PARALLEL BRANCH AND CUT FOR SET

PARTITIONING

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Marta Eso

January 1999

© Mérta Esé 1999

ALL RIGHTS RESERVED

PARALLEL BRANCH AND CUT FOR SET PARTITIONING

Marta Es6, Ph.D.

Cornell University 1999

This thesis investigates three major steps in the solution process of the Set
Partitioning Problem (SPP): problem size reduction techniques, LP-based feasible
solution heuristics and Branch-and-Cut solution methodology. SPPs arise in many
practical applications (airline crew scheduling, vehicle routing, circuit partitioning).
Theoretical aspects of this problem have been studied for a long time, but only
recently have computers become powerful enough to attack practical instances.

Problem size reduction methods reduce the set of variables and/or constraints
through logical implications without eliminating optimal solutions to the original
problem. We show that the reduction operations well-known in the literature, ap-
plied in any order to an SPP instance until no further reduction is possible, always
produce the same reduced problem.

Finding good feasible solutions is essential for upper bounding in a Branch-and-
Cut framework. Our LP-based feasible solution heuristic iterates a heuristic fixing
phase with reduced cost fixing to improve the quality of the feasible solution. Our

heuristic procedure is somewhat more conservative than earlier approaches in that

it eliminates unnecessary variables instead of forcing variables into the solution.
Our parallel Branch-and-Cut procedure was implemented using the COMPSys
framework. COMPSys provides the user with the necessary infrastructure to im-
plement an efficient Branch-and-Cut application by handling tasks common for
parallel Branch-and-Cut (search tree management, message passing, LP interface).
To interface with COMPSys we implemented procedures particular to the SPP. We
generate cuts both algorithmically and manually through a graphical user interface.
Our experiments were carried out on the IBM RS/6000 Scalable POWERpar-
allel System of the Cornell Theory Center. Our test set included problems from
airline crew scheduling and vehicle routing applications. Our computational results
demonstrate our implementation to be an effective approach for solving SPPs of

moderately large size.

Biographical Sketch

Marta Es6 was born on April 5, 1968 in Szombathely, Hungary. She completed
her undergraduate studies at the Eotvos Lorand University, Budapest, Hungary in
June 1991, receiving both her Master of Science degree in Mathematics and her
certificate for high school teaching. She entered the Ph.D. program in the School
of Operations Research and Industrial Engineering at Cornell University in the Fall
of 1991, where she received a Master of Science degree in Operations Research in
January 1995. She participated in a work-study program at the IBM T.J. Watson

Research Center, Yorktown Heights, from September 1997 to December 1998.

il

... to my Father’s memory...

v

Acknowledgements

I would like to express my gratitude to my advisor Professor Leslie E. Trotter, Jr.
for his guidance. I would also like to thank Professor Eva Tardos who served as
my advisor during my first year at Cornell, and Professors Ronitt Rubinfeld, Paul
Pedersen and Tapan Mitra for serving on my special committee. I am indebted to
the faculty and staff of the School of Operations Research and Industrial Engineering
at Cornell University for providing an excellent graduate program and a productive
research environment.

We have worked very closely on the COMPSys project with Laci Ladanyi,
Ted Ralphs, Greta Pangborn, and Leo Kopman. Our research was made possible
through the generous support of the Cornell Theory Center and the U.S. National
Science Foundation. Edoardo Amaldi, Oktay Giinliik, and Jean-Francois Puszta-
szeri gave valuable suggestions during the development phase.

[am grateful to Dr. William Pulleyblank and all those at the Department
of Mathematical Sciences at the IBM T.J. Watson Research Center who made it
possible for me to participate in their work-study program. It was a very valuable

experience to see optimization theory applied in practice. I would specifically like

to thank Ranga Anbil, Francisco Barahona, and Jane Snowdon for their friendship
and encouragement.

I thank all the graduate students at the OR&IE department and the many
friends in Ithaca who made my stay at Cornell so enjoyable.

Most importantly, I would like to thank my family for their love and support.

vi

Table of Contents

1 Introduction
1.1 The Set Partitioning Problem
1.2 Set Packing, Covering and Partitioning
1.3 The Stable Set Problem and Set Partitioning
1.4 Complexity and approximability
1.5 Outline of the thesis
1.6 Definitions and notation

2 Background
2.1 Integer Programming and polytopes
2.1.1 Cutting plane methods
2.1.2 Branch-and-Bound
2.1.3 Branch-and-Cut
2.2 The COMPSys framework
2.3 The Set Packing and Covering polytopes
231 Psp o o
232 Pse .o

3 Problem size reduction
3.1 Description of reduction methods
3.2 Theorem of exhaustive reduction
3.3 How can new instances arise?
3.4 Implementation
3.4.1 Reductionmodules
3.4.2 Reduction strategies
3.4.3 The Reduce() function
3.4.4 Computational results

4 Feasible solution heuristics
4.1 LP relaxation based heuristics

Vil

38
39
43
o7
59
61
72
74
7

88

4.2 Our algorithm oo 93

4.2.1 Heuristic variable fixing 93
4.2.2 Unmarking variables 97
4.2.3 Overview of our algorithm 98
4.3 Solving the LP relaxations (warmstart) 102
4.4 Computational results o000 105
Interfacing with the Branch-and-Cut framework 122
5.1 The COMPSys framework 123
5.2 User-written functions of the Master process 128
5.2.1 Preprocessing and upper bounding 128
5.2.2 Formulating the problem and constructing the root 129
5.3 User-written functions of the LP process 130
5.3.1 Constructing the LP relaxation 130
5.3.2 Logical fixing of variables 130
5.3.3 Generating violated inequalities 131
5.3.4 Lifting violated inequalities 132
5.3.5 Deciding whether to branch or continue solving LPs 133
5.3.6 Choosing branching objects for strong branching and compar-
ing the presolved results 134
5.4 User-written functions of the Cut Generator process 140
5.4.1 Cliques. e 142
5.4.2 Lifted odd holes, packing and cover odd holes 144
5.4.3 0Odd antiholes and lifted odd antiholes 151
5.5 Computational Results 152
5.5.1 Set lproblems 156
5.5.2 Set2problems 165
5.5.3 Set3problems, 167
5.5.4 Set 4 problems 174
5.5.5 Conclusion and future work 174
The Graphical User Interface 177
6.1 Interactive Graph Drawing (IGD) 178
6.2 The interface (DrawGraph) 182
6.3 Generating cuts by hand 00000000 183
Computation 187
A.1 Computing environment L. 187
A2 Thetestbed 188
A3 Resultsbyothers 195

B Implementing Reduce()
B.1 Reduce main data structure
B.2 Reduce parameters

C Implementing the feasible solution heuristic
C.1 CPLEX parameters
C.2 Heuristic parameters

D Implementing our Branch-and-Cut procedure
D.1 COMPSys parameters
D.2 Parameters in the user-written functions

Bibliography

1X

203
203
205

207
207
209

214
215
218

222

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
3.5
5.6
5.7
5.8
5.9

Impact of reductions
Impact of reductions — for all six instances
Maximal reduction w/o SUMC followed by one SUMC, Set 1, part 1
Maximal reduction w/o SUMC followed by one SUMC, Set 1, part 2
Fast reduction w/o SUMC followed by one SUMC, Set 1, part 1 . .
Fast reduction w/o SUMC followed by one SUMC, Set 1, part 2 . .
Maximal reduction w/o SUMC followed by one SUMC, Set 3 . . .
Fast reduction w/o SUMC followed by one SUMC, Set 3
Maximal reduction w/o SUMC followed by one SUMC, Sets 2, 4 .
Fast reduction w/o SUMC followed by one SUMC, Sets 2,4

Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic
Feasible solution heuristic

default setting), Set 1, part 1
default setting), Set 1, part 2
default setting), Set 3
default setting), Sets 2 and 4
comparison runs), Set 1, part 1
comparison runs), Set 1, part 2
comparison runs), Set 1, part 1, cont.

comparison runs), Set 1, part 2, cont. .
comparison runs), Set 3, part 1
comparison runs), Set 3, part 2

NN AN N N N N N TN N

Basic B&C experiments for aa01
Basic B&C experiments for aa04
Basic B&C experiments fornw04
Basic B&C experiments for aa05
Basic B&C experiments for aa03
Basic B&C experiments for aa06
Basic B&C experiments for k102
Basic B&C experiments fornwl7
Basic B&C experiments fornw36

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27

Al
A2
A3
A4
A5
A6
AT
A8
A9

Basic B&C experiments forus01 163
Parallel runs for aa01o 164
Parallel runs for aa04 164
Basic B&C experiments for Set 2 (branching on “close to one-half”) 166
Basic B&C experiments for Set 2 (mixed branching variable selection)166

Basic B&C experiments for v04 (branching on vars) 168
Basic B&C experiments for v04 (branching on vars/cuts) 168
Parallel runs for v0416 (branching on vars) 169
Parallel runs for v0416 (branching on vars/cuts) 169
Basic B&C experiments for v16 (branching on vars) 171
Basic B&C experiments for v16 (branching on vars/cuts) 171
Basic B&C experiments for vi6 with 16 LP-CG pairs 171
Basic B&C experiments for t04 (branching on vars) 172
Basic B&C experiments for t04 (branching on vars/cuts) 172
Basic B&C experiments for t17 (branching on vars) 173
Basic B&C experiments for t17 (branching on vars/cuts) 173

Basic B&C experiments for Set 4 (branching on “close to one-half”) 175
Basic B&C experiments for Set 4 (mixed branching variable selection)175

Basic properties of problems in set 1, part 1 191
Basic properties of problems in set 1, part 2 192
Basic properties of problemsinset 3 193
Basic properties of problems in sets 2and 4 194
Computational results by Hoffman and Padberg, Set 1, part 1 . . . 196
Computational results by Hoffman and Padberg, Set 1, part 2 . . . 197
Computational results by Borndorfer, Set 1, part 1 199
Computational results by Borndorfer, Set 1, part 2 200
Computational results by Borndorfer et al., Set 3 201

xi

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3

4.1

5.1
5.2

6.1
6.2
6.3

Integer Programming formulation of the Set Partitioning, Covering

and Packing Problems 0L 6
Lower and upper bound and the optimal solution 17
The flow of the Branch-and-Cut Algorithm 23
Graphs with facet defining valid inequalities 30
The six reduction methods 44
Description of a general reduction module 64
Outline of the Reduce() function 75
Outline of Feasible Solution Heuristic 99
Processes of the COMPSys framework 125
Tailing off L 134
Communication flow between COMPSys and the GUI 178
Screen shot of the GUI: problem v0416 at the root before branching 179
Deriving a cut using the Chvatal-Gomory procedure 185

xil

Chapter 1

Introduction

1.1 The Set Partitioning Problem

The Set Partitioning Problem (SPP) in its general form can be presented as follows.
Given a ground set S of m objects and a collection of subsets of S (S1,...,S,) with
associated costs ¢(S;), 1 < j < n, select some subsets of minimum (or maximum)
total cost so that the selected subsets are disjoint and their union is the ground set.
In other words, choose a minimum (or maximum) cost partitioning of the ground
set.

A wide variety of practical applications have been modeled as SPPs during the
past 50 years, including crew scheduling ([FR87], [Ger89], [AGPT91], [HP93]) vehi-
cle routing ([BQ64], [Chr85], [BGKK97]), political districting ((GN70]), and circuit
partitioning ([ECTA96]) just to name a few. References to further applications can

be found in [GN72] (Chapter 8), [BP76], and [EDM90].

The most well studied and one of the earliest applications is Airline Crew
Scheduling. The importance of crew scheduling in the airline industry is due to
the fact that crew costs are exceeded only by the cost of fuel, thus small improve-
ments in the solution translate to large dollar savings ([AGPT91]). Crew scheduling
is a major step in schedule planning; it comes after timetables are created and air-
craft are already assigned to the flights. The goal of crew scheduling is to assign
crew members to the flights as cheaply as possible while a complex set of FAA
regulations, union requirements and other internal operational rules are met. Mod-
eled as a set partitioning problem, the ground set will be the collection of flights
that need to be covered, while the subsets correspond to sequences of flights that
a crew can operate (so called pairings). Constructing pairings is a complex process
since the legality of the pairings (compliance with the rules and regulations) must
be ensured. The cost of a subset reflects both crew compensation and penalties for
undesired events like tight connections or deadheading (crew members are passen-
gers on a flight). The SPP model itself does not capture requirements like crew
availability at different stations; these requirements are usually added in the form
of side constraints.

In the Vehicle Routing Problem (VRP) customer demands need to be served by
a fleet of vehicles that depart from and return to the same location (the depot) so
that the total cost incurred on the trips (e.g., the distance traveled by the vehicles)
is as small as possible. Each customer must be serviced by exactly one vehicle and
the vehicles have finite capacities. In the set partitioning model the customers will

be the elements of the ground set, and feasible routes for individual vehicles form

the subsets. The cost of a subset is the cost of the corresponding route. The use of
the set partitioning formulation for solving the general VRP is not practical since
too many subsets need to be enumerated and just to compute the cost of a subset
is a hard problem in itself (requires solving a Traveling Salesman Problem (TSP)
instance) [Chr85]. However, in practice very often there are additional requirements
(e.g., rest rules for the drivers of the vehicles [BGKK97]) that restrict the number of
subsets and the order in which the customers can be served within a route. While
these requirements would need to be added as side constraints in the traditional
formulation, they can be accommodated here by generating only those subsets that
obey them.

Another early application of the SPP is political districting. A state is composed
of small population units (e.g., counties, census tracts) that need to be grouped into
political districts so that certain criteria on the population, contiguity and shape of
the districts are met and the grouping is as acceptable as possible. Modeled as a set
partitioning problem, the elements of the ground set correspond to the population
units, and the subsets to proposed districts. The cost of a subset measures the
undesirability of the corresponding district, and the solution to the SPP will provide
the least undesirable way of partitioning the state into districts. A side constraint
specifying the number of districts required is also added.

The circuit partitioning problem is the first step in the physical design stage
of electronic circuit design. Physical design is preceded by logical design, where
the components of the circuit and the interconnections between them are planned

on paper without considering the actual placement of the components. Then, in

the physical design stage, the plan is first divided into subcircuits (this is circuit
partitioning) then the components are placed within these partitions and a routing
between the subcircuits is determined. In a feasible partitioning the total size of
components within the subcircuits and the pins required to connect the partitions
must stay within specified bounds. The quality of a partitioning is hard to measure;
balancing wire congestion and minimizing the number of connections between the
subcircuits are commonly used. In the set partitioning model the ground set is
comprised of the components and subsets correspond to subcircuits that satisfy the
above requirements. The objective is to obtain the highest quality partitioning.

In all the applications discussed above significant effort must be spent on gen-
erating the subsets and computing their costs. The number of feasible subsets is
exponential in the size of the ground set in general which makes listing all the sub-
sets at once impractical. To overcome this problem a “good” collection of subsets
is chosen first and then solving the SPP restricted to the current subsets and in-
corporating new “improving” subsets are iterated. Real-world applications do not
always require optimal solutions, thus the iterative process can be aborted as soon
as an acceptable quality solution is found. In this dissertation we will focus on how
to solve SPPs; this task could be considered as solving “snapshots” of the above

iterative process.

1.2 Set Packing, Covering and Partitioning

If we relax the requirement in the SPP that the chosen subsets be disjoint, the
problem becomes the Set Covering Problem (SC). On the other hand, if the chosen
subsets must be disjoint but their union may be a proper subset of the ground set,
we have the Set Packing Problem (SP). Note that the objective is to minimize in
the Set Covering and to maximize in the Set Packing Problem. Although both of
these problems are relaxations of the Set Partitioning Problem, SP and SPP are
equivalent, while SC is easier than SPP in some sense. As Balas and Padberg point
it out in [BP76] this can be intuitively explained by observing that SPP and SP are
“tightly constrained” (only one of the many subsets that contain an object may be
chosen in a solution) while SC is “loosely constrained” (several subsets containing
the same object can be chosen).

The above problems can be formulated as integer programming models by assign-
ing decision variables x1,...,z, to the subsets indicating which subsets are chosen
(z; = 1if S; is chosen, 0 otherwise). The characteristic vectors of the subsets (0 —1
vectors of length m that show which objects of the ground set are contained in a
subset) are arranged into columns of a matrix A. Figure 1.1 gives the formulation
of the three problems.

SPP and SP are equivalent in the sense that each can be written in the other’s
form so that the optimal solutions for the original and transformed problems will
be the same. To see that any SP problem is an SPP, simply add slack variables

(with zero objective function coefficients) to the constraints. Since the coefficient

min ¢’z
(SPP) Ar = 1,
r € {0,1}"
min 'z max ¢’z
(SC) Az > 1, (SP) Azr < 1,
z € {0,1}" z € {0,1}"

Figure 1.1: Integer Programming formulation of the Set Partitioning, Covering and

Packing Problems

matrix is 0-1 and for any feasible solution x to (SP) the left hand side is either 0
or 1, it is true that the slacks can take only values 0 or 1. So (SP) can be written

as an SPP of the following form:

max ¢’z + 0@s

(SP) Ar + I,s = 1,
x e {0,1}"
s € {0,1}™

On the other hand, an SPP can be written as an SP problem. Switch the min to
a max and add artificial variables (y; > 0) to the constraints and charge a penalty
if they are at nonzero level (fy;). Notice that if (SPP) is feasible then y; = 0 in any
optimal solution to the new formulation as long as 6 is “large enough”, that is, at
least as large as the cost of any feasible solution to the original SPP. Z?Zl c; is an

obvious upper bound on this number. If (SPP) is not feasible then the same large

0 will force the cost of any feasible solution to the SP formulation to be at least 6.

max —clz — 01Ty
(SPP) Az + ILyy = 1,
x e {0,1}"
y =2 0

Substituting 1,, — Az in the objective function for y we get —clz — 011y =
—c'z — 011 (1,, — Az) = (011 A — ¢")x — Om. We further relax the problem by
dropping y from the constraints as well, thus increasing the size of the feasible
region. But the set of optimal solutions will be unchanged since it is too expensive
not to satisfy the constraints with equality. Thus we have obtained an SP form for

the SPP.

max —0m + (01 A — ")z
(SPP") Ar < 1,
z € {0,1}"
The SPP can be converted into an SC problem using the same logic. However,

an SC problem cannot be written in a set partitioning form.

1.3 The Stable Set Problem and Set Partitioning

Consider the finite undirected graph G = (V, E). A stable set (independent set,
vertex or node packing) is an independent subset of the nodes, i.e., a set of nodes
so that no two are connected by an edge. A maximum stable set is a stable set of

maximum cardinality, its size is denoted by a(G). Assigning weights w to the nodes

the weight of a subset of the nodes is simply the sum of the weights of the nodes.
A mazimum weight stable set is a stable set of largest weight (a,(G)).
The Maximum Weight Stable Set Problem (MWSSP) can be formulated as an

Integer Program by assigning decision variables to the nodes of the graph:

a,(G) = max w'x
Agr < i
z € {0,1}V

where Ag is the node-edge incidence matrix of G, that is, a |V| x |E| matrix of 0’s
and 1’s where each column contains exactly two 1’s in the rows that correspond to
the endpoints of the column’s edge.

Observe that this is a set packing problem with a special matrix (the transpose
of the node-edge incidence matrix of a graph). On the other hand the Set Packing
Problem can be viewed as an MWSSP on a special graph derived from the problem
matrix of the SP as we will see below, thus SP and MWSSP are equivalent.

The notion of the intersection graph (or conflict graph) of an SP (SPP or SC)
was first introduced by Edmonds ([Edm62]). The intersection graph corresponding
to an m x n 0-1 matrix A is an undirected graph G4(V, E) where the nodes are
assigned to the columns of A and edges join nodes whose corresponding columns
are nonorthogonal.

It is clear that columns corresponding to variables at level 1 in a feasible solution
to (SP) are pairwise orthogonal, thus the corresponding nodes in the intersection
graph form a stable set. The converse of this statement is true as well, a stable set

in the intersection graph corresponds to a feasible solution to (SP). Thus (SP) is

equivalent to the MWSSP on the intersection graph (Ag, denotes the node-edge

incidence matrix of G4; Ag, has n rows and O(n?) columns):

max clx

T
Ag,r < 1

zr € {0,1}"

Therefore, because of the equivalence of optimal solutions for (SPP) and (SP) and
the way an SPP can be converted into an SP, we could solve an MWSSP instead of
(SPP), only the objective function needs to be modified in the above formulation
to incorporate a penalty for not meeting the inequalities with equality. Note that
even though the coefficient matrix in this equivalent MWSS formulation has a nice
structure, it is much larger than the original matrix A. Also, as Balas and Padberg
point it out ([BP76]), the LP relaxation to the above MWSSP is much weaker than
the one to (SP). Thus solving an MWSSP instead of an SPP is not a realistic
alternative. However, the insight gained from the intersection graphs and graph
theoretical results originally derived for the MWSSP can be utilized when solving

SPPs (see Section 2.3).

1.4 Complexity and approximability

All the problems discussed in the previous sections (SPP, SP, SC and MWSSP) are
NP-complete in general ([LK79], [GJ79]). Some special cases that can be solved in
polynomial time will be mentioned in Section 2.3.

Before comparing the approximability of these problems let us define a special

10

case of set covering, the Minimum Weight Vertex Cover Problem (MWVCP). A
vertex cover in a finite undirected graph is a subset of the nodes so that every edge
is adjacent to at least one of these nodes. A minimum weight vertex cover is a
vertex cover of smallest weight. MWVCP is a special case of SC where the problem
matrix is the node-edge incidence matrix of the graph. Observe that stable sets
and vertex covers are each other’s complements; that is, a subset of the nodes is
independent if and only if the nodes not in the subset form a vertex cover, and vice
versa. From this it trivially follows that the MWVCP is also NP-complete. Note
that while MWSSP on the intersection graph is equivalent to SP, the same is not
true for MWVCP and SC.

While all the above mentioned problems belong to the same complexity class,
they differ greatly in approximability. Because of the equivalence of SP and MWSSP
we will compare here only MWVCP, SC and MWSSP.

An important approximability class is MAX-SNP (introduced in [PY91]; for a
comprehensive survey see [Shm95]; for additional discussion of packing and covering
problems see [Hoc95]). The problems in MAX-SNP turn out to be exactly those
that can be approximated within a constant factor (there is a polynomial time
algorithm that provides a solution with objective value within a constant factor
of the optimum). MAX-SNP-hard problems do not have polynomial approxima-
tion schemes (families of polynomial time algorithms that approximate the optimal
solution arbitrary closely) unless P = NP.

MWVCP is in MAX-SNP since it can be approximated within a factor of 2 (solve

the LP relaxation and round). SC is harder to approximate, a greedy approach

11

yields an O(log, n) approximation and it is proven that we cannot do significantly
better ([Shm95]). The MWSSP cannot even be approximated within a logarithmic

factor; it is shown that no approximation factor of the form ns—e

, € > 0 can be
guaranteed unless P = NP ([Shm95]). While SC and MWSSP are not in MAX-SNP,

they are MAX-SNP-hard.

1.5 Outline of the thesis

This thesis investigates three major steps in the solution process of the Set Par-
titioning Problem: problem size reduction techniques, LP-based feasible solution
heuristics and Branch-and-Cut solution methodology. The Set Partitioning Prob-
lem and its close relatives, the Set Packing and Set Covering Problems arise in
many practical applications. Theoretical aspects of these problems have been stud-
ied for a long time, but only recently have computers become powerful enough to
attack practical instances. However, there are still many advances to be made on
the implementation side.

Chapter 2 reviews some important aspects of polyhedral combinatorial optimiza-
tion. We outline the two classic methods of solving integer programming models:
the Cutting Plane and Branch-and-Bound algorithms; both of which rely on LP
relaxations. The Branch-and-Cut algorithm combines the two into a more powerful
method by incorporating cutting planes into the Branch-and-Bound framework. We
introduce COMPSys, a generic parallel Branch-and-Cut framework that we used for

implementing a Branch-and-Cut algorithm for the Set Partitioning Problem. In the

12

remainder of the chapter we focus on the polyhedra associated with the three prob-
lems. In particular, we summarize what is known about generating facet defining
valid inequalities for these problems (and how to lift them) in theory. Some of these
inequality classes will reappear in Chapter 5 where we discuss our Branch-and-Cut
implementation.

Chapter 3 discusses methods that, given a Set Partitioning Problem, reduce the
set of variables and/or constraints through logical implications without eliminating
optimal solutions to the original problem. Problem size reduction is useful not only
for the original problems (practical problem instances very often contain a large
amount of redundant information due to the way they are generated) but it can
be used to propagate the effects of setting some variables to their lower or upper
bounds (as it does in our Feasible Solution Heuristic and after reduced cost fixing in
Branch-and-Cut). These reduction operations are interesting from the theoretical
point of view as well; we show that the six reduction operations introduced in this
chapter, applied in any order to a Set Partitioning instance until no further reduction
is possible, will always produce the same reduced problem. Our implementation
contains a module for each of the six reduction operations, these modules can be
combined into strategies keeping different goals in mind.

Finding good feasible solutions for Set Partitioning Problems is notoriously dif-
ficult since the problem is usually very tightly constrained. In Chapter 4 we will
discuss LP relaxation based feasible solution heuristics, first in general, then for
our application in detail. Our implementation iterates these heuristics and reduced

cost fixing to improve the quality of the feasible solution, which enables us to prove

13

optimality of the feasible solutions found for many of the problems available in the
literature. LP relaxation based feasible solution heuristics iterate setting variables
to their upper and lower bounds, propagating the effects of these settings and re-
solving the LP relaxations. Traditionally, setting variables to their upper bounds is
favored since this reduces the problem size much faster (but can lead to a quick loss
of feasibility). We take a somewhat more conservative approach and set insignif-
icant variables to their lower bounds instead. In particular, we apply a heuristic
procedure called “follow-on” fixing that is based on an idea originating in airline
crew scheduling applications. The overall efficiency of an implementation like this
depends on that of the problem size reduction and of the LP re-optimization. The
latter is a nontrivial task; we discuss the difficulties encountered.

Chapter 5 describes our parallel Branch-and-Cut implementation in detail. The
COMPSys framework handles all the tasks which are common for parallel Branch-
and-Cut implementations (e.g., search tree and cut pool management, inter-process
communication and LP solving), “all we had to do” was to implement some problem-
specific user functions. We discuss the most interesting parts of this implementation
in detail: preprocessing of the problem, logical fixing, cut generation (both algorith-
mically and manually) and lifting and choosing branching candidates (both variables
and constraints) for strong branching.

Chapter 6 demonstrates a novel feature of the framework: cut generation “by
hand” using a Graphical User Interface. This feature allows us to examine the
current solution (in graphical form) and enter any inequalities through the GUI,;

the inequalities will be incorporated into the formulation if they are violated.

14

Our final computational experiments were carried out on the IBM RS/6000
Scalable POWERparallel System (SP) of the Cornell Theory Center. Appendix A
contains details about the computing environment, as well as the test set. Our
test problems consisted of four distinct sets of SPP models, two from airline crew
scheduling and two sets of vehicle routing models.

In general our computational results demonstrate that Set Partitioning models
of moderately large size can be solved to optimality within reasonable computation
time limits. Our results for all three phases of the solution procedure compare

favorably with other computational results in the literature.

1.6 Definitions and notation

All vectors are assumed to be column vectors. Constant vectors are denoted by
bold letters, with their length in the subscript, e.g., 1,, = (1,...,1). The matrix
A is a 0-1 matrix of size m X n; columns of A are denoted by a;, rows by a’, and
entries by a;;. The index sets of rows and columns are denoted by M = {1,...,m}
and N = {1,...,n}, respectively. The set of columns with a nonzero entry in row
i is called the support of row i and it is denoted by N* = {j € N | a;; = 1}, the
set of rows intersecting column j is M; = {i € M | a;; = 1}. (The index 7 usually
runs through M, j through N.) ¢ is a length n vector of integers unless otherwise

specified. x and y are always vectors of variables. I is the k£ x k identity matrix.

Chapter 2

Background

2.1 Integer Programming and polytopes

Consider the Integer Program

T

min c'zx
(IP) Az R b
zr € {0,1}"

where R is a length m array of relations (<, = or >), A € R™" b e R™ c € R".
Many Combinatorial Optimization problems can be formulated this way, including
all the problems defined in the Introduction. In our examples the problem matrix
A is 0-1 and the right hand side b is a vector of all 1’s. However, the problem
is NP-complete even for these special cases, so no polynomial time (in the size of
the input data) algorithm is expected to be found for solving (IP). Note that here

we are interested in methods for finding an optimal solution, while in applications

15

16

near-optimal solutions obtained by heuristics might be acceptable.

In the rest of the section we review some basic facts about Integer Programming;;
standard references on this topic are [Sch86] and [NW88].

The optimal value of (IP) is denoted by z*, an optimal solution by z*. A binary
vector T is called feasible if it satisfies the constraints Az R b; in this case its
objective value z provides an upper bound on z*. The convex hull of all the feasible

solutions to (IP) is Prp:

Prp = conv{z € {0,1}" | Az R b},

which is a polytope by Weyl’s theorem; that is, P;p is the intersection of finitely
many halfspaces:

Prp={x € R" | Hx < h}.

If A and b are rational (integral) then so are H and h. If the above linear system
were known, optimization over P;p would simply mean solving a Linear Program
(which can be done in polynomial time). Since (IP) is NP-complete in general, the
complete description of P;p with a linear system (H, h) is out of reach. We would be
especially interested in minimal descriptions where no constraint can be expressed
as a nonnegative linear combination of others. If the polytope is full dimensional
the minimal description is essentially unique. However, even a minimal system may
contain exponentially many inequalities.

Given any polytope P, a hyperplane bounding the halfspace defined by a linear
constraint is a supporting hyperplane if the halfspace contains the polytope and has

a nonempty intersection with it. The intersection of a supporting hyperplane and

17

IS
!
R

Figure 2.1: Lower and upper bound and the optimal solution

P is a face of the polytope. The dim(P) — 1 dimensional faces are called facets. If
a supporting hyperplane intersects the polytope in a facet then the corresponding
linear constraint is said to be facet defining. The inequalities in a minimal linear
system (H,h) are facet defining. The search for linear inequalities describing the
IP polytope will be discussed in more detail in Sections 2.1.1 and 2.3.

A relazation of (IP) is a problem whose feasible region contains all feasible
solutions to (IP); that is, it contains Prp. Here we will consider only LP relazations;
that is, problems that are themselves Linear Programs (can be described with linear
constraints and thus their feasible regions are polyhedra P, p). LP relaxations
are useful since efficient algorithms exist to solve them and it is relatively easy to
reoptimize after small changes in the formulation. Optimizing the same objective

T2 over the LP relaxation provides a lower bound z on z*. A trivial LP

function ¢
relaxation to (IP) is to replace z € {0,1}" by 0,, <z < 1,,.

Methods for solving Integer Programs try to “close in” on the optimal solution
from one or both sides by generating better and better feasible solutions that provide
upper bounds or/and stronger and stronger LP relaxations that increase the lower

bound; see Figure 2.1. The integrality gap (Z — z)/z measures how far the two

bounds are from each other. When the optimum is known we can compute the

18

optimality gap between an upper bound and the optimum as (Z — 2*)/z".

Two traditional ways to solve general IPs are Branch-and-Bound (B&B) and
Cutting Plane methods. Both rely on relaxations, but as we will see, they are
fundamentally different. The two are combined into a third, more powerful method

called Branch-and-Cut.

2.1.1 Cutting plane methods

Cutting plane methods try to approximate the IP polytope from outside in a neigh-
borhood of the optimal solution. They start from any LP relaxation of (IP). At
each iteration the current LP relaxation is solved to optimality and then halfspaces
that contain the entire IP polytope P;p but not the optimal extreme point(s) of
PLp are identified and the corresponding linear constraints, or cuts are added to
the LP relaxation. This is repeated until the optimal solution of the LP relaxation
becomes integral (binary).

This procedure can be perceived as cutting off “corners” of the enclosing LP
polytope until an optimal corner of the IP polytope surfaces. The identified linear
constraints are not satisfied by optimal extreme points of P, p, thus they are called
violated cuts or inequalities. From the IP’s point of view these linear constraints
are valid since they do not cut into Prp. The method of finding violated valid
inequalities is called cut generation or separation (since the optimal corner of Py p is
separated from P;p). Generating facet defining inequalities is preferred since these
are part of a minimal description of P;p. Intuitively, cutting off the optimal corner

of the LP polytope with a facet defining inequality ensures that no more cuts will

19

be necessary in the direction of the inequality’s norm.

There are two important questions that must be asked here: (i) can we devise
separation algorithms that are efficient both in theory and practice and (7i) can we
ensure finite convergence of the cutting plane algorithm. In the textbook approach
(due to Gomory) the violated inequalities are derived from certain rows of the
current simplex tableau in polynomial time and the method is proved to converge
in a finite number of iterations. However, it is widely believed that Gomory cuts
are not effective in