forked from peddivarshith/3dPrintedMicroscope
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebstreaming.py
199 lines (165 loc) · 5.74 KB
/
webstreaming.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# USAGE
# python webstreaming.py --ip 0.0.0.0 --port 8000
# import the necessary packages
from imutils.video import VideoStream
from flask import Response
from flask import Flask
from flask import render_template
from flask import request,redirect
from logs import make_log
import threading
import argparse
import datetime
import time
import imutils
import time
import cv2
import re
from io import BytesIO
from PIL import Image
import base64
# initialize the output frame and a lock used to ensure thread-safe
# exchanges of the output frames (useful for multiple browsers/tabs
# are viewing tthe stream)
outputFrame = None
lock = threading.Lock()
# initialize a flask object
app = Flask(__name__)
#Directory to store the stage images
stage_dir="./static/stage_images/"
# initialize the video stream and allow the camera sensor to
# warmup
#vs = VideoStream(usePiCamera=1).start()
vs=cv2.VideoCapture(0)
#vs = VideoStream(src=0).start()
time.sleep(2.0)
@app.route("/")
def index():
# return the rendered template
return render_template("index.html")
@app.route("/take_stage_image",methods=['POST'])
def take_stage_image():
print(request.form['order'])
print(request.url_rule.endpoint)
print(request.form['find_it'])
success,image=vs.read()
name,stage,step=request.form['order'].split("_")
print("shape")
width=vs.get(cv2.CAP_PROP_FRAME_WIDTH)
height=vs.get(cv2.CAP_PROP_FRAME_HEIGHT)
#amount of crop
center={}
left_crop=155
right_crop=145
top_crop=85
bottom_crop=55
print(image.shape)
timestamp=time.time()
timestamp=datetime.datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d-%H:%M:%S')
crop_img=image[top_crop:top_crop+340,left_crop:left_crop+340]
filename=request.form['order']+"_"+timestamp+".png"
cv2.imwrite(stage_dir+filename,crop_img)
#Making log
print("saved image")
try:
op=open("present_position.txt","r")
re=op.read().split(' ')
center['x']=0
center['y']=0
if(re[0]!=''):
center['x']=float(re[0])
center['y']=float(re[1])
except:
print("Exception has occured")
print(center)
make_log((340,340),name,step,'info',stage_dir,"stage",filename,center)
return redirect(request.form['find_it'])
def detect_motion(frameCount):
# grab global references to the video stream, output frame, and
# lock variables
global vs, outputFrame, lock
# initialize the motion detector and the total number of frames
# read thus far
#md = SingleMotionDetector(accumWeight=0.1)
#total = 0
# loop over frames from the video stream
while True:
# read the next frame from the video stream, resize it,
# convert the frame to grayscale, and blur it
ret,frame = vs.read()
frame = imutils.resize(frame, width=640)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
# grab the current timestamp and draw it on the frame
timestamp = datetime.datetime.now()
cv2.putText(frame, timestamp.strftime(
"%A %d %B %Y %I:%M:%S%p"), (10, frame.shape[0] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)
# if the total number of frames has reached a sufficient
# number to construct a reasonable background model, then
# continue to process the frame
'''if total > frameCount:
# detect motion in the image
motion = md.detect(gray)
# cehck to see if motion was found in the frame
if motion is not None:
# unpack the tuple and draw the box surrounding the
# "motion area" on the output frame
(thresh, (minX, minY, maxX, maxY)) = motion
cv2.rectangle(frame, (minX, minY), (maxX, maxY),
(0, 0, 255), 2)
# update the background model and increment the total number
# of frames read thus far
md.update(gray)
total += 1
'''
# acquire the lock, set the output frame, and release the
# lock
with lock:
outputFrame = frame.copy()
def generate():
# grab global references to the output frame and lock variables
global outputFrame, lock
# loop over frames from the output stream
while True:
# wait until the lock is acquired
with lock:
# check if the output frame is available, otherwise skip
# the iteration of the loop
if outputFrame is None:
continue
# encode the frame in JPEG format
(flag, encodedImage) = cv2.imencode(".png", outputFrame)
# ensure the frame was successfully encoded
if not flag:
continue
# yield the output frame in the byte format
yield(b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +
bytearray(encodedImage) + b'\r\n')
@app.route("/video_feed")
def video_feed():
# return the response generated along with the specific media
# type (mime type)
return Response(generate(),
mimetype = "multipart/x-mixed-replace; boundary=frame")
# check to see if this is the main thread of execution
if __name__ == '__main__':
# construct the argument parser and parse command line arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--ip", type=str, required=True,
help="ip address of the device")
ap.add_argument("-o", "--port", type=int, required=True,
help="ephemeral port number of the server (1024 to 65535)")
ap.add_argument("-f", "--frame-count", type=int, default=32,
help="# of frames used to construct the background model")
args = vars(ap.parse_args())
# start a thread that will perform motion detection
t = threading.Thread(target=detect_motion, args=(
args["frame_count"],))
t.daemon = True
t.start()
# start the flask app
app.run(host=args["ip"], port=args["port"], debug=True,
threaded=True, use_reloader=False)
# release the video stream pointer
vs.release()