title |
---|
Setup |
We will use Palmetto cluster for this workshop with Jupyter Lab.
Please follow this guideline to create a new conda environment and install scikit-learn package. Log into Clemson's OpenOnDemand
Under Clusters
select Palmetto Shell Access
Log into the Palmetto Command Line Shell
Run the following qsub
command
$ qsub -I -l select=1:ncpus=8:mem=15gb:chip_type=e5-2680v4,walltime=2:00:00
- Depending on cluster availability, you can set chip_type to be
e5-2680v4
,6148g
, and6248g
. - You can use
whatsfree
andfreeres
to identify an appropriatechip_type
setting.
Next, run the following commands.
$ module load anaconda3/2021.05-gcc/8.3.1 cuda/11.1.0-gcc/8.4.1 cudnn/8.1.0.77-11.2-linux-x64-gcc/8.4.1
$ conda create -n tf_2.5 python=3.8 -y
$ source activate tf_2.5
$ export PYTHONNOUSERSITE=1
$ pip install tensorflow==2.5 seaborn scikit-learn matplotlib jupyterlab
=> Note: while using skln conda environment, if we are missing anything, we can always come back and update using pip install or conda install method.
Go back to OpenOnDemand Dashboard, under Interactive Apps
select Jupyter Notebook
Make the selection on the Jupyter Notebook App as follows:
Anaconda Version
:anaconda3/2021.05-gcc/8.3.1
List of modules to be loaded, separate by an empty space
:cuda/11.1.0-gcc/8.4.1 cudnn/8.1.0.77-11.2-linux-x64-gcc/8.4.1
Path to Python virtual/conda environment
:source activate tf_2.5
Notebook Workflow
:Standard Jupyter Notebook
Number of resource chunks (select)
:1
CPU cores per chunk (ncpus)
:8
Amount of memory per chunk (mem)
:15gb
Interconnect
:any
Extra PBS resource allocation request
::chip_type=e5-2680v4
Walltime
:04:00:00
Click Launch
.
Click Connect to Jupyter
once the job is ready.
Open a new notebook using the default Python 3
kernel. Test for the valid installation of tensorflow
.
{% include links.md %}