-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathscript_train_val.sh
177 lines (146 loc) · 5.38 KB
/
script_train_val.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/bin/bash
#====== parameters ======#
dataset=hmdb_ucf # hmdb_ucf | hmdb_ucf_small | ucf_olympic
class_file='data/classInd_'$dataset'.txt'
training=true # true | false
testing=false # true | false
modality=RGB
frame_type=feature # frame | feature
num_segments=5 # sample frame # of each video for training
test_segments=5
baseline_type=video
frame_aggregation=trn-m # method to integrate the frame-level features (avgpool | trn | trn-m | rnn | temconv)
add_fc=1
fc_dim=512
arch=resnet101
use_target=uSv # none | Sv | uSv
share_params=Y # Y | N
if [ "$use_target" == "none" ]
then
exp_DA_name=baseline
else
exp_DA_name=DA
fi
#====== select dataset ======#
path_data_root=/home/mchen2/dataset/ # depend on users
path_exp_root=action-experiments/ # depend on users
if [ "$dataset" == "hmdb_ucf" ] || [ "$dataset" == "hmdb_ucf_small" ] ||[ "$dataset" == "ucf_olympic" ]
then
dataset_source=ucf101 # depend on users
dataset_target=hmdb51 # depend on users
dataset_val=hmdb51 # depend on users
num_source=1438 # number of training data (source)
num_target=840 # number of training data (target)
path_data_source=$path_data_root$dataset_source'/'
path_data_target=$path_data_root$dataset_target'/'
path_data_val=$path_data_root$dataset_val'/'
if [[ "$dataset_source" =~ "train" ]]
then
dataset_source=$dataset_source
else
dataset_source=$dataset_source'_train'
fi
if [[ "$dataset_target" =~ "train" ]]
then
dataset_target=$dataset_target
else
dataset_target=$dataset_target'_train'
fi
if [[ "$dataset_val" =~ "val" ]]
then
dataset_val=$dataset_val
else
dataset_val=$dataset_val'_val'
fi
train_source_list=$path_data_source'list_'$dataset_source'_'$dataset'-'$frame_type'.txt'
train_target_list=$path_data_target'list_'$dataset_target'_'$dataset'-'$frame_type'.txt'
val_list=$path_data_val'list_'$dataset_val'_'$dataset'-'$frame_type'.txt'
path_exp=$path_exp_root'Testexp'
fi
pretrained=none
#====== parameters for algorithms ======#
# parameters for DA approaches
dis_DA=none # none | DAN | JAN
alpha=0 # depend on users
adv_pos_0=Y # Y | N (discriminator for relation features)
adv_DA=RevGrad # none | RevGrad
beta_0=0.75 # U->H: 0.75 | H->U: 1
beta_1=0.75 # U->H: 0.75 | H->U: 0.75
beta_2=0.5 # U->H: 0.5 | H->U: 0.5
use_attn=TransAttn # none | TransAttn | general
n_attn=1
use_attn_frame=none # none | TransAttn | general
use_bn=none # none | AdaBN | AutoDIAL
add_loss_DA=attentive_entropy # none | target_entropy | attentive_entropy
gamma=0.003 # U->H: 0.003 | H->U: 0.3
ens_DA=none # none | MCD
mu=0
# parameters for architectures
bS=128 # batch size
bS_2=$((bS * num_target / num_source ))
echo '('$bS', '$bS_2')'
lr=3e-2
optimizer=SGD
if [ "$use_target" == "none" ]
then
dis_DA=none
alpha=0
adv_pos_0=N
adv_DA=none
beta_0=0
beta_1=0
beta_2=0
use_attn=none
use_attn_frame=none
use_bn=none
add_loss_DA=none
gamma=0
ens_DA=none
mu=0
j=0
exp_path=$path_exp'-'$optimizer'-share_params_'$share_params'/'$dataset'-'$num_segments'seg_'$j'/'
else
exp_path=$path_exp'-'$optimizer'-share_params_'$share_params'-lr_'$lr'-bS_'$bS'_'$bS_2'/'$dataset'-'$num_segments'seg-disDA_'$dis_DA'-alpha_'$alpha'-advDA_'$adv_DA'-beta_'$beta_0'_'$beta_1'_'$beta_2'-useBN_'$use_bn'-addlossDA_'$add_loss_DA'-gamma_'$gamma'-ensDA_'$ens_DA'-mu_'$mu'-useAttn_'$use_attn'-n_attn_'$n_attn'/'
fi
echo 'exp_path: '$exp_path
#====== select mode ======#
if ($training)
then
val_segments=$test_segments
# parameters for optimization
lr_decay=10
lr_adaptive=dann # none | loss | dann
lr_steps_1=10
lr_steps_2=20
epochs=30
gd=20
#------ main command ------#
python main.py $class_file $modality $train_source_list $train_target_list $val_list --exp_path $exp_path \
--arch $arch --pretrained $pretrained --baseline_type $baseline_type --frame_aggregation $frame_aggregation \
--num_segments $num_segments --val_segments $val_segments --add_fc $add_fc --fc_dim $fc_dim --dropout_i 0.5 --dropout_v 0.5 \
--use_target $use_target --share_params $share_params \
--dis_DA $dis_DA --alpha $alpha --place_dis N Y N \
--adv_DA $adv_DA --beta $beta_0 $beta_1 $beta_2 --place_adv $adv_pos_0 Y Y \
--use_bn $use_bn --add_loss_DA $add_loss_DA --gamma $gamma \
--ens_DA $ens_DA --mu $mu \
--use_attn $use_attn --n_attn $n_attn --use_attn_frame $use_attn_frame \
--gd $gd --lr $lr --lr_decay $lr_decay --lr_adaptive $lr_adaptive --lr_steps $lr_steps_1 $lr_steps_2 --epochs $epochs --optimizer $optimizer \
--n_rnn 1 --rnn_cell LSTM --n_directions 1 --n_ts 5 \
-b $bS $bS_2 $bS -j 4 -ef 1 -pf 50 -sf 50 --copy_list N N --save_model \
fi
if ($testing)
then
model=model_best # checkpoint | model_best
echo $model
# testing on the validation set
echo 'testing on the validation set'
python test_models.py $class_file $modality \
$val_list $exp_path$modality'/'$model'.pth.tar' \
--arch $arch --test_segments $test_segments \
--save_scores $exp_path$modality'/scores_'$dataset_target'-'$model'-'$test_segments'seg' --save_confusion $exp_path$modality'/confusion_matrix_'$dataset_target'-'$model'-'$test_segments'seg' \
--n_rnn 1 --rnn_cell LSTM --n_directions 1 --n_ts 5 \
--use_attn $use_attn --n_attn $n_attn --use_attn_frame $use_attn_frame --use_bn $use_bn --share_params $share_params \
-j 4 --bS 512 --top 1 3 5 --add_fc 1 --fc_dim $fc_dim --baseline_type $baseline_type --frame_aggregation $frame_aggregation
fi
# ----------------------------------------------------------------------------------
exit 0