
PARALLEL BRANCH AND CUT FOR SET

PARTITIONING

A Dissertation

Presented to the Fa
ulty of the Graduate S
hool

of Cornell University

in Partial Ful�llment of the Requirements for the Degree of

Do
tor of Philosophy

by

M�arta Es}o

January 1999

 M�arta Es}o 1999

ALL RIGHTS RESERVED

PARALLEL BRANCH AND CUT FOR SET PARTITIONING

M�arta Es}o, Ph.D.

Cornell University 1999

This thesis investigates three major steps in the solution pro
ess of the Set

Partitioning Problem (SPP): problem size redu
tion te
hniques, LP-based feasible

solution heuristi
s and Bran
h-and-Cut solution methodology. SPPs arise in many

pra
ti
al appli
ations (airline
rew s
heduling, vehi
le routing,
ir
uit partitioning).

Theoreti
al aspe
ts of this problem have been studied for a long time, but only

re
ently have
omputers be
ome powerful enough to atta
k pra
ti
al instan
es.

Problem size redu
tion methods redu
e the set of variables and/or
onstraints

through logi
al impli
ations without eliminating optimal solutions to the original

problem. We show that the redu
tion operations well-known in the literature, ap-

plied in any order to an SPP instan
e until no further redu
tion is possible, always

produ
e the same redu
ed problem.

Finding good feasible solutions is essential for upper bounding in a Bran
h-and-

Cut framework. Our LP-based feasible solution heuristi
 iterates a heuristi
 �xing

phase with redu
ed
ost �xing to improve the quality of the feasible solution. Our

heuristi
 pro
edure is somewhat more
onservative than earlier approa
hes in that

it eliminates unne
essary variables instead of for
ing variables into the solution.

Our parallel Bran
h-and-Cut pro
edure was implemented using the COMPSys

framework. COMPSys provides the user with the ne
essary infrastru
ture to im-

plement an eÆ
ient Bran
h-and-Cut appli
ation by handling tasks
ommon for

parallel Bran
h-and-Cut (sear
h tree management, message passing, LP interfa
e).

To interfa
e with COMPSys we implemented pro
edures parti
ular to the SPP. We

generate
uts both algorithmi
ally and manually through a graphi
al user interfa
e.

Our experiments were
arried out on the IBM RS/6000 S
alable POWERpar-

allel System of the Cornell Theory Center. Our test set in
luded problems from

airline
rew s
heduling and vehi
le routing appli
ations. Our
omputational results

demonstrate our implementation to be an e�e
tive approa
h for solving SPPs of

moderately large size.

Biographi
al Sket
h

M�arta Es}o was born on April 5, 1968 in Szombathely, Hungary. She
ompleted

her undergraduate studies at the E�otv�os Lor�and University, Budapest, Hungary in

June 1991, re
eiving both her Master of S
ien
e degree in Mathemati
s and her

erti�
ate for high s
hool tea
hing. She entered the Ph.D. program in the S
hool

of Operations Resear
h and Industrial Engineering at Cornell University in the Fall

of 1991, where she re
eived a Master of S
ien
e degree in Operations Resear
h in

January 1995. She parti
ipated in a work-study program at the IBM T.J. Watson

Resear
h Center, Yorktown Heights, from September 1997 to De
ember 1998.

iii

... to my Father's memory...

iv

A
knowledgements

I would like to express my gratitude to my advisor Professor Leslie E. Trotter, Jr.

for his guidan
e. I would also like to thank Professor

�

Eva Tardos who served as

my advisor during my �rst year at Cornell, and Professors Ronitt Rubinfeld, Paul

Pedersen and Tapan Mitra for serving on my spe
ial
ommittee. I am indebted to

the fa
ulty and sta� of the S
hool of Operations Resear
h and Industrial Engineering

at Cornell University for providing an ex
ellent graduate program and a produ
tive

resear
h environment.

We have worked very
losely on the COMPSys proje
t with La
i Lad�anyi,

Ted Ralphs, Greta Pangborn, and Leo Kopman. Our resear
h was made possible

through the generous support of the Cornell Theory Center and the U.S. National

S
ien
e Foundation. Edoardo Amaldi, Oktay G�unl�uk, and Jean-Fran�
ois Puszta-

szeri gave valuable suggestions during the development phase.

I am grateful to Dr. William Pulleyblank and all those at the Department

of Mathemati
al S
ien
es at the IBM T.J. Watson Resear
h Center who made it

possible for me to parti
ipate in their work-study program. It was a very valuable

experien
e to see optimization theory applied in pra
ti
e. I would spe
i�
ally like

v

to thank Ranga Anbil, Fran
is
o Barahona, and Jane Snowdon for their friendship

and en
ouragement.

I thank all the graduate students at the OR&IE department and the many

friends in Itha
a who made my stay at Cornell so enjoyable.

Most importantly, I would like to thank my family for their love and support.

vi

Table of Contents

1 Introdu
tion 1

1.1 The Set Partitioning Problem . 1

1.2 Set Pa
king, Covering and Partitioning 5

1.3 The Stable Set Problem and Set Partitioning 7

1.4 Complexity and approximability . 9

1.5 Outline of the thesis . 11

1.6 De�nitions and notation . 14

2 Ba
kground 15

2.1 Integer Programming and polytopes 15

2.1.1 Cutting plane methods . 18

2.1.2 Bran
h-and-Bound . 19

2.1.3 Bran
h-and-Cut . 22

2.2 The COMPSys framework . 24

2.3 The Set Pa
king and Covering polytopes 26

2.3.1 P

SP

. 27

2.3.2 P

SC

. 36

3 Problem size redu
tion 38

3.1 Des
ription of redu
tion methods 39

3.2 Theorem of exhaustive redu
tion 43

3.3 How
an new instan
es arise? . 57

3.4 Implementation . 59

3.4.1 Redu
tion modules . 61

3.4.2 Redu
tion strategies . 72

3.4.3 The Redu
e() fun
tion . 74

3.4.4 Computational results . 75

4 Feasible solution heuristi
s 88

4.1 LP relaxation based heuristi
s . 89

vii

4.2 Our algorithm . 93

4.2.1 Heuristi
 variable �xing . 93

4.2.2 Unmarking variables . 97

4.2.3 Overview of our algorithm 98

4.3 Solving the LP relaxations (warmstart) 102

4.4 Computational results . 105

5 Interfa
ing with the Bran
h-and-Cut framework 122

5.1 The COMPSys framework . 123

5.2 User-written fun
tions of the Master pro
ess 128

5.2.1 Prepro
essing and upper bounding 128

5.2.2 Formulating the problem and
onstru
ting the root 129

5.3 User-written fun
tions of the LP pro
ess 130

5.3.1 Constru
ting the LP relaxation 130

5.3.2 Logi
al �xing of variables 130

5.3.3 Generating violated inequalities 131

5.3.4 Lifting violated inequalities 132

5.3.5 De
iding whether to bran
h or
ontinue solving LPs 133

5.3.6 Choosing bran
hing obje
ts for strong bran
hing and
ompar-

ing the presolved results . 134

5.4 User-written fun
tions of the Cut Generator pro
ess 140

5.4.1 Cliques . 142

5.4.2 Lifted odd holes, pa
king and
over odd holes 144

5.4.3 Odd antiholes and lifted odd antiholes 151

5.5 Computational Results . 152

5.5.1 Set 1 problems . 156

5.5.2 Set 2 problems . 165

5.5.3 Set 3 problems . 167

5.5.4 Set 4 problems . 174

5.5.5 Con
lusion and future work 174

6 The Graphi
al User Interfa
e 177

6.1 Intera
tive Graph Drawing (IGD) 178

6.2 The interfa
e (DrawGraph) . 182

6.3 Generating
uts by hand . 183

A Computation 187

A.1 Computing environment . 187

A.2 The test bed . 188

A.3 Results by others . 195

viii

B Implementing Redu
e() 203

B.1 Redu
e main data stru
ture . 203

B.2 Redu
e parameters . 205

C Implementing the feasible solution heuristi
 207

C.1 CPLEX parameters . 207

C.2 Heuristi
 parameters . 209

D Implementing our Bran
h-and-Cut pro
edure 214

D.1 COMPSys parameters . 215

D.2 Parameters in the user-written fun
tions 218

Bibliography 222

ix

List of Tables

3.1 Impa
t of redu
tions . 58

3.2 Impa
t of redu
tions { for all six instan
es 60

3.3 Maximal redu
tion w/o SUMC followed by one SUMC, Set 1, part 1 80

3.4 Maximal redu
tion w/o SUMC followed by one SUMC, Set 1, part 2 81

3.5 Fast redu
tion w/o SUMC followed by one SUMC, Set 1, part 1 . . 82

3.6 Fast redu
tion w/o SUMC followed by one SUMC, Set 1, part 2 . . 83

3.7 Maximal redu
tion w/o SUMC followed by one SUMC, Set 3 . . . 84

3.8 Fast redu
tion w/o SUMC followed by one SUMC, Set 3 85

3.9 Maximal redu
tion w/o SUMC followed by one SUMC, Sets 2, 4 . 86

3.10 Fast redu
tion w/o SUMC followed by one SUMC, Sets 2, 4 87

4.1 Feasible solution heuristi
 (default setting), Set 1, part 1 112

4.2 Feasible solution heuristi
 (default setting), Set 1, part 2 113

4.3 Feasible solution heuristi
 (default setting), Set 3 114

4.4 Feasible solution heuristi
 (default setting), Sets 2 and 4 115

4.5 Feasible solution heuristi
 (
omparison runs), Set 1, part 1 116

4.6 Feasible solution heuristi
 (
omparison runs), Set 1, part 2 117

4.7 Feasible solution heuristi
 (
omparison runs), Set 1, part 1,
ont. . 118

4.8 Feasible solution heuristi
 (
omparison runs), Set 1, part 2,
ont. . 119

4.9 Feasible solution heuristi
 (
omparison runs), Set 3, part 1 120

4.10 Feasible solution heuristi
 (
omparison runs), Set 3, part 2 121

5.1 Basi
 B&C experiments for aa01 158

5.2 Basi
 B&C experiments for aa04 158

5.3 Basi
 B&C experiments for nw04 160

5.4 Basi
 B&C experiments for aa05 160

5.5 Basi
 B&C experiments for aa03 161

5.6 Basi
 B&C experiments for aa06 161

5.7 Basi
 B&C experiments for kl02 162

5.8 Basi
 B&C experiments for nw17 162

5.9 Basi
 B&C experiments for nw36 163

x

5.10 Basi
 B&C experiments for us01 163

5.11 Parallel runs for aa01 . 164

5.12 Parallel runs for aa04 . 164

5.13 Basi
 B&C experiments for Set 2 (bran
hing on \
lose to one-half") 166

5.14 Basi
 B&C experiments for Set 2 (mixed bran
hing variable sele
tion)166

5.15 Basi
 B&C experiments for v04 (bran
hing on vars) 168

5.16 Basi
 B&C experiments for v04 (bran
hing on vars/
uts) 168

5.17 Parallel runs for v0416 (bran
hing on vars) 169

5.18 Parallel runs for v0416 (bran
hing on vars/
uts) 169

5.19 Basi
 B&C experiments for v16 (bran
hing on vars) 171

5.20 Basi
 B&C experiments for v16 (bran
hing on vars/
uts) 171

5.21 Basi
 B&C experiments for v16 with 16 LP-CG pairs 171

5.22 Basi
 B&C experiments for t04 (bran
hing on vars) 172

5.23 Basi
 B&C experiments for t04 (bran
hing on vars/
uts) 172

5.24 Basi
 B&C experiments for t17 (bran
hing on vars) 173

5.25 Basi
 B&C experiments for t17 (bran
hing on vars/
uts) 173

5.26 Basi
 B&C experiments for Set 4 (bran
hing on \
lose to one-half") 175

5.27 Basi
 B&C experiments for Set 4 (mixed bran
hing variable sele
tion)175

A.1 Basi
 properties of problems in set 1, part 1 191

A.2 Basi
 properties of problems in set 1, part 2 192

A.3 Basi
 properties of problems in set 3 193

A.4 Basi
 properties of problems in sets 2 and 4 194

A.5 Computational results by Ho�man and Padberg, Set 1, part 1 . . . 196

A.6 Computational results by Ho�man and Padberg, Set 1, part 2 . . . 197

A.7 Computational results by Bornd�orfer, Set 1, part 1 199

A.8 Computational results by Bornd�orfer, Set 1, part 2 200

A.9 Computational results by Bornd�orfer et al., Set 3 201

xi

List of Figures

1.1 Integer Programming formulation of the Set Partitioning, Covering

and Pa
king Problems . 6

2.1 Lower and upper bound and the optimal solution 17

2.2 The
ow of the Bran
h-and-Cut Algorithm 23

2.3 Graphs with fa
et de�ning valid inequalities 30

3.1 The six redu
tion methods . 44

3.2 Des
ription of a general redu
tion module 64

3.3 Outline of the Redu
e() fun
tion 75

4.1 Outline of Feasible Solution Heuristi
 99

5.1 Pro
esses of the COMPSys framework 125

5.2 Tailing o� . 134

6.1 Communi
ation
ow between COMPSys and the GUI 178

6.2 S
reen shot of the GUI: problem v0416 at the root before bran
hing 179

6.3 Deriving a
ut using the Chv�atal-Gomory pro
edure 185

xii

Chapter 1

Introdu
tion

1.1 The Set Partitioning Problem

The Set Partitioning Problem (SPP) in its general form
an be presented as follows.

Given a ground set S of m obje
ts and a
olle
tion of subsets of S (S

1

; : : : ; S

n

) with

asso
iated
osts
(S

j

), 1 � j � n, sele
t some subsets of minimum (or maximum)

total
ost so that the sele
ted subsets are disjoint and their union is the ground set.

In other words,
hoose a minimum (or maximum)
ost partitioning of the ground

set.

A wide variety of pra
ti
al appli
ations have been modeled as SPPs during the

past 50 years, in
luding
rew s
heduling ([FR87℄, [Ger89℄, [AGPT91℄, [HP93℄) vehi-

le routing ([BQ64℄, [Chr85℄, [BGKK97℄), politi
al distri
ting ([GN70℄), and
ir
uit

partitioning ([ECTA96℄) just to name a few. Referen
es to further appli
ations
an

be found in [GN72℄ (Chapter 8), [BP76℄, and [EDM90℄.

1

2

The most well studied and one of the earliest appli
ations is Airline Crew

S
heduling. The importan
e of
rew s
heduling in the airline industry is due to

the fa
t that
rew
osts are ex
eeded only by the
ost of fuel, thus small improve-

ments in the solution translate to large dollar savings ([AGPT91℄). Crew s
heduling

is a major step in s
hedule planning; it
omes after timetables are
reated and air-

raft are already assigned to the
ights. The goal of
rew s
heduling is to assign

rew members to the
ights as
heaply as possible while a
omplex set of FAA

regulations, union requirements and other internal operational rules are met. Mod-

eled as a set partitioning problem, the ground set will be the
olle
tion of
ights

that need to be
overed, while the subsets
orrespond to sequen
es of
ights that

a
rew
an operate (so
alled pairings). Constru
ting pairings is a
omplex pro
ess

sin
e the legality of the pairings (
omplian
e with the rules and regulations) must

be ensured. The
ost of a subset re
e
ts both
rew
ompensation and penalties for

undesired events like tight
onne
tions or deadheading (
rew members are passen-

gers on a
ight). The SPP model itself does not
apture requirements like
rew

availability at di�erent stations; these requirements are usually added in the form

of side
onstraints.

In the Vehi
le Routing Problem (VRP)
ustomer demands need to be served by

a
eet of vehi
les that depart from and return to the same lo
ation (the depot) so

that the total
ost in
urred on the trips (e.g., the distan
e traveled by the vehi
les)

is as small as possible. Ea
h
ustomer must be servi
ed by exa
tly one vehi
le and

the vehi
les have �nite
apa
ities. In the set partitioning model the
ustomers will

be the elements of the ground set, and feasible routes for individual vehi
les form

3

the subsets. The
ost of a subset is the
ost of the
orresponding route. The use of

the set partitioning formulation for solving the general VRP is not pra
ti
al sin
e

too many subsets need to be enumerated and just to
ompute the
ost of a subset

is a hard problem in itself (requires solving a Traveling Salesman Problem (TSP)

instan
e) [Chr85℄. However, in pra
ti
e very often there are additional requirements

(e.g., rest rules for the drivers of the vehi
les [BGKK97℄) that restri
t the number of

subsets and the order in whi
h the
ustomers
an be served within a route. While

these requirements would need to be added as side
onstraints in the traditional

formulation, they
an be a

ommodated here by generating only those subsets that

obey them.

Another early appli
ation of the SPP is politi
al distri
ting. A state is
omposed

of small population units (e.g.,
ounties,
ensus tra
ts) that need to be grouped into

politi
al distri
ts so that
ertain
riteria on the population,
ontiguity and shape of

the distri
ts are met and the grouping is as a

eptable as possible. Modeled as a set

partitioning problem, the elements of the ground set
orrespond to the population

units, and the subsets to proposed distri
ts. The
ost of a subset measures the

undesirability of the
orresponding distri
t, and the solution to the SPP will provide

the least undesirable way of partitioning the state into distri
ts. A side
onstraint

spe
ifying the number of distri
ts required is also added.

The
ir
uit partitioning problem is the �rst step in the physi
al design stage

of ele
troni

ir
uit design. Physi
al design is pre
eded by logi
al design, where

the
omponents of the
ir
uit and the inter
onne
tions between them are planned

on paper without
onsidering the a
tual pla
ement of the
omponents. Then, in

4

the physi
al design stage, the plan is �rst divided into sub
ir
uits (this is
ir
uit

partitioning) then the
omponents are pla
ed within these partitions and a routing

between the sub
ir
uits is determined. In a feasible partitioning the total size of

omponents within the sub
ir
uits and the pins required to
onne
t the partitions

must stay within spe
i�ed bounds. The quality of a partitioning is hard to measure;

balan
ing wire
ongestion and minimizing the number of
onne
tions between the

sub
ir
uits are
ommonly used. In the set partitioning model the ground set is

omprised of the
omponents and subsets
orrespond to sub
ir
uits that satisfy the

above requirements. The obje
tive is to obtain the highest quality partitioning.

In all the appli
ations dis
ussed above signi�
ant e�ort must be spent on gen-

erating the subsets and
omputing their
osts. The number of feasible subsets is

exponential in the size of the ground set in general whi
h makes listing all the sub-

sets at on
e impra
ti
al. To over
ome this problem a \good"
olle
tion of subsets

is
hosen �rst and then solving the SPP restri
ted to the
urrent subsets and in-

orporating new \improving" subsets are iterated. Real-world appli
ations do not

always require optimal solutions, thus the iterative pro
ess
an be aborted as soon

as an a

eptable quality solution is found. In this dissertation we will fo
us on how

to solve SPPs; this task
ould be
onsidered as solving \snapshots" of the above

iterative pro
ess.

5

1.2 Set Pa
king, Covering and Partitioning

If we relax the requirement in the SPP that the
hosen subsets be disjoint, the

problem be
omes the Set Covering Problem (SC). On the other hand, if the
hosen

subsets must be disjoint but their union may be a proper subset of the ground set,

we have the Set Pa
king Problem (SP). Note that the obje
tive is to minimize in

the Set Covering and to maximize in the Set Pa
king Problem. Although both of

these problems are relaxations of the Set Partitioning Problem, SP and SPP are

equivalent, while SC is easier than SPP in some sense. As Balas and Padberg point

it out in [BP76℄ this
an be intuitively explained by observing that SPP and SP are

\tightly
onstrained" (only one of the many subsets that
ontain an obje
t may be

hosen in a solution) while SC is \loosely
onstrained" (several subsets
ontaining

the same obje
t
an be
hosen).

The above problems
an be formulated as integer programmingmodels by assign-

ing de
ision variables x

1

; : : : ; x

n

to the subsets indi
ating whi
h subsets are
hosen

(x

j

= 1 if S

j

is
hosen, 0 otherwise). The
hara
teristi
 ve
tors of the subsets (0�1

ve
tors of length m that show whi
h obje
ts of the ground set are
ontained in a

subset) are arranged into
olumns of a matrix A. Figure 1.1 gives the formulation

of the three problems.

SPP and SP are equivalent in the sense that ea
h
an be written in the other's

form so that the optimal solutions for the original and transformed problems will

be the same. To see that any SP problem is an SPP, simply add sla
k variables

(with zero obje
tive fun
tion
oeÆ
ients) to the
onstraints. Sin
e the
oeÆ
ient

6

min

T

x

(SPP) Ax = 1

m

x 2 f0; 1g

n

min

T

x

(SC) Ax � 1

m

x 2 f0; 1g

n

max

T

x

(SP) Ax � 1

m

x 2 f0; 1g

n

Figure 1.1: Integer Programming formulation of the Set Partitioning, Covering and

Pa
king Problems

matrix is 0-1 and for any feasible solution x to (SP) the left hand side is either 0

or 1, it is true that the sla
ks
an take only values 0 or 1. So (SP)
an be written

as an SPP of the following form:

max

T

x + 0

T

m

s

(SP) Ax + I

m

s = 1

m

x 2 f0; 1g

n

s 2 f0; 1g

m

On the other hand, an SPP
an be written as an SP problem. Swit
h the min to

a max and add arti�
ial variables (y

i

� 0) to the
onstraints and
harge a penalty

if they are at nonzero level (�y

i

). Noti
e that if (SPP) is feasible then y

i

= 0 in any

optimal solution to the new formulation as long as � is \large enough", that is, at

least as large as the
ost of any feasible solution to the original SPP.

P

n

j=1

j

is an

obvious upper bound on this number. If (SPP) is not feasible then the same large

7

� will for
e the
ost of any feasible solution to the SP formulation to be at least �.

max �

T

x � �1

T

m

y

(SPP) Ax + I

m

y = 1

m

x 2 f0; 1g

n

y � 0

Substituting 1

m

� Ax in the obje
tive fun
tion for y we get �

T

x � �1

T

m

y =

�

T

x � �1

T

m

(1

m

� Ax) = (�1

T

m

A �

T

)x � �m. We further relax the problem by

dropping y from the
onstraints as well, thus in
reasing the size of the feasible

region. But the set of optimal solutions will be un
hanged sin
e it is too expensive

not to satisfy the
onstraints with equality. Thus we have obtained an SP form for

the SPP.

max ��m + (�1

T

m

A�

T

)x

(SPP

0

) Ax � 1

m

x 2 f0; 1g

n

The SPP
an be
onverted into an SC problem using the same logi
. However,

an SC problem
annot be written in a set partitioning form.

1.3 The Stable Set Problem and Set Partitioning

Consider the �nite undire
ted graph G = (V;E). A stable set (independent set,

vertex or node pa
king) is an independent subset of the nodes, i.e., a set of nodes

so that no two are
onne
ted by an edge. A maximum stable set is a stable set of

maximum
ardinality, its size is denoted by �(G). Assigning weights w to the nodes

8

the weight of a subset of the nodes is simply the sum of the weights of the nodes.

A maximum weight stable set is a stable set of largest weight (�

w

(G)).

The Maximum Weight Stable Set Problem (MWSSP)
an be formulated as an

Integer Program by assigning de
ision variables to the nodes of the graph:

�

w

(G) = max w

T

x

A

T

G

x � 1

jEj

x 2 f0; 1g

jV j

where A

G

is the node-edge in
iden
e matrix of G, that is, a jV j � jEj matrix of 0's

and 1's where ea
h
olumn
ontains exa
tly two 1's in the rows that
orrespond to

the endpoints of the
olumn's edge.

Observe that this is a set pa
king problem with a spe
ial matrix (the transpose

of the node-edge in
iden
e matrix of a graph). On the other hand the Set Pa
king

Problem
an be viewed as an MWSSP on a spe
ial graph derived from the problem

matrix of the SP as we will see below, thus SP and MWSSP are equivalent.

The notion of the interse
tion graph (or
on
i
t graph) of an SP (SPP or SC)

was �rst introdu
ed by Edmonds ([Edm62℄). The interse
tion graph
orresponding

to an m � n 0-1 matrix A is an undire
ted graph G

A

(V;E) where the nodes are

assigned to the
olumns of A and edges join nodes whose
orresponding
olumns

are nonorthogonal.

It is
lear that
olumns
orresponding to variables at level 1 in a feasible solution

to (SP) are pairwise orthogonal, thus the
orresponding nodes in the interse
tion

graph form a stable set. The
onverse of this statement is true as well, a stable set

in the interse
tion graph
orresponds to a feasible solution to (SP). Thus (SP) is

9

equivalent to the MWSSP on the interse
tion graph (A

G

A

denotes the node-edge

in
iden
e matrix of G

A

; A

G

A

has n rows and O(n

2

)
olumns):

max

T

x

A

T

G

A

x � 1

jEj

x 2 f0; 1g

n

Therefore, be
ause of the equivalen
e of optimal solutions for (SPP) and (SP) and

the way an SPP
an be
onverted into an SP, we
ould solve an MWSSP instead of

(SPP), only the obje
tive fun
tion needs to be modi�ed in the above formulation

to in
orporate a penalty for not meeting the inequalities with equality. Note that

even though the
oeÆ
ient matrix in this equivalent MWSS formulation has a ni
e

stru
ture, it is mu
h larger than the original matrix A. Also, as Balas and Padberg

point it out ([BP76℄), the LP relaxation to the above MWSSP is mu
h weaker than

the one to (SP). Thus solving an MWSSP instead of an SPP is not a realisti

alternative. However, the insight gained from the interse
tion graphs and graph

theoreti
al results originally derived for the MWSSP
an be utilized when solving

SPPs (see Se
tion 2.3).

1.4 Complexity and approximability

All the problems dis
ussed in the previous se
tions (SPP, SP, SC and MWSSP) are

NP-
omplete in general ([LK79℄, [GJ79℄). Some spe
ial
ases that
an be solved in

polynomial time will be mentioned in Se
tion 2.3.

Before
omparing the approximability of these problems let us de�ne a spe
ial

10

ase of set
overing, the Minimum Weight Vertex Cover Problem (MWVCP). A

vertex
over in a �nite undire
ted graph is a subset of the nodes so that every edge

is adja
ent to at least one of these nodes. A minimum weight vertex
over is a

vertex
over of smallest weight. MWVCP is a spe
ial
ase of SC where the problem

matrix is the node-edge in
iden
e matrix of the graph. Observe that stable sets

and vertex
overs are ea
h other's
omplements; that is, a subset of the nodes is

independent if and only if the nodes not in the subset form a vertex
over, and vi
e

versa. From this it trivially follows that the MWVCP is also NP-
omplete. Note

that while MWSSP on the interse
tion graph is equivalent to SP, the same is not

true for MWVCP and SC.

While all the above mentioned problems belong to the same
omplexity
lass,

they di�er greatly in approximability. Be
ause of the equivalen
e of SP and MWSSP

we will
ompare here only MWVCP, SC and MWSSP.

An important approximability
lass is MAX-SNP (introdu
ed in [PY91℄; for a

omprehensive survey see [Shm95℄; for additional dis
ussion of pa
king and
overing

problems see [Ho
95℄). The problems in MAX-SNP turn out to be exa
tly those

that
an be approximated within a
onstant fa
tor (there is a polynomial time

algorithm that provides a solution with obje
tive value within a
onstant fa
tor

of the optimum). MAX-SNP-hard problems do not have polynomial approxima-

tion s
hemes (families of polynomial time algorithms that approximate the optimal

solution arbitrary
losely) unless P = NP.

MWVCP is in MAX-SNP sin
e it
an be approximated within a fa
tor of 2 (solve

the LP relaxation and round). SC is harder to approximate, a greedy approa
h

11

yields an O(log

2

n) approximation and it is proven that we
annot do signi�
antly

better ([Shm95℄). The MWSSP
annot even be approximated within a logarithmi

fa
tor; it is shown that no approximation fa
tor of the form n

1

2

��

; � > 0
an be

guaranteed unless P = NP ([Shm95℄). While SC and MWSSP are not in MAX-SNP,

they are MAX-SNP-hard.

1.5 Outline of the thesis

This thesis investigates three major steps in the solution pro
ess of the Set Par-

titioning Problem: problem size redu
tion te
hniques, LP-based feasible solution

heuristi
s and Bran
h-and-Cut solution methodology. The Set Partitioning Prob-

lem and its
lose relatives, the Set Pa
king and Set Covering Problems arise in

many pra
ti
al appli
ations. Theoreti
al aspe
ts of these problems have been stud-

ied for a long time, but only re
ently have
omputers be
ome powerful enough to

atta
k pra
ti
al instan
es. However, there are still many advan
es to be made on

the implementation side.

Chapter 2 reviews some important aspe
ts of polyhedral
ombinatorial optimiza-

tion. We outline the two
lassi
 methods of solving integer programming models:

the Cutting Plane and Bran
h-and-Bound algorithms; both of whi
h rely on LP

relaxations. The Bran
h-and-Cut algorithm
ombines the two into a more powerful

method by in
orporating
utting planes into the Bran
h-and-Bound framework. We

introdu
e COMPSys, a generi
 parallel Bran
h-and-Cut framework that we used for

implementing a Bran
h-and-Cut algorithm for the Set Partitioning Problem. In the

12

remainder of the
hapter we fo
us on the polyhedra asso
iated with the three prob-

lems. In parti
ular, we summarize what is known about generating fa
et de�ning

valid inequalities for these problems (and how to lift them) in theory. Some of these

inequality
lasses will reappear in Chapter 5 where we dis
uss our Bran
h-and-Cut

implementation.

Chapter 3 dis
usses methods that, given a Set Partitioning Problem, redu
e the

set of variables and/or
onstraints through logi
al impli
ations without eliminating

optimal solutions to the original problem. Problem size redu
tion is useful not only

for the original problems (pra
ti
al problem instan
es very often
ontain a large

amount of redundant information due to the way they are generated) but it
an

be used to propagate the e�e
ts of setting some variables to their lower or upper

bounds (as it does in our Feasible Solution Heuristi
 and after redu
ed
ost �xing in

Bran
h-and-Cut). These redu
tion operations are interesting from the theoreti
al

point of view as well; we show that the six redu
tion operations introdu
ed in this

hapter, applied in any order to a Set Partitioning instan
e until no further redu
tion

is possible, will always produ
e the same redu
ed problem. Our implementation

ontains a module for ea
h of the six redu
tion operations, these modules
an be

ombined into strategies keeping di�erent goals in mind.

Finding good feasible solutions for Set Partitioning Problems is notoriously dif-

�
ult sin
e the problem is usually very tightly
onstrained. In Chapter 4 we will

dis
uss LP relaxation based feasible solution heuristi
s, �rst in general, then for

our appli
ation in detail. Our implementation iterates these heuristi
s and redu
ed

ost �xing to improve the quality of the feasible solution, whi
h enables us to prove

13

optimality of the feasible solutions found for many of the problems available in the

literature. LP relaxation based feasible solution heuristi
s iterate setting variables

to their upper and lower bounds, propagating the e�e
ts of these settings and re-

solving the LP relaxations. Traditionally, setting variables to their upper bounds is

favored sin
e this redu
es the problem size mu
h faster (but
an lead to a qui
k loss

of feasibility). We take a somewhat more
onservative approa
h and set insignif-

i
ant variables to their lower bounds instead. In parti
ular, we apply a heuristi

pro
edure
alled \follow-on" �xing that is based on an idea originating in airline

rew s
heduling appli
ations. The overall eÆ
ien
y of an implementation like this

depends on that of the problem size redu
tion and of the LP re-optimization. The

latter is a nontrivial task; we dis
uss the diÆ
ulties en
ountered.

Chapter 5 des
ribes our parallel Bran
h-and-Cut implementation in detail. The

COMPSys framework handles all the tasks whi
h are
ommon for parallel Bran
h-

and-Cut implementations (e.g., sear
h tree and
ut pool management, inter-pro
ess

ommuni
ation and LP solving), \all we had to do" was to implement some problem-

spe
i�
 user fun
tions. We dis
uss the most interesting parts of this implementation

in detail: prepro
essing of the problem, logi
al �xing,
ut generation (both algorith-

mi
ally and manually) and lifting and
hoosing bran
hing
andidates (both variables

and
onstraints) for strong bran
hing.

Chapter 6 demonstrates a novel feature of the framework:
ut generation \by

hand" using a Graphi
al User Interfa
e. This feature allows us to examine the

urrent solution (in graphi
al form) and enter any inequalities through the GUI;

the inequalities will be in
orporated into the formulation if they are violated.

14

Our �nal
omputational experiments were
arried out on the IBM RS/6000

S
alable POWERparallel System (SP) of the Cornell Theory Center. Appendix A

ontains details about the
omputing environment, as well as the test set. Our

test problems
onsisted of four distin
t sets of SPP models, two from airline
rew

s
heduling and two sets of vehi
le routing models.

In general our
omputational results demonstrate that Set Partitioning models

of moderately large size
an be solved to optimality within reasonable
omputation

time limits. Our results for all three phases of the solution pro
edure
ompare

favorably with other
omputational results in the literature.

1.6 De�nitions and notation

All ve
tors are assumed to be
olumn ve
tors. Constant ve
tors are denoted by

bold letters, with their length in the subs
ript, e.g., 1

m

= (1; : : : ; 1). The matrix

A is a 0-1 matrix of size m � n;
olumns of A are denoted by a

j

, rows by a

i

, and

entries by a

ij

. The index sets of rows and
olumns are denoted by M = f1; : : : ; mg

and N = f1; : : : ; ng, respe
tively. The set of
olumns with a nonzero entry in row

i is
alled the support of row i and it is denoted by N

i

= fj 2 N j a

ij

= 1g, the

set of rows interse
ting
olumn j is M

j

= fi 2 M j a

ij

= 1g. (The index i usually

runs through M , j through N .)
 is a length n ve
tor of integers unless otherwise

spe
i�ed. x and y are always ve
tors of variables. I

k

is the k � k identity matrix.

Chapter 2

Ba
kground

2.1 Integer Programming and polytopes

Consider the Integer Program

min

T

x

(IP) Ax R b

x 2 f0; 1g

n

where R is a length m array of relations (�, = or �), A 2 <

m�n

, b 2 <

m

,
 2 <

n

.

Many Combinatorial Optimization problems
an be formulated this way, in
luding

all the problems de�ned in the Introdu
tion. In our examples the problem matrix

A is 0-1 and the right hand side b is a ve
tor of all 1's. However, the problem

is NP-
omplete even for these spe
ial
ases, so no polynomial time (in the size of

the input data) algorithm is expe
ted to be found for solving (IP). Note that here

we are interested in methods for �nding an optimal solution, while in appli
ations

15

16

near-optimal solutions obtained by heuristi
s might be a

eptable.

In the rest of the se
tion we review some basi
 fa
ts about Integer Programming;

standard referen
es on this topi
 are [S
h86℄ and [NW88℄.

The optimal value of (IP) is denoted by z

�

, an optimal solution by x

�

. A binary

ve
tor �x is
alled feasible if it satis�es the
onstraints Ax R b; in this
ase its

obje
tive value �z provides an upper bound on z

�

. The
onvex hull of all the feasible

solutions to (IP) is P

IP

:

P

IP

=
onvfx 2 f0; 1g

n

j Ax R bg;

whi
h is a polytope by Weyl's theorem; that is, P

IP

is the interse
tion of �nitely

many halfspa
es:

P

IP

= fx 2 <

n

j Hx � hg:

If A and b are rational (integral) then so are H and h. If the above linear system

were known, optimization over P

IP

would simply mean solving a Linear Program

(whi
h
an be done in polynomial time). Sin
e (IP) is NP-
omplete in general, the

omplete des
ription of P

IP

with a linear system (H; h) is out of rea
h. We would be

espe
ially interested in minimal des
riptions where no
onstraint
an be expressed

as a nonnegative linear
ombination of others. If the polytope is full dimensional

the minimal des
ription is essentially unique. However, even a minimal system may

ontain exponentially many inequalities.

Given any polytope P, a hyperplane bounding the halfspa
e de�ned by a linear

onstraint is a supporting hyperplane if the halfspa
e
ontains the polytope and has

a nonempty interse
tion with it. The interse
tion of a supporting hyperplane and

17

z �zz

�

Figure 2.1: Lower and upper bound and the optimal solution

P is a fa
e of the polytope. The dim(P)� 1 dimensional fa
es are
alled fa
ets. If

a supporting hyperplane interse
ts the polytope in a fa
et then the
orresponding

linear
onstraint is said to be fa
et de�ning. The inequalities in a minimal linear

system (H; h) are fa
et de�ning. The sear
h for linear inequalities des
ribing the

IP polytope will be dis
ussed in more detail in Se
tions 2.1.1 and 2.3.

A relaxation of (IP) is a problem whose feasible region
ontains all feasible

solutions to (IP); that is, it
ontains P

IP

. Here we will
onsider only LP relaxations;

that is, problems that are themselves Linear Programs (
an be des
ribed with linear

onstraints and thus their feasible regions are polyhedra P

LP

). LP relaxations

are useful sin
e eÆ
ient algorithms exist to solve them and it is relatively easy to

reoptimize after small
hanges in the formulation. Optimizing the same obje
tive

fun
tion

T

x over the LP relaxation provides a lower bound z on z

�

. A trivial LP

relaxation to (IP) is to repla
e x 2 f0; 1g

n

by 0

n

� x � 1

n

.

Methods for solving Integer Programs try to \
lose in" on the optimal solution

from one or both sides by generating better and better feasible solutions that provide

upper bounds or/and stronger and stronger LP relaxations that in
rease the lower

bound; see Figure 2.1. The integrality gap (�z � z)=z measures how far the two

bounds are from ea
h other. When the optimum is known we
an
ompute the

18

optimality gap between an upper bound and the optimum as (�z � z

�

)=z

�

.

Two traditional ways to solve general IPs are Bran
h-and-Bound (B&B) and

Cutting Plane methods. Both rely on relaxations, but as we will see, they are

fundamentally di�erent. The two are
ombined into a third, more powerful method

alled Bran
h-and-Cut.

2.1.1 Cutting plane methods

Cutting plane methods try to approximate the IP polytope from outside in a neigh-

borhood of the optimal solution. They start from any LP relaxation of (IP). At

ea
h iteration the
urrent LP relaxation is solved to optimality and then halfspa
es

that
ontain the entire IP polytope P

IP

but not the optimal extreme point(s) of

P

LP

are identi�ed and the
orresponding linear
onstraints, or
uts are added to

the LP relaxation. This is repeated until the optimal solution of the LP relaxation

be
omes integral (binary).

This pro
edure
an be per
eived as
utting o� \
orners" of the en
losing LP

polytope until an optimal
orner of the IP polytope surfa
es. The identi�ed linear

onstraints are not satis�ed by optimal extreme points of P

LP

, thus they are
alled

violated
uts or inequalities. From the IP's point of view these linear
onstraints

are valid sin
e they do not
ut into P

IP

. The method of �nding violated valid

inequalities is
alled
ut generation or separation (sin
e the optimal
orner of P

LP

is

separated from P

IP

). Generating fa
et de�ning inequalities is preferred sin
e these

are part of a minimal des
ription of P

IP

. Intuitively,
utting o� the optimal
orner

of the LP polytope with a fa
et de�ning inequality ensures that no more
uts will

19

be ne
essary in the dire
tion of the inequality's norm.

There are two important questions that must be asked here: (i)
an we devise

separation algorithms that are eÆ
ient both in theory and pra
ti
e and (ii)
an we

ensure �nite
onvergen
e of the
utting plane algorithm. In the textbook approa
h

(due to Gomory) the violated inequalities are derived from
ertain rows of the

urrent simplex tableau in polynomial time and the method is proved to
onverge

in a �nite number of iterations. However, it is widely believed that Gomory
uts

are not e�e
tive in pra
ti
e. For IP's with given stru
ture (like those dis
ussed in

the Introdu
tion) generating problem
lass spe
i�
 families of
uts (preferably fa
et

de�ning) may be more e�e
tive than generating general
uts. The drawba
ks of

this approa
h for spe
i�
 problems are that not all families of valid (fa
et de�ning)

inequalities might be known, and even if a family of
uts is known to be valid, it

might be a hard problem in and of itself to separate for it. We will dis
uss problem

spe
i�

uts for the Set Pa
king and Covering polytopes in Se
tion 2.3.

2.1.2 Bran
h-and-Bound

Bran
h-and-Bound (B&B) is a divide-and-
onquer algorithm that also relies on

relaxations. Note that although we will dis
uss B&B in terms of LP relaxations,

other relaxations
ould be used as well. B&B starts out by solving an LP relaxation

and if its solution is not integral then the IP feasible region is subdivided into

subproblems whi
h are optimized re
ursively. The optimal solution will be the best

of the subproblem solutions.

A sear
h tree keeps tra
k of B&B's progress; the root of the sear
h tree
orre-

20

sponds to the �rst LP relaxation and further nodes (
hildren of the parent node) are

reated by subdividing feasible regions. The subdivision pro
ess is
alled bran
hing;

traditionally two subproblems are
reated by identifying a variable with a fra
tional

value in the
urrent LP solution and setting it to 0 in one bran
h and to 1 in the

other bran
h (this is
alled variable bran
hing). Note that we
an
reate more than

two subproblems (although not in
ase of bran
hing on binary variables); or sub-

divide the feasible region along a hyperplane that is not ne
essarily perpendi
ular

to any of the axes; that is, bran
h on a
onstraint. For instan
e, if the sum of

some binary variables must not ex
eed 1 then we
an
reate two subproblems by

assuming that the sum is 0 in one bran
h and 1 in the other. We will see examples

of both variable and
onstraint bran
hing in Se
tion 5.3. Note that no bran
hing

is ne
essary at a sear
h tree node if the subproblem is infeasible or its solution is

integral (that is, a feasible solution to (IP) is found); in this
ase the sear
h tree

node
an be fathomed.

B&B would be a simple enumeration algorithm without bounding. Note that the

solution to the LP relaxation at the
hildren of a sear
h tree node will never be lower

than that at the parent (the LP relaxations at the
hildren are more restri
tive).

Therefore no integral solution with obje
tive value lower than the LP optimal value

an be found in the subtree rooted in any sear
h tree node. Thus, as soon as an

upper bound is known, nodes with LP optimal value ex
eeding the upper bound
an

be fathomed.

B&B is usually implemented by keeping a list of
andidate nodes that initially

ontains the root only. Then, in a general step of the algorithm, a node is
hosen

21

(and removed) from the
andidate list of unfathomed nodes and the
orresponding

LP relaxation is solved. If the LP relaxation is infeasible or its value rea
hes the

upper bound then the node is fathomed. If the solution is integral feasible the

node is fathomed again; the upper bound is updated in
ase the solution value is

lower. Otherwise a bran
hing variable or
onstraint is
hosen, the feasible region

at the node is subdivided and a
hild node is
reated for ea
h new subproblem and

pla
ed on the list of
andidate nodes. The algorithm stops when the
andidate list

is exhausted.

Important issues that in
uen
e the behavior of the algorithm in
lude the
hoi
e

of the next node from the
andidate list and the
hoi
e of the bran
hing obje
t (vari-

able or
onstraint). In what follows we brie
y outline the most popular approa
hes

for general IPs. If the IP possesses a spe
ial stru
ture other methods might be more

e�e
tive.

A very popular rule for
hoosing the next node from the
andidate list is to

hoose one with the lowest LP obje
tive value. This rule leads to a small sear
h

tree sin
e the node with the lowest LP obje
tive value must be
onsidered no matter

how the nodes are enumerated. Another widely used rule is last in �rst out (LIFO)

that leads to a depth-�rst enumeration of the sear
h tree. This means that if a node

is not fathomed and removed, one of its
hildren is pro
essed next. The advantage

of this approa
h is fast and easy LP reoptimization at the
hild node sin
e the

formulation at the parent is already solved and going to the
hild node means only

a bound
hange or an additional
onstraint.

The
hoi
e of the bran
hing obje
t is an equally
omplex issue. For example,

22

hoosing a variable whose value is near .5 in the LP optimal solution and has a

large obje
tive fun
tion
oeÆ
ient is a good idea sin
e the
hildren are expe
ted to

have very di�erent LP solutions and the LP optimal value in the bran
h where the

variable is given the value 1 will be high (and the node is hopefully fathomable).

Strong bran
hing is a staple for any eÆ
ient B&B implementation. Here, instead

of
hoosing just one bran
hing obje
t, a set of bran
hing
andidates is sele
ted and

the LP relaxations at the would-be
hildren are presolved for a few iterations (this

gives some insight as what would happen if the algorithm bran
hed on ea
h of the

andidates). The \most promising"
andidate is then
hosen for bran
hing (see

Se
tion 5.3.6 for further details in the
ontext of our implementation).

2.1.3 Bran
h-and-Cut

Bran
h-and-Cut (B&C) in
orporates
utting planes into the B&B framework. It

generates valid inequalities at ea
h sear
h tree node to strengthen the LP relax-

ations and hen
e obtain better lower bounds. This
an be viewed as impli
itly

using stronger LP relaxations at the sear
h tree nodes by generating parts of the

relaxations on the
y. This
ombined approa
h leads to faster fathoming of the

nodes and usually to a far smaller sear
h tree than pure B&B. Bran
h-and-Cut is

parti
ularly e�e
tive for those
lasses of problems for whi
h problem spe
i�

uts

an be eÆ
iently generated.

All the terminology introdu
ed for B&B
arries over to B&C. When pro
essing

a subproblem at a node, the operations of solving LP relaxations and adding valid

inequalities (violated by the
urrent LP optimal solution) are iterated �rst. When

23

LP

i

infeas

Fathom LP

i

Find �x; �z (UB)

CAND := fLP

0

g

CAND = ;

Solve LP

i

: x

i

; z

i

x

i

integral

Cut Generation

uts added

to LP

i

hildren to CAND

Bran
h, add

�x := x

i

; �z := z

i

Choose LP

i

from CAND

z

i

� �z

no

yes

yes

no

Input: IP

no

no

yes no

yes

yes

Output: x

�

= �x; z

�

= �z

Figure 2.2: The
ow of the Bran
h-and-Cut Algorithm

24

we are not able to generate more
uts or the LP obje
tive value does not improve

suÆ
iently (tailing o�, see Se
tion 5.3.5) then the algorithm resorts to bran
hing.

Note that valid inequalities might be lo
ally valid only (valid for the sear
h tree node

and thus for the subtree rooted at that node) and not valid globally (throughout

the sear
h tree). Figure 2.2 gives an outline of a general B&C algorithm.

B&C implementations usually
ontain a
ut pool, a repository of inequalities

that were found violated for some subproblem. Sin
e it is not unlikely that a
ut

generated for a parti
ular subproblem might be both valid and violated for another

subproblem,
he
king the
ut pool before generating
uts might save a
onsiderable

amount of time. Of
ourse,
are has to be taken with
uts that are lo
ally valid

only.

2.2 The COMPSys framework

We used the COMPSys framework ([ELRT97℄) to implement a Bran
h-and-Cut

(B&C) pro
edure for the Set Partitioning Problem. COMPSys is a generi
 parallel

B&C framework that was designed to aid the development of problem
lass spe
i�

B&C implementations. The user of this framework provides the problem spe
i�

information through user-written fun
tions, while pro
edures whi
h are
ommon for

parallel B&C implementations (like sear
h tree and
ut pool management, inter-

pro
ess
ommuni
ation and LP solving) are handled by the framework and are

ompletely transparent to the user. The user-written fun
tions are well de�ned (the

user needs only a minimal knowledge of the internal workings of the framework) and

25

defaults are provided wherever possible, making adaptation to a spe
i�
 problem

easier.

COMPSys works in a distributed environment employing a master-slaves model.

The sear
h tree is managed by the master pro
ess while the slaves undertake all

the other tasks of B&C. The parallelism in the framework is realized on a high

level. The main sour
e of parallelism is the observation that the nodes of the

sear
h tree
an be pro
essed simultaneously. In addition to this, LP solving and

separation for a parti
ular sear
h tree node are also
arried out in parallel, and

separate pro
esses maintain
ut pools (
olle
tions of valid inequalities). We will give

a detailed des
ription of all the pro
esses in Chapter 5.

COMPSys also in
ludes su
h features as strong bran
hing, redu
ed
ost �xing

(these two are usually implemented in IP solvers); as well as the possibility of using

de
omposition for separation, bran
hing on
onstraints (not only variables), multi-

way bran
hing (more than two bran
hes at a sear
h tree node),
olumn generation

and a graphi
al user interfa
e to aid debugging and separation (Chapter 6 provides

details of this feature).

A preliminary version of the framework was originally implemented by T.K.

Ralphs ([Ral95℄) and L. Lad�anyi ([Lad96℄) during their thesis resear
h. This
ode

has evolved into the
urrent COMPSys framework with additional ideas and
on-

tributions by the above authors and the present author in addition to L. Kopman

([Kop99℄) and G. Pangborn ([Pan℄).

As di�erent appli
ations were implemented using the framework, ideas that
ould

be used in a general setting were identi�ed and \lifted" into the framework. Bran
h-

26

ing on
uts was �rst developed for the TSP ([Lad96℄). A de
omposition method

for separation was
on
eived in the
ontext of the VRP ([Ral95℄); this result was

further extended with the addition of Farkas
uts ([Kop99℄). A Graphi
al User

Interfa
e (GUI) was added to ease debugging and help with identifying violated

inequalities when testing was begun on SPP models (Chapter 6). The e�e
tive-

ness of
olumn generation in an SPP setting is
urrently being investigated ([Pan℄).

Through these resear
h proje
ts COMPSys has matured into a robust, eÆ
ient,

easy-to-use platform for problem
lass spe
i�
 Bran
h-and-Cut implementations.

2.3 The Set Pa
king and Covering polytopes

Let us denote the Set Partitioning, Pa
king and Covering Polytopes by P

SPP

, P

SP

and P

SC

. It is easy to show that

P

SPP

= P

SP

\ P

SC

:

Thus inequalities that are valid for P

SP

or P

SC

are also valid for P

SPP

. While

there is very little known about the SPP polytope, the other two polytopes are

well studied. Below we summarize some important fa
ts about these polytopes, in

parti
ular, the
hara
terizations of
ertain fa
et de�ning inequality
lasses. [BP76℄

and [Bor97℄ provide
omprehensive surveys about these polytopes, in
luding aspe
ts

that we will not dis
uss here.

27

2.3.1 P

SP

Re
all (Se
tion 1.3) that SP is equivalent to MWSSP on the interse
tion graph

G

A

= (V;E)
orresponding to the problem matrix A. The argument there showed

that the two problems have exa
tly the same feasible solutions; thus P

SP

and the

Stable Set polytope P

SS

=
onvfx 2 f0; 1g

n

j A

T

G

A

x � 1

jEj

g are the same; we will

simply denote this polytope by P in the remainder of this se
tion. Also, we will use

the words variable,
olumn (of the problem matrix) and node (of the interse
tion

graph) inter
hangeably.

Subproblems of the original problem play a very important role as we will see

below. A subproblem arises from a submatrix A

IJ

of A (where I is a subset of

the rows and J is a subset of the
olumns). Then G

A

IJ

, the interse
tion graph

orresponding to A

IJ

, is a subgraph of G

A

. If I is the entire set of rows then G

A

IJ

is a node indu
ed subgraph of G

A

; we will deal only with this kind of subproblem in

this se
tion and we use the usual notation G[J ℄ for node indu
ed subgraphs instead

of G

A

IJ

. The SP (SS) polytope of the subproblem is denoted by P(G[J ℄).

P is full dimensional, dim(P) = n, sin
e the null ve
tor and the n unit ve
tors

are aÆnely independent and are all in P. Thus P has a unique (up to positive

s
alar multipli
ation) minimal des
ription with fa
et-de�ning linear inequalities.

P is lower
omprehensive; that is, all nonnegative ve
tors not larger than a ve
tor

in the polytope are also in the polytope (x 2 P and 0 � y � x implies y 2 P).

Therefore, P(G[J ℄) is the same as the proje
tion of P onto the subspa
e de�ned by

the variables in J . From this it follows that inequalities valid for P(G[J ℄)
an be

\extended" with zero
oeÆ
ients for the nodes in V n J to obtain valid inequalities

28

for P. Note that this is a trivial extension; these valid inequalities for P
ould most

likely be made stronger by assigning nonzero
oeÆ
ients to some of the variables in

V n J .

The pro
ess of
omputing
oeÆ
ients for nodes in V n J to obtain a valid in-

equality for P from a valid inequality of P(G[J ℄) is
alled lifting and the
oeÆ
ients

are
alled lifting
oeÆ
ients. Note that the right hand side of the valid inequality

will not
hange and the lifting
oeÆ
ients
annot ex
eed this value. The lifting

oeÆ
ients for nodes in V n J
ould be
omputed one by one (take a node not in J ,

ompute its
oeÆ
ient, add the node to J and
ontinue), this is sequential lifting;

or all at on
e (simultaneous lifting). Note that the valid inequality obtained at the

end of sequential lifting depends on the order in whi
h the nodes were
onsidered

(lifting order). Whether sequential or simultaneous lifting is used, the goal is to

determine the largest possible lifting
oeÆ
ients so that the lifted valid inequality

is as strong as possible.

First
onsider sequential lifting. Given the valid inequality

P

j2J

�

j

x

j

� �

0

for

P(G[J ℄), the largest possible lifting
oeÆ
ient of a v 2 V nJ is �

v

= maxf0; �

0

�z

�

g

where z

�

is the optimal solution value of the following SP:

z

�

= max

P

j2J

�

j

x

j

(LIFT)

P

j2J

A

j

x

j

� 1

m

� A

v

x 2 f0; 1g

jJj

Or equivalently, assume the node is
hosen into a stable set,
ompute the value of

a MWSS on its non-neighbors and subtra
t it from the right hand side to obtain

the node's lifting
oeÆ
ient. Note that �

v

will be an integer. Also, the lifting

29

oeÆ
ients of the variables not yet in
luded into the inequality
annot in
rease as

a result of lifting other variables �rst.

Solving (LIFT) is itself a diÆ
ult problem. In
ertain
ases when G[J ℄ admits a

spe
ial stru
ture or �

0

is small, eÆ
ient algorithms
an be devised for (LIFT), see

Se
tion 5.4 for some examples. Also, a weaker lifting
oeÆ
ient
an be obtained by

using an upper bound on z

�

instead of z

�

(for instan
e, by optimizing the dual of

its LP relaxation, [HP93℄).

Sequential lifting with (LIFT) as a subroutine not only lifts a valid inequality

of P(G[J ℄) into a valid inequality of P, but lifting fa
et de�ning inequalities results

in fa
et de�ning inequalities as well (see [Pad73℄ and [NT74℄). Thus ea
h fa
et

de�ning inequality of P is either (sequentially) lifted from a fa
et de�ning inequality

of P(G[J ℄) for some node indu
ed subgraph G[J ℄, or it is fa
et de�ning only for P

(i.e, its proje
tion is not fa
et de�ning for any P(G[J ℄)). Therefore our goal is

to
hara
terize graph
lasses for whi
h the
orresponding polytopes have easily

identi�able fa
ets and then to look for su
h graphs as node indu
ed subgraphs in

the interse
tion graph G

A

.

Now we outline some well-known graph
lasses and
orresponding valid inequal-

ities that are fa
et de�ning for the graph's Stable Set polytope. For ea
h graph

lass we also indi
ate the
omplexity of the
orresponding separation problem (that

is, given a fra
tional solution ve
tor x for a relaxation of the stable set problem

of a graph, de
ide whether or not any inequality in the given
lass is violated

by the solution). Figure 2.3 illustrates ea
h graph
lass. For referen
es to addi-

tional graph/inequality
lasses see [Bor97℄. Note that the nonnegativity
onstraints

30

3

6

5

2

1

4

3

4

5

0

1

2

a. The
lique K

6

b. Wheel with 5 spoke-ends

E = f3; 4g, O = f1; 2; 5g

1

7

5

3

2

6

4

1

7 2

3

45

6

. The odd hole H(7) d. The odd antihole

�

H(7)

7

1 2

38

6 5

4 4

6

7

21

5

8 3

e. The web W (8; 3) f. The antiweb

�

W (8; 3)

Figure 2.3: Graphs with fa
et de�ning valid inequalities

31

(x

j

� 0) are trivially fa
et de�ning for any Stable Set polytope.

Cliques

Graph: A
lique K

n

is a
omplete graph on n nodes.

Inequality:

P

j2K

x

j

� 1 where K is the node set of a
lique.

Fa
et de�ning for P(G[K℄); also fa
et de�ning for P if the
lique is

maximal ([Pad73℄).

Separation: NP-
omplete (equivalent to maximum weight
lique). Clique in-

equalities are in the
lass of orthonormal representation
onstraints

whi
h are polynomial time separable [GLS88℄.

Odd Holes and Antiholes

Graph: An odd hole H(2k+1) is a
y
le on an odd number of nodes and no

hord (edge between two non-
onse
utive nodes on the
y
le).

An odd antihole

�

H(2k+1) is the (edge)
omplement of an odd hole.

Inequality:

P

j2H

x

j

� (jHj � 1)=2, (odd hole inequality)

P

j2

�

H

x

j

� 2 (odd antihole inequality), where H is the node set of

an odd hole. Fa
et de�ning for P(G[H℄) / P(G[

�

H℄) ([Pad73℄).

Separation: Polynomial time for odd holes ([GLS88℄, also in Se
tion 5.4.2).

Complexity is not known for odd antiholes, but odd antihole inequal-

ities are in the
lass of matrix inequalities whi
h are polynomial time

separable [LS90℄.

Note that the inequality

P

j2H

x

j

� (jHj � 1)=2 is still valid if H is only an odd

32

y
le (not
hordless), but the inequality is fa
et de�ning for P(G[H℄) only if the

y
le is
hordless.

Webs and Antiwebs

Graph: A web W (n; k) (n � 2, 1 � k � n=2 integers) has n nodes and edges

(i; i + k); : : : ; (i; i + n � k) (sums taken mod n) for all nodes i. An

antiweb (or
ir
ulant)

�

W (n; k) is the (edge)
omplement of the web

W (n; k). Note:
liques, odd holes and antiholes are spe
ial
ases.

Inequality:

P

j2W

x

j

� k, (web inequality)

P

j2

�

W

x

j

� bn=k
 (antiweb inequality), where W is the node set of

a web. Fa
et de�ning for P(G[W ℄) / P(G[

�

W ℄) if n and k are relative

prime [Tro75℄.

Separation: Complexity not known.

Wheels

Graph: A wheel is an odd
y
le (spoke-ends) with an additional node adja
ent

to all nodes on the
y
le (hub), ea
h edge possibly repla
ed by a

sequen
e of edges so that all the fa
e
y
les (
y
les through the hub

and two neighboring spoke-ends) are odd.

Inequality:

P

j2W

x

j

+

P

j2E

x

j

+ (k � 1)x

0

� (jW j+ jEj)=2� 1 (I

E

) and

P

j2W

x

j

+

P

j2O

x

j

+ kx

0

� (jW j+ jOj+ 1)=2� 1 (I

O

)

where W is the node set of the wheel, x

0

is the hub and E and O are

spoke-ends of even/odd distan
e from the hub (jEj+ jOj = 2k + 1).

33

Both fa
et de�ning for P(G[W ℄) if the distan
e between any two E

(for (I

E

)) or O (for (I

O

)) nodes is at least 2 ([CC97℄).

Separation: Polynomial time ([CC97℄, see [BM94b℄ for spe
ial
ase of wheel with

3 spoke-ends { subdivision of K

4

).

Note that wheels with no nodes on the spokes (that is, the spoke ends are of distan
e

one from the hub)
an be obtained by lifting the hub into the odd hole inequality

of the rim
y
le.

There are well-known
lasses of graphs whose stable set polytopes
an be
har-

a
terized by a well determined set of inequality
lasses. If these inequalities
an be

separated in polynomial time then the
orresponding MWSSP (and thus SP)
an

also be solved in polynomial time for these problems ([GLS88℄, the polynomial time

equivalen
e of separation and optimization). Graphs for whi
h the MWSSP
an

be solved in polynomial time using the above listed inequalities in
lude (with the

hara
terizing inequalities in parentheses): bipartite graphs with no isolated nodes

(nonnegativity and edge (x

i

+ x

j

� 1)); perfe
t graphs (nonnegativity and
lique);

t-perfe
t graphs, e.g., series-parallel graphs (nonnegativity, edge and odd hole). In

genaral we say that a graph is perfe
t for a set of inequality
lasses if all the fa
et

de�ning inequalities of the
orresponding stable set polytope belong to one of the

given inequality
lasses.

An interesting question is how to verify that the inequalities listed above are

valid and fa
et de�ning. The
lique, odd hole, odd antihole, web and antiweb

inequalities are so
alled rank inequalities; the
oeÆ
ients on the left hand sides

34

are all ones and the right hand side is exa
tly the size of the maximum
ardinality

stable set in the
orresponding graph:

X

j2V

x

j

� �(G):

Note that wheel inequalities are not rank inequalities in general. Rank inequalities

are obviously valid for P(G) and for the stable set polytope of any graph that

ontains G as a node indu
ed subgraph. Rank inequalities are also fa
et de�ning

if the following
ondition due to Chv�atal ([Chv75℄) is met. An edge of G is
alled

�-
riti
al if the size of the maximum stable set in
reases when the edge is removed.

Then if the �-
riti
al edges on the original set of nodes form a
onne
ted graph,

the rank inequality is fa
et de�ning for P(G). It is easy to
he
k that the Chv�atal-

ondition holds if G is a
lique, odd hole, odd antihole, web or antiweb. Note that

the Chv�atal-
ondition is only suÆ
ient; ne
essary
onditions
an be given in terms

of
riti
al
utsets ([BP76℄).

Another very useful tool to derive valid inequalities is the Chv�atal-Gomory pro-

edure ([Chv73℄). Intuitively, applying this method means taking nonnegative linear

ombinations of known valid inequalities for node indu
ed subgraphs of G, rounding

down to the nearest integer �rst ea
h
oeÆ
ient on the left hand side and then the

right hand side value. As an illustration of this method,
onsider the odd
y
le

(with or without
hords) C(2k + 1). Adding up the edge inequalities x

j

+ x

j+1

� 1

for all 2k + 1 edges (sums taken mod 2k + 1) we obtain

2(x

1

+ : : :+ x

2k+1

) � 2k + 1:

Dividing the sum by 2 and rounding down the right hand side to the nearest integer

35

yields the odd
y
le inequality

x

1

+ : : :+ x

2k+1

� k:

See Se
tion 6.3 for a nontrivial appli
ation of this pro
edure.

The Chv�atal-Gomory pro
edure
an be used to generate pa
king odd hole in-

equalities. After an odd hole is lo
ated in the interse
tion graph, a row whose

support
ontains the endpoints of the edge is
hosen for ea
h edge of the odd hole.

Note that the nodes of the odd hole have
oeÆ
ients two in the sum of these in-

equalities. Dividing the sum by two and rounding down both the
oeÆ
ients and

the value on the right hand side yields a valid inequality for the SP polytope. In

fa
t, this inequality is a lifted odd hole inequality sin
e variables in the odd hole

have
oeÆ
ients one and the right hand side is that of the odd hole inequality. This

method is do
umented in [Bor97℄; we have also used it in our implementation (see

Se
tion 5.4.2).

The wheel inequalities des
ribed above have been derived using the same method

(the odd
y
le inequalities for the fa
e
y
les and edge inequalities for some appro-

priately
hosen edges on the rim were added up); this proves the validity of these

inequalities. Proving that the wheel inequalities are fa
et de�ning for P(G[W ℄) is

based on subdividing edges (repla
ing an edge with a path), see [CC97℄ for details.

Using graph operations (like extending graphs with nodes or
liques, substituting

nodes and edges with paths, (de)
omposition of graphs ([BM94a℄),
lique identi�
a-

tion ([Chv75℄) are other standard ways of deriving valid (fa
et de�ning) inequalities,

see [Bor97℄ for a
omprehensive survey.

36

2.3.2 P

SC

Unlike the Set Pa
king Problem, the Set Covering Problem does not have an equiv-

alent graph theoreti
 formulation (it
an be modeled with hypergraphs only). The

SC polytope will be denoted by Q in this se
tion. Q is full dimensional if ea
h row

of A
ontains at least two entries (the ve
tor of all ones and ve
tors with one zero

and n� 1 ones are aÆnely independent and are in Q).

Subproblems of the original problem are de�ned here again by submatri
es; A

IJ

is a submatrix of A with row set I and
olumn set J . Q(A

IJ

) denotes the SC

polytope of the subproblem.

Q is upper
omprehensive; that is, all ve
tors not smaller than a ve
tor (but not

larger than 1) in the polytope are also in the polytope (x 2 Q and x � y � 1 implies

y 2 Q). This property implies that the polytope Q \ fx 2 <

n

j x

j

= 1 8j =2 Jg is

the same as the polytope resulting from proje
ting Q \upwards" onto the subspa
e

de�ned by setting all variables not in J to one. Therefore valid inequalities for this

polytope
an be naturally extended to a valid inequalities forQ with zero
oeÆ
ients

for the variables not in J . Unfortunately, the parallel with set pa
king stops here;

the polytope just de�ned is not the same as the SC polytope of the subproblem

(whi
h is Q \ fx 2 <

n

j x

j

= 0 8j =2 Jg).

Therefore, valid inequalities for a subproblem's SC polytope do not simply
arry

over to Q; they have to be lifted. Lifting for SC is somewhat more
ompli
ated

than for SP be
ause the not yet lifted variables
annot simply be ignored (for

more details see [NT74℄, [Sas89℄ and [NS89℄). Thus valid inequalities for Q may

be obtained by identifying
lasses of submatri
es for whi
h the
orresponding SC

37

polytopes have easily identi�able fa
ets and then trying to lift these inequalities.

However, lifting may result in an inequality whi
h is not restri
tive enough (or at

all). A
omprehensive list of referen
es to su
h submatrix
lasses
an be found

in [Bor97℄. Rank inequalities
an be de�ned analogously (with the right hand side

being the size of a minimum
over in the subproblem), along with suÆ
ient or

ne
essary
onditions for the fa
et de�ning property.

The Chv�atal-Gomory pro
edure
an be readily adapted (rounding up instead

of down). Indeed, similarly to the pa
king odd holes we
an derive
over odd hole

inequalities whi
h are generated exa
tly the same way as the pa
king version (ex
ept

for the dire
tion of the rounding); see Se
tion 5.4.2.

Chapter 3

Problem size redu
tion

Problem size redu
tion is the
olle
tive name for methods that, given a Set Par-

titioning Problem, redu
e the set of variables and/or
onstraints through logi
al

impli
ations without eliminating optimal solutions to the original problem (but

probably redu
ing the feasible region). Problem size redu
tion is an essential part

of our feasible solution heuristi
 (Chapter 4) and is also invoked from the Bran
h-

and-Cut framework to propagate the e�e
ts of variable �xing based on redu
ed
osts

and bran
hing de
isions (Se
tion 5.3.2).

In the following se
tions �rst we de�ne the redu
tion operations known in the

literature, then we show that applying these redu
tion methods to a problem in-

stan
e in any order until no more redu
tions are possible will always produ
e the

same result. Then we dis
uss our implementation of these methods and
on
lude

with
omputational results.

38

39

3.1 Des
ription of redu
tion methods

First we give a few te
hni
al de�nitions that are used in the des
ription of the

redu
tion operations. Consider the Integer Programming formulation of the SPP

introdu
ed in Se
tion 1.2. Fixing a variable to zero means that the variable, its ob-

je
tive fun
tion
oeÆ
ient and the
orresponding
olumn are permanently removed

from the problem formulation. Removing a row means removing that row from the

problem matrix along with the
orresponding right-hand side entry, and �xing any

variable to zero whose resulting
olumn has only zero entries. Variables
an also be

�xed to one during redu
tion. In this
ase all rows in this
olumn's support
an be

removed sin
e they will be satis�ed by the variable �xed to one. Moreover, all other

olumns that belong to the support of any of these rows
an be �xed to zero. Indi
es

of variables �xed to one are re
orded in a list we
all ONES. Sometimes
olumns

are merged during redu
tion whi
h means that the (orthogonal)
olumns of two

variables are
ombined into one
olumn and the original
olumns are deleted from

the formulation. The obje
tive fun
tion
oeÆ
ient of the merged variable will be

the sum of the two obje
tive fun
tion
oeÆ
ients. Index pairs of merged variables

are re
orded in a list we
all MERGES.

Variable �xing and merging
an be interpreted in terms of the interse
tion graph

(see Se
tion 1.3). Fixing a variable to zero
orresponds to removing a node with its

adja
ent edges from the graph. Fixing a variable to one
orresponds to removing a

node (and re
ording its index in ONES) and then removing all the nodes that are

adja
ent to it. Merging two
olumns
orresponds to
ontra
ting two nonadja
ent

40

nodes of the graph into one node (and listing their indi
es in MERGES).

In the following we des
ribe the redu
tion methods that are known in the liter-

ature ([BP76℄, [HP93℄). For ea
h method we justify that no optimal solution is lost

by applying it. Figure 3.1 illustrates ea
h
ase.

1. Dupli
ate Columns (DUPC)

If two
olumns are identi
al then the one with the larger obje
tive fun
tion

oeÆ
ient
an be removed from the problem.

a

j

= a

k

for some j; k 2 N =)

if

j

>

k

then x

j

is �xed to 0; else x

k

is �xed to 0:

Justi�
ation: A solution is not optimal if the more expensive of the identi
al

olumns is in the solution sin
e it
ould be repla
ed by the
heaper one.

2. Column is a sum of other
olumns (SUMC)

If a
olumn
an be expressed as a sum of other
olumns and the total
ost of

the
olumns in the sum is smaller than the
ost of the single
olumn then the

olumn
an be removed from the problem.

a

j

=

X

k2K

a

k

and

j

�

X

k2K

k

for some j 2 N and K � N n fjg =)

x

j

is �xed to 0:

Justi�
ation: A solution is not optimal if the expensive single
olumn is in

the solution sin
e it
ould be repla
ed by the
olumns in the sum without

in
reasing the
ost of the solution.

41

Note: Although SUMC
ontains DUPC as a spe
ial
ase, it is reasonable to

onsider them separately sin
e dete
ting dupli
ate
olumns is very fast.

3. Row
lique
an be extended (CLEXT)

If a
olumn is nonorthogonal to all
olumns in the support of a row, but is

not in the support itself, then the variable
orresponding to this
olumn
an

be �xed to zero. In terms of the interse
tion graph, a node that extends a row

lique
an be removed.

a

T

j

a

k

� 1 8k 2 N

i

for some i 2M and j 2 N nN

i

=)

x

j

is �xed to 0:

Justi�
ation: One of the
olumns from the support of the row must be
hosen

in every feasible solution. Sin
e the
olumn is nonorthogonal to every
olumn

in the support, it
annot be
hosen if any of the
olumns in the support is

hosen.

4. Dominated rows (DOMR)

If the support of a row
ontains the support of another row then the row with

the smaller support (the \shorter row") dominates the row with the larger

support (the \longer row"). In this
ase the longer row
an be removed along

with the variables that are in the longer row's but not in the shorter row's

support.

N

i

� N

l

for some i 6= l =)

x

j

is �xed to 0 8j 2 N

l

nN

i

; row l is removed:

42

Justi�
ation: One of the
olumns from the shorter row's support has to be

hosen in any feasible solution. This
olumn will make the longer row's equal-

ity satis�ed as well, so variables
orresponding to
olumns that are in the

longer but not in the shorter row
an be �xed to zero. After �xing these vari-

ables to zero the two rows be
ome identi
al, so one of them (not ne
essarily

the one whi
h was originally the longer)
an be removed.

Note that
olumns deleted with this method
ould be deleted by CLEXT, but

DOMR is more eÆ
ient sin
e it dis
overs many deletable
olumns at on
e,

rather than one by one as CLEXT would do.

5. Singleton row (SINGL)

If a row has only one nonzero entry in it (that is, only one
olumn interse
ts

the row) then the variable
orresponding to this
olumn
an be �xed to 1.

a

ij

= 1 for j 2 N; but a

ik

= 0 8k 2 N n fjg for some i 2M =)

x

j

is �xed to 1:

Justi�
ation: The equality in the row that has only one
olumn interse
ting

an be met only if the variable
orresponding to this
olumn is set to 1. (Note

that a

ording to the de�nition of �xing a variable to 1 variables with
olumns

nonorthogonal to
olumn j are �xed to zero.)

6. Two rows di�er by two entries (DTWO)

If the supports of two rows are identi
al ex
ept for two entries, one of whi
h

is in one of the rows and the other is in the other row, then, depending on

43

whether the two
olumns are nonorthogonal or orthogonal, the two
olumns

an either be removed or merged into one
olumn (also one of the rows
an

be removed).

jN

i

j = jN

l

j and N

i

�N

l

= fj; kg for some i; l 2M =)

if a

T

j

a

k

� 1 then x

j

; x

k

are both �xed to 0; else x

j

and x

k

are merged;

one of the rows is removed in both
ases.

Justi�
ation: Observe that the two variables will take identi
al values in any

feasible solution. If they are nonorthogonal then they
annot both be one,

thus they have to be �xed to zero. If they are orthogonal then they
an be

merged into a new
olumn (with their
osts added). In either
ase, there will

be two identi
al rows, one of whi
h
an be deleted.

In the following se
tions the abbreviations introdu
ed above will be used for

both the o

urren
es of the above
onditions and for the operations des
ribed.

3.2 Theorem of exhaustive redu
tion

Our main goal in this se
tion is to prove that the above-des
ribed redu
tion opera-

tions, applied in any order to an SPP instan
e until no more redu
tions are possible,

will always produ
e the same redu
ed problem.

We say that two redu
tion sequen
es (sequen
es of redu
tion operations) are

equivalent if, when applied to the same SPP instan
e, the resulting redu
ed matri
es

44

1

1

0

0

0

0

1

1

0

0

0

1

i 000 ...

0

1111

0 0 0

0 0 0 0... ...i
i 1 1... 00 ...

DUPC

=

>

1

0

0

1

0

j

9

k

2

1

0

0

1

0

SUMC

+

+=

>
k

0

1

0

0

0

3

j

9

1

1

0

1

0

1

0

0

1

0

2

CLEXT
j

1

1

1

0

0

0

DOMR

l 1 1... 0 0

i 1 1... 00

SINGL

1

1

0

0

0

1

j
DTWO

l 1 1... 0 0...

j

1

0

0

1

k

k 21

Figure 3.1: The six redu
tion methods

45

are identi
al up to a permutation of the rows and
olumns of one of the matri
es.

A redu
tion sequen
e is exhaustive if no redu
tions are possible after applying it.

Theorem 3.1 Given an SPP instan
e, any two exhaustive sequen
es of DUPC,

SUMC, CLEXT, DOMR, SINGL and DTWO are equivalent.

First we show that any sequen
e of the above six redu
tion operations
an be re-

pla
ed by an equivalent sequen
e using only three types of these operations: SUMC,

CLEXT and MERGE (whi
h is a simpli�ed version of DTWO de�ned below) fol-

lowed by the possible deletion of dupli
ate rows and possible �xing of variables to

one.

Observe that a SINGL operation
an be thought of as a sequen
e of DOMR

operations sin
e the row with the singleton in it dominates all the other rows that

the
orresponding
olumn interse
ts. After the DOMR operations the singleton row

along with its
olumn are still in the problem, but the
olumn will interse
t only

this row (that is, we have an isolated node in the interse
tion graph). Fixing this

olumn to one now means only re
ording its index in ONES and deleting its
olumn

and row from the matrix.

Also, DOMR
an be repla
ed by a sequen
e of CLEXT operations sin
e
olumns

in the longer but not in the shorter row are all nonorthogonal to all
olumns in the

shorter row. Then we are left with two identi
al rows and we delete the one that

was deleted with DOMR.

Note that if the two
olumns are nonorthogonal in a DTWO instan
e (that is

they
an be deleted) then ea
h extends the other row's
lique, so these two
olumns

46

ould be deleted with two CLEXT operations. If the two
olumns are orthogonal,

we repla
e DTWO with MERGE whi
h simply merges the two
olumns but does

not delete either row. In both
ases we are left with two identi
al rows and we

delete the one that was deleted with the original DTWO operation.

As we have seen earlier, DUPC is a spe
ial
ase of SUMC, so every DUPC

operation
an be repla
ed by a SUMC with only one summand.

It is obvious that the redu
tion sequen
e obtained by the above substitutions

is equivalent to the original sequen
e. Also, sin
e deletion of dupli
ate rows will

not destroy old instan
es of redu
tion, will not
reate new instan
es and the other

operations
an only
reate but not destroy dupli
ate rows, these operations
an

be shu�ed to the end of the redu
tion sequen
e while equivalen
e is preserved.

Similarly, the �xing of isolated variables to one
an be postponed until the very end

of the redu
tion.

Now
onsider the original two exhaustive redu
tion sequen
es and apply the

des
ribed substitutions (with removal of dupli
ate rows and �xing of isolated vari-

ables postponed to the end). In the rest of the proof we will show that the

two sequen
es are equivalent up to the point where dupli
ate rows are

removed and isolated variables are �xed. From this statement the theorem

follows easily. Note that sin
e SUMC, CLEXT and MERGE do not remove any of

the rows, the two resulting matri
es before the deletion of dupli
ate rows and �x-

ing of isolated variables will be identi
al up to a permutation on the
olumns only.

After this point the two sequen
es
an di�er only in whi
h row of ea
h dupli
ate

pair to remove, and this di�eren
e
an be a

ommodated by a permutation on the

47

rows. Obviously the same isolated variables will be �xed to one. Thus the theorem

is proved.

Consider the two exhaustive redu
tion sequen
es of the three operations SUMC,

CLEXT and MERGE. Note that SUMC and CLEXT delete one
olumn, and

MERGE merges two
olumns; that is, the total number of
olumns in the
ur-

rent problem matrix is redu
ed by exa
tly one ea
h time a redu
tion operation is

applied, thus the redu
tion sequen
es are �nite. For ease of explanation we asso-

iate time with the sequen
es and say that the redu
tions start at time 0 with ea
h

redu
tion step taking one unit of time.

We will prove the equivalen
e of the two sequen
es by indu
tion on the number

of
olumns in the matrix. If the number of
olumns is 1 then the statement is

trivially true (the redu
tion sequen
es are empty). So we assume the statement is

true for matri
es with n� 1
olumns, and we prove the statement for matri
es with

n
olumns.

Consider the �rst operation in one of the exhaustive sequen
es. We will show

that we
an �nd an equivalent sequen
e to the other exhaustive sequen
e whi
h

starts with the same redu
tion. By applying the �rst operation to the original

problem instan
e we are left with n � 1
olumns in the matrix; then the indu
tive

statement shows that the two sequen
es are equivalent.

The whole proof is based on ex
hanging operations until the desired one is at

the beginning of the other sequen
e. The �rst two lemmas show that an operation

whi
h is done at some time in a sequen
e
an be swapped with operations pre
eding

48

it one by one, ba
k down to the time when the operation
ould have been �rst done.

Then the last two lemmas show how to �nd the �rst operation of one sequen
e in

the other (and what operations to look for if the �rst operation does not expli
itly

appear in the other sequen
e).

First we will see that that deletable/mergable
olumns do not be
ome non-

deletable/non-mergable as a result of other operations.

Lemma 3.2 If a
olumn is deletable at some time in a redu
tion sequen
e then it

will remain deletable after any redu
tion operation that does not involve (does not

delete or merge) this
olumn. Similarly, if two
olumns are mergable then they will

remain mergable after any redu
tion operation that does not involve either of the

two
olumns.

The following is a trivial
orollary of Lemma 3.2 if the redu
tion sequen
e is

exhaustive.

Corollary 3.3 In an exhaustive redu
tion sequen
e, if a
olumn
ould be deleted at

some point then it is either deleted or merged with another
olumn at some later

time. If two
olumns
ould be merged at some point then they will either be merged

or one of the
olumns is deleted or merged with another
olumn at some later time.

proof of Lemma 3.2 First assume that
olumn v is deletable with SUMC at

some time; that is, v =

P

v

l

and
(v) >

P

(v

l

) for some
olumns v

1

; : : : ; v

k

. This

instan
e
ould disappear if one of the summands is deleted or merged with another

olumn. We will show that v remains deletable after su
h an operation.

49

1. If a summand v

l

is deleted with SUMC; that is, v

l

=

P

w

j

and
(v

l

) >

P

(w

j

)

then the w

j

's
an be used for v

l

in the sum for v sin
e
(v) >

P

i 6=l

(v

i

) +

(v

l

) >

P

i 6=l

(v

i

) +

P

(w

j

). Thus v is still deletable with SUMC.

2. If a summand v

l

is deleted with CLEXT; that is, there exists a row i so

that v

l

is nonorthogonal to all
olumns in the support of row i. Then v is

nonorthogonal to all
olumns in row i's support sin
e v interse
ts all rows that

v

l

does. Also, v does not interse
t row i itself, sin
e otherwise a summand

would need to
over row i and thus be in row i's support and orthogonal to

v

l

, whi
h
ontradi
ts our assumption. Therefore v
an be still deleted, now

with CLEXT instead of SUMC.

3. If a summand v

l

is merged with a
olumn then v must be among the
ommon

olumns of the two rows that di�er by two, thus the other
olumn that v

l

is

merged with must be also a summand (sin
e this is the only
olumn that
an

over the other di�er-by-two row that v

l

does not interse
t). Therefore the

merged
olumn
ould be used instead of v

l

and the other summand, thus v is

still deletable using SUMC.

Se
ond, assume that
olumn v is deletable with CLEXT at some time; that is,

there is a row i so that v is nonorthogonal to all
olumns in i's support. Then,

sin
e
olumn deletion does not
hange the orthogonality relationship of remaining

olumns, v remains deletable with the same CLEXT operation after
olumns other

than v are deleted from the problem. Also, when two
olumns are merged, all

olumns that were nonorthogonal to either of them will be nonorthogonal to the

50

merged
olumn. Therefore v remains deletable with the same CLEXT operation if

a
olumn in row i's support is merged.

Finally, assume that MERGE
ould be applied to two
olumns, v and w at some

time; that is, there exist rows i and j su
h that their supports di�er by two
olumns

only: row i's support
ontains v but not w and row j's support
ontains w but

not v. Sin
e the two rows i and j are the same ex
ept for
olumns v and w, a

olumn deletion or merge that does not involve v or w will not remove the MERGE

opportunity for v and w. �

As the previous lemma stipulates, we do not need to distinguish between deleting

a
olumn by SUMC or CLEXT. Thus, as shorthand we will write del(v) for the

deletion of
olumn v, and merge(v; w) for the merging of
olumns v and w.

Given two
onse
utive operations in a redu
tion sequen
e we say that the se
ond

operation is independent of the �rst if the
olumn(s) deleted or merged in the se
ond

operation is (are) already deletable/mergable before the �rst operation. Now we

show that two su
h operations
an be inter
hanged. This will make sure that a

redu
tion instan
e present at time T

0

but not done until time T
an be \bubbled

ba
k" to time T

0

.

Lemma 3.4 Given a sequen
e of redu
tions
ontaining two
onse
utive operations

with the se
ond independent of the �rst, there is an equivalent sequen
e with the two

operations inter
hanged.

proof Let us denote the two operations by O

1

and O

2

and assume their or-

der is O

1

O

2

originally. Sin
e the se
ond operation is independent of the �rst, it

51

ould be done at the time when O

1

o

urs in the original sequen
e. Moreover,

olumns involved in O

2

are not involved in O

1

thus, by Lemma 3.2, the
olumn(s)

deleted/merged by O

1

an be deleted/merged by an operation O

0

1

(perhaps not the

same as O

1

, see the proof of Lemma 3.2 for details) after O

2

. So O

1

O

2

an be re-

pla
ed by O

2

O

0

1

resulting in an equivalent redu
tion sequen
e (the resulting problem

matri
es will be identi
al if merged
olumns are inserted into the same positions in

the new sequen
e as in the old sequen
e). �

The following
laims summarize small but important observations needed later

in the proof.

Claim 3.5 If a deletable
olumn v is merged with another
olumn w then the merged

olumn vw is also deletable.

proof Suppose the two di�er-by-two rows are i and j, row i's support
ontains

v but not w and row j's support
ontains w but not v. At the time when v and

w are merged, v
an be deleted only with CLEXT (based on some row k 6= j) and

not with SUMC sin
e a summand would need to
over row i, but all the
olumns

in row i's support are in row j's support as well and v does not interse
t row j.

After merging v and w, the merged
olumn vw is nonorthogonal to every
olumn

in row k's support and it does not interse
t row k itself (otherwise w would need to

interse
t row k but w is orthogonal to v while
olumns in row k's support are not);

thus it
an be deleted with CLEXT based on the same row k. �

Claim 3.6 If v and w are mergable
olumns and v is deleted then w be
omes

deletable as well.

52

proof Let i and j be the two di�er-by-two rows as in the proof of Claim 3.5. After

v is deleted w be
omes nonorthogonal to all
olumns in i's support but it is not in

the support itself, so it
an be deleted with a CLEXT. �

Claim 3.7 Assume v and w are mergable but v is merged with a third
olumn z

instead. If z and w are orthogonal then vz and w are mergable, otherwise both vz

and w are deletable.

proof Let i and j be the two di�er-by-two rows whi
h show that v and w
an be

merged. Sin
e v and z are orthogonal, the two rows i and j will di�er by the two

olumns vz and w. Now if z and w are orthogonal then vz and w are orthogonal as

well, so the two
olumns be
ome mergable as soon as v and z are merged. Otherwise

both vz and w
an be deleted with CLEXT. �

Claim 3.8 The following repla
ements are equivalen
e-preserving.

1. Suppose merge(v; w) del(vw) is in the redu
tion sequen
e at some time. Then

it
an be repla
ed by del(v) del(w) if v is deletable at the same time.

2. Suppose del(v) del(w) is in the redu
tion sequen
e at some time. Then it
an

be repla
ed by merge(v; w) del(vw) if v and w are mergable.

3. Suppose merge(v; w) merge(vw; z) is in the redu
tion sequen
e at some time.

Then it
an be repla
ed by merge(v; z) merge(vz; w) if v and z are mergable.

(Note that w and w are orthogonal.)

4. Suppose merge(v; w) del(vw) del(z) is in the redu
tion sequen
e at some time.

53

Then it
an be repla
ed by merge(v; z) del(vz) del(w) if v and z are mergable

and w and z are nonorthogonal.

proof These four statements follow dire
tly from Claims 3.6, 3.5, 3.7 and 3.7,

respe
tively. Observe that the resulting problem matri
es will remain the same if

in the new sequen
e the merged
olumns are inserted into the same positions as in

the old sequen
e. �

Now we go ba
k to the proof of our main theorem. The �rst operation is either

a
olumn deletion or a merge of two
olumns. In Lemmas 3.9 and 3.10 we show

that if a deletion/merge
ould be done at time T

0

in a redu
tion sequen
e then there

is an equivalent sequen
e in whi
h the deletion/merge is done at T

0

. Applying the

lemmas for time T

0

= 0 will prove the theorem sin
e the �rst redu
tion instan
e is

already present in the problem.

Lemma 3.9 If v is a
olumn deletable at time T

0

in an exhaustive sequen
e of

redu
tions, then there is an equivalent sequen
e in whi
h v is deleted at T

0

.

proof The
olumn v
an be deleted or merged at time T

0

, or nothing happens to

it. If it is deleted, we are done.

If it is merged then the merged
olumn is deletable at time T

0

+ 1 (Claim 3.5).

The matrix has one less
olumn at time T

0

+ 1, so by indu
tion there exists an

equivalent sequen
e in whi
h the merged
olumn is deleted at time T

0

+ 1. By

repla
ing the merge of v and the other
olumn and then the deletion of the merged

olumn by the deletion of v followed by the deletion of the other
olumn (part 1 of

Claim 3.8) we obtain an equivalent sequen
e in whi
h v is deleted at time T

0

.

54

If nothing happens to
olumn v at time T

0

then v is still deletable at time

T

0

+ 1 (Lemma 3.2). Applying the indu
tive statement there exists an equivalent

sequen
e in whi
h v is deleted at time T

0

+1. We
an swap the �rst two operations

(Lemma 3.4) to obtain an equivalent sequen
e in whi
h v is deleted at time T

0

. �

Note that while the above proof is existential, it is easy to give an algorithm

that
onstru
ts the equivalent sequen
e. Indeed, if v is deleted at some time in

the sequen
e of redu
tions then the deletion of v
an be bubbled ba
k to time T

0

(Lemma 3.4) and we are done. Otherwise, sin
e the sequen
e is exhaustive, v will be

merged with another
olumn at some later time (Lemma 3.2). The merged
olumn

is deletable (Claim 3.5), so in turn it will be either deleted or merged further, and

so on. The \super
olumn" V that
ontains v will be deleted sooner or later sin
e

the redu
tion sequen
e is exhaustive and �nite.

Now
onsider the time when V is deleted. V be
ame deletable right after it was

merged from two
olumns, V

0

(
ontaining v) and some
olumn z. By Lemma 3.4,

the deletion of V
an be bubbled ba
k to be right after the merge of V

0

and z. Then,

sin
e V

0

is deletable, merge(V

0

; z) del(V)
an be repla
ed by del(V

0

) del(z) (part

1 of Claim 3.8). Continue this pro
edure with V

0

until the deletion of v appears in

the equivalent sequen
e, and then bubble this operation ba
k to time T

0

.

Lemma 3.10 If v and w are mergable at time T

0

in an exhaustive sequen
e of

redu
tions, then there is an equivalent sequen
e in whi
h v and w are merged at T

0

.

proof At time T

0

the two
olumns are either merged, one of them is deleted, one

of them is merged with a third
olumn or nothing happens to them. If they are

55

merged with ea
h other then we are done.

If one of the two
olumns is deleted then the other
olumn be
omes deletable at

time T

0

+ 1 (Claim 3.6), so there exists an equivalent sequen
e in whi
h the other

olumn is deleted at time T

0

+ 1 (Lemma 3.9). Then applying part 2 of Claim 3.8

shows that we are done.

If one of the
olumns is merged with a third
olumn (say v is merged with some

olumn z) then vz and w are mergable or both are deletable at time T

0

+1, depending

on whether z was orthogonal to w or not (Claim 3.7). If they are mergable then,

by the indu
tive statement, there exists an equivalent sequen
e in whi
h vz and w

are merged at time T

0

+ 1. Applying part 3 of Claim 3.8 shows that we are done.

Otherwise, there exists an equivalent sequen
e in whi
h vz is deleted at time T

0

+1

and w is deleted at time T

0

+2 (Lemma 3.9). Now apply part 4 of Claim 3.8 to see

that we are done.

If nothing happens to the two
olumns at time T

0

then they are still mergable

at time T

0

+ 1. By the indu
tive statement there exists an equivalent sequen
e in

whi
h these
olumns are merged at time T

0

+ 1. Swapping the �rst two operations

(Lemma 3.4) we get an equivalent sequen
e in whi
h the two
olumns are merged

at time T

0

. �

We
an devise a
onstru
tive algorithm as in the previous
ase. If the two

olumns are merged at any time in the sequen
e then this operation
an be bubbled

ba
k to time T

0

. Otherwise one of the two
olumns is deleted or merged with another

olumn (Lemma 3.2). Now
olumns
ontaining v and w
an be further merged until

one of the super
olumns V and W is deleted or V and W are merged together.

56

Sin
e the redu
tion sequen
e is exhaustive and �nite, one of these two
ases must

happen eventually.

Assume that one of the super
olumns is deleted, say V . When this happens, W

be
omes deletable as well (Claim 3.6), and, as in Lemma 3.9, we
an modify the

sequen
e so that W is deleted immediately. If V and W are orthogonal then they

are mergable at the time when V is deleted (Claim 3.7) thus we
an repla
e del(V)

del(W) with merge(V;W) del(VW) (part 2 of Claim 3.8) and default to the
ase

in whi
h the super
olumns are merged together.

Otherwise V and W are nonorthogonal, whi
h means that there was a time

when one of the super
olumns was merged with a
olumn that was nonorthogonal

to the other super
olumn (sin
e then both of the
olumns
ould have been merged

with other, di�erent
olumns). After this merge both of the super
olumns be
ame

deletable (Claim 3.7), thus we
an �nd an equivalent sequen
e in whi
h V and

W are deleted right after this merge. Assume that this merge produ
ed V from

V

0

and z. Sin
e V

0

and W are orthogonal, z must be nonorthogonal to W ; thus

merge(V

0

; z) del(V) del(W)
an be repla
ed by merge(V

0

;W) del(V

0

W) del(z)

(part 4 of Claim 3.8) and we
an default to the
ase in whi
h the super
olumns are

merged together.

Now assume that V and W are merged together. These
olumns be
ame mer-

gable right at the time when V and W were
reated (whi
hever happened later).

Suppose V is the
olumn that was
reated later by merging V

0

(a
olumn
ontaining

v) and z. Sin
e W already existed when this merge happened, the merge of V and

W
an be bubbled ba
k to immediately follow the merge of V

0

and z. merge(V

0

; z)

57

merge(V;W)
an be repla
ed bymerge(V

0

;W)merge(V

0

W; z) (part 3 of Claim 3.8)

sin
e V

0

and W are mergable (Claim 3.7) and z and W must be orthogonal if V

and W are. We now
ontinue this pro
edure with V

0

and W until the merge of v

and w appears in the sequen
e.

3.3 How
an new instan
es arise?

In the previous se
tions we have des
ribed six redu
tion methods and have shown

that the order in whi
h they are applied to a problem instan
e does not matter,

provided the redu
tions are
arried out exhaustively. For an eÆ
ient implementa-

tion we also need to know whi
h redu
tions
an lead to (and to what kind of) new

redu
tion instan
es, so that we
an avoid
he
king for redu
tion instan
es unne
es-

sarily.

Consider �rst the three operations (SUMC, CLEXT and MERGE) that the six

redu
tion methods
an be repla
ed with. In Table 3.1 below entry (i; j) indi
ates

whether redu
tion operation i
an
ause a new instan
e of type j.

It is
lear that a new SUMC instan
e
annot be
reated by
olumn deletion, so

SUMC or CLEXT
annot
reate a new SUMC instan
e. On the other hand, SUMC

an arise as the result of a MERGE when a merged
olumn be
omes the sum of

some already existing
olumns.

It is possible to
reate a new CLEXT instan
e by
olumn deletion, when all but

one \bad"
olumn in a row
lique are nonorthogonal to a given \outside"
olumn,

and this bad
olumn is deleted. This deletion
annot be a SUMC sin
e all the

58

Table 3.1: Impa
t of redu
tions

SUMC CLEXT MERGE

SUMC NO NO YES

CLEXT NO YES YES

MERGE YES YES YES

summands that make up the deleted
olumn must be orthogonal to the outside

olumn and one of them must be in the row
lique. On the other hand, it is

easy to
onstru
t an example where the bad
olumn in the row
lique is deleted

via a CLEXT operation. Merging
olumns
an also
reate new CLEXT instan
es;

either by merging the outside
olumn with some other
olumn and thus making it

nonorthogonal to all
olumns in a row
lique, or by merging the bad
olumn in the

row
lique with another
olumn and thus making it nonorthogonal to the outside

olumn.

New MERGE instan
es
an be
reated by all three operations; by deleting an

\extra"
olumn (via SUMC or CLEXT) so that two rows will di�er by exa
tly two

olumns, or by merging two extra
olumns (based on two rows, one of whi
h is

di�erent from the rows in the new instan
e).

Based on the observations that enabled us to substitute the original six redu
tion

methods with three, we
an extend the above table to in
lude all the redu
tion

methods.

DUPC is a spe
ial
ase of SUMC. New DUPC and SUMC instan
es
an be
re-

59

ated only by merging
olumns; deleting
olumns or dupli
ate rows has no in
uen
e

here.

As a new CLEXT instan
e
annot be
reated by a SUMC operation, it
annot

be
reated by a DUPC either. On the other hand, it
an be
reated by any of the

other four redu
tion operations.

A new DOMR instan
e is
reated by
olumn deletion if the only
olumn that

interse
ts the shorter but not the longer row is removed. This
olumn
annot be

deleted by a DUPC or SUMC operation sin
e a
opy or summand of the deleted

olumn that interse
ts the short but not the long row would remain in the problem.

On the other hand, DOMR
an be
reated by any of the other four operations.

A new SINGL instan
e
an be
reated by any operation ex
ept by merging two

olumns (in this
ase the two rows based on whi
h the
olumns are merged
an

have only one nonzero in them, but then the SINGL instan
e is already present).

A SINGL
an arise however by DTWO when the two
olumns are deleted.

A new DTWO instan
e
an be
reated by any of the redu
tion operations.

3.4 Implementation

Our primary goal in the implementation was to a
hieve the most redu
tion in a

reasonable amount of time. In our experien
e maximal redu
tion
an usually be

rea
hed reasonably qui
kly if SUMC is not
onsidered. Running SUMC to its full

extent is prohibitively expensive for all but the smallest problems. Nevertheless, we

have implemented an adaptive (limited) strategy for SUMC that proves to be both

60

Table 3.2: Impa
t of redu
tions { for all six instan
es

DUPC SUMC CLEXT DOMR SINGL DTWO

DUPC NO NO NO NO YES YES

SUMC NO NO NO NO YES YES

CLEXT NO NO YES YES YES YES

DOMR NO NO YES YES YES YES

SINGL NO NO YES YES YES YES

DTWO YES* YES* YES YES YES** YES

* only if the two
olumns are merged

** only if the two
olumns are deleted

e�e
tive and eÆ
ient. We are not aware of any other implementation that uses the

SUMC redu
tion.

We approa
h the question of eÆ
ien
y from three dire
tions. First, for ea
h

of the six redu
tion types we have implemented a module that invokes a redu
tion

fun
tion and a matrix
ompression subroutine repeatedly. The redu
tion fun
tion

s
ans through all the
olumns or rows (or pairs of rows) of the
urrent matrix

to identify all instan
es of the parti
ular redu
tion type. The deletable/mergable

olumns and rows are only marked during the s
an, they are physi
ally removed later

during matrix
ompression. The use of redu
tion fun
tions de
reases the average

time spent on examining a
olumn or row for a redu
tion instan
e sin
e some data

stru
tures
ommonly used by all
olumns/rows
an be prepared in advan
e. Also,

time is saved by not
ompressing the matrix every time a deletable
olumn/row is

61

identi�ed.

Se
ond, utilizing the results of Se
tion 3.3, the modules are organized into strate-

gies. Depending on our requirements, we
an
reate strategies that a
hieve maximal

redu
tion, or that
ut down on the running time by limiting the use of the more

expensive modules.

Third, the redu
tion fun
tions are implemented assuming that the
olumns of

the matrix are arranged in lexi
ographi
ally in
reasing order (ve
tor a is lexi
o-

graphi
ally smaller than ve
tor b if the �rst nonzero entry of b�a is positive). This

allows us to use spe
ial te
hniques that speed up redu
tion instan
e identi�
ation

onsiderably (see the des
ription of DUPC, SUMC and CLEXT redu
tion fun
tions

below). The ordering is
arried out before any redu
tion is started and then main-

tained throughout the
omputation. The initial ordering is reasonably inexpensive

to obtain, and it takes very little e�ort to maintain. Removing
olumns from the

matrix obviously does not destroy the ordering, but extra
are must be taken when

marking rows for deletion, or when inserting merged
olumns into the matrix.

In the remainder of this se
tion we dis
uss the redu
tion modules and then the

strategies in detail. At the end we summarize our
omputational results. Details

about the main data stru
ture and the parameters used in Redu
e() are given in

Appendix B.

3.4.1 Redu
tion modules

In this se
tion we des
ribe the redu
tion modules in general, then we give details

about the implementation of the individual fun
tions. But we �rst give a few more

62

words about the matrix
ompression module.

As we have mentioned before, when a
olumn or row is \deleted" during one of

the redu
tion operations, it is not removed physi
ally from the matrix right away

sin
e rewriting (possibly) the entire matrix would be too
ostly. Instead, the
olumn

or row is marked for removal, and the matrix is periodi
ally updated; that is, the

marked
olumns and rows are removed and the matrix (along with the obje
tive

ve
tor) is
ompressed. This matrix
ompression is a module in itself that may be

invoked from other modules or from the redu
tion strategies. Note that removing

the marked
olumns and removing the marked rows are two independent tasks, so

the two updates have been separated into two di�erent modules. This is reasonable

sin
e, as we have seen earlier, the removal of dupli
ate rows
ould wait until the

very end of the redu
tion without in
uen
ing the out
ome. However, even though

marked rows are skipped when the rows of the matrix are enumerated, it may be

e�e
tive to remove them, as
olumns be
ome shorter and thus operations involving

entire
olumns (like determining orthogonality) be
ome more eÆ
ient.

A general redu
tion module takes the problem matrix and obje
tive ve
tor as in-

put along with the ve
tors ONES and MERGES, and a parameter repeat fra
tion

(see Figure 3.2). A redu
ed matrix (with some rows possibly marked for deletion),

updated ONES and MERGES ve
tors, and the feasibility status of the problem

(feasible, infeasible or feasibility not yet known) are returned. Ea
h module invokes

a parti
ular redu
tion fun
tion that enumerates every
olumn or row (or pairs of

rows) of the matrix to see if the
orresponding redu
tion operation
an be applied.

Columns marked for deletion are removed and the matrix is
ompressed if there

63

was any redu
tion. The redu
tion fun
tion (and the
ompression afterwards) is

repeated if at least repeat fra
tion fra
tion of the
olumns in the
urrent matrix

are marked for deletion by the most re
ent appli
ation of this fun
tion.

We
laim that in order to de
ide whether or not to repeat the redu
tion fun
tion

it is enough to
he
k whether
olumns were marked for deletion (even if both rows

and
olumns
ould be marked). To see this assume that a redu
tion fun
tion marked

some rows but no
olumns for deletion. Then it is
lear that all the rows marked are

dupli
ates of some other rows that remain in the problem. Thus, sin
e removal of

dupli
ate rows does not
reate new redu
tion instan
es, only dupli
ate rows already

in the matrix
ould be deleted if the redu
tion fun
tion were repeated. However,

as we will dis
uss for the individual redu
tion fun
tions, in both of the
ases when

dupli
ate rows but no
olumns
an be marked for deletion (namely, DOMR and

DTWO) all pairs of unmarked rows are
he
ked, so all the dupli
ate rows will be

marked with one
all of the redu
tion fun
tion. Thus the redu
tion fun
tion need

not be repeated.

Note that the redu
tion fun
tions in the DUPC and SUMC modules need not

be repeated sin
e these redu
tion operations do not lead to new instan
es of the

same types, as we have seen in 3.3.

Finally, observe that if repeat fra
tion is set to 0 then the redu
tion fun
tion

will be repeated until no further redu
tion of this type is possible. On the other

hand, the redu
tion fun
tion will be invoked only on
e if this parameter is set to 1.

For ea
h redu
tion fun
tion there are separate repeat fra
tion parameters; they

ould be varied from the redu
tion strategies that invoke the modules.

64

Redu
tion module

Input: A,
, ONES, MERGES, repeat_fra
tion

Output: A',
', ONES', MERGES', feasibility status

do {

invoke redu
tion fun
tion

if no redu
tion, return

if infeasibility is dete
ted in redu
tion fun
tion, return

remove
olumns that are marked for deletion,
ompress matrix

if matrix has no
olumns left then problem is feasible, return

} while (at least repeat_fra
tion fra
tion of the
olumns

have been deleted)

end

Figure 3.2: Des
ription of a general redu
tion module

The DUPC redu
tion fun
tion

In the DUPC redu
tion fun
tion the
olumns of the matrix are enumerated one by

one, from lexi
ographi
ally smaller to larger. Due to the ordering, identi
al
olumns

are lo
ated next to ea
h other in the matrix. When dupli
ate
olumns are dis
overed

then all but the
heapest
olumn is marked for removal. To make this
omparison

even easier, identi
al
olumns are ordered from
heapest to most expensive during

the initial lexi
ographi
al ordering (if two
olumns are identi
al in the matrix then

the one with the smaller obje
tive
oeÆ
ient is
onsidered to be lexi
ographi
ally

smaller). Therefore the �rst of the identi
al
olumns will be the one kept. Another

way of dete
ting dupli
ate
olumns is to use hashing ([HP93℄).

65

The SUMC redu
tion fun
tion

The SUMC redu
tion fun
tion enumerates
olumns of the matrix from left to right,

for ea
h
olumn v trying to �nd
olumns that sum up to v with
ombined
ost less

than that of v. Any
olumn whi
h
ould be a summand for v is lexi
ographi
ally

smaller than v itself, so the lexi
ographi
al ordering of the
olumns insures that

all potential summands lie left from v in the matrix (thus they have already been

pro
essed when v is being examined). Columns with the �rst nonzero at the same

position as that in v are
onsidered one by one, from right to left, as the �rst

summand. When a
olumn
an be subtra
ted from v (with nonnegative remainder)

then this method is
ontinued for the remainder re
ursively (although the remainder

is usually not a
olumn in the matrix itself, its would-be position is determined and

the pro
ess is
ontinued from there). If there is no remainder left then
osts are

ompared. If the sum is the more expensive then we ba
ktra
k, for
ing the last

summand to be the remainder. Otherwise, if the sum is the
heaper then v
an

be marked for deletion and the next
olumn in the matrix is
onsidered. However,

sin
e marked
olumns are skipped by the fun
tion, the sum repla
ing this marked

olumn would need to be determined again if the
olumn were to be a summand

later. Therefore, to make use of the
olumns that
ould be marked for deletion by

this redu
tion fun
tion, the
olumns are marked with a temporary marker and their

obje
tive fun
tion
oeÆ
ient is repla
ed with the
ost of the sum. Note that we

are not looking for a
heapest sum to repla
e
olumns, we
ontinue with the next

olumn as soon as any sum
heaper than v is found. The re
ursion stops when a

sum
heaper than v is dis
overed or there are no more
olumns as potential �rst

66

summands for v. After ea
h
olumn is pro
essed,
olumns marked temporarily are

marked for deletion.

Although the use of temporary markers saves some time sin
e already dis
ov-

ered sums are not sear
hed for again, the above des
ribed algorithm still runs in

time exponential in the size of the matrix. Therefore we introdu
ed te
hniques that

signi�
antly redu
e the running time by restri
ting the group of
olumns examined

and by limiting the s
ope of sear
h for suitable summands. We might not �nd all

the SUMC redu
tion instan
es in the
urrent matrix this way, so our implemen-

tation of the redu
tion fun
tion
an be repeated. In order to
ompare
olumns

we
ompute their
ost per length ratios (the
ost of the
olumn over the number

of ones in it). Then we examine only the (in this sense) most expensive
olumns,

and only if a signi�
ant fra
tion of these are marked for deletion by SUMC will

we
ontinue with the next most expensive set of
olumns. This method prohibits

too many
olumns from being examined when only a few
ould be deleted with

SUMC. Also, examining the most expensive
olumns is only a heuristi
 guess; a

group of
olumns
ould be
hosen based on di�erent
riteria as well. The sear
h

for summands is limited by restri
ting the depth of re
ursion to a small number

and by forbidding
olumns whose
ost per length ratio is mu
h larger than that

of the remainder, to be
ome summands. Note that limiting the depth of re
ursion

limits the number of summands, though not ne
essarily to the same number sin
e

temporarily marked
olumns whi
h
an be expressed as sums of other
olumns
an

be summands themselves.

Although the above enhan
ements speed up SUMC
onsiderably, it still remains

67

slow in
omparison to the other redu
tions. A good estimate on the running time

of SUMC for a parti
ular
olumn
an be obtained by observing that
olumns whi
h

are
andidates to be �rst summands must have a
ommon �rst row with our
olumn

(that is, they must lie in the same blo
k of the lexi
ographi
ally ordered matrix).

Thus half of the
olumns of our
olumn's blo
k need to be
onsidered on average

as �rst summands. After the �rst summand is subtra
ted from the
olumn, the

same is true for the remainder. Therefore, if the depth of re
ursion is k, the amount

of
omputation for one
olumn is proportional to (average blo
k length)

k

. So

in our implementation the depth of re
ursion and other parameters in
uen
ing

omputation time (e.g., whether expensive
olumns are
onsidered as summands)

are de
ided using the average blo
k length. For problems with very large average

blo
k length SUMC is not even attempted.

The CLEXT redu
tion fun
tion

Our CLEXT redu
tion fun
tion enumerates the rows of the matrix one by one,

for ea
h row s
anning through the
olumns and marking any
olumn for deletion

that extends the row's
lique ([HP93℄ apparently do this similarly). A di�erent

approa
h would be to enumerate the
olumns of the matrix, marking a
olumn for

deletion when it extends at least one row's
lique ([BC96℄). Sin
e with either of these

methods every
olumn has to be
he
ked for nonorthogonality against all
olumns

interse
ting all rows not in the
olumn's support, this algorithm is ineÆ
ient if it

is implemented in a straightforward manner. However, the
omputation
an be

speeded up by not examining rows and
olumns unne
essarily, and by making the

68

test of whether a parti
ular
olumn extends a row's
lique more eÆ
ient. Some of

our te
hniques rely heavily on the lexi
ographi
al ordering of
olumns.

First of all, observe that if a
olumn interse
ts only one row then the
orre-

sponding row
lique is maximal. Due to the lexi
ographi
al ordering of
olumns,

olumns of length one are very easy to spot be
ause they are the lexi
ographi
ally

smallest
olumns interse
ting their rows. Another observation is that if a row has

a
olumn with only two ones in it then all
olumns whi
h
ould extend the row's

lique must interse
t the other row determined by the
olumn with two ones. So

only those
olumns that interse
t the \other row" need to be
onsidered, whi
h is a

signi�
ant redu
tion in the number of
olumns for sparse matri
es. Also, if there are

several \length two"
olumns interse
ting the row then only
olumns that interse
t

all the \other rows" need to be
onsidered. Sin
e it would be
ostly to
onstru
t

the interse
tion of several rows expli
itly, the shortest of these other rows is
hosen

instead, and we make sure that
olumns whi
h are
andidates for extending the row

lique are tested against the \length two"
olumns �rst. A third observation that

further restri
ts the set of
andidate
olumns is the following. Two
olumns are

surely orthogonal if the last row whi
h the �rst
olumn interse
ts
omes earlier in

the matrix than the �rst row for the se
ond
olumn. Thus a
olumn
annot extend

a row's
lique if this is true for the
olumn and any of the
olumns in the row's

support. Moreover, the row itself does not need to be in
luded in the
he
k sin
e

andidate
olumns do not interse
t the row itself. Therefore, by determining the

last (or se
ond-to-last if the row to be extended is the last) row for ea
h
olumn in

the row and then taking the earliest of these last rows,
olumns whose �rst row is

69

later than the earliest last row need not be
onsidered. Due to the lexi
ographi
al

ordering of
olumns, all
olumns that pre
ede the �rst
olumn of the earliest last

row
an be skipped, that is, the enumeration of
olumns
an begin with the �rst

olumn of the earliest last row. Similarly, the last �rst row of
olumns interse
ting

a row
an be determined, thus
olumns not interse
ting the row whose last
olumn

omes earlier than the last �rst row need not be
onsidered sin
e they
annot be

nonorthogonal to all
olumns in the row.

We have organized our CLEXT redu
tion fun
tion so that the rows of the matrix

are enumerated in an outer loop. This enables us to prepare the row so that the one-

by-one tests for the many
olumns not interse
ting this row will be more eÆ
ient.

First the row is sampled and the
andidate
olumns are tested against the
olumns

in the sample. Only if a
andidate is nonorthogonal to every
olumn in the sample

will testing
ontinue for the entire row. To make the test more e�e
tive, the \length

two"
olumns interse
ting the row are listed �rst in the sample; the rest is
hosen

randomly. The length of the sample is proportional to the size of the row's support;

the fa
tor of proportionality is regulated through parameters.

The DOMR redu
tion fun
tion

The DOMR redu
tion fun
tion
onsiders ea
h pair of rows and examines whether

the shorter row dominates the longer; that is, whether the support of the shorter

row is a subset of the support of the longer row. When a pair of dominating rows

is found,
olumns whose indi
es are in the longer but not the shorter row's support

are marked for deletion, along with one of the rows. Columns marked for deletion

70

are removed from the matrix only after a full pass through the row pairs, so DOMR

instan
es not yet in the matrix at the time when the fun
tion is invoked might not

be dis
overed. This fun
tion also dete
ts when two rows are dupli
ates of ea
h other

(the two supports are identi
al). Sin
e this fun
tion enumerates all the row pairs

in the matrix, the test for domination between two rows must be done eÆ
iently.

Our data stru
tures provide us with ordered lists for the supports, enabling a fast

omparison. Also,
he
king whether the �rst and last entries of the shorter support

are between the �rst and last entries of the longer support before
omparing the

two supports entry-by-entry eliminates the need for expli
it
omparison of many

row pairs.

As we have mentioned earlier,
are must be exer
ised when deleting dupli
ate

rows so as not to destroy the in
reasing lexi
ographi
al order of the
olumns. We

laim that if the dupli
ate row whi
h
omes later in the matrix is deleted then

the ordering will be maintained. Assume that i and j are two identi
al rows so

that i
omes �rst in the matrix, and that v and w are two
olumns so that v is

lexi
ographi
ally smaller than w. The only way for w to be
ome lexi
ographi
ally

smaller than v by deleting one of the rows is if v and w are identi
al up to the

removed row, v has a 0 while w has a 1 in this row, and v has a 1 while w has a

0 in the next row in whi
h the two
olumns di�er. This
ould o

ur if i is the row

removed. On the other hand, if j is the row to be removed then, sin
e the two rows

are identi
al, the two
olumns would not be the same up to row j,
ontradi
ting

our assumption. This shows that always removing the se
ond of the two rows is

justi�ed.

71

The SINGL redu
tion fun
tion

The SINGL redu
tion fun
tion enumerates the rows of the matrix one-by-one. When

a row with a single one in it is found, the index of the only interse
ting
olumn is

added to ONES, and the
onsequen
es of this �xing are propagated; that is, rows

interse
ting this
olumn are taken one-by-one, and for ea
h row, the
olumns in

its support and the row itself are marked for deletion. The implementation of this

redu
tion fun
tion is straightforward, and the fun
tion itself is very fast.

The DTWO redu
tion fun
tion

The DTWO redu
tion fun
tion enumerates all pairs of rows, and for ea
h pair

he
ks whether the supports of the rows are of equal size and if so, whether they

di�er only in two entries. If this is the
ase, the two
olumns
orresponding to these

entries are
ompared, and if they are nonorthogonal then they are simply marked for

deletion, otherwise their indi
es are listed in MERGES and the
olumns themselves

are marked for deletion. Also, similar to DOMR, the later of the now identi
al

rows is marked for deletion. The merged
olumn will be
onstru
ted and inserted

into the matrix when the matrix is
ompressed after the redu
tion fun
tion returns.

As with the DOMR redu
tion fun
tion, this fun
tion will dete
t dupli
ate rows as

well. Maintaining row supports as ordered lists makes a fast and straightforward

implementation possible.

We have also implemented the module DUPR that marks dupli
ate rows for

deletion. Although dupli
ate rows
ould be eliminated by DOMR and DTWO, this

routine
an be useful when our goal is the fast elimination of dupli
ate rows.

72

3.4.2 Redu
tion strategies

Redu
tion strategies are algorithms
omprised of redu
tion modules. We have im-

plemented two main redu
tion strategies, one that a
hieves maximal redu
tion,

and another that a
hieves less redu
tion but generally exe
utes mu
h more qui
kly.

Although all six redu
tion modules are in
luded in both redu
tion strategies, indi-

vidual redu
tion modules
an be turned o� through parameters.

Flags are introdu
ed for the redu
tion modules indi
ating whether the previous

appli
ation of the
orresponding module was su

essful; that is, whether the redu
-

tion module has removed any
olumns. (As we have argued above, removing rows

only will not
reate new redu
tion instan
es.) We note here that sin
e SUMC is

the least eÆ
ient among the redu
tion pro
edures, we invoke it only after the other

modules are �nished, so that the input matrix is as small as possible.

In the maximal redu
tion strategy the �ve redu
tion modules DUPC, SINGL,

DOMR, DTWO and CLEXT are invoked (in this order) within a loop that repeats

until no further redu
tion is possible. Ea
h module is invoked at least on
e, but re-

peated only if there was su

ess in other modules that might produ
e new instan
es

for it (Table 3.2). Rows marked for deletion are removed from the matrix after we

exit from the loop, and also after the DOMR and DTWO modules if at least 10% of

the rows are marked for deletion. Within the modules the redu
tion fun
tions are

repeated until no more redu
tion of the type is possible (that is, repeat fra
tion

is zero). The SUMC redu
tion module is invoked after the loop (and the possible

ompression of the matrix); repetition of the redu
tion fun
tion is allowed. SINGL

and DTWO are invoked if there was any redu
tion in the SUMC module, then

73

the whole pro
ess (the �ve redu
tion modules followed by SUMC, a SINGL and a

DTWO) repeats until no more redu
tion is possible.

Out of the �ve traditionally implemented modules CLEXT is by far the most

expensive, and DOMR
an take a signi�
ant amount of time when the number of

rows is large. Therefore we try to invoke these modules sparingly in the fast redu
-

tion. Also, we make use of the repeat fra
tion parameters to limit the number of

times the redu
tion fun
tions are invoked within the modules. In addition, another

parameter, a global repeat fra
tion, is introdu
ed whi
h does not allow the main

loop in the strategy to repeat unless at least this fra
tion of the
olumns has been

marked for deletion by the modules during the most re
ent pass through the loop.

DUPC and SINGL are invoked only twi
e, �rst at the very beginning and then after

the loop. The se
ond DUPC is exe
uted only if some
olumns have been merged.

SINGL is repeated. Sin
e DTWO is inexpensive, the module is invoked frequently,

repetition of the redu
tion fun
tion is enabled. DOMR and CLEXT are repeated

in a loop until one of these deletes signi�
antly fewer
olumns than the other did

the previous time it was invoked. On the other hand, if one of the modules deletes

signi�
antly more
olumns than the other did, then the other module is for
ed to

repeat. The loop is repeated only if the overall number of
olumns marked for

deletion is at least as mu
h as stipulated by the global repeat fra
tion parame-

ter. Rows marked for deletion are removed after ea
h
all of the DOMR module.

Then SUMC is invoked at the end of this strategy. We
all this strategy the \fast"

strategy.

In Se
tion 3.4.4 the two strategies are
ompared in detail.

74

3.4.3 The Redu
e() fun
tion

These strategies are a

essible through a fun
tion
alled Redu
e(). This fun
tion

returns TRUE if the fun
tion
ompleted su

essfully, and FALSE otherwise. Redu
e()

takes as an input and returns as an output a pointer to a stru
ture
ontaining,

among other things, a
olumn and row ordered version of the problem matrix, a

set of parameters whi
h determine the way the redu
tion is
arried out, an array

ontaining names of variables that are �xed to one (ONES), an array with names of

variables whose
olumns have been merged (MERGES), and an entry that indi
ates

the feasibility status of the problem.

When Redu
e() is invoked, only part of this data stru
ture (part of the
olumn

ordered matrix that des
ribes the problem matrix, and the parameters) has to be

�lled, the rest will be added at the beginning of the fun
tion. After the lo
al data

stru
tures are initialized, the
olumns of the matrix are ordered into lexi
ographi-

ally in
reasing order. Variables whose names are listed in ONES are �xed to one,

and the e�e
t of this �xing is propagated throughout the matrix. If any
olumn or

row is marked for deletion then the matrix is
ompressed (
olumns or rows might

have been marked before the fun
tion was invoked). Then the redu
tion strategy

indi
ated by the parameters is invoked and �nally the lo
al data stru
tures are dis-

mantled. Names of variables �xed to one during redu
tion are appended to the array

ONES, and similarly names of merged variable pairs are appended to MERGES.

Figure 3.3 gives an outline of Redu
e().

If the matrix
an be redu
ed to nothing, an optimal solution to the original

problem
an be dedu
ed from the arrays ONES and MERGES. If there is a row

75

Redu
e()

Input: pointer to the main data stru
ture

Output: pointer to the main data stru
ture

Return value: TRUE if su

eeded, FALSE otherwise

initialize data stru
tures (fill out optional fields)

order
olumns of input matrix (lex in
reasing)

fix variables listed in ONES to one

ompress matrix if ne
essary

invoke redu
tion strategy

lean up

end

Figure 3.3: Outline of the Redu
e() fun
tion

with an empty support at any stage of the
omputation the original problem is

infeasible. Otherwise the feasibility status of the problem
ould not be determined

during redu
tion.

The main data stru
ture and the parameters are des
ribed in Appendix B.

3.4.4 Computational results

In our test runs we have tried two main strategies: maximal and fast, ea
h with

the SUMC redu
tion fun
tion on
e enabled and on
e turned o� (as we have in-

di
ated above, SUMC was invoked only after the other redu
tions had �nished).

Preliminary testing revealed that it is not worth to repeat the other redu
tions af-

ter SUMC sin
e new redu
tion instan
es were
reated only a few times, and these

were always isolated SINGL instan
es (the
olumn interse
ting the singleton row is

also a singleton).

Four tests were
ondu
ted on the SP for all four sets of data (Se
tion A.2): the

76

maximal and fast strategies with SUMC disabled and our adaptive SUMC applied

to the outputs of both. Tables 3.3, 3.4, 3.7 and 3.9 summarize our results for the

maximal strategy and the SUMC following it while Tables 3.5, 3.6, 3.8 and 3.10

do the same for the fast strategy. For ea
h problem instan
e the tables
ontain

its name, original size (number of
olumns and rows); the lexi
ographi
al ordering

time; the problem's size after the maximal/fast strategy (SUMC disabled) along

with the running time; the time spent in CLEXT and DOMR routines (with their

multipli
ity); the average blo
k length (Se
tion 3.4.1), the per
entage of
olumns

deleted by and the running time of the adaptive SUMC routine; the �nal size of the

redu
ed problem with the per
entage of nonzeros deleted during the entire pro
ess.

The experiments were
arried out on a thin node of the SP (see Se
tion A.1 for

details about the ar
hite
ture).

The input parameter settings are based on test runs. In the CLEXT redu
tion

fun
tion 3% of ea
h row's support was sampled (at least 10 but at most 200
olumns

were
hosen). In the SUMC redu
tion fun
tion average blo
k length was
omputed

using the longest blo
ks that made up 90% of the
olumns (so that the very short

blo
ks would not de
rease the average too mu
h). For problems with average blo
k

length less than 100 the depth of re
ursion was restri
ted to 3; for the rest of the

problems, it was restri
ted to 2. Columns were
onsidered in groups of 10% of the

size of the matrix, and at least 20% (up to 50% for problems with large average

blo
k length) of these
olumns had to be deleted to
ontinue with the next group of

olumns. Columns with
ost per length ratio more than 1.5 times (down to 1.0 times

for problems with large average blo
k length) the remainder were not
onsidered

77

as prospe
tive summands. SUMC was not even attempted for problems of average

blo
k size larger than 500. Note that SUMC was invoked with the same parameters

on the output of both the maximal and fast strategies.

As des
ribed earlier (Se
tion 3.4.2), the maximal redu
tion repeated ea
h redu
-

tion fun
tion until there was no more redu
tion. In the fast strategy SINGL and

DTWO were always repeated; DOMR was repeated if at least 5% of the
olumns

were deleted with its previous appli
ation, and CLEXT was repeated when this per-

entage was at least 12.5%. The outer loop (invoking DOMR, CLEXT and DTWO

repeatedly) was repeated if at least 12.5% of the
olumns were removed during

the last pass through the loop. In addition to this, a heuristi
 version of CLEXT

was run in the fast strategy; rows longer than the average row length were skipped

(unless a \length two"
olumn is present).

Our fast strategy (without SUMC)
ompares very well with the maximal redu
-

tion (without SUMC). As we expe
ted, the exe
ution time of CLEXT and DOMR

dominate the total running time of both strategies. The fast strategy is
onsider-

ably faster when it is able to
ut down on the number of times these two redu
tion

fun
tions are invoked. In addition to the speed-up, the fast strategy has a
hieved

the same redu
tion on many of the problems
onsidered; the per
entage of nonzeros

deleted
ompared to the maximal strategy was worse by more than 2% on only 1 Set

1 and 4 Set 4 problems. Sin
e these two strategies produ
ed almost identi
al results,

SUMC behaved the same way in the last two tests. As we have dis
ussed earlier,

our adaptive SUMC routine is very restri
ted. Nevertheless, when it is attempted

at all, it
an be very e�e
tive on
ertain sets of problems (nw and v* problems,

78

deleting up to 85% of the
olumns). This fa
t might be attributed to the
olumn

generation te
hniques used for these problems.

For the problems in Set 1 we
ompare our results with those of Ho�man and

Padberg ([HP93℄) and Bornd�orfer ([Bor97℄). Ho�man and Padberg implemented an

equivalent (in terms of redu
tion) of DUPC, CLEXT, DOMR, SINGL and DTWO.

However, they
ut short the more time
onsuming routines (like the CLEXT and

DOMR/DTWO equivalents) based on heuristi
s. Our maximal strategy (with

SUMC disabled) a
hieves at least as mu
h redu
tion as they did ex
ept for two

problems (nw26 and nw24, most likely typos in their paper). SUMC applied after

the maximal or fast strategies further redu
es the number of
olumns by at least

25% on 26 of the 43 nw problems.

We have learned about Bornd�orfer's work only after our implementation of Re-

du
e() and this
hapter were
ompleted. His implementation
ontains two addi-

tional redu
tion methods that we were not aware of before: the �rst substitutes for

singleton
olumns (
olumns with only one nonzero) in
ertain situations and the

se
ond removes all
olumns from the symmetri
 di�eren
e of two rows' supports if

the entire symmetri
 di�eren
e is
ontained in a third row's support. He did not

implement, however, the DTWO pro
edure, and applied only a limited version of

CLEXT (
onsidered only rows with supports not larger than 16). Our fast strat-

egy (SUMC disabled) usually deletes a few more
olumns but a few less rows than

his method on the Set 1 problems with the ex
eption of nw16 whi
h is redu
ed to

nothing by his method.

Bornd�orfer's method was also applied to the problems in Set 3 ([BGKK97℄).

79

While his method deletes about 10% more rows on these problems than our fast

strategy (SUMC disabled), our method removed more
olumns from the v04* and

t04* problems but less from the v16* problems. Note that for the t17* problems the

only redu
tion possible was DUPC. SUMC further redu
ed the number of
olumns

by at least 30% in 7 of the 14 v* problems (although it was rather time
onsuming

for 3 of these problems).

Our running times
annot be dire
tly
ompared to those of the other two groups

sin
e they provide only a
umulative time for all redu
tions during a Bran
h-and-

Cut algorithm.

In our �nal runs we used the fast strategy with SUMC for the �rst redu
tion. The

redu
ed problems were saved into �les, this is what the feasible solution heuristi
s

and the Bran
h-and-Cut algorithm use as input. We use the fast strategy without

SUMC everywhere else.

8
0

Table 3.3: Maximal redu
tion w/o SUMC followed by one SUMC, Set 1, part 1

Original lex Maximal no SUMC Expensive redn fns SUMC redu
tion Final size %nzs

name
ols rows time
ols rows time CLEXT DOMR av bl % time
ols rows deld

aa01 8904 823 0.07 7532 607 7.29 4.86 (4) 2.28 (6) 27.01 0.04 0.04 7529 607 34.95

aa02 5198 531 0.03 3846 360 1.47 1.07 (4) 0.35 (5) 24.06 0.03 0.02 3845 360 41.42

aa03 8627 825 0.07 6694 537 8.06 5.53 (6) 2.31 (6) 27.80 0.07 0.04 6689 537 42.54

aa04 7195 426 0.05 6122 342 1.43 1.05 (2) 0.34 (4) 40.86 0.02 0.03 6121 342 27.87

aa05 8308 801 0.06 6235 521 5.79 3.24 (4) 2.37 (9) 26.00 0.18 0.02 6224 521 44.88

aa06 7292 646 0.06 5862 488 5.97 4.85 (6) 0.97 (7) 28.07 0.20 0.03 5850 488 33.15

kl01 7479 55 0.06 5915 47 0.83 0.78 (2) 0.02 (3) 300.00 0.00 0.04 5915 47 33.56

kl02 36699 71 0.33 16542 69 0.64 0.54 (1) 0.01 (1) 683.77 0.00 0.00 16542 69 55.21

nw01 51975 135 0.09 49903 135 3.10 1.29 (2) 1.68 (2) 619.27 0.00 0.00 49903 135 3.82

nw02 87879 145 0.18 85256 145 5.50 2.02 (2) 3.26 (2) 963.40 0.00 0.00 85256 145 2.74

nw03 43749 59 0.09 38956 53 0.73 0.01 (1) 0.49 (2) 1617.05 0.00 0.00 38956 53 12.35

nw04 87482 36 0.20 46189 35 1.46 1.06 (1) 0.17 (2) 2666.06 0.00 0.00 46189 35 47.98

nw05 288507 71 0.69 202593 62 4.02 0.03 (1) 2.86 (2) 7014.27 0.00 0.00 202593 62 30.93

nw06 6774 50 0.01 5956 38 0.10 0.00 (1) 0.05 (2) 321.47 6.28 1.52 5582 38 30.56

nw07 5172 36 0.02 3105 34 0.03 0.00 (1) 0.02 (2) 189.60 45.70 1.04 1686 34 69.52

nw08 434 24 0.00 352 21 0.00 0.00 (1) 0.00 (2) 29.27 72.73 0.01 96 21 83.36

nw09 3103 40 0.01 2301 38 0.02 0.00 (1) 0.02 (2) 138.07 58.02 0.98 966 38 71.12

nw10 853 24 0.00 655 21 0.01 0.00 (1) 0.00 (2) 54.36 85.50 0.02 95 21 92.92

nw11 8820 39 0.02 6482 34 0.07 0.00 (1) 0.04 (2) 395.13 74.58 12.62 1648 34 82.72

nw12 626 27 0.00 451 25 0.00 0.00 (1) 0.00 (2) 31.38 74.06 0.01 117 25 91.45

nw13 16043 51 0.03 10903 50 0.14 0.00 (1) 0.08 (2) 380.85 4.30 0.09 10434 50 35.93

nw14 123409 73 0.24 95172 70 1.92 0.01 (1) 1.38 (2) 2681.50 0.00 0.00 95172 70 23.12

nw15 467 31 0.01 405 29 0.03 0.03 (2) 0.00 (2) 28.69 0.00 0.00 405 29 14.66

nw16 148633 139 0.29 138947 135 9.09 0.03 (1) 8.23 (2) 1928.45 0.00 0.00 138947 135 7.72

nw17 118607 61 0.26 78173 54 1.67 0.01 (1) 1.14 (2) 3716.21 0.00 0.00 78173 54 35.88

nw18 10757 124 0.03 8439 110 0.33 0.00 (2) 0.26 (2) 161.98 4.83 0.83 8031 110 31.88

nw19 2879 40 0.00 2134 32 0.02 0.00 (1) 0.02 (2) 140.07 38.00 0.57 1323 32 63.41

8
1

Table 3.4: Maximal redu
tion w/o SUMC followed by one SUMC, Set 1, part 2

Original lex Maximal no SUMC Expensive redn fns SUMC redu
tion Final size %nzs

name
ols rows time
ols rows time CLEXT DOMR av bl % time
ols rows deld

nw20 685 22 0.00 536 22 0.02 0.02 (2) 0.00 (2) 44.36 33.02 0.06 359 22 49.11

nw21 577 25 0.00 421 25 0.02 0.01 (2) 0.01 (2) 32.08 49.88 0.02 211 25 68.70

nw22 619 23 0.00 521 23 0.02 0.02 (2) 0.00 (2) 43.73 34.93 0.02 339 23 46.51

nw23 711 19 0.00 423 18 0.02 0.01 (2) 0.00 (2) 47.75 41.37 0.14 248 18 69.22

nw24 1366 19 0.00 926 19 0.02 0.01 (1) 0.00 (1) 106.38 65.77 0.30 317 19 79.17

nw25 1217 20 0.00 844 20 0.03 0.03 (1) 0.00 (1) 87.11 61.26 0.15 327 20 76.50

nw26 771 23 0.00 468 21 0.02 0.02 (2) 0.00 (2) 53.00 36.54 0.10 297 21 63.87

nw27 1355 22 0.00 817 22 0.05 0.04 (2) 0.00 (2) 73.80 48.84 0.13 418 22 73.76

nw28 1210 18 0.00 582 18 0.05 0.04 (2) 0.00 (2) 75.29 27.66 0.33 421 18 68.53

nw29 2540 18 0.01 2034 18 0.02 0.02 (1) 0.00 (1) 242.38 16.81 1.56 1692 18 32.88

nw30 2653 26 0.01 1877 26 0.10 0.08 (2) 0.01 (2) 172.80 50.19 1.08 935 26 66.11

nw31 2662 26 0.00 1728 26 0.15 0.14 (2) 0.00 (2) 173.00 36.34 0.60 1100 26 59.49

nw32 294 19 0.00 251 18 0.00 0.00 (1) 0.00 (1) 25.56 43.82 0.02 141 18 54.24

nw33 3068 23 0.01 2308 23 0.26 0.25 (2) 0.00 (2) 239.00 2.64 0.06 2247 23 27.00

nw34 899 20 0.00 718 20 0.02 0.02 (2) 0.00 (2) 72.11 42.76 0.38 411 20 58.00

nw35 1709 23 0.00 1191 23 0.15 0.14 (2) 0.00 (2) 99.73 47.69 2.05 623 23 63.52

nw36 1783 20 0.00 1244 20 0.16 0.16 (2) 0.00 (2) 146.25 1.37 0.04 1227 20 33.62

nw37 770 19 0.00 639 19 0.00 0.00 (1) 0.00 (1) 59.70 50.55 0.46 316 19 62.07

nw38 1220 23 0.00 723 21 0.22 0.22 (3) 0.00 (2) 82.25 12.59 0.60 632 21 50.18

nw39 677 25 0.00 565 25 0.02 0.02 (2) 0.00 (2) 42.50 49.20 0.06 287 25 60.75

nw40 404 19 0.00 336 19 0.01 0.01 (1) 0.00 (1) 31.30 28.87 0.03 239 19 42.87

nw41 197 17 0.00 177 17 0.00 0.00 (1) 0.00 (1) 15.09 51.41 0.00 86 17 61.08

nw42 1079 23 0.00 795 23 0.07 0.07 (2) 0.00 (2) 72.00 20.38 0.17 633 23 40.39

nw43 1072 18 0.01 982 17 0.01 0.00 (1) 0.00 (1) 99.11 44.30 0.51 547 17 51.39

us01 1053137 145 22.09 339441 86 246.56 235.94 (2) 6.67 (3) 14739.43 0.00 0.00 339441 86 77.64

us02 13635 100 0.13 5766 45 2.39 2.26 (3) 0.06 (3) 472.45 0.88 4.60 5715 45 79.37

us03 85552 77 1.00 20632 50 28.66 27.91 (2) 0.37 (5) 2083.89 0.00 0.00 20632 50 82.82

us04 28016 163 0.27 4207 99 2.33 1.93 (4) 0.27 (7) 223.35 1.59 0.08 4140 99 89.07

8
2

Table 3.5: Fast redu
tion w/o SUMC followed by one SUMC, Set 1, part 1

Original lex Fast no SUMC Expensive redn fns SUMC redu
tion Final size %nzs

name
ols rows time
ols rows time CLEXT DOMR av bl % time
ols rows deld

aa01 8904 823 0.07 7580 610 1.71 0.64 (1) 0.89 (2) 27.19 0.04 0.04 7577 610 34.21

aa02 5198 531 0.03 3899 361 0.44 0.13 (1) 0.23 (3) 24.40 0.03 0.01 3898 361 40.25

aa03 8627 825 0.07 6839 548 1.58 0.45 (1) 0.94 (2) 28.12 0.09 0.04 6833 548 40.41

aa04 7195 426 0.05 6143 342 0.48 0.23 (1) 0.18 (2) 41.01 0.02 0.02 6142 342 27.59

aa05 8308 801 0.06 6416 538 1.35 0.49 (1) 0.68 (2) 26.14 0.19 0.02 6404 538 42.07

aa06 7292 646 0.06 5966 497 0.97 0.52 (1) 0.32 (2) 28.41 0.17 0.03 5956 497 30.83

kl01 7479 55 0.06 5957 47 0.09 0.04 (1) 0.02 (2) 302.33 0.00 0.04 5957 47 32.95

kl02 36699 71 0.33 16542 69 0.20 0.11 (1) 0.02 (1) 683.77 0.00 0.00 16542 69 55.21

nw01 51975 135 0.09 49903 135 1.58 0.58 (1) 0.85 (1) 619.27 0.00 0.00 49903 135 3.82

nw02 87879 145 0.18 85256 145 2.69 0.78 (1) 1.66 (1) 963.40 0.00 0.00 85256 145 2.74

nw03 43749 59 0.09 38956 53 0.44 0.01 (1) 0.21 (1) 1617.05 0.00 0.00 38956 53 12.35

nw04 87482 36 0.20 46189 35 0.66 0.33 (1) 0.09 (1) 2666.06 0.00 0.00 46189 35 47.98

nw05 288507 71 0.69 202593 62 2.33 0.03 (1) 1.21 (1) 7014.27 0.00 0.00 202593 62 30.93

nw06 6774 50 0.01 5956 38 0.06 0.00 (1) 0.02 (1) 321.47 6.28 1.54 5582 38 30.56

nw07 5172 36 0.02 3105 34 0.02 0.00 (1) 0.01 (1) 189.60 45.70 1.04 1686 34 69.52

nw08 434 24 0.00 352 21 0.00 0.00 (1) 0.00 (1) 29.27 72.73 0.00 96 21 83.36

nw09 3103 40 0.01 2301 38 0.02 0.00 (1) 0.00 (1) 138.07 58.02 0.99 966 38 71.12

nw10 853 24 0.00 655 21 0.00 0.00 (1) 0.00 (1) 54.36 85.50 0.02 95 21 92.92

nw11 8820 39 0.02 6482 34 0.05 0.00 (1) 0.02 (1) 395.13 74.58 12.64 1648 34 82.72

nw12 626 27 0.00 451 25 0.00 0.00 (1) 0.00 (1) 31.38 74.06 0.00 117 25 91.45

nw13 16043 51 0.03 10903 50 0.09 0.00 (1) 0.04 (1) 380.85 4.30 0.11 10434 50 35.93

nw14 123409 73 0.24 95172 70 1.17 0.01 (1) 0.64 (1) 2681.50 0.00 0.00 95172 70 23.12

nw15 467 31 0.01 451 29 0.01 0.01 (1) 0.00 (1) 29.79 0.00 0.01 451 29 2.76

nw16 148633 139 0.29 138947 135 4.89 0.02 (1) 4.03 (1) 1928.45 0.00 0.00 138947 135 7.72

nw17 118607 61 0.26 78173 54 1.00 0.01 (1) 0.49 (1) 3716.21 0.00 0.00 78173 54 35.88

nw18 10757 124 0.03 8439 110 0.17 0.00 (1) 0.12 (1) 161.98 4.83 0.83 8031 110 31.88

nw19 2879 40 0.00 2134 32 0.02 0.00 (1) 0.00 (1) 140.07 38.00 0.57 1323 32 63.41

8
3

Table 3.6: Fast redu
tion w/o SUMC followed by one SUMC, Set 1, part 2

Original lex Fast no SUMC Expensive redn fns SUMC redu
tion Final size %nzs

name
ols rows time
ols rows time CLEXT DOMR av bl % time
ols rows deld

nw20 685 22 0.00 536 22 0.00 0.00 (1) 0.00 (1) 44.36 33.02 0.06 359 22 49.11

nw21 577 25 0.00 421 25 0.01 0.01 (1) 0.00 (1) 32.08 49.88 0.02 211 25 68.70

nw22 619 23 0.00 521 23 0.00 0.00 (1) 0.00 (1) 43.73 34.93 0.02 339 23 46.51

nw23 711 19 0.00 462 18 0.00 0.00 (1) 0.00 (1) 52.38 42.64 0.20 265 18 66.72

nw24 1366 19 0.00 926 19 0.01 0.01 (1) 0.00 (1) 106.38 65.77 0.31 317 19 79.17

nw25 1217 20 0.00 844 20 0.01 0.01 (1) 0.00 (1) 87.11 61.26 0.17 327 20 76.50

nw26 771 23 0.00 514 21 0.00 0.00 (1) 0.00 (1) 57.88 37.74 0.15 320 21 60.64

nw27 1355 22 0.00 817 22 0.03 0.03 (1) 0.00 (1) 73.80 48.84 0.13 418 22 73.76

nw28 1210 18 0.00 598 18 0.02 0.02 (2) 0.00 (2) 69.75 27.26 0.40 435 18 67.27

nw29 2540 18 0.01 2034 18 0.01 0.00 (1) 0.00 (1) 242.38 16.81 1.56 1692 18 32.88

nw30 2653 26 0.01 1878 26 0.03 0.02 (1) 0.00 (1) 172.80 50.21 1.09 935 26 66.11

nw31 2662 26 0.00 1728 26 0.06 0.06 (1) 0.00 (1) 173.00 36.34 0.59 1100 26 59.49

nw32 294 19 0.00 251 18 0.01 0.00 (1) 0.00 (1) 25.56 43.82 0.01 141 18 54.24

nw33 3068 23 0.01 2308 23 0.07 0.06 (1) 0.00 (1) 239.00 2.64 0.06 2247 23 27.00

nw34 899 20 0.00 718 20 0.02 0.02 (1) 0.00 (1) 72.11 42.76 0.38 411 20 58.00

nw35 1709 23 0.00 1191 23 0.09 0.09 (2) 0.00 (2) 99.73 47.69 2.06 623 23 63.52

nw36 1783 20 0.00 1246 20 0.06 0.06 (1) 0.00 (1) 146.50 1.36 0.04 1229 20 33.48

nw37 770 19 0.00 639 19 0.01 0.00 (1) 0.00 (1) 59.70 50.55 0.45 316 19 62.07

nw38 1220 23 0.00 762 21 0.06 0.06 (2) 0.00 (2) 86.62 14.30 1.12 653 21 48.23

nw39 677 25 0.00 565 25 0.01 0.01 (1) 0.00 (1) 42.50 49.20 0.05 287 25 60.75

nw40 404 19 0.00 336 19 0.00 0.00 (1) 0.00 (1) 31.30 28.87 0.03 239 19 42.87

nw41 197 17 0.00 177 17 0.00 0.00 (1) 0.00 (1) 15.09 51.41 0.01 86 17 61.08

nw42 1079 23 0.00 818 23 0.03 0.02 (1) 0.00 (1) 73.80 23.72 0.20 624 23 41.14

nw43 1072 18 0.01 982 17 0.01 0.00 (1) 0.00 (1) 99.11 44.30 0.51 547 17 51.39

us01 1053137 145 22.09 339464 86 125.71 117.59 (1) 3.89 (2) 14740.19 0.00 0.00 339464 86 77.64

us02 13635 100 0.13 5996 45 1.45 1.33 (2) 0.04 (3) 458.08 0.87 4.81 5944 45 78.38

us03 85552 77 1.00 20632 50 9.65 8.96 (1) 0.23 (3) 2083.89 0.00 0.00 20632 50 82.82

us04 28016 163 0.27 4207 99 1.02 0.65 (2) 0.25 (5) 223.35 1.59 0.08 4140 99 89.07

8
4

Table 3.7: Maximal redu
tion w/o SUMC followed by one SUMC, Set 3

Original lex Maximal no SUMC Expensive redn fns SUMC redu
tion Final size %nzs

name
ols rows time
ols rows time CLEXT DOMR av bl % time
ols rows deld

v0415 7684 1518 0.05 4337 763 0.43 0.00 (2) 0.28 (2) 8.93 0.99 0.01 4294 763 45.05

v0416 19020 1771 0.13 11099 1001 0.91 0.00 (2) 0.66 (2) 27.01 67.29 31.19 3631 1001 87.92

v0417 143317 1765 1.60 55584 894 2.93 0.01 (2) 2.38 (2) 1089.24 0.00 0.00 55584 894 61.14

v0418 8306 1765 0.05 4827 953 0.62 0.00 (2) 0.41 (2) 7.56 1.33 0.02 4763 953 43.96

v0419 15709 1626 0.11 7744 845 1.27 0.01 (3) 0.97 (3) 19.21 62.62 19.72 2895 845 89.33

v0420 4099 958 0.02 2679 591 0.27 0.00 (2) 0.18 (2) 6.59 1.57 0.01 2637 591 36.49

v0421 1814 952 0.01 1176 464 0.14 0.00 (2) 0.08 (2) 3.05 0.43 0.00 1171 464 37.29

v1616 67441 1439 0.52 53073 1285 2.07 0.02 (2) 1.47 (2) 93.85 49.11 102.07 27011 1285 65.84

v1617 113655 1619 0.94 85759 1458 3.46 0.02 (2) 2.60 (2) 136.40 48.68 161.91 44009 1458 65.69

v1618 146715 1603 1.30 90998 1434 3.18 0.02 (2) 2.24 (2) 170.28 2.36 19.61 88852 1434 37.44

v1619 105822 1612 0.86 86032 1479 3.66 0.04 (2) 2.83 (2) 145.29 48.54 152.05 44274 1479 63.30

v1620 115729 1560 0.95 89624 1412 3.47 0.03 (2) 2.67 (2) 160.09 2.33 6.32 87536 1412 22.32

v1621 24772 938 0.17 16730 859 0.53 0.00 (2) 0.32 (2) 38.62 41.63 4.24 9765 859 66.02

v1622 13773 859 0.08 11123 787 0.41 0.00 (2) 0.25 (2) 25.88 31.49 1.85 7620 787 50.84

t0415 7254 1518 0.05 3198 894 4.35 3.80 (2) 0.37 (2) 10.00 0.06 0.02 3196 894 57.69

t0416 9345 1771 0.06 3171 992 4.37 3.81 (2) 0.41 (2) 8.18 0.09 0.01 3168 992 68.43

t0417 7894 1765 0.06 3572 926 5.31 4.74 (2) 0.38 (2) 11.13 0.14 0.02 3567 926 56.80

t0418 8676 1765 0.06 3931 1015 7.27 6.45 (2) 0.67 (3) 13.30 0.05 0.01 3929 1015 55.99

t0419 9362 1626 0.06 3176 912 2.32 1.86 (1) 0.34 (2) 9.60 0.22 0.01 3169 912 69.10

t0420 4583 958 0.03 1862 574 0.93 0.68 (1) 0.20 (3) 8.38 0.00 0.01 1862 574 62.76

t0421 4016 952 0.03 1669 570 1.41 1.22 (2) 0.13 (2) 7.09 0.06 0.00 1668 570 62.62

t1716 56865 467 0.69 11952 467 0.62 0.47 (1) 0.08 (1) 42.86 0.00 0.03 11952 467 75.47

t1717 73885 551 0.95 16428 551 0.72 0.49 (1) 0.14 (1) 54.38 0.00 0.05 16428 551 73.87

t1718 67796 523 0.89 16310 523 0.76 0.54 (1) 0.13 (1) 53.78 0.00 0.04 16310 523 72.47

t1719 72520 556 0.95 15846 556 0.79 0.53 (1) 0.16 (1) 51.15 0.00 0.05 15846 556 73.57

t1720 69134 538 0.86 16195 538 0.72 0.48 (1) 0.15 (1) 50.81 0.00 0.05 16195 538 72.89

t1721 36039 357 0.37 9043 357 0.22 0.12 (1) 0.05 (1) 41.74 0.00 0.02 9043 357 70.37

8
5

Table 3.8: Fast redu
tion w/o SUMC followed by one SUMC, Set 3

Original lex Fast no SUMC Expensive redn fns SUMC redu
tion Final size %nzs

name
ols rows time
ols rows time CLEXT DOMR av bl % time
ols rows deld

v0415 7684 1518 0.05 4337 763 0.34 0.01 (1) 0.15 (1) 8.93 0.99 0.01 4294 763 45.05

v0416 19020 1771 0.13 11099 1001 0.66 0.00 (1) 0.35 (1) 27.01 67.29 31.17 3631 1001 87.92

v0417 143317 1765 1.60 55584 894 1.85 0.01 (1) 1.23 (1) 1089.24 0.00 0.00 55584 894 61.14

v0418 8306 1765 0.05 4827 953 0.50 0.00 (1) 0.22 (1) 7.56 1.33 0.01 4763 953 43.96

v0419 15709 1626 0.11 7747 847 0.60 0.01 (1) 0.35 (1) 19.16 62.60 19.83 2897 847 89.32

v0420 4099 958 0.02 2679 591 0.20 0.00 (1) 0.10 (1) 6.59 1.57 0.01 2637 591 36.49

v0421 1814 952 0.01 1176 464 0.12 0.00 (1) 0.05 (1) 3.05 0.43 0.00 1171 464 37.29

v1616 67441 1439 0.52 53073 1285 1.33 0.01 (1) 0.74 (1) 93.85 49.11 102.05 27011 1285 65.84

v1617 113655 1619 0.94 85759 1458 2.19 0.01 (1) 1.30 (1) 136.40 48.68 161.99 44009 1458 65.69

v1618 146715 1603 1.30 90998 1434 2.06 0.02 (1) 1.13 (1) 170.28 2.36 19.57 88852 1434 37.44

v1619 105822 1612 0.86 86032 1479 2.28 0.01 (1) 1.42 (1) 145.29 48.54 152.08 44274 1479 63.30

v1620 115729 1560 0.95 89624 1412 2.18 0.01 (1) 1.32 (1) 160.09 2.33 6.32 87536 1412 22.32

v1621 24772 938 0.17 16730 859 0.38 0.00 (1) 0.16 (1) 38.62 41.63 4.25 9765 859 66.02

v1622 13773 859 0.08 11123 787 0.30 0.00 (1) 0.12 (1) 25.88 31.49 1.86 7620 787 50.84

t0415 7254 1518 0.05 3199 894 1.26 0.87 (1) 0.19 (1) 10.00 0.06 0.01 3197 894 57.68

t0416 9345 1771 0.06 3186 993 1.29 0.90 (1) 0.22 (1) 8.24 0.09 0.01 3183 993 68.24

t0417 7894 1765 0.06 3653 926 1.52 1.06 (1) 0.21 (1) 11.54 0.14 0.02 3648 926 55.77

t0418 8676 1765 0.06 3937 1015 1.92 1.50 (1) 0.24 (1) 13.33 0.05 0.02 3935 1015 55.91

t0419 9362 1626 0.06 3176 912 1.30 0.90 (1) 0.18 (1) 9.60 0.22 0.01 3169 912 69.10

t0420 4583 958 0.03 1862 574 0.41 0.25 (1) 0.07 (1) 8.38 0.00 0.01 1862 574 62.76

t0421 4016 952 0.03 1669 570 0.34 0.19 (1) 0.07 (1) 7.09 0.06 0.00 1668 570 62.62

t1716 56865 467 0.69 11952 467 0.23 0.07 (1) 0.08 (1) 42.86 0.00 0.03 11952 467 75.47

t1717 73885 551 0.95 16428 551 0.32 0.07 (1) 0.14 (1) 54.38 0.00 0.05 16428 551 73.87

t1718 67796 523 0.89 16310 523 0.30 0.06 (1) 0.12 (1) 53.78 0.00 0.05 16310 523 72.47

t1719 72520 556 0.95 15846 556 0.32 0.04 (1) 0.16 (1) 51.15 0.00 0.05 15846 556 73.57

t1720 69134 538 0.86 16195 538 0.29 0.05 (1) 0.14 (1) 50.81 0.00 0.05 16195 538 72.89

t1721 36039 357 0.37 9043 357 0.13 0.03 (1) 0.05 (1) 41.74 0.00 0.02 9043 357 70.37

8
6

Table 3.9: Maximal redu
tion w/o SUMC followed by one SUMC, Sets 2, 4

Original lex Maximal no SUMC Expensive redn fns SUMC redu
tion Final size %nzs

name
ols rows time
ols rows time CLEXT DOMR av bl % time
ols rows deld

0321.4 71201 1202 0.77 36181 1201 148.27 144.91 (4) 2.48 (2) 187.16 0.01 1.27 36179 1201 35.89

0331.3 45637 664 0.44 22125 664 12.96 12.39 (1) 0.43 (1) 189.87 0.03 0.72 22118 664 37.07

0331.4 46915 664 0.47 21626 664 9.02 8.58 (1) 0.31 (1) 162.32 0.10 0.70 21605 664 41.28

0341.3 45800 658 0.43 21163 656 14.37 13.25 (1) 0.82 (2) 156.22 0.01 0.57 21161 656 38.62

0341.4 46508 658 0.48 20315 655 8.45 7.58 (1) 0.62 (2) 139.61 0.01 0.49 20312 655 41.82

0351.3 64953 1156 0.72 34446 1156 42.55 40.86 (1) 1.40 (1) 196.38 0.01 1.68 34442 1156 33.50

0351.4 69922 1156 0.75 33779 1147 34.65 31.40 (1) 2.39 (2) 183.16 0.02 2.57 33771 1147 38.77

nf260 276752 2198 4.02 23751 1349 26.37 1.81 (2) 23.62 1(8) 34.32 0.00 0.24 23751 1349 94.00

sp1 6954 204 0.05 6807 198 6.66 6.54 (2) 0.07 (3) 219.39 0.00 0.04 6807 198 4.61

sp2 3686 173 0.02 3529 150 2.07 2.00 (2) 0.03 (3) 139.13 0.00 0.02 3529 150 16.38

sp3 1668 111 0.01 969 73 1.06 1.03 (4) 0.00 (4) 79.55 0.00 0.00 969 73 61.41

sp4 9144 368 0.08 8976 308 12.54 12.11 (2) 0.34 (4) 172.21 0.00 0.04 8976 308 16.74

sp5 13718 684 0.11 13045 628 30.53 28.81 (2) 1.46 (4) 104.91 0.49 0.24 12981 628 12.24

sp6 50722 2504 0.50 41061 2200 483.07 453.15 (4) 27.34 (7) 90.61 0.00 0.61 41061 2200 25.18

sp7 43459 2991 0.44 36507 2466 454.89 375.05 (3) 76.57 1(8) 71.90 0.00 0.27 36507 2466 26.93

sp8 91123 4810 0.91 72361 3810 783.98 670.68 (3) 104.38 (9) 85.24 0.00 0.68 72359 3810 30.85

sp9 50013 2917 0.45 28992 1832 211.91 192.57 (4) 17.68 (9) 77.44 0.00 0.18 28992 1832 61.97

sp10 13128 781 0.09 4452 369 9.86 8.88 (6) 0.81 (8) 53.56 0.00 0.06 4452 369 81.24

sp11 2775 104 0.01 528 64 1.47 1.45 (6) 0.00 (6) 60.12 0.00 0.00 528 64 88.14

sp12 84746 3218 0.94 74467 2811 627.61 547.73 (2) 76.07 (9) 112.10 0.00 2.31 74467 2811 20.43

sp14 47214 3217 0.64 42828 2743 370.06 321.93 (2) 45.21 (9) 64.59 0.00 0.29 42828 2743 20.20

8
7

Table 3.10: Fast redu
tion w/o SUMC followed by one SUMC, Sets 2, 4

Original lex Fast no SUMC Expensive redn fns SUMC redu
tion Final size %nzs

name
ols rows time
ols rows time CLEXT DOMR av bl % time
ols rows deld

0321.4 71201 1202 0.77 36184 1201 17.69 15.69 (1) 1.24 (1) 187.17 0.01 1.25 36182 1201 35.89

0331.3 45637 664 0.44 22125 664 4.92 4.34 (1) 0.42 (1) 189.87 0.03 0.71 22118 664 37.07

0331.4 46915 664 0.47 21626 664 3.27 2.83 (1) 0.30 (1) 162.32 0.10 0.69 21605 664 41.28

0341.3 45800 658 0.43 21163 656 5.80 5.10 (1) 0.41 (1) 156.22 0.01 0.56 21161 656 38.62

0341.4 46508 658 0.48 20315 655 3.15 2.58 (1) 0.31 (1) 139.61 0.01 0.48 20312 655 41.82

0351.3 64953 1156 0.72 34446 1156 18.22 16.45 (1) 1.40 (1) 196.38 0.01 1.67 34442 1156 33.50

0351.4 69922 1156 0.75 33779 1147 14.31 12.29 (1) 1.18 (1) 183.16 0.02 2.60 33771 1147 38.77

nf260 276752 2198 4.02 42652 1984 12.41 8.74 (1) 2.64 (1) 49.10 0.00 0.39 42652 1984 85.32

sp1 6954 204 0.05 6867 198 1.02 0.93 (1) 0.02 (1) 221.39 0.00 0.05 6867 198 3.89

sp2 3686 173 0.02 3576 151 0.36 0.31 (1) 0.01 (1) 141.13 0.00 0.02 3576 151 14.37

sp3 1668 111 0.01 1159 78 0.12 0.10 (2) 0.01 (3) 81.08 0.00 0.00 1159 78 51.80

sp4 9144 368 0.08 9020 309 1.73 1.50 (1) 0.08 (1) 173.06 0.00 0.04 9020 309 15.98

sp5 13718 684 0.11 13211 629 5.88 5.27 (1) 0.39 (1) 106.20 0.48 0.29 13148 629 10.46

sp6 50722 2504 0.50 41514 2212 57.92 46.48 (1) 8.82 (2) 91.81 0.00 1.02 41512 2212 24.10

sp7 43459 2991 0.44 37700 2535 64.48 52.25 (1) 9.89 (2) 73.61 0.00 0.28 37700 2535 22.40

sp8 91123 4810 0.91 72683 3846 134.26 98.90 (1) 25.80 (2) 85.31 0.00 0.67 72681 3846 29.93

sp9 50013 2917 0.45 29845 1864 33.00 23.06 (1) 7.59 (3) 79.01 0.00 0.20 29845 1864 60.01

sp10 13128 781 0.09 4644 382 1.21 0.53 (1) 0.48 (3) 53.08 0.00 0.06 4644 382 80.24

sp11 2775 104 0.01 760 72 0.38 0.35 (3) 0.00 (3) 78.00 0.00 0.01 760 72 80.58

sp12 84746 3218 0.94 74745 2831 155.25 132.98 (1) 18.82 (2) 112.51 0.00 2.09 74745 2831 19.46

sp14 47214 3217 0.64 43056 2764 73.23 59.14 (1) 10.92 (2) 64.92 0.00 0.29 43056 2764 19.19

Chapter 4

Feasible solution heuristi
s

A high quality (integral) feasible solution is essential to keep the size of the sear
h

tree manageable in a bran
h-and-bound framework. A method for �nding su
h a

feasible solution
an be used both before bran
h-and-bound is started and later on

at a sear
h tree node. Thus it is desirable to �nd a very eÆ
ient pro
edure that

an be applied many times without slowing down the exa
t solution method.

Finding good feasible solutions for Set Partitioning Problems is notoriously diÆ-

ult sin
e the problem is usually very tightly
onstrained, although mu
h depends on

the generators used to formulate the problems. In pra
ti
e very expensive dummy

olumns are often in
luded in the matrix to provide a starting feasible solution, but

this solution is usually not suÆ
ient for bounding.

In what follows we will dis
uss LP relaxation based feasible solution heuristi
s,

�rst in general, then our appli
ation in detail. We will also show how to iterate

these heuristi
s and redu
ed
ost �xing to improve the quality of the feasible solution.

88

89

Finally, we indi
ate the diÆ
ulties asso
iated with eÆ
iently (re)solving LPs during

the algorithm and
on
lude with
omputational results. A detailed des
ription of the

parameters used during our feasible solution heuristi

an be found in Appendix C.

4.1 LP relaxation based heuristi
s

LP relaxation based feasible solution heuristi
s refers to methods where variables are

heuristi
ally set to their upper or lower bounds based on the most re
ent solution

to the LP relaxation, the LP is re-solved and the pro
ess is repeated until either a

feasible solution is found or the problem be
omes infeasible. These methods
an be

thought of as a qui
k way to get to a leaf of the
omplete enumeration tree. Only

one thread from the root to a leaf is investigated (no ba
ktra
king) and several

levels are \skipped over" when multiple variables are set to their bounds.

Both the quality of the feasible solution delivered at the end (if any) and the

running time depend on the heuristi
 setting of variables. The running time is

usually dominated by the LP solver. Having fewer iterations means fewer LPs to

solve, but it usually also means setting more variables to their bounds at a time,

possibly
ompromising quality. On the other hand, setting fewer variables to their

bounds usually implies more iterations but does not ne
essarily in
rease the running

time sin
e
onse
utive LP formulations might be \
lose enough" to use the optimal

solution of the �rst one to warmstart the se
ond. Se
tion 4.3 des
ribes warmstarting

LPs in detail.

The popularity of these methods for the Set Partitioning Problem lies in the

90

fa
t that be
ause of the highly
onstrained nature of the problem many rows and

olumns
an be eliminated from the formulation as a result of setting variables to

their bounds, espe
ially to one. However, �xing variables to one might be \dan-

gerous" sin
e essential
olumns
ould be eliminated
ausing the problem to be
ome

infeasible. Problem size redu
tion methods, like those des
ribed in Chapter 3 are

utilized to propagate the e�e
ts of setting variables.

After a feasible solution has been obtained for the Set Partitioning Problem

(or in general, for any 0 � 1 integer programming problem), variables
urrently at

value 0 in the LP solution whose redu
ed
ost is larger than the gap (the di�eren
e

between the obje
tive value of the feasible solution and the lower bound provided

by the LP optimum)
an be removed from the problem. A pro
edure that s
ans

through all the nonbasi
 variables and removes those with redu
ed
osts larger

than the gap is
alled redu
ed
ost �xing. A subsequent appli
ation of problem

size redu
tion methods
an further de
rease the size of the matrix. Note that the

redu
ed problem has the same optimal value as the original one, thus it
an repla
e

the original problem in the subtree rooted at the sear
h tree node where the feasible

solution heuristi
 is invoked.

The quality of the feasible solution
an be improved by
ombining the feasible

solution heuristi
 with the redu
ed
ost �xing pro
edure in a loop that repeats

until there is nothing left in the matrix (the best feasible solution found so far

is optimal) or either the heuristi
 is not able to �nd a better feasible solution or

the redu
ed
ost �xing
annot eliminate more variables. Sin
e we are looking for

feasible solutions that stri
tly improve the best found so far, the gap in the redu
ed

91

ost �xing pro
edure
ould be de
reased by the granularity (the minimal di�eren
e

between non-identi
al feasible solution values) of the problem. Note that
omputing

the granularity is a nontrivial task. However, a lower bound on the granularity
an

just as well be used to de
rease the gap (for instan
e, 1 is su
h a lower bound for

an SPP if all the obje
tive fun
tion
oeÆ
ients are integral).

The �rst detailed des
ription of an LP based feasible solution heuristi
 (to our

knowledge) is due to Ho�man and Padberg ([HP93℄). Their approa
h is based on

the assertion that small set partitioning problems are easy to solve. After applying

their problem size redu
tion routines an outer loop is entered where solving the LP

relaxation, �xing variables at level one in the LP optimal solution to one and setting

some further variables in an inner loop are repeated until either a feasible solution

is found or the problem be
omes infeasible due to an \in
orre
t guess". In the

inner loop the problem is �rst de
omposed into smaller blo
ks by setting some more

variables to their bounds, then in ea
h blo
k variables with values
losest to one

are set to one (and the e�e
ts of these settings are propagated by the problem size

redu
tion routines) until \enough" variables are �xed in the blo
k. After a feasible

solution is found, variables are eliminated based on their redu
ed
osts. Ho�man

and Padberg's approa
h failed (did not deliver a feasible solution) on �ve of the 40

Set 1 problems that do not solve to integrality with the �rst LP relaxation. They

report only
umulative running times in a Bran
h-and-Cut setting (feasible solution

heuristi
 is run at several nodes of the sear
h tree).

Bornd�orfer et al. ([BGKK97℄ and[Bor97℄) implemented a similar \plunging

method" (as they refer to it) that repeats solving the LP relaxation, rounding fra
-

92

tional values to the nearest integer and applying problem size redu
tion methods.

Their approa
h in
ludes a pivoting te
hnique that allows for an eÆ
ient LP warm-

start. Although applied both to the Set 1 and Set 3 problems, the quality of the

feasible solutions produ
ed by this approa
h is not reported and only
umulative

running times are provided as for the previous approa
h.

An approa
h that explores more than just one thread of the
omplete enumer-

ation tree was developed by Lad�anyi and Ralphs ([LR℄). After the initial problem

size redu
tion a sear
h tree is built where at ea
h node the LP relaxation is solved,

variables at level one in the LP optimal solution are �xed to one, and then sub-

problems are
reated by sele
ting a few variables (usually those at nonzero levels

in a row's support) asserting that exa
tly one of them is at level one in a feasible

solution and setting ea
h of these variables in turn to one. The sear
h tree is inves-

tigated in a depth �rst sear
h manner. This approa
h produ
ed a feasible solution

to all the Set 1 problems and found (but not proved) optimal solution for many.

The running times were
omparable to the overall bran
h-and-
ut running times

reported by Ho�man and Padberg.

Our approa
h is novel in the sense that it prefers �xing variables to zero instead

of to one and that it repeats the feasible solution heuristi
 and redu
ed
ost �xing

modules in a loop. We not only found high quality feasible solutions to the Set 1

problems but also proved the optimality of the feasible solutions obtained for 30 of

the 40 problems and found the optimal solution but did not prove their optimality

for �ve more problems. Se
tion 4.4
ontains our
omputational results.

93

4.2 Our algorithm

In this se
tion we will dis
uss our feasible solution heuristi
 implementation, in
lud-

ing its integration into a loop with redu
ed
ost �xing.

4.2.1 Heuristi
 variable �xing

The heart of our algorithm is the heuristi
 �xing phase; that is, a
olle
tion of

heuristi
s that �x variables to zero or one based on the results of the most re
ent LP

relaxation. The heuristi
 �xing phase has three major
omponents. First, variables

urrently at level one are addressed. Then pairs of rows that are likely to be
overed

by the same
olumn in an optimal solution are identi�ed (this is
alled follow-on

�xing). Third, some \unattra
tive" variables are eliminated from the problem. All

the subroutines used here only mark variables to be �xed to one or zero, the a
tual

eliminations (and propagation of their e�e
t) are
arried out by Redu
e().

Variables at level one

Probably the most diÆ
ult question for an LP based feasible solution heuristi
 is

what to do with variables at level one in the LP relaxation. Depending on how

the problem was generated, the number of variables at level one
ompared to all

those at nonzero levels might be high or small (see Se
tion A.2). Certainly the

most popular approa
h is to �x these variables to one (and even to round up values

that are near to one). Although this would be justi�ed for a spe
ial
ase of (SP),

the node pa
king problem (Se
tion 1.3), sin
e in that
ase there exists an optimal

94

solution in whi
h these variables take value one ([NT75℄), this is not valid for the

set pa
king or set partitioning problems in general. However, �xing variables to one

might
ause infeasibility, as we
an see in our
omputational results (Se
tion 4.4).

We have implemented this approa
h along with three others; the parti
ular one

used is
ontrolled by a parameter.

The se
ond approa
h is slightly less aggressive than �xing these variables to one.

When a variable is �xed to one we remove all
olumns that interse
t any row in

the variable's support. On the other hand in the less aggressive approa
h we retain

those
olumns that are
ommon in all rows in the variable's support; that is, we

delete the symmetri
 di�eren
e of row supports, for rows interse
ting the variable's

olumn. This is really an adaptation of the follow-on �xing idea that we will dis
uss

below.

The third approa
h is to treat variables at level one the same way as other

variables at nonzero level, that is, do nothing with them at this point. The fourth

approa
h is an adaptive strategy, a mix of the three that de
ides whi
h one is used

based on the proportion of variables at level one
ompared to all the variables at

nonzero levels.

Follow-on �xing

The original idea of follow-on �xing is folklore in
rew s
heduling, an early referen
e

to it in a bran
h-and-bound setting
an be found in [RF87℄. We are given the

s
hedule, say, of an airline for a given time interval. The s
hedule
ontains the

departure/arrival times and stations for ea
h
ight segment, along with the spe
i�

95

type of air
raft to
y that segment. Our goal is to assign
rews to the
ight segments

as
heaply as possible,
omplying with all rules and regulations. Modeled as a set

partitioning problem, the rows of the matrix
orrespond to
ight segments while

the
olumns des
ribe possible
rew trips (Se
tion 1.1). After the LP relaxation

is solved, primal values of the
olumns in a row's support
an be interpreted as

likelihoods with whi
h the
orresponding
rew trips
over the
ight segment. Sin
e

it is preferable to keep a
rew with the same air
raft during a workday,
onne
ting

ight segments (same air
raft) are
onsidered follow-ons if they are likely to be

overed by the same
rew trips. Follow-on
ight segments are lo
ked (
onsidered as

one segment from now on) and all
rew trips
overing only one of them are removed

from the problem.

Although in a general set partitioning problem usually no ordering
an be im-

posed on the rows of the matrix, the follow-on idea
an still be exploited. For any

pair of rows we
an determine the likelihood that they are
overed by the same
ol-

umn by a

umulating the primal solution values for all
olumns interse
ting both

rows. If this likelihood is large enough (larger than a
ertain threshold), all the

olumns that
over only one of the rows are removed from the matrix,
ausing the

two rows to be
ome identi
al. Noti
e that if a variable is at level one, the rows in

its support are follow-ons.

In our implementation the follow-on �xing pro
edure is optional, it
an be en-

abled/disabled by a parameter. Comparing all row pairs in a matrix might be too

ostly, so we sele
t a subset of the rows (the sele
tion is either random or it is based

on dual values), and
ompare all row pairs in this subset. The fra
tion of rows
ho-

96

sen for this subset and upper and lower bounds for the threshold are also
ontrolled

through parameters. To keep the implementation fast and simple, follow-on �xing

is
arried out in several passes of
omparing rows and applying Redu
e(). Rows

determined to be follow-ons in one pass are not
ompared with other rows before

the matrix is redu
ed. The threshold is set to the upper bound when the follow-on

�xing pro
edure is entered, then it is gradually de
reased down to the lower bound

if the number of
olumns eliminated is not suÆ
ient.

Removing unattra
tive variables

A
autious approa
h of �xing those variables to zero that are insigni�
ant based on

the most re
ent LP relaxation is mu
h less likely to eliminate optimal solutions than

�xing variables to one. In our implementation the signi�
an
e of the variables is

determined by their redu
ed
osts (the lower the redu
ed
ost the more signi�
ant

the variable), but other measures, like the ratio of the original obje
tive fun
tion

oeÆ
ient to the number of nonzeros in the
olumn,
ould be used.

To make sure that the problem does not be
ome infeasible due to an empty

row, we
ontrol the deletion pro
ess as follows. The rows of the matrix are enu-

merated one by one, (the order is either random, or it is based on dual values, as

determined by a parameter), and some of the least attra
tive variables are marked

for removal. The pro
edure terminates if a
ertain fra
tion of the rows has been

already
onsidered, or enough variables are marked for removal.

There are many ways to de
ide whi
h variables to delete from a
ertain row. We

have experimented with several ideas; two of these proved to be a

eptable. The �rst

97

approa
h simply marks for removal a given fra
tion of the least signi�
ant variables

that are at level zero in the
urrent LP relaxation. Note that basi
 variables at zero

level may be marked with this pro
edure, although they
an be optionally unmarked

later on.

In the se
ond approa
h the variables in a row's support are
onsidered from most

signi�
ant to least signi�
ant, until their sum in the
urrent LP solution surpasses

some predetermined value (threshold). When this happens, a given fra
tion of the

rest of the variables (starting with the least signi�
ant) are marked for removal.

If the threshold is less than one then variables at nonzero levels may be marked

for deletion, making the heuristi
 more aggressive. However, deletion of nonzero

variables
an be disabled through a parameter. On the other hand, if the threshold

is one this approa
h will yield very similar results as the previous approa
h.

4.2.2 Unmarking variables

As we have seen in the previous se
tion, variables to be deleted are marked only

during the heuristi
 �xing phase; their a
tual elimination is
arried out by Redu
e()

afterwards. We provide an opportunity to unmark some \important"
olumns before

Redu
e() is invoked. Note that this will not prohibit their removal by Redu
e() if

implied by some redu
tions.

Columns with only a few nonzeros are very often essential for integral feasibility.

If the
orresponding variable is of high
ost then this variable will be unattra
tive in

at least the �rst few LP relaxations and it is likely to be marked during the heuristi

�xing phase. (In
luding expensive short
olumns to ensure integral feasibility is

98

typi
al for a number of problem instan
e generators.) A parameter determines up to

how many nonzeros a
olumn
an
ontain in order to be spared during the heuristi

�xing phase. If the parameter is set to zero then no
olumn will be unmarked.

Prote
ting
olumns with one or two nonzeros is pro�table, while values four and

above are impra
ti
al sin
e very often in this
ase no
olumns are left marked for

deletion when the matrix is already small. To avoid a situation where all marked

variables are unmarked by this pro
edure the parameter is temporarily de
reased

(but not below one) until some variables are left marked.

We may also unmark variables whi
h are basi
 in the
urrent LP optimal solu-

tion. A parameter enables this option. A di�erent parameter
an enable/disable

the deletion of variables at nonzero level (whi
h are always basi
). This option

an be used when we wish to remove all nonbasi
 variables from a row's support.

Prote
ting basi
 variables also provides a smoother and faster LP warmstart.

4.2.3 Overview of our algorithm

In this se
tion we summarize the general
ow of our algorithm, see Figure 4.1 for

an outline.

First our problem size redu
tion algorithm Redu
e(), is invoked. If Redu
e() re-

turns with a feasible (hen
e optimal) solution or it has determined that the problem

is infeasible, we are done. The initial problem size redu
tion is followed by solving

the LP relaxation (variables are nonnegative instead of binary) of the redu
ed prob-

lem. If the LP relaxation has an integral optimal solution or it is infeasible then we

are also done.

99

Feasible Solution Heuristi

Input: A,
, parameters

Output: feasibility status, A',
', ONES, MERGES

invoke Redu
e(); if integral opt soln found or infeas, return

solve LP relaxation; if integral opt soln found or infeas, return

while (iteration limit not rea
hed) {

opy
urrent problem into tmp problem

while (feasibility of tmp problem is not known) {

invoke heuristi
s to fix variables in tmp problem

if no vars fixed: heur failed (weak par setting), return

use Redu
e() to propagate effe
ts of fixing

if integral feas soln found or infeas, break

solve LP relaxation of redu
ed tmp problem

if integral feas soln found or infeas, break

if original problem is feas invoke redu
ed
ost fixing

on tmp problem

}

if integral feas soln found above,
ompare w/ best found so far

if better, update; if worse, return.

if infeas dete
ted above, heur failed (aggressive par setting),

return

otherwise we have a (better) feasible solution

do {

invoke redu
ed
ost fixing on
urrent problem

if no vars fixed

if first time sin
e (better) feas soln found, return

ow break out from this loop

use Redu
e() to propagate effe
ts of fixing

if integral feas soln found or infeas, optimal, return

solve LP relaxation of redu
ed
urrent problem

if integral feas soln found or infeas, optimal, return

} while (enough variables have been eliminated)

}

end

Figure 4.1: Outline of Feasible Solution Heuristi

100

Next a major loop is entered where �rst we attempt to �nd a feasible solution

to the
urrent problem (the most re
ent redu
ed formulation that has the same

optimal solution as the original problem) using a variety of heuristi
s, then, if we

su

eed, eliminate variables based on their redu
ed
osts in the
urrent LP relaxation

(redu
ed
ost �xing). This major loop is repeated until: (i) the heuristi
s in the �rst

part of the major loop fails to provide a (better) feasible solution, or (ii) an integral

solution to the
urrent problem (thus optimal) is found as a result of the most re
ent

redu
ed
ost �xing, or (iii) a pre-set iteration limit is rea
hed. Before the algorithm

terminates, the best feasible solution found (if any) is displayed and the remainder

of the problem is saved. Note that it is possible that the best feasible solution found

is in fa
t optimal but the remainder problem is nonempty (and it might even be

infeasible); this simply means that not all variables
ould be eliminated based on

their redu
ed
osts.

Note that at the top of the major loop we have a formulation that has the same

optimal value as the original problem. The sear
h for a feasible solution to the

urrent problem starts with
reating a temporary
opy to whi
h the heuristi
 will

be applied. The temporary problem is used sin
e the heuristi
 �xing phase might

eliminate some
olumns and/or rows leading to the loss of all optimal solutions.

Then a loop that repeats heuristi
 �xing of variables (see details below), propagating

the e�e
ts of �xing using Redu
e(), and re-solving the LP relaxation (if ne
essary),

is entered. If a feasible solution to the original problem is known, variables are also

eliminated based on their redu
ed
osts after the LP relaxation is re-solved. This

loop repeats until the heuristi
 is not able to �x any variables, a feasible solution

101

to the temporary problem is found, or the temporary problem be
omes infeasible.

The exe
ution of the heuristi
 is determined by a set of parameters. If the

heuristi
 was not able to �x any variables then the parameter settings were too weak.

On the other hand, if the temporary problem be
ame infeasible, the heuristi
 was

invoked with the parameters set too aggressively. Our algorithm terminates in both

ases, although the inner loop
ould be restarted after adjusting the parameters.

If the algorithm did not terminate until this point, a (better) feasible solution has

been found. In the se
ond part of the major loop variables in the
urrent problem are

eliminated repeatedly based on their redu
ed
osts, until no more su
h redu
tion is

possible (in pra
ti
e, until no more than a
ertain per
entage of variables is deleted).

Redu
e() is invoked to propagate the e�e
ts of this �xing and then the LP relaxation

of the redu
ed (
urrent) problem is re-solved. If either Redu
e() or the LP solver

�nds the problem (integral) feasible then the best feasible solution found so far is

optimal sin
e all the redu
tions to the
urrent problem preserve the optimal value.

Also, if the
urrent problem is found to be infeasible by Redu
e() or by the LP

solver, the best feasible solution found so far is again optimal. This is be
ause we

aim for a stri
tly better feasible solution during redu
ed
ost �xing, as des
ribed

earlier. If no redu
tion was possible the �rst time redu
ed
ost �xing is invoked

after a (better) feasible solution has been found then the algorithm terminates.

If only the �rst feasible solution is desired then the iteration limit
an be set to 1.

In our experien
e the major loop repeats only a few times for an average instan
e,

and every subsequent pass is
onsiderably faster than the previous one sin
e redu
ed

ost �xing usually eliminates many
olumns. Most of the additional time after the

102

the �rst feasible solution is found is spent in resolving the LP relaxations after

redu
ed
ost �xing.

4.3 Solving the LP relaxations (warmstart)

Our experiments were
arried out using CPLEX v4.0.9 ([CPX95℄). When inter-

preting observations related to solving LPs (espe
ially to warmstarting) we have

to keep in mind that using other LP solvers might result in signi�
antly di�erent

on
lusions.

In our implementation we have experimented with the primal simplex, dual

simplex and barrier (with and without
rossover) methods. Sin
e set partitioning

problems are highly degenerate in general, the primal simplex method performs

very poorly on them. While the barrier method was slightly slower on the smaller

problems than the dual simplex method, it is superior to dual simplex on medium

and large problems. We have used the barrier method with dual
rossover in our �nal

experiments. (Reportedly, the dual simplex method has been improved signi�
antly

in CPLEX v6.0 and its performan
e is
omparable to that of the barrier method on

not only the smaller problems, [Bix98℄.)

As we have mentioned earlier, information from the previous LP
an be used

to warmstart the next LP (instead of solving it from s
rat
h) if the formulation

hanged only a little. It might also be possible to
onstru
t an optimal solution

without re-solving the LP if
ertain important
olumns and rows were not removed

from the matrix. In CPLEX v4.0.9, the simplex methods
an be warmstarted only

103

using basis information, while barrier methods
an use basis information and/or a

primal-dual solution pair (primal-dual worked the best). In our implementation a

parameter determines what warmstart information to use; there is no warmstart if

this parameter is set to zero.

The e�e
tiveness of the warmstart depends heavily on the implementation of the

spe
i�
 warmstart algorithm in the LP solver. Sin
e we have no a

ess to this infor-

mation we made an e�ort to provide a high quality (near optimal) starting basis and

primal-dual solution pair to the LP solver. We keep a
opy of the basis information

and primal-dual solution pair for both the
urrent and temporary problems. Every

time the
orresponding LP relaxation is re-solved the optimal basis information and

primal-dual solution pair are
opied; and whenever Redu
e() is invoked we tailor

these
opies to the new formulation. In what follows we dis
uss these updates in

detail.

In CPLEX the basis information
onsists of the basis status of all the stru
tural

and arti�
ial variables (these latter are added by CPLEX). To provide basis infor-

mation for the warmstart we have to designate whi
h variables are basi
 and whi
h

are nonbasi
 (and at whi
h bound). Ideally, the
olumns
orresponding to the vari-

ables designated to be basi
 should be linearly independent and the number of these

variables should be exa
tly the number of rows. However, CPLEX is able to start

from any basis information, it will eliminate dependen
ies from among the
olumns

designated to be basi
 and extends the remaining set of independent
olumns into a

valid basis. In our implementation we have in
luded an option that lets us re-solve

the LP from s
rat
h instead of warmstarting if we think the basis information we

104

an provide is far from a valid basis.

We update the basis information from the previous LP by keeping the basis sta-

tus of all variables (stru
tural and arti�
ial) that were not deleted or merged and

setting the basis status of merged
olumns to be basi
 if the
olumn was merged

from formerly basi

olumns, and nonbasi
 at lower bound otherwise. Note that if

none of the following three events o

ur then this new basis information provides

a valid basis (whi
h also turns out to be optimal as we will see below). First, a

basi
 stru
tural variable is deleted, leaving too few independent
olumns (variables

marked as basi
) in the basis. Se
ond, a basi
 stru
tural variable is merged with

some nonbasi
 variables; in this
ase the resulting
olumn might not be indepen-

dent from the rest of the
olumns in the former basis so we designate this merged

variable nonbasi
 in the new basis information whi
h again leaves too few indepen-

dent
olumns. The last but probably most important
ase is when a row with a

nonbasi
 arti�
ial variable is deleted from the formulation sin
e this might leave us

with linearly dependent
olumns in the basis. Others (e.g., [BGKK97℄) solve these

problems by not removing basi
 stru
tural variables, disallowing merging and also

deleting only those rows whose arti�
ial variables
an be pivoted into the basis with

a degenerate pivot.

The primal and dual solutions
onsist of values for both the stru
tural and ar-

ti�
ial variables. Primal solution values for stru
tural variables are updated by

averaging the values of variables that make up a
olumn (
olumns
ould be merged

olumns); while dual solution values are approximated by adding the
orresponding

values. Primal solution values for arti�
ial variables are
omputed expli
itly, while

105

dual values remain un
hanged. If none of the three
ases above o

urs then the

primal-dual pair
reated with these rules will be primal/dual feasible and the re-

du
ed
osts of variables remain nonnegative if that was the
ase before the update;

that is, optimality is retained. In this
ase it is not even ne
essary to re-solve the

LP.

4.4 Computational results

After a
onsiderable amount of experimenting we de
ided on the following parameter

settings (we refer to them as default settings) for our �nal runs. We used the barrier

method with dual
rossover to solve the LP relaxations, with a primal-dual pair for

warmstarting. A lower bound on the granularity was set to :99 for the Set 1, 3

and 4 problems and :0099 for the Set 2 problems. We did not limit the number of

major iterations. In the heuristi
 �xing phase LP reoptimization is for
ed after 5%

of the
olumns are eliminated. The adaptive strategy was used for variables at level

one in the
urrent LP relaxation (su
h variables were set to one if the ratio of the

variables at level one to all the variables at nonzero level was at least :75, and they

were skipped otherwise). Follow-on �xing was enabled, with the threshold starting

at :99 but not going below :59. At least 50% of the row pairs (and all for the smaller

problems) were examined during follow-on �xing,
omparing those with the largest

absolute dual values �rst. Unattra
tive variables were removed only if the follow-on

�xing did not mark any variables for deletion. Up to 25% of the rows were sele
ted

randomly for this pro
edure, marking 10% of the least attra
tive variables
urrently

106

at zero level for deletion. Columns with up to two nonzeros as well as basi
 variables

were prote
ted. The whole algorithm was given a time limit of 7200 se
onds.

Tables 4.1, 4.2, 4.3 and 4.4 summarize the results of this run for all four problem

sets. These tables
ontain the name, the optimal value of the �rst LP relaxation, the

optimal value for problems in Set1 or the best feasible solution known for problems

in Set 3 (with a *" if the solution is known to be optimal); the upper bound

obtained by our feasible solution heuristi
 (a *" if optimality was proved and \F"

if our heuristi
 failed), the optimality gap ((�z�z

�

)=z

�

) for problems in Set 1 and the

integrality gap ((�z � z)=z) for the rest of the problems (in [BGKK97℄ this latter is

omputed as (�z�z)=�z for the Set 3 problems); the number of
olumns and rows left

in the matrix; the number of times the major loop and the heuristi
 �xing phase (we

refer to it as the minor loop) are repeated; the total time spent in the heuristi
 (less

the time needed to read in the problem instan
e and
arry out the initial Redu
e());

the time spent in solving LPs and in Redu
e() (with their multipli
ity); and �nally

the �rst feasible solution found by the heuristi
 and the time spent until then.

The LP and Redu
e() times make up almost all the time spent in the entire

pro
edure, so the heuristi
 and redu
ed
ost �xing algorithms themselves are very

inexpensive. Usually the quality of the �rst feasible solution found is a

eptable,

however, the strength of our algorithm is that with the repeated use of redu
ed
ost

�xing the optimal solution is not only found but also proved for most of the \easy"

problems. The time spent in further major iterations is not more than 10% of the

total time, it is mostly used for (re)solving LP relaxations after redu
ed
ost �xing.

A feasible solution has been found to all the Set 1 problems, optimality has been

107

proved for 30 of the 40 problems, the optimal solution was found but not proved

for 5 more problems (the remaining matrix is quite small for these problems), and

the optimality gap is below 2% for the other 5 problems. The remaining matri
es

are very small for all but the 3 diÆ
ult problems (a01, aa04 and nw04). The small

problems are very often solved to optimality in one major iteration.

We have found a feasible solution within 2% of the �rst LP optimum for all

the v* problems. The t* problems seem to be more diÆ
ult; a feasible solution

(within 56� 62% of the LP optimum) was found for half of the t17 problems, and

no parameter setting resulted in a feasible solution for any of the t04 problems.

The ratio of variables at level one to all variables at nonzero levels is very high for

the v* problems. The adaptive strategy takes advantage of this: feasible solutions

are found very qui
kly for the v04 problems (unfortunately all but one of the v16

problems are missed be
ause of their slightly smaller ratio). It is interesting to

observe that redu
ed
ost �xing was not able to eliminate any
olumns after a

feasible solution was found. This is an indi
ation that these problems are well-

onstru
ted.

The problems in Set 2 are very hard, our feasible solution heuristi
 always failed

on these problems. The LPs are moderately diÆ
ult to solve, the global time limit

was never rea
hed. Our results for the Set 4 problems are mixed, for some of them

the LPs are just very hard to solve (we ran out of time while solving LPs in sp6,

sp7, sp8, sp9, sp12 and sp14). For the rest of the problems the heuristi
 delivered

an optimal solution in three
ases, found a feasible solution for two more problems

and failed for three. The problems for whi
h the optimal solution was found seem

108

to be easy sin
e only one major iteration was needed.

We also in
lude the results of some
omparison runs for the Set 1 and 3 problems.

Looking at the results of these runs
on�rms our
hoi
e of parameters. Although

not reported here, similar experiments were also performed on the problems in the

other two sets as well during preliminary testing (the results were the same as for

the default,
onsistently failing for all problems that the default did).

Tables 4.5, 4.6, 4.7, and 4.8
ontain results of these experiments for the Set 1

and Tables 4.9 and 4.10 for the Set 3 problems. The tables give the upper bound

obtained by our feasible solution heuristi
, the total time spent in the heuristi
;

the time spent in solving LPs (with multipli
ity) for the �rst experiment and the

number of major and minor iterations for the other experiments. The following

des
ribes these experiments and gives a few words of explanation for ea
h.

� Dual simplex (with basis warmstart) instead of barrier. The barrier method

is
learly mu
h faster for all but the smallest problems. Note that neither of

the LP solvers results in
onsistently better feasible solutions sin
e the only

di�eren
e between the two experiments is that the LP solvers may end up in

di�erent extreme points for the same LP relaxation, pushing the heuristi
 into

di�erent dire
tions.

� Follow-on �xing turned o�. This is
learly mu
h worse than the default; it fails

more often and takes more time and minor iterations. This shows that the

follow-on approa
h is more robust than the removal of unattra
tive variables.

� Follow-on threshold starts at :79 instead of :99. This is a more aggressive

109

setting, sin
e more row pairs will be found to be follow-ons at �rst. This

setting fails more often and the quality of feasible solutions found is slightly

worse than the default setting. There is a slight speed-up for some of the

problems that is due to having fewer major/minor iterations.

� Rows with smallest (instead of largest) dual absolute values are
ompared �rst

during follow-on �xing. This approa
h fails for a few v* problems and delivers

worse feasible solutions for some Set 1 problems (even if all row pairs are

onsidered for the smaller problems the results
an be di�erent sin
e the row

pairs are enumerated in a di�erent order).

� Variables at level 1 in the LP relaxation are �xed to 1. This is
learly a

more aggressive approa
h than our default. As we expe
ted, it fails more

often or gives lower quality feasible solutions but it
an be mu
h faster. It is

parti
ularly good for the v16 problems that the default approa
h missed.

� Symmetri
 di�eren
e is applied to variables at level 1. Slightly less aggressive

than �xing the same variables to one, we
an observe that the feasible solutions

are slightly better but the running time is worse. Sin
e we use follow-on �xing

that a
hieves the same e�e
t (but in several iterations), we de
ided to go with

a
ombination of aggressive �xing and \doing nothing" in our default.

� LP re-optimization is for
ed only if 20% of the
olumns are marked for dele-

tion. This approa
h is more aggressive than our default. While faster than the

default, it fails or delivers worse feasible solutions very often. This shows that

110

frequent re-optimization of the LP is important; our updates be
ome weak if

the matrix
hanges signi�
antly.

� Short
olumns are not prote
ted. This approa
h delivers slightly worse feasible

solutions for the Set 1 problems and fails for the v* problems too often. This

shows how important short
olumns
an be for
ertain
lasses of problems.

The running times are mixed.

We
an
on
lude that our feasible solution heuristi
 with the default settings is

a robust algorithm that delivers high quality feasible (often optimal) solutions for

all the Set 1 and many of the Set 3 problems. The two main fa
tors
ontributing

to the running time are the LP solver and the problem size redu
tion. We see

some possibility for improvement for both. More information on the LP solver's

warmstart algorithm
ould lead to a better strategy for when and how to resolve

LPs. The problem size redu
tion
ould be improved by implementing additional

redu
tion methods. This might slow down the individual Redu
e()
alls but would

most likely de
rease the number of times Redu
e() (and the LP solver) is invoked,

so possibly redu
ing the overall running time. Saving time by omitting CLEXT,

the most expensive part of Redu
e() is a double-edged sword; the exe
ution time

usually de
reased, but the solution quality signi�
antly de
lined as well (it even

failed on all but two of the v* problems, as well as on four of the Set 1 problems).

The quality of our feasible solution heuristi

ompares very favorably with Ho�-

man and Padberg's algorithm ([HP93℄), see Appendix A.3 for earlier results. Even

our �rst feasible solutions frequently dominate their result. We
annot dire
tly
om-

111

pare the running times sin
e they do not report separate exe
ution times for their

initial heuristi
 runs. Bornd�orfer ([Bor97℄) does not report the value of the feasible

solution found by his heuristi
, only the integrality gap and the size of the matrix

remaining after an additional appli
ation of his problem size redu
tion routine (if

a feasible solution has been found). The quality of our results is better (the gap

and the matri
es remaining after our heuristi
 are smaller), but our exe
ution times

are longer. Bornd�orfer et al. ([BGKK97℄) do not report the results of their initial

feasible solution heuristi
 for the Set 3 problems.

1
1
2

Table 4.1: Feasible solution heuristi
 (default setting), Set 1, part 1

Feasible solution heuristi
 LP Redu
e First feas sol

name lp opt int opt ub o gap
ols rows M m time time freq time freq ub time

aa01 55535.44 56137 56172 0.06% 4764 549 2 57 39.88 18.52 71 20.59 121 56172 23.23

aa03 49616.36 49649 49649 0.00% 178 108 3 55 20.58 10.79 65 9.32 116 49713 19.66

aa04 25877.61 26374 26680 1.16% 5703 340 2 82 23.45 12.04 91 10.63 179 26680 13.89

aa05 53735.93 53839 53904 0.12% 956 298 4 151 22.64 10.11 190 11.47 323 53943 15.63

aa06 26977.19 27040 27040 0.00% 581 255 2 50 14.85 8.01 58 6.34 103 27040 13.82

kl01 1084.00 1086 * 1 6 1.72 1.43 9 0.23 16 1086 1.70

kl02 215.25 219 219 0.00% 1562 50 3 90 7.29 5.38 95 1.56 158 220 6.44

nw03 24447.00 24492 * 2 25 11.74 10.35 31 1.19 70 25125 11.54

nw04 16310.67 16862 17158 1.76% 5782 35 2 19 19.11 15.48 24 3.36 35 17158 16.59

nw06 7640.00 7810 * 3 16 1.52 1.24 22 0.23 47 9430 1.23

nw11 116254.50 116256 * 1 4 0.30 0.27 5 0.01 9 116259 0.29

nw13 50132.00 50146 * 1 10 2.02 1.94 11 0.01 27 50146 2.02

nw17 10875.75 11115 11115 0.00% 101 44 5 60 30.77 26.64 77 3.58 141 11865 29.74

nw18 338864.25 340160 * 1 33 5.13 3.62 35 1.32 77 363576 4.63

nw20 16626.00 16812 * 1 12 0.12 0.09 13 0.01 20 16965 0.12

nw21 7380.00 7408 * 1 16 0.09 0.05 17 0.00 22 7408 0.09

nw22 6942.00 6984 * 1 8 0.08 0.06 9 0.02 12 6984 0.08

nw23 12317.00 12534 * 1 8 0.08 0.04 9 0.01 14 12534 0.08

nw24 5843.00 6314 * 2 11 0.09 0.06 15 0.02 26 6514 0.09

nw25 5852.00 5960 * 1 16 0.12 0.07 17 0.02 29 5960 0.12

1
1
3

Table 4.2: Feasible solution heuristi
 (default setting), Set 1, part 2

Feasible solution heuristi
 LP Redu
e First feas sol

name lp opt int opt ub o gap
ols rows M m time time freq time freq ub time

nw26 6743.00 6796 * 1 10 0.08 0.06 11 0.01 21 6796 0.08

nw27 9877.50 9933 * 1 13 0.11 0.06 13 0.02 27 9933 0.11

nw28 8169.00 8298 * 2 11 0.11 0.08 15 0.03 24 9630 0.09

nw29 4185.33 4274 * 4 23 0.44 0.34 28 0.06 50 4378 0.38

nw30 3726.80 3942 * 1 13 0.23 0.15 14 0.06 21 3942 0.23

nw31 7980.00 8038 * 1 11 0.28 0.20 12 0.06 18 8046 0.28

nw32 14570.00 14877 * 2 14 0.07 0.05 16 0.02 26 15120 0.06

nw33 6484.00 6678 * 1 11 0.48 0.35 11 0.08 24 6682 0.48

nw34 10453.50 10488 * 1 10 0.10 0.06 11 0.03 21 10701 0.09

nw35 7206.00 7216 * 1 3 0.13 0.08 4 0.04 6 7216 0.13

nw36 7260.00 7314 7314 0.00% 29 9 3 17 0.35 0.25 19 0.07 28 7378 0.31

nw37 9961.50 10068 * 1 9 0.10 0.04 9 0.01 24 10068 0.10

nw38 5552.00 5558 * 2 15 0.20 0.13 16 0.05 23 5630 0.19

nw39 9868.50 10080 * 2 17 0.08 0.07 20 0.01 26 10758 0.06

nw40 10658.25 10809 * 2 24 0.13 0.06 25 0.01 45 11838 0.10

nw41 10972.50 11307 * 1 10 0.04 0.03 11 0.00 20 11838 0.04

nw42 7485.00 7656 * 1 14 0.18 0.13 15 0.01 23 7656 0.18

nw43 8897.00 8904 * 1 16 0.13 0.09 17 0.02 29 8904 0.13

us01 9963.07 10022 10101 0.79% 616 73 3 74 717.90 367.97 84 347.83 131 10199 715.82

us04 17731.67 17854 * 1 16 2.72 1.24 18 1.43 28 17862 2.71

1
1
4

Table 4.3: Feasible solution heuristi
 (default setting), Set 3

best Feasible solution heuristi
 LP Redu
e First feas sol

name lp opt feas sol ub i gap
ols rows M m time time freq time freq ub time

v0415 2423977.00 * 2429415 2435833 0.49% 4294 763 1 16 0.97 0.79 16 0.07 26 2435833 0.94

v0416 2715490.67 * 2725602 2736885 0.79% 3609 982 1 27 1.15 0.74 27 0.21 40 2736885 1.12

v0417 2603308.50 * 2611518 2622525 0.74% 55584 894 1 22 11.68 9.62 22 0.49 28 2622525 11.21

v0418 2836836.67 * 2845425 2855469 0.66% 4761 951 1 35 1.25 0.81 35 0.17 45 2855469 1.21

v0419 2582994.00 * 2590326 2598124 0.59% 2870 822 1 14 0.71 0.54 14 0.05 14 2598124 0.69

v0420 1688793.33 * 1696889 1703734 0.88% 2636 590 1 22 0.58 0.38 22 0.07 27 1703734 0.57

v0421 1848949.00 * 1853951 1858977 0.54% 1171 464 1 11 0.24 0.17 11 0.01 13 1858977 0.24

v1616 1002954.62 * 1006460 1018536 1.55% 27011 1285 1 516 147.09 37.62 516 81.36 729 1018536 146.90

v1617 1098263.23 1102586 1115503 1.57% 44009 1458 1 642 239.34 68.43 642 126.95 893 1115503 238.96

v1618 1147777.67 1154458 1166107 1.60% 88852 1434 1 585 271.00 81.85 585 140.09 873 1166107 270.23

v1619 1150943.29 1156338 1168481 1.52% 44271 1476 1 507 215.62 50.16 508 128.08 783 1168481 215.20

v1620 1136666.52 * 1140604 1152624 1.40% 87536 1412 1 623 346.84 94.64 624 191.57 897 1152624 345.99

v1621 822339.42 * 825563 834602 1.49% 9758 854 1 328 54.20 11.64 328 29.95 495 834602 54.14

v1622 790076.50 * 793445 800572 1.33% 7620 787 1 47 2.60 1.96 47 0.26 76 800572 2.56

t0415 5125429.50 5590096 F 1 10 72.70 46.40 11 23.62 29

t0416 5829948.77 6130217 F 1 9 120.29 90.81 10 26.73 28

t0417 5610564.20 6043157 F 1 9 83.62 59.70 10 21.90 20

t0418 6142664.90 6550898 F 1 10 229.27 179.83 11 45.91 31

t0419 5644051.00 5916956 F 1 5 63.35 43.31 6 18.58 18

t0420 3983951.22 4276444 F 1 10 21.74 12.84 11 8.00 30

t0421 4057701.31 4354411 F 1 8 17.45 11.67 9 4.94 20

t1716 121648.87 161636 F 1 69 89.30 66.44 69 20.23 235

t1717 134531.02 184692 210489 56.46% 16428 551 1 87 113.80 83.97 88 26.36 263 210489 113.77

t1718 126334.47 162992 204086 61.54% 16310 523 1 95 132.71 103.45 96 25.87 298 204086 132.69

t1719 138708.87 187677 F 1 85 133.18 98.67 85 30.39 302

t1720 126333.20 172752 200679 58.85% 16195 538 1 76 124.79 92.96 77 28.43 265 200679 124.77

t1721 103748.46 127424 F 1 98 37.38 26.32 98 9.37 265

1
1
5

Table 4.4: Feasible solution heuristi
 (default setting), Sets 2 and 4

Feasible solution heuristi
 LP Redu
e First feas sol

name lp opt ub i gap
ols rows M m time time freq time freq ub time

0321.4 35742.46 F 1 11 1634.92 1253.53 12 376.09 34

0331.3 28402.76 F 1 18 290.63 157.68 19 129.84 58

0331.4 29730.03 F 1 21 483.03 360.83 21 118.10 63

0341.3 31004.06 F 1 30 893.40 742.66 31 147.37 85

0341.4 34276.06 F 1 20 215.27 135.13 21 77.49 62

0351.3 35032.59 F 1 16 1645.49 1189.50 17 449.47 51

0351.4 34434.36 F 1 13 1835.28 1494.46 14 334.99 41

nf260 47405.00 * 47420 1 1 40.38 37.86 2 1.47 2 47420 38.90

sp1 9987.80 11482 14.96% 5148 198 2 58 78.38 54.00 64 23.92 94 11482 55.22

sp2 13522.93 * 13914 1 16 6.56 3.22 18 3.19 25 13914 6.19

sp3 12766.12 * 12943 1 10 1.18 0.84 12 0.27 14 12943 1.10

sp4 11389.42 F 1 39 58.07 30.11 40 27.39 60

sp5 27403.20 27637 0.85% 3764 587 2 23 1181.31 1088.97 31 90.55 50 27637 789.92

sp6 157414.80 F 1 5 7144.31 6943.81 6 199.89 5

sp7 162349.98 F 1 1 7289.45 7234.99 2 54.28 1

sp8 368714.87 F 1 1 7170.27 6957.01 2 212.75 2

sp9 166705.53 F 1 18 7173.32 6595.98 19 571.17 46

sp10 43045.72 F 1 24 24.22 13.49 25 10.23 47

sp11 3093.13 F 1 14 0.88 0.66 15 0.18 14

sp12 248004.45 F 1 1 7068.51 6662.20 2 405.60 3

sp14 250210.43 F 1 1 7153.19 7027.61 2 125.18 2

1
1
6

Table 4.5: Feasible solution heuristi
 (
omparison runs), Set 1, part 1

dual simpl w/ basis warmst no follow-on follow-on threshold .79 follow-on w/ small dual abs

name opt ub time time freq ub time M m ub time M m ub time M m

aa01 56137 56153 454.52 415.83 146 F 32.57 1 73 56172 37.43 2 58 57117 88.43 3 193

aa03 49649 49649 87.11 79.37 88 49649 23.12 3 210 49649 19.02 2 31 49649 21.44 2 40

aa04 26374 26555 151.63 131.34 185 F 13.44 1 61 27959 14.04 1 88 27009 37.10 3 194

aa05 53839 54250 96.75 82.17 138 F 19.81 1 106 53941 15.80 2 66 53904 21.61 3 104

aa06 27040 27040 47.37 40.92 47 27040 22.76 3 150 27040 19.44 3 79 27040 13.84 2 43

kl01 1086 * 1.59 1.22 37 1091 3.31 2 89 * 1.95 2 45 * 2.25 2 28

kl02 219 219 10.28 8.25 65 219 11.45 3 147 220 6.70 2 43 219 7.61 2 70

nw03 24492 * 12.11 10.60 51 * 20.97 2 118 * 11.86 2 25 * 11.76 2 21

nw04 16862 16942 24.14 19.67 39 22494 73.37 2 61 17158 19.12 2 19 17004 17.42 2 16

nw06 7810 9344 1.50 1.27 26 * 2.39 1 73 * 1.60 3 16 * 1.67 2 29

nw11 116256 * 0.24 0.22 5 * 0.27 1 7 * 0.28 1 4 * 0.24 1 4

nw13 50146 * 1.99 1.93 10 * 2.08 1 36 * 1.97 1 10 * 1.99 1 9

nw17 11115 11115 30.21 26.83 17 67719 48.02 1 124 11196 30.73 4 58 11115 33.54 5 99

nw18 340160 * 8.79 7.21 26 408414 7.23 1 97 * 5.01 1 22 408724 5.09 1 52

nw20 16812 * 0.10 0.04 10 * 0.20 1 29 * 0.07 1 12 * 0.11 1 9

nw21 7408 * 0.08 0.04 16 * 0.13 1 23 * 0.12 1 16 * 0.08 1 16

nw22 6984 * 0.10 0.05 10 * 0.29 2 50 * 0.09 1 8 * 0.07 1 7

nw23 12534 * 0.07 0.04 9 * 0.20 1 34 * 0.08 1 8 * 0.06 1 4

nw24 6314 * 0.11 0.04 15 * 0.15 1 12 * 0.09 2 11 * 0.09 2 14

nw25 5960 * 0.07 0.06 12 * 0.14 1 16 * 0.13 1 16 * 0.08 1 10

1
1
7

Table 4.6: Feasible solution heuristi
 (
omparison runs), Set 1, part 2

�x vars at one to 1 symm di� on vars at one for
e LP resolve at 20% short
ols not prote
ted

name opt ub time M m ub time M m ub time M m ub time M m

aa01 56137 F 19.77 1 41 F 40.63 1 47 F 24.50 1 19 56506 47.66 2 70

aa03 49649 49664 7.25 3 39 47971 7.04 2 18 49649 10.90 2 9 49649 21.42 2 49

aa04 26374 27376 20.64 2 109 26740 32.19 3 181 F 14.60 1 24 26541 26.84 3 120

aa05 53839 54144 13.32 3 91 52992 17.27 4 122 F 9.84 1 37 53935 19.79 3 117

aa06 27040 27045 8.56 3 47 27040 11.71 4 81 27040 12.41 4 24 27040 14.71 2 55

kl01 1086 * 1.37 2 25 * 1.56 2 38 * 1.57 2 35 1089 1.76 2 28

kl02 219 220 5.27 2 62 219 6.12 3 92 220 6.32 2 64 219 9.41 3 66

nw03 24492 25125 10.66 3 21 25086 10.66 3 22 * 11.55 2 30 * 13.33 2 26

nw04 16862 18016 16.64 2 23 17004 16.14 2 9 16964 19.33 3 26 16942 20.23 2 17

nw06 7810 * 1.33 1 15 * 1.60 2 12 * 1.26 1 19 * 1.37 1 13

nw11 116256 * 0.28 1 4 * 0.38 1 35 * 0.29 1 7 * 0.27 1 4

nw13 50146 * 1.99 1 10 * 2.07 1 33 * 2.00 1 16 * 1.99 1 6

nw17 11115 11673 30.19 3 46 11382 31.63 3 51 11115 32.42 5 33 11115 36.67 4 49

nw18 340160 * 5.20 3 68 * 6.57 2 47 419616 3.77 1 33 367156 7.47 2 58

nw20 16812 * 0.08 1 8 * 0.13 2 14 * 0.09 1 9 * 0.10 1 9

nw21 7408 * 0.10 2 18 * 0.08 1 13 * 0.09 1 18 * 0.08 1 9

nw22 6984 * 0.08 1 5 * 0.06 1 5 * 0.09 1 8 * 0.10 1 8

nw23 12534 * 0.06 1 4 * 0.07 1 7 * 0.06 1 5 * 0.05 1 5

nw24 6314 * 0.08 2 10 * 0.10 2 8 * 0.13 2 20 * 0.09 2 11

nw25 5960 * 0.11 1 11 * 0.11 1 16 * 0.11 1 15 * 0.09 1 8

1
1
8

Table 4.7: Feasible solution heuristi
 (
omparison runs), Set 1, part 1,
ont.

dual simpl w/ basis warmst no follow-on follow-on threshold .79 follow-on w/ small dual abs

name opt ub time time freq ub time M m ub time M m ub time M m

nw26 6796 * 0.06 0.03 11 * 0.14 1 19 * 0.10 1 10 * 0.07 1 12

nw27 9933 * 0.10 0.06 11 * 0.24 1 46 * 0.12 1 13 * 0.10 1 13

nw28 8298 * 0.07 0.05 11 * 0.18 1 6 * 0.12 2 11 8688 0.11 2 11

nw29 4274 4338 0.39 0.27 26 4324 1.56 4 197 4274 0.35 3 15 4324 0.40 3 26

nw30 3942 * 0.20 0.13 12 * 0.44 1 28 * 0.21 1 14 * 0.21 1 11

nw31 8038 * 0.30 0.20 11 8038 0.66 2 23 * 0.28 1 11 * 0.27 1 10

nw32 14877 * 0.08 0.04 15 * 0.14 1 25 * 0.10 2 14 * 0.06 1 11

nw33 6678 * 0.45 0.33 13 * 1.17 1 28 * 0.50 1 11 * 0.46 1 13

nw34 10488 * 0.08 0.05 11 * 0.19 1 25 * 0.10 1 10 * 0.09 1 11

nw35 7216 * 0.10 0.08 5 * 0.29 1 20 * 0.13 1 3 * 0.13 1 13

nw36 7314 7314 0.37 0.26 26 7314 0.71 4 36 7314 0.38 4 21 7322 0.33 2 13

nw37 10068 * 0.09 0.05 10 * 0.21 1 30 * 0.07 1 9 * 0.07 1 9

nw38 5558 * 0.19 0.14 15 5558 0.30 2 32 * 0.19 2 15 5592 0.19 3 16

nw39 10080 * 0.06 0.04 13 * 0.16 1 28 * 0.12 2 17 * 0.07 2 7

nw40 10809 * 0.06 0.05 13 * 0.17 1 33 * 0.12 2 24 * 0.07 1 12

nw41 11307 * 0.04 0.01 11 * 0.09 1 17 * 0.03 1 10 * 0.04 1 11

nw42 7656 * 0.14 0.10 13 * 0.34 1 46 * 0.17 1 14 * 0.18 2 15

nw43 8904 * 0.13 0.07 18 * 0.27 1 48 * 0.14 1 16 * 0.13 1 12

us01 10022 10036 1255.46 841.04 31 10222 1326.31 2 98 10052 738.07 2 27 10036 360.96 4 94

us04 17854 * 3.18 1.71 31 * 5.05 1 59 * 2.75 1 16 * 2.64 1 33

1
1
9

Table 4.8: Feasible solution heuristi
 (
omparison runs), Set 1, part 2,
ont.

�x vars at one to 1 symm di� on vars at one for
e LP resolve at 20% short
ols not prote
ted

name opt ub time M m ub time M m ub time M m ub time M m

nw26 6796 * 0.07 1 8 * 0.08 1 9 * 0.06 1 9 * 0.08 1 8

nw27 9933 * 0.09 1 9 * 0.08 1 11 * 0.11 1 9 * 0.10 1 10

nw28 8298 8688 0.11 2 11 * 0.09 2 10 * 0.13 2 11 * 0.09 2 8

nw29 4274 4338 0.40 3 21 * 0.42 4 24 * 0.41 4 17 4338 0.41 3 18

nw30 3942 * 0.26 1 11 * 0.24 1 12 * 0.21 1 9 * 0.24 1 14

nw31 8038 8046 0.24 3 9 8046 0.24 3 11 * 0.28 1 9 * 0.29 1 12

nw32 14877 * 0.05 2 7 * 0.06 2 11 * 0.08 2 13 * 0.08 2 10

nw33 6678 * 0.37 1 1 * 0.41 1 9 * 0.50 1 13 * 0.51 1 11

nw34 10488 * 0.07 1 5 * 0.06 1 7 * 0.10 1 9 * 0.07 1 9

nw35 7216 * 0.09 1 1 * 0.10 1 2 * 0.11 1 3 * 0.12 1 5

nw36 7314 7314 0.39 3 20 7314 0.41 3 19 7314 0.34 4 16 7314 0.32 3 15

nw37 10068 * 0.05 1 5 * 0.07 1 9 * 0.09 1 9 * 0.09 2 11

nw38 5558 * 0.20 2 10 * 0.20 2 12 * 0.17 2 12 * 0.16 2 12

nw39 10080 * 0.06 2 7 * 0.07 2 8 * 0.09 2 8 * 0.07 2 10

nw40 10809 * 0.08 1 15 * 0.11 2 24 * 0.07 1 16 * 0.06 1 11

nw41 11307 * 0.03 1 4 * 0.03 1 7 * 0.06 1 7 * 0.03 1 8

nw42 7656 * 0.17 1 13 * 0.18 1 13 * 0.16 1 12 * 0.14 1 11

nw43 8904 * 0.13 1 19 * 0.12 1 15 * 0.10 1 17 * 0.12 1 10

us01 10022 10051 717.59 3 61 10051 716.54 3 61 10051 554.50 4 45 10036 595.95 2 27

us04 17854 * 1.25 1 9 * 1.61 1 11 * 1.84 1 11 * 2.35 1 17

1
2
0

Table 4.9: Feasible solution heuristi
 (
omparison runs), Set 3, part 1

dual simpl w/ basis warmst no follow-on follow-on threshold .79 follow-on w/ small dual abs

name opt ub time time freq ub time M m ub time M m ub time M m

v0415 * 2429415 2437371 0.93 0.72 15 2436517 1.05 1 50 2435833 0.93 1 16 2436386 0.92 1 16

v0416 * 2725602 F 1.18 0.72 38 2738976 1.29 1 54 F 0.99 1 11 2739043 1.21 1 29

v0417 * 2611518 2622525 11.61 9.51 22 2619937 11.68 1 22 2622525 11.82 1 22 2622525 11.79 1 22

v0418 * 2845425 2854403 1.25 0.76 35 2855466 1.24 1 46 2858585 1.32 1 34 2856221 1.30 1 37

v0419 * 2590326 2598124 0.69 0.51 14 2601032 0.69 1 17 2598124 0.72 1 14 2598124 0.73 1 14

v0420 * 1696889 1703734 0.56 0.38 22 1706883 0.54 1 26 1703734 0.56 1 22 1704283 0.61 1 21

v0421 * 1853951 1858977 0.25 0.17 11 1859428 0.21 1 9 1858977 0.24 1 11 1858977 0.22 1 11

v1616 * 1006460 F 144.62 19.57 532 1024509 710.38 1 1378 F 143.67 1 433 1012015 65.26 1 94

v1617 1102586 1112822 215.39 34.05 641 1115627 1094.06 1 1523 1114867 243.71 1 660 1111830 241.50 1 450

v1618 1154458 1173014 259.83 51.10 684 1176239 1204.09 1 1693 1167792 276.45 1 603 1164444 286.54 1 492

v1619 1156338 F 195.58 28.41 381 1182351 1157.68 1 1711 1164669 222.13 1 530 1169130 268.49 1 526

v1620 * 1140604 1151571 341.81 106.93 581 1151869 1019.66 1 1585 1147928 348.13 1 655 1151575 290.80 1 411

v1621 * 825563 835181 47.06 5.60 299 831691 148.05 1 668 839018 49.74 1 296 F 53.53 1 272

v1622 * 793445 801323 2.54 1.89 46 F 2.95 1 94 F 2.38 1 25 F 2.46 1 27

t0415 5590096 F 129.35 103.88 12 F 45.91 1 24 F 101.72 1 11 F 72.68 1 11

t0416 6130217 F 165.69 137.41 9 F 52.03 1 18 F 69.50 1 8 F 83.60 1 11

t0417 6043157 F 218.08 186.10 12 F 75.21 1 19 F 40.04 1 4 F 96.45 1 11

t0418 6550898 F 366.26 318.32 10 F 100.89 1 19 F 114.78 1 8 F 180.81 1 7

t0419 5916956 F 159.24 132.95 7 F 47.56 1 16 F 77.98 1 9 F 111.77 1 8

t0420 4276444 F 43.29 35.35 12 F 13.76 1 17 F 19.49 1 12 F 18.51 1 8

t0421 4354411 F 32.82 26.39 10 F 14.37 1 18 F 27.72 1 11 F 19.43 1 11

t1716 161636 188291 422.27 401.48 77 F 128.45 1 279 F 80.55 1 83 F 120.72 1 62

t1717 184692 219528 993.33 963.88 123 F 218.83 1 376 F 134.10 1 69 F 126.55 1 78

t1718 162992 194455 852.58 823.70 105 F 236.18 1 441 F 131.34 1 102 224998 110.11 1 88

t1719 187677 240557 1042.84 1009.56 74 F 204.34 1 341 221419 136.63 1 103 246664 258.37 1 105

t1720 172752 208707 937.57 905.45 79 F 207.44 1 353 F 139.82 1 69 254175 130.12 1 101

t1721 127424 163035 207.34 197.34 83 F 79.45 1 372 176002 51.18 1 61 152250 33.22 1 91

1
2
1

Table 4.10: Feasible solution heuristi
 (
omparison runs), Set 3, part 2

�x vars at one to 1 symm di� on vars at one for
e LP resolve at 20% short
ols not prote
ted

name opt ub time M m ub time M m ub time M m ub time M m

v0415 * 2429415 2435833 0.92 1 14 1133371 3.54 1 49 2436974 0.96 1 10 2436168 0.89 1 14

v0416 * 2725602 2742706 1.04 1 26 1444320 6.30 1 48 F 1.01 1 11 2737659 1.04 1 20

v0417 * 2611518 2622525 11.89 1 21 1237709 18.36 1 70 F 10.50 1 11 2619237 11.52 1 17

v0418 * 2845425 2855469 1.24 1 34 F 4.39 1 53 2857629 1.20 1 26 2855279 0.98 1 17

v0419 * 2590326 2598124 0.76 1 13 1319864 4.61 1 26 F 0.62 1 6 2601974 0.71 1 12

v0420 * 1696889 1707732 0.52 1 14 1055119 2.44 1 51 1704067 0.52 1 15 F 0.42 1 5

v0421 * 1853951 1858977 0.23 1 10 901564 0.44 1 20 F 0.20 1 4 1858994 0.23 1 10

v1616 * 1006460 1021108 18.67 1 228 835990 46.09 1 285 F 110.45 1 368 F 47.14 1 81

v1617 1102586 1115769 29.15 1 219 907417 76.80 1 208 1114655 191.40 1 532 F 72.90 1 69

v1618 1154458 1176261 43.11 1 172 954214 76.01 1 203 1171281 219.26 1 513 F 110.95 1 77

v1619 1156338 1171019 31.79 1 205 1002471 76.15 1 305 F 144.71 1 305 F 76.55 1 71

v1620 * 1140604 F 52.76 1 220 962187 87.65 1 295 1149607 246.42 1 476 F 138.75 1 108

v1621 * 825563 836837 3.32 1 47 733645 6.96 1 82 835862 35.70 1 221 831757 15.02 1 58

v1622 * 793445 800250 2.48 1 35 709091 6.69 1 71 800247 2.46 1 30 800799 2.27 1 27

t0415 5590096 F 67.02 1 13 F 69.04 1 11 F 59.27 1 2 F 80.40 1 15

t0416 6130217 F 79.15 1 10 F 117.89 1 11 F 64.88 1 3 F 109.36 1 5

t0417 6043157 F 75.48 1 7 F 82.88 1 9 F 37.03 1 2 F 89.02 1 10

t0418 6550898 F 121.53 1 10 F 229.28 1 10 F 72.53 1 2 F 213.42 1 8

t0419 5916956 F 58.12 1 8 F 72.90 1 7 F 61.15 1 3 F 65.09 1 8

t0420 4276444 F 18.38 1 13 F 21.61 1 10 F 14.82 1 2 F 26.43 1 13

t0421 4354411 F 26.89 1 9 F 17.37 1 8 F 14.80 1 3 F 17.72 1 8

t1716 161636 189583 104.08 1 68 F 78.19 1 66 F 139.39 1 22 F 68.01 1 46

t1717 184692 231206 115.88 1 85 212770 124.10 1 73 207419 109.22 1 31 F 101.43 1 45

t1718 162992 193250 140.22 1 78 191408 135.31 1 93 F 67.33 1 30 F 94.14 1 48

t1719 187677 198186 122.88 1 91 F 127.15 1 102 F 71.56 1 37 F 149.29 1 28

t1720 172752 199804 123.38 1 87 200026 127.43 1 85 F 83.03 1 31 F 219.44 1 50

t1721 127424 F 36.12 1 81 158624 36.99 1 93 F 22.82 1 58 160467 29.70 1 54

Chapter 5

Interfa
ing with the

Bran
h-and-Cut framework

Our Bran
h-and-Cut pro
edure, implemented using the COMPSys framework (Se
-

tion 2.2), was applied to those problems that the Feasible Solution Heuristi
 did

not solve to optimality (Se
tion 4.4).

In the �rst se
tion we des
ribe the framework in further detail, emphasizing those

points whose implementation was nontrivial for our appli
ation. The later se
tions

will dis
uss these points in detail. Appendix D lists those COMPSys parameters

that were important in our
ase, as well as those parameters that we added in our

user-written fun
tions. A detailed des
ription of the user-written fun
tions
an be

found in [EL97℄.

122

123

5.1 The COMPSys framework

As des
ribed earlier (Se
tion 2.2), the COMPSys framework employs a master-

slaves model. The fun
tions of the master are split between two pro
esses: the

Master handles the input/output, maintains and distributes on request the (user-

supplied) problem-spe
i�
 information, and stores the best feasible solution found

so far; while the Tree Manager keeps tra
k of the sear
h tree and distributes work

to the slaves. The tasks were split this way to keep the Tree Manager generi
,

thus
ompletely internal to the framework. All the problem-spe
i�
 information is

handled through the user fun
tions of the Master pro
ess. Of
ourse, the Master

and the Tree Manager
an run simultaneously on the same pro
essor.

There are four
lasses of slave pro
esses. Sear
h tree nodes are sent to the LP

pro
esses. Ea
h LP pro
ess has an asso
iated Cut Generator where separation is

attempted. Cut Pool pro
esses
orresponding to subtrees of the sear
h tree maintain

a
olle
tion of inequalities valid in the subtrees. If de
omposition methods are used

during separation, Solution Pool pro
esses (also
orresponding to subtrees) store

extreme points of the en
losing polytope ([Ral95℄). Sin
e our implementation does

not use de
omposition, we will not dis
uss this feature here in more detail.

Besides the master and slaves pro
esses there is a pro
ess reserved for the Graph-

i
al User Interfa
e through whi
h other pro
esses
an graphi
ally display informa-

tion. The GUI was implemented as a separate pro
ess mainly for te
hni
al reasons.

The GUI is dis
ussed in detail in Chapter 6.

Now we des
ribe the general exe
ution
ow of COMPSys. Figure 5.1 (borrowed

124

from [ELRT97℄) illustrates the main tasks of and the information
ow between the

various pro
esses. The user starts only the Master pro
ess whi
h will spawn the

Tree Manager. All the slave pro
esses are spawned by the Tree Manager.

The Master (M) pro
ess starts by reading in the parameters from a �le and

requests the user to read in all the problem-spe
i�
 input. Then the user is given

ontrol to run prepro
essing and/or upper bounding pro
edures before the a
tual

Bran
h-and-Cut starts. Now the Tree Manager is spawned, the user formulates the

problem and
onstru
ts the root node of the sear
h tree. Then the Master enters

a loop of waiting for messages (like requests for problem-spe
i�
 data, or arrival of

new feasible solutions) and pro
essing them.

The Tree Manager (TM) spawns the slave pro
esses and sends the root node to

an LP pro
ess, then it awaits new sear
h tree nodes
reated by bran
hing in the

LP pro
esses and in turn sends them out to idle LP pro
esses. Parameters govern

whi
h sear
h tree node is sele
ted next for pro
essing.

When an LP pro
ess (LP) is spawned, initial information is obtained from the

Master; then the LP waits for a sear
h tree node. Upon re
eiving a sear
h tree

node a loop is entered where �rst the user
reates the
orresponding LP relaxation

and the relaxation is solved. If the LP relaxation is infeasible or the LP optimal

value is higher than the
urrent upper bound then the sear
h tree node is fathomed.

Otherwise, if the LP optimal solution is feasible for the original problem, then it is

sent to the master pro
ess, the
urrent best upper bound is updated and the node

is fathomed. If
olumn generation is desired then
olumns that would improve the

obje
tive value are added instead of fathoming (we so not use this feature in our

125

.

.

.

.

Cut Gen.

Cut Gen.

Cut Gen.

generate cuts

generate cuts

generate cuts

.

.

.

.

.

LP

LP

LP

process subproblem

check feasibility

perform branching

process subproblem

process subproblem

check feasibility

perform branching

check feasibility

perform branching

.

.

.

.

maintain list of

effective cuts

return violated

cuts

Cut Pool

Cut Pool
maintain list of

effective cuts

return violated

cuts

Tree Manager

maintain search tree

Master

store problem data

compute initial UB

store best solution

soln

soln

soln

cuts

cuts

cuts

root node

nodes

active/candidate

soln

soln

soln

cuts

cuts

cuts

feas soln UB

UB

propagation

feas soln

UB

Figure 5.1: Pro
esses of the COMPSys framework

126

implementation). Now the LP optimal solution is sent to the
orresponding Cut

Generator (and possibly to the Cut Pool) to obtain violated inequalities. While

the Cut Generator and Cut Pool are working, the LP pro
ess identi�es and possi-

bly removes ine�e
tive inequalities and variables that
an be �xed to their bounds.

Variable �xing
onsists of redu
ed
ost �xing (done by the framework) and logi
al

�xing done by the user. At this point the user
an generate violated inequalities

within the LP pro
ess as well (some
ut types, like Gomory
uts, require the LP

optimal tableau, whi
h would be diÆ
ult to reprodu
e in the Cut Generator, and

ostly to send over). Next, inequalities obtained internally or from the Cut Gener-

ator and the Cut Pool are pro
essed (may be lifted by the user), sele
tively added

to the problem formulation and sent to the Cut Pool. If suÆ
iently strong violated

inequalities have been generated, then the exe
ution
ontinues with re-solving the

LP relaxation at the top of the loop. Otherwise,
andidate bran
hing obje
ts (vari-

ables and
onstraints) are sele
ted by the user and strong bran
hing is performed.

The new sear
h tree nodes are sent ba
k to the Tree Manager and the LP pro
ess

waits for the next sear
h tree node (possibly one of the newly generated nodes; this

is
alled diving).

The Cut Generator (CG) pro
ess also obtains initial information from the Mas-

ter. Afterwards it repeatedly re
eives LP optimal solutions from the
orresponding

LP pro
ess and returns valid inequalities violated by the solution. Note that the

LP pro
ess may de
ide to re-solve the LP relaxation without waiting for all the
uts

the Cut Generator
ould generate. In this
ase the Cut Generator will
ontinue

working with the old LP optimal solution until it re
eives a new one or it is not

127

able to �nd more inequalities. This may
ause the Cut Generator to lag behind the

LP pro
ess.

The Cut Pool (CP) pro
ess, just like the other slaves, obtains initial information

from the Master. Valid inequalities arriving from the LP pro
ess are stored away.

When an LP optimal solution arrives, it is tested against the stored inequalities and

those found to be violated are sent ba
k to the LP pro
ess.

Before we des
ribe in detail how we implemented the user-written fun
tions of

the Master, LP and Cut Generator pro
esses for the SPP, we summarize the most

important points in the light of the paragraphs above.

� Master pro
ess

{ Prepro
essing and upper bounding before Bran
h-and-Cut starts

{ Formulating the problem and
onstru
ting the root node of the sear
h

tree

� LP pro
ess

{ Constru
ting the LP relaxation

{ Logi
al �xing of variables

{ Generating violated inequalities

{ Lifting violated inequalities obtained here or in CG or CP

{ De
iding whether to bran
h or
ontinue with solving LPs

{ Choosing bran
hing obje
ts for strong bran
hing and
omparing the pre-

solved results

128

� Cut Generator pro
ess

{ Generating and lifting violated inequalities

{ Generating violated inequalities \by hand" using the GUI

5.2 User-written fun
tions of the Master pro
ess

The input/output fun
tions that need to be supplied by the user (like reading in the

parameter �le and the problem instan
e and displaying a solution), and the fun
tion

that interprets a feasible solution re
eived from another pro
ess were straightforward

to implement. The following two issues needed spe
ial
onsideration.

5.2.1 Prepro
essing and upper bounding

This is where our initial Redu
e() (Chapter 3) and Feasible Solution Heuristi

(Chapter 4)
ould be invoked. Sin
e we implemented these as separate programs,

here we simply reprodu
e the matrix that was obtained at the end of our heuristi

(Se
tion 4.4).

The framework uses the dual simplex method for (re)optimizing the LP relax-

ations. For large Set Partitioning Problems this is very expensive (Se
tion 4.3), so

we solve the initial LP relaxation here using the barrier method with dual
rossover

and pass on the optimal basis to be used as warmstart information.

129

5.2.2 Formulating the problem and
onstru
ting the root

Our implementation reads in the (
olumn ordered) problem matrix along with an

upper bound and a feasible solution (if they exist). All this information, whi
h may

be modi�ed during prepro
essing, is passed on to both the LP and Cut Generator

pro
esses.

COMPSys distinguishes between two
lasses of variables and
onstraints (
uts,

rows): base and extra. Base variables and
onstraints are always in the formulation

for any sear
h tree node, while extra variables and
onstraints may be removed. The

user has to designate whi
h initial variables and
onstraints belong to whi
h
lass.

New extra variables are obtained by
olumn generation, and new extra
onstraints

by separation. Information about base variables and
onstraints is sent to the LP

pro
ess only on
e, while extra obje
ts have to be
ommuni
ated ba
k and forth

between the LP and the Tree Manager, in
reasing message size. On the other hand,

having too many base obje
ts is not only memory
onsuming, but it also slows down

LP solving. This trade-o� has to be balan
ed for ea
h problem
lass.

Sin
e SPPs usually have a large number of
olumns many of whi
h
an be

eliminated by logi
al impli
ations (i.e.; Redu
e) as we go down in the sear
h tree,

we have de
ided to designate all variables as extra variables and to in
lude all

of them in the root des
ription (so no
olumn generation is ne
essary). On the

other hand, to simplify our implementation we
hara
terized all
onstraints as base

onstraints.

Also, the starting LP basis was taken as the optimal basis obtained from solving

the initial LP relaxation during prepro
essing.

130

5.3 User-written fun
tions of the LP pro
ess

5.3.1 Constru
ting the LP relaxation

Here we simply put together the set partitioning problem matrix
onsisting of

olumns
urrently in the formulation (sin
e all variables are extra variables, some

are eliminated be
ause of bran
hing and logi
al impli
ations as we go down in the

sear
h tree), the obje
tive fun
tion, and the right hand side ve
tors. The frame-

work will append the
onstraints
orresponding to
uts that were added to the

formulation during the solution pro
ess.

5.3.2 Logi
al �xing of variables

When a variable is permanently set to one of its bounds at a sear
h tree node,

logi
al impli
ations, like those employed in Redu
e() (Se
tion 3.1), might further

de
rease the size of the problem. Also, if the redu
tion is signi�
ant, it might be

worthwhile to look for an (improving) feasible solution.

Although the
urrent problem formulation most likely will
ontain
uts that were

not among the
onstraints of the original set partitioning problem, the redu
tion

rules implemented in Redu
e() apply to SPPs only. Originally we
arried out the

redu
tions based on the original set partitioning rows only, but it proved to be

bene�
ial to in
lude all equality
uts that have unit
oeÆ
ients and right hand side

values (the formulation remains a set partitioning formulation) and to in
orporate

similar
onstraints with a zero on the right hand side by marking the
orresponding

variables to zero. Su
h
onstraints are frequent when we allow bran
hing on
uts

131

(
liques) or threshold and follow-on bran
hing (Se
tion 5.3.6).

Our implementation of the logi
al �xing of variables always invokes Redu
e() if

at least one variable is newly �xed to one (setting variables to one usually implies

other redu
tions) or the number of variables not yet �xed to their bounds de
reased

signi�
antly sin
e the last time logi
al �xing was applied at this sear
h tree node.

The heuristi
 �xing phase of our Feasible Solution Heuristi
 is invoked only if

some variables were �xed to one or the redu
tion was signi�
ant during logi
al �xing.

How large a per
entage of the variables must be eliminated before the heuristi
 is

attempted depends on whether an upper bound is already known and on the size of

the gap (the smaller the gap the less likely the heuristi
 is invoked). The Feasible

Solution Heuristi
 is always warmstarted with the optimal basis and primal-dual

information of the most re
ent LP relaxation solved by the framework.

If a (better) feasible solution is found by the heuristi
, it is sent ba
k to the

Master (and the value to the Tree Manager) whi
h will in turn propagate it to the

other slave pro
esses.

We will dis
uss the e�e
tiveness of our logi
al �xing and feasible solution heuris-

ti
 later in Se
tion 5.5.

5.3.3 Generating violated inequalities

Currently we generate all our
uts in the Cut Generator pro
ess.

132

5.3.4 Lifting violated inequalities

Our goal here is to adjust and strengthen a given violated inequality (that may have

been generated for an earlier solution) to the
urrent problem formulation as mu
h

as possible. The framework
an a

ommodate more than one lifted inequality for

a
ut, but we generate only one here. Lifting for
liques and (lifted) odd holes and

antiholes is done sequentially; pa
king and
over odd holes are lifted simultaneously.

See Se
tion 2.3 for the de�nition of these
uts.

In sequential lifting �rst the variables not in the
urrent formulation are removed

(with the ex
eption of variables on the odd hole or antihole) sin
e these do not

ontribute to violation of the
ut but
ould inhibit the addition of other variables

whi
h may
ontribute. Then some new variables are in
luded into the inequality.

Two lists of lifting
andidates are formed; the �rst list will
ontain those variables

at fra
tional levels in the
urrent formulation, the se
ond
ontains those at level

zero. We will try to lift in the variables from the fra
tional list �rst, taking the

variables in de
reasing order of their value in the solution. Then the framework

hooses the most violated inequalities to be in
luded into the formulation. These

uts go through a se
ond round of lifting; if the number of variables that were lifted

in earlier for a
ut does not ex
eed a given bound, those variables with the lowest

redu
ed
osts on the se
ond list are
onsidered (variables with zero redu
ed
osts

are always lifted in).

Clique inequalities are simply lifted by extending the
liques with new nodes that

are adja
ent to all nodes in the
lique in the interse
tion graph. Thus a lifted
lique

is also a
lique; we do not distinguish between
liques that are \fresh" from the
ut

133

generator and those that were already lifted before. Computing lifting
oeÆ
ients

for (lifted) odd holes and antiholes is done here exa
tly as in the Cut Generator

(Se
tion 5.4).

Pa
king and
over odd holes are lifted simultaneously by applying the Chv�atal-

Gomory pro
edure for the rows
orresponding to the odd hole (Se
tion 2.3); that

is, these rows of the
urrent formulation are added up, the sum is divided by two

and the
oeÆ
ients and the right hand side are rounded down for pa
king and up

for
over odd holes.

5.3.5 De
iding whether to bran
h or
ontinue solving LPs

After the
urrent LP relaxation at the sear
h tree node is solved and possibly some

uts are generated and/or re
eived the user needs to de
ide whether to bran
h or

ontinue with re-solving the LP relaxation. In general, we prefer
ut generation

to bran
hing, sin
e one overall goal is to keep the sear
h tree small. On the other

hand, a signi�
ant amount of time
ould be wasted in re-solving the LP relaxations

if the added
uts fail to improve the relaxation suÆ
iently.

The framework provides two built-in options that we have experimented with:

bran
hing only if no violated inequalities
ould be generated, and bran
hing if tailing

o� of the obje
tive value is dete
ted. The built-in fun
tion that
he
ks tailing o�

was originally part of our set partitioning implementation but was later in
orporated

into the framework sin
e it is a general pro
edure.

Two di�erent tailing o� interpretations are used in this fun
tion, the
ombined

method determines tailing o� when either interpretation determines so. The �rst

134

UB

AB CD

1) A / B 2) C / D

Figure 5.2: Tailing o�

de
lares tailing o� if the
onse
utive obje
tive value di�eren
es de
rease at a rate

faster than geometri
 (that is, the average ratio of these di�eren
es is smaller than

a given threshold). The se
ond interpretation assumes the existen
e of an upper

bound and de
lares tailing o� if the distan
es of
onse
utive obje
tive values from

the upper bound de
rease at a rate slower than geometri
 (that is, the average

ratio of these distan
es is greater than a given threshold). Figure 5.2 illustrates

whi
h segments form the ratios in the two
ases (the obje
tive value in
reases in

the dire
tion of the arrow).

The values of the two thresholds mentioned above
an be set through parameters.

Another parameter pair determines the length of the \history" (how many ratios)

in
luded in the average. Tailing o� is not
he
ked if the history is not suÆ
iently

long.

5.3.6 Choosing bran
hing obje
ts for strong bran
hing and

omparing the presolved results

Here we
onsider three de
ision points for bran
hing (Se
tion 5.1). First of all, a set

of bran
hing
andidates needs to be sele
ted for strong bran
hing. Then, after the

135

LP relaxations at the would-be
hildren of the
urrent sear
h tree node have been

presolved by the framework for ea
h bran
hing
andidate, one of the
andidates

must be
hosen for bran
hing. And third, based on the presolve information we

need to de
ide what to do with ea
h
hild node, in parti
ular to de
ide whi
h
hild

should be sele
ted to be kept at the
urrent LP solver if diving is desired.

The COMPSys framework
an handle both variable bran
hing and bran
hing on

uts. The framework provides
uts that were added previously be
ause they were

violated, but have sin
e be
ome sla
k (the
onstraint is no longer binding, the right-

hand-side is not met with equality), and we
an
hoose to bran
h on any of these. In

addition to this, the framework a

epts any bran
hing obje
t that
an be des
ribed

as a
ut; that is, we provide
oeÆ
ients for the variables
urrently in the formulation,

a sense and a right-hand-side. Several standard default strategies are in
luded for

hoosing bran
hing variables. Our implementation is
apable of pi
king a mix of

four di�erent bran
hing obje
ts: two kinds of
uts that we generate here (follow-on

and threshold bran
hing), formerly existing sla
k
uts, and �nally, variables. The

number of desired bran
hing obje
ts of ea
h of these four types is determined by a

parameter. The bran
hing obje
ts are generated in the above order; the standard

default is to sele
t at least a few bran
hing variables if no bran
hing
ut of the

previous three types is found.

Follow-on and threshold bran
hing
uts are Type 3 Spe
ial Ordered Sets (as

de�ned in [CPX95℄, Chapter 3), but while SOSs need to be spe
i�ed before opti-

mization for CPLEX, we
reate these sets based on the
urrent LP optimal solution.

In both
ases we divide a row's support into two parts and in the two bran
hes we

136

require the variable
overing the row to be
hosen in one bran
h from the �rst part,

and in the other from the se
ond. Or, des
ribed as a
ut (N

i

denotes the support

of some row i),

X

j2F

x

j

= 1 or 0; F � N

i

:

This is an extension of variable bran
hing (where jF j is one).

The advantage of these
uts is that they
an be in
orporated into the set parti-

tioning formulation used by logi
al �xing and heuristi
s (Se
tion 5.3.2).

Follow-on bran
hing
uts are generated by determining row pairs for whi
h the

likelihood to be
overed by the same variable (measured as the sum of primal so-

lution values for the variables the two rows share) is between some given limits

(parameters). We do not want this likelihood to be too large sin
e this would be

an overly
onservative approa
h, and it is likely that the 0-bran
h is infeasible and

the problem at the 1-bran
h is almost the same as at the parent. Therefore in our

experiments we set the parameters so that the likelihood is higher than .5 but it is

well below 1 (around .75). The follow-on row pairs are enumerated similarly as in

the heuristi
 (Se
tion 4.2.1) but we stop as soon as we have the required number of

row pairs. We start by
omparing the 5 rows with the largest absolute dual values

to the remaining rows.

Threshold
uts are generated by sele
ting those rows that have the largest num-

ber of variables at fra
tional level in their supports, ordering the variables into

de
reasing order of their solution values for ea
h row and
onsidering the variables

one by one until their
ombined solution values surpass a threshold (parameter). If

all variables at fra
tional values in a row's support are sele
ted then we drop the

137

last variable from the
hosen set sin
e in this
ase the optimal solution to the LP

relaxation in the 1-bran
h wouldn't be di�erent from that at the parent.

The framework provides us with a list of all
uts that were added to the for-

mulation previously (be
ause they were violated) but sin
e be
ame sla
k. Sin
e all

uts generated by the Cut Generator have integral
oeÆ
ients and lifting maintains

this property, the left hand side will be integral for any integral feasible solution.

Therefore we measure the sla
k of a
ut as the smaller of the distan
es of its left

hand side from the nearest two integers. We examine all the sla
k
uts provided by

the framework and
hoose the required number of
uts with the largest sla
ks (that

is, those with sla
k values
losest to .5, midway between the
losest integer right

hand side values). This is analogous to the \
lose to half" bran
hing variable sele
-

tion strategy (see below). Bran
hing on a
onstraint like this, we expe
t to
ut the

feasible region deep in the middle, whi
h is desirable during bran
hing. Then two

hildren are
reated as des
ribed in Se
tion 2.1.2. At this time we allow bran
hing

only on
lique inequalities. Bran
hing on a sla
k
lique inequality will result in two

equality
onstraints, one with a zero and one with a 1 right hand side, so these
uts

an be in
luded into the logi
al �xing and heuristi
 as well.

We use three strategies for variable bran
hing; the �rst one
hooses variables

with large fra
tional values and low
ost to bran
h on (\
lose to one and
heap"

rule). The logi
 here is that the zero bran
h will likely be short-lived sin
e the

variable must be repla
ed by many (most likely more expensive) other variables,

resulting in a faster fathoming of the bran
h (due to high
ost or infeasibility); in

the one-bran
h the variable is �xed to one, whi
h is likely to
ause the elimination

138

of additional variables during logi
al �xing.

The se
ond option is to
hoose a variable \
lose to one-half and expensive". The

e�e
tiveness of this strategy is folklore; both of the bran
hes are expe
ted to \shake

up" the solution, and the optimal value in the 1-bran
h is pushed up.

The third is a mixture of the other two; if there are variables at fra
tional level

near one then the \
lose to one and
heap" rule is used, otherwise the \
lose to

one-half and expensive" rule is applied.

Our se
ond job here is to
hoose between the presolved bran
hing
andidates.

There are several built-in options. The quality of a bran
hing
andidate
an be

evaluated based on either the presolved obje
tive fun
tion values or the number of

fra
tional values in the presolved LP solutions at the would-be
hildren. On
e the

de
ision is made whi
h evaluation method to use, either the lower or the higher of

these values is sele
ted from the values at the would-be
hildren of ea
h
andidate,

these values are
ompared a
ross all the
andidates and the
andidate with either

the lowest or the highest su
h value is
hosen. Thus there are four
ases for ea
h

evaluation method:
hoose the
andidate with the lowest of the lower values at the

hildren, highest of the lower values, lowest of the higher values or highest of the

higher values. For example the \highest low obje
tive value" rule means that the

bran
hing
andidate whose
hild with the lower presolved obje
tive value has the

highest of these values is sele
ted. Note that bran
hing
andidates with would-be

hildren that
an be fathomed based on the presolve information are preferred over

the other
andidates.

The built-in options
an be intuitively explained as follows. The lowest low and

139

lowest high obje
tive value rules try to
ontrol the way the near-optimal solutions

feasible at the
urrent sear
h tree node are inherited by the
hildren (some feasible

solutions might be shared). In the lowest low rule the
hild with the lower obje
-

tive value is likely to keep most of these near-optimal feasible solutions; while in

the lowest high
ase the
hildren are more likely to retain roughly the same num-

ber of near-optimal solutions. The lowest low rule
ombined with diving into the

lower
hild is traditionally used for �nding near-optimal feasible solutions when the

integrality gap is too large or no upper bound exists.

The highest low and highest high obje
tive value rules aim to shape the sear
h

tree. The highest high rule tries to
hoose a
andidate so that the
hild with the

higher obje
tive value
an be qui
kly fathomed (thus produ
ing a skewed sear
h

tree). On the other hand, the highest low rule tries to keep a uniformly high lower

bound a
ross the sear
h tree (thus produ
ing a balan
ed sear
h tree). These rules

are used when the
urrent feasible solution is near-optimal and proving optimality

is desired.

From the other four options the lowest low and lowest high fra
tionals rules

also aim for �nding integral solutions qui
kly. Unfortunately, while obje
tive values

are monotone, the number of fra
tional variables in a solution is not, so we
annot

guarantee that this latter number will not in
rease after bran
hing. For this reason

the highest low/high fra
tionals rules are not e�e
tive for proving optimality; these

two options were implemented for the sake of
ompleteness.

From these options we have used the \highest low obje
tive" rule in our �nal

experiments.

140

Our third task is to
hoose one of the
hildren if diving is desired. If no good

upper bound is known then we for
ed diving into the \one-
hild", i.e., into the
hild

with right hand side value of one. Otherwise we used a standard default in whi
h

the
hild with the lower obje
tive value is
hosen.

5.4 User-written fun
tions of the Cut Generator

pro
ess

Our only job in the Cut Generator pro
ess is to �nd valid inequalities that are

not satis�ed by the solution to the
urrent LP relaxation. Currently we are able

to generate
lique, (lifted) odd hole and antihole, and pa
king and
over odd hole

inequalities in the Cut Generator. These are standard types of
uts that
an be

heuristi
ally separated in a reasonable amount of time. We have also experimented

with generating
uts \by hand," that is, we graphi
ally display the
urrent solution

and the
uts as they are generated, and try to identify inequalities of types di�erent

from those above that are violated by the
urrent solution. If we
hoose this option,

the
ut generator pro
ess will wait for us until we signal that we
an generate no

more
uts. We
all this option the \human
ut generator." The human
ut generator

is implemented through the graphi
al user interfa
e (des
ribed in Chapter 6) that

runs on a separate pro
essor.

A dis
ussion of known valid inequalities for the Set Partitioning Problem
an be

found in Se
tion 2.3; in this se
tion we give details only of those inequalities that

we have implemented.

141

All the
uts that we generate here
an be des
ribed in terms of the interse
tion

graph. When generating
uts in the
ut generator pro
ess we restri
t ourselves to

the interse
tion graph
orresponding to those variables that have fra
tional solution

values, we
all this the fra
tional graph. Although probably more violated inequali-

ties
ould be found if we extended our sear
h to the interse
tion graph of the entire

problem, that graph would be too large for eÆ
ient
ut generation.

We de
ided to parallelize
ut generation so all our
ut generation routines
ould

be started at the same time (parameters determine whi
h ones are started) and
ould

produ
e
uts independently of ea
h other. The reason for this is that di�erent kinds

of inequalities are e�e
tive for di�erent kind of problems; a
onsiderable amount of

time
ould be wasted in the \wrong"
ut generator if the
ut generation routines

are not ordered well (we might not even get to the interesting
ut generator before

the LP sends the next solution). We spawn these \slave"
ut generator pro
esses

as soon as the
ut generator \master" is started by the tree manager. We have four

slaves: two generate
liques with the two di�erent methods des
ribed below, one

generates (lifted) odd holes, pa
king and
over odd holes, and the last generates

(lifted) odd antiholes. We run the slaves on the same pro
essor as the master
ut

generator so that we get the advantage of faster message passing and do not take

up additional pro
essors.

The
ut generator slaves re
eive some initial information from their master as

soon as they are started. Every time a new solution arrives from the LP to the

master
ut generator, a signal is sent to the slaves to abort work and wait for the

new fra
tional graph. New violated
uts are sent ba
k from the slaves to the master

142

ut generator, whi
h forwards them to the LP pro
ess. The slaves keep tra
k of

whi
h
uts have been sent ba
k to their master for a given fra
tional graph, so that

the same
ut is not sent ba
k twi
e.

Now we dis
uss implementational details of the various
ut generation routines.

5.4.1 Cliques

Re
all from Se
tion 2.3 that the
lique inequality is

X

v2K

x

v

� 1;

where K is a
lique (a
omplete subgraph) in the interse
tion graph; that is, the

olumns
orresponding to the variables in the sum are pairwise nonorthogonal. As

we have mentioned before, we are looking for violated inequalities of the above form

where K is a maximal
lique. No polynomial time separation algorithm is known

for separating these inequalities, therefore we employ heuristi
s.

We have implemented two heuristi
 methods that are frequently des
ribed in the

literature ([HP93℄, [Bor97℄). The �rst method (star
lique method) is enumerative

and guarantees to �nd a violated (maximal)
lique inequality (if there exists one)

if the enumeration is
arried out fully. The se
ond method (row
lique method),

originally due to Ho�man and Padberg ([HP93℄), enumerates only those maximal

liques that
an be obtained as extensions of row
liques (
liques
orresponding to

supports of rows in the fra
tional matrix). A greedy heuristi
 is substituted for

the enumeration in pra
ti
e if the enumeration would need to be
arried out at too

many nodes. Note that not all maximal
liques
an be obtained as extensions of

143

row
liques. (It is very easy to
onstru
t an example using the fa
t that if a row has

an interse
ting
olumn with only one 1 in it, its row
lique
annot be extended.)

The star
lique method is based on the fa
t that any maximal (and also nonmax-

imal)
lique
ontaining a spe
i�
 node v is a subgraph of the star of v (subgraph

spanned by v and its neighbors). The algorithm runs until there are no nodes left

in the graph. At every step of the algorithm a node is
hosen, all maximal
liques

are enumerated in its star and then the node is removed from the graph. A
lique

whi
h is maximal for the remaining graph after some nodes are already eliminated

might not be maximal for the original graph. But these maximal
liques (that
an

be extended on the already deleted nodes)
an be disregarded sin
e all maximal

liques
ontaining the previously deleted nodes have been found earlier.

An important question is whi
h node to
hoose next. A minimum degree node

is a logi
al
hoi
e sin
e its star is the smallest possible, thus enumeration on the

nodes in the star is the fastest. Moreover, degree 0 or 1 nodes
an be deleted at

on
e. Other plausible strategies are
hoosing a maximum degree node (to dis
over

largest maximal
liques early), or
hoosing a node with a large value in the
urrent

fra
tional solution (hoping to lead to a violated
lique).

The row
lique method is very similar but not the same as the redu
tion CLEXT

(Se
tion 3.1), where
olumns extending row
liques in the original formulation are

removed from the problem. Here we
onsider only the fra
tional problem matrix,

whose rows are shorter than those of the original matrix, so a
olumn extending the

row
lique in the fra
tional matrix might not extend the row
lique in the original

matrix. To enumerate all the maximal
liques that are extensions of row
liques,

144

the rows of the problem matrix are taken one by one. A
andidate list of nodes

that are adja
ent to all nodes in the row
lique is formed. Then all the maximal

liques are enumerated on the
andidate list and are added to the nodes of the row.

Any extended maximal
lique found this way will be violated (the sum of values in

a row is already 1).

The two methods were implemented as two di�erent slave pro
esses. The imple-

mentations were straightforward; in both methods we use parameters to determine

the size of a subset of nodes above whi
h a greedy maximal
lique dete
tion routine

is substituted for
omplete enumeration. The row
lique method is de�nitely faster

for larger graphs; its advantage is that the enumerative or greedy
lique dete
tion

needs to be
arried out on a smaller subset of the graphs, and that a violated
lique

inequality is found as soon as any of the row
liques
an be extended by at least

one node.

We also s
reen the generated violated inequalities for minimum violation (reg-

ulated through a parameter) whi
h allows us to send ba
k inequalities to the CG

master sele
tively.

5.4.2 Lifted odd holes, pa
king and
over odd holes

The odd hole inequality is of the form

X

v2H

x

v

�

jHj � 1

2

;

where H is a
hordless odd
y
le (odd hole) in the interse
tion graph; that is,

olumns
orresponding to
onse
utive variables in H (
onsidering the last and �rst

145

variable in H
onse
utive) are nonorthogonal, while all the rest of the variable pairs

have orthogonal
olumns.

Instead of weighting the nodes of the graph, we
an assign
osts to the edges

and give an alternative formulation of the odd hole inequality. Let the
ost of edge

vw be

vw

= 1� x

v

� x

w

, then the sum of the
osts on edges along the odd hole is

X

vw edge in H

vw

=

X

vw edge in H

(1� x

v

� x

w

) = jHj � 2

X

v2H

x

v

;

thus the odd hole inequality
an be written as

X

vw edge in H

vw

� 1:

Note that 0 �

vw

� 1.

A polynomial time algorithm for separating violated odd hole inequalities (GLS-

algorithm) was originally developed by Gr�ots
hel, Lov�asz and S
hrijver [GLS88℄. A

bipartite graph is generated where the nodes of the interse
tion graph are repeated

on both sides of the partition and two nodes on di�erent sides of the partition are

adja
ent if and only if the
orresponding nodes in the original graph were adja
ent.

Assign the
osts de�ned above to the edges of the bipartite graph. A path between

a node on one side of the partition and its dupli
ate on the other side
orresponds

to an odd
y
le in the original graph (node repetition is possible). Sin
e the weights

are nonnegative, a path of weight less than 1 will
orrespond to an odd
y
le that

ontains a violated odd hole. Also, a violated odd hole provides a path of weight

less than 1 between any of its nodes and their dupli
ates.

Thus
omputing the shortest path between all nodes and their dupli
ates and

taking the
heapest of these will either provide an odd
y
le of weight less than 1

146

or prove that no violated odd hole exists. Computing the shortest path between

two nodes of a graph
an be done in polynomial time (Dijkstra's algorithm
an be

used sin
e the edge weights are nonnegative), so separating for violated odd hole

inequalities is polynomial.

Although the algorithm outlined above is very appealing, Ho�man and Padberg

([HP93℄)
onsider it impra
ti
al sin
e a

ording to their experiments after a few

iterations of
ut generation and resolving the LP the algorithm usually
omes up

only with length 3 violated odd holes (triangles) that are also found by the violated

lique dete
tion heuristi
s. Longer but not ne
essarily violated odd holes are also

very useful sin
e they
an be lifted to try to produ
e lifted violated odd hole inequal-

ities (we show how to do this later in this se
tion). On the other hand, Bornd�orfer

([Bor97℄) and Nemhauser and Sigismondi ([NS92℄) apply the GLS algorithm and do

not report any short
omings. When we implemented our odd hole separation pro
e-

dure we were not aware of any earlier eÆ
ient implementation of the GLS algorithm

in this
ontext and Ho�man and Padberg's arguments were very
onvin
ing, so we

de
ided to follow their advi
e and implemented a heuristi
 separation algorithm

similar to theirs.

Our algorithm for �nding (lifted) odd holes is best des
ribed in terms of the

fra
tional interse
tion graph. A level graph is a breadth �rst arrangement of the

nodes of the graph, rooted at a spe
i�
 node. The root node is on level zero, its

neighbors are on level one, its neighbors' neighbors are on level two, et
. Be
ause

of the breadth �rst enumeration of the nodes, adja
ent nodes
annot be more than

one level apart. Noti
e that if two adja
ent nodes on the same level both have a

147

path up to the root so that nodes on one path are not neighbors of nodes on the

other path, the two paths and the edge between the two nodes form an odd hole.

The
osts de�ned earlier are assigned to the edges of the level graph.

The algorithm enumerates the levels one by one (starting with level two sin
e

triangles are not desired), and for every adja
ent node pair on level l looks for

the
heapest (with respe
t to the edge weights) possible length l path from the

nodes up to the root. First a
heapest path that \steps up" one level at a time

is sear
hed for from one of the nodes to the root, and if su
h path is found, the

neighbors of the nodes along the path are \blo
ked out" and a similar path is sought

starting from the se
ond node. If the se
ond path exists as well then the
osts of

the paths are
ombined with the
ost of the edge between the two nodes. If the

ost of this odd hole is less than 1, its violated inequality is sent ba
k to the CG

master. Otherwise, we try to strengthen the inequality by lifting in some more

variables from the fra
tional graph, as we will des
ribe below. Then this pro
edure

is repeated sear
hing for a path from the se
ond node �rst.

Usually we build more than one level graph,
hoosing the roots randomly with

a probability inversely proportional to the degree of the nodes. About 5% but

no more than 50 of the nodes are
hosen. As in the violated
lique identi�
ation

algorithms, a parameter determines the minimum amount by whi
h an odd hole

must be violated in order that it be returned to the CG master.

As dis
ussed earlier (Se
tion 2.3), to
ompute the
oeÆ
ient of a variable
ur-

rently not in the inequality we subtra
t from the right hand side of the inequality

the size of the largest weighted independent set in the subgraph that
orresponds

148

to the variables already in the inequality and the one to be added.

When lifting odd holes we
all the variables that are added to the inequality hubs.

Nodes whose
oeÆ
ients are yet to be
omputed are the hub
andidates. The order

in whi
h the
oeÆ
ients of the hub
andidates are
omputed (lifting order) a�e
ts

the out
ome. Our goal is to produ
e an inequality whi
h is maximally violated,

therefore at ea
h step we try to
hoose the best hub
andidate. To a

omplish

this, we iteratively
ompute the would-be
oeÆ
ients for all the hub
andidates and

sele
t the one with maximal in
rease in the left hand side (that is, the
oeÆ
ient

times the value of the variable in the
urrent solution) until there are no more hub

andidates.

Computing the lifting
oeÆ
ient is the heart of this lifting algorithm. Note that

there might already be some hubs that were lifted in earlier, so here we give a general

algorithm for
omputing the
oeÆ
ient of a hub
andidate for a lifted odd hole. We

onsider the submatrix of the lifted odd hole and the hub
andidate. We assume

that the hub
andidate has been
hosen, so its neighbors in the subgraph
an be

deleted right away. Now assume that a maximal set of independent hubs already in

the inequality is
hosen; removing their neighbors from the odd hole leaves us with a

olle
tion of path segments. The size of an independent set for a path is simply half

of the length of the path, rounded up (
hoose every other node). Then the value

of a maximum weighted independent set given a maximal set of independent hubs

is the sum of the maximum independent set sizes for the paths and the weighted

value of the hubs. We re
ursively enumerate all weighted maximal independent sets

on the hubs and
ompute the largest of the above values. The
oeÆ
ient of the hub

149

andidate is the di�eren
e of the right hand side of the inequality and the
omputed

(largest) value. Note that the
oeÆ
ient is zero if the
omputed value mat
hes the

right hand side, whi
h is the
ase, for instan
e, if the hub
andidate is not adja
ent

to any of the nodes in the odd hole.

Enumerating all subsets of the hubs for ea
h hub
andidate at ea
h iteration

may seem
omputationally expensive, but a

ording to our experien
e the time is

reasonable when we utilize the following observations.

� Nodes with at most two neighbors in the odd hole will have a
oeÆ
ient zero,

so these nodes need not be in
luded into the list of hub
andidates.

� As soon as the value of the weighted independent set rea
hes the value of the

right hand side for a given set of hubs, the enumeration
an be aborted sin
e

the
oeÆ
ient of the hub
andidate will be zero.

� Sin
e the would-be
oeÆ
ients of hub
andidates
annot in
rease during se-

quential lifting, hub
andidates with zero would-be
oeÆ
ients
an be removed

from the
andidate list.

Thus our violated odd hole dete
tion algorithm
an produ
e odd holes as well as

lifted odd holes; these inequalities will be further lifted in the LP pro
ess using the

same method to
ompute the lifting
oeÆ
ients as des
ribed here. Our algorithm

usually �nds many more violated lifted odd holes than plain odd holes.

To �nd pa
king odd holes we start by lo
ating odd holes with the help of the level

graph exa
tly as above. On
e an odd hole (violated or not) is found, a set of rows

is
hosen, one for ea
h edge in the odd hole (Se
tion 2.3). If more than one row's

150

support
ontains both endpoints of an edge then the longest su
h row is sele
ted

(the goal is to in
lude as many
oeÆ
ients as possible into the �nal pa
king odd hole

inequality). The generated pa
king odd hole inequalities are tested for violation and

for those suÆ
iently violated the
ut (the
orresponding set of rows) is sent ba
k

to the Cut Generator master for forwarding to the LP. The LP pro
ess derives the

pa
king odd hole inequality again on every variable in the
urrent formulation (not

only on those at fra
tional level). This is not ne
essary, but it is
omputationally

inexpensive and usually results in a
ut with mu
h larger support.

The
over odd holes are generated very similarly. Now we look for odd holes

with the sum of the fra
tional values on the nodes as small as possible (i.e., with

large total edge
osts). So we aim for the most expensive path to the root of the

level graph instead of �nding the
heapest one. Also, we
hoose the shortest rows

for the edges in the odd hole trying to keep the left hand side of the inequality

small. Observe that the
over odd hole inequality must be derived from the rows of

the entire
urrent matrix to be valid. However, its validity
an be tested using the

fra
tional matrix only, sin
e all variables not in the fra
tional matrix are at level

zero in the
urrent solution. If a
over odd hole inequality proves to be violated

here, the
ut (
orresponding rows) is sent ba
k to the CG master and from there to

the LP where the
ut will be re
onstru
ted for the entire formulation (this time it

is ne
essary to do so).

151

5.4.3 Odd antiholes and lifted odd antiholes

We de�ne the odd antihole inequality as

X

v2

�

H

x

v

� 2;

where

�

H is an odd antihole in the interse
tion graph (the edge-
omplement of an

odd hole).

Separating heuristi
ally for violated odd antiholes is straightforward as we
an

take the
omplement of the interse
tion graph and use any violated odd hole dete
-

tion routine (with the right hand side �xed to 2). In our algorithm we used the same

level-graph approa
h as for odd holes. Again, if the algorithm dete
ts a violated

odd antihole it is returned to the
ut generator master at on
e, while non-violated

odd antiholes are �rst lifted. The lifting pro
edure is also similar to the traditional

sequential lifting of odd holes; �rst we
reate the set of hub
andidates and then

repeatedly
ompute the would-be
oeÆ
ients for the
andidates and
hoose the one

that in
reases the left hand side the most.

Computing the lifting
oeÆ
ients for the hub
andidates is
onsiderably easier for

(lifted) odd antiholes than for (lifted) odd holes sin
e here the
oeÆ
ients
annot be

larger than 2. The
oeÆ
ient of a hub
andidate is 2 if the hub
andidate is adja
ent

to all nodes already in the (lifted) odd antihole, zero if the hub
andidate has a non-

neighbor with
oeÆ
ient 2 or two nonadja
ent non-neighbors, and 1 otherwise.

The lifting pro
edure for odd antiholes
an be made more eÆ
ient by observing

that

� Nodes with at most (j

�

Hj � 1)=2 neighbors on the odd antihole will have a

152

oeÆ
ient zero, thus they need not be in
luded in the hub
andidate list.

� As for odd holes, hub
andidates with zero would-be
oeÆ
ients need not be

onsidered further.

5.5 Computational Results

In our �nal runs we used the default settings of the framework ex
ept for the fol-

lowing. We set the time limit to two hours (7200 se
onds) for the Bran
h-and-Cut

pro
edure (note that this is a limit for the Tree Manager; reading in the problem in-

stan
e and prepro
essing and heuristi
s in the Master is not
ounted into this time).

We used the upper bound obtained by our Feasible Solution Heuristi
 (Se
tion 4.4)

whenever available. The GUI was disabled for the runs on the SP. The number of

LP { Cut Generator pairs was set to 1, 2, 4, 8 and 16. We used only one Cut Pool

pro
ess, and experimented with both pure Bran
h-and-Bound and Bran
h-and-Cut

with generating only
lique inequalities or turning on all the
ut generators we had

(ex
ept for the sequential lifting of odd holes be
ause this was mu
h more time

onsuming than simultaneous lifting). The Tree Manager
hose the node with the

lowest presolved LP value from the
andidate list to be pro
essed next.

Threshold values were set to :33 and :99 for tailing o� based on obje
tive values

and integrality gaps, respe
tively; the length of the history was limited to between

5 and 10 steps. 10 to 30 violated inequalities were added to the formulation in ea
h

iteration. The LP relaxations at the would-be
hildren of bran
hing
andidates were

presolved up to 500 dual simplex iterations (whi
h meant that they were solved to

153

optimality for most of the problems). The \highest-low obje
tive" rule was used for

bran
hing obje
t sele
tion.

The number of
uts in the
ut pool is limited to a few thousand. For a given LP

solution only those
uts were
he
ked whi
h were originally generated at a higher

level of the sear
h tree than the solution and were re
ently found violated.

The parameters on the user side were set the following way. All the LPs (the

initial LP relaxation or those during the feasible solution heuristi
) were solved using

CPLEX's barrier method with dual
rossover. In the LP pro
ess logi
al �xing was

always attempted after solution of the �rst LP in a node whi
h is the \one-
hild"

of its parent (that is, the node was obtained by setting a variable or the right hand

side of a bran
hing
ut to 1), or if 2% of the variables were re
ently �xed to zero.

The feasible solution heuristi
 was not invoked at all for problems with a very low

integrality gap (less than 2%). Otherwise it was invoked with a probability of :5 at

the top of the one-
hildren and it was also invoked if 20% of the variables had been

�xed sin
e the most re
ent appli
ation of the heuristi
.

The number of bran
hing obje
ts of ea
h type (follow-on, threshold, sla
k
ut

and variable) varied depending on the diÆ
ulty of solving LP relaxations for the

given problem. The lower and upper thresholds for sele
ting follow-on
andidates

were set to :60 and :80, respe
tively. The threshold for threshold bran
hing was set

to :65. We experimented with bran
hing variables
hosen both with the \
lose to

half and expensive" and \
lose to one and
heap" rules.

As indi
ated above, all but sequentially lifted odd hole inequalities were gener-

ated. The minimum violation was set to 0:01 for all
ut types.

154

Greedy
lique dete
tion was substituted for enumeration in the star
lique and

row
lique methods when the number of nodes in the set on whi
h the
lique was

to be enumerated ex
eeded 16. The node with the minimum degree was
hosen to

be the next in the star
lique method. The number of hub
andidates for sequential

lifting of odd antiholes was limited to 100. Up to 10 levels (depending on the size

and density of the fra
tional graph) of the level graph were investigated (whi
h

means odd holes of length up to 21
ould be found); the algorithm
ontinues with

the next level or even next level graph when a violated inequality is obtained from

the
urrent level graph.

There is no \perfe
t" setting for the parameters that would work well with all

problem types. We have spent
onsiderable
omputational e�ort in �ne-tuning some

of the parameters for ea
h set of test problems. In the next se
tions we will dis
uss

our experiments for all four sets in detail.

Our parallel runs were
arried out on the thin nodes of the SP (the
omputing

environment is des
ribed in Se
tion A.1). We reserved one pro
essor for the Master,

Tree Manager and Cut Pool pro
esses. LP-CG pairs were pla
ed on the same

pro
essor; we used 1, 2, 4, 8 or 16 of these. Thus the total number of pro
essors

used was 2, 3, 5, 9 or 17. The number of sear
h tree nodes pro
essed and the total

exe
ution time are the two main indi
ators of a B&C algorithm's performan
e. Pure

B&B runs were
arried out with one LP-CG pair only sin
e
ommuni
ation time is

not negligible
ompared to one LP solution time for the problems in our test bed.

Parallel runs (more than one LP-CG pair) were
arried out for problems requiring

at least 100 nodes during B&C.

155

Intuitively, an algorithm is parallel eÆ
ient if doubling the number of pro
essors

used
uts the exe
ution time in half. To quantify this
on
ept, the parallel speedup

(with p pro
essors) is de�ned as

s(p) =

running time with 1 pro
essor

p � parallel running time

:

If this ratio is below 1 then the algorithm on p pro
essors uses more resour
es than

on one pro
essor. Linear speedup is de�ned as a speedup with ratio 1; superlinear

speedup as a speedup with ratio greater than 1. Note that it is not impossible to

a
hieve superlinear speedup in an asyn
hronous parallel appli
ation when the order

of
ertain events in
uen
es the
ow of the algorithm. For instan
e, in a parallel

B&C algorithm
ommuni
ation delay
an
ause sear
h tree nodes to arrive at the

Tree Manager in di�erent order, resulting in
ompletely di�erent sear
h trees.

We follow [Ral95℄ and [Lad96℄ and
onsider the number of LP-CG pairs only

when measuring speedup (the time spent in the Tree Manager and in the Cut Pool

is
onsidered a
onstant overhead). Moreover, we de�ne two speedup ratios, one

based on the exe
ution time and another based on the number of pro
essed sear
h

tree nodes:

s

1

(p) =

running time with 1 LP� CG pair

p � running time with p LP� CG pairs

;

and

s

2

(p) =

number of sear
h tree nodes pro
essed with 1 LP� CG pair

number of sear
h tree nodes pro
essed with p LP� CG pairs

:

Note that the speedup based on the number of pro
essed sear
h tree nodes is linear

(superlinear) if this number stays the same (de
reases).

156

Runs with more than one LP-CG pairs were repeated three times and the average

of the results is reported. This was done to
ompensate for the di�eren
e in the

results due to
ommuni
ation delay.

5.5.1 Set 1 problems

Bran
h-and-Cut optimization was
arried out for the 10 problems not solved to

optimality by our Feasible Solution Heuristi
 (Se
tion 4.4). As we observed earlier,

the optimal solution was found but not proved for 5 of these problems, and the

optimality gap was below 2% for the other 5. As it turns out 7 of the 10 problems

are trivial for Bran
h-and-Cut, one problem (nw04) requires a little more
omputa-

tional e�ort, and only two problems (aa01 and aa04)
an be
onsidered moderately

diÆ
ult.

In our �nal experiments we used the default settings des
ribed above. The

framework added at most 10
uts in ea
h iteration, the tailing o� history was set

to 5 iterations. The deepest level investigated in the level graph was limited only

in the two hard problems (to level 2, thus length 5 odd holes) sin
e the level-graph

approa
h for odd hole dete
tion is not eÆ
ient for dense fra
tional graphs su
h as

those
orresponding to these problems.

We present here 10 basi
 experiments with one LP-CG pair for ea
h of the 10

problems. Ea
h problem was run with pure B&B, B&C with separating
lique in-

equalities only (both star and row
liques), and B&C with separating
lique, pa
king

and
over odd hole, and sequentially lifted odd antihole inequalities. In ea
h of these

three
ases either only bran
hing variables were sele
ted or all types of bran
hing

157

obje
ts (this se
ond does not apply for B&B). Finally,
andidate bran
hing vari-

ables were sele
ted with either the mixed or the \
lose to one-half and expensive"

rule. The number of bran
hing
andidates totaled 6.

Tables 5.1 through 5.10 (one table for ea
h problem) summarize the results of

these experiments. The �rst three
olumns indi
ate the settings for the experiment

(as explained above). This is followed by the number of pro
essed /
reated sear
h

tree nodes (nodes that were
reated but not pro
essed are those fathomed during

bran
hing) and the depth of the sear
h tree; the worst lower bound on the nodes not

yet pro
essed and the best feasible solution value found (if optimality is not proved);

the time when the best solution was �rst found (in
ase the upper bound is the

optimal value, this spa
e is left empty) and the overall exe
ution time (as reported by

the Tree Manger). For example, in Table 5.1 the third line summarizes the results of

a Bran
h-and-Cut experiment when only
lique inequalities were generated and only

variables (
hosen with the \
lose to one-half and expensive" rule) were
onsidered

as bran
hing
andidates. 97 sear
h tree nodes were
reated, out of whi
h 53 were

pro
essed (the rest were fathomed during bran
hing), the depth of the sear
h tree

was 13. The problem was solved to optimality in 601:09 se
onds; the optimal

solution was found after 378:03 se
onds. On the other hand, using the same settings

but sele
ting the bran
hing variables with the mixed rule, the algorithm timed out.

3069 sear
h tree nodes were
reated, 1566 of them were pro
essed (the rest were

fathomed or waiting to be pro
essed), the depth of the sear
h tree was 41. The

value of the best feasible solution is 56167 (found after 6300:19 se
onds), the lower

bound (the lowest presolved LP value at the unpro
essed nodes) is 55809:21.

158

Table 5.1: Basi
 B&C experiments for aa01

lb: 55535.43 OPT: 56137 ub: 56172

aa01

sear
h tree worst best time

nodes depth lb soln to best total

1=2 181/345 17 1102.24 1102.56

B&B var

mix 3607/7199 43 55743.21 56162 6583.18 7208.01

1=2 53/97 13 378.03 601.09

B&C

var

mix 1566/3069 41 55809.21 56167 6300.19 7205.80

lique var 1=2 82/147 14 629.24 794.59

ut mix 884/1699 27 55988.75 56137 6782.16 7205.96

1=2 59/107 12 508.68 877.06

B&C

var

mix 1416/2753 37 55827.43 56138 1719.94 7205.28

all var 1=2 79/135 11 628.04 1053.71

ut mix 664/1181 22 3698.75 5824.87

Table 5.2: Basi
 B&C experiments for aa04

lb: 25877.60 OPT: 26374 ub: 26680

aa04

sear
h tree worst best time

nodes depth lb soln to best total

1=2 574/1143 28 2797.97 2976.77

B&B var

mix 3834/7649 43 26133.41 26456 7009.96 7201.60

1=2 204/365 19 1682.30 1686.31

B&C

var

mix 2181/4311 35 26160.20 26492 200.89 7209.74

lique var 1=2 575/1067 22 3575.54 3908.01

ut mix 1460/2875 32 26229.68 26402 1183.34 7207.16

1=2 191/343 17 1917.62 2222.81

B&C

var

mix 1409/2757 33 26205.38 26451 5842.55 7205.63

all var 1=2 311/569 20 2892.11 2983.92

ut mix 827/1567 23 26283.54 26375 2416.45 7208.77

159

We
an see that six problems (aa03, aa06, nw17, nw36, kl02 and us01) solve in

the root node when all
ut generation is enabled, even though tailing o� is
he
ked

(whi
h
an for
e early bran
hing). In aa05 the optimal solution is also found during

the �rst bran
hing, but one of the
hildren
annot be fathomed right away. When

tailing o� is disabled for this problem, no
uts are found after 16 iterations in the

root thus bran
hing is for
ed. Again, the optimal solution is found during strong

bran
hing.

We
an observe that for these problems the mixed strategy (whi
h always de-

faults to
hoosing a variable near one) does not work well. It is espe
ially disastrous

for aa01, aa04 and kl02. Another observation is that pure B&B is very often more

e�e
tive than B&C. This
an be viewed as further eviden
e that the problems in

this set are relatively easy.

An interesting fa
t about nw04 is that when solving the problem with pure B&B

one of the
hildren is always fathomed during bran
hing, so the sear
h tree is a

hain (the number of nodes
reated is twi
e the number of nodes pro
essed).

In
omparing our results (B&C with all
ut generation and only variable bran
h-

ing) with those of Ho�man and Padberg ([HP93℄) and Bornd�orfer ([Bor97℄), we note

that we solve all the Set 1 problems in no more sear
h tree nodes than Ho�man and

Padberg require. Also, for the three problems they
onsider diÆ
ult (aa01, aa04

and nw04) our running times represent at least an order of magnitude improve-

ment. Compared to Bornd�orfer's results ([Bor97℄, default strategy), our algorithm

pro
essed slightly more sear
h tree nodes than his for the two hard problems but

not more for the remaining problems. Our running times are
omparable to his

160

Table 5.3: Basi
 B&C experiments for nw04

lb: 16310.66 OPT: 16862 ub: 17158

nw04

sear
h tree time

nodes depth to opt total

1=2 38 / 77 38 0.44 15.04

B&B var

mix 64 / 127 48 0.44 13.67

1=2 36 / 71 25 4.51 40.69

B&C

var

mix 69 / 127 28 3.17 77.92

lique var 1=2 35 / 65 27 7.88 54.66

ut mix 70 / 117 25 6.47 95.59

1=2 35 / 65 26 2.35 52.74

B&C

var

mix 42 / 77 28 3.53 55.61

all var 1=2 38 / 67 26 25.69 101.24

ut mix 106 / 143 28 3.24 313.73

Table 5.4: Basi
 B&C experiments for aa05

lb: 62860.50 OPT: 53839 ub: 53904

aa05

sear
h tree time

nodes depth to opt total

1=2 4 / 7 3 2.26 2.26

B&B var

mix 46 / 87 14 2.47 13.17

1=2 5 / 9 3 3.08 3.34

B&C

var

mix 6 / 11 5 3.14 3.22

lique var 1=2 5 / 7 3 2.21 3.16

ut mix 12 / 21 5 2.49 6.56

1=2 2 / 3 1 9.96 11.91

B&C

var

mix 5 / 9 4 18.30 18.51

all var 1=2 2 / 5 2 10.23 16.59

ut mix 2 / 5 2 10.21 15.12

161

Table 5.5: Basi
 B&C experiments for aa03

lb: 75323.36 OPT: 49649 ub: 49649

aa03

sear
h tree time

nodes depth to opt total

1=2 1 / 3 1 0.15

B&B var

mix 2 / 3 1 0.18

1=2 1 / 3 1 0.31

B&C

var

mix 1 / 3 1 0.31

lique var 1=2 1 / 3 1 0.30

ut mix 1 / 3 1 0.32

1=2 1 / 1 0 0.51

B&C

var

mix 1 / 1 0 0.40

all var 1=2 1 / 1 0 0.49

ut mix 1 / 1 0 0.53

Table 5.6: Basi
 B&C experiments for aa06

lb: 30314.18 OPT: 27040 ub: 27040

aa06

sear
h tree time

nodes depth to opt total

1=2 6 / 9 3 2.25

B&B var

mix 15 / 27 8 4.90

1=2 2 / 5 2 1.59

B&C

var

mix 1 / 3 1 1.31

lique var 1=2 2 / 3 1 1.29

ut mix 2 / 5 2 1.87

1=2 1 / 1 0 3.28

B&C

var

mix 1 / 1 0 3.39

all var 1=2 1 / 1 0 3.34

ut mix 1 / 1 0 3.45

162

Table 5.7: Basi
 B&C experiments for kl02

lb: 224.25 OPT: 219 ub: 219

kl02

sear
h tree time

nodes depth to opt total

1=2 8 / 17 8 1.33

B&B var

mix 198 / 385 21 10.82

1=2 3 / 7 3 1.02

B&C

var

mix 28 / 57 8 3.47

lique var 1=2 315 / 621 26 40.36

ut mix 1342 / 2635 23 149.34

1=2 1 / 1 0 0.39

B&C

var

mix 1 / 1 0 0.40

all var 1=2 1 / 1 0 0.40

ut mix 1 / 1 0 0.39

Table 5.8: Basi
 B&C experiments for nw17

lb: 13764.00 OPT: 11115 ub: 11115

nw17

sear
h tree time

nodes depth to opt total

1=2 2 / 3 1 0.22

B&B var

mix 2 / 3 1 0.10

1=2 2 / 3 1 0.42

B&C

var

mix 1 / 3 1 0.35

lique var 1=2 2 / 3 1 0.41

ut mix 1 / 3 1 0.36

1=2 1 / 1 0 0.41

B&C

var

mix 1 / 1 0 0.40

all var 1=2 1 / 1 0 0.45

ut mix 1 / 1 0 0.41

163

Table 5.9: Basi
 B&C experiments for nw36

lb: 7762.00 OPT: 7314 ub: 7314

nw36

sear
h tree time

nodes depth to opt total

1=2 4 / 9 4 0.12

B&B var

mix 4 / 9 4 0.15

1=2 2 / 3 1 0.36

B&C

var

mix 2 / 3 1 0.35

lique var 1=2 3 / 5 2 0.39

ut mix 2 / 5 2 0.40

1=2 1 / 1 0 0.44

B&C

var

mix 1 / 1 0 0.46

all var 1=2 1 / 1 0 0.42

ut mix 1 / 1 0 0.44

Table 5.10: Basi
 B&C experiments for us01

lb: 9963.06 OPT: 10036 ub: 10101

us01

sear
h tree time

nodes depth to opt total

1=2 3 / 7 3 0.33 0.44

B&B var

mix 7 / 13 5 0.32 0.59

1=2 2 / 5 2 3.18 3.23

B&C

var

mix 4 / 7 3 2.12 2.28

lique var 1=2 2 / 5 2 2.15 2.53

ut mix 6 / 11 5 1.58 2.83

1=2 1 / 3 1 6.16 6.17

B&C

var

mix 1 / 1 0 5.95 5.96

all var 1=2 1 / 1 0 4.21 4.22

ut mix 1 / 1 0 3.75 3.76

164

Table 5.11: Parallel runs for aa01

lb: 55535.43 OPT: 56137 ub: 56172

aa01

sear
h tree time s

1

(p) s

2

(p)

nodes depth to opt total

1 51.33 / 91.00 11.67 384.69 622.65 1.00 1.00

2 68.33 / 115.67 12.67 307.58 402.11 0.77 0.75

4 59.33 / 91.67 11.67 155.92 181.06 0.86 0.87

8 52.00 / 89.00 11.33 97.03 177.20 0.44 0.99

Table 5.12: Parallel runs for aa04

lb: 25877.60 OPT: 26374 ub: 26680

aa04

sear
h tree time s

1

(p) s

2

(p)

nodes depth to opt total

1 282.67 / 537.00 24.67 2293.19 2404.63 1.00 1.00

2 267.67 / 506.33 21.67 1057.40 1111.41 1.08 1.06

4 187.67 / 334.33 15.67 318.39 350.18 1.72 1.51

8 233.67 / 411.00 17.33 229.90 239.90 1.25 1.21

on all but the two hardest problems. There are two reasons for this di�eren
e.

First of all, [Bor97℄ used an internal CPLEX routine for strong bran
hing whi
h

we strongly suspe
t is mu
h more eÆ
ient
omputationally than the framework's

strong bran
hing. Considering that on these problems our algorithm spends more

than two-thirds of its running time in strong bran
hing, the internal CPLEX routine

gives an enormous advantage. Se
ond, they used the GLS algorithm for �nding odd

holes whi
h seems to be more eÆ
ient for dense fra
tional graphs than the level

graph approa
h.

165

We also ran the two hard problems with 2, 4 and 8 LP-CG pairs (using B&C

with all the
uts and variable bran
hing only). Tables 5.11 and 5.12 present the

results (three runs averaged). aa04 shows a superlinear speedup both in terms of

running time and the number of pro
essed sear
h tree nodes. aa01 shows
lose to

linear speedup in terms of nodes pro
essed, but it exhibits the law of diminishing

returns when using 8 pro
essors: there are so few sear
h tree nodes that adding

more pro
essors didn't help, sin
e for these pro
essors there was nothing to work

on.

5.5.2 Set 2 problems

We have experimented with these problems, but the results were not en
ourag-

ing. As we have already seen in Table 4.4 the LP relaxations for these problems

are extremely diÆ
ult. They were very hard both for reoptimization and strong

bran
hing. For this reason we sele
ted only three variables as
andidates for strong

bran
hing. In the �rst of two sets of runs we have sele
ted these variables with the

\
lose to one-half and expensive" rule and with the mixed rule in the se
ond. Odd

hole generation was disabled as well.

These problems proved to be so hard that with four LP-CG pairs in a two hour

time frame we were able to pro
ess only approximately 35 nodes on the average

and found a feasible solution only on
e (this solution was found by the feasible

solution heuristi
). Tables 5.13 and 5.14 show these results. We are not aware of

any published results for these problems.

166

Table 5.13: Basi
 B&C experiments for Set 2 (bran
hing on \
lose to one-half")

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

0321.4 8 / 9 4 35875.86 - / - 7224.34

0331.3 108 / 203 40 28994.61 34253.10 / - 3045.40 7217.91

0331.4 51 / 95 20 29968.41 - / - 7215.58

0341.3 86 / 157 22 31383.66 - / - 7222.75

0341.4 75 / 139 28 34443.64 - / - 7215.07

0351.3 11 / 15 4 35239.85 - / - 7221.17

0351.4 9 / 11 4 34551.91 - / - 7223.03

Table 5.14: Basi
 B&C experiments for Set 2 (mixed bran
hing variable sele
tion)

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

0321.4 8 / 9 4 35879.24 - / - 7223.69

0331.3 26 / 45 8 28488.68 - / - 7223.73

0331.4 26 / 45 8 29778.25 - / - 7223.24

0341.3 34 / 61 10 31058.49 - / - 7224.87

0341.4 39 / 71 11 34320.70 - / - 7219.07

0351.3 9 / 11 4 35129.98 - / - 7223.07

0351.4 8 / 9 4 34539.79 - / - 7225.61

167

5.5.3 Set 3 problems

These problems
an be divided into two groups, the v* and t* problems (they were

generated at di�erent stages of the modeling pro
ess).

The v04 and v16 problems are extremely degenerate; there are many feasible so-

lutions around the optimal value. This was already apparent when we were able to

�nd near-optimal feasible solutions with our heuristi
. The LP relaxations are rela-

tively easy to (re-)solve, both after adding
onstraints and during strong bran
hing.

Hen
e we were able to
onsider a wider sele
tion of bran
hing
andidates, alto-

gether 18. The fra
tional graphs are relatively small and sparse, thus we were able

to use our pa
king and
over odd hole generators. Preliminary testing showed that

bran
hing on variables \
lose to one-half and expensive" is not e�e
tive, the mixed

strategy was used instead. Two experiments were
arried out for ea
h problem, one

with bran
hing on variables only, the other with bran
hing on both variables and

uts.

The v04 problems are very easy ex
ept for v0416. Tables 5.15 and 5.16 present

the results of the two experiments for these problems, using only one LP-CG pair.

We were able to solve all problems to optimality in both
ases. For these problems

bran
hing on
uts seems to give an advantage. We experimented with multiple LP-

CG pairs for v0416. Tables 5.17 and 5.18 show that this problem s
ales very well

for multiple LP-CG pairs. Also, the e�e
tiveness of bran
hing on
uts is even more

pronoun
ed.

The v16 problems are mu
h larger than the v04 problems and although the LP

relaxations are still not too diÆ
ult, the size of the sear
h tree explodes be
ause

168

Table 5.15: Basi
 B&C experiments for v04 (bran
hing on vars)

problem

sear
h tree

OPT

initial time

nodes depth ub to opt total

v0415 11 / 19 5 2429415 2435833 5.16 7.02

v0416 869 / 1387 42 2725602 2736885 10.13 506.56

v0417 10 / 15 3 2611518 2622525 41.06 61.41

v0418 8 / 15 6 2845425 2855469 4.66 9.04

v0419 1 / 1 0 2590326 2598124 1.08 1.09

v0420 1 / 1 0 1696889 1703734 0.61 0.61

v0421 1 / 1 0 1853951 1858977 0.89 0.90

Table 5.16: Basi
 B&C experiments for v04 (bran
hing on vars/
uts)

problem

sear
h tree

OPT

initial time

nodes depth ub to opt total

v0415 12 / 17 4 2429415 2435833 4.70 6.61

v0416 582 / 801 23 2725602 2736885 7.22 338.65

v0417 11 / 15 5 2611518 2622525 22.44 53.88

v0418 3 / 5 2 2845425 2855469 3.43 3.52

v0419 1 / 1 0 2590326 2598124 0.58 0.59

v0420 1 / 1 0 1696889 1703734 0.56 0.57

v0421 1 / 1 0 1853951 1858977 0.45 0.47

169

Table 5.17: Parallel runs for v0416 (bran
hing on vars)

lb: 2715490.66 OPT: 2725602 ub: 2736885

v0416

sear
h tree time s

1

(p) s

2

(p)

nodes depth to opt total

1 1268.33 / 2097.00 39.67 11.75 692.89 1.00 1.00

2 1277.00 / 2141.00 39.00 9.99 347.76 1.00 0.99

4 1572.67 / 2580.33 38.67 9.02 180.91 0.96 0.81

8 1258.33 / 2081.67 38.00 8.40 72.27 1.20 1.01

16 1569.67 / 2582.33 36.67 6.57 49.55 0.87 0.81

Table 5.18: Parallel runs for v0416 (bran
hing on vars/
uts)

lb: 2715490.66 OPT: 2725602 ub: 2736885

v0416

sear
h tree time s

1

(p) s

2

(p)

nodes depth to opt total

1 1129.33 / 1617.00 29.00 3.80 514.35 1.00 1.00

2 910.67 / 1279.67 27.33 2.10 150.81 1.71 1.24

4 1090.00 / 1541.67 31.00 2.85 106.81 1.20 1.04

8 1011.67 / 1427.00 31.33 3.86 58.70 1.10 1.12

16 800.00 / 1097.00 26.67 4.12 27.90 1.15 1.41

170

of the degenera
y. We have experien
ed that the the lower bound did not in
rease

through several levels in the sear
h tree. Therefore we used four LP-CG pairs for all

but the last two these problems whi
h are trivial, Tables 5.19 and 5.20
ontain the

results of our experiments. Having multiple LP-CG pairs also
ompensates for the

omputational ineÆ
ien
y of the strong bran
hing interfa
e to CPLEX. (Even with

four pairs we have pro
essed signi�
antly fewer sear
h tree nodes than Bornd�orfer et

al. [BGKK97℄.) We have also experimented with 16 LP-CG pairs for the �ve diÆ
ult

problems in this group (bran
hing on variables only). Having more
omputing power

has generally improved both the upper and lower bounds but the sear
h tree is still

far from being enumerated in four out of the �ve
ases. Surprisingly, v1620 was

solved to optimality in 375:04 se
onds (see Table 5.21).

The t* problems are mu
h more diÆ
ult than the previous sets. The LP relax-

ations are hard, and feasible solutions are s
ar
e (we were able to �nd feasible solu-

tions with the heuristi
 only for three out of the 13 problems). The fra
tional graphs

are dense, thus generating odd holes was prohibitively expensive. We restri
ted the

number of bran
hing
andidates to 9. In
ontrast to the v* problems, the \
lose to

one-half and expensive" rule sele
ted better bran
hing variables. Again, we have

experimented with bran
hing on variables only and bran
hing both on variables

and
uts. Here we again used four LP-CG pairs. Tables 5.22 through 5.25 show the

results of our experiments.

Although we have found feasible solutions for all the problems (always with the

heuristi
), the integrality gap is still over 10%.

Our results
ompare to those of Bornd�orfer et al. [BGKK97℄ reasonably well.

171

Table 5.19: Basi
 B&C experiments for v16 (bran
hing on vars)

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

v1616 603 / 1199 101 1006156.06 1006460 / 1018536 837.37 7208.33

v1617 729 / 1445 105 1102258.78 1102637 / 1115503 966.15 7207.93

v1618 411 / 819 159 1152827.05 1154324 / 1166107 4725.44 7206.61

v1619 329 / 655 291 1155357.21 1157078 / 1168481 6265.43 7206.88

v1620 280 / 489 82 1140381.91 1140604 / 1152624 5505.25 7207.63

v1621 3 / 3 1 - 825563 / 834602 4.22 4.56

v1622 2 / 3 1 - 793445 / 800572 2.01 2.65

Table 5.20: Basi
 B&C experiments for v16 (bran
hing on vars/
uts)

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

v1616 538 / 1051 123 1006232.90 1006460 / 1018536 315.01 7207.54

v1617 709 / 1409 68 1102220.26 1102586 / 1115503 539.60 7209.55

v1618 255 / 505 69 1152793.26 1154968 / 1166107 6819.14 7208.10

v1619 304 / 581 35 1155777.33 1156368 / 1168481 3412.55 7208.87

v1620 264 / 457 31 1140425.22 1140604 / 1152624 1485.61 7206.95

v1621 2 / 3 1 - 825563 / 834602 3.85 3.86

v1622 1 / 3 1 - 793445 / 800572 1.70 1.78

Table 5.21: Basi
 B&C experiments for v16 with 16 LP-CG pairs

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

v1616 10470 / 20747 203 1006311.49 1006460 / 1018536 143.91 7255.96

v1617 13451 / 26711 107 1102357.00 1102586 / 1115503 1244.02 7250.27

v1618 6881 / 13653 175 1152999.94 1154018 / 1166107 3251.42 7240.58

v1619 6068 / 12051 251 1155866.81 1156557 / 1168481 7101.20 7266.00

v1620 684 / 871 43 1140604 / 1152624 151.40 375.04

172

Table 5.22: Basi
 B&C experiments for t04 (bran
hing on vars)

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

t0415 307 / 589 68 5185684.06 5570767 / - 1209.68 7216.27

t0416 276 / 537 52 5892208.64 6093843 / - 336.50 7224.44

t0417 267 / 463 24 5688062.66 5951357 / - 5252.42 7224.32

t0418 199 / 359 29 6195440.35 6442906 / - 3876.42 7217.04

t0419 283 / 541 49 5714748.81 5910913 / - 716.16 7217.70

t0420 865 / 1681 45 4055025.59 4153696 / - 587.04 7223.03

t0421 875 / 1677 43 4126129.27 4290809 / - 1269.66 7219.05

Table 5.23: Basi
 B&C experiments for t04 (bran
hing on vars/
uts)

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

t0415 382 / 637 19 5196761.22 - / - - 7213.70

t0416 327 / 635 32 5897503.96 6088264 / - 503.70 7213.75

t0417 301 / 509 20 5690561.30 - / - - 7223.29

t0418 220 / 383 17 6206432.44 - / - - 7212.79

t0419 332 / 625 50 5719985.86 6022626 / - 2176.37 7221.35

t0420 1083 / 1985 28 4049232.06 - / - - 7217.78

t0421 1093 / 2143 42 4122723.76 4290809 / - 321.88 7222.79

173

Table 5.24: Basi
 B&C experiments for t17 (bran
hing on vars)

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

t1716 297 / 585 63 122492.51 168856 / - 4495.32 7225.10

t1717 122 / 237 40 135288.55 181375 / 210489 6738.36 7223.22

t1718 182 / 357 66 126847.64 172992 / 204086 6046.42 7217.09

t1719 128 / 249 37 139327.63 187717 / - 6991.11 7218.59

t1720 127 / 247 37 126982.53 179018 / 200679 5385.00 7218.83

t1721 801 / 1585 83 104821.47 128053 / - 4600.99 7224.77

Table 5.25: Basi
 B&C experiments for t17 (bran
hing on vars/
uts)

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

t1716 326 / 643 70 122364.28 173692 / - 848.32 7222.57

t1717 130 / 253 45 135263.49 203840 / 210489 2428.68 7223.57

t1718 186 / 365 63 126808.38 163860 / 204086 6962.04 7217.19

t1719 172 / 337 53 139314.47 187222 / - 6620.44 7211.27

t1720 173 / 339 56 126934.68 171533 / 200679 6408.27 7211.04

t1721 899 / 1771 67 104679.26 126837 / - 4411.52 7212.83

174

The feasible solutions we �nd are of about the same quality (when optimality is

not proved), so is the best lower bound we
an a
hieve. We suspe
t that even

though we have used four LP-CG pairs for the harder problems, this still just

barely
ompensates for the tight
oupling with CPLEX's internal strong bran
hing

routine.

5.5.4 Set 4 problems

From this problem set we have experimented with those that were neither solved

to optimality by our Feasible Solution Heuristi
 nor were found infeasible. We have

also omitted those problems where solving the LP relaxations took an inordinately

long time. Tables 5.26 and 5.27 show the results for the remaining 4 problems. In

these tests we have used a history of length 7 for dete
ting tailing o� and at most

30
uts were added per iteration. We sele
ted 6 variables for strong bran
hing and

tested both the mixed and the \
lose to one-half and expensive"
andidate sele
tion

rules. We did not attempt to generate violated odd hole
onstraints. These tests

were
arried out using four LP-CG pairs. These problems have not been publi
ly

available, so there are no other published
omputational results for them.

5.5.5 Con
lusion and future work

With our B&C implementation we have shown that the COMPSys framework is

easy to adapt. It provided enough
exibility to implement methods �ne-tuned for

the Set Partitioning Problem and at the same time it made our programming task

175

Table 5.26: Basi
 B&C experiments for Set 4 (bran
hing on \
lose to one-half")

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

sp1 128 / 233 70 11482 / 11482 0.00 6862.70

sp4 212 / 405 52 11821.79 12798 / - 1203.89 7222.80

sp5 2 / 3 1 27637 / 27673 484.53 888.24

sp10 519 / 903 42 44157.89 49835 / - 216.37 7218.44

Table 5.27: Basi
 B&C experiments for Set 4 (mixed bran
hing variable sele
tion)

sear
h tree best best / initial time

nodes depth lower bound upper bound to best total

sp1 127 / 223 75 11482 / 11482 0.00 6951.84

sp4 203 / 395 51 11843.05 12798 / - 271.49 7223.71

sp5 5 / 9 4 27637 / 27673 484.95 1423.37

sp10 582 / 1007 21 43839.22 49839 / - 899.53 7211.86

176

mu
h easier.

There are areas where improvement
ould be made. Within COMPSys the

strong bran
hing interfa
e to the LP solver needs to be improved.

On our part, we plan to
ontinue resear
h in several dire
tions. First, we plan to

experiment with the GLS-algorithm for �nding odd holes to see whether it performs

well for dense fra
tional graphs.

Se
ond, new diving strategies should be explored. In the
urrent implementation

we found long \
hains" diving to the bottom of the sear
h tree. As a result, only few

nodes
lose to the top of the tree were pro
essed whi
h resulted in weak lower bound

for the hard problems (the integrality gaps were above 10% for the t* problems).

More
areful diving strategies might help to shrink the gap on these problems.

Chapter 6

The Graphi
al User Interfa
e

The Graphi
al User Interfa
e (GUI) is implemented as a separate pro
ess of the

COMPSys framework. The GUI
onsists of two parts: an intera
tive graph draw-

ing appli
ation (IGD) implemented purely in T
l/Tk and an interfa
e (DrawGraph)

implemented in C that links the appli
ation to the other pro
esses of the frame-

work. DrawGraph is spawned by the Master pro
ess and
ommuni
ates with the

other pro
esses via PVM. DrawGraph in turn forks a wish shell (a shell that a
-

epts T
l/Tk
ommands) and opens a pair of
ommuni
ation pipes, atta
hing them

to the standard input and output of the wish shell (the te
hnique was adapted

from [Wel95℄). Figure 6.1 illustrates the
ommuni
ation
ow between COMPSys,

the interfa
e and the wish shell.

The GUI has been extensively used for debugging, both in the Cut Generator

and in the LP pro
esses. In this
ase, messages go from a pro
ess of the framework

to IGD through the interfa
e. Another, novel use of the GUI in the Set Partitioning

177

178

PVM

PVM

pipe

pipe

stdin

stdout

Interface

(DrawGraph)

wish shell

(IGD)
COMPSys

Figure 6.1: Communi
ation
ow between COMPSys and the GUI

setting is to send messages, namely
uts, from IGD to the Cut Generator pro
ess;

that is, to generate violated
uts \by hand." This enables us to test the e�e
tiveness

of
uts that are diÆ
ult (or not known how) to separate algorithmi
ally. We will

illustrate the \human
ut generation" through an example in Se
tion 6.3, after

dis
ussing IGD and DrawGraph.

6.1 Intera
tive Graph Drawing (IGD)

T
l, an interpreted s
ripting language, extended by the Tk toolkit provides an en-

vironment that allows fast and relatively easy implementation of GUI's that use

windows and menus. IGD is implemented using T
l version 7.5p1+ and Tk ver-

sion 4.1p1+dash (it has also been tested under T
l version 8.0p2+ and Tk version

8.0p2+dash and it will most likely work with higher versions as well). Download

information about T
l/Tk, manuals and related literature
an be found at the T
l

WWW Info Site (http://www.s
o.
om/Te
hnology/t
l/T
l.html).

IGD is a library of T
l/Tk fun
tions for displaying, manipulating, s
aling and

printing undire
ted graphs (note that the pa
kage does not
ontain graph layout

algorithms). Figure 6.2 gives an idea of the look and feel of the appli
ation; the

1
7
9

Figure 6.2: S
reen shot of the GUI: problem v0416 at the root before bran
hing

180

six graphs on Figure 2.3 were also
reated and printed using IGD. The library
an

be used as a stand-alone appli
ation without using the interfa
e. In this
ase the

library fun
tions are sour
ed into a wish shell and
an be invoked dire
tly. As soon

as one appli
ation window is displayed, the user
an manipulate the windows and

graphs via menus, buttons and mouse
li
ks (whi
h are all bound to fun
tions in

the library), hen
e the adje
tive \intera
tive."

The basi
 units of the IGD appli
ation are windows (Figure 6.2). These windows

ontain menus, buttons, s
rollbars and a drawing area
alled
anvas where the

graphs are displayed. The graphs displayed
an be saved to and loaded from �les

in a spe
ial format designed for this appli
ation; the graph visible on the
anvas

an also be saved in a posts
ript �le. New windows
an be
reated, the display

properties of windows (like fonts, node radii, dash patterns for the node and edge

outlines)
an be modi�ed. A graph node is represented with a
ir
le (di�erent

nodes
an have di�erent radii and di�erent outlines), a label (a short text displayed

within the
ir
le) and an optional weight (a short text displayed North-East from

the
ir
le). The edges
onne
ting the nodes are represented with lines (di�erent

edges
an have di�erent outlines) with optional weights (short texts pla
ed East

from the middle of the line). In the Set Partitioning setting the graph displayed

is the fra
tional interse
tion graph (Se
tions 1.3 and 5.4), the node labels are the

indi
es of the nodes in the appli
ation, and the weights are the LP solution values

asso
iated with the
orresponding variables; the edges are all solid lines and no edge

weights are used. The nodes of the graph
an be moved around (the idea of how

to implement this was borrowed from [Ous94℄), edges atta
hed to the moving node

181

will move with the node. Moving nodes makes it easy to rearrange the graph so

that spe
ial stru
tures are easier to spot (like the wheel inequality in the graph on

Figure 6.2, see Se
tion 6.3).

The library with a short s
ript to start the stand-alone appli
ation is available

for download at http://www.orie.
ornell.edu/~eso/IGD/. The pa
kage also

ontains a detailed des
ription of the features outlined above and do
umentation of

the library fun
tions.

When IGD is used along with the DrawGraph interfa
e, the library fun
tions

are sour
ed into the forked wish shell. The interfa
e
an invoke a fun
tion by simply

pla
ing a fun
tion
all on the
ommuni
ation pipe atta
hed to the shell's standard

input, and whatever IGD pla
es on the shell's output is
aught by the interfa
e.

Additional fun
tionalities bound to the buttons in the upper right
orner of the

window on Figure 6.2 were in
luded so that the user
an send ba
k messages to the

interfa
e as well. The Continue button is used to hold up the interfa
e (whi
h in

turn
an hold up the framework) until the user is done with the the
urrent graph;

the Enter text button brings up a window into whi
h the user
an enter any text for

interpretation by the interfa
e (this is the smaller window on Figure 6.2); pressing

the Reset button sends a request to the interfa
e to redraw the same graph (this

is useful sin
e nodes of the graph
an be moved around or deleted); and �nally

pressing the Msg from C button will bring up a window in whi
h messages from the

framework are displayed (we use this option to print out the violated inequalities

found in the fra
tional graph during
ut generation).

182

6.2 The interfa
e (DrawGraph)

DrawGraph is a separate pro
ess of the framework spawned by the Master pro
ess.

As soon as it is started, it forks the wish shell and sour
es the IGD library. Then

it enters an in�nite loop in whi
h messages from IGD and from pro
esses of the

COMPSys framework are pro
essed alternately. Messages from IGD are pro
essed

at on
e while messages re
eived via PVM are pla
ed into message bu�ers a

ording

to the addressee (the window to whom the message is addressed) and pro
essed later.

Ea
h window opened through the interfa
e has a unique \owner," the pro
ess of the

framework that initiated the window. One pro
ess
an own several windows and

ea
h window will a

ept messages only from its owner. This bu�ering of messages

is ne
essary sin
e the message
ow to a window must be held up until the user has

�nished examining the graph displayed. On
e one message from \ea
h side" (IGD

and the framework) of the interfa
e has been read, one message per window (if any)

is pro
essed and the loop
ontinues.

Similar to other pro
esses of the framework, the user
an
ustomize the Draw-

Graph pro
ess via user written fun
tions. The only nontrivial user fun
tion is the

interpretation of text entered from the appli
ation. We used this option only for

entering
uts (violated valid inequalities). A
ut is de�ned by its type (whi
h
an

be any of the known
ut types des
ribed in Se
tion 2.3 or \other" if the inequal-

ity is none of these types), the number of variables on the left hand side with the

names and
oeÆ
ients, the value of the right hand side, the sense and range of the

inequality (see the
ut in the small window on Figure 6.2). Only the format of the

183

uts is
he
ked here, their violation is
omputed in the Cut Generator.

6.3 Generating
uts by hand

The fra
tional interse
tion graph is displayed from the Cut Generator master either

every time the LP relaxation is (re-)solved and the regular
ut generation (des
ribed

in Se
tion 5.4) has already �nished, or only when the built-in algorithms
ould not

generate any violated inequalities (and bran
hing would follow unless we
an add

some
uts). The �rst
hoi
e is bene�
ial for debugging as well, sin
e we
an see

what kind of violated inequalities were generated internally. On the other hand,

the se
ond
hoi
e is very interesting, sin
e here we
an look for new types of
uts

that we do not separate for in the Cut Generator. We enter
uts through the Enter

text window as shown on Figure 6.2. The
uts are evaluated in the Cut Generator

master, and those whi
h are violated are sent to the LP pro
ess. All
uts entered

this way are sent ba
k to the message window of the GUI so that we
an see the

extent of violation for ea
h
ut.

Figure 6.2 presents the fra
tional interse
tion graph for the problem v0416 before

bran
hing at the root of the sear
h tree (after adding
uts internally and resolving

the LP relaxation 16 times). Observe that there are no violated
liques, odd holes

or antiholes in the graph (for instan
e, all maximal
liques are size 3 and the sum

of the solution values in ea
h
ase is exa
tly 1). However, it is easy to spot two

violated wheel inequalities (one of those is entered in the small window).

184

Re
all from Se
tion 2.3 that one of the wheel inequalities (I

E

) is

X

j2W

x

j

+

X

j2E

x

j

+ (k � 1)x

0

� (jW j+ jEj)=2� 1;

whereW is all the nodes of the wheel, x

0

is the hub, and E/O
ontain the spoke-ends

that are of even/odd distan
e from the hub (jEj+ jOj = 2k+ 1). This inequality is

violated for the following two wheels (entering the �rst wheel is shown in the small

window):

Wheel 1:

hub: 1889; spoke-ends: E = ;, O = f1888; 1893; 1436g;

spokes: 1889-1888, 1889-1893, 1889-2481-2482-1436;

rim-paths between spoke-ends: 1888-1893, 1893-1436, 1436-805-803-1888;

inequality:

P

j2W

x

j

� 3, value of left hand side: 3:25.

Wheel 2:

hub: 1598; spoke-ends: E = ;, O = f1888; 1893; 1436g;

spokes: 1598-1597-1919-1914-426-424-2444-2445-193-1888, 1598-1893,

1598-1436;

rim-paths between spoke-ends: 1888-1893, 1893-1436, 1436-805-803-1888;

inequality:

P

j2W

x

j

� 6, value of left hand side: 6:25.

Note that the two wheels have the same spoke-ends. Also, noti
e that the
hain

between 193 and 1598
ould be repla
ed by 193-2445-1598 or 193-1597-1598

whi
h would
orrespond to reversing the even subdivision (repla
ing an edge with a

path that
ontains an even number of nodes) of the edge 2445-1598 or 193-1597,

respe
tively.

1
8
5

x

193

+x

2445

+x

2444

+x

424

+x

426

+x

1914

+x

1919

+x

1597

+x

1598

+x

1893

+x

1888

� 5

x

1893

+x

1436

+x

1889

+x

2481

+x

2482

� 2

x

193

+x

1888

+x

803

� 1

+x

1436

+x

2482

+x

805

� 1

x

2445

+x

2444

� 1

x

424

+x

426

� 1

x

1914

+x

1919

� 1

x

1597

+x

1598

� 1

x

1889

+x

2481

� 1

x

803

+x

805

� 1

2(x

193

+x

2445

+x

2444

+x

424

+x

426

+x

1914

+x

1919

+x

1597

+x

1598

+x

1893

+x

1888

+x

1436

+x

1889

+x

2481

+x

2482

+x

803

+x

805

) � 15

x

193

+x

2445

+x

2444

+x

424

+x

426

+x

1914

+x

1919

+x

1597

+x

1598

+x

1893

+x

1888

+x

1436

+x

1889

+x

2481

+x

2482

+x

803

+x

805

� 7

Figure 6.3: Deriving a
ut using the Chv�atal-Gomory pro
edure

186

Figure 6.3 illustrates the Chv�atal-Gomory pro
edure ([Chv73℄, also see Se
-

tion 2.3.1) for this graph by deriving a
ut that
ontains all the nodes of the graph.

Add up the odd
y
le inequalities for the following
y
les:

193-2445-2444-424-426-1914-1919-1597-1598-1893-1888 (length 11),

1436-1893-1889-2481-2482 (length 5),

193-803-1888 and 805-1436-2482 (both length 3);

and also add the edge inequalities for the edges 2445-2444, 424-426, 1914-1919,

1597-1598, 1889-2481, 803-805. Then all the nodes will be
ounted exa
tly twi
e

on the left hand side while the right hand side adds up to 15. Dividing both sides by

2 we obtain the following valid inequality (whi
h is violated by the
urrent solution

sin
e the sum of the solution values on all the nodes is 7:5):

X

j2V

x

j

� 7

where V denotes all the 17 nodes in the graph. A stable set of size 7 is for instan
e

193, 2444, 426, 1597, 1893, 2481 and 805. Noti
e that the above inequality is

a rank inequality; thus, if the Chv�atal
ondition (Se
tion 2.3.1) holds, then it is

also fa
et de�ning for the stable set polytope of the graph. Indeed, it is easy to

see that all edges of the graph ex
ept 1436-1598 and 1888-1889 are �-
riti
al, so

the subgraph of all the �-
riti
al edges on the 17 nodes is
onne
ted; that is, the

Chv�atal
ondition is satis�ed.

Appendix A

Computation

A.1 Computing environment

� IBM RS/6000 S
alable POWERparallel System (SP)

� SP High Performan
e Swit
h 150 MByte/se
 peak hardware bandwidth

� Pro
essor type POWER2 Super Chip (P2SC) with 128 KByte data
a
he,

256 bit memory bus

� Thin nodes 120 MHz
lo
k speed, 256MByte or 1 GByte memory;

Wide nodes 135 MHz
lo
k speed, 1 or 2 GByte memory

� Operating system AIX 4.2.1

� C
ompiler xlC 3.1.4.7 with
ags

\-O3 -qmaxmem=16384 -qar
h=pwr2 -qtune=pwr2s"

187

188

� Message passing proto
ol PVM 3.3.11 [PVM℄

� LP solver CPLEX 4.0.9 [CPX95℄

All times reported are wall-
lo
k times. Users of the SP get ex
lusive use of the

assigned pro
essors while running bat
h jobs. Therefore, espe
ially for longer jobs,

wall-
lo
k time approximates CPU time
losely.

A.2 The test bed

Our methods have been tested on four sets of problems (see details below). Two

sets are Airline Crew S
heduling Problems originating at major airlines, and two are

Vehi
le Routing Problems from the ZIB Telebus Proje
t. Problems in Sets 1 and 3

are referen
ed in the papers listed below but we are not aware of any publi
ations

about the remaining problems. All problems are publi
ly available.

Set 1 (55 problems)

origin: major airlines

published: originally in [HP93℄; [BC96℄, [Bor97℄

sour
e: http://ms
mga.ms.i
.a
.uk/jeb/orlib/sppinfo.html

omments: LP relaxation solves 15 of the problems to optimality

Set 2 (7 problems)

origin: Telebus Proje
t at ZIB

published: {

sour
e: http://www.zib.de/Optimization/index.en.html

omments: very hard problems

189

Set 3 (27 problems)

origin: Telebus Proje
t at ZIB

published: [BGKK97℄

sour
e: http://www.zib.de/borndoerfer

omments: 14
lustering and 13
haining problems

Set 4 (14 problems)

origin: major airline ([Anb℄)

published: {

sour
e: http://www.orie.
ornell.edu/~eso

omments: removed side
onstraints before optimization

Tables A.1, A.2, A.3 and A.4 give some basi
 properties of these problems. In

the �rst �ve
olumns the name and size (number of
olumns, rows, nonzeros and

density) are listed. Then the best published feasible solution value follows. For Set

1 problems the optimal solution is known (and the number of ones in an optimal

solution is also listed). For problems in Set 3 an *" marks those problems where

the best feasible solution is proved to be optimal.

After the initial problems were redu
ed using our fast strategy followed by one

SUMC (see Se
tion 3.4.4), the �rst LP relaxation of the problem was solved by

CPLEX's barrier method with dual
rossover (default parameter setting). The

next �ve
olumns
ontain the optimal value of the LP relaxation (or \IP" if the

solution is integral), the time spent solving the LP, the number of variables at level

1 and of those at other nonzero levels, and �nally the ratio of variables at level 1 to

all variables at nonzero levels.

190

The CPLEX MIP solver was also applied to the redu
ed problems. CPLEX MIP

parameters were set to their default values ex
ept for the following (see Appendix C

for des
ription of these parameters):

� tilim was set to 7200 se
onds;

� varsel was set to strong bran
hing based on our preliminary tests;

� epagap and objdif were set to the granularity of the problems (:009999 for

Set 2 problems, :9999 for the rest);

� epgap was set to 10

�9

(its lowest possible value).

The last three
olumns
ontain the value of the best feasible solution found by

the CPLEX MIP optimizer (*" when it is optimal, \{" if no feasible solution was

found), the number of sear
h tree nodes (if a feasible solution was found) and the

time spent in optimization. The number of sear
h tree nodes is marked with a \+"

if the tree was not
ompletely enumerated. Note that in three
ases (t0415, t0417

and t0419) the CPLEX MIP optimizer has found a better feasible solution than

the best published value.

1
9
1

Table A.1: Basi
 properties of problems in set 1, part 1

Original problem Optimal soln Solve �rst LP relax after Redu
e CPLEX MIP

name
ols rows nzs dens value #1s opt time #1s #fra
 ratio soln nodes time

aa01 8904 823 72965 1.00 56137 102 55535.44 8.19 17 291 5.52 * 149 713.34

aa02 5198 531 36359 1.32 30494 81 IP 1.94 81

aa03 8627 825 70806 0.99 49649 106 49616.36 5.66 69 91 41.67 * 2 69.98

aa04 7195 426 52121 1.70 26374 66 25877.61 3.74 5 224 2.18 * 189 648.44

aa05 8308 801 65953 0.99 53839 105 53735.93 5.42 53 142 26.42 * 11 91.01

aa06 7292 646 51728 1.10 27040 95 26977.19 4.94 51 112 31.29 * 10 81.48

kl01 7479 55 56242 13.67 1086 13 1084.00 1.07 5 16 23.81 * 8 9.52

kl02 36699 71 212536 8.16 219 17 215.25 4.03 4 27 12.90 * 125 634.37

nw01 51975 135 410894 5.86 114852 71 IP 13.50 71

nw02 87879 145 721736 5.66 105444 72 IP 35.96 72

nw03 43749 59 363939 14.10 24492 13 24447.00 10.72 8 7 53.33 * 2 25.45

nw04 87482 36 636666 20.22 16862 9 16310.67 15.53 7 6 53.85 { 7207.59

nw05 288507 71 2063641 10.07 132878 36 IP 105.25 36

nw06 6774 50 61555 18.17 7810 8 7640.00 1.15 2 16 11.11 * 8 10.04

nw07 5172 36 41187 22.12 5476 6 IP 0.30 6

nw08 434 24 2332 22.39 35894 12 IP 0.03 12

nw09 3103 40 20111 16.20 67760 16 IP 0.15 16

nw10 853 24 4336 21.18 68271 13 IP 0.01 13

nw11 8820 39 57250 16.64 116256 19 116254.50 0.26 16 4 80.00 * 1 0.20

nw12 626 27 3380 20.00 14118 15 IP 0.02 15

nw13 16043 51 104541 12.78 50146 22 50132.00 1.97 19 6 76.00 * 2 2.73

nw14 123409 73 904910 10.04 61844 26 IP 30.01 26

nw15 467 31 2830 19.55 67743 7 IP 0.06 7

nw16 148633 139 1501820 7.27 1181590 125 IP 116.42 125

nw17 118607 61 1010039 13.96 11115 16 10875.75 27.12 7 21 25.00 * 8 171.36

nw18 10757 124 91028 6.82 340160 41 338864.25 3.14 27 36 42.86 * 1 5.05

nw19 2879 40 25193 21.88 10898 7 IP 0.19 7

1
9
2

Table A.2: Basi
 properties of problems in set 1, part 2

Original problem Optimal soln Solve �rst LP relax after Redu
e CPLEX MIP

name
ols rows nzs dens value #1s opt time #1s #fra
 ratio soln nodes time

nw20 685 22 3722 24.70 16812 5 16626.00 0.04 0 15 0.00 * 4 0.21

nw21 577 25 3591 24.89 7408 7 7380.00 0.03 3 7 30.00 * 1 0.03

nw22 619 23 3399 23.87 6984 7 6942.00 0.04 3 7 30.00 * 1 0.04

nw23 711 19 3350 24.80 12534 8 12317.00 0.03 4 6 40.00 * 19 0.49

nw24 1366 19 8617 33.20 6314 7 5843.00 0.04 4 6 40.00 * 2 0.06

nw25 1217 20 7341 30.16 5960 5 5852.00 0.04 1 8 11.11 * 2 0.10

nw26 771 23 4215 23.77 6796 6 6743.00 0.04 3 5 37.50 * 1 0.04

nw27 1355 22 9395 31.52 9933 5 9877.50 0.05 3 3 50.00 * 1 0.04

nw28 1210 18 8553 39.27 8298 3 8169.00 0.05 2 3 40.00 * 1 0.05

nw29 2540 18 14193 31.04 4274 4 4185.33 0.25 0 11 0.00 * 8 1.27

nw30 2653 26 20436 29.63 3942 4 3726.80 0.12 1 8 11.11 * 2 0.32

nw31 2662 26 19977 28.86 8038 4 7980.00 0.16 2 5 28.57 * 3 0.40

nw32 294 19 1357 24.29 14877 7 14570.00 0.03 4 4 50.00 * 9 0.10

nw33 3068 23 21704 30.76 6678 5 6484.00 0.33 2 6 25.00 * 1 0.36

nw34 899 20 5045 28.06 10488 4 10453.50 0.05 2 4 33.33 * 1 0.03

nw35 1709 23 10494 26.70 7216 6 7206.00 0.06 4 4 50.00 * 1 0.09

nw36 1783 20 13160 36.90 7314 4 7260.00 0.22 1 6 14.29 * 14 2.26

nw37 770 19 3778 25.82 10068 4 9961.50 0.03 2 4 33.33 * 1 0.04

nw38 1220 23 9071 32.33 5558 5 5552.00 0.11 1 6 14.29 * 1 0.10

nw39 677 25 4494 26.55 10080 5 9868.50 0.03 3 3 50.00 * 2 0.05

nw40 404 19 2069 26.95 10809 4 10658.25 0.03 0 9 0.00 * 1 0.04

nw41 197 17 740 22.10 11307 5 10972.50 0.02 3 3 50.00 * 2 0.02

nw42 1079 23 6533 26.32 7656 4 7485.00 0.11 1 7 12.50 * 4 0.31

nw43 1072 18 4859 25.18 8904 6 8897.00 0.06 1 7 12.50 * 1 0.08

us01 1053137 145 13636541 8.93 10022 14 9963.07 129.76 0 47 0.00 * 13 2088.99

us02 13635 100 192716 14.13 5965 12 IP 1.02 12

us03 85552 77 1211929 18.40 5338 7 IP 5.04 7

us04 28016 163 297538 6.52 17854 24 17731.67 0.97 12 24 33.33 * 1 1.89

1
9
3

Table A.3: Basi
 properties of problems in set 3

Original problem Best feas Solve �rst LP relax after Redu
e CPLEX MIP

name
ols rows nzs dens value opt time #1s #fra
 ratio soln nodes time

v0415 7684 1518 20668 0.18 * 2429415 2423977.00 0.75 414 44 90.39 * 940 184.28

v0416 19020 1771 58453 0.17 * 2725602 2715490.67 0.66 508 121 80.76 2725748 + 45051 7200.32

v0417 143317 1765 531820 0.21 * 2611518 2603308.50 9.77 467 68 87.29 2612393 + 2716 7206.09

v0418 8306 1765 20748 0.14 * 2845425 2836836.67 0.75 504 91 84.71 * 10423 2863.07

v0419 15709 1626 52867 0.21 * 2590326 2582994.00 0.54 454 73 86.15 * 499 93.15

v0420 4099 958 10240 0.26 * 1696889 1688793.33 0.36 298 66 81.87 * 4301 570.65

v0421 1814 952 3119 0.18 * 1853951 1848949.00 0.16 260 36 87.84 * 145 7.31

v1616 67441 1439 244727 0.25 * 1006460 1002954.62 8.65 490 180 73.13 1006503 + 8333 7201.36

v1617 113655 1619 432278 0.23 1102586 1098263.23 15.22 523 261 66.71 1103266 + 4953 7203.97

v1618 146715 1603 545337 0.23 1154458 1147777.67 30.51 521 244 68.10 { 7207.31

v1619 105822 1612 401097 0.24 1156338 1150943.29 15.05 490 351 58.26 1157479 + 4594 7204.01

v1620 115729 1560 444445 0.25 * 1140604 1136666.52 39.04 464 368 55.77 1140771 + 1119 7209.87

v1621 24772 938 76971 0.33 * 825563 822339.42 2.00 331 152 68.53 825563 + 16776 7200.66

v1622 13773 859 41656 0.35 * 793445 790076.50 1.78 328 108 75.23 * 6241 2708.27

t0415 7254 1518 48867 0.44 5590096 5125429.50 16.30 100 784 11.31 5590095 + 913 7204.27

t0416 9345 1771 62703 0.38 6130217 5829948.77 20.61 69 917 7.00 { 7205.41

t0417 7894 1765 54885 0.39 6043157 5610564.20 20.44 96 821 10.47 5951357 + 784 7202.25

t0418 8676 1765 66604 0.43 6550898 6142664.90 28.14 68 942 6.73 { 7203.92

t0419 9362 1626 64745 0.43 5916956 5644051.00 17.15 42 858 4.67 5910913 + 827 7207.36

t0420 4583 958 27781 0.63 4276444 3983951.22 4.62 30 537 5.29 { 7202.66

t0421 4016 952 24214 0.63 4354411 4057701.31 3.85 23 537 4.11 { 7200.11

t1716 56865 467 249149 0.94 161636 121648.87 8.01 0 436 0.00 224785 + 914 7213.81

t1717 73885 551 325689 0.80 184692 134531.02 16.03 0 511 0.00 { 7216.08

t1718 67796 523 305064 0.86 162992 126334.47 10.79 0 497 0.00 { 7201.98

t1719 72520 556 317391 0.79 187677 138708.87 11.95 0 514 0.00 { 7202.15

t1720 69134 538 310512 0.83 172752 126333.20 13.26 0 513 0.00 { 7209.14

t1721 36039 357 148848 1.16 127424 103748.46 4.20 0 333 0.00 172841 + 1376 7206.84

1
9
4

Table A.4: Basi
 properties of problems in sets 2 and 4

Original problem Solve �rst LP relax after Redu
e CPLEX MIP

name
ols rows nzs dens opt time #1s #fra
 ratio soln nodes time

0321.4 71201 1202 818344 0.96 35742.46 161.390 0 1038 0.00 { 7316.61

0331.3 45637 664 467206 1.54 28402.76 40.300 5 629 0.79 { 7204.67

0331.4 46915 664 431054 1.38 29730.03 39.920 0 572 0.00 { 7204.41

0341.3 45800 658 431675 1.43 31004.06 39.200 13 586 2.17 { 7202.25

0341.4 46508 658 384305 1.26 34276.06 35.870 2 538 0.37 { 7201.98

0351.3 64953 1156 846140 1.13 35032.59 149.980 11 980 1.11 { 7207.96

0351.4 69922 1156 804403 1.00 34434.36 145.890 1 977 0.10 { 7223.44

nf260 276752 2198 1382054 0.23 47405.00 45.210 462 16 96.65 * 47420 1 2663.99

sp1 6954 204 94688 6.67 9987.80 4.060 1 134 0.74 { 7205.04

sp2 3686 173 45066 7.07 13522.93 1.470 0 101 0.00 * 13914 3052 1139.42

sp3 1668 111 27178 14.68 12766.12 0.500 1 57 1.72 * 12943 7 7.86

sp4 9144 368 150881 4.48 11389.42 6.720 0 207 0.00 { 7204.32

sp5 13718 684 162572 1.73 27403.20 27.770 4 498 0.80 * 27637 3 448.47

sp6 50722 2504 550644 0.43 157414.80 487.780 5 1551 0.32 { 7216.99

sp7 43459 2991 499347 0.38 162349.98 675.170 5 1950 0.26 { 7214.43

sp8 91123 4810 1004473 0.23 368714.87 1165.500 23 2945 0.77 { 7261.00

sp9 50013 2917 742546 0.51 166705.53 122.360 3 1535 0.20 { 7211.43

sp10 13128 781 220703 2.15 43045.72 2.670 3 280 1.06 { 7202.94

sp11 2775 104 56686 19.64 3093.13 0.300 0 44 0.00 INFEAS 113.14

sp12 84746 3218 910022 0.33 248004.45 1375.820 2 2308 0.09 { 7227.58

sp14 47214 3217 523992 0.34 250210.43 970.020 1 2315 0.04 { 7231.95

195

A.3 Results by others

Here we summarize those results of Ho�man and Padberg ([HP93℄), Bornd�orfer

([Bor97℄), and Bornd�orfer et al. ([BGKK97℄) that
an be dire
tly
ompared to our

results.

Ho�man and Padberg's results for the problems in Set 1 are reported in Ta-

bles A.5 and A.6. These tables
ontain the name, original size (number of
olumns

and rows), and the value of the optimal solution for ea
h problem; the size of the

problem after their initial problem size redu
tion; the upper bound obtained by

their feasible solution heuristi
 (\F" if their heuristi
 failed and \IP" if the �rst LP

relaxation provides an integral solution); the number of sear
h tree nodes
reated

by their Bran
h-and-Cut algorithm (not
ounting the root) and the total time they

spent in the three phases of the solution pro
ess. They do not report exe
ution

times for their initial problem size redu
tion and heuristi
 pro
edures separately.

The total time reported for us01 is after the dupli
ate
olumns have already been

eliminated from the problem. Their experiments were
arried out on a RS/6000

model 550 ma
hine for most of the problems and on a CONVEX model C-220 ma-

hine using one of its two pro
essors for the four largest problems (marked with a

*"). They used the CPLEX Callable Library but they do not report the version

number.

Bornd�orfer's results for the problems in Set 1 are
olle
ted in Tables A.7 and A.8.

The tables
ontain the name, original size (number of
olumns and rows), and the

value of the optimal solution for ea
h problem; the size of the problem after his initial

196

Table A.5: Computational results by Ho�man and Padberg, Set 1, part 1

Original Optimal Redu
ed Heur Tree Total

name
ols rows value
ols rows value size time

aa01 8904 823 56137 7532 607 F 90 14441.00

aa02 5198 531 30494 3846 360 IP 10.15

aa03 8627 825 49649 6694 537 49713 0 48.42

aa04 7195 426 26374 6122 342 27080 494 139337.00

aa05 8308 801 53839 6235 521 54060 4 215.30

aa06 7292 646 27040 5862 488 27040 0 37.30

kl01 7479 55 1086 5957 50 1096 2 35.40

kl02 36699 71 219 16542 69 221 0 134.38

nw01 51975 135 114852 50069 135 IP 19.25

nw02 87879 145 105444 85258 145 IP 37.35

nw03 43749 59 24492 38964 59 25086 0 24.00

nw04 87482 36 16862 46190 36 19492 44 2642.00

nw05 288507 71 132878 202603 71 IP 192.50

nw06 6774 50 7810 5977 50 9616 0 10.41

nw07 5172 36 5476 3108 36 IP 0.74

nw08 434 24 67760 2305 40 IP 0.08

nw09 3103 40 35894 356 24 IP 0.53

nw10 853 24 68271 659 24 IP 0.13

nw11 8820 39 116256 6488 39 116259 0 2.05

nw12 626 27 14118 454 27 IP 0.09

nw13 16043 51 50146 10950 51 50240 0 4.29

nw14 123409 73 61844 95178 73 IP 87.60

nw15 467 31 67743 463 29 IP 0.10

nw16 148633 139 1181590 138951 139 IP 174.40

nw17 118607 61 11115 78186 61 11907 4 87.53

nw18 10757 124 340160 8460 124 392090 0 62.49

nw19 2879 40 10898 2145 40 IP 0.50

197

Table A.6: Computational results by Ho�man and Padberg, Set 1, part 2

Original Optimal Redu
ed Heur Tree Total

name
ols rows value
ols rows value size time

nw20 685 22 16812 566 22 16812 0 0.62

nw21 577 25 7408 426 25 7676 0 0.30

nw22 619 23 6984 531 23 6984 0 0.34

nw23 711 19 12534 473 18 13702 0 0.34

nw24 1366 19 6314 925 19 6568 0 0.56

nw25 1217 20 5960 844 20 6610 0 0.62

nw26 771 23 6796 473 18 7452 0 0.34

nw27 1355 22 9933 926 22 F 0 0.28

nw28 1210 18 8298 825 18 F 0 0.40

nw29 2540 18 4274 2034 18 4378 0 0.99

nw30 2653 26 3942 1884 26 3942 0 0.75

nw31 2662 26 8038 1823 26 9754 0 1.43

nw32 294 19 14877 251 18 15600 0 0.17

nw33 3068 23 6678 2415 23 7536 0 1.45

nw34 899 20 10488 750 20 11613 0 0.30

nw35 1709 23 7216 1403 23 7340 0 0.48

nw36 1783 20 7314 1408 20 7634 0 3.68

nw37 770 19 10068 639 19 10377 0 0.19

nw38 1220 23 5558 911 23 5712 0 1.35

nw39 677 25 10080 567 25 F 0 0.19

nw40 404 19 10809 336 19 11070 0 0.21

nw41 197 17 11307 177 17 F 0 0.06

nw42 1079 23 7656 895 23 7846 0 0.99

nw43 1072 18 8904 982 17 8904 0 0.38

us01 1053137 145 10022 370642 90 10075 0 1410.60

us02 13635 100 5965 9022 45 IP 4.78

us03 85552 77 5338 27084 53 IP 20.27

us04 28016 163 17854 6564 112 17854 0 11.19

198

problem size redu
tion; the result of his feasible solution heuristi
 (the integrality

gap
omputed as (�z � z)=�z, and the size of the problem after applying the problem

size redu
tion on
e more) and the total time of the initial redu
tion, heuristi
, and

one more appli
ation of the redu
tion if a feasible solution has been found. After

this, the table lists the number of sear
h tree nodes
reated (in
luding the root) and

the time spent in his Bran
h-and-Cut solution pro
ess using default strategy (as far

as we understand these times do not
ontain the time spent in the initial problem

size redu
tion and heuristi
). The problem size redu
tion and heuristi
 were
arried

out on a Sun Ultra Spar
 1 Model 170E workstation, while the Bran
h-and-Cut

experiments were run on a Sun Ultra Spar
 2 Model 200E workstation. CPLEX

V5.0 was used as the LP engine.

Table A.9 summarizes the results of Bornd�orfer et al. for the Set 3 problems.

First the name and original size (number of
olumns and rows) of the problem

are given, followed by the size after the initial problem size redu
tion; the lower

and upper bounds obtained by their Bran
h-and-Cut pro
edure (the spa
e of the

lower bound is left empty if the optimality of the upper bound has been proved);

the number of sear
h tree nodes
reated (in
luding the root) and the time spent

in their Bran
h-and-Cut solution pro
ess. Note that they also publish results for

the v16 problems with a 2 minute time limit whi
h we do not present here (with

this experiment they demonstrate the degenerate nature of these problems). These

experiments were
arried out on a Sun Ultra Spar
 1 Model 170E, with CPLEX

V4.0.

We tried to
ompare the ar
hite
tures using the information provided by The

199

Table A.7: Computational results by Bornd�orfer, Set 1, part 1

Original Optimal Redu
ed Heuristi
 Tree Total

name
ols rows value
ols rows gap
ols rows time size time

aa01 8904 823 56137 7625 616 3.46 7586 616 1.55 97 238.71

aa02 5198 531 30494 3928 361 IP 0.24 1.99

aa03 8627 825 49649 6970 558 0.43 6823 558 1.09 1 12.47

aa04 7195 426 26374 6200 343 5.21 6189 343 1.62 181 319.19

aa05 8308 801 53839 6371 533 0.37 6354 532 1.00 7 13.62

aa06 7292 646 27040 6064 507 0.25 892 419 1.18 3 8.76

kl01 7479 55 1086 5957 47 1.00 1151 44 0.36 3 1.79

kl02 36699 71 219 16542 69 2.16 3415 62 1.41 1 6.05

nw01 51975 135 114852 50069 135 IP 0.77 2.70

nw02 87879 145 105444 85258 145 IP 1.39 5.61

nw03 43749 59 24492 38956 53 2.70 421 50 1.62 1 7.34

nw04 87482 36 16862 46189 35 9.47 15121 35 2.31 85 319.19

nw05 288507 71 132878 202482 58 IP 9.00 30.72

nw06 6774 50 7810 5936 37 18.98 883 37 0.28 3 1.02

nw07 5172 36 5476 3104 33 IP 0.11 0.20

nw08 434 24 67760 349 19 IP 0.01 0.02

nw09 3103 40 35894 2296 33 IP 0.07 0.14

nw10 853 24 68271 643 20 IP 0.02 0.02

nw11 8820 39 116256 5946 28 0.00 32 25 0.04 1 0.56

nw12 626 27 14118 451 25 IP 0.02 0.02

nw13 16043 51 50146 10901 48 0.21 100 46 0.45 3 1.24

nw14 123409 73 61844 95169 68 IP 3.73 19.23

nw15 467 31 67743 465 29 IP 0.01 0.02

nw16 148633 139 1181590 1 0 PP 7.13 0 7.11

nw17 118607 61 11115 78173 54 14.48 11332 52 4.84 3 29.03

nw18 10757 124 340160 7934 81 8.44 7598 81 0.74 1 2.19

nw19 2879 40 10898 2134 32 IP 0.07 0.13

200

Table A.8: Computational results by Bornd�orfer, Set 1, part 2

Original Optimal Redu
ed Heuristi
 Tree Total

name
ols rows value
ols rows gap
ols rows time size time

nw20 685 22 16812 566 22 1.11 18 15 0.03 1 0.04

nw21 577 25 7408 426 25 9.91 51 19 0.03 1 0.05

nw22 619 23 6984 531 23 0.60 18 17 0.00 1 0.04

nw23 711 19 12534 430 12 2.65 27 11 0.03 1 0.06

nw24 1366 19 6314 926 19 11.04 43 16 0.02 1 0.07

nw25 1217 20 5960 844 20 11.41 101 20 0.02 1 0.09

nw26 771 23 6796 514 21 2.87 30 17 0.03 1 0.05

nw27 1355 22 9933 926 22 4.51 19 13 0.03 1 0.06

nw28 1210 18 8298 599 18 5.97 20 11 0.03 1 0.03

nw29 2540 18 4274 2034 18 13.06 488 17 0.08 3 0.37

nw30 2653 26 3942 1884 26 69.84 1884 26 0.07 3 0.56

nw31 2662 26 8038 1823 26 2.23 34 20 0.06 1 0.14

nw32 294 19 14877 241 17 3.64 42 13 0.01 3 0.03

nw33 3068 23 6678 2415 23 2.96 19 13 0.06 1 0.17

nw34 899 20 10488 750 20 3.18 20 15 0.01 1 0.04

nw35 1709 23 7216 1403 23 8.74 91 19 0.03 1 0.10

nw36 1783 20 7314 1408 20 1 1408 20 0.05 5 0.49

nw37 770 19 10068 639 19 6.17 22 13 0.03 1 0.06

nw38 1220 23 5558 881 20 0.11 18 15 0.03 1 0.09

nw39 677 25 10080 567 25 8.27 29 11 0.01 3 0.05

nw40 404 19 10809 336 19 4.96 36 13 0.03 1 0.03

nw41 197 17 11307 177 17 4.23 15 12 0.01 1 0.02

nw42 1079 23 7656 820 19 2.23 19 15 0.04 1 0.08

nw43 1072 18 8904 983 17 8.30 983 17 0.04 1 0.08

us01 1053137 145 10022 351018 86 5.79 36201 86 57.95 3 228.68

us02 13635 100 5965 8946 44 IP 0.50 1.31

us03 85552 77 5338 23207 50 IP 3.32 5.50

us04 28016 163 17854 4285 98 0.73 86 69 1.05 1 1.63

201

Table A.9: Computational results by Bornd�orfer et al., Set 3

Original Redu
ed Bran
h-and-Cut Total

name
ols rows
ols rows lower bound upper bound nodes time

v0415 7684 1518 4536 598 2429415 9 5.68

v0416 19020 1771 11225 812 2725602 643 120.53

v0417 143317 1765 55769 715 2611518 41 174.07

v0418 8306 1765 4957 742 2845425 7 5.72

v0419 15709 1626 7852 650 2590326 1 3.99

v0420 4099 958 2593 417 1696889 1 1.31

v0421 1814 952 1134 286 1853951 3 0.72

v1616 67441 1439 52926 1230 1006460 1605 4219.41

v1617 113655 1619 85457 1409 1102357 1102586 3571 7200.61

v1618 146715 1603 90973 1396 1152989 1154458 296 7222.28

v1619 105822 1612 85696 1424 1156072 1156338 880 7205.74

v1620 115729 1560 89512 1365 1140604 8161 5526.43

v1621 24772 938 16683 807 825563 5 13.79

v1622 13773 859 11059 736 793445 3 9.69

t0415 7254 1518 3312 870 5163849 5590096 167 7218.94

t0416 9345 1771 3298 974 5882041 6130217 144 7207.46

t0417 7894 1765 3774 897 5656886 6043157 71 7310.58

t0418 8676 1765 4071 999 6185168 6550898 87 7239.54

t0419 9362 1626 3287 904 5689134 5916956 100 7251.57

t0420 4583 958 1872 562 4036526 4276444 362 7208.44

t0421 4016 952 1691 557 4113080 4354411 375 7213.44

t1716 56865 467 11952 467 122408 161636 69 7212.95

t1717 73885 551 16428 551 135539 184692 41 7331.93

t1718 67796 523 16310 523 127040 162992 44 7238.72

t1719 72520 556 15846 556 139332 187677 37 7281.77

t1720 69134 538 16195 538 127222 172752 38 7349.28

t1721 36039 357 9043 357 104698 127424 174 7243.42

202

Standard Performan
e Evaluation Corporation (http://www.spe
ben
h.org). The

ar
hite
tures used by Ho�man and Padberg are not listed there. The integer arith-

meti
 of a thin node of the SP is slightly slower than that of the Ultra Spar
s. On

the other hand, the
oating point arithmeti
 of a thin node is about 60% and 23%

faster than that of an Ultra Spar
 1 Model 170E and an Ultra Spar
 2 Model 200E,

respe
tively. Note that our problem size redu
tion methods rely only on integer

arithmeti
.

Appendix B

Implementing Redu
e()

In this appendix we des
ribe the main data stru
ture and the parameters used in

Redu
e(). See Se
tion 3.4 for a general overview of the fun
tion.

B.1 Redu
e main data stru
ture

A �eld
an be an input (IN), an output (OUT) or both (IN/OUT) for Redu
e().

redu
e params *rpar (IN)

Parameters. Must be �lled out before invoking Redu
e().

int feasibility (OUT)

Indi
ates the feasibility status of the problem. Possible values are FEASIBLE,

INFEASIBLE, FEASIBILITY NOT KNOWN.

int ones num (IN/OUT)

As input, the number of variables to be �xed to one; as output, the number

203

204

of variables �xed to one by Redu
e() (in
luding those in the input).

int *ones (IN/OUT)

As input, it
ontains the names of variables to be �xed to one; as output, it

ontains the names of variables that have been �xed to one by Redu
e(). New

variables �xed to one are appended after those in the input. Spa
e must be

allo
ated for
matrix->rownum entries.

int merged num (IN/OUT)

As input, the number of variable pairs that were merged before invoking Re-

du
e(); as output, the total number of merged variable pairs.

olname pair *merged (IN/OUT)

As input, it
ontains pairs of names of variables that were merged before

invoking Redu
e(). As output, it
ontains the names of all merged variable

pairs. New merged pairs are appended after those in the input. Spa
e must

be allo
ated for
matrix->rownum entries.

The
olname pair stru
ture has two integer �elds, int name1 and name2.

The merged variable will inherit the name name1.

ol ordered *
matrix (IN/OUT)

Column ordered representation of the problem matrix. The
olnum, rownum,

obj, matind and matbeg �elds must be �lled before invoking Redu
e().

row ordered *rmatrix (IN/OUT)

Row ordered representation of the problem matrix.

205

B.2 Redu
e parameters

int verbosity

Determines the amount of information written into the tra
e-�le. Between 0

(nothing) and 5 (all information).

int fix lex order

TRUE/FALSE. Order the
olumns into lexi
ographi
ally as
ending order at

the beginning of Redu
e() or not. (Columns might be already ordered.)

int strategy

Whi
h strategy to use. The following are implemented: maximal redu
tion

without SUMC (0), maximal redu
tion with SUMC (1), fast redu
tion without

SUMC (2), fast redu
tion with SUMC (3), SUMC only (4), remove dupli
ate

olumns and rows only (5).

int dup
, sum
,
lext, domr, singl, dtwo

TRUE/FALSE. Redu
tion modules are enabled/disabled.

double sum
 fra
,
lext fra
, domr fra
, singl fra
, dtwo fra

Between 0 and 1. The
orresponding redu
tion fun
tion is repeated if at least

this fra
tion of the
olumns in the
urrent matrix are marked for deletion by

the most re
ent appli
ation of the fun
tion (repeat fra
tion). Note that

DUPC need not be repeated.

double all fra

Between 0 and 1. The loop in the fast strategy repeats if at least this fra
tion

206

of the
olumns have been deleted during the last pass through the loop.

double sum

ost avg toleran
e, sum
 toleran
e in
rement

In the SUMC redu
tion fun
tion a
olumn
an be a prospe
tive summand

only if its
ost per length ratio is below that of the remainder multiplied

by sum

ost avg toleran
e. The smaller this parameter, the more re-

stri
tive the sear
h. Therefore every time the redu
tion fun
tion is repeated

sum

ost avg toleran
e is in
reased by sum
 toleran
e in
rement.

int sum
 max summands num

Limit on the depth of the re
ursion in the SUMC redu
tion fun
tion.

double sum

hunk, double sum

hunk fra

Both between 0 and 1. In the SUMC redu
tion fun
tion only part of the

olumns are examined at a time, the size of the \
hunk" is the number of

olumns multiplied by sum

hunk. Only if at least sum

hunk fra
 fra
tion

of the
olumns in the
urrent
hunk are marked for deletion will the redu
tion

ontinue for the next
hunk.

int
lext samplelen per
,
lext samplelen min,
lext samplelen max

Together determine the sample length for a row in the CLEXT redu
tion

fun
tion. The sample is the entire row if the size of the row's support is

not more than
lext samplelen min. Otherwise
lext samplelen per
 (be-

tween 0 and 100) per
entage of the row's support is sampled, but not less than

lext samplelen min and not more than
lext samplelen max
olumns.

Appendix C

Implementing the feasible solution

heuristi

First we des
ribe a few internal CPLEX parameters for whi
h non-default values

were
onsidered in our experiments. For some of these parameters non-default values

were ne
essary for
orre
tness, while for the rest the modi�ed parameter settings

were to improve eÆ
ien
y. See Chapter 9 of the CPLEX manual ([CPX95℄) for

more details. Then we list the parameters that were referred to in the dis
ussion of

the feasible solution heuristi
 (Se
tion 4.2.3).

C.1 CPLEX parameters

double tilim

Time limit on one optimization
all (in se
onds).

207

208

int aggind, int
oeredind, int depind, int preind

TRUE/FALSE. Prepro
essing options within CPLEX are enabled/disabled

(CPLEX Aggregator,
oeÆ
ient redu
tion, dependen
y
he
k, CPLEX Pre-

solve). Used default settings (all but the dependen
y
he
k are enabled).

int dpriind

Dual simplex pri
ing algorithm. Used steepest edge pri
ing instead of default.

int basinterval

Simplex basis-�le saving frequen
y. Set so that basis is never saved.

int baralg

Barrier algorithm. Used the default setting primal-dual log barrier.

int brdir, double bttol, int ndsel, int varsel

Control the way bran
hing is done by the CPLEX MIP solver. Used default

settings for brdir (bran
hing dire
tion), bttol (ba
ktra
king toleran
e { how

mu
h the LP optimum
an degrade before a new sear
h tree node is
hosen

instead of one of the
hildren) and ndsel (node sele
tion strategy). Strong

bran
hing proved to be more e�e
tive than the default option for varsel

(variable sele
tion strategy).

double epagap, epgap

Absolute and relative MIP gap toleran
es. Assuming that an integer feasible

solution already exists, optimization is stopped if the absolute/relative dif-

feren
e between the feasible solution value and the LP obje
tive value at the

209

best remaining sear
h tree node is less than the toleran
e.

The absolute toleran
e was set to granularity (see below) instead of 0. The

relative di�eren
e (10

4

by default) was lowered to its smallest possible value

of 10

�9

sin
e some of our problems have very large optimal values and several

near-optimal feasible solutions.

double objdif

Absolute obje
tive di�eren
e
uto�. A sear
h tree node
an be
ut o� if its

LP optimum is within objdif of the best feasible value. Set to granularity

(see below) instead of 0.

C.2 Heuristi
 parameters

int dup
 at loadtime

TRUE/FALSE. Enable/disable deletion of dupli
ate
olumns next to ea
h

other in the input �le.

double granularity

A lower bound on the true granularity of the problem (whi
h is the minimum

di�eren
e between non-identi
al integral feasible solution values).

Note that if in a problem all the obje
tive fun
tion
oeÆ
ients have at most

k de
imal digits then 10

�k

is a lower bound on the true granularity.

210

int what to do

The main fun
tion
an be used to run only Redu
e() (0); solve the input

problem as an IP (with CPLEX MIP) or as an LP (1); invoke Redu
e() and

then solve the IP or LP (2); or run the feasible solution heuristi
 (3).

int major itlim, int minor itlim

Iteration limit on the major loop and the heuristi
 variable �xing loop.

int ip or lp

Solve the input problem as an IP (0) or as an LP (1) (what to do is 1 or 2).

int lp method

The LP method to be used is primal simplex (0), dual simplex (1), barrier

with primal
rossover (2), barrier with dual
rossover (3) or barrier without

rossover (4).

Note that in the feasible solution heuristi
 the �rst LP relaxation is always

solved with a barrier method even if simplex is used later on.

int lp warmstart

Setting the last three bits determines what information is used to warmstart

the LP solver: basis status (last or 0 bit), primal feasible solution (1 bit) or

dual feasible solution (2 bit). Basis status
an be used for both simplex and

barrier methods; primal and dual solutions are for barrier methods only. LPs

are solved from s
rat
h if none of the bits is set.

211

int warmstart advi
e

TRUE/FALSE. If enabled, an LP is solved from s
rat
h instead of using warm-

start information if too many rows with nonbasi
 sla
ks were removed from

the formulation sin
e the LP was re-solved.

int what rel
ost

A measure (\relative
ost") based on whi
h the signi�
an
e of variables is

ompared. The options are original obje
tive fun
tion
oeÆ
ient divided by

the size of the
olumn's support (0) and
urrent redu
ed
ost (2).

int do
rash, double
rash fra

TRUE/FALSE. If
rash is enabled, the heuristi
 starts with eliminating up to

rash fra
 fra
tion of the least signi�
ant
olumns.

int vars at one a
tion, double vars at one ratio

How to deal with variables at level 1 in the
urrent LP relaxation. For ea
h

variable at level 1 we
an remove all variables from the symmetri
 di�eren
e

of its rows' supports (1); �x the variable to 1 (2); treat it the same way as any

other variable at nonzero level (3) or apply an adaptive strategy (4) (where

(1) is used if the ratio of variables at level 1 to all variables at nonzero levels

is at least vars at one ratio, and (3) otherwise).

double min
oldel fra

The LP is re-solved during the heuristi
 �xing phase if this fra
tion of the

variables have been eliminated (by variable �xing or a subsequent Redu
e()).

212

int do followon fixing

TRUE/FALSE. Follow-on �xing is enabled/disabled.

double followon threshold ub, double followon threshold lb

Between 0 and 1. Follow-on threshold upper and lower bounds.

double followon row fra
, int followon roworder, int followon
hoose

The rows of the matrix are ordered based on followon roworder (same op-

tions as for roworder) during follow-on �xing. followon row fra
 fra
tion

of the rows are
hosen from the top of the ordering; all pairs of the these rows

are enumerated and
ompared (followon
hoose determines if the row pairs

are taken from the bottom (0), top (1) or opposite ends of the ordering (2)).

int do pro
ess rows

TRUE/FALSE. Enable/disable the pro
edure that removes unattra
tive vari-

ables. The pro
edure is invoked even if it is disabled when follow-on �xing is

not able to remove any variables.

int roworder

Determines the order in whi
h the rows of the matrix are enumerated. The op-

tions are either random (0), or based on the
urrent dual values
orresponding

to the rows: from largest dual value to smallest (1), from smallest to largest

(2), from largest absolute value to smallest (3) and from smallest absolute

value to largest (4).

213

int row a
tion, double threshold, double fra
 above
utoff,

double fra
 all zeros

How to remove unattra
tive variables from a row. The options are deleting a

given fra
tion (fra
 above
utoff) of variables above the
uto� determined

by threshold (1) or removing a given fra
tion fra
 all zeros of variables

at zero level from the row (4).

double min pro
row fra

The pro
edure of removing unattra
tive variables terminates if at least this

fra
tion of all the rows have been examined (even if not enough variables were

marked for deletion).

int del zeros only

TRUE/FALSE. If set, no variables at nonzero levels in the
urrent LP relax-

ation are marked for deletion during the heuristi
 �xing phase (but
ould be

marked by a subsequent Redu
e()).

int prote
t
ollen

Any nonnegative integer. If positive,
olumns with supports up to this size

are not marked for deletion during the heuristi
 �xing phase (but
ould be

marked by a subsequent Redu
e()).

int prote
t basi

TRUE/FALSE. If set, basi
 variables in the
urrent LP relaxation are not

marked for deletion during the heuristi
 �xing phase (but
ould be marked by

a subsequent Redu
e()).

Appendix D

Implementing our

Bran
h-and-Cut pro
edure

In this Appendix �rst we des
ribe some COMPSys parameters that were essential for

our implementation and experiments. Then the parameters that we introdu
ed in

the user fun
tions are listed. The parameters within the two se
tions are grouped

by the pro
esses in whi
h they o

ur. Chapter 5 des
ribes our Bran
h-and-Cut

implementation using the COMPSys framework. See [EL97℄ for a
omplete list of

user-written fun
tions and parameters of COMPSys.

214

215

D.1 COMPSys parameters

Global parameters

int verbosity

Determines the amount of output information (between 0 and 11).

double granularity

A lower bound on the true granularity of the problem (whi
h is the minimum

di�eren
e between non-identi
al integral feasible solution values).

double upper bound

Upper bound on the optimal value (e.g., the value of a feasible solution).

int time limit

Time limit on the B&C optimization (ex
luding reading the input and pre-

pro
essing/upper bounding in the Master pro
ess).

Parameters in the Master pro
ess

int do bran
h and
ut

TRUE/FALSE. Enable/disable the Tree Manager pro
ess.

int do draw graph

TRUE/FALSE. Enable/disable the DrawGraph pro
ess (the GUI).

216

Parameters in the Tree Manager pro
ess

There are parameters that determine the number and names of the pro
essors used

for the di�erent pro
esses (this is interesting for instan
e if we wish to use the same

pro
essor for more than one pro
ess { as we do with the Master and Tree Manager).

Also, there are parameters not listed here that
ontrol diving (retaining one of the

hildren after bran
hing).

int max a
tive nodes

Limit on the number of LP { Cut Generator pairs.

int max
p num

Limit on the number of Cut Pool pro
esses (no CP is used if 0).

int use
g

TRUE/FALSE. Enable/disable
ut generation. B&C be
omes B&B if
ut

generation is disabled.

int node sele
tion rule

Determines whi
h sear
h tree node is sele
ted for pro
essing next. We always

used the default option of sele
ting the node with the lowest lower bound (LP

value). Other options in
lude sele
ting a node with the highest lower bound,

or enumerating the sear
h tree in a breath-�rst or depth-�rst fashion.

217

Parameters in the LP pro
ess

A set of six parameters that we do not des
ribe here in detail determine when to

arry out redu
ed
ost and logi
al �xing. Also, parameters
ontrol how long the LP

is going to wait for
uts from CG and CP before re-solving the LP relaxation.

double tailoff obj fra
, tailoff gap fra

int tailoff obj ba
ksteps, tailoff gap ba
ksteps

Threshold values and length of history for
he
king tailing o� (5.3.5).

int bran
h on
uts

TRUE/FALSE. Bran
hing on
uts is enabled/disabled.

int max
utnum per iter

Limit on the number of violated inequalities (
uts) added to the formulation

in one iteration.

int max presolve iter

Limit on the number of dual simplex iterations for presolving the LP relax-

ations at the would-be
hildren of the bran
hing
andidates.

Parameters in the Cut Pool pro
ess

int max size, max number of
uts

The size of the memory that
an be allo
ated for the
uts stored and a limit on

their number. When the
ut pool be
omes full (one of these limits is ex
eeded)

ine�e
tive
uts are deleted from the pool.

218

int
he
k whi
h

Determines whi
h
uts should be
he
ked for violation for a given LP solution.

The default is to
he
k those that were originally generated at a higher level

in the sear
h tree than the
urrent solution and those that were found violated

re
ently.

Parameters in the Cut Generator and DrawGraph pro
esses

There are no parameters in CG that need to be mentioned here. Window
hara
-

teristi
s
an be set through parameters in DG.

D.2 Parameters in the user-written fun
tions

Parameters in the Master Pro
ess

All the parameters dis
ussed here are used in the user start heurs fun
tion.

int first redu
e

TRUE/FALSE. If the parameter is set, an initial Redu
e() (Chapter 3) will

be invoked right after the problem is read in. A
omplete set of Redu
e()

parameters (des
ribed in Appendix B)
an also be spe
i�ed.

int first lp method

The LP method to be used to solve the �rst LP relaxation. The options are

primal simplex (0), dual simplex (1), barrier with primal
rossover (2), barrier

with dual
rossover (3) or barrier without
rossover (4).

219

int r
fix, r
fix lp method, r
fix lp warmstart

Setting r
fix enables redu
ed
ost �xing. The other two parameters spe
ify

the LP method and what warmstart information to use during redu
ed
ost

�xing.

int first heur

TRUE/FALSE. Our Feasible Solution Heuristi
 (Chapter 4) is invoked if the

parameter is set. Note that a
omplete set of parameters (des
ribed in Ap-

pendix C)
an also be spe
i�ed.

Parameters in the LP Pro
ess

double logfix fra
, do heur fra

Attempt logi
al �xing (resp. feasible solution heuristi
) if at least the above

fra
tion of variables was set to zero sin
e the most re
ent appli
ation of logi
al

�xing (resp. feasible solution heuristi
). Logi
al �xing (and feasible solution

heuristi
) is always invoked if a variable is �xed to one. A
omplete set of

Redu
e() (Appendix B) and Heuristi
 (Appendix C) parameters
an also be

spe
i�ed to be used in these fun
tions.

int do lift in lp

TRUE/FALSE. Enable/disable lifting of violated inequalities.

int followon bran
h num, threshold bran
h num, sla
k
ut bran
h num

int variable bran
h num

The number of bran
hing
andidates to be
hosen from ea
h ea
h type. If

220

variable bran
h num is not positive then the bran
hing
andidates are sup-

plemented with bran
hing variables until their number rea
hes 5.

int bran
h var
lose to half

TRUE/FALSE. If the parameter is set, bran
hing variables are
hosen with

the \
lose to half and expensive" rule; otherwise they are
hosen with the

\
lose to one and
heap" rule.

double threshold bran
h threshold,

double followon bran
h lowthreshold, followon bran
h highthreshold

Thresholds for threshold and follow-on bran
hing
andidate sele
tion, as de-

s
ribed in Se
tion 5.3.6. Between 0 and 1.

Parameters in the Cut Generator Pro
ess

int do human
g, handmake
uts if must

TRUE/FALSE. The �rst parameter enables/disables
ut generation through

the GUI. The se
ond parameter determines how frequently the fra
tional

graph is displayed: only when the built-in
ut generators fail to �nd a vi-

olated inequality or every time the LP is re-solved.

int do s
l, do r
l, do oh, do pa
king, do
over, do oah

TRUE/FALSE. Enable/disable the
orresponding
ut generators (star
lique,

row
lique, sequentially lifted odd holes, pa
king odd holes,
over odd holes

and sequentially lifted odd antiholes.

221

double s
l min violation, r
l min violation, oh min violation

double pa
king min violation,
over min violation, oah min violation

Inequalities of a given type are not
onsidered violated if their violation is

below the minimum.

int s
l degree threshold, r
l degree threshold

Greedy
lique dete
tion is substituted for enumeration on a subset of the nodes

if the number of nodes ex
eeds these thresholds (star and row
lique routines).

int s
l whi
h node

Determines how to
hoose the next node in the star
lique method. The

options are
hoosing a node with minimum degree, with maximum degree, or

with the highest fra
tional value.

int oh max hubnum, oah max hubnum

Limit on the number of hub
andidates in the odd hole and odd antihole

dete
tion routines.

int oh max
he
ked level,

int oh next level when found, next level graph when found

The �rst parameter is the deepest level in the level graph that we investigate

in the odd hole dete
tion routine (the level graph is not built below this level).

The last two parameters are TRUE/FALSE, they indi
ate whether the next

level/next level graph should be taken when a violated inequality is found

using nodes on the
urrent level. Same for oah.

Bibliography

[AGPT91℄ R. Anbil, E. Gelman, B. Patty, and R. Tanga. Re
ent advan
es in

rew-pairing optimization at Ameri
an Airlines. Interfa
es, 21(1):62{

74, 1991.

[Anb℄ R. Anbil. Private
ommuni
ation.

[BC96℄ J.E. Beasley and P.C. Chu. A geneti
 algorithm for the set
overing

problem. European Journal of Operational Resear
h, 94:392{404, 1996.

[BGKK97℄ R. Bornd�orfer, M. Gr�ots
hel, F. Klostermeier, and Ch. K�uttner. Telebus

Berlin: Vehi
le S
heduling in a Dial-a-Ride System. Te
hni
al Report

SC 97-23, ZIB, 1997.

[Bix98℄ R. Bixby. Re
ent developments in CPLEX. Joint DIMACS-CMU-

Georgia Te
h. Workshop on Large S
ale Dis
rete Optimization, May

27-29, 1998.

[BM94a℄ F. Barahona and A.R. Mahjoub. Compositions of graphs and polyhedra

II: Stable sets. SIAM Journal on Dis
rete Mathemati
s, 7:359{371, 1994.

[BM94b℄ F. Barahona and A.R. Mahjoub. Compositions of graphs and polyhedra

III: Graphs with noW

4

minor. SIAM Journal on Dis
rete Mathemati
s,

7:372{389, 1994.

[Bor97℄ R. Bornd�orfer. Aspe
ts of Set Pa
king, Partitioning, and Covering. PhD

thesis, Te
hnis
hen Universit�at Berlin, De
ember 1997.

[BP76℄ E. Balas and M.W. Padberg. Set partitioning: A survey. SIAM Review,

18(4):710{760, 1976.

[BQ64℄ M.L. Balinski and R.E. Quandt. On an integer program for a delivery

problem. Operations Resear
h, 12(2):300{304, 1964.

222

223

[CC97℄ E. Cheng and W.H. Cunningham. Wheel inequalities for stable set

polytopes. Mathemati
al Programming, 77:389{421, 1997.

[Chr85℄ N. Christo�des. Vehi
le routing. In E.L. Lawler, J.K. Lenstra,

A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Sales-

man Problem: A Guided Tour of Combinatorial Optimization,
hap-

ter 12. Wiley, New York, 1985.

[Chv73℄ V. Chv�atal. Edmonds polytopes and a hierar
hy of
ombinatorial prob-

lems. Dis
rete Mathemati
s, 4:305{337, 1973.

[Chv75℄ V. Chv�atal. On
ertain polytopes asso
iated with graphs. Journal of

Combinatorial Theory (B), 18:138{154, 1975.

[CPX95℄ CPLEX Optimization, In
. Using the CPLEX

Callable Library, Ver-

sion 4.0, 1995.

[ECTA96℄ M. Eben-Chaime, C.A. Tovey, and J.C. Ammons. Cir
uit partition-

ing via set partitioning and
olumn generation. Operations Resear
h,

44(1):65{76, 1996.

[Edm62℄ J. Edmonds. Covers and pa
kings in a family of sets. Bulletin of the

Ameri
an Mathemati
al So
iety, 68:494{499, 1962.

[EDM90℄ E. El-Darzi and G. Mitra. Set
overing and set partitioning: A
olle
tion

of test problems. Omega International Journal of Management S
ien
e,

18(2):195{201, 1990.

[EL97℄ M. Es}o and L. Lad�anyi. CompSys User's Manual (unpublished), 1997.

[ELRT97℄ M. Es}o, L. Lad�anyi, T.K. Ralphs, and L.E. Trotter. Fully parallel

generi
 bran
h-and-
ut. In Pro
eedings of the Eighth SIAM Conferen
e

on Parallel Pro
essing for S
ienti�
 Computing, Minneapolis, Mar
h

14-17 1997.

[FR87℄ J.C. Falkner and D.M. Ryan. A bus
rew s
heduling system using a

set partitioning model. Asia-Pa
i�
 Journal of Operational Resear
h,

4:39{56, 1987.

[Ger89℄ I. Gershko�. Optimizing
ight
rew s
hedules. Interfa
es, 19(4):29{43,

1989.

[GJ79℄ M.R. Garey and D.S. Johnson. Computers and Intra
tability. W.H.

Freeman and Company, New York, 1979.

224

[GLS88℄ M. Gr�ots
hel, L. Lov�asz, and A. S
hrijver. Geometri
 Algorithms and

Combinatorial Optimization. Springer-Verlag, 1988.

[GN70℄ R.S. Gar�nkel and G.L. Nemhauser. Optimal politi
al distri
ting by

impli
it enumeration te
hniques. Management S
ien
e, 16:B495{B508,

1970.

[GN72℄ R.S. Gar�nkel and G.L. Nemhauser. Integer Programming. Wiley, New

York, 1972.

[Ho
95℄ D. Ho
hbaum. Approximating
overing and pa
king problems: set

over, vertex
over, independent set and related problems. In

D. Ho
hbaum, editor, Approximation Algorithms for NP-hard problems,

hapter 3. PWS Publishing Company, Boston, 1995.

[HP93℄ K.L. Ho�man and M. Padberg. Solving airline
rew s
heduling problems

by bran
h-and-
ut. Management S
ien
e, 39(6):657{682, 1993.

[Kop99℄ L. Kopman. A New Generi
 Separation Routine and its Appli
ation in a

Bran
h and Cut Algorithm for the Capa
itated Vehi
le Routing Problem,

in preparation. PhD thesis, Cornell University, Itha
a, NY, 1999.

[Lad96℄ L. Lad�anyi. Parallel Bran
h and Cut and its Appli
ation to the Traveling

Salesman Problem. PhD thesis, Cornell University, Itha
a, NY, January

1996.

[LK79℄ J.K. Lenstra and A.H.G. Rinnooy Kan. Computational
omplexity of

dis
rete optimization problems. Annals of Dis
rete Mathemati
s, 4:121{

140, 1979.

[LR℄ L. Lad�anyi and T.K. Ralphs. Private
ommuni
ation.

[LS90℄ L. Lov�asz and A. S
hrijver. Matrix
ones, proje
tion representations

and stable set polyhedra. DIMACS Series in Dis
rete Mathemati
s and

Theoreti
al Computer S
ien
e, 1:1{17, 1990.

[NS89℄ P. Nobili and A. Sassano. Fa
ets and lifting pro
edures for the set

overing polytope. Mathemati
al Programming, 45:111{137, 1989.

[NS92℄ G.L. Nemhauser and G. Sigismondi. A strong
utting plane/bran
h-and-

bound algorithm for node pa
king. Journal of the Operational Resear
h

So
iety, 43(5):443{457, 1992.

225

[NT74℄ G.L. Nemhauser and L.E. Trotter. Properties of vertex pa
king and

independen
e system polyhedra. Mathemati
al Programming, 6:48{61,

1974.

[NT75℄ G.L. Nemhauser and L.E. Trotter. Vertex pa
kings: stru
tural proper-

ties and algorithms. Mathemati
al Programming, 8:232{248, 1975.

[NW88℄ G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimiza-

tion. Wiley, New York, 1988.

[Ous94℄ J.K. Ousterhout. T
l and the Tk Toolkit. Addison-Wesley, 1994.

[Pad73℄ M.W. Padberg. On the fa
ial stru
ture of set pa
king polyhedra. Math-

emati
al Programming, 5:199{215, 1973.

[Pan℄ G. Pangborn. Private
ommuni
ation.

[PVM℄ Pvm: Parallel virtual ma
hine.

Home page: http://www.epm.orml.gov/pvm/pvm home.html.

[PY91℄ C.H. Papadimitriou and M. Yannakakis. Optimization, approximation

and
omplexity
lasses. Journal of Computer and System S
ien
es,

43:425{440, 1991.

[Ral95℄ T.K. Ralphs. Parallel Bran
h and Cut for Vehi
le Routing. PhD thesis,

Cornell University, Itha
a, NY, May 1995.

[RF87℄ D.M. Ryan and J.C. Falkner. A bus
rew s
heduling system using a

set partitioning model. Asia Pa
i�
 Journal of Operational Resear
h,

4:39{56, 1987.

[Sas89℄ A. Sassano. On the fa
ial stru
ture of the set
overing polytope. Math-

emati
al Programming, 44:181{202, 1989.

[S
h86℄ A. S
hrijver. Theory of Linear and Integer Programming. Wiley, New

York, 1986.

[Shm95℄ D.B. Shmoys. Computing near-optimal solutions to
ombinatorial op-

timization problems. In W. Cook, L. Lov�asz, and P. Seymour, editors,

Advan
es in Combinatorial Optimization, pages 355{397. AMS, Provi-

den
e, RI, 1995.

[Tro75℄ L.E. Trotter. A
lass of fa
et produ
ing graphs for vertex pa
king poly-

hedra. Dis
rete Mathemati
s, 12:373{388, 1975.

226

[Wel95℄ M. Welsh. Using T
l and Tk from your C programs. Linux Journal,

pages 26{33, February 1995.

