gqib`*Dj%(S@^n6{H=Ff>m7T2sJsH8b$B0#;pL z`H`bW3Yp8LmxtU`CEE~kP3dfEF}Y65%-q@A-@o&EL@x3Wu)KGbK0SDTYl~_E%(ceK zOZQgKZ^BSsFK?MvYg1FJneMqnjgf&Xk}!#wXnL2V$qq~sAI|!iDp^c!4xVYACs4RN zm#s0etAw}qKeDN=a`ueN80bIx?DWxsHV3qnTOl8J@S4>Z@QXhLbR-Fx(oT-NpyxfBhFEJ+Oj9^NCUXK)%g7d7}^)^p+}74%GE0{4WF_6LtY9(pI(qx9;|6< zLf#PmgA#aa`e#z{7K?u;apS~q%qN(H&y7tDy}ADp3Ff1A-wg+(uNz$js5M0_m}D$a z^-|x8*zC)nXb}aGF`CzO-Ag_)(Nsc-mx-qOQ{$bMjnUL#^AwmSmOF|J)%@bM9C=b$ zq-o(p_7i+w4@p~%O}w5Y&$-Wp!9Aaoo=lMQjwTlias(#e)F%2En&Nd|Lr!t66vI)G zq*r8uoVN#gmka+*177v03h8$*Q}%M?9dH`X+DJ~rk6Q|0p^q`X{NtysC7&JgsUR#o z0utqF)%w-flh%p?LdJeF`1CVA)xM{`g{ zOs!w;GCR%9W8a=+6Zn|xFnz;r%gGJXpG=(flHyvZk~zz5#g6;AwY1?1mf45WBwc#$ zgxdZW27xsygA;N3(>*DvP-+)D7W$>iQDm@xzaBypEk|GRA{orSG;EsZ$sjvuI9_50Nl|3hfZ4P6 zK6!Fyfc8mgv6e_9$yW}KAKzif4RTEE5`ETIov|(a3%O`FVww zKKP&dC7&D(z0-f=O|U4tv85S$-67>EVqwt8N$u^n7y z9~Xo4*Bm2mY%@4EVw~P!@Yqm{rfR9dncDb>{$vWR#?Px5kQ7Cq3{9b`|C&g|K~hcF zu8l%rMlKDb=%5OW6nJZ`j+J-MU0?GFQ>q$|mrqe2A0Mu8H0V{jc5p7Rt$)A3STA+q zo;|PFW1nLjY}d`)f$c4NWP??Lei1k6%VcL5EY#s&R2?h;2b2WrA>LCAP9PCm6^#Qh zyD2H@`)she_L%Eg&ESrfh;fBe)y@0+RCv<=4)(0Pkv!+id)~IhIKEdj5a2v&cV}RX z&1r{8|Hs(BFkokU4@duZ?Cb^Dlnc#f(`+ysh?)_!y#>GmvXQfWME|15vWwFev&+Zp zKrdZ4D9ITaWL86X_70Y94IpGHw}sRIH0+Cq{rJd_DLAah~PDCk3dAR7GbjuR%S z%$qnP#Xv08Rg0(k6BNNkX$0CmMQD%_RDC5zjM)C<2^d7at#-5-j_>5nOjNg6hoLIo z&UYeCpE}j2FBp4KXZsiyFJCzTMwk{eRL<)@2*qoe<^URi)AxQd5jDaSTO(+a^u+!= zA5egI)uMoFnWy-v+97id!1y);N!1b&j+y39-7e@k@oTU;DK;eJ4(|bR08zYBV5Hoe znlmaF8{_Na_x@<5mGTMn7S$$$8X_&zq&Mf_)^E=0!jBUro=(5?qV32?+_u3VJ;@zBYkFYD1!|D_&p>B!7wQS~zE@{h`lu zNLFKwPrPm+D@BqP&UJ}=qxr=vEJS)wq-kNmW@&!$>UzxnXh)Iv?;QTbS=lywRq;ey ztb}0Ff@N$*UT{4kij`1xRV6TK%JPEWb?-@qVuAVMUBJ`~t6+(-6^lsj z6&uXH5qmJq>WE^>SLcTif{SR;iC376v&Di*q+R<^Dm~M7vEOL?R7^z+=eVUEM7T{`{Ay~q>C5Hu>lB&E& z;r6?*Y%5f|04z=Qf1H(E!GcUlZX1-Ds9Z(zvGcPs_hfQBr&NFQ&hsSf@;VsBGp_J8 z5<2sjp*0|=$ge@^=~SdqonZ^Xby6ry?PC%3-M^IcGN> z^}fWd*?4O}K|NxZnXvCi4@uJZWTnZQVaH}5BK zIAcP4 zer=PJvR7o-wpjMJkeytBU7Ss`xxMV39%RKf&TO>vcG-A!=v5Xh z$Z&2@HFw-?75FU!^e7mg=BRR@Q6$dV`F@!)qvB1Kddp;-@HJ)fI&B(^9>(!>1lNAq z-RItNJj~Bws(JCfgy2*HhN^gj@$G#5?qkP~A!e*Itiy5O{f(q%gG_Sn!I1r5-Ar_u zkQcC+_DV-g zW8C+j-FAG#9O%m5oK*fk+HC4)s61ilg57;r#pqKZCM{U?86Ila8yJjVT0H@d6+;oFjW|m@L@(>m zRUxuDnRe{D3rQO7z$wkZtjK7nCjy*~CWaXJKDtY1deEGfYhuy8k2nbC8IDj47$T;Y z5g_PFR{w#nso7u4gvbPs0OK%XYmPV6|8fcB?ywSHi;KYX%@QBN*~ZTk;2B*P$A2y# zIdE)n!9w2s5E8$OUI?9)n}ro1=hu|`qNX4O9sH6*Z^B8n@ZAh!(}dY3iYT3Sp`r)-Q9tW;JfIhfUYqETo#d}YiOWG==l6OKk}W6uH;d`P8leUzXwQfl&oCol7!IjS`^CF zb0K5~MzveuXk25tp2pKxw%7~@vEVTC{6oVXXF?9NKdYapq6sP2-1(#r6HttK8eM_m z7!}Kpg`#&5Qtw6KWqvDSbk9ytbOSTz%rG+G%^!|$T76=aYdEquR~48I#;5Q%4*4vC z=l6?cZPy7_p@K_gIw9JPbb(oais8gs8cDl$f|C&x3>^|mwJkjY2k)FU>m@Mob#Gq! z8p*X_ofOP=Um)69L_Qb)c-#yOIYbM+Fnl_ zsx>++M|Wh550ec}{xt|}xn+Bkl`*oNnixp1UIU8}?8QdyEMT>x3AT%KDLf^CT?=}H zMWM}FK)6C`j0HLl^o7*saug#l9a7`l4FiMJmKY(<2W4V=^x8UtAKOG(8P*0_jeBX_ ztzn5oXD$&VaNNF38auJGr@_hj=3;cquHCrklntYC{90fw{?q0LG>%vLny=SwXLsv6 ztPO{Qf&kl}lM|wWMsgki+h&4P0vv2Q%?|s+DxV5-ML5v3wMnkY!@OUfiw*p0a9yqXy z>o_WMj#Wk@Xh^Q0F($M!2#n8tC4T&KIfn3hd23H!dYo+TWmS*RT9E!()ydE@D1Y4e zRVliGs+?u}FpyR~6YblT&QOP1*G?mjLyE^NpUyftMN6!l z(ijRv;Z<@^cQk$>yn=ae<2}A|Dw|A;7Mc^;#Ftm^aVhw)%wzmaA~@6G$jpS74J-x6 z);AC-#|BEHfc%fkjVrZfsJgfl#|LsF>O394o;|c;#fr6vr42qgiRsy#d2)#ywR=Ac zKCq9nwrCuaxtChR+H@af0Xd<4GX!hB%4eRaw^?FJrgOaff*bcO`wETT_l&*)qXoL; zGCAxi1;9C43Lu=Rq`KJaOL?rSCY0K*B9BN?C>2UQ_)`t;O_I54L-T*3ukgOB^1oxe znCpHR@#X}plVeTFR0W4V6vo%Su&N(xbE73~&;1-~mPtS=|c5(Ky)| zSq2PBRG%IFOFRC%fO(9BkASs0B#Q7BZsHN9%@zREElkD`_el>|HeSO~pj3|EGQCee zakLxgh#p3X7$~g*yy!-7`noysJ|>rRP7%i*P?bSAWf6-F(8x5sJG@G+8lx!sTC6M@ z&62Yi;PW~wirA9;|L1pG`3R2LnzHh_`G}HobSI6{=a?a6un`gG|i4XMNE^|C@#P^%R zC{<1|w6EB>Kz*&aYn|EXWPhISs>Wx!{KW|PTgu(x6#|_G0Sg0#6;A4420LRsJV!^C~yHs2b(WdaX-e|94%=qPEo(`dR z)3m{8+DHL(*$7+KV(x5@NrC-i!mtuXg-_d1{_=1bg`k-l1{R{m`+hcc>dbT^s^Y)U zQiE%dkY0h4I+(>TCIZI7-yT)br-B#_y10Q`OKdIC=2%OfRIrevq+Eoov4NyMB%_8M zcF9r+CUX~mMgr}`CJ@`P1K~pD}%hy`aqRr`~b# zN1WY1kGq5%QNKD*_!6%xam&AbFutQba9BBo*|F-6M(1h@#C~4m1Hr<#uzDm=h3f#N zwPvC$3(@qDq_UrFkcSrBz?fnuJ`IBD8Ys`SIr$hdDd$cAWd~=|Okxr6zb`Kw0rctg zh5{r>U&;-@vjDE0)wn+W126raDJYHpT3xFWs_C?LV{ub!02X7O!ei{P1{j;a6O|b- z+w^u3+q`svm%>gifZ#KxZitdx+YFK^w;&c-9fj?WzBo;sGc80Y$^8X()Uv^bVPW4K z!?z9NAxx0<=Dvi5bL9-QDj~;>5bs-yEjw;9(`~D1PgVRjPJfq=$p{77D{u{_SJdY+ zUE*k4&;jau}-hS4>P@6TtJL%H|! z{e1*UpUZ%#%Ayqh?o|lNn!1cnS;<*44WaeF)0L&@F2hPAQZMCv`A?GrHWbXeYGk;?FGyQ`g64>Po8`z z9-(srR`b;R3Z)dhi~{y2dhykVG7Zd3avy^v!CVKyN2^w?+5xN&3m@lc_3M(KkrII( zbDLE4@xc8Z(W$DZUVtnDKe5VuCC4y$4=tCwvn?Qw@AVB#Hd`BTS1@7-OFGcMeAGN7;G~By$s8%K3zc3 z^n($b>}!nh6RKB&m4J7|juuQ%FQiOEEJl^h2u@s7FJGQpBnz~h?%co%FmR!_G0B?U zd`Jj4+%A4qABV$Rd|%Fk{!?=H(-fe}|B?fAvgRq>wJQu`4t4Ejt)Gb}=Pc?0S@^9i zY}=cHvzAV1DTvqXu%iTb68W|83cN}4zPi_fKOZ3bTrBRd);FWW=o`?-jD4vNs4=&b zLE%&Ma`;7(39GV%u1mvrhvh0IDEnLoQBCH#@9T3fAdSy`8B8?WOcP9{NJ1a0HoiCv zM4@{vf1G0Wf2I(|SyMy+!WCbrD#x)Fpj7IMFAgPQ{M@el{T5hh-Df38X%!N!Y=uWP3OxNDTExOjzP{2JJWrUq5bInU7bR*+T>uFb$?;dnC{R+oF~V3gj_1fk@P@GNUXCS;yvFGGC`Q5(-`u{64X`> zRH`D1cO~Qkg$iuUB1ytm8%W5<@P&>_qHRG|SuHyGdWaBTsqC*50mqfVTQ7;TV*cM1 zge3CCy&5LR!d2*&Fv|ydQ5~KoHgdk(ROrT3E+2BB+-?A)7uV#pQf9U{l>dGSxYeX? z>ab_Y?M#i!cu7wkP}~9GG5M>;ZDh2Ikj2R>|CltfO63ZZjuUZu+TaA+ zNTQquR!JwZN*%0GjO!>O9=V`n-uDTar-yjY0?4R%e;UU@LXKGswgL8l9#tIwEoeg0 zrx2q}YHkiVkD;;7$$2_~*iRfq59GQ+$X$0m$a#8#*nWCTt;NQM)o6|{tDuacp%!3dul4wdGM|#K{d0RB69s@({ve(XS*mg`_5Y8iJn}WRp_- zV-TL;BGtiatHd(oI)a|iTeng&fO6sn<;7?dDZyULlsV93kEBcWDt zN{|=j`C0S`y*DdZu(@0yjfUZ9&%*B9Q#GahS`sP{XYi=pmbcy~gN_=lH0>U995@QF zTih$HL^2R|V^=FtBK{?)p9EJl3h$sb&*g~10zyv~e=a|rSj>H1GT-Mo{+%2p3(s)i zqb506v*0*^=~~r?&*SL}DA|SWF(;)aGC{+QK%i5@%tIADj9FYI6CWTGpL5 z`Ti%8y_yG6t)p{iHB;_`pU`@j{y!*GBrWzUbQxd92@arI+S^AooW%x1Iti0%CJ}t1 zNk{Or81P5u%>LrziG#P9%*w(KKYf%v$Zt_?=uyel=SQQM6${KR+%dyhQ@C&C` zc=LDaaZW=hy_p>H>sm@006S5Qsf1v}ECn762kaRAc2AgJ(Bq)@xx-fv!o2wrEzm0z zj7a%uAxYYRP@od>`c=7416z;KXEc;&^&KcTdY^^^0}M3I0n}zaj^H4vG?X9xn(6=B zOj=Yr&nfM>Mfag$&NYdVpXuef6*#gI@aZroFtCzI*h}&IdPuZFE5uV&J$% zt49wJ)B>^jTtr4-A;!@ajUem$2-e-%^vfl>(r+%y%=iI&W)o$B^Vp(&Q)K-h%DXn> z7>b44G*lF8!z9mo`{Abp?b z;ZB?~=@`b9EabLD9_AC@ z?{Vo^#PAA}+>5nagsqok)K<2rthTuOcfsxoEz}5$PHi+m@`GPx5`-fYVe0l5%3#8t zI~~uykfi?bMwzg#SH@6UODj2)uwuBI;QKLVJpA6 zGu2r!3lW48z>23`8q~En5_GG9Voyiow?Xi9pM{#cZU&`w_lL*{R_Gae8Tl zx&@yadJ&_HMvn%9n@i2A%^f(X5rgZ76clp`&dm%~L^f*xGVu53l2-hN{B-qog;T1x!eh zC1NjGVf`?TBrLF&s*p%XfHjn3F(J#XBZQ+5$g{TAViL^jer^MS+R0)15>(zJ>NHk` z_ZQOUg>~hUNGQD4Wq*l<0}p=X-u|3t2;D;J7Y26^EF%S`$f2C992}T2Ls~vT~ z62wCkgQkeO=w4ie5V^}z86Z!$T8yaO&t)!H@VQ?xHWP3B|6fV~CJAy^tvV9stxRLK z{#UvMs8e~*`Mh}yNLTy2(Ek5F_TB?9i=t~AUPvIcNa!6RO#uNZB8XIxq9{mH6chmg zK}A3iL?9ptQXc{7qSBNAN)x2_8l+0-Ewm6?0wD>>&fNbsvvp=?`QP{X-tT)K%Anbq zbDcBo-kox0=8U8LWK3Z&HOH~7SAkV`%Vk~*imo4QQ#SZ5_}HSB?Qn{cp6%0|g%?U= zx4KAcs?o+*jn&Tzt^J$vf44B=D2G{TZ96*dDPab)F2d@c2-%^xks+U%1?=g0wjo(^ zTA5gKuaFaT`>>RE*UYY)%>9_DAMp?kLiU@+5~m7o?O(KD=mm72gC^ww z#YCt}P#{L1`6zsup-h3XlvP@;5UJ`~>}N0H1yIA+{UCzF4co3$(EMH&6*N_r!VWOe z=RK=6opO`tf4jyc&nMtrNnmQ<8N556<)l|<2V}NmyjGrR==J0Qj^akciU85$Cbj;V zrFp(zWk*UY$kQ_Blw_()hVe|jaN&+IY*=2!C1ZJ+(g$f-^IVI}pEC?>nLsoGOtIDl z=J^!^`YbEhF%x!&y?4>uSXp6Z>E(%ZAYWNwN};A64D~VsbM39F^mbxmG`|e$GQlIJ zeZ|U#|F3=O#cIGJ9K)QI6&FtdR<^PAd^&#@;}fq~11)Z2i&{RBW`xQ_^J&6LFIMW) z6I@}bIA2y^G~V6K#dGbnE`4)JZ-v4ivxH&^S4z96+&dsZzsOgi{~io0I!RdZL`q^V z;}1+2$?GJAuk$RjKQkpU+yJ+1|HNPV_Qlp&W6{pTplQ+MtTgJenXoUhuN{y)dq{G) zM6!a#sC@XrLbQ;d=taLt$+HB5G#~dJ_80mJc;v zGfA>b%kJjNGCIX?8LT|aH{d2_g$tXHeHYv0*#l#&I5&>v^Ce-NZ^RJFPF}O}?U26* zO>55v=6nk8RT|e^J+XbJ`W;TfB-!hVyf9LhgM^In!L-@lwVu)w%5&~l?~`R>SF2?@ zXw>2xmq~Inr4U7e=*ytJ3Q5oRAvjv1u^?NAOpoofo4r_zsnqIZM^Ah;1PN9pCyXTcLqinKA-Dg#1hs$V@yQ#yF)|(_w6wy1DkZ| zB+2@XEgq(1&?8#4>WRbC(=4L-3>h%GEFbRR@bpy)vxDW4p-Og0@*vSx63GtYaJ?_~ z0J-u+zwR^G&-zDzMBDL;9=5St^%X(0R&1|MR>`ACNQX^Zh!f9{JM7slSNn`vpTMtg z6*Nhe(JJAkHcoS6b!}3(lMyI_Ah)Lu+(7<|xNa!>j$wPywV-p!^XWZ3?Qf?GVVBMs zmy{HV7r=;KhX!M$*9ZT&^|Wi6h==z1|AA zoE?A)QR#A@AaOoJuv&OYC#r;k8*WH}T~T3y!Q%S>g`niRYM@+-%>vkbTA?Egzew&} zi(><{HQqTy$v5#zzjhfB_pp+Yo}sXp5F^sUmTWg)BlOqO1b&A}sJxZZlhVXLj+||r zyF|a`Y~VUxj8fxj1Xey0|D6PBrx=-G7rbw8_z3JrC&xy-q%A6zGgF;sB@nw z0uAA9Wi!$jnhWAJpuys)#I#RDZE69QRu4e~wOW%Z{_Wdn&Sjl~nr- z@4YmY#sts!QDy>*^LF4o251uQ*0+XT2t887z>fRQe2#LX`3UdN;Gl zDm?ZAgWH!?pc;W(Z}mRQz}@O0N7jbe21pw#1R3f1L`o0k^#O5-7_I8Xf5rr&VZo6e(2DNwP~nSj{7 zngy*k^dj0c&wW2F`jq-A5o2CBT~ya*?rlshfSi(bFz;~zED3*IIa_YAhp5SBh2-|1 z&A5(GsO6kk%)lK~^#r0BV1qAYK{YAXGEPln;JtU1Us9C_jOiRJ-%{iSFbN{0wnR09 zK^XIs)NnOe2(ujDYgDSDl!o;}m+cL?`J7YQ5-s?R1R-c)qb%sw`nC<5@-N%Qt{7O-)MpuY zvF};XlEVOska^RrX-r6oh-n=ytiZ^g-Jfw~&7wa(&wTw8uV1-8>3KzoORVOdDy{(X zg6zmd8rzlcX?ZlQLf5WcpJ_ImQop4vttzFS>7kXzP=D<8WIwFsc4jP36=zUKZbpw@ zpW+>eyaE}+d2GUJI9RY_aJ4t)zz*0*D{I!X@SxZDQ0WSeawx_koNXA^wSD>)4cLir zD>CbuxiBA_0rM={WLr$Xdrs5x9}0Mfrr)9f@$>(|Aq^_e;e%l9&~OJDqkpVurNo~D zP3X3Ffm#bG{q0e}$KDns9<9LB-)z3zTUn&coz9@}OH^1fOw`~`ec%Oi@eMuzfAwOY zfE;@jf0m=Mmt2j-C%!3!)iFxd&90U=+8<-5aJG8eWS&HMjH1^H6JIA~mfkh_bur-| zDLupI+zz|tdkX{bd2ARXxhyT_?q_3jejTHTHu(j{s0Wur~1hiyg&l?O4}(2p0BVKVy!@N0yrE&6b%St$OsEf zKAWtxR&0BPVph!LetH1LZ10~}e6&oC+vWF(lVRI(GcKqZvfM+;W6fR2^+-s#1rLKs@4!Nm5waF|F zsN~8tp2l)oMjXoO)Lhhe$q#Vk8Pr{xW$ns$zX^2uSm!;onRQ6ew z-WxY;alQU(Pjs3#4;O{z%9U$|=SR}CDU@tB24AH|N_!SMQ)_jk;?;n(II)V*jg_&k z+qK_DLZ^sHvYm`ZUSN`}hKRAVLKgP12;q$0Ow9a`u|K}|TVcQ zeAf!X=8P*i)LabmMqA)&fcmH(G@KQ>;WPNuzVp9EtQ;<}Sm{lPQ*!PmGb{LD zk2pDh0i%FnzXznB_vODXZu#S{@0b1c*Ct$&kk3^Q>DuB@nd2_F+pUon{pexrH4rRK zJPp0#vBis<)T-*x=IEibH(nf--NZGK*ShKO}Y| zROB~9O#sF7>v+9ze_%7cWJY-(irT}@^g>|j4KZ6AB_NuH>m^rsRpk=XLl6up(Qj<@ za^+O?IjrmYG(O?j^91aKYQ^eX9DUe=7FJa|Ew|0jq{Y(fQY-J&(=3t@=7dDwT6LU^ zsR1_aWfr;Z&^DhkfB_BYeZL>LBC%G}?UwwBokom*NwA^V=qFRra< z`LI@Qbx2osZQH(W+qNIASos{>wdjqx?{Nz=`l%b&#xL2Pl8jx1>ql02M!;6{CjRAW zB`vD)EZetl-)73+ROEXSQr19Fzd))I0P%fFZ~0+kRjbnmbERwaxVp8*3InBTjX$g# zCD6-$-@`&&J>Zj*kVEvoy18cN)aX(lu`It+I@Aa2KDZ zD{_*S)6LBN1&gr9_muwNfwXe0qsa+H^IKkwQ*z_$@xzc@B9B`kiydpe`tZ^I1y{uM z5R$T&>pgk$tHFw#m)vxODK9+M4#Aoc6F-inwebi(e~jp7Hf)%su!V@9uWZ>oxIkyO zey5p7&?F2cWRf3-LoUA9`wzfy$Yp?EoE!C+{61JMm+5Vp<)W^CCew^?#_2xCh_cpg z!Y^>#zHs5Y;eu?Vt*4CoeTrS zYN1sYX4>ajS;ZuT^>gmH;6L5*&q6F-_w(gRlP1;lewJ>QCw|`=V5fJVK66Cs|Fz&Z z-Wa+j{#1veCp}9E&$87VxMXZqnkSBn%H#Si9JoHB(;1>>#^lO{8->)%cwm^#u!G7k zx>6iHvX;!9`2B0sSaoDK3+|)_VCoSH-*QJQY0o2*r_gc z4L|^ED9|=Bfyg$!V*)YWj=V-7zj0Z|5_-kgRQ1CbsK z$;CwSjC!-e1i3R(m1K*wY13wBAfOO47$X&_Sy7mowSw*^3ZSYn&Jr1jakC2ke=|Al z0a%p4Xe72|UOn+eZ&;_27I6z>@7%S)tRKb(I}yuulq4C3 z@+zz&WVjF~wy=&i2tN~Y65|S&19tC3|EEK=Z@?Ld>82E32T=e_Cxo+ z!BBFnfIv0_Azz;dcB+^P)3hI$;2tGb@&-8#J!e@J*oj;(jyznD>jq1?UhLW@QgN|ize$n#E`Y@X?rD|Z{#&9N)IsT3U#-X`1I{Z01Bb;hx?Y<7R~S(TX9 z8mmg1$}6EKME@G7Sh4G>z%Gw|Bjfvj?%2UzCPJjfJbUClPL4sVeOw$=6vn~iU6GN) zUdd6D5J}-PiX^>bq!K~y^6$ycQ^9LV)*CdRT(imClc5+|T<&lV{4dk%d7w$IckO(!>g(ufN{KlDit*vwp=`IP%cHA`Dd-g zr`Re2n0*)5E8e+{--(hTZY+BYC@CAelx)qh9c~P#Z#Fk5t!Z^|{NYeH=CfTJXhN2j z3)XTXFS~NuWbVm>j*60Xt#?zh7aCyEWgT*i=Y^j1K#Z~L5uS~HqL3MS3Lgq33DOsB zfXLAAOKISeVr-)gAf#;8Mfl^5HF!H27p$S|3alYNbzL__IuFYunM`hAgjMp6N`L(W zWvxJ)fNHKYncRjxfMv*=7o6>g|JTM8az;@z;cTA@CAaH%#jtg94}Pd#?w?1+^)S#1 z9#B}FHZ$H07M*>{uoRa@`Cy^A!0JXtwOlVK)jwB5b)bHaS5~&BjfGZysamYsMWP>6 zj#0GI=dr%hMJ-kXYcKm$Z!Xw(Vky9<-5r<&xkBnFaqFr+Kcf4 zI6=3MRSEH_E>4Y=J%Bt1O|B=ofo7# z{c*7;Yl31$Id;C0e_Y)>*l*Zx(}Q>XHPP(|?^GuY!Dg7fG$y$nTyfUM^x&j9Ei7_b z#JVEiPn*0fJ(pb86EMhOMFT7bgLlh)2-dDv;1h9JG1ra3mci>5AD+vB%{Ib8?8K-W zV{zVQSXj$B@UC}vw|Um%%<3+)($vciLn1Y~GXF!K=QY9SxyoA-*00s6^& zQSc%Qa&M)Obw-Su25h1$FM0Qo>-EiW;TV$oo(sdayO~z-WkTXCKYO~ciswk`C?ys$ z0Q3K7H^k(Qmc;Je0Zbiqp4EWks$dtD6xIOJj<(0sIr8~P5Z!!>ml_8ul76r zu4(Oby^&9`GR5ikFD0?y4xAg-4=h0%?6iI_)2#47lG@Pn%TJ>JER(EoN9lSWi_V_I z$<;7-*yS&Di8OZw1@A)RK1D{$Se7ye+&HKVw{kReJs(h7&n1_B0XBI| zZCD^3Xqi{i)EX`<=-a!OTbkiUl)77TP(#t#7;dl_rA21X%GhxtseWzv3*?d|t8nRe z(8T8ybVh1L>17`%9SY;=Gfm#7DLr84SdyPXsh@@{3}=D;uzr-TQ!IAy$Wz%xcs>r; zS3Z!oi2f#jvVN?O1-;dX5hL1%)*JEd2poQ=(e9aQHa13Lj%#&bK+^qNj5Q!&S5Gig z5&2!U723*hty_g_wIs~N_CRd<1LRiuV`VW2j|_Gv;`l2;Y?c!gd_DZJ^jOhJbxk_l za!l+uH^K1-F9J5z3A=sI1M--#F&HwR^A`&RL|%4B z3koDVu$_=A-OS0HO?-qr4PXwD9*PKQlss4}RgMXm;xhL~f_zN#bw07!v;HK5M+4&ul6)l$ZP@V}61A{(i7DWb zH??(+1&GD%G;$q_U6Ly~`v6C!ESg+F!7YK_d0G-Og6Y}3_m29F|CC267Tb&@9G@Ph zPfBbk%>7}~t->l^AqPY56XiaZ-^rHZopiE7@m^;=PNJvWC!~d<2p>G4%^!i+;z?M?E>5gH=|=fhpp@0Gue4o&&8Kj1*xtUWO(2$wh)I@|M6LnYk}0< z6J}QoxCLI9&n%m89-MVv>|%9$afhmWuG)fG9tT4{s_|B*;mFpuhHdlOtu^f?xv z{M;8%o>FIQWpGk`Zj>xwgxPuSxoW5kYI2ww`cI`68oDN-uPSpdjJ}hE;d`8CKKs;& zwHQlsw@DWK*`UYn9y&ClkO(q!H1yuCK4MeOdD1PTbZ>93&Vzx^VkGRd(i5_u#`!I$ z&W1@GpAnD7tWr+TE9TA$af_9Ig%tt(1cU7nDr%DUD6da)9rGPOj(=_ZZbjUV&Czkr}|(bP}!LgUv-5_}OW3FH_SGZuKUfq+h9u~lp3!9K)7$Z0;V!CHYBXW`>8 zxy7V34YO@=9*aR;lDRhFNe|sfFPRg`0aJ<99I9v`z0Mf%8DbUKP)x?+I<{@w zw%e{mK>LNtMx5Lkb=J&G*?d3+%N$c#B}PgU+2<~D402IbMJa^xHkyDkZk|xp)5v*P zA7;X*G_WYWx&V!_R;8W>rJsEV>pEYmK8NSmVn{fnget~zSi`#UnF`S|WA2xro~UKs zi(J%JN~Op6pG?W1#Oee3fkElp4jS}f7J=uiwFdVpn8@)U7g!5lLkAY_#TQD*b1tkY zAz!hos%1dJa0FOAK*4_@!nqxxR3IhdVtjUBi=S6<+){m{|BNhZMoo zqq>h=5gJG=>x1)U3V%u!rivoh0Py{HVvCHGujl>6BN1Q8bhGgVX7a&pI-xP>OrkRllHdCBmo!M?x6O) zI`G_QXmOY95@TzK>~CKFW9!yC;gLR=Z&=xw!|x#HrMT6pP_n_J91W`1@28*e8*T0B zQ>9`ao`kF#NLP5+uK{}Q4J+(=)?Rgm{}#WxXxy9Ym5Ju~gd|EcV0KoBJ2ZI7Qk%WP zK&Iu+7B6qy*46>LF}h!vR`4$QSxRr6elQ{*XhGwM{GMs`%&~Y`$k&qOtRP;hwaQNk z<19>_8e4qQ6Rkmldu--{dm^>&yM_|_T(|!PKAmsPt@WFe z>eQ)}N{VW#x+1=rt=KJ)x)d>XJ6R_bw8B!I*q8=6SD76; z^F?j$DH0yaP|3rjvroqJUhusRns1(2sFwQ@dukSjD6x_Wy8gR*z>w)jH0R}&Qrer? ziX(OVHsc;$Kl4o9ym=K05$t=?uij>V7D}pJO~XysaQx4&64(N-H5^mUkic(tLd=uN z*h+Nbx8VyQEbg4j%c4vB8=9%$58x99TO9kA#ef}2WV=u~^+Dk~n!dosC$^Qz<*>Jj z{uW$r7<4}5#&8z^FZN53tK0Ag~k5#$KMPe39eJzio@JXW29FSj% z?n%(9f%?R!3k1VTUANfe=QnA3qD-^G4={&R@{aC3IcLh@mDp%SAwP+JPqm=R*zip( zm)Xs57#h$>AB^3qUfKuylmu4GFPRnPex3YFtqRl7Or&}yO@>_Fy}G`}C$;wzb#o7) zmthk=6EBrh!f*N>o6tVi_2h~^a`?J7_&{2>82_!BeliamJ$vz<>+Uf{q1UxK%-YGD za@)fgbF$$C+^yOku`p;(Y06b-<6rY&l_7GjlU7T0F=_Sr^ZTM*YV-j0)4z*Bd(+92 z7nATO@zpWaz@nmeWE1oXTrF3vkwDLvPKu6Q>Hz>vZOOe>}}WfQ9>&Zh=?!QQIS_1k=1_-NXgE7(MMvbI}- zACQl}*?d57OVI4%->}M+E6bzTD7Lqvi*lHZy#Q=)h0@`}l;#FD8|DU!Ln_Q*}cE^o<}aqw0M71QHHm!#a_eY$Meg1B6)NP=_dvbxmz=L zNuin{Klv>3?P9G^7Zn&%^D1wl6t6|Ti5$TJ8INElHZm|=Hg_K2&xEyWaw@XTHz}T8 zheNAa%Q>2mk)qsSNO6eip#&`CO|;eqq-~L~nvk+qzD9^xM(DauSq<_zB23EqL$B1* zO#chy(^ZBH=%B0}gs+XxKi0rZZRJZA`;bhv9zdkjbGMzMy7955^81+9`u8gEG&P@PE4o3cNY_ zBpO+{%gH`q(Itnb>mpWN zCan_2`>n8KVa%aJPm(L*Y&yJ050fxT*N+IPIRPA%O7!bq9$;lQ=Pq6E>ck@W%3%rJ z{l2@wfxgyawaoYQG?ikTiFYUZ-|lGK{we;`qtZ75`-I`1OKyVhx9?oj7Csp3=!!=0 z4%UaNH7o+x!yL%@@oI8$vg(D&H1jxD>Fkof2Q9b;KXHcFo9vaUr_dPwLHxa8!yTea zUHn!S-MluCfWj!+U1`B%@Y(He4ibFOF1j&hEnowi_7)k>^fN-7&=QctLxv2wcAMqp zccC?83Lu^r{zv?UJG(KD4z2B!aa$VIZp#*id$@Dr^5a9&#c$IASLwd`i6Y3<0EbiX z4MUV=1&R}x{D2P-4U^xbx;!et4{Jp9qB!|bZb2G?kUvvt5~xBkN`t(bW~Yt&)NXI=w66Z3Xss4Ox+X{!ye85r`U_qR@6lv>ECxguYdQQcD#LOL#YfyyQ8~dD? zOMWzST9xpY&?hJq!;CG*e&Txx5R$#?rx5y_kYAl-1Ya07IQeL>H8#q$XXk>HhWq$@ zF$|LRc|N@d)=hm@6xp39k$J^b9?DSNfM>(DRgSta>lqUCRsd|kfsS@5e}XCHkqk0 z9=Qmhuo7=#Py}OkIYz3>()8A~K~+M$P#p0jW)zsm7vW0B@^YaF6=HEb+Rv=R{&j}l z`&CYQO+YSABPy^W7ALu{d*D8SntJL zfZX^%h!6p5%M9IBQ-(CH?XQqJJz=Pi#?CA7SWH<5rg7H@}ru*RfPH7*)KloTbOm~*JM`vJ?#96`!Z7x(+O9c2Vq^V@zvN!%%l7rI z@A|gw-sJVB>v4&F^J2n$#g1Ww|6M=XPI~In7Hfd3zSR+G8t%7mYcoooL-dwsf@iXn z(bZRyGq}i6|0tyt9;slVz-^;EBS*;PDmINI8gKgXeR4}O78_n)X98_J2C2JY_7K72 zn(x7&^E_^hbT^ZG;#yJtG?Mf-7lV=OKMarccRVzs?}o9tNU0>U(4rd89lVK*UC^}- zRFjQGY#YbSKYc~4)XqIP17*5%lb(@=#D%I<=|A%i1CBo?ity`Zb-^Ok>L>zm7GWe z2bJXu`jCw#?w3=5xtAJ^e)P#4M#MS2IOUz%XzT(aofTr zLzUCa>>elGXAciM@ViJQ^;px272?IOf6uFGuW~(xW2@*osfu!ac9W*EUf}7o9*kXi zl~xc~Bux?ZOTjBKSBWYGC`$reDMq=9(!e23YAaujm=VXmFYu{PZoHyj3v#gIgpc{x zW;p18YZHZGkJg@HaM97Hsb^LEgFp73FknhQ^ERN_tMau{JwlZ^GNM5f`)`LM zUC+2kC-m_8Fu#=s1x{I@arc?}YAvA@_uF9sF>&*!6Jz#2bv@FvGHT${A@-uf>h`5y zfjzE1jdFiozg^tT?D9jEe#I4Zdp`vBt()NTFA0zx(k#_NtHH{|AS>WJ`L{PfCox7- z;Q;WxfdBKK(TS=vVvK#UuHm=hHp3swj%|Q?6BdEjjRmyFOXifFz_d;ln9md#tL8`FVD+kxPEApo)lrdmwgG8TMZ! zIi4;nAM<$SG=2(VE--~0ubC*N9LhEoM@^9ruN*A0G(uXI%E%2X7EqsA?@yS`y zGn8&tV;R^DoIfbBj6VX}s8(zA!VF~$RFRoMg&W6;InvJ}Fl@$+pNQ$v9~AsIE$XpKr&!mwt4rc%`b zi6WKTA53Odey6Hji9g(8bhsO*wn!MazXasO*KD#NxbpY~QN&VQ9uK~HE8sDXylZ_>b8)jOJD5?kk@WOJxTJnuHp)2;yjmj}bv3;Jap zZ7m^}WUS#m%KEp~_!+lJSe1Jur8^dqVAg4aFp>gadrEp`t~C4}((E9KF>LN3p3gO& zY+6%l)rF>Ikw3(TE4=tiEJhnT^t(nCuwA8VXhG&Pp zSLtS8vLdsk&f<56`#XyVEPaL}`16j8<-q1<(;cwa<_xBMI2S|iogLVTZ3oXL2xb@t zQesEYux(qy!YxSa+7 zHW?dQ6g6TX-W@k!wIIb6=?)aAD@Drp<7}#{+HAz77(d(o6Cudikfs3(xG~0z__%{N z!tfb?k=Q0P46lH(u*E84n;h1oU({>#`InQlxLfU`6>uS{Ntm6I*ye zXaS+1!2icY^*uQEa5~4Ui-I9Dpt`tvft{!fV4YTQEfCj+T-qi5+IFI!7b1N*PS+=Z z^4#B_Yx8woSS7>FYkT>i0Ds_jV@t6WoI^+_6bJKMQ~X?4N&H(@^6R0#vix`s)UErg zv|Iy|$U!R#Kvk0Tgo-9B+fM$yOAN<>n97Mcwqk7gSvX{!uJ>Xd=x0zj7u|!*BB&>h zOXx^HtTqkw_Q6VB^4zO#a29LUW|wUQRTN&4;8zB%R*F%+C5ja* zETacvj^a-(F*+6+bZvIiJlT4r(2Kqk%Lq#NRM!^H>%2uBW$Y&>nvoJV+Sw!3ng)*8 z(J{|&<4m_}bD5LzCwa7+&i(n=_X^=PQfuX5 zd_wr2sDTV^la@2hXTF+NQ)w`4I80Iw6KbgUrlu7ip zObCn8{_PyD9!T(O1bbY$3bn^W;&yKGS&G%PPts^zzfx?WcfG1ngZZhW%8fxB>>zKS zaK#Uue-l^G?R_8nW}GJ2jc6sH0#)h?+_fc+G;Gn&pwsDMheXd5ETVYE8U{-> zq&7m#)JP0uz;BW0QyE_s{kV$a|(PM~y!6B2y+uvKiVKyd<< zDUA?JZcy_Q9TsPy5a1 zoyhz%`OZg*#rUBQmToq=p%~I}?$-@-+)7D|unHMK-uC6-F;zp1)L2jLo1SCe+#zvg zG05iu{$~<7%%7p(!z=)K%K_l~%fLdGvF^-+>9w)TY9)u#8cTAdoff*3Lu97_Ax;v1 zABr8t@6@k} z(X?Z)-bL7t|R&ipCk`;RWmahNeGggAa=~^kA zC+d0p^yxX4fbqmFB>J~mhca~*+%E!n2NnvlEn=#clQ4#PyMhaBnWmpC`Ma*iPp_RP z%K=??wFV_{2!CEPTycxBaQa560`>~>KNdwFkEmd#Pv7O*KEkjUfvs%Yb_JwT>bjC+ zSRL5;;A)@L8N!f?Vca2~r{8c1!CT>P3yb~3nXa2Wp_3T6Z&rlV-H1^<38`uz*CG0A z8THo^!cQvpQ%PxjL5iGtRspt%HeSIq-icoIBYbiU-1AF)#*{&uTEeh^=fnOCM=(=6 z=hRjKds|2_|3*LuSSQ6WVbwbi8&2$R%Gfm%lf(U#4=%))wF{ils-nVucKgph3w zv-(ab9p1;)*Dc`FG;3Oo`&7m%6whPTEAJ|a3z>8Bn{dphFyalVW0UQA33&#}l;2*((bmS0&jC8J2^q4ku$ zt%WN9>>#^O7x)dbcKhE4oeMh$-&012?iAOB`KivPDhp>s)R(R{KWv|fA02WT=q!~k zbCL0PFDSr_?b;1Lz+R6|qFCtntCP|g9m^hpMIzSF+Ua-imv1Y%n?g-1IvXOXzfEo2 zxV)!Zc`uEw?JhTTM$9#0X#CUa@tzjJa=|+YF&8Y<5rHJO3cn&+yr%6}OjvTpy9WpxMT25rK+vk$-wKtTK z8^OxW+?_wosgT1EQl!Y&k$>$O^uB92=b%q~Mh(;neCSsdxweuxSvgh2oS(MV2^+i% z?pu8-4}S}r?*gC&!`fpEBZcfEw3UeAw2yJf2J6&ug$1lF2G7x)vQXF82~g9UShwY~ zn5K8_HDHrt5}`W`FU&TH3j%D7Hg4g( ztKRVv7kv-w;&R!nI3I^+`U3%J{OOc>93eBDkm$ppwxdX~LwMtf{GnLjtJq5yZUw|= z7VJYiWGa(Hgx?=ZBsG!6k`+1GDG!%S5OynteHE4rdqOjM-6xl&Vf^5GH?Pajw!FRQ z3cI`|VKnBd+`!FL^ z)(N|P=~^GT?E5yj86PiyFWjik?A_DFdE|n#>w3(8t7U98JFbQ+ci8`erUZ<+D}VD1 zY6VlhtyBn)Vf|k!zb(7avIlc|?QZk(dF@&EPFvj*r*f#_xkh z=HxRX8uTGHE5PK;-9-Fd<>vuh`v%m1fN3&k@zw&U|8w!!0=dfH;ocKZ7QFpFA=s@a}i#(I&Gpgj*8s=QBMo zF-+Z6mAj03p?@joqoW8-#t`N+cVwo&&{aZ@1oa^)HND^zU|GAM;NPT26dKXnRrvnMF#g{U`H_T+BftY}{tn9rA~5cpps zWqq5D_ESQ1!iVi`%y?FtB-ydvc>nK!R0m zxKwdXCk*#c)zQM%vf;Nb-{_4v>+oCa81|bO=`=z|zs< z50srn$No(7G)=or?8ZlSWVR>djhT>JGFtJ*+dNM^|D_rzSg~To(NnfTLA11yBv1l} zY%C|Mw%^hXOy_j4fLUu1&)HZU_F=Vu%h-Hrk&2;PKPYmsg;ck23q1~$bgxdOr=C}qG(XPj!*o$01(+X3zL-0%cwKf-dh?wj(3uyM1%nppbPbfB zA?@h9GFBr%kMOrPoTiA)wWh70$saKOj5zk&QWVS+Prv09*k+Qk7L;Qd>SIY@qny#} z^x&*nv#zs3c=9=&QMsF%QA`d-#z)5j!EV2ssy4Z3?b@|rZS7yOlo<{=?0+g72W9=c$vh-0$N?6MESP(l9L>?T6hVbgTNE$6iMi z{cE-0CP4Gln;EobI@vER!Kx#9xT(2Y{Tlcui=qr!-j3wUv85y|xPG^8IB3IMinOz) z%ua)jZPA~X5XGLu4rRE@QLS^ziDev)zG%bPii%gM#7LUlRsH*9UJNUHVj6bnOQf`3 zo@ARS5<}zJQSLPiwAXsJLVXD1K9$1?wNCHWRY8olK&SEY$7l1ljPtSW!#JkXw5m3z z?4jPz7F!3}V1AcnCRHp>)Q3^YQX^t zGm6VeJO(FkMI+6hT_W5|No@X>yO?~o>77u z=&d-NMkulL%|r9V(NjuH)1LYU8-!F?j;f!rT?lOy*b95_v%IWGufWg^F!#Fx(s0m* zxwGL4u;~vQ{<%*m-L1el3AUo7GNd=hZMZVngFQddiU;P?M7fu4uj5@~7Sts%3+yuv89@`{lJ3+zsBl6|xtPGAYtTEg!EpXd`YAB1} zH+C7A&sK;ktPbo*M9*M!XAvUF3c)mjzTIck4$}y_`1M&*+DA|-UsO%|!4ZjW)2H0I zE}%}na{YF8gt!@k{f67+!Lz}@Oe2hSzYi|ChsK+&{nYE*zwov&D8T!$E(tfWzPB(D z*zCrg_lK{B=>}P}2!}$w2QDwdR%0`?ll!3CkR!bwNMxEUbnzbSHJy_4--d-@pI~Y` zNv;Unvd3NW2nj;J$a2Bl84rY?_G8wDQYy{DP0rGMQ{rBQoEC(>;nq!hPK9CEccbP+ z8mAaYYA2b#Ya+c>+$)$bj^1Z`dsT7bcj~w0Hghur1T9 zomKVH0IN@<@8o7tJgP2hakw$Z>D1>uB`mX;PX%B?%<~hzaMPFyDAX(!F%vN5hDcF{ zE&)W&?cBNkops=x*Z2Dc(*nl|ainU0}8YIbrShf}(k346_4N zuxV!t!Q^!^P3wtp=C-p2$x9_@J--0-3^e;R^$$T`RE=<32(RjZ;Dpt)ar`rQW+O+W zQ~BHJ6%=|PZjbmhd&NuimMbUPUU~^Z=%MT4@uPV0$xWKjA%YO)GyxPh>O3%=`3{l33{*luTpn&k(Xz62k@I z)A^@2N7oyPSdk=sKZkI8`YsXDcIbL{PQsOCy;RXzUNZHbbhx*^1p7j)N zMijnhCkj-Kz9)|pcKfh_#P50tcC)(YXSHMp>o-`3^~C+3)*UT3@60T(o4`mfAd8zBR@ViYJ_V!98#3#nWmk61oE?h9SeBXY}9gpL$iTum$hl#er zc=;LcA7MCvr8%-@P?4mecc78QUHTDDx+mh)w^lVGW7N5`AiTwYi@A+#< zm3`97hEs)atFiQbu!~b_$1P4+h(4`WGiZ(Dscc!plBy4N${u zbr?!LBXHY+j*wzd=CZ$@?I^x#ubrglS%fXwc!{3qV9UURlA)u@ILEY!an^-Zx<*s- zYnd?EFdS**fNPk+rff?9oL~4h4DDZYO{{?Zl@-%zx+1^U{1?nf9Wf0UitrN3_)%o=6?>*7N0sRF!A)>)8u*Pe!n-^$3ruYB^CV%u6s?%e!$ z3+|MZT->*!4|%o%I;~SgEpaf8XtU^i{Q-1h}v0 zxXsx9VYrleLTm9Z+yCykSl48($VrFJeXa%=dl<=|?5q$Wdy3WglaOUjlE(e13~GaE zMM%p<4LsQWvo*Xujv;rvp~LO?Fr&ZwLrr;f?BI{Oul%@#z@>5T2|t}#=Kf66jFIwI z&+@Idl+pSBU&$3z8V5L`X&$r8b6Aw!z#B;J%mk*=s1Ql8{`PO{86@IfeUP{wfI)lj zxB8&P(6c@|e+}CE?NTCk5ZZe`jA`#X*o?LZhM~vdU?92kMUf&lk$cMjXxAC)=OZ`B zRzR%!#8WtS@S|DJ7JkMl2RqmR%@SE!8j%&8f;(%D+wbu>&VTKD2Eo04$+bekvB**e zg1^P8JN{date_R&Xy?HC#Oa ztc%+hqYi@DWP{E43#^mj>zRUmDMC*T>}R~KjXQ4zM8&B9FnasyRR&PnPaH3$o64#D z&zB;E3xM{U;4dYGp&8Fa*sw!^z=F;hy@)%{PyBKXy22*R~t zb$-r3T!HAt^2{OnTbfqusP4s$c5t=&>?*@?)uNGK zo7wT;szs($RywP8RG{w(Tl`D`vQH%f8auZ-#}^BbGCr6VMTYr74;MXrpKH)6WqlX% z#||j4az>xtAfD8eV$#~){DqUQde^yLyiR^*Sno9QD(7+ii6on=v0xOrAdl?2(7i=C zCv{JIIVJn$z`NX2kR}x89_P<{#JCGGG@5R7sD|$VN%--T{Q2|0Nw{fcVG(dFAEK~f z3hmLpefy8xvYCHE$6~u1Ioud@0{N=H+h+{+0`A{Grm_ebp^E-mDGiuPgwxPZ`(oI8 z_W;Z_7m>I=Chtp>$0zva>~(?VZ>q}MU^8E>N^B_)_BHL(JJt{1PLj;{9u}SctQnkV z9@fCj5sAfueWUs}tS8P7>BSb6Kg%AcbU62A0e1ZbHwazOS!2`^{4rElgIrh$Hh|c9 zzanB-G}~g26+|q@1$w`Z9gT=#6W@6o(nM@9b>D~R!O*{14p<4xj~ilWnlnfbx=Pd7 z?i16Uq0S^F=x0iQvH(2K&=@P0(tlv9%Ns6iBC3$xYL%hYFpTO%Jwx>ysKf6jNQvWC?tvuWjh)z)y8NZ4{+zaR@% zfjzFc??Sa7P1|Dv-fjC|EEmtkd*v)Xs9QX7S{T$VzSu&=P90N@ZOSxNEmlnSlimAe z2P{w1DTB0vy?UYi(uh7wGd@=0svY|-E<>s`+e~`x468GuuM=M=*b_@^U#dV9$MmQ+ zu3w@c?5Mr2m7Z(JK{jrk-E+Z?T2vWqq@`qQo!;x2oik_rWAP^sVEVuMBX(@xZZ|UA z4w^5V|E+A1&>ZED=<&`V!DPshmkpQ7{dQO15bTn%yg~V2TuB1Af3?D{XWo8z zne_XwyGVvN^rOFyv6tga9}lDzMf(Zt@Y7yM%ZnYzOiobf*nA&+F$CK-_Pk~jL{H5_ zup*d4q}id$>vdvjp=_e%X^-y8Q!OT#IhN>4EJo?sjRY=*yJ^M8e#)|*w_?R%H+0d? zS#fky$N&1vs2BZjM@I|(iYPKGHv4n(XR&-4dVIHmEdOrB?v3Ad_v_r=Z-Q%Z~Knra`(-N zu!V;cY8~0drhrc^GJEFOMJ_cl2nAtLLYUlRb={g`Pp8SP++wA#lf7oRH9G`X@xy4l z!ET5x3A}B{QFs?6I}cE@I@FQ{Mh@d8ToY$p?6$3^4QW~zd*?aqEG!kWqG`F_T{VCI z7;I#{F`2dX3imll>!l!b(q%Ho51Q&#Bv`Dalj%UqFF(I96bUk!hkqbZ8I{0eMl4*j zW=XloS#$TB6Fq42u~?EiLBu});{@;A$=|>Cs4qeqUd^-7`}=muC2#l+8`<=OcV1Gq zOS$&QUymJWj_rh~cjszaKVSQh9E-Fgkvxzisv8(NTc`UpFxQygOJWFCfi?f_e*K2F z1=i=wc!l^fS_bU@nd`+?Hej?2kZkG!w;pW7u&q>4IXzMn=Jeabw!6RQk<)r!HkR^c zcp+FyfBPtYo`M-v*dszKuo;)x__&ZgM7*NV%{PGfD&B&zYwZI!ugj07GPS5H?DA&a zOvop$u-n@P`$|!JqX2Zg#|z*&Dhg z?itc1z<3c_!FNxw*M`;=Bu^2&Kh8!Zk%Z5?6Cz;G-67||dz{>?o%?5UMHqW04^;;M=Cx2n5DSa&~ZBAYjPb6x#za-zXykF@9og0)aMm9HOU4Okk%- zaYDTV0jbx^oIz^cU z{TkwD-CKJROKv_hs4!R$6O;w6IP1c4il`NKz$uj0b3%fzT`IlnGpN-*AbvJ|g(x28 zK>yooeSW^;oAJ&c)ynOTepN1D0ccnzUtV1d3<*-ZTq&NMtr7HG*c4#WEpZhR$xYTP zgq>j62zR9UPEcxOW68b6FQ>(q}q`mII8y|BB8s(m|gOH@ujmz1Uj=tn%9<=X%~YHUogaY~LLD_Pz-O75?eI$>=s zEOj*N!mPA*wD~PhiCB;+iT_3V)i_>b4LLS*(z6!t3HPY1ylb{ zQ1A^w|KZa{mWZLL-oB4Z2d$)OJ%o6izzfv1Yr`RP-*S4-`8-9eRT3Q|QtVL9<8)yb zJ0yBuqF(!K7RNN2=4sz73|i_BE&n6?tldS`81Ui_WEY}LtD-8pam|QlODR~h4#zO# z+IZ!)AMB!#_ljy=RM&pw8Q+C%V(sF4?T4n}LX4Oc#hFhN& zuLUkr@j}I_+j}FLpJ~#LkVn zreCvj8wZS$Y!wZ`Z&=)bhQ_lgmj{ zR2~mIjm{P_z5Oa|?A04Gc*Q-PB-QarvieTnD<`xVR^(BG6%W}mlB*Vn2h zxEb@}l>e;>nH6H6Z)9Z{qAFdG67Pn!wCbP=ftiJ_FX*-~4*bH^BjnR?5Ir9!V@BRow{zTDko*Ob` zLu{I^C)9U|p}U;Hm-AV@-1xqP03ndG>;QIa#ED7vHz{*GCgEo;RrM=r#%1heg4zw% z@B8T_pSqIjtGF9PFGvd%r52j+WyqnxJTa{j*AiII0arcls(XHbxyD4g!uSqC{!ATU zFj;@=rCJ68+taJhSycXfYJcEogOKN+)TsibRn@6EPo76F1$Pj@4@uysufBS{M2Y9G z(A0ls3Rt0E*uiMSC3q~@y)bJ0`0*#M(ZFDZx`4;Clx_+YB6I@v@A(Ci&fnbz@Q$N2^}UbsyV4<`-l22N8)y1-+Ps` zrd}+TkMj$+JwyW@)BAf;qobECXS3r|9({SvpMU3D0}pqWnj|Bejr!K8k;|uWPC*`W zU#1_)M!5(bIvJF5y1qfivYIN7&3c+&8{dfNf6HQ4cq`E*y{Ls~gRx)Fqo*{`Ot_79 zxXmbfTIr^pC6UZRY_#O*_f574V;gm&?rlACwXnWWLd%X7h?{0bI4rAm{WC562pcTQ zHj1iY6KhE3&HBpf(VhVzwo(6#tF*R7#_S^ngQ%YSkQ9(R7 zk|ukaP?O^$N|y`FP9VcZn)0F(6nr>Qv`8R0fmagg0lydV5WTKcT|l}QrJp;I2)?GV zf%!hW04v|5yM3ULOEf;G5RV-Q8AlVv(WMP(xumn-4x(wDDJ|s=yZxnNcKE3p-E99M z{-@Sb`lUKAnV_vEyOmhzYMR{R%{P_UvxHlKEYL?W0+ideZYnvp6y> zPexMN713$he9r*UW*e76v8JZ1%33L8L=i&z*}RS?^gO+)^;6&KlADkwp;3I@-Vrc; z!1}Evmz>$Siz9vCR6z?+(jNt5m9zY;WD=GlzrTm`dUM zy7+3zN{6K-Va7Ryq|Rc)G|yxN$6Y*Y$WGL&0=sx1Yx7H&q|Yx$3LU|)M%W&@S^6Nt z?$G_YN=B?r#mnvasK-+hlfcVxz)8sT72E(Db#ofW``yxrBL>OzkVniUV9&(zKE6 zWt%QyE%p;V5)-+?hgiG4qU z+v>`9LGc0woO7FPb50@pZ+3uPny}Gs0h-gU9^b zdHiPVciZ0FJL%8GezWK?h0XeOW#x(2se!Bk@|P15d^yIFMDN(fVEJ12HM`O|QNQ<+ z5Rn~V$JUzIA;A-hlYA=$iW9);xh+18YdB`WbsbK@cbMqjnYO{PA(i~-ePbAwVKgCU zglL>V16;7J7_~8m(rfjLogGfWw^G;Z3j`SFotYv)tvtVXh?%fmyD}BBtdoW>$AkN_{m~4g7a{e zMh^XPtCW-z^igk5oH()DPlO)-Si~xPxdnFCxJz#ChO&JepKJnn{8Yn*RmA*^?mlXx z>s;8UjCzxuo=fUeu;8CGWrzdfpbvN3TC#ceODS}$gTZzzy`Q+PvH8V*d;ARt%lZEM z?@JZ$fKPn>HBficrcDvt)%7rKvQH`mJYa-_c|lF9%c5i~5uR8Xq3$L?n^ce?74SlJ zBbZD;m6!n_tq89emoff$P)m-%o9c?Pb*(UCQs$KLGtgpWVZl8}5SXHjT)eJtoD2~v z6t!FzGGzBVq$hRS&eIr`~qN zO6_o&YWzvuZPo*p#4Xk4JNM}FLaiOS4U`6(p=vPrc+|a999n{^#`Qdd^K z!It!^`{73LBWt6b3PNoC_VL!7|Jm@CGh{WiTwazZ!-UEc|bzM#FtxMox&&*ks>_k<|k`56Z$H2?Us3*@M3 zCi5{2w-Vha2L$r&CpB z0cbYv_fR2F5kZ}!oG_=We4Ee{&nhFtQUN(;b_7zih361*x`;$Hf(4+$JguHOhQjFI zWiAz7Jg+3&nUE88L94hdm0bKv09)eB6042IXOJOrhh4_rrQ()vpX5;McYZ?q7+;OMJu(~08ajtGxEJ@lYR6xOt0C7MZ z`&iknFHZdF77<;3mn^iL z%4(Vk9wkKmxx=!uPImf?DoVtW&3%D#g~@H-*j1xZmE z!Sv6^kd11H-ANX$Ze6tEuzTZ|$8jY2BV|hltNGXc_g)o@$myDNny+uflvAFyZoA4fk%Nc?PRTLZ95 zD8s&3GTAfcc%DxX0`%fwYj)zqTbsp(dilX2S-xUt{IPC;4t7MJ>Xj>m#qgU?Y3r$C z*FD72257lY(98cHd+!0JMeV%}4`mmYy7VqfmEJolOGiLJ1eGQTQk0G~L0|=>2uSZ$ zK%^-ky)H-x>AfsVWx8eTLm(ZafXOW4SS*b!u!%C4UZEjc1yGjg;5`HFbB}%pexiX;zrUf_(r0`&h=;`8(8^%Wxa`+pEij=FU4<)TQui@7?-O&p(Y7se== z4iS3QMM3F|<50>vvsHdVhzped5J_^I_Zy(iYCDSzC6Vs~Y024-jEo&U6z0-ym>3AD zZP1MC&oruj>fu`da9z;Zv8p159#cL-J0Eh3&^`u(er-?a@}ltNSe-VT4eJXEMrrGO zm=lG>*M@o~;N%rWsT58H2gk9gyD|(Y8 z+xmwZTF1g(&kHgeHl_`NZ5X{Ky=ceKyOrv)5QFJaP8g#tC6NIxSeBR0u7E5%%n9d8{A*j}Muv%sEJZO6^q62AZ3{x+lLK z{DAq_zrvr(wr;0%1X1HxR;;*7RrR4R#~q0Eh8>V@Yd`i`QQGy+$FgECK8N>77Xm(2 zkJfN=$SXE>W@e&aQVFICV*F0v))d9d<< zcb1QJ+{C z4*w~|Rm87qHy(Rq;@{JqjvoUmAm@Fu-$j#3zf2{|UFxU;+|q1ciJrG8d;q_9VVi}9 z)kR-wfOS2SUD)tS#j{`DDcn@!yMpc;XxHAx>+izgYwFGM5^MTfl+;y}kxb$6d@O?9 z@E!Ol%Za+CT?APxVpuo5Hf6`B&}#yoI$&LMYW0FcCs>)d0KPi?SiO7@q5dG16nfUp zSRBy|njN78_p6cmd=w;0}*|iehf4*AfP|?Nizf zixIL%Qm>~G+FZL!L;KFX#|iD4LvLQ*=M$>u#=256MWk4%Dj{J~6JcR*WB-#HDB1KckK^&`{;gKRegXY^h)wM1XCO!Z zfj^u}268o+JR=;7u5ZoCr2rF5qu)e;@?vop*mbcfKEJfbX9+a<2fu3CY@R3L3S(>_ zO#UdU-@iODkN(sM*sjqq9Ob#FFI_SVI`n>DqbG$~%i7P3WyoiK#8qKJvrUhAWnh`n zAyb?f!CqkDE@lmE_(x`mxy_V+9J%N)nAY&$skxt-nco{}i^_RVChF-l&j<~2h7|00 zxHE$@mMxyVaOwFKEKh3X%=P+Evt(h<;+NOqiSl2&f9~A5^VgrA+c~(YWJBzOjhVFX zfqfHy3C!5;s#DuB%g5lL!oqDe=_ZUr8FtHa83wqQB-b(G^7S@(sZZC*0MeAk204&5 z((j3cY;=1&M`P;c)d)Ll14c?Sk&?LiGT6x5{bIo@m22#5vKt8BTt$sL85M zY$sP{!xp-ztJ=fv*!h$OQQEj3L;Fy-~mm^LwmKZ$n*%y*&}xb)|&wq*oJX;10WtOEzWn^kMK1*|}*`_kfR zl>RDY<`VGR`-w{mQSiCy3*fui+2v!&iX&O*tsVh_Fe8zw^D}fk2c#!cyiZhk(p~uc zbvH8W*LB}{KktAUvGiz30UVofw6K>j0&d{~rc6nUT--Zb+RRFZW?}TKh$&w(hwuyG zTXEXA4O3G2ec=5WuGf(GkWAHZ+~)gh#?`W0aP4{DL`wP1W85CQNqkg&7Yy5~F65z1 zERlM!rXJ5Wly`3i?R#3FYeG=oOY?jzjzyL;aKZ2)-1Z}l(i_Ki4%2FwJPBcMB0M3O zNlOSnP_l&)ZV=n{jA?MR53>Pf$5gt&gG4s!xyDACALDd%8N*BgIoPy%b<9gO@vlBm zczUG+6hXb~dx+WXB_i+pt6u3CdG>5cB@t7UqD`8F5OS`GO!uZ?!mZ{4F%|M3Fs*VN zSt+^bNN2Ac_ z>jav#GmxpRIUk71zJjIrbeS&cBYyK@Mtc9@d85}qN|YkGWSZrXA!oX00+Hb< zIG;m@%Y>4@eXX2AY?FJHumJ>Xnw&z0yC-Tn(f@y57bSO0jeP_-Zgx!fBPOn@2=b8VN-p=n1z2(m8B0}N>qCG=%aD>$ zU38U#D6N|<9dmBPHZ7H*aN*pFPe&ZT(?z;X;FP}!dAy|~xTFq3a|8yNjeSmvt@5Yv z{!4tq{8ZqI`kg2dZiwV!XSfY9zH_YwP_KPJWDEXB59HsdBt`~tOwLr5(c_RHA0?f^ zJS-A~KQ$7k=_8^#?@&H{W!g!VIwfv-$wrXHP8t5Bl^}cnpKJ8QH2#t;67KKpHC~nHAuWYa@Ki%-y54XO#3#B|gPFf0I@8TIBwNq1bb} zy@)AyBC-|9R9~r34UVy^C9I^;NPiFi9|`j&Q`U;WdJAW)H9oU}j!-rnYmziTnwrpZ zez@osr4KRjW($p=&%@R#J)53wC;Oo3{T3-~T-Y9J-_XvRa8$}*2aJ(Ye1@{raRHU@ z2)_zi%;j%87_rL7ty<~bkiYFb)?d*A#FvDGfZLRceGc}4LWmjk!}>Fn92X4K$bLAI zp$N%8+YPnF>n&XPIDFy4`eM=Erv5iI;8%lriBr#ATicXlIu;R;_+!(bCf^kA;M*B9 zwB$hFLLj#ZFU5le*AWu&XD#jJtbdXW;IYnFLR3*B1WtQJVm{(9Uub&Fa+9^mL8f>J zaP0$up^YHoA=X**hAwkBHq!7A=khDve;eAmVK3JJdQE6w}q+MH<<@) z{R{^2ngVNdmbmEV=mTB_h}n&l?_pPoIFyIHC}3n1uc`NwL^qLmz!SCnknMNvLw%*JWNB{q^h-Jfi zI$&$p9>I03h}Bfp15>KxXWmOT%$qYcd_ZY?sI z^nI<24-I{p&#+rl+$g!;fv4*6dPjD(X|s#*$`b-c-WI@47zyc`8haciHIs-&vNHAy z*6e8pfxlu~q`rKbj{`fxrSqPED(DT^`iXQg61bv`h^|)vAx++CXk#82rURCxHMXll z*@?OrXIQ8z55a7v(RBQt{QBm}-*d{8h2V+$R_a!`TffOszjvq3o;`c`yLQbX-w!8P zCxEa~nvG30H5^nm@my>YjTBmXCDYH8hFu!XzJ+|NZ?L|=3PYgScyrfSu&lK(4LU=2 zo$zh*ODGl%)4LXz;&+o!&1icU!b(tdTiU{g!N?S;?XOPAM<;dTA?A0c~Mq8ALgR6TgiWS ztUzgd@2)>lfyqzR<87UqSHJENS~C+?+5YU>zSGCyed)00(Ff$lPo>i2Iiaeb+8K2U z{9EngSa0Tk@^9S%hg%n!%)eDK?3g*n;yJ`G(}Y@~d%VuqP0qH#{oA%>b}+a)s?W=t zIh88gUT6*P^LoAo5Q}YPK?UI7s$p;igv0Rl))u7T<_~I@D%DHRu$sS@0{_cv!&*nX92bCZWf z46Ha)3VR5UGCGNdmdV?34W7-uR0#R+X^PRE4K~FGrx&5Fu!p8y`BXA8Wr=K=!uPV` zZQrK;+cl6SDB5#nna~azGU{B?lmlK%HlQ|1fUt+rD^cHNaMm+4a!Q-j%_yB_Kz5lWwCF^S#?)U3fuo+;0vso0d5`IHt{d>T`lFj8hyu>0MrD*a)@-EM=Fs;rnS zjJ9LSH_$hp#!>M@G4kauUAktx^HL#}1@5$yjjZx@3UxPGZK1d1>_*z>IK7qDNJ!TT zn37r~(TpUp$m&Kyy7r@Vmqap?^fjSMo@2<{v!pwje#Hp%y-p@@O6xpG;vX^{=m{Wek0hCQ%B;|2avO9FHIVsT(frO; zOyyvD&czblhuL!`S92P7G=oz!3-Xas5L^;X+Fi~6wF!3{Et>H#nz~-8szc*o`i~Gs zLs}3h%n~C2it-NH`IpSL%!9Cj_KZ#aGb(-b__8%IeohhEeHf$J-CX_iXpnDMnG_VT!BDT?yZV=~O`xd#!l z*$u;Pb2DAAe2?6>bcBb5+ny^5+e#v{i%hJS(O+&mp6Zy*oyg482)lN;^{I0Sxol>X zB3ImJ$8uuLr|nbsvSXPZvH1b$m=8{D*_l$hjW_8Jwpq>)TZT>?jDK403vf3{>%xbb zMz`Kw=|Ylgxv;${)^2UPdgKY0|$7ekN3DUyXf zPLtXhJ780TJ@31GwRTzm$&`RcZioCR3XGBQbzKTSLsj>>KQVGlTE>j3;2|Y>=)W z48*(*jbU9_y$n^DF*>R?C$lE*v9K4KiC=MFskvu-$glqo>%wti=<|g+(|op5F#$qi z)IyE#Y66cm= zgG#Yu#V{CK)}*T=hGDoj*!h$Ow;2|-r>6s^_}3jbZd`y9^4ilfET4G`1GQ`8-myPw z7Upoz+N&2gyQh@lY&E*itubX`3_AZmZ7--dbC*l@Em{pZe!t6VkAb8pf1Z%rIgBKK zExQ7xxhJa)it_x`tJp-ina#HMEp_0?$DU!O9a5Bqhek~t1bf#W{w91p^=3+!*hi{* z7C-DH+?&tM$MZiXx7_MQ8AyoRcPL@0Y7MMuicNipBybP^HJ;ep4isq%H+sG|8iz+t ze1#DEDgn{(3Z@W6X}BH~7FfNIyHz;|W9hFJEWb~pmoHzwxNcnsdzO&-Z9=Yrk_+b7 z`RvE313HUZZ?S2iEd!n!?b8yTt3e1oTT&@B_|~nc=)_mI`g7Q4_vsDquT!W<+2S0c zln9}*WqE=XFLRSdRJ4*p3^Q&u1Ok^pYrKAtSZot*%G|HQkALF$);9g|Z|3#%#N}Hk zJvSOX#4aCGm=MYS{dr2i7Dz1N)#N{-bg6{pxYkUkRE?lFCF}x?S^8nMYOM~xqRDbg zzd-M3*>7OCYc#yc`tA78Z9(ZJkt|tnV7(45mFBqp#)3kF}oH0**l-z9LS8HO`iem(-A0uz_$ouob}!=;62 zw5kfjX&%gZRgD)dr#>}|mN?^8HHy!xv^=d|?4?t_!l*;Q7NG2t()ne`P+|mpnI;O@ z0rud}9%|zbRTX>NyjvKk|F)+lNgXFjpka4^Zfg`u5d4NGe7;!rf_knxIWQHQz#1QT zR|MGWXdtD}e_L69J6&wUvd7YAnNp-we7oD*rgDjNqt1|VVrhx9PBPWoz_zz(2MMc| zM8|_vZ$UD(xl#i=?OSUG8pN38MeKZ!uz?dz+W4`A;4n}&EkWtQMm7ZJi?YMA$oA9@ zP&wxF8`0STQQAIc0?)|}56hZbKRI!h6WcH_J)qPH^EpbN4H`sg7YDwq`{_m>bdb6q zmXu*3D+zt-*b9tdJ_+4$FvF%e+MQLCm*s4LLkS5BP(^H{x?W~^m@_} zQJ|JBSVMwk9!bO-oUC78?>NV85i6m`#f#X9;AR&_-A6=>jpx{KZ9@Spdgkp!iZV8i zJnu2@1;8;PkD`>pV*JSpwxq`3P?|@|0fzHvvWj3HLf#nwtJ#uUGg(*;Ct=MnTd_jB z4OSqD*gLSZU(;tRzLK#&pqM+`hrfOq3NR7$Stj1y3(*G72l=Me5bFtCwPyH#AkV$88UNFrEMHjGFjLx0ccy4w_{9c?b*RDV;A* z1sUAU(e2uuadh+xS1jGQmsFjU(h$O31N+?s*CdW&L}xuo26Ew32d+SdppZ_Fr!0!x z3FisA!;m9iE5T%WLM9sN%txpi{@>FfkEZ<8ZHc_ zNs!6BUhZpZO{0@W%;4PuY}b&+W9FYw;ZP~Q`n53K=nb)p#i0d`%v-)3re?Sqf2Vsb z8Uo+AYvmVn-JUt)ZTf{921l6p-7t7|+ptV4gS70o=o8_`1<_|NJ;ksx3G|wl$NB?E z)l5+@MRmMueDAYsgb$_Q6diG2CTtq&SG_2kLt7{@dhAu|=@4wa_V?dM5@xdeG&WQc4{ zJtv$-ISk)L>1Reh`MQWsk;*UUc)in=pB*jl_JnIGwU0LS%sJ802+bKM18wU=E-6GY zggqz_tV9{KtS$~y>9PLtxyxX#I^ILUu4_qT%L@1IF8YFePOoC?Xf9P zsg*!!RVyjPHsM1PwMP^FMx}|4LtiMI_o!#1nNf`N!0L_aBFRXV!x){{^b9(?!rrke z4Nu_WGw2$*rQ*;xB$}gg#|2?@ob72#jy!$(E`iyOs3m0(`x5K_JYf>lTKRbX!7J)~ zgbvb7-|wV{l-W#{B=Q0<6H;(5SH9E#%(u#tBE~)@>Rns^Wn_WivCz$cV1JNjN z76+SNa2Wa`ghvB3Mcd@iA~Wdu7K<39#++=kGzqyyzsA z(q}ma6$qaDLApUfklJz$R#)w;7a$PdoJ33dr`yA(`;DB#W_wq!9x7zZG8Bf8Y)4?+ zpb_$PR{2nJ(g)6;*B?=`HI>Nu7dz06ozw6hOex|EtS{a1M4>}@N~wTlyF;Is!up(R z?rhH{EYlv0g$D7E(nMQXmFB~t zShlo78vUXyWZ^Hz@$+d&in80Yqavkq%rqCt z8BdoSAW``^k{Qhyg6Do!-%JaUHn+(ohk6w9{0kDbXUqtpbLu*kv|u=UugQxB4q(1T zixy$s2svSYtF_$4&0YirYJ6FKkvF6FoG>B8stbk4cjAwg|{K60+-Y`TcU` z@-dRB4ifUck-z~*CvblDFUBj~PFP2^1!72&*N&VW9q43>4@(@#HBCoMm7x(@d;Z*) zyzqM@XD5!Sy?8s5kUYv_!(rTiGMe|vpJ8wTW zxTI5-vK!*y7)uj>$ZA9LN3j;3g|o6Mm3lg*(JMyHOaypd0_($tt{Q~RWTTelg4D7v zDEU;Qw8w-&%)2}Y3+x1M8vAz9PdF^c9S_a!O;?89Du}}xV%cX}BmFJr8PY1|r#7F` z4F;qHVAp}1%GXAEK25Z~EVREtigM1t9&;Xd1z`n6SuPmZQVYwv0FK@Ga!hPKef6=P zuh%{JpfgL~W`hq->6e@2$e5%5Bh=X%t+H7qX~F+G9+-x(Kl}QapQ0D6AI<1AVOUXp z`oc@rFPXmRbu{>kssioJN@SSjakGr3+eTygc8;$Y{B%F_X)eA|rQ7Wdxt5_rJpIjl zyEqmW#iZIt63LtNT}0?}XZ=KJfTh*2mirbR{PQU3`^*mnN>yp9!Yb{2b#_O|6+t>1+_;b;Myl$LJGZ<@*G>*H=l| zIEJ3!X8OLNbib185q(@iNm&E0BLBXP#;R#$2Kz>GPQfSLl)IY(EV@S=Jy>h=3##rb zz(dNr_t|4@n`YjK;IJ)hRTN#_Q-DvY(|-F<6&Et~Ol@DE=F1@^k@6QGCg`Gl=auH+RBtc?5df`TS_WxB0k1#q|56+yIx$nxa@UmHmu;uMZP^8~Hy_1L?;e zs$9C^oH_8{A#)lErbDHhN^qVzjN;m#iTvG0W2vaBzT7)z^yty+iJHuHA#LJRHD-TD zZySwVoXxcdT*`}>azsq2*2+Y1b|R7Y?lZwwL_O)EMh9T-#j+Wh94z9y7$vSDkjz9q zJmh5Y*$pi79Bfm-zq$s1>uS`C3zYh>8sCk}%13cB`$|5|#mf@)KqfBDMTj7**XZQmoV`s%qD)E%;v(t2i19Sm@;-hn}SXvqZ3P#!%AD zr%H8{B=4$GqYu6co0f(R-@67NXEv;LGa0-Q4D+;@Gj@q#`LPj&V3K6SSK6uZZEq8@ zT~@eSvlHdZ?1$^yc3Uq{CXqz!fMw@aJDE$9i4o`3aiaRdZl?HjO@i@$yVE!H?o?JG zvm9zGMZHi4kJ(i z5hW$u9a^|x74Y%7K+138keJVw`VxKS@aAe+Fb=q1fzQmvG4v1pj!SdV`YMfeF~j>p z2Wib^<)cM0xRovbUOd%bR4_>KY}Kg!(0c>9>d@haV20k2s=uXcw zk-()|Bp>HeZ=?U~8pu(3{DK9C!stfkgusU$I}PU#I3djE5x6So|H4k64ksP~Bf8^9 zrAqH8$^g}McR!q9<*CHWo$zhUrR{nggn!o0$qUpKYOnWR2^!qlOlrbX|dP!e%Y+(71IU_Q2V)v z#76X*rsV)PPE^(J9q5cS3)6cpP{0dSb?F%W4yx)j=b-~Un_R0TUno(bkIeL4>^trzUYsvU*F{F zsV|v%@t#SsB5dPU7SsH{XCu3O#bm^}1 zXTnj1;#a+zJZ`3A@ahN^$GEG#s#1zil8L-KCT2>H?4LKNUof6eK0nU)G<#|`_H#Ht zF7HUKS}wmmKTi5dwPemq9{Pt9fNfJRVVq6cJAz-3=xG)I{=xt2+tahk8M@Ky>6HLw z6qcYJl(5u0sb&r7g5j#%f22M|!!T?wwoIijt4e&zACz`fO2cUUyp;?w51@9f;lFml zRuV-Sf*n|sX>!XnHZDc!&diy&9D9M3n3bV_q;p_W(lRKRo0G6IWjah%6y9-^gHMCw&AOW{ zp*rKDxAjIr1NiK3<5CTjb832#$EU#$SCUBNmepTK8PYfT^aHJ9VJ*};QQ91`Maj{y zSNSeqm;OpL*7~iXrybsCjeQbz-7&RA1SOGwf9EIOMoX2(zUHi7Zd)^ei?{IsI}z_8L;LVb&+o?MB4vSYSBWF1_5D z?~td3S@vZlK~`>{d};c}dokp%%%aE&SjVkRA50RwiL^{x2^p&>1+lgV9#bNlf^~IT zU^8oTC2SP?z7X)8U437|e6n=<8etExkrL!hqT6}d)loB5lpGJ-k4pKH&@Rprm6Sh| z9ZsDG%buHv2etAdCX)SpQixAXY9XZmm5Hq3*Il0ilm4*}e$MOkTm$vr{#j*VG^XY3 z52x(A(+^U5-KHG`z>jlIdga|%8fqIFS52lvSo?U6(qgtdHv3T{VS%xmjk~}zdRsDD znNoUD+S^Qskpk!F9jAtpHTO*mknNS9$`RN9l zo7n9=g%swo^1P;?Di&IPe%!chOjx$Rpe%08B+4~YC*zm9Xhvq1H!k8=JXPg=o`*e! zA6~BopA}?0=D(cwS4{aW$VqItI?z^Q^FbX@p{FRmu@3m-7>_wbpWXMND|U z6f0230t{or(pWr+6?~Cd|DxIcBH~131!UIVPrs8SCP=%l$v7I@nrn&4ge*0wdgP9d zW%@di?3K+{@L>gCW#-;0l#y{_iZ5~6J(w9@d~f?*Q)&*e(0XZcNJ4}2gNfw)O6H$~$ZcBRQzibhDLQB%%>G zVcZA#9IiiC;fcu5m=D{ERw)mIdBC%Tf-@$$(f@0u(ulKvVEXQP`O7odWB z!YlG%F@30AVl#ger>vuyA=RkmgWsVoB`Gza!vfmB!%EufB7%mH>akdkfkb zgHwNY8Y)rbj86GPCU5FA*<>5QIc9uI{NL5Umv=o>Wjm7nRNnRphNCU_hQH*7EBl}` zH=f>rzK$@(p$PevYW3@5ANf5Fm_`aBWRnY)7Z%1(oH0L~L;Xm!beS2^tdaN4ln^P4 zNBP;gp|1w$q>$N6_^=9a>2WZgiSKID=QY+g@V#?sU_ODFYoDYFdT-Y@mXKYU&3p5a zcQ8`h@AA+n;x3!MsxhY=kxUNREF`*IG$F3uGHI5O?OFNTzt-_;FC>Erp0=8|=a^wX zqq%F6ZcDB3oCZntlKlkLK7{m3X-F**^WQ+}SBz9QnywciWkeiZl!4K@(8LZRmiaEd zs{MfeJLm-wQnp~SO(QL)bd-o;i?YQUrB)0L)_ueHsqJ9>bnLH4CsE?n~*hB6c#PW(Db<(aY6TbB`$5Z8>5gwPcGjJ3oZFy`HT$9+j-0&u95J6)r@YrT-Ac$>N zY4iNp&PJ*n@G&dGmOr18q_E~<jGx!L_J_}~gU$M$>X_!HgC}6w zn+$RhdtWt z3|~|78#lVhu{@T<3@ln|OeoI%jG>pgu~R@WNnXd4EXDsEn0NBu{A3d8y}?in6G&dZ zTprqxCF=}0%<2U`T3n!H#mt#AA7KLMz2qC`_ysP1!L7Zry)iD9(2RE$~M7S1|LIur^DX2ZV4RJR7A>PzK^P z?5VWEyw*c*FbgvgDOfw1B+O1V3UiT9_&yiC(E1EJu+e>$-{Ca7A`@2nLMgiDq)%X{)QYsF#Wb5B539RG|1D+E5VOrk29m5=VG1X8knNeNzY_>pW zqjWnXiRD07Tr}o_xZ6%6pLi{avA|{LyD_fQ&JeV7qPjE&ShD1>x2|^A9H>*bMMP|o zl~^=0g%O0?NGv^;9=SZ3@;jc)rHqQlb?K3!T)FHrelrX7pB3@(Y?jR4R{7eShm%`0 zBZl39oO=jG@w@4cWku)j##a?9IEB{JxEHRIDP77X`Dj5x>4!Xli^H+$9H-cDh>{yG z=m4I;#ebmmC70x*d7e`oB<&oaVTC&*N`(YT`{MGAfjgLe5Wq5|Y=dpoM{rrW=x3*#@icSsH)i#tpo@EKE1Z`ZY+WYCFf= zlpZhj$bB#O{noj2{a5r^MUjoAw7D^?)mUwZG|E7@fw)ZLVsPxb`TmdCsLbVauNF^} zO1s?chI`|Jv*D?W#4ItC%3Zs01D{niNYZ5u=ry^fpGQL*xjf5MLT4;T(Nv~rJ>|_MZbclpzz$nhihFgr%dTfI?Cz-H~G24UVq#;}}gD{>H zY-5Iu!imtb$O?ZWEnK@i#OAclkdW{7O=Jt4cb0l~IcYZ~Z|UQ?A@--wx(ZMt3@uT% z7gU)J=w6?e_}fWh%(xQ6)V1#_?_#JcV+RR|n3@s{5GrAf!8J=0Wy7*!!<%jTU2NE3 z6hnUjQ$8ZG+^|?ts>BiUxz6?#2IP9o`*#iYv(>H4RWC}D>|O9J1nAigV`T4*>IAeN zx;L#dGl|6MlY}~=D2IvH+}kIKyc%v$wQGTR@{mRRhe5W~Q+;-kJM-U~T^CEZL!{hzTn=0%u|3zPZdo%*RBFfFWX?P7T`Z~ZTceD+MAa&;(f zx!9Le9LO38?)-yXFl+|-m)!h&v(|b}NquLwGEiM-J44vdkG?GAjO7TXu3O2i#Zd>6 z>BSIIH33_AIJZW{tZnm_2%el9Ax0H7fP<$0!x6$jq zddCK~#JpO<`3{X9ka;qe3$5ASGN6_uOtt5O?*$xZpy@6?XA@6|dv#aAHr0AB-X%hqGeeHn*n2yAwlIKDYNH9ge*OAm_6&0Snkopr2Le1Z z%JF5?<5_#`8;=h4aSc1fC}r;31$uL)xknN|a^~_y5#3&2=tY0{II}63>~Qnf@V{f< zy3LS+nrUssfPVFToPR< zN>oe?Zbh;py~pEO%0!h;wC}}MkS&0__~Vbe(56cwvB|<#qc!hl!(a<&_$7J?x-^9Y z22xFIYtA%6hmhtFy(no!X0CQLv6Yz+BdH_l3Xx)^Cep`l60;{Jd9_6=yAi9D+~0`4 zz5ds0AYjt%$j2)r^NYrwZ(aoJ3=vc&mN% z*?jRe^FC$Un@}|fk=knp7TcXb=(To#bQd)g1{FtV{OmKw39#a~Nzy>gKs)GQDVEm? zY0r~L&66R=%6JlF(OIk`NgRkvzKO6sZB8#@Q_1bDx%(bu<-8(63Ra`BfWc*QO_2+S z3N3tz8Rm)oyjvB>Fw*%w^opMYosl+DB91Gpe0~Y^ve;!>*f+%0+=?w4BHh@s5@Ph@ zmMm}VOQ$_yz1YEjSUI=c!3W0>-ps)V$H4y6t_@;|^d^}l%zQ~z-LN^T8eiPZDMYGa zzqzgg#Y$Xq-GVRm6hi-Yd0o0=V{Dfnuu8b94)sY{;S=4sW8Dcp9N2+xagjEgRW*XW z{X#(T)l#jZ*^c57k`1@$MH1EOdk=gw;%!@9qxcJI-Y4pa9Ej!MC8ivfNY=cAU9N|u zY>-GU3SUwM>_lFEn5s@yO5RsvL>+tsb^+tS5>#IV~-ZQ&SnHUVT z2`F`sU@n=3WAbNPcYdUf(0Jkdg7|89@Q9xMpr6@{c_kC*!_V?ngNhld(%YgDY&3|+ z*hJ$G*_Ol9CzSImCJWQ@Fa`u%qfvEuF!h9xdyj+4YE4p&7*EUt@#%fdk~h3S#=G@A zyujBd?lU}QFFPgrL#CQbA)j8Ql-^roGxVh>arWj-{p6a*5}TgPRKIPwyWc|4Jvb*g z@?{=GJoITL2Q2;jvr(Wh`xmAtUqc+FM;v=N4Wg0D3Ok6rM=xEu0?vEI>|nVne(BRU zz$P$P?3hmZ1at7y+(5jKFU7al%9%fo(xO&Uh~+}930S`6=QHa$(xNE|5vB#EVNk>@ zQu%`5NS@eP5L5{UVfEInTVZ&<;hm7=yiNX> zYM{tp@mrPrwFk6*@5_=BLut&W((CL;^3dpp0*KKh7q0SH6|L!fd9X>gn%SCC%46)D zHhR~4KI{aXLT&N&1QI>(9WMbl=7s{-Xwne_Q95|&UT!pV?a>@lNXDyF*zCif8`SQE zKZ=WazaS28bFwf&ZbmdCgG~8C#AiOGqXmkUSc(tcY`85li%my=EBn59bM%g+FH4BI zjZ~9(8r{H1h}T9a{dAFJq_RDvQIm~?be&6SUx{QUhttJw1_m?Fza*03`jISdMXhmH zHqBT$(RwwrQbMc%&ZHGT1`CE4-3cot#A={ng#zFh;Jil77hKGd7Ja~vE>@P$F+b+w zZ>p?!^`cW!Cez0*ub{Gw=`L9u^^9zHXj}s&z2lpK)_<;8ZZlOS-gCQ{nGz!D&bhlW zPQr&LnAN% zRTmJ1f!_1h<+nOu>}afw(5{OF$tt$OhQzBOAfH1c2@}yqKsl$_PhG%SSWB6#m8$xs zetYvTI}7VWaBWLgUztR2BoJfKmVtfn4A1MySo%NoM^n|AGKBP6%r_DbS?>TTN`*T6 zA-IDhrewdQk`XSSEl#4kZ>tio7!1_i8i`7=u3PrA!?^}H7ev9~Tp@0E!|4YrUD%X7 z4`w+U8{P8%2hs;lA60)kOe|#kbXncae3_XiwBKGmFBaWzJA>4t3l}Ef+=WpBmeG%@S5AZkK>#jh^Tn;_T!h{6wX$1-gY_3ENUPuLCDpwq0|?F&O7 zu6r06;c%-09956{^xF;Ocr!m6@`e#|e>QXGc*()XTLm9svpu*iRJ7MfhDEXD+`v}H z91PNh;LyhA)byQ<1lFDyI^1Bt_)Xhp>>oZRG>T1fRZg-k3jG$&sA$d=T5ik~VrRtr=|VvAITlJo9d1k3Mm?}4ooAY~Q(8--`PGGUM_9grGNzI%V>h6qB! zzAg5YY!Ze7sA1+b67mxiH>@6<$V)ASC80B_RZGigX-5yxDu>74#{XZ}K%J&d+bmyx zFD~Zha_QC|tbpl559(q8`}nwqoZ8m2XNfH0nB`-Y?&#B}XbuO}``wpx7yn-JA{$X^ zwzWK+#ev1$zCGUlkpN3SK=ZpuSmh^kvGlv8-wT2>puC`_s*yL>9eP=N6%B%-yew_R z2QwdSA$Wc@wEPOTA=h>~L@z?>Uum+`UR8{v!M*Zi%~}T|mK}mbB)V!Q2v*Iv?K({3 z0FSsW5##x+*m0MLztUQ zK>3c+Wwsl730a=gXKCC(7#bXgTzc-mC>7rNmFG;OSg#~{U1$!D(Z9R{hej~{P8M!g z@fjtt_h3msfhH!TpnxfPw!ogMh1kXRal$+GmSCpj@9)sNzYYJz8b~wzsAod);>FuS zJC(yo){nFBV%J7-rUxDwQ(iE~do3)3Vl0L1Jr-ZQc$J}Mb1LS@cmt|~UG3E}4F{X} zQdqoW;d@cnO7gLQo3@1o2AmoyNxZ}Oo#EJWfP7|T6t5Yv``y`eBF#u)Ck%C*kr1!7 z;5Iu!BpIm^cd+)#Sz^jnc(f`;M)5ijgP%Z=WTXni=VZ2#5U;*-@n|j|Y#Bh#`&46N zv~47;uXEce-r!%Js=OCX$x27-T)TLtON;9_y-)jbEV&wj6XaeMw?FtSE>`aO>jJ1-xb&W*A z%VYcUgl`<7cCje?A}PO~oR8gTC~?x!(!hLs2Xp%NXNG4hq5bmQp%3kiwNgBm#OKIO zw8gFR9m}&bWq?hQ0i+8@(N63fv2PtP_<>*j`YDNe&k1Xf@)OeC2~yHD#HzYsj?n8x z?2p%?m-8dxgj+&ZIbz$eFzpBlcf!6!H_*ke-!=zqZ~_S%-?UqIK`+qr4aVEFXc1m{ zds&76TAqG0%3{Ns13FYzss7LbJAx8sfbeyMoRiAZFOD47CZyh-M-tnLU?>SIqEiaV zZhJlB^b@QA%UF(=WIwwZLRzdv?WafezXPze%$t6X5OF#ISPLEV-A0ny^K5J_Yycx< z|LzYGCUr=_24~McY91aua+1KMDBrN3jfJGS_O|}1hN$sD5)(^S9{GY?8QIYRd80^e z#514yXa6*rgcjlnRy_N2a=yNm6k6EwS@&U$!^1uj}q;ZCq`NB zyDCzO0_=c``KVt!iCgciN_`MdlG_;KrK`_kSG7~h`R`8l_q-h7_yiq>US^HSFAm@# zeJd;yZMU|LLFYii=U$iEK~2aqKs(;YSsY>;sbQ5@uB;0!#1ZqB;2*Gz!Q_R@&!6!( zLXJ8-10$8gup_q%Hr<`A?o$%S9E7CcU#{G&&1hpEl#+lfB^G*jKEr81%X!_+zde?? zap9C@b^GWfqd&nmmlz2=e2l-zW)}hI_{fnhcYt`gt&(X-IJN*Z?#a{|EhPP{kCz+0 zsAgc>(PgrbFvOtn*P)xql#wIlu^pe|ZQQ8_dWJ%c@=ym&x%4kacN|_p;w=3Lzr+2X ze`P<1tlD%VBxGPFC3UvVb}ZeL0s7Dts*TL&y+yXcG31qVca$BY>1f9mFV{e}?ZF_a zlq~tdR*cROPTNM>dAG8i^2jZ4#^lLgd9{$dK<26pWfdXe`j9S? zJS2bHb9Us&k@@YwTMDaz^twfH4%ug`kI&A2$7n@&-V>B)M*A!|o;fV|o+VZj$><2_ z&+5x5I$#xnPO<)uRj0E=)(F+6O|_!>%7%9dDQhuku{P2ATw!2{Dx02K$EoWxu}qWI z%hEWuCfr6M)~yIkkA)TeC5c#ypv~Fee6Fg|MI=yB+V$RjjrnUlo$6?p^6jsZ{Q)*E zjgazt^{)JS8ac7BLjEodsOVi)t7{|8UuTiyj>SNp1}|c3@LBoz67>n6S6=K zZ*yTsYCiAVxVHu}UM8-Njzd-TR#BF(bib(?#TskN{1rkPHR`@Aj;IX?34s}tOQ{unjHO&dw?k>iMB?2sEP06SQdJ>sB~lF~ zu^(DVAy(Gieo(BgoG90|mBVPq3b5nM6o|APocL&1A6x3qlGPnG00yet>LT zj2}fnaD;R)kmYg+jM0G%l3p#2A_Lj2P?SJBC!iqk%C)6s4AKe+KID)?kS5GoCgTXg zAE&YyKb|a4PX`5iY(KYi&bL&v27C*Toq^4X=$2F_$%q8ZW(N9WckI(TIe&UW?k*}* zCT%HsqdLF#apYwWO*;!p95iYW-_l^eunpyO;Xhu)*4g!p8{xW#9M-xbL~lbW-lnNX zIv(&OEUg|ZHX;GXNAT@h-iKPtnW@uaDBt8b4=KuK60vXJzVn)qUOt|yCXCFmrFJe< z=sM}EE0g*?*x%ay`}gmNUC5`Y%1i9D2R+R zNYwkHOm?q}3<9=Qgvy5zZuy_rPov?@%gTR_op{=z7SF7aFkHH7w}@L zuq)Ds_!x|O3b;%>Mx06dmM#AFibQ;v5oe?umcF(lTAky~rC)BSeYD7^8K{#d-VfiK z<0ibyzv$bSc_*LmC2%pB>Wz3d(mAo!`;1nGBlrOjZgj9Aic+x80rg@Z{hk)b8yL&o z#SsU#?uiG#PIx#^Zbeb9`|2nOmZ@rDv2_Zz#iEw7G7{n@`Bn%zSsM@gB*13 z0-W*Q))0NT6c4&dX262EMOa>#e{vxyu1fpIuNVcno+_2FMf-_&fVhF>D*&P_Uab?{Ono(Oh(Iodn zcgmV&vCB#Sq1Gfn*{XM&(LF6;9|o&x)ZxZWDxGxBAr^8z>dl4WJ}IbL`^>}eAW zpiVz@bF2%%JPXahtV5eT3!OE4lT`a$L1|biRkCkV=a=d( zS!y*v_a>!QvRsmu*&t(<^~YKk$F+wVWB%w8|9dahV-m@mOw$O9Tt+xyEq*+}$~nma z>!82!J+Gt6s-ZDS^i084dWwk&T-#qW&zkXM(4d?!@3lR&T%-J;ap4q6P$ z&^6j-7oOFCd2;0}`P(b?w)RC?f+~fpyBd~Uah|BrJ8c5TC9+3p5OngnNv zwXlp$yK4FLKTOg;Kw5U=t`?hNeF3vv5GIfh7L#V+3J!!N4gy&a$`a^(An*%xos0cMO`-xPm6mvL$Fdw%$0$lRv=DZg z*)FIdHFsQ4)lg|-9(QPtxq0^NOSxvuyfIdq16ykUz0DkNb|jE>|E6wa)kUB&on`BI zH4Zix6oiQ#Pmsl;a|9cdU;)EjxL#V&4g@6w2~i@K6(V@dP|ZL?K{)9k;HiS3VzGHA zV2JVonOO*Axde$UQ?L#(ERbj7;wU3mDh|+=?vMT!)uvGtM~KY?RR(G6SCZ1Son1+k9>hcUgt)Ipf8VqyNlgtJEBNO$Ww zazN2|(%8rftJiI-x8Dqb&Am|ishFI2-^iyh`R1-hi&Zt);$oH|^IZ|{1#YVjQJ+tm zb6ghYUo2Q%B&lEqA8c1PovsenzxC~lNf7eFt`==#wSwPZzxj;jGbnXJfW%#E;;7U4 z_vzC|xAIvGuWPK}#iME6o~_>bQ2q_%viU8+%jh!6kamZv?sJye^}hP32{&ELNz8af zRZo}U2wZe01UhqRZ_aowD;F(th(z@-$Pu_`S(O~*l6hte-v4K2)Pw&I^- z)Kb+-^0Bu2)yFPn%ms~Z6`z-jV;h})yze*%1-^9M4ynN_HOg_hAlNIxgw%l(!$&i# z>MXl=KcC}m{J&oV&4V3>99Ti!_OBR~3}y36&D$CctuCMWim{&K!qKD0;?%g$xx1!r z#yS+O_t5_Ax3GYPpxhoXU;tWYhVj}h^lQ%o{Y&U5jXRj0e9i0p3FZ9mU`yigYijIJ zovZSia5a<-PKR+yaSOsFh&1vu!z@b-hq%v)lwfu619;79i-;r zDp{1l5&IAWmX)GUiJ1>YbSXw1bXbvf%#3^_FN$$8H&3zRKVdx9)Jh7m4k}i!x`bu} z*s$>R2pNYCP4GC5D_b6Y&TL5ulWgPB30LA6vi%exm&95qc@QfnVvY@eKh;1&P6^mh zI2lFtW}Qvu`y}BL9xDWBo8ArWCd7Cn^&B+_*^^3(){Q42Vo`vN)SzieE$;aK91pFFq|bP$fHTGZSE8 z?p!F2bI;iB0-OijmiXBV@kUY7b(-{$Z4>>}Yn-$mK49)eRB7bRn|DZPfJH_u^SoDB zId-Bin%vya#DhU9ZowWB8@%4tElw5Z_%dQ`*(jsMO2278>s*Xb6i{j-(Tb3zMjY3o zWOqs<=?57DjRdZR;_etHvixwIB+kgiVG1<-^*#EoK!_y?Qd95|G;UdeO;jM zlgSQ$7wkR>%jg0r_mdqyKDW&OQhNHa*egjq%G~=TsXjfSd3mySNDi~`#&j%GCieDM zyt2V^`OG0nN7=j54hw%pw#;bycWb0GcppV97a_}Xf|PrFGMQPxh7|>+(cdJYtB(jN z;9Hng`TP=jE*At#k``fwbeSifu-Xz6OQyw|*9a2%jROP{_R5HKQ?lplyU98+4oyP6 zI04w>EL2@}i}ZE^Gv7sR>?8f1uzuuDasNxs*d7w7RC4xW{UC`{Z+4A@JM{vMlE|rB zA-d+UJ z(6W?}_mtvuv85Nn3{hYD1{>Qvj)3O#={c552r1!jj&Qi)C-|eQa2B3>Ui7IE8I&}q zDVrE@47nY(B0cMTTSsMzXido^Ga*IJ)93jml93#iob2+oD}`Q4s;t3-D^xHyg{cKT zcP^(8E&KdGZkK{=i^v0^jAkP5I*hzVnMpp<>kh`KTX>2QAG9xyjbHyX($=*?Fy5r7 zRd^dMnh{%}lB>(gE0|?6DAx7kwcjvR$Px4A`X>wvj4fGGY@Pa0qL|6|!quK;LW)GG zR|WGYgA4SUHf>tHdef+FhAi7sqK08@9~;+yEJ|v9O(pA#Ra$$GVMp5XVDlJNZGlfS z<5^W*2;Nnks^}qqG3}%|C1>j>%`c)Q`PF>A$<=I1K+PF3WPc50$^RqnJH?PoB99(@ z1X)YGs%4F_V|4=oGIY2G-@++9O*sb7>v)|?SGYYET9F$r7|ubv?Sj=iOMb~NY0zFN zISyLx{<2_<1xCv>Z#vH%a>LmO3lC3uC6FbfMuNC|u!XQSI;13@=Hl&dODFzv*gB%0 z&ztG1nM1_>NXd0a+j1&v_seMSx4pwLVbue_0BY-t44bG9j37V_kq#XzEG))``w&k8Q`=n>icA*-dH&*hvj{t4O7Cv|BT0aK8@M zv@Pd(?iFx)lJwZjo{-S84p?!hC)hTK>)ee@X=a8q2s`3+Hb~~R9(FBSJ+S;hemd9y zi|-kZhF2*~1S64-rqJFM-^0Z1%}C##Bn~zt3D-iUFca;Z0& z=wBTSExB&q`?h4xDwnw_ZS#()b1?>gM@-A)JB3VeF(N7BEL-FH3Gr4z9X$bI2+L6a~u zOakU;V!;+RYVwM0walD+q{q|bQGA+&>-I>PmLWf|aWM;ZRQ0aD_J>G6 zg}oC9MQvD%V=75J)@7a@%Ty62mNR1%<$L=ou^M;}HOt`wRSlG6&WXC$STkYTu}V>@ z-Z_+rPV+cDtXw)UMCC>fS2R1Mn>V9sU05PNddzo-|y<9o6cCplj@;reI2oPUZ^lA z&s7tf2=`$LG!wsm{pE>7r&Y3@84G3rlLt`7G>AzHwqwD;K@4%(YltC^Y&xL3OB-?din|5MG$ZX$ z5(5gfxqBPPKbFMtZt!r2L$n7W$P&V0MjbN<0rh4EonrkB4m2SY%@Z8Ns$Z+LVBrCg z(t{)H-i{}6=$jNBNN-EyF5~I*&V=91=+s7%zqWzNG4{r0UJWte+*e^{2{cl| zHQyynK@1Z}Mk4=tlKcZ{VLpk0zw2OPf_YnXGVuQU%eZ z!u;L2_%K4g!en?J1g{0(0@suC1wUDu$R_JfN_uvhJ>(HHK&TfULtzTAcn~WFIw8kC zYM7>YlT(s{^8+U7pNhD_2#L!%~%k_$THC6;LkNhHuDW{d=Y%_qV zgGkgM3ml-;YU=hm$oRudLu@5sbtWV2jMO=SNkN^@GLA5NJvb;=Y?jU>BF7Cw^E6F;x} zAa-AS*hh}oi8`fz_^XdyFo$|Ha-tspG~&`V?;7=pi>_bbA_@CI%5Egnh1%-TfL^0( zJ1oKsa_BkIwf*#>wtR4#?P1HZ1)JSm=SBJx$kA58h63_ zSv4OL>RmGHy-}WR5o*Y>qX?{CZXc;46yVFd5qgzG-?gD1@2sxje+y zx#{6Ko4QybU^ipt*RI`X^XAP^mdI7{jmlX>&*~53#BXv3=atf#kZ)5763s+gm7LFR zri4g}#U!q`K(P|vkhq>!N{Hn@K%Nv8C|06LlCb#10$6O8t$h&jx2gYG4dg4-a`3Nq zB_LCo?{}Sf1(#a7L6+P2D5Z&i;RJ$;LsN@b<-IEXtwsTnsHZB2(P{ad0JwwSrpuh? zI+UE@D1c2@@``D-y3;$mJ?}UR1@#;8h)^NlYU)xLoQSpesgPAm@iz0%Eh9XUA0xD9ZHvy53lptM@7E0)$ z1X4&s8mT+`{P%2~*`39=eBb}QO6IzfJ#+3kXJ+Twot-%|bLK@Swr9tbDJQO^-Rqdu ziB&y*__`x}<@gylslAt^bD=WXl9ww+iLLmIAKlZk zp;UZ4xxo)(dnb_JI%xgf>I;(^vT^~ba$ruK0gvnBS!|!Nq};1m^F&XY+6B^apLy~@ ztf4DWyY>u}C~X5PRz6C;y>IUs%|D;~5eum<iLPc7Gon}y*wUbF*MT7^Bls$@5}cPGSrMKZlPYTiIi5{p74MLpPOi$ScvF^L zzG2<4hw*(uzm&=a6KdfVhqnK1{_cG`ELN1?&0RHYsk_ic)Ck*HrbgGGR+NYzPK&US zm}Op_Q<@^eDxchlmbY+>2-7qN!po1%BBE!XCC~3zUm=_gr`s7w^3VKxWRyC`0g~R| zh}f>V{%{`$4)iEvZOM%&wgRkj%vxw*$qOXHHkR?}{N=mYl|! zWps&$-%NDU%<}lm(Wan})zftOf4PmB@4rYN)#Cwa{48zin-8Xdm$7LqZ~e{oJ}KrXJix7p^}^MfJ5 z@Qp^DZ*%2De6CjRBJdRwUX{HE1DiMxzR?^GzUeEbzGIv-aVl^4(7-)%&crEJ1Re?y z$gQJ--!8xE-SuzeKaAe-|6s`e!g`PXYuU99JcOxyfGyK6F*r?-_^EyGIU(4Z#RX0vd>P3o31+hd>gym`MCC#FG1#)OsC*ryNUewFZ zJu{h>bCzI$n;k0|kE}$S?dS}mEk7Fbc@Atw70$gBP=~}Dj82@OL>q+npe6j&eMzeC zePMp899B>|=7Dm2*sEN*a{t(wLH0R5e>LcBBU~S4*wL(VdY`1oBiq743xB?;EVU;S zkFt>c_!|{cY&WeqBG~_!`&~R|d;8_ewfCWs*tq&&74@#y>BG7Eq`@<;Q;Gbe`ZP)X z_S(Mm#hyg!`)hno+fOK&Nq7TLsNt|}{s9@4{A|gR@9SM5H*JM9?gP93Q(VUIQr1K6-OJ_VcVm!bs?v$V_goJs z&bpc`ap~+!c<$YLm*wt|M7KirBTxM8B{1UCQd%42^LX{X%pVoP)Pc`GquQ2{exp>|5_EtWZM`@crTG3*uG?);V))w@6Sf}M&DtDn%Ml8 z`wZ=A;E(=0ttv1vzo#jW9)&-8l%{rJh{;!p#fZNiJ0oj2LO^iR2?k&rGc4ugcB2+}0K|H&Pb{qPjHx zQhWRRkaIstBMEm95{a#+mG1y~QtT)E76{R{8HQCPwguLBd;#ceWhN&|9#nl3)tC$^ z$5*~>Kic%u0YrbBlo6doB0C8N34pUMNfVv$pbBD~zR%ELyZXnGowm{&DZCbtG|pIT z0Jx4PB#?=+WWUGcL_wBe(M9f)qxSxsfgU9BBL5i_?wm+g8p&+e!tl#v|Iv&jA3EAF z1Hl2lWTwkqTWS6ZRMsk!gSyv^QJdcxf?E^6Uo@I zRK)?#ru@jDpk#8_{)+iwRKKAq`e3jaw6hEL+tEXP1Y0LNF(Yl~G?+%^1T<36d zxwxT&zkVJ?E{nb%C5FsF2aSW8Mn|uP!@?QSs?~KFXVy-mH?4)074q;8eyd5e;ecIY zfEN$&C3%ixl_xG!JmEtGHBdb)U9G#TPOOh=nb|bw=2hvf_{aQH5C1*4YZmg7wxxe} zj1b1u4mH;>w-8kH(g_I?HoU72T3B=#>?`OS z#CK>__-X1bb~YKZA*Mp>c&1~^z0%d!l*`6+UH zM2HY8yN`MYJ0`;3N+x@JeFDM-XW+F;C1=VN?v1vkw2_B-9ZQRWkT}+4nS_R=&Jj(c zzp|5%a})f`w3);|Spz=rd4AH`W3Pg?zDSod_#r|YR4iDe;sP?B1*z}8)Qj|Yx^xr& z_Aws<-(T>%j?De;9~33zcmt~(dC`)q6H&gk>F8rQ^JQuN5R4I8OBW83?e=!eAo4k1 ziFRHV$s~FhTM((++0I%9IOSG;&&rFV`e7jw$FL&#E|Le%&ykAf#VajpUI6-R!%aGE zoT^wcIL<6*Wx!HC$4SPAEQ6uZ+`COr_f9AGMbA8>UwcZT8#7uMve*eirZaJt#GUVXhHF32a3gH^<8Caln z?@fvoT&gH*IgNek@~K~|(HF9pa+{m8^4~}?tZiEQ#^`Wm8z=TygY^GT)SEOC{Is>6 z7Y%*svD``mhZ$+4o{I9_tJTdYOEgVW2D^063m;d$bLrmXT&Dcu^3Y3fD;fT54h;Q5 zs62{^vSjXyirX6ot9C87_kmUMx21FE(QnPW!U)?VX4O#cX4 zJcIK3z!fr*WL}*$;1h_|IG4DmOixs%;}Ok9U*92BAPlDamMvSZN)E7N)i2X^a+Lch zZ6goPh$G=xCr76r((TjN7f5(DAbI<3g8LgvG2y&?W@X2oE1_6kW`m?{<}^aE@nV~j zy-no;TkbVmnv-Rkf)r`tXUZ$!l&nW6XO| zzQ=2nN*fL}`^xfu8{x-P~&5P80j6QkSo zfE{~P1X1^4sslfV*1%3=wo{Veq`qC7oy&Hj~NJK=#t51F2PqAKj`6>IJIpr!0?V()Xlvq0Q8(?=M3dHVhwKs9P=r zrY}w2BXFksQ7PJ<{oMWt-{#FGNfT+ChLHCU5{^%Z6=uu(y|q}OBh-;E8)oZUt0g!M zwr?{o6(Yw`o!j6vxE(7*X_#R>+qcuj6@hk0nsQ8cOuR|-eV9q_uVF)HGa!{1eGizR zEtm3Q3wqe+Nko9*p5zOD(nf(}<(jysImloWPYdQSqZG`XgZZSl=@!iwcyrO?;n_7K?pw$3Ro`g`(s`_lv7N#YCKK^I*eld25 z%dO7Am(}^htBLD`E6Ok53*}yXsHE)oeMy9QA61m)A^^PUigLhZ+S=zgC9#%R%%_*4 ztaO3CL#NDNjO7Yalqc#FL(SUs3punAgvW@`jdfpdF+6X;`H@N-*Q7)JtV#s*o-6(NYy#Ym8+{30335x%qD7Pn1?vaJ&@V5=mH~|>`s{&l^8&Hrt z{zaE9fkk$TW_(TH-mYJ^yzi%j0M5I1NYjECzQAlKEu$_&0R+Cj-zYf4W`j zn<6+AW=zqi$luW^Ha`Q?`w z!mZoJ;g#g%iMN|Jr6!ZUNX8Y*tBc;L^{uc9yMj4Pk7UU=3R3b20p>eR%~sH*Dlfty9g_Wg{xq+MXAV#*66EV$NG-jh^VkAWS6W zN(sB99)CHRxP3b%Dc*iUs-Yy$AWW|uv7UIms`+%RDHeK=`^*{^>C~+YeVZZdJBbyL zp+PJpMX0x>{!9C^vY}qP4vWB|G&v$-#Cz{`;}II`KW2=m=A8-u9-KROD!AN8oiI7v zr4L?XwW8dwDwNBAR#8575u;c~p_G(uaB%7f^V!O6hlpCdNJU!Yz zUQx!0p^h-B_O_32w4{>&?XfjuhLRqN^7uVl^I%|KiBHco;OF3qzBNLC;7)^#uB+Z9 zW|F9g)|Ga&cIX`k(lG+<3^O7;`3ww@L#Hkb$VDa1%vnq-raJu%3e+`N7j&+*;LHpi zd>Vr2pCzDEMwc9DpaV1*K?1>l0z-x_I%!=qWr2S6Hw%E9WFVZB%Aia&@cII@-wXnf zGz!FA#at%A--iqcbiEh+{^Dmzbz_Zc6`}e=1Jt2ct@J=txENElA&o;$3J6enBAt3- ziaiosz)YP8&c7&OMP}nv$+EsWMDPJumYL(|4TP%(ge%1 zNsxAe1jV;Pq1kn*OUS)qh7`5lKl#FlQM>*GBZ6!1#O6jUH0nD2Pg zr9VzHsOuvtzLiwG(Xr}i$;^F zO`t~)TstYDi9=932p|JFrIZn%a%d`z;u0XDs^(SFBxa6INK$iDbG0kO$42X_*h|7D ze8#6L0H0ecDGF^x=#2(iQ7)kr#N8beQLB^@qbX5YG*HU;PH1|OyA@a=6%Gsv3exIX zOa1)*?|d$qpH#J~qR=eQQ#Y)NqPQ6ysy|V-xqK*!e4!)+S{bmE-*1XClw~mVCPj&I z86q}FRIb+)8)=K|SK_)bT3B+6M|q!(Gj!twC7!d)FxVEwRjf(8a?x(D(j|RIDaz^c zj2ea|! zG`TaYs33_??X9Y5{E~BK0^VJ44DX1abZ0NDaP<}N%ZFbuZ;0jyhQX>oGL~1Lw_|WO zqpkAx#T0{wpJi_)%Y9WXI4n-Kojwa}LMs}61$I_lW^QH(j9T`!f7-mUiFto~(8M(5 zCS(%uf78c|@C42UUd40FSc?#{-|b19CO>_}Ovn@P(b|^hn6XCK6KY0y0zO(FyBOB| z@5qq>d}<@sK8(mcjfm~qTTbM?tK0CuN3>k+o~I^@ZJg6?qkBqLed9D`zMY~v`2w15 zZ@hY9P9p8<=7R(ak>dEyatEx&p-v^cAFPQ@rF+==>q((NFG8uvodtVwo|c2IhNghng9HBrT00;VyMsABSn~uu`&A zGq~Fg>cDa=n!YMljHht)P%zIiVmZbU!v(RyGOziujfL+>nb36fv0NTs>UQ`?^D|*e zP-5`zgygB>*7Z+bl{;c7|A}Zi8gO|S5%pDRBYv{+s@Pl{8&VQp6_>mu`l^WYlBBjc zf~kzDgeR8B8+gWZ8Ou59P(|^L=Y4;sEZ_a&6Tj?sJpcDM@KCGW?-n-9=U1=~b+1-! z{3$uehDjxld`sW0oE@JguD4@)yd!?FfE$lVjd?IjK+)b(}hsEX(b{bjBsFaoKQbh?TH^ zGB-*68#%R5@8tUrCWPy`SDJ%j1RX*Mijl)VvvjCbpvZgC2H=dp*SFDLL(dY#^$K?HEcXBT6$eZ z)cZmN{RV6~Fnj!5n#ND%sGr9FmfWA?YLVR2Uk5SD^MwG@SlyKG?N}CVU6UluR0i6y zReLnfkjP-iySF_3_=K(_CTvPS+>f-+XVt`GQN&h=FP`$R} zhtky4Y&9xH2{wLfR&_UYr04|N42Puun0U;cE$?1~kl$===t!6d6UWeB{=L}CykTbM$Nk!GgtWhsa!KCtgFJj|g)H|lhfCZ%jwQAKW$8jhd<>u@7GC&H;X1oB$PJmW`K9^lUk(E0Xc>L4(yeK^#^nm4%Ib9 zRH8sT-DuP|Szf?DpJqbLg~P8!iNz+vBH*}uKMbcWZ1+GDv`ALXtp&ma*nT;RwkyT# z^#Y!Mn06#q-b)TSuOP$RI&d$|feBt1dVH+K3w*-xDcL}lS!Zw@3j2dSxrzTScXRZd zP4MqQWG(pqj2TIA)IG~_r$ttyb<)B_+s%G|8U7(po$B4C%ZK(;hl)qayH{)9lg=cf z1ShzUe5=Qc0gl{gSZ07+FJ(3@M3)hPwe94r}`DsFnSVUujUxEJ>RPh|Hk_8VpDuC$pvZItyF z5msaYc>oKq2=m@gVv4~N$OAIN)MOA9$zu%NyuTxn&f#%Ia<*%(H-8}3C()3?2{E^^ zLLAoeCCs^PXQgE*np=$f^@#oib9aGyD`74D0$i(T;$( zI3{Hr0dF!a!Z-rn;+T{-EN4B;7*BjG%dTUUAo;4>AfdgI;uxyviW?=8V|*S~tee9p zgN4Kk+p)o6hZf#%#bKq+ zkRM8j8>R-gm0umB6iv9$Q$?9mRSf36M@w<*hl*T2S|sP7!Gp*Dp(tT*2|$%q_a`M{ zgd3RkC*^m(O0rv%U%758A8~>cE|^Vt)db}o4m%n=P@iZkvRnx+$zgDZb93iAojZ@+ z8KIzu&tSrBTmcY*K8ceiku^4nHA%x zeM!X4g1;o0JaCyJ>5lpHsp84MoX0W5cDc27hsedgT=r(f7bEkfeD~4B(6L#T-HdSr z94?c&9LJ2je3WF&u5Ly-qCGq1&LNUiVLme*Z^JU9W(^dc_MS=GiD8jH+gP0g^&Zdr z(fSG^GeMcu)0#y*=R^54Ke1gnI#K(==bb1g^1YbC^W}ruQ`YLCyvbCi62s+`hAPqc zynN&(4x4mC-mVP}mf25>9(G&4T2)Q_X}Uaw9SeMZD+L4l&|9}QkNhf94&$DCyjpso zJE8Az?Q5@J=XO~5D?$hc{wW(d%q$fw1DnK_VF^oFF6iTUGr2)5k|X$!g8^U0l6*uwlPBe$CqHS&CAK0jCd#v|7*FNtKBp4T`EQOjd736Ne$pbBx}_w#6uo)0 z67C$4sfk~M)9T@3F*t`&xb^>5vTSh7$3H73maPRKemrbq!_a-t#jx-gnA* zB_na#WJNh>MnZA$sMc1*eexzndd?m7KX zQS4*2*3{FC7S=hQ{MX>>SW$wfPk)_#-MJEHMg%qRndgFltFjKm0J>sYYAoMcQ>em1 z!=pfyLwG774;zfQNludFIyUe~8VRe96%TFluCN`4A_b3WQ9(t zmvZPbv@jSWNQyzy>uf^0m;>p;B#n6wOUIE%R=1`wk>9lhXOl-0tr&-OOD9V#NGi$PyDXc<24#@dWl>TT77FA9tWoJKM@!G?=UV(M< zIF3D1J|_h8?^0J}TylQmvvj2{ed%n$`9YQ{jiSe~N6(!%_ebaQJ9-@Z!PZFT^$89u zVe`yV3366+P19m7c0QSnF#`{+cDE&-IcuD zjH%1t%ovs^9`rS15gG_X3+GC=iDp{)?@{nn0my0d

wNlt!OqjOYJkGMb8 z)PN*&+2F(#YJIY6zG#PS`0(M>9W!R$ex7Fvfxz-WH4r&|$0rr|4@cRf@$eZM67qxX zSbI&rLo|HJkeFx2F{4n44K@pR${O zaxEPbGV~)ZES5oeCuejtX#4d$CD6_?;)OD_`ZVI~b)a(8wS)Dck~y!<*3~~r7gG)$Dkf>3-<+Q5a+W

lNB5D-(y$(I7InPG%KV z3pi83t1`%BJX#$mI5EErLTl9geJ{lVAAOHDl0T(bE*Rld!SV7Q8c29vp{v^tPFgN{ z*#0=w*6(T5NCS&tZ0lqG`e42~PWF=Q0x27dAJ5EDr^Qhm`<^W+Wncq+5Hx;R?NW&_ z>;nXBt*x&shI^g;O&{-Z%3h|^B-N=>%XXI#u`;Z;bm{!uRM}uctz@%qatib@HqeS^ zk!=cosoK@g4s)2%MEnE+oAi{PpgBzrim&~ALh9%BMj1z>ksfSZl+GPYUcm~=w?uXf zY%pA?_-^BHveTN8GUYQZB;=Js66C$U5s=hWG26OqbHH#{QxQv)enApIZ9SG}(4WKD z36g0|Rv7?1`;z%6(>y{hK;ejP2>CTrCXW+@j297vKBpy0twBlpyk5g7NXW|yb~)rd z@aTO)7L=Ai{}|TSuTD69&{<$tuzf(RI@f6 zX$N$PiN zpNn#+{$rX9H7)j|t=Z6d^<0NGwyQoK|u zYaA5**2}UC&i7bqpS1zCsGB^f_??&f}@Sx~!?{sbLpn zU3wLZ`9k`ut61_cLRz%QJ@=^b?Guusc{6354(UvbeP4>AY|~Q-x$Sf;rU#e}a9ji% zgz*;Xq!z@~0OC|nJD9On-1n=e=Aqa(CZ7_(S?-~7C^kpL@Lvl$b?UU?9$@`B%yT)g zw6caH9>N5-$5=Qqq5ckdy$>fwJzl<3NG#lv*3;qjunD{&jOtV1ki)k2lHBH-r5$mI zD{BKAQklMe$Hm!g5aol-|6SmAAqQB) z7TOdhWqs}GG*Q|0z6L0_&7`62<+hnr5DtGBDs0b7u5C7+!C32jsKN;H8a|sZcag{P zPFSl{TDv64z>3eKcYNCMx!zOZi)EC0hgv6`z_V4~DBK32EMT-!hLJX?{VNhbT84qn z@Z^9`Yup)UL%+Z=El_osi(@tMx`+m&QR8?X_whQo551^$`)j}Q7ky?OcIatz@eM|o@OQ7=dXyS@qUfHh3<8wGzOegvzlepF4 zPN3#FYS-R~W7SDnR(f;NJhi*(KGlA>GXln^s%wo6$`CCYqjIu&)p=;cP((ESi2ZNF z`Q&MafbpDz7s6Zk2lTNI!IO8jlkl4IS&FX3vdt>}K;+VM_#>;!ea@+;Ca!2beqJl` zC|b1W9Bl1l5@0m>|2r1oR3SiGr1?{mJeD)8!{@?lS5PUQ^Uv|kA&2KxZrEquym@eN zej=alqws^9?g)>~NCl&Kx=Rz^ii&yrf*S|}yjbV}$y^`7 z0w?RGa`57U6H=*#{4fzm)?JR1Wi3o!e6kWMm4vs6^SdDG-kVmSD;e8MV$47PYp{2N zezwv!U(mS#2aju_?F*>^!*{Mh&A$oq95}2D^6U?*NH_VhZ-!2A^$bo+p+D3v9-^7+ zK`l3dyTp&{wJds9oEs89cdlc%PArJGewcxp0>et_P+K!e3^th7O3Dcah4BH@62Uq< zxSw7z?Au3V*7%`Vtdm;2j>c`KY-EY0J~0zuN+uICfGimvBEhmlJg*q?;MqB7D=xy4p$PKrxGDQGcr4X!*QoF|ePh z43jhfAYLqlkVN=iWDXYV2zeo2o4H6PY!k;!hK@w?iPtTXSl;ln&wb<*)PWG&u2>po zA?$61bE^H>@CMzAL{TRK(aG{X42xEO$AzEb1yghf@MUUG+yO~fQB3fH{~ z7-|b(>in7m&%pk35z~xW!cY#J4bwnC9+b3=ouD^WaN=$JxQD#kD&*_`)LU$g^M&10 zo$tY^nn-RtrF$(Q?HsVo=g4X1W#&SCM9B9XgYk?ZVe+aP!rXD#ze>d)%Jw7ZdjDIP zoBbEm+;G#ZqYwc7v${oqGl}ZOU!G%ca%0+UkTj z&C+blXI@@jgVZ3AkL+KkR-UuIaHuYztb2-SG5lRH-eJ(<)B7q;s3|fHKTMzr-=%>- zBOY<8n&o>-{TC%r2`*}PCCn=-3FdxCdu7hR_(F68G4A2xa}?t-A_C`g@GGdMbH8Hk z3>%@&jpgSw9?K1%hM`#4n4}u&g_ZVT^-NevD_cY?VHW z&(ddWutILbKI~c&czNMU+Nw58V|0^E+vs8YVqD8X44ucX)UJ^PuM~$*O4ur^7XH^` zg`VJNj!QS=>BYegu0~R@?4583{cmK~BfmImU+7$aG$VMBlUz>{?$~Z@C#Rgm8WNX% znN$xv5kFN|rev~%(plNGR$%RtI@X}4WD@Wfb#-q? z!9LYc5r#4(Y3E@aA$dtNM`$h59w9BNchHNFWe3+TD3UG;&k@=5PFtpIel1P83~g}C2+26w4DjX>Zk4CNhEx}h z9BS|FPNc>&R9g$3#U`W*Sat}!d-on#jZi)jN)IkN*p>}=^}`h<*oOxz9GCvU)*EG}n~`EO2&NZEOy| zaw%4@w=yk@;dkrb^-cS1+}%*7p6gwAzOcU(1#T=WtxdQ7B{s!5)C+>}E0}D>YlI?$ zyWTKP{-rP~aV-@O=D=*XC^l9tZfIM$2_M+A4X%}nl?caQ8@~yCLbYpRaO|0l(QQ48 zK?6cRMcqNQn>g3diHb#HX4Vz3;kZh`>5DwDJ+)d77j0=$skk`7WTh1Jn)3PFEcEC2 ze1Be14x!0vx!|pK1UTjT_B~<0Y1j;!o{@R!(!4IYSZ1C~l9_Q)VzJ~`Faj9A zhT&(Q>BYx}`wynGhKqd=E3qR;Q_CYzb6s3(%As?~zX5ZIZ+r)Y=E~3OWevU$n1kHC zsPT=|bT;CWu6pjfr~!?zeHT->-h_(X3mY;6?z|>9tZuidpb?BK?x&OYU5}amzbT~= zhtrY!yXDzG9i!7I{(B(>jCb!0#`8vz+5Bd@Tx>IJ=HAmUj!s>0?XV7J-3aX|3@`A3 zGG=gt_!`&?YXn7L{F%WrpC@7I*4@2$3z)t)c{-8%hITZ}^J^R_&O0`MDR%Wms)})E zUNFyb9H@16JdTSt<{|VZJ@h`D$j=LK80Np;EhJ4F-J_~tZHS96-+eRXj0P=8X>3k7 zHO2TVP7bj88l%ut{EF$F0W<3fBU3+!VhC-~;y33bTE&z zvKb^z5@v}m5kf;mY=1MLi_B~AEdc*9zXAo&&YSM@iDddD!H7>AW{m5)@ zHB{C(8|MCFo5wwMB@`?mm9D_P`JM8wP z!^tGIlff~bO+sO^O5Imso8I;OnVj^>Py}{XkV$GoXUM>F8@ZSbxs7v?IECzF_>|lR zwtxzb1IymEeWJRjNZL+XU5cV6A%h1Q9 zE>oRm=9CfjcY8uEaf&GO&2q&SxfaNC-2FaGKqw0(VD|@U8;57BjUU>uasxsF7s8~+ z`#4SPgWZh64+m3$VuAb|5vp)E4L{U|yt&Q`Seq2QMPJDH5(^mWJyu^0?GSCl^rYqK z_X?VSS!I~7pEi?{WLu8YETiF@e%34#lhH;OVh*&(kDB8%4AUg*=LOR1kks6^7HGLP zZ(vHWMDysBk6AxUzjNEkBBFcg+gMSH)(G$InJGKCinC|K5{t6hV5`rFYrAQ0Np+E& z6hb4m>$?l^hH;fSsW;j)WE8tX7wBStqi}qU8Dl==jKiJ4n3-}Kpj}s`mt?`mc)3-m zpW%I$2ccW6+%C+<$6=WtIb;1XhjmvNo%LRE*h4m*cT@2XOj_XBQQ+h&SFUvbuwmJ0 zX&68DwZNn1p5DYK^nFS=VqvIAXK?Fo9O>Md4z5B*Fc3p}z)_qUjGrX|+rs);`j>RD zIrxEO0!@|n*y{8VAygFOp==Z^4cH9U&(hu}vDTEc%-5f;aDeO|z&FumrVrr6ARNC; z*2}6%aGC5w=e&wo>&LAkP}xD`3>7K1H;1Qs zz*AQ+)1Bg?$Pf`opN)$JXTR9qb9Rzrls4?$Duf6Gd6XsYH2}8@sF8D9-oQ`Z;5TFNOE!a$tGt#5r65 z4?&;|I#?ljs?5tjo!;F_f8y$VV9Pg$xlYC6YSbL1pU5)&-d7y&A@(NMjnXkfo6qUa zSJI*&ywVIO5M^E-dmY9jZe@O0=DO8U$eije46}!{2C`!rz6!&s$*IX#+Sswy_|-S1 zQAIldoY7IuG(KOos=S+*)km?b$scNAn7^ZM)5@{r9z304>f~q)n}&Su<6qtESX21< z+TK@Y%36Q-O$QqWI(4C8ZXf?DlY%$^o9_S>gAEp4?a5F%Yv9=b6glSkBDsG4Gd zXxd_wOSN2OmpvMXoU!~Qs~WQW*L`ANYuBoU%u2z zIKH`QKR(Qk$+gnTag|(r(#dlGwr%yJ-Q#ol;6mtNJk?gRxudVELy&^3e>tM&anPUJucGui#Wy5krZD*6t(m4(} zw^J2xxNKmkidVofrC2>IT|sh`gvI|MbnEGlZgk2jPwaHM6Y_*~`ONo`a&dnmK9a{K z*?V|Yz~|m@{gYy=%jYL5=OL=2(Q&_&7Ube#phi=14TlH_jG2|gY8pl*zYws(WAQcp zJ9r^tQ+3;V4FW;ly`d=cfAP(1gns*EN?@0yW;I|aRL8FHzXMA@ElZuc-rr!QmXT!P z36~efRuy=L*ZZh#_-a7#beXR{!=z-MKZCI3(2g3a4!ncuU~8Rn0CGYsrnk%-sS!^V z?>H-VqZv>jf|NwZO>2{slwLw`)7w#*YtpYJ;pgw?=koV=`Pp*kr&-pZf1NN8wF^Rc zKUJFq^EIOJx9c<_@%1+X864~B>+-ccJmu@>&oe9^WYE|0aTMghk7F<%UzejsUtekZ zjUr=|7^FWfN9ydk^H=%$A3sAtds42SpFbqTpHj%z*TN}7&zLVo+2m5MnKKo&8VTd0YPD?-=@XUmijaiHJVNg;H{Cuj0aUT&y|#aH zfrJ(ju-*hOXiqC$5BqkF0{y;LLubsFZ1!XXaa7dF;z!wUZl)$n2IweL#mDrv=+rKm zL|w3Nq5!=O2AnWStA$K?d1XMek6t|c(JqKSS9^UG6ZbgxVb&3+HV~n$%pJs{_Slgk z$MRn*V9_FFTecXa@A7DyTMUX&zcs*vQtm_tYNGpWdNVX#Wd3{o`L5D_P31b}WYNqS z58NU0eP44{!|(c)E$^zDIan?OU{3!zvY1rfr%K**Fh>ZLcJ7;@(%8ifhgmI!18>A0 zVi_!5uK1Ohy#rVdOSe>%t4@i9lcp}`{2y~Ho2w4PO8|A36 zZESZ(tVd*fN9@NVj!>4$julenXE!pL7ROxXlwz#`vvDqZvGXB>kK>Ngg5-q-d zbo3wtwazT`ZMhz;ssdQl`6C*JSE}-TRUYW|V?ke4MB@k;3n9Q*rQr29)o>m}#Y~9G z`B^@Id@UbfR!9(IAOsK_fuAL%Mqv5{F{;wU{4J7-Q;a@U$H&G;$EcuTS(Vh|t13|c z__L{069z*@!0E8W-%7t07Dkeqg8&le3sQ1K68Lpw6}aj;?9^-R1J&RRd8YG$oiC?; zfzMr7#1n@Bx|$E+c(tsPNnyYe<*}uUy$2iboH|U?A(cZMbUuUV+B#$B9H4Aq38S+E zHUhSqc5=Xyv1SiS0*{AOek|cr)+CHiI7~~q!_L+N4q|XRNorSw2A>I-t(nsGWQVgW z`5kn=2JE(@M*VRGEQ_Tb_(51oZV{dY#e#RNSh3;~PU^?y70h(u+ke!e`{wh;;kZUD zn5WCx?~L(AOhk;+&xm54MLJ{7KY!yS94M|^7}1Z%Sg7p`MBQuD%=GaDOjsUr_&W2! zrz9T<6)5Tlm+09C;u$=e&H+O;ShoMOJ>^qp`^pMXBdeNA=4U~Det^%Cx(y{t%*1E7 zqQ0ylXWHg~Fd=FKMNf3sch5Ie;R7TZR zDQ1bF)AW`v@ycQ7k$cech+f9#Co?=HGUT2M(Wbl{|31g2p8OqYQgIx-8{Gx4Jl(nd za0*fgBH%&xN8`(7U3> z8LV6s_Q~hDYE;t|ZPqPXD@GgTr`%EZQdoLjMhjKLWvj4_9T2&C;o+79rJ5axq}$S( z&ssc9!O=_Dv=k0dUbSv^_^Q58tFZG^J7C!?8P?H{{qh}{Q(76wY;A*Mme`f@;%BI+ zJqBOkW19&}zNghj@114hdU1(G-)Nc36|5|AYT#hgVI^Lr<(sas$*}m8T8NLyrk5zx z3MeEGi6r%JhIsyD*4yF`Ch*s~|L z{WL(~k#P1M|61G#{Lg*Hy0$tdJ_ZLnVjG+>xCQsJliX)1few8eggT^-aT042q&Q-; zlzw7w!BEpV^s*oas=f4vn-Q}nf0)&&?ch@I)?<}GhRTyRy2zeSERI2C{%Rl8BCC@nCbVjY;;1Dp zvmnoo>f)&(L7zRslDE`i84NuMM=?I0oP=YI9&4$VLbtZa4LsA01|NPhDy20qhiWC# zyA5k>NXE%C1qh+3IMVNZ7+>z_VuMglT1zHe=xRq0ssqrSFJuTRPfuholR~xCBiT}{ z5*#0|_fRgk0*B-S+afZ#@^FV;#xXd>R?HCpCLCD^tZ3|zB_$d^dv_0xt0}`i#_@;o zD<2tzJeI>8QVS{cmYHq|Wb~*I;&K_YNo-KJve5E_vte#|+D=drd?7n4KxrSCYYjeo z4_;8Zn$A1#?`WUrILx!~eA8Dq#CZY{PRKi&K|bd!Mn{fnhs2D;Buc|&J!j?pH&hM8 zI+`JQ;&VueQ%@3%${gfFo4z*D>~U|Ctr8pIyq(x=7$E>NhHD1Pc;*EAmQGk1$iX-x zpzx$vOMz#2^WMO}i!G*sy*AIot~71nEXmO!oZ3#pR#}If7Yk~2$~ZYGrT1Cyl0r+Aj-=gae_ z7op5}gU63dx%cW>{;$KXgk-YCvcWcp?&-9N7chp5JWz>R7^YOl%0CFOiyBtn-x zb*VUchI#}+k>HnO#=xL-lM%cA9F(YpsOG())4x%`P^%tVlPJUVu!RmPQN|>jDBeVg znkMp)Rviy}p{x+0TwDEsRqjft5@{P-R8{Ju4hzC@+;sc6t7u^O^As4$NE?Cf8^EIY zWT7i7#{7@)-*zQC)OOU?OG-z+1}aqA=*?_8ui*2)*34pN^4Np0%Rd;tMvWV9!e`$% zyp_SR^Ab(iTL+9l`ZGQ3Lua`nk8!+HI}fMe99||jzh`)(!_Np-YBoCbVP=Hm%@W8L z4szd2!-wsisZ4NB3U#skOc2fTSm^AjF1d}EkPlV!1Nhz*SbN)1g>A3AxtCWNG>gTF5frj_aFWCfg4LeSKBHN)d zCe|Mm;V>G5)r-d$3o(9Aca8l%R@k(-1ikE{XsJ2&svgQv&A6&PP}atN(al+8D3 z6Pa>Q)b4Qz*jNeMKdF%*RHBHa?>wVPJZ1lRXxJ*dm0x^iQW8b4A!`NQlE0@*MM>5&(dDPKczma{ zy-NZ0JI1S;LJxeS2PX#bH1J1{SkPAn{PJEwyt3oLf{|!5iSP7hq3$7fX2o~&-HCDq@e(LUZ zIn+5jORFzfRC|W|ckbND;=QH*ehJhaZ~f4DeEElGT2A&R)3i5WKK>=fZ^x@4_y-CX7-bJqs1`E(G7?5;%apL-_pkkiO?}{94;c zfP#5DUc~r}bW#!(TL>vyudCo6d0=ZE*0w|N0Qh_!LS;VH##R{=J0OS3Z-s9Gri~?z z9twTvD*@oD$OZ5%_(`E+gWwC@EQJv5P>q*Ex#6q4QBaE22a`V69lE4YJ6v~Kj;a}h zXXTe_{6AwBe|VU-1Bds@QUD!q>PE{jx3<}+vtCatko+xD@m(<^tZ+Ql>Mjl*%(Dz% z(?pEB7#{9ftj&2a94Vj7gVqS#-QBX^@Q8}R1)LJF;LejL*R1ioj8C!MaxU7IFh9yM z7|$*zgR$_19>F0#Oi(x>^`Y*~0(-5daS)o^P4~|LlVd^_qZX+jc+N4;z={nohDPBp zGS>TKHZ+2%_Y4(A5cpgd&_xm@$p!vJi&0-`9AM=Iv;di+}FMK1U{;b`EAPINVpzWOyatr2(NS*nVBS3BLA3p6_B{GM0Z^^h}Qq zqQf;sX>Bir3BdmYMu5t28`k+HR(^DQF2US)!$q1Oqg~Jqj}gUoL-;ZXEaE9)Lj-J4p_s2k4R77&+jW1bUYaeEmdm zfc&TyDsF_Le(Lmu_^J?}D&YA-2rA_d)-E_u(?}sd2m%;WKq`;2sI)JHVM>8=)iZ@~ z;?N&F45TLyn5q+ULG|g5#`xC#t4d(j3N{WU8uQB8hLHY101Y{62*&8A5M~(`ElEt1cnW*xu=@(sQWp@EM;VfY5C z%nE_Ik)#Rdp8%V>^H8LgYwjNzqw!O3&HY&HXnoMQhw3_60&l5*UkMEHk0VpZvTHzQ zT*JcD=0B>jhsiRC+H?jql6DW4S@TdD=yeL?i0&1;;l!7C>AQx2_5_ot$Kez5#&Iwg zx{1er)$Tf}0y;&^`z(I$18cOfGYFg?Cs$g#z-}W=3kE@1S~Tvwgo;f{0qhEN{Uoke z5++xfPn!(_qnxx)S%yV#gyWBMEH6jVscEhU$)JFBWxO1D1<%gRFE)zU8od*U4Yn*Olop zN#)myDiShX3;by+S;UFCjVIUP$EEqq3?lC4FEu@7F%f zw$$l?CX?9G#v7mKPflsg7^X;a9pm!Q(Eq;E=OxDedipC=n6Y31xqki|F?$vKw$oW6 zIwf+H$K3b8J~*5ZvUW(yeS!_YoYTU$Xv)luGe39(t8fr6pS6Ky_5K{@hvjawLbp1df~lE{A&pK2ki!4 zh64#vfiMK&ResQqF1qNBTLH|pPDOfaYlnCU^Co6i_shb8Tv+VDFawH>$pMIJw4n^+ zM?<^=@%5}$`e5x+b5DnOBb1|QehZ@eL#W$UMUt(SFljw;Vij$2f{}Sk8YS?dYpK&4 zMvWeAFv5w?zl*`{14o_5aZGzL9>c#CKdola!qe{*zNOct0)o&Xe9tL+*#jJp{Lr%n zPRD`L!^+*kc!`%S5h|k_sH`Q2azRQ?as3u6+!7F*W_dYkBiOyl!}|$&%?#!F^p8(Qy!Uy(xVZiT zSh_)jvKs55{bocnY&sZR6ne=FClJ*m9gQp@wDSugwB_ygBRh3(@qub~u&VsEDdjtO zfExWKBXNYSDjC*ebx5kL6^_Fp_alA+kZ{RYcqoGSveU4|>cA?OSBAgK9HA)}h$1DYr2<&CofOf?-3OvjPSUlVgb^9X|&n)Y~Up z0>1d=f*utruq>0VKsSObivO`=$NHK~gYf)p%kGenBO$R#DR+GgrtmD^=mu^i@Jw%! zU`MRmeSFhgP%s5lqIZ&VPYUH|GB-(4mhquA->@Kcxmek3?=P={GcnrWX^>6wk5n8v zsG+AXc5Sj@E$TL+LuOxP(=Z#RGg>MygxQ1&W}~rLxgm%RHa>9}T!@&j-Wm0Q0~Flg zLQTO)_}ii%oQ2{C7r^z|oqFcSB`H`*n<@-004#Z){4vF?U-y^EZgQ%?gYFp@ZYv__DruM_(?!O0Kxm|u!MI3coJnw&HDs|)0o;5Z2!p0 z#oeNPkoI^hmG0XB{#b5*cy;isD~F1AB`{I1YBA9L>NTI`)&+#o)ZXmE_GH%41+?m6 zROZQ8As^-N&3v<{%;akJOe_Wog4fvrh;gG`kSl2 zgbaSodEQ$ee?Eh{&zVu2o@Y3dtgS8KOZCKJPzQ5rGf#Gj*i9U~rgowC-yaK$NFwH4 zKx^^mVzSdm1XX{jErf(hk^FUGBQ-uM!SW8fOA}cZv~vp#q*d3>wmdNouTuMD zmB&2Cp+fVQ=P15+5F9-VY-|1MtxB;dMe>gecbX7|7u1WjL5n7s% zIe%X+4(g#BlT>Fz)a^_<=qsR*I?MU-prO!D-N^)!@W0`7%n$q;>1!Z5!$`hAsOK>z z?ds)2mf$~%@^KMqMMpDH95xy|WoC>s<^$urwhnR^;ov|X2Mo40+iHJ3=wt=s;&QPn zk8sMY%yJCQ1U-@?XmT=s)aR5NZvBN~fA^qVm~08C8`Hn>Qc)pt(`i!Vas7 z_wiB{$=D?hszZzynbV`So*S_hR1x@N4S!+2ttXXhLXSGD&cZ6g)b-k2S+c;X3C-QN zhWACT8chB9lN!7BXQZhNPWPNUSt$#Hq0)B^$%Qpp{#*L*mq5P7Vc`y2Qp&-y5|;K( zVRsKEVc}Tqxr=ePhrPnp-r0sj0|G<{ts`O3Q!jS{lUqWM9X1zWbxH7@YLnSszN%s| z^r3CKG)DWdn@$jFNRB&5!5{>SeG@BaUxH7ZfHA_Y#VstRPUXEtMA!3#&?D-yQKsvhfbU=q+XN}Qye zsaPhM&|9g>+x}$gpeQSBT#W&D`z~>4J1W5GcTc%k$7tv6_}#F}HcZjAc<)eBzLRT2 z&Ho>J-vOURvGqOFn1s*?gc`bl5UK*A1f(dU2m*>!X#z?WsR}`g(t8(aihwlfAP`z; zq4$=Agg_EVNJ4rtGtYNs>&)zK?)UnB_q!Km_>n#5{Lh)4nP+!)>KTkrJ3tH@sbGb^ zy>zL21wn0_a+WYcyPmKSnmfKccz~3LPfv*$)@X;vuqBV}$Jg?V0XGCB`C>BsX~<)B zho-`$G5A%U-|{zXd3vj_W*EWI`0Comycwgt-k%N!=T4vAE1!(Kw37U*%_S3s^}7Sf|H7%6X=m|YD9bs~WjkKX zlIm&tgs`OCGmAvk%xMv;f=;lKV5|P5$vWPn9*_{TeJsI+hCNT~lS2|3Y~3?X{R>d( zM9vzDGLh$Mq{9aUG%so%IAkNnXNx7kz@$SM=CsbS(&>x8)Ur3KwljHzM;CGn-J{;=!#9?K{F_&`Ww@=#I4`Ufr0Y#hYfemY#XHnO783<&W77 z)o$R?Wx_*NjYF_tib{7_MCF8`CgWz4P~)+Y)4ag(q%DN@W{X+77Fyh1SDjY~`jWqf z)y&53hrftjaJI`GPaId6x6G7Q!SO|UlDx*VFDM;MTRWw^SeRX>v|K%=Uyn$;5ty)A z3|26#cAXh*1n9&v8tkmylKyIQp`K0G5GJgYj`4710?LR@A-X}wo)O2ewP(MT1fzQO z>cOrbE5t*qiB!`pQz(Lop16O83Mc5oDLP z$dxadrR13JE2!87yUDDjq!d%Fava+2a#+fr>(oMg3HxRp(A4v^JeF}=G(DW6*6`)G zfgcrV;lh_h8NGb{35*@fZNKVIGG0fyXD5+_w$?WN=VZYfb4f-(VewuH2Tf22_QSkw z0g0$$+gALDEny9?i4UPS6^CQp?63kC37!#Tzby^6)ony4?6FXCze3S_X|}VCm&xAh zndA?<+o4L(s3VUY))#*gK@M80E8BQpTw&uhQq?K-V=?|q*t%@&2!2?`>3+_GMW`FW zHgBIA(Nt$F$4qj>)8Tdbaa?3m`bJ=vqYu|rh+d#ryr;s^cn{op-A-c0hO2XKcji?T>vY&Bpe#vwJit?WymM8L zpfKZ`F;3|DDmTqN5st5T6i>DqNid0FaQ>-3s-Ak%6zNowsJ7J|!`QGuD3Yjv4S_RI_VYi0uNP^D|l1>(TizQ`PzDPtT zaAoS0-cI;=o6e1F(MD(Ddm-|h9afM;^n#Unc396~rCCI7TBoT?UQ(QJ&vp_12`{sq zeV-dWS0bAQ<9*x>o3kZ6MRtZMBEU{?m_qKvlawp?b~-1`?e`3=&(efSr2x)1V;8+Ragd6_nRWWk48*@90=sf)Ii&dN2#*_&8Yf|49P( zUevW7mVV`Wbpw^!^abXyDspq56~97_&z7EYVKNDuFhpG~uwSlZ!ZV;XRCN8`y(5|x z=1ds*b@~uVVzQTP4`NX8ijNnXdJ^?6xj3h73H#PdDaAu@)S9<)OGb=sx+jc8KnBGJ zP**JTX1UI1NTi*iqT+Rr4AgZk*Bc~CmKkGaH^^=YtGGcEc-$p&@vJzbV)@`VkjHRW z+*C^bEpX+zMIJLBNp23Da`r6rnyfD4yhA{$gzv1`tNerF?>OQ$@!gY>{C8#Ht3fi3 zOsQ`z7nlfu8VTwVyg+`ap)h=zZ=YXohv6e`PDS(TGaTTAp*=X#u`93#|7o27Q)2S^ zHQp)ChC5(GuzgyF!2E86)XUZr#`5=p&PZ2RY6h9%@Kg-0^(lr!MH~Vg=`zg$D*Xe- zKUuI(KvKqcGn^nJ*Dd*n1Lk`h93GypCz*MDlQ_KQA-07h%xEs^Dv$#F6#k!^r+))= z1Ux-~9A7;#*RD@hWCgx6xrFiVnno|F|3wM3Sag@Twso_Mp};lxG4A5DK335ED30k{ zEMLRtA=0-9j?X%uG^9FMbWGI`Y%tCJ@wbfm@-{@=#S|;lW@V{jVV|?`+RGb>KEp{X zryscuCm~?0jCpakzOV%Ac~sQI3D48!a$=3_*pa2BcHChrq)9A}6im$;4-=)&u!-%% z%S=Y3-XB6Wot@!Z_KF4V4H;ca%0JwwagjdiFbVEQu3ae3e;S@P%2xTWXCw5A3l z5jC()K}tF=3@eYb_;Rh2$R|~Ve9S&#g0rPUNW^BJp({@E;S5K(xOPh!LP~QO_zN}d z24Ku%XGo0JK>&l<7`AsBp=|~~b`*$P7zjeANW7M8FIeY8`Myk*CphZ0nvKSc9=++( zrcE%`Y2Mpo3w$vX5|pnd`?By@8HH!En=@z4oS8t*nMv`2!!F{N3?Hr~AVTv(sIo;m zb~H<{L(&sIcU+3uda-bU=b7xVQ|i%ryt+YWXBTAMSjX8pKKX{u3ro1j634XvisKwH z;*7P<23!2su~iOfDR_Y3PaUwDm?XaEj2(4=P%Yv*=7ep;;(|O*@69OeI1Bq3ye>{N zw19CFlOfw zMs6R45C?JyTZR7btLgwX3EBm_N{G}K=)VO*r#ku29`L>?n3?G+8DevOu?B;gcsJAR ztu%7a{DPWtMzzew(aC;tx4furaHF!w*9IdI6P%ryNSgmvHj$2Zj6a@4oH=u*nV(-J zs|xJuQNzOq7BFwgH4qL0zR-fHfz!?b*0JqYGr{K22rY3i6tB0= zEy;!9{Sg+SCYa0)kFXC-o;V+>FdJi=kDnUPY_aphM_%$aKIt%YhM<$Qk=Nzv8`@zN zyiBJfTxoT6TDlgAlIB%791g`8%&{UFzSAj{qTWl6FM%3gpQKlg^Nk4u9RqW|NlBSg z41qzk{w0HKhNk|Ylsbk?Bl1R(ho9#Frt)_l5(ciIPFIs;I{PlURY9Y3l@(iI-sedP zU9C5npp(kA8F^4ZAw0@mOqHIEf=9^Eo;|0mTs|d`(4$iOr7?KTCbv4T8}K{1=PN`B zOo2Lepw*M3%(ZZ*HcB2s#>rM1pKCgKNYMQATkGt1_|rfs9s#Dddvf zD7&J#-N|hlLUq#CvERrx)K713EC0_32asJ(H?A3ruQ*}-^bKEDg(?a7YB8%=ku1en zZc6Byu(deF$*d;EY_Q!ngyM5fj|1$Fn{8_Y!i@yCbile37hA2+b~U*c*hbPBfmt(Y zp>hOn%10u2iEX2SeS;XENR>7Z_D#lZP@@MpWoAwHA4r(cAl%O;p%QNYQgwj2 z_-I9lCvqE=BkBa*We%En(wU5PlQPkk?jK4A@F_>0YX|gQHS!+_>@RuJl^u z|AcEK2THN$>#*z|3#@@IW4fvvVEc7Ox-!gZMExCS%m;eR-{+O$(%6|WXD_@ArkclI zaNTFJJjISvBtP&HlV%I1cG=(UwMXDl&(stsRwg3_iNW*&e+rM(ub?5*i1N&Alq^;G z?*R%b>4>E_wTDoXOzTL9gX-T-oU_8nxvm}cn++bt|)8Pd`-wF?NM^C0h??IH9hPFj%90h@_!`}7Xl z|3Pto{8_dB7~8eMi>=Mf42A#aY?8MnGcyw(K4OQh$ADcgvoteltZ3+2ZwsdI$bdAM z;=Te{kHwdHcrggi;mkEfc~HHV(j5UTlkZ+=_foV)teA4I>smZ;KeM09^2No&>@xNH zsp(j)-~S^Ewn>K&;xU%5U_BBgf95hhre~Jn+abK2fW3WhG9wP&YcTp|3ic{ zqnmI)c2E7kE81+>l{=#7vbdE0(R}su>JdYZGgtRDt=L`5*1?-LXW~uJ*QsOXQ%}#! zt5XRK_{}WhoEx>J#hP+Mv)(KL>uwhCaV#*gE*Q_}n*iR|u-010**X<36S}|Wag0`R z_QW_u?;|S_x69PO3l+EF5Me|p*9sh>Rb^*zrm!3???SB4(lv?2L3|R?NLbrbT#@+1 z;8<}wARc428(s&N4M{a`0vx3~rb30%K9gXe^h+U1G#8#+2=UC#C6?-Wp9Lz&zB&`- zuWBxjqDNs~4X`xZ;Rz_kYeAnj6Yr*RU2t3tTL6|l-AWtm0HI%Ts1pQO$8504j@W-2 z@UhfQ!G&(?T9UJOYr1E`U@zYW-W~jP%7a~+Y8Mzoax&WoJE05N zM_C(Y_P?=*>cOWY$)Tg#93ZC;)@nj7*~f_5#FFFz_89o zz^Qd6#IZ5aiI6>`NdGL;KZAe&?Y4C%Mc0kaHLFn>l`f`1?cyR7S)V62nYYj&29 zSbwX9DuGC4Oym7oS|zgpCCf_YEoQ2e8QEkaP?5tQ`DW|}%AEoO82L{OUfpirF0EvI zQ-IWTC~}pKZen{M}gSOPZq ziuA!zV=r@+;0L3u@c~-z33Q5EsA|&RZnsI~h~siOGNmG`NWx%u*#9Y(2ZL(f!WUU~ z8{y@Q<%8F8ZI03{nB`Fjvq`d2%(>fH)(66H!Go5KAnd}}(n2fpKpjekyw?{ZWXx+b zkFYXHoLN7Y1$!y@t0hpWMh&-?vC`4auXKVi{m65I;RG7#Sar{q|wwyI3mnuBTIaH`#i7RJE-~@|dw~!eWchL{Q!%&g-R@>!V?u zzD~vnE)8_4a_yV8$ted_)11eATHfKvHi_ zy>%;=EcTU53x4(0SKXNGZGvw}n8^;#28(gV24)lIJZG$6po=(lIzPmYQ)ll*W2XZN zo5C?vfd$O`a8y$mh$VIdmcH-ph+{AP-RUV^ZmcIMnDb2|^7B05(F9ycmXTm-4jmMV=_K~n^$ zeW7czYx|_MprD{ria%p4ul;>rd)#p_*y+tl-P&vT`Wx$q`yjaAEL|pF%itJowp~V0 zl@-|1hSZgW&4s#9yN;ltwhclCA0lHVZG(O1iRgmd0DuU>LQ(S2e-%C3Rmv$nB@ythF{wNj+yVHtN*bT{L$4mEibZ&~o1Z zP4{5&X(|Ji>TXo9Taxk~#_-<(-{qKX!2lmM3Wn!%v7UkowG_BGbKROXt0{^gadi!_ z?X9inOXcdFgg2IFGMJPbreh_eaLOmBcY?mUkjI8&=JzH%Wm08D+bfc@8;+UZoA48A zJnf)c6>HpYgt98THXBmw#~jY^Uzg$dW~VB((K|aAL}ai$g#Boij87CyTRsX(P`(~1 zqZ+EW)lzyURsE>MhKG%?{7R#@;%)GSFjAn|yuAFY5~x4EfG#~Rl5lBuB4+ETAD1CJ@`PsIbux{xp^HUASP#w zxu)B&*NHLY(boMlPoJ7OEx#@@uBBJ186f1Kwbh=p-~b472Mi}=391Fzgd)$}!#A8(mJwI%SNj!vRZ_E;3qq{d2UmxL<;K z`S)2LwI-|{%p>3Nn>QZh1Srp0U>&V|L5yfSZ5*l4Y~S$_+o|6|(D}glXTyRgc0e*9s8R3$tnZ0b zv3R4J-uw`55_ztxa+OFjQBCLtlp@3%a!X`)hvj;f8zrvYZe z%+T>Hz9nr_L9&_AkQ}^T>D4bR6Yo~Z&FHocQtEaH9ZW!(39IC7FS6y4-|v( zBA8pSve5Rw z^?i!+^G}uR&?GpZDqeY8A}lXUu3D2zdwLd!D1|Q{7ex>uVl81}tq6{?v@lh;(>aoH zz|`caB2RGEL|(wr`!K%Fu^d_KJ#a2%-`*>B1d>03)8)ut02*%jP^k)g0J3WmFtqZ6 z>rU@E7yEw;*^S)j<&>5qSy@?u@7SUNA%Kzl9M+_&$~0U@va+5Yx?ydFppO!=0PBK! zWli7=74qF}&|?e%@`SX16GSW-YhMSVSJr)X?Wtk{e?C%@p>VyjvW$^JCMdWEZuOHY z0&J6_r2X+{$}*r#2}i62~4qDRl`fc31{qZMcKlKfXC;Mwiw z4fer)cbT;d(G6o2;`#i@`yle{o33XOy0Dfa;&4bS@VSPi~`hwRI3o(I^OJ*4j!nZh4EYbm!wS z=>q3yw9_aNOQfkOQ2B#tbX`GWGGL}{L@{ML)zfv|p#`RE{C8a^Kd@wr~!#`dQ;r@D9$Uy zs5EW_cJ%HxEg{6$)&{wc`17vO%9d10VEmON(pk^N{Op7-Rj(t-IUh!O`B@*E)3FS4 zn-h#fwkb-g3Hv)b9r_v-x+}gn$N^K%s7u%r`QC+A*v9G8&t4R<%Sk9tAZ+hvHSgj} zB6jH-oV|Ul8xt;+e0D&bFeTPCt7l zWRj=D_d`s?OYZ-w1ia2izUHJjBO6Cq;UvcCTU{m2eyEb&22P^d?{GU<$C{>$#oOSG zEQ=sarBxU^Rm|g01*B3kVW}X_81CH`)YYa?@c5 z2Ar)q9bwPTL`n2BZXgnyVT*<+F*z9JTViq|1z1~AVsb5Uf0OwqQqSpise&|0p?)gc zFl?|qQ5PnA;QZXOyiB8Ce+mP0Mm>X>=8M;q-0NBrU z+k=;vG7{E;#r8`c1lSD;@?+kD89yh9E)jBB{j4+ZkzzW*o91a2jqmYv@B=Qk!C@Q> zFyHU)gBAImyBUyhzu1r8xX*^9$U%LgLQ|=DlNqqpA4wxD{qPE53YNa_9Wg?MW8P*` z$N1YIFGYW?1adZ*8|b<~7LM_@*mq^C;FKZ%2&sN`|CTL4!erm_3zicCeHpT%1WbmP z!uXlkLp%?Qcs^yLv$eosO-cp+julf?R|EOFz>0s~F9s+zOvk|<$o(sJXb8sbcr(-? zius~>sHXFjcsrzco5A7uu>au zpqcoo@avdSz8F-2iiL_-s$?n5Ex&*B&F>epu0jn0U>T)WMaT!L!AKF)xK?vhAoAz7zuz3Cwj+l|+E_B|+2dQ}W_9Vg z2HhGN!E zEzl53*$yHNIUj%g_=&wr!^je^M@@tpES$2nu?5iu-9xVX>$K%sIW)DSMW_jU?vcgf z3+Pq8xr!Bj7hZbt%UL<~FvGkX+<}ao5r<1kr=$&O-u#!FERSb}_8Ax`CB_hP%KxOe>FF1hlt;{X(=`l6HF_=9ky%xu6LoyM)YWYeXF_4O^Jm<;x& z%kkI{*orD{37t^IFx!Gf|H5rE%=UH=jualHg~mZYsOBR$2i=GS&P#k^>_Kq*Q}qAs z5rmEAM|0Sd;lr7gf%cO=bPJ?XN}LTgK2nsy|;pWP@#_qxhu32C`FzT@>vqVm>re zd%6Z@UD8vfsf?%bTAOYYT`rondPX+^}^Xy0e_8pjG`oouE&^6d?;C@B8}m~na@kGWifjb~pMs@DqPPz#Dbt)b8q z+Ao=F43;PI!XXHKuicXS7fi(spv&NS?3UOnP^??R$Wk}t`oSOt>5mo=6Eo2^7-{(+&J>q5l z(CdSKJP9smZXT}1cV!UD4?@=Ef-uM}rvDHV=w)Wyp6GX0!gZ5tHVl3xYSc;}N2!2p01e4adZL+BRN z_nRdI+*45YmAw*igoaz*_xI@#z{(U_Kocw##cOmCV1+ki(zBL0Jwu)iYWu?zN`JSQ zAv9e1@MO(~6j?+6n5>gC8(HNqCC()PTcKyKfUVF4tsSe9`rzp8-z`0hwrVr^ARN9h z*Ah9*R?YmdbYAp@&5<`vKULMMIl6E_2)Z(sICVibT^aB=11TW^VobnQ`LdDLwXn?c_13mr10F2eRe_m5v+L212cf&f z#`9p+)Dlg6FM(0KHK7tLC`M z7E?T4*{@MjU0U%G88ovB^fy?6V2~i-7)S}ni6q476s78PEI`!fIEdDIOMhL#1`NSBg&7zaU@?*-`N#1C$;W!0>+Ta9r)U74pkrfY&p>B!2OZlZW89XxP7+p= zV116YQn-YHcUB#%L8SA{50D3X;#NuLnGegzY_27xH<5P6Xl|E03%=R)ym@C;yU$aY zASt!vUI@%|N&S`GcgZ3)hRdpElBTq`^vw26Q)_Ze9>8Y)9lBV#!af?DcydC+V#V^` zx+ASQ^-sInPwBjR&b@{g3TE(C(ehRUB6w56baoL;OE@$^E5U9dr?xOG)xTxi%z~Mj zcoOB*7WUkBMVda+)A9GXe(LJvl#%XN$>SBDm;b1}RiU=hR|^YWo!rC%9%au8^!+l( zwFWX+G&tp#4t{ab#OKtk>7v+{f(PXY)Z5GqC~aKigU4OB+N*tp{5mE zrDLI=S-`^zc4G79)I)!El;S;1uANJs>In-$O3bV%HI%23g`=I`1M1dM2q*50`HNq+bA>;7$8P6WXVfzNM z)PY$bmr9WoN?nBfvo#A4l{pU5;s`=6IL-eQS%NsW2hb?I&oNoqoZE?J;D=?L3};B| z+<3ink-j|3(`_=o;aPzm`B-3iW^?2ZJj>JI2m`+D_QCBs8L1=wGvCrlHn%%e}@@r2?Sd(54*r2)?JeR?m zZt!i_f-JXKvST@?SAii_aze%?MUpT;5Uj-hNQ@A9A19$z6`2L|iz1Iz$Z7{GvTtZH zS?t=IBmL*7bie6DA45K$^|+RpmYYQHqTf_kX`67_ht3$x!D)6r;o4N6Vd(RK^i-K1 zB)+~OR*9P=c6sFz)v9d_wk|7$wX!7XChOZj?j@O_3bUD)D8SMy%MkEg#=xR4*96Bc z5H==%GZAxzI6|0B)iYRIb%j_;=ecX~hiv#8PtD88RMKNcM^=Y?zO&u2Z$q<3Evgd9_J zW>$=&FCH|CQpZ6G_iN4=TJMZ`#W-UHGn}#9`?gqLXe}pm=<8gbOtSa)OOFw{KBpu@v2JKU z77#9e@zxix`8#BR4;usObsxaEQ@h9LraAKD$(2iEa!m_okx(5IukLL(gwf-ojN^(` zaV#HB>m`|O3FQ59b3#JGd7Hu70$*v4?^0XKF*E@W-)d7B8_TCOoi5xQk;xSIX59i_Kod{W28VsVivU`EyMBEpOVss=3*-Hu>&v{>h>VRMd#NFKex ziM^2)f)9D=HZa0FI02^{^EV4I{#Bn`d27f`j8D`xRC~hY$eAv$Ll|`s%Ix}AB@76m z$?2>xAixLY?w7?l1jvssF#l}$S;VI91w@2#r3XPUZ(~*XyG#6u;vmd6n|rfJ0&Cvb zg%HtC8Lu)dJ&X6#%0p-(ILUfjkeCcCv9r{=Itq3_>$G$&c-R?ZUb~#^vc=$0?enu^GgWj1c$nWtj)nkq|g=SE>0@Y*tTE=<%q*^hLWJ1Dv{J@lf4QKBbg76DT_^#sk@5-Ce=G+SD5Q2fV zIK;_+o!WctpT_s0Uj_$Vf6v?7dy0WQBCt~}q;uz)$B!$$T+lqH$62~|*`RUir{x)$ zQkw<70joExo)PFm*a!a%$Ay*XN3z7;2%*=B^HD`_WQ!&LgFhc7-}-L0wPji(G95yO z_TwJoi@XPnNS!1P=Rmkd(%uzXrZ6kr#Jvcsl=7cUkvejbXCFviFV2SOAK5X2W zHB?@OJwGC5a)3QCIg$DwVxQ{PvR(J}`TRI+u};HvRTf!aM&pYFkT_V6YlH#tM&D4t z0)C++agG5nVie^2X21OP=7y83`@9ukU$YI0Ea3aSn64PU9IEG-@#R2~?e(64XZ{=4&C&#U!*q^+fXLh7B8FU}!dv z6?#U76gr^p#+ElZ1dzmr;MhLu2xJ2`bqjWL$t$Il=+3qn( z?yW@79mjKx9wsUotL@<~atJ?Gbj&}~aEjV7f=Rm{OtC^;(tE<=uw^2!MpI4sfZ3H6 z&Al6~g`6`u+32;U~+Z(BA6KzN2npf252HX;=2Si zOf5G90V^@^>!^p43m#lP&7*~g)d|0SQ06Me@_57ArX z_XG|d-4}z&?@Qs(4Y{r5xs`5F#u@ul)*%qWR=mYS5$q$lsDQw-9-=k_VPo@A3F<(! zfzoBz;x`-oUaLKkt%U7_69d7);QPBj+|Ba1pbm=Xa_}i`eUzZPQMc~Wp>^vn!|TKd zIqs$sX>7Nomhm$gg% zY#U8(E44<`M{-Wv&SP#-Vf_yT5o2fIfY?80@oyx|v%+T;-J_%lSteL_7H2*InC($gL^8cB7sEi;vZWs_CleAz?*9up!Ipc(mqi&+1={d z8X*K@%|sl+GZhB|mhO;o82-JYcArdrodWE4otCd_$sC6srL6fk<@5M`zjke3sftna z>dQ`w!(_Zo&Y_xvP9Uu1v|!3N;Hr1NXp(NJo@&5gp9|)Rqg;``7Q;Rl`*$mknk17c z7DyF*d<9>Smk4UA?cq#XYuk;14R$5ttI(gZgaTjfCa#RrZ2+jU+n7gSYBko~gKXbb zzYAUY@6j}H&JA7E?|qpXYW{@V1wKVR6}P#9Aot@K*HB4>+9a#>_0f?m+=mf|t47C} z?ZS)R#kO84`|(`lf|(7t)ziZ0&G8p60)_FVDO~1ZMYF#ee@hnhTPatcnhy1bp!I?? zeqDa5JXPtgSu*m@ak<}WsC3@pYtSN5bMf7`M2X3Le8CtlH--O0s-~x%L6hcV7F~Rt z{^aH)`Qy<(68uP<-@SYHZAwc>rbRFA|BRh;>VKEc&mmz5<>}nDD;$U73Ns!uL#0|6 z8!AYQ%cAq3sU?OACm!vX->eX7u!nBVDMBWf?~(JODHQ6Ac|<01&t&fIGbgIuBZ%2= zyKsC&S4iNK5zV2K?bm!(2A#qW3sjwQgQY+ISv)L>I^I)CW$xOaP5V9c%$5fhS6Yp5|E+vzs0WE2m9X^$SwnNYo0g=>2zoHf5mYF`6{MXT)1^kQz3TU#2{!02m=O?*ji!_@#YvxS$-!h_X#{ZJ~e^COJXCF_cKeef57uR}N z*AtUU5^vt@D#LG4vN12J{o(vOBv$I}d=^2Us1NLqBvcxpc|zz9YE;+B2_eorKS2jT z?H{#H)s-}jX7D`EQR(d@MgK0T0+?Jrs#0#J$x4;d|1KnFwX_u_GM1-t9!+fuY)U(M zBEb4xY4y`CR$aq1<~Mqb+O^QaOlU%q=P^&hf8aX53Oah*LBJyAM_RMY^$8_*y?zE4 zyhG!p^3tqeK7_hbzco0K=tk&1YoAKd@kt<0rJu*JZD$m!AuEAfn3i$SL zOfQs)U2)lHzrdnaFs?{P7*IX7IB37V`W;!GgOpry8=RjXFZ zuV8XnetIjh;bP?{SZkdOsWd&BVXK@zMnVeyiA>HDt`$x*FioLB;_!h-?*ca5zQFPx z18jpm)({|TC8_E%Y+pfVyE^s|J0H&RblKf7d*)!~1*=yVIbdw*=o=2$HaNA!p&gR{ zG;wV9yarJ^^=_9ylt{Vj3p%Epe)XF>n^) z`}SCoaOa~!&%@az_Erd-8Q)~xU~4EcfY2vqcbQjc1@{VV#!C!(0#uXAIVm2USYEhL z@=ON76P5l*JNy#|ptdXENz(ImUf;8!Xf%Qr8+41cFM;Tk85}CJaz3Km2kyJkj1#)x z3WlS?Bf`To$V0CFX~mowlf)g#%GJ29VhkS$f;ao2hT~2Kojln~C~Af|&E>!L2ma9E z%`+4Ax25W(K*#Ucym_BguyzYe?fmo46ew>vZK-WZn-Zw<+SnEA0KIGnf_@GUSnYqk zkc}mXysi-vY+s4?1nAj27BlyJ`MTVI+Z~bWP>;zgS4Ohu0zND94>^EIRV<2cy|BoA z_b_bk+_}r(c20v=2pyoV083glL8*B1*s=RKix9Et#>FzuVNW5b6ooH{gI&?%kYEGL znJ=HG9%Y_#Fro9Xk1j-@? zcdEnh%IW_T$(uKvzN%> zG~R~Z->WFt)@}~L?Gb_{e}aX=XbWO(?P72Y>vq`L!NS;JW*1J<8xfxlX)2l?XvxsK`xLTrp-=~DKUQ2$L9+A19sMd*zmEoRe8XJ9>PJj0Bc zE#7h|9VlL=)5~y-b|-7hE@NMy6`QP&ZRipGy{;a9EX)dV9rCkeY^qk75VBatifWrh zA8r1O?~N*IL*OtRHX~=#^KiT3-1LSHNw`tVN%w;VZ~l@DRQWZG*lbR&tQO zhg%?_+o5I$u3tZU_7MrP{fv1+1q@ZKV||bV252f8aY@8pLMlljoy~p37V~AeFCiC< zdLO={{l9}S2Qkqr-H9-f4xI|J`(x#Gthya$N=h+%Ei3@+>enm;J%iJvd+Bm^Ej$?( z?CIf8-io0mKU$+;n-{ls`X!j!ixFC7?0d~2rLQJXDztSuy+)Keb>(uwSo$PRl_z_{ zvId(6UQyXWX&YXbqu)rQadr%zW&eM*5hn@?%RpU|3|Tbh?DG@Qw%1!3q(!8$M`ZuS{)r)05X*z7VW-bGK_V$F&V zfcESA7VKSc%7mF?rk`_IFf@+ckkZTVSRv%L;1P{l@S0O$+gQ95{nZi};X2jG$uzw4FqKt`B}fUUX3Lpp3Xt(r zvWdY*=vgr&2B8<6A>asW<_r*uKr0<4YM}GCCv1IuiJG2D#jK5=3b;81$Hic%XVTE5H&V zLdQwsYc-#cH8v0`|4nk@)2uaeS6fs46h;f|tUy*1j#P}X$6DW{O9r|Y+Jcl^dIixC zJ8U3LYk&}qD`5o-M$@lAN{O|_iq?~xxxwQxO)~n@hJBS}#q;dft~-XvAi$LsbT*=J~*M6stNI+l=)9;V2oJ`AHttLxf)rc9NWl%)i6_S%-=I=;HC zrCWheH+X}>LPH*s!XaIvPHwvJSc*BF_J2>WG&O1$3Uj4k8zLR-hk{ zF9n`s-f%_RM#oeZ+rQF^^)ttYH$u;(pMbj^>XPvu&;Iw)ZBD~cnYLpW{zqB6l|HfQ zCNztO^OVy7Jgq!DLhkNRI=!yX5&-)Na$tPp=&YOw)duXIj5WxjJwfJP`xFhAF?2`4 z;1glvhjcq-?@L|qM%&h6m*)@qd*Ly#PIR%&>xuT$N0g>@hu6>&d=9`8q~`-Ia!6pu z>yUhU(F*1G;1cvZ){M?fdQ}DstOk=HUzj_l8%3<>P)PXY_N*7vmp&D+5*H|q8Up17 z-oq}@NC8_<>8kt+GA)iidsDzJ&>+7&jXqo&0zY5e1OY-H$I-NVEd4Zck!4J^RKRr_ zx_b5Mey@l|FS+bX!25c7fVHQo+I#{<9Xq2;nKH$!ag3ws>oeJJ5nI>-?t_ORcdbd_ z-B)N)lz{$Vv1Ii@nI&N?j>c5QuF%JpH*>6tO}6W%1GW;5!@f$Btc{coQLO#)F;z~% zl@scbA6}nxl=hGT#^)|jU=ZZs&Tcj&B!$md##s>Zrz({=q530!Zd)%EN~Uy21MM3r z#flOsm1YbLjn~rYX60=%Bqjmt@;jKENbPjS3dFi}J4*)%y`Q1itDlPzzCfJUy{na+ zlIsmqYEGEvHD?TM`fFHjIMdqce%Ynv-+{gAa!yOPY|7=|kruR>-nV(d)S}u%Xj7*` zTTAG-PA^1l@DyTGWvNkZq+9bjMf!J^Pp1hR}umJ`R9*rBG+a z4QRX3{Wg;b#UfaBOzGqCk_}_~Up+pg{&&ZcGo6Q0>ZN4$wXsx1%WYb9x^hdJsFRkf zcQ)9k&RFpvu`$)_zz{FB37E5cJWUh2N30!teb1m_8wLl$PdHjg!WXdfRtuTe1S?Rh zKkYDJalftTU{jhxG%p#x1UwJB=sZjFMAeupPR$*>p;d>QACg-TTg@6#8JoFH4%+)#o0e zmfaNk{SY+6S{jT*OrSs8Btuo2K*vhjCYv3$o33;GRyDeD%qDAQy#Mu7*+7@;^a2Qt za>!{d0M2BzFjB_qgU4INqcO~W`b*#{LiR9`XaD}SBnSc4O_u3=c34-~zq4x9(2;h} zN*yhc2W&btx&Oo@JuWVe#9NXAx9!-Cbwihu+m?Q%o~FVN$TFR_T;Ivea(E{|^%^qcP<1k75$~P zB5a?`mR7==8uRQ9y#U}aLJ*(WcLcT`$RAd=Ut%VBv;xne_#53oy8@<+b}+1yg!yNv z2P48tf8OVps`dUeHuBU4ZaPyk1D3U(8(o0)oaPh3E5YfAg3m7ws{y+-qK(Io0}x`* zRFWVu8E~lflpmork&@dWi67{Ekyc#mt`VGk_4EVd9T|qN>1xRP0>(*3gr0|C8-$MK zV*WM*O0e+xj2VHjA%gdSrv5z2Z^Zs23^Rs>bgyF?c59vXIb`ud5*6{?HEY+b8C_H8 zL-c~p55C2{z4Pk{czHESz;pD54JRMY8N!}7Db$DADrM5ljl+|eipf_+@#-k85(8Yvp0FFbSWx7Bo?1eo(I)!3Lj^X^hTzM zO8GrX{iz}_dOfh2Fh(crkLc0E|+u}7I; z+F{q$*rKhZj(0tMnevZ~+!4|s- ze%m*qsz(a~c36By!R)p#sEk|Q(kaxgXErC!)whnJSKU3)j8@-h{KVprT zQ$pK353J(5(7E&Ui>$0;q)H2xKPmw*)pxOabLDSk9ZL$(O27njRs?@PgiH_MQ(?j{ zDf<%0_b2=o^XB%OWYhBQqJ55Wtaah*E*-Nv%&YnkHaWiMGxjmGx1>rd54cxNss|~# zg7Gg>g4l_2o0$x-4@Im&8pd&~f#UlZM~F+Cn0DM?ral$Uo)gW`c8tGgBA*y5<~3uq z(gx}Pw+$I;_t3l<&l)vwCX7w%4SF-I0I=OmZS#`~cDIj|8imad*uFYk>x)ww3fNeV z=ShZD-~}8F$CakrWq_&NCwMuhDv&b>9wP`iCjTn@8ppnHWX^tb=eiy|T{w4O1`8!Q~Qu)$y?0z3jhF#BnurJy;72*~ZVW2bXormv37NPJ7FQP{~USgz~(q zTvl)ptVj7hLXj%J?Q*$1i?wDo3}6dd+rNH7TrU}}1X?WFLO0B@E4Ak535+aWCrJ%C zb%lKWOiI$>fu%~h56rwEVI?lni!D`I%uNYfO0VdR?me?a?CnI=_dss;B@mlSXr;Q; z#`6&QR5Swa7F9k1jVRq_gTd5F{`XH&YMr?3l!{L$r|3s%D~=V&X*5pYc_w>I?UnKRI=!1N)Je%<-cDEh};=4(;j6ple> zqoxSe8T}3~XY?HUr6S6EmB#Atlcv)m=Dd=ElCTcwye88xBbC?S-PN#4g6bU!6T9@w zfmA|6VP}ZkY3>Y5Q8GiPzm7W6hnDPBn$xiyi{!BL3z74L^9#|8Mq1xLEm6DaY(07M z)$KWT{PsZ*v3PTM1ye}IlsgwnWs+yL z4WULHCJC+3AHV19WA)n6H=TLCtF_7vd~-+xFm=+%6ZI9dVy!8G?*j|1sq3mrX@5H& zCO0&4gB<5nLS9ud_cJm!hXiSlb8#q|rF@*tGYwxI3={ef2Z`bA8}=Ng29tj5-mkPP@8lKq7kUo!u)1m0Ql z1iZK&sA8k|JuC`%9C(>Z4Hb>=$e(4=6uauBLF?A7-51g|a*R6vW_2#`mo4*yG|5%2# zvet6g0vZQSnO)|Lxx@0$Z4P#C!V}Zm0c!+ZlAaD2I!+!6lw{=p! z*3WWoLPI*=ll67}O^RRFY5Dps4U}Rr`QNJ(dD(y*p(1RtVbqw#F|R} zS$V}hR2g&SMFu^So-k;c_=!5FGl+JU)eSz%dC3rpPAF;UNkrA;$CAWkThT)%BT>_- z{J}I8Lg_HaAx=05)7R7#D0fPG2?CDk?uv8#a&T&YOR^E{7LM2q``m2;U@SzOvfB== zVhV0C-R$bjf^APO!evo61jfc?Lt+q}T@jmY;{y#Poe>UCZ<)@WH%G|R4@R``{m%|; zlue4z>^TZ=NmNn92VKQx!J2X!N4yb|vs`y3#SuT4Dv=;0(B@|M}GJAmb}Dvt>p z`>d08hL@`Jc(TreQG27c9u%iCUUR9r*T!+^2z5rhOL~kn3Jvz|moj=4E<7>P_9T0@ zmpyEA$W^LD^jNgniC|mGjS|G{TpcD>RHh(8$}=^}wdzyjt1ZleNa~ z{X-)zQ+fodikCqufnrOJxFRPm{9F<OQ{?dsVew6(fNxxFga+$ zh9A2_sFc%UUNvCvxpU{(F;LSim?|jp$wPY=XjR|;@fM{v8{|-~#+T^RNnbRSUm_ME z?8v81qcgJ~>_18qcH3t^C(7YH@Ih#Khh!pD{B)4hxFa}X&9Dr{nh~AYV$!frYiDB+UL~!4A00Tsr6k=U#2$|jwOK4Js-Xpp>b!(^N)CdqZ{6J zJQ3O(PL=wBQ{~8Zm!zepCe|*IklFCTu?apG3BKYmP6W;C>zawrhK)YF^;a2i4z?zk zC+_;`%Nm%eZzQa&@Id>>{#$&n=~mpFjW8d>r(Wgc4}=On(-w z#W9^ewhC2Ag=fwfYLzV(9>OEPp2QENH7g>!v4W>zwh^@P}jkx)*|rzF_UJ6Z$Crv2)Rx5Nff>L zO=ZPhi+tFtS2X!b`DlDXk4=}xxIfXS0uIx`jj1@c@d;I{%(s%CR?WSutdN|RDwZ>p zE=H(;0HFeO0|?w_)6=;`0JvO>GPn6uITuUK0ZmgU#{_!oH%i*ec~dlUO@c43wO_Ab zZ$O)!PBA0msE^|5rB}z`0Pe$}qaP*E)sVtTHjXlKU!Xtd0X+};tFCQa{peNJ3rD%> z?}kh#{L}|J_awt9n~p$%+`iojc4cj$Nfk_?PBn@nX=zzB$zK=n*P>Gr=+kA5dC}jF zF1IW>xW9d_;IOu&abfGK*`VE&L)5@Qy|pV>jk&asSqg`ZMOzH3fphwGARSN1+ZJ$` zb~G8m4(UPcXu3HTJ0>XB9}bqoYI8(am;who(i=Bn@X&f7n(ka4uGib^2HLelFmt=F z{JSCb-9e*lT^3ryv3bFI15mPu6XBAm&_@sy#t|&=JkviLA24%-aw%57p82~>fg^3W zXu$J0bG*;+@!*7CI9?7M{B!?e#&c$HloFJo{_kjA9{Q)y1^V^t|Me$!L-4rz<`F$=#$c1Oq<|C(5eJHb=B*%uB^bB;y0d9_1e=CV2HH>Pl9iN(qz+^x*cb9Dd%2s8ZGDq8V!p&**4hQI#I+2|JTiEq#miSEQa}bg-uQr6CFqruq zzO7p5l@3U90{nsBfd#I#1A)C)-RIW?6}#1+`vijaow7~vE->NKy3 z3N^DSKEv{bB6i4a6E5}JIll~?n32}wW=(~ngv>HIk(xpd;@H5iFF==?x~ zH(xl5*FFrQna%AHcHHdG4iGzTwyJ^^S$y1exizQu3Y_K=!K(fm>tOpPCD)Xtzy!nO}jl5aRew1@OYsB#3&Tu>aL%_8n3ZGiZBDS4LpQ;Okexgr> z=dK$GtyuJ_GPP1Gp8Uq&4wb&3yb7@!+x56W(_R-a^vWM;@Kz`aHtqd76IMQE*sWel zt4cI|$=R1cu0apZY}+=dwNQtss;nMU%G&B5EEhW}YnY$kHxu_?l;edd=w)k~FsYlL zjD3B6UQSu2@paFf6CM&?t;v%)JS))6;zK{JUAug3cU0DD|0OJUCdni+lr@;;;5TIJ z)@@sd>?gtyk*Ia$u*maV-;~lkE6}gnJfDVwyq?wom>+K`r+s#HEvVJ}om|5?O(3ts z&vR~Ubtb&~TpBusL-XzqX;BzD3&S(_iDu}P@8M^C8hUIQGyp0}7%Y#UbVK>w_r37# zrSNRVylEC!1&U?RhEhjtyEB&OHeJYlqlGx@Qz}(uCOn89b$TaqLSNcc6sb38mOQ0x zC>(QM>NkvHCo}ISVCLPrwXYG6Nx&lTg;!ytTXIKJrc-cgi*nvN4X>e#^y}+vt#??n ziWLvi$+}Fx!fYEo%08+?EgO&!I2cZ4pE9?-)+O?PfQ#hM3m1M5Zu^}cmwxpELp2<- zj+<6l6vMFSg;jL*m)E~s0_C75I)&@8aS?T3Jy+Ia3trcO6EjjdCM_m7Ozp9WC>(Q! zNh?&e?qqhXx99;I`kzEUxc!NCl(-Q!^az7BW*H`8tp&Y910z(#)|qz0Z0z(}6Vl8# zrIcgi^!|J|>8Lv>6{6?rT_Qg79&o&!j=}xJ_n}(wIz2zjBs*QsuE#LhvOZXkMMpfl zEnBwCVf;cVRps}9F$^*PsF>b&j&a4vaiX`DwyN6|Y$jU|WmoSDzo8VLo*w4HN%|d3 z=tZH5T&AZj^_iOZYRt#TGTV%_1^+~ZY`4SU*gzI$%UID|s3bIN8Tzh-^^Vz6{3x7t z)*^$*EA#UnAtXAJq%`x(BB7Gm80AJ}3|qexBw=g=A0ZD)phj3;{Ntg_MP;@Eiwqh2 zR54r0BC}wyNep_m%6=FN#@dg`ZIv|GVz(5i2VwVf|HiDdncc;9tZ4&z7>!#0MlLr~ zRN;^6kK=h{!~!_%Eg_Q4+bz~HW+#TLEp)8+{iG{xB*vy%!UHl?^sN8?4t~#%$I# zX{jrs9!FuD*5cVXeT~ zp%qkPG|Rq|uoLPleW#{mSXdbliM3ra#0GJvQPGc=Zr&M=5G@*=l&SR7b)k0MNKWNM zZqvv%Ne*naRAsMng^1@REnsazl&W?eSzyH|RmNln*qnL-b}B~Fm98vrY+}UHfgftv zS%>XjCm~8DK9*QLfoO5&I!mH0nb5F-R=0(4=8ST`Z{VBLlTV^TS5G6e1|Nlw&s>`x z;1}$JM9FM(NZ4ZkVhgI=g7x~YA8j)MzOx~a80+#TgdWk;J$ufg*NfX&K4RmCg}b=f zK|;JsrWp*^Fb?wK=Ouk7%&G=W^xoo*pWg@3ib<<2iUKudRSBDE?ZHLcQ*!S;?n6 z=0y32#M4tEgubP*{m#>)1oSyQ-B6IVVFfd$~seuXm9m{70}Ol7IjCJ%=Hk zk6F3g=$zZGAly55?Xor5W-WlOoPYYWVLENOzTrFz0Ym%OZC@mW@{UTgx2rO0R1h3( zWvO-9ea|XCZhuP>m|!$bzY#(MZHANKX4NYq_kkIUY;&)~Hq>cpETE;r9ypKdFQAo_ z2<-l}&ZbJ}Bx4m;UcDa~&<^4$be?`7M%Rz!`*DZ1ZF^j%pGZqf3b2JEYPhK^k>O2q zzWVuII3$hkS?XL7@cREK`j_+8`a>^(D7suHE!QZ0!I1?)CF7kjSVm_5rGjXR#5wOv z2D_HlJE@Ytiowxdj&Y8mSvKpo^!sJEd@%L3zmiVaPT`mqlGy;Ct#!)7 zOZoq>1WNw$>#sY)Tqn9(?D8Lk1ILw+xkaj4-N02#==q5w8+06*K}U*~l_-6rPLQ<6 z@(_F_npsoT-eeh`Z%tEFC=Z=0Bu6qi)^&+|FHKS@KqFD|M<`ey>|pbdQ(t}QX(Kl z5flMIs(>^>X(|G05D}@;QF@UUdXpj$5QqZOA=D5OAdLi4A>{7N{hgWJ*)lVGeg8hs z|9w$2`Q+}*`JQv8?C$K$nU?0X!0UX)==dk}td=Om>cGZTAA==*ngXkk2u7P3gfvuO zsPx-@ji2DFZr|x$&~H|W0qwKL_=XFFLdj#rz!~MvHkaVpYO%btF$t5p#5ymSneSFr zi-p2+wF+toX5)pKQqD2XrU@ji%g^VQwxN>k!kIOfE18c;0-c8RXd&qBN$ed6*u#># zxLZ&s%xZtndzQ<<7489n=~8v`ehA||!hNDx!W)#i;A%K5C8VrPF7JN4fg3dPzV=#4 z8|&7HgRQ$HFtNHSz_@~nP^b{Dt4b7`>*Rf<|CcUePC03q~$xTm|bq9940qa zam&Pa_*Nlz?0SATYzm*HrC@;gYAeW$^cp6o+^`BM;=BjVoiuYCu`b0N?iydFUt+g} zeU9&pr)GlAFi8~~F>_&9QSBw$pj-&F-8hk7^KFJI99HQERFQN7OYyE>ef3o-ns?4G zUH>vBr^VF$CpziG6Qu(=rO|^j=lCX9Y0=4Id*U=1^%f!Yo}VVdQ(q{Ow3$aP z0@V1Ch&@Zlv-8Nc&M!B=OOgbgSuc=JV5S&zlf|^aT4-=|OOIXB&B!_i=2(Hd(bvU( zC@RYcvl4jen5)5{I@C>`R?2e9y_Hs5A1N_dihyI%uc`WRrBd+2_t8GAn1`Kp51Zgo zJSDNNr1crlNG+cm6q^F=gj22PYcvX9mwF!e@SI9iS!1`~zVRDKrL$8H)Of`%9q-9Lv0eh3eGdVbepLa*#j$OY9jXNI{>fQwl}3A6qzO zGD1cPgsA)441Jic8UoV=A1b#o4fvd*51%;tjJiNIkJgA{>E-pX{dYD=r)}Mz9@&Yy zziOI3buM0kjq~cg?1wT|3HBal3LeHwI=}MXq%R+&<(h~Ui6zGe)Au!B(i&94*{N1o)6lmw9HKBMR(I(nbXoKRTN4bO5FSlq{vo9%9`6a9o{O0lyMMjfpO$C>!{mEruVvc zjp-LX*W9POm56r7U}8ymQ56q=A=0xHPyW|CEg6e zpO(N3a^t%eEn3u9Ft&p+F6yF6N?@LYDZfSlRsQ6GCuO|U2?yleb?LCNn94k#=Q{0f;`FZ+ z-;S)G&YRcZOITU4(n^=pSNJ!a#$FjGSq~LW)3>QrVQ4wtqoh;f3LlscxtAY#-g41d z|G2r7%Hqh=bM~>+l+<*5vZzHgd{uv>E)s8aZ3;^we^)}MK<_5Ev^Q@{LKRr)zTccV z6B??*K75D|ef{yrrxn;+=~G#04i>Ps@GuAIjft!YUh=#>!hrZZ=nyVPNyG5Wi`5)h zXil^hkIMpmkN99=`=!y)y?G@O&o7cQIKG%&2>jV-_@(ps@=@GffQ(>~onCTVUCq-y z&RoaQ>qJGpc`s4r1tV_jM9NfTZ@pe`UsdaElQOG$>$UILjK?emhKH>#@F z+#|{1v8ygAHqb(u$C03Xuy-~Ivg^|Q{v?4~vKlC`;txD?DN{!o%RI;U3^yZE<=UNu z>)qigWT+m8`J3xuNVjw(>eD zez&TE&DIsRY;G^Uw}xzq738$s8q~q8{m5@t6iy$sK|gR(tWb3lme&e7eZ9$j`TL-= z*h$TNOTBeja&n_I}0-@PB_-(a9 z^!}45SNqCQ+{;A@mG(X;<=?jL($#lYPZ8_ikI7CrR0x&^LTfqM`CveijJ|;Hd{w>p zb1l!|^Y(6amc1YnHAJ5|aTMRtJ$n4F(Gg*umem;7wDD_L+C+)EIEr*0OG!jp-Ns$DTcVe(KZb+qiVW(Z@s5(9kJ<)+fhA3LRV{qEuz4W=*DBH+#FTv?+hPCgX z;?~ZB2&c=(p_s`i9;F#w5R+tijw^bx9G$OTBF^9&_zTVk*W9x%T)40r+BVcxzMoc0 z_p#q;7~k_Z2swUssx15mPMFKyqU>!q;yuo`RFO>@PM-Dt`(K^GY1=Es1uE6C-HCQ;?IdRbsEVTJUXMHR6l=yKOO?EJ>!R<$H*!59=FI}$mm59zF zgi0iMCW2Ke=t+ACf+OidwD6HXIrmpG*$T{oNf-DfGwkqW-A&TS5qmXm!r7LPpqdNG zUa8Rz2BLxFa%q$;l!#3?5bjMPU_3ELfgD23Kxy~rWwtP-H*yUq&V|5{X6GXdOF zk|dNtg{G%Qb>kH4T9S~Bcax%jtYnc)U#4OE9&B8oLQIx_u%}~4lJ2g{t)ihM@${3l z@8%Q2n+H}w6sTGj)oWUO5J`2ZK1;%xJu15tsDO3u>F=w1opsL;vZ6~vd)q~iGs}Se z`XC?n#DA{8Qf6X$!tpx0KBVs8BXPEWo+f>GOru)zSfSe)L zXa?8>EESMCFk4VZi_9D0UJID{$ngB9B~UQhdud56R8i5MFTI-lvhAUku0fMuaGhYU zrz)s$?~h5GfFLx7kbQJ`sFXa$fWT^Bl?psh0_erzVn|{sN?1kw9drofk2g-R3zo50 ziQa|HapAu7IeIC5Gi~spawIN~s1sELC})=muv6>Wt3xCdp@DjhO=jCMLru>2Cfy^8 zUJ7uSI}4eNr$}SdFL=r%$K(}AX0Rf;Yx+e`e;@P6#+n^`Q3?+Jb)U-tTMb#StSEVw zyd#pH&hWkjxkY58v@=O_j1}86Fv-V+lmqS?b7Vi^K4-72+~qK11Pt2IYS)=~WPQYA?1u)mgv!xH6Fn`cBKG!n& z-v`Ph2e?LB)p_`&gYU0n+Z=lAfvVyz7&fq@`vZ?Y^)bQh3sTdj#o>ixqY66+wm=c` zhqLMKz>eBNPH$cBK}yKmuc<8Fk9-19M_4}hu2Tp?46AyZY$NBSmU&$&H-k*d7bmB; zi1#R}86W)|IwoTUQxp1s3}37YVG&Mi5RJVbRr-fVvteXHP0u3-!4X&4+ zSTj2GkVFl;uo9DWa)1Y5ulGlo(jZ=THQ^R;dhc6P7_Fm-b=L5ma(VIjlF&sLvALM+ zh0SDA;FT^FCd7AKk7L$)7)Xc};xn+kU>Thy>NGG&Ti!F8cGt1G2R4W@@-ztY>3m2* zZY=Fp6#fv(^NyJ{=Arj>W9QBv(R+AXu*lU(pykj0w+oO{Nk+&~0s zOLugFCvmbvfCXA5kc8Q_Tf?6Ba#^3nY^zk*Ip`}<5OyJ=w8DQtzgom#pNn=tYXxzx z6R;f7`p6)~#PK+wt)T4RVJxYvm&U$)oe6mekGTQ7hlVI2@)7DX|7| zv`lUgd`wVCgPr&8+xtN&LZ&J(M(RoM=RPnO^EKVg3A{Q+V8M!w# zfm(`wmay#SfSfYF{x6CRYKu}4DCw!>up~#ZW6%RQsKD~a5qd;kTTHr2a%cpMUOc|x zA)hJC2?c3l$b-oWNLG|V`5%-(gKw9dAP-a~n1XZDF;o+(J%I|t_CvQucUNLRLFHco zBRVH{5bWe*Y<=&Y|Qwt0BC%L716^&moN!WzXrF)e70(@5D)JC0`p-2e6KeMr{wj(_7=g!l|-Z(kZVyS%sL(9%D z;30gJidtmm3xHckXMvPx-(Ji{r8JWCF12kdoL``ijoTIce>+mq&6sS0vzWj&6%!9< z81uh90yYAZ!vnyLJ9TQTV|5Pj{UDv%WC{OZEXd03Z0a(GAGEL{MF$Mnb6GpZh7&9) z&$Gs&zHw#!x1&%)ZIqq#SG@i?vmu64V!Gs#ZP zoH<|s_%_-g>aDgKc7N0VW*Q}AE!?Sh;T_PgNBDI`8Y%9;&rsBbDwzG2F+n9Z_K6pb3`T2GI~TLAzGjIl=FXdf=0LSc zu{=I7NUv*y7e>bIskij~BYZjA{pj_Qd8)iTw*)@au*5jO3|4~ORuWsE##kP#%efSG z`tn2YD`T+H7k&ky-&I(3IBmYwgxMe(Z<8zPuyMbsaS?r1}bRW7H9PK() zpluY{kwc-gb(^lRkYSGe9#!}`o=x>r9l5&&8r{j~C!ZrRttFLZCQW*?0z8^~Ns?<- z2xGq=OM(U=^AUFpZE(jjA9lySBM)sK96h2}ZybcTC)?;0@~V^+m>UxOYU%kTseNV% z%eS9)IY_*}ga9GS5RE(-C%ly^#(yD=P6tzeI2*A~zZ!!^L4?ak9NH8!8mZT8!8aP( zMCwKZh(T0rdZBn1;PVZW4gm`m5!zg0pLURzFc4#t*;G0WF&1BNu;YyYF_<~nrOU_& zZ$zLl4bawJqAeyzl(32qnoHn<~EaKypD?zv6G}D=M=G`(NCa~*PV#<(ACknu>vk9)rFT3#>;pDb5c~mSz482xhIa`M6YTR*OlJq*Ag5q5 z-ez=80h{Q+YCa)<7#W-7CCLs9CF29eE7H)&jfE%U8+r8*_-V+2%K7`#K&!RS0I zAw5KY!Kg7z4{gNw4~tHH0a)LqBuj%doZjAvK`c)u*QzxX#_y#AlCm#iJ#e^xj|UkM zTf#ZV(9Jo>w(rf4tA+jZeVIC6gu$GXU#oHo))$-{g`Z3}ZnBN1Z8~7@m%A+O&kmD} zPGNj*QGV1>!v~AlM5q^5&L1vBJ@6E-rB};6a|fsC@sxr+R*c73hckbT@qXQ#19o?J zbYts768TFx1>+s|H=-@Zb9n^MKzixxW;nkfZ0&$wJjQ{+Qx;(*e60h62dO#NfslmN zF|mALe6z&|aux<-l^1RORXdgg-gx`8FTlogofSc>Fb}{LuzQo(J6-bA8`ycgzzcUE zzo!l@J#iuwJY)67AD4ZBz9YIj(J2q78rN*EOiqIWnB2Xf;+rb){#}E`-wh;Q#bTWk;TXD5Ki@oWqyoz~iPd6lu_n}J zR`e10k`-|JiV|v(RXSLMdfUb$_JrE0%%9@~KL1*UDPMC#UZ<}ub94~CRJkRLBi|ocwlHNNPm9p0#c>EZ1TL-q}*lIA}E)s{O4Y1(6#kDzK#`S+*0^4YLdjk|5 zyi(zG0wj!KMvax!HD;3|>5tSk{N}cai3{YOzoSp8)P^qu#T^`4=h9?goB+?@Wca?k zVFN#S0^C>Dt(yn5>|eva5p^wa1WjT&BU~0@e%HbRH0{Z39?Z28YbW_P1|dj!7>D4x zMblQAK}bfp89)dO`Bo5g+U4rTYcZ8MFQmm*8s%XYt2MMu^KiPX@fKCQ!b+CQp*g^b zf0$0cEg$PsiZ`1W3TEYE{a9&%oaiqhFz%GSJSpx)v>`f9i&c|L(M`pd$U^ycLPQT z%_?d5Gf^oV-*>AT5R0DmUKI0KYUii=Lo^FBc~O>y{{&N5^vVyT9o*Sod`(i=3qEt# zuU(7B+7%His+T7%n^5sdqu&cwX0$eU*2<7SaPVDX|K>N1Y0tLYlsg!uJ>X3-J?3gr zhR$oxw26y%VyMnM79T9eKuw#9Da{D0OQ1jyy$wpN*=~0GmPn5^%G58(xV6GW0MNr< zBMt8qwH636Z>@yU*C=r(G)EM2xwmRJ_o87+3^g4J{YZv|(pN@yAF;=5k_-T)J(0xIt7&J82$H#{_pMYZH>w1+f-#6;F#tc-wl<}& zk%U1!{55jEVj!OD5P$tHSjxDs4QsPu?NJX-v0sPMS1CXV+1dVW{^u^-e0aE~GS?;I z>ErpP3M+O3AT^eGJs@#U@V5%N&j1Q5J`dlMyUZQZ0UL`x##%>7@OOZ;hrtnWa-f8r zrx-Y_g}ndTqGuhrg;9=)4y@J8nKS3^n|X+}%e83HGR%14F}!s%8uxPu8i8$^mJ5~s zLa48G@Ov#Vvr2~2x@fC1xnUKkP8atlm}K_mYC!ID?ia6q$27%f)8N{sMT-3Ypzs9Z zjZ)ODwLiVPJ57Vy^`e~D#Xx3G9G*s~FU;A~-3m$WRciGH7xRsugdxK~c(aTQp?(dlmI1eaL3Bub;bN< z!YsWNY}WMt{mjduc+ZnGBX8nyyeci&4Y?;42brZl-8h3l9$S(1WHea4Mj zz5m9zz6$86B87TibWP6<>VDk25biR3)dVl>fn}^rf?T1 z)@sO*A@u|~9m~7-9`IZf+TIi!+m#;S0WQ)x(Su@^o9fW|u?2uH&^8=^5F3cJ@Wyt* z4i=sIuG_I^VE25RyKl$PSg`7wF8*x?hG6)>bk1}l8`5j}!IJ#Vn-Rh?6&bLa3 z=4W&eoQ3_r8fuhue9Dyig$k)Y{A~RqjE8@$`10>z6N4xyC%5?T2AC{ks7Rfc*Q{BS zKpwlA!b--H4;6ws>7Ea4y$@`pPwb#;d?QJ?4=hf6;7wjQL9d$`5IjSDU?|<|Du>eD zb^62>E0)UgH0>v6xmUWjBYh;=Q$`2~@_K{(m5Bm`Iu#b6L*5_-7-V4H02$4`M>}M~V*t z5hQ{r=uh?79H?Z<0ssxL(Ww_Oe@3G5GLQ8`f z0udN9f`3{9nF@b>o_NXauY2bZKM^@-6WDMgonWROK=(X0K}6^l&0)Z7E-<%UXXg1f2n)@#tlz_Il$7w} z>t6o_ix_Oe-LhpvTEiE)uI!WOv7E*$?9n;=>v4?h+{CxB`*{F>x%O~he1IReaKvH@ z48Ztc4qMpntp_{bZ_8$<*!;9H7GMk8z1h}be8_R1Y-qhCjNO#l*#6JFCHnN~q>jAA z@Y5cga%e$$84d{bcsv;XJpm$Gm67$I0Zz$j*KAlq2RrzDEHe(8Kjkd&`%sAL@y#^P z%BD>R+yo6vtpU|TG#NM1$6qq`%@Epb3Q}xCX&%gT9D+R1_^!wE!z(<5PF2jdAA z0!PonjpyNCJsw-aP@cv%xh)>gN1P9#w;*W6H`3!t2@N~ppA#6$`zNqc;JnXW0!E;0 zShjrG=_9OAf8ZDz1Ba4PqbdJ6{h0}YrW3R@jQfDk+EYfkzP!n?FGUEB5-zvlz-7;k zc`~9$@LaDtwwV4sUYPQ>)n%FsY76DL#ib}HWK!&_ODk38N)Jq+k7s;O z#rJy-MW}OBq`DR#SWcK^h7&?U((!F)iwGp^P<1d|3UifiiQr+16-Veruo8-&vaSHd zu*l1BxE4& zU057i>z0I}Uj6#L#@IU#66Ks){$-(hpWgFY-)=|d>%vY-IIg;brU!B_i>2kyC+*uf zUOs#R=&|D;;LA3u?%e?0hZ~(=LOroZGKWB$AsV)8%=fM01*|mgNL|#3y}F8*6P`QW zuByNw-WZn91grUFOV$O3;U5%(A?Ur+;G(f|=#Z&s5TV@`o?M&iMEtGvLU1?{W7%?A zYtSG%d;(dKF(BUi`ki-RoJEQ0xp>fs>o>2@Ueck26(-5@R5(kG!>LOwirqJS2gVER zgnyHNb&#U-W2{bCWi25vi=@<<^31;quQX}g)6*EfQ(?h4%8*Ny+HbuGybs`369S(J zr|XFyy+tX|zmqUHBRcVeRymXyiXw2!Fa36uFDJ6A{gPsAhV>LXS@-9j5)~Dd{D`>j zC0PBH1Fr2pwy|bsS*cEGh4JXWf}!&yz)cQ)i{l)lD|W_~kGIXnf${XOt6wP#c)htYb+VBoJnWf>TUAr<^mU z)9KgGuXP`Hq*Kom+elgs0!%$$Ct;=ZDkj%<1r~m1dNU9xa7xCg2?&oIG2$#OA;CQ` z@&^SV#b-_Tma)p`BUzbgT0(0InkH^IM- zr44e|`M|9pv#-^{a=6Il*R)#zm9D*hU#;>2kB*f-Pw&!p0V{xU7^-|jx6Vv!xtr6RfR%Uw2{~4Az~RZn-cw zttaap7;ptadyg9rO~Drh4520i2Zld<_z=c50wv5KyzT>oQ3_W%z^**wq7<+r`Q0(c zxzu(xki*~G2{wNY=rIS`!Vd2je;vE%_E9bkmI1j-VnhqZxAz?>umyUj%Nw+t@XZ_I z9Wu6e5w(kXTPVD4l!OXwA^$p-{_L`EC z*oQdz$U3}yhR4HtHFk#D@pxF4%d!?;ZLpFt zIAqVB8n5lq6z|G@n!U@R3M&Lcuj+;=d`$J;7U*;VU+dl~w=EGF-oIV~9YbL6;cv>R z6s%6h&|pyRA3VSd9a#FO=%~To%H1bUoT%8b7@#HheJ z>aoS*5aD}7)eK(L<|QlP-p@_Lx>GbMA>bCUzsqG4o{EMZW_V$Bt+MzHdw zW&&7Kl$xO`R#h?v)>=z`+bzaw$==Iu7=n_8LU3`h*d6;}ql?hfLN5Huc^CmLq)JZz zWpw<=GfcwDY~A`0#<>7{I8+2%0ia`^lx_~NcHaaG^Yn3GpXdnF>G1^FO-0!PC>FbM zW>n0KN}(RlAGUV+D-=3eN>^3-lzn&_Q7pJ7kEPacwxMf^-L$pS7kgsfA1R0`8=lA*!pTPK5hF-DX?LptH4^s-^b`T$o=CPe^1p!@lI2#kq}@gLtTC znyEzegnE{VBr_a_z0J&k;2G#~uLAw)3=$WYbAvmEmifSzdt*dPo*6|I?73;LKumyo z;JJ3a!Ixo{h=bV{fN3NLY{7qncL2=0oAN;mWmZ36P3!wV*HQEybPO1V%c4t|9Q=5` zmcS`6F)t(}1X|`XMMMyEwgXzHQHk=PcZ>BM^ln2JW2`|Grs4LmtGJ5(*D$|aB?=TQ z0aNxQo&Cmd+=9N0$ZV}8h3s#a+Tcl!nzpPQT{wr6JDVs=<)ECxEh1Gy?z zEQ0j);Z#;wrVnaXK>8!Dv}wIHPTu;Uz|f$fEE%)ptq%(DhG!=)7JJ5(v@eVVUerc7 zl1jHxxYdZ2<={)wHU+T70$aOT6!LjRkb^B2;N8>zuL&3`Vr_3AjW3~cM-%n?bhC*l z2VuQz=-TuQM@t}kp)5v0OuQ?O7<40L4Qy_@ttMl%L!`cerKdJFeEf2V%;lK0M&*Bo z{Z5W>WybXvvLL%&4^JfLGCRRGu)-(>mO{^*32Tj7%NSpsBx1#WrHB{)h&NPhUKf33 z(@jJ0tWzZm6|Y9!0w1Hk6MbM``oQvd?^jnu$Vl1tiFvR%vu-0_S|O(|k5n!e?hDJb z*gZZ=!{5+15pM0{&&Re>B>hbf`|Ojn#DESW{5FHYPK4#P$ABel-n^O3hH!k_LCM?r zVHdc(^wLXf_Vagx>weqW65wQZeH+KUQ?1(Y;UyeYJWbd$mxpIj~Mm|PI7$6 zDDf8@O}h?7Zec7Lc%iv>c1yMOuwX;R`lbSvemd}Dp*8?*y}XCuyOIq0MafCe?w z7v?7OzfG_H#l2hQm66tt@jxTlv*f*|A}acIGQsquZ~v;amwCN0myjtjG7xgFV1jz)Jt z^~VBMBLM^#Zl}r7z85gGz`PM+M;kb=rBfk-)0{&@x{m5m0NoiND$EG~l@jPWXCaiP z*V|hb&KhCV^N*!=Fv5=$DB_8&>5LM^dO|5J?QX1z=|9i99QtC4qkhpyJJ6lJAzO#e8z5wb$~gKyAOGw z^|Cd~6kd5zywN@hULGaBO>+%H~hrr|T(sv=?t4C{*in$A|>#(7scNzv0p zC^X?Tj{W}oSuLbl0)<*!qNYr0Hr-iXNb)EhVP@5f0=7xhLMq(S9{oJ|k>;7<1Yz5{ zu4t^b6(R5)S77gGP?O16+jQ*!%CXTeTdB*Mr>9d69nzv&&ewJx2eWCU0HIQ;dP)I{ zZz6(pS8Z_A+?py5gLT$lK-L!(x8VDRiD|#Uc9pP!cwdKF9XpT8eM!M^V@zFV0W2v+ z`yHXIU)~4M8aDtKu*UU2XO;C^nwDJ8uC$k?&C$aRV>RuZ9YT37XpdjYn&2@9965x;v$a?c z04|rGcolC3jg>%vKih{WNGcB7);T@bLx+k~$U;0DA@rh`y_lOx4+Fd_h#$ zUlKzI$huR20UUGPD=CO_s3e1efC~ASGH50Nln0mr!9yb!NM=yR0{jh-LPCT*5`UV| z08*u`IkF+|EA)1^ZJPAL|msQ{;f00&`OH2*|b!F#KF_ll~VWiGgg)-C4( z3dm?dR_nk|+J};f#a0Ji9GAl(Tk9&9qu05O?O=BuTC-8VM!#YMcQe|y0j)=V#(YO@ z7>p3$&=+$51ZO68Jp%r;Z|j)oj}V>!w~rEX^&JPHohJ4@#!*-*xs+UF|SVhHFCq+>Wlmi;yes`kM+3PsN>&bnHm4%p!)+c#P*99K6H5 z^CXKrU6f{6I{bhq5O#!@W&m)E?Ihoxhn!b-Si?{!jfegW>yw{zIkVVE8gfy~ zK7$z#(avFE1A8A8r9CXCrO3cSXR#S1POK=aM)dfk(+@L&Dm@RHcAqJ;FNU(dv=g?3%dV2nK9}93ol;*L_NbdpA-E9_^y<(qK7m2> zCLMd;PN)72Iu?5PcWs#hJ91XLRu=gkI4om#%NHJ8l4?k_*PWDaoR&0(eTSNy(9RZi zN@n{7dZ+j9Mczw>h{e=YT1!(yA2e-G7N;D9V8ahKMk`Jb0VoIEE1$|mSf3v*ub0`) zKEG?>&v2S?twv{qX)~Tf4gZkR(gf1brVTLW36`*$_ced2BKJ>n9#9_*W*KLDpT3%6 z{!s3V53gOjNh7^2rUjwG0MI-fSA8HF?$Pj`iNjn?Rx~*o&Q=1og5c2d+sZy%ZG9^m z?K>O0;jOLr{h;A8MFQCl?6*h15GeOGKcIchZwkRY5B#K~AUGW3&Gq1QE(RMoiKBcw za3D1auBEM!n}Xb%X>l{opFhu5$cY#-I^iHD$)Tb8veyT_epL)~mE7^`uS;L8i?+#f zX8iBqJHiLRgiz%N?t^@=y}n|M(~#|gcUxKnUsas!(mX&2PM3`p*v(+UqxinEqNE&P z0{_V56g;pgf-5GlK9#}7UcoR5sT}re9+uWu@VzQxqK6xkLtasA$u%4w%S-vy7%oq- z><8toyx_TJ7}_Ia1s||^;s~$+D(`Uj@hTSHgSR;7G;kl^@6o1Bn}H7%N2?AsCvHo& z9z+i@)SYZxLS_Eopkn-?O#6Ljx3nMpQ1Pzt)OGWLRZWs-FL5~(h5O~&z%Dtv%Qj9h(YxNAKfwms)Hu8a z!tpl_f<18E2R2MLe43(tF}C;IO*->LkpL&b7K#*4O}Al}ePAE?z{;h1T@8u|5z0kQngI}R}=6fd8oikhh_^mPb74^OTl67_J%RxRIeN%JCBaWc}x(3 zU{(NGdK4IJ61h6*ad`$%esW8KFQ zeCfp6617609#)hmXKt?D7J6eGfm?A~8*POI-v;eHf%3Nr{z|-iKK-;bK>2S?d{2FJJuB&iF z4T)$F21&cTbo-I>Ld)k3?$@uIJoB0PtKLmm9VcRNUecS*y8RXjWw5b;Q?6AUFBp7O zfMD+pzPHFhMcx~4rIJrZyXVds(?2ORaHZR(j5T0KJXpNgPLbOh#!S@{3hV|g%T0H1 zy4*164ISfGOG5WS?jux#{`5E5QHe`9zP_jwMoGd-p~1irR#wEonBSoE{uCN#*eC%^ z#NoxE>BgKmQFX+X28bSojn5p2#$OA9rE{R>$@oFvLTDO(EN26~GW8{p$h{IPJ|C5J zgYdIBUg|aHyE>m)Y*c+wNaq3ys`{eO!j!Px&2p;yut#XUwR-^!M1LgY0)j_b-r*(= zma%6S(Ax{|lMDf+$9#Yi>M60mKXJC(+0+QNg>#h8v{h!&SQM%#OOy!~YSPArbZ{(~ z%L8cxh5ql9v@$dMt_ICDoYYhVi)z{<=so0K1c%Ft*euOhD2X*;Q7D`dt)ESe&_@^# z6$EE#MjGHi-e@0~_WuE!O@~RSgZRvGIzt}Pd4`RjKzyRkYCsAoin3P%+h~-*&o8W8 z&d#EXR5dXVsM!PE^6SO%QlX)qMp(TSTFij%{PwXxeAQV!I5W7AD4EBXaKxT?1V)#&d)?hv~Q=y?%;6 zu?HP~-`EBRuRZXVV}l$!0xRc8h?8IoW%(sqIXQu`Y*m$uAq?Z!HZ@Lf2OpS|^Y0dF zx*7Hr+pK@%g|v?gWBZCt6v#Aqitj5XS6FlxEB$YPEO^R0v07NuCNBGmbuaoh9OJV| zv3u4`a=Bp}_#J1N{>R zJSZ>hMaKRVDMf9l)a9Zx36{&|2avj~RYR(s#d_e|MG)kX$lHBDd|^d8qNcE8n_Q;# zu=nzjAG~1RkW-p#lW{LLs&YtAYl3~=R1m7SaMPuQ&nTe`qErI!efq^7jV^#7zhrlU z@5LH>B+`0$CmV?{8Q!Nf(`|N)ivsp2ICyH4Uv#{aDFhzCZos8nZygJ_-$B40LLc1d z96tF_kTYY$zrSOLs7}iXUF~MZZn5`%f^NKkp{j50-FtKYcNNhZjCc4sbh1E2I#Z|? ztm1IB>cg~+Kv_%3!3JqWi$mOrX?QoGq)R8@OJQ$vOolfVpB| z5^%+yUxBB%>3k~a*WAZr&{fqAOGc`%k`R?em7!M&8R3?>=J6!N)o|E{5QRxYSJi=# zVQxwRJL-ltN^r;EW0u&!O%N8X$yKhw{BpAE=?@4U_ld>7=oaB|Ld=PSA`cu#98Wvy zDp&d{QLVnxSwZlMN{G@L6R+!o+nB7jS1xWUGUzDqGqVtqgt=~L!|j?Jlnw~mpiMI| z(LVo~53G^3GTM7e7z1o%Z8{{`*&AtE@Yv3s+d-rfmg5vOPc$t(JUkq0LwK@`>ttxw z=)DJdOry-C<5)ebc;Ti{jHxQ=M}K zJQb(ADKiiN5S&dmhjyI>XRcn^B>)iogo(jV+i}g`wP%69F_>X+54#{>iErrys&%S>g&5(Yumj$sd^Ql| zIED&<;A|%rUfu|2hN<8JhR5YLz|lC(KEaNr6Q3PDn)cLk?!c)A7rQ(c1a@d}H%?Bu z3VYzBJ8#E4h8aH&IfUx3w1EPKa!mN`=1v{oVAfz(ylwj>0GQG*!@^{h392v^+Q=zW zr*^f`3~z5*xzbwlhE!txA8|~3LlivADpvZlEvtwv){>_TDORj_u@5DahyN4oPucUn zAGo}@D0fzChAMPhNhfhi=B{np)xEHek|k)gAoz=smizlOZHIs@*0Dp4b9|EIp;j-O zt8p_1#~q+gc8wk0MK*wW{dyQ}!DjeQc@gB{(LSb0EXDiWk9Lf#S$ zV(`xDT)laHD*@Jg(i=q$aDuDA%cYqBK+tcIUS{HVlX2#FBLHjb`#35dS;gOylIg7m zIdb%<(f23sm11HB3R{(n)ETp3YX!NSeJnW<%hvB8eli{Q0|h7d66WKCmEZzYAFJ`k zXsSMBB}CcUh_RbO(vN=PsGFZtkb+>YLjch6@&yX8+MIp8%J+p@a-mymqShXao5)&q z3LJa7+pWm}m?)UX_*At!51254viy^VE1;7+jUcVAfQzqj&W;HHwok55~A7-7}Lf_$xB$?W1`Bfz|xez z7aZ6l%AuTD7^$QRGnmVPp{%(i$OwhcLV`Dlm|vyIOP4NP2vBN05u3?!PrD{^TJ!={ zV{`3t!t}!?CYE&OOe<%Mey!=;bgC2F5+?@JjG)|(e^ZS<`4Wb*<<1RnbIyM2#0?Wf zE&sT19o*10Pj$5I*<8T#?KQ2w3s$u59c^a~7Z5!k?PI#vIpdH~mGD_DwxEhmY2!7y zDZzPPN%1kT6zQYs66$rIf;1Xyt`m5CVXtFt6;GISou}=QXq?avyWgl1nzn-TiPwU6 zv^%cF)s7TUDWQx zLF;_q08tLGyu}I>F7`$-xt#$Wh_9eV%bQoxBtnz49e#DLT)gyadl@Ym_ZX&0(B8lz zx!DtGc68*2;!6`t5)+D05Y+xVUP7I(E6z!45_i1=m1viiDpch_tZB4O=HPLH)*7?h z8I;#?n9&8{ETgTii2N49?5vAjN|YEnHCcXpr_#QIkrDCjtqgqx1G_G@nEc+P_Xu1n z%L`A4aV`ADJb>m(UwDD--xK`czTSwcK-NhEME$Wo83PVBqvjHa>yK~h{gmx8_WT3f zfH9B3MI1sjFv-ALC|Vl5jlgQd=T&LNXq~z0x(=D0T?|!V(|Y zTllQA*I`rO_dD)p3p%~uSY|dS0HN}cib_P{dO8Vpy$93@%Tcgk!A-HdipsS$%CR0c znV_S^KYsYWC|nT8AwR(nY+zAH0O`Q*A8nEtD0V%-t_jDS>1)sKw{;3qY$SSS6X>jm%f^!({hBFfX+2-i`XB$o>xwEH} zM)WBMFdko%5^OF@{+Gd04K7i&zXoc+Iy<65n|y}%KP`d03%%>sL;rMYaPlW&x1<=q ztxzR*5+i~+1eaWCVi&k`8F@YRF15ua3q#Yv1TMo72g~V z`oik_kgJ4mxQ?8Gy`eGJFJ3FAlkpFe5nE8V8jan&5b8dOc^V9EGQGzjW=S=)H5M%29I9o@4*r>nK9x8DvHjTO{kB z8F$uQ_&T%Cm=wzc73JOMtf1Xj9Bf2aO4uouzcM`9ZlC>EV7Q~9#p>|E;L>pi!3q?= z$f3lvmj{T$%G%?`$tFOouQ3ZNWxM8G+#jkZHDrY~4O>N#rHx|UMDqR)w6Rj?giC}RV6 zQEa46s0C{6j|{~Y^2e*Tj8)}&s>8A%TS}>%i4B3kPR@vE8;oOF`qN@)q{R9I;%F1q zx(6qkj;db0`rIL`@FwweQE|P@m zhuuDMzOeFFvG+Y5xp>{6;p!rdhXHeo551vW9t; zn^m*HPuSI6`(1AXvx6_~eT-{>nN1cr z_|o+2Yc{O|K*wOOZA(wOW^P&|NtwG40TbN|h?Ty!&S;2Anv6L$G8QFmQA41+%D&U5UO@1g6llp+KP-PC}2H}%Qz@ig8wFjFJqX=K$+U(#I@RK>mdh} zGC({=;%Td0=^{v!l1_;cWVahuGl4|7U^!M0a?=H)$AR{8$3g)roJ)a&9OS&gf{ERv zkrD*hJXGK;tXz^?4S-F^eHbDoSOO_lJe_!wF-Z_d3n-RlqjyubXd(?kP|R=R)vdc8 zgGWef{baJL`TGwZK!lH*3mDo!(?Q*tIwFML(-G1@(bmtt3BWs(d&pUr)MOC;2PKfF z%0+T!Rv)pA!X#Ngmf$d>yK2+sw`o`eZOeEC{7U^duM)>Y-Q?=k9Pg8YaVDW z-N1Xzs#{k)$sAIeq`)@NA*IaK0%zh4nQRFGFHD$v(zRqyu%zIWK*!hw>{da$jp1y5 z&reP%2-RlYd&t9n+1!KL)AfIegrvSI$)ToTBAQ$C%`nxV8(2PPXGiF{)D(G~>nQ$_ z^`fVkIkj|eHD(b_!l$HnzMC;Qeq(H7OTh4T)*`FsDK+-8DlK#kAN#5VOJcBx4;UXH z@9Kl#szRCF{=T!KTojrzNVEj1e{mPiNUJOt#tZAy*qMqrqQ3-!Mb&W9u0~7s-A@=S z_7YgnV^g=qFOLbsVlRPW`ZhF8VOoPT#$edqMjs?77mnj9IzSi#E6)gxU^`1Z$br3; zhF8Kqmu)rxB4RJInt&w};~3%7N=LQ16MH3NLUrWIiSzh(M|2Q)Cg|*0*yyqtY^eIa zh?!wuSjD7I@|ldHXSI+&JHDD*=j=qozuI?ChrQeiF<6cJH{IwmQ^~KdKt1?*4*7GN zxdy+nOUj989}Z!BLbwaLVe~crkHO#Gg{jLcgtCG;ej%gktp$wI`JLnOfxT~kP&^?HPC+I;z&df)UAYioV) zlgnDn$5@*wsMwQC_jXAMBbRR{le$i@NY%P^yH9+(NZnjT-d0S+HJOiGHocPP2TdZG zgdY?;!*K8i#SSkfCQmKl5b`D0!$*Aed`t(g2a~_tT)Aj>44wLm*i3J0xA@Qi)$Tq9 z_W-ZW1}A7}B5j5!F#Pj^(+@x!Y|F%|i$0L@*6fM?0guCXC2X4UafgZ4()5Zg_;kZb zy|+FB7Rk)MC8;{q)kBHlQ^Jd{7jPHwYE~>C58K;Gu!XfhVBZ#U- zzsbv%E&CF?4nLs$c&?N`PROswJI4z6Xt3w^u_2jnopM?8`10dNFLA$kEr5ws)|@BT zO?NEsLw5`YZCrJ7-T%keobBd(u#b2*D%y&08nW&_lhc@6M>N$a4}H*enjjR=JeDc=Djf2tQZ z4=prszezn3NJV}+u+e)@3z{Oy<^BHbn}VrM;&}=Pt4Jr;RIHSa$1z!9mF*v9K=8n% zwxF#iD2{bYMoeOrX#%26K>R{+{ zgC@Y|O8P|T7_&=BSe8JZm=L-4fpK!?u9TJ1f--Mp(91bx2)pMfsyO_vvVsm@tpLaC_Xj_ed!x_aHZXig0{J%uIHDUn)poa=Dx6do-D*z}@=flI9*_Te|JC@6mEK0@B8uRpi0Dpc9D*)y%)6fXh z`5dd@AT6=23|@-a$BO|==xkuC1?&~5k4Ng*OSEdX%h9QKcN)QbzUr%4t?j^^%O9L_ z*`|Re%Q@uGi);vmqfQJhyvYF^*Ga4m>Vidzx`=MCS*4QUD+^<+C)6cUK8}{xLl`@g zT(-Rwf~nL^B?yhwA&d{(9zTQ4#1zeBig_NzeR~t%DkEwIEOJc+s2w-TZ5zN|geLvF z?_S4IV*LpZ@1)8rlUa&vFA7ti8QNal4HP5f6Rd$DPORp$Oibc(`Z6Vla5Y#bl?Y=Z zpN8U54uA$;z<6op=b!hRENz1cCeGszSkvqXJ}ntl(a|(&pDqO-B-Y|`C|-z94H~qC zzGTH6bQ-8)SfcR{itk5nJsan0Nn!|PnLxq$iu)bvu;_d1~r)w<(I)mNh%160l=)(UpwhdoVOqbG= zo;UTL`{;{X?*6%SuQwpTEq7k#)VPkpZ;-zv9%O=E2}1z^91fB}MqvyAE+7JFSIplB zh9FUHI;m1uEWkJBni!D#OBf{7RqjtP_e}iN%=`PuylaX5uL42xx&br(L!LO-QI|s= zPcM^E@GS6wmG^j#2<&E%8eq(T;K{kvf}kG*4g1me}- zgKyhb%{gGeJZ>MPoExxbiCZp~VUMSrLzNX+?#0**s{(TMELNv)v&VD5NwGqCj=N*% zkjHfd-qP@I^1-`dd`a$7HFE6ZM)K;xr`KzWV z@H&98oA|h|loY>On{{lC1ktG8IH843QOtT$F+Y8@9G}dX;nLeG{{fUqY%^t=yR-6& zZKDE%^s>CG!Vc4QYW42pZ3-|*3xV;dPeP*<{f8i}AMH4-##iJ=rNb!Jr+_Vj-D*gL zX5b~R-Nx?PZMB&UB78~H6eD%;VvZOw;*%?CYz9;mP+bpHMQD_bHmi}00v1A_L9CsB zzp_w1fFS1Hfb+iV{UV~pd!H=fzYtiUXXX@C2zwazv{(Vca5e= z{T80WGSj9xZnO0fvwZ7Q`X~4n-#YnW`X)DNA z3PApP(I_yQ0pF6Al2@J|d*Cg)wVH7NatGyrQdKlCwi{vqCC z@`)Z8pA|`F_^)Dp-H(ex?}4q{j6m>Iy6%p_>c9m8yA}M^hup9DdRdFp=^Ky9C?~}V z)xzXrX)EaP0p@DpE*9*Lq4&KmhvriCcX7Hjyuzb}y+bB(f5sI`ph^W+4DG$;hsIsF~u$hvBn ztjDn4IMERo4FCp%7P;PkGg*mg+qWNuc8ZMEWfLv{!k&(j(l_)0J^+VE7z(FCH)bTO zux!+2MNvLZC|iYZ%Q_88m2`IuJ&BS>CGpDKE$ z9CN(htzXwtB`Q0em;l4OwH09AlMGYL-a+VVcogo!3Y_%xFun`!bFtm`|~g#rONrxgYnI1yIq8 zN9J|inxvXRhf3-tij#Nr$|s6)3|Q`tdc}$6J#7fmOL8Q8!8u313k+L7W5#{z+36U* zhOZ{RQwvBVc7pGy1Ix4;-}``R$(#*#zR$)L{@bth9^BH4MJk9~ogZl0ll~GN2(|Rn z*JdiPTuThQMc~+CBD`Afhf{{5BGv`&81zx~A7^9h131b?qkB;3Mh|K;GF{zxO}kmL z!I}XLCPBwiyEoB9s9{OFR!I++8I`0t+8bLm&6@uB#z7qNktMhd->qYXntAatD|AK+ zvAxUr*C*S8b>kntYH^}cQQAr~_`#EtWqJ1%h$A#@mlX_mnChTs9S0vS!$m-m93BC! z)_NmGoTVjXB^#A!Pm3ffJREKmD;yh!YM#`Kiy4uyw#{Lt$ki$Q2`^8a^a78JU;EFb z>TV7nKKyk~`j=cQT_@fdQhDf^zd|3+h#zaHisCWFln2Naq;rLJH(YFKwc-d|FOPGM zZ_`Pr_{^yNI*aq`0@&4jxlq^j>(2w6KGl|@*P-UU^y%dO#!X_cv!%$!s&bFC_P}KvvS7V zfiR1y4-cUR_h2(TJ=AFQ7ohQ!t=9&5e|+_)E#D2h8Vd;a*j`-pYdR%y=b2?{q@FpP zPOr}LM5T`E^B^IG2W#o=Vw-HcJ-Vp#2H6-gyv`E%Fa~aq{S26Xo0tm~fyl;U@uBZXu%W6ckrruU*jTLSfB^%Vp2E`N&R9sHky5U~ zOjEsRp3Y5H(}klQL6ZFq;1t{S2bRCf%B7tk6;lnNQz3GhcEnl?jcJu)(dz($K?r{E{s0Bu&N6B z*V0PqId2tSP%45d$Ndf2cz{#InFBkTx7|Ktcd0&^oBK}TSk53G$3%%S8z4;1jS z%0Q{8fL@6xvDbZIW9&UNL3)f&Irp^qlAG;AXP7%yD=G0=A$4Z3t=K#^5!mk$FQ0J! z{OlH4Y&7m|t2dKzJx;J)Id;`XBy1(V)L>(`9i9TW9rgsZI~_eU00l|!YKZ2j0t1z3)beo?3Rgu}{*$Ezz=c<#JsjHLAjzVa3j zGatutm*j>qscyLfo2&0aR{1VIn@d!h|HAzbOO|X*ZJly8|4}NA)R$t)7;3?)`CE^0 zfT$C~&kde8Z)o9fxh+Y-(Zk378h%&qDkKcj1|Qhxo_4N+t?*`7tV#OS+^*mPA45Sc zm9y7$RR#7bzksgsJWW8Mue@pFbE;DmOds7YN~}#f*3xiN0R@8BjNW#%$ zl?{=?^^4RPc8iX0ySV3W##VQM5bCQMpfDI%kCc=uojS$6}jG#%Y%2 z><8!wkhV%Sa?zSWV0==ZotF$){oa0_(@=6jZFg2bxM<$LFdu#Qwv76z1G(L zrhJwuasCj<8=^^8Ihd1j^=RWf4en{0RB9m7p5|TCCdz3+sK`i$sWJ$X-`~*Yw9WyZ ze~TOXo|)5LSZF72f82|My~O+Tp|*)*xvuTwUj5oOCE;C8xh!BPLNh6sA9Uqx`ZYqk z&)>VtTCfxQ{E^n&pj_6@3I?Xj8f{5YcUcpkvdLQHm-+JLdvnelcq@b_@NN2-ur~#M z=j$5GUpfM345dr^OJ)6dl_{4l_y@`k_jxE}AyOR3~`gg!FKMWCrv7?v9~l zn)@WB`kLn2XDM=0J7mTndNykhM3NaE=sK=pvSfHr7pOPa%qUy7u%axQKcaOG)^68S zfcs3`V~#9rx4Uhoqa5~Z~n;jltu&t%$;17j_`riBgb9k5I!fonKo7* z<6P*J`*VvX;2l|QY8>8Tv6@h6+29TCGtzD#)Y?Q*j!>_6`3Dbsf)Oz*8I#>m# zbt=C`IfZU7n{L!D?K_3iA9Zz+@g-$2Z!Pu=MdBVZW>9wc7*HMURSbrpf^}96n^0#u zKBLe{%Z$GCss(Ty({7BAUhJM)vVZ-ZOgJf2=y`PZ?Dj+TlD$tNBR$^e%FbBN7Ypfi9 zo|yPJ4aR7}{bo^h-w8_9u^XZV#=;KH5-T4A3;*sV`A%@`c`-5we`LgWThS0Md7P)^ zb@|;b9-Of1!w+LpF>b3+%SgQx`7?PJ62jYKCXIWtp2EVbbYvaJ(A)TlM}y%xg}twMp4?uty>^}_;Gu?PVmzWYFQUZ zkwGYz1cs$gSM?rq9D=UXMX5C?MDTwdEbm?5nuLD%lIy1y=9RkM)WJTm#W<~%TZD`8 z1vd!!z_M*|mxKAxt~v|fbH^aQ(AWALK79DcT5^&;qYnjjv1KJt-&>M`YbA3m9Uco> zyLRobiZ=dp*OLE6@ zN0XC=!JM;O*GNJXHMNdMlAq;PjUgII5)^iFE_b0=(Y9@;w=H4C!+j86zhAsC*!&r% zSXaPwmufawOpsxTa7Y}vWzx8ZVt>5+a{B=fQ(JNxzXG^#_ z-F_)Mg-Bn@V|PE$RBl-q;U$`7_cIu3gg>GvxVd%_!(VkNhP-=M2|W@6?KeJ@L{(FW zWsv@>CD7m$@$MJ92YL)cU>O%t5A$>;*b{j?_Q`a4TnX(ZaU;OSeiJX35?X@jt7py; zA`MoRz_%LYtuyW56HJ7zCRjfY5PXw$b4WQ!=_|BrME)OpZvy92_5Y7w>&O^n$%5-l^*YPF_bjioTsCEa*KX&+?=3v|9_$QW7&HOVv_;>#blQwB zFXXprmH5)*5LPQpuXI-Ch2HeH_h{>rJ&hY&?*z8M((k&Kym=C16Cd{l``8D;v`6Ai zF9V|ye&~f?u8;iKL1Xl2zXsx^RD9Li z$8DuAUi-MM`t|2Zw)AKmFt2u6KmW!_w!`c8)TVAX295_`bnC56))zAOTykUCvGGpV z*HjvnJlG9x0MtH<)=l>?$F|q?ojJ5ztG%$i@%qm8Iacakm=*)2S9JXrO-iZ`Wliav zqVma~3Hq2WZz8qBy>eE+-XNdteLz?x5ED7bBGqf%+bn)Gukchv%e$U#gXg3D@OXZU z+$SkLHuyc-`?(6Xz6e!eM{d%H)v`pIUyv07kfrj*H`xk9??(cgla1Eg{i<4>#;2jz zh2cx5nrZ&^z_6Qwr_)PL)0V;fd+Dn8{-Z)4eAZSgv{Ub-CdT%6^m>s@)C03;52m{0 zI|A7P(@D5j}1~h?;KZOVT#!g+|<}gia2t@Q1{UG!{EqMghL>8|IV&A7P@hGKbU$v1|{0_SiY1BGrYdl^-`BQ z$_s{C$8u)W_9Yzsnk7q45Z1SBn9b${u#PUZyn;4uokxnyhFUAA6z>kVOnUEt}m-C^B(yAVhMCM z))VdB@6oQD9Kn_D33%)%Jb58EfvY^RKY2U!df+{GqD~&*a{yTb6FsmKTrR^RcRi>5 z8kkfN74pLiQn+155-xBnaQnuMgoJ~El@gzOCKx80K;RcQma%s4_QQ7Xp1fphRySyJ z1_z3#gW-) zzvi<^8F14gaohEhiwM({j7@wE4o8XnDr4oZ0XsK$ZvAYJ?qio_Ogmv}T>U4e02M5p zrjbo|Uct1A=XDc`uc~6$S3Tk^(CI7q%cc_=P=KeD1Ex+nA4-mmEF?ih1Vm zBfK!J@#xW`Yio~qVn)icZS_ctmFR_k8Ea#ya9v;UJOIrIRySR2lS`MysGH6b$r^Xh zS;5>_ug}9;q4s`gQGeI#E#LLUTH%DGcdB?>84B#B9>vNQUb*UQbT(4=mT;rLTOEk5BN`ymjo z81HSJzycj)r6RVSMx=rhu{8pp$m-_j`XJ7}s+TD`FxX!j>D()FNq{DH>M!V}yWU$U&vP^idYNnHW&L*&p zN=Jf(jZj`=~i#zAhh(hXzWv1q0TxW&ZOc*|l~vSlMzR_Q`fN$J~cSE~r?19I&o zEHBR5Lz$Z6oBCLLfGcqQ`w4GEj9KVOt=8!6j?DrGR5Mda><_6ioJT_KC)58h#= z_c5j~Zo36`?Dcc!$>TW~RryIt^)Ktu>SLexGyUdMl&eP~MoO7`;PEbj{=;ee@Q-{k zqf(gjQgP?V(c5%OvXoSYdBkvp*?V<(6vM$-zl7YmBo00#gsD{`IH5&z@9Up zq3hO7ttmBFJyP^$cnHcbUCQHoS=6cB(DjwCE;wPNQ;(JE`8Xq$gx!EG>8RL8tG>_# zHxA2D7W>_#p;@&Lwwy+f&&c(!?0R)6%AkirLUI_KvL`(13oGzaf9#bT`gALpahsUIJvNRyhlKqn8kYO5fc zIdU=BTCiHRxIWDX7n921a5UCf6?|zA`|TYtb1=3@#k3p+cm)n@y$drLd0f~VGt7Qx z(d{Z$Dux~Js}-+Wb$TLpO201YERTVjzUI7<4|Qt4v%#j{+iHp>PZ?nRyv6}%VxKQsSatk&mx_OnQ0weEk|A+VKxTK_7xKxZ439=RPw8PsO(=iPww z?@ME@z0;QDRHhHKX!Sah>Bm%_?N1LwzowrZP$5vW`eHLZX6-HUDzP3DiWUgFmDEUE ze7bhj^{Jv?q?_sbX{G76;Sv#gB$+85IJ*Rb8bspOex}y{ga^$s8runWV23~lgEzJw zn+9i7L))@w(F^PsC%i#rznI2;r>F+08!?00Y|+_KKH`|5?q#Dc`Rx}-L$S*$HW^rR zf~sHERcti7Z9E9rI}q5#byG<0vbQx`3rwJ42sO;3xze<<3l|=T{sl!XDfyba=LOxJ zM?1{yz%GxGj0vyM$JhZ?VzPc&85*~U{`wUo)J@mHuq{#o?D%V~iZzG~u)XSSY<>ah zr~AQZnow~iUO<@dCkR$cl+~ zf6k~%<}LgSpgA~Kj5SoSLc7r5v-Mf&0}^u;tipAYqE+G_x-e}AyJk!QTytZ^X3)G} z>z9|Lc<*w{KaWiJbG;uwqhm0^^NIf)VsJ;iCf3@IiT&jL*kpF>StT2`xA7@9p@{7> zhzY|@M%gp!UZGOg^_GUs0Oht!kz2x;F~=G7yK4ng#-%KEeXpQrdmUnIxgw_(q#j{1 zpSrLYNZDZuM_k|;+|$u@4-uxyv>g|wePE7+Y?%kdUnqfMV-BLA4~#A5mdzc@YaQ&N zc8^G!!?+T&ViZ0&xY#B5p8hlMs5AYJtEc~-G5Tze>da*y#AdY_GiEGJbl0)Q-c0; zyt@KRI#l<`GLF(_`WYHiy4}~t(bz}L5uzNRc(vJd==3I;>-h42Y#-(AFl}my?mu01 zl=)-k0ok@5fxv;`6$GzD;$UrGoj8zN3M+abCwe9N|5~nRntwX$rISu9`SQ8<$j(^3 zo|LJ7ny1+4BWaVp6W#74=4_7U^8!PY_;k)%4=mT&K;Q^{zv+87SSS$q8I5pT-J_-h z_83Wgm-@6z(8A^iR=BV%vjRUpkuTp{DS_24Oe?(3oRadYAq!mO;BC>?YN;qlo8STg zk92C<^g!U?r0t$quEfBNT3V^dWRHsV+#H(3tpJ^+%2Amz-84!M(W;3ATYT-(JohM$hN=?|5nTu{sF_c1bz%0 zThOX@NzV%8N8V$NKlgSvxA<%8shb6NQ6AnJA#;=}6+Z6r70<(Hj1a*Wx44yBoOF&i z4UV~Bg>qeUr*oWYZg$ZX-eROLmtK7SI&-Cymh`aP>`yCMu4^t9;o@10e%!)s`Q+C#O#Iz1H(^fO-u$L{w(DlcGbTF@N z1rU4g{r7v{@We`PH_pvvt{lM5SN7&8bMw*@9 zeJsZa##ZOlcC)LGJ8VwvW9y;uDNW0~oPF-X0R2JshHla86|4`SC}RLn8Pbxgx|R)> zW<4eJAMdH2aQhi=`wFa^=kp~M)Z?=0k@vIgtJ&m7z1(RkKK>!9_bB^ifaat~8+=2*O*ychG#zqz_T zJibq~YF{O?^=ivX=IDb|BZo72k{vAU$w}#-Jkzyn*Up6sDfahXsH$%z^F^~; zRkLxP1Sh_`YOM>Mw!8aBs1#!#STFGj$E~YZ$KYz%dhGxOpX}Z8$)cz~E5IaspqR~< ziR|qe8z8eBU*R~m+wmz>19n5<k}D4&RqodVL)ka zFg;8-E6A;sb8t|Sc@U9jfb_96PZ?rHy3T@ff+9l4qfkh&!V$dx8(2iT@kI!+%OsB8 zk{N;z84MG=5}96Ur-$L3tO!Zbec{0&UU((KJo1XN;x5tyG$C9fR7oxt$pd&{Tp7Z+ z?k#wv3deZ4A41Md<4Rp};%Qx^Kz3XP8r?eS%(Mt(UGvC;t;0-|?H7r^iXlQ#jZ8=S zKi9};gdAA(xeL@r(|fM}DrPJHZxWA<*ulP?!F%UwGO&lA=Bw(feE1tBo89CgE->px zOt)=_!Pw)@iz+xk*Iz2C6|D&24JsC4+B2SR^22tkdtilmPp@c@#TK1Y?U66)@ex%Y zX)qvSk$y_;m%m5TZIlO(`0{tMv156xh^%XoKEF}BkM2A>(Ar|!*YjA6yO1k(%~#cA z`l?Raon`q)=xl^C@!OhhM#i3~t>uq6uUE0PaiYC*YG`~^F&XA?tEW%kx^LF|uoU-$ zYlbcp&Ai?Q13j1yb|77BdS<`W9AHeTIGvD<7+dW4WU4M!TFD&8mmXFxkhanZDO2gm zrH9o^KP`6}$kEuo8n6sJXZs8yEVpqD#d>xX3o@Ig%tK(MP~>cHE*!6HdlVvQ8T(LS zJ@9JT2VytkPIIA|Tpk&|Kwp9}S5;1-zT=SR*X3HLvRiYWIpg&~w`S+rrgB=*^B!v} z2H}*;H#H60_iM?iz-jlX*wddS|EIXzdP7O+5A4pR>{>-5HHuX=>}TrDRb;0Q&p*uK zRU;Y264D|MtomKpLT{5ZLgYWMemjZeOxKXjwn*!msi#R*b-%q?*{25Rh24mMii3qu zsiq+M5_?=d0;_tYrTRq{J27kK)|)*rtpUnqFTT4M>oLJp_|r>NYL|^@jf6SBy;owQ z#C0be{GUy|?PEwsu8QHCJbsyLhbH(xjlG0>;HR?=cC`6n8g_z(`hj(HeN;MFD?cps zINRhkrO3lC(p`13tq0imwnriU4d%VD3py5IEK^(2WqB*13+DH9K60MvFIxfC>nIF% zRG#f;yS=7RZ1~oZ!7>HIJ3QFVK!tyBBxxixky4MU* zu#tR#c;K^2pklKvQBfzNqCUj!kX`VkQ)IrN|I?#osQ!-zpW~;b)uR~}n=*#1HQXh6 zI!w;gSE~W^iYIqGNsvAVHlLAN@EpiS*fCZ-MbJVG(!?XZHikWA{AF%t>}7)`Dbm71 zp-Ydcu4&mz;XMrg9CH0EtUqbA7L)|fLRu0#SXd;W4gAdo2gi9b{e26wcz+xV^BO`+6&#;i~pDL9z zj^Ex$T44rU*(IMOM4sR#9~}FmNmFG1esy7Ji0tEK`lN-+o%b#lj-B*=mYPz0KG;UWZg}_JBGX9= zm%Hmd70$8r;uGFVF~ubJTLF=CFVSVXcmEWJ^xWv~dgjZFJBgC!Znm0Z+RJ9Tvroui zSKUHzZ7XBl35q>>^e8Rc*db$&pJhAW`WJZAQhz36T8^9#ffM{K=~i@_A*TRgJ3Vhx zWuA{Uic0Q%jE@XGK1i-TR0WF_7)$l~W@JY~JU(j$l@*MB#>bRg#f2KR@*Q;^gn|t< zH2$1DcrZD!QGJOHC?NMIPY}C!{8hV&_}xIn-`}iQd0C4Hb3Sg9XSocpOU+;&FkRlR zp9|=*u5~Qn!S&ylK*+$KyiRzl)9$5%(by%dCvF#XRGzhE>lPdaMD08M2nM}oI3mbm z6Ln{}BZpIqBf>Z*Fr*=bR?Wow#{k;LYT*59CW^B;fgq@3E%v>B%8@c7QymR^%E zq09`l4rVW_!erouZMDjUxlb%@Y8R^em4}sqm&=95u3A##*q!}tt0);DZy_9Z_}-I_OVxLuQLZF%t2$?p{C2x^F>j$bo8-{{>oS!jIP5}2G$C*UWHC0260 zB2_Mqv6~`8pzA`V9~Oc|=Dw?YY5%xiT0(}58yzG>@_$V{fKd1nS~`Sv9ZHEsD5Pay0vSk)PQs5OkYjLhjkh>Xi(G+>=45t7Squ2 zixgpc>;kyg&ABTF9b}!Urn7yoXLtCV8g$J_4CTQ|p%rM*2OoTj2MMp+q4pL}xMmE= zH*E{#*9tt5q*QrhRbKeYjcwe{-6dY0@-DxjC>O&ao%~AzPCPiD#>T#@>F|l_XXpJ~ zS2gQe_vmYIbNcwbC$g%)tFJ!pj(4wHYlg2FcyEiRo#srx{)}g)f>r=?Pyg_+%(T!8i5Wg^b~I7^S+mq|I~1@MPOs07f@6EM?7K+h(&)Ba*h(t*OkP3i zb{EP$Ny6&W@^WghoF9tbaNVpFSZV3u^kMRT8)u}>z;?Wp*OH=Z?Y7Zp5)t36GyB`N z^%&5+^5zC}fs-ipfc`%#f%;}lt@;m`g?oP}+=;pO)hKc&qHggU%=Eh*EwB~;a)ngLB1I>srHlDgC1vP6vdcu&h#nYpp3EilEFVsP^F3899c&!Ex5|vZr80`{ zfoKi409@0Y%m3IzI@3u!Dlj>V$=E(y>vco3X#6%joO4LmfU*Mq0p!o2?9~hsGLw{9clig3bF5wpwV8NM)TkQ!ECXq6!knc3Ib0 z(35Wl0`sK!@|w{4I$GtcffG&(0BMeG{GbeKcpT<;F8u1?GEF3?*-u=PlOci{_~Xnf}f^-^DTGQ z%bcOcpPZ{kYh#%Y0bWrg_kwqE=2Lll&c{hv@|@3$7&c$v%UB=A(0GI-*a2ee4Gx+e z8LM~0!U|ktNm6%0(|*LVrWMp^6~W$RNu{Q>gHo2TbLUPBIaMs*S^^DsM3K|-^+1%| zrM#+QnpUgHH#=x%_!BoooKPGCmhze>R%{vyWsDb8cnlpLcHRvYXgHUffB$@0#InCI z3l2sExRg)Ih>$jtbNSEh(Gr4%-X@lGWQe<4JNz!t10&q;kD}z>_SSFK%rApo(aZUH zVyFk4Ap`G)=PfMj3o)ZAn#PmX!Uh{kJTl}Pr9uL>t6+Q&>HCE zr|$*W7|lDgRXk*U-dki>?ffI0u5WMFtl8&3@i}OwFSAr?d=45gh2j4v`2szT)48qW zEKKUX&E?tSBa*b!BW-=0$X##pUJ1Q3$M+KTR!=k9!Bksd#$M<&*gm5 z`ERkRavCfjmy`QE7Nn)4Ge4P?&q#)5TkKWJf?Cm===F54^=Lkn!}@KVlonsi33cyL zPjxrut^+I8R-np4-VRfNvdy{WoCi49{8^F?cGZPlKRTvfy?WH0P_V&oy=5eUqE#?U zOJ%yh-dM$xlpLjwG~|rA>nLg?RAr1Y4!afr(ES4APr%yb7+ul>}g&%?4p@?lrq z_XFMR`;3#$hIDLzkMJuEH->Wt%)r=;FUv(b+w)Z{42(1%ImBTr5`yv2goPP$MA|xt z6$vk41^`b4Jf?$Bc3~ERk5wzq$`6IGp-3F4AZaw>!+{5+iK2|aRd8VuVTR8GvxAXN zF*+Ln0Z7$p!+#ZvOh+e07-q+C-x1}8!_{%xTPlF+H_i>B`Ds4keCLi>Ce8U*!g(uz zy5??s0b3=`PhX!Wnm(Ev5NfSWYuA2JNf6Qs(0uQ)Uob`8Krw!5T3@Q`T8W_@nqwUu zzesWH%KJH83K587P`kkzQ;UM%@b&>M#Cstko6}iFU83Yr9z42C`D@NQ!E5Xt`DDrG zUm#V5hEt7g?i9BIj7iq_f77sG!{kpqiP?h8(7X~QpFN%eE%SA$Cgg3+!nI7gNmQDt^ z$}n#^5~IxVx;)LQppCEw7Dges6U&EV4kQ&2#|#mJ6ry&pNEgPND>E*-i1Ar%iwW~4 zMo^2pZn}sFfo+muz#={P?vM{S|Enc1c=%;ZBUM)8c&=Z+6?7;p+(`i|AHMIx1)8;h zNtE0<0qbY5@Esq6@WwW*+Xr~KAlGi&9d>Km+6E08X4YN+CN~p}TGuzjE^%SDlI$n^ zv2Z|&PFs$!SgC=tAwElX)bUExDagGfacobQRL0_@(U=WsH1gl(cqNLKiKK^hmqI%p zl5602MJj}Dpbu6((I3+WEn+81h?@S6bpI=Srt+JS{avY>i@cfcd&PeEg>E6ZUXUc| z07=Hq&TKPt=C?T2@N*HoNYMLyE;uvhe(nhG%VSiM@0(3@emsc6`p}_(&J;Ek1#fU+ zUs-WHhuOFMmdDs~us#_6noXN_#E}HM97ua51xj~s-n^M?R`}dv8v)b!ah04;KbJ*F zD`CyWaXd*HPq$36gicMu5t_*_2$Ez;zHv1A%#gN)wVJTu2>H|K>1(GI=1DL6ryHwR zB(D}!q{tvZdT&9eVFElmYnc(PV|YTCC-_cSD?L}_8~A0i1ti~fojX}|@qw=a&mU1i zi0T1JCD3OMeeHYeP{lq0q}p86SlsOv?>dm+wwFx=m&2sRb~(N0k6zKr;Oy7|Vtm2P4Up** z5$sR?0^4}@MiXcUgyH1;QJ8XvuriywEw+e56z{*4UPRX1VF}a=TL67tPT*K%vC;eq z#zGg-<#`cqFRx|(93|LHaqP%8=bb(?NR-iDH0-{VisTQJxGK?`33nxSY&%JaJXlh| z*w2G=xPS)?ltA7(eCtn7d6dnIro(1Fq{PqScY@@?YQ@KS=8v!z6(4!uXY`hMmkB?g zID*As{^TMHzlQ^r+|35*m=BI|&M++YJY``as|kbI@e6}923`xJz0Uf^YHz+-&ESw4 z3!@Zlv^=<$#e9S1MO3$*vpl%cl3mLS?2=P)guacmh?u^onBnR!!Y9=2R2loajXdy- z;O7f7RroR&J)l;RfI23=w@ufXdFOHq8k-Eh~u+uK$A)sGAno z+2^Itwiw%|XL{@4+o#uiV|@Fx55~7oxA&GigL}V6S%PGRB)L(RN4chhy_uBC62g`6 zrkA!|pY(>b2t0lEt0jjic*MTwa!<>c>8pygrta|^u1&m5=^W-IRz8X+ z)&puv$-vsfr`%WvoKQgJ@~jIAeb3DMdc}&VWt(!*EXt0p!otF&89w7w1Jd~${oI%* zR0tj9=7F&dPNa*CWbm}`pY;yr=tLljSr{G`T)*2)OKR%o^(9J_$n3~zTEXzoQd0+p zcM1>psUyX}_ZvN+e}DQ0H8wIhPg*FBnTh%^DvBCuAsJs7#qMxyzvYr{;r} z7b1Tfc^>U$hDI_6n6DDQf2$0h^-K4{C>P{Guxbz|7Jqh`L0-e*I;E_E^k_Ab`7Q-6SRb*(7_aHpmLcIT-G;Py<__ zta?7KV?ACLj#Y*oaEKAg_$31^5?82ItNyT8v2zE;m9}BR;&$#NzUj`5vp~WW_op|O zIOv&Yo(Z+EanX>vykkL=Cf#AQQkuWgEnBwaqkM`% zd~E>eVkwzt`Q8WSXWu2cNmfART71ZmA>|a_1Mh#J1oGs~E42Swt{!6xRl`?+xVsYw z{ANdyvBFVvlM27Uu65nU3T+pm!1XIp_J}hh_Gko>HmtgH$Z$_TW=m-ifUXaFICp)A zWm66L$3@?D7S7oSh+gL@zNjZeo=unf5TEl5-29i#u!(X_VR(xKc+@R9R^R)6n=(x{ zK&{Jkvx#CmKl>zpUEMnDgfiX58g@h`(ZzxSEmTO$Q1HnmcgUg9*uVj+5b2|prMCxm{S0vh!ZSJ_pacB%U*>TTWDMLHhVpG~W zK^-d3N09P9I=Ut|-oKa832akEwv*ISqaCoh2C<%?bxNCWKzUCQmQ^eNMA*7vPdrgZ zlS)1^Bkd{rH-V5)pRByVrA@3^*11J3)^uJM8Npwhtr&!@uDM_9|kP$61Jg%P>uj!AwxU^zJRbobC3*#h4veTn_zUr=yXv7SqA>eKyt`T*FbPmYjp- zz&8Q8+qdEmld$EqJZ(;|cn+?(mS+P8g`ubuO8bVe-9-hCP1eCeR9%;!Knr}CpbOqZ z&i#NcyITkn?L!Z!VlA*#(lT9LH0D|Wu9Wv()|8~c2ib(Meg2_{}$b3k^9Bxks?Y#?cV~RNA)=msAR8 z2)G7@$3iZ-M#l*{u=MeHJ#ac#v?O>0NK6eLRYP4*l$w{f2rIyY1JielfZ9&|lUetaL}&nC|wREiq4%I0)iS_pj~S6-H3 zf4U?@%iKcO?NJ95bfH&%ee=SF3!?$Vyg?s9X)~;3+!tan8iDR8V8id~m(9*lp;5|$ z@5#D;<#`HQcmPiLx!FY!(_Y2*QLeP9Fmx$D`=_4>X?3iX_muZhid}JP3Y7=$-}P&w zTvb8$IUIXitmh=v_q3<0VSf=1$*}Tk+h6WRHOp=>jccnN#>+s3%^HM?UNVI(XcVN*#{_S&a#Fvo|2()@&tG#FE%J4V2sCTtpX!aWU4d@M3h zO-;6?`daS(c9#GQ46E?hPu6$O`MO01Y}<;Oxt)wfJ60JP1;$#+EZg^Az^>M`W0wh} z<+!V+GlJwl#@LZOa&XJn3fbFXd6es4#k!`W^T7WPEY`bEq>)a)do&)Vxzqml_KfGy zP$`Fd(%X3oY&n60?oN?5=Q3YxgReFy84qrI1f^-XNEyrVg$3ZMV9y!QUA{_2!Dx-r z-Rlu=auetPS?4>znrYhGBz~}njD?=Kku`%x`?Z<-t8{OEjsq>u5VX+ijfmh7GrKC1 z-a>r6(7BH?OI+?Lc#ssPyzWM{408xN=LKm!2x5C)s97&al`McyNx-EhC*Hkzb6*J& zF7!KxtRJa2*uvuS>$N(foQNI$UV^m7=CZ@&*o&QAHj4Ix-(_sfV4oR%F^YdMon?am zcRi}0-So>Emi(OZ!JbBk_#+=|0#t7B#)8p=d!B!d;2Y3{PxKZm9MAN)N4>F*X!_S^ zk98!chS-ABII524!%BUg43>>!Y5ShQ4?Rt3JteR)x)VpS35lKAdj^#B!hB|QHS|4& zG>Z9IQScW7`y#)leWy<40}Cf3mUj ztt5@`JUok!9qufMD5gU27nnx}es};6SpSm}c+98h@|EdwCt1IvsHpW`!$;eGb;dA{ z%UGkNKnf1>A{TpMos4liJON8v2Fr+60e1ME*RL;VjYmy!c`zLitq$tVFoV$aZEBAO z#KV2c6A_R{{ARc}3@p)WQ+fRtcLPb=Ce`uGyH+IJr*;u_ zJfK}AfbWZ|`?V-cn6uq0Op&qnYtdD~93fzen21Fv7-c)9!rz*EnHRpHr;`LUiB=PDGq@ zE{p)_U`q8FNdi=B(KSqxgD1jZ5T-(=pX3ykc1RM7uzfO-4#wLZIkfHL$+Uekk&a4@ zFgdjCOHUV>6gY77( z(kJ%|=VaU=U=`09khMe(8}_h5!*Gw->Tcb%F& z$4@XA^|FGl!iu{prYA$t&(LzazJ-y_8HOh(ErMa}TMOcCN9w#@y?RZ$$(zp$vm8?q zZxwiW{&P;8{2gkVkO)bQ99PCxNW?pbjWr;*4v%osYlmponVh?6w*%boM7iOee2ZY8 zeoB5PJ~$T{UYrMShZ$1I=J6UB`fd(lk;K`uqEb5HWwnB5T4fDTY@+fGF1*DM^C6K*<95ia}W`Td)%M5VcxuX`{&J@PisJS7dGbFEm68sE@<9(tH^Zd z&;(##JARQG4ru4YBFCW#+pHQVOqeh#7cV#HT1wKcqFxB``nK^y?gjq)X`lLKV_XVL zHJ?Q_$fLBDtiQ@N{BHn?E#i;u^M*7`LZr0Kkj)cCjkiY&`mLoGXkaYW%Vxr{EZ_9Y z>>myQvT=&gfSX0~$TJ4fO>Eo^R_nx+XE_B-s<6Stypu66225<; z0hPiS)4(RUu-ePSn2jgB@ZxOl%{h1tvIrFEKGV9w@0-)0rc&|wo5Z}p~m2rOB`_p9D~6CbZ6LXfh^ zvPN3Ivi!oeES+qM#oJ;+O!y5WL0;eX%F8$PL+;l_i~1D{67@4`C$xFTC`Eu z^u*}sbNH$&a2nTv-z(_R$5jLwDErg@;bo~>#yZO~cZ@o+-Pd=e915pIbS^J;$o*_g04A(;ItYaQrfF;F3p<8;$Bqx!iDDVM zF`Tu7&vp}fS;S(hcO+hNT;G}l;_+=E5er=13Fs8+dTkg=ud|IczDqJtTuRH)>j$D7 zOxsBQK;ZYbZI^RmsXfrqwC8Yt9Cvx1U}n&?l@54$Zgo2{gXoEAL2@@gmlyAHH21q` z1cwZ%pvXM%{)bDT^w6PIwdx_AJ3U`>=+Ljy#B*3D-++<)@~!xk*#q2a6D}gg;Gpnv0Ds;b5PHTQqGYX1CPJj-y@B-(nNJhdO*}LpB#!8a2YUNYADX zh0|oiSh>ZqK$>3gTrY(Hge}Qpg_N$D_5&L&v24$)fKnRTUWp(qQR3L1(oz1{2|#Ru z9aJE)ujC8GJco_w17rGUisvi#JfP$D{SXxX4aqQA?<2z833KLzRgBxN$$kwNp@0V0 z_*Eb>K|>%yql=0m6~rRdkt$~RX-2~b;u^zz#JplNH4+rzDHcJHcWfMTrJrk|)O$>W z5avKAS1NHXz<o z-U+5(UE~2}{eY*%Hhc<-GvkAoB=^N96*3EKPSU0$Gk@b%tPw8}8dtf>MHA%o6zbUv zE~q9fuJh*4qm5M3mLDNZDH;lO6c_?I00w0jR=y_O&~pod1beOR&-WZP5 z^TnQ`$HiN&1t!MWS#{Hk5e3XX(spGrV#0pPDROMOz!A)+sdIlO+8<(z?T`{d+aLV4 z2eblov#u1}_VfX^%=Sq{ZgfKud{RP2&flfbwkO9)V9{l4zescd#2n;p2AgTC)q(Y#D1Zd-m*VH2v2DYsD3vc1Xyru{|g)#*8)%lx?OnUx`TET6@*?&r zmCNDTZ*Zm(--xe9ywgMBiLwu9pAz_v-Ik2=La=wyrpCy&Itwj+oZ8!BmRGu_w^_YC zZlRx?v7A30oj#k~*FxvjY*G?z&u@g;K8dJt0oV+QWqV#DbE@YYn5K=S{)EyUvIMUI zJ5s{($ydTQ$t>HK4%QhH`#y5H`BAw8Z7m}4B8pjOl|+_JKSiCX%cX6$*fbX(j6Aym>8Ct9 zOq~hR=g~-^W@TBpHl0#n+y`C1{<#Fcz#)E*Kt=mw2}iuKox_F=D=R_wyC-8%$+72t z|9otr3~EVaEJ3pj+|7oCUvwG!TL`ZErS@8a0s(21o|mMOHg|>Fnc{&Z4KgCZ$z+mT z4~QKy;}2J`DZu_TjiSRmu)yw)k3sZR?6;A04uTxqwT?OKCg3VzS)QXA54gQY=vT2k zzQGSNBOnl17a|r5=+GuhX&({X8IPgARwC>ypwnLV%DnGzyXTV>Bg=?xyombGmIq%7hX;Pn5NN)aB zI=kiFUkbtWE=z7B1h&bX%cx%3WBWy-2h~ijwHiFc1au4ZsJey4;3nPrI*FC^K(x@C zK#ujwhy|rxx^$6;k7Y;-lidSWkkRXQs3<=hoF6jQSV8RrTtaIHe1%4oecrl7Z2)&u z9c&uHMtw|2qh7l(z28h7=a$(ZVcZ>}=XN?i>uJvzJQQU@7b$cYn$Rh>ScnOoqxUZi zC(-I}*;uB<1~^44*X&hlc&7+6mc0!ub`Q4}>1V~hYvz##XtV)mAGb9Uk)Izdg*@o- zQ=U{`zf9%7BhmNAdf#_R(S7HsI4A8}v+`B*-ia@ZzP!R+k7Q|KZ8$k0-v>?0X0Fbr z$83pwC$dd69zGTq4?>)V)oLs?poE!~MiRALNDHh-`^HV_}Ctn(S5__BAwh3mrLc2N3`q|dl z)(E0lw8e+=Hi8rddSP24N0XyEKOqVkbgOso{R0Kux&EJWa0rudxVI#ge+OzG&skrb z5=}LeHQWL+&q$8V^MZ_#MPx2dtUk34(>x(8u0wpi z(!snTL(Us3L#@$bZ|qByiLdqmz+^B)p%lY46aQ`iK;{{o62G)HpWsz|t zI6#K9rfh!EOr1Zbrs1agJ~YPnd~@(+5Z;T=VJCvK>uphUW=yTXbrpFgUFdBNv6SUc zyU@M{gx}v>Ggc197O8^S3r{|Le)8l<2u6wB9y44f^vknRqgz82NX!iv zG_f|pkkiLmf?X(Etn5>J*)@9nYQyuXg^h&g(hJ$Oyw6l47J3hCgoPntbcVj=kd~xU zmWSFJ2di?HvAGt+_qo|v6+EY@&Rcj5atrfQ&}@&sOONmwTa54BW+&zj88de!0DQZ$ zqJwFRIm`N4KtmJTRlm%0$idXPq7((`cNqpUmUQ>-TqhZ}C_b7oVnk8F`+zh`z+S+l z7KpJH$5>6HV37vb_zjam2_yTd;EY8B*+sn)?q0bAZ>6)WCpGL8c-Sq!s4L_5jCMm9;Xs5B|~yyj-9e;L+K?_qm)EgO5`h# zO=j6Xo&nn@6X~er(S^yuZ6C?m9)&JE2dGhb{XT7nbAc;oqK2 zB`bG8!J2-0nzQLATEre|vx{-$^4ZUt77CL_z{Z@$x@nDVlaMXh9J3X%%WHcj?-e=` z?R&Qf$%b5No;<2AZPmaAh#|HBCo<=*g(>o!<)8lw z;Nct+i2WkR7B>a!VVph|BTdR^Ye-q@rctAQxf)>OGD~ueZW3s?{SpFC?snf@GN1!q z2JF1ge*^cf$52I8^uYfgD}l@*AwizXG8d}(6Jz^4zJV8zkeH0*9P-1}C9*)Lcu3)@l3!on@+$fAYey}xAa)IvP1hU-S>aIBnL zqjX-(4ATY(u@{}GV8Mds1i(vVmXwFEmWsx^03Ct6hkKDe+U*)n8v#2(>=3;eZbvI8 z?_l)g$F9ep15#JZwfF4#pP2iXbil+Vj@4%ngWa(K&EV3xm5Ekkhd zLsr25`nB>!Hp(Xvm7{fimJdd&2wHe!vtj4!;SJTjnZ|y1&r49?vKY%9^?p>UE`gn| zzqdww&On!TpE|)>;QlbxvSh${W01!4npXLXI(5|Kw1Z9Y>|@y%+`#of7e^gYIA2vC zigS?3?r5LiVFsDb0$Vg5C&e3(Byl3_W-S^rv)j%;Mzr7t=IsKV5X7Msoulzvqt)Xz2{nWQfcDEU67gdR?$q7 z#{1mUgHNih8Q$1k4)$vIyR%&&Uu?v0#jRiD1|9=K^NSjEi^x7BIoip9?}>O~6tH50 zZ-8Ab;dqpDme#E!MyOMmJ(&9Zgu?&x2+RmJ!CX+5Uj!ws6 zUT<~ry+HJx^kEa18$nQ#*NlF#A+!qXP9K*D7<))ckD&!hOV`2mbYA@zDH+^Rd6K(n zr-`2z!+92#P{~qXofZPvSkkp?*KG3^&Z!z^%y#Q+)UaXR1#0PeaCJ(c;z(Mmlh)4R zSXAF{Qt%|frOdQg*0mSS5gSgw;Pi+H{=zZ=;)E}>@xl$F9sF=h{#B?@$lz0;?g-}J zZwO)rqyH(8Lcg8r(;v&4oids;5U@5#<5jC`@+dIJ{HbXq7~iRB)4XNNYS^eRnsBuj zlK{dUjE>$+-6Fxft7(I17Q}JKt$g$ATRX@gYr2$<5{7o6i&TUEc8ygbSdT%uE{NBwOH|-@)ofMdT_{vv;+kgOic^5{EZYY+!eKL4p5BGx3 zyIzCs$J(!>_%^wOvbNn%%OF|u9QVMO7CORR@anzs_4fMOVlIVX;MQ*YxSq4T$}7x0 z%&RzZWON|#jYp|H9&2`(^cWSzm(^`|t*2BvB82H_X{1i4rjpxU=!sLf#0njzURFN~ zOFSN-F8|lI){6WCwQS1AAJR>)2uY`NGZG;gTa(QUTuqFTW9MsHdb0i?eCM5G!ZHom zQu>T?#PQJ3e0 z5whS!&|;yDB>#!I)r!=e%SVW*Gi))fy16=%g1}wq>_8Ykq&s*0rMXa3KO@%zTtn3n zwAk^?>!P~9C0*xc+CZO#Rl361n?6_<W!5K z#Df1FR;r>}dy?FRhqSUEFTcrF_J2ZBK-l!MQ({Rq1}xv^7Er?Cg;%$Rf^m^QCr_qD zDGS_K>O3?`S@5cepPvgwmj~`J1ut~~R4GAlCdW=zt=i!`{(g&Cu6-P|e!ixc+jjIm zT5elAxrnlVXCZSY=CCD9qCKP4M&rg6Rm)5b_`v@^EP>}EjDEo!sVXPo0uksK82y5j zsgkzh+h}>eiRsCm1kl<$cWlX$C07vUv|UGP#kkQ%Pg+|P;VXU%(CHk|al|+T*sObV z5@;*MfyTOi)^6M@2v`Vp7lh+KM2vb%ewdLf{!sI1-atqzKI$cHykOTng%81RVI)`E zd6EafJ4(cyH?9yi`rU2ri4~>|ptcy__1DJ~9B>@a9jBKG6FQE&=nSKjdBDbUOCyZ5 zWX$4@=jL=j2g0$K=$6@7%u^zS0|HMNDARAazqhM(!j6wS!`>d|diP`{e*@pEhgf1A z?{tJw4u^STL#SZ9u{WqpJ#B{?KUK!tcBnN*2Q)z{e<$X*pmDh46{$uEz*>nMho%=I zxw)1hXU@i-l*}pDkjsH>)pAWVUcmDe9VtztWq=Lx!IWfl_C*8JTdDXQbms3NY&`yY z>RelrjLB>B?Ii5$dGq3MP3dca6nbrE{2V9;duxfdpkhSq8reB{dDi#|)F&2Ze7G5$ z>3Dv>qd?B4in7>tWjHe}dXy!mX`QL!AZK7nlgc@mR{n(1+Xt3(ZBlyyA(BqNp{3&Q zd)a@Lun)X;2~{h8$1VbMiAFm>)iaQQ>Xn%GT23KOJPSKWe<*CcKk=S zHTBaam-&iueH&T`QUIU+@fcJ=U*h{lnF@l~6xxrw4ifWz@eE$Z7r>l#51ne!z?D1q zSs!bCx9rKk+-6z{Wtq+mHVv11hr<;k}L@<$a+%NfcagUw!;8J4hKs+{5P2CJ&i z2~70?`H0ny1mt}J(<2!3;!`Tlqv^z(f0Hkyy+hDVr)%U$XOm$y{{i5j#HT zYwpAc8;5xiWV=MMuD3p%YoSTc+8T|WbryhYqVw`w7}k4#Is|Ub8;+RvEh$guO}ZISb2!&i>InmQTihKtM{d;Y2Lk+gBwl z2bI@*e0crzQjmJ|la?6Hog~JQvc-q36#T%%r)kNhD-lZ|HlgmU<;$0U zBb%Nytrj&K+)xSA)2otHzTW}aZoP!nwE4R*&F+Prdp9&ord%pUW;e#dNmpSN(*_bY z7|E#+KNuD*5??NNiV*MxYm578vrZ6&^L|1?)0&Gfk%-^N z^uV;A>iT3q3`-Yodz2;xf0hc=F{(=%=s?8znIx9&*$Zs6?UM;$$)24J1Ot{RhqisM zz=FBX_Q}Mnh_1iPvVGKX^TA%g^PA+|Y-(>n?3}GcCf)*eT4vckS_k5zvL@zp;=FUt zKM%CWRw5BOq0#4*6YZ~JLF*Ws%wJq7st2C`of4?C_2XV8vy*$c*T}73i;;Aq4^BAl zgn)(8*UD`dz4OHl|z%@`ZUk$AQ+DZ0^3EuKo7##%oAr95jYMxjmH!_ zDx1Tysqc+cBs_0(WTM@bG~t^NGNx7E9!RLB@H8z`cnRt|P7eg!-FBRFg}!6qS%E-9 zm)xI$z^(Xr`nZJ)(#n`SCoYRd3oBSdzJucj@AogbXV0ExL^Fsbb)Q`G_M4u3sgKzP6hH&!(AAv+?62Slu+42#k`;H7DQuay3lTMj=RfN$X^A zQm0Tu75sZ3Fi6BQ9}fiXm=!CY4+(n}QYO>_Pq>7=g-tt8K0IX9s8L(+&}@;~xekcV zc2RP-FQZ{);P7v1|N2u~if`E#)0y!n!nXbK2WIufjy{D62NM4r9{ZA~0_Q~`&?x2P zYMi$)aI2CGVoOt^@!WQDoqpCHIuj2M#0}^j2yBq$GJJ^Q4+Qj-6l}6`HOC!(C6L^e zg0dWZ8K3%O8<3xS%cbH9cb_qe9cQ2MEMs3qh>~|q4H-9ek**Jvv9cJ!@osJbe5$FC zjD5}Y<(Y`p3L`cd($1wZWB85vf=Mz~2PX>~<7DWbC}Y@Xu%D+6@tzf04GM)l4xM@E zflOb>3HvAXA`5UkPJxvHw!)sz#NCO0pF!@35fbJ0{G_sB2toc}4dO3j5?<8=gS zG4RMaoUA!$!d(`)`_aHbuQ*~h6>>ml!)>2Tz@)%ryOV=cyuKLrZ}?*A$)$sZ=`{11GAbQVu&eifnz^pa6I|N*q z(yvZiBFO!UT@f^i=S-dUGS?hBI#aq?5n8d>*cIokrFEEwL#U){2m6$>q%iL@3>zcP zZrCtv!^UC5+Bp0N)c>Fa!Xm=_LeV~Ues+L61mEIL`_ADaWjK;E?H^IO4Vgrw1BRIb zMrsImFe9=EiviFg&2uo)!Yqa;2O6hOSO}e_VaG=rZI5w0hp58QPf|iicx;TPN>E}4 z3^URzKpM#jhcMW2QQ{&Aw473wVHO|P2nsB@2#P4u^P^BwxCb6r33LxctK$PJOit|g zU1fQcYavvvUn@MzOJ5VAVS<;NmOd7*bcnQv&E7BMepB@oH!ANezv84z6*K)Ih_0y* z7LgA2A-dOoax}%~ht0;?P_LGXl7MBddwi1eU%;*@%bJ{&ZNBB|NI2jFib^0z9dib? zD$Pr#UaK#+-JBp5Qk7FIEO+^K-(60kbyrXMXBE^DnYWcWyY+40PE`fl!J_IDD`g4>_~b(%g0i zqZ~3HVayMMZ9nl5wYW;n49lizm9Un2jtb>F!5C(Do8yUZrD8DZC*rZ_h;K>-E7-%B zlKL4uOn@y=AU+p>H6v9p12|s6a-P9d0Fpiz(UsAvhl((EL$HHd<@&VHdh@!wXYIbX zre&r{yo60qXu5HZ-~fwfUQc#*u<;`H%aVFxLs0Cy9}`w?{%$P=X&L0m7*yuatRei2 zz_Z@wUydzNrA$Aqq4&d90ejL%jxcqO(hB+%j?`34Ar^F>T!Yi*yKa+}^$koH7RFdy zek~mDk9EW;8-isxa|$WolhchcLR7GBiOe_(_A@Nj zXei0mxvjIkob!vWUy>kg88r2}1Gc z=o9Y0p$77D?SL)t0>B%b4i-E^Us%dV?tW%xYW+vRcx=>C$kz8XT5FxJM^&(P*MX4x zy^(@wh0YOw+1ABLfs`r=h?#^y;43hz#RvYSU~dDuoYNbt1S5Q%yjr$yNr989g{e8t z6kBxV_k)-fD6FW|9>a76cjq5hAx)zQ$<=m4T73d$CI{l(4`|UV_^3+*txj^_RhJ;9 z+xW*$jt6$DSl*bxrCeYZx*Qm*VwjznO}vmBfqotswX?x<1Bq&9ie@!_4$4pma~qpn zVj8~XvhNS{wGvbV8G?2(%4LD)`_S^o-%`J8mC3E~{^Dc}YBXX@V=2$sLg4z2A3vV2 z&AcmM89SkiWxG39oS|99QuA#-`XtL8MAO>a$nDdoOXwsPgl3xw~W$J^~5 zZMG5MGMCnBGfEy%=D^WCsr=cHdN;xiQCM zx_4dAcJAp0^tF3DhDDS4N5hrPs3hcp_urO4o>%6jy(1KMmU?prmd;cfuJxQ$DsiFy zDNTN?=ChrO*#KkngahCTMhgH)X{4QR=;rCkzfGS$y(gK9{;)eQM#{5j!C8pHu$ndZ z$qXK|^Ci5o+}KCF*BjD0L1lW_Tj|KX^3T8`rByLPnzyjzFu^O4^H>YXe~)_d_kgP> zWiJ0wmS6kV`}BR;H2jHJ{#{HzgMa>acx*KhqwwYzbl+(s0-A=IZTgFw{hF&|P(3cd z&L*tMCkq(9ILOp1?}dcfCVb#OlH*rr(-W?|?kIa%iR!dF0}x!gl#TK8liu^pOfS&mpppCD~1`vUEZ` zp#GC3kR>Rn*O)O^(`0)|hL_O28viG%PjcIYieBt45hmMcrx43_uowxB>V6h``ZRSJ z*e3bm&V77G$Br0MybS1u`8*1uLs*c)30v6bFX85}+3SMS37$5<_Ix$gl@^)aCkCRcEdj&!in$*}PWJpxBa z)AAi+TmR{utjuq$G*&H~?W*Q758qG24JrD_%wop1AijkKwa?w-*xW1G(}SjwEk)Pc zwr#4-({*w5pfw<1PE)?}EYCst0H!anw{xQT_PlUS!t!B})G9OnI(u~eNg*wTpm85H z>{+_}fUQC&ZBr0fIca4?+{KF*`N@r^$_irG%t~p2qx_vwwsGX)`v#11nV=R+U6L}b zOc9bwt-vV&*J7@8{s!wVqN_+?T|n{Amae2}jpOl!M(HU<-mN8DFY0=%RKWl<%%VZB z?#8AlN#|3LJ34>-p1lV^T&O8w#@<{rogYY$mbnTglw&bZDt%0xHh}YD_1`y+ts~WC zvW9!pS7rGgs?5)0zUO9bC5szSe^_pVf_-BFxT>AufBnq2Oj3v#w{50kl`2&t0SVtL z6m(}_O|s(!j!kCeL&r(kY=%ILqsTVM&4vkojOq-hUH0?nPUVjw2rlKDy6Rlx({>&h z>np^>$;tD+|IHlJIA^KafigXmyFh^go1u4s&6A0Iz`m7Pwr?shX@K)Ij3ip|0GTl1;1v|@5Z|CJvVfOvIo?6e?_Fr#9n>ouuenJ!{G zN7^!+=ssxRz=4AXo?(I0eluPC=x|xe@>RwW<>56tTJsU3f1M!DppC!= zMXN9W9#SP%7Bt})-xAGgm6l)LhW3|*`0}01Njc4Lat`Y-nB@X2>xW;dk{7i&=a^2vc{R!)b8cTAT_9#DEbA4fL43?J2HlI+# zlKd0SYl8x*bMp}O-1G$YgQn$BG0OY(>3J65Z7z&eE8^gSEXr|)(W%mB%HC?q``IQ9 z8Z_wP?i3ZILlJEE|D{t@%_vEBzjlg3$CSyKHRxYs64G3q^CB<>ePwi|$0-km_O@Nv zOvSRSwy>B%Vs%C;DgnBKF74{Bu0DNMdSd!E>-d>#wo22UB8^rxDJLZegMM~MelD#L zTx?Hmj}d~VeNHOzu&sMhZ2)Wx@aI;;WU15!(2SblVqM+nZ1~X86ED&TfrZ%;5)sk{ z@7fHJRXsdB-0WHw$5Sj~S?P^VK67S}R;1ejkmUrqAc_Po>5{S1s-S>n;Fcu=N9_|X zS#~nKW&t>DQ)*D5Aw!bfF0}Sx~=#=g4vuh zw`H3jqDW0GOLSSwwV$Ft8mP6Hm6B#G0rHBrTl%ApgRE-uMIZW zEp|WhB>O&k<#AphYzy^p5)2cb(D#;E_ z`inj`hE{7Z_LE25m3KJrpDuL`vAL@3DaQqIUj zJ3``MPEQe)#%@PHwgz^hZHOc`0SWXU(COgScfrx3v~A3=`lG<^3- zmcu4Yat5|l#&T`CL@ox#d3~>IFk^(J!%8Q~VwNw*N=!Al9zX+q8Dd?mfXekNY^ZFi z@GLLVx!IzXYZqX{6`ti?iV?B+R$6?zo@Dwt@l97Sr#TS;ES^v02Y|{<)7KK^*~Sym zv~Pf6#>3P7iqA&4I*LZfD(7{-qkS@C8Sz1%=rRt|=X&&mJ!AhbGao&bw%;!a4KN1u z$)N_!cUw7)F53DiMeq8scmGAxfF(WWFLzBHj+j9Upxue_xw%b|lzl!b`=o>I{5RMt zADtxE(i^LRp8g4WSZ@dH46$EqpF})Ft!fjAWqV!%i^Vu>ovL#FFIAM(P4>e~PCR-SQ8*)I6vgpnwu>Y0DYh_1ib`n@7xe!Gi=OZS7s)U!_kn z_L_hd;85&9&gw7quQMMasdL3R6mpue`i@+Cg7z65mzrBZ3-KL;mw!niq*~#(DBMV= z--}0qUCdwhg;iTw6hVx2vz3k^??JJomAaF)T7b9 zpBADsDVO+_#Jax^7QD?rEwypi{qm3=MkY%?xmCc%`;-e|Gtm=K4I=vcE+F}zpUp+EAXLDzR5gu?uoqU;J91~s(gYtz;8 zG*g{r&P;_ z&?ttxg_9>gY9-3NhK!qzbz9^5=Ma=RK{8}{U_o+9<3B|`RB-%}w6sr!Zf2p8b4<4# z9RhSJ9NT24XdWy#gZGXn#VEd7y z4xe8=Npka@=tL^-UhMCyByt>jAjJAOUWuY=xv#`=JS4Z?@k-RUz{W`&+Y=6GpPe6@ z&52IHE?1CwmXEO8bu6EB%@+yGt~?}2%Y6!%Y({qiya8;ZVf zW$8ro4{2Wu&k|2=zWwpz%|1EfE2^DLWHg5sC>XeXtsMl1t{6<*B0m2xTEt3nEOBht zN3=FwyLNS676h8Yv0-9xn>Mg-D^)6Cvut9R72l<0%c|L2gP>FLEq89LG7vA{=#$9H z7Ftk|gtub7PuK1t+ykS~53h7#Sznm^tfA-y7d8TephE))bz#BRD4N8L;Z?&aLMcAG zsIOBP8PiH|p80cFHg#s~;edx#dsoI+_%IJ4{vUg90^n2i{*NCFV~m}#Wf`)UEeYAi zlC>yV5~8wHNXZ)22ni`$WeKU2&?1D$*q6qVeH}Yv7|WP_=AQHZz0SGoIrm=Q@Avcj z{{H{MQFG6EUeEKK<$dp2p0mv>t|!>}x5(IyC+McHN?EO&6TBb%k&#h>s7SAzM)6@d zTvUXLI!=dECHcv4mQ&;e78yYzqQIeGTqc6kIMZFQC=W~sLM~Fl^t42Zv-(s_qyc&3 z@v4~PXgoDK9zz6|f#ZIc)8mYA(LpeiAb-3-Y6 zgF=UR4OC@{?tfM={7hh^Pm0Q(^4(uW_}(i~H#ueXIe>~V5bd@**#<)`{>=Ux#2Pt8 zY=1>SNsrrMhfl0gTIwJ;yxatHOt$`+Xm!4)z*{Wu1welkHaVrIXphiBJ^s|7O>oaR zn>ilanu1S!FV_6Q|C!z62*ohvY=KYoS{IOWOv1&Ei!#F+tQ|7e1HrV3yj%ZSg-)|& zET>uN((zOH$b$BD)UaI8b_dGZNx>Nfj=G#uWhh|R<#a%9r<5p$B4c47JUzBlc1KiF z`8){xPfH;0OUw8Xa3AG%3)X^tNw{_{tl1s&*WE2I93`X`#*7*3`t=)&L1hJ5umXPp zhjH2=7gh_<_xuMhgHfv@hgUT55iZsYCRAxuNyvOdBbnv2wsK~H-JV&rKu~xpyswg!@X<~O;7HpX6Rp7vh(9JQ4+o#k~dpgVW(#phE=;gq42$Y z#N}1{RGGz12nYMhk>!6a4{5&(V}0DRs1yj+^=71N968X|HJqNo>Db8I=^q6B7!bO7?rln*tIT6DpPuI-l>T7k{)4sUrE;i*H~u@F(k_welMN=rAXsih^Fl}x zr8P}5e`d#;p)oq4Z6^Iys_X{hr|2oLQW&*-p>yef^Fi#4?nU1_VXCt#TnMpO1eO!8 z;Tx~j>1vt7vTZ47Tpbb`+UdH0~ zjES&KT_(1Ze@lPLZ!fSLU%gSYX3#glj4_58A8w5iZ(#lm93v=|iOE4ocZhv&2PGed z@5#oTokT~V3&fVGL?hf4nDJw{IPze`<}?59;(b6cOCVpdXLetH$qX6K9Fu?L?%-w2 zj$TlVGebaw;}fTvHcl2CFNivpY`uRvPrdEj^?Ttj@ED(=ER6jI(ZGCuLcV_KbNjuO zM6rI!`!Y#fYJzln97iU^`Odnok|Hbc=&b;~?Ony@UWWX=XK_lNYABcO-b3Z0{EkiKTdDqnaFs|OU=6(s zwHQuS_Q(#jj3D3&)4}n{Ep%iGkoie0^?>!8_UK!8PVpC-bcdnAVj;E zr-4&9SljGSYFJwo{to-Nx|R2<-}$p{FNSi zBY00ZyA?lzFj&Vh1UVkAd&S>!c$H~+;SIx7o}oc!r~rs=f0xfmdc-5;d#W?HA_{z@WRW;uu;T(DLbo^T# zKV_>rox3Q#1G7rXDnHjqINrHQeAyp+OM*!7Jn%;+@lH|VTVXOrLK-$~nEM2qH#vea%L#S3)suru)8YYCAefj(4bs%hK#)9Kb}+6IKnq-b|kmCvD*909B^KV0MCp3;lW$16N77zd=Tzp4EVuj!t| zH*^%;Ail4MI|&mFfbproE+p0Sb1@L*4sxk~^ijUDKED{)kw?vl>}NLEk#I4jV+*N` zaUb8;Ge;&_q5m69O1`C0kIy5Sg5%MfbOvua?_bw&>eGIiuXs)SMZvl>GYGg6^Sp#r zJYwy*#_nFpmQrXB4P4WgR0OT034NV%d?#=xosesrcFYOo+K$uWjIW1ZXX?aC;r%o1 ztC8?Ku^z@1rdZn)$$KzUo7p?eF`PWM6qk$gufh1=ijxmD9dzM0^(xq3pDea_K@WL* z*ZB+BS>Bg)!%puJrik(^6ic-w3e61iuf-3;HL4dMF&UMoIA=TTaJEQE@x9H%Jw*z6f&xZ5o zkG{QJ^rF91lYwv{asBPzy*(f@m&du(eEXdo6>;{NrbT+$ID`3FWYSIxThO=)bW42? zod!m=Wi@O8!xubs3ODW|&fC&AZ8Lt!d;Aydu+vxKd&ur`QY?S-gFGJ|^-}Hk&-2p= z!TH1?<-}(I7NcXTwL4Kia>Y@;W$dJYu~5!%E$;pPaWMzFHWf}DRVLX z>j|~T-*KHVq-QEe1Ag~y+Vsfc(&9P}8V9lRqMN6_YPCRw&9GFhY3#+Pxk($8vw1CP{JSPpD zI!Pf|(zUdN1e~J*<%&tC7~Ul~K7Mdr8Cm%Zm(cSUQ%TY(&S=%N>%Ds~y{*aT#ggGd zDz+8`I^YCXXJQI+OfI4AIqGm;2{*q~sp+V(FLH;xnGh2(gaKGr#)k zFHb>zEtw~D7b(Kyii-4#Oe~@EMDzu8K9EQ~zmqn?tyIq$kJ7y=Pp2Axqhw(TlUL>$ z*^b0AKrC_dz)VdF#(4vgdJ>^SDmP1~xCqze(s`X(fCf{$4icf2Ylc(uU@j2kP^7`` zd_?fbTry6M2Y#sp9x9(*3R{7oR?Dxk-(gFC#v)msPjqu6W4GKB!beSv-EL8ZXyI{u2(hqWa{i+I+pud25+pNfNzBtQUZUku% zpq{jr^ieAU9aG!5VSA+ z*T`4K+R=_aVvphI8=u^fIh2~y?5cDDtP}Uc9!2gvhSEX>Kc}XVs>}#uVsxwX>vFOI zi*kmY{sHboYn|}D;9rMj7u~!vl6&B9+{$vaq#Mk)+L%vm=E4fDgbX`{d1E*B1fY{+ z%Dm*Y9Us^+R4>4Gx^z}Qva=kB&!&1{CiBt%414UlzZ`lv%}w===Tid*;t~~){I%PB z2~+F5%v^aN%ok}G*dT{4c-sNm->*&`A$Mn$^agLHxB7;WZ0`w7F+N?Q+p9GG`8N#h zPh7xymXS`aM?`FB0qztny)SN~6C&OC3UO?#ThW-1QtEHp4{J`AjI1vSJP7=^N}%ZQ z;cHnS#@W6bauctil7u_e)urg8bb;W{VHbu8ts^@|Hk#svJ=?Kk5t8NM9W+^an@lbF zpz^%bX)qDeWfvAF^t6JOXW)XgH2!WZwJ4@1kGX66ZHLW92Xl2WGH}X0fXFr5z)l-W zK}>!8ndbt%w4od7kwuEpMlcP?jdLln|D&u^#P%1POzHD>Q25F`rxW-FkQWqe>+y#; z<#l{0)3eH0v9t8V@Fq)-bbz32N& zYQA0JPJv-6&8*={WYQ!Vt9gEZQ9%jEuhB%pdY#H>C|;BTQIxI^abi`L;a~|tz(S@J zY2viX0_<1oEwKLB3+I#~Z{Zg*7GW->bfyz)gj#T4Awijbi(akj#K!SYLFo?#AE8B#eyMV(uGPSGaJ#lC4(n7N*+sC1f!pRAdGe%N4oJ_X~2V z*5n3S5zX-!n^W@T{EMcwlqh!K;dAs-WjiSOTI1FB`e->*D~+BnFLB#}is#R&UziQv z^S>)a{Bf$&{-#F&hazqJ0&g2+4SAV{e<__87`<%V;NTOWgIxDKT2csOhA zDVNU9FG)H7MJcBy(_fYgbq+Rz(vz?1(X>U<7i2Q%n5IoN365utOF~e)?5-pUsns9u zghn?x1SD^D8aU}U@Ti7zQS0*HeEEd@Bgt;;XDvyuHa>S_7%A)9>45zzrGSu$DBvsj z6vEHA<;Ym%?&e1y&GSeL2^zdd&%5XF;#KjxY1ceIvL1hPNwYFk67SJKZ$Lh9wjjM}m zi&S!-EQf_pms;``?-k4>n>{W=^yRZ>^_3WW-uQMgTcN|(1Y(-p8MIKesJDHf_mQAh z7Ng`TdXZ{dC5jaY9;eYey{(|+sgLA$lPGpzB#J}~F>I3QD}~j)v$L5Y`MCvIlM2!S zqew(m;UHOFV0w?&qWl{@m}ZTN@}9y3S$C1HjPYqxLDm0CI3OOze6!$CFhPs*icqHk zijqV`K9X#7`GHC`rL1%C#E0&65)*@GN0&lF|XV~6T~8kw_qd` zMgS8fCr8RtiF9~kQCu4e+AHr65H39#RwYMlzC_bQKll3>6}z`JaD|s6{$!nvxQm6U%A+ zu;Lee$J1oAmfX=+BKbm+wKEdI5x{}teH=l_dx-w-H)f8YfdLY)BM_mf#cYFZw7=|t z;`>p1L!sEg_cfS){~azj&R|;TmDHT!J+^0NW-j$w*Y#N@1(ZqWH&G>9#K6KSu*`VH zwBPU&7tyiIOAVZo4bja&`_BJt<$oMli%Sq$+xXqnr&l#DwinV4EC%W}=wnsvxo~1R zKSMIknvjf*^d-w3%;jK6F@{Dytgr_Bw{>1-eW}ebJ zf2Jr;wDA+{8Ke&7T0w@Z%j~5hrucpFTpO6>m(P;N=utlmV?95tQ98Z$fsfo!|7mT0 zA&Pt9ldk9WWEu|xsi%WU-F_Dp4q&Ymk`=rQ*5Ee1UDsliJ(!-@B2%nT{uPwIW`$%= zXH3ldsRXt`=C(tN?}A~-?XlAaBPYoc99(bOv}sr&l!=vuvg?SP z>u#wGkfPf$5$TN;-vavbnlB0T&i9hwTAYzIG-917Y>d*S29-Bl!lnN`HIp7F;uI_e zJ04uxzRozGX=!UGggbqQj-i`}0(szEB`_G@36@ok$?rn20R(nH?xNawfSq^HJuC1# zCAzvxU@p+82q}#z=#?IVg7li#^t8?#jO9&-Rk;=)3bzr4$^Ht~HbYM(&Js|}QY6oM z6LL>am$1*t*lhKwOw~27Krm_Vhd3ASdly)}Teoif4a2ms`+GMuAb-9X<_#q*GU0DC zUbUX+lt!-@nW}wSqjPgvjD&=p!A!sCP4TJBILVkyxRv(U$f_My@;P{=?JxEIb*otV z=W%Eh-uy#R{%}7J&7nf~S$KN7UxxEUY8xYDuwr2&oM$(?BSF1R?>EP%&oL%-E2`XL zM@;kOe8!w}-c=SdHd@z{Z_pjK&G{B$q4YUpzBk7T#s)j0o2;>O)r@eRO)Tvh2R4nd z{RNEhYm8lYKxJbP+mrg+RecjXI>3R2pJr@Z>aNdmzCpuC#$*%d2*(0z#&$cz2r1uw z=LL2vMPId@{;Y%{P_}cumYqAlbW#=(S7o-Sav?7 z-fq;W(XbAU8p&g}?C2)b4N|jj##wq1p!W-zLFrkFcP4sDBrAZC3OWtkt!icw4bLWy z>F!Qx1)K-^*|lreavrtO$=9Mq3qE))dex1YYO;Mr=|D3ep25Lpb&CZ|iq31+#fC1d z<{g@$kEaS_GT~4!r_SL}q!;cI_+-OQarBqQ6ekZ2-g%2=I_?k?^3SE>^j3Z}ElnTi zR4DxK8vVMP<6RITBOrsmuxOP$;C~ot7TaVNx|*`wo9L7*D$xkf^uGm&;641vN36v) zU+k$kEW3NyOD@lhIGR4Oq8G&PKJfT`bk-NpH}Dh!5#Ph7K3FftE?31o!@Fo!PW6_V z&|lw4$S0|c|HPTm63DTpEALyHc9()0;V5LhyXKXh=VAQHM=-U>aI>!SPXfWOb~ z+wy|yodTQm#1n(pqaXTSai`AGdj%-0YcXpjh>+6z1Q?)+L(E3mmW{}`GGOiP6$2DI zp3X4rS}mLNf$#sP62SaX1U4f^Mta0=%mZOI$c;wob42{FD#@p$AQBmczbYmWPV~ki zImA`-r^7*Iln6$N*)9jd?>dMSVTkEG5~>H>8f_+E5q3!OAvQH77Je5ougsZpcS$9O zB1}Hzd6$Gl0P{;F$NUNf(Ruu?M!f!FO2YoZ!J)jTRGYkg^Ndp4=UsVS^rRE{qn(t4 zZs>noE}mDFw%Y<=*VBy}eT-A|nX=>!*y5~Ueftz+D+}5(-1i4#e}&?lFhHB~$`Gjs zRny48GmLF)t3V{{FX%p}Q^wY3Qz4wI`3@u*OZGIzhGK+)t*dHBN@%HYhGXooQjc@2 zC{lRk%c}u)C`64g$56&HOOUWVjP=T{fV^Dz(5LfmsC`HVfsGYSdtNZf*4pN&><4{> z^gLs~%acUUAm?LY$s@s^GB!z88F2=x&a7IsY6C_dC1s3+y^{h|xG4&RV9Q~d9QtLL zUr)p>a^F*eKAy*oR_U%TJIPc2OTA-2@2CU7w!6^N-?hAB$Br4PEtMj~Z4BCCK^wE? zZTSl;beJBmZLpW736D4>pP&?-CE>EKq*M~bYNv34WXrLJYJW(d%hy;ZUWx=2D#Qmg zTXhBI-@-@Gx%&E-SPUNAH^)y$M+nOVw;Y%55;jC@Hdr>eK{e7mg-$h^XgVB|Kt3w@3{{ZjXFu3ON zPDcbEU0v_w39jQmzT1$=d0)LFu(*XT^F_g4$$+kOgt79lqBYAT3?Pp5f0Vq2X+F97 zDF}!T;rzg^%1VC(q~AuGZ4uR^S-Dpc*8t;He;$`QI3jF(ho%qV%@KFNuIfJV7n>}O zSV3UptNnnNxxYe@zCA*|xXZ7%$b0OOegy@&2tN$nOh4$qh|X6o>MqgUrBe$r-~KgH>6de! zO5fZeI=|fAMI|5N_(u0%2j1{V}Xhi}G+}O<6Ri(?< zZZFTc?k@6Py~Az8F*Jj_cmG_V$x>UKCyA|ULP8?0vh+(|CkIlUwrfm9WWztIDzZqi`?_=lrVBjM3g?GG*3g9%ptF}r*pz3MIwN%1W%{y7(ou6)Un^)QiKc{KRz;a(Onk#R0yy! zvS5&PkYS-C^q4%k@)mv3V8*CMo+}{p>1G|v{wuwsSV-s7czsNSjj@UtX-esAF8J&v zdR!k?8&Tj<0joQnB^5qnG@*k{)qVU@%Y>70lqG$nLfEGGF)vA)-o_0PlI=OVb@zCs z`{l)WZ_+~A<})%@KK5_LTA(t8DW$5`@`aj4ZLF(XiT z7)%KP<~<{l?Gx% z`N*$~#dfziB~Q*Iwo>_ICH#I4@IGh+to3-R#Q>7&A{7k1Q`13MavTB;lNb0aJ1*iP z>MT4izwSI2gNu}v>7fW6^Og0y2isN@<(nYzs8L2lT7rny4sa@xVS+B5krp$27Msov zMS2n-k1>SX5 znS+d7tLZHUn|WMgZ)j~AV_$kh!vOWP7ymn%I;63y)4d@wp0Qt@ybk}H(5NqWa1aeI zh7{k!s@4+AGS)6tR*3+sMDorQb1VVb;@U2aZO+q{PZ(T0c3N5#MaWx>ebXA<^PSyG zViY8G%sI9kGc&u;CT6b}kg@7Xyg@o#EMMWmW0-bAPAfkFlbxM*5r3)P?Amy(n;eA8 zxYW<48oruikp7r4V=B6k2ZaA`OMq8SQIVc;TJ=_>3y(A^E&fnIAqAS4pjI#*R|J7` zi*XW1#1=^5asG)Afhbel2^oG<+ymk%@*oQmR7Uz>cM;=Il#f`Xe$VR@d4VUG&ESSxp_{WMu^ zB`U_!b2Tw4d5O|%s@MT~wi?zk|Cvk^pHZ>7G`bKe@*WhgQXw*z(r-9)`%81UW3zNk zpb4iTHNYm>zDHLBp{vxfs9>naw->liD&ts@b3#lRQ0Z#1;_W6@H+eNm3zO(C^_F{L z-7!&8jTG7Faneb?8#Lj~{3PVdlp%Tyj=y~}X)gpj(0$S%O>i_zp`A%^{VViLxI;qs zV&-W6XDcwv@`4K@OL*RB<`H3iQsH-QOWyjs^i*Hhq2^Pr68 zs)|AzG@-vOfv( zl0y)4buvSWOq%pWk*vsr7A}jKp@_fSTe%Iaz-Fp_q-Nc~e$`UH@gDr*_%v~0m>Gfd z*(+Y_WfYE+%>Bg<(`X-vUs={wK?REgKW?s?S8?HdDWo zn;t%fY^ZacA3sOrppIZYI7DxihNXr-)-73YWdnWjS#L^a3@nPMerp}8x2y68`|yX6o}+LsGTcH9zv`O zRfv%On)Yt+dYl^X?lllxZlxWd+NL147%3{Qwz}HD146fL5e_z*>CkZ5h&%;PE{G<1SG)G#fgquhO)oz4W2F znX42(AO9Eqt_!VljYcOjd@cd%!bs`INae>4b4fSGDdQnm#S;p{>bkg=-q2CXmU|*3 z3#+8sHPJquxdw8B8^cp-$*JE7#%>) z_`f9g?@C&262JK}SDmD4c@X|@mq4M$GjDIcZk$RgN!9$CujV+z*o`t09f90;ups)t zxSH1(dqlx%?P9m*ql>YGWynid!G~obytn&!9J}~vs4Q1GjV%l&!LPvXxJ*W{=mL{< zy+7w`)8k#uN~pEE;wx1QD;#bm-CWl&>^AejNYKL&cs|_|59 z>hn20lPXz+jRNq(!Va@*UM(Z%eLuh!c*$_ukBpV`!TK=vr@JxInYXc9m3+iVvy?f0 z&_9%3W|mjWO4>)jUU@{lzmn&n(!R{pt8uAXYF#x)`6G;R^VB9P6tW&Q*Up(UXSQ(t zQ2Az|8}ez0Dj~xBWMcY(`ke@@8mh?>3s&8wWhhXD3 zL^9&!6T_VmM5JmnonexvNLDk9v&!UZ{-oC3#O7%S^O}C~JfNNB9}!%^fY)7A=}Xjfsc5GM3WT3xJ992=-6c@WyuW^-1)Pw>*A$5-Tu9Pe1FH<=BEr zu=gZ;L|RAix5Iiyx1d4!j(YSI4XmXLYhe|IOKw)`b@R=HB~*@YHg-Z4;iPO>zc*RN zDx#QEy5%8{z{nflP{#OGL;)JTE;T@}4O1XeZ3})LxRfbnRfv#~NEFF}NoI=N4EH>x z+(JrsdsLvL+$Y#k0H@SiD3IV!VUq;5HRXnDSlJ8`OR86^7IKA7P|L39A#J{}z+9pG zRLl%FP7G`_{pxeSmflXKnc@A~71Qf_?)SAxl87{IsEZ#b-cL>ptUBX$xMcQ`I4Pf( zi|akZLI_xk*YFE@-JPP&^!hWU2*#t@BsIFu8MGf?;t1@H(uWEDnl8y+7uMo!L(^$s zza-gG(_Z}zGK{AlBPe;Xkia$jWiULav9pCGW-AbWlrgW@h%-#Vl5Vfh3sA*amYCgAB6+G_ zV9ZB~yn^wDcRz}dj?DLDl#*C?QO}4ZsD1kwXbY)G_>Z0&fg%(!$6klcUEJyl1gbj zd%+vyzs-PK^mii?`%&RM&G>xkDx4zXF*L5sCwXv6NOPOt_7xp9n=W}Vk4?Cbe4(}V zPGoI*)K$fd*Vc%VsI6K7Vf{0$l(k(}K=LVUw?b~b@pKetv}uE#?UL)5NSEoHajNwY zv7OWHp8c45=O?U{=!b9zpYE~#Mzc7>Kbmc_sKQevks6e+v-C?DdmKG){5vwc)p(ku z*jsJ;w3$n%Y~z01!DdYTY_Yjup~7Y@OhR%?eViWUz=UU1M3KTxUl*w?-Hh$e}X+cx?jK1(dA^wp*T-!H6(W|peSZ9fBM-DHz2-#GtNT0H*@PceGNH7GVyR_re8Rqloj zzl+@6*16!&SC^H`Ov_Un>h5C`^@Q;*ZXGC=*X0@rAgIWTdG zaQ_(emQ)GypTm{b3dszH;G(1XWFXrAK-Fi1V~1iLs-UBQ^xo@q-i;Hu^q<3B7>v!O`NwOI?wZ6m)z!9O{WPc7m}pfG4mJW3JG}z zOL%?eta5Cp)Xzjw2!moH39iQk+(_pl>V$#^Xl%F-_Ac{1e4qTyXm1~}PMIvl?|c87 zvJF0Bo zfBCg>JvG|HufQ=m=!@;wuIBWS!}LOo4@5rIG~cywYrUp5bww3%A)TK}RP?)iF-jwS zG3|Omf9z{Nh}6*ThWRy&zUuywz|%8lW?p*1BWcM`!Dd==R=7gTG zXr|`{K$$~HNydhlB^z z>pd+@U}(t1#aSk+^z6gptf?{yfMwu_mrePJhMz52^87x=)KN~gZ}(>)=fb6rmke)p z;#tbr5hHM3I7_=oS>`A^rd-i1@p%NR1z60h3s{V#MmK1ntl?;7@trqeTuEM zuq=PDrSEK_OxxKu3n%W#aQqMxQg|w^n3~Eov&7)(#8`9(zuLpec;ERe{e&Jx0RK;R zznpC_og?OSv`AOElXQ<=^3WCqAu+PKg0_jQ}B`yM`( zknjPYuE5OiS1M?ROPtgWaYLx5+pK9t9YAm`M;BwWcFkePEg0oUd7JB6ONUr-+#ziY zr$T#Q*R=8utiWkaTb-X1LI&Zo)JW08Gx5qlYudRXFTecCkI3ExlWIJ(qxj)?xlGqP ze-4Ih)vpL_MQy*z#lif*YnMR(sGdCV+$2% zi1kaB+ulaP%42i@w{9s-oHwtv1a;wO-~2%@bj}`LN&;{t!wDfp=_d++Aa<(h?u^^e z{%H!mJhk@h)p7KE303lmgeziVZw)=Geq)3@Sw*nd*p|3hl{3Q?uhP?|UwwY29*kGG zvejy@p|rciKa~zPYO%VPXqwy-V~8d`xtx)g>Gk&{F|wZ0`CpVTTo@}l(v=k;Wbm(M zsU(h(r4V{znAlX|vv;ocXt-`Jq5Fi;Xa(A1oO3xw{vD9}ysz;sGj!u&_gR)NoC0uR z#WQ(}R!&@6=%;t>vI=|o7LLfDTvn4Lx6BR`Y6l%ot9kQedZstPR|kKLI~Qe)T*K~~ix)3ua5{J2np*Je%?I|}MX$w% z9~v#S4`D49?cF=QMT>%D5T!RT?da*Ixy!}m%QDj+D~afqnvBY`6ELfQWGp{S0^j-! z0Bb=E-C9q_F~9NOe~NiV^#73fK_F1eM}4+GDfPpKA?tn^>^a;0?B%QckIH@QB2BE} zos`-aXpCrB+;E8t?qiM(uHYH;&P#3yK?$dHj}JuNmrreVvK78cZ+GH^V(nIcA$2wg zDNgA@AdP=Jjk1a0Otu5|1E$gSEoQT9I`_506^w;OU7)K*4T-1yW$berTbqBDf-T@?BRT(0^On@FMul8!QzHm@SN90tbcrfUpqgVx*U5qX~;0L7t-4ZDE+SG(Q zLzOp)N0DdRkGyY6wGUkp7CiuZ+>#|NRPEd&4pzxKRcj%I|DA!b1M7Sf-iBs8<_C76sm5r}#S#1$z3Mg8 z=8W?g?rU;M=!6~tmiU?vHkc*6;RBJ?%<3GeEctG-NR?)WJ5lzu=~tf<+20-?yWk4D zB9-VnB-?oYq^cy=M`><1}wM?-?n855&)(%R(={R^qA~*soXyyn< zQ1VXqx=~i*xPJpZ14^I3Q54I3CxWt+I!Cu!LqUfKybtpx-aUpDOx-!=7*{wYa~-AH zvJy^;?JppoSZ@RH;Xu-@62TF`P~5KvP2%V^c@EE(3%^Yl*&*47YxM@m6f0B~Lld{< zT8GgoKak7flsyBa^YJAt+wb@uB#IpfMOoejOQ~bCO1`_vWnD&nEdYT(;zwSBW@ ztq*c@w7$yZf|Y;|3vBl0=^sU)+PIT-In zZ|;wUYv+}>sl2v^Rj#QUEQ%AfxJ!Q6g*AxQA)4TVnx7TWg&j1rs{+@MQ@VDL)_LD_4)n^D#@|^ZaiynVo%)l&Ak|Kgx+qVZqPd?=aKf*9o zxO7*KV}h_&>7dl`WF4NarKNJ9PxeSk&p5g`*5@wmLDuY_1 z=K)GLg&`fK5nA!MnV|0x+J>KDGlxhB#_FpqLs9@3P6JwKR0Q>}theWM-r&%8l}t6H zxMM7ywE&z?yKV_Q@chq8pjgFe0i1Ci*zSHm+vscS@q;W>bap)h183TAQ&RWi-5)Ri zBwevq=%)}uzMPD!Hsj@aqJ|fC8dI&~)swz*?xZ*MSjt|aDX&Tq4xz@~P5ojheNKW1 zuo*Z-zUy+NXsbR}w;1x`osNscz6m&2HPMz&cVz4wl0@Si@0cN5@byI<9wTis{3rOf z(6fF+uJYGiYr3o?p@TL^Nu`P9M-EOn=LJmwPjoTWxgiVv0?Wh{6PSs0q4Z8;GoU=b zrL>DevV#5T6+iQX#q%%s)OuQXzpqs)^sJ8@;RYJr-Ij7$Vi~7qoTk_LbE$-N+<>=z zLWBHGD>NOn{AIZ_T|bI$5cQxWp$9M%Fvx?`cs`2@0-@ShYu2oB*JNI-|6*Fvm3{|Z z2S2=@#d{ANgHhDXr#BpOh~Dry@`%*AZXP)2DzUuhSkm(@s!sSEcZmBygwZ9gr3D6W zcb3u2PwXe=JCv@>0>ZSEy}{>Ssa0qVnqD5Kef8&`%$3Tr@{jrGJkJ`~$WS;+Mer`< zO0J{(2NfDk&lHs9DpOW{FFn?<`rJB(Xd+d|=#HN! zwXdp@MVOuPD>6cu++2Ff--pEDk-a~dSfo<>c9km0T@;i>cm5Nd=l`8|*&Ty-agaNA z+lgg-h8yeBIh$p^(X=&`GPb&rQr@#!5+PZzEm=!SI-qm_y0DB!u8|LRLY;&N9N~X7; z^ue%RRvrJCoZ+jf?^a7})%f1zQ=U1m(Ny_ew;2{u`l}t1eHbD&mnl~0^>p7^p1kNu zO|=+hPf(u^ zd)c2qDiG;6_HU2n3|oCNzZ#hHS8%XZjp556HaaMl_sy&NQsX8T#qw0umw9N~G>c?< zYQ#`2Wqj+4UKmfuctTFNu^KRx1Xe*u8`r)%f<@BW89qjRJXVb_42RjrR^d^HMrrb1 z+OU0q^htRvh^G&8Ceu~Gn>JSuAilq)j#zud)=I~)!&A=R*P51~cOLWO=q3@bsghLC zv=~9@grl97SY+Yh@qIq%O`b>TEO8E&h(Uz>H_+%TSG!XsR>xvn=aMz@P>oq!ZkC=$ zH~fI|KQ4jBL&uO6D^D(N^r~C596Gr#;`GaS*XIyae|74#KgHRTe}yW7Q}iGA0)DAj zsY2sNBXcaOMX?qxlVk+1j(75!I`ovfKmIfP=DS7x9-&b=ErnCGgxPwF(MH9B=l*GY z0y#EneoGb!PGmczQ)U!CRXZ}dRLZ-5c0bwUo~$dgltrgz_h{gceLqtNcN4s zOXtTd99cpSQEj*vSj>Oq-iV~@<$SUfjw81k_+S{KU*$7VIoiL|KSvJP z+=pTKUQ(p_>@+c$Ybj~KF#M&yX8>H^gFi!@Sk7H6eSI3!_B(VIpERdU>vI7d+!IVvRXIc8kdT(wBqaRCRd{v`$M!fA;`ATa_p>=k zrvGK!F(+r-L`WWt?>k!|*@Goa-+5H#oGI^*OygPfayYa&&F{xRA~*R=GR(l`sY<M#I29cI2&wG3%^ zL0fJMD84AKvn&msjUGpQ8c@(ye+@5Y$+B6o>(L>n7dqb{V(Q^Ut(}bYHXBd;40O%ORj$$Gp zbO)nTdA%*Uk!&qgedT#N#q*3kS?GgI785Rsh(Kr>i`vQ9Nzc{{7Es2vlyOU8@4yg_ zdDoH80P)$7T^D(tv4q|9_{0j}PSV~%sOP)7;>)s-(J9%8CsvNJ;}EFJJXX!@WiiiT z?(KK4!!XXWHD${VyW?5UZx$I~$7{M$f+0L^lx1x0Qy$R0M2d*Q?T>*-k1R#t?nmL= zAY=^Z#yEhgA9q*=TuRN0CIyEJ)d?8G`yl_-MU}pCUP&?HKr;V_Vz>l5l9!BIEDBWJ zA^(yyOHxNA$tcjG#Pz878Q>ypK@LRYd*@kegc`9*k3Q}JrA)$+k(72~XhJt3?E8~%=ZpKTIGW$^#t$xmWVQ%cHB%`&{w9A!p<;wL0e&0LFkC^A6 zww7}j8KuR2B8&0+U=95#L6}g}(V+%s++{}0?D+y`%aY~x&%|4*Twx||y5g#=- zzR50<|9Eh}zN)NK0b8D#99h~+mUs{nC6MK*FTS`OU;{jgqw()}Vc^pHD_~IbKQm~` ziCsg69HoCK7`E-uwJ&kvv&jnfL=wGTPkcQ=eG?RHJ&iUj_LxihO4hlauGR@TF47yy zce|eM6ie(vv2F4-S&V#wxwcL@azviS?rY_vC1jS!8va}>sffXD_8cbuxa;GBK**Xs zdmhYT`q*?xH=GjUicQy(WeJTn?7S|;6|v6SMKlP}G`YSHhBh}Qn-4Y{CnWmVz=Hmu zciQ`i>5rQ|Zk{cU zAtEN1%dqRJ&A&k=W3h)0?RftacGZ?Je9h*ZI(16SpJa4&ft>K@OPC_ru71%b>%;6$ z9n-Hq`?5V!0mYL$hHY0!cJQ~vrgq>T>?^7 z+RQ%m!{)GKkNaSKD3cdP+I%^VvpvCfQ1W$Uev8XVp(HlKrzs{MvXrWl9y?GV&VTZ& zIAgluFwEVh7{oGpZz}uziwVtbZNgXZ65Guoto~$|3d-PmHHJ zjy%U`T^XyIgte%}l38@2S#BHXUo4{)W(cR_%ARmpjF9TO1r&c5xP~PmV>E##4pgOh zxYOPwpng?WyCdmi-GeGGJr8LA&q|=$nm}x$iWQ4_L@?6WA9rzWcLmMz1NL$mE?NEv zv%JsgM?b-JBIngTa5;cPzbM|JeKbyfb#tWC4WfR}GANyjp}Hf^Cyfn9MX)Q+uet;F zr$a>Yq9dcuyO?;xG_U<}Iy#QhRwkeFY?MLIdX*Vx`-Z0VSJ=&9@OH-mZ6?upwxj-M z0q*cWq@a8PUEw#jn2Ceko>HPQgNyNFNWDuF!1J+W`iq}V2irg2TXB8zV}7aZ?f)*d zzD=k2iNR3oH>fPmsPC!Tn5Y}-qcZ3$+vGDA#rjUR#78XeN}41OD{RJUcR9nmVZb#B zX$oe$%X)9vr4E{W>Jv8F&MM6eze{OZ)2}`c&`o~LG`Z@(zp8HXg%YYNGu+L0oj6|W zq(vs%z4@GaoDaH=8#Wp#k56+;JO5uFlDe=JOV(r7-@`2a$uU$f!TmMw#qxY4kn1w* zBmHH|=g*&iKT*@(b7(QVP53Hm{O{G1tf=R2TZmf>SGmC**RB=u z!Z@wuF_*19kM)NAs9u{}f1j1^AJw@RQ^a0A;QOFe`Qog)RQ!gZ=( zFd-SX{?F7iJ6ghKrjIrXr_kGSW$-lKvLEW!MYkLMrD!?2{C@((!LU7hHm6isYeaI5 z*%K$=R7&5J<#;HlOP4-X9Jh{E!hIRr({RFu+}WDK^K~aa9tizbhDZ*+ zDNDGRKCa$=mV9G{t0+a~OwvEh-`;ogBMH0gngFvBKT5mp(diLz-wcl_OkMEVliDRq zh2p`*LG=`p8T=?yJ6OOB$j>KYHTUuII!gguO7OGHZG|v_>po=FKqpW-TzK=AvpO@T z;CM|7gTKzN`?UDUdShWifMe#kv2S)(`BkJ_(beKc*&7r2aJ zB0kW?%DH4klDMw(+&*3Jnu3v!Ird@h+_~%C%=k`kLaj&(o#Y_z;CQU2&i7@Cz&1o! z{0`6ai?pvkYv!_8IXE78-6e4H>L53fQ$pvR#DZ;)UO6_LMTs8h*P;QDq_a%JB_yJE zx=`+ifU61rVfXcn|BPy}==VC^SCC40xp1!11Sp+Z@V1BB#bYwvcA>Vv3z~JBZ}X7O}_Nad}vz-9j1XZ z&hoC#kB8RinG+}YGAugTA%;^MT5S~@82Rtyu}Lofz@=O!a-cc$C<))c0j%-FVn{5$ zbQgiSy3)Dg(&W-Hu{t!$q?ykMzRVK=&STPCPk#*J#!^p7h_6MB0_0Yyr-e&JND@3? zVJ^hLxXK7Oh++X1(vfaVr`!#TP~{@*9Jw%uB8S(C#LO=eDyIdCjHGjqlFTSh3q*;B z0yzrBqriZ2A)fnxzRUV{V6Lt>Q zXC;ai2)RUWSG7X2XOO?8vK&@<_{{{6{ZwnuHI3f7b%ZhyXqZA%Ikb|`d;G|Kwi`pa zvG}1qVoKzMG$~N>48JHOD>%}cmZMafBf}2N(b@AZrb#OsWPOY7mLgonM+W`G&;iBM z(vAzhsW=+o5eyFoy}3rC8>}Wx@PvMc(=2&A0GHHI5`&rUhz?*Mbr}W1zPaXngg_5? zA3Nq^e?a)}mw;V^Niw`zMtu<>5fRYqY9Owvi9`vi{wGqFVpeBUYD>j9MP_yn6VTKt+jbhtR^lx(XNSw<@NSxQV+Ty zhrZ!sR2(6>L%whjml0lnA-Arm6WGe@Uhy}3(;uuV8WRF*{HC;k8FK>;VclC6<70iD zhzlZLYT5}OqhxUuj6TG7i@gLf*RWq_D~=;S{0s_TXYcLXheJ_Jx$00nwhyl#)|zOpP9+e2=>6XWWsGOs$-WLI0VOtrI?#_N))AYEG+1) zq)f!J7E;`8ga+M*zu^eb%njxbBw?+AU4F`hWI4{bz|zw2l0#>2-pQ~aG7sGqE1gHd z7i(iu-hTr2l7&4hVIMiM-niy2bC$(92iWF5Mlgoww2Xx{yn?g@;(GV)jby;be<;hf zf*`n!KZ~BQ0C@6maA3=w2nSnkI3ncsYxly&1j)VP?Y#tcKny#2ZVC*}BFXi- z!mgF$l!{x~QQ4CFek?oCATOZ02iV^oB&mv6s5g;QDoGkAX zn-D2=IiSAp7S@}w9#%m1WF5^8%8j>;2mQfbu|u-&@tr41%9ML9l&#w2I2yR>+4jGT zeg=$k7fZQw9S#%X!FF9VZLAyPdq1@W*;i;^yD@B2M7v5Bd0_{W(yvSm#ip4>ZaMN; zI}owo(nF`tU03rxcLn<`=Y)9Z zrb9RgL#6y>A8}DTxajK$ofALQQ@T(8TcC*DV7yP~KbX02 z7S4a@FZzB6sW~GpaHNu3!IyOSFWCMiK{!HBhx=gFQ`F6P zHe*jpyV@biR~U;??e35SkqBigkOK``OK*8pNrIyQ?lyL?N?xpQ^&TOB>pgnKe)lCQ zLXLS>NP?+W(pjG&4k5#=eNBo!1h@L$BIf4(M^JLd5AjWhd&T3!y-ntB>UOpl&Za%C zgQd^XS4}qk`8`cBW|!(w1*?CZ-Z7Yasn{e+Ki0AQf76?CMW0A-7Su6JMmIGy=#PP! zR@$)dOfr8qfGyIf87E@qDVtNSIb%EZaK(70EWyUIr5lr*^EU!(qDDETFrYt)&z4?1 zI0S2ZqpWd@!4vY-X8yrbm~a&_!BFOf7k)g0RTi~ml~!ml^It9vtd7N~czz2|wKr>V z#IQKOZCHw?tljO@7mYB!zQs-mw@-g)gdHE7%z<*5!kF=Cs}N~| z$%2PmRGqNi|JKq5j3z6iG)oDtsqpB|3b^D|cEzvFSxMP?ONZW7M zITZ}!T`=xo7*@M(A;&?V{aK^33p}n0?Xl!Np*!Cpw(T)jj0T|(j^*~jO2*LZa@&!u zsQ6^T-;vTyawqdcdaACj2-rum%6&Mn;TL{(Mtf#)nH=N!O)g(N)nQL2%a~~r&F53E zVgW99mz@I=6K(S=dZ6^Q&!FB%Mb{ehza<)nm?Vrl9-;d~Tg@gSb^8O6# zV1TX9p=K#;<2C*K46&?1LW};%D;^rR;tzDR70Vnp79=)m)TkPH5*+0uG14rV-r|&C z^j2I$$M*ey;~0h<#wCb6WVz<>4d9(EhlRxg$-o5~pz&F3is5_qqG;N12#B-)rGv{M zqPuJIhy*YimVIBfXfYpatYe!gT61^nCK{r;7x2mW4FyO7rQB3zxr*<-XSFmchBAvY z89lJ1Dgvzeg+}9~h2jN}h4WLIG->iBrZD2BnJV-rb{Sc2mJDG-w)xXu?dLAg;Gr3G z>d>KYt3vl%_~k$=-z@*;dz&F4*HkR@gBFIO_L;P?taG8c$vNk4dQt96jm%6mm`hM9 z{~GzOS|{{1pfo~K`6Ep?2)WPE)6!JJ3n|p>NDO51WhtdKy3sJbwAJXooKBTrQfjOR z$~vFM$shF?ykx^0@)5vjdSjwf3TH1h#o;jY>g3*&Zh7q03!Z&Se?eC$RftfMuk@J7 z8a)~=YqUZiP|fwx8eowNuCt{qvC8zg`+YaikC{12ve+%p6e^XYMZZTpVdci63q6@z zOjOs*IBq+>qKc4*`JxKCW=@)RQXUl(QVR1Dns%WA>3~g#ir}LVyWS67!L zqa`8BuxZtpWN711#l4fXmm!bVFWBaSsI*PPxM(Z~;UBX^T7s|9nqI=p%aU=*dedctA1FCGrn^{A)_gE^-Yapdj{u0`ppGJGvBLVBN?5DpV-swVprvg z)#iF8oqgl_W_39HlzR=eDOl^8aj&OIu%D&zS@yDnk`JHdMu}htLbfUc2OA>I4*M6$ zCjTO7cZACKc{x-r3D7Tm@=ca7>f0k4>Tw2?L+$66Mu3a zPsW))*3D_DbYBSho2OhPUzw?cFtC-ACQX_==?qQu``!tT>KkT8q&{0x-{WrxjvXH= z@lW{M`dn4HcFA;esLosjHdMoF5OAM_Vd(zWRX9^|6w)J{@5$3NUTIj$!FZjvu5Zg< z0@Q61XnMmem#KO*&cB8Dx$WpdNAR}#K6OEnw7Xx{OKI8^KMWV8J??|mPSB3Zc6OU_ zNPzmzeom&oTdzx9qj4S|n9#cphpX5T$i5x)mi02q2qD|G^D4;-0-JFH*7 z!q5}up3tzguc04We#KLps>@VuhPxT>f1>AjtWH;@-!1yni%Igu-b8aa)Hs! zaV*Y37T(R;xb9zW!sG;Ot^N8n?$^KHx6vlgHQJ+g?Vog6{x^VsCRQ6$68zt$mT!G2 zCO0q|`0i*o95@+o4_5ozg=ceequ zQpH&!9js2jf~jISmB1_uKz4%lSfNNng7nI45TLsJ2!tL8DaqX+;5L<--c$PPq!~;oS!h&h6I^UH-RSm_aCc7YwUC zl!*yj3y#e2vJ49b%s`d4IVE3k5?z=@qTp_zx^?TKWhg(69+z#Sop$Zwi%L!{>ba9% zmB#Num^n|0OQK04Kx^uJfz-4b<-xM^5D|OIhD?!J4%*(?=PrK zTGo1>Mt7TwH=rFQC|vqt-Yfl-(yew=7R>EH>0b=dTZrtK{&cLS%G#%dVwvMq zJ>SModYRMotQ}H(4^Q{&pDK*^N$@qAGD^7mQ`If^xar5Rv?puY?{azc=k{&%m9Y`? zr#pQ5*mkep(Gq)A5-v3OVVe$L5m>(cR*L!LIE^}kuX z-~l=^n}<41nn$Vkh=h>hhiQuX9vNDK4pTZG)4X0Vj=4CDS;5gs^PCm05G;#%-`7Y} zjJDm&?*~viGEZBv8)JhJi}|RG+kNW{NTbnR_R)zZ(Rl8q8TGTSru4ajnd*|Fki+yE z8BFQeqPyq?rLDr8#aQw+#HP@+w-uEiP%O#@hWUxN6o^2sd#8;Y8>B+k@fyebs*N95 z2lGW47bYsnaOrqJ@F{^I337GqWZRzX_rZ`R8ONQRlK(9+TO^UpK-o*~lhIp*>S&L^ zNwr3sqRkdq>Eo=IsX~8do4}Hv7T!VhM2LiC8&6p`L8%)}Kb0Wz6n0c(7o>&swA=`k zPcZKZX`H}bm&NMh-2Lg(TcE48i>}q>EruGHpft?8sXZ*J;b}OHyGdP-`4Y)uhbO3H=kL{g%Gm_DK3v7daR<`S0t@i zF|v8{<{w>?M-T&feI@=4i_oDZ8dfINIWKAe3efbSN^s&tEt4kTypJ2Qro!Gqw(?w2G}z zv3KIn4HdL6>8~nA$`%)-N_S|ag(V#=Yx%JSViwJ?TL`SxZfK1PN@IP<$2KcZ-Ii`S zIic~YOZ3dwj+c9u$kny0Uo4GF#q>)TTMG9ct`{Kw;Ecd8m1?fw{Nn;W{Y^8EIne@G z&;4LUH>o85&@G=fAdxRI?x(H{1>;5+1ih^~YSr$@uGp2*+1^$le6|^lpUC3-N zKF)=;J%U9Gnb94KgrG}xQ|j10#ntV96I!amv(navBri+ ziTE5?OGHJ78@-Gw8BQ$Q8bAZhewiF!JwDL3zGE3{fixzxHk^b-?2UZbvis?Rm!}{EG zj>v;LwECxfP8l7ncmm+TZhoCzM;!O3w^Zk;sASj_uiS6PaVPxW5EnQVjfej4M->~Q z%kaNTWUM~op={d@At}q%KgapEl`Of+uHr*wF%&RohS=n*EXGC1sHc=;zPL~BMpi6LI zNk@7mg0!Nk(pV<z?ZA-hy(TA4H=wH=7B66pOsp$X?94l`-QxXw zwDAr!ga;fQCbA8@(cgUY{O5cnIX&R)l97k@bDHi_raPq&Q;DrQnzplvRFrxm^1qry ze|pu=c4j8@{(M#*9EA-*Y<7M*`({(ZxaTrGk#u3ODz`vK za1+_nJ1AJ$!^ZG{U(dD6HxpIBM&yX3Z_b*&3u!EmEc-l)KoYT|Zq5 zjqYAuS1gbd?p6(#n3X@e)P+spLRWtMbrrqitgZ!LfjJ8njQcKS8^?u zF#67_t#G=6+OiEYUgS$dEPffMG^K>$>TL(bAi9_Wp6_i2TP5n90WkI4xpVNT*54>Y z#Jk(sD*(fnb-K-?o!6JXD(3v{a9D3zl65tBF{wqm@nT)A>K2C6%lCcz#a+7l%xdeWK@Zwp)T zq4n0j7OBPt*2)Y)33l^?dJ|Sm96x?M1E)yV0mVi)qgKWsSRW@TR`~f#?Q?Prhw(;A z^YwZo95f_s20m+kyfVcw;dPi{y#EsB18HodC19Z<4qSLFgdG7o(O`?Uj>8W%DeaQ? z5NHM+dH*YDA7}OxF;o&XHP>5$p!=)Ylne&y@2^GT1>;{Tfm*YR_%b`|&q}hM*B*TP zzIrDf1xU6A%wC3`mY+WM`U9>z1c@41;XQvx_lFM+$k76#cQ|_c{10iZ2Tk7;OLg{{&{hJj(jf?C${4J9GPz& z*O1`&l&}Bu89!GSwf<4w2A~PP$D$wi2#n%=RX<#cAJfC}A zc&s7h(~yH`D5f8?1QRxdUCwGgfCwXpemQh#pbMs$aa~=YSO*fS-2>%p2R*^swMK-7 zEqPlo_!wMw$TcYA`9ma~XUtpocw|Y3EY%9bkC=sO#S1>c4;)^3ul4v=MXLtm{Dg5Q z2WXUwEOLNqq>wpQlSdW4fcH8<-f_;g60}@PIK+lJ5u!nFFI`$klxmxe8RxyT(5aKU zLIk5}e6MXI`1JDO@~rOwe7D+w6#S$+7(lDDxfcS0C>c(|!RliPI-Xij475FTTaca2 z^3`Z}+;vTaP#uz;4#S`KAT8I#4hlG>j!bFPdus?jy>)=31zSWupr6YEMGa$&lQ{7` z=XpW?YbB6pS(4N9jVcl{OA77nS?V3|i6Y0P+uklaR(-A;B$H;MTAni`i0OHpAQ4hq zdko1|EATgn(q2?6ev|~NoCV~P_!)D9{c?sftbQE%MpSb@Ku8P5dY=$c4dvcV$hqbK z=GsAy$*-aJY)s-056azxkZxj-)YtbMJl1EdIMO!3-a26s1e{u-BIf%BA%anl$-YQRGUi9LNuYpu8_BmKz0?Iqm5mNAN65QycW4 z^Jr2sPO$cv7d@!#Xg?`IN$D)75&WJ(N)}85-DU%!(!=73FuK4AdG}3*yjeS}sEA(} z&3o85PFyEj!osiPqi+-&d zhZoW+qBM zJ7wM|a-EQ_B6f)UqUBF^#mQ6ai*~jO$ zkAxPrhfse)mN`HOhRU7Hg8mugrri?=LFL|0QdT*nWB?)OQU3v!?;EHUcudH(EV%g- ztjYP3JuvVSWO(sl1WLo>PeB)?Z2-#Lk4iWq>!BH@3OAa!i*R@RxGUrL3}ol;d6W71#;V9)mlT0|rw(ZS>yk-mP2r%?aGJI3w&* zFnGk=cxz_~*kG!=;b+L}gwLvYj4#7b7QU*pxNH4Zt%`X;H>XWnRH@QYIO{7;K_FYh z)Lw&8y}D2h=iA3&8}ZH6FBy_3_iCK|p6;#pFdpApT1T%}s>4VE_gdGXV=MQ6{k37S zBB(qp%8S$0=(Wz{R5jmGvj9qyzMM5zq^GB|kt3Y>2d}2nz380a1W8K=UtH}o$MT}_N#as|=~Br9u6FE2EOgbRs8#ead14RyhLBFS7{jnaAh?uWrYIBtu?3$KSM zS26$$JJTyto5@p=Vfy-Hl5o=}QhP|O!zcrqLC6eI*zgsCt%RBzK9P7&J7`Sgs=iVY z+w$A-|1WrM{X*mxfRT)*aEr?rK7puskKFAda12lG9nvFfASm}ZxUX-Tex9likONla zK0qh!ABV39Is0BoJ|KfG_|Q0Ytyt4_<8vDTm`Xnz0X8@cfgk0}4R84LvABw^gCpI* zfrYL+z*JLx5b%#&vBjVd?C@KjU~pOWiXA3Tpjw}4gB3lZb`wFGEqYKi$30P{IoV_| z_bPe2T*~#zPKg2t$2=FIw}O*}dv9PKuLMJKJa|RG9tHHs+oZ=aK#u<) zJWcM$VbTwdPJ={Iz0HaMLFaC(BqM+GBuw+>KM&`W*h6S4Rt^@i#|EU~g!=Xn z`b$aeA*kW z+U5N1r%PX-`L;EwxhKPzY8uQ3w`r1r6|<`&SQA&R)l6H3^mTtNp6oZDTqEp}FlJom z61l~_Lk0%MTa^To+SOoi#6&_48YUITr(|Oo0wWXo#sep?9I!9!tMX5nkz#9ncZROY z5|_yVZNyZ4E`KECl-lMPh%y)^8YWsI*6{3O4|xzI8y=6V%Y#my{sZ z7t$D>8VN&%UT5Ziqi}exD~fuW&jY3-nA_)=^(gbS(t=gS}cVn6B}QzdcqH)a)80Af0;>bbxX_w0r<1i7WOEp25*2 zVR{AU6-dx?#5y?Z6;PbF)*na6J<}KxVncv^D{@TVH9|U=K7s14ki=I7j_FxK?6#s- z@m871)|Qc}`V3H?J$c~gkd5jQ#5E2TuWkd^cnnXOlAM}u(+xNmAm$VcI6Yg(h$6Sk zV5n+WEFmkKK+nBo9efCCwR@2j`O%Ls+9f7u4k2L`+8zhH#`8}SBVc}sgtS71n8~z8 z!oDVCul^>qBw5{gMZi|+eweHDl}^)ZP8gi!V(5)^iFz;sqGO&rNuppsm{^{l2>F$d z4y`0)a~W#B)ZGRJE|%Hn7)o=)H;op;ETtF`LTD)ksZ;J-O&lm(MEl9Rcg>kcY{DRkO$F4z0`WAyg2WKu$$A z88Bf4oeN{GGgdrY!GAdPf{lYF*Lr)bEIs2d#=Z&M7#aySho`diYys>?E@eCklUR52 z{%4P_Ja+8Zf%e(@nGQWE#^eQFXj(RH6T>21n?_k*j5o7Y(n;2d^7%@Y%9H2S5YSAt z(WEgHr|b2X@o{l9%+qn4HRL(X8KbkJws7GHBt)3NG0KiSeE4vu8jMpu9B1+-$83ln zR<7<{(6CUIUtw5|Q~OGt^h5E};qY^n!=M8p?&i&#Y!DBi`ISU$6>NJ4Q;C@ShJz3+ z8s}Z|T=qFrB^tnlE!91ZrklIr6Ym*)PpH8k2{1`1Gw92*sMwb`k)>JXMG#!2-o2w6ic_*=B4`A zuASSXcI{v~9OvMEbHob4n-WpePObPV*z4K~`M>qizJ0-v&J%K{6sj1n4CY zUCsOB2hxgj4e_qKkREla=z`o;9UE01+l}(U*eK-v({h}+K{kbr)&q*$f5!}=e*{q_ zVUA-uU&Be3zUm5E$6)nD+0sW9LQ;HLSo19F&QNPY{28{w7Gq6D_sdoc77j2h57@lr z#f0X$X<~=mM64bmr`X-;O2mnNAO^Fg)EX1!FMZpf!RLG<5wNR`I}I8%4$N}u&gM45 zg=KNPJHwA?xxw6c&1G!*2^(z?^J8su$|e&wzY4ll9iRKo0$x^w%6ab{Sa#2G!WHjf4!o5|aTNo9Zqr zi3gwPY`E@QnEnor!KPu%MJ@;^>gndgL+D$Igf=c!OyH`XFDPbt^;8UY+6!%-*G36g zpcmiK9zw-o6T7%i#C#c|C1@_TQ!DW1qZ<#Wqz_Jps;k3Z;-Cya%Z*T&J z5>=-9n>wEl6E%Y6*s9A&UoL-BzlBLp)csaT(D}!Cd~e=xO!Gjjba4X55XbWvT7=l0 z^QH#02-~jDWMGu@aWoLyUZ<1*hp`&B!eZJBOhL9Fne#5y2K} zZ11pB-)@?wH2c;`;N-UJHuSJtC8%QSOfGHLpm*`IvP&tgZn`LMhhWQ&zNL& zo7S0PfU4YRIE`-8#QGMc7mWY463A8c`?+(U5SaP8cdl$D!;DhH{VsKtnyBMnB>kl#7562<|*jC91GxXrI z^sC{Kh)b4C7y`vZaJZA@GlJh|+|Xb|p@%rVg~&2|U&3e1@Q6hHB%6a^G!f`l409;W z522y%@a=PluhfZLVl29^2o$B0>E=EjAF^$A=*s_yt8dFT%eUPPwCR%cYzw{Z)XD3h zAzx#F9lUxqto>PS$t4`9{1-f$ZWA-fhZ0D8%ug|11eq#fd-pz6`}4bJST?Ab^Z8MV zc{RQ3QmRUNsK`*V#I4vx=!Un}uBaGEpo1l6ZJNgAwg8Z@xT57%$^G%{7=SMM%Q3+w zG)DjcH_Hl@fu%x6niZW$R#>qjA>_M42z4cV5120Y8rvwpY+8!7=K|G=S60D?;Srgn zOLNzz@#NfVZf}vxcF%l680ZOvZA7fon;?V_Z)ZY+s%8!l{N zstjs+UU$G?Cr+1RDtkqWhNn{)e`9`kcEE#cx?K|Wg92q>p^eY`(5Gp zq>OckL9TCrNsnr1DuHmE#5Bq(3!3XCOh4j*X^JtzaScs0X*fzjh>;%GUQU)}m*ot*NZX9S8v>WQIZG+n{;7or0Z5xVYh{#OzQtd+b;W zE(|rDP>$WY(HB>Y4IwzH!T3ALrIvKtO{%yBm*#1T85 z0~YFxwM=lvzJZP;r}%~`&U!GganxQf_h77~+89Jsx*XKj-`cC8a`5WfJS|MRJ?J&I z*YiH8;3eFU8ZXrr#*0hx4337`-oJ2OfjkX69t#Z9Qx0a;gRN!jx+#j28rrEuRk2k9 z=3M7uc2fE0@JDBWE$F%_+v+p}uW8+>c8|nZXd2-gFeZA-+6Wqp|LRw?K;dSQIKk5B z@>VxzM`I)KWv353-PJwNsRX^w;J=(OP<&9@34|q;X5}mi0p|4BqjIJ?a z1kA-4AC$3AFGJVn)H+R~acUbG(>gh?!r@*r)Sk`*P+i>Wx!wZIdZBd`|5=8AopdZC zI-2#8o|tQ@YFH+WXmt4U%OAERrkfb+jLn{I6iFWXS=Jr2iKlnbJJYz?`hvp zLO0XK*uJj&EhZ)=6W@8ssleX5g4a1==v{oTgaerWQ;Z!drFOqbB3;v}67|X}mz_ywy zc6)qjhn^y9(q3?KD1mNAjNZ%Tf+Y;cd4~{f@EW0rEHMn2NSsgS$k=wWLBBV(QboO5 ziqc6}YfBP!l3mAYJyO)umMj)9*bUI|Td~lt#e7tFk)+p)&J4}mxpPa`uHDsLAB|uT zf@Q0wGtOpE1@iZq6_=1oNGdE*jsJpE(#bMix|FWHSl;bWM`2Hz3rS^6pGdt=_J|D5 z_lGl9;Av)kPEsHjk&S|%_iQ0OcrQPt5@;sgPdN^Ds|Gw7>6)Sd`J-cefiWNP? z4>cUQMnA#?--F+Sf9(k1^H7}45u-~VRmWouGI7>|QKNf#wHY<4)WBM!c&thc*4FCt zT$P>)1Hvy`*_7j(hU2vd)FMz5$2YeyHAVv*;dsN}hNF9(^w6Aim`Xjni+v?O?=EDT zM0NMGQ!foim_WJQw;dICtF?iS&_ABcTRnb7^l%D%@BtKgaor2o*}-SdZ2P$q!4m+xqJ&OMdEaqluIK_ zY&=73_hg2x`ObnNolKVbm6YClQ- zjRa*TOlVV-uPln*uw{jU$_`IbZdn=x^dv1hFuXy*Wn@J#gLl&Bc?foWC}HDZ?3xV* zxDUdAh?wVEtgO*k_<-0xf}Lbe6xFe$R|G{!fe{kE$sRfb--umA$~%bXaI; zC|$&16F9QowvJ3 z|1P$J#J%beU&$M68!cNDR!{V|1%SDgkd98+DQB$cb#l}4%4*@jo?`Mx%820)!Z#ZX zHYEyOcbyOzoTrm@9fpCzY6R4Q2rQITm^-th1zJ;pBUPgmpDe2Erw>PQ`TDR7$ zp$GI@rj1s{TN^-2)1w^pTrHO};+7wpr_|-UjuTbN=C?0Sw%RtDT;-?Y(W8QT#J_-f z_U#)mvM>9Zyq9$b63n@AtWc67mJSJ zm%q7&=yOL5CuBumoAv=Mh#|C0w+lTsM)`cj$~%~u`vy}Zd?)@929vXG$Iht87>tL> zI-0*647$y<#k}67Z<<}0jkgBU#B8wpimPLa_-G?*m}Mha7U+v>sSv7a5M1WUg_Ex_ zbA92AE9_KR7J=#KGptdnoGB9K*+$+-l)yXyF0)0$RU zewUJUY^}5kAXi_k=!)SI2EzfyXCXzxPGF-!(JouW+GHsK+Q$QZhVcMBYI>bzuIVoj zj4|Jf>3tao=%TN~;pF^>1>S`V`m6N@#`ik4G&^_;Ucva`s#U9g>$qxF2z{)Q&Y9!F z@D2!W^+a&B96t^(XX0^~By+W_o-XrRzFxhmC>~?6A!Fk8 z)9`0PfF^|2VQhR*I5s2C;tOU9MX+Ru<7x#|E#C3uZPXZ_b{z2$WB4cf^0#V#irvK< zlRBFZ10Io7L;IWJ%vKvdFLJT z2{R;UEBt_7iyB;&_(i$COs>NZ*fGPugX&)Wj7` z5i2nhKXZDMxD@_F$wucM>Gh$UgI8gBi*dI^us%Sm?VrO+`v}=1exr5Wd?yKcP+j+l z*QJC!=I$F0c2-D8C7!|2=SWrn=jF*7$@;X6++Dj$a|{y5#X3y3{{uqOg+_cGC6gJ{ zKEJ>S9~=S62YHBepbvA)rvL=q5vEsooMBrN)PbGOZua%`I)9MUE2l2(|D9xX&5h8z z$+I}j>ne!@yE9--7lhoWre|>wLZ1?H@snL2m+Cy_VI;}?Ou&5AuF)t+ijpNlaFkIv zO*?Fj@KHlSiFw{Sj!zuDZ*!U=L(`^PHC}N3H%nkOy>ka2k-z9wI=mTXgyM_v&t?~h zCUlcD%?3$i#*1*|hWng|zeYW{KC0Af-A1*Ap2>?&`6+e>Uva|FnST$f80oC{Gn^>m z5MQw*=ay9!7fE(dL#r@e>wr~O4-@W(mzbWvF_rHZ*OS9dZ4+4G7JYi-puV%Xw}bKC4nLm7@irfc zBlswkitkBmW2PL5Z$dj>O5TmK1c?GKsl4%7nrXp_98uqcybF_L`wSt5<@sPQKFuj; zsny9BS5}vb@aW|3mjQMKZlB^6fe~ljCgrjgfY+N3?UmQ8l+ogt7TYUVTsl#KCzc5~GdJaT!@X7!Q_sC99~e{cW;aZUaTr z4;lNy5jcx$=$Avm>FOHW6aY%cT+x;Lt%j*r8T0q-26uV)dh>yc#_@3wW~z3JgbMZ* zXrJTcN!I#-2Harw?60foF}%3`PnE#x=n{@Wt;XNyfc^MyVvchG(Q4w*@_?B3U}ub^ zI(6E>QcauBhL-S`$U4U?^l}+bx<%$A%jRdM$PbQKe>jtUh$$#hyGeVAV|w?vd`yo- z?T#-faZK;-zl68T1c2JTTkr~=-6I9>3r|iZ-~mH_8eYxylPLKC^q0@7{N0jIV5>xY zNWiMlo_E8o7O+M*Y!7o?Tea%JwpudbN|($=@;efSxJO~WjF~~?IqQs-z?uH0q)1J` zmqZ5Vn;;L>aoGKEU(P3xeepxV&wK9WfJHd(N8KbPj1NVizjaP!u@GmhV-6ephS2je@Xc|XvlS}%LON)I zIRUG_;Sqanw_JsC6Z7W|t0GiKjibK=GiDIRPyhV$&t%P>I`;|}XeC%l(YXM*%+M7J9G%7%}4UU6sA<}4{wIR`T*5E<*>Z9O7_;+5!e3s?6YPZ z)`?7+K(U=$x|QeHl=Mg;yT3?@YhA{s4>u3FV15Q9y@q5-U5RCQ^CXgl*NWH#NF_?q z6D+L1;?ge2N8YwUZ%|Ya?v$4Zg0RyTRb9L@pRO>p)35m?dGpiW1CNebN=> zdvQQywxUc@#cxBLm3Ymzw_^9bji?b2kujz|Z$z$Vr@hIT6tgvmybaSjvX zgZV_p7itf_EWB%`o?qK@QhYjAW;fk(TT8K)I1L-Sf|WO)JA}Sxp9dH)$recfw=q0Vp! zs&e!z`~2A{`~!J!xq3RL`Xp8>UmJnIG-)epP6pQJewXLyaE_ysJ{wXoPT6X=!$v-s zA(sRrQW)29*TuD~4-8`cRifk=I(tN(n%5V2^u_Z8@EcL@6Nqat3(GqROQ%Y}^5eOh zxfFo$0ba359L^e`F+Rs)tE4?PM@Np~G{F*Cf)!0ImuI51ZO#pRR}0Y-(#u);z}2vF zpC5xwY3}-Ia_Z#<&b$Zi2`J&aQsrYzipANMZA1N`J;K~0o2LB^HjWuPv7!)_=IM|3 zj2L0tS8gZ$Oz}LcPWi)iu0z$L)?B$Q(#rFSVfq?Ec{B*)sNS;K1G^93oHcML%s#{T zT|+}9^5Ea8F>htM#iq=D!v zKxi(H-Cg{73l0`AkW(^e8kXei7nHrRNA?bQ_ub)p_a?AF%xa`S6;w927Et;3zdkHY zk>sLyLH@T(pd4=EU5**7UY%g%O>hB9=R^49h7HRmo>C482s z@7N(>RpVXJq1zg?rzZY9{7BS$S3lkzp;OAQBF6bnDZ@CQK$d=>$a&ClI8Oc-otCfV z6lJ>1)BPhA$CKxfel)u-%U!*R^8$`xSZTtE3glV-=yw4@utQoukz@K!%VlXoP?pmD z5wMun!`0;|H^KG#YFihFY zJ^dv+a04A2D`Y!9T`?8sMtMhL+tIqGfPpQX*DlPb_+9sF_(MAgt;R_w@mhO(w;~v4 zNw%p(s3>eIlhoEW$VS&_rMk{G%ndlB%jgWe*{0*_gNP&;IO~vX*_;+4*`>C5N8+8< z7@yo@U&OjN%m%};zqhZ{|ByY#>VCQFmj&|9LulTCJ87MA0$G16a2pPM%f}ksbIx(E z*Lz`1{6X1Zr=`+Q>$J=Gp`Khw{na(~v^#ISgq4Mu?kQkWes1J00KGirq68{viDiEZG)eX;VDPX>E;8hxJqUWml#Ikn& z5GaP1M!uT}*)P~OAYb(~fPV~t{0}N5gh)N^t=N>)h_<;b5HyToQz!f5n?H?IXR0bI zt?xUeC2M=nsW6{*YY92fLnM@TgAas*0xYjC=dT~Wvd0SmnMWn(TTBa zw*@}j3X2#>f41{{Mtihh3Vhf~VkvK(S;U@6hNn+z@^5fbvbCzqJNB?v^{keg2xzi~ zz{T?Mpo3ET_XG_1Gzn*QlFAH5w}!Krs>N8o{>94a4IJmCogRad@aIyP)Z2OH%$Z@Z z*2V_vk*TINxrFt>4%M@9=Ysq~AOpjAr5r3^$J*DZF&}n>6y|hOIp2;YSWREx3+NoM ztC*=!E@*)DqXcvAb>A#sShwd3*ZKqYR@EWo14+F87r@1h>&p zL%GL7ZwKch1smp-MTc}ObNYu;BM;>%GGQ*px2H^LXNLDrq?W}xPSY8c^297hF>l3F zi2T^<0);M;v37MJ#a}0n_2*X?H?F%ayUZ9+;|yYbE;Y0lah_1Kjr2Cckca{gLe;m~ zz2nneej?a{JYdn>_PwN9*LiGS;E%R>4pU+r<2$g=+8A`nD^+}jwfK| zIeOpb(gvDRos1}({iPt}C-W>_yMtpp~)^WbvrvwIfjg@tDRm4Wfb zBG%H{j~joC`oh8l(MF+yU9<6KxD*V+8M3W4_(sOfCRFB=bo{syB@9>m9DbmACSqLM z-~;gi^h0*g7%edVn8zRmoAqa*$N_wY!#ZT)-KMFqipO3~!HMu(>rTL$V|-Qz5UTZv z9~OW%C|9#UFEE$Rvv`H6_8EM9Ow99wi52`FdeG8dHbg&#*%PWK{|GuUm>(Q$pP*q) zx3F4!INuL?7T;Udaq+5E(5Vb(O@H%}5h4(0nYjA%r&Ou6)3J;*E#6hOc}S#sv%?ePA=Ljem14la%`-=X8_$^c)5nsGqxpFWqjt>*L4|v}Q2A*93GXNlR z!1BTXi<4e;NQ)B&i~obnH;j)AA^6_R7CEL5Fymb?xhj>3|FTwRDpWAjc^)o|eC(5h z(*475T5Fw_ufy1xb~0D>53{rkO}V_8D@@OSni@!K`!H#=Uq(9)V&#SA+fIk1jl}qz zQ!r5a8)sDMR@j9l*MZ#{vw_^S1)o^$5_9z^{y!|ltH~5rT49R#Ri& zkOo$+%84TT=v&}f>+5-6^JY2lTH^H12sNGrJ9WdJ+SP;*dXaEc8cslkO$e@qNQb1p zhO;IggYzL)HmrpToe>W-?M1`NT&TXZ5#s5H6kDMpZf~TB7@hRn!^6$PJ$K((gk1CG z6EiIgz>L#b!O(e3Qfl%LLPeGXlR2B+_w%%Xepo^d|1P|=VgN6E))LsbQ><1wiK3y3 zQ^yn>zNWO|LbAUOP%LSa`q*fX$>+OQ0yt6o}g#%VKPCO@)7n_G&;sjg{JO#53 zIj=yTQc{`-49?SxUuD7ZpB1tc*R&Jz)bZ;hk0XAzy|XXF{z5QM;(Av>LG^UgW)dqy zt>#q0SY=Jkntg98c&5~G2)d27UxVK=$BF&;Gz)#2a@{sT6wG}>naYIhevYuI zrS!vxkHo2kGe?XLE3<&{)mc`k!9D^A%Yf$3hh_!a@Co)*gBF+}Fine3xjnc)>@1Bh z9yxMLSI)gF8#u8$2Y^|S|Jww(Tj?|s%}qFb_44?xS5s@$S&-+C(aS|{ z|MrbuZbJTF3Zb_M{|wA8_ek?jp#L!W(4oZ0j}RJx7Yd+HGQJ3%tY4)KEmZ6r*)ACE zo@ZEasD41?RxDXS`Gd7H4_~?m%{)ILDFu(?3Dl~tm5j*)(X@e;L=kYLPTA>~U^mNe zEU(~i`2Ken!SG(i_r7Rhzs4-{q<4iRs@Oniy@DGdq=I=04|xaxbS6bCw+xB2fT=Hd zeYJ0)b5!oibnlmh?|cn;s0O_Xl3AM{lZR|jEZ2yvBi>?^o_FvDmUOrG9^?KZmhUmS z_R~)_-kp34l4JJmszNoP`huxn*%lF}CN#=dl!a z(W+~o*$B2+Vhet&-iZy?uLmkYkNLax8BV$VNg+$P!Q@H*s_2u)1%vffO7XQDgFQC@}8 z?q}5LqF{tuup)%~Mr9fha#XhY3MP`UehpfEKL?K0-Asje2c4z5JIM1XU3Am~6-(S^ z(_fIka=%i2NJtY|OZU$qJ9SdNmX0S*uMw(ALL6^wO*WZI4o&s`T1Hsg})XO6tdk=(9Z`rb?dO!Gy6c@38 z4YAF57!HcqF^v1_;na^6vA`QUjN1K8jMu#*wu+S)L3g zj{6o?kHF`h3@|td;#WQxj;<7oPdZsWL!>3NoEj`A#2@f}o`xn;L*CEP9WwFxVw|5R z1Nce3JOK1w98^?dJ^Nm`+hoJ2QKK`+=cx1zp|v)b_RN5T)@^2Din)537D|{3QH(m_ z84Sab?W$G#cFWc+4Hq4ku#XSCVU%f3&oyAD4MB-mjxRX%Rkx0I-UAcfV7=iY1&B}% zSnX)?MC{%*wSUD}w+v0DN`0J-kJ)seF>nFKTpz5U>6d~ds|g&_16_RWOrJm%hkD6L z?I#!BW$h+m>Uo1)fle=`=MmRjA&&n;kC*r8jLgw?DfJl{$-2_x>RFQqyPz;kQSA|4 zpd?t&S1(++cv*?HD*im+9WM~}+^4+5>+p1=@CyxiKS$4x43W(j6@7pHZRq^B4YDU> z0xN&y<$}@4fGnDa#38z$yZW&y9&qP3TdVTMXszgrh@DVw*wMQhsE`{`e z?tRzg^f^Z8ki1f{jnUUpFg&%4nD#j1LtC7z5g`<3bjf^XIV&`7xGo%!C7Gwy(#q@D zaruKZ$C$k26BArg7gMk2?&_6X!BE-2PBMlFYLK-?@Jz2t#-%!K+I%x^+|Sp-N%kaR z@zDr$@QX&lKmNW&Om7&1lG9k{!C3c5T8= ze~-Slqc=I>BVp(Rbw^4lPvgBeMVii^-+sdUJ(osX7HgX_FDQo+C>b?WLg)v$NGKg$ z=waDKiB?Aa@OJo}Xu*J4@E)5UKhf^c&UzSAJ9i>BmnMK$b&c_551^){+SHMQ)7aR; z@$0&%i6hm~-c7 zIh-RllM6;5K`&TfaGtyuo_xxApB*ySn_cJAx_X75HBUv^jfJ1PeJo&49m97d0|g;E zoE-ec#IP9H6kYBfEb`#Ng^Cbb8R)%`D@h}gKb^4xgK)fP+2~sN>#xPQi|!MzBk}AX zr#Orf^}sQgB46;xkAbv5RGxhYD~d0GK171}_mUd5@`H*ekyTY$+$lYa^b_`?6R zM7-LtH&vyd!~19%`$}FKfd<1cd&r~#0|o@ac`GwidHvVVxD!A~MdSXB2`P(6(2>RJzs-5H59W(0~ACo6+)tbI${xI--66LjlOwf)OY zh|o$7rXN3^KK&Qyf5K@4q|&UaRi;&kx$t@kGrT!Wm;U?#Y-lD8h^ue4j9PC&ITOIAXQ9BA8pCJt_Qlu9Ns{*5I!EVRb&J`7fx-p#;GN+ z>J^)fz_e&SO;h46`Pd%>_b`xtte#ph^B!(9V%LeLtiuZOe^cjhSMSB=VdLrPpE-1^ za+3dC((9mWtL?MoyEKUIL~ya0HE->1Q>$UaS&PXFqJNQ?jbQ_G!6&^b|lstc^u4d6Lgo>t#jKj|`msAX5;ANAG2U*lZ`q;v*_SSARNwup5qYyN*eH8EcjV z4;bqYfS=&it5?6ywP-$oiQcU3p#7wut!e7F9Q@<{Tenhi_^n&F7XH|$b7dC4i6c1Y z)M;oJ6}*FaNrA3H!UR9>se-@ay#ieyvzJid>7IaiE?YWNy9R8K7|)tF(Bu$+?OlmkeLqZ;yeEEJ~{ zK12NBuH$Y_+1ZNq3HDZrFJK=&D_7;f;)tBE$Fx;#=jft}#&!Vkiok+;Ck#O={NKU6 zPdn@7l$QSx7AAj)^`iJM$}^|34lbn!B3;Ye#dux`iK%;g-NQ?r6m^*wSD^&ni6S?^ zAhvU3;3y7duN{IaL=hY`aJ4Nq2@dcmR>K~j0#4+ zH^GRp!>}?Cjtjwx4F<=ksDE}jq=&>zoCw-BioSb;M$=dw`)2mq#>YaUWn&X0W6`p4 z!WLnhLt-@HV~V&v2p@(EU*Nqw4P~m?nmkvfKXYNne%fL;t~=U%){vejj&JO@mh2Ym z1QlSxP7||<_1SGrveMJp;BS;guQh8KrtJTT*kPlK)G1OBRj|b-v9Rp1(+sO`qgQ^a z+Wqw{IbcbP#_&8xCOBc0i1RRWJ(5(xNpG@qL%`z(u^B>91FB9E9fNF79y-N_#<>nV zViRD>rIWjkEv+g;^!h!6v=Be!fLVn9L5y7On(C>o7O}xxLnTQ|h*!VQwd9%6}3V z*!E2wb8Ftb-G1hRU<!HclHuykZnWy`=v8_XOpKvX8%Nc74 z(-j3_&I8zMoL3+LdqrSy9>4LH({niVpG^LEp5F14<~DhFJ%tW3z}61ZoC+%18;l7y z0ulX^MYBkMHu(;Y1gUMoG=}>IrN0wa^15}eZB4fLaz*K3uU8s+)1$0up~7zlDLBU8 zR;@2gV#SaBY_U~PE-u&>pt}t^>2b(aRsij6K)+IX+I$Gz_h)P{#`4~xggap8-3V-p?2&Mu=}<}cj;M+p=kbqcJTV{cS+ zvj`Vf_h5(m_s<<8By>1^`Ly23c*$sgicb~u^73lCAR<}bS-EwV(T=WjQrdNS0M}Mt zr}qMD(Y~7UxSXB>8AGpj)S-fRvCS*5q9yR5Ji45GErHj{EWs3#8#+Ess z5nd}E-?ka>V5u1-9h+w)5uw62ahTKRXdrf8m^&L|FD@8?oQ>C6p9w+Y|JviZ*hO3! zbFHJykTBRvmpPlG<#H|2F#MAx2OhCFYSzGk<5KW(3x=w-sz{k1W!hkxbnd6AHLQv% zXSrRNDg?W$IE4A~!#M1O^`QBPTvgsKLWaR+0(RibJ0c@t@&xW|rwF{fUnk)|9G{EM zS-6|5m}fYh`r+Pihs{d2?)W!2eR>N`>kqQt_ms=rUc=tgWgh9!!^%3#xSmq6xEVG* zT0UQdrOg>s#i%a~rRSRPs5@=w{107Zdqb}QIylX#pA-4wOo!I0*H?#dmd)2HUy&bz zVCRjDesWA6eKuW$x&UTt$Tshw;g{76D9O`Atzj$EROHkOxreOUk)tc{g$0A^)X634 zJZru%*F>i*Ey>22cWc_BU(u%whuUH8%UGFak8`)81*y_qSb;m(iWP^gi;AKy>2`~O zVbyUN&}fH))HX7wT@lurQp^)$_W9u;R0;N-r*r%P+b^39fDNLuZgrC_Bk8bwSbIMc zE!bxK)I*KKg1K$QV^k=&1#5yeEH`ZTCA}*K<`0LmO0OqiYu!+ZuA862TP?kuHDO=# zb7x=$D#l@r)rigC&Fn7Fp8%7oQSa;3)>TAGZ5q z`cHPx^-$LIg){7>n*agj3e+&X++xAxI-)EFk?){MW{tB@B`?4{zQf8R$9}-c>58~( zFQ4+;iZYw`^K{Jz{81u20`zWKFPCqAKTSr)d}m+W7CUG&u=RnBXHq4$7pcKN3- zml{8q8cD-T3$EeYAFgk67|KN#e&VaWfLHhkR+jMC^G&;XdUzM|0cTSe^gFU6gnd+Z zkLW5*sBv4X-Y53ELo7miz=7e`ir82cShwbbfdlJG?-^h_zb;qK_KO>jf6Fa~Wcrfv z-q&e8Z|BxSe4#5=45(rQ_EVeiIAuo%EBex;?ap*$ zc=6&)RpQ*@_OyNyUEw0kM`1e9H0j5IEP8a`FQ>PxqzrP z7o8fFhSQh>3=lk;gM2fOiRl^8C3ro^fyri+5hNqjurv{W5d)t;EoSO0$g{#2hWT%) zkgG0Hwv!8}OaquCV6lfZ8@#^3eoI-6a)gt)Y6CFF+IZZYvk~h!FO-)l z@GMXRVr|-?TE@mHzdB{HTv|#)Cv1~4&k3r$>rqVyEblp+R+=XJvU1ev&8!`#)Nu$A zy^SLpP%MwXe;HZkSG*j)?JWjfQj{kji(u7QG8i?EWwwRuPCEgdr93D+F%q69W@ht` zJaU_)WG#lqK-S4`>sFnoY~=N-!EXJE5iy6Hkf_=d>6(NXwe? zo70VwHD34~OTeS*lXK@I2e%G9A23*MTGTxdt3O7{6bY;gcSgStiZoCO*!q<#hJ4q5 zsC73|kK)DM)WkqD{%40|!GTlQ9;;fHM(Qu>dB3%0-~N635@>=R7Zx!-oyXyI;vJ7E zk%M>$)dj;_eZ8m!9wlg2y>#i)Uz2))8wMG~TMT<%2muxSDh(@}96)pk5?fnPXlPVd z>n+%b2r63gV_47U!s+63e>ipJ_`0lIpa8f}71ao*#iib;^i@SE$8=K+Y`qvDh~)3b z^mY!?@0O|dTvL8cn>KYSfG1F7r{{gyty^o0#6nus>_6?`FcGbnNFOsgKS=#w+sVXN zs5-i?!ksTv6gEQM*u-#cdUNaX2SZ%ThqW}r;iv}bES{uwIH<4}$7kf{@W86+yfswD zQ2q7mqt)~z*!4vhFZ;_{s+&Ak(DW{0ypX#fk39DMrRd;|8<=ae3*zN52ujF1kJZQl zL!X9bnPq7?jsD&Dm!CX&>LmUDo&Or~!9T;aZJSZcFEqRY{2lVn8fAeFsM;Fi8;xct zT6@$UM2I!#oInHtJ7NI<3h4ocAslGeqznvX*@F}ra*$3Mj^-dZ@C5) zhma`A?xtbZCt<a(V@ecL^*tsd}W8BlKtwVKW+9((1mlrJmZ}8dXi|d39g3+ z*Udy27UU3$wG#ZCr+9j%U1>6jNv=3fQY6=qeIn!e@#UR*&y{V=1m*MXJ^mJbt`C>} zfafy0C`FV^l07ZPg3SOZv}LVsuU|-)`(#^W5weW#K=6S=-W3(|>?h=RI$~Boo+zwC z$i!jmuu%Hu)jmv!9AA5qR1u+=@%|D+w&0eaQNG?gy8D7}uWR~HPh<${-EU|R&$C)Gp@@eZ< z5WD?6R8e^0m)R;I)ENrQsi$B(A&#A#4#EAS*uKM#kT0GXhHHDE|X`{T_5gkHtb&;d_wbOCm>G@rOaB-L5SW|}TiW^$3y0RS+i)ILsM zBIzMm4I0FxyFgk83VLWS!8a>FXUZ1n_Lsj%%^|+X8a2RFxnADV5MP~4(1U5uH^Vtk^Rb-;uG$#E)_r3j zpi%U(tdfOo!t@NM-`dS&gALY+Ooh{SFW5%6ihK)?1jaU|O_j7HsEd2yGj7%}n~_-P zN8S#5trmN4#5VCkEO?$=9{+7DPB=k3aHJaV9ivm{^7b}zxSzwugn&O8A@xx+xhkEm zxuQOzUo1Pfl#I1wGu~<9xLU1ff-~04^64{U@JrchdL*i7!mff6%k&;_j?WbOCsVu5 z`8Xzj6Yl7U9nS%~k^{Cg2h2qrdl`gjp(G8+9el@wLwZ`y_|7^e5Tx z*rx@dwd83@C+q}?c6uGq31bl6s(sQGZDnel6V4_|*%&g#Nv}F4b)2x0;Sr8maMF1u z_?28guzdL2?yrKhhg2mJ~%BYbE<#{6q>M zT0gntwK#l1s(hpI>r6U;S}_Yn#Tdf;v=vXJ+SfCNJ+KYI@JSlAI;k?R*f{++@Onc7 z0{1{Y(;M+v+iZ&Uf-}2cDX}O`w7z}fkAdxd7n4Edr($`V$QZJ@*-~}izsqs~MN|8W z8DW3q<0GRqgv7A)t=0yvd*25h0J{iX>X@0oFm$G>!r+rXqqqSn6`_M<0V=7>XaHP5P4gH+1{kO( z4}<~?E+ZgFjbX(Cjnu(7n5c#f20(!h7#%2+AWhGHm=Z$rSEsAWA+oVN2#vY`IYaBjZSbvz6PmYzk{=OBh55_`F zlUx;TPB6)P5oc|ImhoVG#iCaWXR>~*`*@uV_6T@B4N~wh8*Eh`-$B&isAPkkh8Xuj zTJ125vpS+>IL4;i^z&sK!0-;XJA_1wBo+6xM5i(8W@5`CXk9h{-=+P{wk`?JwdGSL z!G2Cybz-igZdl#3x;%XO4ZAU$qFZ|2O-m(u^5{^8z$|( zo&2e)6>*o<`;gdjj8{E;n`G;wZUon)Se;{pNQ;ll>?R@boVj&B3dW66UkG&^VM7vi zsNF-d1PEOrn_=mZ*EQIxdshhQ&VzZf3G^v>Y#=23eY8n=mB)IKD2r7LQMj+~;0+X{c+wyw9!NA}R*iXA&+i`Go&yPHWwvdzv z2r-fFH%=~!Hs42-r@040h!6y9!>zj8LxcdSr^xq_fMrAl7PCOWXbb}klb_Evvt4m; zyyCx-3trS;!P4w%N>|Q>Q!}&QBu;~p)t};&6+fQ&gJQcS><+mI^;{A981)+?V#Sj0 zs_z3r@5=G{>qBjMJ7<;`)sR1Ci~>JCz{#~OSRrWl&wGe*;z$WXc@t*m?G%nl>Q^@R z{+kS#GKvou1f}wCNt)eY`|fbH-Q155KOU_Y3P$_eDyJWgE6ZVhUhf{= zfH6OzIu32eiR+{v#-Ag%@9%8U8Qj&6T%|n^-#w9w1eiXNac}tLMKf&=_YH&(@tsSN zwpfK*YQy6_E+T`>_hH}f&qRgD{T&AW%oF7%9DCvlw99|VezZwuyZArfHQ=X*+aBo+ z+waCsXj1aM@Qmh`!kd8ivss{Z6L(s$5bfiE!VXw5&9W{K?ueD%lhNOzcR#sWo;)Sm z-AOuRfzT%`a~SUvzc@@##qJJ(cTI9X%%+EB|2dR@5mXWHwdxv8=qs|gDj27ZE%b$W zw6-Qy1+RebQ|^%cHlN%om{mnzV7VUwbPHTg9pI19d)Qi(2>pz4_MJNk_S?Qf9~X7k zEy)CiM|;@r0pI9qhdmFxLiIM|lYd~VY3@Eb;0l{3uPB%0f+(O(M23q47QK1YsA85L zk;^@-fdJ82i3BN&}m3Y{PN#h%61zS zA4eZ~n4G?BnWe7_zHA3#U=$jhu<~Dz#jn% ze#7L4TYL7@%%oyHpHAf@{ps=9N@hgFozWY1#Y*>KY&HeeiR5rO%;~`a7u!Hw$Aa4k z7@Stxeda@&zvDA!I+m-X@;CIl*WQQ)1DQ+X$B=o4C(ZAHqAV6IRzndsUfi!+HwIHB zre@)*4q9(v9KqTFk_z?CRFn}mY{uHB-1k#4?V@_<@9S5Te)RhC<-fw#O0U>TMJbMu z-_->AgzgfbZCLPM0yR~iYiH{6jmnC z$TbI8-zcM8hTgr*wJldF=fm+bqg+<<3l{0-17^AO5VqcYFF`v&+M`ItUshrzp_3jP zTo)@!`o6_)jSjp5hiT!2$sB~dr)xWh(#LxxuSKQW&ZlgAc6~o6p%?CdrUXv^;vCMY zV8;ric7kH<($PYKH9SsO;aeDg;}BsvxVcrGv6~JM3Q&~kP8jSo=$Jov!JPD}0wz@P zT=>JVvcuAkpyA)R)GePlaf1ZCCWc2Me$4?3#pjJTP*OvWTtCSy!ylUN_yt3up@x`+ z7@GrT5q`!P{$k&Xkh@vRAi>Xj#wow^UV+}AToe4fCnwAwTTi{xb^R6GQm5tXe}M`0 zEw2lD>v=y<`(u|QR`|ZN9=i4)z>Yho1r5p}zMQa0`XDEtYmL5kC%+B%xnT9U5!|bS zeNI21YZYQ_`_kJ&UtZ`_5@u6u&Hf^ILBVR1$X3bhfz3gE58^GG0W`+u0#LlvN$_A!F~8-O#z)us4P*TCs$n6&C=w zcbROI!gPxPKDfnYr&!Nod^3y?ysoPo%vf9^>A^JHLWO9X>U}~S>{^6+67s1uRXTGSb8FJZnVmawBJ42(x?ao7VcA8lcJoPfMPQ{t`yl zP=noI?Ph7p_)3tXbhPL}>%x_O&>O7!AQ|&Js3=!j0T=XTYzD-|Y%B+CH7K-?uQD&9}^Z zlZL%#jSzX2g*cVO;f{8gjm`@ea$oI=scTyfZr=q%HF-0y4e0hcA=y8iCpP!NXB#0w z{m@LCvuWHH60-Xxgf7@%P?0TxF9dua-n7KGh3qZ>%wFUXy$G&I;!(=;Sxm+WeCp{* zX862RVN5t7LoC=wB>G8u8vP8Y-yU8d_jzF78nc)@v_uE9+((V-?1?7JbC*ngubV^~ zt}(IR#Bnhq8c!0O8q5W5J5PRvARRwOdEEHkd~Qxn6J`rH*@&(`+m?t*ZPxBbPT;ZGlN2RXTC%~NiUpH0$x8Y zJqPvKZE~QJ!PAK<8Tzcs+wbT+4g61r*{9`oh9%g8aDLFQcU)<-)791$TAjlI zAC=?n)+edq{3xzns$hOb3r~Rr6*Xh?I6hGGctE+hNDOUcXwLm$`i^faeemtK!M7pr zB&?|p(CZxF&>~?!dyQI%iR8IxU~4*=ajWY2CaZd@Uh_~HFMiDu@cFDAcnViUB}dEa zy-NIr6EKH1p=q73ha_GL zHP{AIM?{|K%ila1tMfo~9^2)3{`}ta=hHJqQ#$9;@&Vp>V@ZDE`dQ0YNERD^_(_+^8~3i&;q)Vg5jT4Q0Ik! zi=1J#6UD;5YQxoq2o;@5t#U$Q_YLh`QBXn%+TpRoE0icvMB-EL931-p*n123ERJt~ zcnJ{#1PH-3Xt5NEJ3(70UZAvSu~M`YYti6NkrppS+h7HX7fNuqAOQkFLK5P{Lz0uwj|!1KZ&!r9v3V;^Nf0rp!!WQ-c$9ud z;@I;n)FW)cVy=%6XQl0Tl;7a>9_}k*d@dh;vo0cHVNWw6MDsrQAJ;&RA)8Yk%&u$2 z@5gL!kb7p8Rkjg`{(Nbf#JqSh8i42DclVlWJ`fDHH^3TePD5Y?NunROX@PdQlxBT=>jSe$`o`E|?_ zi)n}NQ%urVY7=Q*w%}Q^o2M8;2Z^sC#Ca>fwyH~+rJr@-7&sqy;^Hv|-h>(X-uwT9 z8t~e4{*->1GcVA9nxTobP?ZClM;kYv@52-I!2>S}$BV`widM)-127I^uPcJR; zGcYP%@2<0VOl#&L9k5ueN`m*@L0+FH<4QVv!!zyVjMeboZ>WI=4o9fnJT??g?uHt8b#F<4 zLceox+Cde)Kx1^2w8DC@_#8V`R^t=WDk%Yjk*4^8T2lHB;+3QxBHY8Vv&T+)#MlC3 zbO-!}ZpkbMGCh>@&>|S>xBv-R=0%RGfx~J%C`a=h#Z2kRSST&KsSGkkvtxtF)nZkn zlJuQTHff|g-;hm*_0Pcavc&qAmGk+3LVj~=6GjJ%}=`Wnx##(M96yueezdR_qWV2VnZJ!>mRr8I*jEDMDgRnDa(*gvHf5^A|DB@5q_# zjJCs^m-7eUwT6SDbFxgBd;G@~DtRU;#blzjM*6c8vlpLmjQGGJPO3tRI@B*$_EU}} zGzOzRp9$6LhKC_FD1e?DTW9x*sFUAg)6%q4eY8H&cL(6sA1zXl!P(OhmofE z^F|V?VzYED3I5a)0AfqB$PW5nruz(D(Sd36%;`G+1ua3CpXKbk9RcIseAkcCDvT+#9AB-LdsZi^kd*hq2d~`b7uVNO$3B zRr(ZB2{(Amd3GvJieFWTz7Gwuc&s9;5sdHnf9Ad#r#DrjpiekPs5)3#?arM?YP@h_{mva#_@G8j+TL=^^+22u5u#$b z*Ro5b!;frYx~$rtR%P9f0+*>Uarso67ebBU{nN4r%1jM*koa%SSf%H$C&@oZyh-g7 zi1CD~A5Et4C_(Z@CdMt{Jh0c-_wY*|TLjQ^rg8<_F{wUAus4Mi1*Yc%%xyKh4^T~& zc@>A1gP}>k!VIcNGQ#%#M8QoMqc!HSzru*R=2B<^|j?mtudg1t{0h@rawnwEr z+*7^65-Zz=zWK&_QRH&B-ND8wk1OzU{$^y>CW z9%AKVg30hph%N@S#jxDC!gAVQD**>i)`~BRz6IeAqSxE%3Se)j@g*^qwnDW12Kc3f zJgaDAHu!gIcHq0NI>S#Byi>_Td5}LBmfnK6pQE3;m-GWjmyk_{1~k_l62z83Tz{qz zjH+~fN`9gYm*xU}cfZ}qWV$>=f*h$>!${%?t0YNa0Z*G^O#euGmE9awK$baNKbRH_Te%^bPH z37SorOI7m+%QJ4O9GuQr{{vi#Ar;QM@;5khk>szBLZJ-Qy*~Qz27M;M#94D5Pbf)o zS-bcjvf>jJ*)h0`CZc$94~rt_0>*oq4FZXrZ)5o522iTPr_Pco`Ao%Io!qdF1p93; zE^Ef{meB=oSYkQ$U{}d=^Mwn~@ukXwU^xsJbtAIyN&%~)V$wz&z+)wYG;FAd)yH_6 z@=a$CdCn(TAHVLb#`HLyZw>okKNXT53!~ms_-hqwpMv+Qe)cqA6EQw-#HziBqTdg5 z(8q8i>Gn8Q>BXFL61r7jf}LIF-$w;E8+S|HkOU?DRlbyPHoKFri)ug^FPsShnyC%IyhDB6#9zT&-j6w zfCYB=4Vd=%oD|}8JsbvFBIZhj3z!#<@|K~|uPmCe+cdNWPQL#`2kxj z^?Ays$KtjVz%nD`rXEias?%u$`|aRQ@E`$#Na>znaGSkp5`rsBkuBxexK4oH2VK49 ztadz~WAVA<>~NkolNfLJ7OSb$ez}z&DD)&#-i-vKv=0p!G>>?0@u53Dp|laO^;^fhA&m|$YB={(!#%gTPC$gk zRYMNq@Q4) zwU#e4=9n7P-Sz;f;hWKzp+pNpEd__lEA8S(7Y%88ANo58M z7_b$P2wy!$wjPra5fKk`;5t~_ASFpq2E~!2vBJ;FF}~e_HiGKVP})2(9qLN+|N14Oq;g_?s+3tBX)?v6_f}QlxYwjAsqe&0|gch5@joR9VXu*zY?Yk zJxnoRfv*6}&H!&HKpS#c2mxsvXfw1A*_!2TpbED$8;cY`cP$9hTN!5vfJSb`Pi2_1 z!2)~%^)-Xcwma--u)=&9KVW7th4Kc>?+sYM8!&+UY|?`$&DA2`=}c1-#e9JVR0@e= z0TfZ3kQhk$QTy}M2{8iIPrk_;Fd<4sf{DQ&Ut_E)7U1hkaXwZC1~C2r5i>^e-fvL@ z9!2UcN}-q6n4IStm^?tAdsb7os4PB1ZnN1a{AsPyl;==tA(`y?@WU7pTksNkZ+xkJ z4rxIaiR5OgZJ;sxWgOMGegwMM`COF6u13m)QgABfHV1)iJvo|>&cnFLTfiXbIrY{p z7`Z5Obq>!(59`qkE#Sy3u!y$1$+3i7F=I{QaO}D&6+!W2#-wVkX;mG=xVr_&NPvy| zCm3A$$*tE&Qj0AOk!zc+j=ypnC^kCFj)SoQ#7TovWmrsAuv9DxPe#Fd22-64X>cbTsZ)dziNo@xW? ze*C_>T~wO#bb;3O_0u25f<2ns;^@4Xd~^<8rsN-l0e|s8LN+&V z{@V*eMhY={!F=~&5isc$NRq1ySP8Hg^AMV{)`aXV&0{Wfed`+-C$AwU?dTY=wARc; za_*m!wN6y)ua(yZy(7skK0*i;shfw=U}%GRy?q4V_HdcaiIz4Cku)6Kwd~p5LPIwQqpE zpoa)OWE;(l3?74{(_c0(n7h{j(|wF}gAv-ocxU5htew>a>!xA!H6u|UH@5jS7^i>5 z7z-`JgM9CSaicG^=%@#XiO35&nChVh^btCniZ< zm?@-NGsXx8=4H10!)Ojx;AD$WjB$9!3AX1A(Vs$DGYmn_i;+>6%RygYG>s$Zfr_yX z%vF~TNnoG$Z@%0b==3|{w6_`noIOS*E;N2YgAC{+4p%) z-wLaSP^u`Ks|;MpO?{bY`#5Sxi~bK4L7#9oUCWApo=Lkyb){p1n<<-E{TxdeE;t_TPh z#aka}a5>y=peYSPsGeN~ya96!M7Em+79zCACd%fqD8}$^a$G40b>Ikkpa4dvEQcb% zG8&`rbxzJ#_A!2HqxP5jV8>LBSr1gch9d0L290|;O_N*zitWoWYk>l% z5#l>H4U+0ZqtiwYa=yt3rOI6=M`nTT2u(LrWl9^g;+_5$Bq>MVIj}%ub&Y^Wzq`=% zfHQT2`T7OQh#C9h26O^x*C%#+V#0bQgM#H|Q%S0mV8UQc8c(2yG++UGXLkPA>g?~& zhCVf6HTpvy(n3_s=94H0rP!b`@}6z5S;cC+4;H?M5t3?3&8_+JIdha@S$cSfkGiSy*uA16}>>glPQFd3v;S}gZH3#||&VhNp^sunMzu5(*r^U~x z#jgWD1?IZ1Z1=9^{uV6iv0saelm+PC1FL2&SIwF=;jIZQU=}HVj^*=~@pVzTx+q2H zr4kHJ*gO)`^9b1a5=#y|6@UDxl9YdnNq4V{_r%z)Ymt0n@kQ;W0}+?LA83Lg_mdU? zPyLIr=ajJb8jJ@Su^x0|Q^bylg~g=Pa1$Ii)w%^~30hDT&VlVb*cwXqwng(#>gb zr4*f!AnxQ2jbT_6P%kZ5uprWeeV6RO>3xBxViZQ*xa53d5l$IENo^4Ng@fn~Rf_Tm ze7u-+6y27!G8GfhZC*^Ou|UybtwyN3fT_Xkpw_V)Y55?y!%Jlpo^Y+1pFmQBRWUki z{J>N?efsm4eHo!z$&O%eBf;SR4&mO0pwa8~7zvx|brh;HLJ#r2ijk--Px*I-3Qu@- zVw>Xx*Zi=OIMvt@23lCt?hsc%_Ma`JBmRV?{gjE#m{hob9$zTn$`h3}K3sL7Ia#uD33 z4nRK|XSX+)PmTsDyK?!S{HbrJE$G+ETbD^QjzR!et>_*88XgY;WayfP* zG>Jl;;0}*q>e1a4xTcV`oNJ&9S*+8k?;?tm$K!AzBO1eFNhp8~lRisC=(#X`UA&vGdZO^p1a8Fgrqd9!zekg;Hc*1s`SN~&Beky!;XdiK&%jL+8X5iF;*^F z9$>or_X~{SQX%TT5HU}fYPMhyV4G!+`gbVC(G{$*3WS7fY=j?T-)3jo82UjRfAMpr zbbQcRk*kk08mm#z=O}%$+~y{ZGC~qWsVeDy!I%@%u_6bv@N!-O1#;A)n9HZvFcKhX z8p3$%`t=v!`&-5(Mgt&79f|5Ls3rjOWX5K$&#+b_n4)?I3F8v~uq$=#y*Q($4cGuq zMGm#WVDfvvgf&*4;4nXHDEk)CxR;|QCz-ML9Pq`I|O%}W?BwT7e(iTL?o zYpg*c*kJhF9$Qw{7F%hndbbvN`>3vNV-CR1Q9pCZa@Kq)H#8?j%*E?GMdFe$7BH8h zu(uAUhE4XUn<`)~u)_?eKA{?&AFyy}xjsOl8)-6SqHwIz(nc9yzz;`^R^k#Lp9%^e1707#7je3xz=bwqyogR|I9Iz%mmSwf&w?{O z!Z%%W&>eaLhq|Xivs??*SP4&L><2D3sUGOzPJP@1bZ6k!@EFwOfx=VeGj%w%3%DWeA78th_4%5CXl_0h3+|_zI1a)kqs1HX}(I zS0p;erYC&7atM|jeXQt|b`ZTNX@d>p6+$i}qO@_mdz2&0+aOjQp*w>-%T})rTCLwu z#&`oHm8EyL(+k`mj2@hTE*c@Qx38+|p#1*AOYb%wYGlEJzoE{?vG0NxeIKGVQ1kV6 z+ltsqHd$cJ>2Sg`jF{#RK+b#$f4(OVEMBGl_%R%ENF`sIqpXlY21-t|NUC|nQF1kj zFGKI6HIMlU!r4z4x6dMpADE(?NnTCPCKZk#r%ccsOrF%rCjAOGHGWx*M+d#4>X*M( z!1)IfA`in9hU`6(D8yX+QNHB42ub<5Wu;26srDD~Q^;|20n7TBWoolw?ZrUE_~m2xqcw_3W%f_U0pB-o?%f#HpoN~S*drX; zk+SuO5*O>7@8hga6v`8V9|$>t4Xn4TP^^)8GiNKsgpF$iPR~hs46br-`K8^A6FV5l zMsJa)_`a0}0(jilW}>Yc&fJt>-EyR01 zf@9S}m8c9(zvGl@+0+pKYzQM{o}z~U8>ol=&A#%ZP7ufKt`24omvXSk5X^QY8{vFGIQDbU(740$HC?JUIJ&CJDip@Geu6H{ zJqD-K>2Q-w9Bmqhz*GdfhHek>OY=yp=yM$U!Jaf6Wu+6C#>(bzwE&SH7JV`PUHlv% z3vN?jstWop)8s*_=YJLe7=A_?N+o+sMFSGkwxAUT+bdGxVna_W>?nRlYu*QTk(=T? ziqi%FaVnf6GGXOoF}l$2PuRO{u`=K4Ib;UZhCjNPZeUM-d^ zd4Sh;%4c4(YQr|n!ua+6vx!3FuyGZJyXXA<{hx`mi;A#ec6y0?bbwVY48>P8O7_5x zxoY?V=B*8mLeYwbt3lUjWUyiZ0_V|lS*#*WcLSHzl_-;asuiCDc14X{ezwmf_yOF2 zPB-e_prb;gn;Hgj(fBZ0YNRuN>6!li8|qI&II4mPlL>PX?r#Hq52{rg$PMnX=c>fO z2b&9n3_;Ed`Lr09GL~lC=3Gun8Y65XHlmmK*^d#DKE?ZO`Xi3*Ee^PTp6(FaSLa;W zX^G3xtw_QIqU`U~CQH82VDlZHRdxJw^|%JZjh&Akh0#_mt_ELa-%uiTS5vXD9@jMu zU+BL1>C;P{s=eY2yGl}x6m1QBDL%_J_4)T;{GFUesSM!|@o1bjLt!3^Njoklqjbxz z_wY`BGTMBKx++#H?Rk4nOb@`RpGkU%_w~n#AMz9}R5lK`)dGU&CmdwC#13q&P^OJK zTyoujV}yvb;8?A4G?M07M6UD2)(}Zr^q{*T^ncr1eA=qRjt%NBX3T4WzU&>e*y!j! zJq_MLcz0)+s^G(`fb8xK3c=5eaWVgW*j-sUTh5a>xv~ixzkc-)Nt(z^2bn+#+TuQG zXcqgNOsL1#h&L;#a%3z0Z3yJ%hAET4&=~;g=BdnvCk%Q{e^P53j<l=e(89L4Alz7vE^j1{5M}RKFPA5qj4zCm}!KldGGZ=$kF%!7((MAirpJp zzz-1f&g zA9s`khQF@cqN3lwfUmo)WDyaCI&{=MapKv}n6$PY`4&Fb{{h0!eeq_p35wpO4X{ zb18o&lr!v5B8mL%(+E(J&P)s9e9;aVms|IzZTF=fd!bu!nYk^NzO+BJXqEWYP1H~8POORL!+d_ACsGtmO87}eM_uS z%vH$4JxeT_O{A@{6bv&T&u5l$DKPWN9e}fZO&O7-5PY`b&(?D)sWLm|x6Nj4#UiqI zkCeS(ghfk}`zODOEk_*z#iO|u>WNSc0C0xKw2qex&KJWOX>h`f6Y6yYLKAED1Xb)# zVPyiK*NECC2tVLp}o`em+8f`{C>}ZsxFU&ugAFD`}}9b;nUc3)v_B%{DRdxIE-_stxul zLSmbva(2l=NS;`!6#WTRjmqdj&UXQ!&EnKuWmtu5HOVT=|N1lkOk%4UfUR(L*mQ*F z^D0g?=OwnFB%2l0q7N)?!&KyccHl==3M)93yf+Kq^H!tho=!08xx!KO0JP(e#hnfc zIxP!7w)y=g5^^7;+{;$=CxiJBvCj*fR!S<>avSRi{PdK-_nhwB{`5Y<`0~0)9BS+w zhhgmRG%5?DbtPS->PhNWb0&TpCw3VDR=zvXP=PojRwo62J2C?gV|7ws1wLq)3bcex zgU?@&VWTY9<~Z5dCjoXFC$ZS`gU+it^C^D-gM$_wJO1(a30UM@z>U%>vd#!_*bIL5 zTcgx_|9@EnKm1HtdOFsbISYiandmNj&V*&Z!R{;Xn28seu<c1sTdsok8U7fm7n9RkKM8_0giqGRP_Z6UfAga93*@(P7i@UVALp> zQ;V%(;S&JKE`5NM$0%4~tBQcKQu^|+v3Pv}dbR_$ol*x%w8@6dG!4QjwWOX5O5VP` zKi7`B=glKI?V?z6QG<-;?Zw2lYhj~jC&R`XNz~uJReq^v3dNE>6tNbmFN$wxVivQ% zmdaM!X-=XTgj@amb0WU^VNMI^T_HJ*o@F;FbA}CZRjjHFMjGrkHQc)5DvBx#pCri~LYDz#1F zjw8ee8!A?TuW_kBp7&!7KQZV_S0I=dQjr{?S(dKT*q`wzgGmn$nacq#8b zK=+0EsJN2uC6^04Pu=@4;vU*M!#Wl-*D5w%F{Lx(_tKl^4 zpRC>#X$S7;+#3e0p;S*kI2|W7)}w`8BY#peWEB~yMYOSeeXmCc`RiuLYSyo+%Sj%E z?CQ_J^l$R!=zgq*YWxFnW47J+YEa<&bZtqa& z44(iIe^90 zp>i(I&~4#Eb3Z6sSQv#J!QC38{rJ(^(jRh{2wxXn(X2C%ys=Oq@0e?1u z=kZHP^?+cF1x8Tbjwq@WFGE9t>7WwKa{wJTL(*oH`uO{K2#vPD-Ud>>nSmr?=FI2h z%-xwY^V9ZDcc6ndxb8XtK6+3gGln|4^ZA^s5iA^b`x}{i5MY+SK8#-CFg{_SesZt) z@#a{JAGa{Z$o#c_|4Yt}#ZUOVjKD%}Ws}_R_s@g74;)YVAq;T(Fl}3*R_8FDPgST^ zu5~KLR-XjposOAC!Aeeo(wDOYfOwUQ)1|NO@|A%Qk?#t?n%P7ZBllG$t$*ba?V{8aZd0^1%tWPb8Po ziTIKUk}4ApRNPvl{$-#n5D!~cEOaKt*z@6N*npA!Ekg9Hi&1p%}loXPDH5@;& zsI8(2_(&D05+)y*Q=5q|<&Y@W%Z%-1hkXE>XT~~_Kbyb~`C!LlFiG^D&IcD2E}U7_$>Go-7$uZ{+}$CnN=JkE32=7x{eEQ z;NOM8gd#PGPMwZezc6qD2Or_aCu&kswyg-=wU(mG@5t)yq{1(4ZB=HUpM?(D#903g z=Dio#oA=H+>!8J^0<8@1gy$1bZIhV67G{Ai=ubg%P5M0P~*sSfR`Mk^UU-pqmGFer!4c?-$VG zm9wmqf_I@+!=^oSl(*mwrcgg%A?JOEE?gjNfqCBq`rmLpj|E24T9@;X71j;n^OvfG zARNNasH?+q7{`;TOe5sL+Nu}LR5maiiI{aoxX1{<{MeY$Y(E3Gm%h?~?X6{mBnkRG z)Rd9{<2Oa+gI7@Ac1Y9JR_&O01(51bYq$!SU-n}p^-rAugboydkn1LlLQAV;_N3Y> zTK82pL7mO!AgbjG7&#JpF(~6i9-?`p4(jFhL{SZPPR8QypXJk{QIz&$AS<5`<@?}& zQUm#Ki$*OpsX`YqvKSCop1#hb^hSgyna3jCpCe3vNz=WEuq^$Q{kjNE(c)J;`C$<( zc}o7`V8cv=Xbz~A1mE4!dqD$1WsZ1;#|^ALqmNcU1L8=%UbJYI2}1wtIV9fo@FW6FevFZ=|V_jzUTb z>}n8(o?BGE_^c9o(xys8&VNC88n&xddco2$yApIwL&I#aLUAb62FiaCp|5SQCKz9| zn2s{;BPi9fGXih`Mmua`%y%5WwAqg0ejLRPuof%77UMJ4kW}&&ddPJsI-fHb`&y_6 zIbT(Tj@Z31upYyAD7s`*2Tru^pTXEaMlW?v-gnjhUb(8TY^y}d6>L`}eDrU1=z|xw zmaA4kE3?6}@II^H{MCBUjF??jwk7V_C^I7E3YQ1U_sp2_tvJm`h z7YnT1UKlYX?Q8^Cyf}lO1rW8+3Ru=gA=2@%IrMv9hKcEUKPF^9WrvH-gLtuWkiA_@ zGX`<;^->PT=5h|Y!-7X=POdM;v7b^(Ihc0!<8=_1U@@OU-VpUA{)6e9j$hT5$~8F- zBm3A6lu36Z;Gjk2rf`BC=KZ2}0x;Pn4Wz?9&iOF?5sDgawe4U8jPxQ+N2Yz?!p#SiQ;J?mAC9QUmbpVfi=pWjRKa7G>|MH3f(T|A5^d zU2|C>QsYegmn8ti?r$(_upNh)z7#c{AMxL+_Z@zAKz;2>pD#GZJoi$VtB1efR3bpm ztxVzEj*|95lwUmB?!-tRrIU|%tWyY4&SDQvKPOBAVV~;fjJtMpxG;q=le6+CxdMTgX%RA`DuU;?V>RtwOQ9@#Il%>8nB1&s=fX z)2ry=7Lkkw?oEbkW&ij-#OObcxhRr#KZL+MUU5$V(%s{uM@LmqA*t64<~}V|Y7EKv z*rwgdw}mVzs)_KPT7(!f&tsR!T)Ve^6p3`^nf1_F%j;Kk{Jqbn1}YC}GGxfrt5+up zc)>MMaB&d)bKsOMJXZNB2E7MHt5^4`DgKT@AhC1^uOm{VCxe95>KMRlaC9j?4JA~0 z$dM@2%ld_=47uA~OVAxDa$V&dUY%r-6Dr64MO(M}i^FxVS35FTIjl=TQ zE(UZAR?=x|UiUnW@My|f5M~Np3^Fp!foIpMJQ?yjOMu|0(mkmEWVngUeFw#jIVm~n;=v&H zkWWSpL2ZCjL)>#DPM`G*2XZtuFaj1RK~u(0V`LESTOUiYVJffTS%Z?-qEIWjQV-GH zrsq(Mf&K0Dem-?cvZ#?%N;(D;k|2z16zIDwItCbORV5|Zo(2;2p&2Z3gG6tbUyl&h zwi)r#mm=ZTU%39kjCBf!l&+PQmWL4X#3%!PdMxG)%zY-pox!R4ID~SwxK1LMvroC| zHIl_mW}1M3Ze@rM=_MND>;}t|o0JAX#Nd{cn_dbtjH`@tg%*&w&5Br#X3t5mAx^OC zJzov_5t3ybnZj`%Z78&pkX0%leL^NbP{Jjj5C>P+5Dz;Kn6E&A83ct?HOkQ=Lid*~ zTSlubZK)BFq_L?$WDY-5BiA_U?U$hq12xjW+LIR!Kiatb0mN>alx;L2eQd-&w>O&J z{2_U2(SAZi*~*2I6`s~HdJEB!=hEX>s{vo`iNkur47MMt~X4>@cJ)_A*xba{{ zpU*UI)#LUO<^t=e`FecETO}&bwenlR{t9EC^0HO?{X=ThNGAfujs@<>nH^$D6)@)~ z5ZUjnwu+@YcsW;q;MzxUMQ@R?YDymDhf5+MFX?Hm^I0UTEeFBE3LNZ{-T6-hNRmn{ zy7lnXeg9q+t$!jD|9irJSp)Stb+Y6sRO#1f*q3Lq+9s8L1fy$kR-a{)4C44(ih+w9 zEZoqI-?>&xwv?mXdBQPB3l)#@fFsM=BqbX27@RRuyZ+LN`#CJnU*wcZSV-2Z zUU)h;gx%%pn}`b# zG!L5ed(VHr23*U|Tn2*>GJ`g1yld1>Ru5Y2@0su#e)kI5hgw%GgLlavp(nl=3CD)X2;upZDmRf_g36^1XHYg>l>a2Bftm3hL&5vsRe3}2sPGjT>e2Ihd{ zh*%qsQPO@OJgV#C(`P-@3qHs`DK(xSfx;YZx30p6XmIXRfBf+f1p)ig@a-8`-U)A2 z$3nYbC_5atX>3yoRWN>_y#YK=cGyO-gC}Vr5VPB;+9njvIBJZX=Zh@(k+?a44v&H# z@QKau2Uv0oot5)F$GQms4v-|cNjjspKvRRTb!fBd7oHy{*lv=@b00QF3hZjIExd!X z)qwDX#kD8=yhvlHnWR~o)o7{*mRBrHW63Bz1)N7^6rP9iz4sjtt&@B$NW4%tO0Zpf zI6^Q+#Bwiq0uI4hxh1qaFgW)vu&7O4(rx3+k#abL!E`X`w|jT%8U_K`OYN~d>hENt z1EIny`1Gs*$!Qo^e|gs35`&Ww7*F@~^t3qYwTWWXF~t=x{;7<>=25M6));CoJwN5^ zf#bh?X@AwS_evhOOfS*=niyuB#e{@PxhM)13vH67)KaZ`pJYPQPN?dp|tkn5A`u zlGM!p1`^2+c46DdHB6&6q%0l1kadAgH#{5+D4QDyIT|noanGhPcR2{#=DE?3p7O^C z$62;5z;f2UgOj@7#WuZ>9{1bs`}WtTHrnq}0f-RmmU$S{v{+#-VEyNQJ?EXIfvMtL zSCh=qxuraTPfR~!sk4Ob8CgV*h+@Syl8B+u$PdJ?Okdy+giu=5ur%|41F&|I)HcHE z7(>xSa#|W3O%_|dqDx51Qk2}u^7Cr~HA1Wv4W)JiblXxY`vrhVXaTWkG(3qygjjwM z>m0Xy!Df{;Mt+kD*kS|TfZbiO$wsbm0?kUWP3vNn`*)C5pv8pQnhM8Iez#6L;G#+r zU*14t-a=zzL3d6ff>sn0`{dHFi{jS$^oHVV zK*-WcrZ0~%+@rrc)9mQ{itnRz$D?yW#BnIE36gTxou60AJv`$nzc<9dm@n8`gT`1k z@>hBp#Ngm35w`3}(l6=LOHiIcjwsWhzIzx6o*;Qnj3sN#U26H+uq6>1tf$5lRKKfN zzX{`4UNq}yRfhM^e^3Ku7lOVAnqRZ?9LUyGQ#+d>uM-I0I&vfp-!Nfa9wW307A+#o zSi2N-+nWkRP-B;z%XI}`XPKy#?6}Dxk_49^v}UB=Om|GTO2fz5!kX7(L~mm>y5lId zAq~?Eoq`M*-A#I{cE52iQ((QrUB~N^bvj2O(b(lcd(*T;W3O zW9AoIX5NI5olc+*Mt@uONMN`2ki+&0uI~`OqOAk+Ihvb*(p&N*Ep!y26Iwv<434}c zR*AszmIS}C)A_(boflSze&DBoqHn~1SPWqEtr-S$_YkX<2KT>UvjF^wH4k9(p2FBi z8jQ^r3MAVyw%k%rdFqbu8MzEZ7&)O8g22*ab}I zCi~L(&a${LO6$!<3McCDZF&2x5N9^fSK(Xoh<&*OM>73@B3lKraa)FR?S(w)ilkhN zLlC+yM<_LfbX7k{wxv=EB*EEL^s$x|dPY>g=H)PU9Mm9o#&m)@Zfussoq46_U{%h1 zhoCHm0VAy|1?v_7{t<@p8?+D1(bX0BAE3rTpY%*CbyOas0|qJB0yYMUr(o+omTN$l z%{O8M9HfO)MtXhd;CtVHPy>VG!g7mjjXE@@q&ku0rLcTf`%pT0{WNIoSeRXO;l=U{ zVgq{lPd^UJa|EcJd+s?%LH?qx?0-`ljODY>f(_jKoTM*>9@5FSKgr;S8?g6?1U8}_ zL+==}mP<@>drp$3Q<7@}*(Pdg_s(PE_}qI)l4-E7MAMIuk$j9=DF1DeY}fRzB33qK znCKYTDV9%*g!9yZ$$e8XlM2Ta;&>WJntoZvKvcYyUcx(= z5y{UT6s!O&DdLM}8K8KAjYu0T+eREa@d?fvWg!R`Dh`(hzQ)f?BUUIEehkeGjNwd; z4#f^bfgjmmu$EZwCO)AK?+ocWFJJy+m2Xq=I0NnN^yXUhS0WqYn2YDWKPi>Ondv}r z-A}&zBrVed^BNOHV5iYbGv?a*5{a4TDSez}!szmjk+`o1J6PN>2G*wG4zVR|+qE4Co;h4Z zzfcSu`;E@92sHc`{OsiHlQOoxm_}xv8dL~2K7m|hWge28%0agQE@O5BK0<--oemcE zyB4O7ak+{p)@DaEC?kHR0}syS?7sVntlU826suOaqTB#nz#3EIT8UeGN?RSmjUqmf zPWrBHR6(>5CvYR5X%JsfO_uu5G`!K6jeQvyO_!A`gVRtVmDbz^OwP-Jp^)ZajZQtg z5sq#~J%iy^5n;3sJ3~-(BdNjeG<>cCV&Zg8>*U@Ldet!EK%YriO?c7Z|bwt zqWylA;z9ykY(g(5TuWOuF}?coZF6nYEwL2XtnKPE9gM^@5%LLg_fDLEIR}n4 ztxI`B^UhxE6kkCKf*))P2?>D{Ji%s2rtGo5OS&4tyZGsk7D?r3$Ll^?i1Xy!h83F$ z9GL~c+RjNE{Svj~Z~nsMC?cVJ=EyW`mpx{8t)-pB|5^IN2W0J3tJX=XK01^B{!7hS z@3|Ew)6^x1pG1-0r~%hMzRC&v-h@e~H@wp1)jAkwtiZ9tYd;C%y4DU7YLkH%2 zN?Oi-zrI!*Hf83zkvPp}bmMj!XATgeRD&Pe8y?G(My^@BHM#SblB(atw`pDl_f>F6 z_?-}(YRX5UIge>wK?gWj5RtwF6E-gnY@y?qw1zy`I|WB~8hh~-zP1=PGjdqIARJvg z5W)4KIbAoXCm|G$vNS1(&Cde}$@md{s7}WA%NhJ(-0`#EKN3RR`XOOQk8r@IR(nFjN^8VjX>YwFZf?PO!A$3+h z>d_q~`7(eq@mYefpL{L|13 zd>KjqLw{`M0{nF1d*6Rr13d=+MmCw5U8;X^=@N9U79HqZ7!E6rm-GHM9a=5baabYH zQ&RUL=ox)**dj{7cxFX<`J90DfqC)Xb$Og5xcC{ze9Fm5&0DpiZCvgLAoV#9DWM9m zQ=IPhuyW%8$r>%ri*wB14=x2Tv7_oY<#!qxbt}0EiAS61u+>|2ow>AN{Do8E*n$A~ zqPT@HYNu@M2Q>4{Wf%r%Q)tacg~6Y*6+6@A@3;@NXrZH#-7uISY@<=@1Ack1iW8Qz zeqkJ7dfA5uLh$KIMYB}!vx{?bXmLtj0|yS&S#|n*pQ#2aH&d#RLkfI0ZQ8vj$&ND| z6)xQE-Fs&gRXvikTZeF1ftyT|Ng~cK7q4oPsLcR!dhUcmoCFKFe~(`KcYt|SCx7qXe;01S z?XE|r`rN!=9O7Q{rECaOrEMEv@sw(4;0nt9Rf(bG?;cy^fex8~x3KoGg>1N!N& zz#K?v5tEL=*4KWUUXi3>CP*rO7G^-;+L)ntgW}$P5sY7j!6_?xshMX$=>aarpG z%d}@!Poik7d5^A&mW>xM@7odntXS>F1tZLF9%;j-9KR;B?jVUTe1jCd3@_)Y(JRk= zI%az7Jx|H?60@m=*fB~{t_2%IBGEz6HN3;Fi`~tKP$xIh1-qIl_re|n^I#inU=~ zAVl6Aw-$hn*@52HGtv&QzqPl<$a$*9+L|Mi)*zH*ZsVDFuJiU{T@Z?~DVlT%nk+7T zLtq9%eGI|(-v3?=G!mcF$b9vZ%js8vD+djNOIDJ_UMK%E*6F|>G+oHV z$Y_*&UT*Do3ge&pa54NO*tb0k_SDwn#d01)=%_o;;L_UjE<6TTcEzzaa36Zjh8+et z5XG?1wNVs3?7+K;vx_kT+{J4#Vq(x92VTbuX`#AcB(j4R;yrLT?mD4t8pAx4X*Ylw z5`oTXe7vUy7z?yo@&+#Frzpd;S}IHD+-~2J)rXzG?6>6;Vj;i=T9E&Bq|*IX#-xn0 z%67+N?CfBisdZ{F?dBJ|xnMIO8w z%U;hi;p8YUriEONiMv!aNGe3gNj=2*T;T+tY2d~Y(tyndT%M-#Z(q462V)oF+xB zimp58Fcj}%S`3xQo&(M&pfmOB!)+bn>RH9DAhViEVDb8K9~i6$$|trQ!Y&ZE;|R?K zJqmTA+%>&7sVHEpG1{*VT_D{Fas=$}0JvdOJssA=;0Mqn5T$EdnnoG?fb~PVwc6PU z=(r(94;Ub-!F{kq-AoO@vn0lgSp2mmEpOZlf^T z>Hh28P=_#{FqCMh)wweTf5aa)F-S?plWkO-lH>xjbknMoEbG)CHptX6#-sb`Hl0Cw zkn?TFcnv5`tXwtFjSjH_fYt-V)Xzd-=@5fomlJ48upL-jvzq|Dz&P5ni2&08ut@oZ zb&OM?Xsd-`o5Ja`6XVm?FIfrL*8NiZKDn6PmqUy#Ig%Dw0#KCt#cNdAa|+|bHWeap zz7O&>P>AZDF1O=}EadS;3hf=t18itucQf77ku>umT=zfV=EDI#9?}W3&I%^klm7?zxxK1svR7ghB3K4)448-(%WZ&Fjo zXga*Z_`IRt@BurJypSG(UB46c5buk}SIygZWtKuoww;wU2ix8rUMCA5Wo-^T3wr2BE(1dK7$1$&v4+l6g<+Omm$t#?pD+OrgyJ@j}1_ubVK+9BYxO~KI3*2XDIpW!>$wtN^7>+gUJfo_G) z9`HFh{=j3k==OiumcOW@`$|y{v6`;3zJkhjK7jFeLcN|3Ik&u`Bo#XVqi}fguISM7 z7gka|%U`ZM0HM`sa$ZpKR1*fvy9B2^4~KM<#0l^Ygwk(KkaGTdUn~RYFejm!9`qH1 z;|?c99ZXI|(#ihkr~9>(;q;Tt;U(ZJh)!3K*yS}^Bs6xLn~!4Zxq{ne&Aq|8eS zS`19(p3@j%{DIj)^cf{fmRtvZ8k)@+BWbkF3bE9DGa9q8xJ}KZ-40 zwCKwc7Q1Hj)ZhEeHIS?9!kw2d`-!g$W$Xf1n$bEBGBrUSYw4$S<$fAQM}#QpWE(B^ z@hDj3R}rfNlkMBxb5Vf+G}9>OHUc{`l-tUE9r#I49drjfLSf@sxa?w@p+!126QK}q z7Muv{c{sSW{$hB=qF`C)v>sNC(JKA*l%ygEU7@+C>QBqpPmd3LMd0-Q!bQKrrw5m1dTRmR z;{nZp9o7bx-7MyQEP`#I_TXdEL!HsvV35q-&Yskdz1C)35LCe+c%$i$Y_3z!ed@-V zIeJwoKB}L9Rf6f_J{^GJeS%jh*t?I#ZwT)pSZyjJ!LB1ydT#5Yj?hoU3X|OBfzMov zJy=SP#=S;u6|eY!y;R8}O$q1y6U8*Pz&zTtX#*R${LIk&ThQ1;*8c9;gyuUN1>Yh67{^)5Hl|_UbLU~a`I)&Y+@~vpR5RvEw?rrO22GOO zIva#59>hs6zVVbQ!3J&vnR;{lj$@lpPg8Sx?QvQo3P~^UU*foKCVtJb(CsxI%6JTa zsv?{WKX=y@9Gurcmc4LTIj|0VMHUCIB_Ei2P&dph2CH%ui5Tf-ic$J-BHQ!5&x}Y7 z*)`~vM#FR8g!rO+J;is;aupzxlf5K3@nhDv0!Gze8?0>h12)~s2FnAccD5HN9*k3J zm=kOT^Q@<^z_P;(y*re8_@G^3o%bVKtOByfCK#4-g}7Z|j$qZe0-N(ngm#&f@UpxI zLUwlFrSS;;BBY`Q>m;FAi{G8WKVURiwE?8K_%NX;Z2~^uv;pCff>4P@j26&ryz7Azn;Xq>pSNd zWmEWUZ8PsQwZUp(>}vzL{(<96^M_(G1vENbA5Nplcl#QBG*82q#Xdm#8sDSXaU7#{ z=QK=R!#K7u_H9b}Tg4!Tnrz zW4xq{&?^5$y9U*T=`z$;aN)v*C*$c^ZJd5bSSFD<;mp&9Zq{E?l^DFrtSgYkx?^nf z(n~JKZI|q&Z}2NowHa3%IKa9qs-V=;lwLs%|W6DV^di&uvzfcw;o$#l38Z+>GMt7pq_ zq^X4+&I%BG7Y>juQ>8YMLy@6kqWkahD|47i0Qpor~&7yRew5yUs&iHYW{GRPTR~D zpPgz^uGspGd1*JBm<#736+O#m zCR0k)SNL2NYY2`U;9rLg8)l{KDa34Rzyx=yS(X;+B34Taq#Nu@fTL18!GM>=g(Ap!Q{=rK5^INw|HdW7%^FFosd{OXjN`;K&$Q{(*-i_v5muJo;jrdY*i%{Qdox zG=mM}c72(&2xZL>qEv&$gXvurmah06j7(E8g>xEq=!@jM^yiW2FPon8^DGNXWs3Ak zgudk?(nBjyXc0a1@AbLm2WK(0fD-whqNidGk29gJ?RL}qu&C3gqw-X_^)g02dL%-= z4otL+wTvrI$NJ#RyypqdShUJm?`eE3z`*bl_)W>VRRePH5)jIDjATXm(cZ)4 zx8Ie$;bPpHKU3pW=GyNn*#%K`y?KFtQawekJU@bD;b(NR%Z@n%e=48-$P zuj$#_Vv(eYl8yNm*hBJkHbmle+2Y=afy;3E{{EvwajHc*Tu1y7L#w%`DGQ8{cmIv? zrd$84S>HkGh^PzvtEtz)23V2v)`JG0*Fsv~$Bk``ih90)FX245ZB2!m$KoUT=a;;J z%}WV|Uty*u>4T$HZuOb(434Igeditcca^3-L9bMk`X^!BU8Si{!00sei&T8YG_NWZ zgX0HCu(MUMl^ zlNoqsnM5+lz^!?Y;9D-z32Q9o6->gcG0#`D7Ok-lQexeuJda3aEfIrfJKo!F4h~mU zWd`J3_qsHnvzWwfAb##*O}I5b4zENO)#>>Qm^(~3;vcU2JWu~X6SfrAOlvUy!}u8g zg66)cTEy0UYRn&Dyq0C5#C43r`BTIzu{_srau4$2r%JG=cM`q@GtfRm>8kN_UX=h# zyErByg4*1~;yR_%I7-B4{c>%_W>Y&oCrz3}_0Jm}r~#Lp9w>HK*t)AjPMdLBQ$5J} z#$$YlBNze%zpxv(`w@KDz-jbWNF%tvkznwT!sM?!hOp5K*hpj8=pTiT*|nWUwtuTX zTlYIJ=7U=W0|c^+FNG_6FO)xVJmvzgrtA_f4G_oe4PcY>;h@aJ!{nFWDCq)A2=kguuqb)!q7mO=)bp4y@qVFs1N2_(p=o@6l-90@y-6&rbWtXW|_T z6|`wV+*+OUHRhaxI7X-mV-(+7%GG|Uq5<wbqhL&u#Mf2V?XC!j?L1pj6`+Z?y{a z#Mip8Sewjvo;b|Ym_T;eb`ig^?Y`5e@$D^Q>rw(NQh|H$`!LYhiO#kBr1j&^JKw*2g>!4D2#{Syqt0_^1eVUz*(ax|BAMR-#QAj&t1`P!7=4XHtlcJ)OwVpk^s zIc!p+kWD6i-yrs;)F@_?8nwM_lbZBzbIoeSn|JE4LJWAGur?WGtgtH4+Jp6^afbF$ z9H{_ns0C!=T0R8Ui-2n{a@*kpaPNQE;3_8q>hCf!)f%TY~Fm1`sz z>TWW1-C~uuXxIz&+v%;0m$grKt86LTyU*rJ@>n`)b8A(O;Pm+TCFhf6nY~lW8pe!l z`b_~U6~XI;YfRs;VZ$)kpj2WTzHTuvr}4Yb3s3M<6B3?2rWu09&^8i3u=*+}!{<1V z*Dz>OlGJQpaYN|6_y6}A@M^cgv9+=}8Q*pHgF@*ppx;ec(c5f=_tf6rW`&7A#y7`X z>&1J;Tv{(~{*dD?-1XHF{>{|VEE}G&lukLV+#r0ftrZ<;O@cvp7JXD1(FghU1B9ZMb*us%QxWMtC+Y6BAJE@S0Y!> z`dQXXzT1Dzv-w`FViIX?l|+gj?x3|eI_-bz>wS8uZ4{?b6I(20iyc&OsVyY!*=_MU zvxq8RmG$}-u@32N-pQ@99lJWO^Na$Wfcde2vsoY%@%lcThpQDJhg_8OMg%6l-0;(w2CSI=6# zx>VC9O`qajz5WMpv6{*E&wp40U!I;YVM0>y1peotkyW@y?{J_lDJDkPbvb~LlxKiM zN5h}^pbw3S4hh5}UJh@LBkkoh2r&Xqota9TL$qf9|5Fv~D>MMHFFd_GP=qahbawYaq=%Ket z`1d|@U43HJ;j#kdx@vpGU4ly>tde;aM*Bq(-7pmaLDu+M=%7Y_?yiVs_@Oo2-RzP-n8B9T^)vCCU%7Y zhp3G$0LNDSO2Pt;Umi&XM z;ME@!a`4YT|2$4&YKvff65{6s#1e#<_EzTaT86Q^Z#H9UJWd7eF{?OLxojTxa*~^| zqfjN}=MO)JD8nP34xt4viQV`v#~DXfW0L?SxXs!N?d0V=*-YrCQxR=K!7b^>gPkX5 z$N>GDwZmAaAKz1u)Lr0=2AHJL^4`IV>kN7)HQpF171fb%{1p%|6k1*7?@{spf# zq&+v)1HOXQ{0cVNfH_>RXo;n}0js7+7ATaQq|S=OKZZ`{iA>8tt^330njV2 zgq-eihKfGs+@L|CQ(u`7x~_Cj7He12r(@(%GL50ZAxR=iNa`*dIeqHAeBEDPr^2fC za;ivA?IjNwa~hIPnY$U4^vWvNoKS0GR0xfG+(X0Z$a-sEifuLX8bl5=<)UyB2N|;+qUC(xw z@@@G9M$?@Wc0E@{LyvU5{Yl6E8{V2_O4qeSBlKU8k+LKQ3ZH`MvjK3tyTt z-slRx@$fzGp4==eKS5Z>`JR`h{%?`>O4E(U>EfJ4Z62uw1CqI~{P3tit)`Y<9INhf zs+9xnbU%YvMp53ITqyrZt$VBsvuJ4@t7Ck)1snBwE|muBR>$efC0Q<6Q*L~{PPKdy{ zAY6s=!;un3Oo{)E>83(cM80d8w0ov#3}797VMdFLOIoVvQG{~11SJQyZuAUgP3+G6c|foC?xo)~c_Z?BNa@Qw-q5iHZf|G#-Zhzk<#C3TAVR zA12z*$4W=?G0zk(meX$iXy!9Coik@A_B9Ss!}xWgv{f0-9BHVR55g8qmMd%o<=4S> z{%-^sr3UP-;_MCYA#9?n591(ndLi%gRf0h0Gk@KzejaRd%9TDxY=nzix7j{8e>-H#We`#Wz+D#itoOF*;F>0H_hhiP(&`ooCQ|KYx zCtqnpc=D?`9?JnZ_?E;MUQQoDI*XD zwa=a!AgX)ugte*&+f{Zm7kH3$3(9z+X$0*8o{;y8;lSCOS06~@s$_*?2(FOjvMgpz z(Nw&3C%=Scig1~+cS{sAiE!;9UOjspfTgPPhi!TdSnYzJ@_ZP(ZSma6=BCtUI+|c% zKTGalY{N%~czqHS@Lu<$YC`-6kZVjlhquYVSo}t*5w%(2S_YQq$1(>cT?6scphN81 z?5q$lT^o#scD*O~F={MHqe-HGmuqx&(mv-W`@{B-^Lm4Y6Iuz z;!kZ9Z5>g<8@l%~>_JlD?8$2#~!~U zSu?vDeH-Wgo5BM(O)0MnO=YaDRQenBf13k6OlP$LRzGxhzswiO#_2LG-bZN;P49uR zWi^Fa1BO^+e_&G@zT}{>88^8OjHHvc%-pn3Ye(ug(5_{&R4q zxzb?(m2x{3vt3YCs_z$IbHKqe7qEQb>+84ohS)Zsk_B_2nkQi2^YDV2*boRlUJeVo z+Y8Qt!70942o1XjTQ6Czmp|zsVA?J07w{+y;A{HsmZH}g0&J*odZIH{DK5EX#0(VZf!=rnk}bLuKPqGjUi`nbF@H?+-gx zR4e4znSz(IG%d66Ua;d18>{$3w7k=l-nLAyM_^>xgvtWF3Jncixb;S8 z6!h)mx3$vNEodXY2kPRrW>EosP$-9!tyB3$i+VX3-w;akzn`@=ZQv!c={7u&hh4(4 zB{&$I5XYU}e1tO?MOq5TE8}rrPKY`E@j4C!8yh{~ybUmL6tu8G*h16sJzn z>AF<}eK#8sP?>h=%GiAWVAsfb4fVObl5MEf1N^7T>8KVD$Qz40qLYiv75tW6U%?^A z>3D!a-z;zo=N4c$AH2E{$E+>JI?r0GHuq(D-VZx1JFBEtRYMnfP1cGdm>s8;u1cF% z$7!C(sry>7k(;lv5y?5wx6Qo(ldP97KYXADVbB$&f& z2~Pi=`&6Dv*isLeFd1v;Ig8jE=!#T7h&5x&=1_~nDDJk3Tc^h1KN`#N$oIX=v`AQHs62z&39+ee= zh6pjm20zO_zo4r|CX*gbprqGd9Q=XTLL&5_BK0!Jws1drVXTJJk+steTlUMi!;;v= zGELpx4=f3#L{7Iy6fEfM?S15V*35boW`7GF8&2*@xzdY5fGt*0>@)4}Vnn`4v^mgn zqrQdLVw>p!#_cIBEqJl0$aY#))F4o<8|{97w9Z+JpXg#1!=i0BUay! z-5qR!&=dNE)SiF7%xz!X%B^RUZ~?#7w??o+{Mmz;-=+O)-csG)<>qA^Pz-Sl1;K;& zK7Rc8;*A^MP}}^=setLkQ%&47KAQ>v)jH5a$E!@KhXK4YpYP5LRga?bZs1u_ihpT# zW0pGqOFhV7VxGEZ)UYkmLxzglwWd-wu$R~PWa%|&3NmTt|Nn zDc1CB^x+_sr`Mts3?DgUhM$Fgg6{h9nP~C);#K4OjKtRt$EN9w79n`&k6z&{R(P2kA>l5xqp=n!P2z=TbO5QIRCU@4>##lAEkwS5kguilN4OlrR>+SyBo^ z5pzfs>*p1<3a!L(yi~R$X^W_k6t>p&!wO9iHqnC8$Dklo^%JQ>%Pf4!xnu^f0c&!0 zE3?xtnvTxo1c;E0Hy5*Nx#c#;&US(?`z#dDFPa#+>u*!AInQ6jCm;f!XyT}?kS(h9 zu89lYj&Ho>ZLn>!Fgfto`@-;r{<@KSQLo4)J&uwFr6$oB!0#WJ{S)V(C_5f0W}ji+T$1?9z2g z5WcsNmfI4`+toK13(xf}sz-!$2F1t+7@v^im5u8O!XsZ_alzsyeO#bWHd^}D5Z_#2 zE32#bg5jb~CzcPaD*ZL6eWqf(gxZWuDa^wP4p%1b4JrqwN?m4y90X4OKeEJn*Nu5q_a*67nTVrJt8OQwyeO<(DN%5;m@BG& zf`U+UNwCflZe~(dXf+C^5L}TR%9&RcTBwRAozTTH$R^jEP6iCk9q3Wnwf5#~!;KIc z)#>%t(U~Fst_;j49;dwZ8Dq_WkWbqC&uv)1H`%|C17o+zUi#Q=dUMAJF zC@o`kM&mW}v35elIj0$OYXxgu$)2+jYO$B9b3p>7SwV0r_c&-j}8RX((aoOr#3gK1=(=pcz zL(|D~U65MlZhB8GtEDR>9@DZqdZO{Hb_E|iLHFf~BL7BwB?lawhup)y9T*x8ov!b| zDS;m|7}$b0a6WTgGm-71m<4L^Uh> zT94M@-+?NuJ?0!Rhr(V{XD|CaTGVQn+ETnJ*8pMDxs|Q$B|cA3T}3Vus|CEIhDA~* zL8i=t24iGn0OxBk7=nzehjNXzPIkImq~axTy9900^qPw}z8J~Hw_ z{LXQV$EaSe*66742-7MfR%vech1;jC8n=LfH7-&_>YUH8ED$nUqeEY*nH~&e7??$+ z4{@DERQg#So}I(Og*>R};NPUq3=6OKE-F7uF3Q?p)3jfdQuR#U*aRy7QU97~Eq4yk zayq*8LH!$~0gJX)8c&VXOzs|El-GSIPa+KJvY^McYcl!YaIbSUb`oROOiWtd&(MMT zlby(%?N*h2mc7)PjlzlSZ-k0G43*=a)`L*~c>bac)K8GAN@l=b0`J#=FSg%TX4;6t z+V{9n!6)2lDO69G$g}I6^v0Egl?@awGojjxf?{Ay`CwlI>Ukc#CK!gs_?ZENbA{lm zG~w9LjYDYcx;Unha`*>}gQtTp0v6LuCsLUF`(FldAVudJVaS016FE|cQ=c{MTh%9d zA~#cW=D!%joT!r`89;muk;#IJaTjHhzS|#7;njuqbe-OM|5z7spvj)B$tW$_k5 zvc@x@?_*)7eAp2<>z=WP-Zks~q|&85+sydHXy84~qcYAXvv>(bMMy$!MwFt+dKr1e zfl&MC3&wu9q?~tZ)Ok*2S7w>OY;&w~7M-*9HEZEP;SD#g;XgXc18BO`6b^oVxxG&E zjj`mwwTq15I1AP*avmQ<1>5f$)|OWw(9}sM1314exZro*aa>c6&U+G9Fn^ppJCcZS zn*C1OZF&+#j#Xy<_Ar~5d+3!L`tGeZ2J1DqxKDwmnp$Xeb+pfC&O;z%e}eB{PfFzZ zd^v}QEEfl~Sl7TTo?Dl1*)3jV)klJF0b)qC&H%pE&- z_h#^Q=X#byQJav9XNCrnbBuhdec`(tIgrZ;L!D;pme;`?Sb_ZXPhT$SLUBvEC8kr!I)2L~jY1PT4`50$1w3u0AA~ zZar$Q3Vyw+W4Ro8&ZpADt#T-p2$?C<)ZO7Rxy|!Us}p70X37c`K0{8h+CR|yE}rl@ z(*++9;!Ou-;inREn=>e0Ie`STYZo|?jy&MI&zz|KV`4ZOkhy|DOwjmfLE!e+CfyV! zNyChcq;HBA{?L6-snzL)O>4EhmhLIgGg&J7HEapr&h8;57t~O66wE-SH`Pg0W{@E8 z9>E#5(V(3QcOM@ga>~c&A;#WnAR^_mJw$T!MQ1;XdNJXd6f9bg6?rP)k1JL@Fyozc zVb;UatQy3Xm;`-`CfeEuo@sTxdfg!0rd7wi5SD9yqp~-}_`-2i7ig(n>gvKoj-3Fz z-$|bey~;Q4-;@Kjy(i9{H?Q10xC+uv)o487&&z8<4hX_T+*hBT+AuNN4WW&>mmdwq z@%pN3E{+U>4tQl$y9;`SSL+OY1@%i(_fP4=DywLLAZ_(o_b2MUgAFNN|qeh@F?uFc%J^UCIAA>U;GpE1Ov2Y0n&h(%HR zm+fiiMA5XD>hPKK6ahu#^dc`Q5wPtxS|Pi-`|fA$H)3P26lfYs*8Hq)$f4>qGQAi6 zoaJyK$>7x?MJShTkZ{f>QfShEjMw3 zLQ_PZxpQd8Q_<*^4G#eqV?3mJz!eFq+F82k{?wY{A@PUX>crm|$btH%<8<{e=ZixI z!AI?7PJg$HCjD?ny-eZq7qO2EP&fneW~)J@2s%>jjRHU)mR}dzt};yTSq!Zm*6erJ z1fr7Vw>-ojIFEjxkUK{^f3I)e%%*NxfN`V!`KQjU~i+aTCok6W)RFBeHR!6_nyIC5n z5n(=`s8M=a6XqLXU2x`z@toIaGRD90;<^?(Nb7@Y67h|+sdS#KV`qcsMe^c`4-0eo zG0MMkArBVR(?7PC70S)3u#dc!%1NU>=gQKSSn6^8930ci;4(Yx%Q@G9sY^CJMd$RL* zIkydPKjOwSL&%+L#tBr5B`ZEg!y=hkz@y5T6EXWcO( zD=R$8e>T$vvu@YA)?C;VkN4x}8t@oLomNw)r}F<2A#mO0JTD(@)~l;rLwaK-q}IjL zaW)mEGDuMJisAGC3sz-+6h1;%T45K)^za$EA}cARreOwc3hXinUwX&2_E1x$P`%gO z^bgma0-MMT+{9Z?p~GB^F`H7<3vjJFk^vCw-t^S6gb$ycc#e!}()04@6Ba#im0 zwyML0z6x09u;JpR94hg!eAD=zxkseXn`dXg^CCaY7iV~8s7gvWCtqBar{T=~bdFlp z_3)_PB2Fw+xS2N8{PUJw#gUQeu_6+*U)Oj_Wl&nblySJSlhz8MWE>ZSmml!=zG(an zcH^u0akB|4kh|VSFt;Y|JK{xFbGjGZ%i zoWY^Z1ufMm{s3V&6+|K+adM(si|x?FGpjJB6W$4rBu*QQ5mm z+!9~@&R2$aW4ZlG=iz*_I)qm~QPnzxTT68A|1y`FWIfe6mD@otd;MMxy|Thh9Gq}h zVJM<0$!JN5zOkAdXk{{Z(a_-MuIDwReD!FON%a)^-@Y{bz@cjm3%0yK63S?T0n)11 zh{6MM!fTWxhc#~s0^9)ZPzq`h&+R$Az=DO+OCeT}TwCq(5Y5I7^3eRU5fQ`iVX zVI+l9vTge&yk?EkiXrvAd%)-snWHEk5xs{OSt_~1u9lGXhU^Gl@|&D_=EVzf4cX3n z`M%F2CwXS2AG~SC!~Q<qkq!dr4WKyGJw?Sq>J$mcz1$BCQCy)Nm<#V8*jt$J*#PnLei110$44~WUvU19%`M6S=gRTK#QMEH*KD6-R#U#Bf&LEdBx zjg?ECWftwuHg-%pStf1|T%gTLb+GtCg$Eg`wXJ=v&FbS!-jrQiVXj%y@FM9`Tn|3) zCYjl~A0XtJ?ip&Fx?DK-#I93*yPqJga@AqG2>JLflf;Vvxi(7o4Bz>`gX{6KIX}02 zx&w+L^U5_osUH&n;oLc2cwOUin<5N(X$i(^vG;CXi1qeu9?8Q{!{dDDq9+&o#{$;H z7PcCZ6Xmp{eNd-m^Y5H}`Go9Wc8qMHJ}W79ZCEZB+jF)8Ikl$rVl_@JVUS;P9LY}+H*h!MnT&B^_pUI2e3WSD`i!2IW6Ci)YF1X=7Qn^tF)B&@ zj}qPi-rl?fc$-Xo(92u8keAWg44K5s2%04jw4p*)biGXhCNG7f2ybt`A%b8jb(IbH z3idDBfmwhWfu4fsy!8^53or$Esho}ygY@!3UhrRcd3!^E^5w0Cz(RXzF)u9uv=+0N zd3$+#d5Ll__^({>3veGyQTj%FEeGm-;C5EgZ4-svzAXpkV>&F8=6f%t*d8{S>d}}* zxt_^HcUcb0lG`$&+J3NzCYwIcp6z6lNfNo6=rkhq!IHMyrVnaZX3EDBl8?#cLt*Y8 z%ppM<>GY$+VudfCkLRnEwWyzpcReHu2&-T)S%+a|SVoreb`KZC3EHI32Zm zJEI?05RQ0*i{QXM)Tk6fT_s37kpbVOyw_fL@Y`46(a|D?WAy#eaGcg4Ps!@l2X2S~ zFitl#6^_SQl34x~Og4mTe1Lk1np3vK1Ee%#Dq~4VG3C)(5R)lU;m|&ORApL#-6WMw zq_AYw*FjpW$SsVuuV)~>u1w5dg7ZSPLr_bxe8NqaX>bOYZfzc%UE~k3TUDq45Adjo znh>DM$Kr@ZMJw(XH!%34r4B-9@LNbYTp8!bp8qAotp@G5JUOeO+ zi+|#(&|nM68~!aJ7pSFN+c?~Xd1BAX+-a3sT%nbsl6pt2-U!tv#0?% z9#6=suTj;K4e+sO9@dSFSgO_4(%X{f&=r9Um)MrhozWSZ#@{XdD7hgALEk-|n1<0Z zng134%x>U7;Q;oQ)eQHWm>V5>_;{v4|L-N}x;w%|P7Pu_RLM`-_?1|+&lD$IBY+OU8#B=pfNl+yJ?3 zAQ@{I9nz`zqC<5|Rv3&xuz^JEj`c0cf}lu{lx@ZoO1h6Y;Q_b=&a1m(bl3rDNJy8G zB=&c8kXeoQ1Q~CQ{4r~%tI`Qup#km`zI3&!E>lgz#Rk|V2Jez3>b-kJLtqAxbVDZ& zdL!GPJEMH7pK8W{Rl_CZ`iA}CB~*cy+Kln5pE$Xq)%)wxcGF?wQ#_5?gZNqWTm@k? zt414P#)LzRNB{1qfWPb-oAQ)_dBq9I&_A8a*oiey0RCJHOir7^Jt#{X*d)HaDBF%> zDpA-j;Z0ZRCpv^bQNOTflyK4fj%>$YD7!<+%PhXvDg4nx7pB8m(-w>16P=dTLcEj^ zgeImW_t%-hPOP%0cS5+J&LW6PMK%h5NXq$sNwH9ht=$;mwZv3~%xB#% z?p^^VmKFvmfGUJwhErokVJ0nvbR+!QFd#^6y0qzs0O0x6U;;F>m=Z0k zdmMdAkV%_Nm;_WqL?}QLp_euxpycH(|7PCaS{sQL^98aL5~xjvMNJX|LIr3>z2V2x zrpOTV|Fxh}@bj;a|2f6 z6N%C1L#~zCB<+Ytd#BpJk<_2GL5lPsSUf0QvCC-)p$cs_ZjAO_(bvNWeUto~bD-Um z#8T`iopv0YGOiF4^VrpmDF!XB=!L`?AkN)DR{$l&qI1bkk$6SI8b|`o zpZ>wmpo3GfNhl$dKaWuV&@~X*%`>-2B8}N?+fk@c%U@0wuW&oukeZ%7`~Q~I6QON^ zLp3p($^KVJinxOA)ffYWwwcb0uS(4pEsU6RX=$C}=HB}EM59>$*nnIbR!1)PX1iIS z)WCI!PF2hFuWxuZ8Fp+eQs2#ydF{Ras_#Trd`$W(8fWeZ(el4NKPHX5^x-_^tMkJ? z28HxuqGDCs@Lk4iCMXIAWgO>X=mj4OB`276uzTw@QvkD+Rah-nx(AqzU^_z6pTGFz zYiAs=LNh}y!WxRE<95|&#wZD62)i->uu&%Aj<}*PggXY>MxpM*19%P4#2L{@V<=}uwP5JYkqXCBAfkX?zw;cb*i(mXDg-O4Z2SF`1dY0 zjHhv$c`!T*;0fbdC_)8x?t~Qt+~VREicfRL^i|OrtNxVhh5$T;NQs zUswRhz)XKAqN3+AE|F)}69R-|90pgcsPjY}`c(D}0wd{)ii%ceqHAvP#o~Gr%_YaP zPnwgFf!RN-+_Gh$j7hUGFlxQNUSYWOzm)5JusPR|omY0ba^+(GHgeG4?*Cd2d{?s4 z#WyDMhu-^!k5D=`^N(IryZfjm7c=!uXSsdH!>>+iBSx2R@d__pv@S9WroI zD_w{Z^E<{3UEbo14n_zSd5yDzaA*StgwQ-Fih*UB5LyFA#j)lQV0Zn};c>w!)mUb> ze!CFt&bOX{c`Wv|60ukYwsfy3ypFSsX>okC7@(S&Sad=LPwZ!*M$bJzs%v`(3i+e%QQKcAR zqV~Qdj2s`pg1*WAT{+-XZbiz~VDfAQ^j4|MW)D;%QbV6+s9Xz&ML)Un^U4cPu+iPO z`SsK$(do{2jiiceoVAy?-?Cnk+j@xLV_E>!ToG2$A{c#@T-0GDS1WA675IX}h(rrj zb!r_7YoLxcP2Gig-6S-119eE_KxO!+!2F@FJaqAmts%3IaY9L%Hs5=S6OH0kGm)M` z@n~m8kmu|mR^uU}?Gs~t**-l&53)WPx(_AI&9WzXWC>eyTk@R;@~Am6J&slTbc}fN z_$dxD1Sr}Mz~u84PhK)KG5mW;EAN|GRBp=&u>Lvm*ZDG|zvum7X%)Rh<_h=tnb)#( zzVyd5S&h24ujJ925-IG^!nam+R5(2`v~ZFsYZtp0;9zwH=E^fUsqwlA9!wY~(gv-5 z`y-niWjO#4|92ghK7N=-pAZe#M148T(p=RYWw`BNnX*6|!^&7Bm10)tu>qImEUrE+ zRPQqt4@@{Gw$U~noo_#M(>al-&>M{3hlc*NH}2#gFTd9ZiOPk+Q;U^P%#T$Jzq%@b;1v7n$rwNX z`9LLE5rSMz4P9L0xySvw0!)Zx7r-yH~ zyp|rfDT#VbRP=f`f4W(e!OGEXj>>I_ER*lWHy3Uw)AYT|489}TDNf(eYHX{baT-oX z+H^U_@-8JEo2Hd==#(|gly03hoSqC_5;8$A`Ok9&ws`M>OW!dzC#%Inaab}o_6C(o z&zi8=#gQX}s~oA_rw@hAi(xKX6SYciiUC9R)u90w@*2X08V=$1at1~Qd$FTJ`97LR z`m0A>Sg_~QjO55eB=tabePu1_)~s2!Y>`3F2rb;G=1x!QEa%1 z-k?XR_48f4M|+?1qy#whY;|d!CJZw<`P1bUD=uF=blRUDVL+&LSSERs`p2Q8a)YI_ zuGey;cN6ZT=~VxwjCKDE!}pEyquP6?l3p@nxPRee9WYsC(6c3+6@l3t?~70{Z1sNw(tjQ}&$*IZKITwlbVmH%w-zdoMz=^HVYl>l{wF z+aAFV3Tai@W;r2G?y(^>g^i_Dtkecm*0mJ6K?YZ8_` z78gOn0@piqJNQ8a;1U zSCB_g{9jW8TRVi*PG#or72oGHxWDR~77 z`q&WInWy3UWeQ(9Xsw_bjut*OhxM%mVYTWeJ%rFoLHN9D*W<@H@kAaPD<7IE{eJ1x z&tujb^b)|cO=zQkJl}Y0D}>y(-U}Zi7XUd+^7&PAY>HmX>@ncvDHgf!J+$QQ8R&618ZRt>NzW^68v zIj+topUkD%fFU$Z-goIf38#yU^L2u~AXINc^lz9L6MSBD!7As{II_-KWc63A*}*T) zk>^A7QVX{f5__NB3^YFl*a()D)v)x`jS1{8I0h1!a~Vzi7zsdSl(VtmC4i&EV#=weGkHO#kY)k1z~PoS0~0ahG_#rUx90v z^Mvr+hGSPyP#XzarI{dXq-8RH8PkVP$_PTAg`+B?r#zE{b$W@)^@Q&jR8CLjj^Sf^ z&Hr+4Cb2jU#&lM>zonv4YL*Nm<#FQXZ1 zI1;cjmDboZusXkbcs>sy@Y-DvxDI4PT9h}u2KG?BQ8Vv>wke?JmenwvRB z{cn>0`y2@ImwuZG^BVnET>tDj~C}n89B<0Zx;2KKgMTR_3@Uj!S)h zp-3)5bXbYkBDB{}dNW_9ffJ`*D+qZtYp8|4p|2|DM(@a@Xf8R)E=;1rkp7AqMc8dl z=T;+A$Y9<}U;T4wUhC+%lhmgoQP={6kIf}yu%f6Z3PqB(x%DE2Ye=s1-jphr$S7Vt zIE;|Hx-O0qAbeYAB0-!7ACo{H>wX@M*?)j6oy77Z%?Yu7EiC6IsnSQ|N@+#8+uL|o zg`tUQVdH3#!q15~sL(Xg=KLL6r0@+A`PhUnOB6kt*kkXdx?yc)#SU~(ja&{2ToC%i9-nf|#3iK;>hNJomU171%fS{~!mf2B+=h)CUDl z!Y@CH6^GN{P~ql+-Ez&XRdIPwKD9))`5AqIs`pYheTUEtt-6ISa5QXrYM>gstoe08l%MBXd11#PbR4{nHoi2xECBf^AZbdaE~O0)XTl@BQ=sB z*;ZO{pabkGa90k#-@!NdL$@?3)gjkChylUuv3%8Dn1o_ccl9-$`t3AtIGTy>&ysN&w%{%<4v zYFUlSHgs~UM(*m{G_MVExw4nC0=BeyXz*SZx6T`!ImKvZmJ|ujD#pQVjuLJQH`=s` zF@PimROsG8o{NIEee&c)hWckS9?h&=GCYa#UP@T;d+B32A=)1$6FCqXL7wuUq7iX* zcvyArv-IwO@?4_ozWy8n;OLs-zX$Y^omtRVxN z8M7}hLoA9~f1$e@s^ZhgqQF?U*$wX+b(I&IfuvBM7b(Xm1fe<45vtpFVPJh?#Kx1= zr#}j3$+O<7v&pR2FxJ{4Q zPE5NZEgcCz<}C+c(XhQ5)(#c%@@ns8O*hwWerGu2YB_#QpYL{X1^aMI~bUsG2g>QzGhIyebPc_g6jgc3N@z^AuK#GYh&TuMRVO zOR&$`*sC$mq0# zLyxmJIaI7~Y$GseY_K~S3x3ZYfU0~kVCzpo|AJF*=u-A7e97OfIl zPpX~jUeaJA37SP_Kd8ip{@v1o&mOw);)E479eJ2X#Jd7KEaz6PXI%!>tjRO`ntUTF z!-I3(WBEyD?Jc|RQq{g1%CF>4t|xK(ou#AcHqqdl*ZR~(3Z(cm^2t!$2a9QO==J9X zLiVdsNmNIve_k~+V;Sr-wMQ3qsZ!TKrOvYD#eRDixoD2)kEvIqRnRG#mC?g3@<@yx zK`1k|DstSCO`^!NcB+M$>X`a&-=FY4NAI*O&d@5%ND?=Hc{7b3ycTtA+q?+cF_J%A ztPSTI{V(Uh(gV{AiRGsCo{P^+-rl51lbpIZDlPjAhszN1VaG=JJ4T1W zVj8#k^UAl$huWsW9xv=K)?p8qmEAkuds>__Rawvd=NqUTMNN$jrX(s`ktC`NMKvOa zD2c*4Zq73HOU$UlQ4-4=*y%#vFI2*?5Y~;G3~JJ3&}@PHlp_bUcbco=-4Eo0m~(K= z`a$=4j)))vng5Es1t_KJe(l5edq+Z77c1zst!Fp4f>c#`kNnZR3*CyT0SgVE5=Q%QVb4X-7wa>eP&j}|L2^ZH~9U$(3k0D4)-S@Upk>nFst zLk|vlFj^9vgUta*lpd>i{)Q-6o`@g(`Q>*#R_7#OcEd^5+9j`UP(6$>hqr^5IGD^r z&#)AN&a?ws?lSB2;=p5u0p$|?s-Pcj=R7`n`S38EiO94FTz-5bewW${Tus9TA1S5> zKmUdK8*Yu`o@Z?c=kF#cgH1ut4jaZWrN=BIEkr%RtOCs#{B3>pO zyLwH59*S5bJU)t6qTLIfTx7{i(NJSRduYmLF;-o4n6#h`&tgv+D7)3XDW>J z|ANzn#Ji=9XxGe$>+>eV_6_gpIvHx^tQNVEgKOi@_<+H1&IPk*4o=p$<=`K;H#;T{ zp%{B<4QD-5mN<-ronv%9_VCZo%|kcHAp|Q&1zD_%ZGAFZtU0Uh#AK_DHb|gLRK#2B zpd7<6{#je5&04nIGoq^X7P8qpeD^(#U-)@?Pyw3R87Vk>B@;n~pTe%Tx5R;C!&NjI z-x{AuybS;dTH(YBX!zFSEW`4VKf_lX-f=@2h7&HpRwR=n@p%STsax8Uhp;QG@dpx> ze|Yp9M~>6wGb4<@xG0u8CXQNsI>>#vO>w=r*wmc^cv#Es?8Wt>e(!mHbm3HjnR2p& zLeoUO8Et8i%v+C-ZZ6aGy}oZa^nlq{9}}yzNV-M${yCg&gq&_f-?!pm4TEqGIi^~Qk@ z`-w@S!vL-PQaW7EWuiFy(Z|>fozp85&YEHl>Hz+% z4Kr^bL?y?fQj$s!LCCr(SGZUR)7pV&^P9}~#lmKp7Vqr>ep0H;k9H5I9ou=YiKwg>q8d}uO+<&;U_Jxq1`@W%!_TdkUErCQKSmlyrImY z@Z0LWIyJt7SV*a^vVTcxLoBZcfY6rv>tSIttCw56!4|*Lu49LInxEN4JMv*)Z?0Sa z&nw(3RjSml!Q|VY4|;#E%hw)p z8)ZdTSD7;3yxR@%HAOAVBUcakB5Au{rWCX&-;cw0bas7Ktg*a#4kGT3%2n*FUKrfM&pTM_sH>5=5Z>=#DPP6udoZdTF;Ah=CA&00po$$Xmyhx_eK`Hzm!rGI{3}1W8^1u|+e=JeZ z`)tb2_Uy-BC%UJ24r{uygg*%vKa63P!d&HDJP3JV!wxl9_w=;EY^ca-;R(C@=RRQl z8TJo2WcRzUd$OOR54PQB@d4hgpEku8|an&h{%#wRm?YnG? zC#hqNzhC9I55-ScV#*t=Ku~;H7>VCfi3R=LWlc<|YSj+V7;^D@^M@!b+l=*=?Y$&ozR|3rKWWm4ny5)2`=|rwO77nAYJXe| zMZFdZ!XwV36pDs{rmCu{mO2dsURRE=^N!#^XVig-by$0|t2P)7-Q2GlxBYf3c0kGz zLw16FS+~57VlYb+HG#=wpOHPv7O@*MWQ8oy-d)~BhdsPm*EsniDh*t5C7ksuXao3* z(>cbO=JFn)B+2IbB2})<xQUl@(Y<;=l=J$dgZs^~Ar zw=bcJw|Sa<$?zjJ3QHaj9c{lTl1PvF*awm3Ru!6GB1HH_ensVQVYivfFU97A9F|4$ z-4QnCGhZ|4rRB&9)@})Fx6MtAE+ea}_ng+ntzlw59GeG|R6wB?kaO(v2gf2kPVdgh z6v?zcxomiDIn3WlGnu6CjvpfpO^U2jCW`xow5;+Ez8C!=-G}q|L!whTd*9h^&q^J$ z>lc^RE4P_7)?nxOpq#%yPHkxgZmjpE&sa4*2pC^(GZ&)`_%Y$GHJL!CcG|}(|tUh*C#1Ngi(f|%z`{` z$(8&ZtmOWbRvZZ3Ntnum{^4@#=cZs@7T97OQG^5L*ol2PkT?>^b=U!$@D;mvKk&e9 zIJyrXd&YwxzOP~|-%JV%?2I0}C6;ZNJ8N$p8O)p4Mz-l+pmAYeU3`nP0g#R#%7xIf zuVBF(HxWY1^O7Irxd+5+j34g1tUp=l|!9B!q9E%l$c~k1tg?m?VNCk5&LlaFGH1PpB_414RW)Jzu zim;}7%+BT3^YkMPZS7!uA7q6;|_5eu|tx`<((icw=IAE~z5@pZ;)De>1Qveg-*%i4g5S>j0i+S0@xT7E z_5Ur2=dsVi<})}M58)9V!~JYN6pvq7nqdQ?8rx%?*a)hd^r;QA^ntz~KErdMho!#Z z*16}xE;C#ZDgLTiFAkREq~tIO>B@mzL-832%JtovH52sCc^Q0ro`{WjAf6Mq6#Odn zYKYqaz{jjDOdaC&1k9VBE@Y$o}IL zgbH>VG#J8qO=9A=wbEH3l=sFC=^#52V027#mb&!&#z#rmTmNY4gM6d@_c>tGcQG;D zYrxFXwm4Nh28gQ2r8p`i;zpf1-NcC_j8Qhg3GhM`c#E+STOxfpVY8Ki6(aWa+Jf25uZK{%-qEa< zpe%gP)n;jxWsT%;GB%99#qRsTx@9ZWcc z{S%fQlnj3K3)WLP!lKht;7hUwYGDlizBPbZ?G2V42;PQJk*Ap4qOp3(IKdNy#iH>| z8apDSm<#8712!T}Fh^5177y0j^QBS=iVN|a|#nWK( z4bIg}Fm>cW2&El#;bQ*;ppTNQqO@~>U;7>DZ*%b>W8*|c_V{&PgP7hS{02JE1!f#d-}a#}NHJ@tRL! zN}DO^Zw-Ri%52dD{l>QWb`F-IBBA6Ur%@^zN^a$o_4M~@F9 z*&H_aX#i4%g4%O zZdSvfsG6i7B~jUtnA0AC%JmpkPoeDk*#PY%gewx2_?d`>umoA7iWF*boY?eFCX7Lr z95>^{8QK$!^=_!7H0@p>{;Cp?N=zq1AuYX0UsWViMc@>;H@|dUNrs83)m^s!UYgMeRe$=r1=17p5#Eb_`kFYbrQJ zjH}8Qp*TY^cF2Xr4 z!wC+yO=nN6ZE(;~JMze`k+>TtIZL|~Xge9xBO>nDx~&}Ne8|F$)$%3!-u4*wYy;+E2&!QmIjWBm)5v^U{;%Ax&v;m?;nDACpb;H6! zIlVd?glb07Tc4>4*Z65{Oz><~QAfEx;4i^Cin-t1Rlxf5Pc>mW1(T~9R!1J?rxB5_ ztV_cJYj#K%^nVdkXUrQo@@6tZ^~GvWd)X`#-3=0fPrT2*sRa<~`;r9huaU3jUP3bG z>S}z)P8nISbKQ5_l1SP;s=@9@GM6B<2s-K)+v~$ab)zzuBKPwo<<|GKKWrCFR=94A zC$a4)8(}{pj*{niDj-L*Itr3Odsn(<#>(UFUc{zrxh4s z&UUAIM}%~$ANL1YQ!ju1qANp)DYUyjNYw6`dH5mg`GTSp1Z=y`TMlgR%& z=TWE0(;>x;{sz20*YNXrsM$Lha>Qd-`m-@MZk6-op$mp>lb}@d)-eVnGy`X@gF-yT zh}iySdH_FBqeO;3e+a)WiJV3z`orutb-8@TExy}z9}5#H09aUkB&|;}tP%&T%I;IA zhnEb+wTxzFNr9M{LOiSmUd4m*UrC^A97VNZ)_G~HOA)9<(fBZG@K(hpf8|)qSMe=W zMLkvG^9A~sQ4|6*j6bLa?2&awQTyu?j!R&)-QO_uAwHPhAxx6v@p{HXR)S?{Q!5r8 z@WqHV4u{1$qS%|p@*b568!Z<33ipWVW*`~Nz}$lHqYn0GF=I`G%Lja;8Y+MpSl)Pi z19||Z@Fzocm-hxqtp*WI$II#HT;SL%vAC3pCv+>}I3K4 zf^3y#9&au4iX5anG~4i1sr((oj~ys8WJ(l=7;LtYYczrofpr@8(;wiERTxXX&R26uC&ePGkP|B6Q4f&Z#Jsu69{Z3dl5dw>`%`7fDp} zHlKhVc5kkFX1(&9hEtSQv za_-XaRpU48Z{w>ZBS12O&xIeqD6fIgTjF2U!k4FCiIPfDFYw$r zaVS|;=~dz)xuEE&As6}4U+g$tH$t`cq!Kta4?0|J5n2b{ zA`#83^UTDr-I4WFa!XskOcUz{yQRdu4D1JO0dEtx-X8T2B_U!H2j^IPNGhp>di>~j z1MZum0_0i#1Dd5E2gdHYa%GG-@nXJOUfIlbj%1y0cO?gUcz5qUV=-g=#dGs1aa9H( zTNGUj;pvkF;_GLEN#=Mx*6dLxAt!sZwn9ruj2?n{(YT34MK6DOR$^H__RGylW{3QT z_n|HI5Xx)ryEt~wB+)BZj>|{Ez!rNTB@>RfrhOPEKX}aom(7~ga?U%Uq26)?c`?WG zGR+|e^;qFHO8>kw`Jl&C&MARxl{v=}y7Az$=g3(lrI*fX%VVw)L%n$)}ND=s4PVF z`LLRUWPRDF8R1iPs(0(w%}Hhdsnnui?vr<7oHA0;;sq~;Gnwe?=6*?%_Y?VvhET+7 zX^dnn3DK4iNv-blU&Oop39`{(b|6VAK;y{UGBj2@^^7FiN4#kW-Ab0sTp|6om zj-@ksPD99-oH_RF*`eBgj38m11BsE=vD7u#^<38H`@%&hK!vc+fSCn0AtZV_2kT1S zFs81}%KI59u>{jH<%{9rC)BbtsqhQ^5h9lo8|hR#$*8Q3&?X`<<**) zYG^dIr0XrbOP>@4wZDZEc*U??LTV#LQBTwg!^`v%g)3?@oXsU;P9elseNI^_-Cd^P zhXr*Km066Rf3I>ns!ehNqo*yYR834Csnb=NS}!o~jdedw&gk13#jMa3d>&dP=5-bS zQG^NnHHB^?52no&lU|2Pzs<-UP~DM>$bQvR{rVt>*07JuwXqZ47I1iwsUNF%^dnif zVXU%P!$vPNhUh{pcAmWNAxf$RWoB5q3l@dqXUN^cBHcHVJf_CXTa%|^gXFSONMAq~ z>Ea=Z35nkyImAF-}@D2MaY@`;sK$BbEK; zs?1C^yk;T^%vL#1pZK5!OG4;*1j+0o`Rru-{uUh=@VT$!WwtPfEp=OTc#e9{@Hu;A zb^MaSg~{3TOE%19*sM((tTPcAHo@>-{YR9)U@_!oH?fF&iBk#dntPOt| z47$c$27@Y?usVvOkJt4)_A8(l$($=Je)>UXsQXI(!l3?9ZY1hF2ZDuCS2+PTevbEYtPnpJQ5*b_X9d5R)}`dc z`%V16&H<;obyvW`C-O?`FMZd<-m&}sCvXOw`4ZiJ%VigaKcJgttvp;z3=`E+h6q)^^wAndIZfyzdW9VAr4=}1VUCKq*(`)$LcDfnc5h>&sI zG`b(AGfN5a??hDiY5K9xN39r-tEYQ?b9pgPn%nrsE6#2YE zgUM_Ch_HCZ$mtzdR$RFUk1$wg1Wf72@NHTA^K*o>ry&^GEnmL88`?(>=#rt)>+w0U zs)p5)HW$chjRUELP_yXwjG<9U#qlZkOH#)jWEXGx#G3^3pw@!%r?I3a_Yrl@U6(*$ z=8?x5AD2e|K774i(7GOGz53u7m@lITB-Wxn|Bt=z0MDY>`d=U+KnO&NbOrrT5-KM|$rNAS8j1gb+y2&bGTsH6B+0BUrjnV*501;J8i3PDSO z28q4V>5Qys*x3OPm=RG5Z9!@Jk46A;RCZ^If^ChE0PBI40?4KQhpJU<**Gbv$3aqT z5;Yj|0dG!PW9#-(XNj2w0$MUwnT@9voq<71=t%2O@6n;1J42hR*^-tJP^^)~n{Yl; zL^}^%rI~huP?qPv&H=v`EmqN6Qzcc#fbfST@#@1nj@2B#tJCbVa9HI-UYa@r1A4-z87`!~ZDGatk;DaWf`8~4SYZA|?qIIl3}<3) zd!xzl8E5g(%|&8Wxkj5prziRmdQ(gX41Mm{xno23a>@+qdR#)ohvX}cGQ4$eOTRCQa6mXc$laGAfmh!jNkTn7fTQ0gq&w&3$rj04e)3^D{lX>3 zVQ>alj&JFmVur_d%^xWlWw!DBb-X?<10srVi>>EVSJ_u(up6rei|C@F(r982C6~E! zO}pj3iS$qhMXCPb?o+k4?H013UHr4bT0v^`W5g-Zu(+(9lH^-^To5sx-pgRZ)#1{={#F$$nY(M9`5Qu6lE68Aaq?Wncb8Bu$M+S zmP#?5RSr=aYr9`PGJvM+H8#76iOhe9ZYkYUesn=MdeC3V6M0OQkVzR$;G~7fMDcCb zbRWA_UnzM)u5&g`icX~0rL#3T2gcHapBE4lX!>&Ia(T~9j=vL;<5q;*?c~@;r@3L1 z={}d~IHgH)MtK*poaY=GyM3?o!iqjyyHfng84atEnA*su@q79z3&|C2*O-06(`~E+ zk?S{lNnF}gV>g}0pujaWqNJcPa09(omW9-dOCBIV%Fpo1)dAP8&Oy2`kBC8+!gQLv zh1VLsV#eelL%zBT9QO3IR8PJEkOXeU-G@~EG`&^n*o@W!v`RmFMdZ|&7KMNloQL}-mrZ;lkQklJy)lm zzi-)sduGzOC2`9ORaQPvAIc~Bd^;!6-6c#NJn_PBG}GmTyZk@X%$Yo|N&8m5NS}OUdU>Ms zGD;6gD;A~RT^jw3G=V-HQ)z@~j~Y5l9i-}PTg#_o_3zRL%?&>BS~rt!akB(O&gaZG zXHS<#UFNO^m*l0VKQc=>X2WLFoS=9zhwuLHR>%OQGyx-8+x);IY7e<&$#=7N%k(K z&ng>O^pm;<2?};6(Nj&$H>O@|WtKsN3$W8ESbFj29B*3G!9L8YN!a18^TYfn#AE2g>#Ktr`kKw< z4f0PO+<=iZr_1~5cIbd~wgaf9K7MR#huy5pK7Yrs<2O=B z#-2AEz55b)%Y@u^r~_?*;e?#`)NoxXXiq_wA95gDohj?qtzQQ&8kz#$^2s&f5N0)= zMDy$sAy;#o`IWQrb`rN`IUEz)Z*a}B750)|Cgih=T<>N*fp5u~d?pr1e&%Z4G3n$L z6H@Zj&To0Xpk9}TMJaQQtP#g{EwOgw@f(&;pn~s^PC|g?@!dkcH{S{?7%AT^G>m_{ zcytUs7{vQ6I(M_=IH8fUAf-DYJvlE=7J4AQtsLfm-hC2!6uIs;`d&K9b=o5EVTPLl zoIji_<>LO|B@6vb-9C0y^a!je<;$m)vbvAS(NXg8o}stMT6u+)Z%zXFN&a;652qO` zgPA*1)%>IKJ3vKvhqZ%?&y&9p^BKpr&6BXKmxbzSkQX+{QJ> z4tOoo#KjQ5d*uyrSkmS(_DY>sb z7VG3(HwoFuAmv^A(Zv2R7{mr>i>^-I%)Q@?{ag47(NACg^yMY8N*i+4l(65@kW6&< ze{!~(*}jNaIHzmZ;X=d5$v!t^p-D+Gq0+m}`wi@aPb(|KKD$95PYW@PT8_nkxJrJm z#syep=}q){r@W4W1`NIN-UbCvwX7u9ADe0dWydS|PThn!<>yu*f1w)tj zt0%Emg9p=zG^Iy9)+H(4E1d4&x9q~VRnpci><|+2<-7!XZMsmy1jb-D2fy0#WasBr zGFTM3&u$*H7TmPA<@FU~dMGk)d zIajFrGx!|C3$nOAgoiXpsg)q9v1`ZBD|O&~DC;!#Yn`VDxy~gYY4AneG-ppv^_!GgAyPgIcQ zbIpM~=MT!?2ax!Hq_=VrtpCL2+p_Qlf?4Db7b!R#n~ZS5V3hEz+hptla?PcYP!P%+JUe58TRA@n7Kwq2)DIuwG;5hD(+3CC)3UV)rX;+qHomgmz9GFVm{0Y~ry z{X9#H+oaZd51X`&D0tR<$!v(CR3fori^y?&K<>ZBc?I%ya^Q6#Aj|Ww<$zCOFDW7&saL+ zfZ+UVSdX#ylbf`eO`+*+o^jr!ZA8v*T&E_KF3xifO=*w&;C}rS*8_Nz!Sc0Ds5bjN z+RIdLBLeAq$$e`~mFa35x8?nohFG4zI90ep1)B+K-q29!3hrs)WBM)Plf8J<5^cbqSdL4cJPptjFQ z`hKmnH??8y5{NoVW3F|d{LX9=T^1msLq1!`Nxs)o8hXsjbStngiQ`+OM!R9KI3H6{ zbx0?Yw| z7EZ{e#dZW*ZCs+i>eaejPefFl<@+DyKwED|H+lGGv@14ReIV&2Fio>lR4gDecZwvn zk%hw%O9RQ1@h;G}DsdRfIxBo9dXqJLE6C3yWRnnJd5Xign_Z+zT_CHR9du1}vi_ZE zOOZ*9B;<HjTSN>0nm(#+`2?!q1NUe4XU|hv?=B}q zkmdQ8bHKOp+(nBP9ohxsoI7}-0&N!Fz5`~6?s&7J8GJbu&P`sjWJ&9$O~=6(Yc07! znKbQi{}8=QMA0y=nBIu`XE~Ge%?x3W{~N45(NMo=*UvQPSxFzbb)D)^*HtCOF3~l9 zX4C?aVm2QDy@Kbuv zrO>uYrFUGUN+;5YN=#4rK7Hy43YB9tqbY>EygLI{C#rM!E__Rs9cRA;k7`{VMd=1k zvM0W(FP>6qRR8?h{MXYY5vyJI8YS~tm#U6{y_`XZwWjPmJ&-6ZU`jH*beLXZc3AFa zCq(QZ=6}kBVZ$cggsLQUAQzvK&l3Svj^-}Uv_ISOchY8on^dEQX5sOYS+pz%iq~n; zqQ%rDzjk(5Jj0NX~|@ntUH&x=$J^7>Jihzbaq;C9@FYD=>mR)tvi~FI`r$WE%@rZCZzrTnYF`) zjh=q?OcJ5nxbc?a-+WWUoR0_|5>L`6@@ePkf-6ZR?-%HrlnQ>{^OLoRJ3rsAfrH7` zrDqN?Sfhp+6kIz^eng4K4DiN}Y@vk06KtW~=gul7qzr`q)`Lv;{K(mT1B(c`_S)sg zsnOAgr+qW7h9zNA#oR0~lOv0;=RmnS`N8RvQZ{fCD}gJi=v+IZ$`ZS)N zEo2kZyqn_6c7kxc!8BSGUjiZm>|yVAOOvYfZIRF!A@%R&nchFP&yyShnozN!`KqUKW$0 zn(tV`t?&C*wc>>x%+t;HD37CN$evZ%^Lh23p?$V`^(iK&{ug0evNKc*Y2}UuCKA%e zMXoy`;e2JyvE>LOuAjB}l906=D^KP;K;q?Zn4+|B?@ucS38~NP;prH%#fSHE^f#*O zY)9EgWPbsUl_y~c>I2@-(M2-cV}m}rYa&OIt!{}_Hk04E7)0_unJNZwzO6AX_9w@a zMG864$x9ElGHeQQu0Yv}#>T6Gt0ZgsioQ+~|y;SeL7BPhO zkyXsV)0~j0z6P&&g+Av>F~sy$Ng&Hyr1Bjm@F`TO%ljPo32iGCQk2?{VIzq;UaPoEzY1T+uq%yt{O z@i{=(yS%b+;xct@AGXkKV)w&}wp6TRkBJF-Xp)<838#uoGWniEB1gOF^XJcRE~yFq zLSXs{D{^5_gJn_vFp_?xdA`9Nh;!(vRriCz zFEF$sd{E;@laCSIuhFlxA#gC|$JYpRZLX*ZSO2l12Ty za-hhRgWfd_W!j2-`-DD;N=fVN1lz^axPe8L7Bs?PIeeEuw^ss*cc{bS7?DW^z#AJl zRZTzsNbD%|$c#a2A`m{7HYMOaq0H2Y!%t%ed<894vH$@82w1l2-#(V!c}Dx&Q#pdp z>mNn$3=E8-j#g|0^p>BD&8N(#GaTay&2AhYTM9;q(qvy8VtwyiXXu;u*bIMvdc>`& z&ljUMG1%~h0A=OaOVQ++qMHs5fGU2;y;*n!}?a#V3N? zo%JBwslRZzH&m^fGtRU${EBh>CwJNO$i&pP6fAx>0UTT*o@f50S7^f>9=r5 zhwZ*i44_q}Ma>^?Vyh5+PEhCSG-yp(q9l}@(?qq-g$sNHmVpVAxY`$9FVr=u!h6(3P* ze1oD>;sxOmm4!55_v59uKgW>s!r(=YKfpdCDJdy%C_?PIYGzbO?T54G6xOz(i_R_Tz0V#`o7{bXnpF%ckGCw^ry}HU!?IK#~eJcj;874 zR8L1o29>mUN}siKYQvD;a@>%k3C{$)BxvE zmxX521{jgw(KN>}g7RxzsE<$G4tLbAooRXbG|mdDd#gGjcqHArb!#N{!engEMc6k{ ztYas+SO1llnhDhw$8*%%oAdFc&(X&{?Hx;_D35S1qRVsrA56O3_4|%=)QXtGup!O? ztydj5S(DP&A-k| zNSdxf;##FnNXXj@phTq|2{OZxXiifT2^O`7bNiGR5Gb_o&iwS#PhYta-_!<}-p}bL zCT$~%g&%X&96C$3U!PXDahu-i)KRCH*om`_io?M2Mq_*Q+`Gx#nRvF$$hAaGaxpi3 zC#dR`3O0V-+eTH@*W^%ztEy_VLkvd$%c>g3Dn28`y7mN(BP=gZeU_@KtE9DgiGfd5 z_23IUvq6_QPe5Z=!^>ZTZxSzg%!e3su7=lCmHb}W@N?H!*MU0qu?z}{M`$a@Y?7}c zbg!|@tjPrm)4r3h4Q&Wg-8ALY~IE&35@*PH>%Lng`a8-35I=8iTsiW%kBMX`7(70qCXs zPaLmGv&RqK04QKJK@P!{PfcJ(V1ISE5RRT9^mDv)OrDc1zlRxc=+)fIX%~mJXwfm2 zt~*V4+dEzDuH#uA^ucORTZ7-a=J1EDbzNLau+o(dcifpSTQGjDYem0A^66<^?6uTx zR^&G7^RukEwS{JRAqQR^aL0RoOeH6{evcpHMlUxrA&+NR zMdtc>Hp8u+{*^m?FgBLt$sg`0yd{3gRMlrAptR+) zcU6jhqpHd40-O;+$Zx8e{-G36CWAuO+KeJvONFZ90=+UD-5Xjq{H%g zq2*rab+WY{k658H<1M}LF6^H;Jgr`hA=CDY`y*zD!!h!Uwc(eBU-DQJ*pw4)^eMi8 zD4U!5x<4d$2WT%*>Ch{w^#16aCI-iRO&mVF!|>r>osEa7upwp%1P;Ko^d&`7a>6$D z)M>=*$=$m*Q)*Fq%=xx6{Z;RhV>T%x-pY4Ll8aQcDB^Z9apfp_w~nDgykcAp#UR56 zah-69t6Y@hz6>eI&ucDy{;CgM@5}F+Yh18~IH{VU{V#L%eJj>`z%i=BlHX)IeHN8r zGdLKMtA7kVRLAd*1j_~I{(cppym-)AFdAK?kGsq5;V#b{mW`2vomDc~#l8+v(`$dnfReF`)gyy2+4z`=Y_JxH5w7c@kp5(+q z9~N$LUi_A1U`%|G`6P1|v-TE{nnqOY8unx@y{x^*AIEGLAebeg(Ku{Yp#4&Ex15N< zmQ{N8%)B!XXoLsT%exiN#x6e+pL%4=n|1`&qnrlL7x*f`l5BE2tM|Zi!*2;On{X?8 zG^!HUyxXy5?pV)Eb%jeeywM}|nM;+|;E|fv#U6|1_k9GGg&fKYBQZziFSP$^RXx!} zF1ArscghBKl$_=6c?oC5@Zzn()YxcyPjvi;I92^X3ifS=5mz}C)j-57-$){VddFJL#ii#o{&F|XxQ(&~XHe{@Wc8D)uNM^8dvXq>$| zFAn3{rd(r^eY6J^_D=JU?D zapM}ZQZ|Zi=1uhMuieC(qj3`}D@`-_&-WIY(1}ju!W)zDYM~W469C zphAcdUZm9YAU$C(<1v`$`CgTGpANm7M6XZ0N7J@iwa6*9YAN?;2Q%r00!ryGPtf!W zI=9l4CN5eO{*2PZFInn+@;0e#VA;RI8%SQ-UN+F0%?F(Ac^ZOQ*FVpJGOsY)f06g9 zow33_?Ll^>QKYX3`pwWz)+!#I+I7_rBG!ebu*&l*dPK=4R-?5}Yjtjo_{3L5A?3vr z^f&AhzqpZpX4-KYPuXMi0Gk8&DD8p`^4~;b8Wt!}Ye4lRaUm+KTbfJngdD+AL+LVG zWPMra?uqS}Qu>|^gX85BXJgnQdTy)ONrx}Hufd|6qc6RX-)7bgygHH<+E-|7RhvfT z1+?~H4elNH?!zE@&Msy6-+gwiltJ6BfqPTh*n&*&H1|!R<)1!y!Q`_M6C}$KZ7l!S zyg^TbT$2=bPAq{OW3#9BM{j|LQYu&;ks9M2tyH%)%6UsNo>IwI3Mt=1mz8%xXV8~( z8|?~Kj9GkhV9CnyGs8UWFfdET54Fuoc^iIPr5$xXsde6;0P@{RJ6kdum1CCo7*c(` z`?Vs+F^tg8xGx`@p^f>Jv})48=x~-xlfB>N9`Z5Bc&vK}qGzy~ZL4OC-TSyDP~83H zJw_A2rGgQ8j13lW7?|Wc5~3b@4}DTyOT;i+it?R1Y+6JG_|^*8TP9c1gv9t**w$Sp z#HR%V^G6r4u-tAop~aF#u^jLpJt^C4O7Hb@&C&t96;YwlWZ1A7 zi0Q9u(d&X-kz_)47u8eV2-rBCuz8G_-Pa9-e9V=XV$eRU*K#BKYe4JTSqR9bViz4; zEl_bPzeclPzz%5MvXGExLj3|*3@g?3Z}2f2a^!uW{(&=uTeTKh(*siy5%7WRd?mlm z1Z*pxU&t^5_^-m5$CTW)URhnT$a(<5(W7q}x~!`&oO}aL{^_n9un+P0L|X%A$^Koa zP;Z#)t%P~Kp>81Tb@RAjAm(*}LIHBaJOH_=L@d-r=bwm${RsxppQ&_9<)4UQBHhIP z3_~$DIfPs?CG=0k{wz8LcE+CBlg*h1;|AwN8>?dK?2K z@fp!0_NC#mU13J9Xz-?KW+T8?zfZWiq<41w(YAYG`wvW=Zy_Q2JtjR?Qx(pDpjCp!{YXs`o zfe+NXeQaS_Ud(~6qtI>GPJZfX&yY}9(WXDz^q*f6QNIHwrmB}jOexiH&6+jrU4j+= zHjH_T)vY@mq~*53yCR*`yTZ z{bz_IJsv2tiGt^;>hHB3GJmUp3Epn5_cNX>V_01Y$9VEGgy#4@R_h@1961(}5b*mE z63Pc7?F;8hZh-D7V5{s{d8m#5D2Nk2PHX^RP}SxC!-*9=3s?!5bA!vO_r&@TziWL3 ziob1RlAE;!7Ibda~2(D5EW(D2>%nY&- zp~So0#};OIzgNj#+u)fFy>d52eP|8)z=zLQ>XU{gIzU?0VTKC4_E+D)OT7WV<2`8g z4+fyaZtwZu;0Lzqow2n={;Pl;MXt|o>_~>+h_AmM`}Nli#6e$8>GSlPeW`a@DVH1W zNyt|&P?Jk!xwD#Q%y7U`R5Q6)iQSa!kwYbC5t`Cmj(r5<8mr}yavZAMAUQTJL-Oq{ zjkS9eA>YWQO2c;%(*5OF`A8TcL&z5zCDE1H0>eS@0{INy5M5t{l$KCDH|H%{AKRX& zt|Is@gpF2a;aCtMlSQmMjGwK6$uoqO@^1^URf5lOfkW(+y$t*9H?TbplaD0^;Z$=!_|NG@feIcGM5kw2Q3mZ zg-kJt-5i_agE5!1wsn~6LPaL2%f zqWl2wg5tB2knhb{Oaibxjedi#Q+{CvnZ!1jD2Rn41}E69Qs9`&lJcyP$;=UB2#G#F zT9QcM$=#$$5XYKDiaC&X5R zLt_Annt>HzaJ0%l{@gRb?2h`D74%le)hPaHRRke5lqm|1Rn^{{%383MG}6P$LtWS% zaTi}G!~F1UKpx^Ijm1c#ifA)pg5NkW+$iB z#J3U#pCZe12#^&pndpd`K30U3ruujfU`K6`qP)^^$f*JS5>=Ag&VjLj?J#yaTn@bf zBeZAbP%+4U^&L6Z3ZS3mkTM>y7hN!TYTvPZbHV=>!JRwJfafdQBM`EJWNLr*8!dGN z_W)>rD@AbV5nTo)?=|2-77vM7aa5D+XkkW7E0j)}^t%>@QeKc!l#m9UK$44ZsFpf_ zz@el@G4Dz~b)sCzU6kwiu9i4at}~|XFw+1(Gr%|0@F;j^hs|yn>M$YraIPhVu|;rq z4xHxwpbjpTD96U?;Dkw*r&er=f-&4%u@e4R%%%>ERnJ3AEf=$v9z731noqBhRznhV z)b2_iW-@xt*wMd{|JAh91>J6EBOx!jV6~z6*-Z_d)fc|H{)=4f#Z&N*T(GfNxyrGU zcM)qQ)%i74%JgXwDYgzVY2QI9bq%oqsn`g#d|FDOP_+2ImO@H1fYP*v$Ieh3ET-h8 z_E60a#~Y9cIRu~bfp2olvHZ7SiHO;5_~qxhdVrY645%o)F7LzV<7BoVW4}V~1)Flu zCDC`tkRgq2cOKHI^M!l&?nU6tTjDrjfD&|#%rGA33@?eSX(+^Nff9x<&nBWCGCa2HG>Fd)TM5_} z8^7)ix(cb1%+3QG91gFbbL6INr%m@FVCSkjCx@W2dcmNhDGw)j7C_%?gD5j?J>$aIRW8jmv`aL4-MZSz zW>@(|T%zzY7h4PHG~XU|GchsoDK0s>ZdLP&qK^_`jSbVg+c_ykL1xWC)jU~%l!-3QtURYn2}qNMd6$RRoXzZ#Gw4Dt%RyB z=10Mr*TE1plxIkU0EdM?Ug9V(DA;)dSlBB@@fEzTPf=h@RJIHbaGz3`j5{VLPq41Y zuY8C_m%>_niRI_1d60aZMS$MGOulsh9_&)6^%bo*5H(BaaR1}3O8zl<C9%K_iMk!Ww8Z0l%1bN7XwsOH*>(dX!U6T?$uV_}G6ihz|_hRCDH zo^W(bX0$K|T@a^eAB3~bHUZr=<4Bh+a}~5*Ys`FQx3A*oYI7_h##ewLYJ|bhUt8Y*DB2;#Sm4WDZcs^BvG_npp{dmWD-iq9 z^a=!9C*blDAr>uE0hVaM59DDr%lp@+UR~>@^1Jcx`wTLH{3N-*2EAZ++{Sp4@sSNI z+J8UH?f+6i>FLPz0;f=$3WFGp;VQ^=L+HD(MG$DmnAFU&jNOLSO9QFp*)>fztUo}c zvL1HCwHX+xwxF9U>0_@r|umG4uPVZ*;@@@bz^KBUgo~s7r z1JlD~X>G$xVKlXh=E*k(*Ney0G9U%8?=(-_k${kcoM8kQwj}RNxRr#^)MBQTqTD7V z@z}9rDgxwAqg))M^u`fk&0TC`H~PNSz?4J1%JDK9{n2oAE+&SP{cjoq6`oeZI`6M7 z*f(w%9HQ%nwS`?lYn_ca(;o(6=8&Q-Mkr!WzO{wv-j~6iN{}bTuM5})E?70RDbC4N zc0){VYrz1pmxKpPT@9$xe4xjQ%C7UPh${s%SwFf_Su?Q zT`6YC(>YcQ9L2I^KNrA}c{UO?+NBAAx(H0gEcd^b14Ta>HA*_GR`{=njEEO-LCNz z-bL9lt3k6e={2zn?7K9Dt}j~c^I32R%*{6ql`tn!SgE)cQiEM;aPv!9P@O|hV)1Z& zbkS#rl{8u(&pGlU=%}(RGALzCmSdXz|vqr{H`RI!T4z00sm!XOjyW z{us~XM;B*n>HA+X(-J4l(1MEkRywbix2aS%={;Yln_shIfz`m(y@l~vSYTe0%_qMH zpm?j6CHoDm_AHcAx!wv%zB9KCx+QF12#jM`}yk|j%)E?M$H9v%YP=e44*IqMu7Q|npkhbUNM=J8kQYj56AQ}L^BF9|dCIEdoC!qT#Z4KP z0#>q zwNPfEa#&!l1+(A0xcq~VjLU4n`qQb}%!kfU<~jq}&-X1jDJ1J9CZ;gthc_M73%~;r zlYjAxVf)SIQq&7_m*m}WIIU{=sxL(DEZ=`B2g;2E<6v{&zI`8hZ3_W&)r9V;=`QeA zalNHxI1&@}{wJof9vlwCyXj`a1Di%7aPLa%P+X@(B7bIOoZ&TK!4o*J&5AN&y(tC6 zAJ9)(QN%}ScM!3MLIJI}FuW)7euGegt;NxlG{-@P#VhJl>dk|pIPx&i7L4AO@S4MVsV^l^Gp*N*-Eq6iy9T9_2Xn2B!QwL$p^U4B zpTG7+h#i&7hiWup$-}t1h-0bbA!HQie?G~8{KJc~vgvQPQ=07zKS}6SC`@&hd&JE7 z6i&Fi5KHOXO7-~DBJ^20IaVU~3umY29-5pambRco?PDC}f)A0@_e8O&`o}oFNF_I6 zDUjeiY@c3}L+}YG%kI%ReubL9Wq3MC9PO-oN0RijF!FQ4`8wnti(_PTMJGq6x%$X> zb`J7nAqAS}5bWpJHr=tIj)7Y;$;uGeE2Q;+Y{KIpE<$cP63^JG{&FgD0~=DdNinaV zBZV@q=QeC~24{oVa^WGpXA3dCT~l4L7w^G2W+tOZVDqtE3^IJhZ^H&pVeY{|@H}{` zoposi8B{kA3zJt*%3=_kVKCaRi{aR17p!0m$jPc#I7MMOlJ_x-1gTp^Y|-dm z4}A4`s2pkxBL;`$kTMQbu9ag&AdyKfCQ(-qyDS%jFEqMiIoHr<{9+jw70+34z5)d% zoPb>O(u1S(i}zle*(lg}f{WG6dV>SkVp{GYGs6w+CD^aEb9Ki)BL{86QS-V+IJ=gw zSrZ3?lyWnin9levGr?!()VM7v8u%iUsR1d+`b$H)CmKr#7;b<_@4m7^7!%Ntef+@04d6Mz^}RVj@A%?#^j5= zE^z0kJg=>bU#a#pX3PkK9_C3~zO`KmXCdLx27&b)HtY{A9IzOBRUaG=*z9koZ=BuE zzRjxOJVL|y87EHbO3-z#=gO5UCpap@k6`7s5nnJTf}|0S*UKW-7c7m$p+klQD8(-j zYBQxyURhLAWACKmifi6kmWC6v_;w0%m9MQZAs;ZOXPZ7u<9DVH$E8dU5JWZRmrHem zd$=NEdgImh7r6f`C3$Qdxz?>zsU|bv9!bJ1F;8E#^6S1mzmy@`QvReB0MyPu=HwH{`fTIU`_a3A$y?7TB@z@GZi^_CU?=6GbWXfTa!$ zpM!EEMJafbK61P%x{}wSe<0NdpWO+k8E&yPp!9%?Sgvi94s*eVztqlU~{wq0@z7VGn7b*xI0(t`GL3~1$Z0aru z_obe2)UFI4jd8X!S$U%PYQV-yi+v#UnG=Rc>)zs<;l5moFSf)kZ{~({qHeTVx_V-& zM-iH8E+*kqs1&@Xs;M6fL8hlYq~jaYClXDTtNmQwK9TYH^cAl2!JIjiJepv?{lfj0 z-XTyb;BUW(`A=k zL%*z&)r`qROrirNNyePY(o0Ougamz(Z z^1 z^%{+Ksh<3I(hF}nlY$|+2T);AHpkUqE2Tekex0ndJ1#CR9ad{pabm|{^ntnL#RFf+ z1Fq%#u?ANd0JpZmkelVg4Xkl&#KICvzGfpY;)oWG%Ek^fFr}1H!xsx_J$LTh;UPjl z!DP!K{>?eCjd;tusBHXHl^yWIxHrJMgwk@k#;{-b2RWpyhL%?j`OgOnK#uu0gH}R) zAeEbsed-4_WLQm@v+@$DOhiV@wU`kqHT=7yU=q#pj zog^+L8=mk?HcM;ljsU4d`fLJm?8v3P`4z=Hvd9!=F)WrjiyVTY7v9?IE{ZsjX&f5T(X77b9pDtFqzQ5>aYw3jy-)1uJ@V*xC< z(It59Y`f@aAUY^zr)C(UA-I8`K}gN3@FA>aGBDiQ`6KJRz^9+pO}KQZn}K0rU-TaM zUPTJrnYXhUSc^0)g6ObAlW}&`3kCw$3G8fa5P&n5B8PJTl5btpwv&=u9c&1C8&1H8 zja1BLsEVr8&v zv1ZO-rSgy%uh2Ix{2g=;*xyMo-DCJ3ADH=IvY+gC2d~>32^voV@9av-Qj`(&Dass@ z^rcdGty2aRys18`RCo!*H(t=jJYeXrxdQ){osg2}5~gvDwCSh=ofzuqG%+RE^-&3b zPo{3@I$ee|?l%KCVxoFEPnn0p2(5_@A=?#Ysa);=4C8{qZ_5u&bPl}DaI%wG1DFbd zsPhm~xw^LW?v%>?`t^H$-xWBA!Q)Xv`P?$;Fx(l(oX5csrXzT9fJ&%-xP#+N2wgWj z$3c3Ognn2?n3)KJ&;i*26zuQ`833|cOtLfrs2>6%xdAO!rZ`lioxgDB9xgPL^I&2* zufoR<5Feq(WYkU&;l+Sei$FhIBvkXUU(kY&PQQ1ZPsfd$1|BgTh#L}cxQNc4brEyG zS=tR8pQ}!X+PN@aH4L-gkiaW@dLEHNA2?R3J&Xj^!W-ei00uFpFvg_+0HQ|`W>Ol& zcv<;kg&-`H6Jt*v^)Lu@dn^$3pjVRz4=2gwSaL8jaG|1{7RY|ZObN3PsAOzTS12!q zEJ{8eOPD2|OPz(lDqVCQKE$LoG1Ds&C>AOPnZ8hG(oO8|Pxu4`__4dp9q@UnFAMND zTys5`<`CfXayVG2Pa}D(Ih;;#2yF9we*pA&J+smc9E=8a6nbF7`OqsyD7)fuGutt~ z`cc>s5F8#h8VVr=qoG4xj)!XXi&xnht-gI#HB9Kpvi`#)WPT0A#SXRAe*o&7c9(`) zt^d&b1?)e>)>4$-cdbEpm|ND|A?QCuR8q?2*E-qtNY))=r?#Wd=go2AC}#!(0A7VBHO$?Rpxpy|ysJ zo7>;t-@IibFzecPVMxfrRX>D;h!bF#F->9eOMC9IojTd<(2wxjYOGAa)nm^_SUzz% z0(J^RS=(pFn7_f7he2++6e~FT2w*2<7&}@-RmJxY7)$lv1U(Cw2wQKLD!5Qjr*lbz zGTBIfWUyUKfh8RJ{S9$o%JHRL;QJ>K-%uw8AzGZk;&3l7#sfcgHLwFihx~C5&XrQh zMt<@Vr#Z~Y%gDYqAvoiirSW{nj=61+;x~T9iWMWqH;_&X+L^Qbwj3z`Avjt8utwV{ z_u+|eE+PsA;|?3cUHF&>hcFpJuKjWoSM|qoLyUD%DmComk1J^9iLAB++4?hV zs=#4cdulD)n3oRU&CTh$5KmpF3THac+esu*%=)r;&{P2!k+say{ih%JGA72+xYGwRL&rM1zr#|+eo&Tw>^ zTkB!x&GP@(IgkUJ)I0?W)LQR7X5;o5yS?$0d2D&8?U>#oA)DFL*M3g&a(%R|XF9ye z*TSlu6*migWI@Uz#=mQ1sTGX4!CP8GAtzjb;pWgo!A0sJURM4 zfO_Jm>~;zCH^aEB3V>%RiYfe=4>9R#2LOr?GQ-5C0<^u1=@kgrV@Pc4VNCoOoW?7E z>r9rv4B=C%R4KQ_!pA0U%Y{tN_oLLiD`ZUva10^pX}vP5V>7ls0!wKDQv!=X6HRSE z1Wka2mwOAcAdedJ8ixgMf^;lkP}7|xW-te}Ws7OG09dZ{BL`JSOG#Vr<^ykGW)G_m z;l~#4-fbQd5}@FM)2+M5n}T@HnniRTtuvr4%&?Tq>wT;B*zow?n4#0)cxbQ&p*;|- z7{lzsMZ9~RRt$?A<|ph6ZH+_)9E2GZhwY=Gc!IgzVlw2KK>FJn9^17A7*5Z%)%0?_ zw~Z}NOfQ%r$4!q&1mA%zx?+&ws}K%#h70xsKyFwIfHM9tw1`)f69$(o_&wYKVcAL+ z0Om9lLNZ?32@JtK04uF`ffFmR383hjT!=~L#nYA2rL*BadjWFk;fx1}EHbrlME;$r z0L9ehf=u#ll(L_H$}``YxXXu&|I|JlWfyo91u zoxcyqZPbJnZ`xj@HfLZUi>R54gN6P96KCgi68j0rnr3Wl)VO9+dn2A)`PS<8h$*S) z{OG92kmZx-z$jcpHhX*rb4dcn#!SQ=xxxhYwLBTx@0;-ynQ zC|#y>b{PXk1-*dbHmoZ)BSn`keF#`n8%Dzq9z1yH;K2lvw!&TpYvMZzcSUv&vq@>* zrfpu8hGzx-U(10CjecGLw(SsSYhHEmQ`XWGb&4&~K7C=oV#eWCHG{*{%(p}kzH*>O zw1BXB)74a=X(@3K)Ez4d&_^)4p%1TW!fn z3Bcy~Dmk0rs=s4`6ny1DRl%;?hh68mCR#M+?+8kK} z?#LmST~QKW&;wA50w~?gmOGy%E%nSF}9X|&vcR^rLVd0jza&R)h z+5iclv^ffg4&0ZRQoy_s>d<6)9a zN&{jBqQ#&~Ig$dLrhbgt^nf^cJ-QZ_DpQAs;X43pRqO;PZYYJn*h>~SS>IQ zun!?~s|gWSL2x`B!E|_&^K+y>tOPmE`FU~*h*jVNEIRlStb&l+S;}RYxXy2}a#Z%O zq2u3=3*g9Z5ZP?0QKwV~>t?>(1gjARkp*#TEV2qnx$P9%O-PblN-3R4?)J8{Jf9R+ zCGwhtRc3&OIx|MAfKb!{8d89HY=R~f2A~bYAaEX5&x=?XghMSDs@2{C#xw!|4w59? z2Kdd?0qtQ-+7FX50)WdP5k)D(k9-CV5EFwdbI51VaP@Fr5zv69!GNuV}TaK`JSPBsGFt7Ndfigtodp>=>eRhJYB)j?dSK-VB zecZ-5Q2p`)0Ipn2p>(Ca_2?Q6&?i1h&uf%EMo-i-e2Oxa(4B@4Pug5- zcwhweKBWT{dL`YA&eY|xJB+k%zcoEzSny*zPb+L(*5^&&$S!xAYco8UF zA}cY#RwBXWM71U}*FJ&N9$nxVbPN0izv#kT%DFMsxM|EBufnm(;8OQSWH92^i4#Ur z@RbI48D5{)K88rq85q{!UMM%vwT(6u**O zC1Jy|y#M_iDEImIbHVH-yBq`R6E?6RdKfmpX)B1ns}r^1dkI!J4Q3{eZ^NU?VuV@} zlGs{RBiAVG)ChGCPJD3=u&8#*`^#`^lIr0AAoIiCmbfZPb2!{0))w5<{6UM{hQ3u|fis9|-zD=hsf`J$*R` zOqST)FYJzCK}lUZqAbh6%uv;j_3FZ6D10;>fyA-4Ttto~h{Vsfm^lhE^3v?8TmVNd zyz^Z%&YMNrbD+W}KmQEoNdBr-i`k)$I8(QyQy5H<3C2F~eXX6(#|oki3rS(+Mf}{{PFtZiIRSE0iI9s*j7;dIn)Am-O>oe|LI@*W;+k^?Pmwdpx-_5|D9K4(Vf5m^OmsuJaqvZ0y#Dk+7C5SS`+nzN>q)rtvA)w z2EtJ_(5CQl7A=RdbJsEDqzyyFm?0r5Ui~e`yKzI|A|S%-s^K3J6If|*qQn5rhd z$U(Vgg1wVEFQ<~d5||umFw~XDK#T81sW~vlG7_%Oy1ZC@>}>;s6MfMgXtx$$mdCqq zsMd+}7@|3YT29l1~=9w#fillTkbOym%qNF~CPZ%A#m5rHc$v6xk6|bUikP%*1%(Fbzo?mWVH{|KfGbpAtKqn7T?31a z)5epiIg}5u=s$rJcPV^k&Lmn|vnWXpl>J)HA%? zHOD|ajX+%>vteMHEV$(yw@HqGwhh|GP&2?Ja`b1=)3?nKix`MPB>7D%#H5NaW~?+j`Xa_ChH0RK*?su&33DC<@z~N)F4C(F0bEK*J_!@)d<;;<^?xjmmIn ziDPA%h}b`M*IRR7@V1+hBDTRFt6-JQQjl%}HPbf~!*$mXn5Rnw=PgSXH+T z*4DyFDmG05;tKQFM6?AKEHzFDo2W3>3P>+ebij5(I>a&LhXy);dZwK)Qx^=v7_Ui82! zf)x3?zZ%+zq_=pfmvv9keK4{5Y$gvWU3A}PAeAVqxD;gt%p^at>~l`M*bsnDNFk*& zv{VUoIcAO=4inEeEN zD9it^=RmNu@zvxPZgkaC?nw_ftl+5xaUeJM`_rbspPR8ywT)*6ox_cjO9AumM$c$G zhF&;!uk$fMFSY!!Lbzi}oxA;T#72F~fW zY($>NOINm7l58#D;4w@iC20frFoRwi4Q}(RhBxc_|CIwj&g8L38gR?edQ(*Xx_E!E zz?vM>q?C8yPz1iYg^?%&D-E04F6(UUf|ypFlsXHf1A`t^(3m|}5&Fn37q@QREu1GI zy9)D=@?!>sq4SbwJMe4--u=ir5HR-kA3#R|U$7448xa{Bb?B_&p;gYmfyD3zzg z%U$1|4bB|a*YYCglA|%_aa}jM2V(x@I->=%-yASIu84rktaDM8lV3%UwfiKyVy?7qWuugk=7q>AM5<+w8QH zzhB?iqo}%>S<%^Zu1!A4VY%i*hxt<$Q1k~%@0PK!?A`Cvgkj9z^cL(Z;EO=Ri?DpW zIAU){QE$fUmXuNfc1_&J>a4(P;gsHPTQa{1=7R#g_kHj-7zAC?b8Wl4Q^3SvM@1ag z{I8#b;zpk(%;J`+&I7Dn{rb}wMAOF_cZtHEBD>+f5j*1Wp=jO3Z>-DdL%D$WwlVD3 zYOys%432|^`-_tf`YM&|Cex4djY5d2007p-u>eu$S(tu0u zc%OSFM(Fc){fC!69xT1-G9%D%y)VPwM+9v5#3c@NtYN+q^;a9{fk|UBzt*aga7h=- z6NBdER(u2N12~!!tS|+nq9(IStpprJ(ZRyX-vHjI*R%k@QZ1;_ZGg<3q6P1g^ztS+ z25snhMpalinv1VH&Unu=D^Spx7G%hc0ce|9`TKp#$A_4?qCD4hNahqnOhL@3T@fO4 zOh}nwV!6r!lySS4g<;oVxKHj9B}%jhip;bSMTy0br91E!+yb$NUZI8JZ{{r#f?+&- z2H@0NTvUeYIRg?V=@+LP$n=)>kLfd8OquNOA`yTQ4|{W+fD=u{<`I zkgae;6zba*LrxnnB4e2Vhy0J3rI*ni%(OB^OW+Z$n!7&Od=Yi{8x2T~m|nybFbRAk zPEVAzM%rwh%QH3Qvxxuy9I(wTaSA+P`jk*87syC$hD_V{Ys0izr%(lDMLBJPDNLI~ zgA3<0eZY=VHV8s6NMrGELfQsn3_&SdY?usyv^bIC9D_Vza6!ibKx$$7uSdkfI8aQa z9#L2*lMfZez~}M652hs)t`g@#&602oLMT*@A>@%m7@0kdIwwMIk>Q5{UBu+^{2vUh zFbrxDY?MhuTk4wayOIfx;7{~#JQz4OP77ujxy55an#kcjd-v=~$`rA@Yf;@A*8jVm zNuG#9s?!(!qSxSeAVFXAN;w+jGXEP`P?WpeSV+}_np_+f`2l9mZOgAwK|w(+_l3pb zohI$ux6gt@d%mq@3FaB2OsrX4(h~tYT*kl}MjG4(19o{d*9)Hvdpz*7(##-NKx|k=+UER4|#4_Tz?bF?;nXz?ZsZdH9r{X zOO^M(+QR`)E>!%FbfS*6`mbCz)r04lIm@t^IRHioVdU`s7$L~;z}g?!;b{1T zYw>Uxp?%BNN!2(4VPr8=u8@7d0U^H$6M_VNit;|hwG6_7;hPSTws#D^QK41}81e^x zKSI4H3J!&$ITx23;b`U+5nGD<#{UozL!Ab8#g;Rc-2IPj`PncL-v@{*@k+3$5RcVl zI{r^Wm*3JjU32bHk&<~A*Z@y&|536lLI#FqYR>MopA6n ztclxR+J^l`rhb3y!V_|OOr`8LNI6G7SF-yREGip_{fVRrOGQq$3sktp2 zkQVTQ?e%eC%L@M2bD;3x*|QJM9$8c((Is3PK)m3@y1+>i_l6(15tZ4@0p6u_I`&Wt zf8v1JtMss~aW{AhKJe03hR1d-0gH6B4xn$_yFnsYD3;Qu7}RhXr4>X>nMmnRIg}=Q zR7&sIyZ5DFDD&U~0%zvT4zh_U$`0+$2iO(D9*$vnx(2;m-|?m^$_ys8+3~`H`pJae zf-^RLmq?X>gp_FvqLRsua_Q9jL3=r-j9}48<&?bNv9mrdNZVAUCoYPb=(uYwpymd; z(i~rN;rWXP_qqWkN?uRC%LYf29fl^{aoNjS#Z}IE_u8HxLVj?T?mSmO>O_YQ9ef;O z+4})>siY$u1IlAuL#0qrv`?1HN*PQppqTcqbnekuSSVzC)Ay2>WQ~IV%?? z3B9`v;Z-p7!O|w!&dR^b7NRJ>KuTrJKJq+pJ3?Q>zT@@qG{~_PDSVhgPf@?Iy?O@n zm%DBw-YxP(2OW6|2Ls4@xj9E(Vuj|aQ!v{|R+xzD#A@mv#*$!T;A`z5_s4Aq=Kn2( z!C5F*8~xzGTA|DXob-O(hGiQR1H&`ntN=Fll6ibOtAIL{)Mr7U^Gyz`c^k2K)`6)B z@$%SKgw)p=H*V+WFg)*-#A{H{B{4s*gU|zwHwcb`BGb6&5NnJ65*0B&wRm+LvGPEV zxeaj{@#@$Di0&f90~g!9DatEQY{8+-FXhFSLs90(F)Z=wM6FrX^=X&a5et)B5&~nE z=l>@MYJ5JVJ>#$D@z~`4@rXt+1FY7=XRI6;c+Szc2+iyb-t40j#QtivV`wR}N_Q!x z`*Ro~aP5TK2UfoaW_h7SDt*jX%$0F1(Jwy0RQNbhojIx8mtd8~Y=p|61?V6&OQ!1% z0cW8QwH}VU50Zt!8+OWGW(GTB@8M@CZ@Ds8p)aDj=&Dw*PQBi9DJFtOwsJriP!XUr zl4&)7>Rg6%H}S1-x`rnyU0=l+4k3kMozh{r3yCZG#7lp18DRP+rAz%JG8pvoXZ`q` zcj5ZW2j}Q^*&A7{aJM%kcTx~5z405#!%zqK2`pSDvB%-y0Dh?vvX!0;t06LO?SP5b z%{H;-xVo7{DvA?pjSCPmPqkCZ!(wqkuHbaGHX#{wRRJCzD|s08kttY`5Ibtw2mWm1 zK3TvXA!1~onV1deB~!Ggn|(5R3@pcX@T8cQ3#8M+SjVE0!TG{w9vcXr#Q(?Mcfe;= zbN`0|WtLSo6e_ZZh-{FpfD05TqJSbOBFL1X%rayO0wP0(3{fZ>Wbaj!3bOYs&`n#q z$4#F9$-U3LH_1(&_x&2V?L-Jxm=Lk%X}U1TOme}82V{B>OxLdA_-;0o>7 z@tJskSAGxXwfnvI9{cX#w4a?w(b*(gQJYS1Ye&hk&*^Ae`%D6snVP1z`Zgz4_Kf>_ z402$8bR3K0I{5pG9dq=W4jtpZ8E*aIsh|}7jza}t9SWAdbeqw~=qH&HLi$>VQJ|l% z>9<>_cjn3&3~DD~=u???N$_QMFjEYM*T)*5wp$}8gz*SQkv=->e7=RJ89$hGfWrz= zZx?qD!=JE80KaFuDrK3O{iWd~o6|Xg&A!6XgE6(b?F=EyZD4Vi<s;GOHl|vN+}6=Do{*ZY^xRI^$*|N(nwzwY=-!zrmUP^iW^xOyzZN%2fP3vufXUZTnEEw`~mcr14Pwq@f zdRZ*J1#h6BL@-~Gm7d9DF;ueB~*a3|1=UL}a$G0ZZBXa^!Z zua%}3EXxZoL!*Tn>AjvWEC}TS(N%d{v}mEvLW6TB#%4mX6zC$lLl?FauG^AL)u=z$#aqu*QE zhZxfS9zJ3N#eS5Lr_UT5QIpL+i~jGmK;urHU^Z}W)fjCa$NY`B=z53guHDsK6foONw1!Vlaf-& zjb2UOX;r9ckHCYO*9)20U^-l8LgFcVPG=oBW!N`-(4gu2XjnezIa3LK^EKaF-t+{}&)Zl^hZ?A515g5hmi{Ty~$S=7JV0^MN;+4oEb#n!9wJFGy9!;@@| zMZKGh$?9LlBF1w*yhU&(J0I+p04zKe`q*nY4I=^=1cI3^mMt}w-fXUAHiMzEQ)5_? zBsX0Kc1=iA1TX+>8vaZ|3|R!4Of?Xot7BU+vJ6SvMTOD&b(Hs)P*1QXuzf@(Nz@+S z7M@BL&7zGK$kp$mqABu!cm{9gFyH>Y_3KaxRvjhH;2yMkH*whKC|{>TNjPF&B~EK7 zbYSjpKM97PtD~&Giy;B01HRw!(Ea;ox7T3?0R|QbRvYUvGBlu1NNfqZBb#zK_C)6~V zY+V7x@kr_Rtp7cgJ8#EaF?TUzWDCRzUbPhY; z$eo*aXyL(cz~v>Cxv$lmcj(I2=m!rLv=qk&vK17V4a_ zBbQHKbZ-E+z@@$e})I*trkG5cPot`P1ZDXfPZs zpy((fShs8$+646y;7d+4f>8=-=GA>kX^84jy<7i*mg4tlKJ8((>u7XLg8 zuGjF1*Y9h1eJ<1+Yb#l(NSub_(lu>jzC2rD7a;dg6gOTFqnj;&#od?Mv1-OSKTr%< znHN5`37H5Tk?IC*xg3SM z$%}#df|de8MK3E#D6j3`j9d4suS%(k3~RCz;^UVN81VT3$5#UmPcs769)*U6p84QC zJCzTTv;+DoWcuEsA>*%ee0&OyIoWE*=29x)>>lbT3)X*Bi z2bs1`4z{QN+|rO1escf*{gWM-1XHy56aBxA{h@#V0nHe;PBtDTv2ck(&rZDPxN*Nj zZ(mZOfOBroKn~3B9N5Jnq|TWmV9(8t*AX0DL_km%m`E@}lnCkm$iUt9Kv?Gb5f66J z%Mel?RR!HaJVw_JhR=qMOD!D9zt#o-deI=hC)%8#Kby4S!77&Q?^95Z@C<-#y? zBo-OEasKlb@M?wXehzM0xVctH*7yB==gw!G0}rBL8euIdfHj~@GaTj1FbMcs`ldHN zXm)@Q_BI2tl0%0M)#n1fgA*s<^_f>Ph_^59VrXUG! zDCYkCaZMRMB^$x6YZCRxd(R1cJzAq(yLOJQo=h-{C$zv=>}nyf+|iOlz=hIYa5v;H zzAfGkylp!8!7+^X*xR>nbAE_sd+7d`z~IFO{|SNq$o~u^mzjB{Jd2yZdHl3)y=yklWXlRIkthoqh8UBh6*w$B(ztEV}8B%t!0Wm+&n=u{;F9fL8JY z@wu}U|LH{TsjlehpA^X}YX?}2Ps8~hPOusMkkgRvypy&W2>m;iADa1Y1LMk!+O=!X zr@J5yzRaXs@F>34``uQQ)0(a=O=51f@9_=jPZ;4fn(RC?hP>9`4OYZ^H(<6gs0g=O zp%fT9IqW-24s)N zpljxbwYBienQ)s2FjM>F+tCtQU# zB!r#T`^3xe}T0V#H}c-JY;$<7F#D^37rb-1QUEJtQ#Q`M*~LEfUV{; zv15SgeLI_DQ{9NGfgR&1(0f|!_*6bAD+XzwG92tmz`Hl(h76=Ae`R>vm- ztL{NG9RDtS_pS7OgA=M-5rNn!TOO#(WE+%`_`V=*M)SdrN|P3UzrnZU({%6(*U}n` z;_i6a_AD-Mz)z@3K2DzF^wlkjVDto&Li(C2mXO3)mKjIy4!h84Du_le&oPP_uWip2t?1Ng=xq?Pdt+1@RSl=DqR~GW-R~%!um3S0mB+Ist>X0=n5@=K zx4NOWS{4O!W3ox@Eyfrcrg0s!)9+^X)SGRE1UsZ1q*$Tb_ym8^f$7FR*YG-BpZNpp z_zuzNdQ6Ob8LWn;EzvQJ-)%>EfORpj3`b9-z(pPNKBQfwB78WcW5qS?Q5l%o9?(DJ z3mZR-A1qj~V3|G44YaYr)T&RX3G_d4>xMI}lWRhFctki%-r(ha#flZSl`IPKbJoF) z=Gdjipj}iJ5oj|{dY&=4`2h;lC;G6mhi290??CvkaLt#Nv)r2tVGT3?(gMN!!FpohZT zT09Kc&PIjXj~h4cBS+FX*6F3Bf37*+g!!iba%>d@=xfyElcce1-t;f5-*r5ml&^;c zIN>Fe7JplNIG-G_DYpFE<61LM2VlD`Yz$nKJ1hJ3Ge%U64q$A&Yp8(v0Z&iAuy7mL zt?)6sUt9By4OYD=ahx^bqHL8$%>zS#9*&Q6yqK)q|K>!kusBr>az7+LDlo651iz!e zK5_0-vm_4@!gok51l3F<7gVjhn2?#aBu_0SnJsya9a~J2?1(`98`$eTe;Vev=NFUY zJcUR9M%RL-?B?zmgrJ;L;j}FhO!uYf-4#32R=|QSsxM~u4+oi0fMKfEws1z3p=}ENCmjaCptBa zI3|L261>A7KsX!E(J)P}XW;O_N|ipAl?C+$nMU(NOSuwo@ zzJzc7>=FpI{nF7O-Caph$>dzSPD#Wu>^MQDqw2d!8u*y(BPyPtt5b8+y+BTE1xbg= zyQWgCa-@q4sq`|%-W1bBwPC$O9BjcMYa9^xs-&(iVU>sT_5@*{aaUjm!4-*`&VsTi z-}6wGkskDZ^MHBEZu97^IgPaB zQ>{tPnv7&|QFmSYJcyYhwwQqN$Oy$B!{f$;oRNq0(X`Im%wygpqm(IHTG)^0%{;DU zh5T|{B@fKSx5EVteM87F_mJxe5k7&>#S*eqFHWz_UB*PUnLnJ<4(>jdLiEE_;v5AI zfYnbAW-r9#bD=q@{wwG73%FEz>3w|w6lLEspiCSYg+Z3h~-@yDo_<4x8y`3 z`>6*?gAh7Ss)+Jd{DgWNH|Xi+Q%ja5jyu=fS@6?hCln`|(}bTg%}QxW(k~88(o=iR zaDEr5iXL{U2Qn~4@`@?u_>IC2mc=;X0keeumPFx|usrV0N3z#Io|A^9e0_08&2lZ( z9_)Vg{oV1}dK+-O5*&&+txjtENe!& zU${HrE=pc6Ll3!U&Ng!zM&#{};CDD!2G&VHodtJkqIl<;vR-36Om%@J%rUKKD#CQ6 z3M+pDhgm&5Q(pfq_|%b8dmmTJYv}8)GKXRN~C(frRvvhqpU3VjWV1R&jF={4kh%q_J4#! zomIH6f593%&JU%M_wm($fXaYHJMWkK^gR&^yU%dS{rh$KbQghHhMH#RF3$T#eQbe` zPMkP#@*JGw`jy*!Y(oYG`OOe{W*o4gCN2IpR=Xsl`>)k{9x(rhYCSRkzi0fDI~dQF z6}@plXgXZtZ=9I#&r$l)gIj|fSP!~=5r^KL=rpuxk{IEjbO+4GyEe87` z@z#109biGf?rVF1%gHp3(w1`!CK8}&2i?PPhHH>r;iiQ>1&@ag8#>e+=9)rzrf<`$ zP5(sQUt`P;n;^>7aMW=KcW5Q?Qt9Ho%3Y4anM#gRxXdKF1NOBU5r1d9gq~*J0CyO1 zKOSq`knPP7tDI04ex||Q7j_Hq&XBte8FGkzIP?p3NOqybQvD_4#jfzC4z`eeu^J0e zkKw8%Dy-;`_E4c0`~ydC*htafdXBdhAyXYt&L+Y)(i>$Y>!u z@EHK>L#Uqu_$RCsX@<2q2<^t&L|2^JhmEuJ zI$2lI5Xim_D?hC-VXS<@Hsg(6Y!)mXiCGfwG_)ov(%3S%a zvrmM|?2R+-?R$<=Hh!G8=IutG?Y-taj>tduq0u?%=fplHooG_I-%lgg#WZJ=vAJP+ z;g2Nky5ojzFTiQ?HJ1}DZpYHP@Ea$r^O5be~W#*G^Xq>K^Lgk9&WVYd?vQm<+OL4aiZ__9Oo zpUm+733klyl6O3plIzp&hdr1ev+!Oc6<~Jvdos&8L~o1OE0!o>dGzxrXdg9>&WC@}zz(+87x612IFI+nSuWAJCCqh$&m z($*QHIQ*meVzUzH{B6C9`Up=t*o5KXogLwTr%tsr3?f?}F#V209dun0gJOWew9w~t zkbS&&_ozh z&o>9%z))$KbM$00!S~g&5uf5O@G@%qdh;3ha~>_ef%t#dMP#w#KS*zK**xqK^y92Bt} z?c2lZe+UWWk%(Dw&)5M=P9ze@K#^s|6B3n!!&}%{Ket}a2=%55aG53@TYzf)cpPKp zED*2_XNtfwqn*GFSid&AcI{eH&}6xP3-kr|AI7u>-c*MN-=~Nh!;jmtpg(LTGO(k| zmWAVZ_=;HJLml~HZl{vaM=dfs_G=4)EgZw~${zVFb3h{&W5oWpWZk0#FK$OaxQ;+w ze8N9!I&_4Pq}A2HB`Ucr(Omrw6|Z`k8YLB>lLtdC3JFnYp<+WL6BiY4JzsNj;miIrPHG|~ z+Rp97F~?RMUr)ebPyKw#0xV9%UdDI@#j>x(NlhuigwEjQiAHno$I)V0{IBB}IyCoM ziql!!udW`1^^>yNrsJ^6I)nLBQg`Hk;v1JM+<~D1`ZikVv4=G*m6K7@$+FX7+X0=u zh7App2m7tr)CE97g4|>YZZ-}!Y}j6`hMw?Yqbg#4dOQN(qZS2OXnIa|T9I2ak#_^d z>7NL5)Q!WR;Ye{GRHOE=Su;<}f z^~)*bB0rX9(t)KJ8<;3h-uAH5c0h!2KDDVa+@JXZU%}f_>U&y zl`Qu175#V(YUv{AY%<@@K7DpQ)~~_c7m;5TZ&r`eelLukG4m^H-MR=r6Y-g3l&T(i zFJ|;tVcqa$6@-GEdp=Fs&PiCXb(jc3JIHW5!c)0PjB4-)$Dt?-Srx07h*wpeJ_0$< zASd|znb>r^pT?eFedWrm`V60vf9Ol7`{=%@VjA<{P3nQ>{j{XBBPJ(_i_E9v_;Toy z{tN)vM|BrkS@WQ6L@kl#%Tt;pwx%F$2C-i}?jq~bsUf~AwEjaN_j z%-jwPN0h-(7c~W%L+?B@0{OvKm(w z{t8%BdibQidGqGWn-@G`3R7z@ylU1V5g(V_5<1#36RXxSfyWQr&`d)7g=64VSh2e} z#@Ssm5&++n@W{x+c0#(z5tQd7j#b^dZ-EPQg&KlIxUZ-%f+JLo0;^5jwqd980Ajiv zcVeeqGIu0~++cz`I5iATi?bf~(x{aFLj01o;S*f&2#vAjF10N_yxG(iLI5{ZjK4?`zf$*1m4}OEgawDI`iD0&YLpXV?NtAwd zUX2@s5V*?X^w3P4OeeTXWkYWz<2(FBk>7VX%^0Vw#A)Af<%CJ(8~8ydm;hXp>F|6C z9f~VBvuAx6M(p86zD5#oLKh7OL_?5{`hgM-k>7+(>C5~C*CuA6DqIF{&KPefZZhoO z5|LONQt(@FE~eC)+Cu^TfZ!wn5&tHle8> zINGYFaRgzV*E1cnN2n%=$Oj5O4~gTl14gdCT(RPQ^00^_%{&+M?lmF5J0R$49EgdD zIe&#rm0$+zF!@%ArI2AtER~#AVky$H7~(19R}Xs1{HkZD%Tg_awDXXr!;)ahda9o% zY;OcVlCcu}%McYWx?EAtqv&b*+zaW1{)t}lY!k3HrSmzQDOp}n8Eb*?qL`HtQCF8` z|5U~q&(V0W#6Vx{@`By81M)gfD!}TnbYUzW=4PXSy=%vK3NV!&1r1UkB90;@x zIY&$H%V%Q6zEZEs`zRX6JD*IdS$N=M94YM)6@BG4&isY{xS4rT*I_4&NU47PCXMzo z0Z8x)eT#$pR?~xPI`cd=?6BML8AoMs^zPk!)0OQu55BcHc;38jW$hHRD9QR;cZLWw#*PkQ&&b$>J6ynUSw5P;QNz@;0Z z+(~%C_R2S9eL_{IJ!O8r;p$CbXv=+P#j-ex7I<~xuln&gm$oh(B^ap-T-4uG#vftf zQzhVz&8vr2SCU@f63+`ga&wTnJnOF(%h~W(y4VX=eMNjC zmaR4{+M)}$;E%Y49aY%9d-tn)*r)ByC2E@SRhlLl92%$xEPD_Rp<@ME7^%gp>_q-p z+bvT8UWFT2o2|g+f_q`<_!hQIz%aIpT#Y(nm?nq75rcMH4xy58dhhcJED+W|Dxj9& z4?;Cn@F85IX>f=P4V6WGV+)^t5#yH#pYn<~?F+2c5;O}An4#~Uhl_t(m9wDoEJd@I zEZKVItV?%z!wsrkyThtgLB=zo&0;F-+jg`2Q2}tz?nP`<57D2Xl`B`Re5;nw%pay` z+ONf>oqTu*l3!zTU`e=(_?|BV0@gPd@@Y$h*!u=dyLj%Ze%WuX?a64tWcCQ1ZT=DF zJ^Y8$P^>;GKKurDeadMvkqR)w-HM5Gq=)AdA*`K~&mTe(;PR1gw|uiKpTpl{p?7x> zYx};`p9ENUDKyhB#x;uHv*#)-S<%OIb_oY=GwUvSkK`;q0uqLhI6`{0>}397)Mj%1 z20a?kbwsRqlV9j}MGtAhx4Ipj7>(SvZ5tizo#wh5)uVv5lwR&~BT_K##iW{VIY3?W z7@S)?wgR9nrY%drz)YC}%Liq8)xoCtnF+yEFS`v6=DVNRwiUo`Sb_*vM%=VxfPH1h zz=nChs1@bQ0%jDJk)?U%`=EB^qlD|^$gr|=+d?kQt=3a>%`gmSUgFIAyy<2=-N3J}CzWJr*s#I&g{u=O^zR-#-B;2Vywh(ilA%Z-|}4iv7NqCIJ9%JIKBU~+v8&$43upv@fP zS~vPg(UWtph)KbLh}v2kzew4G$k@$pJyv0njxr=6@C&?!Hd+TEYJZESBq? zb&0^+wr)-%8cY+NDN?Fz*|P3Vn#s!g{jan@`5p_S;7IZXCB@Y9ez2F0AZWNCV7-!c zcHH&rF*qha2bR&Nm2M2EhEQK|vaZN^oU*--F7J==c1{nK?$FT908F&STB2j%m|rU* z5Ft3t(LHmER7+N`D1tlK9-Qz=zWxN?6?%%6K$?5$y2Y@GH#D4B+m5nS*?Sms&kqAm zz&Nxj6KBXquomnKCeD(ugO(X3u?Wik8^)tJjvZ+Mi>#z?UJ%KDE254q`8TC}Uti`* zd9P_jXYqXohZ--e*dXy8(+sYUfjJhXRthCiyZib=n1@LqpXw!i)UeCL>LAg1Z#3EH zPo+xOjRSgN1zK-`oU;h``O28lR9Xd=a83v1I zg;3z0+wJ}dm!lf~(Rc@)M96oFbQjbRg2Ne)E*ZP!I*u;mz?!?S?c+cP1nn|->C&*H zOPffbXPQ;0$-)Gews7IXN95P%g_@4m-{r<1;YB|!69>1d|IxPV!_R<~iP!taI>@tR zB2MG4U+MEWZF(Lm4_l$5gi-9v2VjZZlqRTYH2m^uB2-}N{WP3<7YsAk1xuGM*@T|p z4o8!UYI?klj*XH{g8A&!F+5nJI1iv@2OagJl2bLD{9ZP%)!6BDyEJ?o*MdmyHTb+} zxe0{ZQ=bQ^6fdk-M7|Li&ov71P+Z8G9gfspqPJR=Czv&fQ~3t)$qjkW4^Xc6;CoW$L)R?`$6=}+6StJuh|CPWmDz{@%+qDUy%Y_vu*R#V z0yuowM?23@k>oyLP2oc&uo0d54nmT4gGXp=fbnW<9;bF%42MQ5ofac-O#GuWRf7ZA zJ!!iF3{H!k=dv1V;I!Dah)=V4;C%XVEBMoGsHD()driZS4@5*z-;>%Ee_pQ-y|((O zA_lG&AM)uoA`Nf)K=P^LMgL*3yiNC#BVRYA-&G-akBo%(01VJnXPy7^xEOI*j zJz1ZCim#1(PoagHB{MTog3zhkMFfr&9pu5b^xG}|Znl)*v_(9UiSgvd1Xb0*S;s*` zw)vz<=1puWH`i8DGFPt%LLPN9xyJA7gx+OnJc(VnAtjlgzHNnng;7zR)X*9TbxEDU zD<+Vap<85h$;TY!u`>jQs2hv}Nk7}dV+%=KLv;IbY04e6l*fF}lauYDE>dR0$D?@+ zwN8T3O2VLCz1BRwV9y1*g<4;tE81bw^iQ$!RN%G1br;FrPaIl84p~vV1zdqPEl`23 z!+|XYo;%voMZ;k!8mMFNM}i(UG1p;7!Y*2rKwU!Agd}xwnysh^3Pw^CG$`w@%>k*F z7F#E53={)Z81jS#O7zU)$?|g-!I>W|y3v?WPQED6BmhE2EddgWi4awE2T_dyTRJgQ z(~+VfO7m1elC+)~mfyPz9wgsbD|yv_d`KT#Xp)t1JyYTMgNPI37pF(~i!HG^e7e!a zzbJm&5$b1twl8|9EDBST%I3Yqec#0z>iJ7(83$W7~%Mu zfUW@_MEu63k^keVkF7z3(=%DIF7po3F$tuwl+$xZidC-;BQMnqy-XvECuxE5Qw$gK zQ9~Ty7{lKa^%hi30Ku6mCL8+}Z9XRoM+s&{tQ{F_ICKY(LxMG=Z(lQ^x`J0DlTUx^ zI`nL`E+#^nHr7MCoY#)=)MC7wXE3p&4k!5**qoi0x3~t;7i$8?j;Cgfq_p4-h(a?d>-pvrgbi{T_@8w@h)iAALe}O2U{pC&G<-uD3Vit8 zVY<+&ByEbU@b9(2rzuLg!r_OM*vFDno87|xX}8!9H_%l(CY(OM7 zQMbgpOywJ}N|IWwzLjL}N#bPPU~bJ(xq=`#|JF!z1SUlM3N$5g{Xo2E8o8DH zK(No3yhbwbd|p40+ovRyi0vP1PkFSCZcCEO2oYc7|}iJIsEBAQT4 z1fi$Ia-CME>4%AIQccejFk`%9m%yU@h)anL^`JM#1Gd)#b`4)wHm3)yYJxgVI9cwB z%Ag0>9ILJZQSpx(r3BV96V3b4vhZWemUVVkXl>vhbbbLA|C^S0R_0>^iz&l0b$V=6 z5+)g!qcPbjV&J9>_AWF){y`+tf!#R%zRv68dgACwns4vk#EF>+^>(IdLTIQ5?6?~H zn7D>nX$ZtzoX$;WFmS_E<=NXge#MVv%}KRk(nC6O1*lRS`LhI*15197@s5#i!@rRu zf4ee{?=$Jw&-%lszK>p81y>(Yj~_8$*AMz z>>!tUtTnl6GWLmBWs?4;4hG!9Dix zKqFrLpU}Qb=Ie|%3tOmq0$_NcbV_FiAzL32GE<`1SR>O4dV@!@AUi3O+Cb(&a@j`` z!9{Y}5-3k9X-vg(ogn2lM9ZnZ60V5J!JHv z>U`(~?l$4Lm+6go_CF`q)g`$?diDJpgCV-Byd@fkhK9OA<=AXj*I=h59k%BL1KZ^a zm0=WsFk6O!Lg=urjl0S)Kfs_*7b>lUALQo;68aq_menuFrLF=bsI0ml#l+N%xDF|@ zqqXysHyJ?ip&BM@YiJPt8x|_b(G8)lQp^=JyK7gt5YCc9cJAQB(6FE&Xwu*yX`4yp zvsj*6p!o3P)8}vQEm;GS{j&oZBne(ViySEw-Ai9eba!f~uLuqX?!j*Z0=hjSZ;05q zjBko(r_A-_8xhL`^UE~kj&))N0tZzPHP(-)O|gL0Hq#J)XR5Khm&u=^xEZfZ$XSyX ze}~XdwIWO*BtQY7n??2g_K* ztoVAT-hYbuLI2xILm>R1E&|Jng13SzRzx74Xq;~b4u!scAjhyHup8<`9y`iW;3#Sx z$FL*d3`&W8he_&7wkS)rfOE$;undNVc1}|Dq(*6)+fJYU7B@sH3gpZGd<7rXkNR^CVDCQs6)vAYyu0gd!68W_rb+yaoUV3TBqD6})zl1{g^XfOTw#E>?`^KKY4pYBe zek9VGibXK7J(;b<5awk&#lwX7CVWr1zzz;;Vv}TPnAq;i##wrf<9HwoEgwmaSP_Bf zp(!V}i$RMr_2Cp@8eLo_VBv7ey(hiNc`eC*3^94-__H@xwJG*uen*w7gwsI+nKvz} zlLMPgNLo@-a#9*etR#XR-RFx`lXT2;Y$0{2d|nBLa&*$|JoU&`Rc8ZDQ+L`+ggeb= zX3?Otue?29Bln$kcPlO@KbT2~zt6{O?M0p$|4e;o7?kg;=Fd7_BSiTPfRVTodxwywjtmXP z>tRm4)qDC@tk`fyv_?p<_`q+WmD58E+tt+*t9aKywDbPX+{y+9k>fw~sOLnoIREDs z_!@l6!)Yj>m%aboGQ2uC`l4a`$8BKCA=lMF)Cm|3dWZf0i1qC@IvDoRKoHXOn=pa) zg3C`H0iI(8%q|(^ti%>$Jk*xtsPf=YtvJWABXGvb*6enaqdswwwH$+qY{Pgu6Xi(o zhSiW`*pb&Yd`OiYB&i%FY{Mxkld9LRYHtbkJ)F%l7^@Fb@x687RlCrCUn)@9r7iU3 z57DZ6eAmZxG##wqGjxE5(S$ee5a4gHB zPkF$m;x3llGfgxpCR7hT>xBw6Z1`@&0W0<_#0TEyhhoc+iUsJ(3U z>eXwmVEj9yz>!72AmlXt#K=PS7LUn$GC=1wA<2#kTEeOL4U0x)a@jOceb}19lecS4 ze=DIrYzs|Ir&UXgjt-hP{*`&#xHM7y2`3W_B@XP}m5NPng|%95b%Fs}A_8K&LdzkmPc0WcvDHr2Z2^dcOC zxdjMxx&*@Ix7aG?JxK2`!!J5`PhG`gsPJ15#+?AAD{sA3LpDmN0N4Od$BqD&!M{E@ zEXGN3PlK#r>aX!S7ey!sMbgzzph>7%ODVfr3c1(4l@z^cNm2f zAgBd*9Tw_R_HJN_glutzJM~~yaR7&G?J@|Ir21An200g`1iP<5<51_dfVDJ1U55q1 zWeOECfn6{9wS~F|Td6ZLvq33zw&J#6eCab(`HIcNU((n zEQdD;iRmxV%vYm^ckVv7NcvO>sIz>xl8lxruuQ6ldW<0nB~^;0NsJ20-p+y59jd>m zy-Ixt1|~tTExEM1*N~k@p#IUm0#+*pxHM>+Y6%edQJ4(YF>-N2O$YK%W|WwEFlPPw z!Lxon^SYxMvW=x}d7u7q+@U4+k((b5)-OY(L$MFhK7+-hKGh{Fu*=*cne@*5T7n^; zRV1n>s-GcU#8WDWWGuf=F6sA%m}kiiP|8^8d@(A$88ErEr{)8adV|Dw6O)5@xd-G% zhoW1^lNwI&TXLfULcRydeg{@B;}Jjzy+{(PiePK^-3;3}7OF7RfEXQ0MxZr`*V9BD zNI1jR$s%XSlh$59ejr(j)FRGBw)g7QKQ5)3s0S|i=79YcTzYhOLcpmJL=u;a9bu{D zv&qb{Fh#k^=BnH!IWlScwn zF^-fnSd$%CYhq$oNn9`9K2zW!8B`a-Hk#ET+>tjs4P(C3yrctYx9Zni-`d2Iq z@*N0^vu4fu1ird=Z4I7UNytQ=W5u%nNp1<|YYX!xWQi3Kh(#pD@${J@XNY6)XF}*q zlKd3{0!8l+x5S=7;)P{Hnl^0;mW+;$%K6?gZ4?6?*bHN?fTYfKzLukO?C}wQhZaIn zIDF~&Cep^PlR~CRG;~&1+kKcr1Qz~u?ATG-?em4jL{Nu}s4c<}9TLe2Cx#gHTjWR* zT%eVJwMpgUU8Dm8dUXr1V{-@|W5-Z8%=StMe#AU0BXQ3>wrDJ7MMrW6wScc#CYh1& zWJL@yU*S8*7CRACWO^nP|HM-W=E<=w z+N-FXi?p{>vZ<)s;LVIYqO%ubC`bVNk_g6PL+WjcJtT8P9U6a|gunfzMp9yru5f>1 zY^gWg^AAM!dff;vW^ux*4lQ!n3Kmrip6V4=Odwvw%Ed(JMf^~Zwxb=$W;-HKGnfOC z1PGl~pHGa=o}?Wuc^Gg|&VPout1_Hp1b6lF#Ht6slZko)>5PX(@@Ghr^3#8j#Hkv# zE+Jwk%Mxv)T(5!9LJt^h6MM%>geSZ*NtnzwPo;VhekmWT`3)f-vT=qk6HS!93t?#% zKaIoa!RCjNOq3;Gh$m^1af~j~m5}wUEKBbqYG(rT<3?sQU$>_5N)?NoT`UzF2R9i9?PtILj~g(tEb?EqK!JUe(A63T>(^mNIoA}! z3q6-?ZrF++{o_g6_o>AJG*SQ-=@^}F2Sgd&drun#jU&Z?nSH;qS^`xX}ca1?&v0h{_Su|!ExqcGK*Dm%!@%fR}`ur65F^Mvh^>3xE+zg|w<6n^*s zFaPo|{{V;WI=W2HXW(PcHSYN%d|XoE;zA0tim-st3XitD%R(r}G!5f4>e7B~DW}>0 z&CZ=$Jf}Y13c=A=W4Pp)2w;<$C`YzYZ(Zf&p0UX1F0!w`yiVnxz$MU5O0Cy$D@~de ziPt!<51jpaW^8T*m&j?Ng?#eCJ1*N2{D(YC;MT{oX)Z&&FV3XfMr9$#Exb?0hhuoB zUIBxqpA2ksTE7WzN`}A1z$S_#mtMrF&i+LHUoXvVnFD428f(&5130)!gugz3%q^b@}sGp!*tDe=aQn^296Ee;bIyy|EO zpWaMN5aQ480RPE>WhF=!>;K*Y)EN2b_^MT_=k^o3-f)<#(eZ}gbhe!I_P*^8Ew( zs<6s%WUT_L3{EDlaD5On??P}k8#!sl*k9k}x-*b-m06~nHcphsT9mU-guc_B%&J#* ziKZzHq-Z_HN~0Y(s2D2Ak+SlhRAW2fT8Mh!=fuyi!R#mSf_Wk&2@W~j*H1eq)&bhe zz|PKbT%uCc!3lmaYnB5MGWfej{pTi=+r6ZvuXRlSY)Z{Uux$(<*@M$tN;F#@P2Z9u z$4}&dY|;t6nj4`i1gp9P^!)Kjl0hCGFxkvw z;E~>ar-PpGQnoQDi-2|1G`DH&5NzV$(<~CHrRhbddq0G7qL(AJ#P`7s=wfJ9u?LD~ zXKE?k^1}fw+Rx5QIM297+Fgeln0@E#*EU6Xii~o3w~ocy`3ig?|6Z}c!>*Q!5+A0E z{NH*eLktRJgN&)GoO(`&{7O23W zl*%Okg_Nwa!cw1*b(%9X3mqo^<2@c4T^x^5#Ybcolan&wM!98K2(QRrulF3)!L^m8R(aQz5|O)&&Fv zNM6aV}t}-N8o-!{l3#AB-5V}RVC+*Vt@F$#yyjz0r zK_h4nc!*9}L(o!F?~dqe=WbA6Y{KWqjOih=|B~@sS8gcBMq`{?5zIQY&m>sYQJk+{ zg!D=*iIdJu!1Tg0LI#@23%_MxuUaL6XGUS~{#lb2f3FbrO7OdcvL`Oy5R!MHTJ{mPf$8=#)sJ=qutw z63va`M}d$3^8`@0?|f2I40 zq7s?M9M2JWp3=j~k(`nq@v8h)O8ESmm2)|vERM7VdYrg-Wb4=>GOVU?6@Hh2WzRsE zaM^=@iE1e^vP2Eu$qXe{=;l==woAEq;>&oFC_W4BWU9jrhBwH*9|*mC;r>;43LW>D zp<2lM%M|{W=1Mk;9G6(B4H2(nL|972s0OKBdX~AP#L8VG@y>ZQnr!hd@Ve;5WZ))q zE*SA!1U#U##2yjgdGu!}wv|&0hT5>TC2kDg36{zI)p>QX;=)3~r>GCSM4Pa>W*!c_ z1P`A|Jx>Q^f``w)y&m{WRn{Ryw%^q)EqIaT(wO5~RDSW2#Y@_8TqDvKFM=ad;h#9f z1GtlG5ge_GLqgU_6gMu)`_fAzP{VQXvr$m)$LRppAVKoM7fhs*^-Srx%ss|~mAZWA0Efu*jWo#+RKtWuG54)|S zf4nSl0t^#9GoU z=UC0RQ#|xe= z@b1s2qjWe}+9CGuvGfqYV`T*bo>#d<5~}Qlf@9+LtYS`odmx-MoIiG`5~*j4KH{-S zBw@MPBrhiLgR*u|y7Y}fue{Q@-aFysJl8(nZI9_yBk3vd%MIQkue@vT87Lvg%G-In zsp4NOrf9+_Zd~sW%VPYSEl_Oy*0eP<{bkZc>D>#D%HaVO9dHjq?o61leVF=4YO2%n=?dg5ZPt0esI1a2a%H{QI3iYe}rZEPCXKN<2F3g zB-1e=0)tm~I3cPbRC*E&(aD-r^0pIma~>1kK+OuqJRRnrq}F?lsIk{wYRr>fS8^ve zTWpqIHE#UhTxbL~ky*tgODSSd-QxoB^ZG#^yfH2v&`8wS~AcPHI zLm%Or9r=%RT%^jdM5iS}o!5pQ6_mgkDtwOI$N4l9!R~Zv4|J6w)E6;y*Tf|2Tl2&G ziLWoL5?ty~b2CO_EU|tX;C7;)gCteGg4ap;lzBxyEuqUlCDw_M5vu%t$4WDNd4hu- zZ!C8@y$KFbCHXR0Ewfds#Q&1~qAPBYpr+EIy#{kmm?TYbf@QyrB^y?ZIfd!5pM3ZN z=Hz1F6P^1g9?c`Dyesp_vILq}RnD&p73)a%o0Xu`%vG`2>Fa17Fp@6>U!=lJXc(3; zfnK^&2e5Ooai#kttP=9O;Ue3dm$%H%8R65eV6r(6lbl6N)N1m{MR3~q=nB{K1B@i6r)AJ@3k~l6 zn4WrBYi^8?xNpDh|2&)LhsUY-Z`)w}9*)68 zT6oy3Fqe?G7*UP{%(02c6qxJbM5Tf0gH5q#@;Bn7x?163YV2-$VrScXucX(}Irbm#Q-qx9+qdrziDaA2byKbHf~Fpt zI5713EggxUXxn;iAwOFAwT)~>7WLFE(Ce!?(3nTQ@^Pl{yl#Ghw@bnY4iF3zG{9Ra z`6B^*Df-~tD&ubIgSABQA`Q<6qwFoX{;w$*w-yv3nr9x}<_wFh*E+H0kRLn~p*Y4d z&U^kIEPw@#i5NS+fz6Y+zDzlNG=z zf(sy7d!qRUcA}J159QxO_0ATTK;W?I5G)SqB!#k=vKHvRm0CG3J(BD?m;u*Y56;h7 z=}Z8wPlX+WF7!^JVT%((1^Y~ojfDcqFkKw_gh~t^ zu*s4%brw9j&ic890sFy&-U<(xr!=1udnkF?8724^b%3v`Jb>OHIf78lhwA)PI#10X zrk-{w6zO~cn)ximQDsb8{5_3liYznUn?#l{Y4LZL%jhwPe27;{i}9D`294)@{{HnGKU+Y_P7``& zbMt!0*vJ7NTpaJbeV?aW-~qeO8M@pl6dJh>KU_URHbfBf$cq2V7RdK~$h~7tieHX- zM-(kMAJ!2QG8KC5QOq&~U2Ht;G&pkPNF)_t4V4spm^7jw{Jhb$^w%V#l`d}mc^F|n zV7a%8eo!8gHReq+S;Sh!k`VWp!hxYaF=Q>wc0gDs>VXXrPWFfTPn$^l2?s_MU$M&Ki0N zhTMUYB-fJ6m+4lEb4D#WiHjs-W`iOn5~9t9Wzb++$f!%?vSbb=?;vBL#|%c^CcTHi zzL3)@ld&!LY*N`?h`cV`xJE^DR@=TCn)Ir36z4PiENyHEeZ@8@cNwjG1QhENTvn5dH`!cZ*pZn<#Uijx7F^e~~Kg#7FCR+rnAYztsXe=oM51 zM-Ro8d&L7b)B|?h19rlBaIBf3?;Rq)>L5@RtFaz9i4GH_;gar_SqhDsQ> znp@?{BL34BC{%xL{LwZQ%1hFzPdy^R7e2MS11t_+;&lusy(fVA|HO%F-pyN&3S^Yy z!4JVz5Gvg08pi2S;+z0rnWwJN{Eoc5R(Sgs&!DMc`1=)~AdR(xX~pdYXZPD)T(5r;@>e-O@-V^;P z$kjVM#qqB1MDEsw>DGZHWgx4g(>dM`PoL(gpccc}Sh&*bf!u~CkL4Kt1Uw&h`2A!W; z$a>W6{#Z8Om~S=IKqGO|4^p-QeJ(y(O0DKufop-%`=Qm2OB<%#6*|Nt60#xW7KRGYrxQTfxJYLJQjo4WDI9!c)A9pSY%Y(PG8o)L4$SDdu)yV zs-1UDmZrgrxvs{drzo)&855M)T-;5Gt-;cH0$u*#4Iht2+diG-nHD3FO z74@#X?+JUS)}?dPG!*E*l%BS7fJyTga{9H`-kvmh7raPZ zc51aD+D~EkhC=xTtMnSrh7!q&O=l+{NV5YS6@+HHs4ZPm1tSwEiMp65R9+Tc6$&J4 zH6vNbRaOa8QHdeNgaB253>A7^=~Rk2o%&;Go&EDIy`A ze`3_9ZQIqbF5{8pt==B|hUz_z^k4aRaJj>O>io2@FmT?xm~FOzJ5(oW<)@9H_w(vv z_T4&)kkmbU_q1Wf-Sn(fveJ4d^LWnVczzC^WyOYJJfUaLp08L8h8PBKX&SzieEcgX z8TG=6`j?Q=08}S%J zf=`Y#>n8g8q&xLoWc#YN@2)yd{2*TYKaRWD*k ztY}N!Q8y>GiiqJ|aw!znHw7n&0K|8a*4f{>4LiCd*I^UgSzLG)Nq@nq_%2Cv`PP?% z2M>NRW5U9w~e zV7*v2OJi+$Ha5=El6J9R4_HpDEwJPSVlaMEQD9lo!F)H@;!|R<+W5rDWksL`{0Ge3 zy?ggqnK7~iT_t|w4*68lQ0pGAZ{eG(UfjLnPOzOZDHfC=cD`)ULn++7X9KWSb$y0% znTKzTT5nj|3N{&*&NffIoXRgMrUFc%G#oYm*s)`;7iQJaNV1|$zy11Bc<4*6JrpS|i-B#BdS^1Qo3ioki)pE}bF$Z!j8INtUB;WRu`Dzc zM*cW7^x=BGtn;8_V}^u}d91+^K(23xKOx;~^AH@+Tck*lyyzE_R#`;M_)1wh-JmCI zmIu8y9*&*VGGosm`+^ZOU-WIfV*%A^CdYop)G zW1w@%TaB#-D4mVV+kNwGFip)7Q#9k?ny{Wpi@#5cRriqQM;sYua7lP1!oDNRtSAkq~g9SNNfdT4yZp`$6tf zl9H03L4JiL*!8FODFB(9E)VeLY`fr0Lc*B^ZDq)%;<1-6fl@zsH}e!HH?GRqg@eI;YEn(-80s5Xi71q9zPa$BJIfbdePC)Q%#XFxANOo``A-$=;RB)%|SIILrnLZo9I;7MnxRX5|j&mcJ!@hFXC}Es( z{0*)md2;z#wnpjl@)<7(;{|T@kDfoUCt2U10qc-TncqN%MvZH#mcIqT*F))WPEoAUmgI!SGS9DoHM|kGJ6+L7I=lkq4%t-< zO;li?#|JcyuY%Bv3hY(V<;|TC)dB@pE$&cXz;dMxl+yxZ*Czn$b3<;85o(e^jIomw zKT(Lmc~9}MkoBw*La555xGUN=RU`9glb_v5vL=42vb<5=wX99u+E7tK%b1-7r=ly~ zvlIBeZrzvAwLKLi$rE>=yPbP6fYR!NCP{4IBJXYmwhs14Q`cU`8m3zJUDcDZ=J=x7 z^p%N_;@f1Ok6H49h?TlRtkg9ow$ILqFP1epP3Ye{SgvhS^9R_AR7c@$I7#e20d~6- zV2v=|YsX_h^B=<4gDOvn#POYNn)95F@$Mcg;mKH4+~%mu6nQiR&V7w#vXikiQUZ5r z*_h&Ye~j$UwV6UcK&hW zalkgte=85K(h5C84lC)D_?iB^T)^JZ%B^|;c0e~K2io?h6w>Joyy?+FD9^=Dwb;W9 z_z#$#=*6qvQgtdl<|tiBGbJQKReV5tZL6&;>{jny)?7JoyD1YeMT zr=mBERutQ87-i_w?OGeV*yq*IFowJ7)E{ESQ`Rt~_nKG@L|Kd_o!IEbR1Gjz1|SgG)%`6>vtj5Y9qajGf{*yk9Vxt_UF!{34Ubi7<#cDjC8Yx|^U z(ag~j%_h7ZO9!{r?!XQ;9jJxUTWB$`y|vg1UsqM+DG;qsWqbWLd^Eso+H(cF%IojC z6Z*a88k0b7NhMbsAI^z#uEMLgkV;}&&@R|pJrXvSjkyQ5pWu3@CA2*qmb<|I9|eF0 zC&HaPC+AkaMc>w19PcYcW z?$OCT0E47x(+Q9^DFA7+@Bo#;4^SDR$EcVtcMr+|U^+4M0F@7l?g6Q!Dzya$NeR~d zK92ysUJTacGGIicVf0ag6+&nYldkGBSGojyz@TQjW}4ZY_)HkuHqPwEhNAkJg}s@x zgNAz*lYFSsjGiweq?Th5l#0WbbOVdM3_O@ig)4B-z&%|-#~WC(!Nwto(8b)lye#;M>4vnKChH+^bSnkGIZeVIEQ)gVQjQnas(;DS2ap(iUUcC60 zEMYaHym*SwY+`bkDq3lNI@&NkchX&vsjWba2 zkB;-(?v44bn>xRR=x>p7u!joGJrvwkY^-UjLV*_eex_@BN@UuF_egJ(#ZxLwJ9}O1 zwDPV@D)<(hCG~Y}F&YTx?6m>Ti%?zERQr2+{uH?OvKZXuiShZxcko5o*w}=V&%Ex3 z{14zTNw8)M*0F7yW!YO21IqO=#%*OXrIeos*W;;&r3x&Xqu7;XvXFG4UIE{IW_Q#TzOZvoSL>4wy=Y?g_~ z(HCNmkzP&I8EoL|YrsVt#{)&IYKYl9K&|?kh#}PC!w)x|_2Mk4cVw|v!Nvkv%A_p8 z#%CG~&T@{D2Hh;)j||_f!h(2#OZsz=`x(Y2f!zsyWf<-j#GzBqLE|PDb_f12-ggHd zIzL#a9&psyluSxSwEqP2S+~jX4DrYq)#>r@A~ZxJlBp&oL~mb%SV*u&4m5f+5NMP# zWwQcAlWqsOC&MTl%#qDNuvJ>RSk1EZC?qL~q9JNb0a-;D970nR%!|=%n}A%TW*VrF zoCOE-@cLLNgqDd4Q1JfWlLp|ex{tcRc_UM22DUQ{?G({q#gM+0(LOMKA=RBG<_GiI z9!+_C2E#L&#<)8+Vr*krl>Px5O0$jf-LZQkeM~FcCEFm`n@NdPz@`uj2YM9~0P1lW zDtf%qB?Ml;pjS~L!Z7xy;e`4e2-`3KI|FB0nJoMRKZ1V> zdLuA!bu|F`B}q?nD$$x-c*8-%*gF~0vYCe<8BTk2Rmvc0!jcdDk~cp4QLB?)hy zQdt2#CjEaafx3y_KRzu2LyGxiTet@`T=BI1p>u~n;& zw;33><1tvmVI7m2iSKa>JlXP&Y?#Y}6O-tn_`LIL*qMFL^^xS;p?|5?!hw&fk3HCq>2`(6kMh^;R0R0mpHON3= zWcu*(S%>C0gi;v9d_Ej7kAnsK=+tLn!Boz}Lo6vU6HOsOqbX>b4Kn29K~%`}Q+1LR zV#RD?RzP?>K#ZkcO1>!{qSpy|r-dw9L`)8_5CoVuI48l6`l#%`WZ@{tTByc-sYbs#XHgBK+V|#1$bf7%T zj20N@@=;wq4Y~fYR&ED{J1eSvu`Vz|Y2aH}(JqZ41zjWO7Ay#dWlGm248eMIGk>au z@In1ULqlOTdw*Xvr=%Yxi|(e-@<;2X(12^ z-nwDRVtiAS`vtIT&A_s5gk#F`V09QE!b|;t2uq#NkQOkxb+=e+OGo@9l-u0E=7+Rp&LaPRXv>HLLpvlpKG~+wb)iY_ViUf*1<4l z>IxDTYYfm}g`j(@fzZd$5!GRX;J4RdAa~{g*he}n#E25QDn3pxzUT|^zA@(TFHbZ> zxt3w$MHK+Fs?a!SF?i(_6DUkmCj&<*T2zL?Z?{Af9olMyxIb7O+e1mu(S5P^Qm-Pu z$xBx*zhm_XPIQrMZwZ*>qApYMTTC+{RbRBiT^pNYYjU1uUmKs>hp#&{+tZW9^?j-5 zvhNE+GYB1kp6wavYzAk`axaH1>P~e`!1HWX;*mE!vV7uQM(w5F~L6x)?zO4MKj-&H}ZSuTG(rOeR>{NU!4`+ zYr1cq7Bp|4IHgbnw&mj6PLTJ2$%J)=tAF3SS`49<55UH1u%}wC{3!#UG6>I*tGh_>PHB+MdsGLvjOO=NjK z9RDTIa#ORVNKnu>>G-6$c5>m_b?er_m=ug5i4)D`60P*(pIZwWVVkRooti8v1kU>N z<|XcI`3&oINrI0F|HBfPkB5pHmcL+93Wgcu1?;8FC8a2-1&o{b<*|UnhCzSWTCkM! zUL79u7+K@kFT2)=Y0N`SV$F^*svKbmtEB^W8piICZ{*MaS%P5*w$D#sVNu5h_g8W% zgTOFjj$z|Ctc?Xxxt$eVl{Mv>c401@3SJh@Y)sG^;Mf?$DRc#T;+v&iLASR?4EDIg zZa-K>|8j?2{zAJ9>?F>3F=ZR3Sc&}1rOWdEY^Og)o?odm zdUTCKh5A9usjYpB|97xMuS28$WSKHgeEH?|+h@Q0GBvdR@vft{n>G(Ouoi>8S6XbRem_(@EH@2S^nGp^ zMm2R(s@*n>uhbAahmCNJRrh=%IjE6>{amNntecGIgIQnQ6cOz4o6jUleRrduAbQN~ zIF#xM*IEnBUq|z(jG|Gr_4tFAJAzLYK&bY4*6R4is3=pld-wo6nwl+AOJ43K!K-T2 zfVc>bdYOmN5gHHszq_aaAxI0ue*I8_;K*f)-Fn|o6nY%~|6BqAA8olUIjXgwfKH_NsOVyVP~@Yw#(7jXJ}9A1Mb6OOlQ5e9K`YXaM%kbOOAm(s?6ZXZY+;t+q79t0m|M>*^S1 zG*j<<)DLH<_LwmtV?x+CZN5X^(XLF^TWyYv9|Br|{TPq(VIQVhhDi2HMLaO|pViKX zt+F5(X8|Fc;p!+n17bhdezJu*sE+q{@kybT7&n5~q0~Gop4b)YZl61b=|+nek5DL~ zvyV=F(4CGeRXPHYd)>umt|XXJr(s0s?))0O5Dk4pwc)!RWCTvor_gaFgkVh*j;o@Q zLS1QrtyV&a9$lcp3bWxTwcHpgcEal937Y?+*kQG`w1r}e1pzBa2fGex+IEz2U=&yO zY84MLwf4eLvR3GATG_1>1|>(7<5@+|lY~3>$uhwTVS?M}k$_K*P+j=lo< z)jlF47)D~(r{dqN=zWje(V5@W`zaD^lomds<*N;LIkmxw>WIFr^aRXELf(|b;Jnzr zbB6^_)?e0ME>bZ}Yw4MaFWZfesJV7(y4IqdtjL=s56Ab(d9$z`WT);OEqL48L`;Dl z{sDiJ)AkEbIDW8!Kyre09&opX!}K@tz!~%8OnFse0_U=hS;Xl&BATb*Z1%#yI};&* z1w-hIgwrNYyoB*7POwcRK$t9s9^NF3ue##Q*`HQScdoref1}bcj6c99Sda=GFJlr4 z!FfbJtoVBXeQBFz1-84fjR1vOQV5lUkR#U;ra?~oV*lKYeF&xD`gpby?`bC~9{}TK zCxl?#n=gM4!kR?8<*J0c<*ooKwB)w(r*11UVq2cfdCkPq*H zb*+=w;ObVc`Y8bz&WMj^*W9h+Aml&xDn;q<7u~V2OC$4^r!_tHUK}8dG-(H!MNly6&+|bF>urKtfoB;1B04=Jn&ruS@f_Zi))EF@P zLvx6h=bZ;&1(q1Yb!~vC=bsveMV=uc!K&1o%RiOt8R_as=0aq_5DQWW+K>lWL_t%^ z!&YC47?qF$bjWzu~5J0s93N_w8EfTkp~6>q!XjDsWif-A1Wnk45lftoRAKx z$>%toE+NL@*6I`ST5FAcdVLsGM~M&b!}xF37|t0ge-*G-!|o2IrA zrvj)vRPxN7RDezCiPLv7;M!V6my<>Q0!)X6Ym!m^JSbLTIr7s}4E8Co^0hyqsfhTNjg{$Atf42}EqunM~*dg1H}xYAmy~I(_(skYxeX<93blc^dR!B9Cv3 zz;^+9;u2mXiNXC3zXAqFze@vwAEe{xa&Uap4J@4!(L0%>_5iWX__~+@za5w)?)v!S zNtt+uIFMPD+1BQt_8`u=_KUY|y$ILkl8|o|RRKbIKgZ;#dVB^IJ%Hnq#3Y07ea}a!A z4n#hON$s5xI1;*Zp`r#lazmXL25@++zzKrSpO`yr?yzCQI}@i8(hZjytRfxL&|qT$TAYW|WCuoOV0={lOO&T0O!I9< z?pYoNTJYZ59L)~&1qeTfo^8K$XM3@NJq*ywC)mv{;zpImv2ea#`=$4&G``PQvCc|c z22QqPqR&o{{sB;8IAupC7{E$!W8;Bb4N{u&K0;pzSfYi2MOX7G?7eWy(R??b4YS?3 zJ_863a%1mXYhO350|ZC$MbIC{rfiq`u3HTJweMJ>MtUCsg5U>i;AzDG8F@_k4@#f{ zoM*gHs@_dSUBNgt<|)DF%~QFQD=6UnU23!^3~ecov@fEcUcYo&=Sl5Gq;UYguhyq& zr$rp&F5jdoP1BPX0Mq2M0i4g+UybF12{b^2JpBFoj`Swr=aBDh?tM78P zzr~PyOC*D-%5;X@f444|2o{*ZAnYC@vYG1K)?va`RF6!<&}TJ5Va8UIZsid1mZ@+o1?M}F{u9)okxYy2f zNGnX@*5>5UGU(hex3dz+v~|m&r?0>Za~+mSsHPwav>f})TbY{m6`+P--TipEVMA|c zE+Su`I&^g8Z-wE-!!VIQ6;l*WGYQS*)8h8EgWS=qsa!jp@u7-NY1RJtNC$EB25Nhm zL#~QOW#zlL9=R2Fsp1FV$`ev(%afiVZ)0D$u|maYUdXLW8eiygvU=7#ET;zY{pF0T?Q)#9shdq0FXG8%8V=s^x7c4}hX7(173? z(G1`eWd|tdR)B6RhODTL=OG8C9nPCg41>WZ-oZ z!jb%l4(0raLg{0F!x-Lg-sSrNprjG7nN;26oBJ_h4odATN_(QNtw6D0n=Je4CY*RL+9aeG9Wlon#pSyN9oilKKNGV zs8!-B)o+W2uEe*7OO=Zd`QzY!r34y7`44C{A!NdYjuZOu0znsPGi@0uS9!y>stK9K zjj@HZY$+DkZ_=^D-Dq3BpX;CpF1UNQ9gC*5VOTz2tToLVu;?Ab*y5vdzEPlZ8b|R3 zU`yp9^{_DtgiWpOeVm*RcB!7wm>apgSUy?V68-`k7dSn>K%s+r>|?mI<})8F=L0N~ zBlrSkPU^9J@EeWuv2s564U-FU6kh=b!EbNBT;Y@(_TGL2S2WX;BbvurhuycVdnduve^P zJbB!}KMUA&NJaupMOo}U!52=x%^I@f0m^;~l^CzZ>e4-a z$N2cxLXjNkIAkb2CdA9zWJ7$BCznOFHI8fe%V0f zHcWSV`8@nM^uJaDejYNsK&y%0?3@^Wqne<#IsD$>U_c9YO$glptEbH{@jhr1J9%Pn zf9R>#<&^^VXZ!YGo|L{LVbyzVF+V#xmoCWJT8crZbD#A6ndplk_O;E(KXXAh;*jtP z+8iFe82W~gYn5$A{@E4s-i;?Yp(KJcH0Ie$StN6#!^nFMU~-$MIH8v_Fq!OxI8WJ= za6D5GM{)wYA#Y->V}o=*24~FL06YOJ?h5{$y#a$Jmn~9ZSdk)uQYuSKhb%I8B#!_F zjIj{d*CQ4}Ne7ZH824KWlcuff)M@^0oo`lhixv=q@fB@Z)1i{AL+$;9RIng)&Z+B? zPXRu&EG!H*cnTd@A7itQXK+djUzqom3dei3KjZ5d598T=p|%)L^o3AvSFiO`n4R#r zu7Om| z&H}!bq8j|(nKWrqrw)asSx8R(qZ`QmX~?n7)4?q)Bo;#M@647On&mwrR@Q380h9W3 zzxgmjkShQt%w~%w%$*k9huM-1L4pNgS%uMA1)u_dq``6qO*Ot2TB=C?q&!CnT=E8K z_c&pW+U?eYT8YnGq|zyS7}uWeLVzHP-Jol&5H5 z78($eNWT~OA8PBcpLAIZVqs)(YkrhPMQ+O$rZ#?;pFw|Q2$ zE7Z5HluaZbyF#2dSM~!iqQBdC2qCUok5gGIi7bWzP^BA8vg;`Um=O4bXsi>21`z8O zbcO76b1iI{sxnqKj=(S5baPbvf{G$Kkz6ib2>D}JD&P;E zQdCGLYIe^A4|Nq02v_`_g1y}Bje_ej>3^>T+O%%{^zm;L`f7c91FEJZtiYavF?w2c zWw(~(avj0=#-g9&oHoM6F&bZO17_I@+{Z;Uy+OCmzXZP8$>vlphY!WnMlKPH56g|j zbPR(5L9ix6VGmEo-BIP^1n*WD4%6}B?~)-8O}LoMK#}Y89rTKQcM}{$4V9FV3Nbi` zpviN4ti>e?yeY;N6l6wPj*sY|cG(H)Swj%`6z|oE1?;CKqjp7cbR{(cc^IGhwhsFT z(JS;ub-sgvjkD#YL{~VO{x#iRraE4lULJ0?yDtiIK{HJ{#TN+}94k%bmdu!ejq^Mf z^cTfEm7&!+D`17Tf=uFImcX&XxD_1HZD4B*Oh{*rb-r1#mi#f;fw0T%H)|Zd!ae>N zY&zdz=jj{a80-;nAh=adW3KYYU{?skCyJR_suRO+{YP+Yxj8QwxR{ow#bz?YsQuNZ zRjXF*6ax8Ao4^$cVAPrADU=tiCZUdw)_IrK;Ka~INAAq$Vk;iB#nhR2z9%n4LxtcJ zEW-%-myA486t72{T^Oj=VhGW_tm*MdPB(84t3N_A=kLx4_&6~zc-_$>f~ zzk&+}YOr&077v;bJ%@m&LkMV$sK7vD2x!zDZNMNT=Yfh*Db)m;6`4|{g$0Kwa%W;5 zfK1g)zx4+&%X!>n<`1zUS&XHD!IBgZpg6#p*_Ut%suW6$4F4fl(}tjh1<=O2QglK?+`Z&;<@BZjzT*R0;Qp`n3A|~0giO+hMu8UWBJ@?aP4h3 z=ob5T>({pOD%{M6AoK&i|BM;V+YJ_*dED42eA@banD#1e3@GohaC3U_-;CUDEZ5g~ z3k?U*@%xz^1jIkmb{9eoA+G4>xKvV!s@HMv58$@2yQ;ykajet4-byZI_qh%<`^$Y{ zm#;J|6VzQ*L>HB6u>6N`bdQsGxJ#4c?MCN01}RPf0gg2=&sg!i4m(m4sb&bZFbG$1af=GW8`DwTS+hrVHR>Gbgbl@sW=<5=MocY9q@^82u zgw8MiSMUuiwPWbHural1f%%0=lkC1o#$Z*+Fg)LOe9yoiv9_+z=Xf>k?bpN|CJX{Ofy=5>0owHzx&agr9kD-n@-?_q++uXx<4y z;BinWft|PICf8!gdzy3*xKTr^A_lCBfEB(z$)psHC3OYtL*g+h@(~nhx7A*hipKo} zv5zvdXH!z{zS44sN`##;k17p@b>F-g98pTvwDWAHH9c9tW3b~4UM2H?#s(fM2ZOMH zCEQ6PiqG~1>dHgDp9 z57J4}pA>?W)C2b88!9Z{3$ro++9zTaYk#x|4(tNAOMGW4#xcX2V$yuaH|97d#U%UY z8#<18^Xw;|B;s8GLVQmw*|q*(G@>ZOs3>4|@Y75qqL>}vo}ItXGK`H5sdE!+IKN(# z?yE8(DVKdkcE^Z1#9S&JZ#9e**V2(Aj6(lVEGyJK>(*rBscaL5RpO_HIdNH@maSX2 zo-iH$@J))y_9%w~&$riRzbf|qdLolYe~-QY745Z`s4-4c+TK+CF>+dr#SRyW$Ish- z@%bZ8*Qu;d@KllA4lh=mrepT{; z-Dd3xspYW+_EvJ1TAR;&!iDmzj9S1I?|2=Lb%k@GV;3ykOY@jgoySlYr~C~Of{XpO zdue%MzWi+sFV3GI{pTlk=plQ0?EHi%2JS5kM%y*hIv_-yYM|O2-ByB3UkDv(_u8>L zPoPmMWpQYhhd~}C#v-GspdLXkgvtdgF(yVKg&e~u6inr*$LA8QY9tuw>o`^#fG8vx1L1w*m&p57kxP^Pn}!rlzL>Ip$D3=QJD z)X<(J4zjTG3~(6buN;YE8*qXF7vPY*rx# zh?g@Td~(&Vg9=X0hf$vfn|NEo+JUh|<7-P-rsG|FYYTb*v{Ccl35CuHyAo)*fTK$` zq(xu!kVJ44JMg4Ccho;3%fvzky80wGQ;)M$?n|*RX2Xx4suC!4Abngz6#%qpP@dPi zc6eU_!#TQH7f9;eEMZKCvcg9DF^C=MB@6DyD+-|xLGKkA^TN@{-RYr7A4phtaWEJ6}P&jLAh&3SyUzKo%9E9TXx7^z=<_Zdx)+66|Cqq;%PcQ9F~ zmO^m&at1f);^ONMb2_dd=Yw*%*}e%_-)9_%u}&qboN!Y3U~P^6 zpl5%wegj^xAbhuwJ_Vk=>!_t)y~{`!zvcZ=e}_}hHEcAO zB`76`_A3-A1gHi`Vat{lg`Z_CT_RD>;Z*A9$72s#(LuL2G2r&MA1h; z`KSc_7bf=+P*>JRh#BQp=J;QnkHg+_k5@U!BjNe-R;5aXG&#Kr)#S0a+A2|s!J&vP zRN%tY`%z#6>``H;ercGCR!^HERB}Q#M5&Z3bqwOm`bvRSoKDk{@`eog&$14|5#38AlR z%OK#?@e&HKJ*CwmWQ2@WjC&V|2bI`NayB<=ZICOaCAo5$j+zm&Pm)4k5b`rBw2zR6GWI?p8E5XpN1?!;xCC_S6c{Qq<<}^H#>rhL z7Rj50gy}|OUnOLUoD!4rDoHJ)#}af|%TFNT zv=gXsRd2&9aix`CP8loqJ$;i%=AJJktjc)+HeQ22*&Rf1CQz5=q*oo1J3?pMZx$iL zb0LO}6JqR5$W0hcod#lQVov}*2bf=2VgUAw7~K~ns&Jw8fGA%2FG$jNX$(p%Daw7$ z==6`=cgjPrC5_%gNW3To;rwrHSp6gvjpDOq+@&FzgB5a=w1bepxS;|U-+n@VbOqhs z23aI4kDK7~!>I>SnbY5{p*#hn_#C6n;4y>C~cS@ zH78Afkq0PVxdB+jIhZ2l7VMb?Q+{mw_NAYg0lRT>sY~h!dLHR>3aoqg{&ZQU@r;D^ zzG$Y!IA2i2dc%#0RLHo%3>glF%{C_XGe>3tShog8hrxKyxuOzy;J$%x^$LO_s3T$M z>9^m8E&!akv&P>A*7en?P3VSaSEKsDg3t zjMOpRM;t#+%bGfu7%IRh^bf_h2fM%9+$U@h8*yLw;$nI`+Tfm+@}!I%^P~Gb+D)7H zUg_`Xu-x0=j#%gx=PoIKNA0L>ny{(YG5m@oz5?n`FH~q=l3GgyVd&}e5_Qkdh4W^l zp_>9*euJUG!e}kdZYj!HVOYp?M*|gvwoKE^<%RyO?&$2sV0>3qt1PueT1aIxmVzzW z9y=gB2NAqg`kYOk76~L;XTNO2M7OGNCG6zZ7-!X>cPBQOc6tUsU}4kysdD+-a(}z$ z2&@=NFjJZPcVP#nEAep9qu~m2UV48aNALw;1E%I45rqE0#%doY=PMhlI}8JEIMg48 z0X3@%l-xo-Pn}kuR?{3^2y@m8@|be zuval5K+{4Ukv}8YrGIsM%R^v%SCX?%DS2QD?-MnI20#;N+Gagp6olPg%Y+Aj&lk!<>pW3b(V%XNMVhK!!R1eN;x6UQ#eXLH30)>DgT@~yeez)T-8i7 zWVgy?sAcvlM?@;n9b1NZ_%v5AaFk;tt?&$dLZH*&L0WkZe_4f9i^1M_=*UhxDa$oY zF)q>HHcX}SyX_SK>aNmhX*z>-T~1UpAz3mH;I2n%pH$l--BVGmFC_o+@;ap!8&SNS zQlMV~%^GC;s&sEe9UzA;TV}4P9cZP=dcbY#bD;E_?`FcQIi)M`pMfagqb*P_hc97o z^gx%Hx!icQPE%-XjF}Ztr2`;b+oyLqO$OY1HI9+SpWkkM7Btv~VLR!j}zMuHgU61pgRDVeJfE0>vA90mNP zGWByUA)68EN$$^|CsoUX;jE+KU#COQgd7pI!lk*Ei<+&%;tlfsCzYgj1=WBP^C~80 z$lZEN$&;yPMRj)Ae=d2;_KVLFM0Xk)LcfvWBD)=~mz|W~_6yIPKf!TO8uvO$Dx-nW zWN(BHLfaK1XIkcm5%75E3O0G28LUhTVSo~JEi?-eOU1%Go?sDS%giKxlZ#4eAeKN` z7f|e|f)%Kf`Vbj)GA6H+qmh~G5f$n2Sn*KZvQ`TO4LXb#sl{bJU=5$eOXKx$7)uGD zboHI6GMIvvlS|F{lc0k9|@Jl$w)rH~1;bxyBVK<0!jErq69T z-LiR-+!*0H!NUN$br#&`XV1oxdv)D%^9b4Wq(!($=DQ(uja+!bA~eYK@{Pc?wB8m3 zH--tu;i=Pd>ltI=A!<9BvER@9Nu>-;rcI15~kgQTsA~uK9#~l*4A^pQDNQqS8c$jpYYPhBO0YNkj6XF;=@sviB)9f>2~^ zeI4|FMWODsw8`D&5<$?7P zbV36bzj_lo730RVio;Zg<4#xM>hpCB@NQkY6vpuRbs7CLff6#R1oTI9F5$5%7$)A$ z`-fWR5<=EA%u{z-0(f?Ed3b?hckx;A)Q7p(QcAj1X`gA&Ijw<`*8$cATWZg(TPpR$%@f% zCfgzc5AZ4BeLL}Dp71#2lt7NAJ0rhS8>cx&(-&r>!|L|5Cit%<$K&~$&SWSWp9sH1 zU1Nir-}LAF%J_o%evg-b#vo#TtG|#xO=j2MAToi5>ZOxyE~@DbBF|CJdXnBofxQbS zBu`FHnG>>7~G7c@$EVR6A8) z_a4G&D$9n7!C?dNd8*wsLT@5gySrGf1uV|0DOj!rEUYt@8hl6pk2vYEmF1KM=c({D zwHr1ILr9b*=Nplx-Jtjt7lS!*_m^MN@hVOk4K&WeQB$FQc|mb*+-YpCcnZVPd)V9y z_fLZ>8c*nhb6dz38qRkBr*d=%6gWrNFIx=bFGUPaU;?aAi|zPAX$5xdhy54fgQ+1x z2yL)TspE<-qTmvG$q~tZO%?-6u1+6d5~_rNI2IGuKC1A^_!QSMa`8ZsC>mRnVYy<@ zt}VI|@3g(rbEC2T^weD&2{d{OuAmQ7R^7mFWyRB}2jibuPm8#PEt(wa-}skX^l zDt9Qi$(rEZ5!#eIJiq|$aYA6SE3O%_a^5y!pXzsK=y*I&TR!u&_XeV>_wVcafN1Fh zR4&CHU35(nV$15VKgcW{g#PdsyL*>^z5dSRclBcmC`Sxhvv{>MPP-0&fnB>R99`H zK7K1t|K-bK$s9#=rN6t)Mv&zE<@DSmnJF~y5wD1XQwcf!9HJOWAIgJo7||c+DYS{C zKR+mjT;Pn%JomGjqlzm@7MOjnY~xSJe42a%Ehe#+c{D8VR=S@Y*qe$kv~|;L|F<*^ z$6YI$Yyh6QBFNcZ+QD}hIKYxDy@Z##ce@TlqOtPVYx#UkU+752I+(I9|)pU}5 z`6?k>YC=?RV#0m8(`h0ueq<)%uQlALM~z!#TQj?M)YhOv`X8>~CxlFuO<|VDfz%$p z_pAKFBUC}39&e}vx4e8G|{o`xISD$M7uC@Wm@C_Y0+^jz+P>{FGY?ao&UPDXggMQ2`ES)RFg zaUvWjaHX<{)q*APtX!^D5g`~dtoYiDO*mnwvW}41A0r>r>K zkK)<1`7kGL+;rye4amktnuSji_dk?SlZ0zi{+W0`j*Ig_*h#%yiQD=EhP#rx%=U4` z;&{Kus$onM{vQA0@QI$&55V9STan!kziN%++F|!|Ke^!!y8UJDl1c8c+dmVNXWU`8 zKUP0%+Fwnfn~t>S4Opu;V?z)7hY6e8U29L81c9FWt`%!nf4Qu6^hCoABso=oKZ9mDqw ztD6Hf6eikL6e!nKq8-1fO0-ysDqmb%k zv96cEE>De^hw*8bfa!%fH?pe{Dt1Z6{CC4~V|2OGVHpd|%u1qtLchNhCz3TcllL;t z?kdG+5@0XmDGl_X1HzgfCCReQhsu>}R<6z;iq1vxsb_BA&bX5R*KAc3qU(H;6&5`N zEc<(ID5&5ZdSL36cypQ(XZ3JNwgF^EaL2QNU8YRe40kPvwIjhlW!37=puY>}R-T$BjiVywMi|0I{(ohzTnt_ds z-4s~ec(~RhI$eqVVx)gw54G%8Mydu;4{Vs-jdvp_h*}2{^S%ZD?ec++)2*$bO%3C$ zC^rnJl>u6zoAg)#!F`C0qrt&zqhZ(OhXRC(oCYe*pJB+2YUi`?MyGGug5yLn8eX(| z^*iW94N6~t$_&wuaN*N$_H*PB0Ka=}??9qu;xTpLb82el!Np3bxMWwO9zCe}Q zBBw73oqiS9Kb_Xpt8L-YbgwYbPBZ)3T9)Ot3asoQFP$B0dXqgEoAc*2?;+}M>OCY) zpf&Y+**b@zUb*Y|nwLda_NK|=r~^+~?@bo8G`k^4Ig1SvB<0{WulLaOp|8ER)+=Mv zot+0}Cfz#Af&g=7tZs<uLb?44%Sss$++7O^2tj3a-_EuriT7uJ}s zlCTQ12N!8Gcp6;z`J059gj`^r@s_f~=)VTz>k5+(p@NI(v0}L#PM^oW>`h3@=?*@M zg?2uy6+=_=wQIlj#p-?(r-1$S{MKF^2qK7gTu*YGu!AY<#GKP(~l zUwENU73X^ejH(YfiWw-|z561_!)h_-eodcwJ00>(@bOBb*jk*HhSM@}Tu<4YYS8Ly zI6A*cEA2ZWDtpMn1$K~ai(jGLL)pF0Ug;2KvA#G1de1Jm17GYdjmry|7i+;EM?FgOdI_x_-y`8DfqHm453r_D}=lJO3H0h8SLkBh2!kx5+(|mHWFA(?uR-E*pvt&?>gE^NG;x z+MEarj3sy9d+V+FI8%mDqdWA#aFR+3Tym9$t-|=iXo>zX5h~oquQZxIy?`oD<4sF> zpJKe{`B)RfBV|E)j9KEeHxtb3Jvp2nV@5}vZh8-LbQ*XAC$Nh3hC&WCVM88poY@jd z&LVtmB#HwjHY?;&JERPGe8c8*J-c@=iXe}YSj(w5ZeSy73>;@x-NjD59j)0vc%MEL zpsvX{;lQkgP%hZ`{RPyrnh&p?V4Q$#FJhQs9Exq?!v-405LE3P^j7+pf#b#SEmtpn zEyiU%@byKo3cKHr?o6yPf1A^-e5xE@SB8D1tmbnsG!loEQGK$G_`~9PGg&)^R_IT% zEuT7{?UsUNuw8}aoC6bXFc|x`0$fay@t4T&GWHTIZAzXM@QGJ}!4P4_FgP$mB{!X1 zpf&t96&CmvU0{%7hYB-O(2!(_Z>W>B%j7%9&wFyi3W|0-3880tO#K;Ny;lhNR4@lC zhOxyO2?-e_Ofxy=xO34v5Q~94wIZHVNE(IR`+F?QjCOC z&d8QX66RD}rC`D^g07=lQao3CHm1DDm!6GO*|CEkQBC=OK6r4pqY?&#kHHPYq7mi7 zA9?TV;>7~45}9h;lKQqbJe4~h%ch#o2Vu~9DB5sS4#p~VGgig1kx-S7#R<*EhVrAO z40o_G-C^WCH50J$0#9;6i?R2l6W~3y;molUJjn^QgW7kL6XHF9r9Q`#oX{_ZamNYp zo)uu7sVphVMGqx=5T+XBqjDn*;|zVOT)-5gf{Ol+qfL0geW3EKG*0$L5xjS>6XHDd z#vW|c;AnQBCp9zik9LrImXF5c21j2j#u4p6jsC?NU{c=>iq8qgIZb0lZ_)|ZVQ}Lq zR_JWd0QAG1MAAE2<43rcGj!yrWNe5jD9`TPVP>?r>8Gpve$-^nV1hisInFhpG}*s% z?oy+-^}vo$TAE>l=VK$;ZDfX$_0LYAGS|Uu3R>ZH$GL*t@dHwWu^4)E)aox ze%)V@$p_{5C*0EuIqWY9LcIg;{05MgG4!qXTsWNC@5NmuIRsx8`xhod^cMuF82dZp zIr5Fi>;4h9X~o=9_K;|9%EmuvE=NBH)ZH+5@$)5OhBg?+(<(a9nq!JQ!~-C3ncyMQ;MWBw4vN%_$JeQG zW2CN*Pp->L4$j0&;R*-*S7~|BXN`ed!bIKSAXMn8c=Br(Bd#i7EfB2Iwr?-BH8)CM zjap+|vr{U@QitVi@?tpRl}_?qENu(ePnaA82Y=EPqXpkH?B>pvHn;1U`(JY|8X*nj z1^F(X$6lcXhSHbi&*=@zmJ$F6T1T|Ql(K8c!(wwVyhj>*qT?a#$Hj&y_%2k)Cx#Rl zGGxe5=#+A*VsALECL+QAIV|4Lyh}4rVJSh z#${jjkD9mKmFm$~vrY}>RN@1rLZiZ4Av?dBzqRl5fn?jwW!`4CdqnxsVn>RsB>Z4k! zhXAC*_5w6lNP-m{m=0KHC06o06^lwrOk5@!X~oXLiv*4~f!Bqhsj47F9jzvf-vc<+ zPaL5{z%mbgo@9*TFf`l5jzi|R8rMs5U_FLiLnv=IFq`WJS5Dk@kgJjA9A{lQDNpHemaw+EK$tji7#z zw_9qgO&T_?Yi5?cAz3v1?STW z6jtiM(i*`PHFp&PD8JV|m=NB(&A2W|Ay|xxas0}c@}SI&p(2=XGv3>l5;GM8_yK{e zn*InYFiX*BJ@!2GQ+1O9qaaC}#k7>^)DcK;!{VkCVWDa<&n*}NJ2&nkhzW1+Yt{mI zmj886xpkJzW<>i>R_3QU9hfEn-!g0ro&y}LAT03+dk#{MaomX$vGBO$`=wwlnCW7m z2U4Tm;?oCN@iAd)(NPy0Z0ahK$I*$3|H7cPrF|ry&;P^d&`B@IHJOj&u}@b5dHzam zqr*BqV6f;x14%IVv|FbWYC>oTln%x@qm=*fQfh=TiKT1Me;leLMN$^<}g_rS40+3 zt$0Iz-~QgV&~tx~2+`{r)YI$*hS06vKPif(!UvIbN$no- zO$?~l|4(-E4ZVQO?P|20Vs3&aH-CT44WOZaCDY=7lT5CzuF4^(Q}!;lRxedg+Eq^F;Xx#UeRGIwDulq94F16I9kSFtet#5gzw~c z7Aa4=YbZyVahIX4I3GK=t5gksV7=Aw z;7|5}%q+kOckkYv^2sMLSUSD0&2HjAT6CZ5DI`$8~U+shZ?e7iF7U{_L}zveJ@3C+Y|zJ3Mr+lg;| z$lSC$nHc}*ZaZ>Yg60 z>y2f4ihe~B+wvOWB$gOTX$)r;mlGfhd+{vZPhWiA<=K^eED%mn+OPUDtK7$jKY-^|#i1Pm z`%*?wo)X?)7_0kFD{~N}(n*Ef9K57Ry;o+ZPI(ZNn)h!^o&8DoGN^v{-g{1Yf({fZiA7sz->smxLS7WCdB0eAAA4%C6IHA z_txSYE4W|6&$NJY_J-dP7J&x4wbnB$qmJe;%wrZ`9M1e>U=y6(%q?g6Gb7$bsFb`C zj>7a_^}K84p0=%K0MYh1pS(c!Nxg7OZa9uL-&0$U@7W|SVWuy{`2r5>p!((WEKXwe&xeX!7K@s}RyAC&pa2n?YlN-UEwhU=z6`vi9@}5- zg~MaM^IlRI+1--x1cczQ6WJ6gn`SJhR&A<`6+dd+WcB}C8G{X&=9ed9AK)y@bUA~? z_-;9^4c;x-(%<1TMa|;KE9MUt!@>v6+$ItG$oR!<-11IH6PCroDLMn0P{Fwv_plUL z518p#+`WGH?z3T@;UW*Az%$Tvq|o*w`)jE%VR(-=E6KaZ3Q`aZ9DCX@w!N<%1d}Bm zQyyFbLE)HgoLKOp_#%N=e{0#j@vW>Q)ZA78f9p#iY~86}fBah@En&~H?Ewg>lgXZyt`?2Ydt((Et} z(?T}OKjb;$+Kbwh-XUFeSY4dZNrCyl46o)H;!!}T1sRQ+gb8bNsViWjZsPH*O0pTn8W(eeb#m$X|?-7z^WaG)l2 z7pK*hG5=QYyt9%Jl`%+}1Ea~P9I_OnG$HppXrQw9i1ur!O~^8h7#d9C<*ZrE(PV*6 z4E4(VPK!PKK)~1~_q`@`K|^g2iRay-Uaqc>Vleg_+lBHqm-kh#(|( zXnweZ1<#PC3i8Z?NnDs_Pf(Z*Fp&)V^+~*KNl!w=t-Y)qENP7`9GXxb|BoBL08T15KC zGFE`TNGHd3Z%|3biV||aQ*JaY@raBS$sif;7hRA{PRJPQZmvIwd|!c~iS!5jLHJB8 z#yJ!_@~ld%FX)8n$XLZVOHtxYuZJckkSVg@tAt(D+c)u?^fDE@Nq%Opk>ZY{S4l)J zs?7hdIBA-suKl?yb>{)nt;93O`cz8b$tA&{Fa4 z>FLttc-x1-i7KrtIN`@0p#;h|XwY-P0%7>L#*ZsTg@%S&+w1wATVRvh|GYSqZ_eok zVT7a&TCH+yk%}VFSNPgwk4E!(lblDxsHSrcpjhAqaXa_P-wm z)pUDzO6aH>{l5*zv4eSVFj&^+a9h6h+{S-k3+nGnhN{P6Yf|-CEDW}Z^J}8|H@Bs_ z!a)VR)fWy&L_79ZRkmv7m8<`Xtu8#rwHcACfWz~gp7{bQl;Kubo|U+GCDjhIik zK}EOtKgZvVEY~L1?{sP{Fkuw#$uY}or{LZS1o_X#8R!e;)Y!&S3 zllu&d_qCRfz;DAloBNg6>-7c*mGS})0_8KSjGY4-ZwtyBQw!{ z3p2tOFW|o+NyR^z&|YuNa%K2C2ucQ9?sB^rqS&z#|Mu@L0oUksl&lcgLqQrK888E2e=hdEH;PjL#2jf_&p>-40T|=Aa@slqBk0-=DqCLdJ18{Dn39!GxBIphAc!0>HMa&6&KB5 zYXn~G?=W&6zfIch@34jXCXA-5oZngya znxA>~?9371;aoDt#Zk92(B*{nD!n)e0XF34BusWJTC@>IKE;86fs1Vh<&x(F?#p58 z0J-uhwNT2Wzt3_x3*InRNdFeFQ|P+1AfeR2pwjqZ`X z5(3)|$cS#M(@07cCB|}aRRN)5&;Z;zs98weX->1+>+fh6OV>jKG{1*A3Tz^|`{8avZdQ`9myDFgZ^KdZb7csPAQ{`}WUOj^+BP$`#qd=~ZX+>5 zyM>dFBmfA_){jDkB5rG6-jVXfqqdrW#Pnxuzxe!wY!FFy7^W(vzO;=!Pr`I9K%o%* z^}Y>BqV@$HOV-=k#b=YOjJHIZ9e!OehF+I1N43TNfzMK2-RfXeAe_ipgPJsx0fTXb z{L<`Trb%avVLU}}AF<6VwNr`wvE;oF_cU-%#^>c8!bn)kG{ zkOSDRlFqO~;&-ChXal3rOQ%MGVYGu+2ce<~)WCxODQzUIB&EauGcQOG%KO#MpL@+G ziL#W%yNQgFrA$hhgb29_vzX_ZJH%C@amSO$!Iytlk81uHJ#syd7d zsUXC*cc`&qF*xRsMs75|+Z5Kot8@k&$f%EA$~xvAnXsd7kCRb@W9p3)^Ktrs%Q&in z&Fg-ehi*-ClN|p@nz>1(ov_=J`!L@1vC;~5b3LMdzh_y-OWtcP7eMc9Mw>}wtmWmS z6ni@RzBDXS@sfGm$~v-)iM#(SCHMXX;b$`MN@6op>C)DGRo0PBZVB)|y)>0%c!mu- z2gCb9;{i(znWHx&P7%afm=J+kf%ExP*zXfw=}gEc0)$ZKH>llR=7x8b1X+Y3=x+r{<^&obfUtY%mvU^%(pU0}C^gGmB(gOu*c8%pz%@s1|P3M++xI9e};Mu%$~ zKb^Y2E4>%ir|c&~i@lnl$9Cv1pecUd(EWsdpW#$~e8m@eZNpgR3-P|SibF0fjy_m_ z$I)v2@h>fsy$AR>e4&#@d_`Y~^EF7&-t$xV55rI{eE|h<+P$jRL{+~I_e6H!;_wBQ z8pi9s5buLMKec&^6KaT!g?XKj;K65PlT=`NSb`p}N1c_BV3>$eV|02(Gpz=6uSSl} z2!+6mo+3I11tZrql*2?7dV>*C#7Ctlq{u?B1%Vha@D895N(3GrU{h_329QUQsrO7FdwWnp0{+uJ1f|IN&u zdncKM&-4Gizvq1w$bR-ta=tl9CNq@{t}dt)u5KTKBu6S1jzkyrktl+S?DnXCA%6&yXoNHPyH!4hBZ@5?mTLZu|+9 z#i(we6MTo$}rH%D0FJa#NjHL0ET|GhY&&JrzW5>4Fb;MFq|K(tnq$%3s z&(+I*&l&6u4PVK#?4UfA<&Byf(_LJsSGlQ-Ef=4<9jo;Icy__{j7&5T#vG-cKsHyg z*^EV6BNm(FyAFlC-;o5@sPTGZAIRHtn)$hxFYUhiT;PY8gvQNlwW|ICJn>02u-^&12jz37YS^OU64^K(kDM(W(CMcHHjeSyhrxfE zCJ(o7LU)!c?_g-`(ua#&-1;Z1ig9D%XWx+_0$Xt08D~_3pz13zS$?LIo9PLK*FfFW zgMv)psFgZ++m<-OPVZ=F;=gec{QjU7j9xD04?BI;puL~#B>4RWu0g1fnra&@27x11 z(~0%LjKD}cqIeBh3@k*X*`eNeVRYE~35v41)Gq0KWtp+7Cm7?3hnt&$Q0qM#y zdDDj-<$nn?FsrY0MUT^EO5iadzVQ3R*wcecsP1&RC1#veEUsT}b>WO{b}{-OcEQES z*8zInD>7pqKEr(R>*iSUH%`XLl4Z-P7a_$iFlhsyKVlnjyVCT+55xLk|8xz1GEQFs zWcQ$3{rdG?lOZJkCi^~)um9M|L&!^9yx|I7{+sc!llL7gzT+-Af$=T6Y?7a|nYkl7 zYSTN-!ryuJ!z;0uX8Eu;vCxktZz|v=WUb^waKZ*pM$^o5Y^O%2ng*$kYmHSdO)FKa zVn0T-Jo)nFThBcE#tf485N975kLJvBa!X(65~rWpvj>9FUvh2zM$i4)xBz)2l_rJD zSl%jp#bx*vsx|dB6q9EfNx9<{n%YE8(F#9xfhLBkAu^BB-!wXZf&nmH-%lF5d($al zPBgsG*%u@dsC^tn`R7krC6v5Ce`x% zLFo_|L?Y-rUH6^@l*x@9HlOR|nyPxK4ePGAKhZn`cT)dlO3%Bx?vrHO&19+8cc(+x zBDqeVZDpZ(lTW)upQw0qm{R#P^EZH2?983x=9=Ff3~xxe73y={G9X`c1G`tsmo@j) zyTsV8T7%#1*b(E@)J6i zA%A~hHcEc_%P;)|hp$qjq0uRnszJo-o@i(>WU9mJuSz_o>Bm~Y2w!PO3B2BxvF zh4Mia*9l&gX&aO`f5|X*3>VuDU*a7Vs#_oUFZ6_V((j?hF5I@7BEw`{Oa(R8cBOXz zZ7CRT&~V{E%$U#B2@;sz_)Z7yckL_o#T@w%vvx4}plfrHTQ6T4lBWSRTwRnMrI)=@ zv--%}Gi{=E4P9X67HXQO5bHGbvbon9x$?ht0wav}Jr6S*Ueg_7&Y_n*Xc+Ju_}@u^ zjgW!VSl7$kukF6i3YIAhcJezhK{JV0B4Z*WKYw1gJVeUoN$`KG21-EvIni>i52mKo zFPPIvEu{j~aA18TEU!NgKpL+04qN* z;;Ptbh}WVwaq@dMk>(AB%u<{^>BYvOPcN?I;ybpq^+*=RHP%$ICb54n`OV0^bn$D7 z^0j_G;yT_=bO!Y!uDg>1N$0RT@ZPRy<4F6;uMzA(~V(P+jM`rA=2>Bp`o8gvg69PiO2szW91T1 zktEhzk)%obm0eZWB_{EXId!vQ0tFcBCsO>O4xZz#QJ;;T&>LfU>VAx*(Xg4YpU|_y zACP=CSr3Ww?+rF*b5w7qSzu@uFR5A|fdBCGmNRBOh+OeWh3o$A-p$0tp~1a*R9T9i*VQhL0fYTQ*5 zbL&S3>4Z9|aF1QE^f}K;-A%tlY4ZOGw(=o-hw!y%(hR~k@u>!T8;|!PSX@I5AN1_+ zYaoJe`YjC>isd6Z>~pjr!bjprW0P{vk{O|Ky8XdB;(NWrVP(%X6!T;2-5eGLeE+AI z_Mz8Lr;o41ly&TM-E+u=wGMIB6;C4Ii}^Qr>!av9hvW5wOH0}B<}=rs(yOgcEq7yB z`;mUKclO%!12;Bc?xV%Du?eyDB?letGXG-g&toT1d>NJjX6%@J56eJq{5)jvkRkpL5r#!*^cUDj)Ww?c!ZNH0Heb-|8fmfF0pclhwhl}63emi>@SQ{ z`C8*Q+<7(!*)YyrG;Wl4frbA%Ftgojq`YBh-ZfHXt8wo+7oSOZYKmcKq|gdcw~Q64 zHxxy^L5<&Ys#9#3LRV{s%v@0UM9l?iU5{H;;EUWh{%%!YK=wo!Kg%Rv_#-1$#~6SO zPqrxLi|_S7MRCvFGEG}Pq}O+_9{r$=9G?*W^zi%=M!6v`mfBnak@6#=4~=Lcf9k53 zk0j0CtZqMMFl z-LCi(Aag@k?`Xpih7Upf(MFX<0kYpRj0Hl97XTUYXZybUF87IV6aSVi$9;!eJMTcm zjI=mMBaB4}Ugt65;^NZN99WiBKYjv-a+n{>8)A+;hY(D68J(SZ`Tgwyjr9kezI;8Y=z!9f^|);o)+Vqp(=g&swnZPd82jW z_Q6u-DJP+O0Gg{x54;@HjRESUp^O*D=T?-2kf!{63(wDLFmJ2BknVUTBMd=3`;TgU zycN3)R(G{fGCo_Ik8xcqqTYV1W(Tugs923W4Mvkt4#=7Bxl^=6(~K=IxgoL>rHKfPCX&xC8V1`KChw^2aiv2!Gh&Goh^xg5S%t zQkrh{8XeVeZPjvFJ1UVugd$na7H%0VjqsPj@|h{}2yo#d$jfiu1IHps8>!+h1G z2fi-vvx#+Go_X4G&e#qVE@Qu)*O)8T7`Wmp>drV$$Fc0y!3kbm_9 ztUOVc@jVoS#>}*1I%cN9f2j5SIwOs`Ypeq(3;em^!* z#dq@uMc)Mai%57BL;1tPrh7bZWk1(fzPsFgSMbi7-X2KhHa*i64y2~0M{l6#CBCje z5`PUQwIQx_6|rKml%D*SkOFgYVn}8Ydp3?PCEj=`GwMz+25wqh2nVwm+0W6?2-H{X5tj@M{7X8z z-NY;EyX%XhP`bF7HyPoQAICQT{i!s}6kz7pWM=hW3IR_>dKbPzJdQ;>{gv{UTiju`&0(`J&EL z+?x$<^PUJ}haK1VJ=75ry*S=iBsfCvduBL7qPJI!Qyvhpe^n^(=_t<$&38Qqn)Wo; z)F&@~iRRdyLszQ$)v#s5FvLDdPrF}=0;}mky0aiQ{VWNPD`7tD3~fL=-#?Wumy*qc zPGyxDzr_stwa`5TJwN~W`NCFO7$OUdMbO=J_hwT)p7wC&*pDXq6rbQj*W+`aM$v)3 zz$gK$a)aLRy|bTTWw#^E@-*okAKO_<&t>(6NQi%yvG_2N&4IO;j4D0lyagX$u?rj$ zDm3$tQ7<5e_oLBuN)RD$8Hus6$GN=@db)(a9HuW*H%^8--_21(Z={gPkw7kYQ}%FD zLXT>202SnX;Wh^tDdh!%BLFe^X-81-LI~AiA3X#crN^?LrpA&GAroI97h2__zL4nY zWY8_5&d`VF-e=G$zL4nQd$OmBBwwf)WOiMZO$DYYC3)L0W(Z%iFGW&1#xU$}*H5*4 z6|}<<^kTp|$qe2w$NFoquoT@82Mli;e`(kr19FbWsh$M%#=S^R)Sv}@0J&d!LC(H3-~DtB#v`6Y3LALC2w zVSLKlbz+?45CJeBY8XEk@ke&}GOsYscG7&bj%bgpHykHsZM6=+lJ3!`RkTdpIZ!_W zjb4NUfLG8R%A;v0`L;%cn<~Vu;UXV6Ie{nbhRmoOiZFfRPecUgQZrc^M=`z~dKk9V z1jFs9^3_BmWU4pJ%jq`4=LN$#rsH&BcsLRGC*k2{qC$pNHk<`cx_dJhC4wX@I(`+! z*a|ZK6^M}clYp)U!e!fbh*;7qFKm`=;$bmn)UPI3G*+^02ewbFx#yz$jifeGc3i}o z2O6x-4UwSy*cO>mk&xEQVeDFP*;>QIUgCS0NE%}p;Q~aepn;_4Uw(PuR(QrLFy4Zi zP4bk^&UVz~^I>$)00(QqsnHo+j|uyO(b3U-p|0TCb?OAYX<9#l=nu3#Z~WsA3BIr> z?RL?EFg++0-^W@OQ){YTiboiypVj7AD_X{`mM!h8 z5!+L`L&P7OVjketNdGyXP4r#|f@;rQZ|os}b?)<*DK(wm=abi?omj|mKnKS(Zr;(Q zv#P_PYoX5Aw!a2X@JMbu=)9IXhmpNz?s^iqHmPSMNElX-$1l}L?66k|cd?8!Bimo9 zRjY+tD0N%f@kYq}I;Ef6k>%?TE*oaP7_XgI@#TE}t-u1$W5=L<>a{OEA+d=x=I&1Q z-1P$f&`_N(IpX`g&ox<1Bfrs^AqXfF?2GxY@C1$aRMQpYr^{4>1y+GQ7R@*RJgR1i zI?4Bcqsg1G*GAzgVc|g^1s$YNKs%sAQn`Lmc=)7UF+!O?Z2gi*M~EBq+iI4hdaoX> z#FscfR{u9LIS$@RqEnq?r0n}?;!F;e|B0{npkJ8Lte=q32_tyl_Z{fgvU+5KRS zJ9G^~d`0TDZ-R%UITc!2PxABO@<#xBvCMePp*S@~W$85R3Iuev4qxSa)cNk@r|Hqr z$)HlcDuoI|i_E<^$#y+O!QKJREGj~TWD4py?5D^J!-f^rE#dXw))U|VRt*H^%hz=5 z*s+Ti-QBb2@7iK6{CrBEi>)Mp{9H@Fn;~Fi4o4Py;msnJYtolhsuXz@XOH$)*+BC~ z{)OGHCGz<~pSrEL+E^$o!@gw)r0Xe0Cn-AulB@n@CW&r7-fp;wL%xvcSU{G#{9T2bGPQf^>T6|l$3 z)(%P6Bg|+jk^Y;(ry6eX%yDa}aWlF5rt((nvvNZ}lW(o&1e#$i*pX`7O^A~v%CEN4 z!~Ma4jX%`cVDmKk-LU%ULo{YZfSBm=JA1j{m3wlUdyC8F(L8Qlq`1r_Oqp2iZIn(d zE+&Z3=1sw*L^3rNI|m5fSexmpT6Z-I^FB0N>p$f?GdXj@rYc>o{!V`6d}>K6?<>9>zm5e6XFRYvpLJ{w34cCI2X7_cdQS3O7gwNRg9hA@3YgVcGX#qs<$I z)}mFbAn|1bbfaNWwDPhgZbDwcIoVB1-Usv(q^z7TI$5VPwm**B>R!ZO`eENYF&Hj4 zol%-o_X*P%70^a9w4oMpU4ADYsn)S$zU>}n(HaO44}56wQ;w7_+bMQk{fS{ZPJLFS zna*)G%^~UuNtaJf*S^(1vN=LrN1)(s;nZ*k0(&`z@wz~82F`DCh8`dPOtyb2cQ|z} zL0;`CAv?Yv*VUd(PQr^PNcK>7SWS= zZNGGVF5a{^E>W%ET&kV!$aR@sQ}TfLiQa56xkZy2YWNDq)1NdD!3?@`^o#fO!IbLuGoceZ#b=Nn0r#u^)2^4kQFVi+N~tST zVU_mrS{cWBDENM2V9fm>MIoLA9%9vC>z@6lVC%^^-&hqEe3<>5iDWye!XU|S{Qmn$ z#?nsplTr`v;8616~#e( z-ptFy-PO&^lX~p3H*wqNZbg{%1pn zag+A0C8}0>S*MxW)&u4@Bh}wfXkw$GK5Qb<5v+#QQmkedN)@9yXqaex4q$HmeZXp9 zb;vU}6&PAG(>(GiH`WwG!wBSB`8Jck2htRpC0;&NejDk%W*oz4Kz`X?N}|g-bRdoH zl*LGBT3;ii+`bG-T@nY!vNX7a`dplg^E(}|f7U`nO*fl!I!=f*H%E8W)3csHwgUZO zynrVE0Xb3O-a3B2e;oz=3CUXn0b8^kE9_5xs;#Gqtg8$A^8<^tkG&^jp@|bsQt0*6 zP#GJ_J~BzI*mN1Hb>BSxJh0|n_c7>q7z-^>eKeQq7ZlCoRB@8V*qLuxdjgmcD+nr` zK=Qg1V-GD6a(p2^G5x}%R#oe>Kisl;{sJ|5(a`$hLxsqY4|qwHmu5e-&8R@lAK}eIYL%0r_$FOU10d=sr)Te1|-qWfc|A)EDK^_XO{=o|WoO zL+AxXwOKJkXmn{652tmZXLJxofU2Q|6@3)#rscb-$3A3w40{f=Y2IZwWUa5AeU=1| zw==UT{_AQQ?+-}6=!aq|)u@?3_hiQ^b1BJll$MZ4cJQTS%|0STXiw=#JDz+6rfvc) zK5a)Or}HHI@EU08Sq)ppSSWCSp0VT~U;O+x`GO$(zo(DRJ$114#*bYUF!HK}?VB-S zG3>>P7!Or9NtJKVQ*O+nEHezZ(#nDgVFi$m4QpnlnL#^d_BD(qzG{cWD@+VO7%r0R z(8vdd&Td*!?EEaQR>6cEpoxR+B*bg}?bPu0aw34xAZ#*i=%Sj08OesOji`X3g;k+$ z)-&4r;H#JaR*y%J482~-o!H|=d3m3wjaynW>)>m?s_1J)b!4t|(p<1`cR(f?4aHtd z?C$9|kGjr~D|UoKbYDS?ouyH1=D)B?XUx}&a+Qyw883)wHb!!95%P2&@D3EAARO`Y z`yGp1w+SL6=&e#N%pw$zqT@6W z8A|W#dWhg%bc>GdRi$#mioKg|(RGdG;*`^PoDYW0lcDNUx@wpaRRSPZquX5i0A1XF zH9dcoDsyn$nM==tttfM#3*s)pbpzQ>TS)rZ#V)K7phKfyd{NbOm5TYSfVzz&q(z)- z2yUm{C_yvt3$DYuwN#|`v6TM87~4(`*BMkVLf)n~MvGFukMXIixH+-s^I@d)+_Utu zKPdWwav!D`DQMghs=fETN7YzyLRuZ8mrAQryn60j0?jbT{x0|;?jYULUbwId>*Qw}svjlXma+B;$kwj7& zQ`ruP*A~f?YNQ^{wp-I|eUPMQi-JkY3U)5p+u1&TZI0a9`v`&Md|r5v+fL0qSF;pK zb#l*O?7r3AH@dI|&MX}M7SOoPc7&Z?KzlSLA?Q=lZ$5Dkse$j$IhShkh`ATpE#!5h zw!}H!7-~^|pvNR>1LqughtkJgkAEcfV(%r#N=;W-EIVL!8zJXpktok0!#iliCI_)u ztMnH()^!{@bZE@23<=BetG&H}4^4~%%leH*duq8#oMMuFKNW4P99F!>Mj!wAqmMi^ z{rGVYT|U7t6jp82sC+TREJuxAr!%lyDBUUHVk@ksAoKYVue_(Lu5s}xSV;j6hKTD64@ze&SS!1ir}|-}URD z({b&c8$*rj^U&8|(|yu-k*|F^U0s!@g#B^Nr4(m-JDQ@G=${f)Io8;gm(!XWcl^z` z6{$KjJ%ixw6{Xk=)(89QAScJ%iEzI(*$Pr4`P&N#(#LM4N`^wp(ynZ(hy8JLybtBfo` z{xA_UuuU9IUqRU!TbLBMbJopLC_^y~>5bHj9ezQG?++Ba!z2}$AFIyvv*8oi{j&a; zqA!N&22~_HgRK!G`$HWVJKztAz897=NAD$Kk3#4vPX+I7gjAOAXODflXx1^Zdg&Fz z#=do_o<62AmY`nrt~^)NI>i`f=2GlfhSR_VXf=<}dsYDsQ>V3U(DI$5=i8ZBdqY;x zKu7z}OA{J3YV;Zup=}#Aa>#byVC|LQx?1Vuw}h!Rb%GcTcwLFveB}?_yo2k{zJ9&S zz#rbQAzWL18xjE$#K$wL?Fphuow0*AJl&V8<+xlqn}XJko)JZsVUuM5k!IXNY2#D|!# zb7K&P_zYJ^90#IoUx9C<_tnF>oFCuV*+IRorqYhBe|)ETR$TY1n=1MS*lf4FWTy1o zet_jQiB>y(pU&4XlEMe24Wa%-3a?M1qk{Zlhp#3-fXtO&_TMM>_~!CWdS!og7u#4c zaJTSXM>3W-`yLB=6#A>K>)S%HiA84($OXZM}%5_E?8d`uy|o43Tz9kL>ctJcleP;;&~>tv6|I7SOv;e zKMGf3k8z-w^6`_RdyMEJ3KmZ4V;Gk;5Q(^J+;5}?VMsWtiWp`nP)c z&JSyNpiv?X!2z%n)G4k)qoXcj_Jw#ntJGZe@nqc6r4_f?eQJzSvq9NL59lgV$MSEb z=Pz3}sIANTDIozJR;{{V7=Iha^K#MK%$j(`dg;Z(OAv2vy79-pwF6*cETyg_Q{={B zAyBM5x5=3JlAK}?40)aJmvgPLM)**yXrFI`t-0HDyrQ{7gckT%Qq_;1lt-2hBa=d| zbzyywo^}l_%sA^Qz3;iAe8S_Bjb#JqAyFUTO?bCqG|5lnRIk;r9Pcq_frWjHaVHKq@Dg~~Sw_w7h5PsGBaVs(~XsM${)E z=TEsX()~4aT-%V%b7K}IWOJG|icmy2&Uz}SCaKi@L%w+jInHlvnM|_7Bhv2_CBZor zGkKZ2Q5Lsu-O(F&)-9_c2r)VPWAm!trTNDLc^9Ra^mBjD-gL{{OS{OB<8k1Tk+_aV^iz;chizOH#R31YdUb&qx`!c|qx z-Uz50A*wUb_aRB{Ry+bP??c$|khC}8%=y3W&$hv<+!1diHy3E%V8=zO8LFOo2q%TF zOKq*de&$4;4IZpuTl#CRz6_& z8aI|1LpHOh(SKe{W9b*K%Gk?hd(D5+eND9;r`(^XPoIX(fD@I3rrCxGsmfw2_(P&E zf*lkI{!rmq_KrU!`rc(sQ72}cK)#(qjO`26fpG)PsDr%aahq7M8Q<{SRmy@KuXFbk zJKE!R%^Eg#>MiE+?E2Jo=WpVG5zB3ovHmdALQ{{9A0O@BjNkjlv50P*p`RNgUcseu zTvA&(O*>ql4z|7Gwe;xk-y5nPKLqckd+KT4ih;@c1$Hr5nNdq4a{#0CSXHqM-cZwR z8?dNjr4j?No_D*c3NNU~vUjG|aTRX9Tz}%s?uu?YC|$7@NwNDjOPMk~_(s~ej?xeg zETy^id?cux@8E_DXSFP>%>oqp#93H5BhaQ*wnjSTO( z5&|88h;-bc`eSLps|A~usp25w28MAns?V>{D!opjZr%88h2AqF<=pIW-iul+z_mQf zW+G&~VSHoG!~02=uR?j8v9dOgOh)+Av$t;8a{jQJHg z{0m5J**sk-US>+;Q)cvW>|%Kh-@EC_<2|qkJ3t}=%`U|abJEcH(F52qS?P+Q_9ysc?z5pbnO`ehqE{jE zbjDg+w3cxK;~evt_IJ}++OQt-l2jAxo;J(VAvJU5p^or zo20OWBxMf}Jc*@_TFutFA0a8TizT$ohvjgJ9=SV9ZcPR;w$9aCW$S+>r8Q}Jlbv!4 zy(8rP~HK@YB6@(^?`8!4(8atwtVj2=`2Abd}4k+ zS^Ci3?2j*{QoP~Txbo`A{{E#z#zw1Z=J}(HT~B4}6mRHL>lxb_fQ7N{ZzbDKmeM}B zrNO4Tz7_HlJKdT*dyAcRe=CKJgckXl-C{|V-9^cDDft9f4l75h9gSn}r?Kb|HybFq zvIc#@<|-i&%iTy&NiSyfH}v){3anSx7w7wuol&+s99yGbhtwm(qZT5;HiK<-*CbDm zkix0#bIa%cZK<*(XGc4_!1g`D*CMT_PQA@Mi$;bO6z?*3zE;>X<8@O6EK?5%?HQ?; z#+y!TEn8B0YokjOWU=p|*VKbXLI!6D0?YOGOC*h8M9H;4I?arziNIJBsf@M!tx|7zY(NUgDvG+r@K%~$U8 zt1RyPT^3v4b>lx^25IpNWCUX|{Uorjk-De=AuAz^#5R?%_3S36+(NV5S%OGNQrt5p z7Wr~k86(4t)WjoK8Jq7yVA8J@l4I;IyXq)4#(mAi>bY#HNx z>s7-bR14!%a;h&0ebK3aT`WzF86#n1Ntxd@)LG8MtiP%(JAh4LtdI)(gr!I9XP1?I zRc=1fw@GT?>_l?xW0SPZHS&+3Y@k=`k-!5XK~Ng60{f|35R2J2_=U0_NV zxXCcwVvQ9wr;#T17mgHyB7b*;oZbp8zBxJ2NpSdU$L+n&CE;}!zISEXB{~fsb5(vg z=P$(^Jlwn3NNY~&nro?y5h9lDA0v)HVPGt;`lpPQHjLIi(~b1OnG2@L*hs@Dan3LX z6Y{lTd?Ka^Y>r`^BIK!L{ z=6sl1QVyH2Vx%9XDR>Mj$L)^%rUF3Aw1n=?t-=0<hgif1sPHQI$$zzGf+%L?^A@7h{T2tVt2A8EM}TkECny6_f2 z)AJJ21Uaq}N8+U?PM-V}my&}v0Tg?Wua8~mWEEkpj8%icFvG$I!z=JX%1D}>StpH0pckWI)>U!HtX14yHT;{3NummyXRk5~sls9J6c_T-@{%G_mS?AE} zYLS-^^wl?O`YXlhYY3U)Pbb0e#~$~aV~YF34qwf`4f>iR?C|D>Aqi9O@1WV<0fuqb z_KVk=n^TMva*yJT@)R{v8i~>EP_ZAVp_BK*@jf)RBZ}9ozZ&#MmAH;*1tEf%x#f9v z*R9XQmaQr*qVdU!utQu>xzgU5DrT$r>Xo-*Eg@!z6T{bf0=*pd+{dTs5si`|zpJ5@ zP@tO^k)~Lx%)c1)=Pg_&GK|E=Qh~#*Rm9Y|_;odBX562n!?bCMFsRT}m|BrzJqiE+ zRRcvkEy2^`gRvS-{I~>TygR$yl&_{dfIQvU3S)A9n3z)L2TO^kcO}!9 z;i~&9^3G}OH~G|^;$uT8p=q&$viDqn|G~GaO6!P?$K3rOS5nr&v6vcT7y6ucV^5_4 zd9XUHHB(p&kJ!HXRVX}$GUk5M0t2{=JnTB#sZ#3jB1~g?o=3nB`$UUS01km-G z+L(zpQqcqO*kPDO=&c@;HVh4%rfUWN$FH2MEL51K5B@J#8}zY z4_R@azGv^PcJaRafNuEPqIT&Xxlj1A13sW#%?~KJ;-o9sg6vd1etefs=4?-SH&%9b zr2Heji(AVz7fUa$Y?)1swtlQ>1|NtP*a@UrP~li%6jb#A-!A?Wr6-$^;j#3BP?ibw zIw9zY=_^yyXsY-Tj?PHmG$0Nb+^G)!%uL@xi%t`FPL#E0Bu|g&)6dacFFq~tJPH0^ zuYrPZj)R-dABG1eJDtsB-rHQz<)Vi5gRb7^R(Z(})~y>3iCD11yBOH@uPZ-S9NQ|O&vdL>b|U&a9P?`>|~2JCu%+*hn_(Z74T{Hq(3&I222Jcu9>bG{q;=h)IW>WLkyg zFv`-Ki_v|d-zbam1w>CTOb%+ghwOjBcBV?$MGDhUUyH?*e4#%my(Cwq4c56#yV?Fn z?i!LW-#25%j9G-~Ru=b#@aUhuhzj$&s4pE-6UL09bF5){dh*(}YhP|`y5>BVM)i{u z&}5}_^!CS}&Ry5g^%yf{fjdR-XI4mdS$IZ?gKDWBP*IMZlgHUs%)uO^(ip&-NLdcO z?J984=OJ<$z9A2vS@Y{&I2qMS`=vko8wCI4&BDpEW7DH?$-R2IpFPYWPIRaBi-oHq9n%yrR}Yfd+5FQ7P0&F z-E0_WAA{WH8K{CF+d&dJFUfnpm`gEZ2OXNyCF0G0M~RTeIHp)*yf52v`uzb7mLKNG zD0^F(W=%W+x=q~)fRBm>fBZ=VEjV{r)8+dk{VROGxLaepTp@SZKHD!}u_AAyOtZsR z7=6+9OV>6A+bNOkVE&sPCU+<{R?Ne$>Rt#Ks)XtWu53O#x_vE|;7P5HK&FLvuFBcA zW6W$mxk=z;NdW(au@}IGl;NaLViQZiC-wq>KNuTg=VV@s-(!ElQv+2~fu)FzLB8`G z%d;Ox-ECkO1vWx9@huFWA;~%EuCpY^u#EvG#@KrP{W=})p_GN4d(%nh{+xfa-@f>r zF}heG*oEHZcXrD)hBFgs6p!=h1SOZ8_G27g!kDxBcGg7YWJ+}y7A5>2VH5Ry6|rI= zS=};`31A!MEStj*VK}{oBkb_Lo{D7^j)ha?B?{Iq2LA?0~La zlA=Bd{ts&4v#H#{5W&gzuGpLL94wbSRt7g-r^Xq>@PTg|=ySMj%3ONMND9h=QlcRhrT>lR)wX zV2D8XK@+l>&#^x;?oFRvWB)Ccw^U96M`(XP(eh>e<$gH#Vb8V;>*rl5hiT|CR&3vI zp@ZxiALa#ZXS*e7Kj1g-O1T$loZP?;#VclxDK^p@zO+nF=4W6A_=9IEj2n-W&f{Me z-s~J)mhd`^b*46Su;u^(?#_O!N_;S6|K(rI`4RJ}=||hwfp#v=@h_nw7k4BI$g@ZlaIk%^%t4M$|*D9G|kw!5peY9B0~D!rT12R ziIupNwv(Xj33OW{(4M_b)3Qrg6-xOduZ4YluI09Pwx1D_WgETgmTfY9n6@dHl%hwP zNeP<4mrm{Kmn_@Qw(%<<%9y$NlX2Kod~g05wG+4_aF|>?FeJAqVHFQ@{Hq~ zY233j-Lr-!>t^}|iE-=dyjb*V-AR3$QA|4CUJ+nM_x&`2)^M678u(~WJXQ^qpW*q| z^(k1;D8B1c`J&}Ilg>^*xT?a6U>E6MCBxYTw@R|mU6wjFI|*U#-RyZ|*@e2uH9~>a zU{}oou2W#W(`!7}tmFJ>%Kok(KhfV|(H zrKJDYh?Q5)h_Bydx7cj@DCw{BUv1`)pBQAs);jg&d~)71$gK(3qC-vg^A#ohSvZ{=_o_K zLzKO^85@|SWWs#oQ1c@T*>3FPotDEbWKot3g84@2{_;F~5s?SWeVx%m-aGtg!Z&6ga`zV|oBN@i3j9$T>E?I@Kl5-d% zo-fdgy4o4=oZPK zW6-^>|J?6l2%~9;>ZDSG@K5Xx)iL7P?O)sQI}I1{@TYfD!G$b(&!8tpXzpB5g8w2ZN88Cb_A+|1y!3z+ z?*GRgRE_C2N;70{aVoIAyD*$?BHnhT-)`PqH}Ki)L3J^JkT5%D$!RznSuwo?yv1dl zH99n6K#5XcJ!=C1Y5|a~&cSmNpsJC6VYY(B4N< z9FxVmldwJjktpmgFsbthyT+nwl$eDDC+t#7sU&0^;+yxDGE;`g57tsJ!?7WYZYr0jjc;eR3&yTGqq>V~5!%=yp#n#CZ!5^06f%n@4%T1`-6EYY<_|Qc zw=W=h2Ge9!MqO&w-O~5Zc&w( zm#D&cioAddjHejRv90d1_(%#q6wzk0_<0(Z1DoXmn_Mq81#w)r?!`DHv+A!Y28zHW=`6l1m zV_tD8c7QZ8%d?M*Q%RQw3@G4g4W}Zllw~TdV}akHpr=)(l9|DvIh0=St`wt4z4yAi`4^(FxCznxzEf%7b^uj`=9{i-!i`bBxfR zszAP@b9K+5z#aWi^tE)V9^PWs0=Dgjb!(uQF38$;Gk<9qjhoWDq?l{Xbs(SGF!Zm3 zH?aC-XCway7x;4uSZ14qJk{r6y6@V1Ht#z~Eo!{4b;!|mI*qb1Y(GiYy@HpH&s4S$ zHt&<`|I0OyYt8J$D_s?t2EIJwB3})W>Tc_EU_GYgkYfRy6)hd&X@Qk&0$yaW@ci*Q}we>Zug#f)95n2FS13us=Dz!vxq zWA(cA-T{Oy3>F{~1dEgA5pP&9`;-XbERhZ1NQVUg+E0dHl%s3cu36eq?YfHqW5fE^7c>}_cdpBHa88HHh~Luk1J@|*5;1Eys2i`jY0mFZK1{iqT=f!Ag%O*1a8bQXIQ zvx@g-hrU2rNjroH(W2S;XB>LL27;6Sf zB=b<{W!qYv8|xEu`xQ6UqHMbrDZHNkcsZK6ryp!|<*k^{ZNGFK#9WFeJ4V|CDr=Bz zD0HQE4-RR7IWl9^?zL4MvU4Yy)x|ts#p6PPKB#AD! z3Ld(yfslzKu)-MV2tAJ8a+i*e)7*CujC>j9ysA4wEkK6)D_3l82BXlx}fL zW@hB)Fv0YqhHW0UpT4M(8h~jn1y{y?3hc#KtC+GB8nl)AcQVUaqh1clG&_uB$J&13 znzQP(WSZJcpdnDGNjM>IqbTWuOlL-0M~%IE@1c|n%%JdNDFx}W4g%E*)P4Yq0iWd6 z)TV;r3F%=q5SV{>pWseghYyc}7W>ffY|glo_*>+6_%i&?kEQT$O~8g{M8Qq?@WT(A z{UBpmeXEPIpP}?Y9)F5XAM~g9n>Y!6f5=I!V5wBs-9I19EF_hs0}VKx!K%WNH#7yhY`M z&07LGGM%OI%+ULOr~8cN)5)54$4>gcbIo6N$mFF^xy$N^(l5Ta@FMDmyH(Qd;3b1( z%iWSlQRict;k&(Tz<@^CvrG12f+Aq>Xt=to#v7gfUM?vYGZ;`Sm8QR`La;y%779A5 zA&%Ye)w+}t1qOF}V{R4t?9z)D@4^g^5(Go}$+3zJes)Tm=tbKrUvq8OVp-2q)ltKR z@%@*Yj7pZ1!Y=Lukwv%TGg?^Gjaicn^soXV7WRh20!SZ0Ir^*&0gJ^`hrLxvF6R;J-e>3XMr5$BGP&3w z=O?f;j49qh9=9oq$ke0Xpf@ZxOT6#gEl-oGtB0CloE2=`4&ccdB=5v}@OHBL3Usza4s>!VX5K_t{vw zUNH{hQF39!=|E>(haUpCj;#Ua(w91-I=qD-Ra|=7L2!7v<%7nKu)~`lFWcD?4uapC z6N{ow2{q=&#xZ)bv_I(d@v}C%ISCH`PHKFkST2PaMf#`Gct=d9cO8oVfs^3({{n&O zeSc8!Z3m=kK6s?<^swsN6Zjv^K;Ex9lpWV$+}3^c(ztOEf{vvmjMa0+hW97d*<_dH zx)7|oTL&wq>#z-Arn7b$&ztvL<;vDugys3NqR1B&nyWUxfav*vdUlEwU#Ll}ajuLn zBzQt#F8@n`;tTjSS3Z)@10%D?)aysGwe--_p}vTMXNf@*-xDalz#FjsHpmweJg+}6 zjQ3QlE3h0G$3ILHBKrbdUp3zs5H$er@-!NPax#hh|V;Tbb0AJA+;rj#eDxHGg>M(M5T~->mOlJ`3+F%sEDhzQ% zca{DcQuK@w)6ESbP2(u;Z@9=|g^J(iYwA zE#Eg!2!;ZO1_Z8l8A9aPHFmTJ=>*Li4@mAR9asm(7h~#4bRNY0p)6*dy3kiSwnfF| ziuxZV1cuZbnVL2*NKyPMzvJfd#xKq40!!iXnV7;_^)M4UH0`D_)x|f#F!oPr7D(zD zr}N2R&ieJuv2+o`XeMKJc#xq!4itEfyT$=KntUB-h#ig-hoy0R7qSZo2&y-7BwA57 zmUql@bO5|1__Kz@mW2ZrX55(5ue?L*%j<=Vj3ZVYheT2pCm$Z_vdl1s1~+TgGcwL` z-cjK4XyZ_>de;r_Ag5aWvc5b+aQe^p{S%CD6eC<?+Y#f5S62f=&ZW?;A|zRJX#%_7r2uHNuuh_d6Ki{pvB;OXEKwN?nSOG9fLTsq zDTB3{s}qtIn%>~^>>AhG=C9j7i6zZ7zfn6`V07LO2T$T)HpZleH#-(C!DaBvb!TQK zb6YH5>RK=-R$d%4C;IFZ{nwUvSZXhSQ1Gp0?1VsY1de0rg(K+njzck@aT5Iguyn>g zR(wc2M*W+N>ZY$@GyGeBDx$B$%^f90%99X`YfPLt5yx!pN8?I8KMF5Bw^hs=R_ou| zPi$8iY!y4Ooi^FLHrj$?n&|cM<0CL#9`~t$`2r=7pRD(_L5LgbqpwJb4GJ;KVk?hRqz96Q=aDVtYDKYdgs%z~A# zENH1rkn}`3W+)PKD*WnF-yoAWs= z-HVm_8!wjk8V*m_NW)(uMYEr<)A3)ctY@BUmHlC-ZwT1_a1tE;zk&60gdN_IXs!>b zzm&W;8PgmlnIHDXbSqz*0gC1QrowSdrUJimhFlgk>#O%=rB}qm*8f_sCS3Ow-O@Tfo47KFt)=EIj;?8m@B?BK648`Lvc2o z<&I8}F7-Gb87|p-- zz_x?BzM$Y4kjn0L6DW2dWJ?^oqZTtOV2{ItI(9_y`YB_ps){6UDBI3BHcTlNkSth} ze@i{gdlkLL%ql#I&;WU60$tlKUc##5_wK(Uj4eoREQWpy&(^k+3Suk+5MNoMz*B zF%^QfpX;qtT`-)v{gn-w$Jdzy9Q)_G|9c34?$dw@2F%7qer8$^ADivLq9K*Sio?~B zYdbrhc;yAUD3W|3)XO=cKk*@?2I{4@Kj`#ji_uSYRF9{I&;mFZ`6+)dIl@ja<{zv@ zx=y0kzc}7pq^m$4AyW9jRCZ!OH`g5%`Xn+gg%6nNrFTSdP~>h-HZhteJpI@BYB0Dn zD_5?>nzznQ#x9^A?p31(q=AB`C9Fu3CQZC^Sg&K*v)Io26Inr%KJ|wLUyJ)N-KcR< z+BI*a4%W&=XxPxEUw%r3WmyfAjx_x{zh2ZEt3a1E7#Q;kpr<6x@UJ-4J2!u-l_S{( zpYhayZT{O_mFifv@d8fQf=iEhF_45dY0{1Qv36-D6g9$|Qpjts`qHdpK7~7P_y`V9 z^<<=X+*NWb1}fuAN8Be~O$}u2nzyTKaGa-L`I-~&Cnd8KHdW-y(ryn#1FzdAVgV4` z5|<7hJh*v*0*wSkXVw?I~*%9}+^oY*G2vxNEU zEMI2YkF@G$r(>8`XRAfC>&@8d<6LFg{WRzwV-ksn-s;8IG=&*k( znm>b-U)%XtmXA2?n`5ax{HvyReOj#fRX1X1^W<%<(Ne4+3(dQmrtxs_6>OYyP2nMPB>eIdaUdJ_v& z1&Ti~7{{7uo?o#mly2ZLD@h|DkecDFEZ#;}iZ;$Z&Eq&+D@wUo{v2|pQRN%}yqnDv zy@K}vqSvIm#7VoKkgPK}l-fsR2J*RE>>zZRN;ec*S|xy87Pna}7wbZ5xfT|ZfsFkEsOul>+6NMQg$#BB zuX8>=rIjJd59C?XP)i6Fb=)-Mn*{bQ3C8^2p^`~5_B~4sid}MPf~+O< z|K~LjTD{ZE-qn?((m|KGO>XKw!!oo240iB85B01Nv#xMC0eaY&8P7le{D>LS2i1(S zm|p4+se;btG}M@|R4wM=56#q?rXYh@%piY6!54a2XV3!C_Olh$u?$z~p5gWJo%#+) z!*wvCu|hYVF7>(FuDP8@j!ulOvjfsqZL}i?o>!@pjP6&IW#z42>tKB2SCu+pB%aun z{cWW@tYCILGDULAxc_Zp{-ZZ_+W<>(HQzAx?J;_@+tID=Rtr;OA2WKEtW_D9EW8&h zWIj=1MfSj`9dtKqsaqR31jTp`#aQd!pwkE%#KV9pCb+O-N3eZAA9hbd7+EUa#44ot zCTQhxts!DXFL;*?_Vk#i>pIb|ar`D1PI8@~R9Z(@=n_rfDQ4y;8A_iFa`}@d(+|1z z<{pOw#v6uy7#+vga?rUKSbaji&R{fwPag^n*x(MEan|<%o~!79nJ)cBkeK13kXHEFjb@bEgR_-fSx% zd=9@$Nd{pgmWVb!0OJAq{;J`gdDDuWfM?`)4cN|{U>oZCicm=FV||6vbFSWF8Mh=* zdN}G#9&`|bWAXZRIE`L-T^^~FIH-?50MyGAg;LeR_R2*x(+KE(6`zA7>$y^YbO{Bg zqt?2q?l0sm?399Q;RZuiSSnRRu>=iU9Ju-r`p8i(#`zqZQ?ORN!sbfXySG>KW_qbd zVVt6frPBXWKXpo`J_N(YIo*`&m~?uxysMxlA@~IK+^WU<0@+n*`nP$L=RcJP>veuJ z>&*N))7{CJ_Zt{q;`M3$B(Cc0Z%Vp*$$R*e_huf!H-E+-4_8x9P_)?IlzvmqcbHhp zbY}^C{<*vuU3@{oQx=b|y+C;q@YO)(vSs;XQqG`^FU5l^bJ-Rm^LF+nNN{|OfQaZJDk|#zrG|Kuj%x`E7^u=I#Ry9S6Aa%l> zNh2mZV!;c%UhI%?%{dUg4yE-3qBk%Hiva3hrJt)X=>NKm&`hx3rpJpy)1_h~3G{rD z(kusJ<77wlW&V%VnLv9y*Kd^liZj-K-(N~Qw8U#;BxtlxgkXT^)>c~8Q9*Chksn~y zOH*mp(SGVMJ{;As4Z=WHBlO`oDeYi%8*C;C167Ck!eu6v!{J=N zs_39K)F0^;irjRIjhdnB(B(E0_om5>{75|~br@6-lB!r2^IuO7dhWJIsd~dYPOQ_R z-z)E+@^wIa6>=saWv&5AYNuigo(L$Rg9_q;Ej`po303DQ&QU@|IkYyP3Jc~ZLp*S) zBF(6SIHW8h$jnQ!Ik_e^aLVpKA0*s#)p&g7o>|3@`&r>-_y`Gm__>{Cs542JwEbefK@ zE2X;p>S3+Fu0O^H_=+aUrkGrF2~ys;?=c!7ykh<|^6X%DmERwtjAfp_{+NOTVNuq_l-GTV+PUr)2d$}-Ixem}*fHuJ^A5d2MFK=SCTgb+qs zOR*ojU=f^ZpwThCX$rm3RorzFklUPxb)VXXsQn-{KsrCCFswZ|8Q6{zfooh?;AdEt z$&%X;;>JGXO(Ekis0%B0h-2?#gah9~p_~Oj29ngD)3(Uv?9aJOs9BtZ<>8ZDXP*LB z@GAI(p0hf*E}8@I@!aPe0|hRJy4cjEa-XP{tB=T5y8?0F>$8i>u{BWOzIrW{(wi^Y zWb?|guDMJ6Y}RKp0U{iuTQFWhU2hf&Nk{{Zap$3b^O2X+nS7|1Bh%`+zUm@kw8H(fc%KNk<%w+T+tMdt}FK9tfO#TC`X6WL5pNesTE z>!d5}Mtji}Tyvpzd5+UfP~$4yWLW=H0w6*}(+&y`)6=@Xmh8FORF~wVPS4FB`af*k z7=_qA*nCm&v&5y=CtR&$xqZ&o)2yz{jmPz9+<3)Wh&K~-^;h9C{U<~N7E7R%x7!NW z9K(QPO5rCbj*6pal~UMC>!D^j@UkK~QZe=%O={`BJsuY=?0KCq1x2- zrxYJ_`K9RozHQ)Qk`wvwheLMA3vvAS^tx_5jVOyzd$s&g1s})C3KU+W1L!WO&-xgGb# z6g>RXGc?l1aIhT|V*3KQ(8*m@$fSsna|zhi`(g?nvr2vtNWK6%75a-LMcE)Q?fQ3M zqR3`5{RgiVmwU=xO|MToO2a?>G#M;;eG3a^{MN4chc<)BGDVq`4bOZ z4G42wZy!W&#ND@kECh>Up_FQP)ItQTg*g?|7@~;RIrth9(Fd9hxeuBzv?3u8h`jF1w}vzN%8ynXZE{4==2ps zccih;n+4wzohC~Z7IR@hSMcg9TovB=)mH!@4F)t^{R%dKN>yXmA_uhLsT#@rEu?rt zo!JXV^cXMW;f`v)&FC^UxnYc>Ig~}6)Dx77LaeY@1uR#nc;Xag{fNM9;=$ZoCZDj*)cXnp<4$Hyq%f;v61>uEM-GK$D z3JLZO_*156C9NvIo#{128NC>8QCXE7-mR!DFB@`m*Q6Jl=+QknenP#ww*Ci6c2L!% zm+w)zyyl@>D@k3kb#Iks!$<=R7MFA1>I-}~>E0o8jQAFE+dJe|%7S*Z5eaR#$M{O% zEcOF6x?`xyg}Nfw(tdV;f$M0>yS{L_E6&z_jA1zCsG)}cF~1O>GRemUPYc7agERn@*AZ3w)Ct`Y{1Iy9rG>vU5KicAB zZmwOv>^Qcix>T`9zt*(HM&baSip*Jn|FXZwJ>PS4-NslZyix+bUq1@RCV_@RTt}c- zv>vPBc?ibtlyM{@cx$keLf9Fo#g;mQg8wJ>sStJq0(LN+NI|kN7UYO3cq={x`|Kgu zM0Q1|ddhNEVNJlBX(PtaZ>rr)c1)vVz*)#_pPC8OhhbW##{sZ9=_P-v?sYR)05*?_ zFRTE!&H}L=+oZyla_nOkptKFQ31rh7h z6guO^H`(u1tF}}aZp^ug8_a_#OKz4-a^)_tnBBvM{lP@*vsSE}Rd}n~-LqI?@(0JV zcLO!=Xzn97%azk8gnA?`2=ON(`i5%{T_#ao0E8j3`wP1dD8{edWE;^OM|ue6UKeW~XxR%Jn)|M|&^I|)Zj zavwyajql0qA2{23a}Op*v0_8EU7laea&TdtwlrkK>r>w1T*&Zi3Jw+)IM>M!@#gwD zg>}<*EU)H%JxMBYc;Pr0RVH6(CVrKa{#htfROn!rEEmg4-=dv*Z zMJ!h>r(cRubjpY4{`03j$3L_0uY+*^%HJpx6GwS$AG(>r5!!@Zf3J-!UNNW#%Q1W~J6OQ*vD6F8%NnHSDX~S_z`8HXTVy$o`xd2C z)dOivX6ulCMl z?Iw=2M5@g=tcx}|muMV0zfq$>AFi1zpT_vCG8;Don{DI8L-r`T7ULl%ozf_Rx%`@h z8=A4!ak-^pM=@Rib`##YTwAj~8sBdyfZ+ZuNW@0bC`YQi9^rttq87wsEp%Q2*YWQG zfBHTzaNwWfNFkwTm{opYOQX1cZDC)s@Xy1bu_im(HwhdeD6y|A!WGQzPVg2K=LH~ZfOx_iiE}iFX9+JAX*>?rz{J~u*%_h6#7Fanc zCxe64YZ2pV@H<$8^m=0_!m2Ugto)81^D*l{_aZC+Vecw>6*tuWCYjqihaBdrlXOiM!b~P`+YtNN51Hjpe zlVF(ei2mNRa4x%g>%Ob2h$a;%SVDc!x&vPnQea*ePdzJxDWd z#xC8)HX7FGTJrblG!J=Z#2*|DU-_5(k$=ul@ODy*b=(+@eR+F9w?r(bq@=)+f3x`c zX>uTfGB7+WY>~P=!8g9>BmZh&^@LpA91DL;?hLukvmG`M5GAQY&meqodWL-EvD7${UrZESFKYJg0p)DCE1*0 z?_MKt2tcm$!BxEtWsQ*KhJw*WiZLDQl+W0*4r=5 znp`Ohi#U8fwk|?GF!P0Pvx1~`DQqODfcYY}Q$CiQB3mvJkUnsOA4;;k)uKrVbHIL% zOEV>yM*dql;8e8gkRd}F4Cz{w{U+Q7pV_rQFKvkrDCL#jB^<-?8^^+(wUhTugTDq= z@#)eGnP-TbjWPIWlLi*ee~o~|B>ZOEuN9d(SJUgBr_s_23Cadljm16-ZG+pGI8ThT4-h9b{ZV8~eJRA8PoZNKdv6h8`L@`8v#1aXuaK<(vjIgq*SupKBoFZWij)vF)G#>U}Kk8uFkp?A53am<}N6YAvb zfCqA7RWP2fm|WA%#e6MUDiD9G1b4$1Or5E=i1N=DoJ!rB3%?W9t_nT__0q#} zMAg&}97p$Nx|dKv_i#ile39em-u%yFEG7b9-t}h$v zMGNS3E~Sppy=lb1mIE%QV#N6hYI@<<)X&H2U4##_48u1-e&lBOSZW2f93a-a`oHN8jBH9>srHq|IqmXmByJfWmPLiq<~^E{KP(eGmOz z&~Vkn=eli_<^x^KmSh>n>3BBVD>Gz0qJk~Q4#TXjg$LV1z!|N2F?2bo>_OJc!Aybw z(hRS1d^cH1j#rm1^UlViJM;M8D#y4hG3sf$vi!IRlk};R69L|}{G%?AgY}ul^=Sw9#My>`oqKqK@Th;4MGZU6OTn@5`!zArB4eUrG`5+wwt&R=KGV>`4Ey9N<{sxPl zz-gtzgM_!@kXsW6EW!fGGI28$Z9Qb`wRs*}@OjZ272W{L+vlX7D895N*HNbw4xBaH zL4%~HRdrI5$~hh+u?qQ|sF0n*dFdbR4+TC83}&ZlJt1CSH?zw=yc)!=w2 zijRY{X}5HwUaXNts+KNYwJIB34NH4M4%B;fl;lI+^@1jQD82zu`oriK5`=M1XH!YV zH601&&w8Sn0A+h67{+Efs`Qms2`)NzIS@Y*#LC2dG+C!y4uq1b+T}gs>v<{5fhQ#5 zuDj4}t+oWO;&ML-EJX+(M0OJ~uIwkIRJ)xM(H*Wk;;q?(?S#0_i2aOE@H28uF1|By zVz+V(=31*(ekpf@v*;4ja8O|m8MlK{T!rj!dui2U%^Q{6jSsH*4_nnMk~ARoD3>rz zNRnPBS`ES_DGUuW0;W;_+c{9E(fG#jj-vUzo%vU_33(kC;O7^boR}IF`3HkmzCT9F zJOB8QzU`Y0_`W(br%~ulZ6+w~=@dD*dRf!QgsEIU#+f43ox|DKhDgt>}X4W z2yaay3Y-T=ZeSEi7h30q_OwWeCiA1h7bq>Ofv<{=`}q2G3XVHJIETS?P#)F383)eO z1f((a97sQHAGVLsy)^MH9MX!#2gdiZ;pg>|5a#@?= z%bQx^R>Nu##$!2N9Dfc4kUYcl^5Ll1)Q*?o+xB}&6$X^l{ zL%OoJZCiq26Hhhyf>dDg-6)LXF12C5OsCm+=im=GC7#@H7{rc_Ym@xNE9*+lx~|0B zHS}-}Y}nF*iY~a2aU1i><5+fBj+|h!VJw5K#3As3XKdQEYI+Svu}VKj6?UFWALKY49i(*DM2S@Weu+66<2(Gou)g%P zzn}t2-Ox>4OBR2aVxwH8Jw|!;MJMx65KRt=x!0WbQ*@1wPuo*ohP;g}J3o8m+3c5T z2u{X6?1yPU-$(lMok0z(8~Mt}0gb6Xy<+?s(=LVP*pkqJ@-k$^`!&sZ{!c8*D?Vv341042^S*ZQ5<(!4kY$J^sah(|g7 z&f%S9%?i^vpU;7e?H9msbA#YR$vh6u4?ceUI{I|ohtpB%0=hmRCtQ35XU=iuv&e^p z)#~u?TZFc-1HpX>D^*2V&LUKu(OE6|f$GmQ4oIy%m14ckG#UM2F7&F>CfHIe zQ!GAc(b<)%BWxAPY_HKGtGB_8S$bMHBAp*P#j$j6L6ijjzQ4Zf6lH%sSe&KPNf#Q= z5Y;3ACC}*^fdzerE(qfmFdqlcF24i zKQh0r3K?-_-iuQOgR5f6S6mD3!zpINAn56fA0eD7gd~^67>Bepzw8U+tgz2Er+CUw zgqI}%Up03PpQkhc%ooL(`$Xju63W1Z&;cUL-D(sDVzWfs@%v$XP?Ef21U;e}N$4dM z>1oKk9Y4omobV4xsv3_DkjT<5uOA}ILR>--yM=>26OG37hZc_7!N*_84 z-D2l^fe_VTFc=&Ze}t;TX>5m#KG0wBB9yAVFY^O*lgwFYE*sp(tkK`GH;lM0M5u{| z?L^NCYcxFJo`8AjG(Tqc?G<{AQtE3ETu(*W6}mh{30-vvu#TF?ZM_Xe)zEzKv?E8e zmZ1S0RerBH1xfGJgDrE8{1c&%``AXaUh09-;LgFp?Y>oLAwmx)(Ikdo} z6)RSB%*1j3j$Zq@hE~b)f$i}YAb~7E;Ga8ZxBCdR0vpZ?IA=d+!Wt@&j|6&6ZzMvB zh)Jm`r3gR}R;dz0mBnKXi9$zcgVMw5F#ycR5sW;D#)g`orX`8isCcwsoEQm5CmvM# zXhF}h5P6*gQ?xhK!jY$jDH%X31Pnr-^YQTkb(}(nAmM}aAzs#jR&eJUvfMP^=X0QH zAl|Y4%Jx3(F4!kgRWK29Jw$pF_~yBDGv49xteUR~vc4o4Iqc&b-l<^AX{C%*YNRA` zM#7r-T24h%x`X`2NGZ=UN88m3^M^ATFF%e=>%=v%Kf+t|id~AS|NLTLUh@MvMg=RuU-VDTHsTdBe#_8P>r9dQYCK z`oFx{r%aQay4kwXozp4Mtt+>=JAiGA7rJ~ zMNg};Bh_sx8(lbb9H`%!HhB$7cszM><$M_=r+mfz*##T9hEff?={`jxvwPbtZWNZP zTuef@gat9(+*D+n#l{m1l{p7ZxPAK$TvRf|P_I(`-#Ahc@5w^W3!f%CAe6eCo?ilmcVI)vdHbtzE6jt)>w4<3_0J|%OA4o3zl-HEwCbzS^X z*ip^1ZEJs~1LfMVVJQtud;ZUJAX5){j7dvHwW^qe&8M>E_kRk(UHT;B=MHnIF5M{v zKLk%pjBnS`nJQ8InQGC2rh>Qn7up7^f;z$U_DlSPE7x@&;h33FE-D0L%$7o_HSC#h zM0ERMJlQBZg!5e>#wT5Y=$wEPm<2mEE`kYc^^`mN{8E5mqaRKhINhcA(E|&pOZ?`;x=>b z0_?_8UDz+CwOjfBOeKe-^l9s@M~@=%b?n%H@}`ko4mfw)^9(GHcluJlwGt#<#p#a2 zETJ}JYnlvW$d8eF<@ew3#$()s(b)4$#G1>u`w?F5iMS_&&D>v0YU!i026I>eC|ncI zD_F@Z7}^ld)rj(xq?}Vf;zw$?gMlAZ&($8zs(C2*;-v?tUSJ$QmTPkq@nWAK8GdCM zRjMcBBxt6djupHrL)ZNv#BPjmD9E!022X=d>=x+DyA>y&DkkOIY{t^h3A#vn`tzrl zu{!u2$%zVKKbf(fN@LUF!$IaFQo}7h0~?T5ygJ16=o~6~CT%^w79SBoQi+?d{kG(_ zXpPKK_^;r24xVz&A|izrAakcj4f}l zVR-6&45`Y0T@JKR7@A(lP30nOOm}pxRFiWLzNDj2LJ+|o8 zW?TXFxSu$e;9TEb;Uh#?hN(7u%5|i$Xu}SI3*|&Yur?_UM|z4OX(`6PT0kxvtnb0; zhGVoohe_HOmRD6Ay7;K6Si{}Tr=PZ3LOOS0%}ruGfDP-m4z3kkj|A&eQ;+n?B{|=< znKE<&me(lCreRZSGy%_3-!nvn4OX#>{(8?!i_|z=97t#96LH5hmi}}-`J}1GxZogs zqp!}>iSpt0FzD8+M_-+A>N&Vm&u`absvs9w zM+B3%wlHvykmuUs|+iQJe6Vz$zsg)9Hc*3&uWQ#OPEo_fgxzVgp`}G?hWg z^XJ>7n!H%uMOUH|ClR_8w*JHodTpx)ww_EX@r*a_3FI7M8jB|FHTkh0sBXmowqrH# zDOIkI)1xn^G0$l1(n%v~6?Y=Mf|9FY!^gI^Y*}f<)-&YuT*1WC>jIf0Pf{kzZ~e?b zkf_$vp8NYB{C)MvnWCmcOF`Q6e?JF`4B?r+?Y;Jc1N6%r7g=G$X*U z7Wnt3i<!1w;DhNa-3$oA>AaaOwW zK98?%)Uf6=zab4kn)^3%z_~$edkfLhM`A8m^xM0{2DR3H4^FyV=OXc2mFG*+_p(@ zJn@9vWX=EwS7zkgaVeKUU|Y3Eg@(p*3sT)t_v6sye3%aA8E4Vk`oQ>RXR zO>%3O@dA!2`IKIb!hvbt|AibVyXsylxFfAu-4$D{*%Sd*JJtQbfHM_l+}?gg+}!Ho z7fca^4P|(5At+*!_r@qJSEB{XwXEZzHW}+*eY|*19eUCMfG#*B(iX2*t29`!@kP)b zfy^UgNg`d1!=3XsJs~JrU6U7fB^7)P!E9|NFZB(bv~EBBLY2-o!2ZO{RXM|9;3dWi zEsw@e8;P*=MPGqkb%G9^(Owq!G*D6HWmi#Qecf$iSF zD*oiSO+9MWsx<)C`aNO=$2?Ph#=Jgvi71O@gs;J^Q^{z8+$_gp#Mcsqp{Mm1j;H%5 zj!<92>NM0!*tq{K!Dxoj(IGj zhdy*bCwZdG`^!8_^B3HwoRsPC-kV%X1ElQ3;Dmk3#MVD9<s3{FZQCyJZhL7aHLS1|s> zv^Z+8;i;EArG61p9=)N)qAJuh^+^#a`=lCD$%Mn4&disBw2{b~2o7sz?9W?n#!5Rv zd&HbI$vH;YZpR{Xa9AVMRpGeKjvvZFk`(GkSnjvtI+!4-`*SzRsp*TT5oSnozkj~x zD*UF500MP~aO4!y9H+T|IR_p`)U=Yx^A=gO{8E;iG7@%RKvz#$zDC(!812(!*|9*6 zVG~dG^Nw<3LL_N|{7Kk8K+x}#VwwIIE&W2iLwjj@CVF0&_EU66WFJC#X);H!yofLE z4m{I7`K&R-riCPFgdAR!<>5gQ2TBoqvJA%K7>^T2POYQA-+m6ou=42{(ax7C9_Cn0`VnHllpWX1`8m- zJ-hJ!d7KR+~8gZa+?n zy-T5?MiDQrmd#=Kg;hT)Zy=s)yojYX;Xhf1;p>2H)eRp@Z8vY$)&f*bILK$e2Ehd~ zmh~TCj-ittI*s_}a-hV(z?dJnpy~U4)3SHtpU*`@Nn68Vb(PWwe~z6oVTTD8e`ROo zbUW?5+;hCu+gmAkyLmbHkJwS!IbV&T#+&5L?QyuH2UP_7b5R+tFXcXEy0R|U`ybWN z*X@1ny5s&}4?4rkLn(c8u%k9*&q{{kCFJyusLz?T?>Y zwN}zgTXQ2IN5w>Q49a^xwzy>ra-3zg%;r>h+;SX>IKzyMgaO%` zTekx3Xn+Z9E~7oLB*-1fCag>-$TfiW+>RER7vC;Qb#!MF%DN1NOjyAhaQ){g#;M9DFiIMi?FG$ z?{OT-d&zjkeEekt{Q%1WrrGdC@Fq11X1QB$91(93g8AR))-6S968wJZ!J z)lVT$;zJKjo(eK};Q_pn>)?({Zh15NsJU_MfuX~x5C2Jn+&2snq! zssgWo8QR-x&{o)$$W|rp(*gQe1qAvdbd(w4yMt81NyQMRPJlVu7!ulfFG^^tiAfhxAXURwMTvcM zXjl?0=JW@8uS11CAe2k@NiHan*xf%-=H23uM9KYZh3M+1aUnkQIf_E5d zZD7(MN{j0r#9(@`EG5Uol{Z4Hy}A|WymsyJY)|K~%|g!1-HmUi(#Xss2i|!w}%8jAv2=O@t%R9JG=PZg}S)%iB})UPM=^ zZ^e+2GWLi>^s#IP)MU{!NXRv&aR1}FukU%A%| z`7K#8nEFwiE9E#E zx+zp73&Sk=v)}6Fx`qWy1Tz*Y1Vhax*k)xHc0R;kD`!M&5`J&h7PYro))K}11=ou? zlpezYUmN-vYDfy6&oB&+`!jsPs@^%yuZS_k{_Ci8m8U;?DXxI>Erg#PC+`p>Gv6a9 z*1xx#@S&3_LHX{15E)c>n1+t|VOLz-d!_tV%SEm4Av&hp@uLb3WqVT_IVk0k5jJG##+lS*D*(sgdaU>bSs_p|`sFCn&gXlw^Sgbd_Cv_gi z^c-1l{8l&3=8M3$=#P3X-lM-^5td2r=&rYc6^h3jbv_}w;lx}j!+8njZJmGMU5d50 z<_U~Lb2D;MiRbvE-{`R~VR=Sieij1X0(G@wz~=HM2=)V=#`x??wvG@4`*K6tFkGu6^*lsLOln+fK*h>1;3G5O#Ze+UjM}630E0 zMreb&X__LZu=57ZQ#X(CoHYMGl>@oQ#D(4Lv1I)bsNQ>z#_70NL%(`f0ZOeB!7XQWq z;CoTWx!&ZUm}v)NjP^wfw4S8wWc^}sf=+$zT_;XJpKXb0W>XWETvKmam3wIhuC0gT zh#FDnX`>p0`e30gnS`m9vWT{lFk;J-zG3{7Cwtgl%Eyuwa66Vk`6_%=vYX=kHga2!z} zIJ_*!(!JZv`$09VOVUlQd!ivy0eg(zMbnuo0S6*kHgBFNK<{gDVmYs&&KyhkPPe|t zwqa^8jC91V8Coj_fZHtmD@!a5_}6p5qt1d;WXCm11TC|wI z^9~HPd919Xo8j!e1O3Efskd5SA2vm~k$x=Sy7whH4BH)} zQS-W|>@OTg7tFJnFXV94)q|4-cjKwA=wm|{%<~p1W_^}|=S_R0Qta7y5}(H#^ul7i zl4%>dXwiCj-bTS?%*qtbO?0n>1vJ+F*diKI&g4jU3n{6O`IrPfs4vn<6VVnGGx7ea z441Lz>=r$yYNuqF!tX9hS%>#<=`50O3Vz19z0!WfAVpci(n6aZ8r(d{b3bK>a;I zel_?FM19sDgJpDR-Vc_86-v!toQ%_#CzumrHyc#7K;^JSg$4nBinZ2xI$YCWdS;Hi zX5wj#c6hx;nx6Cci2^EwKc+k^>GJvl%bdYRmC^8zJJxFk+yzex>% z=MroCQpuPXmU%f(c+Q%t_sShgKSw_6%P}bLZ=b=aU}@z4FFBB>T)j^JSg~SZc0*f< z8iN)tT)5)>`+G@EiQ0)t?`YAjpvwSs{?4j!w-l!Y7r z4&T_V9s=u4v3=yb3@pxuC%#g%VNO12{jrs1s63R~ZUyqX9NJ*U`liN>%mD1QoHc-i zyrQ0--tomyv)o+V85SQ74%{Ue;`B|4+CSk2mVYpdNfOML!o@Sch#)CX`wcrL3ls_i zr!lD7&hzb)2Bfg58aT82iNbt4absErL-@?^13<6&wn6^aB6xJqndiOq4kPBI4r-~n85{CM{%g$ zaxTRYt?0p0mLOw;gv$hO7+tnie_d%B@t??n0=+j!;JGe>R~MKbMQliTvI*dmGZX&xsL}yo1oI`;b0Z zoo>F9!ENzHd~(iijKZ10w5FlB=eM>HB| zV7Pb2!EmqoB1fv+KasmARkzF*AAw%@IEpv$=Evxm+t>yE-HhA>u!)yLEbZ~Xn*%@F z1_)kIuu1#zx1nb~jmOGePqL|FX8a?Mjm6OcFHfHQ#dDZx^FXQS*ZEw@Pv0ihWMgVf zE?OjRORVY39pza2@q_Jz8ixA2YOT@-YiG07p|~npPU*jRyf)6#;DVIAZ*_8ol<5$* zea8jYygwT25;d0goS2OF>GN(HQ+@VK##f9Fh{2ji<16}Sz#vi=8@}pjR9OJN>em?8 z;F%8pZ2O1d#z)2mioIT%Wl+A@3Y6zBL1vkbk6W~?)$fAYxxX+K)k9@DTplaJY6i;> zf6V4XSKfNC^YU44)T=>RUfNGtWO$Cd@+pf-{NFsBVsdPJW9`NKa|iO1r2OR;{6U$s z9AV&a3eVa;@4yl-f6Iwwe1;w#NmQ)#rlTl&DC{7g&bv% z$^))hy1{;%Yq>bAwk*e;JxhL`9i}+}IEsW!7R38i;yP}iV_Ntb^y$nN%BW>1?({5I zS%JCD2#`koCvqTj>q+9*X8F!9I%x@u}9FyrD#m%0CV9^Si>%CRJEqBPD~lgg19~uc8v3I}n&qZm#Vc zR*mm*kRvkjI&mvc4p+wZ4^1gmI+?CGaYr}l44&|OPe(yTPb=#sovUq2Hn+m>;{F&g z;MWV-zKqu-NwwDz3oefSL)dJV|7P5{Q5Kynv#vDGe<}w&XG0l`{K5Qsw?bpz!&n=k zNU0`gzb{JeDGb>E$B;z|1!^M!a8sXn9ASnzB z7Obm*o20O&4q655o~OMGJ()Rsfq|r4kq0}moG-{%pjkIC9!88eTNYg>Jtdz5{J)ix z%Mce>qJ)Fj&Z}7Q8Ty{X<|6d+C-MPRd&3|4*Ts(4sU|?U!-|!23&6wF9?$etq+Fh8 zsLhA=D4nbHu#7PEYlBayeCki0b0NgjhlQk^VfDP54TK$Jutt?nf$M`PxP+dh@0xiU z@5d`2PtSXwfZ};6#|w(XAur5?2KC}qn6ok)*rX(Ewbrl2d-SJi%%MtFOEOzxHJw}V zQ!A5d(}Z}Y!qG&?^Mv(ce3*G1O$Yr;({4-uyl*GdoxE$-|HN7N>ER@pZY-3p;1zNz zZc1`89D0#J)#g%xB5jDk%ZH>s{uQBGl;En6m*`x}MrsebX$opYV<>r)+JAQaW|KHSYXcYIB!Dvt6SJs%X<@T5yUeA&`(rPIB0IVRP zyfoSJ$;bPQ&9eBWKW5IHx%1|`pdi@ltQ1u(d`XzHpj_A@!;I?(rz@~7ezqoN$MSC@ z$4BGHW9=ID99gga$XS=$Y1rfFW|^eC(NCvp4C?8FFWozQcb?$Kfo|o&D??lbA0;K8 zM*bh>K(p}?r#>v^j6LN2^_G1k-3e^2CCmBR;DoYy^X82_ZyUlzbs7#|t#&26PoYgr z1(gp!)cs?)s}Wn>tg0z0cNVc0<0|1wcRWMB9#!6;crBRv?1&!z`2F|w)+t?|i!A1P zQnBjbq!ZuIHyyR(nzwX^(W8rcNJVZ0(({nC3RgdV^4&l;;*;KnkD(fWz#A9_<=KGD z7t1-|4)0MDDkM!7ID*W>en)`b)~9(CPk2|DRzuNQRwQvf1p{=sb;9uc1*nQiYb|40 zE0HgtM$p~X`+76J{*>1U$WR%ESWa|FZKGp{tjKXikRwPOK zQO1p#m>HgSAMh!z>C?eOIHk7kVTmcW#IIP6?%SA{DyrxKckz{N=Cv)V;52OB7w%A5 zF%i$VvM%+;*Q~xR>B#zudZc(_t=@3)NSgoO&4FwUO18?^YWOB_)j1vB0dg`{7QSKo zHV)fFx)g8EM3KiG4jVcC=buYvtxOI!{?w4eq%65>54&!|saNN=;33JItk|^m7fwGF zcnjEWlZe8|G@?eSqp8EhAaFBok8fZJHfE2+F~Vgi+W(C#tVFXl-v*IkTcZ{i##9_S zbm&Q#U%~iZO+yV(=Lt`BcSd+IkW`JFZw1R~FOT?!LrA#hQ#WoL&h+$H=``Q}aSl|h zP~oS(U-#`*l7DaO70*a-3c>oP*Ia+2IvitWk9_my%}uZ(9cBe*+vbjIq8L)LR5<;D z#Tw1j{h7}M=rl*vJY%&HvdQR!yuSpGN(wIgq_clO~>$JN)GbZFR4bUG-5xWbN}i|Gu>1 zT-z~@U74UZ0Wf@~G0D42m)5Yvy35F^W1-Fyj*H!g4><=~*@{wC(uC|tfOGYVFgl5+ z;V|+(|K07Vvg8OY+eeL>eDA(88@b5Ikn7J5 z-ybk<8+=X4Mdgn_f625{$?o$n2E08xV@4gp=+Ah=mq0n~aORWQTCPE~)SR-ILf#y&Qjz;ug>zJLkq#_kZBbRd4CrMf*=%0tMdHePTVR2)4*?5e>Edzg`g2rSQ5hV~s5)fitkva{UdSwEEWV{0qUqQWI#&olB#8n?G+GRts==DdO-9@qVV^yFe%F3?21xUKHV3lh zU;ab4e(mYDAHsXI>b>buQnFHKX$wykHI;r?|JYGd)JH!IZHkKq1SYt>N7ODx>y~uw^|Pf-mKN8hO|_8l-ik&Xj6>hs$?&aNxrvy z;mVs))C*NC)5e`O6p8Eu-AT%j1zr<|NS6$3 zpnkMquI@`QLv^kvZZcp}$afdu5W-@elB4bQe zRJ->jS0k-#V!Y>zq$XUpOm@S71a=yM3OU!bpg{-S&LiAO_p!tpgzoEhQWmQ7247$~ zy01_$N*S#CSYkbLOi!_F@VShJ%^1|jM+ayN9r{0LhC%0!!ggChN4S#lxV1U08X8gp5_>ICG&g~{*F`(FI3)5Q^rVQ3KXT+qSSkySgOhio7Zh-Vu0+Or z>?!W$Z8%b!`l#l#<|3kp;4l$R!K_Kjx5eJhb(ht=Hn7odw7N3N~3j<`8cP> zFPJs!;VZR`OQ9#xCCLk-3GVst@F%4`9TT8?y^Kzn@8iA(uw@)1Nm+}60ihU}16~Vy zOAs1P+{P*5YB?hrIgK-EB#aEF01|(I8OW-Vsp4<5AM9vdErtrgZ!}W)F3IT;9LFh+ zz0?d&E?}D>v5vns*Dc@t8_14k2vU*fG1(q~!FJVx#1Pm72AoXTLs)Qo5_-;R?0xG$8h0h=n1UE2DC zDf!j<`zI@QMSO)Rf|6A66j>IEQD`t+rp9&;JT71qad~mKue?@4fOE9cf|0->on!aC zAbg_(jrm}_!i6vf!B}^{LTPZ;mmhX046kYM*3BAQd1eYYqde>0hxqVU>+F3vbXeQ9 z*CI(8j&fDrHx85O8NhyJRD!2s$gz;-?$TFK!4Bdv$qoKV63E4JresG*mtWu>qY)-C z!bqS0G2F)|7Rwjn$Q*$rv{M$RXXPMSvP}Kdc)^xQC}lj)RQ)Y5`ZPccm0pfRm|sR5 z>@UI1^7Yr|Iv#!o_fFGagIzTIINN2ATzj54A4~?Y#GPW3m|x}M>z8*$8wB)KgkI8)mmAgUQ#dJEv}8hNU5Zo@XoC zpWIT`TMKEwG<$Zx#-%(5*6ufZm0}jys~Z!JsOi#AlTF!d*w$*pc-e5FbC_Bw+t*WO z!EUElH>YepQG)y0wHHfL?goElpp`LRvI$50ZQ{+Z$UqyLovSVDrD*YFy0ZA(V0kPc$1NMB6(02mU5(xoU(INCg zH1^HhhnQHv&JtL{Q01VyK%GmHjZknE9=wgP|B!a8_aA|CEjX-YDhg2gAg(7;_;saV zLC}l~p{O1!*dEt$FklehkHgS#lC(_UP6L<%|@!XvLoC z2vBq&+>#0I(9Z`)4>*qKW4t|1q4-~yjtJha1TD!Z^_D|Pz5hoT!JIE3`mp@^-zx$= z$da}KCy{woG!(Pj+p_nA7awJMT8fyI{WT^xs0Nl&z4TuX7=kkf%?smmd;AGc zI=D*LxE~7Y@G~4@Xa;Sa0H|JnlNXaRZbC2pV^LJB8G=y>LW%1R^eX#Hw!uB?dSbMFub*dVNerFq{_KuoAH*C@1PpfS2uQq!l;0yr1 z6y{QQShV?s(2vZ^bWi3zcB@liv&}#jb|R_dHA@?AC1@L$iEX%W9WXj+G5W1<$Hy(C zoR{Gxg6~{OLTU8G3X)1Qb&;N8g>d!b@7iPW|2AKa!i{6>?*}>y;#F;jYA7;#r+T0! zp~Or9|IJu6^#BSHwic?ws40@v6CqyiM+kq@8}yGc=^U7dO??Hm(Jee% z3kT2IvRWkrS>d!Shf;5oddrR)yzt2nke~A?F=@9Nudn|MCHXvn?$Z~BEr!0nzA>bR z;cp+yd|5RiK^m8Irr$+$cXVJ&^fVf8bZK-pru+LApnpm9i4jZ5}|OeMM50j{=lx zvIUW#B?x5hPbgY;kay`tpHX~J21wspK|}866G5R^3bwqWNK@ZMk?skr{TzF?X>EjV z_6jn%2hUagyFlYkG1L~KXqzv_qnVD+F^A5pqxo!fYph;;>xTc@9<7FL`c_7tn9=_;d7A=#`^X0Q$yhG3NBBc6RjSNMJCuDc ztGmb%1AaQ2^e7fuj?0V`+#3wL4CvhS&zKwP${KrWR5*=QJcTZJ)kZO?hsM_F zR3%#m3Y&(X_De4non4R}RwyAt@%{BP+l$-1UBtX(kL{@zU`in&>(*)WUGrDShhrPw zjMEWsc^cY9g9~4npplN}^@&=)s!Z}U4*L_$s{kFL{BA|BJm;hOEqn&=o;{0v7yP;d zCnh-osC1T|59cB9=dRgheL(190g}f0w{xIHTkl>=L%}9_gztn((iHfqRLATOP~J5K zfIF$l&}bv5w^diZyISc0cA#!u=ifdc^iae0T~yoe9*()O`Y>ChVW*m?#>gBgP&{4p zj)xA!dJWT`z9?Y>IZgmYx6pYS(Ub6rTdHx?XQrHA9fIx+^hY9=6G z>F_xGxxm)4%)nU6BSN;sGKI=k9cpQv9L~=EHaPj{(WA$Y9xWU^IaXdmzoc+C#Y9H> zFR+f~X)^;Wd<^cBqS8+Fmx?|iS(2c4Vq_}m%K^IPQwz?eL~_y@Sm=^qbYsrT@;a9a zUgH4US4qmXU6!xvEeJ--%I$w#HDT>wB?`HGQ_uq~GD-Gzcl@TA zz61pxeun@4HL0}c{~!mJK3FojT$aw|x-B2co2*7e$PuyVj`BfJ1%|u~y8p2W@$l!< zr)jTQEXOG%*Q!;eO6Rf=?rZu3lw40iInqK;?!&~oGeRp1svJ1GmYoWLvro0K{p2X3 z*KpI4`Z+vP6Xiz+pHM&eI{ZF~vb>PRG~c&S@MXQ=YFy>%1s_rz^{rE2Z7_Kybfg$M znF-#7!oSu16p>{Q`JA-$Qvi@JWjW|4aWophIBhf=TJu%*C*w4+Ybd8Q79+4Hi_a-4 zU`gwxwp6IU0h#~D}p4iH@m)o8fQohOpC19Kg5C1_*Bw$2zbAcO0uv_Z5APLv!dpmVlKS!jAz$wYA}` zY+%E;8Sk}Pbdftgwqb4~BuzQ(hs%Y`S*Zk>gyD>Z?807Ap2%mtGf26=qg842Z>eJA znTG#Wo|SCTJ;jxXB(;DcXTkw-?bDsCc7O|PMCrVPlTX89qjGQ%^ZCXxX%$FR%ep6m6;~nX^_tnJ8 z<@F^$;0Tj#Vg$wu(nmSJq$75pQq=$I-pnJ{gxx=}ZSv zSF}&zpToxRx-@@1Y<)Q6a;&dZ(t_*HTc5!qa1j5+>T(fSA2#Sb2T?Z_&*FKSAF4Xb zu1}@psKQ#fFYM{!XU7Sfs|i#6vtrIm-YS}`Jcpt_!lG>?Xvd33!||&w-<(2;RZVJ( z$0&V?YRTBggh@Z$RRlhwO=ir&`3wd}lBxz5fpBk(zY(w%)?<`x3}D$ny+{pK!sL&0*Q%A-FUwL42{7IpmkZ$-ZEDI1K;Rn>r}4DqESR zgQ1+@hp!H7)zAW+AI=eD%DT>-qh!-nB5If1mo2RlNe!S90m|9QWH7l{*omkM3SbGG?;H3QUf1+3T{Q)uQ zz4juU_*;X=N|T8b)&0z4>Osc}Xluyz^=rV|_$y<3L1dw}=R4qKeM+U5(%(ZdP2NQo z=d}`lJA@vI_=L9t;qF%0QS``akzKYFbiqn&Izqo&VXzXAT~J8{TxXbdDem8mtm%jC zdCiG}p;*psP!$Re2p#wK-n}=_n8!CUiRBDc8u{?ms9+&`WdrJ7K)qt=enhO`-iDZJ|lx4xif- z<@ebqX!ya(cM1+*pDXCp3FG|V&Ab|98NaS}dsi#)sy)bR`~+g7{yj0vj;Wvhs+GpV zpNXWO-Oox4BKeuOS>_46&DTohD2Penu3blo^2HDGB*<>J`w76Sz_;741_>eyuLIXr z0&&wXQ5&M->njxoaT6v5!Ov5>E4)#V0iaBAR|Rn?+|?JbtCqi?Roc_||9TFTggp-H zVR@2cx{FZ&E31{7*Sxn(lE@`M=l8=-;qMp`#S;njd zQs_BCbM0YCaL=yuFBrcOY(`1I&oW7EK{B6NYXZKW!3x`j@!ZT7a;|U+ z%HC;Wol@BkB%b&djMUAp%zJ?1Gn)b6D5tdu(=KI%*$j(($qXmMq()=(gIQ#>yn%)A`FS1}F(Ma}ExRSKWIKAl|a8 zu7|#bQ}4bPV8F^LEx}k&2G!6@aFW#k7mnpl6srVokTsS&+#0KaaU#s_3mstSYas$x zz=NCx^#8&vJG|-F1^#urXZ!7oU})#H!AFoQUuP$_lbJ|fJC>A0v%3aoSc6GNnO5ac zuXhB31)TzrY!Xsjs%f&IgAKjg(tFM%FwdA4(DX#_z9MfK1>kG$b=S~rl~W74J}g$~ z6RMzciotF&7VC#TIm|qO4P&uO`o)H3>^;&39mP--+dQ^R)HiNSMxm_ALFl}rHik4T zWwAfe7KM?oHY9H#gJq3Su&>q!L9V5+pXXQc$baR^l^;odrY>T{q``)XES`fTiLACI zF5nmQZ(D7j0OR^8;|?2avU7|c{IPF!B(hyx|}Ru;4HNVRO}h-mX^^ZRxoGZ-Lm{*lZWeC z!0xgb9Icf{S;p^@C-_J%9{a-mh5g~yX7P}+fIrFTp~4JWNv1eabO#X#3zq?t@3;xT zRa?R00mrNK5MT<+*L;wr7StQ|+yA6_sAsjHw{Ihm{8aE!XFjZ$+RamZAl^kOPDq|k zsnSRd+odt6XQk+cqYJe|a$J6j$&j%q-h@@?s0Q(u%{o6^CRpLwNPwZl{*v3shY(k@ z9Qllt^gS@WPI|BW2C^K`h>4owDgTE2K5xdFr2sB}P+mCN%64Yf_2qC1oG%NBUGhXQ zW|nqgGN!tVHw&`kGg#i24mq+dm~-A(Szdh?UonqHy>Sv577E|zjc)_w_7u106oPj$ zep+=z)!`VIG+}v(ZAo!v%u|DK_e{KCBOSx5Tv%{y2w*qD#1Ce%g-et%3Sbi@Pi~!rM?X_)CK!K zjr;(b=3L{X^6RcLm6>6C_Yw;txES(D(QcHi0szgW`9O~b>mYH@w)cTH zgmw3UAF*uNK+*1j`}k}YS2nojD-();)oA_+D?IO(73qV3fC1{L(K$f{!!bfI>oX!~ z7cYCt-O?AVvA7JUPxGeVfJH}RR;*3})UxA^T0rBu_hYk+`RWE>AqLw|lyf`<8L*ec z65NMEhAxeosvuajYE5!pfU!KMzOXQ8^8ZE8VS*Kw!jL%z#$e8 zRMz+x3#^ljcRGo&qQN-6yclxcVXYBX`bSlgoO0$&XO=xfOs($QFdk}ZbOzb*sSKUq zb|H*+@PcRY2d@t5Czx8A1q+AZJ05WR$Qzh4;1>>+hg$q9++pW=6v`7j9hn~1Y{Rj( zZ%g$8v4gD2jKBgHaSL{%-!CA<2>z@&3rP++fbN;5Y@Fe6UE)6Ya0-czGH~$`%sy1& z^rd$mpqOcY6=J)HD%Uf{!K#|-D(J0JjGBXLzB82}pE9V;3X8fHYT>yj5i>P# zjxbj-n$HE-yv;DWqtX0xzHo+54Hb)R?fCExfBO`C-2#$sA}k&mg1|?V(!xsaBZ{?x zK+YQ5D_ERmspvlkH1vTrF6SBwBXCYx8e_Nn2v7$EvSyHIBx(hcgbf1c2*?XMFa@;2 zL~;@^8^VHpc$gz|jxY&idYvjk5J3VPDt!23*7(mrf|s2m8hyxLh%4)eMtBdwd{{(@ zqXRPQRFVZk0x{_`v2Cm3PLq~8R#?N#AP}_h z0>Oz0$E_+cTZDPQK-EjCd|8A|#G#ebWry*FK<9M)zH8Tu;`gazA29}_P}K=^ens@* zqq9WslX6y_R;`LOR*0!derAmo3gLH-8@U9>?hD2ND!vJ0p_z}Mn{cqZp@pH+Kg8zc zw2lzaOS8u8=Dw$<*!j6l8SZHQzu>ca9QJ`-GoqNg`@yM)OO{-zD?sl$IzH%#sfXGU z7Un5tKsZmAv%r)m$9p?4WorWU+8+pn{CC$|7{VX1)FB$CrFRV{3)11tj4;L+xEr8S zs+#&BPj|Ar!tqLV9dF>Ue6SQKR`MU~_n$=Kn*M$7nS7%y14NE36VsGkgx~%<0m+L{6jmCt$sK-WTJqeBtKr zbfroq{Fk%PGk9N`;^<^s)odEX4>w7G!8pN}EPq|1hc<}I`1v^;7KI}{4W33_1{r*I z9maxz>V7cItSsi8j8|!)ji*Q5x@7p8Ai~s8E}y~RW$m zE9t&GRY4=k^4@_g1{-e|oj7r#Ur9Lnz%uQwQ&WyuS%!IaUy9$O1zhSjv#2P!9Rm@} za3WDjx`m+uC;vK{1k1$13GAz?K1MRPxDG;=iF-p@hBBC6ct^C9b|-&3isT3&d9(<@ zNZ9Cfyrsmnz7mZ4vsI0!sSuK2x0LkBfy#?Hxk z7y!45(${kY`3`16ewyPMA_s0MQwCxxm}0j(eub@q6wDyM9sCpKN*PEQinkb%6xoYp z3rJ7>7f5_MMtYtlM4w8r7;^Ymx@{i>O-I2fauy2=)`pw&%q!M`2?lbo2cU~07sA(( zk_1?G1rrP^;e40uQnhYyo{(uUnib}%VxnyrCLm0hhf(obUB+vpdcUT<}_p706Ms=Q4upDrC*4U za-g07YX)Mp52y2K1R#P35$Pix5B>GG69#+H7m^NvNcu(E>^RUbKZoK8(3ga zmQGnfQhUKQwT`fb;B<#lD+jX9o>IJcpT*$`cW4_C*J)0PSr<@&xNm3Q)!^|^92F^=5RPtLmTIMNN&qK)85DO^saEyUTOv*v{;7(*V zW3^Q%#$0;yELOG+B9zM{RYcu*2BN)8*ioYJ*n%X{0XL`No{Sb*bG#5^ZwgE97eTnG zN#{m{=I? zo&Az!tgeg4lq9^<4fIm@Jpfh{S<7{|#?nFW=b}YiazgPHROJ63d*1<=Rn4{?TG~QO z*<}|HWlvF-AXHSq1&V;U5fB`Jh=PI&WvC#^R<<%!HYz9^$_7F9-m6f`E-fAOB+q{( z=Q&T$$>4v#@BRPpdl^xBl3cm(jOU!>PIBjtNX@Y}X1c^MGq%eBklqYrZ zhC(XDUi81x0)?wr zuRdS~Mvpipb#X_MqKOIyY02*ttTr?_;I@CYOQi$ZrEfp4n3Ig8$7P;dXmW88casdJS!|e!{YJ0z#gJK=vsr~M(!PKq5;U9F3+Yt; zX11X>8_7H$NvAz{+yOdHhO)1K*3a@evmn;T%2<^D!^A_uUgQ|$F#NxxsYHm$N^)%Z zhA?yqp+Bb=d_8e)VM1y`Lu)qOER9#eVwlBt@k2REYPQe7=r4NF{<6JHd8iZBw2432 zI(kz#Mc`=pOqSqJr93KVSJ9PZcVtAw5jOudea&*r!5(JXblupQV;(<&Yguv9ug)34 zgtc|>z%k8%d&~|jYiIua<+WHG-Gr%HAxhs@i?hm_j>y4Ux*=9t$H>8%T8x+FF#g$> z?t1yw+-%oDj0IkZkhjJ8{#ZGhhhxNTUzSetc}83mXIavHUxEu1lq@TDk7cPF9#wf$ zK1)XFu=g2Fx}Q{r4Ih=RDTTpHKAr~nh9#fm=T-Gd`1jfUnZ%ApzBKQ! zrKR-9T@hOg2Nn(v)qWF2&hfEdzwRLx=CoM887%#+Cr2in)@+ompn=;8<;K1Ls$*JA zMued8ORgX_p2xK1(o3u!ES1P58^b)jNGz~S(-)Bk>K@ybJrsWtqGo2Qdnke8jWuHh zR-Y^uNN0O$`(>m&N9jfhBFTqa@~Foke#@$buR&t#)2Gkj8#w(Z7xP8GJu)A^m{fMj z;y0x!qc!vXio@}X&w10HB*}!gRX8*y#Z=z#zl;a@A|dl$H_)}l;`KLrEdOHJl3Z50 zUvPUsa8}Umi`q|*nL5@k^q6U1DQa)PV4jtx;O4ZdTY|7{LY>RCaYEY3evh0Rn0)*+35fN-nB-5E~CIffp1b8XD4 z!8BQ<_haL|q1H9;j|(WDFz*BCKnr&s!p{YINXvWQ)2KE9JM`xV z4YV`LMb^QR3Nt&RYpONe0FgDg<3}gx^Yp;1w0U|;zQ;vnUH{ zmPoBD59>kF8+HFqkJZ@?td)%Qp8Zt5qMxK8zg2R(^tym~+A-dq|HQ~-BM~j!4|!yW z__6W21?v3U@f!?mV_L6Lc-@Qm7g`|KLf;%17Hy~|ExzD4yG#2`#USl_KEQs~i zp#x^mPNeb5XH*+^b@#|OX1ZHqFcxXb??-B_G>8oi zlYQ}}T}5+w8(*^MQdgLe0!_H9QkqoVYFXR7-|f$$xh}=;ykuF@$@0p$yInLh|088q z9i0Gv9{bOIp4>>j6)w6x9lb4G;E2uh0Kf1}?hKw!;aTmDstHhe6`yLeXJ$Lh9crAn zjEYv?g4_$)E%4R^9L$=aYmKtU?HQZ02L=PD$NA3-XC)~sALDF<|4o&3-hhoL`tS*n zVxg30YkHVtIMSUy*9(!V zd<)^)PW(w-Tu;KD5!(yABpW28P-lGRwmb5i7mFI`AoRr3UZ}uk4jtPM+SI0Ah&&Bl zlRsX~3ndnsP({M{G3S}pipL~qw)AVfbKc2sghYnmyMF9Y85OGmd%kdor7zQ;u*-#g zpM6$ZrTUMIiSfl6%N1v`DdSi)(Nn_oNQ@p422BhQ$KnihF)(KmYoLSu6ca>lQ4)~F zagMREDz#09@~9=^kuijq2hK~$p;%#whhs6|o#hbWH>Sg}ta$k1cuc^>dayt=_jn;M zof#9AbTdW8ZKrE&QD-?PH}yTgt_4EN^yj8B&c305wPvjJkJjqUaU%v}d$hhRFKk4g z$viivcm42iT*)g>!VAuO-Ogr^iUsnYV=WE|1U#PLQJJP$Y-k4*Xrw2#6L^AO^1Da3 zsrb^-bS_ogXy+u&dIn)Y5mL-AS#gdpCuER=%l2B^O|Dzp zJu6QfsAAW+afbD6Af4aSGUe$z8tMH`*>VhE`=aIFmgMCUBt67VnOUY%_!T5=K?h z)u#c@8o;G3S@M(ub0Ob81#ok%{8Fr>H)88|+A4^EXf>1_Mm>5momXJy=SDV1au*A)0+m_Ncc4kHkPJ7Mo8{I z>6Io*Vfa}+684vNo9G)is|)W%gd3Cl5Tk+;JJh8y>612M@p zT;+#1c%z>kEdTJTc-*rNwn$x#4Qn=PAM6>Ax_4gG(`5g4pvZGK7b()I;97qHSLRR! z>|VQf?@kx{uzlp*OUCoQhtV5-AN0IQJl*pgq9lQF}QI_YOghes9v~>dV^A9st z=_buo*S&29n9uBxS&{skKCDhkEJZohl_J#dO6Nsr>kMVKg2S@H`L4H6SUOnB02Ly^ z_4qG7StopIQr~e=u|82Hd-X=DoxP?LC#|s9iLmGa5B|nVM0TwGH%7t0EEd|MHnkV! zD=8pA3cE;d6j+>125PV4yb#H$@$fptVWEgac2(S{h;;tMx)D(=2T{0Y0q~(vZWrr| zv*Fm7m>4(U_*D`I(O1Ba+SLyv^?1NC))SEx;Ds?^fNqIpak&$H>x~i&skf6}YNoGq z+jR8v8}jHx$vkoBM9^ogYORv;=`zRYjgup#e!2E}2g9?pm(-rWb2_*^9 z4n5a#q`tiK)B5$FILis=xtPAgBc2fvpK|ZcEbOH%5JNt-!@c44?aIRV%yo^ubX0@) zl?xsSU@&k={}I#uu!nfYbb0_1EB*^akk78*URSW+yu7O4EuMaItPw2;WB ze*MXo*<@BZI$#oKJLRWngZSTGzyFIg^-N{URC>KLpZaxDu;3*$S!`nEz$D%O4m-KN zj{Pd(ZwuBE_82{fH@QNk>3m_}9f!hxzD4PUwL*ajZ=s|#R0zqryM7vzeyM)hTTDq` zvtq@VXFk%+nf-ZuM42>^$;y1nE$H@}vDz8*xK3K+j0b2=H2E{c!B$!}D|3$z-`d~u zXXGRRc2!=}aIm5W)1Pwux9zhz(_S|y>T{G@<4qLj))y zvxBK^YCVa#Pm$p{6+4Wj;(Yv$&X2rUx4Gli$i?Sug3yaL=%{B~p)lg^GNqhhow#nxOvxL$K!RTdya30_D%JWl1Fg*Ie7A z#M%)Y``CbWwXDsCdK)PISE6$b#j7%6_}h8a+{;5{O}x8XAC|$Ke{qPvq*n6F5{MI_ z+)>_fW!RE-AO*IixuYGS5H4@v`mvSycB$Bt&_cFS)`SP|ffk+Is)agq=m4?(OC+fi z$jR&Z-HbIyIpa%tllwz?@a`rl`&9yrT8Fy-t)XhsvEwMT%f6yAR^a)6ZlV;x@ z>&qN~qt;=m24!qOU{?Bk&vuT3Wvm&v6Z(Re26WC^vWr}16HY=g%J1aIqVni-eDc>LL`Cai z%FHpgM;bVg6rDMZ|KQ14jH+Ghn=l@XBu|`W-zZF{((~e{o~ognN|z&j@T-^U$VsxR0Mg+QMP?kP2T2}|0aho!@E`b$3 zwSIm^V;R%0Yy)4y&Pbh0Aoqv^8UqY|vN)K8aNz2)fS$0m*YKtkEs#YTp9;;=hUg zd<(in%}3-^1(;^E6=>6&X6z+OQ%piTCg@Wg_VN>Un~WHCr#s2%oiOs#?eqxvCAvgE zWIDum@w3+38<^&UY4gV)e~A4!&Dm-w42fX?n`m;w4F@E!tE;6g)sWbW0=qh)t@2y& z{i7pw>eQ(yvqP9;=lT@Wj7ByFc!^6M2yh7Xui;)Ap_$v~XgYkFDCfjLddbr~h50&5 zae*N0#cm7)B+uipC0j&_^9P^Zr=b%DX!4Cah7DTX zP-t`f^7D&ZU^qSZm7LxQqu(`+E005l0angQ>VBdhq)iFw>W*{#lYpTw*J1hb0{)3F zMTcSONgTe`VUvOJe%F8{@=sHPMPTF*(^L)C1}yvXBEP`@cpdgm(xf>@AVC9cz61i2 zC*l?uHd01N$?u+E(K0oTqP<_xh)fL<#f%w7gOuh7$1IG`rY-B{7cv+DWoLSMdG8VF zR>J)M%QP)S7e+9k8lZ+XAspiS00nuU*dFTH(OPlu`-~ zm`%gAlDOHyq05%7h7!3hJDwo>5aTInQVL4iJ6%lk)a~Ge8e_S@gFS9tvB%1nU;djn z_G~95o{wABepuJ&Gs~{SlAJEAj!*;#0mqX2xFJILdIfjDER>ioxZN7DHlXyZA*|w@5*wrPB#jpzJoqs* zJr9_afB5EEehndy>V6As55y)-K{?qg*Ntk_FtcI8qE-MpS%ou@T?3p~qg0-ZKHRqL ztUY^>7f!ns^pHdx3hWo-Fq?OQERv@WxHC=MgkFp$Kj8wiweu65crX7?@W#0%#%$vS zI2d0-cKlR-hq?$!a8&>P?}qUGO%gPnY6cy5;=9aWk>AzV&)t++4Pd|XN7`$K4&r3BonQCCEMAVUoP*6#rFQ5o({qv4lC)&--#!sIDc>mS5VOR zcX@XJI#*ajS0=CM5Bf<^<(D>X+H?vZA5{)cLR3b$E>EX5~?1 z0sSs3beH>H7{fmms5BQ>$CZiB&qupR4b9D{2Andmh_faa^co|2RIRLvixp zHeh@8f=FX=x}}ly!xSPU{FxbIGJa8-qm%FF&yTZb3zU98lP zpJk?(UTuGkYR&`Y{P^QKm0-D6IS&;2lt23-uuM#2`~myXFvBl%_TojY>cNI%I*jWg z-&l^Rv2^Aq0wuU`;>0-);Cc&B)!m;T?d5?;*grM}|JzIM&H}&Q7pn2M@c#I1X7(>< z4=tWz-bsPisBfmBK98@*zS^k)x_Rp3*KFzZn1*zLEuC6c7iB5pJCNBk4?07p^zmQF z|K}4g*jEV2Gb`2q1H}7FxWU?IfZgbYsIXt)bIbc-3wTySSkFFQ!oKFkI9ir-dY`9q z(eZb}cR&d4#dh!lxv+7#C54q_YGWK&A4nuAG>@;Z8Jflw7DVB~yP4;lStEQWb5FD;@+^_PF8}XqZy7G?P z&*PliQ$L{^>pm#&<##Xi-*16I!uC{7wXMMt+CmUiUY~_OvWtYG2R@?Ttx+<9{Y!L9 zQKVjqtTKd@5nMk6`_z`TK%pywE<2foK=x6;&bL4|gm9f3NGg(>EikTEBLV1+c^7$J z7)w&HkL{is305lD!mMFTDGS#?^7p+8wuxiM_@9-nWTsEkHL+ET0{dN^RguE@cxnN2 zjYJ-L6zG6q>pI^BYAyC8&I)jSv9Vb}j}Q7{7qtrsIA;Qts7{{5cTeEiA$vFfJS18( zs*;xId$`-+l}&luv=NF999$!h)KSNHwC(yx?bwV*U;E{kU$)_7a z@@*BsR)mnC_Gba@l0MziyZ#Cxug(I(w09)rJu0As_j$7up(5z7eJr)K1|p#tl2A$= z87?a1bZonhj$|)f_%LIqv=|8<3Z}DUtnQdGQKbAlp5Y!DTZOn^k8>zZNPcb{nBV>7 zju!r>uKJ;V*%XX4O%`BZ&8G>SleO$(*L+elt32+yn0M&1ZY@U~omNg=HhqF?hzSAJ zEkN5X#7)84*aoG^fTfS=-TV6t>vXgXw!C)pBOZsf^Exs{DnBfufW59@A|j|)hIR8% zJ;t@-)Uw!VVW=kcWj)!0=&%>*p`w5I=(T!!j4SGD#5$h%g(Qo?o5WC>-a_34rcG*OzwIb5?tVdIz+ke-i0@|iBh`Ga}a=q?YnLB59D zjYQ2_@v}!P=U~xYxK}hJ&w8ZT>R(0lGbCgN*2kjr><}HEB-ueP;pS6O>$!TNVzYlT zw|PEGuXC~#2mi)p`mv`2ISCKeU%1sg!E<*$FE)wiV`IDJPGm>`yYh~gijZU*gOsL< zDZl&a5?iZ1HrHc;>yKgep8FqZfrpy0x%!M64x{I(DzYPSGrTPPzYFSiz-N3rT>K|Z zDGB)y6kE4eB+U|;f~~OFD0WX z72Gu3-`y#tHBE*{)U*qUY~QeHO!MxNf+b7V495{aOMS2XjHWZHu=Gc?Og7)>Hjk#r z!l%QgBDJ_;u-5(KQ!mc*C#-mj+#aGnr7a!);d@uBzpDe@HqSTuV^Oi0wz#GF0UT?) zSbLNbM8QBEFe_GyM=)wT;yGqzQ{>aKB3|J4OO%aZ64p0oE;3Z*9>z1)zHMb!7FhprN`!fBbNFlTyQqANZ{V9yfL;yTj&=%)LNLsl0|o8s_{ zb5Ea2;{Y|KU9hOymCw1|R0L(Ttfc2iR0mN<6+2e815`3lzXTO?>Yh-|i}CF2m00EX z6ZzS6$LmO=W}_rt803|DprVH%4>Vt8V}lgrUIZc8=KGA}ZK!>jiqUgA;R0NtBlxTXk5@q2058;q$uL0pA8fN&qeE55@25&AYeb| zH(_^ve6DX#`Z9ay>KWYNIG4)RwF^QDe#_YYlZ<_!($(6-F1{3u#gaA(7W^BF$D3a4 z3Y(!|MVUAVR6I$OU$$S^MSMM2{MVEvPu$IGlglk+s^U4%qbXmLV!tcdiHLB1!}}OL zRteh+>|A9XSQ$J~cTHKyCn@agt1oJ?t`^-_g1o@k0)=PZb7CuJ9?QfiC%Ie)6Vb!B zNY!1|N=C4KK~bmJh0+oc50*O4e%i&Dez5?S+L+Z>osn?D$nV)jjGK3@TgZkO>&{e# z{6N}UV6|?6eSHgTz0bHcNY*jhJdn5KS;x{$%Ozp|u)|X7K(GR3#!m7l<{KPHD0wbu z<|rj z{9S=tVLgpQs*AyYw09Kq?a)n^d7-aD{xl7a99uAIltvSkaE&$YGJel3S3T6f>Iihp z8xmMv5Ka8(GM+aiYzfEi4~yNN)=PYwuLt@gxa&TR=;BX z7t09>mg5Rd<69x8y5>?a@&Nx_5=-(MwP676e8M{(IkLANq#whjg1|yLPYn@4{sqcI&L-RR1c|1oi z7;5LFxXquHeu!hfcG^nx7YE(a25Z2l_<7$RN9YmFn%#K(w9A8D%FyjYL&ZORc`zig zM3rgC^y7T1N{f*kqMy@af>o<@bxGC918b!H9KZA|c8*>yD8)HJY_tF7_@!q))Zg^A zKweyH=#?AdHPk8!lx^_>EMTtEbOo*Aan1qm#=I}0q(T(tLaX0RlCWIja8l-!p+nau zpO7#T10vI1pdn-E(syNo+b|sTq3>`>L%A!W{-$4V7)0!*db)DxB8TfCatthmWUj%{ zFa0e~v;E0x;fAW`H6%O=-^yMCR1Yjy8?cx0i8V7|IC1w4pvRgwZ(dwV!mo7cp7*nT zd_HjI9WS^LH@Y+wdj$Z~y%W-v(B+8Sj;X_!c(Xp23fK!WnLmtAEnYJU2=od}cpJzFF#ct0T{0l4G8pg;=U12gF68BY`<^)(m?i^{>v zfG#aoE{i|h0NSxi9sJnq$dtb}ItOg4wx5sssROd}3O#-X6^?@;J*SguKNzxzW2bA# zLnj8s)uz@X6AHu+x<^4eI_FM`<@X>>me&`{rIPy9@ z_>CBE3O+W{OXo>=7Y3pR`7S@D-!(0=jkot}x<+XWN#o=dYH8ky+NsofKlhWEU*wc2 zBR12tb})~Ev%=~-I6C7Ep8gX`JIZtL> z{XSLKkP*z!x$CdP9_-&g6k8%%4C(V=q4psi9pW%!!BVc?jnV0Q2S?$@3F(A8A;o9! zp?r(}_HYoWbjC{X!QMDR>BUDizwO(Xc-0d0le~uLkye@pMo;#)c_6HD+*yrm5H@h& z`?Hrr7xE{yevO5Wq-Cv@w}p|EYf$3g|0`;5M|${Z$`@~|>=096Ej1nKA#*J{Tf>d> zDR$h7S3WO)2A|@@LHs+KMKIt4uL)h#$=W`!iZIPjS82h>5}mo3eK9%lXXJjAyTZiQ zhC9yj4@x%Hu_em0Q(wntVTC+NS-u#(wSRPU3v5j!DPLH*3!-k+N>r$bgRO7q6w381 z6w7spV@>VpN_l5{8*hnkrLSSL)mItg3!#!LRkr!xP!+iRsoJGQo#BEln^s05K`>}0 zfNS3u6Vqb}&dYq)zPnF~^apV))U*m%BZXx)(!WP!3NOd;4cZT)gI&s_+TXs^#EBDe z1Cr^LCvP)0SYJ{?pb$60fI(x5#TYOsSEwht^7rLmWS1N4LM4T)3;X*)Y#p-rrV2#f zz+I;zk;qf+y@Q)6E6J!h<1hFOⅈBlhbWd4yg$e6m zme~2;u1T6NiaARY1J7C*;`11=p|A<7kqdb0?2w*yog~MwjC;8p_h?)<7*5kfi>MXU zaFztuvRp83Hj-blKx-&v4oq?0F=U4s+2MQ!3@kSoAadds>U^&p&NQi5nb_TS@%J6` z?KBk{`Wib7SYJ$V4cL8X((`q+boW6Ta`(r*J1Wol88Ck&wNyQ0B`A+Uc!Oc?XU-&XR+|=#juv@Uj=F; zWBIWtYJWmGFgy0rag8P$1DOVUnB$bvorlQ1pCI5l^?k}&HRi4jm z1J1K@ldUh}kM90fx&xH6`Wu!rTpxH&NWCk4|1=ArKT(3Y(h3tIxd@zAtC6pXbnA-8}r|7 zT9J>C1=u^RswX3fxDC|+apeQ4_i$2%VfApjp^y)vkOQ5B(zC=OdQM%MmlEC1!A0Dt z3g#8+nojtyyu;>hoKiu)QGVs*NenHjqQ`c;VRdrnj=(4}T_UUu#gTSA?t7$>uvV1r z<9pA!uuV2a!ouI&DP|7s@zL0e>QVw&BfxL({fq)hg0R$e#qiEQjfxn0*R~jMh6M+> zxIOIvrFlP02M*=-5cI=s&bgrKsDBCH1=TEvhxb_o%X}Ndy>U*cHprfF0^Vo#KcFTS z>WyLq<{Z1?>v24ZnLML+I;0X z^vumOr^wiR=qg}dnSXrIU*<_z!~sexmnzw8BmFv9mZU?cAvfU`OH>G!fmklwD=J39 z2L8AnjMHmrFhm96!@Q!0NYFX+>|!$Rsx7IfD{#zYXq=F*Fu5qLC##f7Gv3rg;dry> z>LKzLrPq{2DLZXFbZ45Sasdv4VRrqeP6&RZc81*kx1w9J8>U_MoRF{E8p`z?mZNLy zvG6U*YBZ1On8q}g^hDZfkR}FuWS#(v;&=nM1VUcVM7+Asd83>VpX5w- z0^Vn}1jg2LajJBgGScrDx)L=jNOC^@BSwf0Ub4c->=#mHCLVYbz1R!*N~%9}fl)5t zUH4#xexh`C?F7oMzJb2ki*-cmGv~4TI|nUFdwS?N#vQ{jnAy`SN8*-Y;e3?d{MbW< z0E9N~7(MZ!43Xe^_%1OI>QPXE?nRXS9!GNv>)IjvAfY6=LnltWkCxt;raw11n6jTj z+oWjERPM#4g0VT)X|azWXI;#*UVGj$w8#1t^$Hx<(uuM+(U(PFXJ|@uT?KjE1=II} zE8ZD<)<9M?iEcJP1@PuSqQmm$<+A=kS$Pn57p-4+=n#&zYIMOrvqewHpVMEEe?xll8v1OQP=J*U<`CczXW?5YRe*iXKENh^I;rgxAug53xa;AXZ>z0b* z^FO1#07Cg;Bk=TSZiKM2g4q#cpeCQ+fGze|8TTY=kNjGBVzL77Q7f%cR?y?a2Iq25 zL{^~OC7;P=2N`bBllJ$LmEQ58;iT`&L2wGuN;U`#g!Hv$WF@>keN{!b`X&8c5;b^j zVA37kF@FCjrEVcGl!!O_y0uUhi}*F>wa9yx^|M08S;h;N8tf--&$kwKX_2YqY9v`1 zrTFzxTRf{$A{DOQnna4>5~u|d5p2O;v8;cVpF(*QF*1B5V(ssCM-hpTi&Ah9Uudel z;!_wzNy}33?ygkk+Q23~K#o$YpI08@?6ZZ3XCoCa)5B_8irmAYZ@Ww?hZC%da;hJu zjkdR}%N3l2(i0b#{VhcWg23b+DS*9iS*9-~kmjDp)dJDK(ycARNo2HUY2zS&%hu1@ zPS+1C?IPh`al-@eb@4A=+6OxY)sG6_4&`@0Se7IykImd%RIthpP3j&JQ)daKHs~at zft0wcVt*ju^^8S+hW9D_tk0+{-OZxcq>TcHFIUO<(Fu5;k+^eyfifD|X}-hP_qI2A zAcQvU6bN`dXw#Eeh0wWjm#NiD2SC?$0`+asL!=&lA7ul`pBC6!LvEyW{1(#?X2|LP zbM$*GwXPwH2Oxv~Bd^TZX-gi0;QFPWt}2&Mg`}e3#n%bxHNKmI5VGDc45z%U^pnl7 zuptCxO5czuBd}CLf3A?5PavmD*hs7fe2TadIB|3Eeh*mngku)~8(k9J5UdvO;;DPX z;~kNr!RdTcK-tGC`F)C*#+>X!c)UDwEJh6PJfpF6Ojo|dQ#lTD68#c29s<_%w5Ny7 z@f&XUxj(udtV99o>QIPh14PaG%HJ-M(#fO1g!9p5xuwR;{i8r`?A+B_9dp9o!Is75 zHlB>`u0Vljzo*CJv@Ov1k}b~{(zFQfc;G#cve^%!SW3Zq$)h9{y5@IxaC7G5JK395gL7iO4D zSDUV1jBW>Rt~7QK!gu3@8(LB(BlpD%D+2a(v5Q?TmE^mjnDGN@`>daAvljm7v2vh-HvI=#Xr@^3VD0lM0U z8-mfz){%;m`v|4)SABirU-*e-jBo7X#TN3}^e`{sm*SQ1%Wl%Z`NT1}p&yLExwKq#;6Is}+9FzR^R#&Lsu<4mQ$|0K;EZveO9tx112yAEvyi5ISy2Fw4CfauYl zDu_YD4=NkmIo5Jy<_7$ce<|C-@Tj10Ug z{}417rYl!#aTXeEwf{2@c^SMjpYmrU9_5bPSP`ML_=OuHm~LFdCn=^Kbb4tIwh!46 z@)^cVC`C!13$UB9>#@H{_ty^gP{H~*CxAQgnU^0=*5oorQrGGBoJcWjhJPY8mBjlF z4}Rlgd&_9+Sf(Fu?Cx639*nQ(uop9VdsC{~=OYB&x$S=TOe#5>=j^YD!@tRFp|p)@ z^Gxw85AlN0c++S~7t(|$8R^A7;c;)-w)7%?N4ck}oA7-^T>1g8XxJYL z#tSK=D3RZ0clYbH&*v@6D3HxW9zm~iT^5hcjza4Y(;k~4_I9(U?$rU&hpRQ*&!4Bp zd)iE3$Ax^8d8wwm{Dc(W!3l&@d!>*4d*11vYlNcl(5LCJ@Q$$0=WUXIKUDasu?G%( zRZ7RG-6>2h7`vED1;521A>sZ|`k!{V({ppb#~+6Q@C%}kby2Ti>@1gCvP0M75*LnK zZUyuCSAecD_M!`b_e;uBALhMdYszlOf&*+=vxP-T9~gf9#Y=`;DwYF0I|qM8M9CP5 z9(_R6;fE3m1S8i61;&L!$%T9bivirdCIJY3$Ky9|h7AT;c7uKrR4!f(h5gse7?}|5 zg1R?B#no*vV8cnlZD8s7Py`EL$xq-{O70_b#MgrMfV(+Wg>d$WLr3(hsv*yAVly7m zQQaMJ5&hZk>cXg~d&N0?A!U}ke{|ZU7M4YTS(~}YAvs*IVoko<$s=(SR%+5gM7U2RbK2oAN>Q88_U3Rg4FjmJObqS_;P#?Q`*GrhJD8C z(;pxtbf0By_fATXI+16SgDjl7?^V0nYXtvZdjl;Egd4j6WLVM27!4tXN3Cr3x z2kn{kOLlj(@K-qvZkCnYQb7<=Z5WDb>G}v=>N_s(RZ8P}KdV;j)fQc@LAwHq0@uEh z8)x4Q{#x7b^|lrs+UK$A7{IJlPZ#tC2M&Sm@y1x5 zwOSr=mQTR*yvQ$d^kBVthH=Gtt>wjPM@c01U~a$bm(KEgi* zd=FzgNC+XHJ9L}me&YV^XfQbby?64`mD!KD4QRsCe)f z{7ZXDp-UK9v5wfnJS>fx?J|&_J8G?#I|B0NVcz_fmDc@nFGmq7{mE`?{wM!gTWgwP z{@YQpaXw#MjD}4tN4Qh47&{(+;}k5;kHuvq6zttUsajh!dcJ zHYQe}F%pdv6jgKr@{^OwaZdOa7>8n!!|kB4k$|0?!xAU8A5K9;l7 z`~o6YATbWBz|)V##Rg)sJTaV^4#-M!=ld4XMy5(e{cT-oW&m+TnRH!SR>J=-_R%eP z^1)+aRu&%LEwFC9Gr!-HIuPi}JIPyMzjoMlxGJ87<8Z_>;sgA_XGJAa2Ye>y;ekdH5maxRm%J9t{GvvWGySwr|8yVku7 zNnr;inVl!i{T!r|CO5^(m4=iQ$9n4#{f<@%-f;T&zUVQ3~HOO5b^)9{9{H4m=1$O?OHfg#T zy`YejWnmcdH5Z?4?B*zk!2kS~T1#8OK`T=ku%Oc{)_}%a*5L?=uIgIR2|jUyUK%7p z{$L&m=A-ox8H)1gKQZ$0VJK{<3paw%57gT9pq^z%vm*7w=Pf#3+C;FKWPkgDWlhyW zq#cU5>3MBtRr%z+jTVYH!f2A(S@EQph_Kdn&FELMit5&S9hq3psQ$yL+}eU$D|(wR*{gBc*IIA5Q077Lxl)Gt#?3f_0CBD zeGaihF(OQ&!+unJ8Q6BEbdXs z>6uF244XZRFmG#GxPuq*hpGXJ(+uDo9tP}bEfopD;knh=jMTa8&^p+m8#8(0=jrJx z{GGVxAt6%JSz6^!gX&`mclrh-y>&Cm2~h!SkZ0J^O8(yLd$fwn-TSLV99X_{YKc zRODR}5C-LaCnq;-u*q9SCzS2^M5^lg*=SL`g|nT6(zD4qD%k+ZN`MXQVOb%M?_r#u zuIq^j1S*1TwekztFjfw!yr%6Ztalt%b|s}Whi9{EG$Gmv$j?=DY!Nx`4hu&QV05!y zE_exJzh&)N^|4yzm#}0f1f!c%W#NXzV(jO85J)girkrP;E;3-z#OK;j>zXvu7d=A{ za>*r-%s*9%FD7r&Tf=-pjMluAlArdZ8Fou*}seZO3P$~Eac@(`$Xv? zc*=UCv?__xvmeV65gB`v?zunP z2b@&w8MtUeH$tL7@B1C}RH@Xf@!Q&No_#7b$Db-jzT@2J`k(RVj66{d>B-++?rv)2 z<$|_;D~)p%BjC-qkdvL3N@Bxhc^UPJEX{=)2wEnDB?d?{h5ZgB#d zwqMW-A8H%L#o?~>Hk)(uPqFHw)*gxnFdzDq3J`8rlpSU4ux9EQvY)Xjxu!ApOm>Cx zxzlWO7^wfKak#pn^-E5JsXpxY*XBu0Mf+fzzY;E3P&@K5C(co4BOY#>aNH5<^vYmb#&c$-990NKO1>7%*F*JzWKm6 zA*9WOY>2WhV`gN+czO-i2-)z>heo_jz1fiwoF^8laZppKyNyNsz}qcBM>i7sD%47- zCSlOE6_OkE{iF=kf+zUxmbGHR;|pFEYHic~=-Flgi|e9;q}=ZXT`iFFb?Qr4s~rM* z9K>*o#l8}*aLJJUc$ZZc-dt_&{mHDN6%W0JaM zRt_1|Ig^(acjx#%OvG!kZ`?Sg?;)fmMgPM8OP;3GcPpb?JMHJMlxjSCE8Sa=gx9RO zm&#f^x4Ndn5p}ogHeCZnoxqI?Fhj6a#iAHJi5+2-Qq;tg0Ojk02-NbtC!Pnk zGGQmS8Oo_*cB>@%TgQVB^ED+TVi0}{RoXAO@BFaE`%ps^NO3Kb`7g&_RRA7QVeD#Z z4OH7woA|DZ%=_K?lvhZ!uFj9{;llT?U1LF zCm$q5F0qsm3SEPP>~liUNhVa0cP2<<#-1SWU&qWsEeWu{mY|Ph8i6n8e0%o5-cspE z_#+S2c^R7GIW-uMs)sw`3=r4(o@2m5kFl%jh-xRUfjO6fj9`jnnvtL}*_S4|V`i)% z)WJ=3Wzd>Wn|Kal@p(+xZ4_VSEKUh%%NsEUvJG9Y2q{P$ItslATyk@ja;l@Su}E4X zB;-?Un+ZDgPRt5Nz>dB9^wS3v>{AZWPowyiiqc)0m9a-hFF(Tz0qk*iVagxp(2F9f zlXP(uUygFjW1N(D{=(RGYz%T&^9tK!`$UlBfiQH!_C{he;S<|y|7`${eT6r&B#y^* zmofV_+J#hp4*mq7<7U%xPd|;dsb$67WCU2kv~CO6@HV^pqzB@d?O;2zkryJ5I+$;` zyyix7qYm7it{)*$A@~HBBR9WOSw-%On4mHrkJ!OjTU})hl! zM7yU#*Ojg-gAFp!ZB%5N!t?^)@LpBt2%Rqz+WD;uC*x_xTIt=+xfxW;`L}?tU0#!` zyzpRGu>t+1ijiFYt!Y@(mFeUH{D+6b7hdmXD&iCv0yAJRl9lp;9^?0x{icWb8p^kN zh~ERJxwnibE)WN)RkI+@vB_BT7^}!U93j#8arbjiSae?gaJ$-A58-cn)#cWKx7`4Y zrs7!7&pe7B@44ueMm~g*GamCc)?h5U#7!7}meIP1Xpn?gl(G$O493RxW0D=Y3-th< z=cCwQaSM>)bNSj07K%J`@eSgRyB3@V|HN<>V7n1_+C1 z_8oUHsMaySE8vNQu9rp6JbWhzFo8<_4|?Kcz5GDlTq)ic8wk2RAksjwv9YF;1%iMR z#l^V!aKEj}uh+l#tNAN5oQ`vg)gm^gDIg~!qFTCw2+&`eSRPQFIICc26QqtqkyIjo z3@@%86eW@{yJp%G5GW#!PJkVE5=SQ*h}zPEfFlwS4+=v3ej4cZipqWEd?{0ju|qWI z7TA(%F~Tlj@JW*dUJO1H^avyh}yFJJ|W0 zkF7#HpQjJ?(1l{!JBC}c;{PwoEn`S;yWw7lWW$_TxGO&t&E}y(AaYU~@>;T_iVTQw znYo8_qOLaWy~uyB1#(1ZFFIh%nHznS2{YuLgmtIID6h^Rpe7B$<$MAZoZ3qT$cqy( zLT~16%lciyVk~O^w1sexQJUPx&@_7$sJwd7Pvy`3iKj^iNnQL0W?Cr{O9!okExYHO zfcIGy`b4s>kv~Pm5uZuXItM>j5VJY=HzZ)_hHe6oBsx&s>ULIe2NmV6{5o304vz z4_cbvH}ZGbxhABsr7>~Nf7>D4GP-J3yZR!_!Zf?iS!=V@NfN>jJ69lKODyY8xhOT0 zEUR%a`3x!Kjf6^gTdWV>>U_i6>K_>^kcgUdkG)Jlmd?LKr5SFQETJl z7X~ z7JzQl_hKP``JsgP_=aAH)CY8nK!lYd9(Sa{$f!p=0aDpPv8`%=>xz9%0PzrT}CJbXo3m=~vBZ>jNXffLs!Un<(;d z^lblfLGEJQ^9Nd>fv5)dy@I_Lu z>j%qxL1WVB`Oe;Wgqmd1)cnsUQ_bapVfYQF72ZVE1$zEQ(No;C>vH8|$~hA{))`Q> zN>^v2LLr@R2+UK;L1x+0TOT{nTm}oL!0=?I*hpB!hb6b`n4J7YS?qNk-I$pw_bohK zYaF?Ti0NGuwi(n)!w#97m&@M{IhvL=ps>EimDJ2zMh(Sv0b$f&G#^pA!e+>Wg}Js9pT^FP8oNLqI;U6Z_}XFxT7#ck2M9^Z+fT` zwzDpJdfh;}&_x&kuw$Te&x7MTIskD`0+XjB{-mM&jDucm2w99x>yMN*B0=~*sMhLp ztF!@wjbZXYP`49?c`?U6(X)gANmJ^XutV#fFhTd?^F&UezMtG5i=(_!dD;;i)2Fb1 zm*q;^-m$pT4USqD9?QaPU$K++>;Va;$XF9jGPqDIur4wdlXUJqLK-IfygO%hvPw9s zJplJur0Arr(t~iLgq5a)2%iO5);T#d5k4xg%vL%u!FTms2KDXGVXa=fkLzA_>R=0P=!;3WY2NE7kA|gLUH%gU`x#G!L!(lxJ?uLwo zEEn{#*lu!jovaRc**W95|@by#ocjqv${XR6}P_RjYg_#Wzf zKK6<3v+v+<*sNDEPoO~{uwUT6;K^c6RMtE2#_ZQhNA(0)&B46S3UN@$(YJX^u6UD` zUw|%q-uot6koY^P^Oa^xL^1a(qY;R^2}plKf*)HG$iw9+^w2|3u7u8!E6U?-l4iv6 z>@(6uu7k>#XGh#pB5hOh73B2`xH}ycII_kA&4rm}m%8eWb z5zBVloYCAxJW)Vr2kGVyVYrGl?fby&-$iwIc@G=xVDVNsq)IPN<8-)g#X5fZ$;VbX z&ItokBqAG&n1~~Ho)^ZUA>>=wlv|P&^!RWjZ=ok5D^Pkb^(hOuHeC7(m>8~_mDKIy z$KSqiN4WePa|PXA-O)HdE{+?NJ9z0Vd{ zNjBIX%*JgGDxoIAGbz#4wt@_oi9DRZAj3lLAnAt0U75gD0>7x?Cq}XmNNm{sWagZiGgoJrx z?Pq`no`aV45gx_xREEWwGY5nM>+65I$?o}Y-2&xtbe#QMQJ1KKSP!QobXaRjXAC=T ztDMSsSihEd}D<~ye8Z|EGVXr1`kgnp$vqH2S+AYy7KG%%TSj3!m^ zv%sVH8-Z z>fom0{$BWT;KqHXU4D>L-{IjFnPp8i3|{q~UfRdGpg~MCA+;I(!)8faK2`i_gTAqT z<$ajTJ$bXb9jebx1*Rl+O!kc{?MZg=%S;xQ!`X)-QJ%QW_p`a!ajzeXSj|>Q2*);K z##C)QQ!amiGEpL%{rGU^yHZynBcyr?-+{QM{h-Oib^Edm(=un|S4Q? znbr(hWI(dV79??T=~3yO<_vzk1_^XtwelLM))i>Y7?kJul?#KV@4zWf)G~m(4Z5!d zdq6hXrI~>X>RcbD(j5j$7{Y*PV_LsQ7p%2rEZFu#MNIE+tQH$=jtc^SI8};<;l-oSsPX`T6U8&VzYPr?2 zRz0a?c3Vblb&sju8f;BA^)jW_n9c){iu0^#UN(VH#5~OjcRxDFN~{@3==D_GZ?wIL z)BkfcKc1i;M2%&HrI|h=&2+V>E$uQk8>iYRsF*AkMJvK8!W?fA2^mLEq9EL|f!d=d zS}!0u&hT4v!zH>-jQXk6J-JRi7j6$hV{3e?Z!96OQlPVJu$8Wkg1rH4d$#mp5B;QC zYf-F$sF$fVrE=d3sx9E72h~Us(`bZr7&t3k>4Z$$Pu_m;!(}rwkD0!}Uo$iLL{W9M zzM$9t{8NobOrv8o^MDp1ycn5n^cadkGl%Fg6oZbIUurw)NQlvk^i-9$XJ%&V%Sfuv z&&)hEK~G0PW>_bJqEhBO{mWbWDIdMwS<5kM6{^-<3z0^s+PRW?>=3Z`_0YRXnVEkZ z$n+F}W6X zy3fPSSUgRZ>tH3v@KEvJY3h7Qsvl(i1*HD(hpn4(5y`xin0l>SAG54E>c_G!;}DeK zty!|gSDp|5MNbc}rfCfrWEeQ`A>(9_6W_fqEPwv!!Gj0Ktz^DGymRRsU#x`9unUI| z&+GW!;UurY?aDJ2Y<}sP@^-WRO7(M2?2)!f*k(_Vl?JXbj?&kZSVRZ_iVJCO_}owT_FEf)QIKU zNEd77Pn2-uNNZU&JGhX`IfW3wl9$2OV&vEa}K8iq(R^@#~@IwV#u`e90={)bv(YU ztnCZ@9ZW|Hf4%hN{((r_Q|QVb@kzG#(T);C`rGTT?bFydNPUYSf*~T18leb45Rx>Xvh#%ZazD#yt;PM?BALVv<{|+)mgSp_Hgns z149y>nBHDr3{-&|oW6}*P^U8{fuZcLnI@>*@tX!2l!Po|2057&p2v0E9(Hc|yC*ZYeBKxH-Db&#FxG+Oop+3_7*II}>6bax|K;=iIo4niyD)&u z9Q|(2@{cj1XuvL|u&G=iD*eyR16gV>HXYFF&kjyVxbkaf55#%mR_e>RxcgXVS*DHL zDoV~yRmvgq@cfA!=DRdtKxbE#J@CE2|CbgBiHMMYrKU|qP9byD z|GAkTW3>SqF=EP*Qy7g93Cx%w@-t?LTEueJI(G{)6h)g|4EP|sSTDPnz>VBs>A{e_ z$Hm43D0!(x+E`>JTp-6dApV3rRZL8bNGM1H8F2GUasE^SLHpSp_^%^F$O9IzIH0*p znj^OJ^7FI3_i(pB#qs0ZLASr*iPdA>VVD22{i`dwf^Ki86N#_7!!G}4KE;Z+gEl;o z_<`g1KR??)SNJ|-w37r)Pqz2dS|%rcAl5Xq@P_-TZy$nq4wE1(IL+C&7ZCOUvj}Wo z#J-dYQNy?$@5M4iUK4wNuz;!A>*8gLct~qe8_S$0`oN+#tedOuGaPgB(djw}7PYaj zHb4*YJ-o#xXgbwi*ury9ZC8(am`;+G-)z36|l1tJPXlDvfqHID5E=iyan)*fr# zY;jMCwRWXFG4Lng_Ku)oU`-s|xl$#s>>EQb_cSe<54VPSCIhbQqEjcDs7OESP*)RO z)FO)>d(Xwl<9&H%veqV*ov6kZtG6e)J8-~wCom!7b=cm4s6hVrl5|+ZLv-;NAHBKM zy?5f|R^wO8x;nG56ZAfVqN4J7V{YTnb7PshJ}>H%Yt)YOT}x@JmUkmNAFD+OSw&Sl zNp{kxU(%@eb4E;66)+efdqaI*|s zA`bAkILIc>qklc@hDg{_j+NL+*(rKZdf`HTqt_pd{+=5mNE+;+LZCLKU+%!9ge_Bl zy|Res?#pnQ3cG^$9|1D_8C#V_#qY)ZKWu^0y~{=RhQrCoQ!l0RGfCz3Z-DTkTm5=`9;S&htT7t6?odZF)C(oZ~v$FD9ot*-f ziFb9=e)9R-U9!@>ZR{|u2JOIq8ag5G6Tia^!(6)oR4!w^sRN-oR{B2gB3A$+ldPr1 zOjuT`+u9d3uKWIdq6bK2dR*JgEshT2H_{B-3XI=Q-VKxxf?E(Q%o|!J zs+xC5+Hf(WYZ7g0g_1N~4IMherWG_9jdFXb^SCp~Q?V@GeGqt zRRBcb-lTzKx@0QWpAdSJCH;Dd3aO6{i_*=2c*1?ww5{T|P^kC~MxZqGIi*(b8=xV% z^P(QfIAr+oN$`C3vkCj0v96}Z7|BLzwuwaQ0!NmIn#exL>}JB=+M5|;AbWydt!027 zJi;dAGGN_PlT7pdmT7Fefr|8HX{Kst&tUHx$im_r=}k@0lqp9=oJ6IPd}~!vNuZ@x zF!s8kwZfM%W|Ea2XY_)BjJ&)%$;tWN^IvX(9OZ@_oR#jIqnoa^6f&*W`cK`f^!uT8 zO226B(+vMHox}upJ2iB#DBLZu`{Io^Sdp3Zw5evbFC49Bz^YxQCWw4P;|7Nz~lUY0-kfJuzKyZg?r84Mw~ZwZh=-<8!YlH@ zRjgv|#0~D}8CxS(3?$M*J)V7N6I&;LdHz&6%VysARibc$Eqz9zsNqI-v9^;=dX8i1 zRi!8=_`*r1tZ_M5fjvjP+Eos42R>ma#jsRMp1Mp|8pi8d=PmlIp*1GrUT;J5RmUcS zre70`VCFkk&$0NYG-;hdl)i<*nXhq_;eI{GH_|Lib6+`69JN=y8{N+&YP;rcbU(Jp zXxxUpd);K*Cfi>y0E49jooj^^xtTfuLrR?1ei=_31#8tYkcU%m9%u*&);N!z0%9Vg|AjdmTl1H9>E-$Iy$B zysJ%y{0Zrz`9U4#6K6(_}=@eGbVV(P9*FG}q_Ew!qJkI@~5K_0ikCg~T(!DcdD ztunJ?YM;CMya9t9{htjG=}E5&$w-GMo5|*}vu-6@H}xYKzIWVVm%nZtpZ5&=-5qxO|McxvhII#@u;04s-2{}6f%FrXx|~z$avosomFB%m-7n!%dlXH z^Mc}%UtNYVRC7?zPFU&)+b6zjl`b0E0|qGj3Yy+gr4TXS;^KP)RF%=uToAq^Tu}9k z>bjy`v+S+dO~Z_n3}qQ_=<6Ta^K4o>Jw$K|r%ATy9?w=6)RR4QhOIVyEXB^SgN9Q8 zVWU{Gp@?Cl8SA0Xi_~Xqg`pgI&a;4Vo)0#?dwX&5 zC-X1B*{O%KWDKK^e{q;2te!^#8qO|t?6@?Q19Q5S^gyH(kLB(}jqGwwf?nIhk-1$p zQy^Tp3aF)*S%5*dcYGtn^e+%|&+{*|K(UJ7efQl2^rQWynOW(2Ba*qL2H5jD=GE4T zZV$7k*7ljbW-izn`5|5J&LuogEz26qf4uC~f4D50D~+Zp&j5;i4Q5Nny2;>=7A9t^ z;-dH2)g_1&IBAV9H|Uy`P*;5|B5`lvm1JuRXRNp;7$1&nMjWh;eu|qI>4kC%2_iP5 z-un+)x-anA3|#WwyrQ*DEeL5(eQ7mGG}Redm}@1q!WzRIex0Q3=2~m{672~4VtFsR z!TJypsN+y?JP&Q8eF42gsl4J1tdDhyh_+N$8F0ya+6I{IovoiKZVwnICL=ZiR4~Y)stpY8h%~dg>72mc*XP8EE{H}kI}9kY#s|t4d&2Zo_X#N z=6qM-Uvb-AE*EwzVBhRDdc-@rjN;d$3RfqMmUI!}gIw+y-)nkJ-m4u%mvX5fZ{fl_ z=y9)nkozRNGHD@W$0z&PHc8wsjq`gnX~ow?UuBo-c``#Fw0ZO9C_&^t_MQy+!;hS! zqYS-y-i!1=VLe&yW$dg0%F&&snKU-qv#j4pV*K55LmZx`}@npvcuq|>?D4i;4DR;=_P*>n+a;dA;kiwAsu0WtDrDBoS{?xlKr$&w`l z2Q5Ln9OzclLq$l)<4gI_jg1R$|6nHzD-=6q$a{_n6p8d+(AWYYpMCk&mtRg=&)8N) zAFgdCy?z!hola8e+qSEQ$p6FMdw^GQJA1>z*ccm3GZ1Vr7ziCgFD4X2=p6zC0-=PK z0HFm4gl0+-N+^MZPC^Nx_ujkdy*FcQiVGNbV|z#E8||L6XQkEh-upiH{q8?t@!%uP zZ)T*`?rKM)R_mnJ`SnpY)^BzwGs{h*@x5^NbR zDuBaHF2rpX8aDqSx6|RwyvA7zJ_K#&8K-n}Jb$Dmdzb5)x9M&&&u)8-p|q@1gpW;u zB#U>R3=9LAsm0_gg~1!H&*4;>Ck#SmgCWRK;Vdoy;lE-Y_Eu$91UkKWhy>k1u-)7T ziey1W4~Thz2Y~@}Fy8@}FVurn=H_-5>Vu294Vj*ZM+Z?_&V1>0Aojt7)vFUhbaEnV z-VW86z&<#~w`oo-IWEfNG<+Ud&Z8@s0J}}SN=>RsA{?{GE!!E08R^WMi%o;KEjWUn zD6u{zsga)IBfS#gGEdP{RTAO6MaRF}E4W!Klg?>~WcuhDB$hD{4AEA2K(DlugZqbF zhf5YkT$lt4<%4(un-XD^)Wpg(FlpWLS zOR+|f+Eof5G4h4fJI~k~yxnPUvf6bJEwn00a~R7jHl38I9qBdR~j?9jIpzP@`@$6&Q`qo}F;X^g{PQ2SPsLH6Z2ISW%4p z4VMV1yc1xC2_nZ~Y0=-);aOve6X^-Nvb5EC%u=|g+i$VaLqC=w8MOa%4diMrA7ntu zp6Ac04SALJCN-a4zs+8jVk;9&pO(5YV_3`8H0^Leq0F@ z-0E#e4zg$^3T}_I>iHImN$BTP&&58Cc`W|~pfBL`ee~{1L$1}kO|PVbap1{7N7VHD z>O;1a9JNuPSoif*Hv1>v_dBr@z=GPMJNWUp_l+maW>*7023m@pWRn>25}SBzpqQ&r z4_#QJwG&^0<^wP?U8l1M?rOTOrus?w9pDOYi)7EQ^$WAk$5ABd_dIWfqj=yAFJ)KX z{XQ$_LD_xolB8XOY#w9Y6OStsvW`;Ii|Hu#M_}DUe;4*8w-1{`oBG=@4WeWP#m&e5 zLBCd8BXh2^nrp$M&MQ3Gu@3j<7K6KASEw+5*)y=kuT@(tr(}WCSRHCujTa~ckD@d0 zLh9VPJq7xQmGt%dX7;i8k>kZ^sohapwg_Ye8mvfhvO1UouYOxBs$st9F6U{kQ$!7=D z>)RyJ*e@BqI(K6EK^HsUMtFv2(T$)N&2>p?b@V{4nQ+I-y^ZJ2otEUsNWOn5Ru~TC zz;sM5)+CAbDE;nNI2bGu&H|eGQ!JUUu~}N@I4_Q9l+=xubMn+aFM5 zYj^RD$a@9$eHukCjrK5gV>ACs!?XL0YbJB~*QN9`r+Pj%kVkW6=FG?8ke-n&&NZ-TCs3I{yedju$B|^I^!I{`g*ari1%%PQ*x`q z8>e+YvuJ$#1B7FHFAHDd;#8AWsxf-w)=V8Os-zEk;)==i5rTfTGZvM+Fa@4V?LADeYfex8OepA?&trXD;l!%9TLc{Z3>7q*+eSmyy)54FHe(+0|! zXVJ9wtO&!+J7Qoi>JX&sPPi$K{!Rz=EP2;Pkkp%r8v+hN{>GBHTHj>)-~v8Y!HAPP28XkY&Pb;x%#U`KJ#g*oySOEDPD2?SQPq_U=j~rk2UYtm zg1eYqoyLFLc#iiY^-+iO+bpicb%A8Qjh%N8Lq# znp$DFI$r+b5%xoFE&eZo5w^ zuLFR6>|Ha2D5!(8EWXE44S>%LbQV1g4~Ey-!`xQqOqEmQfwpSI$V^s;pjy_i;FI7}Wb81uT=JFcztYlxJ0nn{jr5ZO@I z!ABMV9OEf^stq34U{NJrX8?N2O}cF30rprt^Y|gUZP9|TkJJr4Ya!wTTP@5bf$={- z*~XUQW>L!O`_;o`WvIsqh%|q2RZjQiaJr0425Ak^vuy#@ii0n$pai&SGFG7a-c;byz0zpB;*LJ^Bu>&8*sjj01=#({aA%&n@#YX zH~@{|NHeY&b`4#zuhzD>^kpgb7*5H)He%ixY0DZIcg0pi4tgxaE**FCJFo0vzjqt) zZhdXIS($%+cD}#ncNw30Xa4#k29=$kozTWcb03L|tV9YKAhOcFJ#zUSuw0x{Gz(_4 zwyxdr#1VWa9f{Qd0&&ppYDhzqg-tRoj8FWnZvrfkb~%T>#iIXVmQqVK2j^~EK-KUt z!q+O3_{XJfMEc3tw^CbV51X)YN_tpiCndFkOUbY#NmF0rrLvq9*$aEbtT25X-V!nf zw8Ikx{0b~DdNMs_fy|wZ!ZB^%>v!u?j}r&JBQ>w{sVO z>a91h+oPGA;~ZDnlYuyz9QTZ`tU)?gRQlYahO{B-eF*LtlE$d_L3n7T@DPC5(RPU9 z_TF{mMf8}hq<@d!BuS`$4%8#aBv9@nkUCmIM^fd3I4epHbwIz__j0HRHi_Sxzh5e| z_uWUOEFihE|844zxU`W{aX&e&RKcvdz~{H0q>x^|^Z%+bA=G-mNA%ppO5{i&duly) zGoO$cd=n=y(kgM8u6xbqr2p+egxt4j2YfO%7P8jbrd!@+gyp?0vE-`52l?0$n zf66@v-OTd42gydy0M0?ud$pr&wjBns`RQ=MVbgWK3-N~8KD}{@Tulcn`lkjt;)ImK zx4*ePS@>kqt3?LSPB_{-*)+@#TZFStDMGM+ZT}kjUI)1Og%Ps>lp-EwYHr<%KHP^D zj1WO=+p68{#@U|jFyzIU*e9EXq}UziE`$cIufl1|NSJG2pyjEcWJpSsh3!C^B*7@N zE|v1pNjQ$P>0}{yFx=$EvYbrW&qJ!=IdcLSn+N8@aqSER)8Q+5BTBlzfH@YeS3n&6 zA}>e2-j@=O`f<7IiJ`#1uR1_7wLK0uETlRBT$krXy1s>L7B%%%0)T~7omhykA-}Lv zyWs6PXR(YiPdv@?CnLcSKMwGuq#^xbMqNjb9_>RsC0|$X;ji$s@@DYs3#OXs8^XRg zhj-Q~!`n;fV&9d3tKX;Am2~s+T&78nCQHpzkIOVo_Jv{@=dj+LfMJlThD$?>3Z?W= zm)o;);(4||>tF-5t@f$3=>Q8u55&?p{yHc``ckUD?u7(k?>c)Z88-prxyhvhZ}t**`dHK<6`5zCvfjhEPa{^ry8< zbrR4CWz>JCP1t&rnc49){{5WC{5qio^82A|n4t3v=5reR-<|MxJukMwrb;1(Ir2~d zmXArPax*zBK+6kh8!*<9!&nK`vN8FN#$JEGY|LW=V`lPZshOTlfrJb zF|aFQWmKj3G7^^C2(>;$DMB!h^bsRiy{My+MwPgk0LusenQLFIK_<(W&@RsE0yYSB zZ^vqN{Jf)Z$GA-2`-E%$DaWQfqz@%)YzTV#AU*CzXGtZrzXox)1@ESVZ7!^KevdtU ze0-cHj?3~iyYcMl?>_^#p?>3ZTDk2@oXu2tmSiVby}5U9q(dS8&IQ~Y#-sdl1a5p& z-2h;;W+d#df+GpB>uT}Aj!~E(YZ43f(U=S>J~c18F9zyA2>V_#rG^U91D3g5~8K6Aab&j=v^zP zJ{Cir04rU2qCMq$I&rj{+(47^XAu8)YQT5e3N_=B0RjC+%v@+JMDyUUgJm)ICj zfK7_kIdf{m#+ZNP&nNNkIoRK!CFA#hv<8Y4D`2IsdkVa$W&sXPy$c6Tm}lqJ2~nT4 zPy6baV89Sk_9$C~(}lDqhXu^_yEl-~WfNjV#9aS@wBNkRjY!rf;pIHnLfF?xy)h5} zWIb!t>Has|WKVUm0nG591ds5qBdmkF>I1KOWRvXnk@7fZqCP-u?xf&?^#KLorTt}_9 zvd;CGR_62=5-Vwp+@!##HpcphfuZ!Rvwvw&htV7g&R=d!LWNLPu1 z_RbF>gXj_wi`C|2=bWM(6Wem!fadYq*>l!L(rv=zK&GU?pd+{5-rD||sL+u%*M zo8thpTDqZod|C6_VjsRXrN8288r8MKi{V7+#)&`^ei6K(4z4Jmzc}K;@5FSVugVHU zEs0y=&AMl?C(ZzR^`qr7ZQ#lCIR zVL)_c5^v>e zLJ@K~%}+T)k{&u*ZktI+?DOI}pBPD(xxhrG_crZUu3WiUzrUjU%=fSt9+ZV!1Ki)I z^c60@)FeEs99E3Zm)$39BZuW$j3Td&s0+)=DT_HQP=Wh1i;&jLIplsWwTTgII#5m3 zV{ctu%XveD{H~ac7>62%QbDlYpEr|XhWXlEM;yo55;#!;l74jO zl?BexHj2Ez9)oekFKab9o1b2f#TuStX4MpH)VEyk0mq3^rF?>r~4X zJb0w;VY7frX?QI4fc!h24d*+6r&R0ojW2omM=^c=99c~7pw0T-Q-kCaRi&-8KA-?t%<%zsV`PphO!XXzFL zD|tmD{;{WVQ07n$9_#zCPSK)8y$8%rfmynC2TLICP{Zb)r>qb@r;MRK4&=a#-^w_c zGk&=m$Xm7XA1@LXIZPuX*5z>|J->3Zsl!ZMKRcRE&tMnArBjqqfW>iFizv-EGyJT8 zc^stMwHq|-nE3Q|q*3_=c0Jja9Sr4e>cVRHb$Ywc;n(Y=-Hy(PUiLpFTLT zLXIK(3A&9p+ng$Xq{+M?=!CMIp%2dhgA}yU{la^q zXE~OpSa}U=q}T@Od_ts3@?I;4qQLn+CSBZ1OqsIL_Iobj;#|DEyvAZP!otS_hTeM& zsnIirK7t#<-DvR)!+A6SNEgfbYdB2y4(uizRjqy@Q$-2a87(>-1TDQ!}q-(Irvb z+0B_VE_U56-X0CjaSS&U;J-w=m_P0ZCodu){t)r4&iJ1ZsR|dZ3Q}f^(%u5A8cDlZ zKxHD8&2lq@WV=m|m$4ArqQFoKC?5q&JAMvqvXH_xKeUP!Hch#0QASel9l7-f#Y!XT zPmepXB2}9;b*4yvh|p6VBC!*trwGb9h6BsoVY7#f^@{mv^>q>VaRa3rSLQ8X+dOUB zl1P+^+*jA25u-(pGk*4OYGEE>ss2wWh!PI2dQT#)?t_CR8%=HiHNv2F&(f%2n+P57-AX?*E<@PuNy zx){qSxwEQx8GO-&cbQlF?@DbSIA*oH#GY%QU_K8i=G9ht)>n!UvQSYbT0oV;Esr;; z8UwNQEyVs(l{N8aSXky` zl9eQF@WmvR3%xo|OjMPS3tvse?4(t(?&!z*NiOzvf&!DXNHOp0in3M?k)2BFlZsL) zLY`U`(SkpNtk;0gc-$sG;Rl)VI{q2J#T^HuOdt46JwnpMXO+xGTup{~j^6-wmC&_w zkx{tEM^Q%ktT{)=M6-u)N3bGf`z|$1#1=sU4)Hc$f!-$xmOS`WsM@2ME6U+~BV1f| zr+h!SEOc{lP-64hv!g1K&)-@-q$KYnI9^0lsij^1hRCvVh|L)8V*wR=1R!?Q?5tVN zKxkWw?t5#nv_L&y!)XhR+4eyEXBGt+CO!U6W$u^=2a8#V{p-k|?Z-VU^9tj|>Qyv7 zm;`t7)qbt~WxA+*S8z3c0fJk-m<)$L*CAyLJ`;$I6y$m&LCRQ0s}I8Z9}ip!5I;s` zp9fEQu|>E`mge>?7Y@BRtVcS)w;E**@K~QD0DsMYR3ZY_8BO+j@sK*gMHMSH4=!?# z{dRDyC~(20_ne(o{|(&J`k|R|_rCq!hLX5$1Erms&VtZU?$a_Fx5Lp`4+0$LTM&F% z8!_ywyJ_+Bc?cJi9?D9pEP0d$uNQ0b&c761_gof%FYZNi&yY=-#1OrPyDm)@_dmv2 z?hye_O@`Q@mrq7oeL4(m??p6gfrYlv?($2SjCGVK$10#p`hna!s2K|P*PBKs)Ep`& zz#a2_QlUJj!Q#l|On!;>X{Y8=<^gzXf9ypt53Xe1CKB!GLAYUzyo99C6-aJ~=d&C* zW$xm4k4>LPK0BC#O94d1{?8zVbVCH*ekx#@+u?plII9-JD*+-k@F6Uy4u-_m5HVc- zuzg1QlNphk+|h}q?=Y$X+U)De{wDR`z^Yy-T zk&WO!H@3*+jFO0_*s}j2r|&Az(U`>$wDCjNum7r6Eg$0jlE*v?6)NOth;hSwPR^*~ zYjMGv6D)}v7)pUsyd6}d&6Rb zeYDZ;0aSHza3Rh-V8Jtk@WP6zoGQfu3f2=`*>*ixXqi;E-NXU zB*Qe05%h@GAut#0=d{NXl`3E0E6Mz|5>@>X>;ZH+SISIHNBna+j=s8l`Em+PEYIar zjMCfR^c;Hf1wN%TX|i!9QpJe$f$W2kJ(|*Zd~u_8f2x;e+#~j?R$CiQPj~Vv&~twX zrH>tY6HodUn|LpUMi0}xLAkyS)7z!}EE{@yOdba_A-ai{ebB>)M+a*%PB|ELD? zk72vG*6d%9lsqzwdQrjuCUl z-98FcZsm2R4KcSqijvUPKyXG|pa=J|>;-i5U6`sUKS(|}6_=htPo|=5E9z9^h%H5D zYsB@v=$CX*oWG^!^ekE+N9OiQoRcQR{()x#MNeiqtW4DtLZqRhaNm|J4fSW*`;Br% ze}_=4$KjXurE?_bL*-t8QPW&yi9OlimLfPi<|?%r=Kj@&L?vO8LxsjZSGiNULWSS% z;I%*290PVW_*3l^t11i+N0{%8N2|rkojK!+IxJVGSVoN1fY*%q5p1^K?lPwO`1l(7 zH^((;(&70JA~xum@_SP@Oh)qSkAa=1Q9{yJBD*7f1U5RNrr#s*M>f{LXRiJvJlvIs zm!R`z?TQsE*uGs+0!F^shtvb>aL>G#)p;>Yx#r84&&}sNL|XJZ>%4_Xxs!o>{sGs)V5K8%`fcOzO_~rKWw36PNnbcFkx)rFo(kv9J}_I;CvewpcgcCq9ioJ5puzXdeP8 zLAne^Y|pip#--~;oK4Jq9LUFZmszHdG06KyMpYT{|37P>cQ~yl&#%VAhvW`l?&;Tey8s)`m{~H z8}tv8LXvr0N_=DTD}7kUj8&jG9@F!!banXm^g(v=nC>%6k;+lDU3+SKQdxp^RQm#< z(msFfC3})-S|^DVBYhP2*7Tiqu=b##V*NUxPB9T}9C7jY7kb>#C*jbxFD;MtAV1QB zmfh{abhWhk|g>a}P-` znrdL?qx~hAHchX<#OOFvb&xA_eGBAieT^nz8zP4B=tFu*=^B}3;`Z6YhYzof5r+3f z4H@bGW(~M~{kQFVcQuICx5vITJR?pEM|ribV{rH3@o6cE(b3VP_zyj)g_AOHfn?)q zya-G6eFSq0n#n4~VnZ&5Wx>tFds>L)!k)~lxh15iM~mZF`pDhIrD%ml8xTF~F9k`C zy2GvKQj_9gaNVl;#i45}tXcwualQ#>-j&0^WVzWtLV0oLwr!%5A^ye6@?Haja9{o{ zrYk6bd!NOy`?kq^<(cx#V+d>zyV`0|GP&iO{N4M$ADLTeT*hFt$$APUa7r5s3ncC2 zx@dgbj{uyM_OPmvO0VFQ#bn1%aL$5#$+Pp0t1)f+z5B9WpeIiBXF;|J1D|Se5;${BEBy9e!?!vdJ!U?xCSHb4d(SoVokXq zh+&QSb-=7Lb((x9tfah0&6hhP<*b3cW6z*3);u|>_ruuOcy!n?A7`py^oB7{Ui>0o zU*DFmmE@*QWf)r;d$>g@?fz_1#3{-ZbU$i)9NPBb1f7XMJaygDKXuL;YY=IT-By&x zrJPw9V^yLQrLB=*h_ApkI%N%ML-fyd#mWa=ArT>|f#cR5%V=>($r!Bba6dy1&S>RO z1-8h`QRs=H{2}*+keax*+Np$(ZBf#P^Au-li?ZIC_!q~#m#XtBX8&crhA~f-@au)V zS4hqo!MOmx7imStDa%a`=~k(*2%V|EAs0*o;e*X8w1aa<2$*}l_tnxi~*|Z~1jao}SQ$iaDbU34= zj5XaLQXa>SSd-P)DB*~EH<$(Cvr0RX8NbFF$T>I?Y!M}mBu9M6L#$Cy8avX4-}Rte z=-T+a6nk-TmKT{0(d7;Nj_Abt)yed<1c}23IWkwklRV^2P`T0U+cVvv#_;PsEE#Y7 zW97Bvv(iLSl4e!#iIPp+E;(Zc8zp%GR}9Md=u2C7p5RR7j!JFmO!2Yp$_t+0O!DOjEW_3A%Hd~+thER|NM2@{v%rZCZ%2;U(vc|9= zmW4zyt3tj@3^l5S3^W&qiK)~;v*KgcxnV)xb=hWJTF&p#s24=z=xjJ%^Dc;5m! zJsAmO4P@*6AT0=u+SbcP8Obc}x}7;j3uj%9^W{WrC4Gk8%#Y6^!*c=amXhAbV^a7% z`l8R2ay;gn#CFnaN$GjfUqZ-qnvf&Y==9`YOnpZ}4$!|yTbkOD*QTYW(9{9pN#kV@ z$(xAB->on~Wk)hQ;&V!mmlCmciTnE?4aXA9Pxh&%j5{CdWQR~oLXPwFpY?Q>1R-Ps zJ(qVOT_?j@E3~2K8>Ny2%lVR?bo+0a~_Dg0+Ap8OSRfn{a<33vt5Dd zhh=Ocs)RsxiBc>O0Sqz>b5er@JBIBm!_@0kb8!5@GT4r>+{~{FLdOCLLUM(KL1rnU zYGhg+Sr~qi%z_MJVi+WO5fa1@EQ>6lT#!^q#{9w2JStYKD74{@I%t0eP05rs=Dr#! zrp=%O*{;-Q6u6PUWy{}{Wb@pg=@V6(7v19)jt@e5D~kEcVK33lcVN4f@D7fG3%>(F znIe!JNsmYybS_X}*36la=N&Zruh&+!KZ<`ITv@_lP3Bx=y{gE4`x-YkR!*JqSFft3 z`Km99asq_3K*thOcf(%*F!=}bjM`Gqvd)YcRCV*ju7k$4f8V~@^7dcUl9B#z)j;*7 zmnhxuVv=!fvgmpWq~b&+(dl35uV8i)A*da^aOdT6-bZ>292->Vr*v^*kmsVESC8gy z>qVBr171o^d3fR^j|u6CW+#%yyb_m~3Ax#|WSW!?C-a%FfWc!}LB*2T2=BOAjt4I$a|A!{d?qBfE^4klp!zu_^PDys>r5)Mbzxz8-W=iHlH8S~1oWzaZ@e;6tHj#!7Ikcx+szfO)GDoVC^eq%8;@z5q;Y6obw9jYn-$r9E&2NQ?_Y*&fyDNlj5C3ofUS0>xL7k`TQnnxwaL9f zPAuCr>y65`D3PYO$S%1Cugp}*8aB>)>#%V)m{Zr8Hy8U+Rv#S4hm$Dt=B3re`o!%O z+ers&<H@L$hvfj=;2)cs3D8ti|5sY9aQ}aX5X~fOWp1)f_N+uIG>`+Llel!ea|L#&{>HtVymcGG>@b(nP) zijKB_sLj}3$M!vDh(z5recmKoA0{c+fK5kiQIjMW@6z=SP2IeD^;)xSlWUU_KJsIf z2{e7?3*Sv&AW_Ch0WtBaAH}WAx1vGp6_d~(IlOwWqv8IH*ANQQ?S%^mG`)p(k7)v7 zohW7wy}taKh8Ho2XwgE`rcLYNQ!*vFlL@jDg6KResA|eB)9Ya8&HD%sW{?N(y_S&s zKlFrLh>$ikqL2laGc?NTEy^;FKC+M^pU|Y{7Fh07$w@DE-rRJnya#Hb>pdc8n>D(C zTMO3l!nquS_`cjoP!0tpLSn4yLi~)oYJYS=`ZR7_t4ia>ZNrt79A-$=du5HGR~4rm zNkg^^a93*AA@>nT{8}o6v&@rCy&MN;-$dm&KTp+xkeGH!b-s?yR}3>YJRN;N3|T}26!yQ_NR0!8_AU9u0liKWHx>KCg(Y!z8CJhq}! zcwq?{M7(Y)H!K?tsl*3JEZt)|?qGjOcIBn8tA`LlqZER|9TDh9-JU+3v5 zHHF-E${fQ<9h*%XGSK7PneB9da9}&Xi(f78wKu;&oq|zqrF8dCz z$zv}N58tD7Q!6}#MK&M5%=C^PBzHU=%8NKtSS9A%G}!++?xtW7K6Tt%3;Y8ne}d;h z|IS=Rrr>@q5kC)b&IF*V@+_|T-1^)xTFY@vgqMMMrc{bx=`$W2MJj`Tf0KO!@D?@y zd6#_K%ukt#O(DgfDG>ths|?2}$o)j<0_{nyPkr2CZJgDkwpKz;dh#KhW}iS=@QKy7 z`Ica=yQNjBa^?kSClOIe?P#L;^Q|#giNMi3i-2{eHD?kW_iDDpC>-Z~D-!wlmz4Fh zNAe@dac`J)*ru7*sHj!px`C#2kDyX-#0VOlpM3dRhWS0Fol$mKUFe}K9QY-U@^rR6&4_(*dbxuBooH5j)Hc1CZ6P-(`C3c@a5&L&~etW5< z$*1%Dherx@s)n2Ft&sWb#-Oi&$B=9aUdF8BF$z13L$CB^`0$_w#trOe29#-12vLi|h4IOP&kAxmumU zwH{*4v|y7NVS7J3qyjcF@0ByuNJpA-(T8OAoR|br16`faz{d!|b&c>jPBCntV=Zwj z0o-3dznze0z>}H|EI-cV0%fV;p?1{=2fjz>eA#FekTrt028Z&MjbK1iK{D_2i|{}vD&FG zs~|OVzdz9Y5yA|p$0$F^X4=|VceweAI7*8OQlue$-gjCwjZ1=2B7_UU@EaHVSJ{v> zRkeUOnOdVbS!?~tDHtzIU^U1eku09G!+9x`HE?p#Z|D^(^E+n@?aJ{Q5*^{0{ze(d zELtGS+Cf$ez+BCC`5;&=Xws7fZYN-gMXk3psv!!Y2aSjDR$M8CC|jY)?%; zC4{Pe1XF%31%l)ckDy7jC9B!_+u6T%~QcfSW3q+!RZ2Lm;*U3peXA zVO|wfQn}sA600vV&gy6^uQB)0309j-R6VFDhvib0pUJn^Ah=o&_byUyN(K(e$QWFe zwmw36B+=OfBG#8B<>C_ACrb!E-I)=SI|{lBfSw$$SYua}D2q8D`RBhC4rFyZwo23K zg$K|b)zzz!ipom$w;Ue2dZ&(v9cY5ni`m{Hrad$YB;4mj43#3-LOo?c zJ`u=BV+~|&HGTR+YNPn3xGm%t5P0pyovI&9n)|@bt@bW>!<8eIx%BXAz_Yqt2}o?`cFQ=sSweB<0QxWzlAGVNKctu83nH8CV2Mf=1h)~ zIevX`GE_G_YZ2g62TA|MH9rFhDR>v+E9o>x1hEFB&~1Rf9Tev;Vv{Cdhx?JFrT>!E z2!QmIAQzmS3owH<2Jb=WhX+87mR?8U$uICar^~P+ciA{Xgv<~r@Brc`4wSZonP&og zLHef3J^_8u$ihiRWnJ~jHr)OH5vAPVQWj=gLQ>GAPzf&R`t+u07i ziN85)*s!*Q)LcrB;b+Gfa((Pb4X1M)QSrBVf+gk^O5e!+Pb9|?ztUuu7vlY@8J_|dcYqx6d8Vje!r&1alz~5}0XNE1lx}NwKMY_Xn{i)-M zoi#hzn4ZpDKjtvEN4sHCEU@F_$PWn_lVZ;&e{TB^{***(zeC$0w#oGxtlb)sX%xcf(5GSBrsIU^=8vWa4_jV!&m! ziNx3{oy;P=64T)-D}XB&Xb)#qBD4O) z0v+b0SViFegY4yT^9TU^jM|3}fiq(4IFv6+?)!FNX$Es@BX;v>{$i4;TruDFJ zlZf0OVEO>P{JH$HvkXRiX^R~DnN8V~V+~(3ELhfW^p8@f`oS%8dy*Z;L7skg4xK328Jav~V4E;c>=)Fzb?YO1v12xhb$2984)>yq1OUwm_7%bjRQbFr)OA9jzV5k(p z6FK7ma#~>HsBMP@#QeTREwIsP@WjH#Vq*I;%jHVofbvCovz&DcZp33@(zU{ecez7j zZ%0J?#aC&U+?h;T;-I(0JEqEcorZQ6h2-_Wrzw{bQ!sSmta-tJlKQjRai4y({46W0kSbgmh}1zNL2v7rc^^CIJvNhHM$o%!AG^D zj%O1wlAXPi&0fK)$tH*qyuQFLr)o}_;Bsp*&o#2AFx!{-t&&5e1tQU%WKyI7W)&^% zio5s4l{;|8R0JfrspIQXEc1F4!jLk}QOir7I8BxAYqzTz}W! zfWDskX1G9R$uAzL{bnkegw_ZTo6-Ufq6win_EDEN9*9RhbrKLlDz2X9OLC&)=cEZz z3Au0*>q*ftP!aEeSeh#m%Yfu-zLyncw(0dFwFY7DRt-1&g!~$-tDR`#sYpuo=g-db z6^g`dYWgW@g1>@Xt83Rb)n>G!Hu^xo^dxSOYV|1_8bY6z))_JK`3if{vQ!lzJdOR% zH+fx2ma3c4Bfv?K4eDjBnYRUhlSSVIvTFgBo4zbH$B*C0z~z06rT7rzxnFLyyzEuf zZ0y^a>nagAhe;j|N%ji1bAFsg<^6g*pymgi`YTT!HWV=E27(^a-9CkKxvHzGIJ$DoPVx$5Pn5V1ZC8 zr<7e2oBHDVvJ2+=(6;?7ofv6lX5lkD&n%`BwuO<>^5agF|9NOIAh^s4i#z#+ur zs`X5cM)Z=E7_THFWvGFYoeP!3rNW&$EjV*Vun=0khN#z1!xGqz0(S(H>1*aJ$N!1j zsv4B3(fU#9*eHba{a1#4gop94aZ^xER}{tkRJw}CikR2or`!55;u!07U8IMin9AZ% zglCs*cf?J4#WYc;8j5_VQ}=63^R^OOZ=p-X_q_x(Meb$i46c zH+sBge2fgrt0pUP=22gj0qYUM+#4Rl2kv4kg9wY(z!z}+A?*cy%3*#7o-4|Q=gPrG zwQBt+yet)C)fZYlIOzs|KoDt_MlW7sE-v5h_aIJqIiE7Qs~a}p4r15D(jL+p2}QYL z8qgY`QrBU4R~Y}!v%T`Guxq#@v^B9Dwy*I$fiB1SZ_*yv}+K53O@!* zFW*oKK@xulQ{n!|_E5VLQ6V7MNX+z#bn$J$=M1G!JX=BA{suy z11KcgKX1Xp_2J%^j^iG^t}6?v&l+lIY>-ztk%0KHbxG6J5 zJSvV+C&o$)pOVXz$9N-@aP!;O3Fo11AB>o}e>fd?NUq_ECpC0(B_sJ}#{Cw&EKA5p zoQ&$R#|Dj!#m4jDMq(Oac3eYZEdiUart#%dgl%KJwkWATH6oq9!Ogx*lTke)@Kg07 zjXhApWK^bZ(u)_Vkce$)f-y5a-m-fGMTxeU0>TdVT&c72k#dnrxa8SYneec_DLl8H zT82kQSeQ%2?kcIHbVe@H5F3i`If^r}N>NrgQ+#Zda)bYx^6}7gtSK!J)oQsQ|2@(wA<>BDec9wb%dsPRSol~ zsm~K=T4x6xe=9wsbbFPi7|YZ$mBKUwMD9?>@eOz!7@c5*O24FZfJ*p0mD0b98nLg@ z)0G1WjrQZAWRH1I9{Nq6)vrJ99Nr(8z)2B;a#~0UZf?}a;w5fr?(i6M{UiDV%AFkb zzC73Bwg1=C=g(U4mVTHTj%}tnGac|C?E%F{>E7sB3E_+D*5K>^53?ga~hh-NE z!jj#YV|b@n42JlPN>Jd*beTUZ0MC6_PD?#?xmZ@On7k?U#O?SMWtd8z{p+tr?`YSn zs(*SIDLGt?y{@85kHZ~gncV9zygU}$rC-Jvgp|{FG_vyO^r^p{7mtjQzmZl?;+3aQ zo=oO@%{cW~CA8GaqG$DiMcfNd>u+(%Sxzg;86OOi7H_(|!lYkZ2 z!ERk#G=gE`3y7l(Y3u9Mn~T^gQ+KZCx=%=9c8goN2`bg(gb+o!Uqc3cyEz`E9v3uA zeLI$&O|2-YrVAk5unS;I4xO7OSvff!+t#(8kU}BKI+ITSCB3i=A8k{v1{yHm%KG!@ zR`-^2%xL#aQ?5Ds6Fyj$(FQScR8fv-uA}~E6=ekX*_?*V(>itPH2v~RC3YSM5$^%) zvRHsKKN%IWc#c{cbZ%Zf5yBZB*}lek{OwG&Z|3~KDdn%;v8sV#&rh|n!1_jm)tgrG z9vsjcG+x~Ex-HD{jPMAa`wQY&d9Rsv9-rN?nA7Mw==HghD(E^q>9rPf=&P-7*&y1g9_c z{{mZ-tb}w+j<+!Ra8f0W6vXu840>9R3z72AWSc~3Oxs|h!0k-_K3~>)IPr|w|8Nad znfhxZ^RCn^lV%6gS#R&n!#~9=UCQoFT!$?bhJFGTu=~5>{4=dHY;XG#)+E`ufODp%vrwN z8oWM{w&3L`4S6{C(i62X{PGP#`p0Nxq;bbvn>r9htM!}pb+u~Mit+j~QqCH{qlKLb zA%<9xKyoDU)L|<*23d(&oTjX5#oTOx4*mQuQ+bRhIa2SCA}D30@fbou4jtSt%gX|C zC=8NF+NGqzNIVv(3XA0lJcdvZ`-40}Ss68mkuf3^h?Ox=#Y_-8!&?ugayn!r2VoOd z49qBytBs7r|MME~|J|_!M#$=us)NvfAIW+BNlWzV*6gw3bqw0Dujd#g3b()a8FbLoyYC~-wSX^kw0UV zIK2a+Q`N|yF^alr6;D-Db+C>nN$5zba$E`R?kC44$0(r|pW%T0%I$%IV^>!aW;tY` zv;1o!1zM->2`E-bR^Ik(6k1UpV$Mi zQoa!|?5HY7aubsGzVbkLG|I&(slTDgkty~`C8k6xOWL;qHkjcpF2 zGgA%xz3j?pj%(N`JaBB`fh}oAKV04;`m+k4x+j|hFrQ#0h|7(98LB8DrBqt5a*e~f zrYiAs-5JTHX&Ucso{_3V*3_7rqSwu6{uBsRu79jT^>(Ex`-~5&%SI*rD}+1-M9tMz1bn#r5^0KWzt|5zQWXkksfPN*fv)=3&6Lz02uK1E2j(frc zeL@q;);PgtZ45PGYiY{16xKOjVSd?j?nrsMYE+>oa(6&w6u54=nYHI8TdMdFIx_DB zmfIot+yJX14qfNKIc!3t0UZP8%hot^gwp3mSC&zJHo$me+7K@i3c*4>}McLWH;}oaY+sM@c52wa$MP*f<6W1|@;Ue9`n!C^_)efif zy(qf?C3_jkES?1y3*!h<*+mj;4+?Zep3lu#0A@5F-8T}f2JR%QwaQmSInQ0_57N5Q zk08DY%U=(5F*DVkA_EfR_?r3nDQ>dLI>)4aDjd@#)CkTR+^P0@GX+69@53({0?Dez z95{1U_%LG8zEkCKC%$FuI-H^7TZnIr$wvF);dVhMoyB?sg!>e&e;@%M{c9c~ept%u zY*`)LY%V~AoW@n!7+y^^eu*4hKOk~qWPV5T!~DH^+p+>GM$lzel`@mk5*ApQ2zpU< zwMg(z)Or{86O{fT5n-gVQ8Z4o9n1{B>(e33*dc1U{d`%RaAGzZR24ZkQ5wv-Z=IT} z;M|Xf&LkH@>>x)lByee+6_y*fo3X-{;-_zhL5(rG9>0sPPMTXCKv%PU9t0>sq zzBoXEQ-W1a$WydWRhu15gIVfI;7h;aLSx%{QDw^n<IemMLq*$=o%O>g4+BP#w$ z_L+C}yNW|@zlj>v^dMFiDHMhu790E|lfpGZigI_XEH8f?6-+u+L?Y!r?k;8(ZtrM& z`uQ2`ee?;iD$zbDvv*=tSHM1_I8M$^K=ln`G3UVj0-W@sRb|-Imn;_9R2O6F9@VOO zU1NB3x{1NadHO~jmTtIPfp~F%nrI(I;x%lT;1t$Xe+ZFMVfsEPrpslW+`lTA$VezX z=PhEA>BOX5`zH)hlo(MiYm0DpuUIf)IK2~;h~;c}`d3kI7Gie-i(ONcIYmXRz|*B) z5wB^#+QLF;$j{?*k`vxOma32D(FNdkd@s zD0MBMB9XRkCa8l(*`jP#Ep#K^U7M6Wj!O1aEfTRBS@Z3MO-2bV-V9j5r-5WeUYSTX zJrK)iE`GLYY^=EI?L?+n2wN05PRMP=R3Z7AVb5LrH%^c#gA1C_d%NhiVlLweppkR% zsikmHcy_S_ix#n3Dsx-uFKBcm^X;Qk9dYsZVuHCI9XuT_mT^Qge*brCp!5&5p%}{p}UqXZAhWx!X}%m=mm9Tu*kSG4=EWi=@SLR=)z(+^fXWSsX;x zQTn!j({DCLuf0s~7veGZQFzvu8WQ*B;vq~`{&6eYU-GKm$`SF*dGqGQDIyjaw}1*toEB{%b$TAI}6QeDO0Y%8QM!GUDGs#@- zX*%x1)Q1-gf_OBRroh!zeIUIJkNtzY0XAGoVbl{aozC(P#QgY>xqcy}hYK%8X0YW& zXuaKE_uuf%Asz~$D7OzBoZR}Q64RMenfEbve7|Q+F7~#C zHy(G@IH`VS)+Q=~OO+JAe6#>l)D6dz`*9leL>nwiu-qw^^)x6KOpXLivNb-~ysfWm z^i5Hqr}#2xXwKa@_HNPAFF}awSm+8#n^(%)F3zMeRs|;*n>uM4gBK3T-70EicE)jd z^X=!(q%l_Wm6B@J+*Ww01Q~h%)8k*<3K1+2y~GRfzVBGID7Q|~Bi?^&v!y}UxfdC7 zAI9!)^vZ^_%%`4YJAqH{ZZtwh!b`zdo9zNX(nO|zlI^OVjTV`XyN$NRsMoKF;wnd9 zJX)tOAx*knRFoHj*jH$@AO7l$`W}f`)p(Vx{)sCq2$C;Yqa6PWxdyfY0#@!8Uc$?= z9u@B@{2DkMCSX+(Ua91O3)jRGQG73AS#Ztg-Y?KIm!y7|biG>@CE-XVLb4HZRlJ4+ z_M`7IR|tUwq2IrsH7#BhD{fSj%~f=5S_H8J`>{&U?__$o8`!7CT%2Ws2&s$p^0-%i zEK5fCZ`OcI+m*Ji4iOY7HV0!;v&|7R^ zX#`Ny*lD};1Z=1?)rf*O-*Y)(VjG+(MLGtdB{ErrNaHj}j#X!Gk1%1R;ZaJ@L{lm~ z2g1eG)jyIxmDn##QRyw9@Xxzb{R*1a%$ee1?Gn>RaRg_g(>>KG;3PO>nUB%LhR!4x zs|OIo5e$hC`atNa=wSC0^C9$hFmF2j-CbwoBl#fS)T;0t??ozz;4I2O*`);9Ctk`h zb#f(}UugzWoi@=^f~gX02B;ZB;xQ7$=9QW-RuGmCYBpgg=D-+>F(A8kVHh#eSsbAt zmBw=A18USrC>F>=fof)qs75$Y7egk-VF;+mp2;!O1t6vs4kLjE85TuS5dH)rOCbJo z0kLC&3~{J7ponQfyfnsR2ZId!&M1O-3qF9b36DgUUuN_B%%YHD&9%eEzLkKP?z1m7 z?xSV$AQG~P=_`xdZ0r&Rvn>PFmY-$DvMp2~u0IN7+h&q$j(PP~b_eL_S}2_Z$aMUN2F-JvPt_kX4aiVrww8*NsVxz4>gN7>$}bIe!` z)w77l&DLy}M_cF%E5oNc zrJq=c0g`u?c^flsPk%iRER19aAA&5Qby?)oazF!T6UekSZ0VUY-c4 zg;z_+bgB_&K`n2$ljXgLxy_=iLn;l$V86LVwsWqBGpbEt7A&)e!aOsXQEK3r>p}T+ zzDf}|55m-4R@Jcc6i><(7DK7!a)^8ha7a^_yUnBq98;rsNUfz(8sXI0w@VD5<2*(0 z`Z(Y3nPR)47q>9MDX7P=+gSK9&VX%QI>xXyaU*gABB~KG_&MD_)FnT9#Ed4#4G1Qg zhNQ!W5+wg$kbuJ!&cLwc@M>Y!T77Rp)HhB5V>clFY%07ydlh|J;(>Kbkj4T{J3G!) zZQB_VdwqfI&i({T8#c7~KKyjqs#naFDysDXga7)<5x>pXj77=FdWHu{NJXGXVeln4<& zzl|G5n3bs-!YsT22+prz1gqWO zkkKNTec26$JZ67HtSlq0>+RFzg&A`jzFn6Thp3aKvvt0P0|wGA zZo3OCPjg?Jcy`%|+gaiQf)}C(hSa>mWbO{`Md>6VyMeD!Y7B9?BK^;cdK88xxpsLJ0%(*#~RKV3j(b8s_5L}}Z-O$0v|F*_GVl3uD z^sF2rU*LAKa_3F@OiFg9&fcXzYU-anFmkOz~c$2!v(Wq9Lvdrw`I+3Ot#fa;qd_lkSe{^U3bKcXqRh-hcJ6M zbnw45@Bkp8jn^5*1N61%$n;6Ibo^%C0SQHQ9ef0xvB4^(>sO}EMK~m*HRaL+2j}PU zQlv%_ur4tkI|r~(z&1cMR^+Jk7t1e-SlM*wha(~B`zvHi5)T_54ar4F_NUM**M4~I z&*{v3f}IyJ2zE4hY??xz`3$7CXo7R>(jji3XprE>3tHGC_7ZRn(QXau?ZxGlk&-`@Jz2D1B|E|SQ!bL8vZ!m{+cehVz05U_()vy%Tx<%Z zi^N-QXQ&-R&s)4HSufKgtp6YjJ87yqlOubt`*DFhL%}H3Nt>xM>(N}zY6LU?L0>bo z08RQoanFRj#2}iBvJ?6;Pp0QvySHY>6utnCFq0iIQD7!LkvsRuaOSEtVCQgQO6J-0 zn)jen^esE=uBtAA=^L2&%c}@%2x=g`4KwLN zPiM!SQ(G-%lvM-B@%`%)@9+Zp*}_k-wr?GXa0f&*lcE^U3{aZMuIA>K4PpSRw_{pYb#*3jhRhCP_IpO3=04zS(OBY zg`o@8gs}_o3$q2tY7JGAFx%{4nG+W=)d?+i3~TOKv)@|HeYP!Zgw+L_ikCqUYM^`M zIDw)kJ4D|4QBUv@Tn9ajr|79NTa-v_OQoS66^E>Jwt9FRg5Wag(0?_JEJONtxPv2T z`@{~-95{}`d2cI`O>`ypNRiw0Hby((xo)LJEK-TY@jyHW71vLf;Xy1Ny?r8*t%WWl zREo9|nyrS89C~pTC$@(1Ctk!d9>*N37_l;#OJtMMxau03kTSxm=6&=y=3j=w8u7~T zs;aOtOWfwf3~Bm@gZ299NaeOw2X79&EnKs+xckiY=mbB2*f{(mFRm!@Ad$T4ga821 zkBOC%2Y1m@LxQ=6h9Gcs;|tul%Z&Abghg(@yoD6g^N9vqn@Xf!s^!d#uc82ENN;ed z0Sdrlv!4sIuY#wnU|3)Q!xWjWNSH69pIn|%X#Zo5L%X*_DL{1 zbGEDeQK#h4o0bkeUqE_u&b~>6D-KKcI=rdPo_{^yTG1eu@F=+o-#|6Wl4_WbD@8Y9 zxQJzq46+mLKlyNc-5w6t;31sDdS8PQS4xbg09Vb8%`)Jf0)6@HBuKD}{Yt+&2zIV@;z-0}#2;8~01X zP>wH7&YJ-D@(hVXBypDTCY8Y#4{!-IfZ_BUhd6EmrG*FPW+Kmb2t|!s4ib#yL!DL0 zEZJnMyk{V?Iw3JK3>^t=G4B}uKuEPT#s5F{-UH63+^PIWm^SO7*KF|OA|Nfp|g7LC< z=Dg>eDW7|%oS8Xu7p~zB)*i4^{G{izIXbCu3M8Yt`D~8vi+jSQSo*hLp`FBEMUiBr zQSe{At-7#1eLqDoWt3yGWrLp7-)>Jt4fH1uo+-1>!P+ZWVssLgDn|6R!?-O%fra~FMrF25io;}B&rQ#iOjpNt^9bHr#UL<~9i`fUUv6rKt z5~Dr6ltLHi5s7Ar6&SBC1K1$lU*8+w7jzRPT`oz$v!ZkHC}ufHrCp)HO$Z*GkzoOi zOOiIR@SvoG4-fX9dkhbTN}+~0@`3Y(Bv_4mXxMaI`n8~$M6Rw;aKPS+l>pdog7vOA*+>CYr|KqXyg!IR ztG9uUZ2J5KaPRkii*94#7V)+DGP7OIwh2CNDzq&m$43!}jr-P~4TtEbCE$M{VvwRN z**^xDpukFD?VQXd1&fEUYW+Z3bMq+NMX-Z}@taH*gR(JY{f9)tw)=_$z63W(gvIt zkX8!C?dk?pIt)%Y*3p*$JTb=IzPK&bSw6(fuMUSs(8Z8o{za@Y^LovQfY^5(dx!Gi z7`J9uu%&ME4g=6;*}^t&vkctHZVTJIc~dbXip@ri z5c)~-RwH{A)OSS4dRoMON46HWBsw|A57v$rY4*DSF zNihjy(enVy4jA^CIJnpuNEzesGG66NdivbVk{KjFv zC*gn>X&twDDZ~`vup(@AJzw&zwVCiM2jQ$Zp(^PE_(_Y?l_C)T#hZA#2r@t8*+^jx z>C6cdF>14&2e-bzN8V}blA>XWk08<@^umjU6woWFuvY=Sa213dC1%u8*ts`Su&n~P zC2u3h7=WXyJWhmLr4$nXdE^n`>Zi(;_cxI6p$hyMkNE#32eaW3cZI0|(qA_xAm#fw zLB}df!2Su^PjBAWWDRUrOlvT~WAb9-yB&>uJ!(R*XPM2*EOJtV2pnff_&VVYRr(MF zvF|y)&#+ugkoNi`p?ul!ZQswLqsB{rdRYAy;oV&wF#J7e{3gfpC=tKfz*ldBcG$zB z`xy2HnT=_|MN}6#TzO3H=ly6~*))q_2N@qT3!q&z%p%w^zh87Leh4p+Mas4g!NDx2 z&mCU_CCZ|TBJh)0$@F*Us226q(Qs+Y7VPBF-QxJF8RxbTi46x1n}=9hM8wj!bLYy* z^~!-a0VXx$;+w&dC`^tJFSZU66&ZP_pQ!3%+D{xpqq|v#XFtx!7dLOlGOXgUW;17g zUIxov=_)fasc>jpb$|jw4JdD}(i5{m78vTH`+H*MY+$dV)ebY4!EoMCmUhHx$;=o> zKCwvJvXLYAMrI~P;v6DlhesrN19cgOV;|DpNj8X(cIQlt!rpKA9^Ai7!6 zuNBYz^cn?PX;Ots&xaS*Xlb&a{_W+C?)G@&0gXW|(`1*W6y1xnZFJE7oejO+42I_~ zq(9aenz5T7gRRck^O5&mnzn3UU5?8L7K)}nNdY8IrYYhu(Tx0v{;pyxpTh5e_r&Z% zqpg)b57G2JkZQaQa1VV|i2rO6?xREr@T}RuS^s2x+J-873|~5q5C%Q{vs~4m~IEm5rmr z{hF@C#{3TftAY1uMPM%JBe5~BjAz_%xk`SqSNWw&e{MdBrWO@M8iW$JT*9)N8P$6a zy;WYpHjQd;E1&}5RM~wWrLkh4X~?ONPE``~o}s4{TcZ3vrSXA^jP#~T%MD~Y4SjkB zS<_wTN+{|8k4I?r6*hGcwOwdZznipQMwa&V@1~!75ix5^D(jsG=Aw!19E6T?I+?#a`RF8`E{75Y7-$$%= zwQ>|wlG@#MW0Pk7j(?%zF{PIsVm4p1Wy{u;-S-CCRXg-LT6EXn7WO;Ctx7hm4XP<^ zn7t!I`?8vra`pPvtL!dA?T_3ZHl|3`G-KqA*xDu@h_E;BoIaMwkDn+ia%~Q+n_e`A z8Mxn+DROPD^kGxE$?V#0vjH|QOILLP#OIi<{5|z+gY|gPCdTGP`?A_utG;b?=0*Fm zf&$l!asxlEZ@B1Y@O`}XLUsSaXIN|B%h^cv$Oz|et%&!}B-d|l&sXJ-T&kTqWpEEu zLL+-*w|^Sb>uGb`VVh?X+xaBh#go12QghL2qhqrJI_(N<)h`$11{+?u6%@l#h3gQ$^p&xF^5mw_&HvGPh3E!T91>unj*=P_^ ze>^y`*54H2eB{AbKc=FSW`(LE)Y=L-pRIA%)_f<)9m4EK%QOraArJ01adf0^CU){2 zF37iX5Wgc3BX7p=N-tcMu}N`w5mTjxe9wYS8It3Z2&$N}F>$x?nlU&Vc_#rfL}lPRhuaXZ zuW(iBGeM+I*v+yc)mVOtX7|x032i9p$c`pQO+d?D{3>6bpOP@2X!2=3L~+eBsfJ5~ zJ73RE+GaQmyXv_pdOD(!7a`vB0X%*48>QtoJN5YFuMGlj$$n9hWJ~ z@a2+3dBpTnD zV`x(6{yLUmr5Zd3AQALbFdi)?EGj1;Q1nF_ye^@q}Vrz(r2^b@}9Y(S{Hyu5E z5tvN846G?;QY=AJq@&v}vRUF;R`fU)!S+Np6@;ns8L=2yhAcn#%px(y6~slig2<*y zj9uJiMSE(WB}Xg|P!z6dsHPp+xyi0$w_>)(Yn#!*Ig8+aww;q^s@Vn1|1$Q|5le<| z2G&FgX-ip&Ma-$b3%C;m;lMDy(F$BAV(u|bK)jl(rJZ6t##%!s}}zypx7`Yop?s*sYsXGLlE zSz%09^!Q_=O5z{J;zgsAJ*_+`&Z@+9WBA2PoC!oblVZ1=UhIXn(Y4piUIi>+#xqnq z)kD7cfOF|;eDCYzeIEKBsDV**BF@|>pA>_(;FisGeYatlRkXq zV@i{qTct4@*(Wg@$B67{ZDq>+?1J}dvQ7(4~`Cw&0SLpS0Dg zgST3uyVzE&shS3anj5Yg$EZ7z=XR$~M*xgvUK@9w%jvs6&PQ@y28k7|+KpJukpR*4`n=6WEIz zo>-e!x^WQ?(eSlOg@js#)*e254-Rs#1=$0zHQ!S9-f*TX2r2sj(yBzH!lkk}WE$@j zT0R2Tm*IL~4$=uSTRAaY9y4rROw5es#vCQ|1@Q@lOih8iPA>9tEV3o^`e{c3gf!u> zdQ7D5w!X+gB58-;^MFh7FR(0MY!*k02P7U~1G+nnz^KWul7;a4ko_)RfN;Ii(~Xq=Sfx8fPkt=O_0 z{uLMFK%A7kHUst0sDce$B5NrcPMkO?=w;PJ#+l0V(0{cC@>Y_ItI}!lfhTu(tV#DA z!#3kD2~#@pZ=3)6_yg%7AtBTGbqka+j4qwipOW3BlF5ynr?Rd1#0LpQzKYZfE>U`%ObROVO5bTNnp4DHc z{ijc7EOd;OP!WI|sbZp|HT-hNxg}WX_)m$BrHRphEw*W-EDWFCufAXlJ@@{XYQVqO zH8{=9w2k)2zu_UKR$bvtNY_K={$10O{?@diPD~GN)3o^|aGyOV6R~33T+#DLz%~dM z*m^{37jV1)T8J>ZZG1t~FwxNxtaiM%?3a!Un8DgDB=GLYj_;EA$VDVSU7}(zI~yy+-}(3YvQFUOn9YGEgWS>P(yAu=T2T zUjpf*YnoO^g~dzi#E9Duu#9rH3bjB{NX`Gz19(zF z3fIP;P)lkc!MYqxfv6)|e034qoTzCXi|*1o3a?Y{Z7%lOu7`aB*Xu{M_zw$_*7rhi zj_7p7qBX4n{L`{hW4+`!q+>@Ggkdn2yadmtMm}mR7ZONAcA^ z!j)ix79TYC=mRV_Xq}xIA=UBd4$`*-X)s7==m&<~yZ1-!LT5nM8|i}3AO@FzxBM@n zwUzFG(=#w$`$1?vj41u$=~Bg~QgWvjElgER!Q^7PPvGC~E3e!gikp|U z&AAojV_W@Sl4I;R!+yoD!M4%QlC!ZR6WT{o%x4)MnHVR9$OwD~ugW1bvF8e9BNEXC z2ID(gU!*e%TkrZsUT$XlX04oy9hp#RAlQ+KU*$Ez>hV{(M0R9CQID@aILc#IukpnLS*MNHJ;HdJ&CY=&AP5v5^Z0v*Z2(kO}?+0yD6FbG@ z?}#tGLZjukAJ5bK>If}rXrF&9idyrKvz2^n+UK62 z%~!C?Vw}zHuu)8JtK}DB@Z#B4uZXkUcJZmv8$Kw<4fb`uI*(S!$PB9!b4{g4sTo7} zuN)_3^tpjs2d{x-I*r<%ty`PrCU@@$12>jjcFgz7srv=(J;RvmrtvMaTb=E9D21Qp zp1i;)KE!VoU8=L&{>-P3W{z5a_1N{aS;cH*-RrdwFEd5Aj90fAXlHaUXXBZkhyMp_ zpxT^0u0JKC&_?YC?8Nl~;W`G)N{QQy&Ky5cB_*#i^6AN_iZ91y`i0*Ri5>5S`u#l| zR0NM5!4A}!t_AH~4y%eM8%E~DYeH{B7zdGnNLa&YjR5xY7^(d|auI^tM{u4ib%o<$ zzn2uzcW-~CfL;uTJ5J4$CnD;SMtMRGpYKsf7A8kVjNE@J%?%JdWCZygg4}_^Hz8t( zw3Q&f7XWs-BRV~Pxc1WANpgn}>+cTyBRpkcpV;CWIV*Zuiz~0lBA*QMV z!ztxL1%xZqw-rz>9AWiQVAVBE#YU!S+GGV=QQVUkhzI!FO7N+Go0@V|3x&QSxKu-< zH_dV6rWF-Hv|muB8=C?Pn*__EmChaHBE)p~R(r_t)y8{3J59<+Y)pC!7>RJfx+qxd zJva)4cYBGRRR67-7Qu13cAZb5V?)JsW?NlA7kj`_0Q3E+T z9eU7LUK!=~qc$@0-Lew2d}!u=Jdp-TqDr;all1X5lVQP^N7MP{wO$PTLEi22b1qUo z`KF&kY{^@&+0UzuPP+)N*)iXh2$=-$5GU3I+;Vb%1NR+c=_YVN=gL*~gDa5c{9KyA zU5s1yCsZK;-s$FWRd68199y}d104`5g*RMhEQ_bYEXi#tIK>TXOZt8x!CsAndlm5@ z1o;(s-RX;WVVyBmxzG2Txi-LM<7NLOEs`5EHL;F%)=Elk!DaK+Oj!0o!GZo~z~*+}td)sn7=w;SOeOo2m(wF(5^6(?B~V zD5M7@X>hPZwP?_K@N7lVEKDM*>>fgd(AwdkC=uf~NtA4h?HqRyxvIr#;q7>lct;#| zVbyTOqpJupN|RVk8!m_HqJnq0d>(+=crr}R^-ZjnF3ARq+#EH$3grW4DzSpa2))3Toc`xF%%{2H%fP8$lo+mle`>%qjaajYa#p9PMv2zop#&7MJk|)sN|{s z1?IuQW#5$Wq{MvKL!Z!-FQyL|o#69O)-^CaOurph5-C8x2DZBdVK>qqlV4+ts|&7U z0o}va%h)v;0Tp12)M`H@y{&ls^8-qs_YZufU^t&^GqX)`gntDQs&_#j zE@_&mQwR#hZu-i?8xm|&nx?I*>RU8jORdhQ7oo-cjI?hs1`m8&miiupvl^JFr}2Y}kR(@?F-> ziu;IO9AOp}MX$)l>x;3eZ!9?NDPS z@T8-PZ!^FRsXheL*$ajmRF))SiWvf_m!QU)Y%|Az7Muy_ENJE#8hk+`}3!) z27J+|9~~h>NR{nClai#SzS>4+9vNC87$lu_OBy>A#RWqNL1^0tv0o!`CH+uxQW5Gomp)R>zd^%H5A zs9g|>5J(QN4ZzU6Is9!Io_T z{Y3$h4)k820?WCRI=@&&ynhI}pR1HAC-qXHyaEfjjrTOKl>WT^nPDzGxn;GNHVG3n zptq)81=`d`)V+S&(jb0v-ds0e1Fx1M-O;i`W8$-(f~Z}5`TXXbr0j0U7$RRusC=HP zM#P^*;;@HnK#go=8=)W7bGP`m%obTk>4Wtj0bRt+R0$~=4)o6|B*$hdo)0e#@Eyxw zYXK`-(5qA_R^;qKlm^&RBIK*2NVE6N4|J8Yp;$%fH5NHrqrYgF6Cy3+Y0BcBJ$r7z zb652p5;5?J{^Q`Ei(P~o^X`hqX#p<(C^izjn16bBn=4qA#l}ezTS!LaLVIL(k_@bB zti}yoJP8DbYf8hntpSF6Vmf@xc#*7O#Yn!pmD{NGZ55{K(IJin+-quec_`OkuJkpG zSl}`wz2-!FYx*u7@0M)AG1jS8-E0(X3U2lM4K&9z0oNK26kyhrLaOB&&TVGdscC*B zaFvGpHTpc{HnZ$vn@zD^KJl)Pn>L(TK|aJZ?KiexgR30GcI`Z^k8lpxaI%pZ#=u9z zy(7Zg>)UKH8x+lbzF&i@wEw$c-WqeFUH3o4L5JYpM3o40;+voSS5)^vaE+VdY_0}Q zD<4NfjW5J&;=af2bMV8DL3p3^?i|k4I%Xm?&u4RNy0}AYFG8vBPC(=HhlPnM!%VkZ zpP1Oh=3n;+4YwNZ0GA#bU`1=I(fh{0-B_?DAa33s02|7Z#@hlWzydc>_xOI71{-lE z>Xm~u=XY=|goGt#x7U-yI>fszy84}QULE0+Zklh!EX@LEQ;!<}KQ+>?ie^g|Ihy)2 zu-oXoUVnm+b1@+lu1_jcX593!Ot?Sa!9@rjU^iUq628KS*9sll*|@B;)Xzg%) z1I|&l?4B6s96jHk8Czzq*t%s4Gdp9ma*YhRQ1yw9X?xIJ&tprX5N^tYjEIOE-+ns| zEhYD{K~*0kbgYd|DF(3K29Xx{Mt3qtGTzzq*C3W`Q?6gkv4yk z!*DsTEo}D=0~llv+x&%Y(;K#+!;8i2#M~*7wN+|HN>uN7U6{p0Prx>Vf@o43{PV?hAty z7CAsS5)JVZ#(|g63=y7LOO{}0=Nd}omttK~Ao>05h#eI8UXKB$aeYblI^kgWN_kvh z7qL9QX)r!N3R?%!O*xr$@%#G%X*I)zvcD1vFqcKgu@7G_*uibpn_}#&`1yM(z*0RG zH2C3cBnUxF|FjxD0%P}(9#Q`@S_9nuSEkAOXoxG~A?v;wSX&!%qLCg*dB{P!Oa#zL zW`?MeV(w%$AAt=GhcIZUgi8|l=_U07mtt9m)J}9N0qvEr8jsHNKa+{)#zAj&dt95J z-2-O}I=uJ+?sE`4fw}2gn7!lhAS4h6%U{~UHm^hLYNIo+L+k3q*oBJRINu#1iwhN7 zs4r9`1J%Vwt*g1*>`uh(!4s%)ue(EbPwo|1Y(+~p1(m9s6^bXk7VxkFB8dH)R6+LY z_%HcKQhNE@K)Em7`=zK?Sp6Dk#q`@T)T{s@LhYYV`405@NF8k?kwh-*gSXm(AAb&x*nN4(415TZDN)k0gd@aa)>L zv2D)^Bj&;rMayD~_KbUL517rVXIO>!H3%Ai{YC~3nw-_MaChnH`1?Uz%+;~=>_0so zrA#~Y!u{|WU-y*sDtqYACJ@Z@@OdK)R_u8SV4a7~eBIc^58%Z7+wFi`TSHq^P#C;BjrB6RUC`60u*%^-{r6aL4%>mAkJcvn8UAwT{Ex ziVij()QFZRxdujNCTWozvOibw5|gNrQGR_bIK_HY>6p#-sqK0yIbYDk);X~f_u;q&4Fu;vriy!Y zJaAtsH`qdK?aM`r7VUNQk(N2Z*@)yt6|TNOt-)DGXT-9QcP_({_Rp;>G%jWipZdox zdR8%(^x2B7?wBj_@w0_WX#An23UUk!SiA=NbTv`0t1hCuE0behI>{+%SBFlAlLq6Bt<9KhL*Hi)3|E8|jG(kd=BHSXxA&H{cJXKK$I zwz9K4_x~4apk%Mr@F6c}1UB-%4QC~?R+-1(YPW7@jHYX)fSFAi@;SQzjCcTl^00aB zN4wyhu$!#cG=pMwq#fvnV%db>+hXi= zRarJG%G3Vz=`abd%R1fiofh1|0dc4>&nsVRY!U)^+gnSaa`qtk&a5sE=}ZA4ZD-7A zDvm3 z%%j_KDKOt~ibG7f!=lO7QCVdFd$gULiIDO%-b;loRF^H^9jdJ40UrH?O7cI2?mY#5 zDyqoL2;4r9tY{&ZYr96m;(=8qtc7B=Z;GIW#n?q6_?LFO1j&J*_6ZOAxnLus1wMcX z9-9QF>C4?(a%U&lGQ~Q=fWC814EJR8GAVm33092W`Z;brgfjx?_~5*40omo;){Tdj z`&c5-oUDTnw_LcPtgtF-zCI5Vzq0GBSZx@M3ft##+aq50?bZ%5#Zt*h;yw?w@BtTg z?%avHTpjmz>3jwH8FQzYWwkhoELdjp?PqtNM`^r3N99VvWBY*B5v>#&$952Gfvm6< zS@7Y2SSb^+$Og7F?A{-6#PpG!VDn>M{v)h3c1Wvja_rt>_fTj#JH_T_wksCruo3KD z+&m$iK(+A0Szw)0fF6*qK@f5Xr(|m_DcrLHYGbvvO*yI={ElKdw#qT`@%^NaBx)-~ z?5BXt3<054jVWb|i=8prSuj-)hsIRr1`TDSwc9&)oH8QZ9`3A(X0d&-H?CG~IkO9t z{UXOwySoWc6G-Nv}ti+!7c4<3A;qLTMtKbX1mPQ zS!->s9`__xnP8mb{A7l;)hEXLzjiJ&1Yg3Q9kY>i4h@=cBYHp2P& zj+s^GBvyut`g+bQPLYJP`ANIoH;*Ip&wAj+`P%LIo#d}pDct=}Y38wG$A*goSFZ(M zuDNlG*)4+P39`9^cZ(KdA0xl2;puphhRYk?z{yYOgDSFLCR?}LI2(CI231{#Y3((? zLT7~539KAXj(#pS1|)_)JavlgSU=UpF?L}RYSh6=Z(uLnM=d#0VI+~QQg9-bovt$A z5h?Vh;gkFwo+KE2^2F*#k9q=@uVV+@*FlCYW+T=jBf@cEM{tWz)PFDNAzo+$-0!Txo4E(%69hixgc{S#0_Hn;!j~&+mn4(WpHluE?Pg*ADFU|7!U_mj z-b&3ltCL1 z?fEa7AVz80>eY8Cy~%&l@vLOx9?(&_P_a$R;Up_Q_BF|PeSyxzn@E~Iq4-x;pDL;J>v@0`n zya3_VEq`Ox+@Ic90zD-pylNxNT@>fEtlGV(+m9<)pxeU;cntc-64sAz#W0^k;eKh3 zWCd%)X9_>5g)P(WSzi8G=&JTNPqV^!=-QcU3&7_HYx`gBPQSplp7!se&^=9m@qD|m z>q|6kkBu!r)3FL{#p7J>1_x7{dq4xLa1T#kzlZXM+Rb_duq#e|&sf*MY_?wqgM7_M z7tJhVmqdG65gYEtxU%NIs_i4b!>6)pd;O5+9PHyt$F|%oZ;ki6QYYJshxfef)8NRu zR;}0J?Mcl%`8Rxp4g!`9wB2i+QyCrg?>RMG+c!+!qVbZRhyMp_AaB8fohMJ8+`piE zSik5O<_6&ZNNY&pR>nqHlGrl~Yx0Z*v?19G!4PhTo_8&-s$ zXnG^d&pj)~$Yu^kq+Txi1sB~NJVL3rJHUAmlh5!l9%A2d(cQuKDed46a2}rm1+sCZ ze`av#L8>sqUStPg+ml#P%(q`J3iS6bgbo>cWfTYZLY|)3+5sA|JMF{`q1I=#t^pJJmX~Q=l)&KtpE=Nlvn8>$abS1 z)L8TdoPNv@5e=x(DiQ*+>B9o;^q^69KzmI{jgT&A%h!b$1xO&&X8o>3&6oV>(#X#k zvC(ciNM7W3aKAUC)|7$WQsHc`|o2z+n5j7xE` z3+T^-hiP3#%8uK41bxV1`ZB|60fe%r!yTsVt1EE@k6JqDEO40KXqkUv1a3Lvw8@B7 z&^x$|WHXhNuXs>Y)Zu)&FJ;sdWSWG+a76`?!f=zHJhf^h+ScR-6fOQdV{k_gjo<-u|r29R24dU%x zat8p<76_lY_G?62r^C;-L6X<`bdMfs0tHV1vk+|BfMvNE57(_s>CbZz?4GHM*e>^= zL&Rpe<%rmD8_$c+*G`qi%U*$q6*-oc#{ zWG{gra|wy~=Z`ve2-}X{`l%M63FGS6YRH}H)9>j3F6S)GR^&MvsIU_8YU~A^$Eo-b z`!$Cx3A-1uQ1{zy2hfjLwD9qnaq!Nw@mzFw@a-%xl&R!<0ndY~rklu@Rr!=yp&M#G zl0{uJOgY#`Y__|!oM)T{S3F;k6ZF9muWBwsUYFce;ADT6LQGWyFn#(*0b;3_>8cv0 zx>*0dLmh>8FvMwVXEbQA_AXOvL^pEqeyW|)!-ZZ9!h@u7we4X06`qf0U@9b3w}W>7 zM=9``J?!vLhO31f1Y5u##QjokI6=1Cp=3!NA1+=bTH#n|=+X9wHW#q=k668A%qxML zRoA-Z8=h{clB%%6g(|Q!LVDeFmDC4lgb=hDJfESidL1u}*7yx8xx+KsvFLLp7^&^r zTAFy_jmWN4QAxN^`?=vZ%?K1$nkLM*_PNUR0lAa}--pNE_M|B_8a$r~Xk?nt1J3?uYSX9b8m*jm;qpstyX*O)T z8q0r$yX()!Hxc3k9qBo+CCtLwWD+$k|`_*&y<_eh#P+bSxR1&JTuL(o`I}6kPDxby#KR(fud&2JoF! zn443;7DG&3@+k+&C}VA%S1m93K}-_L#S8pt_l`Gw47GbN3-|8TrG;nsCZx49!*o;-VL`lbfH zIfg)tMRGqk(>+yLpjfb8-J*4?<=`QKH@VcfnIvYkH|1I zuF-&{D94OURglQE^8FFLk85vo_YplO2ar0E{-MHhU8F-*7-nUV3M(E(-D7Z7oPRcb z5;YoaNiHYj*_M+MI+CVjVk43{Z%9QE?uHgrIU{5Dl?h)M6yKlVUgg@Q$F<2MymfFT+7vN8;f&T%n1lommPxqLMDFcA-xW^5# z-T5HF+#?eS7HCP4U?Z}?Hk$3bPZP-OYsF*FD!6(OWPslS+_FQ2{ER-o%!XDcoh(bVDM*MWdPbzS#MQ&1^%{S14XW9gVJ2N6Niu=1X~xLIynLz zJOQV#Mf!0cC&d$b6RyAL2|0auN!2bV#S=nI@onN=jGTQ|4;LYy0lZ-k+x=+qNQE_u zgA1yb4mAab>|*SG#9|aLB+6oh}TX|`J)ZlCa*RY{BejCq5I zvUmmh??%NNj1gE3A^q`(fK7@Sckxkou@x-uNzUPGb{oMw4w5H;cP~ISPtfVZl?!3B zv^&N=jxlGugI;Ecv~6 z$!=_$?OMs18EnK?bT(dYe}^^Ob~VyWxcf4K!*t2`$G-c#b1)?QaujWz>n^yYLt{|d z$`-*^W zI(@Z;t(B+Un?h@A#%61G$(y+5TmA+7*4ROop;ERb^RyMscn)%1u?UoZUj})Up8Qc~ zvVtB^@}2giCv4?3x5XmwAPSZQ^XcIm1o{S28-AKzF}`KC_18vc-nT%z^V^_7gV@&J z4ID;RB;vMM)Dq+0Ar(QJmEi<7GG=Ys}Jg)LE_Y$V}{wyrNR!PG z8@1C>iH^XiCyt;auxzO#Xb)7#Vr#*2<(&yBNEFEBt5=+Wi$XK-mKR3QJWJ z^n!PFJAhsL^bvpAH)*7A$3tk}fX3?jDSLAJpj)YX@bK!TpELT}>C7Jk?doT4V;w<^ zu;dmKSAu*!M2{tCBx9l(9bM(*>W0VjHzxfxJ&^6Y^eP^z;fsM!bWbJAmXs~RcaYJq zHqJoqgE^(KVZKWM(yv`l*Tzd0RJ}h40eCQ5d9u(Z=ehTPrUqKMZq1p~RQ@rPy~Cz> z>1ZQs=gzmK&0MS=U`i_NmzchI1fcvXig=S{c^Y3=cLL%M7%%%Z%Oq29AF zLB1`Bv3-^Sf6F^TG&KOR0W6Nhj3421{OgqWy_9I zY?xsfltvi4c%7+M`)0{KG&a-7Nqrv5vIeqMn}JKQd!*yw7Bu7GZ+}T|Om6u2FtXIA zl18%lKO6ezF)xd+|!#!-_PhU z0V6}{t(v}dH_>yFUd4Ys+LXaB;s=opSH?Q8JijW2z1?zGA~ske(un&CJuYWLYV$0x zF_Mh{mY{RAkLBf`B_H46I%!Xg%9K-gcp#D$77!kc~nbu48IP z(0-PHziSY+b}ixyg+kO$(SmR^Tk)!<;n3FUN}gz^6H4B(8TD{RA!H;@gL#@2?xs1^ z>=s#nW`*G$)m>|;y zhHGhiq*NG+_Y0YZFU$yI@jeDq$J~k4sXZ_2G;2y+fysn@wglH{Qw<5DAHn@PTOFqy z)&qMl{VQF=_2LSow!<#vEKOVY{;YE-?>=jl!tEy~{5R-%ha*3hX0l5+u)q1agIFFq zDm5F7VQ~AmE0X3Gj%>OK(ei@F>%bDkN=iR9eFhkuxkPJ}v9V9EhiyAgCPo*n5bxJ7S zF@`&hy7T25r`!0{!eg;18BoBE`VU02pgRV%Y86;@02(WGw4Xh+8-uN}LV0TDDFu3UsB%XzFxaB%RVD!PQ_+Pe-(brZ2%F6!PbGf zs)rDp?no|J8*YYsBX+i}9Xt>ExU4QNZm=IJnd!VNH(q~JF>+8-UZX;qXmIfbMXgnQ0^H|pi}*8W zYivP>7qLeUf-NvA3yiE%^Vvi^JKp}Tlk;Nd%{w@+S9L+{Jx$k&>VJ#|(N--!RlhV` zCTOi~bh~%31`llmXb)6ycyu~Mzv&@(d|%$jy+0#Gt{lBL-pPQ>p&~-?NDOn@>aNc2 zM;BUTYg!uHq6?{8>SgyN)`TM0){oUi%huic#U`)MoqNd5P=SdQj)Emf z&3jpb{QjvV=qykpIbr04 zhkzU9M2zgmHzHzk;dB}1^WCB`xb7##%v7?#+G#SG245o$nwk=XM}LWRDJv58a``O3 z@JyE;x;CPvqbVU-JHb%2ZKMBIfJq|DEua7tifMj7KzF_ZqYBv^%IVd=--UH~!-&+y@l zVjr}S@ad$$#7FW52GKVBVQrg`HuSnJJrN42GI1O;A?#K0K=}qw>GM}3?9Ou0Lcj>*{4jv4& zr}Pzkyho}2?mJ+_uq|tulKQHcoQ}N_AN`ht!w59ZM84Gu1E&XRP+RSH2^W&y#M0ff zrvF@&f?<^E9S=um!JN1wNQIS0nU@13Oi22bj=!q7HKK)<;y(c58p;^kGsA=1=pi|_ zF*^yon(>hY#5x;LgnS}hIxKSst(zyOyCj`4s?mR8*Iq}kAL=P}-Mg=M9h3Y@-KV>l zJLVFx>8@kzr*}uX2$AkCbv<>L$g*O0cL{nd3ql+7Zm-~3pCuL$(7pTg?kuak>+TA3 zxx&`3cZEqnM3|Zz#- z*YKE2NG}Xa-W|)1j$^|@ug8jE&V5h3n9JuBdkyTv76KQbS4^5TsU<%GZ8u=Rl^ZuE z?oY#U;C8@DakomnmuFcpAJaR|7pJRGw|PITK10_VKsxXka(E8;;^Z%s+$wShB=D!l~AE z=~?E|gAp?wpR49xZ!-5O9zzBmGs8vD;>>6{Rtur)Ii*K>KGBe2&paUx@7|%WS)&>_s~!Q{=st3=jKmh==`5@#A*IbzeVV z6@x~M-f#oxc}Wla0MHxnIF5zA!hV4Pc*>N;LCZ)EMn=O!!o%3}HGDDH)8<~p6Q+8L zCBa6cIU~KD^EnR3oMkK(iig+?F^2$*j9XHhP`bqQA9njp!jE8?OGTN^y!ak~c=N3l z@-hb8Rw_}WIo?W1f35?=)IZ79HOesf?12%hfg!JMc!WB#tcT8g>(O#lrSjb`;BOT5 zx)UPE7atRa=Z|1d6AmI@BLg~`*h>7=a|9uBa$IX?W$_Z8hyTCTKuLVblBRsxzBoEI z%JQ`}^#ywEx^J$FYB!e;sL-&yLuO#79Y5~ClV#{2PE>tk+*hh~Sca?SJsfPdz(a^| zigaTY{se8JJLK@>TBK>#yYB!n@S~>P4&;eO7?;U4W8GWCqwp%A>>?Q{xq@8ECKQ*Z zf0lO~q|hEMwS`n5Awx9neFan$cVHI6ITO>|YcdTP zi;fq%j8(BkX}>Gl>#RyvTT`FC3Q?av?E=br%<>fJAa!c0a{XiJ^&4%QB*|Q-kgLJF zGJpn2urokI;m=JS#bKe>rp(_8<*_cCcCwBGkn47F4E03)LfnN7iWh?PNArCCod&J# zBpz-lpGMEEe#FKMiCvx9Afy8$!_`HLb^%o2z{%8=9#oAHFAI09tcFXqjOb%vR}Lp* zo{meF)n78 zUW|5`D+(e>!_?I1c$%@JmsD9oS?1d_RrrfJIcXZ#JrRWd)s z%PCdZzlL6H8{I8-0DAUI2GeB8Dl@}MT!bC84pL9t+%n-^!y zX%E{A;B>kJr+&D?C$^EV(8S6ZzZqn_EwquV49kPNWcN_%_hr>Rnjy~J*_~K>NZrHO zfk?)~?b&H;T%Z0!$RrZ_--!CN{|3n+Xe;t=wR)zm!c;C}?MI_53Bt3#D_Wpggno3M zCZq#1?U7C{$9hsaU6EkOW-58fC4l&R&G(ITkqaw z{l&7mr8HG)i_vr_B)Q}9o++@5C%MDN=p?tF_dJ9T8>_n1hgo!1W0Hb+QBO~J*F!@M z>9d4>#Fc7Zf;stX1%L4!$OFrM{5%-Jv9-xaH9w%ceBa`845k{fYbHI!e!}ho0a_X1 zWx_(ac2tBxL}7tw5WG{=)7(lD~)XssO=+a2sfuetra zXS>=8ROtk&(rl1X^t`HbAY17gJ{2qcV$AuPmY;wAkl36j{R_jN;+d?)A3K{*vlyS_ zSs|PrZxKtCy-%t!ZNAq~088oX3xDC?*akfKn~v2QgO4TLc%$w^O*^%Gxqm(uh3j+{ zBB>F|(lJisdPmdNFj3jM#cP}vu@{=ntYKsUjci8f>LfEqxsdR?d3vFpDcyt!TD-Yq z`N=l8_L4h5$V$8p(h4?t;z;l1+nRR8z_R7Tvvu~DqcJ97RxvBX9-Jw;od;`zT#0YH z0rb?xGHu0Y!Cp@g8f=I3ygZ&TVFIeZ#oq|mEOZB2O0V2bHsTd@%fPnP=MWYw{jGNV z!w)}t273qZg5RMXuMHI?l~Mxle`D@WWf9z9KnRMh=Xa+Lcii&TJd7cksrj=8sj?hn z$>hf2_lO)~f=J2H4NvxGmqNKGp~N8W<1%8lKdxu>kHL~6Zqp(Bld(n6i4<9}dGlr* zLZeF%Kqfk%!>`Pob7EClj$V4B2-{S(OomPPfMmmqd)7;^nhTIvRgP^LiB+&hdN`?c zAKgTas{RqP`4(nHuQG8mM}0LN!A_g?WLe4M>jE^*v5*{LF{5RKTa zL#x-I*&_gFA^gw4?WU|#EZS%kzoDsCazp9aU*uvmMv=~L;6qSAs)9Ud42j}9e(6qGm%;UtR8q1tD9db zYJe4ui(I&W6pryL+XNSA14#{hPlH6o2V#{6M&acxd}^3w#O_5x%5>)oZq(*YAqY^!rA-*_jfW?F?%#{W9AM=@OC1R@6C}o;3shdGvDlGd7dQIrx zOd&p0xMI>RejueC+yTymbB-*q80D|PiFs;+V{533wyG?T<@wm8yt=C|kA1n$q^uK; zR_D54V)>pV@-oMobM0(PX)O0CeVaxfRA55ckr_@8-|8fd(RHQ6L#R1>_GBo?lvyvF ze&(SXzUd}5MPdqnhU*SypSO#;u9Qob=~K5;DeIVab$fBztbXdUQlE zJ;9aEl##V6K%+|>-GL2;*dk*?Wu~F zPGg7q2ro^nD~^)yLinhHJ#g3Ql~|)Y_ptS(2~`NGwUlg!q%t0|?z8sj^iOjy54&Sj zaHX*CwKJvT-89Sd3WcyY`%H_J+_Q}4v{}!Oe=bV2s)YujVH|qDW-d#T;DX3nQ-<+qyd_M>V&;~|d^$0-Ti%tq zO8PaaJmwa&UgZ0~#_$lGGQF&@dT>Lj26SiY>GTBOtEehiN2)q@Ovo2hY0!~er#Drj z;R4|@OZa*Q@=wJ}6Whr1QanVXx8IUuB=3EtOwtite=FF?CZJOkn9os~*+PL;!__JU zL=gMpKf$mWkgTW~k``sL(+{yhs`L<3<|QkvQC1etREa$$^g>@8z;W_GNojod-^B(m znc4mEvRZF5+RNA!CeH6sa6&>+-xcwd?aX-pa%PVJLb6XvYjy(GItD7$5@C@Z_dV8< z*0i$`d>=kwgyz_F@CS-MPtZ3|lt)!Ay6O%-++7ilL$+^mAKl!NdENb;5vSZ;IPof; zPlE5AJbI|f1629LxXMyp!dPSyHah5R-a*NTeJT-%dtyUj^H6vwou{>j8@2L=$n9>7 zW&8h%Wh4lSQA}lozBh0icOKhFzQEOI2A8@LsbcGU)7k+lGM2(i zpcP9_g?9op@NoDzI*_B_zQr{AYdfxmjqpUweZkz{;8(W~s{HXjF3(R@9gMA=IW{8w zW4TAd~wf7-=*>{}%54hf~V{KONaklTGbSgyGB=t7L&Bjmmtz_p? z*r%D0xNg|+k$!&ftxJq+?QP{me|~5T!?1jJR@wv_af*Kvj{wYnL$zq(5cRYLX3(CF zm&jJWBB$ZK*KA?Ccc}WXFIuBMZI5dA7ZEPS^`Ll2SkX%t*@z8~0xO)=!D+uM>a(PH z09v_Djt8JU`Qm(8TsBLrT>90nEquUNjN{#1HfnHr#~>W_+uS&oUY8J{SMWbXTT>!E z#yIUx;T4H^hji}TweYH$4K_AX2RX1t3o}~jE6(+1Tq`yYLKhhnr5$jVwbDUMhowcM zW(YrV?E~yEd(`}%&+1^`Ud8`CfBmbXtcr8k0utVw5F%iGlM+iX;%nl$Pwx==tscK6 z75IA4I{`Y@UeK203ZY-=5Lre?8XouGVKmI>{a#FuE$*i39=~hW)}6QLHSV?EK+WCG zIj&Ipu9FY9CPlCLtP$>#J4BN|bYewM-~jUcq%Q&k$J3Keh>)^Z5)swiSRO+g6K}ln z#_VNd?$J&nW>CCoR6Z5fSUm|Mef~pCW#g0OVP_UH7bt9ls`CE7LvNcNXS`67W~A z**>mgk=)OrGz9g!Uah~QUkep5lpPM}e1^Th!iZuhel8tSXwtG!`i@(e=|QY!dK`Y3 zZ_yzl_QTaDy^uPIdIoN8K4WRnJ2g%inh&Kk@de`D>2N|*UL+}XmtOnot5r1dbpgV; zk^cE5^p!xQ)S3sYR*kAEgPzmmHBc7sz;P;5J@J;}M)*s@o1)|0*tUA}HXILw;TsMi zM>ON+8Xm%%Xb07Z)G{Xu0ABQ#7(qytwJw+f7v=I=!7OG2L6^zNXzC)pKW@Hiw6B z4G2N@BVLpZvI~5b0NU-zLVb#2o+-+UJr+kq&XN?_@71li`~`UGUT|njfI|4D0UaHR zB_moVT;};q@%7b62H96)FviH%g3Y8qg<$qVNFA;_vH3&I<$tsl@qRS6;;rZuJme5P z%v_9cN9w1qN%ft!XgyH2;$?Ttpg?djq~t&BinasjuRt>=;^G-PYjsf%7=I>zX9gsg zJ6aZ4{=eBo~;(q;CF>)$rX8Dx5QT?_Q$h*U&zTb7NhjH z4tiC-$U~$^8m%G_Ey75;)ba|?{=%HX6QwOZsr=<~QCfS!qeo{(uy>nth$YhNr+3lO zUL1l(_HcwUE+@$mB95{G^V9SdzBqFGBVC^wJ9s}x*EfH7OX|#u=S{gI*%pA$#xyp+ zEok?8?W3RA!yfa!%SM_NdtCL4ia+^HH(`C7uGlkU*zD(ESvm;U_l!=pdF zEGcE*U-8CnbQ#9<*dC)yM(D>MfAUtVzv&G-S@(ODH0F!H()9vn5?W=X$ag!io!u$( z>!qVKPSDwq`VZIDM*(l|pb0Mt zNt*pk;e~X+6SECHs?z&T%(e_8V4j${r_=48kkdDqKC0}bSfQL_($YV+0_M}JU~ZDL zV9igq(6HVdM7q*jJ5j@+B~K6JAyQx}4LNmdH7ory=~~W44*XO*{c4eNvTNt%7evWKBvOh9K{n1g5Nv=&Ue6h`45}zO& zGJc3tgZw9qH5hwz=8vgKUN{1Kaj{Z#qr;9rPTMZumXQB2-0CW_JVTVJ^o+E$FOG|S zq|q1=%NsN|meRBBYIYN`!Zc&wlzNJ{j2;&mEXq+=Im;_NSI`Cm%_6Lzv)UiHd2E=Z z6Cf*CCvfou)d%1fgZV@(q#vm-D<4_uI?GD1EUgX4gux1*>CHfUbz4sG1|g9TO+PbY zc~K9|$ojN>g49;V?*kF9PtzrpT{#8o3@05smXD1&>wzwB@AhL!|F>( z^WEiZ#VsMn-*8Pednl8IrKDeITyD1zr>EQ#^!Ap0leOBgQbzUJB{(Tegq1)|U1E`WY4h zHzP%aDWVY;1qhlb7m6~zh$#H^$&wa-7+{j3Onea*ca+a3`RX`9(&n@H?dN|Fi-@q2 zCd*;;z+gafcnC#c>Hvh_FkrC^K$shtHJEWi`ap`Yp}1wY{D;1^2g6A@A&^iL;vdsUR|2KUhWy0CBe7!V6+pl{#hW)Nv2?kUM(R(KH?Uzo(aX zkV1W)VncPK?JE<`>bf-l02}e*r#*pnXSOc!+J{2W`Qv`CZxK4`(U#TqY^i6uhsjK? zmb%{2C17Kj#^k<&p{1VTrZ&BegVcU2R5#tt)KNiuQ@^Ls8SCihbCWuE^=)o1iT@XL z*2p{hS#|emdYrBwuc8opO!CZuW^nnaueS<*VtGpP;T1q4fh*U(ix zlZy8fJHn zN>ppe`65`ub?@R3PBnwKkb9+II6Ks-P$VvR8zuNi$OKGXBX)la)ug;T0NijJO7g<+ zf^Cy!nY3Ma05}xi@)RP?r6=QaeSwp?)pc;*+04%=MEp9o^gXXH{gRPoJnlxSalOEm3c;iJb>X*fWec^!3TuWN}lL0sl4>#zv4+0;s+NI?O;D|QVhAaD=T1Gt=KdW)ce;rtWeo1n z@i4pf3I%PxdHH9N#1#MZ`Ey;68(!zKM_QQmh0d;7e;^34LdKEnH| z9Mc-d8%y1%Kcjm6m59N4+Cu|=*Kad!IfrJ@OSRd?zo3GV^4g1fcd$ot`RlLYxTr%V zoWPi^Haq}{v!JmpWt5h*&>>2;3Ep=YqE39-P^Bdybar}3-vsUm^z66P{5R!Vxb7AV zUw>ej5wV%Frr%blSCUw6LcWTi2lcboclfa=#H7V{b~Z-U@0F++I$9vHKQ3R*nGwe z&$`Qs`{Spb1Ldyj&25Kdfvv}$7@WHJ7?bh~oqv~nfgR$W@2~8Y%ViZw`)81fv>yK> zoi%=Z?GTqHSs|7!kjF*xN7_oModk>LcP&|h7(Fd&IW?DRGhPLKq2&AH5~y}a^p;y{ zxt&ta(fje5=85%u2o~Xu75CA@VqBagU8P!Q$Az{6?acKLA+hvNUaZ2&YjAl5G@N)9 zo@U+5j!x2y(o=6$i1$r_{YP-dJYSo4xyp9X4yUoBf*_9jO(l+rS!w-2(_pOYiZF;f zUR&*tOqDR7_X`kQaI^%W;ypo`^4%CO%wCVzt}F!un^R*_skTfQ9EJR2@AdG6^3T+* z%cl+EU3;}guaA3Mq+&3SirH@{(W>OWL{C-w=KFiE*wIpc zI_%xK`@Rfz*4XapB4aPQFRAQIwKoj@$uwEgiGH;A;FLK_`wPC-OmMa(h0+8;uo>I} zZZlKuBijxZ30u!&(DFG>AKl~KXIZmnxavQY0HWo^?9<~E4yxcsxT*y=h3!Rsd zBqRa9vYgDHyiu-2E|7*XfEBKH-nbZr4-fJsZNr8Qr=iN4Rh|dX-k*ID8r|`V@ToAi z>@V+w`)I}%ad$^#UmiJk&cV9xX?3b=?trzSmz8~zR`K+BxsmpXWxRaFSh^+`sjOT@ z)={Uw)&l0%9mT#a%9ox7r+;1So~F-pV}t~kS`T{i+9G^NjvX(Wz9e@;4LIaJopg^1 z#nzS!hr?eQCfrwrSB@ch^=_!X~+n&9Sm3R$$!KOHtXK6!lz~N{P z$+kU9S9xP>#bIOphRy9*vMxz!NOGMQyY&`agC>NprRwV+vf+HqZEUx z*;zn;D6_l$AHXy~oyZVh2no5S&e4!-%kbS>A&AdWe`X764-sY5kGlBkJ-cR|tHX)Pg3$7#=xNgh=^;c|w_>k_$HK8TWD6ltlwsCrq z>P&$G^ac#>j!B#DZr(|bv-*~+aZ2Z@! z4arK1Q9ZwmfVsAyB&Mb7a5-0 zvh(hZp_yB}MjL|%MAOUg$*awit8}NUAhVSJJ=5v7$l&`lR`oS7w(68BK6t~29yCsn z%VM}{bnqvE8>E{mf{e9&TaILhUiUqI?$3_Rmdt)%W_V28G=@t$=zbwITaHxTeQK0< z+vo88J#Fv$G-bUCsmXDQYFz`vX3wtXUbE1R!V$y6AlK+m)#Ze5r7QhOgLMZ1Ozkd$ zPbV4+{PR|;mQF8;Mff{2Rb!nZ5R27 z8sqZ@1qvJ2PRtgLwk&>;zXfPE{lnG(ODu5%m&usV)Y#O6?b@AYhY-kH_w zsAce-W9(0pG`0MHRofAj+yJ9>0EKNs|<6LNPt1J?t6uE>~j6aQrSdBt6ew7*8RZ<~i! z8dp)yzATMy(3H+H)o{aAH^*7)9Mrb0+(P&tqT5hstG=4j_hs={?$bL%v%>X2iGyT0 zLWaZkqdw7eZxvYz-OccNpkKtV(&l5Qg{Lm$O1lj~+jsw!os`D7ssdn{2Wuz-;bN;; zw~`4MG@RM`C5k1U`5W*%VsJ|?z0ZBn3?hO14J>Oieb1n9zatEc>~>wZggy5^abUON z0|k~PAm(~_>C(q&N_);X%Ln^Uva^5bC7R+<30X_WvpevgPg`85sv-<&@rv ztc2B?W&GZO!C7W-K10)na|Js$xRYYeoLSrz%&J6Tm^SOogTIB@UtNd$+J$_Um-4f> zrg;oMfg;9_%1VNOO_WHs6ELw(wh`v1XLws45|`iUey(ZaJcQE}u4|J70_S*D)7%xk ziNkcsL$GM|$Qx{Yy`z1}g}_^Luhe#U>2L4=BbR3%GwydNbte^HSDR{=1vL-&ztix+>oKd2(r+w& z?pda8-MS^REH@VMa&+6;(sdS@4UwMzCbsk;a=Yo7P$vY@_6eoeONu1hRqEm$aT3Tz z9%0M#$-W65$$vgk*HhnAg29RUqRL~mstVBW8+~s+lH>e1g?@bf#C|5w9xpj7k+fU8zQ*KuCO= z>eYJs^)~}Tzw+sK@+u-7P;%-WdVl&mZs@65zk_m#I82AvZwjLYk4#=R4)^~bAa6Dft7dB}S)+{gG zp)=fGZlDE7jn8h%Yo@XMfUk-y)~LIs6TxGWCt?KZuTSNTx0OM;V!;g5e$Zl5}>!-`B6b z#@KSWl%hHhu2wdD*yXAsSKhB-Ky@D+HZ0EXT2qs#dP#5OPz_t7%=l*cYt)Fy(C@ex zWxO|UN2Y#mUavdHWHIKh*BXvqPMxO2kht3CUe{$Y$LV}|x2Wvdgs%4&2%O^&y({Mu zta;LOcM437*Yqo@H^k5m`gXw|-myY`N-1N}^>Ch5urIplH69?a{gWK9fPZ;pO|!n1 z5{Ap_VLQdJ@PZNm&hUoe6Ar*)d{~a(uaX-EO7j_bCrZ*nHEL|ePz_`no;8maYF#me z1L7ScJXk5o`y#bd^ok-SOd7U(597Vz?4@=n4jwk~NKL%{hZAe0du}d=t?c#{Nt^_; zuAs?Y5&4vQZk#U_;~ORWWVs`?7^S|8c&xPP!;-;g&FBNX^Y3Z*>vGArN*#57xOj~| ztHxkE7o}lJtn4|&E~`p)*5x$qtB6#(PNASZLn-tpd#2E@Tww48nu?0a;uQLv9Hb!z z)FJeWpiaQl(sG*e0^={bi_R7WL2S55DSG{Sbpf2n-K=$%t`hV!9{Y__p##BVFsbN? zjeZDrmM#+72*=OR9=E0I-bzs#KNaT>UY|*6KS7N6g~L0@xO?|*x(kB+(W8&yD*`h| z@wpcsF^kd*Bi?q;!wR|d4|U*?R#ED-nde}IsZfw&Mgal@R6N$pC1{=R1uQBof)V9| zw}1#i8T@WR%S%GQW_Vz*!mq>a#%wPYat;>e^3%bH0<)5=lCvVGii?Rsj$1xhiLe7v z`rv8(xxT3apEX z^;Te&&BFlH*y(KO`2zg|I}WyGgfHgX3fWu6P_a>Ac;2!1@z8L6tIf?@f}elB$=CWg zo+Q}&>JfsQbNFp{-#28zZ~%Wj%Pv13hGjjT_LR(TyVq*3+IHCzp4vqw{ngwRuF`aA z6v2vOz!oj}4a*@tn`nt%^RLCOYHKBK+u20Z6ho~H4%(po?A3#NUej9Gen^(dTCAn* z((10PLYP=dgJRd@0Y48tSv#JSgo9_DkU!@M5z|`Kh|{!hnO7~f*!s4gWRRwPyh77f z;$&W~sr$4q9Eb$2VbQAvq?|BYexn$Nk@|=ohH^TVZrabT; z&=;=xVf)?IpwE)Y-gne`?ZK#eY;sY;9y|Yy9DwEYOd%ro2Kcx{uyEG7qoScVy{2v>kk+`$J&1a06GizQfH7C}O*cwFQT9QpJNZlc2xLEA%a*dn`JH+tE!1up3mY=>m2 zNWCv81MGo&*23_h=q=rz$&|eO$2fz2^_}rb%#SqHoELC$)J~xHT||@c5#^Uxi(Ig9 zw1h~pUA5EbEUz(-#*~h?8AVIhjZ|K}WHU6RbY*tiC0Z6xsv06=Ob@{d#?vi9qEEJK z6m=g>Yl68l=}vJ*&6XlxQ+_tjp`$H{rn;t9OpaGG=x-vko;SrEf%ra6A* zOQcsyl7iGcmbu_|niz&W%s_rNCBrFe8H)|NOld0%fve%7VI#vlN{8hw*5oXuanty@ z;V&^wU`}3ypFLv#%h||4(`U&oU_gDS2*4a2UBC(IvF#x_P;km`uw28pamrZN^h*&a zpr(oIW|uz0FIYEPKNL*(noQVUAo}0<<}s7d=pIcnXO1nFP%L=NycjQS>9PQP?xRs& zH6>}SQSUL4WcnKKk6=$$Yyz+tl4*oxWlz7(oxe7#msc~z@Sa>l;}SFCZ}$OZX%F2l zGKL(ojgy1$9M`CAx|1M(ZM<)WSWj0VVKRY8v z=_C=1jZKvP2^sCaPOGh53*WcplOfu_L<`?}#m6es?xI&uR zijA*Xv3UIaU(SJiRh>B>r2fi_Q|7By5ryJ1hH(<8Kq2 z`ITEwF)&hr(l(A~rmX{IQzZV~=%21(ffCViOkXu}RuVlzzd}kSRZp<)-ON4HXDog| zHz`_(;_LCo7j0J&$wR~W-j18|J+em0|Mwx5h=A*V;CPLllie#(p%2Q8PUFp5(n(j_ z6Mw=su)1}p$J5mgRkT&#?}@=NC%0hnsKVsxdtcwI?)`_Hr`uk3l?U*n!iV$H5_&0H zxem}~(6A79@dGhD0us!@vWjSsk`20a*_f>RhUHbEKr0gkqr;v9Gy~(=sTS@`Mc;bT z8_>F`2W$QJ(SBZ7@FiR%sFwSH?g^B!Dqk{%q1+8R7eW=~UdYTi115pSKkdRu!}0Uy z-=q2*7JXq#5u^W4H|6s+o)xG2eELiY=vF2^#m`;WH}BRjb+iRc zOV$Q`-_DaKkAJ`mhcjN0LEGI+-)-AvOE3MjOtRe%!}_{*p$1nl1?%0_Sz}=PL&z?( z4Xe9XUm<_>OIQVwrNbTlu&Gfxf;ZvID%E|ht}k{EJ;h~Sy9QhQu6?ffq#GQ79NRR` zotci;e|cLl+ynwU7)PnPa4*x7P1Y}ZKr`1Ba;4+tSp5FW_fMuNtl8xma++FF*~9dY zU>@M@g&%T}Ep*qG@w|e)_CqetE&dR!vFbA3Y|pUkqBhW>LKxui57v!S&9D) znl9=vT`s{G{2-?B1hzjiTo8QhfEi9Yz$+UX$7=n(u%(*j*<>!&_IrtiP#WQhX)%Sp zutC}qFNoZK2tj00 z0lzW>@A*KX8 zrq*4+61AAlY2c{F?_PH9@&=Ei(Dj{QgMcX;fz{6S0KbVsAhRNBT5+H}%n7u8lM zRKFiIXfy(LY1)fUIF{`lZ4Ow&?rOVTIuXfrEMp*mZ)=)j2=SfF^cREts>Y}=vRKoO zE`b~nM?8!$D;n?iO)Ccc)35Y^_dhYj^hZViniyr8oE8~L1o@w4GB*mi>%%NI^{2;xjf@+YS_P$Sy zG|<<1$z@yPIlU6}m7Y;elFMpzHY)GelU=R<2fN^y{0$p3AMC0sNx|_Mze0BI__3dN z+FT-kJ3`1i^W(2|RYrS!oSr^)gre#pWVEKwe^x0(UZ)pYViC*nTo)MF5X}L0D`)WZ z%lCV`%I{en)abIO^p%Z78FVescQk2w_*%s*ZiqZ_TF*>8A`R_Yd?nyunDLfFeooVM zZAU(tYPfI2wBDy*Qa1ys<4C^6`u*n>l5KE%L(rtmr0Q-k{{z4XnX7N-*JGG`;3t^8 z7j#8szHxdo=_#tbNr;_seOv--|*=Ty}hTGbM;rfu+nK%)}U-w^&JKb_S>ZY zX7Xi~zlbinZm0^C=iFX6x4i8gTDtfUD;9nr8Q!jbvk4D&(U)f-O;78oCue;)?3#Xs zA5iF`?+q$`R6oVKs0H?zn~Dr+4DV}7mHh2#t38^RW&+aq%3Z2s}bd-V%tE&q&X^&hTa+Q7v1 zbho*MKZa&r|D{W)DD>F%U*tev>TVlNkq&?K^iZS;xunhX^0!rkZQ(&3Qsic zYkWr(RD*QO`>44WQ|U@Cxz3tvM8{^`twno%^A%z!s^3Z@TrMPW02V5dY$qt@wq3Fm zKCMlaNVXFWnqh-MHi5HzuW8B}9$5hMtl|NS7N)^DKg(UzGBat_G%7bN08Mf01@QK61(O0lrqIoNrHh`_I}KuJ8Aj=Hd^)Bei~;Us z!&Swu(0iiN0PAqga{_>q)5|bXMM;M7hv%zS6%mk3*AauyzSrs<_(sEkY6cZ z+UvlvWi~cU*U#8uK<(#Ct7m~j`DG)(ZycUg* zK1ev&o0CGO3a}CvOw^E8yvRSuo@X=e=-oNpU2@^vT}t85Y#1*8%&pQ6OsVRZBS(n= zx9IN;8=iQrK^BZH;!f?94_8%-2E?+E{g#^TDVX!{vcA`)nd}ACxKbLNXjsV@n zi;;L^b3?7P%mMGFXATvxWNK)2%jk`C`P^&^>kcpCh}00QGKA~)sop@GUWHX686YD2gayc@_Th$=9 z9)gX=qhmbGKyS5&4D@+!m?5BMHTCfFe*}BD>gJg~P~AFtMe|{*TW3wWNs;rUr*QHg z2Y~g6eb=N&2N&F___2#<5+0(ukx|^ekY4hSGQE%9SxkNzr%Q2!-`Ij&8?IWdNt={o zq8Qm=cTJbOwr73eTVZnFHgh6w}g|$**f7Ha_zR>T6;FC8mLeF;7!by{Fszyz#|8Rq?T-U>R5zAhvYV)z% zs4g`f7D}KtIN%z|v(P{F1(sEQ7LS(Sox@Sh(dQhZX?x=Cc^B=UM0nzet`}1$=$Tuv z-gKH0E1!sOFym`QZ!QehuL4FzHH7(65Em~q>@u%3Gwc@>Irzg5p!zP8f`r9vluiYm z4z_$HidfdK0osgebb)voD*{l0QQCi`nS$a2$CttNIEGiSsk=MxX}t^>jWP*8>3Rj7e;3_{>mNe;0N1_o+MvQudQ4KbEgRaSv5hWFCKYW#E^AZ{HvGND|9XMaw^Jd5ok zh>@;9OM+emU@@-2?<)X;@g@G?8rdc_4eXdWBWif=UvFY^?8Iu1)hIEqO;_j$>O1Zp z$YUs62tu`;N-?}-glebN*qn!8XAx_zlzS%)FvaDL$UFjPO}|r$!I})f%BnFRmKZfQ z9Oa}-y-ZI^TtsZR(#s(bf3H!bb$A(!RHjW&8YiNh8hZ!xJ*vHKBk2EThj_#bR0Ec@s^Q{Z3 z0OLG{Ip%8O;b28DTV}w|cv&#t2B_`^=YLCuk>HhUUqL{!IdKGL`uC zilK8=Wy1F6pK8h77KS3vtE!)zZLzM?v{mjFH_v8P4+2Rp=G;)FlU3LzE*g-a||(O-9VZz+W&)^58F`4;ZArzzW+A zG?U~6f_p$>`k~_>J5hm=XWIrv0mgU!t1tZ~m%$n|8KBMFq(`-@nl_nXWf9Vvab6-} zZ_Ab~NB+)^9TN^QW6UVP^7@7_(GYqD0WgTI7a+(j69jBcB`z>#Ej0>GMAODZ4$YZW zh90|(90;E0tKyXxFbp`t11kyxey-7t>~q#)M{_U~GgprVx(_1(n+uZ-u4V-)^0x@- z4x2@LHj#!MU(2Ma)kqFd*lBdeq9%N7ir%L5!H+*$&D8)NYl}tQHkzO_4YBDoZQqU- zycj8R!vy07yK^OL-f{s=0Pib^I1U_9eZq0_w&o8g?d4G)|4!){4<%(#2KBn-CkPG! z`IQfXv%`$eRjHY>(UImHkxk$%W!I#sm06DGpKgta!sFT^+{wh_-3%jP4gj!-SrY6S zC1CcsaDYWbs3AC1P5{_(dFWS^C}1$Lc!+`6(ne@1DPS=Zpcak7@W3c#qZkA~c0ink z9f${57)LX$c<^u(3P;G8nJtLP@i8Gl+?bgJhIx32QeiS?rQID7XGNnLS z?G`up3_*dvG$mXqn z{orKSyZsu=z+?A+I0t$~>%+jyg5!04rRa6!aWz!9vm z)S;t|ms`T1<#tE*Q%4ML%cAr`&A{T33z>?uH4lg7kE9n2-FZFw(3688;y)Nrhx-6U zOP`p@xfP(~u7a55sCf^t&6Z1e2IE+3GT%dR;1&S6H}Nq%?{a`r`2L6^hANmxXgN;- zbe>;&@-K-!i&fS+RBPR)6NWa_O-IVx_-?(vuG934=Pae#yZ=M##|g)WhN{AEmT*54 zs#ZZMH~C(=Z&aVIE&>S-k2kBOWLJgWfz{Obqn(ffeCCcf_5wgDTUj-z$w~uaW_YQx zZd>w*g*}jmkO-+`Vn?B8A{&^IV0E@D0fY=qH|6%YdO2h-LM&f)$=##k(2Gs#@+5Y` zUBjwvfHoxS3os6?X@5vj`4wo#wi$UX&&r%c0WRePN%m^In0)=>Mks4Fo7fudI0YClTMQt zZB=3gsD7%(yU|LlCN9syTNmUn1^mo*0z@!8bG?-n4fgD))3g+-U(GL2O-G$NjV@7r zmI?w|IQR)-O*%d4Vkig8vqu7To$o^z2Ez|ANPP9jb~08znP#XW34B4&hHaJkP4{Oy zy`E2vRe>y-uZBoHs$VQ@V)>-cB}Y_JOB2eotB>q~o#2kT3$uCaKLoRx{<@a8Px~$@ zW7p-}15{(WxWNkN@t7qr(N$%z!bJus!J{_hn!GM&C_S-VP^ZwuIq~sKEan9gh+rBY z;+v>?(LFdmRP{0la%)O3}=6_n|QN(Lm>b6{Ap(w{*JI5C0>8(lIN%uTdW zy10tz2`*3+O=7qWkvhwGEakc*g*+d{rNLW;hCeNBeq~3tJja@NC6)zx@S4X)em1Xtw~e7SdVyZjcD;M|eveTQw$O939FIP7_RWx0P@ln2!%(?y3V|agus%kU zaZ1dYAe>(|G3}~|k&q`pTfTh7^5qG@^5AU=G@aNSf!PWW#}j0B-(yrgq~@3}V3glj?%cUQzXc4nx1rMQHl)<3n_yj}A6a-;e)0M%4pAl$}9cB(xxoKX}QGL98lYNz|W}(f!T%&J@ zId&8Bn+-)mt1My_PU5@E4eYrOOIXls_%4%KXS0)B2-^a0LK_wcE<+g32e%Zk4;i5X z`prWGvH7ju8_>T$(~GWMo$kOezKeCd^UqD))HQ~B&_Cm!!$^U;ORii=`qjjeCzN;m zL|cIZ#qym7xz)8w%A-#R<0+Y$ES2aI4TiQYyflFb;EzAcf7usv+Ypvo}{{$>!YQqt*9sv0H`C(!i7B8tGsD1hh& zWmmM^CB(i`Ns;}~0bs+hZO(_v4A@Oc2n1>yntVV6TcYy44QbFRIVob;O`#vPnRMzD zY*x7Tga9(^Dr;DPX^((~!D0AdFh9YhwiZBKnrkSh_~beXz*UU($V>%I!e9p+MAg7D zuen}RtKAHnI>hKK2tht}{AY83Rch|#L{Pm%Vb#NoSohl1k^zSC@i7IgM+Ar2Rb5ns z;WdYmD5x1D!VC%sivc=}Sn)?$;OEh@+{ES*Ij@@vCj(#ocwhI$!KC^2v(0k-OnJg z)ik{5Vqj||57C)zlY#B8>jHxo8xS-~edN}$06=lA%1=j*)j37c2%sGUpNGSw9Q_q` z2yzB{Q|XgluNBh&CfHhW2;6>m1V}VJ`93~qYOnwnU?4*%otZ_zNY|!}kwACy)34i?ue(wBeX%;8?i`>sE_$^L$(R7^5`$ZHi_&Lz-%?mFK>y3>= zEF63QkPg6*#}m-iwIs=#H!cM4m~4WlL`^ zW3zd#VJTJ(fDoluwz`?NFBLa!d3ueUB4wymcVOBe_!G^oi9SdQMysye5;*7*yMO|As{$|Q|Q%IzP%Zrur%FUMZ9{KMx)^oALoCe0HodH+u?8qmq5J>2tWg$K=@JMf)y>eYyR z5RdKuy&U)%GQF`{WH=7>DZ9;tO!CGG9Y##qImRtNnzmIL9NS`i{}m<1rnPq}A;Pw6 zH&G{nV%!NV<2iqU=xYUKGIN(lNF18B`SSIFnW2C9^fZCqL(gTFOC2cTPOtlC!COI*eF#jxaT{Pw0z(;8m{vGF35{mlbFG|W{|1$%m)1;DeWAjWT> zrnD%J)nOeUTQY*j#@OVw+rS#%&;bKkvxxYwWpY3#ijU`uNQS0zXi-qVj)RR$Ll$f& z1rW@-i$m?Pew+*?2%+XkVo3?{|P;wTgZWcYSt_02JP$10`|2QTiPJtI(uR1 z1uTNNZhSvuK<7AT%yKZ^&|?|aF~{w|cCoDEWx&_46lXMZ*NCCM^p72g41o~lF?V)c z?#F+B!8bJRVklxkxU=AH(`HT*J^_MJ@izgRmVQ?|ZEM=?fv~0*oDMz^E^h%p;onKa z3@B(mENtda+GwZj1dlejQRL3yBatt#c$q&1ny%P@hXT-q9#8Xh%l#Eu@x z-)lUW)hQ3K{koW6#ik@ABt*TKzhFzM>#GD$n_xV^T)qxJDMDA9{LT>LXTCIC)z6gE z^}X#}%|PFTV|SBhe$%y_$HyYX;BV}R@|=%i^C%G>NsIEHV_{I3S`MW=W^EoK#vpY} z*z}PaV$(+t3rrnFW3tMaB8-xJW}&ei{Fo4581Dna7@7SD0Xt-4dXV#$#S(B96#Bt= zYI=#>#u^x~SjNKG6sIU=E@H6)jS915jHeYM1}Y-pvb>83b3u;@|EoDrcpUURratwQ zqG}F-<*TTHXi3}hiE(N)8IDj&j)uLa!0?HHHM<8Q$C{9m6A%;Ty6PMR%AOj)UKlY` z7dNCq#ZFtrhJ&}l7_Ydl4NidS#<)Tt)JtMi+AL_xpsWy_v@yx>7=D`qbj@~&mhFJO zFOn=*Z&0(ATMqGAcn{T5gtXbX-%pSv$g{yYf4kjO>&NqJtB>yF6k=Sm)iN2~}Dm{_~|dA7pX zt4w}f#5%z25lr9JN9jQ#L_Pr8FQm(Pcw7_p5JFx~1?)N83zyhY5+h_MOlZSM7Tg)( zf(VNzKwF)jgUwVDPIUs4$oG6L5U-;E6W3n+!VnJL${_ez&2^iYVBRQ%wsnLU(O;cT z4#S2c6jhLfoQ3CFv2^3y^U(^!r{m}ZjW_y3ObC7uvrNjj7S(vN)d37lzgAg<2>BRi z_~^_}KgIcy$L3$ofkG{2>Qp~jQyjlw;)M=SsLfm84sD=YmIpp)0E zAn62>%Vl2==oHoXHVo z`~-&FFn{rlAL%RS8OqLryoA1p^uFL2Af1Zj%^h*WNczq~07 zljsjzO^U(s8oa+1JoEp#ebU9*9&sr2u}&|mwaolGA^AW1sRXmkha?_VzuLL*8uV9G zQluGZH*}k%s^#?B4(yjJ<@XKl(_R1cU3j;M{up zX3jG6@k7$vnF7XRHHe+8v>ZQOFh>RK7*JwhYpQ{zJ;{TJq0w&RWSJ(YVJ3EScwU?W zILC_-6Z>uNNt7NXU@Un+W#J7Gbt19~`Pukx#zt9t>wKMI@NOl&6uqxH5tO%i6Pu{p zBOwBh9si9SD0S(sqSejKG~}6-x;sj_wp@VjWIm{{-55-%L1SEj(u*z)JNs#deNGi) z+_1*)LIn~4h04`OFAkbA1lI&gMt&(({?nkBQia`Cw>DSzAw_t&An?CMiiI44p1@`1 zgM-3+2R*VS$^0I0NuXm^ux|^Gw?Q+>0lKjB{AWEHu__NJ{lE!Eu>A_zED#(=SLow;wS6#UC%3}3AYff>$79RCmIJw} zr|N@Gy#P!oE_nHxu4lY~lrI4rEkLB?i3eR61^m7v7sEWCGN?U>iIu$L2Tb_i z@fc~T3^)I-b2xdM|8a<9J)Yv&D??~MI!@k}Z5d3VLw%q!jX}(#(EBac^;D10-UP7- zm4C2=2O_C?^qXFS#(17uj69ua-QwiI@IOG#I*y+3@)kzrj(cF)V!bh(*ZoE=8WcT~%4uNK1**F$OuwnBRjM&>?8^?Si2{|Dz)=nkKdYJbvWnuK8pA3B=YmYlaI&DA#P7*paTFcNWEvxxQR?+|P4-x}lLyp>#Jt5∈ zYQa_*1?ej1ljS1y*s98bTw|bh^z9$%()0;=-dX^9#VxoQ-yE7`_fW~g4QcCoJP-Oh zUgsbizsiJs05b+E40vn902IBatn7*!z17qcA+nz&k6jj*$yk;_;GtnQ$P4-cuG4$J zcWLz#z_BG{!P51iQ$q05boptpK7|Feg)C;ce*oxr)nX3+>Nt;(Ib0!DU@Rb%juoJw zh##8;7Oj5~k<9H*D}_ui04?eqBJ@gAL5h&sj0`_FTDba!CKmU(R6(E@ua6!bO}`oa zoaEhOr;!7Bum&tXF0)UND@U3h-BghTh2PijxH7z9qMlNbGzSgU)j_NQx^+D400V5R z;80eYS{Y=>Zz;?(F1UfYM(Tu|S}qmNf^S2fq8R6OXNN`78zaTV< z9R9Sf&*z-~OlyHY(Y~7{%PVpytF#oQgA#_7*y9{Bgb8tB2Kk72@@R~rx>0!Z@k zprWv=?Zk^>o|X6$gx&@kPF{zK*qcB?=(QV^?)4Y260mo84JZWR7lB78o+O}8G{vd0 z4>JJzQGCZ)vaf^97;jC5vEj5~t^(B-1kju{de1_D`9Cx;Wml(=flW~~00nm&n0dpx z;OA!m&Flm}ZauM1CX7($c^0s_f(SVLVM05m48bkdePyiL4xo;m8xOzzWh}soN#_>pJc zIW5k}1x`l@OmZ^LUI?>w1Hj#(Gkzt^q;eA?Iew>fl|RW|`LoYH!#y`+xK{xB%pI%Q z9}QSJ4ub;mtL5APM`-fJ7qIRo_QnI6Ak+oB?Y*jn&QZF_@`62IdAGRfhMMA#`1RS0 zufgG%in#*BpSb0DwF2n?@vmrmB3SZ4HPX^utQpUE2u-XaY|)A_Y;U>k<}3kQp~om! zWG3DiBJv@}%UhwYyC4t8S$N5FnL{l5U;7zYrp%;?6Dy36?{0=zH`!{AUufyF68aJz zpon84Fwhb#B+zegs-~r`>z$(ooFTbVfJilD?*NBeoCk}vE(}P?pqA%a1JESCe1aD+ zX0ru$<97sTw*(Pbw6-@t`3T~2L7KXTDLOb~amTB8D&?DEM9}rlP4EuV@QG?J^2zJ) z;(hMZ1eiC|ncPR^U+Hmyc4w60BnDuY~=#OGDjzSzC%*JbqG;NPGkH_|lvNUY@M3|I;5OePY zKwCB;qO{zl5~KBZaJ_kAn_OC~XcvZj!A_vcO!3|vQYM~i>s2y9n*@1{1B(h%0k-Yz zQqYlvYg7eI-r>s)cW~Y1YJUeI*;m3_dWR!$)}jFI<=mVV_sgWT20n3thSc*`q2aIg|Y~=g{D;(yCBF4{Q5&IJcS-~u+Oy*GE5fS^u@N?n! z-`~}!B*)@n`MFY*BZUUp;cXYIC1CU~+%v^ z?2wxb?aDA%WUd{O3I)o&_3CbnXOdh~V7meau)8%yAHh}CY*(~(E(i$WAMJ;N?`p+N z)>pyL;VLnpEz#&T*HD(hTl%6#BRs@rL#{PYW7ThKT30nhpheO=pgOQ0FUAAw0AgPH zQm(JHv0nADhj)KLa@LSRQBZTeuZUW4ymSc*i~^gEbogKF#y(F6`ixncHqM0w9i)0% z4;=DyPxFm}$*lL`%p{c@96x-O5De2DPljQbi}Sj|>jSGXpdVo@U6arPr&-z{Ooi#o zu+0ht4q1Yw{+hN(g<<-j5zuET^ys#bUkSTXsdnXQS+odD0K($d9^mh48AJUMKcV;C z@1Ze<6%sON{6X`0O-{By#?k!$n4_Z=^Vr0`b=6oM@yKO(e-R~JkmSuj(wVc&caW(! zKM)6PSW+A8VVR~WCg{7uszU7z%OyOEPsO-Q7igyAML2F8Ou9mA8fd5~n)bU(@W~XYEWzI_|6 z`hoNF`$+Y2TbR{GL$y0yT=7_7U`gE-J@gWI9s9B_C0#=QEJF23FhPChZFiz_y|4%? z8K_2GSan!?XJFzAPhhNf4)j=XbSv4D=<=!jYS2( zqD*=#RPxktzODi0bt*F~FQ*Arm2w2IWS1)9S7zX(Ns~4!M&k4KS__^TX+L2N8W}z} z!Z~XTqknQ>;5;@kW}Y+vJR_YdW*o|7!r(9XxtGlyeqcrPd00nFH+;yj^Fg_egKMIN zv8nL5L=+yAn~-;TY!Xt@#Im6R9Dw@FlB)$HRbUd#1NQ;D<#d~SY=W`px2@dB)qbK| zBeeW^1fK!9hei76-AGpx4)<^V#wr-t7wIZx{o%e3vw>JEWm;*bT^o(Zjb}v=cOt@l z&@I^b#+K{?*cf(jZi^^ICNmys=w|3o&4QqA-KD}zU%CT!Wsa+3%+OZ=ljCWMF+bH< zE*z!*E<}hWI)aKtOisfJyM+rXF&D@z?Hi<|2eshxWrsKz%Z~Uk<=~t%K40pvj0SA& zX7pLZ*1|GIPHAU8A_15{Etb>K3~VX1x1`7g1fB1J5x<;v@cv(D zvrBpmZ!b$nf>3B3vWNiXK81jSHTwSbDZ;SXL~D-0#&*p1lH`Z?Myzl7oP zV?iNCJQB=K(0(f@eCGZ-%~13qEU2@k&PqEQzOW5jXB>&J^@dr)2KdzS3@+o*8ZPF?CzE3MdDp8Ggv>e8> z)C!&A7<$f=uxqrSh|Po&5e}r9@LVWBrB34hMv!ZSdohv6F*|^p$*nh^4n&aq%CJf> z=;Pj1iQFs#D0kxEf%SH5azY$oA8h2znJBNrcj~i?2F6YNJ89STxZ~6Qi#c%MAckz3 zQrl4~X2uNIRq5Vm8Xk_EC_ljxke;w()MKA1DFk79bhvQeu50J5>2nK6S6e9*%Ne85 zpDnxegq@~7>76!U{t$ zFomHo`99nSe!EZdG+2v(qC&+Pj|w%=44zDK!JfRehW?JsfvwlA!=r8?p4S@w08h{~ zO_TLoq@ywOdQzYT!Hm3R3~VCz_TI7}Lv9iW5x+SWsMGjK&p95V&+NoXz{f@oRn`P{ z=zj}Kmz&b17*4F4K^+Mr_$tFL8yu@bNQJ9Vy|7CTT`(+G!TDAf9SJZa0BV7{7$GJc zQtJ5dIn<7{tK;Tv_|9kW1jo*lVaLhaSZC%GT$00I6sVz&AT3|sxayR#y3K6d^Gav3>FKH)`nd2iAxv)sthQpC7=;wtm#Kk>^C;g*g zLj^Eg=E|7ueZH!#7cNSJ#cS`{B+*iE3LNMWCemz||0t>-%Vs;_5SsGkn?hdH#gduh ztbRDa!6I-3l*My=9+LNj{)Yn*Sh8zn$@VdDeg%)QUE16aKeN`V&q+%TCXoJk-H-DV zmUO@Tg=q$;@3P&rArUL3Jz|-pdUE(^YiA-!#i0Zj)|QuAK_^q(Tb3Eu`36W z{%J^LCgox`9szr;L3bXYnLbDw)|U7lJ!cJb%ggOv?zDHuY733x$VMBZ7hHnbmKkC& zQ&iCfW*;+W&YWM7VX6ybgbG+&URPtJ#Y3ts53Sc*cnbhB*!v@o6+z9Va20~L;lKjY* zz#yCF^i{sq9wct3KREH-#wm&QfTAHS^i>cag zmR5U7n#pTC>7uRi(luFl$t=qRt-Lvh<(vbMBc~na<}IE>NQ+z9eD>MX%H_s z(KiNrUQXC37uOjxbJbb2)7wtkVWxu_MhDyMnwF1*RD%gjGzKQ$+XLM@Fc_};j-Y_D zYrw2s^IcghC62F;Z4b|ZUbxg?w34SBz6tGKGZi@Pzr-%7#PY0Ra`N;MW37mX8f!_< ztKrs|dc*1&0O%g@=(0}&!<-dA8=N+3#FHx(F9QP2n~Dk6%3qMzUjW8BPhQO@B+@IQ@VWSkI8 zTLgq;kp??2BbAxY#9>Sr$jlu%fBt+tDMLPC(DDR_oo>luCfEzGJ{F_uRs(M)Fu zoIiLupBkGEM-6sSLj5|C7Y3(sdtrHD7d!n??dL3jE~ypvU_2GT>RF1?c{T!c zCR8MvuJQmW4ueHB*B=0#ET9zY0PildCkf2`)t6wp=jO}kWDvVlEn>SdD*$&<&+B z1p3-wzH(+RoTJQGT&@muAQ-*2A_`daKuOyQ%Gv!VIxR9Xvaz#d)r#rkr*{tI9&;WJ z=WVKD$hwHVp3hWRDF)H$3Vo8D%!lw5mtZJ?5R5z0HfmKR1YC}hT%~)V78BbRt)aZcHw@R`B1~&n)Fm|DJP14 z2H9m+o)Hq(0khJ?QpF4{#)dgfjGibVNcP$B7BiENf&ASt0ka)-0b6CeL`y?&EbDK8 zeJHY9t`7jZAl0oV)+rXS{uZP8%=IShBAUdG`Ig$puyJe#0@HWzJwaJ4F_GMi`9~ z+z=1v2s+Uz-o3j$DoijxsYfRv?;5}++MbG*TwljVl@>{lgsbxmSS|3qGO5qwJB}Ai zyunzhM0tFDKgl(Z>CINaJWjG+1*<1$Pi1gq7eLaHjTU1uIL(PBOtGB86W^-Ws1BP~ zd_!Qj91T$yIj7dcR-ur?jbV-~z7KQN7wxROB~ZJ5j8o5(-%f&`ssnoD;J- zRn->3Rt0PWu2)cb88`}Jl0L4a3JV7*`jH9&+DFUihfzz}Dy#h?N` z;|RXWW@&$zTLwuvf8-b9=0p{q4zTq5_OLJ0lFOBZ(8qR%q6#c9wXj#9P1Ly6f1SW> zVFy6UQ6B?80ewHw!XQnT=lN%t9)!u%Q0PRFo zp?YI9e6gqq5NsUI({;PC$l}H;b{Qma!3w=ZnzPy*tYDmu5W||GN^Y4I_J@NS)TDT% zZ~igjsc-SKvTJTuWD(knbwt?}V6$}?R9cw1^aN=$0eyKdifKGeV#JTTf!>g%Kf6vaKK=KmR{+AS@yxOeKzk^rjJDVIW={ ziH9L=&IrC5hhX zt*{ylz5zSLLe&`V$)Bo*YDd8lbzD!>;>z7^**@&VLhmS`Xi-b6V(3)1P>E`Pg4PE6 z#khV@%?)h%2jt8Cr%4Uiy}iWpjx^Z9vWxxPJrV;Ea+=-m!Nsz~{;|_I4RZsc5&Jn) zj^JAqZhVaJ373|_FHk9z*xVR~%)kLEyN zuSKWt&sAo6=d-Mf@QWh6UJu|h>od^Rb7S4oY39-=ama&d+5!WtdL0V{n1^unIj8xI zbJpQ@tWJUqIDXS97Ov)?;K*|Ml8g-s-$7|yF7<&5Q2joP!GxkVv`bPp0{7|k?1YYE zu@rwRhxe|%RpEvV!6xpTAObp7dKWiF3bpwHZaSq~6%djt!j*Jfr%B-YOn3T40zk+s zy6>DcL~C(mgR3OhSPtn4I`moldzCQgp^cVEwsRw$W7{8FtQ-h>am;?-^)X;R&F@Td z8E7voMy8Q&B#K~Kxdn>FcPo(hKi_HHIvjqYLbLM?^rt_ewSoq{+@`XcY4W3P7`#&uL>9$0X? zW4y!4+n$H?pA+I}qyE2x*mt&5uta3S5>}7Gi_6Cc2;7zF zl110T3s{%W@PbvuF;{AkK}U$niS%W$NP9|;`dMF%p%Kx`#HoeOi+$h zz6}cxz?{UEz-1P|E*kjDeA$IS{lEGelRR8P0g~dC4qOw|_#(cz|vz%^|-=doB$8N4{u$c@ChbO;J3bzOG<}g>kOufV*C+5|z&8x(P%Dy;j z)~sXthFPhk9Ss-){ReuxKF@8~i#LNV0xIaS?)vpB zJD#p2ggvma1+u5jU?0@2DK8Ni!I>^&#U^%o189XIbE?Rg>E1)NWx3T@t9W|nX&!1f z@WSm|Qw9zk*mw#=XciCkg$f?J7Uqx8LX*GtTr_Q-qB<8-^&3wp(sW_8R@R*Nh5X^5}Y_BYCYgRJKG49X#A5~Yus=^ zf9|*(e%U!pTx{UfA03zSA3(Wq4nUfD#t=Ns6O|ks_*c}d8OhF3lGSgh|fw%s#BW`p8gQp1d-i#;n`FL zZI@tq-{*Ob5}w*b<=irbYr*Gvz{ATNC+N=}kP!6$t)o!QnlooYR-c?%Q;rBrI4ck| zx~&8jVnr|cz=6v;JtY_Ug8gR9Xa-Y51y6cr9KplDJTjGh>Y3q%R>13xof+whDJNcYmIh799v@Z?G2CU7xNMNGIDznDsPP=r{yVLZ1B zdEGY2kxL%N38A$Oh5~;lW_-j)UgCP}{Ey{8tJ#zuXhn*I$UfGqHwlUf9PPd|R+Fm2 z4oJ8DuZn`~G)8)THN)d8@L-Ocs7`=iHP^uN8V?x<%CKNUz;DsddJvE9*qtVBjJ*8K z^9)j9b_nAkJjFmX!{JoT>o%ik!E}xjNwy1*sDImb36>mdbb8oB0b2n1(plhk9B@HP zOnJx2+wjED$vnZaSAw+N6Y|-?@ceI=25G`@nB^(1*W?I+t>o!buL^{}up`$>I;(+4 z{Ay)pW(tZc$G6QJ`z+ZTqX2pN$+YG9To{hE;6voTV_0j4*|Bv^0PK#UTMR50GXYaW zjz1rnOpKY6vu|yMK3F%1~(8J>hN;5IZ!(3`6oGwZ8fq) z2@xYpY*xX-FnOV($x$DY)*nWjA5|0boqn-P)e_P$JIjqH&f=?}^jHU1*SFLe1A!!_JY>#d(O3Ecr+L2`%jiFkV%?6~;gD zStWjd`d4AORby|~S&zTf7hgJNLt|XZ5A#RL$(g2G4&7kb%}`aAm2J`DT@ZXlg^{f7 zU_^&5QDJS_VxybSDzGjZ3vaCgB7Kc`HdkQ*5lrq_5fw;Cvu|L0bg3F6`3}L-b5$*Z z{7WGb>aS++2X)Dl;yZ<#!fCyYtF%@3pV7Mzv!D7Js` zArJzD-iv`q3DOlV0xA%ZB8q|tSU^M&R62-M#YpdpAP9m|{LeYFWoCAA|L?uuz3*Ky1NrXEeCC`fJ3DjcOjBguwuW)K6obQpO=FD65AAtD zMZ0)19PDe3_gCr$cTrfeDIA>X*AgFTL};OGcLhVoDor=+Li}T?A0{PHW>W*K<3HXK{7ZN zy+Bd9!hrvaX;BI5rnRfADgYHGkFawvXt=fS7t}g%{)qXKKJRcQtRY?b>;=mMa|MQ} z=h=^5g%)c_)$o8;#-2p4u%j1;XDfCYvB{o?U>ioSzOUfpT0`juxm%KI#sTY*(tm;D z6rUk`u$JvrT3sIEH_W!tP7LnYd6E3=YmyP?^C#LOnM_5Z&0BLiqE%a3c{XFV6W?$m z7oYVoiMqSKAP`_HKku8t5L{%EX;(_1X#Zcaqdwe9@rM)ZheT6}!)Zz0B5EG0!LRr& zq{hbHHq=GtO|jWM(zPjLFoh-yOgRrg^Em++>cL>~ocSsqKITark#zU$-0M5&2W{ z>sUUGMY3BeNH-W>%5tlb>y#|rZ>>wn0FuHz;*QeIrcZ6)%VUMwwLdz083%(m6)any z2PE(UbVg~Jt1jTe@SzbS!evpJ)%YI5UtT`3zNW$~f&CWsl~^3-3RU)U0C+Y6mgbku&R$kRr!}o&gm< z9=>zu;hW~E-(ftkSHfU5sco>Gm?L2{j3yMY?Q%*>EI;Sa9ctw(vfy%qH-nk~p{43vS zTv-eBE?`=)iTF4mHoi5#Mz6y|16j6}XcJU0*_)++M@mmjMD=gMy3Ok;icxJk&(l{I zRH2vu;ih$c0y1jN-MAk7Ttye#gpj*>74=>HU2G^qM{QxK9!?Fcaj?gzF+WGTg~Cl| zVZiMUh6|DK8_AhJe|uCS!S?IN9c%-+KOKOpQMsw+K&%D!u!1=p=2hRF`aROP8N*=?VuB9N)dWeYI+u9wdL4F4}>N%H(hAh9U0tUi!R)$PS{W9-BlG zwie6s3u5vR!3j79rQutC`3v#Wi0Qsu##%l=teL|_dg55sJW@vTvmG>iPnYHi++bf} z-hR-k9ZN+c_L&=0w9rAu`Z8&bLv-&TW08tA$Mm0+yj;g>#QM5U(b5ox0U6{i3$Aw0 zAa7Y9`G%<<;$(@<7^6d!GoTZb^~l;E+W|XDTKQCRnBVMC)Bsh{btd>q>)_BT$Fv+*WbUEo7-cOIP%v$rju5w*+?%Tk=IwBr_^Hl|An1Mv%{72i|G z2uS`s^#dJ5PL91oEJf!NmJqMXQ=-MzAeJ;Zz~Li4&my)+^zrPSk*t>I&a^otP_X+| zD?Qy>uW7D3oW>FbbJ^GMzL5ytX>0J5lsle$LOip;6jovc2s9wOn3tkx!7cYe$sv_jBN$1w#3PEdn*wR zmK-{Py!p?dJVGIq+;5W@m*Es_`KHj7C=?iT+ZHRDA1AI18WC{XdXNHRF3kr%6$c`R zaI$tj+yy`qJl`E5o~#{&my0HC=$a>#wEHV0wN7ccuGbOc3Cb;` zpIf`r&?DWaCqlHSz46-cZx|_g5O`ju`MT%-57I)1tl zeSO;aPl_sfFp0-s+EMYd&t_ZcH$KB6m(7P)oFUm#73>J@oMW!YR162Tj=7;=d<3|b zM$TzUTmJF61w%taa}=9^#7fhZ&z3QQ@Q5Y_bEAL`CaHz%k}P?ksZ`T~0cyihkN*Ug zd!*2e6?-;vt22^SdV!~Y$Mo4IxmR(IvS?(opxPlQNE%+Z?bzbm%@w0$18t zM!Ag>%ZPMA9|1*<}YKZF+;aapC=!0lhF?VSrKg0^jH=eRO$<$3$&pb z3;-KG0Bog>EK8TYc$<$~8N@JcuqBfkIS-u*Z_T70!t=9j&2eTa!sksMzaYzq3Kb^( zvhJ5xE6D0f!l)m>zTnV@A_x5JXnvZOZKNL+2IEB_17MJb|LyPyVNi_5G-8^)*laI6 zh4T5%!A7yEcuUd|Z$QA6PeOcxoY{+$Iq@ACBn&dlvv& z?+tH;TGlKl+-Cq?f5vgK!f*^d4Q$ZoEMTr;EN9awIHBGZIPgBiF?^7ntLauya3|Mu znH&Sm`ss-$o|qiD1+B4@y|}+a56?tbaH+t8d&+H-`e)}b5n>DQJbyIz{`4;%>3$!~ z=stZOlSnchVhO-iGb2T}V1Ewwn5`GwqV-e5yytYiqCePYCKzU4$#1|lTUlT9B&_AA zDPjwtJtlY7fnfVygaX$X_NqX-SV)8zo)Psl`Sb+a5(&d$3{8$yi8G8d8 zo@&*4{e<2(Bi^j5+2aq#JQ>#uI`PO)EF7swJQ%l8+lA_R+BVE&cb_l!0PIZO46t^F zQ8xo9)BE3C0{P(B2X0OuPfbmoB(Tp8EvjHrhX`1E0r+$AWVac{AOitAJo=-LKAQYd zWkH%C>X!ifr@%+FJ_A^?7>NL8I|E>fE5{26SZl6^6Fm}tEHC>yF1Vfq7KvwfoYJ%S zPk`-E6Zy}5WbiPJt?D=x7M$BA!PlB^b)e%g zM~)sjA}Ktac$&aK9EWuAb6UAAvV;8w{`PQBt!`y-2n*N}7&s3iT}B zQ^CHRZvEl$())Lzi4F198S#cvuKwtU7A#NotYN91j=;% z$xL7U<(KYj^h%}yEas-3f8X1_1}*$H%1`n)=n3Eg~S`gwz+<;C10ODP{q!e z=3LiHwlp|y7+=d?u4^3d6ct*zi`B32e6eDnEGRk$3U;5THK^DH&)xy^U|d}s1jl=G zTF>JFon&}AkG$#f=c~Xy?BFLJ#0J4-rQ85re18%Q9XKD%XxrGXQH_*$kn_`T4;V(= zlqrwra>8dmg<=;PWO;)~Z~!K(<9`UZ!N z-yl6(`x2Ggr5zG{V&0$;6}?>h$J7`caowVY7Kg;hIvWQkY?R{?pL~(T`AXzh<5dx2 zm9dIC`R=tx?BlY}L+o}l9=?~f@T3AluHH??xE{>WyY-e1`b7PiHwW1(*82ome3?EgFCWJr!G$Vy0j35ePR)3#Y_8^rMmIPrcx0xlb-AF$9x{0Yt5nLs^%` zuzHLI!pITmer@Q47M}TF9t1xm)4pa$fN+3sEb4a;h*yZyjTi){{-Q%!%`L#Vi9o|x zS<+qOl9B?yn#KYNgJUp28$c2ibaj&MViYC=XCMRXOo&Q1C7x8)o9547fC*A=`L*8z zGB%8Z^7wcPWt)ChtH&M(Jx_Z-ri~B(>(9Bp_t|G*QaO8$U505M^qhii!hMvooi;`Q z82f`JR0~25NM7p7f|{PxIh0r{E-{Cx5&f16isNd+d<+&2QcyH z2DdL+pgrCA3qr{4?(|T$NJGiXnj2MaIs59mTs4mIGmES zROkYnKwV&hZP>8PQG`<-|H$0s{InxV-#du_*4bN@L z;E3Udl#6%7(5{_U#F={R0qT8bxIsnB0E}&)szjm?HSZ&)B@0}R<#OFu(m9g&QY z_R~5tr$-eSH!J2-pzE1m{|2k>wXEH36#~au1;BJ+-0S$$v%r)jOLMGPLAZDf4BVyd zQ=AUE?Pfr{r;E7VccF_-rD(v>X7&Lx5mhppNl+;=-TyC2pnSW>sB>)u}HM0(OSn zx$a`EQnB;-0L%%;np@TeX&6vG7Eb5x-hJ$Ggl0<+V~-y|UovNNi?N|S?`Q{;b6|(7 z@a8it$+84}s>GmXnsqm$>4FiKC3UtUAuI;a3zMLX2F&ScCO8-sU!NDP&uqq+c4JlhH?!J&w^CAcQ%eqQ+S$O|sb6xUtjG`^lN#p$B(?_5a zKf58(jPj{etHr~vu{W~iiZm^?-*_D4g(*cCgN57bJIuZ>-8ujw{A=(E(|gGg;=Lv~ zSi#j#D&2dgwF^V*un$b@e15pP@ifpSH}>%~*R=l*S0^b1X&!B4UZfrv5& zvW~)yRwT+%zI>ErCOHzG94E_h%*sH3VGJ^9c2vSU&atq2Mfsi`D92IL`q*(O&zk1BROK)DrWd^-EUar9~tRPLCDkR6lF z>$8UpK}}I3A7LYsGg@ge9vBy#`sol0jCcrQG}dsRsgH~OlUn=y!K23wfV^u!#UM}d zMXdhQnJ^HDDmZ1VRmVQ_{VOGb>0yzXU~lvyeotyYpJ?urh&TQfdrL%YyNK3 zH1PKzRkjM}!5ZXDgf#{ok%PGH5TO^VD-_~BB zM-O4}DiuTLYoNxv@_xr~$(I~UVecmC^6srs(JuE9;yS?loh8!FL zmk~3jWmwByIDr^1bV{_fA^CM;_3A+YU5yS40)?m%{gxfeVq!;sE!Fqq{s47bVc4bzIoC-jmh7Fg8u7JRK4EAC=RU7YaFGvB;W2HDz|gL&2V+I3 zG~N#5z6bdomA&C%m%aTAoE&DvIotm4^(_Z#X^Y}tO${vAr;`ZVT(U}@h zKG$>rh{U+4KLczazAEVjdOUDG&d@9EV3{qyI?)U5+UQkD;~lK^5spiKA|`*69$xE#8T-EH%(VGRpl$kYpP%iKZ6_al#m-w6(lxZKbt+WbGIwK*hJoG}3YP1D#h28< zKC_RNwh+eCaTVY0wRks7i70s}b%)F3B$!+BfHVT{qXUCK`_|2u`lH7C%saa__Us88 z^)~plyIISZ#MD71M=GgwoIy9t*fNeod46Y^pDSLjb6vXC)pf|00?F3>$7CiI zYa>7bde|~QR3Wy2G?A}c)^s0KE78O*3SOZ+Ai;oLEps-keNHq_6qvkH`N%d`3+Ml0@WkfNAOo*P&RVEvt#* zCFafjvfHtnU*?0&oJm;7Klhs zkMJix+_~XC-G_OQ9|LBN@i7%JUyM;i#edVIq$oK*xl(-R4qgGKn9&^czl+cd;D2KDJ=hvPDaK1ct%aC-!=|(#Ck4(k7tCWN&c2*x>86mvX`PW}-F8BY z&*u+g4y=KqpKA}w3(G)`t99Ceq0%pL?8>ulieP%Q~tTvRD?FL|@^AQ=TiPDM8fkiNidy*H~y<)bZ2=XBw;VvjpaUsYPb?n%9 zP#(@D6R~gw6Ie!ZdxT5p1+^g|3*1MLV>~h^X`CE>1v185U$RJ$O=yRZAzOIlm=Kqp zSUX$keo+bnkgTOeZ0bk;G0nVPGlNWqfhJqqfI@iK^SVzd}uuA9Lnv90NbAVbPUi#?ZOX7uYfJRb4~bRx?Gu4>6v zF&ZV^0ec(b1v+dPeB-it@*b3qpb?M zYiHopx!MZY$038~R`K;gIFBcQ3Sl<5aL_dh#+V15_Koecu6O9RC}{!b6bHNEUmsc( zmkp7*;Z;G0MSUBBBMBTY_n8e24QR0&0|;305uKeGUw#g>fWfwF^gzg#DnwnADc|ruJMgBzbCI;{yny! zT*{|bX@dRMs(gFZlAHQcE3MR9dvAe(1|QT2>%6lt&0-Tg!Sl%kyw-pMRY%gwm3}%&FfF#4PJ-)AB>N zfHuxLsj9Qmz;oZ64`~JYD3^j;I%8zEIi+BM+a1L6Pp<@h3VI1Nsmqk~BbQc^r()->|lJ<6|Nz2M#d33EQ*ifbdWtf)W&Cz@pNQ1 z6t2S}D7FY2a-Q7D6B3S&a7ELuAVMc%_g->S?3y}~#qHJ;k zJ)X=C>^{UY;CawOLK+Z{a1+TbE{&KBI}A^%hKO*ajEb;>WM%D?A}J%U$7_!rZIsrLgNm850hj3xTd3;<_JmDaoEQ_S(Y`63ioO zz(sKzh^HW-5f+D&2O&2Qixq@7#P0XP=r>ZltGtx3JYU(jU4>r7__hfU>_k{b`!9oL z&>-St39}s(udzuhi2O|H)ha<7(%|8+G|X|>Pr&rw(5}k(@F8NGosiO#jxaD9N`8)G z7v@c`4B_udn>Q$cSksuU%^Pt3EQ8(gPNe_+&n!W2jrbn><6~{JD5)(>hX!yNbcS5% z1LkmV{@YFJ$;*fk?EVpIA^TFs%tNibI60OG8-{EntW+9`URTHCiC^3ZSRu#Hd4A;a z%m+t{dFI;h69vhR-?(6-SNnQIaG$A=&TA9HM2O{a`Ng)BBz6eZ-@(M=#yE8^+Mt2> zpJIU!IKm+_%{o$C;GnJFgm3rFytqRn%`Fu!&q;wQOO}&HKBl=;O+SWg0g>J86(|&x zkN%PHsCCD@txoRpjOAK*2U-|oVLg97^UR^v(=g*+R>9_*xtaw6#0la&25X3$60p_6 zp9>;ko_^5KQ)_>364)+@SPO?_c5w#hdBq9UaP|$3U1^$|v9ExyS9^2qr&v;^LKl&( z2gE06T^9-|2$9nQrGd$~0#vMI1a?1OTKLu37yf~XTZi1^nz`x3$j=QzsN_1xrD^== zLa0xr$g_nUf>6f2E<(k33Ze%l!!V?F86v-3vsS9e1IYg(FlOMXjE z$Yp7Or44tS;`6yH8Dp@v4&HsV7~HWBHi1l^me7M7lj;(u3q1nK0P}@r`1m;{5sVXq z@a(`p&8yD}ezx_+TR;MIP5cmBiR{d@E%|&{{slaV8~hLp=gBY|_^8;EH}He>U3`QA zi%0Y1kMdKoP@crI_)V)OTkiu9-`UElKX(`Jxc!*+t?7gR{d`~l;}dNI|e= zbd?X|9)p3kZb}Z&7x5f|_jPnRzr?MT4@-O4i$~BLe81#a+*%D6Re2DbMLrPTzzUr5 zl_)6kTwwsT-Dnjm6pVMG6AyLm-0tTcwz<1pc#xR-;KJIGJK#zUGEokO&!Tq7)?J1j z2Gdl;GVTA@OQ6U<%485{rG*#F>r)DA(QX#hiuB{sXxa(b&4k|CG~!=#JcMVZ6XwNu zpgk`5ack>t-Ey^`0<&(Wp<*vWT=u^>75kRrLaI2Qcu-`$O*K-bLU+xPIQ%ySs(#-V zaRL_UfHBT=oH#LkVShI?>-S&4*h~TY)=8cH+%J?_>Gl-bPUWwC1PGZ!uDf;HKeSsn zZAp63XWIUIOCay0wpF>QGjrwyc_97?ZvgGzHDXs^gbuXx@SQ>q#W_9*aqoK%3lxUT z35yr^sNz8^JLfjH2pB<_rw{>K2)wc2ae;uWc}ud;H|Z8DGbW;-jDGWAa!!^be-|1Z z@0QzYX!`dp0R!8Cz{vME9w$HdXNkzQZ44YS;F`3Za!Q+T*dMt6X}N_ z%NgYJ_K92OjX%nHC}C6@U!_sZC(63uTUf8VF&4a+OGVO|fSAs^n>R=C@&t!44jPq0 ztY|=uwv@MBo{WvY$w3-on8)S!Teio+2LK}$KgmmpLtbd`wr%O={=xoN>x9UB{yRz_ zPgq!sufZ&XO_fLFt~~q?{`&ZDY%w9ay7t%L1X$`})fLDT^fq&O_~hlwm&c&>s?dOL zK#!zh@V9~29(9@^cL>JUBfBu0ol7y7p{ zP#yp~CJfMR)^sYRJE(yLOiyaAsHf3{jIp1(Eyx4ap=HSmw0ca?uoD z3suR+qDx6w-hBX>)`P9zUbcRhp`b%Za&BB1w!*X&u^rB!v#hx#S^klb7LZ5;^K=SC zH6R< zkQVz#iVaSV+=nDrZzHiZM8Nds@A~=YuT?n>Sc108fotw8(|5!t&*`&x`oSq7*Pb>1 zPE5;a&qJ_H#60ZFD)@L->^#Int~`XXtALFaJp_BlL*^F2`3PFO4}6zp8#r*FU&yRE zC(TT`f&KrTp-RT9dn!azIfb_#7N={H-x4V62}?3BK;JvY!)m)!iOWC83p1$8T&yNZ zAjokEG=f!thbM8&u_Ibo1w|g5v30R4wt!!WD)c)j+`AZ6_muwj7l|j2-*VNXh+PS{ zWA6ZDiT&NAAa;PevWB9BcFctsUrrj3-aUF0e|9U=2G4?;S^D)4dh*-!y{ zFUfrP`RlJw0Sz{og`)Jy7`6bmN&8Hs0tT;Lbf6d^88+vT-PfT=Z|>;iA8}xapaBDv z7S5)7v>xFZ&&RQKX=Z{bXb3qEzXdZp!vzn|+8Ac7GQj@Td>oGcKorsOwCCfJdV7&L zw!Rt9$FXQW*|k(7eYd*Dv1c7V-m?QG!_>{k<^G*dcKKR)##;T0`M6*BeB1?%x@Q4T zhB?HG-?70dI#eW@36jDG`Fvcg6IOiksm4j7lFo$*J1c)b4*2BgG&5F9<%IZ~KMNOa z6n9-W9l(OW1gY0F5+!-UF0CpkXoBP#p((v8SmmMN>!!hi;mFC;KzBqp_{#s%`$Ygt z3eym>?ClQ#wp9nU0+|@FsV-Jx*k1GS8^J92jU$+rbaBVQWlH(MZGRvMT-x)NAQF*} z{gZZ3PKJoxev$?E40WSpLy4#T^Wf-NBhtgzfTKr`&gfpdRCnqEpz>eV%p3<#IYN0b zVgyRp8eC)e_1M^hx<sTwpBKGRk;4+;(I*Q+vhlVx`jt&nHM|f1``;RBQW?ez>j;w6>9y#YxDBu z_I99hF5!1}JnrL;r@IJzgN9o!bo)h@3@pL5zZnpD+T0NtdFW_lM`fsu0SlLdQD6Q7 zB2A|KzqJHH+C@fsayd_BNM!%WUCwg<$#TkL9DjW760s1MBt0E?hKN`_2pq%OwUa!Z z0LV#A0$`KTFC-E`B?;gS-0In=*#3hTV@MI%u3bBP`r;GP=;zwb$()ZT@(lr=?b@L& z)BNw1Km`yB^qK~?`8>!5+N(5+tbg5Xlts7kU}aU2NFC{M&CBR&$7mVGNiScyGTvJsyJ zn2wOq*#kV=Q}__)@dG(&XN*BwECS_m0&THS74gbZ~V}zDM2W3jEY4$06Z0@e1Bt9I0znKWS%^>a2`b2-^wu}@)63I zoEQmH(js6AB5Vhh*+GI`s)%rKNhZokUxeh14hMl}xB|KiF^qxQ&Sn`fKi%P zo?%T;BF}XCOQ7JVi*BS_yEWnsd*cpHOIg-WQtyB)0w>^pdo(d>!&UrO^uGAb+fO{< z4L5nT*}g+)Vy@5b?5(aQq&y%On&+7dcf@T~qiY0MXsd%rY`Jp?HiO~dmkNggg4vWq zVfqqz)6c64#0o5Qz#Zy98@3(Q7(E(KLrBxfXpFs&Ys;so9LXJk(A~mXtUt#1h87CP zlM1E==&(F+lBJd4jn2g|Q<390qK|72!J{~nyn(w5fTidaz%r7snlH8{Wfw#Lz3idm z&s)}Nca^i3`TQ?!i${H`X09^tNR+>?rJAWPd*Qh)U<{C4?_1(_Y_m41WY7lK{g$6~ zHyaEv<9f@KFg?8je4Y&oJ_&QNgT>cQ_V-2xQBkJYu zsbsbrrybktu|~l2VRbE*`wApT{~@urArIH}lMqli8Qw`(7UujfXx=)-|ABd>f;J(4 zXU`l}CQhFYiv9Jstd-&j56YzcUX)Eq_BM_AQXy4>tpOf(Uc#1gl5JaQgec8-6ugUA z-^#2!T*YP5$;K|}RGj8G0nV?XGF>a>`lID{Ohyg3qyh&gM1+CHdVlCNNn0GT9!{@Mhxl3C5pludfgKU*Ma+AQ)lZ$xBkn z7wM|nb-s~T!1K$mLEnjHt14|&*vA3+Eo04{G7mz;Kkp@iea??q zI#oJL?nI=1-NOpN5*-jvV!MM^CA7x7Sh0)fwkD9r7ij&?!2;>ZYLnj=m30DQmmRDi zx~%Qone#k4-1RyQ(RG5$LRGp_f?erhJYw$YVO-tOQtQ)S~CYiyjWHyJ!+#7IH z#md}8>}02Bo_W)U4Ff6Z=G(xd&|a`@7r*MDo2HcpwJ`Acofzq+tU_8_@>t4{KGQlS z>QotGw{P6I&l4oeQixF!@n^I=UMcecQUC^jV%28(tra)o;^K&Bb0Hm`H4p5_Gj}L$ zXg03Ff(U9R5<0lHnSa~D4?V%a~np}nm^Gv6N_E?piQ zDvQl$4P5GHx($6Htnbh9l$AJvj^Euzb~FS$!z*pxW5mN7Bq27C$N~lsB#fL9qY*`o zPYBxi4=?8&D^hHwB2jL!9sju-mPr%I)M2u~mvvBZ%G) z(xtpCf9$|L;0>BE-}^F5Z9n2BPgJ@o$>l0l@5FH9~wjf2BGk}!wW0e zhQlHu)8O?(@J4Gx>_9R|OAJmUm|wUR&?611M}vy*=Ha$EA;o9s zc+A>^mqb6?{v?&~pFS~{U>ZBE)lh*KzO~Ow=&?-S|6vK_Do`NE$0A#i4j&EMvIQ>F zIp))|kPMEkE~sN=!n|YR!Sm{+ORFYNep6nLQyFeePkHTWe@w7C84pa28(LG8qFlZ` zj-SDZmR5FsL`(M8pY4dVV#EfSu`G|fL8>3L68S*F_UaVBfTyceQ^?!>s%}WIz+S<< zQ(8USc^w|OdcTnfv6rcv!IW6mY^Awo!M!%)39jc?HYlQW!o(vWfByWwW?bT)>G(e= zfgwYNz!sS6Jr&YoJ)-W>5%bu-c9X!~w8nrMWdKuq2w)$)Z5$g(+idl)5*Ntt^d@^U z+PLUpv|a5$qcW_Ry?jByP~mYAs>+8jQ41!nWtc}d3Z`0bKO0br$Co_PL%@bx(l+8T z8nBP=&Ik!&Q;-!;r(Y>D9z_OhnNRvV#%#1q0(km$oK+6dEIVLt$&oQunr>mI`0gE- zyW$Yq=a#spHsxWr_SqeOn5^=ZQHh`Lj{xU$?CfD%6l4toVh3-Tnx3rMy)7;f%F zb5c@vl|ZlG;any%-)0ljl4HH?4UYqDWg+Y-*jL2O-nJ4$xJ1Q0EWWcUMrY$^8zAA~ zvSL&qde1=LyUVZPBT}wufwWD#2Ycq9xU;8^#5MbE@EQPx|9&D^R!IF^5ctFdvnHDn zGGzr5VyQDC9wKtCyOeL1Hc3YfgFuClF+-kj*q6Lt#CEXX$qEaOd9Al5|SRq z|8tN!IeG}2rrEj5`9+kxGhwQDUlrul|K<{@mCOQ~qK9*F@Q|Z71ahYsFl<<~X^uln zo>|CRl3Cs^o!KyE#L?J6^TOVYpKCzgw>sR3w1hsK!y_yOk^C3f-*sc zYi$t#d(Feh40SrU-wseP7B)N{#>Su>{#ix18)&VoI%NUN)(7bB%cC5JM}3TMqT`aD zEm8HR9i+1`I77lbSxO4-I8ZCMt+C^hpM?*Yo1T`v9!XcNr69uSOujjZu;#{Sl-Cay z{hhuP%lbOM4;+mvZpifUVV%H#(-*jaW}OcUDl@unqXS4N4`m==K*NTM7UR&_7_P=w znpQpmq|R6Y*nf5rk233XU!kUGm!zBFP~lks zpxNc>`<-OMWSeE(Tl~zgmi3Y2=R84qW1WOg_8ZMoxzUNKi*qsd4oq;XJr!f+Dgld* z043Nn3Jyp9EEa*#2a;!&*A{IUGv>Xw&O)3CFG~;`27Zp2Q>Tv9i{TnS!CZ;?ddiy) zHJl3qCh6Dn^yEJd7F28D=HX2WvRp+#EBEQ<&Cmd?cQEytuTu?q6r={obpPi|;HA~+ zC$L&c=8fg|?;p8;9~Y1AkpLDjiLWT7w=NF>v!SvzDT&vIl~9QV(*S&v->X_1`;S!R zOIibM|6CXdZU*ctfd;Mc6=6ry3ZPr+bV2`hIKIX+VlueTJa{!gzsYT~!@mPScjYm^ z13h-$vV124gb|t@E`+uYIsu(0*YKLCK=nM7N_9#DLLOkdk&Ak!6T2b#T z>Fe-k1*ktnGl0~8_Rqez9U%gPl)XdViSuZ>$S|H4=;*?lxuHea2Cf9%>S0Y$^|=Dv zfgsUif`pd2DTap1Qhp6j&~l+ys)aXjF3Z#QJSq{*do!hk_Cq!0$t#qg{Vl!7&<3ZF z6A2t_FkT)$AWFlEbn~F1Rzv7r(vO-oyS_JAF}yE4EggL0$49%~0sq%!1mLgJp`45CAhkxn@KIe8bw5dx61 zZ-RD6V<_C3+)g5c9PzXfnFQ5CCCic0g92b<~cC68IUnZtx}L4UC3lH?VkT%&^A?f zSP9R^`$_u4N&qbrZ5VoG17onT`BoWyNmPTDW~&~m1NxWLrdq5Db_CyQp&Y+JdzPqI zZQ!Qn_|{so^04vRP#QreAgnt#S2_;qS#$*?{~)yfIoh@r#>Euo6G-CLS}adjNYH~> zQX`u05@7FBxnScvT;$mse8y)hMYrUs7#yTzH7s+6x;I#9-9V)K9Ow?hJAeeik35wZ zzR&hX>_n(Y##oUEemst0tZySD=qj>~WB^xme?6bP8 zRray$J3yj5t?G0*?Xy=w=9j9A%d--Wjw4*BWa$S3j6H(PBY>S?^|Lul@bIjq)&j@h zJ-29^4Ui>BSOQiO*Q~G6O8~gfEn1SWT*6XNB6r?#ouZ{ADy`<}1?j2}pdeomL%a51 zSSy@SiL`++Ra`DNsAy@63*j|i0))x89H5_7l{P0X4%trhmY#?lSo)vdrNXOQS`?N*@FtGogH5hS*-Q1{B$uj2Lz z!EZo!s7Y1=F{%T${lau|37jKI48^e7a28&`0zO2BGYM*p)`@84rZk?FbgCjc$|Hvp zLaDR>_ucA%Jo~~0u-!S0Dr)C&J{R)v-smj5ZfvlB}tn|tiFs5G%hoVZ-3x=x>D=6M(A+R>#b(O5_W;lhc z3R|pRK?31&;CJ4dmAYh_uIAGw&jRymMq8MlNVjej3M$cF%paz1=hFpVfb*KquZ42C zA>?8dU}UiJq7g>b&3Dt<397u8&&?cM4|H3e347|P4`9{BZ%;j?t%vUeFMYqla>L+$ ztH(&P;p~}SEyWm|FFV?60wglF$-M6SP~;GqE`JFGHk@_aN>BTqT0IG_G8GhrWX{)= z0LE(L43lk)1=7neheDKP9a`LV4?cSdl(b9D*i|Kn)wqt>I|4Qj+&2e-N2!wti5E!^ zNdpKga~%{btTaI{9C!$-{2&%kID%#dP+{wuig0N8!(QFiBMq1hE&!ItZgNlld+$9F zD;_0a>KWKi;ZA((EamZxBC2F9)W7n_&*sVw@meEAj;=lDILOLw{V=XDGXB~PDq2EN ziWJTQ6tM_^lADP>p8Y6b`Vk&`d^b!FiT$ic#aO-D7eYn%U)$bpm|pCKT$M_)^m02M znBi>6^yj{LihtdL9jXXa`o&TMRo;!EQ>qnRMdX(C_Y`}s;<5WyVpkCg=xJGVxW|hy zTOhT%6=JO`r3tHa$%>c6?80ZPw7~@Bf_V$^YhZ=oIF7Y^xb$v<6&)tV_6JmyB@-r0 z7+$9-Y!;O(;h%tc=Fa#s@X?m2AqYJ;F~v3tfPAg?^+M0iRlpS?^-MM zqZ|lSphG?}Xr}#tTmo6!4+ss^bE&n`v@*DCwM%`0V9hPJyFbOI$sEN7kNvDdCG>|cZx7y;J;iwgCU%PAhyy0T~y#E0FB zYuZx!Y}`z!>H=Vigm!a51TMcIv#FKn{c3CVf31SE(Z%eOV|P14MPbt#=%A)l+gQW?xw}mUpN?M?AkwU7eU@I2rBEt z_iSh$j%Cd=Za)B61VM#AKFFa^J0!z<98SFnW>qxOnC9t@E`*q5KJXwmRYFcz6V)08 z1?*gRxg*E|%N4n~&|OdmaL!qB=YDhS*uJ@Q`({~%m@}>aw@V=8?V;gnoZ0g zAEc&R^W=!wAD=+=FA19IauMcf1+&a3iadX-+rE=>Pr-JprIAac@0r#fwSLw`V?+__|6-MSr@AnsyzT+V7z5$nL?+2(}BI34>x zDeZC3+U}A-ciF*^N8J%8?S&IBU_RaE9PFTN9m<>Vt~Vf`Ke^30tf;WVxPsX>qa3b5xJx_ngNO&zlM&$%2P;i%cn?B|vDmG0 zqqqnBVv7ytNAE*Zu_zbx=0Co*`x!#Tk(@{AH87Et4qjhe=6!keP3be(?I|?`sD)frr5lKM1PkHw(!0$*gI3vn3(`4-^gB?F`HR1uF zwaf(yN462;;ijL8wE;Rzr)eGWH=`eIi9Wa#vF0incf(3ubB8?ibpu92glgVwuolF( zQOTPP1@8u|iOWQ?)Pr=&3Njb219L}~f7+Aqt&si<7U-}ofQ@vy$d)>Ah3b>C*I&>T z{NCwwYmQbT%C;I`ymjwGR}S{_hjIa6rWN7&IW|z`Af0I~gJxSX?>d;}m$PczGcUY@ zbf!jptu*xnT()akThzqVm^f)-45cNxixL@Y2NeAO6cu7^DF+Dq>qQ$EJ5fp?tVsih z_4mw!krQt~T0R%BBUctz250GtIarplfGrd-*zb9@D!B{L_EZtW8OmdT1-|eb=G^*N zpqmKENc_6hz~6Xsz88z708Zc8#8llBJ5-FjORUNeYY_{OIas2r`7E09pHo_5C1?^%KtNT3lRO|J zm#a&dlQqIxGWOC`PYjo^_!~D<&G;S;v4jz^dCkFamkmtCb)Iq0Eu8HRR^v?E+Ab)v zm;OGE=0)zVZR23#^XXT?_~lbENT&TiTLPio;q{$dC^nyVgt`0i^X|2X>2LBswe=8HY+60hkCGy7GCdQ@N;|slaho>b%Vu=_f5r34!-Qj>?w?c~0y9Xn8g@H`UD`M=!(bpA+gxj)yI90h_&MTEadE>9HcG5xOI{ z%A83-en`Pw9m{G+WnIv{sH{s7GT+mYy^oMJT?aiL4RtBqa!1QznE6Du*e7gY7}#!^ zZk;VF26yZ;h|KLX9B+J9C*kLCVbRaAe~)Cz|8Sh*vj!--U|c17x%RmTU9>gBt}nOX zzFTXh;%Pf`ov^IU+SLOPptCi>QxfRu{}R4=K-tVH!=nx_mV@*fI4!nH=K#GV8@7-JwfB z`-760LQ#}{;(PB0nX(?H(fwN^QP$&aJjVF|{(crIM*_{|D@Z%DB~A{Aakd8cR>GdA ze4Z4fdW`QRVRRg#dAW=bZ8YJVcSIs?|L7Ak zicsedm+9j#fh$Mf@_TZh@6(JFX)&A^uos>Z`p{L}djJcZ5eJZA925K;YhG%Y4P&+A z;XSjD;n@9#o}XjGQ>lUDeT`5Q2q%&vw#*4DJmGE~#13lO$Pj2h5mQDoMEo>X!*uho zU)>5jG=L1~LWNiyYj1wG>oJ|IkH><;=>{QASm7BC7axJ~z8?X@GZf%xTfxV(9!Dsi zf7YHaw?$-3#>&F!3#sp`6t)}EIXeUBk@9}yX!`t&GPD}regBiI%LW|M|z32K1N&6@gDVh2&hzn~!-K+uEs8tDCa!q#e_q8AC;s`*sd zM$S?aM!_EaF|35^yAFRucVsOg7UUxLh@8jd&_0OqKMqtmhI#97999@3Jr zry&PZbh*|gAk)t+fxHuE-i^9BYv$8=LuV@QG1nv*Lcq52Nu|) zBbpfk_A2bEwx-rEvxo;s5tU4HU;ul&bhS+!k{i-3;2Av(4?qKR>J5P-V~9CsxzaLE zbpXrQsB{C3U|%?yhyPSZ{S{Jd=+v81OyDT|lMPv4WKps5-b_Lz75f0l?#y@{Pl-CF zj%0hm1ppC@;Z_W5g*-xFGcBtf%Qu*IJIz&?z6RU4m-AfgQb+J5*VySahG^QI^8_Av zNnuFNlAq4Ec2`%^s0;Zh`W1ZkYbtBdrX0yCXRyO*-lWm*00}F6Mu5zeMgo`(r*+ZX zPa17b3*U0IS>KY&>z?FOG`g znuj9YS{9%ksIbvg{PY|Sg?NMB$#DzMg8YE&@k*g!h~Rz{*bsQT}FWAXW$X0nb-7SPi^z!ZfC7YCW3=kYV1@>33Vx zz~izq&L;l(>8_$Aop{N1BS%9TxVvehamQ7i-Vmm}SHsO5ddQ{!zio+156>XVa5$SP z1CSs+7#@XW>cR9Bg-w+n<&V*UH1S1ne&T`kZh{@i&yYoNEXob*S!|97g@;FY{^)k8 zc%X0rwId5>wna=U_j2-%E|<`W&7l%O(a*6vgf^YyjZZf<;i50ug?y@@06_+$L{jxl zM7U^Fgp-cU=l?_mO}A$hY`TA3hh*$6QrESPd>;>iF zq!6O^26K+DX(2o?;wsd#K0;X68pySusY71$4a>sz0}(gp+PVZ}30vYI@Jx731Oq%O z43i=V*@0gYRq{2|{F3nqo0B_f0c+W@BOl7TST9VxnM_*DtTd)}8;k545HdcZuur1h zJ3EGNS>DgttR&2>Zfnr_2OqwEM^JCK_R?1{4au?*l)B#==92dI@YK?!pIJ*(D>--i zt!pb62!K+lCt&Pjd)AM@hn+=;vHFp)9+8`rPBH|pkhVO9hs*mQ@W@gCO@?(sN0RCH zFG`@v?+g0&AkX=$bI2&6BkkwI3)((%B+Nhh!Vc9nVbW>Ub;IbHt z9JP%Z8-z+@J;$sM05YC&xrmmRkmDrL$Fn~LV&JAn;QQ*dty?ozCEUxHXZyzun8m#Q zAnAHhxtc+UVBBBEJ92dtz*h189RtWm`T`v;&*3U7%iQ9{L^jUu;t^yl$svG#2;6S= z%KN$w%e!#vpuFr!*eGWj^Aw)sY=C>r6alVcl`2(2SjY%2+uZeRy3dBJJhYv5pQxIGu?5iXrX|u~zu{3PcQ1QuhLJ3T`FfpSqxFXC3MP^V)Q=wJ3 zRYD6E!)c~VT8MQ7$of;n^89e9H?_BTbe^(18CR%|!NARtY>`Md6bIkGgHO&Qh_x25 zD%h(ebO)b~2>s$pFW|EeeU@V27_@akn{D`v;g)%=UKoIob>VFXVQe1x2tP5eyCC&X z0tBl>U96}w)o9%o8rfVO`hoe9NY4-M*Uzu}?T*;p{4P7eQXlf4Zt2&|v_-O59OC;; z3+#=BoJk=jow3Gh`#veuBkd@4@?=J(gKKgU#Hj+IAYO+tq;aXF;Nx1W;ZQa0OOQK! zraF!ujr%@-^!O4X{UVtj2?%L+X)^YB3^udzk|brbfBY6T%JRe@#{$<=gS}BvbP@Ox zw9L>b53#w3j|TSqimI=|FfEj^f7yJ~-mby)Iz$kQ^_p#Z1jjUeR5=8EEPhlJso2Or599w}L!13D$!7|=I4X13$$JcVBF701th-g(TS0{xeLlzY7v!hGMwei!-7vBc2%gi9`CLQrO4T~(Nc8o{xmPFXTwAGVFd0|)d?UzDS2>b~(<{sRAvT-qKVS4i**ZewnQj`b{16MnVXUb=!7b+;Orm+af`+UO zLU2!<1`0>5gkgNIc?H4S2{OL)ljX!?(ZDS8LoA+k%D{pAC=`sWQe`6Qine)7zl`Re0?z}` zZFRA&v}^>c3{R(#_JxbtJ{}h9Ld=Jycq30r2K_)X_@WJ0_Ja#6ov60{@D`mwd)nce zdu(iM?Dg2#gM2dK^J9iF!NJt$V{O{_g-|t6ru)CR1hQybD3(2cg)Z~=9rArkQ#Z{y zeIX7{*-Ggz=c?texYW%yQ4&@p0mAct`_|5o6vGvO>dNZX-;HhFJXE3q2kbu*M$s}F z{Ck46ub%9Ou3(%&F48OBx?b4_&ae_DcBxQf8BDtP@-+kELVXqF%QpvId-WM-QJ$_F zuG}l~*wJ6+y&C9?Fw^5dQUX~kR(yA8MNpK4siWK{=WV45_(O>@X+6cbvs7Ay)B0o% zp0OSZB1aZJ*X5wnYE9pC)*g@P$3&5k;Eph!Q?SuFLh+6#Fv+U~#Xu=sX1e^{I6^FI z{^K4QY?!%Vd*kExtRlp69dNNr%Vo7>z&~B+=h6}p%kM(wSeYNox!0w-qjYa3QX0@RX?Uxv^>Bb^;2r%Qr>w%&K|ge z!p3|J=DDyCAM|K>v^KYAFyqGZ!{UTkK~o}T9QKEp#tG5KwYP!IILbN*2P>#qBjI4f zP@b?%way@1o=YUX)i(%G=mo<5&_LP0Be^H0oD+la?9Bz04+JmA+88vPAlr!ImjmHa zVc@w}lg6C1RM@6)B_Z~Ekr{_v|3 zF^1{jG5Rs2BcqFuz?eu)bbdyeKL6tq2(I<*w;ePZ5nx;i8X3d9-dYz&H!jTIsHFkd z0~Jwfu+~U-G2Sv4YQSbQXErUo-!%4XF!TyO4%9Uzuu``v`}eP}&lsgu#EQ_d$q<|U zPr!;m9OAz?L1OyW32#5ea|`1nD&TO;E1Mf0-STeh(dCs*Uz;v&X3bo1hU>`XP^xY& zhTSmJk7EvO(|Z3<#|mLN-Zq2-Kk2WR-~INq}S3x zt{6g9V+>DQGj81HtV`?XJ{b-Xgh&6F^pYT#DlDbk*cZ-H)sU5S6~BT~Uv z3m=#LZ@E`J?Jx`MYJY5`lzv2O+4;3T;7j*L{pL2L3BS4Da@9fAm zCS7Qi?2;%@xZJ>jpPe{oTB%AMtiSp`jSuKY7K%TDE6zPEsi07*^^@V%df2bRFd^_a z8c&{|+ZX4U($5MFHhTt1ZZ$5*J|tpkwmdIv2(lV8R)*Gite3R~RhJ&GmzA-86zS_i zLR@R(yNFG6-GZgkUL4>a(oKp7{6eFFWKHteCy9b)l&;90=#$zPre)_`W>eb@EhZu!PMUp|90z6%4d zvwHA-Iv;erj<8+=G*5=1!(KW_gSjIw`{}Yq!mCX;lPdcm_8uwX6TZ#D4RJ^*&a z)BWk;5EjR%TyL^Hsh78 zz3322Z4TFW5qAF*w+=!O#O^}PC#vy&MjdAY%|`~p<>Uvb@{pb}RU3Rs(mfNc;wJnIvf4rOJagT4YHX>1t0j#%ZiRpHF-Xtx57MEeOk=z>LvhBS`!)2K%wBpHahR z81MM8a=e*0_J{be(Bm9C~Yr9^qWi4h5cs>PV z48_=I78`@q4-+;ZLNOv;2R~GQCqYJZ1%(|rY3mfgat}t~3ebKacTM;EK!|3j3 z2tHrM1N1{REyltIosO-lhaMr{*5<0<46=hquS_8$lcaCYu4j}UY0MOou~16J@Oyr4@0U&Weqw=#Q@%V2QKjb}*K=+0W-=7}}M zwSe>~vk01q1PpSxmLCdxg=oz1xO!Zk14 zrdZ%7erpGH>Me8vDwz|eeW3ZsTn?F*|E&@z(Q(!4ReseH@_6GOir7iIiJc*FD>oUh?XPTp@bH?U( zPNc8n7VvcIW(3?I1gE@V;hb_X_Qcq+N5{3N=A&K|rs}f37tj4_*Tp@nxMZ1@|4<3! zeRI*`^xg6pfTAk$=7D&uPu3N&WhLmvKMA-6ziQjm6KQU)>QEZiyeT7+#sDS#P=W;v zfg7OY&^6~Y}H%luz7 zVtCwN+T&>RnYNg{-9B&hs0x{|(!}1)3pN*^yNx`zXu}cQFQSKNACVlD!SF&1_1|F6 zS$4X4QYVS9XMQ5#b)mHMlPCFkyr>VCC*D-37&`-vG07*Ia;d!O zrjfV_&jX(4ql48_Rl`{M2B5kUKe7D6uprB`$zr)wk6G*GC$JUBpsQT2aD2kWm2Xu? zck#DoVBYt+b0L*L+%t>^xa1q9A23HenW!^KOWQmE5b0x%pm*KEWY2U;= zhl~nG{LH*Xk3Fz(%oQO{P#jt8c@;8HvB|IW<&N?YM*A)HMA3mzP|U4Fh|ypgOV}`P z4OcqUybJLRDS%>@`&%m()^8e^SBgvQG95w*z>&HUf>X4%0fF97WE2~(6oYlTnHbu& zA4BM>s@*2|EgT|TsqF?8EMd_|_LAV^SwBK(x?a{GtdgVrSVdT}@xdv8dF{AJ z#c-rx`Z^;X1hHQ;kQxwMB60E@{~MUprYm$cJ&ughxk~7_R4m2c%ux_L>N2Br!u>%L zK|XzCO^zbt#*KSIm%UuC(w_SZy?rH`W3;==U0s$C_$`#BZKedsY_m1I1jvyed!t52 zSaZQcRhu@gGRW#b0hZCybHqNCdAcsd>bWk-60{9&S@C6pf|Tt5WEydhJ+^KKj>63= z{-Pm;6k=xFXel0+e>!kqNZnyKbp!gg!6lvgW4&8#I;BTV=I?%=mD?dAotynCL#*Tf{1jbBSjEwQ~^;CfkjY?2q?XGSXeqNWq1F{e$UCYWG2JC-}`>| zyRSg@xBp4<yJl^-c_uhj5?K_;r<5C*f6fdaxV7GtyNiD_+ zRGxwSjyoasn!d{sDyI?aW8H&MjZ15_K^M7vr^?OpugBX26&mMX2eFJFG-+~slM#?c zl$TRWmShKSAC2o0(7{A1sHD(ibNI#8kp56e&UIQ(wOc@6tRZQG+TA5AnV1&=Wpup$Kw*{8eq;h3%RO6+H#mIlA7u0-sJbEz{bSkg` zN?7&M`u7AiLh+Y7#Z5aHC@F4mZ>Bn9CZ&l3ffk)*uRU}ZUJJY*0YRnkW>*!z&0js= zS+CUo?I-w14J-d!RqPulW=?!CCo5W8Yt!nIetpyZT5>xOwTO$Ov~1Pjnt|QJhIopi zVsxr#ro&caxT}4u8XIVvS-O6awk}AU=M}CsmbEbvXA`WgX}~7Z6r(m=G&uBKIdNZh=qi(PQQ@%=VOYqb*N!GT;S{pWsO6 z@lzId?90qPG6btl6q_dg+QZm81XKU##$-{i;msMK?2;hObCbv84z zyfcCGpF_yz;ba9f6)Tv;Q(W2Dm!>V}@xCZGh;I`8gV`nWq|#=DmAb&shCuYKEMR%- zjkvvKxj>Q@oX>1Q3R!+-g?}Oe7gp!#5ublftjv6PJp=3P|3pcmfnw&m_Of4sGcix18=pY?E|Wo9v9U| z#){?*Tv@ggm@_m~3CN@Si8SNV2w*QDvv<`jJb%m<9OMwvvXTwKb6!%-hZ7(!1%WuH6Rpz(RpIRqiWKe)>HDn`sHzs;nLl>8&WZkT=;@d(7}&fJ?CukCRTrku+ z-KEB^;CKrd20CXNR9VE+40P6p0=R7hhEce6e+Ded+P^Jg-1s1SU!waeL}m!w^Q{QG z1_};6n08G3{i>ltO7FMj+O`3(3iPmlZCv%uRsNSB%b&zI)+a^RetkPtO82@rNwRLX z0jcY?p)Xdys;fYhjDm{Ia1{dvimQET=YLcFBv>=m+BZZdmtVX7LLu ztHEXbI!*W|*qvmLbFmV-BBPtkMN=cdSmk7%a%TwEkQSpd&JXywO!b1XcpY<-IY;5T zjF8Y_=bVxo>qY>KkByCGad9XHIhRZp%!;#r6$qKA5T2Fhlt<)4WHMw1XF@bCH)kNu zds=}CP~HYV7LVr<=a00*^r%8G`P5_0bk|`ipT3!j-e>Qn)ze6_I6ck@Q6ZI=*omg= z^~k7@%15b^Q9;63#uKI{_WUxpkdhEp2*e1B^Vq09Vi`t8Sge{@^#fCb|5X27gIg5{ zEBj(hEDa6OGJHS!jjY>wt z-mYZ90vJunrPPD4ZJAp+1upY<3X%JfCN<*lxh0>F_d`ElQVDE!zh*&1Bl@x2gMYZ# z$yg`Sxke93l604+1|TGfDfr@`K`s3QIEVJuHCO|gn!Gi3EDna4_hP94Sk%_zVPZd^ z$t!r#1&0O*n|3@oG8TF{2T{eg{Kn;c@mRD9LeS#SN48fov(?v6J0xO^%<>BFj?8WoiLHsNnI-y}@-YAI! zDZa(rCb`toDxK}m_p!tb6+;Q`_+SIS{IG%SR#Ye9pWOB8B#tLH@Isoe>SZoEYB2~@ zeMTx_@wWXInC}tRBgIt1JASerX`&C}>Ru2>{ZKhY z{n$b-$|3Fvm^S&LoKRxn)h)FO6AeH1)6sI6sl(C2rDIY)yeRPG6xB=0kq; z{t3RXPoF*yX&5W??q{EUM*Eqy*5ln!4Pe^)?jnqJ5@~CcpytJvR&Q$&N?;8aZIz(r z1zkX`<|HV8WCrT==5(1$moDA;Gg=+&34fbQ3d2$COspgG0niyG0 zUV#~EBQ3QTh(@~_`J;&!q586swn}Uas(Z>qG^sJ2rs|GYR|&}f*-BEpRGn~?i*0@t z%xCe`Pn zw$3`N9kN@XkAu#b?6Zi@)Nkf!_30sg{!^1to38}_`@!$d7^VsAVr}8SS)xjym{KwB zNyr*bit!M-vN%c8V7nyA=_sbFFKL{dKo>Ii`^X7t*Q~U{<&^)svy#k%oP4^3mfQ&x zJqo*@`dE!%$gnvc>&)!mlg#eh+>WssSm0dIUbFp%!_2y-ht1j)N^lvcbRI0JfwZMe zJ*@TK**vOGgn#VEu(l%>tN61n2~^GuYz;GdF8_5j7Ko;Or_r%z-0?%OQZtWt#ukyt zfr>gExbqpQayP88xJQ)^yM9)%{P#P6$zoJUC3fV&h_ zg~cHH^yC3p4*XRB1ojPHz0625#mABX!^6wm2w32FtDHy0%nBuc2NXP7fi*}K@rwvK z`e6k>Q-+%(_nm3|Kr}6$PVA8`KtvHg1AEknuzbgW%`s!0aORvyF}}O3gb>fCh+alQ zVDF}il}0S9lKM2OsuN5zc6(zsF zKUET555rO@y&qQS+KKS|pqC1zo6NcCu}jX6^SSAjEdGPNy?;sj_5l81BMN2wnscSCd@h9_^7K(yYUW|3VWIk=mj$pRZV1p(r6HpwY7SOBne*CCfU*3z znTbyD1EeeL1X$Ei1l{}~uPw~tVzmGrD(?g_IvwNqS+xTYI=n6k*tCom7*&fPrST_ddc$g%pLyP8!r0r0;M2#B9ebQSDisn*35(*f+HSnUkm&Crfe0?L^PND$1GZS| zG@@6S(Vmk3&FRhkRvJHHtJVEA@Ffic)%Vs*kUbvQVRKv25QE0Z4lk|h8vtx?B{jzN zzd*}r4AT#kpf85v{0ld!>S;m4(RiuBQKQLUPEOaE*G-nAd)w@%u);%uT`|8gmG_0; z+b6W4$75!eyHNgw8b&NPEmt$&8+$AC-dH*^^&Vm5$kKr<@>vK*O9MYJW31YV1oQI_ zN&nA_&eiSbpGPz)Vk~%d$h(k~Uoc6^`G;)TLZgAkMoP@lVyC5dLooKlbujE+6iV0c zI@ll~x|s7T^i;ACLFM5ipRQZC4kxS#-$^Mf>hW`_bmP)p8Keq!S-+ylORHe)E#2PY zUY2C9{p0-=7^Wz$w495;(SEfY6ax7K%)Dg#5u2m3jD2YT)N>AYREVW{O4Oex(&A}& z-eTFZu5SBN>97z7V9_nUF6Jcnu4SiTq;_q81G5xTwQ=JIytKD`|78tiXg5%vG?=z~ zAT;N?D=Rxx`SZ7bNSR~K*|lSvk6ycWr$O11(|(jqIlt^kI67-Oypt#SnL25JU2y!q zYso#*(!m#tV2(n!??q8R3BK~I+&cS4)(pzwBaFd{CdaLQPzNQpW@w#nNcZ$xb{!m+ zytXBMBkA7*I6%i(0lN^l0UPhboFHMU;PdL}H*I-|rSF2eQF_%oumi*Q)?8wNt{@xj z@W8bJ!aUNWe*N}~w!^p4lfW>SK?0!b*66Zu7TBoTE_sN*S~BH%e~<)6Jg($*%d6JF z_|r|)pz249Jyi`$f9bCDfxU)SFwpPj-A=RJ1@?%2eM`!;-cS1Pg@CxeSIE&~8r= zmsSo~LR;9u9nGs!7NNZbT{l&Q7<+#AnKRe0%V4M4aNbzLO@!U~`nv(2XP-E)dLfW2}yRL%ZkhJRWx;AoIh>XhiZ3fjuiIn{C~ z{s&HR9{NTtR)*)2rdMKOE1P(e)I%toVA_<_vt3P`cl<>XKcnB>9sBWFq8RjZN~;nu z$UBf$c+)*xa+oV@b2J?^7jArICGLjvR-Dg+Mg-PfX24#L@gX-n62qr_X6(L;kt=A; zO|Bf4z>PBjSdWhFC|6f8W7rtw;@xH_?ph=gYlhh0C}TjTv(nbaDEoVe=B#t)&ae8& zpTzrcFGIb^3F>c)s_?u>DU;FmkZ=VeRA!T^=4Z>X# ztXLi8}t7AV-v8F zZ>3&CSW-w%mUFjnNRauN@3EaYVOKgBzRohkm!FMa{z{nOsutmv|9_?i%Htra6Z@^L zQP(xr`;bTMrz#&U|4J)BzCH4Z@3XM;x&TwI>K#?9RxNx-)%L`pfkx;Ci2G(^YtJ&p zqd-A%N|HW|_i1-2my7DT>nN}mYK-fz0!xlacQ>edTAt^TeJ>gZxpYcb^4n@+*H5Q( zCBNeaRZrAJdS%>~pL&)*#_gxUgl2xH550&{|K3GoPvm;I!uk7W$ABYbwTep2Zy1Z`?OAglpwqS0yre(oEaIUP=xzGIULa^k)c_G9GSLj+ ziIOIWy-s9i8`j!qdE}B`kg}QJ-lxML*qsAWc>_C!*#sjtMP_Hl?!Y7i+*p;D>won$ zpx;AehPtcy-@)o~X>WOgHSqA*M2NJ1^$a3x2u<%nu1(d%1)1J(W-1;oq@{ZSTK z&Y%rBrn3gaI-5TEkf{VV9n+8@(jA*_8ur^2g|dY7VJs&K^pKs*f9Z=G(YsSG#gBq7 z_CmVvC(DRlkF-Oe>th5MD~@A|!>|T0zBfH~$*P4IlRbpzKO?&6fN6NLpS~LG`ZEu9 zc94GmpsDEJzO%pX-{Lu z8bgxc4w1;95Xm-tBk5!PuE09UbE|I%K*@4oD^8+|eC{X0Mq~gkbx+`t-BAIMu)o+| z)MvH;RsiF%}%LaYjiV6A|Be@}E}A%3RuvFZw*6_;pt~UdpIX4VJ)42@A}Dgu(AI-mQ>i6j}wGlUZ|ZFJ*BX6!s7C1*!ZHvDPj2BogDw+ z*Bk>rt6Tad2nU}f2r*cbCv(w6m8H-l4=Fqym-R=A@vv7M0M}=s^_II&A5m4^HlCd+xPoez8z7EI(w zYP#~G56lKdR_D(3*liQI_}Yhg!ApE;Xd8-wf;!C2@X9l;0YJ@UekH%hg}vd84IYLD zSj+D-oFLXwrX7C<1#PB~u_1^^9uZUG{oS~SvmLdzCwd;LTDmlT+Sh^OpgmHE!)+c_ zQDtcPD}4%EslA{2MS@_$n<^&V6aD)2vkjvEj&Yx*tb4MtKF_$X^RuBW5}y9^#T}ko(*|YSOKa{?RrGkO6k#Rgy+wL zQ9{DKURd$Tl?)-hKzq7NL#G4sRy2-XXzXzDvo&_2$K#1?S(mVbvp-O$;ui zMmc`D{^6jpAi39r;gCE|O7)sko1i#lD)EqsvnOjWM`B>zhj(h}Y< z7P#Dg8vjNT462m!`>Af=d}2BAAtjJ>sbl<$9;<5HSY z1Nd_VFq7arDp!oZ`BF=-+Z*0V3ictjb>CYNQS-27&%>Tg1>|6C5>`r=bip13oqX61 z1M~I*DY6aFCTC<@|1Y!N1;|S|Sfg=5WB7~o6??BQ_ zb>}2F+qmRtWfx*KEFF;~frjF9tvb8d(YU1UebFP5zRpygaFGB)utdkV_0il6!R-CV zj~D#c@rmR6m+;?je~h;5zZ1=UAT51&{t|udPmL8PSB&diy?U1wp#I25=mrH(3z^NM zgP?e4H=*Xq4!zHMRh&>zDzEn*xj;UKH!1QplvKixofKTF?Mm(2Tj7}DDD7642R2to!$AS+s&Kyvyw#TV3%kn_C&Y<5X0YgD zaw4*-iTzf^z{k}LSSP%BJwru1?xmV;i!VT!2+*`%vu6mRkdJ!cFeC{?n z0q1Y#aZ_rZe0xI|v$2KPkhzSO+6x>K;!iK6`Ch^>HRMyz^_NIXc~ML42Kr-gtBo97 zgxv-ktF(4rSoOUKORCR81emvlIMF~&toZNvM$}S*|736G;b|X)l^<`~*4$>W%u#VR z`$*}m73 z#4ou5u`&XNgO}@?AvWeZQvri%8|#d@UwEO6K0G2;>x3x#A~a+|%+^E{KxHE0AP%UO zZn012nvoV^?ti~rfsR6)_3M1zgxUFfP+YYZ;z(Y9c^AOKe8YynLB2Flr**c%mYv*w z)A#xMP9Twi#r+&_h5z5zK)%OUrU|ibQqRW&5AfdKZ2eO3%#gbPp|6%d`}GO@+)#U5 zotLk@BwnaDY%dGG{{`Gb-nAeeq~FYMX`(yDR5~ZpF8F$RoVVT*lg6E~Tudy~$r!M? zti(zxOW+{)nmA!(iZnSKxg7IxIwI$GEi6B)}i5oK%` zcoU3i{}GW}E*tb~R>>cVge#S|i>qOcef<L)lSxq6{ zmr=7sG7YL#*HffELgCwz#J6fZ{24Zg9Wv@$5%J4lb%l6UVpqgE9~rAF4pzbx#1jLs z!NIpJbQE+cSFYG?GOwY5)mA{IFKG47xo)r5%cx=aD2o&+k`Hqsrgof?W`*n-(h;+} zg}BGZ&JAKZAo$5zXwEYtEer$8sbSeQ7QedeZ%R-6b+)j@_O@xUA+>THEDl(F2pM4^ zklZpm1S7IAI>O@2bg@JhYsTWk$=H8E7IJekH*;q4-r~#{k%e&lugJoxgzhcYoSVG2 z5D3}DhmnPm+=|y~AZunV=mv5;@b1FY1ie8_fA2So$z4S=>KlLL?kVHsPx9Zr3%Y#J z`tL^Ul`G=HvCShI=-S`hJ0Ltau27+NF(tk2#gy+RpBV2XDua<|%7$;6mvkbOYnh8y zL9Tvam??PR19F2BLNAGQebc96V>LUh1EY z_)M?egwg9^9ws-CQKVgHh7R?W!mt^Ha`i#R(hTQ7g8GV=U%w$2bQsQE_n$jMS# zj2kEo)6h0v-`5+pZH(UsI9O|pJ~~p`%ih-?9wkkq4AX4q5m0O78Of<HjYlk{HY;Jb@VvhTqr zCu(MjpSIl8KNA}mBKl9f z)@oYCKN$BAHZgbzSU?7AeCW`j!-o#xEV%iB(J19Zlg-fGeBQTs@r*3W>piTxbn9)w z%wG=P?v%ra(KmC{!O%m?Z)o|DAy{T4{eL*vFe|?W6t35`>$by(yuCo~M_uvrUzj!2 z7qZo2|3L-Rpo?;+KzF7A3VL)r+#<`P#UU55Dt8L`4gCA37>3(NePY?07U zPN(J;g5_;R79=$ylI_4w%bKEa~jl)H7XH)uvs6s=xf{Imx4LX;ek zyuAj#!`gd&H|+f7$CG6Ou*k8JDkX%Wu?SaPMv%4+8lzsU4`}$@FVyN{VWqCm%z*yp zWRh%|kKUI@h2*Z!h^3hqk0L$dIL!5w>iQ; z2(qMgQaClXSZ{**UZxL`xt`Z_Ib&3pRD7PtA7 zG{Tg9=aGuO+wLZ#t)DZa3ux$FyReL5Gu#Q_zkN42T1B%z_@I=oz5@1SkpYub%=Wjv zOc=}iasVqa`6Qq-rVhEoK_I@NuSH+$B*|BtZ!Hj131^oG{Y(!i9;09&Zo9A3`-@Vd zckkZid(eh7Mkx!)V@PrvcQpf+Z8%!wGYKm;O(Y zcCkw{BSvOeX9CTj%>ffZhfrFhL!I_90yjWp@iursX=#_011+7qDrt|oV3rc-ss~za z2>o_+(mU6@v<$#D6FN(9gd691icPaD`VG3L33rJto8KQxRwp(9)V?9jpL%QYd5FvV%z?Zemv({=M3 z>5W}MOP>LJ>&K=VRSS2s`fH`l488T$X=$wjV6DT$&_E7@!9Wm`1jP@h8F&&wEjCmB z`gqnt*L5!5PW&~UF}C?5n2rc6a=Y^uJhd;mE3i;d|V|r zpkY->#D-plxX{fT8VQ*J-F66>xwfogQEtO5Z{U|O-<`Q>S{+{PzcClPnLQbz3)LS? z%J$K6GEAw8^5bT1fr>(^ZGQC$8=I_XiMfl@EZSO@HYdV=Jwo~!g(0?9!n_h#jw+bt zi2%kh{XB5ZD56tblOnOp*`ny5ZBljHJU=l_cqdmvWn~t@_#$1ueTK~NhA1#>FjgnTN}1AU+GVz2ChU$RKA5g12U$6&eJV0x z==SX&tT>0g#XjnhS0|e*jjZL*0snUY%Uta0;Cwz|Dv^s#u*?vbTi>NK#Ie(mT0cak zn3nc5OtpCKDeI>~_)iOa*Z{HaNqBw<^s3qP0)BX=Lo>TL2??x)2%*4dYjXPq%UBtAU{R{>EvYOYvk=t{IERR`z9nd zy~BdT7i3;sT`>B&HU6<^`0b@jXS4XxZ*hFBo|8A}f@Q}1;X;wms=D!(r}&x^DC@)0dRyVtB~(&PEq+zJM2AY-GACcLK#;uo6WMF=cC}XoN!yY?Li}{l` zZak`6Up#==8L&!79N8Bt5ltv=fa&0imGU=wOk*Yk_3>KlDeG&Ctz?;KR=Q>J;wG8l z2|(nwJsV_M0lF7)ZWT5eTv#)J<{SQYu>u*3-F=YzmyR=5%r>)vo#046p*?7B46X6I z8ur1Vgk~gXWPS>>^rQ8)4bu-oQs%6`RnVtb@q0 zJmOjRP@+3KosaO7at5p(_zqDCDx}w|!Lh-{14B zs1)kL_rWRQTi*X}4TPT`*Kijq{6u9FqlPEs3-^HmOSemYEZ-R*c^(>%oHot%Vgw1_y>fYF&2fTgSBPYxpNNh zoAa7`S(-TVs!>XL)S5V*X^=qg!YKUOT8v6|Y0{9a!q++9S%+1fcrmb@G0xrL93m9v z@%ZsgeSNy1$1JSWm-PI5>QCd5WPa_$noDv(5{c6>R&l2@1UhVxnMUm-emu2}k4gr! zyg}F(CWvK`1#x-&A0z7u@jXO3sD%h{WJGCZU*_!My~W zqSb;fA;fkodLrjP20r)<&vcye^zZboe4@!N#PEfERA1!8`F_5y_Lv25z8iyt3#Uf0 z>|VFJjwgTA;}pNPAV;}_i5OUI+I4l1Q$YEZ*c(-5X!N(_;$RuZQ1C~aQSHxu`)!=3 zXv$ovU%xh{fs;dh>-v9D12K<{-@a|UTUX34Ip~-b%Kn_(Jk0RY*Bw4b=J!!HKV1!M;br~#%87)ub(r;cAgI~z zwSIl`N-^yz$2kG6Rxa79gZd+Xj!w8M?l73Ag;LJ#orJ#YbI36aLw;Ko4Mfa%xAwE+ zKmeiYgRtq?f%hfrN>n#1sw>$Hr%lHa$KTyw*5@{@)yDSf-k-ldW7cDnGx|GekGmA6 zEWg}jZq`S)sgXC9KdNEdLSc6VyPpfc^zzy~sBw<}i^#EK$Igg|Np^js zK2jApFHWjY&mol8AF#`}7NG=ic;F98Q1cFfIg%Ek1SXs5qI2bXehBsm^V8++HD``} zn4-8aOH~=S+Dz86o=YCf0)PQ;XJ-h~UoOZXi5$?b>&v zu{YCbb6KDroiF(E3I1)aS zM0>iitgX?Y_tCQ(fg8KDY}v96q`x~G`TW5^bC`Xa zxUx{}>s&1GY#I9)yBby6>50`IKXzBLn4XiRHxMy~?$7_ByOeFNilZIF(4n)hiFR&M z*OR4;^j1$iHqec8JhQI-g7$-Dm>@0(8gwjEnBRBOx=q+tGcb&6h=bhWBFEx#JFL8G zu4?2oImrWW`TjR*pmyDkW0oa!^Jks0=h0(FBl1!DmIy?3dvK+Ump?~T!l++FDmH;R zv3vKNkLuq3re&u<2=$+FgrL0u?8xiPfc) z2-Tah(O=@={c4Qre`viJs)pguGiYetEHds&U=N#_xHbBe(%&w`YTp1p4(ok(Zkg44 zDbn~c219(?T?xpvd4_+p@ie(H`lPn6T(^S%ehp-8^;g=bA#AFlf4=s+;uJZIFwL!| zCev~yt@X$XJi~#o31k^8>E|T>kuT)VrUOm~$_(70?x<0;(v^jo`^f{o==@N4nh7 z%gyy=>PN;Ie56-O7pkzDki?e_f>yO32;%lkpGyHxrnkvL97jbOgcLcEz!${^ItZA$ z9|z6(K^at5j$ayv{NjYPYbmk#Z)?YxkDmn(!PBGyvhqA?@b&zP4}<+D$049PR2 zR1pkiUH5q;QkMedV;e4q!sV>0c3p~f*wl>Mi^R2WtP^DK-J^HQsXRVbpSQ|90i38_ zB9VkA+?*^=`ra0H;kSkX`Q}bZ5?NzORT|-=xIeI4WB5=QDPvI^YfYGS23%x=R{u8V zmR1qfnsW0jHeBX6&5ck!87uewJF?u+2&jqvLH=xI0}`rR`e*r~a&AEPG{D-R@AN1q zl%3kOtxib4N)w?^^f)_|gO+iw(`KUi0f}gzcr~-Nd(D9c5>&{)+>4x%$MY( zQ&%EW-`r|5C`MwVab2&rUK1pgR0lj0;9aT|GEWj=*GQ2%ght#?Dwtd$w3=G}j5`30 zOs`;RMD}{|JlUf@CtpWZy0HeYsXJCLAqa<|D4mD3*42uazcoFk&;6vtV*+hvUk_uM z%BZdw3yiCjw70zf^EJ@&%eg{~F?~bN&$o1si52{%$Tia%IY72;=EF*!MdYC$zIqlH zMIe%?ei35)LwKLF0c)<))lCs}(jqJLIj}}LHe8%9fS6{q*`@R;a5HhGWx-;7QUQrm zN<4WhUdB*`hV^h0d>HF?+5+%PU5M_gwEcPMwy$XefNDBmhqAL?SWOzzC>7f!0$Vvd zTpj{TlWvW0-1!!30OF)}uT{>7!Lg1wg( zKD&bTCeMYC)jlQ8h0PN!<6?LSS-WdI#FmOxL7kZUZpNlzERf60veJc+6XlV-4whRK zHIuQNqeD$VLMZ-O(fPg>t0qjGFk$6{hJk{&r1wm^X#p(Oo)CcHLI7i}KPLAr?6-rM zjLC%EAI64YO*v1hZ^oKl;$aiQjjv(nF!RgX9Wy9LjJBbyG4A4!Z`@>Ooel!zu`1?r z^Z~=i%uv-UJoQyG6a$HFkQpk60s8NXe5Iy(6HkETL4$h?H@!Zjlj;ewiUt~rf~MfC zDs`&K8t%UstA_u{{yOIlgxw|`HJFd}H!Bw`Y~8jrC*JZw9^z zw2{2E#QZ-|6~78?KPysKG}upJg)36`X8tT0(Je7*mryofZ`v#$^)=g-l0;%=8w=d~ zQ#-$KN)o^v;6}ghTM{xQL7&J$MIkv~C*hy8JOI2vC>2*iGY&0ZLW*SA3khQY(}5GZ=T;Bg^XeJ-w54#99l z(2x-5F-U_2L$JZH7|tG!y%hqndr$MiVc4zs|N9y!@tk#RX$?h-VsVLCbP~!#`M0%~ z&bYZ{N0xMntjV@(l$EfvGLL*zz2f_lQX5uwvI^s|GTZ zE?v6jr=LP<;QZT08p*v2XhO=GUy4L_YElJlze`TeS?M!pEIt*$x#P!oz4zXGn=m7% zF>TShb!%(Tn`^%x^Af%V4mzES)jSKVgBw&m9cj{St{UU|htiU~L$|wO&r|vfx`(3y zT^CZsjHao&t)@{KEhM=VZ!YZAypn(8Y}{Mrix1WoDh#$;b;P% zRk4O#Tx}^MZu=W{)^<8O1?CVgPtDBI-$kZx8&on(GSGoiGn&WYS6uLqFQT5J{e{V` zG?+Lwkx1&4+&V`J-G?~@xb8uO#o_MB=~Im|;WXHYUzztEj<5>Q6~PQid@hFLy@my_ z;oz1Ru^Ywa05%5LnjYH;l=^|MhQ#YX)Gi;QK{;+8L4mJs0|>s*Vq z>RZf;nGxaZNwE`fS*l(#4yXT3HM+_iGTvf^ML`v%_#VmxxWogCf* z(>`geW~SorMqB>q79MG?=9iUrSlYe?rN0v>-!4a z4dEJUWH?=pr!AZ*3$&u14l%aGE=y9cpute#)23or9As^vus{15Vvn+GHqVU#tjK<+ zUV`gZA4bWo{Pg1)iOHAO!5;FkfDD%D%|U~BWbNcZgWd_YJb}{v=SJLhb_<#67~L0~ zhiK2(?wlvFR_26#zC)Ohi?jXQoz*t5(-_W@d%h2@)0CV$e6b~`$1!Y8u4KiU9YdO2+A zyL=FvD@k`?8(mzC=n69!^Bq{+qD8TC>;2gKrS@{(h((opZyz9!PJZhYb9B-?y1=yT^>5rc5UiBuvQ zKKk8b7p=kli+%u$&VI3P<5;r*n1fDEI6mcM(4G%TOa8pzeq5eQ5w8RYorrM(yF&-T zEV@{)jXO#Vp7Ff%k`EI?8wcP33vtbwpsaFEe4oza!Wd!V8~(Z#5J@MmcAMU{^`FSs!HOf@S|`A0M#!VX-q&9hwy|tev5Q|MvfW8~Arg5; z`ipekc1)J1k1G+b0DsDi@}V~WuwrCEXLD|v@$L-D2meRPI}GXC+>%i&Y;*|~Vo~d@ z`@^n%am93TgYJ*=5&R8}gaY?i`GEGm07m8B*aJ$6$O{1sW%whSWjo3v-vuzbzl+0$ zT|l0J_gbDkYUNohKv)mE2Zmv+KvV0y(?0$IP=L*i98vKlpM34yZ1pF$9pjfeI6?PX z2wNd8#sk5KbwwLDmOSa-*d*hvA5AM6Gg(F^efioKJ@=_w2s8G|C@a0>wMN5AVO$7z zpa+eJ%N~IA=jQjc6!>FTXZ8ihQ&K>Aw||5G*a>>@go z&T!@sV?FIHwY4kVY*00u)dD z7fmFhRL!4*%a2d?TC7Us`5WRcfANBv?|HBcs@7zZvS4`}`dEXD`Uqri8vsOQ!S)*b zPBZopw%XfV)`(FdFFVqmFU7~;IK&s{1fK?GkMo=;_X@iI&+~PaLQTwAk)4r)ib&%Y zl01dcJ-UsYhCp-yW{Dg=0P64yX?#*3){2-K;mbm@YkoeG6qE`iS>sEQKOE7=$C!>( z4|Mx>8rtAE*zH>&Hb!1TatnquEv-pAmvLhpss1oRAD$ucV7n$0z0Ab`Ky8m%BF^Wk zsEBzP`g*XD>DAw8L+5@jM}~V#z-@OAQbiYgZGMCw88W0;v5;q>vbyD`8Yn*~ zapQozd390Os+zX@G2()oYu`P~(7Kk*d9AK=b?r#CF%{tMOdU z#a2Ag;TYVa9>Q1~#B6$c1Ae!zz>g(9*$Gf*DXlWD#k_o_`z{EvLhY@9ea#x9EYJ|; z09#k{1X^G}6#>g%G4+>ex)6tz?y&(f*^mDwltLo_Yjia^VB#JVfVk3FZ7GKV ztV}S)Z$eCyvFieY2*cKV7Pd90(rPWl$s9yz#)N#j|Nk(nEZ?bbymhZA=k@L(RgU(J zz0^aS^#Ng@2kV;7E0UO1>|4KX4YZiQV1BETZcy=L>UoiR`F#d4CQDz) zk-&KByXh4Q@;*S@5Adt2Y0Z8Q9jj#xe_v#GV91@Sv8_oH2&t(YUqZ|l5vrYOKMPabar?3{yP^DhC>#&#tWs3UMf zxT~{nmrw?S5I6;M1?#7dO2{1zfKK+ac^>_EvmAe%pYB!-_Kex|!hLUjlOXF1Q_4z9 z@tI^pKUAN5zbe+{h?ATw>}b*JmxToR z(8Vt__pA&jZ3$7@<)V6O((V8!+*e117^&1P9cuhoRD_yNOo;kg9=b2%D$h-jDy3B-GQXpy`07mhCxInj#ThP%b8L>Hp{cMETe~C>u(|rk+T}^X2NRDzEPFFGWx!Gdtbt4U7w?>Bh9%tEJ@JlcG z!F=CXI&6&e&eivUui67Z8U^}3vwG(hOxs2&x@#IWb@(}7Px=(5_Krt8-YZ&&(a195 zVU4X~?3I%QI#vr)42T&ldz#!jHeD8Dn1tHGW-k(%(%!?Ple*qN;*eVZVb7hS8V@aA8+j=x}?bM6c zOIaWp-COJ;kso}mQoi{vrWC_2Yrgqp2YB+pp>|3!-1}f%x^z)GXD|Lg(wBGh?$EKo zFdo@Q^G`vS{#|HVQkw(;#K?WJNY!F+J5Z~;q}1*QvrNX5+Uk1>cA}t>tRO%`{b8? z;_%_atNK4(zICeTtC!{3Yg8w;Tbf6E<*7mxw{ymf8O{iWA^!ZvHJ{S1%Z|J1a7ILX zmbHf5R`uLf3A-40{`tdJic9O8r+TAK!#?iqeiHXuX@SiNwmlz7@am304^6q&h?_Dc zu7;EUt?PfQ2C@|&HtZO+S$>TpW8JJ35Yzy@>f@zM_(!gG(7{SbPg?J1sh#{y$Jncf zzL!r3b7$grA7%%u9x~8bSYt9?NP5yhS7a>uxJbmH6QP+4ITmdeY%S>cMcMfBS%FcB zJYvzpX9Xy+)#bRML!jLcpZPe9@$XQ#q|xQo7n6=gbVuIVW+z@*J-ely$3uz0F!N}+ zW>)!*j$`G!c3Vob7Teuctq3#%G{$!SufF1tF=nr*u*#2noaI3*`crA};$WZZa#7)- zcK^ob52+Za6@|@B=(SJl(NCAL>%ls$hes|2U(a67Dt*EG`(C9O2&X4ISFir)3ar$B zRFu3=kYgA#aMGH zr?n4(*ky}USpdaJ3hjwM=3NNdO*R?)(%!pdYDkiChf260q{?4iEiI(ZMwnoT5ScbWRfS!!VPrk$<84JW7(!9SlHA+eu&8R;DcnIWgc^33j)m3 zg^27eP?q^7mWb;w{GYm)a4Ak4@>Xt_q%f!8sn;yL0S|zRG%GFz^hxx%P|3cRlRK za)C^~gs_l#TnBS~3kVP537Vr=p7)#!0x<y|M1DSJMDYtOY`WMRY%uPEzf97tJz; z?OfLkjaU{f`3)Ax`gDg5F9d~Wy32y+WvxAHy5q(Y;>ojvA`#2EEHyE4%{39+uo#?j zHo(vO;hjGlD|m=HmN5toVV!@>X>rIMhWbjJWkZ?(T^V1r3}Rq%vZx=Z-J!#B9O-hI zi&Y&OXUnR>pU|Ycbh4elGGm6Z`BbtX84a<9Pl)%t_gZS~UZfxo7+(bpOUR@UUsN z++0Nnu^GA;KOO7j;aok8ulM(YcYpUt`#Nps&BF>Gu1=6Sv~-QB&$*$4u#)878jhio zbh`USj~-!tl`*iu(6DSI=UpCo=bd-H3M&>Jt4MY%t~=xEgk=fFx&X{ibcj`1>Vg-k zfzn*&_dk)c<+`7J&s|G(g9qA(7NK`I*0hC&l{$N3=zi*~q2LVzJRi2i*@DI(Z)RsynP=a6LQj0Nh4K{|GKFvPwUW2t^vYUa zet8<|w@9RbUM0%j4v{1Ji&&Soe+(&dByOnlB0LscT!o2`@{CdzCW-~ zS;CKX8ZI`_hp}>Fx7g2NxBd)d!ssf4POQB&=pF;)XLRF+V=Bar8s!syAT~8=(xm;* z`>CZ|q2GJ@XLeGo<$M@g9?y-`=g zE@N)88dZj9TB@nQ_!=$B4Mf+Tf5yM(qzhuiy+y1K(ZS;hCWRenfX4S|ICfX)K?sbQ zv8=grJ=(eRTmxPC(fj2qfuANyxyidW$w9D&XN4{)V{QQ(dt-Y^>Gsr7NfGsBQ}zxn z`+tPV$6wzx^eo24V=u}I9kCGTXbDzcT5Y7bJwZK-nb_AF+%o(uLk{19)~6?|rlZKS zaZ8pgaWGc+i@n&6uX7O_=Uh|<*c8~1S ze6!DwUa~vfNMwXgM+SQqb}8j@^2Lkad2p^h5;^tzC#|bL(F6X&F)lbB!F^NiEsuyY zBVm{tiIj4%Tz^MWN65}Qs^UIEBFQBjjLnNAkv_E4^P43SiA-`KhMj!iovCFMz zT)t=!6^Sn8hc*fPZ>?9ca%f}mdwP>aMm{vOJ^=qDcvG2jfC-unjNvnDkD~5qe zhCi?af}W+Nx;;B*&Ky!EWzz^Z%Tn4u+jY9;H1crVaE*+ydz)gt?-4?;PS(3dJ7K|c zw~rW6$wzf_1^0_SVK@Ak;6bcv++9eYA>M#hzsyeps}1c0$ zLqA9sX@0r(F>KXxIum11If{-d4P%XPxC+@D-jA1mf!>5Zd;ujm@zz_N=)=8RCyTRZ z3FP}$U&q?hQXn|_uFqB9*`H zPwV$3?)Eo%OHjzaQ>2nfB;Bd=UJA^0UuszX0}?njG*2#!e1FlfBACob8QZWJdZZnG z3^V9yG`n7VI4aJ+`U8rK{x3W|o7UKhZACSnEC)8!v|REG?aQQO?ax@y7L&YKZw-N; z`m;1sju`W$lezwAzS$ZeeC_g|4)XU6IdU%!61pEC@)59TlNE0r}+Hz?&a z=9s%T*O{(|Q8s87weO1ZYTW~4FwJiNz_`w=Inl1y>FDr0X_`&>_0lmcHg*5D`XCl_ zz$&9S>8C=wsc34r4 zRA8rwRZ5WlgOhMWJ}z6jOzG11aq(_C1ysF7K%7;L@cdb4hGQK7EmaHSl4X02gr7&; zu;Qr*8#}?51$rGMsZK^G$+J!0d}V?TwN?1I-n*o!%2YS3cq(9*4ZimUli(-sYgI`l zvFF85hwo9<3m#O62H7Fqtuz-78Fi3IyBA%Y$-R!cnqmSd?$yJqYlmSsL45HS=BG?C z_r=4^cuVI-cok4ibXUgF)eh64QC!k+5VNdZrrY{A_x_~T1 z?t2td2^Rum0E;ztH}h?a=4SZ{wiY?>hIG$Y$ZfnH<%G&1H}Sd?(yxmEZPcUO&`e-H zt%Zvf*dh*uv{i1Je}<Fw@CF{F6p3J1J{- zmM~(20EO&*n*KXLSIv!~9IHNUj#A8UL#iiZPiTg@xlN9hRnkLE?)n#U@zv*2OYKHEo}9b+j7(Gb zUMH+xbM6s!*i^AkjdT2^Ip?{<& z--;cZs;4&>J;zVD_ixM%E2}ym5BF?X8&m6Nw1f|v*)sOV`Ly4{F!s7g!6?`4NFCoFKWj`)7?nVj4Vx>mU= zRA{jDq=U7mPis-rd#d2$U9Er5w3uyYvn&}OIRj$9lntyIdjQqK#ae%r%DD{r6FBG8 zS|A7FlrMtQ#nQ@KEP1oOQ#kdS^{#g+pgRF)9BskAF`7#2TO!wo?p8N&Fv?LriobSbDNQ55ZOe67M-o^s6+{3Tez6{UOA3Oo`vjE_1b^`{e%8 zzDmgdLg(NAq?VU=(U2lh^@d-O@$@rN#b%$hZ5jwkQJ3%L`hkR6xT8n<_U`?XW+wSE z#c%xa$Crb>RaJ<)$wPGk%E|BrP)&3KzUz-TkLCRbGG{h@&~%IexnCy@2@Iz5eQja* z_1lIrmiw(gw{Aa7k`F)ZpALv_b34me;O@Gg;WqW-glnC<;H>Ryw2$x8R8~KM)!CA= z?9rHH*Sb|2;GBOkCJWHgM}1iC>C!x8?W|d|c5@$3TJzz$$QIx1XwE)|9dMGb&JZlr zcntXQ(_@MSu^S^MU&oOX)6&EdlVWbNT{EUxV;WLQcTcb$MxEs;o5{|lYY=0VAFRU) z<8xVQz$mIUUYO)qBUp;`eFmYo%F|B|$K0<8d-@W^lY2YBlD03fTu|thqiG3l4m|qI z@1Gz?IrejzW_|vIU_8>>`Y@}bVm!LyG`59n3(5v_ zXmI6WY^a3z$t_#9(3Z~FuG8UZ6Jh_L>hnMXz4Ihc^)RfQofM#M%W57Ra((X|Hv1(UclaVy#swNGat=MzpY}qjU@> zg?_VS`|P7c=hq=QDM^jg)Cu^mP=NASUz{C$96a}%M^J3C;3?0T$!^Co@JnWh^}_vq zW5)7*11zNZz;hBigJV3&2;yD%US-SwS$ma@O)6!s9Kx;SJ-k|i;9pa)D-2e>X!7O2 zR&u9GkPk{%-y4H(ELna$Pv8q&oSzc8?kAkf{Njt<=YF4vmp5&V_N{ERKNI<_h;v#G z81G>hHf*f#@*_`)g~ygJTQ*`X==6?JrXtxfKQy?DLSD2NMA{kOeM>t0#9)iF;ZDGJ zZH)qHErf!@(qk13(@n14C4Rpt{w9fg37RD_ljM588+6T52%Qds8>DiBn#!quDz<~7 zrMq~C9~|vKfi8lTCL?moUD8H}jJ0r}zk%yrOQ~&=JbIO?E5tOf)r+wIjlRLP(t z4dPQH*T$Ds`Pu$EdnImb^I}N@abskcrZ!O;mjO5`4zhIg*IOW4@rwCdaMsJDSs z9Qne*ima8zc-hwKcBPyhOa{)oM}7pcdQM8FVe{w}b0MY$<=G_;mTfu>J^plp6mT++ zo<#R|+^tcGb)-%xx-kuNB9XohnSCD0_@P6G#uEn~u}*1`I2|V8oF+lO9kM61NOSxs zQ#(I9w5~Yc-!d2Zb9t3QMYQ$jA2=hkI^8pqE4v%&_c^N6Gp5l_ zV>rGShuc1CK|V~rD^Uquil{+`}K(R91a~g&^OR`M9Vkcy(=%jo5vTQ78iE2@#<#2 zzC?i1!YCyc>m#s(*CAuq!Q%cMETkyc;~9UQ{0K@j-<`aL5G?jObh0S%W}eq8ro_x- zEdDyhydE8k4Sld7IsL<;(=SWgeVci#R&*NmyLt;^-(AKJ2{J1o-jR?Qlh*Yibl1b0 z?GDe6Rs557E(lSGFcPq@hZ)AObdy!iz&x~s`C)zzmLX)7Xmac>Gg);&@mY;nT{2(# z!3f2!1H_Yhzw$~BAD;a^Y2QjPZ|=kF={kvBX`+K;WUT$;n_48}`M z7#4NSHe%^oT)K3LtRx~qu{N_+Ow+*;%)xXK+R8e;rQ^L^(o~YnO;>{LWli$-(q(%C z;07t$bL8MSsO(GYnc}bioI)dk|^6 z^?t0>j}G*uJ-AX*Wa>s=?cq<#nww80<<01&UNzQyIWqiH#4ZlMo|3Kxc83Sb(L&&_EZjVE(GnAYYC;ov+$-Fg8#g9I*n2RDrvoq=Xp( z8>2KPM|7rm#L3DD!AJ@-J=w72|H$~l_kEtWG^e5Hw{`yb7$#?oD(=ky2pgO+NVplQ zdve45P?2Z9e{%2X1qU(Y~(8F8ezbf5TZ3wy3$1MiEU zU*om22gq)yh`hV_q^OWP8hIwNA?)^{?pPVDHOc5@9=ZCi=^Mg4?G+yRG$glIP7D5) z8S~D-4dRWUN9mqDcMw2KCtwr)NSI*)owIBWSWCR1q(0(L1i`Ny1{~ABKISLZimD78hQIyjGvX@AsMhc;Xm;G2t>=z)hg~57> zp;H?{x1p_{3gK^o9UfIV?4cVdZbeQ4iOd6GDOVdN;uRvRJ9$~Dl@O72BT$*|Tqd@mpkON?X<^HDg?0}_UwC#>BSf)OTzgZK|1!qbufAh z`=Qzlbe#bWsD!V~fKfRcH-#qQgfydf;1^ojDVu_Ca8221(Xg- z4=P2f0@6ze2?UZ55|R*-?Cf{nnQb$>v$@aj{qMcMlHnnH=Dg>eDc|n&f{gi54k?{s zvbh|~u>uRw9aXI<*#&BwOpoI^0%{!{Jj2@@2ZyItlwzZ>6rS5XE6C8ZH+H&PXH2GJ zW?Go**AcY;2A;WS_$0n1tNQa!%AiFEIT2pR)$^d|{uu59 z=<~kt*3UJd#NjB?P_Xe!0!(bP(vTJE)_gH+Vy2tAE;!a;4J8h7(dj@FaAz!Sg}h3! zs3$G3@D|Fr%KSwrN%~q?GwMy%EB^|VK4-n%_0S%!<=k#P(nVOCUFB|N`*^X5m-(P97qIaN&MUl$Szt}+FSO4UL&m61 z-}~-zjHd5T@jI~vhusyowA#quhw6UbH%s2KQD)HJ@At~GwDe&8SLub`{^!W8=}WNS zQleLYTz^GrkuJq@mZPiY0ktJ>}ssy{xbmgjg$y9PurF+2f2Q$TcKnszcoL z(%l;F#+i;bLEXX^$EFT_{zwEx3T)j|gjcGOKE&ag^ytx}{wiwtoJS#34?8cC>N(U5 zZ`nwq{Vs>-@{ts2ZCvu@Gl-Bgvy0*qzdAEgX&P?T5KT@wWvzXUt}8;y4*jPiTKq>r z4#>oQ3v(yiDf)2wi;nOeeL|k}B6N*RXDL?rH~OB*J69V3$&c5{wU9MlrSClZ0tpF` z1lJr|C|wEP^y#IhQo(s|!rcFj0}Ig@uKMhvUD)D8oc?%clqDP%zMN zJ*+TGm?I3#$FVFjl*R+P;TFe1P`jZHp6UJXFjLO?q zn5d>RsgBzshdH!h!!YM_{xqWbzlU$;EwO~KAdQdp*hE68w!@GLo` z&>_I5Bv`ImN*t0>~DzVUGZ<>^RG zYavDk*e{gR>8$(2W?*QP7Fw9$)8fmDYV>-G8A^Tp652UO7eS$zmO)R5UZL*};Z@&b zhe{(yod&5;3ygX{7+X!!O6E;u)BnaCC|7sR^|WUt245U;5L=~P_l1<3JY#RFem#li z6NjeC89y!6(vFuDY!Hcg&T%W=jgxVtf^n{tA`xi^DX*$ zS?T*yPG7Q@)tt}QEG*rctqVNZj(v}@Gp!{(+;|4ejDNw z(t0R&wZ(2dT2~z^1}xsa7y#3Isjc&%Dp>A{XJbr7_VNSd3v<~7SDU&Ff0nyVP6eB~ zv(;T{N-!&Y?#^~60J1G`Rq$7`Le6dHVdFGCb8oIknw#OCWo@MtEP7bGcR{<|N(O$6 zS8M`WXb0Uzc?i*V=PHTMEZzNr?$xf9RPv+b`qO2!iHfD46iRo0(k=11PQ8GLM!VFM zic#QG_oW+CYR*1=`m@_wdUpv%Syj`tYaWo&NYj4u!q#YaANRmY-qucgK-A>NUKmVz zjB+W}Q?+wmY7J#8W({GqB*VP)Dkn!`^ziTPp6l}oM&{N%=T1fO9`Tu(nItnaelJ^S z%}Xo=n_-!mC*I=$&>Tjhg9Y%>3$`BSS_Nzz9UxrOLTU5o?w$2W+-$mLc)T2B*zErdtT~ORM_d$qW<*>!Vnup<7J7d* zeRHx1FAJL`PSChKW<`xBbd2ZNbX8i65ZljFRoS@#JjbRBY(RK1wqKwS&ls<|N)Y^; zdax5QytO>;z0TC~8Jdd{S(w$TEH9Xhrb4=@Xw_kiG@-{%utpZQ-TX8ToQfx&T`#{0lJW zD3=~+&2MRbK9x%;O6Mzi*KJ)qg;cU>-9h!|PQq_-ogu*V=SE)dl8DXYvDz!}DU2F5 zO4p02#bXaOJ!rLW!T9mxt4T6pF-jfkG9I`G1_tO5{>HgF#d#-x9%sN8C1y*MDO08` z@F)pJSq-wlUiZejW41W?Rf)|~gO1QG0ykx^AzRW1@K`yw;z{tC>+i<;9)_c<4kZ|q z-sp{0!9<>y9!KbR2shKz2 z%_Ze4GH2}Av2S#fS5=N+{)t|?0XftoVQhlN1B04#9>|oWhzAzVAfGA8KMhERnUDkv z)eYh=Z%e0{8vEnISjs}>>C?G#jD=>-Muvw8b{S^>3Fkm&%!Y)>hVp#Sf>C>WIGbVP zOq!%To;sQp#)37CIG>^3Gm%cwhs>YTfAB`%(e~n4U(OyQ0s;aar%O)Z#KHErb*AxG zzzWmV4!TQ;-ZVfM(hE3lAkm{+IJ3A6g`&>?*wa1oq%dqiEoqCdo^JBz_3PW@b=v&g z2o8@q{tl4CNCgM>1lH0f?ijy=E}L~?$`f0*bbu2CuX#l;46R8ojJ6^@u!X>m$g!?j^y8M(7OlKRR69{6Ya3OR z+FXK`FnyaOE;rgXcV*2w$o5D4f0O7?)(v3oJup4p6C$rKDC3gA61nL#OpR>j2c?)C z^rq4L#Iv7M5xi*pKTBmK7N5k9i>X#Vtz!`-@oN7vLfCy`0 zm^gvylFMfNTXG;zt6AE{CyU5z<=w-633tasQ7Y5x7Vs;jk8mr_1+=5>B2_)$!kXdY zgv|x>QmnD#v&g$22Uylro`dp%?vq4Kyb)>5ly~U3z=7_LkMN$VCfEKj5phvBS9ZK; zz^J2`W0SX{&`vR&6jRzBh`T&>9Y%blBR42l--F(lVk9je#l*o@3u1agU)qMSidnb!1p;KmtaaLh)57R&^K1 zjGjzP|AS7wKC)YBFDSw%J}?;!`X#fYze!?MPOYEHu>2phyb;tCh1&dn@pk-$6VLZn z*cl2slJU8tM~%1Ea4AQ*uym50CxBJBX_C6L{yONLAKTldl+8d6JmwPF{?0%rgVlc%99 zeFH-+Nr9-24nk^ofn|AGKE?RTihg!Z zU(cXv{hV)au!-RLh$Fvv%vn_j(5>p){fJ%o>%^2oJ>i}yct(b?FdqMfYPWKP2XFp* zGxk$xg{woYP|`;eFJq!)0(+W)-ti1&Q2_X+lMuPTd-tU`@pSO>4_(*DAckm zeTFPuyCuiUPJ95&(O+pY;>4TduU*4}TTKgbw2D5bOx>+!;y22O4@|-Yz4MTu2`C7xV)Ulnj$!PX-6+% z*0gbE5W+KvLXXJnfXaXldo-`JxY$|A;zDS@8?gC|5Ch9oAB*eu_*-6qm;kj+0>}3J zH<-^$Z(bHQQ-FD`F{9svS4W1%WuhH5fhurBoAuCs5M_e&ya=i}V1BANjZ`HnW@1R! zkH+l1#k!Wl@CL3n$-K|l^v@0<`%a_P8lz+9_iPoW$;x49rf);6sO?pwhI3%GVZ85d zbK!@vJT(ufB&NRQ<%rxNb7;r+-mTdj(;y3-Haf*B)`L4;@I1Z4EW;p+R@7iZnzfO1N}afVUy72A>HTVk11_G$6^Zl zMV!1SJGH3~h8b|Q-@P}5Uq;t0w4LS4C$=SyDujFqe@3Fk$^7lfK2g5jt`?Dzs!hmi zui-k1dA$=^V1Xz#pu#Qx1${{67O!CQAt0Vgr#mB#-ZV5g$aci zX9LR^Ka{6{6Z(geehs%0-!f?hUq!#KMz#zh_^LkUC|SJR{vzrGTD-ck;Ap*KkYHu6 z(xpW4yKzN>5pMz)qD=lwH73qKnS2+mh!Mg+}O?lAAiP5g5LunFF`l0VyMlyr#;35kn4%t_6vCs^s&ZomQ6wi@-zUD}MY>uSy^< zHcNH$$cS!eW-gIq6|hl7cFZ1?o(4#ARXc^6(v#ujSny>Ag-L3%g7h#9I9WVtM}|5# z_Q+Ws!GU?fG;GdQv_=cCNz+lDXtBdF(-5FDxVVdl6E?G;PR_KSscAR|ldf zc?Q-;lIf5@0~e+ zaLYy=JN==Li|Zr*f?*sAuDjdrU+_bU9HniFF@g>}b?KPtu7MaojOppb*kN69^k@rr zc#X_uhvfGHPCZ&V=x&`0QW~=}`f#L&Y&^M4hcAZ5VjQ}>TaR*{gw+SlTv$!Yp^4^9$xtcN>*a{B}t+y1%w{A)1SV!Dnw1xgn zh}tufe4FKyk%73ckf^()t*K+EqfuMSenGm-gJRR%InWi$5(vGqe7YMO44wUzp*P%x z1)c-;;sT;xbAKx#2gfMn z#e|}t*bjUy8hs8|9@oR}oi=USbdU5o#Q$;LTyOp0JJL#?EY^n|C&xa(??8@9G5?(u z`%;RreyT@5yd71OW4R7^W5pOG*Bh^6Pe|fY=9G@f`r!w4NY=NnWY#N7&$ucNJ(5h< z*+Xb;%@>o~wH>i}&IpZ=uU+L*ne8V|{QB-)NXX(z4bicSe>XN3S9AZfd(;OUSCw-= zNkO8X=e#^wxXCh~)#%WS-cNNc0j2jh>&2_8erGBe&n&PrOR?Sn|Ybm{qy5XDM}-{xrf6l(SYs`qEV|tcj0W|#>R(IEU|mX_3PIs zfV%w@mw*6@*-n@f&i#W8fLbRcp%(jyECF%E@^i*NxTVt~+Gx5VED~hcYT7)h9S@L8 zgHnVt22rT|Y*6R&auJ;X#(4;r?R6ZKIB?t>jHnk&zIlWqR4F5tM(Q%ORvO6baYhpD%WJ9{$*9GR{ilXOaFXZOHn9B9erXo z>f^e3{qH`OI=zPTIXcvZ*?2h9J2gu9prPCE3bT1D9wVx}GX{a9+HL+LF;(cZL#?YKU^FzZoTkuUNV!7wJc46bs63kVx?Qi}JT$V|%A4~w z@|%2I>Sea3>CStST&jt!Hnj5pt(Xfe@ICm+dlsNIQN#(dZt)9MMnSoS11p9B$K)6C z9!Bfo&vFiI22oQdC}@YM>zvS{bfSigVi$C}DwZ`YitLYTR;pnfYs1h#?m52Nbnug4 z!8e)bhzYzetzNzQ#rarP#CK$Pu~anSct1x!g;if~aDI-Yce%!Jex6)|MlkDK@l1n$ z73q6Z!l$fvflcthLbK2-@DW+Z_l!JD{719>0$NWan_ce&;_N>br^?`mkC9Z?SlFe% z*mK>9``N_yWr2O|#+It;Cry7<)db1#eWAK_{a!*`Bx=-9jZ|PpN5N_MBGT|3-$%6t zdSg2@Q5juPaU9e9Oxd1?a&sNj%4njZ04>=1t4?`E8y?yirNX0$M;z3f$@4)y&+-xu~Sz32iNoBeSuM=h5H zHjrT#7sIei?;TdL(743Af@@>he8z?89c~EBkc|1zkg)W(M|roJ;y(tPXg`u665)R& zt2NnK*CS!Iap3QF9$n6-(=gm>jjsp>8nYEZQmn+Ubd+{I9Yb`vRTPSr1y^`BUB8qr ztKoAWr&=k}Z{;lt-IagQ%ds6nyWXa08CNuvNAwj@I40TImQoZPnhiaA#rAHe;-hrE zknVnWV7b3A5lwSqGZ;iIY7s9x^!750{!yKff&>^Y*`bBaizX!5L}X!uv4GIw{F+Qj z*W#wUS(G2~cF1IVJ#wJ%e6q@2Mnbq`*SV)r03~;JD|Wi0m#vaz1hg#I3q02n16Gz3 z^&1Gduy1Kue)DzQo9VodL8-#bwI7qFs&{KR;-Z(yXqZdNWF4c*LmXO)QcRDcsvh!p zVTxInM@c?1Q%`lq1UF_d?AByef^B5j-COD@SEV|GuH;~O=IUIO)K_buj!QB|j_t@| z6NaJpzRfhK;;A~8^uFYS=zNdr9da3Dx-Xo(FtvsxOI$%bbd2C>{pZi0znGkKH$;Ll z37}`VyAe~<_-$odW^8P_D?3^JPJgIB+~HB-VzjOCkxPv+(5qHmx1s2wkD)`I>FyU( zFwb73;kYj5{M(YIubPvq`!Va0_PQJj#V5N_4wXEkswoZR*f1np(m$udwdrA&P2_6t zAWOpJ5Uz<+Q)NrKs5o|PSyL=dbzmM@qA2)Qf}HYyPk$$Em$QdwCZxel@puW7PoKN+ z3Z}?=oZqlAv|)+fygZ}xzj{x{=Js`AwT<#_#w{1t9Se`Yv>HOjdME=+Z_4ZS zNzzyE>Uxd={_2e{!sKy^B^`7`Mp0@uY}nBMJ7Df=jD_HriUBtH&!8;BH}NMQ4~`DH z;(hO`(&;jhwP-o@e=3>3$##-1ZG0DdpG_IxbNxbCWQ~Qda710}%9b)Z1kAm-sVdW= zdLG!`Hdq@g$A0oxF3GS`>u-Eenhh|y^%Or^o6v<;@3`WrGrk4ZM~-2!v@b#m`Iot@ zs`q8Dp#NC9-BL|oGHv9NB}<;-JGo_c=!s{o7?AyK(|NG1l{pjR%I78qgm~(X!k_>uw;4?-H`dTxu%Ws!4BJER5BzasC{_;*%sUJPs2jseG`;H* zsI7BjtXDzbvU+Yz4-c3mef`0vZ|C*WZat;S($l9=ChwI%l=ULoDV;np%!kK#Ky)Z? zxd%q)1H9%6CJ^7Td>(q3WO4PV_C6H?A$0R4WW? zfIvri=rsh^PLAcoy23-wL48B?aj1=#tI-n*NON!OYGFB+_fPLz>RZ5M2f3QE7#LS) z2vT(LA`5J_V{xaY`)wA-HjT^liixHEA3{_JQubnK@ikX;@;BXj?C4gyMl#;HzEzn9 zuIa>Is_6I8CV;1ijpGnPCf4GDY-+5&i|sTVr}_%};F=l+m$p_Ew#w742>j@RP`D|1 zVJdJYB`upHsShtpF2-SJQJ7fwOa^UksWSxZH3luE2H|o}pSztQQsXCW4(s!PgWQ)V#FE>z;!n<)FyCIvYij@I&t2OS&fvlyKP*a8f1vIX_SKMiYA}&#>u$6F3Chqg5M(GVQD_ zDo{aawht9Jwg&^Cp4bdvd;w`|;RFEb##LPcU4&`8EJt?-#%cnNXOcsKl{Y<(=SCk% zDdXUo-bkX(G-=0^ZYFKy;F;bX=stL12Qf3@h2hYu#G0lN$8)gixeQmyzd6z&o$X~g zP@rkErp)n!C=|)r`u|FbaN`LcEOnU2#07CZDMao?L`3K(@p5{h zi46N3tSX;S(#8twL!9~n!8vE}Sb@1r>*61ksdyeVrtQxEdq<&Q<00&W;{Ey00>3^a&v3R7Dfg zXa2x?aLvfG(H5l8RfD=?*x7d6?@$k;uU&Ech@O8^VIW4w9lxMST zl|>b&(8KBP@Y=_8eZl0{iaFBnUv29>GsEkOnEz@Mz;mRC73Co3sCZUbu8%lH=aRO% z!?s!IR53hE2`{m*^qWB<`iKRAm@HzL?66&?SQD7raC8CjrtA`QD#UhT=P7vY)6B6h zP(mRwL`A7kyV{5mtQRqmhl;g0e*E~wh%36)6sy}oW!|xa0`(rRR+x7CEEgeEN^CO2 z#6ET`p0sRU+cH4!dD&*G(Sz7db^ix+E?V#P9cXVSjH8NTodXsVTg4RzDX;1Si`6O5 zuNRLfuOw1zbagh6Qb-&Hr9FZE4W}}An1v{_Zx~osC6(#&uYpz(b?Jkwc&^kr_zP@1UF18;!q{?PaL(-5*`z_VqwfC zu(R(!^;Ex|3An1l4zHTA&&>?)T1OjGs?!{!j>Y9x8>LW!o%Y`I66m&aiX|N_k2S{X%@v9t(;F-&4sFOHd$Q!4jpk#{`z;`2_KQ!SV@28&nIw3mnUnZx`mm z-Gku_{}L9%EJ>covpfS>6P{(!g@LGxT@5yd`>#{gANa4w(#j_OdJa7G`kFO!?NW|2 zR4bm|W1!vSN=pkZw_$p{I(05-gDj4d*e#hQF=Rr{pDN`PH~kxAmoeyI$eo)WAGA_9 z%D2a`khhg->WOXFsk^0VX^h;Bb@@3B} zLsK>F^yaz7)CaYDBr{plGG^rfS+rO&v$L*;xLdpbeRq#>pyJQh)`hbF{-5N)K>5N? zgkArZnjS~ph&O_qQJF;FcimkNt1P0y`wtyDbmPXMs}!FrV$4^&wo<9nMSv2FvKr&= zk00dNgaqu52$5l-n_)1%u@mb4+H0?E#ha)da(+m;r_)Zd_wM~+vl6ey4g4srGPU9Sn9fvQaJ;596 zPb0+g$if!ioWPTB`%!B}S0ksGi(Q%R}KSrMQ$cM?v zX|b!NSpLC@>aJ>zU&@et0T*8eIJAn)V10HR*7A!J!X=_Jsq|FIpn0_$Yydte);(yB zBgYuFLuIXSK0NYkR-47}}rHGx+fRK>4zLS#va9%HpjxK_fAm0>l;cx{^- zTgbLJy?is%RlT8|rA?nO;b4+xw(5Ap!&xLVR>*n@{?AXJKK;E)y!bzteqGbHN?Q#| z$dv{U{uj_q;VA z#32=b#zEZ694#yzuW*u(Gc9FGN)T4##JnVhls|A?sYl^iCWYKK8a(+MI6C53_{4hj zRXS|kOOAdmwBAROL#VqRnH7sc+O$jLjrmuqW*;tb#$qaR z=_L$ZHxlnwt&97*ncKKv!MB*y6S6c9J-p9!>dm^GO?pTBZ|}p+O-oB#Ie(Wo^s1SxtJ~@`%JIiE5b0v3v#JQ&TrtK9Rtt zHFL&U1QaFozIxK#xzME=r;&4##u5cX($qiSblTGWew&EuvHB(7GL>wsCRHo&va0SB zJ}z7AS?rEzV|#fj=$!Z7xjfs{_;+|=jxKdVas`fwuTv9D@;~~S!@v8)rP>5p9E)Qu zG~AZl!#@4AyVyv12_jrv7K5Ck!~7$zKTYDan{y#TLCu zrr4fONwn=z3g6}?w{tEgNl#c{wF!hfZqM%~NnL7|@5Qc>ZTwi_<2P`#uMQU5PGb1J zDw;M}vaySPKizPg={U>0P6Y0VCZ`8HyD||AQN^TF{ArdkO`Rydv%i@HXD3a2{2?h`{nDXjI6W53=u;lo2Lxv2wM98-e z#b>x_bSI`1{D?ZNU|IZ;*GKIzm+k#;b08FJC$VzYUMXp5go10jFpCQ!)LfCNtA=x! zj)a98tS}A>g)Ix25|`V!eJE4aB14yiK9%@ z32Mv}N)tvE4eJt#EHK2ytzdAnP(yH`9(ti!s&RSj&_@a#9Lo!np_a!%gnOskA^HF8 z^&jISuX@A*w-%^r2c%unc1dh7<<=m#YQP@M{?gR~DXjS71#14GJ{Ydl`(b#3dbKGJ zV4pCK^3p5SR}$11Axzp#`tx~Re3f`qM*h{Rdb_h>srV6fFK6^ERlV|v30;Ez&DRIl2h4Ng@zbKUVo)gC5(CPm$-4>#y`6V*6# z4y4(BwSQ4NG)2L(n3r@v#<&y2A+7dj)R;N6A=&?dde=EN-i0 zRt|)O%wFRhgQsA(u48c>3f3RAv_wsU-u$GJO`BvlO4awJ?P`Jcd4g=lt;^HYL|}~j z9yr5v;BO!BnpoemVi2`& zu=VP6jr9%3Y*y(M7#V3pjiGTF2N4Q&yHTP*eC77K8 zpJmgFb4`KEE>OO#i7nQ`mY@OxyhIOA1vB_SVBnFc$_UaeIj1rd1 z)gJ}#sCsbN{_}>#rbNyU*)Wj)C!Fg80Q2V{aRx?c0M(3HLJ%XB}K)VWDY!3Me53I*yv_k~7&a>cdHE%GPw zP<3lj!$*^S#K;q8fSA&+SI^D-2XbCMqHU2UtIAkxp4=?OaxKOC z6s7PELNNJNpy}9?C#Nmy&I|3x!tUx6hFWhhJbCL&&}7c-8LM8qfLxV9q0_{B0~}opa=d z2^AVkE^#%F{~_|AgDHwNJ6y4=R3#708nH;dYh*EBQ#^j-{wkwGF$ixj7aG>Jt|g== zwOO}s;;nF$%$&>BCX$@}zGRWUcgaEb*Y_lT_4B96?U`cFg6aE(ZU;&dYjf6Y(*FYr zdc5<^DVDrhw&o~wXY7X+uvp*=+muDEAkkG6tkq3@#A2C5mo$Pg_m@ebuQnNbg2aY9YN2SRjK?vpg6(k zERxc@1~$^xL+dDRkv)bp3CFxl-rz=w)%25I9dX(;sOIc-k0ifr+E5hq7|xo$B8cxC(}Sgj=LpejOz;{La*XReyhTWOaa}a; z7m?&N?O~V>7(ELBuE0;QIL74DC)!tJAD)j4LM5J9jjtFL1t*%{UAb~4zGrgGIdfeO z>$PFP{yWUt| ztod#sv!^K4ZxFIo4n2;Z1@ZVf#siwK4*)xrU&pJT(7?%M{*t>0x#D3FZFXlJX4ya; zk|q)xoWIZ*Up)9PmOroWSP&L!)fxUV;vKd&7M_M^~Obpr7x+G zziPE7p3sYZ3SMG-^|yUE#QWYaaX69Z$~aS*E(1^xbjqg$jk`k0=&f6=!r})k$mpbh z4CTju*Qsu>sf1_FDplNlJ`T?&|HT~W(#LjA)hn4K6OR1}UmGmEO*{sH8GPZpDtgcE zK^5T!@7}#9J~LBzdz)~f?1gpC%aKj{oFzAwatx5AgTLP!zIX55Xp$NCjR+~!k`dVn z4v51dgx&*{v-J|Kc8;k}PtjX8RZ-sjm8=s+3#dSFbG-{t`grDkkAj<7?`2vmy)sm2 z;Ui=V>yw$e#*r@;wg_eT&$^LZa=*99jw>%h|?s z%32-*2`8rescNVkl0?xIL^Q%Zv;bvg(6r!uhI<;M%Sk-KqN_Qad2bsI^GLES@la4L zpZ0t6%>Z{&1D@QNoPqOK$b1)8W;M#T3(H=4WzBsDR;2q$ja+KNhNbwL1>>Ww<1tqI zsU#q!!YcG9ht_hKV&1M8?ui}O@fivBib`9_=m+d`qX+2lSo)PKS5vgMPStk1hIi-? z3htZapcAwFOG%7HGon-}qZZ9SKZ7^|)W~P$Ae6t+ULX0!5HqzgsvU_VNzgCWR&pcI z3@+F=;sHy+FRlGedG7gSU$|#EMmG7c>W$Ox)cAU`Sd4a@ zcE`z#y|1e0YDoJVICL*{WJN6A4Hu2WKz($%lJ!o7t9H2Kmc@Z}>$P!PJj zf4-PG`By~Z{AZlOx35c8+h8{Jzm)@_w5o=4)#P*wnB_u+;3->QAxWDSVFDHwZu&zZ zB|x^vt!87;3b%a%1&dihp@OjOam7)9vaskCeI*Nv$WAYd3X=WTiteA=$dgcyMX`34{WGZPXgYk?w?Tr29;E1=pQDk48(7MNbu}WQbi|dH^QtP( zP6R3rJ{EcvEBf`Zy!m9S&^jo*9@pe_V3ryrItCvxVH(b+G77zYnnW_n3=-2=k#yiN zUq1{YZm(mq+4BiP#)5bQlhHRn;EHPsmcL4VDe~rbNW<(WnK1tc!=EWC2_NHZqfnVv zv^C|*4W|8Q1kDZ7i8p1?k6k5y^qF~^WH?$&fFHd|E_TP9@geugG1Vf-9({IMi*wEh zTqlvmneoaR>0^XqJ~VQp8_krC5!%niOs4U~yakEAc=2L}WZ^|X&)IZP8_Pqa{oiZ1+P$UyE_|`3oL{p%%37_r>2*GH-AJ$Lfc$%8fyu;ia)eNyaamGT80Fy3QZU>Ld7dq*|+>&I%2GN^T`){hBRyP|z) zYcOhsadO6Uam2X|wf>z4jUkh3JQhVe``g>KX@H92{7KhofXWUH<#^yRO>>vn%64sU zlcLASL1&pvz?1_cc_G$6eDa%+5mX$SCQ^g)Ef+f8J~7 z&wE6o;(Vfg<$;aE&*XmJned(rO1X6jT3aS& z{$W_a>^LBB;U=3smulJ*1=m0&?6ueSYjFZr^QLxbucn=S9^B5pG_gp3gPj-q0abX! zr@bdADhnuhefG!!vzKbgj+iR_Ry<(35LqFrF<;*$0JOCZixR`HyHbClqMT`Z zpYm_7UX2&@NhgMTK;JHp4t2QdehCfP_P(@wPBqgX>A6-;35pf>oS7>0`HAOUr%Ff` zJ8e3t>MOh%j&2&Op5?qeSwBftALSV~oy7}Z?SSVCpC5~u-n5Mf6bc?!9vcDyTAG)Z zGL)bH5DY575(npZ@Jw&OQSaZ)l=)jcLwv+5o@=g=%wfu!)e<~}ZX#ZT4Zf_$DhN<5 zlG#Y1e+2+%l=_IapYqnMhGrKY4WU}b;1MV$W#T^6;KK~hL4<4a@f-$OtI1P-KOZ7` z^W?f+P_N zepiI0=Z`Ku4U)ReH8kYRE?m7C5=no7u3hP0{1Uc7s>-CP2FcuSQ9H(o#5d-un?ca9-iqbAcRp*tec}4xqjg=dea5@w+^Jdz{~0(7dBG8 zw5n&%p1WliGGGQ>Z-J>vH{oJ#&TVJuv-?qL>ykFx^*?<~FdrHAVZz|?hE)IdMY9j+c{D;iCPwXziq>N7Pt zAt7NS&eI$2!h%Q95n-i%f_k~K3p5zLgpER?l;1i2Fia7v9HmCp5LuS5@Fg|H9a96I z>3RE{^2R+iNlbiUT85QPkR) z7OBaOJ~PHp)VM;xaCW2f1+BJEBZFwzdxXI%%E7^sWDivfx*PKpW7vO!?yC{O)cd2l z)#mEdhejx!Zt=H*TG*eb;qU=|Rm`FI&Rw)Zj3VA@1DP^4TC85(W{*m~d~UVawlM^X zpH>eDBXOo8o`?|V6UlSx7?EN7x{~wGC|ck*>K==B5__}2zRm(G6n^gor>%#=UvI!E z>vt#XG45kKdL1csw7`Zt{e%rEh3}yBxpU`E0{-8@MVw+0G;;Ffyt?o}6hxnLdN%3z z{4I=3J!Ug(swTaDR1L8iIKAZ)!_lju<44jW({#9OL3cEsk+V!Td)7N?W80kbQtWb0 z;LzJ9E}-LVG$TaPj?@L3dY^ggzf4W>dZ8M|sO;0`Lb1r6NKBCBV??t~74(Yql&XFw zj*m8q!EL{vv;9f! zphV~I#>(mM|3)OK=Rb5}^0bM$_}J&IxEO1tQ!Zi65p^v&tSkFgKBzD+gWQ?0GMT>s zqBNlNXnF|W_??9nWe2fKQU3$jp4rJX6EG`{KaggYaTo@L3;l$vhwQ2)7Y_XE$#ycO z&MsZLteo6s%I+Dib>jZZ=ya;#MEjMOYuf&A*adQ(woMbT0%x`RoA8ZE+>mJPOnnI- ztTvgxdsTAfl-?lMg+}4ejoLxUn^u%f`2zo~j@xh!Kj!9ZqurRniPRnyvB05IrgWye z3`?HT!g7e%FDx&@mwfwU;vK%sp;FUgnY*iL3B&oSkF!vsbLXO*H=F!-yhrcL-B5p{O@5g}zr@wnH{_bds<%+uOWhn*?Jfndf$p9f zBW-;_ey_J$9v?aFVX;6s$#~fV`w+bc4=6BJy;{WsLqpKnX)-0tM5z}{+WG9Nsy&=M z)8AEHYFDu)(|C4O#pWXq*N*eXc)4uakpm$@LtX&8`Fz*A2^`DQ&3Apqb)RqT+F>)+ zu3c-fDG_wt2c=04Bx@E zGpNdSH)b}~hh-J)bW)73K)d%H*Ce;(!XJ=3KW$GVl6I}~ zVdg|Et7#tjjwNjqflpGpbYzUpa!}6^$GgPgo5VASI7CshzzUxtZ3S8C$;Ilj!oT~H z#QrA5!j4Wwkvz>uCQu*m%FV(?)95#Ue4uSF$MZo4bS78ZM$*Q&u`z+eXOrEJgrPrz z5$v1aE^b6!unEVITUfSrdey2`Y;=kWg_{^{>tF0emnW6%J89CfW0NLLDr;gZPoA7< z(%H}d%^bK$e-nLbh|UoW9@NVY?Kuojz|nCT{r~lfHdwz6bB@m8 zhX2s}DZ9&H;g2^|24IP{rX3w_@pPijA9qrQoL#lN*^inQKSTf@kJBy$6)6T@o}i^# z5|7o1)9y4d8F{YqAIp=m+8q;7lrH?8M3rJVEsANDVAaK%(B%r%b&MHSJUG`zU!_J5}7oKGULtO*&7pNhh^bdtT;*_IpW&`B#{@ zU-QLH)qRY0ThnfSOC7eLXh*tp1&^ZCxj{2n(^B^A+4GXKGZ5VId$<9$%s{iB|7s2_ zayJc36QfDy3|W(j;!8>9ZlR1Zl@z7XHj>QMD>eXXY$kCZY@|!njU~Png0ST&eI+yV zXSBp*E*Pf<9T#30ODc3{X69*Uac!VqLd_$RO;OD5v5fFUk?*5PRP#DK%c4KTc}JHm zA5WC-f-|S~wB%VP{pK%-2Die=k0mCa17tnnEa9k}ZjA-{dr&Z<{TiR|b9aSkl^MV0Xi z5))Q6J+QaZ$XsD|+Lp`xqj$F$3#s?nk|KrGZNo&4oD z!Idr(@@gkbk|*+fj*g#tUpoDVd$cewI-3`_Xk0Ep*1l?avk4;ya&(@r-CT zcfN$!E@HXg9mO*J87#L*ESKAz8DKb^vz1&#p4U(Bk)2^iWec>!nPhim?SuTaRv^st zty~uK)|(PeV>3w7$(cX_xP9&1vsu)f?yOSWvfcP5N$Az=jYKqK+}}&phP3RcjX89_ zpJC}z;uS<-?&`1o`}F20$|f#vv8Pxh55!43r8BC{#DvbP&~I5+{NLq-I1eMBqO`955DmF~8D z!Q$A&2)&!9-KlN!Olky~KYaM`PD$iFlVd+iu%gWWR;Ikw3&H+mr7iBDG)-C(GAWJ7 zF>H0kUI!W0{zIIiPqa$`j!^KX(*rrEyW=jhkC9)ZF+O@pmM^DCJkiee2{=kt>0e(! z@Ceg*zf^MRQ`9N7Q^`>*7+5g04@H*PK;Qq z?ULp}o_BHVk$g|A@(Ep(i4#;L?o(`+z0^PoJ%dx&ml+LThvuU=Whe~8_ih)^KAfaa za`P#tH>z+CsQDd2PRO-FlCbQlnjHIH(;|#$)JES#kb+th9Bnf^>E1B3*>OGF63a&I z`y}EK3QVh+h6P>Kl~>9AfrfB* z5}ikn9zACCXnBLm6v}@72jzfs{xsy^jF6CS-RN|zb3!&mpNa+l`dUcwiNItmrn6`0 z6Usb5H{_XxRKMYZo2B!=|L_HuxDMVt=jA{1sujN3ik?VZg8JBMF%UDd7N{g%?pLBqa z(jrTDpF1EWc+5e#4@TT4i71{WE_YQly-z&mK=KuWdyE#ONv>(4m(0M(-0}{!O0@N? zyFbb}u)&PK>zi+ITh5_!BKX$!?b|=CgT_)Rj3o>aG26E^jeKVNL@Fe~8*6gc6Kl3n zycMNSe=FKe2Hz*qd=qpTiQdZsEz)@)(z2D$vt@+b-`}cSi#OR)<3l{8JR64EWXoxq zeD%-8`Nen#y?K%X4{lxPDFW12_7gzIy1IdX9H+%#v8To*u)zj$^};7@9r*@<5~F^6gDAWKYu351gvVZm7MEE()EM!Y#WOg1HO^1eN0~ULPF70M zZq;ycbp}G4>j8Crp#35FMVT~a^}W=T-o6FmXrhPx|8RB~oX4rn^z3NnLfvVg7(MP; zvNY5b4$lIEsww7rW?>U1!(8$@0~TGSq#+6|U#MJ-Cc^`wsdGWdEEu9%^a&Tn{?b3; zU>YtwJS?1%CaC)iRDXn-7&T_&Pz?(;A@M=*xhgmAyJ* z3_|T6-uXSS*Mh!-)P;&_1}8L>>W7J#eL0aEvm{}_Y171LkS6VT(kO*Gc&0bp6%iAm zuc_CUNiAA(A|XkdC4e}3S)`#^at;Eag*jN3Hw!hzJCdv+ zsh3yu`)Qd?M65vA6FQ@PhW4@uDer1ybe81Sd)**eEkT>*(WuDzgLXU@Z;Yc~)2_V1 zc?I&UX5@^()jih|Vqb;YXV;>_ko8(an9Tu>exTpIm zkH^R^HT2P4vQGSTOX7(6qvZfqyg=@jpfZ*Vz>pGy>fIrCT3KvLl$(IrE&3f*TT95b z^<#6}Xwysd^*oNNZLvOtI&N8p{)y;p{Jk-ai{`HLJK%6G0wI^l{uhLIFegn`0i-Lg zYx#zbijjt#{~bWiT-2kK561@l@~lof{uaGL$Q{=RG!ybe_Wodv){1&a`Z|xHhdild zgFb;Ss!-nq633-h#3!aX8VMr&xAOHGG^m9~gfR}OCS2H$ksY^VW33p|`_WbD!GsYgDRFoWThu>4LPNnaPUuEo+w#Q8|wu@k_ea;o5c&x+;Kz0l+ z@Ys(yN}LP7EwOD5z_y;LT-4gCw@e@1@$)7B%5Jo8ZKFGWgtpuTeLR%v*11iDqp0vg zTCIMJo1QZ5iC`ekd;qC!`bgL$MAr)kb4EM)Zss zbe&RrlV?8H81YLyr=~b3S0(}5zj|b&nt?H{Lz4Z=moJ}>8mV^2i4`en7{|f&Uz_0= z&l$0LRnj|BjS?yq;5YPBv604WbfKW&P@s$-wmUMN9C0^W+v8?cT9+*pGz?E5PB?*+ zLD{_jK@RjBKhKvi-d$h6HS((m=&iu@cUZ5vG?TK|&0K~}$RhRzIvwQNh`>C`qhxm* z5sSkb9-SsopmFWQ}_?uqTW=BH9Sbjt7ZXX!u2M2c*^IdNks?alWRg}x4k>ZuK~E1zSwT)abHf&0L7X46jXfMx(D-v0 zO!-cd*h&laMH?xsk0=OCrmH+|&zyPso-qn#qK^$YhsA4i0*fex_9qV&I`OY9g-#^B z5wQqP3L}Z{nL0|%`S`##e8Ap_vR8m*zF=W=(e@VFZig%MAyz58uG9F7?lk!!kKuh0 za+58Hb*F=MZ{d~bLHx$OZYXkJU@epSU*pYAeV2bp!>-~R$L7sFcVX{#2iqW}dL6b_ zv0QFr#L1R;u4BiZU*iMY8fx=6>I)dOn|d6e1kC%HM2+Sm$bogS3esIxF@b!WNZN-U zZ}#JNiO?+LEGkbW@TbJ_2(^ej_ror)zr0<3ko{aGnhv5>Pl%rNiPw#_dg4&6&EI-)5uQQQ07|+sq>4z zlBj*3Q_z5?+LZedbQGbYmj0>}Td3`1EX2oE(=FE~lqgZ6{KCYHpIz;~9W?%Mk@KAv zaT>?-i&Efz_IT;t3fY|haSr(T_n$a%qi-e~$LFo(s`@F)O6HEBOy^v#s&rA_gSfa! z@5Pf;VSPe5h8$$&Y6O|VDJkX7puqi%Aq6_zOAO_(yk|)IXTgk7@dw9dp#XHJ8B%Zt zipu9WEsW>f(y^+m5T7`{n1|R1lCm8koSY}f_M=wif=*);z=23S z=d9{nI2Kv+nJ>^WA-86+KCs0$iCR5&B+%^+9`3~>MP-_WDft2mC`AJU^;v*t_M_KnV;og%R0^sWv8XrTR=W}4{g*jm zMX567+<>lKN1a0l_}(Jcw6oy>di<~hb%WTOhRE|L4e)nc-l9r1Zrpe!zLew*9-l)! z+&bueZd%7vB&D@w%t1U(WamWbLMLwI zNlwMT`1qTc06k-ViMq&03?zIt3o}Gm80;$UpGwnn92nLyFBz~BaW5`KM{C-ikPo%QKzQY)kC~f)PxKEPgBQQ!y^kLtz1O=jGI9e(mYM2GP`;s7S zd3s~p;9AQk5GBr`H_pw(abWSC2&^H;;K*)xXTIb799i^7Lbgk5O-0#4$PVlE=5#;? z;Ek>?vMgU;bn5NN7mG~^^qI*U0>}2yvY@u@6)0f8d-Xc%ugju8Em+C+SUJ#UB-}-x zrj09N@pPiUzJrLBGV#9!@n|Vj7u4O|gg1kbBRq)W>hi&ZpEs+g4p!1g_eiIMF)&;80&lGc}xBS#n6 zMLyxYJegww`Beys1Dg_J78V>=C&LnZ37N$UY~RY~K96M6|7s58$d%i_$Ha*fqp|we zH&e*+qVs<=YJub=%o+%7ky-Q=B8hR+-z%xib6`ydj6OABKt&c4w0#6UK6)4a5>{v) zx}0*Gh4HP#_AsX@_@ER8(*?KX?Xx0%?vh*0L}}C4M?UmK;Tdzox>;xziObDz#{&{bu1QGBn+n-0{NO_RBFMC(%)h# z8Vrj>L#D3|+R!UakNB*KdF|EpM4st;Nz=}nwBz~cHFC3ogJ*hsVPdU@?r|9gb_h_- z*=Ntjoo!@l=+BQx90rAPuqyqw&#n=`XhN^Gm`AiZBM#jo$s!l?9({me7qi#53fcBQ@KozP>fMl#V2Ool zZ^W`?KG8e6Iy-{ZHeh+ukuTYLvX~8mZs0MJsdMVT)qbe(nFa4sRZ-Z|tdAv1-&j78 zIE*DqLc7I=>n8c4YuR3bYI%jI*G7fN;WC?P+!GHR=qed6$=z?-G^9@@vAcx$+vckc zosi-fjSsN%5KFO!+p?I~{oz_K-QVhy8|qFWGsD&7@x!WhA37oOzDhRfRivr=g7GD2 zBqef~qY%vBrOU@h@f#c%?9B@R#;BRT*`T5H6d&G?ut?aLyB8y1(x>! zNtwnsvvUgW)l{C3NZM$sZn@gmNXiuIEBGNH>%|V~4nj^*sB3@R+91B43X17W zT;ZEQhnt-zWG(^EaM5RrQVX`r`_kgYi<{K#lzRL9@>Oj%Pkl@_8o9=Eb$Ug5KR46h z{CdX|Ql^A^V`bZTWB(YW=<$@NJQDLJYUN}PaOmAH<=17F>7wK+l5+`>ULB5xe_=wE8R#b`?|ew4!w6GE#C|Kek!(7F1YhZHo*7UFyc zSj$NK-0>N0GrzsF!jOe-SqINN3{wSMR{nd)mrusU#eLUUV(igRGuYyp1p3~KuF_J9 zTpSao#<6mnLrZ@PBz05})&*oZw!c)m3MfObAFgQU`0D)8rJA;DoYD8WqTQ~;S^QMf z?A=H&YcWQL^l&!o{Y`CQfZK5P16^8zac6s6(ISK_qT zcE$$>figJABkecl;x+BYyvIx>`s{SZJXka1%pBvZxAC@p`g|8VxKE#MHtXS|@;otd zqS!t$@*w}?pJKJVxMWC&a@RqLg<^Dq{aTs%R&5P{`+ElHg|EqF&+3-}rM@okbWiRE zfKqonBZHoXxl_`bKi336gCsg&y@eC9TF9X)SIMz*a!C1xJh0yDMnCM^x37afGfu^Q zWWA+zoF<PoTxLWbwrBfrACY&jf__QH4jt)?Yxi@s>$uaAoiyum zzk@@))c8nAQ!^OTJ*v9ozu5Z@_%4cW?WKg!Lhm(FqI3{xA`s~aiXc@5sUl4Q0kHrP zP*6Y+5Ty5x2n6X6TIjtKI)sE0AU%Z4Y`$l<&g{;5-}~PCec!8Q_>nzxo^xhr=f691 z=1g-rXQ0*lCj244ekv*Zs&|tKInht{^VGaY$uoWrFI&ClZ9-$a*>Ro<#p<%R7-Q6= zNs}fEU+#3gC;(aw-oW0NR5~TVQfv^7^+k$aB<$G<3A4Zvi6o(85w`g3VAEQ)zB`ym z$RJaZl7ugFohAvl3@2yH%OuFg?p2vY$#65Sgp%J(TJsK_uyR-ZDZOJt3f2h{vZ+0~ z^#SeM_rCL#kPQ}Ac=IzYcb7wNGAVkr1K$;I*z?vCjU5$n>sC9#@6A$p6?2;g4SH3d z)L|u=M*QC@f#M!VTjGAj*~rA9A<{czbJQUnCZ|fVI&8DoHFu>LW7csU&S{HEw?@@r z_nDq7EiL;v?i7}t5bCfUQ(6Aq+ooa{Rx=#J7PQ6dbeO!x)YX)5FlwFR?EF*~4q3KJ z@ecMrt8DLD3ow<_uK!^ruqh^{w^x>SVuXnq0FD6n{H1}IZsZ;{(1tA@?1;irf6JUO zl-aOF#JiQ05hdq2uq@+XxUH?M$rW{AjWKL-x0;?rc>(hoahH;LM&gAq)x#j!h0QLQ zYsSkNn-%DB^j6fhMuLjcH}!d-DW@!i@91aCwAz$R2U`%f1*cPdjcAE)lW4GQWG=;U zwOK`%7*FX2t2I#2FAg@$EdOt=)5o21TPbRo)>HPc2|IJSl_gDL2?j~lBVgF#au+{N z31lT^|00mPU42A^fpepy&-d@|`HQ*~{=$q;A9^gLQk0Qs_-Du;tqOecCnaVNq|4uM z?Hg*Q!PeGKH6!A6mN6iHG9dtN7rw0U)%k}@<+(M ztMgiPy&A^$x7}_3OyAwrKrR1x^DmqG+iLkKIbZ-*ffE{Zo`ejr^Ka%g?dnwmnS#Fm zuCBWh(ZoMxOVa-sR=99sw^84f0Mo+fyxFSXrp>A8(=UacJefoZ`9q z;!{;^%!9v=N$1*6Z%PL1bU5!>*P%S7o>Du)69W{bwFj24MGT6hQTC?*cJ))IwiaS= zxnCaACjz9vCrrb)9taD=?pe>8SZQcPr#bqsh8cn_`AR?o(-$AdLYr)M(Pm`lKM=Yd#bbk$~x01Of*MdH?SArZIGwQo0^)PSQn0$79i^h2Q zwF+GDoS0W+t~frzr#M@E=KPvXxV;+R(WD($Y(2Ql!Lp)-Xt*$%VF4iCQ@8U`fgVb? z32{C$)UlR{$J$b_2jHdtu5`vA#~Kv-L8}MDh8Zw+^%utUQX5g`B%0>St#x8O@3$+F zP5(GHY2w6as_(#J>iM0Zku8nLsMI9hrImL--EF4RHjb_}RoHbM*>6G7B+{fAROIF? z(;P2?opH>>8HBUf8t7LA_vI&^8(jS|m=ep15&$?8&e1bw>JCWRPGaghd3qe>=^TW# z1Z%>cvix5bS0e&2?c_C)WyO|y?!=>Hy>CtMwZu(g5qadhnS;sI>Tr>_c&Uj|n z3;9Fo3TB|2A$?_ZAdFQ)OX%&)CLh=I?az_fuEny{Q;8u9&d*#rDuhB5h=qnON zQ|1|Fb;fBl`6DjH)s&1dqwjI&VKJUcj~P&@E{D;7=3Ufi_^xAO@0c-%<292cX|b6K z+?&hL+cv_p{RpdV44t&Wn6NRg&Ucjl%Ck8-*9#hCb>lfc$b#Q^Y(okRvtNzTJW&U+ z@^@1XY4(;2QIz@gw1lg%vOW{`T=No3;|nG5(Q4iA;@@_4MFD`v|GvJ<9Ihl>#ISpq zwzC$l_a;u{v0SJhH?T^uDOOmEm0|TOXg3(k7t;Yn=o7Rzx3!wTAsbQPLvKuvo254j zlL--Oybtl(_BLcE(|DnoXZJGOwH4xSc?vLcYh8O5vQjdJznju}x!!F@`xmb5BGyTO zdk^{X&Yin=?z~8)k@$Z~)_~kWTi3GP!Zw1U5xL{qHO-O=c=EeNJBjw5CmW-8=O{~F zH*ak|_79=o#Ui)ms)}W9?EfmgO4pygdXiby>DQrLkz`@LRLuU_$N~mvBRNdTQjZ1Q z>|TKh$~?x=B{1yDr)fdyax{&`vV$rXgCknA+j0l=n9%g+&!1zl1zlnJb4*0(`GV;n zIM2(1#AiB!zoNawluLx1Jh`WFV>pa|vC?u7U&!<{nRHmH7v^t^zy7vO`{H&Z?Wpqn z`H@fF*W-=1VEUCmhcQn;L~F*Vw;xbB4pN3+2KXYVOzmFJXiA7EJCgnv@+HLfP-O$Gg$ z4-LeE5(Nqr=siA>m^P3h;=4xkVd{V074?*|)6X(DXUOz;LL874ZJZ#kK(zpDS96|3 z@^uRbDSHW-z{fed86_))R?Nm~qQw#0MGGsil_u4&Vj?k`knSSKidA?-4qFiiF_%O& zbg-=G9x&QFRhZ99&{#eB>j-@~ruG%`=u=S#vFeGM z)2Y~H679l@oTDnM8jq>L!)QJxi{7CazsAc9MkGnfN%&>~nTxPLl{AHG+{L z7j}lm|M=rWni_^}(42ZZwD0TOhc7jC>lOZT+t#g}GvUo9#AQaB`CjI2pH)cI3&#}Y zub9>$4%paW&TGy#&c+6ihkPS%kTa{xY4VQ@%0GPhnXAj|n6rx*t9Fz&GL~Tk=1j3Ln=y^h zU0YRDlTCKl!UYq+Rl{mxRS@0L+^ z)$oBHh!T)Yom+8RqJ^$tugH(Bs6gbOww!Xa^>yr>4?om<%o&GLR?*twrE%CUNUN6F z+BwqKMwHQavCQB{qep>tZk*yM_=xt_HD%ejl}Rffz^%k@b(Dj{W}r>s%zvK=Hufge zcqc3FXQlZWq3_#jnMQA+3*IsB2Q%L`u6)0z{Q5XdpcrNhANYQ=kv^PYD&aZ^=?^Vh zG;ijj-)x}C_d0TrqAbQp4xB;3_!BL!p;*HTaTcmjV6Rh)i@DYq=M<=lerc7^~_)4)X1&S4`5x&RP!4fcxNob>P zJX5EOpabYJDqDvYxsna+Y)E(_>{#$vzz$wTc*-4tUZd+fO=xh)JMGdvfT zN5!u~fXoI{!MJ9uG4Xw^W$}G8`bA3zXhj2_rcSdW4g%*2ed%B+jo|7)$h$64m{kJS zhC7K`>*TlJIjclJObbtk6=3lrHGS?+m4TP_=ex8@VnOGv-2{&(cO-C${Nu;Z$=@)e@woMeSQDYb|kLsry zMv`u6Z=9`xf$34}*AFU(z3&p-Cf_I|rp;mfoY&B4bUZXHO!6^dTO3`lp<7SM`Th6b z`(mupF;Z?z`izRCK~MNP3ZWxM8D_KPiTQ+`7= zEP9pec3B7B#D?`{n?5wBc3Db3tI>7Z*#tigW=lCn8s0>516XgS_zf3^{t%6wGicCp z?9sPK_*CGRhC|K>U!=G0WDpthe2cQCx4QYHb3$oxlt8wQAwNDms=tel0twisIaOoI zJNSxHYFjjR^V)hwb4`k9eb^i4dX#N^oFoqy5v3m{lLls2DkPqZrOz7(VEwq%Fn`9W zp(ycGsGs0U4SUHDE^vVe7~GepY0~SmV|WT!@{TTD@TSd*C&!I`ypfLYo7w=`gUE