-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgstat_convfft.py
423 lines (331 loc) · 17.6 KB
/
gstat_convfft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gstat_convfft.py - GeigerLog commands for FFT statistics on convoluted functions
include in programs with:
import gstat_convfft
"""
###############################################################################
# This file is part of GeigerLog.
#
# GeigerLog is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# GeigerLog is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GeigerLog. If not, see <http://www.gnu.org/licenses/>.
###############################################################################
__author__ = "ullix"
__copyright__ = "Copyright 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024"
__credits__ = [""]
__license__ = "GPL3"
from gsup_utils import *
def convFFT():
"""Plotting FFT and Autocorrelation after connvolution of time functions
t = time
sigt = Signal in time domain, (CPM/CPS here)
freq = Signal in frequency domain
Has extra function for rectangle and autocorr
"""
markersize = 1.0
rectangle_size = 60 # normally 60 for 60 s = 1 min
vindex = g.exgg.select.currentIndex()
vname = list(g.VarsCopy)[vindex]
vnameFull = g.VarsCopy[vname][0]
yunit = vnameFull
vprint("plotFFT: vname: '{}', vnameFull: '{}'".format(vname, vnameFull))
rawt0 = g.logTimeDiffSlice
rawsigt0 = g.logSliceMod[vname]
if rawsigt0 is None:
showStatusMessage("No data available")
return
if rawt0.size <= rectangle_size:
showStatusMessage("Not enough data (need more than {})".format(rectangle_size))
return
setBusyCursor()
DataSrc = os.path.basename(g.currentDBPath)
rawt = np.ndarray(0)
rawsigt = np.ndarray(0)
for i in range(0, len(rawt0)):
if np.isnan(rawsigt0[i]):
#print("i, x0[i]:", i, x0[i])
continue
else:
#print("i, x[i]:", i, x0[i])
rawt = np.append(rawt, rawt0[i])
rawsigt = np.append(rawsigt, rawsigt0[i])
#print("rawt, rawsigt: len:", len(rawt), len(rawsigt))
t = rawt.copy()
sigt = rawsigt.copy()
"""Call numpy.isnan(arr) to get a boolean array showing whether or not each
index in the initial array arr has a value of NaN. Use the ~ operator to
invert this array so that indices with NaN are now marked as False. Then
call indexing syntax arr[n_arr] with n_arr as the result of the last step
to get a new array with all NaNs filtered out."""
nan_array = np.isnan(sigt)
not_nan_array = ~ nan_array
sigt = sigt[not_nan_array]
if sigt.size == 0:
g.exgg.showStatusMessage("No data available")
setNormalCursor()
return
# Window functions ############################################################
# the only place to activate Window function is here
use_window_functions = False
if use_window_functions:
hamm = np.hamming (len(t))
hann = np.hanning (len(t))
black = np.blackman(len(t))
# Kaiser:
# "A beta value of 14 is probably a good starting point"
# beta Window shape
# 0 Rectangular
# 5 Similar to a Hamming
# 6 Similar to a Hanning
# 8.6 Similar to a Blackman
beta = 5
kaiser = np.kaiser(len(t), beta)
# Select one
#win = hamm
#win = hann
#win = black
win = kaiser
# When using window functions subtract the average in order to avoid
# spurious low-frequency peaks!
sigt = sigt - np.mean(sigt)
# Time domain signal with Window function applied
sigt_win = sigt * win
# Prepare variables ###########################################################
t = t * 1440.0 # convert days to minutes
timeunit = "minutes"
frequencyunit = "1/minute"
cycletime = (t[-1] - t[0]) / (t.size -1) # in minutes
sigt_mean = np.mean(sigt)
sigt_var = np.var(sigt)
sigt_std = np.std(sigt)
sigt_var = np.var(sigt)
sigt_err = sigt_std / np.sqrt(sigt.size)
print("t: size:" , t.size , "\n", t[:30])
print("sigt: size:" , sigt.size , "\n", sigt[:30])
#print("sigt_win: size:" , sigt_win.size , "\n", sigt_win[:30])
if t.size < rectangle_size:
msg = "Not enough data; need {} records as minimum".format(rectangle_size)
g.exgg.showStatusMessage(msg)
setNormalCursor()
return
maxf = int(sigt.size / 60 * 10) # --> up to 10/min frequency
# figure and canvas ###########################################################
figEvalFFT = plt.figure(facecolor = "#C9F9F0", dpi=g.hidpiScaleMPL) # blueish tint
vprint("figEvalFFT: open figs count: {}, current fig: #{}".format(len(plt.get_fignums()), plt.gcf().number))
# arrange sub plots
plt.subplots_adjust(hspace=0.4, wspace=0.3, left=.04, top=0.93, bottom=0.08, right=.99)
# canvas - this is the Canvas Widget that displays the `figure`
# it takes the `figure` instance as a parameter to __init__
canvas3 = FigureCanvas(figEvalFFT)
canvas3.setFixedSize(1800, 700)
navtoolbar = NavigationToolbar(canvas3, None)
# Data vs Time ################################################################
plt.subplot (2,4,2)
plt.title ("Time (Counts)", fontsize=12, loc = 'left')
subTitle = "Recs:" + str(sigt.size)
plt.title (subTitle, fontsize=10, fontweight='normal', loc = 'right')
plt.xlabel ("Time ({})".format(timeunit), fontsize=12)
plt.ylabel ("Count Rate " + yunit, fontsize=12)
plt.grid (True)
plt.ticklabel_format(useOffset=False)
plt.plot (t, sigt , linewidth=0.4, color='red' , label ="Time Domain" , marker="o", markeredgecolor='red' , markersize=markersize)
# Autocorrelation vs Lag ######################################################
# calculations
asigt = sigt - sigt_mean
#print "np.mean(sigt) , np.var(sigt) :", np.mean(sigt), np.var(sigt)
#print "np.mean(asigt), np.var(asigt):", np.mean(asigt), np.var(asigt)
asigtnorm = np.var(asigt) * asigt.size # to normalize autocorrelation
ac = np.correlate(asigt, asigt, mode='full') / asigtnorm
ac = ac[int(ac.size/2):]
#print "ac: len:", ac.size
#print "ac:", "\n", ac
# autocorrelation plot
aax1 = plt.subplot(2, 4, 1)
plt.title ("Autocorrelation (normalized) vs. Lag Period", fontsize=11, loc = 'left', y = 1.08)
plt.xlabel ("Lag Period ({})".format(timeunit), fontsize=12)
plt.ylabel ("Autocorrelation", fontsize=12)
plt.grid (True)
#plt.ticklabel_format(useOffset=False)
aax2 = aax1.twiny()
# how many points to show enlarged?
for i in range(t.size):
if ac[i] < 0: break
tindex = min(i, t.size * 0.01)
tindex = max(25, tindex, 60./(cycletime * 60.))
tindex = int(tindex) # Warning: ./geigerlog:3483: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
# aax2.plot(tnew[:tindex], ac[:tindex], linewidth= 2.0, color='blue' , label ="Expanded Lag Period - Top Scale" , marker="o", markeredgecolor='blue' , markersize=markersize*2)
# What is the reason ?????
#print "tindex:", tindex
tnew = t - t[0]
aax1.plot(tnew, ac , linewidth= 1.0, color='red' , label ="Full Lag Period - Bottom Scale" , marker="o", markeredgecolor='red' , markersize=markersize * 1)
#aax1.legend(loc='upper right', fontsize=12)
aax2.plot(60*tnew[:tindex], ac[:tindex], linewidth= 2.0, color='blue' , label ="Expanded Lag Period in sec - Top Scale" , marker="D", markeredgecolor='blue' , markersize=markersize * 1)
#print "ac:", ac[:10]
plt.legend(loc='upper right', fontsize=8) # larger does not fit
for a in aax1.get_xticklabels():
#a.set_color("red")
#a.set_weight("bold")
pass
for a in aax2.get_xticklabels():
a.set_color("blue")
#~a.set_weight("bold")
# FFT plots ###################################################################
# calculations
# using amplitude spectrum, not power spectrum; power would be freq^2
freq = np.abs(np.fft.rfft(sigt ))
#freq2 = np.abs(np.fft.rfft(sigt2 ))
print("freq:" , len(freq) , "\n", freq[0:25])
if use_window_functions:
freq_win = np.abs(np.fft.rfft(sigt_win))
print("freq_win:" , len(freq_win) , "\n", freq_win[0:25])
f = np.fft.rfftfreq(t.size, d = cycletime)
print("f: len:", f.size, "\n", f[0:25])
p = np.reciprocal(f[1:]) # skipping 1st value frequency = 0
print("Period: len:", p.size, "\n", p[0:25])
# Plot FFT vs Time #########################################################
plt.subplot(2, 4, 5)
plt.title("FFT (Counts)", fontsize=12, loc = 'left')
subTitle = "Recs:" + str(freq.size)
plt.title (subTitle, fontsize=10, fontweight='normal', loc = 'right')
plt.xlabel("Time Period ({})".format(timeunit), fontsize=12)
plt.ylabel("FFT Amplitude", fontsize=12)
plt.grid(True)
plt.ticklabel_format(useOffset=False)
plt.loglog(p, freq[1:] , linewidth= 0.4, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
# Plot FFT vs Frequency ####################################################
plt.subplot(2, 4, 6)
plt.title("FFT (Counts)", fontsize=12, loc = 'left')
subTitle = "Recs:" + str(freq.size)
plt.title (subTitle, fontsize=10, fontweight='normal', loc = 'right')
plt.xlabel("Frequency ({})".format(frequencyunit), fontsize=12)
plt.ylabel("FFT Amplitude", fontsize=12)
plt.grid(True)
plt.ticklabel_format(useOffset=False)
#~plt.semilogy (f[1:], freq[1:] , linewidth= 0.4, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
plt.semilogy (f[1:maxf], freq[1:maxf] , linewidth= 0.4, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
# convolution plots ###########################################################
# rect for convolution
nr = rectangle_size # nr values of 1, followed by zeros
rect = np.zeros(sigt.size)
for i in range(nr): rect[i] = 1
print("rect:", len(rect), ", Values:\n0:10: ", rect[0:10], "\n50:70:", rect[50:70])
# time axis
#~bf = t[:rect.size]
# Plot Rectangle Signal vs time ###############################################
plt.subplot (2, 4, 3)
plt.title ("Time (Rectangle)", fontsize=12, loc = 'left')
subTitle = "Recs:" + str(rect.size)
plt.title (subTitle, fontsize=10, fontweight='normal', loc = 'right')
plt.xlabel ("Time ({})".format(timeunit), fontsize=12)
plt.ylabel ("Signal Value", fontsize=12)
plt.grid (True)
plt.ticklabel_format(useOffset=False)
#~plt.plot (bf, rect , linewidth= 1.0, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
plt.plot (t[:rect.size], rect , linewidth= 1.0, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
# FFT of Signal vs Frequency ##################################################
cfreq = np.abs(np.fft.rfft(rect ))
print("cfreq: len:", cfreq.size, "\n", cfreq[0:25])
f = np.fft.rfftfreq(t.size, d = cycletime)
print("f: len:", f.size, "\n", f[0:25])
p = np.reciprocal(f[1:]) # skipping 1st value frequency = 0
print("Period: len:", p.size, "\n", p[0:25])
plt.subplot (2, 4, 7)
plt.title ("FFT (Rectangle)", fontsize=12, loc = 'left')
subTitle = "Recs:" + str(cfreq.size)
plt.title (subTitle, fontsize=10, fontweight='normal', loc = 'right')
plt.xlabel ("Frequency ({})".format(frequencyunit), fontsize=12)
plt.ylabel ("FFT Amplitude", fontsize=12)
plt.grid (True)
plt.ticklabel_format(useOffset=False)
#~plt.semilogy (f[1:], cfreq[1:] , linewidth= 0.4, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
plt.semilogy (f[1:maxf], cfreq[1:maxf] , linewidth= 0.4, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
# last columns (convolution columns) ##########################################
# upper
csigt = scipy.signal.convolve(rect, sigt ) * (60 / nr)
csigt = csigt[nr:len(sigt) + nr]
print("csigt:", len(csigt), csigt[:30])
plt.subplot (2, 4, 4)
plt.title ("Time (Counts && Rectangle)", fontsize=12, loc = 'left')
subTitle = "Recs:" + str(csigt.size)
plt.title (subTitle, fontsize=10, fontweight='normal', loc = 'right')
plt.xlabel ("Time ({})".format(timeunit), fontsize=12)
plt.ylabel ("Count Rate CPM", fontsize=12)
plt.grid (True)
plt.ticklabel_format(useOffset=False)
plt.plot (t[:-nr], csigt[:-nr] , linewidth= 0.4, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
# lower
ccfreq = cfreq * freq
plt.subplot (2, 4, 8)
plt.title ("FFT (Counts && Rectangle)", fontsize=12, loc = 'left')
subTitle = "Recs:" + str(cfreq.size)
plt.title (subTitle, fontsize=10, fontweight='normal', loc = 'right')
plt.xlabel ("Frequency ({})".format(frequencyunit), fontsize=12)
plt.ylabel ("FFT Amplitude", fontsize=12)
plt.grid (True)
plt.ticklabel_format(useOffset=False)
#~plt.semilogy (f[1:], ccfreq[1:] , linewidth= 0.4, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
plt.semilogy (f[1:maxf], ccfreq[1:maxf] , linewidth= 0.4, color='red' , label ="FFT" , marker="o", markeredgecolor='red' , markersize=markersize)
# textboxes ###################################################################
labout_left = QTextBrowser() # label to hold some data on left side
labout_left.setLineWrapMode(QTextEdit.NoWrap)
labout_left.setTextInteractionFlags(Qt.LinksAccessibleByMouse|Qt.TextSelectableByMouse)
labout_left.setMinimumHeight(150)
labout_left.append("{:22s}= {}" .format('File' , DataSrc))
labout_left.append("{:22s}= {}" .format("No of Records" , t.size))
labout_left.append("{:22s}= {:4.2f}" .format("Count Rate Average" , sigt_mean))
labout_left.append("{:22s}= {:4.2f} (Std.Dev:{:5.2f}, Std.Err:{:5.2f})" .format("Count Rate Variance" , sigt_var, sigt_std, sigt_err))
labout_left.append("{:22s}= {:4.2f} sec (overall average)" .format("Cycle Time" , cycletime * 60.)) # t is in minutes
labout_left.append("{:22s}= {:4.2f} " .format("A.corr(lag= 0 sec)", ac[0]))
labout_left.append("{:22s}= {:4.2f} " .format("A.corr(lag={:5.1f} sec)".format(tnew[1] *60.), ac[1]))
labout_left.append("{:22s}= {:4.2f} " .format("A.corr(lag={:5.1f} sec)".format(tnew[2] *60.), ac[2]))
labout_left.append("{:22s}= {:4.2f} " .format("A.corr(lag={:5.1f} sec)".format(tnew[3] *60.), ac[3]))
labout_right = QTextBrowser() # label to hold some data on right side
labout_right.setLineWrapMode(QTextEdit.NoWrap)
labout_right.setTextInteractionFlags(Qt.LinksAccessibleByMouse|Qt.TextSelectableByMouse)
labout_right.setMinimumHeight(120)
fftmax = np.max (freq[1:])
fftmaxindex = np.argmax (freq[1:]) + 1
f_max = f [fftmaxindex ]
labout_right.append("{:22s}: {:s}" .format("Legend", "'Counts && Rectangle' means: 'Counts convolved with Rectangle'\n"))
labout_right.append("{:22s}= {:4.0f}" .format("FFT(f=0)" , freq[0]) )
labout_right.append("{:22s}= {:4.0f}" .format("len(t)" , len(t)) )
labout_right.append("{:22s}= {:4.2f} (= FFT(f=0)/No of Records)".format("Count Rate Average", freq[0] / len(t)) )
labout_right.append("{:22s}= {:4.2f}" .format("Max FFT(f>0)" , fftmax))
labout_right.append("{:22s}= {}" .format(" @ Index" , fftmaxindex))
labout_right.append("{:22s}= {:4.4f}" .format(" @ Frequency" , f_max ))
try:
labout_right.append("{:22s}= {:4.4f}" .format(" @ Period" , p[fftmaxindex] ))
except:
labout_right.append("{:22s}= {:s}" .format(" @ Period" , "undefined" ))
# Pop Up #################################################################
d = QDialog()
d.setWindowIcon(g.iconGeigerLog)
d.setFont(g.fontstd)
d.setWindowTitle("FFT & Autocorrelation")
#d.setMinimumHeight(g.window_height)
d.setWindowModality(Qt.WindowModal)
bbox = QDialogButtonBox()
bbox.setStandardButtons(QDialogButtonBox.Ok)
bbox.accepted.connect(lambda: d.done(0))
layoutH = QHBoxLayout()
layoutH.addWidget(labout_left)
layoutH.addWidget(labout_right)
layoutV = QVBoxLayout(d)
layoutV.addWidget(navtoolbar)
layoutV.addWidget(canvas3)
layoutV.addLayout(layoutH)
layoutV.addWidget(bbox)
figEvalFFT.canvas.draw_idle()
d.exec()
plt.close(figEvalFFT)