-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrescan.py
239 lines (195 loc) · 10.2 KB
/
rescan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import tensorflow as tf
import numpy as np
import collections
"""
all assumed list value of kernel_size is equal
"""
cfg = collections.namedtuple("cfg",["batchsize","num_filters","stage_num","depth","dilations","kernel_size","pad_size","choice","frame"])
def Conv2d(input,num_filters,ksize=[3,3],dilations=[1,1],strides=[1,1],pad="VALID",name="conv"):
n,h,w,c = input.get_shape().as_list()
with tf.variable_scope(name):
weight = tf.get_variable("weight",ksize+[c,num_filters],dtype=tf.float32,initializer=tf.glorot_uniform_initializer())
bias = tf.get_variable("bias",[num_filters],dtype=tf.float32,initializer=tf.zeros_initializer())
conv = tf.nn.conv2d(input,weight,[1]+strides+[1],padding=pad,dilations=[1]+dilations+[1])
conv = tf.nn.bias_add(conv,bias)
return conv
def Conv2d_pad(input,num_filters,ksize=[3,3],strides=[1,1],dilations=[1,1],pad_size=0,pad="VALID",name="conv_pad"):
n,h,w,c = input.get_shape().as_list()
with tf.variable_scope(name):
if pad_size>0:
input = tf.pad(input,[[0,0],[pad_size,pad_size],[pad_size,pad_size],[0,0]],name="pad_input")
weight = tf.get_variable("weight",ksize+[c,num_filters],dtype=tf.float32,initializer=tf.glorot_uniform_initializer())
bias = tf.get_variable("bias",[num_filters],dtype=tf.float32,initializer=tf.zeros_initializer())
conv = tf.nn.conv2d(input,weight,[1]+strides+[1],padding=pad,dilations=[1]+dilations+[1])
conv = tf.nn.bias_add(conv,bias)
return conv
def Snorm(input,name="switch_norm"):
n,h,w,c = input.get_shape().as_list()
eps = 1e-3
with tf.variable_scope(name):
weight = tf.get_variable("weight",[1,1,1,c],dtype=tf.float32,initializer=tf.ones_initializer())
bias = tf.get_variable("bias",[c],dtype=tf.float32,initializer=tf.zeros_initializer())
mean_weight = tf.get_variable("weight_mean",[3],dtype=tf.float32,initializer=tf.ones_initializer())
var_weight = tf.get_variable("weight_var",[3],dtype=tf.float32,initializer=tf.ones_initializer())
# in batch
mean_ins,var_ins = tf.nn.moments(input,axes=[1,2],keep_dims=True)
mean_ln,var_ln = tf.nn.moments(input,axes=[1,2,3],keep_dims=True)
mean_bn,var_bn = tf.nn.moments(input,axes=[0,1,2],keep_dims=True)
mean_weight = tf.nn.softmax(mean_weight)
var_weight = tf.nn.softmax(var_weight)
mean = mean_weight[0]*mean_ins + mean_weight[1]*mean_ln + mean_weight[2]*mean_bn
var = var_weight[0]*var_ins + var_weight[1]*var_ln + var_weight[2]*var_bn
norm = (input-mean)/tf.sqrt(var+eps)
norm = norm*weight + bias
"""
offset = tf.get_variable("offset",[c],dtype=tf.float32,initializer=tf.zeros_initializer())
scale = tf.get_variable("scale",[c],dtype=tf.float32,initializer=tf.random_normal_initializer(0,0.2))
mean,variance = tf.nn.moments(input,axes=[0,1,2],keep_dims=False)
variance_epsilon = 1e-3
norm = tf.nn.batch_normalization(input,mean,variance,offset,scale,variance_epsilon=variance_epsilon)
"""
return norm
def Global_Pool(input,name="global_pooling"):
w,h,w,c = input.get_shape().as_list()
with tf.variable_scope(name):
output = tf.nn.avg_pool(input,[1,h,w,1],[1,1,1,1],padding="VALID")
return output
def SE(input,num_filters,ratio,name="SE_block"):
with tf.variable_scope(name):
output = Global_Pool(input)
output = Conv2d(output,num_filters/ratio,[1,1],name="fc_1")
output = tf.nn.relu(output)
output = Conv2d(output,num_filters,[1,1],name="fc_2")
output = tf.sigmoid(output,name="sigmoid")
output = input*output
return output
def DireConv(input,num_filters,kernel_size,dilations,ratio,pair=None,name="DireConv"):
with tf.variable_scope(name):
pad = int(dilations * (kernel_size - 1) / 2)
input = tf.pad(input,[[0,0],[pad,pad],[pad,pad],[0,0]],name="input")
conv = Conv2d(input,num_filters,kernel_size,dilations)
conv = SE(conv,num_filters,ratio)
conv = tf.nn.leaky_relu(conv,alpha=0.2)
return conv,None
def RNN(input,num_filters,kernel_size,dilations,pair=None,name="RNN"):
with tf.variable_scope(name):
pad_x = int(dilations[0]*(kernel_size[0]-1)/2)
input_x = tf.pad(input,[[0,0],[pad_x,pad_x],[pad_x,pad_x],[0,0]],name="pad_x")
conv_x = Conv2d(input_x,num_filters,kernel_size,dilations=dilations)
pad_h = int((kernel_size[0])/2)
input_h = tf.pad(input,[[0,0],[pad_h,pad_h],[pad_h,pad_h],[0,0]],name="pad_h")
conv_h = Conv2d(input_h,num_filters,kernel_size,name="conv_h")
if pair is not None:
h = tf.tanh(conv_x+conv_h)
else:
h = tf.tanh(conv_x)
h = tf.nn.leaky_relu(h,alpha=0.2)
return h,h
def LSTM(input,num_filters,kernel_size,dilations,ratio,pair=None,name="LSTM"):
with tf.variable_scope(name):
pad_x = int(dilations*(kernel_size-1)/2)
input_x = tf.pad(input,[[0,0],[pad_x,pad_x],[pad_x,pad_x],[0,0]],name="input_x")
conv_xf = Conv2d(input_x,num_filters,kernel_size,dilations,name="conv_xf")
conv_xi = Conv2d(input_x,num_filters,kernel_size,dilations,name="conv_xi")
conv_xo = Conv2d(input_x,num_filters,kernel_size,dilations,name="conv_xo")
conv_xj = Conv2d(input_x,num_filters,kernel_size,dilations,name="conv_xj")
pad_h = int((kernel_size-1)/2)
input_h = tf.pad(input,[[0,0],[pad_h,pad_h],[pad_h,pad_h],[0,0]],name="input_y")
conv_hf = Conv2d(input_h,num_filters,kernel_size,name="conv_hf")
conv_hi = Conv2d(input_h,num_filters,kernel_size,name="conv_hi")
conv_ho = Conv2d(input_h,num_filters,kernel_size,name="conv_hi")
conv_hj = Conv2d(input_h,num_filters,kernel_size,name="conv_hi")
if pair is not None:
h,c = pair
f = tf.sigmoid(conv_xf+conv_hf)
i = tf.sigmoid(conv_xi+conv_hi)
o = tf.sigmoid(conv_xo+conv_ho)
j = tf.tanh(conv_xj+conv_hj)
c = f*c + i*j
h = o*c
else:
i = tf.sigmoid(conv_xi)
o = tf.sigmoid(conv_xo)
j = tf.tanh(conv_xj)
c = i*j
h = o*c
output = SE(h,num_filters,ratio)
output = tf.nn.leaky_relu(output,alpha=0.2)
return output,[output,c]
def GRU(input,num_filters,kernel_size,dilations,ratio,pair=None,name="GRU"):
with tf.variable_scope(name):
pad_x = int(dilations * (kernel_size - 1) / 2)
input_x = tf.pad(input, [[0, 0], [pad_x, pad_x], [pad_x, pad_x], [0, 0]], name="input_x")
conv_xz = Conv2d(input_x, num_filters, kernel_size, dilations, name="conv_xz")
conv_xr = Conv2d(input_x, num_filters, kernel_size, dilations, name="conv_xr")
conv_xn = Conv2d(input_x, num_filters, kernel_size, dilations, name="conv_xn")
pad_h = int((kernel_size - 1) / 2)
input_h = tf.pad(input, [[0, 0], [pad_h, pad_h], [pad_h, pad_h], [0, 0]], name="input_y")
conv_hz = Conv2d(input_h, num_filters, kernel_size, name="conv_hz")
conv_hr = Conv2d(input_h, num_filters, kernel_size, name="conv_hr")
#conv_hn = Conv2d(input_h, num_filters, kernel_size, name="conv_hn")
if pair is not None:
z = tf.sigmoid(conv_xz+conv_hz)
r = tf.sigmoid(conv_xr+conv_hr)
n = tf.tanh(conv_xn+Conv2d_pad(r*pair,num_filters,kernel_size,pad_size=pad_h,name="r*pair"))
h = (1-z)*pair +z*n
else:
z = tf.sigmoid(conv_xz)
f = tf.tanh(conv_xn)
h = z*f
output = SE(h,num_filters,ratio)
output = tf.nn.leaky_relu(output,alpha=0.2)
return output,output
def Basic_rnn_block(input,num_filters,kernel_size,dilations,depth,state,choice="RNN",name="RNN_block"):
"""
:param state: note state should be list,length equals to nums of rnn_unit
:return:
"""
rnn_map = {"GRU":GRU,"RNN":RNN,"LSTM":LSTM,"DireConv":DireConv}
cnt = 0
tmp_state = []
with tf.variable_scope(name):
conv_name = choice+"_"+str(cnt)
conv,cur_state = rnn_map[choice](input=input,num_filters=num_filters,kernel_size=kernel_size,dilations=dilations,pair=state[cnt],name=conv_name)
tmp_state.append(cur_state)
for i in range(depth-3):
cnt += 1
conv_name = choice+"_"+str(cnt)
conv,cur_state = rnn_map[choice](conv,num_filters=num_filters,kernel_size=kernel_size,dilations=[(2**i)*dilations[0],(2**i)*dilations[1]],pair=state[cnt],name=conv_name)
tmp_state.append(cur_state)
return conv,tmp_state,cnt
def Basic_dec_block(input,num_filters,kernel_size,dilations,ratio,name="Dec_block"):
with tf.variable_scope(name):
conv = Conv2d_pad(input,num_filters=num_filters,ksize=kernel_size,dilations=dilations,pad_size=1)
conv = SE(conv,num_filters,ratio)
conv = tf.nn.leaky_relu(conv,alpha=0.2)
conv = Conv2d(conv,num_filters=3,ksize=[1,1])
return conv
def DetailNet(input,num_filters,kernel_size,dilations,ratio,depth,stage_num,frame,choice="RNN",name="DetailNet"):
# return is rain result
copy_x = input # may be it should be deepcopy?
res = []
with tf.variable_scope(name):
init_state = [None for _ in range(1+depth-3)]
for i in range(stage_num):
stage_name = "stage_"+str(i)
conv,c_state,_ = Basic_rnn_block(input,num_filters,kernel_size,dilations,depth,init_state,choice,name=stage_name+'RNN_Block')
conv = Basic_dec_block(conv,num_filters,kernel_size,dilations,ratio=ratio,name=stage_name+"Dec_Block")
if frame == "add" and i>0:
conv = conv + res[-1]
res.append(conv)
init_state = c_state
input = copy_x - conv
return res
if __name__ == "__main__":
cfg.batchsize = 1
cfg.num_filters = 32
cfg.kernel_size = [3,3]
cfg.dilations = [1,1]
cfg.stage_num = 2
cfg.choice = "RNN"
cfg.depth = 6
cfg.ratio = 6
cfg.frame = "add"
input = tf.placeholder(tf.float32,[cfg.batchsize,224,224,3],name="input")
res = DetailNet(input,cfg.num_filters,cfg.kernel_size,cfg.dilations,cfg.ratio,cfg.depth,cfg.stage_num,cfg.frame)