-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
195 lines (166 loc) · 7.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import gc
import os
import random
import time
import numpy as np
import tensorflow as tf
from config import *
from play import Game, MCTSAlphaZeroPlayer, MCTSPlayer
from policy import AlphaZeroError
from ui import HeadlessUI
class DataAugmentor:
"""数据增强器
对原数据进行旋转 + 对称,共八种增强方式"""
def __init__(self, board_shape, rotate=True, flip=True):
self.board_shape = board_shape
self.rotate = rotate and board_shape[0] == board_shape[1]
self.flip = flip
def __call__(self, data_batch):
data_batch_aug = []
for state, mcts_prob, reward in data_batch:
state_aug = state
mcts_prob_aug = mcts_prob.reshape(self.board_shape)
if self.rotate:
num_revo = np.random.randint(4)
state_aug = np.rot90(state_aug, num_revo)
mcts_prob_aug = np.rot90(mcts_prob_aug, num_revo)
if self.flip and np.random.random() > 0.5:
state_aug = np.fliplr(state_aug)
mcts_prob_aug = np.fliplr(mcts_prob_aug)
mcts_prob_aug = mcts_prob_aug.flatten()
data_batch_aug.append((state_aug, mcts_prob_aug, reward))
return data_batch_aug
class AlphaZeroMetric:
"""AlphaZero 性能评估器"""
def __init__(self, board_shape, n_playout=400):
self.n_playout = n_playout
self.n_playout_mcts = 1000
self.best_score = -np.inf
self.board_shape = board_shape
def __call__(self, weights, episode=0, n_games=10):
assert n_games % 2 == 0
mcts_alphazero_player = MCTSAlphaZeroPlayer(c_puct=5, n_playout=self.n_playout, board_shape=self.board_shape)
mcts_alphazero_player.model.build(input_shape=(None, *self.board_shape, CHANNELS))
mcts_alphazero_player.model.set_weights(weights)
mcts_player = MCTSPlayer(c_puct=5, n_playout=self.n_playout_mcts, board_shape=self.board_shape)
game = Game(mcts_alphazero_player, mcts_player, board_shape=self.board_shape, ui=HeadlessUI(self.board_shape))
scores = {WIN: 0, LOSE: 0, TIE: 0}
score = 0.0
for idx in range(n_games):
winner = game.play(is_selfplay=False)
res = winner * mcts_alphazero_player.color
scores[res] += 1
game.switch_players()
print("[Testing] Episode: {:5d}, Game: {:2d}, Score: {:2d} ".format(episode + 1, idx, res), end="\r")
for key in scores:
score += key * scores[key]
now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
print(
"[Test] Episode: {:5d}, MCTS n_playout: {:6d}, Win: {:2d}, Lose: {:2d}, Tie: {:2d}, Score: {:.2f} @{} ".format(
episode + 1, self.n_playout_mcts, scores[WIN], scores[LOSE], scores[TIE], score, now
)
)
if score > self.best_score:
self.best_score = score
if score == n_games:
self.best_score = -np.inf
self.n_playout_mcts += 500
return True
return False
class Worker:
def __init__(
self,
board_shape,
resume=False,
weights_file=MODEL_FILE,
buffer_file=BUFFER_FILE,
lr=LEARNING_RATE,
freeze_cnn=False,
):
self.weights_file = weights_file
self.buffer_file = buffer_file
self.board_shape = board_shape
self.width, self.height = board_shape
self.freeze_cnn = freeze_cnn
self.player = MCTSAlphaZeroPlayer(c_puct=5, n_playout=400, board_shape=board_shape)
self.model = self.player.model
self.model.build(input_shape=(None, *board_shape, CHANNELS))
self.opt = tf.keras.optimizers.Adam(lr)
self.loss_object = AlphaZeroError()
self.mean_loss = tf.keras.metrics.Mean(name="train_loss")
self.game = Game(self.player, self.player, board_shape=board_shape, ui=HeadlessUI(board_shape))
self.data_aug = DataAugmentor(board_shape, rotate=True, flip=True)
self.metric = AlphaZeroMetric(board_shape=board_shape, n_playout=400)
if resume:
self.model.load_weights(self.weights_file)
print("Loaded model successfully.")
if os.path.exists(self.buffer_file):
self.game.data_buffer.load(self.buffer_file)
print("Loaded buffer ({} items) successfully.".format(len(self.game.data_buffer)))
if freeze_cnn:
self.freeze_cnn_layers()
self.model.summary()
def freeze_cnn_layers(self):
for layer in self.model.cnn_layers:
layer.trainable = False
def run(self):
for episode in range(MAX_EPISODE):
winner = self.game.play(is_selfplay=True)
gc.collect()
total_loss = tf.constant(0)
for epoch in range(EPOCHS):
mini_batch = random.sample(self.game.data_buffer, min(BATCH_SIZE, len(self.game.data_buffer) // 2))
mini_batch = self.data_aug(mini_batch)
states_batch, mcts_probs_batch, rewards_batch = zip(*mini_batch)
states_batch = tf.convert_to_tensor(states_batch, dtype=tf.float32)
mcts_probs_batch = tf.convert_to_tensor(mcts_probs_batch, dtype=tf.float32)
rewards_batch = tf.convert_to_tensor(np.expand_dims(rewards_batch, axis=-1), dtype=tf.float32)
with tf.GradientTape() as tape:
policy, values = self.model(states_batch, training=True)
total_loss = self.loss_object(
mcts_probs=mcts_probs_batch, policy=policy, rewards=rewards_batch, values=values
)
grads = tape.gradient(total_loss, self.model.trainable_weights)
self.opt.apply_gradients(zip(grads, self.model.trainable_weights))
self.mean_loss(total_loss)
print(
"[Training] Episode: {:5d}, Epoch: {:2d}, Winner: {:5s}, Loss: {} ".format(
episode + 1, epoch + 1, COLOR[winner], total_loss.numpy()
),
end="\r",
)
if (episode + 1) % CHECK_FREQ == 0:
now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
print(
"[Train] Episode: {:5d}, Loss: {} @{} ".format(
episode + 1, self.mean_loss.result(), now
),
)
self.mean_loss.reset_states()
is_best_score = self.metric(self.model.get_weights(), episode)
if is_best_score:
self.model.trainable = True # 保存参数前需要预先恢复可训练
self.model.save_weights(f"data/model-{self.width}x{self.height}#{N_IN_ROW}.h5")
self.game.data_buffer.save(f"data/buffer-{self.width}x{self.height}#{N_IN_ROW}.h5")
if self.freeze_cnn:
self.freeze_cnn_layers()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Gomoku AlphaZero")
parser.add_argument("--resume", action="store_true", help="恢复模型继续训练")
parser.add_argument("--weights", default=MODEL_FILE, help="预训练权重存储位置")
parser.add_argument("--buffer", default=BUFFER_FILE, help="经验池存储位置")
parser.add_argument("--lr", default=LEARNING_RATE, type=float, help="训练时学习率")
parser.add_argument("--width", default=WIDTH, type=int, help="棋盘水平宽度")
parser.add_argument("--height", default=HEIGHT, type=int, help="棋盘竖直宽度")
parser.add_argument("--freeze-cnn", action="store_true", help="训练时冻结 CNN 部分")
args = parser.parse_args()
worker = Worker(
board_shape=(args.width, args.height),
resume=args.resume,
weights_file=args.weights,
buffer_file=args.buffer,
lr=args.lr,
freeze_cnn=args.freeze_cnn,
)
worker.run()