-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcmaes.py
146 lines (113 loc) · 5.42 KB
/
cmaes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pickle
import random
import numpy as np
import torch
from deap import base
from deap import cma
from deap import creator
from deap import tools
from torch import optim
from torchvision.utils import save_image
from fitnesses import calculate_fitness
from utils import save_gen_best
cur_iteration = 0
def evaluate(args, individual):
renderer = args.renderer
optimizers = renderer.to_adam(individual)
img = renderer.render()
fitness = calculate_fitness(args.fitnesses, img)
for gen in range(args.adam_steps):
for optimizer in optimizers:
optimizer.zero_grad()
(-fitness).backward()
for optimizer in optimizers:
optimizer.step()
img = renderer.render()
fitness = calculate_fitness(args.fitnesses, img)
if args.renderer_type == "vdiff" and gen >= 1:
lr = renderer.sample_state[6][gen] / renderer.sample_state[5][gen]
renderer.individual = renderer.makenoise(gen)
renderer.individual.requires_grad_()
to_optimize = [renderer.individual]
opt = optim.Adam(to_optimize, lr=min(lr * 0.001, 0.01))
optimizers = [opt]
if torch.min(img) < 0.0:
img = (img + 1) / 2
save_image(img, f"{args.save_folder}/{args.sub_folder}/{args.experiment_name}_{cur_iteration}_{gen}.png")
print(fitness.item())
if args.lamarck:
individual[:] = renderer.get_individual()
"""
optimizers = renderer.to_adam(individual)
img = renderer.render()
save_image(img, f"{args.save_folder}/{args.sub_folder}/{args.experiment_name}_{cur_iteration}_extra.png")
"""
# print("iter {:05d} {}/{} reward: {:4.10f} {} {}".format(i, imagenet_class, imagenet_name, 100.0*r, r3, is_best))
# return [(rewards[0],), fitness_partials]
return [fitness]
def main_cma_es(args):
global cur_iteration
renderer = args.renderer
# The CMA-ES algorithm takes a population of one individual as argument
# The centroid is set to a vector of 5.0 see http://www.lri.fr/~hansen/cmaes_inmatlab.html
# for more details about the rastrigin and other tests for CMA-ES
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", np.ndarray, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("evaluate", evaluate, args)
strategy = cma.Strategy(centroid=renderer.generate_individual(), sigma=args.sigma, lambda_=args.pop_size)
toolbox.register("generate", strategy.generate, creator.Individual)
toolbox.register("update", strategy.update)
halloffame = tools.HallOfFame(1, similar=np.array_equal)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"
for cur_iteration in range(args.n_gens):
print("Generation:", cur_iteration)
# Generate a new population
population = toolbox.generate()
# Evaluate the individuals
fitnesses = toolbox.map(toolbox.evaluate, population)
for ind, fit in zip(population, fitnesses):
fit = fit[0].cpu().detach().numpy()
ind.fitness.values = [fit]
if args.save_all:
for index, ind in enumerate(population):
_ = renderer.to_adam(ind, gradients=False)
img = renderer.render()
# img.save(f"{args.save_folder}/{args.sub_folder}/{args.experiment_name}_{gen}_{index}.png")
if torch.min(img) < 0.0:
img = (img + 1) / 2
save_image(img, f"{args.save_folder}/{args.sub_folder}/{args.experiment_name}_{cur_iteration}_{index}.png")
# Update the strategy with the evaluated individuals
toolbox.update(population)
# Update the hall of fame and the statistics with the
# currently evaluated population
halloffame.update(population)
record = stats.compile(population)
logbook.record(evals=len(population), gen=cur_iteration, **record)
if args.verbose:
print(logbook.stream)
if halloffame is not None:
save_gen_best(args.save_folder, args.sub_folder, args.experiment_name, [cur_iteration, halloffame[0], halloffame[0].fitness.values, "_"])
print("Best individual:", halloffame[0].fitness.values)
_ = renderer.to_adam(halloffame[0], gradients=False)
img = renderer.render()
if torch.min(img) < 0.0:
img = (img + 1) / 2
save_image(img, f"{args.save_folder}/{args.sub_folder}/{args.experiment_name}_{cur_iteration}_best.png")
if halloffame[0].fitness.values[0] >= args.target_fit:
print("Reached target fitness.\nExiting")
break
if cur_iteration % args.checkpoint_freq == 0:
# Fill the dictionary using the dict(key=value[, ...]) constructor
cp = dict(population=population, generation=cur_iteration, halloffame=halloffame, logbook=logbook,
np_rndstate=np.random.get_state(), rndstate=random.getstate())
with open("{}/{}/{}_checkpoint.pkl".format(args.save_folder, args.sub_folder, args.experiment_name), "wb") as cp_file:
pickle.dump(cp, cp_file)
# print(time.time() - start)
print(logbook)