-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathinference_iqa.py
97 lines (80 loc) · 3.19 KB
/
inference_iqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import glob
import os
from pyiqa import create_metric
from tqdm import tqdm
import csv
from time import time
import torch
def main():
"""Inference demo for pyiqa.
"""
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--target', type=str, default=None, help='input image/folder path.')
parser.add_argument('-r', '--ref', type=str, default=None, help='reference image/folder path if needed.')
parser.add_argument('--device', type=str, default=None, help='reference image/folder path if needed.')
parser.add_argument(
'--metric_mode',
type=str,
default='FR',
help='metric mode Full Reference or No Reference. options: FR|NR.')
parser.add_argument('-m', '--metric_name', type=str, default='PSNR', help='IQA metric name, case sensitive.')
parser.add_argument('--save_file', type=str, default=None, help='path to save results.')
# Add a --verbose flag
parser.add_argument(
'-v', '--verbose',
action='store_true', # This makes it a flag (True when used, False otherwise)
help='Enable verbose output'
)
args = parser.parse_args()
metric_name = args.metric_name.lower()
# set up IQA model
iqa_model = create_metric(metric_name, metric_mode=args.metric_mode, device=args.device)
metric_mode = iqa_model.metric_mode
if os.path.isfile(args.target):
input_paths = [args.target]
if args.ref is not None:
ref_paths = [args.ref]
else:
input_paths = sorted(glob.glob(os.path.join(args.target, '*')))
if args.ref is not None:
ref_paths = sorted(glob.glob(os.path.join(args.ref, '*')))
if args.save_file:
sf = open(args.save_file, 'w')
sfwriter = csv.writer(sf)
avg_score = 0
test_img_num = len(input_paths)
if not 'fid' in metric_name:
pbar = tqdm(total=test_img_num, unit='image')
for idx, img_path in enumerate(input_paths):
img_name = os.path.basename(img_path)
if metric_mode == 'FR':
ref_img_path = ref_paths[idx]
else:
ref_img_path = None
start_time = time()
score = iqa_model(img_path, ref_img_path).cpu().item()
end_time = time()
avg_score += score
pbar.update(1)
pbar.set_description(f'{metric_name} of {img_name}: {score}')
pbar.write(f'{metric_name} of {img_name}: {score}\tTime: {end_time - start_time:.2f}s')
if args.save_file:
sfwriter.writerow([img_name, score])
pbar.close()
avg_score /= test_img_num
else:
assert os.path.isdir(args.target) and os.path.isdir(args.ref), 'input path must be a folder for FID.'
avg_score = iqa_model(args.target, args.ref)
if args.verbose and torch.cuda.is_available():
print(torch.cuda.memory_summary())
msg = f'Average {metric_name} score of {args.target} with {test_img_num} images is: {avg_score}'
print(msg)
if args.save_file:
sf.close()
if args.save_file:
print(f'Done! Results are in {args.save_file}.')
else:
print(f'Done!')
if __name__ == '__main__':
main()