From 4633638e82135d34ba965b824f9279609df3a41e Mon Sep 17 00:00:00 2001 From: gapry Date: Mon, 29 Jan 2024 18:52:05 +0800 Subject: [PATCH] BabyRudin: Solution: Ex05 in Ch01: Update --- Books/BabyRudin/Chapter01/ex05.gapry.tex | 17 +++++++---------- 1 file changed, 7 insertions(+), 10 deletions(-) diff --git a/Books/BabyRudin/Chapter01/ex05.gapry.tex b/Books/BabyRudin/Chapter01/ex05.gapry.tex index 583f06f..6cb77be 100644 --- a/Books/BabyRudin/Chapter01/ex05.gapry.tex +++ b/Books/BabyRudin/Chapter01/ex05.gapry.tex @@ -1,14 +1,11 @@ \subsection*{Exercise 05 (Gapry)} -\begin{flushleft} -$\text{(1) } \exists\ \alpha \in R \ni x \geq \alpha \ \forall x \in A$ \\ -$\text{(2) } \exists\ \alpha \in R \ni -x \leq -\alpha \ \forall -x \in -A$ \\ -\end{flushleft} \begin{flushleft} -(1) $\implies \alpha = \inf( A)$ \\ -(2) $\implies -\alpha = \sup(-A)$ -\end{flushleft} +Since $A \subset R$, and $A$ is bounded below, we know that $\inf A$ exists. +Let's claim $\alpha = \inf A$, so that $A = \{x \in R\ |\ x \ge \alpha \}$. +It follows that $-A = \{-x \in R\ | -x \le -\alpha,\ x \in A\}$. +Since we know that $\alpha$ is the greatest lower bound, +the negation of inequality $x \ge \alpha$, which is $-x \le -\alpha$, shows $-\alpha$ the least upper bound, that is , $-\alpha = \sup(-A)$. \\ -\begin{flushleft} -Obviously, $a = -(-a) \implies \inf(A) = -\sup(-A)$ -\end{flushleft} +According to 1.14 Proposition (d), $\alpha = -(-\alpha)$, we can conclude that $\inf A = -\sup(-A)$. +\end{flushleft} \ No newline at end of file