-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
151 lines (129 loc) · 5.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import print_function
import warnings
from datetime import datetime
warnings.filterwarnings("ignore")
import random
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
import numpy as np
from model import FBSD
from datesets import get_trainAndtest
from config import class_nums
from config import HyperParams
def train():
# output dir
output_dir = HyperParams['kind']+ '_'+ HyperParams['arch']+ '_output'
try:
os.stat(output_dir)
except:
os.makedirs(output_dir)
# Data
trainset, testset = get_trainAndtest()
trainloader = DataLoader(trainset, batch_size=HyperParams['bs'], shuffle=True, num_workers=8, pin_memory=True)
testloader = DataLoader(testset, batch_size=HyperParams['bs'], shuffle=False, num_workers=8)
####################################################
print("dataset: ", HyperParams['kind'])
print("backbone: ", HyperParams['arch'])
print("trainset: ", len(trainset))
print("testset: ", len(testset))
print("classnum: ", class_nums[HyperParams['kind']])
####################################################
net = FBSD(class_num=class_nums[HyperParams['kind']], arch=HyperParams['arch'])
net = net.cuda()
netp = nn.DataParallel(net).cuda()
CELoss = nn.CrossEntropyLoss()
########################
new_params, old_params = net.get_params()
new_layers_optimizer = optim.SGD(new_params, momentum=0.9, weight_decay=5e-4, lr=0.002)
old_layers_optimizer = optim.SGD(old_params, momentum=0.9, weight_decay=5e-4, lr=0.0002)
new_layers_optimizer_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(new_layers_optimizer, HyperParams['epoch'], 0)
old_layers_optimizer_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(old_layers_optimizer, HyperParams['epoch'], 0)
max_val_acc = 0
for epoch in range(0, HyperParams['epoch']):
print('\nEpoch: %d' % epoch)
start_time = datetime.now()
print("start time: ", start_time.strftime('%Y-%m-%d-%H:%M:%S'))
net.train()
train_loss = 0
train_loss1 = 0
train_loss2 = 0
train_loss3 = 0
train_loss4 = 0
correct = 0
total = 0
idx = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
idx = batch_idx
inputs, targets = inputs, targets.cuda()
output_1, output_2, output_3, output_concat = netp(inputs)
# adjust optimizer lr
new_layers_optimizer_scheduler.step()
old_layers_optimizer_scheduler.step()
# overall update
loss1 = CELoss(output_1, targets)*2
loss2 = CELoss(output_2, targets)*2
loss3 = CELoss(output_3, targets)*2
concat_loss = CELoss(output_concat, targets)
new_layers_optimizer.zero_grad()
old_layers_optimizer.zero_grad()
loss = loss1 + loss2 + loss3 + concat_loss
loss.backward()
new_layers_optimizer.step()
old_layers_optimizer.step()
# training log
_, predicted = torch.max((output_1+output_2+output_3+output_concat).data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
train_loss += (loss1.item() + loss2.item() + loss3.item() + concat_loss.item() )
train_loss1 += loss1.item()
train_loss2 += loss2.item()
train_loss3 += loss3.item()
train_loss4 += concat_loss.item()
if batch_idx % 50 == 0:
print('Step: %d | Loss1: %.3f | Loss2: %.5f | Loss3: %.5f | Loss_concat: %.5f | Loss: %.3f | Acc: %.3f%% (%d/%d)' % (
batch_idx, train_loss1 / (batch_idx + 1), train_loss2 / (batch_idx + 1),
train_loss3 / (batch_idx + 1), train_loss4 / (batch_idx + 1), train_loss / (batch_idx + 1),
100. * float(correct) / total, correct, total))
train_acc = 100. * float(correct) / total
train_loss = train_loss / (idx + 1)
# eval
val_acc = test(net, testloader)
torch.save(net.state_dict(), './' + output_dir + '/current_model.pth')
if val_acc > max_val_acc:
max_val_acc = val_acc
torch.save(net.state_dict(), './' + output_dir + '/best_model.pth')
print("best result: ", max_val_acc)
print("current result: ", val_acc)
end_time = datetime.now()
print("end time: ", end_time.strftime('%Y-%m-%d-%H:%M:%S'))
def test(net, testloader):
net.eval()
correct_com = 0
total = 0
softmax = nn.Softmax(dim=-1)
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.cuda(), targets.cuda()
with torch.no_grad():
output_1, output_2, output_3, output_concat = net(inputs)
outputs_com = output_1 + output_2 + output_3 + output_concat
_, predicted_com = torch.max(outputs_com.data, 1)
total += targets.size(0)
correct_com += predicted_com.eq(targets.data).cpu().sum()
test_acc_com = 100. * float(correct_com) / total
return test_acc_com
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
import os
if __name__ == '__main__':
set_seed(666)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
train()