-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathutils.py
108 lines (93 loc) · 4.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def theme_cognoma(fontsize_mult=1):
import plotnine as gg
return (gg.theme_bw(base_size = 14 * fontsize_mult) +
gg.theme(
line = gg.element_line(color = "#4d4d4d"),
rect = gg.element_rect(fill = "white", color = None),
text = gg.element_text(color = "black"),
axis_ticks = gg.element_line(color = "#4d4d4d"),
legend_key = gg.element_rect(color = None),
panel_border = gg.element_rect(color = "#4d4d4d"),
panel_grid = gg.element_line(color = "#b3b3b3"),
panel_grid_major_x = gg.element_blank(),
panel_grid_minor = gg.element_blank(),
strip_background = gg.element_rect(fill = "#FEF2E2", color = "#4d4d4d"),
axis_text = gg.element_text(size = 12 * fontsize_mult, color="#4d4d4d"),
axis_title_x = gg.element_text(size = 13 * fontsize_mult, color="#4d4d4d"),
axis_title_y = gg.element_text(size = 13 * fontsize_mult, color="#4d4d4d")
))
def get_model_coefficients(classifier, feature_set, covariate_names):
"""
Extract the feature names and associate them with the coefficient values
in the final classifier object.
* Only works for expressions only model with PCA, covariates only model,
and a combined model
* Assumes the PCA features come before any covariates that are included
* Sorts the final dataframe by the absolute value of the coefficients
Args:
classifier: the final sklearn classifier object
feature_set: string of the model's name {expressions, covariates, full}
covariate_names: list of the names of the covariate features matrix
Returns:
pandas.DataFrame: mapping of feature name to coefficient value
"""
import pandas as pd
import numpy as np
coefs = classifier.coef_[0]
if feature_set=='expressions':
features = ['PCA_%d' %cf for cf in range(len(coefs))]
elif feature_set=='covariates':
features = covariate_names
else:
features = ['PCA_%d' %cf for cf in range(len(coefs) - len(covariate_names))]
features.extend(covariate_names)
coef_df = pd.DataFrame({'feature': features, 'weight': coefs})
coef_df['abs'] = coef_df['weight'].abs()
coef_df = coef_df.sort_values('abs', ascending=False)
coef_df['feature_set'] = feature_set
return coef_df
def get_genes_coefficients(pca_object, classifier_object,
expression_df, expression_genes_df,
num_covariates=None):
"""Identify gene coefficients from classifier after pca.
Args:
pca_object: The pca object from running pca on the expression_df.
classifier_object: The logistic regression classifier object.
expression_df: The original (pre-pca) expression data frame.
expression_genes_df: The "expression_genes" dataframe used for gene
names.
num_covariates: Optional, only needed if PCA was only performed on a
subset of the features. This should be the number of
features that PCA was not performed on. This function
assumes that the covariates features were at the end.
Returns:
gene_coefficients_df: A dataframe with entreze gene-ID, gene name,
coefficient abbsolute value of coefficient, and
gene description. The dataframe is sorted by
absolute value of coefficient.
"""
import pandas as pd
# Get the classifier coefficients.
if num_covariates:
coefficients = classifier_object.coef_[0][0:-num_covariates]
else:
coefficients = classifier_object.coef_[0]
# Get the pca weights.
weights = pca_object.components_
# Combine the coefficients and weights.
gene_coefficients = weights.T @ coefficients.T
# Create the dataframe with correct index
gene_coefficients_df = pd.DataFrame(gene_coefficients, columns=['weight'])
gene_coefficients_df.index = expression_df.columns
gene_coefficients_df.index.name = 'entrez_id'
expression_genes_df.index = expression_genes_df.index.map(str)
# Add gene symbol and description
gene_coefficients_df['symbol'] = expression_genes_df['symbol']
gene_coefficients_df['description'] = expression_genes_df['description']
# Add absolute value and sort by highest absolute value.
gene_coefficients_df['abs'] = gene_coefficients_df['weight'].abs()
gene_coefficients_df.sort_values(by='abs', ascending=False, inplace=True)
# Reorder columns
gene_coefficients_df = gene_coefficients_df[['symbol', 'weight', 'abs',
'description']]
return(gene_coefficients_df)