-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyflocolor_windows.py
591 lines (473 loc) · 24.2 KB
/
pyflocolor_windows.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
from PySide6.QtWebEngineCore import QWebEngineSettings
from PySide6.QtCore import (Qt, Signal)
from PySide6.QtGui import QIcon
from PySide6.QtWebEngineWidgets import QWebEngineView
from PySide6.QtCore import QUrl
import pyflocolor_functions as pfc_func
import pyflocolor_utils as pfc_utils
import os
import random
from PySide6.QtWidgets import QLabel, QWidget, QHBoxLayout, QVBoxLayout, QPushButton, QListWidget, QMessageBox, QLineEdit, QCheckBox, QApplication
import csv
import pandas as pd
# Main Window
class MainInterface(QWidget):
def __init__(self):
# Initialize the main window
super().__init__()
self.setWindowTitle('PyFlower Cluster Kit')
self.resize(800, 400)
layout = QVBoxLayout(self)
# Sub-window preparation
self.get_occurrences_window = GetOccurrencesWindow()
self.get_images_window = GetImagesWindow()
self.train_window = GetTrainWindow()
self.collect_data_window = CollectDataWindow()
self.process_data_window = ProcessDataWindow()
# Set up the "Get Occurrences" button
btn_get_occurrences = QPushButton('Get Occurrences (Not Ready)')
btn_get_occurrences.clicked.connect(self.open_get_occurrences_window)
layout.addWidget(btn_get_occurrences)
# Set up the "Get Images" button
btn_get_images = QPushButton('Get Images')
btn_get_images.clicked.connect(self.open_get_images_window)
layout.addWidget(btn_get_images)
# Set up the "Train" button
btn_train = QPushButton('Train')
btn_train.clicked.connect(self.open_train_window)
layout.addWidget(btn_train)
# Set up the "Collect Data" button
btn_collect_data = QPushButton('Collect Data')
btn_collect_data.clicked.connect(self.open_collect_data_window)
layout.addWidget(btn_collect_data)
# Set up the "Process Data" button
btn_process = QPushButton('Process Data (Not Ready)')
btn_process.clicked.connect(self.open_process_data_window)
layout.addWidget(btn_process)
# Define what to do when "Get Occurrences" is clicked
def open_get_occurrences_window(self):
self.get_occurrences_window.show()
# Define what to do when "Get Images" is clicked
def open_get_images_window(self):
self.get_images_window.show()
# Define what to do when "Train" is clicked
def open_train_window(self):
self.train_window.show()
# Define what to do when "Collect Data" is clicked
def open_collect_data_window(self):
self.collect_data_window.show()
# Define what to do when "Process Data" is clicked
def open_process_data_window(self):
self.process_data_window.show()
# "Get Occurrences" Window
class GetOccurrencesWindow(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle('Get Occurrences (Work in Progress)')
self.resize(800, 400)
self.layout = QVBoxLayout(self)
back_button = QPushButton('Back')
back_button.clicked.connect(self.close)
self.layout.addWidget(back_button, alignment=Qt.AlignTop | Qt.AlignRight)
# "Get Images" Window
class GetImagesWindow(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle('Get Images')
self.resize(800, 400)
self.layout = QHBoxLayout(self)
self.list_widget = QListWidget()
self.populate_list('AppData/Occurrences')
self.list_widget.setSelectionMode(QListWidget.MultiSelection)
self.layout.addWidget(self.list_widget)
self.setup_right_column()
# Implement a back button
back_button = QPushButton('Back')
back_button.clicked.connect(self.close)
self.layout.addWidget(back_button, alignment=Qt.AlignTop | Qt.AlignRight)
def populate_list(self, directory):
try:
for file_name in os.listdir(directory):
self.list_widget.addItem(file_name)
except FileNotFoundError:
QMessageBox.warning(self, "Directory Not Found", f"Could not find directory: {directory}")
def setup_right_column(self):
right_column = QVBoxLayout()
refresh_button = QPushButton("Refresh List")
refresh_button.clicked.connect(self.refresh_list) # Connect to a new method
right_column.addWidget(refresh_button)
self.num_images_input = QLineEdit()
self.num_images_input.setPlaceholderText("# of images to download (default=100)")
right_column.addWidget(self.num_images_input)
self.collect_all_checkbox = QCheckBox("Do all species in list?")
right_column.addWidget(self.collect_all_checkbox)
self.redownload = QCheckBox("Re-download images if they already exist?")
right_column.addWidget(self.redownload)
start_button = QPushButton("Start")
start_button.clicked.connect(self.start_download)
right_column.addWidget(start_button)
self.status_label = QLabel("Ready")
self.status_label.setWordWrap(True) # Enable word-wrapping
self.status_label.setTextFormat(Qt.RichText) # Set the text format to rich text
right_column.addWidget(self.status_label)
self.layout.addLayout(right_column)
def refresh_list(self):
self.list_widget.clear() # Clear the existing list
self.populate_list('AppData/Occurrences') # Repopulate the list
def start_download(self):
if self.num_images_input.text():
num_images = int(self.num_images_input.text())
else:
num_images = 100
collect_all = self.collect_all_checkbox.isChecked()
re_download = self.redownload.isChecked()
if collect_all:
selected_files = os.listdir('AppData/Occurrences') # Get all files in the directory
else:
selected_files = [item.text() for item in self.list_widget.selectedItems()] # Collect all selected items
current_text = self.status_label.text()
new_text = f"<br>Downloading {len(selected_files)} images - this may take a while!"
self.status_label.setText(current_text + new_text)
pfc_func.download_images(selected_files, num_images, re_download)
current_text = self.status_label.text()
new_text = f"<br>Image downloads complete!"
self.status_label.setText(current_text + new_text)
# "Train" Window
class GetTrainWindow(QWidget):
def __init__(self):
# Initialize the "Train" window
super().__init__()
self.setWindowTitle('Train Model')
self.resize(800, 600)
layout = QHBoxLayout(self)
# Set up the left-side directory window
self.list_widget = QListWidget()
self.populate_list('AppData/Images')
self.list_widget.setSelectionMode(QListWidget.MultiSelection)
layout.addWidget(self.list_widget)
# Initialize all the Widgets for the right column
self.do_all_species_checkbox = QCheckBox("Do all species in list?")
self.redo_species_checkbox = QCheckBox("Re-train on species if already trained?")
self.num_species_input = QLineEdit()
self.start_k_input = QLineEdit()
self.values = [None for _ in range(7)]
# Set up the right-side menu
self.setup_right_column()
# Implement a back button
back_button = QPushButton('Back')
back_button.clicked.connect(self.close)
layout.addWidget(back_button, alignment=Qt.AlignTop | Qt.AlignRight)
# Populate the left column with the contents of the directory
def populate_list(self, directory):
try:
for subfolder in os.listdir(directory):
if os.path.isdir(os.path.join(directory, subfolder)):
self.list_widget.addItem(subfolder)
except FileNotFoundError:
QMessageBox.warning(self, "Directory Not Found", f"Could not find directory: {directory}")
# Set up the right column with the menu
def setup_right_column(self):
right_column = QVBoxLayout() # Initialize the right column
refresh_button = QPushButton("Refresh List")
refresh_button.clicked.connect(self.refresh_list) # Connect to a new method
right_column.addWidget(refresh_button)
# Add the checkboxes
right_column.addWidget(self.do_all_species_checkbox)
right_column.addWidget(self.redo_species_checkbox)
# Add the input fields
self.num_species_input.setPlaceholderText("# images to train on (default=10)")
right_column.addWidget(self.num_species_input)
self.start_k_input.setPlaceholderText("Starting k value (default=5)")
right_column.addWidget(self.start_k_input)
# Add the "Train" button, which will initiate self.start_training
train_button = QPushButton("Train")
train_button.clicked.connect(self.start_training)
right_column.addWidget(train_button)
self.status_label = QLabel("Ready")
self.status_label.setWordWrap(True) # Enable word-wrapping
self.status_label.setTextFormat(Qt.RichText) # Set the text format to rich text
right_column.addWidget(self.status_label)
# Add the right column to the layout
self.layout().addLayout(right_column)
def refresh_list(self):
self.list_widget.clear() # Clear the existing list
self.populate_list('AppData/Images') # Repopulate the list
# Start the training process
def start_training(self):
# Retrieve the values from the input fields
self.do_all_species = self.do_all_species_checkbox.isChecked()
self.redo_species = self.redo_species_checkbox.isChecked()
if self.num_species_input.text():
self.num_species = int(self.num_species_input.text())
else:
self.num_species = 10
if self.start_k_input.text():
self.start_k = int(self.start_k_input.text())
else:
self.start_k = 5
# Retrieve the list of folders to train with
if self.do_all_species:
self.selected_folders = [item.text() for item in self.list_widget.findItems("*", Qt.MatchWildcard)]
else:
self.selected_folders = [item.text() for item in self.list_widget.selectedItems()]
# Process the first folder
self.current_folder_index = 0
self.process_next_folder()
# Process the next folder
def process_next_folder(self):
# Stop if all folders have been processed
if self.current_folder_index < len(self.selected_folders):
folder = self.selected_folders[self.current_folder_index] # Get the current folder
# Get the images from the current folder
self.images = os.listdir(os.path.join('AppData/Images', folder))
# Randomly select a subset of images
self.selected_images = random.sample(self.images, min(self.num_species, len(self.images)))
# Process the first image
self.current_image_index = 0
self.process_image()
# Process the next image
def process_image(self):
folder = self.selected_folders[self.current_folder_index] # Get the current folder
image = self.selected_images[self.current_image_index] # Get the current image
# Get the html summary of the image
html_summary = pfc_func.get_summary_visual(os.path.join('AppData/Images', folder, image), self.start_k)
# Open the review window to train on this image
self.review_window = ReviewWindow(html_summary, folder, image, self.current_image_index + 1,
len(self.selected_images), self.start_k)
# Connect the "Closed" signal from ReviewWindow to on_review_window_closed
self.review_window.closed.connect(self.on_review_window_closed)
# Connect the "Increase k and repeat" signal from ReviewWindow to on_increase_k_and_repeat
self.review_window.increase_k_and_repeat.connect(self.on_increase_k_and_repeat)
self.review_window.skip_image_and_add_one.connect(self.on_skip_image_and_add_one)
self.review_window.force_complete.connect(self.on_force_complete)
self.review_window.show() # Show the image
def on_review_window_closed(self, values):
self.current_image_index += 1
if self.current_image_index < len(self.selected_images):
self.update_values(values)
self.process_image()
else:
self.update_values(values)
self.store_values()
current_text = self.status_label.text()
new_text = f"<br>Species {self.selected_folders[self.current_folder_index]} complete!"
self.status_label.setText(current_text + new_text)
self.current_folder_index += 1
self.process_next_folder()
def on_increase_k_and_repeat(self, new_start_k):
self.start_k = new_start_k # Update the start_k value
self.process_image() # Re-open the ReviewWindow with the new start_k
def on_skip_image_and_add_one(self):
self.current_image_index += 1
self.selected_images.append(random.sample(self.images, 1)[0])
self.process_image()
def on_force_complete(self):
self.current_folder_index += 1
self.store_values(values)
self.process_next_folder()
def update_values(self, values):
if not self.values[0]:
self.values = values
else:
for i in range(3):
if values[i] < self.values[i]:
self.values[i] = values[i]
# Update the second group of three elements if necessary
for i in range(3, 6):
if values[i] > self.values[i]:
self.values[i] = values[i]
self.values[6] = values[6]
print(self.values)
def store_values(self):
species = self.selected_folders[self.current_folder_index]
csv_filename = rf"AppData/Values/{species}.csv"
with open(csv_filename, 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(['Min H', 'Min S', 'Min V', 'Max H', 'Max S', 'Max V', 'K'])
csvwriter.writerow(self.values)
input_folder = rf"AppData/Images/{species}"
output_csv_filename = rf"AppData/Output/{species}.csv"
# Get a list of file paths within the input folder
file_paths = os.listdir(input_folder)
# Write the file paths to a CSV file
with open(output_csv_filename, mode='w', newline='') as file:
writer = csv.writer(file)
# Write the header row
writer.writerow(['path'])
# Write file paths to the CSV file
for path in file_paths:
full_path = f"AppData/Images/{species}/{path}"
writer.writerow([full_path])
print(f"CSV file '{csv_filename}' has been created in the 'Output' and 'Values' folders.")
self.values = [None for _ in range(7)]
# Sub-window of the "Train" Window
class ReviewWindow(QWidget):
closed = Signal(list) # Signal when the window is closed
increase_k_and_repeat = Signal(int) # Signal to increase k and repeat the process
skip_image_and_add_one = Signal() # Signal to skip the current image and add another to the list
force_complete = Signal() # Signal to force complete the process
def __init__(self, html_summary, folder, image, file_number, total_files, start_k):
# Initialize the "Review" window
super().__init__()
self.setWindowTitle(f"Review - {folder} ({file_number}/{total_files})")
screen_geometry = QApplication.primaryScreen().availableGeometry()
self.resize(screen_geometry.width(), screen_geometry.height())
layout = QHBoxLayout(self)
# Initialize variables locally
self.folder = folder
self.image = image
self.start_k = start_k
self.values = [0.0 for _ in range(7)]
# Initialize the HTML Viewer
web_view = QWebEngineView()
web_view.page().settings().setAttribute(QWebEngineSettings.LocalContentCanAccessFileUrls, True)
web_view.page().settings().setAttribute(QWebEngineSettings.LocalContentCanAccessRemoteUrls, True)
# Load HTML from a local file path
if os.path.exists(html_summary):
file_url = QUrl.fromLocalFile(html_summary)
web_view.load(file_url)
else:
print("File does not exist:", html_summary) # Additional debug info
# Add the HTML viewer to the layout
layout.addWidget(web_view)
# Add the menu to the layout
self.setup_right_column()
# Set up the right column with the menu
def setup_right_column(self):
right_column = QVBoxLayout() # Initialize the layout
submit_button = QPushButton("Skip")
submit_button.clicked.connect(lambda: self.skip_image())
right_column.addWidget(submit_button)
increase_k_button = QPushButton("Increase k")
increase_k_button.clicked.connect(lambda: self.handle_increase_k(self.start_k))
right_column.addWidget(increase_k_button)
self.best_clusters_input = QLineEdit()
self.best_clusters_input.setPlaceholderText("Best cluster")
right_column.addWidget(self.best_clusters_input)
self.best_clusters_input.returnPressed.connect(
lambda: self.submit_and_close(self.folder, self.image, self.start_k))
submit_button = QPushButton("Submit")
submit_button.clicked.connect(lambda: self.submit_and_close(self.folder, self.image, self.start_k))
right_column.addWidget(submit_button)
submit_button = QPushButton("Force Complete")
submit_button.clicked.connect(lambda: self.force())
right_column.addWidget(submit_button)
self.layout().addLayout(right_column)
def handle_increase_k(self, start_k):
new_start_k = start_k + 1 # Increment k
self.increase_k_and_repeat.emit(new_start_k) # Emit the custom signal with the new k value
self.close()
def skip_image(self):
self.skip_image_and_add_one.emit() # Emit the signal to skip the image and add another
self.close()
def force(self):
self.force_complete.emit() # Emit the signal to force complete the process
self.close()
def submit_and_close(self, folder, image, start_k):
best_cluster = self.best_clusters_input.text()
self.values = pfc_func.get_cluster_info(best_cluster, start_k)
self.closed.emit(self.values) # Emit the signal when the window is about to close
self.close()
# "Collect Data" Window
class CollectDataWindow(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle('Collect Data')
self.resize(800, 400)
self.layout = QHBoxLayout(self)
self.list_widget = QListWidget()
self.populate_list('AppData/Values')
self.list_widget.setSelectionMode(QListWidget.MultiSelection)
self.layout.addWidget(self.list_widget)
self.setup_right_column()
back_button = QPushButton('Back')
back_button.clicked.connect(self.close)
self.layout.addWidget(back_button, alignment=Qt.AlignTop | Qt.AlignRight)
def setup_right_column(self):
right_column = QVBoxLayout()
refresh_button = QPushButton("Refresh List")
refresh_button.clicked.connect(self.refresh_list) # Connect to a new method
right_column.addWidget(refresh_button)
self.collect_all_checkbox = QCheckBox("Do all species in list?")
right_column.addWidget(self.collect_all_checkbox)
collect_data_button = QPushButton("Collect Data")
collect_data_button.clicked.connect(self.collect_data)
right_column.addWidget(collect_data_button)
self.status_label = QLabel("Ready")
self.status_label.setWordWrap(True) # Enable word-wrapping
self.status_label.setTextFormat(Qt.RichText) # Set the text format to rich text
right_column.addWidget(self.status_label)
self.layout.addLayout(right_column)
def populate_list(self, directory):
try:
for file_name in os.listdir(directory):
self.list_widget.addItem(file_name)
except FileNotFoundError:
QMessageBox.warning(self, "Directory Not Found", f"Could not find directory: {directory}")
def refresh_list(self):
self.list_widget.clear() # Clear the existing list
self.populate_list('AppData/Values') # Repopulate the list
def collect_data(self):
collect_all = self.collect_all_checkbox.isChecked()
if collect_all:
selected_files = os.listdir('AppData/Values') # Get all files in the directory
else:
selected_files = [item.text() for item in self.list_widget.selectedItems()] # Collect all selected items
current_text = self.status_label.text()
new_text = f"<br>Processing {len(selected_files)} files - this may take a while!"
self.status_label.setText(current_text + new_text)
for file in selected_files:
csv_file_path = rf'AppData/Values/{file}'
# Initialize an empty list to store the second row data
row_data = []
# Open the CSV file and read its contents
with open(csv_file_path, mode='r') as csv_file:
csv_reader = csv.reader(csv_file)
for row_num, row in enumerate(csv_reader, start=1):
if row_num == 2: # Check if it's the second row
row_data = row
break
# Convert the items of the second row into a list of numbers
values = [float(item) for item in row_data]
# define upper and lower bounds and k
lower_bound = list(map(int, values[:3]))
upper_bound = list(map(int, values[3:6]))
k = int(values[6])
# Read data from a CSV file and stores it into a dataframe
# Like the destination, an "r" should be added in front path
# This may be either an absolute path (recommended for beginners) or a relative path, depending on how the file is saved
# Note: most of the time, no further arguments are required. Sometimes, though, there will be encoding issues
# The most common fix is to add an argument, "encoding", using either:
# encoding = 'utf-8'
# encoding = 'latin1',
# encoding = 'iso-8859-1',
# encoding = 'cp1252'
df = pd.read_csv(rf"AppData/Output/{file}")
# All that code above supports these final lines
# This creates a new column in the dataframe called "KMeansData"
# This assumes there is already a column in the dataframe called "path" which has the path to the image
# In the image_summary() function, the first argument is always x, because in this case, x will take
# the value of the path to the image
# The second argument is k for K-Means clustering
# The third and fourth arguments are the lower and upper bound for HSV values, already defined in other variables
# NOTE: Depending on the size of the data set and the number k selected, this may take some time to complete
# In smaller datasets with a low k, this may take 30 minutes to an hour
# For larger datasets with larger k, this may run overnight or longer
df["KMeansData"] = df["path"].apply(lambda x: pfc_utils.image_summary_processor(x, k, lower_bound, upper_bound))
# Finally, the code is saved to a csv file locally
# Use just a file name to save it in the same directory
# Use an absolute path to save it to some other location in the system
df.to_csv(rf"AppData/Output/{file}")
current_text = self.status_label.text()
new_text = f"<br>Species {file} complete!"
self.status_label.setText(current_text + new_text)
# "Process Data" Window
class ProcessDataWindow(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle('Process Data (Work in Progress)')
self.resize(800, 400)
self.layout = QVBoxLayout(self)
back_button = QPushButton('Back')
back_button.clicked.connect(self.close)
self.layout.addWidget(back_button, alignment=Qt.AlignTop | Qt.AlignRight)