forked from syhw/DL4H
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdnn.py
780 lines (684 loc) · 31.8 KB
/
dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
"""
A deep neural network with or w/o dropout in one file.
"""
import numpy
import theano
import sys
import math
from theano import tensor as T
from theano import shared
from theano.tensor.shared_randomstreams import RandomStreams
from collections import OrderedDict
BATCH_SIZE = 100 # default batch size
L2_LAMBDA = 1. # default L2 regularization parameter
INIT_LR = 0.01 # initial learning rate, try making it larger
def relu_f(vec):
""" Wrapper to quickly change the rectified linear unit function """
return (vec + abs(vec)) / 2.
def softplus_f(v):
return T.log(1 + T.exp(v))
def dropout(rng, x, p=0.5):
""" Zero-out random values in x with probability p using rng """
if p > 0. and p < 1.:
seed = rng.randint(2 ** 30)
srng = theano.tensor.shared_randomstreams.RandomStreams(seed)
mask = srng.binomial(n=1, p=1.-p, size=x.shape,
dtype=theano.config.floatX)
return x * mask
return x
def build_shared_zeros(shape, name):
""" Builds a theano shared variable filled with a zeros numpy array """
return shared(value=numpy.zeros(shape, dtype=theano.config.floatX),
name=name, borrow=True)
class Linear(object):
""" Basic linear transformation layer (W.X + b) """
def __init__(self, rng, input, n_in, n_out, W=None, b=None):
if W is None:
W_values = numpy.asarray(rng.uniform(
low=-numpy.sqrt(6. / (n_in + n_out)),
high=numpy.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)), dtype=theano.config.floatX)
W_values *= 4 # This works for sigmoid activated networks!
W = theano.shared(value=W_values, name='W', borrow=True)
if b is None:
b = build_shared_zeros((n_out,), 'b')
self.input = input
self.W = W
self.b = b
self.params = [self.W, self.b]
self.output = T.dot(self.input, self.W) + self.b
def __repr__(self):
return "Linear"
class SigmoidLayer(Linear):
""" Sigmoid activation layer (sigmoid(W.X + b)) """
def __init__(self, rng, input, n_in, n_out, W=None, b=None):
super(SigmoidLayer, self).__init__(rng, input, n_in, n_out, W, b)
self.pre_activation = self.output
self.output = T.nnet.sigmoid(self.pre_activation)
class ReLU(Linear):
""" Rectified Linear Unit activation layer (max(0, W.X + b)) """
def __init__(self, rng, input, n_in, n_out, W=None, b=None):
if b is None:
b = build_shared_zeros((n_out,), 'b')
super(ReLU, self).__init__(rng, input, n_in, n_out, W, b)
self.pre_activation = self.output
self.output = relu_f(self.pre_activation)
class SoftPlus(Linear):
def __init__(self, rng, input, n_in, n_out, W=None, b=None):
if b is None:
b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b', borrow=True)
super(SoftPlus, self).__init__(rng, input, n_in, n_out, W, b)
self.pre_activation = self.output
self.output = softplus_f(self.pre_activation)
class DatasetMiniBatchIterator(object):
""" Basic mini-batch iterator """
def __init__(self, x, y, batch_size=BATCH_SIZE, randomize=False):
self.x = x
self.y = y
self.batch_size = batch_size
self.randomize = randomize
from sklearn.utils import check_random_state
self.rng = check_random_state(42)
def __iter__(self):
n_samples = self.x.shape[0]
if self.randomize:
for _ in xrange(n_samples / BATCH_SIZE):
if BATCH_SIZE > 1:
i = int(self.rng.rand(1) * ((n_samples+BATCH_SIZE-1) / BATCH_SIZE))
else:
i = int(math.floor(self.rng.rand(1) * n_samples))
yield (i, self.x[i*self.batch_size:(i+1)*self.batch_size],
self.y[i*self.batch_size:(i+1)*self.batch_size])
else:
for i in xrange((n_samples + self.batch_size - 1)
/ self.batch_size):
yield (self.x[i*self.batch_size:(i+1)*self.batch_size],
self.y[i*self.batch_size:(i+1)*self.batch_size])
#class PerceptronLoss: # TODO
class LogisticRegression:
""" _Multi-class_ Logistic Regression """
def __init__(self, rng, input, n_in, n_out, W=None, b=None):
if W != None:
self.W = W
else:
self.W = build_shared_zeros((n_in, n_out), 'W')
if b != None:
self.b = b
else:
self.b = build_shared_zeros((n_out,), 'b')
self.input = input
self.p_y_given_x = T.nnet.softmax(T.dot(self.input, self.W) + self.b)
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
self.output = self.y_pred
self.params = [self.W, self.b]
def negative_log_likelihood(self, y):
return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])
def negative_log_likelihood_sum(self, y):
return -T.sum(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])
def training_cost(self, y):
""" Wrapper for standard name """
return self.negative_log_likelihood(y)
def errors(self, y):
if y.ndim != self.y_pred.ndim:
raise TypeError("!!! 'y' should have the same shape as 'self.y_pred'",
("y", y.type, "y_pred", self.y_pred.type))
if y.dtype.startswith('int'):
return T.mean(T.neq(self.y_pred, y))
else:
print("!!! y should be of int type")
return T.mean(T.neq(self.y_pred, numpy.asarray(y, dtype='int')))
class HingeLoss(LogisticRegression):
""" _Multi-class_ Logistic Regression """
def __init__(self, rng, input, n_in, n_out, W=None, b=None):
super(HingeLoss, self).__init__(rng, input, n_in, n_out, W, b)
def hinge_loss(self, y):
return -T.mean(T.log(self.p_y_given_x)[:,y]) # TODO
def hinge_loss_sum(self, y):
return -T.sum(T.log(self.p_y_given_x)[:,y])
def training_cost(self, y):
""" Wrapper for standard name """
return self.negative_log_likelihood(y)
def errors(self, y):
if y.ndim != self.y_pred.ndim:
raise TypeError("!!! 'y' should have the same shape as 'self.y_pred'",
("y", y.type, "y_pred", self.y_pred.type))
if y.dtype.startswith('int'):
return T.mean(T.neq(self.y_pred, y))
else:
print("!!! y should be of int type")
return T.mean(T.neq(self.y_pred, numpy.asarray(y, dtype='int')))
class NeuralNet(object):
""" Neural network (not regularized, without dropout) """
def __init__(self, numpy_rng, theano_rng=None,
n_ins=40*3,
layers_types=[ReLU, ReLU, ReLU, ReLU, LogisticRegression],
layers_sizes=[1024, 1024, 1024, 1024],
n_outs=62*3,
rho=0.95, eps=1.E-6,
momentum=0.9, step_adapt_alpha=1.E-4,
debugprint=False):
"""
Basic Neural Net class
"""
self.layers = []
self.params = []
self.n_layers = len(layers_types)
self.layers_types = layers_types
assert self.n_layers > 0
self._rho = rho # ``momentum'' for adadelta (and discount/decay for RMSprop)
self._eps = eps # epsilon for adadelta (and for RMSprop)
self._momentum = momentum # for RMSProp
self._accugrads = [] # for adadelta
self._accudeltas = [] # for adadelta
self._avggrads = [] # for RMSprop in the Alex Graves' variant
self._stepadapts = [] # for RMSprop with step adaptations
self._stepadapt_alpha = step_adapt_alpha
if theano_rng == None:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
self.x = T.fmatrix('x')
self.y = T.ivector('y')
self.layers_ins = [n_ins] + layers_sizes
self.layers_outs = layers_sizes + [n_outs]
layer_input = self.x
for layer_type, n_in, n_out in zip(layers_types,
self.layers_ins, self.layers_outs):
this_layer = layer_type(rng=numpy_rng,
input=layer_input, n_in=n_in, n_out=n_out)
assert hasattr(this_layer, 'output')
self.params.extend(this_layer.params)
self._accugrads.extend([build_shared_zeros(t.shape.eval(),
'accugrad') for t in this_layer.params])
self._accudeltas.extend([build_shared_zeros(t.shape.eval(),
'accudelta') for t in this_layer.params])
self._avggrads.extend([build_shared_zeros(t.shape.eval(),
'avggrad') for t in this_layer.params])
self._stepadapts.extend([shared(value=numpy.ones(t.shape.eval(),
dtype=theano.config.floatX),
name='stepadapt', borrow=True) for t in this_layer.params])
self.layers.append(this_layer)
layer_input = this_layer.output
assert hasattr(self.layers[-1], 'training_cost')
assert hasattr(self.layers[-1], 'errors')
self.mean_cost = self.layers[-1].negative_log_likelihood(self.y)
self.cost = self.layers[-1].training_cost(self.y)
if debugprint:
theano.printing.debugprint(self.cost)
self.errors = self.layers[-1].errors(self.y)
def __repr__(self):
dimensions_layers_str = map(lambda x: "x".join(map(str, x)),
zip(self.layers_ins, self.layers_outs))
return "_".join(map(lambda x: "_".join((x[0].__name__, x[1])),
zip(self.layers_types, dimensions_layers_str)))
def get_SGD_trainer(self):
""" Returns a plain SGD minibatch trainer with learning rate as param. """
batch_x = T.fmatrix('batch_x')
batch_y = T.ivector('batch_y')
learning_rate = T.fscalar('lr') # learning rate
gparams = T.grad(self.mean_cost, self.params) # all the gradients
updates = OrderedDict()
for param, gparam in zip(self.params, gparams):
updates[param] = param - gparam * learning_rate
train_fn = theano.function(inputs=[theano.Param(batch_x),
theano.Param(batch_y),
theano.Param(learning_rate)],
outputs=self.mean_cost,
updates=updates,
givens={self.x: batch_x, self.y: batch_y})
return train_fn
def get_adagrad_trainer(self):
""" Returns an Adagrad (Duchi et al. 2010) trainer using a learning rate.
"""
batch_x = T.fmatrix('batch_x')
batch_y = T.ivector('batch_y')
learning_rate = T.fscalar('lr') # learning rate
gparams = T.grad(self.mean_cost, self.params) # all the gradients
updates = OrderedDict()
for accugrad, param, gparam in zip(self._accugrads, self.params, gparams):
# c.f. Algorithm 1 in the Adadelta paper (Zeiler 2012)
agrad = accugrad + gparam * gparam
dx = - (learning_rate / T.sqrt(agrad + self._eps)) * gparam
updates[param] = param + dx
updates[accugrad] = agrad
train_fn = theano.function(inputs=[theano.Param(batch_x),
theano.Param(batch_y),
theano.Param(learning_rate)],
outputs=self.mean_cost,
updates=updates,
givens={self.x: batch_x, self.y: batch_y})
return train_fn
def get_adadelta_trainer(self):
""" Returns an Adadelta (Zeiler 2012) trainer using self._rho and
self._eps params. """
batch_x = T.fmatrix('batch_x')
batch_y = T.ivector('batch_y')
gparams = T.grad(self.mean_cost, self.params)
updates = OrderedDict()
for accugrad, accudelta, param, gparam in zip(self._accugrads,
self._accudeltas, self.params, gparams):
# c.f. Algorithm 1 in the Adadelta paper (Zeiler 2012)
agrad = self._rho * accugrad + (1 - self._rho) * gparam * gparam
dx = - T.sqrt((accudelta + self._eps)
/ (agrad + self._eps)) * gparam
updates[accudelta] = (self._rho * accudelta
+ (1 - self._rho) * dx * dx)
updates[param] = param + dx
updates[accugrad] = agrad
train_fn = theano.function(inputs=[theano.Param(batch_x),
theano.Param(batch_y)],
outputs=self.mean_cost,
updates=updates,
givens={self.x: batch_x, self.y: batch_y})
return train_fn
def get_rmsprop_trainer(self, with_step_adapt=True, nesterov=False): # TODO Nesterov momentum
""" Returns an RmsProp (possibly Nesterov) (Sutskever 2013) trainer
using self._rho, self._eps and self._momentum params. """
batch_x = T.fmatrix('batch_x')
batch_y = T.ivector('batch_y')
learning_rate = T.fscalar('lr') # learning rate
gparams = T.grad(self.mean_cost, self.params)
updates = OrderedDict()
for accugrad, avggrad, accudelta, sa, param, gparam in zip(
self._accugrads, self._avggrads, self._accudeltas,
self._stepadapts, self.params, gparams):
acc_grad = self._rho * accugrad + (1 - self._rho) * gparam * gparam
avg_grad = self._rho * avggrad + (1 - self._rho) * gparam # this decay/discount (self._rho) should differ from the one of the line above
###scaled_grad = gparam / T.sqrt(acc_grad + self._eps) # original RMSprop gradient scaling
scaled_grad = gparam / T.sqrt(acc_grad - avg_grad**2 + self._eps) # Alex Graves' RMSprop variant (divide by a "running stddev" of the updates)
if with_step_adapt:
incr = sa * (1. + self._stepadapt_alpha)
#decr = sa * (1. - self._stepadapt_alpha)
decr = sa * (1. - 2*self._stepadapt_alpha)
###steps = sa * T.switch(accudelta * -gparam >= 0, incr, decr)
steps = T.clip(T.switch(accudelta * -gparam >= 0, incr, decr), self._eps, 1./self._eps) # bad overloading of self._eps!
scaled_grad = steps * scaled_grad
updates[sa] = steps
dx = self._momentum * accudelta - learning_rate * scaled_grad
updates[param] = param + dx
updates[accugrad] = acc_grad
updates[avggrad] = avg_grad
updates[accudelta] = dx
train_fn = theano.function(inputs=[theano.Param(batch_x),
theano.Param(batch_y),
theano.Param(learning_rate)],
outputs=self.mean_cost,
updates=updates,
givens={self.x: batch_x, self.y: batch_y})
return train_fn
def score_classif(self, given_set):
""" Returns functions to get current classification errors. """
batch_x = T.fmatrix('batch_x')
batch_y = T.ivector('batch_y')
score = theano.function(inputs=[theano.Param(batch_x),
theano.Param(batch_y)],
outputs=self.errors,
givens={self.x: batch_x, self.y: batch_y})
def scoref():
""" returned function that scans the entire set given as input """
return [score(batch_x, batch_y) for batch_x, batch_y in given_set]
return scoref
class RegularizedNet(NeuralNet):
""" Neural net with L1 and L2 regularization """
def __init__(self, numpy_rng, theano_rng=None,
n_ins=100,
layers_types=[ReLU, ReLU, ReLU, LogisticRegression],
layers_sizes=[1024, 1024, 1024],
n_outs=2,
rho=0.95, eps=1.E-6,
L1_reg=0.1,
L2_reg=0.1,
debugprint=False):
"""
A deep neural net with possible L1 and/or L2 regularization.
"""
super(RegularizedNet, self).__init__(numpy_rng, theano_rng, n_ins,
layers_types, layers_sizes, n_outs, rho, eps, debugprint)
self.L1_reg = L1_reg
self.L2_reg = L2_reg
L1 = shared(0.)
for param in self.params:
L1 += T.sum(abs(param))
if L1_reg > 0.:
self.cost = self.cost + L1_reg * L1
L2 = shared(0.)
for param in self.params:
L2 += T.sum(param ** 2)
if L2_reg > 0.:
self.cost = self.cost + L2_reg * L2
class DropoutNet(NeuralNet):
""" Neural net with dropout (see Hinton's et al. paper) """
def __init__(self, numpy_rng, theano_rng=None,
n_ins=40*3,
layers_types=[ReLU, ReLU, ReLU, ReLU, LogisticRegression],
layers_sizes=[4000, 4000, 4000, 4000],
dropout_rates=[0.2, 0.5, 0.5, 0.5, 0.5],
n_outs=62 * 3,
rho=0.98, eps=1.E-6,
debugprint=False):
"""
A dropout-regularized neural net.
"""
super(DropoutNet, self).__init__(numpy_rng, theano_rng, n_ins,
layers_types, layers_sizes, n_outs, rho, eps, debugprint)
self.dropout_rates = dropout_rates
dropout_layer_input = dropout(numpy_rng, self.x, p=dropout_rates[0])
self.dropout_layers = []
for layer, layer_type, n_in, n_out, dr in zip(self.layers,
layers_types, self.layers_ins, self.layers_outs,
dropout_rates[1:] + [0]): # !!! we do not dropout anything
# from the last layer !!!
if dr:
this_layer = layer_type(rng=numpy_rng,
input=dropout_layer_input, n_in=n_in, n_out=n_out,
W=layer.W * 1. / (1. - dr),
b=layer.b * 1. / (1. - dr))
# N.B. dropout with dr==1 does not dropanything!!
this_layer.output = dropout(numpy_rng, this_layer.output, dr)
else:
this_layer = layer_type(rng=numpy_rng,
input=dropout_layer_input, n_in=n_in, n_out=n_out,
W=layer.W, b=layer.b)
assert hasattr(this_layer, 'output')
self.dropout_layers.append(this_layer)
dropout_layer_input = this_layer.output
assert hasattr(self.layers[-1], 'training_cost')
assert hasattr(self.layers[-1], 'errors')
# TODO standardize cost
# these are the dropout costs
self.mean_cost = self.dropout_layers[-1].negative_log_likelihood(self.y)
self.cost = self.dropout_layers[-1].training_cost(self.y)
# these is the non-dropout errors
self.errors = self.layers[-1].errors(self.y)
def __repr__(self):
return super(DropoutNet, self).__repr__() + "\n"\
+ "dropout rates: " + str(self.dropout_rates)
def add_fit_and_score(class_to_chg):
""" Mutates a class to add the fit() and score() functions to a NeuralNet.
"""
from types import MethodType
def fit(self, x_train, y_train, x_dev=None, y_dev=None,
max_epochs=20, early_stopping=True, split_ratio=0.1, # TODO 100+ epochs
method='adadelta', verbose=False, plot=False):
"""
TODO
"""
import time, copy
if x_dev == None or y_dev == None:
from sklearn.cross_validation import train_test_split
x_train, x_dev, y_train, y_dev = train_test_split(x_train, y_train,
test_size=split_ratio, random_state=42)
if method == 'sgd':
train_fn = self.get_SGD_trainer()
elif method == 'adagrad':
train_fn = self.get_adagrad_trainer()
elif method == 'adadelta':
train_fn = self.get_adadelta_trainer()
elif method == 'rmsprop':
train_fn = self.get_rmsprop_trainer(with_step_adapt=True,
nesterov=False)
train_set_iterator = DatasetMiniBatchIterator(x_train, y_train)
dev_set_iterator = DatasetMiniBatchIterator(x_dev, y_dev)
train_scoref = self.score_classif(train_set_iterator)
dev_scoref = self.score_classif(dev_set_iterator)
best_dev_loss = numpy.inf
epoch = 0
# TODO early stopping (not just cross val, also stop training)
if plot:
verbose = True
self._costs = []
self._train_errors = []
self._dev_errors = []
self._updates = []
init_lr = INIT_LR
if method == 'rmsprop':
init_lr = 1.E-6 # TODO REMOVE HACK
n_seen = 0
while epoch < max_epochs:
#lr = init_lr / (1 + init_lr * L2_LAMBDA * math.log(1+n_seen))
#lr = init_lr / math.sqrt(1 + init_lr * L2_LAMBDA * n_seen/BATCH_SIZE) # try these
lr = init_lr
if not verbose:
sys.stdout.write("\r%0.2f%%" % (epoch * 100./ max_epochs))
sys.stdout.flush()
avg_costs = []
timer = time.time()
for x, y in train_set_iterator:
if method == 'sgd' or method == 'adagrad' or method == 'rmsprop':
#avg_cost = train_fn(x, y, lr=1.E-2)
avg_cost = train_fn(x, y, lr=lr)
elif method == 'adadelta':
avg_cost = train_fn(x, y)
elif method == 'rmsprop':
avg_cost = train_fn(x, y, lr=lr)
if type(avg_cost) == list:
avg_costs.append(avg_cost[0])
else:
avg_costs.append(avg_cost)
if verbose:
mean_costs = numpy.mean(avg_costs)
mean_train_errors = numpy.mean(train_scoref())
print(' epoch %i took %f seconds' %
(epoch, time.time() - timer))
print(' epoch %i, avg costs %f' %
(epoch, mean_costs))
print(' epoch %i, training error %f' %
(epoch, mean_train_errors))
if plot:
self._costs.append(mean_costs)
self._train_errors.append(mean_train_errors)
dev_errors = numpy.mean(dev_scoref())
if plot:
self._dev_errors.append(dev_errors)
if dev_errors < best_dev_loss:
best_dev_loss = dev_errors
best_params = copy.deepcopy(self.params)
if verbose:
print('!!! epoch %i, validation error of best model %f' %
(epoch, dev_errors))
epoch += 1
n_seen += x_train.shape[0]
if not verbose:
print("")
for i, param in enumerate(best_params):
self.params[i] = param
def score(self, x, y):
""" error rates """
iterator = DatasetMiniBatchIterator(x, y)
scoref = self.score_classif(iterator)
return numpy.mean(scoref())
class_to_chg.fit = MethodType(fit, None, class_to_chg)
class_to_chg.score = MethodType(score, None, class_to_chg)
def train_models(x_train, y_train, x_test, y_test, n_features, n_outs,
x_dev=None, y_dev=None,
use_dropout=False, n_epochs=100, numpy_rng=None,
svms=False, nb=False, deepnn=True,
verbose=False, plot=False, name=''):
if svms:
print("Linear SVM")
classifier = svm.SVC(gamma=0.001)
print(classifier)
classifier.fit(x_train, y_train)
print("score: %f" % classifier.score(x_test, y_test))
print("RBF-kernel SVM")
classifier = svm.SVC(kernel='rbf', class_weight='auto')
print(classifier)
classifier.fit(x_train, y_train)
print("score: %f" % classifier.score(x_test, y_test))
if nb:
print("Multinomial Naive Bayes")
classifier = naive_bayes.MultinomialNB()
print(classifier)
classifier.fit(x_train, y_train)
print("score: %f" % classifier.score(x_test, y_test))
if deepnn:
import warnings
warnings.filterwarnings("ignore") # TODO remove
if use_dropout:
n_epochs *= 4
pass
def new_dnn(dropout=False):
if dropout:
print("Dropout DNN")
return DropoutNet(numpy_rng=numpy_rng, n_ins=n_features,
#layers_types=[ReLU, ReLU, ReLU, LogisticRegression],
#layers_sizes=[1000, 1000, 1000],
#dropout_rates=[0., 0.5, 0.5, 0.5],
layers_types=[ReLU, ReLU, ReLU, ReLU, LogisticRegression],
layers_sizes=[2000, 2000, 2000, 2000],
dropout_rates=[0.2, 0.5, 0.5, 0.5, 0.5],
n_outs=n_outs,
debugprint=0)
else:
print("Simple (regularized) DNN")
return RegularizedNet(numpy_rng=numpy_rng, n_ins=n_features,
#layers_types=[LogisticRegression],
#layers_sizes=[],
layers_types=[ReLU, ReLU, ReLU, LogisticRegression],
layers_sizes=[1000, 1000, 1000],
#layers_types=[ReLU, LogisticRegression],
#layers_sizes=[200],
n_outs=n_outs,
L1_reg=0.,
L2_reg=L2_LAMBDA,
debugprint=1)
import matplotlib.pyplot as plt
plt.figure()
ax1 = plt.subplot(221)
ax2 = plt.subplot(222)
ax3 = plt.subplot(223)
ax4 = plt.subplot(224) # TODO updates of the weights
#methods = ['sgd', 'adagrad', 'adadelta']
#methods = ['adagrad', 'adadelta']
methods = ['rmsprop', 'adadelta']
#methods = ['rmsprop', 'adadelta', 'adagrad']
for method in methods:
dnn = new_dnn(use_dropout)
print dnn
dnn.fit(x_train, y_train, x_dev, y_dev, max_epochs=n_epochs,
method=method, verbose=verbose, plot=plot)
test_error = dnn.score(x_test, y_test)
print("score: %f" % (1. - test_error))
ax1.plot(numpy.log10(dnn._costs), label=method)
#ax2.plot(numpy.log10(dnn._train_errors), label=method)
#ax3.plot(numpy.log10(dnn._dev_errors), label=method)
ax2.plot(dnn._train_errors, label=method)
ax3.plot(dnn._dev_errors, label=method)
#ax4.plot(dnn._updates, label=method) TODO
ax4.plot([test_error for _ in range(10)], label=method)
ax1.set_xlabel('epoch')
ax1.set_ylabel('cost (log10)')
ax2.set_xlabel('epoch')
ax2.set_ylabel('train error')
ax3.set_xlabel('epoch')
ax3.set_ylabel('dev error')
ax4.set_ylabel('test error')
plt.legend()
plt.tight_layout()
plt.savefig('training_' + name + '.png')
if __name__ == "__main__":
add_fit_and_score(DropoutNet)
add_fit_and_score(RegularizedNet)
def nudge_dataset(X, Y):
"""
This produces a dataset 5 times bigger than the original one,
by moving the 8x8 images in X around by 1px to left, right, down, up
"""
from scipy.ndimage import convolve
direction_vectors = [
[[0, 1, 0],
[0, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[1, 0, 0],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 1],
[0, 0, 0]],
[[0, 0, 0],
[0, 0, 0],
[0, 1, 0]]]
shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant',
weights=w).ravel()
X = numpy.concatenate([X] +
[numpy.apply_along_axis(shift, 1, X, vector)
for vector in direction_vectors])
Y = numpy.concatenate([Y for _ in range(5)], axis=0)
return X, Y
from sklearn import datasets, svm, naive_bayes
from sklearn import cross_validation, preprocessing
MNIST = True
DIGITS = False
FACES = False
TWENTYNEWSGROUPS = False
SCALE = True
if MNIST:
from sklearn.datasets import fetch_mldata
mnist = fetch_mldata('MNIST original')
X = numpy.asarray(mnist.data, dtype='float32')
if SCALE:
#X = preprocessing.scale(X)
X /= 255.
y = numpy.asarray(mnist.target, dtype='int32')
print("Total dataset size:")
print("n samples: %d" % X.shape[0])
print("n features: %d" % X.shape[1])
print("n classes: %d" % len(set(y)))
x_train, x_test = X[:-10000], X[-10000:]
y_train, y_test = y[:-10000], y[-10000:]
train_models(x_train, y_train, x_test, y_test, X.shape[1],
len(set(y)), numpy_rng=numpy.random.RandomState(123),
use_dropout=False, n_epochs=20,
verbose=True, plot=True, name='mnist_L2')
#train_models(x_train, y_train, x_test, y_test, X.shape[1],
# len(set(y)), numpy_rng=numpy.random.RandomState(123),
# use_dropout=True,
# verbose=True, plot=True, name='mnist_dropout')
if DIGITS:
digits = datasets.load_digits()
data = numpy.asarray(digits.data, dtype='float32')
target = numpy.asarray(digits.target, dtype='int32')
nudged_x, nudged_y = nudge_dataset(data, target)
if SCALE:
nudged_x = preprocessing.scale(nudged_x)
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
nudged_x, nudged_y, test_size=0.2, random_state=42)
train_models(x_train, y_train, x_test, y_test, nudged_x.shape[1],
len(set(target)), numpy_rng=numpy.random.RandomState(123),
verbose=True, plot=True, name='digits')
if FACES:
import logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(message)s')
lfw_people = datasets.fetch_lfw_people(min_faces_per_person=70,
resize=0.4)
X = numpy.asarray(lfw_people.data, dtype='float32')
if SCALE:
X = preprocessing.scale(X)
y = numpy.asarray(lfw_people.target, dtype='int32')
target_names = lfw_people.target_names
print("Total dataset size:")
print("n samples: %d" % X.shape[0])
print("n features: %d" % X.shape[1])
print("n classes: %d" % target_names.shape[0])
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
X, y, test_size=0.2, random_state=42)
train_models(x_train, y_train, x_test, y_test, X.shape[1],
len(set(y)), numpy_rng=numpy.random.RandomState(123),
verbose=True, plot=True, name='faces')
if TWENTYNEWSGROUPS:
from sklearn.feature_extraction.text import TfidfVectorizer
newsgroups_train = datasets.fetch_20newsgroups(subset='train')
vectorizer = TfidfVectorizer(encoding='latin-1', max_features=10000)
#vectorizer = HashingVectorizer(encoding='latin-1')
x_train = vectorizer.fit_transform(newsgroups_train.data)
x_train = numpy.asarray(x_train.todense(), dtype='float32')
y_train = numpy.asarray(newsgroups_train.target, dtype='int32')
newsgroups_test = datasets.fetch_20newsgroups(subset='test')
x_test = vectorizer.transform(newsgroups_test.data)
x_test = numpy.asarray(x_test.todense(), dtype='float32')
y_test = numpy.asarray(newsgroups_test.target, dtype='int32')
train_models(x_train, y_train, x_test, y_test, x_train.shape[1],
len(set(y_train)),
numpy_rng=numpy.random.RandomState(123),
svms=False, nb=True, deepnn=True,
verbose=True, plot=True, name='20newsgroups')