-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgstat_poisson.py
753 lines (592 loc) · 31.1 KB
/
gstat_poisson.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
"""
gstat_poisson.py - GeigerLog commands for poisson statistics
include in programs with:
import gstat_poisson
"""
###############################################################################
# This file is part of GeigerLog.
#
# GeigerLog is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# GeigerLog is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GeigerLog. If not, see <http://www.gnu.org/licenses/>.
###############################################################################
__author__ = "ullix"
__copyright__ = "Copyright 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024"
__credits__ = [""]
__license__ = "GPL3"
from gsup_utils import *
def plotPoisson():
"""Plotting a Poisson Fit to a histogram of the data"""
# CREATE histogram
# https://numpy.org/devdocs/reference/generated/numpy.histogram.html
# If bins is an int, it defines the number of equal-width bins in the given
# range (10, by default).If bins is a sequence, it defines the bin edges,
# including the rightmost edge, allowing for non-uniform bin widths.
# If bins is a string, it defines the method used to calculate the optimal
# bin width, as defined by histogram_bins.
# hist, bins = np.histogram(x, bins='auto') # gives bins as rational numbers
# hist, bins = np.histogram(x, bins='sqrt') # used in Excel; bins as rational numbers
#
# returns: The values of the histogram. See density and weights for a
# description of the possible semantics.
# bins : array of dtype float. Return the bin edges (length(hist)+1).
# Here using manually created histogram, as otherwise a synthetic normal distribution
# would not properly sum up
# hist = np.empty(len(bins) - 1)
# for i in range(0, len(bins) - 1):
# stepsum = 0
# ll0 = bins[i ]
# hl0 = bins[i + 1]
# dl0 = hl0 - ll0
# for j in range(0, step):
# ll = ll0 - (dl0 / 2 / step) + dl0 /step * j
# hl = ll + dl0 / step
# stepsum += len( x[((x>=ll) & (x<hl))] )
# #print("i, j, ll0, hl0, ll, hl, stepsum: ", i, j, ll0, hl0, ll, hl, stepsum)
# hist[i] = stepsum
# mdprint(defname, "manual histogram: len(hist):", len(hist), " ", hist[0:3])
# numpy.histogram(a, bins=10, range=None, density=None, weights=None)
# hist2, bin_edges2 = np.histogram(x, bins=len(bins) - 1, range=(x.min(), x.max()))
# hist2, bin_edges2 = np.histogram(x, bins=len(bins) - 1)
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# chi squared stuff ----------------------------------------------------------
# since 22.Juli 2021 I noticed this error coming up in all data files, even synthetic data:
# Chi-squared Test Poisson: Exception: For each axis slice, the sum of the observed frequencies
# must agree with the sum of the expected frequencies to a relative tolerance of 1e-08, but
# the percent differences are: 1.3829332101245581e-05
# conclusion: some change in the scipy lib!
# --> remove the whole chi-square calculation
# remove also Kolmogorov-Smirnoff calculation
#~obs = hist
#~exp = pdfs
#~mini = 0
#~maxi = len(obs)
#~# find where obs and exp are both > 5
#~# first the left side
#~for i in range(len(obs)):
#~#print("Left: i={}, obs={:9.0f}, exp={:9.2f}".format(i, obs[i], exp[i] ))
#~if obs[i] >=5 and exp[i] >= 5:
#~#print("mini--> i={}, obs= {}, exp={}".format(i, obs[i], exp[i]))
#~mini = i
#~break
#~# now the right side
#~for i in range(mini, len(obs) ):
#~#print("Right: i={}, obs={:9.0f}, exp={:9.2f}".format(i, obs[i], exp[i] ))
#~if obs[i] <= 5 or exp[i] <= 5:
#~#print("maxi--> i={}, obs= {}, exp={}".format(i, obs[i], exp[i]))
#~maxi = i
#~break
#~# the ignored values on the right side
#~for i in range(maxi, len(obs) ):
#~pass
#~#print("Rest: i={}, obs={:9.0f}, exp={:9.2f}".format(i, obs[i], exp[i] ))
#~wprint(defname + "mini:{}, maxi:{}, diff:{}".format(mini, maxi, maxi - mini))
# calc chi2 manually
#obs_mima = obs[mini:maxi] # cut out the part where obs and exp are both > 5
#exp_mima = exp[mini:maxi]
#
#sumchi2 = 0
#for i in range(0, len(obs_mima)):
# v = (obs_mima[i] - exp_mima[i])**2/exp_mima[i]
# sumchi2 += v
# print("i={:4d}, obs={:11.4f}, exp={:11.4f}, obs-exp={:11.4f}, chi2={:11.4f}, sumchi2={:11.4f}".format(i, obs_mima[i], exp_mima[i], obs_mima[i] - exp_mima[i], v, sumchi2))
#testing full Hist, not selected for > 5
# calc chi2 for Poisson
#ddofPoiss = 1
#dofPoiss = len(hist) - ddofPoiss
#chi2Poiss, pchi2Poiss = scipy.stats.chisquare(hist, f_exp=pdfs, ddof=ddofPoiss, axis=None)
#txtChi2Poiss = "Chi-squared Test Poisson <5: DoF= {:1d}, chi² = {:5.1f}, p0= {:2.1%}".format(dofPoiss, chi2Poiss, pchi2Poiss)
#mdprint(defname + txtChi2Poiss)
# Degrees of Freedom
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html
# "ddofint, optional:
# Delta degrees of freedom”: adjustment to the degrees of freedom for the
# p-value. The p-value is computed using a chi-squared distribution with
# k - 1 - ddof degrees of freedom, where k is the number of observed
# frequencies. The default value of ddof is 0."
#
# assumption: for Poisson take 1 extra dof off ddof= 1 (estimate average from data)
# for Normal take 2 extra dof off ddof= 2 (estimate average + StdDev from data)
#
#~# calc chi2 for Poisson
#~try:
#~ddofPoiss = 1
#~dofPoiss = len(hist[mini:maxi]) - ddofPoiss
#~chi2Poiss, pchi2Poiss = scipy.stats.chisquare(hist[mini:maxi], f_exp=pdfs[mini:maxi], ddof=ddofPoiss, axis=None)
#~# testing same fucntion gives p=100%
#~#chi2Poiss, pchi2Poiss = scipy.stats.chisquare(pdfs[mini:maxi], f_exp=pdfs[mini:maxi], ddof=ddofPoiss, axis=None)
#~txtChi2Poiss = "Chi-squared Test Poisson: DoF = {:1d}, chi² = {:5.1f}, p = {:2.1%}".format(dofPoiss, chi2Poiss, pchi2Poiss)
#~except Exception as e:
#~dprint("Chi-squared Test Poisson: Exception: ", e)
#~txtChi2Poiss = "Chi-squared Test Poisson: cannot be calculated!"
#~mdprint(defname + txtChi2Poiss)
#~# calc chi2 for Normal
#~try:
#~ddofNorm = 2
#~dofNorm = len(hist[mini:maxi]) - ddofNorm
#~chi2Norm, pchi2Norm = scipy.stats.chisquare(hist[mini:maxi], f_exp=pdfnorm[mini:maxi], ddof=ddofNorm, axis=None)
#~# testing same fucntion gives p=100%
#~#chi2Norm, pchi2Norm = scipy.stats.chisquare(pdfnorm[mini:maxi], f_exp=pdfnorm[mini:maxi], ddof=ddofNorm, axis=None)
#~txtChi2Norm = "Chi-squared Test Normal : DoF = {:1d}, chi² = {:5.1f}, p = {:2.1%}".format(dofNorm, chi2Norm, pchi2Norm)
#~except Exception as e:
#~dprint("Chi-squared Test Normal: Exception: ", e)
#~txtChi2Norm = "Chi-squared Test Normal: cannot be calculated!"
#~mdprint(defname + txtChi2Norm)
# END chi squared stuff ------------------------------------------------------
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# code inactivated for same reason as chi-squared stuff above
#~# Kolmogorov-Smirnoff stuff ---------------------------------------------------
#~#print("avgx: ", avgx)
#~obs = hist
#~exp = pdfs
#~#print("blue values:\n", obs)
#~#print("red values:\n", exp)
#~#print(scipy.stats.kstest(exp,'poisson', args=(20,), alternative='less'))
#~ks_stats_p, ks_pval_p = scipy.stats.kstest(x, 'poisson', args=(avgx,))
#~ks_stats_n, ks_pval_n = scipy.stats.kstest(x, 'norm' , args=(avgx,))
#~#print("========================= x_norm : avg:", avgx, ks_stats_n, ks_pval_n)
#~#print("========================= x_pois : avg:", avgx, ks_stats_p, ks_pval_p)
#~obs_cum = np.empty_like(obs)
#~exp_cum = np.empty_like(exp)
#~for i in range(0, len(obs) +1):
#~obs_cum = np.cumsum(obs[0:i])
#~exp_cum = np.cumsum(exp[0:i])
#~#print("obs_cum: \n", obs_cum)
#~#print("exp_cum: \n", exp_cum)
#~#diff = np.empty_like(obs)
#~#for i in range(0, len(obs)):
#~# diff[i] = obs_cum[i] - exp_cum[i]
#~#print("diff: \n", diff)
#~#print("diff: \n", np.absolute(diff))
#~#diffmax = np.max(np.absolute(diff))
#~#print("diffmax: ", diffmax)
#~# END Kolmogorov-Smirnoff stuff ---------------------------------------------
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# # chi stuff all removed, see above
# labout.append(txtChi2Norm)
# labout.append("Kolmogorov-Smirnow Poisson Test: ")
# labout.append("Poisson : statistic = {:5.3f}, pvalue= {:2.3%}".format(ks_stats_p, ks_pval_p))
# labout.append("Normal : statistic = {:5.3f}, pvalue= {:2.3%}".format(ks_stats_n, ks_pval_n))
defname = "plotPoisson: "
mdprint(defname)
setIndent(1)
data0 = g.logSliceMod
# if data0 is None or len(data0) == 0:
# msg = defname + "No data available"
# g.exgg.showStatusMessage(msg)
# mdprint(defname, msg)
# setIndent(0)
# return
vindex = g.exgg.select.currentIndex()
vname = list(g.VarsCopy)[vindex]
vnameFull = g.VarsCopy[vname][0]
yunit = vnameFull
DataSrc = os.path.basename(g.currentDBPath)
# cycletime = (t[-1] - t[0]) / (t.size - 1) # in minutes # needs time, which is not read
# continue only when variable is checked for display
if not g.exgg.varDisplayCheckbox[vname].isChecked():
msg = "Variable {} is not checked for display".format(vname)
g.exgg.showStatusMessage(msg)
vprint(defname, msg)
setIndent(0)
return
if data0 is None or len(data0) == 0:
msg = "No data available"
g.exgg.showStatusMessage(msg)
mdprint(defname, msg)
setIndent(0)
return
data0 = data0[vname]
# Fehler sollten doch abgefangen werden in applyValueFormula?
# müßte das nicht applyGraphFormula sein???
# if g.useGraphScaledData: x0 = applyValueFormula(vname, data0, g.GraphScale[vname], info=defname)
if g.useGraphScaledData: x0 = applyGraphFormula(vname, data0, g.GraphScale[vname], info=defname)
else: x0 = data0
# clean the data from nan:
xmask = np.isfinite(x0) # mask for nan values in x0
x = x0[xmask]
if len(x) == 0:
msg = defname + "No data available"
g.exgg.showStatusMessage(msg)
mdprint(defname, msg)
setIndent(0)
return
setBusyCursor()
######################################
# to show histogram of delta between 2 consecutive counts
# zeigt KEINE exp function! Deadtime effekt?
if 0: # do not execute on 0
dx = x[:-1].copy()
for i in range(0, len(dx)):
dx[i] = abs(x[i+1] - x[i])
#if dx[i] > 10: print i, dx[i]
#print x, len(x)
#print dx, len(dx)
x = dx
yunit = "Differences between 2 consecutive CPM!"
#######################################
# np.nanXYZ: all values excluding NANs! though there shouldn't be any,
# as they were eliminated above by the masking. But it does not hurt
lenx = len(x)
sumx = np.nansum (x)
avgx = np.nanmean(x)
varx = np.nanvar (x)
stdx = np.nanstd (x)
minx = np.nanmin (x)
maxx = np.nanmax (x)
std95 = stdx * 1.96 # +/- std95 is range for 95% of all values
mdprint(defname, "count data: lenx:{:0,.0f} sumx:{:0,.0f} avgx:{:0,.3f} varx:{:0,.3f} stdx:{:0,.3f} minx:{:0,.0f}, maxx:{:0,.0f}, std95%:{:0,.3f}".\
format(lenx, sumx, avgx, varx, stdx, minx, maxx, std95))
###########################################################################################
# get R-squared
def getRsquared(ydata, ymodel):
"""
Calculate r-squared based on ydata and ymodel
input: ydata, ymodel
return: r2, dB (=decibels)
"""
defname = "getRsquared: "
try:
ss_res = np.sum((ydata - ymodel) ** 2) # residual sum of squares to mmodel
ss_tot = np.sum((ydata - np.mean(ydata)) ** 2) # total sum of squares to average
r2 = float(1 - (ss_res / ss_tot)) # r-squared
dB = float(10 * np.log10(ss_tot / ss_res)) # dezibel (??) printed as SNR (Signal To Noise Ratio)
except Exception as e:
exceptPrint(e, defname)
ss_res = ss_tot = r2 = dB = g.NAN
# mdprint(defname, "getRsquared: ", "ss_res: ", ss_res, " ss_tot: ", ss_tot, " R2: ", r2, " dB: ", dB)
return (r2, dB)
###########################################################################################
# make the bin limits and bin width
colmin = 0
# colmax = 30
colmax = 40 # does it make it look nicer???? YES!!!
# left: take the lower of (the lowest count rate) and (the average minus 2 StdDev), but must be at least zero
bin_min = int(max(colmin, min(minx , avgx - (std95 * 2))))
# right: take the higher of (the highest count rate) and (the average plus 2 StdDev) and (number of at least 30 columns)
bin_max = int(max(colmax, avgx + (std95 * 2)))
# limit the total no of bins to 30 by making the bins wider, but keep width at least at 1
bin_width = int(max(1, int((bin_max - bin_min) / colmax)))
bin_total = int((bin_max - bin_min) / bin_width) + 1
mdprint(defname, "Poisson fits: bin_width: {}, bin_min: {}, bin_max: {}, bin_total: {}".format(bin_width, bin_min, bin_max, bin_total))
# create all the bin left edges
bins = np.empty(bin_total + 1)
bins[0] = int(bin_min)
for i in range(1, bin_total + 1):
bins[i] = int(bins[i - 1] + bin_width) # make the left edges
# rdprint(defname, "bins: len(): ", len(bins), " ", bins)
# get the histogram for those bins
hist, bin_edges2 = np.histogram(x, bins=bins )
# rdprint(defname, "bins == bin_edges2: ", bins == bin_edges2)
# print each bin and totals
# if g.devel:
# print("DVL No. of bins: {:<2n} Sum all bins: {:<10.3f} Total recs: {:<10.3f}".format(len(bins) - 1, sum(hist), len(x)))
# for i in range(0, len(bin_edges2) - 1):
# print("DVL Bin #{:<2d} hist: {:<10.3f} bins-leftEdge: {:<10.3f}".format(i + 1, hist[i], bin_edges2[i]))
# print()
# create Default Poisson dist
# create the Poisson dist for the bins from above histogram
pdfs = []
for i in range(int(bins[0]), int(bins[-1]), int(bin_width)):
bin_widthsum = 0
for j in range(0, bin_width):
bin_widthsum += scipy.stats.poisson.pmf(i + j, avgx)
pdfs.append(bin_widthsum * lenx)
mdprint(defname, "Default Poisson - len(pdfs):", len(pdfs), " ", pdfs[0:6], " ...")
# get r2
r2, PoissdB = getRsquared(hist, pdfs)
mdprint(defname, "R2 Poisson: {:+0.3f} SNR: {:+0.1f}".format(r2, PoissdB))
# needed when no fit is requested
last_pdfs = pdfs
last_hist = hist
# create Default Poiss-like Normal with StdDev = SQRT(Average)
if g.NormalPoissCurveFit:
pdfnorm = []
if avgx >= 0:
pdfnorm = []
for i in range(int(bins[0]), int(bins[-1]), int(bin_width)):
bin_widthsum = 0
for j in range(0, bin_width):
bin_widthsum += scipy.stats.norm.pdf(i + j , avgx, scale=np.sqrt(avgx))
pdfnorm.append(bin_widthsum * lenx)
mdprint(defname, "Default Normal len(pdfnorm):", len(pdfnorm), " ", pdfnorm[0:3], " ...")
# get r2
r2NP, NormdBP = getRsquared(hist, pdfnorm)
mdprint(defname, "R2 Normal (NP): {} SNR: {:0.0f}".format(r2NP, NormdBP))
else:
pdfnorm = [g.NAN] * (len(bins) - 1)
r2NP, NormdBP = g.NAN, g.NAN
# create the cumulative Poisson hist and dist
if g.CumProbDist:
# make histogram
cumhist = np.empty(len(bin_edges2) - 1)
cumhist[0] = 0 + hist[0]
for i in range(1, len(bin_edges2) - 1):
cumhist[i] = cumhist[i - 1] + hist[i]
# print("i: {:2n} cumhist: {}".format(i, cumhist[i]))
# sum up the Poisson dist for the bins from above histogram
if g.CumPoissCurveFit:
cpdfs = []
for i in range(int(bins[0]), int(bins[-1]), int(bin_width)):
bin_widthsum = scipy.stats.poisson.cdf(i + (bin_width - 1), avgx) # take only the rightmost bin when more than 1
cpdfs.append(bin_widthsum * lenx)
mdprint(defname, "Cumulative Poisson len(cpdfs):", len(cpdfs), " ", cpdfs[0:3], " ...")
# get r2
r2CP, CPoissdB = getRsquared(cumhist, cpdfs)
mdprint(defname, "CP Poisson: R2: {} SNR: {:0.0f}".format(r2CP, CPoissdB))
### inactive
# # ----- BEGIN if g.NormalCurveFit:-------------------------------------------------------------------------------------------------------------
# if g.NormalCurveFit:
# # Normal with StdDev as calculated from data
# if minx == maxx:
# # if equal add some difference
# # take the lowest count rate - 10
# bin_min = minx - 10
# # take the highest count rate + 10
# bin_max = maxx + 10
# else:
# # take the lowest count rate
# bin_min = minx
# # take the highest count rate
# bin_max = maxx
# # limit the total no of bins to 30 by making the bins wider, but keep width at least at 1
# bin_width = (bin_max - bin_min) / 30
# mdprint(defname, "g.NormalCurveFit: bin_width: ", bin_width, " bin_min: ", bin_min, "bin_max: ", bin_max)
# bin_total = int((bin_max - bin_min) / bin_width) + 1
# #print(" bin_width: {}, bin_min: {}, bin_max: {}, bin_total: {}".format(bin_width, bin_min, bin_max, bin_total))
# bins = np.empty(bin_total + 1)
# bins[0] = bin_min
# for i in range(1, bin_total + 1):
# bins[i] = bins[i - 1] + bin_width
# hist, bin_edges2 = np.histogram(x, bins=bins )
# if g.devel:
# # print each bin and totals
# print("DVL No. of bins: {:<2n} Sum all bins: {:<10.3f} Total recs: {:<10.3f} bins-width: {:8.3f}".format(len(bins) - 1, sum(hist), len(x), bins[1] - bins[0]))
# for i in range(0, len(bin_edges2) - 1):
# print("DVL Bin #{:<2d} hist: {:<10.3f} bins-leftEdge: {:<10.3f}".format(i + 1, hist[i], bin_edges2[i]))
# print()
# pdfnormStd = []
# for i in range(0, len(bins) - 1):
# bin_mid = (bins[i] + bins[i + 1]) / 2
# bin_widthsum = scipy.stats.norm.pdf(bin_mid , avgx, scale=stdx)
# bin_widthsum = bin_widthsum * bin_width
# pdfnormStd.append(bin_widthsum * lenx)
# mdprint(defname, "Default Normal StdDev len(pdfnormStd):", len(pdfnormStd), " ", pdfnormStd[0:3], " ...")
# # get r2
# r2NS, NormdBS = getRsquared(hist, pdfnormStd)
# mdprint(defname, "R2Normal (NS): {} SNR: {:0.0f}".format(r2NS, NormdBS))
# pdfs = pdfnormStd # pdfs will be used to print the curve data in labout
# # ----- END if g.NormalCurveFit:-------------------------------------------------------------------------------------------------------------
fig2 = plt.figure(facecolor = "#E7F9C9", dpi=g.hidpiScaleMPL)
g.plotPoissonFigNo = plt.gcf().number
# mdprint("plotPoisson: open figs count: {}, current fig: #{}".format(len(plt.get_fignums()), plt.gcf().number))
plt.suptitle("Histogram", fontsize=12 )
RsubTitle = DataSrc + " Recs:" + str(x.size)
plt.title(RsubTitle, fontsize=10, fontweight='normal', loc = 'right')
plt.xlabel("Variable {}".format(yunit), fontsize=12)
plt.ylabel("Frequency of Occurence", fontsize=12)
plt.grid(True)
plt.subplots_adjust(hspace=None, wspace=.2 , left=.14, top=0.89, bottom=0.11, right=.97)
plt.ticklabel_format(useOffset=False)
# canvas - this is the Canvas Widget that displays the `figure`; it takes the `figure` instance as a parameter to __init__
canvas2 = FigureCanvas(fig2)
# canvas2.setFixedSize(650, 500)
canvas2.setMinimumHeight(500)
#
# plot histogram and statistics curves #########################################
#
if g.ProbDist:
# plot Prob histogram
# plt.bar(bins[:-1], hist, color="cornflowerblue", align='center', width=bin_width * 0.85, label ="avg = {:0.2f}\nvar = {:0.2f}".format(avgx, varx))
plt.bar(bins[:-1], hist, color="cornflowerblue", align='center', width=bin_width * 0.75, label ="avg = {:0.2f}\nvar = {:0.2f}".format(avgx, varx))
if g.PoissCurveFit:
# Poisson curve
plt.plot(bins[:-1], pdfs, color='red', linewidth=3, label = "P r2={:0.3f}".format(r2))
# Poisson curve residuals
plt.plot(bins[:-1], hist - pdfs, color='orangered', linewidth=1, marker='o', markersize=3, label = "P Residuals")
last_pdfs = pdfs
last_hist = hist
# Normal curve based on StdDev=sqrt(mean)
if g.NormalPoissCurveFit:
# Normal curve
plt.plot(bins[:-1], pdfnorm, color='black', linewidth=3, label ="NP r2={:0.3f}".format(r2NP))
# Normal curve residuals
plt.plot(bins[:-1], hist - pdfnorm, color='black', linewidth=1, marker='s', markersize=3, label="NP Residuals")
last_pdfs = pdfnorm
last_hist = hist
else:
# plot CumProb histogram
plt.bar(bins[:-1], cumhist, color="turquoise", align='center', width=bin_width * 0.85, label ="avg = {:0.2f}\nvar = {:0.2f}".format(avgx, varx))
# Poisson cumulative
if g.CumPoissCurveFit:
# Cumulative Poisson curve
plt.plot(bins[:-1], cpdfs, color='blue', linewidth=3, label = "CP r2={:0.3f}".format(r2CP))
# Cum Poiss Residuals
plt.plot(bins[:-1], cumhist - cpdfs, color='blue', linewidth=1, marker='o', markersize=3, label = "CP Residuals")
last_pdfs = cpdfs
last_hist = cumhist
# ##################
# # currently not in use !!!
# # Normal curve based on StdDev calculated from data
# if g.NormalCurveFit:
# # Normal curve
# plt.plot(bins[:-1], pdfnormStd, color='green', linewidth=2, label ="NS r2={:0.3f}".format(r2NS))
#
# # Normal curve residuals
# plt.plot(bins[:-1], hist - pdfnormStd, color='green', linewidth=1, marker='s', markersize=3, label="NS Residuals")
# ##################
# best place for Legend found with "best" (is default anyway) - gives "Warning": using "best" could take long with many data
# plt.legend(loc="best", fontsize=10, prop={"family":"monospace"})
if avgx > (bins[0] + bins[-1]) / 2: location = "upper left"
else: location = "upper right"
plt.legend(loc=location, fontsize=10, prop={"family":"monospace"})
#
# make text field with info on histogram, data, and statistics
#
labout = QTextBrowser()
labout.setFont(g.fontstd)
labout.setLineWrapMode(QTextEdit.NoWrap)
labout.setTextInteractionFlags(Qt.LinksAccessibleByMouse|Qt.TextSelectableByMouse)
labout.setMinimumHeight(250)
# Histogram and Fit Properties
labout.append("<b>Histogram Properties</b>:")
labout.append("Bin Bin Values Frequency % of Curve-Fit Residuals")
labout.append("No. Width:{:<6.3f} (blue col) Total thick line thin line".format(bin_width))
for i in range(0, len(hist)):
if (g.ProbDist and (g.PoissCurveFit or g.NormalPoissCurveFit) or (g.CumProbDist and g.CumPoissCurveFit)):
Fiti = customformat(last_pdfs[i], 11, 4, thousand=True)
Resi = customformat(last_hist[i] - last_pdfs[i], 11, 4, thousand=True)
else:
Fiti = Resi = "-"
labout.append("{:3d} {:10,.3f} {:10,.4g} {:6.2f}% {:>11s} {:>11s}".format(i + 1, bins[i], last_hist[i], last_hist[i]*100 / lenx, Fiti, Resi))
if (g.ProbDist and (g.PoissCurveFit or g.NormalPoissCurveFit)):
sumF = customformat(sum(last_pdfs), 11, 4, thousand=True)
sumR = customformat(sum(last_hist - last_pdfs), 11, 4, thousand=True)
elif (g.CumProbDist and g.CumPoissCurveFit):
sumF = customformat(last_pdfs[-1], 11, 4, thousand=True)
sumR = customformat(sum(last_hist - last_pdfs), 11, 4, thousand=True)
else:
sumF = sumR = "-"
labout.append("Totals = {:10,.0f} 100.00% {:>11s} {:>11s}\n".format(sum(last_hist), sumF, sumR))
# Data Properties
labout.append("\n<b>Data Properties:</b>")
labout.append("File = {}" .format(g.currentDBPath))
labout.append("Records = {:8.0f}" .format(x.size))
labout.append("Average = {:8.2f}" .format(avgx))
labout.append("Variance = {:8.2f} (Note: same as Average if true Poisson Distribution)" .format(varx))
labout.append("Std.Dev. = {:8.2f}" .format(stdx))
labout.append("Sqrt(Avg) = {:8.2f} (Note: same as Std.Dev. if true Poisson Distribution)" .format(np.sqrt(avgx) if avgx >= 0 else g.NAN))
labout.append("Std.Err. = {:8.2f}" .format(stdx / np.sqrt(x.size)))
labout.append("Min : Max = {:8.2f} : {:<8.2f}" .format(minx, maxx))
labout.append("Skewness = {:8.2f} (Note: 0:Norm.Dist.; skewed to: +:right -:left)" .format(scipy.stats.skew (x) ))
labout.append("Kurtosis = {:8.2f} (Note: 0:Norm.Dist.; shape is: +:pointy: -:flat)" .format(scipy.stats.kurtosis(x) ))
labout.append("")
# Goodness of Fit
labout.append("<b>Fit Properties:</b>")
sP = "Poisson"
sCP = "Cumulative Poisson"
sNP = "Normal (Poisson like)"
sNS = "Normal (Standard)"
sPX = sP + " " * (21 - len(sP))
sCPX = sCP + " " * (21 - len(sCP))
sNPX = sNP + " " * (21 - len(sNP))
sNSX = sNS + " " * (21 - len(sNS))
if (g.ProbDist and (g.PoissCurveFit or g.NormalPoissCurveFit)):
if g.PoissCurveFit: labout.append("Goodness of Fit <b>{:20s}</b> : r² = {:5.3f} SNR = {:0.0f} dB".format(sPX, r2, PoissdB))
if g.NormalPoissCurveFit: labout.append("Goodness of Fit <b>{:20s}</b> : r² = {:5.3f} SNR = {:0.0f} dB".format(sNPX, r2NP, NormdBP))
elif (g.CumProbDist and g.CumPoissCurveFit):
labout.append("Goodness of Fit <b>{:20s}</b> : r² = {:5.3f} SNR = {:0.0f} dB".format(sCPX, r2CP, CPoissdB))
else:
labout.append("No Fit selected")
labout.append("")
###########################################################################
#
# make checkboxes with layout
#
# Label Probability Distribution
PDLabel = QRadioButton("Probability Distribution")
PDLabel.setStyleSheet("QRadioButton {font:bold;}")
PDLabel.setChecked(g.ProbDist)
# Label Cumulative Probability Distribution
CPDLabel = QRadioButton("Cumulative Probability Distribution")
CPDLabel.setStyleSheet("QRadioButton {font:bold;}")
CPDLabel.setChecked(g.CumProbDist)
# Check Plot Poisson Fit
checkbPPF = QCheckBox("Poisson Fit (P)") # default is yes
checkbPPF.setChecked(g.PoissCurveFit)
# Check Plot Cumulative Poisson Fit
checkbCPPF = QCheckBox("Cumulative \nPoisson Fit (CP)")
checkbCPPF.setChecked(g.CumPoissCurveFit)
# Check Plot Normal Fit
checkbNORMAL = QCheckBox("Normal Fit (NP)\n(Poisson-like)")
checkbNORMAL.setChecked(g.NormalPoissCurveFit)
# Check Plot Normal Fit StdDev
checkbNORMALS = QCheckBox("Normal Fit (NS)\n(Standard)")
checkbNORMALS.setChecked(g.NormalCurveFit)
layoutLabels = QHBoxLayout()
layoutLabels.addWidget(PDLabel)
layoutLabels.addWidget(CPDLabel)
layoutSelects = QHBoxLayout()
layoutSelects.addWidget(checkbPPF)
layoutSelects.addWidget(checkbNORMAL)
layoutSelects.addWidget(checkbCPPF)
layoutSelects.addWidget(QLabel(" "))
# layoutSelects.addWidget(checkbNORMALS)
###############################
# setup dialog
d = QDialog()
g.plotPoissonPointer = d
d.setWindowIcon(g.iconGeigerLog)
d.setWindowTitle("Poisson Test")
d.setWindowModality(Qt.WindowModal)
d.setMaximumWidth(1200)
navtoolbar = NavigationToolbar(canvas2, d) # choice of parent does not matter?
# show the cursor x, y position in the Nav toolbar
ax1 = plt.gca()
ax1.format_coord = lambda x,y: "x={:.1f}, y={:.1f}".format(x, y)
okButton = QPushButton("OK")
okButton.setAutoDefault(True)
okButton.clicked.connect(lambda: d.done(0))
selectButton = QPushButton("Plot")
selectButton.setStyleSheet("QPushButton {font:bold;}")
selectButton.setAutoDefault(False)
selectButton.clicked.connect(lambda: d.done(100))
bbox = QDialogButtonBox()
bbox.addButton(selectButton, QDialogButtonBox.ActionRole)
bbox.addButton(okButton, QDialogButtonBox.ActionRole)
layoutV = QVBoxLayout(d)
layoutV.addWidget(navtoolbar)
layoutV.addWidget(canvas2)
layoutV.addLayout(layoutLabels)
layoutV.addLayout(layoutSelects)
layoutV.addWidget(bbox)
layoutV.addWidget(labout)
setNormalCursor()
# show window
fig2.canvas.draw_idle()
retval = d.exec()
if retval == 100:
g.ProbDist = PDLabel.isChecked()
g.CumProbDist = CPDLabel.isChecked()
g.PoissCurveFit = checkbPPF.isChecked()
g.CumPoissCurveFit = checkbCPPF.isChecked()
g.NormalPoissCurveFit = checkbNORMAL.isChecked()
# g.NormalCurveFit = checkbNORMALS.isChecked()
setIndent(0)
g.plotPoissonPointer.close() # closes the dialog
plt.close(g.plotPoissonFigNo) # closes the figure
plotPoisson() # re-plots
plt.close(fig2)
setIndent(0)