From 2bfdf471b4c1149466ca94044ae72ba720dbb722 Mon Sep 17 00:00:00 2001 From: E7-87-83 Date: Mon, 5 Aug 2024 21:22:19 +0800 Subject: [PATCH] add another solution and some discussion to quadratic f(g(h(x))) = 0 --- Misc/Practice/Practice.tex | 5 ++- Misc/Practice/q4.cyfung.tex | 80 +++++++++++++++++++++++++++++++++++++ 2 files changed, 83 insertions(+), 2 deletions(-) create mode 100644 Misc/Practice/q4.cyfung.tex diff --git a/Misc/Practice/Practice.tex b/Misc/Practice/Practice.tex index f835422..52fd4cc 100644 --- a/Misc/Practice/Practice.tex +++ b/Misc/Practice/Practice.tex @@ -5,7 +5,7 @@ \usepackage{hyperref} \title{Exercises} -\author{Cecilia Chan, aoiyamada211, Andy} +\author{Cecilia Chan, aoiyamada211, Andy, CY Fung} \begin{document} \maketitle @@ -15,5 +15,6 @@ \input{Misc/Practice/q2.cecilia.tex} \input{Misc/Practice/q3.andy.tex} \input{Misc/Practice/q4.cecilia.tex} +\input{Misc/Practice/q4.cyfung.tex} -\end{document} \ No newline at end of file +\end{document} diff --git a/Misc/Practice/q4.cyfung.tex b/Misc/Practice/q4.cyfung.tex new file mode 100644 index 0000000..dd99bc0 --- /dev/null +++ b/Misc/Practice/q4.cyfung.tex @@ -0,0 +1,80 @@ +\section*{Algebra Problem 4, Solution by CY} +\subsubsection*{Problem} +The problems can be found \href{https://www.math.hkust.edu.hk/~makyli/190_2010Sp/problemBk.pdf}{here} on page 7. + +\subsubsection*{Solution} + +The quadratic functions can be written as $f(x) = \alpha ((x-A)^2 - B)$, $g(x) = \beta ((x-C)^2 - D)$, $h(x) = \gamma ((x-E)^2 - F)$. + +\begin{eqnarray*} + f(g(h(x))) =& f(\quad \beta \gamma^2(((x-E)^2-F-\frac{C}{\gamma})^2 - \frac{D}{\gamma^2}) \quad ) \\ + =& \alpha \beta^2 \gamma^4 [ [ ((x-E)^2-F-\frac{C}{\gamma})^2 - \frac{D}{\gamma^2} - \frac{A}{\beta\gamma^2} ]^2 - \frac{B}{\beta^2\gamma^4} ]. +\end{eqnarray*} + +Consider the case $\alpha = \beta = \gamma = 1$: +\begin{equation*} + f(g(h(x))) = [((x-E)^2 - F - C)^2 - D - A]^2 - B. +\end{equation*} + +We can see for appropriate transformation, WLOG we can assume a solution of f(g(h(x))) = 0 targetting quadratic polynomials f(x), g(x), h(x) is a set of quadratic polynomials with leading coefficient one. + +\hspace{3em} + +Solving the equation $ 0 = [((x-E)^2 - F - C)^2 - D - A]^2 - B $, we got eight roots: $E \pm \sqrt{F+C \pm \sqrt{D+A \pm \sqrt{B}}}$. + +Assume the parameters are real and no complex roots are involved. + +Since square root must be larger than or equal to 0, we can order the eight roots from smallest to largest: + +\begin{eqnarray*} + E - \sqrt{F+C + \sqrt{D+A + \sqrt{B}}} \\ + E - \sqrt{F+C + \sqrt{D+A - \sqrt{B}}} \\ + E - \sqrt{F+C - \sqrt{D+A - \sqrt{B}}} \\ + E - \sqrt{F+C - \sqrt{D+A + \sqrt{B}}} \\ + E + \sqrt{F+C - \sqrt{D+A + \sqrt{B}}} \\ + E + \sqrt{F+C - \sqrt{D+A - \sqrt{B}}} \\ + E + \sqrt{F+C + \sqrt{D+A - \sqrt{B}}} \\ + E + \sqrt{F+C + \sqrt{D+A + \sqrt{B}}} \\ +\end{eqnarray*} + +The roots must be corresponding to 1,2,3,4,5,6,7,8. From the sum and difference of root differing by the sign after $E$, we got $E=4.5$, +$ \sqrt{F+C + \sqrt{D+A + \sqrt{B}}} = 3.5 $ for the first pair, $ \sqrt{F+C - \sqrt{D+A + \sqrt{B}}} = 0.5 $ for the fourth pair. (I) + +We get $ \sqrt{F+C + \sqrt{D+A - \sqrt{B}}} = 2.5 $ for the second pair, $ \sqrt{F+C - \sqrt{D+A - \sqrt{B}}} = 1.5 $ for the third pair. (II) + +From (I) we get $F+C = (12.25+0.25)/2=6.25$ . From (II) we get $F+C = (6.25+2.25)/2 = 4.25 $, which is impossible. + +Therefore it is impossible to find quadratic functions $f,g,h$ satisfying the requirement. + +\hspace{3em} + +Assume the parameters are complex: we have to pair up 1,2,3,4,5,6,7,8 to the roots and it is only possible to get $E=4.5$ for any consistent pairing. Then we can show $F+C$ is real, then similarly for $D+A$ and $B$. +Since $B = [((x-E)^2 - F - C)^2 - D - A]^2$ and $x, E, F+C, D+A$ are real, $B \ge 0$. Similarly we get $D+A - \sqrt{B} \ge 0$, etc.. So it goes back to the assumption that the parameters are real and no complex roots are involved. +\qed + +\hspace{5em} + +As a bonus, consider the following question from \href{https://math.stackexchange.com/questions/1724410/composition-of-three-quadratic-functions}{Math Stack Exchange}: + +\begin{quote} +Find quadratic functions $f,g,h$ such that $f(g(h(x)))$ has $-6, -5, -4, -2, 1, 3, 4, 5$ as its roots. +\end{quote} + +Using the above method, we obtain $E=-\frac{1}{2}$, $B=810$, $D+A=106$, $F+C=16\frac{1}{4}$. + +We can take on infinitely many solutions. For example, let $D=100$, $F=16$, we have + +\begin{eqnarray*} + h(x) =& (x-3\frac{1}{2})(x+4\frac{1}{2}) \\ + g(x) =& (x-10\frac{1}{4})(x+9\frac{3}{4}) \\ + f(x) =& (x-96)(x+84). +\end{eqnarray*} + +Let $D=196$, $F=2\frac{1}{4}$, we have +\begin{eqnarray*} + h(x) =& (x+2)(x-1) \\ + g(x) =& x(x-28) \\ + f(x) =& x(x+180), +\end{eqnarray*} + +which is the solution given in Stack Exchange.