forked from TimoBolkart/voca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedit_sequences.py
225 lines (183 loc) · 11.5 KB
/
edit_sequences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
'''
Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this
computer program.
You can only use this computer program if you have closed a license agreement with MPG or you get the right to use
the computer program from someone who is authorized to grant you that right.
Any use of the computer program without a valid license is prohibited and liable to prosecution.
Copyright 2019 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG). acting on behalf of its
Max Planck Institute for Intelligent Systems and the Max Planck Institute for Biological Cybernetics.
All rights reserved.
More information about VOCA is available at http://voca.is.tue.mpg.de.
For comments or questions, please email us at [email protected]
'''
import os
import glob
import argparse
import numpy as np
from psbody.mesh import Mesh
from utils.inference import output_sequence_meshes
from smpl_webuser.serialization import load_model
parser = argparse.ArgumentParser(description='Edit VOCA motion sequences')
parser.add_argument('--source_path', default='', help='input sequence path')
parser.add_argument('--out_path', default='', help='output path')
parser.add_argument('--flame_model_path', default='./flame/generic_model.pkl', help='path to the FLAME model')
parser.add_argument('--mode', default='shape', help='edit shape, head pose, or add eye blinks')
parser.add_argument('--index', type=int, default=0, help='parameter to be varied')
parser.add_argument('--max_variation', type=float, default=1.0, help='maximum variation')
parser.add_argument('--num_blinks', type=int, default=1, help='number of eye blinks')
parser.add_argument('--blink_duration', type=int, default=15, help='blink_duration')
parser.add_argument('--uv_template_fname', default='', help='Path of a FLAME template with UV coordinates')
parser.add_argument('--texture_img_fname', default='', help='Path of the texture image')
args = parser.parse_args()
source_path = args.source_path
out_path = args.out_path
flame_model_fname = args.flame_model_path
uv_template_fname = args.uv_template_fname
texture_img_fname = args.texture_img_fname
def add_eye_blink(source_path, out_path, flame_model_fname, num_blinks, blink_duration, uv_template_fname='', texture_img_fname=''):
'''
Load existing animation sequence in "zero pose" and add eye blinks over time
:param source_path: path of the animation sequence (files must be provided in OBJ file format)
:param out_path: output path of the altered sequence
:param flame_model_fname: path of the FLAME model
:param num_blinks: number of blinks within the sequence
:param blink_duration: duration of a blink in number of frames
'''
if not os.path.exists(out_path):
os.makedirs(out_path)
# Load sequence files
sequence_fnames = sorted(glob.glob(os.path.join(source_path, '*.obj')))
num_frames = len(sequence_fnames)
if num_frames == 0:
print('No sequence meshes found')
return
# Load FLAME head model
model = load_model(flame_model_fname)
blink_exp_betas = np.array(
[0.04676158497927314, 0.03758675711005459, -0.8504121184951298, 0.10082324210507627, -0.574142329926028,
0.6440016589938355, 0.36403779939335984, 0.21642312586261656, 0.6754551784690193, 1.80958618462892,
0.7790133813372259, -0.24181691256476057, 0.826280685961679, -0.013525679499256753, 1.849393698014113,
-0.263035686247264, 0.42284248271332153, 0.10550891351425384, 0.6720993875023772, 0.41703592560736436,
3.308019065485072, 1.3358509602858895, 1.2997143108969278, -1.2463587328652894, -1.4818961382824924,
-0.6233880069345369, 0.26812528424728455, 0.5154889093160832, 0.6116267181402183, 0.9068826814583771,
-0.38869613253448576, 1.3311776710005476, -0.5802565274559162, -0.7920775624092143, -1.3278601781150017,
-1.2066425872386706, 0.34250140710360893, -0.7230686724732668, -0.6859285483325263, -1.524877347586566,
-1.2639479212965923, -0.019294228307535275, 0.2906175769381998, -1.4082782880837976, 0.9095436721066045,
1.6007365724960054, 2.0302381182163574, 0.5367600947801505, -0.12233184771794232, -0.506024823810769,
2.4312326730634783, 0.5622323258974669, 0.19022395712837198, -0.7729758559103581, -1.5624233513002923,
0.8275863297957926, 1.1661887586553132, 1.2299311381779416, -1.4146929897142397, -0.42980549225554004,
-1.4282801579740614, 0.26172301287347266, -0.5109318114918897, -0.6399495909195524, -0.733476856285442,
1.219652074726591, 0.08194907995352405, 0.4420398361785991, -1.184769973221183, 1.5126082924326332,
0.4442281271081217, -0.005079477284341147, 1.764084274265486, 0.2815940264026848, 0.2898827213634057,
-0.3686662696397026, 1.9125365942683656, 2.1801452989500274, -2.3915065327980467, 0.5794919897154226,
-1.777680085517591, 2.9015718628823604, -2.0516886588315777, 0.4146899057365943, -0.29917763685660903,
-0.5839240983516372, 2.1592457102697007, -0.8747902386178202, -0.5152943072876817, 0.12620001057735733,
1.3144109838803493, -0.5027032013330108, 1.2160353388774487, 0.7543834001473375, -3.512095548974531,
-0.9304382646186183, -0.30102930208709433, 0.9332135959962723, -0.52926196689098, 0.23509772959302958])
step = blink_duration//3
blink_weights = np.hstack((np.interp(np.arange(step), [0,step], [0,1]), np.ones(step), np.interp(np.arange(step), [0,step], [1,0])))
frequency = num_frames // (num_blinks+1)
weights = np.zeros(num_frames)
for i in range(num_blinks):
x1 = (i+1)*frequency-blink_duration//2
x2 = x1+3*step
if x1 >= 0 and x2 < weights.shape[0]:
weights[x1:x2] = blink_weights
predicted_vertices = np.zeros((num_frames, model.v_template.shape[0], model.v_template.shape[1]))
for frame_idx in range(num_frames):
model.v_template[:] = Mesh(filename=sequence_fnames[frame_idx]).v
model.betas[300:] = weights[frame_idx]*blink_exp_betas
predicted_vertices[frame_idx] = model.r
output_sequence_meshes(predicted_vertices, Mesh(model.v_template, model.f), out_path, uv_template_fname=uv_template_fname, texture_img_fname=texture_img_fname)
def alter_sequence_shape(source_path, out_path, flame_model_fname, pc_idx=0, pc_range=(0,3), uv_template_fname='', texture_img_fname=''):
'''
Load existing animation sequence in "zero pose" and change the identity dependent shape over time.
:param source_path: path of the animation sequence (files must be provided in OBJ file format)
:param out_path: output path of the altered sequence
:param flame_model_fname: path of the FLAME model
:param pc_idx Identity shape parameter to be varied in [0,300) as FLAME provides 300 shape paramters
:param pc_range Tuple (start/end, max/min) defining the range of the shape variation.
i.e. (0,3) varies the shape from 0 to 3 stdev and back to 0
'''
if pc_idx < 0 or pc_idx >= 300:
print('shape parameter index out of range [0,300)')
return
if not os.path.exists(out_path):
os.makedirs(out_path)
# Load sequence files
sequence_fnames = sorted(glob.glob(os.path.join(source_path, '*.obj')))
num_frames = len(sequence_fnames)
if num_frames == 0:
print('No sequence meshes found')
return
# Load FLAME head model
model = load_model(flame_model_fname)
model_parms = np.zeros((num_frames, 300))
# Generate interpolated shape parameters for each frame
x1, y1 = [0, num_frames/2], pc_range
x2, y2 = [num_frames/2, num_frames], pc_range[::-1]
xsteps1 = np.arange(0, num_frames/2)
xsteps2 = np.arange(num_frames/2, num_frames)
model_parms[:, pc_idx] = np.hstack((np.interp(xsteps1, x1, y1), np.interp(xsteps2, x2, y2)))
predicted_vertices = np.zeros((num_frames, model.v_template.shape[0], model.v_template.shape[1]))
for frame_idx in range(num_frames):
model.v_template[:] = Mesh(filename=sequence_fnames[frame_idx]).v
model.betas[:300] = model_parms[frame_idx]
predicted_vertices[frame_idx] = model.r
output_sequence_meshes(predicted_vertices, Mesh(model.v_template, model.f), out_path, uv_template_fname=uv_template_fname, texture_img_fname=texture_img_fname)
def alter_sequence_head_pose(source_path, out_path, flame_model_fname, pose_idx=3, rot_angle=np.pi/6, uv_template_fname='', texture_img_fname=''):
'''
Load existing animation sequence in "zero pose" and change the head pose (i.e. rotation around the neck) over time.
:param source_path: path of the animation sequence (files must be provided in OBJ file format)
:param out_path: output path of the altered sequence
:param flame_model_fname: path of the FLAME model
:param pose_idx: head pose parameter to be varied in [3,6)
:param rot_angle: maximum rotation angle in [0,2pi)
'''
if pose_idx < 3 or pose_idx >= 6:
print('pose parameter index out of range [3,6)')
return
if not os.path.exists(out_path):
os.makedirs(out_path)
# Load sequence files
sequence_fnames = sorted(glob.glob(os.path.join(source_path, '*.obj')))
num_frames = len(sequence_fnames)
if num_frames == 0:
print('No sequence meshes found')
return
# Load FLAME head model
model = load_model(flame_model_fname)
model_parms = np.zeros((num_frames, model.pose.shape[0]))
# Generate interpolated pose parameters for each frame
x1, y1 = [0, num_frames//4], [0, rot_angle]
x2, y2 = [num_frames//4, num_frames//2], [rot_angle, 0]
x3, y3 = [num_frames//2, 3*num_frames//4], [0, -rot_angle]
x4, y4 = [3*num_frames//4, num_frames], [-rot_angle, 0]
xsteps1 = np.arange(0, num_frames//4)
xsteps2 = np.arange(num_frames//4, num_frames/2)
xsteps3 = np.arange(num_frames//2, 3*num_frames//4)
xsteps4 = np.arange(3*num_frames//4, num_frames)
model_parms[:, pose_idx] = np.hstack((np.interp(xsteps1, x1, y1),
np.interp(xsteps2, x2, y2),
np.interp(xsteps3, x3, y3),
np.interp(xsteps4, x4, y4)))
predicted_vertices = np.zeros((num_frames, model.v_template.shape[0], model.v_template.shape[1]))
for frame_idx in range(num_frames):
model.v_template[:] = Mesh(filename=sequence_fnames[frame_idx]).v
model.pose[:] = model_parms[frame_idx]
predicted_vertices[frame_idx] = model.r
output_sequence_meshes(predicted_vertices, Mesh(model.v_template, model.f), out_path, uv_template_fname=uv_template_fname, texture_img_fname=texture_img_fname)
if(args.mode == 'shape'):
pc_idx = args.index
pc_range = (0, args.max_variation)
alter_sequence_shape(source_path, out_path, flame_model_fname, pc_idx=pc_idx, pc_range=pc_range, uv_template_fname=uv_template_fname, texture_img_fname=texture_img_fname)
elif(args.mode == 'pose'):
pose_idx = args.index
rot_angle = args.max_variation
alter_sequence_head_pose(source_path, out_path, flame_model_fname, pose_idx=pose_idx, rot_angle=rot_angle, uv_template_fname=uv_template_fname, texture_img_fname=texture_img_fname)
elif(args.mode == 'blink'):
num_blinks = args.num_blinks
blink_duration = args.blink_duration
add_eye_blink(source_path, out_path, flame_model_fname, num_blinks, blink_duration, uv_template_fname=uv_template_fname, texture_img_fname=texture_img_fname)
else:
print('Unknown mode')