-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
411 lines (344 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import time
import random
import numpy as np
import matplotlib.pyplot as plt
import nilvec
import chromadb
import redis
import subprocess
import qdrant_client
from pymilvus import connections, Collection
from abc import ABC, abstractmethod
from typing import List, Tuple, Dict
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct
from tqdm import tqdm
# Global Configuration
DIM = 768 # Dimension of each vector
INSERTS = 100_000 # Total number of vectors to insert
QUERY_INTERVAL = INSERTS // 100
METADATA = True
CATEGORIES = ["news", "blog", "report"]
# Helper Functions to Manage Docker
def run_docker_command(command):
"""Runs a shell command to start Docker containers if needed."""
try:
subprocess.run(
command,
shell=True,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
)
except subprocess.CalledProcessError as e:
print(f"Error running command: {command}\n{e.stderr}")
def check_container_running(name):
"""Returns True if a container with the given name is running."""
result = subprocess.run(
f"docker ps --filter 'name={name}' --format '{{{{.Names}}}}'",
shell=True,
capture_output=True,
text=True,
)
return name in result.stdout.strip()
def remove_existing_container(name):
"""Removes an existing container if it exists (whether running or stopped)."""
result = subprocess.run(
f"docker ps -a --filter 'name={name}' --format '{{{{.Names}}}}'",
shell=True,
capture_output=True,
text=True,
)
if name in result.stdout.strip():
print(f"Removing existing container: {name}")
subprocess.run(f"docker rm -f {name}", shell=True, check=True)
def kill_all_containers():
"""Kills all Docker containers created in this script."""
print("\nStopping all database containers...")
run_docker_command("docker ps -q | xargs -r docker rm -f")
# Index Interface Definitions
class _Test(ABC):
@abstractmethod
def insert(self, vector, metadata, id_val) -> None: ...
@abstractmethod
def search(
self, query, k, filter_value=None
) -> List[Tuple[float, List[float]]]: ...
class _NilVecHNSW(_Test):
def __init__(self, dim):
# The new constructor accepts dim, m, ef_construction, ef_search, metric, schema.
# We pass None for m, ef_construction, and ef_search so that defaults are used,
# specify "inner_product" as the metric, and provide a schema with one attribute.
# self.index = nilvec.PyHNSW(dim, None, 100, 25, None, ["category"])
# List all classes and methods of nilvec
self.index = nilvec.PyHNSW(dim, None, 100, 25, "euclidean", ["category"])
def insert(self, vector, metadata, id_val):
return self.index.insert(
vector,
[("category", metadata["category"])] if metadata is not None else None,
)
def search(self, query, k, filter_value=None):
return self.index.search(
query, k, ("category", filter_value) if filter_value is not None else None
)
class _NilVecFlat(_Test):
def __init__(self, dim):
self.index = nilvec.PyFlat(dim, None, ["category"])
def insert(self, vector, metadata, id_val):
self.index.insert(
vector,
[("category", metadata["category"])] if metadata is not None else None,
)
def search(self, query, k, filter_value=None):
return self.index.search(
query, k, ("category", filter_value) if filter_value is not None else None
)
class _Chroma(_Test):
def __init__(self):
client = chromadb.Client()
try:
client.delete_collection("test_collection")
except ValueError as e:
print(f"Error deleting collection: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
self.index = client.create_collection(name="test_collection")
def insert(self, vector, metadata, id_val):
# Ensure metadata is in dictionary format
if not isinstance(metadata, dict):
metadata = dict(metadata) # Convert list of tuples to dictionary
self.index.add(
ids=[str(id_val)], embeddings=[vector], metadatas=[metadata], documents=[""]
)
def search(self, query, k, filter_value=None):
return self.index.query(
query_embeddings=[query],
n_results=k,
where={"category": filter_value} if filter_value else None,
)
class _Qdrant(_Test):
def __init__(self, dim):
container_name = "qdrant_container"
remove_existing_container(
container_name
) # Remove any existing duplicate container
if not check_container_running(container_name):
print("Starting Qdrant...")
run_docker_command(
f"docker run -d --name {container_name} -p 6333:6333 -p 6334:6334 qdrant/qdrant"
)
client = QdrantClient("localhost", port=6333)
client.recreate_collection(
collection_name="qdrant_collection",
vectors_config={"size": dim, "distance": "Cosine"},
)
self.index = client
def insert(self, vector, metadata, id_val):
# Ensure metadata is in dictionary format
if not isinstance(metadata, dict):
metadata = dict(metadata) # Convert list of tuples to dictionary
self.index.upsert(
collection_name="qdrant_collection",
points=[PointStruct(id=id_val, vector=vector, payload=metadata)],
)
def search(self, query, k, filter_value=None):
filters = (
qdrant_client.models.Filter(
must=[
qdrant_client.models.FieldCondition(
key="category", match={"value": filter_value}
)
]
)
if filter_value
else None
)
return self.index.search(
collection_name="qdrant_collection",
query_vector=query,
limit=k,
query_filter=filters,
)
class _Milvus(_Test):
def __init__(self):
container_name = "milvus_container"
remove_existing_container(container_name) # Remove duplicates
if not check_container_running(container_name):
print("Starting Milvus...")
run_docker_command(
f"docker run -d --name {container_name} -p 19530:19530 milvusdb/milvus:latest"
)
# Wait for Milvus to be ready
retries = 10
for i in range(retries):
try:
connections.connect("default", host="localhost", port="19530")
print("Milvus is ready!")
break
except Exception:
print(f"Waiting for Milvus to start... ({i+1}/{retries})")
time.sleep(3)
else:
raise RuntimeError("Milvus failed to start after multiple attempts.")
self.index = Collection("milvus_collection")
def insert(self, vector, metadata, id_val):
self.index.insert([[None], [vector], [metadata["category"]]])
def search(self, query, k, filter_value=None):
expr = f'category == "{filter_value}"' if filter_value else ""
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
return self.index.search(
data=[query],
anns_field="vector",
param=search_params,
limit=k,
expr=expr,
output_fields=["category"],
)
class _Redis(_Test):
def __init__(self):
container_name = "redis_container"
remove_existing_container(container_name) # Remove duplicates
if not check_container_running(container_name):
print("Starting Redis...")
run_docker_command(
f"docker run -d --name {container_name} -p 6379:6379 redis/redis-stack:latest"
)
r = redis.Redis(host="localhost", port=6379, decode_responses=True)
# Create an index on HASH documents with key prefix "vec:".
# The schema defines:
# - A VECTOR field named "vector" using the FLAT algorithm (with dummy options "6").
# - A TAG field for "category".
r.execute_command(
"FT.CREATE redis_index ON HASH PREFIX 1 vec: SCHEMA vector VECTOR FLAT 6 TYPE FLOAT32 DIM 1000 DISTANCE_METRIC COSINE category TAG"
)
self.index = r
def insert(self, vector, metadata, id_val):
vector_binary = np.array(vector, dtype=np.float32).tobytes()
self.index.hset(
f"vec:{id_val}",
mapping=(
{"vector": vector_binary, "category": metadata["category"]}
if metadata
else {"vector": vector_binary}
),
)
def search(self, query, k, filter_value=None) -> list:
# Construct the query string.
# If a filter is provided, restrict the search to documents with that category.
if filter_value:
base_query = f"@category:{{{filter_value}}}"
else:
base_query = "*"
# Append the KNN clause. We alias the returned distance as "score".
query_string = f"{base_query}=>[KNN {k} @vector $vector_param AS score]"
# Convert the query vector to a compact binary representation.
query_vector = np.array(query, dtype=np.float32).tobytes()
# Execute the FT.SEARCH command.
# Note: DIALECT 2 is required for vector queries.
raw_result = self.index.execute_command(
"FT.SEARCH",
"redis_index",
query_string,
"PARAMS",
"2",
"vector_param",
query_vector,
"DIALECT",
"2",
)
# The raw_result structure:
# [total, key1, [field, value, field, value, ...], key2, [ ... ], ...]
results = []
# If no results found, raw_result[0] will be 0.
if not raw_result or raw_result[0] == 0:
return results
# Iterate over the returned documents.
# Note that raw_result[0] is the number of documents.
for i in range(1, len(raw_result), 2):
# raw_result[i] is the document key.
# raw_result[i+1] is a list of field/value pairs.
fields = raw_result[i + 1]
score = None
stored_vector = None
for j in range(0, len(fields), 2):
field_name = fields[j]
field_value = fields[j + 1]
if field_name == "score":
# Convert the score to float.
score = float(field_value)
elif field_name == "vector":
# Since we stored the vector as binary data,
# and Redis returned it as a string (due to decode_responses=True),
# we must convert it back to bytes.
# The latin1 encoding ensures a 1:1 mapping from characters to byte values.
vector_bytes = field_value.encode("latin1")
# Convert the bytes back to a list of floats.
stored_vector = np.frombuffer(
vector_bytes, dtype=np.float32
).tolist()
results.append((score, stored_vector))
return results
# Benchmarking
indexes = [
# {"name": "Milvus", "index": _Milvus()},
{"name": "Qdrant", "index": _Qdrant(DIM)},
{"name": "Chroma", "index": _Chroma()},
{"name": "Redis", "index": _Redis()},
{"name": "NilVec Flat", "index": _NilVecFlat(DIM)},
{"name": "NilVec HNSW", "index": _NilVecHNSW(DIM)},
]
insertion_timings: Dict[str, List[float]] = {}
query_scaling_timings: Dict[str, Dict[str, List[float]]] = {
idx["name"]: {"indices": [], "times": []} for idx in indexes
}
for idx_entry in indexes:
name = idx_entry["name"]
print(f"\n==== Benchmarking {name} ====")
index_instance = idx_entry["index"]
query_indices: List[int] = []
query_times: List[float] = []
for i in tqdm(range(INSERTS), desc=f"{name} insert+query"):
vector = [random.random() for _ in range(DIM)]
metadata = {"category": random.choice(CATEGORIES)}
start_ins = time.perf_counter()
if METADATA:
index_instance.insert(vector, metadata, i)
else:
index_instance.insert(vector, None, i)
ins_elapsed = time.perf_counter() - start_ins
if (i + 1) % QUERY_INTERVAL == 0:
query = [random.random() for _ in range(DIM)]
filter_value = random.choice(CATEGORIES)
start_query = time.perf_counter()
if METADATA:
index_instance.search(query, 5, filter_value)
else:
index_instance.search(query, 5, None)
query_elapsed = time.perf_counter() - start_query
query_indices.append(i + 1)
query_times.append(query_elapsed)
query_scaling_timings[name]["indices"].extend(query_indices)
query_scaling_timings[name]["times"].extend(query_times)
# Plot Query Scaling
fig, ax = plt.subplots(figsize=(10, 6))
for idx_entry in indexes:
name = idx_entry["name"]
qs = query_scaling_timings[name]
if qs["indices"]:
ax.scatter(qs["indices"], qs["times"], alpha=0.7, label=name)
coeffs = np.polyfit(qs["indices"], qs["times"], 1)
ax.plot(
qs["indices"],
np.poly1d(coeffs)(qs["indices"]),
linestyle="--",
label=f"{name} Best Fit",
)
ax.set_title("Query Time Scaling as Index Grows")
ax.set_xlabel("Number of Insertions")
ax.set_ylabel("Query Time (seconds)")
ax.legend()
plt.tight_layout()
plt.savefig("query_scaling.png", dpi=300)
kill_all_containers()
plt.show()